
Statically-Analyzed Stream Monitoring
for Cyber-Physical Systems

Dissertation submitted towards the degree

Doctor of Engineering

of the Faculty of Mathematics and Computer Science

of Saarland University

Maximilian Schwenger

Saarbrücken, 2022

Dean: Prof. Dr. Jürgen Steimle

Chair of the Committee: Prof. Martina Maggio, Ph.D.

Reviewers: Prof. Bernd Finkbeiner, Ph.D.

Prof. César Sánchez, Ph.D.

Prof. Borzoo Bonakdarpour, Ph.D.

Academic Assistant: Hadar Frenkel, Ph.D.

Day of the Colloquium: June 13, 2022

Abstract

Cyber-physical systems are digital systems interacting with the physical world. Even

though this induces an inherent complexity, they are responsible for safety-critical tasks

like governing nuclear power plants or controlling autonomous vehicles. To preserve

trust into the safety of such systems, this thesis presents a runtime verification approach

designed to generate trustworthy monitors from a formal specification. These monitors

are responsible for observing the cyber-physical system during runtime and ensuring

its safety. As underlying language, I present the asynchronous real-time specification

language RTLola. It contains primitives for arithmetic properties and grants precise control

over the timing of the monitor. With this, it enables specifiers to express properties

relevant to cyber-physical systems. The thesis further presents a static analysis that

identifies inconsistencies in the specification and provides insights into the dynamic

behavior of the monitor. As a result, the resource consumption of the monitor becomes

predictable. The generation of the monitor produces either a hardware description

synthesizable onto programmable hardware, or Rust code with verification annotation.

These annotations allow for proving the correctness of the monitor with respect to the

semantics of RTLola. Last, I present the construction of a conservative hybrid model of

the underlying system using information extracted from the specification. This model

enables further verification steps.

Zusammenfassung

Cyber-physische Systeme sind digitale Systeme, die mit der physischen Welt inter-

agieren. Obwohl das zu einer inhärenten Komplexität führt, sind sie verantwortlich

für sicherheitskritische Aufgaben wie der Steuerung von Kernkraftwerken oder au-

tonomen Fahrzeugen. Um das Vertrauen in deren Sicherheit zu wahren, präsentiert diese

Doktorarbeit einen Ansatz zur Laufzeitverifikation, konzipiert, um vertrauenswürdige

Monitore aus einer formalen Spezifikation zu generieren. Diese Monitore sind dafür

verantwortlich, das cyber-physische System zur Laufzeit zu überwachen und dessen

Sicherheit zu gewährleisten. Als zugrundeliegende Sprache präsentiere ich die asyn-

chrone Echtzeit-Spezifikationssprache RTLola. Sie enthält Primitiven für arithmetische

Eigenschaften und gewährt präzise Kontrolle über das Timing des Monitors. Damit wird

es Spezifizierenden ermöglicht Eigenschaften auszudrücken, die für Cyber-physische

Systeme relevant sind. Weiterhin präsentiert diese Doktorarbeit eine statische Analyse,

die Unstimmigkeiten in der Spezifikation identifiziert und Einblicke in das dynamische

Verhalten des Monitors liefert. Aufgrund dessen wird der Ressourcenverbrauch des

Monitors vorhersehbar. Die Generierung des Monitors erzeugt entweder eine Hard-

warebeschreibung, die auf programmierbarer Hardware synthetisiert werden kann, oder

Rust Code mit Verifikationsannotationen. Diese Annotationen erlauben es, die Korrek-

theit des Monitors bezogen auf die Semantik von RTLola zu beweisen. Abschließend

präsentiere ich die Konstruktion von einem konservativen hybriden Modell des zugrun-

deliegenden Systems anhand von Informationen, die aus der Spezifikation gewonnen

wurden. Dieses Modell ermöglicht weitere Verifikationsschritte.

Acknowledgements

First, I would like to thank Bernd Finkbeiner for the opportunity to pursue my research

in whatever direction struck my interest. Your continuous guidance, support and all

these chances to stand on my own feet — even if it meant running head-first into a wall

— shaped me into who I am today.

I also want to thank my colleagues at Saarland University, Cispa, and DLR. In particular,

thanks to Jan, Niklas, Florian, Sebastian, and Malte. I am incredibly happy to call you

my colleagues and friends. Also, a huge thanks goes to Noemi. Not only did we raise a

strong family of plants, nobody but you could remain so patient with me after a Monday

full of student meetings or the day of an Embedded Systems deadline. Of course, I am

also grateful towards the remaining Reactive Systems crew, I will dearly miss discussions

and coffee breaks with you all. Moreover, a warm ’Thank you’ to the reviewers and

members of the committee; much obliged.

Next, I appreciate all the support from outside the office, too. Thanks to Linda and

Marco for always having a room and beer ready when I reached your doorstep. Your

support means the world to me. I also want to acknowledge how much my parents

have done for me throughout the years. Thanks to Julia, Nora, Pascal, Ferdinand, Ben

for all the games nights and D&D sessions, and thanks to Timo, Stefan, Jessica. You’re

awesome! Both thanks and dearest apologies to Aida for always enduring my violin

play: it was a great relief to turn off my brain after overexerting it at work.

I also want to acknowledge my remaining co-authors, every temporary or long-term

member of the RTLola crew, and every student I had the pleasure to work with. This

thesis would be but a fraction of what it is without you.

Also, I thank Thesaurus for making my words good, as well as Ben, Florian, Jan, Julia,

Niklas, and Stefan for proofreading, allowing me to blame all remaining typos on you

guys! And a special thanks to Malte, nobody but you has the diligence to spot that

σλ∗,λ∗
λ∗

should obviously have been σλ∗,λλ∗ .

Contents

1. Introduction 1
1.1. Monitoring . 3

1.2. Cyber-Physical Systems . 4

1.3. Conventional Monitoring Meets CPS . 6

1.4. Monitoring CPS with RTLola . 8

1.5. Contributions . 9

1.6. Publications . 14

2. The RTLola Specification Language 17
2.1. Language Design . 19

2.1.1. RTLola by Example . 19

2.1.2. Design Maxims . 27

2.2. Syntax . 31

2.2.1. Type Annotations . 31

2.2.2. Streams . 33

2.2.3. Expressions . 34

2.2.4. Desugaring . 37

2.2.5. Stream Notation . 41

2.3. Supportive Type System . 42

2.3.1. RTLola Types . 45

2.3.2. Lattices . 46

2.3.3. Atomic Type Lattices . 46

2.3.4. Timeline Type Lattice . 52

2.3.5. RTLola Type Lattice . 53

2.3.6. Type Inference . 53

2.4. Semantics of Monitors . 61

2.4.1. Semantics of RTLola . 62

2.5. Specification Analysis . 70

2.5.1. Dependency Graph . 70

ix

2.5.2. Well-Definedness . 71

2.5.3. Evaluation Order . 78

2.5.4. Memory Bounds . 79

2.6. Implementation . 82

2.6.1. Frontend . 82

2.6.2. Backends . 83

2.7. Empirical Evaluation . 85

2.7.1. Parser . 85

2.7.2. Type Inference . 85

2.7.3. Well-Formedness . 86

2.7.4. Evaluation Order . 86

2.7.5. Memory Bounds . 88

2.7.6. Interpreter . 88

2.8. RTLola in Practice . 91

2.8.1. Further Application Areas . 91

2.9. Related Work . 93

2.9.1. Previous Versions of RTLola . 95

3. Monitor Realizations 97
3.1. Hardware Compilation . 100

3.1.1. Preliminaries and Notation . 100

3.1.2. Structure . 101

3.1.3. Timing Manager . 103

3.1.4. Evaluation Manager . 111

3.1.5. Synthesizer . 121

3.1.6. Performance . 122

3.1.7. Related Work . 126

3.2. Software Compilation . 128

3.2.1. Stripping the RT off RTLola . 128

3.2.2. Specification Analysis . 131

3.2.3. Code Generation . 133

3.2.4. Verification . 136

3.2.5. Concurrent Stream Evaluation . 140

3.2.6. Experimental Evaluation . 142

3.2.7. Recapitulation . 147

3.2.8. Related Work . 148

4. Conservative Model Generation 151
4.1. Preliminaries and Notation . 153

4.1.1. Convex Geometry . 153

4.1.2. Hybrid Automata . 153

4.2. Motivation . 158

x

4.3. Constructing Conservative Automata . 162

4.3.1. Extracting Discrete Information from the Specification 162

4.3.2. Extracting Continuous Information from Traces 164

4.3.3. Merging Modes . 166

4.3.4. Construction Algorithm . 169

4.4. Correctness of the Construction . 171

4.4.1. Requirements on Input Data . 171

4.4.2. Projection Automata . 173

4.4.3. Construction Guarantees . 174

4.5. Experiments . 178

4.5.1. Aircraft System . 178

4.5.2. Scalability . 178

4.5.3. Comparison Against Other Approaches 180

4.6. Recapitulation . 184

4.7. Related Work . 185

5. Conclusion 187
5.1. Future Directions . 188

A. Appendix 209
A.1. Preliminaries . 209

A.1.1. Sequences and Partitions . 209

A.1.2. Miscellaneous . 210

A.1.3. Sliding Window Aggregations . 211

A.2. Software Compilation: Full Output . 214

A.2.1. Memory and Ghost Memory . 214

A.2.2. Emission and Retrieval . 216

A.2.3. Stream Evaluation . 216

A.2.4. Lola Specifications for Software . 220

A.3. Conservative Automata: Input Traces . 221

xi

Chapter 1
Introduction

Long gone are the days in which computers merely transformed data back and forth,

isolated from their surroundings. Nowadays, they are connected to the physical world,

gathering data about their environment via sensors, and actively influencing it via actua-

tors. This development allows these systems, commonly referred to as Cyber-Physical

Systems (CPS), to take over increasingly complex and significant tasks, like governing

power plants, stimulating cardiac rhythms, and controlling autonomous aircraft. While

this advances humanity and increases quality of life, it also forces developers of such

systems to assume great responsibility. In response to this development, experts from

both engineering and computer science started to define increasingly intricate safety

standards [Rtc11; Iso18; Nas20]. Compliance with these standards is mandatory for

safety-critical systems such as aircraft to be approved by independent certification

authorities like the European Union Aviation Safety Agency or the Federal Aviation

Administration. Not only does this compel developers to implement immediate safety

measures such as additional layers of redundancy, it also requires them to follow a

strictly controlled development process. This encompasses regular code audits, several

independent implementations for single safety-critical components, and thorough docu-

mentation. As a result, safety measures need to be effective, and their efficacy needs to

be convincingly attested, placing special emphasis on reliability and certifiability.

One step in this direction is the employment of online runtime verification tech-

niques [Kim+99; Lee+99; HG05; LS09; BF18]. This entails deployment of an independent

component — the runtime monitor — solely responsible for observing the system at

runtime, assessing information regarding its current state, and judging its safety. The

monitor is automatically generated from a specification, i.e., a description of either the

desired behavior or potential error scenarios. It both directly and indirectly contributes

to the certifiability of the overall system. Since the monitor is an independent component,

it per se constitutes an additional, redundant safety measure. Moreover, the certification

authority does not need to understand the concrete details of the monitor but rather of

1

1. Introduction

the more abstract specification. Yet, to be applicable in real-world systems, a monitoring

approach needs to satisfy several criteria specific to CPS monitoring.

For this reason, this thesis identifies two categories of such criteria and presents the

language and monitoring toolkit RTLola specifically designed to fulfill these requirements.

First, since the CPS is subject to strict resource limitations, so is the monitor. In

particular, this resource consumptionhas to be statically bounded. Second, the underlying

specification language needs to be sufficiently, but not overly, expressive. This entails that
specifiers can express both low-level properties like the validation of single sensors, or

cross-validation thereof. At the same time, it needs to capture mission-level properties

such as the mean deviation from a pre-planned trajectory. This requires the language to

enable the collection of statistical information regarding the performance of the system

as a whole. However, this expressiveness must not jeopardize the bounds on the resource

consumption, nor must it affect the third criterion: trust. Here, trust is an umbrella

term for factors increasing confidence in the effectiveness and correctness of the monitor

and its underlying specification. To this end, the specification language has to assist the

specifiers, enabling both a manual and an automatic analysis. On the manual end, a

language with a comprehensible syntax allows for detecting errors quickly. Additionally,

RTLola generates a graph representation of the textual specification. This illustrates the

dependency structure between entities occurring in the specification, enabling specifiers

to quickly identify unwanted or missing links.

Moreover, an RTLola specification undergoes an automatic static analysis. It first checks

and infers types of streams. Streams are the basic building blocks of RTLola: input streams

represent information from data sources and output streams state how the input data

is supposed to be processed. Each stream has a type based on RTLola’s intricate type

system. In addition to conventional type constraints, the type system examines if the

temporal behavior of the monitor is consistent. While the rules for these checks are

complex, a positive result increases confidence and the output of the type inference can

easily be verified manually, further increasing certifiability and trust. The second check

ensures that the specification is sound, i.e., given a fixed execution of the system, there is

a unique evaluation model for the specification. The last check determines how much

memory the monitor for the specification needs in the worst case. This not only allows it

to entirely forgo expensive dynamic memory allocation, which is a common requirement

for embedded components, it also allows developers to validate statically whether the

available resources suffice, further increasing trust.

Another core contribution of this thesis are realization options for RTLola monitors,

one targeting hardware and one targeting software. A compilation to hardware allows

monitors to fully utilize the modularity of RTLola specifications via employing a pipelined

architecture. This drastically increases throughput of themonitor. Moreover, the compiler

generates a hardware description which a commercial off-the-shelve synthesizer realizes

onto a hardware board. This process comprises another analysis determining crucial

information regarding the performance of the monitor. It includes the consumption of

2

1.1. Monitoring

hardware resources like lookup tables and memory cells, plus the idle and peak power

consumption. The software compiler, on the other hand, is a verifying compiler, i.e., it

injects verification annotations into the code. This enables the static verification of the

monitor proving that its verdicts agree with the theoretical evaluation model. This, yet

again, benefits trust and certifiability.

Evidently, the design of RTLola revolves around providing a reliable runtime monitor

approach with an expressive specification language and low, statically determined

resource consumption. This renders it well-suited for an integration into practical and

industrial applications. The endeavor already came to fruition: RTLola was successfully

deployed for a test flight on an autonomous aircraft of the German Aerospace Center.

Moreover, recent work integrates RTLola monitors into aircraft from a leading German

manufacturer of electric multicopters for use as air taxis.

1.1. Monitoring

In early forms of runtime verification, the monitor and the system were tightly coupled,

a setup called internal monitoring. In aspect-oriented programming [Kic+97; HJ08; HV08], Internal Monitoring

for example, the specification is part of the code, though separated from the business

logic. Here, instrumentation directives are embedded in the executable code and the

monitor runs in tandemwith the control code. This grants the monitor deep insights into

the internals of the control logic and reduces communication overhead to a minimum.

In an alternative setup, the monitor is a separate component: external monitoring. External Monitoring

This component is either handwritten in a general purpose programming language, or

generated from a formal specification language. For the latter, the dominating portion

uses a temporal logic [HR02; Eis+03]. Here, logics with a discrete time model like Linear Discrete Time

Temporal Logic (LTL) [Pnu77] or the Property Specification Language PSL [05] allow for

automatically constructing a finite state monitoring automaton [Dru00; HR02; FS04;

Dah+05; RH05; BLS07; LF07; BZ08; FK09; BLS11; Mas+20]. While the complexity of

constructing the automata is high, the results are inherently space- and time-bounded.

Other common specification formalism are rules [Bar+04; BRH10] or (timed) regular

expressions [ACM02; SR03; Ulu17].

Over time, extensions of these temporal logics arose capturing continuous real time Real Time

rather than a discrete model of time. Prominent examples are Signal Temporal

Logic (STL) [DFM13b; WS20] and Metric Temporal Logic (MTL) [TR05] with a variety of

dialects incorporating time series [Dru03] or components of a first-order logic [Bas+15;

Sch+19]. While there are efficient monitoring algorithms for these languages, they are

no longer based on finite state automata.

Another area of monitoring is concerned with quantitative properties. The meta event Quantitative

Monitoring
definition language [Lee+99], for example, is similar to PSL but has arithmetic capabilities.

Similarly, there are quantitative extensions for STL [DM10; DFM13a; Des+17; ZJP21]

or MTL [FP06; FP09; BKT17; Alq+18; Jak+18; CM20]. These approaches estimate how

3

1. Introduction

much a given input violates or satisfies the specification. This constitutes a measure of

robustness of the satisfaction or violation.

A common property of all aforementioned approaches is that they ultimately generate

a single albeit quantitative verdict for a given trace. In contrast, stream runtime verificationStream Runtime

Verification
generates verdicts repeatedly. The Lola [DAn+05] stream-based specification language

for synchronousmonitors is a pioneer in this category. As such, it is a monitoring-specific

variant of the widely and industrially used synchronous programming languages [Ber16]

Lustre [Hal+91; Hal05; Bou+17] or Esterel [BG92]. A result of this synchronous paradigm

is that the monitor generates a verdict for each element of the input trace, i.e. for each

event. Here, an event is a tuple with fixed arity of atomic input values. These values

correspond to input streams in the Lola specification. The specification also contains

output stream declarations with arithmetic expressions over other streams. The monitor

evaluates the expression to obtain the verdict.

About a decade after Lola’s inception in 2005, several extensions emerged in quick

succession. First, Lola 2.0 [Fay+16] adds dynamic stream creation to the language,

enabling the monitoring of networks. Recently, HLola [CGS20; GS21] connected Lola to

the Haskell ecosystem. Soon after Lola 2.0, three conceptually similar languages followed:

RTLola [Fay+17; Fay19; Sch19a], Striver [GS18], and TeSSLa [Con+18a; Leu+18]. The former

is the direct predecessor of the language presented in this thesis. All three languages

stay true to the stream concept, but extend it to real time and an asynchronous execution

model.

Asynchrony has different meanings in monitoring. In this thesis, it covers two facets:Asynchrony

First, neither does the monitor wait for data from the system nor vice versa. This is a

common consequence of external monitoring. Second, an event does not necessarily

cover every possible input at once. Classic example for the latter point are distributed

systems. These systems comprise several independent components. Even if all of these

components send regular updates towards a central unit, these updates might arrive at

different points in time. A potential source for this asynchrony is the lack of a common

clock, or transmission delays induced by bus arbitration. Here, the arbiter might defer

transmission of a message in favor of more pressing communication.

1.2. Cyber-Physical Systems

In a CPS, the continuous real world and discrete digital world are intertwined. A CPS

assesses information about its surroundings by measuring physical quantities like the

air pressure or its own acceleration via sensors. These sensors broadcast their data over

a bus where it eventually reaches digital control units. They process the data and make

decisions based on it. Such a decision is translated into instructions, and subsequently

sent to actuators. These actuators execute the command thereby actively influence

the real physical world. This structure of CPS and their relation to both the physical

4

1.2. Cyber-Physical Systems

and digital world renders them a special kind of system with particular challenges for

monitoring.

First, CPS are inherently distributed systems, consisting of several components with Distributed System

varying responsibilities. For example, control units of peripherals, i.e., sensors and

actuators, disseminate measured data over a bus, or execute commands received over

a bus, respectively. These are low-level tasks, so the component deals with raw data

directly sampled for the peripherals. More abstract components combine, cross-validate,

and refine this raw data from multiple sources. The output of a GNSS/IMU component,

for example, is the amalgamation of data obtained from a Global Navigation Satellite

System such as GPS or Galileo, and an inertial measurement unit. This output then

constitute the input for high-level components such as navigation units and is used to

calculate trajectories necessary for completing the mission.

This already points to several requirements on the monitor. It has to deal with the

asynchronous nature of a distributed system and a specification has to capture both

low-level andmission-level properties. The latter point also entails that the language needs

to provide means to deal with physical quantities and real time.
Second, components of a CPS underlie strict resource limitations. While the extent Resource Limitations

of these limitations depends on the concrete systems, cost is generally a factor. For

this reason, components run on slow hardware with little memory. Other factors are

the space and power consumption for mobile systems like wearables, cars, or medical

implants, as well as weight for avionic application. As a result, the resource consumption

of the monitor needs to be manageable. This is a deliberately vague term, which becomes

more precise when taking the next point into account.

Third and last, CPS carry out task with enormous responsibility, ranging from stim-

ulating cardiac rhythms to governing nuclear power plants or steering autonomous

vehicles. This renders them safety-critical systems. Before such a system is allowed to Safety-Critical

operate, it is audited by an independent certification authority. This audit ensures that

the development abided by the appropriate safety standard. While there are several

umbrella standards covering larger industrial areas [Iec10; Nas20], there are also a

variety of domain specific ones. Famous examples are the DO-178 for aerospace [Rtc11],

DIN EN 50128 for the rail industry [Din06], ISO 26262 for road vehicles [Iso18], and IEC 62304

and 60880 for medical devices [Iec12] and nuclear power plants [Iec06], respectively.

This audit requires thorough documentation of all implemented safety features, their

development process and impact on the overall safety of the system. A key component

in the development of critical components is that major tasks such as the implementation

and verification are taken out by technically independent teams.
1

This is a form of

redundancy that improves overall safety and should thus also apply to monitoring. Here,

this results in the requirement that the monitor should be decoupled from the logic of

other components, in particular the ones it monitors.

1
See, for example, Nasa’s Software Assurance and Software Safety Standard §4.4.2.2a [Nas20].

5

1. Introduction

Another standard procedure in the development of components for CPS is the applica-

tion of type checkers, linters, and static analysis tools [Wic+95]. An excellent example forStatic Analysis

the significance of tool support is the programming language C. In embedded systems,

C is the dominant language because of its performance, the fine-grained control it

provides, and an environment of approved tools such as certified compilers. This is

despite evident problems: the language design is highly permissive and provides little

support to the programmers regarding safety or confidence. This permissiveness allows

for code without defined behavior; a committee draft of an ISO/IEC standard [II10]

for C in 2010 listed nearly 200 such scenarios [NA18]. Hence, there are endeavors to

provide alternatives to C for the development of new safety-critical systems such as

Ada, its language subset Spark or recently Ferrocene, a language subset of Rust
2
. Yet,

the prevalence of C stems from the excellent tool support, which is itself a consequence

of C’s prevalence. As a result, it proves difficult to break the spiral and transition to a

different language.

Runtime monitoring can learn from this example by avoiding the problems of C and

ingraining the remedies, i.e., the static analysis tools, right into the language. Hence,

the requirement on a specification language for CPS is that it has a formal semantics

and is analyzable statically. The possibility to analyze a specification also affects the

last point regarding safety: performance reliability. Recall the vague requirement of

manageable resource consumption. While the exact dimensions depend on the specific

domain and system, it is imperative that specifiers have information regarding the

runtime performance statically. Concretely, whether a memory consumption of 2GB is

acceptable depends on the system, but the mere fact that there is a statically determined

upper bound on the memory consumption is mandatory. The same idea applies to other

resources.

1.3. Conventional Monitoring Meets CPS

After identifying essential criteria for runtime monitors for CPS, the question is to what

extent existing approaches satisfy them.

The first set of criteria concern the expressiveness and underlying model of time. Since

CPS interact with the real, physical world, a monitor needs to express real-time properties

over physical quantities. This excludes the range of discrete time and non-quantitative

specification languages, even though they excel for short, abstract specifications like

“every request needs to be granted eventually”. Moreover, synchronous languages are

inapt due to the distributed nature of CPS.

The resource constraints demand a static bound on the memory consumption. As a

result, monitoring approaches with linear space complexity in the length of the input

trace are not applicable. This either excludes real-time logics like STL or MTL, or it severely

limits them as can be seen when considering the property x =⇒ F[0,3]y. It states that

2https://ferrous-systems.com/ferrocene/; last accessed: 01.02.2022

6

https://ferrous-systems.com/ferrocene/

1.3. Conventional Monitoring Meets CPS

an event y needs to follow within at most 3 second after an event x. This forces the

monitor to memorize the timestamps of each x to ensure that a y followed in time. Yet,

the number of xs in 3 seconds is unbounded, thus so is the memory consumption.

Similarly, monitoring approaches with unpredictable running time performance need

to be rejected. Here, the constant space complexity already indicates that the running

time per event will be constant as well. However, a monitor is not necessarily a purely

reactive component. Languages like Striver, TeSSLa, or Faymonville’s RTLola enable

both exogenous computations, i.e., a reaction to inputs received from the system under

observation, or endogenous computations, i.e., computations unprompted by the system.

For Striver and RTLola, these endogenous computations are controlled in the sense that

there is an a priori bound on the number of endogenous computations per real-time

second. This is not the case for TeSSLa, which allows specifiers to define Zeno
3
behavior.

In contrast, endogenous computations in RTLola are isochronous, i.e., they occur at

statically predefined points in time, and Striver explicitly excludes Zeno behavior.

What is left are further safety concerns. First, internal monitors violate the technical

independence between control components and the monitor. Figure 1.1 illustrates an

example architecture for internal and external monitors. Since internal monitors operate

on the same physical object as the control logic, they are inherently coupled and thus

influence each other. Moreover, internal monitoring requires annotations in the code

of the controller. These are either explicit inline assertions or contracts regarding the

behavior of logical components such as functions. The latter case constitutes a looser

coupling since the business logic is separate from the monitor annotations. However,

changes to the controller also require changes to the monitor, hindering technical

independence. Hence, while internal monitoring is undoubtably valuable for monitoring

singular components, their deployment is complementary to the comprehensive monitor

for the CPS.

A key element of safety and certifiability is that a specification must be clear and

comprehensible. This is a notoriously subjective topic when it comes to programming

languages. However, while logics work well for short properties or a conjunction of

multiple short properties, they become increasingly opaque the more complex properties

grow. This is particularly true when nesting is involved. Programming languages

and specification language with a clear syntax like TeSSLa are generally preferable for

large-scale properties.

A counterpoint is the option to analyze a language automatically, where the roles

are reversed. Logics usually have a low number of base operations, which is great for

arguing about them. Programming languages on the other hand have a significantly

greater number of base operations. Moreover, languages with imperative aspects allow

for functions with side effects. This renders automatic analysis exceedingly hard. While

stream-based specification languages are syntactically similar to programming languages,

they are generally more restrictive. For example, streams are not necessarily independent

3
A system is Zeno if it attempts to complete an infinite amount of actions in a finite amount of time.

7

1. Introduction

Control Line

Data Line

Sensors Navigation

Internal

Monitor

Control

Internal

Monitor

Ext. Monitor

Power

Supply

Engine

Power

Supply

Power

Supply

Figure 1.1.: Example system architecture with an external and two internal monitor

components. While the internal monitors reside in the navigation and in the

control unit, the external one constitutes a separate component. It passively

listens to information communicated over the bus. When it identifies a

contingency, it either raises an alarm over the bus or over a direct line to the

controller.

of each other, but they are inherently modular and cannot implicitly affect each other

due to a lack of side effects. As a result, while analyzing such specification languages

is less convenient than logics, it is still manageable. Though, for the aforementioned

languages, such analyses are not stable, yet.

1.4. Monitoring CPS with RTLola

The last section has shown that the current state of the art features several monitoring

approaches with different advantages and drawbacks regarding their applicability to

CPS. Yet, neither of them perfectly fits this niche. For this reason, this thesis presents

the specification language RTLola with an accompanying static analysis and realization

options. All three components are specifically designed to fit into the niche of monitoring

CPS.

RTLola is an asynchronous real-time stream-based specification language syntactically

similar to programming languages. It is both expressive and comprehensible, focusing on

clarity over brevity. For this, it provides primitives for common arithmetic operations and

grants specifiers precise control over the temporal behavior of the monitor. This control

allows timely exogenous computations, regularly scheduled endogenous computations,

and a mix of both. The latter allows for real-time related reactions like “ensure path

planning produces a trajectory after at most two minutes”. Here, the monitor needs

8

1.5. Contributions

to start a two-minute timer (endogenous) right after the path planner started to work

(exogenous).

Ingrained into the language is a static analysis. This analysis consists of an intricate

type system, an analysis of the memory consumption, and a check for inconsistencies

in the specification. Part of a type check is to determine which stream accesses can

statically be guaranteed to succeed and which potentially do not. It then demands

specifiers to supply default values for fallible accesses, compelling them to cover corner

cases. Moreover, it issues a warning when a default value is superfluous since this

points to a mismatch between specification and intention. The analysis of the memory

consumption enables specifiers to verify statically that the available memory suffices to

host the monitor. It also enables the monitor to forgo expensive and fallible dynamic

allocation — a common requirement for embedded devices.

Further, there are realization options for a specification. The first one generates a

hardware description of a monitor. This description is then synthesized onto a hardware

board with a commercial off-the-shelve synthesis tool. During this process, the tool

generates an additional report regarding the resource consumption of the monitor. In

particular, it states the maximum power consumption and determines statically whether

the available hardware board is sufficient to host the monitor. The second realization is a

verifying compiler. It injects verification annotations into the generated Rust code. These

annotations enable an off-the-shelve static verification tool to prove the monitor correct

with respect to the theoretical underlying semantics of the specification language.

This renders RTLola perfectly suited for this niche of monitoring thanks to its expres-

siveness, analyzability, and resource awareness.

1.5. Contributions

For this reason, this thesis presents a runtime verification approach that is expressive

and performant enough for the application in real-world CPS and boosts reliability and

certifiability.

Chapter 2: RTLola To this end, the thesis introduces the RTLola specification language

and discusses its design principles as well as their effect. These principles guide design

decisions to obtain a language with the following key characteristics:

• The language is comprehensible. Tough the specification is designed by dedicated

experts, its quintessence is easy and quick to grasp for other developers and

certification authorities.

• The language design guarantees that specification can bemonitoredwith a bounded

amount of memory plus the computation time for processing single events is

bounded.

9

1. Introduction

• The language supports specifiers by offering declarative language primitives, pre-

vention of side effects through modularity, and reducing superfluous information

such as boilerplate code.

The language also allows for dynamic stream creation and filtering, plus it lifts the

restriction on isochronous computations.

Ingrained in the language is an intricate static type system. This type system increases

confidence in the specification since it ensures an internal consistency by catching

specification errors. Beside classic type errors
4
prominent in programming languages, it

also captures timing errors. In particular, it classifies value access operations as fallible

and infallible depending on whether the monitor can verify that the value is present at

the time of access. If not, the type system requires specifiers to supplement default values.

This is a similar concept to optional types in programming languages. Here, a fallible

operation returns a value of type Option<T> rather than T. This forces programmers

to either supply recovery code or risk a runtime error. However, in RTLola, specifiers

are not allowed risk runtime errors because a crashing monitor is not an option in

safety-critical CPS. Yet, to prevent excessive error handling, the type system statically

determines whether operations succeed invariably. If so, no error handling is required.

This imposes a certain complexity onto the type system, rendering type annotations

extensive. As a counter measure, this thesis also introduces type inference, which allows

users to omit almost all type annotations.

In addition to the type checker, this thesis presents two more static analyses. The

first one is a well-formedness analysis, which determines whether a specification has a

unique semantics. This is necessary due to the declarativeness of RTLola specifications.

While they provide convenience for specifiers, they can also lead to the absence or

abundance of models for a specification. The second static analysis determines the

memory requirement of the monitor. This has two major consequences. First, the

monitor does not require expensive dynamic memory allocation, which is a potential

point of error when attempting to allocate memory after depleting the available one.

Second, specifiers can determine whether the available hardware can host the monitor

pre-deployment.

The discussion of the language concludes with an empirical evaluation of the open

source implementation of RTLola and an overview over application areas in which RTLola

was successfully deployed.

Hence, the contributions can be summarized as:

• Section 2.1.2: A list of language design maxims for specification languages for: Sec. 2.1.2, p. 27

safety-critical cyber-physical systems.

• Section 2.2 The syntax of the RTLola specification language with dynamic stream: Sec. 2.2, p. 31

creation and filtering both in regular and desugared form.

4
Common examples are attempts to multiply strings or dereference boolean values.

10

1.5. Contributions

• Section 2.3: A type system for RTLola which allows for identifying fallible and : Sec. 2.3, p. 42

infallible stream accesses.

• Section 2.4.1: The formal semantics of RTLola. : Sec. 2.4.1, p. 62

• Section 2.5.1: The definition of a dependency graph for RTLola specification. : Sec. 2.5.1, p. 70

• Section 2.5.2: The formulation of a syntactic criterion for well-formedness of : Sec. 2.5.2, p. 71

RTLola specification and a proof that this criterion implies the semantic criterion of

well-definedness, i.e., the existence and uniqueness of an evaluation model.

• Section 2.5.3: The definition of an evaluation order for RTLola which generates the : Sec. 2.5.3, p. 78

aforementioned model plus a constructive proof of its existence.

• Section 2.5.4: An algorithm determining the memory bounds of an RTLola specifica- : Sec. 2.5.4, p. 79

tion.

• Section 2.7: An empirical evaluation of the implementation covering the parsing : Sec. 2.7, p. 85

of a specification, as well as all of its analysis steps, and the performance of an

interpreter.

• Section 2.8: A showcase of the application areas in which RTLola was successfully : Sec. 2.8, p. 91

deployed.

Chapter 3: Realizations While this provides an excellent theoretical foundation for

monitors for CPS, a concrete realization is fundamental for the integration into a system.

To this end, this thesis presents two compilers, one targeting hardware and one targeting

software.

The first one consists of a mathematical formulation of a monitor for an RTLola

specification. This formulation then translates to a hardware description language, based

on which the prototype implementation generates code in the hardware description

language VHDL. This description is then synthesized onto a field-programmable gate

array (FPGA).

Hardware solutions have dramatic advantages over software-based solutions, as they

are generally faster and consume less power. The exact values vary depending on the

specification, yet, an empirical evaluation revealed that an RTLola hardware monitor

for an aircraft requires as little as 0.121W when idle and 1.620W under peak pressure.

In comparison, under the same conditions a Raspberry Pi Model 2 requires 1.1W and

2.1W.
5

A particular source of improvement is the synergy between the inherently

parallel nature of hardware, and the modular design of RTLola specifications. This allows

for employing a pipelined and concurrent structure, i.e., the monitor processes several

events and several sub-tasks of the same event at once. This results in a 91% increase in

throughput with a negligible increase in power consumption of approximately 10mW.

5https://www.pidramble.com/wiki/benchmarks/power-consumption; last accessed: 01.02.2022

11

https://www.pidramble.com/wiki/benchmarks/power-consumption

1. Introduction

The second compiler generates Rust code for a monitor.
6
The generated code is highly

efficient, exceeding the performance of an interpreter executed on the same hardware

by orders of magnitude. While this is interesting per se, the major novelty is that

the compiler is a verifying compiler. As such, it addresses the question of whether

one can trust the monitor. The complexity of this issue scales with the complexity of

the specification and expressiveness of the underlying specification language. An LTL

formula, for example, is translated into a finite state machine. While the translation is

non-trivial, the correspondence of the automatonwith the specification is comprehensible.

For more complex languages, this connection grows opaque.

There are several approaches tackling this problem. One option is to verify the compiler

itself, as has been done for the synchronous programming language Lustre [Hal+91;

Hal05; Bou+17]. As a result, after successful verification, every output of the compiler

is immediately trustworthy. However, the verification of the compiler is exceedingly

difficult compared to the verification of the result. Plus, every change to the language or

output generation warrants a repetition of the effort.

Verifying compilers are a contrary approach. They exploit the fact that the compiler has

intimate knowledge regarding the semantics of the specification language. This enables it

to inject verification annotations or proof artifacts into the output [NL98b; App01; Nec02;

Hoa03; Her+05]. These annotations then guide an automatic verification process. As a

result, verification scales significantly better and thus succeeds for programs normally

resulting in a timeout or inconclusive results. In the context of runtime monitoring,

this approach was successful in proving absence of arithmetic error and undefined

behavior [Pik+10] via bounded model checking. The compilation presented in this

thesis proves functional correctness in the sense that the semantics of the Rust monitor

coincides with the theoretical model and termination of every evaluation cycle. For

the actual proof, the compiler uses the Rust-specific Prusti [Ast+19] frontend of the

Viper [MSS16] verification framework.

This yields the following contributions:

• Section 3.1 A mathematical description of a pipelined hardware monitor for RTLola: Sec. 3.1, p. 100

specification with dynamic stream creation.

• Section 3.1.6 An empirical evaluation covering the hardware resources required for: Sec. 3.1.6, p. 122

the realization, the throughput, and power consumption.

• Section 3.2 A compiler translating a Lola specification into sequential or concurrent: Sec. 3.2, p. 128

Rust code with verification annotations.

• Section 3.2.6 An empirical evaluation of the feasibility of the verification and the: Sec. 3.2.6, p. 142

performance of the generated monitor.

6
Note that this translation considers Lola instead of RTLola.

12

1.5. Contributions

Chapter 4: Conservative Hybrid Automata The last part of this thesis showcases how

the design of a runtime monitoring specification assist in subsequent parts of the

development process. The core of this work is an algorithm generating a model for a

system out of development artifacts. These artifacts are the RTLola specification plus

execution traces of the system, which are the result of test runs. The generated model is

conservative, i.e., it is a provable over-approximation of the system under several realistic

assumptions on the inputs. This model can then be used in a variety of following steps,

like further analysis of the system, or for predictive measures at runtime.

Hence, the contributions are:

• Section 4.3: The automatic generation of a hybrid model for a system based on an : Sec. 4.3, p. 162

RTLola specification and traces of test runs.

• Section 4.4: A list of requirements on the input data plus a proof that these : Sec. 4.4, p. 171

requirements ensure that the generated automaton is an over-approximation.

• Section 4.5: A case study showing the scalability of the approach and the quality : Sec. 4.5, p. 178

of the constructed automaton even for low-quality traces.

13

1. Introduction

1.6. Publications

This thesis is based on several peer-reviewed publications that arose from joint work

with my colleagues and advisor. The following list contains all essential publications.

StreamLAB: Stream-based Monitoring of Cyber-physical Systems
Peter Faymonville, Bernd Finkbeiner, Malte Schledjewski, Maximilian Schwenger, Marvin
Stenger, Leander Tentrup, and Hazem Torfah
In Proceedings of the 31

st
International Conference on Computer Aided Verification

2019 [Fay+19a].

FPGA Stream-Monitoring of Real-time Properties.
Jan Baumeister, Bernd Finkbeiner, Maximilian Schwenger, and Hazem Torfah
Published in Transactions on Embedded Computer Systems 2019, presented at the

International Conference on Embedded Software 2019 [Bau+19a].

Verified Rust Monitors for Lola Specifications
Bernd Finkbeiner, Stefan Oswald, Noemi Passing, and Maximilian Schwenger
In Proceedings of the 20

th
International Conference on Runtime Verification

2020 [Fin+20].

Monitoring Cyber-Physical Systems: From Design to Integration
Maximilian Schwenger
In Proceedings of the 20

th
International Conference on Runtime Verification [Sch20].

Real-time Stream Monitoring with StreamLAB
Peter Faymonville, Bernd Finkbeiner, Malte Schledjewski, Maximilian Schwenger, Leander
Tentrup, Hazem Torfah
Presented at the 4

th
Workshop on Monitoring and Testing of Cyber-Physical

Systems at CPSWeek 2019 [Fay+19b].

On the Similarities of Aircraft and Humans: Monitoring CPS with StreamLAB
Jan Baumeister, Bernd Finkbeiner, Maximilian Schwenger, and Hazem Torfah
Presented at the CyberCardia Workshop at ESWeek 2019 [Bau+19b].

Conservative Hybrid Automata from Development Artifacts
Niklas Metzger, Sanny Schmitt, and Maximilian Schwenger
Published on ArXiv [MSS21]; not peer-reviewed.

In addition to these, there are several publications that emerged in the context of this

thesis. While not being an essential part of it, they helped shape the thesis to what it

ultimately became.

RTLola Cleared for Take-Off: Monitoring Autonomous Aircraft
Jan Baumeister, Bernd Finkbeiner, Sebastian Schirmer, Maximilian Schwenger, and
Christoph Torens
32

nd
International Conference on Computer Aided Verification 2020 [Bau+20a].

14

1.6. Publications

RTLola on Board: Testing Real Driving Emissions on your Phone
Sebastian Biewer, Bernd Finkbeiner, Holger Hermanns, Maximilian A. Köhl, Yannik
Schnitzer, and Maximilian Schwenger
In Proceedings of the 27

th
International Conference on Tools and Algorithms for

the Construction and Analysis of Systems [Bie+21].

Robust Monitoring for Medical Cyber-Physical Systems
Bernd Finkbeiner, Andreas Keller, Jessica Schmidt, and Maximilian Schwenger
Proceedings of the Workshop on Medical Cyber Physical Systems and Internet of

Medical Things 2021 [Fin+21].

Simplex Architecture Meets RTLola
Bernd Finkbeiner, Jessica Schmidt, and Maximilian Schwenger
Presented at the 5

th
Workshop on Monitoring and Testing of Cyber-Physical

Systems at CPSWeek 2020 [FSS20].

Automatic Optimizations for Runtime Verification Specifications
Jan Baumeister, Bernd Finkbeiner, Matthis Kruse, Stefan Oswald, Noemi Passing, and
Maximilian Schwenger
Presented at the 6

th
Workshop on Monitoring and Testing of Cyber-Physical

Systems at CPSWeek 2021 [Bau+21].

15

Chapter 2
The RTLola Specification
Language

A monitor is generated from a formal specification. This puts the specification language

in the center of the process. It details information on what constitutes either a safety

violation or the desired behavior of the system. These properties need to be expressed

in a specification language that can be translated into an executable artifact such as

programmable hardware (cf. Section 3.1) or executable code (cf. Section 3.2). The : Sec. 3.1, p. 100

: Sec. 3.2, p. 128specification is grounded in a stream-based model, i.e., rather than receiving a single

input value and computing a single output value, the monitor operates on a stream. Stream

This means, the monitor receives a sequence of values peu à peu and provides an

appropriate verdict at various points in time. Though there is a wide selection of

potential specification languages, they can be roughly sorted onto a scale ranging from

highly formal languages to “informal” programming languages.

Prominent examples on the formal end of the spectrum are temporal logics such as Temporal Logics

Linear Temporal Logic [Pnu77] (LTL), Signal Temporal Logic [MN04] or Metric First-

Order Temporal Logic [Cho95]. For some of them, their original definitions assume

accesses to the entire input at once. However, there are alternative algorithms not

relying on this assumption, which generate multiple verdicts during the execution of

the monitor rather than only one at the end [MN04; BLS11; DFM13b; Bas+15; Mas+20].

These languages allow for automatic translation into executable monitors with precise

knowledge regarding their performance. An LTL specification, for example, can be

transformed into a finite state automaton [BLS11]. The automaton can then easily be

translated into executable code where both the exact memory consumption and the

number of instructions required for the reception of a new input is statically determined.

While these are optimal conditions for a safety-critical component, the expressive power

of LTL and similar logics is severely limited. Generally, formal languages excel when

dealing with short, abstract specification like “Every request must be answered” or

17

2. The RTLola Specification Language

“The aircraft must land within three time units”. However, they are inadequate when

specifying complex quantitative properties.

On the other extreme end of the spectrum lie general-purpose programming languages.Programming

Languages
They excel in terms of expressiveness, enabling specifiers to formalize any kind of

property. However, analyzing their dynamic behavior statically poses an enormous

challenge due to the state space explosion problem. Moreover, expressing properties

directly in code is more explicit and less abstract than in logics. For example, the

LTL formula Fp requires that the event p occurs at some point of the execution. The

specification leaves details open regarding when exactly the event occurs, as well as how

to check the validity of the property. A representation in code is comparatively verbose

and specific, for example:

typedef enum verdict { Sat, Undecided } Verdict;

enum ap { p, ... };

Verdict check_Fp(bool *event) {

static verdict last_verdict = Undecided;

if event[p] {

last_verdict = Sat;

}

return last_verdict;

}

This is unproblematic if the code is final, i.e., it will be deployed on the system as is.

However, specifications are usually designed and validated early in the development

process when they are still subject to change. In this case, regularly adapting and revising

large chunks of the monitor code is costly.

Dedicated specification languages such as RTLola attempt to eradicate problems of eitherSpecification

Language
of these options, hence occupying a sweet spot on the scale. For this, they provide

specifiers an abstract view on the specification, establish a safe framework suitable for

the development of safety-critical systems, and provide sufficient expressiveness to be

applicable for cyber-physical systems. They are particularly useful for large, low-level,

system-wide specification.

The remainder of this chapter introduces the RTLola language. After providing an

intuition into the language, it defines its syntax, the rationale behind its design, as well

as its type system and an analysis of a specification. Next, it presents an empirical

evaluation of the RTLola toolkit and outlines projects, in which it was practically used.

Last is an outline of related work. This in particular compares the version of RTLola

presented in this thesis against earlier versions, most notably the one presented by

Faymonville in 2019 [Fay19].

18

2.1. Language Design

2.1. Language Design

One of the design principles of RTLola is to be easy to understand. Embracing this

decision, it is best to understand the language by considering examples.

2.1.1. RTLola by Example

In essence, an RTLola specification declares inputs and states how to transform them into

outputs.

input lon: Float64

input lat: Float64

output distance_to_zero := sqrt(lon**2 + lat**2)

Due to syntactic similarity with programming languages, one can immediately grasp

the gist of the specification. A monitor for it waits on two input streams, which carry the

current longitude and latitude of the system. Upon reception of these values, it computes

the distance to zero via the Pythagorean theorem. Note that the monitor assumes the

inputs to operate on a common global clock.

RTLola has a strong static type system with type inference. This can be seen in the

type annotations of both input streams, which renders them 64-bit wide floating point

numbers. The output stream lacks a type annotation. This is valid because its type can

be inferred: The square root function has the polymorphic type sqrt〈T : Float〉 : T → T

meaning that the input needs to be arbitrary type representing floating point numbers. If

this is the case, then the output carries the same type as the input, rendering the output

stream in the specification of type Float64 as well.

This type system only argues about the shape of values. This is sufficient for pro- Value Type

gramming languages, yet, there is another, more critical dimension for RTLola due to

its stream-based nature: time. The first facet of time is the questions of synchrony. For (A-) Synchrony

this, recall the specification above in which timing is intuitive: the monitor re-computes

distance_to_zero whenever it gets new values for lon and lat. However, since RTLola

operates in an asynchronous setting, inputs are independent, i.e., the monitor can receive

updates for each input at the same time or an arbitrary, non-empty subset thereof. Hence,

while the “and” in the timing of the monitor is natural, it is not imperative. The timing Conjunctive Timing

could as well be a disjunction, so the monitor re-computes the output whenever lon or Disjunctive Timing

lat is updated. Syntactically, the specification would look as follows:

input lon: Float64

input lat: Float64

output distance_to_zero @ lon∨ lat :=

sqrt(lon.hold(or: 0) ** 2 + lat.hold(or: 0) ** 2)

In this specification, the specifier explicitly states that they want the disjunctive timing

as per the @ lon ∨ lat annotation. Now suppose the monitor receives an update

19

2. The RTLola Specification Language

for lon without one for lat. A re-computation of the output requires the monitor to

have access to a value for lat. In the specification above, the specifiers declares that

it should resort to the latest value of the stream via a 0-order hold. Since this value is

potentially non-extant, RTLola requires the .hold syntax rather than defaulting to this

behavior. Moreover, the specification needs to contain a fall-back (or: 0) in case the lat

stream does not contain a value, yet. In summary, RTLola defaults to the more intuitive

conjunctive timing, and allows specifiers to opt in the disjunctive timing provided they

supply enough information for the execution.

Overriding default timing behavior gives specifiers a new dimension of control over

the monitor. Consider the following specification.

input time: Float64

input waypoint_reached: NoValue

output time_at_wp @waypoint_reached := time.hold(or: 0)

output time_for_wp @waypoint_reached := δ(time_at_wp)

There are two points of interest in the specification. First, the waypoint_reached stream

has value type NoValue. This brands the stream as purely temporal; its values arePurely Temporal

Streams
meaningless, their point of arrival only indicates when the system reached a waypoint.

And this information serves as clock for the output streams. Even though their values

solely depend on the time stream, the monitor evaluates them whenever the system

reaches a waypoint. Hence, time_at_wp carries the timestamp of the last waypoint

event and time_for_wp shows howmuch time passed between reaching two consecutive

waypoints.

For the computation for these streams, note that time_at_wp accesses the time stream

with a hold operation and provides a default value. This is necessary precisely because

the timing of the output is decoupled from the time input stream. On the other hand,

time_for_wp is computed at the same time as the stream it accesses, so there is no need

for a hold or default values. However, note that the expression invokes the δ function.

This is a shorthand notation for accessing the ultimate and penultimate value of the

target stream and computing the difference. If at least one of these values does not exist,

the difference is 0.

Periodic Streams

So far, the evaluation of all streams temporally depended on updates to input streams,

so-called events. However, there is a plethora of use cases where a monitor is supposed

to check a condition independent of events. Most trivially, consider a specification in

which a monitor checks whether a sensor ceases to generate readings. This would be

futile if the monitor only checks the condition upon reception of a sensor value. Hence,

consider the following specification monitoring a sensor which is supposed to produce

readings with 10Hz:

20

2.1. Language Design

input sensor: Int32

output readings_per_min @1Hz :=

sensor.aggregate(over_precisely: 1min, using: count).defaults(to:

600)

output sensor_faulty := readings_per_min < 590 ∨ readings_per_min >

610

Then, the first peculiarity is the timing annotation of 1Hz. Its effects meet the intuition:

the monitor evaluates readings_per_minute periodicallywith a frequency of 1Hz. The Periodic Stream

second peculiarity is the expression of the first output. Intuitively, rather than accessing

a set amount of values of the input stream, it aggregates — in this case: counts — all

values that were produced in the last minute. Such an aggregation is a sliding window Sliding Window

Aggregationaggregation. Appendix A.1.3 provides background information on how to handle them

:Appx. A.1.3, p. 211

efficiently and which aggregation functions are permitted.

There are two questions that come to mind: First, if there is an over_precisely

argument, is there an imprecise counterpart? Second, why does the expression require a

default value even though one would expect 0 as default for counting. Both questions

are related. The instruction over_precisely instructs the monitor to start the evaluation

only after the duration of the window, i.e., 1min, has passed. Hence, it will always

aggregate over precisely 1min.
When dropping the _precisely suffix, the aggregation starts immediately. As a result,

for a healthy sensor, the expected first aggregation result after a second would be 10.

However, this is an improper violation of the condition of the second output, which

constitutes a false positive. With the _precisely qualifier in place, the specifier has

to provide the default output up until one minute has passed. In this particular case,

the value of 600 is the expected number of readings per minute for a healthy sensor.

This means that the monitor assumes the sensor to work properly until presented with

evidence against this assumption.

There are two more things to note about timing annotations. First, the second output

does not require a timing annotation. Since it accesses the first output directly, RTLola

will infer both timings to be identical. Second, the periodic timing of the first stream is

mandatory, any event-based timing results in a type error. The reason behind this is the

way the sliding window aggregations work. Consider the following specification:

input i: T

output o @i := i.aggregate(over: δ, using: γ)

Here, whenever i generates a new value, then so does o by aggregating all values of i in

the last δ time units. Suppose, the monitor receives an update for i at time t. This value is

potentially relevant for the aggregation until precisely time t+ δ, meaning both the value

and its timestamp needs to be stored until then. This renders lossy
1
pre-aggregation

unsound, as the following example illustrates: Suppose the monitor receives two updates

1
Lossless aggregation allows for restoration of both inputs, but has a non-constant memory requirement.

21

2. The RTLola Specification Language

for i, the first one has value ν1 at time t1 and the second one is ν2 at time t2 = t1 + ε.

Pre-aggregation yields a singular value ν for a timestamp t. If the stream i later receives

an update at time t1 + δ+ ε/2, the monitor has to aggregate earlier values of i. This has

to account for ν2, but not for ν1, which renders νworthless.

Therefore, an aggregation function in an event-based stream forces the monitor to

memorize every single event that occurred in the window of time. Since the frequency

of input streams is unknown, this raises the memory consumption of the monitor to an

unbounded level. This is unacceptable for RTLola since it specifically targets CPS where

static guarantees on the runtime behavior is critical.

Demanding streams with aggregations to be periodic renders them isochronous, i.e.,Isochronous Timing

when the initial point in time is known
2
, then so are all further time points of evaluation.

This knowledge allows the monitor to apply a technique presented by Li et al. [Li+05]:

It separates the timeline into panes of equal size and pre-aggregates all values within

them. While this technique is lossy in general, the pre-determined points of evaluation

renders it lossless [Sch19a]. Lastly note that this technique only works for a select

group of aggregation functions, i.e., list homomorphisms. RTLola provides an array ofList

Homomorphisms
pre-defined aggregation functions such as integration, averaging, summation, and (co-)

variance. For an overview over their characteristics and how to compute them efficiently,

confer Definition A.8.:Def. A.8, p. 211

Advantage of Precise Timing

Primitives for event-based and periodic operations grant the specifier precise control

over the timing of a specification. This in particular enables them to design specifications

for high-level properties. As an example, consider a drone that is supposed to travel to a

waypoint. Upon arrival, it will receive a newdestination. Besides low-level properties like

sensor (cross-) validation, the monitor should determine whether there is a correlation

between deviations from the shortest path between consecutive waypoints and their

distance. This property translates to the following specification in RTLola:

input wp, pos: (Float64, Float64)

output wp_dist := δ(wp)

output traveled := δ(pos) + traveled.last(or: 0)

output traveled_at_wp @wp := traveled.hold(or: 0)

output deviation @wp :=

abs(wp_dist.last(or: 0) - traveled_at_wp.last(or: 0))

output distance_v_deviation @wp := (wp_dist, devi)

output cov @ 1Hz := distance_v_deviation.covariance(over: inf)
output var_dist @1Hz := wp_dist.variance(over: inf)
output var_devi @1Hz := devi.variance(over: inf)

2
This criterion becomes relevant a little later.

22

2.1. Language Design

output corr := cov / (sqrt(var_devi) * sqrt(var_dist))

Listing 2.1: Specification monitoring for stale connections.

As input, the monitor receives the currently active waypoint and the position of

the drone. The first output stream computes the distance between two consecutive

waypoints. The timing of this computation is tied to the input stream wp since it only

depends on it. Similarly, the next output only depends on pos. Upon reception of a

position update, the monitor computes the distance between two such updates and sums

up the results. This yields the total distance traveled.

Since there is no temporal tie between the two input streams, neither is there one

between wp_dist and traveled. Hence, the third output stream samples traveled upon

arrival at a waypoint wi, i.e., at the time of reception of waypoint wi+1. This is necessary

such that the monitor can — at these points in time — compute the deviation of the

drone from the shortest path. To this end, it takes the ideal distance between the last two

waypoints, i.e., wi−1 and wi, via wp_dist.last, and the actually traveled distance via

traveled_at_wp.last. The deviation is then the absolute difference between the values.

So far, all computations were event-based. Before transitioning to periodic compu-

tations of high-level statistics, the specification declares a tuple stream containing the

distance betweenwaypoints zipped together with the deviationmeasuredwhen traveling

to the waypoint. For the next step, recall that the correlation of two series of values is their

correlation over the product of standard deviation, i.e., corX,Y = covX,Y
(√
varX

√
varY

)−1
Hence, the monitor computes the co-variance of wp_dist and devi as well as their

variances with an indefinite aggregation operation. Lastly, the corr stream is the natural

translation of the formula for the correlation.

Dynamic Stream Creation and Filtering

While sliding window aggregations always look into the past, some specifications require

a glimpse into the other direction. Consider a system that can receive a landing command

which it has to obey within 100 seconds. This requirement can be translated into RTLola

as follows:

input landing_cmd: NoValue

input altitude: Float32

output compliance

spawn @landing_cmd

eval @10mHz with altitude.aggregate(over: 100s, using: min) < ε

close immediately

Listing 2.2: Specification checking if the system obeys a landing command within 100 s.

One can immediately see that the output stream declaration contains significantly more

logic than before. We will go through it line by line. The first line merely declares

the name of the stream. Second, the spawn clause states a condition under which the Spawn Clause

23

2. The RTLola Specification Language

stream starts to exist. In this case, the stream is spawned as soon as the system receives a

landing command. While this is a purely temporal condition, it can also be semantic such

as spawn @landing_cmd when altitude > 5. The third line contains the evaluation

information including the evaluation frequency of 10mHz, which translates to a period

of 100 s. The expression checks whether the lowest measured altitude in the last 100 swas

below some ε, indicating a successful landing. The combination of evaluation frequency

and sliding window size results in a singular check precisely 100 s after reception of the

landing command taking all measurements of the altimeter in the interim into account.

Last, the close clause states when to terminate the stream. Here, immediately refers toClose Clause

the point in time after the first evaluation of the stream, i.e., after 100 s. In combination,

the specification declares a stream that is spawned when receiving a landing command,

waits for 100 seconds, checks whether the system obeyed, terminates, and waits on the

next command.

This concept of dynamic stream creation is a special case of RTLola’s parametrization

semantics. Generally, output streams can be parametrized by a sequence of values. These

values are determined at the point of stream creation via the spawn clause. Both the

evaluation and close clause can refer to the parameters. This mechanic is commonplace

in network monitoring, so consider the following specification which checks for stale

connections.

input src: IPv4

input tcp_flags: UInt16

output fin := tcp_flags ^ 0x01 > 0

output syn := tcp_flags ^ 0x02 > 0

output rst := tcp_flags ^ 0x04 > 0

output terminate := fin ∨ rst

output heartbeat(ip: IPv4): NoValue

spawn when syn with src

eval when src = ip

close when src = ip ∧ terminate

output stale(ip: IPv4)

spawn when syn with src

eval @10mHz with heartbeat(ip).count(over: 100s) = 0

close when terminate ∧ src = ip

Listing 2.3: Specification monitoring for stale connections.

24

2.1. Language Design

The specification expects two inputs, the source IP address of a connection and the

TCP flags
3
. First, the specification extracts the three relevant flags and defines a stream

indicating termination of a connection. Second is a purely temporal stream indicating

an incoming heartbeat from a specific IP address. This IP address is the parameter of

the stream, declared in parentheses. The spawn clause states the semantic condition

under which the stream is spawned, i.e., when the syn flag is set. Since the stream

has a parameter, the spawn clause needs to provide it via an expression following the

with keyword. That means, whenever an incoming connection has the syn flag set, an

instance of the stream is spawned with the source IP address as parameter unless such an Stream Instance

instance already exists. The spawned instance ticks whenever the semantic criterion in

the evaluation clause is true, i.e., when the source address coincides with the parameter

of the stream. Finally, the termination of the instance has a temporal and a semantic

criterion. Temporally, it can only terminate when it ticks, i.e., when there is an incoming

connection from the respective IP address. Semantically, the connection needs to be

terminating, i.e., either the fin or the rst flag is set. The last output stream is stale.

