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Abstract
Weprovide a short proof for the twistedmultiplicativity property of the operator-valued
S-transform.
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1 Introduction

In free probability the most basic operations are the free addititive and multiplicative
convolutions, given by the sum and the product, respectively, of two freely independent
random variables x and y. Voiculescu provided with the R-transform [1] and the
S-transform [2] analytic functions which describe these operations via Rx+y(z) =
Rx (z)+Ry(z) and Sxy(z) = Sx (z)·Sy(z); Haagerup provided in [3] different proofs of
Voiculescu’s results, relying onFock space and elementaryBanach algebra techniques.
Those functions can also be considered as formal power series; their coefficients are
then determined in terms of the moments of the considered variables and the above
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relations are translations into generating series of how moments of the sum or the
product of free variables are determined in terms of the moments of the individual
variables. In the case of the additive convolution, this is quite straightforward, the
coefficients of the R-transform are then the free cumulants. For the multiplicative
case the situation is a bit more complicated, but still one can get the above mentioned
multiplicativity from the basic properties of free cumulants and playing around with
formal power series; for this we refer in particular to the book [4], which covers the
combinatorial facet of free probability. Other general introductions to the basics of
free probability can be found in [5–7].

There exists a (very powerful) operator-valued extension of free probability [8]
with its operator-valued versions of the additive and multiplicative free convolutions
and of the R-transform and the S-transform. Whereas for the additive case and the R-
transform, the statements andproofs can easily be extended to the operator-valued case,
themultiplicative situation ismore complicated. It was actually discovered byDykema
in [9] that in this case the formula for the S-transform of a product of free variables
involves a twist, due to the non-commutativity of the underlying algebra of “scalars".
Though Dykema uses the language of formal power series adapted to this operator-
valued setting (formal multilinear function series), both his proofs in [9] and [10] use
quite involved Fock space realizations, modeled according to Haagerup’s approach in
the scalar-valued case [3]. Our goal here is to give a more direct proof of the twisted
multiplicativity of the S-transform, just using the basic definitions and properties of
free cumulants and of the S-transform, as well as easy formal manipulations with
power series. This is in principle just an operator-valued adaptation of the same kind
of arguments from [11]. However, since the order matters now, finding the right way
of writing and manipulating the formulas was not as straighforward as it might appear
from the polished final write-up. So it could be beneficial for future use by others to
record those calculations here.

Reconsidering the operator-valued S-transform was initiated by discussions with
Kurusch Ebrahimi-Fard and Nicolas Gilliers on their preprint [12]. There they provide
an “understanding” of the twist from an higher operadic point of view.Our calculations
here can also be seen as a more pedestrian version of parts of their work. One should
note that in their setting (aswell as inDykema’s combinatorial interpretation via linked
non-crossing partitions) the T -transform, which is the multiplicative inverse of the S-
transform, seems to be the more appropriate object. For our formal manipulations with
power series there is no such distinction.

2 Basic Definitions

We are working in an operator-valued probability space (A,B, E); this means that
A is a unital algebra with a unital subalgebra B ⊂ A and a conditional expectation
E : A → A, i.e., a linear map with the additional properties

E[b] = b, E[b1ab2] = b1E[a]b2 for all b ∈ B, a1, a2 ∈ A.

Elements inAwill be called (random) variables and the basic information about them
is encoded in their operator-valued moments
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E[xb1xb2 · · · bnx] (n ∈ N; b1, . . . , bn ∈ B)

or, equivalently, in their operator-valued cumulants

κ(xb1, xb2, . . . , xbn, x) (n ∈ N; b1, . . . , bn ∈ B).

The latter can be defined in a recursive way via

E[xb1xb2 · · · bnx] =
n∑

k=0

∑

1≤q1<q2<···<qk≤n

κ
(
x E[b1x · · · xbq1 ], x E[bq1+1x · · · xbq2 ], x E[· · · ], . . . , x

)
· E[bqk+1x · · · bnx] (1)

For more precise information about operator-valued cumulants one should consult
Sect. 9 of [6]. The information about those moments and cumulants will actually
be stored in formal power series, which are called multilinear function series, and we
will present below a definition of operator-valued cumulants in terms of these function
series.

