
Optimal Battery-Aware Scheduling
On Model-based and Data-driven

Mastering Satellite Operation:

Dissertation zur Erlangung des Grades des Doktors der Ingenieurwissenschaften
(Dr.-Ing.) der Fakultät für Mathematik und Informatik der Universität des

Saarlandes

vorgelegt von

GILLES NIES

Saarbrücken, 2021

Dean of the faculty Prof. Dr. Jürgen Steimle

Day of colloquium 22.06.2022

Chair of the committee Prof. Dr. Verena Wolf

Reviewers Prof. Dr. Holger Hermanns
Prof. Dr. Boudewijn Haverkort
Asst. Prof. Dr. Morteza Lahijanian

Academic assistant Dr. Alexander Gress

Abstract

Rechargeable batteries as a power source have become omnipresent. Es-
pecially the lithium-ion variant powers virtually every contemporary portable
device, it constitutes the central energy source in the domains of e-mobility,
autonomous drones and robots, most earth-orbiting spacecraft like satellites
and many more.

In this work, we take the perspective of the kinetic battery model, an intu-
itive analytic model, that keeps track of a battery’s charge as it is strained with
a sequence of loads over time. We provide the mathematical foundation of the
battery model, extend it with capacity limits and realistic charging behavior,
as well as uncertainty in its initial state and the load it is strained with. In ad-
dition, we show how to estimate the non-measurable state of a kinetic battery
via measurable quantities, like voltage and current, using Kalman filters.

We derive efficient energy budget analysis algorithms in the form of disc-
retization and analytical bisection schemes, deduce their efficiency, empir-
ically analyze their performance and identify their individual strengths and
weaknesses.

We show how our techniques can be used during design time and in-flight,
in the context of two nanosatellite missions GOMX–1 and GOMX–3. For the for-
mer, we derive probabilistic workload models to analyze the mission’s yearly
energy budget, while for the latter, we bridge the gap from analysis to synthesis
by leveraging model checking techniques of the formal methods community
in order to produce battery-aware optimal schedules to be executed by the
satellite. We demonstrate the adequacy of our scheduling approach via three
in-orbit test runs on GOMX–3, and show a close correspondence between pre-
dicted workload and battery state compared to logged telemetry data such
as voltage and current. Finally, in an attempt to continuously perpetuate the
schedule synthesis, we extend the scheduling workflow with Kalman filters in
order to additionally harness these in-flight telemetry data so as to regularly
adjust the battery state estimation.

v

vi

Zusammenfassung

Wiederaufladbare Akkumulatoren als Energiequelle sind mittlerweile om-
nipräsent. Insbesondere die Lithium-Ionen Variante versorgt fast jedes mod-
erne, portable Gerät mit Energie. Sie ist in einer Vielzahl von Bereichen inte-
gral, insbesondere in den Bereichen der E-Mobilität, der autonomen Dronen
und Roboter, sowie der Erdsatelliten.

Das Augenmerk dieser Arbeit richtet sich auf das kinetische Batteriemod-
ell. Dieses intuitive, analytische Modell, beschreibt die zeitliche Entwicklung
des Ladezustands eines Akkumulators, der einer Sequenz elektronischer Las-
ten unterzogen wird. Das mathematische Fundament des Modells wird er-
weitert um Kapazitätsgrenzen und realistisches Ladeverhalten, sowie um den
Umgang mit Unsicherheit im Kontext des initialen Ladezustands und der an-
liegenden Last. Darüber hinaus, schlagen wir ein auf dem Kalman-Filter basie-
rendes Schätzverfahren vor, welches den unmessbaren Ladezustand anhand
messbarer Quantitäten, wie Spannung und Stromfluss, approximiert.

Wir leiten effiziente Algorithmen her, die der Bestimmung von Energiebe-
darf und Energiebilanz eines batteriebetriebenen Geräts dienen. Diese be-
ruhen auf Diskretisierungs- sowie auf analytischen Intervallhalbierungsver-
fahren. Es folgt eine Analyse der theoretischen und praktischen Effizienz,
sowie die Identifizierung etwaiger individueller Stärken und Schwächen der
Paradigmen.

Anhand zweier konkreter Fallstudien zeigen wir, wie unsere Verfahren die
Planung sowie den laufenden Betrieb einer Nanosatellitenmission erleichtern
und verbessern. Für die GOMX–1 Mission wird ein probabilistisches Arbeits-
lastmodell eines Nanosatelliten aus Flugtelemetriedaten inferiert, anhand
dessen die jährliche Energiebilanz des Satelliten hergeleitet werden kann. Im
Kontext der zweiten Mission, GOMX–3, entwerfen wir ein Verfahren zur Syn-
these energieoptimaler Ablaufpläne, die in der Praxis durch den Satelliten aus-
geführt werden. Zu diesem Zeck werden Methoden aus dem Bereich der Mod-
ellprüfung herangezogen und mit den Analyseverfahren des Batteriemodells
verzahnt. Anhand dreier konkreter Testläufe, lässt sich eine starke Korrespon-
denz zwischen Telemetriedaten und vorhergesagter Quantitäten erkennen,
welche die Angemessenheit unserer Syntheseverfahren untermauert. Zur kon-
tinuierlichen Fortsetzung und Verlängerung der synthetisierten Pläne über
die gesamte Missionsdauer, wird schließlich das Verfahren durch einen weit-
eren Zwischenschritt ergänzt. Dieser dient durch das Verwenden von Kalman-
Filtern dazu, den vorhergesagten Ladezustand des Akkumulators anhand be-
sagter Telemetriedaten regelmäßig anzupassen, um eventuelle, durch das Bat-
teriemodell hervorgerufene Abweichungstendenzen auszugleichen.

vii

viii

Contents

Contents ix

1 Introduction 1
1.1 Contribution . 2
1.2 Chapter Origins . 4
1.3 Outline . 4

2 Preliminaries 5
2.1 Battery Models . 5
2.2 Kalman Filter . 6
2.3 (Priced) Timed Automata . 7

3 The Kinetic Battery Model 9
3.1 The Kinetic Battery Model . 9
3.2 Depletion . 15
3.3 Capacity Limits . 17
3.4 Approximation Of Saturation Time Points 23
3.5 Stochastic KiBaM . 31
3.6 Markov Task Processes . 42
3.7 KiBaM and measurements . 46
3.8 Proof of Concept . 47
3.9 Discussion . 49

4 Algorithms 51
4.1 Discretization Algorithms . 51
4.2 Static Discretization . 57
4.3 Adaptive Discretization . 59
4.4 Algorithm . 72
4.5 Percentile propagation . 78

5 Applications 91
5.1 Energy Budget Analysis Of GOMX–1 . 91
5.2 Battery-Aware Scheduling . 98

5.3 Receding-Horizon Scheduling . 121

6 Conclusion 131
6.1 Achievements . 131
6.2 Outlook . 134

Bibliography 135

x

CHAPTER

1

Introduction

Batteries as a power source have become more or less omnipresent. Especially
Lithium-ion battery technology is built into almost every contemporary portable
device like notebooks, smartphones, smart watches, wireless headphones and
its use is only increasing, i.e. electric cars and bikes, unmanned flying drones or
multicopter aircraft, cordless vacuum cleaners, autonomous vacuuming robots,
video gaming handhelds and even entire video gaming consoles. The technology
has become an integral part of more and more homes and provides stability in our
otherwise rather volatile power grids by interposing large collections of battery
cells, serving as energy buffers. For most spacecraft that orbit any astronomical
body in our solar system, such batteries serve as rechargeable power source as
such objects are bound to enter eclipse at some point, and thus have no direct
power supply. It is almost safe to say, that the use of batteries will grow in the
future rather than decline, ever-increasing the need for estimating, analyzing and
planning with the remaining battery charge in all kinds of devices and situations.

In the space domain, historically a very conservative domain, due to the im-
mense cost of space missions, a revolution has been looming. With the standard of
nanosatellites and CubeSats in 1999, space access was rendered financially feasi-
ble for universities, spin-offs thereof and small start-up enterprises. Proportionally
to the decreasing cost of launching a satellite into space, also the inhibitions of
using modern, more experimental methods decreased, making the space domain
a scientifically lucrative playground for state-of-the-art automation, analysis and
planning techniques.

In this thesis, we take the perspective of analytic battery models as well as the
rigorous mathematical analysis thereof, and cross-fertilize this domain with the
modelling formalisms and verification techniques of the formal methods commu-
nity, in order to develop automatic, efficient and precise analysis and scheduling
procedures particularly tailored to nanosatellite missions.

Specifically, we examine the kinetic battery model, a simple, intuitive, yet pre-
cise analytic battery model and extend it appropriately to fit the space domain.
These extensions include the incorporation of capacity limits while charging, un-
certainties with regards to the initial battery state as well as the load a battery is
strained with and the consolidation of the formal battery model with real-life mea-
surements of said battery, in order to correct for any bias or drift the model may

1. Introduction

exhibit. We derive the theoretical foundations of efficient but accurate analysis
algorithms to estimate depletions risks and empirically as well as theoretically
investigate their computational efficiency and accuracy.

With sophisticated energy budget analysis techniques in place, we proceed to
the formal methods world, so as to first leverage familiar modelling formalisms
to capture the energy-relevant aspects of a satellite mission over time while in or-
bit. Later we use the associated model checking techniques to synthesize optimal
plans for the mission, while strictly adhering to side constraints, mostly but not
exclusively about the battery state. In general, most battery models are inherently
nonlinear, and hence cannot be directly expressed by modelling formalisms that
come with efficient analysis techniques. Hence, we resort to a simple linear bat-
tery model in the schedule synthesis part, that is completed to a feedback loop via
a validation step involving the tailored analysis algorithms of the more realistic
kinetic battery model. This validation step is able to reject and exclude a synthe-
sized schedule, that was optimal with respect to the linear model, yet turned out
to be too energetically expensive with respect to the kinetic battery model. In case
a schedule is rejected, re-synthesis is triggered.

In orbit, where direct contact to a spacecraft, and hence also direct influence
on its behavior via its operators is rather sparse. Hence, in order to optimize for
productivity of the satellite, an operator must be sufficiently confident in the ac-
curacy of the involved models. However, no model is without flaws, and may be
biased or expose drifts with respect to reality. Detection of such drifts may only
occur as late as with the next spacecraft contact, and its associated telemetry data
downlink. A reaction to counteract a drift may be delayed by even more than one
orbit, as a satellite may have already left the ground station’s field of vision. The
scheduling procedure is thus ameliorated with a battery state estimation step that
consolidates model-based data with the most recent telemetry data as soon as
they arrive. Consequently, from the latest battery state estimate, a new optimal
plan is synthesized, and made available to the spacecraft at the earliest time. This
approach effectively leads to a continuous perpetual generation of schedules.

1.1 Contribution

The contribution of this thesis is essentially threefold:

• extensions to the kinetic battery model,

• three algorithms that effectively implement energy budget analyses in terms
of the depletion risk of a certain system given a load model,

• practical real-world applications that showcase how to use the extended
battery model in conjuction with formal methods to realize battery-aware
scheduling of nanosatellites, thereby showcasing the practical applicability
of the contributions above.

Extensions To The Battery Model:

• We extended the kinetic battery model with capacity limits, and thereby with
realistic charging behavior. It takes the form of a capacity threshold beyond
which a battery may not be charged gain any more available charge. We
propose a separate set of differential equations that characterizes such a

2

1.1. Contribution

so-called saturated battery. This simple concept brings a perhaps surprising
amount of challenges with it. Among them, finding the exact time point
of saturation, a problem which turns out to be non-elementary. We there-
fore propose an algorithm to bound this time point from above and below,
and realize approximative dynamics of a kinetic battery with capacity limits
using this algorithm.

• Orthogonally, we extend a kinetic battery with uncertainty in the initial ini-
tial battery state as well as load noise. This concept makes the introduction
of so-called state of charge distributions instead of single battery states nec-
essary. Based on these distributions, we rigorously derive analytic expres-
sions for approximations of successor distributions given a noisy task and
an initial battery state distribution.

• We extend the load model from piecewise linear loads to markovian pro-
cesses we refer to as Markov Task Processes. These processes effectively
extend sequences of constant loads with jump probabilities, i.e. multiple
successors that may be selected at random. We show how to capture the
entire behavior of such a task process up to a certain time horizon, as well
as its effect on the battery.

Algorithms:

• We introduce two discretization approaches that implement a gridding of
the battery state space, first as a static scheme, then as an adaptive scheme
that only focuses on a relevant neighborhood of the actual support of the
battery state distribution. Both approaches provide a remedy to the compu-
tationally impractical analytic expressions derived before.

• In an attempt to avoid discretization entirely, we introduce the so-called
percentile propagation algorithm. The approach is based on the fact that
one can derive bounds on the overall depletion risk of an entire battery state
distribution, by only investigating a certain percentile battery state of it. It-
erating this step in a manner similar to a bisection scheme, one can derive
arbitrarily close bounds on the true depletion risk, with the precision be-
ing configurable a priori. The applicability of the scheme is tied to certain
preconditions, however, which we identify.

Practical Applications:

• We showcase the value of the above contributions during design time of
a nanosatellite mission on the case of the GOMX–1 satellite, for which we
performed an energy budget analysis to conclude that the onboard batteries
where over-dimensioned by the factor of 8.

• We designed and implemented a fully automatic battery-aware scheduling
pipeline for the GOMX–3 satellite mission, and were the first to showcase
the applicability of the synthesized optimal schedules via three different in-
flight test runs on GOMX–3. These successfull test runs demonstrate the
value of formal methods in conjunction with formal energy storage models
for in-flight operation of satellite missions.

3

1. Introduction

• We derived the groundwork for a prototype of a receding-horizon version of
the battery-aware scheduling pipeline, an extension which is now being used
successfully with the GOMX–4 mission [38].

1.2 Chapter Origins

The results of this thesis are partially based on the following published results:

• Holger Hermanns, Jan Krčál, Gilles Nies, Recharging Probably Keeps Bat-
teries Alive, in Cyber Physical Systems. Design, Modeling, and Evaluation,
Lecture Notes in Computer Science, Volume 9361, pages 83–98, 2015.

• Morten Bisgaard, David Gerhardt, Holger Hermanns, Jan Krčál, Gilles Nies,
Marvin Stenger: Battery-Aware Scheduling in Low Orbit: The GOMX–3 Case,
in Formal Methods, Lecture Notes in Computer Science, vol 9995, pages
559–576, 2016. This work received a best paper award.

• Holger Hermanns, Jan Krčál, Gilles Nies, How Is Your Satellite Doing? Battery
Kinetics with Recharging and Uncertainty, in Special Issue On Quantitative
Evaluation Of Systems, Leibniz Transactions on Embedded Systems, Vol. 4
No. 1, pages 04:1–04:28 February 2017.

• Gilles Nies, Marvin Stenger, Jan Krčál, Holger Hermanns, Morten Bisgaard,
David Gerhardt, Boudewijn Haverkort, Marijn Jongerden, Kim G. Larsen,
Erik R. Wognsen, Mastering Operational Limitations Of LEO Satellites: The
GOMX–3 Approach, in Acta Astronautica, Volume 151, pages 726–735, 2018.

• Morten Bisgaard, David Gerhardt, Holger Hermanns, Jan Krčál, Gilles Nies
and Marvin Stenger, Battery-Aware Scheduling In Low Orbit: The GOMX–3
Case, In Formal Aspects of Computing, Issue 31, pages 261–285, 2019.

• Holger Hermanns and Gilles Nies, Quantification of Battery Depletion Risk
Made Efficient, in NASA Formal Methods, Lecture Notes in Computer Sci-
ence, Volume 13260, pages 156–174, 2022

1.3 Outline

Chapter 2 provides a short overview of the family of analytical battery models,
as well as a quick introduction of Timed Automata, its Priced extensions and the
prevalent tool for model checking networks thereof, UPPAAL CORA, and features
a quick dive into control theory with an introduction of Kalman filters.

In Chapter 3 the theory and the extensions of the kinetic battery model are
developed in detail, while in Chapter 4 corresponding analysis algorithms are
derived and their efficiency is investigated.

We proceed by showcasing the interplay and application of battery models and
model checking in Chapter 5, which features real-world case studies of CubeSats
GOMX–1 and GOMX–3. For the former, we purely take an energy budget analysis
perspective, while for the latter we bridge the gap to battery-aware synthesis of
optimal plans for short time horizons, and the continuous perpetuation thereof
culminating in a receding-horizon scheduling approach.

Chapter 6 concludes the thesis.

4

CHAPTER

2

Preliminaries

2.1 Battery Models

Batteries in-the-wild exhibit two non-linear effects widely considered to be the
most important ones to capture: the rate capacity effect and the recovery effect. In
the sequel we introduce the kinetic battery model KiBaM as the simplest model
capturing these effects, and place it in the context of other candidates to model a
battery. A thorough analysis of these battery models and their respective charac-
teristics is found in the literature [20].

The Linear Model. Also called the ideal battery, this model views a battery as one
well of capacity cap that is decreased proportionally to a load ` that is imposed
on the battery. Thus, the lifetime of a full battery under load ` can naturally be
expressed by

cap

`
.

While easy to handle and to extend, the linear battery model neither captures the
recovery of batteries nor the rate-capacity effect.

Peukert Model. An extension of the ideal battery is provided by Peukert’s law.
Here, parameters a and b characterize the lifetime of a full battery under load `
as a/`b . For a = cap and b = 1, this corresponds to an ideal battery, although
parameters fitted through experiments generally result in a being a bit smaller
than cap and b being slightly larger than 1. Peukert’s law captures the rate capacity
effect, but neglects the recovery effect.

The Electrochemical Model. Together with its accompanying simulation tool
DUALFOIL [8], the highly complex and parameterizable electro-chemical battery
model is, in its own right, widely considered as the reference “reality” to check the
faithfulness and accuracy of other models. It is comprised of 6 coupled, non-linear
differential equations and it requires over 50 battery-type specific parameters in
order to be faithfully run.

2. Preliminaries

The Diffusion Model. The diffusion model describes the ion concentration along
the width of a battery as a continuum. A full battery exhibits equal concentration
along the battery, while a discharge causes a decrease of the concentration near
the discharging electrode. This, in turn, causes a gradient that causes the ions to
diffuse towards the electrode. Thus, during periods of rest the ion concentration
tends to equilibrate along the width of a battery, inducing a recovery. During peri-
ods of high discharge, the diffusion cannot keep up causing premature depletion;
the rate capacity effect. The model allows for the derivation of analytical expres-
sions of the battery lifetime as well and exhibits a very high degree of precision
against the electro-chemical model.

The Kinetic Battery Model. The kinetic battery model (KiBaM) can be viewed as
a discretized diffusion model by dividing the stored charge into two parts, the avail-
able charge and the bound charge and can actually be proven to be a first-order
approximation of the diffusion model. When the battery is strained only the avail-
able charge is consumed instantly, while the bound charge is slowly converted to
available charge by diffusion. This diffusion between available and bound charge
can take place in either direction depending on the amount of both types of en-
ergy stored in the battery. Both non-linear effects are captured for the exact same
reason as for the diffusion model: the relatively slow conversion of bound charge
into available charge or vice versa. Due to its simplicity, intuitiveness and accuracy
relative to the more complex diffusion model and, by extension, also relative to
the DUALFOIL electro-chemical model simulator, we focus on the kinetic battery
model in this thesis. We provide a thorough and rigorous analysis of the KiBaM in
Chapter 3.

2.2 Kalman Filter

Kalman filtering is an algorithm that, given possibly noisy time series of measure-
ments, estimates the internal state of a dynamical system, related to these mea-
surements. Essentially, a Kalman filter forms a kind of feedback loop in two steps,
a prediction and a correction step. In the prediction step, the Kalman filter projects
the k − 1-st state estimate ahead using the dynamical model underlying it, into
a preliminary k -th state estimate. In the correction step, it incorporates the k -th
measured datapoint as feedback into its preliminary prediction and corrects it
accordingly, to get the definitive k -th state estimate.

Formally, the Kalman filter addresses the general problem of estimating a state
x ∈Rn of a discrete time, possibly controlled process given by the difference equa-
tion:

xk = Fk xk−1+Bk uk +wk (2.1)

with measurements y ∈Rm given by

yk =Hk xk + vk ,

and where

Fk is the (time-discrete) n ×n state transition matrix of the k -th step induced by
the underlying dynamical process.

Bk is the n × l control matrix of the k -th step, relating (optional) control input to
state variables.

6

2.3. (Priced) Timed Automata

uk is the k -th control variable, with uk ∈Rl .

wk represents process noise in the k -th step, where wk ∼ N (0,Qk). Qk is the
process noise covariance in the k -th step.

Hk is the m×n measurement matrix of the k -th step, relating state with measure-
ments.

vk represents measurement noise in the k -th step, where vk ∼N (0, Rk). Rk is the
measurement noise covariance in the k -th step.

The Kalman filter, being a recursive scheme, needs to be initialized with an
initial estimate of the internal state x0 as well as with an initial state variance ma-
trix P0 reflecting the confidence in the initial state. Intuitively speaking, the higher
this initial state variance is chosen, the more a Kalman filter will trust the mea-
surements in the beginning stages of the estimation. Process and measurement
noise in each step are assumed to be pairwise mutually independent. From the
difference equation it becomes apparent that Kalman filters do not need the entire
history in order to start estimating state. It rather only needs the systems previous
state and the current measurement, making it memory efficient and fast (and thus
even suitable for hard real time applications).

The computational details of how a Kalman filter recursively estimates state
are well documented and understood [22] and beyond the scope of this thesis. It
should however be mentioned, that the Kalman filter is the optimal linear filter if
the model matches the real system exactly and if the noise is uncorrelated white
noise with known covariances.

2.3 (Priced) Timed Automata

The model of Timed Automata (TA) [2] has been established as a standard mod-
elling formalism for real time systems. Timed Automata extend finite state ma-
chines with non-negative real-valued variables called clocks in order to capture
timing constraints. Thus, a timed automaton is an annotated directed graph over
a set of clocks C with vertex set L (called locations) and edge set E . Edges and
locations are decorated with conjunctions of clock constraints of the form c ./ k
where c ∈ C , k ∈ N and ./ ∈ {<,≤,=,≥,>}. For edges such constraints are called
guards, for locations they are called invariants. Edges are additionally decorated
with reset sets of clocks. Intuitively, taking an edge causes an instantaneous change
of location and a reset to 0 for each clock in the reset set. However an edge may
only be taken if its guard and the target location’s invariant evaluate to true. If this
is not the case the current location remains active, if it’s invariant permits, and
clocks increase continuously with the same rate, thus modelling the passing of
time.

In order to reason about resources, TAs are enriched with non-negative integer
costs and non-negative cost rates in the form of annotations for edges and locations,
respectively [4]. The result are Priced Timed Automata (PTA). The intuition is that
cost accumulates continuously proportional to the sojourn time of locations and
increases discretely upon taking an edge as specified by the respective annotations.

7

2. Preliminaries

Definition 1 — Priced Timed Automata. Let C be a set of clocks andB(C) be
the set of all clock constraints as described above. A priced timed automaton
is a tuple (L , E ,`0, inv,price)where L is a set of locations, E ⊆ L×B(C)×2C ×L
is a set of edges, `0 is the initial location, inv : L →B(C) assigns invariants to
locations, and price : L ∪ E →N assigns costs and cost rates to locations and
edges, respectively.

We omit the formal semantics of PTA, and instead refer to the literature for a
complete development [4].

A common problem to consider in the context of PTA is that of computing the
minimum cost to reach a certain set of target states in a given PTA. This so-called
cost-optimal reachability analysis (CORA) receives dedicated attention in the liter-
ature [3, 23] and is well-known to the community. The CORA is implemented in a
number of tools, most prominently UPPAAL CORA [6]. As input UPPAAL CORA ac-
cepts networks of PTAs extended by discrete variables, and thus allows for modular
formalisation of individual components. The set of goal states is characterised by
queries, i.e. temporal formulae over the variables declared in the network of PTAs.
These usually fall into the category of so-called time-bounded reachability queries.
The tool’s query language is a subset of Timed Computation Tree Logic (TCTL) [24]
and thus consists of path and state formulae. A state formula is a simple expression
over the variables of the system and is evaluated using a state’s valuation of said
variables. Path formulae come in different flavours, yet for this work only reacha-
bility path formulae are relevant. Reachability properties are of the form ∃◊ϕ and
ask whether there exists (∃) a path that eventually (◊) reaches a state which satisfies
the state formula ϕ. The tool has a predefined variable time capturing the global
time of a whole system, so there is no need for a user to explicitly manage a global
clock.

8

CHAPTER

3

The Kinetic Battery Model

In this chapter we rigorously introduce the kinetic battery model (KiBaM), as found
in the literature. We continue with the concept of depletion (Section 3.2) and pro-
ceed by augmenting the KiBaM with the highly non-symmetric concept of capacity
limits and battery saturation in Section 3.3. Unfortunately, this concept eventually
involves transcendental numbers when trying to determine the battery satura-
tion time point, which makes its exact determination computationally impossible.
We instead introduce approximations of saturation time points (Section 3.4). In
Section 3.5 the KiBaM is further extended with uncertainties in the initial state of
charge (SoC) and the loads the battery is strained with. This leads to a stochastic
interpretation of the KiBaM with capacity limits, for which we show how to effi-
ciently compute successor battery state distributions. With the base operations on
the KiBaM in place, we proceed in Section 3.6 with the introduction of a Markovian
load process model that includes probabilistic branching, arbitrary noisy loads
but deterministic timing aspects, and show how to compute the resulting battery
state distribution up to an arbitrary time horizon. To finalize the chapter, Sec-
tion 3.7 outlines how measurements of voltage and current can be combined with
the KiBaM to avoid accumulating inaccuracies over time in battery state estimates.

3.1 The Kinetic Battery Model

The Kinetic Battery Model (KiBaM) is an energy storage model that models the
state of charge (SoC) of a battery by splitting it into two disjoint portions, namely

• the available charge A(t), the portion of stored charge that is directly avail-
able to be consumed or replenished.

• the bound charge B(t), the portion of stored charge that is chemically bound
inside the battery, and is not considered to be immediately available.

These quantities can be considered unitless and abstract for the moment. The
battery is strained by a load `(t) that represents charging and discharging if `(t)< 0
and `(t)> 0, respectively. If there is no load (i.e. ` = 0) we speak of a resting period.

3. The Kinetic Battery Model

B(t)
1− c

c

A(t)
c

p
`(t)

B(t) A(t)

Figure 3.1: The two-wells depiction of the KiBaM

The principle behind the KiBaM is that bound charge is converted into avail-
able charge over time (or vice-versa) via diffusion, which is why the KiBaM is often
depicted as two interconnected wells holding fluid (see Figure 3.1).

The model is characterized by two parameters, the first of which being the
width parameter c ∈]0, 1[. It corresponds to the width of the available charge
well, while 1− c is the width of the bound charge well. The second parameter, the
diffusion rate parameter p> 0, is the factor of proportionality of the difference in
fluid levels of both wells, namely A(t)/c and B(t)/(1− c), and thus governs the rate
with which bound charge is converted to available charge and vice-versa.

KiBaM ODE System. Mathematically, the KiBaM state of charge evolves as indi-
cated by two coupled differential equations:

Ȧ(t) = −`(t) +p
�

B(t)
1− c −

A(t)
c

�

,

Ḃ(t) = p
�

A(t)
c
− B(t)

1− c
�

.

(3.1)

The dynamics of the KiBaM account for a couple of non-linear effects that
can be observed on real-world batteries, most notably the recovery effect and the
rate-capacity effect. The recovery effect can be summarized as follows. If a resting
period follows a discharging period, the available charge well recovers to a cer-
tain degree, via the diffusion of bound charge to available charge. Note that the
effect is symmetric: After a charging period, the available charge well seems to
deteriorate, although in this case the meaning of the word recovery is contradic-
tory. The rate-capacity effect describes another simple phenomenon. The faster
the discharge, the smaller the battery’s effective capacity. This means, the more a
(discharging) load surpasses the bound-to-available charge conversion rate, the
worse the battery performs. Also this effect is somewhat symmetric when con-
sidering a charging scenario. In the end, both effects are rooted in the fact that
charge conversion is taking place. An illustration of both phenomena is given in
Figure 3.2.

10

3.1. The Kinetic Battery Model

time .empty

full
a
b

The recovery effect. When the battery is not
strained by any load, both charge levels ap-
proach each other, due to diffusion. The avail-
able charge seems to recover.

time .empty

full
ahigh

bhigh

alow
blow

The rate-capacity effect. A high discharging load
(solid lines) leaves a lot more bound charge in a
battery at the time of depletion, compared to when
a low discharging load is applied (dashed lines).

Figure 3.2: Illustrations of the recovery effect and the rate-capacity effect captured by
the KiBaM.

Solving The KiBaM ODE System

It is possible to derive a solution of the ODEs at time t , after applying a constant
load ` for t time units, for instance by using Laplace transforms. We can express
it as a vector valued linear map, taking the initial available and bound charge a0

and b0 as argument:

�

at

bt

�

=

�

daa(t) dab(t) da`(t)
dba(t) dbb(t) db`(t)

�

·

a0

b0

`(t)

 (3.2)

with

daa =(1− c)e−k t + c, dba =1−daa

dab =− c ·e−k t + c, dbb =1−dab

da` =
(1− c) · (e−k t −1)

k
− t · c, db` =− t −da`,

where k = p/(c · (1− c)) and where we omit the time argument t of the matrix coef-
ficients if it is clear from the context.

The coefficients da` and db` of ` do not sum to 1, because the non-zero load
` makes the total power in the battery change. The above map is a vector val-
ued reformulation of equations found in the literature [29]. Here the KiBaM ODE
solution is given by

at = a0e−k t +
(s0kc− `)(1−e−k t)

k
− `c(k t −1+e−k t)

k

bt = b0e−k t + s0(1− c)(1−e−k t) − `(1− c)(k t −1+e−k t)
k

where s0 = a0 + b0. Regrouping the terms according to a0, b0 and ` leads to the
vector valued formulation.

11

3. The Kinetic Battery Model

Example 1. We illustrate the evolution of the KiBaM state of charge as time
passes under the assumption of symmetry of charging and discharging below.

10 40 55 time .1500

4200
5000

9000

available
bound
load

−600

0
400

The initial available charge decreases heavily due to the load 400 but the re-
stricted diffusion makes the bound charge decrease only slowly up to time 10;
after that the battery undergoes a mild recharge, and so on. At all times the
bound charge approaches the available charge by a speed proportional to the
difference of the two values.

Definition 2 — SoCs. Throughout this document we use [a ; b] to denote a
state of charge as a row vector and denote the set of SoCs by S :=R2.

We introduce other basic concepts and notation.

Definition 3. Following convention, we interpret arithmetic or comparison
operations on SoCs to be componentwise, hence for ? ∈ {+,−, ·,/}we have

[a0; b0] ? x :=

¨

[a0 ?a1; b0 ? b1] if x = [a1; b1]
[a0 ?k; b0 ?k] if x = k ∈R

and for Â ∈ {<,≤,=,>,≥}we have

[a0; b0]Â x :=

�

a0 Â a1 ∧ b0 Â b1 if x = [a1; b1]

a0 Â k∧ b0 Â k if x = k ∈R .

Note that componentwise comparisons do not correspond to lexicographic
orders.

In addition, we define the order <K when we want to impose a strict order on
one of the components.

Definition 4 — The order <K. For two SoCs [a0; b0], [a1; b1] ∈ Swe define

[a0; b0]<K [a1; b1] :=

a0 < a1 ∧ b0 ≤ b1

∨
a0 ≤ a1 ∧ b0 < b1

.

12

3.1. The Kinetic Battery Model

Definition 5 — Equilibrium. We say that a SoC [a ; b] ∈ S is in equilibrium iff
no diffusion is taking place, i.e.

a

c
=

b

1− c .

The load model we want to investigate is described by tasks and sequences
thereof.

Definition 6 — Tasks. A task (∆,`) is a pair of a positive time duration∆ > 0
and a load `with which the battery is strained throughout that time duration,
i.e. for 0≤ t <∆, we have `(t) = `. We denote the set of tasks byT :=R>0×R.

A sequence of tasks thus induces a piecewise constant load sequence.

Definition 7 — The operatorK. We define the KiBaM successor SoC in terms
of an operator K : T× S→ S. For an initial SoC [a0; b0] and a task (∆,`) we
define

K(∆,`)[a0; b0] := [a∆ ; b∆]

according to Equation 3.2.
A task sequence (Ti)Ni=0 ∈T+ can be handled iteratively by functional compo-
sition, i.e.

K(Ti)Ni=0
:=KT0

◦ · · · ◦KTN
.

We are now able to establish thatK is monotonous with respect to the initial
SoC, given a fixed task T , or in different terms,K preserves the order ≤.

Lemma 1 — K preserves <K. Let S0,S1 ∈ S be two SoCs and T ∈ T be a task.
We have that

S0<K S1 =⇒KT S0<KKT S1.

Proof:

We first conclude that the partial derivatives ofK
∂ A

∂ a
= daa,

∂ A

∂ b
= dab

∂ B

∂ a
= dba,

∂ B

∂ b
= dbb

are constant in [a ; b]. Using simple arithmetic in conjunction with the fact that
ln ex = x and ln 1= 0, as well as the facts that∆ and p are positive and 0< c< 1,
it is easy to show that the partial derivatives are all strictly positive, and thusK
is strictly monotonically increasing with respect to the initial SoC. The claim
follows immediately. �

13

3. The Kinetic Battery Model

Note that the above lemma is independent of the load `. It simply argues that
two SoCs do not swap order when the same task is applied. In other words, the
larger of two battery states cannot be “overtaken” by the smaller SoC, when the
same task is applied, which is a natural and intuitive property of any reasonable
battery model.

Corollary 1 (K preserves ≤). Let S0,S1 ∈ S be two SoCs and T ∈T be a task. We
have that

S0 ≤ S1 =⇒KT S0 ≤KT S1.

Proof:

By Lemma 1 and the fact thatK is deterministic. �

A similarly intuitive and important result is that the KiBaM exhibits a lower
state of charge the higher the load.

Lemma 2. Let∆ be a positive duration, [a ; b] ∈ S be a SoC and `0, `1 be two
loads. We have that

`0 ≥ `1 =⇒K(∆,`0)[a ; b]≤K(∆,`1)[a ; b].

Proof:

The partial derivatives ofKwith respect to the load variable ` are

∂ A

∂ `
= ce−k∆ − c and

∂ B

∂ `
= (c−1)e−k∆ (ek∆ −1).

Using ln 1= 0 and ln ex = x , as well as the facts that c, k and∆ are non-negative,
we find that both expressions are strictly negative, thereby proving the claim. �

From this, we are now able to derive a crucial property ofK.

Lemma 3 — Threshold monotonicity. Let \ ∈ {<,>}, (∆,`) ∈T be a task with
0\ `, κ ∈R a threshold and [a0; b0] be an initial SoC with [a0; b0]\ [c;1− c] ·κ.
If there is a δ ∈]0,∆]with [cκ; bδ] =K(δ,`)[a0; b0], then

1. bδ \ (1− c)κ, and

2. aδ′ \ cκ for all δ <δ′ ≤∆.

Intuitively,K satisfies the following version of monotonicity: Given a mutual
threshold on both charge levels, we have that (1) the available charge reaches it
before the bound charge does, and (2) the available charge will not cross it again
during the same task.

Example 2. We notice that neither the available nor the bound charge are
monotonic with respect to the time variable in the standard sense. In Exam-

14

3.2. Depletion

ple 1, the bound charge is not monotonic on the interval [10, 40] , the available
charge is not monotonic on [55, 100] . However, for instance, on [10, 40] , the
available charge is the first to exceed the value 4200 and never falls below that
boundary again during that task.

From Lemmas 1, 2 and 3, we derive the following intuitive property which we
will need later on. We use the • symbol for wildcards, meaning that we do not
really care about its value.

Corollary 2. Let Â ∈ {<,>}, ` be a load with ` Â 0, S0,S1 ∈ S be two SoCs, and
κ ∈R be a threshold such that S0 ÂK S1 Â [c; 1− c] ·κ.
If there is δ0 ∈]0,∆] with K(δ0,`)S0 = [cκ;•], there is also δ1 ∈]0,∆] with
K(δ1,`)S1 = [cκ;•] and δ1 Âδ0,

The above lemma says that among two SoCs, the larger one reaches a threshold
first while charging, but last while discharging.

3.2 Depletion

So far, the operator K is defined on any given SoC and its evolution potentially
spans the whole range of SoCs, including the negatives. While this makes sense
mathematically, it is counter intuitive in the context of a battery state. This means,
according to the KiBaM as is, batteries have no concept of depletion, nor of capac-
ity limits and hence are objects of essentially arbitrary capacity. In this section, we
introduce the concept of depletion.

We define the region of critically low SoCs in terms of a battery depletion level
depl, which in turn induces depletion thresholds on available and bound charge
quantities by [a ; b] := [c;1− c] · depl. Intuitively it makes sense that depl is non-
negative, however there is no mathematical reason to enforce this, since the KiBaM
system is defined on the negatives as well.

Definition 8 — Safe SoCs and depletion. A SoC S is safe iff S > [a ; b], and we
denote the set of safe SoCs by S :=R>a ×R>b . A SoC is depleted if its available
charge is lower than the depletion threshold, i.e. if a ≤ a .

Note that depletion is defined only on the available charge dimension of a SoC,
which is evident based on the naming of both SoC quantities. There is no need
to discriminate between depleted SoCs, as none of them can support any further
discharging tasks. Hence, we designate ⊥ := [a ; b], to be the canonical depletion
SoC, and denote with S⊥ the set of safe SoCs including depletion.

Mathematically, we extend theK operator with depletion limits as follows.

Definition 9 — The operator K. We define the operator K : T× S⊥ → S⊥ for

15

3. The Kinetic Battery Model

each task T as:

KT S :=

⊥, if S =⊥
⊥, ifKT S is depleted

KT S , otherwise

The operatorK inherits all notational aspects ofK.

Definition 10 — Depleting tasks. We call T a depleting task if for an initial
safe SoC S , we haveKT S =⊥.

