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Abstract

Artificial intelligence, and in particular, the field of natural language processing, is going
through a tremendous transition with the rise of deep learning systems. Motivated by these
recent fundamental changes, a wide range of new research questions came up concern-
ing the stability of such large-scale systems and their applicability beyond well-studied
tasks and datasets, such as information extraction in non-standard domains and languages.
One important aspect is the usage of deep networks in low-resource environments. Neural
models are known for requiring large amounts of training data because millions of param-
eters have to be tuned. This includes the training in non-standard languages, but also text
domains and tasks, for which — even in English — only little training data is available.
Therefore, a core challenge of deep learning methods targeting low-resource information
extraction involves overcoming the resource limitations in the training process. Recent
advances in this field are achieved by pre-training representations on large-scale corpora
to capture generally applicable knowledge. However, while performing great in standard
applications, these general models lack the specific knowledge of specialized domains for
which fewer training resources exist. Instead, relevant domain knowledge can be incor-
porated into general-domain models in order to improve performance in non-standard do-
mains. Moreover, the transfer of pre-trained representations across languages offers great
opportunities but also even greater risks, as differences between the languages and their rep-
resentations inside multilingual models often negatively influence the cross-lingual transfer
and outweigh the positive transfer effects.

In this work, we address the previously described challenges for information extraction
in non-standard domains and languages and propose novel model architectures and training
strategies to overcome the existing limitations. In particular, we propose solutions to close
the domain gap between representation models and address domain-specific challenges,
e.g., anonymization in pipeline models for the clinical domain. Moreover, we explore
cross-task transfer with prediction methods to select suitable transfer sources and perform
cross-language transfer with our innovative models for multilingual temporal tagging. Our
main contributions are as follows:

(1) We show that word representations trained on texts from the general domain can
be greatly improved in non-standard domains by incorporating domain-specific knowledge
from the target domain by either fine-tuning languages models on documents from the
target domain or by adding domain-specific word representations. For this, we propose a
novel meta-embedding architecture to create a joint representation of multiple embeddings
from various domains that captures the diverse knowledge contained in the embeddings.
We demonstrate the effectiveness of our approach on a variety of sentence classification
and sequence-tagging tasks across languages and domains. Our analysis shows that our
approaches are particularly successful in low-resource settings.

(2) We explore cross-domain, -task, and -language transfer. We propose a new simi-
larity measure for datasets based on task-specific features and properties of deep learning
models and select suitable sets of transfer sources using dynamic prediction methods. Our



new model similarity measure based on feature mappings outperforms currently used sim-
ilarity measures as it is able to capture both task and domain similarity at the same time.
Our dynamic selection method for sets of sources outperforms the single-source transfer
— as suggested in prior work — and effectively avoids negative transfer.

(3) We study natural language processing pipelines consisting of multiple steps, such
as our 3-step temporal tagging pipeline for the extraction, normalization, and anchoring of
temporal expressions. Specifically, we introduce the first neural method for normalizing
temporal expressions based on masked language modeling. Our experiments in 17 lan-
guages demonstrate the robust performance of our method across languages. We further
study cross-language transfer in the context of temporal tagging and explore the prospects
of embedding alignments for multilingual models. In particular, we set the new state of
the art in low-resource languages. Moreover, we study an NLP pipeline for anonymization
and concept extraction for processing clinical documents. We propose a differentiable ver-
sion of an NLP for anonymization and clinical concept extraction show that anonymization
positively influences the concept extraction performance.



Kurzzusammenfassung

Künstliche Intelligenz und insbesondere der speziellere Bereich der Verarbeitung natür-
licher Sprache erfährt mit dem Aufkommen von Deep-Learning-Systemen einen enormen
Wandel. Motiviert durch diese jüngsten fundamentalen Veränderungen, ist eine Vielzahl
neuer Forschungsfragen aufgekommen, die sich mit der Stabilität solcher großen Systeme
und ihrer Anwendbarkeit jenseits gut untersuchter Aufgaben und Datensätze befassen, z.B.
zur Informationsextraktion in unüblichen Domänen und Sprachen. Ein wichtiger Aspekt
ist der Einsatz von tiefen Netzen in ressourcenarmen Umgebungen. Neuronale Modelle
sind dafür bekannt, dass sie große Mengen an Trainingsdaten benötigen, da Millionen von
Parametern trainiert werden müssen. Dazu gehört das Training in Nicht-Standardsprachen,
aber auch Textdomänen und Aufgaben, für die — selbst im Englischen — nur wenige
Trainingsdaten zur Verfügung stehen. Eine zentrale Herausforderung von Deep-Learning-
Methoden für die Informationsextraktion mit limitierten Ressourcen ist daher die Überwin-
dung der Ressourcenbeschränkungen im Trainingsprozess. Jüngste Fortschritte in diesem
Bereich wurden mit dem Vortrainieren von Repräsentationen auf großen Korpora erzielt,
um allgemein anwendbares Wissen zu erlernen. Diese allgemeinen Modelle sind zwar
für Standardanwendungen gut geeignet, verfügen jedoch nicht über das spezifische Wissen
spezieller Bereiche, für die weniger Trainingsressourcen zur Verfügung stehen. Stattdessen
kann relevantes spezifischeres Domänenwissen in allgemeine Modelle integriert werden,
um die Leistung in unüblichen Domänen zu verbessern. Darüber hinaus bietet der sprach-
übergreifende Transfer von vortrainierten Repräsentationen große Chancen, aber auch noch
größere Risiken, da Unterschiede zwischen den Sprachen und ihren Repräsentationen in
mehrsprachigen Modellen den sprachübergreifenden Transfer oft negativ beeinflussen und
die positiven Transfereffekte überwiegen.

In dieser Arbeit befassen wir uns mit den zuvor beschriebenen Herausforderungen bei
der Informationsextraktion in unüblichen Domänen und Sprachen und schlagen neuartige
Modellarchitekturen und Trainingsstrategien vor, um die bestehenden Einschränkungen zu
überwinden. Insbesondere schlagen wir Lösungen vor, um die sogenannte Domänenlücke
zwischen Repräsentationsmodellen zu schließen und domänenspezifische Herausforderun-
gen anzugehen, z.B. die Anonymisierung in Pipeline-Modellen für die klinische Domäne.
Darüber hinaus erforschen wir den aufgabenübergreifenden Transfer mit Vorhersagemetho-
den zur Auswahl geeigneter Transferquellen und führen den sprachübergreifenden Transfer
mit unseren innovativen Modellen für die mehrsprachige Extraktion und Normalisierung
von temporalen Ausdrücken durch. Unsere Hauptbeiträge sind die Folgenden:

(1) Wir zeigen, dass Wortrepräsentationen, die auf Texten aus der allgemeinen Domäne
trainiert wurden, in Nicht-Standard-Domänen erheblich verbessert werden können, in-
dem domänenspezifisches Wissen aus der Zieldomäne entweder durch das Vortrainieren
von Sprachmodellen auf Dokumenten aus der Zieldomäne oder durch Hinzufügen von
domänenspezifischen Wortrepräsentationen einbezogen wird. Zu diesem Zweck schla-
gen wir eine neuartige Meta-Embedding-Architektur vor, um eine gemeinsame Darstel-
lung mehrerer Repräsentationsmodelle aus verschiedenen Domänen zu erstellen, die das in



den Repräsentationen enthaltene vielfältige Wissen erfasst. Wir demonstrieren die Effek-
tivität unseres Ansatzes bei einer Vielzahl von Klassifizierungsaufgaben in verschiedenen
Sprachen und Domänen. Unsere Analyse zeigt, dass unser Ansatz besonders in ressource-
narmen Umgebungen erfolgreich ist.

(2) Wir untersuchen den domänen-, aufgaben- und sprachenübergreifenden Transfer.
Wir schlagen ein neues Ähnlichkeitsmaß für Datensätze vor, das auf aufgabenspezifis-
chen Merkmalen und Eigenschaften von Deep-Learning-Modellen basiert, und wählen
mithilfe dynamischer Vorhersagemethoden geeignete Sammlungen von Transferquellen
aus. Unser neues Modellähnlichkeitsmaß, basierend auf Repräsentationsmodellen, über-
trifft die derzeit verwendeten Ähnlichkeitsmaße, da es in der Lage ist, sowohl Aufgaben-
als auch Domänenähnlichkeit gleichzeitig zu erfassen. Unsere dynamischen Auswahlmeth-
ode für die Bestimmung einer Vielzahl von geeigneten Trainingsdatensätzen übertrifft den
in früheren Arbeiten vorgeschlagenen Transfer einzelner Datensätze, und kann effektiv
negativen Transfer vermeiden.

(3) Wir untersuchen mehrstufige Pipelines für die Verarbeitung natürlicher Sprache,
wie z.B. unsere dreistufige Pipeline für die Extraktion, Normalisierung und Verankerung
von zeitlichen Ausdrücken. Insbesondere stellen wir die erste neuronale Methode zur
Normalisierung temporaler Ausdrücke vor, die auf maskierter Sprachmodellierung basiert.
Unsere Experimente in 17 Sprachen zeigen die robuste Leistung unserer Methode in ver-
schiedenen Sprachen. Darüber hinaus untersuchen wir den sprachübergreifenden Transfer
im Kontext der Extraktion und Normalisierung zeitlicher Ausdrücke und erforschen Op-
timierungsmethoden für die Repräsentationen in mehrsprachigen Modellen. Insbesondere
sind unsere Modelle der neue Stand der Technik in ressourcenarmen Sprachen. Darüber
hinaus untersuchen wir eine NLP-Pipeline zur gemeinsamen Anonymisierung und Kon-
zeptextraktion für die Verarbeitung klinischer Dokumente, die wir mit Multi-Task-Training
vergleichen. Wir schlagen eine differenzierbare Version dieser Anonymisierungspipeline
vor und untersuchen die Auswirkungen der Anonymisierung auf die Konzeptextraktion und
zeigen, dass diese die Leistung der Konzeptextraktion positiv beeinflusst.
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Chapter 1

Introduction

Artificial intelligence, and in particular, the field of natural language processing (NLP),
is going through a tremendous transition with the rise of deep learning systems (Otter
et al., 2021). The vast majority of NLP tasks for which rule-based or statistical systems
were standard approaches for decades are now being almost exclusively solved using deep
neural networks. Motivated by these recent fundamental changes, a wide range of new
research questions came up concerning the stability of such large-scale systems and their
applicability beyond the well-studied tasks and datasets, such information extraction in
non-standard domains and languages.

One important aspect of these questions concerns the usage of deep networks in low-
resource environments. Neural models are known for requiring large amounts of training
data because millions of parameters have to be tuned (Raffel et al., 2020). On the one hand,
high-quality NLP resources are typically only created for a small number of languages,
with a special focus on English (Bender, 2019). Thus, thousands of other languages are
not covered by most NLP methods and models. On the other hand, tackling low-resource
settings is even crucial when dealing with popular NLP languages as low-resource settings
do not only concern languages but also non-standard text domains and tasks, for which
— even in English — only little training data is available. For example, most of today’s
research focuses on processing news articles or Wikipedia pages in a small set of high-
resource languages, which usually limits the applicability to new languages and domains
(Ruder, 2019a; Ramponi and Plank, 2020).

Therefore, a core challenge of deep learning NLP methods targeting non-standard text
domains and languages involves overcoming the resource limitations in the training pro-
cess. Recent advances in this field are achieved by pre-training representation models on
large-scale corpora to capture generally applicable knowledge (Devlin et al., 2019; Brown
et al., 2020). However, while performing great in standard applications, these general mod-
els lack the specific knowledge of specialized domains for which fewer training resources
exist (Gururangan et al., 2020). For example, the style and vocabulary of specialized text
domains can differ tremendously from standard texts (Ben-David et al., 2006), such as
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mathematical equations and symbols in scientific publications or various technical terms in
engineering domains (Beltagy et al., 2019). For this, general-domain representation models
have been shown to not capture this type of information well enough in practice (Lee et al.,
2020). In contrast, smaller domain-specific models can reflect domain properties but miss
broader and generalizable knowledge. While possible in theory, training a domain-specific
model in a similar large-scale pre-training is often not possible due to lack of resources on
the one hand and the expensive computation costs on the other hand.

Instead, relevant domain knowledge can be incorporated into general-domain mod-
els in order to improve performance in non-standard domains (Rocktäschel et al., 2015).
This can be achieved by combining representations from the general domain and domain-
specific variants (Kiela et al., 2018) or by transferring information from related resources
(Daumé III, 2007). However, selecting suitable transfer sources is challenging and demands
various considerations, for example, regarding the compatibility of the task, domain, and
language between transfer source and target (Bingel and Søgaard, 2017; Vu et al., 2020).
Moreover, the transfer of representation models across languages offers great opportunities
but also even greater risks. While reusing data from a high-resource language can help
overcome the lack of data in a low-resource language, differences between the languages
and their representations inside multilingual models often negatively influence the cross-
lingual transfer and outweigh the positive transfer effects (Cao et al., 2020b).

In this work, we address the previously described challenges for information extraction
in non-standard domains and languages and propose novel model architectures and training
strategies to overcome the existing limitations by creating domain and language-robust
input representations. Our main contributions are the following:

(1) We show that language models and word embeddings trained on texts from the gen-
eral domain can be greatly improved in non-standard domains by incorporating domain-
specific knowledge from the target domain. More precisely, we explore two methods for
this integration. First, we show that fine-tuning languages models on documents from
the target domain increases performance remarkably in the context of clinical informa-
tion extraction (Chapter 4). Second, we demonstrate that domain knowledge can also be
included by adding domain-specific word representations instead of adapting the general
domain models (Chapter 3). For this, we propose a novel attention-based meta-embedding
method that is optimized with adversarial training to create a joint representation of mul-
tiple embeddings from various domains that captures the diverse knowledge contained in
the embeddings (Chapter 5).

(2) To further improve our models, we investigate cross-domain, -task, and -language
transfer and explore prediction methods to select suitable transfer sources based on domain-
and task-similarity measures, as well as language-specific features (Chapter 6). For this, we
propose a new similarity measure based on task-specific features and properties of neural
NLP models and demonstrate its efficiency, in particular, for transfer across tasks and do-
mains. Moreover, we propose prediction methods that do not only predict the most similar



3 1. Introduction

source — as done in related work — but also compute an actual set of transfer sources that
should be included in the training process (Chapter 7).

(3) We investigate NLP pipelines consisting of multiple steps, such as our 3-step temporal
tagging pipeline for the extraction, normalization, and anchoring of temporal expressions,
as well as a pipeline for anonymization and concept extraction for processing clinical doc-
uments. In particular, we investigate the effects of the latter pipeline model in comparison
to multi-task training and propose a differentiable version of the anonymization pipeline
for joint de-identification and concept extraction that restricts access to privacy-related in-
formation (Chapter 3).

(4) We propose the first neural normalization method for temporal expressions by us-
ing masked language modeling and context-independent representations that work robustly
across languages. For this, we study cross-language transfer in the context of temporal tag-
ging by training a single multilingual model and applying it to many languages that were
not observed during training. Further, we explore the prospects of improving our multi-
lingual models by creating a common multilingual embedding space inside the models via
embedding alignment methods (Chapter 8).

To conclude, our main contributions are robust model architectures and novel training
processes for NLP in non-standard domains and languages. We propose solutions to close
the domain gap between representation models and address domain-specific challenges,
e.g., anonymization in pipeline models for the clinical domain. Moreover, we explore
cross-task transfer with prediction methods to select transfer sources and perform cross-
language transfer with our innovative models for multilingual temporal tagging.

The remainder of this thesis is structured as follows: Chapter 2 introduces various infor-
mation extraction tasks that are considered in this work, as well as background information
on relevant model architectures for sequential data processing, pre-trained input represen-
tations, and multi-task training methods. Our contributions are described in the Chapters 3
to 8. We start with anonymization and clinical concept extraction models as described
in Chapter 3 and analyze the effects of anonymization in real-world information extraction
pipelines. In Chapter 4, we further explore concept extraction models in the clinical domain
and study domain-specific input representations in Spanish and English and describe our
newly introduced CLIN-X language models. Chapter 5 is concerned with the combination
of general-domain and domain-specific embeddings and introduces our feature-based meta-
embeddings trained with an adversarial discriminator. Based on these methods, Chapter 6
studies the inclusion of auxiliary embeddings from different languages in meta-embedding
models to improve performance in monolingual applications via knowledge transfer across
languages. Chapter 7 is concerned with transfer learning across different tasks and domains
and describes methods for the prediction of transfer sources in non-standard domains and
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Figure 1.1: Illustration of the topics and chapters discussed in this thesis (left) and the
mapping of chapters to our academic publications (right).

low-resource scenarios. For this, we propose a new domain similarity measure and predic-
tors for sets of transfer sources as multiple sources can be beneficial in transfer scenarios,
which is often neglected in current research. In Chapter 8 we study the transfer across lan-
guages in the context of multilingual temporal tagging, and we describe our multilingual
models that process many different languages at once and propose new methods for the
normalization of temporal expression and the alignment of languages inside these models.
At the end of the thesis, a summary and an outlook are given in Chapter 9. This structure
is visualized in Figure 1.1 We now list our academic publications that were created and
published during the dissertation process.

Publications and Co-Authoring

The research described in this dissertation is published in multiple academic papers. This
research was carried out entirely by myself, and I worked on every aspect of the publica-
tions related to this thesis, including designing the methods, conducting the experiments,
and writing the papers. Jannik and Heike usually acted as advisors by discussing ideas and
improving the drafts. Dietrich joined the discussions and provided feedback. The contribu-
tions of other authors are detailed separately below. The work in this dissertation primarily
relates to the following peer-reviewed articles (in order of publication):

[1] L. Lange, H. Adel and J. Strötgen (2019). NLNDE: The Neither-Language-Nor-
Domain-Experts’ Way of Spanish Medical Document De-Identification. In Proceed-
ings of The Iberian Languages Evaluation Forum (IberLEF).
(Best system of the MEDDOCAN shared task.)

This work will be partly discussed in Chapter 3.

[2] L. Lange, H. Adel and J. Strötgen (2020). Closing the Gap: Joint De-Identification
and Concept Extraction in the Clinical Domain. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics (ACL).

The details of this work will be discussed in Chapter 3.
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[3] L. Lange, H. Adel and J. Strötgen (2020). On the Choice of Auxiliary Languages for
Improved Sequence Tagging. In Proceedings of the 5th Workshop on Representation
Learning for NLP (RepL4NLP@ACL).

The details of this work will be discussed in Chapter 6.

[4] L. Lange, A. Iurshina, H. Adel and J. Strötgen (2020). Adversarial Alignment of
Multilingual Models for Extracting Temporal Expressions from Text. In Proceedings
of the 5th Workshop on Representation Learning for NLP (RepL4NLP@ACL).

This work will be partly discussed in Chapter 8. This research was conducted during
Anastasiia’s internship at BCAI. Anastasiia performed the data pre-processing and
carried out preliminary experiments with BERT for the extraction. I trained the final
models with a different architecture and implemented the alignment methods.

[5] L. Lange, X. Dai, H. Adel and J. Strötgen (2020). NLNDE at CANTEMIST: Neu-
ral Sequence Labeling and Parsing Approaches for Clinical Concept Extraction. In
Proceedings of The Iberian Languages Evaluation Forum (IberLEF).

This work will be partly discussed in Chapter 3. This research was conducted during
Dai’s sabbatical at BCAI. We jointly worked on the named entity recognition models.
Dai experimented with domain adaptation of language models, and I studied biaffine
classifiers. The normalization and ICD coding methods were developed by myself.

[6] M. Hedderich*, L. Lange*, H. Adel, J. Strötgen and D. Klakow (2021). A Survey on
Recent Approaches for Natural Language Processing in Low-Resource Scenarios. In
Proceedings of the 2021 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies (NAACL-HLT).

This survey paper was written in a joint effort with Michael. Michael has mainly
written the second part of Section 1 and Sections 3.1, 3.2, 4, and 6. I have mainly
written the first part of Section 1 and Sections 2, 3.0, and 5. In this work, only parts
of Section 5 of the survey paper are discussed in Section 2.3 of this dissertation.

[7] L. Lange, H. Adel and J. Strötgen (2021). Boosting Transformers for Job Expres-
sion Extraction and Classification in a Low-Resource Setting. In Proceedings of The
Iberian Languages Evaluation Forum (IberLEF).
(Best system of the MEDDOPROF shared task.)

This work will be partly discussed in Chapter 4.

[8] L. Lange, H. Adel, J. Strötgen and D. Klakow (2021). FAME: Feature-Based Ad-
versarial Meta-Embeddings for Robust Input Representations. In Proceedings of the
2021 Conference on Empirical Methods in Natural Language Processing (EMNLP).

The details of this work will be discussed in Chapter 5.

*Both authors contributed equally.
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[9] L. Lange, J. Strötgen, H. Adel and D. Klakow (2021). To Share or not to Share:
Predicting Sets of Sources for Model Transfer Learning. In Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing (EMNLP).

The details of this work will be discussed in Chapter 7.

[10] L. Lange, H. Adel, J. Strötgen and D. Klakow (2022). CLIN-X: Pre-trained Lan-
guage Models and a Study on Cross-Task Transfer for Concept Extraction in the
Clinical Domain. In Oxford Bioinformatics.

The details of this work will be discussed in Chapter 4.

The following works currently under submission are also discussed:

[11] L. Lange, J. Strötgen, H. Adel and D. Klakow (2022). Multilingual Normalization
of Temporal Expressions with Masked Language Models. Submitted to the ACL
Rolling Review.

The details of this work will be discussed in Chapter 8.

The following articles were published during the dissertation phase. All of them are related
to low-resource information extraction but are beyond the scope of this thesis:

[12] L. Lange, M. Hedderich and D. Klakow (2019). Feature-Dependent Confusion Ma-
trices for Low-Resource NER Labeling with Noisy Labels. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP).

[13] L. Lange, H. Adel and J. Strötgen (2019). NLNDE: Enhancing Neural Sequence
Taggers with Attention and Noisy Channel for Robust Pharmacological Entity Detec-
tion. In Proceedings of The 5th Workshop on BioNLP Open Shared Tasks (BioNLP-
OST@EMNLP-IJCNLP).

[14] A. Friedrich, H. Adel, F. Tomazic, J. Hingerl, R. Benteau, A. Marusczyk and
L. Lange (2020). The SOFC-Exp Corpus and Neural Approaches to Information
Extraction in the Materials Science Domain. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics (ACL).

[15] M. Hedderich, L. Lange and D. Klakow (2021). ANEA: Distant Supervision for
Low-Resource Named Entity Recognition. In Practical ML for Developing Coun-
tries Workshop (PML4DC@ICLR).
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Published Code

We published the source code for many of our works publicly available on GitHub under
an open-source software license. This includes the code for fine-tuning our concept ex-
traction architecture for clinical concept extraction (see Chapter 4), our adversarial meta-
embeddings (see Chapter 5), and our transfer models and prediction methods (see Chap-
ter 7). In addition, the new domain- and language adapted CLIN-X language models (LMs)
are publicly available on the HuggingFace model hub. In this section, we provide a list of
pointers to our published resources:1

• Code for fine-tuning models for clinical information extraction (see Chapter 4):
URL: https://github.com/boschresearch/clin_x
URL: https://github.com/boschresearch/nlnde_meddoprof

• CLIN-XEN LM pre-trained on English clinical documents (see Chapter 4):
URL: https://huggingface.co/llange/xlm-roberta-large-en
glish-clinical

• CLIN-XES LM pre-trained on Spanish clinical documents (see Chapter 4):
URL: https://huggingface.co/llange/xlm-roberta-large-sp
anish-clinical

• XLM-RES LM pre-trained on Spanish general-domain documents (see Chapter 4):
URL: https://huggingface.co/llange/xlm-roberta-large-sp
anish

• Code for our meta-embeddings and the adversarial training (see Chapter 5):
URL: https://github.com/boschresearch/adversarial_meta_e
mbeddings

• Code for our models and predictors for our transfer experiments (see Chapter 7):
URL: https://github.com/boschresearch/predicting_sets_o
f_sources

1These links were last accessed on March 18, 2022.

https://github.com/boschresearch/clin_x
https://github.com/boschresearch/nlnde_meddoprof
https://huggingface.co/llange/xlm-roberta-large-english-clinical
https://huggingface.co/llange/xlm-roberta-large-english-clinical
https://huggingface.co/llange/xlm-roberta-large-spanish-clinical
https://huggingface.co/llange/xlm-roberta-large-spanish-clinical
https://huggingface.co/llange/xlm-roberta-large-spanish
https://huggingface.co/llange/xlm-roberta-large-spanish
https://github.com/boschresearch/adversarial_meta_embeddings
https://github.com/boschresearch/adversarial_meta_embeddings
https://github.com/boschresearch/predicting_sets_of_sources
https://github.com/boschresearch/predicting_sets_of_sources
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Chapter 2

Background

The scope of this thesis is automatic information extraction, a subarea of natural language
processing, and contributes new input representation methods and model architectures to
solve challenging information extraction problems in non-standard text domains and lan-
guages.

Therefore, Section 2.1 of this chapter will provide a general overview of the different
information extraction tasks addressed in this thesis and suitable evaluation measures. A
detailed overview of the machine-learning architectures required for the other chapters is
given in Section 2.2. More information on word embeddings and other input representation
methods is provided in Section 2.3. Finally, a description of different multi-task learning
procedures is given in Section 2.4.

2.1 Information Extraction from Text

According to Jiang (2012), “[t]he general goal of information extraction is to discover
structured information from unstructured or semi-structured texts” (Jiang, 2012, p. 1).

In the following subsections, various information extraction tasks covered in this work
are described in more detail. The first part will focus on different sequence-tagging tasks
for the extraction of information from texts. The second part concerns the normalization
of extracted expression. Finally, the third part will describe the evaluation metrics used to
measure the performance of our models for the different tasks.

2.1.1 Sequence Labeling

The most important category of tasks for this thesis are sequence-labeling problems, also
called sequence tagging. There exist many sequence-labeling tasks, but all of them are
modeled in a similar way. For this, the input is a sequence of words X , also called tokens.
The output sequence Y is a sequence of labels, also called annotations, with yi ∈ Y being
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the label for token xi ∈ X , i.e., there exists exactly one label per token. Note that there also
exists a wide range of work on nested annotations that relax this assumption (Dai, 2018)
which is beyond the scope of this work.

In general, these sequence-labeling tasks are performed on the so-called token level,
as one label has to be predicted per token. This is in contrast to sentence-level tasks like
text classification, where one label has to be assigned to the complete input sequence. For
sequence tagging, the model gets the sequence X as input and has to predict the label
sequence Y also for unseen input instances. In this work, we use machine-learning mod-
els that are well-known for their generalization abilities to unseen instances by learning a
mapping f(X) → Y . More on this will be described in Section 2.2.

Note that one sequence X can have multiple layers of annotations Yn, i.e., there ex-
ist multiple sequence-labeling tasks for the same sentence. We will provide an overview
of the most important tasks for this thesis, namely part-of-speech tagging, named entity
recognition, and further variants, in the following paragraphs.

Part-of-Speech Tagging. Our first sequence-labeling task is part-of-speech (POS) tag-
ging. Here, the tags are word categories defined in a tagset, such as noun, verb, adjective,
adverb, pronoun, preposition, conjunction, interjection, numeral, article, or determiner. A
more detailed overview of this task is given by Manning and Schütze (1999) in Chapter 10
of their book. In our experiments, we use the multilingual universal dependencies corpora
(Nivre et al., 2020), which contain unified part-of-speech tags in many languages. In prac-
tice, part-of-speech tagging is often used as a pre-processing step for other applications.
For example, named entities are most often nouns, and this knowledge can be integrated as
features into a model for named entity recognition.

Named Entity Recognition. As stated by Jiang (2012), “The task of named entity recog-
nition [...] is to identify named entities from free-form text and to classify them into a set
of predefined types” (Jiang, 2012, p. 5). Based on this definition, the task of named entity
recognition (NER) can be divided into the extraction and classification steps.

Typical classes for named entity recognition are PERSON, ORGANIZATION and LOCA-
TION besides other classes that will be discussed later in this section. A comprehensive
introduction to the task of named entity recognition is given by Nadeau and Sekine (2007).
More recently, Yadav and Bethard (2018) and Li et al. (2022) surveyed named entity recog-
nition with respect to deep learning systems.

In contrast to part-of-speech tagging, which requires exactly one label per token, named
entities are often multi-word expressions, and only a fraction of all tokens is annotated with
named entity labels. As we model NER as a sequence labeling problem that assigns ex-
actly one label to each element of the sequence, non-entity tokens are labeled with the
neutral label: O. Moreover, named entity labels are extended with a special markup like
the BIO prefixes to distinguish between the tokens of a multi-word expression and two sep-
arated but consecutive expressions. Table 2.1 gives an example sentence and its annotation
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Token Segment IOE IOB BIO BIOSE

The Outside O O O O
Nasdaq Begin I-ORG I-ORG B-ORG B-ORG

Stock Inside I-ORG I-ORG I-ORG I-ORG

Market End E-ORG I-ORG I-ORG E-ORG

(NASDAQ) Single E-ORG B-ORG B-ORG S-ORG

opens Outside O O O O
Friday Single E-DATE I-DATE B-DATE S-DATE

at Outside O O O O
9:30 Begin I-TIME I-TIME B-TIME B-TIME

a.m. Inside I-TIME I-TIME I-TIME I-TIME

EST End E-TIME I-TIME I-TIME E-TIME

Table 2.1: Overview of standard label encodings for sequence-labeling problems.

with labels in different encoding schemes. Annotating only the label types without further
markup would results in information loss for the first phrases NasdaqORG StockORG Mar-
ketORG (NASDAQ)ORG, as two following entities with the same type cannot be captured
without one of the sequence-labeling encodings, i.e., we cannot reconstruct that Nasdaq
Stock Market and (NASDAQ) are two distinct entities.

Today, the BIO encoding (B=Beginning, I=Inside, O=Outside, Ramshaw and Marcus,
1995) is most commonly used. In contrast to the IOB encoding, it consistently marks the
beginning tokens of entities, not only when two entities of the same type follow each other.
This makes the encoding easier to learn for machine-learning models (Sang and Veenstra,
1999). Moreover, the BIOSE encoding (B=Beginning, I=Inside, O=Outside, E=Ending,
S=Single, Borthwick, 1999) marks single-unit phrases and the ending tokens of multi-word
expression. As it captures this additional semantic information, Ratinov and Roth (2009)
found that it was beneficial for named entity recognition. This finding was later confirmed
by Collobert et al. (2011) and Yang et al. (2018) who both concluded that the additional in-
formation from BIOSE labels can be beneficial for traditional machine-learning algorithms,
as well as deep learning models. There exist some further encodings like BMEWO+ (Car-
penter, 2009) which are very task- and model-specific but have less relevance in practice.
Therefore, we will use either the BIO and BIOSE encodings in this work.

Concept Extraction. The actual set of labels for NER can differ according to the task.
In practice, many named entity recognition corpora have unique label sets that differ for
each task and, more important, by its textual domain. For example, standard entities like
person names or locations are often not relevant in scientific texts. Thus, the definition of
NER is relaxed in these datasets to identify any concept of interest. For example, these
can be materials science concepts, such as solid oxide fuel cells (Friedrich et al., 2020)
or pharmacological compounds in the clinical domain (Gonzalez-Agirre et al., 2019) or
product-related concepts in social media data (Strauss et al., 2016). More details on the
concept extraction (CE) tasks used in this thesis will be provided in the Chapters 3 and 7.
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Anonymization. A special variant of named entity recognition and concept extraction is
the detection of privacy-sensitive information, such as person names and contact informa-
tion, which can be used for the de-identification or anonymization (ANON). This task is a
prerequisite for the secure processing of medical documents, e.g., patient notes and clinical
trials, as personal health information (PHI) has to be removed. The different PHI types are
typically defined by governments, for instance, in the Health Insurance Portability and Ac-
countability Act (HIPAA) of the United States. We will explicitly focus on anonymization
methods and their impact on other information extraction tasks in Chapter 3.

Temporal Expression Recognition. Further types of special named entities are temporal
expressions. These expressions are an important part of natural language and represent a
certain point in time like Yesterday or a specific duration period, e.g., 5 minutes. After
detecting the temporal expression in a text, it has to be classified according to one of the
temporal classes: DATE, TIME, DURATION and SET. The extraction and classification of
temporal expressions are the first steps of temporal tagging, which combines the detection
with the subsequent normalization of temporal expressions. Details on the normalization
will follow in Section 2.1.2. A comprehensive overview of the task of temporal tagging
is given by Strötgen and Gertz (2016). We will focus on temporal tagging methods in
Chapter 8 of this work.

Further Tasks. In this work, we assume that a task is defined by its specific set of labels.
As our models are generally applicable, we do not make task-specific changes in the archi-
tecture except the last classification layer, whose size must be set according to the number
of target labels. With this, we can potentially address all of the previously mentioned tasks
and further sequence-labeling tasks with our model architectures. We will later show that
our models can deliver robust performances across many tasks.

Even though the main focus of this work lies on sequence-tagging tasks, we use text
classification tasks in Chapter 5 to show the general applicability of certain methods beyond
the token level. These tasks will be introduced in Chapter 5 accordingly.

2.1.2 Concept Normalization

After a named entity or concept is found and classified, it may also be normalized to a
specific format. The normalization of named entities (NORM), also called disambiguation
or entity linking, is the task of determining the true meaning of a named entity by linking
it to a unique identifier or entry in a knowledge base or by normalizing it according to a
specific format (Hoffart et al., 2011). In this work, we address two normalization tasks, ICD
coding of clinical concepts and temporal expression normalization. Both will be described
in more detail in the following.

ICD Coding. ICD codes are unique identifiers for clinical concepts. The abbreviation
ICD refers to the “International Statistical Classification of Diseases and Related Health



13 2. Background

Problems”(WHO et al., 2004), which basically is a hierarchical medical classification list
created and maintained by the World Health Organization (WHO). In this work, we focus
on ICD-10 which contains identifiers for roughly 14,000 unique identifiers. For example,
the ICD-10 code G30.0 refers to Alzheimer’s disease with early onset.1 In the ICD hi-
erarchy, it is part of G30: Alzheimer’s diseases and the more general categorization G:
Diseases of the nervous system. The current standard is ICD-11 which replaced ICD-10 on
January 1, 2022. Besides this hierarchy, there exist country-specific variants like the Ger-
man modification ICD-10-GM or specialized hierarchies, e.g., ICD-O for diseases related
to oncology (WHO et al., 1976), as used in this work.

Most previous methods simplified this task as a text classification problem and built
classifiers using CNNs (Karimi et al., 2017) or tree-of-sequences LSTMs (Xie et al., 2018).
Since ICD codes are organized under a hierarchical structure, Mullenbach et al. (2018) and
Cao et al. (2020a) proposed models to exploit code co-occurrence using label attention
mechanism and graph convolutional networks, respectively. We will perform ICD coding
experiments in Chapter 4.

Time Expression Normalization. After detecting temporal expressions, they usually
have to be normalized following some pre-defined standard format, e.g., the usually used
TimeML specifications (Pustejovsky et al., 2005). TimeML’s most important attributes are
type, the class of an expression, e.g., DATE, TIME, DURATION or SET, and value,
the normalized meaning of an expression which could look like YYYY-MM-DD for spe-
cific days. For example, any value for a specific day has to be given in the YYYY-MM-DD
format,e.g., 2022-05-01 for May 1, 2022. The type is usually resolved during the
extraction and the value during normalization. Certain temporal expressions, so-called
explicit expressions, contain all necessary information for the normalization in the expres-
sion itself. For example, the term May 1, 2022 represents the same day in every context and
should be normalized to 2022-05-01. However, many expressions are incomplete, i.e.,
they are not self-contained with respect to all necessary temporal information. A relative
expression like yesterday needs an anchor point for the correct normalization. Assuming
yesterday refers to the anchor May, 1 2022, for example the document creation time (DCT),
it should be annotated with type="DATE" and value="2022-04-30" in TimeML.

Determining the anchor point can be challenging as it requires context information
that could be given anywhere in the document. Therefore, systems for temporal expres-
sion normalization, such as HeidelTime (Strötgen and Gertz, 2013), create an intermediate
context-independent representation (CIR) of the value. In the syntax of HeidelTime, the
expression yesterday would result in a CIR of UNDEF-last-day. Similarly, an under-
specified expression, such as May would be represented with a CIR of UNDEF-year-05.
To determine the final value, the CIR needs to be anchored given, e.g., a reference date
and further cues (such as tense information). Note that such a syntax for CIRs is language-
independent. More details can be found in Section 8.3.2.

1https://icd-codes.com/icd10cm/G00-G99/G30-G32/G30/G30.0 [last accessed
March 5, 2022.]

https://icd-codes.com/icd10cm/G00-G99/G30-G32/G30/G30.0
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Strötgen and Gertz (2016) divided temporal expressions into four subgroups based on
their realization. In addition to explicit and relative expressions, there are implicit and un-
derspecified expressions. The first one, implicit expressions, cannot be normalized without
further knowledge of their implicit temporal semantics. Several different examples exist
for this class, but most famous are the names of holidays and events. For example, normal-
izing the expression Christmas Eve 2021 requires the knowledge that Christmas Eve is on
December 24 and, thus, should be normalized to 2021-12-24.

Underspecified expressions are more difficult to normalize, as not only the reference
time has to be known, but further assumptions are required. Often, these expressions de-
pend on context information, such as the verb’s tense or external information from a calen-
dar. For example, knowing that the temporal expression Monday refers to the last Monday
before the anchoring date 2022-03-01 results in a normalized value of 2022-02-28
based on knowledge from a calendar.

Furthermore, temporal expressions can have different granularities. All previous ex-
amples have the day granularity. Other important units are year, month or hour. How-
ever, many other granularities exist, and, e.g., some may be divided into several sub-
granularities, such as a year can be divided into halves, quarters, or weeks (Strötgen and
Gertz, 2016).

In this thesis, we will address the topic of temporal expression extraction and normal-
ization in Chapter 8.

HeidelTime. As we will most often compare to HeidelTime (Strötgen and Gertz, 2013)
for temporal tagging, we will provide a short description in the following. HeidelTime is a
rule-based system for temporal tagging, and so far, the only publicly available system for
multilingual temporal tagging with rules for roughly 200 languages (Strötgen and Gertz,
2015). Each rule consists of two parts. First, the rule specifies a regular expression that
extracts temporal expressions from texts and specifies a type, e.g., DATE. In addition, the
regular expressions detect several groups, e.g., day and month for 1st of May, that are used
in the subsequent normalization. The second part of the rule defines how the extracted ex-
pression should be normalized to a context-independent representation. For example, 1st of
May is normalized to the CIR UNDEF-year-05-01 by HeidelTime. These instructions
often include mappings from terms to values, e.g., May→05 or yesterday→last-day.
Underspecified parts of the value are marked in the CIR accordingly, for example, missing
year information is denoted by UNDEF-year.

To determine the final value, HeidelTime resolves the undefined parts given, e.g., a
reference date and further cues. Typical references are the document creation time or a
previous temporal expression in the document. In addition, information on the sentence
tense is incorporated by HeidelTime to determine the temporal relation to the reference
point. For example, verbs like will indicate the temporal expression might be in the future
with respect to the reference. Explicit expressions like May, 01 2022 are fully normalized
in their CIR (2022-05-01) and do not rely on the anchoring step.
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2.1.3 Evaluation Metrics

As we deal with several different tasks, we also need to evaluate them with suited evaluation
metrics. Therefore, we will introduce the most important metrics for this work in the
following.

