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We know that there is no help for us but from one another, that
no hand will save us if we do not reach out our hand. And the
hand that you reach out is empty, as mine is. You have nothing.
You possess nothing. You own nothing. You are free. All you
have is what you are, and what you give.

The Dispossessed, Ursula K. Le Guin
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Abstract

Abstract. Point sets and sequences are fundamental geometric objects that arise in any
application that considers movement data, geometric shapes, and many more. A crucial
task on these objects is to measure their similarity. Therefore, this thesis presents results
on algorithms, complexity lower bounds, and algorithm engineering of the most important
point set and sequence similarity measures like the Fréchet distance, the Fréchet distance
under translation, and the Hausdorff distance under translation. As an extension to the
mere computation of similarity, also the approximate near neighbor problem for the
continuous Fréchet distance on time series is considered and matching upper and lower
bounds are shown.

Zusammenfassung. Punktmengen und Sequenzen sind fundamentale geometrische
Objekte, welche in vielen Anwendungen auftauchen, insbesondere in solchen die Bewe-
gungsdaten, geometrische Formen, und ähnliche Daten verarbeiten. Ein wichtiger Be-
standteil dieser Anwendungen ist die Berechnung der Ähnlichkeit von Objekten. Diese
Dissertation präsentiert Resultate, genauer gesagt Algorithmen, untere Komplexitäts-
schranken und Algorithm Engineering der wichtigsten Ähnlichkeitsmaße für Punktmen-
gen und Sequenzen, wie zum Beispiel Fréchetdistanz, Fréchetdistanz unter Translation
und Hausdorffdistanz unter Translation. Als eine Erweiterung der bloßen Berechnung
von Ähnlichkeit betrachten wir auch das Near Neighbor Problem für die kontinuierliche
Fréchetdistanz auf Zeitfolgen und zeigen obere und untere Schranken dafür.
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CHAPTER 1
Introduction

Computer science as a field aims to better understand the power and limitations of
computation but also enables new results in fields that crucially rely on computation.
While on first glance it seems that algorithmics in the form of algorithm design should
be the central area of research in this regard, progress very much relies on complexity
theory to understand the inherent hardness of certain problems, and an engineering
approach, to transfer the theoretical knowledge into practical knowledge that can then
be further exploited. In this spirit, I consider three central parts of algorithms research
in this thesis: algorithm design, complexity lower bounds, and algorithm engineering.
Algorithm design — also called upper bounds, from a complexity perspective — provides
us with knowledge and tools for performant computation, lower bounds help to gain
insight about the difficulty of problems, and algorithm engineering gives us the tools
to make theoretical results available to those who most require them in the first place.
While aesthetics of problems and their solutions by themselves are a great motivation for
research — probably even the most beautiful motivation — in my opinion, to provide
tools that can have wider impact on areas where performant computation is crucially
needed should be the main justification and driver behind computer science research.

1.1 A Powerful Combination

Imagine being approached by a scientist of another field with a new computational
problem whose resolution would significantly advance their field. Obviously, you do feel
very motivated to resolve this problem. The first natural approach to help your fellow
scientist is to do several iterations of theoretically designing algorithms that solve the
problem with a running time and memory consumption that gets closer and closer to the
desired performance. Now two things can happen:

(1) You might find an algorithm that matches or even exceeds the theoretically required
bounds and you can continue with practically evaluating this algorithm using
algorithm engineering.

(2) You are stuck and seemingly unable to find an algorithm with sufficiently good
performance.

Let us first focus on the second case. Lower bounds can provide a way out of this
situation by providing evidence that algorithms with the desired performance cannot
exist. However, unconditional lower bounds are often still not sufficiently developed to
make statements with the strength that we desire. Thus, reducing from seemingly hard
problems to our problem can at least give us the insight, that our problem is at least
as hard as another problem and thus we can bundle our hardness assumptions into a



Chapter 1. Introduction

few selected core problems that seem difficult to improve. Not only does this allow us
to find a (conditionally) negative answer to the existence of an algorithm with a certain
performance, it can actually also guide us towards better algorithms by understanding
difficult structures in the input that need to be considered by the algorithm.

Having arrived at a best possible algorithm like that, we can again — as in the first
case from above — turn to algorithm engineering to guide us towards a practically fast
solution. While algorithm design and fine-grained lower bounds are crucial components
in finding theoretically best algorithms, unfortunately, the obtained algorithms are not
necessarily the best ones in practice as we always work with simplified models in theory
to work on a reasonable abstraction level. Reasons for this disparity are that there is
structure in practical input, that worst-case instances might be highly artificial, that
there might be large hidden constants, caching effects, and many more. Thus, for finding
best practical algorithms, we need a different approach, namely algorithm engineering.
While this approach still strongly relies on theoretical results as source of inspiration
and for deep insights into the structure of the problem, other considerations like cache
alignment and adaptivity of the algorithm to the difficulty of the input instance also play
a crucial role.

1.2 Point Set and Point Sequence Similarity Measures

The main objects of study of this thesis are point sets and point sequences. In this thesis
point sets are always a finite subset of some finite-dimensional Rd. If we have points that
have a specific order (and with potential multiplicities), we call it a point sequence. In
this thesis we also use the term sequence to refer to point sequences as these are the
only sequences that we focus on in the technical parts. Sequences can either be seen
as a discrete set of points with a certain order, or as a continuous path through Rd by
connecting all neighboring points by line segments. We call the number of points that
define a sequence its complexity. One basic operation that one wants to perform on these
kinds of objects is to quantify how similar a pair is. More precisely, given two sets of points
or two sequences, we want to compute their distance with respect to some mathematical
measure. However, while for a pair of points there arguably is a most natural distance to
use — the Euclidean distance — for point sets and point sequences this is not the case.
Instead there is a multitude of distance measures that can all be suitable depending on
the specific requirements posed by the targeted application.

1.2.1 Motivation

Before we introduce the most important point set and sequence similarity measures, let
us first elaborate why such measures are of crucial importance. Point sets are among the
most fundamental discrete geometric objects arising in every scenario where we have a
collection of multi-dimensional objects without any additional structure. Examples where
point sets arise are collections of multi-dimensional measurements, simple descriptions
of geometric shapes (point clouds), data bases consisting of numeric entries, a collection
of geographic points of interest, and many more. In this sense, quantifying the similarity
between point sets enables us to determine the similarity of each of the above types of data.
More concretely, point set similarity measures are used for medical image analysis [92],

2
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audio steganalysis [126], synthetic aperture radar image matching [130], image search [114,
145], and many more.

While point sets do not have any additional structure inherent in their description,
sequences merely additionally give an order of the points and allow for multiplicities.
Sequences arise in many scenarios such as measurements that are taken in a certain
temporal order. Example of such processes are stock price development, handwritten
characters, audio recordings, GPS trajectories and movements in general including sports
analysis, and many more. More concretely, sequence similarity measures are crucial for
gaining insights into data in movement ecology [73], for map matching [35, 52, 61, 67,
163], signature verification [137, 164], analyzing movement patterns [50, 55], character
classification [45], and sports/player analysis [58, 78]. Hence, any research that works
towards a more performant computation of such measures or provides insights about
their nature can directly impact, and even crucially enable, a vast amount of research in
other fields.

1.2.2 Similarity Measures

In this section we give an overview of important point and sequence similarity measures.
Note that we only give intuitive definitions and refer to Chapter 2 for formal definitions.
Probably the most famous point set and sequence similarity measures are Hausdorff
distance, dynamic time warping (DTW), and Fréchet distance. The Hausdorff distance
is a point set similarity measure, while the other two measures are sequence similarity
measures. Furthermore, DTW minimizes a sum of distances, while the other two minimize
the maximal distance — therefore, they are also called bottleneck measures. More precisely,
the Hausdorff distance of two point sets is defined as the maximum distance of any point
to its closest neighbor in the other set. The Fréchet distance and DTW consider sequences
and, intuitively, minimize an objective function over all ways to monotonously traverse
two trajectories from start to end without skipping any part of the sequence. As these
measures minimize over all ways to traverse two sequences in the way described above,
we also call them traversal-based measures. As stated above, The difference between
the Fréchet distance and DTW is then that for the former, the objective function to be
minimized is the maximal distance (i.e., the bottleneck), while for the latter the objective
function to be minimized is the sum (or integral) of all distances during the traversal.

The Fréchet distance as well as DTW can each be further subdivided into a discrete
and a continuous version, ending up with four different measures: the discrete Fréchet
distance, continuous Fréchet distance (often only referred to as the Fréchet distance),
dynamic time warping, and continuous dynamic time warping (CDTW or also called the
average Fréchet distance). In the discrete versions, the traversals are defined such that
we jump from vertex to vertex, while in the continuous version we continuously traverse
the line segments of the sequence. As the Fréchet distance is a bottleneck measure, the
definition in the discrete as well as continuous setting is very natural: it simply evaluates
to the maximal distance that occurs during the traversal. However, this is not the case for
DTW. While evaluating the sum is straightforward, it is not clear what the best definition
for the integral is as one can take the path length in parameter space into account in
different ways. For a detailed discussion of the different possibilities, see Chapter 6 of [57].

3
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Another variation that can be introduced to all of the distance measures mentioned
above is to make them translation-invariant. The canonical way to achieve translational
invariance is by minimizing these measures over all translations of one of the objects.1

This notion enables a comparison that is merely based on the shape but not on the
position of the objects, which is desirable in many applications. Distance measures of this
variant are commonly called under translation, e.g., Fréchet distance under translation.
Translation-invariant measures that are relevant for this thesis are Hausdorff distance
under translation, Fréchet distance under translation, and dynamic time warping under
translation. While there is considerable literature for the first two, dynamic time warping
under translation has not been considered yet to the best of my knowledge. A possible
reason is that dynamic time warping under translation in Euclidean space contains
the geometric median problem as a special case for which there is no known exact
algorithm [29].

String similarity measures like edit distance and longest common subsequence were
also generalized to point sequences [68, 154], however, they tend to not perform as well
as the Fréchet distance and dynamic time warping on geometric data as noted in [150].
For an experimental comparison of sequence similarity measures see, e.g., [150] and [73].

1.2.3 Near Neighbor Searching

While computing the similarity between two objects is an important task on its own, it
also serves as an important building block in similarity search. A common problem in
this setting is nearest neighbor searching where we are given a set of objects P that we
preprocess into a data structure to subsequently query this data structure with an object
Q of the same type and the data structure should return the object in P that is closest
to Q under a prespecified distance measure. Often one does not only want to retrieve the
nearest neighbor but all neighbors that are in a certain distance. This problem is called
the (fixed radius) near neighbors problem and is usually formulated as follows: Given a
set of objects P and a distance δ, preprocess P into a data structure such that it allows
queries where an object Q is given and the data structure should return all objects in P
that are in distance at most δ from Q. Unfortunately, such data structures often have to
be approximate to allow for reasonably performant preprocessing and query times. This
leads us to the so called (fixed radius) approximate near neighbors problem which can
be described as follows: Given an input set P, a radius δ, and an approximation factor
c, we want to answer queries where a query object Q is given and we have to return all
objects in P that are in distance at most δ from Q, while we must not return any objects
that are in distance larger than cδ (note that for objects in the distance range (δ, cδ]
reporting as well as not reporting is acceptable). We drop the “fixed radius” part in the
remainder as we only consider near neighbors problems of this sort. Furthermore, the
above near neighbors problems can also be formulated as near neighbor problems, where
just a single object in P that has distance at most cδ to Q must be reported if any object
with distance at most δ exists. This is the version that we consider in this thesis and
we simply refer to it by ANN. Note that the different versions of near(est) neighbor(s)
searching are strongly related [24].

1As we only consider measures in spaces where only the relative position of the two objects that we
want to measure the distance of matters, it is insignificant if we translate the first or the second object.
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1.3 State of Research per Area

Let us sketch state of upper bounds, lower bounds, and algorithm engineering with respect
to point sets and sequences. Instead of giving a complete overview of the results here
for the respective distance measures, we draw a coarse picture to give a better general
idea. In Section 1.4 we then give some more details. We additionally briefly mention the
contributions of this thesis to the different areas, but defer the details of the contributions
to Sections 1.4 and 3.

1.3.1 Upper Bounds

Upper bounds by far constitute the largest body of research compared to lower bounds
and algorithm engineering when it comes to point and sequence similarity measures.
We now give an overview of upper bounds for the measures introduced above, focus-
ing on exact computation. Furthermore, we assume that the dimension is constant to
simplify the overview. For Fréchet distance, dynamic time warping, Hausdorff distance,
and Hausdorff distance under translation there are classic upper bounds. For the (dis-
crete and continuous) Fréchet distance and (discrete) dynamic time warping, there is
a dynamic programming approach on the parameter space that solves the problems in
(near-)quadratic time in the curve complexity [19, 34, 89, 153]. For the Hausdorff distance,
there is a classic near-linear time algorithm in the Euclidean plane [17]. Upper bounds
for Hausdorff distance under translation in the plane were also given roughly 30 years
ago [72, 113]. None of the problems that the above works solve had a polynomial time
improvement for the general case after their publication. Thus, to resolve this line of
research, lower bounds are necessary to show that no improvements are possible or to
give a hint at where improvements might still be possible.

For other measures like the discrete Fréchet distance under translation and continuous
dynamic time warping, the previously best (i.e., before the results in this thesis) upper
bounds were only recently found [33, 120]. For the continuous Fréchet distance under
translation the best known algorithms are from 2001 [22, 88]. For continuous dynamic
time warping no exact algorithm is known [35], but only approximation algorithms [36,
127]. Thus, both upper and lower bounds are still waiting to be discovered.

In the ANN setting there are results for almost all of the distance measures that we
introduced, see for example [85, 91, 93, 117, 125]. Let us focus on the Fréchet distance.
While there is a series of results for the discrete Fréchet distance [78, 86, 90, 93, 117,
135], the continuous Fréchet distance was waiting for its first result with running times
dependent on arc length until 2021 [85].

Contributions. Part I of this thesis is dedicated to upper bounds. There, we present
two upper bounds that were first published in [43] and [39]. In Chapter 5, we give an upper
bound for the discrete Fréchet distance under translation: a polynomial time improvement
over [33]. In Chapter 4, we give multiple upper bounds for the continuous Fréchet ANN
problem in one dimension, significantly expanding the results and techniques of [85].
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1.3.2 Lower Bounds

Before giving an overview of lower bounds for point and sequence similarity measures,
let us first consider lower bounds in general. While conditional lower bounds rely on
hardness assumptions and thereby are only true conditional on these assumptions being
true, unconditional lower bounds show fundamental running time or space barriers in
general or for specific models of computation. Naturally, unconditional lower bounds are
stronger in their statements as they do not rely on assumptions. However, this strength
has the downside of them being significantly harder to prove. In this sense, unconditional
lower bounds remain very low and for most problems we seem to be very far from proving
unconditional lower bounds that match their upper bounds. Actually, no techniques for
proving lower bounds beyond Θ(n log n) are known [37]. Widgerson summarizes the
current situation in [159] as follows:

Concluding, I view the mystery of the difficulty of proving (even the slightest
non-trivial) computational difficulty of natural problems to be one of the
greatest mysteries of contemporary mathematics.

However, turning a back on lower bounds in general due to their difficulty would leave
us completely in the dark regarding the tightness of upper bounds. While conditional lower
bounds do not show fundamental barriers, they can structure the complexity landscape
and by that at least reduce it to a small number of core problems that are difficult. More
precisely, these lower bounds are based on popular hypotheses in complexity theory and
intuitively state: “a significant improvement of the running time is only possible if there
is a breakthrough for another well-studied problem”. This is very similar to showing
NP -hardness to rule out polynomial time algorithms, assuming P ̸= NP , but in the
polynomial time regime. In particular, instead of uncertainty about the best possible
running time of many problems, we reduce them to a small set of core problems which
then capture the hardness. Only if a core problem can be solved faster, we can also obtain
better running times for the problems we reduced it to.

While the Strong Exponential Time Hypothesis (SETH) [115] is arguably the most
popular conjecture used to show lower bounds (potentially via Orthogonal Vectors [160]),
fine-grained complexity theory originated in computational geometry where the 3Sum
problem was first used to rule out subquadratic running times based on its conjectured
hardness [97]. Another popular hardness conjecture from fine-grained complexity theory —
which we do not use in this thesis — is based on the All Pairs Shortest Paths problem [141,
161].

For point set and sequence similarity measures, for a long time there were no lower
bounds that complemented the classical upper bounds. The first lower bounds were given
by Bringmann in [38] for the discrete and continuous Fréchet distance. This result was
then followed by lower bounds for dynamic time warping [2, 42]. All of these lower bounds
are based on SETH. I am not aware of any lower bounds for the translation-invariant
similarity measures that were published, apart from the works included in this thesis.

Contributions. Part II of this thesis is dedicated to lower bounds. There, we show
multiple lower bounds for the Hausdorff distance under translation, the Fréchet distance
under translation, and continuous Fréchet ANN in one dimension. A large part of these
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lower bounds are tight. These lower bounds were first presented in [49], [43], and [39].
All of the above lower bounds are based on SETH, except for one for Hausdorff distance
under translation that is based on 3Sum. More precisely, the lower bounds that are based
on SETH are all based on one of the k-OV Hypotheses, which are generalizations of the
Orthogonal Vectors Hypothesis.

1.3.3 Algorithm Engineering

For a great overview of algorithm engineering — its history and also its scope — see [146].
Algorithm engineering can be seen as a reaction on the growing gap between algorithmics
and practical applications. Already in the late 1980s this gap was recognized and first
efforts to close it were conducted. In the late 1990s and early 2000s, the workshops
and conferences which are now the main venues for publication in this area came into
existence. Since then algorithm engineering had significant contributions and is still a
very active community within theoretical computer science.

In computational geometry, the foundation for today’s landscape of software libraries
was laid at the end of the 1980s when multiple institutions started developing their
own algorithms libraries and simultaneously joined forces in several EEC/EU projects
(ALCOM [12], ALCOM II [14], ALCOM-IT [15], and ALCOM-FT [13]) between 1989
and 2003. This collaboration led to an EU project in 1996 called CGAL [60], establishing
the CGAL library [151], which probably is the most powerful computational geometry
library that currently exists. For a detailed overview of the history of theoretical computer
science in Europe around that time, see [28].

Considering computing the similarity of point sets and sequences, there was only
limited work in the area of algorithm engineering. While the Hausdorff distance between
point sets has a very fast algorithm using standard tools from computational geometry
(which are also included in these libraries), the other similarity measures do not have
theoretical algorithms that satisfy the desired practical performance constraints. As DTW
is heavily used in practice, there is a significant need for performant implementations,
and thus there are multiple attempts towards it [121, 122, 140, 147, 148]. For the Fréchet
distance, the GIS cup 2017 [158] inspired the work on algorithm engineering for com-
puting the Fréchet distance exactly, which in particular resulted in the three winning
submissions [30, 54, 87]. For the translation-invariant distance measures and CDTW there
are no existing implementations that I am aware of that compute the exact value. For
CDTW there only exists an implementation that computes the approximate value [36].
Thus, many problems still wait for a decently engineered solution.

Contributions. Part III of this thesis is dedicated to algorithm engineering. There, we
present the engineering of the Fréchet distance and the Fréchet distance under translation
that were already published in [44] and [45]. While in the presentation we focus on the
continuous Fréchet distance and the discrete Fréchet distance under translation, the
approaches can also be used to compute the discrete Fréchet distance and the continuous
Fréchet distance under translation. In fact, the engineered implementation for the Fréchet
distance also contains the code for the discrete version. No better engineered solution is
known until now for both measures to the best of my knowledge.

7
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1.4 State of Research per Measure

To give a comprehensive overview of the different measures, we now consider the state
of research for each measure separately. We mainly focus on the measures and results
that are relevant for this thesis. In particular, we do not consider the Hausdorff distance,
as it has a classical near-linear time algorithm. Instead, we first consider the Hausdorff
distance under translation.

1.4.1 Hausdorff Distance Under Translation

Given two point sets in the plane of size n and m, the Hausdorff distance under translation
can be computed in time O(nm log2 nm) for the L1 and L∞ metric [72], and in time
O(nm(n+m) log nm) for the L2 metric [113]. I am not aware of any lower bounds for
this problem previous to the works in this thesis, not even conditional on a plausible
hypothesis. The only results in this direction are Ω(n3) lower bounds on the arrangement
size [72] and on the number of connected components of the feasible translations [144]
(for the decision problem on points in the plane with n = m). However, these bounds also
hold for L1 and L∞, where they are “broken” by the O(nm log2 nm)-time algorithm [72],
so apparently these bounds do not give us information about the best possible running
time complexity. Previously, an n2−o(1) lower bound was only known for the more general
problem of computing the Hausdorff distance under translation of sets of segments in the
case that both sets have size n — a problem for which the best known algorithm runs in
time2 Õ(n4) [31].

Contributions. In this thesis we describe two lower bounds for the Hausdorff distance
under translation in the plane. First, we show that no polynomial time improvement
over the classical algorithm for L1 and L∞ is possible under the Strong Exponential
Time Hypothesis. Second, for L2 we show a lower bound of n2−o(1) under 3Sum for the
imbalanced case where one point set has size n and the other O(1). Note that this also
shows that no polynomial time improvement is possible over the classical algorithm for
L2 in this input size regime.

1.4.2 Fréchet Distance

The Fréchet distance was introduced more than 100 years ago by Maurice Fréchet [94].
The time complexity of the Fréchet distance is well understood. For the continuous
Fréchet distance, Alt and Godau designed an O(n2 log n)-time algorithm for polygo-
nal curves consisting of n vertices [19]. Buchin et al. [51] improved on this result by
giving an algorithm that runs in time O(n2

√
log n(log log n)3/2) on the Real RAM and

O(n2(log log n)2) on the Word RAM. The first algorithm for the discrete Fréchet distance
ran in time O(n2) [89], which was later improved to O

(
n2 log logn

logn

)
[11]. On the hardness

side, an n2−o(1) lower bound conditional on the Strong Exponential Time Hypothesis
was shown in 2014 by Bringmann [38] for the discrete and continuous Fréchet distance.
This lower bound even holds for one-dimensional curves [48, 56]. Very recently match-
ing bounds on the problem of subtrajectory clustering under the Fréchet distance were

2By Õ-notation we ignore logarithmic factors in n and m.
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shown [107]. Furthermore, Abboud and Bringmann [3] showed that any O(n2/ log17+ε n)-
time algorithm for the discrete Fréchet distance would prove novel circuit lower bounds.
Many extensions and variants of the Fréchet distance have been studied, e.g., generalizing
from curves to other types of objects, replacing the ground space Rd by more complex
spaces, and many more (see, e.g., [18, 32, 52, 62, 75, 81, 128]).

Considering the amount of theoretical research about the Fréchet distance that was
produced by the algorithms community, it is surprising that algorithm engineering of this
distance measure was mostly initiated as late as 2017 by the GIS cup of that year [158].
Fortunately, the GIS cup was very successful and lead to the three performant winning
submissions [30, 54, 87]. However, none of these implementations resolved the main
performance bottleneck — the construction of the free-space diagram — in a satisfying
manner.

Restricted input models. To avoid the quadratic complexity of the Fréchet distance,
which even (conditionally) holds for approximations with a factor less than 3 in one di-
mension [56], several realistic input models were suggested that have faster approximation
algorithms depending on the parameter of the model. I want to explicitly mention three
of these realistic input models: κ-straight, κ-bounded, and c-packed. A curve is κ-straight
if for all points p, q on the curve, it holds that the distance on the curve between p and q
is at most κ times the Euclidean distance between p and q, see [20]. A curve is κ-bounded
if for all points p, q on the curve, it holds that the subcurve between p and q is contained
in the union of the balls around p and q with radius κ/2 times their Euclidean distance,
see [21]. A curve is c-packed if for all r > 0, any ball of radius r intersects the curve at
most on a total length of c · r, see [82]. For constant ε, dimension d, and parameter c or
κ, we can compute a (1 + ε)-approximation of the Fréchet distance in near-linear time
for these realistic input models. For c-packed curves, it was also shown that this cannot
be improved for approximation factors close to 1 [38].

Approximate Near Neighbor. Recall that the ANN problem that we consider in
this thesis is defined as follows: Given a set of curves P , a radius δ, and an approximation
factor c, we want to preprocess P to answer queries with a curve Q such that we either
return a curve in P in distance at most cδ from Q or we report that no curve in distance
at most δ from Q exists in P. Let m be the maximal complexity of curves in P and k
the maximal complexity of Q. For the discrete Fréchet distance, there is a significant
amount of work on ANN data structures. Most notably, there is a (1 + ε)-ANN data
structure with preprocessing time n · O(1/ε)dk +O(nm) and query time O(kd) [93]. For
continuous Fréchet ANN, for a long time there were only results that provided a data
structure whose preprocessing and query times were dependent on the arc length of the
curves [77]. In a first result that is restricted to the one-dimensional case but independent
of the arc length, a (2 + ε)-ANN with preprocessing time O(nm) · O(m/kε)k and query
time O(k · 2k), and a (5 + ε)-ANN with preprocessing time O(nm) · O(1/ε)k and query
time O(k) were shown [85].

Contributions. In this thesis, we describe an engineered solution for the Fréchet dis-
tance which currently is by far the fastest practical algorithm to the best of my knowledge.
Its main idea is to use a divide and conquer approach on the free-space diagram — the
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crucial technical contribution of the classical algorithm of [19]. Divide and conquer enables
massive pruning on the running time intensive instances and thus leads to running time
improvements of several orders of magnitude. On benchmarks, we improve the running
time by two orders of magnitude compared to the winning submission of [158].

On the theoretical side, we describe upper bounds as well as lower bounds for the
continuous Fréchet ANN problem. More precisely, we give a (1+ε)-ANN in one dimension
with the same preprocessing and query times as the previous (2+ ε)-ANN data structure,
we give multiple (2 + ε)-ANNs that provide a tradeoff between preprocessing and query
time, and a (3 + ε)-ANN with the same preprocessing and query times as the previous
(5 + ε)-ANN. While this significantly improves on the results of [85], we also show that
many of our upper bounds are essentially tight under the Strong Exponential Time
Hypothesis, reducing from a novel one-sided sparse Orthogonal Vectors problem which
is of independent interest.

1.4.3 Fréchet Distance Under Translation

The results for the continuous and discrete Fréchet distance under translation differ signifi-
cantly. The first two algorithm for the continuous Fréchet distance under translation were
independently given by [88] and [22], who designed algorithms in the plane with running
time Õ(n10) and Õ(n8), respectively. Both also present approximation algorithms, for
example, a (1 + ε)-approximation with running time O(n2/ε2) in the plane is presented
in [22] and a similar result in [88]. In three dimensions there exists an algorithm with
running time Õ(n11) [157]. Exactly computing the discrete Fréchet distance under trans-
lation was first studied by Jiang et al. [120] who designed an Õ(n6)-time algorithm in
the plane. The previously (before the results of this thesis) best known algorithm for the
discrete Fréchet distance under translation in the plane is due to Ben Avraham et al. [33].
It is an improvement of the algorithm by Jiang et al. [120] and runs in time Õ(n5). A
different translation-invariant variant of the Fréchet distance is presented in [76] and fast
algorithms are provided.

Contributions. In this thesis, we describe the currently best upper bound, the lower
bound, and an engineered implementation for the discrete Fréchet distance under trans-
lation in the plane [43, 45]. Our upper bound improves the best running time from Õ(n5)
to Õ(n4.667) and we show a lower bound of n4−o(1) conditional on SETH. Interestingly,
this lower bound matches the size of the arrangement that all algorithms for this problem
build and it thus suggests that this arrangement is necessary.

Despite this discouraging lower bound, we engineered an implementation that is the
first for this problem to the best of my knowledge. Despite the high theoretical running
times, we manage to give an implementation that is very fast on practical data. In
fact, the running time for a distance comparison between two practical curves is in the
milliseconds range, even making such computations usable in real-time scenarios.

1.4.4 (Continuous) Dynamic Time Warping

Dynamic time warping was, to the best of my knowledge, introduced in a slightly differ-
ent form by Vintsyuk in [153], who also discovered the classic quadratic time dynamic
programming algorithm. Later DTW was stated in today’s form by [34]. Unless OV and
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SETH fail, no polynomial improvements to the running time are possible [2, 42], but
polylogarithmic improvements were achieved by [103]. Due to its practical significance,
DTW has seen a lot of algorithm engineering work [121, 122, 140, 147, 148]. Dynamic
time warping under translation in the Euclidean space is not known to have an exact
algorithm as it contains the geometric median problem for which it is not known whether
an exact algorithm exists [29]. Research for this measure is still largely open, e.g., ap-
proximation algorithms or results for other metrics. The complexity of CDTW is still
not well understood and published results are quite scarce. A nice overview of CDTW is
given in [57]. Currently there are only three approximation algorithms [35, 36, 127] but
no exact algorithm is known. However, also no hardness result is known and thus the
complexity still remains open.

Contributions. While there are no contributions for these measures in this thesis, I am
a co-author of one of the few works on CDTW [36] and there is more work in progress.
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CHAPTER 2
Notation and Preliminaries

We now formally define the most important objects and notation that we use in this
thesis. To denote index sets, we often use [n] := {1, . . . , n}. In this thesis we mostly focus
on geometric objects that consist of points in Rd — often considering the special case
d = 1 or d = 2 — and we measure the distance between points in some p-norm. Given a
point x ∈ Rd, its p-norm is defined as

∥x∥p :=

∑
i∈[d]

|xi|p
 1

p

,

and the distance between two points x, y ∈ Rd is then simply ∥x− y∥p. If the p-norm is
clear from the context, we may omit the index and just write ∥·∥. For a point p ∈ Rd,
we use p + τ to denote the point p translated by τ ∈ Rd. For a point set A ⊂ Rd and
a translation τ ∈ Rd, we define the translated point set as A + τ := {a + τ | a ∈ A}.
Furthermore, most distance notions that we work with are Lipschitz when one of the
objects is translated. We say that a distance measure d is L-Lipschitz if for all x, y, τ , we
have that

|d(x, y)− d(x, y + τ)| ≤ L · ∥τ∥ ,
where the norm ∥·∥ depends on the context.

2.1 Trajectories and Distance Measures

In this section we define two different notions of distance measures: the Hausdorff distance
and its variants as a similarity measure between point sets, and the Fréchet distance and
its variants as a similarity measure between trajectories.

Hausdorff distance. Let A,B ⊂ Rd be two point sets. The probably most natural
distance measure between two such sets is the Hausdorff distance. Intuitively, the Haus-
dorff distance results from associating each point with the closest point in the other set
and then taking the maximum distance over all such associations. The directed Hausdorff
distance is defined as

dH⃗(A,B) := max
a∈A

min
b∈B
∥a− b∥ .

Note that the directed Hausdorff distance measures the distance from A to B but not
from B to A. In particular, note that it is not symmetric. A symmetric variant of the
Hausdorff distance, the undirected Hausdorff distance, is defined as

dH(A,B) := max{dH⃗(A,B), dH⃗(B,A)}.
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Note that the directed Hausdorff distance is at most the undirected Hausdorff distance
by definition, i.e., dH⃗(A,B) ≤ dH(A,B).

Both of the above distance measures can be modified to a version which is invari-
ant under translation by minimizing the distance between A and any translation of B.
Therefore, the directed Hausdorff distance under translation is defined as

dT
H⃗
(A,B) := min

τ∈Rd
dH⃗(A,B + τ),

and the undirected Hausdorff distance under translation is defined as

dTH(A,B) := min
τ∈Rd

dH(A,B + τ).

Again, it holds that dT
H⃗
(A,B) ≤ dTH(A,B).

For the Hausdorff distance (without translation) the undirected distance is at most
as hard to compute as the directed distance, as the undirected distance can be calculated
using two calls to an algorithm computing the directed distance.1 However, note that for
the Hausdorff distance under translation, we cannot just compute the directed distance
twice and then obtain the undirected distance as we have to take the maximum over
the directed distance for the same translation. The directed Hausdorff distance under
translation is still at least as hard as the undirected Hausdorff distance under translation
by another argument. The same idea was already used for d = 1 in [142].

Observation 2.1. Let f(n,m) be the running time to compute the directed Hausdorff
distance under translation of two points sets of size n and m. There is an algorithm for the
undirected Hausdorff distance under translation with running time O(f(n+m,n+m)).

Proof. Let A,B ⊂ Rd be the input sets and let D be the diameter of A ∪ B, i.e., the
largest distance between any pair of points. Let A′, B′ be copies of A,B reflected at the
same arbitrary point and jointly translated such that the closest points of A ∪ B and
A′ ∪B′ are at least 3D apart. Note that dH⃗(B+ τ,A) = dH⃗(B′− τ,A′) = dH⃗(B′, A′ + τ)
for any τ ∈ Rd. Due to A ∪B and A′ ∪B′ being far apart, it thus holds that

dTH(A,B) = min
τ∈Rd

max{dH⃗(A,B + τ), dH⃗(B + τ,A)} = dT
H⃗
(A ∪B′, B ∪A′).

Observing that |A ∪B′| = |B ∪A′| = n+m completes the proof.

Trajectories. A trajectory π is defined by an ordered sequence of points (π1, . . . , πn)
with πi ∈ Rd, i ∈ [n], which are also called the vertices of the trajectory. If we consider
the trajectory as a continuous object, then consecutive vertices are connected by line
segments and we call it a continuous trajectory. If we only consider the vertices, then we
call it a discrete trajectory. We define the complexity of a trajectory π as the number of
vertices and we denote it by |π|. Depending on what is more convenient, we either use
π, σ to denote trajectories and use πi with i ∈ [|π|] and σj with j ∈ [|σ|] to refer to their
vertices. Or, if we have multiple trajectories, we often use P1, . . . , Pn to refer to them

1Actually, for point sets of similar size the directed Hausdorff distance is also at most as hard to
compute as the undirected Hausdorff distance (thus, they are equally hard to compute), as dH⃗(A,B) =
dH(A ∪B,B).
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and use p1, . . . , p|P | to refer to the vertices of a specified trajectory P . In data structure
settings, we often denote query trajectories by Q.

To refer to specific points (not necessarily vertices) on a continuous trajectory, it
is helpful to parametrize it using a one-dimensional interval. A parametrization of a
trajectory π is a monotone bijection between a one-dimensional range I = [a, b] and the
curve. Let ℓ be the length of the trajectory, i.e., the sum of the lengths of the line segments.
In this thesis, we assume that we parametrize the trajectory by mapping a+ x · (b− a)
for each x ∈ [0, 1] to the point on π after traversing it for a distance x · ℓ. Depending
on what is more convenient, we either parametrize π using I = [0, 1] or I = [1, |π|]. To
this end, for an x ∈ I, we use π(x) to refer to points on the trajectory. To denote the
subcurve of π between x ∈ I and x′ ∈ I — where π(x) and π(x′) are not necessarily
vertices of π — we use the notation π[x, x′].

We say that a trajectory π is degenerate if there are three consecutive vertices
πi−1, πi, πi+1, such that πi lies on the segment between πi−1 and πi+1. In this case,
we call πi a degenerate vertex of this curve. Given a sequence of points π1, . . . , πn, we can
define a non-degenerate curve by omitting degenerate vertices. We denote the resulting
curve by ⟨π1, . . . , πn⟩. For any trajectories π = (π1, . . . , πn) and σ = (σ1, . . . , σm) we
let π ◦ σ denote the polygonal curve ⟨π1, . . . , πn, σ1, . . . σm⟩, that is the concatenation
of π and σ. For n polygonal curves P1, . . . , Pn, we denote by ⃝n

i=1Pi the concatenation
P1 ◦ P2 ◦ · · · ◦ Pn. Furthermore, given any translation vector τ ∈ Rd, we denote by π + τ
the trajectory defined by the sequence of points (π1 + τ, . . . , π|π| + τ). Finally, we use the
term curve and trajectory interchangeably in this thesis.

Traversals. To define the Fréchet distance and its variants, we first have to define the
notion of traversal. Intuitively, a traversal is a continuous (meaning, we do not jump),
simultaneous, non-backwards movement over two trajectories where the respective speed
can vary arbitrarily, starting in the pair of start vertices and ending in the pair of end
vertices. More formally, let π : I → Rd and σ : I ′ → Rd be two trajectories. A continuous
traversal is simply a function ϕ : [0, 1]→ I × I ′ with

ϕ(t) 7→ (f(t), g(t)),

where the re-parametrizations f : [0, 1] → I and g : [0, 1] → I ′ are surjective and
(not necessarily strictly) monotone functions. Note that we can also give a traversal by
just providing the pair of functions (f, g). Note that, for each point on one of the two
trajectories, this induces a correspondence to a subcurve (which might just be a single
point) on the other curve. For discrete trajectories, on the other hand, during a traversal
we can either jump in one of the trajectories to the next vertex or in both. More precisely,
defining n = |π| and m = |σ|, a discrete traversal is a sequence ϕ = ( (s1, t1), . . . , (sk, tk) )
of pairs (si, ti) ∈ [n]× [m] such that (s1, t1) = (1, 1), (sk, tk) = (n,m) and (si+1, ti+1) ∈
{(si + 1, ti), (si, ti + 1), (si + 1, ti + 1)} for all 1 ≤ i < k. Having defined traversals, we
can now define the Fréchet distance.

Fréchet distance. For any curves π = (π1, . . . , πn), σ = (σ1, . . . , σm), we define their
discrete Fréchet distance as

ddF(π, σ) := min
ϕ=((s1,t1),...,(sk,tk))

max
i∈[k]
∥πsi − σti∥ ,
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where the minimum ranges over all discrete traversals ϕ of π and σ. The continuous
Fréchet distance is defined as

dF(π, σ) := min
ϕ=(f,g)

max
t∈[0,1]

∥π(f(t))− σ(g(t))∥ ,

where the minimum ranges over all continuous traversals ϕ of π and σ. As is common,
we often use Fréchet distance for the continuous version and discrete Fréchet distance for
the discrete one. It is well-known that dF(π, σ) ≤ ddF(π, σ) [89]. The classical algorithm
to compute the Fréchet distance on polygonal curves is by Alt and Godau [19]. We state
their result here for the decision version.

Theorem 2.2 ([19]). There is an algorithm which, given polygonal curves π, σ and a
threshold parameter δ > 0, decides in O(|π| · |σ|) time whether dF(π, σ) ≤ δ.

The same result also holds for the discrete Fréchet distance [89]. There we can even
compute the distance, not just the decision, in the time stated in Theorem 2.2.

Fréchet distance under translation. Both of the above distance measures can be
modified to a version which is invariant under translation by minimizing the distance
between π and any translation of σ. More precisely, we define the discrete Fréchet distance
under translation as

dTdF(π, σ) := min
τ∈Rd

ddF(π, σ + τ),

and the continuous Fréchet distance under translation as

dTF(π, σ) := min
τ∈Rd

dF(π, σ + τ).

As for the Fréchet distance, we also have that dTF(π, σ) ≤ dTdF(π, σ) for the Fréchet
distance under translation. Furthermore, the discrete and continuous Fréchet distance
under translation is 1-Lipschitz in the translation.

Observation 2.3 (Lipschitz property). Given two trajectories π, σ : [0, 1] → Rd, the
continuous (respectively, discrete) Fréchet distance under translation f(τ) = dF(π, σ + τ)
(respectively, f(τ) = ddF(π, σ + τ)) is 1-Lipschitz, i.e., |f(τ)− f(τ + τ ′)| ≤ ∥τ ′∥ for all
τ, τ ′ ∈ Rd.

Proof. Note that for any π(x), σ(y), τ, τ ′ ∈ Rd with x, y ∈ [0, 1], we have∣∣∥π(x)− (σ(y) + τ)∥ −
∥∥π(x)− (σ(y) + τ + τ ′)

∥∥∣∣ ≤ ∥∥τ ′∥∥
by triangle inequality. Thus, the maximal distances in any traversal ϕ for π, σ + τ and
π, σ + τ + τ ′ differ by at most ∥τ ′∥, which immediately yields the observation.

Free-space diagram. The free-space diagram is the basis of the algorithm of [19],
where it was also first defined. Given two trajectories π and σ and a distance δ, the
free-space diagram is defined as the set of all pairs of indices of points from π and σ that
are in distance at most δ, i.e.,

F := {(p, q) ∈ [1, n]× [1,m] | ∥π(p)− σ(q)∥ ≤ δ}.
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Figure 2.1: Example of a free-space diagram for curves π (black) and σ (red). Curve
π is on the horizontal axis of the free-space diagram, while σ is on the vertical axis.
The doubly-circled vertices mark the start. The free-space, i.e., the pairs of indices of
points which are close, is colored green. The non-free areas are colored red. The threshold
distance δ is roughly the distance between the first vertex of σ and the third vertex of π.

Figure 2.2: Reachable space of the free-space diagram in Figure 2.1. The reachable part
is blue and the non-reachable part is red. Note that the reachable part is a subset of the
free-space.

For an example see Figure 2.1. A path from a to b in the free-space diagram F is defined
as a continuous mapping P : [0, 1] → F with P (0) = a and P (1) = b. A path P in
the free-space diagram is monotone if P (x) is component-wise at most P (y) for any
0 ≤ x ≤ y ≤ 1. The reachable space is then defined as

R := {(p, q) ∈ F | there exists a monotone path from (1, 1) to (p, q) in F}.

Figure 2.2 shows the reachable space for the free-space diagram of Figure 2.1. It is well
known that dF(π, σ) ≤ δ if and only if (n,m) ∈ R.

Note that if we transfer this concept to the discrete Fréchet distance, we end up with
a binary matrix of size n×m. More precisely, we define a matrix M ∈ {0, 1}n×m where
Mi,j = 1 if ∥πi − σj∥ ≤ δ, and Mi,j = 0 otherwise. We now analogously have a monotone
path from M1,1 to Mn,m that only uses the 1-entries and can only go to neighboring fields
(including diagonally) if and only if the discrete Fréchet distance between π and σ is at
most δ. Note that this matrix can also be interpreted as a directed acyclic grid graph.
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2.2 Lower Bounds

We now define the problems and hypotheses that are relevant for the lower bounds in
this thesis, starting with the probably most popular one: the Strong Exponential Time
Hypothesis.

Strong Exponential Time Hypothesis. The Strong Exponential Time Hypothesis
(SETH) was introduced by Impagliazzo and Paturi [115] and essentially postulates that
there is no exponential-time improvement over exhaustive search for the Satisfiability
Problem. Note that SETH implies P ̸= NP and it is thus a stronger assumption.

Hypothesis 2.4 (Strong Exponential Time Hypothesis (SETH)). For any ε > 0 there
exists k ≥ 3 such that k-SAT has no O((2− ε)n)-time algorithm.

Orthogonal Vectors. While the Strong Exponential Time Hypothesis is a powerful
tool, encoding arbitrary SAT instances can make reductions somewhat complicated. The
Orthogonal Vectors Problem is a problem with a simpler structure that cannot have a
polynomial time improvement over its naive algorithm if SETH holds.

Definition 2.5 (Orthogonal Vectors Problem (OV)). Given two sets U, V ⊂ {0, 1}D
with |U | = n, |V | = m, decide whether there exist u ∈ U and v ∈ V that are orthogonal,
i.e., u · v = 0.

As we can reduce from SAT to OV, it is natural to formulate a corresponding hypoth-
esis, which also is implied by SETH [160].

Hypothesis 2.6 (Orthogonal Vectors Hypothesis (OVH)). The Orthogonal Vectors
problem cannot be solved in time O((nm)1−εpoly(D)) for any ε > 0.

In fact, one can even reduce from SAT to a more general problem, which is called the
k-Orthogonal Vectors Problem.

Definition 2.7 (k-Orthogonal Vectors Problem (k-OV)). Given V1, . . . , Vk ⊂ {0, 1}D
with N := |V1| = · · · = |Vk|, decide whether

∃v1 ∈ V1, . . . , vk ∈ Vk ∀j ∈ [D]
∨
i∈[k]

vi[j] = 0.

Again, we formulate the corresponding hypothesis.

Hypothesis 2.8 (k-OV Hypothesis). For any k ≥ 2 and ε > 0, there is no algorithm
that runs in time O(Nk−εpoly(D)) for k-OV.

The well-known split-and-list technique due to Williams [160] shows that SETH
implies the k-OV Hypothesis. Thus, any conditional lower bound that holds under the
k-OV hypothesis also holds under SETH. Often we need a more precise hypothesis to
show tighter hardness results. Therefore, we also consider an OV variant which, first,
is hard for comparably low-dimensional inputs and, second, is hard for a large range of
unbalanced cases.

18



2.2. Lower Bounds

Lemma 2.9. Assume OVH holds true. For every α ∈ (0, 1) and ε > 0 there exists a
constant c > 0 such that there is no algorithm solving OV instances U, V ⊂ {0, 1}D with
|V | = |U |α and D = c log |U | in time O(|U |1+α−ε).

The above statement (commonly stated in the balanced case) is also sometimes called
the Low-Dimensional Orthogonal Vectors Hypothesis and it is implied by the Strong
Exponential Time Hypothesis [160]. Furthermore, it is well known that balanced OV with
sets of the same size is equally hard as unbalanced OV [6, 41].

3Sum. The historically first problem that was used to show fine-grained lower bounds
is the 3Sum problem [97], for which there exist multiple equivalent formulations. In this
thesis we use the following variant.

Definition 2.10 (3Sum). Given three sets of positive integers X,Y, Z all of size n, do
there exist x ∈ X, y ∈ Y, z ∈ Z such that x+ y = z?

The corresponding hypothesis conjectures a quadratic hardness of this problem.

Hypothesis 2.11 (3Sum Hypothesis). There is no O(n2−ε) algorithm for 3Sum for
any ε > 0.

Note that the naive algorithm for 3Sum is cubic and not quadratic. Thus, as opposed
to OVH, the 3Sum Hypothesis does not conjecture that the naive brute-force algorithm
for the problem is optimal. However, there is a problem that is simpler and equivalent
to 3Sum: the convolution 3Sum problem (Conv3Sum) [63, 138].

Definition 2.12 (Conv3Sum). Given a sequence of positive integers X = (x0, . . . , xn−1)
of size n, do there exist i, j such that xi + xj = xi+j?

Note that for this problem the naive brute-force algorithm is conjectured to be optimal
as we decrease the number of indices by one. For completeness, we note that there is
a generalized family of problems called the kSum problems, however, we do not utilize
them in this thesis and thus do not introduce them.
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CHAPTER 3
Technical Overviews

In this chapter we give a technical overview of the different results in this thesis. For
upper and lower bounds for the same problem we give a joint technical overview to show
their complementary nature. We start in Section 3.1 with our upper and lower bounds of
the continuous Fréchet approximate near neighbor (ANN) search for time series, which
first appeared in [39], and in Section 3.2 continue with the upper and lower bound for
the Fréchet distance under translation, which first appeared in [43]. Then we give a brief
overview of the lower bounds for the Hausdorff distance under translation in Section 3.3,
first published in [49]. Finally, we turn to algorithm engineering and in Section 3.4 give
an overview of the engineered solution of the Fréchet distance from [44] and then the
Fréchet distance under translation from [45] in Section 3.5.

3.1 Continuous Fréchet Approximate Near Neighbor Search

We now give an overview of the upper and lower bounds for continuous Fréchet ANN. The
details of the upper bounds are then presented in Chapter 4 and the details of the lower
bounds in Chapter 7. This work focuses on the special case of one-dimensional curves,
which we also refer to as time series. We aim to resolve approximate near neighbor search-
ing for this special case of the continuous Fréchet distance. We obtain strong lower bounds
based on the Orthogonal Vectors Hypothesis in the regime of small approximation factors.
More specifically, we differentiate a range of lower bounds for different approximation
factors and preprocessing/query time. We show that our bounds are tight by devising
data structures that asymptotically match the lower bounds in all cases considered. The
new data structures improve upon the state of the art in several ways. For the same
preprocessing and query time, we can improve the approximation factor from (2 + ε) to
(1 + ε). For the same approximation factor (2 + ε), we get a better time complexity—in
some cases we can even achieve linear preprocessing time and space.

3.1.1 Problem Definition

The central problem of this work is defined as follows.

Definition 3.1 (c-Approximate Near Neighbors problem (c-ANN)). The input consists
of a set P of n curves in Rd, each of complexity m, and a number 2 ≤ k ≤ m. Given a
distance threshold δ > 0 and an approximation factor c > 1, preprocess P into a data
structure such that for any query curve Q of complexity k, the data structure reports as
follows:

• if ∃P ∈ P such that dF(P,Q) ≤ δ, then it returns P ′ ∈ P such that dF(P ′, Q) ≤ cδ,
• if ∀P ∈ P, dF(P,Q) ≥ cδ then it returns “no”,
• otherwise, it either returns a curve P ∈ P such that dF(P,Q) ≤ cδ, or “no”.
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The assumption that all input curves have the same number of vertices m and that
the queries have k vertices is mostly to simplify presentation; all our data structures are
easily generalized to allow input curves of complexity at most m and query curves of
complexity at most k. Note, however, that we assume the input has size in Ω(nm) and
that 2 ≤ k ≤ m. The case k = 1 is a boundary case that is easier to solve; we ignore it
throughout this work.

3.1.2 State of the Art

We start by reviewing the state of the art for the discrete variant of the Fréchet distance. In
the discrete Fréchet distance, the continuous traversal ϕ is replaced by a discrete traversal
of the two point sequences, see Chapter 2 for the formal definition. The currently best
known data structure for (1 + ε)-ANN under the discrete Fréchet distance is by Filtser
et al. [93]. Their data structure uses space in n · O(1/ε)kd +O(nm) and query time in
O(kd), where k denotes the complexity of the query (measured in the number of vertices),
m denotes the complexity of an input curve and n denotes the number of input curves. It
is an interesting question whether the same bounds can be obtained for the continuous
Fréchet distance. At first glance, the discrete and continuous variants of the Fréchet
distance seem very similar, but there is an important difference: while the metric space
of bounded complexity curves under the discrete Fréchet distance has bounded doubling
dimension, this does not hold in the continuous case, even when restricted to polygonal
curves of constant complexity [83]. (A metric space has doubling dimension at most d if
any ball of any radius r can be covered by 2d balls of radius r

2 .) This immediately shows
that the technique employed by Filtser et al., which effectively applies a doubling oracle
to the metric balls centered at input curves (more specifically, simplifications thereof),
does not directly extend to the continuous Fréchet distance, since such a doubling oracle
cannot exist in this case.

So the discrete Fréchet distance has a simple ANN that seems optimal, but there
is indication that for the continuous Fréchet distance resolving the time complexity of
ANN is more challenging. Note that it is possible to reduce the ANN problem for the
continuous Fréchet distance to the ANN problem for the discrete Fréchet distance by
subsampling along the continuous curves. However, it seems that this approach introduces
an (otherwise avoidable) dependency on the arclength. In 2018, Driemel and Afshani [10]
described data structures based on multi-level partition trees (using semi-algebraic range
searching techniques) which can also be used for exact near neighbor searching under the
continuous Fréchet distance. For n curves of complexity m in R2, their data structure uses
space bounded by n · (log logn)O(m2) and the query time is bounded by

√
n · (log n)O(m2).

(If the input is restricted to curves in R, these bounds can be slightly improved.) Recently,
Driemel and Psarros [85] obtained bounds for the continuous Fréchet distance that are
similar to the bounds of Filtser et al., albeit at the expense of a higher approximation
factor and only for curves in R. They present a (5 + ε)-ANN data structure which uses
space in n·O

(
1
ε

)k
+O(nm) and has query time in O (k), and a (2+ε)-ANN data structure,

which uses space in n · O
(
m
kε

)k
+ O(nm) and has query time in O

(
k · 2k

)
. Even more

efficient data structures can be obtained at the expense of an even larger approximation
factor, see the work of Driemel, Silvestri, and Psarros [86] and [85] which uses locality-
sensitive hashing. In these results neither the space nor the query time is exponential in
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the complexity of the curves (neither input nor query), but the approximation factor is
linear in the query complexity k.

(Unconditional) lower bounds. Given these results, one may ask whether the cited
bounds are optimal for the respective approximation factor that they guarantee. We
review some efforts in answering this question and discuss the limitations of the current
techniques. Driemel and Psarros [84, 85] approach this question using a technique by
Miltersen [134] for proving cell-probe lower bounds. Their results indicate that any data
structure answering a query for a near neighbor under the continuous Fréchet distance by
using only a constant number of probes to memory cells cannot have a space usage that
is independent of the arclength of the input curves (assuming a query radius of 1). In
addition, their bounds indicate that, in some cases, space exponential in the complexity
of the query k is necessary. However, these bounds hold only for data structures that use
a constant number of probes to memory cells for answering a query, while we would also
be interested in data structures that use higher query time, such as O(k) or O(log n). A
different lower bound technique was used by Driemel and Afshani [10]. They show a lower
bound in the pointer model of computation on the space-time tradeoff for range reporting
under the Fréchet distance. In this problem, all curves contained inside the query radius
need to be output by the query. The resulting lower bound matches the above cited
upper bounds even up to the asymptotic number of factors of log(n). The proof uses a
construction of input curves in R2 and a set of queries, such that the intersection of any
two query results has small volume while the queries themselves have large volume. The
main drawback of this technique is that, being a volume argument, it inherently uses the
fact that all curves inside the query need to be returned and therefore it cannot easily
be applied in the near neighbor setting.

Conditional lower bounds. The recent rise of fine-grained complexity has also lead
to a renewed interest in conditional lower bounds for nearest neighbor data structure
problems, see, e.g. [5, 16, 69, 70, 143]. These lower bounds are for the offline version of
the data structure problem, by considering the total time needed for preprocessing and
performing a number of queries. They are obtained in a similar way as NP-hardness,
specifically via reductions from some fine-grained hypothesis such as the Strong Exponen-
tial Time Hypothesis (SETH) [115] or the Orthogonal Vectors Hypothesis (OVH) [160].
In the Orthogonal Vectors problem we are given two sets of vectors U, V ⊆ {0, 1}D of
size n and ask whether there exist two vectors u ∈ U, v ∈ V such that ⟨u, v⟩ = 0. The
hypothesis postulates that for any constant ε > 0 there exists a constant c > 0 such
that there is no algorithm solving the Orthogonal Vectors problem in time O(n2−ε) in
dimension D = c log n. It should be noted that OVH is at least as believable as SETH,
because SETH implies OVH [160]. As an example, based on the OV-hardness of bichro-
matic Euclidean closest pair [16] and reducing via a variant of OV with unbalanced
size |U | ≪ |V | [6], one can show that for any ε, β > 0 there is no data structure for
Euclidean nearest neighbors on n points in Rd with preprocessing time O(nβ) and query
time O(n1−ε), in some dimension d = c log n. This rules out any sublinear query time for
any data structure with polynomial preprocessing time, unless OVH fails.

For computing the Fréchet distance of two polygonal curves there is a tight conditional
lower bound [38], also for the one-dimensional case [48, 56]. However, thus far, there seems
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Fréchet dist. Approx. Preprocessing Time Query Time Reference

disc., dD 1 + ε nm ·
(
O(1ε )dk +O(d logm)

)
O(dk) [93]

cont., 1D 2 + ε n · O(mkε)k O(1)k [85]

5 + ε n · O(1ε )k +O(nm) O(k) [85]

1 + ε n · O(mkε)k O(1)k Thm. 4.24

2 + ε n · O(mkε)k O(k) Thm. 4.26

cont., 1D 2 + ε n · O(1ε )k +O(nm) O(1)k Thm. 4.28

2 + ε O(nm) O(1ε )k+2 Thm. 4.30

3 + ε n · O(1ε )k +O(nm) O(k) Thm. 4.32

Table 3.1: Known upper bounds and our results. For the discrete case we only cite the
best known result. The space complexity is implicitly bounded by the preprocessing time
in each case. Our preprocessing time is randomized; the bounds can be derandomized at
the cost of a factor log n in preprocessing and query time (by using search trees instead
of perfect hashing).

to be no comprehensive study of conditional lower bounds for the corresponding data
structure problem. We want to close this gap and show tight bounds for the case of
one-dimensional curves. These are similar in spirit to the Euclidean nearest neighbor
lower bounds discussed above.

3.1.3 Our Results

For the discrete Fréchet distance the ANN problem is by now well understood, but the
continuous Fréchet distance remains very challenging. Therefore, in this work we focus on
the important special case of one-dimensional curves, which arise in various domains such
as finance and signal processing, where they are typically called “time series”. We give
several new data structure bounds for the problem of approximate near neighbor searching
for one-dimensional curves under the continuous Fréchet distance. Table 3.1 provides an
overview of our upper bounds, compared to known results. In the second part of this
work, we show that most of these upper bounds are tight under the Orthogonal Vectors
Hypothesis, when viewed as offline problems where the input and the set of queries are
given in advance. To obtain these lower bounds, we introduce a novel OV-hard variant
of Orthogonal Vectors in which one set contains sparse vectors, i.e., vectors that only
contain few 1s; this problem may be of independent interest. Table 3.2 gives an overview
of our lower bound results. To argue that most of our upper bounds are tight, we consider
the following general scenario:

Suppose we have an α-ANN for some fixed constant α, we run its preprocessing
on a data set of n curves, and then we run n queries.