Definition 2.1 1) A multilinear function series F is given by as sequence F =
(Fn)n∈N0 , where each Fn : B×n → B is an n-linear map on the algebra B; with
the convention that B×0 = C and the corresponding F0 is just a constant F0(1).
Formally we write

F =
∑

n≥0

Fn(b1, b2, . . . , bn) = F0 + F1(b1) + F2(b1, b2) + · · ·

2) For such multilinear function series F = (Fn)n∈N0 and G = (Gn)n∈N0 one has
the obvious operation of a sum

F + G := (Fn + Gn)n∈N0 ,

but also a formal version of a product F ·G and, if G0 = 0, a composition F ◦G.
The product is defined for all n ≥ 0 by

(F · G)n(b1, . . . , bn) =
n∑

k=0

Fk(b1, . . . , bk)Gn−k(bk+1, . . . , bn).

If G0 = 0, the composition F ◦ G is defined by (F ◦ G)0 = F0 and for n ≥ 1 by

(F ◦ G)n(b1, . . . , bn) =
n∑

k=1

∑

p1,...,pk
p1+···+pk=n

Fk
(
Gp1(b1, . . . , bp1),Gp2(bp1+1, . . . , bp1+p2), . . . ,Gpk (. . . , bn)

)
.
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3) The identity for the composition will be denoted by I = (In)n∈N0 , and is given by

In(b1, . . . , bn) = δn1b1.

Wewill also identify the constant 1 ∈ B with the series where only the 0-th term is
different from zero (and which is the identity for the multiplication of the series).

4) In order to avoid toomany brackets wewill enforce in the following the convention
that composition binds stronger than product, i.e.,

F · G ◦ H · K = F · (G ◦ H) · K .

It is quite easy to see that F is invertible with respect to multiplication if and only if
the constant term F0 is an invertible element in B and that F is invertible with respect
to composition if and only if the linear mapping F1 : B → B is invertible. For more
details on this one should see [10].

Definition 2.2 For a random variable x ∈ A we define its moment series by

�x =
∑

n≥0

E[xb1xb2 · · · xbnx] = E[x] + E[xb1x] + E[xb1xb2x] + · · ·

and its cumulant series by

Cx =
∑

n≥0

κn+1(xb1, xb2, . . . , xbn, x) = κ(x) + κ(xb1, x) + κ(xb1, xb2, x) + · · ·

The recursive definition (1) of the cumulants can then equivalently also be stated
as the following relation between those two series:

�x = Cx ◦ (I + I · �x · I ) · (1 + I · �x ) (2)

or

�x = (1 + �x · I ) · Cx ◦ (I + I · �x · I ) (3)

Definition 2.3 For a random variable x ∈ A such that E[x] is invertible the S-
transform Sx is defined by

(1 + I ) · χx = I · Sx , (4)

where χx is defined by

(I · �x ) ◦ χx = I . (5)

Note that the invertibility of E[x] is needed in order to have an inverse χx of I ·�x .
Let us reformulate this in a form involving the cumulant series. This is the operator-

valued version of going from formula (18.13) to formula (18.12) in [4]
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Lemma 2.4 We have that

(I · Cx ) ◦ (I · Sx ) = I and (I · Sx ) ◦ (I · Cx ) = I

i.e., I · Sx is the inverse under composition of I · Cx .

Proof Since the linear term of I · Cx is

(I · Cx )1(b) = bκ(x) = bE[x],

and hence invertible by our assumption on x , we know that I ·Cx has an inverse under
composition. Thus it suffices to check the first equation in the lemma.

By using (3), we write I · �x as follows:

I · �x = (I + I · �x · I ) · Cx ◦ (I + I · �x · I )
= (I · Cx ) ◦ [I + I · �x · I ]
= (I · Cx ) ◦ [(1 + I · �x ) · I ]

By composing this with χx on the right we get

I = (I · Cx ) ◦ [(1 + I ) · χx ] = (I · Cx ) ◦ (I · Sx )

�	

3 TwistedMultiplicativity of S-transform

Now we are ready to look at the S-transform of a product of free variables. For the
definition of freeness with amalgamation as well as the definition and basic properties
of the corresponding operator-valued cumulants we refer to Sect. 9 of the book [6].
For our purposes the formulas (6), (7), (8), (9) below can be taken as the starting point
for describing the relation between the moments of xy and the moments of x and of y.
Those formulas follow quite easily from the combinatorial description of cumulants
and the vanishing of mixed cumulants in free variables. We will give an indication in
the proof below how this works.