It follows the same spawn pattern. Its termination is restricted by the same semantic

criterion as heartbeat: an incoming connection needs to be terminating while its source

coincides with the parameter address. Only the evaluation clause varies strongly: The

stream ticks periodically every 100 s and checks whether there was at least one heartbeat

in the interim.

Putting it Together: Running Example

The following specification summarizes most of RTLola’s features in the context of CPS.

Here, the monitor is supposed to check two properties: First, upon reception of a pause

command, the system has to stop within half a second and remain in place for one and a

half seconds. Second, the system surveils its immediate environment for alien objects,

assigns them an ID, and computes their distance to the system. The monitor has to

compute the approximate time to a potential collision provided. This assumes that the

velocity of the system does not drastically change, and the foreign object is stationary.

input oid: Int8

input distx, disty, spdx, spdy: Float32

input pause_cmd, obj_lost: NoValue

output velo := sqrt(spdx*spdx + spdy*spdy)

output obey_pause

spawn @pause_cmd

eval @0.5Hz with velo.integrate(over: 1.5s) < ε

close immediately

3
This requires only 9 bits (or 12 when counting the reserved bits), so the input is padded arbitrarily to fill

16 bits.

25

2. The RTLola Specification Language

output sx @distx := spdx.hold(or: 0.0)

output sy @disty := spdy.hold(or: 0.0)

output collision_possible := angle((distx, disty), (sx, sy)) > εϕ

output ttc(id: Int8)

spawn @oid with oid

eval
when collision_possible

with min(

if sx 6= 0 then distx / sx else disty / sy,

if sy 6= 0 then disty / sy else distx / sx

)

close @obj_lost ∧ oid when oid = id

Listing 2.4: Specification monitoring for obedience and the time to a collision.

The first output stream is an auxiliary stream that computes the length of the velocity

vector. The second output is similar to the compliance stream in Listing 2.2. It waits

for two seconds and then ensures that the change in position in the last one and a half

seconds was close to zero, i.e., that the system obeyed the pause instruction.

The second and third streams sample the velocity of the system whenever it emits an

update regarding a foreign object. Since a collision is only possible if the angle between

the distance vector and velocity agree, the fourth output determines this angle and

compares it against the threshold εϕ. The angle function here is an abbreviation for the

actual computation, which is arccos(dist · s · (|dist| · |s|)−1), i.e., the inverse cosine of
the scalar product of both vectors divided by the product of their length.

Last, ttc computes the time to collision with some object. Its spawn and close clause

state that a new stream instance should be created whenever a new object is in range and

persist until the object is lost. The static filter prevents an evaluation if a collision is not

possible. Otherwise, the stream computes the minimal time to collision per dimension.

Note that these values will either be almost equal or one of them is undefined if either

speed value is 0. Hence, the expression computes the minimum of these values but

substitutes the undefined division by the value of the other dimension.

Triggers

So far, an RTLola specification was a collection of input and output streams. However,

there is a third kind of stream: triggers. While output streams contain quantitativeTrigger

information about the current state of the system and monitor, a trigger is a qualitative

measure, i.e., a boolean constraint. These constraints encode safety violations. Whenever

they turn true, the monitor issues an alarm such that the system can react appropriately.

This reaction could be a change of course, a hot swap to a redundant replacement module,

or the initiation of an emergency stop.

Syntactically, triggers are mere RTLola expressions coupled with a format string:

26

2.1. Language Design

input altitude

trigger alititude > 5000 "Warning: altitude of {} exceeds clearance."

altitude

Triggers constitute themain interaction point between themonitor and the system during

the execution. However, on the theoretical side, they can be treated as output streams

except when emitting verdicts. Hence, in the following, they play a subordinate role.

Conclusion

This concludes the introduction into RTLola. The difference in complexity of single stream

declarations when comparing early versus late examples shows that RTLola takes a lot of

work out of the specifier’s hands by providing default values. This is especially noticable

for streams with simple timing behavior. However, RTLola allows specifiers to override

these defaults to express complex temporal dependencies between streams. Thanks to

RTLola’s declarative nature, the specifiers only need to state dependencies; management

of stream instances and their evaluation happens behind the scenes.

2.1.2. Design Maxims

The RTLola specification language is designed for use in safety-critical cyber-physical

systems. Here, safety is of utmost importance. Satisfying this requirement goes beyond

having a formal semantics of the language: Specifying a large low-level requirement in a

logic is formally sound, but it is also a hassle because the specification quickly becomes

convoluted. Hence, the intuitive and formal meaning becomes opaque to the specifiers,

rendering it a potential source for error. Exacerbatingly, the development process of such

systems concerns people of vastly different backgrounds, including computer scientists,

domain experts, engineers, and external reviewers among others. Even though some

people do not need to understand every detail of the specification, a specification should

allow non-experts to quickly discern its quintessence. Moreover, the language should

support specifiers in their task by reducing the cognitive burden throughmodularity and

allowing them to focus on the task at hand rather than distracting them with boilerplate

code or implementation details. Lastly, CPS have strictly limited resources, hence the

monitor has to operate within its statically allocated space, power, and time bounds. All

these requirements manifest in the following five design maxims for RTLola.

First and foremost, Mi: Clarity requires specifications to be comprehensible for everyone Mi: Clarity

involved in the development process. This involves a syntax that is explicit and features

semantic names. Consider, for example, the C standard function int strcmp(const

char *str1, const char *str2). Without prior or contextual knowledge, it is difficult

to apprehend the semantic of the function. The name is a vowel-less abbreviation of

“string compare”, taking two strings as input, which are constant character pointers.

With this in mind, the return value of integer type might be a surprise, too. Though

27

2. The RTLola Specification Language

signed integers often represent boolean values in C, in this case the result is of ternary

nature, indicating which string — if any — is “less” than the other.

Such a function contradicts the maxim of clarity. Rather, functions should have names

comprehensible without context and should eradicate surprises such as the return value.

In this particular example, strings can be checked for equality with the =-operator. The

<-operator is not defined for strings since their order is highly ambiguous: the comparison

could be alpha-numerically, either case-sensitive or case-insensitive, or it could primarily

refer to the length, either in bytes or in characters
4
. In lieu of the direct comparison,

specifiers have access to dedicated functions e.g. for checking the character-length of a

string. Note that when comparing strings, the = operator requires fewer keystrokes than

strcmp, but this is not generally the case. Benefiting clarity usually detriments brevity

and hence convenience.
5
As an example, consider the x[0, 3] statement of an older

syntax for RTLola [Fay19]. This translates equivalently to the significantly more verbose

syntax x.hold().defaults(to: 3). The former syntax implicitly performs a 0-order

hold operation on the x stream. If the hold fails because the stream has never produced

a value, the monitor substitutes the value 3. The trade-off is clear: the old syntax is brief

and cryptic whereas the new one is lengthy and explicit.

Not only are strings a good example for the maxim of clarity, it also exemplifies the

next maxim, Mii: Resource-Awareness. RTLola supports only data types of fixed size suchMii: Resource-Awareness

as strings of a pre-defined maximum length. While this severely limits the expressive

power, it allows for a significantly more resource-aware execution. Similarly, consider

integer types in Python and Standard ML. Here, the type int refers to an unbounded

data type. It is up to the compiler or interpreter to decide how many bits are required to

represent a certain value. In resource-aware languages like RTLola or Rust, numeric types

have a specific bit-width such as Int16 or i16, respectively. Access to this information

allows for a more precise analysis regarding the resource consumption. Moreover, the

explicit representation furthers the maxim of clarity. Yet, this decision does not come

without drawbacks: both of the presented maxims stand in a conflict with the third one.

Miii: Declarativeness states that specifiers have to provide as little information as possible,Miii: Declarativeness

allowing them toneglect implementationdetails such as eviction of data frommemory, the

order of stream evaluation, and how to precisely compute sliding window aggregations.

Evidently, RTLola does not fully comply to this maxim as it is subordinate to Mi: Clarity

and Mii: Resource-Awareness: RTLola embraces declarativeness only when there is no conflict

between different maxims. Hence, memorymanagement is entirely internal, and so is the

order of evaluation. However, note that this order has a direct impact on the semantics of

stream accesses, so clarity arguably demands an explicit statement of the order. Yet, since

all operations influencing the order are designed in a way that they convey a natural

4
This can make a difference, depending on the character encoding.

5
Note that the functions are not perfectly comparable: C’s handling of the comparison has other benefits

as the function is multi-functional, resulting in smaller binaries and better code-locality. Yet, the main

point of the comparison still stands.

28

2.1. Language Design

meaning, RTLola chooses the order in a way that adopts this intuition. So the language

sacrifices a little clarity in favor of a lot of declarativeness. As an example, suppose the

expression of a stream σ1 refers to another stream σ2. It is natural to assume that the

monitor accesses the current, most recent value of σ2 rather than any older value. Thus,

the monitor will evaluate σ2 before σ1 such that the evaluation of the latter has access to

the most recent value of its target. This detail is hidden from the specifier.
6
Another

major example of declarativeness is the expression a.aggregate(over: 3s, using:
∫
),

which leaves a multitude of implementation details implicit due to their irrelevancy for

the specifier.

The next maxim is commonly found in programming languages and style guides:

Miv: Modularity. It dictates that certain elements of the code or specification do not or Miv: Modularity

cannot influence each other. A prime example for modularity in RTLola is freedom of

side effects, which also furthers declarativeness and clarity. To understand this, consider

a logical conjunction in C. During an execution, the left operand will be evaluated

first. If the result is false, the right operand will not be evaluated, a process called

short-circuit evaluation. If this were different, it might change the semantics of the

execution because the evaluation of the right operand can be tainted with side effects.

Hence, being unaware of short-circuit evaluations or the left-to-right evaluation order,

can lead to bugs even though both mechanisms are implicit. On the contrary, freedom of

side effects as a consequence of modularity in RTLola eliminates the need to know about

these mechanisms. The maxim also manifests in stream accesses. While the semantics of

a stream is directly influenced by all streams it actively accesses, it is agnostic towards

which streams access it. Hence, given a specification, any additional stream declaration

added later will be just that: additions.

The last maxim is Mv: Distraction-Freedom. It states that a specification should not contain Mv: Distraction-Freedom

unnecessary information. This is most evident when considering stream accesses. If a

stream σ1 accesses σ2, it can be opaque for the specifier whether the access is fallible

as it depends on the timing of both participating streams. If RTLola were unable to

determine this information, it would require specifiers to declare a default value even

though it is meaningless for infallible accesses. To circumvent this, RTLola performs

an intricate analysis (cf. Section 2.3) such that it only requires specifiers to supply a : Sec. 2.3, p. 42

default value if there is an execution which requires it. For a further example, recall

that Mii: Resource-Awareness leads to type names explicitly stating the number of bits

required to store a single value of it. Requiring specifiers to spell out the type of each

stream clutters a specification with duplicated information. Hence, similar to modern

imperative programming languages and most functional languages, RTLola allows for

type omission and instead infers types whenever possible.

In summary, the design maxims impacting RTLola are as follows:

6
More on the order of stream evaluation in : Sec. 2.5.3, p. 78.

29

2. The RTLola Specification Language

Mi: Clarity Usage of semantic intuitive names, such that the essence of a specification is

easy to grasp for non-RTLola experts.

Mii: Resource-Awareness Memory and power consumption as well as running time needs

to be statically defined and low.

Miii: Declarativeness Determine implementation details automatically unless this sacri-

fices clarity or resource-awareness.

Miv: Modularity Streams are independent, so they cannot impact others, and expressions

are free of side effects.

Mv: Distraction-Freedom Specification contains no superfluous, duplicate, or meaningless

information.

The next section details the syntax of RTLola. Here, design decisions were a direct

result of these maxims.

30

2.2. Syntax

2.2. Syntax

RTLola has two different syntaxes, the “regular” one and the desugared one. The regular Desugaring

syntax is what specifiers would write and allows for eliding certain syntactic fragments

or usage of syntactic shortcuts, also known as syntactic sugar. This is commonly known Syntactic Sugar

in conventional programming languages: In C
]
the variable declaration var x = 3

constitutes type elision and in Rust’s method call syntax a.foo(b) is syntactic sugar

equivalent to a function call A::foo(a, b) assuming a is of type A. Along this line,

regular RTLola syntax allows specifiers to omit the type of a stream, prompting the RTLola

toolkit to infer the type. Similarly, the expression x.hold(or: 12) is a shorthand for

x.async().offset(by: 0).defaults(to: 12). Removal of this sugar yields — as the

name suggests — a specification in its desugared form. This syntax permits less variety

and is thus easier to handle. The difference in variance is immediately evident when

comparing the syntax diagrams for regular RTLola (Figure 2.1) against desugared RTLola

(Figure 2.2).

The remainder of this section discusses the desugared syntax, outlines how to obtain

it from a regular RTLola specification, and introduces some additional syntactic sugar.

2.2.1. Type Annotations

Simply put, type annotations state the type of a stream. Since types play a central role in Type Annotation

RTLola, type annotations are an equally integral component of the syntax. Hence, in the

desugared syntax, each stream has several type annotations. Declaring this information

manually is cumbersome, which is why type annotations can typically be omitted in

the regular syntax. This is only necessary when either the type inference algorithms

fails to determine the type, or the specifiers want to deviate from the default semantics.

For example, by default, a stream has a type indicating that it should be evaluated

whenever there is a change in a stream on which it depends. This is common practice in

user interface frameworks such as SwiftUI, where the @State property wrapper for a

variable states that a change in the variable should trigger a re-evaluation of the interface.

Omission of the wrapper leads to a deferral of the computation until the next scheduled

update
7
. The analogue in RTLola is a frequency annotation like @1Hz, which prompts the

monitor to defer the computation to the next time the period of 1 s passed. Note that

in this analogy, RTLola has the opposite default behavior from SwiftUI. The rationale

behind choosing this default behavior is that timely responses are critical in monitoring.

As a result, a delayed computation is counter-intuitive unless explicitly requested by the

specifier. Hence, type omission leads to the default, immediate behavior whereas an

explicit type annotation allows specifiers to deviate from the default.

A full type annotation consists of several atomic type annotation, each conforming to

one of the following kinds:

7
In SwiftUI, this is the next time the View is computed.

31

2. The RTLola Specification Language

Value Type If a stream has value type ν ∈ N, then a single value v of the stream is drawn

from ν, i.e., v ∈ ν. This is the only type that describes the shape of a stream and its

values as opposed to timing related type components. Value types are common

in programming languages, typical examples include “String” in Java, “int” in C,

“single” in Matlab, or “(i8, f64)” in Rust.

Appearance: Value types are preceded by a colon. Example: output a: Int32

where Int32 is the value type of a.

Periodic Type A stream with a periodic type π ∈ P is computed periodically with a

period of π−1. The period relates to the real, physical time such as π−1 = 0.2ms.
This relation can either be with respect to the global time, i.e., the starting time

of the monitor, indicated by a global keyword, or local. The exact meaning will

become clear shortly.

Appearance: Periodic types are surrounded by @ at the front and a unit of frequency

at the back, e.g., output a eval @ 3Hzwhere 3Hz is the periodic type of a.

Event-Based Type The timing of a stream can also depend on the occurrence of a certain

event, such as a new measurement of a sensor or the reception of a message, rather

than the physical time. These events correspond to updates to input streams.

Hence, an event-based type ε ∈ E is a condition on the input streams determining

whether the respective stream needs an update. An example for event-based

types is E = 2S
↓
intuitively stating that a stream σ with event-based type ε ∈ 2S↓

is updated if every member σ↓ ∈ ε is updated as well. RTLola employs a more

expressive model where E = B+
S↓
, so — intuitively — an event-based type states a

positive boolean condition
8
on the input streams. The stream is only updated if

the condition holds.

Appearance: Due to some inherent similarity between periodic and event-based

type, the @ symbol also precedes the latter. However, it lacks any unit of measure.

Example: output a eval @ b ∨ c declares the event-base type a∨ b for a.

Semantic Type The semantic type ζ ∈ Z of a stream relates to the current state of the

monitor, i.e., it defines a semantic criterion under which an update should take

place. Such an annotation can for example be an expression allowing for all or a

subset of the operations found in RTLola stream expressions.

Appearance: Semantic types are syntactically identical to expressions, yet, they have

an introductory when keyword. Example: The when clause in output a eval

when b > 7 declares the semantic type b > 7.

Note that neither of these atomic types in isolation suffices to fully describe the type

of a stream. A value type for example does proclaim the shape of its values but lacks

information regarding the timing of a stream and thus has to be paired with a periodic or

event-based type. Moreover, a semantic type indicates neither the timing nor the shape

8
cf. Definition A.7, p. 211

32

2.2. Syntax

of stream values. Hence, a full description of the type of a stream requires multiple

components.

While Section 2.3 contains all details, roughly speaking, a stream has four type : Sec. 2.3, p. 42

components, one value type and three timelines. Each timeline consists of a base clock, Timeline

i.e., either an event-based or a periodic type, coupled with a semantic filter. Intuitively, Semantic Filter

the first timeline refers to the behavior of the stream itself. The second and third timeline

are parameters for dynamic stream creation, i.e., the spawn and the close condition. The Spawn and Close

Condition
spawn condition determines when an instance of a stream will be created, the close

condition when it ceases to exist.

2.2.2. Streams

First and foremost, an RTLola specification consists of stream declarations, as can be

seen in Figure 2.2. All three kinds of streams — inputs, outputs, and triggers — share

a similar structure. They start with a keyword indicating their kind, i.e., either input,
output, or trigger. Next is the name, which serves as a unique identifier throughout Stream Name

the specification. Note that triggers are an exception to this rule as they do not require a

name since they cannot be referenced from other streams.
9
Moreover, output stream

names are followed by a potentially empty, comma-separated list of parameters. Each

parameter is a pair of a name and a value type annotation.

Remark 2.1 (Trigger Names). Triggers lacking a name seems counter-intuitive to Mi: Clarity
since names convey an intuition on the semantics of the trigger. However, a trigger
declaration demands a string message to be displayed to the user or system in case of
a trigger violation. The message usually contains an identifier of the respective safety
requirement embodied by the trigger. Hence, requiring it to additionally carry a name leads
to duplication of information, going against Mv: Distraction-Freedom and maintainability.

After the name come type annotations. These annotations have to unambiguously

declare the full type of a stream, i.e., a value type and three timelines. For this, the

requirements on the syntax vary strongly between different stream kinds. Input streams

represent incoming events, hence they always have a specific event-based type, plus they

cannot be parametrized, nor semantically filtered.
10

Hence, input streams merely require

a value type annotation. Trigger declarations are similarly sparse in type annotations

since their purpose in the desugared syntax is to mark certain output streams as safety

conditions without carrying logic themselves. Hence, their value type is of binary nature,

and they mirror the marked output streams in terms of timing, which alleviates the need

for type annotations in the trigger declaration.

9
Note that the node labeled “name” in the syntax diagram for triggers does not refer to the name of the

trigger but the name of the target of the trigger

10
If only certain input values are relevant, specifiers have to declare an output streammirroring and filtering

the input stream.

33

2. The RTLola Specification Language

Lastly, the type annotation of an output stream is most elaborate. The first part is the

value type annotation, just as for the input stream. The next three parts structurally

resemble the life-cycle of a stream instance, i.e., creation, evaluation, and termination,

where all parts largely follow the same pattern. They start with the spawn, eval,

and close keyword, followed by either a periodic or an event-based type annotation.

Separated by the when keyword follows a semantic type annotation.

The last component of each part is an expression with an introductory with keyword.

These are no longer part of the type of the stream. Instead, they are instructions for the

monitor on how to compute the parameter values of a stream instance for the expression

in the spawn-clause, or the values of the stream itself, in case of the eval-clause. The

close-clause lacks this last component.

The last piece of syntax is unique to triggers. As mentioned before, triggers merely

mark output streams as safety conditions. To this end, a trigger declaration states the

target stream name, followed by a string message that is to be conveyed to the system or

user in case of a violation.

Differences to the Regular Syntax There are three major differences between the

desugared and regular syntax of streams. First, the regular syntax tags several parts of

the specification as optional if intuitive defaults exist. This most notably affects type

annotations, yet it also allows for omitting an empty pair of parentheses. Second, it

provides shorthand notations for common patterns in a specification. These syntactic

sugars for example allow for drastically abbreviating an output stream declaration for

simple streams. Since the list of syntactic sugars and their desugaring grows steadily,

the syntax diagram only contains the output stream shorthand. Section 2.2.4 introduces: Sec. 2.2.4, p. 39

some of the most useful ones.

Third, there are two kinds of output stream declarations in the regular syntax:

parametrized and non-parametrized. The former requires a non-empty list of stream

parameters and a with-expression in the spawn-clause to supply parameter values. The

latter rejects both a parameter list and a with-expression. Instead, itmandates a clock type

annotation in the spawn declaration. The desugared syntax forgoes this difference and

instead requires all of these clauses to be present, though potentially with semantically

null values. Their appropriateness is checked on a semantic level during the type

inference. Having a syntactic distinction is generally more convenient than a semantic

one and the option to omit unnecessary values agrees with Mv: Distraction-Freedom.

2.2.3. Expressions

Figure 2.3 illustrates the syntax of RTLola expressions. The first few cases are conventional:

unary and binary operations, conditional expressions, and calls to pre-defined, potentially

polymorphic functions. The polymorphism is resolved by supplying the desired value

types in angle brackets for the desugared syntax, and implicitly via type inference in the

regular syntax. Function arguments are listed in parentheses.

34

2.2. Syntax

〈spec〉 ::=--
� �� �input 〈sname〉 : 〈valty〉� 〈nonparamout〉 �� 〈paramout〉 �� 〈shortout〉 �� 〈trigger〉 �

� � -�

〈shortout〉 ::=-- output 〈sname〉 �
: 〈valty〉� ��:= 〈expression〉 -�

〈nonparamout〉 ::=-- output 〈sname〉 �: 〈valty〉� �� �spawn 〈pacing〉� �� -
- �eval 〈pacing〉 with 〈expression〉� ���close 〈closepacing〉� �� -�

〈paramout〉 ::=-- output 〈sname〉 〈paramlist〉 : 〈valty〉 spawn 〈pacing〉 with-

- 〈expression〉 �eval �global� �� 〈pacing〉 with 〈expression〉

� �
� -

- �close 〈closepacing〉� �� -�

〈trigger〉 ::=-- trigger 〈pacing〉 〈expression〉 �“ 〈string〉 ”� �� -�

〈paramlist〉 ::=-- (〈pname〉 �: 〈valty〉� �� ,

� , �� 〈pname〉 �: 〈valty〉� �� �) -�

〈pacing〉 ::=-- �@ � 〈perty〉� 〈evety〉 ��� �
��when 〈semty〉� �� -�

〈closepacing〉 ::=-- �@ � 〈perty〉� global 〈perty〉 �� 〈evety〉 �
�

� �
��when 〈semty〉� �� -�

〈valty〉 ::=-- ν ∈ N -�

〈perty〉 ::=-- π ∈ P -�

〈evety〉 ::=-- ε ∈ E -�

〈semty〉 ::=-- ζ ∈ Z -�

Figure 2.1.: Railroad diagram for the regular RTLola syntax.

35

2. The RTLola Specification Language

〈spec〉 ::=--
� �� 〈input〉 �� �� 〈output〉 �� �� 〈trigger〉 � -�

〈input〉 ::=-- input 〈sname〉 : 〈valty〉 -�

〈output〉 ::=-- output 〈sname〉 〈paramlist〉 : 〈valty〉 〈spawnclause〉 〈evalclause〉-
- 〈closeclause〉 -�

〈trigger〉 ::=-- trigger 〈sname〉 “ 〈string〉 ” -�

〈paramlist〉 ::=-- (�� , �� 〈pname〉 : 〈valty〉 �� ��) -�

〈spawnclause〉 ::=-- spawn 〈pacing〉 with 〈expression〉 -�

〈evalclause〉 ::=-- eval �global� �� 〈pacing〉 with 〈expression〉 -�

〈closeclause〉 ::=-- close @ � 〈perty〉� global 〈perty〉 �� 〈evety〉 �
� when 〈semty〉 -�

〈pacing〉 ::=-- @ � 〈perty〉� 〈evety〉 �� when 〈semty〉 -�

〈valty〉 ::=-- ν ∈ N -�

〈perty〉 ::=-- π ∈ P -�

〈evety〉 ::=-- ε ∈ E -�

〈semty〉 ::=-- ζ ∈ Z -�

Figure 2.2.: Railroad diagram of the desugared RTLola syntax.

36

2.2. Syntax

The next three cases constitute stream accesses. Here, a stream reference is comparable

to a variable access in other programming languages. These start with the name of a

stream, followed by an optional list of parameters. This allows for discerning the stream

instance targeted by the access. Moreover, they have a .sync or .async suffix. Intuitively,

this suffix indicates whether timing of the streams are couples or decoupled, respectively.

This has consequences for the type inference and semantics.

The first stream access is a regular access, i.e., it refers to a single stream value. To this

end, it declares a stream reference and provides a negative integer offset argument to the

offset access modifier. If the offset is n, the stream access refers to the −n+ 1st-to-last

value of the accessed stream, so n = 0 yields the latest value, n = −1 the second-to-last

and so on. Note that such a value does not necessarily exist, hence an access can be fallible
resulting in an empty value: None. Next are two flavors of aggregation, syntactically only

differing in the name of the first argument. Both aggregations require two arguments:

a time declaration t and an aggregation function γ : T∗1 → T2. Suppose t = 3 s and

γ =
∑

. Then, when aggregating the values of stream σ, the expression yields the sum of

all values of σ which the monitor computed or received within the last three seconds.

The difference of the two variants takes effect when targeted stream instance exists

for less than 3 s. In this case, an aggregation with argument name over aggregates

all values present whereas an over_exactly-aggregation yields None until the 3 s have

passed. The last expression allows for transforming None-values into usable data by

providing a default value. The monitor substitutes the default in when the preceding

expression failed. This kind of expression has counterparts in most modern or functional

programming languages featuring optional values or generally monads, like in Swift

expr ?? dft or Rust expr.unwrap_or(dft).

Remark 2.2 (Naming Analysis). Note that the syntax diagrams contain different categories
for different kinds of names such as sname or pname. For the purpose of parsing, this
differentiation is meaningless: all names follow the same rule11. However, it plays a
central role in the naming analysis on the abstract syntax tree. Here, the analysis checks
that every function occurs in the RTLola standard library, every stream reference has a
matching declared stream, and every occurrence of a parameter or stream name in an
expression or type annotation refers to a parameter of the enclosing stream or an input
stream.

2.2.4. Desugaring

The process of desugaring is concerned with transforming a specification into the

canonical, desugared form. This transformation requires context-agnostic changes such

as replacing shorthand notations, and also context-sensitive additions. These mainly

stem from syntax elements such as type annotations which are optional in the regular

11
Every identifier has to comply with the Unicode identifier standard according to UAX31-D1 https:

//www.unicode.org/reports/tr31/#D1; last accessed: 07.02.2022.

37

https://www.unicode.org/reports/tr31/#D1
https://www.unicode.org/reports/tr31/#D1

2. The RTLola Specification Language

〈expr〉 ::=-- � 〈unop〉 〈expr〉� 〈expr〉 〈binop〉 〈expr〉 �� if 〈expr〉 then 〈expr〉 else 〈expr〉 �
� 〈fname〉 < �� , �� 〈valty〉 �� �� > (�� , �� 〈aname〉 : 〈expr〉 �� ��) �
� 〈sref 〉 .offset(by: 〈int〉) �� 〈sref 〉 .aggregate(over: 〈time〉 , using: 〈aname〉) �� 〈sref 〉 .aggregate(over_exactly: 〈time〉 , using: 〈aname〉) �� 〈expr〉 .defaults(to: 〈expr〉) �

�-�

〈sref 〉 ::=-- 〈sname〉 (

� , �� 〈expr〉 �) � .sync� .async �� -�

〈time〉 ::=-- 〈int〉 〈timeunit〉 -�

Figure 2.3.: Syntax of desugared RTLola expressions. In the regular syntax, the .sync

and .async suffixes are optional and so are angle brackets provided the

respective list is empty.

syntax and mandatory in the desugared syntax. The following enumeration outlines the

first kind of transformations:

Triggers If the expression e of a trigger is more than just a stream name, or if the trigger

has type annotations, create a new streamwith expression e. Copy type annotations

over. Replace e in the trigger by the name of the new stream and remove all type

annotations.

Outputs For non-parametrized streams, add delimiters for the empty list of parameters.

Also, replace outputs of shape output a: T := ewith output a: T eval with e

where : T is optional.

Hold Expressions Replace .hold() by .async.offset(by: 0).

Aggregations Prefix .aggregation(...)with .async.

Offsets Prefix any occurrence of .offset not preceded by .async with .sync.

Also, prefix all stream accesses which have neither .async nor .sync with

.sync.offset(by: 0)

Ordering All streams are reordered such that outputs follow inputs and triggers follow

outputs.

Applying these steps yields a partial desugaring of a specification, a syntax in-betweenPartial Desugaring

38

2.2. Syntax

regular and desugared. This intermediate representation eases the type inference which

in turn enables the full desugaring. For this, assume type information is available. Then,

for each output stream, including ones created in the process of desugaring trigger, add

type information. This affects the value type and all three timelines.

Additional Syntactic Sugar

RTLola employs an array of syntactic sugars as shorthand notation for common operations,

drastically boosting usability. In particular in combination with named function arguments, Named Function

Argument
as in s.offset(by: -1), they do not negatively impact clarity. Several programming

languages like Python, VBA, and C
]
allow programmers to use named function argu-

ments, whereas relatively few like Swift enforce them or provide fine-grained control.

Named function arguments are relatively rare in programming languages, with the

most prominent example being Swift. However, it is common practice for integrated

development environments to display hints on the parameter names when calling a

function. Functions in the RTLola standard library and also function notations in syntactic

sugar, every argument can be unnamed or named. The former is useful for functions

where the purpose of the argument is abundantly clear, such as in the sqrt function.

The latter case forces specifiers to supply the name aiming for better readability and

disambiguation of arguments. Consider, for example, an expression containing .hold(1)

versus .hold(or: 1). The former variant contains no hint on the semantics of the argu-

ment whereas it is clear that the or-argument provides some kind of alternative. For a

fallible operation such as a 0-order hold, it is no leap of logic to realize that the argument

is the default value. Similarly, consider an expression with .offset(-1, -2). Since the

value type of both arguments is identical, the order is opaque, inviting error. In contrast,

.offset(by: -1, or: -2) provides clarity.

The following examples show syntactic sugar and their desugared syntax in juxtaposi-

tion.

output a := x.hold(or: y)

output b := x.offset(by: n, or: y)

output c := x.last(or: y)

output d := delta(c) // or: δ(c)

output e := self.last(or: x)

output f: IPv4 := x

output h eval @xHz close immediately
output g @zHz := x.γ(over:∞)

output a := x.hold().defaults(to: y)

output b := x.offset(by: n).defaults(to: y)

output c := x.offset(by: −1, or: y)

output d := c − c.last(or: c)

output e := e.last(or: x)

output f: UInt32 := x

output h eval @xHz close @xHz when true

output g @zHz :=

⊕γ(g.last(or: ε), x.γ(over: z−1))

The syntactic sugar displayed in stream e is clearly beneficial in terms of clarity.

However, it truly shines for parametrized streams since they often refer to themselves,

for example when they are supposed to terminate as soon as they produce a certain

value. These self-references are lengthy when using descriptive stream- and parameter

names. Thus, self-explanatory abbreviations are a boon for such specifications.

39

2. The RTLola Specification Language

Example 2.1. Recall the running example specification from Listing 2.4. The partial:Listing 2.4, p. 25

desugaring looks as follows:

input oid: Int8

input distx: Float32

input disty: Float32

input spdx: Float32

input spdy: Float32

input pause_cmd: NoValue

input obj_lost: NoValue

output velo() eval with sqrt(

spdx.sync.offset(by: 0)*spdx.sync.offset(by: 0)

+ spdy.sync.offset(by: 0)*spdy.sync.offset(by: 0)

)

output obey_pause()

spawn @pause_cmd with ()

eval @0.5Hz with velo.async.integrate(over: 1.5s, using:
∫
) < ε

close @0.5Hz when true

output sx @distx eval with spdx.async.offset(by: 0).defaults(to: 0.0)

output sy @disty eval with spdy.async.offset(by: 0).defaults(to: 0.0)

output collision_possible eval with angle(

(distx.sync.offset(by: 0), disty.sync.offset(by: 0)),

(sx.sync.offset(by: 0), sy.sync.offset(by: 0))

) > εϕ

output ttc(id: Int8)

spawn @oid with oid.sync.offset(by: 0)

eval
when collision_possible.sync.offset(by: 0)

with min(

if sx.sync.offset(by: 0) 6= 0

then distx.sync.offset(by: 0) / sx.sync.offset(by: 0)

else disty.sync.offset(by: 0) / sy.sync.offset(by: 0),

if sy.sync.offset(by: 0) 6= 0

then disty.sync.offset(by: 0) / sy.sync.offset(by: 0)

else distx.sync.offset(by: 0) / sx.sync.offset(by: 0)

)

close @obj_lost ∧ oid when oid.sync.offset(by: 0) = id

4

40

2.2. Syntax

2.2.5. Stream Notation

The following definitions clarify some notation which is convenient when arguing about

RTLola streams.

Let S↓, S↑, and S = S↓ ∪̇ S↑ be the set of input stream names, output stream names, and Def. Stream Names

stream names, respectively. For a given stream σ ∈ S, pσ denotes the number of parameters

declared for this stream in the specification. This number is always 0 for input streams.

Further, let Tσ1 . . .T
σ
pσ be the potentially nullary tuple of parameter types, and Tσ be the

value type of σ. A stream identifier (σ,~p) is a pair of a stream name and a tuple of concrete Def. Stream
Identifier

parameter values with |~p| = pσ plus a creation date. The function SId maps a stream

name to the set of possible stream identifiers:

SId : S→
⋃
σ∈S

{σ}× TS
0 . . .T

S↑
pσ ×R+

Furthermore, dot notation represents access to different constituents of streams. Here, Def. Constituent
Accessσ↑. param accesses the parameters of σ↑, σ↑. spawn its spawn clause, σ↑. eval its evaluation

clause, σ↑. close the close clause. For a clause c, the functions clock(c), filter(c), and expr(c)
provide access to the clock, semantic filter, and expression of a clause, respectively.

When applied on a stream, it implicitly refers to its evaluation clause. Moreover, recall

that the clock can either be event-based or periodic. This distinction is solved via

meta-variables, i.e., clock(σ) = clock(σ. eval) = π indicates that the evaluation clause of σ

has a periodic clock with period πwhereas clock(σ) = clock(σ. eval) = ε indicates that σ
has the event-based type ε.

Given an expression ex, ex [x 7→ y] is an expression where all occurrences of x were

replaced by y, for details regarding alpha-renaming, confer Definition A.5. Finally, :Def. A.5, p. 210

◦ : Xn ×X ∪̇ {⊥}→ Xn ∪Xn+1 is the gap-resistant sequence concatenation defined as: Def. Gap-Resistant

Concatenation

v1 . . . vn ◦ x =

 v1 . . . vnx if x 6= ⊥

v1 . . . vn otherwise

41

2. The RTLola Specification Language

2.3. Supportive Type System

The RTLola type system follows the paradigm “Everything is a Stream”. Hence, the

types of stream declarations and expressions are indistinguishable since in essence,

expressions are streams as well. Each stream is a sequence of values. As such, the type

system answers two questions: How do these values look and when are they produced.

These questions correspond to the value type and timeline of a stream in RTLola. The first

question is found in most conventional programming languages where the value type is

simply called the type of a value or expression. Common examples are the int type in C

or the nuint type in C
]
. The second question is specific to stream-based languages.

In its core, the type system of RTLola mainly revolves around timelines. In a nutshell, a

timeline induces a set of points in time. These points state when a timeline progresses

and when it starts or ceases to do so.

For the foundation of a timeline, recall that streams run either with a fixed frequency

with respect to the real-time, or based on when events reach the monitor. The notion

of a clock reflects this distinction. Every timeline has a pacing that is based on one ofClock

two discrete clocks. The periodic clock ticks in the frequency of the greatest common

denominator (gcd) of all periods that occur in the specification. Semantically analogously,

the event-based clock ticks with every incoming events that updates at least one input

stream. Refer to the center three timelines of Figure 2.4 for an illustration of the relation

between the real time axis and the clocks. Note that both relations are dynamic, i.e., only

at runtime can every tick of either timeline be mapped to a specific point in time on the

real-time axis. Note further that the periodic clock is isochronous, i.e., when the starting

point of the timeline is known, then so are the points in time of all its ticks. This is not

the case for the event-based clock.

The clocks form a baseline for timelines as they represent the fastest possible rate. This

rate can be scaled down by applying filters. The first kind of filter are static filters. TheirStatic Filter

effect is based on the timeline itself: any annotated frequency in the specification, for

example, is slower or equally fast as the least commonmultiple (lcm) for all frequencies
12
.

Hence, if they are strictly slower, they naturally filter out a number of points. Similarly,

an event-based clock that is a disjunction of a real subset of inputs S ⊂ S↓ skips all

updates which only cover S↓ \ S. This stands in contrast to semantic filterswhich imposeSemantic Filter

semantic restrictions on the state of the monitor. Practically speaking, semantic filters

are just RTLola expressions. A point in time is skipped iff evaluating the expression at

this time yields false. Referring back to Figure 2.4, the top- and bottom-most timelines

show a semantic filter in action.

The next two components formulate the dynamic aspects of timelines. The natural

intuition is that timelines are eternal; they start with the beginning of time and never

cease. However, since timelines represent streams, this intuition is not entirely adequate.

A stream can be created after a while, produce data afterwards, and cease to do so

12
And thus the gcd of all periods.

42

2.3. Supportive Type System

@1Hz; σ > 5

@1Hz

@ lcmΠ = 2Hz

R+

@> = @x∨ y

@x

@x; σ > 5

Figure 2.4.: Illustration of basic timelines. The timeline in the center represents the real

time axis. Periodic and event-based timelines are above and below the real

time axis, respectively. Moving further outwards indicates stronger filtering,

first by applying a static, then a semantic filter.

some time later. This process can repeat, i.e., after termination of a timeline, it can be

re-spawned and re-terminated. As a result, both the spawn and the termination are sets

of points in time and thus timelines. As such, they refer to a clock, are equipped with

static and dynamic filters, and can be dynamic themselves.

Before discussing the implication of the recursive definitions, consider the following

caveat: Imaging a timeline is spawned by an event-based timeline and itself refers to the

periodic clock. There are two appropriate interpretations of this reference: either the

timeline refers to the global-periodic clock or the point of spawn induces a new, local-periodic Local- and

Global-Periodic

Clocks

clock. The following example illustrates the point:

Example 2.2 (Local- and Global-Periodicity). Recall the command compliance example

in Listing 2.2. Here, a drone can receive commands dynamically from a central command :Listing 2.2, p. 23

unit and has to complywithin a set amount of time. In the specification, the output stream

is a timeline that is spawned upon reception of the command. It then ticks periodically

with 10mHz and terminates at the same rate. Here, the period of (10mHz)−1 = 100 s is

relative to the local, spawned timeline rather than the global clock. This ensures that

the first evaluation of the stream happens 100 s after its creation rather than at the next

point in time divisible by 100 s. Confer Figure 2.5 for an illustration of the example. Both

variants of compliance are created when the monitor receives a command. Yet, the

termination of compliance occurs 100 seconds after its creation whereas the termination

period of compliance’ is relative to the global real time axis. The latter case leads to an

early termination which does not reflect the intended semantics.

Now consider the central command unit. This unit can receive messages from drones

announcing their presence. Once per hour, the command unit is supposed to issue

a command to every available drone. In this case, the specification would define a

43

2. The RTLola Specification Language

t 100 s t+ 100 s

cmd

R+

@global 10mHz

@local 10mHz

Figure 2.5.: Illustration of Example 2.2. Both variants of the verify timelines are created

when the monitor receives a command, but they differ in the semantics of

their evaluation and termination. The local period is relative to its own

timeline whereas the global period refers to the real time axis.

new timeline for each drone. These timelines then tick once per hour relative to the
global-periodic clock. Hence, this scenario requires the converse semantics. 4

The observation from the example is that neither semantics is fundamentally correct.

As a result, a timeline needs to be able to refer to either the local timeline induced by

its own point of spawn, or the global timeline. Note that this problem only arises for

periodic timelines because the local and global timelines are shifted. On the contrary,

ticks of event-based timelines are universal, because they are based on the reception of

events. Hence, the local and global timeline collapse. In practice, references to the local

timeline are significantly more common and this is also the more intuitive semantics.

Hence, Mv: Distraction-Freedom dictates that local-periodicity is the default behavior while

references to the global timeline require the dedicated global keyword.

Coming back to the recursive definition of timelines, note that a consequence thereof

is that timelines can be nested, depending on the spawn and close sub-timelines. WhileNested Timelines

in theory, this nesting can go arbitrarily deep, each nesting introduces a new level of

complexity since every timeline could refer to all lower nesting layers. Such functionality

is practically only necessary to a certain degree. Hence, even though it impacts

expressiveness of the language, RTLola only provides syntax for the following forms of

nesting:

• Spawn clauses may refer to the global timeline only.

• Evaluation clauses may refer to the global timeline (global keyword) or the local

timeline induced by the spawn (default).

• Close clausesmay refer to the global timeline (global keyword) or the local timeline

induced by the spawn (default).

In summary, a timeline consists of the following components:

Clock The clock is either event-based, global-periodic, or local-periodic, i.e., referring to

its local timeline induced by its spawn timeline.

44

2.3. Supportive Type System

Static Filter The static filter reduces the clock based on either the point in time for

periodic timelines or input stream updates for event-based timelines.

Semantic Filter The semantic filter reduces the clock based on a semantic criterionwhich

requires access to the current internal state of the monitor.

Spawn Timeline Determines when a timeline starts. Consists of a clock, a static and a

semantic filter.

Close Timeline Determines when a timeline ends. Consists of a clock, a static and a

semantic filter.

Note that the static and semantic filter refers to the evaluation clause of a stream

declaration.

Example 2.3 (Timelines). Recall the running example specification from Listing 2.4. All :Listing 2.4, p. 25

input streams follow the event-based clock. Their static filter is their own name, i.e., oid

ticks only when an event contains oid, analogously for all other input streams. As input

streams, both their spawn and termination timelines do not exist, and its semantic filter

is tautological, indicating that no ticks are filtered out.

The velo stream depends on both spd inputs, hence it runs by the event-based clock

and its static filter is the conjunction of these streams. In terms of spawn and termination,

the stream behaves like an input.

The ttc stream is most involved. The evaluation clause dictates its static filter and base

clock, both inferred from the expression. Since it accesses sx, sy, distx, and disty,

its timing is tied to these four streams. All of them follow the event-based clock, with

static filter distx for sx and distx due to — respectively — its nature as input stream

and the type annotation @distx. Similarly, the static filter for sy and disty is disty.

As a result, ttc also follows the event-based clock and its static filter is the conjunction

of both distance inputs. Its semantic filter is explicit part of the specification, i.e., the

expression collision_possible.

What remains is the spawn and close timeline. The former has an explicit type

annotation, hence it follows the event-based clock with static filter oid and does not

have a semantic filter. Similarly, the latter follows the event-based clock with static filter

obj_lost ∧ oid. Its semantic filter is the expression oid = id.

4

This example illustrates how to obtain each constituent of a stream’s timeline. The

next section formally defines a timeline and how to derive it for an RTLola specification.

2.3.1. RTLola Types

Formally, an RTLola type is a four-tuple τ = (ν, λ, λ�, λ

�

)with a value type ν, an evaluation

timeline λ, spawn timeline λ�, and close timeline λ

�

. Each timeline is a pair of a semantic

filter ζ and a pacing ψ. Here, ψ summarizes the clock including its point of reference,

45

2. The RTLola Specification Language

Table 2.6.: Overview over the RTLola type hierarchy and meta variables.

τ (Type)

ν (Value) λ (Timeline) λ� (Spawn) λ

�

(Close)

ν ζ (Filter) ψ (Pacing; Disjunctive) λ� λ

�

ν ζ π (Period) ε (Ev-Based) λ� λ

�

:Int when x > 3 @5Hz @x λ� λ

�

and static filter. Table 2.6 depicts all constituents in their type hierarchy as well as their

names, meta variables, and an example syntax.

2.3.2. Lattices

Lattices are a convenient tool to describe type systems. There are multiple notions of

lattices, however, this thesis only deals with bounded meet-semilattices as defined below.

Any further mention of lattices refers to this definition.

Definition 2.4 (Bounded Meet-Semilattice)

A partially ordered set (L,v) is a meet-semilattice if any two elements x,y ∈ L have aDef.Meet-

Semilattice
unique greatest lower bound with respect to v. This element z = x u y is the meet of

x and y. Further, the meet-semilattice is bounded, if it has a greatest (> ∈ L) and leastDef. Bounded
Meet-Semilattice

(⊥ ∈ L) element in L, i.e., for any x ∈ L: ⊥ v x v >. These elements are the top and

bottom elements of the lattice.

Remark 2.3 (Notation and Meta Variables). This chapter makes heavy use of meta
variables for its notation. Hence, symbols for different type components as indicated
in Table 2.6 implicitly qualify a type, e.g., τ always refers to a full type and any ν is
implicitly a member VT, which is the set of value types. Moreover, static filters will
continue to be separated into periodic types with symbol π and event-based types with
symbol ε. Destructing a timeline into a pair renders it a spawn or close timeline, where
the destruction in four components renders it a full timeline. Lastly, when working with
lattices, the subscript of different comparisons is dropped if unambiguously possible, i.e.,
ν1 v ν2 ⇐⇒ ν1 vVT ν2

2.3.3. Atomic Type Lattices

The RTLola type lattice consists of multiple sub-lattices, mirroring the structure of a type

itself. Hence, each leaf of Table 2.6 has a full type lattice whereas the lattices for timelines

and full types are induced by a piece-wise comparison of their respective constituents.

46

2.3. Supportive Type System

The type lattices follow the intuition that the least element is the most restricted or

most concrete entity. As a result, if a type τ is “less” than τ ′, i.e., τ v τ ′, then τ ′ can be

transformed into τ but not vice versa. This process is called coercion. For example, an Coercion

integer that requires 16 bits to be stored can also be fitted into 32 bits without loss of

precision, so 16-bit integers are less concrete than 32-bit integers (Int32 v Int16), enabling
the coercion. This concept translates seamlessly to timing-related types. If a timeline λ is

lower in the lattice, i.e., λ v λ ′, it intuitively produces fewer values
13
. As an example,

consider a timeline λwith period 200 µs versus λ ′ with period 100 µs. The former timeline

produces exactly half as many values, thus, λ ′ can be coerced into λ by dropping every

other tick. While this conversion is lossy, it is also possible as opposed to inventing new

values.

In general, all but the value type lattice are infinite: the period of a timeline, for

example, is any natural number of the most fine-grained unit of time. However, the type

lattice for any particular specification is finite, as will become evident when considering

the following definitions. Hence, for the remainder of this section, let the type lattice be

defined for an arbitrary but fixed specification Φ.

Value Type Lattice The value type lattice is generic and similar to type lattices of

conventional programming languages. It declares an order on different numeric types,

e.g., floating point and (un-)signed numbers; plus a boolean type. This can easily be

extended to encompass other data interpretations like enums, fixed-length arrays such

as strings, or fixed-arity compound types like tuples and structs.

Definition 2.5 (Value Type Lattice [Sch19a])
The RTLola value type lattice is the pair (VT,vVT). Here, the set of value types VT is Def. Value Type

Lattice
defined based on a set of types VT+

, from which each element occurs in VT twice, once

regular, and once wrapped into an Option.

VT = VT+ ∪
{

Option(ν) | ν ∈ VT+
}
∪ {>,⊥}

The underlying set is defined as:

VT+ = {Bool, Int(x), UInt(x), Float(y) | x ∈ {8, 16, 32, 64} ,y ∈ {32, 64}}

Further, the order vVT is the minimal order encompassing the following inequalities:

Int(x1) vVT Int(x2) ⇐⇒ x1 > x2

UInt(x1) vVT UInt(x2) ⇐⇒ x1 > x2

Float(y1) vVT Float(y2) ⇐⇒ y1 > y2

Option(ν) vVT Option(ν ′) ⇐⇒ ν vVT ν
′

13
Caution: “fewer values” in a timing lattice correspond to “more bits” in a value type lattice.

47

2. The RTLola Specification Language

>

BoolInt(8)

Int(16)

Option(Bool) Option(Int(8))

Option(Int(16))

⊥

Figure 2.7.: Illustration of a value type lattice with a boolean and two integer base types.

ν vVT > for ν ∈ VT

⊥ vVT ν for ν ∈ VT

The last two lines declare > and ⊥ as the top and bottom elements of the lattice.

Intuitively, for any two value types ν1 v ν2, both types come from the same “family”

of types and — if applicable — representing ν1 in memory requires more bits than ν2.

Moreover, > represents an unrestricted type, ⊥ the error type, and optional values mirror

the lattice of non-optional values.

Example 2.6 (Reduced Value Type Lattice). Consider a value type lattice identical to the

RTLola value type lattice except with VT+ = {Bool, Int(8), Int(16)}. Example 2.6 illustrates

the lattice where node further up in the figure are greater with respect to vVT.

4

Pacing Type Lattice The pacing type lattice encompasses both static filters and clocks.

It is again split in two: event-based types and periodic types. The former are positive

boolean formulas over input stream literals. Hence, the relation between different

event-base types is based on implication. Periodic types on the other hand relate to the

real time axis. Here, two types are only comparable if they are integer multiples of each

other where lower periods are faster and thus higher up in the lattice.

Definition 2.7 (Pacing Type Lattice)

The event-based type lattice is based on the set of input streams S↓ occurring in Φ.Def. Event-Based
Type Lattice

ET = B+
S↓

ε1 vET ε2 ⇐⇒ (ε2 =⇒ ε1)

48

2.3. Supportive Type System

For the periodic type lattice, let Π ⊆ N be the set of periods occurring as type annotations Def. Periodic Type
Lattice

in Φ paired with an indicator for the point of reference.

PeT =

{
k · gcd(Π) | k ∈

[
1,

max(Π)
gcd(Π)

]
⊆ N
}
× {global, local}

π1 vPeT π2 ⇐⇒ π1. 2 = π2. 2∧ ∃k ∈ N.k · π1. 1 = π2. 1

Finally, the pacing type lattice (PT,vPT) is the amalgamation of the two disjoint sub- Def. Pacing Type

Lattice
lattices for event-based types and periodic types.

PT = ET ∪̇PeT ∪̇ {Always, Never}

π1 vPT π2 ⇐⇒ π1 vET π2 ∨ π1 vPeT π2

∀π ∈ PT : Never vPT π∧ π vPT Always

A result of the last line is that Never is the bottom and Always is the top element of the

lattice.

There are three things to note here. First, the definition deviates from the one for RTLola

in 2019 [Sch19a] in three major points: the inclusion of Always and Never as top and

bottom elements of the shared type lattice, the notion of local and global timelines, and

the lifting of event-based types from sets of input streams to boolean formulas. Second,

note that Always ∈ PT and true ∈ ET are subtly different in that true and false imposes the

type to be event-based whereas Always can be either event-based or periodic. The same

holds for Never ∈ PT and false ∈ ET. Last, the periodic type is only an upper-bounded

meet-semilattice since there is no fix lower bound. This does not affect the periodic type

lattice since Never lower-bounds the periodic lattice.

Example 2.8 (PacingTypeLattice). Consider the following specificationwhere frequencies

are stated as periods for better readability:

input a: Int16

input b: Int16

output x@1s := 3.1415

output y@3s := 2.7182

When constructing the type lattice for the specification, the set of inputs is S↓ = {a,b},
gcd(Π) = 1, and themaximumperiod is max(Π) = 3. Hence, ET = {a,b,a∨ b,a∧ b, false}
where a∨b ≡ true and PeT = {1, 2, 3}× {global, local}. Figure 2.8 depicts the resulting type

lattice. 4

Semantic Type Lattice The semantic type is the last leaf type and forms the basis for

semantic filters in timelines. For this, recall that every semantic type in RTLola is an

expression. The conjunctive closure allows for getting the set of expressions obtainable

by conjunction starting with a certain base set.

49

2. The RTLola Specification Language

Always

a∨ b ≡ true

a b

a∧ b

false

(1, global)

(2, global) (3, global)

(1, local)

(2, local) (3, local)

Never

Figure 2.8.: Illustration of a pacing type lattice with two input streams and three possible

stream periods.

Definition 2.9 (Conjunctive Closure)
The conjunctive closure of a set of expressions S yields all expressions that can beDef. Conjunctive

Closure
composed by conjoining elements of S.

closure(S) =
⋃
i6|S|

∧
j6i

ej | ej ∈ S

For this to take full effect, recall that on a syntactic level, any ζ is a conjunction with iζ

conjuncts where iζ > 1, i.e., ζ =
∧
i6iζ ζi.

Definition 2.10 (Semantic Type Lattice)

The RTLola semantic type lattice is the pair (ST,vST). Here, the set of semantic types ST isDef. Semantic Type

Lattice
based on the set of expressions occurring in Φ. This set potentially contains true and/or
false, both of which will be removed. Instead, it contains Always and Never as top- and
bottom elements, respectively.

STb =
{

expr(σ↑), filter(σ↑), expr(σ↑. spawn), filter(σ↑. spawn), filter(σ↑. close)
}

ST+ = closure

 ⋃
ζ∈STb

ζi | ζ = ∧
i6iζ

ζi

50

2.3. Supportive Type System

ST = ST+ \ {true, false}∪ {Always, Never}

The comparison of lattice elements is then:

ζ1 vST ζ2 ⇐⇒ ∀m ∈ [1, iζ2] : ∃n ∈ [1, iζ1] : ζ1,n = ζ2,m

∀ζ ∈ ST : Never vST ζ vST Always

Once again, Always and Never are the top and bottom elements of the lattice, respectively.

Intuitively, the vST relation checks for syntactic implication, i.e., if ζ1 vST ζ2, then each

conjunct of ζ2 has a syntactically and thus semantically equivalent counterpart in ζ1. As

a result, a semantic type lower in the lattice is active less often than one higher up.

This definition allows for some variation. The semantically optimal definition, for

example, would compare the semantics of two expressions, i.e.:

ζ1 v∗ST ζ2 ⇐⇒ (Jζ2K =⇒ Jζ1K)

Here, JζK denotes semantic evaluation as will be defined in Definition 2.22. However, :Def. 2.22, p. 64

checking for semantic equivalence for RTLola expressions is expensive for finite data types

and undecidable for infinite ones
14
. This is why Definition 2.10 opts for the syntactic

under-approximation, with ζ1 vST ζ2 =⇒ ζ1 v∗ST ζ2 but not vice versa.

Example 2.11 (Semantic Type Lattice). Consider the following specification:

input a: Bool

input b: Float32

output x eval when a with 1.7320*b

output y eval when a ∧ b > 7.0 with 1.6810*b

output y eval when a ∧ b > 3.0 with 1.4142*b

Here, STb = {a,a∧ b > 7,a∧ b > 3} is the set of all semantic types occurring in the

specification. The closure yields:

ST+ = {a,a∧ b > 7,a∧ b > 3,b > 7,b > 3,a∧ b > 3∧ b > 7}

Example 2.11 depicts two type lattices. RTLola uses the left one with the order vST that

checks for syntactic rather than semantic implication. The one on the right uses v∗ST
instead.

4

14
It can easily be seen that any Diophantine equation can be encoded in RTLola expressions. Checking

semantic equivalence can be reduced to solving them, which is undecidable [Mat70]

51

2. The RTLola Specification Language

Always

ab > 3 b > 7

a∧ b > 3 a∧ b > 7

a∧ b > 3∧ b > 7

Never

Always

a b > 3

a∧ b > 3 b > 7

a∧ b > 7 = a∧ b > 3∧ b > 7

Never

Figure 2.9.: Illustration of a semantic type lattice using the syntactic implication order on

the left, and the semantic implication order on the right. Note that a∧ b > 7

syntactically implies awhereas a∧b > 7 only semantically implies a∧b > 3.

2.3.4. Timeline Type Lattice

For the most part, this lattice is just the combination of all aforementioned timing-related

lattices with no surprises. The exception to this rule is the close sub-lattice. Recall that a

timeline that is higher in the type lattice is supposed to “run faster”. Evidently, this is the

case for the pacing and semantic type lattices. This intuition also translates to the spawn

timeline, though less obviously. If a timeline ticks faster and thus more often, the spawn

occurs faster. Hence, the timeline is created earlier and thus ticks more often. For the

termination timeline, however, the converse is true. If it ticks slowly, the encompassing

timeline is closed less quickly, lasts longer and thus ticks more often. Complying with

this intuition, in the timeline type lattice, the lattice responsible for the close-component

is inverted.

Definition 2.12 (Timeline Type Lattice)

The timeline type lattice is a pair (TlT,vTlT) with:Def. Timeline Type

Lattice

TlT = (PT× ST)3

Where the relation vTlT is defined as follows:

(ψ1, ζ1,ψ�1, ζ�1,ψ

�

1 , ζ

�

1) vTlT (ψ2, ζ2,ψ�2, ζ�2,ψ

�

2 , ζ

�

2) ⇐⇒ ψ1 vPT ψ2 ∧ ζ1 vST ζ2 ∧

ψ�1 vPT ψ
�
2 ∧ ζ

�
1 vST ζ

�
2 ∧

ψ

�

1 wPT ψ

�

2 ∧ ζ

�

1 wST ζ

�

2

52

2.3. Supportive Type System

Its top and bottom elements are respectively:

(Always, Always, Always, Always, Never, Never) and

(Never, Never, Never, Never, Always, Always)

2.3.5. RTLola Type Lattice

Finally, the RTLola type lattice is the component-wise conjunction of the value type lattice

and the timeline type lattice.