For this, we refer to the gold-standard annotations as the actual annotations and compare
them to the predictions of a classifier or another system. For each predicted label, we
can then determine whether it is a true positive (TP) or false positive (FP) depending on
whether the gold standard contains the same label. Analogously, we can check for each
gold-standard label whether the system missed the instance, which would be called a false
negative (FN). Instances that are neither annotated in the gold standard nor predicted by
the systems are correctly identified as true negatives (TN). An overview of these concepts
is given in Table 2.2. Based on this categorization, we apply the following metrics.

Accuracy. Our first evaluation metric is accuracy (Acc.). It describes the number of
correctly classified instances compared to the overall population (Metz, 1978).

Accuracy =
TP + TN

P + N
(2.1)

This score is applicable when classes are more or less balanced, and exactly one la-
bel has to be assigned for each sentence or token. Following previous work, accuracy is
our standard metric for sentence-level tasks like text classification and natural language
inference (Bowman et al., 2015) as well as part-of-speech tagging (Plank et al., 2016).

For tasks like named entity recognition that have a non-labeled class, we want to use a
different metric due to a large number of tokens without labels and the resulting dominance
of true negatives. Therefore, we use the F1-score, which combines precision and recall for
these kinds of tasks.

Recall. In this context, recall (R) refers to the fraction of relevant instances that were
actually detected by the system. It is a measure of the detection rate and gives information
on false negatives, i.e., the number of missed relevant instances where a low recall indicates
many misses (Powers, 2011).

Predicted Positive (PP) Predicted Negative (PN)

Actual Positive (P)
True Positive (TP) False Negative (FN)

correct type II error

Actual Negative (N)
False Positive (FP) True Negative (TN)

type I error correct

Table 2.2: Classification of system predictions compared to gold-standard annotations in 4
classes following Powers (2011).
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Recall =
TP
P

(2.2)

Precision. In contrast, precision (P) refers to the fraction of relevant instances among
the retrieved instances. It measures how correctly the retrieved instances are classified and
gives information on false positives. A low precision indicates a high confusion between
classes (Powers, 2011).

Precision =
TP
PP

(2.3)

F1-score. Looking at either recall or precision in isolation gives information on a certain
error type. However, it does not reveal accurate information about the performance of a
system. Maximizing recall for a certain class without taking care of precision can easily be
achieved by tagging every word with this class. Of course, such a model has poor precision
and is not usable in practice. The same holds for a model that maximizes precision by
detecting only a fraction of easy examples and neglecting most instances. Thus, precision
and recall should be considered jointly. This is done by the Fβ-score (Fβ) that combines
precision and recall (Dice, 1945; Sorensen, 1948). It is computed as follows:

Fβ-score = (1 + β2) · Precision · Recall
β2 · Precision + Recall

(2.4)

Here, β is a parameter that can be used to increase the influence of either precision
(0 < β < 1) or recall (β > 1). For β = 1, the F1-score is the harmonic mean between
precision and recall. The maximum F1 of 1.0 indicates perfect precision and recall, while
the minimum F1 of 0.0 shows that either precision, recall, or both are zero.

F1-score = 2 · Precision · Recall
Precision + Recall

(2.5)

Macro F1-score. The previously introduced F1-score is also called the micro F1-score
because it is computed as the micro average of F1 scores for all instances regardless of their
specific class. In certain settings, and in particular, in the presence of class imbalances, this
score might not be appropriate, as it favors majority classes and gives smaller weights to
minority classes. Therefore, this score is less suited to evaluate the performance of models
when all classes should be equally weighted. Therefore, the macro F1-score was introduced
to solve this problem. However, it is not well-defined how to compute the macro average.
Opitz and Burst (2019) studied this problem and found two commonly used but different
formulations of the Macro F1-score.
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First, the averaged macro FA
1 is the mean of all per-class F1-scores. Here, F1x refers to

the F1-score of class x.

Macro FA
1 =

1

n

∑
x∈classes

F1x (2.6)

Second, the Macro F1 of averages (FH
1 ) is the harmonic mean over macro precision

and recall. Analogously to Fx, we define Precisionx and Recallx, as well as their Macro
variants for this second version of the Macro F1-score:

Macro FH
1 = 2 · Macro Precision · Macro Recall

Macro Precision + Macro Recall
(2.7)

Opitz and Burst (2019) recommends the usage of the first version Macro FH
1 , as this

is more robust towards the error type distribution. This is confirmed by the findings of
Shmueli (2019), who points out that Macro FH

1 is implemented by the popular sklearn
python library and, thus, more widely adopted.

In this work, we always follow related work and use the corresponding version of the
F1-score. Usually, this is the micro F1. Whenever a different version is used, we explicitly
mention the usage of macro F1 and whether it is the FA

1 or FH
1 -score.

Other Metrics. A more detailed overview of the previously described evaluation metrics
and further measures is given by Powers (2011). Here, we only introduced the most im-
portant metrics covered by multiple chapters. Certain tasks require special metrics that we
will introduce in the corresponding chapters. For example, a leak score can be computed
for anonymization tasks to measure the output of personal information, and we will use
several evaluation methods for rankings in Chapter 6 and Chapter 7.

Strict versus Relaxed Matching. In addition to the evaluation metrics, there are different
ways to handle annotations covering multiple tokens, which is often needed for named en-
tity recognition, temporal tagging, and concept extraction. Most prominent is strict match-
ing, which requires a complete overlap between gold annotations and system outputs. An
alternative is relaxed matching, which is more lenient and requires only a partial overlap to
count a match as true positive (Batista, 2018).

Taking a look at the first examples in this section, a gold-standard annotation was 9:30
a.m. EST. For this, a system might find that 9:30 a.m. is a date but misses the additional
timezone information. A strict evaluation on entity level that requires a complete overlap
will count this as a false negative and false positive, even though the system recognized
the most important part correctly. In contrast, a relaxed evaluation method will count this
output as a true positive, as parts of the system’s output overlap with the gold standard.
This helps to estimate the real-world performance of a system more closely, as detecting
an overlap is usually more useful than falsely outputting no annotation at all. However,
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following related work, we will use strict matching if not stated otherwise. It is only com-
mon in the temporal tagging community to output both variants which we will also do in
Chapter 8.

Statistical Significance Testing. In addition to comparing the numbers of evaluation
metrics, we perform statistical significance testing whenever appropriate. For this, we
follow the best practices proposed by Dror et al. (2018). As we mostly focus on sequence-
labeling evaluations, we will use paired permutation testing to compare the outputs of two
systems. More details on this method are given by Dror et al. (2018) and Reimers and
Gurevych (2017). Whenever we use these tests, we mark statistically significant differ-
ences between the two systems and mention the details in the corresponding section.

2.2 Model Architectures for Sequential Data Processing

Regardless of the specific target task and its evaluation method, the model has to be able to
process sequential textual data. However, not every machine-learning model is suited for
this input format. Therefore, this section will describe three model architectures that were
introduced to handle sequential data. This section will start with a short introduction of
conditional random fields. Then, the focus will be shifted towards deep neural networks,
where we will describe recurrent neural networks and transformers, the de-facto standard
models for natural language processing with neural models.

2.2.1 Conditional Random Fields

Conditional random fields, denoted by CRFs, have been used for different sequence-tagging
tasks, as they are well-known for modeling sequential data. The general CRFs, as proposed
by Lafferty et al. (2001) are a type of discriminative undirected probabilistic graphical
model. More specific, Lafferty et al. (2001) define a CRF on observations X and random
variables Y as follows: “Let G = (V,E) be a graph [with vertices V and edges E] such
that Y = (Yv)v∈V , so that Y is indexed by the vertices of G. Then (X, Y ) is a conditional
random field in case, when conditioned on X , the random variables Yv obey the Markov
property with respect to the graph” (Lafferty et al., 2001, p. 3):

P (Yv|X, {Yw : w ̸= v}) = P (Yv|X, {Yw : w ∼ v}) (2.8)

where w ∼ v means that w and v are neighbors in G.
With this, a CRF is an undirected graphical model whose nodes can be divided into

exactly two disjoint sets X and Y , the input and output variables, for which the conditional
distribution p(Y |X) is modeled (Sutton and McCallum, 2006).

General CRFs are powerful as they allow dependencies between arbitrary elements
from the sequence, e.g., the first and the last element. However, this makes inference more
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Hidden Markov Model (HMM) Linear-chain CRF

Conditional 

Probabilities

General CRF

General

Graphs

Figure 2.1: Overview of CRF models in comparison to HMMs. The plot is adapted from
Sutton and McCallum (2006).

complex and often intractable when searching for an optimal solution. Thus, linear-chain
CRFs are usually favored over general CRFs when used in combination with deep learning
models as done in this thesis, as these only allow dependencies to previous elements similar
to the conceptually simpler hidden markow models (HMMs, Baum and Petrie, 1966).

Training and Decoding. Given an input sequence X with n elements (x1, . . . , xn), we
want to predict a sequence of labels Y , which are called states (Sutton and McCallum,
2006). This can be done by computing the conditional probability P (Y |X) with a scoring
function over all possible tag sequences Y:

P (Y |X) =
exp(Score(X, Y ))∑

Ŷ ∈Y exp(Score(X, Ŷ ))
(2.9)

In this work, we use CRFs on top of neural models, which we call an NN-CRF in the
case of arbitrary neural networks. For this, we use a scoring function that incorporates
neural features and trainable transition weights following Huang et al. (2015). The neural
features are taken from the hidden states h, e.g., the last layer of a BiLSTM model, for each
element in the input sequence. These features are called emission scores and are stored in
a matrix P of size n × |T | where |T | is the size of the tagset T , i.e., the set of unique
labels. The entry Pij refers to the score of the j-th tag of the i-th word in the sequence. The
transition weights are stored in a matrix A of size |T | + 2 × |T | + 2, such that entry Aij

contains the probability of transitioning from tag i to tag j. Note that we add two additional
tags (START and STOP) to mark the beginning and end of a label sequence. Based on the
emission scores P and transition scores A, Lample et al. (2016) define the scoring function
and the training and decoding objectives as follows:

Score(X, Y ) =
n∑

i=0

Ayi,yi+1 +
n∑

i=1

Pi,yi (2.10)

During training, the log-probability of the correct tag sequence is maximized:

logP (Y |X) = Score(X, Y )− log(
∑
Ŷ ∈Y

eScore(X,Ŷ )) (2.11)
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During decoding, the output sequence Y ∗ with optimal scores is selected:

Y ∗ = argmax
Ŷ ∈Y

Score(X, Ŷ ) (2.12)

For this, a dynamic programming approach like the Viterbi algorithm can be used
(Viterbi, 1967; Rabiner, 1989) to speed up the computations by storing relevant interme-
diate results that are useful for multiple sequences. This is the de-facto standard decoding
algorithm for NN-CRF models, as it is faster in practice to use dynamic programming com-
pared to computing scores for all possible sequences independently (Lample et al., 2016).

More detailed descriptions of CRF models and their decoding, as well as theoretical
considerations are given by Lafferty et al. (2001); Sutton and McCallum (2006); Klinger
and Tomanek (2007); Collins (2015).

Examples CRF Features for Named Entity Recognition. In order to process an input
sequence X , each element of the sequence has to be represented by a set of features. Pop-
ular features for named entity recognition, among others, are summarized by Liu et al.
(2017b) and include:

• Bag-of-words features encode the unique id of a specific word, also called unigram,
or its corresponding lemma. Additional information on neighboring words in a cer-
tain range is typically included as well. For example, indicators for given bigram
or trigram combinations in the sequence covered by the word or the unigram ids of
neighboring tokens are well-known features.

• Orthographical features: This includes information on whether the word is upper
case, contains uppercase characters, contains punctuation marks, contains digits, or
non-ASCII characters. Each of these features is typically binary and represents one
property, e.g., is_uppercase.

• Word shapes are an extension of the binary orthographic features that give a fine-
grained overview on the orthography of the word. For this, every character is mapped
to one of the following symbols. C for uppercase characters, c for lowercase char-
acters, d for digits, p for punctuation symbols and x and other characters. Using this
mapping, the token GPT-3 has the shape CCCpd.

• Frequency and word count are typically used as auxiliary features to estimate the
quality of other input features and may be easily derived from larger text corpora.
Higher-frequency words are typically well known and, thus, easier for the model to
process, while low-frequency words tend to reduce model confidence. In addition,
certain features, such as part-of-speech tags or morphological affixes, which have to
be computed with a different model in advance, may have lower quality for infrequent
words due to failures in the first step.
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• Word representation features: In contrast to the previous, manually designed fea-
tures, a CRF can also incorporate continuous vector representations as in the NN-
CRF model described above. This allows the CRF model to include embedding
vectors and hidden states derived from neural models.

In this work, we focus on word representations derived from neural networks that will
be described in the following. For this, the CRF can be seen as the final layer of such a
network. This allows us to incorporate the benefits of CRF models for sequential decod-
ing and the representation learning power of deep learning systems, which is particularly
helpful for the previously described sequence-labeling tasks.

2.2.2 Neural Networks

In recent years, neural networks outperformed traditional machine-learning methods like
the CRF in many fields due to increased access to computational power and data. One of
these fields is natural language processing, including the tasks covered in this work.

In general, a neural network for classification fθ(x) can be considered a function with
parameters θ that maps an input x to a probability distribution over labels y. Deep feed-
forward networks with L layers and without skip connections (Srivastava et al., 2015; He
et al., 2016) or recursion (Goller and Küchler, 1996; Sperduti and Starita, 1997) can be
seen as a composition of functions f l

θ(·), corresponding to each layer l (Collobert et al.,
2011):

fθ(x) = fL
θ (f

L−1
θ (· · · f 1

θ (x) · · · )) (2.13)

While these networks are suited for a wide range of tasks, there are several issues
when applied in the context of natural language processing. Most important, feed-forward
networks cannot handle sequential data properly, as only the current input is considered,
and the network cannot memorize previous inputs. This is in contrast to the sequential
nature of textual information, which requires an understanding in larger contexts due to
complex relationships between neighboring and more distant words.

Thus, for this work, particularly two types of neural networks are interesting. The first
models are recurrent neural networks (RNN), which can capture long-distant relationships
between words in a sentence. This is achieved by keeping a memory vector from previous
timesteps when unrolling the model over time, i.e., by applying it consecutively to each
element of the sequence. Vanilla recurrent neural networks and two of their variants are
discussed in section 2.2.3. In contrast, transformers use an attention mechanism to cap-
ture word relationships in longer contexts. More details on transformers will follow in
Section 2.2.4.
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Figure 2.2: Illustration of three recurrent neural architectures: Vanilla RNN, LSTM and
GRU. The diagrams are inspired by Phi (2018).

2.2.3 Recurrent Neural Networks

This section will describe three recurrent neural network architectures: (1) the Vanilla RNN
(2) long short-term memory and (3) gate recurrent units. An visual overview of these
architectures is given in Figure 2.2.

Vanilla Recurrent Neural Networks. While feed-forward networks are not able to main-
tain memory and, thus, memorize previous information, the conceptually more complex
recurrent networks were designed to overcome this gap and lead to major improvements in
the processing of time series, textual, and other sequential data. The Elman network archi-
tecture, to which we will refer to as vanilla recurrent neural network, is defined as follows
as proposed by Elman (1990):

ht = σh(Whxt + Uhht−1 + bh) (2.14)

For each element at timestep t, the recurrent layer computes the function from Equa-
tion 2.14 with xt being the input vector, ht the hidden layer vector and W , U , b trainable
parameter matrices and vectors. σh is an activation function. One possible activation is
tanh, as this ensures that all values stay in the range (-1, 1), which helps in regulating the
network’s output (Elman, 1990).

By memorizing the state ht over time, the recurrent model has access to information
from previous timesteps and thus, can perform sequence predictions that feed-forward net-
works are not able to model. In addition, this distributed hidden state does not only allow to
store past information, but it also enables weight sharing over all timesteps (Jordan, 1997).

In order to process the complete sequence, each element has to be input into the RNN
consecutively. Starting at t = 1, the first element is processed with the initial memory
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h0 = 0 set to the zero vector. All further elements are input at corresponding timesteps
t while the hidden state ht−1 is recursively maintained and forwarded. This makes the
recurrent neural network more powerful, but it also increases training time and complexity,
as the network has to be unfolded over all timesteps. During training, the gradient updates
of the network are collected for all timesteps. This process is called back-propagation
through time (BPTT Werbos, 1988).

Long Short-Term Memory. A problem when using gradient descent for vanilla RNNs
is that error gradients vanish exponentially quickly with respect to the sequence size. One
solution to this problem that allows for longer sequences, and thus long-range dependen-
cies, is the long short-term memory (LSTM) as proposed by (Hochreiter and Schmidhuber,
1997). The LSTM introduces three so-called gates which allow a more controlled informa-
tion flow and is defined as follows:

ft = σ(Wfxt + Ufht−1 + bf )

it = σ(Wixt + Uiht−1 + bi)

ot = σ(Woxt + Uoht−1 + bo)

c̃t = tanh(Wcxt + Ucht−1 + bc)

ct = ft ◦ ct−1 + it ◦ c̃t
ht = ot ◦ tanh(ct)

(2.15)

New components are the cell c, the input gate i, the output gate o, and the forget gate
f . The cell c remembers values over arbitrary time intervals, and the three gates regulate
the flow of information into and out of the cell. The input gate i controls the influence of
memorized information in the cell and decides which piece of information is relevant for
the current time step using the sigmoid function (σ) and the element-wise multiplication
with the input gate. The output gate o controls which information is given to the hidden
state by, first, normalizing the cell state using the hyperbolic tangent function (tanh) fol-
lowed by the element-wise multiplication with the output gate. The forget gate f controls
which information from the cell state shall be forgotten. It uses the sigmoid function (σ)
to compute relevancy scores between 0 and 1, where elements with 0 scores are removed,
and elements closer to one are remembered.

Gated Recurrent Units. Gated recurrent units (GRUs) are an alternative to the previ-
ously described LSTM and introduced by Cho et al. (2014). The GRU does not have an
output gate, and thus, it has fewer parameters. This has advantages in certain situations, for
example, in low-resource settings, as GRUs have been shown to exhibit better performance
on smaller datasets (Chung et al., 2014). The definition for a GRU is as follows:
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Figure 2.3: Illustration of a bidirectional LSTM architecture. The diagram is based on
figures by Devlin et al. (2019).

zt = σ(Wzxt + Uzht−1 + bz)

rt = σ(Wrxt + Urht−1 + br)

ĥt = tanh(Whxt + Uh(rt ◦ ht−1) + bh)

ht = (1− zt) ◦ ht−1 + zt ◦ ĥt

(2.16)

Here, z and r are the update and reset gates, which have similar functions as the input
and forget gates of the LSTM.

Bidirectional Recurrent Neural Networks. One limiting factor of these recurrent archi-
tectures described previously is the strict forward flow of information into one direction,
i.e., the memorized timesteps represent past information, and the model does not have ac-
cess to future steps. While this is usually wanted when processing time-series data, textual
data has a different structure, and words often depend on other words that occur later in the
sentence.

Bidirectional recurrent neural networks (BRNN) connect two recurrent layers of oppo-
site directions to the same output as visualized in Figure 2.3. For example, there can be
two independent LSTM layers, with one being used to process a sentence starting from
the first word, while the second layer starts at the last words and processes the sentence
in the reverse order. Then, the outputs of both LSTM layers are combined by, e.g., con-
catenating both output vectors. With this, the output layer can get information from past
(backward), and future (forward) states simultaneously (Schuster and Paliwal, 1997) which
makes bidirectional networks more powerful than unidirectional networks when processing
texts. Many of our experiments are based on such bidirectional LSTM networks, which we
denote by BiLSTM.
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Figure 2.4: Illustration of the scaled dot-product attention and its use in the multi-head
attention as used by transformer models. This diagram is based on figures by
Vaswani et al. (2017).

2.2.4 Transformers

While RNN models are well-suited for natural language processing tasks, they come with a
major drawback in scalable environments. Due to the sequential unrolling of hidden states
over the input sequence, the RNN has to be applied to every single input instance iteratively.
Thus, they cannot be parallelized efficiently for long sequences. The transformer is another
deep learning architecture for sequential data that was created to overcome this limitation
by processing the whole input sequence at once and assigning dynamic attention weights to
focus on relevant parts for each input (Vaswani et al., 2017). In particular, the transformer
evolves around the core concept of attention. This is a differential weighting mechanism
that assigns significance scores to inputs. A visual overview of the attention functions and
different layers are given in Figure 2.4 and 2.5, respectively. Transformer attention and the
encoder-decoder structure will be described in more detail in the following.

Scaled Dot-Product Attention. The main idea of transformer models is scaled dot-
product attention. Assuming we pass a textual input into the transformer, this attention
method calculates attention weights between the target token and every other token in the
input. These attention weights can be seen as relevance scores, whereas high scores sig-
nal important dependencies or relationships between the tokens. The computed attention
weights are then further used to create weighted combinations of the token and its context,
which results in a contextualized representation of the token. In contrast to the unfolding
memory of RNNs, this method can be computed independently for all tokens in the input
sequence to capture their dependencies in parallel.

In practice, a transformer consists of multiple attention units. Each of these units con-
sists of three trainable matrices WQ, WK , and W V . The input embedding xi for each token
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i is multiplied with each of these matrices to produce three internal vectors qi = xiW
Q,

ki = xiW
K and vi = xiW

V called query, key and value vectors, respectively.

The actual attention weights aij between two tokens i and j are computed as the dot
product between the query vector qi and key vector kj . The weights are further normalized
with respect to the dimensions of the key vectors to stabilize the gradients and then passed
to a softmax function. Following Vaswani et al. (2017), the attention calculation for all
tokens can be expressed as a matrix multiplication calculation using the softmax function.
For this, the matrices Q, K and V are defined as the matrices with their i-th row vectors
being the query, key and value vectors qi, ki, and vi, respectively. With this, the attention
function is defined as follows:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (2.17)

Multi-Head Attention. As said earlier, a transformer model consists of multiple attention
units. Each of these units consists of a set of (WQ,WK ,WV ) matrices and is called an
attention head. Furthermore, each layer typically has more than one attention head which is
called multi-head attention. This allows the model to learn different relationships between
token pairs. For example, one attention head might learn tense information between verbs,
while a different head focuses on the relationships between verbs and their adverbs. In
a different example, one attention head might focus on neighboring words, while another
head learns long-distance relationships. The multi-head attention function is defined as
follows, where [· · · ] is the concatenation operation for vectors.

MultiHeadAttention(Q,K, V ) = Concat[head1; · · · ; headn]W
O

with: headi = Attention(QWQ
i , KWK

i , V W V
I )

(2.18)

Tenney et al. (2019) found that attention heads in earlier transformer layers related to
low-level NLP tasks, while attention heads of higher layers can encode semantic knowl-
edge. This indicates that a transformer model might be able to mimic a classical NLP
pipeline. In practice, attention heads are less interpretable, and the learned relationships are
less meaningful to humans. This leads to many discussions whether the attention scores can
be used as explanations for model decisions (Serrano and Smith, 2019; Jain and Wallace,
2019; Wiegreffe and Pinter, 2019). Moreover, not all attention heads are equally useful
(He and Choi, 2021) and some may be pruned to reduce model size (Behnke and Heafield,
2020; Prasanna et al., 2020).

Encoder-Decoder Architecture. The transformer was introduced as a sequence-to-se-
quence (seq2seq) model in the context of machine translation (Vaswani et al., 2017) and
like earlier seq2seq models, this transformer model uses a multi-layer encoder-decoder
architecture as visualized in Figure 2.5.
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Figure 2.5: Illustration of the standard transformer encoder-decoder structure and its inter-
nal attention mechanisms. This diagram is inspired by Vaswani et al. (2017).

Each encoder layer consists of a multi-head attention unit followed by a feed-forward
network for further processing and a layer normalization function. In addition, residual
connections, so-called skip connections (He et al., 2016), allow the gradients to surpass
the attention and feed-forward modules and avoid vanishing gradients in deep networks by
this. Then, the encoder output is further processed by the next encoder layer.

The decoder layers have a similar structure as encoder layers but incorporate the en-
coder output with a second multi-head attention module in addition. In contrast to the
encoder, the decoder has only access to the past tokens. For this, left-to-right decoding
has to be used that masks the current and future tokens to prevent reverse information flow
(Vaswani et al., 2017).

The last layer of a transformer model is typically one or more linear layers depending
on the target tasks. For natural language processing models, this layer may map the in-
ternal representation output of the decoder to a fixed vocabulary of words, e.g., such that
individual words can be predicted for machine translation or text generation.

In such a transformer, the decoder structure is symmetrical to the encoder, and both
have the same number of layers. Later works found that using only a single encoder layer
for auto-regressive models (Radford et al., 2019) or decoder layer for bidirectional models
(Devlin et al., 2019) can be sufficient. These models have been proven to be particularly
useful for language modeling and the resulting language models as universal word repre-
sentation. Thus, the next section will focus on this and other representation methods, which
are nowadays typically used in modern neural NLP systems.

2.3 Pre-Trained Word Representations

Word embeddings and other pre-trained language representations are the core input com-
ponent of many neural network-based models for NLP tasks. These are numerical rep-
resentations of words or sentences, as neural architectures do not allow the processing of
strings and characters as such. In this section, we will introduce different word embedding
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methods and language models in more detail and discuss how they can be used to represent
input sequences for NLP tasks in non-standard domains and languages.

2.3.1 Word Embeddings

Collobert et al. (2011) showed that training word embeddings for the task of language
modeling in a self-supervised fashion on a large-scale corpus result in high-quality word
representations, which can be reused for other downstream tasks as well. For this, Collobert
et al. (2011) proposed to learn a word lookup table as a linear layer where the representation
for each word in a fixed vocabulary is given by a row in the lookup table layer. Given a
sequence of words, the lookup table layer outputs an embedding matrix, which can then be
fed to further neural network layers. For training these word embeddings, Collobert et al.
(2011) used a window approach for language modeling using pairwise ranking.

The first embedding method that was widely adopted is the word2vec model by Mikolov
et al. (2013c). It is based on the assumption by Firth (1957) that neighboring words define
the meaning of the target word, and thus, it tries to learn embeddings based on the relation-
ships between neighboring words. More precisely, Mikolov et al. (2013c) proposed two
variants. The continuous bag of words (CBOW) model learns to predict a center word c

given its context of neighboring words o as a bag of words. The skipgram model (SG) does
the reverse and learns to predict the context words given a center word. In practice, the
CBOW method tends to be faster, but the skipgram model became more popular and is said
to create better representations for infrequent words (Mikolov et al., 2013c). Therefore,
all word2vec embeddings used in this work are trained with skipgram method if not stated
otherwise.

More precisely, the skipgram model is trained to minimize the following loss objective
for center words wt in a sequence of length T within a fixed-size window of m:

LSG = 1− 1

T

T∑
t=1

∑
−m≤j≤m;j ̸=0

logP (wt+j|wt) (2.19)

wheres the conditional probability for an outside context word o given a center word c is
defined as:

P (o|c) = exp(uT
o vc)∑

w∈V exp(uT
wvc)

(2.20)

In theory, this allows training high-quality word representation based on neighboring
words. However, this approach is not practical due to the high computational costs of
the softmax function. In particular, for large vocabulary sizes, the computation becomes
intractable as the denominator increases with each element in the vocabulary. This was
recognized by Collobert et al. (2011) as well.

Therefore, Mikolov et al. (2013a) use the negative sampling procedure. For this, the few
positive samples that appear in the sentence context, as well as a small sample of negative
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words from the vocabulary, are considered in the softmax. The samples are generated based
on word probabilities and allow to reduce the softmax costs significantly. The loss objective
for skipgram with negative sampling is formulated as follows:

LSG + neg. sample(u, c) = 1− log σ(uT
o vc) +

k∑
i=1

E[X]j∼P (w)[log σ(−uT
j vc)] (2.21)

Here, the first part maximizes the probability of co-occurring words. In the second part,
k samples are randomly drawn from E[X]j∼P (w) based on the word probabilities as the neg-
ative samples which are not found in the context. This operation is very sparse compared
to the size of the complete vocabulary and the embedding matrix, as these updates should
only concern the rows corresponding to positive or negative samples. These sparse matrix
updates help in particular for distributed training and avoid the transfer of large updates
across systems.

Pennington et al. (2014) proposed GloVe embeddings as an alternative to the word2vec
model. GloVe uses a count-based model and is usually easier and faster to train compared
to the predictive word2vec model (Baroni et al., 2014). However, both are tied to a fixed
vocabulary and cannot represent so-called out-of-vocabulary tokens.

Subword-based embeddings such as fastText n-gram embeddings (Bojanowski et al.,
2017) and byte-pair-encoding embeddings (Heinzerling and Strube, 2018) addressed these
out-of-vocabulary issues by splitting words into multiple subwords, which in combination
represent the original word. These fastText embeddings are trained on character n-grams,
and each word vector is computed by the sum of its components. This has the advantage
that the n-gram vectors are able to capture information below word level, which allows
the creation of word representations for unknown and unseen words (Mikolov et al., 2018).
For example, Zhu et al. (2019) demonstrated that subword-based embeddings are beneficial
for low-resource sequence-labeling tasks, such as named entity recognition and typing and
outperform word-level embeddings. In addition, pre-trained embeddings were published
for more than 270 languages for both embedding methods. This enabled the processing of
texts in many languages, including multiple low-resource languages found in Wikipedia.

2.3.2 Pre-Trained Language Models

More recently, a trend emerged of pre-training large embedding models using a language
model objective to create context-aware word representations by predicting the next word
or sentence (Howard and Ruder, 2018). This includes pre-trained transformer models,
such as BERT (Devlin et al., 2019) or RoBERTa (Liu et al., 2019b). These methods are
particularly helpful for low-resource languages for which large amounts of unlabeled data
are available, but task-specific labeled data is scarce (Cruz and Cheng, 2019).

In particular, BERT (Devlin et al., 2019) became well-known in the broader NLP com-
munity and is used across many tasks and languages. BERT itself is a bidirectional trans-
former encoder. In contrast to the transformer architecture presented in Section 2.2.4, the
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decoder stack is omitted for BERT to allow bidirectional connections. BERT is trained
using a masked language modeling objective. For this, certain parts of the input sequence
are masked, i.e., some words are replaced by a special Mask token. Then, the model has
to predict the most probable replacement for the mask. In addition, BERT is also trained
on next-sentence predicting, i.e., given two sentences, the model has to decide if the sen-
tences follow each other in a document. This helps to learn sentence-level representations,
while the masked language modeling objective optimizes BERT on the token level. As
transformer models can be parallelized highly efficiently, BERT and other transformer lan-
guage models were trained on large-scale datasets with this self-supervised training setup.
The resulting language models can be used to generate contextualized input representa-
tions for words and sentences or can be fine-tuned directly for downstream applications
(Devlin et al., 2019). Both approaches lead to great improvements compared to standard
word embeddings and will be an important part of this work.

While pre-trained language models achieve remarkable performances in many tasks, it
is still questionable if these methods are suited for real-world low-resource scenarios. For
example, all of these models have large hardware requirements, in particular, considering
that the performance of transformers keeps scaling with their size and training time (Raffel
et al., 2020). Therefore, these large-scale methods might not be suited for low-resource
scenarios where hardware is also a resource aspect.

Biljon et al. (2020) showed that low- to medium-depth transformer sizes perform better
than larger models for low-resource languages, and Schick et al. (2020) managed to train
models with three orders of magnitude fewer parameters that perform on-par with large-
scale models like GPT-3 on few-shot tasks by reformulating the training task and using
ensembling. Melamud et al. (2019) showed that simple bag-of-words approaches are better
when there are only a few dozen training instances or less for text classification, while
more complex transformer models require more training data. Bhattacharjee et al. (2020)
found that cross-view training (Clark et al., 2018) leverages large amounts of unlabeled
data better for task-specific applications in contrast to the general representations learned
by BERT. Moreover, data quality for low-resource languages, even for unlabeled data,
might not be comparable to data from high-resource languages. For example, Alabi et al.
(2020) found that word embeddings trained on larger amounts of unlabeled data of low-
resource languages are not competitive to embeddings trained on smaller but curated data
sources of higher quality.

2.3.3 Domain-Specific Pre-Training

The language of a specialized domain can differ tremendously from the language of the
general domain, such as the one found in news articles (Ben-David et al., 2006). For exam-
ple, scientific articles often contain formulas and technical terms, which are not observed in
news articles. However, the majority of recent language models are pre-trained on general-
domain data, such as texts from the news or web domain, which can lead to a so-called
domain gap when applied to a different domain (Glorot et al., 2011).
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One solution to overcome this gap is the adaptation to the target domain by fine-tuning
the language model. Gururangan et al. (2020) showed that training a model with additional
domain-adaptive and task-adaptive pre-training with unlabeled data leads to performance
gains for both high- and low-resource settings for numerous English domains and tasks.
This is also displayed in the number of domain-adapted language models (Alsentzer et al.,
2019; Huang et al., 2019; Adhikari et al., 2019; Jain and Ganesamoorty, 2020, i.a.,), most
notably BioBERT (Lee et al., 2020) that was pre-trained on biomedical PubMED articles
and SciBERT (Beltagy et al., 2019) for scientific texts. For example, Friedrich et al. (2020)
showed that a BERT model from the general domain performs well in the materials science
domain, but the domain-adapted SciBERT performs better.

2.3.4 Multilingual Language Models

Analogously to low-resource domains, low-resource languages can also benefit from re-
sources available in other high-resource languages. For this, one option is a single model
trained on many languages at once, such as multilingual BERT (mBERT, Devlin et al.,
2019) or XLM-RoBERTa (XLM-R, Conneau et al., 2020). These models are trained using
unlabeled, monolingual corpora from different languages and can be used in cross- and
multilingual applications due to many languages seen during pre-training.

In cross-lingual zero-shot learning, no task-specific labeled data is available in the target
language. Instead, labeled data from a different language is leveraged. A multilingual
model can be trained on the target task in a high-resource language and afterward, applied
to the unseen target languages, such as for named entity recognition (Lin et al., 2019;
Hvingelby et al., 2020), reading comprehension (Hsu et al., 2019), or POS tagging and
dependency parsing (Müller et al., 2020). Hu et al. (2020) showed, however, that there
is still a large gap between low and high-resource settings. Lauscher et al. (2020) and
Hedderich et al. (2020) proposed adding a minimal amount of target-task and -language
data (in the range of 10 to 100 labeled sentences) which resulted in a significant boost in
performance for classification in low-resource languages.

The transfer between two languages can be improved by creating a common multilin-
gual embedding space of multiple languages. This is useful for standard word embeddings
(Ruder, 2019b) as well as pre-trained language models. For example, by aligning the lan-
guages inside a single multilingual model, i.a., in cross-lingual (Schuster et al., 2019; Liu
et al., 2019a) or multilingual settings (Cao et al., 2020b). This alignment is typically done
by computing mappings between two different embedding spaces, such that the words in
both embeddings share similar feature vectors after the mapping (Mikolov et al., 2013b;
Joulin et al., 2018).

One method is the alignment via an orthogonal transformation that is based on a dic-
tionary {yi, xi}ni=1 of paired words from a target (x) and source language (y). For these
dictionaries, one can compute an orthogonal transformation matrix O by maximising the
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Figure 2.6: Language families with more than 1 million speakers covered by three popular
multilingual language models.

cosine similarity of pairs in the dictionary (Smith et al., 2017), where I denotes the identity
matrix:

max
O

n∑
i=1

yTi Oxi with OTO = I (2.22)

Artetxe et al. (2016) proposed a numerically exact solution for the transformation by using
singular value decomposition (SVD). Based on two matrices XD and YD that contain the
pairwise entries of our dictionary, such that the i-th row of XD corresponds to the i-th row
of Yd, one can compute the SVD as:

Y T
DXD = UΣV T (2.23)

with U and V being of columns of orthonormal vectors and Σ being a diagonal matrix
containing the singular values, such that O = UV T . Finally, both embedding spaces can
be transformed to a common space by applying the transformations V T and UT to the
source and target spaces, respectively.

Using a similar method, fastText embeddings were published for 44 languages that are
all aligned to a common space (Joulin et al., 2018). More precisely, all embeddings were
aligned with pairwise transformations to the English space. This allows to use different em-
beddings inside the same model and helps when two languages do not share the same space
inside a single model (Cao et al., 2020b). For example, Zhang et al. (2019) used bilingual
representations by creating cross-lingual word embeddings using a small set of parallel
sentences between the high-resource language English and three low-resource African lan-
guages, Swahili, Tagalog, and Somali, to improve document retrieval performance for the
African languages.

While these multilingual models are a tremendous step towards enabling NLP in many
languages, possible claims that these are universal language models do not hold (Pires
et al., 2019). For example, mBERT covers 104, XLM-R 100 and mT5 (Xue et al., 2021)
101 languages, which is a third of all languages in Wikipedia, as outlined earlier. Further,
Wu and Dredze (2020) showed that, in particular, low-resource languages are not well-
represented in mBERT. Figure 2.6 shows which language families with at least 1 million
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speakers are covered by mBERT, XLM-R, and mT5.2 In particular, African and American
languages are not well-represented within the transformer models, even though millions of
people speak these languages. This can be problematic, as languages from more distant
language families are less suited for transfer learning, as Lauscher et al. (2020) showed.

Nonetheless, pre-trained multilingual transformer models often show good results in
practice. Therefore, our models in Chapter 8 of this work are based on these methods.

2.4 Multi-Task Training

The main reason pre-trained word representations are a major part of modern deep learning
systems for NLP is the wide knowledge contained inside these representations. By training
on large-scale collections on unlabeled texts, these models learn general world knowledge
that is useful for many other tasks, i.e., parts of the model are trained for one pre-training
task and then transferred to the actual target task (Howard and Ruder, 2018). Multi-task
training leverages this idea of feature sharing across tasks in a more systematic way and
enables the transfer or simultaneous training of complete models. For this work, multi-task
training is an important concept as it is well-known to improve NLP systems (Collobert
and Weston, 2008), in particular, for low-resource scenarios (Lin et al., 2018). Thus, three
variants of multi-task training are used in parts of this thesis, namely joint (Chapter 3) and
sequential multi-task training (Chapter 4 and Chapter 7), as well as adversarial training
(Chapter 5 and Chapter 8). All three are explained in more detail in the following.

2.4.1 Joint Multi-Task Training

The first variant is joint multi-task training, often simply referred to as multi-task training
(Ruder, 2017). Generally speaking, this type of training leverages the training resources of
multiple tasks by jointly training a single model. With this, the model is able to incorporate
the training signals of related tasks and, thus, learns more general features. On the one
hand, this can help to prevent overfitting on the target task as the shared features are trained
to be useful on many tasks. On the other hand, there often is a lack of labeled data for the
target task. Using the training data of a related auxiliary task can help to learn generally
applicable features, which reduces the need for target supervision (Hedderich et al., 2021a).

Sharing the feature representation R directly between different tasks is called hard pa-
rameter sharing. An alternative is the so-called soft sharing for which the features are not
completely shared, as each task has its own feature representation, but its weights are tied
closely together with the help of regularization methods (Ruder, 2017). This allows each
model to learn more task-specific representations, but it makes the training more complex.
We will focus on methods with the more commonly used hard parameter sharing, as this
allows to train a single model for many tasks. For this, the model is split into two parts.

2A language family is covered if at least one associated language is covered. Language families can
belong to multiple regions, e.g., Indo-European belongs to Europe and Asia.
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Figure 2.7: Overview on the standard multi-task learning architecture with hard parameter
sharing and the gradient flows.