In particular, consider this scenario for the following three ranges of α.
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Fréchet dist. Approx. Preproc. Query Parameter Setting Reference

cont., 1D 2− ε poly(n) O(n1−ε′)
1≪ k ≪ log n

and m = k · nc/k Thm. 7.3

3− ε poly(n) O(n1−ε′) m = k = c log n Thm. 7.4

cont., 2D 3− ε poly(n) O(n1−ε′)
1≪ k ≪ log n

and m = k · nc/k Thm. 7.5

Table 3.2: Our conditional lower bounds. Each row gives an approximation ratio and a
setting of k and m where any poly(n) preprocessing time and O(n1−ε′) query time cannot
be achieved simultaneously. The constants ε, ε′, c are quantified as ∀ε, ε′ > 0: ∃c > 0. By
f(n)≪ g(n) we mean f(n) = o(g(n)). We refer to the respective theorems in Chapter 7
for the exact statements.

• 1 < α < 2: Using our (1 + ε)-ANN, this scenario takes total time n · O(mkε)k, which
simplifies to n · O(mk )k since ε = α − 1 is fixed. Assuming OVH, our first lower
bound shows that this running time cannot be improved to n · f(k) · (mk )o(k) for
any function f , for the following reason. Pick k = k(n) sufficiently small such that
f(k) = no(1). Pick m = k · nc/k, so that (mk )

o(k) = (k·n
c/k

k )o(k) = no(1). Then the
total running time would be n · f(k) · (mk )o(k) = n1+o(1), which contradicts that
either the preprocessing time is superpolynomial or the query time near-linear, as
stated in Theorem 7.3. This shows that the factor (mk )

Θ(k) in our running time is
necessary. Our second lower bound shows that the running time cannot be improved
to n · (mk )f(k) · 2o(k) for any function f , as for m = k = c log n the total time would
become n · (mk )f(k) · 2o(k) = n · 1f(k) · no(1) = n1+o(1), which contradicts that either
the preprocessing time is superpolynomial or the query time near-linear, as stated
in Theorem 7.4. This shows that the factor O(1)k in our query time is necessary.
In this sense, the running time of our (1 + ε)-ANN is tight.

• 2 < α < 3: By using our second or third (2+ε)-ANN (Theorem 4.28 or 4.30) we solve
this scenario in total time O(nm)+n·O(1ε )k+2, which simplifies to O(nm)+n·O(1)k
since ε = α− 2 is fixed. Assuming OVH, our second lower bound shows that this
cannot be improved to time n·(mk )f(k)·2o(k) for any function f , as form = k = c log n

we would obtain a total time of n · (mk )f(k) · 2o(k) = n · 1f(k) · no(1) = n1+o(1), which
contradicts that either the preprocessing time is superpolynomial or the query time
near-linear, as stated in Theorem 7.4. This shows that the factor O(1)k in our
running time is necessary. In this sense, the running time of our (2+ ε)-ANNs from
Theorems 4.28 and 4.30 are tight. (Our (2 + ε)-ANN from Theorem 4.26 is not
tight in this sense, but it realizes a different tradeoff between preprocessing and
query time.)

• α > 3: In this range, our ANNs still require exponential time in terms of k, but
we cannot hope for a tight lower bound using the current techniques. This is due
to a fundamental limitation of proving inapproximability factor > 3 for a metric
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problem, cf. e.g. [143, Open Question 3]. For this reason, we have no tight lower
bounds in this range.

3.1.4 Technical Overview

The high-level view of our data structures employs a well-known technique: exhaustively
enumerate a strategic subset of the query space with a set of “candidate” query curves
during preprocessing, and store the answers to these candidate queries in a dictionary.
During query time, we apply a simple transformation to the query curve (such as rounding
vertices to a scaled integer grid) and look up the answer in the dictionary. Filtser et al. [93]
used this technique for the discrete Fréchet distance and Driemel and Psarros [85] showed
that it can also be applied for the continuous Fréchet distance of one-dimensional curves.
A particular challenge that appears in the continuous case is that the doubling dimension
can be unbounded, even if the complexity of the curves is small. Intuitively, what can
happen is that the query contains some small noise that appears in the middle of a long
edge. The continuous Fréchet distance—being robust to this noise—may match these
short edges to the interior of a long edge on the near neighbor input curve. However, we
cannot afford to generate all possible noisy query curves of this type, since this would
introduce a dependency on the arclength in our time and space bounds. Driemel and
Psarros overcome this challenge with the use of signatures, which allow to “guess” the
approximate shape of a query curve within some approximation factor. The idea is that
the signature acts as a “low-pass” filter that eliminates the noisy short edges. However,
this is a delicate process as the signature may eliminate too many edges on one of the
curves (either on the near neighbor or on the query curve) leading to the near neighbor
being missed during query time. In addition, the process may introduce false-positives,
hence the high approximation factor of (5 + ε) in the result of [85].

We see our contributions as three-fold:

(1) Our first contribution is to improve the approximation factors of Driemel and Psar-
ros [85] while staying within the same time bounds, cf. Table 3.1 for a comparison.

(a) For Theorem 4.32, we use almost the same algorithm as Driemel and Psarros,
but combine this with a more careful analysis based on new observations on
the Fréchet distance of approximately monotone curves. As a result, we can
achieve a (3 + ε)-approximation within the same time bounds as the previous
(5 + ε)-ANN.

(b) In Theorem 4.24 we even achieve an approximation factor of (1 + ε) within
the same time bounds as the previous (2+ ε)-ANN. To achieve this result, we
introduce the concept of straightenings in Section 4.2. Straightenings share
some properties of signatures, but they provide a more refined approximation,
leading to fewer false positives. They allow us to “guess” the shape of a query
curve up to approximation factor (1 + ε).

We derive useful properties of both signatures and straightenings. Central to our
analysis is the concept of δ-visiting orders, which we introduce in Section 4.2 and
analyze in Section 4.6.
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(2) Our second contribution is a range of data structures for the (2 + ε)-ANN which
together provide a tradeoff between preprocessing time and query time (see Theo-
rems 4.26, 4.28, and 4.30). In each case, the preprocessing time implicitly bounds
the number of candidates that are generated and therefore the size of the dictionary
used by the data structure. Thus, these data structures also achieve a tradeoff
between space and query time. An important observation that leads to this result
is that the enumeration of candidates can be “dualized” and then be shifted from
the preprocessing time to the query time. In the extreme case, this allows us to
design a data structure that has linear preprocessing time and space, by performing
most of the candidate generation during query time, see Theorem 4.30 for the exact
result.

(3) Given the diverse range of upper bounds, it is natural to ask if these bounds can be
improved. Our third main contribution is to show that most of our upper bounds
are tight under the Orthogonal Vectors Hypothesis. All known OV-based hardness
results for the Fréchet distance encode each of the dimensions using at least one
vertex, thus transforming D-dimensional vectors into curves of length k = Ω(D).
Since OVH postulates a lower bound in dimension D = c log n, it is thus natural
to prove OV-based lower bounds for curves of length k = c log n. Our lower bound
in Theorem 7.4 handles this setting, cf. Table 3.2.

However, for some of our lower bounds we require k = o(log n), as this is necessary
to rule out time (m/k)o(k). Surprisingly, we overcome the barrier of using at least
one vertex per dimension. Specifically, we prove OV-based lower bounds for any
1 ≪ k ≪ log n, see Theorem 7.3. For this, we use two crucial observations: (i) it
is possible to only encode the 1s of one vector set, while the 0s do not require any
additional vertices on the curve, and (ii) we can show hardness of a variant of OV
where one set contains only sparse vectors, i.e., vectors with a very small number
of 1s. See Theorem 7.3 for the hardness result we obtain in this case. Interestingly,
a similar construction is also possible for (3− ε)-ANN for two-dimensional curves,
see Theorem 7.5.

3.1.5 Conclusions and Open Problems

To summarize, in this work we largely resolve the α-ANN problem under the continuous
Fréchet distance for one-dimensional curves from a fine-grained perspective for 1 < α < 3.
We show that, in general, most of the running times presented in this work cannot be
improved significantly, however, other tradeoffs between preprocessing time and query
time are still possible, and other parameter regimes might be shown hard or more tractable,
e.g., for k ∈ O(1). Indeed, there is a line of work on related data structure problems using
the continuous Fréchet distance for the specific value of k = 2, which corresponds to
queries with line segments, see [78, 106]. It also remains a fundamental problem to show
fine-grained lower bounds for approximation factors larger than 3 for a metric problem,
which seems to require fundamentally different techniques, cf. [143].

As for the continuous Fréchet distance, our new upper and lower bounds show that
the case of one-dimensional curves provides a kaleidoscopic view into the computational
complexity and the underlying challenges posed by the general problem for polygonal
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curves in Rd. The obvious way forward in this line of research is to show upper and lower
bounds for dimension 2 and higher. Some of our ideas might translate directly, such as
the idea to generate candidate curves at query time in order to achieve a tradeoff between
preprocessing and query time. While our lower bounds also hold in higher dimension, it
is conceivable that higher lower bounds can be shown already in the plane. In fact, we
already initiate this line of work by showing an equally high lower bound for (3−ε)-ANN
in the plane as we have for (2− ε)-ANN for one-dimensional curves. This lower bound
already hints at techniques that can potentially achieve a matching upper bound. We
leave this as an open problem. Our notions of straightenings and signatures, which capture
the approximate shape of one-dimensional curves in a best-possible way, currently do not
exist in dimension 2 or higher. Extending these notions to the plane by itself would be
very interesting.

3.2 Fréchet Distance Under Translation

We now give an overview of the upper and lower bound for the discrete Fréchet distance
under translation in the Euclidean plane. The details of the upper bound are then
presented in Chapter 5 and the details of the lower bound in Chapter 8. Let n be the
complexity of both curves that we want to compute the Fréchet distance under translation
of. On the upper bound side, we improve the running time from Õ(n5) to Õ(n4.66...).
This is achieved by designing an improved algorithm for a subroutine of the previously
best algorithm, namely offline dynamic s-t-reachability in directed grid graphs.

Theorem 3.2. The discrete Fréchet distance under translation on curves of length n in
the plane can be computed in time Õ(n14/3) = Õ(n4.66..).

Our second main result is a lower bound of n4−o(1), conditional on the standard Strong
Exponential Time Hypothesis. The Strong Exponential Time Hypothesis essentially
asserts that Satisfiability requires time 2n−o(n); see Chapter 2 for a definition. This
(conditionally) separates the discrete Fréchet distance under translation from the classic
Fréchet distance, which can be computed in time Õ(n2). Moreover, the first step of all
known algorithms for the discrete Fréchet distance under translation is to construct
an arrangement of disks of size O(n4). Our conditional lower bound shows that this is
essentially unavoidable.

Theorem 3.3. The discrete Fréchet distance under translation of curves of length n in
the plane requires time n4−o(1), unless the Strong Exponential Time Hypothesis fails.

We leave closing the gap between Õ(n4.66..) and n4−o(1) as an open problem.

3.2.1 Technical Overview

Previous algorithms for the discrete Fréchet distance under translation. Let
us sketch the algorithms by Jiang et al. [120] and Ben Avraham et al. [33]. Given sequences
π = (π1, . . . , πn) and σ = (σ1, . . . , σn) in R2 and a number δ ≥ 0, we want to decide
whether the discrete Fréchet distance under translation of π and σ is at most δ. From
this decision procedure one can obtain an algorithm to compute the actual distance via
standard techniques (i.e., parametric search).
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Figure 3.1: Two input curves π, σ and a distance δ, the corresponding free-space diagram
M , and the grid graph GM corresponding to M . A monotone traversal of M and GM is
marked in orange.

The translations τ for which the distance of πi and σj + τ is at
most δ form a disk in R2. Over all pairs (πi, σj) this yields O(n2)
disks, all of them having radius δ. Construct their arrangement A
(see an illustration to the right), which is guaranteed to have O(n4)
faces. Within each face of A, any two translations are equivalent, in
the sense that they leave the same pairs (πi, σj) in distance at most δ.
Thus, whether the discrete Fréchet distance is at most δ is constant in each face. Hence,
it suffices to compute the discrete Fréchet distance between π and σ translated by τ over
O(n4) choices for τ , one for each face of A. Since the discrete Fréchet distance can be
computed in time O(n2), this yields an O(n6)-time algorithm, which is essentially the
algorithm by Jiang et al. [120].

Ben Avraham et al. [33] improve this algorithm as follows. Denote by M the n× n
matrix with Mi,j = 1 if the points πi, σj are in distance at most δ, and Mi,j = 0 otherwise
(M is called the “free-space diagram”). It is well-known that the discrete Fréchet distance
of π, σ is at most δ if and only if there exists a monotone path from the lower left to the
upper right corner of M using only 1-entries. Equivalently, consider a directed grid graph
GM on n × n vertices, where each node (i, j) has directed edges to (i + 1, j), (i, j + 1),
and (i + 1, j + 1), and the nodes (i, j) of GM with Mi,j = 0 are “deactivated” (i.e.,
removed). Then the discrete Fréchet distance of π, σ is at most δ if and only if node (n, n)
is reachable from node (1, 1) in GM . See Figure 3.1 for an example of a pair of curves,
its corresponding free-space diagram M , and directed grid graph GM .

Ben Avraham et al. observe that it is easy to construct a sequence of O(n4) faces
f1, . . . , fL of the arrangement A such that (1) each face of A is visited at least once and
(2) fℓ and fℓ+1 are neighboring in A for all ℓ. Since consecutive faces in this sequence
are neighbors, only one pair (πi, σj) changes its distance, i.e., either πi, σj are in distance
at most δ in fℓ and in distance larger than δ in fℓ+1, or vice versa. This corresponds
to one activation or deactivation of a node in GM . After this update, we want to again
check whether node (n, n) is reachable from node (1, 1) in GM . That is, using a dynamic
algorithm for s-t-reachability in directed grid graphs, we can maintain whether the discrete
Fréchet distance is at most δ. The best known solution to dynamic reachability in directed
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n× n grids runs in time Õ(n) [80].1 Over all O(n4) faces, this yields time Õ(n5) for the
discrete Fréchet distance under translation in the plane [33].

Intuition. There are two parts to the above algorithm: (1) Constructing the arrange-
ment A and iterating over its faces, and (2) maintaining reachability in the grid graph
GM . Both parts could potentially be improved.

The natural first attempt is to attack the arrangement enumeration, i.e., part (1). The
size of the arrangement is O(n4), and for no other computational problem it is known –
to the best of our knowledge – that any optimal algorithm must construct such a large
arrangement, so this part seems intuitively wasteful. Surprisingly, our conditional lower
bound of Theorem 3.3 shows that constructing the arrangement is essentially unavoidable.

The remaining part (2) at first sight seems much less likely to be improvable, since
it is a well-known open problem to find a faster dynamic algorithm for reachability in
directed grid graphs. Nevertheless, we show how to improve the running time of this part
of the algorithm.

Our algorithm. We observe that we do not need the full power of dynamic reachability,
since we can precompute all O(n4) updates. This leaves us with the following problem.

Offline Dynamic Grid Reachability : We start from the directed n×n-grid graph G in which
all nodes are deactivated.2 We are given a sequence of updates u1, . . . , uU , where each
uℓ is of the form “activate node (i, j)” or “deactivate node (i, j)”. The goal is to compute
for each 1 ≤ ℓ ≤ U whether node (1, 1) can reach node (n, n) in G after performing the
updates u1, . . . , uℓ.

Our main algorithmic contribution is an algorithm for Offline Dynamic Grid Reacha-
bility in amortized time Õ(n2/3) per update. This is faster than the update time Õ(n)
obtained by using a dynamic algorithm for reachability in directed planar graphs [80].

Theorem 3.4. Offline Dynamic Grid Reachability can be solved in time Õ(n2+U ·n2/3).

The high-level approach of this algorithm is to consider all U updates in batches of
size at most k, which we call chunks. Roughly speaking, we design a grid reachability data
structure that given a chunk of k updates u1, . . . , uk, enables us to (1) for any 1 ≤ j ≤ k,
answer a grid reachability query in the matrix updated by u1, . . . , uj in time Õ(k) and (2)
obtain the data structure for the matrix updated by the complete chunk u1, . . . , uk in time
Õ(n
√
k+k). This way, for each of the O(U/k) chunks, we only need time Õ(k2) to answer

all k reachability queries for this chunk and time Õ(n
√
k+k) to update the data structure

for the next chunk, leading to a total time of Õ((U/k)(k2 + n
√
k)) = Õ(U(k + n/

√
k)).

By setting k ≈ n2/3, we obtain the desired algorithm running in time Õ(Un2/3) after
Õ(n2) preprocessing.

To obtain our data structure, we build on the reachability data structure of Ben
Avraham et al. [33], augmented by two crucial insights: How to incorporate a chunk of k
updates faster than k single updates, and how to succinctly store reachability information
for k distinguished nodes in the grid (coined terminals, which correspond to the updates

1This algorithm even works more generally for dynamic reachability in directed planar graphs.
2In fact, our algorithm also works in the general case in which nodes can be arbitrarily acti-

vated/deactivated in the beginning.
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of the next chunk) in the data structure. The latter is given by a surprisingly succinct
characterization of reachability of terminals in a grid graph (see Corollary 5.13), which
is the key technical contribution for the algorithm.

Let us give a more detailed overview of our algorithm and its main ingredients. Start
with a block [n] × [n] corresponding to the matrix M . Repeatedly split every block
horizontally in the middle, and then split every block vertically in the middle, until we
end up with constant-size blocks.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

We call all the blocks considered during this process (not just
the constant-size blocks!) the “canonical” blocks, see the figure to
the right. Ben Avraham et al. [33] showed that one can store for
each canonical block of sidelength s reachability information for
each pair of boundary nodes, succinctly represented using only
Õ(s) bits of space, and efficiently computable in time Õ(s) from
the information of the two canonical child-blocks. In particular,
over all blocks this information can be maintained in time Õ(n)
per update ui.

Ingredient 1: Batched updates. The first insight is that we can
compute the reachability after a given chunk of k updates u1, . . . , uk faster than Õ(nk):
Intuitively, each update “touches” roughly 2 log n blocks – all those that contain the node
which is activated or deactivated. Our approach now uses that among the canonical blocks
containing an update, the large blocks must be shared by many updates. Specifically,
instead of recomputing the reachability information of the large blocks at the top of the
hierarchy k times, we perform those updates jointly and thus avoid the runtime of k
explicit updates of large blocks. A careful tradeoff yields an update time of Õ(n

√
k + k).

Ingredient 2: Reachability among terminals. Now fix a chunk C = uℓ+1, . . . , uℓ+k and
let M denote the matrix at the beginning of C, i.e., after incorporating all updates prior
to uℓ+1. Denote by T (“terminals”) the entries that get activated or deactivated during
this chunk C, and also add (1, 1) and (n, n) to the set of terminals. We first deactivate
all terminals, obtaining a matrix M0 and a corresponding grid graph GM0 . The basic
idea now is to determine for each pair of terminals t, t′ ∈ T whether t′ is reachable from
t in GM0 .

Let us sketch a simplified algorithm that assumes we have built a graph H with vertex
set T , containing a directed edge (t, t′) if and only if t′ is reachable from t in GM0 . To
answer the reachability query whether (n, n) is reachable from (1, 1) after updating M
by uℓ+1, . . . , uℓ+j , we proceed as follows: For each terminal t, activate t in H if and only
if t is activated in M updated by uℓ+1, ..., uℓ+j . Check whether (n, n) is reachable from
(1, 1) in H. Since H has O(k) nodes and O(k2) edges, this reachability check can be
performed in time O(k2). (By choosing a chunk size of k ≈ n2/5 this would result in an
Õ(Un4/5) algorithm for Offline Dynamic Grid Reachability, ignoring the preprocessing
time.) We will later show how to improve the reachability query time from O(k2) to Õ(k)
by working directly on the graph GM0 instead of constructing the graph H. These details
are given in Chapter 5.

It remains to describe how to determine reachability information among terminals. To
this end, we design a surprisingly succinct representation of reachability from terminals
to block boundaries. Consider a canonical block B and let TB be the terminals in B.
For each terminal t ∈ TB let A(t) be the lowest/rightmost point on the right/upper
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boundary of B that is reachable from t, and similarly let Z(t) be the highest/leftmost
reachable point, see the illustration to the right. We label any terminal t = (x, y) by
L(t) := x+ y, i.e., the anti-diagonal that t is contained in. For any right/upper boundary
point q of B, let ℓ(q) be the minimal label of any terminal in TB from which q is reachable.
We prove the following succinct representation of reachability (see Corollary 5.13) that
significantly generalizes a previous characterization for reachability among the boundaries
of blocks [19, 33].

For any right/upper boundary point q of B and any terminal t ∈ TB,
q is reachable from t if and only if q ∈ [A(t), Z(t)] and ℓ(q) ≤ L(t).

t′

Z(t)

A(t)

t

q

L(t)

Here, q ∈ [A(t), Z(t)] is to be understood as “q lies be-
tween A(t) and Z(t) in counterclockwise direction along the
boundary of B”, which can be expressed using a constant
number of inequalities. The “only if” part is immediate, since
t can only reach boundary vertices in [A(t), Z(t)], and ℓ(q)
is the minimal label of any terminal reaching q; the “if” part
is surprising.

Assume we can maintain the information A(t), Z(t), ℓ(q).
Then using this characterization we can determine all ter-
minals reaching a boundary point q by a single call to orthogonal range searching, since
we can express the characterization using a constant number of inequalities. A complex
extension of this trick allows us to determine reachability among terminals (indeed, this
technical overview is missing many details of Section 5.3). This yields our algorithm, see
Sections 5.2 and 5.3 for details.

Conditional lower bound. Our reduction starts from the k-OV problem, which asks
for k vectors from k given sets such that in no dimension all vectors are 1. More formally:

k-Orthogonal Vectors (k-OV): Given sets V1, . . . , Vk of N vectors in {0, 1}D, are there
v1 ∈ V1, . . . , vk ∈ Vk such that for any j ∈ [D] there exists an i ∈ [k] with vi[j] = 0?

A naive algorithm solves k-OV in time O(NkD). It is well-known that the Strong Expo-
nential Time Hypothesis implies that k-OV has no O(Nk−εpoly(D))-time algorithm for
all ε > 0 and k ≥ 2 [160].

In our reduction we set k = 4. We consider canonical translations of the form τ =
(ε · h1, ε · h2) ∈ R2 with h1, h2 ∈ {0, . . . , N2 − 1}. By a simple gadget, we ensure that
any translation resulting in a discrete Fréchet distance of at most 1 must be close to a
canonical translation. For simplicity, here we restrict our attention to exactly the canonical
translations. Note that there are N4 canonical translations, and thus they are in one-to-
one correspondence to choices of vectors (v1, . . . , v4) ∈ V1 × . . .× V4. In other words, the
outermost existential quantifier in the definition of 4-OV corresponds to the existential
quantifier over the translation τ in the discrete Fréchet distance under translation.

The next part in the definition of 4-OV is the universal quantifier over all dimen-
sions j ∈ [D]. For this, our constructed curves π, σ are split into π = π(1) . . . π(D), σ =
σ(1) . . . σ(D) such that π(i), σ(j) are very far for i ̸= j. This ensures that the discrete
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Fréchet distance of π, σ is the maximum over all discrete Fréchet distances of π(i), σ(i),
and thus simulates a universal quantifier.

The next part is an existential quantifier over i ∈ [k]. Here we need an OR-gadget
for the discrete Fréchet distance. Such a construction in principle exists in previous
work [3, 38], however, no previous construction would work with translations, in the sense
that a translation in y-direction could only decrease the discrete Fréchet distance. By
constructing a more complex OR-gadget, we avoid this monotonicity.

Finally, we need to implement a check whether the translation τ corresponds to a
particular choice of vectors. We exemplify this with the first dimension of the translation,
which we call τ1, explaining how it corresponds to choosing (v1, v2). Let ind(v1), ind(v2) ∈
{0, . . . , N − 1} be the indices of these vectors in their sets V1, V2, respectively. We want
to test whether τ1 = ε · (ind(v1)+ ind(v2) ·N). We split this equality into two inequalities.
For the inequality τ1 ≥ ε · (ind(v1) + ind(v2) · N), in one curve we place a point at
π1 = (1 + ε · ind(v1),−1 − η), and in the other we place a point at σ1 = (−1 − ε ·
ind(v2) · N,−1 − η), for some η > 0 which we specify later in this work. Then the
distance of π1 to the translated σ1 is essentially their difference in x-coordinates, which
is (1 + ε · ind(v1))− (−1− ε · ind(v2) ·N + τ1) = 2+ ε · (ind(v1) + ind(v2) ·N)− τ1. This
is at most 2 if and only if the inequality for τ1 holds. We handle the opposite inequality
similarly, and we concatenate the constructed points for both inequalities in order to test
equality.

In total, our construction yields curves π, σ such that their discrete Fréchet distance
under translation is at most 1 if and only if V1, . . . , V4 contain orthogonal vectors. The
curves π, σ consist of n = O(D · N) vertices. Hence, an algorithm for the discrete
Fréchet distance under translation in time O(n4−ε) would yield an algorithm for 4-OV in
time O(N4−εpoly(D)), and thus violate the Strong Exponential Time Hypothesis. See
Chapter 8 for details.

3.2.2 Further Related Work

On directed planar/grid graphs. In this work we improve offline dynamic s-t-
reachability in directed grid graphs. The previously best algorithm for this problem came
from a more general solution to dynamic reachability in directed planar graphs. For this
problem, a solution with Õ(N2/3) update time was given by Subramanian [149], which
was later improved to update time Õ(

√
N) by Diks and Sankowski [80]. In particular,

our work yields additional motivation to study offline variants of classic dynamic graph
problems.

Related work on dynamic directed planar or grid graphs includes, e.g., shortest path
computation [8, 119, 124], reachability in the decremental setting [118], or computing the
transitive closure [80]. Recently, the first conditional lower bounds for dynamic problems
on planar graphs were shown by Abboud and Dahlgaard [4], however, they did not cover
dynamic reachability in directed planar graphs.

Other work on directed planar and grid graphs studies, e.g., the minimum amount of
space necessary to determine reachability between two nodes in polynomial time [25, 26].
For grid graphs this was recently improved from Õ(

√
N) to Õ(N1/3) [26], but with very

different techniques compared to ours.
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On related reachability data structures. In [19], a reachability data structure on
the free-space diagram is given to compute the Fréchet distance between closed curves and
also to compute the best matching to any subcurve under the Fréchet distance. In [129],
a data structure called the free-space map is presented, which improves the reachability
data structure of [19] and as a consequence shaves off logarithmic factors in the running
time of the above mentioned problems as well as improving the running time for other
problems.

3.2.3 Conclusions and Open Problems

To conclude, in this work, we design an improved algorithm for the discrete Fréchet
distance under translation running in time Õ(n14/3) = Õ(n4.66...). As a crucial subroutine,
we develop an improved algorithm for offline dynamic grid reachability. Additionally, we
present a conditional lower bound of n4−o(1) based on the Strong Exponential Time
Hypothesis, which, despite not yet matching our upper bound, strongly separates the
discrete Fréchet distance under translation from the standard discrete Fréchet distance.

Our use of offline dynamic grid reachability yields further motivation for studying
the offline setting of dynamic algorithms, for potential use as subroutines in static al-
gorithms. Problems left open by this work include: (1) Closing the gap between our
upper and conditional lower bound. This might require a solution to offline dynamic grid
reachability with polylogarithmic amortized update time. (2) Generalizing our bounds
to d = 1 or higher dimensions d ≥ 3, as in this work we only consider curves in the plane.
While generalizing our algorithm to d = 1 or d ≥ 3 seems rather straight-forward but
technical, obtaining strong conditional lower bounds for these cases is more interesting.
(3) Considering different transformations such as scaling, rotation, or affine transforma-
tions in general; here we only treat translations. Significantly new ideas seem necessary
to obtain meaningful lower bounds for other transformations. (4) Determine whether the
time complexity of variants of the discrete Fréchet distance, such as the continuous or
weak Fréchet distance, have similar or different relationships to their translation-invariant
analogues.

3.3 Hausdorff Distance Under Translation

We now give an overview of our lower bounds for the Hausdorff distance under translation
in the plane. The details are given in Chapter 6. In this work, we approach the Hausdorff
distance under translation from the viewpoint of fine-grained complexity theory [152]. Let
n and m be the sizes of the point sets that we want to compute the Hausdorff distance
under translation of. For two problem settings, we show that the known algorithms are
optimal up to lower order factors assuming standard hypotheses:

(1) We show an (nm)1−o(1) lower bound for all Lp norms — and in particular L1 and L∞,
matching the O(nm log2 nm)-time algorithm from [72] up to lower order factors,
see Section 6.1.

This result holds conditional on the Orthogonal Vectors Hypothesis, which states
that finding two orthogonal vectors among two given sets of n binary vectors in D
dimensions cannot be done in time O(n2−εpoly(D)) for any ε > 0. It is well-known
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Figure 3.2: Overview of reduction from Orthogonal Vectors to Hausdorff distance under
translation. The filled dots represent the first point set while the hollow dots represent
the other point set. Some details are omitted.

that the Orthogonal Vectors Hypothesis is implied by the Strong Exponential Time
Hypothesis [160], and thus our lower bound also holds assuming the latter [116].
These two hypotheses are the most standard assumptions used in fine-grained
complexity theory in the last decade [152].

(2) We show an n2−o(1) lower bound for L2 in the imbalanced case m = O(1), matching
the O(nm(n+m) log nm)-time algorithm from [72] up to lower order factors, see
Section 6.2. Previously, an n2−o(1) lower bound was only known for the more general
problem of computing the Hausdorff distance under translation of sets of segments
in the case that both sets have size n (a problem for which the best known algorithm
runs in time Õ(n4)) [31].

Our result holds conditional on the 3SUM Hypothesis, which states that deciding
whether, among n given integers, there are three that sum up to 0 requires time
n2−o(1). This hypothesis was introduced by Gajentaan and Overmars [97], is a
standard assumption in computational geometry [123], and has also found a wealth
of applications beyond geometry (see, e.g., [1, 7, 23, 138]).

Our lower bounds close gaps that have not seen any progress over 25 years. Further-
more, note that our second lower bound shows a separation between the L2 norm and the
L1 and L∞ norms, as in the imbalanced case m = O(1) the former admits a Õ(n)-time
algorithm [72] while the latter requires time n2−o(1) assuming the 3SUM Hypothesis.
We leave it as an open problem whether for L2 the balanced case n = m requires time
n3−o(1).

3.3.1 Technical Overview

We now give a rough outline of the two reductions, focusing on explaining the intuition
behind the constructions.

Reduction from Orthogonal Vectors. For a reduction from Orthogonal Vectors
to the Hausdorff distance under translation, we have to encode two structures into our
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Figure 3.3: The points of the basic gadget to encode the sequence x1, . . . , xn. The other
point set of the Hausdorff under translation instance then just consists of two points
that have a horizontal spacing of 2+ ε, concretely, the points (−1, 0) and (1 + ε, 0). This
restricts the horizontal translations to τx = i · ε+ xi · ε1.5 for i ∈ [n].

Hausdorff distance under translation instance, see Figure 3.2 for a sketch. First, we
have to encode vectors such that their Hausdorff distance indicates whether they are
orthogonal or not. Second, we have to place these encoded vectors such that we can check
for orthogonality between all combinations of vectors. To encode the vectors, we can place
a point for each dimension such that all these points are almost vertically aligned, except
that they exhibit small horizontal perturbations depending on the entry in the respective
dimension. If we align these vector gadgets vertically in a certain horizontal distance,
then they only have a small Hausdorff distance if the encoded vectors are orthogonal.
See Figure 3.2(a) for an example of such vector gadgets. Thus, by arranging the vector
gadgets in the plane such that by translations only above mentioned alignments are
possible for all vector combinations, we can check for orthogonality between all vectors
using the Hausdorff distance under translation. See Figure 3.2(b) for a sketch of the
placement of the vector gadgets.

Reduction from 3SUM. Instead of reducing from 3SUM to Hausdorff distance under
translation, we reduce from an equivalent problem called convolution 3SUM (Conv3Sum).
As opposed to the 3SUM problem where the input is a set of integers, for Conv3Sum
we are given a sequence of integers X = (x1, . . . , xn). We then ask whether there exist
i, j ∈ [n] such that xi + xj = xi+j . Note that Conv3Sum also has a straightforward
quadratic time algorithm: simply iterate over all choices of i, j ∈ [n] and check if it
fulfills the constraint. To encode the sequence of numbers (x1, . . . , xn) into a Hausdorff
distance under translation instance, we add a linear number of points to the first set and
a constant number of points to the second set to encode the constraint τx = i · ε+xi · ε1.5
on the translation τ = (τx, τy) for some small ε > 0, see Figure 3.3 for a sketch of
this construction. By rotating and scaling this gadget, we can additionally obtain the
constraints

τy = j · ε+ xj · ε1.5 and τx + τy = k · ε+ xk · ε1.5.

By plugging the first two constraints into the third constraint and choosing ε > 0
sufficiently small, we can see that all of the above constraints can only be fulfilled by
a translation τ = (τx, τy) with τx + τy = k · ε + xk · ε1.5 such that k = i + j and
xi+xj = xi+j for some i, j ∈ [n]. Thus, we encode Conv3Sum into a Hausdorff distance
under translation instance.
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3.3.2 Related Work

Our work continues a line of research on fine-grained lower bounds in computational
geometry, which had early success with the 3SUM Hypothesis [97] and recently got a new
impulse with the Orthogonal Vectors Hypothesis (or Strong Exponential Time Hypothesis)
and resulting lower bounds for the Fréchet distance [38], see also [48, 56]. Continuing
this line of research is getting increasingly difficult, although there are still many classic
problems from computational geometry without matching lower bounds. In this work we
obtain such bounds for two settings of the classic Hausdorff distance under translation.
Further work on the Hausdorff distance under translation includes an O((n+m) log nm)-
time algorithm for point sets in one dimension [142]. For generalizations to dimensions
d > 2 see [71, 72].

3.4 Engineering of the Fréchet Distance

We now give an overview of our engineered solution for the Fréchet distance. The details
are given in Chapter 9. Initially defined more than one hundred years ago [94], the
Fréchet distance quickly gained popularity in computer science after the first algorithm
to compute it was presented by Alt and Godau [19]. In particular, they showed how to
decide whether two length-n curves have Fréchet distance at most δ in time O(n2) by
full exploration of a quadratic-sized search space, the so-called free-space (we refer to
Chapter 2 for a definition). Almost twenty years later, it was shown that, conditional
on the Strong Exponential Time Hypothesis (SETH), there cannot exist an algorithm
with running time O(n2−ε) for any ε > 0 [38]. Even for realistic models of input curves,
such as c-packed curves [82], exact computation of the Fréchet distance requires time
n2−o(1) under SETH [38]. Only if we relax the goal to finding a (1 + ε)-approximation of
the Fréchet distance, algorithms with near-linear running times in n and c on c-packed
curves are known to exist [40, 82].

It is a natural question whether these hardness results are mere theoretical worst-
case results or whether computing the Fréchet distance is also hard in practice. This
line of research was particularly fostered by the research community in form of the GIS
Cup 2017 [158]. In this competition, the 28 contesting teams were challenged to give
a fast implementation for the following problem: Given a data set of two-dimensional
trajectories D, answer queries that ask to return, given a curve π and query distance δ,
all σ ∈ D with Fréchet distance at most δ to π. We call this the near neighbors problem.

The three top implementations [30, 54, 87] use multiple layers of heuristic filters and
spatial hashing to decide as early as possible whether a curve belongs to the output set
or not, and finally use an essentially exhaustive Fréchet distance computation for the
remaining cases. Specifically, these implementations perform the following steps:

(0) Preprocess D.

On receiving a query with curve π and query distance δ:

(1) Use spatial hashing to identify candidate curves σ ∈ D.

(2) For each candidate σ, decide whether π, σ have Fréchet distance ≤ δ:
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a) Use heuristics (filters) for a quick resolution in simple cases.

b) If unsuccessful, use a complete decision procedure via free-space exploration.

Let us highlight the Fréchet decider outlined in steps 2a and 2b: Here, filters refer to
sound, but incomplete Fréchet distance decision procedures, i.e., whenever they succeed
to find an answer, they are correct, but they may return that the answer remains un-
known. In contrast, a complete decision procedure via free-space exploration explores a
sufficient part of the free space (the search space) to always determine the correct answer.
As it turns out, the bottleneck in all three implementations is precisely Step 2b, the
complete decision procedure via free-space exploration. Especially [30] improved upon
the naive implementation of the free-space exploration by designing very basic pruning
rules, which might be the advantage because of which they won the competition. There
are two directions for further substantial improvements over the cup implementations: (1)
increasing the range of instances covered by fast filters and (2) algorithmic improvements
of the exploration of the reachable free-space.

3.4.1 Our Contribution

We develop a fast, practical Fréchet distance implementation. To this end, we give a
complete decision procedure via free-space exploration that uses a divide-and-conquer
interpretation of the Alt-Godau algorithm for the Fréchet distance and optimize it using
sophisticated pruning rules. These pruning rules greatly reduce the search space for the
realistic benchmark sets we consider – this is surprising given that simple constructions
generate hard instances which require the exploration of essentially the full quadratic-sized
search space [38, 48]. Furthermore, we present improved filters that are sufficiently fast
compared to the complete decider. Here, the idea is to use adaptive step sizes (combined
with useful heuristic tests) to achieve essentially “sublinear” time behavior for testing
if an instance can be resolved quickly. Additionally, our implementation is certifying
(see [131] for a survey on certifying algorithms), meaning that for every decision of curves
being close/far, we provide a short proof (certificate) that can be checked easily; we also
implemented a computational check of these certificates.

An additional contribution of this work is the creation of benchmarks to make future
implementations more easily comparable. We compile benchmarks both for the near
neighbors problem (Steps 0 to 2) and for the decision problem (Step 2). For this, we used
publicly available curve data and created queries in a way that should be representative
for the performance analysis of an implementation. As data sets we use the GIS Cup
trajectories [9], a set of handwritten characters called the Character Trajectories Data
Set [65] from [79], and the GeoLife data set [102] of Microsoft Research [165, 166, 167]. Our
benchmarks cover different distances and also curves of different similarity, giving a broad
overview of different settings. The source code as well as the benchmarks are publicly
available to enable independent comparisons with our approach [46]. Additionally, we
particularly focus on making our implementation easily readable to enable and encourage
others to reuse the code.
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3.4.2 Evaluation

The GIS Cup 2017 had 28 submissions, with the top three submissions3 (in decreasing or-
der) due to Bringmann and Baldus [30], Buchin et al. [54], and Dütsch and Vahrenhold [87].
We compare our implementation with all of them by running their implementations on our
new benchmark set for the near neighbors problem and also comparing to the improved
decider of [30]. The comparison shows significant speed-ups up to almost a factor of 30
for the near neighbors problem and up to more than two orders of magnitude for the
decider.

3.4.3 Related Work

After the GIS Cup 2017, several practical papers studying aspects of the Fréchet distance
appeared [27, 59, 155]. Some of this work [27, 59] addressed how to improve upon the
spatial hashing step (Step 1) if we relax the requirement of exactness. Since this is
orthogonal to our approach of improving the complete decider, these improvements could
possibly be combined with our algorithm. The other work [155] neither compared itself
with the GIS Cup implementations, nor provided their source code publicly to allow for
a comparison, which is why we have to ignore it here.

3.5 Engineering of the Fréchet Distance Under Translation

We now give an overview of our engineered solution for the Fréchet distance under
translation in the Euclidean plane. The details are given in Chapter 10. The question
that we want to answer is: can we compute the Fréchet distance under translation quickly?
The existing theoretical work yields a rather pessimistic outlook: For the discrete Fréchet
distance under translation in the plane, the currently fastest algorithm runs in time
O(n4.667), and any algorithm requires time n4−o(1) under the Strong Exponential Time
Hypothesis, see Chapters 5 and 8. These high polynomial bounds appear prohibitive
in practice, and have likely impeded algorithmic uses of this similarity measure. (For
the continuous analogue, the situation appears even worse, as the fastest algorithm
has a significantly higher worst-case bound of O(n8 log n); we thus solely consider the
discrete version in this work.) Given the surprising performance of recent Fréchet distance
implementations on realistic curves, see [158] and Chapter 9, can we still hope for faster
algorithms on realistic inputs also for its translation-invariant version?

Towards making the Fréchet distance under translation applicable for practical appli-
cations, we engineer a fast implementation and analyze it empirically on realistic inputs.
Perhaps surprisingly, our fastest solution for the problem combines inexact continuous
optimization techniques with an exact, but expensive problem-specific approach from
computational geometry to obtain an exact decision algorithm. The source code as well
as the benchmarks are publicly available to enable independent comparisons with our
approach [47].

3The submissions were evaluated “for their correctness and average performance on a[sic!] various large
trajectory databases and queries”. Additional criteria were the following: “We will use the total elapsed
wall clock time as a measure of performance. For breaking ties, we will first look into the scalability
behavior for more and more queries on larger and larger datasets. Finally, we break ties on code stability,
quality, and readability and by using different datasets.”
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Figure 3.4: Example curves (left) together with their arrangement (right).

In the remainder of this section, we give a technical overview of our result. There
are two possible approaches to computing the Fréchet distance under translation in the
literature. First, to compute it exactly, we can use the arrangement-based approach that
was first presented in [120]. Second, observing that the Fréchet distance is 1-Lipschitz in
the translation, we can compute an approximation by using techniques from Lipschitz
optimization. Let us briefly consider both approaches.

3.5.1 Arrangement-Based Algorithms

We intuitively explain the arrangement-based approach of [120] for deciding whether the
Fréchet distance under translation of two trajectories π and σ is at most δ. Let n be the
complexity of both π and σ. For all pairs p, q of vertices of π, σ, we want to partition the
translation space into translations that translate q into distance δ of p and the remaining
translations. Note that this partition is induced by the δ-circle around p − q. Thus,
inserting all such O(n2) circles into an arrangement gives us a partition of the plane of
size O(n4) of the translation space. See Figure 3.4 for an example of two curves and
their arrangement. The important observation now is that all translations in a cell of this
arrangement have the same decision for whether the Fréchet distance under translation
of π and σ is at most δ. This is the case because, for all pairs of vertices, whether they are
in distance at most δ or not is uniform for all translations in a cell and thus a traversal
is either in distance at most δ for all such translations or none. Consequently, checking
a representative from each cell of the partition and only returning “yes” if any of these
representatives returns “yes” is a correct decision algorithm. For this check to be as fast
as possible, we need a very fast Fréchet distance decider. We engineered such a decider
in previous work and present it in Chapter 9 of this thesis.

3.5.2 Global Lipschitz Optimization

Consider how the Fréchet distance behaves when translating one of the curves. In Fig-
ure 3.5 we plot the discrete Fréchet distance ddF (π, σ + τ) for a range of values τ ∈ R2

for two curves from a handwritten characters data set. On the left side, we can see that
globally the function looks smooth and almost convex, however, on the right side, we can
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Figure 3.5: An example of the Fréchet distance plotted over the translations in a zoomed
out view (left) and a zoomed in view (right). Globally the function is almost convex, but
locally it shows highly non-convex artifacts.

see that the function has highly non-convex artifacts locally. Regarding smoothness, one
can ask how much the Fréchet distance can change when translating one of the curves by
some τ . As the maximal distance of the best traversal of the curves without translation
can change at most by ∥τ∥, we have that

|ddF(π, σ + τ)− ddF(π, σ)| ≤ ∥τ∥ .

Thus, the Fréchet distance is 1-Lipschitz in the translation. Due to this property, we can
use techniques from Lipschitz optimization on the Fréchet distance under translation,
which we describe briefly in the following.

We start with an initial region of translations from which we know that it contains
the translation that realizes the Fréchet distance under translation, and then use divide
and conquer with pruning to narrow down the region in which the minimum lies. More
precisely, due to the Lipschitz property, evaluating a single translation inside a region
gives us a lower and upper bound on all the costs in this region (as they cannot deviate
more than the diameter of this region from the sample). If we already found a better
global solution than the lower bound of the current region, we can stop searching in this
region. If we find a better upper bound, then we update our global upper bound.

3.5.3 Our Solution: A Combination

Both approaches have major drawbacks when used by themselves. The arrangement-
based approach already has a very high complexity for very short curves: see Figure 3.4
for how complicated an arrangement of two practical, low-complexity curves can become.
On the other hand, the Lipschitz optimization approach is only approximative and it
becomes significantly slower when requiring close approximations. In particular, the local
non-convex features shown in Figure 3.5 cannot easily be pruned as they all contain
local minima that are close to the global minimum. Our main idea consists of combining
both approaches in the following way. We run the Lipschitz optimization described above
and then upper bound the arrangement size for each region in the divide and conquer
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approach before processing it. If this arrangement size upper bound is below a certain
threshold, we use the arrangement-based approach to decide the Fréchet distance for
all translations in this region, avoiding deep recursions in practice. As is common in
algorithm engineering, there are many details that need to be engineered in order to
achieve a performant implementation. See Chapter 10 for these details.
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CHAPTER 4
Continuous Fréchet Approximate Near

Neighbor Search

For a technical overview of this chapter see Section 3.1. The structure of this chapter
is as follows. In Section 4.1 we define the notation and state some known facts and
observations. In Section 4.2 we define key concepts, and we present their properties and
our main technical lemmas. Our data structures are described and analyzed in Sections
4.3, 4.4, and 4.5. In Section 4.6 we prove our main technical lemmas.

4.1 Preliminaries

Recall that we are in the ANN setting and, unless mentioned otherwise, n denotes the
number of input curves, m denotes the complexity of the input curves, and k denotes
the complexity of the query curves. For any two points p, q ∈ Rd, pq denotes the directed
line segment connecting p with q in the direction from p to q. In this chapter, we always
parametrize the polygonal curves via the interval [0, 1], i.e., a polygonal curve is defined
as P : [0, 1] 7→ Rd. For d = 1, we may refer to the curve as a one-dimensional curve
or as a time series. For a point x ∈ Rd and a polygonal curve P , we use the notation
x ∈ P to indicate that there exists a t ∈ [0, 1] such that P (t) = x. Furthermore, let
Gε := {i · ε | i ∈ Z} be the regular grid with side-length ε > 0. We will use the following
known observations (see also [53] and [81]).

Observation 4.1. For any two line segments X = ab, Y = cd it holds that dF(X,Y ) =
max{∥a− c∥, ∥b− d∥}.

Observation 4.2. Let two polygonal curves Q : [0, 1] 7→ Rd and P : [0, 1] 7→ Rd be the
concatenations of two subcurves each, Q = Q1 ◦Q2 and P = P1 ◦ P2. Then it holds that
dF(P,Q) ≤ max{dF(Q1, P1),dF(Q2, P2)}.

Observation 4.3. Let Q be a line segment and let P be a curve with dF(P,Q) ≤ δ. Let
P ′ be a curve that is formed from a subsequence of the vertex sequence of P including
the first and last vertex of P . Then, dF(P ′, Q) ≤ δ.

Our data structures can be implemented to work on the Word-RAM and under certain
assumptions on the Real-RAM, as discussed next. Central to our approach is the use of
a dictionary, which we define as follows.

Definition 4.4 (Dictionary). A dictionary is a data structure which stores a set of (key,
value) pairs and when presented with a key, either returns the corresponding value, or
returns that the key is not stored in the dictionary.
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In the Word-RAM model, such a dictionary can be implemented using perfect hashing.
For storing a set of n (key,value) pairs, where the keys come from a universe Uk, perfect
hashing provides us with a dictionary using O(nk) space and O(k) query time which
can be constructed in O(nk) expected time [95]. During look-up, we compute the hash
function in O(k) time, we access the corresponding bucket in the hashtable in O(1) time
and check if the key stored there is equal to the query in O(k) time. This gives an efficient
randomized implementation of dictionaries. Alternatively, we can use balanced binary
search trees and pay an additional log n factor in preprocessing and query time of the
dictionary. This deterministic algorithm also works in the Real-RAM model, if we assume
that the floor function can be computed in constant time—a model which is often used in
the literature [109]. In the Word-RAM model, we use the standard assumption that the
word size is logarithmic in the size of the input, and we ensure that all numbers (vertices
of the time series, results of intermediate computations, etc.) are restricted to be of the
form a/b where a is an integer in [−(nm)O(1), (nm)O(1)] and b = (nm)O(1).

4.2 Simplifications, Signatures, and Straightenings

In this section we state the main definitions and lemmas that we use to describe our
algorithms and prove their correctness. To allow for an easier understanding of our results,
we then already describe our algorithms and prove correctness using these lemmas. In
Section 4.6 we then give the proofs of the lemmas presented in the current section.

4.2.1 Definitions

Let us start with two basic definitions.

Definition 4.5. We say a curve P : [0, 1] → R is δ-monotone if one of the following
statements holds:

(i) ∀ t < t′ ∈ [0, 1] : P (t′) ≥ P (t)− δ,
(ii) ∀ t < t′ ∈ [0, 1] : P (t′) ≤ P (t) + δ.

More specifically, we say the curve is δ-monotone increasing in case (i) and δ-monotone
decreasing in case (ii). Note that a curve can be both δ-monotone increasing and decreasing
at the same time. In addition, we may say P is δ-monotone with respect to a directed
segment ab, if a ≤ b in case (i) and if b ≤ a in case (ii).

Definition 4.6. The δ-range of a point p ∈ R is the interval B(p, δ) = [p− δ, p+ δ]. The
δ-range of a curve P is the interval B(P, δ) =

⋃
x∈P B(x, δ).

We now define the notion of simplification that we use in this chapter.

Definition 4.7 (δ-simplification). Given a curve P : [0, 1] 7→ Rd, a δ-simplification is a
curve P ′ : [0, 1] 7→ Rd that is given as P ′ = ⟨P (t1), . . . , P (tℓ)⟩ for a sequence of values
0 = t1 < · · · < tℓ = 1, such that each P (ti) is a vertex of P , P ′ is non-degenerate, and

dF(P (ti)P (ti+1), P [ti, ti+1]) ≤ δ, for all 1 ≤ i < ℓ. (4.1)

We also refer to (4.1) as the locality property. Furthermore, note that if P ′ is a δ-
simplification of P , then dF(P, P

′) ≤ δ and the complexity of P ′ is at most the complexity
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of P . Note that the vertices of a δ-simplification P ′ give us a natural partition of P .
Furthermore, we want to highlight that our definition of a simplification is one out of
many definitions that are used in literature. In particular, in other work curves which are
degenerate or non vertex-restricted are also called simplifications. Now we define some
properties that a simplification can or must have.

Observation 4.8 (direction-preserving property). For any i and any δ-simplification
P ′ = ⟨P (t1), . . . , P (tℓ)⟩ of a curve P : [0, 1] 7→ R, the subcurve P [ti, ti+1] is 2δ-monotone
with respect to P (ti)P (ti+1).

Definition 4.9 (vertex-range-preserving property). Let P ′ = ⟨P (t1), . . . , P (tℓ)⟩ be a
δ-simplification of a curve P : [0, 1] 7→ R. We say P ′ is range-preserving on the vertex
P (ti) if the following holds:

(i) if P (ti) is a local maximum on P ′, then P (t) ≤ P (ti) for all t in [ti−1, ti+1], and

(ii) if P (ti) is a local minimum on P ′, then P (t) ≥ P (ti) for all t in [ti−1, ti+1].

We say P ′ is vertex-range-preserving, if it is vertex-range-preserving on all interior ver-
tices.

Definition 4.10 (edge-range-preserving property). Let P ′ = ⟨P (t1), . . . , P (tℓ)⟩ be a
δ-simplification of P : [0, 1] 7→ R. We say that P ′ is edge-range-preserving on edge
P (ti)P (ti+1) if for any t ∈ [ti, ti+1] it holds that P (t) ∈ P (ti)P (ti+1). We say P ′ is
edge-range-preserving if this condition holds for all edges of P ′.

Note that the vertex-range-preserving property is implied by the edge-range-preserving
property, but not the other way around. However, the vertex-range preserving property
implies the edge-range-preserving property on all edges except the first and the last edge.

Definition 4.11 (δ-edge-length property). We say that a one-dimensional curve P =
⟨p1, . . . , pm⟩ has the δ-edge-length property if

• |p1 − p2| > δ and |pm−1 − pm| > δ, and

• |pi − pi+1| > 2δ for all i ∈ {2, . . . ,m− 2}.

Finally, we can define two of the main concepts that we use in our algorithms: δ-
signatures and δ-straightenings. These two definitions help us to preprocess the input set
of one-dimensional curves and the query curve in ways such that an efficient retrieval is
possible.

Definition 4.12 (δ-signature). A δ-simplification P ′ of a one-dimensional curve P is a
δ-signature if it has the δ-edge length property and is vertex-range-preserving.

Definition 4.13 (δ-straightening). A δ-simplification P ′ of a one-dimensional curve P
is a δ-straightening if it is edge-range-preserving.

The above definition of a δ-signature is equivalent to the definition given in [83]. For
any δ > 0 and any curve P : [0, 1] 7→ R of complexity m, a δ-signature of P can be
computed in O(m) time [83]. The δ-signature of a curve is unique under certain general-
position assumptions, however we do not explicitly use this property in our proofs. Note
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Figure 4.1: P1 is a 1-signature of P0, whereas P2 and P3 are 1-straightenings of P0.

that δ-straightenings are not unique. In fact, there can be many different δ-straightenings
of the same curve, e.g., P itself is a δ-straightening of P for any δ > 0. We give an
example of a signature and different straightenings of the same curve in Figure 4.1.

We introduce the notion of visiting orders, which we will use to prove correctness of
our data structures.

Definition 4.14. Let P : [0, 1]→ R and Q : [0, 1]→ R be curves. Let u1, . . . , uℓ denote
the ordered vertices of Q and let v1, . . . , vm denote the ordered vertices of P . A (partial)
δ-visiting order of Q on P is a sequence of indices i1 ≤ · · · ≤ iℓ, such that |uj−vij | ≤ δ
for each vertex uj of Q.

In particular, if we know that there exists a δ-visiting order of Q on P , then we
can approximately “guess” Q from the vertex sequence of P , by enumerating all possible
visiting orders of the vertices of P and for any fixed visiting order, enumerating all eligible
sequences over a grid within the δ-ranges of these vertices.

Driemel, Krivosija and Sohler proved the following lemma (rephrased using δ-visiting
orders).

Lemma 4.15 (Lemma 3.2 [83]). Let P : [0, 1]→ R and Q : [0, 1]→ R be curves and let
P ′ be a δ-signature of P . If dF(P,Q) ≤ δ, then there exists a δ-visiting order of P ′ on Q.

4.2.2 Main Lemmas

In this section we present the main lemmas for signatures and straightenings that we will
use in Sections 4.3 to 4.5. Their proofs are deferred to Section 4.6.

Most of our lemmas improve the basic triangle inequality dF(P,Q) ≤ dF(P,X) +
dF(X,Q) in some situations involving signatures and straightenings.

Lemma 4.16. Let P : [0, 1] 7→ R and Q : [0, 1] 7→ R be two curves and let Q′ be any
δ-straightening of Q. If dF(P,Q′) ≤ δ then dF(P,Q) ≤ δ.

We would like to show the equivalent statement of Lemma 4.16 for signatures. However,
as the example in Figure 4.2 shows, this is not possible. Instead, we show a slightly weaker
bound in the following lemma.

Lemma 4.17. Let δ = δ′ + δ′′ for δ, δ′, δ′′ ≥ 0 and let P : [0, 1] 7→ R and Q : [0, 1] 7→ R
be two curves. Let Q′ be any δ′-signature of Q. If dF(Q′, P ) ≤ δ, |Q(0)−P (0)| ≤ δ′′, and
|Q(1)− P (1)| ≤ δ′′, then dF(P,Q) ≤ δ.
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P : X : Q :
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Figure 4.2: This example shows that an equivalent statement of Lemma 4.16 for sig-
natures is not true. The curve X = ⟨−1, 2⟩ is a 1-signature of Q = ⟨−1,−2, 2⟩ and the
curve P = ⟨0, 1,−1, 2⟩ has Fréchet distance 1 to X, but the Fréchet distance of P to Q
is 2.

Note that Lemma 4.16 is much stronger than what we would get by merely applying
the triangle inequality on the Fréchet distances on the curves P , Q and Q′. Lemma 4.17,
although weaker, is still stronger than the bound we would get from the triangle inequality.
To illustrate this we include the following corollary. Note that merely using triangle
inequality would yield dF(P,Q) ≤ 6δ, instead of dF(P,Q) ≤ 3δ.

Corollary 4.18. For one-dimensional curves P,Q let P ′ be a δ-signature of P , and let Q′

be the 2δ-signature of Q. If dF(P ′, Q′) ≤ 3δ and |P ′(0)−Q′(0)| ≤ δ, |P ′(1)−Q′(1)| ≤ δ,
then dF(P,Q) ≤ 3δ.

Proof. Follows from applying of Lemma 4.17 twice. We first apply the lemma to P ′, Q′

and P and obtain dF(P,Q
′) ≤ 3δ. In the second step, we apply the lemma to P , Q′ and

Q and obtain dF(P,Q) ≤ 3δ.

