
MOnSTER
Multi-Ontology Semantic
Trial Enrichment Resource

Dissertation

to attain the degree of a

Doctor of Theoretical Medicine

of the Faculty of Medicine

of the Saarland University

Homburg / Saar

2022

submitted by

Holger Stenzhorn

born on April 27th, 1976

in Saarbrücken – Dudweiler

https://purl.org/monster
https://purl.org/monster
http://uks.eu
https://purl.org/holger

Dedication

I want to dedicate this dissertation to my parents Gudrun and Gerd and to my wife

Tatsiana: Without their everlasting love, support and encouragement I would have never

ever been able to realize this!

Also, I want to thank my two little “office dogs” Joschi and Toschi who always kept calm

and relaxed providing some positive energy even when times got busy and hectic...

iii

Acknowledgements

I would like to express my sincere gratitude to my advisor Prof.Dr.med.Norbert Graf for

giving me the opportunity to be part of his research team and to work on such interesting

and challenging topics.

Of course, I want to thank all my teammates and project collaborators, as the development

of such a complex piece of software like ObTiMA can always only succeed when working

together as a team.

v

Abstract / Zusammenfassung

Abstract

As the name suggests, one of the main goals of the Ontology-Based Trial Management

Application, or ObTiMA for short, has always been the application of ontologies to

achieve semantic interoperability within clinical trials. The Multi-Ontology Semantic

Trial Enrichment Resource (MOnSTER) now represents a complete reimplementation

of this task area as a new module component of the application: With the help of

this component, it is now possible to semantically tag all parts of a clinical trial with

corresponding concepts from freely addable ontologies and export the obtained study

data in ODM, RDF and FHIR formats.

In this thesis, first the thematic background of syntactic and semantic interoperability

is discussed. The following describes the technical implementation and integration

of the component into the overall application. In particular, it addresses loading and

managing ontologies, adding concepts to study components, and exporting study data

in various formats. After that, it is shown how a user can apply these functionalities

of the component with the help of Graphical User Interface and a web service. In the

discussion, an evaluation of the component by the users is described, possible future

extensions are pointed out, and a comparison with similar systems is given.

Zusammenfassung

Wie der Name bereits sagt, war eines der Hauptziele von Ontology-Based Trial

Management Application, kurz ObTiMA, schon immer die Anwendung von Ontologien,

um semantische Interoperabilität innerhalb klinischer Studien zu erreichen. Die

Multi-Ontology Semantic Trial Enrichment Resource (MOnSTER) stellt nun eine

vollständige Neuimplementierung dieses Aufgabenbereichs als neue Modulkomponente

der Anwendung dar: Mithilfe dieser Komponente ist es nun möglich, alle Teile einer

vii

Abstract / Zusammenfassung

klinischen Studie mit entsprechenden Konzepten aus frei hinzufügbaren Ontologien

semantisch zu taggen und die gewonnenen Studiendaten in den Formaten ODM, RDF

und FHIR zu exportieren.

In dieser Arbeit wird zunächst der thematischen Hintergrund der syntaktischen und

semantischen Interoperabilität erörtert. Im Folgenden wird die technische Umsetzung

und Integration der Komponente in die Gesamtanwendung beschrieben. Insbesondere

wird hier auf das Laden und Verwalten von Ontologien, das Hinzufügen von Konzepten

zu den Studienkomponenten und das Exportieren von Studiendaten in verschiedenen

Formaten eingegangen. Danach wird gezeigt, wie ein Benutzer diese Funktionalitäten der

Komponente mithilfe der grafischen Oberfläche und eines Webservices anwenden kann.

In der Diskussion wird eine Evaluation der Komponente durch dieAnwender beschrieben,

es werden mögliche, zukünftige Erweiterungen aufgezeigt, sowie ein Vergleich mit

ähnlichen Systemen gegeben.

viii

Contents

Dedication iii

Acknowledgements v

Abstract / Zusammenfassung vii

Abstract . vii

Zusammenfassung . vii

Contents xii

I Introduction 1

1 General Background 3

2 Interoperability 7

2.1 Structural / Syntactic Interoperability 10

2.2 Semantic Interoperability . 13

3 Scope and Contributions 21

II Materials and Methods (Implementation) 27

4 General Overview 29

4.1 Infrastructure . 31

4.2 Application Layers . 33

4.2.1 Persistence / Storage . 33

4.2.2 Application Logic . 36

4.2.3 User Interface . 37

4.3 Usage Scenarios . 39

5 Ontology Management 43

ix

Contents

6 Semantic Tagging 49

7 Data Export 53

7.1 Basic Implementation . 53

7.2 Format Mappings . 54

7.2.1 ODM (Operational Data Model) . 59

7.2.2 RDF (Resource Description Framework) 62

7.2.3 FHIR (Fast Healthcare Interoperability Resources) 64

7.3 Format Serializations . 69

7.4 Web Service Interface . 70

III Results 73

8 General Background 75

8.1 Project / Data . 75

8.2 Procedure / Realization . 78

9 Ontology Management 79

9.1 Adding and Editing Form . 79

9.1.1 Source . 80

9.1.2 Namespace . 81

9.1.3 Format . 82

9.2 Overview and Selection Table . 85

10 Semantic Tagging 89

10.1Ontology Preselection . 89

10.2Concept Selection and Tag Creation . 91

10.3CRF Question and Answer Option Tagging 99

11 Data Export 107

11.1 GUI . 109

11.2Web Service Interface . 113

x

Contents

IV Discussion 117

12 Evaluation 119

12.1Ontology Management . 120

12.2Semantic Tagging . 122

12.3Data Export . 123

13 Limitations and Mitigations 125

13.1Usability . 125

13.2Utility . 127

14 Related Work 129

15 Outlook and Perspective 137

15.1 Improved Visualizations . 137

15.2Ontological Relations in Search . 138

15.3Tag-based CRF Repository Search . 139

15.4Rules and Guidelines . 140

15.5Training . 140

V Appendix 143

A ODM Extension Definition 145

B OpenAPI Description 149

C Applied Specifications 153

D Applied Libraries and Licenses 155

E Applied Ontologies 157

F Data Export Excerpts 159

F.1 ODM . 159

F.2 RDF . 161

F.2.1 RDF/XML . 161

F.2.2 Turtle . 163

xi

Contents

F.2.3 JSON-LD . 164

F.2.4 N-Triples . 166

F.3 FHIR . 169

F.3.1 JSON . 169

F.3.2 XML . 174

F.3.3 RDF . 180

G Acronyms 189

Bibliography 193

Curriculum Vitae 211

Erklärung gemäß§ 7 Abs. 1 Nr. 2 215

xii

Part I

Introduction

1

Chapter 1

General Background

Clinical trials are the de-facto gold standard in medical research to assess and evaluate

diagnostic interventions, treatment procedures, drugs and devices, and so on, before

any of them can be applied in daily routine medical care (Friedman et al., 2015). For

most current trials, both volume and structure of the collected data are now so extensive

and complex that any paper-based management, as practiced in the past, is simply not

possible anymore (Walther et al., 2011).