Definition 2.13 (RTLola Type Lattice)
The RTLola type lattice is a pair (RTT,vRTT) with: Def. RTLola Type

Lattice

RTT = VT× TlT

Where the relation vRTT is defined as:

(ν1, λ1) vRTT (ν2, λ2) ⇐⇒ ν1 vVT ν2 ∧ λ1 vRTT λ2

2.3.6. Type Inference

Type inference for RTLola is based on a type-check relation |=. Given an expression or stream Type-Check Relation

declaration and a type τ, the relation imposes restrictions on τ. This disqualifies a range

of types; whatever remains is a set of candidate types. While each of them constitutes a Candidate Type

valid type assignment, the inference will default to the greatest and thus least restrictive

element with respect to the RTLola type lattice. As a result, intuitively, value types take

up only as much memory as needed and streams generate as many outputs as possible.

The type checking procedure utilizes compatible parameter maps of pairs of streams.

A map ασ7→σ
′
translates parameters of σ ′ to a set of compatible parameters of σ such that

they will be semantically equivalent. This means, during the evaluation of the monitor,

if two instances of σ and σ ′ exist at the same time, ασ 7→σ
′
indicates which parameters

will have the same values. The principle is exemplified after the formal definition. Recall

the notation introduced in Section 2.2.5. : Sec. 2.2.5, p. 41

Definition 2.14 (Compatible Parameters)

A compatible parameter map ασ 7→σ ′ yields for a given parameter of σ ′ the compatible Def. Compatible

Parameter Map
parameters of σ. Let the spawn expression of both streams be a potentially unary tuple.

ασ 7→σ
′
(σ ′. param [i]) ={

p | ∃j 6 pσ ∧ p = σ. param [j]∧ σ. spawn. expr [j] = σ ′. spawn. expr [i]
}

53

2. The RTLola Specification Language

The point behind the compatible parameter maps becomes evident when considering

an example.

Example 2.15 (Compatible Parameters). Consider the following specification.

input a, b, c: Int16

output x(x1: Int16)

spawn with a ...

output y(y1: Int16, y2: Int16)

spawn with (a, c) ..

output z(z1: Int16, z2: Int16, z3: Int16, z4: Int16)

spawn with (a, b, c, c)

eval with
x(z1) // valid

x(z2) // invalid

y(z1, z2) // invalid

y(z2, z1) // invalid

y(z1, z3) // valid

y(z1, z4) // valid

The specification contains several alternative evaluation expressions for the stream z.

The parameter maps of all output streams are:

αy7→x(x1) = {y1}

αz 7→x(x1) = {z1}

αx 7→y(y1) = {x1}

αx 7→y(y1) = ∅

αz 7→y(y1) = {z1}

αz 7→y(y1) = {z3, z4}

αx 7→z(z1) = {x1}

αx 7→z(z2) = α
x 7→z(z3) = α

x 7→z(z4) = ∅

αy7→z(z1) = {y1}

αy7→z(z2) = ∅

αy7→z(z3) = α
y7→z(z4) = {y2}

Hence, when z accesses y, the first argument has to match the first parameter of the

accessee, i.e., y1, so it has to be a member of αz 7→y(y1) = {z1}. Similarly, the second

argument has to be drawn from αz 7→y(y2) = {z3, z4}. As a result, the accesses in the last

two lines are both valid. 4

The last prerequisite to defining the type check relation concerns parameters and

scopes. The expressions occurring in the evaluation or close clause of a stream operate inScope

the scope of its enclosing stream. As a result, they may refer to its parameters. These

parameters are then effectively constants.

Based on this, the type-check relation is defined as:

54

2.3. Supportive Type System

Definition 2.16 (Type Inference)
Given a stream declaration S. The type-check relation τ |= S states that τ is a valid type Def. Type-Check

Relation
for the stream declared in S. Let ex be an expression and σ be a stream. Type τ constitutes

a valid type for ex in the scope of σ if and only if τ |=σ ex. Further, τ |=∅ ex denotes that τ

is a valid type for ex in an empty scope.

Suppose TS = {τ | τ |= S} is the set of candidate types for S declaring a stream σ. The Def. Candidate
Typesinferred type for σ is then maxvRTT T

S
.

Def. Inferred Type

Finally, let λ |=σ ζ denote a valid timeline for the semantic type τwithin the context

of σ.

Remark 2.4 (Typing a Type). Semantic types are valid RTLola expressions. Hence, natu-
rally, they have a type. While the shape of these values is pre-determined as boolean,
their timing is not. For this reason, the value type is omitted, and the timeline type is
inferred based on the expression just like for any other expression.

Inference Rules

Inference rules for the RTLola type system can be roughly separated into several groups:

constants, operators, stream accesses, and stream declarations. The former two groups

are relatively conventional as they are commonly found in programming languages. The

latter two groups are specific to RTLola.

Constant Rules For constants, the inference rules are only concerned with the value

type. Since constants always exist, their timeline is arbitrary.

The first rule covers integer constants. If the given constant is non-negative, its type

defaults to unsigned integers rather than a signed one. The width of the resulting type is

the minimal number of bits required to represent the respective value. Here, range(T) is
the set of all values representable with type T .

T =

 UInt if c >= 0

Int otherwise

x = arg min
p∈{8,16,32,64}

c ∈ range(Tp) ν = Tx

(ν, λ) |=σ c
ConstInt

The rule for floats is nigh identical, deviating mainly in the available bit widths.

c /∈ Z c ∈ range(Float64) x = arg minp∈{32,64} c ∈ range(Floatp)

(Float(x), λ) |=σ c
ConstF

55

2. The RTLola Specification Language

The next two rules cover boolean constants and parameters. To understand why the

latter are constants, recall that parameters occur in expressions. These expressions are

only evaluated when the respective stream is instantiated. At this point in time, the exact

value of the parameter is determined, rendering them an effective constant.

The inference rule for boolean values requires that the constant is either true or false.
A parameter needs to occur in the list of parameters of the respective stream and has the

annotated value type. This type annotation is mandatory in a specification.

c ∈ {true, false}

(Bool, λ) |=σ c
ConstB

σ. param [i] = p Tσi = ν

(ν, λ) |=σ p
Param

Operator Rules The rules for unary and binary operators, as well as n-ary functions,

all follow the same pattern. First, infer the type of sub-expressions recursively. Second,

apply the value type rules of the respective operator or function. Third, the timeline of

the expression is the meet of the timelines of the sub-expressions.

(ν ′, λ ′) |=σ ex ◦ : T ′ → T T ′ v ν ′ T v ν λ v λ ′

(ν, λ) |=σ ◦ex
Unary

(ν1, λ1) |=σ ex1 (ν2, λ2) |=σ ex2

◦ : T1 × T2 → T T1 v ν1 T2 v ν2 T v ν λ v λ1 u λ2

(ν, λ) |=σ ex1 ◦ ex2
Binary

∧
i6n

(νi, λi) |=σ exi

f :×i6n Ti → T
∧
i6n

Ti v νi T v ν λ v
l

i6n

λi

(ν, λ) |=σ f(ex1, . . . , exn)
Fn

Default expressions behave similarly, yet with two differences. The type of the

subexpression needs to be an optional one. Anything else would render the default

expression pointless. Moreover, the resulting value type is the meet of the value type of

the subexpression and default value expression.

(Option(ν1), λ1) |=σ ex1 (ν2, λ2) |=σ ex2 ν v ν1 u ν2 λ v λ1 u λ2

(ν, λ) |=σ ex1. defaults(to : ex2)
Dft

56

2.3. Supportive Type System

Stream Access Rules Stream accesses consist of two components: the selection of a

particular stream instance and the selection of accessed values. The instance selection

is a three-step process. First, the name of the stream allows for accessing the inferred

type of the stream. Then, the access contains expressions constituting parameters, which

selects a specific instance of the stream. Lastly, the access can be either synchronous or

asynchronous.

The synchronous version intuitively requires compatibility of the timeline of the

accessing and accessed stream instance. This translates to the imposition of a temporal

and a semantic constraint. Temporally, the timeline of the accessing stream instance

needs to be “slower” than the accessed one. This in particular entails that the creation of

the accessing instance guarantees the existence of the accessed one. However, the access

itself needs to guarantee that it targets a matching instance. To this end, the access must

adhere to the compatible parameter map defined in Definition 2.14. This guarantees that

the access will always succeed, hence the return value is non-optional.

The following rule imposes the respective constraints, starting by accessing the inferred

type of the accessed stream. The rule then checks whether the numbers of parameters in

the access and declaration of the target agree, followed by checking for compatibility

of parameters. Lastly, the timeline of the accessing stream needs to be more concrete

than the one of the accessed stream. Here, ζ [α] replaces occurrences of parameters of σ

by a counter-part according to α. Note that there can be several potential replacements.

While they differ syntactically, they are semantically equal. However, since vST checks

for syntactic equality, all options need to be considered. It is sufficient if one of them

satisfies the rule.

τ ′ |= σ ′ n = pσ
′∧

i6n
exi ∈ ασ 7→σ

′
(i) (ν, (ψ, ζ [α] , (ψ�, ζ� [α]), (ψ

�

, ζ

�

[α]))) v τ ′

(ν, (ψ, ζ, (ψ�, ζ�), (ψ

�

, ζ

�

))) |=σ σ ′(ex1, . . . , exn). sync
Sync

The asynchronous access imposes an almost entirely different set of constraints. It

also starts by accessing the inferred type of the accessed stream. However, the timeline

of the accessed stream is irrelevant for the asynchronous access, as its purpose is to

decouple the timelines of accessor and accessee. Furthermore, the value type of the

access coincides with the value type of the accessed stream, wrapped in an optional. This

represents the fallible nature of the asynchronous access. The fourth premise ensures

that the number of parameters fits. Apart from this constraint, the asynchronous rule

is more liberal regarding the parameters than the synchronous one. The synchronous

access implicitly required exi to be parameters, whereas in the asynchronous case they

can be arbitrary expressions. This requires their types to be inferred by the fifth premise.

The next one assures that the value type of each parameter matches its declared type.

Finally, the timeline of the access is the meet of all its parameter expressions.

57

2. The RTLola Specification Language

(ν ′, _) |= σ ′ ν = Option(ν ′′) ν ′′ v ν ′

n = pσ
′ ∧

i6n
(νi, λi) |=σ exi

∧
i6n

Tσ
′
i v νi λ v

l
i6n

λj

(ν, λ) |=σ σ ′(ex1, . . . , exn). async
Async

The next step after selecting a stream instance is the specification of which values are

accessed. The most basic form is the 0-offset, in which case the most recent value of a

stream is accessed. Here, the type of the access merely mirrors the type of the accessed

instance. When changing the offset to a strictly negative value, the access becomes

fallible, hence the access has an optional type. In this case, the chain starting with an

asynchronous access followed by a negative offset is of particular interest. Since both

render the returned value optional, this results in a type such as Option(Option(T)) rather
than the expected Option(T). For this reason the rule explicitly deflates chains of Option
types.

τ ′ |=σ ex τ v τ ′

τ |=σ ex. offset(by : 0)
Ofs(0)

n ∈ N (ν ′, λ ′) |=σ ex λ v λ ′

ν =

 ν ′ if ν ′ = Option(_)

Option(ν ′) otherwise

(ν, λ) |=σ ex. offset(by : −n)

Ofs(-n)

While offsets only access a single value, aggregations access a whole sequence of

values, aggregates them, and yields the result. To this end, the aggregation contains

a time interval and an aggregation function. The rule ensures that the clock of the

access is periodic where the period is a divisor of the duration of the aggregation.

This and the requirement that the aggregation is a list homomorphism [Mee86] allows

for a memory-efficient aggregation [Li+05; Sch19a]. The value type of the expression

corresponds to the resulting type of the aggregation. In case of an exact aggregation, the

type is wrapped in an Option since the aggregation only starts producing values after δ

has passed.

(ν ′, _) |=σ ex ψ = π ∃k ∈ N. δ = kπ γ : ν ′
∗ → ν

(ν, (ψ, ζ, λ�, λ

�

)) |=σ ex. aggr(over : δ, using : γ)

Aggr

(ν ′, _) |=σ ex ∃k ∈ N. δ = kπ γ : ν ′
∗ → ν ′′ ν = Option(ν ′′)

(ν, (π, ζ, λ�, λ

�

)) |=σ ex. aggr(over_exactly : δ, using : γ)

AggrEx

58

2.3. Supportive Type System

Stream Declaration Rules There are two kinds of stream declarations, inputs and

outputs. For input streams, the declaration only provides the name of the stream and the

value type. The remaining information is pre-determined: the pacing type is event-based

and contains only the input stream itself, the timeline is unfiltered, hence ζ = Always.

ν = T ψ = σ↓ ζ = Always

(ν, (ψ, ζ)) |= input σ↓ : T
Input

Output streams on the other hand are highly variable. However, most of the type

information is optional to comply with Mv: Distraction-Freedom. These parts are marked

with a ∗-subscript. If they are not present in the specification, the type inference

substitutes default values instead, i.e., > for the value type and Always for pacing types

and semantic types except in the close clause, where it is Never instead. Note that these

annotations include the reference mark to the global timeline.

The following type rule consists of multiple lines of premises.

((ν1spw, . . . ,νnspw), λspw) |=
∅ exspw

∧
i6n

Ti v νnspw

λsf |= ζ
�
∗ λ� v (ψ�∗, ζ

�
∗)u λspw u λsf

(νex, λex) |=
σ ex ν v ν∗ u νex (ψ, ζ, λ�, λ

�

) v λex

λfil |=
σ ζ∗ (ψ, ζ, λ�, λ

�

) v λfil ζ v ζ∗

λ
�

= (ψ
�

∗ , ζ
�

∗)

(ν, (ψ, ζ, λ�, λ

�

)) |= output σ(p1 : T1, . . . ,pn : Tn) : ν∗

spawn @ ψ�∗ when ζ�∗ with exspw

eval @ ψ∗when ζ∗ with ex

close @ ψ

�

∗ when ζ

�

∗

Output

The first line corresponds to the parameters of the stream. It first infers the type of

the spawn expression, which has to yield a tuple with an arity matching the number

of parameters. The value type of each element needs to be coercible into the annotated

parameter type.

The second line imposes constraints on the spawn timeline. For this, it first infers the

timeline of the delay filter. Then, it asserts that the spawn timeline is more concrete than

the annotated timeline, the timeline of the spawn expression, and the timeline of the

spawn filter combined. This ensures that the type inference respects the type annotations

in the specification and whenever the spawn timeline ticks, both the spawn expression

and the spawn filter tick as well. As a result, the creation of an instance can be stopped

courtesy of the filter, and — if it is not — the spawn expression provides parameters.

59

2. The RTLola Specification Language

The next line is concerned with the stream expression. The value type depends on the

expression plus the annotated value type. Moreover, the timeline of the expression must

be compatible with the timeline of the stream.

The last line restricts the close timeline and filter of the stream. It first infers the

timeline of the filter expression and ensures that it ticks whenever the timeline of the

stream itself ticks. Lastly, the filter and close timelines are more concrete than their

annotated counterparts.

Conclusion

This concludes the type inference rules for RTLola. While their complexity seems deterring,

specifiers do not need to understand them on this level of detail. Most of the time, all

they need to know is the intuition behind timelines such that they can override default

semantics whenever desired. Apart from these cases, the example specifications in this

thesis already illustrate that manual type annotations are rarely necessary.

60

2.4. Semantics of Monitors

2.4. Semantics of Monitors

In quintessence, the monitor is a component that reacts upon inputs and delivers a

verdict that judges whether a specification was violated. There are several concepts for

achieving this goal. The most simple kind are rule-based monitors. Their judgment is Rule-Based Monitors

based solely on the current input, so the monitor realizes a function

Mr :
〈
T
↓
i

〉
i6n↓

→
〈
T
↑
j

〉
i6n↑

Here, a single event for the monitor consists of n↓ input values. This corresponds to

the number of input streams in RTLola, so n↓ =
∣∣S↓∣∣. Similarly, the verdict consists of

an n↑-tuple of values. During an ongoing execution in the stream-based setting, the

monitor is called repeatedly.

This model of a monitor is limited since it only has access to a snapshot of the execution,

prohibiting it from evaluating temporal properties. Hence, stream-based monitors carry

and modify an internal state, so they realize the following function:

M :
〈
T
↓
i

〉
i6n↓

× ΣM →
〈
T
↑
j

〉
i6n↑

× ΣM

For a sequence of inputs 〈evi〉i6k, a monitor M ∈ M computes its verdict iteratively.

Suppose the initial state is ΣM0 , so the initial verdict is v1 for (v1,ΣM0) = M(ev1,ΣM0)

and each subsequent verdict is vi+1 for (vi+1,ΣMi+1) = M(evi+1,ΣMi). An equivalent,

state-less formulation requires the entire sequence of input values so far as input:

M :

(〈
T
↓
i

〉
i6n↓

)k
→
〈
T
↑
j

〉
i6n↑

The same result can be achieved when the monitor carries every input in its internal state.

However, without aggregation and filtering, the internal state grows at least linearly this

way. For CPS, this is not an option since the number of inputs the monitor receives while

it is deployed is unbounded and the system has to cope with strictly limited memory.

This would also partially contradict RTLola’s Mii: Resource-Awareness. In essence, for an

RTLola monitorM, the size of its state ΣM is always statically determined.

While this formulation allows for resolving temporal dependencies, it lacks two critical

components: asynchrony and a relation to real time. Asynchrony mainly models that

constituents of an event might be delayed or lost in transmission before reaching the

monitor. This property manifests as gaps in the input and output tuple, so the monitor

allows for receiving — and is allowed to produce — undefined values:

M :
〈
T
↓
i ∪̇ {⊥}

〉
i6n↓

× ΣM →
〈
T
↑
j ∪̇ {⊥}

〉
i6n↑

× ΣM

Lastly, the monitor requires a notion of real time. For this, first, each event has a Real Time

timestamp drawn from R+
indicating when the event took place. Second, the monitor

61

2. The RTLola Specification Language

needs a way to react upon the real time without being triggered by the system. To this

end, rather than only issuing a verdict and updating the state, the monitor also produces

a relative timestamp indicating when its verdict will change given no further event occurs

until then. As a result, the monitor is a piece-wise constant signal that changes when

it either receives an event or a relative timestamp passed. This leads to the following

definition
15
.

Definition 2.17 (Asynchronous State-Based Real-Time Monitor Function)

An asynchronous state-based real-time monitor function with a state drawn from ΣM
, n↓Def. Asynchronous

State-Based

Real-Time Monitor
inputs of types

〈
T
↓
i

〉
i6n↓

and n↑ outputs of types
〈
T
↑
j

〉
j6n↑

is defined as:

M :
〈
T
↓
i ∪̇ {⊥}

〉
i6n↓

×R+ × ΣM →
〈
T
↑
j ∪̇ {⊥}

〉
i6n↑

× ΣM ×R+

Note that in the definition, the timestamp of the last input event denotes a notion of

“now” since events can be empty.

Example 2.18 (Persistence of verdicts). Suppose a monitorM is in state ΣM and receives

input ev at time t, for which it producesM(ev, t,ΣM) = (v,ΣM ′, t ′). The monitor may

not change its verdict for the next t ′ time units, so for all empty events () and δ < t ′ the

following holds:

M((), t+ δ,ΣM ′) = (v,ΣM ′, t ′ − δ)

4

Remark 2.5 (Non-Monotonic Time). The definition of monitors does not require time
to increase monotonically. As a result, events can reach the monitor out-of-order for
example owing to jitter or re-transmissions. While this is an interesting subject in and of
itself, this thesis disregards this problem. Hence, for the remainder of the thesis, assume
the monitor automatically rejects an input if the respective timestamp is less than one
received previously.

2.4.1. Semantics of RTLola

The semantics of RTLola are defined based on an update function for the state and a

slicing function, extracting the verdict from the current state. Both of them hinge on the

shape of the monitor state. Intuitively, the state is a collection of stream instances, where

each instance is a sequence of values. These values were received by the system for input

streams and computed by the monitor for output streams. While for practical purposes,

15
Note that the definition is adapted from my earlier work [Sch19a] to accurately reflect the state-based and

real-time property of the monitor.

62

2.4. Semantics of Monitors

it is imperative that the state remains within a constant memory bound, the semantics

gloss over this, memorizing every piece of information received and computed over

different calls to the monitor. This challenge can be overcome by summarizing relevant

and evicting outdated information, as presented in Section 2.7.6 for an interpreter, : Sec. 2.7.6, p. 88

Section 3.1.4 for a hardware monitor, and Section 3.2.3 for a software monitor. : Sec. 3.1.4, p. 111

: Sec. 3.2.3, p. 133

Definition 2.19 (RTLola Monitor State)

An RTLola monitorM =MΦ for a specification Φ has an internal state Σ = ΣMΦ
. The Def. Monitor State

state is a timestamp of its last update plus a collection of stream instances. A stream Def. Stream Instance

instance ι ∈ SI consists of a stream identifier, a creation time, an unbounded sequence

of their timestamped values and a tuple of aggregation targets. These five constituents

— assuming the implicit destruction of the stream identifier — can be accessed via

ι. name, ι. params, ι. time, ι. vals, and ι. aggr, respectively. Hence:

Σ ∈ R+ × 2SI
with SI ∈

⋃
σ∈S

SId(σ)× (Tσ ×R+)∗ ×
〈
SId(σ ′)

〉
σ ′∈aggr(σ)

Let ι ∈ Σ ⇐⇒ ι ∈ Σ. 2 and let Σ. time = Σ. 2.

Note that SId(σ) contains the first three components, i.e., the name, parameters, and

time of creation.

The update of the monitor state is a multistep process. Recall that a result of a call to

the monitor is three-fold: the updated state, a verdict, and a relative time-offset, called a

deadline. The deadline states when the verdict of the monitor changes provided it does Deadline

not receive new events. Hence, when a monitor is called sparsely, the verdict might

have changed multiple times between calls. Each of these changes is accompanied by a

mutation of the monitor state. Hence, the very first step of the update applies all changes

triggered by deadlines that have passed in the interim. After these steps, the monitor

finally updates its state with respect to the current event.

This process needs information regarding the next deadline of a monitor state.

Definition 2.20 (Next Deadline)

The function nextdl produces an absolute point in time when the next deadline is due Def. Next Deadline

for a given monitor state Σ as follows:

nextdl(ψ,Σ) =

kπ if ψ = (π, global)∧ k ∈ N∧ kπ > Σ. time

ι. time + π if ψ = (π, local)∧ |ι. vals| = 0

ι. vals. last. 2+ π if ψ = (π, local)∧ |ι. vals| > 0

pacings(ι) = {pace(ι. name), pace(ι. name. close), pace(ι. name. spawn)}

nextdl(Σ) = min
ι∈Σ

⋃
ψ∈pacings(ι)

nextdl(ψ,Σ)

63

2. The RTLola Specification Language

Note that nextdl(Σ) = Σ. time is possible both by design.

To understand the nextdl function, recall that each stream is either event-based or

periodic. In the former case, a stream is only updated reactively, i.e., with respect to an

event. Periodic streams, however, are proactive, meaning they need updates based on

the real time and thus independent of event. Hence, the function selects all periodic

streams. If their pacing refers to the local clock, their respective deadline is π after their

last evaluation if any, or π after time 0 if it does not have a value, yet. If the pacing is

global, the next deadline is an integer multiple of their period since the monitor time

starts at time 0. Hence, nextdl returns∞, so the minimum is guaranteed to pick another

value.

This allows for defining the monitor update process.

Definition 2.21 (Monitor Update Process)

Let Σ be the state of an RTLola monitor and ev be an event received at time t. The updateDef. Monitor Update

Process
of the monitor state is defined as

update(Σj, ev, t) = update1(update∗(Σj, t), ev, t)

Here, update1 executes an atomic update step and is defined later. The function update∗

iteratively updates the monitor state according to missed deadlines. For this, it computes

the point in time of the next deadline for a given monitor state. It then triggers an atomic

update at the respective point in time with an empty event.

update∗(Σ, t) =

 update∗(update1(Σ, (⊥)n↓ , nextdl(Σ)), t) if nextdl(Σ) 6 t

Σ otherwise

Intuitively, the update function handles the scheduling of updates by ordering them

according the timestamp of an event. For this, it repeatedly calls update1 for each

deadline that was missed. The update1 function itself captures the quantitative rather

than temporal part of the RTLola semantics. It is mainly concerned with three challenges:

managing instances, determining which ones need updates, and evaluating expressions.

Let us first inspect the latter.

Definition 2.22 (Expression Evaluation)

Let Σ be a monitor state, ζ an expression constituting a semantic type, and ex be an

expression. The filtered evaluation JexKζΣ evaluates ex and returns its value iff the filter ζDef. Filtered
Evaluation

holds.

JexKζΣ =

 JexKΣ if JζKΣ

⊥ otherwise

64

2.4. Semantics of Monitors

The (regular) expression evaluation JexKΣ performs a case distinction over the syntax of Def. Expression
Evaluation

RTLola expressions. For conventional expressions, it behaves ordinarily:

JcKΣ = c (Constants)

J◦exKΣ = ◦(JexKΣ) (Unary Operators)

Jex1 ◦ ex2KΣ = Jex1KΣ ◦ Jex2KΣ

Jif ex1 then ex2 else ex3KΣ =

 Jex2KΣ if Jex1KΣ

Jex3KΣ otherwise

(Conditionals)

Jex1. defaults(to : ex2)KΣ =

 v if Some(v) = Jex1KΣ

Jex2KΣ otherwise

(Defaults)

For RTLola-specific expressions, offsets access the respective stream instance and shift

them by the specified value. Recall that the offset is always negative or 0. Aggregations

on the other hand access a sequence of values of the target stream instance. The precise

values relevant for the aggregation are determined based on their timestamps rather

than a discrete offset. They are then aggregated.

Let σ be a stream, Σ be a monitor state and e1, . . . , epσ be a sequence of expressions.

Then:

ι? =

 ι if ∃ι ∈ Σ : ι. name = σ∧ ι. params =
〈
JeiKΣ

〉
i6pσ

⊥ otherwise

Note that ι is uniquely defined since the monitor states cannot contain multiple instance

of the same combination of stream name and parameters. Moreover, let ~v? = ι. valsι? and
t? = ι?. time if ι? is a member of Σ or ⊥ and∞ otherwise.

Jσ(e1, . . . , epσ). sync. offset(by : n)KΣ

=

 Some(~v? [|~v?|+n]) if ι? ∈ ΣM ∧ |~v?| > n

None otherwise

Jσ(e1, . . . , epσ). async. offset(by : n)KΣ

= Jσ(e1, . . . , epσ). sync. offset(by : n)KΣ

Jσ(e1, . . . , epσ). async. aggregation(over_exactly : δ, using : γ)KΣ

=

 Jσ(e1, . . . , epσ). async. aggregation(over : δ, using : γ)KΣ if t− ι?. time > δ

None otherwise

65

2. The RTLola Specification Language

Jσ(e1, . . . , epσ). async. aggregation(over : δ, using : γ)KΣ

=

Some(γ(~v?)) if ι? ∈ Σ ∧ ∀i : ~v? [i] . 2 > t− δ

Some(γ(〈~v? [i]〉x6i6|~v?|
)) if ι? ∈ Σ ∧ x = min {i | ~v? [i] . 2 > t− δ}

None otherwise

Note that this is an exhaustive list of the RTLola-specific expression because synchronous

aggregations are not allowed. Note further that the semantics does not distinguish

between synchronous and asynchronous accesses as they merely contribute to the type

system as explained in Section 2.3.: Sec. 2.3, p. 42

The next step for the update function is to determine when a given stream instance

requires an update. For this, recall that every stream σ has a pacing, which is either a

real-time period (π, f) = pace(σ) for f ∈ {local, global} or an event type ε = pace(σ). The
latter is a positive boolean expression where each literal is an input stream name. Such a

literal evaluates to true if the stream received a new value with the current event.

Definition 2.23 (Stream Activation)

An instance ι of a stream σ with creation time t0 is active for a given event ev at time tDef. Active Stream

if its pacing type is active. A pacing type is active if it either is periodic and t constitutes

a deadline or it is event-based and its type evaluates to true for ev.

active((π, global), t0, ev, t) ⇐⇒ ∃k ∈ N.k > 0∧ kπ = t∨ ty = ε

active((π, local), t0, ev, t) ⇐⇒ ∃k ∈ N.k > 0∧ t0 + kπ = t∨ ty = ε

active(ε, t0, ev, t) ⇐⇒ ε

[〈
σ
↓
i 7→ ev [i] 6= ⊥

〉
i6n↓

]

Note that a consequence of this definition is that periodic streams are inactive at the

point in time when they are created.

The last remaining challenge is managing stream instances. Initially the monitor

creates a set of stream instances which contains an instance for each input stream and

each static output stream. These are streams with a semantically empty spawn clause.Static Output Stream

Example 2.24 (Semantically Empty Spawn Clauses). A stream with semantically empty

spawn clause is a stream where the pacing type of the spawn clause represents “Always”,
and the spawn condition is a tautology such as in the following stream declaration:

output x()

spawn always when true with ()

eval @1Hz when true with ...

close never

66

2.4. Semantics of Monitors

For these streams, the parameter tuple will always be 0-ary since parameters would

depend on computed values, which are inaccessible statically. 4

Definition 2.25 (Initial Monitor State)

The initial monitor state Σ0 is defined as a collection of stream instances for all static Def. Initial Monitor

State
streams.

Σ0 =
{
(σ, (), 0, ()) | σ ∈ S↓ ∨ σ ∈ S↑ ∧ pace(σ. spawn) = filter(σ. spawn) = Always

}

The atomic update function simultaneously spawns new stream instances when

appropriate and updates active instances — even if they were just spawned — unless

their filter prohibits the update. Afterwards, it removes all instances due to be closed.

Definition 2.26 (Atomic State Update Function)

The atomic update function updates a monitor state Σi into an intermediate state Σ+
i+1 Def. Atomic Monitor

State Update
before closing instances, reducing it to Σi+1.

update1(Σi, ev, t) = Σ+
i+1 \

{
(σ,~p, _, _) | close(σ,~p,Σ+

i+1)
}

Here, close(ι,Σ) determines whether a stream instance is due to be closed.

close(σ,~p,Σ+
i+1) = Jexpr(σ. close)

[
〈pi 7→ ~p [i]〉i6pσ

]
Kfilter(σ.close)[〈pi 7→~p[i]〉i6pσ]
Σ+
i+1

Moreover, Σ+
i+1 = X

↓ ∪̇X↑ ∪̇X↑+ ∪̇X∗ consists of several sets containing updated, persisted,

and/or newly created streams.

First, X↓ contains all input stream instances with potentially updated values.

X↓ =
⋃
σ↓∈S↓

{(
σ
↓
i . name,σ↓i . params,σ↓i . time,σ↓i . vals ◦ ev [i]

)}

Recall that the ◦-operator skips the concatenation if the left operand is ⊥.
Second, X↑ denotes all output stream instances which are inactive and thus not

updated.

X↑ =
{
ι ∈ Σ+

i | ι. name ∈ S↑ ∧¬ active(pace(ι. name), ι. time, ev, t)
}

67

2. The RTLola Specification Language

Third, X
↑
+ is the set of newly updated output streams.

X
↑
+ =

⋃
ι∈Σ+

i+1

{
(ι. name, ι. params, ι. time,~v) | ι. name ∈ S↑

∧ active(pace(ι. name), ι. time, ev, t)

∧~v = ι. vals ◦
(

Jexpr(σ↑)
[
〈pi 7→ ~p [i]〉i6pσ

]
Kfilter(σ)[〈pi 7→~p[i]〉i6pσ]
Σ+
i+1

)}

Last, X∗ contains newly created instances.

X∗ =

{(
σ↑,~p, t, ()

)
| σ↑ ∈ S↑ ∧ ~p = Jexpr(σ↑. spawn)Kfilter(σ↑.spawn)

Σ+
i+1

∧ active(pace(σ↑. spawn), t, ev, t)
}

The timestamp of the resulting monitor state is t.

This concludes the update logic for monitor states.

Remark 2.6 (Self-Dependent Semantics). The definition of the updated monitor state
Σ+
i+1 refers to itself, so it is not immediately evident why this is well-defined. The resolution

to this question requires an intricate analysis of the structure of inter-stream dependencies
and will follow in Section 2.5.2.: Sec. 2.5.2, p. 71

With the update function in tow, only the slicing function is left to define. The purpose

of it is slicing the verdict out of the monitor state. According to Definition 2.17, the:Def. 2.17, p. 62

monitor produces a sequence of output values. Since the verdict of RTLola is based on

triggers, the output is a n!
-ary tuple of boolean values. Let S! ⊆ S↑ be a multi-set of all

output streams marked as triggers. Note that S!
needs to be a multi-set because several

triggers may refer to the same output stream.

Definition 2.27 (Slicing)
The verdict slicing function determines which output streams are marked as triggersDef. Verdict Slicing

Function
and produced a positive output in a given monitor state Σ.

slice(Σ) =
〈
∃ι ∈ Σ : ι. name = σ! ∧ ι. vals [|ι. vals|]

〉
σ!∈S!

Note that this definition only considers the latest value of the output streams. However,

receiving a single event can trigger multiple state updates. This can lead to the verdict

not reflecting the fact that a trigger was temporarily true and turned false again before the

system queried the monitor. Since it is not universally clear whether a query should take

68

2.4. Semantics of Monitors

outdated alarms into account, there is no “correct” definition. In any case, Definition 2.27

can easily be adapted to reflect the alternative semantics by inspecting the difference

between the former and the new monitor state and aggregating all new values with an

existential quantification.

Now, with all necessary definitions in place, the update function assembles all sub-

results into the final monitor function.

Definition 2.28 (RTLola Monitor Function)

The RTLola monitor functionM updates a monitor state Σ to Σ ′ = update(Σ, ev, t) and Def. RTLola Monitor

Function
produces a timestamp and verdict for an input event ev at time t as follows:

M(ev, t,Σ) = (Σ ′, nextdl(Σ ′), slice(Σ ′))

Note that neither the updated state, nor the verdict are necessarily uniquely defined.

The next section discusses this topic in detail. However, this first requires clarification of

the term evaluation model. (Unique) Evaluation

Model
Given an RTLola specification Φ. A sequence of monitor states and verdicts is a valid

evaluation model if it can be the output of a successive application of the RTLola monitor

function. An RTLola specification has a unique evaluation model iff each possible input

sequence has exactly one evaluation model. These models can, but do not have to be

identical.

69

2. The RTLola Specification Language

2.5. Specification Analysis

The dependency graph analysis is a staple for any variant of Lola since its inception. It is

a manifestation of one of the prime advantages of the language: the ability to deeply

analyze a specification.

In a nutshell, the analysis constructs the eponymous dependency graph. Here, each

node represents a stream. Any stream access within the specification results in a labeled

edge. The label encapsulates information regarding the kind of dependency.

The analysis of the graph determines the monitorability of a specification and generates

several artifacts. These artifacts contain insights into the specification and are thus

valuable for further steps such as checking compatibility with the target system, an

efficient interpretation, and an easier compilation process (cf. Chapter 3). In summary,:Chap. 3, p. 97

the analysis determines:

Well-Definedness The term well-defined describes whether there is a unique evaluationWell-Definedness

model for a given RTLola specification. This is not a given since the semantics of

RTLola by itself neither guarantees the existence nor the uniqueness of valid models.

Evaluation Order The evaluation order is a partial order on streams. For any pair ofEvaluation Order

streams, if σ ≺ σ ′, then σ depends on σ ′. Thus, when computing a model of the

specification, the evaluation of σ needs to precede the one for σ ′.

Memory Bounds In RTLola, streams underlie a strict memory bound, i.e., a finite extract ofMemory Bound

the model suffices to compute consecutive outputs.

2.5.1. Dependency Graph

The dependency graph of a specification lays the foundation for further analysis steps.

It consists of finite sets of vertices and edges where each vertex represents a stream.

Edges of the graph are labeled with information regarding the kind of dependency, i.e.,

whether an access takes place in the close clause, spawn clause, semantic filter or stream

expression. Hence, this information summarizes the relation between the timelines

of streams. It also indicates the temporal nature of an access, i.e., it states whether a

stream accesses another’s values synchronously or asynchronously, whether it accesses a

single value or multiple, and which ones. Hence, if a stream σ accesses σ ′ in its stream

expression and in the semantic filter of its close clause, the dependency graph will have

at least two distinct edges from σ to σ ′.

Definition 2.29 (RTLola Dependency Graph)

The dependency graph DΦ = (V ,E) of a desugared RTLola specification Φ is a labeledDef. Dependency

Graph
directed multigraph. The vertices are streams, i.e., S = V and each edge represents a

dependency with E ⊆ V × LD × V . Here, dependency labels LD enumerate all kinds ofDef. Dependency

Labels

70

2.5. Specification Analysis

possible dependencies.

LD =

Behavioral︷ ︸︸ ︷
{Filter, Spawn, Close, Eval}

×
Access Kind︷ ︸︸ ︷(

{Sync}∪ {Async}︸ ︷︷ ︸
Hold

∪(Offset×N)∪ ({Async}×FH ×R)︸ ︷︷ ︸
Aggregation

)
Here, FH denotes the set of list homomorphisms.

The creation of edges happens according to the following rules.

• An input stream σ↓ does not have outgoing edges.

• For an output stream σ↑, determine the edges and access kinds of a) expr(σ↑. spawn),
b) filter(σ↑. spawn) and filter(σ↑. close), c) filter(σ↑), and d) expr(σ↑). Tag them with

Spawn, Close, Filter, and Eval, respectively.

• For expressions occurring in σ↑, each synchronous access including offset accesses

with offset 0, asynchronous hold access or access with offset n > 0 to σ ′ translates

to an edge (σ↑, _,σ ′) ∈ E, with access kind Sync, Async, or (Offset,n), respectively.

• Each aggregating access to σ ′ with aggregation function γ ∈ FH and duration

d ∈ R translates to (σ↑, _,σ ′) with access kind (Async,γ,d).

The set of the resulting edges is then E.

Example 2.30 (Dependency Graph). Recall the running example from Listing 2.4. :Listing 2.4, p. 25

Figure 2.10 depicts its dependency graph.

4

Remark 2.7 (Stream Instances as Vertices). An alternative formulation is to create a
vertex per potential stream instance. This would drastically blow up the graph. In return,
it would enable a semantic analysis, so it could for example determine mutually exclusive
stream instances. While such checks have merit, they are expensive to the point of
infeasibility. So, since the following analyses do not require this information and still yield
substantial information renders this definition preferable.

2.5.2. Well-Definedness

The notion of a well-defined specification was first defined for Lola [DAn+05] and

translates well to the real-time variant. In either language, a well-defined specification

has a unique model. Hence, there are two problematic cases: specifications without a

model and specifications with several models. The following specification illustrates

both points.

71

2. The RTLola Specification Language

oid distx disty spdx spdy lost pause

sx sy velo

coll obey

ttc

(Eval, Async)

(Eval, Async)

(Eval, (Async,
∫

, 1. 5))
(Spawn, Sync)

(Close, Sync)

(Filter, Sync)

Figure 2.10.: Dependency graph of the running example specification. Blue edges have

the label (Eval, Sync). The twodisconnected nodes indicate that both streams

are merely timing indicators; their values have to influence on the verdict.

output x: Bool := ¬x

output y: UInt64 := y

Evidently, the output x constitutes a contradiction whereas output y is tautological. As a

result, there is no model for x and 264 models for y.

While determining the lack or abundance of models is trivial in some cases, it is

undecidable for unbounded types [DAn+05] and requires an expensive semantic analysis

for bounded types. However, there is a simpler, albeit imperfect, syntactic check for Lola.

Adapting it to RTLola is possible, yet demands some tweaks.

The well-formedness check for Lola specifications identifies all cycles occurring in theWell-Formedness

specification. Here, a chain of streams constitutes a cycle if they access each other,

starting and ending in the same stream. Each stream access has a weight, which is

0 for synchronous accesses and x ∈ Z for accesses with offset x. Note that in Lola

these cover all possible access kinds, however, x can be either positive or negative. A

cycle then qualifies as 0-cycle if the sum of its weights amounts to 0. Based on this,

well-formedness requires the absence of 0-cycles. It can easily be seen that both streams

in the aforementioned specification constitute a 0-cycle by themselves.

The advantage of well-formedness is that it can easily and efficiently be determined

based on a dependency graph, and it implies well-definedness [DAn+05]. On the

downside, there are well-defined specifications which are not well-formed.

72

2.5. Specification Analysis

output z := z ∨ ¬ z

The tautology in the stream expression forces the value of z to be true. Hence, in spite

of the 0-cycle, a unique model for z exists. Fortunately, in practice, well-formedness is an

adequate criterion since cases like z barely ever occur.

Defining well-definedness for RTLola requires a closer look at why 0-cycles pose

a problem in Lola and how to adequately lift the notion to take instance handling,

asynchrony, and real-time into account. First off, observe that a cycle in the dependency

graph indicates that all streams in the cycle influence each other. This is not a problem

per se, provided the cycle can be resolved by taking the time axis into consideration. For

a cycle with negative weight, successive unrolling of dependencies leads further and

further into the past. At some point, this spiral passes the first evaluation of the stream.

In this case, an access fails, so the semantics substitutes the default value, ultimately

breaking the cycle. An analogous phenomenon happens for cycles with positive weights.

The problem only persists for 0-cycles since there is no breaking element. While this is

the only possible kind of cycle in Lola, the more fine-grained notion of time in RTLola

gives rise to more options. For each of them, well-formedness demands a breaking

element.

Cycles on Lola translate to legacy cycles in RTLola. These occur when a cycle contains Legacy Cycle

only (Eval, Sync)-labeled edges. Just as in Lola, they can be broken with a (Eval, Offset(n))
edge. The absence of positive offsets renders this sufficient. Whether Close, Filter, or
Spawn edges break legacy cycle becomes clearer when first discussing another sources of

cycles.

An existential cycle indicates that the existence of a value depends on the (only potentially Existential Cycle

existent) value itself. An example clarifies the term:

input inp: Int32

output x(p: Int32)

spawn with x

eval with inp

Suppose inp produces the value 3, and no instance of x exists, yet. If any instance of x

were to exist, it would produce the value 3, causing x(3) to be spawned. The output

thus retroactively justifies both itself, and the creation of the outputting instance. On the

contrary, if x would not produce a value, then there would be no reason for an output or

a spawn, justifying the non-existence of both. Hence, multiple evaluation models exist.

16

The analogous problem arises when a cycle contains a filter dependency, though more

subtly. First, consider the following specification:

input inp: Bool

output x eval when x with inp

16
Observe that existential cycles generally lead to a small increase of valid models, in this case two, whereas

legacy cycles allow for as many models as the size of the domain of values in the cycle.

73

2. The RTLola Specification Language

While there clearly is a cycle in the specification, there is a unique evaluation model. For

this, assume inp generates a positive value. In this case, both the output stream and its

filter would invariably need to produce the same value. Hence, the filter is satisfied,

rendering the generation of a value mandatory. Similarly, if the value of inp were false,

there would be only one valid evaluation model: the one in which x would not get

extended.

The reason why this cycle can be uniquely resolved is that the point of reference can

uniquely be identified: an equivalent specification can just inline the stream expression,

breaking the cycle.

input inp: Bool

output x eval when inp with inp

So, in essence, there is no real cycle because the filter refers to the input rather than the

output. This trick no longer works when introducing a stronger reference to x so that

inlining is no longer possible.

input inp: Bool

input inp2: Bool

output x eval when inp2 ∨ x.last(or: true) with inp

Note that the second input is only necessary so that the value of x can be either true

or false. In contrast, in the preceding example, the output will always be a potentially

empty sequence of true-values.

In any case, this setup constitutes an existential cycle because the resolution of the

offset depends on the existence of a new value of the output, which in turn depends on

the resolution of the offset. Assume x already has produced several values with a suffix

of 〈true, false〉. Suppose in the next position, both inputs generate a false-value. If x were

to be extended, the filter would refer to the last value before the extension, i.e., false.

Since inp is false, too, there is no justification for the extension, rendering the model

invalid. Hence, let x not be extended. In this case, the offset refers to the second-to-last

value of x, which is true. Hence, the filter is satisfied regardless of inp2, justifying an

extension. Therefore, this evaluation model is also invalid, so no valid model exists.

The bottom line of these observations is that both filter and spawn dependencies can

cause existential cycles. While some filter cycles yield a unique evaluation model, well-

formedness for RTLola is an over-approximation and thus prohibits such specifications

anyway. So, intuitively, these cases are the existential-cycle equivalents to the legacy

cycle of the Lola specification with a tautological expression.

After identification of problematic cycles, the question is how they can be resolved.

As mentioned before, for a legacy cycle, an offset suffices. The offset introduces a

temporal dissonance between two values since the value at position i depends on one at

position i− 1. Either this value already exists, or there is a default value for it, resolving

the dependency. Clearly, an offset is insufficient for existential cycles. Yet, there is

another source for temporal dissonance: close-dependencies. Recall Definition 2.26.:Def. 2.26, p. 67

74

2.5. Specification Analysis

Here, the definition first determines all stream updates Σ+
i+1 and afterwards applies the

closing semantics, causing to the dissonance. For an illustration, consider the following

specification.

input inp

output x: Bool

eval with inp

close when x

The dependency graph connects the output stream with itself via a synchronous close,

and a synchronous evaluation edge. In spite of the cycle, the specification has a unique

evaluation model: the evaluation of xmirrors input inp up to and including the point

where x becomes true. Only after this evaluation step, x terminates. Since termination is

strictly separated from evaluation, the edge breaks the cycle.

Another source for non-simultaneity is a transition from event-based to periodic

streams and vice versa. This is due to the assumption that events do not coincide with

periodic deadlines. While in theory this is possible, the assumption is safe in practice due

to the high clock frequencies of current hardware.
17

Any edge between an event-based

and a periodic stream needs to be asynchronous. Since both streams cannot be evaluated

at the same time, the resolution is trivial.

Taking the information about cycle resolution into account gives rise to the Immediate
Dependency Graph, discarding all edges introducing a temporal dissonance.

Definition 2.31 (Immediate Dependency Graph)

The immediate dependency graph D∗Φ = (V ,E∗) of a specification Φ is a reduction of the Def. Immediate

Dependency Graph
dependency graph DΦ = (V ,E) to immediate accesses, i.e.,

E∗ =
{
(σ, `,σ ′) ∈ E | ` 6= (Close, _)∧ periodic(σ) = periodic(σ ′)

}
Here, periodic(σ) is a boolean flag determining whether σ has a periodic pacing.

This leads to the following definitions of well-formedness for RTLola.

Definition 2.32 (Well-Formedness)

A specificationΦ is well-formed iff all cycles in the immediate dependency graph D∗Φ = Def. Well-

Formedness(V ,E∗) either contain neither a Filter nor a Spawn-edge, and an offset edge.

∀ {(σ1, `1,σ2), . . . , (σn, `n,σ1)} ⊆ E∗ : ∃i : `i = (Offset, _)∧ ∀i : `i 6= (Filter, _)

Note that by Definition 2.29, filter edges cover both the filter in the evaluation and :Def. 2.29, p. 70

spawn clause.

Well-definedness is then defined in the same way as for Lola.

17
On a technical note: theoretically, the probability that an event coincides with a periodic deadline on the

real time axis is 0. Practically, since the monitor is a clocked machine, the probability is exceedingly low,

yet strictly greater than 0.

75

2. The RTLola Specification Language

Definition 2.33 (Well-Definedness)

An RTLola specification is well-defined iff it has exactly one evaluation model.Def.Well-

Definedness

The goal now is to prove:

Theorem 2.1 (Well-Formedness implies Well-Definedness)
A well-formed RTLola specification is well-defined.

This first requires a couple of lemmas.

Lemma 2.34 (Well-Defined Arithmetic). Any expression occurring in an RTLola specification
is well-defined provided stream accesses are well-defined.

Proof Trivial structural induction. Any leaf in the expression tree is a uniquely defined

constant or a stream access, which is well-defined by assumption. Any operator in RTLola

is total and thus well-defined provided its operands are well-defined. This is the case by

induction hypothesis.

The next lemma first requires the definition of an evaluation order:

Definition 2.35 (Evaluation Order)

Let Φ be a well-formed RTLola specification. Let D∗Φ be its immediate dependency

graph. An evaluation order ≺⊆ S× S is the least restrictive partial order on streamsDef. Evaluation
Order

satisfying the following property: First, for two streams σ and σ ′, σ ≺ σ ′ iff there is a path

from σ ′ to σ throughD∗Φ without Offset-labelled edges. Second, if there are three streams

σ1,σ2,σ3 with an (Eval, (Offset, _))-labeled edge from σ1 to σ2 and a (Filter, _)-labeled
edge from σ2 to σ3, then σ3 ≺ σ1.

The latter criterion seems oddly specific and thus warrants an example.

Example 2.36 (Offset-Filter Dependencies). Consider the following sketch of a specifica-

tion.

output a := b.offset(by: -1, or: _)

output b eval when c with _

output c := _

The evaluation of a accesses the last value of b. However, resolution of the last value
requires information on whether b will be extended, which depends on c. Hence, c ≺ a.

Yet, it does not depend on the actual value of b, so the evaluation order does not impose

any particular order between a and b.

Note that the same phenomenon occurs when the filter dependency is part of the

spawn clause. This also results in a Filter-labeled edge and thus requires no further

attention. 4

This evaluation order always exists, as captured by the next theorem.

76

2.5. Specification Analysis

Theorem 2.2 (Unique Evaluation Order)
The evaluation order of a well-formed RTLola specification exists and is uniquely defined.

The constructive proof immediately yields the evaluation order.

Proof Observe that — barring offset-edges — the immediate dependency graph is not

necessarily a connected graph, but it is directed and acyclic graph. This follows from

the Definition 2.32. As such, the reachability relation ≺+
of the reduced graph yields

a partial order satisfying the first criterion. For the possibility to refine ≺+
into ≺ in

accordance with the second criterion, it suffices to show for any affected pair σ ≺ σ ′ it
holds that σ ′ 6≺+ σ.

Proof by contradiction. Suppose σ ′ ≺+ σ. In this case, there is a path π from σ ′ to σ.

Concatenating the path π ′ from σ via the filter to σ ′ yields a cycle ππ ′ with at least one

edge labeled as filter edge. This contradicts the well-formedness of the specification.

Clearly, the partial order can be strengthened into a total order.

Corollary 2.37 (Existence of a StrongEvaluationOrder). For awell-formedRTLola specification
there is a total order on streams such that it satisfies both criteria of an evaluation order. Such an
order is a strong evaluation order. Def. Strong

Evaluation Order

ProofAny total order agreeing with≺ such as a topological order ofD∗Φ without offset

edges is a strong evaluation order.

The next lemma has fundamental implications as its proof constructively states that
and how a specification can be evaluated.

Lemma 2.38 (Well-Defined Atomic Update). For a well-formed RTLola specification and a fixed
monitor model Σ, an atomic update as per Definition 2.26 without termination is well-defined. :Def. 2.26, p. 67

Proof Induction over the evaluation order ≺. This order disregards offset edges, so
they will be treated separately. Also note that the absence of side effects allows for

skipping the evaluation of edges if their result is irrelevant. Last, let non-immediate

edges be edges in DΦ but not in D∗Φ.

Induction Base. Let σ ∈ S such that σ ≺ σ ′ for any other σ ′ ∈ S. Hence, it only contains

arithmetic expressions, constants, accesses representing non-immediate edges, and offset

edges occurring in both dependency graphs.

By Lemma 2.34, the first two kinds of constituents are well-defined in RTLola. For the

third kind, note that close edges are irrelevant for atomic updates without termination.

For edges connecting two streams with a transition from event-based to periodic or vice

versa, recall that their pacing types are mutually exclusive. Hence, the atomic update

cannot affect instances of the target stream. Thus, the result of every stream access is

uniquely defined.

Last, for offset accesses with edge (σ, (Offset,n),σ ′), the evaluation either accesses the

nth-to-last value if σ ′ will be extended in this atomic update, or the n+ 1st-to-last value if

77

2. The RTLola Specification Language

it will not. This ambiguity can only be resolved by first determining whether σ ′ will be

extended and/or spawned which depends on the evaluation and spawn filters. Recall

that by definition of the dependency graph (Definition 2.29), accesses in either of these:Def. 2.29, p. 70

expressions result in Filter-labeled edges.
18

Targets of these edges cannot in turn depend

on another stream σ ′′ because otherwise, by the second requirement on the evaluation

order (Definition 2.35) leads to σ ′′ ≺ σ. This would contradict the assumption on σ.

Hence, the filter condition of the accessed stream σ ′ is an expression without outgoing

dependencies, so its value is well-defined as argued before. After evaluating the filter of

σ ′′, the offset can be resolved unambiguously. Note that this line of argument also hold

for σ = σ ′.

With all dependencies resolved, the evaluation proceeds as follows: First it evaluates

the spawn filter filter(σ. spawn). If the outcome is positive, it evaluates expr(σ. spawn),
creates a stream instance ι, and adds it to Σ. Note that this evaluation cannot depend on

other streams as per assumption on σ. Then, it evaluates its evaluation filter filter(σ). If
the output is positive, it evaluates expr(σ), and adds the result to ι. vals. Induction Step.
Let σ ∈ S have outgoing edges in D∗Φ. The evaluation of σ proceeds in the same way

outlined in the induction base. There are only two differences in the reasoning: it can no

longer rely on the assumption that σ is a leaf in ≺, and there is a fifth kind of constituent

occurring in expressions. For the first difference, the assumption can be replaced with

applications of the induction hypothesis without further ado. Any dependent stream is

lower in the evaluation order and can thus be resolved unambiguously. The same holds

for the fifth kind of expression constituents, which are non-offset edges occurring in

both dependency graphs.

This concludes the proof.

2.5.3. Evaluation Order

The evaluation order is a side-product of the proof for well-definedness. Apart from

that, it proved exceedingly useful when realizing a monitor for a specification. Not only

does it help to guarantee the uniqueness of an evaluation model, following it also yields

the correctmodel. Consider the following specification:

output x: Int32 := y + 1

output y: Int32 := y.last(or: 0) + 1

By the first condition on the evaluation order: y ≺ x. Following this order, i.e., evaluating

y before a is essential to obtain the correct result as Figure 2.11 illustrates; the syntactic

order leads to incorrect values.

Moreover, there are two flavors of the evaluation order, the regular one according to

Definition 2.35 and the strong one according to Corollary 2.37. While Chapter 3 covers all:Chap. 3, p. 97

18
Note that Spawn edges only determine the parameters of newly created instances, hence they are irrelevant

here.

78

2.5. Specification Analysis

t

y

x

−1 0 1.1 1.2 2.1 2.2 3.1 3.2 . . .

− − 1 2 3 . . .

− − 1 2 3 . . .

(a) The result of evaluating the output streams

respecting the evaluation order.

t

x

y

−1 0 1.1 1.2 2.1 2.2 3.1 3.2 . . .

− − 1 1 2 . . .

− − 1 2 3 . . .

(b) The result of evaluating the output streams

in order of their declaration.

Figure 2.11.: Two different evaluations of the output streams a and b, where a accesses b

synchronously and b accesses its previous value. Both accesses default to 0

and both a and b increase the obtained value by 1.

the details, the regular order is useful when realizing monitors on a platform that allows

for cheap concurrency. Conversely, the strong order is used for sequential evaluations.

Lastly, note that the evaluation order separates a specification into several layers.

Definition 2.39 (Evaluation Layer)

Let≺ be the regular or a strong evaluation order of a well-formed RTLola specificationΦ.

A stream which is minimal with respect to ≺ is in evaluation layer 1. Any other stream is Def. Evaluation
Layer

one layer above the greatest layer of a stream on which it depends.

Layer≺(σ) = 1+ max
σ∈S

{
i | Layer≺(σ

′) = 1∧ σ ′ ≺ σ
}

Let λ∗ = maxσ∈S
{

Layer≺(σ)
}
denote the greatest evaluation layer.

Omission of the subscript refers to the regular evaluation order of the specification.

2.5.4. Memory Bounds

The next analysis for an RTLola specification is the memory bound analysis. This is in

line with Mii: Resource-Awareness: a monitor realization of a specification is guaranteed

to require at most a set, statically determined amount of memory. This information is

instrumental when deploying an RTLola monitor in a CPS. It allows for verifying that the

available resources suffice for the monitor independent of the dynamic behavior of the

system. Another neat — though less critical — advantage of this information is that a

can monitor statically allocate all memory it requires. This alleviates the need for costly

dynamic memory allocation and de-allocation.
19

19
However, note that while dynamic allocation is not necessary, it can still be desirable, in particular when

considering instance handling.

79

2. The RTLola Specification Language

The analysis proceeds stream by stream. It identifies three potential sources for

memory cost: value persistence, space for expression evaluation, and pre-aggregation.

Value persistence states howmany values of a specific stream need to be persisted. Here,Value Persistence

the analysis flatly reserves memory for one value by default. It then determines which

incoming edges compel a monitor to store more than one value of the stream. Here, the

dependency kind, i.e., Eval, Filter, Spawn, or Close, is irrelevant. Moreover, most access

kinds incur no additional cost. Synchronous- and hold-accesses refer to the latest value

of the stream, which is already covered. The memory cost for aggregations is a separate

item. Lastly, an access with offset n demands memory for an additional n− 1 values of

the target stream. The maximum offset — or 1 if there is none — then yields the memoryStream Memory

Bound bound of the stream.

The next source for a memory requirement is the evaluation of expressions. For logicalExpression

Evaluation
and arithmetic expressions, this boils down to the conventional analysis regarding the

number of registers required to evaluate an arithmetic expression [Sch71], multiplied

with the sizes of the values. Intuitively, the evaluation of an arithmetic expression

requires enough space to evaluate each operand sequentially plus storage of the result.

As an example, consider the expression 1+ 3 ∗ 5. The monitor would first evaluate the

multiplication, i.e., load the constants 3 and 5, and then multiply them and store the

result. It would then load the constant 1 and add both values. Hence, two registers suffice

for the evaluation whereas a naive solution requires three. The remaining expressions,

i.e., stream accesses and aggregations merely require space to store a single value of

the target stream or result type of the aggregation, respectively. Let cost(e) denote the
memory requirement for evaluating an expression e as per Schneider [Sch71].

