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Abstract

We present the software Condition-specific Regulatory Units Prediction (CRUP) to infer from epigenetic marks a list of
regulatory units consisting of dynamically changing enhancers with their target genes. The workflow consists of a
novel pre-trained enhancer predictor that can be reliably applied across cell types and species, solely based on
histone modification ChIP-seq data. Enhancers are subsequently assigned to different conditions and correlated with
gene expression to derive regulatory units. We thoroughly test and then apply CRUP to a rheumatoid arthritis model,
identifying enhancer-gene pairs comprising known disease genes as well as new candidate genes.
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Background
Gene expression is to a large degree regulated by dis-
tal genomic elements referred to as enhancers [1], which
recruit a combination of different factors to activate tran-
scription from a targeted core promoter. The activity
state of enhancers may change dynamically across con-
ditions, e.g., across varying time points or disease states.
Thus, their activity patterns are central in the context
of phenotypic diversity [2, 3], and altered activity can
be the source of pathogenic gene-enhancer disruptions
and subsequent misregulation [4]. Although the func-
tional importance of enhancers was first observed almost
40 years ago [5], to date, there is neither a complete know-
ledge of enhancers nor of their regulatory interplay with
targeted genes. By analyzing epigenetic profiles of exper-
imentally determined enhancers, e.g., histone modifica-
tions (HMs) or binding sites of co-activators like p300 [6]
based on ChIP-seq measurements [7], dynamic changes
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of enhancers were found to be reflected in the epigenetic
landscape [8]. However, the majority of condition-specific
gene-enhancer pairs have not been discovered, yet [9].
Consequently, to get a glimpse of the underlying causative
regulatory mechanism, differential enhancers need to
be further associated with promoter activity across
the same conditions, e.g., by incorporating RNA-seq
experiments [10].
Computational methods that predict enhancer activity

based on epigenetic profiles have become an indispens-
able alternative for cost- and time-consuming experimen-
tal procedures over the last years [11–14]. Prediction
approaches that rely on a pre-defined gold-standard set of
enhancers are often prone to be biased for the cell type
or tissue that was used for training. Although strategies
that address this shortcoming were recently introduced
[13], it remains difficult to develop a classification method
that is able to generalize across different conditions, espe-
cially as there are usually just a few common enhancer
features available for all data sets. Apart from that, most
of the available computational methods are not automa-
tically providing a way to compare many samples across
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different conditions, and thus, the assignment of differen-
tial regions has to be done separately in a post-processing
step, e.g., by overlapping peaks [15].
Furthermore, the allocation of putative target gene pro-

moters remains challenging, especially as enhancers are
positioned at various distances from their targeted pro-
moters [16]. Recent methods to determine the contact
frequencies between genomic regions, e.g., Hi-C [17, 18],
can be used to complement correlation strategies as in
previously introduced approaches [9, 19].
We found that there exists no comprehensive and easy-

to-use tool that addresses all of the abovementioned
issues in a combined way. In this work, we want to over-
come this shortage and present the three-step framework
Condition-specific Regulatory Units Prediction (CRUP)
that combines the prediction of active enhancer elements
(CRUP-EP) with condition-specific enhancer dynamics
(CRUP-ED) and the identification of concurrently chang-
ing enhancer-target pairs (CRUP-ET) in a continuous
end-to-end fashioned pipeline.
Our proposed classification method CRUP-EP

(enhancer prediction) is based on a random forest
approach and can be applied across different cell types
and species without the need of being re-trained. CRUP-
EP solely requires three HMs determined by ChIP-seq,
namely H3K4me1, H3K4me3, and H3K27ac, which are
widely accepted to reflect enhancer activity [20, 21] and
are among the most informative features for enhancer
prediction [13, 14], guaranteeing a broad applicability.
Although similar approaches were already used before,
e.g., by REPTILE [13], we designed and optimized our
classifier such that it builds an appropriate basis for
the next two steps of CRUP. Implemented adaptations
essential for our framework are, for example, the built-in
normalization which ensures a good transferability of
the trained classifier to different data types, as well as
a feature set derived from a fine-grained binning and
hence incorporating HM information at a 100 bp level
which ensures a high resolution of the predictions. The
main innovation of our classification approach is the
disentanglement of the enhancer prediction into two
classification tasks, addressing separately the distinction
(i) between active and inactive regions and (ii) between
active enhancers and active promoters.
We train and validate CRUP-EP on mouse embryonic

stem cells (mESCs) based on curated FANTOM5 vali-
dated enhancer regions [22]. To validate the resolution of
our predicted enhancer regions, we use the distance to the
nearest accessible region as an additional quality measure
by integrating ATAC-seq experiments [23]. Furthermore,
we can show that our approach is able to reliably reca-
pitulate three independent sources of published lists of
enhancer and super-enhancer regions in mESCs [24–26].
To demonstrate the transferability of our classifier, we

integrated five different experimental data sets compris-
ing various cell types and species, which were obtained in
the context of the German Epigenome Project [27].
Finally, we compare CRUP-EP to two other enhancer

prediction methods, namely ChromHMM [11] and REP-
TILE [13]. In this work, we refrain from further method
comparisons since ChromHMM is a widely used genome
segmentation approach, and REPTILE is a very recently
published tool with similarities to CRUP-EP in terms
of feature choice and methodology. REPTILE has also
been demonstrated to be superior to several state-of-the-
art enhancer prediction tools in a comprehensive review
by [28].
A prominent application of enhancer prediction meth-

ods is the comparison of dynamic conditions, like varying
time points, cell lines, or disease states. To address this, we
complement CRUP-EP by CRUP-ED (enhancer dynam-
ics) which assigns predicted enhancer regions to specific
conditions while accounting for a flexible number of repli-
cates. Based on the enhancer probabilities obtained by
CRUP-EP, the second step of CRUP computes pair-wise
empirical p values based on a permutation test that are
further used to cluster significantly different enhancer
regions.
We apply CRUP-ED to a dataset of pluripotent and

retinoic acid (RA)-induced mESCs yielding two clusters
of condition-specific enhancer regions. We evaluate our
dynamic enhancer regions by investigating the overrepre-
sentation of transcription factor (TF) motifs [29] within
each enhancer cluster. We are able to identify several
motifs that are associated with RA receptors as well as
with signaling pathways that regulate the pluripotency of
stem cells. Finally, we used a reporter assay to predict
pluripotency and RA-specific enhancer regions [30].
Enhancer dynamics strongly correlate with changing

gene expression pattern as already stated by [8]. We make
use of this property and added a third layer to our frame-
work, CRUP-ET (enhancer targets), to match condition-
specific enhancers found by CRUP-ED to gene expression
to build entire “regulatory units.”
Recently, chromosome conformation capture methods

such as Hi-C [18, 31] or Capture-C [32] have focused
on the three-dimensional structure of the genome, which
brings distal regulatory elements, such as enhancers, into
close physical proximity of their target gene promoters
[33]. Consequently, CRUP-ET restricts the search space
to putative regulatory units which are located within a
topological associated domain (TAD) [31, 34]. For illus-
tration purposes, we show regulatory units across eight
developmental states in mouse embryo midbrain [35]
which recapitulate chromatin interactions identified by
a Capture-C experiment. We further evaluate CRUP-ET
using ultra-deep Hi-C data in three states of mouse neural
differentiation which was recently published by [31].
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Finally, we identify trait-associated regulatory elements
in a mouse model of rheumatoid arthritis (Rh. Arth.),
an autoimmune inflammatory complex disease, and dis-
cuss our main findings on a single enhancer region that
we can correlate to the gene Cxcr4, which is part of the
chemokine signaling pathway. Additionally, we support
our findings with a motif enrichment analysis as well as
with a pathway analysis. With this, we demonstrate how
our presented framework CRUP can be used to identify
candidate enhancer regions together with their putative
target genes that dynamically change between different
conditions.

Results
Short summary of CRUP
In this work, we describe the three-step framework
Condition-specific Regulatory Units Prediction (CRUP)
to predict active enhancer regions, assign them to con-
ditions, and finally correlate each dynamically changing
enhancer to putative target genes. Each step is imple-
mented in R and incorporated into a continuous workflow
(Fig. 1).
The first module of our framework, CRUP-EP

(enhancer prediction, see the “Methods” section), is an
enhancer classifier with feature sets based on three HMs,
namely H3K4me1, H3K4me3, and H3K27ac (Fig. 1a). We
implemented a combination of two random forests to
split the task of distinguishing active regulatory regions
from the rest of the genome, as well as differentiating
enhancers from active promoters. CRUP-EP is designed
such that it takes into account the basic genomic structure
of an enhancer, which is in essence an open chromatin
region flanked by nucleosomes.
The second phase of the workflow, CRUP-ED (enhancer

dynamics, see the “Methods” section), is based on
genome-wide enhancer predictions for multiple condi-
tions, e.g., different development states of a cell (Fig. 1b).
We find condition-specific enhancers by applying a per-
mutation test directly on the predicted enhancer proba-
bilities (per bin) obtained by CRUP-EP. Based on pairwise
empirical p values, differential bins are then combined and
clustered into dynamically changing enhancers.
In the last step, CRUP-ET (enhancer targets, see the

“Methods” section), each dynamically changing enhancer
region obtained by CRUP-ED is linked to target genes
(Fig. 1c). To this end, the correlation between enhancer
probabilities and gene expression values across the same
conditions is computed for all putative gene-enhancer
pairs that are located within the same TAD.
We trained CRUP-EP on input-normalized HM ChIP-

seq data and a training set based on FANTOM5-curated
enhancers. To evaluate CRUP-ED and CRUP-ET we
predicted active enhancer regions based on a classifier
trained on mouse embryonic stem cells (mESC).