The first part is the feature representation R, which is shared between all tasks. This could
be anything between a single embedding layer or a complete transformer model. Based on
this, there exists one sub-network Cn for each task n, which can have arbitrary complexity.
As we focus on classification tasks in this work, each of these sub-networks typically is a
classification layer and, therefore, also called a classification head. In some settings, the
head is preceded by an individual recurrent layer per task. This general architecture is visu-
alized in Figure 2.7. Depending on the training data, the model can be trained on all tasks
simultaneously if all examples in the training batches are labeled for all tasks. Otherwise,
the model might be trained by alternating batches or epochs per task. During training, each
task n will update its corresponding classification head Cn, as well as the shared feature
representation R. It will not influence the weights of other classification heads. The result-
ing loss function is typically a weighted combination of the individual losses LCn , whereas
tasks can be weighted according to their importance using the weights α, β, γ, . . . :

L = α · LC1 + β · LC2 + γ · LC3 + . . . (2.24)

In practice, certain tasks are more useful for multi-task training than others. For ex-
ample, lower-level NLP tasks, like part-of-speech tagging and chunking, seem to be well-
suited when the target is a higher-level task, such as question answering or named entity
recognition (Vu et al., 2020). However, choosing a good set of training tasks is a challeng-
ing problem on its own, which is also addressed in this work in Chapter 7. One might want
to select related tasks based on similarity measures (Bingel and Søgaard, 2017; Schröder
and Biemann, 2020). Another example is Meta-Learning (Finn et al., 2017). Given a set
of auxiliary tasks and a low-resource target task, meta-learning trains a model to decide
how to use the auxiliary tasks in the most beneficial way for the target task. For NLP, this
approach has been evaluated on tasks , such as sentiment analysis (Yu et al., 2018), user
intent classification (Yu et al., 2018; Chen et al., 2020), natural language understanding
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(Dou et al., 2019), text classification (Bansal et al., 2020) and dialogue generation (Huang
and Du, 2019).

2.4.2 Sequential Multi-Task Training

Multi-task training does not necessarily involve the simultaneous training of multiple tasks.
In analogy to the transfer of pre-trained word representations, the different tasks might be
trained sequentially. For this, the model is trained on one task, and its weights are saved.
Then, the shared weights are transferred to the second model, which is then trained on the
second task. This can result in a training chain of many tasks (Ruder, 2017). In this work,
we mostly focus on a two-step approach by training a model on a source task, which is then
transferred to the target task. We call this model transfer.

Sequential training has the advantage of reusability. Once a model is trained and stored,
it can be reused in many other training procedures. On the negative side, the sequential
transfer has a higher chance of overfitting the model to each individual task, and knowledge
from previous tasks might be forgotten, which is called catastrophic forgetting (Goodfellow
et al., 2014a).

2.4.3 Adversarial Training

Differences in the feature representations between the source and the target domain can
be an issue in transfer learning, especially in neural approaches where it can be difficult
to control which information the model takes into account. Adversarial discriminators
(Goodfellow et al., 2014b) can prevent the model from learning a feature representation
that is specific to a data source. Adversarial training is an unsupervised method, i.e., it does
not require any labeled data. Most often, information on the data source is sufficient for this
training method. NLP applications include the removal of biases and unwanted properties.
For computer vision, adversarial training is typically used to train generative models, so-
called generative adversarial networks (GANs) in which the generative network competes
with the adversarial network, e.g., to create realistic images. (Goodfellow et al., 2014b).

The process of adversarial training for NLP is visualized in Figure 2.8 and consists of
three major components. The classifier C and the shared features R are similar to the stan-
dard multi-task training setup. The input representation is shared between the discriminator
and downstream classifier. However, the features R are trained with gradient reversal for
the adversarial path to fool the discriminator (Raff and Sylvester, 2018). In particular, the
gradients arriving at the features are multiplied with a hyperparameter λ < 0 in order to
reverse the training effects.

The adversarial discriminator D, also called adversary, tries to classify the shared fea-
tures according to certain properties. These properties should be chosen according to the
target task, as adversarial training tries to remove their inherent effects. For example,
language- or domain-specific information can be removed when the discriminator has to
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Figure 2.8: Overview of adversarial training and the gradient flows.

distinguish between the sentence origins from particular languages or domains given the
input features.

In our work, the discriminator D is a multinomial non-linear classification model with
a standard cross-entropy loss function LD in all settings covered by this work. In our
sequence-tagging experiments, the downstream classifier C has a CRF output layer and is
trained with a CRF loss LC to maximize the log probability of the correct tag sequence
(Lample et al., 2016). In our sentence classification experiments, C is a multinomial clas-
sifier with cross-entropy loss LC . Let θR, θD, θC be the parameters of the representation
module, discriminator, and downstream classifier, respectively. Gradient reversal training
will update the parameters as follows:

θD = θD − ηλ
∂LD

∂θD

θC = θC − η
∂LC

∂θC

θR = θR − η(
∂LC

∂θR
− λ

∂LD

∂θR
)

(2.25)

with η being the learning rate and λ being a hyperparameter to control the discriminator
influence.

We will focus on the creation of language- and domain-independent representations
using adversarial training similar. This is related to the work of Gui et al. (2017), Liu
et al. (2017a), Kasai et al. (2019), Grießhaber et al. (2020) and Zhou et al. (2019) who
learned domain-independent representations with adversarial training. Kim et al. (2017)
and Chen and Cardie (2018) worked with language-independent representations for cross-
lingual transfer. Other applications include the removal of biases from a dataset or model
(Barrett et al., 2019).
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2.5 Summary

This chapter provided an overview of the most important concepts required for the under-
standing of the following chapters in this thesis. We have given a broad overview of the
different information extraction tasks that will be addressed in the next chapters.

Our models for these tasks will be based on recurrent neural networks or transformers,
or both, in combination with conditional random field output layers. For each of these
model types, we have seen their advantages for processing sequential data by incorporating
and modeling dependencies between individual tokens.

Further important concepts introduced in this chapter are pre-trained word embeddings
and transformer-based input representations. We showed how these models are able to
learn general knowledge from unstructured texts, and we dived into related work on self-
supervised language modeling for the domain- and language-specific pre-training. In par-
ticular, domain-specific language models will be important for this thesis in Chapter 3 and
Chapter 4. Moreover, multilingual LMs will be used in Chapter 5 and Chapter 8 for multi-
lingual and cross-lingual applications.

Finally, this chapter gave a description of three different multi-task training variants
that can be used to train robust models by enforcing generalizable feature representations
based on joint or sequential learning of multiple tasks. Alternatively, adversarial train-
ing was introduced that enables the unsupervised removal of language- or domain-specific
information from feature representations.

The following chapters will show how we use these architectures and training routines
in our newly proposed methods in the context of information extraction in low-resource
languages and non-standard text domains.
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Chapter 3

Anonymization and Clinical Concept
Extraction

This chapter will introduce various methods and models for information extraction in the
clinical domain to extract the structured information contained in documents, such as pa-
tient reports of trial protocols. However, the processing of clinical documents requires
proper de-identification, i.e., the anonymization of personal information in texts. There-
fore, we propose a sequence-labeling model for the anonymization of texts that incorpo-
rates domain-specific clinical knowledge from specialized embeddings. Anonymization is
most often only a pre-processing step and not the actual target task. However, current re-
search considers anonymization and downstream tasks, such as concept extraction, only in
isolation and does not study the effects of anonymization on other tasks. In this chapter,
we also close this gap and show that anonymization even has a slightly positive impact on
the performance of a concept extraction. Furthermore, we propose two joint models and
achieve state-of-the-art performance on benchmark datasets in English (both tasks) and
Spanish (concept extraction). Finally, we introduce a pipeline for the normalization of ex-
tracted clinical concepts to standardized clinical codes by linking the concepts to a knowl-
edge base. The models and experiments described in this chapter are based on publications
for anonymization (Lange et al., 2019a), for joint concept extraction and anonymization
(Lange et al., 2020b) and for ICD coding (Lange et al., 2020c).

3.1 Introduction

In the clinical or biomedical domain, natural language processing has large potential to
significantly improve the efficiency and effectiveness of processes, e.g., the extraction of
structured information from clinical narratives can help in clinical decision making or drug
repurposing (Marimon et al., 2019). A better understanding of this information can also
facilitate novel clinical studies on the one hand, and help practitioners to optimize clini-
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Figure 3.1: Example document from the clinical domain with annotations for anonymi-
zation and clinical concepts and their ICD codes.

cal workflows on the other hand. For example, to improve clinical decision support and
personalized care of cancer patients, Jensen et al. (2017) developed a methodology to es-
timate disease trajectories from electronic health records (EHRs), which can predict 80%
of patient events in advance. However, free text is ubiquitous in EHRs. This leads to great
difficulties in harvesting knowledge from them. Therefore, natural language processing
systems, especially information extraction components, play a critical role in extracting
and encoding information of interest from clinical narratives, as this information can then
be fed into downstream applications. Nonetheless, the automatic processing of documents
with privacy-sensitive content like patient reports is restricted due to the necessity of ap-
plying anonymization techniques.

Text anonymization, also called de-identification, aims at detecting and replacing pro-
tected health information (PHI),1 such as patient names or personal information, as shown
in the upper part of Figure 3.1. Recent studies show that automatic anonymization leads
to promising results (Uzuner et al., 2007; Stubbs et al., 2015). Therefore, we participated
in the MEDDOCAN shared task on medical document anonymization in Spanish (Marimon
et al., 2019) to show the prospects of our domain-robust model architecture for a non-
standard domain and language. In this chapter, we will describe our models that have won
the competition in more detail.

A severe limitation of current approaches, however, is that anonymization is typically
addressed in isolation but not together with a downstream task, such as concept extraction
(CE) from medical texts (Uzuner et al., 2011; Gonzalez-Agirre et al., 2019). Instead, the
downstream task models are trained and evaluated on the non-anonymized data, and it
remains unclear how anonymization affects their performance. In this chapter, we argue
that to evaluate how promising NLP is in the medical domain, the tasks of anonymization
and information extraction should be analyzed together. Therefore, we close this gap and
analyze the effect of anonymization on clinical concept extraction. Moreover, we consider

1PHI types are typically defined by governments, for instance in the Health Insurance Portability and
Accountability Act (HIPAA) of the United States.



41 3. Anonymization and Clinical Concept Extraction

the two tasks jointly and propose two end-to-end models: A multi-task model that shares
the input representation across tasks and a stacked model that trains a differentiable pipeline
of anonymization and concept extraction in an end-to-end manner. For the stacked model,
we propose to use a masked embedding layer to restrict the access of the concept detector
to privacy-sensitive information and train it on an anonymized version of the data. To make
the model differentiable, we use the Gumbel softmax trick (Maddison et al., 2017; Jang
et al., 2017).

We conduct experiments on clinical benchmark datasets in English and Spanish. Our
results indicate that anonymization does not affect concept extraction models negatively but
has even a slight positive effect on the results, probably because anonymization homoge-
nizes the input for concept extraction. Modeling both tasks jointly leads to better results
than treating anonymization as a pure pre-processing step.

After successfully extracting clinical concepts from documents, they may be normal-
ized to specific elements in a pre-defined taxonomy. For clinical concepts, these are most
often ICD codes, as introduced in Section 2.1.2. This chapter will also describe our ap-
proach for the normalization of oncological concepts to the ICD-O taxonomy, also referred
to as eCIE-O-3.1 in Spanish. We address this task in the context of the Spanish CAN-
TEMIST shared task (Miranda-Escalada et al., 2020). Examples for ICD codes from an
English document are given in Figure 3.1.

3.2 Related Work

In this section, we report on related work in the fields of anonymization, medical concept
extraction, and multi-task learning.

Anonymization. The increasing importance of anonymization is reflected in the number
of shared tasks (Uzuner et al., 2007; Stubbs et al., 2015; Marimon et al., 2019). State-of-
the-art methods for anonymization typically rely on recurrent neural networks (Dernon-
court et al., 2017; Kajiyama et al., 2018).

Feutry et al. (2018) and Friedrich et al. (2019) create pseudo-de-identified text repre-
sentations with adversarial training. In particular, they replace personal information, such
as names, with other names. Zhao et al. (2018) augment the training data by creating more
general text skeletons, e.g., by replacing rare words, such as names, with a special unknown
token. Compared to these works, we use a trade-off and replace personal information by
their class names as placeholders in the joint anonymization and concept extraction. This
approach is not only common for anonymization (Johnson et al., 2016), but also for relation
extraction where entities are often either replaced by their type or enriched with type infor-
mation (i.a., Miwa and Sasaki, 2014; Gui et al., 2017). We further motivate our choice in
Section 3.3.3. Another difference to the above-mentioned works is that we do not augment
the training data for our anonymization model.
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Medical Information Extraction. Analogously, there have been a series of shared tasks
for information extraction in the clinical and biomedical domain (Uzuner et al., 2011; Xu
et al., 2012; Pérez-Pérez et al., 2017; Gonzalez-Agirre et al., 2019). Models for these
tasks either rely on hand-crafted features (Leaman et al., 2015b; Xu et al., 2012) or RNNs
(Hemati and Mehler, 2019; Korvigo et al., 2018; Tourille et al., 2018). Newman-Griffis and
Zirikly (2018) study the performance of RNNs for medical named entity recognition in the
context of patient mobility and find that they benefit from domain adaption.

In contrast to previous work, we investigate the usage of anonymized texts as input
for clinical concept extraction models and propose to model anonymization and concept
extraction jointly.

Concept Normalization and ICD Coding. Several machine-learning-based named en-
tity recognition and normalization systems were implemented To identify and normalize
medical concepts within the clinical narratives in EHRs. DNorm, introduced by Leaman
et al. (2013), applied a pairwise learning-to-rank approach to automatically learn a mapping
from disease mentions to disease concepts from the training data. Evaluation results show
that the machine-learning method can effectively model term variations and achieves much
better results than traditional techniques based on lexical normalization and matching, such
as MetaMap (Aronson, 2001). Leaman et al. (2015a) introduced an extension of DNorm,
called DNorm-C, which approaches both discontinuous NER and normalization using a
pipeline approach. A joint model for NER and normalization was introduced by Leaman
and Lu (2016), aiming to overcome the cascading errors caused by the pipeline approach
and enable the NER component to exploit the lexical information provided by the normal-
ization component. Zhao et al. (2019) proposed a deep neural multi-task learning method
to jointly model NER and normalization from biomedical publications, where stacked re-
current layers are shared among different tasks, enabling mutual support between tasks.
Similarly, Lou et al. (2017) proposed a transition-based model to jointly perform disease
NER and normalization, combined with beam search and online structured learning.

In contrast to pure concept normalization, which identifies a one-to-one mapping be-
tween text snippets and medical concepts, ICD coding assigns the most relevant ICD codes
to a document as a whole (Pestian et al., 2007; Névéol et al., 2018). Most previous methods
simplified this task as a text classification problem and built classifiers using CNNs (Karimi
et al., 2017) or tree-of-sequences LSTMs (Xie et al., 2018). Since ICD codes are organized
under a hierarchical structure, Mullenbach et al. (2018) and Cao et al. (2020a) proposed
models to exploit code co-occurrence using label attention mechanism and graph convolu-
tional networks, respectively.

Multi-task Learning. While many works propose joint training for other NLP tasks (i.a.,
Finkel and Manning, 2009; Miwa and Sasaki, 2014), including multi-task learning (i.a.,
Collobert and Weston, 2008; Klerke et al., 2016; Søgaard and Goldberg, 2016) and stack-
ing of pipeline components (i.a., Miwa and Sasaki, 2014), we are to the best of our knowl-
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edge the first to combine anonymization with information extraction tasks. More general
information on multi-task learning are given in Section 2.4 of this thesis.

3.3 Model Architectures

In this section, we describe our model architectures for the different anonymization and
concept extraction experiments in more detail. First, we introduce the different input rep-
resentations used in our models in this and the other chapters of this thesis (Section 3.3.1).
Then, we describe the model architectures for single-task learning (Section 3.3.2), the joint
learning of multiple tasks (Section 3.3.4), as well as our pipeline for ICD coding (Sec-
tion 3.3.5).

3.3.1 Input Representations

For all neural models in this chapter, each token is represented with a combination of
different pre-trained language-specific embeddings. These can be either standard word2vec
embeddings as introduced in Section 2.3.1 or more advanced subword-based embeddings
as depicted in Figure 3.2. In the following section, each of these subword embeddings will
be introduced in more detail.
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Character Embeddings. The characters of a word are represented by randomly initial-
ized embeddings. Those are passed to a bi-directional long short-term memory network
(BiLSTM). The last hidden states of the forward and backward pass are concatenated to
represent the word (Lample et al., 2016). These embeddings can generate a representa-
tion for any input word as long as its characters are covered in the character embedding
vocabulary. Unknown characters, e.g., infrequent Unicode symbols, are replaced by a spe-
cial symbol. Note that in contrast to all following embeddings, the character embeddings
are not pre-trained, and they have to be learned during training. Therefore, they can learn
task-specific representations but do not contain general knowledge from a larger-scale pre-
training.

FastText Embeddings. The fastText embeddings represent a word by the normalized
sum of the embeddings for the n-grams of the word (Bojanowski et al., 2017). More pre-
cisely, fastText embeddings are CBOW embeddings trained over n-grams instead of words.
For more information on CBOW we refer to Section 2.3. We experiment with domain-
independent fastText embeddings (300 dimensions, pre-trained on language-specific texts
(Grave et al., 2018)), as well as domain-specific fastText embeddings for English (100 di-
mensions, pre-trained on English PubMed articles (Pyysalo et al., 2013)) and Spanish (100
dimensions, pre-trained on Spanish SciELO and Wikipedia articles (Soares et al., 2019)).
In contrast to standard word2vec embeddings with a fixed vocabulary, the fastText em-
beddings can generate representations for out-of-vocabulary (OOV) words by splitting the
word into known n-grams. Note that Grave et al. (2018) also published fastText embed-
dings with a fixed vocabulary and without out-of-vocabulary functionality, which we will
use in Chapter 5 to analyze different effects of subword embeddings.

Byte-pair encoding Embeddings. Similar to fastText embeddings, byte-pair encoding
embeddings (BPEmb, Heinzerling and Strube, 2018) are generated by averaging all sub-
word embedding vectors of a word. For this, the subword segmentation is performed by a
trained byte-pair encoding (BPE) model that splits words into subwords. In contrast to fast-
Text that uses fixed-sized and overlapping n-grams, the BPE model incorporates subword
frequencies from a large-scale training corpus and merges longer characters sequences for
frequent subwords while having a fallback to single characters for infrequent or unseen
subwords.

Flair Embeddings. Flair computes character-based embeddings for each word depend-
ing on all words in the context (Akbik et al., 2018). For this, the complete sentence is
used as the input to a BiLSTM character model instead of only a single word as done for
standard character embeddings. The BiLSTM of Flair is pre-trained using a character-level
language model objective, i.e., given a sequence of characters, compute the probabilities
for the following possible characters. These language models are unidirectional and cap-
ture only the previous context. Therefore, these embeddings are also trained in the reverse
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direction, which captures the future context of words. Both directions are then combined
into a single embedding for each word.

Transformer Embeddings. Pre-trained transformer models can also be used to retrieve
word embeddings. For this, the output of the last layer or a combination of multiple layer
outputs can be used as a contextualized embedding vector that can be further processed
by, e.g., a recurrent neural network as done in our experiments. More information on
transformer models and their pre-training is provided in Chapter 2. In our setup, we com-
bine the outputs of the last four layers of transformer models by concatenating the vectors.
Moreover, the transformer can optionally be fine-tuned. Typically, we do not fine-tune
the transformer models when it is used to generate embedding vectors in order to reduce
computational costs. However, we explicitly mention whenever we perform this fine-tuning
otherwise. In this chapter, we are going to use the general-domain pre-trained BERT model,
as well as the domain-specific ClinicalBERT (Alsentzer et al., 2019) for English tasks and
multilingual BERT (mBERT, Devlin et al., 2019) for Spanish. We are going to use different
transformer models in later chapters.

Combinations of Multiple Embeddings. Previous work has seen performance gains by,
for example, combining various types of word embeddings (Tsuboi, 2014) or embeddings
trained on different corpora (Luo et al., 2014) as these embeddings can have unique knowl-
edge and properties. We follow these approaches and combine multiple embeddings to
leverage all of their benefits. For this, the n different embedding vectors are concatenated
into a single embedding vector e(i) for word i where [· · · ] is the concatenation operation
of the individual embeddings en:

eCONCAT (i) = [e1(i); · · · ; en(i)] (3.1)

Whenever we use multiple embeddings, we explicitly mention which embeddings are
used in our models. These are always combined with the concatenation if not noted oth-
erwise, for example, in Chapter 5 where we explore the concept of attention-based meta-
embeddings.

3.3.2 Sequence-Labeling Models for Single Tasks

We model both document anonymization (ANON) and clinical concept extraction (CE)
as sequence-labeling problems and apply a bidirectional long short-term memory network
with a conditional random field output layer similar to Lample et al. (2016). We refer to
this architecture as a BiLSTM-CRF. Detailed descriptions of BiLSTM and CRF models are
provided in Chapter 2. In recent works on clinical anonymization and concept extraction,
this architecture was shown to be very promising (Marimon et al., 2019; Gonzalez-Agirre
et al., 2019).
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Figure 3.3: Overview of the pipeline model for anonymization and concept extraction.

Depending on the experimental setup, we focus on different embeddings. For this,
we concatenate all embeddings as described in Section 3.3.1 and fed the resulting vector
into the BiLSTM network to generate a contextualized feature representation f given the
embeddings e for each word in the sentence. The features f are then mapped to the size of
the label space through a linear layer and fed into a CRF classifier that computes the most
probable sequence of labels. We found that a single LSTM layer with a hidden size of 256
units worked best in our experiments.

Biaffine Classifier. More recently, a trend emerged of modeling different natural lan-
guage processing tasks as parsing tasks and thus, solving them by using a dependency
parser. Examples are named entity recognition (Yu et al., 2020) and negation resolution
(Kurtz et al., 2020).

We experiment with such a system and model the extraction task as a parsing task. For
this, we replace the CRF classifier with a biaffine classifier (Dozat and Manning, 2017).
Following Yu et al. (2020), we apply two separate feed-forward networks (FFNN) to the
features f generated from the stacked BiLSTM to create start and end representations of
all possible spans (hs/he). Then, we use biaffine attention (Dozat and Manning, 2017) over
the sentence to compute the scores rm for each span i in the sentence that could refer to a
named entitiy.

hs(i) = FFNNs(fsi)

he(i) = FFNNe(fei)

rm(i) = h⊤
s (i)Umhe(i) +Wm(hs(i) ◦ he(i)) + bm

(3.2)
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Figure 3.4: Overview of our multi-task model architectures for anonymization and concept
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access to privacy-sensitive information. “PAT” stands for Patient. The labels
are encoded in the BIO format.

3.3.3 Pipeline Models for Multiple Tasks

Most often, the automatic processing of clinical documents requires the anonymization of
texts to remove privacy-sensitive information in a first step, and two independent models
are trained. To assess the effects of anonymization on concept extraction, we first apply the
anonymization model to anonymize the concept extraction dataset and then evaluate the
concept extraction model on the anonymized data. We refer to this approach as PIPELINE

model (see Figure 3.3). For anonymization, we replace each detected privacy-sensitive
term with a placeholder of its PHI type, i.e., there is one placeholder per type.

This replacement choice has advantages over the alternatives described in Section 3.2.
Compared to replacing personal information with alternative names, it leads to a more gen-
eral text and thus, homogenizes the input for the downstream-task classifier. Compared to
replacing all personal information with the same token, the resulting text is more specific,
allowing the downstream-task classifier to take into account which kind of personal infor-
mation was mentioned. Thus, the approach is a trade-off between more homogeneous input
and more fine-grained information for the downstream-task classifier.

3.3.4 Joint Models for Anonymization and Concept Extraction

Instead of using a sequential pipeline, we propose to jointly train both tasks. For this, we
test two approaches: a multi-task model and a stacked model.

Multi-Task Model. In the MULTI-TASK model (Figure 3.4a), the weights up to the BiL-
STM layer are shared across both tasks. For each task, we add a task-specific hidden layer
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Figure 3.5: Structure of the masked embedding layer based on the gumbel softmax.

with ReLU activation and a CRF output layer. Note that in this architecture, the concept
extraction model has access to the original, privacy-sensitive data.

Stacked Model. We also propose a STACKED model (Figure 3.4b), where only the ano-
nymization part has access to the privacy-sensitive information. This can be seen as a dif-
ferentiable version of the pipeline model, where the input and access to privacy-sensitive
information to the concept extraction part is restricted by a masked embedding layer. This
layer ensures that the concept extraction model does not have access to privacy-sensitive
information by replacing the input embeddings of privacy-sensitive tokens with PHI-class
embeddings, which are randomly initialized and fine-tuned during training. This is de-
picted in Figure 3.5. The masked embedding layer requires a discrete output from the
anonymization part. In order to ensure that the model stays fully differentiable, we use the
Gumbel softmax trick (Maddison et al., 2017; Jang et al., 2017). It approximates cate-
gorical samples with a continuous distribution on the simplex and computes gradients for
backpropagation with the reparameterization trick. The Gumbel softmax function has the
following form:

yτk =
exp((logαk +Gk)/τ)∑K
i=1 exp((logαi +Gi)/τ)

(3.3)

with α1, ...αK being the unnormalized output scores from the anonymization layer and
G1, ..., GK being i.i.d samples drawn from Gumbel(0, 1) and τ being a temperature. For
τ → 0, the distribution becomes identical to the categorical distribution.

3.3.5 ICD Coding Pipeline

Regardless of the extraction model, the clinical concepts might be normalized to standard-
ized clinical codes and linked to a knowledge base. Our normalization pipeline is visualized
in Figure 3.6. We will describe the subtasks of normalization and raking in more detail as
used in the context of the CANTEMIST shared task (Miranda-Escalada et al., 2020).

Concept Normalization. As a large number of possible ICD codes appear only once or
never in the training data, we decided against deep learning methods for the normalization,
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Figure 3.6: Overview of our architecture for ICD coding.

as simply not enough training instances are available for this large label set. Instead, we
use an approach based on string matching and Levenshtein distance (Levenshtein, 1966).

For this, we collect all entities from the training set and their ICD code. As there is
only little ambiguity among these entities, we use a context-independent method for the
normalization. Using the entities from the training set, we are able to correctly assign 70%
of the ICD codes to entities from the development set using exact string matching with a low
false-positive rate (< 1%). Using lower-cased matching, the number of correctly assigned
codes slightly increases. Given that these methods assign ICD codes almost perfectly to
known entities, we first apply exact string matching and then lower-cased matching. For
the remaining unmatched entities, we compute the Levenshtein distance between the given
string and strings from the training data to find the closest neighbor among the known
training instances and assign the corresponding code. This method achieves 87% F1 on the
gold extractions of the unseen development set.

ICD Coding. In contrast to pure concept normalization, which assigns one ICD code
per extraction, ICD coding refers to the creation of a ranked list of ICD codes for a given
document. For example, the ICD code I21.3 referring to extracted concept myocardial
infarction as shown in Figure 3.1 is more important for the document than Z88 (known al-
lergies). In practice, we create a ranking with a sorting function based on code frequencies.
We sort by the number of times each code occurs in the given document under the assump-
tion that codes that appear more often inside a document are more important. Whenever
two codes appear an equal amount of times, they are ranked by their general frequency as
found on the training set. This method achieves a mean average precision (as introduced in
Section 3.7.1) of 73.82 using the gold extractions of the unseen development set.
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English (I2B2) Spanish
ANON CE ANON CE Coding

# classes 25 4 23 4 2
Train (# sentences) 45,793 16,315 15,903 8,068 19,416
Dev (# sentences) 5,088 - 8,277 3,748 18,156
Test (# sentences) 32,587 27,625 7,966 3,930 11,185

Table 3.1: Overview of the dataset statistics. # classes denotes the number of classes in-
cluding the neutral class O.

3.4 Experimental Setup

In this section, we describe the datasets and model configurations we use in our experi-
ments, as well as the training process. More specifically, we perform three distinct sets of
experiments. First, we conduct anonymization experiments with domain-specific embed-
dings. Second, we explore the joint modeling of anonymization and concept extraction.
Finally, we perform concept normalization and ICD coding in Spanish.

3.4.1 Datasets and Pre-Processing

We evaluate our models on corpora from the clinical domain in English and Spanish. For
English, we use the data from the I2B2-2010 concept extraction task (Uzuner et al., 2011)
and the I2B2-2014 anonymization challenge (Stubbs and Uzuner, 2015). For Spanish, we
use the MEDDOCAN (Marimon et al., 2019) corpus for anonymization and the PHARMA-
CONER corpus (Gonzalez-Agirre et al., 2019) for concept extraction. As PHARMACONER

is a subset of MEDDOCAN, we have both gold-standard concept and anonymization anno-
tation for this data, which we will use for further analyses. The ICD coding experiments
are performed on the CANTEMIST corpus. Table 3.1 shows statistics on the dataset sizes
and the number of labels. We report the F1-score for exact matching in all experiments and
add additional metrics depending on the task.

We use the pre-processing scripts from Alsentzer et al. (2019) for the English I2B2 cor-
pora and the Spanish Clinical Case Corpus tokenizer (Intxaurrondo, 2019) for all Spanish
corpora. We noticed that the Spanish tokenizer sometimes merges multi-word expressions
into a single token joined with underscores for contiguous words. As a result, some tokens
cannot be aligned with the corresponding entity annotations. To address this, we split those
tokens into their components in a post-processing step.

3.4.2 Setup for Anonymization

We employ BiLSTM-CRF models for anonymization and investigate the effect of domain
knowledge contained in the embeddings. For this, we use character embeddings or the
Flair character language models, as well as domain-specific or general domain fastText



51 3. Anonymization and Clinical Concept Extraction

embeddings. Preliminary experiments revealed that a single LSTM layer with a hidden
size of 256 units performs well in our experiments.

3.4.3 Setup for Joint Anonymization and Concept Extraction

In addition to the embeddings used in the previous model (domain-specific fastText, Flair,
and character embeddings), we include byte-pair encoding embeddings and BERT embed-
dings. The BERT embeddings have 768 dimensions and are constructed by averaging the
last four layers. As described in Section 3.3.1, we concatenate all embeddings into one
input vector, resulting in a total input dimensionality of 5,416 for English and 4,748 for
Spanish. For the LSTM, we use 256 hidden units per direction. The task-specific hidden
layer of the multi-task model has 128 units. Note that we use the same hyperparameters for
all our models and all tasks.

3.4.4 Setup for ICD Coding

For the extraction and normalization, we employ either BiLSTM-CRF models as described
before or alternatively experiment with the biaffine classifier. The CRF-based models are
similar to the models for anonymization and additionally contain byte-pair encoding em-
beddings. For the biaffine model, we use multilingual BERT, character, and fastText em-
beddings following Yu et al. (2020). We experimented with the same set of embeddings
that we used for the BiLSTM-CRF model, but the performance decreased for the biaffine
model. We found that five stacked LSTM layers with a size of 200 hidden units each
worked best for the biaffine model. Using this combination of hyperparameters improved
the model by roughly one F1 point compared to a model consisting of 3 layers of size 200.
For the remaining hyperparameters, we follow the previous settings.

3.4.5 Training

For training, we use stochastic gradient descent with a learning rate of 0.1 and a batch
size of 32 sentences for all models. The learning rate is halved after three consecutive
epochs without improvement on the development set. For the joint models, we pre-train
the anonymization part for three epochs and, then, use a higher initial learning rate of 0.2 for
the concept extraction part. We perform early stopping on the hold-out development set or
create a new development set with 10% of the training set size whenever no development
set was provided (I2B2-2010 corpus) or the original training and development set were
combined.
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Task 1: NER Task 2: ST
System Leak Precision Recall F1 Precision Recall F1

S1 (Char+fastText +Domain) 0.02432 96.956 96.767 96.861 97.522 97.333 97.427
S2 (Flair +fastText) 0.02378 97.078 96.838 96.958 97.574 97.333 97.453
S3 (Flair +fastText +Domain) 0.02299 96.978 96.944 96.961 97.508 97.474 97.491

Hassan et al. (2019) 0.03255 96.991 95.672 96.327 97.529 96.202 96.861
Pérez et al. (2019) 0.03282 96.403 95.637 96.018 97.187 96.414 96.799

Table 3.2: Results for Task 1 (Offset and Type Classification) and Task 2 (Sensitive Token
Detection). The main metric (F1) is highlighted.

3.5 Results for Anonymization

This section describes our results and analysis for our anonymization models for the MED-
DOCAN shared task. We report the results on the test set using the official shared task
evaluation measures (Marimon et al., 2019).

Evaluation Metrics. The main evaluation measure within this chapter is the F1-score
for all tasks, which is the most common metric for anonymization and other named entity
recognition tasks. We also report precision and recall.

In addition, a leak score can be computed for anonymization to measure the number of
remaining PHI terms after anonymization in proportion to the document length as follows:

Leak =
False Negatives

#Sentences
(3.4)

3.5.1 Results

In the first sub-task, the systems need to find spans for anonymization and categorize them
into 29 classes. Table 3.2 presents our results on this sub-task.

While the domain-independent system (S2 with Flair and domain-independent fastText
embeddings) leads to the highest recall values, the third run (S3) that also uses domain-
specific fastText embeddings achieves the highest F1-scores. This shows that integrating
domain knowledge into the token representation is beneficial. However, the differences
among the settings are relatively small, indicating that the architecture itself is already
strong enough for the given dataset, and the impact of different input representations is
minor.

Table 3.2 also provides the results of our models on the second sub-task (sensitive to-
ken detection). In contrast to task 1, this is a binary classification task. The ranking of
our models is the same for sub-task 1: the addition of domain-specific input representa-
tions performs best. In both sub-tasks, Flair embeddings outperform standard character
embeddings.
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O 123293 21 2 23 9 3 1 4 6 28 3 1 2 3

CALLE 15 2997 2 1 8 1 6
CS 8 3

MAIL 256 3
EDAD 14 1014 3
FAM 18 2 104 2 2

FECHA 16 1089
HOS 10 4 4 551 11 1

ID_AS 573 2 6
ID_CON 32
ID_EPS 4
ID_SA 9 293 2
ID_TPS 663 1

INST 35 8 3 11 190
NOM_PS 3 1 1585 2
NOM_SA 3 779

#FAX 16
#TEL 1 70 1
OTRO 11 2 1 2
PAIS 349
PROF 8 1
SEXO 456
TER 9 20 1 5 5 3 1141

Table 3.3: Confusion matrix of the best anonymization model (S3) on the development set.

The performance of the second-best and third-best systems out of 18 participants in the
shared task is also given in Table 3.2. We see that our system outperforms these submis-
sions as well and won both subtracks of the competition. More information on the other
participant systems and further results are given by Marimon et al. (2019).

3.5.2 Analysis of Anonymization Model

In the following, we provide a more detailed error analysis of our anonymization model
and a case study on synthetic data augmentation, as parts of the data were automatically
generated.

Confusion Matrix Analysis. Table 3.3 shows the confusion matrix of our best perform-
ing system (run S3).2 It is similar to the identity matrix, i.e., confusions between classes
happen very rarely. The most confusions happen with O, the label assigned to all non-
PHI terms, which might be caused by the high number of occurrences of this class in the

2Abbreviations for entity types:
CALLE (CALLE), CENTRO_SALUD (CS), CORREO_ELECTRONICO (MAIL), EDAD_SUJETO_ASISTENCIA (EDAD), FAMILIARES_SUJETO_ASISTENCIA (FAM),

FECHAS (FECHA), HOSPITAL (HOS), ID_ASEGURAMIENTO (ID_AS), ID_CONTACTO_ASISTENCIAL (ID_CON), ID_EMPLEO_PERSONAL_SANITARIO (ID_EPS),

ID_SUJETO_ASISTENCIA (ID_SA), ID_TITULACION_PERSONAL_SANITARIO (ID_TPS), INSTITUCION (INST), NOMBRE_PERSONAL_SANITARIO (NOM_PS),

NOMBRE_SUJETO_ASISTENCIA (NOM_SA), NUMERO_FAX (#FAX), NUMERO_TELEFONO (#TEL), OTROS_SUJETO_ASISTENCIA (OTRO), PAIS (PAIS), PROFE-

SION (PROF), SEXO_SUJETO_ASISTENCIA (SEXO), TERRITORIO (TER)
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training dataset. Confusions among PHI classes happen mostly between related classes.
For example, Hospital (HOS) and Institution (INST) are confused quite often, as Hospital
is a subclass of Institution, and other medical institutions are tagged with Hospital, and
vice versa, e.g., Clinica Gnation is an institution tagged as a hospital. Analogously, Streets
(CALLE) and Territories (TER) are getting confused often, as both classes are related and
typically constitute multiple tokens. In contrast to this, Countries (PAIS) are tagged cor-
rectly almost every time, as there is only a very limited number of countries, and they are
usually single token expressions.

Synthetic Augmentation Case Study. As mentioned above, the performance difference
between our systems is relatively small. This may be caused by the synthetic augmentation
of the MEDDOCAN data, which was used to extend the texts with header and footer infor-
mation containing many PHI terms. In fact, 85% of PHI terms appear in the augmented
text parts. While this extension is necessary to cover more classes and PHI terms, the
synthetic nature of these extensions may have an impact on the performance of automatic
classifiers. Therefore, we perform a case study in which we remove these parts from the
test set and compare only the predictions found in the real texts. With this, only 838 out of
5661 (14.8%) annotations and only 13 out of 29 classes remain in this experiment. The per-
formances of our systems are decreased to F1 scores around 90, which is still rather high.
This shows that our systems have learned more than just to reproduce the synthetic data
augmentation. However, the performance differences among our systems are still small,
indicating that the data augmentation was not the reason for this behavior. Note, however,
that we did not retrain our models without the synthetic augmentation.

3.6 Results for Joint Anonymization and Concept
Extraction

In this section, we will analyze the effect of anonymization on clinical concept extraction
based on two end-to-end models for joint anonymization and concept extraction.

3.6.1 Results

The results for our anonymization methods and concept extraction models are given in
Tables 3.4a and 3.4b, respectively. For anonymization, Table 3.4a shows that our anony-
mization model performs comparable to the current state-of-the-art for anonymization in
English and Spanish. The anonymization performance of STACKED is comparable to the
original anonymization model (En: 95.9, Es: 96.8), the anonymization performance of
MULTI-TASK is slightly lower (En: 95.2, Es: 96.7).

The results for our CE models in comparison to state of the art are shown in Table 3.4b.
We outperform the current state of the art in both languages. While PIPELINE, i.e., the
application of the concept extraction model on anonymized text, is slightly worse (as it has
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Models English Spanish

Yang and Garibaldi (2015) 96.0
Alsentzer et al. (2019) 93.0
Hassan et al. (2019) 96.3
OUR MEDDOCAN model (Sec. 3.3) 97.0
OUR (anonymization only) 96.1 96.8
OUR STACKED 95.9 96.8
OUR MULTI-TASK 95.2 96.7

(a) Anonymization.

Models English Spanish

de Bruijn et al. (2010) 85.2
Alsentzer et al. (2019) 87.7
Sun and Yang (2019) 89.2
OUR (CE only) 88.1 89.7
OUR PIPELINE 88.0 89.6
OUR STACKED 88.7 90.0
OUR MULTI-TASK 88.9 90.3

Xiong et al. (2019)∗ 91.1
Our MULTI-TASK∗ 91.4

(b) Concept extraction.