Next, the pre-aggregation cost corresponds to storing all intermediate values for anPre-Aggregation

aggregation (cf. Appendix A.1.3) at once.

Finally, the analysis also takes parametrization into account. To this end, the size of

the domain of the parameters of a stream states how many instances can exist at once.

This value needs to be multiplied with the product of the memory bound of the stream

and its value size, and with the pre-aggregation cost. Note that the sum of these values

yields the memory requirement barring expression evaluation and is universal, i.e., it

does not depend on implementation details of the monitor. In contrast, the expression

evaluation cost is implementation-dependent. Suppose the monitor works sequentially,

i.e., it evaluates one stream instance after another. In this case, it only needs to reserve

enough memory to evaluate the most costly expression. For parallel evaluation models,

the computation can vary vastly. For example, suppose the evaluation of a monitor

proceeds according to the evaluation layers. In this case, the expression evaluation cost

for a layer is the sum of the expression cost of each stream in the layer, multiplied by the

number of instances the stream can have. The overall expression evaluation cost then

amounts to the greatest cost of a single layer.

For this reason, the following definition considers only the sequential evaluation

model, as this one is the most relevant for monitoring CPS.

80

2.5. Specification Analysis

Definition 2.40 (Memory Bound)

Let Φ be a well-formed RTLola specification and DΦ = (V ,E) its dependency graph.

The memory bound µ(σ) of a stream σ is defined as: Def. Stream Memory

Bound

µ(σ) = max
{
1, max
e∈E

{n | e = (_, (Offset,n),σ)}
}

Suppose size(σ) produces the number of bytes required to store a single value of σ

and dom(σ) the domain of the parameters of σ, i.e., the number of instances the stream

can have. This defaults to 1 for non-parametrized streams.

Then, the total memory bound for a sequential monitor for Φ is: Def. Specification
Memory Bound

µ(Φ) = max
σ↑∈S↑

(cost(expr(σ↑))) +
∑
σ∈S

dom(σ)

(
µ(σ) size(σ) +

∑
e∈E

µωσ (e)

)

Here, µωσ (e) is the memory cost an aggregation edge incurs defined as follows where Tf

is the type of the pre-aggregation for a list homomorphism f.

µωσ (e) =

 bnπc · size(Tf) if e = (σ, (Async, f,n), _)∧ π = pace(σ)

0 otherwise

81

2. The RTLola Specification Language

2.6. Implementation

After covering the theoretic foundation for RTLola, this section presents the implemen-

tation and evaluates it empirically. The implementation is written in Rust, publically

available, and divided into several modules. These modules can be separated into a

frontend and several backends. Figure 2.12 shows each step in the frontend and available

backends.

2.6.1. Frontend

The RTLola frontend [Bau+20b] takes a specification in text form as input and ultimatelyFrontend

generates adata structure that contains all relevant information regarding the specification

including analysis results. This process once again is organized into several submodules.

Parser As the name suggests, the RTLola parser parses a specification first into a homoge-

nous tree using the pest parser generator [Tis18]. This tree is then transformed into

an abstract syntax tree, on which syntactic sugar is removed.

High-Level Intermediate Representation While the Ast is an abstract representation of

the syntax, its proximity to the syntax renders analysis steps inconvenient. Hence,

the RTLola frontend generates a high-level intermediate representation (Hir), specificallyHigh-Level

Intermediate

Representation

designed for convenience and extensibility
20
. This flexibility renders operations

on the tree such as accessing details of a stream slow in comparison to rigid data

structures.

Internally, the Hir employs the type-state pattern. This is a variation of the behavioralType-State Pattern

state pattern [Gam+95], a design pattern in which an object mimics the behavior

of a state machine. The type-state pattern extends this idea by incorporating

the current state of the machine into the type of a parametrized type. Hence,

the Hir is parametrized by an indicator regarding which analysis steps were

already performed and thus which information is readily available. Performing

a dependency analysis, for example, uses an Hir<Typed> as an input, generates

a dependency graph, and incorporates its information into the Hir to yield an

Hir<DepsAnalyzed>. This unlocks a function for determining the evaluation

order of the specification. The two most notable steps are the creation and

analysis of the dependency graph via the graph representation and algorithm

library petgraph [bm15] and the type inference via the type checking library

RustTyC [Sch19b].

Mid-Level Intermediate Representation After completing all analysis steps, the RTLola

frontend remedies the Hir-induced drawbacks by transforming it into a mid-levelMid-Level

Intermediate

Representation

intermediate representation (Mir). This is essentially a copy of the Hir less all

flexibility: it stores all information collected during analysis steps at fixed points in

20
A similar concept can for example be found in Moss et al.’s work [MDM16]

82

2.6. Implementation

Parser

Theory: Sec. 2.2, p. 31

Desugarizer

Theory: Sec. 2.2.4, p. 37

Type Inference

Theory: Sec. 2.3, p. 42

Well-Formedness

Theory: Sec. 2.5.2, p. 71

Evaluation Order

Theory: Sec. 2.5.3, p. 78

Memory Bounds

Theory: Sec. 2.5.4, p. 79

Interpreter

Eval: Sec. 2.7.6, p. 88

Hardware

Theory: Sec. 3.1, p. 100

Software

Theory: Sec. 3.2, p. 128

Ast Hir Mir

Figure 2.12.: Overview over each significant step in the RTLola frontend and all available

backends.

the data structure and removes variable concepts such as the type-state pattern.

The resulting Mir is similarly convenient to use, more performant but far less

extensible than the Hir.

2.6.2. Backends

RTLola backends build upon the frontend. They take an Mir as input and generate some

form of executable monitor. When executing the interpreter backend, for example, it

receives inputs successively over the standard input or an input file. During this process,

it generates outputs in form of output values or trigger notifications.

Compiler backends such as the VHDL- and Rust-compiler presented in the next chapter

instead generate code which can in turn be compiled into an executable monitor. The

usual advantages and drawbacks of interpretation versus compilations apply for RTLola

as well. In a nutshell, the performance of the interpreter is generally worse than the

one of a compiled monitor. However, the time it takes to get the result of the monitor

when starting with a specification and an input trace can still be lower when employing

interpretation. The reason behind this is that interpretation is a two-step process: analysis

via the frontend and then the interpretation. In contrast, compilation requires a pipeline

consisting of analysis, compilation to code, compilation to executable, and invocation of

the executable. The overhead induced by the compilation steps can exceed the benefit

gained for a more performant monitor. This is particularly true when realizing the

monitor in hardware (cf. Section 3.1) since synthesis of a hardware description onto a : Sec. 3.1, p. 100

piece of programmable hardware is costly.

This factor becomes significant when designing a specification since a prototype should

be validated. For this, the specifier runs the monitor on a static input file and compares the

83

2. The RTLola Specification Language

output against the expected result, similar to end-to-end tests in software engineering. If

the outputs match, this is evidence for the adequacy of the specification. Here, reducing

the time and effort required to get from a prototype to the output of the monitor enables

rapid prototyping. Note that this form of prototyping validation perfectly complements

the static analysis of the specification via type checking, well-formedness analysis and

the determination of a memory bound.

Clearly, after the specification is fixed, compilation is preferable when deploying the

final monitor.

Remark 2.8 (Acknowledgement). The whole RTLola code base grew over several years and
would not have been possible without the effort of Jan Baumeister, Stefan Oswald, Malte
Schledjewski, Marvin Stenger, and Leander Tentrup. In particular, I want to acknowledge
Florian Kohn who recently put significant effort into vastly improving and extending the
code base.

Each submodule of the frontend and the interpreter is available on the Rust code

publication platform crates.io [Tea10].

84

2.7. Empirical Evaluation

2.7. Empirical Evaluation

The following is an empirical evaluation coupledwith a discussion of the time complexity

for each major step from a specification to the generation of an output via interpretation.

These major steps are parsing, type inference, well-formedness analysis, determination

of memory bounds and interpretation. All experiments were conducted on a machine

with an Apple M1 chip and 16GB of memory.

The results reported and discussed here are all averages over 100 runs with the

same input specification of varying size. The average is meaningful since the standard

deviation never exceeded 0. 5% of the mean. In these experiments, the shape of the input

specification has only a negligible effect on the runtime performance of each analysis

step except for the type inference. The reason behind this is that the parser is agnostic of

dependencies and thus only scales in the length of the specification. Hence, the only

varying factors are the size of expressions versus the number of streams. However, an

empirical test showed that only the number of tokens was relevant, so scaling either

factor is fine. Any other non-type-related analysis visits every node and edge of the

graph once, hence it makes no discernible difference whether the former or latter is

increased. For the type check, a chained specification constitutes the worst case, as detailed Chained

Specification
below. Thus, this specification is the foundation for all experiments. It is a series of

streams chained in a way that the ith stream accesses the i+ 1st stream.

2.7.1. Parser

The RTLola language falls into the category of parsing expression grammars [For04]. The

main advantage of this grammar is that parsing has a linear time complexity and there

are excellent off-the-shelve parser generators. Hence, RTLola resorts to such a parser

generator [Tis18].

Figure 2.13depicts the timeperformance of theparser in relation to thewell-formedness,

evaluation order, and memory bound analysis. The parsing time peaked at 254.03 µs for
a specification with 200 streams.

2.7.2. Type Inference

The type inference algorithm passes over the specification multiple times, once for each

of the six subtypes, i.e., value type, evaluation filter type etc. Each pass itself carries a

context. This allows for accessing information obtained in previous passes. Internally

it uses a type inference library [Sch19b] for type systems similar to Hindley-Milner type Hindley-Milner Type

Systemsystems [Hin69; Mil78; Dam84]. The library is based on a modified union-find [GF64]

backend. Both the implementation of the type inference and the underlying union-find

backend are optimized for maintainability rather than performance. Yet, as the empirical

evaluation shows, it performs sufficiently well even for large specifications.

85

2. The RTLola Specification Language

Remark 2.9 (Hindley-Milner Type System). The Hindley-Milner type system, also known
as the Damas-Hindley-Milner type system, was first formulated by Hindley in 1969 [Hin69],
rediscovered by Milner in 1978 [Mil78], and extended by a formal analysis courtesy of
Damas’ PhD thesis [Dam84] a few years later in 1984.

While it has a strong theoretical background, it performs remarkably well in practice
and captures many functional programming languages. Despite the DExpTime-complete
complexity of type inference, it often scales linearly in the size of the code.

Out of all specification shapes tested, the chained specification constituted the worst

case for the RTLola type inference. It contains the least permitted amount of type

annotations and streams are ordered in a way such that the information necessary to

perform a union operation in the union-find data structure is placed at the end of the

sequence. This delays the operation as much as possible. However, note that this does

not relate to the worst case behavior for Hindley-Milner type systems. Nor is it provably

the worst case for the RTLola type inference since the precise complexity is an open

question.

Typical for Hindley-Milner type system, the type inference is expected to scale linearly.

However, as can be seen in Figure 2.14, this is not the case. In part, this is a consequence

of a suboptimal implementation of the underlying union-find backend.

In any case, while the running time dominates the one of any other frontend component,

its absolute value is low. Specifications with 200 streams require less than 60ms, all other

analysis steps combined take 370.3 µs. This still renders the type inference suitable for
practical specifications.

2.7.3. Well-Formedness

The well-formedness analysis consists of three steps. First, it creates the immediate

dependency graph. This is a simple process running in linear time in the number of

streams. It then collects all cycles occurring in the graph. To this end, it performs a

depth-first search for back edges, i.e., an edge from a stream to one of its ancestors. Each

such back edge constitutes a cycle. The whole search is linear in the size of the graph,

which is the number of vertices plus the number of dependencies. Last, it asserts that

each cycle contains an offset edge and neither a filter, nor a spawn edge. With appropriate

bookkeeping during the search, this process incurs only constant additional overhead.

Hence, in total, the running time is linear in the size of the specification. Figure 2.13 is

evidence in favor of this proposition. It also shows that the running time barely exceeds

0.1ms for the largest specification (106.31 µs).

2.7.4. Evaluation Order

The evaluation requires computing the topological order via a depth-first search. Alterna-

tive approaches like Kahn’s algorithm [Kah62] would also be possible. Both algorithms

86

2.7. Empirical Evaluation

20 40 60 80 100 120 140 160 180 200

50

100

150

200

250

Number of Streams

R
u
n
n
i
n
g
T
i
m
e
i
n

µs

parser

well-formedness

evaluation order

memory bound

Figure 2.13.: The running time of the parser, well-formedness, evaluation order, and

memory bound analysis plotted against the number of streams in the

underlying chained specification. Each data point is the average over 100

runs.

20 40 60 80 100 120 140 160 180 200
0

2

4

6

·104

Number of Streams

R
u
n
n
i
n
g
T
i
m
e
i
n

µs

type inference

sum of other components

Figure 2.14.: Running time of the type inference in relation to the sumof all other frontend

components, eclipsing them by far. Each data point is the average over 100

runs for chained specifications of varying length.

87

2. The RTLola Specification Language

scale linearly in the number of streams plus number of edges. Figure 2.13 shows that the

computation requires at most 71.76 µs for a specification with 200 streams.

2.7.5. Memory Bounds

The memory analysis inspects each outgoing edge for each stream. Hence, the worst

case complexity is linear in the number of edges. Figure 2.13 validates this conclusion.

Here, the running time always remains below 10 µs.

2.7.6. Interpreter

By design, the interpreter is entirely linear: the worst case running time per event is

linear in the number of stream instances, linear in the size of the expression, and —

since the number of instances is statically bounded — linear in the number of events,

including periodic computations, in the input trace. Hence, for the evaluation, realistic

specifications are more interesting than synthetic ones.

First, consider the following specification for an autonomous aircraft. As inputs, the

specification takes the current time in microseconds, the acceleration in longitudinal

and latitudinal direction, and the expected reference speed. It determines the frequency

with which the monitor receives input data and validates that it does not fall below a

threshold. Moreover, it warns when the actual speed — obtained by integrating the

acceleration indefinitely — deviates strongly from the reference value, and counts how

often this happens.
21

Lastly, it monitors the frequency of such deviations.

input time, accel_x, accel_y, speed: Int32

output count := count.last(or: 0) + 1

output frequency := 1 / (time - time.last(or: 0))

output freq_sum := frequency + freq_sum.last(or: 0)

output freq_avg := freq_sum / count

output speed_x := accel_x.integrate(over: ∞)

output speed_y := accel_y.integrate(over: ∞)

output speed := speed_x*speed_x + speed_y*speed_y

output unchanged := if res_max.last(or: false) then 0 else

unchanged.last(or: 0) + 1

output velo_dev := abs(velo_r_x - velo_x) + abs(velo_r_y - velo_y)

output strong_velo_dev := velo_dev > 10

output count_devs: Int32 :=

count_devs.last(or: 0) + if strong_velo_dev then 1 else 0

21
Note that in reality, specifiers would ground the integration via location data obtained from e.g. GNSS

22

modules since long-term integration is subject to drift.

88

2.7. Empirical Evaluation

trigger freq_avg < 10 "Low input frequency."

trigger strong_velo_dev "Deviation between velocities too high."

trigger count_devs / count > 0.001 "Frequent deviation in velocities"

In addition to the specification, the interpreter requires an input trace. For this

experiment, a trace of length 433, 000 events was generated in the ArduPilot simulator
23
,

a state-of-the-art simulator for aircraft. Note that the actual values barely have an impact

on the runtime performance of the interpreter. Solely optimizations in the evaluation of

conditionals can lead to a slightly better or worse performance. In total, the running

time for the trace was 664.7ms. This amounts to an average of 1.535 µs per event.
There are two major factors to consider for this number. First, it does not reflect

on the runtime performance of a monitor after deployment of a CPS. The experiment

was conducted on a highly performant laptop disregarding any particular concerns

towards its weight, cost, or power consumption. This is detached from a realistic scenario.

However, the second point is that the interpreter is not supposed to reflect reality. It is

a tool for rapid and convenient validation of a specification for a sample trace. In this

regard, the running time is perfectly sufficient.

Thememory consumption is split into heapmemory and stackmemory. While the total

memory consumption amounts to 16MB, this includes the in-memory representation

of the Mir as well as the code for the interpreter and major parts of the Rust standard

prelude. The actual working memory of the interpreter entirely resides on the stack as it

does not rely on dynamic allocation. The total stack size lies below 1 kB.

Once again, these two numbers do not translate to embeddedmonitors without further

ado. First, an embedded realization does not import the entire rust prelude.
24

This

reduces the memory requirement for code. However, more importantly, the working

memory consumption is comparable. A monitor does not require more working memory

than the interpreter barring potential padding of values due to a different word size and

thus memory layout.

These considerations also hold for the next experiment. For this, consider a network

monitor. Its specification fixes the IP of the host and checks network traffic based on the

source and destination IP of requests, TCP flags, and the length of the payload. Recall

that, in its core, the type IPv4 is just a 32-bit integer.

Thefirst output streamdetermineswhether an event represents an incoming connection

by filtering for dst = host. It issues a warning when the host receives over 10, 000
connections within a second. Next, it filters the length stream to only contain values

for incoming push connections. The monitor reports a spike in workload if the sum

of bytes received this way grows over 10MBs−1. Last, the specification declares two

streams, one counting events opening a connection with the host, one counting events

23https://ardupilot.org; last accessed: 02.02.2022
24
Embedded rust code is no_std, i.e., only the bare essentials of the rust prelude is included.

89

https://ardupilot.org

2. The RTLola Specification Language

closing connections with it. The latter count exceeding the former indicates some kind

of mismatch that has to be addressed.

The resulting specification looks as follows:

input src, dst: IPv4

input fin, push, syn: bool

input length: UInt16

output host: IPv4 = ...

output incoming_connection: NoValue

eval when dst = host

trigger @1Hz incoming_connection.count(over: 0.5s) > 10000

"Flood of incoming connections"

output data_received @incoming_connection :=

eval when push with length

trigger @1Hz received.sum(over: 1s) > 10^7 "Workload too high"

output opened @incoming_connection

eval when syn with opened.last(or: 0) + 1

output closed @incoming_connection

eval when fin with closed.last(or: 0) + 1

trigger open - closed < 0 "Closed more connection than were open"

The input trace stems from the Mid-Atlantic Collegiate Cyber Defense Competition

(Maccdc)
25
. Here, each event took an average of 438 ns. This better runtime performance

reflects the lower computational complexity of the specification; most expressions are

simple additions or integer comparisons. The memory consumption is almost identical

to the one for the last experiment owing to the similar code and Mir size, as well as the

low stack requirement of less than 1 kB.

25https://www.netresec.com/?page=MACCDC; last accessed: 02.02.2022

90

https://www.netresec.com/?page=MACCDC

2.8. RTLola in Practice

2.8. RTLola in Practice

The advantages of RTLola render it an interesting choice for practical applications, in

particular in avionics. From the start, RTLola was co-developed with engineers of the

German Aerospace Center (DLR
26
). This ongoing cooperation resulted in several insights

and developments in terms of monitoring autonomous aircraft [Ado+17; Tor+17; Ado+18;

STA18; DFS21]. In particular, in the context of this thesis, several specifications were

created [Bau+20a]. They contained checks regarding conformance to a geofence, i.e., the

system had to remain within a pre-defined area, as well as sensor validation, and sensor

cross-validation. The hardware compiler presented in the next chapter (Section 3.1) : Sec. 3.1, p. 100

translated the specification into a hardware description, which was subsequently syn-

thesized onto a programmable hardware board. This board was then deployed onto

an unmanned aircraft, the superARTIS, which is part of DLR’s Autonomous Rotorcraft

Testbed for Intelligent Systems (ARTIS). Over a series of test flights, the monitor observed

the system. To validate the effectiveness, the specification was designed in a way that the

planned flight path intentionally violated the geofence. Under realistic circumstances,

the detection of the violation would result in the termination of the flight or a take-over

by a safety pilot. For the test flight, the planned warning was registered and discarded.

In summary, the test flight was an absolute success. It proved the monitor both

effective, and sufficiently efficient to be deployed on such a CPS. For this reason, future

work aims at shifting further responsibility onto the RTLola monitor.

While the cooperation with DLR continues, a new project
27

started recently. In this

project, RTLola plays a major role in the development of monitoring systems for electrical,

vertical take-off and landing operations. This work is in cooperation with a leading

German manufacturer of electric multicopters for use as air taxis. The project partners

also meet with authorities of the European Union Aviation Safety Agency to discuss

steps towards integration RTLola in the certification process.

2.8.1. Further Application Areas

Though the avionic use case is most mature, RTLola is also interesting for other domains.

Hence, it is part of an Android app for monitoring emission data of cars, and there are

first endeavors in preparing RTLola for deployment on medical CPS.

Automotive

RTLola is part into an Android App with the name “RTLola on Board” [Bie+21]. The

app allows users to conduct their own real driving emissions (RDE) test drives. These

tests are regulated by the European Union [Tut+15; The17] and aim at measuring the

26
The initialism stands for Deutsches Zentrum für Luft- und Raumfahrt.

27https://cispa.de/en/research/funded-projects-and-collaborations, project VoloSTreAM; last

accessed 20.01.2022.

91

https://cispa.de/en/research/funded-projects-and-collaborations

2. The RTLola Specification Language

concentration of pollutants like nitrogen oxides — commonly referred to as NOx— in

the emission of cars under realistic driving circumstances. To this end, a car is equipped

with a portable emission measurement system (Pems). It then has to drive for a certain

amount of time in an urban and rural environment, as well as on the motorway. Among

other constraints, the ratio of each environment and the driving dynamics have to remain

within certain bounds for the test to be valid. Afterwards, the measured emission data

reveals whether the car complies with the regulation.

For end-users, it is usually not possible to accurately reproduce the test environment

since the price of a Pems is in the realm of e250,000. However, they can approximate

the result by instead using the mandatory [The98] on-board diagnostics interface (OBD).

A cheap adapter, costing usually less than e20, transmits diagnostic data produced by

the car via Bluetooth. This allows the RTLola on Board app to receive the information

and assess whether the reported emission is within the permitted bounds. Moreover, it

assists users in conducting the test drive by visualizing the share of each environment

according and comparing it against the permitted limits.

Though not perfectly accurate, this enables users to validate the approximate emissions

of their cars, such that they no longer have to blindly trust the manufacturer. Past

scandals [BBC18; Ril18] have demonstrated that this level of mistrust is appropriate.

Medical Cyber-Physical Systems

Last, and least mature, aremedical CPS. These are CPS used for diagnostics or autonomous

treatment of patients. As an example, consider an artificial pancreas [Bro19]. This device

treats type I diabetes patients by mimicking the behavior of a pancreas, i.e., they release

insulin in the blood stream to lower blood glucose levels. A major challenge for these

devices is tweaking certain parameters to match each individual patient. Historically,

patients themselves had to hand-tune them according to their body’s response. Recent

innovation adapts them according to measured blood glucose levels. Yet, even in this

automated setup, it is unavoidable to subject some patients to inadequate parameter

values. As a remedy, deploying an independent monitor can catch a mismatch between

parameter values and responses of the individual patients, and thus reduce the number

of critical situations. Yet, since artificial pancreata are affixed to the body via adhesive

patches, or implanted, the computational resources at their disposal are severely limited.

For these reasons, RTLola constitutes an interesting addition. First conceptual work [FSS20;

Fin+21] went into developing specification for such artificial pancreata and pacemakers

in the context of this thesis, though these endeavors are in their early stages.

92

2.9. Related Work

2.9. Related Work

The first step in the direction of generating monitors is selecting an input language.

Especially in the early days of monitoring, temporal logics such as LTL [Pnu77] or PSL

were a popular choice. These logical formulas were then translated into monitoring

automata [Dru00; HR02; FS04; Dah+05; RH05; BLS11], e.g. finite state machines or

alternating automata. The appeal of these logics is that specifications are concise and

declarative, and the languages have only few base operations. This renders formal

arguments about them effortless compared to full-fledged programming languages.

However, these logics are also limited in terms of expressiveness. In particular, they

cannot express real-time constraints, nor do they have language primitives for quantitative

properties. While it is possible to represent bounded integer types
28

and their arithmetic

operations in LTL, this is cumbersome and leads to a blowup in the size of the specification.

There are a variety of approaches tackling either challenge. For the first one, there

are monitoring algorithms for real-time logics, most prominently STL [DFM13b; WS20]

and various dialects of MTL [TR05], for example MTL with time series [Dru03], or metric

first-order temporal logic [Bas+15; Sch+19]. For the second one, there are two directions.

One can enrich the language such as the meta event definition language [Lee+99], which

is similar to PSL but with arithmetic capabilities. Alternatively, one can enrich the

verdict, lifting it from a ternary/quaternary [BLS07; BLS11] domain to a tridecimal

one [Mas+20]. Though, ultimately, the specification language needs to compensate for

both shortcomings. Hence, there are quantitative extensions for real-time logics such

as STL [DM10; DFM13a; Des+17; ZJP21] or MTL [FP06; FP09; BKT17; Alq+18; Jak+18;

CM20].

The resulting languages are sufficiently expressive for use in CPS while still preserving

the advantages of logics outlined above, however, the additional expressiveness comes at

a heavy price. First, while monitors for LTL were finite state machines and thus inherently

space-bounded, thememory requirement of an MTL monitor grows linearly in the number

of events even without a quantitative extension. This can be seen when considering the

property p =⇒ F[0,3]q. It states that an event q needs to follow within at most 3 second

after an event p. This forces the monitor to memorize the timestamps of each p to ensure

that a q followed in time. Yet, the number of ps in 3 time units is unbounded, and so is

the memory consumption. Second, logics usually have a low number of base operations,

which is great for arguing about them. It is also appropriate when expressing relatively

short and simple specifications (“Every three seconds, the altitude of the system has

to rise”), or a modular series thereof such as a conjunction of several such properties.

Nonetheless, when properties grow more complex like when computing sliding window

aggregations or nesting properties, formulas become unwieldy and convoluted. As a

result, specifiers can no longer grasp their semantics at first glance, and neither can other

members of the development team, let alone certification authorities.

28
This is usually sufficient for CPS.

93

2. The RTLola Specification Language

If these problems render logics inappropriate for the system at hand, there is another

solution: languages specifically designed for runtimemonitoring. Lola is a pioneer in this

category. It is a stream-based specification language for synchronousmonitors. As such, it

is a monitoring-specific variant of the widely used synchronous programming languages

like Lustre [Hal+91; Hal05] or Esterel [BG92]. Yet, while it natively supports arithmetic

operations, it lacks a concept of real-time and — as expected from a synchronous

language — asynchrony.

Recent work tied Lola into the Haskell ecosystem with HLola [CGS20; GS21]. This

paves the way for specifiers to incorporate the Haskell standard library and to easily

integrate HLola into existing Haskell-based systems. The different choices in venue for

HLola (Haskell) and RTLola (Rust) is indicative of different target audiences. While Haskell

is used for industrial purposes, it is widely adopted in teaching and academia as a

highly abstract, functional language. In contrast, Rust is tightly related to the world of C

and considered a safer alternative for imperative programming in embedded systems,

though not yet widely adopted.

Apart from HLola, there are two more extensions for Lola, similar in concept to RTLola:

TeSSLa [Con+18a; Leu+18] and Striver [GS18]. The former puts heavy emphasis on the

temporal aspect, i.e., it grants specifiers fine-grained control over the timing of the

monitor. This level of control even exceeds the one provided in RTLola. In both languages,

specifiers can delay a computation by some time. The difference is, in RTLola this value is

part of the specification and thus statically determined, whereas in TeSSLa it depends on

stream values. Hence, while providing more expressiveness in general, it also allows

specifiers to unintentionally create Zeno behavior, i.e., the monitor attempts to process

an infinite amount of endogenously created events in a finite amount of time. Since

RTLola focuses on safety of the specification, trading off expressiveness for more safety

is considered a necessary evil. Another difference between the two languages is that

TeSSLa’s type system heavily relies on optional values rather than differentiating between

synchronous versus asynchronous accesses and event-based versus periodic streams.

As a result, when defining TeSSLa functions which access more than one stream, the

specifier has to handle the possibilities that only the first, latter, or both streams received

a new value. The type system does not assist specifiers when they forget to cover a

case or attempt to access a non-extant value. Lastly, TeSSLa has no capability to express

dynamic stream creation, nor to access previous values of a stream. Syntactically, it

closely resembles function programming languages like Haskell or Scala.

Striver is similar in nature to TeSSLa. It characterizes streams based on their temporal

behavior, which the authors call ticks, and their quantitative behavior. These concepts

correspond to the timeline of a stream barring spawn and close conditions, and the value

type in RTLola, respectively. Striver fixes several shortcomings of TeSSLa by enabling offset

accesses and explicitly excluding Zeno behavior. Its syntax is operator-heavy, rendering

the desugared syntax concise, yet at times cryptic for laypeople. However, there are

standard function declarations and syntactic sugar hiding some of these aspects such

94

2.9. Related Work

that x(<t, d), which desugars into if (x << t) == outside then d else x(<t) and

expresses an offset operation, i.e., x.last(or: d). With this syntactic sugar, Striver is

syntactically similar to Lola and can be categorized between logics and RTLola.

2.9.1. Previous Versions of RTLola

The version of RTLola presented in this work is the product of several revisions.

First, Lola [DAn+05] pioneered synchronous stream-based runtime monitoring. Con-

ceptually, RTLola stayed true to its origins, i.e., a Lola specification is a collection of input

streams, output streams, and triggers. However, a Lola expression may refer to the

current, past or future values of streams. Here, the monitor evaluates expressions as

much as possible and kept a store of unresolved expressions. Their resolution depends

on future data and is thus delayed until it becomes available. Details on this concept

follow in the software compilation in Section 3.2. : Sec. 3.2, p. 128

After Lola [DAn+05] laid the foundation, it was extended to allow for dynamic stream

creation in Lola 2.0 [Fay+16]. Soon after, Faymonville [Fay19] presented the first version

of RTLola as a real-time, asynchronous extension of Lola 2.0.

Syntactically, this version closely resembled both Lola and Lola 2.0. Thus, it is more

concise than the recent version. Apart from that, there are two notable differences.

The syntax for offsets and aggregations was s[-1, 0] rather than s.last(or: 0) and

s[1h, count, 0] rather than s.count(over: 1h). Moreover, a parametrized stream

has a spawn expression, and extension condition and a termination condition. The first

one corresponds to the spawn expression in the current RTLola version, the latter two to

the semantic filters of a stream and its termination condition.

Another substantial difference is the underlying model of time. This version of RTLola

does not classify streams as periodic or event-based but evaluation cycles. Variable-rate

computations are triggered when the monitor receives an event. Fixed-rate computations

take place periodically according to a globally defined monitor frequency. Every output

stream can be affected by both computations, however, sliding windows only get updated

in fixed-rate computations to preserve memory bounds.

This timing model has several advantages and drawbacks. Evidently, the specifier has

coarser control over the timing of each stream, so they cannot define periodic streams

ticking at different static rates. Moreover, all stream accesses constitute 0-order holds,

which require a default value and specifiers have to determine by themselves whether

the value was guaranteed to be updated in the same evaluation cycle. Yet, this alleviates

the need for a complex type system, allowing Faymonville’s type system to consist of

only value types. Moreover, streams can be computed both in regular intervals and after

arrival of an event.

Faymonville’s RTLola inspired and heavily influenced further work, in particular, my

Master’s thesis [Sch19a]. This work first revised the syntax to something similar to the

desugared syntax, which this thesis will introduce in the next section. Moreover, it

introduced the distinction between periodic and event-based streams and presented a

95

2. The RTLola Specification Language

suitable type system differentiating between synchronous and asynchronous accesses.

Yet, its event-based types are sets of input streams rather than boolean formulas over

them, plus it does not feature semantic filters, nor dynamic stream creation. This renders

its type system, semantics, and static analyses simpler compared to the RTLola version

presented in this thesis.

96

Chapter 3
Monitor Realizations

The usability of a specification language hinges on proper ways to realize and integrate
monitors into a concrete system. On an abstract level, the choices for the realization

boil down to software or hardware solutions. Software solutions require generation —

either manual or automatic — of monitor code in a high-level programming language,

which is compiled into binary code. This code can then be executed on any suitable

general-purpose hardware. The large variety of programming languages and hardware

options renders this process quite flexible. Moreover, tools for software development are

cheap or even free, which keeps development costs low. On the other hand, hardware

solutions require generation of a hardware description for example in VHDL or Verilog. A

synthesizer analyzes the description, generates artifacts such as a netlist and configures

programmable hardware like a field-programmable gate array (FPGA) or a complex

programmable logic device (CPLD) to realize the monitor. This process generally takes

much longer than compilation of software code, usually in the realm of minutes to an

hour as opposed to seconds. Hence, prior validation of the specification is imperative

to keep development time and cost low. The major advantage of hardware solutions is

the extraordinary performance of the monitor, in particular in terms of space, time and

power consumption. Also, parallelization comes at almost no overhead in hardware

solutions. This results in an immense performance boost in terms of throughput

provided the monitor can be parallelized. For RTLola, this is the case, partially as a result

of Miv: Modularity.

Since neither hardware, nor software compilations are universally better, this chapter

presents a compilation for either target.

For the hardware realization, Section 3.1 presents a mathematical formulation of

a pipelined hardware description for a given RTLola specification. The mathematical

formulation is easy to grasp than a hardware description language, yet can easily be

translated into one. This was done in a prototype implementation [Bau20], which

generates VHDL code and thus enables an empirical evaluation of the process. For this,

97

3. Monitor Realizations

Specification

Chap. 2, p. 17

Validation

Sec. 2.5, p. 70

VHDL

Sec. 3.1, p. 100

Synthesizer

Sec. 3.1.5, p. 121

FPGA

Sec. 3.1.6, p. 122

Annot. Rust

Sec. 3.2, p. 128

Executable

Sec. 3.2.6, p. 145

Prusti

Sec. 3.2.4, p. 136

Unrealizable

Verification Failed

Figure 3.1.: Overview over the workflow from an RTLola specification to an executable

monitor via software or hardware realization. Both paths contain validation

steps.

an off-the-shelve synthesizer realizes a monitor onto an FPGA. During this process, the

synthesizer analyzes the hardware description and provides insights regarding the

maximum clock rate, peak and idle power consumption, well as the consumption of logic

gates and memory cells. These insights allow specifiers to decide before deployment

whether the available resources for the monitor suffice.

The software solution presented in Section 3.2 does not solely aim at generating a

monitor realization: it is a proof-of-concept of how to increase trust into the translation

process. For this, it translates Lola [DAn+05], a synchronous and discrete variant of

RTLola allowing specifiers to refer to future values of streams, into Rust code. Similar

to the hardware translation, the software translation allows for generating a monitor

evaluating streams in parallel rather than sequentially. Moreover, the translation injects

verification annotations into the Rust code to enable translation validation. A third-party

tool such as Prusti [Ast+19] can then analyze the code and verify statically that it satisfies

the assumptions stated in the annotations. The static verification itself already increases

confidence in the correctness of the monitor. Moreover, the chain of trust no longer relies

on the translation but on the static verifier. Since the latter is interchangeable, any static

verifier commonly used and accredited for the respective application domain can be

used, greatly benefitting the certification process.

Figure 3.1 shows the workflow for both solutions. As discussed in the last chapter, after

designing a specification, the validation and static analysis provides feedback, which

enables informed improvement of the specification. Afterwards, the RTLola compiler

generates either VHDL or Rust code. In the former case, the synthesizer realizes the

monitor onto an FPGA and produces a resource report. In contrast to the static analysis

of the validation, this information is specific to the hardware board at hand. If this

98

2.9. Related Work

report prohibits deployment as planned, specifiers can adapt the specification or system

accordingly. On the software side, the Rust code contains verification annotations which

will be checked by Prusti. On an abstract level, there are three possible outcomes. First,

the verification succeeds. In this case, the code can be compiled into an executable using

any Rust compiler. Second, the verification reports a mismatch between specification

and monitor code. This indicates a bug in the compilation process, requiring fixes to

the compiler, a responsibility that lies outside the hands of the specifier. Third, the

verification points at an arithmetic error such as a potential division by zero. This insight

allows specifiers to fix the specification such that it properly handles such scenarios and

restart the workflow.

Both compilations utilize the domain-specific nature of RTLola to generate heavily

optimized code. An empirical evaluation reveals that the compiled software monitors

perform significantly better than the interpreter, reducing the running time by over

95%. A similar comparison between hardware and software solutions is hardly possible

due to the vast difference in performance of the software platform, a state-of-the-art

general purpose computer, versus the hardware platform, a low-resource FPGA. However,

the evaluation also showed a significant running time reduction of roughly 91% when

comparing a concurrent hardware evaluation versus a sequential one. Naturally, these

results are not reproducible to this extend for the software solutions since parallelism in

software comes with a substantial overhead and the number of cores is limited. Hence,

in this setting, the benefit strongly depends on the details of the specification.

99

3. Monitor Realizations

3.1. Hardware Compilation

This section presents an automatic translation of an RTLola specification into a math-

ematical description of a circuit realizing its semantics. This circuit is organized in

a pipeline architecture and closely resembles the semantics of RTLola. For this, it is

separated into two logical components connected via a queue. The first component,

the timing manager (TM), is responsible for handling incoming data and preparing itTiming Manager

for the evaluation. Since this process requires very little logic, the TM can be clocked

exceedingly fast. This increases the rate in which the monitor can receive input events

and hence the level of asynchrony between the system and the monitor. The preparation

includes transforming both incoming events and deadlines of periodic streams into a

unified schema. As a result, the second component called the evaluation manager (EM)Evaluation Manager

can just carry out the evaluation of streams agnostic of the source of the update. The

entire monitor is pipelined, allowing it to process several data packets in parallel. This

becomes particularly relevant in the stream evaluation where all streams in the same

evaluation layer are evaluated concurrently.

This split in responsibility between the TM and EM is rooted in the semantics of RTLola:

Definitions 2.20, 2.21 and 2.23 show that all information on when an evaluation has to:Defs. 2.20, 2.21,

2.23, p. 63, 64 and 66
take place and which streams are affected can be determined without carrying out any

evaluation — barring semantic filters. Definition 2.26 on the other hand show that the:Def. 2.26, p. 67

EM merely requires the current timestamp for sliding window updates, the input event

for non-periodic updates, and information on which streams are potentially active.

After the translation, the last part of this section showcases the efficacy and efficiency

of the translation. For this, it presents specifications for monitoring drones and networks.

The former demonstrates the impact of computationally heavy monitor tasks whereas

the latter quantifies throughput. The results show that the implementation is highly

efficient since the monitors fit on small boards, provide high throughput and require

less than 2W of power to operate under peak pressure.

3.1.1. Preliminaries and Notation

First, some hardware-specific concepts and notation needs introduction.

A circuit consists of registers, wires, and gates, which store, transport, and transform

information, respectively. The circuit operates based on a system clock χ, which ticks

periodically. Each tick activates edge-triggered components and increases the cycle count

by one. The time between clock ticks allows signals and values to stabilize.

Wires carry data and connect registers and gates with each other. The terms “wire”

and “signal” can mostly be used interchangeably. However, wires represent the physical

component whereas signals represent the data carried by wires. A signal s at time x is

written as sx. Registers are edge-triggered components which store values until they get

updated. They realize a simple update logic in the sense that an n bit register gets an

n bit input signal and a 1 bit update signal. On a clock tick, the input will be written

100

3.1. Hardware Compilation

into the register provided the update bit is on. Otherwise, the stored value remains

unchanged. Rx denotes the value of register R in cycle x. Lastly, gates realize logic, i.e.,
they realize a total Bn → Bm function for arbitrary n,m ∈ N.

The translation algorithm refrains from explicitly defining gates and instead shifts the

logic into the definition of register and signal values. Here, owing to the timing model,

the definition of a signal at time tmay not refer to the value of a register at time t since

this value is not yet stored in it. Instead, it can only refer to the value of the register

at t− 1. However, within a pipeline stage, the definition may refer to the input of the
register at time t. This input will be the value of the register at time t+ 1. As a result, it

circumvents the delay of one cycle. Notationally, the definition then refers to R. in rather

than just R.

The notation for bit strings overlaps with the notation for vectors. Hence, for a bit

string ~x of width n, ~x [i] denotes the ith value of ~x for i 6 n. Given two bit strings ~x ∈ Bn

and ~y ∈ Bm, the ◦ operator denotes the bit concatenation, so ~x ◦~y is an n+m bits wide

string. Moreover, ~x [i . . . j] is the substring ~x [i] ◦~x [i+ 1] ◦ . . . ◦~x [j] provided j > i. Last, bn

denotes an n-fold repetition of the single bit b ∈ B.

3.1.2. Structure

The hardware realization has two entry points for information and one outlet. The

entry points are a clock providing the current time and an interface to the system for

reception of new events. These entry points correspond to the split between periodic

and event-based streams. This information is unified in the Timing Manager (TM) and

flows to the Evaluation Manager (EM). This potentially triggers the dissemination of a

warning to the system. Figure 3.2 illustrates this setup.

The TM receives event data over a

∑
σ↓∈S↓(bits(σ↓) + 1) bit wide wire. Here, bits(σ↓)

is the bit size of a single value of stream σ↓. Hence, the wire can transport a single

value of every input stream at once plus a bit per stream to indicate whether a new

value is present or not. This is necessary to distinguish an input value of 0bits(σ↓)
from a

non-extant value. Note that in the following, the limits of the sum are omitted when

describing data lines carrying events. The second input comes from the clock and is |ts|
wide, i.e., the number of bits required to store a single timestamp.

The connection between TM and EM consists of a buffered update channel and an

unbuffered feedback channel. Here, the buffer is a simple first in – first out queue.

Interfacing with such a queue requires two input signals: the data qin, and a 1-bit push
signal. A data packet amounts to the space required to transfer a single event with an

additional bit per output stream. This bit indicates whether the respective stream is active

at the point in time of the event. This information suffices for specifying both updates

due to events and deadlines, hence the message format is universal. The feedback

channel consists of registers rather than a dedicated queue. Its information consists of

(1+ |ts|)dom(σ↑) bits per parametrized output stream σ↑. Here, dom(σ↑) denotes the

number of instances permitted for the stream. This can either be the domain of the

101

3. Monitor Realizations

Inputs

Timing Manager

Queue Instances

Evaluation Manager

Outputs

P
r
e
s
c
a

l
e
r

event

qin push alive, spawn

qout
pop
empty alive, spawn

verd

Figure 3.2.: Schematic of an RTLola monitor comprising two modules with access to an

instance store and connected via a queue. The Timing Manager manages the

order in which periodic and event-based streams have to be evaluated. The

Evaluation Manager controls the evaluation process of all affected streams.

Limits of sums are omitted for a cleaner display.

parameter type or a specific, lower value. The channel allows the EM to inform the TM

about which instance of a stream are currently in existence and when they were created.

This is necessary because each instance induces a timeline and thereby deadlines.

Lastly, the EM pops data out of the queue and manages the evaluation process. To this

end, its interface to the queue consists of a 1 bit pop signal controlled by the EM, plus the 1

bit empty signal and the qout signal controlled by the queue. They respectively convey the

information whether data is present and — one cycle after popping — the information

itself. Internally, the EM is a state machine which idles until reception of information

from the TM. It then first updates the memory of input streams and iteratively evaluates

output streams layer by layer. At the end, it writes the verdict in an output register and

returns to its idle state.

102

3.1. Hardware Compilation

Stage i

Stage ii

Stage iii

P
r
e
s
c
a

l
e
r

inputs

SysIfTime

Scheduler

QIf

Instances Queue

alive, spawn

ts

event

datainavail

event

event

ts

pushqin

Figure 3.3.: Schematic of the Timing Manager receiving external events, managing

periodic deadlines, and preparing data for the Low-level Controller.

Remark 3.1 (Dual Purpose of the Queue). Due to the difference in complexity of the
TM and EM, the former can process information significantly faster than the latter. This
enables the TM to be clocked at a rapid pace, which in turn allows it to cope with bursts of
data. These bursts can be a result of a sudden spike in events or several deadlines almost
coinciding. In such cases, the queue acts as a buffer between the TM and EM, temporarily
relieving it of some stress while preventing loss of data to some extent. Moreover, the
queue allows for decoupling the frequency of the TM and EM entirely. To this end, the
clock of the queue has to be compatible to both components. Due to the minimal logic
engraved in the queue, this constraint is easy to satisfy.

3.1.3. Timing Manager

In a nutshell, the timing manager receives external events and manages periodic

evaluations. Its schematic, outlined in Figure 3.3, reflects this dual responsibility. The

left half relates to deadlines. Information stems from the prescaler, which provides a

common clock for all components. Most importantly, it allows the Time-component to

keep track of the current system time by counting the number of ticks and multiplying it

by the static period of ζtm. The current time flows to the scheduler, enabling it to decide

which deadlines are due. This decision depends on a static and a dynamic schedule.

103

3. Monitor Realizations

On the event-based side of the timing manager, the component named System

Interface (SysIf) manages communication with the system via two registers. The system

writes event data into the din register and sets the avail-bit. Upon detection of new data,

SysIf copies and resets the avail-bit, signaling readiness to accept further events. This can

happen in each clock tick of the TM even though the information of the previous event has

not reached the queue, yet, thanks to the pipelined architecture. Information regarding

the event then flows to the Queue Interface (QIf). This component unifies three sources of

information: the event data, the timestamp in the moment of event reception, and the

affected stream instances. Since the sources propagate their information immediately, a

delay mechanism is required to align them temporally, as is usual when working with

pipeline stages.

The following describes each component in details and provides a mathematical

description.

Remark 3.2 (Simplification for Clarity). Figure 3.3 outlines the schematic of the TM. Evi-
dently, it omits some information: the prescaler provides a clock signal for all components
of the TM rather than just the Time-component. Generally, all further illustrations omit
clock lines unless to emphasize particularities. Moreover, signals require a mechanism
to detect whether it carries meaningful data or is “empty”. For this, every data line d
between two components has an implicit 1-bit valid_d signal indicating presence of data.
Illustrations generally omit this detail while mathematical definitions take it into account.

Prescaler

This component scales the system clock ζsys down by a constant factor to two TM-internal

clocks ζtm and ζ2tm. The former is the main clock of the TM, so it drives the majority of

components. QIf is the mere exception as it is clocked by a combination of ζtm and ζ2tm
ticking twice as fast. The reason behind this becomes apparent when discussing the

details of QIf.

System Interface

Inputs: avail ∈ B, datain ∈ B
∑

(bits(σ↓)+1)
,

Outputs: event ∈ B
∑

(bits(σ↓)+1)
, valid_event ∈ B

This component handles the communication with the system. For this, it waits on the

avail bit. If on, it copies the event data over to the event signal and activates the validation

bit. Otherwise, the signal is meaningless, hence its value is dc (“don’t care”). Here, dc

means the actual value is never used in any computation, so any concrete realization

for this value is fine. Since processing an event only takes a single cycle, the component

always clears the avail register and the valid_event bit mirrors avail.

104

3.1. Hardware Compilation

eventt =

0
∑

(bits(σ↓)+1)
if t = 0

dataint−1 if availt−1

dc otherwise

availt = 0

valid_eventt =

 0 if t = 0

availt−1 otherwise

Time

Outputs: ts ∈ B|ts|

Internal Registers: ts ∈ B|ts|

The components waits on the system clock and updates its internal timestamp register ts
by repeatedly adding the statically determined clock period. The input of the register is

also the output of the component.

tst =

 0|ts| if t = 0

tst−1 + ζtm otherwise

tst = tst. in

Remark 3.3 (Alternative Realization). For this component, there is a functionally equivalent
realization in which it counts the number of clock ticks rather than summing the periods
up. The current time is then the tick count multiplied by the clock period. Neither option is
definitively better: multiplication is generally expensive in terms of logic gates and delay,
however, it does require less memory. Ultimately, the decision is case-specific.

Scheduler

Inputs: ts ∈ B|ts|
, event ∈ B

∑
(bits(σ↓)+1)

Outputs: due ∈ Bn
↑
static

+nπ+n
↑
ev

For a given point in time and event it has to decide which stream instances need

to be evaluated. This requires three distinct kinds of information. First, it needs the

105

3. Monitor Realizations

current time, which the Time component provides. Second, the points of evaluation

of dynamically created streams depends on when they were spawned. Hence, the

Scheduler accesses information provided by the Instances component regarding which

stream instances are active and when they became so. Last, it needs to take the event-

based and periodic types of streams into account. Since this information is static for a

given specification, it is hard-wired into the circuitry.

For periodic streams, this is in the shape of lookup tables. These tables are essentially

two arrays of static memory cells: staticsched∞ and affected∞. The former is a static

schedule covering one lookup table, i.e., it contains timestamps at which at least one

static stream needs to be evaluated. Each timestamp is relative to the hyperperiod Π of

all static streams. The latter array contains the IDs of streams which are affected by a

deadline in unary encoding. This means, at time t with t = staticsched∞ [i] mod Π, the

kth static output stream needs to be evaluated if affected∞ [i] [k] is true.

In the following, let πσ↑ be the periodic type of σ
↑
. For event-based streams, let ε

↑
σ be

the event-based type of σ↑. Since an event-based type is a positive boolean formula over

input streams, it naturally translates into a simple, state-less circuit. The input for this

formula is the information which input streams received a new value. Moreover, let

n
dl
be the number of static deadlines, i.e., the number of entries of staticsched∞, and

let n
↑
static

denote the number of static streams, i.e., output streams with spawn timeline

Always and close timeline Never. Further, let n↑
ev

be the number of output streams with

an event-based type. Last, let nπ and nε denote the total number of potential instances

of periodic streams, and event-based streams, respectively.

Static Periodic Streams

Static: staticsched∞ ∈ B|ts|×n
dl , affected∞ ∈ Bn↑static×ndl

Inputs: ts ∈ B|ts|

Outputs: staticdue ∈ Bn
↑
static

Internal Registers: poteffts ∈ B|ts|
, activedl ∈ Bndl

Internal Signals: poteffts ∈ B|ts|
, effts ∈ B|ts|

, potdue ∈ Bndl

The construction starts by determining the statically due streams. It first aligns the time

representation of ts, which is an absolute time, and the representation in staticsched∞,
which is relative to the last passage of the hyperperiod. To this end, it keeps track

of an offset that is the absolute timestamp of the beginning of the current hyperpe-

riod. It then subtracts the offset from the current time to obtain the potentially effective
timestamp (poteffts). This value can be greater than the hyperperiod, in which case the

Scheduler increases the offset for the next cycle. In this case it also subtracts an additional

hyperperiod from the poteffts to obtain the actual effective timestamp (effts).

106

3.1. Hardware Compilation

offsett =

0 if t = 0

offsett−1 if potefftst 6 Π

offsett−1 +Π otherwise

potefftst = tst − offsett−1

efftst =

 potefftst −Π if potefftst > Π

potefftst otherwise

For the next step, the scheduler utilizes the inherently parallel nature of hardware by

concurrently comparing each deadline in staticsched∞ against the effective timestamp.

The result is a bit array of potentially due (potdue) deadlines starting with a prefix of 1s,

followed by 0s. The currently active deadline (activedl) is now the right-most 1 provided

it has not been active in the clock cycle before as well. This check requires the scheduler

to persist the last active deadline in a separate register.

potduet [i] ≡ staticsched∞ [i] 6 efftst

activedlt [i] =

0ndl if t = 0

potduet [i]∧¬potduet [i+ 1]∧¬lastactivet−1 [i] if i < n
↑
static

potduet [i]∧¬lastactivet−1 [i] if i = n↑
static

lastactivet [i] =

lastactivet−1 [i] if activedlt = lastactivet−1

potduet [i]∧¬potduet [i+ 1] if i < n
↑
static

potduet [i] if i = n↑
static

Clearly, activedl is a bit string with at most one active bit. The Scheduler transforms

this information into a unary encoding of active static streams where each bit represents

a static stream. If a bit is on, the respective stream needs to be evaluated. This

transformation again exploits parallel computation of B1 ×Bn → Bn conjunctions.

staticduet =
n

dl∨
i=1

affected∞ [i]∧ activedlt [i]

The crux in the design of the static side is to utilize static information as much as

possible. This entails pre-computing the full static schedule such that during runtime,

107

3. Monitor Realizations

the component only needs to identify where it is operating within the hyperperiod. With

this in place, the only costly operation that needs to be duplicated for each deadline are

comparisons, yet they are still relatively cheap component.

Dynamic Periodic Streams

Inputs: ts ∈ B|ts|
, alive ∈ Bnπ , spawn ∈ B|ts|×nπ

Outputs: dyndue ∈ Bnπ

Internal Registers: lastalive ∈ Bnπ , lastdue ∈ B|ts|×nπ

Internal Signals: nextdue ∈ B|ts|×nπ

Computing the dynamic schedule is significantly more costly for two reasons: there is

less static information since dynamic streams have no fixed spawn time, and these spawn

times are neither necessarily aligned for different streams, nor for instances of the same

stream. As a result, the component needs to inspect each stream instance separately

to determine whether they are due.
1
This requires duplication of the determination

logic for each potential stream instance. Hence, instantiation incurs enormous costs and

should thus be used sparsely for a hardware translation, e.g. by parametrizing only over

data types with small domains such that the number of potential instances nπ is low.

The logic itself uses the current timestamp as well as information from the Instances

component, which is an alive bit for each instance and its spawn timestamp. Based on

this information, the Scheduler keeps track of the last due time of each instance in the

lastdue registers. Adding the period of the stream yields the nextdue signal. If this value

is less than or equal to the current timestamp, the respective instance is due. Formally,

the following describes the dynamic scheduling logic for a dynamic stream σ↑ and

possible parameters p:

nextduet
[
σ↑,p

]
= lastduet−1

[
σ↑,p

]
+ πσ↑

lastalivet
[
σ↑,p

]
=

 0 if t = 0

alivet
[
σ↑,p

]
otherwise

lastduet
[
σ↑,p

]
=

0|ts| if t = 0

spawnt
[
σ↑,p

]
if alivet

[
σ↑,p

]
∧¬lastalivet−1

[
σ↑,p

]
nextduet

[
σ↑,p

]
if dynduet

[
σ↑,p

]
lastduet−1

[
σ↑,p

]
otherwise

1
This can be improved by grouping streams with identical spawn and close conditions.

108

3.1. Hardware Compilation

dynduet
[
σ↑,p

]
≡ nextduet

[
σ↑,p

]
6 tst ∧ alivet

[
σ↑,p

]
Note that access operations such as nextduet

[
σ↑,p

]
denote access into a memory

matrix. In a concrete realization, the matrix would be linearized and the indices for the

accesses statically pre-computed.

While the logic looks fairly simple, its costliness stems from the addition and com-

parison in the definition of nextdue and ddue. These adders and comparators need

to be present for each potential stream instance. Since even small domains allow for

representing a large amount of values, the cost blows up quick. If a specification only

contains a single stream parametrized by a UInt8, the Scheduler needs an additional

256 adders for values of width |ts| bits. A remedy is domain specific value types, for

example, a system might only be capable of observing up to 20 different external objects.

Hence, respective streams should be parametrized over a domain with 20 entries rather

than UInt8.

Event-Based Streams

Inputs: event ∈ B
∑

(bits(σ↓)+1)

Outputs: eventdue ∈ Bn
↑
ev

For event-based streams, the Scheduler first computes whether a stream can be affected

by an event based on its type ε
↑
σ. For this, it transforms the type into its natural circuit

representation. It then extracts the bits indicating whether an input received an update

and connects them to the respective inputs of the circuit. The result of the circuit is then

an indicator whether an event-based stream is affected by an event and thus due. Note

that if the event is empty, due to lack of negation in event-based types, all bits of evaff
will be off.

eventduet
[
σ↑
]
= eventt |= ε↑σ

Here, the alive bit from the InstanceStore is irrelevant since the alive status can change

based on data currently processed in the EM. Hence, this consideration is part of the EM.

Composition

Inputs: staticdue ∈ Bn
↑
static , dyndue ∈ Bnπ , eventdue ∈ Bn

↑
ev

Outputs: due ∈ Bn
↑
static

+nπ+n
↑
ev

Lastly, the Scheduler composes the sub-results into a single bit array.

duet = staticduet ◦ dynduet ◦ eventduet (3.1)

109

3. Monitor Realizations

Note that the eventdue and by proxy the due signal does not consider the alive status

for event-based streams. This is because this status can change based on data currently

processed in the EM, rendering eventdue void. Hence, this consideration is part of the

EM instead and the TM only relays information which event-based streams rather than
instances are affected. This can only happen for event-based streams since periodic ones

always have to wait until their period has passed at least once. Here, it is a reasonable

assumption on the hardware monitor and specification that the period of every stream is

greater than the time the monitor needs for a full evaluation of the queue, rendering the

same treatment for periodic streams unnecessary.

Queue Interface

Inputs: due ∈ Bn
↑
static

+nπ+n
↑
ev
, event ∈ B

∑
(bits(σ↓)+1)

, ts ∈ B|ts|

Outputs: q_in ∈ Bn
↑
static

+nπ+n
↑
ev
+|ts|+

∑
(bits(σ↓)+1)

, push ∈ B

Internal Registers: event ∈ B
∑

(bits(σ↓)+1)
, ts ∈ B|ts|

This component accepts data from three sources, aligns them temporally
2
, composes

them, and commits them to the queue. For the alignment, the QIf stores both the current

event and the respective internal timestamp into a register for precisely one cycle. At

the same time, it concatenates the outputs of the registers, which is the values of the

previous cycle, plus the current input sent from the Scheduler. The reason for this is

that the pipelined architecture results in a one-cycle mismatch between values from the

first stage, i.e., Time and SysIf, and the second stage, i.e., Scheduler. As a result, the short

delay introduced by the registers suffices for alignment. A push into the queue takes

place if either there was an event or at least one periodic stream requires an update.

eventt =

 0|ts| if t = 0

eventt otherwise

tst =

 0|ts| if t = 0

tst otherwise

pusht = valid_eventt ∨
n
↑
static

+nπ∧
i=1

due [i]

q_int = duet ◦ tst−1 ◦ eventt−1

2
This alignment is a standard procedure for pipelining and often left implicit; here, it is spelled out

explicitly.

110

3.1. Hardware Compilation

Note that the event bits of q_in potentially carry meaningless data. In this case, the

respective valid-bits for each input are 0, though. Hence, the EM will not update the

streams, ignoring the values.

3.1.4. Evaluation Manager

The evaluation manager essentially transforms data from the TM into verdicts. For this,

it pops data off the queue and starts an evaluation process based on it. Along the way, it

persists updates in the Instances store. Upon completion of the evaluation, it potentially

emits trigger warnings to the system. The entire process is clocked by the EM specific

clock ζem.