Validation of enhancer predictions in murine stem cells
We trained our random forest-based enhancer classifier
CRUP-EP on three input-normalized HM ChIP-seq data
from a single mESC sample, in this work further labeled
as mESC+ (see the “Methods” and “Cell culture and isola-
tion” sections). The result of our predictions are enhancer
probabilities for each 100-bp bin in the genome, based
on which we define non-overlapping enhancer regions of
length 1100 bp (see the “Methods” and “Enhancer predic-
tion based on random forests” sections). Each enhancer is
centered on the 100-bp bin with highest enhancer proba-
bility and extended by five neighboring bins upstream and
downstream (100 bp ± 5× 10 bp). The number of neigh-
boring bins was optimized as described in the “Parameter
tuning” section.
On the first visual inspection, predicted enhancer peaks

show typical enhancer characteristics with enrichment
for the histone marks H3K4me1 and H3K27ac. Further-
more, these regions show a high ATAC-seq signal (Addi-
tional file 1: Figures S1 and S2).
In the following, we thoroughly validate the enhancer

predictions of CRUP-EP and compare some of our find-
ings to two other methods, namely the segmentation
approach ChromHMM [11] and the random forest-based
method REPTILE [13]. A more detailed description of the
implementationof bothmethods can be found in the “Com-
parison to other enhancer predicting methods” section.
To investigate the spatial resolution of our predicted

enhancers, we computed the distance between each
enhancer and the closest accessible region measured with
ATAC-seq (Additional file 1: Figure S3A). The spatial
resolution of our classifier is high (e.g., 135-bp median
distance for the top 3000 predicted enhancers to the
closest ATAC-seq peak), and in comparison with differ-
ent training and feature set combinations of REPTILE, it
becomes apparent that CRUP-EP performs better except
when including additional methylation data and infor-
mation about differentially methylated regions (DMR) to
REPTILE.
We further validated our classifier on mESC+ test sets,

primarily focusing on the area under the precision-recall
(AUC-PR) curve. The enhancers used for testing (as for
training) are based on regions defined by the FANTOM5
project [36] and are chosen and curated as described
in the “Definition of high-confidence enhancer regions”
section. Overall, our classification method yields stable
results across all test sets with an AUC-PR ∈[ 0.91, 0.95]
and an AUC-ROC ∈[ 0.97, 0.99] (Fig. 2a, Additional file
1: Figure S4). Based on the same training set, REPTILE
yields similar test set performance results (AUC-PR ∈
[ 0.9, 0.94], Fig. 2a). We additionally created genome-wide
segmentations utilizing ChromHMMwith different num-
bers of chromatin states K ∈ {5, 8} and defined enhancer-
like states based on the emission distribution (Fig. 2b,
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Fig. 1 Schematic overview. Condition-specific Regulatory Units Prediction (CRUP) is a three-step framework to predict active enhancers (CRUP-EP),
assign them to dynamic conditions (CRUP-ED), and create differential regulatory units (CRUP-ET ). a CRUP-EP accounts for the size of accessible
regions (highlighted in blue) which are flanked by nucleosomes. For each region of interest, binx , a combination of two binary random forest
classifiers, solely based on ChIP-seq HM data, is then used for enhancer prediction. b Based on a permutation test, CRUP-ED computes empirical p
values for each binx across different conditions (dotted and solid rectangles), which are further used to combine and cluster regions. c CRUP-ET
inspects each differential enhancer region (blue ellipse) within its topologically associated domain (blue triangle). To infer putative target genes, the
correlation between probability values and gene expression counts is calculated

Additional file 1: Figure S5). Interestingly, the results clus-
ter into four distinct groups, depending on whether the
enhancer definition is only based on high emission proba-
bilities for H3K4me1 and H3K27ac (K = 5:E5, K = 8:E2) or
additionally on the promoter mark H3K4me3 (K = 5:E2,
K = 8:E5). It also becomes apparent that adding regions
with high H3K4me1 but very low H3K27ac decreases the
performance (K = 5:E3, K = 8:E4). Overall, depending on
the number of pre-defined states and the choice of the
enhancer state, ChromHMM led to strongly varying true-
positive rates (TPRs) ∈[ 0.23, 0.9] and precision values ∈
[ 0.21, 0.67], resulting inmuch less stable results compared
to REPTILE and CRUP-EP.
Next, we investigated the advantage of splitting the

enhancer classification task into two random forests by
comparing CRUP-EP to the results of a combined ran-
dom forest (see the “Combined random forest variant”
section). According to the measured importance of the
individual HM features in the combined random forest, it
appears that H3K27ac contributes the most to its decision
process while features distinguishing specifically active
enhancers from active promoters (H3K4me3 and the
ratio of H3K4me1/H3K4me3), which seem to be picked
up by CRUP-EP, might be underrepresented (see Addi-
tional file 1: Figure S6). We can confirm this observation
when directly comparing enhancer probabilities of our
test set regions between CRUP-EP and the combined clas-
sifier. It becomes apparent that including a second random
forest decreases on average the probabilities for active test
set promoters (Additional file 1: Figure S7), while increas-
ing the probabilities of active enhancers (Additional file 1:
Figure S8).

We also explored a possible improvement of our
enhancer predictions using the very recently published
extreme gradient boosting approach XGBoost ([37], see
“Extreme gradient boosting”) instead of the random forest
algorithm. However, already in the parameter optimiza-
tion step, we can observe that the random forest leads to
similar but slightly superior results (see Additional file 1:
Figures S22, S23, S24).
To validate CRUP-EP on an independent set of

enhancers, we applied our classifier to 25 experimen-
tally validated mESC enhancers from [24], for which we
achieved a high performance (23/25 with predicted prob-
abilities ≥ 0.75, see Additional file 1: Figure S9).
We further validated our called enhancers by comparing

them with 30,767 enhancers defined by the EnhancerAt-
las database for mESC E14 [25]. Here, we could find that
∼ 34% (17,524 regions) of our enhancers directly overlap
with the EnhancerAtlas database. We then applied a chi-
square test of independence to validate this overlap which
resulted in a p value of 3.35e−125 (see the “Chi-square test
of independence” section).
Comparing these results to the predictions based on

REPTILE (using the same training and feature set), we find
that enhancers defined by REPTILE have a bigger overlap
with the EnhancerAtlas database on a percentage basis but
are outnumbered by CRUP-EP in terms of total counts (∼
45% = 13,835 regions). Note that REPTILE implements
a similar peak calling approach as we use in CRUP-EP,
yielding enhancers of length 2000 bp. When extend-
ing the enhancer peaks called by CRUP-EP to the same
length as the predicted REPTILE enhancers (from 1100
to 2000 bp), the difference in the proportional overlaps
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Fig. 2 Performance of enhancer classifiers in murine ESC and across different cell types and species. A Precision-recall curves for CRUP-EP (light
orange lines) and REPTILE (light blue lines) trained on an mESC sample (mESC+) and tested on ten randomly sampled independent test sets. The
curves for the best performances are highlighted in darker colors (area under the curve AUC-PR: CRUP-EP = 0.95, REPTILE = 0.94). Additionally, the
performance results of different ChromHMM segmentations for the same ten test sets are depicted (gray shapes). B ChromHMM emission
probabilities for mESC using five and eight chromatin states, ranging from 0 (white) to 1 (dark blue). C CRUP-EP was trained on and applied to
samples from different cell types and species (human hepatocytes (a–c), mESC (d), mouse adipocytes (e–h), mouse fibroblasts (i, j), mouse
hepatocytes (k, l)). The result can be summarized in a 12× 12 heatmap where each entry is shaded according to the computed AUC-PR (in percent).
The origin of the training data can be found in the rows and the origin of the test sets in the columns. The diagonal shows the performance results
on an independent test set within one sample. For instance, training and applying CRUP-EP in mESC+ (highlighted in red) led to an AUC-PR = 0.93
based on the whole test set. D CRUP-EP was trained on samples from different cell types and species (see C) and applied to mESC+ . Shown are the
number of predicted enhancers which are shared between all classifiers (“consensus”, orange) and which remain after excluding this consensus set
(“without consensus,” blue). Additionally, mean probabilities are displayed for both classes, showing that all enhancer calls yield higher probabilities
within the consensus set

becomes less prominent (39% = 19, 000 regions). On the
other hand, both CRUP-EP and REPTILE achieve similar
results when predicting EnhancerAtlas regions (CRUP-
EP: 45% = 13, 909 regions, REPTILE: 44% = 13, 841
regions). However, when comparing the enhancer calls
using the same width, CRUP-EP is slightly superior com-
pared to REPTILE (CRUP-EP, 52% = 16, 095 regions).
Additionally, we investigated the distribution of our

CRUP-EP enhancer predictions in the genome by dividing
the whole set into 13,426 singletons and 8618 enhancer
clusters of varying length (see the “Enhancer peak calling
and building of enhancer clusters” section). We compared

each enhancer cluster to a list of 927 super-enhancers
(SEs) which was recently published by [38] and found that
over 97% (907) of the SEs overlap with our enhancer clus-
ters and almost all of them overlap with our complete
non-clustered list of predicted peaks (924). This shows
that CRUP-EP is well suited not only to recapitulate pub-
lished enhancer regions but also to capture SEs and other
regions with high enhancer density.
Enhancer predictions are stable across different cell types
and species
To show that CRUP-EP can be reliably applied across var-
ious data sets, we trained our enhancer classifier for 12
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different samples from different cell types and species
(summarized in Additional file 1: Table S2) in the same
fashion as described for mESC+ above. We used each of
the classifiers to predict active enhancers on the test sets
of the remaining 11 samples and calculate the AUC-PR,
resulting in a 12 × 12 AUC-PR matrix which is depicted
in Fig. 2c (for corresponding AUC-ROC results, see Addi-
tional file 1: Figure S10). Within one sample, training and
test sets are independent following the logic described in
the “Definition of the training and feature sets” section).
All classifiers perform well regardless of the test set

they are applied to (AUC-PR ∈[ 0.68, 0.93]). Interestingly,
the performances seem to correlate more with the test
set than with the training set origin, as can be observed
in a vertical trend of the AUC-PR values in Fig. 2c. For
instance, the lowest AUC-PR value with a minimum of
0.68 is achieved when using one of the mouse fibroblast
samples as a test set. On the other hand, when train-
ing the classifier on any mouse fibroblast sample and
testing on a high-quality sample (see Additional file 1:
Figure S11 for quality assessment), such as mESC+, the
performance is very good (AUC-PR ∈[ 0.91, 0.92]). Also,
training and prediction within the same sample (diagonal
entries) rarely result in the best prediction performance
for the corresponding classifier.
Additionally, we trained classifiers separately based on

all cell types and species and applied these to mESC+,
leading to an average of 47,719 predicted enhancer regions
(see Fig. 2d). By overlapping all enhancer calls, we defined
a consensus set of 25,986 regions. We found that all
enhancer calls yielded high mean probabilities within the
consensus set (in the range from 0.73 to 0.85). On the
other hand, enhancer calls excluding the consensus set
yielded much lower probabilities (in the range from 0.57
to 0.61). This shows that high-confidence enhancer calls
with high probabilities can be recapitulated when training
on another tissue or species.
Overall, the best performances across all cell types

and species could be achieved when testing on the
mESC+ sample (AUC-PR ∈[ 0.86, 0.93]). Hence, we use
the mESC+-trained classifier as the pre-trained model
provided in CRUP-EP, which can readily be applied to new
ChIP-seq histone modification data.
Next, we employed the same analysis using REPTILE,

and the resulting AUC-PR matrix (Additional file 1:
Figure S12A) shows that CRUP-EP outperforms REP-
TILE for most of the combinations of different training
and test sets. In addition, we trained REPTILE classifiers
for several other settings and used available pre-trained
REPTILE classifiers (see the “Application of REPTILE”
section) to make predictions across the 12 samples. This
lead to similar or slightly worse results on the FANTOM5-
based test set than when trained on our data (Addi-
tional file 1: Figures S12 and S13).