The following lemma is used to show correctness for our (1 + ε) and (2 + ε)-ANN.

Lemma 4.19. Let P : [0, 1] 7→ R and Q : [0, 1] 7→ R be curves such that dF(Q,P ) ≤ δ,
there exists a δ-straightening Q′ of Q which satisfies the following properties:

(i) there exists a (11δ)-visiting order of Q′ on P , and
(ii) dF(Q

′, P ) ≤ δ.

We use the following lemma to show correctness for our (3+ ε)-ANN. One part of the
lemma statement, the existence of a 2δ-visiting orders, was already used in [84]. However,
the resulting approximation factor of the ANN obtained there was (5 + ε). In order to
show correctness of our (3 + ε)-ANN, it is necessary to prove the bound of 3δ on the
resulting Fréchet distance of the two signature curves. Note that the triangle inequality
implies a bound of 4δ—which would not be sufficient for us.

Lemma 4.20. For one-dimensional curves P,Q let P ′ be a δ-signature of P , and let Q′

be a 2δ-signature of Q. If dF(P,Q) ≤ δ then dF(P
′, Q′) ≤ 3δ and there exists a 2δ-visiting

order of Q′ on P ′.

4.3 (1 + ε)-Approximation

In this section, we show that there exists a (1+ε)-ANN data structure for one-dimensional
curves under the Fréchet distance, with space in n · O(mkε)k, expected preprocessing time
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in nm ·O(mkε)k and query time in O(k ·2k). We describe the data structure in Section 4.3.1
and we analyze its performance in Section 4.3.2.

4.3.1 The Data Structure

Data structure. We are given as input a set of one-dimensional curves P , as sequences
of vertices, the distance threshold δ > 0, the approximation error ε > 0, and the complexity
of the supported queries k. To discretize the query space, we use the grid Gεδ/2 (recall
that Gε := {i · ε | i ∈ Z} is the regular grid with side-length ε). Let H be a dictionary
which is initially empty. For each input one-dimensional curve P ∈ P we compute a set
C′ := C′(P ) which contains all curves Q such that: i) Q has complexity at most k, ii) all
vertices of Q belong to Gεδ/2, and iii) there is an ((11 + ε/2)δ)-visiting order of Q on P .
Formally,

C′ = {⟨u1, . . . , uℓ⟩ | ℓ ≤ k and ∃(i1, . . . , iℓ)(i1 ≤ · · · ≤ iℓ and
(∀j ∈ [ℓ])(uj ∈ B(pij , (11 + ε/2)δ) ∩ Gεδ/2))}.

Next, we filter C′ to obtain the set C(P ) = {Q ∈ C′ | dF(Q,P ) ≤ (1 + ε/2)δ}. We
store C(P ) in H as follows: for each Q ∈ C(P ), if Q is not already stored in H, then we
insert Q into H, associated with a pointer to P .

The complete pseudocode for the preprocessing algorithm can be found in Algorithms 1
and 2. To achieve approximation factor (1 + ε), we run preprocess(P, δ, ε/2, k).

Query algorithm. Let Q be the query curve with vertices q1, . . . , qk and let ε > 0 be
the approximation error. The query algorithm first enumerates all curves Q′ such that
Q′ ∈ {⟨q1, S, qk⟩ | S is a subsequence of q2, . . . , qk−1}. For each such Q′ we test whether
it is a δ-straightening of Q. To this end, we first test if each shortcut taken in Q′ is within
distance δ from the corresponding subcurve of Q. Then we check for each shortcut if the
corresponding subcurve of Q stays within range by testing all vertices of the subcurve
one by one. If Q′ is a δ-straightening of Q, then we snap the vertices of Q′ to Gεδ/2, to
obtain a new curve Q′′ and we probe H: if Q′′ is stored in H, then we return its associated
input curve P ∈ P. If Q′′ is not stored in H, then we return “no”.

The complete pseudocode for the query algorithm can be found in Algorithm 3. To
achieve approximation factor (1 + ε), we run query(Q, δ, ε/2).

4.3.2 Analysis

In this section, we analyze the performance of our data structure.

Lemma 4.21. For any curve P with vertices p1, . . . , pm, δ > 0, ε > 0, r ≥ ε, k ∈ N, the
procedure generate_candidates(P, δ, r, ε, k) has running time in(

m+ k − 2

k − 2

)
· O
(r
ε

)k
.

Proof. The set I contains all sequences of indices (i1, . . . , iℓ) ∈ [m]ℓ such that ℓ ≤ k, and
1 = i1 ≤ · · · ≤ iℓ = m. Let Iℓ be the subset of I containing the sequences of length ℓ as
denoted in generate_orders. We first claim that generate_orders(m, k) runs in time
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1: procedure generate_orders(m ∈ N, k ∈ N)
2: I2 ← {(1,m)}
3: for each ℓ = 3, . . . , k do
4: Iℓ ← ∅
5: for each (i1, . . . , iℓ−1) ∈ Iℓ−1 do ▷ iℓ−1 = m
6: for each j = iℓ−2, . . . ,m do
7: Iℓ ← Iℓ ∪ {(i1, . . . , iℓ−2, j,m)}
8: return

⋃
2≤ℓ≤k Iℓ

Algorithm 1: A call to generate_orders(m, k) returns all (i1, . . . , iℓ) ∈ [m]ℓ, where
ℓ ∈ [k] and such that 1 = i1 ≤ · · · ≤ iℓ = m. We assume k ≥ 2.

1: procedure preprocess(input set P, δ > 0, ε > 0, k ∈ N)
2: Initialize empty dictionary H
3: for each P ∈ P do
4: C(P )← generate_keys(P, δ, ε, k)
5: for each Q ∈ C(P ) do
6: if Q not in H then
7: insert key Q in H, associated with a pointer to P

8: procedure generate_keys(curve P , δ > 0, ε > 0, k ∈ N)
9: C′ ←generate_candidates(P, δ, (11 + ε), ε, k)

10: C ← ∅
11: for each Q ∈ C′ do
12: if dF(P,Q) ≤ (1 + ε)δ then
13: C ← C ∪ {Q}
14: return C
15: procedure generate_candidates(curve P with vertices p1, . . . , pm, δ > 0, r > 0,

ε > 0, k ∈ N)
16: S ← ∅, C′ ← ∅
17: I ←generate_orders(m, k)
18: for each (i1, . . . , iℓ) ∈ I do
19: S ← S ∪∏ℓ

j=1B(pij , rδ) ∩ Gεδ
20: for each σ ∈ S do
21: C′ ← C′ ∪ {⟨σ⟩}
22: return C′
Algorithm 2: Preprocessing algorithm. We call preprocess to build the data structure.
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1: procedure query(curve Q with vertices q1, . . . , qk, δ > 0, ε > 0)
2: I ←generate_orders(k, k)
3: for each (i1, . . . , iℓ) ∈ I do
4: flag ← 1
5: for j = 1, . . . , ℓ− 1 do
6: if dF(qijqij+1 ,

〈
qij , . . . , qij+1

〉
) > δ then ▷ test δ-simplification property

7: flag ← 0

8: for each t = ij , . . . , ij+1 do ▷ test edge-range-preserving property
9: if qt /∈ qijqij+1 then

10: flag ← 0

11: if flag = 1 then
12: Q′ ← ⟨qi1 , . . . , qiℓ⟩ ▷ a δ-straightening of Q
13: Q′′ ←

〈⌊ qi1
εδ

⌋
· (εδ), . . . ,

⌊
qiℓ
εδ

⌋
· (εδ)

〉
▷ snap Q′ to Gεδ

14: if Q′′ in H then
15: return input curve P associated with Q′′ in H
16: return “no”

Algorithm 3: Query algorithm

O(|I| · k). To see that, consider any sequence of indices s ∈ I. During the execution of
generate_orders, s is added to the sets of indices (Line 7) only once. This step costs
O(k), therefore the running time of generate_orders(m, k) is in O(|I| · k). Now, let S ′
be a multiset which contains all sequences (including duplicates) which are generated and
inserted to S in all executions of Line 19 of generate_candidates. The running time
of generate_candidates(P, δ, r, ε, k) is upper bounded by O(|S ′| · k), because |S ′| ≥ |I|
and computing C′ costs O(|S ′| · k) time. We proceed by showing an upper bound on |S ′|.

Any sequence (x1, . . . , xℓ) ∈ Gℓεδ, which is included in S ′, may appear in the com-
putation taking place in Line 19 multiple times: once for each sequence of indices
(i1, . . . , iℓ) ∈ I such that for each j ∈ [ℓ], xj ∈ B(pij , rδ). Notice that |Iℓ| is equal
to the number of combinations of ℓ− 2 objects taken (with repetition) from a set of size
m, i.e. |Iℓ| =

(
m+ℓ−3
ℓ−2

)
. Hence, by the Hockey-stick identity,

|I| =
k∑

ℓ=2

|Iℓ| =
k∑

ℓ=2

(
m+ ℓ− 3

ℓ− 2

)
=

k−2∑
ℓ=0

(
m+ ℓ− 1

ℓ

)
=

(
m+ k − 2

k − 2

)
. (4.2)

Using (4.2), we can bound |S ′| as follows:

|S ′| ≤
k∑

ℓ=2

∑
(i1,...iℓ)∈Iℓ

∣∣∣∣∣∣
ℓ∏

j=1

B(pij , rδ) ∩ Gεδ

∣∣∣∣∣∣
≤

k∑
ℓ=2

|Iℓ| · O
(r
ε

)ℓ
≤ |I| · O

(r
ε

)k
≤
(
m+ k − 2

k − 2

)
· O
(r
ε

)k
.

Hence, the running time is O(|S ′| · k) =
(
m+k−2
k−2

)
· O
(
r
ε

)k.
52



4.3. (1 + ε)-Approximation

Lemma 4.22. If query(Q, δ, ε/2) returns an input curve P ∈ P, then dF(Q,P ) ≤ (1+ε)δ.
If query(Q, δ, ε/2) returns “no” then there is no P ∈ P such that dF(Q,P ) ≤ δ.

Proof. When query(Q, δ, ε/2) returns an input curve P ∈ P, it must be that there is
a δ-straightening Q′ of Q such that P is associated with Q′′ in H. This implies that
dF(Q

′′, P ) ≤ (1 + ε/2)δ. By the triangle inequality,

dF(Q
′, P ) ≤ dF(Q

′′, Q′) + dF(Q
′′, P ) ≤ (1 + ε)δ.

Since Q′ is a δ-straightening of Q, we have that dF(Q
′, Q) ≤ δ. Hence, by Lemma 4.16

applied on P,Q,Q′ for distance threshold (1 + ε)δ, we obtain dF(Q,P ) ≤ (1 + ε)δ.
If query(Q, δ, ε/2) returns “no” then there is no δ-straightening Q′ of Q such that

Q′′ is associated with an input curve in H. Suppose, for the sake of contradiction, that
there exists a curve P ∈ P such that dF(Q,P ) ≤ δ. By Lemma 4.19, there exists a
δ-straightening Q′ of Q such that i) there exists an 11δ-visiting order of Q′ on P and
ii) dF(Q

′, P ) ≤ δ. Let Q′′ be the curve obtained by snapping vertices of Q′ to the grid
Gεδ/2. By the triangle inequality, there exists a ((11 + ε/2)δ)-visiting order of Q′′ on P
and

dF(Q
′′, P ) ≤ dF(Q

′′, Q′) + dF(Q
′, P ) ≤ (1 + ε/2)δ.

Hence, Q′′ ∈ C(P ) and Q′′ is associated with some input curve P ′ in H. This leads to
contradiction and we conclude that if query(Q, δ, ε/2) returns “no” then there is no curve
P ∈ P such that dF(P,Q) ≤ δ.

Lemma 4.23. For any query curve Q of complexity k, δ > 0, ε > 0, query(Q, δ, ε) runs
in time O(k · 2k).
Proof. Let q1, . . . , qk be the vertices of Q. We enumerate all sequences starting with q1,
followed by any possible subsequence of q2, . . . , qk−1 and ending with qk. There are at most
2k−2 such sequences, and for each one of them we test whether it defines a δ-straightening
of Q. This is done in two steps: we first test if each shortcut is within distance δ from
the corresponding subcurve, and then we decide if the edge-range-preserving property is
satisfied. Computing the Fréchet distance between a shortcut and the original subcurve
costs linear time in the complexity of the subcurve by Theorem 2.2. Hence, we can decide
in O(k) time if the sequence in question defines a δ-simplification of Q. To decide if the
edge-range-preserving property is satisfied, we check for each shortcut if the corresponding
subcurve stays within range by testing all of its vertices one by one. Therefore, this step
also costs O(k) time. Since we employ perfect hashing, each probe to H costs O(k) time.
We can also check in O(k) time if the answer returned by H is the one we are searching
for. Hence, the overall query time is in O(k · 2k).

Theorem 4.24. Let ε ∈ (0, 1]. There is a data structure for the (1 + ε)-ANN problem,
which stores n one-dimensional curves of complexity m and supports query curves of
complexity k, uses space in n ·O

(
m
kε

)k, needs O(nm) ·O
(
m
kε

)k expected preprocessing time
and answers a query in O(k · 2k) time.

Proof. The data structure is described in Section 4.3.1. Lemma 4.22 shows correctness.
The bound on the query time follows from Lemma 4.23. It remains to analyze the running
time of preprocess(P, δ, ε/2, k) and the space complexity of the data structure.
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By Lemma 4.21, for any P ∈ P, the running time needed to compute C′ is upper
bounded by

(
m+k−2
k−2

)
· O
(
1
ε

)k
= O

(
m
kε

)k. Hence, for each P ∈ P, |C(P )| = O
(
m
kε

)k.
Therefore, the space required for each input curve P ∈ P is upper bounded byO(|C(P )|·k).
Computing C(P ) costs O(|C′| ·mk) = O

(
m
kε

)k · O(m) time, because we need to decide
for each curve Q ∈ C′, whether its Fréchet distance from P is at most (1 + ε/2)δ, which
can be done in O(|Q| · |P |) time using Theorem 2.2. Assuming perfect hashing for H,
the overall expected preprocessing time is in O(nm) · O

(
m
kε

)k and the space usage is in
O(n) · O

(
m
kε

)k.
4.4 (2 + ε)-Approximation

In this section we present three (2 + ε)-ANN data structures with different tradeoffs
between preprocessing and query time.

4.4.1 Fast Query Algorithm

In this section, we propose a data structure for the (2 + ε)-ANN problem, with query
time in O(k). The space complexity and the preprocessing time are the same as in the
(1 + ε)-ANN data structure of Theorem 4.24.

Data structure. We are given as input a set of one-dimensional curves P , as sequences
of vertices, the distance threshold δ > 0, the approximation error ε > 0 and the complexity
of the supported queries k. The data structure is exactly the same as in Section 4.3. To
build it, we call preprocess(P, δ, ε/2, k), as defined in Algorithm 2, in Section 4.3.1. Let
H be the resulting dictionary, constructed by preprocess(P, δ, ε/2, k).

Query algorithm. Let Q be the query curve with vertices q1, . . . , qk and let ε > 0
be the approximation error. The query algorithm first computes a δ-signature Q′ of Q,
and then it snaps the vertices of Q′ to the grid Gεδ/2, to obtain a curve Q′′. If Q′′ is
stored in H, then we return its associated input curve P ∈ P, otherwise we return "no".
The query algorithm is implemented in query2, which can be found in Algorithm 4. To
achieve approximation factor 2 + ε, we run query2(Q, δ, ε/2).

1: procedure query2(curve Q with vertices q1, . . . , qk, δ > 0, ε > 0)
2: Q′ ← δ-signature of Q
3: q′1, . . . , q

′
ℓ ← vertices of Q′

4: Q′′ ←
〈⌊

q′1
εδ

⌋
· (εδ), . . . ,

⌊
q′ℓ
εδ

⌋
· (εδ)

〉
▷ snap Q′ to Gεδ

5: if Q′′ in H then
6: return input curve P associated with Q′′ in H
7: return “no”

Algorithm 4: Query algorithm

Lemma 4.25. If query2(Q, δ, ε/2) returns an input curve P ∈ P, then dF(Q,P ) ≤
(2+ε)δ. If query2(Q, δ, ε/2) returns “no” then there is no P ∈ P such that dF(Q,P ) ≤ δ.
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Proof. If query2(Q, δ, ε/2) returns an input curve P ∈ P, then it must be that Q′′ is
stored in H, and P is its associated input curve. By the construction of H, it must be
that dF(P,Q′′) ≤ (1+ ε/2)δ. By the definition of signatures we know that dF(Q,Q′) ≤ δ,
and by the triangle inequality we obtain

dF(Q,Q′′) ≤ dF(Q,Q′) + dF(Q
′′, Q′) ≤ (1 + ε/2)δ.

Hence, by the triangle inequality we obtain

dF(P,Q) ≤ dF(P,Q
′′) + dF(Q,Q′′) ≤ (2 + ε)δ.

Now suppose that query2(Q, δ, ε/2) returns “no”. This means that Q′′ is not stored
in H. Suppose that there exists a P ∈ P such that dF(P,Q) ≤ δ. Then by Lemma 4.15
there exists a δ-visiting order of Q′ on P . Therefore, by the triangle inequality, there
exists a ((1 + ε/2)δ)-visiting order of Q′′ on P , which implies that Q′′ ∈ C(P ), and hence
Q′′ is stored in H. This leads to a contradiction, since we have assumed that Q′′ is not
stored in H. Hence, if query2(Q, δ, ε/2) returns “no” then there is no P ∈ P such that
dF(P,Q) ≤ δ.

Theorem 4.26. Let ε ∈ (0, 1]. There is a data structure for the (2 + ε)-ANN problem,
which stores n one-dimensional curves of complexity m and supports query curves of
complexity k, uses space in n ·O

(
m
kε

)k, needs O(nm) ·O
(
m
kε

)k expected preprocessing time
and answers a query in O(k) time.

Proof. Correctness of the data structure follows from Lemma 4.25. The space complexity
and the preprocessing time are analyzed in the proof of Theorem 4.24. It remains to show
that query2(Q, δ, ε/2) runs in O(k) time.

To compute a δ-signature of Q, we use the algorithm of Driemel, Krivosija and Sohler
[83], which runs in O(k) time. Since we employ perfect hashing and we assume that
the floor function can be computed in constant time, each probe to H costs O(k) time,
and we can also check at the same time if the answer returned by H is the one we are
searching for. We conclude that query2(Q, δ, ε/2) runs in O(k) time.

4.4.2 Improved Preprocessing Time

In this section, we show that there exists a data structure for the (2 + ε)-ANN problem,
with space complexity and preprocessing time in n · O(1/ε)k +O(nm). The query time
is in O(k · 2k). This avoids the factor (m/k)k of our previous data structures.

Data structure. We are given as input a set of one-dimensional curves P , as sequences
of vertices, the distance threshold δ > 0, the approximation error ε > 0, and the complexity
of the supported queries k. To build the data structure, we use a modified version of
the preprocessing algorithm in Section 4.3. For each input curve P ∈ P, we compute
a δ-signature P ′ of P . If the complexity of P ′ is at most k + 2 then we compute a set
C′ := C′(P ′) which contains all curves Q such that: i) Q has complexity at most k, ii) all
vertices of Q belong to Gεδ/2, and iii) there is a ((16 + ε/4)δ)-visiting order of Q on P ′.
This step is similar to the one in the preprocessing algorithm in Section 4.3, although
here we consider signatures of the input curves instead of the original curves.
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The filtering process is also slightly different. We filter C′ to obtain a set C(P ) which
contains only those curves of C′ with: i) Fréchet distance at most (2 + ε/4)δ from P ,
ii) their first point within distance (1 + ε/4)δ from P (0), and iii) their last point within
distance (1 + ε/4)δ from P (1). Let H be a dictionary which is initially empty. For each
P ∈ P, we store C(P ) in H as follows: for each Q ∈ C(P ), if Q is not already stored in H,
then we insert Q into H, associated with a pointer to P . The preprocessing algorithm
is implemented in preprocess2, which can be found in Algorithm 5. We also make use
of the subroutine generate_candidates described in Algorithm 2, in Section 4.3.1. To
achieve approximation factor (2 + ε), we run preprocess2(P, δ, 22, 2, ε/4, k).

Query algorithm. Let Q be the query curve with vertices q1, . . . , qk and let ε > 0
be the approximation error. The query algorithm is the same as in the data struc-
ture of Section 4.3, but we run it with different input parameters. In particular, we
run query(Q, 2δ, ε/4) (see Algorithm 3) on the dictionary H which is constructed by
preprocess2(P, δ, 22, 2, ε/4, k).

1: procedure preprocess2(input set P, δ > 0, r > 0, t > 0, ε > 0, k ∈ N)
2: Initialize empty dictionary H
3: for each P ∈ P do
4: P ′ ← δ-signature of P
5: if |P ′| ≤ k + 2 then
6: C(P )← generate_keys2(P ′, δ, r, t, ε, k)
7: for each Q ∈ C(P ) do
8: if Q not in H then
9: insert key Q in H, associated with a pointer to P

10: procedure generate_keys2(curve P , δ > 0, r > 0, t > 0, ε > 0, k)
11: C′ ←generate_candidates(P, δ, r + ε, ε, k)
12: C ← ∅
13: for each Q ∈ C′ do
14: if dF(P,Q) ≤ (t+ε)δ and |P (0)−Q(0)| ≤ (1+ε)δ and |P (1)−Q(1)| ≤ (1+ε)δ

then
15: C ← C ∪ {Q}
16: return C
Algorithm 5: Preprocessing algorithm. We call preprocess2 to build the data structure.

Lemma 4.27. If query(Q, 2δ, ε/4) returns an input curve P ∈ P, then dF(Q,P ) ≤
(2+ ε)δ. If query(Q, 2δ, ε/4) returns “no” then there is no P ∈ P such that dF(Q,P ) ≤ δ.

Proof. When query(Q, 2δ, ε/4) returns an input curve P ∈ P, it must be that there is a δ-
straightening Q′ of Q such that P is associated with Q′′ in H, where Q′′ denotes the curve
produced by snapping vertices of Q′ to Gεδ/4. This implies that Q′′ ∈ C(P ), and therefore
dF(P

′, Q′′) ≤ (2 + ε/4)δ, |P ′(0) − Q′′(0)| ≤ (1 + ε/4)δ, |P ′(1) − Q′′(1)| ≤ (1 + ε/4)δ,
where P ′ is the δ-signature of P computed by preprocess. By the triangle inequality,

dF(P
′, Q′) ≤ dF(P

′, Q′′) + dF(Q
′, Q′′) ≤ (2 + ε/2)δ.
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Similarly, by the triangle inequality, |P ′(0) − Q′(0)| ≤ (1 + ε/2)δ, |P ′(1) − Q′(1)| ≤
(1 + ε/2)δ. Lemma 4.17 implies that dF(P,Q

′) ≤ (2 + ε)δ, because P ′ is a δ-signature of
P , dF(P ′, Q′) ≤ (2 + ε/2)δ, |P (0)−Q′(0)| ≤ (1 + ε/2)δ and |P (1)−Q′(1)| ≤ (1 + ε/2)δ.
Then, by Lemma 4.16, we conclude that dF(P,Q) ≤ (2 + ε)δ.

If query(Q, 2δ, ε/4) returns “no”, then there is no input curve P ∈ P such that
|P ′| ≤ k + 2, where P ′ is the δ-signature computed by preprocess2 and such that there
exists a δ-straightening Q′ of Q with Q′ ∈ C(P ). Suppose for the sake of contradiction that
there is an input curve P ∈ P such that dF(Q,P ) ≤ δ. Then by the triangle inequality
and the fact that dF(P, P

′) ≤ δ, we obtain dF(Q,P ′) ≤ 2δ. In addition, by Lemma 4.15
there is a δ-visiting order of P ′ on Q. Since P ′ satisfies the δ-edge-length property, any
two consecutive interior vertices lie at distance at least 2δ to each other. Thus, no two
consecutive interior vertices can belong to the same δ-range. Hence, |P ′| ≤ |Q|+2 ≤ k+2.
By Lemma 4.19, there exists a 2δ-straightening Q′ of Q which satisfies

i) there exists a 22δ-visiting order of Q′ on P ′,
ii) dF(Q

′, P ′) ≤ 2δ.
By the definition of signatures, we have P (0) = P ′(0) and P (1) = P ′(1), and since
dF(P,Q) ≤ δ, we have |P ′(0) − Q(0)| ≤ δ and |P ′(1) − Q(1)| ≤ δ. By the definition
of straightenings, we have Q′(0) = Q(0) and Q′(1) = Q(1) and therefore |P ′(0) −
Q′(0)| ≤ δ and |P ′(1) − Q′(1)| ≤ δ. Hence, by the triangle inequality there exists a
((22 + ε/4)δ)-visiting order of Q′′ on P ′, dF(Q′′, P ′) ≤ (2 + ε/4)δ, |P ′(0) − Q′′(0)| ≤
(1 + ε/4)δ and |P ′(1)−Q′′(1)| ≤ (1 + ε/4)δ. This implies that Q′′ ∈ C(P ) which leads to
a contradiction.

Theorem 4.28. Let ε ∈ (0, 1]. There is a data structure for the (2 + ε)-ANN problem,
which stores n one-dimensional curves of complexity m and supports query curves of
complexity k, uses space in n · O

(
1
ε

)k
+ O(nm), needs n · O

(
1
ε

)k
+ O(nm) expected

preprocessing time and answers a query in O(k · 2k) time.

Proof. Correctness follows from Lemma 4.27. The bound on the query time follows from
Lemma 4.23. It remains to bound the space complexity and the preprocessing time of
the data structure.

Computing one δ-signature for each P ∈ P takes linear time O(mn) in total, using the
algorithm of Driemel, Krivosija and Sohler [83]. Let P ′ be the δ-signature of some curve
P ∈ P as computed during preprocessing. If |P ′| > k we ignore P . By Lemma 4.21, for any
P ′ ∈ P ′, the running time needed to compute C′, is upper bounded by

(|P ′|+k−2
k−2

)
·O
(
1
ε

)k
=

O
(
1
ε

)k. The space required for P ′ is upper bounded byO(|C(P ′)|·k+m) = O(|C′|·k+m) =

O
(
1
ε

)k
+O(m). Computing C(P ′) costs O(|C′| ·k) = O

(
1
ε

)k time, since we take a decision
on the Fréchet distance between each curve in C′, and P ′, by making use of Theorem 2.2 .
Assuming perfect hashing forH, the overall expected preprocessing time is in O(n)·O

(
1
ε

)k
and the space usage is in O(n) · O

(
1
ε

)k.
4.4.3 Linear Preprocessing Time

In this section we present a data structure for the (2+ ε)-ANN problem with linear space
and preprocessing time O(nm) and with query time in O(1/ε)k.
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1: procedure preprocess3(input set P, δ > 0, ε > 0, k)
2: Initialize empty dictionary H
3: for each P ∈ P do
4: P ′ ← δ-signature of P
5: if |P ′| ≤ k + 2 then
6: p1, . . . , pℓ ← vertices of P ′

7: P ′′ ←
〈⌊p1

εδ

⌋
· (εδ), . . . ,

⌊pℓ
εδ

⌋
· (εδ)

〉
8: if P ′′ not in H then
9: insert key P ′′ in H, associated with a pointer to P

Algorithm 6: Preprocessing algorithm

1: procedure query3(curve Q with vertices q1, . . . , qk, δ > 0, ε > 0)
2: C(Q)← generate_keys2(Q, δ, 1, 2, ε, k + 2)
3: for each P ′′ ∈ C(Q) do
4: if P ′′ in H then
5: return input curve P associated with P ′′ in H
6: return “no”

Algorithm 7: Query algorithm

Data structure. We are given as input a set of one-dimensional curves P , as sequences
of vertices, a distance threshold δ > 0, the approximation error ε > 0 and the complexity
of the supported queries k. For each input curve P ∈ P, we compute a δ-signature P ′

of P . If |P ′| > k + 2 then we ignore P , otherwise we snap it to Gεδ/2 to obtain a curve
P ′′. Let H be a dictionary which is initially empty. For each P ∈ P, we store P ′′ in H
as follows: if P ′′ is not already stored in H, then we insert P ′′ into H, associated with a
pointer to P . To achieve approximation factor 2 + ε, we run preprocess3(P, δ, ε/2, k),
as defined in Algorithm 6.

Query algorithm. Let Q be a query curve of complexity k. We compute a set C′ :=
C′(Q) which contains all curves P such that: i) P has complexity at most k, ii) all vertices
of P belong to Gεδ/2, and iii) there is a ((1+ε/2)δ)-visiting order of P on Q. We filter C′ to
obtain a set C(Q) which contains only those curves of C′ with: i) Fréchet distance at most
(2+ ε/2)δ from Q, ii) their first point within distance (1+ ε/2)δ from Q(0), and iii) their
last point within distance (1 + ε/2)δ from Q(1). We probe H for each key P ∈ C(Q): if
we find a P ∈ C(Q) stored in H then we return the associated input curve. If there is
no P ∈ C(Q) stored in H then we return “no”. To achieve the desired approximation, we
run query3(Q, δ, ε/2), as defined in Algorithm 7.

Lemma 4.29. If query3(Q, δ, ε/2) returns an input curve P ∈ P, then dF(Q,P ) ≤
(2+ε)δ. If query3(Q, δ, ε/2) returns “no” then there is no P ∈ P such that dF(Q,P ) ≤ δ.

Proof. If query3(Q, δ, ε/2) returns an input curve, then it must be that there is a curve
P ′′ ∈ C(Q) which is stored in H, associated with a pointer to P . Since P ′′ is stored in
H, there is a curve P ∈ P with a δ-signature P ′ such that dF(P

′, P ′′) ≤ εδ/2. Moreover,
since P ′′ ∈ C(Q), we have that dF(Q,P ′′) ≤ (2 + ε/2)δ, |Q(0) − P ′′(0)| ≤ (1 + ε/2)δ,
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|Q(1)− P ′′(1)| ≤ (1 + ε/2)δ. By the triangle inequality we obtain, dF(Q,P ′) ≤ (2 + ε)δ,
|Q(0)− P ′(0)| ≤ (1 + ε)δ, |Q(1)− P ′(1)| ≤ (1 + ε)δ. By Lemma 4.17, since dF(Q,P ′) ≤
(2 + ε)δ, |Q(0)− P ′(0)| ≤ (1 + ε)δ, |Q(1)− P ′(1)| ≤ (1 + ε)δ and P ′ is a δ-signature of
P , we conclude dF(Q,P ) ≤ (2 + ε)δ.

If query3(Q, δ, ε/2) returns “no”, then it must be that there is no curve P ′′ ∈ C(Q)
which is stored in H. Suppose for the sake of contradiction that there is an input curve
P ∈ P such that dF(Q,P ) ≤ δ. Let P ′ be the δ-signature of P , as computed during
preprocessing. By Lemma 4.15, there is a δ-visiting order of P ′ on Q and therefore
|P ′| ≤ k + 2. Let P ′′ be the curve produced by snapping the vertices of P ′ to the
grid Gεδ/2. By the triangle inequality there is a ((1 + ε/2)δ)-visiting order of P ′′ on Q.
Therefore, P ′′ must be included in C(Q), which leads to contradiction.

Theorem 4.30. Let ε ∈ (0, 1]. There is a data structure for the (2 + ε)-ANN problem,
which stores n one-dimensional curves of complexity m and supports query curves of
complexity k, uses space in O(nm), needs O(nm) expected preprocessing time and answers
a query in O(1/ε)k+2 time.

Proof. Correctness follows from Lemma 4.29. It remains to bound the space complexity,
the preprocessing time and the query time.

Using the algorithm of Driemel, Krivosija and Sohler [83], we can compute a signature
in linear time. Since we assume that the floor function can be computed in O(1), and
that H is implemented using perfect hashing, preprocess3(P, 1, ε/2, k) has running time
O(nm). Therefore, the space usage is also in O(nm).

We now show the upper bound on the query time. To this end, we first bound the
running time of generate_keys2(Q, δ, 1, 2, ε/2, k + 2), because the last part of query3
is an enumeration over all curves returned by generate_keys2 and probing H for each
one of them. To bound the running time of generate_keys2(Q, δ, 1, 2, ε/2, k + 2), it
suffices to bound the running time of generate_candidates(Q, δ, (1 + ε/2), ε/2, k + 2).
By Lemma 4.21, this running time is upper bounded by

(
2k
k−2

)
· O
(
1
ε

)k+2
= O

(
1
ε

)k+2.
Recall that we employ perfect hashing and we assume that the floor function can be
computed in constant time. Hence each probe to H costs O(k) time, and we can also
check in O(k) if H returns the correct answer. We conclude that query2(Q, δ, ε/2) runs
in time O

(
1
ε

)k+2.

4.5 (3 + ε)-Approximation

In this section, we present a data structure for the (3+ε)-ANN problem with preprocessing
time and space complexity in n · O(1/ε)k +O(nm) and query time in O(k).

Data structure. We are given as input a set of one-dimensional curves P , as sequences
of vertices, a distance threshold δ > 0, the approximation error ε > 0 and the complex-
ity of the supported queries k. To build the data structure, we use the preprocessing
algorithm of the data structure in Section 4.4.2. Let H be the dictionary, constructed by
preprocess2(P, δ, 2, 3, ε/2, k).
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Query algorithm. Let Q be a query curve. We run the query algorithm of the data
structure in Section 4.4.1. In particular, we run query2(Q, 2δ, ε/2) on H.

Lemma 4.31. If query2(Q, 2δ, ε/2) returns an input curve P ∈ P, then dF(Q,P ) ≤
(3+ε)δ. If query2(Q, 2δ, ε/2) returns “no” then there is no P ∈ P such that dF(Q,P ) ≤ δ.

Proof. Let Q′ be the 2δ-signature of Q and let Q′′ be the curve obtained by snapping
vertices of Q′ to Gεδ/2, as computed in query2.

If query2(Q, 2δ, ε/2) returns an input curve P ∈ P, then it must be that Q′′ ∈ C(P ),
where C(P ) is the result of generate_keys2(P ′, δ, 2, 3, ε/2, k) and P ′ is a δ-signature of P ,
as computed by preprocess2. By the construction of C(P ), it must be that dF(P ′, Q′′) ≤
(3 + ε/2)δ, |P ′(0) − Q′′(0)| ≤ (1 + ε/2)δ and |P ′(1) − Q′′(1)| ≤ (1 + ε/2)δ. Hence, by
the triangle inequality dF(Q

′, P ′) ≤ (3 + ε)δ, |P ′(0) − Q′(0)| ≤ (1 + ε)δ and |P ′(1) −
Q′(1)| ≤ (1 + ε)δ. We now apply Lemma 4.17 twice. We first apply it on P ′, Q′, Q.
Since dF(P

′, Q′) ≤ (3 + ε)δ, |P ′(0) − Q′(0)| ≤ (1 + ε)δ, |P ′(1) − Q′(1)| ≤ (1 + ε)δ and
Q′ is a 2δ-signature of Q, we obtain dF(P

′, Q) ≤ (3 + ε)δ. Then, we apply it on P ′, P ,
Q. Since dF(P

′, Q) ≤ (3 + ε)δ, |P ′(0) − Q(0)| = |P ′(0) − Q′(0)| ≤ (1 + ε)δ ≤ (2 + ε)δ,
|P ′(1)−Q(1)| = |P ′(1)−Q′(1)| ≤ (1 + ε)δ ≤ (2 + ε)δ, and P ′ is a δ-signature of P , we
obtain dF(P,Q) ≤ (3 + ε)δ.

If query2(Q, 2δ, ε/2) returns “no” then Q′′ is not stored in H as a key. For the sake of
contradiction, we assume that there exists an input curve P ∈ P such that dF(P,Q) ≤ δ.
Then by definition, |P ′(0)−Q′(0)| ≤ δ and |P ′(1)−Q′(1)| ≤ δ. In addition, by Lemma 4.20,
dF(P

′, Q′) ≤ 3δ and there is a 2δ-visiting order of Q′ on P ′, By the triangle inequality we
obtain dF(P

′, Q′′) ≤ (3+ε/2)δ, |P ′(0)−Q′′(0)| ≤ (1+ε/2)δ, |P ′(1)−Q′′(1)| ≤ (1+ε/2)δ,
and that there is a ((2 + ε/2)δ)-visiting order of Q′′ on P ′. Hence, by the construction of
C(P ), it must be that Q′′ ∈ C(P ) which implies that Q′′ is stored as a key in H. This is
a contradiction.

Theorem 4.32. Let ε ∈ (0, 1]. There is a data structure for the (3 + ε)-ANN problem,
which stores n one-dimensional curves of complexity m and supports query curves of
complexity k, uses space in n · O(1/ε)k + O(nm), needs n · O(1/ε)k + O(nm) expected
preprocessing time and answers a query in O(k) time. where k is the complexity of the
query curve.

Proof. Correctness follows from Lemma 4.31. The bounds on the preprocessing time and
space complexity follow from Theorem 4.28. The bound on the query time follows from
Theorem 4.26.

4.6 Proofs of Main Lemmas

In this section we give full proofs of the lemmas stated in Section 4.2. We start by
proving a fundamental observation and lemma on the Fréchet distance of approximately
monotone one-dimensional curves.

Observation 4.33. Let Q be a directed line segment and let P : [0, 1] 7→ R be a curve.
It holds that dF(P,Q) ≤ δ if and only if the following conditions are satisfied:

(i) P is 2δ-monotone with respect to Q, and
(ii) |P (0)−Q(0)| ≤ δ, |P (1)−Q(1)| ≤ δ, and
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(iii) P ⊆ B(Q, δ).

Proof. We assume that Q(0) ≤ Q(1) as the other case is symmetric. Now, assume first that
dF(P,Q) ≤ δ, then (ii) holds because start and end points are matched in any traversal
and (iii) holds as the Hausdorff distance is a lower bound for the Fréchet distance. Finally,
(i) holds as otherwise there exist two indices s, t ∈ [0, 1] with s < t and P (t) < P (s)− 2δ.
As Q is increasing, no traversal can match P (s) and P (t) in distance at most δ.

Second, assume that (i), (ii), and (iii) hold. Then dF(P,Q) ≤ δ is implied by Lemma
4.34, below, but to provide some intuition we give a simpler proof here. The following
traversal with position s on P and position t on Q stays within distance δ. We start
in P (0), Q(0), then we continue on P until P (s) = Q(0) + δ. Then we always choose
t such that Q(t) = mins′≥s P (s′) + δ while traversing P , i.e., continuously increasing s.
When we reach the end of Q, we can traverse P until the end while staying in Q(1). It
is easy to check that properties (i), (ii), and (iii) ensure distance δ during the described
traversal.

The following lemma statement is similar to the above observation with the important
difference that the line segment Q is replaced by a 2δ-monotone curve. The proof works
by constructing a traversal greedily and showing correctness of the greedy algorithm.

Lemma 4.34. Let P and Q be 2δ-monotone curves with
(i) P is 2δ-monotone with respect to Q(0)Q(1), and
(ii) |P (0)−Q(0)| ≤ δ, |P (1)−Q(1)| ≤ δ, and
(iii) P ⊆ B(Q, δ), and
(iv) Q ⊆ Q(0)Q(1).

It holds that dF(P,Q) ≤ δ.

Proof. We assume that Q(0) ≤ Q(1) as the other case is symmetric. If Q is not 2δ-
monotone increasing, then it also cannot be 2δ-monotone decreasing: if there are two
points s, t ∈ [0, 1] with s < t such that Q(t) < Q(s)−2δ, then, as Q(t) ≥ Q(0) by condition
(iv), we have that Q(s) > Q(t)+2δ ≥ Q(0)+2δ and thus Q is not 2δ-monotone decreasing.
However, as Q is 2δ-monotone, it has to be 2δ-monotone increasing. Due to condition (i),
P is also 2δ-monotone increasing. We give a traversal of P,Q with distance at most δ —
denoting the position during the traversal with (s, t) ∈ [0, 1]2 — that tries to maintain
two invariants:

(1) P and Q are in a position (s, t) ∈ [0, 1]2 such that P (s) = Q(t) + δ.

(2) The suffix of Q is strictly greater than the current value Q(t), i.e., ∀t′ > t : Q(t′) >
Q(t).

In general, both invariants may be violated at the very beginning of the traversal, that
is, for s = t = 0. Let us first describe how we traverse from the beginning of P,Q to a
position (s, t) ∈ [0, 1]2 such that these invariants are fulfilled. We first traverse P until it
first reaches Q(0) + δ, while in Q we stay in Q(0). Note that by condition (ii), we cannot
have P (0) > Q(0) + δ. Furthermore, this traversal is feasible as the traversed prefix of P
is in the range [Q(0)− δ,Q(0)+ δ], by condition (iii), and thus within distance δ to Q(0).
If we reach P (1) before reaching Q(0) + δ, then we know that Q ⊆ [P (1)− δ, P (1) + δ]
and we can thus traverse complete Q and dF(P,Q) ≤ δ. If we did not reach P (1), we now
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traverse Q until its last point with value Q(0), which is possible as the traversed prefix
of Q lies in [Q(0), Q(0) + 2δ], due to condition (iv) and as Q is 2δ-monotone increasing,
and the position on P is currently Q(0) + δ.

From now on, we traverse P and Q with the same speed in image space, unless one
of the two invariants would be violated by continuing the traversal. If both invariants
would be violated at the same time, we break ties by restoring Invariant ((1)) before
Invariant ((2)). Now, let s be the position on P and t the position on Q when an invariant
would be violated. When Invariant ((1)) would be violated, we continue traversing P
while staying in Q(t) on Q until the next time we reach a position s′ on P with value
P (s′) = P (s). Note that we might not reach such a position s′ because we reached the end
of P . However, if we did not reach the end of P , the invariant is restored. This traversal
keeps the two positions at distance δ as P (s) = Q(t) + δ and as P is 2δ-monotone
increasing. In case Invariant ((2)) would be violated, we continue traversing Q until we
reach the largest position t′ > t such that Q(t′) = Q(t). Note that afterwards, both
invariants hold (as we restore Invariant ((1)) before Invariant ((2))), and, in particular,
we cannot reach the end of Q due to the existence of Q(t′) which we reach at the end
of restoring Invariant ((2)). This traversal also keeps the two positions at distance δ as
initially Q(t) = P (s)− δ and Q is 2δ-monotone increasing and there is no position t′′ on
Q with Q(t′′) < Q(t), i.e., all the points before reaching position t′ on Q have to be in
the range [Q(t), Q(t) + 2δ].

In all of the above cases we are guaranteed to make progress in our traversal. Fur-
thermore, we will reach the end of P before or at the same time as we reach the end of
Q because, first, while restoring invariants we can only reach the end of P but not of
Q as argued above and, second, if we reach the end of Q while both invariants would
continue to hold, we also have to reach the end of P at the same time as otherwise we
would violate condition (iii) of the lemma. When we reach the end of P , we know that
P (1) ∈ [Q(1)−δ,Q(1)+δ] due to condition (ii), and the remaining Q is in [P (1)−δ,Q(1)].
Thus, the remaining Q is in [P (1) − δ, P (1) + δ] and consequently Q can be traversed
until the end.

It follows from the traversal constructed thereby that dF(P,Q) ≤ δ.

4.6.1 Proofs of Lemmas for Straightenings

Next, we want to prove Lemma 4.16 from Section 4.2. We first prove a simpler statement,
which can be thought of as a special case where the straightening consists of only one
edge.

Lemma 4.35. Let X = ab ⊂ R be a line segment and let Q : [0, 1] 7→ R be a curve such
that: Q(0) = X(0), Q(1) = X(1), for all t ∈ [0, 1] : Q(t) ∈ ab and dF(Q,X) ≤ δ. For any
curve P : [0, 1] 7→ R with dF(P,X) ≤ δ, it holds that dF(P,Q) ≤ δ.

Proof. To show the lemma statement, we want to apply Lemma 4.34 to P and Q. For
this, we need to show that the conditions on Q and P from the lemma statement are met.
By Observation 4.33 applied to Q and the line segment X, it follows that Q must be
2δ-monotone with respect to X, and by our assumptions, Q is range-preserving (condition
(iv)). By Observation 4.33 applied to P and X, it also follows that P is 2δ-monotone,
and conditions (ii), (iii) and (i) are satisfied. Therefore, Lemma 4.34 can be applied to
P and Q and the claim is implied.
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Lemma 4.16. Let P : [0, 1] 7→ R and Q : [0, 1] 7→ R be two curves and let Q′ be any
δ-straightening of Q. If dF(P,Q′) ≤ δ then dF(P,Q) ≤ δ.

Proof. Let q1, . . . , qℓ be the parameters corresponding to the vertices of Q′ in Q, i.e., the
vertices of Q′ are Q(q1), . . . , Q(qℓ). Let ϕ : [0, 1]→ [0, 1]2 be a δ-traversal between P and
Q′. Let 0 = t1 ≤ · · · ≤ tℓ = 1 be a partition of the parameter space of P such that for
any 1 ≤ i ≤ ℓ− 1, the edge Q(qi)Q(qi+1) is mapped to P [ti, ti+1] under ϕ. As such, we
have

dF(P [ti, ti+1], Q(qi)Q(qi+1)) ≤ δ

By the locality property of δ-simplifications, we also have that

dF(Q[qi, qi+1], Q(qi)Q(qi+1)) ≤ δ

Now, Lemma 4.35 implies that

dF(P [ti, ti+1], Q[qi, qi+1]) ≤ δ.

Finally, we apply Observation 4.2 on P =⃝ℓ
i=1P [ti, ti+1] and Q =⃝ℓ

i=1Q[qi, qi+1], and
we obtain

dF(P,Q) ≤ max
i∈[ℓ]

dF (P [ti, ti+1], Q[qi, qi+1]) ≤ δ.

4.6.2 Proofs of Lemmas for Signatures

Next, we want to prove Lemma 4.17 from Section 4.2. We first prove an auxiliary statement
for signature edges in Lemma 4.36. In particular, we need to take care of the first and
last edge of the signature. For the other edges we can use Lemma 4.35. Technically, we
will also need the symmetric statement of this lemma for a > b; this follows by mirroring
at the origin. The proof of this lemma turns out be technically involved. For the proof of
Lemma 4.17 we can then use the same approach as for Lemma 4.16 above.

Lemma 4.36. Let δ = δ′ + δ′′ for δ, δ′, δ′′ ≥ 0. Let X = ab ⊂ R be a line segment with
a ≤ b and let Q : [0, 1] 7→ R be a curve such that: Q(0) = X(0), Q(1) = X(1) and
dF(Q,X) ≤ δ′. Let P : [0, 1] 7→ R be a curve with dF(P,X) ≤ δ.

If either
(i) |Q(0)− P (0)| ≤ δ′′ and |Q(1)− P (1)| ≤ δ′′, or
(ii) |Q(0)− P (0)| ≤ δ′′ and maxt∈[0,1](Q(t)) ≤ Q(1), or
(iii) mint∈[0,1](Q(t)) ≥ Q(0) and |Q(1)− P (1)| ≤ δ′′,
then it holds that dF(P,Q) ≤ δ.

Proof. Let tmin = argmin{Q(t)} and tmax = argmax{Q(t)}. In case the minimum (resp.
maximum) is not unique, we choose any of them. By Observation 4.33, we have that
∀t ∈ [0, 1] Q(t) ∈ [Q(0)− δ′, Q(1) + δ′] and by assumption of case (i) |P (0)−Q(0)| ≤ δ′′

and |P (1)−Q(1)| ≤ δ′′. Therefore, by triangle inequality, we have in case (i), that

|P (0)−Q(tmin)| ≤ δ and |P (1)−Q(tmax)| ≤ δ

It is easy to see that this holds in the cases (ii) and (iii), as well, since |P (0)−Q(0)| ≤ δ
and |P (1)−Q(1)| ≤ δ holds in any case as we assume dF(P,X) ≤ δ.
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Now, define
t1 = min{t ∈ [0, 1] | P (t) ≥ Q(tmin) + δ}
t2 = max{t ∈ [0, 1] | P (t) ≤ Q(tmax)− δ}

If such a t1 does not exist, then we set t1 = 1. If t2 does not exist, then we set t2 = 0.
Note that by construction and Observation 4.33 we have

dF(P [0, t1], Q(0)) ≤ δ and dF(P [t2, 1], Q(1)) ≤ δ (4.3)

Indeed, (4.3) holds true since Q(tmin) ≤ Q(0) ≤ Q(tmin) + δ′ and, likewise, Q(tmax) ≥
Q(1) ≥ Q(tmax) − δ′, and, moreover, the image of the subcurve P [0, t1] is contained in
the interval [Q(0)− δ,Q(tmin) + δ] and the image of the subcurve P [t2, 1] is contained in
the interval [Q(tmax)− δ,Q(1) + δ].

In addition, we have

dF(P (t1), Q[0, tmin]) ≤ δ and dF(P (t2), Q[tmax, 1]) ≤ δ (4.4)

Indeed, (4.4) holds true, since δ′ ≤ δ and by Observation 4.33, Q is 2δ′-monotone in-
creasing, and therefore the image of the subcurve Q[0, tmin] is contained in the interval
[Q(tmin), Q(tmin) + 2δ′] which by construction is equal to [P (t1)− δ′, P (t1) + δ′] and the
image of the subcurve Q[tmax, 1] is contained in the interval [Q(tmax) − 2δ′, Q(tmax)],
which by construction is equal to [P (t2)− δ′, P (t2) + δ′].

Now, assume that t1 ≤ t2 and tmin ≤ tmax. In this case, the subcurves P [t1, t2] and
Q[tmin, tmax] are well-defined. By construction, |P (t1)−Q(tmin) |≤ δ, |P (t2)−Q(tmax) |≤ δ
and Q[tmin, tmax] ⊆ Q(tmin)Q(tmax). By Observation 4.33, P and Q are both 2δ-monotone
with respect to X, and, by definition, X = Q(0)Q(1). Moreover, by the definition of
t1, t2, we have P [t1, t2] ⊆ B(Q[tmin, tmax], δ). Therefore all conditions of Lemma 4.34 are
satisfied, which implies that

dF(P [t1, t2], Q[tmin, tmax]) ≤ δ (4.5)

In summary, we have by (4.3),(4.4), and (4.5) that

max


dF(P [0, t1], Q(0))

dF(P (t1), Q[0, tmin])
dF(P [t1, t2], Q[tmin, tmax])

dF(P (t2), Q[tmax, 1])
dF(P [t2, 1], Q(1))

 ≤ δ

Now, by Observation 4.2 we can concatenate these subcurves and dF(P,Q) ≤ δ is implied.
If the assumption t1 ≤ t2 fails, then, in fact, a simpler decomposition works. Indeed,

if t1 > t2, then it holds by (4.3) and (4.4) that

max

dF(P [0, t1], Q(0))
dF(P (t1), Q)

dF(P [t1, 1], Q(1))

 ≤ δ

Therefore, also in this case, dF(P,Q) ≤ δ holds true.
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Finally, we need to consider the case that the assumption tmin ≤ tmax fails. We
may assume that t1 ≤ t2, as we covered the case t1 > t2 above. We will consider the
different cases from the lemma statement separately. First, note that if tmin > tmax, then
|Q(tmax)−Q(tmin)| ≤ 2δ, since Q is 2δ-monotone, and therefore, Q is contained in the
interval [P (t1) − δ, P (t1) + δ]. By a similar argument, Q is contained in the interval
[P (t2)− δ, P (t2) + δ].

Now, assume case (ii) from the lemma statement. In this case, we have by the above
and by Lemma 4.34

max

 dF(P [0, t1], Q(0))
dF(P (t1), Q[0, tmin])

dF(P [t1, 1], Q[tmin, 1]))

 ≤ δ

Assume case (iii) from the lemma statement. In this case, we have symmetrically

max

dF(P [0, t2], Q[0, tmax])
dF(P (t2), Q[tmax, 1])
dF(P [t2, 1], Q(1))

 ≤ δ

Now, for case (i), we claim that there exist 0 ≤ q1 ≤ q2 ≤ 1, such that

max


dF(P [0, t1], Q(0))
dF(P (t1), Q[0, q1])

dF(P [t1, t2], Q[q1, q2])
dF(P (t2), Q[q2, 1])
dF(P [t2, 1], Q(1))

 ≤ δ

Indeed, from what we derived, dF(P (t1), Q[0, q1]) ≤ δ and dF(P (t2), Q[q2, 1]) ≤ δ holds
for any choice of q1, q2 ∈ [0, 1]. The first and last line hold by (4.3). It remains to show
that we can choose q1, q2 so that dF(P [t1, t2], Q[q1, q2]) ≤ δ holds. Since dF(P,X) ≤ δ,
there must be a subsegment X[x1, x2] of X, such that dF(P [t1, t2], X[x1, x2]) ≤ δ. Recall
that Q(0)Q(1) = X and by the intermediate value theorem we can define suitable q1, q2
as follows

q1 = max{q ∈ [0, 1] | Q(q) = X(x1)}
q2 = min{q ∈ [q1, 1] | Q(q) = X(x2)}

Now, we can apply Lemma 4.34 and conclude that dF(P [t1, t2], Q[q1, q2]) ≤ δ. Therefore,
also in case (i), we have dF(P,Q) ≤ δ.

Now we are ready to prove Lemma 4.17.

Lemma 4.17. Let δ = δ′ + δ′′ for δ, δ′, δ′′ ≥ 0 and let P : [0, 1] 7→ R and Q : [0, 1] 7→ R
be two curves. Let Q′ be any δ′-signature of Q. If dF(Q′, P ) ≤ δ, |Q(0)−P (0)| ≤ δ′′, and
|Q(1)− P (1)| ≤ δ′′, then dF(P,Q) ≤ δ.

Proof. This follows by a modification of the proof of Lemma 4.16. Although the two
proofs are very similar, the differences are subtle. Therefore, we give the full proof for the
sake of completeness. Let q1, . . . , qℓ be the parameters corresponding to the vertices of Q′

in Q, i.e., the vertices of Q′ are Q(q1), . . . , Q(qℓ). Let ϕ : [0, 1]→ [0, 1]2 be a δ-traversal
between P and Q′. Let 0 = t1 ≤ · · · ≤ tℓ = 1 be a partition of the parameter space of P
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such that for any 1 ≤ i ≤ ℓ− 1, the edge Q(qi)Q(qi+1) is mapped to P [ti, ti+1] under ϕ.
As such, we have

dF(P [ti, ti+1], Q(qi)Q(qi+1)) ≤ δ (4.6)

By the definition of δ-simplifications, we also have that

dF(Q[qi, qi+1], Q(qi)Q(qi+1)) ≤ δ′ ≤ δ (4.7)

Now, if the edge Q(qi)Q(qi+1) of Q′ is range-preserving, then Lemma 4.35 implies
that

dF(P [ti, ti+1], Q[qi, qi+1]) ≤ δ. (4.8)

Otherwise, it must be (by the definition of signatures) that either i = 1 or i+ 1 = ℓ or
both (the edge is the first or last edge of the signature Q′ or Q′ consists of just one edge).
In any of those cases, Lemma 4.36 implies dF(P [ti, ti+1], Q[qi, qi+1]) ≤ δ.

Finally, we apply Observation 4.2 on P = ⃝ℓ
i=1P [ti, ti+1] and Q = ⃝ℓ

i=1Q[qi, qi+1],
and we obtain

dF(P,Q) ≤ max
i∈[ℓ]

dF (P [ti, ti+1], Q[qi, qi+1]) ≤ δ.

4.6.3 Proofs of Lemmas for Visiting Orders

In order to prove the existence of δ′-visiting orders for some δ′ ∈ O(δ) as claimed in
Lemma 4.19, we introduce the concept of a visiting sequence. A visiting sequence is not
necessarily monotonically increasing, while visiting orders according to Definition 4.14
are. Nonetheless, this definition of visiting sequence will turn out to be useful. It is
important that a δ-visiting sequence is derived from a monotone traversal. We will show
(Lemma 4.39 and 4.40) that any non-monotonic visiting sequence can be turned into a
monotonic one at the expense of a constant factor in the radius of the visiting relationship.

Definition 4.37. Let P : [0, 1] → R and Q : [0, 1] → R be curves, let δ > 0, and let
ϕ : [0, 1]→ [0, 1]2 be a monotone traversal. We say a vertex w of Q δ-visits a vertex v
of P under ϕ if the following holds:

(i) |w − v| ≤ δ and
(ii) at least one of the following holds:

(a) ϕ associates w with v, or
(b) ϕ associates w with the interior of an edge of P that is incident to v, or
(c) ϕ associates v with the interior of an edge of Q that is incident to w.

Note that the induced relation on the vertices is symmetric for any fixed δ and ϕ.

Definition 4.38. Let P : [0, 1]→ R and Q : [0, 1]→ R be curves and let ϕ : [0, 1]→ [0, 1]2

be a monotone traversal. Let S be a subsequence of the vertices of Q of length ℓ. Let
u1, . . . , uℓ denote the ordered vertices of S and let v1, . . . , vm denote the ordered vertices
of P . A δ-visiting sequence of S on P under ϕ is a sequence of indices i1, . . . , iℓ, such
that each uj of S δ-visits the vertex vij of P under ϕ.