Figure 3.4 shows the schematic of the EM. The queue interface (QIf) is responsible

for the communication with the queue. However, the main logic lies within the control

component (ctrl). It indirectly communicates with the queue, and directly updates

the instance store. Most notably, it manages the evaluation process of all streams. This

evaluation is pipelined much like the TM. Here, each stage represents an evaluation

layer of the specification. Each layer contains a set of streams and windows. Stream

nodes consist of logic realizing the stream expression, and storage containing the most

recent values of the stream. Similarly, window nodes contain logic computing the sliding

window aggregation, and memory storing the intermediate values. Pushing window

handling in separate nodes allows for better utilization of the pipeline architecture and

parallel evaluation of nodes. Suppose a stream σ in layer 3 aggregates values of a stream

σ ′ in layer 1. A realization without the split places the logic of the aggregation and the

stream evaluation in the same stage. However, the stream evaluation needs to wait until

the aggregation finished. With the split, the window aggregation takes place in the

second stage, significantly reducing the depth of the third stage.

The pipeline architecture enables the EM to start processing a new event before the

preceding one was completed. However, this requires non-consecutive layers to be

independent. In RTLola, this is not necessarily the case as a stream σ↑ can depend on one

or several lower layers. Hence, these lower layers may not be overwritten by another

evaluation until σ↑ was evaluated. One way to solve this problem is by storing additional

values and shifting the access index to account for the delay of the access. The necessary

logic requires information frommultiple components over several consecutive evaluation

steps. As a result, the wiring becomes intricate and correctness is hard to assess. For this

reason, the EM implements a simpler stalling mechanism manifesting the dependencies

between different streams.
3

This mechanism is coarse, i.e., a stream stalls the entire

evaluation layer of the stream on which it depends to reduce complexity.

3
The index shift solution is part of the software compilation as neither pipelining nor wiring are a concern

there.

111

3. Monitor Realizations

enableσ1,1

enableσ1,λ∗1enableω1,1

enableω1,λ∗1

enableσ2,1

enableσ2,λ∗2enableω2,1

enableω2,λ∗2

enableσλ∗,1

enableσλ∗,λ∗1

Stage i

Stage ii

Stage λ∗

Queue

QIf

C
t
r
l

Instances

σ1,1 . . . σ1,λ∗1

ω1,1 ω1,λ∗ω,1. . .

σ2,1 . . . σ2,λ∗2

ω2,1 ω2,λ∗ω,2. . .

σλ∗,1 . . . σλ∗,λ∗1

. . .

Outputs

pop empty

q_out

alive, spawn

verdict

eval

done

Figure 3.4.: Schematic of the Evaluation Manager. It consists of a QIf responsible for the

communication with the Queue and the Evaluator, which manages internal

memory, evaluates stream expressions, and updates the Instances store.

Lastly, Ctrl collects information regarding newly spawned and closed stream instances

as well as triggers. The former information updates the Instances store, the latter is

forwarded to the system.

Note that the schematic lacks somewires for a less cluttered presentation. In particular,

it lacks feedback channels from each stream to the control component, and wires from

streams to windows and other streams.

The following example provides more intuition on how stalling works in this architec-

ture before proceeding with the formal details.

Example 3.1 (Stalling I). Consider a specification with three streams where the second

stream depends on the first and the third stream depends on both the first and second.

Its dependency graph is depicted in Figure 3.5. There are three layers and thus three

pipeline stages. The right-hand side of the figure shows how data flows through the

stages over time. In this process, stalling ensures that required data is always present.

112

3.1. Hardware Compilation

Layer 1

Layer 2

Layer 3

σ1

σ2

σ3

0

0

0

0 1 2 3 4 5 6 7Time

1

0

0

1

1

0

2

1

1

2

2

1

3

2

2

3

3

2

4

3

3

Figure 3.5.: Dependency graph of a specification with three streams. Numbers on the

right show how events are propagated through the pipeline stages over time.

Green markings indicate which layers were updated.

When transitioning from time 1 to 2, for example, layer 1 already processed event 0

whereas layer 2 is just in the process of doing so. Since layer 3 depends on both preceding

layers, it cannot process event 0, yet. Moreover, this causes layer 1 to be stalled to prevent

it from overwriting data layer 3 still needs.

In the next step, i.e., from time 2 to 3, layer 3 can proceed. Since this process dissipates

the stall, layer 1 can process event 1 in parallel. Only layer 2 has to idle because its next

computation depends on the output of layer 1 for event 1, which is not ready, yet.

Without the dependency from layer 3 to layer 1, the pipelined architecture allows

for persistently clocking every stage. Thus, every clock cycle, another event would be

processed to completion. 4

Queue Interface

The queue interface (QIf) handles the communication between the EM and the Queue.

Internally, it is a simple three-state automaton depicted in Figure 3.6. The idle state
constitutes the starting point of the evaluation. Whenever the queue contains at least

one entry, the QIf transitions into the pop state. Here, the component simultaneously

sends a pop signal to the Queue and an eval signal to the Ctrl. This prompts the queue

to send its latest entry via the qout signal directly to the controller. At the same time, the

eval signal serves as enable-bit for a register in the Ctrl component, so it automatically

receives and persists the output of the queue.

The QIf unconditionally leaves the pop state after one cycle in favor of the eval state. In
the process, it lowers the pop signal. Here, it resides until it receives the done signal from

the Ctrl indicating that it can receive another input. In this case, the QIf transitions

113

3. Monitor Realizations

idle

start

pop

eval

¬empty

>

do
ne

∧
¬
em

pt
y

done
∧ empty

Figure 3.6.: The LLQInterface handles the communication with the queue in pop, and
waits in eval until the evaluation finished.

either back into the pop state, repeating the process, or in the idle state if the queue is
empty. This automaton can trivially be translated into a hardware description.

Control

The Ctrl component is the heart and soul of the EM. Its task is to manage stream instances

and start the evaluation of active, non-stalled streams.

Stalling Intuitively, a layer is stalled if an evaluation would override data that another

layer still needs. To this end, the stallingmechanism keeps track of which data is currently

in each stage via a count register. This register is initially 0 and increases whenever the

layer is enabled.

counttλ ≡ countt−1λ + enabletλ

Note that the enable signal, the stall signal, and the count register aremutually dependent.

This can be resolved since the stall signal only uses the enable signal of greater stages

and the count in the last time step. The intuitive difference between the stall and the

enable signal is that the former indicates there is an external reason prohibiting a stage

to progress. In contrast, the enable signal is only set if there is neither an external reason

preventing the execution, nor an internal one such as a lack of data the layer depends on.

Hence, if the enable signal is set, the evaluation will definitely take place whereas when

there is no stall, the evaluation is still not guaranteed.

With this intuition and the count register, the following definition states three criteria

for when a layer λ ′ > λ stalls the layer λ. These signals are computed successively,

114

3.1. Hardware Compilation

starting with the greatest layer propagating the results downwards.

stalltλ ′→λ ≡
(∨
η

(
dep(σλ ′,η, λ)︸ ︷︷ ︸

static

∧
∨
p

tmactivet(σpλ ′,η)︸ ︷︷ ︸
dynamic

))
(Dependency)

∧¬(enabletλ ′ ∧ countt−1λ = countt−1λ ′ + 1) (Parallel Computation)

∧ countt−1λ 6= countt−1λ ′ (Recovery)

Here, the notation σλ,η, refers to the ηth stream in layer λ.

First, stalling only becomes a possibility if there is a dependency relation between the

two layers. This is the case if there is a stream instance in λ ′ that accesses a stream in

λ and is active. For this, the static check dep(σλ ′,η, λ) is true iff there is an edge in the

dependency graph from stream σλ ′,η to a stream σλ,η ′ in layer λ. The dynamic check

refers to whether σλ ′,η is active according to all non-semantic criteria. For this, recall

that qout comprises the timestamp, the event data, and indicators which periodic stream

instances and event-based streams are affected, defined in Equation (3.1). Thanks to :Eq. (3.1), p. 109

this, the check tmactivet(σpλ ′,η) simply accesses the respective bit for stream σλ ′,η from

the q_out signal for periodic streams. For event-based streams, the check accesses the

respective bits from the eventdue portion of q_out and conjoining it with the alive bit of

the instance.

To have access to the q_out signal, each stage additionally contains a register curr_ev
persisting and propagating it through the stages. The information is then piped forward

whenever a layer is enabled.

curr_evtλ =

q_outt if λ = 1∧ evalt

curr_evt−1λ−1 if λ > 1∧ enabletλ

curr_evt−1λ otherwise

(3.2)

Second, stalling is unnecessary despite active dependencies if λ ′ is enabled and its

computation requires exactly the results stored in the current layer. Note that the enable

signal for a layer is only set if all its dependencies are satisfied. Yet, this check in the

definition of stall is necessary since stage λ ′ might be enabled for an older computation,

i.e., countλ ′ might be countλ − 2. Hence, if λ ′ is enabled and the counts are off by exactly

one, then λ does not need to be stalled as the computations of both layers happen in

parallel.

Third, λ ′ does not stall λ if their count is equal. Intuitively, this is the case if λ ′ was

stalled until λ caught up. In this case, λ can continueworking despite active dependencies

from λ ′ to λ since these dependencies refer to yet-to-be-computed values. Here, λ ′ will

not become active until after these values were computed as per definition of the enable

signal.

115

3. Monitor Realizations

Finally, a stage is stalled if any other stage causes the stall as described above or there

is a congestion, i.e., the stage immediately above is neither enabled nor empty. The stall

signal is then:

stalltλ ≡ emptyt−1λ+1 ∧¬enabletλ+1︸ ︷︷ ︸
congestion

∨
∨
λ ′>λ

stalltλ ′→λ

Stream Enable There are three kinds of enable signals: one for the layer as a whole,

and another one for each stream instance and window component within the layer. They

rely on an empty bit indicating whether the pipeline stage contains meaningful data.

This bit is initially 1.

emptytλ =

¬evalt if λ = 1

emptyt−1λ−1 if λ > 1∧ enabletλ

emptyt−1λ otherwise

enabletλ = ¬emptyt−1λ ∧¬stalltλ ∧
∧
λ ′<λ

∧
η

(dep(σλ ′,η, λ) =⇒ counttλ ′ = counttλ + 1)

Hence, a layer is enabled if it contains data, is not stalled and all its dependencies are

ready, i.e., all layers on which it depends contain the result relevant for the current

computation.

Enabling single instances and windows depends on whether they are active. An

instance σλ,η is active if its non-semantic criteria are satisfied for the current event and

its filter is on. Formally:

emactivetσpλ,η
= tmactivet(σpλ,η)∧ filter(σpλ,η)

t

Here, filter(σpλ,η)
t
refers to the latest value in the storage of the streamwhich constitutes

the filter condition of σ
p
λ,η. Hence, it is a simple static wiring without further logic. This

works because of three reasons: First, recall that in the evaluation order (Definition 2.39),:Def. 2.39, p. 79

any dependency in the filter expression is resolved in an earlier layer. Hence, the entire

filter expression can be manifested in an earlier layer than the stream itself. As a result,

resolving the filter boils down to a synchronous stream access.

Now, a stream instance σ
p
λ,η is enabled if its layer is enabled and the instance itself is

active. These enable signals are sent to the respective stream instance components.

enabletσpλ,η
= enabletλ ∧ emactivetσpλ,η

Enabling window components works in much the same way. Since they do not

conventionally have an evaluation layer, this requires a minor tweak to the input of the

116

3.1. Hardware Compilation

evaluation layer analysis. For this, the dependency graph gets a new node for each

sliding window occurring in the specification. The stream, whose expression features

the aggregation, accesses the new node synchronously, and the new node accesses the

target of the evaluation synchronously. Evidently, this does not affect the correctness

of the analysis. It merely tricks the evaluation layer analysis to assign the new nodes a

layer in-between the layer of its origin and target. If no such layer exists, i.e., target and

origin layers are consecutive, it necessarily increases the layer of the origin stream by

one to make place for the new node. The window now behaves just like a stream, which

yields stalling and enable signals for windows without further ado.

Example 3.2 (Stalling II). Recall the setup from Example 3.1. The following table shows

the valuations of the empty (E), count (C), stall (S), and enable (N) over time assuming

the queue never runs empty.

Time 1 2 3 4 5 6 7 8

E C S N E C S N E C S N E C S N E C S N E C S N E C S N E C S N

λ = 1 0 0 0 1 0 1 1 0 0 1 0 1 0 2 1 0 0 2 0 1 0 3 1 0 0 3 0 1 0 4 1 0

λ = 2 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 2 0 0 0 2 0 1 0 3 0 0 0 3 0 1

λ = 3 1 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 2 0 0 0 2 0 1 0 3 0 0

The table also shows the impact of each stall criterion except for congestion. The

dependency clause takes effect at each even timestamp for layer 1 such that layer 3 has an

opportunity to compute its value. Parallel evaluation takes effect whenever several enable

bits are true at the same time, i.e., at each odd timestamp after 3. Lastly, the recovery
criterion allows the second layer to become active early in even timestamps starting at 4.

Without this criterion, the dependency relation would disallow the layer to progress. 4

Signaling Readiness The Ctrl needs to inform the QIf when it is ready to receive

information regarding the next evaluation. Thanks to the enabling mechanism, this is

simple: as long as the first layer is enabled, there are capacities to start the next evaluation.

Hence:

donet = enablet1

Conveying Alarms Some streams represent triggers. These streams have a feedback

channel to the Ctrl. This wire is active-low, meaning that it carries a 0 unless the stream

writes a 1 on it. As a result, the Ctrl waits on a rising edge of the signal, which prompts

it to write the respective bit in the output register connected to the system. It is the

responsibility of the system to reset the bit again after it has received the information.

117

3. Monitor Realizations

Instance Handling The last responsibility of the Ctrl is to manage creation and

termination of instances. In particular, this includes updating the instance store. For

this, recall that it consists of an alive bit and a spawn register containing a timestamp

for each potential instance. Since the Ctrl already has access to the current timestamps

of each stage via curr_ev, it only needs to pass this information on whenever a stream

is spawned or closed. To this end, for a stream σwith spawn expression exs and close

expression exc, there are feedback channels from the components of exs and exc to Ctrl

similar to the one for triggers. This feedback channel is only one bit wide, indicating

whether the respective instance was spawned/closed. Since there is a single, fixed

component per possible instance, the parameter values can be hard coded. When the

spawn and close bits are raised, Ctrl set or resets the alive bit, respectively, and updates

the spawn timestamp in case of a spawn.

Another effect of a spawn is that the new instance might have to be evaluated in a

lower stage of the same evaluation process. For this, recall that a periodic stream is

only evaluated after its period has passed at least once. Hence, by assumption, a spawn

cannot affect any stream instance in the pipeline. For event-based streams, recall that

the tmactivet(σpλ,η) signals separately check the alive status of their instances every step.

Hence, no need for further action.

This is not true for termination. While termination only takes effect after full evaluation
of an event or deadline (cf. Definition 2.26), the pipeline might already contain the next:Def. 2.26, p. 67

one. Hence, the Ctrl has to reset the respective bits in curr_ev. This update process is
integrated into the propagation mechanism for curr_ev. To this end, Ctrl computes an

additional signal for each periodic stream instance. Here, closetλ
[
σλ,η,p

]
is the output of

the feedback channel of the close expression.

closemasktλ
[
σλ,η,p

]
=
(
¬closetλ

[
σλ,η,p

]
>> n

↑
static

)
◦ 1n

↑
ev
+|ts|+

∑
(bits(σ↓)+1)

Here, the shift operation appends 1s from the left to create a proper mask for curr_ev.
That means, closemask is a string as wide as curr_ev, consists of 1s and a 0 for each

closed periodic stream instance. With this, Equation (3.2) is replaced by::Eq. (3.2), p. 115

closeupdatetλ =
∨
λ ′>λ

(
closemasktλ ′ ∧ countt−1λ ′ 6= countt−1λ ∧ enabletλ ′

)

curr_evtλ =

q_outt ∧ closeupdatetλ ′ if λ = 1∧ ent−11

curr_evt−1λ−1 ∧ closeupdatetλ ′ if λ > 1∧ ent−1λ

curr_evt−1λ ∧ closeupdatetλ ′ otherwise

As a result, the close update only has an effect if a stream instance was closed in a greater

layer processing an earlier event.

118

3.1. Hardware Compilation

Stream Nodes

Stream nodes consist of a logic and a memory part. The logic part is a straight-forward

translation of the stream expression with one exception: Sliding window aggregations

are translated into accesses to the respective window nodes. The memory part provides

an array of registers with space to store enough values of the stream according to the

memory bound defined in Definition 2.40. Whenever the node is enabled, it triggers :Def. 2.40, p. 81

its evaluation circuit, shifts each register one to the right, evicting the oldest value, and

commits the new value to the first register. Any access to the memory of a stream node

by another stream handles indices accordingly.

Suppose stream σλ,η has a memory bound of µ. For an instance σ
p
λ,η of this stream, let

res be the output of its expression circuit. Its internal memory is then a register array

mem of length µ.

memt [i] =

memt−1 [i] if ¬enabletσpλ,η

memt−1 [i− 1] if enabletσpλ,η
∧ i > 1

rest if enabletσpλ,η
∧ i = 1

Note that input streams operate in much the same way except that it does not have a

logic part, thus res contains its value in the current event obtained by the Ctrl.

Lastly, if a stream node is target of a window aggregation ω, it has to notify the

respective window upon computation or reception of a new value. For this, it raises an

update-enable signal (updenω) and transmits its latest value over wininω.

updentω = enabletσpλ,η

winintω = rest

Window Nodes

Window accesses only refer to the latest value of the window. Hence, it only needs to

store one result value. In addition to this, it has to manage all intermediate values as

detailed in Appendix A.1.3. While the window updates its internal state when receiving :Appx. A.1.3, p. 211

an update enable, it only updates its result register when it is enabled. This prevents

overwriting the result prematurely, which would render potential accesses from later

pipeline stages incorrect.

Upon reception of an update enable signal, the window invalidates all pre-aggregation

results (“buckets”) that became obsolete between now, and the result of the last evaluation.

It also determines the currently active bucket. Afterwards, it applies the map function

on the input and reduces the result with the content of the active bucket. This result is

then committed to the bucket. For this, the translation of the map and reduce functions

119

3. Monitor Realizations

are straight-forward as they are stateless, arithmetic functions.

passedt = tst − last_tst−1

inv ′t [i] = passedt > δ · i

invt = csr(inv ′t, cixt. in)

tixt =

 csr(last(inv ′t), cixt) if invt 6= 0

cixt−1. in otherwise

buckett [i] =

buckett−1 [i]⊕map(winint) if updent ∧ tixt [i]∧¬inv [i]

ε⊕map(winint) if updent ∧ tixt [i]∧ inv [i]

ε if updent ∧¬tixt [i]∧ inv [i]

buckett−1 [i] if ¬updent ∨ tixt [i]∧¬inv [i]

cixt =

 tix if updent

cixt−1 otherwise

last_tst =

 (tst div δ) · δ if updent

last_tst−1 otherwise

≈

 last_tst + popcnt(inv ′t) · δ if updent

last_tst−1 otherwise

Here, δ is the time a single bucket represents, i.e., the duration of the window divided by

the period of the stream accessing the window. Moreover, ts is the timestamp extracted

from curr_ev of the respective layer.

These formulas use and maintain

• the cix register, containing the index of the currently active, i.e., “most recent”

bucket in unary encoding,

• the last_ts register containing the timestamp representing the first point in time

covered by the currently active bucket. It starts with 0 and progresses in increments

of multiples of δ, and

• the array of bucket registers containing the intermediate results of each bucket.

The algorithm first checks how much time has passed since the starting time of the

bucket that was active in the last update. Next, it concurrently computes as many bits as

120

3.1. Hardware Compilation

it has buckets. Each bit with value 1 indicates that a bucket is outdated and thus needs

to be invalidated. This bit-string is then cyclically shifted to the right by the index of

the active bucket in the last update. As a result, the bit at index i corresponds to the

ith bucket. Next, it determines the index of the target bucket, i.e., the bucket in which

the new value needs to be placed. This is the current index if no bucket needs to be

invalidated. Otherwise, it resets every set bit in the inv ′ signal except the last one. This
operation can be efficiently realized with a parallel prefix circuit. The result also needs

to be shifted by cix.
With this information, the node updates its buckets. Here, there are four cases. The

first two cover the currently active bucket provided it needs to be updated. If the bucket

does not have to be invalidated, the node accesses the old bucket value, reduces it

together with the mapped new value, commits the result in the bucket. Otherwise, it

uses the neural element of the aggregation rather than the last bucket value. The third

line states that a bucket that is not targeted and needs to be invalidated will simply

receive the neural element. Lastly, buckets retain their value if there is no update, or if

they are neither targeted nor get invalidated.

At the same time, cix gets the value of tix unless there is no update. Lastly, when

updated, last_ts becomes the current timestamp rounded down to the next δ. While this

is possible by dividing and the multiplying by δ, such operations are expensive. There is

a cheaper solution available under the condition that there will be at least one update

per duration of the window ∆. Even though events cannot guarantee this, it suffices

if there is a static, periodic stream with a period less than ∆. In this case, adding the

population count
4
of inv ′ multiplied by δ to last_ts yields the same result.

Evaluation Since most of the heavy lifting takes place in the update mechanism, the

retrieval of the result is fairly simple. Note that ∆δ−1 is a compile-time constant.

rest =

 fin(buckett−1 [1]⊕ . . .⊕buckett−1
[
∆δ−1

]
) if entω

rest−1 otherwise

Since ⊕ is an associative function, the reduction can be realized efficiently in a binary

tree.

3.1.5. Synthesizer

The mathematical descriptions can be translated into VHDL code. This code is then

synthesizable onto an FPGA, for example via the Vivado Design Suite developed by Xilinx.

The tool also analyzes the description and provides insight into the realization. This

includes the resource consumption in terms of logical gates, memory cells, peak and idle

power consumption as well as the slack time.

4
The population count, hemming weight, or horizontal sum of a bit-string denotes the number of 1s

occurring in it.

121

3. Monitor Realizations

3.1.6. Performance

The validation of the hardware realization is based on a prototype compiler from

RTLola to VHDL implementing the theory presented in this chapter [Bau20; Bau+20a].

It encompasses three case studies. The first two are concerned with monitoring a

network and an aircraft. On the contrary, the third one is purely synthetic and designed

to emphasize the benefits of the parallel and pipelined evaluation structure. All

specifications were compiled into VHDL code and then synthesized on a Zynq-Z-7010

ARM/FPGA SoC Trainer Board
5
, which is logic-equivalent to an Artix-7 FPGA. The board

features 4,400 logic slices, each with four 6-bit lookup tables (LUT) and 8 flip-flops (FF).

Aircraft Monitoring

Consider the following specification for a drone.

input lat, lon, spd: Int32

input sats: UInt8

output gnss_freq @1Hz: bool := lat.count(over: 1s, or: 10) < 9

trigger gnss_freq "GNSS frequency less than 9 Hz"

output fast := spd > 700

trigger fast.last(or: false) ∧ ¬fast "Slowing down"

output gnss_dist := sqrt(δ(lon)^2 + δ(lat)^2)

output gnss_dps := gnss_dist / δ(time)

trigger abs(gnss_spd - spd) > 10 "Sensor deviation"

output hovering @1Hz := velo.integrate(over: 5s, or: 5) < 1

trigger hovering "Little distance covered"

Input events consist of positional values, i.e., longitude and latitude, the airspeed and

the number of GNSS satellites in range. The GNSS module is supposed to send values

with a frequency of 10Hz. The output stream gnss_freq counts the number of samples

received within a second and checks if it falls below 9. In this case, the first trigger reports

the unexpectedly low sample frequency. The second trigger reports a warning when the

drone’s airspeed drops below 700, provided that the speed was greater than 700 before

that. For the third trigger, the specification uses a simplified reconstruction of the distance

the drone traveled using the Pythagorean theorem. This is only a rough approximation

for illustration, the haversine function for example would yield more accurate results.

The square root computation is realized using the constant-time function proposed by Li

5https://reference.digilentinc.com/reference/programmable-logic/zybo/reference-manual?

_ga=2.102758273.1814454663.1555084001-1980681841.1546416239; last accessed: 02.02.2022

122

https://reference.digilentinc.com/reference/programmable-logic/zybo/reference-manual?_ga=2.102758273.1814454663.1555084001-1980681841.1546416239
https://reference.digilentinc.com/reference/programmable-logic/zybo/reference-manual?_ga=2.102758273.1814454663.1555084001-1980681841.1546416239

3.1. Hardware Compilation

Table 3.7.: Results when realizing a specification for aircraft onto a Zynq-Z-7010 FPGA.

Power consumption amounted to 0.121W when idle and peaked at 1.620W.

Component FF LUT Mux CA Mult

Total 3,036 3,685 26 656 18

TM 901 156 0 22 0

Queue 543 442 0 43 0

EM 1,281 2,820 0 576 18

and Chu [LC96]. Differentiating the distance discretely computes the speed according to

the GNSS module. This allows for cross-validating sensor values by comparing the sensed

input speed with the computed one. If the deviation between the two values reaches a

critical point, the monitor raises an alarm. Lastly, the specification detects hover phases

by integrating both speed values and checking whether it lies below a threshold.

Table 3.7 presents the resource consumption in terms of required flip-flops (FF), look-up

tables (LUT), multiplexers (Mux), adders (CA), andmultipliers (Mult) for each component.

Note that the realization purged the instance store due to a lack of parametrized streams.

Note further that the amount of resources like flip-flops of the entire monitor is not

equal to the sum of the resources of all components. The difference is required for

internal tasks such as signal management. One can see that most flip-flops reside in

the EM because it manages the persisted values of all streams. Yet, the difference is

relatively small, with the TM requiring 70% as much memory as the EM. This can be

contributed to the fact that the TM uses several internal registers and that the greatest

offset in the specification is only 1, which keep the memory requirement of the EM low.

The overwhelming majority of logic gates, in particular look-up tables, adders, and

multipliers, reside in the EM which was expected given that this component implements

the evaluation logic. The 18 multipliers are mainly required for squaring the δ-values

and computing the integral window. The power consumption amounted to 0.121W
when idle and 1.620W under peak pressure.

The monitor was tested against data generated with the ArduPilot
6
Copter

7
drone

simulator. It simulated a multicopter flying over the campus of Saarland University.

Sensor information was piped to the monitor over a serial port. Evaluating events

and periodic deadlines took an average of 428 system clock cycles with a frequency

ζsys = 100MHz. Thus, processing an event took 4.28 µs on average. Here, the worst slack

amounted to 1.653 ns.

6http://ardupilot.org/; last accessed: 02.02.2022
7http://ardupilot.org/copter/index.html; last accessed: 02.02.2022

123

http://ardupilot.org/
http://ardupilot.org/copter/index.html

3. Monitor Realizations

input src, dst: IPv4

input fin, push, syn: bool

input length: UInt16

output host: IPv4 = ...

output incoming_connection: NoValue

eval when dst = host

trigger @1Hz incoming_connection.count(over: 0.5s) > 10000

"Many incoming connections"

output data_received @incoming_connection :=

eval when push with length

trigger @1Hz received.sum(over: 1s) > 10^7 "Workload too high"

output opened @incoming_connection

eval when syn with opened.last(or: 0) + 1

output closed @incoming_connection

eval when fin with closed.last(or: 0) + 1

trigger open - closed < 0 "Closed more connection than were open"

Listing 3.1: RTLola specification for monitoring network traffic

Network Monitoring

Network monitoring differs from aircraft monitoring in several major points. It relies less

on heavy arithmetic computations and more on simple counting and comparison-based

checks rendering the workload per event rather low. To make up for that, events occur

significantlymore often; the sheer amount of network traffic that arises exerts an immense

pressure on the monitor. Here, inputs usually arrive at no discernible frequency — as

opposed to most inputs of an aircraft, which stem from sensors with a fixed sampling

frequency.

With these differences in mind, recall the specification from the interpreter evaluation

in Section 2.7.6 depicted in Listing 3.1. This specification allows for pressure testing the: Sec. 2.7.6, p. 88

generated FPGA monitor.

Realizing the specification reveals that the resource consumption is lower compared to

the avionics example, mostly due to the lower arithmetic complexity of the specification.

The number of look-up tables decreases by around 60%, adders by 65% and multipliers

by 100%. The number of flip-flops only decreases by around 38%. While there is no

significant difference in the number of sliding windows and lookup expressions in the

124

3.1. Hardware Compilation

Table 3.8.: Results when realizing a specification for aircraft onto a Zynq-Z-7010 FPGA.

Power consumption amounted to 0.120W when idle and peaked at 1.570W.

Component FF LUT Mux CA Mult

Total 1905 1533 23 226 0

TM 550 161 0 37 0

Queue 330 342 0 28 0

EM 895 927 0 161 0

two specifications, integral windows require 5-times as muchmemory as summation and

count windows. Neither the idle, nor the peak power consumption showed significant

differences. Table 3.8 displays the full statistics.

The empirical evaluation replays data from the Mid-Atlantic Collegiate Cyber Defense

Competition (maccdc)
8
in real time. While the evaluation process is simpler, the TM

remains mostly the same. Thus, the amount of system clock cycles required per event

only decreases by around 25%, the response time for a single event is 3.2 µs on average.

The worst slack time, however, increased by 150% to 4.0 ns. This allows for safely

increasing the system clock frequency by up to 200MHz. The reason for this is that the

square root computation in the avionics specification has a significantly greater depth

than all operation performed while monitoring the network. Since this computation is

part of a single pipelining stage, it must be completed in a single cycle, so the slack time

decreases significantly when the clock frequency remains unchanged.

Parallelization

The third case study is designed to showcase the benefit of realizing the monitor in

hardware. The following scalable specification forms the basis for the evaluation. It

imitates a command-response structure, i.e., depending on the value of the command input

it performs some simple, meaningless arithmetic checks. Every trigger is event-based

and ticks for every possible input event.

input command: Int16

input x, y, z, ...: Int32

trigger @> φ1 ∧ cmd = 1

...

8https://www.netresec.com/?page=MACCDC; last accessed: 02.02.2022

125

https://www.netresec.com/?page=MACCDC

3. Monitor Realizations

trigger @> φ512 ∧ cmd = 512

The empirical evaluation uses two different EM realizations. The first conforms

to Section 3.1.4. The second one injects spurious dependencies between consecutive: Sec. 3.1.4, p. 111

triggers, forcing each one into a separate pipeline stage. This prevents any form of

parallel evaluation. A stress-test successively increases the input data rate until the EM

can no longer process events in time. For this, the companion processor on the board

sends events to the FPGA and measures the time it takes until a verdict is available. This

setup produces more robust results than connecting the board with an external device

using serial communication.

Unsurprisingly, neither the size of the realization, nor the power consumption varied

noticeably between the realizations. On the contrary, the execution time varies immensely.

While the sequential execution takes 43.83 µs, the speed of the parallel execution exceeds

the capabilities of the processor of up to 866MHz, which amounts to 3.77 µs between

sending an event and attempting to read the output. Practically, this means that if the

processor sends events to the FPGA with its maximum frequency, the parallel realization

can process all events, whereas the sequential one misses 89% of the events.

These results render the hardware compilation particularly efficient when the speci-

fication contains a multitude of independent streams. While such specifications seem

artificial, they are commonplace. Not only are command-response patterns crucial to

check compliance of the system to a control entity, independent computations are typical

for modular systems like CPS. On the one hand, since the monitor has several data

sources, each (sensor-) input needs separate validation. On the other hand, checks for

geofence violations, for example, require to compare the trajectory of the system with

several faces of the fence at once. This closely resembles the structure of the example

specification. So, in conclusion, the presented realization of parallel structures pays off

for a large variety of realistic specifications.

3.1.7. Related Work

Early work in the translation of runtime monitoring specification into hardware used

the assertion-based verification language PSL (property specification language). The

ToCs [Dah+05] tool, developed by IBMHaifa translated PSL specifications to VHDL/Verilog

code, which was successfully deployed in an industrial system-on-chip project. Similarly,

P2V [LF07] compiled sPSL assertions to Verilog, and more recently MBAC [BZ08] synthe-

sizes automata-based monitors from PSL assertions. Apart from PSL, there is work based

on bounded future LTL [FK09], and past-time LTL, for which BusMOP [Pel+08] synthesized

circuits for monitoring PCI bus traffic.

126

3.1. Hardware Compilation

Transitioning to real-time properties, Jaksic et al. [Jak+15] realize STL specifications

onto an FPGA. Further, the R2U2 tool [MRS17] generates an external FPGA monitor for

MTL specification with future dependencies.

All of these approaches use logic-based input languages. However, realistic CPS

often require quantitative stream-based languages to express properties beyond yes-

or-no verdicts. There is significant work on synchronous programming languages:

Lustre [Hal+91; Hal05] and Esterel [BG92] are widely used for the development of digital

circuits [Ber16]. Moreover, there is a compiler for Lola specification onto FPGA via VHDL

presented by Maltry [Mal17].

Lastly, for one other asynchronous extension of Lola, TeSSLa [Con+18a], there is also

a hardware realization [Con+18b]. The realization divides the monitor into several

easy-to-replace chunks. This modularization requires instantiations of the blocks to

conform to a certain schema, slightly reducing performance. On the plus side, this

significantly reduces deployment time, benefitting rapid prototyping. This approach

is contrary to RTLola, where specification development is intended to take place on the

software side via the interpreter. Integration is then independent of the specification due

to the decoupling of monitor and system. Plus, there is no intention to switch out parts

of the monitor post-deployment. Hence, for the RTLola framework, low deployment time

of the hardware monitor is not considered an issue. Ultimately, the question of which

framework works better in terms of hardware realization depends on the details of the

system under development.

127

3. Monitor Realizations

3.2. Software Compilation

The software compilation is the second form of monitor realization. This compiler

is a verifying one, i.e., it injects verification annotations into the generated Rust code.

These annotations enable the Viper [MSS16] toolkit with the Prusti [Ast+19] frontend,

to verify the correctness of the generated code. Here, correctness encompasses that

monitor verdicts correspond to the formal semantics of the specification language, and

the termination of each event processing step.

The input language for the translation is the synchronous, discrete-time origin of RTLola,

i.e. Lola. Hence, this section first outlines the semantic differences between the languages

while sticking to the syntax of RTLola for a more uniform presentation. An analysis of the

specification identifies a pre- and postfix of the monitor execution. Treating these stages

differently creates for a more efficient implementation. The section then presents the

translation into rust code as well as generation of verification annotations. Here, the code

generation can either produce a sequential or a parallel monitor. While parallelization is

always beneficial in hardware, this is not the case in software since concurrency incurs

significant runtime overhead.

An empirical evaluation reveals that the generated sequential monitor requires only

1.4% to 3.1% as much time than the interpreter. However, the benefit or penalty of the

concurrent one is not universal since it highly depends on the specification at hand.

Here, a wide dependency graph with expensive stream expressions is optimal, resulting

in an additional speedup of up to 60%.

A performance evaluation of the compilation and verification showed that the running

time and memory consumption of the former is entirely subsumed by the latter. Nearly

the entire time is spent in the underlying SMT solver Z3 [MB08]. Unfortunately, its

running time is highly erratic resulting in inconsistent — yet non-contradictory— results

for complex specifications. On the positive side, attempting to verify a large specification

in the domain of avionics found in the literature, the verification reported a potential

division by zero. This turned out to be a true positive. Only after fixing it did the

verification succeed.

3.2.1. Stripping the RT off RTLola

The Lola language [DAn+05] was conceived in 2005 and is the “grandparent” of RTLola

as presented in this thesis. As the lack of the “real-time (RT-)” prefix already indicates,

Lola is fully discrete. This results in an absence of periodic streams and sliding window

aggregations. Moreover, the language is fully synchronous without dynamic stream

creation, so an event always covers all input streams and effects all outputs, rendering

hold-accesses futile. As a result, the type system of Lola reduces to the mere value type

lattice. Though, this timing model allows for an efficient handling of offsets targeting

future values of streams rather than past ones.

128

3.2. Software Compilation

The Lola syntax presented here stays true to the original Lola syntax except for the

shape of stream expressions and trigger messages. So a specification is a sequence of

stream declarations. Input stream declarations are of the form input σ
↓
j: Tj, where

σ
↓
j is an input stream and Tj is its (value) type. Output streams have the shape σ

↑
j :

Tj = ej(i1, . . . , im, s1, . . . , sn), where σ
↓
1, . . . ,σ↓m are input streams, σ

↑
1, . . . ,σ↑n are output

streams, and ej are stream expressions. These consists of constant values, arithmetic

and logic functions f(e1, . . . , ek), conditional expressions if c then e1 else e2, and

stream accesses σ.offset(by: k, or: c), where σ is a stream, k is the offset, and c is
the constant default value. The offset may be any integer number including 0, in which

case the .offset(by: k, or: c) suffix may be omitted.

Example 3.3 (Running Example). The following specification will serve as a running

example throughout this section.

input altitude: Int32

output tooLow: Bool :=

altitude.offset(by: -1, or: 0) < 200

∧ altitude < 200

∧ altitude.offset(by: 1, or: 0) < 200

output tooHigh: Bool :=

altitude.offset(by: -1, or: 0) > 600

∧ altitude > 600

∧ altitude.offset(by: 1, or: 0) > 600

trigger tooLow "Flying below minimum altitude."

trigger tooHigh "Flying above maximum altitude."

The specification monitors the altitude of a drone. For this, the output stream

tooLow checks whether the altitude is lower than 200 in the last, current, and next step.

Analogously, tooHigh checks whether these values exceed 600. In either case, one of

the triggers would go off and issue an alarm. As for RTLola, the evaluations of tooHigh

and tooLow try to access the penultimate value of altitude as well as the last and the

next one. When altitude does not have at least two values, the accesses with offset

−1 fail and the monitor substitutes the default values, in this case 0. Conversely, when

altitude ceases to produce values upon completion of the mission, the accesses with

offset +1will fail. Hence, in contrast to negative offsets, the default value for accesses

with positive offset become relevant at the end of the execution. 4

Semantics

The semantics of Lola is defined in terms of evaluation models. Intuitively, an evaluation

model contains the values and evaluations of each input and output stream of the

specification. The evaluation is equivalent to the one for RTLola in Section 2.4 when : Sec. 2.4, p. 61

129

3. Monitor Realizations

altitude

tooLow

tooHigh

triggerL

triggerH0

0

0

-1

1

0

1

-1

Figure 3.9.: The dependency graph DΦ induced by the running example specification.

striping off real-time, asynchrony, filtering and dynamic stream management. It can also

be found in d’Angelo et al.’s work [DAn+05] in its original syntax.

Definition 3.4 (Evaluation Model [DAn+05])

Let Φ be a Lola specification over input streams σ
↓
1, . . . ,σ↓

n↓
and output streams

σ
↑
1, . . . ,σ↑

n↑
. The tupleM = (m1, . . . ,mn↓+n↑) of sequences of lengthN is called an evalua-

tion model if for each equation σ
↑
j = ej(σ

↓
1, . . . ,σ↓

n↓
,σ↑1, . . . ,σ↑

n↑
) inΦ, (mn↓+1, . . . ,mn↓+n↑)

satisfies mn↓+j [k] = JejKM[...k] for 0 6 k 6 N, where JejKM[...k] evaluates the stream

expression ej underM up to position k.

The resulting dependency graph is defined as:

Definition 3.5 (Dependency Graph [DAn+05])

The dependency graph DΦ = (V ,E) of a Lola specification Φ is a weighted directedDef. Lola
Dependency Graph

multigraph with V = S↓ ∪̇ S↑ ∪̇ S!
. Each edge represents an access operation. Thus,

(σ1,w,σ2) ∈ E iff w ∈ Z and the stream expression of σ1 contains an access operation to

σ2 with offset w.

Example 3.6 (Dependency Graph). Figure 3.9 depicts the dependency graph of the

running example. It consists of five nodes representing the input stream altitude, the

output streams tooLow and tooHigh, as well as the two triggers. The edges represent

the stream accesses with their labels being the corresponding offsets. While the triggers

only access the output streams with an offset of 0, both of them access the input stream

altitudewith offsets −1, 0, and 1. 4

Based on the dependency graph, d’Angelo et al. define the shift of a stream [DAn+05].

Intuitively, the shift of σ indicates how many steps the evaluation of its expression needs

to be delayed. For instance, suppose the shift of σ is n. Then, the value of σ for time t

can be computed at time t+n. Formally:

130

3.2. Software Compilation

Definition 3.7 (Shift [Osw20])

For a Lola specification Φ, the shift ∆(σ) of a stream σ is the greatest weight of any Def. Shift

path through DΦ originating in σ:

∆(σ) = max {0}∪
{
w+∆(σ ′) | (σ,w,σ ′) ∈ E

}
The shift enables the definition of the modified evaluation order via synchronized Synchronized Edge

edges E∗. Here, the weight of a synchronized edge (σ,m,σ ′) ∈ E∗ represents the relative
time difference of when values of σ and σ ′ are computed. A value of 0 indicates

that σ attempts to access a value of σ ′ at the same time at which it is computed. So,

E∗ = {(s,∆(s) −w−∆(s ′), s ′) | (s,w, s ′) ∈ E}.

Definition 3.8 (Evaluation Order)

The evaluation order ≺ is a partial order on the output streams of a Lola specification Def. Lola Evaluation

OrderΦ. Let DΦ = (V ,E) be the dependency graph of Φ with synchronized edges E∗. The

evaluation order is the transitive closure of a relation ≺ with σ ≺ σ ′ iff (σ, 0,σ ′) ∈ E∗.

Note that the definition of evaluation layers seamlessly translates from RTLola.

Definition 3.9 (Lola Evaluation Layer)

LetΦbe aLola specification and let≺be the evaluation order inducedby its dependency

graph. A stream σ is in layer λ, written Layer(σ) = λ, then there is a strictly decreasing Def. Evaluation
Layer

sequence of λ streams w.r.t. ≺ starting in σ.

Example 3.10 (Evaluation Order). The output streams and triggers are pairwise incom-

parable w.r.t. ≺. The order puts inputs least in layer 1, followed by the outputs in layer 2,

and the triggers in layer 3. 4

While the concurrent hardware realization utilized the partial order, sequential

software solutions require a total order instead. Hence, the total evaluation order ≺+
of a Def. Total Evaluation

Order
specification is obtained by strengthening ≺ arbitrarily.

The evaluation order resolves issues arising from accesses with an offset of 0 for Lola

in the same way as it does for RTLola. Additionally, specifications where the dependency

graph has no positive cycles are called efficiently monitorable. Such specifications can be Efficiently

Monitorable
monitored with constant memory, and an output value can always be produced after

a constant delay [DAn+05]. All example specifications considered in this section are

efficiently monitorable.

3.2.2. Specification Analysis

After determining the evaluation order and inter-stream dependencies, the compilation

performs an additional analysis. Here, it identifies the pre- and postfix of the evaluation

and the overall memory consumption.

131

3. Monitor Realizations

alt −

. . .

−

tooHigh − −

tooLow − −

Figure 3.10.: Illustration of stream accesses in different phases of the execution of a

monitor for the running example. The output streams access the input

stream with offsets −1, 0, and +1. Dotted arrows indicate past accesses

in the prefix and future accesses in the postfix. These accesses need to be

replaced by their default values.

Execution Pre- and Postfix.

Refer back to the running example. Here, the accesses to altitude have an offset of

at least −1. Hence, as soon this stream generated at least two values, they will always

succeed. Thanks to the synchronous nature of Lola, this is the case starting at time t = 2.

Generally, suppose an output stream σ accesses another stream σ ′ with an offset of n.

If n is strictly negative, then accesses fail until t = ∆(σ) −n−∆(σ ′). If n is 0 or strictly

positive, they always succeed. However, in the latter case, the evaluation of σ needs to

be delayed by ∆(σ) −n, i.e., until σ ′ received the respective value. With this delay, all

accesses to σ ′ continue to succeed until σ ′ ceases to produce new values. As soon as this

is the case, the monitor needs to evaluate σ for ∆(σ) −nmore times to compensate for the

delay. In these evaluations, these accesses definitely fail, since they refer to non-extant

future values of σ ′.

This behavior induces the structure of the monitor execution: it starts with a prefixPrefix

where past accesses can fail, loops in the regular execution where all accesses alwaysMonitor Loop

succeed, and ends in a postfixwhere future accesses always fail. Figure 3.10 illustratesPostfix

the different phases for the running example.

Memory Requirement

While the shift mainly concerns time, it can also be used to compute the memory

requirement of a stream, i.e., the number of values of a single stream that can be relevant

at the same time. If a stream σ of type T has a memory requirement µ(σ) = i, the monitor

needs to reserve i · size(T) bytes of memory for σ.

Definition 3.11 (Memory Requirement)

The memory requirement of a dependency (σ ′,w,σ) ∈ E is determined by the shifts of theDef.Memory

Requirement
streams σ, σ ′ as well as the weight w of the dependency, i.e., the offset of the stream

access: ∆(σ) −∆(σ ′) −w. The memory requirement µ(σ) ∈ N of a stream σ is thus the

132

3.2. Software Compilation

maximum memory requirement of any ingoing dependency:

µ(σ) = max({1}∪
{
∆(σ) −∆(σ ′) −w | (σ ′,w,σ) ∈ E

}
).

As a result, the requirement defaults to 1 if there are no incoming dependencies.

Example 3.12 (Memory Requirement). Recall the running example and its dependency

graph shown in Figure 3.9. The memory requirement of altitude is 2 because its shift

is 0, while the shift of both tooLow and tooHigh is −1. Both output streams access

altitudewith offset −1, so µ(alt) = 0− (−1) − (−1) = 2. The memory requirement of

tooLow, tooHigh, and both triggers is 0. 4

Based on the shift aswell as on thememory requirement of the streams, the compilation

determines three key values for each specification.

Definition 3.13 (Prefix and Postfix Length, Memory Consumption)

Let Φ be a Lola specification. The prefix length η←Φ , postfix length η→Φ , and the memory Def. Prefix and

Postfix Length

Def. Memory

Consumption

consumption µ∗Φ of ϕ are defined as follows:

η←Φ = max
s∈Φ

{∆(s) + µ(s)}

η→Φ = max
s∈Φ

{∆(s)}

µ∗Φ =
∑
s∈Φ

{µ(s) · size(Ts)}

Example 3.14 (Prefix and Postfix Length). The prefix length of the running example is

η←Φ = 2 since the shift of the input stream is 0 and its memory requirement is 2. The

postfix length is η→Φ = 1 as both outputs have a shift of 1. 4

3.2.3. Code Generation

Figure 3.11 illustrates the general structure of the monitor. The remainder of this

subsection detail each component. Here, the main function constitutes the entry point.

It allocates static memory and initiates the execution of the prefix, monitor loop, and

postfix.

Prelude

The monitor code starts with a prelude. It declares and allocates the working memory Prelude

plus provides several helper functions required throughout the monitoring. The first two

functions are I/O functions handling the communication between monitor and system.

The get_input function models the reception of input data:

133

3. Monitor Realizations

Prelude

Prefix

Postfix

Loop

struct Memory { ... }

impl Memory { . . . }

[[Evaluation Functions]]

fn get_input() -> Option<(Ts1 , . . . , Ts`)> {

[[Communicate with system]]

}

fn emit(output: &(Ts1 , . . . , Tsn)) {

[[Communicate with system]]

}

fn prefix(mem: &mut Memory) -> bool {

if let Some(input) = get_input() {

mem.add_input(&input);

[[Evaluation Logic]]

} else {

return true // Jump to Postfix.

}

[[Repeat η←Φ times.]]

false // Continue with Monitor Loop.

}

fn postfix(mem &Memory) {

[[Evaluation Logic]]

[[Repeat η→Φ times.]]

}

fn main() {

let mut memory = Memory::new();

let early_exit = prefix(&mem);

if !early_exit {

while let Some(input) = get_input()

{

mem.add_input(&input1);

[[Evaluation Logic]]

}

}

postfix(&mem);

}

Figure 3.11.: Overall structure of the generated Rust code.

get_input() -> Option<(T
σ
↓
1
, . . . , T

σ
↓
n↓
)>,

Here, T
σ
↓
1
, . . . , T

σ
↓
n↓

are the types of all input streams. The function produces None if the

execution of the system under scrutiny terminated, or Some(v), where v is an n↓-tuple

containing the latest input values.

The counterpart responsible for dispensing information is the emit function.

emit(&(Tσ
n↓+1

, . . . , Tσ
n↓+n↑+n!))

It conveys the output values, including triggers, to the system.

Additionally, there are evaluation functions for each stream in several variants de-

pending on whether the functions will be called in the prefix, the monitor loop, or the

postfix. The implementations of the function variants differ only in the logic accessing

other streams. The static analysis of the specification reveals which accesses fail or

succeed in which phase of the execution. This alleviates the need for dynamic checks

when providing several implementations. Hence, in lieu of a realization with a smaller

code size, the compilation opts for more efficient realizations of the monitor logic. The

translations themselves are straight forward since Lola expressions are syntactically

and semantically similar to Rust expressions, barring stream accesses. These translate

naturally to accesses to the working memory.

This working memory is a struct aptly named Memory. It consists of a static array for

each stream in the specification and reads as follows:

134

3.2. Software Compilation

struct Memory { σ1: [Tσ1
; µσ1], . . . , σn↓+n↑: [Tσ

n↓+n↑ ; µσn↓+n↑] }

Note that this does not reserve memory for triggers since these cannot be accessed by

other streams. The monitor allocates Memory once in its main function, keeps it on the

stack, and grants read access to functions evaluating stream expressions. These functions

also return their results rather than committing it into memory. Leaving this task to the

main function makes no difference when executing the monitor sequentially but already

prepares the concurrent evaluation presented later.

Execution Prefix

The prefix consists of η←Φ conditional blocks, each processing an input event of the system Execution Prefix

under scrutiny. If the system terminates before the prefix concludes, the function returns

true, indicating an early termination. This prompts the main function to initiate the

postfix. Otherwise, the input is added to the working memory and, evaluation layer

by evaluation layer, each output stream is evaluated in a dedicated function. For this,

suppose the specification has λ∗ evaluation layers and λ∗i denotes the number of streams

within evaluation layer i 6 λ∗, i.e.,

λ∗ = max {Layer(σ)}

λ∗i = |{σ | Layer(σ) = i}|

Lastly, let σi,j ≺+ σi,j+1 with Layer(σi,j) = Layer(σi,j+1) = i. Then, the code for the

evaluation looks as follows:

let v_σ1,1 = eval_pre_1_σ1,1(&memory);

...

let v_σ1,λ∗1 = eval_pre_1_σ1,λ∗1(&memory);

memory.write_layer_1(v_σ1,1,...,v_σ1,λ∗1)

...

let v_σλ∗,1 = eval_pre_σλ∗,1(&memory);

...

let v_σλ∗,λ∗
λ∗

= eval_pre_σλ∗,λ∗
λ∗
(&memory);

Memory.write_layer_λ∗(v_σλ∗,1,...,v_σλ∗,λ∗
λ∗
);

if v_σt1 { emit(mt1) } // Emit a warning when a trigger is active.

Note that, as indicated in the prelude, each conditional block calls a different set

of evaluation functions. This allows for a fine-grained treatment of stream accesses,

improving the overall performance at the cost of greater code size. Also, the call passes

a single argument to the evaluation function: an immutable reference to Memory. As

a result, the Rust type system guarantees that the evaluation does not mutate its state.

The function returns a value that is committed to memory after fully evaluating the

current layer. The bodies of these functions are straight-forward translations of stream

135

3. Monitor Realizations

expressions: each arithmetic and logical expression has a counterpart in Rust. Stream

lookups simply read the respective entries in the working memory.

The functions write_layer_i used in the code snippet writes computed stream values

to memory. After µ(s) iterations, the memory evicts the oldest data point for stream s,

thus constituting a ring buffer.

Monitor Loop

The main difference between themonitor loop and the prefix is that, as the name indicates,Monitor Loop

the former consists of a loop rather than a sequence of conditionals. The monitor loop

terminates as soon as the system ceases to produce new inputs. At this point, it transitions

to the execution postfix.

Within the loop, the monitor proceeds just as in the prefix except that the evaluation

functions are agnostic to the current iteration number. In the evaluation, all stream

accesses are guaranteed to succeed rendering it free of conditionals except when the

stream expression itself contains one. This is a performance boon since conditionals are

expensive compared to arithmetic operations.

Execution Postfix

The structure of the execution postfix closely resembles the prefix with few differences:Execution Postfix

First, rather than a sequence of conditional evaluations, the postfix executes the evaluation

functions unconditionally with no option for early termination. Second, it calls a different

set of evaluation functions specifically tailored to the postfix.

Code Characteristics

The generated code exhibits two favorable characteristics. First, accepting an increase in

code size and compilation time by quasi-duplicating the evaluation functions leads to an

excellent runtime performance because it avoids conditional statements. Moreover, the

functions require few arguments and utilize data locality. This is further emphasized by

the lack of dynamic memory allocation and usage of native data types. Second, the clear

code structure, especially w.r.t. memory accesses, drastically simplifies reasoning about

the correctness of the code, as will come in handy in the next step.

3.2.4. Verification

The goal is to automatically prove that the verdicts produced by the monitor correspond

to the formal semantics of Lola. Here, the main challenge is that the evaluation model

refers to unbounded data sequences, agnostic of memory concerns. In contrast, the

implementation allocates and manages a finite amount of memory for the monitoring

process. As a result, the Lola semantics argues about data values long after they have

been discarded in the implementation. This renders the exact relation between the

136

3.2. Software Compilation

InputSystem

EvaluationMonitor

GM

Assertions

Invariants

Proof

Figure 3.12.: Information flow between monitor and ghost memory.

memory content and the evaluation model, and thus the correctness of the computation,

no longer immediately apparent.

The compilation solves this problem with the classic proof technique of introducing

ghost memory. To this end, it introduces another data structure named GhostMemory (GM). Ghost Memory

Internally, the GM is realized as a wrapper for Rust vectors, i.e., dynamically growing

sequences of data. Whenever the monitor receives or computes any data, it commits it to

the ghost memory. The ghost memory’s size thus obviously exceeds any bound, voiding

the memory guarantees. However, the sole purpose of this act is to aid the verification

without affecting the monitoring process: Information flows from the program into

the ghost memory and into the proof, but remains strictly separated from the stream

evaluation. This allows for removing the ghost memory after successful verification of

the correctness of the monitor without altering its behavior. Figure 3.12 illustrates the

flow of information between the monitor and the ghost memory. Clearly, removal of

proof artifacts does not affect the monitor.

The correctness proof has two major obligations: proving compliance between values

in the ghost memory and the working memory, and proving the correctness of the trigger

evaluations w.r.t. the ghost memory. These obligations are encoded as verification anno-

tations, such that the Viper [MSS16] toolkit verifies them automatically. The generation of

additional annotation allows for guiding the verification processes, increasing feasibility.

Viper Annotation Generation

Viper annotations fall into the following categories:

Function Contracts. An annotation in front of a function f consists of preconditions as

well as guarantees. Viper imposes constraints on both the function caller and the

function body itself. Each call to f is replaced by an assertion of its preconditions,

prompting Viper to prove their validity, and an assumption of the guarantees. In a

separate step, Viper assumes that the preconditions are met and verifies that the

guarantees hold after executing the function body. Note that the Rust type system

already ensures that references passed to the function f are accessible and cannot

be modified or freed unless they are explicitly declared mutable.

137

3. Monitor Realizations

Loop Invariants. Viper analyzes while-loops, similarly to functions, in three steps. First,

it verifies that the code leading to the loop satisfies the invariants of the while-loop.

Second, it assumes that both the loop invariant and the loop condition hold and

verifies that the invariant again holds after the execution of the body, while it may

be violated in the interim. Lastly, Viper assumes that the invariant and the negation

of the loop condition hold for the code following the loop.

Inline Assertions. Function contracts and loop invariants impose implicit assertions

on the code. Viper also allows for supplementing explicit assertions using the

Rust macro assert!. Usually, the macro checks the respective condition during

runtime.
9
However, Viper eliminates the need for this dynamic check as it verifies

the correctness statically and transforms it into an assumption for the remainder of

the verification. Thus, the assertions serve a similar function as the ghost memory:

they are a proof construct and do not influence the monitor per se (cf. Figure 3.12).

The compilation inserts annotations at several key locations. First, as an example for

function annotations, consider a function that retrieves a value of the stream σ from the

working memory. The function takes the relative index of the retrieved value as single

argument. An index of 1, for instance, accesses the second-to-latest value. The annotation

requires that the index must not exceed the memory reserved for σ. Syntactically, this

results in the following annotation in front of the function head:

#[requires="index < µ(σ)"]

Moreover, the function needs to guarantee that the return value corresponds to the

respective value stored in memory. This is expressed by the following annotation for

each 0 6 i 6 µ(s).

#[ensures="index == i ==> result == self.s[i]"]

Here, self refers to the memory struct. The remaining function annotations follow a

similar pattern, i.e., they require valid arguments and ensure correct outputs as well as

the absence of undesired changes.

Note that the ghost memory is essentially a wrapper for Rust vectors as they represent a

growing list of values. Thus, functions concerning the ghost memory carry the standard

annotation ensuring correctness of the vector as presented in the Viper examples.
10

Next, the loop has several entry checks that are expressed as inline assertions. These

ensure that the iteration count is η←Φ and that the length of the ghost memory for a

stream σ is η←Φ −∆(σ). This is necessary because the loop invariant asserts equivalence

between an excerpt of the ghost memory and the working memory, so the excerpt needs

9
Note that in some languages, assert statements are no longer present after compilation in the release

configuration. For Rust, this is not the case; compilation merely purges debug_assert!macros.

10
See for example the verified solution for theKnight’s Tour Problem: https://github.com/viperproject/

prusti-dev/blob/master/prusti-tests/tests/verify/pass/rosetta/Knights_tour.rs; last ac-

cessed: 02.02.2022.

138

https://github.com/viperproject/prusti-dev/blob/master/prusti-tests/tests/verify/pass/rosetta/Knights_tour.rs
https://github.com/viperproject/prusti-dev/blob/master/prusti-tests/tests/verify/pass/rosetta/Knights_tour.rs

3.2. Software Compilation

to be present and of the proper length. While this is guaranteed for the working memory

due to the static allocation, it needs to be asserted for the dynamically growing ghost

memory. Hence, the compilation adds the entry checks.