In addition to validating the transferability of our
approach on defined test sets, we applied the 12 differ-
ent classifiers described above, trained on various tis-
sues, to mESC+ HMs and compared the predictions
with the EnhancerAtlas database [25]. To quantify the
overlap between the EnhancerAtlas predictions and the
CRUP predictions based on the 12 different training sets,
we applied chi-square tests of independence (see the
“Chi-square test of independence” section). The largest p
value we achieve is 5.61e−12 when using predictions based
on mouse hepatocyte #2, which, yet again, reflects the
poor quality of the underlying ChIP-seq histone modifi-
cations. Overall, all chi-square tests lead to a significant
result, meaning that each of the 12 separately trained
classifiers can clearly recognize mESC enhancers in agree-
ment with the EnhancerAtlas database.
In this context, we also explored the effect of the feature

normalization procedure which is integrated in CRUP-EP
(see the “Preparation and normalization of HM counts”
section). To do so, we artificially reduced the number
of reads in our mESC+ sample to mimic different lev-
els of quality and applied our classifier with and without
normalization. The high deviation between the predicted
probabilities (in the range of 0.5) demonstrates the impor-
tance of a proper normalization to ensure comparability
especially between different levels of data quality (Addi-
tional file 1: Figure S14). This observation can also be
confirmed when applying the same analysis to two (not
manipulated) healthy mouse fibroblast samples (see the
“Methods” section). The normalization has a positive
effect on the comparability of the enhancer probabili-
ties which are based on samples with varying quality (see
Additional file 1: Figures S11 and S15).

Identification of condition-specific enhancers
In the following, we will focus on enhancer regions that
are, generally speaking, different in at least one out of
many conditions regardless of the number of analyzed
conditions. A more detailed explanation on how we are
inferring these differential (“condition-specific”) enhancer
regions is given in the “Statistical inference of differences
between two conditions” section.
We applied CRUP-ED (enhancer dynamics) to iden-

tify differential enhancers between murine pluripotent,
mESC+, and differentiated retinoic acid (RA)-induced
stem cells, mESC− (see the “Cell culture and isolation”
section). To this end, enhancer prediction was performed
on both samples using CRUP-EP which was trained
on mESC+ (see the “CRUP-EP: enhancer prediction”
section). Dynamically changing enhancer regions that are
either active in mESC+ (cluster 1) or in the RA-induced
mESC− sample (cluster 2) were identified and further
summarized as explained in the “Clustering of differential
enhancers using “activity pattern”” section.
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From the predicted condition-specific enhancers, a total
of 186 are only active in mESC+ (cluster 1) and 141
regions are predicted to be active solely in mESC− (clus-
ter 2). The differential assignment of predicted enhancers
can be further corroborated by ChIP-seq read count dis-
tributions (Fig. 3a, also shown for a single differential
region in Fig. 3b). The signal for the active enhancermarks
H3K27ac and H3K4me1 is higher in mESC− (orange)
compared to mESC+ (gray) for the displayed regions in
cluster 2. The same trend can also be observed when
investigating chromatin accessibility for the two data
sets which becomes detectable via additional ATAC-seq
experiments (right panel Fig. 3a, bottom panel Fig. 3b).
Further, we investigated the effect of the parameter w0
which is the tested minimum difference in the group aver-
ages used in the permutation test (see the “Statistical infe-
rence of differences between two conditions” section). By
using a much less sensitive value for w0 (w0 = 0.1, default:
w0 = 0.5), we increase the total number of dynamic
enhancer regions (5776 in cluster 1 and 4357 in cluster 2),
while the overall trend in the count distributions remains
the same. However, the peaks are less prominent com-
pared to using the default value of w0, suggesting that the
identified regions are less reliable.
To further evaluate the two differentially active

enhancer clusters, we performed amotif enrichment anal-
ysis for both groups (see the “Motif enrichment analysis”
section), taking the union of all differential enhancers as
the basis for the estimation of the background model. The
complete list of differentially enriched motifs is depicted
in Additional file 1: Figure S16. Using the functional
annotation tool DAVID [39, 40], we could identify sev-
eral transcription factors that show a higher binding site
enrichment in cluster 1 and are part of the signaling
pathways regulating pluripotency of stem cells (OCT4,
HNF1A). In the same way, TFs that are more enriched in
the RA-specific cluster 2 were found to be linked to the
functional categories differentiation and/or developmen-
tal protein (ASCL1, Myod1, Myog, NHLH1, NR2C2). Fur-
thermore, we found retinoic acid receptors (heterodimers)
in our list of differential transcription factor binding
sites (TFBSs) for cluster 2, namely RARA::RXRG and
RARA::RXRA [41–43]. As an example, we chose a pre-
dicted RA-specific enhancer containing a retinoic acid
receptor binding motif, occupancy based on ChIP-seq
and increased ATAC-seq signal upon activation of the
receptor (Fig. 3b).
One way to validate the specific enhancer regions is to

use STARR-qPCR, where a reporter plasmid allows direct
assessment of enhancer activity by quantification of the
reporter gene transcript levels (see the “Enhancer reporter
assay (STARR-qPCR)” section). We compared our pre-
dicted enhancer regions which we found to be differential
between mESC+ and mESC− to an independent list of

16 enhancers which were validated by STARR-qPCR. We
could find an overlap of 2 enhancer regions, one is specif-
ically activated upon retinoic acid treatment (mESC−) the
other one in LIF-induced cells (mESC+). Consistent with
our prediction, we observed RA-specific enhancer activity
for one region (Fig. 3c) whereas the other region recapitu-
lated the condition-specific activity of the LIF-dependent
enhancer (Additional file 1: Figure S17).

Correlation of dynamic enhancers to target genes
By including RNA-seq experiments (see the “Methods”
section), we utilize CRUP-ET (enhancer targets) to link
dynamically changing enhancers to putative target genes.
To do so, we calculate Pearson’s correlation coefficients
between enhancer probabilities of a differential enhancer
region across all samples and normalized expression
counts of promoters that are located within the same
TAD (see the “Regulatory units by a correlation approach”
section). We further describe the dynamically changing
gene-enhancer pairs with a high correlation coefficient as
regulatory units.
We applied CRUP-EP and CRUP-ED (with w0 = 0.3)

to predict enhancers and assign them to different con-
ditions in a time-series experiment performed in mouse
embryo midbrain, spanning 8 time points in total [35].
This results in 1170 differentially active enhancers that
could be grouped and summarized into 91 different clus-
ters using activity pattern (see the “Clustering of diffe-
rential enhancers using “activity pattern”’;’ section). Eight
of these clusters are specific just for 1 condition and are
added to the visualization (Fig. 4a).
Using CRUP-ET, we build 111 regulatory units (corre-

lation coefficient ≥ 0.9) describing putative dependencies
between differential enhancer regions and target genes
located within the same TADs (see the “Processing of
HiC-seq experiments,” section for a description of the
TAD calling strategy). Altogether, themajority of the iden-
tified differential enhancers (∼ 77%) are located in gene-
free regions, whereas the range of gene-enhancer pair
distances is very heterogeneous (here, between 192 and
2,163,000 bp), and the nearest gene is not automatically
the best choice for a target (see Fig. 4b).
We further analyze the connections between one or

many enhancer and one or many promoters as schemati-
cally explained in Fig. 4c. Half of the regulatory units con-
sists of single dynamic enhancer elements which are inter-
acting with only one putative target gene (1:1, 56/111). A
small proportion of the regulatory units rather describe
genes that are correlated tomultiple differential enhancers
at once (many:1, 12/111). Interestingly, several target
genes seem to be regulated by the same enhancer region
(1:many, 43/111) which was also observed by [44].
For three differentially active enhancers, the probability

values over all time points are highly correlated with the
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Fig. 3 Differential enhancers in murine stem cell differentiation. a Differential enhancer regions of pluripotent (mESC+ , gray) and differentiated
(mESC− , orange) cells are colored by their respective enhancer probabilities. All regions can be divided into two clusters according to their
differential activity pattern. Count distributions of HM ChIP-seq and ATAC-seq read counts recapitulate the dynamic behavior in both clusters. The
same trend can also be observed when using a less sensitive setting in the test statistic with a minimum group difference of w0 = 0.1 (default:
w0 = 0.5). b An example for a dynamic enhancer region (chr8:26, 843, 601–26, 845, 600, highlighted in blue) which was predicted to be active in the
differentiated mESC− but not in the pluripotent mESC+ . c The predicted differential enhancer sequence was tested using an enhancer reporter
assay (STARR-qPCR). The difference in the transcript levels of the GFP reporter between mESC− (−LIF/+RA) and mESC+ (+LIF/−RA) as well as
compared to an untreated sample (−LIF/−RA) recapitulates the predicted dynamic activity. The LIF-inducible viral enhancer CMV serves as a
positive control. As a negative control, we chose nc1, which is not active in mouse embryonic stem cells.

dynamic gene expression of Sall4 (Fig. 4d), a known regu-
lator in early embryonic development [45]. Note, that one
of these enhancers lies in the intronic region of another
gene and the other two enhancers are in closer proximity
to the gene Zfp64, which does not show the same dynam-
ics as seen in the enhancer probability values. This further
supports the observation that the gene located nearest to
an enhancer is not automatically the best target. We vali-
date the results with a CaptureC-seq (CC) experiment as
exemplified by [32]. Here, we use interaction counts of
mouse embryo midbrain CaptureC-seq data at day 10.5
with the viewpoint located at the promoter region of

Sall4 (see the “Capture-C experiments for mouse embryo
midbrain” section). Two differentially active enhancer
regions are in close proximity to two of the three
reported CC peaks, and one additional region could
only be found with our CRUP framework, which also
show a slight increase in the interaction profile via visual
inspection.