Corollary 3. For safe initial SoCs and each depleting task, the available charge
will drop below the depletion threshold before the bound charge does.

Proof:

By Corollary 2. �

Corollary 4 (All’s well that ends well). For a safe initial SoC S and a task (∆,`) ∈T
the following holds: IfK(∆,`)S 6=⊥ then for 0<δ<∆ we also haveK(δ,`)S 6=⊥.

Proof:

If any intermediate state would be depleted, then by Lemma 3, the final SoC
would be depleted as well. �

In essence, Corollary 4 says that, when tracking a SoC along a sequence of tasks,
we need only care about the SoCs at the end of each task. If at the end of each task
the SoC is safe, it must have been safe at any intermediate time point.

We end this section by lifting a few lemmas from before to the depletion case,
like the fact thatK preserves ≤ (and <K if the resulting SoCs are safe).

Corollary 5. Let S0,S1 ∈ S be two safe SoCs and T ∈T be a task. We have that

S0<K S1 ∧ KT S0 6=⊥ 6=KT S1 =⇒ KT S0<KKT S1.

Proof:

By the fact that K degenerates to K in this case and the fact that K preserves
<K(Lemma 1). �

The above corollary says that if T is not a depleting task for neither S0 nor S1,
thenK preserves <K.

Lemma 4 — K preserves ≤. Let S0,S1 ∈ S⊥ be two SoCs and T ∈ T be a task.

16

3.3. Capacity Limits

We have that
S0 ≤ S1 =⇒KT S0 ≤KT S1.

Proof:

We need to consider three cases.

S0 =⊥= S1 : We haveKT S0 =KT S1 =⊥ by definition, and the claim follows.

S0 =⊥,S1 ∈ S : Then KT S0 = ⊥ and KT S1 = ⊥ or KT S0 ∈ S. In either case, the
conclusion of the implication is fulfilled.

S0,S1 ∈ S : Then, ifKT S1 =⊥ then alsoKT S0 =⊥ because of Corollary 1, and the
claim follows. If KT S0 = ⊥ but KT S1 ∈ S then the claim follows immedi-
ately. Lastly, ifKT S0,KT S1 ∈ S then the claim follows by Corollary 1, since
K reduces toK. �

Lemma 5. Let∆ be a positive duration, [a ; b] ∈ S⊥ be a SoC and `0, `1 be two
loads. We have that

`0 ≥ `1 =⇒K(∆,`0)[a ; b]≤K(∆,`1)[a ; b].

Proof:

The proof relies on the same case distinction as in the proof of the previous
lemma, and is analogous in nature. �

3.3 Capacity Limits

Real-world batteries are evidently not infinite energy storage devices. The KiBaM
does not reflect this, since theK-operator can attain arbitrarily large values. Hence,
we naturally have to enforce capacity limits. Let cap ∈R>depl be the capacity limit.
Then [a ; b] := [c; (1− c)] · cap are the induced limits on available and bound charge.
Conceptually, we don’t want a battery to be able to be charged beyond its capacity
limits. Again, there’s no mathematical need to define cap to be non-negative, al-
though it absolutely makes sense intuitively to view this threshold as non-negative.

Definition 11 — Saturation. We call a SoC S saturated and over-saturated, iff
a = a and a > a , respectively. We denote with S the safe saturated SoCs, with
*

S the safe over-saturated SoCs, with Swe denote safe, but not over-saturated
SoCs and finally with S⊥ we denote S including depletion. Formally, we define

S := {[a ; b] | b ∈R}, *

S := {[a ; b] | a > a ∧ b ∈R},
S := Sr

*

S, S⊥ := S∪{⊥}.

17

3. The Kinetic Battery Model

Definition 12 — Saturating Tasks. We say that task T is saturxating, iffKT S
is saturated or over-saturated.

We conclude by deducing the following intuitive fact about the KiBaM with
capacity limits from previous results.

Corollary 6. For unsaturated SoCs S ∈ SrS and a corresponding saturating task
T we have that the available charge will reach the saturation threshold before
the bound charge does.

Proof:

By Corollary 2. �

Staying Saturated

Charging and discharging are not fully symmetric: A battery with empty available
charge can no longer power its task, contrary to a battery with full available charge
that continues to operate. We thus need to consider its further charging behavior.

When the available charge is at its capacity a = c·cap and is still further charged
by a sufficiently high charging current, its value stays constant and only the bound
charge increases due to diffusion.

Ȧ(t) = 0,

Ḃ(t) = p
�

cap− B(t)
1− c

� (3.3)

The differential equations above describe the behavior of the battery at time
t only if the charging load to the available charge well is sufficient to compensate
the diffusion, i.e. for each t , we have

−`(t)≥ Ḃ(t).

Since `(t) is constant during a task, say `, and the diffusion is decreasing over time,
the charging load is sufficient throughout the whole task if and only if it is sufficient
at the very beginning of a task, i.e.

−`≥ Ḃ(0).

Hence, for an initial bound charge b0 we define the condition whether the charging
current is sufficient by

`≤ `sat(b0) := p
�

b0

1− c − cap
�

(3.4)

Later on we will need this expression solved for b0, so as to find the least bound
charge level that manages to compensate the diffusion with respect to a certain
charging load `.

18

3.3. Capacity Limits

Definition 13. The least bound charge of a saturated SoC that compensates
the diffusion given a charging load ` is given by

b sat
`

:=
�

`

p
+ cap

�

· (1− c)

=
`

p
(1− c) + cap · (1− c)

=
`

p
(1− c) + b

By solving the ODE (3.3) and using Inequality (3.4), we obtain the dynamics of
a saturated battery that is further charged by a sufficient charging load in the form
of a simple function.

Lemma 6. Let∆ > 0 and b0 such that `≤ `sat(b0). A battery with a saturated
SoC [a ; b0] attains after the task (∆,`) the state of charge [a ; Bsat

∆ (b0)]where

Bsat
∆ (b0) = e−ck∆ · b0+

�

1−e−ck∆
� · b (3.5)

and k again stands for p/(c · (1− c)).

Proof:

By solving the ODE system 3.3 we conclude that B takes the form of Bsat. �

Note that the resulting bound charge evolution of a saturated battery Bsat
∆ (b0)

does not further depend on `, i.e. one cannot make the battery charge faster by
increasing the charging load. Furthermore, for a fixed b0, the curve of∆ 7→ Bsat

∆ (b0)
is a negative exponential starting from the point b0 with the full capacity b of the
bound charge being its limit. Thus, Lemma 6 also reveals that the bound charge in
finite time never reaches its capacity and there is no need to describe this situation
separately.

We lift the concept of Lemma 6 to an operator on SoCs.

Definition 14. For a positive duration∆ > 0 and a SoC [a ; b]we define

Ksat∆ [a ; b] := [a ; Bsat
∆ (b)]

We conclude with showing thatKsat is monotonically increasing in b .

Lemma 7 —Ksat preserves ≤. Given S0,S1 ∈ S and a duration∆ > 0 we have

S0 ≤ S1 =⇒Ksat∆ S0 ≤Ksat∆ S1

Proof:

19

3. The Kinetic Battery Model

The first component stays constant, so it suffices to show that Bsat
∆ is monoton-

ically increasing. The derivative of Bsat
∆ (b) with respect to b is e−ck∆ , which is

positive, thereby establishing the claim. �

Saturating The Battery

Each non-saturated and safe SoC can eventually be saturated underK (and there-
foreK) via indefinite charging. We are interested in the time point of saturation,
since conceptually the dynamics of the battery will change from this point on-
wards.

Hence, we want ∆ such that the first component of K(∆,`)S is exactly a . For-
mally, we want to solve the equation

a0 ·daa(∆) + b0 ·dab(∆) + ` ·da`(∆) = a (3.6)

for∆.
It turns out that this is an instance of the so-called product logarithm: Given a

real number k ∈R solve the equation

x ex = k

for x . The solution of such equations can be brought into closed form using the
Lambert W functionW , i.e. the solution of x ex = k isW (k).

One can bring Equation 3.6 into a related form

u ·e−k∆ + v ·∆+w = a

where

u = a0(1− c)− b0c+ (c+1) · `
k

v = − `c
w = a −a0c− b0c− (1− c) · `k .

It turns out that solving equations of the form ex + x = k for x , meaning equations
where the variable of interest appears in an exponential as well as a linear term, can
be reduced to the product logarithm itself. Generally, the solution to x = q + r es x

is given by q − 1
sW (−r s eq s) Thus, the solution to Equation 3.6 is

−W
�u

v
e−

w
v

�

− w

v
.

Unfortunately, the Lambert W function can not be expressed using elementary
functions, meaning the solution is a transcendental number, thus its exact compu-
tation is impossible. It can however be approximated using numerical methods [7].
Also, theW function generally attains multiple solutions, it is thus a multi-valued
function. Whenever we refer the solution to Equation 3.6 we implicitly mean the
largest of these solutions.

All the previous building blocks allow us to express the SoC of a KiBaM after
powering a given task (∆,`)when considering capacity limits.

20

3.3. Capacity Limits

Definition 15. We define the operatorK :T×S⊥→ S⊥ for each task T = (∆,`)
and each SoC S as:

KT S :=

�Ksatδ ◦K(∆,`)S ifKT S is over-saturated

KT S otherwise

where∆ is the largest solution of Equation 3.6 and δ :=∆−∆.

Example 3. If we put a capacity limit of a = 9000 to the previous scenario, the
battery ends up with a slightly smaller charge at time 100. The computation of
the final SoC changes only in the interval [40, 55] . Here, instead ofK(15,−600), we
applyK(∆,−600) for the first∆ ≈ 7.8 time units, followed byKsat

15−∆ .

10 40 55 time .1500

5000

9000

available
bound
load

−600

0
400

We conclude again that the operatorK respects the order ≤.

Lemma 8 —K preserves ≤. Given S0,S1 ∈ S⊥ and a task T ∈Twe have

S0 ≤ S1 =⇒KT S0 ≤KT S1.

Proof:

The only interesting case is the case where T = (∆,`) is a saturating task. Ev-
ery other case is already established by Lemma 4. Let T be a saturating (and
thus charging) task. According to Lemma 2 with κ := cap we have that S1 will
be saturated (with an unsaturated bound charge) exactly at time∆1, meaning
K(∆1,`)S1 = [a ; bmid

1]. We also have by Corollary 1 that S0 is not yet saturated, thus

K(∆0,`)S0 = [a ; bmid
0], with a < a as well as bmid

0 ≤ bmid
1 .

Case 1: Let us first assume that S0 is not saturated during the remainder of the
task, or right at its end∆, such that the dynamics are governed byK. We now
need to show that

K(δ,`)[a ; bmid
0]≤Ksatδ [a ; bmid

1],

with δ :=∆−∆1. We do so by showing the stronger result

K(δ,`)[a ; bmid
1] =: [a∆ ; b end

1]≤Ksatδ [a ; bmid
1],

21

3. The Kinetic Battery Model

which is valid because of bmid
0 ≤ bmid

1 and the application of Corollary 1. By as-
sumption we already have a∆ < a , thus we continue to show b end

1 ≤ Bsat
δ (b

mid
1).

We fall back to the ODE formulation of the two scenarios to show that the deriva-
tive of the “staying saturated” scenario is larger at every remaining time point
t ∈ [δ,∆], which is sufficient, because we start at the same bound charge level
bmid

1 . Hence we show

p
�

A(t)
c
− B(t)

1− c
�

≤ p
�

a

c
− B(t)

1− c
�

.

This is equivalent to showing A(t)≤ a , which is always fulfilled.

Case 2: Let us now assume that S0 is saturated during the remainder of the
task, say at time∆0. By exchanging∆ by∆0 in the above argument we arrive at

K(∆0,`)S0 =: [a ; b∆0,0]≤ [a ; b∆0,1] :=K(∆0,`)S1.

Both SoCs remain saturated for the remainder of the task, i.e. their dynamics
are governed byKsat. However,Ksat preserves the order ≤ by Lemma 7, which
establishes the claim. �

Lemma 9. Let∆ be a positive duration, [a ; b] ∈ S⊥ be a SoC and `0, `1 be two
loads. We have that

`0 ≥ `1 =⇒K(∆,`0)[a ; b]≤K(∆,`1)[a ; b].

Proof:

Like for the previous lemma, we focus on the interesting case of saturation. Let
us thus assume that (∆,`1) is a saturating task and let∆1 be the saturation time
point. By Lemma 5 we have that

K(∆1,`1)[a ; b] =: [a ; bmid
1]≥ [amid

0 ; bmid
0] :=K(∆1,`0)[a ; b]

By definition of K, for the remainder of the task δ := ∆ −∆1 the dynamics of
[a ; bmid

1] are governed byKsat.

Case 1: Let us assume first that (∆,`0) is not a saturating task for [a ; b] (or it
is saturated exactly at time ∆) such that its dynamics is governed by K. Fur-
thermore, let us instead of [amid

0 ; bmid
0] investigate the SoC [amid

0 ; bmid
1], which

is valid since K is monotonically increasing in the SoC variables (Corollary 1).
Like in the previous lemma, we fall back to the ODE formulation and show that
the derivative of the bound charge level in the saturated scenario is larger at
every remaining time point t ∈ [δ,∆], i.e.

p
�

A(t)
c
− B(t)

1− c
�

≤ p
�

a

c
− B(t)

1− c
�

.

This boils down to showing a ≥ A(t), which is a given.

22

3.4. Approximation Of Saturation Time Points

Case 2: Let us now assume that (∆,`0) is saturating, say the saturation hap-
pens at time∆0 ≥∆1. By exchanging∆ by∆0 in the above argument we arrive
at

K(∆0,`0)[a ; b] =: [a ; b∆0,`0
]≤ [a ; b∆0,`1

] :=K(∆0,`1)[a ; b].

Both SoCs remain saturated for the remainder of the task, i.e. their dynamics
are governed byKsat. However,Ksat is independent of the load and preserves
the order ≤ by Lemma 7, which establishes the claim. �

3.4 Approximation Of Saturation Time Points

Due to the non-elementary character of the saturation time point, we rely on ap-
proximations of it.

With a test of saturation, an initial lower and upper bound of the saturation
time point, given by 0 and the task duration ∆ itself, we have all the ingredients
for an interval halving algorithm to approximate the saturation time points from
below and above (see Algorithm 1).

Input :[a0; b0], a saturating task (∆,`) and ε
Output :[∆�,∆�]with∆�−∆� ≤ ε and∆ ∈ [∆�,∆�]

1 ∆� :=∆
2 ∆� := 0

3 while∆�−∆� ≥ ε do
4 ∆mid := (∆�+∆�)/2
5 ifK(∆mid,`)[a0; b0] is over-saturated then

6 ∆� :=∆mid

7 else
8 ∆� :=∆mid

Algorithm 1: A bisection algorithm to bound the saturation time point of
a saturating task.

Termination. The algorithm terminates since the difference∆�−∆� (Line 4) is
halved with every iteration of the loop, eventually falsifying the loop condition.

Complexity. Given a precision ε in the order of O (2−n), The algorithm runs in
time O �log n

�

, given that Line 4 halves the difference ∆� −∆�, leading to a loga-
rithmic number of (constant time) loop body executions.

Correctness. The correctness statement and its proof are typical for bisection or
interval-having methods.

Lemma 10 — Correctness of Algorithm 1. For an initial SoC S and a saturat-
ing task (∆,`) we have the following properties of about the output interval

23

3. The Kinetic Battery Model

[∆�,∆�]:

1. ∆ ∈ �∆�,∆�
�

,

2. the task (∆�,`) is not saturating,

3. the task (∆�,`) is saturating.

Proof:

We first conclude that 2 and 3 follow immediately from the conditional in Line 5
as well as the two branches. From 2 and 3 as well as item 2 of Lemma 3 we
conclude 1. �

ApproximatingK Efficiently

The problematic part in computingK is the case a∆ > a when the upper limit is
reached at time∆ <∆; we cannot compute such time∆ exactly, as it is a transcen-
dental number. This case also disallows exact closed-form expressions in the next
section where we address the KiBaM enriched with capacity limits and random
initial SoCs. For these reasons we introduce under- and over-approximations of
the SoC using simple closed-form expressions based on Algorithm 1. Special cases
of these approximations are employed in later sections to obtain elegant analytical
expressions and also efficient algorithms.

We require the following infrastructure.

Definition 16 — Target loads. Let S be a safe SoC, ∆ be a positive duration
and ã be an available charge target level. We denote by `�ã ,∆S the unique load
such that the first component ofK(∆,`�ã ,∆S)S equals ã , i.e. the solution of

K(∆,`)S = [ã ;•]

for `. Specifically, we denote by ~̀∆S the solution of this problem with ã := a .

We say that ~̀ is the least saturating load of S . Additionally, we define the the
solution of the same problem for K’s reverse operator K−1 and denote it by
`�ã ,∆S. Formally, we solve

K−1
(∆,`)S = [ã ;•]

for `, and denote by ~`∆S the solution of this problem with ã := a .
Furthermore, we define with B�

ã ,∆S and B�
ã ,∆S the bound charge levels attained

when applyingK(∆,`�ã ,∆S)S andK−1
(∆,`�̃a ,∆S)S , respectively, and use the shorthand

~B∆S and ~B∆S when specifically using the target ã := a .
We omit the SoC argument and the duration index whenever it is clear from
the context.

Lemma 11. Given a certain target available charge level ã , a duration∆ ∈R>0

24

3.4. Approximation Of Saturation Time Points

and a SoC S , the target load `�ã ,∆S is computed by

`�ã ,∆S =−daa

da`
·a − dab

da`
· b + ã

da`

and the inverse target load is computed by

`�ã ,∆S =
−dbb ·a +dab · b + (daadbb−dabdba) · ã

dabdb`−da`dbb

Proof:

By straight-forward solving of the equations

K(∆,`)S = [ã ;•] and K−1
(∆,`)S = [ã ;•]

for `. �

In a similar mindset, we are interested in exactly those SoCs for which a certain
task T is saturating or depleting. We provide the more general definition of target
boundary first.

Definition 17 — Target-, Saturation-, Depletion boundary. Let T := (∆,`)
be a task and ã be a target available charge level. The target boundary of T is
defined by

{S |KT S = [ã ;•]}
For ã := a we call the target boundary the saturation boundary, and for ã := a
the boundary is called depletion boundary of T .

Let us illustrate the concept of the target boundary in a small example.

25

3. The Kinetic Battery Model

Example 4. The target boundaries are best visualized in the SoC space, i.e. in
the two-dimensional space spanned by the available and bound charge. As-
sume a discharging task T and a charging task T . The red line visualizes the
depletion boundary of T (left) and the saturation boundary of T (right), respec-
tively.

KT

a

bb

a

KT

a

bb

a

Any SoC above and to the right of the depletion boundary remains safe after T ,
while SoCs below and to the left of the boundary are rendered unsafe. SoCs that
are part of the boundary reach a SoC of the form [a ; b], for some b . Analogously,
SoCs above and to the right of the saturation boundary are over-saturated after
T , while SoCs below and to the left of the boundary remain unsaturated. SoCs
that are situated exactly on the boundary end up saturated.

As the above example already indicates, the target boundaries are linear in the
SoC space, which is captured by the following lemma.

Lemma 12. For a task T := (∆,`) and a target available charge level ã , the
target boundary is characterized by either linear function

a ã
T (b) =

ã

daa
− dab

daa
b − da`

daa
`,

or

b ã
T (a) =

ã

dab
− daa

dab
a − da`

dab
`,

where we usually omit the subscript ã when it is implicitly clear in the context.

Proof:

We are interested in those SoCs S fulfillingKT S = [ã ;•], i.e.

daaa +dabb +da``= ã

Solving this for a provides the first function aT (b), while solving it for b provides
the second function bT (a). �

26

3.4. Approximation Of Saturation Time Points

Lemma 13. The target boundary is strictly monotonically decreasing in the
SoC space.

Proof:

The derivative of aT (b) is

−dab

daa
=

cek∆ − c
cek∆ − c+1

.

Given that c ∈ [0, 1] it is easy to show that this expression is strictly negative. �

Lemma 14. Let T := (∆,`) be a task, ã be a target available charge level. The
SoC S on T ’s target boundary that minimizes (maximizes)KT S = [ã ; b∆] is at
the left (right) domain boundary.

Proof:

All SoCs on the target boundary reach a SoC [ã ; b∆]. We optimize

b∆ = dbaa +dbbb +db``

given the constraint
daaa +dabb +da``= ã .

In order to eliminate one variable in the objective function, we substitute a with
aT (b), according to Lemma 12

b∆ = dba

�

ã

daa
− dab

daa
b − da`

daa
`

�

+dbbb +db``.

The derivative of b∆ with respect to b yields

−dab

daa
dba+dbb =

1

cek∆ − c+1
,

which is constant, and strictly positive for c ∈]0, 1[, p> 0 and∆ > 0. This means
that b∆ is linear and is monotonically increasing with respect to b , thus proving
the claim. �

Additionally, we can prove that SoCs beyond the target boundary are larger
(smaller) then each SoC hitting the target when charging (discharging).

Lemma 15. Let\ ∈ {<,>}, T := (∆,`)be a task with `\0, ã be a target available
charge level and let S0 be a SoC on T ’s target boundary. Then, for each SoC S1

with S0\K S1 we haveKT S0 = [ã ; b]\KKT S1.

Proof:

By the fact thatK preserves ≤ (Corollary 1). �

27

3. The Kinetic Battery Model

0 ∆

a

∆�∆� ≤ ε

K(∆�,~̀∆�)

a

K(∆�,~̀∆�)

Ksat∆−∆�

Ksat∆−∆�

∆

∆

b∆

b∆

Figure 3.3: An illustration of theK�-operator (top) and theK�-operator (bottom). In
the former scenario, the available charge curve (red) hits its saturation limit a exactly
at ∆�, i.e. after the actual saturation time point ∆, while in the latter scenario the
saturation point is under-approximated to∆�. The bound charge curve (blue) in the
K� case is consistently below the bound charge curve in theK� scenario.

Finally, we define the following operators that approximateK.

Definition 18. We define the operatorsK�,K� :T×S⊥→ S⊥ by

K�
(∆,`)S :=

(Ksatδ� ◦K(∆�,~̀∆�)
S , ifK(∆,`)S is over-saturated

K(∆,`)S otherwise

and

K�
(∆,`)S :=

(Ksatδ� ◦K(∆�,~̀∆�)
S , ifK(∆,`)S is over-saturated

K(∆,`)S otherwise
,

where δ� :=∆−∆� and δ� :=∆−∆�.

Figure 3.3 illustrates how we handle the saturation time point scenario of the
K�- andK�-operator.

Indeed, K� and K� bound the actual KiBaM SoC evolution in the following
sense.

28

3.4. Approximation Of Saturation Time Points

Lemma 16. For any SoC S ∈ S⊥ and any task T ∈Twe have

K�
T S ≤ KT S ≤ K�

T S .

Proof:

We only showK�
T S ≤KT S , sinceKT S ≤K�

T S is analogous.
The interesting case is again the case for which T := (∆,`) is a saturating task. Let
∆ be the saturation time point. By the correctness of Algorithm 1 (Lemma 10)
we have∆� ≥∆ and by definition we know that (∆�, ~̀∆�) is a saturating task. In

particular, since ∆� is a postponed saturation time point we know that ~̀∆� is

a charging load of lower magnitude than ` itself, i.e. `≤ ~̀∆� . Hence, Lemma 9
applies and we obtain

K(∆,~̀∆�)
S ≤K(∆,`)S

and we conclude the proof with the fact thatK(∆,~̀∆�)
S is by definition the same

asK�
(∆,`)S . �

Sometimes it is necessary, be it for complexity reasons or ease of implemen-
tation, to not run Algorithm 1 which is inherently iterative in nature, but instead
rely on easy analytical solutions, at the cost of accuracy.

Conceptually, the two scenarios described below are a special case of Algo-
rithm 1 where ε :=∆. In this case, the algorithm terminates immediately without
looping, returning the interval [0,∆] .

Under-approximation. The idea is to postpone the time point∆ to time∆, i.e.
to the very end of the task. We thereby implicitly underestimate the charging load
` by ~̀∆ , which by definition saturates the SoC exactly at the end of the interval.
The SoC thus evolves as captured byK(∆,~̀) for the entire duration of the task.

Over-approximation. Dually, we circumvent the computation of the time point
∆ by preponing it to the very beginning of the task at hand, i.e. time 0. We assume
that the available charge non-continuously jumps to a immediately and attains
a during the entire task duration. Intuitively, we apply an “infinite” task load.
The bound charge evolves throughout the entire task as captured byKsat, which
ignores this task load altogether.

These two concepts, that we are henceforth refering to as non-iterative, are
later on going to be used to derive analytic ways to express SoC distributions in
Section 3.5 as well as to engineer efficient discretization algorithms in Sections 4.2
and 4.3.

Example 5. Let us illustrate the non-iterative approximations on the same situ-
ation as in Example 3. For the under-approximation (on the left), in the interval
[40, 55] , we apply ~̀ ≈ −432.5 instead of ` = −600 so that the available charge
reaches 9000 exactly at t = 55. From here on, the SoC is in both components
smaller than the SoC from the previous figure.

29

3. The Kinetic Battery Model

10 40 55 time .1500

5000

9000

available
bound
load

−432.5

0

400

10 40 55 time .1500

5000

9000

available
bound
load

−432.5

0

400

For the over-approximation (on the right), in the interval [40, 55] , we intuitively
apply a load `→−∞ so that the available charge reaches 9000 exactly at t = 40.
Since the diffusion is finite, the available charge stays at its limit until t = 55
while the bound charge evolves according toKsat. From this point on, the SoC
is larger in both components than the SoC from the previous figure.

30

3.5. Stochastic KiBaM

3.5 Adding Randomness – the Stochastic KiBaM

In order to consider the KiBaM as a stochastic object, it appears natural to consider
the initial SoC [a0; b0] as being random. In addition, we consider the load ` that
is imposed on a battery as being a random quantity as well. The former reflects
the real phenomenon of uncertain initial charge levels, rooted in wear and manu-
facturing variances [5] as well as self discharging rates during a battery’s shelf life,
while the latter reflects, for example, measurement noise.

We start by formalizing the latter concept as so-called noisy tasks. In this set-
ting, the load on the battery is considered a random variable L , independent of
the SoC, distributed as given by an associated probability density function g . We
write

L ∼ g with g :R→R.

Definition 19 — Noisy Tasks. Let L be the random variable representing the
random load, and let L ∼ g . A noisy task is a pair (∆, L), or interchangeably
(∆, g), where∆ ∈R>0 is a strictly positive duration. We denote the set of noisy
tasks by eT.

Let us now also consider the initial SoC of a battery as random. For simplicity
we first ignore the capacity limits of the battery, i.e. no depletion and no saturation.
We will reintegrate these concepts one by one in the upcoming sections. In such a
simplified setting, we simply assume the initial SoC to be random variables [A; B]
jointly distributed according to a two-dimensional probability density function,
i.e.

[A; B]∼ f with f : S→R.

Example 6. Instead of a single (Dirac) SoC, we now consider that the joint den-
sity f0 of the charge is, say, uniform over the area [50, 75]× [50, 75] as depicted
below. Here the values of the two-dimensional density are color coded as a heat
map.

50 75

bound →

50

75

av
ai

la
bl

e
→

0.900

0.925

0.950

0.975

1.000

1.025

1.050

1.075

1.100
×10−4

Using similar plots, we shall illustrate how the SoC distribution evolves as the
time passes on this particular example.

We are interested in propagating a random initial SoC [A; B] along a noisy task
(∆, L), with L ∼ g . This concept is formalized by another pair of random variables,

31

3. The Kinetic Battery Model

[A∆ ; B∆] representing the successor of [A; B], given by

[A∆ ; B∆] :=K(∆,L)[A0; B0].

The mathematical basis for expressing the joint density of [A∆ ; B∆] is the trans-
formation law for random variables, which enables the construction of unknown
density functions from known ones, given the relation between the corresponding
random variables.

Lemma 17 — Transformation Law for Random Variables. Let X be a d -
dimensional random vector and h :Rd →Rd be an injective and continuously
differentiable function. Then we can express the density function of Y := h (X)
at value y in the range of h as

fY (y) = fX

�

h−1(y)
� · ��det

�

Jh−1 (y)
��

�

where det
�

Jh−1 (y)
�

denotes the Jacobian determinant of h−1 evaluated at y ,
i.e.

det

∂ h−1
1

∂ x1
(y) . . .

∂ h−1
1

∂ xn
(y)

...
...

...
∂ h−1

n
∂ x1
(y) . . .

∂ h−1
n

∂ xn
(y)

We first notice, theK-operator is not invertible, meaning that, given a successor
SoC [a∆ ; b∆] we are not able to uniquely retrieve the initial SoC [a ; b] without
knowing the task (∆,`). We first need to fix the task, i.e. the load and the duration,
in order retrieve the initial SoC.

Thus, given the duration (that is deterministic in the first place), we express the
joint density of [A∆ ; B∆], conditioned by the random load L attaining some arbi-
trary but fixed value `. For this fixed `, theK-operator degenerates to an invertible
linear mapping

K(∆,`)

�

a0

b0

�

=

�

daa dba

dab dbb

�

·
�

a0

b0

�

+

�

da`

db`

�

· `.

Lemma 18 — Inverse ofK. Given a task (∆,`) ∈T the inverse ofK is given by

K−1
(∆,`)

�

a
b

�

= ek∆

�

dbb −dab dabdb`−dbbda`

−dba daa dbada`−daadb`

�

·

a
b
`

.

Proof:

By straight-forward inversion. �

In the saturation and depletion agnostic scenario, we are able to express the
joint density of [A∆ ; B∆] conditioned by L = ` for some fixed `.

32

3.5. Stochastic KiBaM

Lemma 19. Let (∆, g) ∈ eT be a noisy task, [A; B] and L be random variables
distributed as follows

[A; B]∼ f and L ∼ g .

Then, the joint density of [A∆ ; B∆] conditioned by L = ` is given by

f∆ (a , b | `) = f
�

K−1
(∆,`)[a ; b]

�

· ��ek∆
�

� .

Proof:

By application of the transformation law of random variables (Lemma 17). Here,
ek∆ is the determinant of the Jacobian ofK−1

(∆,`). Interestingly, it is constant in a ,
b and `, it only depends on∆. It is also non-negative since∆ ≥ 0 and k > 0. �

Finally, we get rid of the conditional L = `by marginalizing the variable [A∆ ; B∆].
Intuitively, marginalization is a continuous weighted average of the conditional
density values with weights being the values of g . We formalize the result with the
following Lemma.

Lemma 20. Let (∆, g) ∈ eT be a noisy task and [A0; B0] be a random SoC dis-
tributed according to f . The joint distribution of [A∆ ; B∆] is absolutely con-
tinuous with density f∆ given by

f∆ (a , b) = ek∆

∫

supp(g)

f
�

K−1
(∆,`)[a ; b]

�

· g (`)d`.

Proof:

By marginalizing L away, we obtain the integral over an expression that is de-
rived from Lemma 19. Since the determinant of the Jacobian ofK−1

(∆,`), namely

ek∆ , is independent of the integration variable `, we can move this factor in
front of the integral. �

Example 7. We show how to propagate a SoC distribution along tasks by pick-
ing up Example 6. The inital battery SoC (left) is uniformly distributed on
[50, 75]× [50, 75]. We strain the battery with the noisy tasks T1 := (16,`1) (middle)
and then with T2 := (13.2,`2) (right), where `1 ∼N (3, 1.4) and `2 ∼N (−4, 1.4).

33

3. The Kinetic Battery Model

0

2

4

6

8

×10−6

50 75

bound →

50

75

av
ai

la
bl

e
→

50 75

bound →

50 75

bound →

We now tackle the challenge to enrich the development above with depletion
and saturation. We thus assume that the random variables [A∆ ; B∆] evolve accord-
ing to the K-operator developed in Section 3.3, i.e. by overloading notation we
investigate random successor SoCs given by

[A∆ ; B∆] :=K(∆,`)[A0; B0].

We first observe that the joint distribution of [A∆ ; B∆]may not be absolutely con-
tinuous, because positive probability may accumulate in the canonical depletion
SoC⊥ and on the set of safe saturated SoCsS, suggesting a need for a more complex
representation of SoC distribution with three separate parts.

Definition 20 — SoC distribution. A SoC distribution is a triple 〈 f̄ , f , z 〉where

• f̄ is a density over S, (bound charge distribution of the saturated portion)

• f is a joint density over SrS, (the distribution of the non-saturated portion)

• z ∈ [0, 1]. (the cumulative probability of depletion)

Example 8. Instead of a single SoC, we now consider a SoC distribution 〈 f̄ , f , z 〉
of the charge. We visualize these distributions as three stacked heatmaps, each
assiociated with one component of the SoC distribution, in addition to a color-
bar.

• The heatmap on the very top depicts f̄ , meaning the one-dimensional
distribution of the bound charge with the available charge being at the
saturation limit a .

• The heatmap in the middle represents the two-dimensional density of
the non-saturated safe portion f .

• The heatmap on the bottom is essentially just a color-coded probability
value, namely the accumulated depletion risk z .

34

3.5. Stochastic KiBaM

bound →
20.0 %

0.0

0.2

0.4

0.6

0.8

1.0
×10−2

80

100

av
ai

la
bl

e
→

50 80

In the depiction above, we observe the following illustrating scenario:

• A probability mass of 0.2 is concentrated in f̄ , in the form of a uniform
distribution over the interval [50, 80] , thus f̄ (b) = 0.2

80−50 = 0.006 for each
b ∈ [50, 80].

• The unsaturated safe part in f accounts for a factor of 0.6 of the total
probability mass, also in the form of a uniform distribution over the area
[50, 80]× [80, 100], with each [a ; b] in this area, carrying a density value of

0.6
(80−50)·(100−80) = 0, 001.

• The remaining 0.2 of the entire probability mass is already considered
depleted and thus represented in the bottom part. The color coding of
this last part considers the maximum density value of the colorbar to be
1, with the lowest being 0, and is thus on a different scale.

Lastly, the red checkered area represents the area of unsafe SoCs, induced here
by a = b = 20.

To argue about probabilities with respect to SoC distributions, we define what
it means that a pair of random variables is distributed according to a SoC distribu-
tion.

Definition 21. We say that a pair of random variables [A; B] is distributed
according to a SoC distribution 〈 f̄ , f , z 〉, and write

[A; B]∼〈 f̄ , f , z 〉,
if for any measurable set X ⊆ S×Swe have

Pr
�

S ∈ X
�

=

∫∫

[a ;b]∈X

f (a , b)da db +

∫

[a ;b]∈X

f̄ (b)db + z I⊥∈X

where Iϕ denotes the indicator function of a condition ϕ.

35

3. The Kinetic Battery Model

We fix some notation and basic concepts of SoC distributions.

Definition 22. Following convention, we interpret arithmetic or comparison
operations on SoCs to be componentwise, hence for ? ∈ {+,−, ·,/}we have

〈 f̄1, f1, z1〉 ? x :=

�〈 f̄1 ? f̄2, f1 ? f2, z1 ? z2〉 if x = 〈 f̄2, f2, z2〉
〈 f̄1 ?k, f1 ?k, z1 ?k〉 if x = k ∈R .

In addition, we use the shorthand notation 〈 f̄ , f , z 〉x for 〈 f̄x , fx , zx 〉.

We assume a random load L distributed according to a probability density
function g . For a random initial SoC [A0; B0] distributed according to a SoC dis-
tribution 〈 f̄ , f , z 〉0 and a given noisy task T := (∆, L) we aim at expressing the
resulting SoC [A∆ ; B∆] using a SoC distribution 〈 f̄ , f , z 〉∆ . To be able to express the
distribution as integrals over simple closed-form expressions, we resort to under-
and over-approximations of the SoC.

We will work with 〈 f̄ , f , z 〉� and 〈 f̄ , f , z 〉� as notations for upper, respectively
lower bounding SoC distributions.

To arrive there, we define

[A�
∆ ; B �

∆] :=K�
(∆,L)[A0; B0] and [A�

∆ ; B �
∆] :=K�

(∆,L)[A0; B0]

respectively. We will eventually show that the above SoCs under-approximate and
over-approximate the actual successor SoC [A∆ ; B∆] in the following sense.

Definition 23. Let S1 and S2 be two random SoCs. We say that S1 under-
approximates S2 at the saturation limit if

Pr
�

S1 ≤ S
�

=Pr
�

S2 ≤ S
�

for any S < [a ; b],

Pr
�

S1 ≤ [a ; b]
�≤Pr

�

S2 ≤ [a ; b]
�

for any b ≤ b ≤ b .

Analogously, S1 over-approximates S2 at the saturation limit if

Pr
�

S1 ≤ S
�

=Pr[S2 ≤ S] for any S < [a ; b],

Pr
�

S1 ≤ [a ; b]
�≥Pr[S2 ≤ [a ; b]] for any b ≤ b ≤ b .

Example 9. In this example, we illustrate Definition 23. Let us reconsider a ran-
dom SoC S1∼〈 f̄ , f , z 〉1 as in the previous example (Example 8), that is essentially
composed of uniform distributions (left) and S2∼〈 f̄ , f , z 〉2, with

f̄2(b +5) = f̄1(b), f2 = f1 and z2 = z1.

f̄2 is thus a shifted version of f̄1 (right).

36

3.5. Stochastic KiBaM

bound →
20.0 %

bound →
20.0 %

0.0

0.2

0.4

0.6

0.8

1.0
×10−2

80

100

av
ai

la
bl

e
→

50 80 55 85

It is relatively easy to see that S1 under-approximates S2 at the saturation limit.
Firstly, we notice that their unsaturated parts are identical. Secondly, we have,
due to the shifted nature of f̄2, that

b
∫

50

f̄1(x)dx ≥
b
∫

50

f̄2(x)dx

for each b ≤ b ≤ b .

This approach, detailed in the next section, provides upper and lower bounds
on the risk of battery depletion due to the monotonicity established in Lemma 16.

In the upcoming sections, we derive analytical expressions that under- and
over-approximate the successor SoC distribution of a random SoC with respect to
a noisy task.