In terms of memory equivalence, it remains to be shown that all values in the working

memory correspond to the respective entry in the ghost memory. Formally, letm be the

working memory and let g be the ghost memory where index 0 marks the latest value.

Furthermore, let η be the current iteration count. Then, the invariant checks:

∀σ : ∀i : (0 6 i < µ(σ) =⇒ mσ[i] = gσ[i]). (3.3)

At loop entry, µ(σ) = η←Φ −∆(σ) = η−∆(σ) is the number of iterations in which a value

for σ was computed. In each further iteration of the loop, the invariant checks that

the former µ(σ) − 1 entries remained the same and that the new values in the ghost

memory g and the working memorym are equal. The first of these checks is not strictly

necessary for the proof because it immediately follows from the function contracts of the

helper functions. However, after completing one loop iteration, Viper invalidates prior

knowledge about all variables that were mutated in the loop. Further reasoning about

these variables is thus solely based on the loop invariants.

To express Equation (3.3) in Viper, the compilation needs to statically resolve the

universal quantification over the streams. Thus, for each stream σ, the compilation

generates the following annotation:

#[invariant="forall i: usize :: (0 <= i && i < µ(σ)) ==> mem.get_σ(i) == gm.get_σ(iter − 1)"]

Here, iter is a variable denoting the current iteration, mem is the working memory, and

gm is the ghost memory. Viper can handle the remaining universal quantification over i.

However, the compilation reduces the verification effort further by unrolling it. This is

possible since the memory requirement µ(s) of a stream s is determined statically.

Lastly, the compilation introduces inline assertions after the evaluation of stream

expressions, i.e., in the prefix, loop body, and postfix. These annotations show that

computed values are correct when assuming that the values retrieved from the working

memory are correct as well. This argument is well-founded because the compilation

substitutes failing stream accesses with their respective default values. Thus, any value

that is retrieved from Memorywas computed in an earlier iteration or layer and is therefore

proven correct by Viper.

It only remains to be shown that the stream expression is properly evaluated. Ex-

pressions consist of arithmetic or logical functions, constants, and stream accesses. The

former two can be trivially represented in Viper. Since the memory is assumed to be

correct and failing accesses are substituted by constants when possible, accesses also

translate naturally into Viper.

Conclusion: Annotation Generation. The validity of the assertions after performing

the evaluation logic shows that newly computed values are correct if the values in the

139

3. Monitor Realizations

working memory m and the ghost memory g coincide. This fact is guaranteed by the

loop invariant. Furthermore, the inductive argument of the loop invariants shows that

mσ[i] = gσ[i] holds for all streams σ and for all i 6 η ifmwere to never discard values.

Thus,m is a real subsequence of g, which is a perfect reflection of the evaluation model.

As a result, any trigger violation detected by the monitor realization corresponds to a

violation in the evaluation model for the same sequence of input values; The realization

is verifiably correct.

3.2.5. Concurrent Stream Evaluation

The hardware realization proved that a concurrent evaluation of independent stream has

the potential to significantly boost performance of the monitor. The following section

devises an analysis of Lola specifications that enables safe parallelization.

To this end, there are two notable characteristics of Lola: the computation of a stream

expression can only readmemory of other streams, and inter-stream dependencies are

determined statically. The evaluation layers are a manifestation of the second observation

as they group streams incomparable according to the evaluation order. Combined with

the first observation it follows that all streams within one layer may be computed in

parallel. Thus, the compilation spawns a new thread for each stream within the layer

with read access to the global memory. Adding further annotations to the code enables

Viper to verify the correctness of the parallel execution as well.

The compilation capitalizes on Rust’s concurrency capabilities by evaluating different

output streams in parallel. Here, a major advantage of Rust is that its ownership model

enforces a strict separation of mutable and immutable data. Any data point has exactly

one owner who can transfer ownership for good or let other functions borrow the data.

Borrowing data is again either mutable or immutable. If a function mutably borrows

data, it — and it alone — can read or write this data. Conversely, if a function immutably

borrows data, other functions and the owner can read, but not write it. A consequence of

this fine-grained accessmanagementwith static enforcement is that enabling concurrency

becomes rather easy when compared to languages like C.

Evaluation Logic

Enabling the concurrent evaluation of streams requires slight changes in the code

generation. First, in the setup of the monitor, it creates two one-way, multi-producer, singleMPSC Channels

consumer channels. These channels allow multiple entities to send data through a channel

in a non-blocking fashion. Even though it sounds somewhat counter-intuitive, the

channel also allows several consumers to blockingly wait on it the same time. However,

each message sent will reach exactly one randomly selected consumer.

These channels lay the foundation for a thread pool, so the monitor then creates Ξ

threadswithΞ = max
{
λ∗i | i 6 λ

∗}
, i.e., the greatestwidth of a single layer. A consequence

of this choice is that when evaluating streams layer by layer, each thread generally has

140

3.2. Software Compilation

to evaluate only one stream expression.
11

However, note that scheduling can distort

this outcome if one thread completes its task before another one receives one. In any

case, each thread gets access to the receiving end of one of the channels (called rxc for

“receive command”) and the sending end of the other (called txr for “transmit result”).

The setup phase thus gets the following addition:

let (tx_c, rx_c) = crossbeam::channel();

let (tx_r, rx_r) = crossbeam::channel();

(0..ζ).for_each(||

let recv = rx_c.clone();

let send = tx_r.clone();

thread::spawn(move || eval_thread(recv, send);

)

Upon creation, each thread immediately starts to listen to rxc, blocking themselves

until the monitor starts receiving input data.

When an event finally reaches the monitor, the main thread initiates the evaluation

through the thread pool, which runs layer by layer. For this, it sends commands

through txc (“transmit command”), where each command is the ID of a stream of the

current layer. An arbitrary thread receives the ID of a stream σ, prompting it to evaluate

its stream expression, resulting in a value v. It then sends the pair of v and the ID of σ

over txr (“transmit result”), and returns to waiting on rxc. This results in the following

code for the eval_thread function:

fn eval_thread(rx_c: Sender<Id>, tx_r: Receiver<(Id, Value)>) {

rx_c.for_each(|id|

let v = /* evaluation logic */

tx_r.send((id, v));

);

}

After sending all commands, the main thread starts to listen to rxr. Whenever receiv-

ing (v, i), it updates its working memory by writing v for the stream with ID i, potentially

evicting other data. Note that this write-operation does not affect the concurrent evalua-

tion of other threads since, by definition of layers, the respective computations operate on

independent slices of the working memory. When all results are received and committed

to memory, the process continues with the next layer. Hence, the main monitor function

requires the following code for each layer i:

(0..λi).for_each(|ix| tx_c.send(ids[ix])

(0..λi).for_each(|_|

let (id, v) = rx_r.recv();

mem.write(id, v);

)

Note that in all code snippets, the error handling and slicing of memory is omitted for

illustration. The full code is available in Appendix A.2. :Appx. A.2, p. 214

11
This value can be reduced arbitrarily without compromising correctness. In particular, it should not

exceed the number of cores available on the machine.

141

3. Monitor Realizations

Remark 3.4 (Crossbeam). The generated code uses the Rust library crossbeam, the
de facto standard for concurrency. A similar result can be achieved without external
code by moving the global memory to the heap and using the standard Rust thread logic.
Diving deeper into the technicalities of Rust, its type system requires the programmer to
guarantee that the global memory will not be dropped until all threads terminate. Thus, the
memory needs to be wrapped into an Atomically Reference Counted (Arc) pointer. This
has two disadvantages: all accesses to memory require generally slower heap access
and the evaluation suffers from the overhead accompanying atomic reference counting.
Hence, crossbeam is preferred.

Verification

The verification of the new evaluation logic requires all evaluation functions to be

annotated with #[pure]. This indicates that a function mutates naught but its local stack

portion.

The correctness of this approach is an immediate consequence of the correctness of

the evaluation order and memory locality of streams. In particular, the independence of

streams within the same evaluation layer and the pureness of the functions are crucial.

The latter ensures that the function does not mutate anything outside its local stack. The

former ensures that using pure evaluation functions within the same layer is indeed

possible. Thus, the order of execution cannot change the outcome of the function,

enabling the concurrent evaluation.

3.2.6. Experimental Evaluation

The compiler uses the RTLola frontend implementation (Section 2.6). The verification of: Sec. 2.6, p. 82

the output uses the Rust-frontend of the Viper [MSS16] framework called Prusti [Ast+19].

Prusti translates the Rust program into the Viper intermediate verification language,

followed by a translation into an SMTmodel, which is checked by the SMT solver Z3 [MB08].

In combination, the toolchain enables completely automatic proof checking.

The experiments validate the approach with respect to three success indicators: First,

compiling Lola specifications of varying sizes from literature and verifying the generated

annotated rust code determines the scalability with respect to the size and complexity of

the specification. Second, comparing the performance in terms of running time of the

generated monitors against the RTLola interpreter measures the efficiency of the monitor.

Third, comparing the running time performance of a sequential and a concurrent monitor

for the same specification indicates the impact of the concurrent evaluation.

Monitor Generation and Verification

The experiments were conducted on a 3.1GHz Dual-Core Intel i5 machine with 16GB

of Ram. In all experiments, the compilation including the parsing and analysis of

142

3.2. Software Compilation

Time in seconds

200

400

600

Memory in MB

600

700

800

900

(a) Altitude Monitor.

Time in seconds

0

1,000

2,000

3,000

4,000

5,000

Memory in MB

2,500

3,000

3,500

(b) Network Traffic Monitor.

Figure 3.13.: Results of 20 verification runs for the running example specification

(:Example 3.3, p. 129) and a network monitoring specification (:Listing 3.1,

p. 124). Blue marks the running time in seconds, orange the memory

consumption inMB.

the specification via the RTLola frontend has a negligible running time of under ten

milliseconds and total memory consumption of less than 4MB. As expected, the

verification of the annotated rust code using Prusti and the Viper toolkit requires

significant time and memory. While the translation into the SMT model is deterministic

and can be parallelized, the verificationwith Z3 exhibits generally high and unpredictable

running time.

Out of the three specifications of varying size, the compilation and verification worked

flawlessly on two. The third one occasionally ran into timeouts and inconclusive

verification results.

First, consider the running example specification from Example 3.3. The results both :Ex. 3.3, p. 129

in terms of running time on the left and memory consumption on the right for 20 runs

are depicted in Figure 3.13a. The plot shows that the running time never exceeds 600 s

with a median of 225 s. The memory consumption is noticeably more stable ranging

between 648MB and 711MBwith one outlier of 914MB.

Evidently, the first specification is short and illustrative, so the second one is more

practically relevant. It is a Lola adaptation of the network traffic specification from

Listing 3.1. Recall that it monitors the network traffic of a server based on the source and :Listing 3.1, p. 124

destination IP of requests, tcp flags, and the length of the payload. The full, adapted

specification can be found in Listing A.1. Figure 3.13b shows the results both in terms :Listing A.1, p. 220

of running time on the left and memory consumption on the right for 20 runs. The

increase in resource consumption clearly reflects the increase in complexity and size of

the input specification. While the longest run took nearly 90min, most of the runs took

143

3. Monitor Realizations

less than 25minwith a median of roughly 15min. Like before, the memory consumption

is relatively stable ranging around 3GB.

The last specification showcases the limitations of the approach. It is a Lola adaptation

of a drone flight phases detection presented in [Ado+17]. The monitor is supposed to

raise an alarm if actual velocity and a reference velocity provided by the flight controller

deviate strongly. The details of the specification are not relevant except for one line.

input time_s, time_micros, velo_x, velo_y, velo_r_x, velo_r_y: Int32

output time := time_s + time_micros / 1000000

output count := count.last(or: 0) + 1

output frequency := 1 / δ(time)

output freq_sum := frequency + freq_sum.last(or: 0)

output freq_avg := freq_sum / count

output velo: Int32 := sqrt(vel_x∗vel_x + vel_y∗vel_y)
output velo_max: Int32 :=

if res_max.last(or: false) then velo elsemax(velo_max.last(or: 0), velo)

output velo_min: Int32 :=

if res_max.last(or: false) then velo elsemin(velo_min.last(or: 0), velo)

output res_max: Bool := (velo_max − velo_min) > 1

output unchanged: Int32 :=

if res_max.last(or: false) then 0 else unchanged.last(or: 0) + 1

output velo_dev: Int32 := velo_r_x − velo_x + velo_r_y − velo_y

output worst_dev: Int32 :=

if unchanged > 15 then velo_dev elsemax(velo_dev, worst_dev.last(or: −10))

trigger freq_avg < 10 "Low input frequency."

trigger velo_dev > 10 "Deviation between velocities too high."

trigger worst_dev > 20 "Worst velocity deviation too high."

While the specification looks alright and the compilation worked without difficulties,

the verification revealed arithmetic errors in the original specification. They arose from

division in which the denominator was an input stream access: δ(time). Recall that this

desugars into a subtraction of the last time from the current one. Since neither Viper,

nor the system can guarantee that this value is necessarily non-zero, Viper reported

a potential violation of a verification annotation. Hence, the approach was able to

detect flaws in specifications stemming from implicit assumptions on the system. These

assumptions might not hold during runtime, causing the monitor to fail.

When modifying the specification to work without an unsafe division, still only four

of the 10 runs terminated successfully. Here, a successful run shows that the approach

succeeded in verifying the monitor realizations of a large and arithmetically challenging

Lola specifications. The running time varies between 6min and 16minwith a memory

consumption of between 1.38GB and 1.66GB. Another two runs did not terminate within

three hours. The reason lies within the underlying SMT solver: an unfavorable path

choice in the solving procedure can result in vastly greater running times. Lastly, four

more runs reported a potentially violated assertion or crashed internally. Once again, an

144

3.2. Software Compilation

unfavorable choice lead to an over-approximation prohibiting Viper from completing

the verification.

In summary, the results for the last specification were mixed. While restarting

the verification procedure can lead to finding a successful run, the incident comes to

emphasize the reliance of the approach on external tools. As a result, the applicability

increases with advances in research on automated proof checking of annotated code.

This constitutes another reason for the continued development of such valuable tools as

Prusti and generally the Viper toolkit.

Performance of Generated Monitors

This sequence of experiments harbors no surprises: As expected, the compiled monitors

exhibit superior running time when compared against the RTLola interpreter from

Section 2.7.6. The comparison is based on randomly generated input data for the running : Sec. 2.7.6, p. 88

example and network traffic monitoring specification. The former was adapted to be

compliant with RTLola, i.e., rather than accessing the input with a future offset, the

specification uses a negative offset of −2. For the first specification, the interpreter

required 438 ns per event on average out of 10 runs, whereas the compiled version took

6.2 ns. This amounts to a running time reduction of 98. 6%, i.e., the compiled version is

7,142.86% as fast. The second, more involved specification shows similar results: On

average, the interpreter needed 1.535 µs per event, and the compiled version 63.4 ns, so
the running time is reduced by 96. 9%.

Sequential vs. Parallel Evaluation

For this comparison, note that the performance gain of the parallel execution of the

evaluation of independent streams strongly depends on three factors: the number

of available cores, the performance of inter-thread communication, and the extent to

which a specification allows for parallel evaluation. The former two factors are machine

dependent.

The effect of the latter becomes apparent when comparing the performance of the

sequential and the parallel stream evaluation on different specifications that vary in

the size of the evaluation layers. To this end, the experiments use a specification

inducing a dependency graph with three layers of the same size. Every stream has

a deliberately expensive stream expression containing multiple computations of the

haversine formula. Without such expensive stream expressions, the overhead of the inter-

thread communication in the parallel evaluation dominated the performance benefit.

Other examples for expensive and realistic functions are aggregations of multiple stream

values or short-time Fourier transformations. Figure 3.14 summarizes the results. Each

data point corresponds to the median of ten executions of the same specification and a

randomly generated input trace. Here, each specification uses the same 10 randomly

generated input sequences. However, the input values themselves do not have any

145

3. Monitor Realizations

2 4 6 8 10 12 14 16

20

40

60

80

100

Width

T
i
m
e
i
n
s

Running time comparison for an increasing width of the specification

−100

−50

0

50

100

R
u
n
n
i
n
g
T
i
m
e
R
e
d
u
c
t
i
o
n
i
n
%

Linear

Parallel

Speedup

Figure 3.14.: Running time comparison of the sequential and the parallel execution. The

x-axis represents the width of the specification, i.e., the size of the evaluation

layers. This is an indicator for the degree to which a specification allows for

parallel evaluation.

impact on the evaluation time. Clearly, the parallel stream evaluation dominates the

sequential one. When for a width of 1 the parallel execution incurred a performance

penalty of more than 50% due to the additional setup required, the performance quickly

hones in on a gain of 50%. Since the experiments were conducted on a dual-core machine,

this is the expected performance peak.

Second, consider specifications, where every stream expression again containsmultiple

computations of the haversine formula as a stand-in for an expensive computation. In

contrast to the first line of experiments, the width of the specification remains constant

with three layers of size eight each. However, the number of computations of the

haversine formula per stream varies.

Figure 3.15 shows similar results to the former experiment. Again, each data point

corresponds to the median of ten executions of the same specification and a randomly

generated input trace. The parallel stream evaluation clearly dominates the sequential

one and the performance gain settles on 50% as expected. This gain is stable throughout

the entire experiments because the smallest specification with 100 iterations coincides

with the one used in the first line of experiments with width 8. Hence, it was already

quite complex, compensating for the ramp-up time.

The evaluation clearly shows that the parallel execution canmake a difference. However,

this is only the case if the specification is sufficiently wide and contains resource-heavy

computations as can be seen for the specification with a width 1. Hence, parallel

146

3.2. Software Compilation

100 200 300 400 500 600 700 800 900 1,000

100

200

300

400

500

Iterations

T
i
m
e
i
n
s

Running time comparison for an increasing number of iterations

0

20

40

60

80

100
R
u
n
n
i
n
g
T
i
m
e
R
e
d
u
c
t
i
o
n
i
n
%

Linear

Parallel

Speedup

Figure 3.15.: Running time comparison of the sequential and the parallel execution.

The x-axis represents the number of times a stream expression contains a

haversine function call. This serves as indicator for the complexity of the

evaluation. The specifications induce a dependency graph with three layers

each of which contains eight streams.

evaluation does not generally perform better. Whether it will benefit or detriment

performance thus highly depends on the specification at hand.

3.2.7. Recapitulation

This section presented a compilation of Lola specifications into Rust code. Using Rust

as the compilation target allows for fine-grained control, yields highly performant

executables, which can be used directly on many embedded platforms. The generated

code contains annotations enabling verification of the code using the Viper framework.

With guiding assertions in the code, as well as function contracts and loop invariants,

Viper can verify monitors even for large specifications. Furthermore, the compilation

allows for generating monitoring which evaluate independent streams concurrently. The

experimental evaluation shows the significant performance gain achievable via parallel

evaluation provided the specification is sufficiently wide and/or complex. For other

specifications, the overhead required for inter-thread communication dominates the

performance benefit.

The results are promising and encourage further research in this direction. For instance,

compiling RTLola enables the generation of verified monitors for even more realistic

cyber-physical systems.

147

3. Monitor Realizations

3.2.8. Related Work

The result presented in this section is part of a line of research aiming for verifying

compilers, a problemTonyHoare declared a grand challenge in computer science [Hoa03].

Other milestones in this direction are the concept of proof-carrying code (PCC) and

certifying compilers [NL98b].

In PCC [Nec97; App01; Nec02] architectures, executable code contains additional

information. This information serves as proof of several significant properties of the

executable itself. As a result, a host can automatically verify compliance of the code with

its own security policy. A positive result indicates that the execution is safe [NL98a].

Such architectures exist both for general purpose languages like Java [CLN00] and

low-level languages [AF00]. Abstraction-carrying code [Her+05; BJP06] is a variation

thereof, developed for constraint logic programs. Here, the artifact embedded in the

code is the result of an abstract interpretation, i.e., a fix point that serves as certificate for

invariants.

Certifying compilers [NL98b] are closely related to the approach presented for RTLola.

The similarity is that certifying compilers opt for checking correctness of the result of the

translation rather than the source. However, this is usually an executable, whereas for

RTLola it is high-level Rust code. While there is no certifying compiler for Rust, yet, there

are first endeavors in this direction in the shape of the Ferrocene
12

sub-language of Rust.

Moreover, there are such compilers for Java [Col+00], a subset of C [Li+10], and concepts

for incorporating pointer logic [Che+07] and zero-knowledge proofs [Alm+10].

A lot of research on verifying compilers is dedicated to widely used programming

languages or concepts. Work related to runtime monitoring is comparatively spares.

The Copilot [Pik+10] toolchain, for example, compiles specifications into constant

memory and constant time C realizations. The result is verified via the CBMC model

checker [CKL04]. Hence, the setup is extremely similar to the one presented here with

the main difference that the scope of the verification of Copilot is limited to the absence

of various (pointer-) arithmetical errors. Note that CBMC can verify arbitrary inline

assertions, however, Copilot does not generate them. Yet, Copilot is more expressive than

Lola as it can express real-time properties. Moreover, there is first work in the direction

of enriching compilations of RTLola specification with verification-related annotations.

Baumeister extended the FPGA translation presented in the preceding section by injective

traceability annotations into the hardware description [Bau20]. However, this work is

still in its early stages.

Further, there is significant work in the direction of verifying compilers specifically

for runtime monitoring. The two main differences are the target languages and the

machinery used for the verification. First, the target languages are specification logics

such as STL [WS20], metric first-order temporal [Sch+19] or metric first-order dynamic

logic [Bas+20], and MTL with quantitative semantic [CM20], which come with all the

12https://ferrous-systems.com/ferrocene/; last accessed: 01.02.2022

148

https://ferrous-systems.com/ferrocene/

3.2. Software Compilation

drawbacks detailed in Section 2.9. However, their controlled nature provide a stronger : Sec. 2.9, p. 93

foundation for any kind of verification. Second, their underlying proof engines are

interactive theorem provers. The main difference is that the approach presented here is

fully automatic. In contrast, as the name already suggests, interactive theorem provers

interact with users during the verification process. While the tool provides valuable

assistance, users have tomanually lead the proof in the right direction. Hence, these users

have to be domain expert and adept in logical reasoning. This renders the approachmore

resource-intense. Yet, combination of assistance and expertise allows for the verification

of complex properties, far exceeding the capabilities of fully automatic process.

Most notably here are the VeriPhy toolchain and ModelPlex. They are both based on

differential dynamic logic [Pla08], a logic specifically designed to capture the complex

hybrid dynamics of cyber-physical systems. ModelPlex [MP16] translates a specification

verified with the KeYmaera X [Ful+15] theorem prover into three verified components.

These components monitor whether the environment complies with the assumed model

in the underlying specification, whether the controller behaves correctly, and the safety

of a predicted future state based on the model. VeriPhy [Boh+18] also builds upon

the premise of a verified specification. It then triggers a chain of translation steps, the

correctness of which hinges on the initial proof. They successively generate lower-level

artifacts down to executable code. This code is then correct since all previous steps are

correct based on the initial proof.

149

Chapter 4
Conservative Model Generation

A common mathematical description of CPS are hybrid automata. They combine infor- Hybrid Automata

mation regarding their discrete control structure and continuous physical behavior.

This enables a host of analysis options throughout the development process such as

verification of critical properties pre-deployment, identification of anomalous behav-

ior during runtime and a postmortem analysis based on recorded flight data. Albeit

indisputably beneficial for the development process, designing a hybrid automaton to

properly reflect the semantics of the system is a delicate process. Thus, unsurprisingly,

several approaches aim at automatically constructing either hybrid automata or their

simpler cousins, timed automata, based on execution traces of the system. These traces

are usually a development artifact as they get recorded during test runs. As such, not only

do they contain information regarding the continuous behavior of the system, they are

also expected to satisfy relevant coverage criteria. Hence, they cover both the “average”,

expected behavior including initialization and termination, plus the extreme and corner

case behavior. This renders them particularly interesting for such a construction.

Estimation methods, most prominently machine-learning, yield promising results in

terms of reconstructing the correct discrete structure of the automaton and approximating

the continuous dynamics. Their great accuracy notwithstanding, the direction of the

approximation is unclear, so parts of the results might be over-, while others are under-

approximations. This suffices for conveying the gist of the system, yet it limits its

capabilities in terms of safety-critical analyses. For this reason, this chapter shows

how another development artifact — an RTLola specification — enables an alternative

construction. This construction yields a conservative hybrid automaton, i.e., a guaranteed Conservative Hybrid

Automaton
over-approximation of the original system. The main contributing factor is that the

specification covers the entire execution. To this end, the monitor — and by proxy the

specification — needs to keep track of different operational phases such as the takeoff or

landing phase to judge the situation accurately. Extracting this information about the

151

4. Conservative Model Generation

operational phases grants a valuable starting point for the discrete control structure of

the hybrid automaton.

Hence, the construction algorithm first extracts the implicit discrete control structureSpecification

Automaton
from the specification, resulting in a strong over-approximation of the system. It then

proceeds by analyzing the evolution of samples over time, and using this information

to refine the automaton. Due to a lack of generalization, the resulting automaton is an

under-approximation. To compensate for this, the last step of the algorithm merges

control modes within the automaton to finally obtain an over-approximation of the

original system. This mixture of a top-down and bottom-up construction results in

an automaton that is both a provable over-approximation and retains a high level of

precision.

Apart from being conservative, the construction distinguishes itself from existing

approaches in two major ways. First, the specification roughly indicates the general

discrete structure of the constructed automaton. This alleviates the need to second-guess

the structure in its entirety, reducing revisions to local sub-structures. This pushes

scalability far beyond L∗-based approaches [Ang87] like Medhat et al. [Med+15] in which

significant time is spent to determine the discrete structure. Secondly, the construction

reduces the level of over-approximation by merging modes of an under-approximation

only if needed. This can result in more fine-grained refinements than when successively

widening dynamics until the language of the automaton encompasses every input

trace [Sot+19].

An empirical evaluation validates three major claims. First, the construction requires

few traces to produce decent results. For a fourteen-mode automaton, for example, seven

hand-picked or on average 35 random traces suffice for a perfect reconstruction. Second,

the precision — while not flawless — comes close to the optimal result provided the

input data is adequate. Third, the construction algorithm scales extraordinarily well.

Even large automata with over 1000 modes can be constructed within mere seconds. All

three benefits are the result of relying on development artifacts in form of test traces and

a runtime monitoring specification: a readily available resource often left under-utilized.

152

4.1. Preliminaries and Notation

4.1. Preliminaries and Notation

This section introduces the basics of timed traces and hybrid automata in combination

with the running example for this chapter. Hybrid automata were originally presented

by Henzinger in 1995 [Hen96]. While numerous variations were discussed throughout

the years, this chapter considers rectangular hybrid automata. Moreover, this section

introduces special notation for handling and destructing vectors, traces, and automata.

4.1.1. Convex Geometry

Definition 4.1 (Rectangle)
Let 〈Ii〉16i<n be a family of closed intervals over the real numbers. Each interval is

a 1-dimensional rectangle. The multiplication of a k- and an `-dimensional rectangle Def. Rectangle

produces a k+ `-dimensional rectangle. Addition and multiplication of a rectangle I

with a scalar λ ∈ R are geometric translation and scaling, respectively. Def. Translation and

Scaling

λ+ I = λ+

n∏
i=0

Ii = λ+

n∏
i=0

[`i,ui] =
n∏
i=0

[λ+ `i, λ+ ui]

λI = λ

n∏
i=0

Ii = λ

n∏
i=0

[`i,ui] =
n∏
i=0

[λ`i, λui]

The set I ⊆ R2 is the set of one-dimensional rectangles over R.

Definition 4.2 (Convex Hull)

Let S be a convex set. The convex hull of two convex sets A ⊆ S and b ⊆ S is the minimal Def. Convex Hull

convex set covering both A and B. For S = R, chull is defined as:

chull(A,B) = {x | ∃a ∈ A,b ∈ B, λ ∈ [0, 1]. x = a+ λ(b− a)}

The convex hull of a set of convex sets is the iterative computation of the convex hull.

chull+({A}) = A

chull+({A} ∪̇S) = chull(A, chull+(S))

4.1.2. Hybrid Automata

An n-dimensional multi-rectangular hybrid automaton H is a 6-tuple (M,Λ, flow,E,γ, sI) Def. Rectangular
Hybrid Automaton

over Rn. Each constituent is finite with the following intuitive meaning:

Modes M denotes the set of discrete (control) modes.

153

4. Conservative Model Generation

(Initial) State A state s ∈M×Rn of the automaton consists of a discrete mode and an

n-dimensional vector with valuations for each continuous (state) variable. The

initial state sI = (µI, xI) ∈M×Rn marks the mode and valuation of the starting

point of the automaton.

Actions Λ denotes the set of action labels.

Dynamics The flow function flow : M → In defines the dynamics of modes. When

entering a mode, a random value is drawn from the respective interval for each

dimension.

Edges E ⊆M×Λ×M denotes the set of edges containing discrete, labeled transitions

between two modes.

Guard γ : E→ In assigns guard conditions to edges. A transition can only be taken in a

state if its continuous component lies within the rectangle.

Note that this description forgoes a notion of mode invariants as they are irrelevant

for the conservative construction.

Example 4.3 (Running Example). Figure 4.1 shows an easy-to-grasp visual representation

of a simplified hybrid automatonmodeling an aircraft. The system starts in a takeoffmode

and resides there until reaching cruising altitude, traveling north. Course adjustments

are modeled as left or right curves. After some time, it attempts a landing. Under windy

conditions, the descend-phase is elongated as a precaution. Each rectangle constitutes a

mode with the first line being its name, hence:

M = {Takeoff, Left, Straight, Right, Landing, LandWindy}

The remaining lines define the dynamics of the mode for each dimension as differential

inclusions. Evidently, the system is three-dimensional and the dynamics of the Straight

mode is defined as:

flow(Straight) =

[90, 300]

[0, 0]

[−2, 2]

Arrows represent edges, so e = (Takeoff, cruise, Straight) ∈ E. Their labels are action
labels and guard conditions, hence γ(e) = z > 300. Note that tautological guard

conditions are omitted, so γ(Straight, turnL, Left) = (−∞,∞)3. Lastly, the arrow

pointing to Takeoff out of nowhere marks the mode as the initial one. Unless stated

otherwise, the initial state is then the initial mode coupled with the zero-vector ~0. 4

Semantics

Hybrid automata allow for two kinds of transitions: control mode changes according

to E and delays according to the flow of the current mode during which the system

154

4.1. Preliminaries and Notation

state evolves continuously. More formally, the semantics of a multi-rectangular hybrid

automaton H are defined based on valid omniscient traces through H.

Definition 4.4 (Valid Omniscient Timed Trace)

An omniscient trace π̃ ∈ Rn ×R+ ×Rn × (E×R+ ×Rn)k with

π̃ = x0, δ0, x1, e1, δ1, . . . , xk, ek, δk, xk+1

is valid for an automaton (π̃ .H) iff: Def. Valid Trace

1. The trace starts in the initial state of H, i.e., xI = x0.

2. The first discrete transition starts in the initial mode, so e1 = (µI, λ,µ) for some λ

and µ.

3. All guards are satisfied: ∀1 6 i 6 k : xi ∈ γ(ei).

4. All delay transitions are valid, i.e., for 0 6 i 6 k and ei+1 = (µs, λ,µt), the state

changes according to the flow: xi+1 ∈ (xi + δi · flow(µs)).

The language of an automaton is the set of valid traces: L(H) = {π̃ | π̃ .H}. Def. Automata

Language

As the name already indicates, the notion of omniscient traces is fairly strong. Observ-

able traces constitute their accessible, weaker cousin.

Definition 4.5 (Observable Traces)

An observable trace π is an omniscient trace stripped of its information regarding source Def. Observable

Trace
and target modes: π ∈ Rn ×R+ ×Rn × (Λ×R+ ×Rn)k.

For the remainder of this chapter, unless stated otherwise, a trace refers to an observable

trace and the languages of automata refer only to finite traces.

Notation

Any automaton with decoration such as H+
will be implicitly destructed into its

components with the same decoration, e.g.M+
denotes the modes of H+

. (x)k denotes

the kth component of the n-dimensional vector x for 0 < k 6 n. The length |π| of a trace

π ∈ Rn ×R+ ×Rn × (Λ×R+ ×Rn)k is the number of timed transitions occurring in it,

i.e., k+ 1. A trace of length k+ 1 is implicitly destructed into the following components:

π = xπ0 , δπ0 , xπ1 , eπ1 , δπ1 , . . . , xπk , eπk , δπk , xπk+1. Moreover, mode µ is amember of an omniscient

trace if it reaches the mode at least once: µ ∈ π ⇐⇒ ∃i : eπ̃i = (µ1, λ,µ2)with µ ∈ {µ1,µ2}.
A step of a trace is the combination of a delay and a discrete transition. Further, let Π be a

sequence of traces in arbitrary order. Then, πi denotes the i
th
entry of the sequence with

i 6 |Π|.

155

4. Conservative Model Generation

Bisimulation

Discrete bisimulation on two automata is defined conventionally by disregarding any

continuous behavior and behavior not shared among the automata.

Definition 4.6 (Discrete Bisimulation)

Two modes of µ1,µ2 of two automata H1, H2 are discretely bisimilar µ1 ≈ µ2 iff for allDef. Discrete

Bisimulation
transition labels λ ∈ Λ1 ∩Λ2:

(µ1, λ,µ ′1) ∈ E1 =⇒ ∃µ ′2 : (µ2, λ,µ ′2) ∈ E2 ∧ µ ′1 ≈ µ ′2 and

(µ2, λ,µ ′2) ∈ E2 =⇒ ∃µ ′1 : (µ1, λ,µ ′1) ∈ E1 ∧ µ ′2 ≈ µ ′1

Further, the two automata are discretely bisimilar, i.e., H1 ≈ H2 iff µ
1
I ≈ µ2I .

156

4.1. Preliminaries and Notation

Takeoff

ẋ ∈ [1, 100]
ẏ ∈ [0, 0]
ż ∈ [1, 30]

Straight

ẋ ∈ [90, 300]
ẏ ∈ [0, 0]
ż ∈ [−2, 2]

Left

ẋ ∈ [90, 300]
ẏ ∈ [−150, 0]
ż ∈ [−2, 2]

Right

ẋ ∈ [90, 300]
ẏ ∈ [0, 150]
ż ∈ [−2, 2]

Landing

ẋ ∈ [0, 150]
ẏ ∈ [0, 0]
ż ∈ [−25, 0]

LandWindy

ẋ ∈ [0, 200]
ẏ ∈ [0, 0]
ż ∈ [−20, 0]

cruise z > 300

turnL

turnRLtoS

RtoS

descend descend

adjust adjust

Figure 4.1.: Visual representation of a hybrid automaton. Rectangles denote modes,

text inside is the name followed by differential inclusions representing the

dynamics for each dimension. Arrows represent edges, their labels are action

labels and guard conditions. Tautological guard conditions are omitted.

157

4. Conservative Model Generation

4.2. Motivation

The foundation for the conservative construction is a set of traces generated from an

unknown system and a runtime monitoring specification thereof. In a nutshell, the

construction first generates a discrete automaton based on the specification. It then

enriches the automaton with continuous information extracted from the traces to obtain a

hybrid automaton. Refining the automaton further yields a conservative approximation

of the system behavior.

This section provides an intuitive overview over each of these steps for the aircraft from

Example 4.3. A specification for it imposes several constraints depending on the current

state of the system. For example, during takeoff, the specification requires the aircraft

to accelerate; while traveling it requires a stable altitude; during landing it requires the

landing gear to be lowered. An analysis of the specification hence yields a state machine

— the specification automaton — with coarse information on different execution phases asSpecification

Automaton
well as conditions on phase-changes. The state machine is depicted in color in Figure 4.2,

superimposed by the aircraft automaton. As can be seen, the specification does not

distinguish between maintaining course or adjusting it; the requirements on the system

remain the same. Yet, it contains no indication regarding the continuous behavior of the

system.

To fill these gaps, the conservative construction then successively enriches the specifica-Successive

Enrichment
tion automaton with information extracted from the set of traces. The whole process is

illustrated in Figure 4.3. It first translates the specification automaton AΦ into a hybrid

automatonH+
1 . For each step of each trace, it adds more modes into the automaton while

maintaining the structure provided by the specification. The result, i.e.,H+
|Π|

, is by design

overly restrictive: it consists of a single, isolated path for each trace. Amerge process basedMerge Process

on the discrete behavior of modes remedies this problem and finally produces H+
.

The key point behind H+
is that it is conservative, i.e., under certain assumptions onConservative Hybrid

Automaton
the specification and traces, H+

over-approximates H. The assumptions are three-fold:

the specification needs to be a coarse abstraction of the actual system, it must agree

with the system on phase changes, and the set of traces needs to encompass sufficient

information on the discrete behavior. While these assumptions seem strong, they are

tailored for the use case at hand such that they are expected to be satisfied naturally. The

first and second assumption concern the specification, which is hand-crafted specifically

for the system. Hence, the specifier must have had knowledge regarding the abstract

control structure, e.g. through which phases the system traverses during a mission. Any

entity in this structure constitutes such an execution phase. These phases are abstract

views on the system, i.e., they summarize several concrete control modes without

containing any details on them. Each phase imposes a different, potentially overlapping

set of requirements on the system. A violation of such a requirement constitutes a

safety-hazard. Hence, the specification needs to accurately detect when a phase change

took place. This detection is part of the specification and has to agree with the system.

158

4.2. Motivation

Regarding the third criterion, recall that the set of traces is a development artifact that

arose from the testing process. Thus, not only do they cover large parts of the system’s

regular execution, they represent executions in which the system was purposefully

coerced into extreme and corner case behavior. Since an empirical evaluation revealed

that even relatively few random walks
1
already satisfy the criterion, it is safe to assume

that traces of a carefully tested, safety-critical system, do so as well. A formal description

of the assumptions and the proof that H+
is conservative can be found in Section 4.4. : Sec. 4.4, p. 171

The empirical evaluation of the approach in Section 4.5 allows for validating three : Sec. 4.5, p. 178

claims:

Few Input Traces The construction requires a low volume of input traces — especially

when compared to machine-learning approaches. For the running example, the

construction requires as little as three traces of length eight.

Scalability The construction scales linearly for increasing dimension and quadratically

in the number of traces and size of the original/constructed system. Constructing

a three-dimensional automaton with 210 modes based on a specification with nine

states and 512 traces requires less than a second.

Precision The level of over-approximation is within reason. For the aircraft, the

construction fails to distinguish the two terminal modes. Apart from this, the

resulting automaton is identical to the original one.

1
On average 32 random traces for an automaton with 14 states and two random traces for a seven state

automaton, details follow in Section 4.5, p. 178.

159

4. Conservative Model Generation

Takeoff

Travel

Landing

Takeoff

ẋ ∈ [1, 100]
ẏ ∈ [0, 0]
ż ∈ [1, 30]

Straight

ẋ ∈ [90, 300]
ẏ ∈ [0, 0]
ż ∈ [−2, 2]

Left

ẋ ∈ [90, 300]
ẏ ∈ [−150, 0]
ż ∈ [−2, 2]

Right

ẋ ∈ [90, 300]
ẏ ∈ [0, 150]
ż ∈ [−2, 2]

Landing

ẋ ∈ [0, 150]
ẏ ∈ [0, 0]
ż ∈ [−25, 0]

LandWindy

ẋ ∈ [0, 200]
ẏ ∈ [0, 0]
ż ∈ [−20, 0]

cruise z > 300

turnL

turnRLtoS

RtoS

descend descend

adjust adjust

Figure 4.2.: Specification automaton of the running example superimposed by its theo-

retical “perfect” model.

160

4.2. Motivation

Section 4.3

Section 4.4

AΦ H+
1

H+
|Π|

H+

H|
Π̃

H

.α1 .α|Π|

.Φ

.M

.|Π|

.|π

.+

Figure 4.3.: An overview of different automata and their simulation relations, where

H1 . H2 denotes that H2 simulates H1.

161

4. Conservative Model Generation

4.3. Constructing Conservative Automata

The construction proceeds in three steps: First, it extracts information from the specifi-

cation to obtain a finite state machine AΦ and a table mapping discrete control mode

changes to conditions for undergoing such a change. The automaton is a coarse abstrac-

tion of the underlying system. The second step transforms it into a hybrid automaton

H+
and iteratively refines it by extracting information regarding the continuous behavior

from the input traces. By design, the refinement overshoots its goals, resulting in an

abstraction that is too fine. As a remedy, the third step merges parts of the automaton to

construct a conservative automaton.

4.3.1. Extracting Discrete Information from the Specification

The requirements on the system change depending on its current state. For example,

during the landing of an airplane, the landing gear must be lowered whereas it is

required to be retracted when on traveling altitude. Hence, the specification needs to

keep track of relevant parts of the system state to impose the proper restrictions. This

process of keeping track induces an abstract state machine that lacks any information

on the continuous dynamics since the monitor solely relies on external input data such

as sensor readings. Each abstract state may summarize several concrete modes of the

actual system. In the plane example, the requirements on the abstract mode “in full

flight” apply to all control for staying on or adjusting the course, even though they

have different continuous dynamics. By assumption, the contrary is false, i.e., a change

of requirements on the system is always accompanied by a change in concrete modes.

Intuitively, a change of requirements is strongly linked to an action or reaction of the

system. For example, the set of requirements changes when a plane starts to descent,

which is an actively initiated process with direct impact on the behavior of the system

and thus a change in the control mode. A formalization of these assumptions follows in

Section 4.4.1.: Sec. 4.4.1, p. 171

Remark 4.1 (Automatic versus Manual Extraction). The following shows an automatic
extraction of the specification automaton from an RTLola specification. Yet, this requires
strict compliance to certain syntactic patterns. In particular, it restricts some expressions
to linear arithmetic since they need to be valid in the definition of a hybrid automaton.
As a result, a convenient and clear expression in the specification might not translate
to a rectangle without some manual tweaking. Hence, in some cases, it is preferable
to extract the specification automaton manually based on the specification rather than
relying on the syntactic extraction presented next.

A specification can keep track of the current set of requirements imposed on the

system by using an output stream with the name µΦ. The value of µΦ indicates in which

abstract state the system is. Assume there are two abstract states µΦ1 and µΦ2 , and a state

transition occurs under some condition ϕ. Then, the µΦ stream has the following shape:

162

4.3. Constructing Conservative Automata

output µΦ := if µΦ = µΦ1 ∧ ϕ then µΦ2 else µ
Φ.last(or: µ1)

For more possible abstract states and transitions, the conditional statement can be

extended accordingly. In addition, suppose a state change is accompanied by a respective

trigger, where the trigger is purely informative rather than indicative of an error.

trigger µΦ.last(or: µ1) = µΦ1 ∧ µΦ = µΦ2 ∧ ϕ "µΦ1 → µΦ1 : λ."

The trigger checks for a change in µΦ from µΦ1 to µΦ2 and emits this information coupled

with the name λ of the respective transition.

An analysis of the output stream and trigger declarations yields the following:

Definition 4.7 (Specification Automaton And Guard Condition Table)

Given a specification Φ, the extraction yields two artifacts. The (abstract) specification Def. (Abstract)

Specification

Automaton

automaton AΦ = (VΦ,EΦ, vΦI) is a finite state machine where each state represents an

operational phase. The guard condition table ΓΦ = (VΦ × λ× VΦ) → In maps a phase Def. Guard

Condition Tabletransition to a condition in form of a multidimensional rectangle.

In the constructionofAΦ,VΦ and vΦI are thedomain and initial value ofµΦ, respectively.

Then, for each trigger as the one stated before, EΦ contains the edge (µΦ1 , λ,µΦ2) and
ΓΦ(e) = ϕ. Note that the following assumes AΦ to be free of unreachable states and

related edges. This is the case in sensible specifications and can easily be enforced by

pruning the respective parts of the automaton.

Example 4.8 (Specification Automaton Extraction). Consider the following specification

excerpt for the running example. For better illustration, the domain of the mode stream is

{Takeoff, Travel, Landing}.

input altitude, lon, lat, ...: Float32

input landing_gear: Bool

input descend: NoValue

output phase @ alt ∨ descend :=

if phase.last(or: Takeoff) = Takeoff then

if altitude.hold(or: 0) >= 300 then Travel else Takeoff

else if phase.last(or: Takeoff) = Travel then

if descend.hold(or: false) then Landing else Travel

...

trigger phase.last(or: Takeoff) = Takeoff ∧ phase = Travel

"Takeoff → Travel: cruise"

trigger phase.last(or: Takeoff) = Travel ∧ phase = Landing

"Travel → Landing: descend"

163

4. Conservative Model Generation

Takeoff Travel Landing
cruise

z > 300

descend

descend

Figure 4.4.: The automaton extracted from a specification. Labels above arrows are the

names of action they represent, labels below are guard conditions. Identical

labels indicate control decisions.

trigger landing_gear ∧ phase.hold(or: Takeoff) = Travel

"Landing gear extended at while traveling."

trigger altitude > 10,000 "Flying too high."

...

Here, phase is the output stream representing the current operational phase, i.e., µΦ

in the explanation before. Note that the first two triggers mark transitions whereas the

remaining constitute safety properties.

The specification yields the three-state automaton shown in Figure 4.4. Note the dual

meaning of “descend”. It is both an input of the monitor and thus a constraint, and the

label of the transition. This indicates that the control logic directly informs the monitor

of a phase change. As a result, the condition is tautological as it can happen any time,

initiated by the controller.

Hence, the guard condition table is

ΓΦ(e) =

 (−∞,∞)2 × [300,∞) if e = (Takeoff, cruise, Travel)

true = (−∞,∞)3 if e = (Travel, descend, Landing)

The connection to the underlying system becomes apparent when superimposing it,

as can be seen in Figure 4.2. 4:Fig. 4.2, p. 160

4.3.2. Extracting Continuous Information from Traces

While the specification provides information about the system’s discrete structure, the
traces reveal how the continuous state of the system evolves over time. They also reveal

mode changes within a single abstract state. This information allows for transforming

AΦ into a more fine-grained automaton with annotated dynamics in each mode. For this,

the transformation iteratively constructs an automaton H+
, processing each position of

all traces in separation. This requires to keep track of two maps: a concrete mode-mapConcrete Mode-Map

ψ : Π→M that maps each trace to the mode of the constructed automaton in which it

currently resides, and an abstract mode-map α : µ→ VΦ mapping each concrete mode toAbstract Mode-Map

an abstract state in the specification automaton AΦ.

164

4.3. Constructing Conservative Automata

Definition 4.9 (Construction Initialization)

The construction starts with a quasi-empty hybrid automaton H+
1 that is structurally

similar to AΦ, a concrete mode-map ψ1 and an abstract mode-map α1 defined as:

M1 = {µI} Λ1 = ∅ E1 = ∅ γ1(e) = 1 ψ1(π) = µI

α1(µI) = v
Φ
I flow1(µ) =

∏
πi∈Π

solve(xπi0 , xπi1 , δπ0)

Here, 1 denotes the neutral element with respect to the multiplication of intervals.

Moreover, the solve-function computes the singular interval representing the linear

dynamics exhibited by a delay transition:

solve(x, x ′, δ) = [(x ′ − x)δ−1, (x ′ − x)δ−1]

Thus, H+
1 already incorporates the information of each trace regarding their first delay

transition.

After the initialization, the procedure successively incorporates information contained

in further positions of the traces.

Definition 4.10 (Construction Step)

Given the automaton H+
k , concrete mode-map ψk, and abstract mode-map αk from

the previous construction step. Consider the kth step of each input trace, i.e., xπik , λπik ,

δπik , and xπik+1 for all 0 < i 6 |Π|. The kth step of the construction produces H+
k+1,ψk+1,

and αk+1.

Let αk(e) be the abstraction of an edge e = (µ1, λ,µ2), i.e., it determines the respective

edge in the specification automaton. Formally, αk(e) = (αk(µ1), λ,αk(µ2)). Moreover,

Φ(π[. . k], e) indicates that an edge e of the specification automaton was derived from a

trigger for which the RTLola monitor reports a violation for the trace π up to the kth step.

Lastly, µi,k are fresh modes.

Mk+1 =Mk ∪
⋃
i

{µi,k} Λk+1 = Λk ∪
⋃
i

{
λπik
}

Ek+1 = Ek ∪
⋃
i

{
(ψk(πi), λπik ,µi,k)

}
ψk+1(πi) = µi,k

γk+1(e) =

 γk(e) if e ∈ Ek

ΓΦ(αk+1(e)) otherwise

flowk+1(µ) =

 solve(xπik , xπik+1, δπik) if µ = µi,k

flowk(µ) otherwise

165

4. Conservative Model Generation

αk+1(µ) =

µα if ∃π : Φ(π[. . k], (αk(ψk(π)), λπk ,µα))

αk(µ) if µ ∈Mk

αk(ψk(πi)) if µ = µi,k

Intuitively, for each position of each trace the construction

1. adds a new mode with the dynamics exhibited by the delay transition,

2. adds a new edge from µ to µ ′ for the discrete transition, and

3. updates the mode maps accordingly.

The latter means that if the transition was accompanied by a step in AΦ, αmaps the µ ′

to the respective abstract mode and looks up the guard obtained from the specification.

Otherwise, it maps µ ′ to the same abstract state as µwith a vacuous guard indicating a

lack of information.

4.3.3. Merging Modes

Evidently, following the procedure yields an automatonH+
|Π|

with |π| · |Π|modes arranged

as a tree as can be seen in Figure 4.3. It transformed the overly coarse specification

automaton into an overly fine hybrid automaton. To find the sweet spot between both

extremes, the next construction step merges modes within an abstract state provided

they are sufficiently similar. Suppose some relation ∼∃λ captures this notion of similarity.

Then, intuitively, the construction deems any two modes µ 6∼∃λ µ ′ sufficiently dissimilar

such that they must represent different modes in the original system. For this, let ∼α

denote the refinement relation induced by an abstract mode-map α for a constructedDef. Refinement

Relation
hybrid automaton. Here, µ1 ∼α µ2 indicates that both modes refine the same abstract

state, i.e., α(µ1) = α(µ2).

Definition 4.11 (Action Similarity)

For a constructed hybrid automaton H+
i for some i, two modes µ1,µ2 ∈ Mi are

action-similar if they share some discrete characteristics and reside in the same abstractDef. Action
Similarity

state of the specification. Assume there are some modes µ ′1,µ ′2 ∈Mi and action λ ∈ Λi.

µ1 ∼∃λ µ2 ⇐⇒ µ1 ∼αi µ2

∧
({

(µ ′1, λ,µ1), (µ ′2, λ,µ2)
}
⊆ Ei ∨

{
(µ1, λ,µ ′1), (µ2, λ,µ ′2)

}
⊆ Ei

)

166

4.3. Constructing Conservative Automata

Note that by construction ∼α is coarser than ∼∃λ.

Terminalmodes need further attention: consider the automaton in Figure 4.2. There are :Fig. 4.2, p. 160

two identical traces in the language of the automaton starting in Takeoff and traversing

Straight, but ending in different Landing modes. Based on these traces the construction

cannot distinguish the two terminal modes, since the difference in modes is unobservable.

In fact, there is no finite set of traces for which they can be distinguished with certainty.

This forces the construction to merge them as can be seen in Figure 4.5.

167

4. Conservative Model Generation

Takeoff

Travel

Landing

Takeoff

ẋ ∈ [1, 100]
ẏ ∈ [0, 0]
ż ∈ [1, 30]
ẋ ∈ [11. 3, 94. 9]
ẏ ∈ [0, 0]
ż ∈ [3. 5, 29. 0]

Straight

ẋ ∈ [90, 300]
ẏ ∈ [0, 0]
ż ∈ [−2, 2]
ẋ ∈ [96. 5, 299. 1]
ẏ ∈ [0, 0]
ż ∈ [−2. 0, 1. 9]

Left

ẋ ∈ [90, 300]
ẏ ∈ [−150, 0]
ż ∈ [−2, 2]
ẋ ∈ [96. 4, 272. 3]
ẏ ∈ [−107. 8,−45. 6]
ż ∈ [−1. 7, 1. 0]

Right

ẋ ∈ [90, 300]
ẏ ∈ [0, 150]
ż ∈ [−2, 2]
ẋ ∈ [128. 0, 245. 2]
ẏ ∈ [3. 1, 127. 2]
ż ∈ [−1. 7, 1. 3]

Landing

ẋ ∈ [0, 200]
ẏ ∈ [0, 0]
ż ∈ [25, 0]
ẋ ∈ [0. 7, 199. 5]
ẏ ∈ [0, 0]
ż ∈ [−25. 0,−0. 9]

cruise z > 300

turnL

turnRLtoS

RtoS

descend

adjust

Figure 4.5.: Output of the conservative construction for the running example. Dynamics

in black are obtained via three hand-picked traces whereas gray dynamics

result from ten randomly generated traces.

168

4.3. Constructing Conservative Automata

Definition 4.12 (Terminal and Merge Similarity)

Two terminal modes are terminal-similar iff they reside in the same abstract state. Def. Terminal-

Similarity

µ1 ∼⊥ µ2 ⇐⇒ outdeg(µ1) = outdeg(µ2) = 0∧α(µ1) = α(µ2)

Two modes are merge-similar iff they are either action-similar or terminal-similar: ∼M = Def. Merge

Similarity∼∃λ ∪ ∼⊥

Merge Operation. The merge operation now minimizes the automaton with respect

to ∼M by building the quotient automaton. Formally, a merge operates on an equivalence

relation ≈ over the set of modes. Each equivalence class ζ ⊆ M will be replaced by a

single, arbitrary representative JζK≈. By slight abuse of notation let JµK≈ denote the

representative of the equivalence class of µ, i.e., JµK≈ = JζK≈ for µ ∈ ζ. Moreover, if

context permits, the subscript may be omitted. The representative conserves the language

of each mode contained in ζ by retaining discrete transitions and computing the convex

hull for its continuous components.

Definition 4.13 (Quotient Automaton)

Merging an automaton H with respect to an equivalence relation ≈ yields a quotient Def. Quotient

Automatonautomaton H↓≈ where all elements of an equivalence class get merged into a single

element exhibiting the convex semantics of its members.

M↓≈ =
{
JµK | µ ∈M

}
sI ↓≈ = (JµIK , xI)

flow↓≈(JζK) = Conv(
⋃
µ∈ζ

{flow(µ)})

ψ↓≈(π) = Jψ(π)K

E↓≈ =
{(

Jµ1K , λ, Jµ2K
)
| (µ1, λ,µ2) ∈ E

}
α↓≈(JµK) = α(µ)

Λ↓≈ =
{
λ | ∃e ∈ E↓≈ : e =

(
Jζ1K , λ, Jζ2K

)}
γ↓≈ ((ζ1, λ, ζ2)) = Conv({(µ1, λ,µ2) | µ1 ∈ ζ1 ∧ µ2 ∈ ζ2})

4.3.4. Construction Algorithm

The overall construction algorithm now proceeds as outlined in Algorithm 1: First, the

procedure extracts information from the specification, constructs the initial automaton

169

4. Conservative Model Generation

and refines it successively by iterating over the traces. After processing all traces

completely, the procedure computes and applies the merges with respect to action- and

terminal-similarity.

Algorithm 1: Construct Conservative Hybrid Automaton

Require: Specification Φ, Traces Π

1: Extract AΦ, ΓΦ from Φ . Definition 4.7

2: Construct H+
1 ,ψ1,α1 from Π and ΓΦ . Definition 4.9

3: for k from 1 to |π| for π ∈ Π do
4: Update to H+

k ,ψk,αk . Definition 4.10

5: end for
6: Compute the action-similarity ∼∃λ . Definition 4.11

7: Compute the merge-similarity ∼M . Definition 4.12

8: Compute the conservative automaton H+ = H+
|Π|
↓(∼M) . Definition 4.13

Time Complexity. The construction process consists of three phases: extraction, con-

struction and merging. Recall that the dimensionality, i.e., the number of continuous

state variables, is n. The first phase scales linearly in the size of the specification O |Φ|.

The second phase constructs an automaton with a single mode per step of any trace. Its

size and the running time of the construction this scales linearly with the number of

traces multiplied by their length. It is also linear in the dimension since the dynamics

of each dimension have to be computed separately per mode. Hence, the complexity

is in O (n · |π| · |Π|). Lastly, the complexity of the last phase depends on the complexity

of a single merge, which is linear in the dimension, and the number of merges. The

latter is quadratic in the size of H+
|Π|

, which in turn is linear in the number and length

of traces: O
(
n · |H+

|Π|
|2
)
= O

(
n · |π|2 · |Π|2

)
. However, this only describes the worst case.

For the best case, recall that the procedure compares each mode against each other with

respect to ∼M and merges them. Optimally, all elements of an equivalence class are

identified successively by chance, i.e., it first identifies and merges all members of the

first equivalence class, then continues with the second and so on. In this case, the process

is quadratic in the number of equivalence classes: Ω
(
n · |∼M|

2)
. Here, |∼M| denotes the

number of equivalence classes induced by ∼M with∣∣AΦ∣∣ 6 |∼M| =
∣∣M+

∣∣ 6 ∣∣∣M+
|Π|

∣∣∣
In conclusion, the overall asymptotic running time is dominated by the merge procedure:

O
(
n · |π|2 · |Π|2

)

170

4.4. Correctness of the Construction

4.4. Correctness of the Construction

The validation of the construction requires a proof that the constructed automaton is —

under certain assumptions on the input — indeed conservative. For this, a key criterion

is that the automaton over-approximates the discrete and continuous behavior of the

original systemwhenprojecteddown to the parts that contributed to the inputs. Naturally,

if the original system encompasses parts that were neither reflected in the specification,

nor traversed in the input traces, the constructed automaton cannot reconstruct it.

Hence, this section first formalizes requirements on the input data. Then, a definition

of projection automata enables proving that the constructed automaton subsumes the

language of the projected original system.

4.4.1. Requirements on Input Data

The construction of the conservative automaton relies on the quality of the input traces

and specification. Hence, they need to satisfy three criteria:

1. the specification must be an abstraction of the real system,

2. its trigger conditions must be at least as restrictive as the respective conditions on

mode changes, and

3. the trace set needs to traverse every control mode of the system sufficiently often

to capture the discrete behavior.

Definition 4.14 (Adequacy of Input Data)

A specification Φ and trace set Π are adequate for a hybrid automaton H iff they satisfy Def. Input Adequacy

three criteria.