Lemma 4.39. Let P : [0, 1] 7→ R and Q : [0, 1] 7→ R be curves such that dF(Q,P ) ≤ δ
and let ϕ be a monotone traversal realizing this distance. Let vi, vj be two vertices of Q
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P
Q

wb

wa

P (t)
P (t′)

vi

vj

Figure 4.3: Illustration to the proof of Lemma 4.39. Assuming wa < wb as in the proof,
vi visits wa and vj visits wb, but i < j and a > b, so the visiting sequence is not monotone.

with i < j in the ordering along Q. Assume vi δ-visits a vertex wa of P under ϕ and vj
δ-visits a vertex wb of P under ϕ such that a > b in the ordering along P . Then, it must
be that vi 3δ-visits wb under ϕ and that vj 3δ-visits wa under ϕ.

Proof. As a > b, however, in ϕ a point on an adjacent edge of wa is matched earlier than
a point on an adjacent edge of wb, we conclude due to the monotonicity of ϕ that wbwa

is an edge in P . Let P (t) and P (t′) be the points that vi and vj are mapped to on wbwa

under ϕ, respectively. By the monotonicity of ϕ we have t ≤ t′. See Figure 4.3 for an
illustration.

Assume that wa < wb, as the case wa > wb is symmetric. Since P (t) and P (t′) are
both on the edge wbwa, the fact that t ≤ t′ implies that P (t′) ≤ P (t). Using the facts
that |vi − wa| ≤ δ and |vj − wb| ≤ δ, we obtain

vi − δ ≤ wa ≤ P (t′) ≤ P (t) ≤ wb ≤ vj + δ.

At the same time we have

vj − δ ≤ P (t′) ≤ P (t) ≤ vi + δ.

It follows that |vi − vj | ≤ 2δ.
Thus, the claim that vi is contained in the 3δ-range of wb is then implied by triangle

inequality, as well as the symmetric claim that vj is contained in the 3δ-range of wa.
As vi and vj are both matched to the edge wbwa, we also have that vi and vj visit the
3δ-ranges of wb and wa, respectively.

Lemma 4.40. Let P : [0, 1]→ R and Q : [0, 1]→ R be curves and let ϕ : [0, 1]→ [0, 1]2

be a monotone traversal that maps them within distance δ. Let S be a subsequence of the
vertices of Q. Any δ-visiting sequence of S on P under ϕ implies a 3δ-visiting order of S
on P .

Proof. Let u1, . . . , uℓ denote the vertices of S and let i1, . . . , iℓ denote the visiting sequence.
We generate a monotonically increasing sequence as follows. For every uj , we set ij to
the minimum of the suffix sequence ij , . . . , iℓ. If ij was already a minimum, then nothing
changes. Otherwise, let ik be an index, where this minimum was attained. By Lemma 4.39
the vertex uj is contained in the 3δ-range of the vertex vik . After applying this to all
elements of the sequence, starting with j = 1 and ending with j = ℓ, the sequence
i1, . . . , iℓ is monotonically increasing.
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The next two lemmas are used in the proof of Lemma 4.19.

Lemma 4.41. Let P : [0, 1] 7→ R and Q : [0, 1] 7→ R be curves such that dF(Q,P ) ≤ δ
and let ϕ be a monotone traversal realizing this distance. If none of the inner vertices of
P and Q δ-visit each other under ϕ, then P and Q are 2δ-monotone.

Proof. We prove the lemma by induction. We reconstruct the matching ϕ and use
“matched” as shorthand for “matched under ϕ”. Recall that we denote the ordered vertices
of P and Q by p1, p2, . . . and q1, q2, . . . , respectively. Note that if either P or Q consist of a
single vertex or single segment, then the claim immediately follows from Observation 4.33.
Otherwise, either p2 is matched to a point on q1q2 or q2 is matched to a point on p1p2 and
p2, q2 are inner vertices. As the lemma statement is symmetric with respect to P and Q,
we assume without loss of generality that p2 is matched to q1q2. As p2 and q2 are inner
vertices, they cannot δ-visit each other, and thus either p2 < q2 − δ or p2 > q2 + δ. By
mirroring the curves P and Q at the origin, these two cases are symmetric, and we thus
assume p2 < q2 − δ without loss of generality. As p2 is matched to q1q2, it follows that
q1 < q2. Thus, q1q2 is increasing and p1p2 has to be 2δ-monotone increasing as otherwise
the matching would have distance larger than δ. Now, for the inductive step, assume that
⟨p1, . . . , pi⟩ and ⟨q1, . . . , qj⟩ are 2δ-monotone increasing curves, pi, qj are inner vertices,
and pi is matched to a point on qj−1qj with pi < qj − δ. Note that this again implies
qj−1 < qj .

Let us now prove the inductive step. If pi+1 is an inner vertex, then either (i) pi+1 is
also matched to a point on qj−1qj or (ii) qj is matched to a point on pipi+1.

In case (i), pi+1 extends a subcurve ⟨pi′ , . . . , pi⟩ with i′ ≥ 1 that is completely matched
to a part of the increasing segment qj−1qj . The subcurve ⟨pi′ , . . . , pi⟩ has to be 2δ-
monotone increasing according to Observation 4.33. Either pi′ is the start of P (i.e,
i′ = 1) and thus ⟨p1, . . . , pi+1⟩ is 2δ-monotone increasing, or pi′−1 has to be matched to
a part of Q before qj−1 and thus qj−1 is an inner vertex. As qj−1 was already matched,
it follows that either pi′−1 is the start of P (i.e., i′− 1 = 1) and pi′−1 ≤ qj−1 + δ, or pi′−1

is an inner vertex and pi′−1 < qj−1 − δ as they do not δ-visit each other. In both cases
⟨p1, . . . , pi′−1⟩ is contained in [−∞, qj−1+δ); for the first case this holds as ⟨p1, . . . , pi′−1⟩
is 2δ-monotone increasing by induction. Consequently, the concatenation of ⟨p1, . . . , pi′−1⟩
and ⟨pi′ , . . . , pi+1⟩ is also 2δ-monotone increasing.

Now consider case (ii), i.e., qj is matched to a point on pipi+1. In this case pipi+1 is
increasing as pi < qj and qj < pi+1, which is the case because qj is matched to pipi+1

and pi < qj − δ. Therefore, also in this case it holds that ⟨p1, . . . , pi+1⟩ is 2δ-monotone
increasing. Note that after exchanging P and Q, we again fulfill the inductive hypothesis.
In particular, since qj is matched to pipi+1 but pi+1 and qj do not δ-visit each other as
both are inner vertices, we must have qj < pi+1 − δ.

Now consider the case that pi+1 is not an inner vertex, i.e., it is the last vertex of
P . In this case, part of pipi+1 has to be matched to qj as no previous part of P was
matched to qj . This implies that pipi+1 again is increasing as pi < qj−δ and pi+1 ≥ qj−δ.
Hence ⟨p1 . . . pi+1⟩ is 2δ-monotone increasing. As the remainder of Q, starting from qj ,
has to be matched to part of pipi+1 and therefore this part is 2δ-monotone increasing by
Observation 4.33, and ⟨q1, . . . , qj−1⟩ is 2δ-monotone by induction and also contained in
[−∞, pi − δ) as pi is matched to the increasing qj−1qj , it follows that the whole curve Q
is 2δ-monotone increasing.
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Lemma 4.42. Let P : [0, 1] 7→ R and Q : [0, 1] 7→ R be curves such that dF(Q,P ) ≤ δ and
let ϕ be a monotone traversal realizing this distance. Further assume that for all t ∈ [0, 1]
we have Q(t) ∈ Q(0)Q(1). If none of the inner vertices of Q δ-visit an inner vertex of P
under ϕ, then the line segment Q′ = Q(0)Q(1) is a range-preserving δ-simplification of
Q with dF(Q

′, P ) ≤ δ.

Proof. By Lemma 4.41, Q and P must be 2δ-monotone. Moreover, Q′ is range-preserving
by assumption. Therefore, Q′ is a range-preserving δ-simplification of Q. It remains to
show the bound on the Fréchet distance of P and Q′. To this end, we want to invoke
Observation 4.33. Indeed, it must be that

∀t ∈ [0, 1] : P (t) ∈
⋃

s∈[0,1]

B(Q(s), δ),

since dF(P,Q) ≤ δ and since Q′ is range-preserving. Therefore, the conditions of Obser-
vation 4.33 are satisfied and the bound is implied.

We are now ready to prove Lemma 4.19 from Section 4.2.

Lemma 4.19. Let P : [0, 1] 7→ R and Q : [0, 1] 7→ R be curves such that dF(Q,P ) ≤ δ,
there exists a δ-straightening Q′ of Q which satisfies the following properties:

(i) there exists a (11δ)-visiting order of Q′ on P , and
(ii) dF(Q

′, P ) ≤ δ.

Proof. Let ϕ be a monotone traversal that realizes the Fréchet distance between P and
Q. We will construct a δ-straightening Q′ together with a O(δ)-visiting order of Q′ on
P . To this end, consider the subset of vertices of Q that each δ-visit some vertex of P
under ϕ (Definition 4.37). Denote this subset by S. Lemma 4.40 implies that there exists
a 3δ-visiting order of S on P . We denote this visiting order by the function κ : S → [m]
that assigns every vertex of S the index of a vertex of P (where m denotes the number
of vertices of P ).

It is quite possible that S is not a δ-simplification of Q with the desired properties. In
a second phase of the construction we will therefore add more vertices of Q to S. Consider
any maximal subcurve Q[s, s′] of Q, such that none of the inner vertices of Q[s, s′] δ-visit
a vertex of P under ϕ. It must be that Q(s) corresponds to some vertex w of S and
Q(s′) corresponds to some vertex w′ of S. Moreover, w′ comes directly after w along Q
among the vertices included in S. Assume that Q[s, s′] has at least one inner vertex. We
distinguish two cases:

(C1) B(vκ(w), 3δ) ∩B(vκ(w′), 3δ) ̸= ∅,

(C2) otherwise

In the first case (C1), we will add all inner vertices Q[s, s′] to S and assign them the
index κ(w) in the constructed visiting order κ. In the second case (C2), we will only add
a specific subset of vertices, which we define as follows. Define α and β as follows:

α = max{t | t ∈ [s, s′] and Q(t) ∈ B(vκ(w), 3δ)}

β = min{t | t ∈ [α, s′] and Q(t) ∈ B(vκ(w′), 3δ)}
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Since the 3δ-ranges of vκ(w) and vκ(w′) are disjoint, α and β are well-defined and it
follows by definition that s ≤ α ≤ β ≤ s′. Therefore, the subcurves Q[s, α], Q[α, β], and
Q[β, s′] are well-defined. Now, we proceed as follows, we add the inner vertices of Q[s, α]
to S and assign them the index κ(w) in the constructed visiting order κ. Secondly, we
add the inner vertices of Q[β, s] to S and assign them the index κ(w′) in the constructed
visiting order κ.

We apply this to all such maximal subcurves Q[s, s′] (note that these are pairwise dis-
joint), thereby constructing the sequence S along with the visiting order κ. Let u1, . . . , uℓ
be the sequence of vertices of the resulting S in their order along Q. Denote with Q′ the
curve that results from linearly interpolating u1, . . . , uℓ. Note that it is different from
Q only in the sections where we omitted the vertices of the subcurve Q[α, β] in case
(C2). We claim that Q′ is an edge-range-preserving δ-simplification of Q. To see this,
consider a subcurve Q[s, s′], assume we are in case (C2). By construction, the subcurve
Q[α, β] is range-preserving (for all x ∈ [α, β] we have Q(x) ∈ Q(α)Q(β)). Let P [t, t′] be
a subcurve of P mapped to Q[α, β] under ϕ. Now, Lemma 4.42 applied to the subcurves
P [t, t′] and Q[α, β] implies that Q(α)Q(β) is an edge-range-preserving δ-simplification of
Q[α, β] with dF(Q(α)Q(β), P [t, t′]) ≤ δ. Therefore, by Observation 4.2, when removing
all vertices of Q in the parameter range (α, β) for each such maximal subcurve Q[s, s′],
we obtain a δ-straightening Q′ of Q with dF(Q

′, P ) ≤ δ.
Finally, we argue that the constructed visiting order κ(u1), . . . , κ(uℓ) is an 11δ-visiting

order of Q′ on P . Clearly it is monotonically increasing by construction. Also, it is clear
that any vertex added in the first phase is contained in the 3δ-range of its assigned vertex
of P . It remains to argue for any vertex added to S in the second phase, that it is contained
in the 11δ-range of its assigned vertex in P . Consider a subcurve Q[s, s′] from above and
assume we are in case (C1). We have that Q(s) ∈ B(vκ(w), 3δ) and Q(s′) ∈ B(vκ(w′), 3δ).
By the case distinction, these two ranges are not disjoint. Therefore, the subcurve starts
and ends in the 9δ-range of the assigned vertex vκ(w). Moreover, by Lemma 4.41, Q[s, s′]
has to be 2δ-monotone. This implies that the entire subcurve lies in the 11δ-range of vκ(w)

and this is also the vertex that we assigned to all of its inner vertices. A similar argument
can be applied in case (C2). By the way we chose α, we have that Q(α) is contained
in the 3δ-range of vκ(w), which is also the vertex assigned to the entire subcurve. Since
also the subcurve Q[s, α] is 2δ-monotone, all remaining vertices in the range [s, α] are
contained in the 5δ-range of the same vertex. A symmetric argument can be applied to
show that all remaining vertices in the range [β, s′] are contained in the 5δ-range of their
assigned vertex.

Finally, we also prove Lemma 4.20 from Section 4.2.

Lemma 4.20. For one-dimensional curves P,Q let P ′ be a δ-signature of P , and let Q′

be a 2δ-signature of Q. If dF(P,Q) ≤ δ then dF(P
′, Q′) ≤ 3δ and there exists a 2δ-visiting

order of Q′ on P ′.

Proof. By the triangle inequality we have that dF(P
′, Q) ≤ dF(P

′, P ) + dF(P,Q) ≤ 2δ.
Now Lemma 4.15 applied to P ′ and the 2δ-signature of Q implies that there exists a
2δ-visiting order of Q′ on P ′.

It remains to argue that dF(P
′, Q′) ≤ 3δ. Let ϕ : [0, 1]→ [0, 1]2 be a δ-traversal of P

and Q. Consider an edge X of Q′ and let Q[α, β] be the subcurve of Q that corresponds
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to X. Let P [α′, β′] be a subcurve of P that is mapped to Q[α, β] under ϕ. By the triangle
inequality

dF(P [α′, β′], X) ≤ dF(P [α′, β′], Q[α, β]) + dF(Q[α, β]), X) ≤ 3δ

Assume that P ′ is range-preserving for now (we will treat the general case below) and
let P ′[α′′, β′′] be the corresponding subcurve of P ′ starting at P (α′), ending at P (β′),
and with inner vertices being the δ-signature vertices of P in the parametrization interval
[α′, β′]. Note that P ′[α′′, β′′] is well-defined since P ′ is a range-preserving as assumed
above. By Observation 4.3 it follows that dF(P

′[α′′, β′′], X) ≤ 3δ. To show the claim for
the case of range-preserving P ′, we now want to use Observation 4.2 to concatenate the
corresponding subcurves of P ′ and Q′ and obtain that dF(P

′, Q′) ≤ 3δ. For this, we can
choose the values of α′ and β′ in the above argument such that we obtain a decomposition
of P into subcurves. Concretely, let X1, . . . , Xs be the edges of Q′ in their order along
Q′, with Xi = Q(αi)Q(βi). Then, we can choose the corresponding subcurves of P as
P [α′

i, β
′
i], with

α′
i−1 ≤ β′

i−1 = α′
i ≤ β′

i

for any 1 < i ≤ s, with α′
1 = 0 and β′

s = 1. Thus, we obtain a decomposition of P . Now,
if P ′ is a range-preserving simplification of P , then the above construction induces a
decomposition of P ′ into subcurves P ′[α′′

i , β
′′
i ] and we can apply Observation 4.2.

As noted above, P ′ is not necessarily range-preserving on all edges since it is a
signature. In particular, it may not be range-preserving on the first edge (or the last edge,
or neither). This could lead to P (α′

2) (resp. P (α′
s) for the last edge) not being included

in the image of the signature edge of P ′ that corresponds to the subcurve of P containing
α′
2 (resp., α′

s). Note that if P (α′
2) is not contained in the image of the first signature

edge, then it must be that |P (α′
2) − P (0)| ≤ δ, and in fact, it must be that this holds

for the entire subcurve, that is |P (t) − P (0)| ≤ δ for any t ∈ [0, α′
2]. We claim that in

this case we can simply set α′′
2, and β′′

1 to 0 (resp., we can set β′′
s−1, and α′′

s to 1). We
argue that this way of choosing the decomposition leads to dF(P

′[α′′
1, β

′′
1 ], X1) ≤ 3δ and

dF(P
′[α′′

2, β
′′
2 ], X2) ≤ 3δ so that the above arguments can be applied (for the last two

edges of Q′ a symmetric argument can be applied and we will omit the explicit analysis).
By the triangle inequality, we have that

|P ′(0)−Q(α2)| ≤ |P (0)− P (α′
2)|+ |P (α′

2)−Q(α2)| ≤ 2δ.

Together with
|P ′(0)−Q(α1)| = |P (0)−Q(0)| ≤ δ

this implies by Observation 4.1 that dF(P
′(0), X1) ≤ 3δ since X1 is a line segment and

X1 = Q(0)Q(α2). Applying the triangle inequality again, we obtain for any t ∈ [0, α′
2]

that
|P (t)−Q(α2)| ≤ |P (t)− P (0)|+ |P (0)−Q(α2)| ≤ 3δ

By Observation 4.2 and since X2 = Q(α2)Q(β2), this implies that

dF(P [0, β′
2], X2) ≤ max

(
dF(P [0, α′

2], Q(α2)) , dF(P [α′
2, β

′
2], Q(α2)Q(β2))

)
≤ 3δ

By Observation 4.3 it follows that dF(P
′[0, β′′

2 ], X2) ≤ 3δ.
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CHAPTER 5
Fréchet Distance Under Translation

For a technical overview of this chapter see Section 3.2. The structure of this chapter is
as follows. We start off with introducing basic definitions, notational conventions, and
algorithmic tools in Section 5.1. Afterwards, in Section 5.2, we give an overview of our
algorithmic result and we reduce the problem to designing a certain data structure for
Offline Dynamic Grid Reachability. This data structure, our main technical contribution,
is developed in Section 5.3.

5.1 Preliminaries

For convenience, we use as convention that min ∅ =∞ and max ∅ = −∞.

5.1.1 Curves, Traversals, Fréchet Distances, and More

Throughout this chapter, we only consider polygonal curves in the Euclidean plane, i.e.,
d = 2. Let us define the concatenation of traversals. Given two traversals T = (t1, . . . , tℓ)
and T ′ = (t′1, . . . , t

′
ℓ′) with tℓ = t′1, we define the concatenated traversal as T ◦ T ′ :=

(t1, . . . , tℓ = t′1, t
′
2, . . . , t

′
ℓ′). Note that we obtain a traversal from t1 to t′ℓ′ . We call any

pair (i, j) ∈ [n] × [m] a position. We obtain a well-known alternative discrete Fréchet
distance definition as follows: Fix some distance δ ≥ 0. We call a position (i, j) free if
∥πi − σj∥ ≤ δ. We say that a traversal T = (t1, . . . , tℓ) of π, σ is a valid traversal for δ if
t1, . . . , tℓ are all free positions. The discrete Fréchet distance of π, σ is then the smallest
δ such that there is a valid traversal of π, σ for δ.

Analogously, consider the n×n matrix M with Mi,j = 1 if (i, j) is free, and Mi,j = 0
otherwise. We call any traversal T = (t1, . . . , tℓ) a monotone path from t1 to tℓ. If all
positions (i, j) visited by T satisfy Mi,j = 1, we call T a monotone 1-path from t1 to
tℓ in M . As yet another formulation, consider the n × n grid graph GM where vertex
(i, j) has directed edges to all of (i, j +1), (i+1, j), and (i+1, j +1) (in case they exist).
Deactivate (i.e., remove) all non-free vertices (i, j) from GM . Then a monotone 1-path
in M corresponds to a (directed) path in GM . Hence, ddF(π, σ) ≤ δ is equivalent to the
existence of a valid traversal of π, σ for δ, which in turn is equivalent to the existence
of a monotone 1-path from (1, 1) to (n, n) in the matrix M , and to vertex (n, n) being
reachable from (1, 1) in GM .

5.1.2 Orthogonal Range Searching Data Structures

We will use a tool from geometric data structures, namely (dynamic) orthogonal range
data structures. Let S be a set of key-value pairs s = (ks, vs) ∈ Zd×Z; in our applications,
we will have d = 2 or d = 3. An orthogonal range data structure on S enables us to query
the maximal value of any pair in S whose key lies in a given orthogonal range. Formally,
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we say OR stores vs under the key ks for s ∈ S for minimization queries, if OR supports,
for any ℓ1, u1, ℓ2, u2, . . . , ℓd, ud ∈ Z ∪ {−∞,∞}, queries of the form

OR.min([ℓ1, u1]× · · · × [ℓd, ud]) :

return min{vs | s = (ks, vs) ∈ S, ks ∈ [ℓ1, u1]× · · · × [ℓd, ud]}.

We will also consider analogous maximization queries.
Classic results [66, 96] show that for any set S of size n and d = 2, we can construct

such a data structure OR in time and space O(n log n), supporting minimization (or
maximization) queries in time O(log n).

In Section 5.3.6, we will also use an orthogonal range searching data structure that
allows (1) to report all values of pairs in S whose keys lie in a given orthogonal range,
and (2) to remove a key-value pair from S. Formally, we say that OR stores vs under
the key ks for s ∈ S for decremental range reporting queries, if OR supports, for any
ℓ1, u1, ℓ2, u2, . . . , ℓd, ud ∈ Z ∪ {−∞,∞}, queries of the form

OR.report([ℓ1, u1]× · · · × [ℓd, ud]) :

return {vs | s = (ks, vs) ∈ S, ks ∈ [ℓ1, u1]× · · · × [ℓd, ud]},

as well as deletions from the set S.
Mortensen [136] and Chan and Tsakalidis [64] showed how to construct such a data

structure OR for any set S of size n in time and space O(n logd−1 n), deletion time
O(logd−1 n) and query time O(logd−1 n + k), where k denotes the output size of the
query. (These works obtain even stronger results, however, we use simplified bounds for
ease of presentation.)

5.2 Algorithm: Reduction to Grid Reachability

In this section, we prove our algorithmic result by showing how a certain grid reachability
data structure (that we give in Section 5.3) yields an Õ(n4+2/3)-time algorithm for
computing the discrete Fréchet distance under translation.

We start with a formal overview of the algorithm. First, we reduce the decision
problem (i.e., is the discrete Fréchet distance under translation of π, σ at most δ?) to the
problem of determining reachability in a dynamic grid graph, as shown by Ben Avraham
et al. [33]. However, noting that all updates and queries are known in advance, we observe
that the following offline version suffices.

Problem 5.1 (Offline Dynamic Grid Reachability). Let M be an n × n matrix over
{0, 1}. We call u = (p, b) with p ∈ [n] × [n] and b ∈ {0, 1} an update and define M [[u]]
as the matrix obtained by setting the bit at position p to b, i.e.,

M [[(p, b)]]i,j =

{
b if p = (i, j),

Mi,j otherwise.

For any sequence of updates u1, . . . , uk ∈ ([n] × [n]) × {0, 1} with k ≥ 2, we define
M [[u1, . . . , uk]] := (M [[u1]])[[u2, . . . , uk]].
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5.2. Algorithm: Reduction to Grid Reachability

The Offline Dynamic Grid Reachability problem asks to determine, given M and any
sequence of updates u1, . . . , uU ∈ ([n]× [n])× {0, 1}, whether there is a monotone 1-path
from (1, 1) to (n, n) in M [[u1, . . . , uk]] for any 1 ≤ k ≤ U .

We show the following reduction in Section 5.2.1.

Lemma 5.2. Assume there is an algorithm solving Offline Dynamic Grid Reachability
in time T (n,U). Then there is an algorithm that, given δ > 0 and polygonal curves π, σ
of length n over R2, determines whether ddF(π, σ + τ) ≤ δ for some τ ∈ R2 in time
O(T (n, n4)).

Our speed-up is achieved by solving Offline Dynamic Grid Reachability in time
T (n,U) = Õ(n2 + Un2/3) (Ben Avraham et al. [33] achieved T (n,U) = O(n2 + Un)).
To this end, we devise a grid reachability data structure, which is our central technical
contribution.

Lemma 5.3 (Grid reachability data structure). Given an n× n matrix M over {0, 1}
and a set of terminals T ⊆ [n]× [n] of size k > 0, there is a data structure DM,T with
the following properties.

i) (Construction:) We can construct DM,T in time O(n2 + k log2 n).

ii) (Reachability Query:) Given F ⊆ T , we can determine in time O(k log3 n) whether
there is a monotone path from (1, 1) to (n, n) using only positions (i, j) with Mi,j = 1
or (i, j) ∈ F .

iii) (Update:) Given T ′ ⊆ [n] × [n] of size k and an n × n matrix M ′ over {0, 1}
differing from M in at most k positions, we can update DM,T to DM ′,T ′ in time
O(n
√
k log n + k log2 n). Here, we assume M ′ to be represented by the set ∆ of

positions in which M and M ′ differ.

Section 5.3 is dedicated to devising this data structure, i.e., proving Lemma 5.3.
Equipped with this data structure, we can efficiently batch updates and queries to the
data structure. Specifically, we obtain the following theorem.

Theorem 5.4. Offline Dynamic Grid Reachability on an n× n grid with U updates can
be solved in time O(n2 + Un2/3 log2 n).

We prove this theorem in Section 5.2.2. Finally, it remains to use standard techniques
of parametric search to transform the decision algorithm to an algorithm computing
the discrete Fréchet distance under translation. This has already been shown by Ben
Avraham et al. [33]; we sketch the details in Section 5.2.3.

Lemma 5.5. Let Tdec(n) be the running time to decide, given δ > 0 and polygonal curves
π, σ of length n over R2, whether ddF(π, σ + τ) ≤ δ for some τ ∈ R2. Then there is an
algorithm computing the discrete Fréchet distance under translation for any curves π, σ
of length n over R2 in time O((n4 + Tdec(n)) log n).

Combining Lemma 5.5, Lemma 5.2 and Theorem 5.4, we obtain an algorithm com-
puting the discrete Fréchet distance under translation in time

O((n4 + T (n, n4)) log n) = O(n4+2/3 log3 n),

as desired. In the remainder of this section, we provide the details of all steps mentioned
above, except for Lemma 5.3 (which we prove in Section 5.3).
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τ0

Base set Q

Nodes of Gδ

Edges of Gδ

Elements in figure:

Figure 5.1: Arrangement Aδ and construction of Gδ.

5.2.1 Reduction to Offline Dynamic Grid Reachability

In this section we prove Lemma 5.2. Given polygonal curves π, σ of length n over R2 and
δ > 0, we determine whether ddF(π, σ + τ) ≤ δ for some τ ∈ R2 as follows.

For any radius r and point p ∈ R2, we let Dr(p) denote the disk of radius r with
center p.

Observation 5.6. Let τ ∈ R2 and define the n× n matrix M τ over {0, 1} by

M τ
i,j = 1 ⇐⇒ τ ∈ Dδ(πi − σj).

We have ddF(π, σ + τ) ≤ δ if and only if there is a monotone 1-path from (1, 1) to (n, n)
in M τ .

By the above observation, it suffices to check for the existence of monotone 1-paths
from (1, 1) to (n, n) in a bounded number of matrices. To this end, let Q := {πi − σj |
i, j ∈ [n]}. We construct the arrangement Aδ of the disks Dδ(q) for q ∈ Q, in the sense
that we construct the following plane graph Gδ (cf. Figure 5.1). First, we include the
vertices of Aδ in its node set (i.e., intersections of disks Dδ(q), Dδ(q

′) with q, q′ ∈ Q).
Second, for each q ∈ Q for which Dδ(q) intersects no Dδ(q

′) for q′ ∈ Q \ {q}, we include
an arbitrary τq on the boundary of Dδ(q). Finally, we add an arbitrary vertex τ0 ∈ R2

lying in the outer face of Aδ to the node set. Any nodes τ, τ ′ of Gδ are connected by an
edge if they are neighboring vertices on the boundary of some face of Aδ; additionally,
we connect τ0 to all nodes which lie on the boundary separating the outer face from
some other face. Note that Gδ can only be disconnected now if there is an inner face of
Aδ that completely encloses a non-empty component of Aδ. In this case, we can simply
insert any edge from the part connected to the outer face, to the part that is enclosed.
Performing this recursively, we turn Gδ into a connected plane graph. Note that it has
O(|Q|2) = O(n4) nodes and edges, and can be constructed in time O(n4).

Note that by Observation 5.6, it suffices to check whether ddF(π, σ + τv) ≤ δ for any
node τv in1 Gδ: for any (bounded) face f of Aδ, there is at least one point τv in Gδ

1Note that our approach here deviates somewhat from the description in the introduction. This is due
to the fact that for adversarial δ, we might need to consider degenerate faces consisting of a single point
only; due to the parametric search that we describe in Section 5.2.3, we may not assume δ to avoid such
degenerate cases. Traversing vertices of the arrangement instead of the faces takes care of such border
cases in a natural manner.
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that lies on the boundary of f . The corresponding matrix M τv has at least the same
1-positions as the matrix M τ for any τ ∈ f (and might have more).

To obtain a walk visiting all nodes in Gδ, we simply compute a spanning tree T of
Gδ, double all edges of T , and find an Eulerian cycle starting and ending in τ0. Denote
this cycle by τ0, . . . , τL and observe that L = O(n4). Let M0 = M τ0 be the n × n all-
zeroes matrix. For any 0 ≤ i < L, we construct an update sequence ūi that first sets
all positions (i, j) with M τi = 1 and M τi+1 = 0 to zero, and then sets all positions
(i, j) with M τi = 0 and M τi+1 = 1 to 1. Thus, if we start with M τi and perform the
updates in ūi, then at any point in time, the current matrix is dominated by either M τi or
M τi+1 (that is, the free positions of the current matrix are always a subset of M τi ’s free
positions or a subset of M τi+1 ’s free positions), and at the end we obtain M τi+1 . Thus, by
concatenating all updates to ū0, . . . , ūL−1, we obtain an instance of the Offline Dynamic
Grid Reachability problem with initial matrix M0 and update sequence u1, . . . , uL′ with
the following property: There is some i ∈ {0, . . . , L} with ddF(π, σ + τi) ≤ δ if and only
if there is some i′ ∈ [L′] such that (n, n) is reachable from (1, 1) via a monotone 1-path
in M0[[u1, . . . , ui′ ]]. Since τ0, . . . , τL visits all nodes in Gδ, this is equivalent to testing
whether ddF(π, σ + τ) ≤ δ for any τ ∈ R2.

It remains to bound L′. We assume general position of the input points P ∪ S where
P = {πi | i ∈ [n]} and S = {σj | j ∈ [n]}. Observe that there is some universal constant C
such that no C points in Q lie on a common circle.2 Thus, if we move from vertex τi
to τi+1 along an edge in Gδ, e.g., from one vertex of the boundary of some face to a
neighboring vertex on that boundary, there are at most 2C entries that change from
M τi to M τi+1 , since for both τi and τi+1, there are at most C disks intersecting this
vertex and no other entries change when moving along this edge (by construction of Gδ).
Thus, L′ ≤ 2CL = O(n4). Consequently, given an algorithm solving Offline Dynamic
Grid Reachability in time T (n,U), we can determine whether ddF(π, σ+ τ) ≤ δ for some
τ ∈ R2 in time O(T (n,L′)) = O(T (n, n4)).

5.2.2 Solving Offline Dynamic Grid Reachability

We prove Theorem 5.4 using the grid reachability data structure given in Lemma 5.3.
Specifically, we claim that the following algorithm (formalized as Algorithm 8) solves
Offline Dynamic Grid Reachability in time O(n2+Un2/3 log2 n). We partition our updates
u1, . . . , uU into groups ū1, . . . , ūO(U/k) containing k updates each. For any group ūi, let
Mi be obtained from M by performing all updates prior to ūi. Note that ūi will update
a set of at most k positions; denote this set by Ti. We build the grid reachability data
structure Di = DM0

i ,Ti
with terminal set Ti and matrix M0

i obtained from Mi by setting

2To be more precise, we sketch how to argue that the general position assumption for P ∪S “transfers”
to Q. Assume that there exist points q1, . . . , qℓ ∈ Q lying on a common circle. For all i, we must have
qi = pi − si for some pi ∈ P, si ∈ S. First assume that ℓ = 4 and that there is some s such that si = s for
all i ∈ {1, 2, 3, 4}. Then already p1, . . . , p4 lie on a common circle (it has the same radius as the original
circle, and its center is translated by s), which violates the general position assumption of points in P .
Otherwise, let the points q1, . . . , qℓ be arbitrary with ℓ ≥ 36. By the first case, any si appears at most 3
times among s1, . . . , sℓ. After removing copies, we may assume without loss of generality that q1, . . . , qℓ′

with ℓ′ ≥ ℓ/3 have distinct si’s. Similarly, we may also assume that q1, . . . , qℓ′′ with ℓ′′ ≥ ℓ/9 ≥ 4 have
distinct pi’s as well. The fact that q4 lies on the circle defined by q1, q2, q3 can be expressed by a nonzero
degree-2 polynomial Pq1,q2,q3(x, y) vanishing on q4. Since q4 = p4 − s4, we obtain a nonzero degree-2
polynomial P ′

q1,q2,q3(p, s) vanishing on (p4, s4). This contradicts general position of P ∪ S.
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1: function OfflineDynamicGridReachability(M , u1, . . . , uU )
2: parameter: k
3: Divide u1, . . . , uU into s =

⌈
U
k

⌉
subsequences ū1, . . . , ūs of length k.3

4: Initialize M1 ←M
5: Set T1 to the set of positions updated in ū1.
6: Let M0

1 be obtained from M1 by updating all positions in T1 to 0
7: Build DM0

1 ,T1
8: for i← 1 to s do
9: for j ← 1 to k do

10: Let F ⊆ Ti be the free terminals in Mi[[ūi[1], . . . , ūi[j]]]
11: if reachability query in DM0

i ,Ti
with free terminals F is successful then

12: return true
13: Set Mi+1 ←Mi[[ūi]]
14: Set Ti+1 to the set of positions updated in ūi+1.4

15: Let M0
i+1 be obtained from Mi+1 by updating all positions in Ti+1 to 0

16: update DM0
i ,Ti

to DM0
i+1,Ti+1

17: return false

Algorithm 8: Solving Offline Dynamic Grid Reachability on matrix M and update
sequence u1, . . . , uU .

the positions of all terminals Ti to 0. Observe that the state after any update within ūi
corresponds to M0

i with some additional positions in Ti set to 1 (the free terminals). Thus,
for each update within ūi, we can determine whether it creates a monotone 1-path from
(1, 1) to (n, n) by simply determining the set F ⊆ Ti of free terminals at the point of this
update and performing the corresponding reachability query in Di. It is straightforward
to argue that the resulting algorithm correctly solves Offline Dynamic Grid Reachability.

To analyze the running time of Algorithm 8, note that each data structure DM0
i ,Ti

has a terminal set of size at most k and each M0
i+1 differs from M0

i in at most 2k entries.
Thus by Lemma 5.3, we need time O(n2 + k log2 n) to build D1 = DM0

1 ,T1 in Line 7. The
time spent for handling a single group ūi is bounded by the time to perform k queries in
Di = DM0

i ,Ti
plus the time to update Di = DM0

i ,Ti
to Di+1 = DM0

i+1,Ti+1
, which amounts

to O(k2 log3 n+ n
√
k log n+ k log2 n) = O(k2 log3 n+ n

√
k log n) by Lemma 5.3. Thus,

in total, we obtain a running time of

O
(
n2 + k log2 n+

U

k

(
k2 log3 n+ n

√
k log n

))
= O

(
n2 + U

(
k log3 n+

n√
k
log n

))
.

This expression is minimized by setting k := n2/3/ log4/3 n, resulting in a total running
time of O(n2 + Un2/3 log1+2/3 n) = O(n2 + Un2/3 log2 n), as desired.

5.2.3 Parametric Search

In this section, we sketch how to use parametric search techniques (due to Megiddo [133]
and Cole [74]) to reduce the optimization problem to the decision problem with small
overhead, i.e., we prove Lemma 5.5. Specifically, for the readers’ convenience, we describe
the arguments made by Ben Avraham et al. [33] in slightly more detail.
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Our aim in this section is to compute the discrete Fréchet distance under translation
of polygonal curves π, σ of length n over R2, i.e., to determine

δ∗ := min
τ∈R2

ddF(π, σ + τ).

Using the decision algorithm, we can determine, for any δ > 0, whether δ∗ ≤ δ in
time Tdec(n). As we shall see below, there is a range of O(n6) possible values (defined by
the point set of π, σ) that δ∗ might attain (called critical values). Naively computing all
critical values and performing a binary search would result in an O((n6 + Tdec(n)) log n)-
time algorithm, which is too slow for our purposes. Instead, we use the parametric search
technique to perform an implicit search over these critical values.

Conceptually, we aim to determine the combinatorial structure of the arrangement
Aδ∗ defined in Section 5.2.1 (captured by the graph Gδ∗) without knowing δ∗ in advance.
To specify this combinatorial structure, define for every q ∈ Q the set

Iδ(q) := {q′ ∈ Q \ {q} | Dδ(q), Dδ(q
′) intersect}.

Note that for every q′ ∈ Iδ(q), there are one or two intersection points of Dδ(q), Dδ(q
′),

which we denote by C1
δ (q, q

′) and C2
δ (q, q

′) (note that we allow these points to coincide
if Dδ(q), Dδ(q

′) intersect in a single point only) – we assume this notation to be chosen
consistently in the sense that C1

δ (q, q
′) and C1

δ (q
′, q) refer to the same point (likewise

for C2
δ (q, q

′) and C2
δ (q

′, q)). We denote by Cδ(q) the set of all intersection points on
the boundary of Dδ(q), i.e., C1

δ (q, q
′), C2

δ (q, q
′) for all q′ ∈ Iδ(q). We obtain a list Lδ(q)

by starting with the rightmost point on the boundary of Dδ(q), say rq, and listing all
intersection points C ∈ Cδ(q) in counter-clockwise order. Observe that the combinatorial
structure of Aδ is completely specified by the lists Lδ(q) for q ∈ Q.

We wish to construct Lδ∗(q) for all q ∈ Q using calls to our decision algorithm, i.e.,
queries of the form “Is δ∗ ≤ δ?”. Along the way, we maintain a shrinking interval (α, β]
such that δ∗ ∈ (α, β] – our aim is that in the end (α, β] no longer contains critical values
except for β, and thus δ∗ = β can be derived. We proceed in two steps.

Step 1: Determining Iδ∗(q). The critical values for this step are the half-distances
of all pairs q, q′ ∈ Q (cf. Figure 5.2(a)). We list all these values and perform a binary
search over them, using our decision algorithm. Since there are at most O(|Q|2) = O(n4)
such values, we obtain an algorithm running in time O((n4 + Tdec(n)) log n) returning
an interval (α1, β1] such that δ∗ ∈ (α1, β1] and no half-distance of a pair q, q′ ∈ Q is
contained in (α1, β1). Thus, from this point on we know Iδ∗(q) for all q ∈ Q (without
knowing the exact value of δ∗ yet).

Step 2: Sorting Lδ∗(q). We use the following well-known variant of Meggido’s para-
metric search that is due to Cole [74].

Lemma 5.7 (implicit in [74]). Let parametric values f1(δ), . . . , fN (δ) be given. Assume
there is an unknown value δ∗ > 0 and a decision algorithm determining, given δ > 0,
whether δ∗ ≤ δ in time T (N). If we can determine fi(δ

∗) ≤ fj(δ
∗) for any i, j ∈ [N ]

using only a constant number of queries to the decision algorithm, then in time O((N +
T (N)) logN), we can sort f1(δ

∗), . . . , fN (δ∗) and obtain an interval (α, β] such that
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q

q′

Dδ(q)

Dδ(q
′)

(a) The elements in Lδ(q)
change at radius δ that is a
half-distance to some other
q′ ∈ Q.

q

q′′

Dδ(q)

Dδ(q
′′)

q′

Dδ(q
′)

c

(b) The ordering of Lδ(q)
might change at radius δ
such that q, q′, q′′ ∈ Q lie
on a common circle around
some center c.

q

Dδ(q)

Dδ(q
′)

q′

rq

(c) The ordering of Lδ(q)
might change at radius δ
such that Dδ(q

′) intersects
Dδ(q) in rq.

Figure 5.2: Critical values for the lists Lδ(q), q ∈ Q.

δ∗ ∈ (α, β] and no critical value for the sorted order of f1(δ), . . . , fN (δ) is contained in
(α, β).

Consider first the problem of sorting Lδ∗(q) for some q ∈ Q. By the above technique, we
only need to argue that we can determine whether some Ca

δ∗(q, q
′) with q′ ∈ Q, a ∈ {1, 2}

precedes some Cb
δ∗(q, q

′′) with q′′ ∈ Q, b ∈ {1, 2} in Lδ∗(q). Note that Ca
δ (q, q

′), Cb
δ(q, q

′′)
move continuously on the boundary of Dδ(q) (while δ varies) and there are only constantly
many choices of δ for which any of the points Ca

δ (q, q
′), Cb

δ(q, q
′′), rq coincide (and thus

the order might possibly change).5 By testing for these O(1) critical values of δ, we can
determine the order of Ca

δ∗(q, q
′), Cb

δ∗(q, q
′′), rq on the boundary of Dδ(q), and thus resolve

a comparison of Ca
δ∗(q, q

′) and Cb
δ∗(q, q

′′) in the order of Lδ∗(q) using only a constant
number of calls to the decision algorithm.

Note that by arbitrarily choosing an order of Q, we may use Cole’s sorting procedure
(Lemma 5.7) to construct all lists Lδ∗(q), q ∈ Q simultaneously (we simply need to adapt
the comparison function to compare Ca

δ∗(q, q
′), Cb

δ∗(q̃, q
′′) according to the order of Q

if q ̸= q̃). Note that in this application of Lemma 5.7, we have N =
∑

q∈Q |Cδ∗(q)| =
O(|Q|2) = O(n4).

It follows that in time O((n4+Tdec(n)) log n), we can obtain an interval (α2, β2] such
that δ∗ ∈ (α2, β2], while β2 is the only value for δ for which the combinatorial structure
of Aδ changes in (α2, β2]. Thus, δ∗ = β2, as desired.

The overall running time of the above procedure amounts to O((n4 + Tdec(n)) log n),
which concludes the proof of Lemma 5.5.

5.3 Grid Reachability Data Structure

In this section, we prove Lemma 5.3, which we restate here for convenience.

5The important critical values for this step are the O(|Q|3) = O(n6) radii of points with three (or
more) points of Q on their boundary. See Figure 5.2 for an illustration of all types of critical values.
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Lemma 5.3 (Grid reachability data structure). Given an n× n matrix M over {0, 1}
and a set of terminals T ⊆ [n]× [n] of size k > 0, there is a data structure DM,T with
the following properties.

i) (Construction:) We can construct DM,T in time O(n2 + k log2 n).

ii) (Reachability Query:) Given F ⊆ T , we can determine in time O(k log3 n) whether
there is a monotone path from (1, 1) to (n, n) using only positions (i, j) with Mi,j = 1
or (i, j) ∈ F .

iii) (Update:) Given T ′ ⊆ [n] × [n] of size k and an n × n matrix M ′ over {0, 1}
differing from M in at most k positions, we can update DM,T to DM ′,T ′ in time
O(n
√
k log n + k log2 n). Here, we assume M ′ to be represented by the set ∆ of

positions in which M and M ′ differ.

The rough outline is as follows: We obtain the data structure by repeatedly splitting
the free-space diagram into smaller blocks. This yields O(log n) levels of blocks, where
in each block we store reachability information from all “inputs” to the block (i.e., the
lower-left boundary) to all “outputs” of the block (i.e., the upper-right boundary). Any
change in the matrix M is reflected only in O(log n) blocks containing this position,
thus, we can quickly update the information. This approach was pursued already by Ben
Avraham et al. [33].

In addition, however, we need to maintain reachability of all terminals T to the inputs
and from the outputs of each block. Surprisingly, we only need an additional storage of
O(|T |) per block. We show how to maintain this information also under updates and
how it can be used by a divide and conquer approach to answer any reachability queries.

To this end, we start with some basic definitions (block structure, identifiers for
each position, etc.) in Section 5.3.1. We can then prove the succinct characterization
of terminal reachability in Section 5.3.2, which is the key aspect of our data structure.
Given this information, we can define exactly what information we store for each block
in Section 5.3.3. We give algorithms computing the information for some block given the
information for its children in Section 5.3.4, which allows us to prove the initialization and
update statements (i.e., i) and iii) of Lemma 5.3) in Section 5.3.5. Finally, Section 5.3.6
is devoted to the reachability queries, i.e., proving ii) of Lemma 5.3.

5.3.1 Basic Structures and Definitions

Without loss of generality, we may assume that n = 2κ + 1 for some integer κ ∈ N.
Otherwise, for any n × n matrix M over {0, 1}, we could define an n′ × n′ matrix M ′

with (1) n′ = 2κ + 1 for some κ ∈ N with n < n′ ≤ 2n and (2) setting M ′
i,j = Mi,j for all

(i, j) ∈ [n]× [n] and setting M ′
i,j = 1 if and only if i = j for all (i, j) ∈ [n′]× [n′]\ [n]× [n].

Clearly, existence of a monotone 1-path from (1, 1) to (n, n) in M is equivalent to existence
of a monotone 1-path from (1, 1) to (n′, n′) in M ′.

Canonical blocks. Let I, J be intervals in [n] with n = 2κ+1. We call I×J ⊆ [n]× [n]
a block. In particular, we only consider blocks obtained by splitting the square [n]× [n]
alternately horizontally and vertically until we are left with 2× 2 blocks. Formally, we
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B0

...
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...
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...
...
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B2

Figure 5.3: The sets of canonical blocks B0,B1,B2, . . . ,B2κ. We alternate between
horizontal and vertical splits. Note that child blocks overlap at their boundary.

define B0 := {([n], [n])} and construct Bℓ+1 inductively by splitting each block B ∈ Bℓ as
follows:

• For ℓ = 2i with 0 ≤ i < κ, we have B = (I, J) with |I| = |J | = 2κ−i+1. We split J
into intervals J1, J2, where J1 contains the first (2κ−i−1 + 1) elements in J and J2
contains the last (2κ−i−1+1) elements in J (thus J1 and J2 intersect in the middle
element of J). Add (I, J1) and (I, J2) to Bℓ+1.

• For ℓ = 2i + 1 with 0 ≤ i < κ, we have B = (I, J) with |I| = 2κ−i + 1 and
|J | = 2κ−i−1 + 1. Analogous to above, we split I into two equal-sized intervals
I1, I2, where I1 contains the first (2κ−i−1 + 1) elements in I and I2 contains the
last (2κ−i−1 + 1) elements in I. Add (I1, J) and (I2, J) to Bℓ+1.

We let B :=
⋃2κ

ℓ=0 Bℓ be the set of canonical blocks, and call each block B ∈ Bℓ
a canonical block on level ℓ. The blocks B1 = (I1, J), B2 = (I2, J) ∈ Bℓ+1 (or B1 =
(I, J1), B2 = (I, J2) ∈ Bℓ+1, respectively) obtained from B = (I, J) ∈ Bℓ are called the
children of B. See Figure 5.3.
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B+

B−
TB :

1

9

-16 -33 -50 -67 -84 -101 -118 -135

19

37

55

73

91

109

127

145 128 111 94 77 60 43 26

-9

-27

-45

-63

-81

-99

-117

B+
2

B−
1

1

9

-16 -33 -50 -67 -84 -101 -118 -135

19

37

55

91

109

127

145 128 111 94 77 60 43 26

-9

-27

-45

-81

-99

-117

B+
1B−

2
Bmid

73 -6356 39 22 5 -12 -29 -46

Figure 5.4: Structure of a block B

Boundaries. For any B = (I, J) ∈ B, we denote the lower left boundary of B as
B− = {min I} × J ∪ I × {min J}, and call each p ∈ B− an input of B. Analogously, we
denote the upper right boundary of B as B+ = {max I}×J ∪ I×{max J}, and call each
q ∈ B+ an output of B. By slight abuse of notation, we define |∂B| = |B− ∪B+| as the
size of the boundary of B, i.e., the number of inputs and outputs of B.

If B splits into children B1, B2, we call Bmid = B+
1 ∩B−

2 the splitting boundary of B.

Indices. To prepare the description of this information, we first define, for technical
reasons, indices for all positions in [n]× [n]. It allows us to give each position a unique
identifier with the property that for any canonical block B, the indices yield a local
ordering of the boundaries.

Observation 5.8. Let ind : [n]× [n]→ N, where for any point p = (x, y) ∈ [n]× [n], we
set ind(p) := (y − x)(2n) + x. We call ind(p) the index of p. This function satisfies the
following properties:

(1) The function ind is injective, can be computed in constant time, and given i = ind(p),
we can determine ind−1(i) := p in constant time.

(2) For any B ∈ B, ind induces an ordering of B+ in counter-clockwise order and an
ordering of B− in clockwise order.

We refer to Figure 5.4 for an illustration of a block B, its boundaries, and the indices
of all positions.

5.3.2 Reachability Characterization

Our aim is to construct a data structure DM,T = (DM,T (B))B∈B, where DM,T (B) suc-
cinctly describes reachability (via monotone 1-paths) between the boundaries B−, B+
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and the terminals TB := T ∩ B inside B. In particular, we show that we only require
space O(|∂B|+ |TB|) to represent this information.

To prepare this, we start with a few simple observations that yield a surprisingly
simple characterization of reachability from any terminal to the boundary.

Compositions of crossing paths. We say that we reach q from p, written p⇝ q, if
there is a traversal T = (t1, . . . , tℓ) with t1 = p, tℓ = q, and ti is free for all 1 < i < ℓ
(note that we do not require t1 and tℓ to be free). We call such a slightly adapted notion
of traversal a reach traversal. By connecting the points of T by straight lines, we may
view T also as a polygonal curve in R2. The following property is a standard observation
for problems related to the Fréchet distance.

Observation 5.9. Let T1, T2 be reach traversals from p1 to q1 and from p2 to q2, respec-
tively. Then if T1 and T2 intersect, we have p1 ⇝ q2 (and, symmetrically, p2 ⇝ q1).

Proof. Let t ∈ [n]× [n] be a free position in which T1, T2 intersect (observe that such a
point with integral coordinates must exist unless p1 = p2 or q1 = q2; in the latter case,
the claim is trivial). Note that t splits T1, T2 into T1 = T a

1 ◦ T b
1 and T2 = T a

2 ◦ T b
2 such

that T a
1 , T

a
2 are reach traversals ending in t and T b

1 , T
b
2 are reach traversal starting in t.

By concatenating T a
1 and T b

2 , we obtain a reach traversal from p1 to q2. Symmetrically,
T a
2 ◦ T b

1 proves p2 ⇝ q1.

Let B ∈ B and recall that ind(·) orders B+ counter-clockwise. For any p ∈ B, we
define A(p) := min{ind(q) | q ∈ B+, p⇝ q}, and analogously Z(p) := max{ind(q) |
q ∈ B+, p⇝ q} (note that A(p) and Z(p) correspond to the lowest/rightmost and high-
est/leftmost pointer, respectively, in [19, Section 3.2]). These two values define a corre-
sponding reachability interval I(p) := [A(p),Z(p)] that contains all q ∈ B+ with p⇝ q.
In the following analysis, we slightly abuse notation by also using ind(p) to denote the
corresponding (unique) position p ∈ [n]× [n].

Definition 5.10. Let p ∈ B with ∞ > A(p),Z(p) > −∞ and fix any reach traversals
TA, TZ from p to A(p) and Z(p) such that we can write

TA = Pcom ◦ P ′
A,

TZ = Pcom ◦ P ′
Z ,

for some polygonal curves Pcom, P
′
A, P

′
Z with P ′

A, P
′
Z non-intersecting. Let F be the face

enclosed by P ′
A, P

′
Z and the path from A(p) to Z(p) on B+ (if A(p) = Z(p), we let F be

the empty set). We define the reach region of p as

R(p) := F ∪ Pcom.

We refer to Figure 5.5 for an illustration. Observe that the desired traversals TA, TZ

for defining R(p) always exist: For any reach traversals T ′
A, T

′
Z from p to A(p) and Z(p),

respectively, consider the latest point in which T ′
A, T

′
B intersect, say t. We can define

reach traversals TA and TZ by following T ′
A until t and then following the remainder

of T ′
A or T ′

Z to reach A(p) or Z(p), respectively. These traversals satisfy the conditions
by construction. (Strictly speaking, any feasible choice for TA, TZ gives a potentially
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A(p)

Z(p) F

Pcom

P ′
Z

p

q

p′

P ′
A

p′′

Figure 5.5: Illustration of R(p), Proposition 5.11 and Lemma 5.12: Any reach traversal
from p′ /∈ R(p) must cross P ′

A or P ′
Z to reach q. However, if p′′ ⇝ q but p′′ ∈ R(p), then

q might not be reachable from p. A sufficient condition for p′ /∈ R(p) is that p′ ̸= p and
L(p′) ≤ L(p) (indicated by the orange triangular area).

different reach region R(p). However, any fixed choice will be sufficient for our proofs,
e.g., choosing lexicographically smallest/largest traversals.)

The following property generalizes an insightful property of reachability from the
inputs to the outputs (cf. [19, Lemma 10] and [33, Corollary 4.2]) to a similar property
for reachability from arbitrary block positions to the outputs, using the same argument
of crossing traversals.

Proposition 5.11. Let p, p′ ∈ B, q ∈ B+ with ind(q) ∈ I(p) and p′ /∈ R(p). Then
p′ ⇝ q implies p⇝ q.

Proof. The claim holds trivially if ind(q) = A(p) or ind(q) = Z(p). Thus, we may assume
that A(p) < Z(p), which implies that the face F in R(p) is nonempty with q ∈ F
and p′ /∈ F . Hence any reach traversal T from p′ to q must cross the boundary of F , in
particular, the path P (TA) or P (TZ), where TA, TZ both originate in p. By Observation 5.9,
this yields p⇝ q.

Reachability labelling. We define a total order on nodes in B that allows us to
succinctly represent reachability towards B+ for any subset S ⊆ B in space Õ(|S|+ |B+|).
The key is a labelling L : [n] × [n] → N, defined by L((x, y)) = x + y, that we call the
reachability labelling. For an illustration of the following lemma, we refer to Figure 5.5.

Lemma 5.12. Let p = (x, y), p′ = (x′, y′) ∈ B with L(p′) ≤ L(p) and q ∈ B+ with
ind(q) ∈ I(p). Then p′ ⇝ q implies p⇝ q.

Proof. The proof idea is to show that L(p′) ≤ L(p) implies that p′ /∈ R(p), and hence
Proposition 5.11 shows the claim. Note that by monotonicity of reach traversals, any
point r = (rx, ry) ∈ R(p) satisfies rx ≥ x and ry ≥ y. Thus, p′ ∈ R(p) only if x′ ≥ x,
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y′ ≥ y, but this together with x′ + y′ = L(p′) ≤ L(p) = x + y implies (x′, y′) = (x, y).
Summarizing, we either have p = p′, which trivially satisfies the claim, or p′ /∈ R(p),
which yields the claim by Proposition 5.11.

For any S ⊆ B, this labelling enables a surprisingly succinct characterization of which
terminals in S have reach traversals to which outputs in B+ by the following lemma
(greatly generalizing a simpler characterization6 for the special case of S = B−, cf. [19,
Lemma 10] and [33, implicit in Lemma 4.4]). This is one of our key insights.

Corollary 5.13. Let q ∈ B+ and define ℓ(q) := min{L(p) | p ∈ B, p⇝ q}. Then for any
p ∈ B, we have

p⇝ q if and only if ind(q) ∈ I(p) and ℓ(q) ≤ L(p).

Proof. Clearly, p⇝ q implies, by definition of A(p),Z(p), and ℓ(q), that A(p) ≤ ind(q) ≤
Z(p) and ℓ(q) ≤ L(p).

Conversely, assume that ind(q) ∈ I(p) and ℓ(q) ≤ L(p). Take any p′ ∈ B with p′ ⇝ q
and ℓ(q) = L(p′). Thus we have L(p′) = ℓ(q) ≤ L(p), ind(q) ∈ I(p) and p′ ⇝ q, which
satisfies the requirements of Lemma 5.12, yielding p⇝ q.

Given this characterization, we obtain a highly succinct representation of reachability
information. Specifically, to represent the information which terminals in S have reach
traversals to which outputs in B+, we simply need to store ℓ(q) for all q ∈ B+ as well as
the interval I(p) for all p ∈ S. Thus, the space required to store this information amounts
to only O(|∂B|+ |S|), which greatly improves over a naive O(|∂B| · |S|)-sized tabulation.