Therefore, a large variety of software systems has been developed over the years to

address and meet this challenge in different ways and at different levels: While smaller

trials might rely on using homegrown, specific tools and databases that cover only certain

aspects of a trial, larger, multicentric trials usually employ complete, integrated software

solutions to manage a trial’s entire lifecycle and tasks, from its planning, preparation and

execution to its reporting and analysis (Nourani et al., 2019).

The Ontology-Based Trial Management Application, or ObTiMA for short, represents

precisely such a clinical trial management system , or CTMS for short (Stenzhorn et al.,

2010): Initially developed within the scope of several European projects, like ACGT

(Advancing Clinico Genomic Trials on Cancer) (Martin et al., 2011) and p-medicine

(From Data Sharing and Integration via VPHModels to Personalized Medicine) (Marés et

al., 2014), as a prototypical demonstrator to showcase the latest insights in ontology-based

interoperability, the system has been continuously extended and elaborated further into a

full-fledged application fulfilling all requirements towards such a software in the setting

of real-world clinical trials (Kuchinke et al., 2016; Stenzhorn et al., 2012).

From the beginning, the main distinguishing feature of ObTiMA compared to other

systems has therefore been its clear focus on ontologies: For this, the application has

allowed the creation of so-called “ontologized” questionnaires, or CRFs (Case Report

Forms), to perform the collection of subject data within a trial. This means that all

items within such a CRF, that is, questions and answer options, could be defined on the

3

1 General Background

basis of ontological concepts predefined in a custom-developed ontology built directly

into the application. Ultimately, the goal of this endeavor has been to automatically

“ontologically enrich” the collected subject data and thereby promoting their semantic

interoperability at a conceptual level.

Unfortunately, this ontological foundation has recently fallen out of focus somewhat,

as the continued development has increasingly targeted on some other aspects that are

(more) essential for a productive use of the application, such as security, robustness and

scalability. It is therefore precisely the aim of this thesis to revisit that given original

objective: Taking the original realization of the topic as starting point, this previous

work is evaluated in light of the most current advances regarding interoperability in both

research and technology. Based on this, a novel software component is proposed, which,

on the one hand, takes up the fundamental ideas as introduced in the initial realization, but,

on the other hand, is a completely new development that incorporates and implements

the named scientific and technological advances.

In more concrete terms, a MOnSTER (Multi-Ontology Semantic Trial Enrichment

Resource) is created that supports its host ObTiMA by providing novel capabilities

to communicate with the “outside world” both in respect to common, shared semantics as

well as standardized syntaxes, that is, formats. Regarding semantics, this means that with

the help of the new component it becomes possible to not only create ontology-based

questions within a CRF, but that all parts of a trial, like its SEs (Study Events) or the trial

itself, can be semantically enriched with ontological concepts. The new component also

allows ontologies to be freely chosen and used for this purpose, rather than having to

rely on the single, built-in ontology. Regarding syntaxes, it is, of course, essential that

the component keeps and improves the existing support for ODM as one of the de-facto

standards for exchanging clinical trial data (Hume et al., 2016). But by providing

RDF (Schreiber et al., 2014) and FHIR (HL7, 2019) as additional export options,

interoperability is broadened to a wider range of systems covering additional topical

areas and environments.

Finally, it should be emphasized that the development of this component is not just about

technology but also about its actual usage: Thus, it is not the sole aim to develop a

software which follows and includes the latest research and technological trends. Rather,

4

the component tries to be as easy to use as possible and to seamlessly integrate and blend

itself into the existing application and its workflows.

In this following thesis, it is thus described how these given aspects are implemented

within and by MOnSTER and how an actual user can apply the resulting, new

functionalities in the daily work when using ObTiMA.

5

Chapter 2

Interoperability

For a better understanding of the specific background of MOnSTER, it is necessary to

first provide an overview of the more general aspects that are being addressed by this

thesis’ work. The most important and overarching among them is interoperability.

The need for interoperability is both urgent and ubiquitous in medical routine care as well

as in research in the healthcare and life sciences: Albeit fundamentally expressing the

same underlying content, the actual data that represents that very content often exhibits

large variations in regard to several different aspects from location to location and system

to system. Therefore, the multitude and magnitude of differences in their type, format,

quality, as well as mismatches in the used terminology or jargon render it difficult to link

and integrate data from different sources and, in turn, to collaborate both in daily routine

and in research.

Now, looking at the current publications, a variety of definitions exist for the term

interoperability, depending on the basic scope and environment where each is being

employed. A prominent example for such a definition in the scope of healthcare is

provided by the Healthcare Information and Management Systems Society (HIMSS,

2021) who declare that

(Interoperability) is the ability of different information systems, devices and

applications (systems) to access, exchange, integrate and cooperatively use

data in a coordinated manner, within and across organizational, regional

and national boundaries, to provide timely and seamless portability of

information and optimize the health of individuals and populations globally.

Health data exchange architectures, application interfaces and standards

enable data to be accessed and shared appropriately and securely across the

complete spectrum of care, within all applicable settings and with relevant

stakeholders, including the individual.

7

2 Interoperability

In the given (bio)medical context, the European Union gives yet another often cited

definition of the term in its regulations on medical devices and in-vitro diagnostics, with

similar meaning to the above (EP-EC, 2017a, 2017b) by stating that

(Interoperability) is the ability of two or more devices, including software,

from the same manufacturer or from different manufacturers, to:

(a) exchange information and use the information that has been exchanged

for the correct execution of a specified function without changing the

content of the data, and/or

(b) communicate with each other, and/or

(c) work together as intended.

Returning to the first definition above, HIMSS also proposes to divide (general)

interoperability further into four general but distinct levels, as listed below (HIMSS,

2021; IBM, 2021):

Foundational This first level defines the foundational interoperability requirements for

systems, applications and devices so that they can securely interconnect to send data

to and receive data from each other. It is only concerned with the actual transport and

transmission of the data, but neither with their interpretation nor with their conversion

into specific forms or formats.

Structural The second level deals with conditions toward structural interoperability,

that is, the standardization of data by defining common and uniform structures, formats

and syntaxes for data. In this way, the various systems, applications, and devices can

all structurally interpret data conforming to these stipulations.

Semantic At this third level, requirements for semantic interoperability are specified,

including common information models and data elements using publicly available,

standardized coding systems and vocabularies. This is to ensure that all components

involved in the process share a common understanding and meaning of the given data.

Organizational The fourth and highest level, declares the preconditions for the

communication, exchange and use of data between various organizations, entities

8

and individuals. These include a variety of aspects arising from governance, political,

social, legal and organizational considerations.