1. The specification induces a coarser automaton AΦ than the original, i.e., there is Def. Coarse
Abstraction

a partition rendering the quotient automaton of the original system discretely

bisimilar to the specification automaton.

∃ ∼Φ : H↓∼Φ ≈ AΦ

2. For any discrete transition that is both in H and AΦ, the specification contains a

mode change condition that is at least as permissive as the guard of the respective Def. Trigger-Guard

Compatibility
transition inH. Formally, let µΦ1 ,µΦ2 ∈ VΦ be two different states in the specification

automaton and µ1,µ2 be two different states in the original automaton. Suppose

these pairs of modes are discretely bisimilar, i.e., µΦ1 ≈ µ1 and µΦ2 ≈ µ2. Then,

for any edges (µΦ1 , λ,µΦ2) ∈ EΦ in the specification automaton and edge e =

(Jµ1K∼Φ , λ, Jµ2K∼Φ) ∈ E↓∼Φ in the quotient of the original system sharing the same

label:

γ(µ, λ,µ) =⇒ ΓΦ(e)

171

4. Conservative Model Generation

3. For every mode µ in H, let aµ = indeg(µ) + outdeg(µ) be the number of input and

output actions of µ in Π. The trace set needs to contain more than aµ(aµ − 1)/2Def. Trace Set
Coverage traversals through µ. Here, a trace π traverses through a mode if its omniscient

counterpart π̃ contains two subsequent edges first ending and then starting from µ.

Formally, let π̃ be the omniscient trace of π, i < |π| be a non-terminal index in it.

Further, let λ, λ ′ be two labels, and let µ1,µ2 be two modes, then:

µ ∈i π ⇐⇒ eπ̃i = (µ1, λ,µ)∧ eπ̃i+1 = (µ, λ ′,µ2)

With this, the formal criterion is:

∀µ ∈MH : |{(i,π) | µ ∈i π}| >
(aµ)(aµ − 1)

2

Evidently, these criteria depend on the original hybrid automaton, which seemingly

contradicts the premise of the construction since this automaton is supposed to be

unavailable. Yet, the criteria are designed in a way that they are either satisfied naturally

or can be satisfied without access to all formal details of the system.

To understand this, consider the first and second criterion. These criteria restrict the

specification, which was hand-crafted for the underlying system. Here, a reasonable

specification summarizes control modes that are subject to the same requirements; at

the same time, the specification needs to capture changes in the abstract state precisely

to impose the correct sub-specification on the system. Thus, even without perfect

knowledge of the inner workings and dynamics of the system, the first two criteria can be

ensured. Consider the third criterion, which is concerned with the trace set. A thorough

testing process demands that all discrete paths through the system are tested at least

once, traversing cycles only a bounded amount of times. Moreover, the system has a

fixed control interface, represented by Λ. As a result, it is reasonable to assume that the

number of times each control mode is traversed during the development exceeds the

threshold required by the third criterion. This again does not rely on knowledge about

the exact mode structure nor dynamics of the underlying system.

The exact threshold for the third criterion seems arbitrary but is anchored in graph

theory, the impact of which can be seen in the next lemma.

Lemma 4.15 (Trace Connectivity). Let Φ and Π be adequate for H. For any mode µ in H with
incoming edge label λi and outgoing edge label λo, there is a mode µ ′ in H+ with the very same
edge labels and α(µ) = α(µ ′).

Proof By reduction on the graph connectivity problem. Let G(µ,Π) = (V ,E) be a graph
where V is the set of labels of incoming or outgoing edges of µ in H. For two labels

λ1, λ2 ∈ V , there is an edge (λ1, λ2) ∈ E iff there is a trace π and i < |π| with µ ∈i π where

λ1 and λ2 correspond to the existentially quantified actions λ, λ ′. It follows fromMenger’s

theorem [Men27] that λ and λ ′ are necessarily connected if |E| exceeds |V | · (|V |− 1)/2.

172

4.4. Correctness of the Construction

This threshold corresponds to third criterion of adequacy. Recall the action similarity ∼∃λ
defined in Definition 4.11, relates all modes with at least one common incoming or :Def. 4.11, p. 166

outgoing edge label. Thus, since themerge similarity ∼M refines ∼∃λ, all respectivemodes

are merged in H+
. By Definition 4.13, the resulting mode JµK∼M retains these transitions. :Def. 4.13, p. 169

Lastly, since ∼Φ⊆∼∃λ⊆∼M, merge similarity also refines ∼Φ, hence α(µ) = α(JµK∼M). This

concludes the proof.

4.4.2. Projection Automata

The assessment of the quality of the reconstruction depends on the projection of the

original system onto the set of traces. This first requires a definition of projections on

automata.

Definition 4.16 (Projection Automata)

The projection of an automaton H down to a set of omniscient traces Π̃ is an automaton Def. Projection
AutomatonH|

Π̃
with the following constituents.

M|
Π̃
=
⋃
π̃∈Π̃

⋃
i6|π̃|

{
µπ̃i | µπ̃i ∈M

}

Λ|
Π̃
=
⋃
π̃∈Π̃

⋃
i<|π̃|

{
λπ̃i | λπ̃i ∈ Λ

}
E|
Π̃
=
{
(µ, λ,µ ′) ∈ E | µ,µ ′ ∈ M|

Π̃
∧ λ ∈ Λ|

Π̃

}
sI|Π̃ = sI

γ(e)|
Π̃
= [νmin

e ,νmax
e]

flow(µ)|
Π̃
= [νmin

µ ,νmax
µ]

Here, for ϕ ∈ {min, max}, the min and max values for guards and flows are:

νϕe = ϕ
{
x | ∃π̃, ∃i < |π̃| : x = xπ̃i ∧ e = e

π̃
i

}
νϕµ = ϕ

{
f | ∃π̃,∃i < |π̃| : eπ̃i = (µ ′, λ,µ)∧ xπ̃i + δ

π̃
i f = x

π̃
i+1

}

Intuitively, the projection strips the automaton of any information not reflected in the

set of traces. This removes all modes, edges, and transition labels not contained in any

trace. It retains the initial mode since, by definition, the initial state occurs in all traces.

Guards and flows are reduced to the maximum and minimum value exhibited by some

trace.

Note that the projection automaton H|
Π̃
is not meant to be constructed at any point;

it serves as theoretical point of reference for the quality of the construction. It is easy

173

4. Conservative Model Generation

to see that in general the projection reduces the expressiveness of an automaton, i.e.,

L(H) ⊇ L(H|
Π̃
). This, however, is not necessarily the case as the following theorem

shows.

Theorem 4.1 (Perfect Projection)
For any hybrid automaton H there is a finite set of traces for which the projection onto these
traces yields the identity, i.e., ∃Π̃∗ ⊆ L(H) : Π∗ finite∧L(H|

Π̃∗) = L(H).

Proof The proof selects traces from L(H) enabling the perfect projection. For each e in E,

Π̃∗ contains a trace π̃with e ∈ π̃ if such a trace exists. This immediately entails that the

projected edge set, set of actions, set of modes, and initial mode are accurate barring

unreachable parts. This is sufficient since they are not reflected in the language of the

automaton anyway. For each mode, Π̃∗ encompasses four traces per dimension: one

minimizing and one maximizing the flow and continuous state variable of the mode

and dimension. The minimization and maximization is over the set of traces rather than

over the mode itself. As a result, the projection of the flow is perfect. Lastly, for each

mode, outgoing edge, and dimension, there are two traces in Π̃∗ which maximize and

minimize the continuous state value before taking the transition. Hence, the projection

of the guard condition is lossless in terms the language of the automaton.

In conclusion, L(H|
Π̃∗) = L(H) with:∣∣∣Π̃∗∣∣∣ = |E|+n

(
5|M|+

∑
µ∈M

outdeg(µ)
)

Here, n is the dimension of H.

Note that the language equality cannot be extended to identical or isomorphic automata

since H can contain unreachable modes that are not reflected in its language and thus

not in any trace. The theorem emphasizes the generality of the conservative construction:

For an appropriate trace set, the projection of an automaton perfectly resembles the

original system. Since the constructed automaton is conservative with respect to this very

projection, it is also conservative with respect to the original system. This is independent

of the exact structure of the underlying system.

4.4.3. Construction Guarantees

The first observations are that application of a merge and iterations of the construction

do not reduce the language of an automaton.

Lemma 4.17 (Lossless Merge). Given a constructed hybrid automaton H+ and an equivalence
relation ≈, merging H+ with respect to ≈ yields a more permissive automaton, i.e., L(H+) ⊆
L(H+ ↓≈).

Proof By contradiction: Assume there is a trace π ∈ L(H+) \ L(H+ ↓≈). As the merge

operation is defined by unifying modes, π either (1) takes a discrete transition or (2)

174

4.4. Correctness of the Construction

traverses a continuous state not permitted in the merged automaton. Definition 4.13 :Def. 4.13, p. 169

“bends” edges such that they originate and end in the respective representatives. Hence,

the construction retains all edges up to elimination of duplicates due to set semantics,

ruling out (1). Regarding (2), the quotient builds the convex hull for all flow and

guard definitions of the merged states. The convex hull is at least as permissive as its

constituents, rendering a less permissive behavior impossible.

What is left to be shows is that each construction step is lossless.

Lemma 4.18 (Lossless Construction). Given a set of traces Π and specificationΦ. For any two
iterations i and j, if i 6 j, then the set of edges, the flow, and the transition guards only grow over
the iterations:

Ei ⊆ Ej ∧ flowi ⊆ flowj ∧ ∀e ∈ Ei : γi(e) ⊆ γj(e)

Proof This lemma follows directly from the construction step of Definition 4.10.

This suffices to prove that the language of the constructed automaton at least includes

all input traces.

Theorem 4.2 (Input Trace Inclusion)
Given an adequate set of traces Π and specificationΦ, the language of a constructed automaton
H+ subsumes Π, i.e., Π ⊆ L(H+).

Proof Let π ∈ Π be an arbitrary input trace. An induction shows that any subsequence

of π of length i is included in the language ofH+
i . Recall that ψi(π) is the mode in which

π[0, i] ends.
Induction Base: i = 0. By construction (xπ0 ,µI) ∈ L(H+

0). Moreover, ψ0(π) = µI marks

the start and end point of the trace.

Induction Step: i− 1→ i. Consider π[0, i] = π[0, i− 1], λi, δi, xi. By induction hypothesis,

π[0, i− 1] ∈ L(H+
i−1) and by Lemma 4.18, the language membership carries over to H+

i .

By construction, e = (µi−1, λi,ψi(π)) ∈ Ei with guard γi(π) = Γ
Φ(eα). Here, ΓΦ(eα) is

either > if the transition is not present Φ, or the condition from the respective trigger in

Φ. The former case renders it trivially satisfied. In the latter case, by construction of αi,

the respective trigger is satisfied in xi−1, hence the guard condition is satisfied as well.

This enables the discrete transition and ensuring that the trace ends in ψi(π). The delay

transition is valid because of the definition of solve. Hence, π ⊆ L(H+
|π|

). By Lemma 4.17,

this result carries over to H+
, i.e., π ⊆ L(H+)

A stronger classification of the language of H+
requires some insight into its discrete

structure in relation to the projection automaton of the original system. Specifically, the

following theorem shows that H|
Π̃
has a finer discrete structure than H+

.

175

4. Conservative Model Generation

Theorem 4.3 (Discrete Refinement)
Let Φ and Π be an adequate specification and trace set for a hybrid automaton H. The
reconstruction H+ is coarser than the projection of H onto Π.

∃ ∼+ : H+ ↓∼+ ≈ H|
Π̃

Proof The proof proceeds in two steps. First, for an arbitrary trace π through H|
Π̃
it

generates a trace π ′ through H+
. Second, it constructs the equivalence relation ∼+ based

on these trace pairs.

Step 1: For a given π̃ ∈ L(H|
Π̃
), the proof inductively constructs π̃ ′ with π̃ ′ ∈ L(H+)

such that the observable traces for π̃ and π̃ ′ are equal. Moreover, for any step i:

α(π̃[0. . i]) = α(π̃ ′[0. . i]). The induction base is trivial since both traces originate in the

fixed initial state, which corresponds to the initial state of the specification automaton.

For the induction step, suppose the observable traces for π̃[0. . i] and π̃ ′[0. . i] are equal
and α(π̃[0. . i]) = α(π̃ ′[0. . i]). Now, let λ be the last action label and λ ′ be the next. Since the

label combination λ, λ ′ appears in π̃, it is also present in a mode µ in H+
by Lemma 4.15:Lem. 4.15, p. 172

with α(π̃[0. . i]) = α(π̃ ′[0. . i]) = α(µ). Further, ψ(π̃[0. . i]) has an incoming transition with

label λ, hence by Definition 4.11, ψ(π̃[0. . i]) ∼∃λ µ due to their shared action label. Hence,:Def. 4.11, p. 166

by Lemma 4.17 the merge preserves this transition, and ψ(π̃ ′[0. . i]) has an outgoing edge:Lem. 4.17, p. 174

with label λ ′, which proves that the discrete edge is present.

Now, for the secondpart of the induction hypothesis, it suffices to show thatψ(π̃[0. . i]) =
ψ(π̃ ′[0. . i]). There are two possibilities: both traces take a transition in terms of α or

neither one does. This follows from the second adequacy criterion of Definition 4.14, and:Def. 4.14, p. 171

Lemma 4.18 stating that both automata are refinements of AΦ.:Lem. 4.18, p. 175

If both take such a transition, the claim follows because both automata refine AΦ. On

the contrary, if neither one takes the transition, both remain in the same state in AΦ; the

claim follows.

Step 2: The trace pairs π̃, π̃ ′ induce an equivalence relation:

∼+ =
{(
ψ (π̃[0. . i]) ,ψ

(
π̃ ′[0. . i]

))
| i ∈ N

}
This relation is a witness for the claim that H|

Π̃
is a refinement of H+

due to the trace

inclusion proven in Step 1.

Note that the refinement can be a true refinement since the merge criterion might

falsely relate modes that are distinct in H|
Π̃
but share some discrete behavior.

Corollary 4.19. ∼+ is finer than ∼M.

Proof The inclusion ∼M ⊆ ∼+ follows from the theorem. The impossibility of the

opposite, i.e., ∼+ 6⊆ ∼M can easily be seen considering the terminal similarity defined in

Definition 4.12. This similarity relates every terminal node in the same abstract state.:Def. 4.12, p. 169

Hence, construction of a counter example is simple, as can be seen in Example 4.3.:Ex. 4.3, p. 154

176

4.4. Correctness of the Construction

Theorem 4.4 (Conservative Construction)
Let H be a hybrid automaton with an adequate trace set Π and specification Φ. The
constructed automaton H+ over-approximates the language of the projection automaton H|

Π̃
:

L(H|
Π̃
) ⊆ L(H+).

Proof Let π̃ ∈ L(H|
Π̃
). The proof constructs a trace π ∈ L(H+) such that π is an

observable counterpart for π̃. The initial real-valued state of π is xπ̃0 with ψ(π[1]) = µ+I .

By construction, µ+I ∼+ µI|Π̃ = µπ̃0 .

For the induction, consider a delay transition xπ̃i ,µπ̃i , δπ̃i , xπ̃i+1 where µπ̃i ∼+ µ+ by

Theorem 4.3. Let xπ̃i + fδ
π̃
i = xπ̃i+1 for f ∈ Rn. By definition of the projection automaton :Thm. 4.3, p. 176

(Definition 4.16), Π contains traces π↑ and π↓ exhibiting the flow f↑ and f↓ at point :Def. 4.16, p. 173

a↑ 6
∣∣π↑∣∣ and a↓ 6 ∣∣π↓∣∣, respectively, while traversing µπ̃i with f↓ 6 f 6 f↑ due to the

linearity of rectangular automata. By the definition of the construction, it at some points

a↑ and a↓ constructs two modes µa
↑ ∈M+

a↑
and µa

↓ ∈M+
a↓

with flowa↑(µ
a↑) = f↑ and

flowa↓(µ
a↓) = f↓. Lemmas 4.17 and 4.18 guarantee that further construction steps and :Lems. 4.17, 4.18,

p. 174 and 175
merges retain this information. Moreover, Theorem 4.3 implies that µa

↑
, µa

↓
, and µ+ are

:Thm. 4.3, p. 176
equal with respect to ∼+. By Corollary 4.19, they are also equal with respect to ∼M. Thus,

:Cor. 4.19, p. 176flow(µ+) ⊆ Conv({flow(µ) | µ ∈ ζ+}) with f↓, f↑, f ∈ flow(µ+). As a result, π may contain

the subsequence xπ̃i , δπ̃i , xπ̃i+1 representing the delay transition.

For discrete transitions, consider e = (µπ̃i , λπ̃i ,µπ̃i+1). We show that e+ = (µ+s , λπ̃i ,µ+t) is
a valid transition assuming that µ+s = ψ(π[0. . i]), i.e., the trace constructed so far ended

in µ+s . There are three cases:

Case a) Both µπ̃i ∼Φ µπ̃i+1 and µ
+
s ∼α µ

+
t . Intuitively, this means that both automata

remain in the same state of the specification automaton. In this case, by construction:

γi(e
+) = ΓΦ(αi(e

+)) = 1 and by Lemmas 4.17 and 4.18: γi(e
+) ⊆ γ+(e+). Thus, the :Lems. 4.17, 4.18,

p. 174 and 175
guard is satisfied trivially. The existence of the edge in the constructed automaton follows

from Theorem 4.3. :Thm. 4.3, p. 176

Case b)Neither µπ̃i ∼Φ µ
π̃
i+1 nor µ

+
s ∼α µ

+
t . Intuitively, this means neither automaton

remains in the same state of the specification automaton. In this case, γi(e
+) = ΓΦ(αi(e

+)).

By the second criterion of Definitions 4.14 and 4.16, we know that γ|
Π̃
(e) =⇒ γ(e) and :Defs. 4.14, 4.16,

p. 171 and 173γ(e) =⇒ ΓΦ(αi(e
+)). Again, by Lemma 4.18 and Lemma 4.17 we know γi(e

+) ⊆ γ+(e+)
:Lem. 4.18, p. 175

:Lem. 4.17, p. 174

and the existence of the edge in the constructed automaton follows from Theorem 4.3.

:Thm. 4.3, p. 176

Case c) Either µπ̃i 6∼Φ µπ̃i+1 or µ+s 6∼α µ+t but not both. This case is impossible for

adequate specifications (Definition 4.14, Item 1) and by the definition of ∼Φ and ∼α.
:Def. 4.14, p. 171

Thus, the discrete transition exists and is applicable in the reconstructed automaton.

This concludes the proof.

177

4. Conservative Model Generation

4.5. Experiments

The empirical evaluation shows the scalability and precision of the approach. It is based

on a prototype implementation in Rust. All experiments were conducted on an Intel

i5-7200u with 8GB of Ram.

4.5.1. Aircraft System

As a first proof of concept, consider the running example from Example 4.3. For adequate

input traces, the output will always be structurally equal with varying dynamics. This

can be seen in Figure 4.5, which shows the results of two construction processes. The:Fig. 4.5, p. 168

dynamics in black are constructed from three hand-picked traces of length eight. Two

of these traces traverse all three Travel modes, whereas the last one skips the course

adjustment modes and loops in one of the Landing modes instead. As can be seen, by

picking the state values for the traces in such a way that they represent the extreme

behavior, the reconstruction of the dynamics is perfect. Conversely, the constructed

dynamics based on an adequate trace set of ten traces obtained by conducting random

walks on the original system is shown in gray. The traces can be found in Appendix A.3.:Appx. A.3, p. 221

Evidently, the reconstruction closely resembles the original system both structurally and

in terms of dynamics despite being based on a small set of random traces.

4.5.2. Scalability

Recall the complexity of each step of the construction algorithm, i.e., extraction, con-

struction, and merging, from Section 4.3.4. The extraction only requires a single pass: Sec. 4.3.4, p. 170

over the specification and is thus negligible. The construction and merges depend on

the dimensionality of the system, and the number and length of traces. The merge also

depends on the number of equivalence classes with respect to ∼M in the best case, which

is the size of the output automaton.

For this reason, the scalability evaluation considers exactly these three factors: dimen-

sionality, number and length of traces, and output-size. To this end, it automatically

generates an automaton with matching specification and adequate trace set. The automa-

ton is shaped like a binary tree of variable depth d (scales the length of traces) where

each of the 2d+1− 1 nodes is a control mode with dynamics of variable dimension (scales

the dimensionality). The specification summarizes a variable number of modes with

equal depth (scales the output size) and generates a variable number of adequate traces

(scales the number of traces) enabling the respective merges.

Output Size For the impact of the output size, consider Figure 4.6 depicting the running

time (blue lines) andmemory consumption (orange lines) for varying sizes of the original

automaton. The dark blue and dark orange line represent runs where ∼M only equates

identities, prohibiting any merges. For the lighter lines, two modes are equal if they have

178

4.5. Experiments

22 23 24 25 26 27 28 29 210 211 212 213 214 215
10−2

10−1

100

101

102

103

Number of Modes

R
u
n
n
i
n
g
T
i
m
e
i
n
s

same-depth: time

identity: time

101

102

M
e
m
o
r
y
i
n
M
B

same-depth: time

identity: time

same-depth: mem

identity: mem

Figure 4.6.: The results of the scalability analysis for different sizes of the original

automaton and specifications enabling many (darker lines) or no (lighter

lines) merges.

the same depth in the underlying automaton, allowing for vast merges. The number and

size of the traces required for an adequate trace set scales exponentially with the depth of

the automaton, accounting for the exponential increase in both metrics. Independent of

the existence of merges, the running time lies below a second for automata with less than

210 modes and terminated after less than an hour (identity) or half an hour (same-depth)

for automata with 215 modes. Hence, the merge behavior has a significant impact on the

running time, yet changes nothing on the asymptotic complexity, as expected.

The memory consumption scales similarly, starting to rise significantly around 27

owing both to the increased number of traces stored in memory, and the resulting size of

H+
|Π|

. Note that the memory consumption almost exclusively stems from the construction

process; merging only de-allocates memory. Since the reported memory consumption

is the maximum of memory allocated at a point in time, the merge behavior makes no

difference whatsoever.

Also note that the running time of themerges absolutely dominates the overall running

time. At a size of 29 modes the running time of the construction process merely amounts

to 3. 061% and further decreases to 0.015% for automata with 215 modes. This trend

holds for both lines of experiments.

Dimensionality The dimensionality impacts the running time to a lesser extent as can

be seen in Figure 4.7. Here, the number of modes is a constant 211 − 1. Raising the

dimension from 1,000 to 7,000 for an automaton size of 1010 increases the running time

179

4. Conservative Model Generation

1 2 3 4 5 6 7 8 9 10

·103

20

40

60

80

Dimension

R
u
n
n
i
n
g
T
i
m
e
i
n
s

1,000

2,000

3,000

4,000

5,000

M
e
m
o
r
y
i
n
M
B

Time

Memory

Figure 4.7.: Running time and space consumption of the reconstruction for varying

dimensions. The original automaton has 211 − 1 modes and each of the

around 1,000 trace has length eleven.

from around 4 s to 14 s. The limiting factor here is the memory consumption: each

additional dimension increases the memory consumption of every guard condition,

mode, and trace step. As a result, 10,000 dimensions requires around 5GB of memory,

which is also reflected in a relatively steep increase in running time to 96 s. Here, the

running time starts to explode as soon as the machine can no longer efficiently handle

the memory at slightly over 5GB. At this point, the machine starts swapping, resulting

in the plateau in the memory consumption, i.e., the resident set size, as well as the steep

incline in running time. It stands to reason that a larger Ram would allow the running

time to continue to scale linearly above 8,000 dimensions.

Trace Size Lastly the number of traces has an almost identical impact on both the

running time and memory consumption, as illustrated in Figure 4.8. Here, the automata

are five-dimensional with a constant number of modes and varying number of traces,

each having a length of eleven. The scale of the impact lies in-between the one of the

dimensionality and the size of the output. Raising the number of traces from 3,000 to

16,000 increases the running time roughly 40-fold.

4.5.3. Comparison Against Other Approaches

The construction of a hybrid automaton requires the determination of both the discrete

structure and continuous behavior. Regarding the former, the conservative construction

relies on the information provided by the specification and refines abstract states

according to trace information. This restricts revisions to a local level within an abstract

180

4.5. Experiments

2 4 6 8 10 12 14 16

·103

200

400

600

800

1,000

Number of Traces

T
i
m
e
i
n
s

50

100

150
M
e
m
o
r
y
i
n
M
B

Time

Memory

Figure 4.8.: Performance of the reconstruction for a varying number of traces. The

original automaton has 211 − 1modes and five dimensions. Each trace has

length eleven.

state. In absence of such a specification, other approaches resort to learning algorithms.

Medhat et al. [Med+15] use a modification of Angluin’s L∗ algorithm [Ang87] to learn the

discrete structure separately from the dynamicswhile Tappler et al. [Tap+19] learn a timed

automaton with genetic programming. We will evaluate the conservative construction

against both of these approaches. Note that the results are not fully comparable since

neither approach has a specification automaton to start with, hence it merely provides a

rough overview.

Angluin’s L∗ and Clustering. Medhat et al. [Med+15] use an adaptation of L∗ and

clustering to identify the discrete and continuous behavior of a system, respectively. In

their case study, they use a Simulink model of a closed-loop engine timing control system.

Figure 4.9 shows an approximate representation of the system as hybrid model. Their

construction uses eight traces to generate an automaton that resembles the underlying

system for new traces up to an error of 2.6%. The conservative construction can perfectly

reconstruct the automaton with one hand-picked trace of length ten within less than

1ms. When using random walks, an average of 35 traces of length fifteen suffices for

the perfect reconstruction. In this example, the specification always summarizes modes

belonging to a certain operation of the system, i.e., a drop, jump, ramp-up and the stable

configuration.

181

4. Conservative Model Generation

StableDrop Jump

RampUp

Stable

v̇ ∈ [0, 0]
Jump

v̇ ∈ [−1,−1]
Drop

v̇ ∈ [1, 1]

RampUp

v̇ ∈ [2, 2]
CntDrop

v̇ ∈ [−12 ,−12]
CntJump

v̇ ∈ [12 , 12]
SlowDown

v̇ ∈ [−12 ,−12]

torqueUptorqueDown

throttleUp
counter

stabilize
counter

stabilize

counter

stabilize

Figure 4.9.: Hybrid automaton approximating the engine timing control system by Med-

hat et al. [Med+15]. A single trace of length ten enables perfect reconstruction.

Colored states indicate the specification automaton.

Genetic Programming. Tappler et al. [Tap+19] use genetic programming to successively

adapt a candidate automaton to encompass all input traces. As an example, they

consider a timed automaton modeling a car alarm system displayed in Figure 4.10. A

sufficiently precise reconstruction requires 2,000 randomly generated traces and took

a mean of around 100min. When using seven hand-selected traces, the conservative

construction can perfectly reconstruct the system within less than 1ms, disregarding

resets. With random walks, an average of 35 traces of length 15 is necessary for the

perfect reconstruction.

182

4.5. Experiments

s12

s11

s8c2

c5s1

c7 s2 c9

s4

s0 s3

s5

c1

lock? unlock?

close? open?

unlock?

lock?

close?

open?

armedOn! c0 > 2

unlock?

armedOff !

open?

armedOff ! flashOn!

soundOn!

unlock?

soundOff !

soundOff ! c0 ∈ [3, 13]

unlock?

flashOff !

flashOff !

c0 > 30close?

unlock?

Figure 4.10.: Timed automaton for the car alarm system by Tappler et al. [Tap+19]. Perfect

reconstruction requires at least seven traces of length twelve, on average 35

traces of length 15.

183

4. Conservative Model Generation

4.6. Recapitulation

This chapter presented a construction algorithm for conservative hybrid automata from

development artifacts in the shape of a runtimemonitoring specification andpre-recorded

execution traces. The construction is validated mathematically by proving that the result

is an over-approximation under certain assumptions on the inputs. An additional

empirical evaluation revealed both the extraordinary scalability of the construction

and that even randomly generated inputs regularly satisfy the input requirements.

Considering that — in a realistic setting — these inputs are high-quality artifacts

acquired during development of the system, they should no longer be left under-utilized.

Treating them as the valuable assets they are allows for constructing precise, conservative

hybrid automata in a scalable fashion. These automata then become assets themselves to

better comprehend the system, perform a static analysis, or use them during runtime for

prediction.

184

4.7. Related Work

4.7. Related Work

The theory of hybrid automata was first studied by Henzinger [Hen96] as the real-time

extension of timed automata [AD94]. Learning the complex structure of timed and hybrid

automata is a line of research that resulted in deterministic and stochastic reconstruction

algorithms.

Niggemann et al. [Nig+12] present the tool HyBUTLA that builds prefix trees of the

traces and applies merges when appropriate. Since Angluin’s L∗ algorithm [Ang87]

is a prominent solution for learning discrete automata, several extensions for timed

automata were proposed [GJL04; An+19]. Based on that, Medhat et al. [Med+15]

split the learning process of a hybrid automaton into two steps. They first learn

the discrete model of the automaton with L∗ and then capture the dynamics using

clustering. Both of these techniques can potentially be replaced or integrated into

different frameworks. Hence, their approach is complementary to the conservative

construction: substituting the clustering for the simpler solve function can yield better

precision at the price of conservativeness. Focusing on the medical application domain,

HyMN [LBG18] learns patient specific parameters for hybrid automata deterministically.

Soto et al. [Sot+19] synthesize a hybrid automaton with an online algorithm without

relying on a specification as discrete template. While precision is very high and

completeness is shown, learning a trace prompts a global analysis of the previously

learned hybrid automaton, which incurs performance penalties. The conservative

construction avoids this complexity by using the specification automaton and the

adequacy criterion. This way, revisions are local and still retain correctness guarantees.

Other approaches for learning hybrid automata using mathematical models for node

identification were proposed by Summerville et al. [SOM17] and Breschi et al. [BPB16].

If large datasets of traces are available, stochastic learning of hybrid automata is

feasible. Tappler et al. [Tap+19] use genetic programming to reconstruct timed automata

both in an offline and online setting [APT20]. Santana et al. [San+15] build hybrid

automata with the Expectation-Maximization algorithm to iteratively define the model

parameters. An unsupervised learning approach was presented by Lee et al. [Lee+17],

whereas Birgelen and Niggemann [BN17] use self-organizing feature maps. Despite the

success of machine learning, the results do not provide provable guarantees.

185

Chapter 5
Conclusion

This thesis has presented a runtime monitoring approach with a strong focus on safety

and comprehension. The language is syntactically similar to common programming

languages, emphasizing clarity, declarativeness, and modularity over conciseness. The

formal basis and strong type system enables a set of intricate analyses to support

the specifier. Further, they increase confidence in the specification and yield artifacts

providing insights into the specification as well as monitors for it. Two compilers realize

a monitor for a given specification either as a hardware description or Rust code with

verification annotations enabling automatic verification. Apart from the sheermonitoring

task, a specification of a system coupled with test traces thereof enable the construction

of a conservative model of the underlying system.

Recent practical projects and cooperations prove the relevance of RTLola for the

avionic industry. The projects integrated RTLola into autonomous aircraft of the German

Aerospace Center and prototypes of a leading German multicopter manufacturer. Part

of these projects are also discussions with the European Union Aviation Safety Agency.

The goal is to determine concrete criteria for the certification of the monitor, as well

as the impact it has on the certification of the system as a whole. Here, detailed static

information regarding the specification and its monitor are valuable assets since they

boost confidence and comprehension.

The significance of such components is likely to increase in the foreseeable future.

Essentially, a system has a small core of safety-critical, comprehensive components

such as a runtime monitor and a backup controller. This backup controller can be a

low-performance component only capable of carrying out the most basic tasks. Yet, it

does so safely. This safe core enables the deployment of additional high-performance

components such as machine-learned controllers without the need to understand and

test every detail of them. During regular operation, the high-performance controller

is in charge. Only when the monitor detects a problem, it switches over to the safety

controller. As a result, the safety of the overall system is ensured without fully trusting

187

5. Conclusion

the efficient controller. This emphasizes the value of future work in the direction of

comprehensible runtime verification for cyber-physical systems.

5.1. Future Directions

There are three major directions for future work building upon the results of this thesis.

The first and most evident is the continuation of work integrating monitoring systems

like RTLola into real, practical applications. Such work provides crucial feedback for recentPracticality

developments in runtime verification research. It reveals what key characteristics a

monitor needs to bring to reliably support specifiers and to enable the certification of the

system with the help of the monitor. Here, avionics is a suitable target due to its strong

focus on safety. However, the increasing autonomy in the automotive industry also

pushes software safety concerns in the foreground. Many constraints on components

for aircraft translate equally or similarly from avionics to automotive. This also holds

for medical cyber-physical systems, in particular for wearable ones like implanted

pacemakers. While safety plays a major role in stationary devices like radiation therapy

machines, too, they are less affected by resource constraints.

The next direction concerns empirical research broadly regarding the usability ofUsability

runtime monitoring. There are two major interaction points between users and the

system. The following uses RTLola as an example, yet these points can be generalized.

First, the input format. So far, the basis for RTLola is a textual — and thus linear —

specification, which the toolkit interprets literally. However, this is not necessarily

optimal. For example, it is easier to grasp the general structure of a specification based

on the two-dimensional representation of the dependency graph than a raw specification.

Hence, it stands to reason that a similarly graph-inspired visual input format might

improve the user experience of specifiers. The market dominance of Matlab/Simulink

is indicative for this claim. Such an interface can also be interactive, enriching the

specification with additional information for the users, such as the results of specification

analysis steps. A similar feat is widely adopted in integrated development environments

like Microsoft’s Visual Studio Code or JetBrains’ IntelliJ IDEA. Here, a user study could

determine which representation better supports developers in their quest to find logical

errors in a specification.

The second vector for user interaction is the handling of outputs. Textual output in

form of trigger messages and output values is perfectly suited for an interaction with the

system itself. However, this form of communication is lacking when interacting with

a human. An autonomous drone, for example, operates normally without immediate

supervision. Upon detection of a problem, though, it contacts a central hub such that it

can perform a handover to a remote human pilot. Here, it is paramount that the pilot

immediately detects the source of the problem without rummaging through logs in text

format. Hence, the monitor needs to filter and present its own outputs appropriately.

188

5.1. Future Directions

Last, there are plenty of open questions regarding the quality of monitoring itself. One

direction particularly interesting for RTLola is model-based prediction and introspection. Prediction

Here, an RTLola monitor has access to the conservative hybrid automaton. Mapping start

variables of the model to input streams allows the monitor to estimate the continuous

development of these streams. Naturally, the time horizon of predictions needs to be

low since their quality degrades over time. The reason is that the monitor has to predict

the path of the system through the automaton. Any non-determinism in the automaton

thus leads to a drop in accuracy, adding up over time. However, when considering the

asynchronous setting of RTLola, the prediction can serve another purpose. Suppose the

monitor receives inputs from several sensors until one of them ceases to produce values.

It can now predict the current value of the input based on the model. However, rather

than blindly guessing or over-approximating the path through the automaton, it can

base its prediction on the values received from other sensors. This has the potential to

drastically increase the quality of the estimate.

The model also enables introspection regarding security and error estimation. For Introspection

the former suppose a monitor receives regular updates with no apparent anomaly.

Estimating the expected evolution of input streams with respect to the model can reveal

that one or several sensors deliver spurious values. This could indicate malfunction

or a security breach. For the error estimation, consider the following: A monitor

receives regular updates from all available sensors until one of them ceases to produce

values frequently. As a result, sample and hold accesses to the affected stream produce

less valuable information. The model enables the monitor to estimate whether these

computations still yield realistic values, i.e., estimate the error. If the error grows too

large, it should mark them as unreliable when disseminating outputs to the system.

In summary, while this thesis provides a foundation for comprehensible runtime mon-

itoring for cyber-physical systems, the work is far from complete. The aforementioned

topics are but a fraction of open questions and research directions. Further work can

drastically increase applicability and effectiveness of practically relevant monitoring and

thus lead to a safer future.

189

Bibliography

[Ado+17] Florian-Michael Adolf, Peter Faymonville, Bernd Finkbeiner, Sebastian

Schirmer, and Christoph Torens. “Stream Runtime Monitoring on UAS”. In:

Rv 2017. Vol. 10548. Lncs. Springer, 2017, pp. 33–49. doi: 10.1007/978-3-

319-67531-2_3.

[Ado+18] Florian-Michael Adolf, Peter Faymonville, Bernd Finkbeiner, Sebastian

Schirmer, and Christoph Torens. “Stream Runtime Monitoring on UAS”. In:

CoRR abs/1804.04487 (2018). arXiv: 1804.04487. url: http://arxiv.org/

abs/1804.04487.

[APT20] Bernhard K. Aichernig, Andrea Pferscher, and Martin Tappler. “From

Passive to Active: Learning Timed Automata Efficiently”. In: NASA Formal
Methods - 12th International Symposium, NFM 2020, Moffett Field, CA, USA,
May 11-15, 2020, Proceedings. Ed. by Ritchie Lee, Susmit Jha, and Anastasia

Mavridou. Vol. 12229. Lecture Notes in Computer Science. Springer, 2020,

pp. 1–19. doi: 10.1007/978-3-030-55754-6_1.

[Alm+10] José Bacelar Almeida, Endre Bangerter, Manuel Barbosa, Stephan Krenn,

Ahmad-Reza Sadeghi, and Thomas Schneider. “A certifying compiler for

zero-knowledge proofs of knowledge based on σ-protocols”. In: European
Symposium on Research in Computer Security. Springer. 2010, pp. 151–167.

[Alq+18] Sarra Alqahtani, Ian Riley, Samuel Taylor, Rose Gamble, and Roger Mailler.

“MTL Robustness for Path Planning with A”. In: Proceedings of the 17th
International Conference on Autonomous Agents and MultiAgent Systems. 2018,
pp. 247–255.

[AD94] Rajeev Alur and David L. Dill. “A Theory of Timed Automata”. In: Theor.
Comput. Sci. 126.2 (1994), pp. 183–235. doi: 10.1016/0304-3975(94)90010-

8.

191

https://doi.org/10.1007/978-3-319-67531-2_3
https://doi.org/10.1007/978-3-319-67531-2_3
https://arxiv.org/abs/1804.04487
http://arxiv.org/abs/1804.04487
http://arxiv.org/abs/1804.04487
https://doi.org/10.1007/978-3-030-55754-6_1
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/0304-3975(94)90010-8

Bibliography

[An+19] Jie An, Mingshuai Chen, Bohua Zhan, Naĳun Zhan, and Miaomiao Zhang.

“Learning One-Clock Timed Automata”. In: CoRR abs/1910.10680 (2019).

arXiv: 1910.10680. url: http://arxiv.org/abs/1910.10680.

[Ang87] DanaAngluin. “Learning Regular Sets fromQueries andCounterexamples”.

In: Inf. Comput. 75.2 (1987), pp. 87–106. doi: 10.1016/0890-5401(87)90052-

6.

[App01] AndrewW Appel. “Foundational proof-carrying code”. In: Proceedings 16th
Annual IEEE Symposium on Logic in Computer Science. Ieee. 2001, pp. 247–256.

[AF00] Andrew W Appel and Amy P Felty. “A semantic model of types and

machine instructions for proof-carrying code”. In: Proceedings of the 27th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages.
2000, pp. 243–253.

[ACM02] Eugene Asarin, Paul Caspi, and Oded Maler. “Timed regular expressions”.

In: J. Acm 49.2 (2002), pp. 172–206. doi: 10.1145/506147.506151.

[Ast+19] Vytautas Astrauskas, PeterMüller, Federico Poli, andAlexander J. Summers.

“Leveraging Rust Types forModular Specification andVerification”. In: Proc.
ACM Program. Lang. 3.Oopsla (2019), 147:1–147:30. doi: 10.1145/3360573.

[Bar+04] Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen.

“Rule-Based Runtime Verification”. In: Verification, Model Checking, and
Abstract Interpretation, 5th International Conference, VMCAI 2004, Venice, Italy,
January 11-13, 2004, Proceedings. Ed. by Bernhard Steffen and Giorgio Levi.

Vol. 2937. Lecture Notes in Computer Science. Springer, 2004, pp. 44–57.

doi: 10.1007/978-3-540-24622-0_5.

[BRH10] HowardBarringer,DavidE. Rydeheard, andKlausHavelund. “Rule Systems

for Run-time Monitoring: from Eagle to RuleR”. In: J. Log. Comput. 20.3
(2010), pp. 675–706. doi: 10.1093/logcom/exn076.

[BF18] Ezio Bartocci and Yliès Falcone, eds. Lectures on Runtime Verification - Intro-
ductory and Advanced Topics. Vol. 10457. Lecture Notes in Computer Science.

Springer, 2018. isbn: 978-3-319-75631-8. doi: 10.1007/978-3-319-75632-5.

[Bas+20] David A. Basin, Thibault Dardinier, Lukas Heimes, Srdan Krstic, Martin

Raszyk, Joshua Schneider, and Dmitriy Traytel. “A Formally Verified,

Optimized Monitor for Metric First-Order Dynamic Logic”. In: Ijcar 2020.
Ed. by Nicolas Peltier and Viorica Sofronie-Stokkermans. Vol. 12166. Lncs.

Springer, 2020, pp. 432–453. doi: 10.1007/978-3-030-51074-9_25.

[Bas+15] David A. Basin, Felix Klaedtke, Samuel Müller, and Eugen Zalinescu.

“Monitoring Metric First-Order Temporal Properties”. In: J. Acm 62.2 (2015),

15:1–15:45. doi: 10.1145/2699444.

192

https://arxiv.org/abs/1910.10680
http://arxiv.org/abs/1910.10680
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1145/506147.506151
https://doi.org/10.1145/3360573
https://doi.org/10.1007/978-3-540-24622-0_5
https://doi.org/10.1093/logcom/exn076
https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1007/978-3-030-51074-9_25
https://doi.org/10.1145/2699444

Bibliography

[BKT17] David A. Basin, Srdjan Krstic, and Dmitriy Traytel. “AERIAL: Almost Event-

Rate Independent Algorithms for Monitoring Metric Regular Properties”.

In: RV-CuBES 2017. 2017, pp. 29–36.

[BLS07] Andreas Bauer, Martin Leucker, and Christian Schallhart. “The Good, the

Bad, and the Ugly, But How Ugly Is Ugly?” In: Rv 2007. Vol. 4839. Lncs.
Springer, 2007, pp. 126–138. doi: 10.1007/978-3-540-77395-5_11.

[BLS11] Andreas Bauer, Martin Leucker, and Christian Schallhart. “Runtime Verifi-

cation for LTL and TLTL”. In: ACM Trans. Softw. Eng. Methodol. 20.4 (2011),
14:1–14:64. doi: 10.1145/2000799.2000800.

[Bau20] Jan Baumeister. “Tracing Correctness: A Practical Approach to Traceable

Runtime Monitoring”. Master Thesis. Saarland University, 2020.

[Bau+21] Jan Baumeister, Bernd Finkbeiner, Matthis Kruse, Stefan Oswald, Noemi

Passing, and Maximilian Schwenger. Automatic Optimizations for Runtime
Verification Specifications. 2021. url: https://www.react.uni-saarland.

de/publications/BFKOPS21.pdf.

[Bau+20a] Jan Baumeister, Bernd Finkbeiner, Sebastian Schirmer, Maximilian Schwe-

nger, and Christoph Torens. “RTLola Cleared for Take-Off: Monitoring

Autonomous Aircraft”. In: Computer Aided Verification - 32nd International
Conference, CAV 2020, Los Angeles, CA, USA, July 21-24, 2020, Proceedings,
Part II. Ed. by Shuvendu K. Lahiri and Chao Wang. Vol. 12225. Lecture

Notes in Computer Science. Springer, 2020, pp. 28–39. doi: 10.1007/978-3-

030-53291-8_3.

[Bau+19a] Jan Baumeister, Bernd Finkbeiner, Maximilian Schwenger, and Hazem

Torfah. “FPGA Stream-Monitoring of Real-time Properties”. In: ACM Trans.
Embedded Comput. Syst. 18.5s (2019), 88:1–88:24. doi: 10.1145/3358220.

[Bau+19b] Jan Baumeister, Bernd Finkbeiner, Maximilian Schwenger, and Hazem

Torfah.On the Similarities of Aircraft and Humans: Monitoring CPS with Stream-
LAB. 2019. url: https://www.react.uni-saarland.de/publications/

cybercardia19.pdf.

[Bau+20b] Jan Baumeister, Florian Kohn, Stefan Oswald, Malte Schledjewski, Maximil-

ian Schwenger, and Leander Tentrup. RTLola Frontend. https://docs.rs/
rtlola-frontend/. Accessed: 06.01.2022. 2020.

[BBC18] BBC.Audi chief Rupert Stadler arrested in diesel emissions probe. Online; accessed:

2020-10-15. 2018. url: https://www.bbc.com/news/business-44517753.

[Ber16] Gerard Berry. “Formally Unifying Modeling and Design for Embedded

Systems - A Personal View”. In: Leveraging Applications of Formal Methods,
Verification and Validation: Discussion, Dissemination, Applications - 7th Inter-
national Symposium, ISoLA 2016, Imperial, Corfu, Greece, October 10-14, 2016,

193

https://doi.org/10.1007/978-3-540-77395-5_11
https://doi.org/10.1145/2000799.2000800
https://www.react.uni-saarland.de/publications/BFKOPS21.pdf
https://www.react.uni-saarland.de/publications/BFKOPS21.pdf
https://doi.org/10.1007/978-3-030-53291-8_3
https://doi.org/10.1007/978-3-030-53291-8_3
https://doi.org/10.1145/3358220
https://www.react.uni-saarland.de/publications/cybercardia19.pdf
https://www.react.uni-saarland.de/publications/cybercardia19.pdf
https://docs.rs/rtlola-frontend/
https://docs.rs/rtlola-frontend/
https://www.bbc.com/news/business-44517753

Bibliography

Proceedings, Part II. 2016, pp. 134–149. doi: 10.1007/978-3-319-47169-

3_11.

[BG92] Gérard Berry and Georges Gonthier. “The Esterel Synchronous Program-

ming Language: Design, Semantics, Implementation”. In: Sci. Comput.
Program. 19.2 (1992), pp. 87–152. doi: 10.1016/0167-6423(92)90005-v.

[BJP06] Frédéric Besson, Thomas P. Jensen, and David Pichardie. “Proof-Carrying

Code from Certified Abstract Interpretation and Fixpoint Compression”.

In: Theor. Comput. Sci. 364.3 (2006), pp. 273–291. doi: 10.1016/j.tcs.2006.

08.012.

[Bie+21] Sebastian Biewer, Bernd Finkbeiner, Holger Hermanns, Maximilian A. Köhl,

Yannik Schnitzer, and Maximilian Schwenger. “RTLola on Board: Testing

Real Driving Emissions on your Phone”. In: Tools and Algorithms for the
Construction and Analysis of Systems - 27th International Conference, TACAS
2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021, Proceedings, Part
II. Ed. by Jan Friso Groote and Kim Guldstrand Larsen. Vol. 12652. Lecture

Notes in Computer Science. Springer, 2021, pp. 365–372. doi: 10.1007/978-

3-030-72013-1_20.

[BN17] Alexander von Birgelen and Oliver Niggemann. “Using self-organizing

maps to learn hybrid timed automata in absence of discrete events”. In: 22nd
IEEE International Conference on Emerging Technologies and Factory Automation,
ETFA 2017, Limassol, Cyprus, September 12-15, 2017. Ieee, 2017, pp. 1–8. doi:

10.1109/etfa.2017.8247695.

[bm15] bluss and mitchmindtree. Petgraph: Graph Data Structure Library. https:
//github.com/petgraph/petgraph. Accessed: 06.01.2022. 2015.

[Boh+18] Brandon Bohrer, Yong Kiam Tan, Stefan Mitsch, Magnus O. Myreen, and

André Platzer. “VeriPhy: verified controller executables from verified cyber-

physical system models”. In: Pldi 2018. Ed. by Jeffrey S. Foster and Dan

Grossman. Acm, 2018, pp. 617–630. doi: 10.1145/3192366.3192406.

[BZ08] Marc Boule and Zeljko Zilic. “Automata-based assertion-checker synthesis

of PSL properties”. In: ACM Trans. Design Autom. Electr. Syst. 13.1 (2008),

4:1–4:21. doi: 10.1145/1297666.1297670.

[Bou+17] Timothy Bourke, Lélio Brun, Pierre-Évariste Dagand, Xavier Leroy, Marc

Pouzet, and Lionel Rieg. “A formally verified compiler for Lustre”. In: Pldi
2017. Ed. by Albert Cohen and Martin T. Vechev. Acm, 2017, pp. 586–601.

doi: 10.1145/3062341.3062358.

194

https://doi.org/10.1007/978-3-319-47169-3_11
https://doi.org/10.1007/978-3-319-47169-3_11
https://doi.org/10.1016/0167-6423(92)90005-v
https://doi.org/10.1016/j.tcs.2006.08.012
https://doi.org/10.1016/j.tcs.2006.08.012
https://doi.org/10.1007/978-3-030-72013-1_20
https://doi.org/10.1007/978-3-030-72013-1_20
https://doi.org/10.1109/etfa.2017.8247695
https://github.com/petgraph/petgraph
https://github.com/petgraph/petgraph
https://doi.org/10.1145/3192366.3192406
https://doi.org/10.1145/1297666.1297670
https://doi.org/10.1145/3062341.3062358

Bibliography

[BPB16] Valentina Breschi, Dario Piga, and Alberto Bemporad. “Learning hybrid

models with logical and continuous dynamics via multiclass linear separa-

tion”. In: 55th IEEE Conference on Decision and Control, CDC 2016, Las Vegas,
NV, USA, December 12-14, 2016. Ieee, 2016, pp. 353–358. doi: 10.1109/cdc.

2016.7798294.

[Bro19] Graham Brooker. “Chapter Eleven - The Artificial Pancreas”. In:Handbook of
Biomechatronics. Ed. by Jacob Segil. Academic Press, 2019, pp. 405–456. isbn:

978-0-12-812539-7. doi: https://doi.org/10.1016/B978-0-12-812539-

7.00015-5.

[CGS20] Martín Ceresa, Felipe Gorostiaga, and César Sánchez. “Declarative Stream

Runtime Verification (hLola)”. In: Programming Languages and Systems - 18th
Asian Symposium, APLAS 2020, Fukuoka, Japan, November 30 - December 2,
2020, Proceedings. Ed. by Bruno C. d. S. Oliveira. Vol. 12470. Lecture Notes

in Computer Science. Springer, 2020, pp. 25–43. doi: 10.1007/978-3-030-

64437-6_2.

[CM20] Agnishom Chattopadhyay and Konstantinos Mamouras. “A Verified On-

line Monitor for Metric Temporal Logic with Quantitative Semantics”. In:

Runtime Verification - 20th International Conference, RV 2020, Los Angeles, CA,
USA, October 6-9, 2020, Proceedings. Ed. by Jyotirmoy Deshmukh and Dejan

Nickovic. Vol. 12399. Lecture Notes in Computer Science. Springer, 2020,

pp. 383–403. doi: 10.1007/978-3-030-60508-7_21.

[Che+07] Yiyun Chen, Lin Ge, Baojian Hua, Zhaopeng Li, Cheng Liu, and Zhifang

Wang. “A pointer logic and certifying compiler”. In: Frontiers of Computer
Science in China 1.3 (2007), pp. 297–312.

[Cho95] Jan Chomicki. “Efficient Checking of Temporal Integrity Constraints Using

Bounded History Encoding”. In: ACM Trans. Database Syst. 20.2 (1995),

pp. 149–186. doi: 10.1145/210197.210200.

[CKL04] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. “A Tool for Check-

ing ANSI-C Programs”. In: Tacas 2004. Vol. 2988. Lncs. Springer, 2004,
pp. 168–176. doi: 10.1007/978-3-540-24730-2_15.

[CLN00] Christopher Colby, Peter Lee, and George C. Necula. “A Proof-Carrying

Code Architecture for Java”. In: Cav 2000. Vol. 1855. Lncs. Springer, 2000,
pp. 557–560. doi: 10.1007/10722167_44.

[Col+00] Christopher Colby, Peter Lee, George C. Necula, Fred Blau, Mark Plesko,

and Kenneth Cline. “A Certifying Compiler for Java”. In: Pldi 2000. Acm,

2000, pp. 95–107. doi: 10.1145/349299.349315.

195

https://doi.org/10.1109/cdc.2016.7798294
https://doi.org/10.1109/cdc.2016.7798294
https://doi.org/https://doi.org/10.1016/B978-0-12-812539-7.00015-5
https://doi.org/https://doi.org/10.1016/B978-0-12-812539-7.00015-5
https://doi.org/10.1007/978-3-030-64437-6_2
https://doi.org/10.1007/978-3-030-64437-6_2
https://doi.org/10.1007/978-3-030-60508-7_21
https://doi.org/10.1145/210197.210200
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/10722167_44
https://doi.org/10.1145/349299.349315

Bibliography

[Con+18a] Lukas Convent, Sebastian Hungerecker, Martin Leucker, Torben Schef-

fel, Malte Schmitz, and Daniel Thoma. “TeSSLa: Temporal Stream-Based

Specification Language”. In: Sbmf 2018. Vol. 11254. Lncs. Springer, 2018,
pp. 144–162. doi: 10.1007/978-3-030-03044-5_10.

[Con+18b] Lukas Convent, Sebastian Hungerecker, Torben Scheffel, Malte Schmitz,

Daniel Thoma, and Alexander Weiss. “Hardware-Based Runtime Verifica-

tion with Embedded Tracing Units and Stream Processing”. In: Runtime
Verification - 18th International Conference, RV 2018, Limassol, Cyprus, November
10-13, 2018, Proceedings. 2018, pp. 43–63. doi: 10.1007/978-3-030-03769-

7_5.

[DAn+05] Ben D’Angelo, Sriram Sankaranarayanan, César Sánchez, Will Robinson,

Bernd Finkbeiner, Henny B. Sipma, Sandeep Mehrotra, and Zohar Manna.

“Lola: RuntimeMonitoring of Synchronous Systems”. In: Time 2005. Burling-
ton, Vermont: IEEE Computer Society Press, June 2005, pp. 166–174.

[Dah+05] Anat Dahan, Daniel Geist, Leonid Gluhovsky, Dmitry Pidan, Gil Shapir,

Yaron Wolfsthal, Lyes Benalycherif, Romain Kamdem, and Younes Lahbib.

“Combining System Level Modeling with Assertion Based Verification”.

In: 6th International Symposium on Quality of Electronic Design (ISQED 2005),
21-23 March 2005, San Jose, CA, USA. 2005, pp. 310–315. doi: 10.1109/isqed.

2005.32.

[Dam84] Luis Damas. “Type assignment in programming languages”. PhD Thesis.

1984.

[DFS21] Johann C Dauer, Bernd Finkbeiner, and Sebastian Schirmer. “Monitoring

with Verified Guarantees”. In: International Conference on Runtime Verification.
Springer. 2021, pp. 62–80.

[Des+17] Jyotirmoy V. Deshmukh, Alexandre Donzé, Shromona Ghosh, Xiaoqing Jin,

Garvit Juniwal, and Sanjit A. Seshia. “Robust online monitoring of signal

temporal logic”. In: Formal Methods in System Design 51.1 (2017), pp. 5–30.

doi: 10.1007/s10703-017-0286-7.

[Din06] Din. Bahnanwendungen. Din 60880. Berlin, Germany: Deutsches Institut für

Normung, 2006.

[DFM13a] Alexandre Donzé, Thomas Ferrere, and Oded Maler. “Efficient robust

monitoring for STL”. In: International Conference onComputerAidedVerification.
Springer. 2013, pp. 264–279.

[DFM13b] Alexandre Donzé, Thomas Ferrère, and Oded Maler. “Efficient Robust

Monitoring for STL”. In: Cav 2013. Vol. 8044. Lncs. Springer, 2013, pp. 264–
279. doi: 10.1007/978-3-642-39799-8_19.

196

https://doi.org/10.1007/978-3-030-03044-5_10
https://doi.org/10.1007/978-3-030-03769-7_5
https://doi.org/10.1007/978-3-030-03769-7_5
https://doi.org/10.1109/isqed.2005.32
https://doi.org/10.1109/isqed.2005.32
https://doi.org/10.1007/s10703-017-0286-7
https://doi.org/10.1007/978-3-642-39799-8_19

Bibliography

[DM10] Alexandre Donzé and Oded Maler. “Robust satisfaction of temporal logic

over real-valued signals”. In: International Conference on Formal Modeling and
Analysis of Timed Systems. Springer. 2010, pp. 92–106.

[Dru00] Doron Drusinsky. “The Temporal Rover and the ATG Rover”. In: SPIN
Model Checking and Software Verification. 2000, pp. 323–330. doi: 10.1007/

10722468_19.

[Dru03] Doron Drusinsky. “Monitoring Temporal Rules Combined with Time

Series”. In: Computer Aided Verification, 15th International Conference, CAV
2003, Boulder, CO, USA, July 8-12, 2003, Proceedings. Ed. byWarren A. Hunt Jr.

and Fabio Somenzi. Vol. 2725. Lecture Notes in Computer Science. Springer,

2003, pp. 114–117. doi: 10.1007/978-3-540-45069-6_11.

[Eis+03] Cindy Eisner, Dana Fisman, John Havlicek, Yoad Lustig, Anthony McIsaac,

andDavidVanCampenhout. “Reasoningwith Temporal Logic on Truncated

Paths”. In: Computer Aided Verification, 15th International Conference, CAV
2003, Boulder, CO, USA, July 8-12, 2003, Proceedings. Ed. byWarren A. Hunt Jr.

and Fabio Somenzi. Vol. 2725. Lecture Notes in Computer Science. Springer,

2003, pp. 27–39. doi: 10.1007/978-3-540-45069-6_3.

[FP06] Georgios E Fainekos and George J Pappas. “Robustness of temporal logic

specifications”. In: Formal Approaches to Software Testing and Runtime Verifica-
tion. Springer, 2006, pp. 178–192.

[FP09] Georgios E Fainekos and George J Pappas. “Robustness of temporal logic

specifications for continuous-time signals”. In: Theoretical Computer Science
410.42 (2009), pp. 4262–4291.