Regulatory units are well recapitulated by 3D chromatin
structures
To further investigate the connection between predicted
regulatory units and 3D physical interactions between
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Fig. 4 Dynamic enhancer-gene pairs in mouse embryo midbrain. a Dynamic enhancer regions, colored by their respective enhancer probability, for
eight time points (day 10.5 to day 0 after birth (AB)) in mouse embryo midbrain. A clustering was performed based on the pairwise p values.
Enhancer regions that are active in just one condition are highlighted on the right site of the plot. b Distances between dynamic enhancers and
their correlated genes (orange) and the respective nearest genes (blue) show the strong discrepancy between the two strategies to find putative
enhancer targets. c Schematic description of possible relationships between (1 or many) enhancers and (1 or many) target promoters. d Enhancer
probability tracks of the eight time points are summarized on top. Seven differential enhancers could be assigned across all conditions (blue-shaded
rectangles). Of these, enhancer probabilities of three regions (dotted blue arcs) highly correlate (correlation coefficient ≥ 0.9) with the gene
expression of Sall4 (bold, gray arrows), a gene that regulates early embryonic development. CaptureC-seq data (CC) of mouse embryo midbrain at
day 10.5 (yellow histogram) visually recapitulate these regulatory units. Two of three interaction peaks agree with our dynamic regulatory unit
regions (yellow arrows). Additionally, one regulatory unit could be identified solely with CRUP (blue arrow)

regulatory elements, we analyzed ultra-deep coverage Hi-
C maps. We applied CRUP to a (pre-processed) data set
focusing on neural differentiation and cortical develop-
ment in mice [31] comprising ChIP-seq, RNA-seq, and
Hi-C experiments (see the “Methods” section) across
three developmental states: embryonic stem cells (ES),
neural progenitor cells (NPC), and cortical neurons (CN).
We inferred 8810 regulatory units (with a minimum

threshold for the Pearson correlation coefficient of 0.7)
and compared our results to log2 observed/expected
(O/E) normalized Hi-C interaction matrices. Figure 5a
shows a single regulatory unit, where two ES-specific
enhancer regions are linked to the gene Inhbb, which was

already reported by [31] based on enhancers solely active
in ES. The (O/E) normalized Hi-C interaction frequen-
cies across the three developmental states confirm the
observed dynamics. Next, we separately investigated clus-
ters of regulatory units that are specific for only one con-
dition. After dividing each interaction count triplet (ES,
NPC, CN) by its maximum value, the dynamic changes
across the three conditions can be visualized for all regula-
tory units (Fig. 5b). These results not only confirm that cell
type-specific gene-enhancer contacts are established con-
comitant with gene expression as already stated by [31],
but they also show that dynamic enhancer activity goes
hand in hand with physical changes in the 3D chromatin
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Fig. 5 Differential regulatory units across mouse neural differentiation. a Interaction matrices (log O/E) of three Hi-C experiments of mouse
embryonic stem cells (ES), neural progenitor cells (NPC), and cortical neurons (CN). A differential regulatory unit is indicated with dark blue
rectangles, showing the interaction of two dynamic active enhancer regions (light blue) and the correlated gene Inhbb. b Differentially active
enhancers were filtered for regions that are only active in ES (I), only active in NPC (II), and only active in CN (III). For these regions, normalized (log
O/E) chromatin interaction counts that overlap the predicted differential regulatory units were re-scaled to [ 0, 1], such that the highest interaction
count for each region is 1. The results of all regulatory units (yellow) are compared to a subset where just target genes with the highest correlation
were taken into account (orange). Additionally, for each differential enhancer in this subset, the nearest gene was also taken as an alternative target
(blue). All three methods reflect the expected dynamic behavior, meaning that the scaled interaction counts are close to 1 for the respective
highlighted condition but lower in the other two conditions. It also becomes apparent that choosing the closest gene as a target might not always
be the best choice as can be seen for the regions I and II

organization. Additionally, we created a subset of all regu-
latory regions where the gene with the highest correlation
coefficient is chosen as the only target gene.We then com-
pared the chromatin interaction counts overlapping this
subset of 2537 regulatory regions to an alternative strategy
where not the best correlating gene is chosen as the target
but the gene that is nearest to the differential enhancer.
As shown in Fig. 5b, choosing the closest gene to define a
regulatory unit does not always lead to the best results.

Regulatory units in the context of a rheumatoid arthritis
model
So far, we evaluated our proposed framework CRUP to
create condition-specific regulatory units on experiments
focusing on developmental changes. Next, we apply CRUP
to a complex disease study which is part of the German
Epigenome Program [27], with the aim to suggest regula-
tory differences between two healthy mice and two mice
which are affected by destructive rheumatoid arthritis (Rh.
Arth.-like, see the “Methods” section), an autoimmune
inflammatory disease [46].
We performed a motif analysis on 212 differential

enhancer regions (with w0 = 0.3) as described in the
“Motif enrichment analysis” section. The TF motifs for
KLF4, IRF1, SPI1, PLAG1, and USF1 show higher enrich-
ment in the cluster which contains enhancers that are
solely active in the Rh. Arth.-like samples and were already
shown to be connected (directly or indirectly) to rheuma-
toid arthritis [47–52]. A list of all enriched motifs is given
in Additional file 1: Figure S18.

We identified 268 differential regulatory units of which
78.7% (211) describe gene-enhancer pair activity that
can only be found in the affected mice. A pathway anal-
ysis was performed on all putative disease-associated
target genes using the Kyoto Encyclopedia of Genes
and Genomes (KEGG) [53–55], a curated database of
molecular pathways and disease signatures (see the
“KEGG pathway analysis” section). The top 5 result-
ing KEGG pathways (Table 1) have been previously
(directly or indirectly) associated with rheumatoid
arthritis [56–60]. A complete list of all predicted
gene-enhancer pairs associated with at least 1
of the top 5 KEGG pathways can be found in
Additional file 1: Table S7.
One example of an Rh.Arth.-like specific enhancer-

gene pair is shown in Fig. 6, where the correlated
putative target gene Cxcr4 is part of the most sig-
nificant KEGG pathway (chemokine signaling path-
way). Interestingly, the TF motif for interferon regula-
tory factor 1 (IRF1), which was enriched in the whole
Rh.Arth.-like specific enhancer cluster, is also signifi-
cantly enriched in the shown differentially active enhancer
region (empirical p value, 3.293121e−6; fold enrichment:
18.77985) and was previously connected to rheumatoid
arthritis [48].
In summary, our framework CRUP is well suited to

detect candidate enhancer regions that act dynamically in
different disease states as well as to link these enhancers
to differentially expressed target genes building putative
disease-associated regulatory units.
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Table 1 KEGG pathway analysis results

Pathway ID Pathway N Number of genes p value

path:mmu04062 Chemokine signaling pathway 20 11 1.512658e−05

path:mmu04380 Osteoclast differentiation 16 9 7.628621e−05

path:mmu05168 Herpes simplex virus 1 infection 16 9 7.628621e−05

path:mmu05163 Human cytomegalovirus infection 17 9 1.428006e−04

path:mmu04621 NOD-like receptor signaling pathway 8 6 1.466646e−04

Shown are the top five KEGG pathways overrepresented in the putative target genes which are highly correlated with enhancer regions solely active in the samples with
destructive arthritis (genes). The list is sorted by the p value for overrepresentation (N is the number of all genes in the respective pathways)

Discussion
In this work, we described the three-step framework
Condition-specific Regulatory Units Prediction (CRUP)
to identify enhancer regions in a genome-wide manner,
assign the predicted enhancers to different conditions,
and subsequently correlate the differential enhancers to
putative target genes within their topologically associated
domain to build condition-specific regulatory units.
We showed that our random forest-based enhancer

classifier CRUP-EP is reliable, also when applied across
different cell types and species without the need for re-
training, solely depending on three core HMs. Our results
show that the prediction performance of CRUP-EP across
different cell types and species depends rather on the test
than on the training data. We speculate that differences
in ChIP-seq quality for certain training regions can be
tolerated during the learning process and are not crucial
for finding enhancer-specific HM pattern. However, for
test regions, poor ChIP-seq signals very likely result in a
decrease of performance. Another factor is the quality of
the active enhancers which we defined based on the FAN-
TOM5 database (see Additional file 1: Table S4). While

some weak or even mislabeled enhancers (false positives)
in the training set still allow for a good enhancer represen-
tation by the classifier in terms of HM signals, mislabeled
enhancers in the test set lead to false-negative predictions
and thus directly reduce the recall results. Further, the
highest number of suitable FANTOM5 experiments for a
confident enhancer definition was available for the mESC
data set, which shows the best test set performance for
almost all classifiers.
We further showed that our enhancer classification

approach outperforms the unsupervised genome segmen-
tation tool ChromHMM and is comparable to another
state-of-the-art random forest-based approach, REPTILE.
In terms of transferability across different cell types and
species, our classification approach even outperforms
REPTILE. Although the basic concept of the two ran-
dom forest-based methods is similar, essential differences
lead to a slightly better performance of CRUP. One major
advantage is to split the enhancer prediction into two
separate tasks which we demonstrated by training a com-
bined random forest and comparing the prediction results
on active test set enhancers and promoters to CRUP-EP.