Behavior below the saturation limit.

Assume we have a random SoC [A; B] that is distributed according to 〈 f̄ , f , z 〉, and
a noisy task T := (∆, g). We first define a joint density

¯
f∆ over]−∞, a [×]−∞, b [

that exactly describes theK-behavior below the saturation limit while pretending
the battery is unable to deplete, i.e. we pretend for the moment that there are no
unsafe SoCs induced by [a ; b]. From this we will derive f∆ as well as z∆ , essentially
by cropping and accumulating the probability mass that ends up in the unsafe SoC
space after powering the task T . For this part, we don’t yet require approximations.

We use the transformation law of random variables (Lemma 17) to derive an
expression for

¯
f∆ .

The intricate part in expressing
¯
f∆ is to describe how the SoC evolves when it

leaves the saturated part (a one dimensional interval) captured by f̄ into the area
below the saturation limit (a two-dimensional area) when the level of available
charge is decreasing. For each unsaturated SoC [a ′; b ′] we need to find out what
saturated SoC of the form [a ; b] under what load ` (such that ` > `sat(b)) would

37

3. The Kinetic Battery Model

evolve in time∆ exactly into [a ′; b ′], i.e.

K−1
(∆,`)[a

′; b ′] = [a ; b].

By Definition 16, this is the case when using the inverse target load ~`∆ [a ′; b ′]which
results in a bound charge ~B∆ [a ′; b ′]. Based on the above, we define the map

[a ; b] 7→ �

~B∆ [a ; b], ~`∆ [a ; b]
�

to apply the transformation law. This mapping is injective, since ~`∆ is unique,
hence ~B∆ is also unique. Its Jacobian determinant is easily derived to be 1/(dabdb`−da`dbb)
and is constant in the SoC and the load.

Finally, putting all of the above together, we can express the joint density
¯
f∆

for any a < a and b < b as

¯
f∆ (a , b) = f̄

�

~B∆ [a ; b]
� · 1

|dabdb`−da`dbb| · g
�

~`∆ [a ; b]
�

+ek∆

~`∆ [a ;b]
∫

−∞

f
�

K−1
(∆,`)[a ; b]

�

· g (`)d`.

Let us briefly go through the individual derivations of each summand. The first
summand comes from f̄ , due to the saturated SoCs leaving the saturated area, as
discussed just above. It is pretty much a direct application of the transformation
law, where we need only consider one load value, instead of the whole support of
g .

The second summand is (almost) a direct application of the transformation
law. It reflects those SoCs stemming from the density of the unsaturated area f
through the standard limit-agnostic K-operator, and that end up in, say SoC S .
Ranging over all loads `, it integrates the density f of such SoCs [a`; b`] that satisfy
K(∆,`)[a`; b`] = S , i.e. [a`; b`] =K−1

(∆,`)S . Lemma 4 again guarantees that no limits are
crossed in the meantime.

Finally, we state how to derive the actual parts of the successor SoC distribution
we are interested in.

Lemma 21 — Successor SoC distribution (Part 1). Let (∆, g) ∈ eT be a noisy
task and [A; B] be a random SoC distributed according to 〈 f̄ , f , z 〉. Then for
the successor SoC

[A∆ ; B∆] :=K(∆,g)[A; B]

we have
[A∆ ; B∆]∼〈 f̄ , f , z 〉∆

for some f̄∆ , where f∆ and z∆ are given by

f∆ (a , b) :=
¯
f∆ (a , b) for [a ; b] ∈ S,

z∆ :=

a
∫

−∞

b
∫

−∞ ¯
f∆ (a , b)da db .

Proof:

38

3.5. Stochastic KiBaM

Since we used the transformation law of random variables (Lemma 17), the
density

¯
f∆ captures theK-behavior correctly while considering the unsafe SoC

region to be safe.
Accumulating the density in the unsafe area

�−∞, a
�×]−∞, b] via integration

leads to the correct depletion risk after powering a task. We justify this using
Lemma 3, which establishes that the available charge always reaches the deple-
tion area before the bound charge does.
Cropping

¯
f∆ to only the safe and non-saturated SoCs quite obviously results in

the correct subdistribution f .
Note that the qualification (for f) and the integration area (for z) are disjoint.

�

Behavior On The Saturation Limit

As indicated in Definition 23, we resort to approximations of the charge in order to
define the subdistribution of the saturated area, more explicitly the non-iterative
version.

Under-approximation. We define the under-approximation of the density for
0≤ b ≤ b by

f̄ �
∆ (b) = f̄0

�

b −1
sat

� ·G �

`sat(b
−1
sat)

� ·eck∆ (3.7)

+ f̄0

�

B�
a

� · �G �

`�a
�−G

�

`sat(B
�
a)
�� ·
�

�

�

�

−da`

dabdb`−da`dbb

�

�

�

�

(3.8)

+

∞
∫

−∞

f0

�

a , B�
a

� ·G �

`�a
�

da ·
�

�

�

�

−da`

dabdb`−da`dbb

�

�

�

�

(3.9)

Let us go through this expression line by line.
We first consider the portion of the density that stays saturated by the fact that

the load overpowers the diffusion and thus behaves according toKsat. More pre-
cisely, given a task T := (∆,`) and a bound charge level b , we define the mapping
based on the inverse ofKsat (or Bsat), i.e. find b −1

sat such thatKsat∆ [a ; b −1
sat] = [a ; b]. A

straight forward inversion leads to

b −1
sat = eck∆ · b − (eck∆ +1) · b

Thus, in order to use the transformation law, we define the mapping

b 7→ b −1
sat

whose determinant is given by eck∆ .
However, this expression is taken into account only for charging currents that

cover the diffusion (i.e. `≤ `sat(b −1
sat)) so that the battery evolves along the satura-

tion limit as expressed by Lemma 6. The integration over this range of loads can
be directly expressed using the cumulative density function (CDF) G of the load,
since by definition of CDFs, we have

G (x) =

x
∫

−∞

g (y)dy .

39

3. The Kinetic Battery Model

Next, we address the case where the diffusion in the state [a ; b] is stronger than
the charging load. The SoC thus leaves the saturated area in the beginning, but
potentially returns. Let us assume that before time ∆ the SoC [a ; b] returns to
being saturated, culminating in some state [a ; b ′]. We are not able to express b
using a closed-form expression over b ′ as discussed in Section 3.3 and need to rely
on approximations. We thus under-approximate the bound charge by postponing
the saturation time point to exactly time∆ by charging the battery with ~̀∆ instead,
just as shown in Example 5. Let us shortly outline the derivation. The mapping for
the transformation law is

b 7→ ~B∆ [a ; b].

Its inverse is simply b 7→ ~B∆ [a ; b]with Jacobian determinant−da`/(dabdb`−da`dbb).
The transformation law yields a density at time∆ of

f̄0

�

B�
a [a ; b]

� ·
�

�

�

�

−da`

dabdb`−da`dbb

�

�

�

�

.

Then, we integrate over all charging loads ` that are powerful enough to satu-
rate the SoC, i.e. `≤ `�a [a ; b], yet not too powerful to leave the saturation area in
the meantime, i.e. ` > `sat(B�

a [a ; b]). The integral over the resulting range equals
G
�

`�a
�−G

�

`sat(B�
a)
�

.
The third summand (3.9) comes from the density f0 of the unsaturated area and

under-approximates the bound charge similarly to the second summand. If the
available charge of the battery reaches its saturation limit before time∆, we post-
pone it to instead reaching it exactly at time ∆ by underestimating the charging
current with `�a . For the derivation, we define a map K∆ : [a ; b ;`] 7→ [a ; B�

a [a ; b];`]
(it is an identity in the first and the third component to make it injective) and ap-
ply the transformation law of random variables. The inverse K−1

∆ and its Jacobian
determinant is

K−1
∆ : (a , b ,`) 7→ �

a , B�
a [a ; b],`

�

and det JK−1
∆
=

−da`

dabdb`−da`dbb
.

The density h∆ over the co-domain of K∆ is obtained by the transformation law as

h∆ [a ; b ;`] = h0

�

K−1
∆ [a ; b ;`]

�

·
�

�

�

�

−da`

dabdb`−da`dbb

�

�

�

�

= f0

�

a , B�
a [a ; b]

� · g (`) ·
�

�

�

�

−da`

dabdb`−da`dbb

�

�

�

�

where the density h0 equals a product of the densities f0 and g because of
independence of SoC [a ; b] and load `. Marginalizing away a and ` (using G

�

`�a
�

to integrate over all currents necessary to reach saturation) gives us the subdensity
from the third summand.

Over-approximation. The over-approximation is based on similar reasoning
and equals:

f̄ �
∆ (b) = f̄0

�

b −1
sat

� ·G �

`�a
� ·eck∆ +

∞
∫

−∞

f0

�

a , b −1
sat

� ·G �

`�a
�

da ·eck∆ (3.10)

40

3.5. Stochastic KiBaM

The first summand in Equation (3.10) treats the contribution of the density
f̄0 from the point b −1

sat as defined above. We assume the density evolves as indi-
cated byKsat wheneverK would result in a∆ ≥ a (i.e. if the load is stronger than
`�a [a ; b −1

sat]). This is an over-approximation for exactly those charging loads ` satis-
fying `sat(b −1

sat) < ` < `
�
a [a ; b −1

sat], i.e. for charging loads that are not strong enough
to keep the battery saturated at a throughout the entire task but that are strong
enough to eventually re-saturate the battery.

The second summand in (3.10) comes from the density f0 of the non-saturated
area. Again, whenever K would result in a∆ > a (i.e. when the charging load
is stronger in magnitude than `�a [a ; b −1

sat]), we assume that the saturation limit
is reached immediately and further evolves as given by Ksat, thus justifying the
argument `�a to appear in the integral. This results in an over-approximation for
any such SoC.

To briefly clarify the derivation, for both summands in principle the mapping

(a , b ,`) 7→
�

a , Bsat
∆ (b),`

�

is used. For the first summand, think of a as not being a
variable, but the constant a . For the second summand, we again use the trans-
formation law, and afterwards marginalize away variables a and `, where we hide
integration over the corresponding range using the cdf G . The entire derivation is
very similar to the one of the under-approximation before.

We finally obtain the following result.

Lemma 22 — Successor SoC distribution (Part 2). Let (∆, g) ∈ eT be a noisy
task, and [A; B] be a random SoC distributed according to 〈 f̄ , f , z 〉. For the
approximations of the successor SoC given by

[A�
∆ ; B �

∆] :=K�
(∆,g)[A; B] and [A�

∆ ; B �
∆] :=K�

(∆,g)[A; B]

with
[A�
∆ ; B �

∆]∼〈 f̄ �
∆ , f∆ , z∆〉 and [A�

∆ ; B �
∆]∼〈 f̄ �

∆ , f∆ , z∆〉
we indeed have that [A�

∆ ; B �
∆] and [A�

∆ ; B �
∆] under- and over-approximate

[A∆ ; B∆], respectively, at the saturation limit.
Here, f̄ �

∆ and f̄ �
∆ come from Equations 3.7 and 3.10, respectively.

Example 10. For illustrative purposes we reiterate on Example 7. Based on
Lemma 22, we can under-approximate the SoC of the random battery from our
second running example for battery limits a = b = 25, a = b = 100. The initial
battery SoC (left) is uniformly distributed on [50, 75]× [50, 75]. We strain the
battery with the noisy tasks T1 := (16,`1) (middle) and then with T2 := (13.2,`2)
(right), where `1∼N (3, 1.4) and `2∼N (−4, 1.4).

41

3. The Kinetic Battery Model

bound →
0 %

bound →
35.15409 %

bound →
35.15409 %

0

1

2

3

4

×10−6

b 50 75 b

a

50

75

a
av

ai
la

bl
e
→

b 50 75 b

b 50 75 b

Lemma 23 — Probability of powering a task. A battery with SoC distribution
〈 f̄ , f , z 〉0 K-powers a task (∆, g)with probability p > 0 if and only if z∆ < p .

3.6 Markov Task Processes

So far, we have only discussed execution of one task with fixed duration and ran-
dom load. In this section, we give a discrete-time Markov model that generates
noisy tasks that we call a Markov Task Process (MTP). The formalism is closely in-
spired by stochastic task graph models [34] or data-flow formalisms such as SDF
[25] or SADF [39]. In SDF, task durations are deterministic, and thus directly sup-
ported in our framework. In SADF, durations are in general governed by discrete
probability distributions, which can be translated into our framework at the price
of a larger state space. We will briefly explain informally how to translate timed
versions of SDF as well as SADF to MTPs, after a formal introduction of the latter.

Definition 24 — Markov Task Process (MTP). A Markov Task Process (MTP)
is a tuple M = (S, P,π,task)where S is a finite set of states, P : S×S→ [0, 1]
is a transition probability matrix, π is an initial probability distribution over
S and task : S→ eT assigns a noisy task to each state.

An example of an MTP is depicted in Figure 3.4.
Intuitively, a Markov Task Process M together with an initial distribution of the

SoC given by 〈 f̄ , f , z 〉 behaves as follows.

Initialization: An initial safe SoC [a ; b] ∈ S and an initial MTP state s0 ∈ S are
chosen independently at random according to 〈 f̄ , f , z 〉, and π, respectively.

Repeat:

• A task T = (∆,`) to be powered in state s0 is picked randomly according to
`∼ g , where task(s0) = (∆, g) is the assigned noisy task.

• The battery is strained with T leading to a successor SoCKT [a0; b0].

• A successor MTP state s1 ∈S is chosen at random with probability P (s0,s1).

42

3.6. Markov Task Processes

3/4 1

1/21/4

1/2

s0(20,•)

s1

(80,•)
s2 (50,•)

s3

(40,•)
A Markov Task Process annotated with (potentially
noisy) tasks.

1/4 2/4

1/2 1
1/2 1/2

1

1/2

s0
0

s3
20

s1
20

s2
100

s2
60

s3
60

s3
100

The MTP’s induced graph unfolded up to
a time horizon t̄ = 100.

Figure 3.4: An MTP model annotated with (potentially noisy) tasks task(s) = (∆,•) and
its induced graph for a time horizon t̄ = 100 with the top label indicating the MTP state
and the bottom label indicating the current time.

• Repeat with s0 := s1.

Formally, M and 〈 f̄ , f , z 〉0 induce a probability measure Pr over samples of
the formω= [[a0; b0] | (sk)∞k=0] where the first component is the initial SoC of the
battery and the second component describes an infinite execution of M .

For a given t̄ ∈ R≥0, the SoC of the battery at time t̄ is expressed by random
SoC [A t̄ ; Bt̄] that is for anyω= [[a0; b0] | (sk)∞k=0] defined as

�

A t̄ (ω)
Bt̄ (ω)

�

:=K(∆,gn) ◦Ktask(sn−1) ◦ · · · ◦Ktask(s0)

�

A0

B0

�

where n is the minimal number such that the n-th task is not finished before t̄ , i.e.

n :=min
¦

n
�

�

� t̄ ≤∑n
j=0∆s j

©

,∆ := t̄ −∑n−1
j=0 ∆s j

and gn is the load density function

associated with task(sn).

Definition 25. We say that a battery with a SoC 〈 f̄ , f , z 〉0 powers with proba-
bility p > 0 a system M for time t̄ if

Pr
�

A t̄ > a
�≥ p .

In order to under-approximate the probability that M is powered for a given
time, we need to symbolically express the distribution of

�

A�
t̄ (ω)

B �
t̄ (ω)

�

:=K�
(∆,gn)

◦K�
task(sn−1)

◦ · · · ◦K�
task(s0)

�

A0

B0

�

where we just replaceKwithK�. Analogously, for an over-approximation we use
K� instead, i.e.

�

A�
t̄ (ω)

B �
t̄ (ω)

�

:=K�
(∆,gn)

◦K�
task(sn−1)

◦ · · · ◦K�
task(s0)

�

A0

B0

�

.

43

3. The Kinetic Battery Model

We present an algorithm that builds upon the previous results.

Expressing the distribution of [A�
t̄ ; B �

t̄] and [A�
t̄ ; B �

t̄]. Let us fix an input MTP
M = (S, P,π,task), a SoC distribution 〈 f̄ , f , z 〉0 that represents [A0; B0], and a time
horizon t̄ > 0. We consider the joint distribution of under- / over-approximation
of the SoC and the MTP. Intuitively, we split the SoC distribution into under- and
over-approximating subdistributions and move them along the paths of M accord-
ing to the probabilistic branching of the MTP. We notice that we do not need to
explore all exponentially many paths; when two paths visit the same MTP state
at the same moment, we can again merge the two subdistributions. This process
is formalized by the following graph and a procedure on how to propagate the
distribution through the graph.

For a given MTP M we define a directed acyclic graph (V , E) over

V = S ×{0, 1, . . . , bt̄ c, t̄ }

There is an edge from a vertex (s0, t0) to a vertex (s1, t1)with task(s0) := (∆, g) if

• P (s0,s1)> 0, and

• t1 =min{t0+∆, t̄ }.

Furthermore, we are only interested in the reachable vertices from one of the initial
state vertices. Formally, we define (Vreach, Ereach) to be the graph obtained from
(V , E) by removing vertices that are not reachable from any (s, 0)with π(s)> 0. An
example of this graph is displayed in Figure 3.4.

We propagate subdistributions through this graph as follows.

Initialization: We label each vertex of the form (s, 0)where π(s)> 0 by the pair of
equal initial subdistributions

〈 f̄ , f , z 〉� := 〈 f̄ , f , z 〉0 ·π(s) and 〈 f̄ , f , z 〉� := 〈 f̄ , f , z 〉0 ·π(s)

Repeat: We repeat the following steps as long as possible.

1. For each vertex (s, t) labeled by 〈 f̄ , f , z 〉� and 〈 f̄ , f , z 〉�, we obtain
〈 f̄ , f , z 〉�∆ and 〈 f̄ , f , z 〉�∆ by Lemma 22 for task(s) := (∆s , g) where we
possibly crop the task duration if the time horizon is exceeded, i.e.

∆ :=min
�

∆s , t̄ − t
	

.

Then we label the i -th outgoing edge of (s, t) leading to some (s′, t ′) by

〈 f̄ , f , z 〉�i := 〈 f̄ , f , z 〉�∆ ·P (s,s′) and 〈 f̄ , f , z 〉�i := 〈 f̄ , f , z 〉�∆ ·P (s,s′).

2. For each vertex (s, t) such that its k ingoing edges are labelled by
〈 f̄ , f , z 〉�i and 〈 f̄ , f , z 〉�i for i = 1, . . . , k , we label (s, t) by

〈 f̄ , f , z 〉� :=
k
∑

i=1

〈 f̄ , f , z 〉�i and 〈 f̄ , f , z 〉� :=
k
∑

i=1

〈 f̄ , f , z 〉�i .

44

3.6. Markov Task Processes

Finalization: Let the i -th of all n vertices of the form (s, t̄) ∈Vreach be labelled by
〈 f̄ , f , z 〉�i and 〈 f̄ , f , z 〉�i . The final distributions that represent [A�

t̄ ; B �
t̄] and

[A�
t̄ ; B �

t̄] respectively are

〈 f̄ , f , z 〉�t̄ :=
n
∑

i=1

〈 f̄ , f , z 〉�i and 〈 f̄ , f , z 〉�t̄ :=
n
∑

i=1

〈 f̄ , f , z 〉�i .

We naturally arrive at the following correctness statement.

Lemma 24. A battery with SoC distribution 〈 f̄ , f , z 〉0 K-powers a system M
for time t̄ with probability at least 1− z �

t̄ and at most 1− z �
t̄ , where z �

t̄ and

z �
t̄ are the depletion probabilities of the densities representing [A�

t̄ ; B �
t̄] and

[A�
t̄ ; B �

t̄], respectively.

This theorem relies on the simple observation that an under-approximation
of the SoC is an over-approximation of the depletion probability.

Remark — on complexity. As indicated in the beginning of this section, we do
not need to track all exponentially many paths through the MTP up to time t̄ .
In fact, in the algorithm above, once we have computed the subdistributions
on the left hand side, we can discard the subdistribution on the right hand side
of the assignments. If the he task durations are natural numbers, the amount of
subdistributions we need to track simultaneously is bounded by |S | ·D where
D is the smallest common multiple of all the task durations. D always exists
since all task durations are strictly positive.

Translating Timed SDF Graphs To Equivalent MTPs. As mentioned above, some
well known formalisms can be translated to MTPs, among them the timed ver-
sion of Synchronous Data Flow (SDF) [25] and some Scenario-Aware Data Flow
(SADF) [39] flavors. We will demonstrate informally how to translate a timed SDF
graph (SDFG) to an equivalent MTP.

SDF is a widely used formalism for modelling and analyzing networks of deter-
ministic sequential processes along with their resource budget. Processes, called
actors communicate via consuming and producing tokens (data elements) from
their incoming and to their outgoing unbounded channels. Whenever an actor is
activated it spawns a new active instance. The number of tokens an instance con-
sumes and eventually produces is fixed a priori. The timed version additionally
annotates each actor a with a constant execution time e (a) ∈Nr{0} , representing
how much time passes between consumption and production of tokens.

We furthermore associate a distribution L (a) over loads with each actor a to
reason about energy consumption.

The semantics of an SDFG execution is a finite Labelled Transition System (LTS)
over its configurations, which can be extended to an MTP on the same state space
of configurations with Dirac transitions and additional annotations concerning
load and sojourn times. An SDF configuration records

1. a vector v representing the number of tokens in each channel,

45

3. The Kinetic Battery Model

2. A setA collecting active actor instances ai of any actor a and

3. the residual execution time of each running instance as a map r .

Transitions between states are of three natures:

start a : A new instance ai of actor a with r (ai) = e (a) is added toA , provided
the input channels contain enough tokens, which are thereby consumed;

end a : An actor instance ai is removed fromA when its residual execution time
r (ai) is 0. Thereby output tokens are produced according to a ’s output chan-
nels;

time t : Under the precondition that no start or end transitions are possible, an
amount of time t passes corresponding to the minimum of the residual
times, thereby decreasing the residual execution times of every active actor
instance accordingly.

The precondition of time-type transitions implies that the LTS is free of nonde-
terminism between time and start/end transitions. The nondeterminism among
start/end transitions is irrelevant thanks to the diamond property. This means
that for each state s there is a unique final state s ′ such that each maximal se-
quence of start/end transitions from s ends up in s ′. On each such diamond (set
of states reachable from s) no time passes, thus it has no effect on the battery.
As the first step in defining the MTP, we transform the LTS by collapsing each di-
amond into its final state. As a result, the LTS becomes deterministic with only
time transitions remaining. If the starting state was part of a diamond collapsed
to a state s ′, this state becomes the initial state of the transformed LTS.
The reachable part of the LTS induces an MTP M = (S, P,π,task) as follows:

• The state space S is defined as the reachable states of the LTS,

• The initial probability distribution π is Dirac in the initial state of the SDFG,

• The task annotation task(s) = (∆s , gs) is constructed as follows:

– ∆s is the residual time according to the time-transition leaving s.

– gs for s = (v,A , r) ∈S is the convolution of the L (a) for each ai ∈A .

• P (s0,s1) is 1 if there is a time transition from s0 to s1, and 0, otherwise.

SADF extends SDF to discrete execution time distributions and scenarios (with
subscenarios probabilistically chosen through discrete-time Markov Chains). An
extension of the above is relatively intuitive, but technically involved. However,
since the semantics of such SADF graphs under self-timed executions are Timed
Probabilistic Systems (TPS) with the diamond property for actions [40], an analo-
gous approach to the above can be formulated.

3.7 Consolidating The KiBaM And Measurements Via Kalman
Filters

The idea of performing SoC estimation using Kalman filters (see Section 2.2) is not
new [32, 18, 17], yet most approaches lack a suitable dynamical model [26]. This
work is the first to propose the KiBaM to fill this gap.

46

3.8. Proof of Concept

The Kalman filter operates in discrete time, but just like many other systems
the KiBaM does not. We thus we have to cast it into the necessary form. A simple
way of doing this is to discretize the defining ODEs of the KiBaM SoC (Equation 3.1)
to difference equations

ak+1 =−`k ·∆t +ak +p ·∆t ·
�

bk

1− c −
ak

c

�

and

bk+1 = bk +p ·∆t ·
�

ak

c
− bk

1− c
�

,

where∆t is the length of a discrete time step and `k is the load on the battery at
time k throughout a time step. In matrix-vector notation we get

�

ak+1

bk+1

�

=D ·
�

ak

bk

�

+

�

∆t 0
0 0

�

·
�

`k

0

�

where D :=

�

1− p·∆t
c

p·∆t
1−c

p·∆t
c 1− p·∆t

1−c

�

.

D is called the diffusion matrix that gathers terms depending on the KiBaM param-
eters c and p. This exactly matches the form of the first Kalman Filter equation 2.1.
Thus by identification, we instantiate the Kalman filter with

Fk :=D, xk :=

�

ak

bk

�

, Bk :=

�

∆t 0
0 0

�

, uk :=

�

`k

0

�

and wk := 0

In this way, we use the load on the battery as control input. This is realistic in a
scheduling setting, as we select the tasks to perform, which in turn determines the
load on the battery. We will henceforth refer to this instantiation of the Kalman
filter as the KiBaM filter.

3.8 Proof of Concept with Synthetic Data

This section demonstrates the performance of the KiBaM filter on synthetic data
as a proof of concept. We show that the KiBaM filter is robust against inaccurate
choices of initial battery SoC levels and can indeed conjoin information from ob-
served quantities with model predictions of the SoC.

We assume that we received a sequence of available charge measurements per-
turbed with white noise with known standard deviationσ. In fact, such data can
easily be synthesized by adding white noise to available charge traces generated
by tracing a KiBaM SoC along an arbitrary task sequence. As a running example
for the purpose of visualization, we essentially adopted the data from Example 1.

Formally, assume vk := [ãk ;0] where ãk ∼ N
�

0,σ2
�

. We map measurements
into the state space using the identity mapping on the first component. Thus, we
conclude

Hk := diag(1, 0) and Rk := diag
�

σ2, 0
�

.

Figure 3.5 shows how the KiBaM filter can indeed very accurately estimate both
available and bound charge quantities from just a noisy sequence of available
charge values. We vary sample frequencies and confidence in the initial state.
The filter assumes an initial SoC of [9000;9000], which is vastly different to the
actual initial SoC of [5000;5000]. We observe that the filter quickly recognizes its
severely wrong assumption if P0 suggests large initial state variance and corrects

47

3. The Kinetic Battery Model

10 40 55

1500

5000

9000

observations
ak
bk
a(t)
b(t)
load

0

(a) Every 10-th sample (∆t = 0.1) and P0 =Dσ,c

10 40 55

1500

5000

9000
observations
ak
bk
a(t)
b(t)
load

0

(b) Every 10-th sample (∆t = 0.1) and P0 =
1
5Dσ,c

10 40 55
1500

5000

9000

observations
ak
bk
a(t)
b(t)
load

0

(c) Every 200-th sample (∆t = 2) and P0 =Dσ,c

10 40 55
1500

5000

9000
observations
ak
bk
a(t)
b(t)
load

0

(d) Every 200-th sample (∆t = 2) and P0 =
1
5Dσ,c

Figure 3.5: The KiBaM filter (c = 0.5, p = 0.04) estimating the SoC without capac-
ity limits from a series of noisy available charge measurements (σ = 600) at every
time step ∆t = 0.01, assuming an initial state of x0 = [9000;9000] for different num-
ber of samples and initial state variance matrices P0 involving the diagonal matrix
Dσ,c := diag

�

σ2c,σ2(1− c)�.

the estimation downwards quickly, since it “trusts” the measurements. Once it
feels “confident” enough about its estimated state, it is unfazed by the stochastic
fluctuations since the system dynamics do not allow for such quick changes. It
becomes apparent that the Kalman estimates converge to the true system state
quicker if running with a higher measurement frequency and higher initial state
variance. Independently of the sample frequency, the estimates and the true state
will not deviate again once they are close.

The KiBaM dynamical system as presented in this section thus far does not
incorporate capacity limit knowledge. It is however easy to incorporate such limits
into the KiBaM filter approach. Let a and b be the limits on available and bound
charge, respectively. If in any time step k the KiBaM filter predicts a SoC violating
either bound, we reset the corresponding component of the SoC estimate to its
maximum, i.e. if for any k we have ak > a then ak := a and analogously for bk .
In principle, we would have to redo the last filtering step, since the difference
equations are coupled, which leads to a slight overapproximation of the bound
charge in the k -th step. However, theses errors will be very small since the time step
∆t is small. In addition the KiBaM filter will implicitly detect these deviations over
the course of time and adjust its estimates, thereby preventing error accumulation.
Notably, and in contrast to the time-continuous KiBaM, with the time-discrete
version it is possible for the bound charge to reach its limit before the available
charge does, if∆t is too large.

Figure 3.6 shows how the KiBaM Filter performs when we make it aware of
battery capacity limits. Essentially, the estimation quality remains unchanged or
actually becomes better, the reason being that the upper capacity limits do not
allow for arbitrarily large SoCs while charging. The plots show that a KiBaM filter

48

3.9. Discussion

10 40 55

1500

5000

9000

observations
ak
bk
a(t)
b(t)
load

0

(a) Every 10-th sample (∆t = 0.1) and P0 =Dσ,c

10 40 55

1500

5000

9000

observations
ak
bk
a(t)
b(t)
load

0

(b) Every 10-th sample (∆t = 0.1) and P0 =
1
5Dσ,c

10 40 55
1500

5000

9000

observations
ak
bk
a(t)
b(t)
load

0

(c) Every 200-th sample (∆t = 2) and P0 =Dσ,c

10 40 55
1500

5000

9000

observations
ak
bk
a(t)
b(t)
load

0

(d) Every 200-th sample (∆t = 2) and P0 =
1
5Dσ,c

Figure 3.6: The KiBaM filter (c= 0.5, p= 0.04) estimating the SoC with capacity limits
[a ; b] = [9000;9000] from a series of noisy available charge measurements (σ = 600)
at every time step ∆t = 0.01, assuming an initial state x0 = [9000; 9000] for differ-
ent number of samples and and initial state variance matrices P0, again involving
Dσ,c := diag

�

σ2c,σ2(1− c)�.

can indeed handle the capacity limits very well.

3.9 Discussion

This chapter provides a thorough and rigorous analysis of the mathematical foun-
dations of the kinetic battery model (KiBaM). We start with the unbounded two-
ODE system from the literature, and subsequently provide the solution of said
ODE system in matrix-vector notation, which proves to be the main mathematical
object we are working with: the operatorK.

We capture certain properties about this operator that prove valuable for an
eventual efficient energy budget analysis later on, i.e. monotonicity ofK.

We augment the model with a concept of depletion in the form of unsafe states
of charge (SoCs), in a relatively straight-forward and intuitive manner: an empty
battery stays empty and is no further able to support any load, i.e. the successor
SoC of an empty battery invariantly stays empty. This is reflected in the operator
K.

The incorporation of capacity limits proves to be more intricate, as empty and
full batteries are non-symmetric scenarios: a full battery continues to power a
system, thus its further evolution must be considered.

We formalize the scenario and develop the mathematical foundations of fur-
ther charging an already saturated battery, by providing a different ODE system,
for which we provide subsequent mathematical analysis, resulting in the operator
Ksat and its properties. In conjunction with the fact that we switch fromK toKsat
exactly at the saturation time-point results in the operatorK, the KiBaM operator
that is aware of upper and lower capacity bounds.

49

3. The Kinetic Battery Model

Unfortunately, finding the exact time-points of battery saturation turns out
to be computationally cumbersome, thus appropriate approximations are devel-
oped, essentially by pre- and postponing saturation time-points to computable
under- and over-approximations of the actual (transcendental) saturation time-
point.

The composition of the saturation time-point approximations andKsat even-
tually results inK’s approximation operatorsK� andK�.

We consider the context of random SoCs and random loads, rooted in man-
ufacturing tolerances as well as self-discharge for the former, and measurement
noise for the latter, thereby rendering the KiBaM into a stochastic object.

We formalize the concept of SoC distributions and eventually formalize the
distribution of itsK-successor, by viewingK as a transformer for random variables.
For the same computational reasons as in the deterministic case, we continue by
deriving analytic expressions for the distribution of theK�- andK�-successors of
a random SoC.

We introduce Markov Task Processes (MTPs) as a load model. An MTP extends
the prior load model of task sequences by probabilistic branching, i.e. the next task
to be powered is not predetermined as in task sequences, but is instead chosen at
random according to the branching structure of an MTP.

We provide an algorithm to approximate the SoC distribution at a given time
horizon, by propagating the initial distribution along the paths generated by an
MTP using operatorsK� andK�, while mitigating the exponential blow-up of the
number of paths that lead to the given time horizon.

Finally, we consolidate the KiBaM, a model defined on a non-measurable state
of charge and the abstract load quantity, with their noisy counterparts. These play
the synthetic role of noisy quantities like battery voltage and current, in order to
provide precise SoC estimates during live operation of a system. To this end, we
discretize the KiBaM’s ODEs into difference equations that are a perfect fit for a
Kalman filter. We provide a proof of concept using synthetic noisy data, and show-
case that the resulting KiBaM filter is indeed able to adjust a faulty SoC (possibly
due to wrong initial estimates of the actual SoC) according to synthetic noisy data.

50

CHAPTER

4

Algorithms

In this chapter we put our focus on efficient implementations of the content dis-
cussed in Chapter 3. We distinguish between two paradigms, the first of which is
based on discretization (Section 4.1). Discretization algorithms allow us to track
an entire SoC distribution along a Markov Task Process up until a given time hori-
zon in both under– and over-approximative fashion. Here, we start by introduc-
ing discretized versions of SoC distributions and the load model of noisy tasks
in Section 4.1. We develop two different schemes of discretization that work on
these disretized structures, a static and an adaptive one. In static discretization
(Section 4.2), we assume that the entire safe SoC space needs to be discretized
and considered. In contrast to this idea, adaptive discretization, introduced in
Section 4.3, only considers the relevant neighborhood of the support of a SoC
distribution, which often times is significantly smaller than the entire safe SoC
space. We show that the overhead of dealing with such neighborhoods is usually
negligible, while the increase in precision is considerable. On the other hand, Sec-
tion 4.5 suggests that in most cases only a good estimate of the depletion risk up
to a certain time horizon is desirable, instead of the entire final SoC distribution.
In this context, we show how only a logarithmic amount of specific SoCs, called
SoC percentiles, need to be tracked along a task sequence in order to bound the
depletion risk up to a given precision in an almost entirely analytical approach we
call percentile propagation. The price to pay in this approach, is that of generality
of the initial SoC distribution. However, we propose that the relevant subclass of
SoC distributions this approach is able to handle, constitutes the arguably only
subclass worth considering. We finalize the chapter by comparing percentile prop-
agation with adaptive discretization and conclude the decisive superiority of per-
centile propagation in computational efficiency in both time and space, as well as
precision, when it comes to simple task sequences. For sequences of noisy tasks
we empirically show that percentile propagation is still a valid alternative to the
discretization algorithms, because of its low space requirements.

4.1 Discretization Algorithms

In this section we will formalize what it means to discretize a SoC distribution. The
aim is to eventually come up with efficient algorithms to compute theK-successor

4. Algorithms

of such a distribution given a task, and iteratively along a sequence of tasks gen-
erated by a Markov Task Process. We provide two algorithms that rely on discret-
ization, both of which can be cast into the same framework. The setup of this
framework is thus purposely phrased as generic as possible. It relies on bounding
boxes of a SoC distribution, that essentially characterize preferably small neigh-
borhoods of the support of a SoC distribution. Successors of a SoC distribution in
general do not have the same support as the predecessor SoC distribution itself.
For that reason we at first think of this neighborhood as the entire space of safe
SoCs, since it is intuitively clear that the support of anyK-successor will be con-
tained in this space. As the term neighborhood already suggests, this concept can
be refined to come up with tighter bounds to make the discretization algorithm
more accurate and computationally more efficient. The concept of such a neigh-
borhood will thus be kept as abstract as possible so as to harbour the two above
concepts.

Discretization Of SoC Distributions

A SoC distribution 〈 f̄ , f , z 〉 is a triple of two truncated probability density func-
tions f̄ and f , as well as the depletion risk z . Since f̄ is a one-dimensional den-
sity function we delimit its support using two (bound charge) values, while f is a
two-dimensional density function, thus we need two SoCs or two intervals, char-
acterizing a rectangular area, to fully determine a neighborhood of support.

We call such a neighborhood, a bounding box of a SoC distribution.

Bounding Boxes

We begin by formally introducing bounding boxes.

Definition 26 — Bounding box. A box B is a triple of intervals 〈A, B , B 〉 such
that

A ⊆ �a , a
�

, B ⊆ �b , b
�

and B ⊆ �b , b
�

.

B is called empty iff

A = ;∨B = ; and B = ;.
B is a bounding box of a SoC distribution 〈 f̄ , f , z 〉 if additionally

∫

B

f̄ (b)db =

∫

S

f̄ (b)db and

∫∫

A×B

f (a , b)da db =

∫∫

SrS

f (a , b)da db .

The above definition essentially describes the fact that we do not lose any prob-
ability mass if only focussing on the areas contained in the box.

Discretization

We aim to provide a discretization algorithm to approximate KT 〈 f̄ , f , z 〉, the K-
successor of a SoC distribution. The idea is to approximate a SoC distribution
〈 f̄ , f , z 〉 by a discrete SoC distribution defined on a grid placed within a bounding
box B = 〈A , B, B 〉 = 〈[a �, a �], [b �, b �], [b �, b �]〉 of 〈 f̄ , f , z 〉. The grid has a size N

52

4.1. Discretization Algorithms

indicating the number of chunks A, B and B is split into. We then divide the non-
saturated part A×B of a box into a two-dimensional grid and the saturated part
B into a one-dimensional grid of equisized chunks. Computing theK-successor
of each of these chunks and moving the associated probability mass accordingly,
eventually leads to a discretized version ofKT 〈 f̄ , f , z 〉.

For this purpose we first provide formal meaning of what it means to place a
grid into a box.