Reverse information. By defining Lrev((x, y)) = −L((x, y)) = −x− y, we obtain a
labelling with symmetric properties. In particular, define Arev(q) := min{ind(p) | p ∈
B−, p⇝ q}, Zrev(q) := max{ind(p) | p ∈ B−, p⇝ q} and the corresponding reverse reach-
ability interval Irev(q) := [Arev(q),Zrev(q)]. It is straightforward to prove the following
symmetric variant of Corollary 5.13.

Corollary 5.14. Let p ∈ B− and define ℓrev(p) := min{Lrev(q) | q ∈ B, p⇝ q}. Then
for any q ∈ B, we have

p⇝ q if and only if ind(p) ∈ Irev(q) and ℓrev(p) ≤ Lrev(q).

Summary of reachability characterization. As a convenient reference, we collect
here the main notation and results introduced in this section. For any p ∈ B, the
reachability interval I(p) is defined as [A(p),Z(p)] with

A(p) = min{ind(q) | q ∈ B+, p⇝ q},
Z(p) = max{ind(q) | q ∈ B+, p⇝ q}.

6In our language, this characterization is as follows: For any p ∈ B−, q ∈ B+, we have p⇝ q if and
only if ind(q) ∈ I(p) and there is some p′ ∈ B− with p′ ⇝ q. It is easy to see that this characterization
no longer holds if we replace B− by an arbitrary subset S ⊇ B−; our approach instead relies on the
reachability labelling to obtain a succinct and algorithmically tractable characterization.
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(Note that I(p) might be empty if A(p) =∞,Z(p) = −∞.) For any q ∈ B+, its reachability
level ℓ(q) is defined as

ℓ(q) = min{L(p) | p ∈ B, p⇝ q},

where L((x, y)) = x+y. For any p ∈ B, q ∈ B+, we have the reachability characterization
that

p⇝ q if and only if ind(q) ∈ I(p) and ℓ(q) ≤ L(p).

For any q ∈ B, we have the reverse reachability interval Irev(q) = [Arev(q),Zrev(q)] with

Arev(q) = min{ind(p) | p ∈ B−, p⇝ q},
Zrev(q) = max{ind(p) | p ∈ B−, p⇝ q}.

(Again, Irev(q) might be empty if Arev(q) = ∞,Zrev(q) = −∞.) For any p ∈ B−, its
reverse reachability level ℓrev(p) is defined as

ℓrev(p) = min{Lrev(q) | q ∈ B, p⇝ q},

where Lrev((x, y)) = −x− y. For any p ∈ B−, q ∈ B, we have the reachability characteri-
zation that

p⇝ q if and only if ind(p) ∈ Irev(q) and ℓrev(p) ≤ Lrev(q).

5.3.3 Information Stored at Canonical Block B

Using the characterization given in Corollaries 5.13 and 5.14, we can now describe which
information we need to store for any canonical block B ∈ B.

Definition 5.15. Let B ∈ B. The information stored at B (which we denote as DM,T (B))
consists of the following information: First, we store forward reachability information
consisting of,

• for every p ∈ B− ∪ TB, the interval I(p), and

• for every q ∈ B+, the reachability level ℓ(q).

Symmetrically, we store reverse reachability information consisting of,

• for every q ∈ B+ ∪ TB, the interval Irev(q), and

• for every p ∈ B−, the reverse reachability level ℓrev(p).

Finally, if B has children B1, B2 ∈ B, where B1 is the lower or left sibling of B2, we
additionally store

• an orthogonal range minimization data structure ORB storing, for each free q ∈
Bmid = B+

1 ∩B−
2 , the value ℓrev2 (q) under the key (ind(q), ℓ1(q)). Here ℓ1(q) denotes

the forward reachability level in B1, and ℓrev2 (q) denotes the reverse reachability level
in B2.
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Z(p) = Zr(j
′)

Zl(p)

j

j′

A(p) = Ar(j)
p

Al(p)

Bmid

Figure 5.6: Computation of I(p). To determine the smallest (largest) reachable index on
B+∩Br, we optimize, over all j ∈ Bmid with p⇝ j, the smallest (largest) reachable index
Ar(j) (Zr(j)) on B+

r . In this diagram, bright (dark) cells show free (non-free) positions.
Bmid is the boundary shared by Bl (left of Bmid) and Br (right of Bmid); see Figure 5.4
as a reminder of how we split boxes.

5.3.4 Computing Information at Parent From Information at Children

We show how to construct the information stored at the blocks quickly in a recursive
fashion.

Lemma 5.16. Let B ∈ B with children B1, B2. Given the information stored at B1 and
B2, we can compute the information stored at B in time O((|∂B|+ |TB|) log |∂B|).
Proof. Without loss of generality, we assume that B1, B2 are obtained from B by a
vertical split (the other case is analogous) – let Bl, Br denote the left and right child,
respectively. As a convention, we equip the information stored at Bl, Br with the subscript
l, r, respectively, and write the information stored at B without subscript. Furthermore,
we let Bmid

free denote the set of free positions of the splitting boundary Bmid = B+
l ∩B−

r .

Computation of I(p). Let p ∈ B− ∪ TB be arbitrary. We first explain how to com-
pute A(p) (see Figure 5.6 for an illustration). If p ∈ Br, then A(p) = Ar(p), since by
monotonicity any q ∈ B+ with p⇝ q satisfies q ∈ B+

r . Thus, it remains to consider
p /∈ Br.

We claim that for p /∈ Br, we have A(p) = min{A1(p), A2(p)}, where

A1(p) := min
q∈B+∩Bl,

p⇝q

ind(q)

A2(p) := min
j∈Bmid

free ,
p⇝j

min
q∈B+∩Br,

j⇝q

ind(q)

Indeed, this follows since each path starting in p ∈ Bl and ending in B+ must end in Bl,
or cross Bmid at some free j ∈ Bmid and end in Br.
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1: Build ORA storing Ar(j) under the key (ind(j), ℓl(j)) for all j ∈ Bmid
free (for minimiza-

tion queries)
2: Build ORZ storing Zr(j) under the key (ind(j), ℓl(j)) for all j ∈ Bmid

free (for maximiza-
tion queries)

3: Build ORtop storing ind(q) under the key (ind(q), ℓl(q)) for all q ∈ B+ ∩Bl (for both
queries)

4: for p ∈ (B− ∪ TB) do
5: if p ∈ Br then
6: I(p)← Ir(p)
7: else
8: A1(p)← ORtop.min([Al(p),Zl(p)]× (−∞, L(p)])
9: A2(p)← ORA.min([Al(p),Zl(p)]× (−∞, L(p)])

10: A(p)← min{A1(p),A2(p)}

11: Z1(p)← ORtop.max([Al(p),Zl(p)]× (−∞, L(p)])
12: Z2(p)← ORZ.max([Al(p),Zl(p)]× (−∞, L(p)])
13: Z(p)← max{Z1(p),Z2(p)}

Algorithm 9: Computing I(p) = [A(p),Z(p)] for all p ∈ B− ∪ TB.

To compute A1(p) note that Corollary 5.13 yields A1(p) = min{ind(q) | q ∈ B+ ∩
Bl, ind(q) ∈ [Al(p),Zl(p)], ℓl(q) ≤ L(p)}, which can be expressed as an orthogonal range
minimization query.

Likewise, to compute A2(p), note that B+ ∩Br = B+
r . Thus,

A2(p) = min
j∈Bmid

free ,
p⇝j

min
q∈B+

r ,
j⇝q

ind(q) = min
j∈Bmid

free ,
p⇝j

Ar(j) = min
j∈Bmid

free ,
ind(j)∈Il(p),ℓl(j)≤L(p)

Ar(j),

where the second and last equalities follow from the definition of Ar and Corollary 5.13,
respectively. It follows that we can compute A2(p) using a simple orthogonal range
minimization query.

Switching the roles of minimization and maximization, we obtain the analogous
statements for computing Z(p). We summarize the resulting algorithm for computing the
reachability intervals I(p) for all p ∈ B− ∪ TB formally in Algorithm 9. Its correctness
follows from the arguments above.

Let us analyze the running time of Algorithm 9: Observe that |Bmid
free | ≤ |∂B|. Thus,

we can construct the orthogonal range data structures ORA, ORZ, and ORtop in time
O(|∂B| log |∂B|) (see Section 5.1.2). For each p ∈ B−∪TB, we perform at most a constant
number of two-dimensional orthogonal range minimization/maximization queries, which
takes time O(log |∂B|), followed by constant-time computation. The total running time
amounts to O((|∂B|+ |TB|) log |∂B|).

Computation of ℓ(q). Let q ∈ B+ be arbitrary. If q ∈ Bl, then ℓ(q) = ℓl(p), since
by monotonicity every p ∈ B with p⇝ q is contained in Bl. Thus, we may assume that
q /∈ Bl.
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Arev
r (q)

Zrev
r (q)

j

p p′

p′′

q
Bmid

Figure 5.7: Computation of ℓ(q). To determine the smallest label of a position in Bl

reaching q, we optimize, over all j ∈ Bmid with j ⇝ q, the smallest label ℓl(j) of a position
p ∈ Bl reaching j.

We claim that for q /∈ Bl, we have ℓ(q) = min{ℓ1(q), ℓ2(q)}, where

ℓ1(q) := min
p∈Br,
p⇝q

L(p)

ℓ2(q) := min
j∈Bmid

free ,
j⇝q

min
p∈Bl,
p⇝j

L(p)

Indeed, this follows since each path starting in B and ending in q ∈ Br must start in Br,
or start in Bl and cross Bmid at some free j ∈ Bmid.

Observe that the definition of ℓ1(q) coincides with the definition of ℓr(q). Thus it only
remains to compute ℓ2(q). We write

ℓ2(q) = min
j∈Bmid

free ,
j⇝q

min
p∈Bl,
p⇝j

L(p) = min
j∈Bmid

free ,
j⇝q

ℓl(j) = min
j∈Bmid

free ,
ind(j)∈Irev

r (q),ℓrevr (j)≤Lrev(q)

ℓl(j),

where the second and last equalities follow from the definition of ℓl(j) and Corollary 5.14,
respectively. It follows that we can compute ℓ2(p) using a simple orthogonal range mini-
mization query. For an illustration of ℓ2(q), we refer to Figure 5.7.

We summarize the resulting algorithm for computing the reachability levels ℓ(q) for
all q ∈ B+ formally in Algorithm 10. Its correctness follows from the arguments above.

To analyze the running time of Algorithm 10, observe that |Bmid
free | ≤ |∂B|. Thus, we

can construct ORℓ in time O(|∂B| log |∂B|) (see Section 5.1.2). For each q ∈ B+, we
then perform at most one minimization query to ORℓ in time O(log |∂B|), followed by a
constant-time computation. Thus, the total running time amounts to O(|∂B| log |∂B|).

Computation of reverse information. Switching the direction of reach traversals
(which switches roles of inputs and outputs, Bl and Br, etc.) as well as L and Lrev, we
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1: Build ORℓ storing ℓl(j) under the key (ind(j), ℓrevr (j)) for all j ∈ Bmid
free (for minimiza-

tion queries)
2: for q ∈ B+ do
3: if q ∈ Bl then
4: ℓ(q)← ℓl(q)
5: else
6: ℓ2(q)← ORℓ.min([Arev

r (q),Zrev
r (q)]× (−∞, Lrev(q)])

7: ℓ(q)← min{ℓr(q), ℓ2(q)}
Algorithm 10: Computing ℓ(q) for all q ∈ B+.

can use the same algorithms to compute the reverse reachability information in the same
running time of O((|∂B|+ |TB|) log |∂B|).

Computation of ORB. Finally, we need to construct the two-dimensional orthogonal
range minimization data structure ORB: Recall that ORB stores, for each q ∈ Bmid

free , the
value ℓrevr (q) under the key (ind(q), ℓl(q)) for minimization queries. Since |Bmid

free | ≤ |∂B|,
this can be done in time O(|∂B| log |∂B|) (cf. Section 5.1.2).

Summary. In summary, we can compute the information stored at B (according to Def-
inition 5.15) from the information stored at B1 and B2 in time O((|∂B|+ |TB|) log |∂B|),
as desired.

5.3.5 Initialization and Updates

We show how to construct our reachability data structure (using Lemma 5.16 that shows
how to compute the information stored at some canonical block B given the information
stored at both children). Specifically, the following lemma proves i) of Lemma 5.3.

Lemma 5.17. We can construct DM,T in time O(n2 + |T | log2 n).

Proof. We use the obvious recursive algorithm to build DM,T in a bottom-up fashion
using Lemma 5.16. Recall that n = 2κ + 1 for some κ ∈ N. Note that for the blocks
B ∈ B2κ in the lowest level, we can compute the information stored in B in constant
time, which takes time O(|B2κ|) = O(n2) in total.

It remains to bound the running time to compute DM,T (B) for B ∈ Bℓ for 0 ≤ ℓ < 2κ.
Observe that this running time is bounded by O(∑2κ−1

ℓ=0

∑
B∈Bℓ

cB) by Lemma 5.16,
where cB := |∂B| log |∂B|+ |TB| log |∂B|.

91



Chapter 5. Fréchet Distance Under Translation

Let 0 ≤ ℓ < 2κ. By construction, we have |Bℓ| = 2ℓ. Furthermore, for any B ∈ Bℓ,
observe that its side lengths are bounded by 2κ−⌊ℓ/2⌋ + 1, and thus |∂B| ≤ 4 · 2κ−⌊ℓ/2⌋ ≤
2κ−ℓ/2+3. Hence, we may compute

2κ−1∑
ℓ=0

∑
B∈Bℓ

|∂B| log |∂B| ≤
2κ−1∑
ℓ=0

|Bℓ|2κ−ℓ/2+3(κ− ℓ/2 + 3)

=
2κ−1∑
ℓ=0

2κ+ℓ/2+3(κ− ℓ/2 + 3) (5.1)

≤ 2

(
κ∑

i=0

2κ+i+3(κ− i+ 3)

)
= 2(22(κ+3) − 2κ+3(κ+ 5)) = O(22κ) = O(n2).

Furthermore, we have

2κ−1∑
ℓ=0

∑
B∈Bℓ

|TB| log |∂B| ≤
2κ−1∑
ℓ=0

4|T |(κ− ℓ/2 + 3) = O(|T |κ2) = O(|T | log2 n),

where we used that
∑

B∈Bℓ
|TB| ≤ 4|T | (as any position in [n]× [n] is shared by at most 4

blocks at the same level). In total, we obtain a running time bound of O(n2 + |T | log2 n),
as desired.

With very similar arguments, we can prove iii) of Lemma 5.3.

Lemma 5.18. Let M,M ′ be any n×n 0-1-matrices differing in at most k positions and
T , T ′ ⊆ [n]× [n] be any sets of terminals of size k. Given the data structure DM,T , the
set T ′, as well as the set ∆ of positions in which M and M ′ differ, we can update DM,T
to DM ′,T ′ in time O(n

√
k log n+ k log2 n).

Proof. Set X := ∆ ∪ T ∪ T ′ and note that |X| = O(k). Observe that for any B ∈ B
with B ∩ X = ∅, we have DM,T (B) = DM ′,T ′(B), since the information stored at this
block does not depend on any changed entry in M and does not contain any of the old or
new terminals. Thus, we only need to update DM,T (B) to DM ′,T ′(B) for all B ∈ B with
B ∩X ̸= ∅. We do this by computing the information for these blocks in a bottom-up
fashion analogously to Lemma 5.17. Specifically, for any lowest-level block B ∈ B2κ with
B ∩X ̸= ∅, we can compute the information stored in B in constant time. Since there
are at most 4|X| such blocks, this step takes time O(|X|) = O(k) in total.

It remains to bound the running time to compute DM,T (B) for B ∈ Bℓ with B ∩
X ≠ ∅, where 0 ≤ ℓ < 2κ. For any such B, we let again cB := |∂B| log |∂B| +
|TB| log |∂B|. Observe that the running time for the remaining task is thus bounded
by O(∑2κ−1

ℓ=0

∑
B∈Bℓ,B∩X ̸=∅ cB) by Lemma 5.16.
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We do a case distinction into 0 ≤ ℓ < ℓ̄ and ℓ̄ ≤ ℓ < 2κ where ℓ̄ := ⌊log k⌋. For the
first case, we bound

ℓ̄−1∑
ℓ=0

∑
B∈Bℓ,
B∩X ̸=∅

|∂B| log |∂B| ≤
ℓ̄−1∑
ℓ=0

∑
B∈Bℓ

|∂B| log |∂B|

≤
ℓ̄−1∑
i=0

2κ+i/2+3(κ− i/2 + 3)

≤

 ℓ̄−1∑
i=0

2i/2

 2κ+3κ

= (1 +
√
2)(2ℓ̄/2 − 1)2κ+3κ = O(

√
kn log n),

where the second inequality is derived as in (5.1). Recall that for any 0 ≤ ℓ < 2κ, there are
at most 4|X| blocks B ∈ Bℓ with B∩X ̸= ∅ and for any B ∈ Bℓ, we have |∂B| ≤ 2κ−ℓ/2+3.
We compute

2κ−1∑
ℓ=ℓ̄

∑
B∈Bℓ,
B∩X ̸=∅

|∂B| log |∂B| ≤
2κ−1∑
ℓ=ℓ̄

4|X|2κ−ℓ/2+3(κ− ℓ/2 + 3)

≤ 4|X|2κ−ℓ̄/2+3(κ+ 3) ·
2κ−ℓ̄−1∑
ℓ=0

2−ℓ/2

= O
(
|X| n√

k
log n

)
= O(

√
kn log n).

Furthermore, as in the proof of Lemma 5.17, we again compute

2κ−1∑
ℓ=0

∑
B∈Bℓ,
B∩X ̸=∅

|TB| log |∂B| ≤
2κ−1∑
ℓ=0

4|T |(κ− ℓ/2 + 3) = O(|T |κ2) = O(|T | log2 n).

Thus, in total we obtain a running time of O(k+n
√
k log n+ |T | log2 n) = O(n

√
k log n+

k log2 n).

5.3.6 Reachability Queries

It remains to show how to use the information stored at all canonical blocks to answer
reachability queries quickly. Specifically, the following lemma proves ii) of Lemma 5.3.

Lemma 5.19. Given DM,T = (DM,T (B))B∈B, we can answer reachability queries for
F ⊆ T in time O(|T | log3 n).

Recall that we aim to determine whether there is a monotone path in M using only
positions (i, j) with Mi,j = 1 or (i, j) ∈ F , i.e., we view F as a set of free terminals
(typically, (i, j) ∈ F is a non-free position). In this section we assume, without loss of
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generality, that (1, 1), (n, n) ∈ TB (whenever we construct/update to the data structure
DM,T , we may construct/update to DM,T ∪{(1,1),(n,n)} in the same asymptotic running
time).

For any block B ∈ B, S ⊆ F ⊆ TB, we define the function Reach(B,S, F ) that returns
the set

R := {t ∈ F | ∃f1, . . . , fℓ ∈ F : f1 ∈ S, fℓ = t, f1 ⇝ f2 ⇝ · · ·⇝ fℓ},

i.e., we interpret S as a set of admissible starting positions for a reach traversal and ask
for the set of positions reachable from S using only free positions or free terminals. We
call any such position F -reachable from S. (Recall that in the definition of p⇝ q, only
the intermediate points on a reach traversal from p and q are required to be free, while
the endpoints p and q are allowed to be non-free.)

We show that Reach(B,S, F ) can be computed in time O(|TB| log3 n). Given this, we
can answer any reachability query in the same asymptotic running time: the reachability
query asks whether there is a sequence f1, . . . , fℓ ∈ F ∪ {(1, 1), (n, n)} such that (i)
f1 = (1, 1) and fℓ = (n, n), (ii) both (1, 1) and (n, n) are free positions or contained in
F and (iii) f1 ⇝ f2 ⇝ · · ·⇝ fℓ. Since (ii) can be checked in constant time, it remains to
determine whether

(n, n) ∈ Reach([n]× [n], {(1, 1)}, F ∪ {(1, 1), (n, n)}).

Computation of Reach(B,S, F )

To compute Reach(B,S, F ), we work on the recursive block structure ofDM,T . Specifically,
consider any canonical block B ∈ B (containing some free terminal) with children B1, B2.
The (somewhat simplified) approach is the following: We first (recursively) determine all
free terminals that are F -reachable from S in B1 and call this set R1. Then, we determine
all free terminals in B2 that are (directly) reachable from R1 and call this set T2. Finally,
we (recursively) determine all free terminals in B2 that are F -reachable from T2∪(S∩B2)
and call this set R2. The desired set of free terminals that are F -reachable from S is then
R1 ∪R2. The main challenge in this process is the computation of the set T2; this task
is solved by the following lemma.

Lemma 5.20. Let B ∈ B be a block with children B1, B2. Given S ⊆ B1 \ Bmid and
F ⊆ B2 \Bmid with S, F ⊆ TB, we can compute the set

T = {t ∈ F | ∃s ∈ S : s⇝ t}

in time O(|TB| log2 n). We call this procedure SingleStepReach(B,S, F ).

We postpone the proof of this lemma to Section 5.3.6 and first show how this yields
an algorithm for Reach, and thus, for reachability queries.

Proof of Lemma 5.19. We claim that Algorithm 11 computes R in time O(|T | log3 n).
To ease the analysis, we introduce the shorthand that s⇝F t if and only if there are

f1, . . . , fℓ ∈ F with f1 = s, fℓ = t and f1 ⇝ f2 ⇝ · · ·⇝ fℓ, i.e., t is F -reachable from s.
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1: function Reach(B,S, F )
2: if F = ∅ then
3: return ∅
4: else if B is a 2× 2 block then
5: Compute R by checking all possibilities
6: return R
7: else ▷ B splits into child blocks B1, B2

8: S1 ← S ∩B1, S2 ← S ∩B2

9: R1 ← Reach(B1, S1, F ∩B1)
10: T2 ← SingleStepReach(B,R1 \Bmid, F \B1)
11: R2 ← Reach(B2, S2 ∪ T2 ∪ (R1 ∩Bmid), F ∩B2)
12: return R1 ∪R2

Algorithm 11: Computing Reach(B,S, F ) for B ∈ B, S ⊆ F ⊆ TB.

We show that Algorithm 11 computes R = {t ∈ F | ∃s ∈ S, s⇝F t} inductively: The
base case for 2× 2 blocks B holds trivially. Otherwise, by inductive assumption, we have

R1 = {t ∈ F ∩B1 | ∃s ∈ S ∩B1, s⇝F∩B1 t}.

Note that by definition of SingleStepReach, we furthermore have

T2 = {t ∈ F \B1 | ∃s ∈ R1 \Bmid, s⇝ t}.

Finally, by inductive assumption,

R2 = {t ∈ F ∩B2 | ∃s ∈ S ∩B2, s⇝F∩B2 t} ∪
{t ∈ F ∩B2 | ∃s ∈ T2, s⇝F∩B2 t} ∪
{t ∈ F ∩B2 | ∃s ∈ R1 ∩Bmid, s⇝F∩B2 t}.

First, we show that any t ∈ R1 ∪ R2 is contained in R: If t ∈ R1, then there is some
s ∈ S ∩B1 ⊆ S with s⇝F∩B1 t (trivially implying s⇝F t), and thus t ∈ R. Likewise, if
t ∈ T2, then there is some t′ ∈ R1 \Bmid with t′ ⇝ t. Since t′ ∈ R1, there must exist some
s ∈ S with s⇝F t′. Thus s⇝F t′ and t′ ⇝ t yields s⇝F t and t ∈ R. Finally, if t ∈ R2,
there exists some t′ with t′ ⇝F∩B2 t and either t′ ∈ S ∩B2, t′ ∈ T2, or t′ ∈ R1 ∩Bmid. In
all these cases, there is some s ∈ S with s⇝F t′. Hence s⇝F t′ and t′ ⇝F∩B2 t imply
s⇝F t, placing t in R.

We proceed to show the converse direction that any t ∈ R is contained in R1 ∪ R2:
Let s ∈ S with s⇝F t. If t ∈ F ∩ B1, then s⇝F t is equivalent to s⇝F∩B1 t and
s ∈ S ∩ B1 (by monotonicity). Thus, t ∈ R1. It only remains to consider the case that
t ∈ F \B1. If s ∈ S∩B2, then again my monotonicity s⇝F∩B2 t must hold, which implies
t ∈ R2. Otherwise, we have s ∈ S \ B2. Since additionally t ∈ F \ B1, there must exist
either (1) some r ∈ F ∩ Bmid with s⇝F∩B1 r and r ⇝F∩B2 t or (2) some t′ ∈ F \ B2,
t′′ ∈ F \B1 with s⇝F∩B1 t′ ⇝ t′′ ⇝F∩B2 t (by monotonicity). For (1), note that r ∈ R1

(as shown above), and thus t ∈ R2. For (2), note that t′ ∈ R1 \ B2 = R1 \ Bmid (as
s ∈ S ∩ B1, t

′ ∈ F \ B2 and s⇝F∩B1 t′), t′′ ∈ T2 (as t′ ∈ R1 \ Bmid, t′′ ∈ F \ B1 and
t′ ⇝ t′′) and finally t ∈ R2 (as t′′ ∈ T2 and t′′ ⇝F∩B2 t), as desired.
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We analyze the running time of a call Reach(B0, S0, F0). Let T (B) = O(|TB| log2 n)
denote the running time of SingleStepReach(B,S, F ) for arbitrary S, F . Observe that
the running time of Reach(B0, S0, F0) is bounded by∑

B∈B,
TB ̸=∅

O(T (B)), (5.2)

as for TB = ∅, we have F ⊆ TB = ∅, which is a base case of Reach(·). To bound the above
term, fix any ℓ, and note that for any t ∈ T , there are at most 4 level-ℓ blocks B ∈ Bℓ
with t ∈ TB (if t is on the boundary of some block B ∈ Bℓ, it is shared between different
blocks; however, any position is shared by at most 4 blocks). Thus

∑
B∈Bℓ

|TB| ≤ 4|T |.
Thus, (5.2) is bounded by

2 log(n−1)∑
ℓ=0

∑
B∈Bℓ,
TB ̸=∅

O(|TB| log2 n) =
2 log(n−1)∑

ℓ=0

O(|T | log2 n) = O(|T | log3 n).

Computation of SingleStepReach(B,S, F )

It remains to prove Lemma 5.20 to conclude the proof of Lemma 5.19.

Proof of Lemma 5.20. ConsiderB ∈ B. We only consider the case that B is split vertically
(the other case is symmetric); let Bl, Br denote its left and right sibling, respectively. Let
S ⊆ Bl \Bmid, F ⊆ Br \Bmid with S, F ⊆ TB be arbitrary. We use notation (subscripts
l, r, etc.) as in the proof of Lemma 5.16.

Observe that for any s ∈ S, f ∈ F , we have that s⇝ f if and only if there exists
some j ∈ Bmid

free with s⇝ j and j ⇝ f . To introduce some convenient conventions, let
Jmid = {j1, . . . , jN}, where j1, . . . , jN is the sorted sequence of ind(q) with q ∈ Bmid

free .
We call J ⊆ Jmid an interval of Jmid if J = {ja, ja+1, . . . , jb} for some 1 ≤ a ≤ b ≤ N
and write it as J = [ja, jb]Jmid (i.e., [ja, jb]Jmid simply disregards any indices in [ja, jb]
representing positions not in Bmid

free ).
Consider any interval J of Jmid with the property that for all s ∈ S we either have

J ∩ Il(s) = J or J ∩ Il(s) = ∅ and for all f ∈ F we either have J ∩ Irevr (f) = J or
J∩Irevr (f) = ∅. We call such a J an (S, F )-reach-equivalent interval. Note that by splitting
Jmid right before and right after all points A(s),Z(s) with s ∈ S and Arev(f),Zrev(f)
with f ∈ F , we obtain a partition of Jmid into (S, F )-reach-equivalent intervals J1, . . . , Jℓ
with ℓ = O(|S ∪ F |) = O(|TB|).7

Claim 5.21. Let J be an (S, F )-reach-equivalent interval J . Let RJ be the set of t ∈ F
reachable from S via J , i.e., RJ := {t ∈ F | ∃s ∈ S, j ∈ J : s⇝ j ⇝ t}. Define

ℓJ := min
j∈J,

∃s∈S:s⇝j

ℓrevr (j).

7To be more precise, we start with the partition J consisting of the singleton Jmid. We then iterate
over any point j among A(s),Z(s), s ∈ S and Arev(f),Zrev(f), f ∈ F , and replace the interval J =
[ja, jb]Jmid ∈ J containing j by the three intervals [ja, j)Jmid , {j}, (j, jb]Jmid , where the first and the last
interval may be empty.
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s1

s2 f1 f2

f3
f4

s3

j

Al(s1)

Zl(s1) Zl(s2)

J

Al(s2)

Bmid

Figure 5.8: Computation of RJ for an (S, F )-reach equivalent interval J . Intuitively, we
first determine, among indices in J reachable from some s ∈ S, the index j ∈ J with the
best reachability towards F . We then determine all f ∈ F reachable from j (indicated
by hatched boxes).

We have
RJ = {t ∈ F | J ⊆ Irevr (t), ℓJ ≤ Lrev(t)}. (5.3)

Proof. See Figure 5.8 for an illustration. Indeed, for any t ∈ F with J ⊆ Irevr (t) and
ℓJ ≤ Lrev(t), consider any j ∈ J with ℓrevr (j) = ℓJ and s⇝ j for some s ∈ S. Then
we have j ∈ J ⊆ Irevr (t) and ℓrevr (j) = ℓJ ≤ Lrev(t). Thus by Corollary 5.14, j ⇝ t,
which together with s⇝ j implies s⇝ j ⇝ t, as desired. For the converse, let t ∈ F
with s⇝ j ⇝ t for some s ∈ S, j ∈ J . Then by definition of ℓJ , we obtain ℓJ ≤ ℓrevr (j).
Furthermore, by Corollary 5.14, j ⇝ t implies that j ∈ Irevr (t) with Lrev(t) ≥ ℓrevr (j) ≥ ℓJ .
Note that j ∈ Irevr (t) implies J ⊆ Irevr (t) (as J is (S, F )-reach-equivalent), thus we obtain
that J ⊆ Irevr (t) and ℓJ ≤ ℓrevr (j), as desired.

Thus, after computing ℓJ , an orthogonal range reporting query can be used to report
all t ∈ F reachable from S via J . To compute ℓJ , we observe that for any j ∈ J , we have

∃s ∈ S : s⇝ j
Cor. 5.13⇐⇒ ∃s ∈ S : j ∈ Il(s), ℓl(j) ≤ L(s)

⇐⇒ ℓl(j) ≤ max
s∈S,

j∈Il(s)

L(s) =: Lj .

Noting (by (S, F )-reach-equivalence of J) that j ∈ Il(s) if and only if J ⊆ Il(s), we have
that Lj is independent of j ∈ J , and, in particular, equal to

LJ := max
s∈S,

J⊆Il(s)

L(s), (5.4)
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1: function SingleStepReach(B,S, F )
2: Compute a partition of Jmid into (S, F )-reach-equivalent intervals J1, . . . , Jℓ
3: BuildORS storing L(s) under the key (Al(s),Zl(s)) for all s ∈ S (for maximization

queries)
4: Build ORF storing ind(f) under the key (Arev

r (f),Zrev
r (f), Lrev(f)) for all f ∈ F

(for decremental range reporting queries)
5: Recall: (precomputed) ORB stores ℓrev2 (q) under the key (ind(q), ℓ1(q)) for all

q ∈ Bmid
free

(for minimization queries)
6: for i = 1, . . . , ℓ do ▷ consider J = [ai, bi]Jmid

7: LJ ← ORS .max((−∞, ai]× [bi,∞))
8: ℓJ ← ORB.min([ai, bi]× (−∞, LJ ])
9: Ri ← ORF .report((−∞, ai]× [bi,∞)× [ℓJ ,∞))

10: ORF .delete(Ri)

11: return
⋃ℓ

i=1Ri

Algorithm 12: Computing SingleStepReach(B,S, F ) for B ∈ B, S ⊆ Bl \ Bmid, F ⊆
Br \Bmid.

which can be computed by a single orthogonal range minimization query. Equipped with
this value, we may determine ℓJ as

ℓJ = min
j∈J,

ℓl(j)≤LJ

ℓrevr (j). (5.5)

Note that given ℓJ , we may determine RJ by a single orthogonal range reporting query;
by (5.3).

We obtain the algorithm specified in Algorithm 12, whose correctness we summarize
as follows: in the i-th loop, we consider the i-th (S, F )-reach-equivalent interval Ji =:
[ai, bi]Jmid in the above partition of Jmid. Observe that we determine LJi according to
its definition in (5.4), and ℓJi according to (5.5). Finally, we include in the set Ri all
elements of RJi that have not yet been reported in a previous iteration, exploiting (5.3).

Let us analyze the running time. Recall that ℓ = O(|S ∪ F |) = O(|TB|). Thus,
we can compute J1, . . . , Jℓ in time O(ℓ log ℓ) = O(|TB| log n). Furthermore, as dis-
cussed in Section 5.1.2, we can build ORS in time O(|S| log |S|) = O(|TB| log n) to
support maximization queries in time O(log |S|) = O(log n). Also, we can build ORF

in time O(|F | log2 |F |) = O(|TB| log2 |TB|) to support deletions in time O(log2 |F |) =
O(log2 |TB|) and queries in time O(log2 |F |+ k) = O(log2 |TB|+ k) where k denotes the
number of reported elements. Observe that ORB is already precomputed, as it belongs
to the information stored at block B (see Definition 5.15).

We perform ℓ = O(|TB|) iterations of the following form: First, we make a query to
ORS running in timeO(log n), followed by a query toORB running in timeO(log |∂B|) =
O(log n). Then we obtain a set Ri by a reporting query to ORF running in time
O(log2 |TB|+ |Ri|). Afterwards, we delete all reported elements in time O(|Ri| log2 |TB|).
Thus, the total running time is bounded by O(|TB| log n+

∑ℓ
i=1 |Ri| log2 |TB|). Observe

that we report each element in TB at most once, which results in
∑ℓ

i=1 |Ri| ≤ |TB|.
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Hence, the total running time is bounded by O(|TB|(log n+ log2 |TB|)) = O(|TB| log2 n),
as desired.
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CHAPTER 6
Hausdorff Distance Under Translation

For a technical overview of this chapter see Section 3.3. In this chapter we consider finite
point sets which lie in R2. For any p ∈ R2, we use px and py to refer to its first and
second component, respectively.

6.1 OV Based (nm)1−o(1) Lower Bound for Lp

We now present a conditional lower bound of (nm)1−o(1) for the Hausdorff distance under
translation — first for L1 and L∞, and then we discuss how to generalize this bound
to Lp. We present the first lower bound only for the L1 case, as the same construction
carries over to the L∞ case via a rotation of the input sets by π

4 . Our lower bound is
based on the hypothesized hardness of the Orthogonal Vectors problem.

Definition 6.1 (Orthogonal Vectors Problem (OV)). Given two sets U, V ⊂ {0, 1}D
with |U | = n, |V | = m, decide whether there exist u ∈ U and v ∈ V with u · v = 0.

A popular hypothesis from fine-grained complexity theory is as follows.

Definition 6.2 (Orthogonal Vectors Hypothesis (OVH)). The Orthogonal Vectors prob-
lem cannot be solved in time O((nm)1−εpoly(D)) for any ε > 0.

This hypothesis is typically stated and used for the balanced case n = m. However,
it is known that the hypothesis for the balanced case is equivalent to the hypothesis for
any unbalanced case m = nα for any fixed constant α > 0, see, e.g, [41, Lemma 5.1 in
Arxiv version].

We now describe a reduction from Orthogonal Vectors to Hausdorff distance under
translation. To this end, we are given two sets of D-dimensional binary vectors U =
{u1, . . . , un} and V = {v1, . . . , vm} with |U | = n and |V | = m, and we construct an
instance of the undirected Hausdorff distance under translation defined by point sets A
and B and a decision distance δ = 1. First, we describe the high-level structure of our
reduction. The point set A consists only of Vector Gadgets, which encode the vectors of
U using 2nd points. The point set B consists of three types of gadgets:

• Vector Gadgets: They encode the vectors from V , very similar to the Vector Gadgets
of A.

• Translation Gadget: It restricts the possible translations of the point set B.

• Undirected Gadget: It makes our reduction work for the undirected Hausdorff dis-
tance under translation by ensuring that the maximum over the directed Hausdorff
distances is always attained by dH⃗(B + τ,A).
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1 1

Vector Gadgets

Translation Gadget

Undirected Gadget

ε

A:

B:

Figure 6.1: Sketch of the reduction from OV to the undirected Hausdorff distance under
translation. The microtranslations in the order of ε2 are not shown in this sketch.

Intuitively, the two dimensions of the translation choose the vectors u ∈ U and v ∈ V
by aligning a Vector Gadget from A with a Vector Gadget from B in a certain way. An
alignment of distance at most 1 is only possible if u and v are orthogonal. See Figure 6.1
for an overview of the reduction.

6.1.1 Gadgets

We now describe the gadgets in detail. Let ε > 0 be a sufficiently small constant, e.g.,
think of ε = 1

20nmD . Recall that the distance for which we want to solve the decision
problem is δ = 1. Furthermore, we denote the ith component of a vector v by v[i] and we
use 0D and 1D to denote the D-dimensional all-zeros and all-ones vector, respectively.

Vector Gadget. We define a general Vector Gadget, which we then use at several
places by translating it. Given a vector v ∈ {0, 1}D, the Vector Gadget consists of the
points p1, . . . , pD ∈ R2:

pi =

{
(ε2, iε), if v[i] = 0

(0, iε), if v[i] = 1

We denote the Vector Gadget created from vector v by G(v). Additionally, we define a
mirrored version of the gadget G as

G(v) := G(v̄),

where v̄ is the inversion of v, i.e., each bit is flipped.

Lemma 6.3. Given two vectors v1, v2 ∈ {0, 1}D and corresponding Vector Gadgets
G1 = G(v1) and G2 = G(v2) + (1, 0), we have dH(G1, G2) ≤ 1 if and only if v1 · v2 = 0.

Proof. Let the points of G1 (resp. G2) be denoted as p1, . . . , pD (resp. q1, . . . , qD). First,
note that ∥pi − qj∥1 = 1 + |i− j| ε + (v1[i] + v2[j] − 1)ε2 > 1 for i ̸= j. Thus, for the
Hausdorff distance to be at most 1, we have to match pi to qi for all i ∈ [D]. This is
possible if and only if v1[i] = 0 or v2[i] = 0, as pi and qi are only in distance larger than
1 for v1[i] = 1 and v2[i] = 1.
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G((1, 1, 1, 0, 1, 0, 0)) G((0, 1, 0, 1, 0, 0, 1))

pD

p1

qD

q11

ε2

1 0 0 1

ε

Figure 6.2: A depiction of the two types of Vector Gadgets and how they are placed to
check for orthogonality.

See Figure 6.2 for an example. Note that if we swap both gadgets and invert both
vectors (i.e., flip all their bits), the Hausdorff distance does not change and thus an
analogous version of Lemma 6.3 holds in this case, as we are just performing a double
inversion.

Lemma 6.4. Given two vectors v1, v2 ∈ {0, 1}D and corresponding Vector Gadgets
G1 = G(v1) and G2 = G(v2) + (1, 0), we have dH(G1, G2) ≤ 1 if and only if v̄1 · v̄2 = 0,
where v̄1, v̄2 are the inversions of v1, v2.

For any x, y,∆ ∈ R, we call Vector Gadgets G1 = G(v1) + (x, y) and G2 = G(v2) +
(x+∆, y) vertically aligned, or more precisely, vertically aligned in distance ∆.

Translation Gadget. To ensure that B cannot be translated arbitrarily, we introduce
a gadget to restrict the translations to the regime we require. The Translation Gadget T
consists of two translated Vector Gadgets of the zero vector:

T := (G(1D)− (2−mε, 0)) ∪ (G(0D) + (2 + 2ε, 0)).

We show that restricting the coordinates of the points of the other set involved in the
Hausdorff distance under translation instance, already restricts the feasible translations
significantly.

Lemma 6.5. Let P ⊂ [−1 − 1
2ε, 1 + 1

2ε] × R be a point set. If dT
H⃗
(T, P ) ≤ 1, then

τ∗x ∈ [−(n+ 1
2)ε− ε2,−3

2ε], where τ∗ is any translation satisfying dH⃗(T, P + τ∗) ≤ 1.

Proof. We show the contrapositive. Therefore, assume the converse, i.e., that τ∗x is not
contained in [−(n+ 1

2)ε− ε2,−3
2ε]. If τ∗x < −(m+ 1

2)ε− ε2, then −1− 1
2ε− (−2 +mε+

ε2 + τ∗x) > 1 and thus the left part of T cannot contain any point of P in distance at
most 1. If τ∗x > −3

2ε, then 2+ 2ε+ τ∗x − (1 + 1
2ε) > 1 and thus the right part of T cannot

contain any point of P in distance at most 1. Thus, dT
H⃗
(T, P ) > 1.

Undirected Gadget. To ensure that each point in A can be matched to a point in
B within distance at most 1, we add auxiliary points to B. The Undirected Gadget is
defined by the point set

F := {(−1

2
, 0), (

1

2
, 0)}.
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Lemma 6.6. Given a set of points P ⊂ [−1− 1
2ε, 1+

1
2ε]× [−1

8 ,
1
8 ], it holds that dH⃗(P, F +

τ) ≤ 1 for any τ ∈ [−(m+ 1
2)ε− ε2, (m+ 1

2)ε+ ε2]× [−1
8 ,

1
8 ].

Proof. By symmetry, we can restrict to proving that the distance of the point set

P ′ = P ∩ [0, (m+
1

2
)ε+ ε2]× [−1

8
,
1

8
]

to (12 , 0) + τ is at most 1. For any p′ ∈ P ′, we have
∣∣p′x − (12 + τx)

∣∣ ≤ 1
2 + O(mε) and∣∣p′y − τy

∣∣ ≤ 1
4 . Thus,

∥∥p′ − ((12 , 0) + τ)
∥∥
1
= 3

4 + O(mε), which is less than 1 for small
enough ε.

6.1.2 Reduction and correctness

We now describe the reduction and prove its correctness. We construct the point sets
of our Hausdorff distance under translation instance as follows. The first set, i.e., set A,
consists only of Vector Gadgets:

A :=

⋃
i∈[n]

G(ui) + (−1− 1

2
ε, i · 2Dε)

 ∪
⋃

i∈[n]

G(1D) + (1 +
1

2
ε, i · 2Dε)


The second set, i.e., set B, consists of Vector Gadgets, the Translation Gadget, and the
Undirected Gadget:

B :=

 ⋃
j∈[m]

G(vj) + (jε, 0)

 ∪ T ∪ F

See Figure 6.1 for a sketch of the above construction. To reference the vector gadgets as
they are used in the reduction, we use the notation

Gr(ui) := G(ui) + (−1− 1

2
ε, i · 2Dε) and Gr(vj) := G(vj) + (jε, 0).

We can now prove correctness of our reduction. In the reduction, we return some
canonical positive instance, if the 0D vector is contained in any of the two OV sets. This
allows us to drop all 1D vectors from the input, as they cannot be orthogonal to any other
vector. Thus, we can assume that all vectors in our input contain at least one 0-entry
and at least one 1-entry.

Theorem 6.7. Computing the directed or undirected Hausdorff distance under translation
in L1 or L∞ for two point sets of size n and m in the plane cannot be solved in time
O((nm)1−γ) for any γ > 0, unless the Orthogonal Vectors Hypothesis fails.

Proof. Recall that we only have to consider the L1 case. We first prove that there is a
pair of orthogonal vectors u ∈ U and v ∈ V if and only if dTH(A,B) ≤ 1. To prove the
theorem for the directed and undirected Hausdorff distance under translation at the same
time, it suffices to show “⇒” for the undirected version and “⇐” for the directed version.

⇒: Assume that there exist ui ∈ U , vj ∈ V with ui ·vj = 0. Then consider the translation
τ = (−(j + 1

2)ε, i · 2Dε) which vertically aligns the Vector Gadgets Gr(ui) and

106



6.1. OV Based (nm)1−o(1) Lower Bound for Lp

Gr(vj) + τ in distance 1. As ui and vj are orthogonal, it follows from Lemma 6.3
that dH⃗(Gr(vj) + τ,A) ≤ 1. It remains to show that all remaining points of B + τ

have a point in distance at most 1. The Vector Gadgets Gr(vj′) + τ with j′ < j are
strictly to the left of Gr(vj) + τ and are thus also in Hausdorff distance at most
1 from Gr(ui). If j = m, then we are done with the Vector Gadgets. Otherwise,
consider the Vector Gadget Gr(vj+1) + τ . We claim that each point of it is in
distance at most 1 from G(1D)+ (1+ 1

2ε, i · 2Dε). As the two gadgets are vertically
aligned, we just have to check their horizontal distance, which is

1 +
1

2
ε− ((j + 1)ε− (j +

1

2
)ε) = 1.

Thus, by Lemma 6.3, we have dH⃗(Gr(vj+1)+τ,A) ≤ 1. Now, by the same argument
as above, all gadgets Gr(vj′) + τ with j′ > j + 1 are in directed Hausdorff distance
at most 1 from A.

As the points of the Undirected Gadget F + τ are closer by a distance of almost 1
2

to A than the Vector Gadgets in B + τ , also dH⃗(F + τ,A) ≤ 1 holds. Finally, we
have to show that the Translation Gadget T + τ is in distance at most 1 from A.
As the left part of T and Gr(ui) are aligned vertically, we only have to check the
horizontal distance. The horizontal distance is

−1− 1

2
ε− (−2 +mε− (j +

1

2
)ε) = 1− (m− j)ε ≤ 1

for any j ∈ [m]. Similarly, the distance of the right part of the Translation Gadget
from the vertically aligned G(1D) in A is

2 + 2ε− (j +
1

2
)ε− (1 +

1

2
ε) = 1− (j − 1)ε ≤ 1

for any j ∈ [m]. Thus, by Lemma 6.3 and Lemma 6.4, it holds that dH⃗(T+τ,A) ≤ 1.
As τ ∈ [−(n+ 1

2)ε−ε2,−3
2ε]×[−1

8 ,
1
8 ], we know by Lemma 6.6 that dH⃗(A,B+τ) ≤ 1

and thus also dTH(A,B) ≤ 1.

⇐: Now, assume that dTH(A,B) ≤ 1 and let τ be any translation for which dH⃗(B +
τ,A) ≤ 1. Note that we used the directed Hausdorff distance in the previous
statement on purpose, as we prove hardness for both versions. Lemma 6.5 implies
that τx ∈ [−(n+ 1

2)ε− ε2,−3
2ε].

Let Gr(vj)+τ,Gr(vj+1)+τ be the Vector Gadgets such that Gr(vj)+τ has directed
Hausdorff distance at most 1 to the left Vector Gadgets of A and Gr(vj+1) + τ has
directed Hausdorff distance at most 1 to the right Vector Gadgets of A. This is
well-defined as the left Vector Gadgets of A and the right Vector Gadgets of A are
in distance at least 2+ ε− ε2 from each other, and thus no Vector Gadget of B+ τ
can be in distance at most 1 from both sides. Furthermore, as τx ≤ −3

2ε, there has
to be a Vector Gadget Gr(vj) + τ that has directed Hausdorff distance at most 1
to the left Vector Gadgets of A, as

jε− 3

2
ε− (−1− 1

2
ε) = 1 + (j − 1)ε ≤ 1
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for j = 1. If j = m, then Gr(vj+1) + τ is undefined.

As dH⃗(B + τ,A) ≤ 1, we know that Gr(vj) + τ has directed Hausdorff distance at
most 1 to a gadget Gr(u) for some u ∈ U . We claim that this distance cannot be
closer than 1 as Gr(vj+1) + τ must have a directed Hausdorff distance at most 1
from the right side of A or, in case j = m, due to the restrictions imposed by the
Translation Gadget. Let us consider the case j ̸= m first. Any translation τ ′ which
places Gr(vj+1) + τ ′ in directed Hausdorff distance at most 1 from the right side
of A needs to fulfill

1 +
1

2
ε− ((j + 1)ε+ τ ′1) ≤ 1

and thus τ ′1 ≥ −(j + 1
2)ε, using the fact that each vector in V contains at least one

0-entry. This, on the other hand, implies that Gr(vj) + τ ′ is in Hausdorff distance
at least

jε− (j +
1

2
)ε− (−1− 1

2
ε) = 1

from Gr(u). Now consider the case j = m. As by Lemma 6.5 we have τx ≥
−(m+ 1

2)ε− ε2, it follows that Gr(vm) + τ is in Hausdorff distance at least

mε− (m+
1

2
)ε− (−1− 1

2
ε) = 1

from Gr(u), using the fact that each vector in V contains at least one 0-entry (this
is the reason why the ε2 disappears).

By the arguments above, the two gadgets Gr(vj)+ τ and Gr(u) have to be horizon-
tally aligned as required by Lemma 6.3. They also have to be vertically aligned as
a vertical deviation would incur a Hausdorff distance larger than 1 for the pair of
points in the two gadgets that are in horizontal distance 1. Then, applying Lemma
6.3, it follows that u and vj are orthogonal.

It remains to argue why the above reduction implies the lower bound stated in the
theorem. Assume we have an algorithm that computes the Hausdorff distance under
translation for L1 or L∞ in time (nm)1−γ for some γ > 0. Then, given an Orthogonal
Vectors instance U, V with |U | = n and |V | = m, we can use the described reduction to
obtain an equivalent Hausdorff under translation instance with point sets A,B of size
|A| = O(nD) and |B| = O(mD) and solve it in time O((nm)1−γpoly(D)), contradicting
the Orthogonal Vectors Hypothesis.

6.1.3 Generalization to Lp

We can extend the above construction such that it works for all Lp norms with p ≠∞
by changing the spacing between 0 and 1 points of the Vector Gadgets and also set ε
accordingly. More precisely, we can set ε = 1

40pnmD (instead of 1
20nmD ) and use ε2p as

spacing (instead of ε2), i.e., the Vector Gadget for a vector v ∈ {0, 1}D then consists of
the points p1, . . . , pD ∈ R2:

pi =

{
(ε2p, iε), if v[i] = 0

(0, iε), if v[i] = 1
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We prove that these modifications suffice in the remainder of this section.
To this end, first note that in the proof of Theorem 6.7, the proof for “⇒” for Lp

already follows from the L1 case as the L1 norm is an upper bound on all Lp norms.
Thus, we only have to modify the proof of “⇐”. To show “⇐”, note that the only place
where we use the L1 norm in the proof is in the invocation of Lemma 6.3. Otherwise, we
only argue via distances with respect to a single dimension, which carries over to Lp as
∥(x, 0)∥p = |x|. Thus, we now prove Lemma 6.3 for the general Lp case.

Proof of Lemma 6.3 for Lp. To adapt the proof of Lemma 6.3 to the Lp case, we only
have to argue that we cannot match any pi, qj for i ̸= j, as the remaining arguments
merely argue about distances in a single dimension. We have that

∥pi − qj∥p =
(
(|i− j| ε)p + (1− (v1[i] + v2[j]− 1)ε2p)p

)1/p ≥ (εp + (1− ε2p)p
)1/p

,

which is greater than 1 if εp + (1 − ε2p)p > 1, which we obtain by using Bernoulli’s
inequality:

εp + (1− ε2p)p ≥ εp + 1− pε2p ≥ 1 +

(
1

40pnmD

)p

− p

(
1

40pnmD

)2p

> 1.

The remainder of the proof is analogous to the remainder of the proof of Lemma 6.3.

By all of the above arguments, the following theorem follows.

Theorem 6.8 (Theorem 6.7 for Lp). Computing the directed or undirected Hausdorff
distance under translation in Lp for two point sets of size n and m in the plane cannot
be solved in time O((nm)1−γ) for any γ > 0, unless the Orthogonal Vectors Hypothesis
fails.

6.2 3Sum Based n2−o(1) Lower Bound for m ∈ O(1)

We now present a hardness result for the unbalanced case of the directed and undirected
Hausdorff distance under translation. We base our hardness on another popular hypothesis
of fined-grained complexity theory: the 3Sum Hypothesis. Before stating the hypothesis,
let us first introduce the 3Sum problem.

Definition 6.9 (3Sum). Given three sets of positive integers X,Y, Z all of size n, do
there exist x ∈ X, y ∈ Y, z ∈ Z such that x+ y = z?

The corresponding hardness assumption is the 3Sum Hypothesis.

Definition 6.10 (3Sum Hypothesis). There is no O(n2−ε) algorithm for 3Sum for any
ε > 0.

There are several equivalent variants of the 3Sum problem. Most important for us is
the convolution 3Sum problem, abbreviated as Conv3Sum [63, 138].

Definition 6.11 (Conv3SUM). Given a sequence of positive integers X = (x0, . . . , xn−1)
of size n, do there exist i, j such that xi + xj = xi+j?
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2εε0 3ε 4ε

y = 0
p20p10 p21p11 p12q0

x1ε
1.5

q1

x0ε
1.5

Figure 6.3: The A set of the low-level gadget of the 3Sum reduction, which is used
to build the high-level gadgets. We just show the leftmost part of the gadget, but the
remainder is similar.

This problem has a trivial O(n2) algorithm and, assuming the 3Sum Hypothesis, this
is also optimal up to lower order factors. As 3Sum and Conv3Sum are equivalent, a
lower bound conditional on Conv3Sum implies a lower bound conditional on 3Sum.

Therefore, given a Conv3Sum instance defined by the sequence of integers X with
|X| = n, we create an equivalent instance of the directed Hausdorff distance under
translation for L2 by constructing two sets of points A and B with |A| = O(n) and
|B| = O(1) and providing a decision distance δ. Intuitively, we define a low-level gadget
from which we build three high-level gadgets by rotation and scaling. Recall that in the
Conv3Sum problem we have to find values i, j which fulfill the equation xi + xj = xi+j .
We encode the choice of these two values into the two dimensions of the translation. The
three high-level gadgets then verify whether the Conv3Sum equation is fulfilled. In the
remainder of this section, we present the details of our reduction and prove that it implies
the claimed lower bound.

6.2.1 Construction

Given a Conv3Sum instance with X ⊂ [M ] where n = |X|, we now describe the con-
struction of the Hausdorff distance under translation instance with point sets A,B and
threshold distance δ. We use a small enough ε, e.g., ε = (4Mn2)−4, as value for micro-
translations. Furthermore, we set δ = 1+4n2ε2. The additional 4n2ε2 term compensates
for the small variations in distance that occur on microtranslations due to the curvature
of the L2-ball.

Low-Level Gadget

We use a single low-level gadget, which is then scaled and rotated to obtain high-level
gadgets. This gadget consists of two point sets Al and Bl. The point set Al contains what
we call number points p1i , p

2
i and filling points qi for 0 ≤ i < n. The set Bl just contains

two points: r1 and r2. The number points p1i , p
2
i encode the number xi, while the filling

points make sure that no other translations than the desired ones are possible. See Figure
6.3 for an overview. All of the points in this gadget are of the form (x, 0). The number
points are

p1i =
(
2iε+ xiε

1.5, 0
)
, p2i = p1i + (ε, 0)
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for 0 ≤ i < n. The filling points are

qi =

((
2i+

3

2

)
ε, 0

)
for 0 ≤ i < n.

The points in Bl should introduce a gap to only allow alignment of the number gadgets
such that the microtranslations (i.e., those in the order of ε1.5) correspond to the number
of the gap in the number gadget. To this end, Bl contains the points

r1 = (−1, 0), r2 = (1 + ε, 0).

Before we prove properties of the low-level gadget, we first prove that the error due
to the curvature of the L2-ball is small.

Lemma 6.12. Let (px, py), (qx, qy) ∈ R2 be two points with |px − qx| ∈ [12 , 2] and py = qy.
For any τ ∈ [0, (2n− 1)ε]2, we have

|px − (qx + τx)| ≤ ∥p− (q + τ)∥2 ≤ |px − (qx + τx)|+ 4n2ε2.

Proof. As each component is a lower bound for the L2 norm, the first inequality follows.
Thus, let us prove the second inequality. We first transform

∥p− (q + τ)∥2 =
√

(px − (qx + τx))2 + τ2y = |px − (qx − τx)|
√
1 + τ2y /(px − (qx + τx))2.

As
√
1 + x ≤ 1 + x

2 for any x ≥ 0, we have

∥p− (q + τ)∥2 ≤ |px − (qx − τx)|+ τ2y /(2 |px − (qx − τx)|).

As τy ≤ 2(n− 1)ε and |px − (qx − τx)| ≥ 1
2 , we obtain the desired upper bound.

An analogous statement holds when swapping the x and y coordinates. Note that
the 4n2ε2 term also occurs in the value of δ that we chose, as this is how we compensate
for these errors in our construction. While we have to consider this error in the follow-
ing arguments, it should already be conceivable that it will be insignificant due to its
magnitude.