Table 3.4: Results for joint anonymization (left) and concept extraction (right). ∗ indicates
models which are trained on a combination of training and development set.

Embedding English Spanish

fastText 81.5 78.7
byte-pair encoding 83.4 83.9
Flair 83.0 82.4
Multilingual BERT 84.4 85.9
Clinical BERT (English) 87.2 -
Clinical fastText (Spanish) - 79.7
Concatenation of all 88.1 89.7

Table 3.5: Effects of different embeddings on the concept extraction tasks (without
anonymization).

been trained on the original text), training anonymization and concept extraction jointly
leads to considerable improvements for both stacked and multi-task. Especially the results
of STACKED in comparison to PIPELINE show that end-to-end training of the two steps is
promising in both languages.

The performance of each embedding used in our experiments is shown in Table 3.5.
As mentioned before, we did not include multilingual BERT embeddings for English but
show their results for completeness. We see that the contextualized embeddings (Flair and
BERT) achieve the single-best performance. However, even these powerful embeddings
benefit from the inclusion of other embeddings, as the concatenation of multiple embed-
dings delivers the best performance. In addition, the domain-specific variants for fastText
(Spanish) and BERT (English) outperform their general domain counterparts with +1 and
+ 2.8 F1, respectively.

3.6.2 Analysis of Pipeline Setting

Finally, we analyze the impact of anonymization on concept extraction.
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Train on Test on Dev F1 Test F1

(i) original original 89.2 89.7
(ii) original predicted 89.1 89.6
(iii) predicted predicted 89.6 90.0
(iv) gold predicted 89.5 90.0

Table 3.6: Pipeline analysis results on Spanish concept extraction. “original”: non-
anonymized data, “gold”/“predicted”: gold/predicted anonymization labels.

The results for training and testing our concept extraction model on different inputs
(original vs. anonymized) are shown in Table 3.6. We restrict our analysis to Spanish since
the data is labeled with both anonymization and concept information (see Section 3.4.1).
Thus, we can also investigate the difference between gold and predicted labels. The CE
model benefits from being trained on anonymized data (lines iii, iv). However, it decreases
performance to train on non-anonymized data and evaluate on predicted anonymization la-
bels (line ii). This supports our motivation that it is necessary to regard anonymization and
downstream applications together. We assume that anonymization creates more homoge-
neous inputs for downstream tasks, such that sentences are more prototypical and abstract
from irrelevant details for the biomedical concept extraction, such as personal information,
which are always non-entities. The difference of training on gold vs. predicted anonymi-
zation labels (lines iii, iv) is only marginal, showing that state-of-the-art anonymization
systems are good enough to be used in such settings.

3.7 Results for ICD Coding Pipeline

The official results for the three tracks of the CANTEMIST shared task are shown in Ta-
ble 3.7. The official evaluation metric of the test set is highlighted in gray, and the best
model is highlighted in bold.

3.7.1 Evaluation Metrics

The main evaluation metric for the extraction and normalization is again the F1-score.
As ICD coding can be seen as an information retrieval task, we follow the best practices
and report the mean average precision metric as well. For this use case, precision uses
a slightly different definition as introduced in Section 2.1.3 and is defined as the fraction
of the retrieved ICD codes that are actually relevant to the document, i.e., it measures the
precision given a list of retrieved ICD codes for a single document.

Precision =
|{relevant ICD codes} ∩ {retrieved ICD codes}|

|{retrieved ICD codes}| (3.5)

Based on this definition, precision does not incorporate the ranking of codes and ig-
nores that some documents are more important than others. Nonetheless, we want to use
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Task 1: NER Task 2: NORM Task 3: CODING
Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1 MAP

S1 (CRF) 82.4 83.0 82.7 74.3 74.9 74.6 75.5 76.2 75.9 73.7
S2 (Biaffine) 85.0 83.5 84.2 76.7 75.3 76.0 75.9 76.3 76.1 73.9
S3 (Biaffine-Dev) 85.4 85.2 85.3 76.7 76.6 76.7 77.0 77.1 77.0 74.9

Xiong et al. (2020) 87.1 86.8 87.0 82.4 82.6 82.5 - - - -
Pablos et al. (2020) 86.8 87.1 86.9 82.2 82.1 82.1 87.5 83.6 85.5 84.7

Table 3.7: Results of the three tasks: (1) The extraction of tumor morphology mentions, (2)
their normalization to corresponding ICD-O-3 codes and (3) the final ranking
for the given document. Our best configurations are underlined.

this ranking information in the evaluation. For this, the mean average precision (MAP)
computes multiple precision values at all possible cutoffs of the ranking, and thus, gives
higher weights to the top elements:

MAP =

∑
d∈D AveP(d)

|D|

with: AveP =

∑n
k=1 P (k)× rel(k)

number of relevant ICD codes

(3.6)

where D is a list of documents, e.g., the test set, and rel(k) = 1 indicates if the code at rank
k is a relevant ICD code and is zero otherwise.

3.7.2 Results for NER and Normalization

The BiLSTM-CRF (S1) with domain-specific embeddings delivers a good performance for
our experiments with 82.7 F1 for the extraction and 72.9 F1 for the normalization. The
biaffine model (S2) achieves higher precision than the CRF with +2 F1 points for the ex-
traction and +1 F1 point for the normalization on the development set. This gap further
increases on the unseen test data. Overall, the biaffine model dominates because of the bet-
ter precision, which might be explained by the fact that many of the tumor mentions cover
multiple tokens, and the parsing model is better in capturing those long-distant dependen-
cies. In addition, the biaffine model can be further improved by training on a combination
of training and development sets, resulting in our best submission (S3).

3.7.3 Results for ICD Coding

The results for the third subtask, the ranked coding, are close to the results of our method on
the gold extractions. This indicates that the systems are able to extract the most important
entities correctly. Overall, the differences between the systems are relatively small. For
example, the MAP score for the biaffine model (S2) is only 0.2 points higher than the CRF
(S1). Only the biaffine model trained on the combination of training and development data
(S3) achieves a slightly higher performance of up to a MAP score of 77.0. To conclude, all
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Figure 3.7: Results for entities of different lengths. (a) displays the impact of entity length
on the extraction and (b) for the normalization. In (c) the relative frequencies of
these entities are shown. The last data point (11+) in all plots is the aggregation
of all entities longer than 10 tokens.

three of our methods for the extraction, normalization, and ranking of tumor morphology
mentions deliver good performance for their respective tasks, and their sequential execution
as a pipeline model works well in practice.

3.7.4 Analysis: CRF vs. Biaffine Classifier

In the following section, the performance differences between the CRF and biaffine at-
tention classifiers are analyzed with a focus on the lengths of the entities. As shown in
Table 3.7, the main difference lies in the higher precision of the biaffine model. Figure 3.7a
shows the precision for entities with respect to their length. In particular, for shorter enti-
ties, there are no differences in performance between the two model architectures. Starting
with entities consisting of 6 and more tokens, the biaffine model begins to outperform the
CRF model for the extraction and also the subsequent normalization (Fig. 3.7b). The per-
formance difference reaches up to 20 points in precision for the extraction of multi-token
entities consisting of 10 tokens and 10 points for entities longer than at least 11 tokens.

For both model types, we observe that the performance drop correlates with the length
of the entities. In general, there are fewer training instances for longer entities, as shorter
entities are more frequent than longer ones with a long tail of infrequent but long entities
(Fig. 3.7c). This performance gap between short and long entities is even larger for the
normalization, which ranges from 85 F1 for single-token entities to 15 F1 for entities with
more than ten tokens. However, as more than half of the entities consist of a single token,
the impact of longer entities on the overall F1-score is limited and, thus, the difference of
the CRF and biaffine models regarding the overall precision is 2 points, even though the
biaffine model is better suited for the extraction of longer multi-token entities.
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3.8 Conclusions

In this chapter, we explored the important issue of anonymization as a pre-processing step
in the clinical domain. We modeled anonymization as a sequence-labeling tasks and created
a state-of-the-art system based on the combination of general-domain and domain-specific
word embeddings that won the MEDDOCAN shared task. Moreover, we closed the gap
between using anonymization as an isolated pre-processing step and its usage in a real-
world NLP pipeline. For this, we consider the anonymization of clinical text together with
concept extraction, a possible downstream application. We investigate the effects of anony-
mization on concept extraction and show that it positively influences the concept extraction
performance. We propose two models to learn both tasks jointly, a multi-task model and
a stacked model, which both improve over the single-task model on medical concept ex-
traction benchmark datasets for English and Spanish. Finally, we introduced a simple but
effective ICD coding pipeline to normalize extracted clinical expressions and explored the
potential of biaffine classifiers as alternatives to conditional random field output layers.
The next chapter will take a closer look at more recent transformer models in the context
of clinical concept extraction.
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Chapter 4

Advanced Transformers for Clinical
Concept Extraction

The field of natural language processing has recently seen a large change towards using pre-
trained transformer models for solving almost any task. Despite showing great improve-
ments in benchmark datasets for various tasks, these models often perform sub-optimal in
non-standard domains like the clinical domain, where a large gap between the pre-training
documents and target documents is observed. In this chapter, we aim at closing this gap
with domain-specific training of language models, and we investigate its effect on a diverse
set of downstream tasks and settings.

In particular, we introduce the pre-trained CLIN-X (Clinical XLM-R) language models
and show how CLIN-X outperforms other pre-trained transformer models by a large margin
for ten clinical concept extraction tasks from two languages. In addition, we propose a task-
agnostic architecture for sequence labeling based on ensembles over random splits and
cross-sentence context. For this, we demonstrate that domain-specific transformers can be
further improved with our proposed model architecture for all tasks. Our results highlight
the importance of specialized language models, such as CLIN-X, for concept extraction in
non-standard domains, but also show that our task-agnostic model architecture is robust
across the tested tasks and languages so that domain- or task-specific adaptations are not
required.

This chapter is based on our submission about clinical concept extraction (Lange et al.,
2022a) and partially discusses our participation in the MEDDOPROF shared task (Lange
et al., 2021a) using CLIN-X.

4.1 Introduction

Collecting and understanding clinical information, such as disorders, symptoms, drugs,
etc., from electronic health records has wide-ranging applications within clinical practice
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and research (Leaman et al., 2015a). A better understanding of this information can, on
the one hand, facilitate novel clinical studies and, on the other hand, help practitioners to
optimize clinical workflows as discussed in the previous chapter.

However, information extraction in non-standard domains like the clinical domain is
a challenging problem due to a large number of complex terms and unusual document
structures (Lee et al., 2020). In addition, pre-trained language models (PLM), such as
BERT (Devlin et al., 2019) that demonstrated superior performance for many NLP tasks
are typically trained on standard domains, such as web texts, news articles, or Wikipedia.
Despite showing some robustness across languages and domains (Conneau et al., 2020),
these models still achieve their best performance when applied to targets similar to their
pre-training corpora, which can limit their applicability (Gururangan et al., 2020). One
way to overcome this domain-gap is the training a new domain-specific model from scratch
(Beltagy et al., 2019; Lee et al., 2020) or the adaptation of existing language models to the
new target domain by, e.g., pre-training with masked language modeling (MLM) objectives
on documents from the target domain (Weber et al., 2020; Naseem et al., 2021).

Over the last years, we have participated in a series of shared tasks on information
extraction in the Spanish clinical domain (Marimon et al., 2019; Miranda-Escalada et al.,
2020; Lima-López et al., 2021). With our systems (cf., Chapter 3 and Section 4.4.6, we
were able to outperform the other participants and won the competitions twice. The win-
ning systems were task agnostic and utilized domain-adapted language models and word
embeddings as described in Section 3.5, as well as improved training routines for trans-
former models. Based on our findings and lessons learned during the competitions, we
propose in this chapter a robust model architecture and training procedure for concept ex-
traction in the clinical domain that is task and language agnostic. We introduce a new
Spanish clinical language model CLIN-XES (Clinical XLM-R) that outperforms existing
transformer models on Spanish corpora and exemplifies the benefits of cross-language do-
main adaptation for English tasks as well and compare it to an English model: CLIN-XEN .
For this, we perform a comprehensive evaluation of ten clinical information extraction
tasks from two languages (English and Spanish). Our results demonstrate significant and
consistent improvements compared to standard transformer models across all tasks in both
languages.

4.2 Model Architectures

In this section, we start with a brief description of the input representations. Then, we
discuss our proposed architectural improvements as well as the advanced training methods.
The overall model architecture for pre-training is shown in Figure 4.1a and fine-tuning
in Figure 4.1b. The fine-tuned model, as used for downstream applications, is based on
the pre-trained CLIN-X language model and optimized with the following four advanced
techniques. First, the input is computed on the subword level instead of the usual word
level, which eliminates the need for external tokenization. In addition, the input is enriched
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Figure 4.1: Overview of pre-training for our CLIN-X language models on clinical docu-
ments using the masked language modeling objective (left) and the concept
extraction pipeline based on CLIN-X and our model components for subword-
based concept extraction with cross-sentence context, BIOSE labels and CRFs
(right). We highlight the pre-training and fine-tuning processes of CLIN-X.

with its cross-sentence context to capture a wider document context. Then, the input is
processed by our transformer model that is adapted to the clinical target domain: CLIN-X.
Finally, the model output is computed using a conditional random field (CRF) output layer.
For inference, an ensemble over models trained on different training splits is computed.
This reduces variance and captures the complementary knowledge from all models.

4.2.1 Input Representations for the Clinical Domain

State-of-the-art methods for concept extraction typically rely on word embeddings or lan-
guage models as input representations. The standard approach is the pre-training of these
models on large-scale unlabeled datasets once and their reuse as powerful representations
for many downstream applications (Collobert et al., 2011). Phan et al. (2019) have shown
that contextual information helps in particular in the medical domain, e.g., due to the high
number of synonyms. Thus, we focus on the usage of contextualized embeddings in this
work, which are most often retrieved from transformer language models nowadays. This
is either done with auto-regressive language modeling (Radford et al., 2019) or masked
language modeling (Devlin et al., 2019), which we use in this chapter.

Domain-specific Embeddings. A popular way to approach the challenges of NLP in
non-standard domains is the inclusion of domain knowledge via domain-specific embed-
dings (Friedrich et al., 2020). For this, word embeddings or language models are pre-
trained or further specialized on documents of the target domain. These embeddings can
be used in downstream applications. This kind of domain adaptation has shown great bene-
fits in practice (Gururangan et al., 2020). Thus, we explore domain- and language-adaptive
pre-training of transformer models in this chapter.



4.2. Model Architectures 64

The CLIN-X Pre-trained Language Model. At the time of writing,1 there is no Spanish
clinical transformer model publicly available. Thus, we train and publish the CLIN-XES

language model. The model is based on the multilingual XLM-R transformer, which was
trained on 100 languages and showed superior performance in many different tasks across
languages and even outperformed monolingual models in certain settings (Conneau et al.,
2020). Even though XLM-R was pre-trained on 53GB of Spanish documents, this was only
2% of the overall training data. To steer this model towards the Spanish clinical domain,
we sample documents from the Scielo archive and the MeSpEn resources (Villegas et al.,
2018). The resulting corpus has a size of 790MB and is highly specific for our target
setting. For pre-processing, we apply sentence splitting using the standoff2conll toolkit.2

Then, we strip leading and trailing whitespace characters from the sentences and tokenize
them using the XLM-R tokenizer. We cut off sentences after a maximum of 512 subtokens,
the maximum sequence length of CLIN-X that we chose following XML-R.

For downstream tasks, we cope with longer sentences by applying a sliding-window
approach with a stride of 100. Concretely, we split sequences with more than 512 subtokens
into subsequences of up to 300 subtokens and enrich them with a context of 100 tokens
from the previous and the following subsequence. Analogously, we also incorporate cross-
sentence context as described in the next section. In general, this approach allows the model
to process long sequences beyond the subtoken limit and keep dependencies between the
individual subsequences based on the overlapping tokens.

We initialize CLIN-X using the pre-trained XLM-R weights and train masked language
modeling (MLM) on the clinical corpus for three epochs which roughly corresponds to 32k
steps. This process is visualized in Figure 4.1a. Note that this model is still multilingual,
and we demonstrate the positive impact of cross-language domain adaptation by applying
this model to English tasks.

In addition to the Spanish CLIN-XES model, we release an English version CLIN-XEN

trained on clinical Pubmed abstracts (850MB) filtered following Haynes et al. (2005) for
a direct comparison of our methods in a monolingual setting. This allows researchers and
practitioners to address the English clinical domain with an out-of-the-box tailored model.
Pubmed is used with the courtesy of the U.S. National Library of Medicine.

4.2.2 Models for Concept Extraction

In the following section, we describe the architectural improvements we made compared to
the standard transformer model for sequence-labeling as proposed by (Devlin et al., 2019).

Subword-level Inputs. Information extraction tasks are typically performed on the token
level, while most transformers work on subwords instead. Thus, the input representations
from transformers for tokens are either retrieved from the first subword or their average
(Devlin et al., 2019). In contrast, we perform concept extraction directly on the subword

1state: March 2022
2https://github.com/spyysalo/standoff2conll [last accessed March 5, 2022.]

https://github.com/spyysalo/standoff2conll
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level. By doing this, there is no need for external tokenization besides the subword seg-
mentation of the transformer. Note that the usage of domain-specific subwords is still con-
sidered beneficial in domain-specific applications (Beltagy et al., 2019; Lee et al., 2020).

Cross-sentence Context. Transformer models are well-suited to incorporate information
from a larger context. Luoma and Pyysalo (2020) showed that context information from
neighboring sentences has positive effects for named entity recognition on the general do-
main. (Finkel et al., 2004) also showed the positive impact of context for clinical concept
extraction. We follow these approaches and add context information to the input similar to
(Schweter and Akbik, 2020). We incorporate the context of 100 subwords to the left and
right and use the document boundaries to set the context limits as all corpora are clearly
structured in documents.

Conditional Random Field Output. As Kim and Kang (2021) have shown, entity recog-
nition models in the biomedical domain tend to memorize training instances and their la-
bels. This can result in incorrect label encodings as the model fails to generalize. A con-
ditional random field (Lafferty et al., 2001) can constrain these incorrect sequences as the
Viterbi algorithm is used for decoding (see Section 2.2.1). In addition, the CRF has advan-
tages over a simple linear layer when it comes to long entities covering multiple tokens that
frequently appear in the clinical domain (Lima-López et al., 2021).

4.2.3 Training on Data Splits

Having a robust model architecture is a good starting point for NLP in the clinical do-
main. However, the actual training procedure of the model might be even more important.
Thus, we discuss standard and random splits, as well as ensembles over these splits in the
following.

Standard Splits. Typically, each dataset is divided into training, development, and test
splits. The training split is used in each epoch to train the model parameters, and the best
training epoch is selected based on the evaluation score on the development set. Finally,
the held-out test set is used to compute the final score for the selected model. These data
splits are helpful to compare the performances of different models on standardized data.
However, using the standard training split without modifications may not result in optimal
performance (Gorman and Bedrick, 2019).

Random Splits. The training and development parts can be further randomly divided into
n separate parts. Then, n−1 parts can be used for training and one part as the validation set
for early stopping, similar to cross-fold validation. An ensemble based on models trained
on the different data splits should be more powerful than the single models as each of them
encodes complementary knowledge, which helps to reduce variance and biases (Clark et al.,
2019). In our experiments, we use n = 5 so that we get five different settings with unique
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Figure 4.2: Illustration of ensembles over different training splits.

training sets, and we train one model for each setting. Note that we do not change or use
the test set at all to ensure comparability to previous results.

Training on All Available Instances. Some recent works find that there is no need for a
held-out development set and that these labeled instances might be better used for training.
For example, Luoma and Pyysalo (2020) have shown that training on the combined training
and development sets boosts performance for named entity recognition remarkably. By this,
the model has access to the most data during training, and model selection is based on the
training loss. However, the training loss is not as meaningful as a stopping criterion, and it
is hard to pick the best model checkpoint. We will compare to this method as an alternative
to our split-based experiments.

Ensembles over Models. In addition to the other methods, ensembling can be used to
combine multiple model predictions into one. An ensemble is usually better than a single
model — in particular, if the models or their training data differ to some degree. We create
ensembles by majority voting (Clark et al., 2019) of training runs that either vary by their
random seed (standard splits) or their training data (random splits).

4.3 Experimental Setup

This section describes the experiments starting with tasks, datasets, evaluation metrics, and
implementation details.

4.3.1 Tasks and Datasets

Many datasets for natural language processing in specialized domains are published in the
context of shared tasks — competitions to evaluate different systems and approaches. Be-
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Corpus
Size (#Sentences)

Train Dev Test

I2B2-2006 (Uzuner et al., 2007) 51,429 - 18,770
I2B2-2010 (Uzuner et al., 2011) 16,487 - 27,882
I2B2-2012 (Sun et al., 2013) 7,636 - 5,785
I2B2-2014 (Stubbs et al., 2015) 52,026 - 33,317

Table 4.1: Overview of the English clinical concept extraction dataset used in this chapter.
We report the number of sentences for the training, development and test splits.

Corpus
Size (#Sentences)

Train Dev Test

MEDDOCAN (Marimon et al., 2019) 15,858 8,283 8,009
PHARMACONER (Gonzalez-Agirre et al., 2019) 8,582 4,016 4,184
CANTEMIST (Miranda-Escalada et al., 2020) 19,426 18,172 11,196
MEDDOPROF (Lima-López et al., 2021) 51,350 - 10,008

Table 4.2: Overview of the Spanish clinical concept extraction datasets used in this chapter.
We report the number of sentences for the training, development and test splits.

sides English, the clinical domain is well addressed for Spanish, and there exists an active
community of NLP researchers that study the processing of Spanish clinical texts. Thus, in
the context of the IberLEF workshop series (Iberian Language Evaluation Forum), several
shared tasks have been proposed by the Barcelona Supercomputing Center concerning con-
cept extraction in the clinical domain (Marimon et al., 2019; Gonzalez-Agirre et al., 2019;
Miranda-Escalada et al., 2020; Lima-López et al., 2021). In addition to datasets of these
shared tasks for Spanish, we consider four English datasets published during a series of
shared tasks of the I2B2 project (Uzuner et al., 2007, 2011; Sun et al., 2013; Stubbs et al.,
2015). Information on the dataset sizes are given in Table 4.1 and Table 4.2 for English and
Spanish, respectively. Note that the MEDDOPROF and I2B2-2012 corpora consist of two
different extraction tasks each. Thus, we consider both annotation layers as separated tasks
in this work resulting in a total of ten tasks.

All of these tasks require information extraction on the token level. Therefore, we
model them as sequence-labeling problems similar to our experiments in Chapter 3.

4.3.2 Evaluation Metrics

Following the evaluations in the shared tasks, we use the micro F1-score for all datasets
as the evaluation metric. The F1-score is the harmonic mean of precision, the fraction of
correct concepts among the predicted concepts, and recall, the fraction of correct concepts
that were predicted as described in Section 2.1.3. To evaluate multi-token expressions, we
apply strict matching, i.e., we require an exact match of all tokens to count the prediction
as correct.
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4.3.3 Implementation Details

Masked Language Modeling. We use eight NVIDIA V100 (32GB) GPUs for pre–train-
ing the CLIN-X models. The training takes less than one day with a batch size of four
sentences per device and a sequence length of up to 512 subwords. The models were
trained with the HuggingFace trainer for MLM.3

Sequence Labeling. The sequence-labeling models were trained on single NVIDIA V100
GPUs for up to 20 hours, depending on the dataset size. The models were trained using
the Flair framework with the AdamW optimizer with an initial learning rate of 2.0× 10−5

and a batch size of 16 for 20 epochs. The loss function is the CRF loss when using a
CRF layer and cross-entropy loss otherwise. The model selection was performed using the
development score if trained on standard or random splits and the training loss otherwise.

4.4 Results and Analysis

This section will discuss the results of our experiments. First, we evaluate the different
embeddings methods and study the effects of domain-specific training. Then, we evaluate
the different training methods and their ensembles and perform an ablation study. Then, we
compare our models to the current state of the art for clinical concept extraction. Finally,
we perform a qualitative analysis of our models.

4.4.1 Results for Different Embeddings

The choice of input embeddings has a large impact on downstream performance and may
even be the most important factor. Table 4.3 shows the average performance of several
different embeddings and transformer models for the two languages. As expected, the
monolingual transformers (BERT, BETO) excel at their target language but cannot compete
with multilingual models (mBERT, XLM-R) when applied to another language. The lower
part of Table 4.3 lists domain-specific variants of the embeddings, which are generally
more powerful in our domain-specific setting. We see that our CLIN-X models perform
best for their respective languages. Furthermore, the CLIN-XES performs almost as well as
the CLIN-XEN model on the English datasets, for which it was not explicitly trained. This
shows that the domain adaptation of multilingual models can also help for texts from other
languages of the same domain, i.e., cross-language domain adaptation.

4.4.2 Results for Different Training Methods

The foundation for all following concept extraction models is the CLIN-XES transformer,
as it has shown robust results across all tasks. For comparison to fixed standard splits, we

3https://github.com/microsoft/huggingface-transformers/blob/master/ex

amples/pytorch/language-modeling/run_mlm.py [last accessed March 5, 2022.]

https://github.com/microsoft/huggingface-transformers/blob/master/examples/pytorch/language-modeling/run_mlm.py
https://github.com/microsoft/huggingface-transformers/blob/master/examples/pytorch/language-modeling/run_mlm.py
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Pre-training Domain Model English Spanish

General
(e.g., Web, News,
Wikipedia, ...)

word2vec 80.26 78.20
Flair 85.15 80.28
BERT (En) 85.34 77.78
BETO (Es) 83.57 83.92
XLM-R 87.13 83.87

Clinical

word2vec 80.98 79.72
Flair 86.43 80.72
ClinicalBERT (En) 85.76 76.94
CLIN-XEN 87.67 84.57
CLIN-XES 87.48 85.37

Table 4.3: Results for different embeddings and models averaged for the two languages
(F1). Word embeddings are used in a RNN model as in Chapter 4. Transformers
are used with a classification layer similar to Devlin et al. (2019).

train the model on different random splits. We see in Table 4.4 that, in particular, ensembles
over random splits are a lot better than the standard splits and also all training instances.
While the median performance is roughly similar for all methods, the random splits offer
a lot more variety in training instances. Thus, the ensemble based on random splits also
achieves much higher scores.

4.4.3 Ablation Studies

The lower part of Table 4.4 lists an ablation study of our individual model components.
For example, adding cross-sentence context to the transformers boosts performance across
all tasks by 0.5 F1 on average. Performing concept extraction on the subword level helps

Method English Spanish

All training instances 87.83 86.46

St
an

da
rd

Sp
lit

s Median model 87.63 85.16
Best model 87.85 85.99
Ensemble 87.95 86.06

R
an

do
m

Sp
lit

s Median model 87.69 86.17
Best model 88.31 86.85
Ensemble 88.78 88.15

A
bl

at
io

n

St
ud

y

– BIOSE Labels 88.52 87.13
– CRF 88.38 85.95
– Context 87.83 86.84
– Subword NER 87.38 86.81

Table 4.4: Comparison of training splits with our model architecture and ablation study of
the model components averaged for each language (F1).
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even further. This is particularly beneficial considering that no external tokenization is
needed, which can be challenging in the clinical domain. The CRF is useful for both
languages, though the differences are larger for Spanish, as the two MEDDOPROF tasks
have particularly long annotations (2.53 tokens per annotation on average). The same holds
for the BIOSE labels, which have the smallest impact of all components but consistently
improve upon the standard BIO labels. As each of our proposed methods improves the
transformer even further, we use the combination of all methods in the following as our
model architecture.

4.4.4 Qualitative Analysis

We provide a qualitative analysis of four sample sentences from the test set of I2B2-2012
in Table 4.5. The analysis shows that our CLIN-X model can correctly annotate domain-
specific concepts like orthostatic (S1) and [..] rectures adbominis flap (S2) than the general-
domain XLM-R model due to its additional domain knowledge. Our architecture helps the
model to focus on the target task and prevent the model from annotating false positives
like PO (“per os”; orally) (S4). However, it is still able to recognize general-domain words
correctly in a clinical context like wire (S3) and identify the correct annotation type (S2).

Sentence 1 (S1)
Gold: She was not[orthostatic]Problem

XLM-R: She was not orthostatic
CLIN-XES : She was not[orthostatic]Problem

CLIN-XES +OURMODEL: She was not[orthostatic]Problem

Sentence 2 (S2)
Gold: [Right superiorly based rectures abdominis flap]Treatment

XLM-R: Right superiorly based rectures abdominis flap
CLIN-XES : [Right superiorly based rectures abdominis flap]Problem

CLIN-XES +OURMODEL: [Right superiorly based rectures abdominis flap]Treatment

Sentence 3 (S3)
Gold: Access-[RIJ]Treatment changed sterilly over[wire]Treatment

XLM-R: Access-[RIJ]Treatment changed sterilly over wire
CLIN-XES : Access-[RIJ]Treatment changed sterilly over wire
CLIN-XES +OURMODEL: Access-[RIJ]Treatment changed sterilly over[wire]Treatment

Sentence 4 (S4)
Gold: Plan to restart[Paxil]Treatment when taking PO
XLM-R: Plan to restart[Paxil]Treatment when taking[PO]Treatment

CLIN-XES : Plan to restart[Paxil]Treatment when taking[PO]Treatment

CLIN-XES +OURMODEL: Plan to restart[Paxil]Treatment when taking PO

Table 4.5: Qualitative analysis of sample sentences from the I2B2-2012 corpus.
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English (I2B2) 2006 2010 2012-C 2012-T 2014

BERT/BETO (monolingual) 94.80 85.25 76.51 75.28 94.86
BERT (multilingual) 94.79 84.91 76.01 76.56 95.34
XLM-R (multilingual) 96.72 87.54 79.63 75.36 96.39
HunFlair (monolingual) 93.48 86.70 78.52 77.16 95.90

ClinicalBERT 94.8 87.8 78.9 76.58 93.0

CLIN-XEN 96.25 88.10 79.58 77.70 96.73
CLIN-XES 95.49 87.94 79.58 77.57 96.80

CLIN-XEN +OURMODEL 98.49 89.23 80.62 78.50 97.60
CLIN-XES +OURMODEL 98.30 89.10 80.42 78.48 97.62

Spanish CANTEMIST MEDDOCAN M.PROF-N M.PROF-C PHARMA.

BERT/BETO (monolingual) 81.30 96.81 79.19 74.59 87.70
BERT (multilingual) 80.94 96.30 76.39 71.84 86.98
XLM-R (multilingual) 82.17 96.76 77.44 74.05 88.92
HunFlair (monolingual) 83.80 96.50 75.16 70.01 88.40

ClinicalBERT 77.18 94.63 65.74 62.85 84.32
NLNDE 85.3 96.96 81.8 79.3 88.6

CLIN-XEN 82.80 97.08 78.62 75.05 89.33
CLIN-XES 83.22 97.08 79.54 76.95 90.05

CLIN-XEN +OURMODEL 87.72 97.57 81.36 78.53 92.36
CLIN-XES +OURMODEL 88.24 98.00 81.68 80.54 92.27

Table 4.6: Performance of our CLIN-X models in comparison to baseline systems and
state-of-the-art results (F1).

4.4.5 Comparison to State-of-the-Art Models

As our results demonstrate, we have proposed a robust model for the clinical domain that
works well across the different tasks in both languages. Finally, we compare CLIN-X to
various transformer models as introduced earlier. We also compare to HunFlair (Weber
et al., 2021), the current state of the art for concept extraction in the biomedical domain.
We use their model architecture based on clinical Flair and fastText embeddings and train
models accordingly on our datasets. In addition, we compare to our NLNDE submissions
for the Spanish shared tasks (see Chapter 3 and Section 4.4.6) and the ClinicalBERT by
Alsentzer et al. (2019) for the English datasets. The results for each task are shown in
Table 4.6. The CLIN-X language models in combination with our model architecture out-
perform the other transformers and HunFlair by a large margin. CLIN-X is able to utilize
the domain knowledge obtained from the additional pre-training with further improvements
from the ensembling over random splits. Even though CLIN-X works best in combination
with our model architecture, CLIN-X based on the standard transformer architecture with a
single classification layer already outperforms the existing models on 8 out of 10 tasks.
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Subtrack 1 : NER Subtrack 2 : CLASS
Team / Model Pre. Rec. F1 Pre. Rec. F1

XLM-R 83.9 75.0 79.2 81.2 74.3 77.6
XLM-RES 86.3 80.4 83.2 82.5 75.9 79.1
CLIN-XES 83.8 76.6 80.0 80.7 75.4 77.9
OUR ensemble of all three (submission) 85.5 78.3 81.8 83.0 75.9 79.3

MUCIC (Balouchzahi et al., 2021) 81.3 78.8 80.0 77.0 75.5 76.4
SMR-NLP (Siemens AG / LMU Munich) 85.4 75.1 79.9 80.2 69.9 74.7

Table 4.7: Results for MEDDOPROF systems.

4.4.6 CLIN-X Model in the MEDDOPROF Shared Task

The CLIN-X language model and our previously described model architecture were origi-
nally developed for the MEDDOPROF shared task on automatic recognition (subtrack 1)
and classification (subtrack 2) of professions and occupations from medical texts in Span-
ish (Lima-López et al., 2021). For this, we pre-trained the CLIN-XES model on Spanish
clinical documents. In addition, we trained a general-domain Model XLM-RES on various
other Spanish texts, as the target documents belong to the clinical domain, but the task itself
is concerned with the extraction of general-domain concepts, namely different professions
and occupations. In contrast to the training on random splits as in the earlier parts of this
chapter, we trained our model on so-called strategic data splits (Wecker et al., 2020). For
this, the training documents are clustered using k-Means clustering over document embed-
ding vectors instead of random splits, which creates more challenging data splits. More
details are given by Lange et al. (2021a).

The results are shown in Table 4.7. We experimented with the standard XLM-R model,
our fine-tuned XLM-RES on Spanish texts, as well as our domain-adapted CLIN-X model.
Our final submission was an ensemble of all three models, which won both subtracks of
the shared task. This ensemble outperformed all other 14 participating teams and achieved
+1.8 and +2.9 F1 points compared to the second-best team (Balouchzahi et al., 2021).



73 4. Advanced Transformers for Clinical Concept Extraction

4.5 Conclusions

In this chapter, we described the newly pre-trained language model CLIN-X for the clin-
ical domain. We have shown that CLIN-X sets the new state of the art for ten clinical
concept extraction tasks in two languages. We demonstrated the positive impact of other
model components, such as for ensembles over random splits and cross-sentence context.
We think that the release of the CLIN-X language model and our model architecture will
be a good starting point for many clinical NLP tasks and will enable further research on
clinical concept extraction. Moreover, we participated with CLIN-X and a general-domain
variant in the MEDDOPROF shared task and outperformed all other participating systems,
which highlights the importance of domain-adapted systems like CLIN-X and robust model
architectures.
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Chapter 5

Meta-Embeddings for Domain-Robust
Input Representations

Combining several embeddings typically improves performance in downstream tasks as
different embeddings encode different information, as exemplarily discussed in Chapter 3
for the inclusion of domain knowledge. Moreover, it has been shown that even models us-
ing embeddings from transformers still benefit from the inclusion of standard word embed-
dings. However, the combination of embeddings of different types and dimensions is chal-
lenging. In this chapter, we propose feature-based adversarial meta-embeddings (FAME)
as an alternative to the simple concatenation. These robust meta-embeddings variants come
with an attention function guided by features reflecting word-specific properties, such as
shape and frequency. We show that this is beneficial to handle subword-based embeddings.
In addition, FAME uses adversarial training to optimize the mappings of differently-sized
embeddings to the same space. We demonstrate that FAME works effectively across lan-
guages and domains for sequence labeling and sentence classification, in particular in low-
resource settings. FAME sets the new state of the art for POS tagging in 27 languages,
various NER and concept extraction tasks, and question classification in different domains.
It was originally introduced in our publication on robust meta-embedding methods (Lange
et al., 2021b).

5.1 Introduction

Recent work on word embeddings and pre-trained language models has shown the large
impact of language representations on natural language processing models across tasks and
domains (Devlin et al., 2019; Beltagy et al., 2019; Conneau et al., 2020). Nowadays, a
large number of different embedding models are available with different characteristics,
such as different input granularities (word-based (e.g., Mikolov et al., 2013a; Pennington
et al., 2014) vs. subword-based (e.g., Heinzerling and Strube, 2018; Devlin et al., 2019)
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vs. character-based (e.g., Lample et al., 2016; Ma and Hovy, 2016; Peters et al., 2018)), or
different data used for pre-training (general-world vs. specific domain). Since those charac-
teristics directly influence when embeddings are most effective, combinations of different
embedding models are likely to be beneficial (Tsuboi, 2014; Kiela et al., 2018), even when
using already powerful large-scale pre-trained language models (Akbik et al., 2018; Yu
et al., 2020). Word-based embeddings, for instance, are strong in modeling frequent words,
while character-based embeddings can model out-of-vocabulary words. Similarly, domain-
specific embeddings can capture in-domain words that do not appear in general domains
like news text or Wikipedia articles.

Different word representations can be combined using so-called meta-embeddings.
There are several methods available, ranging from concatenation (e.g., Yin and Schütze,
2016), over averaging (e.g., Coates and Bollegala, 2018) to attention–based meta–embed-
dings (Kiela et al., 2018). However, they all come with shortcomings: Concatenation leads
to high-dimensional input vectors and, as a result, requires additional parameters in the first
layer of the neural network. Averaging simply merges all information into one vector, not
allowing the network to focus on specific embedding types, which might be more effec-
tive than others to represent the current word. Attention-based embeddings address this
problem by allowing dynamic combinations of embeddings depending on the current input
token. However, the calculation of attention weights requires the model to assess the qual-
ity of embeddings for a specific word. This is arguably very challenging when embeddings
of different input granularities are combined, e.g., subwords and words. Infrequent in-
domain tokens, for instance, are hard to detect when using subword-based embeddings as
they can model any token. Moreover, both average and attention-based meta-embeddings
require mappings of all embeddings into the same space, which can be challenging for a
set of embeddings with different dimensions.

In this chapter, we propose feature-based adversarial meta-embeddings (FAME) that
(1) align the embedding spaces with adversarial training, and (2) use attention for combin-
ing embeddings with a layer that is guided by features reflecting word-specific properties,
such as the shape or frequency of the word and, thus, can help the model to assess the
quality of the different embeddings. By using attention, we avoid the shortcomings of con-
catenation (high-dimensional input vectors) and averaging (merging information without
focus). Further, our contributions mitigate the challenges of previous attention-based meta-
embeddings: In our analysis, we show that the first contribution is especially beneficial
when embeddings of different dimensions are combined. The second helps, in particular,
when combining word-based with subword-based embeddings.

We conduct experiments across a variety of tasks, languages, and domains, including
sequence-labeling tasks (named entity recognition for four languages, concept extraction
for two special domains (clinical and materials science), and part-of-speech tagging for 27
languages) and sentence classification tasks (question classification in different domains).
Our results and analyses show that FAME outperforms existing meta-embedding methods
and that even powerful fine-tuned transformer models can benefit from additional embed-
dings using our method. In particular, FAME sets the new state of the art for POS tagging
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in all 27 languages, for NER in two languages, as well as on all tested concept extraction
and two question classification datasets.

In summary, our contributions are meta-embeddings with (i) adversarial training and
(ii) a feature-based attention function. (iii) We perform broad experiments, ablation stud-
ies, and analyses that demonstrate that our method is highly effective across tasks, do-
mains, and languages, including low-resource settings. (iv) Moreover, we show that even
representations from large-scale pre-trained transformer models can benefit from our meta-
embeddings approach.