Definition 27. Let B= 〈[a �, a �], [b �, b �], [b �, b �]〉 be a box. Given a positive
size N ∈N>0, the grid of size N of B is defined by values

B (i) := b �+ iδsat, i = 0, . . . , N

A (i) := a �+ iδa , i = 0, . . . , N

B(i) := b �+ iδb , i = 0, . . . , N

with discretization parameters δa , δb and δsat given by

δa :=
(a �−a �)

N
, δb :=

(b �− b �)
N

and δsat :=
(b �− b �)

N
.

By B]i], B[i [as well as B]i , j] and B[i , j [we denote half open intervals of
the form

B[i [:= [B (i), B (i +1)[, i = 0, . . . , N −1

B]i] :=]B (i), B (i +1)] , i = 0, . . . , N −1

B[i , j [:= [A (i), A (i +1)[× [B(j), B(j +1)[, i , j = 0, . . . , N −1

B]i , j] :=]A (i), A (i +1)]×]B(j), B(j +1)] , i , j = 0, . . . , N −1

and call them the cells of the grid.
Finally, the representatives of the cells B[i , j [and B[i [are [A (i); B(j)] and
B (i), respectively, while the representatives of the cells B]i , j] and B]i] are
[A (i +1); B(j +1)] and B (i +1), respectively.

The idea of the discretization is that the probability mass contained in an en-
tire cell is condensed into the cell’s representative. A depiction of the concept is
displayed in Figure 4.1. Depending on whether we are interested in computing
an over-approximation or an under-approximation we choose [A (j +1); B(j +1)]
(the top right corner point of the cell) and B (i +1) (the right-hand boundary of the
cell) or [A (j); B(j)] (the bottom left corner point of the cell) and B (i) (the left-hand
boundary of the cell) respectively. In other words, cells are represented by the
largest and the smallest SoC contained in the cell, respectively.

Formally, we define a discrete SoC distribution as follows.

Definition 28 — Discrete SoC distribution. Let B be a box and N be the size
of the grid on B. A discrete SoC distribution on B is a tuple 〈µ,µ,z〉with

µ(i)≥ 0, µ[i ; j]≥ 0, and z≥ 0 for i , j = 0, . . . , N

53

4. Algorithms

b b

a

a

δa

δb

δsat B (2)

[A (2); B(2)]

B[2, 2[
B[2[

B]1, 1]

B]1]

Figure 4.1: A grid (grey dotted lines) of size 4 with discretization parametersδa ,δb and
δsat , placed into a box B (solid blue lines). The cells of the grid denoted by B]•,•],
B[•,•[and B]•], B[•[are the areas between the grid lines (green intervals). The cell’s
representatives (depicted in red) referred to by [A (•); B(•)] are the bottom left and top
right corners, while B (•) is represented by the left- and right-hand boundaries. For-
mally, the representatives are the smallest and largest SoC still contained in the cell.

and
N
∑

i=0

µ(i) +
N
∑

i , j=0

µ[i ; j] + z = 1,

where we use short-hand notation

µ(i) :=µ(B (i)) and µ[i ; j] :=µ[A (i); B(j)].

The following lemma describes a recipe to discretize a SoC distribution onto a
grid. The intuition behind it is, that the probability mass contained in each cell of
the grid is condensed into its representative.

Lemma 25 — Discretizing a SoC distribution. Let 〈 f̄ , f , z 〉 be a SoC distri-
bution, B be a corresponding bounding box, with a grid of size N . Then

54

4.1. Discretization Algorithms

〈µ�,µ�,z〉 and 〈µ�,µ�,z〉, defined as

z := z

µ�(j) :=

∫

B[j [

f̄ (b)db j = 0, . . . , N −1

µ�[i ; j] :=

∫∫

B[i , j [

f (a , b)da db i , j = 0, . . . , N −1

µ�(j +1) :=

∫

B] j]

f̄ (b)db j = 0, . . . , N −1

µ�[i +1; j +1] :=

∫∫

B]i , j]

f (a , b)da db i , j = 0, . . . , N −1

are discrete SoC distributions.

Proof:

By the fact that B is a bounding box of 〈 f̄ , f , z 〉, and the cells of its grid are
disjoint, we integrate exactly over the area of B. �

We define the following probability measure on discrete SoC distributions.

Definition 29. For any measurable set X , and discrete SoC distribution
〈µ,µ,z〉with associated grid of size N , we have

Pr[S ∈ X] :=
N
∑

i , j=0

µ[i ; j] · I[A (i);B(i)]∈X +
N
∑

i=0

µ(i) · I[a ;B (i)]∈X + z · I⊥∈X

where Iϕ is again the indicator function of a condition ϕ.

Lemma 26. Let 〈 f̄ , f , z 〉 be a SoC distribution and 〈µ�,µ�,z〉 and 〈µ�,µ�,z〉 be
its discretized versions with grid of size N according to Lemma 25. Further-
more, let [A; B] as well as [A�

�; B �
�] and [A�

�; B �
�]be random variables distributed

as

[A; B]∼ 〈 f̄ , f , z 〉, [A�
�; B �
�]∼ 〈µ�,µ�,z〉 and [A�

�; B �
�]∼ 〈µ�,µ�,z〉.

For any SoC S ∈ S⊥, we have

Pr
�

[A�
�; B �
�]≤ S

� ≥ Pr[[A; B]≤ S] ≥ Pr
�

[A�
�; B �
�]≤ S

�

.

Proof:

55

4. Algorithms

By the construction given in Lemma 25 we condense the entire probability mass
of a cell into its representative, which is a smaller and larger SoC than any other
SoC contained in the cell, respective to the kind of approximation we want to
compute. �

Thus, the discretizations of a SoC distribution soundly approximate the actual
SoC distribution from above and below on each point of the associated grid of the
discretization.

Later on, when we aim to compute K-successors of a discretized SoC distri-
bution with respect to a certain noisy task (∆, g), we must also discretize the load
density in order to avoid integration over the support of g . We therefore restrict
g to only be of finite support, meaning there is a largest and a smallest load that
still has support. This is not a very severe restriction given the actual physical
restrictions on the load on real batteries, which exhibit a maximal charging and
discharging current.

Definition 30 — Discrete noisy tasks. A discrete noisy task is a pair (∆,γ)
where∆ ∈R>0 is a positive time duration and γ is a discrete probability distri-
bution with finite support.

With the following lemma we provide a recipe how to discretize noisy tasks.

Lemma 27 — Discretizing noisy tasks. Let T = (∆, g) ∈ eT be a noisy task with
g being of finite support and let L ∈N>0 be the number of chunks we want to
separate g into. Furthermore, let ` and ` be the minimal and maximal value
of g with non-zero density value and δ` be the discretization parameter given
by

` :=min
�

` ∈ supp(g)
	

, ` :=max
�

` ∈ supp(g)
	

and δ` :=
`− `

L

Then (∆,γ�) and (∆,γ�), with

γ�(`+ iδ`) :=

∫

[i ,i+1[

g (`+ lδ`)dl for i = 0, . . . , L −1

γ�(`− iδ`) :=

∫

[i ,i+1[

g (`− lδ`)dl for i = 0, . . . , L −1

are discrete noisy tasks.

Proof:

The intervals
�

`+ iδ`,`+ (i +1)δ`
�

for i = 0, . . . , L are disjoint and their union
equals exactly supp(g), making γ� a discrete probability distribution with finite
support, given that g is a probability density function with finite support. The
claim for γ� follows in similar fashion. �

56

4.2. Static Discretization

4.2 Static Discretization

We can now move on to formalize how to computeK-successors of discrete SoC
distributions. We are thus now facing the problem that the support of the suc-
cessor distribution is in general not contained in the bounding box of the initial
distribution. To avoid this problem entirely at first, we assume that the support
of the SoC distributions spans the entire space of safe SoCs, or in other words,
we choose the space of safe SoCs as the trivial bounding box. We then place an
invariant grid onto the set of safe SoCs, compute theK-successor of each cell rep-
resentative and move the associated probability mass into the cell that Kmaps
into. This way of computing successors of discrete SoC distributions turns out
to produce sound under- and over-approximations of the actual successor SoC
distribution, as we will establish later on.

We formalize the above idea. Let us for the remainder of this section assume
a generic successor operator on boxes, to allow for a more general formalization.
For the moment one can think of the initial box as being the entire space of safe
SoCs and of theK-operator on boxes as the identity, i.e.

B=BS := 〈�a , a
�

,
�

b , b
�

,
�

b , b
�〉 and KT B :=B

and that additionally, we have an invariant grid of size N ∈ N>0 placed within
B. Because the grid and the boxes stay invariant, we refer to this discretization
scheme as static discretization (SD). We will eventually refine this concept to be
adaptive in the next section.

Lemma 28 — The set of safe SoCs is a bounding box. For any SoC distribution,
the box BS given by

A =
�

a , a
�

, B =
�

a , a
�

, and B =
�

b , b
�

is a trivial bounding box.

Proof:

By definition. �

Definition 31 — Successor of a discrete SoC distribution. Let T = (∆, g) be a
noisy task and (∆,γ�) as well as (∆,γ�) be its discretized versions according
to Lemma 27. Furthermore, let 〈µ,µ,z〉 be a discrete SoC distribution with
associated box B and grid of size N . Finally, let BT :=KT B be the successor
box with its associated grid of the same size. The K� and K�-successor of
〈µ,µ,z〉 are defined by

K�
T 〈µ,µ,z〉 := 〈µ�

T ,µ�
T ,z�T 〉 and K�

T 〈µ,µ,z〉 := 〈µ�
T ,µ�

T ,z�T 〉

57

4. Algorithms

with

µ�
T (j +1) :=

∑

`∈supp(γ�)
γ�(`) ·

�

N
∑

k=0

¦

µ(k)
�

�

�K�
(∆,`)[a ; B (k)] ∈ {a }×BT] j]

©

+
N
∑

k ,l=0

¦

µ[k ; l]
�

�

�K�
(∆,`)[A (k); B(l)] ∈ {a }×BT] j]

©

�

µ�
T [i +1; j +1] :=

∑

`∈supp(γ�)
γ�(`) ·

�

∑

k=0

¦

µ(k)
�

�

�K�
(∆,`)[a ; B (k)] ∈BT]i , j]

©

+
N
∑

k ,l=0

¦

µ[k ; l]
�

�

�K�
(∆,`)[A (k); B(l)] ∈BT]i , j]

©

�

z�T :=
∑

`∈supp(γ�)
γ�(`) ·

�

N
∑

k=0

¦

µ(k)
�

�

�K�
(∆,`)[a ; B (k)] =⊥

©

+
N
∑

k ,l=0

¦

µ[k ; l]
�

�

�K�
(∆,`)[A (k); B(l)] =⊥

©

�

+ z

and

µ�
T (j) :=

∑

`∈supp(γ�)
γ�(`) ·

�

N
∑

k=0

¦

µ(k)
�

�

�K�
(∆,`)[a ; B (k)] ∈ {a }×BT [j [

©

+
N
∑

k ,l=0

¦

µ[k ; l]
�

�

�K�
(∆,`)[A (k); B(l)] ∈ {a }×BT [j [

©

�

µ�
T [i ; j] :=

∑

`∈supp(γ�)
γ�(`) ·

�

∑

k=0

¦

µ(k)
�

�

�K�
(∆,`)[a ; B (k)] ∈BT [i , j [

©

+
N
∑

k ,l=0

¦

µ[k ; l]
�

�

�K�
(∆,`)[A (k); B(l)] ∈BT [i , j [

©

�

z�T :=
∑

`∈supp(γ�)
γ�(`) ·

�

N
∑

k=0

¦

µ(k)
�

�

�K�
(∆,`)[a ; B (k)] =⊥

©

+
N
∑

k ,l=0

¦

µ[k ; l]
�

�

�K�
(∆,`)[A (k); B(l)] =⊥

©

�

+ z

for each i , j = 0, . . . , N −1.

The K� and K�-successor of the discrete SoC distribution are indeed under-
and over-approximations of theK-successor of the actual SoC distribution it was
induced from.

58

4.3. Adaptive Discretization

Lemma 29. Let T ∈ eT be a noisy task, 〈 f̄ , f , z 〉 be a SoC distribution and let
〈µ�,µ�,z〉 and 〈µ�,µ�,z〉 and be its discretized versions according to Lemma 25.
Furthermore, let [A; B] as well as [A�

�; B �
�] and [A�

�; B �
�] be random variables

distributed as

[A; B]∼KT 〈 f̄ , f , z 〉, [A�
�; B �
�]∼K�

T 〈µ�,µ�,z〉 and [A�
�; B �
�]∼K�

T 〈µ�,µ�,z〉.
We have, for any SoC S

Pr
�

[A�
�; B �
�]≤ S

� ≥ Pr[[A; B]≤ S] ≥ Pr
�

[A�
�; B �
�]≤ S

�

.

Proof:

Essentially, the claim follows from the combination of facts that we discretize
in an under- and over-approximating fashion, respectively, wherever it is neces-
sary. By Lemma 26, 〈µ�,µ�,z〉 and 〈µ�,µ�,z〉 approximate 〈 f̄ , f , z 〉 from below
and above, respectively. Additionally, we have the fact that γ� and γ� are under-
and over-approximating discretizations of the actual load distribution g . Fi-
nally, with the fact thatK� andK� approximate the actual successor operator
K from above and below, the claim follows. �

4.3 Adaptive Discretization

When analyzing real world battery powered systems, we usually assume that ini-
tially the battery is (nearly) fully charged. In satellites, the battery is of course
inserted in a fully charged state into the device, however it may self discharge to
a certain extend in its launching pod while waiting for deployment, which poten-
tially spans a period of several months. This leaves more than enough time for the
battery to equilibrate. Thus, it is not only reasonable to assume an initially almost
fully charged battery, but also one that is in equilibrium. Assuming a small margin
of uncertainty around the actual SoC, static discretization of the entire safe SoC
space, as introduced in the previous section, would lead to just a handful of non-
zero cells, while the overwhelming majority of cells would end up holding zero
probability mass. This leads to an prohibitive computational overhead of essen-
tially propagating zeros along a task sequence, becoming increasingly prominent
as the length of the task sequence increases. Assume a battery of an abstract ca-
pacity of 1000, with c= 0.5, meaning a = 500 and b = 500. Additionally, assume we
have a grid of size N = 1000. For the sake of illustration, assume the battery SoC is
initially estimated to be between 250 and 270 in both the available charge and the
bound charge dimension. Out of the N ·N = 1 000 000 cells of the unsaturated SoC
area in total, only a mere 1600 cells hold a non-zero probability mass. In addition,
we would accumulate severe approximation errors with each task, attributed to
the ambition of always using sound approximations, i.e. each cell is being rep-
resented by its bottom left or top right corner point, depending on the whether
we want to compute the under- or over-approximation of the SoC distribution in
question.

In the following we improve on these shortcomings. We pursue the idea of
discretizing only the interesting portion of the safe SoC space, namely windows

59

4. Algorithms

a

a

av
ai

la
bl

e
→

b b

0.25

0.50

0.75

1.00

1.25

1.50

1.75

×10−6

bound →
44.636631 % bound →

a

a

av
ai

la
bl

e
→

b b

Figure 4.2: Left: A SoC distribution and a corresponding bounding box (blue). Right:
The support of the SoC distribution (black) to visualize the tightness of the bounding
box. The red hatched area is the space of unsafe SoCs.

representing only the immediate neighborhood of the support of the initial bat-
tery state distribution. Following this paradigm not only eliminates as many zero-
probability cells as possible, but also decreases the size of grid cells, thereby greatly
reducing approximation errors. We refer to the resulting discretization scheme as
adaptive discretization (AD).

An example of a SoC distribution and its bounding box is given in Figure 4.2.
Note that the following development is a generalization of SD where we essen-

tially have used the set of safe SoCs as bounding box and have left it invariant.

Successor Of A Box

In most cases, after powering a task T , the SoC distribution will end up, at least
partially, beyond its initial bounding box B. Thus, before we transform the SoC
distribution according toK, we compute the successor bounding box, denoted by
KT B, from the task T and the initial bounding box B. With the prospect of only
discretizing the area defined by the distribution’s bounding box, it is desirable to
keep it as tight as possible while propagating the box along T , in order to minimize
the number of void cells.

We start by introducing the notion of subsumption and closure of bounding
boxes, by essentially lifting the subset relation and the union operation on inter-
vals, which we will need later on.

Definition 32 — Subsumption. Let B0 := 〈A0, B0, B 0〉 and B1 := 〈A1, B1, B 1〉
be boxes. We denote byB0 vB1 thatB0 is subsumed by B1, orB1 subsumes
B0. Subsumption is defined as

B0 vB1 := A0 ⊆ A1 ∧ B0 ⊆ B1 ∧ B 0 ⊆ B 1

For strict subsumption we use the strict subset relation.

60

4.3. Adaptive Discretization

b b

a

a

B0

B1

B0 and B1 with B0 ÀB1.

b b

a

a

B0

B1

b b

a

a

B0 tB1

B0 and B1 as well as their closure B0 tB1.

Figure 4.3: The illustration of subsumption and closure of boxes.

Definition 33 — Closure of boxes. Let B0 := 〈A0, B0, B 0〉 and
B1 := 〈A1, B1, B 1〉 be two boxes. The closure of B0 and B1, denoted by
B0 tB1 is defined componentwise by

B0 tB1 := 〈A0 tA1, B0 tB1, B 0 tB 1〉,
where

M tN :=

M , if M 6= ;=N

N , if M = ; 6=N

[min (M ∪N), max (M ∪N)] , if M 6= ; 6=N

.

The closure over countably many boxes
⊔N

i=0Bi is defined inductively by

N
⊔

i=N

Bi =BN and
N
⊔

i=n

Bi =Bn t
N
⊔

i=n+1

Bi .

The concepts of subsumption and closure of boxes are illustrated in Figure 4.3.

We prove a few basic and intuitive properties about the closure of boxes and
subsumption.

Lemma 30 — Closure of boxes subsumes its components. Let B0 and B1 be
two boxes. We have that

B0 v B0 tB1 and B1 v B0 tB1.

Proof:

By the fact that m ≤max M for each m ∈M and m ≥min M for each m ∈M . �

61

4. Algorithms

Lemma 31. Let 〈 f̄ , f , z 〉 be a SoC distribution and B0 be a bounding box of
〈 f̄ , f , z 〉. Each B1, with B0 vB1 is also a bounding box of 〈 f̄ , f , z 〉.

Proof:

Let B0 = 〈A0, B0, B 0〉 and B1 = 〈A1, B1, B 1〉. Since
∫

B 0
f̄ =

∫

[b ,b] f̄ and B 0 ⊆ B 1

we also have
∫

B 1
f̄ =

∫

B 0
f̄ . Analogously, with A0 ⊆ A1 and B0 ⊆ B1 we also have

∫∫

A1×B1
f =

∫∫

A0×B0
f . �

Using the closure of boxes allows us to define basic arithmetic operations on
discrete SoC distributions similarly to conventional SoC distributions.

Definition 34. Let ? ∈ {+,−, ·,/} and 〈µ0,µ0,z0〉 be a discrete SoC distribution.
We define

〈µ0,µ0,z0〉 ? x :=

¨

〈µ0 ?µ1,µ0 ?µ1,z0 ? z1〉, if x = 〈µ1,µ1,z1〉
〈µ0 ?k,µ0 ?k,z0 ?k〉, if x = k ∈R.

Countable operations? ∈ �∑,
∏	

are defined inductively in the usual way:

N

?
i=N

〈µi ,µi ,zi 〉 = 〈µN ,µN ,zN 〉 and

N

?
i=n

〈µi ,µi ,zi 〉 = 〈µn ,µn ,zn 〉 ?
N

?
i=n+1

〈µi ,µi ,zi 〉.

where the underlying box of the result is given by
⊔N

i=0Bi .

In the next sections we derive how to propagate bounding boxes along a task.

Successor Box While Discharging

The discharging scenario is the easier scenario since every SoC will become unsat-
urated and thus B will become empty. In addition, some SoCs that have support
may be rendered unsafe by being mapped below the depletion threshold, thus we
can potentially crop the successor bounding box from below.

Therefore, let us first assume that T is a discharging task. An important con-
cept of the construction outlined in this section is the depletion boundary (Defi-
nition 17). Remember that the depletion boundary of a task T , is a line in the SoC
space, that separates the SoCs that remain safe and the SoCs that are rendered
unsafe under T (Lemma 15). For a visual example about the depletion boundary,
see Example 4.

From the above we get the following: If the depletion boundary intersects the
bounding box, the latter will be separated into two parts. Lemma 14 indicates that
the SoC located on the leftmost intersection with the bounding box will become
the smallest SoC that is mapped exactly onto the depletion threshold under T ,
since it exhibits the minimal bound charge level of all the SoCs on the intersection

62

4.3. Adaptive Discretization

of depletion boundary and bounding box. The successor of this SoC will provide
new lower interval endpoints (i.e. the new bottom left corner) of the successor
bounding box. The upper interval endpoints are simply propagated viaK, mean-
ing they constitute the new top right corner of the successor box.

Luckily, we can split up this development into multiple steps by focussing on
the saturated and non-saturated parts of a bounding box individually and join the
results using closure operations, i.e. to compute the successor box ofB= 〈A , B, B 〉,
it suffices to compute the successor boxes of the "subboxes" 〈;,;, B 〉 and 〈A, B ,;〉
individually.

Successor Of The Saturated Part. Let us first assume that the non-saturated part
of B is empty, and the entire support of the SoC distribution is represented in B .
Thus, we assume B is of the form 〈;,;, B 〉 with B = [b �, b �] . In this case, the
depletion boundary of T (i.e. with target available charge level ã := a) is given
by bT (a), and it intersects with B only if bT (a) ∈ B and the successor box will be
determined byKT [a ; bT (a)] as well asKT [a ; b �]. If the depletion boundary does
not intersect with B , then either bT (a) < b �, which results in the successor box
being captured by KT [a ; b �] and KT [a ; b �]; or bT (a) > b �, which will lead to an
empty successor box altogether.

Definition 35. Let T = (∆,`) ∈ T be a discharging task and B = 〈;,;, B 〉 be a
box with non-empty B = [b �, b �]. Furthermore, let

[a min
mid ; b min

mid] :=KT [a ; b �], [•; bhit] :=KT [a ; bT (a)] and [a max
mid ; b max

mid] :=KT [a ; b �].

Then theK-successor of B is defined by

KT B :=

〈;,;,;〉, if bT (a)> b �

〈[a min
mid , a max

mid], [b min
mid , b max

mid],;〉, if bT (a)< b �

〈[a , a max
mid], [bhit, b max

mid],;〉, if bT (a) ∈ B

.

Figure 4.4 illustrates every case of Definition 35 separately. We prove that the
successor box in this case is indeed a bounding box of the successor SoC distribu-
tion.

Lemma 32. Given a discharging task T ∈ T, a SoC distribution 〈 f̄ , f , z 〉 and
its bounding box B of the form 〈;,;, B 〉, KT B is indeed a bounding box of
KT 〈 f̄ , f , z 〉.

Proof:

By properties of the depletion boundary (Lemmas 14 and 15) as well as the fact
thatK preserves ≤ (Corollary 1), it is straightforward to deduce that the whole
support ofKT 〈 f̄ , f , z 〉 is captured byKT B . �

Successor Of The Non-Saturated Part. Let us assume next that B is of the form
〈A, B ,;〉with non-empty A = [a �, a �] and B = [b �, b �]. Given Lemma 13 we know

63

4. Algorithms

K K

b b

a

a

b � b �bT (a)

The case bT (a)< b �.

K
K

b b

a

a

b � b �bT (a)

The case bT (a) ∈ B .

⊥⊥

b b

a

a

b � b � bT (a)

The case bT (a)> b �.

Figure 4.4: A depiction ofKT B in a discharging scenario, given in Definition 35. The
solid blue lines define the current box, while the dashed blue lines represent the suc-
cessor box. The depletion boundary is highlighted in red. The grey arrows indicate the
Kmappings necessary to compte the successor box.

that the depletion boundary is strictly monotonically decreasing, thus restricting
the ways the boundary can intersect with the box. In fact, the boundary can only
intersect the box at the left or top side while simultaneously attaining a minimal
bound charge level.

Definition 36. Let T = (∆,`) ∈T be a discharging task and B= 〈A, B ,;〉 be a
box with A = [a �, a �] and B = [b �, b �]. Furthermore, let

[•; b left
hit] :=KT [aT (b

�); b �], [a min
mid ; b min

mid] :=KT [a �; b �]
[•; b top

hit] :=KT [a
�; bT (a

�)], [a max
mid ; b max

mid] :=KT [a �; b �]

Then theK-successor of A and B combined, is defined by

KT [A; B] :=

〈;,;,;〉, if aT (b
�)> a �

〈[a min
mid , a max

mid], [b min
mid , b max

mid],;〉, if aT (b
�)< a �

〈�a , a max
mid

�

,
�

b top

hit , b max
mid

�

,;〉, if bT (a
�) ∈ B

〈�a , a max
mid

�

, [b left
hit , b max

mid],;〉, if aT (b
�) ∈ A

.

Figure 4.5 illustrates every case of Definition 36 separately. We prove that the
successor box in this case is indeed a bounding box of the successor SoC distribu-
tion.

Lemma 33. Given a discharging task T ∈ T, a SoC distribution 〈 f̄ , f , z 〉 and
its bounding box B= 〈A, B ,;〉,KT [A; B] is a bounding box ofKT 〈 f̄ , f , z 〉.

Proof:

64

4.3. Adaptive Discretization

⊥⊥

b
ab

a

[a �; b �]

[a �; b �]

aT (b
�)

The case aT (b
�)> a �.

K

K

b
ab

a

[a �; b �]

[a �; b �]

aT (b
�)

The case aT (b
�) ∈ A.

KK

b
ab

a

[a �; b �]

[a �; b �]

bT (a
�)

The case bT (a
�) ∈ B .

K
K

b
ab

a

[a �; b �]

[a �; b �]

aT (b
�)

The case aT (b
�)< a �.

Figure 4.5: A depiction of KT [A; B] in a discharging scenario, given in Definition 36.
The solid blue lines define the current box, while the dashed blue lines represent the
successor box. The depletion boundary is highlighted in red. The red dot indicates the
relevant SoC on the depletion boundary we perform the case distinction on. The grey
arrows indicate theK-mappings necessary to compute the successor bounding box.

Again, by properties of the depletion boundary (Lemmas 14 and 15) as well as
the fact thatK preserves ≤ (Corollary 1), it is straightforward to deduce that the
whole support ofKT 〈 f̄ , f , z 〉 is captured byKT [A; B]. �

Successor Box While Charging

Let us now focus on the case where T is a charging task.
In this case, non-saturated SoCs may become saturated, thus after a charging

task is performed, the support in the non-saturated part may contribute to the
saturated portion ofKT B, potentially enlarging it compared to the previous box.
Dual to the discharging case, we are interested in the intersection points of the

65

4. Algorithms

box with the target boundary with target (ã := a), i.e. the saturation boundary
(Definition 17 and Example 4). The boundary potentially separates the box into a
part that is saturated by T and a part that remains unsaturated after powering T
(Lemma 15). Again, the intersection point exhibiting the least bound charge level
potentially contributes to the left endpoint of the successor box’s saturated part.

The treatment of the saturated part is more involved as in the discharging sce-
nario, since some SoCs potentially leave the saturated part due to diffusion, but
become saturated again, while other SoCs remain saturated throughout the entire
task. In order to keep the boxes as tight as possible we distinguish these cases.
Lastly, we need to be careful when parts of the non-saturated portion become sat-
urated, which implicitly means, the saturation limit is hit. This requires the use of
K-mappings. Due to the problems of determining the exact saturation time points
already discussed in Section 3.3, we use the approximation operatorsK� andK�

accordingly. In essence, whenever we determine an upper interval endpoint of a
successor box, we potentially useK�, in order to over-approximate the endpoint,
and dually we useK� for lower interval endpoints for under-approximations.

Successor Of The Saturated Part. Let us again first assume that the non-saturated
part of B is empty, and the entire support of the SoC distribution is represented
in B . Thus, we assume B is of the form 〈;,;, B 〉with B = [b �, b �]. The saturation
boundary of T is given by bT (a), and it intersects with B only if bT (a) ∈ B . The left
endpoint of the successor box’s saturated part is then determined byKT [a ; bT (a)]
as is the top-right corner of the non-saturated part. The bottom left corner of the
non-saturated part is contributed by KT [a ; bT (b

�)], while the right endpoint of
the saturated part is given byKT [a ; b �] orKsatT [a ; b �] depending on whether the
diffusion is overpowered by T or not. If the saturation boundary does not inter-
sect B , we either have the case that the successor ends up with an empty saturated
part, or an empty non-saturated part. In the latter case, one or both endpoints
may have to be propagated usingKsat orK, depending on whether the diffusion
is overpowered by T .

Thus, one central value we are interested in, is the least bound charge level of
a saturated SoC, that is able to withstand the diffusion and stay saturated, given a
charging load `. This value can be easily derived by rearranging the expression of
`sat(b) for b , which results in b sat

` according to Definition 13.

Additionally, we can somewhat reduce the number of case distinctions using
the fact that the least bound charge level able to overcome the diffusion b sat

` is
larger than bT (a).

Definition 37. Let T = (∆,`) ∈T be a charging task and B= 〈;,;, B 〉 be a box
with B = [b �, b �]. Furthermore, let

[•; b min

sat] :=K�
T [a ; b �], [a min

mid ; b min
mid] :=KT [a ; b �], [•; bret] :=KT [a ; bT (a)],

[•; b max

sat] :=K�
T [a ; b �], [a max

mid ; b max
mid] :=KT [a ; b �].

66

4.3. Adaptive Discretization

Then theK-successor of B is defined by

KT B :=

〈;,;,
�

Bsat
∆ (b

�), Bsat
∆ (b

�)
�

〉, if b sat
` < b �

〈[a min
mid , a max

mid], [b min
mid , b max

mid],;〉, if bT (a)> b �

〈;,;, �b min

sat , b max

sat

�〉, if bT (a)< b � ∧ b sat
` > b �

〈[a min
mid , a], [b min

mid , bret],
�

bret, Bsat
∆ (b

�)
�

〉, if bT (a) ∈ B ∧ b sat
` ∈ B

〈;,;,
�

b min

sat , Bsat
∆ (b

�)
�

〉, if bT (a)< b � ∧ b sat
` ∈ B

〈[a min
mid , a], [b min

mid , bret],
�

bret, b max

sat

�〉, if bT (a) ∈ B ∧ b sat
` > b �

.

Figure 4.6 illustrates all the cases of Definition 37 separately. We prove that
the successor box in this scenario is indeed a bounding box of the successor SoC
distribution.

Lemma 34. Given a charging task T ∈ T, a SoC distribution 〈 f̄ , f , z 〉 and
its bounding box B of the form 〈;,;, B 〉, KT B is indeed a bounding box of
KT 〈 f̄ , f , z 〉.

Proof:

By properties of the saturation boundary (Lemmas 14 and 15) as well as the fact
thatK preserves ≤ (Corollary 1), it is straightforward to deduce that the whole
support ofKT 〈 f̄ , f , z 〉 is captured byKT B . �

Successor Of The Non-Saturated Part. Similar to the discharging case, let us as-
sume next that B is of the form 〈A, B ,;〉with A = [a �, a �] and B = [b �, b �]. Given
Lemma 13 we know that the saturation boundary is strictly monotonically decreas-
ing, which restricts its intersection points with the box, analogously to what we
have seen before.

Definition 38. Let,T = (∆,`) ∈T be a charging task and B= 〈A, B ,;〉 be a box
with A = [a �, a �] and B = [b �, b �]. Furthermore, let

[•; b min

sat] :=K�
T [a ; b �] [a min

mid ; b min
mid] :=KT [a �; b �] [•; b top

hit] :=KT [a
�; bT (a

�)]
[•; b max

sat] :=K�
T [a ; b �] [a max

mid ; b max
mid] :=KT [a �; b �] [•; b left

hit] :=KT [aT (b
�); b �]

Then theK-successor of A and B , is defined by

KT [A; B] :=

〈;,;, �b min

sat , b max

sat

�〉, if aT (b
�)< a �

〈[a min
mid , a max

mid], [b min
mid , b max

mid],;〉, if aT (b
�)> a �

〈[a min
mid , a],

�

b min
mid , b top

hit

�

,
�

b top

hit , b max

sat

�〉, if bT (a
�) ∈ B

〈[a min
mid , a], [b min

mid , b left
hit],

�

b left
hit , b max

sat

�〉, if aT (b
�) ∈ A

.

Figure 4.7 illustrates all the cases of Definition 38 separately. We prove that the
successor box in this case is indeed a bounding box of the successor SoC distribu-
tion.

67

4. Algorithms

Ksat Ksat
b b

a

a

b � b �bT (a) b sat
`

b sat
` < b �.

K
K

b b

a

a

b � b � bT (a) b sat
`

bT (a)> b �.

K� K�

b b

a

a

b � b �bT (a) b sat
`

bT (a)< b � ∧ b sat
` > b �.

Ksat

K K

b b

a

a

b � b �bT (a) b sat
`

bT (a) ∈ B ∧ b sat
` ∈ B .

Ksat

K�

b b

a

a

b � b �bT (a) b sat
`

bT (a)< b � ∧ b sat
` ∈ B .

K K K�

b b

a

a

b � b �bT (a) b sat
`

bT (a) ∈ B ∧ b sat
` > b �.

Figure 4.6: A depiction ofKT B in a charging scenario, given in Definition 38. The solid
blue lines define the current box, while the dashed blue lines represent the successor
box. The saturation boundary and the least bound charge staying saturated are high-
lighted in red and green, respectively. The grey arrows indicate the mappings necessary
to compute the successor box.

68

4.3. Adaptive Discretization

K�K�

b b

a

a

[a �; b �]

[a �; b �]

aT (b
�)

The case aT (b
�)< a �.

K�

K

K

b b

a

a

[a �; b �]

[a �; b �]

aT (b
�)

The case aT (b
�) ∈ A.

K

K

b b

a

a

[a �; b �]

[a �; b �]

aT (b
�)

The case aT (b
�)> a �.

K�

K

K

b b

a

a

[a �; b �]

[a �; b �]

bT (a
�)

The case bT (a
�) ∈ B .

Figure 4.7: A depiction ofKT [A; B] in a charging scenario, given in Definition 38. The
solid blue lines define the current box, while the dashed blue lines represent the suc-
cessor box. The saturation boundary is highlighted in red. The red dot visualizes the
SoC on the saturation boundary responsible for the entire case distinction. The grey
arrows indicate the mappings necessary to compute the successor box.

69

4. Algorithms

Lemma 35. Given a charging task T ∈ T, a SoC distribution 〈 f̄ , f , z 〉 and its
bounding box B= 〈A, B ,;〉,KT [A; B] is a bounding box ofKT 〈 f̄ , f , z 〉.

Proof:

Again, by properties of the saturation boundary (Lemmas 14 and 15) as well as
the fact thatK preserves ≤ (Corollary 1), it is straightforward to deduce that the
whole support ofKT 〈 f̄ , f , z 〉 is captured byKT [A; B]. �

Successor Box While Resting

We can further simplify the computation of successor boxes in the case of resting,
meaning the battery undergoes a zero load task (∆, 0), for some positive duration
∆ > 0. In this special case, we do not need to worry about any target boundary as
depletion as well as saturation do not occur during periods of resting.

Definition 39. Let,T = (∆,0) ∈T be a resting task and B= 〈A, B , B 〉 be a box
with A = [a �, a �], B = [b �, b �] and B = [b �, b �]. Furthermore, let

[a max

sat ; b max

sat] :=KT [a ; b �], [a max
mid ; b max

mid] :=KT [a �; b �]
[a min

sat; b min

sat] :=KT [a ; b �], [a min
mid ; b min

mid] :=KT [a �; b �]

Then theK-successor of A and B combined, is defined by

KT [A; B] := 〈[a min
mid , a max

mid], [b min
mid , b max

mid],;〉,
KT B := 〈�a min

sat, a max

sat

�

,
�

b min

sat , b max

sat

�

,;〉.

Lemma 36. Let T ∈T be a resting task, and 〈 f̄ , f , z 〉 be a SoC distribution. If
its bounding box is of the form B= 〈A, B ,;〉, thenKT [A; B] is a bounding box
ofKT 〈 f̄ , f , z 〉. If the bounding box is of the form B= 〈;,;, B 〉, thenKT B is a
bounding box ofKT 〈 f̄ , f , z 〉.

Proof:

By the fact thatK preserves ≤ (Corollary 1). �

Figure 4.8 summarizes Definition 39 visually.
For any scenario, whether it is charging, discharging or resting we receive the

final successor box as follows.

Definition 40. Let T ∈ T be any task and B = 〈A, B , B 〉. The K-successor of
B is defined by

KT B :=KT [A; B] t KT B .

Finally, for charging, discharging and resting scenarios we define that the suc-
cessor of an empty box remains empty, since it effectively represents a fully de-
pleted SoC distribution.

70

4.3. Adaptive Discretization

K
K

b b

a

a

b � b �

KT B

K

K
b

ab

a

[a �; b �]

[a �; b �]

KT [A; B]

Figure 4.8: Left: A depiction ofKT B in case of T being a resting task, with the current
box indicated with solid blue lines and the successor box being depicted in dashed
blue lines. The grey arrows indicate theK-mappings that are performed. The box will
surely leave the saturated portion, and no depletion will occur. Right: A depiction of
KT [A; B]with T being a resting task.

Definition 41. For any task T ∈Twe defineK invariant to empty boxes as

KT 〈;,;,;〉 := 〈;,;,;〉.

Lemma 37. The empty box 〈;,;,;〉 is a bounding box for any SoC distribution
〈 f̄ , f , z 〉with z = 1.

Proof:

The SoC distribution exhibits no probability mass through f nor f̄ , which coin-
cides with the empty bounding box, since all intervals are empty and integrals
amount to 0. �

Finally, using all the preceding lemmas it is quite straightforward to see thatK
actually computes valid successor boxes.

Lemma 38. Let T ∈ T be any task, 〈 f̄ , f , z 〉 be a SoC distribution and B its
associated bounding box. We have thatKT B is a bounding box ofKT 〈 f̄ , f , z 〉.