Fig. 6 TAD region containing a differential regulatory unit in the context of rheumatoid arthritis. Enhancer probabilities of two healthy mice (gray)
and two Rh. Arth.-like mice (orange). One enhancer in this region (blue rectangle, chr1:128722201–128722800) was found to be only active in the
diseased samples. Using RNA-seq experiments performed on the same samples (displayed raw counts are cut at a maximum of 1500), gene
expression of the gene Cxcr4 highly correlates with the probabilities of the differential enhancer (orange arrows). The gene is part of the chemokine
signaling pathway and also known to play a role in rheumatoid arthritis



Ramisch et al. Genome Biology          (2019) 20:227 Page 12 of 23

We found that the two-tier random forest setup has on
average higher predicted probabilities for the enhancers
and lower for the active promoters. Furthermore, we spec-
ulate that the main contribution to the resolution perfor-
mance of CRUP-EP comes from the fine-scaled feature set
which captures the structure of an active region at a high
resolution according to the observed feature importance.
This became most apparent when comparing the spatial
resolution to REPTILE based on the exact same train-
ing and feature setting. Another reason for the varying
performance results between REPTILE and our classifier
across cell types/species could lie in the different normal-
ization strategies. REPTILE does not offer an integrated
normalization across several samples but instead gives
recommendations how to prepare the input data which
we followed in our comparative analysis. We show that
a quantile normalization to the corresponding distribu-
tion of the data set used for training is crucial to achieve
similar distributions of genome-wide probabilities, espe-
cially when comparing data sets of different quality. We
therefore incorporated this in our framework.
In the second step, CRUP-ED, we assign enhancers

to different conditions using a permutation test on the
enhancer probabilities obtained by the first module of
CRUP. This approach can be applied to more than two
conditions as the test is performed in a pair-wise manner.
Using the resulting p values, we are able to create an activ-
ity pattern for each single bin which can then be used to
combine and cluster all differentially active regions. We
demonstrate that the assignment of clusters across dif-
ferent conditions is in good agreement with HM counts
as well as with independent ATAC-seq data. Additionally,
we could validate one candidate RA-specific and one LIF-
specific enhancer region by STARR-qPCRwhich confirms
our findings.
Limitations arising from the raw data and from the

enhancer prediction approach are consequently also
reflected in the predicted differential enhancer regions.
For instance, due to poor quality of individual HM ChIP-
seq experiments, the enhancer predictions might vary
across samples in one condition and could therefore influ-
ence the results in the permutation test. Increasing the
number of replicates could be one way to overcome
this drawback since the implemented weighted differ-
ence between two conditions benefits from an enhanced
sample size.
Lastly, we utilize CRUP-ET to integrate further genomic

information, obtained from RNA-seq and Hi-C experi-
ments, to link condition-specific enhancers to putative
target genes. To this end, we compute the correlation
between normalized gene expression counts and enhancer
probability values across all samples within the same TAD
and put a strict threshold on the results to build high-
confidence regulatory units. Next, we evaluate our results

by comparing regulatory units with Capture-C and Hi-C
experiments. We could show that our inferred condition-
specific gene-enhancer pairs are well recapitulated by
physical dynamics in chromatin structures. To reduce
the search space of interacting promoter/gene-enhancer
pairs, we use TADs as a more sophisticated approach
to form regulatory units rather than simply applying a
distance-based window. We show that the range in which
differential enhancers and putative target genes are con-
nected varies and that the nearest gene is often not the
gene with the highest correlation. The resolution of Hi-C-
based experiments is still not on a single base pair level
and might lead to wrongly associated promoter/gene-
enhancer pairs, especially because the approach is also
highly dependent on the performance of the TAD call-
ing algorithm. We are utilizing TADs from murine stem
cell experiments, to reduce the search space for detect-
ing regulatory units for all the presented examples. We
argue that these structures are highly stable across cell
types and conserved in related species as observed in
recent studies [18, 61]. However, it was also shown that
structural differences between conditions occur, espe-
cially on a low-scale sub-TAD level [31]. Furthermore, the
3D landscape may change dramatically when structural
variations disrupt the boundary structure as for exam-
ple shown by [62]. In the future, condition-specific Hi-C
experiments could further help the presented approach
in linking differentially active enhancers to putative
target genes.
The complete framework was further applied to a com-

plex disease study to identify differential regulatory units
associated with rheumatoid arthritis. By applying a motif
analysis to the resulting differentially active enhancers, we
were able to connect several regions to TF motifs that
are linked to the disease. In combination with a standard
KEGG pathway analysis on the putative target genes, we
could show that our framework is well suited to iden-
tify candidate regulatory regions that behave differently
depending on the disease state. To further validate these
regions, additional follow-up experiments could comple-
ment the presented analysis.
The input to CRUP consists of a number of HM

ChIP-seq experiments, each of which could in princi-
ple be analyzed by the eye. Interpreting the combination
of experimental tracks and, worse, many tracks under
many conditions is, however, beyond the capacity of the
human brain. As a result, many epigenetic experiments
in the end get exploited only for studying the vicinity
of a particular gene and do not serve the purpose of
an unbiased, whole-genome inquiry. We thus see our
method as an information integrator that reduces the
diverse layers of information into an interpretable pre-
dictor, in turn allowing to rank signals across the entire
genome.
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Conclusions
In summary, we presented the three-step framework
Condition-specific Regulatory Units Predictions (CRUP)
to identify and assign differentially active enhancer
regions in different states and link them to putative target
genes within the same topologically associated domain.
The presented software is user-friendly as it aims to

overcome the time-consuming difficulties when compar-
ing single read count tracks for several features and con-
ditions. The framework is implemented in R and can
be executed by solely providing mapped read counts for
ChIP-seq and RNA-seq experiments.
Our pre-trained classifier can be used without the need

of re-training and also outperforms the existing methods
especially when applied across various tissues and species.
The resulting dynamically changing enhancer-gene pairs
are in good agreement with 3D interactions and can be
used to further complement studies that aim to unravel
dynamic epigenetic behavior across different conditions.

Methods
Cell culture and isolation
Mouse embryonic stem cells
E14 mouse embryonic stem cells (mESCs) were cultured
and routinely passaged every 2 days in ES medium plus
leukemia inhibitory factor (LIF) in order to maintain
the pluripotent state of the cells [63, 64]. To exit from
pluripotency and push the cells towards differentiation,
LIF was withdrawn and retinoic acid (RA) was added to
the medium for a short pulse of 4 h.
All experimental data related to these samples are acces-

sible via Gene Expression Omnibus (GEO:GSE120376).

Mouse synovial fibroblasts
Murine synoial fibroblasts (SF) were isolated by enzy-
matic digestion from the hind paws of 12-week-old hTN-
Ftg (reactive arthritis, strain Tg197-overexpressing human
TNF) and wildtype (healthy control) as described before
[65, 66].

Mouse adipocytes
Samples for adipocytes were isolated by collagenase treat-
ment for 5 min followed by 5 min of collagenase inactiva-
tion as described before [67]. After centrifugation, the fat
layer was collected.

Mouse hepatocytes
Primary mouse hepatocytes were obtained from two
female mice (C57BL/6J x DBA/2 background) at the age
of 9 weeks. The isolation of primary mouse hepatocytes
was performed by a two-step EDTA/collagenase perfusion
technique as described by [68].

Human hepatocytes
Primary human hepatocytes were obtained from three
different female donors (age 28–70 years) undergoing

surgery due to primary or secondary liver tumors. Hepa-
tocytes were isolated from healthy liver tissue remaining
from liver resection as described in [68]. Informed con-
sent of the patients for the use of tissue for research
purposes was obtained, and experiments were approved
by the local ethical committees.

Processing of histone modification ChIP-seq data
For all biological samples presented in this study, ChIP
against six core HMs, H3K27ac, H3K27me3, H3K4me1,
H3K4me3, H3K36me3, andH3K9me3, was performed. As
a control served the sheared chromatin without antibody
(input). We utilized the tool plotFingerprint which is part
of the deepTools project [69] to assess quality metrics for
all ChIP-seq experiments.
Where we need to visualize read count enrichments in

particular genomic regions, we employ the tool plotHe-
atmap which is also part of the deepTools project [69].

Mouse embryonic stem cells
6 × 105 low passage (< 10) E14 cells were cultivated for
48 h in regular ES medium containing LIF. Four hours
prior to cross-link, cells were treated with LIF or RA.
Sequencing libraries were prepared, and the resulting
DNA fragments were paired-end 50 bp sequenced on a
Illumina HiSeq 2500 device. Raw sequencing reads were
subsequently aligned to the genome assembly GRCm38
with STAR [70], and duplicates were removed using
Picard tools [71].

Mouse synovial fibroblasts
ChIP-seq from 2 × 106 cells was carried out as described
before [67]. Resulting DNA fragments were paired-end
50 bp sequenced on a Illumina HiSeq 2500 device, and raw
sequencing reads were aligned to the genome assembly
GRCm38 using BWA-MEM [72, 73], and duplicates were
removed using Picard tools [71].

Mouse adipocytes
For mouse adipocytes, chromatin from fixed cells has
been extracted and sonicated for 15 min using Covaris
S220 sonicator. Resulting DNA fragments were paired-
end 50 bp sequenced on a Illumina HiSeq HiSeq 2500
device. Raw sequencing reads were aligned to the genome
assembly GRCm38 with BWA-MEM [72, 73], and dupli-
cates were removed using Picard tools [71].

Mouse hepatocytes
ChIP-seq was performed using 1 × 106 primary mouse
hepatocytes as was previously described [74] with minor
modifications. All six ChIP and input libraries from each
sample were then pooled and paired-end sequenced on
an HiSeq 2500 device. Raw sequencing reads were aligned
to the genome assembly GRCm38 with STAR [70], and
duplicates were removed using Picard tools [71].
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Human hepatocytes
ChIP-seq was performed using 1 × 106 primary human
hepatocytes as was previously described [74] with minor
modifications. All six ChIP and input libraries from each
sample were then pooled and paired-end sequenced on an
HiSeq 2500 device. Raw sequencing reads were aligned to
the genome assembly hs37d5 with BWA-MEM [72, 73],
and duplicates were removed using Picard tools [71].

Mouse embryomidbrain
Raw reads from ChIP-seq experiments were downloaded
from GEO (GEO:GSE88517 [35]) and aligned to the
genome assemblyGRCm38with BWA-MEM [72, 73], and
duplicates were removed using Picard tools [71].