Regarding ObTiMA, the fourth and highest level can be seen as out-of-scope for this

work, as it obviously goes beyond what is technically feasible from a software system.

Here, social and also societal factors play the main role, which might be influenced and

supported to a certain degree by some technical solutions, yet cannot be fundamentally

solved by them. Also, even though the first, lowest level refers to technology directly,

this one does not fit the focus of the given work either as it addresses the underlying

infrastructural requirements for data transport and transmission only, such as the basic

network protocols, like HTTP. Hence, the work in this thesis is concerned with the two

levels in between, and thus focuses on how data can be defined and provided in such a

way that both its structure, that is, its format, and its meaning, that is, its encoding, can

be understood by different systems and thus exchanged in between them.

To make the above more tangible, one particular case where interoperability, or rather the

lack thereof, is playing an acute and highly important role is the COVID-19 pandemic.

For example, the testing regimen for infections in the USA highlights the considerable

problems arising in the initial phase of the pandemic at all above-stated interoperability

levels, causing a massive impairment in the efficient processing and exchange of the result

data, as well as their joint analysis (Greene et al., 2021). Much of this is due to semantic

heterogeneity between different parties and the missing of common, standardized coding

information based on common terminologies, eventually leading to a wide variation in

the interpretation of single data values and, in turn, whole data sets.

Of course, this problem also immediately affects the many clinical trials started worldwide

in the context of the pandemic. Here, already the sheer, massive amount of concurrent

trials with the aim to rapidly produce results in this situation, is by itself already extremely

challenging (Dron et al., 2021). The need to establish interoperability based on common

data standards is emphasized as a necessary prerequisite as well, so that data from those

trials can be readily shared, aggregated and integrated with each other as quickly as

possible, such as for overarching meta-analyses. In this context, the CIA (COVID-19

Interoperability Alliance) is established for exactly this task, namely to collaboratively

develop and share interoperability resources, such as terminology standards, common

9

2 Interoperability

code and value sets, or implementation guidelines, that can (and should) be commonly

used by research activities in the scope of COVID-19 (CIA, 2021).

2.1 Structural / Syntactic Interoperability

In order to clarify the distinction as introduced above, interoperability on the structural

and syntactic level is explained here first. This kind of interoperability is essentially

concerned with the development and utilization of standardized so-called information

models to describe data and the respective technical implementations used to express

them. These implementations include, on the one hand, specifications, descriptions and

(public) provisioning of the required formats, and on the other hand, the development of

interfaces based on those formats and their adaptation in the relevant software systems and

components. Thus, the main goal here is that these specifications and implementations

ensure that data can be moved from one location or system to another by defining and

realizing rules to properly transmit data. For this, agreements need to be established

between all involved partners about the specific orders and hierarchies of the data and

their corresponding properties and types. As a simple example, when encoding dates, its

format must be clearly predefined in advance, so that both data producers and consumers

both apply the same. For example, if one system uses 1981-01-04 following the ISO

(International Organization for Standardization) standard (ISO, 2019), whereas the other

uses 04.01.1981 following the DIN standard (DIN-NIA, 2020), then neither system

can correctly interpret dates from the other.

Now, to achieve successful syntactic interoperability, several factors come into play:

One of them, for example, is the feasibility of implementing specifications. The more

complex a given specification is, the more complicated its actual implementation becomes,

which in turn renders its application and dissemination more problematic. On the one

hand, there is a risk that the complexity of such a specification means that it will not be

implemented in full, and on the other hand that such complexity leads to (hidden) errors

in their implementation. Nonetheless, any specification must still be defined precisely

enough to prevent them from becoming ambiguous and thus to be applied in different,

possibly also contradictory ways.

10

2.1 Structural / Syntactic Interoperability

Another factor is the openness and free availability of specifications and standards:

Creating such in open, public and clearly defined processes allows their intended user

community to participate in their development, which in turn ensures that specific needs

from that community are better addressed. Furthermore, the adaptation of such standards

is promoted if they are made openly and freely available under a permissive (open source)

license, without having to pay user fees here - at least for academic and non-commercial

use. One example for a basal, syntactic standard specification is XML (Extensible

Markup Language), as a highly general and generic markup format (Bray et al., 2008).

The development of this standard, as well as further descendant standards, occurred in a,

open and transparent process coordinated by the W3C (World Wide Web Consortium),

which involved not only the (user) community but also academia as well as commercial

companies (Connolly, 2003).

Actually, XML can also be seen as both a positive and negative example in regard

to the first factor stated above. Due to its relative simplicity and clear definition, the

implementation adn application of this standard by its users can be seen as unproblematic.

Thus, building on this, a plethora of both open source and commercial systems and

components have been developed for processingXML,which in turn, of course, simplifies

the development of custom interfaces and software based on that standard.

Yet, the strong genericity of XML might also be seen as causing the problem mentioned

above: The standard declares only on a highly general level how a (syntactically) correct

structure must be formed. Yet, it does not declare how a structure should look like for any

concrete use case and it also does not declare how each element within that structure should

look like or how they relate. So, for example, the standard does not prescribe whether a

separate XML element needs to be used for storing some particular value in a particular

case, or whether that value should be simply encoded as an attribute as part of another

element. Hence, by relying only on pure XML alone it is fundamentally not possible to

declare what content (types) can or has to be stored in some specific document. For this

purpose, it is necessary to first create a concrete domain- or task-specific information

model and then to take XML as a foundation for its implementation. That means that XML

itself provides only the basic structural skeleton for documents but the specific elements

that may appear in such documents and their respective, allowed position in that structure

11

2 Interoperability

need to be specified additionally on top of that. For this, another specification from the

W3C, namely XSD (Gao et al., 2012), that itself uses XML as its underlying base, can

be employed to express such a model in technical, machine-processable terms.

Aconcrete example for this is theODM (Operational DataModel) standard for exchanging

clinical trial data (CDISC, 2013). Here, its information model defines exactly the data

elements and their structural relations required for this given task. This model is both

described in a human-readable textual representation with the necessary descriptions

and explanations as well as by a XSD file which describes the same model but in a

machine-processable form that software tools can employ to validate the correctness of

ODM files. So, by employing this standard, the electronic and structured representation

of data at all stages of a clinical trial is made possible (Huser et al., 2015) and thus CTMSs

supporting this format can readily export their data and any ODM-enabled analytics tools

can in turn read, process and analyze this (Brix et al., 2018). Also, the use of ODM

also allows for a uniform way to archive clinical trial data (Kuchinke et al., 2009), and

therefore ODM also represents one of the fundaments for managing trial data compliant

with the principles of GCP (Good Clinical Practice) (Ohmann et al., 2011).