Proof:

We first assume that B is not completely empty. If T is a discharging task we
deduce the claim by the preceding Lemmas 33 and 32, as well as Lemma 30.

71

4. Algorithms

Similarly, for charging tasks we get to the claim with the Lemmas 35 and 34, as
well as Lemma 30. Finally, for resting tasks, we use Lemmas 36, and again 30.
If B is empty then consequently 〈 f̄ , f , z 〉 is a fully depleted SoC distribution.
Lemma 37 immediately establishes the claim. �

Lastly, the only remaining thing left to do is define is how to compute the suc-
cessor box with respect to a noisy task and its discretized counterparts. Essentially,
we compute the box of each load instance within the support of the load density
of the noisy task. Using the closure of boxes we are able to formalize this concept
quite elegantly and concisely, for discretized noisy tasks, which ensures that the
computed boxes stay as small as possible. For arbitrary noisy tasks, especially
those with continuous load densities, this requires the computation of the convex
hull over an uncountable number of boxes, hence it is undefined.

Definition 42. Let T = (∆,γ) be a discrete noisy task with finite support. Fur-
thermore, let D be a (possibly discrete) SoC distribution and B be an associ-
ated bounding box. Then, theK-successor box of D according to T is given
by

KT B :=
⊔

`∈supp(γ)

K(∆,`)B.

4.4 Algorithm

With all of the above in place, we are ready to formalize an algorithm that tracks
an initial SoC distribution 〈 f̄ , f , z 〉 along a Markov Task Process M up to a time
horizon t̄ . A pseudo-code formulation is given in Algorithm 2.

Initialization. We start the algorithm by discretizing the input SoC distribution
〈 f̄ , f , z 〉 and annotating it with the starting time 0 (Line 1). Line 2 introduces an
empty priority list todo that serves as a worklist, to keep track of the time frontier,
although this step is not necessary for correctness but for efficiency, since it allows
for merging paths as early as possible. We scale the discretized SoC distributions
to subdistributions, and additionally annotate them with an MTP state s for each
state with non-zero probability with respect to π(s) inside a foreach-loop (Lines 3–
6).

Propagation. The propagation phase is contained in the repeat-until loop, start-
ing in Line 7. The discrete SoC subdistribution pair having the smallest time point
annotation is popped from the worklist (Line 8). We grab the task according to the
MTP state the distributions are annotated with (Line 9), and adjust its duration in
case we would exceed the time horizon in the following line. Next, the appropriate
successors are computed in Lines 11–12, adjusting the annotated time to coincide
with the end of the task. The outer foreach-loop in Line 13 starts off by moving the
scaled successors (Line 14) over to the next MTP state s̃ according to the transition
function P (•, s̃) adjusting the annotated state in the process. The inner foreach-
loop (Line 16) then selects every distribution already in the worklist, having the
same time and state annotation, merging them componentwise with the distri-
butions we are currently processing, removing them in the process (Lines 17–19).
Note that also the bounding box is implicitly adjusted according to Definition 34

72

4.4. Algorithm

Input :A SoC distribution 〈 f̄ , f , z 〉with bounding box B, an MTP
M = (S, P,π,task), a time horizon t̄ , and a grid size N

Output :Two discrete SoC distributions 〈µ�
t̄ ,µ�

t̄ ,z�t̄ 〉and 〈µ�
t̄ ,µ�

t̄ ,z�t̄ 〉
1 D �

(0,•), D �
(0,•) := discretizations of 〈 f̄ , f , z 〉with box B

2 todo := empty priority list with order D •
(t0,•)≤t D •

(t1,•) := t0 ≤ t1

3 foreach s ∈S with π(s) 6= 0 do
4 D �

(0,s) :=D �
(0,•) ·π(s) with box B(0,s)

5 D �
(0,s) :=D �

(0,•) ·π(s) with box B(0,s)

6 todo.insert(D �
(0,s) ,D �

(0,s))

7 repeat
8 D �

(t ,s), D �
(t ,s) := todo.pop() with box B(t ,s)

9 (∆, g) := task(s)
10 if t +∆ > t̄ then∆ := t̄ − t

11 D �
(t+∆,s) :=K�

(∆,g)D
�
(t ,s) with box B(t+∆,s) :=K(∆,g)B(t ,s)

12 D �
(t+∆,s) :=K�

(∆,g)D
�
(t ,s) with box B(t+∆,s)

13 foreach s̃ ∈S with P (s, s̃) 6= 0 do
14 D �

(t+∆,s̃) :=D �
(t+∆,s) ·P (s, s̃) with box B(t+∆,s̃) :=B(t+∆,s)

15 D �
(t+∆,s̃) :=D �

(t+∆,s) ·P (s, s̃) with box B(t+∆,s̃)

16 foreach eD �
(t+∆,s̃), eD

�
(t+∆,s̃) ∈ todo with box fB do

17 D �
(t+∆,s̃) :=D �

(t+∆,s̃)+ eD �
(t+∆,s̃) with box

B(t+∆,s̃) :=B(t+∆,s̃) tfB
18 D �

(t+∆,s̃) :=D �
(t+∆,s̃)+ eD �

(t+∆,s̃) with box B(t+∆,s̃)

19 todo.remove(eD �
(t+∆,s̃), eD

�
(t+∆,s̃))

20 todo.insert(D �
(t+∆,s̃), D �

(t+∆,s̃))

21 until ∀D •
(t ,•) ∈ todo : t = t̄

22 D �
(t̄ ,•) :=

∑

¦

D �
(t̄ ,s)

�

�

�D �
(t̄ ,s) ∈ todo

©

with box B :=
⊔

¦

B(t̄ ,s)

�

�

�D �
(t̄ ,s) ∈ todo

©

23 D �
(t̄ ,•) :=

∑

¦

D �
(t̄ ,s)

�

�

�D �
(t̄ ,s) ∈ todo

©

with box B

24 return D �
(t̄ ,•), D �

(t̄ ,•)

Algorithm 2: A discretization algorithm to under- and over-approximate a
SoC distribution 〈 f̄ , f , z 〉 powering an MTP M for t̄ time units.

73

4. Algorithms

to the pairwise closure of the subdistribution’s boxes. After the merging of the
distributions, we insert the resulting pair into the worklist in Line 20.

Termination. The propagation phase ends if every SoC distribution has reached
and is annotated by the time horizon, as given in the until-condition of the loop
(Line 21). In that case, we have propagated the approximations of the input SoC
distribution through the input MTP until time t̄ , albeit in different MTP states. We
collect and merge all the subdistributions left in the worklist, creating the final
discrete SoC distributions as their componentwise sums (Line 24). The algorithm
inevitably terminates since each MTP state is annotated with a noisy task of non-
zero duration, thus moving the time frontier closer to the time horizon every time.

Efficiency. The worklist in Line 2 is initialized as a priority list. The sole reason
for this is, to traverse the MTP in a breadth-first fashion so as to not propagate
one path all the way to the time horizon by itself. Instead we aim to propagate
the time annotation of every subdistribution along as a time frontier, in order to
not waste any opportunity to merge two subdistributions, whenever they reach
the same MTP state at the same time. It turns out that keeping the worklist sorted
with respect to the time annotations achieves just that.

Another performance tweak, that is not reflected in the above algorithm for the
sake of readability, is to not immediately scale the distributions in Lines 3 and 14,
but instead annotate them with their scaling factor during initialization, and only
update this factor with each scaling operation. This way a scaling operation boils
down to only one scalar multiplication instead of a matrix-scalar multiplication.
During the merging process (Lines 17–19) we annotate the resulting distribution
with the sum of scaling factors of the affected distributions. Only at the very end,
before returning the result pair of distributions we perform the scaling operation
on the matrix.

Correctness. We state the following lemma in order to establish correctness of
the above algorithm.

Lemma 39 — Correctness of Algorithm 2. Let M be an MTP, t̄ ∈ R>0 be a
time horizon, N be a positive grid size, 〈 f̄ , f , z 〉 be an initial SoC distribution,
〈 f̄ t̄ , f t̄ , z t̄ 〉 the resulting SoC distribution after powering M for t̄ time units,
and 〈µ�

t̄ ,µ�
t̄ ,z�t̄ 〉, 〈µ�

t̄ ,µ�
t̄ ,z�t̄ 〉 be the two discrete SoC distributions computed by

Algorithm 2. Furthermore, let [A; B] as well as [A�
�; B �
�] and [A�

�; B �
�] be random

variables distributed as

[A; B]∼ 〈 f̄ t̄ , f t̄ , z t̄ 〉, [A�
�; B �
�]∼ 〈µ�

t̄ ,µ�
t̄ ,z�t̄ 〉 and [A�

�; B �
�]∼ 〈µ�

t̄ ,µ�
t̄ ,z�t̄ 〉.

For any SoC S ∈ S⊥, we have

Pr
�

[A�
�; B �
�]≤ S

� ≥ Pr[[A; B]≤ S] ≥ Pr
�

[A�
�; B �
�]≤ S

�

.

Proof:

By inductively using Lemma 29. �

74

4.4. Algorithm

1/23/8
3/81/2

1/41/4

3/8

3/8
discharge

∆ ∈ [50, 500]

` ∈ [5, 30]

1/3 charge

∆ ∈ [50, 500]

` ∈ [−30,−5]

1/3

rest

∆ ∈ [50, 500] `= 0

1/3

Figure 4.9: A meta-MTP to sample task sequences.

Implementation Details

The algorithm was implemented inPythonwith extensive use of theNumPy library
which provides efficient vectorized implementations of matrix-vector operations.
Grids of size N are implemented as NumPy-arrays of size N ×N . The successor
operatorsK and all of its variations are implemented as multithreaded vectorized
functions with the help of the NumExpr package, a fast numerical expression eval-
uator for NumPy. In addition, the successor with respect to a discretized noisy task
is computed in concurrent fashion, by providing one thread for each load in the
support of the noisy task.

While using NumPy’s vectorization capabilities lead to an efficient implemen-
tation, it also leads to restrictions. It is only efficient if every single operation has
a vectorized implementation. Especially for some iterative schemes this is not
always easy to achieve, one example being the algorithm to approximate satura-
tion time points (Algorithm 1). Hence, for each saturating task (∆,`)we resort by
default to the non-iterative approximation of the saturation time point without
invoking the algorithm. Conceptually, this corresponds to running the algorithm
with a precision of ε :=∆.

Comparison With Static Discretization

In order to achieve a satisfying sample size of traces we synthesize an arbitrary
number of reasonable task sequences from the MTP-like structure displayed in
Figure 4.9.

This structure serves as a meta-MTP, which is to be interpreted as follows. Ini-
tially we draw the initial state at random according to the initial distributionπ. In a
state annotated with ([∆min,∆max], [`min,`max]), we sample a uniformly distributed
time duration ∆ ∼U [∆min,∆max] as well as a load `∼U [`min,`max] from the task
annotation. The sampled duration is to be interpreted as is, whereas the sampled
load ` serves as the location parameter of a normal distributionN (`, 1). The noisy
task (∆,N (`, 1)) is then added to the task sequence, and a successor state is drawn
at random according to the branching behavior of the meta-MTP. This is repeated
until the task sequence has the desired length.

75

4. Algorithms

The meta-MTP allows for a minimal degree of structure in the task sequences,
while still delivering a high enough degree of randomness in task lengths and
intensities of the tasks loads it generates. For example it doesn’t allow multiple
consecutive different resting periods, however it does account for consecutive
charging or discharging tasks to represent load changes, although with a slight
bias towards leaving the current MTP state.

The battery is instantiated with a capacity of 175 000 J, c = 0.5 and various
diffusion parameters p, with a depletion threshold depl= a ·0.5. Its initial SoC is
uniformly distributed on the set a [0.6, 0.7]× [0.6, 0.7]b .

In order to compare SD against AD, we proceed as follows. We set a specific
target precision level ε we want both SD and AD to reach, i.e. the resulting deple-
tion risk intervals of both algorithms should be of width equal or less than ε. To
this end, we search for the respective grid sizes that both algorithms need in order
to achieve the given precision, via an interval-halving scheme. We start with grid
sizes N � = 0 and N � = 6000, where 6000 is deliberately chosen high enough. We
run the algorithm with grid size N = (N �−N �)/2. If the resulting depletion risk in-
terval

�

z�,z�
�

is of a larger width than ε, i.e. z�−z� ≤ ε, we update N � = (N �−N �)/2,
otherwise we set N � = (N � −N �)/2. We continue updating until N � and N � are
less than εN = 5 apart, since grid sizes that are less than 5 apart do not significantly
distinguish themselves in terms of depletion risk interval width. We visualize the
runtimes and grid sizes of the last iteration of each run for each algorithm as a
datapoint in a set of plots given in Figure 4.10.

We evaluate three different scenarios to investigate the shortcomings and ad-
vantages of each method.

1. Normal task sequences, high diffusion: In this scenario, we set the diffusion
parameter p = 0.0001, and interpret the sampled task sequences as is, i.e.
without noise.

2. Noisy task sequences, high diffusion: We keep the diffusion parameter at
p= 0.0001, and interpret the sampled task sequences as location parameter
of a Gaussian distribution, that is subsequently truncated and discretized
into 5 loads.

3. Noisy task sequences, low diffusion: The sampled task sequences are again
interpreted as location parameter of a Gaussian distribution, that is subse-
quently truncated and discretized into 5 loads. We reduce the diffusion rate
to p= 0.000 05.

For each scenario we synthesize 50 task sequences of length 100.

Discussion

A comparison of plots 4.10a and 4.10b shows that by increasing the diffusion rate
p, the performance gain of AD relative to SD slightly increases, both in terms of
runtime and grid size, and thus in memory consumption. The reason is that the
support of the SoC distribution is less spread out, and thus occupies a smaller por-
tion of the bounding box, meaning we have less cells carrying a non-zero probabil-
ity mass. In contrast, for a slower diffusion rate, most of the cells carry a non-zero
probability mass in the AD scheme, while for SD this increase in non-empty cells
is less pronounced. Thus, we sometimes see SD marginally outperform AD on

76

4.4. Algorithm

0.
05

0.
10

0.
15

0.
20

0.
25

de
pl

et
io

n
ri

sk
in

te
rv

al
w

id
th
ε

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

gr
id

si
ze

ra
ti

o
A

D
/S

D
ru

nt
im

e
ra

ti
o

A
D

/S
D

(a
)W

it
h

lo
ad

n
o

is
e,
p
=

0.
00

0
05

0.
05

0.
10

0.
15

0.
20

0.
25

de
pl

et
io

n
ri

sk
in

te
rv

al
w

id
th
ε

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

gr
id

si
ze

ra
ti

o
A

D
/S

D
ru

nt
im

e
ra

ti
o

A
D

/S
D

(b
)W

it
h

lo
ad

n
o

is
e,
p
=

0.
00

01

0.
05

0.
10

0.
15

0.
20

0.
25

de
pl

et
io

n
ri

sk
in

te
rv

al
w

id
th
ε

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

gr
id

si
ze

ra
ti

o
A

D
/S

D
ru

nt
im

e
ra

ti
o

A
D

/S
D

(c
)N

o
lo

ad
n

o
is

e,
p
=

0.
00

01

Fi
gu

re
4.

10
:P

lo
ts

vi
su

al
iz

in
g

th
e
SD

vs
A

D
co

m
p

ar
is

o
n

in
te

rm
s

o
fr

u
n

ti
m

e
as

w
el

la
s

gr
id

si
ze

s.
In

re
d

an
d

b
lu

e,
w

e
h

ig
h

lig
h

tt
h

e
m

ea
n

s
o

fb
o

th
ra

ti
o

s.

77

4. Algorithms

certain runs in terms of runtime (runtime ratio larger than 1), even though AD
consistently requires smaller grids.

AD is especially efficient at identifying 0 or 1 depletion risk runs. The reason is
that one can essentially check for these cases with a 1×1 grid. This induces a binary
scenario in which the entire probability mass either does or does not deplete. SD
on the other hand, still potentially requires large grids on order to come to the
same conclusions.

Plots 4.10b and 4.10c showcase a similar difference, but in this case the spread
is caused by noise in the task loads, in contrast to no load noise at all.

In conclusion, the results paint a relatively clear picture of superiority of AD
over SD, in terms of space as well as runtime efficiency; AD is very rarely slower
than SD (and if so, only negligibly), and it certainly needs less memory, because it
requires smaller grids. In addition it is extremely quick in cases of sure depletion
and non-depletion.

4.5 Depletion Risk Estimation By Percentile Propagation

In the previous two sections we developed algorithms that enabled the use of
arbitrary initial SoC distribution as well as load distributions, via appropriate disc-
retization schemes of both. The price of being so general and safe at the same
time, is that of precision. Due to the permanent rounding of SoCs onto the small-
est/largest SoC still in the same cell after each task, accumulates more and more
errors, the longer the task sequence we strain the battery with.

In certain special, yet realistic scenarios we can however do better. First, we
give up the endeavour of approximating the full SoC distribution along a task se-
quence. Instead, we are satisfied with only computing bounds on the depletion
risk. Often this constitutes the most crucial information of an energy budget anal-
ysis of a battery powered system.

The idea is to exploit that the operator K preserves certain orders on SoCs
when strained by a single task, and therefore, inductively, also sequences of tasks.
This means, that if a SoC S depletes when strained by a task sequence (Ti)

n
i=0, then

every “worse” SoC will also deplete. Dually, if S does not deplete along (Ti)
n
i=0, then

we also know that every “better” SoC will survive (Ti)
n
i=0. If we additionally are able

to say that S is a “better” SoC than q percent of all the SoCs within the support
of the initial distribution, we can deduce that the depletion risk is at least q , if S
indeed depletes, or dually, that the depletion risk is at most q if S survives (Ti)

n
i=0.

Since q is between 0 and 1, the idea is to iteratively find tighter bounds for q using
an interval-halving scheme reminiscent of binary search until we have narrowed
down the interval around q to a width of ε.

In the following we will formalize the above idea that we refer to as Percentile
Propagation (PP).

First, we need to establish what “better” and “worse” on SoCs actually mean. It
is not immediately clear how to best compare two KiBaM SoCs [a0; b0] and [a1; b1]
in a meaningful way, especially when a0 < a1 and b0 > b1 at the same time.

Remark. It is conceivable to define an order with respect to a discharging task
(∆,`). Conceptually, two candidates come to mind:

• under a fixed load ` > 0, the SoC that depletes earlier is “worse”.

78

4.5. Percentile propagation

• under a fixed duration ∆ > 0, the SoC exhibiting a lower least depleting
load `�a ,∆ is “worse”.

Both candidates, while making a lot of conceptual sense, are not preserved by
K and can be dismissed using the same counter example.
Suppose, cap := 100, depl := 0 and c = 0.5 such that a = b = 50. Consider two
safe SoCs [aε ; b] and [a ; bε], where aε ∈

�

a , a + ε
�

and bε ∈
�

b , b + ε
�

are safe but
very close to unsafe available and bound charge levels. It is clear that [aε ; b] is
“worse” than [a ; bε]with respect to the above concepts, given any relatively short
depleting task of [aε ; b], since its available charge component is close to unsafe
to begin with. However, with a short, sharp charging task T := (∆ε , ~̀[aε ; b]), with
∆ε being a very short duration, we saturate both SoCs,

KT [aε ; b] = [a ; b] and KT [a ; bε] = [a ; b ′]

Since [a ; bε]was saturated to begin with, and the charging overpowers the dif-
fusion for small diffusion parameters p, b ′ will not be much larger than bε , as
it is not affected by the load ~̀, and the diffusion is slow. On the other hand,
[aε ; b] will be saturated by definition within ∆ε time, and the bound charge
won’t decrease much due to diffusion during that time, again, since diffusion
is slow. Hence, we have b ′ < b and thus [a ; b ′] ≤ [a ; b]. Thus, using sharp
charging tasks, one SoC can “overtake” another SoC, with respect to the above
conceptual orders.

It turns out that the most permissive order thatK preserves under discharging
as well as charging, a property which is crucial for the algorithm we derive later
on, is the componentwise ≤, However, ≤ is but a partial order on SoCs, thus some
SoCs are incomparable. For example [1; 2] and [2; 1] are incomparable.

In conclusion, we restrict the initial SoC distribution to a distribution that does
not support two pairwise incomparable SoCs with respect to ≤. In the remainder,
whenever we are arguing about SoC distributions, we implicitly assume this re-
striction. Luckily, this is not an unrealistic assumption, since batteries that have
had enough time to equilibrate, like batteries of nanosatellites sitting inactively
in their launching pod waiting for deployment, exhibit exactly such SoC distri-
butions. Such SoC distributions basically degenerate to one-dimensional distri-
butions, since each SoC [a ; b] is uniquely defined by the sum of its components
a + b . In the following we will formalize these concepts, startign with the classic
definition of percentiles.

Definition 43 — Percentile. Let F be a cumulative density function (CDF)
and f be the corresponding PDF. We define by

F −1(q) := inf
x∈R

�

F (x) =

∫ x

−∞
f (x)dx ≥ q

�

the generalized inverse of F . We call the value F −1(q) the q –percentile of F .

The reason why F −1 is the generalized inverse of F and requires the infimum
operation is because F is not necessarily invertible in the functional sense. F at-

79

4. Algorithms

tains a regular inverse function on the domain [0, 1] only for strictly monotonic,
continuous CDFs. In these cases, we may drop the infimum operation. On the
other hand, some bimodal or discrete distributions require the infimum opera-
tion for percentiles to be unique, since there might otherwise be a multitude of
candidates.

For a certain subclass of SoC distributions it suffices to not consider the avail-
able and bound charge levels individually, but instead their sum, i.e. the total
amount of charge stored. This subclass is characterized by the property that ≤ is a
total order on the support on f and f̄ combined. In this case, the sum of available
and bound charge corresponds to exactly one unique SoC supported by the SoC
distribution. We use this fact to define the notion of SoC percentiles. We start by
proving the following.

Lemma 40. Let S be a set of SoCs. If ≤ is a total order on S , then for two SoCs
[a ; b], [a ′; b ′] ∈ S , we have that

a + b = a ′+ b ′ =⇒ [a ; b] = [a ′; b ′].

Proof:

For the sake of deriving a contradiction let us assume there are two SoCs
[a ; b], [a ′; b ′] ∈ S with a + b = a ′+ b ′, but [a ; b] 6= [a ′; b ′]. Since [a ; b] 6= [a ′; b ′]
and S is a totally ordered set, either [a ; b]> [a ′; b ′] or [a ; b]< [a ′; b ′]. In either
case, we also immediately have a+b < a ′+b ′ or a+b > a ′+b ′, in contradiction
to a + b = a ′+ b ′. �

Definition 44 — SoC percentiles. Let 〈 f̄ , f , z 〉 be a SoC distribution such that
({a }× supp(f̄))∪ supp(f) is a totally ordered set with respect to ≤. We define
h as follows:

h (c) :=

f̄ (b), if c = a + b ∧ [a ; b] ∈ {a }× supp(f̄)
f (a , b), if c = a + b ∧ [a ; b] ∈ supp(f)
0, otherwise

Then, the (z +q)–percentile of 〈 f̄ , f , z 〉 is the unique SoC [a ; b] such that
c = a + b is the (conventional) q –percentile of h , for 0≤ q ≤ 1.

Lemma 41. For each SoC distribution 〈 f̄ , f , z 〉with ({a }× supp(f̄))∪ supp(f)
being a totally ordered set with respect to≤, z +h is a well-defined probability
density function.

Proof:

By Lemma 40, we have that the sum of both SoC components is unique for
totally ordered sets. By assumption {a }× supp(f̄)∪ supp(f) is a totally ordered
set, which means that h is functional; for each value c there is at most one single

80

4.5. Percentile propagation

SoC supported by 〈 f̄ , f , z 〉. Furthermore, the values of the image of h are all
taken from a SoC distribution, meaning they are positive. In addition, since
each sum corresponds to exactly one supported safe SoC, integration over all
possible values of this sum results in 1− z , i.e.

∫

h (c)dc =

a+b
∫

a+b

h (c)dc = 1− z �

Remark — Intuition behind Definition 44. Let 〈 f̄ , f , z 〉 be a SoC distribution.
The intuition behind h is, that it essentially constitutes a diagonal sweep of the
safe SoC space, cumulatively “picking up” SoCs in the appropriate order. The
function is well-defined if, for every position of the sweep diagonal (red line), it
intersects the support of 〈 f̄ , f , z 〉 (blue lines) exactly at one single SoC, like in
the following visual example:

SoC distributions are inherently non-continuous because they are by defini-
tion separated into three distinct parts. We can thus conclude, that for SoC dis-
tributions, percentiles are in general not unique without the infimum operation.
With a few restrictions, however, we are able to fulfill all the necessary assumptions
to drop the infimum operator.

Lemma 42. For SoC distributions of the form 〈 f̄ , f , 0〉, percentiles are unique
without the infimum operation if

1. All of the support of 〈 f̄ , f , 0〉 is exclusively in f or f̄ , i.e.

b
∫

b

f̄ (b)db = 1 or

a
∫

a

b
∫

b

f (a , b)da db = 1

2. supp(f)∪ (a × supp(f̄)) is a totally ordered set, and

3. the corresponding CDF of h

H (x) =

x
∫

a+b

h (c)dc

is strictly monotonically increasing.

Proof:

81

4. Algorithms

Let us assume all of the probability mass is in f̄ . Then h (a + b) = f̄ (b) and the
(0+q)–percentile of the SoC distribution is one q –percentile of h , say a + bq .
Since, the CDF of f̄ is strictly monotonically increasing, also the CDF of h is and
a +bq is the unique q –percentile of h . Hence, [a ; bq] is the unique q –percentile
of 〈 f̄ , f , 0〉.
The case of the probability mass being in f is a bit more involved, but essentially
analogous. �

Basically, we require that initially either f̄ or f holds all of the probability mass,
and that we start with a void depletion risk. Again, these restrictions are not very
prohibitive.

Example 11. Let 〈 f̄ , f , z 〉 be a SoC distribution with z = 0. The following sce-
narios lead to unique q –percentile of 〈 f̄ , f , z 〉, since≤ is a total order on supp(f̄)
or supp(f).

• f̄ is the PDF of a truncated Gaussian distribution on the interval
[0.8, 0.9] · b , and f holds no probability mass.

• f is the PDF of a uniform distribution on
{x · [c; 1− c] | x ∈ [0.75, 0.95] · cap}, and f̄ holds no probability mass.
(A non-saturated battery in equilibrium).

• f is the PDF of a truncated Gaussian distribution on {0.5a }×([0.5, 0.85]·b),
and f̄ holds no probability mass.

Bounding The Depletion Risk For Simple Task Sequences

We are now in the position to give a pseudocode algorithm to bound the depletion
risk within an interval of arbitrary width.

The algorithm starts off with checks for sure depletion (Line 1) and sure survival
(Line 4).

The largest supported initial SoC is fetched, and we check with the K� over-
approximation operator whether the task sequence depletes. If this is the case,
we are sure that every other supported SoC also depletes under (Ti)

N
i=0, and the

singleton interval [1, 1] is returned to indicate sure depletion.
Dually, we proceed with the smallest supported SoC and the under-approxima-

tion operatorK�, and check for depletion. In the negative case, we can be certain
that every other supported SoC will not deplete either, thus we return the singleton
interval [0, 0] to indicate sure survival.

If both of these checks fail we start the iterative part of the algorithm with the
interval [0, 1] , since the depletion risk must be between 0 and 1. Afterwards we
keep halving the interval in the following sense. We look at q , the mean proba-
bility of z� and z� (Line 11), and check whether the q –percentile depletes when
strained with (Ti)

N
i=0 using the under- and over-approximation successor opera-

torsK� andK� (Line 13). If the over-approximation exhibits the depletion SoC ⊥,
we can be sure that the depletion risk is at least q , and thus assign z� := q . If the
under-approximation does not exhibit the depletion SoC ⊥, we can be sure that
the depletion risk is at most q , and thus assign z� := q (Line 26). If the approxi-
mations do not agree, we narrow the approximation corridor until they eventually

82

4.5. Percentile propagation

Input :A SoC distribution 〈 f̄ , f , z 〉, a task sequence (Ti)
N
i=0and ε > 0

Output :An interval
�

z�, z�
�

of width at most ε with zN ∈
�

z�, z�
�

1 [amax; bmax] :=max
�

supp(f)∪ (a × supp(f̄))
	

2 ifK�
(Ti)

N
i=0

[amax; bmax] =⊥ then

3 return [1, 1]

4 [amin; bmin] :=min
�

supp(f)∪ (a × supp(f̄))
	

5 ifK�
(Ti)

N
i=0

[amin; bmin] 6=⊥ then

6 return [0, 0]

7 z� := 1
8 z� := 0

9 while z�− z� ≥ ε do
10 q := (z�+ z�)/2
11 [aq ; bq] := q –percentile SoC of 〈 f̄ , f , z 〉
12 S�, S� :=K�

(Ti)
N
i=0

[aq ; bq], K�
(Ti)

N
i=0

[aq ; bq] with precision ε∆

13 if S� =⊥ then
14 z� := q
15 else if S� 6=⊥ then
16 do
17 ε∆ := 0.1 · ε∆
18 S�, S� :=K�

(Ti)
N
i=0

[aq ; bq], K�
(Ti)

N
i=0

[aq ; bq] with precision ε∆

19 while S� =⊥ 6= S� ∨S� 6=⊥= S�

20 reset ε∆
21 if S� =⊥ then
22 z� := q
23 else
24 z� := q

25 else
26 z� := q

27 return
�

z�, z�
�

Algorithm 3: An interval halving algorithm to bound the depletion risk of
a task sequence up to ε.

83

4. Algorithms

agree, meaning, we gradually increase the saturation time point precision ε∆ (do-
while loop starting in Line 19). We keep increasing the precision by a factor of 10−1

(Line 17) and recompute the approximations until a consensus is reached, upon
which we reset the precision ε∆ to it’s initial value. If said consensus is depletion
(Line 21), we update z� := q , otherwise z� := q , for the same reason as above. Fi-
nally, after having narrowed down the interval surrounding the true depletion risk
enough, the loop will terminate.

Termination. The algorithm in its current form is a semi-decision procedure.
For a diverging scenario two conditions must be fulfilled, namely (i) the true de-
pletion risk is q and corresponds to one of the q –percentiles probed by the al-
gorithm in Line 10 (for example 0.5, 0.25, 0.125,. . .), and (ii) the SoC trace corre-
sponding to the q –percentile SoC becomes saturated at least once. If those two
conditions are indeed fulfilled, the inner do-while loop (Line 19) diverges, because
the under-approximation (using K�) always indicates depletion, while the over-
approximation (usingK�) always indicates the contrary, no matter the precision.

If either of the above two conditions is not fulfilled, then (i) the inner do-while
loop always terminates, since eventually a consensus on depletion of the trace will
be reached by consecutively increasing the precision, or (ii) the loop will not be
executed at all since the operatorsK� andK� degenerate to theK operator, and
thus behave equally. The outer while-loop terminates since the difference z�− z�
is halved in every iteration inevitably decreasing to a value smaller than ε.

Runtime Efficiency. Giving a rigorous runtime analysis is not straight-forward
for the following reasons. Even in the case of termination, it is hard to deduce
how often the inner do-while loop (Line 19) is executed. Also, the percentile com-
putation in Line 11 follows a numeric approximation scheme (at least for most
continuous distributions) for which runtime complexity is hard to deduce. Here
is a key point however: For a precision ε ∈O (2−n), the outer while loop in Line 9 is
executed a logarithmic number of times (in n), since the interval

�

z�, z�
�

is halved
with each iteration.

Memory Consumption. Tracking a SoC along a task sequence is constant in
memory, since it only requires saving the current SoC. In each iteration a per-
centile computation is the most expensive operation in terms of memory, thus the
algorithm has the same space complexity as the percentile computation.

Soundness. In the event of termination, soundness follows from the fact that
percentiles are unique (Lemma 42). Since K� and K� approximate K correctly
(Lemma 16), soundness follows.

Ensuring Termination In Practice. In practice we can ensure termination by
imposing a maximum precision to the inner while loop, such that we abort iter-
ation if the results of both approximations are close enough. We argue that, if
both approximations are not able to reach a consensus on the q –percentile in
question, we have already determined the depletion risk precisely enough and we
return the interval

�

q − 1
2ε, q + 1

2ε
�

around q . Using this fix potentially violates
the soundness statement, because it is difficult to relate the two precision levels
ε and ε∆ . In the usual termination case we decide when to stop iteration based

84

4.5. Percentile propagation

on precision level ε, while using the fix, we decide the return value based on a
maximum precision level ε∆ for saturation time points. This is however merely
a theoretical consideration. For practical applications it is very unlikely that we
run into the divergence case to begin with, and even if it happens, setting a low
enough saturation time point precision delivers satisfyingly precise results.

Handling Discrete Noisy Task Sequences

We lift Algorithm 3 to sequences of discrete noisy tasks in Algorithm 4. We generate
every possible task sequence of non-zero probability (Line 2), run Algorithm 3 on
each sequence to find its depletion risk interval (Line 4), and weight the interval
bounds with the probability of actually achieving the sequence at hand (Lines 5–6).
Finally, the weighted sum of the sequence’s lower and upper bound values defines
the overall lower and upper bound on the depletion risk.

Input :A SoC distribution 〈 f̄ , f , z 〉, a discretized noisy task sequence
(∆i ,γi)

N
i=0 and ε > 0

Output :An interval
�

z�, z�
�

with zN ∈
�

z�, z�
�

1
�

z�, z�
�

:= [0, 0]

2 foreach (` j)Nj=0 ∈ supp(γ0)× · · ·× supp(γN) do

3 p :=
∏N

k=0γk (`k)
4

�

z ′�, z ′�
�

:= Algorithm 3 on input 〈 f̄ , f , z 〉, (∆ j ,` j)Nj=0, ε

5 z� := z�+p · z ′�
6 z� := z�+p · z ′�
7 return

�

z�, z�
�

Algorithm 4: The PP algorithm for noisy task sequences in pseudo-code.

The obvious bottleneck here is the size of the cartesian product (Line 2). For n
tasks, each supporting k loads, the cartesian product has k n members, for which
we run Algorithm 3. For k = 1, the cartesian product degenerates to one single
task sequence, and thus Algorithm 4 essentially degenerates to Algorithm 3. With
a generative implementation of the cartesian product, we don’t need to store every
trace in memory, rather than the state of the generator, which takes O (n) space.
Thus, this paradigm excels in space efficiency.

Implementation And Comparison With Adaptive Discretization

The PP algorithm is implemented in Python, in addition with the SciPy library.
The SciPy library provides predefined ways to create probability distribution ob-
jects and compute its percentiles.

To evaluate the performance of overall complexity of percentile propagation,
we run both the PP (Algorithm 4) as well as the AD (Algorithm 2) on the same
noisy task sequences, with different precision levels ε and grid sizes N , until they
both result in a depletion risk interval of width ε around the true depletion risk. To

85

4. Algorithms

find suitable values, we employ an interval halving scheme. For PP we start with
precision levels ε�

⊥ = 0 and ε�
⊥ = 1, and run PP on the midpoint value (ε�

⊥−ε�
⊥)/2. If

PP results in a depletion risk interval
�

z�, z�
�

of width smaller or equal than the

given target precision ε⊥, we repeat the previous step with ε�
⊥ := (ε�

⊥ − ε�
⊥)/2, and

otherwise with ε�
⊥ := (ε�

⊥−ε�
⊥)/2. We continue with these updates until we estimated

the required precision parameter up to a given ε, meaning until ε�
⊥− ε�
⊥ ≤ ε.

For AD, we repeat the same procedure as in the previous comparison with SD
(see Section 24).

Comparison With AD On Tasks Without Load Noise. We sample 50 task seq-
uences of length 100 from the meta-MTP shown in Figure 4.9. For PP, this implies
that Algorithm 4 reduces to only one run of Algorithm 3.

We assume a battery (cap= 175 000 J, c= 0.5, p= 0.000 05, depl= 0.5) that is in
equilibrium and that is between 60 % and 70 % full, i.e. on the set

S := {x · [c; 1− c] | x ∈ [0.6, 0.7] · cap}.
First, note that ≤ is indeed a total order on S , thus we can apply PP. We assume
that the initial SoC distribution 〈 f̄ , f , z 〉 is such that f is the PDF of a uniform
distribution over S .

We investigate precision levels ε = 0.25, 0.2, 0.15, 0.1, 0.05 and 0.01. In this sce-
nario we can simply set the required precision level of PP, since Algorithm 3 then
returns a depletion risk interval of width at most ε. As initial saturation time point
precision for PP we use ε∆ = 1.

For AD, we search for suitable grid sizes, like we did before in the comparison
of SD and AD in Section 24. Saturation time points are approximated using the
default non-iterative scheme.

The results are visualized in Figure 4.11c, where we use a log-scale for improved
visual inspection.

Comparison With AD On Noisy Tasks. To illustrate the respective strengths and
drawbacks of each method on noisy tasks, we evaluate PP against AD on noisy
task sequences. We choose two different settings in order to showcase the short-
comings and advantages of each method. We again investigate precision levels
ε = 0.25, 0.2, 0.15, 0.1, 0.05 and 0.01.

1. Short sequences, 4 load noise samples: We sample 50 task sequences of
length 8 from the meta-MTP shown in Figure 4.9. In order to generate a
representative set of sequences, we increased the maximal loads generated
from the meta-MTP (Figure 4.9) from 30 to 40. Otherwise one a few runs
actually exhibit non-zero depletion risks, because of the shortness of the
sequences. The load of each respective task is interpreted as the mean of a
truncated Gaussian distribution, which is then discretized into 4 loads. For
PP, these values imply a total of 48 = 65 536 applications of Algorithm 3. The
results are visualized in Figure 4.11a.

2. Longer sequences, 2 load noise samples: We sample 50 task sequences of
length 16 from the meta-MTP shown in Figure 4.9. the maximal loads gen-
erated from the meta-MTP (Figure 4.9) are again increased from 30 to 40.
The loads of each respective task is interpreted as the mean of a Gaussian

86

4.5. Percentile propagation

distribution, which is then discretized into 2 loads. For PP, these values also
imply a total of 216 = 65 536 applications of Algorithm 3, thus the runtime of
PP is roughly equal to the previous scenario. The results are visualized in
Figure 4.11b.