5.2 Related Work

This section surveys related work on meta-embeddings, attention, and adversarial training.

Meta-Embeddings. Previous work has seen performance gains by, for example, com-
bining various types of word embeddings (Tsuboi, 2014) or the same type trained on
different corpora (Luo et al., 2014). For the combination, some alternatives have been
proposed, such as different input channels of a convolutional neural network (Kim, 2014;
Zhang et al., 2016), concatenation followed by dimensionality reduction (Yin and Schütze,
2016) or averaging of embeddings (Coates and Bollegala, 2018), e.g., for combining em-
beddings from multiple languages (Reid et al., 2020). More recently, auto-encoders (Bol-
legala and Bao, 2018; Wu et al., 2020) ensembles of sentence encoders (Pörner et al.,
2020) and attention-based methods (Kiela et al., 2018) have been introduced. The latter al-
lows a dynamic (input-based) combination of multiple embeddings. Winata et al. (2019a)
and Priyadharshini et al. (2020) used similar attention functions to combine embeddings
from different languages for NER in code-switching settings. Liu et al. (2021) explored
the inclusion of domain-specific semantic structures to improve meta-embeddings in non-
standard domains. In this chapter, we follow the idea of attention-based meta-embeddings
and propose task-independent methods for improving them.

Extended Attention. Attention has been introduced in the context of machine translation
(Bahdanau et al., 2015) and is since then widely used in NLP (i.a., Tai et al., 2015; Xu
et al., 2015; Yang et al., 2016; Vaswani et al., 2017). Our approach extends this technique
by integrating word features into the attention function. This is similar to extending the
source of attention for uncertainty detection (Adel and Schütze, 2017) or relation extraction
(Zhang et al., 2017b; Li et al., 2019). However, in contrast to these works, we use task-
independent features derived from the token itself. Thus, we can use the same attention
function for different tasks.

Adversarial Training. Further, our method is motivated by the usage of adversarial
training (Goodfellow et al., 2014b) for creating input representations that are independent
of a specific domain or feature. This is related to using adversarial training for domain
adaptation (Ganin et al., 2016) or coping with bias or confounding variables (Beutel et al.,
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Figure 5.1: Overview of the FAME model architecture. Blue lines highlight our contribu-
tions. C (classifier), D (discriminator) and R (input representation) denote the
components of adversarial training. The dimensions of intermediate represen-
tations are given in parentheses.

2017; Li et al., 2018; Raff and Sylvester, 2018; Zhang et al., 2018; Barrett et al., 2019;
McHardy et al., 2019). Following Ganin et al. (2016), we use gradient reversal training
in this chapter. Recent studies use adversarial training on the word level to enable cross-
lingual transfer from a source to a target language (Zhang et al., 2017a; Keung et al., 2019;
Wang et al., 2019a; Bari et al., 2020). In contrast, our discriminator is not binary but
multinomial (as in Chen and Cardie (2018)) and allows us to create a common space for
embeddings from different granularities. Adversarial training was also used to strengthen
non-textual representations, e.g., knowledge graphs (Zeng et al., 2020) or networks (Dai
et al., 2019).

5.3 Meta-Embeddings

This section describes the existing attention-based meta-embeddings method and presents
our proposed FAME model with feature-based meta-embeddings and adversarial training.
The FAME model is depicted in Figure 5.1.

5.3.1 Attention-Based Meta-Embeddings

As discussed in Chapter 3, multiple embeddings can be combined by concatenating all
embeddings vectors. However, as some embeddings are more effective in modeling cer-
tain words, e.g., domain-specific embeddings for in-domain words, we use attention-based
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meta-embeddings that are able to combine different embeddings dynamically as introduced
by Kiela et al. (2018) by computing a weighted sum of the embeddings.

Given n embeddings e1 ∈ RE1 , ... en ∈ REn of potentially different dimensions E1, ...
En, they first need to be mapped to the same space (with E dimensions):

xi = tanh(Qi · ei + bi) (5.1)

with 1 ≤ i ≤ n. Note that the mapping parameters Qi ∈ RE×Ei and bi ∈ RE are learned for
each embedding method during training of the downstream task. Then, attention weights
αi are computed by:

αi =
exp(V · tanh(Wxi))∑n
l=1 exp(V · tanh(Wxl))

(5.2)

with W ∈ RH×E and V ∈ R1×H being parameter matrices that are randomly initialized
and learned during training. Finally, the embeddings xi are weighted using the attention
weights αi resulting in the word representation:

eATT =
∑
i

αi · xi (5.3)

This approach requires the model to learn parameters for the mapping function as well as
for the attention function. The first might be challenging if the original embeddings have
different dimensions, while the latter might be problematic if the embeddings represent
inputs from different granularities, such as words vs. subwords. We support this claim
experimentally in our analysis in Section 5.7.2.

5.3.2 Feature-Based Attention

Equation 5.2 for calculating attention weights only depends on xi, the representation of the
current word.1 While this can be enough when only standard word embeddings are used,
subword- and character-based embeddings are able to create vectors for out-of-vocabulary
inputs, and distinguishing these from tailored vectors for frequent words is challenging
without further information (see Section 5.7.2). To allow the model to make an informed
decision which embeddings to focus on, we propose to use the features described below as
an additional input to the attention function. The word features are represented as a vector
f ∈ RF and integrated into the attention function (Equation 5.2) as follows:

αi =
exp(V · tanh(Wxi + Uf))∑n
l=1 exp(V · tanh(Wxl + Uf))

(5.4)

with U ∈ RH×F being a parameter matrix that is learned during training.

1Kiela et al. (2018) proposed two versions: using the word embeddings or using the hidden states of a
bidirectional LSTM encoder. Our observation holds for both of them.
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Features. FAME uses the following task-independent features based on word character-
istics. Some of these were earlier discussed in Section 2.2.1 as CRF inputs features.

• Length: Long words, in particular compounds, are often less frequent in embed-
ding vocabularies, such that the word length can be an indicator for rare or out-of-
vocabulary words. We encode the lengths in 20-dimensional one-hot vectors. Words
with more than 19 characters share the same vector.

• Frequency: High-frequency words can typically be modeled well by word-based em-
beddings, while low-frequency words are better captured with subword-based em-
beddings. Moreover, frequency is domain-dependent and can thus help to decide
between embeddings from different domains. We estimate the frequency n of a word
in the general domain from its rank r in the fastText-based embeddings provided
by Grave et al. (2018): n(r) = k/r with k = 0.1 following Manning and Schütze
(1999). Finally, we group the words into 20 bins as done by Mikolov et al. (2011)
and represent their frequency with a 20-dimensional one-hot vector.

• Word Shape: Word shapes capture certain linguistic features and are often part of
manually designed feature sets, e.g., for CRF classifiers (Lafferty et al., 2001). For
example, uncommon word shapes can be indicators for domain-specific words, which
can benefit from domain-specific embeddings. We create 12 binary features that cap-
ture information on the word shape, including whether the first, any, or all characters
are uppercased, alphanumerical, digits, or punctuation marks.

• Word Shape Embeddings: In addition, we train word shape embeddings (25 dimen-
sions) similar to Limsopatham and Collier (2016). For this, the shape of each word
is converted by replacing letters with c or C (depending on the capitalization), digits
with n and punctuation marks with p. For instance, Dec. 12th would be converted
to Cccp nncc. The resulting shapes are one-hot encoded, and a trainable randomly
initialized linear layer is used to compute the shape representation.

All sparse feature vectors (binary or one-hot encoded) are fed through a linear layer to
generate a dense representation. Finally, all features are concatenated into a single feature
vector f of 77 dimensions which is used in the attention function as described earlier.

5.3.3 Adversarial Learning of Mappings

The attention-based meta-embeddings require that all embeddings have the same dimen-
sion for summation. For this, mapping matrices need to be learned, as only a limited num-
ber of embeddings exist for many languages and domains, and there is typically no option
only to use embeddings of the same size. To learn effective mappings, we propose to use
adversarial training. In particular, FAME adapts gradient-reversal training with three com-
ponents: the representation module R consisting of the different embedding models and
the mapping functions Q to the common embedding space, a discriminator D that tries to



81 5. Meta-Embeddings for Domain-Robust Input Representations

Dimensions Fine-tuned?

General Domain
Character 50 Yes
BPEmb 100 No
fastText 300 No
XLM-R 1024 No / Yes

Domain-specific
Word 100 (en), 300 (es) No
Transformer 768 (en) No / Yes

Table 5.1: Overview of embeddings used in our models.

distinguish the different embeddings from each other, and a downstream classifier C which
is either a sequence tagger or a sentence classifier in our experiments (and is described in
more detail in Section 5.4).

The input representation is shared between the discriminator and downstream classifier
and trained with gradient reversal to fool the discriminator. To be more specific, the dis-
criminator D is a multinomial non-linear classification model with a standard cross-entropy
loss function LD. In our sequence-tagging experiments, the downstream classifier C has
a conditional random field (CRF) output layer and is trained with a CRF loss LC to maxi-
mize the log probability of the correct tag sequence (Lample et al., 2016). In our sentence
classification experiments, C is a multinomial classifier with cross-entropy loss LC . Let
θR, θD, θC be the parameters of the representation module, discriminator, and downstream
classifier, respectively. Gradient reversal training will update the parameters as follows:

θD = θD − ηλ
∂LD

∂θD
; θC = θC − η

∂LC

∂θC
; θR = θR − η(

∂LC

∂θR
− λ

∂LD

∂θR
) (5.5)

with η being the learning rate and λ being a hyperparameter to control the discriminator
influence.

5.4 Model Architectures

In this section, we present the architectures we use for text classification and sequence
tagging. Note that our contribution concerns the input representation layer, which can be
used with any NLP model, e.g., also sequence-to-sequence models.

5.4.1 Input Layer

The input to our neural networks is our FAME meta-embeddings layer as described in
Section 5.3. Our methodology does not depend on the embedding method, i.e., it can in-
corporate any token representation. In our experiments, we use the embeddings listed in
Table 5.1 based on insights from related work. In particular, Akbik et al. (2018) showed the
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Transformer
fine-tuned?

Meta-embeddings method No Yes

General Domain (4 embeddings)
Concatenation 10.0 / 3.4 543.9 / 539.4
Attention-based meta-emb 4.0 / 4.0 537.9 / 538.9
Feature-based attention 4.0 / 4.0 538.0 / 538.9

Domain-specific (4+2 embeddings)
Concatenation 14.9 / 5.3 652.2 / 648.2
Attention-based meta-emb 4.9 / 4.9 642.2 / 643.2
Feature-based attention 5.0 / 4.9 642.2 / 643.2

+ Adversarial Discriminator +1.0 / +1.0 +1.0 / +1.0

Table 5.2: Number of trainable parameters (in million) of our models for sequence labeling
/ text classification.

advantages of character and fastText embeddings (Bojanowski et al., 2017) and Heinzer-
ling and Strube (2018) showed similar results for character and BPE embeddings. Thus, we
decided to use the union (char+fastText +BPE) with a state-of-the-art multilingual Trans-
former (Conneau et al., 2020, XLM-R). Our character-based embeddings are randomly ini-
tialized and accumulated to token embeddings using a bidirectional long short-term mem-
ory network (Hochreiter and Schmidhuber, 1997) with 25 hidden units in each direction.

For experiments in non-standard domains, we add domain-specific embeddings, in-
cluding word embeddings from the clinical domain for English (Pyysalo et al., 2013) and
Spanish (Gutiérrez-Fandiño et al., 2021) and the materials science domain (Tshitoyan et al.,
2019). Further, we include domain-specific transformer models for experiments on English
data, i.e., Clinical BERT (Alsentzer et al., 2019) trained on MIMIC, and SciBERT (Beltagy
et al., 2019) trained on academic publications from semantic scholar.2

For all experiments, our baselines and proposed models use the same set of embed-
dings. We experiment with both freezing and fine-tuning the transformer embeddings dur-
ing training. However, note that fine-tuning the transformer model increases the model size
by more than a factor of 100 from 4M trainable parameters to 535M as shown in Table 5.2.
This increases computational costs by a large margin. For example, in our experiments, the
time for training a single epoch for English NER increases from 3 to 38 minutes.

5.4.2 Models for Sequence Tagging

Our sequence tagger follows a well-known architecture (Lample et al., 2016) as described
in Section 3.3 and is based on a BiLSTM-CRF network. Note that we perform sequence
tagging on sentence level without cross-sentence context as done, i.a., in Chapter 4 or by
Schweter and Akbik (2020).

2https://www.semanticscholar.org/ [last accessed March 5, 2022.]

https://www.semanticscholar.org/
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5.4.3 Models for Text Classification

For sentence classification tasks, we use a BiLSTM sentence encoder. The resulting sen-
tence representation is fed into a linear layer followed by a softmax activation that out-
puts label probabilities. For natural language inference, i.e., sentence pair classification,
premise, and hypothesis are encoded individually. Then, their representations u and v are
combined using [u, v, u ∗ v, |u− v|]. Again, a linear layer followed by a softmax performs
the classification.

5.5 Experimental Setup

We now describe the tasks, datasets, and details of our models and training procedure.

5.5.1 Tasks and Datasets

We use named entity recognition and part-of-speech tagging datasets from different do-
mains and languages for sequence labeling. For NER, we use the CONLL benchmark
datasets from the news domain (English/German/Dutch/Spanish) (Tjong Kim Sang, 2002;
Sang and Meulder, 2003). In addition, we conduct experiments for concept extraction on
two datasets from the clinical domain, the English I2B2-2010 data (Uzuner et al., 2011)
and the Spanish PHARMACONER task (Gonzalez-Agirre et al., 2019), as well as experi-
ments on the materials science domain (Friedrich et al., 2020). For POS tagging, we use
the universal dependencies treebanks version 1.2 (UPOS tag) and use the 27 languages for
which Yasunaga et al. (2018) reported numbers. Moreover, we experiment with three ques-
tion classifications tasks, namely the TREC corpus (Voorhees and Tice, 1999) with 6 or 50
labels and GARD (Roberts et al., 2014, clinical domain), as well as the SNLI corpus for
natural language inference (Bowman et al., 2015).

5.5.2 Hyperparameters and Training

We use hidden sizes of 256 units per direction for all BiLSTMs. The attention layer has
a hidden size H of 10. We set the mapping size E to the size of the largest embedding
in all experiments, i.e., 1024 dimensions, the size of XLM-R embeddings. The discrim-
inator D has a hidden size of 1024 units and is trained every 10th batch. We perform a
hyperparameter search for the λ parameter in {1e− 4, 1e− 5, 1e− 6, 1e− 7} for models
using adversarial training. Note that we use the same hyperparameters for all models and
all tasks. Labels for sequence tagging are encoded in BIOSE format.

For training, we use the AdamW optimizer (Loshchilov and Hutter, 2019) with an initial
learning rate of 5e − 6. We train the models for a maximum of 100 epochs and select the
best model according to the performance using the task’s metric on the development set if
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Model en de es nl

Akbik et al. (2019) 93.18 88.27 - 90.12
Schweter and Akbik (2020) 93.69 92.29 89.93 94.66
Yu et al. (2020) 93.5 90.3 90.3 93.7
XLM-R (Conneau et al., 2020) 92.92 85.81 89.72 92.53
FAME (our model) 94.11 92.28 89.90 95.42

Table 5.3: NER results (F1).

Model CLINen CLINes SOFCen

Alsentzer et al. (2019) 87.7 - -
Joint Anonymization (Chapter 3) 88.9 91.4 –
CLIN-X Model (Chapter 4) 89.74 92.35 -
Friedrich et al. (2020) – – 81.5
FAME (our model) 90.08 92.68 83.68

Table 5.4: Concept extraction results (F1).

available or using the training loss otherwise. The training was performed on Nvidia Tesla
V100 GPUs with 32GB VRAM.3

5.6 Results

We now describe our results for the meta-embedding models for the different sequence-
labeling tasks and for text classification. Then, we study meta-embeddings for domain-
specific transformers and adapt them for subword-level sequence tagging.

5.6.1 Results for Sequence Labeling

We now present the results of our sequence-labeling experiments. All reported numbers
are the averages of three runs. Following prior work, we report the micro-F1 for the NER
and clinical corpora, the macro-FA

1 (c.f., Section 2.1.3) for the SOFC corpus, and accuracy
for the POS corpora.

Table 5.3 shows the results of on the popular CONLL benchmark datasets for NER
in comparison to the state of the art. Our methods consistently improve upon the ex-
isting meta-embedding approaches and achieve state-of-the-art performance on 2 out of
4 languages and competitive results on the other, while maintaining a comparably low-
dimensional input representation. In total, our model creates a representation of 1,024
dimensions, while other state-of-the-art systems, e.g., Akbik et al. (2019) use up to 8,292
dimensions to represent input tokens. The comparison with XML-R 4 on NER shows that

3All experiments ran on a carbon-neutral GPU cluster.
4The XLM-R model was evaluated on the 2003 version of the German corpus, while Schweter and Akbik

(2020) and our models were evaluated on the revised 2006 version.
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Plank et al. (2016) Yasunaga et al. (2018) Heinzerling and Strube (2019) FAME

bg (Bulgarian) 97.97 98.53 98.7 99.53
cs (Czech) 98.24 98.81 98.9 99.33
da (Danish) 96.35 96.74 97.0 99.13
de (German) 93.38 94.35 94.0 95.95
en (English) 95.17 95.82 95.6 98.09
es (Spanish) 95.74 96.44 96.5 97.75
eu (Basque) 95.51 94.71 95.6 97.66
fa (Persian) 97.49 97.51 97.1 98.68
fi (Finnish) 95.85 95.40 94.6 98.67
fr (French) 96.11 96.63 96.2 97.19
he (Hebrew) 96.96 97.43 96.6 98.00
hi (Hindi) 97.10 97.21 97.0 98.35
hr (Croatian) 96.82 96.32 96.8 97.96
id (Indonesian) 93.41 94.03 93.4 94.24
it (Italian) 97.95 98.08 98.1 98.82
nl (Dutch) 93.30 93.09 93.8 94.74
no (Norwegian) 98.03 98.08 98.1 99.16
pl (Polish) 97.62 97.57 97.5 99.05
pt (Portuguese) 97.90 98.07 98.2 98.86
sl (Slovenian) 96.84 98.11 98.0 99.44
sv (Swedish) 96.69 96.70 97.3 99.17
Avg. 96.40 96.65 96.6 98.08

el (Greek) - 98.24 97.9 98.89
et (Estonian) - 91.32 92.8 97.07
ga (Irish) - 91.11 91.0 94.27
hu (Hungarian) - 94.02 94.0 97.72
ro (Romanian) - 91.46 89.7 96.64
ta (Tamil) - 83.16 88.7 91.10
Avg. - 91.55 92.4 95.95

Table 5.5: POS tagging results (accuracy). All models use the gold-standard word segmen-
tations. We use 27 corpora from the universal dependencies (1.2) and predict
the UPOS tag. As Yasunaga et al. (2018), we split into high-resource (top) and
low-resource languages (bottom).

our FAME method can also improve upon already powerful transformer representations.
In domain-specific concept extraction, we outperform related work by 1.5 F1-points on av-
erage. This shows that our approach works across languages and domains. As shown in
Table 5.4, our models consistently set the new state of the art for domain-specific concept
extraction tasks.

Those effects are also reflected in the POS tagging results, as shown in Table 5.5, even
though the differences are smaller for this task. We consistently set the new state of the
art for all 27 languages from the UD 1.2 corpus. In particular, we can observe remarkable
differences using our method for the low-resource languages.
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Model TREC-6 TREC-50 GARD

Xu et al. (2020) 96.2 92.0 84.9
Roberts et al. (2014) - - 80.4
Xia et al. (2018) 98.0 - -
FAME (our model) 98.2 93.0 87.90

(a) Question classification.

Model Dev Test

CAT 86.01±.22 85.43±.11
AVG 86.33±.33 85.57±.31
ATT 86.21±.22 85.64±.35
FAME 86.57±.12 85.89±.18

(b) Natural language inference.

Table 5.6: Results for the sentence classification tasks (accuracy), namely question classi-
fication (left) and NLI (right). For NLI, we compare against the models of Kiela
et al. (2018) using four embeddings. Statistical significant differences between
FAME and ATT are underlined.

5.6.2 Results for Sentence Classification

The previous experiments evaluated our feature-based adversarial meta-embeddings for
various information extraction tasks on the token level. In this section, we use our meta-
embeddings method in text classification models and show that this approach is also appli-
cable to sentence-level tasks.

Question Classification. Similar to sequence labeling, our FAME approach outperforms
the existing machine-learning models on all three tested sentence classification datasets, as
shown in Table 5.6a. This demonstrates that our approach is generally applicable and can
be used for different tasks beyond the token level.5

Natural Language Inference. To investigate our feature-based attention and adversarial
training and show that it can easily be implemented into existing models, we extend the
models of Kiela et al. (2018) for NLI with our FAME method.6

Table 5.6b provides the results in comparison to the baseline approaches. Our model
shows statistically significant differences to the existing meta-embeddings.7 Similar to
Kiela et al. (2018), we observe that the attention-based meta-embeddings (ATT) are not
always superior to the unweighted averaging (AVG). However, including our features and
the adversarial training lead to consistent improvements.

5Note that a rule-based system (Madabushi and Lee, 2016) achieves 97.2% accuracy on TREC-50. How-
ever, this requires high manual effort tailored towards this dataset and is not directly comparable to learning-
based systems.

6We use their code provided at https://github.com/facebookresearch/DME [last accessed
March 5, 2022.]. Note that our numbers slightly differ from the numbers reported by Kiela et al. (2018) as
they used six embeddings. However, the two MT-based embeddings (Hill et al., 2015) are not accessible any
longer, as stated in personal correspondence with the authors in 2020.

7The state-of-the-art model for SNLI with 91.9 test accuracy is based on fine-tuning BERT (Zhang et al.,
2020) but does not use combinations of different embeddings. Thus, we implemented our methods in the
model proposed by Kiela et al. (2018)

https://github.com/facebookresearch/DME
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NER Concept Extraction POS (subset)
Model en de es nl CLINen CLINes SOFCen et ga ta

FAME (w/ fine-tuning) 94.11 92.28 89.90 95.42 90.08 92.68 83.68 97.07 94.27 91.10

FAME (w/o fine-tuning) 93.43 91.96 88.86 93.28 89.23 91.97 81.85 96.03 91.47 89.58
– features 93.37 91.66 88.37 92.98 89.07 91.42 81.48 95.81 90.20 88.73
– adversarial (ATT) 93.22 91.52 88.16 92.46 88.87 91.33 81.31 95.19 87.79 87.93
– attention (AVG) 92.38 90.14 88.44 92.37 88.69 90.23 80.28 93.20 86.95 87.73
– sum, mapping (CAT) 91.00 90.54 85.40 88.51 87.97 90.66 80.08 91.63 86.32 84.51

Table 5.7: Ablation study results for sequence labeling. We underline our FAME models
without fine-tuning for which we found statistically significant differences to
the attention-based meta-embeddings (ATT).

5.7 Analysis

We finally analyze the different components of our proposed FAME model by investigating,
i.a., ablation studies, attention weights, and low-resource settings.

5.7.1 Ablation Study on Model Components

Table 5.7 provides an ablation study on the different components of our FAME model for
exemplary sequence-labeling tasks.

First, we ablate the fine-tuning of the embedding models as we found that this has a
large impact on the number of parameters of our models (538M vs. 4M) and, as a result, on
the training time (cf., Section 5.4.1). Our results show that fine-tuning does have a positive
impact on the performance of our models, but our approach still works very well with
frozen embeddings. In particular, our non-finetuned FAME model is competitive to a fine-
tuned XLM-R model (see Table 5.3) and outperforms it on 3 out of 4 languages for NER.
Second, we ablate our two newly introduced components (features and adversarial training)
and find that both of them have a positive impact on the performance of our models across
tasks, languages, and domains.

With successively removing components, we obtain models that actually correspond to
baseline meta-embeddings, as shown in the second column of the table. Our method with-
out features and adversarial training, for example, corresponds to the baseline attention-
based meta-embedding approach (ATT). We are further removing the attention function
yields averaging meta-embeddings (AVG). Finally, we also evaluate another baseline meta-
embedding alternative, namely concatenation (CAT). Note that concatenation leads to a
very high-dimensional input representation and, therefore, requires more parameters in the
next neural network layer, which can be inefficient in practice.

Statistical Significance. To show that FAME significantly improves upon the attention-
based meta-embeddings, we report statistical significance with paired permutation testing
with 220 permutations and a significance level of 0.05. between those two models (using our
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dimensions/ Same (300 dim.) Different (300 & 100 dim.)
granularities Word Subword Word Subword

ATT 89.27 88.00 88.60 88.16
+ FEAT 89.28 (+.01) 88.62 (+.62) 88.64 (+.04) 88.42 (+.26)
+ ADV 89.34 (+.07) 88.31 (+.31) 89.23 (+.63) 88.44 (+.28)

Table 5.8: Effect of our proposed methods on embeddings of different granularities (word
vs. subword) and dimensions (same vs. different dim.). ATT: attention-based
meta-embeddings, FEAT: feature-based attention function, ADV: adversarial
training of mapping. We add the differences between our methods and ATT.

Attention function F1 (∆)

no features 88.0
all features 88.62 (+.62)
– shape 88.65 (+.65)
– frequency 88.61 (+.61)
– length 88.45 (+.45)
– shape embedding 88.34 (+.34)

Table 5.9: Ablation study of the features as used in our FAME models. We test the exclu-
sion of single features from the attention function.

method without fine-tuning for a fair comparison). Table 5.7 shows that we find statistically
significant differences in six out of ten settings.

5.7.2 Influence of Embedding Granularities and Dimensions

Next, we perform an analysis to show the effects of our method for embeddings of different
dimensions and granularities and support our motivation that our contributions help in those
settings. As a testbed, we perform Spanish concept extraction and utilize the embeddings
published by Grave et al. (2018) and Gutiérrez-Fandiño et al. (2021) as they allow us to
isolate the desired effects nicely.

In particular, they published pairs of embeddings (all having 300 dimensions) that were
trained on the same corpora. The first embeddings are standard word embeddings, and the
second embeddings are subword embeddings with out-of-vocabulary functionality. As both
were trained on the same data, we can isolate the effect of embedding granularities in a first
experiment. In addition, Gui et al. (2017) published smaller versions with 100 dimensions
that were trained under the same conditions. We use those in a second experiment to
analyze the effects of combining embeddings of different dimensions.

The results are shown in Table 5.8. We find that adversarial training becomes particu-
larly important whenever differently-sized embeddings are combined, i.e., when the model
needs to learn mappings to larger dimensions.
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Figure 5.2: Performance for different training set sizes. The highlighted numbers display
the difference between our FAME model without fine-tuning and the attention-
based meta-embeddings (ATT). Further, we compare to the baseline methods
averaging (AVG) and concatenation (CAT) of embeddings.

Further, we see that the inclusion of our proposed features helps substantially in the
presence of subword embeddings. The reason might be that with sets of both word-based
and subword-based embeddings, it gets harder to decide which embeddings are useful (e.g.,
word-based embeddings for high-frequency words) and should, thus, get higher attention
weights. Our features have been designed in a way to explicitly guide the attention function
in those cases, e.g., by indicating the frequency of a word. In addition, Table 5.9 shows
an ablation study on our different features for this testbed setting. We see that shape and
frequency information are the most important features, as excluding either of them reduces
performance the most by more than 0.5 F1 points.

5.7.3 Application in Low-Resource Settings

As we observed large positive effects of our method for low-resource languages (Table
5.5), we now perform a study to investigate this topic further. We simulate low-resource
scenarios by artificially limiting the training data of the CONLL NER corpora to different
percentages of all instances. The results are visualized in Figure 5.2. We find that the
differences between the standard attention-based meta-embeddings (ATT) and our FAME
method get larger with fewer training samples, with up to 6.7 F1 points for English when
5% of the training data is used, which corresponds to roughly 600 labeled sentences. This
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Input Dim. NewsEn F1

Single embeddings
Character 50 77.02
BPEmb 100 86.37
fastText 300 90.45
XLM-R 1024 89.23

All embeddings
CAT 1474 91.00
FAME 1024 93.43

Fine-tuned transformer
XLM-R 1024 92.12
CAT 1474 92.75
FAME 1024 94.11

Table 5.10: English NER results for different embeddings and their combinations in our
attention-based meta-embeddings. We see, that the combination of multiple
embeddings outperforms all models leveraging only single embeddings.

behavior holds for all four languages and highlights the advantages of our method when
only limited training data is available. An interesting future research direction is the explo-
ration of FAME for real-world low-resource domains and languages.

5.7.4 Analysis of Embedding Methods

We studied the performance of each embedding method in isolation. The results are shown
in Table 5.10 and indicate that fastText and XLM-R embeddings are the best options in
this setting. This observation is also reflected in the attention weights assigned by the
FAME model (see Figure 5.4). In general, fastText and XLM-R embeddings get assigned
the highest weights. This highlights that the attention-based meta-embeddings are able to
perform a suitable embedding selection and reduce the need for manual feature selection.

The combination of all embeddings is better than every single embedding, which shows
the importance of combining multiple embeddings. In particular, the FAME model outper-
forms concatenation by a large margin regardless whether the transformer is fine-tuned.

5.7.5 Analysis of Attention Weights

Figure 5.3 provides the change of attention weights from the average for the domain-
specific embeddings for a sentence from the clinical domain. It shows that the attention
weights for the clinical embeddings are higher for in-domain words, such as “mg”, “PRN”
(which stands for “pro re nata”) or “PO” (which refers to “per os”) and lower for general-
domain words, such as “every”, “6” or “hours”. Thus, FAME is able to recognize the value
of domain-specific embeddings in non-standard domains and assigns attention weights ac-
cordingly.
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Figure 5.3: Changes in influence of domain-specific embeddings on meta-embeddings.
The model prefers domain-specific embeddings for in-domain words.
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Figure 5.4: Attention weights assigned by the FAME model for the CLINen corpus grouped
by the features word frequency (above) and length (below).

Figure 5.4 shows how attention weights change for frequency and length features as
introduced in Section 5.3.2. In particular, it demonstrates that subword-based embeddings
(BPEmb and XLM-R) get more important for long and infrequent words, which are usually
not well covered in the fixed vocabulary of standard word embeddings.

5.7.6 Analysis of Adversarial Training

We show that adversarial training is also beneficial and boosts performance in a mono-
lingual case when combining multiple embeddings. The embeddings were trained inde-
pendently from each other. Thus, the individual embedding spaces are clearly separated.
Adversarial training shifts all embeddings closer to a common space by scaling, rotating
and moving the individual embedding spaces as shown in Figure 5.5, which is important if
the average is taken for the attention-based meta-embeddings approach.
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Figure 5.5: The meta-embeddings space before (left) and after NER and adversarial train-
ing (right). The embedding mappings are learned with gradient reversal to
move the embedding spaces closer together.

Clinical Financial Literature Materials CySec
(cross-domain)

Clinical BERT 86.8 79.1 60.4 74.8 51.0
Financial BERT 66.1 83.6 37.5 65.8 31.9
Literature BERT 83.8 81.3 72.4 77.1 56.7
Materials BERT 86.2 80.4 66.8 79.6 56.3

Concatenation (All) 87.1 80.9 70.7 79.1 55.5
Meta-embed. (All) 88.5 84.0 73.3 81.2 57.6

Table 5.11: Results for cross-domain concept extraction with meta-embeddings.

5.7.7 Study: Domain-Specific Transformers

As shown in the previous sections, our meta-embeddings can be used to combine domain-
specific and general-domain input representations. In this section, we combine transformer
embeddings from various domains in a single model. Namely, we perform experiments on
clinical (Uzuner et al., 2011), financial (Alvarado et al., 2015), literature (Bamman et al.,
2019) and materials-science corpora (Friedrich et al., 2020), for which domain-specific
BERT models exists. We conduct experiments for each BERT model in isolation and their
combinations through concatenation and attention-based meta-embeddings. For this, we
train standard sequence-labeling models on each of these corpora. In addition, we perform
experiments on a cybersecurity corpus (Phandi et al., 2018) without domain-specific BERT
models in a cross-domain setting.

The results are given in Table 5.11. Naturally, the domain-specific models perform best
in their target domain. In particular, the financial BERT model overfits its target domain,
where it achieves an outstanding performance but performs worse in all other domains.
While the concatenation is not always better than the domain-specific model, the attention-
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Original Sentence 6. Oxycodone-Acetaminophen 5-325 mg Tablets every 4-6 hours.

Spacy 6 . Oxycodone-Acetaminophen 5-325 mg tablets every 4-6 hours .
Native mBPE 0. oxyc od one - acet amin ophen 0-000 mg tablets every 0-0 hours .
Native XLM-R 6. O xy co done - Ac eta mino phen 5 -3 25 mg tablets every

4-6 hours .

Subword Union 6. O x y c o d one - Ac et a min o phen 5 -3 25 mg tablets every
4-6 hours .

Subword Boundaries 6. Oxycodone - Acetaminophen 5-325 mg tablets every 4-6 hours .

Table 5.12: Examples of different tokenization methods our for meta-embeddings models.

based meta-embeddings consistently outperform the concatenation and all single models
for all domains, as they are able to dynamically weight embeddings according to their im-
portance for the target domain. This helps to leverage the overfitting models like Financial
BERT and more general models. Similar behavior can be observed for the cross-domain ex-
periments for cybersecurity. Here, the meta-embeddings are able to utilize all embeddings
and reduce the need for manual embedding selection.

5.7.8 Study: Meta-Embeddings on Subword-Level

The meta-embeddings presented earlier in this chapter depend on external tokenization
and are applied on the word level. However, as shown in Chapter 4, sequence-labeling
models based on transformers can be improved when operated on the native subword level.
Unfortunately, the subword tokenization usually differs for each embedding used in the
meta-embeddings layer, and the XLM-R model cannot process the subword tokenization
of the byte-pair-encoding embeddings without major adaptations. Thus, the embeddings
for subword-based transformers like XLM-R or CLIN-X that come with a pre-trained sub-
word tokenizer are computed over words. Then, the subword vectors are aggregated, or
only a single subword is taken for the word-level embedding.

Tokenization Methods. Therefore, we investigate the question of how two subword-
based embeddings, namely XLM-R (250.000 tokens vocabulary) and multilingual byte-
pair encoding embeddings (mBPE, 1 million tokens vocabulary), can be used in meta-
embeddings on subword level. A model based on XLM-R and mBPE can, i.a., use the
following tokenization schemes:

• Spacy: Tokenize the sentence using Spacy (Honnibal et al., 2017). The embedding
vectors are generated by averaging all subword embedding vectors for each word.

• Native mBPE: Tokenize the sentence according to the multilingual BPE model. This
implementation lowercases all characters and replaces numbers with 0.

• Native XLM-R: Tokenize the sentence using XLM-R’s pre-trained tokenizer.
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Figure 5.6: Visualization of overlapping subwords contained in XLM-R and mBPE.

Embeddings Tokenziation F1

XLM-R Spacy 85.60 ± 0.231
mBPE Spacy 83.10 ± 0.344
XLM-R + mBPE Spacy 87.72 ± 0.290

XLM-R Native XLM-R 87.87 ± 0.592
XLM-R + mBPE Subword Union 85.27 ± 0.335
XLM-R + mBPE Subword Boundaries 86.40 ± 0.310

Table 5.13: Results for applying meta-embeddings on subword level using different tok-
enization strategies.

• Subword Union: We can restrict the vocabularies of mBPE and XLM-R to their
union, i.e., we only use subwords that can be found in both vocabularies.

• Subword Boundaries: Instead of relying on external tokenization methods like
Spacy, we can tokenize the sentence based on the common word boundaries gen-
erated by both models. For example, both models agree that the O of Oxycodone
starts a new word and that e ends this word. As there is no further overlap inside the
subwords, we use Oxycodone as the resulting token and generate the embedding vec-
tors by averaging the subwords. Note, that for this example, the tokenization is fairly
similar to Spacy. However, it allows for more-finegrained subwords when these can
be found inside both vocabularies. For example, assuming Aceta and minophen are
covered by the first embedding and Aceta, mino, phen are covered by the second
embedding, this method would generate the two subwords Aceta and minophen.

Word segmentations of all methods for an example sentence are given in Table 5.12.

Experiments. Then, we train an XLM-R model for concept extraction on the PHARMA-
CONER concept extraction tasks (Gonzalez-Agirre et al., 2019) on native subword level
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and compare it to a model leveraging meta-embeddings on word level with external tok-
enization or other methods. We train five models with different random seeds per setting.
The results are displayed in Table 5.13.8 We see that there are almost no differences be-
tween the native subword level and meta-embeddings on word level. Both methods improve
over transformers on word level, and we can conclude that operating transformers on sub-
word level, as well as adding additional embeddings, improve performance. With this, the
question remains of how we can utilize both improvements jointly.

The subword union performs comparable to a single XLM-R embedding but worse than
the previous methods, as the union is very restrictive and often leads to a fallback to single
characters. This results in a loss of expressiveness as nearly no advantages of subwords
are used in this almost-character-based model. As shown in Figure 5.6, the union of both
embeddings results in fewer and smaller subwords compared to each individual vocabulary.

Our second method, the detection of overlapping subword boundaries, performs better
than the union but does not match the performance of the XLM-R on native subword level
as well as the meta-embeddings on word level. Nonetheless, this is the first step of applying
meta-embeddings on the subword level, and it removes the need for external tokenization.
An interesting future work direction might concern the robust training of subword embed-
dings, as subword-based methods are not robust w.r.t. to compositionality (Aguilar et al.,
2021), i.e., a subword embedding cannot be easily replaced by two or more fine-grained
subwords contained in it which limits our approach.

5.8 Conclusions

In this chapter, we proposed feature-based adversarial meta-embeddings (FAME) to com-
bine several embeddings effectively. The features are designed to guide the attention layer
when computing the attention weights, in particular for embeddings representing different
input granularities, such as subwords or words. Adversarial training helps to learn better
mappings when embeddings of different dimensions are combined. We demonstrate the
effectiveness of our approach on a variety of sentence classification and sequence-tagging
tasks across languages and domains and set the new state of the art for POS tagging in
27 languages, for domain-specific concept extraction on three datasets, for NER in two
languages, as well as on two question classification datasets. Our analysis shows that our
approach is particularly successful in low-resource settings. Moreover, meta-embeddings
can be used to efficiently combine multiple domain-specific transformers in cross-domain
settings. A future direction is the evaluation of our method on sequence-to-sequence tasks
or document representations.

8Note, that in contrast to Table 5.4, we do not finetune the transformer, nor train on the validation set.
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Chapter 6

Predicting Auxiliary Embeddings

This chapter explores meta-embeddings for combining and including embeddings from
other languages, as recent work demonstrated that not only different embeddings from dif-
ferent training methods (see Chapter 5), but also embeddings from related languages could
improve the performance of sequence tagging models even for monolingual applications.
Specifically, in this chapter, we investigate whether the best auxiliary language can be pre-
dicted based on language distances and show that the most related language is not always
the best auxiliary language. Further, we show that attention-based meta-embeddings as
introduced in Chapter 5 can effectively combine pre-trained embeddings from different
languages for sequence tagging. This chapter is based on our publication on auxiliary em-
beddings (Lange et al., 2020a).