Samples in the context of mouse neural differentiation
Raw data from RNA-seq for the three in vitro-generated
murine cell types ES, NPC, and CN were downloaded via
GEO (GEO:GSE96107 [31]) and aligned to the genome
assembly GRCm38 with BWA-MEM [72, 73]. Mapped
reads of biological duplicates were pooled, and duplicates
were removed using Picard tools [71].

Processing of RNA-seq experiments
Mouse embryonic stem cells
2 × 105 low passage (< 10) E14 cells were plated and
cultivated for 48 h in regular ES medium containing LIF.
Four hours prior to harvest, the medium was exchanged
and cells were treated with LIF or RA. Cells were har-
vested, and three biological triplicates were subjected
to RNA extraction. Sequencing libraries were generated
from total mRNA input, and high-throughput sequenc-
ing was performed on an Illumina HiSeq 2500 device
resulting in 50-bp paired-end reads. Raw reads were sub-
sequently mapped to the mouse genome build GRCm38
using BWA-MEM [72, 73].

Mouse synovial fibroblasts
Long RNA libraries were prepared from total mRNA input
and sequenced on an Illumina HiSeq 2500 device result-
ing in 50-bp- and 100-bp-long paired-end reads. Raw
reads were subsequently mapped with TopHat2 [75] to the
mouse genome build GRCm38.

Mouse adipocytes
RNA isolation for cells was performed using 1 ml TRIzol
per sample followed by isopropyl alcohol/ethanol precip-
itation. Sequencing libraries were generated from total
mRNA input, and high-throughput sequencing was per-
formed on an Illumina HiSeq 2500 device resulting in
100-bp paired-end reads. Raw reads were mapped with
TopHat2 [75] to the mouse genome build GRCm38

Mouse hepatocytes
RNA was extracted from ∼ 5 × 106 hepatocytes homoge-
nized in 1 mL Trizol. Sequencing libraries were generated

from total mRNA input using TruSeq v3 Kit (Illumina)
according to the manufacturer’s instructions and high-
throughput sequencing was performed on an Illumina
HiSeq 2500 device resulting in 100-bp paired-end reads.
Raw reads were mapped to the mouse genome build
GRCm38 using BWA-MEM [72, 73].
Human hepatocytes
RNA was extracted from ∼ 5 × 106 hepatocytes homoge-
nized in 1 mL Trizol. Sequencing libraries were generated
from total mRNA input using TruSeq v3 Kit (Illumina)
according to the manufacturer’s instructions, and high-
throughput sequencing was performed on an Illumina
HiSeq 2500 device resulting in 100-bp paired-end reads.
Raw reads were mapped with TopHat2 [75] to the genome
build hs37d5.
Mouse embryomidbrain
Raw reads from RNA-seq experiments were downloaded
from GEO (GEO:GSE88517 [35]) and aligned to the
genome assembly GRCm38 with STAR [70].

Samples in the context of mouse neural differentiation
Raw data from RNA-seq for the three in vitro-generated
murine cell types ES, NPC, and CN were downloaded via
GEO (GEO:GSE96107 [31]) and aligned to the genome
assembly GRCm38 with BWA-MEM [72, 73]. Mapped
reads of biological duplicates were pooled and sub-
sequently filtered for a minimum mapping quality of
MAPQ = 10. Duplicates were removed using Picard
tools [71].

Processing of DNase-seq experiments
To compare open chromatin sites to HM signals, read
counts from DNase-seq experiments were summarized
for adjacent 100-bp bins using the R package bamPro-
file [76]. Read count enrichments are visualized with the
plotHeatmap funciton implemented in the software pack-
age deepTools [69].

Mouse embryonic stem cells
Raw reads from DNase-seq experiments from mESCs
(E14, embryonic day 0) were downloaded from GEO
(accession Nr.:GSM1014154) and aligned to the genome
assembly GRCm38 with BWA-MEM [72, 73]. Duplicates
were further removed using Picard tools [71].

Mouse synovial fibroblasts
5 − 7 × 106 nuclei were digested with DNaseI in five dif-
ferent dilutions as described before [77]. Raw sequencing
reads were aligned to the genome assemblyGRCm38 with
BWA-MEM [72, 73], and duplicates were removed using
Picard tools [71].

Mouse adipocytes
The nuclei extracted from ∼ 10× 106 nuclei by treatment
with IGEPAL were digested with different concentrations
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of DNaseI as described before [77] and kept at 4 ◦C
until further processing. Sequencing libraries were pre-
pared and sequenced on an Illumina HiSeq 2500 device
resulting in 100-bp-long paired-end reads. Raw sequenc-
ing reads were aligned to the genome assembly GRCm38
with BWA-MEM [72, 73], and duplicates were removed
using Picard tools [71].

Mouse hepatocytes
The nuclei extracted from ∼ 10× 106 nuclei by treatment
with IGEPAL were digested with different concentrations
of DNaseI as described before [77] and kept at 4 ◦C
until further processing. Sequencing libraries were pre-
pared and sequenced on an Illumina HiSeq 2500 device
resulting in 100-bp-long paired-end reads. Raw sequenc-
ing reads were aligned to the genome assembly GRCm38
with BWA-MEM [72, 73], and duplicates were removed
using Picard tools [71].

Human hepatocytes
The nuclei extracted from ∼ 10× 106 nuclei by treatment
with IGEPAL were digested with different concentrations
of DNaseI as described before [77] and kept at 4 ◦C until
further processing. Sequencing libraries were prepared
and sequenced on an IlluminaHiSeq 2500 device resulting
in 100-bp-long paired-end reads. Raw sequencing reads
were aligned to the genome assembly hs37d5 with BWA-
MEM [72, 73], and duplicates were removed using Picard
tools [71].

Processing of ATAC-seq experiments frommESC
2 × 105 low passage (< 10) E14 cells were cultivated for
48 h in regular ES medium containing LIF. Four hours
prior to harvest, cells were treated with LIF or RA (1 μM).
Seventy-five thousand cells per treatment were subjected
to transposition reaction and PCR amplification of acces-
sible regions by Omni-ATAC-seq as described previously
by [78]. Sequencing libraries were constructed, and DNA
fragments were paired-end 50 bp sequenced on a Illumina
HiSeq 4000 device. Raw reads were subsequently aligned
to the mouse genome build GRCm38m using BWA-MEM
[72, 73], and duplicates were removed upon filtering using
SAMtools [79]. ATAC-seq peaks were idenitfied using
MACS2 [80].

Enhancer reporter assay (STARR-qPCR)
STARR-qPCR was performed by amplifying the region of
interest by nested PCR from genomic DNA derived from
E14 cells using standard PCR procedures. The negative
(GR responsive element) and positive (CMV enhancer)
control regions were ordered as gBlocks (IDT). DNA
fragments were subsequently cloned into the STARR-seq
screening vector (Addgene #71509 [30]) using In-Fusion
HD Cloning Kit (Takara/Clonetech). This reporter plas-
mid allows direct assessment of enhancer activity on

transcription by quantification of the GFP reporter gene
transcript levels. For transfection of reporter plasmids,
E14 mouse ESCs were plated at density of 2.5 × 104
cells/well of a 24-well plate with ESC medium supple-
mented with 20% FBS and LIF. The next day, cells were
washed with PBS and fresh ESC medium was added.
Subsequently, cells were transfected with correspond-
ing reporter plasmid using Lipofectamin 200 (Invitrogen)
according to themanufacturers’ instructions. Twenty-four
hours after transfection, cells were harvested and sub-
jected to RNA extraction (RNeasy Mini Kit, Qiagen),
followed by cDNA synthesis (PrimeScript RT Reagent
Kit, Takara, using oligodT and random hexamer primers).
Reporter transcript levels were quantified by qPCR with
primers specific for GFP and normalized to the expression
of two housekeeping genes (Rpl19 and Actb).
The experiments were conducted for three biological

replicates and standard qPCR methods with technical
duplicates.

Processing of HiC-seq experiments
The Juicertools command dump [81] was used to extract
data from Hi-C archives associated with three in vitro
generated murine cell types ES, NPC, and CN [31]:

• http://hicfiles.s3.amazonaws.com/external/bonev/
ES_mapq30.hic

• http://hicfiles.s3.amazonaws.com/external/bonev/
NPC_mapq30.hic

• http://hicfiles.s3.amazonaws.com/external/bonev/
CN_mapq30.hic

With this, each matrix is Knight-Ruiz (KR) normalized
[82] at 10-kb resolution, and the observed/expected (O/E)
ratio is computed. For visualization, O/E interaction maps
were further log2 converted and negative values were
set to 0. Additionally, topologically associated domains
(TADs) were identified by utilizing TopDom [83] on 25-
kb binned and KR-normalized matrix based on murine
stem cells (ES) using a window of 750 kb (30 × 25 kb)
for the TopDom algorithm. These regions were used
to reduce the search space for promoter/gene-enhancer
interactions.