Discussion

Observing the plots 4.11a and 4.11b, it becomes evident that on noisy task in-
stances that use a larger amount of load noise samples, PP does not perform well,
because of the prohibitively fast growing cartesian product. It still provides an
alternative with low space requirements compared to AD, and comes with an a
priori configurable precision level. We can see, that the runtime ratio is less in favor
of AD as the task sequences become longer, since then AD needs larger grids.

PP consistently beats AD on task sequences without load noise, as can be
observed in Figure 4.11c. This is not surprising since the bottle neck of PP, the
cartesian product, consists of just one single trace. Additionally, the sequence
length has a negligible impact on the precision of PP, while it has a more severe
impact on AD.

In general, it appears that for very high precision, as witnessed by the ε = 0.01
datapoints, PP catches up to AD in terms of runtime, since the runtime ratio
increases in all three plots.

A Remark On Ease Of Implementation

PP does not require many bells and whistles. Implementing the pseudo-code is
straight-forward in Python. We use SciPy for predefined ways to create probabil-
ity distribution objects and compute its percentiles, anditertools for a memory
efficient implementation of the cartesian product as a generator, meaning it gen-
erates the members of the cartesian product on the fly without the need to store
the entire product in memory. In terms of multithreading, PP is easily paralleliz-
able. Several threads can work concurrently on the member task sequences of the
cartesian product.

Overall, SD and AD are more complex to implement than PP. The former re-
quire a vectorization-friendly programming style, that often turns out to be incon-
venient, requiring complex indexing and in-depth knowledge of NumPy to make
sure that no unnecessary copies of large grids are internally produced, and that
most operations are implemented inplace.

It should not come as a surprise that implementing AD (and SD) took much
longer than implementing PP.

Concluding Remarks

After examining the evaluation of AD and PP a few points are worth being high-
lighted. First, we point out that AD is the universally applicable algorithm that
can be run on any initial SoC distribution, while PP requires mild conditions on
the initial charge to be fulfilled. The consequence of this is, that AD can be used
to analyze systems which are already in operation, while PP is only suitable in sit-
uations of no activity (i.e. a fully equilibrated system) or fully charged systems. In
addition, AD can efficiently handle not only noisy task sequences but also Markov
Task Processes (see Section 3.6) as load model.

87

4. Algorithms

0.01
0.05

0.10
0.15

0.20
0.25

depletion
risk

interval
w

idth
ε

0.005

0.010

0.015

0.020

0.025

0.030

runtime ratio AD/PP

grid
A

D
runtim

e
ratio

A
D

/P
P

0 200

400

600

800

grid size AD
(a)

8
tasks,4

lo
ad

n
o

ise
sam

p
les.

0.01
0.05

0.10
0.15

0.20
0.25

depletion
risk

interval
w

idth
ε

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

runtime ratio AD/PP

grid
A

D
runtim

e
ratio

A
D

/P
P

0 250

500

750

1000

1250

1500

1750

2000

grid size AD

(b
)

16
tasks,2

lo
ad

n
o

ise
sam

p
les.

0.01
0.05

0.10
0.15

0.20
0.25

depletion
risk

interval
w

idth
ε

10
0

10
1

10
2

10
3

runtime ratio AD/PP

grid
A

D
runtim

e
ratio

A
D

/P
P

10
1

10
2

10
3

grid size AD

(c)100
tasks,n

o
lo

ad
n

o
ise.Lo

g-scale
fo

rvisu
alin

sp
ectio

n
.

Figu
re

4.11:
T

h
e

p
lo

ts
visu

alizin
g

th
e

resu
lts

o
f

th
e

A
D

vs
P
P

co
m

p
ariso

n
,in

term
s

o
fru

n
tim

e.T
h

e
grid

size
o

fA
D

is
p

lo
tted

in
ab

so
lu

te
n

u
m

b
ers

o
n

th
e

righ
t

y
-axes,to

illu
strate

m
em

o
ry

co
n

su
m

p
tio

n
.In

red
an

d
b

lu
e,w

e
h

igh
ligh

tth
e

m
ed

ian
s

o
feach

set
o

fd
atap

o
in

ts.

88

4.5. Percentile propagation

Additionally, PP only estimates the depletion risk, which most of the time is the
quantity of interest. If instead the entire final distribution is required, for example
to examine where the surviving probability mass ends up at the very end of a task
sequence, AD is the algorithm that should be used.

Also, we recall that AD cannot be directly tuned to achieve a certain a priori
precision. In order to increase precision, one has to increase the grid size, which
exposes the precision gain a posteriori only. PP on the other hand knows its pre-
cision level a priori. Algorithm 3, which is called by PP on all possible traces is
designed to achieve exactly the given precision. As a result, also PP does not devi-
ate too far from this, so one has a pretty good handle on the a priori precision.

89

CHAPTER

5

Applications

This chapter showcases the applicability of the algorithms introduced in Chapter 4
in several contexts. In Section 5.1 we use the Markov Task Process modelling for-
malism to capture the energy-relevant behavior of a 2-unit CubeSat called GOMX–
1 in a probabilistically aggregated manner, in order to analyse its energy budget
up to a time horizon of an entire year. In addition, we conducted robustness and
sensitivity experiments based on battery capacity, degraded solar input, load noise
and battery aging, in order to determine to which degree the built-in battery was
appropriately dimensioned.

Section 5.2 bridges the gap from simple analysis to scheduling based on re-
maining battery charge. We consider GOMX–3, a 3-unit CubeSat, and model its
behavior and energy-relevant particulars using Priced Timed Automata in a mod-
ular and generic fashion with the aim to eventually determine optimal schedules
up to a short time horizon with UPPAAL CORA. Since UPPAAL CORA suffers from
expressive incapabilities of capturing most appropriate battery models, we ac-
count for this by introducing a synthesis-validation loop, that refutes and recom-
putes schedules, based on the kinetic battery model and its dedicated algorithms
to assess depletion risk. The section concludes with three test runs of varying
scheduling horizons, that were actually executed on GOMX–3. The correspond-
ing satellite telemetry data shows that the almost fully automatic battery-aware
scheduling approach indeed computes valid plans.

Finally, in Section 5.3 we build on top of the battery-aware scheduling approach
to perpetually extend schedules with each satellite pass over the ground station.
We incorporate a battery SoC estimation step, that continually corrects the esti-
mated SoC based on downlinked satellite telemetry data to eliminate any potential
bias or drift in the used battery model and the utilized parameters. A rudimentary
test on old GOMX–3 data provides a glimpse of the potential improvement of this
scheduling approach.

5.1 Energy Budget Analysis Of GOMX–1

In this section, we apply the results established in the previous sections in a con-
crete scenario. The problem is inspired by experiments carried out during the
mission time of the then earth orbiting nanosatellite GOMX–1 [12].

5. Applications

The GOMX–1 Nanosatellite

GOMX–1 [12] is a Danish two-unit CubeSat mission launched in November 2013 to
perform research and experimentation in space related to Software Defined Radio
(SDR) with emphasis on receiving ADS-B signals from commercial aircraft over
oceanic areas. As a secondary payload the satellite flies a NanoCam C1U color cam-
era for earth observation experimentation. Five sides are covered with NanoPower
P110 solar panels, and the power system NanoPower P31u holds a 7.4 V Li-Ion
battery of capacity 5000 mAh. GOMX–1 uses a radio amateur frequency for trans-
mitting telemetry data, making it possible to receive the satellite data with low-cost
infrastructure anywhere on earth. The mission is developed in collaboration be-
tween GomSpace ApS, DSE Airport Solutions and Aalborg University, financially
supported by the Danish National Advanced Technology Foundation. The em-
pirical studies carried out with GOMX–1 serve as a source for parameter values
and motivate the scenario described in the remainder of the section. We use the
following data collected from extensive in-flight telemetry logs.

• One orbit takes 99 minutes and is nearly polar;

• The battery capacity is cap = 5000 mAh;

• During 4 to 7 out of on average 15 orbits per day, communication with the
base station takes place. The load induced by communication is roughly
400 mA. The length of the communication depends on the distance of the
pass of the satellite to the base station and varies between 5 and 15 minutes;

• In each communication, the satellite can receive instructions on what ac-
tivities to perform next. This influences the subsequent background load.
Three levels of background load dominate the logs, with average loads at
250 mA, 190 mA, and 90 mA. These background loads subsume the power
needed for operating the respective activities, together with basic tasks such
as sending beacons every 10 seconds;

• Charging happens periodically, and spans around 2
3 of the orbiting time.

Average charging power is 400 mA;

The above empirical observations determine the base line of our modelling efforts,
which interprets the statistical data as being of stochastic nature. We make the
following assumptions:

• We assume constant battery temperature. The factual temperature of the
orbiting battery oscillates between −8 °C and 25 °C on its outside. There is
the (unused) on-board option to heat the battery to nearly constant temper-
ature. Using an on-off controller, this would lead to another likely nearly
periodic load on the battery, well in the scope of what our modelling formal-
ism supports.

• A constant charge from the solar panels is assumed when exposed to the sun.
The factual observed charge slowly decays. This is likely caused by the fact
that solar panels operate better at lower temperature (opposite to batteries),
but heat up quickly when coming out of eclipse.

92

5.1. Energy Budget Analysis Of GOMX–1

• We assume a strictly periodic charging behavior. The factual charging fol-
lows a more complicated pattern determined by the relative position of sun,
earth and satellite. There is no fundamental obstacle to calculate and incor-
porate that pattern.

• We assume a uniform initial charge between 70 % and 90 % of full capacity
with identical bound and available charge. Since the satellite needs to be
switched off for transportation into space, assuming an equilibrated battery
is valid. Being a single experiment, the GOMX–1 had a particular initial
charge (though unknown). The charge of the orbiting battery can only be
observed indirectly, by the voltage sustained.

• We assume that the relative distance to the base station is a random quan-
tity, and thus interpret several of the above statistics probabilistically. In
reality, the position of the base station for GOMX–1 is at a particular fixed
location (Aalborg, Denmark). Our approach can either be viewed as a kind
of probabilistic abstraction of the relative satellite position and uncertainty
of signal transmission, or it can be seen as reflecting that base stations are
scattered around the planet. This especially would be realistic in scenarios
where satellite-to-satellite communication is used.

• We assume that the satellite has no protection against battery depletion. In
reality, the satellite has 2 levels of software protection, activated at voltage
levels 7.2 V and 6.5 V, respectively, backed up by a hardware protection acti-
vated at 6 V. In these protection modes, various non-mission-critical func-
tionalities are switched-off. Despite omitting such power-saving modes, we
still obtain conservative guarantees on the probability that the battery pow-
ers the satellite.

Satellite Model

According to the above discussion, the load on the satellite is the superposition of
two workload processes.

• A probabilistic load reflecting the different operation modes, modelled by a
Markov Task Process M (see Section 3.6) as depicted in Figure 5.1.

• A strictly periodic charge load alternating between 66 minutes at 400 mA,
and the remaining 33 minutes at 0 mA.

One can easily express the charging load as another independent Markov Task
Process (where all jump probabilities are 1) and consider the sum load generated
by these two processes in superposition (methods in Section 3.6 adapt straight-
forwardly to this setting).

The KiBaM in our model has the following parameters:

• The ratio of the available charge c= 0.5 (artificially chosen value as parame-
ters fitted by experiments on similar batteries strongly vary [42, 21]);

• the diffusion rate p = 0.0006 per minute (we decreased the value reported
by experiments [21] by a factor of 4 because of the low average temperature
in orbit, 3.5 °C, and the influence of the Arrhenius equation [27]).

93

5. Applications

1/43/5

1/2

3/51/8

1/8 3/5

2/5

2/52/5

slow

(90, 90)

π(slow) = 1

smid(90, 190)

shigh

(90, 250)

strans

(5, 400)

Figure 5.1: Markov Task Process of the load on the satellite. All noisy task annotations
are composed of durations in minutes, as well as the mean of a normal distribution with
standard deviation 5. The initial probability distribution is Dirac on slow, as indicated
by the arrow. This load is superposed with a strictly periodic load modelling charge by
solar power infeed.

Analysis Implementation Aspects

We decided to use the static discretization algorithm (Section 4.2) to assess bat-
tery depletion risks. This decision makes sense, as the MTP in Figure 5.1 exhibits
greatly varying loads, thus the support of the tracked SoC subdistributions is ex-
pected to cover large portions of the overall safe SoC space. We used grid dimen-
sions N = 1200, 600, 300 and 150 for the experiments with the batteries of capacity
5000 mAh, 2500 mAh, 1250 mAh and 625 mAh, respectively to achieve equal rela-
tive precision. All the experiments have been performed on a machine equipped
with an Intel Core i5-2520M CPU @ 2.50GHz and 4GB RAM. All values occurring
are represented and calculated with standard IEEE 754 double-precision binary
floating-point format except for the values related to the battery being depleted
where we use arbitrary precision arithmetic (as this number keeps accumulating
grid values that are of much lower order of magnitude). The number of subdistri-
butions that must be kept track of simultaneously turned out to be no larger than
54.

Model Evaluation

We performed various experiments with this model, to explore the stochastic
KiBaM technology introduced in Section 3.5. Here we report on five distinct eval-
uations, demonstrating that valuable insight into the model can be obtained.

1. The 5000 mAh battery in the real satellite is known to be over-dimensioned.
Our aim was to find out how much. Hence, we performed a sequence of
experiments, decreasing the size of the battery exponentially. The results
(of the safe under-approximation) are displayed and explained in Figure 5.2.

94

5.1. Energy Budget Analysis Of GOMX–1

1.7E-63

−300

−250

−200

−150

−100

−50

(a) Full capacity of 5000 mAh.

−175

−150

−125

−100

−75

−50

−25

6.6E-31

(b) Half capacity of 2500 mAh.

−140

−120

−100

−80

−60

−40

−20

1.7E-10

(c) A quarter capacity of 1250 mAh.

−100

−80

−60

−40

−20

0.03653

(d) One eighth capacity of 625 mAh.

Figure 5.2: SoC under-approximation for different sizes of the satellite’s battery after
1 year (Actually it is after 364 days, as this is in the middle of a charging phase. After
365 days the satellite is in eclipse and no density is exhibited along the capacity limit.).
The leftmost SoC is with the original battery capacity, 5000 mAh. In each further plot,
the battery capacity is halved, i.e. 2500 mAh, 1250 mAh, and 625 mAh. Note that all the
densities are depicted on a logarithmic color scale (ticks in the colorbar stand for the
order of magnitude). We observe that only the smallest battery provides insufficient
guarantees. Its probability of depletion after 1 year is 0.0365; the probability decreases
to 1.7 ·10−10 already for the 1250 mAh battery. The smaller the battery, the more crucial
is the distinction of available and bound charge as a larger area of the plots is filled with
non-trivial density.

95

5. Applications

1.7E-10 2.2E-10
−140

−120

−100

−80

−60

−40

−20

Figure 5.3: Load noise. SoC under-approximation of the 1 year run using the 1250 mAh
battery with Dirac loads (left) and with noisy loads (right). We used Gaussian noise
with standard deviation 5.

We found out that 1
4 of the capacity still provides sufficient guarantees (since

the depletion risk calculated is in the order of 10−10) to power the satellite
for 1 year while 1

8 of the capacity, 625 mAh, does not. The following table
compares the depletion risks z� and z� computed by the over- and under-
approximations, respectively.

Capacity (mAh)

5000 2500 1250 625

z� 9.61 ·10−96 4.69 ·10−43 1.01 ·10−15 0.001 22
z� 1.66 ·10−63 6.58 ·10−31 1.73 ·10−10 0.036 53

The approximations thus compute the real probability of depletion up to
very small absolute errors ranging from 10−63 for the 5000 mAh battery to
0.036 53 for the 625 mAh battery.

2. We compared our results with a simple linear battery model (LiBaM) of the
same capacity.1 This linear model is not uncommon in the satellite domain,
it has for instance been used in the Envisat and CryoSat missions [11]. We
obtain the following probabilities for battery depletion:

Capacity (mAh)

LiBaM KiBaM
5000 625 5000 625

z� 1.76 ·10−144 8.53 ·10−16 9.61 ·10−96 0.001 22
z� 1.86 ·10−84 2.94 ·10−8 1.7 ·10−63 0.036 53

1The linear model can be emulated using a KiBaM with diffusion rate p→∞. This has the effect
that available and bound charge wells behave equally and thus deplete synchronously. To compute
the numbers we used the same algorithm and discretization constants as for the corresponding KiBaM
of the same size.

96

5.1. Energy Budget Analysis Of GOMX–1

1.7E-63 9.6E-96

−500

−400

−300

−200

−100

9 active solar panels (≈ 400 mA infeed rate).

9.6E-17 1.2E-10

−300

−250

−200

−150

−100

−50

8 active solar panels (≈ 355 mA infeed rate).

0.99999985 0.95683710

−250

−200

−150

−100

−50

7 active solar panels (≈ 311 mA infeed rate).

0.99999999999 0.99999999998

−450

−400

−350

−300

−250

6 active solar panels (≈ 266 mA infeed rate).

Figure 5.4: Number of active solar panels. The approximations of the full 5000 mAh
battery with 9, 8, 7 and 6 solar panels, with the under/over-approximations being dis-
played on the left/right on a pairwise mutual colorscale. Again, the ticks of the col-
orscale represent the order of magnitude of the densities.

97

5. Applications

The linear model turns out to be surprisingly (and likely unjustifiably) opti-
mistic, especially for the 625 mAh battery.

3. We (computationally) simplified the two experiments above by assuming
Dirac loads. To analyze the effect of additive white noise on the loads, we
compared the Dirac loads (tasks) with noisy loads (discretized noisy tasks)
on the 1250 mAh battery. Each task with load ` is treated as a noisy task
with g being a truncated gaussian with mean `, that is discretized into 10
chunks, following the construction of Lemma 27. As expected, the noise
(i) smoothens out the distribution a little, and (ii) pushes a bit more of the
distribution to saturated as well as depleted states, see Figure 5.3.

4. Our reference satellite is a two-unit satellite, i.e. is built from two cubes, each
10 cm per side. In the current design, 9 of the 10 external sides are covered by
solar panels, the remaining one is used for both radio antenna and camera.
We thus conducted a robustness analysis with respect to solar infeed, by
assuming that 1, 2 and 3 solar panels break down. Figure 5.4 displays that
the satellite can easily deal with 1 defective solar panel. If additional panels
fail, the system runs out of energy rapidly with high probability.

5. The stochastic KiBaM does not incorporate battery aging. In general, the
degradation of a battery over time depends on many factors, most promi-
nently how the battery was stored, which loads it was subjected to, how
deeply it was discharged and at which temperatures it was used. We are
not aware of a consensus method of how to model degradation of a Li-ion
battery which is influenced by all of these factors. A measurable quantity
related to battery age for our case study is the voltage drop when in eclipse.
In-orbit measurements show that this voltage drop has worsened by 3% after
one year of operation. For comparison purposes, we thus pessimistically as-
sumed a battery with a capacity of only 4850 mAh (97 % of 5000 mAh) from
the beginning. Compared to the 5000 mAh battery the depletion probabili-
ties are only slightly higher:

Capacity (mAh)

5000 4850

z� 9.61 ·10−96 1.73 ·10−92

z� 1.66 ·10−63 5.58 ·10−61

As of now (September 30th, 2021) GOMX–1 is still orbiting earth. To the best
of the author’s knowledge, the CubeSat is still able to fulfill its original purpose,
i.e. demonstrating aircraft tracking via ADS-B. Some secondary payloads, like the
NanoCam module to take pictures, GomSpace reported to have failed curtesy of a
power surge, likely originating from a high-energy particle impact.

5.2 Battery-Aware Scheduling: The GOMX–3 Case

The GOMX–3 CubeSat was a 3 kg nanosatellite designed, delivered, and operated
by Danish satellite manufacturer GomSpace. GOMX–3 was the first ever In-Orbit
Demonstration (IOD) CubeSat commissioned by ESA. The GOMX–3 system used

98

5.2. Battery-Aware Scheduling

Figure 5.5: The final GOMX–3 nanosatellite (left) and its deployment from the ISS
(right) together with AAUSAT5 (picture taken by Astronaut Scott Kelly).

Commercial-Off-The-Shelf (COTS) base subsystems to reduce cost, enabling to
focus on payload development and testing. GOMX–3 was launched from Japan
aboard the HTV–5 on August 19, 2015. It successfully berthed to the ISS a few
days later. GOMX–3 was deployed from the ISS on October 5, 2015. Figure 5.5
shows the satellite and its deployment. Mission end was reached in October 2016,
due to atmospheric reentry through gradual orbital decay. The rest of this sec-
tion reflects the proceedings before mission end. Both GomSpace and ESA are
interested in maximizing the functionality of their nanosatellite missions. As such,
GOMX–3 has been equipped with a variety of technically challenging payloads
and components, among them (i) 3-axis rotation and pointing (ii) in-flight track-
ing of commercial aircraft (iii) monitoring signals from geostationary INMARSAT

satellites (iv) highspeed downlinking to stations in Toulouse (France) or Kourou
(French Guiana).

For a satellite in orbit all resources are scarce and the most critical resource of
all is power. Power is required to run the satellite, to maintain attitude, to com-
municate, to calculate, to perform experiments and all other operations. Detailed
knowledge on the power budget is thus essential when operating a satellite in or-
bit. Furthermore, in a satellite not all power is used as it is generated. The satellite
passes into eclipse (almost) every orbit and during those periods it must draw
power from its batteries. This challenge is especially apparent for nanosatellites
where not only the actual satellite but also the resources are very small. An oper-
ator of such a spacecraft is thus faced with a highly complex task when having to
manually plan and command in-orbit operations constantly balancing power and
data budgets. Manual operation was used prior to this work.

This section highlights how the (stochastic) KiBaM (Chapter 3) and its asso-
ciated algorithms (Chapter 4) alongside formal modelling and verification tech-
nology can be used to provide support for commanding in-orbit operations while
striving for an efficient utilization of spacecraft flight time.

Heterogeneous timing aspects, especially the aperiodic occurrences and vari-
able durations of tasks, as well as the experimental nature of the application do-
main make it impossible to use traditional workload scheduling approaches, like
RMS (Rate Monotonic Scheduling) and EDF (Earliest Deadline First) for periodic
tasks.

The schedules we derive are tailored to maximize payload utilization while

99

5. Applications

minimizing the risk of battery depletion. The approach is flexible in the way it can
express intentions of spacecraft engineers with respect to the finer optimization
goals. At the end stands an automated two-step schedule synthesis procedure that
provides quantifiable error bounds.

For the first step, we have developed a generic model of the GOMX–3 prob-
lem characteristics in terms of a network of Priced Timed Automata (PTA) as in-
troduced in Section 2.3. This model is subjected to a sequence of analyses with
respect to cost-optimal reachability (CORA) with dynamically changing cost and
constraint assignments. We use UPPAAL CORA for this step. Note that UPPAAL

CORA is limited to linear systems, therefore the simple linear battery model is used.
Any schedule generated in this step has a risk of not being safe when used in-orbit,
running on a real battery and with real payload.

To account for this problem, a second step validates the generated schedule,
interpreted as a task sequence, using the stochastic KiBaM and its algorithms, to
discriminate between schedules according to their quantified risk of depleting the
battery. Low risk schedules are shipped to orbit and executed there.2 The satellite
behavior is tightly monitored and the results gained are used to improve the model
as well as the overall procedure.

The entire toolchain has been developed, rolled out, experimented with, and
tailored for in-the-loop use when operating the GOMX–3 satellite.

Modelling The GOMX–3 Nanosatellite

GOMX–3’s mission payloads were threefold: Tracking of ADS-B beacons emitted by
commercial airplanes, testing a high-rate X-Band transmitter module for in-space
adequacy, and monitoring spot-beams of geo-stationary satellites belonging to
the INMARSAT family, via an L-Band receiver. In addition, it featured a UHF soft-
ware defined radio module for downlinking collected data to, and uplinking new
instructions from, the GomSpace base station in Aalborg, Denmark. In the se-
quel, we refer to the operation of one of these payloads as a job. Each job comes
with its own set of satellite attitude configurations (specifying its orientation in
3-dimensional space), making an advanced 3-axis attitude control system indis-
pensable. This attitude determination and control system (ADCS) uses reaction
wheels and magnetorquers to enable the satellite to slew into any required posi-
tion. The ADCS is especially power-hungry.

As an earth-orbiting satellite, GOMX–3 naturally enters eclipse. To continue
operation, it draws the necessary power to sustain its operation from an onboard
battery system. These batteries are, in turn, charged by excess energy harvested
during insolation periods by solar panels that cover any non-occupied surface.
The solar intake in general depends on the so called β-angle, determining the de-
gree of insolation per orbit and thus the portion in which the spacecraft is exposed
to sunlight. Every attitude (as well as each transition phase between attitudes,
i.e. slewing) has a constant assigned to it which represents a constant energy in-
take collected by the solar panels during insolation periods.

Special care needs to be taken when reasoning about battery performance,
as the latter depends, among others, on ambient temperature. During eclipse,
temperatures may fall below the operational limits of Li-ion batteries (according

2There was no actual risk of mission loss, as GOMX–3 had several FDIR mechanisms (fault detec-
tion, isolation and recovery) in place, for example a cascaded Watch-Dog-Timer system.

100

5.2. Battery-Aware Scheduling

to manufacturer specification). To maintain a safe operating range, the GOMX–3
batteries are coated in heater foil enabling active temperature regulation (mostly
during eclipse), at the cost of higher power consumption. A rich pool of diagnostic
data from the earlier GOMX–1 mission however shows that the onboard batteries
stay within the range of−7 to 17 °C. As a consequence the battery heaters in GOMX–
3 are not used, and remain disabled at all times.

Another aspect of concern is that of gradual battery capacity degradation due
to frequent, deep or very fast charge/discharge cycles. We work with the assump-
tion that the scheduling horizon is so short that the battery will not degrade and
thus retains a constant capacity limit along a schedule. Degradation can however
be accounted for by gradually reducing the capacity along the lifetime of the mis-
sion, as the accumulated usage cycles increase. Having been ejected from the ISS,
GOMX–3 roughly follows the orbit of the latter, albeit on a lower altitude. There-
fore, insolation periods as well as operational windows for the different jobs are
well predictable over the time horizon of about a week ahead, yet they are highly
irregular.

Exploiting the pre-determined attitude configurations per mode of operation,
the net power balance of every job can be predicted in conjunction with the Gom-
Space in-house POWERSIM tool. This tool provides orbit trajectory predictions
including β-angle estimations. The aggregated information is considered trust-
worthy and captures the essence of the power-relevant behavior of GOMX–3 and
serves as input to the scheduling approaches described in later sections.

In order to understand their joint implications for the energy budget of GOMX–
3, it is important to accurately model these power-relevant aspects of the satellite
components, and their interplay.

Objectives

In broad terms, the main mission goal of GOMX–3 is to maximize the amount of
jobs carried out without depleting the battery. The concrete objectives spelled out
by GomSpace engineers changed several times along the mission. This meant that
the models have to have the necessary flexibility needed to reflect the requirements
once they are made formal, not only during the design phase but especially while
in orbit.

GOMX–3 switches to Safe Mode if the battery SoC falls below a given thresh-
old. For GOMX–3 this threshold is at 40 % of the battery’s capacity. In Safe Mode,
all non-essential hardware components are switched off, preventing the satellite
from being productive. Only UHF radio, ADCS and the onboard computer remain
operational. The primary objective is thus to avoid Safe Mode, while maximizing
secondary objectives. This Safe Mode threshold thus implictely induces the deple-
tion threshold depl of the battery model. Several secondary objectives need to be
taken into account.

• Whenever possible the UHF connection to the GomSpace base station must
be scheduled and maintained throughout the entire operational window in
order to enable monitoring the status of GOMX–3 and to uplink new instruc-
tions if need be. This is crucial to maintain control over the satellite and thus
considered vital for the success of the mission.

101

5. Applications

• Independent of the satellite attitude, the ADS-B helix antenna is able to re-
ceive ADS-B beacons. Thus this hardware module will be active at all times,
thereby constantly collecting data of airplane whereabouts.

• The X-Band windows are small, as the downlink connection can only be
established if the satellite is in line of sight and close enough to the receiv-
ing ground station. The corresponding downlink rate, however, is relatively
high.

• L-Band jobs have highly variable durations depending on how the satellite
crosses the field of visibility of the INMARSAT, and will collect a lot of data if
successful. The variations in window lengths can be observed in Section 5.2,
where actual schedules are visualized.

• L-Band jobs are to become as balanced as possible across the available IN-
MARSATs.

• Jobs filling their entire job window are most valuable. Jobs that have been
aborted early or started late are not considered interesting.

• L-Band and X-Band jobs are mutually exclusive, as they require different
attitudes. UHF jobs may be scheduled regardless of the current attitude,
even when L-Band or X-Band jobs are currently executed.

• Only downlinked data are useful, thus the time spent on data collection
payloads (L-Band, ADS-B) and downlink opportunities (X-Band) needs to
be balanced in such a way that only a minimal amount of data needs to
be stored temporarily in the satellite’s memory. This induces the need to
weigh the data collection rate and the downlink speed against each other.
Based on these observations and the expertise of GomSpace engineers, it
was deemed that two fully executed X-Band jobs are enough to downlink the
data of one successful L-Band job together with the ADS-B data collected in
the meantime.

The ground track of GOMX–3 visualizing its orbit and operational windows, is
depicted in Figure 5.6.

GOMX–3 PTA Network

As the central modelling formalism Prized Timed Automata (PTA) are employed
(see Section 2.3) when modelling the behavior of GOMX–3, with special emphasis
being put on flexibility with respect to the optimization objective. In order to allow
for easy extensibility, the modelling was purposely kept modular, parametric and
generic. Notably, the TA formalism is not expressive enough for the nonlinearities
of the kinetic battery model. Therefore we use a simple linear model instead, and
account for this discrepancy at a later stage. The component models belong to the
following categories.

Background load comprises the energy consumption of modules that are always
active, including the ADS-B module to receive airplane location beacons,
the reaction wheels and magnetorquers (even though not at full power) for
keeping the attitude invariant.

102

5.2. Battery-Aware Scheduling

Figure 5.6: The ground track of GOMX–3. X-Band operational windows are induced
when the satellite trajectory crosses the Kourou or Toulouse area, L-Band jobs can
be carried out in the Inmarsat3F2/3 areas. The GOM area represents the line of sight
of the GomSpace station in Aalborg, Denmark.

Attitude Control represents the predetermined attitude requirements of each job
and the worst case slewing time of 5 minutes. However, preparing the ADCS
and actual slewing can be abstracted into one single warm-up period, since
both stages consume the same amount of energy. Thus, the worst-case
warm-up time before entering the visibility range of any job window requir-
ing slewing was raised to 10 minutes.

Jobs are dealt with in a generic way, so that only the common characteristics are
modelled. A job has a finite time window of operation, it may be skipped,
it may require an a priori warm-up time (to ramp up the physical modules
related to the job, especially the ADCS) as well as a specific attitude, it may
need to activate a set of related modules inducing sequences of tasks.

Battery represents a relatively simple linear battery which can support sequences
of tasks. It keeps track of its (one-dimensional) state of charge through up-
dates based on the currently executed task. Since the battery is modelled
as an automaton, the system can monitor and take decisions based on the
remaining battery charge.

Sun is an intuitive two-location automaton (representing insolation and eclipse)
based upon the predicted insolation times, triggering a constant energy in-
feed from the solar panels which in turn depends on the satellite’s attitude.
The automaton includes that upon changing location, i.e. entering/exiting
eclipse or battery heaters being activated/deactivated. The latter are how-
ever not used.

The accumulative power consumption/infeed of GOMX–3 in mW is summarized
in the following table.

103

5. Applications

Type Name Description

int[0,15] module_id A type to refer to the 15 modules present in
GOMX–3

int[0,149760000] soc_t A type to refer to SoCs. The limits are the
absolute depletion as well as the capacity
limit

int[0,4] attitude_t A type to refer to the 4 different attitudes
GOMX–3 can attain (plus one dummy atti-
tude)

int[0,5] p_id A type to refer to payloads. There are 6 pay-
loads, since both INMARSAT payloads are
separated into odd and even occurrences,
due to technical reasons

Table 5.1: Type definitions (typedefs) in the UPPAAL GOMX–3 model.

Background load Warm-Up X-Band L-Band UHF Solar infeed

2989 1406 11 945 3863 2630 [5700, 6100]

Among these components, the PTAs modelling the battery and the job aspects
are the most interesting. The automata modules and the global variables used by
the automata are explained in more details below.

Global Declarations

In the following we list and explain the global variables of the UPPAAL system of
GOMX–3.

Types: A list of type defintions is outlined in Table 5.1.

Channels: A list of declared channels is summarized in Table 5.2.

Constants: A list of (const) variables that remain constant throughout the sched-
ule synthesis procedure is given in Table 5.3.

Transient Variables: Variables subject to change during the scheduling algorithm,
and thus relevant to the dynamic behavior of the satellite, are detailed in
Table 5.4.

Global functions: A List of globally declared functions are shortly explained in
Table 5.5. The actual code of the functions is given in Listing 1.

Now that variable declarations are in place, let us take a closer look at the
actual structures of the automata involved, how and where transient variables are
manipulated.

JobProvider: This automaton provides the interface between multiple arrays
representing the job opportunities as well as their implied preheating times, and
the actual Job automaton. It is depicted in Figure 5.10. It waits for a job window,

104

5.2. Battery-Aware Scheduling

Name Description

alignTo[attitude_t] An array of channels to notify that an attitude change
needs to happen

reached A channel to notify when the attitude change is com-
plete

bUpdate A channel to trigger a battery state update
preHeat[p_id] An array of channels to notify that a warm-up period

is about to start for a certain payload
available[p_id] An array of channels to notify when a job window of a

certain payload is about to be entered
not_available[p_id] An array of channels to notify when a job window of a

certain payload is about to be left

Table 5.2: Channels (declarations using the chan keyword) declared in the GOMX–3
model.

Name Type Description
orbit_period int The duration of an orbit. Initially set to 5570 (sec-

onds).
power_m[module_id] load_t An array storing the power consumption of every mod-

ule.
bg_dc[module_id] load_t An array storing the background duty cycle of each

module.
default_bg_load_po int The power consumed through background load on a

single orbit, initially
∏

i bg_dc[i] ·power_m[i].
default_bg_load load_t The default background load.

Initially default_bg_load_po/orbit_period.
capacity soc_t The capacity of the battery. For GOMX–3 this is

149 760 000.
safe_threshold soc_t The safe threshold for the battery. For GOMX–3 this is

82 368 000, or 55% of capacity.
a_N, a_Z, a_Y, a_I attitude_t Aliases for the attitudes for easier use, conceptually

standing for nominal attitude, +Z to nadir, +Y to
nadir, aligned to INMARSAT.

power_g[attitude_t] load_t An array storing the power consumption rates of
GOMX–3 for each attitude.

pp[attitude_t][attitude_t] int pp[src][dst] holds the warm-up duration from at-
titude src to attitude dst.

slp[attitude_t][attitude_t] int slp[src][dst] holds the time duration it takes to
transition from attitude src to attitude dst.

power_slewing load_t The load induced by slewing.
a_nfe[p_id] int An array holding the attitudes required for each job.
power_p[p_id] load_t An array holding the power consumption per payload.
access_preheat[p_id][n] int A matrix holding a row of warm-up starting times for

each job type. Each row is of length n , where n is not
known until the input tables have been parsed.

access_start[p_id][n] int A matrix holding a row of job window starting times
for each job type.

access_end[p_id][n] int A matrix holding a row of job window end times for
each job type.

eclipse_end[m] int An array of length m , holding the time points of in-
solation entrances, or equivalently, eclipse exits. The
length of this array is not known until the input tables
have been parsed.

insolation_end[m] int An array of length m , holding the time points of
eclipse entrances, or equivalently, insolation exits.

Table 5.3: Constants (const declared variables) used in the UPPAAL CORA model of
GOMX–3.

105

5. Applications

int jobPreheatTime(const p_id pid) {
return access_preheat[pid][c[pid]];

}

int jobStartTime(const p_id pid) {
return access_start[pid][c[pid]];

}

int jobEndTime(const p_id pid) {
return access_end[pid][c[pid]];

}

int eclipseEndTime() {
return eclipse_end[sun_c];

}

int insolationEndTime() {
return insolation_end[sun_c];

}

int jobDuration(const p_id pid) {
return

jobEndTime(pid) - jobStartTime(pid);
}

int costRate(const p_id pid) {
if (pid == 0) return c⊥;
if (pid == 1) return cUHF;
if (pid == 2) return cX ;
if (pid == 3) return cL;
if (pid == 4) return cL;
if (pid == 5) return cL;
if (pid == 6) return cL;

}

bool job_possible(const p_id pid) {
if (costRate(pid) == 0) return false;
if (pid == 0) return true;
if (ac_lock) return false;
return true;

}

bool skippable(const p_id pid) {
return true;

}

bool isAligned(const p_id pid) {
if (a_nfe[pid] == 0) return true;

//independent
return a == a_nfe[pid];

}

bool hasToSlewBack(const p_id pid) {
if (a_nfe[pid] == 0 || a == a_N)

return false;
else

return true;
}

void lockIfNeeded(const p_id pid) {
if(a_nfe[pid] != 0) ac_lock = true;

}

void unlockIfNeeded(const p_id pid) {
if (a_nfe[pid] != 0) ac_lock = false;

}

void startJob(const p_id pid) {
pa[pid] = true;

}

void endJob(const p_id pid) {
pa[pid] = false;
nee[pid]++;

}

void update(const p_id pid) {
new_time = jobEndTime(pid);
c[pid]++;
if (new_time > jobPreheatTime(pid)) {

a=1/0; //provoke error, discard trace
}

}

void last() {
new_time = tlast ;

}

void termCost() {
// function stub

}

Listing 1: The UPPAAL code of the system’s globally declared functions.

bUpdate?

update()

ε
soc> depl

ε
update()

ε
soc≤ deplInitIdle Check Depletion

Figure 5.7: The Battery automaton.