6.1 Introduction

State-of-the-art methods for sequence-tagging tasks, such as named entity recognition and
part-of-speech tagging, exploit embeddings as input representation. Recent work suggested
including embeddings trained on related languages as auxiliary embeddings to improve
model performance: Catalan and Portuguese embeddings, for instance, help NER mod-
els on Spanish-English code-switching data (Winata et al., 2019a). This chapter analyzes
whether auxiliary embeddings should be chosen from related languages or if embeddings
from more distant languages could also help.

For this, we revisit current language distance measures (Gamallo et al., 2017) and adapt
them to the embeddings and training data used in our experiments. We investigate whether
we can predict the best auxiliary language based on those language distance measures. Our
results suggest that no strong correlation exists between language distance and performance
and that even less related languages can be a good choice as auxiliary languages.

In our experiments, we explore both available monolingual and multilingual pre-trained
byte-pair encoding embeddings (Heinzerling and Strube, 2018) and Flair embeddings em-
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(a) BiLSTM-CRF. (b) Concatenation. (c) Meta Embedding.

Figure 6.1: Overview of our model architecture (left). The embedding combination e can
be either computed using the concatenation eCONCAT (middle) or the meta
embedding method eATT (right).

beddings (Akbik et al., 2018). For combining monolingual subword embeddings from dif-
ferent languages, we investigate two different methods: the concatenation of embeddings
and the use of attention-based meta-embeddings (Kiela et al., 2018; Winata et al., 2019a).

We perform experiments for NER and POS tagging in five languages and show that
meta-embeddings are a promising alternative to the concatenation of additional auxiliary
embeddings as they learn to decide on the auxiliary languages in an unsupervised way.
Moreover, the inclusion of embeddings from many languages is often beneficial, and meta-
embeddings can be effectively used to leverage a larger number of embeddings and achieve
new state-of-the-art performance on all five POS tagging tasks. Finally, we propose guide-
lines to decide which auxiliary languages one should use in which setting.

6.2 Related Work

This section will discuss the related work on auxiliary languages for NLP and language
distance measures to select suitable languages. Related work and more details on the com-
bination of different embeddings via meta-embeddings are given in Chapter 5. In this
chapter, we compare the inclusion of auxiliary languages via concatenation to the dynamic
combination with attention in meta-embeddings.

Auxiliary Languages. Winata et al. (2019a) proposed to include additional embeddings
from closely-related languages to improve NER performance in code-switching settings,
e.g., it was shown that Catalan and Portuguese embeddings help for Spanish-English NER.
In a later work, it was shown that also more distant languages could be beneficial (Winata
et al., 2019b), but only tests in the special setting of code-switching NER were performed.
So far, no connection between the relatedness of languages and the performance increase
was analyzed. In contrast, our work shows that the inclusion of auxiliary languages in-
creases performance in monolingual settings. We analyze whether language distance mea-
sures can be used to select the best auxiliary language in advance.
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Language Distance Measures. Gamallo et al. (2017) proposed to measure distances be-
tween languages by using the perplexity of language models trained on one language and
applied to another language. Campos et al. (2020) used a similar method to retrace changes
in multilingual diachronic corpora over time. Another popular measure of similarity is
based on vocabulary overlap, assuming that similar languages share a large portion of their
vocabulary (Brown et al., 2008).

6.3 Model Architectures

We follow the model architectures from Chapters 3 and 5 and use BiLSTM-CRF models for
sequence tagging. The main differences relate to the input layer, as we include embeddings
from different languages in these experiments.

Embeddings Each input word is represented with a pre-trained word vector. We experi-
ment with byte-pair encoding embeddings (Heinzerling and Strube, 2018) with 300 dimen-
sions and a vocabulary size of 200k tokens for all languages. Second, we experiment with
Flair embeddings. For this, we use the embeddings provided by the Flair framework (Akbik
et al., 2018) with 2048 dimensions for each language model resulting in a total embedding
size of 4096 dimensions. We use these embedding methods, as for both of them pre-trained
embeddings are publicly available for all the languages we consider.1

Combination of Embeddings As we experiment with multiple word embeddings, we
compare two combination methods: a simple concatenation eCONCAT and attention-based
meta-embeddings eATT as shown in Figure 6.1b and 6.1c. We refer to Section 3.3.1
for a detailed description of the concatenation and to Section 5.3 for the meta-embedding
method.

Hyperparameters and Training The bidirectional LSTM has a hidden size of 256 units.
For training, we use stochastic gradient descent with a learning rate of 0.1 and a batch
size of 64 sentences. The learning rate is halved after three consecutive epochs without
improvement on the development set. We apply dropout with a probability of 0.1 after the
input layer.

6.4 Experimental Setup

We perform NER and POS experiments in five languages: German (de), English (en), Span-
ish (es), Finnish (fi), and Dutch (nl). Note that we assume at least a character overlap to use
auxiliary embeddings from another language. Thus, languages with a different character

1https://github.com/flairNLP/flair and https://nlp.h-its.org/bpemb/ [last
accessed March 5, 2022.]

https://github.com/flairNLP/flair
https://nlp.h-its.org/bpemb/
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set, e.g., Asian languages, cannot be used in this setting. Future work could investigate the
inclusion of languages with different character sets, e.g., by using bilingual dictionaries or
machine translation.

For NER, we use the CONLL 2002/03 datasets (Tjong Kim Sang, 2002; Sang and Meul-
der, 2003) and the FiNER corpus (Ruokolainen et al., 2020). For POS tagging, we experi-
ment with the universal dependencies treebanks.2 For each language, we report results for
the following methods:

Monolingual (Mono). Only embeddings from the source language were taken for the
experiments. This is the baseline setting.

Multilingual (Multi) We also compare our results to multilingual embeddings which
have been successfully used in monolingual settings as well (Heinzerling and Strube,
2019). To ensure comparability, we use the multilingual versions of BPEmb and Flair,
which were trained simultaneously on 275 and 300 languages, respectively.

Mono + X. A second set of embeddings from a different language X is concatenated with
the original monolingual embeddings. While for this, typically embeddings from a related
language are chosen, we report results for all language combinations and investigate in
particular whether relatedness is necessary for improvement.

Mono + All & Meta-Embeddings. We also experiment with the combination of all em-
beddings from all languages from our experiments. In this setting, we use all six embed-
dings (five monolingual embeddings and the multilingual embeddings) and combine them
either using concatenation (Mono + All) or meta-embeddings.

We have chosen these settings that are mainly based on monolingual embeddings, as
the current state-of-the-art for named entity recognition is based on monolingual Flair em-
beddings (Akbik et al., 2018). In addition, multilingual embeddings, such as multilingual
BERT (Devlin et al., 2019) tend to perform worse than their monolingual counterparts3

in monolingual experiments. For completeness, we include experiments with multilingual
embeddings, as mentioned before.

6.5 Results and Analysis

In this section, we will report our sequence-tagging results and analyze how language sim-
ilarity measures can be used to select the best auxiliary languages.

2We predict the UPOS tag from the following UD v2.0 treebanks: de_gsd, en_ewt, es_gsd, fi_tdt,
nl_alpino.

3https://github.com/google-research/bert/blob/master/multilingual.md

[last accessed March 5, 2022.]

https://github.com/google-research/bert/blob/master/multilingual.md
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NER de en es fi nl

Monolingual 79.78 ± .49 86.78 ± .15 78.99 ± .91 78.00 ± .87 78.91 ± .42
Multilingual 75.37 ± .87 86.52 ± .34 78.33 ± .47 77.41 ± .86 77.49 ± .45

Mono + Multi 81.13 ± .46 88.01 ± .27 80.32 ± .50 81.44 ± .36 81.15 ± .43

Mono + de - 87.46 ± .19 79.79 ± .74 80.31 ± .21 81.31 ± .15
Mono + en 80.92 ± .29 - 80.48 ± .56 81.22 ± .26 80.84 ± .30
Mono + es 80.29 ± .20 87.37 ± .30 - 80.80 ± .83 80.62 ± .39
Mono + fi 81.10 ± .36 87.94 ± .17 79.91 ± .82 - 80.65 ± .48
Mono + nl 81.25 ± .14 87.38 ± .22 80.93 ± .25 80.67 ± .49 -

Mono + All 81.52 ± .33 87.70 ± .06 80.63 ± .34 82.07 ± .33 † 81.73 ± .26 †

Meta-Embeddings 81.75 ± .50 † 87.87 ± .23 80.84 ± .52 83.12 ± .12 † 82.13 ± .50 †

POS de en es fi nl

Monolingual 93.02 ± .11 94.17 ± .09 96.23 ± .04 92.84 ± .13 94.01 ± .21
Multilingual 92.19 ± .20 94.10 ± .06 96.01 ± .07 91.95 ± .11 93.35 ± .22

Mono + Multi 93.40 ± .08 95.11 ± .07 96.54 ± .03 94.70 ± .12 94.94 ± .13

Mono + de - 95.11 ± .09 96.43 ± .13 94.43 ± .18 94.70 ± .09
Mono + en 93.26 ± .11 - 96.52 ± .06 94.45 ± .14 94.80 ± .12
Mono + es 93.31 ± .13 95.03 ± .09 - 94.48 ± .14 94.79 ± .17
Mono + fi 93.41 ± .12 94.97 ± .04 96.34 ± .08 - 94.92 ± .13
Mono + nl 93.52 ± .10 94.99 ± .08 96.41 ± .07 94.42 ± .08 -

Mono + All 93.60 ± .14 † 95.40 ± .04 † 96.46 ± .09 95.61 ± .08 † 95.31 ± .08
Meta-Embeddings 93.51 ± .08 95.36 ± .10 † 96.48 ± .06 95.61 ± .11 † 95.34 ± .14 †

Table 6.1: Results of NER (F1, above) and POS (Accuracy, below) experiments with BPE
embeddings. †: statistically significant to the best Mono + X model; N : closest
auxiliary language (dMV ); N : best auxiliary language (performance)

6.5.1 Results for Sequence Labeling

Following Reimers and Gurevych (2017), we report all experimental results as the mean of
five runs and their standard deviation in Table 6.1 for experiments with byte-pair encoding
embeddings. The results with Flair embeddings can be found in Table 6.2 In contrast to
the BPE experiments, we do not include multilingual embeddings in the Mono + All and
meta-embedding versions of Flair. The reason is prior experiments in which multilingual
embeddings led to reduced performance. This is also reflected in the poor performance
of the multilingual Flair embeddings alone. It seems that the multilingual BPE embed-
dings are more effective in downstream tasks than the multilingual Flair embeddings. We
performed statistical significance testing to check if the concatenation (Mono + All) and
meta-embeddings models are better than the best Mono + X model. We used paired per-
mutation testing with 220 permutations and a significance level of 0.05 and performed the
Fischer correction following Dror et al. (2017).4

4We take the model with median performance on the development set for significance testing.
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NER de en es fi nl

Monolingual 82.66 ± .11 89.98 ± .11 85.08 ± .68 83.38 ± .31 85.68 ± .27
Multilingual 66.21 ± .79 82.87 ± .24 77.87 ± .93 73.95 ± .74 77.44 ± .52

Mono + Multi 82.95 ± .21 90.04 ± .11 84.70 ± .50 83.46 ± .37 86.04 ± .28

Mono + de - 90.24 ± .19 85.16 ± .23 84.23 ± .22 85.82 ± .22
Mono + en 83.27 ± .36 - 85.53 ± .20 84.10 ± .26 86.73 ± .09
Mono + es 82.85 ± .34 90.14 ± .13 - 83.88 ± .31 86.16 ± .09
Mono + fi 83.10 ± .45 90.14 ± .09 85.06 ± .64 - 86.14 ± .31
Mono + nl 82.79 ± .24 90.18 ± .15 85.77 ± .27 83.65 ± .31 -

Mono + All 83.43 ± .29 90.29 ± .18 85.48 ± .78 84.32 ± .32 86.43 ± .33
Meta-Embeddings 83.90 ± .14 † 90.70 ± .29 † 86.18 ± .35 85.09 ± .30 † 86.58 ± .58

POS de en es fi nl

Monolingual 94.72 ± .07 96.28 ± .05 97.08 ± .03 97.52 ± .03 96.48 ± .11
Multilingual 92.82 ± .20 93.69 ± .07 96.06 ± .13 92.98 ± .10 94.85 ± .11

Mono + Multi 94.72 ± .13 96.29 ± .04 97.04 ± .05 97.52 ± .05 96.77 ± .02

Mono + de - 96.41 ± .07 97.11 ± .08 97.64 ± .04 96.62 ± .06
Mono + en 94.71 ± .04 - 97.13 ± .12 97.52 ± .06 96.49 ± .09
Mono + es 94.67 ± .06 96.36 ± .03 - 97.48 ± .03 96.61 ± .13
Mono + fi 94.65 ± .05 96.38 ± .03 97.14 ± .05 - 96.68 ± .05
Mono + nl 94.64 ± .03 96.31 ± .07 97.06 ± .04 97.51 ± .04 -

Mono + All 94.64 ± .10 96.48 ± .05 97.11 ± .04 97.52 ± .06 96.54 ± .20
Meta-Embeddings 94.78 ± .09 96.49 ± .03 † 97.18 ± .07 97.82 ± .03 † 96.83 ± .13 †

Table 6.2: Results of NER (F1, above) and POS (Accuracy, below) experiments with Flair
embeddings. It uses the same markup as Table 6.1.

For meta-embeddings, we found statistically significant differences in 12 out of 20 set-
tings (6 with BPEmb, 6 with Flair) against the best monolingual + X model, while we found
statistically significant differences for Mono + All in only 7 out of 20 cases. This suggests
that meta-embeddings are superior to monolingual models with one auxiliary language as
well as to the concatenation of all embeddings. Further, we found that the combination of
monolingual and multilingual byte-pair encoding embeddings is always superior to either
monolingual or multilingual embeddings alone for both tasks. Even though the multilingual
embeddings have seen many languages during pre-training, they can still benefit from the
high performance of monolingual embeddings and vice versa. As the meta-embeddings
assign attention weights for each embedding, we can inspect the importance the models
give to the different embeddings. An analysis for an example sentence can be found in
Section 6.5.3.
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Rank
de en es fi nl

dP d∗P dV d∗V dP d∗P dV d∗V dP d∗P dV d∗V dP d∗P dV d∗V dP d∗P dV d∗V

1 nl nl en nl nl nl de fi en nl en en de nl en en de de en en
2 en en nl en es fi nl nl nl en de nl nl de de nl en en de de
3 fi fi es∗ fi de de fi es fi de fi fi en en es∗ de fi fi es∗ es
4 es es fi∗ es fi es es de de fi nl de es es nl∗ es es es fi∗ fi

Table 6.3: Overview of language rankings according to the distance measures used in our
experiments. Languages marked with ∗ are ranked the same.

Rank
dMV

de en es fi nl

1 nl nl en en de∗

2 en fi nl de en∗

3 fi de fi nl fi
4 es es es es es

Table 6.4: Language rankings according to the majority voting distance dMV that combines
multiple language similarity measures from Table 6.3.

6.5.2 Analysis of Language Distances

To evaluate how useful language distances are for predicting the best auxiliary language,
we compare rankings based on language distances and the observed performance rankings
based on Table 6.1. For this, we take the language distance from Gamallo et al. (2017),
which is based on language modeling perplexity PP of unigram language models LM ap-
plied to texts of foreign languages CH. Lower language model perplexities on a foreign
dataset indicate higher language relatedness.

dP (L1, L2) = PP(CHL2,LML1) (6.1)

We also test language similarities based on vocabulary overlap with W (L1|L2) being
the number of words of L1 which are shared with L2 and N(L1) the number of words of
L1 shared with other languages.

dV (L1, L2) =
W (L1|L2) +W (L2|L1)
2 ·min(N(L1), N(L2))

(6.2)

For our experiments, we further adapt dP to use the perplexity of the Flair forward
language models on the test data provided by Gamallo et al. (2017) and call it d∗P . Similarly,
we adapt d∗V to compute the overlap of words in our training data. Note that both variants,
d∗P and d∗V , are based on properties from either our model or training data and are, therefore,
specific to our setting. Finally, we create a ranking dMV which combines the rankings from
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Figure 6.2: Spearman’s rank correlation between language distance and model perfor-
mance rankings for NER and POS tasks for different language distances.

dP , d∗P , dV , d∗V with majority voting. The ranking of dMV is provided in Table 6.4, the
rankings of the individual distance measures are given in Table 6.3.

To analyze the correlation between language distance measures and the performance of
our model, we compute Spearman’s rank correlation coefficient between the real rankings
based on performance and predicted rankings from our language distances. The results are
shown in Figure 6.2. We conclude that predicting the auxiliary language ranking is a hard
task and see that the most related language is not always the best auxiliary language in
practice (cf., Table 6.1). This holds in particular for POS tagging, where the performance
differences of models are quite small.

In general, d∗P shows a higher correlation with model performance than dP and dV , in-
dicating that not only word overlap plays a role but also context information. The majority
voting dMV achieves the highest correlation and often predicts the best auxiliary language
for NER models using byte-pair encoding embeddings. However, the actual ranking of
all languages does not match the performance ranking, which results in a relatively low
correlation with only a little above 0.5.

6.5.3 Analysis of Attention Weights

As the meta-embeddings assign attention weights for each embedding, we can inspect the
importance the models give to the different embeddings. Figure 6.3 shows the assigned
weights for an English sentence. In general, the model assigns the most weight to the
English embeddings. However, we observe an increased weight for German and the mul-
tilingual embedding for the German word Bayerische. Even though Vereinsbank is also
a German word, the model focuses more on English for this word, probably because the
subword bank has the same meaning in English.
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Figure 6.3: Learned attention weights of the meta-embeddings model with byte-pair en-
coding embeddings for English NER. "Other" refers to the average weights of
Spanish, Finish and Dutch embeddings which are less relevant for this exam-
ple. Darker colors indicate higher relative weights.

6.5.4 Study: Increased Number of Parameters

To investigate whether the performance increase comes from the increased number of pa-
rameters rather than the inclusion of more embeddings, we also investigated including the
same embedding type twice (Mono + Mono). However, we found that this does not help:
The performance is comparable to the monolingual baseline. Thus, the performance in-
crease for Mono + X actually comes from additional information provided by the embed-
dings of the auxiliary language.

6.5.5 Practical Guide

Are enough resources from
multiple languages available?

Train monolingual embs.

for multiple languages 

and use combination 

w/ meta-embeddings

Are well-trained
multilingual embeddings

available?

Use multilingual
embedding as auxiliary

embeddings

Use distance metric

dddd to determine 


best auxiliary language

 No  Yes 

 Yes   No 

Figure 6.4: Proposal for auxiliary embedding selection.
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Finally, we propose a small guide in Figure 6.4 to decide which auxiliary languages
one can use to improve performance over monolingual embeddings. Depending on the
available amount of data, it is recommended to train multiple monolingual embeddings
and combine them using meta-embeddings, which was observed to be the best method
in our experiments. If not enough data is available to train monolingual embeddings, the
best solution would be the inclusion of multilingual embeddings, assuming the existence
of high-quality embeddings, such as multilingual byte-pair encoding embeddings. If none
of the above applies, language distance measures, in particular the combination of multiple
distances, can help to identify the most promising auxiliary embeddings. Despite not al-
ways predicting the best model, the predicted auxiliary language often led to improvements
over the monolingual baseline in our experiments.

6.6 Conclusions

In this chapter, we investigated the benefits of auxiliary languages for sequence tagging. We
showed that it is hard to predict the best auxiliary language based on language distances.
Instead, we showed that meta-embeddings could leverage multiple embeddings effectively
for those tasks without the need for manual embedding selection. Finally, we proposed a
guide on how to decide which method of including auxiliary languages one should use.



Chapter 7

Predicting Sets of Transfer Sources

Deep neural networks and large language models are known for requiring large amounts
of training data. Thus, there is a growing body of work to improve performance in low-
resource settings, for example, by transferring knowledge via embeddings from different
languages, as shown in the last chapter. This chapter focuses on the transfer of neural
models across low-resource tasks and non-standard domains. We introduce new methods to
compute similarities between different datasets and predictors to select the most promising
transfer sources to select suitable transfer sources in the clinical domain.

In low-resource settings, transfer learning methods, such as our proposed model trans-
fer which will be introduced in this chapter, can help to overcome a lack of labeled data
for many tasks and domains. However, predicting useful transfer sources is a challeng-
ing problem, as even the most similar sources might lead to unexpected negative transfer
results. Thus, ranking methods based on task and text similarity — as suggested in prior
work — may not be sufficient to identify promising sources. We propose a new approach
to automatically determine which and how many sources should be exploited to tackle this
problem. For this, we study the effects of model transfer on sequence labeling across var-
ious domains and tasks and show that our methods based on model similarity and support
vector machines are able to predict promising sources, resulting in performance increases
of up to 24 F1 points. This chapter is based on our publication on transfer source selec-
tion (Lange et al., 2021c).

7.1 Introduction

Only little labeled data is available for many natural language processing applications in
non-standard domains. This even holds for high-resource languages like English (Klie
et al., 2020). The most popular method to overcome this lack of supervision is transfer
learning from high-resource tasks or domains. This includes the usage of resources from
similar domains (Ruder and Plank, 2017), domain-specific pretraining on unlabeled text
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Figure 7.1: Observed transfer gains by transferring models from a source corpus to SMS
texts. The domains are sorted by their vocabulary overlap to the target. Positive
transfer can be expected for unseen domains with an overlap of at least 30 %.

(Gururangan et al., 2020), and the transfer of trained models to a new domain (Bingel and
Søgaard, 2017). While having the choice among various transfer sources can be advan-
tageous, it becomes more challenging to identify the most valuable ones as many sources
might lead to negative transfer results, i.e., actually reduce performance (Pruksachatkun
et al., 2020).

Current methods to select transfer sources are based on text or task similarity measures
(Dai et al., 2020; Schröder and Biemann, 2020). The underlying assumption is that sim-
ilar texts and tasks can support each other. Existing work predicted the best sources for
language model pretraining (Dai et al., 2020), multitask-training (Schröder and Biemann,
2020) or cross-task model transfer (Vu et al., 2020) by analyzing text and task similarity
measures or training data (Ruder and Plank, 2017). An example is depicted in Figure 7.1
which shows the correlation of transfer gain and corpus similarity based on vocabulary
overlap for transfers from different sources to a fixed target corpus. However, current meth-
ods typically consider the text and task similarity in isolation, which limits their application
in transfer settings where both the task and the text domain change.

Thus, as a first major contribution, this chapter proposes a new model similarity mea-
sure that represents text and task similarity jointly. By learning a mapping between two
neural models, it captures the similarity between domain-specific models across tasks. We
perform experiments for different transfer settings, namely zero-shot model transfer, super-
vised domain adaptation, and cross-task transfer across a large set of domains and tasks.
Our newly proposed similarity measure successfully predicts the best transfer sources and
outperforms existing text and task similarity measures.

As a second major contribution, we introduce a new method to automatically determine
which and how many sources should be used in the transfer process, as the transfer can
benefit from multiple sources. Our selection method overcomes the limitations of current
transfer methods, which solely predict single sources based on rankings. We show the
benefits of transfer from sets of sources and demonstrate that support vector machines are
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able to predict the best sources across domains and tasks. This improves performance with
absolute gains of up to 24 F1 points and effectively prevents negative transfer.

7.2 Related Work

Domain adaptation and transfer learning are typically performed by transferring informa-
tion and knowledge from a high-resource to a low-resource domain or task which is lack-
ing labeled data (Daumé III, 2007; Ruder, 2019b). Recent approaches can be divided into
two groups: (i) model transfer (Ruder and Plank, 2017), by reusing trained task-specific
weights (Vu et al., 2020) or by first adapting models on the target domain before train-
ing the downstream task (Gururangan et al., 2020; Rietzler et al., 2020) and (ii) multi-task
training (Collobert and Weston, 2008) where multiple tasks are trained jointly by learning
shared representations (Peng and Dredze, 2017; Meftah et al., 2020). We follow the first ap-
proach in this chapter by training on related domains and tasks and transferring the model
to the target domain. This is also called sequential multi-task training (see Section 2.4.2).

For transfer learning, the selection of sources is utterly important to exploit the potential
of transfer learning. With the ever-growing body of possible transfer sources, selecting the
wrong source can lead to severe negative transfer (Pruksachatkun et al., 2020) and, thus,
source selection has to be performed carefully. Text and task similarity measures (Ruder
and Plank, 2017; Bingel and Søgaard, 2017) are used to select the best sources for cross-
task transfer (Jiang et al., 2020), multi-task transfer (Schröder and Biemann, 2020), cross-
lingual transfer (Chen et al., 2019) and language modeling (Dai et al., 2020). Alternatively,
neural embeddings for corpora can be compared (Vu et al., 2020). In prior work, the set
of domains is usually limited to news and Wikipedia, and the focus is on the single-best
source. In contrast, we exploit sources from a larger set of domains and also explore the
prediction of sets of sources, as using multiple sources is likely to be beneficial, as also
shown by Parvez and Chang (2021) contemporaneously to this work.

7.3 Similarity Measures and Predictors

In this section, we describe the sequence tagger model and similarity measures along with
metrics for the evaluation. Finally, we introduce our new model similarity measures and
prediction method for sets of transfer sources.

Terminology We consider two dimensions of datasets: the task T , which defines the label
set, and the input text coming from a specific domain D. We thus define a dataset as a tuple
⟨T,D⟩, and specify in our experiments which of the two dimensions are changed.
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7.3.1 Similarity Measures

We apply the following measures to rank sources according to their similarity with the
target data.

Baselines. We use the most promising domain similarity measures reported by Dai et al.
(2020). The most simple baseline is based on the Dataset size (Bingel and Søgaard, 2017).
This assumes that large corpora contain general knowledge, which is useful for transfer.
However, this measure is static and does not incorporate corpora-specific information. In
contrast, the following similarity measures compute similarity scores based on the contents
of two corpora,

• Target vocabulary overlap is the percentage of unique words from the target corpus
covered in the source corpus.

TV O(Ds, Dt) =
|VDs ∩ VDt |

|VDt |
(7.1)

where VD is the vocabulary of D, i.e. the set of unique tokens. In contrast to vocab-
ulary overlap, this is an asymmetric measure. Annotation overlap is a special case
considering only annotated words.

• We also experiment with the Language model perplexity (Baldwin et al., 2013) be-
tween two datasets. For this, a language model, in our case a 5-gram LM with
Kneser–Ney smoothing (Heafield, 2011) as used by Dai et al. (2020), is trained for
each source domain and tested against the target domain. The resulting perplexity
gives hints at how similar these domains are, i.e., a lower perplexity indicates simi-
larity between domains.

(Ds, Dt) =

|Dt|∑
i=1

P (Di
t)

− 1
|Dsi | (7.2)

with P (Di
t) being the probabilities assigned by the source language model to sen-

tence i from the target dataset.

• Jensen-Shannon divergence (Ruder and Plank, 2017) compares the term distributions
between two texts, which are probability distributions that capture the frequency of
words. It is similar to vocabulary overlap, as it describes the textual overlap but is
based on distributions instead of sets of terms.

JSD(t(Ds)||t(Dt)) =
1

2
(t(Ds)||t(Dt)) +

1

2
(t(Dt)||t(Ds)) (7.3)
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where t(D) is the term distribution from dataset D and DKL(P ||Q) is the Kullback-
Leibler divergence between two probability distributions P and Q:

DKL(P ||Q) = −
∑
x∈X

P (x) log(
Q(x)

P (x)
) (7.4)

• A Text embedding (Vu et al., 2020) can be computed by extracting the feature vectors
of a neural model. For this, the output of the last layer is averaged over all words
in the dataset. This vector then represents the textual domain. The distance between
two vectors is computed by using cosine similarity (cos.sim.).

TS(Ds, Dt) = cos.sim.(Em(Ds), Em(Dt)) (7.5)

where Em(d) is the average embedding of dataset d using model m.

• The Task embedding (Vu et al., 2020) takes a labeled source dataset and computes a
representation based on the Fisher Information Matrix, which captures the change of
model parameters w.r.t. the computed loss. This method assumes that similar tasks
require similar parameters changes. We use the code released by Vu et al. (2020) to
compute task embeddings from the different components of our BERT models and
similarly use reciprocal rank fusion (Cormack et al., 2009) to combine these.

Our Model Similarity. As a new strong method, we propose Model similarity that is
able to combine domain and task similarity. For this, feature vectors f for a target dataset
t are extracted from the last layer of two models ms,mt which have been trained on the
source and target datasets, respectively. The features are then aligned by a linear trans-
formation W , a learned mapping, between the feature spaces using the Procrustes method
(Schönemann, 1966) to minimize their pointwise differences:

argmin
W

|W (f(ms, t))− f(mt, t)| (7.6)

The resulting transformation W is the optimal mapping between the features f(ms, t)

to f(mt, t). If both feature spaces are the same, W would be the identity matrix I , i.e., no
change is required for the transformation. Larger changes indicate dissimilarity. Thus, our
model similarity measure (MoS) between the two models is the distance of the mapping
W and the identity matrix I:

MoS(ms,mt) = |W − I| (7.7)

Similar mappings have been used for the alignment of different embedding spaces
(Artetxe et al., 2018) as they inherently carry information on the relatedness between mod-
els. See Section 2.3.4 for more details.
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Figure 7.2: Illustration of different transfer behaviours. The transfer gain might correlate
with the dataset similarity (a). However, the single-source prediction Top-1
might be too liberal (b) or too restrictive (c). To solve this, we train a dynamic
predictor model on previous observations (d).

7.3.2 Prediction Methods for Sets of Sources

These similarity measures can be applied to create rankings and select similar datasets.
However, they still have a major shortcoming in practice: None of them provides explicit
insights when positive or negative transfer can be expected.

Typically, the most similar source is selected for training based on a given similarity
measure. This might introduce only a low risk of selecting a negative transfer source,
but it also cannot benefit from further positive transfer sources. Examples are given in
Figure 7.2. The single-source transfer is straightforward and works well when the similarity
values correlate with the transfer gain like in Figure 7.2a. However, this does not always
hold in practice. Sometimes, even the most similar sources lead to unexpected negative
transfer, and all sources might decrease performance as in Figure 7.2b. Then, a useful
prediction method should also predict this behavior and recommends no transfer at all. On
the other hand, taking only one transfer source might be too restrictive, and many sources
can contribute to positive transfer, as Figure 7.2c shows. Using multiple sources of them
can boost performance even further. As a solution to this problem, we propose source
predictor models that perform a dynamic selection of transfer sources based on previous
observations (cf. Figure 7.2d).

We refer to the selection of the single-best source as Top-1. We also test its extension to
an arbitrary selection of the n best sources denoted by Top-n. However, it is unclear how
to choose n, and increasing n comes with the risk of including sources that lead to negative
transfer results.

As a solution, we propose two methods that predict whether positive transfer is likely
for a given distance between datasets: The first method models the prediction as a 3-class
classification task, and the second one as a regression task predicting the transfer gain. For
classification, we split the transfer gain g into the three classes positive (g ≥ θ), neutral
(|g| < θ) and negative (g ≤ −θ) based on a pre-defined threshold θ. (In our experiments,
we set θ = 0.5.) We introduce the neutral class for classification to cope with small transfer
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Figure 7.3: Overview of the selection process with our dynamic prediction model.

gains |g| < θ that do not provide additional information but would increase the training
time.

To solve these tasks, we propose to use support vector machines (SVM) for classifi-
cation (-C) and regression (-R) and compare to k-nearest-neighbour classifiers (k-NN) as
well as logistic and linear regression in our experiments.1 For each method, the input to
the model is a similarity value between source and target. The training label is either the
observed transfer gain (for regression) or the corresponding class (for classification) for the
source-target pair. A trained model can then be used to predict which kind of transfer can
be expected, given a new similarity value.2 The predictions for a target and a set of sources
can then be used to select the subset of sources with expected positive transfer. This process
is visualized in Figure 7.3.

7.4 Experimental Setup

In this section, we introduce the tasks, datasets and models used in our experiments. More-
over, we describe the different transfer methods we will study.

7.4.1 Tasks and Evaluation Metrics

We perform experiments on 33 datasets for three tasks: Named entity recognition, part-of-
speech tagging, and temporal expression extraction (TIME). For TIME, we use the English
corpora described by Strötgen and Gertz (2016) and the ACE’05 corpus (Walker et al.,
2006) split into domain-specific subcorpora. For POS, we run experiments on the four
publicly available universal dependency datasets (Nivre et al., 2016). For NER, we distin-
guish two cases: shared label sets and different label sets. For NER with shared label sets,

1We use sklearn implementations (Pedregosa et al., 2011)
2Other similarity measures can be included by modeling each value as a different input dimension. How-

ever, we found no significant improvements by including multiple measures.
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T Corpus Domain D # Labels
# Train / Dev / Test

sentences

N
E

R

CONLL (Sang and Meulder, 2003) News 9 14,987 / 3,466 / 3,684
I2B2-CLIN (Uzuner et al., 2011) Clinical concepts 7 13,052 / 3,263 / 27,625
I2B2-ANON (Stubbs and Uzuner, 2015) Clinical anonymization 47 45,443 / 5,439 / 32,587
WNUT-16 (Strauss et al., 2016) Twitter posts 21 2,394 / 1,000 / 3,850
WNUT-17 (Derczynski et al., 2017) Social media 13 3.394 / 1,009 / 1.287
WNUT-20 (Tabassum et al., 2020) Wetlab protocols 37 8.444 / 2,862 / 2,813
LITBANK (Bamman et al., 2019) Literature 13 5.549 / 1.388 / 2.973
SEC (Alvarado et al., 2015) Financial 9 825 / 207 / 443
SOFC (Friedrich et al., 2020) Materials science 9 490 / 123 / 263

N
E

R
&

PO
S

GUM-ALL (Zeldes, 2017) All (GUM) 23/17 3,883 / 960 / 2,060
GUM-ACAD Academic 23/17 321 / 81 / 173
GUM-BIO Biography 23/17 434 / 106 / 233
GUM-FICT Fiction 23/17 576 / 144 / 309
GUM-INT Interview 23/17 599 / 150 / 321
GUM-NEWS News 23/17 360 / 91 / 194
GUM-RED Reddit 23/17 500 / 126 / 269
GUM-TRAV Travel 23/17 431 / 108 / 232
GUM-WHOW Wikihow 23/17 612 / 154 / 329

PO
S EWT (Silveira et al., 2014) Blog. Email. Social 17 12,514 / 1,998 / 2.074

LINES (Ahrenberg, 2015) (non-)Fiction. spoken 17 2,738 / 912 / 914
PARTUT (Sanguinetti and Bosco, 2014) Legal. News. Wikipedia 17 1,781 / 156 / 153

Te
m

po
ra

lE
xp

re
ss

io
ns

TIMEBANK (UzZaman et al., 2013) News 9 2,557 / 640 / 303
AQUAINT (UzZaman et al., 2013) News 9 972 / 243 / 522
ANCIENT (Strötgen et al., 2014b) Historical Wikipedia 9 456 / 114 / 245
WWARS (Mazur and Dale, 2010) Wikipedia 9 2,788 / 697 / 1,494
TIME4SMS (Strötgen and Gertz, 2013) SMS 9 1,674 / 419 / 898
TIME4SCI (Strötgen and Gertz, 2013) Clinical 9 461 / 116 / 248
I2B2-TIME (Sun et al., 2013) Clinical 9 5,943 / 1,486 / 5,665
ACE-ALL (Walker et al., 2006) All (ACE-05) 9 8,958 / 2,241 / 4,802
ACE-BC Broadcast conversations 9 1,655 / 414 / 887
ACE-BN Broadcast news 9 2,087 / 522 / 1,119
ACE-CTS Conversational telephony 9 1,756 / 440 / 942
ACE-NW Newswire 9 1,172 / 293 / 628
ACE-UN Usenet 9 1,168 / 292 / 626
ACE-WB Webblog 9 1,120 / 280 / 600

Table 7.1: Overview of dataset domains and their sizes used in the transfer experiments.
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we use the subcorpora from all domains of the GUM (Zeldes, 2017) corpus. For NER with
different label sets, we use several publicly available datasets from a wide range of do-
mains, including clinical (I2B2, Stubbs and Uzuner, 2015), social media (WNUT, Strauss
et al., 2016) and material science corpora (SOFC, Friedrich et al., 2020).

For TIME tagging and for POS tagging, we use the English corpora described by Ströt-
gen and Gertz (2016) and the four publicly available universal dependencies corpora with
the UPOS tag (Nivre et al., 2016), respectively. We convert the TIMEX corpora into the
BIO format for sequence tagging. For NER with different label sets, we collected several
datasets from a wide range of domains, including clinical (I2B2 Stubbs et al., 2015), social
media (WNUT, Strauss et al., 2016) and materials science corpora (SOFC, Friedrich et al.,
2020). The GUM (Zeldes, 2017) and ACE’05 (Walker et al., 2006) corpora can be split
easily into multiple domains. Thus, we perform experiments for all subcorpora. The GUM

corpus has multi-layer annotations and includes named entity annotations as well. We use
this to study the effects of NER transfer when the label set is shared. All datasets are listed
in Table 7.1 with information on their domain and size with respect to the label set and
the number of sentences. We take the last 20% and 10% of the training data as test or
development data whenever no split was provided.

The metric for all experiments is micro F1 for NER and TIME, and accuracy for POS
tagging.3 We use the difference in F1 to measure transfer effects and also report transfer
gain (Vu et al., 2020), i.e., the relative improvement of a transferred model compared to the
single-task performance. pt with source s target t as datasets and ps→t being the transfer
performance:

gs→t =
ps→t − pt

pt
(7.8)

In Section 7.5.2, we rank sources according to their similarity to the target. These
rankings are evaluated with two metrics, following Vu et al. (2020): (1) the average rank
of the best performing model in the predicted ranking denoted by avg rank and (2) the
normalized discounted cumulative gain (NDCG, Järvelin and Kekäläinen, 2002). The latter
is a ranking measure commonly used in information retrieval, which evaluates the complete
ranking. Thus, this metric is more suited for evaluating the whole ranking, while avg rank
only considers the top element.

7.4.2 Models for Sequence Labeling

For sequence tagging, we follow Devlin et al. (2019) and use BERT-base-cased as the
feature extractor F and a linear mapping to the label space followed by a softmax as the
classifier C. All layers of the model are fine-tuned during training.

Models are trained using the AdamW optimizer (Loshchilov and Hutter, 2019) with a
learning rate of 2e− 5. The training is performed for a maximum of 100 epochs. We apply

3Due to the absence of a non-labeled class like ’O’ in POS-tagging, accuracy and F1 are equal in this
case and we simply refer to F1-score in all experiments.
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Corpus Pre Rec F1

CONLL 90.5 91.9 91.2
WNUT-20 78.2 81.0 79.6
WNUT-17 60.1 35.9 44.9
WNUT-16 46.8 44.7 45.7
I2B2-CLIN 82.0 85.8 83.9
I2B2-ANON 94.7 93.2 94.0
SEC 76.7 87.9 81.9
LITBANK 66.1 74.5 70.0
SOFC 73.3 82.8 77.8
GUM-ACAD 46.3 58.8 51.8
GUM-BIO 61.0 72.1 66.1
GUM-FICT 62.8 72.0 67.1
GUM-INT 48.9 58.7 53.4
GUM-NEWS 43.7 52.7 47.8
GUM-RED 50.5 61.9 55.6
GUM-TRAV 37.7 51.0 43.3
GUM-WHOW 40.0 49.0 44.0
GUM-ALL 55.1 64.3 59.4

(a) Named Entity Recognition.