Theorem 3.1 (Dykema [9]). Let x and y be free with amalgamation over B. Assume
that both E[x] and E[y] (and thus also E[xy] = E[x]E[y]) are invertible elements
in B. Then we have

Sxy = Sy · Sx ◦ (S−1
y · I · Sy).

One should note that the constant term of Sy is given by E[y]−1 and thus Sy has a
multiplicative inverse S−1

y .
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Proof We have the moment series of the product xy:

� := �xy =
∑

n≥0

E[xyb1xyb2xyb3 · · · xybnxy] = E[xy] + E[xyb1xy] + · · ·

In addition we also define the series

�y→ =
∑

n≥0

E[yb1xyb2xy · · · bnxy] = E[y] + E[yb1xy] + E[yb1xyb2xy] + · · ·

and

�→x =
∑

n≥0

E[xyb1xyb2 · · · xybnx] = E[x] + E[xyb1x] + E[xyb1xyb2x] + · · · .

The vanishing of mixed cumulants in free variables yields then directly the relations

� = Cx ◦ (�y→ · I ) · �y→ (6)

� = �→x · Cy ◦ (I · �→x ) (7)

�y→ = Cy ◦ (I · �→x ) · (1 + I · �) (8)

�→x = (1 + � · I ) · Cx ◦ (�y→ · I ) (9)

To give an idea how those formulas arise, let us just write the version of (1) for the
product xy, by using the fact that mixed cumulants in x and y vanish. Thus we only
have to sum over those situations where all the arguments for the cumulant are x , and
the y are only showing up in the expectations. In order not to overload the notation,
we have ignored the indices of the b.

E[xybxyb · · · bxy] =
∑

all possibilities

κ
(
xE[ybxy · · · xyb], xE[ybxy · · · xyb], . . . , xE[y · · · xyb], x

)
· E[ybxy · · · bxy]

This formula results then directly in formula (6) for the corresponding function series.
The three other formulas arise in similar ways; note that in (7) we are using an expan-
sion in cumulants of y, and for this the version of (1) is more appropriate where in the
sum one is not fixing the first y as element in the cumulant, but the last one.

The rest is now just playing around with those relations in order to rewrite them in
terms of the S-transforms.

From (7) we get

I · � = I · �→x · Cy ◦ (I · �→x ) = (I · Cy) ◦ (I · �→x )

and thus, with χ := χxy ,

I = (I · �) ◦ χ = (I · Cy) ◦ (I · �→x ) ◦ χ.
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Since the inverse under composition of I · Cy is given by I · Sy we see thus that we
must have

(I · �→x ) ◦ χ = I · Sy . (10)

From (8) and (7) we get

I · �→x · �y→ = I · �→x · Cy ◦ (I · �→x ) · (1 + I · �) = I · � · (1 + I · �)

Composing with χ and using (10) leads to

I · Sy · �y→ ◦ χ = I · (1 + I )

and thus to

Sy · �y→ ◦ χ = (1 + I ),

hence

�y→ ◦ χ = S−1
y · (1 + I ). (11)

Now we use (6) to calculate

�y→ · I · � = �y→ · I · Cx ◦ (�y→ · I ) · �y→ = (I · Cx ) ◦ (�y→ · I ) · �y→

and thus, by first multiplying with (�y→)−1 from the right and then using Lemma
2.4,

(I · Sx ) ◦ (�y→ · I · � · (�y→)−1) = �y→ · I .
Composing again with χ = χxy and using (11) both for �y→ and its inverse leads
now to

(I · Sx ) ◦ (S−1
y · (1 + I ) · I · (1 + I )−1 · Sy) = S−1

y · (1 + I ) · χxy = S−1
y · I · Sxy

or, by also using that (1 + I ) · I · (1 + I )−1 = I ,

S−1
y · I · Sy · Sx ◦ (S−1

y · I · Sy) = S−1
y · I · Sxy

and thus finally

Sy · Sx ◦ (S−1
y · I · Sy) = Sxy .
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