Capture-C experiments for mouse embryo midbrain
Capture-C profiles from mouse embryo midbrain (day
10.5) were downloaded from GEO (GEO:GSE84795 [32]),
and coordinates were transferred to the mouse genome
build GRCm38 utilizing the function liftOver which is
implemented in the R package rtracklayer.
CRUP-EP: enhancer prediction

Preparation and normalization of HM counts
Histone modification count signals are summarized for
adjacent non-overlapping 100-bp bins utilizing the R

http://hicfiles.s3.amazonaws.com/external/bonev/ES_mapq30.hic
http://hicfiles.s3.amazonaws.com/external/bonev/ES_mapq30.hic
http://hicfiles.s3.amazonaws.com/external/bonev/NPC_mapq30.hic
http://hicfiles.s3.amazonaws.com/external/bonev/NPC_mapq30.hic
http://hicfiles.s3.amazonaws.com/external/bonev/CN_mapq30.hic
http://hicfiles.s3.amazonaws.com/external/bonev/CN_mapq30.hic
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package bamProfile [76], following a log2 input normaliza-
tion (with pseudo count of 1) of the raw counts. We com-
pute the log2 ratio (also with pseudo count of 1) between
H3K4me1 and H3K4me3 after shifting the distribution of
their input-normalized count values to ≥ 0.
Before making predictions on a sample with our clas-

sifier, the input-normalized count values are quantile
normalized to the corresponding distributions of the
data used for training. This is done with the normal-
ize.quantiles.target function of the R package preprocess-
Core [84].
In order to compare the effects of quantile normaliza-

tion on the predicted probabilities, we randomly reduced
the number of reads in the aligned ChIP-seq histone mod-
ifications from our retinoic acid-induced mESC sample
(mESC+) resulting in 10 to 90% of the original amount of
reads using samtools [79].
Definition of high-confidence enhancer regions
One specific hallmark for enhancer activity was found to
be the initiation of RNAPII transcription, which was used
by the FANTOM5 project [36]. Short RNA-seq and CAGE
were applied to a variety of different cell types and tissues
to detect bidirectional capped transcripts. CAGE count
data were downloaded for mouse adipocyte cells, mouse
embryonic stem cells, mouse fibroblast cells, and human
and mouse liver cells from
http://fantom.gsc.riken.jp/5/datafiles/latest/extra/

Enhancers/ (expression count matrix).
Depending on the number of available replicates for

each cell line, we chose different cutoffs for the CAGE
counts to define the first set of putative enhancers accord-
ing to the summary in Additional file 1: Table S4. To
get our final high-confidence enhancer set, we centered
the putative FANTOM5 enhancers based on DNase-seq
peaks and discarded the enhancers without any overlap
with DNase-seq peaks as summarized in Additional file 1:
Table S5. To convert the genome coordinates of the
enhancer regions given by the FANTOM5 project from
genome build GRCm37 to GRCm38, we applied the Batch
Coordinate Conversion tool liftOver from the UCSC
Genome Browser Utilities [85].

Definition of active and inactive promoter regions
For murine ESC, adipocytes, and liver and fibroblast cells,
and for human liver cells, we computed FPKM gene
expression values from RNA-seq data.
Based on the gene annotations from the Ensembl data

base (GRCh37.70 and GRCm38.90), we defined a gene
with an FPKM value greater than 2 as active and a gene
with FPKM value of 0 as inactive (0 < FPKM ≤ 1 was not
used for training). In case replicates were available, all of
the replicates had to fulfill the chosen FPKM cutoff to be
accounted to the one or the other class. An exemplary dis-
tribution of FPKM values, here for mESC+, can be seen

in Additional file 1: Figure S19. Building up on this, we
then defined an inactive promoter as the 100-bp bin over-
lapping the TSS of an inactive gene. An active promoter
is defined as the 100-bp bin having an overlap with the
TSS of an active gene as well as with a DNase-seq peak in
the corresponding cell type. An overview can be found in
Additional file 1: Table S6.

Enhancer prediction based on random forests
We use a combination of two binary random forest clas-
sifiers for our enhancer prediction, where both consist
of M = 100 decision trees. The first classifier (classifier
1) learns the difference between active genomic regions
(active promoters, enhancers) and inactive genomic
regions (inactive promoters, remaining intra- and inter-
genic regions). The second one (classifier 2) learns to
distinguish enhancers from active promoters, such that
it gives the probability of a region to be an enhancer
assuming it is an active region. The final enhancer proba-
bility assigned to each 100-bp bin, binx, in the fragmented
genome is computed as the product of both classifiers
describing the joint probability that a region is active and
an active enhancer at the same time:

P(binx = active enhancer) = P(binx = active)
︸ ︷︷ ︸

classifier 1

· P(binx = active enhancer | binx = active)
︸ ︷︷ ︸

classifier 2

.
(1)

Definition of the training and feature sets
In the two distinct training sets for classifiers 1 and 2,
we emulate a typical genome composition as reported,
e.g., in [86]. The training set of classifier 1 is composed
of 10% enhancers, 5% active promoters, 5% inactive pro-
moters, and 10% intragenic and 70% intergenic regions,
summing up to 1000 regions in total. Classifier 2 is trained
on 66.6̄% enhancers and 33.3̄% active promoters. Here, we
keep the same enhancer/promoter ratio and total num-
bers than in the first training set, i.e., we always use 150
regions selected according to these rules. Overall, this
also serves the purpose of adequately reflecting the imbal-
ance between enhancers and non-enhancer regions in the
genome.
The feature set, which is also chosen individually for

the two classifiers, is derived from summed and normal-
ized ChIP-seq read counts for the three core HMs. For
classifier 1, we consider only H3K27ac, whereas for clas-
sifier 2, we consider all three core HMs as well as the
H3K4me1/me3 ratio.
Since we want to represent the physical structure of

an enhancer (nucleosome - accessible region - nucleo-
some), we divide a large window of 1100 bp into 11
non-overlapping bins, i.e., the center bin (binx) plus N =
5 bins on either side, resulting in a total number of 11

http://fantom.gsc.riken.jp/5/datafiles/latest/extra/Enhancers/
http://fantom.gsc.riken.jp/5/datafiles/latest/extra/Enhancers/
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features for classifier 1 and 11 · 4 = 44 features for
classifier 2.
The number of neighboring bins N in the feature set

and the number of decision trees M in the random for-
est are parameters that we optimized according to the
description in the following section.

Parameter tuning
We used fivefold cross-validation over 10 different train-
ing seeds to find the optimal number of decision trees
M ∈ {20, 40, . . . , 200} and neighboring windows N ∈
{0, 1, . . . , 15}. Each of the 10 training sets used is cho-
sen as described in the previous paragraph. Based on the
AUC-PR (area under the PR curve) performances (see
Additional file 1: Figure S20, and also Additional file 1:
Figure S21 for the AUC-ROC results), we fixed the combi-
nation of N = 5 neighboring windows andM = 100 trees
for both classifiers. With the optimized parameter choice,
we trained classifiers 1 and 2 on 2 final randomly sampled
training sets which can have a possible overlap with the
10 training sets used for parameter tuning. The parameter
setting of N = 5 andM = 100 is used in all our analyses.

Combined random forest variant
In order to assess the advantage of training 2 separate
random forests, we trained a single random forest classi-
fier on the mESC+ data set, which learns to distinguish
enhancers from the rest of the genome in 1 step. This
classifier is based on H3K27ac, H3K4me1, H4K4me3, and
the ratio H3K4me1/H3K4me3 and also uses 100 decision
trees and normalized read counts over 11 individual non-
overlapping bins per HM as features. The training set
consists of 10% FANTOM5-based enhancers representing
the positive set, and 5% active promoters, 5% inactive pro-
moters, and 10% intragenic and 70% intergenic regions in
the negative set. In total, the training set sums up to 1000
regions.
Extreme gradient boosting
We replaced the two random forest classifiers in our
framework by the very recent extreme gradient boost-
ing approach “XGBoost” [37] to check for a possible
improvement of performance. Specifically, we performed
the comparison in the cross-validation step using the same
tuning parameters as for the random forest, i.e., the num-
ber of neighboring windows and the number of decision
trees (parameter name: nrounds). We used the R package
“xgboost” [87] and trained the classifier with the default
parameters.

Enhancer peak calling and building of enhancer clusters
Genome-wide predictions result in enhancer probability
values for each 100-bp bin in the genome which are fur-
ther summarized to define enhancer peaks. To this end,
all bins with a probability ≥ 0.5 are sorted in descending
order according to their probability value and expanded

by five bins up and downstream resulting in a window
length of 1100 bp. By going through the sorted list of
high-probability regions, starting with the highest prob-
ability, all windows that overlap the current window are
discarded. This results in a sorted list of non-overlapping
enhancer peaks with a length of 1100 bp.
Enhancer peaks are further summarized into enhancer

clusters solely considering the distance between them
(maximum distance of 12.5 kb), which partly reflects the
definition of super-enhancers as stated by [26] and [88].

Definition of spatial resolution
We define the spatial resolution of a predicted enhancer
as the distance between the center of the enhancer and the
closest accessible region measured with ATAC-seq. We
take either the ATAC-seq summit or the start/end posi-
tion of the ATAC-seq peak as reference for the distance
evaluation.
The spatial resolution of a set of predicted enhancers is

defined as themedian of the individual enhancer distances
to the closest ATAC-seq peak. Here, we exclude enhancers
that are more than 1 kb away from an accessible region
from the median calculation.

CRUP-ED: enhancer dynamics
Statistical inference of differences between two conditions
Enhancer probabilities for all 100-bp bins and samples are
collected in a matrix A = (Axi) where Axi corresponds to
binx in sample i. In the following, we denote by AC1 =
(Axi)i∈C1 the submatrix of A with columns corresponding
to samples from condition C1 (applies equally for condi-
tion C2). As the number of samples in each group is usu-
ally very small, we perform a non-parametric permutation
test on the data set to compute an empirical distribution.
This approach was already introduced in earlier studies,
for example, by [89]. First, all enhancer probabilities Axi
are shuffled, and the test statistic Tx is then calculated for
each binx to obtain the weighted difference between the
two conditions C1 and C2:

Tx = μC1 − μC2 − w0
S�

, (2)

where μC1 = μ(AxC1) and μC2 = μ(AxC2) are the respec-
tive group means for binx. The parameter w0 defines the
minimum difference between them, and the tested null
hypothesis can be formulated as H0 : |μC1 − μC2 | ≤ w0.
We choose w0 = 0.5 as the default minimum group dif-
ference (if not stated otherwise) since this would consider
condition means of μC1 = 0 and μC2 = 0.5 as differen-
tial. Lower values of w0 will lead to less sensitive results.
The pooled standard deviation S� is based on the group
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variances σ 2
C1 = σ 2(AxC1) and σ 2

C2 = σ 2(AxC2):

S2� = (|C1| − 1)σ 2
C1 + (|C2| − 1)σ 2

C2

|C1| + |C2| − 2
·
( 1

|C1| + 1
|C2|

)

(3)

Empirical p values for each binx, Px = Px(C1,C2), are
obtained by counting the values Tx in the sampling dis-
tribution that exceed the true weighted difference T true

x ,
which means that the lowest possible p value is 1/(1 +
number of bins). By setting a threshold P∗ (default, 0.05)
to the obtained Px, the genome is reduced to high-
confidence enhancer regions of length 100 bp that signif-
icantly differ in probabilities between two distinguishable
conditions. Note that S� is set to a small number ≈ 0 if
|C1| = 1 and/or |C2| = 1 to avoid division by zero.