We now state two lemmas which show how the Hausdorff distance under translation
decision problem is related to the structure of the low-level gadget.

Lemma 6.13. Given a low-level gadget Al, Bl as constructed above and the translation
being restricted to τ ∈ [0, (2n− 1)ε]2, it holds that if dH⃗(Al, Bl + τ) ≤ δ, then

∃i ∈ N : τx = 2iε+ xiε
1.5 ± 4n2ε2.

Proof. Let τ ∈ [0, (2n−1)ε]2 and assume dH⃗(Al, Bl+ τ) ≤ δ. Then all points in Al are in
distance at most δ from one of the two points in Bl. Furthermore, both points in Bl + τ
also have at least one close point in Al, as∥∥r1 + τ − p10

∥∥
2
≤ 1− τx + 4n2ε2 ≤ δ

and ∥r2 + τ − qn−1∥2 ≤ 1 + τx − (2n− 3

2
)ε+ 4n2ε2 < δ,
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using that n ≥ 1 and Lemma 6.12.
The gaps between neighboring points in Al either have width close to 1

2ε, if the gap
is between a number point and a filling point (p1i and qi−1, or p2i and qi), or they have a
width of ε, if the gap is between two number points (p1i and p2i ). Furthermore, the two
points in Bl have distance 2+ ε, so there is an ε− 8n2ε2 gap between their δ-balls. Thus,
there is an i such that p1i has distance at most δ to r1, and p2i has distance at most δ to
r2. This alignment of the gadgets can only be realized by a translation τ for which

τx = 2iε+ xiε
1.5 ± 4n2ε2,

which completes the proof.

Lemma 6.14. Given a low-level gadget Al, Bl as constructed above and the translation
being restricted to τ ∈ [0, (2n− 1)ε]2, it holds that if

∃i ∈ N : τx = 2iε+ xiε
1.5,

then dH(Al, Bl + τ) ≤ δ.

Proof. Let i ∈ N and let τx = 2iε+xiε
1.5. Consider any translations τ ∈ {τx}× [0, 2(n−

1)ε]. Due to the restricted translation and Lemma 6.12, we can disregard the error terms
that arise from the vertical translation τy as they are compensated for by δ. Then all the
points in Al before and including p1i are in distance at most δ from r1 ∈ Bl + τ and all
the points afterwards are in distance at most δ from r2 ∈ Bl + τ . Clearly, both points in
Bl + τ then also have points from Al in distance δ, and thus dH(Al, Bl + τ) ≤ δ.

High-Level Gadgets

This construction is inspired by the hard instance that was given in [144]. We want to
obtain a grid of translations of spacing ε with some microtranslations in the O(ε1.5) range.
We already defined the low-level gadget above, and we now define the high-level gadgets.

Column Gadget. The column gadget induces columns in translational space, i.e., it
enforces that valid translations have to lie on one of these columns. The column gadget
is actually the low-level gadget we already described above. You can see a sketch of this
gadget in Figure 6.4(a). To semantically distinguish it from the low-level gadget, we refer
to the point sets of the column gadget as Ac and Bc.

Row Gadget. The row gadget induces rows in translational space, i.e., it enforces that
valid translations have to lie on one of these rows. We obtain the row gadget by rotating
all points in the low-level gadget around the origin by π/2 counterclockwise. You can see
a sketch of this gadget in Figure 6.4(b). We call the point sets of the row gadget Ar and
Br.

Diagonal Gadget. The diagonal gadget induces diagonals in translational space, i.e.,
it enforces that valid translations have to lie on one of these diagonals. As opposed to the
column and row gadget, the diagonal gadget also has to be scaled. We scale the sets Al

and Bl separately. We scale Al such that the gap between the number point pairs p1i , p
2
i
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ε

δ

Ac

(a) Column Gadget

ε

δ

Ar

(b) Row Gadget

1√
2
ε

δ

Ad

(c) Diagonal Gadget

Figure 6.4: Three of the high-level gadgets. The points of A are all in the low-level
gadgets, while the points in B are explicitly shown including their δ-ball.

becomes 1√
2
ε. And we scale Bl such that the gap between the points becomes 2 + 1√

2
ε.

After scaling, we rotate the points counterclockwise around the origin by π/4. You can
see a sketch of this gadget in Figure 6.4(c). We call the point sets of the diagonal gadget
Ad and Bd.

Translation Gadget. To restrict the translations for the directed Hausdorff distance
under translation, we introduce another gadget. The first set of points At contains

zl := (−1 + (2n− 1)ε, 0), zr := (1, 0), zb := (0,−1 + (2n− 1)ε), zt := (0, 1).

The second point set Bt only contains the origin zc := (0, 0). We want to make sure that
this gadget behaves well in a certain range.

Lemma 6.15. Given τ ∈ [0, (2n− 1)ε]2, it holds that dH(At, Bt + τ) ≤ δ.

Proof. As Bt has a point on all sides, clearly dH⃗(Bt + τ,At) ≤ δ. Furthermore,

∥zl − (zc + τ)∥2 ≤ 1 + 4n2ε2 ≤ δ and ∥zr − (zc + τ)∥2 ≤ δ,

using Lemma 6.12. Analogous statements hold for zb and zt. Thus, also dH⃗(At, Bt+ τ) ≤
δ.

Complete Construction

To obtain the final sets of the reduction, we now place all four described high-level gadgets
(i.e., column gadget, row gadget, diagonal gadget, and translation gadget) far enough
apart. More explicitly, the point sets A,B of the Hausdorff distance under translation
instance are defined as

A := Ac ∪ (Ar + (10, 0)) ∪ (Ad + (20, 0)) ∪ (At + (30, 0))

and
B := Bc ∪ (Br + (10, 0)) ∪ (Bd + (20, 0)) ∪ (Bt + (30, 0)).

The far placement ensures that the two point sets of the respective gadgets have to be
matched to each other when the Hausdorff distance under translation is at most delta δ.
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6.2.2 Proof of correctness

First, we want to ensure that everything relevant happens in a very small range of
translations.

Lemma 6.16. Let τ ∈ R2. If dH⃗(A,B + τ) ≤ δ, then τ ∈ [0, (2n− 1)ε]2.

Proof. Note that for a Hausdorff distance at most δ, the sets Ac and Bc have to matched to
each other and analogously for Ar, Br, and Ad, Bd, and At, Bt. To show the contrapositive,
assume τ /∈ [0, (2n− 1)ε]2. For simplicity, we refer to the points in the high-level gadgets
with the notation of the low-level gadget. Due to the translation gadget, we have

∥zl − (zc + τ)∥2 > δ for τx > (2n− 1)ε+ 4n2ε2,

and
∥zr − (zc + τ)∥2 > δ for τx < −4n2ε2.

We now show that under these restricted translations and as dH⃗(A,B + τ) ≤ δ, both
points r1, r2 in Bc have at least one point of Ac in distance δ. In the column gadget for
τx ∈ [−4n2ε2, 0), we have∥∥(r1 + τ)− p10

∥∥
2
≥
∣∣−1− (p10)x + τx

∣∣ > δ

and ∥∥(r2 + τ)− p10
∥∥
2
≥ 1 + ε−O(ε1.5) > δ

for small enough ε and as x0 > 0 and thus there is a component of order ε1.5. On the
other hand, for τx ∈ ((2n− 1)ε, (2n− 1)ε+ 4n2ε2], we have∥∥r2 + τ − p2n−1

∥∥
2
≥ 1 + ε+ τx − (2n− 1)ε > δ

and ∥∥r1 + τ − p2n−1

∥∥
2
≥ 1 +O(ε1.5)− 4n2ε2 > δ

for small enough ε. An analogous argument holds for the row gadget and τy, as the
row gadget is just a rotated version of the column gadget and the translation gadget is
symmetric with respect to these gadgets.

We can now prove the main result of this section.

Theorem 6.17. Computing the directed or undirected Hausdorff distance under trans-
lation in L2 for two sets of size n and O(1) cannot be solved in time O(n2−γ) for any
γ > 0, unless the 3Sum Hypothesis fails.

Proof. We construct a Hausdorff under translation instance from a Conv3Sum instance
as described previously in this section, and then show that they are equivalent. We first
consider how to apply Lemma 6.13 and Lemma 6.14 to the diagonal gadget. More precisely,
we consider which translations align the gaps of Ad and Bd as is used in these two lemmas.
Due to the scaling of the gadget, these translations are of the form

√
2τx = 2kε+ xkε

1.5.
By the rotation, we then obtain translations of the form

∥τ∥1 =
√
2(τx + τy)√

2
= 2kε+ xkε

1.5.
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6.3. Conclusion

⇐: Assume X is a positive Conv3Sum instance. Then there exist xi, xj such that
xi+xj = xi+j . Consider τ = (2iε+xiε

1.5, 2jε+xjε
1.5) as translation. Due to Lemma

6.14, we have that dH(Ac, Bc+ τ) ≤ δ and analogously dH(Ar, Br + τ) ≤ δ. By the
initial observation, we can also apply Lemma 6.14 to the diagonal gadget, and thus
dH(Ad, Bd + τ) ≤ δ. Finally, by Lemma 6.15, we also have that dH(At, Bt + τ) ≤ δ
for the given τ .

⇒: Assume dT
H⃗
(A,B) ≤ δ. From Lemma 6.16, it follows that τ ∈ [0, (2n− 1)ε]2. Then,

due to Lemma 6.13 and the initial observation about the diagonal gadget, we have
that there exist i, j, k that fulfill

τx = 2iε+ xiε
1.5 ± 4n2ε2,

τy = 2jε+ xjε
1.5 ± 4n2ε2,

τx + τy = 2kε+ xkε
1.5 ± 4n2ε2.

It follows that

2iε+ xiε
1.5 + 2jε+ xjε

1.5 ± 8n2ε2 = 2kε+ xkε
1.5 ± 4n2ε2,

and thus i+ j = k and xi + xj = xk.

It remains to argue why the above reduction implies the lower bound stated in the
theorem. Assume we have an algorithm that computes the Hausdorff distance under
translation in L2 in time O(n2−γ) for some γ > 0. Then, given a Conv3Sum instance
X with |X| = n, we can use the described reduction to obtain an equivalent Hausdorff
under translation instance with point sets A,B of size |A| = O(n) and |B| = O(1) and
solve it in time O(n2−γ), contradicting the 3Sum Hypothesis.

6.3 Conclusion

In this chapter, we provide matching lower bounds for the running time of two important
cases of the fundamental distance measure Hausdorff distance under translation. These
lower bounds are based on popular standard hypotheses from fine-grained complexity
theory. Interestingly, we use two different hypotheses to show hardness. For the Haus-
dorff distance under translation for Lp, we show a lower bound of (nm)1−o(1) using the
Orthogonal Vectors Hypothesis, while for the imbalanced case of m = O(1) in L2, we
show an n2−o(1) lower bound using the 3Sum Hypothesis. We leave it as an open problem
whether Hausdorff distance under translation for the balanced case admits a strongly
subcubic algorithm or if conditional hardness can be shown.
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CHAPTER 7
Continuous Fréchet Approximate Near

Neighbor Search

For a technical overview of this chapter see Section 3.1. In this section we show several
conditional lower bounds for (2 − ε) and (3 − ε)-approximate nearest neighbor data
structures. We use the well-known Orthogonal Vectors problem as base for our hardness
results. To be precise, we reduce from unbalanced OV instances to show stronger hardness
results. For convenience, we introduce some additional notation. For a vector v ∈ {0, 1}D,
we use v[i] to refer to its ith entry, where the entries are 0-index, i.e., v = (v[0], . . . , v[D−1]).
Recall that we use the “◦” operator to concatenate curves and that the curve P where
each point is translated by τ is denoted as P+τ . Instead of reducing directly from OV, we
introduce a novel problem called OneSidedSparseOV and show that it is hard under
OV. Subsequently, we reduce from this problem to the ANN problems introduced above.

7.1 OneSidedSparseOV

This problem can be thought of as a variant of OV with an additional restriction on one
of the input sets. More precisely, for one set we allow at most k non-zero entries in each
vector.

Definition 7.1 (OneSidedSparseOV). Given a value k ∈ N and two sets of vectors
U, V ⊆ {0, 1}D where each u ∈ U contains at most k non-zero entries, do there exist two
vectors u ∈ U, v ∈ V such that ⟨u, v⟩ = 0?

We also refer to OneSidedSparseOV with parameter k as OneSidedSparseOV(k).
We now show that this problem is hard under OV, interestingly, this is already the case
for k ∈ ω(1).

Lemma 7.2. Assume OVH holds true. For every α ∈ (0, 1), ε > 0 there is a c > 0 such
that for any k ∈ ω(1) ∩ o(log |U |) there is no algorithm solving OneSidedSparseOV(k)
instances U, V ⊂ {0, 1}D with |V | = |U |α and D = k · |U |c/k in time O(|U |1+α−ε).

Proof. For any α ≤ 1, ε > 0, let c > 0 be the constant from Lemma 2.9. Thus, un-
less OVH fails, we cannot solve OV instances U, V ⊂ {0, 1}D with |V | = |U |α and
D = c log |U | in time O(|U |1+α−ε). For any k ∈ ω(1) ∩ o(log |U |), we now reduce to
OneSidedSparseOV(k) as follows. We convert U to a set of sparse vectors U ′ and V to
a set V ′ such that U ′, V ′ is an equivalent OneSidedSparseOV(k) instance. To achieve
this, we increase the dimensionality of the vectors in the OneSidedSparseOV instance.
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Given a vector u ∈ U , partition the dimensions of u into k blocks of size D/k.1 More
precisely, let

ai =

(
u

[
i · D

k

]
, u

[
i · D

k
+ 1

]
, . . . , u

[
i · D

k
+

D

k
− 1

])
for i ∈ {0, . . . , k− 1}. Let ûi ∈

[
2D/k

]
be defined as the binary vector ai interpreted as a

binary number. We now construct the corresponding u′ ∈ U ′ as follows. We choose the
dimension of the vectors in U ′, V ′ as D′ = k · 2D/k — note that this equals k · |U |c/k as
stated in the lemma. For each i ∈ {0, . . . , k−1}, we set u′[i ·2k+ ûi] = 1. All other entries
of u′ are set to 0. Thus, each vector u′ ∈ U ′ contains exactly k 1-entries. The vectors
v′ ∈ V ′ we construct as follows. Given a vector v ∈ V , we also partition its dimensions the
same way as we did for u ∈ U and obtain vectors b0, . . . , bk−1. For each i ∈ {0, . . . , k− 1}
and all β ∈ {0, 1}D/k, where we again interpret β as a vector or as a binary number β̂,
we set v′[i · 2k + β̂] = 1 if ⟨bi, β⟩ > 0, otherwise we set it to zero. This completes the
description of the reduction. Note that while we changed the dimension of the vectors,
the size of the sets remained the same, that is |U ′| = |U | and |V ′| = |V |.

Note that for any vectors u ∈ U and v ∈ V with ⟨u, v⟩ > 0 there exist parts ai, bi and
a coordinate ℓ such that ai[ℓ] = bi[ℓ] = 1, and thus ⟨ai, bi⟩ > 0. Hence, by construction
of v′, there exists a dimension in u′ and v′ where both have a 1. On the other hand, if
u′ and v′ contain a 1 in the same dimension, then by construction of v′ there have to be
two parts ai, bi such that ⟨ai, bi⟩ > 0 and thus ⟨u, v⟩ > 0.

The total running time of this reduction consists of constructing the vectors in U ′

— which takes time proportional to the number of entries — and the inner product
computation between vectors of dimensionality D/k for each of the k · 2D/k dimensions
of each vector in V ′:

O
(
|U ′| · k · 2D/k + |V ′| · k · 2D/k · D

k

)
= O

(
|U | · 2c log |U |/k · c log |U |

)
= O

(
|U |1+c/k · c log |U |

)
,

which simplifies to |U |1+o(1). Thus, if we can solve OneSidedSparseOV(k) in time
O(|U ′|1+α−ε) and add the running time of the reduction, then we can solve unbalanced
OV in time

O(|U ′|1+α−ε) + |U |1+o(1) = O(|U |1+α−ε),

which would refute OVH.

Using this insight, we now proceed to proving hardness results for different approxi-
mation ratios for ANN under the continuous Fréchet distance.

7.2 Hardness of (2 − ε)-Approximation in 1D

In this section we present our first hardness result. We note that the gadgets that we use
to encode our vectors are inspired by [84].

1If D is not divisible by k, increase the dimension until this is the case and fill these dimensions with
zeros.
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7.2. Hardness of (2− ε)-Approximation in 1D

a = (0, 1, 0, 0) :

b = (1, 0, 0, 1) :

0 6 12 18 24

Figure 7.1: Visualization of the 2− ε lower bound in 1D.

Theorem 7.3. Assume OVH holds true. For any ε, ε′ > 0 there is a c > 0, such that
there is no (2− ε)-ANN for the continuous Fréchet distance supporting query curves of
any complexity k ∈ ω(1) ∩ o(log n) and storing n one-dimensional curves of complexity
m = k · nc/k with preprocessing time poly(n) and query time O(n1−ε′).

Proof. We show the hardness by a reduction from OneSidedSparseOV(k). To that
end, let U, V ⊂ {0, 1}D be a OneSidedSparseOV(k) instance with |V | = |U |α for a
constant α ≤ 1 that we specify later, k ∈ ω(1) ∩ o(log |U |), and D = k · |U |c/k with a
constant c > 0 that we later choose sufficiently large. Recall that, by Lemma 7.2, there
exists a c > 0 such that OneSidedSparseOV(k) is OV-hard in this regime. The goal is
to use the k-sparsity of the vectors in U to obtain short query curves of length O(k).

Let us first give the reduction. To that end, we define the following subcurves:

0U := ⟨0, 6⟩ , 1U := ⟨0, 6, 2, 6⟩ , 0V := ⟨0, 5, 3, 6⟩ , 1V := ⟨0, 6⟩

Now, given a OneSidedSparseOV(k) instance U, V , we create the input set P and the
query set Q of a (2− ε)-ANN instance with distance threshold δ = 1 as follows. For each
vector u ∈ U , we add the curve Qu to Q which is defined as

Qu :=
D−1
⃝
i=0

Gi
u with Gi

u := u[i]U + 6i,

where u[i]U is either 0U or 1U , depending on the value of u[i], and the “+6i” is a translation
of each point of the curve by 6i. For each vector v ∈ V , we add the curve Pv to P which
is defined as

Pv :=
D−1
⃝
i=0

Gi
v with Gi

v := v[i]V + 6i.

where v[i]V is either 0V or 1V , depending on the value of v[i]. It is crucial that we make
the resulting curves non-degenerate by removing all degenerate vertices. In particular, all
connecting vertices between gadget curves will be removed and any sequence of consecutive
gadgets 0U will be turned into a single line segment. Thus, the curves in Q will have
complexity O(k). See Figure 7.1 for an example of the construction.

We now show correctness of the reduction. Let Pv ∈ P and Qu ∈ Q be any curves
in these sets. Note that if dF(Pv, Qu) < 2, then if the traversal is a distance 2 into the
gadget Gi

u, then we also have to be in the gadget Gi
v, as there is no other gadget in

distance less than 2. The same statement holds for Gi
u and Gi

v exchanged. Thus, we
traverse the gadgets synchronously. Now consider the case ⟨u, v⟩ = 0. As dF(0U , 0V ) =
dF(0U , 1V ) = dF(1U , 0V ) = 1, also dF(Pv, Qu) = 1, as there is no i ∈ {0, . . . , D − 1} for
which the gadget Gi

u is of type 1U and Gi
v is of type 1V . Conversely, consider the case
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⟨u, v⟩ = 1. Then there exist an i ∈ {0, . . . , D − 1} such that Gi
u is of type 1U and Gi

v is
of type 1V . As we traverse the gadgets synchronously and as dF(G

i
v, G

i
u) = 2, we have

dF(Pv, Qu) = 2. Thus, if we have a (2 − ε)-ANN, then we can use it to check if there
exist orthogonal vectors u ∈ U and v ∈ V by the above reduction.

It remains to show that this reduction implies the claimed lower bound. The time to
compute the reduction is linear in the output size and thus negligible. Recall that P is
the input set, i.e., it is the set that we preprocess, and we run a query for each curve in Q.
Note that by the construction of the above reduction we have |P| = |U |α, and |Q| = |U |.
Towards a contradiction, assume that we can solve (2− ε)-ANN with preprocessing time
O(|P|α′

) for some α′ > 0 and query time O(|P|1−ε′) for some ε′ > 0. Choosing α = 1/α′,
we obtain preprocessing time O(|P|α′

) = O(|U |αα′
) = O(|U |) and total query time

O(|Q| · |P|1−ε′) = O(|U | · |U |α(1−ε′)) = O(|U |1+α−ε′α).

Thus, we could solve OneSidedSparseOV(k) in time O(|U |1+α−ε′α). However, by
Lemma 7.2, there exists a c > 0 such that this contradicts OVH.

7.3 Hardness of (3 − ε)-Approximation in 1D

We now show the first of two hardness results that rule out certain preprocessing and
query times for (3− ε)-approximations. Note that ruling out higher approximation ratios
is not possible using gadgets that encode the single coordinates, as the distance between
the gadgets that encode 1-entries can be at most 3 times the threshold distance due to
the triangle inequality between the other gadgets, for details see [56]. For one-dimensional
curves we obtain the following lower bound. We note that the gadgets that we use to
encode our vectors are inspired by [56].

Theorem 7.4. Assume OVH holds true. For any ε, ε′ > 0 there is a c > 0, such that
there is no (3− ε)-ANN for the continuous Fréchet distance storing n one-dimensional
curves of complexity m and supporting query curves of complexity k with m = k = c log n
such that we have preprocessing time poly(n) and query time O(n1−ε′).

Proof. We show the hardness by a reduction from OV. To that end, let U, V ⊂ {0, 1}D
be an OV instance with |V | = |U |α for a constant α ≤ 1 that we specify later and
D = c log |U | for a constant c > 0 that we later choose sufficiently large. Recall that, by
Lemma 2.9, there exists a c > 0 such that this problem is OV-hard. We now create the
input set P and query set Q of a (3− ε)-ANN instance with distance threshold δ = 1 as
follows. For convenience, we define the curves

1U := ⟨0, 6, 0⟩ , 0V := ⟨0, 7, 0⟩ , 0U := ⟨0, 8, 0⟩ , 1V := ⟨0, 9, 0⟩ .
First, for each vector u ∈ U we create a new curve Qu ∈ Q defined as

Qu :=
D−1
⃝
i=0

Gi
u with Gi

u := u[i]U ,

where u[i]U is either 1U or 0U , depending on the value of u[i]. Second, for each vector
v ∈ V we create a new curve Pv ∈ P defined as

Pv :=
D−1
⃝
i=0

Gi
v with Gi

v := v[i]V .
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7.3. Hardness of (3− ε)-Approximation in 1D

a = (0, 1, 1, 0) : b = (1, 1, 0, 0) :

0

6

8

2

4

Figure 7.2: Visualization of the 3− ε lower bound in 1D.

where v[i]V is either 0V or 1V , depending on the value of v[i]. See Figure 7.2 for examples
of these curves.

We now prove the correctness of the reduction. Consider any Qu ∈ Q and Pv ∈ P. We
first show that if dF(Qu, Pv) < 3, then any traversal realizing this distance has to visit
vertices of both curves synchronously. More precisely, a traversal can be in the gadgets
Gi

u and Gj
v with i ̸= j only if the positions on both curves are strictly less than 6 in image

space. Towards a contradiction, consider the first point in the traversal where this occurs
and without loss of generality let the traversal be at position 6 in Qu. As the traversal on
Qu visited 0 before, the traversal on Pv has to be below 3 and thus the positions on Qu

and Pv are within distance more than 3, which is a contradiction. Thus, when traversing
gadgets Gi

u and Gj
v above 6, then i = j.

We now proceed with showing that for all u ∈ U and v ∈ V it holds that dF(Qu, Pv) ≤ 1
if and only if ⟨u, v⟩ = 0, and dF(Qu, Pv) ≥ 3 otherwise. Assume that ⟨u, v⟩ = 0, then, by
traversing all Gi

u, G
i
v for i ∈ {0, . . . , D − 1} synchronously, they can always stay within

distance at most 1, as dF(0U , 0V ) = dF(0U , 1V ) = dF(1U , 0V ) = 1. However, if ⟨u, v⟩ > 0,
then there exists an index i ∈ {0, . . . , D− 1} such that u[i] = v[i] = 1. If dF(Qu, Pv) < 3,
then we have to traverse these Gi

u and Gi
v synchronously but as dF(1U , 1V ) = 3, there is

a point in the traversal where the curves have distance at least 3 and thus dF(Qu, Pv) ≥ 3.
It follows that, if we have a (3 − ε)-ANN, then it would find if there exists orthogonal
vectors in U and V by querying each Q ∈ Q.

Let us now show that this implies the desired lower bounds. The time to compute
the reduction is linear in the output size and thus negligible. Note that by construction
we have m = k = O(c log |U |) ≤ c′ log |U | for some constant c′ > 0. By adding dummy
vertices, say many points close to the starting point, we can ensure m = k = c′ log |U | (we
could also achieve any intended value m ≥ k, but this is not necessary for the theorem
statement). Moreover, |P| = |U |α and |Q| = |U |. Towards a contradiction, assume that
we can solve (3− ε)-ANN with preprocessing time O(|P|α′

) for some α′ > 0 and query
time O(|P|1−ε′) for some ε′ > 0. Choosing α = 1/α′, we obtain preprocessing time
O(|P|α′

) = O(|U |αα′
) = O(|U |) and total query time

O(|Q| · |P|1−ε′) = O(|U | · |U |α(1−ε′)) = O(|U |1+α−ε′α).

Thus, we could solve unbalanced OV in time O(|U |1+α−ε′α). However, by Lemma 2.9,
there exists a c > 0 such that this contradicts OVH.
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a = (0, 1, 0, 1) :

b = (1, 1, 0, 0) :
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Figure 7.3: Visualization of the 3− ε lower bound in 2D.

7.4 Hardness of (3 − ε)-Approximation in 2D

While until here we only considered algorithmic and hardness results for one-dimensional
curves, we now show a hardness result for two-dimensional curves. This is the only
technical section in this chapter where we consider two-dimensional curves. Note that
in Chapter 2 we defined most of our notation for curves in Rd and thus the notation
of the previous hardness results carries over. For two-dimensional curves we obtain the
following lower bound.

Theorem 7.5. Assume OVH holds true. For any ε, ε′ > 0 there is a c > 0, such that
there is no (3− ε)-ANN for the continuous Fréchet distance supporting query curves of
any complexity k ∈ ω(1) ∩ o(log n) and storing n two-dimensional curves of complexity
m = k · nc/k with preprocessing time poly(n) and query time O(n1−ε′).

Proof. This proof is very similar to the proof of Theorem 7.3. The significant difference is
the gadgets that we construct. To this end, consider a OneSidedSparseOV(k) instance
U, V , where we again use the k-sparsity of the vectors in U to obtain short query curves
of length O(k). We define the generic subcurve

G(y) := ⟨(0, 0), (3, 0), (3, y), (6, y), (6, 0)⟩

to then define the usual gadgets

0U := G(0), 1U := G(2), 0V := G(1), 1V := G(−1).

Now, given a OneSidedSparseOV(k) instance U, V , we create the input set P and
query set Q of a (3− ε)-ANN with distance threshold δ = 1 as follows. For each vector
u ∈ U , we add the curve Qu to Q which is defined as

Qu :=
D−1
⃝
i=0

Gi
u with Gi

u := u[i]U + (6i, 0),
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where u[i]U is either 0U or 1U , depending on the value of u[i], and the “+(6i, 0)” is a
translation of each point of the curve by (6i, 0). For each vector v ∈ V , we add the curve
Pv to P which is defined as

Pv :=
D−1
⃝
i=0

Gi
v with Gi

v := v[i]V + (6i, 0).

where v[i]V is either 0V or 1V , depending on the value of v[i]. It is crucial that we make
the resulting curves non-degenerate by removing all degenerate vertices. In particular, any
sequence of consecutive gadgets 0U will be turned into a single line segment. Thus, the
curves in Q will have complexity O(k). See Figure 7.3 for an example of the construction.

We now prove correctness of the reduction. Consider the case of two orthogonal
vectors u ∈ U and v ∈ V such that there is an i ∈ {0, . . . , D − 1} with u[i] = v[i] = 1.
Note that for dF(Qu, Pv) < 3, there has to be a point in the traversal where we are in
some point (xu, 2) in Qu and in some point (xv,−1) in Pv as otherwise the distance of
the x-coordinate would be at least 3. However, the y-distance of these points is 3 and
thus dF(Qu, Pv) ≥ 3. On the other hand, if u ∈ U and v ∈ V are orthogonal, then we
can traverse the two curves with the same speed in x-direction — i.e., staying at the
same x-coordinate at every point in time — and obtain a Fréchet distance at most 1 as
dF(0U , 0V ) = dF(0U , 1V ) = dF(1U , 0V ) = 1, where the described traversal realizes these
distances.

The remainder of the proof, i.e., the derivation of the claimed lower bound, is the
same as in the proof of Theorem 7.3 and we thus omit it for brevity.
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CHAPTER 8
Fréchet Distance Under Translation

For a technical overview of this chapter see Section 3.2. In this section we prove a lower
bound of n4−o(1) for the discrete Fréchet distance under translation for two curves of
length n in the Euclidean plane conditional on the Strong Exponential Time Hypothesis,
or more precisely the 4-OV Hypothesis. To this end, we reduce 4-OV to the discrete
Fréchet distance under translation.

8.1 Overview of Reduction

Let us first have a closer look at 4-OV. Given four sets of N vectors V1, . . . , V4 ⊆ {0, 1}D,
the 4-OV problem can be expressed as

∃v1 ∈ V1, . . . , v4 ∈ V4 ∀j ∈ [D] ∃i ∈ {1, . . . , 4} : vi[j] = 0. (8.1)

Recall from the introduction that we encode choosing the vectors v1, . . . , v4 by the
canonical translation τ = (τ1, τ2) = (h1 · ε, h2 · ε) with h1, h2 ∈ {0, . . . , N2 − 1} for some
constant ε > 0 which is sufficiently small. To be concrete, let

ε := 0.001/N4

for the remaining section. Choosing v1 ∈ V1 and v2 ∈ V2, we define

h1 := h(v1, v2) := ind(v1) + ind(v2) ·N,

where ind(vi) is the index of vector vi in the set Vi; similarly for v3 ∈ V3, v4 ∈ V4 we
define h2 := h(v3, v4). To perform the reduction, we want to construct two curves π
and σ whose discrete Fréchet distance decision for some δ is equivalent to the following
expression, which is equivalent to (8.1):

∃τ ∈ R2 ∀j ∈ [D] ∃i ∈ {1, 2}, v ∈ V2i−1, v
′ ∈ V2i : (v[j] = 0∨v′[j] = 0)∧(h(v, v′) ·ε = τi).

(8.2)
The expressions (8.1) and (8.2) are equivalent as the three quantifiers encode the same
choices and we evaluate if there exists a zero in one of the chosen vectors. In (8.2) we
additionally need to make sure that the translation chosen by the outermost quantifier
indeed is consistent with the vectors that are chosen by the innermost quantifier, which
is done by requiring h(v, v′) · ε = τi.

We can further transform this expression to make it easier to create gadgets for the
reduction:

∃τ ∈ [0, (N2 − 1) · ε]× [0, (N2 − 1) · ε] :
∧

j∈[D]

∨
i∈{1,2}

v∈V2i−1,v
′∈V2i:

v[j]=0 or v′[j]=0

[h(v, v′) · ε = τi].
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. . .equality
gadgets

translation gadget OV-dimension gadget

π(0), σ(0) π(1), σ(1) π(2), σ(2) π(D), σ(D)

OR gadget OR gadget OR gadget

. . .

. . .

equality
gadgets

equality
gadgets

Figure 8.1: Overview of how the different gadgets are used in the curves that result
from the reduction. We use one translation gadget, one OV-dimension gadget, D OR
gadgets, and O(ND) equality gadgets.

According to this formula, we will construct gadgets. However, we cannot exactly ensure
the equality h(v, v′) · ε = τi. Therefore, we resort to an approximate equality which still
fulfills the intended usage of mapping translations to vector choices. The approximate
values just snap to the closest canonical values. The gadgets we construct are the following:

• Translation gadget: It ensures that τ ∈ [−1
4 · ε, (N2 − 3

4) · ε]× [−1
4 · ε, (N2 − 3

4) · ε],
i.e., we are always close to the points in the ε-grid of translations that choose our
vectors v1, . . . , v4.

• OV-dimension gadget: AND over all j ∈ [D].

• OR gadget: The big OR in the formula.

• Equality gadget: This gadget is only traversable if the two vectors it was created
for correspond to τ , i.e., it ensures that h(v, v′) · ε ≈ τi.

We use the above mentioned gadgets as follows. The constructed curves π and σ
start with the translation gadget consisting of the curves π(0), σ(0). They are followed
by D different parts that form the OV-dimension gadget. Each of the D parts is an
OR gadget and we call the respective curves π(j) and σ(j) for j ∈ [D]. Each of the OR
gadgets (π(j), σ(j)) contains several equality gadgets. We will use different variations of
the equality gadget (one for each set of vectors V1, . . . , V4) but they are all of very similar
structure. We need four different types of equality gadgets because for a certain vi ∈ Vi

a part of the gadget is only inserted if vi[d] = 0. Thus, if we traverse an equality gadget
later, we know that it corresponds to one zero entry and also to the current translation.
See Figure 8.1 for an overview of the whole construction.

8.2 Gadgets

Without loss of generality, assume that for all dimensions j ∈ [D] at least one vector in
V1 ∪ · · · ∪ V4 contains a 0 in dimension j. Now we give the detailed construction of the
gadgets and the proofs of correctness. The instance of the discrete Fréchet distance under
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translation that we construct in the reduction uses a threshold distance of δ = 2 + 1
4ε,

i.e., we want to know for the constructed curves π and σ if their discrete Fréchet distance
under translation is not more than δ.

σ(0)

2− (N 2 − 1)ε

2

π(0)

Figure 8.2: Transla-
tion gadget

Translation Gadget. First we have to restrict the possible
translations. To this end, we build a gadget to ensure τ ∈ T for

T := [−1

4
· ε, (N2 − 3

4
) · ε]× [−1

4
· ε, (N2 − 3

4
) · ε].

This is realized by a gadget where curve π(0) consists of only one
vertex and curve σ(0) consists of four vertices:

π(0) := ⟨(0, 0)⟩,
σ(0) := ⟨(2− (N2 − 1)ε, 0), (0, 2− (N2 − 1)ε), (−2, 0), (0,−2)⟩.

This gadget is sketched in Figure 8.2.

Lemma 8.1. Given two curves π = π(0) ◦ π′ and σ = σ(0) ◦ σ′

(with π(0), σ(0) as defined above), such that each p ∈ π(0) has distance greater than 10 to
each p′ ∈ π′, the following holds:

(i) if τ ∈ [0, (N2 − 1)ε]× [0, (N2 − 1)ε], then ddF(π
(0), σ(0) + τ) ≤ δ

(ii) if ddF(π, σ + τ) ≤ δ, then τ ∈ [−1
4 · ε, (N2 − 3

4) · ε]× [−1
4 · ε, (N2 − 3

4) · ε]

Proof. We start with showing (i), so assume τ ∈ [0, (N2−1)ε]×[0, (N2−1)ε]. Note that the
maximal distance maxq∈σ(0) maxτ

∥∥π(0) − (q + τ)
∥∥ is an upper bound on ddF(π

(0), σ(0) +
τ). By a simple calculation we obtain the desired result:

max
q∈σ(0)

max
τ

∥∥∥π(0) − (q + τ)
∥∥∥ <

√
22 + ε2N4 <

√
22 + ε+

1

16
ε2 = 2 +

1

4
ε,

where we used ε ≤ N−4.
Now we prove (ii). Note that the start points of π and σ + τ have to be in distance

≤ δ, thus τ ∈ [−5, 5]2 (using a very rough estimate). As all points of π′ are further than
10 from any point in π(0) and thus all points on the postfix π′ are further than δ from
σ(0) + τ , we have to stay in π(0) while traversing σ(0). Thus, the following inequalities
hold for τi > (N2 − 3

4)ε or τi < −1
4ε and i ∈ {1, 2} (where ∥v∥∞ denotes the infinity

norm of v):

ddF(π, σ + τ) ≥ ddF(π
(0), σ(0) + τ) ≥ max

i∈[4]

{∥∥∥π(0)
1 − (σ

(0)
i + τ)

∥∥∥
∞

}
> δ,

which is the contrapositive of (ii).
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σF (v2)

(−1 + ε · ind(v1), 1 + η)

(−1− ε · ind(v2) ·N,−1− η) (1 + ε · ind(v1),−1− η)

(1− ε · ind(v2) ·N, 1 + η)

πF (v1)

(a) Equality Gadget for V1 and V2

σG(v4)

(−1− η, 1 + ε · ind(v3))

(−1− η,−1− ε · ind(v4) ·N) (1 + η,−1 + ε · ind(v3))

(1 + η, 1− ε · ind(v4) ·N)

πG(v3)

(b) Equality Gadget for V3 and V4

Figure 8.3: The equality gadgets for F and G. The equality gadgets F ′ and G′ are
simply shifted.

OV-dimension Gadget. For every 4-OV dimension j ∈ [D], we construct separate
gadgets π(1), . . . , π(D) for π and σ(1), . . . , σ(D) for σ. We want to connect these gadgets
in a way that the two curves are in distance not more than δ if and only if all gadgets
have distance not more than δ for a given translation τ . This is done by simply placing
the gadgets in distance greater than δ +N2 · ε from each other and concatenating them.

Lemma 8.2. Given a translation τ ∈ T and curves π = π(1), . . . , π(D) and σ =
σ(1), . . . , σ(D) where for all j ∈ [D] all points of π(j) are further than δ + 2N2 · ε from
each point of σ(j′) with j ≠ j′, then δ(π, σ + τ) ≤ δ if and only if ddF(π(j), σ(j) + τ) ≤ δ
for all j ∈ [D].

Proof. First, note that whatever τ we choose in the given range, σ(j)+τ is still in distance
greater than δ from every π(j′) with j′ ̸= j.

Now, assume that for all j ∈ [D] the curves π(j), σ(j) + τ have distance at most δ.
Then we can traverse the gadgets in order and do simultaneous jumps between them.
Thus, also the distance of the whole curves π and σ + τ is at most δ. For the other
direction, assume that for at least one j ∈ [D] the distance between π(j) and σ(j) + τ is
greater than δ. On the one hand, if we do not traverse simultaneously (i.e., at one point
the traversal is in π(j) and σ(j′) for j ̸= j′), then due to large distances of π(j), σ(j′) + τ
for j ̸= j′, we have distance greater than δ for this traversal. On the other hand, if we
traverse π(j) and σ(j) together for all j, we also have distance greater than δ due to the
gadget with distance greater than δ.

For the remaining gadgets we define for convenience:

η := 3 ·N2ε.

Equality Gadget. An equality gadget F (v1, v2) for the vectors v1 ∈ V1, v2 ∈ V2 is a
pair of two line segments, πF (v1) and σF (v2), see Figure 8.3(a):

πF (v1) := ⟨(1 + ε · ind(v1),−1− η), (−1 + ε · ind(v1), 1 + η)⟩,
σF (v2) := ⟨(−1− ε · ind(v2) ·N,−1− η), (1− ε · ind(v2) ·N, 1 + η)⟩.

Note that this gives us N2 different gadgets consisting of 2N different line segments. We
later use the line segments πF (v1) in π and the line segments σF (v2) in σ where they
can be combined to form an equality gadget.
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Lemma 8.3. Given curves πF (v1), σF (v2) for some v1 ∈ V1 and v2 ∈ V2, and given a
translation τ ∈ T , the following properties hold:

(i) if τ1 = ε · (ind(v1) + ind(v2) ·N), then ddF(πF (v1), σF (v2) + τ) ≤ δ

(ii) if ddF(πF (v1), σF (v2) + τ) ≤ δ, then |ε · (ind(v1) + ind(v2) ·N)− τ1| ≤ 1
3ε

Proof. To prove (i), it suffices to give a valid traversal. We traverse πF (v1) = (p1, p2) and
σF (v2) = (q1, q2) simultaneously. Thus, we just want an upper bound on the distance
between the (translated) first points p1, q1 + τ and the distance between the (translated)
second points p2, q2+τ to get an upper bound on ddF(πF (v1), σF (v2)+τ). These distances
are

∥p1 − (q1 + τ)∥2 = (2 + ε · ind(v1) + ε · ind(v2) ·N − τ1)
2 + τ22

= 4 + τ22 ≤ 4 + ε+
1

16
ε2 = δ2

and

∥p2 − (q2 + τ)∥2 = (−2 + ε · ind(v1) + ε · ind(v2) ·N − τ1)
2 + τ22 = 4 + τ22 ≤ δ2,

where we used |τ2| ≤ N2ε and thus τ22 ≤ N4ε2 ≤ ε since ε ≤ N−4. Both distances are at
most δ and thus the discrete Fréchet distance is at most δ as well.

For proving (ii), first note that the first (respectively second) point of πF (v1) is far
from the second (respectively first) point of σF (v2), due to η ≥ N2ε. Thus, we have to
traverse the gadget simultaneously. Let ∆ := ε · ind(v1) + ε · ind(v2) ·N − τ1, it remains
to show that ∆ ≤ 1

3ε. For p1, q1 we then get

∥p1 − (q1 + τ)∥2 = (2 + ε · ind(v1) + ε · ind(v2) ·N − τ1)
2 + τ22 ≤ (2 + 1

4ε)
2

⇔ (2 + ∆)2 + τ22 ≤ 4 + ε+ 1
16ε

2

⇔ 4 + 4∆ +∆2 + τ22 ≤ 4 + ε+ 1
16ε

2

⇒ 4∆ ≤ ε+ 1
16ε

2

⇒ ∆ ≤ 1
4ε+

1
64ε

2 ≤ 1
3ε.

The last inequality follows from plugging in ε = 0.001/N4 and using the fact that N ≥ 1.
With a similar calculation for p2, q2 we obtain that ∆ ≥ −1

3ε, and thus |∆| ≤ 1
3ε.

Now we introduce three gadgets which have the same properties as the equality gadget
but are slightly different. The aim is to have four types of gadgets which are pairwise
further than a discrete Fréchet distance of δ apart such that we can use them together
in one big OR expression.

Shifted Equality Gadget. As described in the introduction of this section, we want
to use the curves πF (v1), σF (v2) in case v1[j] = 0 and we need an additional gadget for
v2[j] = 0. However, those two gadgets should not be too close such that the curves cannot
be matched but also not too far such that the OR gadget (which we introduce later) still
works. Thus, we introduce another gadget F ′(v1, v2) which consists of a pair of curves
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πF ′(v1), σF ′(v2) that are just shifted versions of πF (v1), σF (v2); shifted by N2ε in the
first dimension. More formally,

πF ′(v1) := πF (v1) + (N2ε, 0),

σF ′(v2) := σF (v2) + (N2ε, 0).

Before proving the desired properties, we introduce the remaining two variants of the
equality gadget.

Equality Gadget for V3 and V4. The above introduced equality gadgets only work
for vectors in V1 and V2 but we also need a gadget for vectors in V3 and V4. Therefore,
we introduce the gadget G(v3, v4), which is a mirrored equality gadget consisting of the
curves πG(v3) and σG(v4), see Figure 8.3(b):

πG(v3) := ⟨(−1− η, 1 + ε · ind(v3)), (1 + η,−1 + ε · ind(v3))⟩,
σG(v4) := ⟨(−1− η,−1− ε · ind(v4) ·N), (1 + η, 1− ε · ind(v4) ·N)⟩.

Shifted Equality Gadget for V3 and V4. We define G′(v3, v4) similarly to F ′(v1, v2),
i.e., we shift the curves of G by N2ε, but in contrast to F ′ we shift it in the second
dimension. More formally:

πG′(v3) := πG(v3) + (0, N2ε),

σG′(v4) := σG(v4) + (0, N2ε).

Due to the similar structure of the curve pairs of F (v1, v2) and F ′(v1, v2), G(v3, v4),
G′(v3, v4), analogous statements to Lemma 8.3 also hold for the curve pairs from F ′(v1, v2),
G(v3, v4), and G′(v3, v4). Specifically, we have:

Lemma 8.4. Given curves πF ′(v1), σF ′(v2) for some v1 ∈ V1 and v2 ∈ V2, and given a
translation τ ∈ T , the following properties hold:

(i) if τ1 = ε · (ind(v1) + ind(v2) ·N), then ddF(πF ′(v1), σF ′(v2) + τ) ≤ δ

(ii) if ddF(πF ′(v1), σF ′(v2) + τ) ≤ δ, then |ε · (ind(v1) + ind(v2) ·N)− τ1| ≤ 1
3ε

Lemma 8.5. Given curves πG(v3), σG(v4) for some v3 ∈ V3 and v4 ∈ V4, and given a
translation τ ∈ T , the following properties hold:

(i) if τ2 = ε · (ind(v3) + ind(v4) ·N), then ddF(πG(v3), σG(v4) + τ) ≤ δ

(ii) if ddF(πG(v3), σG(v4) + τ) ≤ δ, then |ε · (ind(v3) + ind(v4) ·N)− τ2| ≤ 1
3ε

Lemma 8.6. Given curves πG′(v3), σG′(v4) for some v3 ∈ V3 and v4 ∈ V4, and given a
translation τ ∈ T , the following properties hold:

(i) if τ2 = ε · (ind(v3) + ind(v4) ·N), then ddF(πG′(v3), σG′(v4) + τ) ≤ δ

(ii) if ddF(πG′(v3), σG′(v4) + τ) ≤ δ, then |ε · (ind(v3) + ind(v4) ·N)− τ2| ≤ 1
3ε
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We now show that all subcurves of different equality gadgets are pairwise further apart
than δ. Here we say that the curves πF (v1) and σF (v2) have type F . Similarly, the other
curves constructed above have type F ′, G, or G′.

Lemma 8.7. For any vectors v1 ∈ V1, . . . , v4 ∈ V4 and any translation τ ∈ T , for any
curves π ∈ {πF (v1), πF ′(v1), πG(v3), πG′(v3)} and σ ∈ {σF (v2), σF ′(v2), σG(v4), σG′(v4)}
of different type, we have ddF(π, σ + τ) > δ.

Proof. We first consider πF ′(v1) and σF (v2). Consider the first point of σF (v2) which we
call q. This point is further than 2 +N2ε from both points of πF ′(v1). When translating
σ with τ ∈ T , the distance is still greater than 2 + 3

4ε > δ. Thus, σF (v2) and πF ′(v1) are
in discrete Fréchet distance greater than δ for any valid τ .

Similarly, consider πF (v1) and σF ′(v2), and let p be the second point of πF (v1). The
point p has distance greater than 2+ε from σF ′(v2). With translation τ ∈ T this distance
is still greater than 2+ 3

4ε > δ and thus πF (v1) and σF ′(v2) are in discrete Fréchet distance
greater than δ for any valid τ . The proof for types G and G′ is symmetric.

Now we prove the lemma for types F and G. First note that every point of πF (v1)
is in distance 1 + η of the first coordinate axis and every point of σG(v4) is in distance
1 + η of the second coordinate axis. Additionally, no point of πF (v1) is closer than
1− 2N2ε to the second coordinate axis while no point of σG(v4) is closer than 1− 2N2ε
to the first coordinate axis. This means that every point of πF (v1) is in distance at least
2 + η− 2N2ε = 2+N2ε of any point of σG(v4). Even with translation this distance is at
least 2 + 3

4ε > δ. Thus, also the discrete Fréchet distance is greater than δ. The proofs
for the remaining cases are symmetric.

We moreover observe that our equality gadgets lie in very restricted regions. Specifically,
call a curve diagonal if all of its vertices are in R1 ∪R2 with

R1 := [−1− 2η,−1 + 2η]2, R2 := [1− 2η, 1 + 2η]2,

and we call it anti-diagonal if all of its vertices are contained in R3 ∪R4 with

R3 := [−1− 2η,−1 + 2η]× [1− 2η, 1 + 2η], R4 := [1− 2η, 1 + 2η]× [−1− 2η,−1 + 2η].

See Figure 8.4. Also, note that the order in which the curves visit the regions is not
specified in the definition of (anti-)diagonal.

Observation 8.8. The curves πF (v1), πF ′(v1), πG(v3), πG′(v3) are anti-diagonal, and the
curves σF (v2), σF ′(v2), σG(v4), σG′(v4) are diagonal.

Proof. We observe that each coordinate of a vertex of any of these curves differs from 1 or
−1 by at most εN2 +max{η, εN2}, by bounding 0 ≤ ind(vi) ≤ N . Recalling η = 3 ·N2ε,
we have εN2 ≤ η. Therefore, any coordinate differs from 1 or −1 by at most 2η, that is,
each coordinate lies in R1 ∪R2 ∪R3 ∪R4. The general shape of being (anti-)diagonal can
be inferred from Figure 8.3.

We are now ready to describe the last gadget. For proving its correctness, we will
essentially only use the diagonal and anti-diagonal property of the curves.
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r1

t1

s1

s2 = t2

r2s∗2

t∗2
r′1 r′2

Regions of anti-diagonal curves:

Regions of diagonal curves:

πOR :
σOR :

-1 1

0

-1

0

1

R1

R2R3

R4

Figure 8.4: The OR gadget for general diagonal and anti-diagonal curves.

OR Gadget. We construct an OR gadget over diagonal and anti-diagonal curves which
we will later apply to equality gadgets. Before introducing the gadget itself, we define
various auxiliary points whose meaning will become clear later. Here we keep notation
close to [38], although the details of our construction are quite different.

s1 :=
(
−1

4 ,−1
4

)
, t1 :=

(
1
4 ,

1
4

)
, r1 :=

(
99
100 ,−5

4

)
, r′1 :=

(
− 99

100 ,
5
4

)
,

s2 := (0, 0), s∗2 :=
(
−3

2 ,−3
2

)
, t∗2 :=

(
3
2 ,

3
2

)
, t2 := (0, 0), r2 :=

(
− 99

100 ,−5
4

)
, r′2 :=

(
99
100 ,

5
4

)
.

Now, given diagonal curves σ̂1, . . . , σ̂ℓ and anti-diagonal curves π̂1, . . . , π̂k, we define the
two curves of the OR gadget as

πOR := ⃝
i∈[k]

s1 ◦ r1 ◦ π̂i ◦ r′1 ◦ t1,

σOR := s2 ◦ s∗2 ◦ ( ⃝
j∈[ℓ]

r2 ◦ σ̂j ◦ r′2) ◦ t∗2 ◦ t2.

See Figure 8.4 for a visualization. Now let us prove correctness of the gadget.

Lemma 8.9. Given an OR gadget over diagonal curves σ̂1, . . . , σ̂ℓ and anti-diagonal
curves π̂1, . . . , π̂k, for any translation τ ∈ T we have ddF(πOR, σOR + τ) ≤ δ if and only
if ddF(π̂i, σ̂j + τ) ≤ δ for some i, j.

Proof. We first observe that for none of the auxiliary points p ∈ πOR and q ∈ σOR we
have that ∥p− q∥ ∈ [1.99, 2.01]. This can be verified by calculating all distances, but
we omit this due to readability of the proof. Also observe that T ⊂ [−0.001, 0.001]
and δ ∈ [2, 2.001]. It follows from the above observations that the translation τ does
not change whether auxiliary points are closer than δ or not. Thus, we can ignore the
translation for distances between auxiliary points in this proof. For reference we state
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which auxiliary points are closer than δ for all τ ∈ T . For each auxiliary point in πOR we
list its close auxiliary points in σOR:

s1 : s2, s
∗
2, t2, r2, r

′
2,

t1 : s2, t2, r2, r
′
2,

r1 : s2, t2, r2,

r′1 : s2, t2, r
′
2.

All other pairs are in distance greater than δ. Note that for the remainder of the proof,
we do not have to consider the specific value for τ anymore.

We first show that if ddF(π̂i, σ̂j + τ) ≤ δ for some i, j, then ddF(πOR, σOR+ τ) ≤ δ by
giving a valid traversal. We start in s1, s2 + τ . Then we traverse πOR until the copy of s1
which comes before the subcurve π̂i. While staying in s1, we traverse σOR + τ until we
reach the copy of r2 + τ right before the subcurve σ̂j + τ . We then do one step on πOR

to r1. Now we step to the first nodes of π̂i and σ̂j + τ simultaneously, and then traverse
these two subcurves in distance δ, which is possible due to ddF(π̂

i, σ̂j + τ) ≤ δ. We then
step to the copies of r′1 and r′2 + τ simultaneously. We then step to t1 on πOR, while
staying at r′2 + τ in σOR + τ . Subsequently, while staying in t1, we traverse σOR + τ until
we reach its last point, namely t2 + τ . Now we can traverse the remainder of πOR. One
can check that this traversal stays within distance δ.

We now show that if ddF(πOR, σOR+τ) ≤ δ, then there exist i, j such that ddF(π̂i, σ̂j+
τ) ≤ δ. Pick any valid traversal for which ddF(πOR, σOR + τ) ≤ δ. We reconstruct in the
following how it passed through πOR and σOR + τ . Consider the point when s∗2 + τ is
reached. At that point, we have to be in some copy of s1 as this is the only type of node
of πOR which is in distance at most δ from s∗2 + τ . Let π̂i be the subcurve right after this
copy of s1. When we step to the copy of r1 right after this s1, there are only three types
of nodes from σOR + τ in distance δ: s2 + τ, t2 + τ, r2 + τ . Note that we already passed
s2 + τ , and we cannot have reached t2 + τ yet, as t∗2 + τ is neither in reach of s1 nor r1.
Thus, we are in r2 + τ . Let the curve right after r2 + τ be σ̂j + τ . The only option now
is to do a simultaneous step to the first nodes of π̂i and σ̂j + τ . Now, consider the point
when either r′1 or r′2+ τ is first reached. All points of π̂i are far from r′2+ τ and all points
of σ̂j + τ are far from r′1 and thus we have to be in r′1 and r′2 + τ at the same time. This
implies that we traversed π̂i and σ̂j + τ from the start to the end nodes in distance δ
and therefore ddF(π̂

i, σ̂j + τ) ≤ δ.

8.3 Final Construction and Correctness

We now show how to construct the final curves that result from the reduction using the
above gadgets and then prove correctness of the reduction.

Assembling π(j) and σ(j). We can apply the OR gadget to the equality gadgets in
the following way. For each of the D dimensions we construct an OR gadget. The OR
gadget for dimension j ∈ [D] contains as anti-diagonal curves all πF (v1) with v1[j] = 0,
all πF ′(v1), all πG(v3) with v3[j] = 0, and all πG′(v3); and as diagonal curves it contains
all σF (v2), all σF ′(v2) with v2[j] = 0, all σG(v4), and all σG′(v4) with v4[j] = 0. Note
that these curves fulfill the requirements stated in Observation 8.8 for usage in the OR
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gadget as (anti-)diagonal curves. We denote the resulting curves by π(j) and σ(j), and
we write H(j) = (π(j), σ(j)). This yields the following lemma.

Lemma 8.10. Given a 4-OV instance V1, . . . , V4, and consider the corresponding OR
gadget H(j) = (π(j), σ(j)) for some j ∈ [D]. It holds that:

(i) For any vectors v1 ∈ V1, . . . , v4 ∈ V4 with v1[j] · v2[j] · v3[j] · v4[j] = 0 we have
ddF(π

(j), σ(j)+ τ) ≤ δ for τ = ((ind(v1)+ ind(v2) ·N) · ε, (ind(v3)+ ind(v4) ·N) · ε).

(ii) If ddF(π(j), σ(j) + τ) ≤ δ for some τ ∈ T , then

• ∃v1 ∈ V1, v2 ∈ V2 : v1[j] · v2[j] = 0 and |ε · (ind(v1) + ind(v2) ·N)− τ1| ≤ 1
3ε

or

• ∃v3 ∈ V3, v4 ∈ V4 : v3[j] · v4[j] = 0 and |ε · (ind(v3) + ind(v4) ·N)− τ2| ≤ 1
3ε

Proof. For (i), from v1[j] · v2[j] · v3[j] · v4[j] = 0 it follows that at least one gadget of
F (v1, v2), F ′(v1, v2), G(v3, v4), G′(v3, v4) is contained in H(j). By Lemmas 8.3 to 8.6, we
know that the discrete Fréchet distance of this gadget is small. By Lemma 8.9 it then
follows that ddF(π

(j), σ(j) + τ) ≤ δ.
For (ii), from ddF(π

(j), σ(j) + τ) ≤ δ it follows by Lemmas 8.9 and 8.7 that there
exists a gadget Γ for which the discrete Fréchet distance is at most δ. From Lemmas 8.3
to 8.6 it then follows that

|ε · (ind(v1) + ind(v2) ·N)− τ1| ≤
1

3
ε or |ε · (ind(v3) + ind(v4) ·N)− τ2| ≤

1

3
ε.

for some vectors v1 ∈ V1, . . . , v4 ∈ V4. As Γ is contained in the OR gadget, we additionally
have that v1[j] · v2[j] = 0 or v3[j] · v4[j] = 0, respectively.