Another example is the FHIR (Fast Healthcare Interoperability Resources) standard (HL7,

2019), whose main target is the exchange of data between systems used in healthcare,

and whose information model also has one implementation using XML as its base. Here,

from the XML perspective, only by properly defining the technical realization of all

information model entities and their dependencies through corresponding XML elements

and their structuring, data can be successfully represented in FHIR format. FHIR is

also generally a very good example of how such a standard can promote (syntactic)

interoperability: This standard is rapidly gaining acceptance and application not only in

purely clinical environments alone,where with its help their different, internal subsystems

of the HIS (Hospital Information System) can be interconnected. In fact, more and more

(portable) applications and devices are being developed by major industry players for

both patients and healthcare professionals, to provide and exchange data, such as Apple

with its HealthKit, ResearchKit and CareKit APIs (Apple, 2021, 2022).

Nonetheless, a major problem in regard to syntactic interoperability within both routine

medical care and research, like in clinical trials, is that in many cases the data there

12

2.2 Semantic Interoperability

are either largely or even completely unstructured. Examples from routine care

include clinical reports, consent forms, and referral documents. These are often pure

text documents based solely on natural language, which, however, do not have a

machine-readable and interpretable structure or formatting of the information contained.

So to again come back to the example of XML here: The mere fact that this basic

format is employed does not provide any help by itself. To exaggerate, it is possible

to take a single XML element and, simply put, in this a (complete) text containing all

information. Syntactic interoperability can, however, only succeed if all individual

information elements are expressed by suitable data elements and presented in a truly

structured and well-defined manner. Without such basis, the next level, that is, semantic

interoperability, is hard or even impossible to achieve.

2.2 Semantic Interoperability

This kind of interoperability builds on the syntactic one, but extends it in the sense that

not only common information models and structures are specified and shared, but also a

deeper and common understanding of the data is intended.

To illustrate what is meant by this, the so-called semiotic triangle in Figure 2.2.1 can be

used, which is a model of how the symbols of natural language are connected to actual

objects in reality (Odgen & Richards, 1923). For example, when the words “Jane Doe”

are used then this is a symbol that stands for the concrete referent, that is, the concrete

flesh-and-blood person with that name. Now, when someone reads or hears the words

“Jane Doe,” this symbolizes the reader’s or listener’s mind the concept, or reference, that

relates to the actual person. Then, if Jane is married to John Doe, the words “John’s wife”

stand for exactly the same person, that is, the same referent, and the reader or hearer thus

has the same reference in mind referring to the same actual person. Exactly the same then

applies when the German words “Johns Frau” are used, as both referent and reference

are then just the same again, only expressed in a different language’s words.

13

2 Interoperability

Symbol Referent

Reference

sy
m

bo
liz

es refers to

stands for

Figure 2.2.1 – Ogden and Richards’ semiotic triangle

In the field of medicine, of course, this issue is ubiquitous: For the same diseases,

the same therapies, or the same drugs, and so forth, there exist almost always several

different natural language terms or expressions, which have exactly the same meaning.

An example of this is the disease nephroblastoma, the most common malignant renal

tumor in childhood, originating from embryonic tissue remnants of the kidney (Yiallouros

et al., 2009). Now, since the German surgeon Max Wilms was the first to describe this

disease, it is often also referred to as Wilm’s tumor. So, albeit “nephroblastoma” and

“Wilm’s tumor” are two quite different looking and sounding terms, or symbols, both

stand for exactly the same referent and are also linked to the very same reference and,

hence, have the very same synonymous, underlying meaning.

Likewise, in medicine, the exact opposite case can be often found as well and cause

confusion, that is, polysemy, where single natural language expressions have multiple

(potentially strongly) different meanings. To express this again with the semiotic triangle

from above, in this case there are two or more references and referents for one single

symbol. For example, the word “inflammation” has basically two related but still distinct

meanings in medicine (Pisanelli et al., 2004): On the one hand, it is a pathologic process

that occurs in blood vessels and tissues in response to an injury or abnormal stimulation.

On the other hand, it is the actual inflammation “object” within the body and which has,

for example, some given specific shape or diameter.

If acronyms are also considered as independent symbols in the sense of the semiotic

triangle, the very same issue arises: In medicine, there are a variety of acronyms

whose different meanings can only be recognized if they are written out. Consequently,

14

2.2 Semantic Interoperability

individual acronym strings are symbols in their own right, which thus have again multiple

referents and hence references. As an example, when using the acronym “AMI” then

this can actually refer to three completely different meanings, namely amitriptyline,

amifostine, as well as to acute myocardial infarction (Davis, 2020).

Therefore, it is the very goal of semantic interoperability to develop and provide technical

solutions for exactly such issues, which allow the formulation and exchange of data based

on precisely predefined, unambiguous, and shared meanings. Due to the ambiguity as

outlined above, such an implementation cannot be based, or at least cannot be solely based,

on natural language elements. For example, to identify a particular meaning in an explicit

and unequivocal way requires a unique, distinct symbol used to symbolize that particular

conceptual reference, and exactly that one only. To ensure this, in most instances some

abstract, so-called ”non-speaking” identifiers or codes are employed. Revisiting the

above nephroblastoma example, the NCIt (National Cancer Institute Thesaurus) as

a large reference ontology providing a vocabulary for clinical care, translational and

basic research (NCI, 2022; Sioutos et al., 2007), contains the unique code C3267 to

(conceptually) reference this exact type of tumor. Attached to the code are its preferred

(natural language) name “Wilms Tumor” , its synonym “Nephroblastoma” , and also

spelling variants, like “Wilms’ Tumor” .

Here, another advantage of such codes is their language independence: If trial metadata

within a registry contains such codes, a lookup for the concept, “meaning” code C3267

would return all corresponding trials, regardless of the language of the trial’s title and

description. A simple string-based search would fail here already if a trial’s title only

contains the term “Wilm’s tumor” but the term “nephroblastoma” is entered as query.

For a human user having the background knowledge of the field, it is easy to understand

that both terms should be used to retrieve all fitting results in a search. From a machine

perspective though, without any additional, machine-understandable information, the

terms are just two quite differently looking character strings without any relation.

For the case just described, it could still be said that it is easier for a user to manually

search for the two terms than to first find the matching NCIt code and then perform the

search based on this. Nonetheless, if the goal is to realize semantic interoperability on

data sets of realistic real-world size, a manual approach is obviously no longer possible.

15

2 Interoperability

It is essential that all (technical) parties involved have the exact same understanding

of the data to be processed, so that the meaning of each contained data element and

each respective value is obvious and shared by all. For example, in a clinical trial, a

subject’s (biological) sex might be asked for and there are (simplified) the two answers

male and female. This can be expressed by using another established artifact, namely

SNOMED CT (Systematized Nomenclature of Medicine Clinical Terms), a reference

terminology standard for clinical documentation and reporting (Millar, 2016; SNOMED,

2022): To express the question, that is, the data element, itself with SNOMED CT, the

code 734000001 (Biological sex) can be used, and for the two answer choices,

that is, the actual data values, the two codes 248153007 (Male) and 248152002

(Female). So to stay in the context of trials: If the data collection within a large clinical

trial is partitioned between two different CTMS, but both share and apply the same

common data elements and data values with the same (conceptual) codes, then also the

trial’s data can be easily shared and integrated between the two CTMS and also external

systems for common analyses.