Corpus Pre Rec F1

TIMEBANK 75.2 76.3 75.7
AQUAINT 77.6 77.6 77.6
ANCIENT 71.8 79.6 75.5
WWARS 87.1 90.7 88.9
TIME4SMS 63.8 68.4 66.0
TIME4SCI 55.9 51.6 53.7
I2B2-TIME 72.2 76.7 74.4
ACE-BC 60.5 64.0 62.2
ACE-BN 60.3 71.5 65.4
ACE-CTS 39.0 55.6 45.8
ACE-NW 76.8 81.9 79.2
ACE-UN 56.5 65.2 60.5
ACE-WB 65.6 69.4 67.5
ACE-ALL 66.9 77.6 71.8

(b) Temporal Expression
Extraction.

Corpus Acc.

PARTUT 96.9
EWT 97.0
LINES 97.5
GUM-ACAD 95.1
GUM-BIO 96.3
GUM-FICT 96.8
GUM-INT 95.5
GUM-NEWS 95.9
GUM-RED 94.6
GUM-TRAV 94.5
GUM-WHOW 94.9
GUM-ALL 96.5

(c) POS Tagging.

Table 7.2: Single task learning performance for the three different tasks.

early stopping after five epochs without change of the F1-score on the development set.
We use the same hyperparameters across all settings. The results for all datasets without
transfer are given in Table 7.2.4

7.4.3 Transfer Settings

In our experiments, we will study the following three transfer methods:

• Zero-shot model transfer. We apply a model trained on a source dataset to a target
with the same task but a different domain: ⟨Ti, Di⟩ → ⟨Ti, Dj⟩.

• Supervised domain adaptation. A model trained on a source domain is adapted to a
target domain by finetuning its weights on target training data: ⟨Ti, Di⟩ → ⟨Ti, Dj⟩.

• Cross-task transfer. For applying a model to a different task, we replace the clas-
sification layer with a randomly initialized layer and adapt it to the new target task:
⟨Ti, Di⟩ → ⟨Tj, Dj⟩.5

4All our experiments are run on a carbon-neutral GPU cluster. The model training takes between 5
minutes and 8 hours depending on the dataset size on a single Nvidia Tesla V100 GPU with 32GB VRAM.

5We restrict the cross-task transfer to NER targets with different label sets, as the combination of all tasks
quickly becomes computationally infeasible given our large number of different settings.
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Task Min. Avg. Max. # Pos. # Neg.

Zero-Shot Model Transfer
NER -57.3 (-37.9) -17.7 (-10.1) 18.1 (8.0) 7 /64 56 /64
POS -8.7 (-8.4) -2.8 (-2.7) 1.6 (1.5) 13 /144 127 /144
TIME -100.0 (-83.2) -42.7 (-29.6) 38.6 (17.7) 13 /196 183 /196

Supervised Domain Adaptation
NER -5.2 (-2.7) 3.8 (1.9) 14.5 (6.3) 55 /64 8 /64
POS -0.3 (-0.3) 0.4 (0.4) 1.8 (1.7) 116 /144 9 /144
TIME -15.3 (-10.1) 3.4 (2.0) 32.7 (15.1) 133 /196 62 /196

Cross-Task Transfer
NER→NER -9.1 (-4.1) -0.2 (-0.2) 6.8 (3.1) 39 /90 46 /90
POS→NER -5.9 (-4.8) -0.5 (-0.3) 2.6 (1.2) 42 /120 65 /120
TIME→NER -7.2 (-3.3) -0.9 (-0.5) 0.9 (0.6) 35 /150 100 /150

Table 7.3: Statistics on transfer gains (F1 differences) and the number of positive and neg-
ative transfer scenarios for the three transfer settings. The average is aggregated
over all domains and the 5 random seeds resulting in 210 task-specific experi-
ments for NER and up to 780 for TIME.

7.5 Results and Analysis

This section first presents the results of the different transfer settings. Then, we analyze
how well the previously described dataset and model similarity measures can be used to
rank transfer sources. Finally, we evaluate our dynamic prediction methods that predict
actual sets of beneficial transfer sources.

7.5.1 Analysis of Transfer Performance

Table 7.3 shows the observed performance gains compared to the single-task performance.
For zero-shot model transfer, we observe severe performance drops when transferring out-
of-domain models to unseen targets, compared to in-domain models (single-task training).
In addition to domain-specific challenges, this setting is impaired by differences in the
underlying annotation schemes.6

Supervised domain adaptation, i.e., adapting a model to the target domain, improves
performance across all settings independent of the source domain. Table 7.3 shows that the
average transfer gains are positive for all tasks and that the maximum transfer gain is 32.7
F1 points for TIME. However, the transfer gains are highly task-depending. For example,
there is almost no negative transfer and only limited positive transfer for POS tagging due
to a large number of training instances and relatively small changes in domains. In contrast,
the transfer gains for TIME range from -15 to +33 F1 points.

6For example, the TIMEX2 (Ferro et al., 2005) and TIMEX3 (Pustejovsky et al., 2005) guidelines disagree
about including preceding words in the annotated mentions as "in".
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Model
Transfer

Domain
Adapt.

Cross
-Task

Avg.

Distance ρ N ρ N ρ N ρ N

Vocabulary Overlap 2.4 92.1 2.8 88.9 6.4 84.9 3.9 88.7
Annotation Overlap 2.4 91.7 3.1 89.3 6.1 85.3 3.9 89.1
Dataset size 3.6 86.4 3.8 85.9 7.2 82.3 4.9 84.9
Term Distribution 2.8 90.5 4.2 87.5 6.7 85.2 4.5 87.7

LM Perplexity 3.9 85.6 3.4 88.2 5.9 84.4 4.4 86.1
Text Embedding 4.0 88.1 4.6 85.0 7.1 84.6 5.2 85.9
Task Embedding 4.1 88.5 4.7 84.8 6.6 84.5 5.1 85.6
OUR Model Similarity 2.8 90.8 3.3 88.7 5.1 85.4 3.7 88.3

Table 7.4: Ranking results for different similarity measures in the three transfer settings.
Corpus-based measures are listed first and model-based ones below. The values
displayed are the average rank of the best model (ρ) and the NDCG-score (N).

The gains for cross-task transfer are smaller than for supervised domain adaptation.
While we still observe some performance increases, the average transfer gains are negative
for all tasks. This shows that it is likely that the adaptation of models from other tasks will
decrease performance. These results demonstrate the need for reliable similarity measures
and methods to predict the expected transfer gains given the source task and domain. We
will explore them in Section 7.5.2 and Section 7.5.3, respectively.

7.5.2 Results for Similarity-Based Ranking

To evaluate the prospects of different sources for model transfer, we compute the pairwise
distances between all datasets using the similarity measures presented in Section 7.3.1 and
rank them accordingly.

Table 7.4 shows that the text-based methods vocabulary and annotation overlap are
most suited for in-task transfer, i.e., model transfer and domain adaptation, while our model
similarity is most useful for cross-task transfer. This shows that task similarity alone is not
the most decisive factor for predicting promising transfer sources, and domain similarity is
equally or even more important, in particular, when more distant domains are considered.
Our model similarity is able to capture both properties and, as a result, outperforms the task
embedding in the cross-task setting and performs comparably to the text-based methods in
the in-task settings. It is the best similarity measure on average across all transfer settings
according to the predicted rank of the top-performing source (avg. rank) and the best neural
method according to NDCG.

In general, we find that selecting only the top source(s) based on a ranking from a
distance measure, as done in current research, gives no information on whether to expect
positive transfer. Thus, we now explore methods to predict sets of promising sources auto-
matically.
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Figure 7.4: Average transfer gains using different classifiers for predicting the sets of most
promising sources.

Method Sources F1 (increase)

Single-Task No source corpora for pretraining 60.5 F1

Top-1 WWARS + 10.9
Top-2 WWARS, ACE-BN + 11.2
Top-3 WWARS, ACE-BN, TIMEBANK + 15.8
All WWARS, ACE-ALL, TIMEBANK, AQUAINT, I2B2-TIME, ANCIENT, TIME4SCI, TIME4SMS + 10.2
SVM (Classifier) WWARS, ACE-ALL, TIMEBANK, AQUAINT, TIME4SCI, TIME4SMS + 24.0
Logistic Regression WWARS, ACE-ALL, TIMEBANK, AQUAINT, ANCIENT, TIME4SCI, TIME4SMS + 18.2
k-Nearest-Neighbor WWARS, ACE-ALL, TIMEBANK, AQUAINT, I2B2-TIME, TIME4SCI, TIME4SMS + 17.1
SVM (Regression) WWARS, ACE-ALL, TIMEBANK, AQUAINT, TIME4SCI, TIME4SMS + 24.0
Linear Regression WWARS, ACE-ALL, TIMEBANK, AQUAINT, ANCIENT, TIME4SCI, TIME4SMS + 18.2

Table 7.5: Predicted transfer sources for TIME domain adaptation for target ACE-UN.

7.5.3 Results for Prediction of Sets of Sources

We use the methods introduced in Section 7.3.2 to predict the set of most promising sources.
Then, we train a model on the combination of the selected sources and adapt it to the target.7

The results averaged across the different settings are visualized in Figure 7.4. Again,
we observe a task-specific behavior. While NER and TIME targets benefit from training
on many sources, POS tagging targets gain the most from using only one or two of the
most related source domains. We find that our methods based on SVMs are able to predict
this behavior and assign fewer sources for POS targets and more sources for TIME and
NER settings. In particular, for TIME settings, our methods SVM-C and -R result in much
higher transfer gains compared to the static ranking-based methods and other classifiers or
regression models.

7We do not explore the NER to NER setting, as we restrict the sources to have the same set of labels.
For the other tasks, we trained source combinations that were predicted by at least one model (SVM-R/C,
Log-/Lin-R, k-NN) or baseline method (Top-1, Top-2, .., All). Training all possible combinations would be
infeasible.



7.6. Study: Low-Resource Transfer 120

Task Min. Avg. Max.

Supervised Domain Adaptation
NER -2.5 4.9 20.3
POS -0.5 1.0 6.8
TIME -14.2 17.4 174.5

Cross-Task Transfer
NER→NER -13.7 -0.2 30.2
POS→NER -18.3 -2.5 12.4
TIME→NER -14.2 -2.0 7.8

Table 7.6: Transfer gains for single-source transfer in a low-resource setting.

For example, transferring multiple sources using our SVM classifier to the ACE usenet
target (see Table 7.5) increases performance from 60.5 F1 for single-task training to 84.5
F1 (+24.0), which is much higher than the 10.9 points increase when using the single best
source or 10.2 points using all available sources.

For the cross-task experiments in the lower part of Figure 7.4, we find that even the
inclusion of the single best-ranked model results in a transfer loss of -0.9 points on average
for TIME→NER. In this setting, our models correctly adapt to this new challenge and
predict an empty set of sources, indicating that no transfer should be performed.

7.6 Study: Low-Resource Transfer

In this section, we describe our transfer experiments in low-resource settings by limiting the
training data. For our first experiments in Section 7.6.1, we follow the experimental setup
from this chapter and only limit the training data. Moreover, we experiment in Section 7.6.2
with transfer between the ten clinical tasks and our CLIN-X language models, as introduced
in Chapter 4.

7.6.1 Transfer Learning with Limited Training Data

First, we perform the transfer experiments in a limited setting, where we downsampled all
training and development splits to 321 sentences, the size of the smallest corpus (GUM-
ACAD) without shuffling. The test set is not changed. With this, the effects of different
dataset sizes are reduced. We increased the number of epochs for early stopping to 10,
as some of the models trained on the small corpora need a few epochs to get non-zero
F1-scores with the reduced AdamW warmup learning rate. All other hyperparameters and
training details remain unchanged. The results are shown in Table 7.6. We can observe
much larger positive transfer gains, as the data limitation can drastically reduce the single-
task performance. This way, a transfer gain of more than 170 can happen, e.g., for trans-
ferring the model trained on ACE-ALL to its subcorpus ACE-CTS, due to a relatively low
base score of 16 F1 in the limited setting. At the same time, the negative transfer can get
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English (I2B2) 2006 2010 2012-C 2012-T 2014

CLIN-XEN +OURMODEL 98.49 89.23 80.62 78.50 97.60
CLIN-XES +OURMODEL 98.30 89.10 80.42 78.48 97.62
CLIN-XES +OURMODEL +Transfer 98.50 89.74 80.93 79.60 97.46
Significant Differences * * *** ** *

Spanish CANTEMIST MEDDOCAN M.PROF-N M.PROF-C PHARMA.

CLIN-XEN +OURMODEL 87.72 97.57 81.36 78.53 92.36
CLIN-XES +OURMODEL 88.24 98.00 81.68 80.54 92.27
CLIN-XES +OURMODEL +Transfer 88.00 97.65 81.88 79.38 92.27
Significant Differences *

Table 7.7: Performance of our CLIN-X models in transfer settings (F1). We highlight
statistically significant differences between CLIN-XES +OURMODEL with and
without transfer following the R significant codes: *** p-value ≤ 0.001; ** p-
value < 0.01; * p-value < 0.05. See Chapter 4 for a description of the CLIN-X
language models and our sequence labeling architecture +OURMODEL.

much worse, in particular, for the cross-task settings. While this demonstrates the potential
benefits of model transfer, it also highlights the importance of selecting a suitable transfer
source, for example, by using our model similarity and dynamic prediction methods for
sets of sources.

7.6.2 Transfer Learning in the Clinical Domain

As shown earlier, many NLP tasks suffer from a lack of labeled data which may be over-
come by transfer learning. This includes non-standard domains like the clinical domain in
particular. On the one hand, this domain has high requirements regarding the removal or
masking of protected health information (PHI) of individuals (Uzuner et al., 2007; Stubbs
et al., 2015) which is particularly worthy of protection and can prevent data publication. On
the other hand, information extraction tasks are often specific to their target domain, and
clinical concepts are only found very infrequently outside EHRs, which limits the reusabil-
ity of existing resources. Possible solutions for the low-resource problem can be multi-task
learning (Khan et al., 2020; Mulyar et al., 2021) or transfer learning (Lee et al., 2018; Peng
et al., 2019) across similar corpora from the clinical domain. For example, Hofer et al.
(2018) showed that few-shot NER in the biomedical domain could be improved by trans-
ferring weights trained on a similar task. However, transferring knowledge is particularly
challenging in the clinical domain as biomedical NLP models have problems generalizing
to new entities (Kim and Kang, 2021). Therefore, one has to carefully select the transfer
sources, as discussed in Section 7.5, which can be addressed using our transfer methods.

In this section, we study the effects of transfer learning on our clinical datasets and
models as used in Chapter 4.
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# Training sentences
Tgt. Src. / Setting 250 500 1000 2500 7500 All

I2
B

2-
20

06

No Transfer 71.24 81.06 84.15 95.49 96.89 98.34
I2B2-2010 81.55 90.38 89.09 95.61 97.47 96.88
I2B2-2012-C 79.28 86.5 88.71 96.75 97.92 98.23
I2B2-2012-T 71.58 80.31 83.29 95.87 97.97 97.41
I2B2-2014 87.52 90.86 91.87 97.11 97.95 98.50

I2
B

2-
20

10

No Transfer 65.38 74.96 82.59 85.54 88.48 89.10
I2B2-2006 68.90 78.32 82.07 85.70 87.95 88.69
I2B2-2012-C 83.99 86.25 86.88 88.46 89.34 89.74
I2B2-2012-T 69.49 74.92 81.31 85.35 88.25 88.65
I2B2-2014 72.05 79.11 82.49 85.54 87.69 88.80

I2
B

2-
20

12
-C No Transfer 69.09 73.21 75.70 78.03 80.36 80.42

I2B2-2006 68.83 72.14 75.34 77.86 79.25 80.15
I2B2-2010 76.39 77.98 79.44 80.90 81.65 80.93
I2B2-2012-T 65.30 69.61 73.30 75.88 80.25 80.12
I2B2-2014 68.67 72.56 75.39 77.96 79.98 79.83

I2
B

2-
20

12
-T No Transfer 67.49 72.67 75.44 78.00 78.33 78.48

I2B2-2006 68.57 72.49 74.34 77.73 78.43 78.34
I2B2-2010 68.10 74.04 78.01 78.98 79.29 79.60
I2B2-2012-C 70.17 75.04 76.36 78.12 78.54 80.03
I2B2-2014 69.44 72.66 75.04 77.88 78.86 79.36

I2
B

2-
20

14

No Transfer 64.96 81.61 85.74 92.70 96.08 97.62
I2B2-2006 81.50 85.76 88.96 93.51 96.04 97.46
I2B2-2010 71.72 83.55 87.81 93.18 96.14 97.17
I2B2-2012-C 71.24 82.97 87.09 93.15 96.13 97.33
I2B2-2012-T 69.12 81.25 85.08 91.35 96.02 97.00

Table 7.8: Cross-task transfer results for few-shot settings for the English clinical corpora
(F1). The predicted transfer source and the best models are highlighted.

First, we test statistical significance between CLIN-XES with and without transfer learn-
ing — highlighted with asterisks in Table 7.7. We find that all differences for English are
significant, while only one difference for Spanish is significant. This might indicate the
complementary relationship of domain adaptation and model transfer learning. As CLIN-X
was explicitly adapted to Spanish, additional transfer is not necessary for high-resource set-
tings. In contrast, the cross-language domain adaptation for English can still be improved
with transfer from related sources, where CLIN-XES +OURMODEL +Transfer has also no-
tably higher performances in 3 out of 5 settings compared to CLIN-XEN , which is adapted
to English.
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# Training sentences
Tgt. Src. / Setting 250 500 1000 2500 7500 All

C
A

N
T

E
M

IS
T No Transfer 51.68 59.00 67.35 77.15 84.10 88.24

MEDDOCAN 56.48 59.51 69.33 76.57 83.43 88.00
MEDDOPROF-N 52.06 59.26 67.18 77.27 83.05 87.74
MEDDOPROF-C 53.94 55.41 65.71 76.65 83.20 88.00
PHARMACONER 55.53 59.14 66.78 76.44 83.39 87.95

M
E

D
D

O
C

A
N No Transfer 84.00 92.01 95.28 96.48 97.20 98.00

CANTEMIST 83.61 89.36 95.35 96.75 97.43 97.57
MEDDOPROF-N 86.99 92.77 93.55 96.15 97.01 97.66
MEDDOPROF-C 88.70 93.76 95.03 96.32 97.35 97.73
PHARMACONER 92.74 94.30 96.16 96.84 97.49 97.65

M
.P

R
O

F
-N

No Transfer 13.99 44.28 51.24 58.95 72.54 81.68
CANTEMIST 10.01 38.41 50.64 62.66 71.74 79.77
MEDDOCAN 16.39 45.30 52.89 62.25 73.30 81.38
MEDDOPROF-C 61.29 68.37 72.83 72.88 78.04 81.88
PHARMACONER 23.72 44.91 52.90 60.53 73.35 81.07

M
.P

R
O

F
-C

No Transfer 16.46 24.28 47.67 54.66 68.68 80.54
CANTEMIST 10.99 29.73 49.20 52.75 66.57 78.76
MEDDOCAN 31.83 38.01 53.80 56.46 69.98 79.33
MEDDOPROF-N 57.46 57.70 61.56 64.92 72.37 79.38
PHARMACONER 22.61 35.15 50.50 53.49 69.59 79.08

P
H

A
R

M
A

. Sinlge-Task 67.71 76.38 81.32 87.68 91.31 92.27
CANTEMIST 60.34 71.77 79.45 86.77 90.61 92.35
MEDDOCAN 74.48 76.02 82.79 88.39 91.49 92.27
MEDDOPROF-N 69.48 76.44 78.73 88.60 92.02 91.98
MEDDOPROF-C 69.25 74.15 80.13 88.27 91.80 92.29

Table 7.9: Cross-task transfer results for few-shot settings for the Spanish clinical corpora
(F1). The predicted transfer source and the best models are highlighted.

Second, we simulate low-resource settings where we limit the annotated data of the
target dataset between 250 labeled sentences up to 7500 sentences, roughly the size of
the smallest corpus. The results are given in Table 7.8 and Table 7.9 for English and
Spanish, respectively. Large positive transfer happens in most settings, particularly for
the low-resource settings with up to +47.3 F1 points for MEDDOPROF when only 250
labeled sentences are available. The improvements in the full-data scenario are below 1 F1.
However, there is also negative transfer, in particular using I2B2-2012-T and CANTEMIST

datasets as transfer sources often result in a negative transfer. The source selection is also
crucial in low-resource scenarios, as not every source is equally beneficial. Using our
model similarity measure, as introduced in Section 7.3.1, we find good transfer sources for
almost all datasets in general and for low-resource scenarios in particular.
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7.7 Conclusions

In this chapter, we explored different transfer settings across three sequence-labeling tasks
and various domains. Our new model similarity measure based on feature mappings out-
performs currently used similarity measures as it is able to capture both task and domain
similarity at the same time. We further addressed the automatic selection of sets of sources
as well as the challenge of potential negative transfer by proposing a selection method
based on support vector machines. We can achieve performance gains of up to 24 F1 points
using this method compared to single-source transfer — as suggested in prior work — us-
ing our method. Larger gains are possible in low-resource scenarios with up to 47 F1 for
our experiments in the clinical domain.



Chapter 8

Multilingual Temporal Tagging

The detection and normalization of temporal expressions are challenging tasks and nec-
essary pre-processing steps for many applications, such as knowledge base population,
question answering, or information retrieval. Current systems either focus on the extrac-
tion of temporal expressions only without normalization or are rule-based, which severely
limits the applicability in real-world multilingual settings due to the costly creation of new
rules. While there have been some approaches towards normalization methods, which can
be combined with ML-based extraction components (e.g., TIMEN (Llorens et al., 2012)),
these require quite some effort to adapt and do hardly allow for domain-sensitive strategies
for the normalization (cf., (Strötgen and Gertz, 2016)) This chapter investigates both the
extraction and normalization of temporal expression with neural models across languages.
We improve the extraction by aligning the languages inside a multilingual extraction model.
For normalization, we propose a novel neural method for normalizing temporal expres-
sions based on masked language modeling. Our multilingual method outperforms prior
rule-based systems in many languages, particularly for low-resource languages with per-
formance improvements of up to 35 F1 on average compared to a state-of-the-art rule-based
system. This chapter is based on our publication for temporal expression extraction (Lange
et al., 2020d) and our submission for normalization (Lange et al., 2022b).

8.1 Introduction

The task of temporal tagging consists of the extraction of temporal expressions from texts
and their normalization to a standard format (e.g., May ’22: 2022-05). More details on
this task are given in Section 2.1.2.

In this chapter, we will take a look into both subtasks, the extraction and normalization
of temporal expressions in the context of multilingual temporal tagging. Examples of three
temporal expressions in different languages and their normalization values are given in
Figure 8.1. State-of-the-art systems which natively combine both tasks are rule-based and,
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Extraction

El 11 de noviembre , ...

Morgen wird das Wetter ...

en

de

es

... will appear in May .
DATE

2022-05

2022-03-16

2021-11-11

Normalization

Anchor: 2022-03-15Anchor: 2022-03-15

Figure 8.1: Overview of the extraction and normalization process for three temporal ex-
pressions from English, German and Spanish example sentences.

therefore, hard to transfer to new languages. Our first main contribution in this chapter is
a cross-lingual extraction method based on multilingual transformers. For this, we model
the extraction as sequence tagging and train a single model for many languages at once. To
further improve the multilingual model, we experiment with adversarial alignment methods
by creating a truly multilingual embedding space in the model in order to improve the
downstream performance in cross- and multilingual settings.

The temporal expression normalization remains challenging, and no practical solution
for the normalization of expressions across languages exists yet. While there are deep
learning approaches for the extraction, temporal tagging as a whole is usually solved with
highly specific rule-based systems.

Therefore, we propose a new multilingual normalization method that can make use of
labeled data from many languages by training a neural transformer model with a masked
language modeling (MLM) objective. The MLM training is becoming more popular re-
cently due to language models like BERT (Devlin et al., 2019) and has been used for sev-
eral different tasks (Sun et al., 2021). In this work, we adopt the MLM objective function
for a new purpose: the normalization of expressions. To the best of our knowledge, this
is the first work that uses neural networks for the normalization of temporal expression on
top of the extraction outputs. For this, as detailed below, we split the normalization task
into two steps: normalizing to a context-independent representation and anchoring this
representation using the document context for the final disambiguation.

Our experiments in 17 languages demonstrate the robust performance of our multilin-
gual method due to the generalization abilities of neural models. With this, we demonstrate
that it is possible to achieve competitive performance with a single multilingual model
for many languages at once. Further, we demonstrate that this multilingual model can be
transferred to new languages, for which the model has not seen any gold-standard labels
during training by applying it to unseen languages in cross-lingual experiments. For both
tasks, we outperform the current state of the art for multilingual temporal tagging, Heidel-
Time (Strötgen and Gertz, 2015), especially for low-resource languages by more than 35
F1 on average.

The main contributions of this chapter are a new cross-lingual extraction model (Sec-
tion 8.3.1) and our novel temporal expression normalization method based on neural net-
works trained with a masked language modeling objective (Section 8.3.2). We conduct
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an extensive set of experiments across 17 languages, demonstrating that our multilingual
method is robust and works for many languages (Sections 8.5.1 and 8.5.2). Further, we
explore different training and decoding strategies for our masked language model (Sec-
tion 8.5.3).

8.2 Related Work

Temporal Tagging. Temporal tagging is the task of extracting temporal expressions from
text and normalizing them to a standard format (Strötgen and Gertz, 2016). A detailed
description of this task is given in Section 2.1.2. Most of the research on temporal tagging
is focused on English (Strötgen and Gertz, 2016), but also a number of high-quality corpora
were created. For example, there exists so-called timebanks i.a., for French (Bittar et al.,
2011), Portuguese (Costa and Branco, 2012), and Catalan (Saurı, 2010). Nonetheless,
systems for automatic temporal tagging are often language-specific and do not transfer to
new languages.

Both temporal tagging tasks, the extraction and normalization, are most often solved
with highly specific rule-based systems, such as SUTime (Chang and Manning, 2012) or
HeidelTime (Strötgen and Gertz, 2013). However, rule-based methods are hard to transfer
to new languages or text domains, as it requires a large manual effort to create new rules
specific to the target language. Although work on the automatic generation of rules for
English (Ding et al., 2021) or many other languages (Strötgen and Gertz, 2015) exist, the
first approach is monolingual and does not transfer to other languages and the rule quality
of the second approach typically does not match the high accuracy of hand-crafted rules.

In contrast to rule-based systems, neural networks are known for their ability to gen-
eralize to new targets, in particular, for cross- and multilingual applications (Rahimi et al.,
2019; Artetxe and Schwenk, 2019). These works show the applicability of neural networks
for cross-language extraction. Still, in the context of temporal tagging, recent works have
only shown the promising performance of neural networks for the extraction of temporal
expressions in monolingual settings (Laparra et al., 2018; Xu et al., 2019) by modeling the
extraction as sequence labeling. Their application in multilingual settings remains an open
research problem that is only addressed by rule-based systems.

Similarly, the normalization of temporal expressions is only solved using rule-based
methods so far, e.g., as done by Llorens et al. (2012) or Ning et al. (2018). Alternatives
to strictly rule-based systems are context-free grammars (Bethard, 2013; Lee et al., 2014)
which are independent of the extraction method. However, these are even more specific
towards a certain language and can hardly generalize to new languages or language fam-
ilies. Bethard and Parker (2016) proposed the SCATE format, which allows a more fine-
grained extraction of temporal expressions. Based on this, Laparra et al. (2018) used neural
networks for the extraction and a rule-based procedure for the normalization for English.
While this method, in theory, is extensible to multilingual applications, no annotated data
is available in the SCATE format for other languages, as it is mostly incompatible with the
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dominant TimeML (Pustejovsky et al., 2005) annotation format. In contrast, our normal-
ization approach is fully compatible with TimeML and can leverage many existing training
resources.

Masked Language Modeling. The self-supervised MLM paradigm has gained a lot of
attention recently (Sun et al., 2021) due to popular language models like BERT (Devlin
et al., 2019). This led to active research on using MLM to solve further tasks like text
classification (Brown et al., 2020), named entity recognition (Ma et al., 2021) and relation
extraction (Han et al., 2021). In general, MLM is a bidirectional language modeling task.
Given the left and right context of a masked word, the original word under the mask has to
be predicted. For example, given a sentence with at least one mask “The topic of Chapter
3 was MASK extraction,” an MLM model has to predict the most probable replacements
for the masks. Likely words in this context are “information” or “concept”. In this chapter,
we train a transformer with an MLM objective to normalize a temporal expression to its
context-independent representation.

Multilingual Embeddings. Recently, it became popular to train embedding models on
resources from many languages jointly (Conneau and Lample, 2019; Conneau et al., 2020).
For example, multilingual BERT (Devlin et al., 2019) was trained on Wikipedia articles
from more than 100 languages. Although performance improvements show the possibility
to use multilingual BERT in monolingual (Hakala and Pyysalo, 2019), multilingual (Tsai
et al., 2019) and cross-lingual settings (Wu and Dredze, 2019), it has been questioned
whether multilingual BERT is truly multilingual (Pires et al., 2019; Singh et al., 2019;
Libovický et al., 2020). Therefore, we will investigate the benefits of aligning its embed-
dings in our experiments. More information on multilingual language models is given in
Section 2.3.4.

Aligning Embedding Spaces. A well-known method to create multilingual embedding
spaces is the alignment of monolingual embeddings (Mikolov et al., 2013b; Joulin et al.,
2018). Smith et al. (2017) proposed to align embedding spaces by creating orthogonal
transformation matrices based on bilingual dictionaries, which we use as a baseline align-
ment method for word embeddings. We provide a detailed description in Section 2.3.4.

It was shown that BERT can also benefit from alignment, i.a., in cross-lingual (Schuster
et al., 2019; Liu et al., 2019a) or multilingual settings (Cao et al., 2020b). In contrast to
prior work, we experiment with aligning BERT using adversarial training, which is related
to using adversarial training for domain adaptation (Ganin et al., 2016), coping with bias
or confounding variables (Li et al., 2018; Raff and Sylvester, 2018; Zhang et al., 2018;
Barrett et al., 2019; McHardy et al., 2019) or transferring models from a source to a target
language (Zhang et al., 2017a; Keung et al., 2019; Wang et al., 2019b). Similar to Chen
and Cardie (2018) and our adversarial meta-embeddings approach (cf., Chapter 5), we use
a multinomial discriminator in our setting.
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... appear in <TIMEX3 type="DATE" value=MASK>May</TIMEX3>.

CIR: UNDEF-year-05

Slots:  ...

The Eta Auariids meteor shower will appear in May .

(1) Extraction

(2) Normalization to CIR
UNDEF-


year 05PAD PAD

(3) Anchoring
Anchor:  2022-03-15 FUTURE2022-05

PAD

Figure 8.2: Overview of our 3-step pipeline for temporal tagging consisting of the ex-
traction of temporal expressions (step 1), the normalization to a context-
independent representation (CIR) using a slot-based masked language model
(step 2) and the anchoring given a reference time (step 3).

8.3 Model Architectures

We propose to solve the task of multilingual temporal tagging in three steps as shown in
Figure 8.2: (1) Extraction of temporal expressions and their types using a novel multilin-
gual sequence tagger; (2) Normalization to a CIR for each temporal expression with our
novel MLM-based normalization model; (3) Anchoring of CIRs given a reference time,
e.g., using HeidelTime rules.

Our main contributions are neural models for the first and second subtasks, To the
best of our knowledge, the second subtask, the normalization to a context-independent
representation, has not been addressed with neural networks before. In this section, we
detail all components of our approach. Information on the models that we apply for the
third subtask as well as an ablation study of all different model components are given in
Section 8.5.

8.3.1 Models for Extraction

We model the task of extracting temporal expressions as a sequence-tagging problem and
explore the performance of state-of-the-art transformers like XLM-R and BERT, as well
as recurrent neural networks with fastText embeddings. In particular, we train multilin-
gual models that process many languages at once. In addition, we propose an unsuper-
vised alignment approach based on adversarial training and compare it to two baseline ap-
proaches to create and improve the multilingual embedding spaces. Figure 8.3 provides an
overview of the system. The different components are described in detail in the following.

Classifier. For the extraction of temporal expressions, we experiment with the XLM-R
transformer as a classifier C similar to Conneau et al. (2020). Here, the transformer outputs
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... will appear in May.

El 11 de noviembre, ...

Morgen wird das Wetter ...

mBERT / fastText

Multilingual
Embeddings

XLM-R
Multilingual 

Embedding

Space

Classifier

Language
Discriminator

Alignment

Experiments Adversarial Training

en

de

es

Figure 8.3: Overview of our extraction model based on a joint multilingual embeddings
space. We propose to use adversarial training to align the language-specific
embeddings.

are directly mapped to the label space, and a softmax function is used to compute the label
probabilities instead of a CRF.

In addition, we study the creation of multilingual embedding spaces via alignment
methods. For this, we use recurrent neural networks, e.g., as discussed in Chapter 3 and
train BiLSTM-CRF models. As input, we experiment with two embedding methods: (i)
monolingual pre-trained fastText word embeddings (Bojanowski et al., 2017),1 and (ii)
multilingual BERT (Devlin et al., 2019).2 For BERT, we use the averaged output of the last
four layers as input to the BiLSTM and fine-tune the whole model during the training of
temporal information extraction. The alignment methods for these models are discussed in
the following.

Alignment of Embeddings. We propose an unsupervised approach based on adversarial
training to align multilingual embeddings in a common space and compare it with two
approaches from related work based on linear transformation matrices.

For these baseline alignments, embedding spaces are typically aligned using a lin-
ear transformation based on bilingual dictionaries. We follow the work from Smith et al.
(2017) and align embedding spaces based on orthogonal transformation matrices (see Sec-
tion 2.3.4). These matrices can either be constructed in an unsupervised way by using
words that appear in the vocabularies from both languages, i.e., equal words that can be
identified using string matching, or in a supervised way based on real-world dictionar-
ies (Mikolov et al., 2013b; Joulin et al., 2018). For the latter method, we build dictionaries
based on translations from wiktionary.3 For both methods, we reduce the vocabularies to
the most frequent 5k words per language and treat English as the pivot language, i.e., we
align all languages pairwise to English.

1https://fasttext.cc/docs/en/crawl-vectors.html [last accessed March 5, 2022.]
2https://github.com/google-research/bert/blob/master/multilingual.md

[last accessed March 5, 2022.]
3https://github.com/open-dsl-dict/wiktionary-dict [last accessed March 5, 2022.]

https://fasttext.cc/docs/en/crawl-vectors.html
https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/open-dsl-dict/wiktionary-dict
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Adversarial Alignment. We propose to use gradient reversal training to align embed-
dings from different (sub)spaces in an unsupervised way. Note that neither dictionaries nor
other language resources are needed for this approach, making it applicable to zero- or low-
resource scenarios. In particular, we extend the extraction model C with a discriminator
D. Both model parts are trained alternately in a multi-task fashion. The feature extractor
R is shared among them and consists of the embedding layer E, followed by a non-linear
mapping:

R(x) = tanh(W⊤E(x)) (8.1)

with x being the current word, W ∈ RS×S and S being the embedding dimensionality.

The discriminator D is a multinomial non-linear classifier consisting of one hidden
layer with ReLU activation (Hahnloser et al., 2000):

D(x) = softmax(T⊤ReLU(V ⊤R(x))) (8.2)

with V ∈ RS×H , T ∈ RH×O, H being a hyperparameter and O the number of different
languages. The adversarial training using R, C, and D is performed similarly to the adver-
sarial training for meta-embeddings in Chapter 5. With this, the discriminator is optimized
for predicting the correct origin language of a given sentence, but at the same time, the fea-
ture extractor gets updated with gradient reversal, such that the language detection becomes
more challenging and the discriminator cannot easily distinguish the word representations
from different languages.

8.3.2 Models for Normalization

In the following section, we detail the normalization model. For this, masked language
modeling and context-independent representations (CIRs, cf., Section 2.1.2) play a central
role.

Masked Language Modeling. We model the task of assigning CIRs to temporal ex-
pressions as masked language modeling. In particular, we add TimeML annotations as
inline information to the text sequences and mask the value field for prediction, e.g., “...
<TIMEX3 type="DATE" value="MASK">yesterday</TIMEX3> ...”. Note that those an-
notations could be the ground-truth annotations when applying the model on gold temporal
expressions or predicted temporal expressions when using the model in the 3-step pipeline
as described above. For this, we train a transformer model for CIR prediction using the
masked language modeling objective. While this approach is general enough to be used to
predict the normalized values directly, we saw in our ablation study (see Section 8.5.3) that
state-of-the-art transformer models are not able to perform this task yet, even when given
the anchor time as an additional input. Therefore, we replace the value field with the CIR
instead (cf., Section 2.1.2).
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Slot-Based Value Representation. Using only a single mask token for the whole CIR
would require the model to store all possible CIRs in its vocabulary. Since it is not possible
to enumerate, e.g., all possible dates, we model the CIRs as a fixed-length sequence of
slots. We define 11 slots and use regular expressions to assign slot values in the training
data. Figure 8.2 shows an example for the CIR UNDEF-year-05 that is represented as
the slots [PAD], [year], [05], [PAD], ..., [PAD]. Details on the slots and
expressions are given below. To cover the full vocabulary of CIRs, we introduce 200 new
tokens to the XML-R model. In our experiments, we compare this approach of using the
pre-defined slots with subtokens from the XLM-R tokenizer for the CIRs.

We use the following 11 slots to represent CIRs values.4 These slots are then used for
masking during training and inference with our normalization model (which basically is a
masked language model).

• SB: This slot can contain BC information of years (e.g., as in BC4000 for the
year 4000 BC) or the duration markers P and PT. Moreover, mathematical opera-
tions like PLUS are covered as used in relative expression involving offset compu-
tations (e.g., this-day-plus-2 for the day after tomorrow) and holiday names
(EasterSunday).

• SD1, SD2: These slots are used to represent 4-digit year numbers (SD1 = 20 and
SD2 = 22 for the year 2022) to reduce the number of possible 4-digit numbers from
9999 to 99. This helps to generalize to unseen years as fewer parameters have to be
learned. In addition, we use SD1 to mark reference expressions like PAST_REF. For
underspecifed expressions like UNDEF-this-day, the term this is stored in SD1
and day in SD2. Moreover, SD1 and SD2 are used to store numbers of durations.

• SD3, SD4: Analogously to SD1 and SD2 that are used to store year information,
SD3 is used for months and SD4 for days.

• ST1, ST2, ST3: Temporal information from expressions of type TIME that are
smaller than day granularity are stored in the ST slots. For example, the hour in-
formation of 24:00 and the daytime information, such as EV is stored in ST1. In-
formation on minutes and seconds is stored in ST2 and ST3, respectively. Moreover,
these slots are used to cover additional units in durations, such as in P1D2H (1 day
and 2 hours).

• SA1, SA2, SA3: Finally, some CIRs include function calls which can be augmented
with arguments that we store in the SA slots. For example, the argument 2 of
this-day-plus-2 is stored in SA1. Other function calls are used to compute
days with respect to holidays like EaserSunday or specific weekdays.