106

5.2. Battery-Aware Scheduling

Name Type Description

gc clock The global clock.
soc soc_t The variable storing the current SoC.
a attitude_t The current attitude of the satellite. Initially this is the

nominal attitude aN = 1.
c[p_id] int An array holding counters for each job. Once a job win-

dow is entered, the respective counter is incremented.
nee[p_id] int An array holding counters for each payload type. Once

a job window is scheduled, the respective counter is
incremented.

slewing bool A boolean variable indicating whether the satellite is
currently changing attitude.

insolation bool A boolean variable indicating whether the satellite is
currently exposed to sunlight.

new_time int A variable used to keep track of time and enabling com-
putation with relevant time points. Whenever a job
window is entered, this variable is assigned to the end
point of that window such that battery state updates
can be reliably executed.

Table 5.4: Transient variables (non-const declared variables) of the GOMX–3 UPPAAL

model subject to change during the scheduling process.

ε
eclipseEndTime()≤ insolationEndTime()

updateAfterInsolationEnd :=>

ε
eclipseEndTime()> insolationEndTime()
updateAfterInsolationEnd :=⊥
insolation :=>

bUpdate!

gc= eclipseEndTime()
eclipseEnd()

bUpdate!

gc= insolationEndTime()
insolationEnd()

Init

Eclipse
gc≤ eclipseEndTime()

Insolation
gc≤ insolationEndTime()

Figure 5.8: The Sun automaton.

107

5. Applications

Declaration Description

int jobPreheatTime(const p_id pid) A function to conveniently fetch the warm-up
starting point of the next job window of type
pid.

int jobStartTime(const p_id pid) A function to conveniently fetch the entry
point of the next job window of type pid.

int jobEndTime(const p_id pid) A function to conveniently fetch the exit point
of the current job window of type pid.

int eclipseEndTime() A function to conveniently fetch the exit point
of the eclipse window.

int insolationEndTime() A function to conveniently fetch the exit point
of the next insolation period.

int jobDuration(const p_id pid) A function to conveniently fetch the exit point
of the next eclipse period.

int costRate(const p_id pid) Returns the cost rate of jobs of type pid.
bool jobPossible(const p_id pid) Decides whether job can in principle be

scheduled, with respect to system variables.
bool skippable(const p_id pid) Function that decides whether a job can in

principle be skipped, with respect to system
variables. This can be extended to implement
heuristics.

bool isAligned(const p_id pid) Returns whether the satellite has the required
attitude to execute a job of type pid.

bool hasToSlewBack(const p_id pid) Returns whether the satellite needs to slew
back to nominal attitude after finishing a job
of type pid.

void lockIfNeeded(const p_id pid) A function that locks the satellite, and thus
prevents it from accepting jobs, depending on
the attitude needed for the payload pid.

void unlockIfNeeded(const p_id pid) A function that unlocks the satellite, and thus
enables it to accept jobs.

void startJob(const p_id pid) Bookkeeping for when a job is actually sched-
uled at the time the job window is entered.

void endJob(const p_id pid) Bookkeeping for when the satellite leaves a
job window that was scheduled.

void update(const p_id pid) Updates timing related system variables.
void last() A function that does the bookkeeping for the

final step before the system deadlocks when
the scheduling horizon is reached.

void termCost() A function that realizes terminal costs to be
added at the very end of the scheduling hori-
zon. In all of our experiments, this was un-
used.

Table 5.5: Global functions of the GOMX–3 UPPAAL model.

108

5.2. Battery-Aware Scheduling

align_to[a_tmp]?
init_slewing(a_tmp)

bUpdate!
reached!

gc= slewingEnd_time

end_slewing()

bUpdate!

tmp2

Idle tmp1

Slewing
gc≤ slewingEnd_time()

Figure 5.9: The Attitude Control automaton.

preHeat[pid]!
gc= jobPreHeatTime(pid)

new_time := jobPreHeatTime(pid)

available[pid]!
gc= jobStartTime(pid)

new_time := jobStartTime(pid)

not_available[pid]!
gc= jobEndTime(pid)
update(pid)

Available
gc≤ jobEndTime(pid)

Idle
gc≤ jobPreHeatTime(pid)

PreHeat
gc≤ jobStartTime(pid)

Figure 5.10: The Job Provider automaton.

discriminating whether the job needs a warm-up period or not, and broadcasts
signals triggering the actual decision making. In the Idle location, being initial, it
waits for the global clock gc to hit a certain job warm-up time event (stored in the
array jobPreheatTime), sets the time variable to the current time, and notifies
the Job automaton to start preheating over a dedicated preHeat[pid] channel,
where pid uniquely identifies a certain job type. Upon this notification it switches
into the PreHeat location and waits for the actual job to start, i.e. the global time
reaching the expected start time of the job identified by pid, consequently transi-
tioning into locationAvailable, where in turn, it waits for completion of the job (gc
reaching jobEndTime[pid]), switching into location Idle yet again, all the while
notifying its environment on the respective dedicated channels. This module has
no further local functions or variables.

Job: This automaton represents the execution or skipping of a job. Its graph
representation is shown in Figure 5.11. It starts in its Idle location, waiting to be
notified of impending preheating duties. At this point the take-or-skip decision
is taken, as witnessed by the two outgoing transitions into locations labelled Skip
andAlign. A job is either skipped because it is not optimal to execute it, or because
the attitude requirements don’t match the current attitude of the satellite because
of an already ongoing job. If the job is skipped, cost is accumulated with rate
costRate(pid) over the duration of the job, effectively returning into location Idle.
If it is taken, attitude requirements of the scheduled job are checked via the guard
isAligned(pid), upon which the satellite starts slewing (location Slewing) to the

109

5. Applications

preHeat[pid]?
skippable(pid)

a
v
a
i
l
a
b
l
e
[p
i
d
]?

not_available[pid]?

preHeat[pid]?
job_possible(pid)
lockIfNeeded(pid)

ε
isAligned(pid)

align_to[a_nfe[pid]]!
¬isAligned(pid)

reached?

available[pid]?
startJob(pid)

bUpdate!

not_available[pid]?
endJob(pid)

bUpdate!

ε
¬h

as
To

Sl
ew

B
ac

k(
p
i
d
)

re
ac

he
d?

u
n

lo
ck

If
N

ee
d

ed
(p
i
d

)
a
l
i
g
n
_t

o
[a
_N
]?

h
as

To
Sl

ew
B

ac
k(
p
i
d
)

Idle Skip

Penalty
˙cost= costRate(pid)

Align

SlewingReached

Available Start

Attitude
Check

Back
Slew

End

Figure 5.11: The Job automaton.

bUpdate!
gc= last

last()
ε

term_cost()Idle
gc≤ last tmp Lock

Figure 5.12: The Termination automaton.

110

5.2. Battery-Aware Scheduling

int load = 0;
int old_time = 0;

void update() {
soc -= load * (new_time - old_time);

if (soc > max) { //align to limit
soc = max;

}

old_time = new_time;
load = default_bg_load;

for (pid:p_id) {
load += pa[pid] ? power_p[pid] : 0;

}

load += slewing ? power_slewing : 0;
load -= insolation ? power_g[a] : 0;

}

Listing 2: The UPPAAL code of the battery module.

correct attitude (location Correct_Attitude) if need be. Upon notification, the job
is executed (Start → End → Check_Attitude) triggering the battery via channel
bUpdate to update its SoC, and finally checks whether it has to change attitude
to minimize atmospheric drag using guards hasToSlewBack(pid) to finally return
eventually to location Idle. This module has no further local functions or variables.

Battery: A visual representation of the automaton is found in Figure 5.7. This
model represents a simple linear battery with capacity limits that can be charged
and discharged with piecewise constant loads. It is notified of load changes via
channel bUpdate, upon which it calls its local update() function and computes
the length of a constant load interval via global integer variables new_time and
old_time, and subtracts the result multiplied by load from its internal SoC soc,
upon which it ends up in location Check. A check is performed whether the SoC
fell below depletion threshold depl, upon which we either transition into (and
stay in) the Depletion location or return to Idle to power another task. The full
code of the battery module is listed in Listing 2.

Attitude Control: The attitude control system is a very simple cyclic automa-
ton that essentially governs the slewing times and triggers battery state updates
because of the activation of the reaction wheels and its implied load change. It is
depicted in Figure 5.9. Its initial location is Idle, from where it waits to be signaled
on channel align_to[a_tmp] (triggered by a Job automaton) that an attitude
change is necessary. It sets the necessary variables while it transitions into the
Tmp1 location, where it immediately continues to notify the battery that its load

111

5. Applications

Int slewingEnd_time = 0;
attitude_t a_dst = 0;

void init_slewing(const attitude_t a_tmp) {
a_dst = a_tmp;
slewing = true;
slewingEnd_time = new_time + sp(a,a_tmp);

}

void end_slewing() {
a = a_dst;
a_dst = 0; //reduces state space
new_time = slewingEnd_time;
slewingEnd_time = 0; //reduces state space
slewing = false;

}

Listing 3: The UPPAAL code of the attitude control module.

has changed and a SoC update is in order on channel bUpdate. The invariant
forces the automaton to wait the necessary amount of time for the slewing to be
terminated, upon which it broadcasts this fact on channel reached, while ap-
propriately changing variables and transitioning into location Tmp2. Its last step
before awaiting a new attitude change is to notify the battery of yet another load
change, due to the completed slewing, on channel bUpdate. The full code of the
attitude control module is listed in Listing 3.

Sun: The sun automaton is a three location automaton that in essence alter-
nates between Insolation andEclipse locations and notifies the battery automaton
of the change in solar infeed through the bUpdate channel after waiting for the
appropriate amount of time. It starts off initially in the Init location simply to de-
cide whether we started in insolation of eclipse. The automaton is depicted in
Figure 5.8. The code of the local functions is listed in Listing 4.

Termination: The termination automaton is a a purely technical automaton
ensuring termination of the model checking process by deadlocking the system
(location Lock) when the scheduling time horizon is reached, since the UPPAAL

tool doesn’t do so implicitly in certain cases. It enables the addition of terminal
bookkeeping and of terminal costs through the term_cost() function, that, while
an interesting idea, was largely unused in our scenarios. Its graph is depicted
in Figure 5.12. No further local functions or variables are associated with this
automaton.

Cost Model And Reachability Objectives

In the following we explain how the objectives derived by GomSpace engineers
were turned into constraints and cost parameters of the PTA model.

112

5.2. Battery-Aware Scheduling

bool updateAfterInsolationEnd = 0 ;

void eclipseEnd() {
insolation = true;
new_time = eclipseEndTime();
if(!updateAfterInsolationEnd) sun_c++;

}

void insolationEnd() {
insolation = false;
new_time = insolationEndTime();
if(updateAfterInsolationEnd) sun_c++;

}

Listing 4: The UPPAAL code of the sun model.

The Safe Mode threshold is kept variable and must be set before scheduling.
It appears as depl in the automata models. Depending on the degree of aggres-
siveness of the intended schedule, it can either be set close to the real Safe Mode
threshold of 40 % or it can be set higher, for example to 55 %, thereby adding an
implicit safety margin.

UPPAAL CORA computes cost-minimal schedules. Therefore, we interpret the
price annotations of PTA transitions as penalties for skipped jobs. Likewise, cost
rates in states accumulate penalty per time unit a job window is left unused. An
optimal schedule will then have the property that a minimal portion of important
job windows was left unexploited.

An immediate consequence of this setup is that UHF jobs have a high penalty
if skipped, as they are supposed to be scheduled every time they are possible. For
L-Band and X-Band jobs, the number of jobs scheduled should result in an average
ratio of 1

2 , according to the GomSpace directives. To arrive there, we proceed as
follows. Let ∆X and ∆L denote the job windows length expectations of X-Band
and L-Band jobs, respectively. Then the cost rate for skipping L-Band and X-Band
window portions is set 2 ·∆X and ∆L , respectively. Likewise, the L-Band jobs on
different INMARSAT are internally viewed as different jobs. Their cost rates for
skipping should be set equal.

As explained in Section 2.3, in order to generate an optimal schedule from the
network of PTAs up to a certain time horizon, we need to define the goal set of
states to be used in a reachability objective as supported by UPPAAL CORA. In our
case, the time horizon is to some extend already encoded in the Termination
automaton. Since we want to make sure that some final bookkeeping is executed
when the time horizon is reached, we explicitly query for the deadlock location
Lock of this automaton in the query, i.e. ∃◊Termination.Lock.

Model Quality Assurance

In light of the high overall significance of the GOMX–3 mission, it was from the start
deemed important to assure the adequacy of the formal models used to represent

113

5. Applications

Orbit/Power Prediction
Scheduling optimization

StoKiBaM

p

b(t)
1−c a(t)

c

I

1 − c c

b(t) a(t)

1.7 · 10−63

−320

−280

−240

−200

−160

−120

−80

−40

Satellite Operation

Figure 5.13: Scheduling workflow.

and to eventually manoeuvre the satellite. For this reason, a series of dedicated
workshops were organized in the context of the SENSATION project , comprising,
among others, the author of this document (see [33] for a snapshot of the website).
On these occasions, presentations of varying technical detail were delivered by
both sides, so as to expose the formal approach, the set of concrete problems, as
well as possible solutions thereof. In later stages, collaborative work was organized
via Google docs and Skype, which indeed provided an effective way to communi-
cate feedback in both directions. This altogether made it possible to effectively
cross-fertilize the domain expertise of the GomSpace engineers with the modelling
and verification experience at Saarland University, so as to assure a high quality
model. In the same vein, the design of the entire scheduling workflow (explained
next) was a consensus decision.

The Scheduling Workflow

The scheduling workflow, depicted in Figure 5.13, loops through a two-step pro-
cedure of schedule generation and schedule validation. The latter is needed to
account for the inaccuracies of the simple linear battery model, which is used
for schedule generation, relative to real battery kinetics. Therefore any generated
schedule is validated along the stochastically enhanced KiBaM known to be sen-
sitive to such effects. If the validation does not exhibit good enough guarantees
in the eyes of the GomSpace engineers, the current schedule is discarded and ex-
cluded from the generation step, and a new schedule is computed. Otherwise it
will be accepted, upon which we break the loop and ship the schedule to orbit.

Operational Windows

The operational windows are the main source of variability in the scheduling work-
flow. They are determined by GomSpace engineers just before the start of the
actual scheduling period. In this way, changing mission parameters and tempo-
rary unavailability of certain jobs is accounted for. The operational windows are
delivered as csv (comma separated values) files based on the POWERSIM orbit
prediction. If a job type is unavailable during a certain time span, the tables will
not contain operational windows for this job for that span.

Each csv file contains a list of job opportunities of a certain type, for example
L-Band (see table below), given by two date-time strings representing the start

114

5.2. Battery-Aware Scheduling

time and the end time of the job window respectively, the implied duration of the
time points, as well as a flag (Scheduled) that shows whether the opportunity
should be taken. This column is filled in after a schedule has been computed. One
such table could look as follows:

Access
(UTC)

Start Time
(UTC)

Stop Time
(sec)

Duration
Scheduled

1 00:38:38.922
17 Nov 2015

01:09:42.642
17 Nov 2015

1863.720 –

2 02:16:24.134
17 Nov 2015

02:45:23.914
17 Nov 2015

1739.781 –

...
...

...
...

...

15 23:41:20.490
17 Nov 2015

00:12:38.983
18 Nov 2015

1878.493 –

Schedule Generation

The mission times to be considered for automatic scheduling span between 24
and 72 hours, i.e. the range of 15 to 47 orbits. Longer durations are not of interest
since orbit predictions are highly accurate only for a time horizon of a handful
of days, and because GOMX–3 is as a whole an experimental satellite, requiring
periods of manual intervention. However, even a 24 hour schedule computation
constitutes a challenge for plain CORA, since the number of states grows too large
to fit in memory, due to the natural state space explosion when tackling model
checking problems. 3

The dominating contributor to the state space growth is the large number of
L-Band operational windows. GOMX–3 passes several of them each orbit, invoking
a take-or-leave decision for each such window. This issue is made worse as other
jobs (i.e. UHF) could be taken at the same time as their attitude requirements
are not mutually exclusive. Especially these circumstances induce an exponential
growth of states in the length of the scheduling horizon.

Heuristics. The state-space explosion can, to certain extend, be remedied by
using heuristics, i.e. exclusion of certain schedules at the risk of losing optimality.
Here is a brief overview of heuristics used:

1. Take every job if battery is almost full. Job opportunities will be taken if
the battery is close to being full, since the battery cannot store more energy
anyway. This minimizes the risk of not being able to harvest energy due to a
full battery.

2. Force discard of schedules on depletion. This simple, yet effective heuris-
tic forces the PTA network into a dedicated deadlock location (Depletion)
whenever the battery automaton reaches a non positive SoC, resulting in
the schedule to be dropped.

3. Impose upper bound on discharging loads. This heuristic discards traces
that exhibit high discharging loads at any point. It is meant to somewhat
counteract the rate-capacity effect of batteries.

3Unfortunately UPPAAL CORA is a 32 bit executable and is thus unable to use more than 4GB of
RAM

115

5. Applications

The following heuristics are specific to objectives expressed by the engineers.

4. An L-Band job precedes two X-Band jobs. To avoid storage of large amounts
of data on the satellite, we bound the ratio of data collection and down-
link jobs. A ratio rX/rL can be approximated greedily by adding a global
variable r (initially 0) as well as guards to the Job automaton such that X-
Band jobs are scheduled only if r≥ rL and L-Band jobs are scheduled only
if r < (rX + rL) · rX. Upon scheduling an X-Band and L-Band job, we set
r := r−rL and r := r+rX respectively. With rX := 2 and ry := 1 schedules
never start with an X-Band job and in the long run, the ratio of L-Band and
X-Band jobs stays between 1 and 1

2 .

5. Keep L-Band jobs in balance across INMARSATs. Similarly to the realization
of the above heuristic we bound the difference among L-Band jobs on the
relevant INMARSATs to at most 2.

6. Always schedule UHF jobs. Instead of penalizing skipped UHF jobs by an-
notations of large costs (to enforce their scheduling), we enforce them on
the automaton level, omitting any cost annotation.

Especially heuristic 3 proves useful in several ways. First, the KiBaM used in the
validation step yields less energy before depletion if subjected to high discharging
loads due to the rate-capacity effect (that is not captured by the linear battery
model). Second, high loads are reached when UHF jobs are scheduled in addition
to an L- or X-Band job. Such situations seem lucrative to UPPAAL CORA, given that
they don’t accumulate much cost. Yet, they often result in schedules that drain the
battery very fast. Third, the bound can be chosen such that parallel jobs, and thus
high loads, occur only during insolation, but not in eclipse.

Each heuristics impacts the computational efficiency (runtime, memory) as
well as the schedule quality (accumulated cost), as it essentially prunes the state
space. To illustrate this, we synthesized a schedule, deactivating one heuristic at a
time, and report on some diagnostic quantities of the model checking procedure
in the following table. The scheduling horizon was split into two parts and later
conjoined in order to actually arrive at a schedule.

excluded
heuristics

time (s)
CORA

explored
states

cost
accumulated

none 2.6 172 452 262 792
1 10.2 700 429 262 792
2 80.7 5 474 775 262 792
3 86.1 6 029 126 243 269
4 8.9 592 233 258 081
5 3.7 224 517 262 792
6 2.7 175 191 262 792

It becomes apparent that heuristic 2 and 3 are the most effective. Most of the
combinations studied induce the schedule depicted below, where job windows of
a certain type, i.e. L-Band on different INMARSATs (L1, L2), X-Band (X) and UHF,
are displayed as black (grey) bars if they were indeed taken (skipped).

116

5.2. Battery-Aware Scheduling

07:30 11:30 15:30 19:30 23:30 03:30 07:30 11:30 15:30
UHF

X

L1

L2

scheduled not scheduled

At first sight, dropping heuristics 3 or 4 lead to superior solutions. Without heuris-
tic 4, one more X-Band job can indeed be scheduled, explaining why this schedule
is cheaper in terms of accumulated penalty. It is however scheduled before the first
L-Band job, rendering it useless because there is nothing to downlink. As expected,
without heuristics 3, UPPAAL CORA predominately schedules UHF jobs parallel
to X- or L-Band jobs, thereby straining the battery. The large number of states
explored indicates that the state space exploration in this case is often misguided
into eventual battery depletion.

Dynamic Scheduling. Another issue is that UPPAAL CORA’s optimization crite-
rion is static, i.e. the prices cannot be updated based on the schedule generated so
far. This is contrasted by the GomSpace engineering intention of having a dynamic
scheduling approach. The need for dynamic change of scheduling parameters dur-
ing mission time was driven by initial uncertainty concerning the requirements
to be faced and by the intention to try out operational limits, to experiment with
the potential of GOMX–3 attitude control and to thereby gather experience for
subsequent missions and future use case scenarios.

We take care of this by viewing the PTA network as being parameterized, i.e.
as templates that need to be instantiated by concrete values. This enables us to
divide the scheduling interval into disjoint subintervals that can be scheduled indi-
vidually, with distinct scheduling objectives and prices, all the while carrying over
resulting quantities as initial values to the subsequent subinterval to be scheduled.
Important quantities that need to be passed on are the resulting battery state, the
number of individual jobs already scheduled and the state of the PTA network at
the end of the previous subinterval. This information allows us to adjust the prices
and scheduling objective at the end of each subinterval, depending on the require-
ments previously fixed. The subschedules are then conjoined to a schedule for
the actual time interval. This line of action is a trade-off between optimality and
being dynamic, as it implements a greedy heuristics.

Given the back-to-back nature of this approach, it is undesired to start with an
almost empty battery after a scheduling interval. We require the battery to have
a certain minimum charge at the end of the schedule, greater than the Safe Mode
threshold. This requirement translates directly to a reachability query on the PTA
network: ∃◊(Termination.Lock∧soc≥ 75 000 000).

Schedule Validation

As mentioned, UPPAAL CORA’s expressiveness does not allow for direct modelling
of the KiBaM as a PTA. Instead the schedule computed is based on the simple
linear model, that is known to not capture important effects that can be observed
from measurements of real batteries. In order to validate whether the computed
schedule truly doesn’t violate the constraints we imposed, we need to validate the
schedule along the stochastic KiBaM with capacity limits. In fact, such a schedule

117

5. Applications

can be seen as a sequence of tasks of finite length (∆ j ,` j)Nj=0, which can imme-
diately be used as input to one of the KiBaM algorithms described in Section 4.
In this case the static discretization algorithm from Section 4.2 was used. The
initial KiBaM SoC distribution is assumed to be a truncated 2D Gaussian around
the initial battery state given to the PTA network and white noise is added to the
loads of the tasks. If the validation step exhibits a low enough depletion risk, the
computed schedule is accepted, otherwise the schedule is excluded and another
schedule is computed. This happened only once. Across the schedules evaluated
“low enough” was interpreted as “below 0.2” though much stricter guarantees were
actually at hand in two of the three cases.

Implementation

The tool workflow has been implemented as follows. The operational windows
for jobs are provided by GomSpace based on their inhouse tool POWERSIM as csv
files. In addition to the interval to be scheduled, they serve as input to a Python
script, which wraps the scheduling and validation parts. The Python script (i) pre-
processes thecsv tables provided by GomSpace (ii) instantiates the PTA templates
with those numbers, (iii) calls UPPAAL CORA on the PTA instances, (iv) parses and
postprocesses the optimal trace output by UPPAAL CORA to extract a schedule,
(v) invokes a the static discretization algorithm (Section 4.2), to validate the sched-
ule against a stochastic KiBaM, (vi) complements each operational window in the
csv tables with the taken-or-skipped information, as dictated by UPPAAL CORA,
and finally (vii) produces plots of the generated schedule as well as the resulting
SoC distribution, including the depletion risk, for visual inspection.

The preprocessing step is mainly conversion of absolute date-time objects
(i.e. 17 Nov 2015 00:38:38.922) to UPPAAL CORA-compatible relative unix
timestamps (0 being the starting point of the scheduling interval) represented as
integers, as well as the selection of operational windows actually contained in the
scheduling interval.

Postprocessing includes parsing of UPPAAL CORA’s textual format of a trace,
filtering it to remove irrelevant intermediate states and, finally, the conversion back
to date-time objects to decide which operational windows were actually taken.

The Scheduled column of each csv file is filled in with 1 (the job opportunity
was scheduled) or 0 (the job opportunity was skipped) accordingly. The csv ta-
bles, and optionally the plots, are subsequently sent to GomSpace, translated into
GOMX–3-friendly instructions and uplinked via the UHF Aalborg connection.

The tool including the templates, the models, a few operational window tables
and the necessary executables (except for UPPAAL CORA, which has to be acquired
separately) can be accessed under

https://www.powver.org/gomx3-supplementary-material/.
The tool we make available is almost “push-button”. It is preconfigured with

meaningful parameter defaults for the GOMX–3 mission, so that passing start and
end point of the scheduling interval should result in usable schedules that could be
uplinked. No expert knowledge of UPPAAL CORA is required, as its model checking
related arguments are fixed and passed by the Python wrapper. The arguments
passed to the wrapper are mostly instantiations of place holders in the PTA tem-
plate, and thus reflect requirements concerning the schedule, but not the model-
checking routine. Using the default parameters of the tool, a schedule of 24 hours

118

https://www.powver.org/gomx3-supplementary-material/

5.2. Battery-Aware Scheduling

consisting of a total of 6 UHF, 10 X-Band and 26 L-Band operational windows was
synthesized on a laptop notebook. The modelchecker UPPAAL CORA needed 5.374
seconds to explore 349 191 states in order to find the optimal trace, inducing a task
sequence of length 76. The StoKiBaM validation needed 4.903 seconds to compute
the SoC density along this sequence. The runtime and space requirements of UP-
PAAL CORA grow exponentially with the scheduling horizon, while the StoKiBaM
validation runtime and memory increase is linear in the task sequence length but
quadratic in the grid size.

Empirical Results

A number of successful experiments have been carried out on GOMX–3 in-orbit, so
as to evaluate and refine our method, focussing on the determination of schedules
to be followed for the days ahead. These in-orbit evaluations have successfully
demonstrated the principal feasibility and adequacy of the approach, as we will
discuss in this section.

In Figures 5.14–5.16 three representative in-orbit experiments are summarized.
The schedules are visualized as three stacked plots of data against a common time
line (top). The bottom ones are Gantt charts showing which jobs are scheduled
(black bars) and which job windows are skipped (grey bars) respectively. The plots
in the middle display the loads imposed by the jobs as predicted (light green)
and as actually measured (dark blue) on GOMX–3. The top plots presents the
battery SoC of the linear battery (yellow) as predicted by UPPAAL CORA as well as
the actual voltage (dark red) logged by GOMX–3. Voltage and SoC are generally
not comparable. However, both quantities exhibit similar tendencies during the
charging/discharging process. The battery, voltage and load curves have all been
normalized to the interval [0, 1] for comparison reasons.

On the bottom, the three components of the SoC density resulting from the
validation step are displayed, obtained by running the generated schedule along
the stochastic KiBaM with capacity limits. It is to be interpreted as in Example 10.
The most crucial part is at the bottom part of the plot, quantifying the risk of
entering Safe Mode as specified by the GomSpace engineers (40 %). The data is
summarized in Table 5.6.

November 2015. The schedule presented in Figure 5.14 spans November 17,
2015. It is a schedule that optimizes for maximum L-Band payload operations,
yielding 4 L-Band operations and 1 X-Band operation together with the 5 UHF
ground station passes. The battery SoC and the measured battery voltage show a
close correspondence. GomSpace reported that GOMX–3 entered Safe Mode twice,
if only for a short period of time. It later surfaced that an improper SoC-to-voltage
conversion was used to determine the Safe Mode threshold.

February 2016. Figure 5.15 presents a schedule spanning one and a half day,
starting on February 14, 2016. Before this experiment, GomSpace engineers gave
notice that L-Band jobs shall receive special treatment from now on (i) Generally,
the hardware modules related to L-Band jobs shall remain active for one whole
orbit duration, once such a job is scheduled (ii) the ACDS needs 30 minutes of war-
m-up time to prepare for the L-Band job. This instance illustrates how optimized
scheduling can be utilized to not only take power limitations into consideration

119

5. Applications

0.00

0.25

0.50

0.75

1.00

0

1

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
UHF

X
L1

L2

battery
load (schedule)

voltage
load (real)

scheduled
not scheduled

safe mode

(a) Visualization of the synthesized/executed schedule.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

×10−13

0.1927785086460.192778508646

−225

−200

−175

−150

−125

−100

−75

−50

(b) The final SoC distribution on a linear (left) and a logarithmic (right) color scale.

Figure 5.14: Schedule November 17, 2015 midnight to November 18, 2015 midnight.

but also handle secondary constraints like data generation and data downlinking
balance via L-Band and X-Band tasks. The initial SoC and the internal depletion
threshold were communicated to us as 90 % and 55 %, as the SoC-to-voltage con-
version was corrected. The plot exhibits a drift between battery SoC and measured
voltage around 3 PM of the first day, after initially showing a close correspondence,
indicating that the battery is in a better state relative to our pessimistic predictions.
The GomSpace engineers were able to track down this drift to a mismatch in the
initial net power balance estimate provided by POWERSIM which are used as input
to the toolchain, together with discrepancies in power draw for certain third-party
modules. Deviations between power consumption values reported in data sheets
and actual power draws were detected and sorted out.

March 2016. The third schedule we present (Figure 5.16) is the longest in du-
ration, spanning from March 20 at 7 AM to March 22 at 7 PM. We were notified

120

5.3. Receding-Horizon Scheduling

Synthesis Setup Analysis Execution
UPPAAL UPPAAL stoKiBaM GOMX–3

hh:mm)
(dd.mm.yy

Start

(h)
Length

(%)
SoC
init.

depl
(%)
SoC
min.

z�

entered
Mode
Safe

00:00
17.11.15

24 85 0.4 40.3 ≤ 0.193 2

00:00
14.02.16

36 90 0.55 69 ≤ 10−56 0

07:00
20.03.16

60 90 0.55 55.9 ≤ 10−4 0

Table 5.6: A summary of the test runs performed on GOMX–3 on three different occa-
sions. It reports on the value chosen as internal depletion threshold to the battery
automaton, the initial SoC provided to UPPAAL CORA, the minimal SoC along the
schedule generated by UPPAAL CORA, the depletion risk as calculated by the stochas-
tic KiBaM validation step and how often GOMX–3 actually entered Safe Mode during
schedule execution.

that GOMX–3 was supposed to test a simple, mission time prolonging adjustment:
After each job, GOMX–3 should return to the so-called nominal attitude to mini-
mize drag that would slowly decelerate the satellite, thereby shortening its time
until atmospheric reentry. Thus, each scheduled job opportunity that requires
a non-nominal attitude automatically had a 10 minutes ADCS cool-down phase
appended. The energy consumption of cool-down and warm-up phases agree.
After initial close correspondence of SoC and voltage, around 18 hours into the
test run we observe a slight but continuous drift between predicted battery SoC
and measured voltage, yet not as steep as in the February test run.

5.3 Receding-Horizon Scheduling using Model Predictive
Control

Considering the results from Section 5.2, it becomes apparent that the predicted
SoC and the actual voltage behavior drift apart further and further as time pro-
gresses. The SoC curve indicates a downwards tendency over time, in contrast to
the voltage curve, that appears to recover to nominal voltage again and again. Fig-
ure 5.17 tracks the effects of the sequence of actually measured (not of predicted)
satellite loads on the KiBaM SoC, a technique also known as Coulomb Counting,
Ampere Hour Counting or Current Integration Method [31]. It shows a similar pat-
tern, the SoC is driven closer and closer to the Safe Mode threshold, while the
voltage indicates that the battery does not. The choice of the initial SoC is crucial,
as Coulomb counting is not able to rectify an optimistic nor a pessimistic initial-
ization over the course of time. The latter is indeed observable in Figure 5.17.

Voltage and SoC are quantities that are clearly related, yet it is unclear what the
exact relation is. Despite this fact, widespread consensus is that voltage and SoC
are somehow proportional in tendency in the following sense: If the measured

121

5. Applications

0.00

0.25

0.50

0.75

1.00

0

1

00:00 06:00 12:00 18:00 00:00 06:00 12:00
UHF

X
L1

L2

battery
load (schedule)

voltage
load (real)

scheduled
not scheduled

(a) Visualization of the synthesized/executed schedule.

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

×10−13

7.1957775925E-577.1957775925E-57

−300

−250

−200

−150

−100

−50

(b) The final SoC distribution on a linear (left) and a logarithmic (right) color scale.

Figure 5.15: Schedule February 14, 2016 midnight to February 15, 2016 noon

voltage is close to nominal voltage of a battery cell, it seems very unlikely that the
SoC is close to depletion, or put differently, time series of measured voltage values
carry information about the state of charge of a battery. Naturally the idea arises to
incorporate measured voltage data from the satellite into the scheduling process
as corrective measure to the SoC estimation. This paradigm is well known in the
field of Model Predictive Control (MPC).

Periodic Receding-Horizon Scheduling

Our goal is thus to incorporate logged (current and) voltage data from GOMX–3
into the scheduling mechanism as soon as they become available. At the same
time, we want to perpetuate the thus far time-bounded scheduling approach, on
the basis of the data we see. To explain our approach, let us for the moment assume
for simplicity that GOMX–3 passes over the base station each orbit and is able to
downlink its logged data in passing. We furthermore assume that orbits begin

122

5.3. Receding-Horizon Scheduling

0.00

0.25

0.50

0.75

1.00

0

1

07:00 13:00 19:00 01:00 07:00 13:00 19:00 01:00 07:00 13:00 19:00
UHF

X
L1

L2

battery
load (schedule)

voltage
load (real)

scheduled
not scheduled

(a) Visualization of the synthesized/executed schedule.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

×10−13

0.0000290035196560.000029003519656

−350

−300

−250

−200

−150

−100

−50

(b) The final SoC distribution on a linear (left) and a logarithmic (right) color scale.

Figure 5.16: Schedule March 20, 2016 7 AM to March 22, 2016 7 PM

when passing the base station, that GOMX–3 is currently at the beginning of its i -
th overall orbit, and that it already has schedulesSi , . . . ,Si+x to follow, altogether
spanning x +1 orbits. We refer to the overall schedule asS i+x

i . Hence it has just
finished downlinking the voltage Ui−1 and current data Ii−1 from the (i − 1)-st
orbit to the base station. The following will be repeated in parallel.

Satellite: The satellite executes the first orbit as scheduled bySi while measuring
voltage Ui and current Ii . Once it ends the orbit by contacting the base
station, it downlinks its measured data and it receives a scheduleS i+1+x

i+1 for
the next x +1 orbits.

Base Station: UsingUi−1 and Ii−1, an estimate of the initial state of charge SoCi

of the i -th orbit is computed. As the satellite will behave according to Si ,
we can predict the initial state of charge SoCi+1 of the (i +1)-st orbit as well
(by propagating the SoCi along the predicted schedule loads). Based on this

123

5. Applications

07:00 13:00 19:00 01:00 07:00 13:00 19:00 01:00 07:00 13:00 19:00
0.85

0.90

0.95

1.00

0

Voltage (Measured)
Load (Measured)

Available (Coulomb counting)
Bound (Coulomb counting)

Figure 5.17: Given the current and voltage measurements of the March 20 experiment,
we perform simple Coulomb counting using the KiBaM (c = 0.2, p = 0.0001) with initial
SoC of [a0; b0] = [90 %; 90 %] and compare to the measured voltage.

Downlink Ui−1, Ii−1

Uplink schedule Si−1+x
i−1

Estimate SoC
from Ui−1, Ii−1

Orbit/Power Prediction

run Si−1+x
i−1

measure Ui, Ii

Synthesize schedule SiSi+x
i+1

StoKiBaM

p

b(t)
1−c

a(t)
c

I(t)

1− c c

b(t) a(t)

1.7 · 10−63

−320

−280

−240

−200

−160

−120

−80

−40

i := i+ 1

Figure 5.18: Receding-Horizon Scheduling Workflow.

124

5.3. Receding-Horizon Scheduling

estimate a new schedule S i+1+x
i+1 for orbits i +1 to i +1+ x is computed. If

there is a job inSi scheduled to run across the boundary of orbit i and i +1,
schedule Si+1 needs to take this into account, by basically finishing what
was started. Once the satellite ends the i -th orbit, the base station uplinks
the computed scheduleS i+1+x

i+1 and receivesUi , Ii .

This method thus creates overlapping schedules for the next x +1 orbits each.
Each time the satellite passes the ground station, measured data is used to more ac-
curately estimate the battery SoCs. Hence, it can be expected that SoC estimation
and actually measured voltage data do not diverge in the long run. As before, each
schedule is (apart from the logged data) based on the orbit predictions delivered
by the GomSpace engineers and needs to pass the additional validation step using
the stochastic KiBaM, just as before. This workflow is depicted in Figure 5.18.

Aperiodic Receding-Horizon Scheduling

In reality, the satellite is unable to contact the base station every orbit, thus x must
be chosen large enough to guarantee operation, even if the link to the base station
does not materialize for some time. So, let us assume that GOMX–3 is unable to
connect to the base station for n orbits, where n < x , but establishes connection
at the end of its (i +n)-th orbit. In this case, it will behave as indicated byS i+n+1

i ,
and downlinkU i+n

i as well as I i+n
i upon contact with the base station. The base

station, in the meantime, propagates SoCi through the next n orbits using the
predicted schedule loads, and uses this as initial SoC to compute the next schedule
from. This schedule then covers the next x orbits starting at orbit i +n +1.

Projecting KiBaM Onto The Linear Battery Model

In order to make use of the estimated KiBaM SoC for schedule synthesis, we have
to convert it to a SoC of a linear battery model. It is not clear how to design such a
mapping in a safe way. Nevertheless, several ideas come to mind.