Still, there is yet another important aspect related to ontologies not addressed in the

discussion so far: Ontologies are usually not flat artifacts, but generally exhibit a more

or less extensive and complex hierarchical structure between the contained concepts.

Through this so-called subsumption or taxonomic hierarchy, concepts are linked from

more general superconcepts to increasingly specific subconcepts through parent-child

relationships. As the small excerpt in Figure 2.2.2 shows, NCIt’s concept C3046

(Fracture) has both one direct, more generic superconcept, namely C35487 (Bone

Injury), as well as several direct, more specific subconcepts that further concretize the

concept fracture based on different characteristics. One distinguishing characteristic is

here whether a given fracture is open or not, resulting in the two subconcepts C34623

(Closed Fracture) and C34624 (Open Fracture).

16

2.2 Semantic Interoperability

Bone Injury

C35487

Fracture

C35487

Open Fracture

C34624

Closed Fracture

C34623

…

…

…

…

…

…

…

…

Figure 2.2.2 – Small excerpt from the NCIt hierarchy

An exemplary use case for this would be the (semantic) search in an ontology-enabled

trial registry: If a user first searches for all clinical trials marked with the concept C34624

as their research topic, then all trials related to on open fractures will be returned. Along

with the search results, a small (visual) ontology excerpt similar to Figure 2.2.2 could

be presented. Thus, in case no suitable results are returned, the user can subsequently

navigate to the superconcept C3046 to return all studies on all types of fractures.

Moreover, the vast majority of ontologies are further structured in such a way that their

individual concepts are logically linked and connected through the use of semantic

relations, such as to provide support for expressing the connections between concepts in

the context of polysemy. When revisiting the word “nephroblastoma” , its use may refer

to the actual Wilm’s tumor on the one hand, or to the associated disease on the other.

For both, SNOMED CT contains the corresponding concepts, which are 25081006

(Nephroblastoma (morphologic abnormality)) for the tumor and 302849000

(Nephroblastoma (disorder)) for the disease. Although the two concepts are

independent in themselves, there is a direct, logical and semantic relationship between

both of them, namely the 116676008 (Associated Morphology) that links the

disease to the affected object, as shown in Figure 2.2.3. Such kind of distinction is found

in many places within this ontology as well as, in fundamentally, in many biomedical

17

2 Interoperability

ontologies. Therefore, to guarantee a properly functioning semantic interoperability,

such seemingly subtle distinctions that might be mistakenly considered as irrelevant must

be always observed and considered when encoding individual data elements and their

connections.

Nephroblastoma
(morphologic abnormality)

25081006

Nephroblastoma
(disorder)

302849000 116676008

Associated
Morphology

Figure 2.2.3 – Example from SNOMED CT how a disease is related to its object

Now, just as it is the case with syntactic interoperability, a key to successfully adapt

semantic interoperability is the openness and availability of the respective standards:

Since the goal is here to create and share some common understanding, the goal should

also be to share and collaborate in developing this understanding. To further support such

common understanding, all relevant resources should be openly and freely accessible

and available to all and at all times, without major fees or licensing restrictions, again at

least for non-commercial research and applications.

Yet, there are some important caveats to be made here, which arise from two opposing

approaches causing two opposing problems: On the one hand, there are a lot of smaller

ontologies especially in the field of biomedical research. Some examples of this

can be found in the OBO (Open Biological and Biomedical Ontologies) Foundry, a

community-driven initiative to develop and maintain interoperable ontologies in that

thematic scope (OBO-TWG, 2021). The goal of using such smaller ontologies is to

cover specific (sub)specialties, as in the case of OBO’s ontology for oral health and

disease to represent the content of dental office health records. While this is good as it

clearly separates the contents of the respective ontologies and thus clearly outlines their

respective application domains, a user has to keep track to find the appropriate ontology

in each case, and also may have to use at the same time a lesser or greater number of

different ontologies if data from multiple disciplines are involved.

On the other hand, the quasi-reverse problem occurs with some larger ontologies. Here,

18

2.2 Semantic Interoperability

it is the case that such ontologies are precisely not specific and focused towards a

particular (biomedical) field. As a result, such ontologies often cover a multitude of

subject specialities simultaneously, leading to the issue that they have a non-trivial overlap

of their content with other ontologies. In the case that no further stipulations or guidelines

towards the use of some specific ontology are available, it is difficult again for a user to

decide which ontology should be applied for some given task.

Again, nephroblastoma may serve as a fitting example: Both NCIt and SNOMED CT

contain a corresponding code for this particular tumor, that is, C3267 and 25081006,

respectively. But also the MedDRA (Medical Dictionary for Regulatory Activities), as a

required standard classification of adverse drug reactions for electronic transmission to the

authorities in the EU and USA, contains a separate code for this tumor, namely 10029145.

Based on this last code example, it becomes evident that if semantic interoperability

is to be achieved on a large scale, it is not only necessary to define common semantic

standards, but also to clearly define their concrete application or, as in the case above,

even to require them in regulatory terms.

Afurther example for a regulation that can serve as such guide are the MIO (Medizinische

Informationsobjekte, Medical Information Object) (KBV, 2022), recently introduced

in Germany, which form the basis of the DiGA (Digitale Gesundheitsanwendungen,

Digital Health Application) (Weber & Heitmann, 2021) that can be prescribed to

patients by physicians. Their application within the DiGA is mandated by the DVG

(Digitale-Versorgung-Gesetz, Digital Healthcare Act) (Gerke et al., 2020) and illustrate

both semantic and syntactic interoperability well. For the syntactic level,MIO defaults

to FHIR as the interchange format. For semantic representation, SNOMED CT is

used as the preferred and thus reference ontology within all MIO. In addition, others

are to be used when certain things cannot be expressed via SNOMED CT and / or

when a particular ontology is a (de-facto) standard in a particular domain, such as

LOINC (Logical Observation Identifiers Names and Codes) for identifying laboratory

observations (McDonald et al., 2003).

If no predefined regulation or suitable guideline is not provided, a “workaround” can be

applied as a viable solution: It is not uncommon to use multiple codes from different

ontologies rather than just one concept code from one ontology for one particular, single

19

2 Interoperability

data element or value. To stay with the example, it would be helpful here to add all three

above codes to the trial’s metadata in a CTMS:When a trial is exported along with all

codes, for example, for further analyses, then the trial data can be readily integrated and

processed together with other (external) data, no matter if they are encoded either with

codes from NCIt, SNOMED CT or MedDRA.