Final curves. The final curves π and σ are now defined as follows. We start with the
translation gadget π(0) (σ(0)). Then the curves π(j) (σ(j)) follow for j ∈ [D]. Note that
we have to translate these curves to fulfill the requirements of Lemmas 8.1 and 8.2, thus,
we translate π(j) (σ(j)) by (100 · j, 0). More explicitly, the final curves are

π := π(0)⃝j∈[D] π
(j) + (100 · j, 0),

σ := σ(0)⃝j∈[D] σ
(j) + (100 · j, 0).

We are now ready to prove Theorem 3.3. Recall its statement:

Theorem 3.3. The discrete Fréchet distance under translation of curves of length n in
the plane requires time n4−o(1), unless the Strong Exponential Time Hypothesis fails.

Also recall that it suffices to prove a lower bound under the 4-OV hypothesis. For clarity
of structure, we split the proof into Lemma 8.11 and Lemma 8.12 which together imply
Theorem 3.3.

Lemma 8.11. Given a YES-instance of 4-OV, the curves π and σ constructed in our
reduction have discrete Fréchet distance under translation at most δ, i.e., minτ ddF(π, σ+
τ) ≤ δ.
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Proof. Let v1 ∈ V1, . . . , v4 ∈ V4 be orthogonal vectors and let τ = ((ind(v1) + ind(v2) ·
N) · ε, (ind(v3) + ind(v4) ·N) · ε) be the translation corresponding to those vectors. From
Lemma 8.1 we know that ddF(π

(0), σ(0) + τ) ≤ δ, and thus there is a valid traversal to
the endpoints of the translation gadget. Then we simultaneously step to the start of π(1)

and σ(1). From Lemma 8.10 we know that there also exist traversals of π(1), . . . , π(D) and
σ(1) + τ, . . . , σ(D) + τ of distance at most δ. It follows from Lemma 8.2 that we can also
traverse those gadgets sequentially in distance δ and thus ddF(π, σ + τ) ≤ δ.

Lemma 8.12. If the curves π and σ constructed in our reduction have discrete Fréchet
distance under translation at most δ, then the given 4-OV instance is a YES-instance.

Proof. Let τ be a translation such that ddF(π, σ + τ) ≤ δ. We know from Lemma 8.1
that τ ∈ T . Furthermore, from Lemma 8.2 we know that for all j ∈ [D] it holds that
ddF(π

(j), σ(j)+ τ) ≤ δ. It follows from Lemma 8.10 that for every j ∈ [D] there exist v1 ∈
V1, v2 ∈ V2 such that v1[j] · v2[j] = 0 and |ε · (ind(v1) + ind(v2) ·N)− τ1| ≤ 1

3ε or there
exist v3 ∈ V3, v4 ∈ V4 such that v3[j] ·v4[j] = 0 and |ε · (ind(v3) + ind(v4) ·N)− τ2| ≤ 1

3ε.
Therefore, every dimension j ∈ [D] gives us constraints on either v1, v2 or v3, v4. Due to
Lemma 8.10 these constraints have to be consistent. If in total this gives us constraints for
v1, . . . , v4, then we are done. Otherwise, if this only gives us constraints for v1, v2, then we
already found v1, v2 which are orthogonal and thus we can pick arbitrary v3 ∈ V3, v4 ∈ V4

to obtain an orthogonal set of vectors. The case of only v3, v4 being constrained is
symmetric.

Proof of Theorem 3.3. The Strong Exponential Time Hypothesis implies the k-OV hy-
pothesis. The reduction above from a 4-OV instance of size N over {0, 1}D to an in-
stance of the discrete Fréchet distance under translation in R2 results in two curves of
length O(D ·N). Lemmas 8.11 and 8.12 show correctness of this reduction. Hence, any
O(n4−ε)-time algorithm for the discrete Fréchet distance under translation would imply
an algorithm for 4-OV in time O((D ·N)4−ε) = O(poly(D) ·N4−ε), refuting the k-OV
hypothesis.
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CHAPTER 9
Fréchet Distance

For a technical overview of this chapter see Section 3.4. This chapter is organized as
follows. First, in Section 9.1, we present all the core definitions. Subsequently, we explain
our complete decider in Section 9.2. The following section then explains the decider and
its filtering steps. Then, in Section 9.4, we present a query data structure which enables us
to compare to the GIS Cup submissions. Section 9.5 contains some details regarding the
implementation to highlight crucial points that are relevant for similar implementations.
We conduct extensive experiments in Section 9.6, detailing the improvements over the
current state of the art by our implementation. Finally, in Section 9.7, we describe how
we make our implementation certifying and evaluate the certifying code experimentally.

9.1 Preliminaries

Our implementation as well as the description are restricted to two dimensions, however,
the approach can also be generalized to polygonal curves in d dimensions. In the remainder,
we denote the number of vertices of π (resp. σ) with n (resp. m) if not stated otherwise.
We denote the length (not the complexity!) of a curve π by ∥π∥, i.e., the sum of the
Euclidean lengths of its line segments. Additionally, we use ∥v∥ for the Euclidean norm
of a vector v ∈ R2. Given two curves π, σ and a query distance δ, we call them close if
dF(π, σ) ≤ δ and far otherwise. There are two problem settings that we consider in this
chapter:

Decider Setting: Given curves π, σ and a distance δ, decide whether dF(π, σ) ≤ δ.
(With such a decider, we can compute the exact distance by using parametric
search in theory and binary search in practice.)

Query Setting: Given a curve dataset D, build a data structure that on query (π, δ)
returns all σ ∈ D with dF(π, σ) ≤ δ.

We mainly focus on the decider in this chapter. To allow for a comparison with previous
implementations (which are all in the query setting), we also run experiments with our
decider plugged into a data structure for the query setting.

9.1.1 Preprocessing

When reading the input curves we immediately compute additional data which is stored
with each curve:

Prefix Distances: To be able to quickly compute the curve length between any two
vertices of π, we precompute the prefix lengths, i.e., the curve lengths ∥π[1, i]∥ for
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every i ∈ {2, . . . , n}. We can then compute the curve length for two indices i < i′

on π by ∥π[i, i′]∥ = ∥π[1, i′]∥ − ∥π[1, i]∥.

Bounding Box: We compute the bounding box of all curves, which is just a coordinate-
wise maximum and minimum computation.

Both of these preprocessing steps are extremely cheap as they only require a single pass
over all curves, which we anyway do when parsing them. In the remainder of this chapter
we assume that this additional data was already computed, in particular, we do not
measure it in our experiments as it is dominated by reading the curves.

9.2 Complete Decider

The key improvement of this chapter lies in the complete decider via free-space exploration.
Here, we use a divide-and-conquer interpretation of the algorithm of Alt and Godau [19]
which is similar to [30] where a free-space diagram is built recursively. This interpretation
allows us to prune away large parts of the search space by designing powerful pruning
rules identifying parts of the search space that are irrelevant for determining the correct
output. Before describing the details, we formally define the free-space diagram.

9.2.1 Free-Space Diagram

The free-space diagram was first defined in [19]. Given two polygonal curves π and σ and
a distance δ, it is defined as the set of all pairs of indices of points from π and σ that are
close to each other, i.e.,

F := {(p, q) ∈ [1, n]× [1,m] | ∥π(p)− σ(q)∥ ≤ δ}.

For an example see Figure 9.1. A path from a to b in the free-space diagram F is defined
as a continuous mapping P : [0, 1] → F with P (0) = a and P (1) = b. A path P in
the free-space diagram is monotone if P (x) is component-wise at most P (y) for any
0 ≤ x ≤ y ≤ 1. The reachable space is then defined as

R := {(p, q) ∈ F | there exists a monotone path from (1, 1) to (p, q) in F}.

Figure 9.2 shows the reachable space for the free-space diagram of Figure 9.1. It is well
known that dF(π, σ) ≤ δ if and only if (n,m) ∈ R.

This leads us to a simple dynamic programming algorithm to decide whether the
Fréchet distance of two curves is at most some threshold distance. We iteratively compute
R starting from (1, 1) and ending at (n,m), using the previously computed values. As R
is potentially a set of infinite size, we have to discretize it. A natural choice is to restrict
to cells. The cell of R with coordinates (i, j) ∈ {1, . . . , n− 1} × {1, . . . ,m− 1} is defined
as Ci,j := [i, i+1]× [j, j +1]. This is a natural choice as given R∩Ci−1,j and R∩Ci,j−1,
we can compute R∩Ci,j in constant time; this follows from the simple fact that F ∩Ci,j

is convex [19]. We call this computation of the outputs of a cell the cell propagation. This
algorithm runs in time O(nm) and was introduced by Alt and Godau [19].
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Figure 9.1: Example of a free-space diagram for curves π (black) and σ (red). Curve
π is on the horizontal axis of the free-space diagram, while σ is on the vertical axis; we
use this convention in the remainder. The doubly-circled vertices mark the start. The
free-space, i.e., the pairs of indices of points which are close, is colored green. The non-free
areas are colored red. The threshold distance δ is roughly the distance between the first
vertex of σ and the third vertex of π.

Figure 9.2: Reachable space of the free-space diagram in Figure 9.1. The reachable part
is blue and the non-reachable part is red. Note that the reachable part is a subset of the
free-space. We use this color scheme in the remainder of this chapter.
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9.2.2 Basic Algorithm

For integers 1 ≤ i ≤ i′ ≤ n, 1 ≤ j ≤ j′ ≤ m we call the set B = [i, i′] × [j, j′] a
box. We denote the left/right/bottom/top boundaries of B by Bl = {i} × [j, j′], Br =
{i′} × [j, j′], Bb = [i, i′]× {j}, Bt = [i, i′]× {j′}. The left input of B is BR

l = Bl ∩R, and
its bottom input is BR

b = Bb ∩ R. Similarly, the right/top output of B is BR
r = Br ∩ R,

BR
t = Bt ∩R. A box is a cell if i+ 1 = i′ and j + 1 = j′. We always denote the lower left

corner of a box by (i, j) and the top right by (i′, j′), if not mentioned otherwise.
A recursive variant of the standard free-space decision procedure is as follows: Start

with B = [1, n]× [1,m]. At any recursive call, if B is a cell, then determine its outputs
from its inputs in constant time, as described by [19]. Otherwise, split B vertically or
horizontally into B1, B2 and first compute the outputs of B1 from the inputs of B and
then compute the outputs of B2 from the inputs of B and the outputs of B1. In the end,
we just have to check (n,m) ∈ R to decide whether the curves are close or far. This is a
constant-time operation after calculating all outputs.

Now comes the main idea of our approach: we try to avoid recursive splitting by
directly computing the outputs for non-cell boxes using certain rules. We call them
pruning rules as they enable pruning large parts of the recursion tree induced by the
divide-and-conquer approach. Our pruning rules are heuristic, meaning that they are
not always applicable, however, we show in the experiments that on practical curves
they apply very often and therefore massively reduce the number of recursive calls. The
detailed pruning rules are described in Section 9.2.3. Using these rules, we change the
above recursive algorithm as follows. In any recursive call on box B, we first try to
apply the pruning rules. If this is successful, then we obtained the outputs of B and we
are done with this recursive call. Otherwise, we perform the usual recursive splitting.
Corresponding pseudocode is shown in Algorithm 13.

In the remainder of this section, we describe our pruning rules and their effects.

9.2.3 Pruning Rules

In this section we introduce the rules that we use to compute outputs of boxes which are
above cell-level in certain special cases. Note that we aim at catching special cases which
occur often in practice, as we cannot hope for improvements on adversarial instances due
to the conditional lower bound of [38]. Therefore, we make no claims whether they are
applicable, only that they are sound and fast. In what follows, we call a boundary empty
if its intersection with R is ∅.

Rule I: Empty Inputs

The simplest case where we can compute the outputs of a box B is if both inputs are
empty, i.e. BR

b = BR
l = ∅. In this case no propagation of reachability is possible and thus

the outputs are empty as well, i.e. BR
t = BR

r = ∅. See Figure 9.3 for an example.

Rule II: Shrink Box

Instead of directly computing the outputs, this rule allows us to shrink the box we are
currently working on, which reduces the problem size. Assume that for a box B we
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1: procedure DecideFréchetDistance(π, σ, δ)
2: ComputeOutputs(π, σ, [1, n]× [1,m])
3: return [(n,m) ∈ R]

4: procedure ComputeOutputs(π, σ,B = [i, i′]× [j, j′], δ)
5: if B is a cell then
6: compute outputs by cell propagation
7: else
8: use pruning rules I to IV to compute outputs of B
9: if not all outputs have been computed then

10: if j′ − j > i′ − i then ▷ split horizontally
11: B1 = [i, i′]× [j, ⌊(j + j′)/2⌋]
12: B2 = [i, i′]× [⌊(j + j′)/2⌋, j′]
13: else ▷ split vertically
14: B1 = [i, ⌊(i+ i′)/2⌋]× [j, j′]
15: B2 = [⌊(i+ i′)/2⌋, i′]× [j, j′]

16: ComputeOutputs(π, σ,B1)
17: ComputeOutputs(π, σ,B2)

Algorithm 13: Recursive Decider of the Fréchet Distance

Figure 9.3: Output computation of a box when inputs are empty. First we can compute
the outputs of the top left box and then the outputs of the right box. In this example,
we then know that the curves have a Fréchet distance greater than δ as (n,m) is not
reachable.

have that BR
b = ∅ and the lowest point of BR

l is (i, jmin) with jmin > j. In this case,
no pair in [i, i′] × [j, jmin] is reachable. Thus, we can shrink the box to the coordinates
[i, i′]× [⌊jmin⌋, j′] without losing any reachability information. An equivalent rule can be
applied if we swap the role of Bb and Bl. See Figure 9.4 for an example of applying this
rule.

Rule III: Simple Boundaries

Simple boundaries are boundaries of a box that contain at most one free component. To
define this formally, a set I ⊆ [1, n]×[1,m] is called an interval if I = ∅ or I = {p}×[q, q′]
or I = [q, q′] × {p} for real p and an interval [q, q′]. In particular, the four boundaries
of a box B = [i, i′] × [j, j′] are intervals. We say that an interval I is simple if I ∩ F
is again an interval. Geometrically, we have a free interval of a point π(p) and a curve
σ[q, q′] (which is the form of a boundary in the free-space diagram) if the circle of radius
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Figure 9.4: This is an example of shrinking a box in case one of the inputs is empty
and the other one starts with an empty part. In this example the top left box has an
empty input on the left and the start of the bottom input is empty as well. Thus, we can
shrink the box to the right part.

πp

δ

σ′

Figure 9.5: Example of a point π(p) and a curve σ′ which lead to a simple boundary.

δ around π(p) intersects σ[q, q′] at most twice. See Figure 9.5 for an example. We call
such a boundary simple because it is of low complexity, which we can exploit for pruning.

There are three pruning rules that we do based on simple boundaries (see Figure 9.6
for visualizations). They are stated here for the top boundary Bt, but symmetric rules
apply to Br. Later, in Section 9.2.4, we then explain how to actually compute simple
boundaries, i.e., also how to compute Bt ∩ F . The pruning rules are:

(a) If Bt is simple because Bt ∩ F is empty then we also know that the output of this
boundary is empty. Thus, we conclude that BR

t = ∅ and we are done with Bt.

(b) Suppose that Bt is simple and, more specifically, of the form that it first has a
free and then a non-free part; in other words, we have (i, j′) ∈ Bt ∩ F . Due to our
recursive approach, we already computed the left inputs of the box and thus know
whether the top left corner of the box is reachable, i.e. whether (i, j′) ∈ R. If this
is the case, then we also know the reachable part of our simple boundary: Since
(i, j′) ∈ R and Bt∩F is an interval containing (i, j′), we conclude that BR

t = Bt∩F
and we are done with Bt.

(c) Suppose that Bt is simple, but the leftmost point (imin, j
′) of Bt ∩ F has imin > i.

In this case, we try to certify that (imin, j
′) ∈ R, because then it follows that

BR
t = Bt ∩ F and we are done with Bt. To check for reachability of (imin, j

′), we
try to propagate the reachability through the inside of the box, which in this case
means to propagate it from the bottom boundary. We test whether (imin, j) is in the
input, i.e., if (imin, j) ∈ BR

b , and whether {imin}× [j, j′] ⊆ F (by slightly modifying
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a) b) c)

Figure 9.6: Visualization of the rules for computing outputs using simple boundaries.
All three cases are visualized with the top boundary being simple. In a) the boundary is
non-free and therefore no point on it can be reachable. In b) the boundary’s beginning
is free and reachable, enabling us to propagate the reachability to the entire free interval.
In c) we can propagate the reachability of a point on the bottom boundary, using a free
interval inside the box, to the beginning of the free interval of the top boundary and thus
decide the entire boundary. The rules for the right boundary being simple are equivalent.

the algorithm for simple boundary computations). If this is the case, then we can
reach every point in Bt ∩ F from (imin, j) via {imin} × [j, j′]. Note that this is an
operation in the complete decider where we explicitly use the inside of a box and
not exclusively operate on its boundaries.

We also use symmetric rules by swapping “top” with “right” and “bottom” with “left”.

Rule IV: Boxes at Free-Space Diagram Boundaries

The boundaries of a free-space diagram are a special form of boundary which allows us
to introduce an additional rule. Consider a box B which touches the top boundary of
the free-space diagram, i.e., B = [i, i′] × [j,m]. Suppose the previous rules allowed us
to determine the output for BR

r . Since any valid traversal from (1, 1) to (n,m) passing
through B intersects Br, the output BR

t is not needed anymore, and we are done with
B. A symmetric rule applies to boxes which touch the right boundary of the free-space
diagram.

9.2.4 Implementation Details of Simple Boundaries

It remains to describe how we test whether a boundary is simple, and how we determine
the free interval of a simple boundary. One important ingredient for the fast detection
of simple boundaries are two simple heuristic checks that check whether two polygonal
curves are close or far, respectively. The former check was already used in [30]. We first
explain these heuristic checks, and then explain how to use them for the detection of
simple boundaries.

Heuristic check whether two curves are close. Given two subcurves π′ := π[i, i′]
and σ′ := σ[j, j′], this filter heuristically tests whether dF(π′, σ′) ≤ δ. Let ic := ⌊ i+i′

2 ⌋ and
jc := ⌊ j+j′

2 ⌋ be the indices of the midpoints of π′ and σ′ (with respect to hops). Then
dF(π

′, σ′) ≤ δ holds if

max{∥π[i, ic]∥ ,
∥∥π[ic, i′]∥∥}+ ∥πic − σjc∥+max{∥σ[j, jc]∥ ,

∥∥σ[jc, j′]∥∥} ≤ δ.
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πi

σj

πic

σjc

≤ δ?

πi′

σj′

(a) HeurClose

πi

πi′

πic

σj

σj′

σjc

> δ?‖π[ic, i
′ ]‖

‖σ[jc, j]‖

(b) HeurFar

Figure 9.7: Visualizations of heuristic checks HeurClose and HeurFar.

The triangle inequality ensures that this is an upper bound on all distances between two
points on the curves. For a visualization, see Figure 9.7(a). Observe that all curve lengths
that need to be computed in the above equation can be determined quickly due to our
preprocessing, see Section 9.1.1. We call this procedure HeurClose(π′, σ′, δ).

Heuristic check whether two curves are far. Symmetrically, we can test whether
all pairs of points on π′ and σ′ are far by testing

∥πic − σjc∥ −max{∥π[i, ic]∥ ,
∥∥π[ic, i′]∥∥} −max{∥σ[j, jc]∥ ,

∥∥σ[jc, j′]∥∥} > δ.

We call this procedure HeurFar(π′, σ′, δ).

Computation of simple boundaries. Recall that an interval is defined as I =
{p}× [q, q′] (intervals of the form [q, q′]×{p} are handled symmetrically). The naive way
to decide whether interval I is simple would be to go over all the segments of σ[q, q′] and
compute the intersection with the circle of radius δ around π(p). However, this is too
expensive because (i) computing the intersection of a disc and a segment involves taking
a square root, which is an expensive operation with a large constant running time, and
(ii) iterating over all segments of σ[q, q′] incurs a linear factor in n for large boxes, while
we aim at a logarithmic dependence on n for simple boundary detection.

We avoid these issues by resolving long subcurves σ[j, j+s] using our heuristic checks
(HeurClose, HeurFar). Here, s is an adaptive step size that grows whenever the
heuristic checks were applicable, and shrinks otherwise. See Algorithm 14 for pseudocode
of our simple boundary detection. It is straightforward to extend this algorithm to not
only detect whether a boundary is simple, but also compute the free interval of a simple
boundary; we call the resulting procedure SimpleBoundary.

9.2.5 Effects of Combined Pruning Rules

All the pruning rules presented above can in practice lead to a reduction of the number of
boxes that are necessary to decide the Fréchet distance of two curves. We exemplify this
on two real-world curves; see Figure 9.8 on page 148 for the curves and their corresponding
free-space diagram. We explain in the following where the single rules come into play.
For Box 1 we apply Rule IIIb twice – for the top and right output. The top boundary of
Box 2 is empty and thus we computed the outputs according to Rule IIIa. Note that the
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1: procedure isSimpleBoundary(π(p), σ[q, q′])
2: if HeurFar(π(p), σ[q, q′], δ) or HeurClose(π(p), σ[q, q′], δ) then
3: return “simple”
4:

5: C ←
{
{σ(q)} , if ∥π(p)− σ(q)∥ ≤ δ

∅ , otherwise
▷ set of change points

6: s← 1, j ← q
7: while j < q′ do
8: if HeurClose(π(p), σ[j, j + s], δ) then
9: j ← j + s

10: s← min{2s, q′ − j} ▷ double s but do not overstep q′

11: else if HeurFar(π(p), σ[j, j + s], δ) then
12: j ← j + s
13: s← min{2s, q′ − j} ▷ double s but do not overstep q′

14: else if s > 1 then
15: s← s/2
16: else
17: P ← {j′ ∈ (j, j + 1] | ∥π(p)− σ(j′)∥ = δ}
18: C ← C ∪ P
19: j ← j + 1
20: if |C| > 2 then
21: return “not simple”
22:
23: return “simple”

Algorithm 14: Checks if the boundary in the free-space diagram corresponding to
{p} × [q, q′] is simple.

right boundary of this box is on the right boundary of the free-space diagram and thus
we do not have to compute it according to Rule IV. For Box 3 we again use Rule IIIb for
the top, but we use Rule IIIc for the right boundary – the blue dotted line indicates that
the reachability information is propagated through the box. For Box 4 we first use Rule
II to move the bottom boundary significantly up, until the end of the left empty part;
we can do this because the bottom boundary is empty and the left boundary is simple,
starting with an empty part. After two splits of the remaining box, we see that the two
outputs of the leftmost box are empty as the top and right boundaries are non-free, using
Rule IIIa. For the remaining two boxes we use Rule I as their inputs are empty.

This example illustrates how propagating through a box (in Box 3 ) and subsequently
moving a boundary (in Box 4 ) leads to pruning large parts. Additionally, we can see how
using simple boundaries leads to early decisions and thus avoids many recursive steps.
In total, we can see how all the explained pruning rules together lead to a free-space
diagram with only twelve boxes, i.e., twelve recursive calls, for curves with more than 50
vertices and more than 1500 reachable cells. Figure 9.9 shows what effects the pruning
rules have by introducing them one by one in an example.

147



Chapter 9. Fréchet Distance

3 4

21

Figure 9.8: A free-space diagram as produced by our final implementation (left) with
the corresponding curves (right). The beginnings of the curves are marked, and π is on
the horizontal axis of the free-space diagram, while σ is on the vertical axis. The curves
are taken from the SIGSPATIAL dataset. We number the boxes in the third level of the
recursion from 1 to 4.

9.3 Decider with Filters

Now that we introduced the complete decider, we are ready to present the decider. We
first give a high-level overview.

9.3.1 Decider

The decider can be divided into two parts:

(1) Filters (see this section)

(2) Complete decider via free-space exploration (see Section 9.2)

As outlined in Section 3.4, we first try to determine the correct output by using fast but
incomplete filtering mechanisms and only resort to the slower complete decider presented
in the last section if none of the heuristic deciders (filters) gave a result. The high-level
pseudocode of the decider is shown in Algorithm 15.

The speed-ups introduced by our complete decider were already explained in Sec-
tion 9.2. A second source for our speed-ups lies in the usage of a good set of filters.
Interestingly, since our optimized complete decider via free-space exploration already
solves many simple instances very efficiently, our filters have to be extremely fast to
be useful – otherwise, the additional effort for an incomplete filter does not pay off. In
particular, we cannot afford expensive preprocessing and ideally, we would like to achieve
sublinear running times for our filters. To this end, we only use filters that can traverse
large parts of the curves quickly. We achieve sublinear-type behavior by making previ-
ously used filters work with an adaptive step size (exploiting fast heuristic checks), and
designing a new filter.
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reachable

Rule I

Rule III
a

Rule III
c

Rule II

Rule IIIb

Rule IV

Figure 9.9: A decider example introducing the pruning rules one by one. They are
introduced from top to bottom and left to right. The arrows denote the rules which are
introduced in between the two corresponding free-space diagrams. The curves of this
example are shown in Figure 9.8.
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1: procedure Decider(π, σ, δ)
2: if start points π1, σ1 or end points πn, σm are far then return “far”
3: for all f ∈ Filters do
4: verdict = f(π, σ, δ)
5: if verdict ∈ {“close”, “far”} then
6: return verdict
7: return CompleteDecider(π, σ, δ)

Algorithm 15: High-level code of the Fréchet decider.

a) b) c)

Figure 9.10: Sketches of the (a) greedy filter, (b) adaptive equal-time filter, and (c)
negative filter. These sketches should be read as follows: the first dimension is the index
on the first curve, while the second dimension is the index on the second curve. Recall
that the green color indicates that the corresponding points are in distance at most δ;
otherwise they are colored red. This visualization is similar to the free-space diagram.

In the remainder of this section, we describe all the filters that we use to heuristically
decide whether two curves are close or far. There are two types of filters: positive filters
check whether a curve is close to the query curve and return either “close” or “unknown”;
negative filters check if a curve is far from the query curve and return either “far” or
“unknown”.

9.3.2 Bounding Box Check

This is a positive filter already described in [87], which heuristically checks whether all
pairs of points on π, σ are in distance at most δ. Recall that we compute the bounding
box of each curve when we read it. We can thus check in constant time whether the
furthest points on the bounding boxes of π, σ are in distance at most δ. If this is the
case, then also all points of π, σ have to be close to each other and thus the free-space
diagram is completely free and a valid traversal trivially exists.

9.3.3 Greedy

This is a positive filter. To assert that two curves π and σ are close, it suffices to find
a traversal (f, g) satisfying maxt∈[0,1] ∥π(f(t))− σ(g(t))∥ ≤ δ. We try to construct such
a traversal staying within distance δ by making greedy steps that minimize the current
distance. This may yield a valid traversal: if after at most n + m steps we reach both
endpoints and during the traversal the distance was always at most δ, we return “near”.
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1: procedure GreedyFilter(π, σ, δ)
2: i, j, s← 1
3: while i < n or j < m do

4: S ←
{
{(i+ 1, j), (i, j + 1), (i+ 1, j + 1)}, if s = 1

{(i+ s, j), (i, j + s)}, if s > 1
▷ possible steps

5: P ← {(i′, j′) ∈ S | i′ ≤ n & j′ ≤ m & HeurClose(π[i, i′], σ[j, j′], δ)}
6: if P = ∅ then
7: if s = 1 then
8: return “unknown”
9: else

10: s← s/2

11: else
12: (i, j)← argmin(i′,j′)∈P

∥∥πi′ − σj′
∥∥

13: s← 2s
14: return “close”

Algorithm 16: Greedy filter with adaptive step size.

We can also get stuck: if a step on each of the curves would lead to a distance greater
than δ, we return “unknown”. A similar filter was already used in [30] and is a standard
idea (see, e.g., [48, 105]), however, here we present a variant with adaptive step size. This
means that instead of just advancing to the next node in the traversal, we try to make
larger steps, leveraging the heuristic checks presented in Section 9.2.4. We adapt the step
size depending on the success of the last step. For pseudocode of the greedy filter see
Algorithm 16, and for a visualization see Figure 9.10a.

9.3.4 Adaptive Equal-Time

We also consider a variation of Greedy Filter, which we call Adaptive Equal-Time Filter.
The only difference to Algorithm 16 is that the allowed steps are now:

S :=

{
{(i+ 1, j), (i, j + 1), (i+ 1, j + 1)}, if s = 1,{(

i+ s, j +
⌊
m−j
n−i · s

⌋)}
, if s > 1.

In contrast to Greedy Filter, this searches for a traversal that stays as close as possible
to the diagonal.

9.3.5 Negative

A negative filter was already used in [30] and [87]. However, changing this filter to use an
adaptive step size does not seem to be practical when used with our approach. Preliminary
tests showed that this filter would dominate our running time. Therefore, we developed
a new negative filter which is more suited to be used with an adaptive step size and thus
can be used with our approach.

Let (πi, σj) be the points at which Greedy Filter got stuck. We check whether some
point πi+2k , k ∈ N, is far from all points of σ using HeurFar. If so, we conclude that
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1: procedure NegativeFilter(π, σ, δ)
2: (i, j)← last indices of close points in greedy filter
3: s← 1
4: while i+ s ≤ n do
5: if SimpleBoundary(πi+s, σ, δ) is non-free then
6: return “far”
7: s← 2s
8:
9: Repeat lines 3 to 7 with the roles of π and σ swapped

10:
11: return “unknown”
Algorithm 17: Negative filter, where in the two if statements we do a search with
adaptive step size on σ and π, respectively.

1: procedure FindCloseCurves(π, δ)
2: C ← kdtree.query(π, δ)
3: R← ∅
4: for all σ ∈ C do
5: if FrechetDistanceDecider(π, σ, δ) = “close” then
6: R← R ∪ {σ}
7: return R

Algorithm 18: The function for answering a range query.

dF(π, σ) > δ. We do the same with the roles of π and σ exchanged. See Algorithm 17 for
the pseudocode of this filter; for a visualization see Figure 9.10c.

9.4 Query Data Structure

In this section we give the details of extending the fast decider to compute the Fréchet
distance in the query setting. Recall that in this setting we are given a curve dataset
D that we want to preprocess for the following queries: Given a polygonal curve π (the
query curve) and a threshold distance δ, report all σ ∈ D that are δ-close to π. To be able
to compare our new approach to existing work (especially the submissions of the GIS
Cup) we present a query data structure here, which is influenced by the one presented
in [30].

The most important component that we need additionally to the decider to obtain
an efficient query data structure is a mechanism to quickly determine a set of candidate
curves on which we can then run the decider presented above. The candidate selection is
done using a kd-tree on 8-dimensional points, similar to the octree used in [30], see 9.4.1
for more details. The high-level structure of the algorithm for answering queries is shown
in Algorithm 18.
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9.4.1 Kd-Tree

Fetching an initial set of candidate curves via a space-partitioning data structure was
already used in [30, 54, 87]. We use a kd-tree which contains 8-dimensional points, each
corresponding to one of the curves in the data set. Four dimensions of the 8-dimensional
points are used for the start point and end point of the curve (two dimensions each). Note
that two curves can only be close with respect to the Fréchet distance if their start points
are close (and equivalently for the end points). Especially, if any of these four dimensions
of two curves differ by more than δ, then these curves have a Fréchet distance larger than
δ. The remaining four dimensions are used for the maximum/minimum coordinates in
x/y direction. This is because, if the extremal coordinate in one direction of one curve
compared to another is larger than δ, then the point that induces this large extremal
coordinate cannot be matched to any point on the other curve. We can then query this
kd-tree with the threshold distance δ and obtain a set of candidate curves. Note that
this query does not have any false negatives, but might contain false positives, which we
then filter out in the later stages of our algorithm.

9.5 Implementation Details

Square root. Computing which parts are close and which are far between a point
and a segment involves intersecting a circle and a line segment, which in turn requires
computing a square root. As square roots are computationally quite expensive, we avoid
them by:

• filtering out simple comparisons by heuristic checks not involving square roots

• testing x < a2 instead of
√
x < a (and analogous for other comparisons)

While these changes seem trivial, they have a significant effect on the running time due
to the large amount of distance computations in the implementation.

Recursion. Note that the complete decider (Algorithm 13) is currently formulated as a
recursive algorithm. Indeed, our implementation is also recursive, which is feasible due to
the logarithmic depth of the recursion. An iterative variant that we implemented turned
out to be equally fast but more complicated, thus we settled for the recursive variant.

9.6 Experiments

In the experiments, we aim to substantiate the following two claims. First, we want to
verify that our main contribution, the decider, actually is a significant improvement over
the state of the art. To this end, we compare our implementation with the – to our
knowledge – currently fastest Fréchet distance decider, namely [30]. Second, we want to
verify that our improvements in the decider setting also carry over to the query setting,
also significantly improving the state of the art. To show this, we compare to the top
three submissions of the GIS Cup.
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data set type #curves mean hops stddev hops
Sigspatial synthetic GPS-like 20199 247.8 154.0
Characters handwritten 2858 120.9 21.0
GeoLife GPS (multi-modal) 16966 1080.4 1844.1

Table 9.1: Information about the data sets used in the benchmarks.

We use three different data sets: the GIS Cup set (Sigspatial) [9], the handwritten
characters (Characters) [65], and the GeoLife data set (GeoLife) [102]. For all ex-
periments, we used a laptop with an Intel i5-6440HQ processor with 4 cores and 16GB
of RAM.

Hypotheses. In what follows, we verify the following hypotheses:

(1) Our implementation is significantly faster than the fastest previously known imple-
mentation in the query and in the decider setting.

(2) Our implementation is fast on a wide range of data sets.

(3) Each of the described improvements of the decider speeds up the computation
significantly.

(4) The running time of the complete decider is proportional to the number of recursive
calls.

The first two we verify by running time comparisons on different data sets. The third we
verify by leaving out single pruning rules and then comparing the running time with the
final implementation. Finally, we verify the fourth hypothesis by correlating the running
time for different decider computations against the number of recursive calls encountered
during the computation.

9.6.1 Data Sets Information

Some properties of the data sets are shown in Table 9.1. Sigspatial has the most curves,
while GeoLife has by far the longest. Characters is interesting as it does not stem
from GPS data. By this selection of data sets, we hope to cover a sufficiently diverse set
of curves.

Hardware. We used standard desktop hardware for our experiments. More specifically,
we used a laptop with an Intel i5-6440HQ processor with 4 cores (2.6 to 3.1 GHz) with
cache sizes 256KiB, 1MiB, and 6MiB (L1, L2, L3).

Code. The implementation is written in modern C++ and only has the standard
library and OpenMP as dependencies. The target platforms are Linux and OS X, with
little work expected to adapt it to other platforms. The code was optimized for speed as
well as readability (as we hope to give a reference implementation).
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9.6.2 Decider Setting

In this section we test the running time performance of our new decider algorithm
(Algorithm 15). We first describe our new benchmark using the three data sets, and then
discuss our experimental findings, in particular how the performance and improvement
over the state of the art varies with the distance and also the “neighbor rank” in the data
set.

Benchmark. For the decider, we want to specifically test how the decision distance
δ and how the choice of the second curve σ influences the running time of the decider.
To experimentally evaluate this, we create a benchmark for each data set D in the
following way. We select a random curve π ∈ D and sort the curves in the data set D
by their distance to π in increasing order, obtaining the sequence σ1, . . . , σn. We define
the neighbor rank of σi with respect to π to be its index i in the ordering. To create the
benchmark, for all k ∈ {1, . . . , ⌊log n⌋} we

• select a curve σ ∈ {σ2k , . . . , σ2k+1−1} uniformly at random1,

• compute the exact distance δ∗ := dF(π, σ),

• for each l ∈ {−10, . . . , 0}, add benchmark tests (π, σ, (1 − 2l) · δ∗) and (π, σ, (1 +
2l) · δ∗).

By repeating this process for 1000 uniformly random curves π ∈ D, we create 1000 test
cases for every pair of k and l.

Running times. First we show how our implementation performs in this benchmark.
In Figure 9.11 we depict timings for running our implementation on the benchmark for all
data sets. We can see that decision distances larger than the exact Fréchet distance are
harder than smaller decision distances. This effect is most likely caused by the fact that
decider instances with positive result need to find a path through the free-space diagram,
while negative instances might be resolved earlier as it already becomes clear close to
the lower left corner of the free-space diagram that there cannot exist such a path. Also,
the performance of the decider is worse for computations on (π, σ, c · δ∗) when σ has a
small neighbor rank (with respect to π) and c is close to 1. This seems natural, as curves
which are closer are more likely in the data set to actually be of similar shape, and similar
shapes often lead to bottlenecks in the free-space diagram (i.e., small regions where a
witness path can barely pass through), which have to be resolved in much more detail
and therefore lead to a higher number of recursive calls. It follows that the benchmark
instances for low k and l close to 0 are the hardest; this is the case for all data sets. In
Characters we can also see that for k = 7 there is suddenly a rise in the running time
for certain distance factors. We assume that this comes from the fact that the previous
values of k all correspond to the same written character and this changes for k = 7.

We also run the original code of the winner of the GIS Cup, namely [30], on our
benchmark and compare it with the running time of our implementation. See Figure 9.12

1Note that for k = ⌊logn⌋ some curves might be undefined as possibly 2k+1 − 1 > n. In this case we
select a curve uniformly at random from {σ2k , . . . , σn}.
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Figure 9.11: Running times of the decider benchmark when we run our implementation
on it.
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for the speed-up factors of our implementation over the GIS Cup winner implementation.
The speed-ups obtained depend on the data set. While for every data set a significant
amount of benchmarks for different k and l are more than one order of magnitude faster,
for GeoLife even speed-ups by 2 orders of magnitude are reached. Speed-ups tend to
be higher for larger distance factors. The results on GeoLife suggest that for longer
curves, our implementation becomes significantly faster relative to the current state of
the art. Note that there also are situations where our decider shows similar performance
to the one of [30]; however, those are cases where both deciders can easily recognize that
the curves are far (due to, e.g., their start or end points being far). We additionally show
the percentage of instances that are already decided by the filters in Figure 9.13.

9.6.3 Influence of the Individual Pruning Rules

We also verified that the improvements that we introduced indeed are all necessary. In
Section 9.2.3 we introduced six pruning rules. Rule I, i.e., “Empty Inputs”, is essential.
If we were to omit it, we would hardly improve over the naive free-space exploration
algorithm. The remaining five rules can potentially be omitted. Thus, for each of these
pruning rules, we let our implementation run on the decider benchmark with this single
rule disabled; and once with all rules enabled. See Table 9.2 for the results. Clearly,
all pruning rules yield significant improvements when considering the timings of the
GeoLife benchmark. All rules, except Rule IV, also show significant speed-ups for the
other two data sets. Additionally, note that omitting Rule IIIb drastically increases the
running time. This effect results from Rule IIIb being the main rule to prune large
reachable parts, which we otherwise have to explore completely. One can clearly observe
this effect in Figure 9.9.

Filters. In Figure 9.13 we show what percentage of the queries are decided by the
filters. We can see that the closer we get to the actually distance δ∗ of two curves, the less
likely it gets that the filters can make a decision. Furthermore, for the distances that are
greater than δ∗ the filters perform worse than for distances less than δ∗. We additionally
observe that on Characters the filters perform significantly worse than on the other
two data sets. Also the running times are inversely correlated with the percentage of
decisions of the filters as returning earlier in the decider naturally reduces the overall
runtime.

9.6.4 Query Setting

We now turn to the experiments conducted for our query data structure, which we
explained in Section 9.4.

Benchmark. We build a query benchmark similar to the one used in [30]. For each
k ∈ {0, 1, 10, 100, 1000}, we select a random curve π ∈ D and then pick a threshold
distance δ such that a query of the form (π, δ) returns exactly k + 1 curves (note that
the curve π itself is also always returned). We repeat this 1000 times for each value of k
and also create such a benchmark for each of the three data sets.
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Figure 9.12: The speed-up factors obtained over the GIS Cup winner on the decider
benchmark.
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Figure 9.13: The percentage of queries that are decided by the filters on the decider
benchmark.
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Sigspatial Characters GeoLife
omit none 99.085 153.195 552.661
omit Rule II 112.769 204.347 1382.306
omit Rule IIIa 193.437 296.679 1779.810
omit Rule IIIb 5317.665 1627.817 385031.421
omit Rule IIIc 202.469 273.146 2049.632
omit Rule IV 110.968 161.142 696.382

Table 9.2: Times (in ms) for running the decider benchmarks with leaving out pruning
steps. We only ran the first 100 queries for each k and l due to large running times when
omitting the third rule.

Figure 9.14: Shows how much time a call to the complete decider takes plotted over the
number of boxes that the free-space diagram creates in total (i.e., even if a box is later
split, it is still counted). The data are all exact computations (i.e., those where neither
kd-tree nor filter decided) issued for the Sigspatial query benchmark. The black line is
the linear regression (r2 = 0.91).
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Running times. We compare our implementation with the top three implementations
of the GIS Cup on this benchmark. The results are shown in Table 9.3. Again the running
time improvement of our implementation depends on the data set. For Characters the
maximal improvement factor over the second best implementation is 14.6, for Sigspatial
17.3, and for GeoLife 29.1. For Sigspatial and Characters it is attained at k = 1000,
while for GeoLife it is reached at k = 100 but k = 1000 shows a very similar but slightly
smaller factor.

To give deeper insights about the single parts of our decider, a detailed analysis of the
running times of the single parts of the algorithm is shown in Table 9.4. Again we witness
different behavior depending on the data set. It is remarkable that for Sigspatial the
running time for k = 1000 is dominated by the greedy filter. This suggests that improving
the filters might still lead to a significant speed-up in this case. However, for most of the
remaining cases the running time is clearly dominated by the complete decider, suggesting
that our efforts of improving the state of the art focused on the right part of the algorithm.

9.6.5 Other Experiments

The main goal of the complete decider was to reduce the number of recursive calls that we
need to consider during the computation of the free-space diagram. Due to our optimized
algorithm to compute simple boundaries with adaptive step size, we expect roughly a
constant (or possibly polylogarithmic) running time effort per box, essentially independent
of the size of the box. To test this hypothesis, we ask whether the number of recursive
calls is indeed correlated with the running time. To test this, we measured the time for
each complete decider call in the query benchmark and plotted it over the number of
boxes that were considered in this call. The result of this experiment is shown in Figure
9.14. We can see a practically (near-)linear correlation between the number of boxes and
the running time.

9.7 Certificates

Whenever we replace a naive implementation in favor of a fast, optimized, but typically
more complex implementation, it is almost unavoidable to introduce bugs to the code.
As a useful countermeasure the concept of certifying algorithms has been introduced; we
refer to [131] for a survey. In a nutshell, we aim for an implementation that outputs, apart
from the desired result, also a proof of correctness of the result. Its essential property is
that the certificate should be simple to check (i.e., much simpler than solving the original
problem). In this way, the certificate gives any user of the implementation a simple means
to check the output for any conceivable instance.

Following this philosophy, we have made our implementation of the Fréchet decider
certifying : for any input curves π, σ and query distance δ, we are able to return, apart
from the output whether the Fréchet distance of π and σ is at most δ, also a certificate c.
On our realistic benchmarks, constructing this certificate slows down the Fréchet decider
by roughly 50%. The certificate c can be checked by a simple verification procedure
consisting of roughly 200 lines of code.

In Sections 9.7.1 and 9.7.2, we define our notion of YES and NO certificates, prove
that they indeed certify YES and NO instances and discuss how our implementation finds

161



C
hapter

9.
Fréchet

D
istance

Sigspatial Characters GeoLife
k 0 1 10 100 1000 0 1 10 100 1000 0 1 10 100 1000
[30] 0.094 0.123 0.322 1.812 8.408 0.187 0.217 0.421 2.222 17.169 0.298 0.741 4.327 33.034 109.44
[54] 0.421 0.618 1.711 7.86 35.704 0.176 0.28 0.611 3.039 17.681 3.627 6.067 26.343 120.509 415.548
[87] 0.197 0.188 0.643 5.564 76.144 0.142 0.147 0.222 1.849 22.499 2.614 4.112 16.428 166.206 1352.19
ours 0.017 0.007 0.026 0.130 0.490 0.004 0.020 0.058 0.301 1.176 0.027 0.089 0.341 1.108 3.642

Table 9.3: Comparing the running times (in s) of the queries of the top three implementations of the GIS Cup 2017 with our new
implementation on the query benchmark on all data sets (1000 queries per entry).

Sigspatial Characters GeoLife
k 0 1 10 100 1000 0 1 10 100 1000 0 1 10 100 1000
spatial hashing 0.002 0.003 0.005 0.017 0.074 0.002 0.002 0.004 0.011 0.032 0.006 0.009 0.016 0.032 0.091
greedy filter 0.004 0.006 0.024 0.143 0.903 0.004 0.010 0.032 0.153 0.721 0.009 0.017 0.060 0.273 1.410
equal-time filter 0.000 0.001 0.006 0.030 0.088 0.001 0.004 0.018 0.088 0.424 0.005 0.017 0.063 0.273 1.211
negative filter 0.001 0.002 0.010 0.044 0.107 0.003 0.012 0.038 0.152 0.309 0.008 0.020 0.069 0.200 0.606
complete decider 0.002 0.011 0.044 0.214 0.330 0.005 0.030 0.109 0.671 2.639 0.062 0.210 0.998 3.025 8.760

Table 9.4: Timings (in s) of the single parts of our query algorithm on the query benchmark on all three data sets. To avoid confusion,
note that the sum of the times in this table do not match the entries in Table 9.3 as those are parallelized timings and additionally
the timing itself introduces some overhead.
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them. In Section 9.7.3, we describe the simple checking procedure for our certificates.
Finally, we conclude with an experimental evaluation in Section 9.7.4.

9.7.1 Certificate for YES Instances

To verify that dF(π, σ) ≤ δ, by definition it suffices to give a feasible traversal, i.e.,
monotone and continuous functions f : [0, 1] → [1, n] and g : [0, 1] → [1,m] such that
for all t ∈ [0, 1], we have (π(f(t)), σ(g(t))) ∈ F , where F = {(p, q) ∈ [1, n] × [1,m] |
∥π(p)− σ(q)∥ ≤ δ} denotes the free-space (see Section 9.2.1). We slightly simplify this
condition by discretizing (f(t), g(t))t∈[0,1], as follows.

Definition 9.1. We call T = (t1, . . . , tℓ) with ti ∈ [1, n] × [1,m] a YES certificate if it
satisfies the following conditions: (See also Figure 9.15 for an example.)

(1) (start) t1 = (1, 1) ∈ F ,

(2) (end) tℓ = (n,m) ∈ F ,

(3) (step) For any tk = (p, q) and tk+1 = (p′, q′), we have either

(a) p′ = p and q′ > q: we require that (p, q̄) ∈ F for all q̄ ∈ {q, ⌈q⌉, . . . , ⌊q′⌋, q′},
(b) q′ = q and p′ > p: we require that (p̄, q) ∈ F for all p̄ ∈ {p, ⌈p⌉, . . . , ⌊p′⌋, p′},
(c) i ≤ p < p′ ≤ i+ 1, j ≤ q < q′ ≤ j + 1 for some i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}:

we require that (p, q), (p′, q′) ∈ F .

It is straightforward to show that a YES certificate T proves correctness for YES
instances as follows.

Proposition 9.2. Any YES certificate T = (t1, . . . , tℓ) with ti ∈ [1, n] × [1,m] proves
that dF(π, σ) ≤ δ.

Proof. View T as a polygonal curve in [1, n] × [1,m] and let τ : [0, 1] → [1, n] × [1,m]
be a reparameterization of T . Let f, g be the projection of τ to the first and second
coordinate, respectively. Note that by the assumption on T , f and g are monotone and
satisfy (f(0), g(0)) = (1, 1) and (f(1), g(1)) = (n,m). We claim that (f(t), g(t)) ∈ F for
all t ∈ [0, 1], which thus yields dF(π, σ) ≤ δ by definition.

To see the claim, we recall that for any cell [i, i+1]× [j, j+1], the free-space restricted
to this cell, i.e., F ∩ [i, i+1]× [j, j+1], is convex (as it is the intersection of an ellipse with
[i, i+1]×[j, j+1], see [19]). Observe that for any segment from tk = (p, q) to tk+1 = (p′, q′),
we (implicitly) decompose it into subsegments contained in single cells (e.g., for p′ = p
and q′ > q, the segment from (p, q) to (p, q′) is decomposed into the segments connecting
the sequence (p, q), (⌈p⌉, q), . . . , (⌊p′⌋, q), (p′q′). As each such subsegment is contained in
a single cell, by convexity we see that the whole subsegment is contained in F if the
corresponding endpoints of the subsegment are in F . This concludes the proof.

It is not hard to prove that for YES instances, such a certificate always exists (in fact,
there always is a certificate of length O(n+m)). Furthermore, for each YES instance in
our benchmark set, our implementation indeed finds and returns a YES instance, in a
way we describe next.
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Figure 9.15: Example of a YES instance and its certificate. The right picture shows the
free-space of the instance. The left picture illustrates the parts of the free-space explored
by our algorithm and indicates the computed YES certificate by black lines.

Certifying positive filters. It is straightforward to construct YES certificates for
instances that are resolved by our positive filters (Bounding Box Check, Greedy and
Adaptive Equal-Time): All of these filters implicitly construct a feasible traversal. In par-
ticular, for any instance for which the Bounding Box Check applies (which shows that any
pair of points of π and σ are within distance δ), already the sequence ((1, 1), (n, 1), (n,m))
yields a YES certificate.

For Greedy, note that the sequence of positions (i, j) visited in Algorithm 16 yields a
YES certificate: Indeed, any step from (i, j) is either a vertical step to (i, j + s) (corre-
sponding to case (3a)), a horizontal step to (i+ s, j) (corresponding to case (3b)), or a
diagonal step within a cell to (i+1, j +1) (corresponding to Case (3c) of Definition 9.1).
Furthermore, such a step is only performed if it stays within the free-space.

Finally, for Adaptive Equal-Time, we also record the sequence of positions (i, j) visited
in Algorithm 16 (recall that here, we change the set of possible steps for s > 1 to
S = {(i+s, j+s′)} with s′ = ⌊m−j

n−i ·s⌋) – with the only difference that we need to replace
any step from (i, j) to (i+ s, j + s′) by the sequence (i, j), (i+ s, j), (i+ s, j + s′). Note
that this sequence satisfies Condition (step) of Definition 9.1, as Adaptive Equal-Time
only performs this step if it can verify that all pairwise distances between π[i, i+ s] and
σ[j, j + s′] are bounded by δ.

Certifying YES instances in the complete decider. Recall that the complete
decider via free-space exploration decides an instance by recursively determining, given
the inputs BR

l , B
R
b of a box B, the corresponding outputs BR

r , B
R
t . In particular, YES

instances are those with (n,m) ∈ BR
t (or equivalently (n,m) ∈ BR

r ) for the box B =
[1, n] × [1,m]. To certify such instances, we memorize for each point in BR

r and BR
t a

predecessor of a feasible traversal from (1, 1) to this point. Note that here, it suffices
to memorize such a predecessor only for the first, i.e., lowest or leftmost, point of each
interval in BR

r and BR
t (as any point in this interval can be reached by traversing to the

first point of the interval and then along this reachable interval to the destination point).
This gives rise to a straightforward recursive approach to determine a feasible traversal.

In the complete decider, whenever we determine some output BR
t , it is because of one

of the following reasons: (1) one of of our pruning rules is successful, (2) the box B is on
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the cell-level, or (3) we determine BR
t as the union of the outputs (B1)

R
t , (B2)

R
t of the

boxes B1, B2 obtained by splitting B vertically. Note that we only need to consider the
case in which BR

t is determined as non-empty (otherwise nothing needs to be memorized).
Let us consider each case separately.

If reason (1) determines a non-empty BR
t , then this happens either by Rule IIIb or by

Rule IIIc. Note that in both cases, BR
t consists of a single interval. If Rule IIIb applies,

then the last, i.e., topmost, point on Bl is reachable and proves that the free prefix of
BR

t is reachable. Thus, we store the last interval of BR
l as the responsible interval for the

(single) interval in BR
t . Similarly, if Rule IIIc applies, then consider the first, i.e., leftmost,

point (i, jmax) on Bt. Since the rule applies, the opposite point (i, jmin) on Bl must be
reachable and the path {i} × [jmin, jmax] must be free. Thus, we can store the interval of
BR

b containing (i, jmin) as the responsible interval for the (single) interval in BR
t .

If reason (2) determines a non-empty BR
t , then we are on a cell-level. In this case,

either BR
l or BR

b is a non-empty interval, and we can store such an interval as the
responsible interval for the (single) interval in BR

t . Finally, if reason (3) determines a
non-empty BR

t , then we simply keep track of the responsible interval for each interval
in (B1)

R
t and (B2)

R
t (to be precise, if the last interval of (B1)

R
t and the first interval of

(B2)
R
t overlap by the boundary point, we merge the two corresponding intervals and only

keep track of the responsible interval of the last interval of (B1)
R
t and can safely forget

about the responsible interval of the first interval of (B2)
R
t .

Note that we proceed analogously for outputs BR
r . Furthermore, the required memo-

rization overhead is very limited.
It is straightforward to use the memorized information to compute a YES certificate

recursively: Specifically, to compute a YES certificate reaching some point x on an output
interval I, we perform the following steps. Let J be the responsible interval of I. We
recursively determine a YES certificate reaching the first point J . Then we append a point
to the certificate to traverse to the point of J from which we can reach the first point of
I (this point is easily determined by distinguishing whether we are on the cell-level, and
whether J is opposite to I or intersects I in a corner point). We append the first point
of I to the certificate, and finally append the point x to the certificate.2 By construction,
the corresponding traversal never leaves the free-space. Using this procedure, we can
compute a YES certificate by computing a YES certificate reaching (n,m) on the last
interval of BR

t for the initial box B = [1, n]× [1,m].

9.7.2 Certificate for NO Instances

We say that a point (p, q) lies on the bottom boundary if q = 1, on the right boundary
if p = n, on the top boundary if q = m, and on the left boundary if p = 1. Likewise, we
say that a point (p′, q′) lies to the lower right of a point (p, q), if p ≤ p′ and q ≥ q′.

Definition 9.3. We call T = (t1, . . . , tℓ) with ti ∈ [1, n] × [1,m] a NO certificate if it
satisfies the following conditions: (See also Figure 9.16 for an example.)

(1) (start) t1 lies on the right or bottom boundary and t1 /∈ F ,

(2) (end) tℓ lies on the left or upper boundary and tℓ /∈ F ,
2To be precise, we only append a point if it is different from the last point of the current certificate.
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Figure 9.16: Example of a NO instance and its certificate. The right picture shows the
free-space of the instance. The left picture illustrates the parts of the free-space explored
by our algorithm and indicates the computed NO certificate by black lines.

(3) (step) For any tk = (p, q) and tk+1 = (p′, q′), we have either

(a) p′ = p and q′ > q: for any neighboring elements q̄1, q̄2 in q, ⌈q⌉, . . . , ⌊q′⌋, q′, we
require that ({p} × [q̄1, q̄2]) ∩ F = ∅,

(b) q′ = q and p′ < p: for any neighboring elements p̄1, p̄2 in p′, ⌈p′⌉, . . . , ⌊p⌋, p,
we require that ([p̄1, p̄2]× {q}) ∩ F = ∅,

(c) tk+1 lies to the lower right of tk, i.e., p ≤ p′ and q ≥ q′.

We prove that a NO certificate T proofs correctness for NO instances as follows.

Proposition 9.4. Any NO certificate T = (t1, . . . , tℓ) with ti ∈ [1, n]× [1,m] proves that
dF(π, σ) > δ.

Proof. We inductively prove that no feasible traversal from (1, 1) to (n,m) can visit any
point to the lower right of ti, for all 1 ≤ i ≤ ℓ. As an immediate consequence, dF(π, σ) > δ,
since tℓ lies on the left or upper boundary and thus any feasible traversal must visit a
point to the lower right of tℓ – hence, such a traversal cannot exists.

As base case, note that t1 lies on the right or bottom boundary and is not contained
in the free-space. Thus, by monotonicity, no feasible traversal can visit any point to the
lower right of t1. Thus, assume that the claim is true for ti = (p, q) and consider the next
point ti+1 = (p′, q′) in the sequence. If ti+1 lies to the lower right of ti, the claim is trivially
fulfilled for ti+1 by monotonicity. If, however, p′ = p and q′ > q, then Condition (3a)
of Definition 9.3 is equivalent to (p × [q, q′]) ∩ F = ∅. Note that any feasible traversal
visiting a point to the lower right of ti+1 must either visit a point to the lower right of
ti – which is not possible by inductive assumption – or must cross the path {p}× [q, q′] –
which is not possible as ({p} × [q, q′]) ∩ F = ∅. We argue symmetrically for the case that
q′ = q and p′ < p. This concludes the proof.