Let [a ; b] be a KiBaM SoC with capacity limits [a ; b] with given c ∈]0, 1[and
p ∈R>0. We convert the SoC to a one-dimensional SoC of a linear model with ca-
pacity limit cap := a+b by (i) a

c +
b

1−c or (ii) a/a ·cap, meaning by either aggregating
both dimensions of the KiBaM SoC in an appropriate way, or by considering only
the scaled up level of the available charge. In both suggestions, the linear model
is neither an over- nor under-approximation of the KiBaM.

Using GOMX–3 Data

In Section 3.7 we have already discussed the KiBaM filter and conducted a short
proof of concept using synthesized, noisy available charge data. We now consider
real measurements, and show that the accuracy and robustness against wrong
initialization transfer well from the synthesized ideal setting. The main differences
in this setting are twofold; (i) The abstract quantity of battery load is instantiated
by actually measured current values, simply by identification, and (ii) the available
charge of the battery can not be measured, and hence we need to rely on other
measurable quantities of batteries. One such quantity is the internal voltage. In
this regard, there is however no known relation between battery voltage and its
state of charge. However, in related work SoC prediction schemes use learning

125

5. Applications

techniques to fit a relation between a one-dimensional battery SoC and measured
voltage data [15].

In this section, we argue that measured voltage data and the available charge
state of KiBaM are roughly proportional if considered over time. If the voltage
samples exhibit a near nominal level over an extended period of time, it is highly
unlikely that the SoC of a battery is near depletion. To the contrary, it is likely that
the SoC (or at least its available charge part) is near its capacity limit as well. The
voltage is however a more volatile quantity than any of the two KiBaM quantities
we are interested in estimating. This becomes apparent when the sign of the load
we put on a battery switches from positive to negative or vice-versa, i.e. from charg-
ing to discharging or the other way around. In these cases heavy voltage drops
or peaks arise, that are presumably rooted in internal battery resistance phenom-
ena [19]. By and large, however, the voltage recovers fast after experiencing such
a drop/jump and follows a more regular trace. Apart from such short transient
effects and apart from jitter, a time series of voltage measurements appears to
contain noisy information about the KiBaMs available charge over time, a setting
that suits a Kalman filter well, as we have seen already in Section 3.7.

Thus, in line with the receding-horizon scheduling approach, we intend to
study voltage measurements obtained in-orbit as a basis for estimating the KiBaM
available charge, and in transition the entire KiBaM SoC. GOMX–3 flies a bat-
tery pack with a nominal capacity of cap = 149 760 000 mJ and nominal voltage
of 16 400 mV. As underlying dynamical model we chose a KiBaM with c = 0.2,
p= 0.0001 and a time unit∆t = 1, hence a = 0.2cap. We assume that the voltage
measurements are mixed with white noise of standard deviation σ = 200 (since
the maximal measured voltage was just below 16 600 mV), so Rk := diag

�

σ2, 0
�

. We
map state into the measurement space using Hk := diag(16 600/a , 0). The map-
ping of control variables (the measured current) onto the model state is given by
the control matrix Bk := diag(∆t , 0) = diag(1, 0). The voltage and current data mea-
sured by GOMX–3 are not spaced equidistantly in the time domain, yet are placed
at multiples of unit time ∆t = 1. If there is no measurement available for a time
point t we simply adopt the measured value from the previous time step.

In Figure 5.19 we depict the performance of a KiBaM filter estimating the SoC
from measured voltage and current data compared to simple Coulomb Counting.
We observe that a KiBaM Filter can indeed correct a pessimistic SoC initialization
over the course of time, if the measured data suggest so. At the end of the exper-
iment, the final SoCs produced via KiBaM filtering are 11 % higher than the one
obtained by Coulomb Counting.

Schedule Improvements

Of course, it is most interesting to see to which extent the better estimates lead to
schedules that exploit the satellites resources in a more cost-effective manner.

Unfortunately, by the time this scheduling paradigm was developed no satel-
lite was in orbit on which we could perform such a study. However, we can rudi-
mentarily demonstrate the potential of the improved scheduling approach on
recorded GOMX–3 data, i.e. the data of the March 20 experiment. We can only
use the data early in this experiment, because once we decide to deviate from the
present schedule (to harvest the better estimates for improved cost-effectivity),
we no longer have matching measurement data in the logs. This is unfortunate,

126

5.3. Receding-Horizon Scheduling

07:00 13:00 19:00 01:00 07:00 13:00 19:00 01:00 07:00 13:00 19:00
0.85

0.90

0.95

1.00

0

Voltage (Measured)
Load (Measured)

Available (Coulomb Counting)
Bound (Coulomb Counting)

Available (Estimate)
Bound (Estimate)

07:00 13:00 19:00 01:00 07:00 13:00 19:00 01:00 07:00 13:00 19:00
0.85

0.90

0.95

1.00

0

Voltage (Measured)
Load (Measured)

Available (Coulomb Counting)
Bound (Coulomb Counting)

Available (Estimate)
Bound (Estimate)

Figure 5.19: Given the current and voltage measurements of the March 20 experiment,
we compare the SoC estimates produced by Coulomb Counting and a KiBaM filter. For
both methods, we assume an initial SoC of 0.9[a ; b], yet the voltage suggests a nearly
fully charged battery. Left: We assume an initial state variance of P0 := diag(a , b). Right:
We assume an initial state variance of P0 := 100 ·diag(a , b).

because the early data will be affected overproportionally by the transient phase
in which the filter calibrates itself to the circumstances.

Nevertheless, assume that GOMX–3 behaves just as the schedule (in Fig-
ure 5.16) indicates until it executes the 5-th UHF job (the second-to-last of the first
batch, where SoC-voltage drift has already set in) at around 21.03.2016 05:48 UTC.
We assume that the satellite succeeded in downlinking all the voltage and current
logs to the base station. The KiBaM filter (P0 := 10 ·diag(a , b)) returns a KiBaM SoC
of [0.9762; 0.9698]·[a ; b]. The SoC variablesocof the PTA network exhibits a SoC of
119 783 040 mJ at the same time, which is a SoC level of just below 75 %. After pro-
jecting the KiBaM SoC onto one dimension via one of the two methods sketched
in Section 5.3, we end up with a SoC of 97.11 % and 97.62 % respectively, either of
which constitutes a significant improvement. Propagating the KiBaM SoC using
the predicted loads of the schedule until after the X-Band job that is scheduled
simultaneously to the Aalborg connection, yields a SoC of [0.9588;0.9724] · [a ; b]
with projections to a linear model SoC of 96.97 % and 95.88 %, either of which lead
to the same subsequent schedule.

Figure 5.20 visualizes how the schedule after this critical UHF job improves
thanks to an updated subschedule that is computed on the basis of this new SoC
estimate. We assume that in the 6-th UHF job GOMX–3 was able to receive the
updated schedule and in the meantime it continued operation as dictated by the
original schedule. Indeed, this single update makes it possible to increase the
overall number of scheduled X-Bands jobs from 5 to 7 and of L-Band jobs from 3
to 4.

Related Work

Variants of scheduling problems for earth-observing satellites have been consid-
ered in the scientific literature, with a focus on maximizing the operational ef-
ficiency of an orbiting satellite. The problem was tackled by partial enumera-
tion methods [16], dynamic programming (with heuristics and bounding proce-
dures) [14], conversions into constraint satisfaction problems (enabling greedy
search to find good solutions or Branch-and-Bound techniques to find optimal
solutions) [1], and knapsack formalizations of the problem set (with tabu search

127

5. Applications

0.6

0.7

0.8

0.9

1.0

0

07:00 13:00 19:00 01:00 07:00 13:00 19:00 01:00 07:00 13:00 19:00
UHF

X
L1

L2

Voltage (Measured)
Load (Measured)
Available (Estimate)

Bound (Estimate)
Available (KiBaM)
Bound (KiBaM)

Load (Orig. Sched.)
SoC (Orig. Sched.)
SoC (Pred.)

Load (Pred.)
Not Scheduled
Scheduled

Figure 5.20: A schedule showing the potential of the KiBaM filter SoC estimation
method. Left of the dotted vertical lines, the KiBaM filter (c = 0.02, p = 0.0001,
[a0; b0] = 0.9 · [a ; b]) is applied on the measured data to estimate the SoC up until the
5-th Aalborg connection, with initial state variance of P0 := 10 ·diag(a , b). Between the
dotted vertical lines, the KiBaM and the predicted loads of the original schedule are
used to propagate the estimated SoC. All the computations needed take place in this
period. The effect of the updated schedule is shown right of the dotted vertical lines.
We use the propagated SoC as initial SoC (95.88 %) of our predictions using a linear
battery model. The corresponding part of the original SoC trace from Figure 5.16 is
presented as a blue dotted plot to enable visual comparison. The updated schedule
lets GOMX–3 carry out two more X-Band jobs and one more L-Band job.

algorithms as means of finding feasible schedules) [41]. These works solely focus
on maximizing payload throughput and do not consider dynamic power-relevant
constraints.

A constraint-based technique using heuristic search with constraint propaga-
tion also focussing on renewable resources like battery power or memory has been
studied as well [30], however with a linear energy storage model.

Recently, a statistical model checking approach to battery-aware scheduling
has been proposed [42] that uses UPPAAL SMC and a hybrid automaton model to
capture kinetic battery dynamics, together with a synthetic example inspired by
the satellite domain.

The scheduling workflow exercised in this work is very close in spirit to the ap-
proach developed in [28], where a simulation-based analysis of computed sched-
ules is used to validate or refute cost-optimal schedules, under a model with
stochastic breakdowns and repairs of production machinery. Apart from the differ-
ent application domain, the main conceptual distinction is that the validation step
in our work is not based on simulation, but on the calculation of proper bounds
of the quantities of interest.

128

5.3. Receding-Horizon Scheduling

Discussion And Conclusion

This section has presented a battery-aware scheduling approach for low-earth
orbiting nanosatellites. The heterogeneous timing aspects and the experimental
nature of this application domain pose great challenges, making it impossible to
use traditional scheduling approaches for periodic tasks. Our approach harvests
work on schedulability analysis with (priced) timed automata. It is distinguished
by the following features: (i) The TA modelling approach is very flexible, adaptive
to changing requirements, and particularly well-suited for discussion with space
engineers, since it is easy to grasp. (ii) A dynamic approach to the use of cost
decorations and constraints allows for a split scheduling approach optimizing
over intervals, at the (acceptable) price of potential sub-optimality of the resulting
overall schedules. (iii) A linear battery model is employed while scheduling, but
prior to shipping, all computed schedules are subjected to a quantitative validation
on the vastly more accurate Stochastic KiBaM, and possibly rejected.

The GOMX–3 in-orbit experiments have demonstrated a great fit between the
technology developed and the needs of the LEO satellite sector. It became appar-
ent that relative to a manual scheduling approach as otherwise employed by Gom-
Space, the presented method synthesizes better quality schedules with respect to
(i) number of jobs performed, (ii) avoidance of planning mistakes, (iii) scheduling
workload, and (iv) battery depletion risk provided. At the same time, the availabil-
ity of scheduling tool support flexibilizes the satellite design process considerably,
since it allows the GomSpace engineers to obtain answers to what-if questions,
in combination with their in-house POWERSIM tool. This helps shortening de-
velopment times and thus time-to-orbit. We have furthermore embedded this
contribution into a perpetuated scheduling workflow that harvests in-orbit mea-
surement to adjust and correct the KiBaM model in such a way that schedules are
continuously based on the most recent and most precise information at hand.

Future work in this area is partly driven by the application domain. State of
the art technology and very rapid development cycles will continue to be a crucial
part of the nanosatellite market. They are the roots of a steady stream of novel
scientific challenges. In fact, GomSpace has launched a 2 spacecraft constellation
(GOMX–4 A and B) on February 1st 2018 and is actively pursuing several projects
with much larger constellations. Deploying constellations of a large number of
satellites (2 to 1000) brings a new level of complexity to the game, which in turn
asks for a higher level of automation to be used than has previously been the case
in the space industry. The technology investigated here is beneficial in terms of
optimization and planning of satellite operations, so as to allow for more efficient
utilization of spacecraft flight time. A spacecraft operator is faced with a highly
complex task when having to plan and command in-orbit operations constantly
balancing power and data budgets. For larger constellations tools for optimization,
automation and validation are not only a benefit, but likely a necessity for proper
operations.

The proposed battery-aware scheduling approaches can be improved in sev-
eral dimensions, the first being to fully implement and integrate the receding-
horizon approach into the present tool. Another venture consists of extending
the single satellite scheduling approach to conjoined scheduling of satellite con-
stellations. Alternative schedule synthesis formalisms come to mind for potential
exploration, preferably formalisms that handle several cost variables at once, so
as to optimize for more complex objective functions. Among the tools of interest

129

5. Applications

are (i) the MODEST toolset which supports the computation of reward-optimal
time-bounded properties of Markov Decision Processes [13], (ii) newer versions
of the UPPAAL toolset performing Pareto optimal reachability analyses on simple
priced timed automata [43], or (iii) OPTIMATHSAT [36], an efficient and highly flex-
ible OMT (Optimization Modulo Theories) solver from an emerging field currently
getting a lot of attention. A major challenge is the direct integration of non-linear
continuous dynamics into the scheduling step itself, in order to synthesize plans
with respect to the kinetic battery model.

Most of these problems have been solved and have been integrated in an im-
proved version of the scheduling workflow, that is now being used in the GOMX–4
mission [38]. Here, the scheduling synthesis step is based on Dynamic Program-
ming, which allows for direct incorporation of KiBaM dynamics into the synthesis
step.

Lifting state of the art hybrid systems tools, such as HYPRO [35]or SPACEEX [10]
from verification to synthesis could be another way to achieve these goals. How-
ever, even efficient verification of linear hybrid systems is known to be a difficult
problem set.

In addition, investigating and modelling temperature dependent performance
properties of batteries as well as battery wear grows more and more important
with longer mission times and should therefore not be neglected.

130

CHAPTER

6

Conclusion

6.1 Achievements

In this work we focussed on the kinetic battery model (KiBaM), an intuitive energy
storage model that is particularly well suited to model the state of charge evolution
of lithium-ion batteries along a sequence of tasks. It essentially splits the charge
of a battery in an immediately available part, and a chemically bound part, that
can be converted into each other over time, via a diffusion process.

The model was extended with the concept of depletion using a safe threshold
as follows: If the available drops below the safe threshold, the device which is
powered by the battery shuts down.

Another extension is that of capacity limits, a concept that is asymmetric to
that of depletion, simply because a saturated battery continues to power a device.
If the battery is saturated, its dynamics change instantly to a simpler ODE system,
namely one where the available charge stays constant, which again can be solved
in a straight-forward way. Several scenarios need to be considered if the load
changes and the battery is saturated, i.e. it may leave its saturated state, it may stay
saturated, or it may transiently become unsaturated, if the diffusion overpowers
the load.

It is crucial to find the exact time point of saturation given a task, so as to
know when to switch battery dynamics. Unfortunately, finding this time point
involves solving the product logarithm problem, a problem whose solution can
only be brought into closed form using the non-elementary Lambert-W function.
Thus, the exact saturation time point is transcendental, and can therefore only
be approximated. We provided such an approximation algorithm in the form of a
bisection method. This algorithm enables to under- as well as over-approximate
the actual battery dynamics in a safe way.

A second major and orthogonal extension to the KiBaM is that of uncertainties,
firstly in the initial battery state, as well as in the load that is put on the battery. To
this end, we introduced state of charge distributions, that are inherently discon-
tinuous exactly at the depletion and saturation thresholds if capacity limits are
considered as well. We derived analytical expressions to approximate the succes-
sor distribution of an initial SoC distribution after powering a possibly noisy task,
mostly using the transformation law of random variables. These expressions are

6. Conclusion

of limited practical use, since integrals are stacked with every further task, making
the expressions computationally inefficient.

In a further effort, we extended the load model from simple sequences of
(noisy) tasks to Markovian load processes, called Markov Task Processes. These
deterministic time processes add probabilistic jumps, thus enabling several noisy
task successors with a certain probability, instead of only one as in sequences.
We formally and rigorously described how to capture the entire behavior of load
process up to a certain time horizon, and its effect on an initial Soc distribution.

In a short intermezzo, we discussed how to consolidate the abstract quantities
of the KiBaM, i.e. SoC and load, with observable, measurable data like voltage and
current. To this end, we discretized the continuous KiBaM ODEs and instantiated
a Kalman filter with the resulting discrete difference equations, simply by identifi-
cation. We conducted a short proof of concept study using synthetically generated
data, and concluded that the resulting KiBaM filter is indeed able to satisfactorily
estimate the internal state of charge of a KiBaM from noisy measurements, even
if the initial SoC estimate is severely off.

Next, we tackled the computational inefficiency of the analytical way of track-
ing SoC distributions along sequences of tasks. In a first approach we followed
a static discretization (SD) scheme, in which the entire safe SoC space as well as
the tasks continuously distributed loads were gridded in a safe way, resulting in
discretized SoC distributions and discretized (and possibly truncated) noisy tasks.
We derived how to compute the successors of such a discretized SoC distribution
given a discrete noisy task.

In an attempt to improve the efficiency of this scheme, we made it adaptive
(AD), i.e. we focus the area of discretization only on the immediate rectangular
neighborhood of the support of the SoC distribution, so as to eliminate a large
number of empty cells in the discretization grid. These neighborhoods, called
bounding boxes, were key to the efficiency of the successor computation of a SoC
distribution: First the successor bounding box needed to be determined such that
it stays as small as possible. To this end, the so called saturation and depletion
boundaries were crucial, since they provided the exact points where the bounding
box must potentially be split, because of the discontinuous nature of SoC distribu-
tions. Once the successor box was determined, a grid was put inside it, to finally
proceed with the usual successor computation.

To gauge the efficiency gain, we ran both SD and AD on randomly generated
task sequences with varying grid sizes until they both eventually reached the des-
ignated precision level, then compared runtimes and grid sizes. Unsurprisingly,
the experiments almost unanimously saw AD as the clear winner.

In an attempt to move away from discretizing the SoC space, we developed
the percentile propagation (PP) scheme. Its essence is rooted in the fact that, if
a certain SoC depletes (survives) under a given task sequence, then every smaller
(greater) SoC also depletes (survives), due to the monotonicity properties of the
KiBaM. If we additionally know that the SoC under investigation is larger than q
percent of the entire support of the initial SoC distribution, the depletion risk is
at least q , should the SoC indeed deplete. Dually, if it survives we deduce that
the depletion risk is at most q . In order to these so-called SoC percentiles to exist
and be unique, we place a few mild restrictions on the family of viable initial SoC
distributions: the less than relation must be a total order on the support of the
initial distribution. Integrating the above step in a bisection-style scheme, we
can eventually deduce an arbitrarily small interval around the true depletion risk.

132

6.1. Achievements

We lifted this scheme to discretized noisy task sequences, by generating every
possible task sequence induced by the noisy task sequence, and running the above
procedure, then combining the results as a weighted sum.

In order to compare the algorithms efficiency we ran it against AD, again on
randomly generated task sequences, until they reached a similar precision. We
found that the efficiency of PP massively depends on the number of possible task
sequences induced by the given noisy task sequence, and much less on the length
of the task sequence, as AD does.

In the second part of this thesis, we focussed on the practical application as-
pects. We used the SD algorithm to analyse the energy budget of GOMX–1, a 2-unit
CubeSat built by GomSpace, a Danish satellite operator, up to a time horizon of
a year of operation. The findings confirmed what GomSpace already suspected,
namely that the onboard batteries were highly over-dimensioned. Our analysis
quantified this over-dimensioning with a factor of 8, meaning that the nanosatel-
lite could have done its work with only one quarter of its actual battery capacity,
thereby establishing that our analysis can be a valuable tool during the design
phase of a satellite mission.

In a second collaboration with GomSpace, we bridged the gap from analysis
to that of battery-aware schedule synthesis of GOMX–3, a 3-unit CubeSat. To this
end, we modelled the power-relevant characteristics and modes of operation of
GOMX–3 into a network of priced timed automata (PTA), so as to optimally choose
jobs to be executed by the satellite, without depleting its batteries. Unfortunately,
PTA are not expressive enough to capture the non-linear KiBaM, thus the simple
linear battery model was embedded into an automaton instead. This implied that
every schedule computed by UPPAAL CORA, a widely used modelchecker for PTA,
is potentially unsafe. In order to filter out unsafe schedules, a synthesis-validation
loop was introduced: Every synthesized schedule must by validated or refuted
using the extended KiBaM. In the latter case, the schedule is excluded from the
synthesis step, and a new schedule is computed. Once a schedule induces a low
enough depletion risk, it can safely be uplinked to GOMX–3, where it is executed.
In total, three test runs of up to 72 hours were conducted in conjunction with
GomSpace. GOMX–3’s telemetry data recorded during the test runs show that the
scheduling indeed works well, yet a slight drift between reality and the scheduling
pipeline was exposed.

In order to counter this drift, we extended the scheduling workflow to a
receding-horizon approach. The outline is as follows: With each pass over the
ground station a satellite receives a new schedule and downlinks its collected
telemetry data, which in turn can be used in conjunction with the KiBaM filter, to
estimate the actual SoC of the battery. A new schedule, starting from that moment
onwards is then computed using the estimated SoC, thereby eliminating, or at
least limiting any drift. The satellite will receive the new schedule with its next
passing over the ground station, where it again downlinks its collected telemetry
data, and so on. Unfortunately GOMX–3 had already deorbited by the time the
receding-horizon scheduling pipeline was ready to be used. However, we at least
provided a rudimentary proof of concept using old GOMX–3 telemetry data, which
showcased the potential of this new approach.

133

6. Conclusion

6.2 Outlook

This work has established that formal methods in conjunction with formal enegry
storage models can be of great value during the design phase as well as during in-
flight operation of a nanosatellite mission. However this is only a stepping stone
to where the actual trend of the industry points us to, namely large constellations
of inter-communicating CubeSats. In fact, the receding-horizon battery-aware
scheduling pipeline has already been improved and adopted, and is being actively
used with the GOMX–4 mission [38], a two satellite train constellation. Here, the
synthesis step is implemented as a dedicated dynamic program that is expressive
enough to capture the non-linear KiBaM, and thus doesn’t rely on a synthesis-
validation loop, thereby showcasing that the methods presented in this thesis can
be adopted for scheduling of small-size satellite constellations. We however ob-
serve a tendency towards larger constellations of conceivably thousands of satel-
lites, which exposes a considerable scalability issue with the schemes presented
in this work. A prime example of this is the Starlink project operated by SpaceX,
a satellite network consisting of several thousand satellites designed to provide
worldwide internet access [37]. Dedicated research has been undertaken, concern-
ing a hypothetical ten satellite train constellation named Ulloriaq (the icelandic
word for Star) derived from the GOMX–4 mission [9]. In this scenario, a linear pro-
gramming scheme was used to synthesize battery-aware contact plans for such
constellations. Further research in making battery-aware planning schemes scale
to larger, more complex constellations is conceivable and ultimately necessary
since manual control of large networks is becoming increasingly impractical.

The space domain is not the only sphere of interest for the methods presented
in this thesis, simply because batteries have become omni-present. In the context
of a politically backed emerging market for electric vehicles, energy storage models
and dedicated routing, planning or analysis algorithms are vital to further increase
the efficiency of battery-powered mobility. The challenges in this domain are,
perhaps surprisingly, more numerous and a lot harder compared to the space
domain, since uncertainty about energy usage increases greatly. In contrast to
the almost complete determinacy of a satellite’s orbit, and therefore its energy
budget, factors like traffic density, cloudiness, driving style or faulty map data
potentially massively increase the complexity of any battery-aware scheme on
Earth. Adaptations of battery-aware scheduling schemes to problems of the e-
mobility domain seem very worthwhile.

Another domain of interest is the Internet of Things, potentially large networks
of sensor- and software-assisted physical objects inter-connected via the internet,
many of which are battery powered. A better understanding and more accurate
modelling of these objects’ energy behavior and better, battery-aware communi-
cation protocols will undoubtedly have a positive impact on the efficiency of such
networks. This is especially relevant in a context where more and more of the
internet’s connectivity stems from battery-powered satellite networks.

134

Bibliography

[1] JC Agn and E Bensana. “Exact and approximate methods for the daily man-
agement of an earth observation satellite”. In: (1995).

[2] Rajeev Alur and David L. Dill. “A Theory of Timed Automata”. In: Theoretical
Computer Science 126 (1994), pp. 183–235.

[3] Gerd Behrmann, Kim G Larsen, and Jacob I Rasmussen. “Optimal scheduling
using priced timed automata”. In: ACM SIGMETRICS Performance Evalua-
tion Review 32.4 (2005), pp. 34–40.

[4] Gerd Behrmann et al. “Minimum-Cost Reachability for Priced Timed Au-
tomata”. In: Hybrid Systems: Computation and Control, 4th International
Workshop, HSCC 2001, Rome, Italy, March 28-30, 2001, Proceedings. Ed.
by Maria Domenica Di Benedetto and Alberto L. Sangiovanni-Vincentelli.
Vol. 2034. Lecture Notes in Computer Science. Springer, 2001, pp. 147–161.
DOI:10.1007/3-540-45351-2_15. URL:https://doi.org/10.1007/
3-540-45351-2_15.

[5] J. Cao, N. Schofield, and A. Emadi. “Battery balancing methods: A compre-
hensive review”. In: Vehicle Power and Propulsion Conference, 2008. VPPC
’08. IEEE. Sept. 2008, pp. 1–6. DOI: 10.1109/VPPC.2008.4677669.

[6] UPPAAL CORA. URL: https://uppaal.org/features/#cora (visited
on 09/02/2021).

[7] Robert M Corless et al. “On the LambertW function”. In: Advances in Com-
putational mathematics 5.1 (1996), pp. 329–359.

[8] Fortran programs for the simulation of electrochemical systems. http://
www.cchem.berkeley.edu/jsngrp/fortran.html. May 2020. URL:
http://www.cchem.berkeley.edu/jsngrp/fortran.html.

[9] Juan A. Fraire et al. “Battery-Aware Contact Plan Design for LEO Satellite Con-
stellations: The Ulloriaq Case Study”. In: TGCN 4.1 (2020), pp. 236–245. DOI:
10.1109/TGCN.2019.2954166. URL: https://doi.org/10.1109/
TGCN.2019.2954166.

https://doi.org/10.1007/3-540-45351-2_15
https://doi.org/10.1007/3-540-45351-2_15
https://doi.org/10.1007/3-540-45351-2_15
https://doi.org/10.1109/VPPC.2008.4677669
https://uppaal.org/features/#cora
http://www.cchem.berkeley.edu/jsngrp/fortran.html
http://www.cchem.berkeley.edu/jsngrp/fortran.html
http://www.cchem.berkeley.edu/jsngrp/fortran.html
https://doi.org/10.1109/TGCN.2019.2954166
https://doi.org/10.1109/TGCN.2019.2954166
https://doi.org/10.1109/TGCN.2019.2954166

Bibliography

[10] Goran Frehse et al. “SpaceEx: Scalable Verification of Hybrid Systems”. In:
Computer Aided Verification - 23rd International Conference, CAV 2011,
Snowbird, UT, USA, July 14-20, 2011. Proceedings. Ed. by Ganesh Gopalakr-
ishnan and Shaz Qadeer. Vol. 6806. Lecture Notes in Computer Science.
Springer, 2011, pp. 379–395. DOI: 10.1007/978-3-642-22110-1_30.
URL: https://doi.org/10.1007/978-3-642-22110-1_30.

[11] Pascal Gilles. “Private Communication”. 2014.

[12] GomSpace. GomSpace GOMX-1. https://gomspace.com/gomx- 1.
aspx. May 2020. URL: https://gomspace.com/gomx-1.aspx.

[13] Ernst Moritz Hahn and Arnd Hartmanns. “A Comparison of Time- and
Reward-Bounded Probabilistic Model Checking Techniques”. In: Depend-
able Software Engineering: Theories, Tools, and Applications - Second Inter-
national Symposium, SETTA 2016, Beijing, China, November 9-11, 2016, Pro-
ceedings. Ed. by Martin Fränzle, Deepak Kapur, and Naijun Zhan. Vol. 9984.
Lecture Notes in Computer Science. 2016, pp. 85–100. DOI: 10.1007/978-
3-319-47677-3_6. URL: https://doi.org/10.1007/978-3-319-
47677-3_6.

[14] Nicholas G Hall and Michael J Magazine. “Maximizing the value of a space
mission”. In: European journal of operational research 78.2 (1994), pp. 224–
241.

[15] Terry Hansen and Chia-Jiu Wang. “Support vector based battery state of
charge estimator”. In: Journal of Power Sources 141.2 (2005), pp. 351–358.

[16] SA Harrison, ME Price, and MS Philpott. “Task scheduling for satellite based
imagery”. In: Proceedings of the Eighteenth Workshop of the UK Planning
and Scheduling Special Interest Group. Vol. 78. Uni2 versity of Sanford, UK.
1999, pp. 64–78.

[17] Hongwen He et al. “State-of-charge estimation of the lithium-ion battery
using an adaptive extended Kalman filter based on an improved Thevenin
model”. In: IEEE Transactions on Vehicular Technology 60.4 (2011), pp. 1461–
1469.

[18] Chao Hu, Byeng D Youn, and Jaesik Chung. “A multiscale framework with
extended Kalman filter for lithium-ion battery SOC and capacity estimation”.
In: Applied Energy 92 (2012), pp. 694–704.

[19] Texas Instruments Incorporated. TMS570 Active Cell-Balancing Battery-
Management Design Guide. 2016.

[20] Marijn R. Jongerden and Boudewijn R. Haverkort. “Which battery model to
use?” In: IET Software 3.6 (2009), pp. 445–457. DOI: 10.1049/iet-sen.
2009.0001. URL: http://dx.doi.org/10.1049/iet-sen.2009.
0001.

[21] Marijn Remco Jongerden. “Model-based energy analysis of battery powered
systems”. PhD thesis. Enschede, Dec. 2010. URL: http://doc.utwente.
nl/75079/.

[22] Rudolph Emil Kalman et al. “A new approach to linear filtering and predic-
tion problems”. In: Journal of basic Engineering 82.1 (1960), pp. 35–45.

136

https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-642-22110-1_30
https://gomspace.com/gomx-1.aspx
https://gomspace.com/gomx-1.aspx
https://gomspace.com/gomx-1.aspx
https://doi.org/10.1007/978-3-319-47677-3_6
https://doi.org/10.1007/978-3-319-47677-3_6
https://doi.org/10.1007/978-3-319-47677-3_6
https://doi.org/10.1007/978-3-319-47677-3_6
https://doi.org/10.1049/iet-sen.2009.0001
https://doi.org/10.1049/iet-sen.2009.0001
http://dx.doi.org/10.1049/iet-sen.2009.0001
http://dx.doi.org/10.1049/iet-sen.2009.0001
http://doc.utwente.nl/75079/
http://doc.utwente.nl/75079/

Bibliography

[23] Kim Larsen et al. “As Cheap as Possible: Effcient Cost-Optimal Reachability
for Priced Timed Automata”. In: Computer Aided Verification. Springer. 2001,
pp. 493–505.

[24] Kim G Larsen, Paul Pettersson, and Wang Yi. “UPPAAL in a nutshell”. In:
International Journal on Software Tools for Technology Transfer (STTT) 1.1
(1997), pp. 134–152.

[25] Edward A Lee and David G Messerschmitt. “Synchronous data flow”. In:
Proceedings of the IEEE 75.9 (1987), pp. 1235–1245.

[26] Jaemoon Lee, Oanyong Nam, and BH Cho. “Li-ion battery SOC estimation
method based on the reduced order extended Kalman filtering”. In: Journal
of Power Sources 174.1 (2007), pp. 9–15.

[27] Bor Yann Liaw et al. “Correlation of Arrhenius behaviors in power and capac-
ity fades with cell impedance and heat generation in cylindrical lithium-ion
cells”. In: Journal of power sources 119 (2003), pp. 874–886.

[28] Angelika Mader et al. “Synthesis and stochastic assessment of cost-optimal
schedules”. In: International journal on software tools for technology transfer
12.5 (2010), pp. 305–318.

[29] James F. Manwell and Jon G. McGowan. “Lead acid battery storage model
for hybrid energy systems”. In: Solar Energy 50.5 (1993), pp. 399–405.

[30] Joseph C Pemberton and Flavius Galiber. “A constraint-based approach to
satellite scheduling”. In: DIMACS Series in Discrete Mathematics and Theo-
retical Computer Science 57 (2001), pp. 101–114.

[31] Sabine Piller, Marion Perrin, and Andreas Jossen. “Methods for state-of-
charge determination and their applications”. In: Journal of power sources
96.1 (2001), pp. 113–120.

[32] Gregory L Plett. “Kalman-filter SOC estimation for LiPB HEV cells”. In: Pro-
ceedings of the 19th International Battery, Hybrid and Fuel Cell Electric Vehi-
cle Symposium & Exhibition (EVS19). Busan, Korea. 2002, pp. 527–538.

[33] SENSATION Project (snapshot on the wayback machine). URL: https://
web.archive.org/web/20171211083415/http://sensation-
project.eu/ (visited on 12/11/2017).

[34] Robin A Sahner and Kishor S. Trivedi. “Performance and reliability analysis
using directed acyclic graphs”. In: IEEE Transactions on Software Engineer-
ing 13.10 (1987), pp. 1105–1114.

[35] Stefan Schupp et al. “HyPro: A C++ Library of State Set Representations
for Hybrid Systems Reachability Analysis”. In: NASA Formal Methods - 9th
International Symposium, NFM 2017, Moffett Field, CA, USA, May 16-18,
2017, Proceedings. Ed. by Clark Barrett, Misty Davies, and Temesghen Kah-
sai. Vol. 10227. Lecture Notes in Computer Science. 2017, pp. 288–294. DOI:
10.1007/978-3-319-57288-8_20. URL: https://doi.org/10.
1007/978-3-319-57288-8_20.

137

https://web.archive.org/web/20171211083415/http://sensation-project.eu/
https://web.archive.org/web/20171211083415/http://sensation-project.eu/
https://web.archive.org/web/20171211083415/http://sensation-project.eu/
https://doi.org/10.1007/978-3-319-57288-8_20
https://doi.org/10.1007/978-3-319-57288-8_20
https://doi.org/10.1007/978-3-319-57288-8_20

Bibliography

[36] Roberto Sebastiani and Patrick Trentin. “OptiMathSAT: A Tool for Optimiza-
tion Modulo Theories”. In: Computer Aided Verification - 27th International
Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings,
Part I. Ed. by Daniel Kroening and Corina S. Pasareanu. Vol. 9206. Lecture
Notes in Computer Science. Springer, 2015, pp. 447–454. DOI: 10.1007/
978-3-319-21690-4_27. URL: https://doi.org/10.1007/978-3-
319-21690-4_27.

[37] SpaceX. Starlink. URL: https : / / www . starlink . com (visited on
09/02/2021).

[38] Gregory Stock et al. “Managing Fleets of LEO Satellites: Nonlinear, Opti-
mal, Efficient, Scalable, Usable, and Robust”. In: IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 39.11 (2020), pp. 3762–3773. DOI: 10.1109/TCAD.
2020 . 3012751. URL: https : / / doi . org / 10 . 1109 / TCAD . 2020 .
3012751.

[39] Bart D Theelen et al. “A scenario-aware data flow model for combined long-
run average and worst-case performance analysis”. In: Formal Methods and
Models for Co-Design, 2006. MEMOCODE’06. Proceedings. Fourth ACM and
IEEE International Conference on. IEEE. 2006, pp. 185–194.

[40] BD Theelen et al. Scenario-aware dataflow. Tech. rep. Citeseer, 2008.

[41] Michel Vasquez and Jin-Kao Hao. “A “logic-constrained” knapsack formula-
tion and a tabu algorithm for the daily photograph scheduling of an earth ob-
servation satellite”. In: Computational Optimization and Applications 20.2
(2001), pp. 137–157.

[42] Erik Ramsgaard Wognsen, René Rydhof Hansen, and Kim Guldstrand Larsen.
“Battery-aware scheduling of mixed criticality systems”. In: Leveraging Ap-
plications of Formal Methods, Verification and Validation. Specialized Tech-
niques and Applications. Springer Berlin Heidelberg, 2014, pp. 208–222.

[43] Zhengkui Zhang et al. “Pareto Optimal Reachability Analysis for Simple
Priced Timed Automata”. In: Formal Methods and Software Engineering -
19th International Conference on Formal Engineering Methods, ICFEM 2017,
Xi’an, China, November 13-17, 2017, Proceedings. Ed. by Zhenhua Duan and
Luke Ong. Vol. 10610. Lecture Notes in Computer Science. Springer, 2017,
pp. 481–495. DOI: 10.1007/978-3-319-68690-5_29. URL: https:
//doi.org/10.1007/978-3-319-68690-5_29.

138

https://doi.org/10.1007/978-3-319-21690-4_27
https://doi.org/10.1007/978-3-319-21690-4_27
https://doi.org/10.1007/978-3-319-21690-4_27
https://doi.org/10.1007/978-3-319-21690-4_27
https://www.starlink.com
https://doi.org/10.1109/TCAD.2020.3012751
https://doi.org/10.1109/TCAD.2020.3012751
https://doi.org/10.1109/TCAD.2020.3012751
https://doi.org/10.1109/TCAD.2020.3012751
https://doi.org/10.1007/978-3-319-68690-5_29
https://doi.org/10.1007/978-3-319-68690-5_29
https://doi.org/10.1007/978-3-319-68690-5_29

	Contents
	Introduction
	Contribution
	Chapter Origins
	Outline

	Preliminaries
	Battery Models
	Kalman Filter
	(Priced) Timed Automata

	The Kinetic Battery Model
	The Kinetic Battery Model
	Depletion
	Capacity Limits
	Approximation Of Saturation Time Points
	Stochastic KiBaM
	Markov Task Processes
	KiBaM and measurements
	Proof of Concept
	Discussion

	Algorithms
	Discretization Algorithms
	Static Discretization
	Adaptive Discretization
	Algorithm
	Percentile propagation

	Applications
	Energy Budget Analysis Of GomX–1
	Battery-Aware Scheduling
	Receding-Horizon Scheduling

	Conclusion
	Achievements
	Outlook

	Bibliography