To conclude, it should be noted as well that for the purpose of this work, the term

“ontology” is employed in the above and in the following as a generic umbrella term

covering all suitable (technical) artifacts for enabling semantic interoperability. Although

a distinction is often propagated between ontologies, terminologies, classifications,

and so forth, this distinction is in many cases hard to make, or even artificial and

highly fuzzy as there exists a wide range of variability in the definitions, which,

moreover, not infrequently contradict each other (van Rees, 2008; Zemmouchi-Ghomari

& Ghomari, 2012). Evidence of this confusion is provided, for example, by NCIt itself:

While it provides a controlled vocabulary, like an ordinary thesaurus, whose terms are

connected by synonymy relations, it also has, like a proper classification, a hierarchical

structure arranging and structuring individual terms and concepts on the basis of super-

and subordinate concepts, and also, like an ontology, supplies additional (semantic)

associations and relations between individual concepts.

20

Chapter 3

Scope and Contributions

The fundamental objective of the work is to improve and extend the initial semantic

and syntactic interoperability capabilities of ObTiMA. To begin, the overall task is to

identify both strengths and weaknesses of its current realization and to investigate and,

if applicable, propose possible alternative solutions. To achieve this, and to meet the

actual needs of the users, a review of the existing functionality has been performed jointly

with the users. In this analysis, the following points have been discovered regarding the

status-quo of ObTiMA:

Single Hardwired Ontology Within the application, only a single, predefined ontology

can be used at a time. Also, since this ontology is hardwired into the application code,

it can only be replaced by making the changes to that code.

At the beginning of the development of ObTiMAwithin the ACGT project, this was the

ACGTMO (Master Ontology),which aimed to represent the domain of cancer research

and management in a computationally tractable way (Brochhausen et al., 2011). Within

the p-medicine project, this one was then replaced by the HDOT (Health Data Ontology

Trunk), a core middle-layer ontology integrating several smaller modules related to

personalized medicine, such as for pathology or biobanking. Both ontologies were

therefore very much tailored to their given topic areas.

This means that both ontologies had to be continuously extended by hand with the

necessary concepts in case they could not cover some additional (sub)domain, which,

in turn, causes two problems: First, creating the suitable and fitting concepts within

an ontology is not a trivial task, but requires manual, time-consuming work with the

necessary technical and domain knowledge. Second, and most importantly, these own

concepts are independent of those from standard ontologies with the same meaning,

and therefore have, for example, their own, idiosyncratic identifiers.

Unfortunately, when data within ObTiMA now relies on these concepts, this data is not

21

3 Scope and Contributions

externally interoperable, as external data employs the standard ontologies’ concepts

and not the “homegrown” ones. For this reason, it is crucial to give the user the

possibility not only to use a single and hardwired ontology in the application, but

also to add and use multiple and self-selected (standard) ontologies simultaneously,

depending on the user’s concrete needs and requirements.

Ontology vs. Terminology vs. Classification Building on the above, there is also some

need, in this sense, for some further conceptual expansion of the existing handling of

semantic sources.

The mentioned ACGT MO and HDOT are “complete” ontologies as they provide

formal and comprehensive definitions and representations of the contained concepts

in the given domain, together with all their relevant properties and relations. Although

such ontologies are useful, since they describe a domain in a (technically) precise

manner and allow, for example, automatic semantic reasoning, this kind of fully

defined ontologies is not always available.

Yet, in everyday (bio)medical practice, some standard terminology systems, such as

SNOMED CT (SNOMED, 2022), or classification systems, like ICD-10-GM (WHO,

2022), are generally used to perform (clinical) coding, where their respective contents

are defined and provided in varying levels of complexity and structures. Due to their

widespread and accepted use in both medical applications and research, and their

support by various standards organizations, it is actually inevitable to make them

available in ObTiMA as well, even though they may not meet the criteria for ontology

as originally predefined.

It should be noted at this point too that, for the sake of brevity, only the term ontology

is to be used in the following thesis description, even if a particular artifact should be

a terminology or a classification in the strict sense.

Ontology Concepts for CRF Questions Only In the original realization of the ontology

functionality within ObTiMA, the user can employ ontological concepts only for the

definition of questions and the respective answers when creating or editing a CRF.

The use of the ontology for any other task or in any other areas of the application was

not intended and therefore also not implemented then.

22

Yet, a closer look at ObTiMA reveals that there are several other places and levels

within a trial where ontologies and their concepts can be beneficial: The fundamental

goal of using ontological concepts is to provide some more accurate and semantically

based descriptions of things. Thus, it becomes evident that it is useful to describe

not only the questions of a CRF in a semantically precise way, but all elements of

some given trial. This means concretely that it must be possible to add such semantic

metadata to the trial itself, to all of its SEs and CRFs, and therein to all question groups,

as well as to the questions and the respective answer options.

Support of Export in ODM Only In order to be a “full-fledged” CTMS, it is an absolute

basic requirement for ObTiMA to be able to export all of a trial’s data to the standard

ODM format, as this is still one of the most commonly used formats for the exchange,

storage and archiving of clinical trial data (Kuchinke et al., 2006; Ohmann et al.,

2011). Thus, all established standard software systems for the analysis and evaluation

of clinical trials, such as SAS (Holland & Shostak, 2016), as well as more recent

developments (Brix et al., 2018), can be used directly.

Nonetheless, considering the fact that ontologies are used for semantic enrichment of

trial data and ontologies represent one of the core components of the Semantic Web

(Taye, 2010), it becomes natural to also make possible the export of trial data in its

standard data format, namely RDF. In this way, the exported trial data can be integrated

or enriched with, for example, other publicly and freely available biomedical research

data on the Semantic Web (Egaña Aranguren et al., 2014; Kamdar et al., 2019) to

enable analyses that are not possible based on the trial data alone.

Finally, to further promote ObTiMA’s interoperability towards new areas, the support

of FHIR as export option can be helpful too. As it is one of the original objectives for

the use of FHIR to provide a standard that includes all necessary information model

entities and format for exchanging EHR (Electronic Health Record) data within and

between different HISs (Hospital Information Systems) (Mandel et al., 2016), and

lately also for encoding and exchanging PHR (Personal Health Record) data (Saripalle

et al., 2019), it is now sensible as well, to express collected trial data in this format too.

By doing so, this enables an easier integration of patient data generated and collected

in routine clinical care with data collected within a clinical trial. Exporting metadata

23

3 Scope and Contributions

of a trial and its components to FHIR is further of interest, for example, to make them

available through a corresponding registry system (Gulden et al., 2021).

Need for Better Usability Another objective is to foster the usability in the context of

applying ontologies for interoperability. As a core focus of ObTiMA is to provide

a CTMS that stands out from similar systems by its ease of use, it is also a focus to

provide ontology support at the same level of user-friendliness.