[Fay19] Peter Faymonville. “Monitoring with Parameters”. PhD Thesis. Saarland

University, 2019.

[Fay+16] Peter Faymonville, Bernd Finkbeiner, Sebastian Schirmer, and Hazem

Torfah. “A Stream-Based Specification Language for Network Monitoring”.

In: Runtime Verification - 16th International Conference, RV 2016, Madrid, Spain,
September 23-30, 2016, Proceedings. Ed. by Yliès Falcone and César Sánchez.

Vol. 10012. Lecture Notes in Computer Science. Springer, 2016, pp. 152–168.

doi: 10.1007/978-3-319-46982-9_10.

[Fay+19a] Peter Faymonville, Bernd Finkbeiner, Malte Schledjewski, Maximilian

Schwenger, Marvin Stenger, Leander Tentrup, and Hazem Torfah. “Stream-

LAB: Stream-based Monitoring of Cyber-Physical Systems”. In: Computer
Aided Verification - 31st International Conference, CAV 2019, New York City, NY,
USA, July 15-18, 2019, Proceedings, Part I. Ed. by Isil Dillig and Serdar Tasiran.

Vol. 11561. Lecture Notes in Computer Science. Springer, 2019, pp. 421–431.

doi: 10.1007/978-3-030-25540-4_24.

197

https://doi.org/10.1007/10722468_19
https://doi.org/10.1007/10722468_19
https://doi.org/10.1007/978-3-540-45069-6_11
https://doi.org/10.1007/978-3-540-45069-6_3
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-030-25540-4_24

Bibliography

[Fay+19b] Peter Faymonville, Bernd Finkbeiner, Malte Schledjewski, Maximilian

Schwenger, Leander Tentrup, and Hazem Torfah. Real-time Stream Moni-
toring with StreamLAB. 2019. url: https://www.react.uni-saarland.de/

publications/FFS+19a.pdf.

[Fay+17] Peter Faymonville, Bernd Finkbeiner, Maximilian Schwenger, and Hazem

Torfah. “Real-time Stream-based Monitoring”. In: CoRR abs/1711.03829

(2017). arXiv: 1711.03829. url: http://arxiv.org/abs/1711.03829.

[Fin+21] Bernd Finkbeiner, Andreas Keller, Jessica Schmidt, and Maximilian

Schwenger. “Robust Monitoring for Medical Cyber-Physical Systems”.

In: Proceedings of the Workshop on Medical Cyber Physical Systems and
Internet of Medical Things. Mcps ’21. Nashville, Tennessee: Association

for Computing Machinery, 2021, pp. 17–22. isbn: 9781450383271. doi:

10.1145/3446913.3460318.

[FK09] Bernd Finkbeiner and Lars Kuhtz. “Monitor Circuits for LTL with Bounded

and Unbounded Future”. In: Runtime Verification, 9th International Workshop,
RV 2009, Grenoble, France, June 26-28, 2009. Selected Papers. 2009, pp. 60–75.
doi: 10.1007/978-3-642-04694-0_5.

[Fin+20] Bernd Finkbeiner, Stefan Oswald, Noemi Passing, and Maximilian Schwe-

nger. “VerifiedRustMonitors for Lola Specifications”. In:RuntimeVerification
- 20th International Conference, RV 2020, Los Angeles, CA, USA, October 6-
9, 2020, Proceedings. Ed. by Jyotirmoy Deshmukh and Dejan Nickovic.

Vol. 12399. Lecture Notes in Computer Science. Springer, 2020, pp. 431–450.

doi: 10.1007/978-3-030-60508-7_24.

[FSS20] Bernd Finkbeiner, Jessica Schmidt, and Maximilian Schwenger. Simplex
Architecture Meets RTLola. 2020. url: https://www.react.uni-saarland.

de/publications/FSS20.pdf.

[FS04] Bernd Finkbeiner and Henny Sipma. “Checking Finite Traces Using Alter-

nating Automata”. In: Formal Methods in System Design 24.2 (2004), pp. 101–

127. doi: 10.1023/b:form.0000017718.28096.48.

[For04] Bryan Ford. “Parsing expression grammars: a recognition-based syntactic

foundation”. In: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2004, Venice, Italy, January
14-16, 2004. Ed. by Neil D. Jones and Xavier Leroy. Acm, 2004, pp. 111–122.

doi: 10.1145/964001.964011.

[Ful+15] Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus Völp, and André

Platzer. “KeYmaera X: An Axiomatic Tactical Theorem Prover for Hybrid

Systems”. In: Automated Deduction - CADE-25 - 25th International Conference
on Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings. Ed. by
Amy P. Felty and Aart Middeldorp. Vol. 9195. Lecture Notes in Computer

198

https://www.react.uni-saarland.de/publications/FFS+19a.pdf
https://www.react.uni-saarland.de/publications/FFS+19a.pdf
https://arxiv.org/abs/1711.03829
http://arxiv.org/abs/1711.03829
https://doi.org/10.1145/3446913.3460318
https://doi.org/10.1007/978-3-642-04694-0_5
https://doi.org/10.1007/978-3-030-60508-7_24
https://www.react.uni-saarland.de/publications/FSS20.pdf
https://www.react.uni-saarland.de/publications/FSS20.pdf
https://doi.org/10.1023/b:form.0000017718.28096.48
https://doi.org/10.1145/964001.964011

Bibliography

Science. Springer, 2015, pp. 527–538. doi: 10.1007/978-3-319-21401-

6_36.

[GF64] Bernard A. Galler and Michael J. Fischer. “An improved equivalence algo-

rithm”. In: Commun. ACM 7.5 (1964), pp. 301–303. doi: 10.1145/364099.

364331.

[Gam+95] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, and Design

Patterns. Elements of reusable object-oriented software. Vol. 99. Addison-Wesley

Reading, Massachusetts, 1995.

[GS18] Felipe Gorostiaga and César Sánchez. “Striver: Stream Runtime Verification

for Real-Time Event-Streams”. In: Rv 2018. Vol. 11237. Lncs. Springer, 2018,
pp. 282–298. doi: 10.1007/978-3-030-03769-7_16.

[GS21] Felipe Gorostiaga and César Sánchez. “HLola: a Very Functional Tool for

Extensible Stream Runtime Verification”. In: Tools and Algorithms for the
Construction and Analysis of Systems - 27th International Conference, TACAS
2021, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021,
Proceedings, Part II. Ed. by Jan Friso Groote and Kim Guldstrand Larsen.

Vol. 12652. Lecture Notes in Computer Science. Springer, 2021, pp. 349–356.

doi: 10.1007/978-3-030-72013-1_18.

[GJL04] Olga Grinchtein, Bengt Jonsson, and Martin Leucker. “Learning of Event-

Recording Automata”. In: Formal Techniques, Modelling and Analysis of Timed
and Fault-Tolerant Systems, Joint International Conferences on Formal Modelling
and Analysis of Timed Systems, FORMATS 2004 and Formal Techniques in Real-
Time and Fault-Tolerant Systems, FTRTFT 2004, Grenoble, France, September 22-
24, 2004, Proceedings. Ed. by Yassine Lakhnech and Sergio Yovine. Vol. 3253.

Lecture Notes in Computer Science. Springer, 2004, pp. 379–396. doi: 10.

1007/978-3-540-30206-3_26.

[Hal+91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. “The synchronous

dataflow programming language LUSTRE”. In: Proceedings of the IEEE. 1991,
pp. 1305–1320.

[Hal05] Nicolas Halbwachs. “A synchronous language at work: the story of Lustre”.

In: 3rd ACM & IEEE International Conference on Formal Methods and Models
for Co-Design (MEMOCODE 2005), 11-14 July 2005, Verona, Italy, Proceedings.
2005, pp. 3–11. doi: 10.1109/memcod.2005.1487884.

[HJ08] Kevin W Hamlen and Micah Jones. “Aspect-oriented in-lined reference

monitors”. In:Proceedings of the thirdACMSIGPLANworkshop onProgramming
languages and analysis for security. 2008, pp. 11–20.

199

https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1145/364099.364331
https://doi.org/10.1145/364099.364331
https://doi.org/10.1007/978-3-030-03769-7_16
https://doi.org/10.1007/978-3-030-72013-1_18
https://doi.org/10.1007/978-3-540-30206-3_26
https://doi.org/10.1007/978-3-540-30206-3_26
https://doi.org/10.1109/memcod.2005.1487884

Bibliography

[HG05] Klaus Havelund and Allen Goldberg. “Verify Your Runs”. In: Verified
Software: Theories, Tools, Experiments, First IFIP TC 2/WG 2.3 Conference,
VSTTE 2005, Zurich, Switzerland, October 10-13, 2005, Revised Selected Papers
andDiscussions. Ed. by BertrandMeyer and JimWoodcock. Vol. 4171. Lecture

Notes in Computer Science. Springer, 2005, pp. 374–383. doi: 10.1007/978-

3-540-69149-5_40.

[HR02] Klaus Havelund and Grigore Rosu. “Synthesizing Monitors for Safety

Properties”. In: Tacas 2002. 2002, pp. 342–356. doi: 10.1007/3-540-46002-

0_24.

[HV08] Klaus Havelund and Eric Van Wyk. “Aspect-oriented monitoring of C

programs”. In: (2008).

[Hen96] Thomas A. Henzinger. “The Theory of Hybrid Automata”. In: Proceedings,
11th Annual IEEE Symposium on Logic in Computer Science, New Brunswick,
New Jersey, USA, July 27-30, 1996. IEEE Computer Society, 1996, pp. 278–292.

doi: 10.1109/lics.1996.561342.

[Her+05] Manuel V. Hermenegildo, Elvira Albert, Pedro López-García, and Germán

Puebla. “Abstraction-Carrying Code and Resource-Awareness”. In: Ppdp
2005. Acm, 2005, pp. 1–11. doi: 10.1145/1069774.1069775.

[Hin69] Roger Hindley. “The principal type-scheme of an object in combinatory

logic”. In: Transactions of the american mathematical society 146 (1969), pp. 29–

60.

[Hoa03] C. A. R. Hoare. “The verifying compiler: A grand challenge for computing

research”. In: J. Acm 50.1 (2003), pp. 63–69. doi: 10.1145/602382.602403.

[Iec06] Iec. Nuclear Power Plants. Iec 60880. Geneva, Switzerland: International

Electrotechnical Commission, 2006.

[Iec10] Iec. Functional Safety of Electrical/Electronic/Programmable Electronic Safety-
related Systems. Iec 61508.Geneva, Switzerland: International Electrotechnical

Commission, 2010.

[Iec12] Iec.Medical device software — Software life cycle processes. Iec 62304. Geneva,

Switzerland: International Electrotechnical Commission, 2012.

[05] “IEEE Standard for Property Specification Language (PSL)”. In: IEEE Std
1850-2005 (2005), pp. 1–143. doi: 10.1109/ieeestd.2005.97780.

[Iso18] Iso. Road Vehicles – Functional Safety. Iso 26262 – 1:2018. Geneva, Switzerland:

International Organization for Standardization, 2018.

[II10] Iso and Iec. Programming languages – C. ISO/IEC Committee Draft 9899:201x.

Accessed: 02.02.2022. Geneva, Switzerland: International Organization for

Standardization / International Electrotechnical Commission, 2010. url:

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1539.pdf.

200

https://doi.org/10.1007/978-3-540-69149-5_40
https://doi.org/10.1007/978-3-540-69149-5_40
https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1109/lics.1996.561342
https://doi.org/10.1145/1069774.1069775
https://doi.org/10.1145/602382.602403
https://doi.org/10.1109/ieeestd.2005.97780
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1539.pdf

Bibliography

[Jak+15] Stefan Jaksic, Ezio Bartocci, Radu Grosu, Reinhard Kloibhofer, Thang

Nguyen, and Dejan Nickovic. “From signal temporal logic to FPGA mon-

itors”. In: Memocode 2015. 2015, pp. 218–227. doi: 10.1109/memcod.2015.

7340489.

[Jak+18] Stefan Jakšić, Ezio Bartocci, RaduGrosu, ThangNguyen, andDejanNičković.

“Quantitative monitoring of STL with edit distance”. In: Formal methods in
system design 53.1 (2018), pp. 83–112.

[Kah62] Arthur B. Kahn. “Topological sorting of large networks”. In: Commun. ACM
5.11 (1962), pp. 558–562. doi: 10.1145/368996.369025.

[Kic+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina

Videira Lopes, Jean-Marc Loingtier, and John Irwin. “Aspect-Oriented

Programming”. In: ECOOP’97 - Object-Oriented Programming, 11th European
Conference, Jyväskylä, Finland, June 9-13, 1997, Proceedings. Ed. by Mehmet

Aksit and Satoshi Matsuoka. Vol. 1241. Lecture Notes in Computer Science.

Springer, 1997, pp. 220–242. doi: 10.1007/BFb0053381.

[Kim+99] Moonjoo Kim, Mahesh Viswanathan, Hanêne Ben-Abdallah, Sampath

Kannan, Insup Lee, and Oleg Sokolsky. “Formally specified monitoring

of temporal properties”. In: 11th Euromicro Conference on Real-Time Systems
(ECRTS 1999), 9-11 June 1999, York, England, UK, Proceedings. IEEE Computer

Society, 1999, pp. 114–122. doi: 10.1109/emrts.1999.777457.

[LBG18] Imane Lamrani, Ayan Banerjee, and Sandeep K. S. Gupta. “HyMn: Mining

linear hybrid automata from input output traces of cyber-physical systems”.

In: IEEE Industrial Cyber-Physical Systems, ICPS 2018, Saint Petersburg, Russia,
May 15-18, 2018. Ieee, 2018, pp. 264–269. doi: 10.1109/icphys.2018.

8387670.

[Lee+17] Gilwoo Lee, Zita Marinho, Aaron M. Johnson, Geoffrey J. Gordon, Sid-

dhartha S. Srinivasa, and Matthew T. Mason. “Unsupervised Learning for

Nonlinear PieceWise Smooth Hybrid Systems”. In: CoRR abs/1710.00440

(2017). arXiv: 1710.00440. url: http://arxiv.org/abs/1710.00440.

[Lee+99] Insup Lee, Sampath Kannan, Moonjoo Kim, Oleg Sokolsky, and Mahesh

Viswanathan. “Runtime Assurance Based On Formal Specifications”. In:

Pdpta 1999. 1999, pp. 279–287.
[Leu+18] Martin Leucker, César Sánchez, Torben Scheffel, Malte Schmitz, and Alexan-

der Schramm. “TeSSLa: runtime verification of non-synchronized real-time

streams”. In: Proceedings of the 33rd Annual ACM Symposium on Applied
Computing. 2018, pp. 1925–1933.

[LS09] Martin Leucker and Christian Schallhart. “A brief account of runtime

verification”. In: J. Log. Algebraic Methods Program. 78.5 (2009), pp. 293–303.
doi: 10.1016/j.jlap.2008.08.004.

201

https://doi.org/10.1109/memcod.2015.7340489
https://doi.org/10.1109/memcod.2015.7340489
https://doi.org/10.1145/368996.369025
https://doi.org/10.1007/BFb0053381
https://doi.org/10.1109/emrts.1999.777457
https://doi.org/10.1109/icphys.2018.8387670
https://doi.org/10.1109/icphys.2018.8387670
https://arxiv.org/abs/1710.00440
http://arxiv.org/abs/1710.00440
https://doi.org/10.1016/j.jlap.2008.08.004

Bibliography

[Li+05] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A. Tucker.

“No pane, no gain: efficient evaluation of sliding-window aggregates over

data streams”. In: SIGMOD Rec. 34.1 (2005), pp. 39–44. doi: 10.1145/

1058150.1058158.

[LC96] YaminLi andWanmingChu. “ANewNon-Restoring SquareRootAlgorithm

and its VLSI Implementation”. In: 1996 International Conference on Computer
Design (ICCD ’96), VLSI in Computers and Processors, October 7-9, 1996, Austin,
TX, USA, Proceedings. 1996, pp. 538–544. doi: 10.1109/iccd.1996.563604.

[Li+10] Zhaopeng Li, Zhong Zhuang, Yiyun Chen, Simin Yang, Zhenting Zhang,

and Dawei Fan. “A certifying compiler for Clike subset of C language”.

In: 2010 4th IEEE International Symposium on Theoretical Aspects of Software
Engineering. Ieee. 2010, pp. 47–56.

[LF07] Hong Lu and Alessandro Forin. The Design and Implementation of P2V, An
Architecture for Zero-Overhead Online Verification of Software Programs. Tech.
rep. Msr-tr-2007-99. Aug. 2007, p. 12. url: https://www.microsoft.com/

en-us/research/publication/the-design-and-implementation-of-

p2v-an-architecture-for-zero-overhead-online-verification-of-

software-programs/.

[MN04] Oded Maler and Dejan Nickovic. “Monitoring Temporal Properties of

Continuous Signals”. In: Formal Techniques, Modelling and Analysis of Timed
and Fault-Tolerant Systems, Joint International Conferences on Formal Modelling
and Analysis of Timed Systems, FORMATS 2004 and Formal Techniques in Real-
Time and Fault-Tolerant Systems, FTRTFT 2004, Grenoble, France, September 22-
24, 2004, Proceedings. Ed. by Yassine Lakhnech and Sergio Yovine. Vol. 3253.

Lecture Notes in Computer Science. Springer, 2004, pp. 152–166. doi: 10.

1007/978-3-540-30206-3_12.

[Mal17] Marcel Maltry. “FPGA-based Monitoring for Stream Specification Lan-

guages”. MA thesis. Saarland University, 2017.

[Mas+20] Corto Mascle, Daniel Neider, Maximilian Schwenger, Paulo Tabuada,

Alexander Weinert, and Martin Zimmermann. “From LTL to rLTL Moni-

toring: Improved Monitorability through Robust Semantics”. In: Hscc 2020.
Acm, 2020, 7:1–7:12. doi: 10.1145/3365365.3382197.

[Mat70] Yuri V.Matĳasevic. “Enumerable Sets areDiophantine”. In: SovietMath. Dokl.
11 (1970), pp. 354–358. url: https://ci.nii.ac.jp/naid/10009422455/

en/.

[Med+15] Ramy Medhat, S. Ramesh, Borzoo Bonakdarpour, and Sebastian Fischmeis-

ter. “A framework for mining hybrid automata from input/output traces”.

In: 2015 International Conference on Embedded Software, EMSOFT 2015, Amster-

202

https://doi.org/10.1145/1058150.1058158
https://doi.org/10.1145/1058150.1058158
https://doi.org/10.1109/iccd.1996.563604
https://www.microsoft.com/en-us/research/publication/the-design-and-implementation-of-p2v-an-architecture-for-zero-overhead-online-verification-of-software-programs/
https://www.microsoft.com/en-us/research/publication/the-design-and-implementation-of-p2v-an-architecture-for-zero-overhead-online-verification-of-software-programs/
https://www.microsoft.com/en-us/research/publication/the-design-and-implementation-of-p2v-an-architecture-for-zero-overhead-online-verification-of-software-programs/
https://www.microsoft.com/en-us/research/publication/the-design-and-implementation-of-p2v-an-architecture-for-zero-overhead-online-verification-of-software-programs/
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1145/3365365.3382197
https://ci.nii.ac.jp/naid/10009422455/en/
https://ci.nii.ac.jp/naid/10009422455/en/

Bibliography

dam, Netherlands, October 4-9, 2015. 2015, pp. 177–186. doi: 10.1109/emsoft.

2015.7318273.

[Mee86] LambertMeertens. “Algorithmics : towards programming as amathematical

activity”. In: Towards programming as a mathematical activity. Mathematics and
computer science. Jan. 1986, pp. 289–334.

[Men27] Karl Menger. “Zur allgemeinen Kurventheorie”. ger. In: Fundamenta Mathe-
maticae 10.1 (1927), pp. 96–115. url: http://eudml.org/doc/211191.

[MSS21] Niklas Metzger, Sanny Schmitt, and Maximilian Schwenger. “Conservative

Hybrid Automata from Development Artifacts”. In: CoRR abs/2111.05613

(2021). arXiv: 2111.05613. url: https://arxiv.org/abs/2111.05613.

[Mil78] Robin Milner. “A Theory of Type Polymorphism in Programming”. In: J.
Comput. Syst. Sci. 17.3 (1978), pp. 348–375. doi: 10.1016/0022-0000(78)

90014-4.

[MP16] Stefan Mitsch and André Platzer. “ModelPlex: verified runtime validation

of verified cyber-physical system models”. In: Formal Methods Syst. Des.
49.1-2 (2016), pp. 33–74. doi: 10.1007/s10703-016-0241-z.

[MRS17] PatrickMoosbrugger, Kristin Y. Rozier, and Johann Schumann. “R2U2:Mon-

itoring and Diagnosis of Security Threats for Unmanned Aerial Systems”.

In: Formal Methods Syst. Des. 51.1 (2017), pp. 31–61. doi: 10.1007/s10703-

017-0275-x.

[MDM16] Nick Moss, Kei Davis, and Patrick McCormick. “The ARES high-level

intermediate representation”. In: 2016 Third Workshop on the LLVM Compiler
Infrastructure in HPC (LLVM-HPC). Ieee. 2016, pp. 32–39.

[MB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT

Solver”. In: Tacas 2008. Vol. 4963. Lncs. Springer, 2008, pp. 337–340. doi:

10.1007/978-3-540-78800-3_24.

[MSS16] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. “Viper: A

Verification Infrastructure for Permission-Based Reasoning”. In: Vmcai 2016.
Vol. 9583. Lncs. Springer, 2016, pp. 41–62. doi: 10.1007/978-3-662-49122-

5_2.

[Nas20] Nasa. Software Assurance and Software Safety Standard. Standard. NASA, 2020.

[Nec02] George C Necula. “Proof-carrying code. design and implementation”. In:

Proof and system-reliability. Springer, 2002, pp. 261–288.

[Nec97] George C. Necula. “Proof-Carrying Code”. In: Popl 1997. ACM Press, 1997,

pp. 106–119. doi: 10.1145/263699.263712.

203

https://doi.org/10.1109/emsoft.2015.7318273
https://doi.org/10.1109/emsoft.2015.7318273
http://eudml.org/doc/211191
https://arxiv.org/abs/2111.05613
https://arxiv.org/abs/2111.05613
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1007/s10703-016-0241-z
https://doi.org/10.1007/s10703-017-0275-x
https://doi.org/10.1007/s10703-017-0275-x
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1145/263699.263712

Bibliography

[NL98a] George C. Necula and Peter Lee. “Safe, Untrusted Agents Using Proof-

Carrying Code”. In: Mobile Agents and Security. Ed. by Giovanni Vigna.

Vol. 1419. Lecture Notes in Computer Science. Springer, 1998, pp. 61–91.

doi: 10.1007/3-540-68671-1_5.

[NL98b] George C. Necula and Peter Lee. “The Design and Implementation of a

Certifying Compiler”. In: Pldi 1998. Acm, 1998, pp. 333–344. doi: 10.1145/

277650.277752.

[NA18] S. Newton and Nathan Aschbacher. “The Challenge of Using C in Safety-

Critical Applications”. In: 2018.

[Nig+12] Oliver Niggemann, Benno Stein, Asmir Vodencarevic, Alexander Maier,

and Hans Kleine Büning. “Learning Behavior Models for Hybrid Timed

Systems”. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial
Intelligence, July 22-26, 2012, Toronto, Ontario, Canada. 2012. url: http:

//www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4993.

[Osw20] Stefan Oswald. “Verifiable Runtime Monitor Generation for Lola Specifica-

tions”. Bachelor Thesis. Saarland University, 2020.

[Pel+08] Rodolfo Pellizzoni, Patrick O’Neil Meredith, Marco Caccamo, and Grigore

Rosu. “Hardware Runtime Monitoring for Dependable COTS-Based Real-

Time Embedded Systems”. In: Proceedings of the 29th IEEE Real-Time Systems
Symposium, RTSS 2008, Barcelona, Spain, 30 November - 3 December 2008. 2008,
pp. 481–491. doi: 10.1109/rtss.2008.43.

[Pik+10] Lee Pike, Alwyn Goodloe, Robin Morisset, and Sebastian Niller. “Copilot:

A Hard Real-Time Runtime Monitor”. In: Rv 2010. Vol. 6418. Lncs. Springer,
2010, pp. 345–359. doi: 10.1007/978-3-642-16612-9_26.

[Pla08] André Platzer. “Differential Dynamic Logic for Hybrid Systems”. In: J.
Autom. Reasoning 41.2 (2008), pp. 143–189. doi: 10.1007/s10817-008-9103-

8.

[Pnu77] Amir Pnueli. “The Temporal Logic of Programs”. In: Annual Symposium
on Foundations of Computer Science, 1977. IEEE Computer Society, 1977,

pp. 46–57. doi: 10.1109/sfcs.1977.32.

[Ril18] Charles Riley. Volkswagen’s diesel scandal costs hit $30 billion. CNN Business.

Online; accessed: 2020-10-15. 2018. url: https://money.cnn.com/2017/

09/29/investing/volkswagen-diesel-cost-30-billion/index.html.

[RH05] Grigore Rosu and Klaus Havelund. “Rewriting-Based Techniques for Run-

time Verification”. In: Autom. Softw. Eng. 12.2 (2005), pp. 151–197. doi:

10.1007/s10515-005-6205-y.

[Rtc11] Rtca. Software Considerations in Airborne Systems and Equipment Certification.
Do Do-178c. International Organization for Standardization, 2011.

204

https://doi.org/10.1007/3-540-68671-1_5
https://doi.org/10.1145/277650.277752
https://doi.org/10.1145/277650.277752
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4993
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4993
https://doi.org/10.1109/rtss.2008.43
https://doi.org/10.1007/978-3-642-16612-9_26
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1109/sfcs.1977.32
https://money.cnn.com/2017/09/29/investing/volkswagen-diesel-cost-30-billion/index.html
https://money.cnn.com/2017/09/29/investing/volkswagen-diesel-cost-30-billion/index.html
https://doi.org/10.1007/s10515-005-6205-y

Bibliography

[San+15] Pedro Henrique Santana, Spencer Lane, Eric Timmons, Brian Charles

Williams, and Carlos Forster. “Learning Hybrid Models with Guarded

Transitions”. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, January 25-30, 2015, Austin, Texas, USA. 2015, pp. 1847–1853. url:

http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9480.

[STA18] Sebastian Schirmer, Christoph Torens, and Florian Adolf. “Formal Monitor-

ing of Risk-based Geofences”. In: 2018 AIAA Information Systems-AIAA
Infotech Aerospace. 2018. doi: 10 . 2514 / 6 . 2018 - 1986. eprint: https :

//arc.aiaa.org/doi/pdf/10.2514/6.2018-1986.

[Sch+19] Joshua Schneider, David A. Basin, Srdan Krstic, and Dmitriy Traytel. “A

Formally Verified Monitor for Metric First-Order Temporal Logic”. In: Rv
2019. Ed. by Bernd Finkbeiner and Leonardo Mariani. Vol. 11757. Lncs.

Springer, 2019, pp. 310–328. doi: 10.1007/978-3-030-32079-9_18.

[Sch71] Victor Schneider. “On the number of registers needed to evaluate arithmetic

expressions”. In: BIT Numerical Mathematics 11.1 (1971), pp. 84–93.
[Sch19a] Maximilian Schwenger. “Let’s not Trust Experience Blindly: Formal Mon-

itoring of Humans and other CPS”. Master Thesis. Saarland University,

2019.

[Sch19b] Maximilian Schwenger. RustTyC. https : / / github . com / Schwenger /
RustTyC/. Accessed: 06.01.2022. 2019.

[Sch20] Maximilian Schwenger. “Monitoring Cyber-Physical Systems: From Design

to Integration”. In: Runtime Verification - 20th International Conference, RV
2020, Los Angeles, CA, USA, October 6-9, 2020, Proceedings. Ed. by Jyotirmoy

Deshmukh and Dejan Nickovic. Vol. 12399. Lecture Notes in Computer

Science. Springer, 2020, pp. 87–106. doi: 10.1007/978-3-030-60508-7_5.

[SR03] Koushik Sen andGrigore Rosu. “GeneratingOptimalMonitors for Extended

Regular Expressions”. In: Electron. Notes Theor. Comput. Sci. 89.2 (2003),

pp. 226–245. doi: 10.1016/s1571-0661(04)81051-x.

[Sot+19] Miriam García Soto, Thomas A. Henzinger, Christian Schilling, and Luka

Zeleznik. “Membership-Based Synthesis of Linear Hybrid Automata”. In:

Computer Aided Verification - 31st International Conference, CAV 2019, New
York City, NY, USA, July 15-18, 2019, Proceedings, Part I. Ed. by Isil Dillig and

Serdar Tasiran. Vol. 11561. Lecture Notes in Computer Science. Springer,

2019, pp. 297–314. doi: 10.1007/978-3-030-25540-4_16.

[SOM17] Adam Summerville, Joseph C. Osborn, and Michael Mateas. “CHARDA:

Causal Hybrid Automata Recovery via Dynamic Analysis”. In: Proceedings
of the Twenty-Sixth International Joint Conference on Artificial Intelligence, ĲCAI
2017, Melbourne, Australia, August 19-25, 2017. Ed. by Carles Sierra. ĳcai.org,

2017, pp. 2800–2806. doi: 10.24963/ijcai.2017/390.

205

http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9480
https://doi.org/10.2514/6.2018-1986
https://arc.aiaa.org/doi/pdf/10.2514/6.2018-1986
https://arc.aiaa.org/doi/pdf/10.2514/6.2018-1986
https://doi.org/10.1007/978-3-030-32079-9_18
https://github.com/Schwenger/RustTyC/
https://github.com/Schwenger/RustTyC/
https://doi.org/10.1007/978-3-030-60508-7_5
https://doi.org/10.1016/s1571-0661(04)81051-x
https://doi.org/10.1007/978-3-030-25540-4_16
https://doi.org/10.24963/ijcai.2017/390

Bibliography

[Tap+19] Martin Tappler, Bernhard K. Aichernig, Kim Guldstrand Larsen, and

Florian Lorber. “Time to Learn - Learning Timed Automata from Tests”. In:

Formal Modeling and Analysis of Timed Systems - 17th International Conference,
FORMATS 2019, Amsterdam, The Netherlands, August 27-29, 2019, Proceedings.
Ed. by Étienne André and Mariëlle Stoelinga. Vol. 11750. Lecture Notes in

Computer Science. Springer, 2019, pp. 216–235. doi: 10.1007/978-3-030-

29662-9_13.

[Tea10] Crates.io Team. Crates.op. https://crates.io. Accessed: 06.01.2022. 2010.

[TR05] Prasanna Thati and Grigore Roşu. “Monitoring algorithms for metric

temporal logic specifications”. In: Electronic Notes in Theoretical Computer
Science 113 (2005), pp. 145–162.

[The98] The European Parliament and theCouncil of the EuropeanUnion. “Directive

98/69/EC of the European Parliament and of the Council”. In: Official
Journal of the European Communities (1998). url: http://eur-lex.europa.

eu/LexUriServ/LexUriServ.do?uri=CELEX:31998L0069:EN:HTML.

[The17] The European Parliament and the Council of the European Union. Commis-
sion Regulation (EU) 2017/1151. June 2017. url: http://data.europa.eu/

eli/reg/2017/1151/oj (visited on 10/15/2020).

[Tis18] Dragoş Tiselice. pest. The Elegant Parser. https://pest.rs. Accessed:
06.01.2022. 2018.

[Tor+17] Christoph Torens, Florian Adolf, Peter Faymonville, and Sebastian Schirmer.

“Towards Intelligent System Health Management using Runtime Mon-

itoring”. In: AIAA Information Systems-AIAA Infotech Aerospace. Amer-

ican Institute of Aeronautics and Astronautics (AIAA), Jan. 2017. doi:

10.2514/6.2017-0419.

[Tut+15] Monica Tutuianu, Pierre Bonnel, Biagio Ciuffo, Takahiro Haniu, Noriyuki

Ichikawa, Alessandro Marotta, Jelica Pavlovic, and Heinz Steven. “Devel-

opment of the World-wide harmonized Light duty Test Cycle (WLTC) and

a possible pathway for its introduction in the European legislation”. In:

Transportation Research Part D: Transport and Environment 40.Supplement C

(2015), pp. 61–75. issn: 1361-9209. doi: 10.1016/j.trd.2015.07.011.

[Ulu17] Dogan Ulus. “Montre: A Tool for Monitoring Timed Regular Expressions”.

In: Computer Aided Verification - 29th International Conference, CAV 2017,
Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I. Ed. by Rupak

Majumdar and Viktor Kuncak. Vol. 10426. Lecture Notes in Computer

Science. Springer, 2017, pp. 329–335. doi: 10.1007/978-3-319-63387-

9_16.

206

https://doi.org/10.1007/978-3-030-29662-9_13
https://doi.org/10.1007/978-3-030-29662-9_13
https://crates.io
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31998L0069:EN:HTML
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31998L0069:EN:HTML
http://data.europa.eu/eli/reg/2017/1151/oj
http://data.europa.eu/eli/reg/2017/1151/oj
https://pest.rs
https://doi.org/10.2514/6.2017-0419
https://doi.org/10.1016/j.trd.2015.07.011
https://doi.org/10.1007/978-3-319-63387-9_16
https://doi.org/10.1007/978-3-319-63387-9_16

Bibliography

[WW62] Author(s) B. P. Welford and B. P. Welford. “Note on a method for calculating

corrected sums of squares and products”. In: Technometrics (1962), pp. 419–
420.

[Wic+95] BrianA.Wichmann,A.A.Canning,D. L. Clutterbuck, L.A.Winsborrow,N. J.

Ward, and D. William R. Marsh. “Industrial perspective on static analysis”.

In: Softw. Eng. J. 10.2 (1995), pp. 69–75. doi: 10.1049/sej.1995.0010.

[WS20] Thomas Wright and Ian Stark. “Property-Directed Verified Monitoring of

Signal Temporal Logic”. In:Runtime Verification - 20th International Conference,
RV2020, LosAngeles, CA,USA,October 6-9, 2020, Proceedings. Ed. by Jyotirmoy

Deshmukh and Dejan Nickovic. Vol. 12399. Lecture Notes in Computer

Science. Springer, 2020, pp. 339–358. doi: 10.1007/978-3-030-60508-

7_19.

[ZJP21] Bingzhuo Zhong, Claudius Jordan, and Julien Provost. “Extending Signal

Temporal Logic with Quantitative Semantics by Intervals for Robust Moni-

toring of Cyber-physical Systems”. In: ACM Transactions on Cyber-Physical
Systems 5.2 (2021), pp. 1–25.

207

https://doi.org/10.1049/sej.1995.0010
https://doi.org/10.1007/978-3-030-60508-7_19
https://doi.org/10.1007/978-3-030-60508-7_19

Appendix A
Appendix

The appendix consists of three parts. First, Appendix A.1 contains preliminary infor-

mation, introducing notation, standard mathematical concepts, and background work

on sliding window aggregations. Second, Appendix A.2 constitutes supplementary

material to Section 3.2. It contains and explains the full output of the compilation of a : Sec. 3.2, p. 128

Lola specification. Last, Appendix A.3 concerns Chapter 4, supplementing the traces :Chap. 4, p. 151

mentioned in the evaluation of the automaton construction.

A.1. Preliminaries

This section introduces some common mathematical concepts, clarifies notation, and

introduces RTLola-specific background information regarding the computation of sliding

window aggregations.

A.1.1. Sequences and Partitions

Definition A.1 (Sequence Notation)

Let f : I → J be a function for some sets I and J. Further, let < be a total order for I.

Then, 〈f(i)〉i∈I is a family, i.e., it generates a sequence where each element is the result of Def. Family

applying f to elements of I in their order with respect to <.

〈f(i)〉i∈∅ = ε

〈f(i)〉i∈I = f(min I) ◦ 〈f(i)〉i∈I\{min I} (for I 6= ∅)

Here, ◦ is the sequence concatenation operator and ε denotes the empty sequence.

For a non-empty sequence τ, the notation τ. last accesses the last element. If τ has at

least n elements, τ [n] accesses the nth element. Def. Sequence
Access

209

A. Appendix

An arrow over a variable, such as ~x, explicitly marks it as sequence or vector to avoid

ambiguities.

The notation for families is quite liberal; both the function and the set can be stated in

any way that provides an unambiguous result. Moreover, with a slight abuse of notation,

if there is no order on the elements of the set, a family becomes an unordered set rather

than a sequence.

Example A.2 (Sequences).

〈3i〉i∈{1,2,4,8} = (3, 6, 12, 24)

〈3i〉i∈{1,2,4,8} . last = 24

〈x < 5〉x620 = (1, 2, 3, 4)

〈x〉x∈{3,true,Never} = {Never, true, 3}

4

Definition A.3 (Partition)
Let S be a non-empty set. The set of sets P = {ζ1, . . . , ζk} is a partition of S iff (1)Def. Partition

∀ζ ∈ P : ∅ 6= ζ ⊆ S, (2)
⋃
ζ∈P ζ = P, and (3) ∀ζi, ζj ∈ P : i 6= j =⇒ ζi ∩ ζj = ∅. Elements of

P are equivalence classes. JζK ∈ ζ denotes a unique but arbitrary representative of ζ.

Definition A.4 (Ordered (Interval-) Partition)

Let I be a closed interval. A sequence I1, . . . , Ik for some k ∈ N is an ordered intervalDef. Ordered

Interval Partition partition of I iff {Ii | i 6 k} is a partition of I and its constituents are consecutive, i.e.:

∀i < k : |Ii| = 0∨ (Ii = [u, `]∧ Ii+1 = [u ′, ` ′] =⇒ u+ 1 = l ′)

Intuitively, an ordered interval partition splits a series of numbers into parts such that

the concatenation of the parts yields the original series.

A.1.2. Miscellaneous

Alpha-Renaming

Alpha-renaming is a replacement operation on expressions.

Definition A.5 (Alpha-Renaming)

Let e be an expression and α a replacement, i.e., a sequence 〈ei 7→ si〉i6n for some

n ∈ N. The alpha-renaming e [α] is an expression where each occurrence of any (sub-)Def. Alpha-

Renaming
expression ei in e is replaced by si.

210

A.1. Preliminaries

The replacement itself is mostly agnostic of the language of the expressions, however,

it introduces parentheses if necessary and for the purpose of better illustration, it applies

some operator simplifications.

Example A.6 (Alpha-Renaming).

a+ bc [a 7→ 3,b 7→ x+ y] = 3+ (x+ y)c

x.offset(by: -q) [x 7→ in,q 7→ −3] = in.offset(by: 3)

4

Boolean Formulas

Definition A.7 (Positive Boolean Formula)

A positive boolean formula Φ ∈ B+
P over a set of propositions P is a boolean expression Def. Positive Boolean

Formula
of the following shape with p ∈ P:

Φ ::= p | Φ∨Φ | Φ∧Φ

A.1.3. Sliding Window Aggregations

A sliding window has two parameters: a real-valued size, and an aggregation function.

It takes a sequence of timestamped values as inputs and applies the aggregation to it.

However, when evaluating the sliding window, it only takes values account which lie less

than the size of the window in the past. Of particular interest regarding the aggregation

functions are list homomorphisms since they can be evaluated efficiently.

Definition A.8 (List Homomorphisms [Mee86])

Let 〈Ii〉i6k be an ordered interval partition of some set I ⊆ N.

A function f : T → Tr is a list homomorphism if there is a mapping function map : T → T ′, Def. List
Homomorphism

an associative binary reduction operation ⊕ : T ′ × T ′ → T ′ with neutral element ε, and a

finalization function fin : T ′ → Tr with the following property:

f(~x) = fin
(
⊕
〈
⊕〈map(~x [i])〉i∈I

〉
I∈I

)
Note that due to its associativity, ⊕ can be applied to a non-empty sequence of values

by successively reducing arbitrary pairs of the sequence. For an empty sequence, this

yields ε.

Intuitively, a list homomorphism aggregates a sequence of values to produce a

single value. The crux is that rather than summarizing the whole sequence at once, a

211

A. Appendix

list homomorphism allows for pre-aggregating arbitrary sub-sequences provided the

original order is respected. For this, it uses several sub-functions. The mapping function

transforms a single value into an intermediate value of type T ′. The reduction takes two

of the intermediate values and reduces them to one. This operation is robust against

“empty” values, i.e., values which represent an empty sub-aggregation, denoted by

the neutral element ε. Lastly, after successive aggregation, the finalization function

transforms an intermediate value into a result of type Tr.

Definition A.9 ((Efficient) Sliding Window Aggregation)

Let ~v be a timestamped sequence of values of type T with monotonically increasing

timestamps, let t ∈ R+
be a timestamp greater than the timestamp of ~v. last and let

γ : T∗ → T ′ be an aggregation function. Here, both T and T ′ are finite sets. Further, let

~v = ~x ◦ ~y be a split of ~v such that ~y captures all values with a timestamp within (t− δ, t].
A sliding window aggregation over a time span of δ ∈ R+

is a function ωγ : T
∗ → R+ → T ′Def. Sliding Window

defined as

ωγ(~c)(t) = γ(~y)

An implementation of a real-time sliding window aggregation if efficient if it receives theDef. Efficient Sliding

Window

Aggregation

sequence element by element and has a space complexity in O(1).

Note that barely any slidingwindowaggregation can be computed efficiently. Consider,

for example, γ =
∑
. Since the implementation receives inputs successively, it has to

pre-aggregate values, which is possible via addition. However, the decision on whether

the value a is relevant for the aggregation, i.e., whether a ∈ ~y is due at the point of

reception of a. Since the timestamp of evaluation is unknown, the decision is impossible

to make.

This strong limitation is lifted by supplying information on potential points of

evaluation. Suppose these timestamps will always be drawn from {kπ | k ∈ N} for some

fixed π. In this case, the implementation can split the real time axis in equidistant frames

of with δ and pre-summate all values within one frame. It then only has to store π/δ

pre-aggregation results. As soon at it receives a point of evaluation, it can sum up all of

these intermediate results to obtain the final result [Li+05].

While this method works well for list homomorphic aggregation functions, it fails for

example for the median computation. Its correctness is summarized in Corollary 21 of

my earlier work [Sch19a].

Corollary (Static Memory Bounds for Sliding Windows [Sch19a]). For a list homomorphic
function γ and a period π, there is an efficient sliding window aggregation provided it is only
computed at multiples of π.

Note that the original statement is specific to RTLola but trivially extends to general

sequences of values.

212

A.1. Preliminaries

Note further that there are aggregation functions prohibiting efficient implementations

such as if γ is the median function. Since the implementation has no information

about future inputs, it has to memorize all values and compute the result at the end.

As a result, the space complexity exceeds O(1). However, many practically relevant

aggregations are list homomorphisms such as the summation and products, extrema,

averages, integration, and (co-)variance [WW62; Sch19a].

213

A. Appendix

A.2. Software Compilation: Full Output

This section supplements the full output of the software compilation presented in

Section 3.2.3, including the verification annotations The underlying specification is the

one from Example 3.3, i.e., the running example.

A.2.1. Memory and Ghost Memory

The memory and ghost memory are encoded as follows:

pub struct Memory {

pub altitude_0: i64,

pub altitude_1: i64,

}

impl Memory {

#[pure]

#[requires="idx >= 0 && idx < 2"]

#[ensures="idx == 0 ==> result == self.altitude_0"]

#[ensures="idx == 1 ==> result == self.altitude_1"]

pub fn get_alt(&self, idx: usize) -> i64 {

if idx == 0 {

self.altitude_0
} else if idx == 1 {

self.altitude_1
} else {

unreachable!()

}

}

#[ensures="self.get_alt(1) == v"]

#[ensures="self.altitude_0 == old(self.altitude_1)"]

pub fn store_alt(&mut self, v: i64) {

self.altitude_0 = self.altitude_1;
self.altitude_1 = v;

}

}

The Memory struct consists of two integers encoding the last two values of the input

stream altitude. The functions get_alt and store_alt serve to access one of the last

two values of altitude and to extend altitude with a new value, respectively. Since

get_alt retrieves avalue of the streamaltitude from theworkingmemory, the generated

annotations are exactly as described in Section 3.2.4: #[requires="idx >= 0 && idx

< 2"] requires that the index idx does not exceed the memory reserved for altitude,

i.e., that is does not exceed the memory bound µ(|altitude|) = 2. Furthermore, the

annotation #[ensures="idx == i ==> result == self.altitude_0"] for 0 6 i 6 1
ensures that the return value of get_alt corresponds to the respective value of the inputs

stream altitude stored in Memory. Similarly, #[ensures="self.get_alt(1)== v"],

214

A.2. Software Compilation: Full Output

as well as the annotation #[ensures="self.altitude_0 == old(self.altitude_1)"]

ensure that the effects of the function store_alt are also committed in Memory.

struct GhostMemory_i64 {

mem: Vec<i64>,

}

impl GhostMemory_i64 {

#[trusted]

#[ensures="result.len() == 0"]

pub fn new() -> Self {

GhostMemory_i64 { mem: Vec::new() }

}

#[trusted]

#[ensures="self.len() == old(self.len()) + 1"]

#[ensures="self.get(self.len() -1) == v"]

#[ensures="forall i: usize :: (0 <= i && i < old(self.len())) ==>

(old(self.get(i)) == self.get(i))"]

pub fn store(&mut self, v: i64) {

self.mem.push(v);
}

#[trusted]

#[pure]

#[requires="idx >= 0 && idx < self.len()"]

pub fn get(&self, idx: usize) -> i64 {

self.mem[idx]
}

#[trusted]

#[pure]

#[ensures="result >= 0"]

pub fn len(&self) -> usize {

self.mem.len()
}

}

The GhostMemory struct wraps a vector mem, i.e., a dynamically growing sequence of

data. The functions new, store, get, and len allow for creating a new ghost memory,

storing a value in the vector, retrieving it from the ghost memory, and determining the

current length of the ghost memory, respectively. All functions utilize vector operations

that stem from the std::vec standard library. These operations cannot be verified by

Prusti, so the annotation #[trusted] in front of all functions prompt Prusti to assumed

their correctness while treating them as black boxes. The annotation #[pure] indicates

that all functions solely mutate their own stack portions.

Similar to the annotation of the previously seen function get_alt, the annotation

#[requires="idx >= 0 && idx < self.len()"] in front of the function get requires

that the index does not exceed the current length of the ghost memory. The functions new

and len are equipped with annotations stating simple facts about them. These facts are

essential to verify functions that utilize new and len: If a new ghost memory is created,

it is empty and the current length of the ghost memory is always non-negative. Similarly,

215

A. Appendix

the annotations of the function store establish facts about its effects: The length of ghost

memory is increased by one if it is extended with a new value, after extending the ghost

memory with value v, its last value is indeed v, and, lastly, values stored in the ghost

memory are not changed when extending it.

A.2.2. Emission and Retrieval

The generated code defines three functions get_input, exists_input, and emit whose

precise implementation is neither relevant for the stream evaluation, nor for the verifica-

tion of the monitor. They merely serve as the connection to the underlying system.

#[trusted]

fn get_input() -> i64 { ... }

#[trusted]

fn exists_input() -> bool { ... }

#[trusted]

fn emit(above: bool, below: bool) { ... }

The function get_input reads and then returns the next value of the input stream

altitude. The function exists_input determines whether there is a new value of the

input stream. Hence, it indicates when the input stream ceases to produce new values.

Lastly, emit takes two boolean variables above and below as input. The function notifies

the system if a trigger condition is satisfied.

A.2.3. Stream Evaluation

The function main contains the stream evaluation. Thus, it is split into three phases, the

prefix, the loop, and the postfix. Separate functions handle the evaluation of each phase.

pub fn main(mem: &mut Memory) {

let mut altitude: i64;

let mut tooLow: bool;

let mut tooHigh: bool;

let mut trigger_below: bool;

let mut trigger_above: bool;

let mut gm_alt = GhostMemory_i64::new();

prefix(mem, &mut gm_alt)

let mut iter = 3;

let mut con = exists_input();

#[invariant="iter >= 3"]

#[invariant="gm_alt.len() == iter"]

#[invariant="mem.get_alt(0) == gm_alt.get(iter - 2)"]

#[invariant="mem.get_alt(1) == gm_alt.get(iter - 1)"]

#[invariant="trigger_below == ((gm_alt.get(iter - 3) < 200) && ((gm_alt.get(iter -

2) < 200) && (gm_alt.get(iter - 1) < 200)))"]

216

A.2. Software Compilation: Full Output

#[invariant="trigger_above == ((gm_alt.get(iter - 3) > 600) && ((gm_alt.get(iter -

2) > 600) && (gm_alt.get(iter - 1) > 600)))"]

while (con) {

altitude = get_input();

tooLow = ((mem.get_alt(0) < 200) && ((mem.get_alt(1) < 200) && (altitude <

200)));

tooHigh =

((mem.get_alt(0) > 600) && ((mem.get_alt(1) > 600) && (altitude > 600)));

trigger_below = tooLow;

trigger_above = tooHigh;

emit(

trigger_above,

trigger_below,

);

mem.store_alt(altitude);

gm_alt.store(altitude);

iter += 1;

con = exists_input();

}

postfix(mem, &mut gm_alt)

}

The function main has six variables, one for each stream and each trigger as well as

one for the ghost memory. It first calls the prefix function defined later. Recall that

the prefix length η←Φ of the Lola specification from Example 3.3 is two. Hence, since we

start with iteration 0, from iteration 2 onwards all accesses to altitude with offset −1

succeed. The function prefix performs the first three iterations, which leads to easier

and more concise loop invariants. Hence, when the prefix function returns, iter is set

to 3. Variable con captures the condition of the while-loop of the monitor loop phase,

i.e. whether there is another monitor input. Its value is the result of the exists_input

function, and set before entering the loop as well as at the end of the loop body.

The invariants of the while-loop require that iter is always greater than or equal to 3,

the ghost memory gm_alt has an entry for every iteration, the memory mem captures the

last two values stored in the ghost memory, and that the variables for the triggers are

only set to true if the respective condition holds for the values retrieved from the ghost

memory. For this recall that — due to the shift of tooLow and tooHigh— the values of

the output streams and the trigger at position i is computed in iteration i+ 1. Hence, in

iteration i, their values are determined by checking whether the altitude is too low or

too high at the current, the last, and the second to last position.

The body of the while-loop describes the stream evaluation: It reads a new value of

the input stream altitude and stores it in the respective variable. Then it computes the

values of the variables tooLow and tooHigh according to the definition of the streams

based on the values retrieved from the memory mem. Similarly, it computes the values of

the variables representing the triggers. It calls the emit function regardless of the trigger

values since the function takes care of interpreting the results. Afterwards, the new

217

A. Appendix

value of the input stream altitude is stored both in the regular memory mem and the

ghost memory gm_alt. This is not necessary for the output streams since no other stream

or trigger refers to them with a negative offset. Next, the variable iter is incremented,

denoting that the current iteration is finished, and the condition con is again determined

by calling the function exists_input.

Next, we present the prefix function.

fn prefix(

mem: &mut Memory,

gm_alt: GhostMemory_i64,

) {

//Local Variables

let mut altitude: i64;

let mut tooLow: bool;

let mut tooHigh: bool;

let mut trigger_below: bool;

let mut trigger_above: bool;

//Iteration 0

altitude = get_input();

gm_alt.store(altitude);

mem.store_alt(altitude);

//Iteration 1

let altitude = get_input();

tooLow = ((0 < 200) && ((mem.get_alt(1) < 200) && (altitude < 200)));

tooHigh = ((0 > 600) && ((mem.get_alt(1) > 600) && (altitude > 600)));

trigger_below = tooLow;

trigger_above = tooHigh;

emit(

trigger_above,

trigger_below,

);

gm_alt.store(altitude);

mem.store_alt(altitude);

assert!(

trigger_below

== ((0 < 200) && ((gm_alt.get(0) < 200) && (gm_alt.get(1) < 200)))

);

assert!(

trigger_above

== ((0 > 600) && ((gm_alt.get(0) > 600) && (gm_alt.get(1) > 600)))

);

//Iteration 2

let altitude = get_input();

tooLow = ((mem.get_alt(0) < 200) && ((mem.get_alt(1) < 200) && (altitude < 200)));

tooHigh = ((mem.get_alt(0) > 600) && ((mem.get_alt(1) > 600) && (altitude > 600)));

trigger_below = tooLow;

trigger_above = tooHigh;

emit(

trigger_above,

218

A.2. Software Compilation: Full Output

trigger_below,

);

gm_alt.store(altitude);

mem.store_alt(altitude);

assert!(

trigger_below

== ((gm_alt.get(0) < 200)

&& ((gm_alt.get(1) < 200) && (gm_alt.get(2) < 200)))

);

assert!(

trigger_above

== ((gm_alt.get(0) > 600)

&& ((gm_alt.get(1) > 600) && (gm_alt.get(2) > 600)))

);

let mut con = exists_input();

}

The function prefix takes the memory mem and the ghost memory gm_alt as input. It

has a local variable for each stream and trigger. By construction, the prefix is similar to the

monitor loop. Yet, instead of using a loop, it spells the first three iterations out explicitly

and replaces the failing stream accesses to altitudewith the default value 0. Due to the

shift in the output streams, they are not computed in the very first iteration. The assert!

statements after the second and the third iteration make the implicit assumptions of the

loop invariants of the monitor loop explicit. They are critical to ensure that Viper can

verify the last two loop invariants upon loop entry.

Last is the function postfix.

fn postfix(

mem: &mut Memory,

gm_alt: GhostMemory_i64,

) {

//Local Variables

let mut altitude: i64;

let mut tooLow: bool;

let mut tooHigh: bool;

let mut trigger_below: bool;

let mut trigger_above: bool;

//Iteration N + 1

tooLow = ((mem.get_alt(0) < 200) && ((mem.get_alt(1) < 200) && (0 < 200)));

tooHigh = ((mem.get_alt(0) > 600) && ((mem.get_alt(1) > 600) && (0 > 600)));

trigger_below = tooLow;

trigger_above = tooHigh;

emit(

trigger_above,

trigger_below,

);

assert!(

trigger_below

== ((gm_alt.get(iter - 2) < 200)

219

A. Appendix

&& ((gm_alt.get(iter - 1) < 200) && (0 < 200)))

);

assert!(

trigger_above

== ((gm_alt.get(iter - 2) > 600)

&& ((gm_alt.get(iter - 1) > 600) && (0 > 600)))

);

}

Yet again, postfix is structurally similar to the prefix function and monitor loop

body. The main difference is that it performs the last iteration N+ 1. Here, altitude

has ceased to produce new values. Hence, the access to altitude with offset +1 fails,

so the monitor substitutes the default value 0. Note that due to the shift of tooLow and

tooHigh, the access with offset 0 to altitude still succeeds and is correct.

A.2.4. Lola Specifications for Software

The following shows the Lola adaptation of a network monitoring specification.

input src, dst, length: Int32

input fin: Bool, push: Bool, syn: Bool

constant server: Int32 := ...

output count : Int32 :=

if count.last(or: 0) > 201 then 0 else count.last(or: 0) + 1

output receiver : Int32 :=

if dst=server then receiver.offset(by: -2).defaults(to: 0) + 2

else if count > 200 then 0

else receiver[-1,0]

trigger receiver > 50 "Many incoming connections."

output received : Int32 := if dst=server ∧ push then 0 else length

output workload : Int32 := if count > 200 then workload.last(or: 0) +

1 else 0

trigger workload > 25 "Workload too high."

output opened : Int32 := opened.last(or: 0) + int(dst=server ∧ syn)

output closed : Int32 := closed.last(or: 0) + int(dst=server ∧ fin)

trigger opened - closed < 0

"Closed more connections than have been opened."

Listing A.1: Lola specification for monitoring network traffic.

220

A.3. Conservative Automata: Input Traces

A.3. Conservative Automata: Input Traces

The following are the adequate traces used to construct the aircraft system depicted in

Figure 4.5 with dynamics in solid black.

(0,0,0)

cruise,300−−−−−−−−−−→ (300,0,300)

turnL,5−−−−−−−−−−→ (750,0,290)

LtoS,5−−−−−−−−−−→ (1200,-750,280)

turnL,5−−−−−−−−−−→ (1650,-750,270)

LtoS,5−−−−−−−−−−→ (2100,-1500,260)

turnR,5−−−−−−−−−−→ (2550,-1500,250)

RtoS,5−−−−−−−−−−→ (3000,-1500,240)

descend,5−−−−−−−−−−→ (3450,-1500,230)

5−−−−−−−−−−→ (3450,-1500,150)

(0,0,0)

cruise,10−−−−−−−−−−→ (1000,0,300)

turnR,5−−−−−−−−−−→ (2500,0,310)

RtoS,5−−−−−−−−−−→ (4000,750,320)

turnR,5−−−−−−−−−−→ (5500,750,330)

RtoS,5−−−−−−−−−−→ (7000,1500,340)

turnL,5−−−−−−−−−−→ (8500,1500,350)

LtoS,5−−−−−−−−−−→ (10000,1500,360)

descend,5−−−−−−−−−−→ (11500,1500,370)

5−−−−−−−−−−→ (12500,1500,370)

(0,0,0)

cruise,20−−−−−−−−−−→ (1000,0,300)

descend,5−−−−−−−−−−→ (2000,0,300)

adjust,5
−−−−−−−−−−→ (2375,0,275)

adjust,5
−−−−−−−−−−→ (2750,0,250)

adjust,5
−−−−−−−−−−→ (3125,0,225)

adjust,5
−−−−−−−−−−→ (3500,0,200)

adjust,5
−−−−−−−−−−→ (3875,0,175)

adjust,5
−−−−−−−−−−→ (4250,0,150)

5−−−−−−−−−−→ (4625,0,125)

221

	Introduction
	Monitoring
	Cyber-Physical Systems
	Conventional Monitoring Meets CPS
	Monitoring CPS with RTLola
	Contributions
	Publications

	The RTLola Specification Language
	Language Design
	Syntax
	Supportive Type System
	Semantics of Monitors
	Specification Analysis
	Implementation
	Empirical Evaluation
	RTLola in Practice
	Related Work

	Monitor Realizations
	Hardware Compilation
	Software Compilation

	Conservative Model Generation
	Preliminaries and Notation
	Motivation
	Constructing Conservative Automata
	Correctness of the Construction
	Experiments
	Recapitulation
	Related Work

	Conclusion
	Future Directions

	Appendix
	Preliminaries
	Software Compilation: Full Output
	Conservative Automata: Input Traces