Examples: The following examples show temporal expressions, their corresponding
CIRs, and the tokenization into our slots. Note that there is no need to capture terms like

4Note that our CIRs describe a superset of TimeML
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UNDEF in our slots as the presence of words like this, next or last in a CIR implies
the existence of UNDEF in the CIR. This information can be reconstructed when obtaining
a CIR from our slots. This also includes “-” to separate numbers as in YYYY-MM-DD

values, REF in reference expressions and T for time information. We use the following
format to give examples for our CIR conversion: Text → CIR → Slot Sequence

• Now ...
→ PRESENT_REF

→ SD1=PRESENT

• ... for 1000 days ...
→ P1000D

→ SB=P, SD1=10, SD2=10, SD4=D

• ... for one and a half day ...
→ P1D12H

→ SB=P, SD1=1, SD4=D, ST1=12, ST2=H

• ... in 1000 BC ...
→ BC1000

→ SB=BC, SD1=10, SD2=00

• ... on the morning of March 15, 2022 ...
→ 2022-03-15TMO

→ SD1=20, SD2=22, SD3=03, SD4=15, ST1=MO

• On March 15, ...
→ UNDEF-year-03-15

→ SD1=year, SD3=03, SD4=15

• ... the day after tomorrow ...
→ UNDEF-this-day-PLUS-2

→ SB=PLUS, SD1=this, SD2=day, SA1=2

• ... at Pentecost5 ...
→ UNDEF-year-00-00 funcDateCalc(EasterSunday(YEAR, 49))

→ SB=EasterSunday, SD1=year, SD2=00, SA1=49

Note that slots can be optional depending on the temporal expression. For example, the
value 2022 representing the year 2022 would only require SD1 and SD2. All other slots
are set to a padding value [PAD] then, which allows a fixed-sized representation of CIRs
that can be predicted with our masked language model.

5In Christian communities, the holiday of Pentecost is celebrated 49 days after Easer Sunday.
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Curriculum Learning. Our slot-based representation with 11 slots per CIR results in 11
masks. To train the model on this task, we apply curriculum learning in the first half of
the training. In particular, we mask only a single slot of the CIR and steadily increase
the number of masks up to the maximum of 11. For the second half of the training, the
masking is applied to all slots. Following the masking strategy of recent MLMs, we do not
only mask the value, but also mask different parts of the sentence to allow our model to
learn dependencies between the value and its context and vice versa. More specifically, we
mask the value slots for 70% of sentences, annotated tokens for 15%, types with 10%, and
other text parts with 5%. Note that we also experimented without curriculum learning by
masking all 11 slots directly. The results are given in Section 8.5.3.

Inference and Decoding. For inference, we first add 11 masks (i.e., one per slot) as value
placeholders that need to be predicted to the input sentence. Then, we use the masked
language model to predict the most probable sequence of slots for the CIR. To get the final
value, we apply sequential left-to-right decoding of all masks by iteratively decoding the
left-most mask and replacing the mask with its predicted value until all masks are resolved.
We compare two alternative decoding strategies: (i) Decoding all masks simultaneously.
(ii) Training a conditional random field model that takes the logits as input and uses the
Viterbi algorithm to determine the most probable sequence of predictions. See Section 2.2.1
for more details on CRFs and their decoding.

8.4 Experimental Setup

This section describes our experimental setup. We will provide information on the gold-
standard dataests used for our multilingual temporal tagging experiments, as well as the
creation of our weakly-supervised training data. Finally, we provide details on our models.

8.4.1 Datasets and Metrics

Our experiments will be performed on corpora in 17 language annotated either following
the TIMEX3 or TIMEX2 standard. More details on the corpora and their sources are given
in the next paragraphs. We divide the languages into high- and low-resource languages
depending on whether manually created HeidelTime rules are available for the respective
language.

For evaluation, we use the TEMPEVAL-3 evaluation script (UzZaman et al., 2013) and
report strict and relaxed extraction F1-score for complete and partial overlap to gold stan-
dard annotations, respectively. We also report the type F1-score for the classification into
the four temporal types: DATE, TIME, DURATION, and SET and the value F1 if applicable.
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Corpus Language
#Annotations
(train / test)

Reference

Corpora only used for evaluation
KRAUTS-DIEZEIT German (de) _ / 493 (Strötgen et al., 2018)
TEMPEVAL-3 (platinum) English (en) _ / 137 (UzZaman et al., 2013)
KOMPAS (test) Indonesian (id) _ / 192 (Mirza, 2015)
TIMEBANKCA Catalan (ca) _ / 1383 (Saurı, 2010)
ESTTIMEML Estonian (et) _ / 622 (Orasmaa, 2014)
EUSTIMEML Basque (eu) _ / 112 (Altuna et al., 2020)
FR TIMEBANK French (fr) _ / 423 (Bittar et al., 2011)
RO TIMEBANK Romanian (ro) _ / 151 (Forascu and Tufis, 2012)
PT-TIMEBANK (test) Portuguese (pt) _ / 151 (Costa and Branco, 2012)
WIKIWARS-EL (test) Greek (el) _ / 414 (Kapernaros, 2020)

Corpora split into train and test sets
MEANTIME (it) Italian (it) 229 / 244 (Minard et al., 2016)
MEANTIME (nl) Dutch (nl) 221 / 259 (Minard et al., 2016)
TEMPEVAL-3 (es) Spanish (es) 730 / 551 (UzZaman et al., 2013)
POLEVAL-2019 Polish (pl) 633 / 6011 (Kocon et al., 2019)
WIKIWARS English (en) 1378 / 1251 (Mazur and Dale, 2010)
WIKIWARS-DE German (de) 1510 / 684 (Strötgen and Gertz, 2011)
WIKIWARS-HR Croatian (hr) 724 / 677 (Skukan et al., 2014)
WIKIWARS-UA Ukrainian (ua) 454 / 2237 (Grabar and Hamon, 2019)
WIKIWARS-VI Vietnamese (vi) 118 / 101 (Strötgen et al., 2014a)

Corpora only used for training
KRAUTS-DOLOMITEN German (de) 388 / _ (Strötgen et al., 2018)
MEANTIME (en) English (en) 472 / _ (Minard et al., 2016)
TEMPEVAL-3 (train, en) English (en) 1240 / _ (UzZaman et al., 2013)
PT-TIMEBANK (train) Portuguese (pt) 1127 / _ (Costa and Branco, 2012)
WIKIWARS-EL (train) Greek (el) 1496 / _ (Kapernaros, 2020)

Table 8.1: Overview of gold-standard datasets for temporal tagging.

Gold-Standard Training and Evaluation Data. Our models are evaluated on gold-
standard corpora in up to 17 languages. Corpus statistics and details on the training and
test splits are shown in Table 8.1.

Weakly-Supervised Training Data for Normalization. For training the normalization
model, we create a large-scale weakly-supervised dataset covering 87 languages.6 Reasons
are that (i) existing gold training data is too small to cover the wide range of different
values and (ii) CIRs are not part of existing annotations. For all languages, we take the data
from GlobalVoices7 (news-style documents) and Wikipedia8 (narrative-style documents),
use Spacy for tokenization and HeidelTime for the annotation with temporal expressions.

6The set of 87 languages is the intersection of languages covered by HeidelTime, our data, and the XLM-
R language model that we use for our normalization models.

7https://globalvoices.org/ [last accessed March 5, 2022.]
8https://en.wikipedia.org/wiki/List_of_Wikipedias [last accessed March 5, 2022.]

https://globalvoices.org/
https://en.wikipedia.org/wiki/List_of_Wikipedias
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Rank Lang #Ann.

1 de 870897
2 en 542087
3 fr 284871
4 ar 280446
5 es 250871
6 pt 215209
7 it 199236
8 nl 194944
9 ru 122884
10 zh 105421
11 hr 50233
12 ro 33545
13 vi 22048
14 af 21081
15 mk 19539
16 tr 19532
17 gl 17416
18 ca 16747
19 bn 16284
20 cy 14738
21 bg 14550
22 et 13948

Rank Lang #Ann.

23 sv 13705
24 id 13031
25 da 12919
26 fy 12852
27 pl 11283
28 fa 11041
29 eu 10992
30 ne 10750
31 ms 10017
32 mg 9271
33 kk 8080
34 hi 7762
35 eo 7353
36 ur 6228
37 hu 5871
38 sq 5760
39 sk 5172
40 sr 4276
41 ka 4247
42 el 4217
43 he 4057
44 sw 3979

Rank Lang #Ann.

45 ja 3696
46 br 3582
47 uz 3361
48 th 3162
49 cs 3096
50 ga 2799
51 mn 2778
52 gd 2772
53 lt 2734
54 mr 2623
55 la 1876
56 ua 1673
57 hy 1642
58 ta 1556
59 my 1103
60 ml 1079
61 kn 1029
62 fi 1017
63 oa 979
64 jv 968
65 ky 926
66 is 804

Rank Lang #Ann.

67 am 776
68 ku 557
69 so 506
70 yi 485
71 ko 483
72 si 442
73 ps 403
74 lo 354
75 km 350
76 su 335
77 lv 323
78 as 299
79 ug 283
80 sd 278
81 gu 258
82 ha 205
83 sl 125
84 yo 102
85 sa 24
86 or 19
87 xh 3

Table 8.2: Overview of our weakly-supervised training data with the number of annota-
tions per language. This data was annotated with our adapted HeidelTime model
and the boundaries, types and ICRs of temporal expressions are labeled.

A Note on Adopting HeidelTime. In our experiments, we use a modified version of
HeidelTime. First, we implement a new UIMA collection reader based on Spacy as an al-
ternative to the TreeTagger that has a restrictive license. This results in a slightly different
sentence segmentation and tokenization and, thus, minor differences in performance. For
example, the original HeidelTime achieves 63.47 F1 on the Portuguese test data, while our
Spacy version achieves 63.24 F1 as one additional false-positive expression was annotated
due to different sentence boundaries. Second, we changed the HeidelTime output to display
the internal CIRs for the TimeML values, such that we can create our weakly-supervised
training data. The resulting number and quality of annotations are highly dependent on
the amount of available data for that language and the quality of HeidelTime’s rules. De-
tails on the weakly-supervised data are given in Table 8.2. We filtered sentences without
annotations.

Regular Expressions for CIR Extraction. We will now describe the six regular ex-
pressions used to split CIR values from HeidelTime outputs into our slots to create the
weakly-supervised training data. For readability, we define the following groups to cap-
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ture temporal units and other fixed names. Note that these are used across languages. For
example, the German expression Montag would still be represented with monday.

UNITS = (H|D|DE|DT|M|C|Y|C|CE|W|WE|Qu|Q|S)

UNITS_F = (day|month|year|decade|century|week|

weekend|quarter|hour|minute|second)

DAYTIME = (NI|AF|MO|EV|MD|MI)

SPECIAL = (SP|SU|FA|AU|WI| H1|H2|Q1|Q2|Q3|Q4|H|Q)

NAMES = (monday|tuesday|wednesday|

thursday|friday|saturday|sunday|

january|february|march|april|may|june|july|

august|september|october|november|december)

D1: References. The first regular expression D1 is used to capture simple reference
expressions that refer to uncertain points in time. DX(n) marks the n-th group captured
by the regular expression DX .

D1 = (PRESENT|PAST|FUTURE)_REF

Slots: SD1=D1(1)

D2: Explicit Dates. The regular expression D2 detects explicit values that do not need
further normalization, such as days in the YYYY-DD-MM format, e.g., 2022-03-15.

D2 =(BC)?(\d\d?|XX)?(\d\d|XX)? (?:-(W)?(\d\d?|XX|SPECIAL))?

(?:-(\d\d?|XX|WE))?\)? (?:T(\d\d|X|DAYTIME|XX)?

(?::(\d\d))?(?:(?::|-)(\d\d))?)?

Slots: SB=D2(1), SD1=D2(2), SD2=D2(3), SD3=D2(5),
SD4=D2(6), ST1=D2(7), ST2=D2(8), ST3=D2(9)|D2(4)

P1: Durations. The third regular expression P1 detects expressions of type DU-
RATION, e.g., P1D2H. These are defined as P<number><unit> for units of at least day
granularity and PT<number><unit> for smaller granularities. We capture up to two
different units P1D2H (1 day and 2 hours) but ignore further units that are theoretically de-
fined in the TimeML specifications but do not often occur in practice (those did not occur
at all in our datasets).

P1 = (P|PT)(\d\d?|X|XX)(\d\d|\.)?(\d\d?)?)?(UNITS)?

(\d\d?)?(UNITS)?

Slots: SB=P1(1), SD1=P1(2), SD2=P1(3), SD3=P1(4), SD4=P1(6),
ST1=P1(5), ST2=P1(7)

D3: Relative Dates. While the previous regular expressions D1, D2, and P1 follow
the TimeML specifications and capture fully normalized expressions, i.e., anchored values,
the following regular expressions capture CIRs as used internally by HeidelTime. They
represent relative expressions that need to be anchored.
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D3 detects relative expressions with respect to a certain point in time, such as
this-day-plus-2 (the day after tomorrow).

D3 = UNDEF-(this|next|last|REF| REFUNIT|REFDATE)?-?

(UNITS_F|SPECIAL)?-??(NAMES|SPECIAL)|XX|\d\d?)?

(?:-?(\d\d?|XX))?(?:-(PLUS|MINUS|LESS)-(\d\d?)-?

(\d\d?)?-?(\d\d?)?)?\)?(?:T(\d\d?|X|DAYTIME|XX)?

(?::(\d\d?|XX))?(?:(?::|-) (\d\d|XX))?)

Slots: SB=D3(5), SD1=D3(1), SD2=D3(2), SD3=D3(3),
SD4=D3(4), ST1=D3(9), ST2=D3(10), ST3=D3(11),
SA1=D3(6), SA2=D3(7), SA3=D3(8)

D4: Relative Dates (coarse). D4 captures underspecified expressions like May that
is missing year information and would be represented with the CIR UNDEF-year-05.

D4 = UNDEF-(year|decade|century?)-?(\d\d?|X)?-?(\d\d?|X)?-?

(\d\d?|X|SPECIAL)?\)?(?:T(\d\d?|X|DAYTIME)?

(?::(\d\d?|XX))?(?:(?::|-)(\d\d|XX))?)?

Slots: SD1=D4(1), SD2=D4(2), SD3=D4(3), SD4=D4(4),
ST1=D4(5), ST2=D4(6), ST3=D4(7)

D5: Holidays and functions. Finally, D5 covers special functions used by Heidel-
Time. These functions are used to compute days with respect to weekdays and moveable
feast like EasterSunday that refer to different days depending on the year. For exam-
ple, the earliest possible date of Easter Sunday is March 22, and the latest is April 25 in the
Gregorian calendar.9 The concrete date is then computed by an external function given a
year.10

D5 = (UNDEF-year|UNDEF-this-year|UNDEF-century\d\d|\d\d\d\d)

-(\d\d)-00 funcDateCalc\((

EasterSunday|EasterSundayOrthodox|

WeekdayRelativeTo| ShroveTideOrthodox)

\(YEAR(?:(?:-(\d\d)))?(?:-(\d\d))(?:,\s?(-?\d\d?))?

(?:,\s?(-?\d\d?))?(?:, ( t rue| f a l s e))?\)\)

Slots: SB=D5(3), SD1=D4(1), SD2=D4(2), SD3=D4(5),
SD4=D4(7), ST1=D4(3), SA1=D5(6), SA2=D5(7), SA3=D5(8)

9https://en.wikipedia.org/wiki/List_of_dates_for_Easter [last accessed March
5, 2022.]

10https://www.linuxtopia.org/online_books/programming_books/python_pro

gramming/python_ch38.html [last accessed March 5, 2022.]

https://en.wikipedia.org/wiki/List_of_dates_for_Easter
https://www.linuxtopia.org/online_books/programming_books/python_programming/python_ch38.html
https://www.linuxtopia.org/online_books/programming_books/python_programming/python_ch38.html
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8.4.2 Model Settings

This section will describe the experimental setups for the extraction and normalization
of temporal expressions with our neural networks. We also give further details on the
alignment methods for the multilingual extraction models and the anchoring of context-
independent representations.

Extraction Models. We model the extraction as a sequence-labeling problem as de-
scribed in Section 8.3.1. For this, we convert the annotated corpora from TimeML format
into the tokenized BIO format using Spacy tokenizers.11

Our first model is based on the multilingual XLM-R transformer (Conneau et al., 2020)
with a linear layer for classification. For the monolingual extraction (Mono), we train one
model per language on the language-specific gold-standard resources if available or the
weakly-supervised data otherwise. For the multilingual setting (Multi), we train a single
model on the combined training resources of all 17 languages as given in Table 8.1. The
models are trained for a fixed number of three epochs.

Moreover, we explore the adversarial training for embedding alignment. For this,
we use BiLSTM-CRF models based on BERT or fastText embeddings. These multilin-
gual models are trained using the Portuguese TimeBank (Costa and Branco, 2012) and
TEMPEVAL-3 (UzZaman et al., 2013) for Spanish and English (TimeBank subset). To
demonstrate that our model is able to generalize to unseen languages, we perform tests us-
ing the French (Bittar et al., 2011), Catalan (Saurı, 2010) and Basque TimeBanks (Altuna
et al., 2016) and the DIEZEIT subset of the German KRAUTS corpus (Strötgen et al., 2018).

We use the AdamW optimizer (Loshchilov and Hutter, 2019) with a learning rate of
1e − 5 for the BiLSTM-CRF model part and 1e − 6 for BERT. These modes are trained
for a maximum of 50 epochs using early stopping on the development set. The BiLSTM
has a hidden size of 128 units per direction. The labels are encoded in the BIO format.
For regularization, we apply dropout with a rate of 10% after the input embeddings. The
discriminator for adversarial training has a hidden size H of 100 units and is trained after
every 10th batch of the sequence tagger with λ set to 0.001.

Normalization Model In the following section, we will give details on our normaliza-
tion model based on the multilingual XLM-R transformer (Conneau et al., 2020). For the
normalization to CIRs, we train our proposed model with masked language modeling on
the weakly supervised data (see Section 8.3). In our experiments, we evaluate this model
in combination with the multilingual extraction model (Multi+OUR) as well as in combi-
nation with the gold boundaries for temporal expressions (Gold+OUR), which serves as an
upper bound.

11https://spacy.io/ [last accessed March 5, 2022.]

https://spacy.io/
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fastText-LSTM BERT-LSTM XLM-R

Task Metric
HT unaligned

aligned
w/o Dict.

aligned
w/ Dict

aligned
w/ AT

unaligned
aligned
w/ AT

Mono
(gold)

Multi
(17 lang.)

en
strict 81.78 68.36 69.10 70.80 75.63 † 73.09 74.80 † 85.7 82.0

relaxed 90.71 79.14 79.03 81.21 82.03 † 84.34 86.61 † 92.3 88.9
type 83.27 72.13 72.18 73.32 72.85 † 75.50 79.53 † 86.5 82.8

es
strict 85.87 75.67 76.53 77.44 79.64 † 79.11 79.55 89.6 89.3

relaxed 90.13 82.43 82.45 82.47 84.46 † 84.12 85.71 94.5 94.2
type 87.47 78.07 78.46 78.24 80.88 † 80.22 80.11 91.4 90.0

pt
strict 71.59 70.36 70.20 70.48 72.41 74.52 75.47 79.0 76.6

relaxed 81.18 76.77 75.86 76.29 78.15 80.75 81.51 82.4 81.3
type 76.75 72.29 71.50 72.26 73.84 75.47 76.23 79.0 78.1

Table 8.3: Results for multilingual models trained on English, Spanish and Portuguese data
jointly. † highlights aligned models with statistical significant differences to the
unaligned model (paired permutation test, p=0.05). HT stands for HeidelTime.
Monorefers to the XLM-R finetuned on gold-standard monolingual data and
Multifor the variant trained on 17 jointly.

For the anchoring of CIRs, we use rules similar to the HeidelTime rules.12 In par-
ticular, anchor dates can be given by the document creation time or by previous temporal
expressions (Strötgen and Gertz, 2016).

8.5 Results and Analysis

This section will provide the results of our extraction and normalization experiments. We
compare our model to HeidelTime (Strötgen and Gertz, 2013).

8.5.1 Results for Extraction

The results for our multilingual extraction experiments with embedding alignments are
provided in Table 8.3. We train three models with different random seeds and report the
performance of the model with median performance on the combined development set of
all three languages for the BERT and fastText-based models. Moreover, we compare to
the XLM-R model from our normalization pipeline that was trained in a pure monolingual
fashion (Mono) or on a larger set of multilingual resources from 17 languages (Multi).

The effects of aligning fastText embeddings are clearly visible in Table 8.3. The su-
pervised alignment using a dictionary is always superior compared to the unsupervised

12More precisely, we use a slightly modified version of HeidelTime’s SPECIFYAMBIGUOUSVAL-
UESSTRING function, which incorporates tense information of the context play a critical role. We compute
that using morphological features from Spacy (https://spacy.io/usage/linguistic-featur
es#morphology [last accessed March 5, 2022.])

https://spacy.io/usage/linguistic-features#morphology
https://spacy.io/usage/linguistic-features#morphology
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BERT-LSTM XLM-R

Task Metric
HeidelTime

-Auto
unaligned

aligned
w/ AT

Mono
(weak)

Multi
(17 languages)

fr
strict 52.35 60.12 62.58 82.5 82.4

relaxed 72.02 74.23 75.46 88.1 89.8
type 68.70 61.96 62.07 79.7 76.9

de
strict 38.87 63.34 66.53 75.4 70.9

relaxed 52.11 76.51 77.82 85.9 82.6
type 50.15 66.95 69.04 80.6 76.2

ca
strict 28.11 63.24 64.21 29.5 77.3

relaxed 62.81 74.95 77.00 64.3 87.8
type 60.84 65.66 67.85 62.3 82.5

eu
strict 22.54 43.96 47.87 0.0 59.7

relaxed 26.76 61.54 63.83 0.0 70.2
type 23.94 57.14 58.51 0.0 66.0

Table 8.4: Results for the unsupervised cross-lingual extraction. We compare to Heidel-
Time with automatically generated resources, which resembles a similar setting.
Here, monolingual refers to the XLM-R finetuned on weakly-supervised mono-
lingual data.

alignment without a dictionary or the unaligned embeddings. Our proposed adversarial
alignment (w/ AT) leads to the best results across languages. The performance of BERT is
close to the best fastText model. Aligning BERT with adversarial training also increases
performance. The improvements are smaller compared to fastText but still statistically
significant for English.

Table 8.4 provides transfer results of the models with BERT embeddings to languages
without labeled training data.13 It outperforms the state-of-the-art HeidelTime models by
a large margin. The impressive performance of the multilingual BERT in the cross-lingual
setting can be explained by the fact that the model has seen many sentences in our target
languages during the pre-training phase, which can now be effectively leveraged in this
new setting.

Our XLM-R model from the pipeline experiments outperforms the aligned LSTM-
based extraction models for the high-resource experiments. We assume that this model
achieves better results because the XLM-R model is often considered superior compared to
mBERT in multilingual settings (Conneau et al., 2020). Moreove, the fine-tuning training
of XLM-R might be better than the feature-based BiLSTM approach we use for BERT,
and the XLM-R model was trained on a much larger set of languages in our experiments.
Note that the monolingual XLM-R model outperforms the current state of the art for En-
glish (Lee et al., 2014) who achieve 83.1/91.4/85.4 for strict/relaxed/type F1.

13The results of the fastText models were considerably lower for cross-lingual transfer.
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HeidelTime Mono+OUR Multi+OUR Gold+OUR

Str. Rel. Type Val. Str. Rel. Type Val. Str. Rel. Type Val. Val.

avg. 54.4 65.6 60.9 52.5 61.7 73.8 70.9 55.5 75.0 85.8 80.4 64.0 73.9

High-resource languages
de (N) 69.7 79.3 75.4 62.4 75.4 85.9 80.6 61.5 70.9 82.6 76.2 59.5 73.2
de (W) 88.5 94.3 89.0 84.8 89.6 97.0 96.0 83.8 88.9 96.7 95.4 85.7 87.3
en (N) 81.8 90.7 83.3 78.1 85.7 92.3 86.5 72.5 82.0 88.9 82.8 70.5 78.3
en (W) 90.6 94.3 90.6 94.3 93.1 96.6 93.1 89.7 94.7 98.3 87.7 94.2 94.2
es (N) 83.7 90.2 86.1 80.9 89.6 94.5 91.4 79.0 89.3 94.2 90.0 77.1 84.4
et (N) 42.4 57.4 51.3 44.0 3.3 28.0 24.4 9.6 55.5 78.0 72.0 45.2 64.8
fr (N) 85.6 90.6 82.3 73.3 82.5 88.1 79.7 67.9 82.4 89.8 76.9 61.4 68.0
hr (W) 93.3 95.8 94.6 85.7 84.1 90.8 89.5 74.6 86.3 91.7 90.1 75.7 84.7
it (N) 84.4 92.9 83.5 74.1 69.8 81.4 73.7 60.4 76.8 82.4 78.4 67.2 75.3
nl (N) 54.0 91.3 79.0 44.4 61.4 73.0 67.2 42.7 76.0 82.7 81.4 53.5 64.6
pt (N) 71.3 80.9 76.5 63.2 87.1 91.2 85.0 68.7 87.1 91.1 86.5 68.7 76.6
vi (W) 92.6 89.5 96.6 91.6 87.6 85 89.8 83.5 91.5 93.8 92.6 90.8 91.2
avg. 78.2 87.3 82.4 73.1 75.8 83.6 79.7 66.2 81.8 89.2 84.2 70.8 78.6

Low-resource languages
ca (N) 28.1 62.8 61.1 43.6 29.5 64.3 62.3 40.2 77.3 87.8 82.5 59.7 68.1
el (W) 2.2 4.9 4.9 1.3 47.0 88.2 86.1 64.6 81.7 92.0 90.2 70.6 83.7
eu (N) 22.5 26.8 23.9 18.3 0.0 0.0 0.0 0.0 59.7 70.2 66.0 45.0 50.4
id (N) 19.7 54.7 44.5 40.1 17.4 39.7 30.6 25.6 49.7 79.5 63.9 46.9 64.8
pl (N) 18.8 27.2 16.5 11.2 86.1 92.5 87.6 58.7 86.7 92.2 87.7 59.0 66.0
ro (N) 3.2 19.5 16.7 5.5 3.8 22.6 37.0 7.7 9.8 47.2 39.1 19.7 54.6
ua (W) 1.6 2.8 2.2 1.2 80.2 90.6 87.5 63.6 79.4 90.7 88.8 65.4 74.5
avg. 13.7 28.4 24.3 17.3 37.7 56.8 55.9 37.2 63.5 79.9 74.0 52.3 66.0

Table 8.5: Overview of the extraction (Strict, Relaxed, Type F1) and normalization results
(value F1) for our models and HeidelTime. The gold extractions (Gold+OUR)
simulate a pipeline with perfect extractions. (N) and (W) refer to news articles
and Wikipedia, respectively.

As the XLM-R models performed best, we focus on this model type and evaluate it on
more languages, including more low-resource languages. The extended extraction results
are visualized in Figure 8.4 and detailed information is provided in Table 8.5. In general,
multilingual extraction outperforms monolingual extraction, probably because the model
is able to use knowledge from different languages. Our multilingual model achieves +2 F1

for high-resource and +51 F1 for low-resource languages compared to HeidelTime. Note
that HeidelTime with automatically created rules has a poor performance for some low-
resource languages (el, ro, ua). This is similar to the observations of Grabar and Hamon
(2019) who found that “[e]xploitation of this automatically built system produced no results
when applied to the Ukrainian data” (Grabar and Hamon, 2019, p. 3). For these languages,
the automatically generated are not good enough in practice to perform temporal tagging,
which underlines the need for multilingual systems like our pipeline model.
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Figure 8.4: Extraction results for temporal expressions in 17 languages.
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Figure 8.5: Normalization results for temporal expressions in 17 languages.

8.5.2 Results for Normalization

The normalization results are given in Figure 8.5 and Table 8.5. Our multilingual masked
language model matches HeidelTime’s performance rather close for high-resource lan-
guages and outperforms it for low-resource languages with an increase of 35 F1 points
on average. Our method can generalize well across languages but loses some accuracy in
monolingual settings, as we use a single multilingual model that was optimized for many
languages at once.14

14The rather low performance of our models and HeidelTime for the high-resource languages Estonian
(et) and Dutch (nl) can be explained by the poor data quality of these corpora. An inter-annotator agreement
of 44 F1 was reported for the Estonian corpus (Orasmaa, 2014), which is close to our results. The Dutch
data was translated from English and automatically annotated via cross-lingual projections (Minard et al.,
2016), which may reduce the annotation quality. Note that only the first five sentences for each document
were annotated for the MEANTIME corpora (itand nl). We restricted our evaluation to these annotated parts
accordingly.
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News Wiki Low-Resource
de en de en ca eu

OUR 60.3 72.0 85.7 91.2 59.7 47.1

Decoding Strategy (OUR uses Sequential)
w/ Simultaneous 59.5 70.5 85.5 91.2 59.7 45.0
w/ Viterbi 61.5 71.3 85.4 91.2 59.7 44.0

Value Representation
w/o OUR Slots 58.9 70.0 81.0 87.7 57.4 27.3
w/o OUR CIR 56.5 59.0 64.2 45.6 34.2 21.5

Training Strategy
w/o Curriculum 59.3 70.5 83.2 91.3 57.3 30.5

Training Data (OUR uses Weak)
Weak + Gold 55.6 65.8 84.5 90.8 - -
only Gold 11.0 13.4 11.5 15.6 - -
only Monolingual 57.8 67.4 85.6 87,7 28.4 7.3

Table 8.6: Ablation study for our model components (value F1). All rows ablate for a
single effect compared to OUR.

Finally, we can give an upper bound for our normalization method by predicting values
on the gold extractions. Using these extractions in our pipeline model increases the average
performance from 64.0 F1 up to 73.9 F1 by almost ten points. This shows that the extraction
part still offers room for future improvements that our normalization model is able to use.

8.5.3 Ablation Studies of Normalization Model

As our proposed normalization model consists of multiple components, we now investigate
their individual effects in more detail. The results are given in Table 8.6.

Decoding Strategies. First, we test different decoding strategies as described in Sec-
tion 8.3. We find that sequential decoding works best. However, it also requires more
computation time. A cheaper alternative with only minor performance decreases is the
simultaneous decoding of all masks.

Value Representations. Second, we analyze the impact of different value representations
by comparing our proposed approach with CIR and slot tokenization to (i) tokenization of
values using the standard XLM-R tokenizer instead of pre-defined slots (w/o OUR Slots),
and (ii) training a model to directly predict the anchored value without CIRs in between
(w/o OUR CIR). For (i), we find that our slot method has major advantages when processing
narrative texts, such as Wikipedia, due to the higher amount of relative expressions (cf.,
Table 8.7), that are tokenized into many subtokens (up to 34, instead of 11 when using our
slots). For (ii), we add the document creation time to the input of the model so that the
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de en

News 67.1 / 32.9 52.3 / 47.7
Wiki 47.6 / 52.4 44.2 / 55.8

Table 8.7: Distribution of explicit / relative values according to HeidelTime (in %).

model has all necessary information to predict the fully normalized value directly instead
of a CIR. However, we find that current transformers are not able to correctly incorporate
this information and mostly predict a memorized, incorrect value. Thus, using CIRs as an
intermediate step is important for neural temporal tagging.

Training Strategy and Data. Finally, we investigate the training strategy and training
data. Our curriculum learning has advantages for low-resource languages as it reduces
the training complexity, which helps for the difficult adaptation to languages with few re-
sources. Weakly-supervised training data is required, as the amount of gold-standard data is
too small to train the MLM model. Finetuning the trained MLM model further on gold data
(Weak+Gold) decreases performance slightly. Training the model only on monolingual
data also decreases performance, highlighting the prospects of our multilingual approach.

8.6 Conclusions

In this chapter, we explored multilingual temporal tagging. In particular, we addressed
both of its subtasks: the extraction and normalization of temporal expressions with neu-
ral networks. For this, we proposed multilingual extraction models that leverage training
resources from many languages and that set the new state of the art for multilingual extrac-
tion of temporal expressions. In addition, we explored the alignment of languages inside
multilingual transformers and word embeddings and demonstrated that these methods are
a step forward towards truly multilingual models.

Moreover, we have introduced a new method for normalizing temporal expressions
by training transformers models with on masked language modeling to predict context-
independent representations in our a new slot-based prediction scheme. We were able to
train a single multilingual model for the task with this approach — the first neural normal-
ization method for temporal expressions. We evaluated our method in 17 languages and
set the new state of the art in low-resource languages with massive improvements of 35 F1

points on average. The success of our method demonstrates the potential of neural networks
for temporal normalization, and we are convinced that it will enable future research on this
topic. A promising research direction is the joint modeling of extraction, normalization,
and resolution.
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Chapter 9

Summary and Outlook

The field of information extraction was significantly reshaped since the broad adoption of
deep-learning methods for natural language processing. Major advantages of these neural
approaches are new task-agnostic representation models that can be used to solve many
tasks with minimal architectural changes. However, these models require large-scale pre-
training, which opened up many exciting research directions concerning the applicability of
neural networks in low-resource settings, including non-standard domains and languages.

9.1 Summary and Conclusions

In this thesis, we targeted various information extraction tasks in low-resource domains
and languages and explored different representation learning methods to enable deep learn-
ing in these challenging settings, including robust model architectures, advanced training
methods, and the potential of transfer learning. Our proposed methods allow us to create
or leverage robust input representations for information extraction tasks in non-standard
domains or languages. We will summarize our main contributions in the following:

(1) Domain-specific knowledge contained in word representation methods has a positive
effect on information extraction models in non-standard domains. We demonstrated that
deep learning models can be greatly improved in these domains by incorporating domain-
specific knowledge from the target domain, either via fine-tuning on documents from the
target domain (Chapter 4), joint training of multiple tasks, or combining domain-specific
and general-domain representations (Chapter 3).

(2) The combination of different word representations does not only help to infer domain
knowledge but can also be used to capture other method-specific properties of these repre-
sentations, such as the strength of word-level embeddings and the flexibility of subword-
based embeddings. We made important contributions by studying meta-embedding meth-
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ods that can dynamically incorporate the advantages of many embeddings and by proposing
a novel architecture to improve performance in low-resource settings (Chapter 5). We fur-
ther showed the applicability of meta-embeddings to combine embeddings from different
languages (Chapter 6).

(3) The knowledge contained in pre-trained languages models, in particular specific do-
main knowledge, helps to address problems across tasks in non-standard domains. Its
transfer enables the creation of task-specific models when the training data is limited as-
suming that transfer sources are carefully selected. We propose a new similarity measure
that outperforms the existing similarity measures, in particular for ranking cross-task trans-
fer sources. Moreover, we showed that the source selection process should be dynamic
with respect to the number of transfer sources — an aspect not considered in prior ap-
proaches. We proposed dynamic selection models that are able to predict sets of helpful
transfer sources and avoid negative transfer (Chapter 7).

(4) Pre-trained language models can also be transferred across languages by training on
many languages jointly and applying the models to unseen languages. We exemplarily
showed this for temporal tagging by training multilingual extraction and normalization
models. For this, we proposed the first neural method for temporal expression normal-
ization by using a masked language modeling training objective and context-independent
representations and explored the adversarial alignment of multilingual models (Chapter 8).

(5) We performed broad evaluations across a total of 30 languages and 16 domains, for
instance in the clinical domain, to demonstrate the robustness of our methods for various
sequence tagging and classification tasks.1 Our models set the new state of the art for
many of these datasets. We have won two international shared tasks on Spanish clinical
NLP, highlighting the language- and domain-agnostic applicability of our models, as we
participated as neither language nor domain experts and outperformed various approaches
by teams with domain or language experts.

9.2 Outlook and Discussion

Despite various contributions detailed in this thesis and promising advances in the field
in general, information extraction, in particular in low-resource domains and languages,
is far from being a solved problem. For example, Ruder (2019a) named low-resource
NLP one of the four biggest open problems in research. In this section, we will discuss
current challenges and outline future opportunities that we see in the field of low-resource
information extraction.

1Languages: bg, ca, cs, da, de, el, en, es, et, eu, fa, fi, fr, ga, he, hi, hr, hu, id, it, nl, no, pl, pt, ro, sl, sv,
ta, ua, vi (30 in total). Domains: academic publications, biographies, clinical, conversations, cybersecurity,
emails, financial, how-to guides, literature & fiction, news, sms, social media (including Twitter and Reddit),
travel guides, webblogs, wetlab protocols, wikipedia (16 in total).
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Adapting Language Models to New Domains and Languages Pre-trained language
models are trained on a diverse set of domains and languages. However, as of today, the
languages covered during the pre-training are not equally well represented in the resulting
model, which reduces the possible performance for low-resource languages significantly
(Pires et al., 2019). Solutions, such as our adversarial training for domain-robust meta-
embedding or multilingual alignment, can help to utilize the existing resources in a single
model across domains and languages without increasing the amount of training data or the
number of model parameters. Nonetheless, these methods only improve the model for lan-
guages and domains known at the time of training. More dynamic solutions are required
for integrating new tasks after the training, as the field of information extraction will likely
keep expanding into new tasks, domains, and languages, and the training of new models
from scratch is expensive. Promising research on this problem includes the extension of
existing models for new languages (Pfeiffer et al., 2021) or domains, e.g., by using com-
positional approaches as done by Gururangan et al. (2021) to add new domains quickly
without touching the majority of model parameters. We think that exploring this research
direction will not only help to reduce the economic and ecological impacts (Strubell et al.,
2019; Schwartz et al., 2020; Bender et al., 2021) by reusing existing resources, but will also
help to tackle information extraction in new languages and domains, which could not have
been addressed otherwise due to resource limitations.

Combinations of Methods. Another challenging future research direction concerns the
combination of different methods. For example, we have shown in Chapter 5 that meta-
embeddings on word level and domain-adapted transformers on subword level both greatly
improve over the standard models by leveraging domain knowledge in two different ways.
Nonetheless, their combination still does not further improve performance in practice,
which highlights the need for future research in this direction. We found similar effects
for model transfer over clinical datasets and clinical pre-training of general-domain repre-
sentations in Chapter 7. However, this is not limited to the methods discussed in this thesis,
and includes other methods like data augmentation (Wei and Zou, 2019; Dai and Adel,
2020; Feng et al., 2021) or distant supervision (Mintz et al., 2009; Adelani et al., 2020).
One assumption is that these methods are complementary, as hypothesized by Longpre
et al. (2020) for the case of data augmentation and LM pre-training. Future work might
explore the relationships between these methods and analyze how they can be combined
efficiently to benefit from all their advantages.

Multi-task and Pipeline Training. One more promising direction is the joint modeling
of many tasks. For example, the joint modeling of NLP pipelines, such as our anonymiza-
tion pipeline (see Chapter 3), achieved not only performance improvements but also al-
lowed a structured information flow, e.g., to perform model-internal anonymization. More
work in this direction could possibly also includes future research on a joint model for tem-
poral tagging based on our methods (see Chapter 8). In addition, the end-to-end learning
of many tasks in a single model instead of using pipeline structures has been addressed re-
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cently in larger scales for dozens of tasks and demonstrated good results for many different
tasks (Raffel et al., 2020), languages (Xue et al., 2021) and modalities, e.g., text and images
(Radford et al., 2021; Lin et al., 2021). However, all of these models require large-scale
datasets for each task. Therefore, an interesting future direction is multi-task training in
non-standard domains that considers the existing resource constraints. Such a model has to
be trained in a clever way to learn the more general shared knowledge without forgetting
task-specific information.

Summary. The observations made in this thesis and the above-discussed directions high-
light the importance of research on domain and language-robust information extraction. We
made many vital contributions in this field by taking significant steps towards robust input
representations in non-standard domains and languages with our proposed methods. We
are optimistic that the successes of our techniques can be generalized to other low-resource
scenarios which were not part of our comprehensive evaluations and that higher-level tasks
relying on these information extraction models will equally benefit.
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