Clustering of differential enhancers using “activity pattern”
Significant differential enhancer regions with a length of
100 bp are obtained for all pairwise comparisons between
any two conditions {C1,C2} ∈ C as described in the
previous paragraph. In the following, the indicator func-
tion T(C1,C2) = Tx(C1,C2) denotes if binx is an active
enhancer in condition C1 but not in condition C2:

T(C1,C2) =
{

1, if Px−2:x+2(C1,C2) ≤ P∗ and (μC1 − μC2 ) > 0
0, otherwise

(4)

Note that additional to the p value assigned to binx, the
p values of two additional bins up and downstream of
binx are required to be smaller than P∗. In the following,
binx is renamed as bin{T(C1,C2)=1,T(C2,C1)=0}

x = bin{1,0}
x if

the empirical p values Px−2:x+2(C1,C2) ≤ P∗ and if the
difference in the group means (μC1 − μC2) > 0. The
region will be denoted as bin{0,1}

x if T(C2,C1) = 1 and as
bin{0,0}

x if Px−2:x+2(C1,C2) > P∗. With this, each differ-
ential enhancer binx can be allocated to a unique activity
pattern, either {1, 0}, {0, 1}, or {0, 0} (see Fig. 7 for an
overview).
This notation expands as the number of conditions, |C|,

increases. For example, if |C| = 3, the number of possi-
ble comparisons is

(|C|
2

) = 3, namely (C1,C2), (C1,C3),
and (C2,C3). As each tupel can be assigned to three activ-
ity patterns, the total number of possible outcomes sums
up to 3(

|C|
2 ) − 1 = 26, whereas the pattern {0, 0, 0, 0, 0, 0}

does not include any differential information and can be
discarded from the list.
The total range of all binx that are associated with the

same activity pattern is summarized within a 2-kb dis-
tance whereas the binx with the lowest p value Px is stored
as peak. If regions with different activity patterns are over-
lapping, these are combined and labeled with the activity
pattern according to the lowest peak p value.

CRUP-ET: enhancer targets
Regulatory units by a correlation approach
Differential enhancer regions for any set of conditions
C are obtained and clustered as described above. Gene
expression counts per exon are obtained from RNA-
seq experiments of the same conditions using the func-
tion summarizeOverlaps implemented in the R package
GenomicAlignments ([90], v1.14.2). Summarized counts
per gene are variance stabilized across the mean using the
function vst implemented in the R package DESeq2 ([91],
v1.18.1).
All genes and differential enhancer regions are gath-

ered within the same topologically associated domain.
To find regulatory units of gene-enhancer pairs that
behave similarly across conditions, we apply a correlation
approach. For this, Pearson correlation values are calcu-
lated between enhancer probability values and normalized
gene expression counts within the same TAD and across
all conditions. All enhancer-gene pairs with a correlation
≥ 0.9 are considered as putative regulatory units and are
reported.

Comparison to other enhancer predicting methods
Application of ChromHMM
ChromHMM [86] was applied to three core HMs to gen-
erate seven genome-wide segmentations for undifferen-
tiated mESCs based on K ∈ {2, 3, 4, 5, 6, 7, 8} chromatin
states (Additional file 1: Figure S5). For K = {2, 3, 4}, we
were not able to clearly separate an enhancer from the
promoter state. For K = {5, 6, 7, 8}, we defined enhancers
based on the combinations of states with high emis-
sion probabilities for the enhancer marks H3K4me1 and
H3K27ac and low emission probabilities for the promoter
mark H3K4me3. Since the results for K = {5, 6, 7, 8} are
very similar (not shown), we concentrate on the highest
and lowest numbers of states,K = 5 andK = 8.We tested
four different enhancer definitions for K = 5 including
states (i) E5, (ii) E5+E2, (iii) E5+E3, and (iv) E5+E3+E2,
and for K = 8, the enhancer definitions are composed of
states (i) E2, (ii) E2+E5, (iii) E2+E4, and (iv) E2+E4+E5.
The prediction performances of the defined enhancer

state (versus all other states) for K = 5 and K = 8
were calculated based on the same ten test sets generated
through different random seeds. To determine an over-
lap, we extend our test regions to 1100 bp centered on the
respective region. Based on these definitions, the num-
bers of true and false positives and negatives could be
calculated.
Application of REPTILE
REPTILE [13] was trained on different mouse (ESC,
fibroblasts, adipocytes, hepatocytes) and human (hepato-
cytes) data. We first RPM normalized the ChIP-seq tracks
and then performed a log2 input normalization on all HM
data as recommended in the REPTILE paper.
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Fig. 7 Assignment of activity pattern for the comparison of two conditions. For the differential comparison of enhancers in two conditions, C1 and
C2, the activity pattern assigned to binx depends on the empirical p values of binx and two neighboring bins to both sides (binx−1, binx−2, binx+1,
binx+2). If one of the five empirical p values exceeds the cutoff P∗ , binx does not represent a differential enhancer between C1 and C2 and is
assigned the activity pattern {Tx(C1, C2) = 0, Tx(C2, C1) = 0} = {0, 0}. If all five bins show an empirical p value below P∗ and the group mean of C1

is greater than the group mean of C2 (μC1 > μC2 , binx represents an active enhancer in C1 and is assigned the activity pattern
{Tx(C1, C2) = 1, Tx(C2, C1) = 0} = {1, 0}. In the opposite case (μC2 > μC1 ), binx is active in C2 with an activity pattern of
{Tx(C1, C2) = 0, Tx(C2, C1) = 1} = {0, 1}

For mESC, we made genome-wide predictions whereas
for the other samples, we only predicted on a test set. To
do so, we chose the training set for REPTILE similarly
as for our method (see the “CRUP-EP: enhancer predic-
tion” section), i.e., also trying to emulate a typical genome
composition.
Genome-wide predictions on our mESC+ sample were

generated using six different training and feature set
combinations and a pre-trained publicly available REP-
TILE classifier (mm_model_coreHisMod.reptile) in two
settings:

(1) FANTOM5-derived enhancers and three core mESC
HMs (FANTOM5 + mESC)

(2) FANTOM5-derived enhancers, three core HMs, and
intensity deviation (FANTOM5 + mESC + ID-DEEP)

(3) p300-defined enhancers, three core HMs, and
intensity deviation (P300 + ID)

(4) p300-defined enhancers, three core HMs, intensity
deviation, and differentially methylated regions (P300
+ ID + DMR)

(5) p300-defined enhancers, three core HMs, intensity
deviation andmethylation data (‘P300 + ID +METH’)

(6) p300-defined enhancers, three core HMs, intensity
deviation, differentially methylated regions, and
methylation data (P300 + ID + METH + DMR)

(7) Pre-trained REPTILE classifier based on the three
core HMs and intensity deviation

(8) Pre-trained REPTILE classifier based on the three
core HMs, intensity deviation and differentially
methylated regions

Here, the three core HMs are from the in-house mESC
data, and the differentially methylated regions (DMRs) are
taken from [13]. The intensity deviation for a specific tar-
get sample is described in [13] as the signal/intensity of

the target sample subtracted by its mean intensity in refer-
ence samples. In our setting, we included additional to the
mESC target sample also the intensity deviation between
intensity from mESC+ and the 11 data sets from our test
set prediction across different tissues. In the pre-trained
REPTILE classifiers, the intensity deviation is derived
from several embryonic data samples in mouse (see [13])
Using the REPTILE peak calling tool with a probabil-

ity threshold of 0.5 for the different scenarios, we got (1)
29,029; (2) 22,946; (3) 51,442; (4) 72,287; (5) 39,644; (6)
53,789; (7) 969; and (8) 1974 annotated enhancer regions.
Motif enrichment analysis
We performed motif hit enrichment analyses with the
R package motifcounter [92] on individual enhancers
or clusters of enhancers. The method is based on a
higher-order Markov background model to compute the
expected motif occurrences (hits) and a compound Pois-
son approximation for enrichment testing. We use the
default parameters for the order of the background model
and the false-positive level for motif hits, order = 1
and α = 0.001, respectively. In our analysis of enhancer
clusters, we refer to the fold enrichment value for the over-
representation of a motif. For a single enhancer sequence,
we filter motifs by p value (≤ 0.05) and individual motif
hits by score (maximum) to pinpoint relevant TFBSs. All
enhancers are reduced to a length of 300 bp before the
analysis.
We tested for enrichment of the binding profiles of

579 TFs in total which were downloaded from the non-
redundant JASPAR 2018 CORE vertebrate collection [93]
of position frequency matrices (PFMs).

KEGG pathway analysis
We used the curated database of molecular pathways
and disease signatures to perform an overrepresen-
tation analysis for Kyoto Encyclopedia of Genes and
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Genomes (KEGG) pathways [53–55]. To this end, we
applied the function kegga (species.KEGG = “mmu”, trend
= T) implemented in the edgeR R package [94, 95]
to identify murine KEGG pathways that are overrepre-
sented in putative target genes that were found to be
highly correlated with enhancer regions that are solely
active in mice with rheumatoid athritis (correlation ≥
0.9). As a background, we used all genes (R package
Txdb.Mmusculus.UCSC.mm10.knownGene [96]) that are
located within the same TADs as all identified regulatory
units. We used the p value (P.DE) to order the results and
reported the best five pathways.

Chi-square test of independence
Enhancer predictions for several fetal tissues (brain E14.5,
heart E14.5, liver E14.5, limb E14.5, lung E14.5, and mESC
E14) were downloaded from the EnhancerAtlas database
[25], and coordinates were transferred from mm9 to
mm10 using the R package liftover.
Pearson’s chi-squared test (R function chisq.test) was

used to test whether mESC E14 enhancer regions overlap
with CRUP enhancer predicitons trained on various tis-
sues. Note that we used the union of all fetal EnhancerAt-
las tissues and the respective predictions done by CRUP as
the overall universe to create the 2 × 2 contingency table.
All 12 classifier, trained on different tissues and species
(mESC, human hepatoctyes, mouse hepatocytes, mouse
adipocytes, and mouse fibroblasts) achieved significant
results with the highest p value of 5.61e−12.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s13059-019-1860-7.

Additional file 1: This file contains additional information about the origin
and quality of the data used in this study as well as complementary results.
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