That means that this functionality needs to be offered through an interface which makes

the inherent complexity of both ontologies and their underlying processing transparent

to the user. The goal must be to make everything related to the utilization of ontologies

accessible not only to technologically and ontologically savvy users, but rather also by

medical and trial domain experts without such prior knowledge.

Hence, this also means that all new functionality needs to be available in a way that it

ties in with existing operating and interface approaches, and only cautiously expands

this with elements familiar to the user from daily use of regular software applications.

For example, the user is provided with an autocomplete GUI element to search for

matching terms and concepts, as is similarly known, for example, in the medical field

from coding tools that enable searching for matching codes from ICD-10-GM or OPS

relevant for reimbursement.

It is precisely these just described aspects that form the basic thematic background and

provide the general objectives for the work within this thesis. Therefore, the main result

and contribution of this work is the design and development of the MOnSTER component

addressing the above issues by providing the following functionality:

• Ontologies can now be freely loaded, managed and used in the application without

any limitation: There are no restrictions on how many ontologies are in the system

at the same time and the user can add any ontology that meets their specific needs

and concrete requirements.

• Since not all ontologies are provided in the standard format for ontologies, that is,

OWL (Hitzler et al., 2012), they can now also be provided as files with custom

line-based formats. This is helpful as there are quite some ontological artifacts that

24

are not implemented in OWL but in custom, often line-based, formats.

• Ontologies can now be applied to all components of a trial, which means that their

ontological concepts can be (visually) added as metadata to all components via

so-called semantic tags. In order to render this functionality as simple as possible for

users, it is realized such that adding tags is performed in the very same way using

the same GUI element for all trial components.

• The data of a trial can now be exported not only via ODM format, but also in

RDF format as well as FHIR format. For this purpose, mappings are created

that map this trial data represented in the ObTiMA internal information model

to the corresponding information models of RDF and FHIR. In the case of RDF, a

corresponding vocabulary is also being developed in parallel.

At this point, it is worth mentioning yet another aspect that is crucial for all MOnSTER

design and development efforts: It is not the intention to develop an artifact that can only

be utilized as a demonstrative research prototype. The objective for MOnSTER is rather

to be a robust, stable and performant tool which can be easily and safely used also in

productive environments, that is, for real clinical trials with actual trial patient data. For

this reason, the approach to component development is very much engineering-driven,

which is detailed also in the following chapters.

Based on the just said, it is also important to clarify what is not the goal of MOnSTER: Of

course, since ObTiMA is an established CTMS, it can be neither desirable nor possible to

perform massive, and thus risky, changes to the core architecture and implementation of

the application. Therefore, the declared goal in developing the component is to integrate

it carefully into the existing implementation context by reusing as much of the given

infrastructure base as possible and changing only what is truly necessary. At no time

may MOnSTER or changes made for it cause the integrity or security of the application

and the data stored therein to be compromised.

Finally, it should be noted as well that it is unfortunately not possible within the scope

of this thesis to reproduce here the entire code base of the component or to list in their

entirety the sample exports that are generated to demonstrate the complete functionality

and operability of the component. This, along with further information and materials

about MOnSTER, is available online (Stenzhorn, 2022).

25

Part II

Materials and Methods

(Implementation)

27

Chapter 4

General Overview

The general approach applied for the development of MOnSTER follows a strongly

engineering-oriented scheme and therefore adheres to several principles, which may

not have a pronounced scientific relevance by themselves, yet are of great importance

when realizing a software artifact intended for any productive use. The intention that

lies behind this is simple: The goal is not just to develop a prototype for demonstration

purposes, but rather to create a robust, secure and powerful software artifact that can be

readily deployed in real-world usage scenarios. The component itself should not only be

a research object, but rather a vehicle that enables research based on it.

Therefore, a major guiding principle in the development is to follow established best

practices and proven approaches as much as possible, and to avoid the “reinvention of

the wheel” , by employing both established architectural, design and implementation

patterns (Bloch, 2018; Fowler et al., 2011), as well as widely-used and strongly supported

technical tools, environments and infrastructure components.

Another guiding principle is to develop MOnSTER in such a way that it integrates itself

seamlessly into its ObTiMA host, both in terms of the visible interface and the realization

of the underlying back-end. It is also precisely for this reason that the development of

this component can be neither considered nor described independently of its embedding

application. Thus, the implementation aspects of ObTiMA that directly pertain to the

functioning of MOnSTER are discussed in the below as well.

To render the above more tangible, the following two more specific points arise from

what is just stated:

Separation of Concerns ObTiMA is realized as a classical web application with a clear

separation of concerns between front-end and back-end, implementing a common

multi-tier, client-server architecture. Thus, all interactions with the application occur

on the client, that is, on the user’s machine only through a browser-based interface, and

29

4 General Overview

all of the underlying processing and storage happens (remotely) on dedicated servers.

This physical separation also implies a further logical, task-based separation into

distinct layers for presentation and interaction, application logic, and the management

of data. Here, the goal is to allow each layer to be developed independently, without

internal changes within one layer affecting the others. To ensure this, however, each

layer’s concrete functionality and interfacesmust be clearly and unambiguously defined

to avoid unintended dependencies.

Modularity Orthogonal to the that separation, the application’s ObTiMA’s architecture

also relies strongly on modularization, that is, the logical and technical grouping and

encapsulation of functionality into distinct modules and more specific submodules.

For example, all functionality related to trial management is bundled into one general

module, which in turn contains submodules for each specific task area, such as the

management of users within a trial. Almost more than with the separation above, great

care must be taken to clearly define and delineate the individual modules and their

respective functionality, and, of course, define their interfaces properly as well.

In this context, however,MOnSTER might be regarded as a somewhat special case:

For example, creating a CRF (template) is quite different from actually entering data

in a CRF (instance), and thus both are implemented in the different modules for trial

and patient management. This component, on the other hand, can be considered

cross-module, as its functionality is (also visually) embedded into several other

modules, as shown in Figure 4.0.1. For the trial management and export in particular,

MOnSTER’s GUI elements merge with the existing ones, so they are hardly perceivable

as independent. Therefore, in this case, it becomes even more important to create

well-developed interfaces to guarantee proper inter-module interactions.

30

4.1 Infrastructure

«module»
Trial

Management

«module»
Trial
Export

«module»
Patient

Management

«module»
MOnSTER

Ontology
Management

Semantic
Tagging

Data
Export

Figure 4.0.1 – MOnSTER modules embedded in ObTiMA’s core modules

The sections below now present how these two aspects are realized within the

implementation and set-up of both the application in general and the component in

particular. To support the description, visualizations and graphical models are presented

based on the UML (Unified Modeling Language) (OMG, 2017), as it represents the

de-facto standard for specifying, designing, and documenting software systems.