Note that our definition of NO certificate essentially coincides with the definition of
a cut of positive width in [56]. For NO instances, such a NO certificate always exists (in
contrast to YES certificates, the shortest such certificate is of length Θ(n2) in the worst
case). For all NO instances in our benchmark sets, our implementation manages to find
and return such a NO certificate, in a way we describe next.
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1: procedure ComputeNOCertificate(π, σ, δ)
2: N ← non-free segments determined by CompleteDecider(π, σ, δ)
3: Q← {I ∈ N | lowerRight(I) lies on bottom or right boundary}
4: Build orthogonal range search data structure D,
5: storing all I ∈ N \Q under the key lowerRight(I).
6: while Q ̸= ∅ do
7: Pop any element I from Q
8: if upperLeft(I) lies on top or left boundary then
9: Reconstruct sequence of intervals leading to I

10: return corresponding NO certificate
11: else
12: Q′ ← D.ReportAndDelete(upperLeft(I))
13: ▷ reports J if lowerRight(J) is to the lower right of upperLeft(I)
14: Q← Q ∪Q′

Algorithm 19: High-level code for computing a NO certificate.

Certifying the negative filter. It is straightforward to compute a NO certificate for
instances resolved by our negative filter. Note that this filter, if successful, determines
an index p ∈ {1, . . . , n} such that πp is far from all points on σ, or symmetrically an
index q ∈ {1, . . . ,m} such that σq is far from all points on π. Thus, in these cases, we
can simply return the NO certificate ((p, 1), (p,m)) or ((n, q), (1, q)), respectively.

Certifying NO instances in the complete decider. Whenever the complete decider
via free-space exploration returns a negative answer, the explored parts of the free-space
diagram must be sufficient to derive a negative answer. This gives rise to the following
approach: Consider all non-free segments computed by the complete decider. We start
from a non-free segment touching the bottom or right boundary and traverse non-free
segments (possibly also making use of monotonicity steps according to Case (3c) of
Definition 9.3) and stop as soon as we have found a non-free segment touching the left
or top boundary.

Formally, consider Algorithm 19. Here, we use the notation that lowerRight(I) denotes
the lower right endpoint of I, i.e., the right endpoint if I is a horizontal segment and the
lower endpoint if I is a vertical segment. Analogously, upperLeft(I) denotes the upper
left endpoint of I.

The initial set of non-free segments in Algorithm 19 consists of the non-free segments
of all simple boundaries determined by the complete decider via free-space exploration.
We maintain a queue Q of non-free segments, which initially contains all non-free segments
touching the right or bottom boundary. Furthermore, we maintain a data structure D
of yet unreached non-free intervals. Specifically, we require D to store intervals I under
the corresponding key lowerRight(I) ∈ [1, n] × [1,m] in a way to support the query
ReportAndDelete(p): Such a query returns all I ∈ D such that lowerRight(I) lies to
the lower right of p and deletes all returned intervals from D.

Equipped with such a data structure, we can traverse all elements in the queue as
follows: We delete any interval I from Q and check whether it reaches the upper or
left boundary. If this is the case, we have (implicitly) found a NO certificate, which
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we then reconstruct (by memorizing why each element of the queue was put into the
queue). Otherwise, we add to Q all intervals from D that can be reached by a monotone
step (according to Case (3c) of Definition 9.3) from upperLeft(I); these intervals are
additionally deleted from D.

To implement D, we observe that it essentially asks for a 2-dimensional orthogonal
range search data structure where the ranges are unbounded in two directions (and
bounded in the other two). Already for the case of 2-dimensional ranges with only a
single unbounded direction (sometimes called 1.5-dimensional), a very efficient solution
is provided by a classic data structure due to McCreight, the priority search tree data
structure [132]. We can adapt it in a straightforward manner to implement D such that
it (1) takes time O(d log d) and space O(d) to construct D on an initial set of size d and
(2) supports ReportAndDelete(p) queries in time O(k + log d), where k denotes the
number of reported elements. Thus, Algorithm 19 can be implemented to run in time
O(|N | log |N |).

9.7.3 Certificate Checker

It remains to describe how to check the correctness of a given certificate T = (t1, . . . , tℓ).
For this, we simply verify that all properties of Definition 9.1 or Definition 9.3 are satisfied.

Checking YES certificates. Observe that the only conditions in the definition of YES
instances are either simple comparisons of neighboring elements tk, tk+1 in the sequence
or freeness tests, specifically, whether a give position p ∈ [1, n]× [1,m] is free, i.e, whether
πp1 and σp2 have distance at most δ. The latter test only requires interpolation along
a curve segment (to obtain πp1 and σp2) and a Euclidean distance computation. Thus,
YES certificates are extremely simple to check.

Checking NO certificates. Checking NO certificates involves a slightly more compli-
cated geometric primitive than the freeness tests of YES certificates. Apart from simple
comparisons of neighboring elements tk, tk+1, the conditions in the definition involve the
following non-freeness tests: Given a (sub)segment π[p, p′] with i ≤ p ≤ p′ ≤ i + 1 for
some i ∈ [n], as well as a point σ(q) with q ∈ [1,m], determine whether all points on
π[p, p′] have distance strictly larger than δ from σ(q). Besides the (simple) interpolation
along a line segment to obtain σ(q), we need to determine intersection points of the line
containing π[p, p′] and the circle of radius δ around σ(q) (if these exist). From these
intersection points, we verify that π[p, p′] and the circle do not intersect, concluding the
check.

Summary. In summary, certificate checkers are straightforward and simple to imple-
ment.

9.7.4 Certification Experiments

We evaluate the overhead introduced by computing certificates using our benchmark
sets for the query setting. In particular, as our implementation can be compiled both
as a certifying and a non-certifying version, we compare the running times of both
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Sigspatial
k 0 1 10 100 1000
computation without certification 6.9 21.3 84.5 429.4 1409.1
certifying computation 10.0 29.6 117.8 553.8 1840.2

–computation of certificates 1.0 3.7 12.0 40.9 65.7
–YES certificates (complete decider) 0.0 0.4 1.6 8.2 12.1
–NO certificates (complete decider) 1.0 3.3 10.0 31.4 50.0

checking certificates 6.4 13.9 63.7 426.5 3803.2
–checking filter certificates 6.0 11.3 51.6 361.2 3666.7
–checking complete decider certificates 0.4 2.6 12.1 65.3 136.5

Characters
k 0 1 10 100 1000
computation without certification 12.1 55.5 205.8 1052.8 4080.3
certifying computation 20.3 91.6 311.2 1589.8 5895.8

–computation of certificates 4.0 20.0 59.6 220.7 470.2
–YES certificates (complete decider) 0.0 0.5 2.3 24.9 181.3
–NO certificates (complete decider) 3.9 19.2 56.3 186.2 259.4

checking certificates 6.3 21.6 76.8 457.7 2626.1
–checking filter certificates 5.3 14.8 49.7 278.0 1759.8
–checking complete decider certificates 1.0 6.8 27.2 179.6 866.3

GeoLife
k 0 1 10 100 1000
computation without certification 82.2 251.1 1156.6 3663.1 11452.4
certifying computation 142.1 414.6 1834.4 5304.2 16248.7

–computation of certificates 40.1 100.7 388.0 767.7 1827.8
–YES certificates (complete decider) 0.0 3.2 20.0 87.6 247.5
–NO certificates (complete decider) 39.7 96.7 364.5 664.8 1517.1

checking certificates 70.9 185.2 733.7 3595.4 20188.4
–checking filter certificates 45.2 85.9 283.8 1754.0 12987.5
–checking complete decider certificates 25.7 99.4 450.0 1841.4 7200.9

Table 9.5: Certificate computation and check times on query setting benchmark (in ms).
The first and second bold lines show the running time of our implementation compiled
without and with certification, respectively. For the certifying variant, we also give the
times to compute YES and NO certificates of the complete decider (note that filter
certificates are computed on the fly by the filters and hence cannot be separately measured;
also, this certificate computation time does not include the overhead to record additional
information during the complete decision procedure). Finally, we give running times for
checking correctness of certificates.
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versions. The results are depicted in Table 9.5. Notably, the slowdown factor introduced
by computing certificates ranges between 1.29 and 1.46 (Sigspatial), 1.44 and 1.67
(Characters) and 1.42 and 1.73 (GeoLife). As expected, the certificate computation
time is dominated by the task of generating NO certificates (which is more complex than
computing YES certificates), even for large values of k for which most unfiltered instances
are YES instances.

At first sight, it might be surprising that checking the certificates takes longer than
computing them. However, this is due to the fact that our filters often display sublinear
running time behavior (by using the heuristic checks and adaptive step sizes). However,
to keep our certificate checker elementary, we have not introduced any such improvements
to the checker, which thus has to traverse essentially all points on the curves. This effect
is particularly prominent for large values of k.

9.8 Conclusion

In this chapter we presented an implementation for computing the Fréchet distance which
beats the state-of-the-art by one to two orders of magnitude in running time in the query
as well as the decider setting. Furthermore, it can be used to compute certificates of
correctness with little overhead. To facilitate future research, we created two benchmarks
on several data sets – one for each setting – such that comparisons can easily be conducted.
Given the variety of applications of the Fréchet distance, we believe that this result will
also be of broader interest and implies significant speed-ups for other computational
problems in practice.

This enables a wide range of future work. An obvious direction to continue research is
to take it back to theory and show that our pruning approach provably has subquadratic
runtime on a natural class of realistic curves. On the other hand, one could try to
find further pruning rules or replace the divide-and-conquer approach by some more
sophisticated search. To make full use of the work presented here, it would make sense
to incorporate this algorithm in software libraries. Currently, we are not aware of any
library with a non-naive implementation of a Fréchet distance decider or query. Finally,
another possible research direction would be to work on efficient implementations for
similar problems like the Fréchet distance under translation, rotation or variants of map
matching with respect to the Fréchet distance. In summary, this chapter should lay ground
to a variety of improvements for practical aspects of curve similarity.
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CHAPTER 10
Fréchet Distance Under Translation

For a technical overview of this chapter see Section 3.5. This chapter is structured as
follows. We discuss our approach in Section 10.2 and present the details of our decision
algorithm in Section 10.3. We develop our approach also for the related, but different
task to compute the distance value up to a given precision in Section 10.4, and evaluate
our solutions for both settings in comparison to baseline approaches in Section 10.5.

10.1 Preliminaries

Throughout this chapter, we only consider trajectories in the Euclidean plane and
we mostly consider the discrete Fréchet distance. To avoid confusion between the dis-
crete Fréchet distance and the discrete Fréchet distance under translation, we also refer
to the Fréchet distance as the fixed-translation Fréchet distance. In this chapter we
view the discrete Fréchet distance under translation as a two-dimensional optimization
problem with objective function f(τ) := ddF(π, σ + τ). Specifically, we consider the
task to decide minτ∈R2 f(τ) ≤ δ? (exact decider) or to return a value in the range
[(1− ε)minτ∈R2 f(τ), (1 + ε)minτ∈R2 f(τ)] (approximate value computation, multiplica-
tive version). In fact, for implementation reasons (see Section 10.4 for the details), our
implementation returns a value in [minτ∈R2 f(τ)−ε,minτ∈R2 f(τ)+ε] (approximate value
computation, additive version) using a straightforward adaptation of our approach.

Apart from a black-box Fréchet oracle answering decision queries ddF(π, σ + τ) ≤ δ?,
we only use the fact that the Fréchet distance under translation is Lipschitz (Observa-
tion 2.3) and the following simple property: We obtain a 2-approximation of the Fréchet
distance under translation as follows.

Observation 10.1. Let τstart := π1−σ1 be the translation of σ that aligns the first points
of π and σ. Then ddF(π, σ + τstart) ≤ 2 · dTdF(π, σ). Analogously, for τend := πn − σm, we
have ddF(π, σ + τend) ≤ 2 · dTdF(π, σ).
Proof. Let δ∗ := dTdF(π, σ) and let τ∗ be such that ddF(π, σ + τ∗) = δ∗, which implies
in particular that ∥π1 − (σ1 + τ∗)∥ ≤ δ∗. Thus, ∥τstart − τ∗∥ = ∥π1 − (σ1 + τ∗)∥ ≤ δ∗.
Thus by Observation 2.3, we obtain ddF(π, σ + τstart) ≤ ddF(π, σ + τ∗) + δ∗ = 2δ∗.

Note that the above observation gives a formal guarantee of a simple heuristic: trans-
late the curves such that the start points match, and compute the corresponding fixed-
translation Fréchet distance. Unfortunately, this worst-case guarantee is tight1 – a corre-
spondingly large discrepancy is also observed on our data sets.

1To see this, take any segment in the plane and let π traverse it in one direction, and σ in the other.
Then the heuristic would return as estimate two times the segment length (the distance of the translated
end points), while the optimal translation aligns the segments and achieves the segment length as Fréchet
distance.
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10.2 Our Approach: Lipschitz Meets Fréchet

To obtain a fast exact decider, we approach the problem from two different angles: First,
we review previous problem-specific approaches to the discrete Fréchet distance under
translation, all relying on the construction of an arrangement of circles as an essential tool
from computational geometry. Second, we cast the problem into the framework of global
Lipschitz optimization with its rich literature on fast, numerical solutions. In isolation,
both approaches are inadequate to obtain a fast, exact decider (as the arrangement can
be prohibitively large even for realistic data sets, and black-box Lipschitz optimization
methods cannot return an exact optimum). We then describe how to combine both
approaches to obtain a fast implementation of an exact decider for the discrete Fréchet
distance under translation in the plane. We evaluate our approach, including comparisons
to (typically computationally infeasible) baseline approaches, on a data set that we craft
from sets of handwritten character and (synthetic) GPS trajectories used in the ACM
SIGSPATIAL GIS Cup 2017 [9, 65]. We believe that our approach will inspire similar
combinations of fast, inexact methods from continuous optimization with expensive, but
exact approaches from computational geometry also in other contexts.

10.2.1 View I: Arrangement-Based Algorithms

Previous algorithms for the discrete Fréchet distance under translation in the plane work
as follows. Given two polygonal curves π, σ and a decision distance δ, consider the set of
circles

C := {Cδ(πi − σj) | πi ∈ π, σj ∈ σ},

where Cr(p) denotes the circle of radius r ∈ R around p ∈ R2. Define the arrangement
Aδ as the partition of R2 induced by C. The decision of ddF(π, σ+ τ) ≤ δ is then uniform
among all τ ∈ R in the same face of Aδ (for a detailed explanation, we refer to [33,
Section 3] or Chapter 5). Thus, it suffices to check, for each face f of Aδ, an arbitrarily
chosen translation τf ∈ f . Specifically, the discrete Fréchet distance under translation
is bounded by δ if and only if there is some face f of Aδ such that ddF(π, σ + τf ) ≤ δ.
Since the arrangement Aδ has size O(n4) and can be constructed in time O(n4) [120],
using the standard O(n2)-time algorithm for the fixed-translation Fréchet distance [19,
89] to decide ddF(π, σ + τf ) ≤ δ for each face f , we immediately arrive at an O(n6)-time
algorithm.

Subsequent improvements — see [33] and Chapter 5 — speed up the decision of
ddF(π, σ + τf ) ≤ δ for all faces f by choosing an appropriate ordering of the translations
τf and designing data structures that avoid recomputing some information for “similar”
translations, leading to an O(n4.667)-time algorithm. Still, these works rely on computing
the arrangement Aδ of worst-case size Θ(n4), and a conditional lower bound indeed rules
out O(n4−ε)-time algorithms, see Chapter 8.

Drawback: The arrangement size bottleneck. Despite the worst-case arrangement
size of Θ(n4) and the conditional lower bound in Chapter 8, which indeed constructs such
large arrangements, one might hope that realistic instances often have much smaller ar-
rangements. If so, a combination with a practical implementation of the fixed-translation
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Figure 10.1: Example curves π, σ (left) together with their arrangement Aδ (right),
δ = dTdF(π, σ).

Fréchet distance could already give an algorithm with reasonable running time. Unfortu-
nately, this is not the case: our experiments in this chapter exhibit typical arrangement
sizes between 106 to 108 for curves of length n ≈ 200, see Figure 10.5 in Section 10.5.
Also see Figure 10.1 which illustrates a large arrangement already on curves with 15
vertices, subsampled from our benchmark sets of realistic curves.

This renders a purely arrangement-based approach infeasible: As existing implemen-
tations for the Fréchet distance typically answer queries within few microseconds, we
would expect an average decision time between a few seconds and several minutes already
for a single decision query for the discrete Fréchet distance under translation. Thus, a
reasonable approximation of the distance value via binary search would take between a
minute and over an hour.

10.2.2 View II: A Global Lipschitz Optimization Problem

A second view on the discrete Fréchet distance under translation results from a simple
observation: For any polygonal curves π, σ and any translation τ ∈ R2, we have |ddF(π, σ+
τ)− ddF(π, σ)| ≤ ∥τ∥2, see Section 10.1. As a consequence, the discrete Fréchet distance
under translation is the minimum of a function f(τ) := ddF(π, σ + τ) that is 1-Lipschitz
(i.e., |f(x)− f(x+ y)| ≤ ∥y∥2 for all x, y). This suggests to study the problem also from
the viewpoint of the generic algorithms developed for optimizing Lipschitz functions by
the continuous optimization community.

Following the terminology of [108], in an unconstrained bivariate global Lipschitz
optimization problem, we are given an objective function f : R2 → R that is 1-Lipschitz,
and the aim is to minimize f(x) over x ∈ B := [a1, b1]× [a2, b2]; we can access f only by
evaluating it on (as few as possible) points x ∈ B. Note that in this abstract setting, we
cannot optimize f exactly, so we are additionally given an error parameter ε > 0 and the
precise task is to find a point x ∈ B such that f(x) ≤ minz∈B f(z) + ε.

Global Lipschitz optimization techniques have been studied from an algorithmic
perspective for at least half a century [139]. This suggest to explore the use of the
fast algorithms developed in this context to obtain at least an approximate decider for
the discrete Fréchet distance under translation. Indeed, our problem fits into the above
framework, if we take the following considerations into account:
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Figure 10.2: Example curves π, σ (left) together with a plot of the resulting non-convex
objective function f(τ) = ddF(π, σ+ τ). For a closer look at the area close to the optimal
translation (and highly non-convex small-scale artefacts), we refer to Figure 10.3.

(1) Finite Box Domain: While we seek to minimize f(τ) = ddF(π, σ+τ) over τ ∈ R2,
the above formulation assumes a finite box domain B. To reconcile this difference,
observe that any translation τ achieving a discrete Fréchet distance of at most
δ must translate the first (last) point of σ such that the first (last) point of π is
within distance at most δ. Thus, any feasible translation τ must be contained in
the intersection of the two corresponding disks, and we can use any bounding box
of this intersection as our box domain B.

(2) (Approximate) Decision Problem: While we seek to decide “minτ f(τ) ≤ δ”,
the above formulation solves the corresponding minimization problem. Note that
approximate minimization can be used to approximately solve the decision problem,
but exactly solving the decision problem is impossible in the above framework.

(3) Oracle Access to f(τ ): Evaluation of f(τ) corresponds to computing the discrete
Fréchet distance of π and σ+τ , for which we can use previous fast implementations,
see [30, 54, 87] or Chapter 9. (Actually, these algorithms were designed to answer
decision queries of the form “f(τ) ≤ δ?”; we discuss this aspect at the end of this
section.)

In Figure 10.2, we illustrate our view of the discrete Fréchet distance under translation
as Lipschitz optimization problem. As the figure suggests, on many realistic instances,
the problem appears well-behaved (almost convex) at a global scale; using the Lipschitz
property, one should be able to quickly narrow down the search space to small regions
of the search space2. Particularly for this task, it is very natural to consider branch-and-
bound approaches, as pioneered by Galperin [98, 99, 100, 101] and formalized by Horst and
Tuy [110, 111, 112], since these have been applied very successfully for low-dimensional
Global Lipschitz optimization (and non-convex optimization in general).

On a high level, in this approach we maintain a global upper bound δ̃ and a list of
search boxes B1, . . . , Bb with lower bounds ℓ1, . . . , ℓb (i.e., minτ∈Bi f(τ) ≥ ℓi) obtained via

2For an illustration that highly non-convex behavior may still occur at a local level, we refer to
Figure 10.3.
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Figure 10.3: Highly non-convex artefacts of the objective function at a local scale,
resulting particularly from the notion of traversals in the discrete Fréchet distance.

the Lipschitz condition. We iteratively pick some search box Bi and first try to improve
the global upper bound δ̃ or the local lower bound ℓi using a small number of queries f(τ)
with τ ∈ Bi (and exploiting the Lipschitz property). If the local lower bound exceeds the
global upper bound, i.e., ℓi > δ̃, we drop the search box Bi, otherwise, we split Bi into
smaller search boxes. The procedure stops as soon as δ̃ ≤ (1 + ε)mini ℓi, which proves
that δ̃ gives a (1 + ε)-approximation to the global minimum.

Specifically, we arrive at the following branch-and-bound strategy proposed by Gour-
din, Hansen and Jaumard [104]. We specify it by giving the rules with which it (i)
attempts to update the global upper bound, (ii) selects the next search box from the set
of current search boxes, (iii) splits a search box if it remains active after bounding, and
(iv) determines the local lower bounds.3

(i) Upper Bounding Rule: We evaluate f at the center τi of the current search box
Bi.

(ii) Selection Rule: We pick the search box with the smallest lower bound (ties are
broken arbitrarily).

(iii) Branching Rule: We split the current search box along its longest edge into 2
equal-sized subproblems.

(iv) Lower Bounding Rule: We obtain the local lower bound ℓi as f(τi)− d where
d is the half-diameter of the current box. (Since f is 1-Lipschitz, we indeed have
minτ∈Bi f(τ) ≥ ℓi.)

One may observe that the chosen selection rule (also known as Best-Node First) is a
no-regret strategy in the sense that no other selection rule, even with prior knowledge of
the global optimum, considers fewer search boxes (see, e.g., [162, Section 7.4]).

3See [108] for a precise formalization of the generic branch-and-bound algorithm that leaves open
the instantiation of these rules. In any case, we give a self-contained description of our algorithms in
Section 10.3 and 10.4.
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Drawback: Inexactness. Unfortunately, the above branch-and-bound approach for
Lipschitz optimization fundamentally cannot return an exact global optimum, and thus
yields only an approximate decider.

In a somewhat similar vein, in the above framework we assume that we can evaluate
f(τ) quickly. Previous implementations for the fixed-translation Fréchet distance focus
on the decision problem “f(τ) ≤ δ?”, not on determining the value f(τ). Both precise
computations (via parametric search) or approximate computations (using a binary search
up to a desired precision) are significantly more costly, raising the question how to make
optimal use of the cheaper decision queries.

10.3 Contribution I: An Exact Decider by Combining Both
Views

Our first main contribution is engineering an exact decider for the discrete Fréchet
distance under translation by combining the two approaches. On a high level, we globally
perform the branch-and-bound strategy described in the Lipschitz optimization view in
Section 10.2.2, but use as a base case a local version of the arrangement-based algorithms
of Section 10.2.1 once the arrangement size in a search box is sufficiently small. As each
search box is thus resolved exactly, this yields an exact decider. More precisely, our final
algorithm is a result of the following steps and adaptations:

(1) Fréchet Decision Oracle. We adapt the currently fastest implementation of a
decider for the continuous fixed-translation Fréchet distance, see Chapter 9, to the
discrete fixed-translation Fréchet distance. Furthermore, to handle many queries for
the same curve pair under different translations quickly, we incorporate an implicit
translation so that curves do not need to be explicitly translated for each query
translation τ .

(2) Objective Function Evaluation. For our exact decider, the branch-and-bound
strategy in Section 10.2.2 simplifies significantly: We do not maintain a global upper
bound and local lower bounds ℓi, but for each box only test whether f(τi) ≤ δ (if
so, we return YES) or whether f(τi) > δ + d (this corresponds to updating the
local lower bound beyond δ, i.e., we may drop the box completely). Therefore, we
may use an arbitrary selection rule. Note that we only require decision queries to
the fixed-translation Fréchet algorithm.

(3) Base Case. We implement a local arrangement-based algorithm: For a given search
box Bi, we (essentially) construct the arrangement A ∩Bi using CGAL [156], and
test, for each face f of A ∩ Bi, some translation τ ′ ∈ f for f(τ ′) ≤ δ. This yields
the algorithm that we may use as a base case.

(4) Base Case Criterion. For each search box, we compute an estimate of its ar-
rangement complexity. If this estimate is smaller than a (tunable) parameter γsize,
or the depth of the branch-and-bound recursion for the current search box exceeds
a parameter γdepth, then we use the localized arrangement-based algorithm.
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1: procedure Decider(π, σ, δ)
2: decide trivial NO instances with empty initial search box quickly
3: Q← Fifo(initial search box)
4: while Q ̸= ∅ do
5: B ← extract front of search box queue Q
6: if FréchetDistance(π, σ + τB) > δ + dB/2 then ▷ Lower Bounding
7: skip B

8: if FréchetDistance(π, σ + τB) ≤ δ then ▷ Upper Bounding
9: return YES

10:
11: u← upper bound on arrangement size inside B
12: if u = 0 then ▷ Arrangement-based Base Case
13: skip B
14: else if u ≤ γsize or layer of B is γdepth then
15: if local arrangement-based algorithm on π, σ, δ, B returns YES then
16: return YES
17: else
18: skip B

19:
20: halve B along longest edge and push resulting child boxes to Q ▷ Branching
21: return NO
Algorithm 20: Algorithm for deciding the discrete Fréchet distance under translation.
We use τB to denote the center of the box B and dB to denote the length of the diagonal
of B.

(5) Benchmark and Choice of Parameters. We choose the size and depth parame-
ters γsize, γdepth guided by a benchmark set that we create from a set of handwritten
characters and synthetic GPS trajectories.

The pseudocode of the resulting algorithm is shown in Algorithm 20. In the remainder
of this section, we describe the details of our Fréchet-under-translation decider. We first
describe the details of the local arrangement-based algorithm which serves as the base
case for our decider.

10.3.1 Local Arrangement-Based Algorithm

Recall that given two polygonal curves π, σ and a decision distance δ, the set of circles
of the arrangement Aδ is

C := {Cδ(πi − σj) | πi ∈ π, σj ∈ σ},

where Cr(p) denotes the circle of radius r ∈ R around p ∈ R2. The arrangement is then
defined as the partition of R2 induced by C. In particular, the decision of ddF(π, σ+τ) ≤ δ
is uniform for each τ ∈ R in the same face of Aδ (for a detailed explanation, we refer
to [33, Section 3] or Chapter 5). Thus, as already described in Section 10.2.1, it suffices
to evaluate a representative translation from each face of the arrangement by running a
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fixed-translation Fréchet decider query on it to reach a discrete Fréchet under translation
query decision.

For integration into our branch-and-bound approach where each node in the branch-
and-bound tree corresponds to a search box B, the base case task is to decide whether
there is some τ ∈ B with ddF(π, σ+τ) ≤ δ. For this task, we consider local arrangements,
i.e., arrangements restricted to B. A circle C ∈ C contributes to the local arrangement
of B if the boundary of C intersects the box. In other words, C is relevant for the
arrangement of B if C either is completely contained in B or C intersects the boundary
of B. In particular, C does not contribute to the local arrangement if it contains B
completely.

Estimation of local arrangement sizes. Given a search box B, a simple way to
estimate the size of the local arrangement for B, i.e., the arrangement restricted to B, is
to consider the number of circles in C that contribute to it. We can obtain this number
naively, by iterating over all |C| ≤ nm circles of the global arrangement and check if they
contribute to the local arrangement (by checking for intersection and containment as
described above). Let this number be denoted by c. The maximal number of nodes in
the arrangement is then bounded by u := 2(c + c2), as this is the maximal number of
intersections between two circles and a circle and the box. In particular, if u = 0, then the
arrangement in the box belongs to a single face and all translations in B are equivalent
for our decision question.

As a simple optimization, we may stop counting contributing circles once our esti-
mate exceeds the threshold γsize. A more sophisticated optimization builds a geometric
data structure (specifically a kd-tree) to quickly retrieve all contributing circles with-
out checking all circles in C naively. We discuss this approach in Section 10.4, as the
expensive preprocessing for constructing this data structure only amortizes in the value
computation setting.

Construction of local arrangement. For a search box B with an estimate smaller
than γsize, we construct an arrangement AB. To this end, we adapt our arrangement size
estimation to also return the set CB of circles intersecting B or being contained in B.
Note that computing topologically correct geometric arrangements on such a circle set
is a challenging task, as it requires the usage of arbitrary precision numbers to reliably
test for intersections and orderings of those intersections. Thus, we use the state-of-
the-art computational geometry library CGAL [156] to build our circle arrangements.4

Unfortunately, CGAL only provides methods for building a global arrangement and not
an arrangement restricted to a bounding box, thus we always build the whole arrangement
of the circles in CB instead of just the arrangement restricted to the box B. Alternatively,
we could indeed compute circular arcs restricted to the bounding box and then build the
arrangement of those arcs. However, due to the rather expensive construction of these
arcs, this seems wasteful compared to a direct computation. Thus, a practical performance
improvement of our approach could be achieved by directly computing an arrangement

4Specifically, we use the exact predicates and exact computation kernels as this is necessary for CGAL
arrangements. The significantly faster kernel for inexact computation is not suitable for the CGAL
arrangement package (although, surprisingly, for most instances it actually worked). Being able to use a
faster kernel for arrangements should significantly improve our implementation’s performance.
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with a box restriction. Furthermore, we use the standard bulk-insertion interface for
building the arrangement.

Resulting local arrangement-based algorithm. Finally, given the arrangement AB

of the circles CB, we may simply test a translation τ for each face f of AB that intersects
B. In fact, for efficiency, we do this by testing each vertex τ of AB (even for vertices
outside of B, as due to the expensive construction of AB, it pays off to make the rather
cheap tests for positive witnesses also outside of B); observe that this ensures that each
face f is indeed tested. We return YES if and only if some vertex τ of AB achieves
ddF(π, σ + τ) ≤ δ.

10.3.2 Decision Algorithm

Now, we describe our decider (whose pseudocode is given in Algorithm 20) in more
detail. Recall that an exact decider, given curves π = (π1, . . . , πn), σ = (σ1, . . . , σm) and
a distance δ, decides whether the discrete Fréchet distance under translation of π and σ
is at most δ, i.e., whether dTdF(π, σ) ≤ δ.

Preprocessing. As a first step, we aim to determine an initial search box. Since any
τ ∈ R2 with ddF(π, σ + τ) ≤ δ implies that ∥π1 − (σ1 + τ)∥ , ∥πn − (σm + τ)∥ ≤ δ, we
must have that τ is in the intersection I := Dδ(π1 − σ1) ∩ Dδ(πn − σm), where Dr(p)
denotes the disk of radius r around p. If this intersection is empty, i.e., π1 − σ1 and
πn − σm have a distance more than 2δ, we return NO immediately. Otherwise, we take a
bounding box of the intersection.5

Branch-and-bound. We implement the recursive branch-and-bound strategy using a
FIFO queue Q of search boxes (corresponding to a breadth-first search) that is initialized
with the initial search box. As long as there are undecided boxes in the queue, we take
the first such box B and try to resolve it using the upper bounding rule (point (i) in
View II) and the lower bounding rule (point (iv) in View II), which are both derived by
queries to the fixed-translation Fréchet distance decider using the center point τB of the
box as translation. Specifically, if ddF(π, σ + τB) ≤ δ (line 6 in Algorithm 20), we have
found a witness translation and can return YES. The lower bounding rule (line 8) tests
if ddF(π, σ + τB) > δ + dB/2, i.e., if the distance at the center point is larger than the
test distance δ plus the maximal distance of any point in the box to the center τB, i.e.,
the half-diagonal length dB/2. If so, by the Lipschitz property, we know that the any
translation in B yields a discrete Fréchet distance larger than δ and thus we can drop B.

If neither rule applies, we check our termination criterion of the branch-and-bound
strategy. To this end, in line 11, we calculate a good upper bound u on the size of the
local arrangement for B as described in Section 10.3.1. If u = 0, the arrangement for B
consists of a single face, i.e., each translation τ ∈ B is equivalent for our decision problem,
and we can skip the box since we have already tested the translation τB ∈ B. Otherwise,
in line 14, if u ̸= 0, we check if the number is bounded by a size parameter γsize or the

5In fact, we use a slightly more refined search box by incorporating additionally the extreme points
of both curves.
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depth of the current search box (in the implicit recursion tree) is bounded by a depth
parameter γdepth. If so, we run the local arrangement-based algorithm to decide B.

If none of the above rules decide the search box B, we split it along its longer side into
two equal-sized child boxes and push them to the queue. If all boxes have been dropped
without finding a witness translation, we have verified that any translation τ ∈ B yields
ddF(π, σ + τ) > δ and may safely return NO.

Low-level optimizations. For further practical speed-ups, we employ several low-level
optimizations, which we briefly mention here (for further details, we refer to the source
code of our implementation).

For each box in the branch-and-bound tree we need a differently translated curve.
However, often we barely access the nodes of the translated curve. For example, if already
the start nodes of the curves are too far, we do not need to consider the remainder. Thus,
it seems wasteful to translate each point of the curves before calling the fixed-translation
Fréchet decider. To avoid this overhead, we lazily translate the necessary parts of a curve
on access. In fact, while the currently fastest implementation of the fixed-translation
Fréchet distance decider, see Chapter 9, uses a preprocessing of the curves that computes
all prefix lengths and extrema of the curves, we only need to perform this preprocessing
once, as all computed information is either invariant under translations (for the prefix
lengths) or can just be shifted by the translation (for the extrema).

Furthermore, while the initial bounding box is derived from the discs around the
translation between the start nodes and the translation between the end nodes, later
child boxes in the branch-and-bound tree might violate this condition. We therefore
re-check this condition on creating child boxes. Additionally, in line 14 of Algorithm 20
we check if the depth parameter γdepth is reached. This can actually already be done
before line 8, which we also do in the implementation, but for the sake of brevity, we
present it differently in the pseudocode.

10.4 Contribution II: Approximate Computation of the Dis-
tance Value

In this section we present our second main contribution: an algorithm for computing
the value of the discrete Fréchet distance under translation. Thus, we now focus on the
functional task of computing the value dTdF(π, σ) = minτ∈R2 ddF(π, σ + τ), in contrast to
the previously discussed decision problem “dTdF(π, σ) ≤ δ?”. In theory, one could use the
paradigm of parametric search [133], see [33] and Chapter 5 for details for the discrete
case. However, it is rarely used in practice as it is non-trivial to code, and computationally
costly. Instead, as in most conceivable settings an estimate with small multiplicative error
(1± ε) with, e.g., ε = 10−7, suffices, we consider the problem of computing an estimate
in (1± ε) dTdF(π, σ).

There are several possible approaches to obtain an approximation with multiplicative
error (1± ε) for arbitrarily small ε > 0:

(1) ε-approximate Set: A natural approach underlying previous approximation al-
gorithms [22] is to generate a set of f(1/ε) candidate translations T such that the
best translation τ among this set gives a (1 + ε)-approximation for the discrete
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1: procedure LMF(π, σ)
2: Preprocessing: build data structures for fast arrangement estimation and construc-

tion
3: compute initial distance interval [δLB, δUB] containing dTdF(π, σ)
4: initialize global upper bound δ̃ ← δUB

5: Q ← PriorityQueue(initial search box B1 with local lower bound ℓB1 ← δLB)

6: while Q ̸= ∅ do
7: B ← box with smallest local lower bound ℓB in Q
8: if δ̃ ≤ ℓB(1 + ε) then
9: skip B

10: if FréchetDistance(π, σ + τB) ≤ δ̃ then ▷ Upper/Lower Bounding
11: compute value ddF(π, σ + τB) with high precision and update δ̃ and ℓB
12: else
13: if FréchetDistance(π, σ + τB) > δ̃ + dB/2 then
14: skip B

15: compute value ddF(π, σ + τB) with coarse precision and update ℓB

16: if δ̃ ≤ ℓB(1 + ε) then
17: skip B

18: u← upper bound on arrangement size inside B for δ ∈ [ℓB, δ̃]
19: if u = 0 then ▷ Arrangement-based Base Case
20: skip B
21: else if u ≤ γsize or layer of B is γdepth then
22: update δ̃ via binary search over arrangement algorithm on B and δ ∈ [ℓB, δ̃]

23: skip B

24:
25: push child boxes of B to Q with local lower bounds set to ℓB ▷ Branching
26: return δ̃

Algorithm 21: Algorithm of our Lipschitz-Meets-Fréchet (LMF) algorithm for approxi-
mate value computation. We use τB to denote the center of the box and dB to denote
the length of the diagonal.
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Fréchet distance under translation. Specifically, it is simple to obtain a bounding
box B of side length O(δ) for the optimal translation τ∗ (see the 2-approximation
in Section 10.1 together with the preprocessing described in Section 10.3). We
impose a grid of side length at most (ε/

√
2)δ so that each each point in B is within

distance εδ of some grid point. Since the discrete Fréchet distance is Lipschitz, this
yields a (1 + ε)-approximate set. Unfortunately, this set is of size Θ(1/ε2) which is
prohibitively large for approximation guarantees such as ε = 10−7.
Remark: In the context of global Lipschitz optimization, this approach is known as
the passive algorithm whose performance generally is dominated by (the adaptive)
branch-and-bound methods.

(2) Binary Search via Decision Problem: A further canonical approach is to reduce
the (1 + ε)-approximate computation task to the decision problem using a binary
search. Formally, let δ∗ denote the discrete Fréchet distance under translation.
Starting from a simple 2-approximation δUB (see Section 10.1, or, more precisely,
the initial estimates discussed later in this section), we use a binary search in the
interval [0.5 · δUB, δUB], terminating as soon as we arrive at an interval of length
[a, b] with b ≤ (1 + ε)a. As this takes only O(log(1/ε)) iterations to obtain an
(1 + ε)-approximation, this approach is much more suitable to obtain a desired
guarantee of ε = 10−7.

(3) Lipschitz-only Optimization: The main drawback of the generic Lipschitz op-
timization algorithms discussed in Section 10.2.2 was that they cannot be used to
derive an exact answer. This drawback no longer applies for approximate value
computation. We can thus use a pure branch-and-bound algorithm for global Lip-
schitz optimization. In particular, we will use the same strategy as our fastest
solution, however, we never use the arrangement-based algorithm, but only termi-
nate at a search box once the local lower bound and global upper bound provide a
(1 + ε)-approximation.

(4) Our solution, Lipschitz-meets-Fréchet: We follow our approach of combin-
ing Lipschitz optimization with arrangement-based algorithms (described in Sec-
tion 10.2) to compute a (1 + ε)-approximation of the distance value. As opposed
to the decision algorithm, we indeed maintain a global upper bound δ̃ and local
lower bounds ℓi for each search box Bi. To update these bounds, we approximately
evaluate the objective function f(τ) using a tuned binary search6 over the fixed-
translation Fréchet decider algorithm. We stop branching in a search box Bi if either
the global upper bound δ̃ is at most ℓi(1 + ε), or a base case criterion similar to
the decision setting applies. As selection strategy, we employ the no-regret strategy
of choosing the box with the smallest lower bound first. The base case performs
a binary search using the local arrangement-based decision algorithm; thus, our
upper bound on the arrangement size must hold for all δ in the search interval. The
pseudocode of our solution is shown in Algorithm 21.

6We tune the binary search by distinguishing the precision with which we want to evaluate f(τ);
intuitively, it pays off to evaluate f(τ) with high precision if this evaluation yields a better global upper
bound, while for improvements of a local lower bound, a cheaper evaluation with coarser precision suffices.
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We present the details of our approach in the remainder of this section. As our exper-
iments reveal, our solution generally outperforms the above described alternatives,
see Section 10.5.

Remark: To enable a fair comparison of the Lipschitz-meets-Fréchet (LMF) ap-
proach to the alternative approaches of Binary Search and Lipschitz-only opti-
mization, we take care that the low-level optimizations for LMF described in the
reminder of this section are also applied to these approaches, as far as applicable. In
particular, we use the same method to obtain initial estimates for the desired value
for LMF, Binary Search and Lipschitz-only optimization, and adapt the kd-tree-
based data structure used to speed-up estimation and construction of arrangements
for LMF also for Binary Search (note that these tasks do not apply to Lipschitz-only
optimization).

We now present details of our solution for the (approximate) value computation
setting, the LMF algorithm. We first consider the base case (which differs from the base
case of the decider, given in Section 10.3.1), before we discuss further details.

10.4.1 Local Arrangement-Based Algorithm for Value Computation

Our base case problem is the following: Given curves π, σ, a test distance interval I =
[δLB, δUB] and a search box B, we let δ∗ := minτ∈B ddF(π, σ + τ) and ask to determine
whether δ∗ ∈ I, and if so, an estimate δ′ with |δ′ − δ∗| ≤ ε.

The central idea is to solve this task via a binary search for δ∗ ∈ I using our local
arrangement-based algorithm of Section 10.3.1 to decide queries of the form “δ∗ ≤ δ?”
for any given δ. For this algorithm to run quickly, we need that for any queried distance
δ, the corresponding local arrangement for the test distance δ is small. To this end, we
seek to obtain a strong upper bound for the local arrangement size over worst-case δ ∈ I.

Estimation of local arrangement sizes. Given an interval I = [δLB, δUB] of test
distances, instead of the circles defined in Section 10.3.1, we consider the set of annuli

D := {DδUB
(πi − σj) \DδLB

(πi − σj) | πi ∈ π, σj ∈ σ},

where Dr(p) denotes the disk of radius r ∈ R around p ∈ R2. Clearly, if a circle Cδ(πi−σj)
contributes to the local arrangement of B for some test distance δ ∈ [δLB, δUB], then the
corresponding annulus DδUB

(πi − σj) \DδLB
(π − σj) intersects B or is contained in B.

Thus by determining the number d of annuli a ∈ D that intersect B or are contained in
B, we may bound the local arrangement size for B for any δ ∈ [δLB, δUB] by u := 2(d+d2)
(analogously to Section 10.3.1).

To obtain the above upper bound efficiently, we implement a geometric search data
structure based on the kd-tree. Specifically, we build a kd-tree on the set of center points
of all annuli in D. Given a search box B, we seek to determine all centers of annuli a ∈ D
that intersect B or contain B. While this condition can be described using a constant
(but large) set of simple primitives, evaluating this test frequently for many kd-tree nodes
is costly. Thus, to determine whether a node in the kd-tree needs to be explored, we use
a more permissive, but cheaper test which essentially approximates the search box B by
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its center point: we search for all candidate points that are contained in an annulus of
width roughly |I| plus half the diameter of B, centered at the center of B, and test for
each such point whether the corresponding annulus in D indeed intersects B.

Again, we implement this search for contributing annuli such that we return the
centers of all found annuli. This can subsequently be used by the local arrangement-
based algorithm to quickly construct the arrangement for each query. Furthermore, we
again stop the search as soon as the numbers of such annuli exceeds γsize.

Binary search via local arrangement-based algorithm. To obtain the desired
estimate for δ∗ in the case that our size estimate is bounded by γsize, we use a binary
search via our local arrangement-based algorithm. As a low-level optimization to speed-up
the construction of the local arrangement for a query distance δ, we pass the centers of
contributing annuli to the local arrangement-based algorithm. Furthermore, as described
in Section 10.3.1, we let the arrangement-based decision algorithm test all vertices in
the arrangement of all circles CB contributing to the search box B, not only vertices in
B. As this can only decrease the returned estimate (by finding a corresponding witness),
this does not affect correctness of the algorithm.

10.4.2 Overview and Details for LMF

The pseudocode of the LMF algorithm is shown in Algorithm 21. When referring to lines
in the remainder of this section, we refer to lines in this algorithm. Before we address
some aspects and optimizations in detail, we give a short overview of the algorithm. First,
note that as our selection strategy is different from the decider setting, we now use a
priority queue for the boxes, see line 5. In lines 8 to 17 the bounding happens and in
lines 18 to 23 we check if the base case criterion applies, and if it does, determine the
value for this box using the arrangement-based approach. Finally, in line 25 we branch if
we did not already skip the box.

Initial estimates. In line 3 we calculate initial estimates for the upper and lower bound.
To this end, we consider the translation τstart (resp. τend) that aligns the first (resp. last)
points of π, σ as it yields a 2-approximation δstart := ddF(π, σ + τstart) (resp. δend :=
ddF(π, σ + τend)). Using the best of both approximations, our initial estimation interval
for dTdF(π, σ) is [δLB, δUB] := [max{δstart, δend}/2,min{δstart, δend}], see Section 10.1.

Priority queue. To implement our smallest-lower-bound-first selection rule, we use a
priority queue to organize the search boxes, using the local lower bounds as keys. Recall
that this yields a no-regret selection strategy for our branch-and-bound framework.

Objective function evaluation: Computing Fréchet distance via Fréchet de-
cider. To update our global upper bound and local lower bounds, we need to determine
discrete Fréchet distance values rather than decisions (which were sufficient for our de-
cider), see lines 11 and 15. However, we do not always need a very precise calculation.
While the upper bound is global and thus an improvement might lead to significant
progress by dropping a number of search boxes, the lower bound only has an effect on
the box itself and on its children. Thus, we use a coarse distance computation (i.e., an
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approximation up to a larger additive constant) for the lower bound in line 15, but a
more precise calculation for the upper bound in line 11.

In two cases (lines 10 and 22) we are only interested in the exact discrete Fréchet
distance value if it is smaller than the current global upper bound. Thus, as is hidden in
the pseudocode, we first check if there is an improvement at all, and only if this is the
case, we compute the actual value using a binary search.

Additive vs. multiplicative approximation. Due to rounding issues that occur
at decisions depending on extremely small value differences when using fixed precision
arithmetic, we use an additive approximation of ε = 10−7 instead of a multiplicative
approximation to ensure that these issues do not arise on usage of our implementation
with arbitrary data sets. Note that all computed distances in our benchmarks have a
value larger than 1, and thus also in terms of multiplicative approximation (1 + ε′), we
have ε′ ≤ 10−7.

10.5 Experiments

To engineer and evaluate our approach, we provide a benchmark on the basis of the
curve datasets that were used to evaluate the currently fastest fixed-translation Fréchet
decider implementation presented in Chapter 9. In particular, this curve set involves a
set of handwritten characters (Characters, [65]) and the data set of the GIS Cup 2017
(Sigspatial, [9]). Table 10.1 gives statistics of these datasets.

Data set Type #Curves Mean #vertices

Sigspatial [9] synthetic GPS-like 20199 247.8

Characters [65] 20 handwritten characters 2858 120.9

Table 10.1: Information about the data sets used in the benchmarks.

The aim of our evaluations is to investigate the following main questions:

(1) Is our solution able to decide queries on realistic curve sets in an amount of time that
is practically feasible, even when the size of the arrangement suggests infeasibility?

(2) Is our combination of Lipschitz optimization and arrangement-based algorithms for
value computation superior to the alternative approaches described in Section 10.4?

Furthermore, we aim to provide an understanding of the performance of our novel algo-
rithms.

Decider experiments. For decision queries of the form “dTdF(π, σ) ≤ δ?”, we generate
a benchmark query set that distinguishes between how close the test distance is to the
actual distance of the curves: Given a set of curves C, we sample 1000 curve pairs π, σ ∈ C
uniformly at random. Using our implementation, we determine an interval [δLB, δUB] such
that δUB − δLB ≤ 2 · 10−7 and dTdF(π, σ) ∈ [δLB, δUB]. For each ℓ ∈ {−10, . . . ,−1}, we
add “dTdF(π, σ) ≤ (1− 4ℓ)δLB?” to the query set CNO

ℓ , which contains only NO instances.
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Figure 10.4: Running time for our decider. We plot the mean running times over 1000
NO (or YES) queries with a test distance of approximately (1− 4−ℓ) (or (1+ 4−ℓ)) times
the true discrete Fréchet distance under translation, as well as the interval between the
lower and upper quartile over the queries.
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Similarly, for each ℓ ∈ {−10, . . . , 2} we add “dTdF(π, σ) ≤ (1 + 4ℓ)δUB?” to the query set
CYES
ℓ , which contains only YES instances. We evaluate our decider on this benchmark

created for the Characters and Sigspatial data sets. Furthermore, we give results
for a further benchmark set generated from the Characters curve set by sampling, for
each of the 20 characters c included in Characters, 50 curve pairs π, σ representing
the same character c. This yields a benchmark that has the same size of 1000 query
curve pairs, but compares only same-character curves. We show the mean running times
on these three benchmark sets in Figure 10.4. As before, we also depict the number of
black-box calls of our decider and, as a baseline, an estimate of the arrangement size (and
thus the number of black-box calls of a naive approach) in Figure 10.5. Note that for
small ranges of the test distance δ, it may happen that we decide a NO instance without
a single black-box call by determining that the distance between π1 − σ1 and πn − σm is
larger than 2δ; corresponding values below 1 call are not depicted in Figure 10.5.

To give an insight for the speed-up achieved over the baseline arrangement-based
algorithm that makes a black-box call to the fixed-translation Fréchet decider for each
face of the arrangement Aδ, in Figure 10.5 we depict both the number of black-box calls to
the fixed-translation Fréchet decider made by our implementation, as well as an estimate7

for the arrangement size, and thus the number of black-box calls of the baseline approach.
We observe that on the above sets, the average decision time ranges from below 1 ms to

142 ms, deciding our Characters benchmark (involving 23, 000 queries) in 628 seconds.
Our estimation suggests that a naive implementation of the baseline arrangement-based
algorithm would have been worse by more than three orders of magnitude, as for each set,
the average number of black-box calls to the fixed-translation Fréchet decider is smaller
by a factor of at least 1000 than our estimation of the arrangement size. See Table 10.2
for the detailed timing results of our decider on the benchmarks described above.

Approximate value computation experiments. We evaluate our implementation
of the algorithm presented in Section 10.4 by computing an estimate δ̃ such that |δ̃ −
dTdF(π, σ)| ≤ ε with a choice of ε = 10−7.8 In particular, we compare the performances
of the different approaches discussed in Section 10.4:

• Binary Search: Binary search using our Fréchet-under-translation decider of Sec-
tion 10.3.

• Lipschitz-only: Algorithm 21 without the arrangement, i.e., without lines 18 to
23.

7We only give an estimate for the arrangement size, since the size of the arrangement is too large to
be evaluated exactly for all our benchmark queries within a day. Specifically, we estimate the number
of vertices of the arrangement which closely corresponds to the number of faces by Euler’s formula.
We give the following estimate: We first determine a search box B for the given decision instance
π = (π1, . . . , πn), σ = (σ1, . . . , σm), δ as described for our algorithm. We then sample S = 100000 tuples
i1, i2 ∈ {1, . . . , n}, j1, j2 ∈ {1, . . . ,m} and count the number I of intersections of the circles of radius δ
around πi1 −σj1 and πi2 −σj2 inside B. The number (I/S) ·(nm)2 is the estimated number of circle-circle
intersections in B. Adding the number of circle-box intersections, which we can compute exactly, yields
our estimate.

8Here we use additive rather than multiplicative approximation for technical reasons. Since all com-
puted distances are within [1.6, 120.7], this also yields a multiplicative (1 + ε)-approximation with
ε ≤ 10−7.
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Figure 10.5: Number of black-box calls to the fixed-translation Fréchet decider made
by our decider (below, in green), as well as an estimate of the arrangement complexity,
i.e., number of calls of a naive algorithm (above, in black). We plot the mean number of
calls and arrangement complexity over 1000 NO (or YES) queries with a test distance
of approximately (1− 4−ℓ) (or (1 + 4−ℓ)) times the true discrete Fréchet distance under
translation, as well as the interval between the lower and upper quartile over the queries.
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same-characters
Time Black-Box Calls

429,623 ms 26,661,524
(18.7 ms per instance) (1,159.2 per instance)

- Preprocessing 5 ms

- Black-box calls (Lipschitz) 44,312 ms

- Arrangement estimation 157,780 ms

- Arrangement algorithm 226,469 ms
* Construction 148,898 ms
* Black-box calls 60,156 ms

all-characters
Time Black-Box Calls

628,043 ms 42,781,931
(27.3 ms per instance) (1,860.08 per instance)

- Preprocessing 5 ms

- Black-box calls (Lipschitz) 50,462 ms

- Arrangement estimation 191,177 ms

- Arrangement algorithm 385,145 ms
* Construction 237,043 ms
* Black-box calls 120,149 ms

sigspatial
Time Black-Box Calls

1,207,560 ms 31,420,517
(52.5 ms per instance) (1,366.11 per instance)

- Preprocessing 5 ms

- Black-box calls (Lipschitz) 43,861 ms

- Arrangement estimation 913,266 ms

- Arrangement algorithm 249,268 ms
* Construction 155,332 ms
* Black-box calls 73,934 ms

Table 10.2: Time measurements for the components of the decider over the complete
decider benchmark sets. In parentheses, we give average values over the total of 23,000
decision instances.
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Approach Time Black-Box Calls

LMF 148,032 ms 13,323,232
(141.0 ms per instance) (12,688.8 per instance)

Binary Search 536,853 ms 45,909,628
(511.3 ms per instance) (43,723.5 per instance)

Lipschitz-only 4,204,521 ms 820,468,224
(4,004.3 ms per instance) (781,398.3 per instance)

Table 10.3: Statistics for approximate value computation forNsamples = 5. In parentheses
we show the mean values averaged over a total of 1050 instances.

• Lipschitz-meets-Fréchet (LMF): Our implementation as detailed in Section 10.4.

Since simple estimates show that the ε-approximate sets are clearly too costly for ε = 10−7,
we drop this approach from all further consideration. We took care to implement all
approaches with a similar effort of low-level optimizations.

For our evaluation, we focus on the Characters data set which allows us to dis-
tinguish the rough shape of the curves: We subdivide the curve set into the subsets Cα

for α ∈ Σ (where Σ is the set of 20 characters occurring in Characters). In particular
for each character pair α, β ∈ Σ, we create a sample of Nsamples curve pairs (π, σ) cho-
sen uniformly at random from Cα × Cβ. For Nsamples = 5, computing the value (up to
ε = 10−7) for all Nsamples · (

(|Σ|
2

)
+ |Σ|) = 1050 sampled curve pairs gives the statistics

shown in Table 10.3.
Since already for this example the Lipschitz-only approach is dominated by almost

a factor of 30 by LMF (and by a factor of almost 8 by binary search), we perform more
detailed analyses with Nsamples = 100 only for LMF and binary search. The overall
performance is given in Table 10.4. Also here LMF is more than 3 times faster than
binary search. To give more insights into the relationship of their running times, we give
a scatter plot of the running times of LMF and binary search on the same instances over
the complete benchmark in Figure 10.6, showing that binary search generally outperforms
LMF only on instances which are comparably easy for LMF as well. The advantage of
LMF becomes particularly clear on hard instances.

Apart from these general statistics for our value computation benchmarks, we depict
individual mean computation times and mean number of black-box calls (over all Nsamples

samples) for each character pair α, β ∈ Σ in Figures 10.7 and 10.8.
Finally, we give the average distance values on our benchmark set both under a fixed

translation (specifically, with start points of π and σ normalized to the origin) and under
translation in Figure 10.9. Note that using naive approaches computing these tables
would have been computationally extremely costly.

10.6 Conclusion

We engineer the first practical implementation for the discrete Fréchet distance under
translation in the plane. While previous algorithmic solution for the problem solve it via
expensive discrete methods, we introduce a new method from continuous optimization
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LMF
Time Black-Box Calls

2,938,512 ms 260,128,449
(140.0 ms per instance) (12,387.1 per instance)

- Preprocessing 71,728 ms

- Black-box calls (Lipschitz) 400,189 ms

- Arrangement estimation 166,479 ms

- Arrangement algorithm 2,250,493 ms
* Construction 1,537,500 ms
* Black-box calls 545,442 ms

Binary Search
Time Black-Box Calls

10,555,630 ms 875,424,988
( 502.7 ms per instance) (41,686.9 per instance)

Table 10.4: Statistics for approximate value computation for Nsamples = 100. In paren-
theses, we give average values over the total of 21,000 curve pairs.
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Figure 10.6: Running times of LMF and binary search on set of randomly sampled
Characters curves.
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Figure 10.7: Log of mean value computation time in ms for LMF (left) and Binary
Search (right).
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(right).
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to achieve significant speed-ups on realistic inputs. This is analogous to the success of
integer programming solvers which, while optimizing a discrete problem, choose to work
over the reals to gain access to linear programming relaxations, cutting planes methods,
and more. A novelty here is that we successfully apply such methods to obtain drastic
speed-ups for a polynomial-time problem.

We leave as open problems to determine whether there are reasonable analogues of
further ideas from integer programming, such as cutting plane methods or preconditioning,
that could help to get further improved algorithms for our problem. More generally, we
believe that this gives an exciting direction for algorithm engineering in general that should
find wider applications. A particular direction in this vein is the use of our methods to
compute rotation- or scaling-invariant versions of the Fréchet distance. Intuitively, by
introducing additional dimensions in our search space, our methods can in principle also be
used to optimize over such additional degrees of freedom. However, the Lipschitz condition
changes significantly, and we leave it to future work to determine the applicability in
these settings.
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