4.1 Infrastructure

As stated in the above, ObTiMA represents a traditional web application, which entails

that the infrastructure requirements are very moderate on the side of the actual user: To

access and use the font-end of the application, all that is required here is a recent browser

which supports the common web standards, and an Internet connection with access to

the server on which the application’s back-end is running.

As for the server side, the necessary environment is naturally more complex and involves

some general, so called, web (application) stack components, that comprise

• the operating platform(s) for hosting the server infrastructure,

• the programming language and libraries for implementing the web application,

• the database server for storing the application’s data, and

• the web application server for actually running the application.

31

4 General Overview

In each case, for the selection of suitable solutions, their availability as open source

software (OSI, 2007) is an essential factor for several reasons, among which are

• a better and quicker access to the latest innovations, technologies and tools,

• readily available documentation and direct support by the community,

• more robust and secure solutions via an active, open development approach,

• a lower total cost of ownership due to free availability without license fees.

Taking these considerations into account, the following solutions were chosen for use in

the development and deployment of both the application and the component:

Programming Language / Libraries The Java programming language (Oracle, 2022a)

is chosen as the underlying core of the application’s implementation. The two main

reasons for this choice are, first, that Java is used in industry in many non-trivial,

real-world situations, and second, many (open source) software development libraries

exist with predefined APIs and components. The descriptions given in Section 4.2

and Chapters 6 to 7 show the concrete use of such libraries in the development.

Web / Application Server Asuitable server must support and implement both Java itself,

as well as all relevant web standards and Java-based web application specifications

(Eclipse, 2022b). Another stringent requirement for such a server is, of course, that

it must be robust, provide adequate security mechanisms, and be scalable for a large

number of simultaneous users and requests. These requirements are fully met by the

two alternatives Apache Tomcat (ASF, 2022b) and Eclipse Jetty (Eclipse, 2022f).

Even though both can be readily applied in the given context here, the first is chosen

as the default as for its wider usage in the community.

Database Server The application’s persistence and storage mechanism requires a

database server as its base that follows the traditional approach based of a RDBMS

(Relational Database Management System) and the SQL (Structured Query Language).

Here, too, a solution needs to be industry-ready, that is, it must be robust, secure,

and scalable both in terms of large volumes of data and concurrent queries. Of the

two best suitable candidates, that is, PostgreSQL (PostgreSQL, 2022) and MySQL

(Oracle, 2022b), the first one is selected as it adheres more closely to the standard

32

4.2 Application Layers

SQL, provides better concurrency handling and provides better licensing conditions.

Operating Platform Since both Java, the web application and database servers, as well

as all development environment tools, are available for the most common operating

systems, which are macOS,Windows and the different variants of Linux, the basic

infrastructure can run on all of these systems. Therefore, also all three are applied

as working platform for developing and testing the application. For the productive

scenario, however, the server variant of Ubuntu Linux (Canonical, 2022) is applied,

as this operating system is also well established in many mission-critical commercial

environments within the industry.

Coming back to the aforementioned separation of concerns, it is worth noting too that

in real-world, production usage scenarios of the application, a physical separation of

both the actual (web) application and the database is enforced in the backend as well: To

improve and increase both performance and scalability, as well as security, the application

server and the database server run on two distinct machines, each tightly secured with,

for example, its own encrypted filesystem and user management, and linked with each

other via a highly secured connection.

4.2 Application Layers

In order to be able to implement the modularity and separation of concerns mentioned in

the previous section, it makes sense, or rather is necessary, to divide the architecture and

implementation of the application into different layers, whereby each layer comprises a

concrete, larger task area. In this context the layering orients itself at the so-called MVC

(Model-View-Controller) pattern (Fowler et al., 2011), which basically breaks a software

artifact down roughly into the three components data model, presentation or view, and

program controller, each of which is described below.

4.2.1 Persistence / Storage

The task of this layer is to provide the application logic layer with the necessary methods

and mechanisms to persist, retrieve and supply data. That is, it includes the actual

database (system) for storing data, the internal programming code to access and query

33

4 General Overview

the database, and the external interface for the application logic layer.

The actual database is running on the PostgreSQL system (PostgreSQL, 2022), selected

as it represents one of the most established open source RDBMS (Relational Database

Management System) at this time and as it is also widely used in commercial environments

with non-trivial requirements towards robustness, security and scalability.

For the interaction with the database, it was decided against the traditional approach

of formulating queries directly via SQL (Structured Query Language) statements and

embedding them in Java code. Instead, the ORM (Object Relational Mapping) approach

(Ambler, 2013) was chosen, where object-oriented information models and structures

are automatically mapped and transferred to tables and records in a RDBMS. This has

the advantage that no low-level, and often complex SQL statements need to be created

manually, but instead the familiar programming paradigm using regular objects can be

applied. For the concrete realization of this approach within the application, the JPA

(Jakarta (previously, Java) PersistenceAPI) (Eclipse, 2022c)was chosen, which provides

a foundational ORM API specification for Java, along with Hibernate ORM (Red Hat,

2022), which acts as a so-called JPA provider, implementing and making available the

API as an open source software library. As with PostgreSQL, Hibernate ORM is selected

on for its wide use, also in industry, and its large open source community.

Using this framework, all data is then represented through entity classes. These classes

form the basis for so-called “plain objects” , as they do not provide any functionalities

themselves, that is, callable methods to execute processes, but only contain fields in

which individual data elements can be stored. As an example, in Figure 4.2.1 the

classes to represent a trial, its SEs and its CRFs are shown: Unlike in some other

CTMS, this approach means that it is not necessary to create new databases and database

tables specifically for each new trial, SE or CRF. Rather, in this approach only single,

generic tables are created in the database with one for all trials, one for all SEs and

one for all CRFs. Within these tables, the individual studies, and so forth, are then

each distinguished by identifiers (id), automatically generated and assigned by the

Hibernate ORM framework. Now, if there are references between entities, such as here

that a Trial entity contains a list of StudyEventTemplate entities, and this in turn

contains a list of CRFEventTemplate entities, then this is automatically realized in the

34

4.2 Application Layers

background by the framework by mapping the underlying identifiers. The entities, or

classes / objects, just mentioned here represent only a very small part of ObTiMA’s more

complex information model, which has the model of the ODM standard (CDISC, 2013)

as its original foundation and starting point, as described in Section 7.2.

id : long
acronym : String
name : String
studyEventTemplates :
 List<StudyEventTemplate>
…

Trial

(a)

id : long
acronym : String
name : String
crfTemplates :
 List<CRFTemplate>
…

StudyEventTemplate

(b)

id : long
acronym : String
name : String
…

CRFTemplate

(c)

Figure 4.2.1 – Trial, SE template and CRF template classes

For the implementation of the mentioned interface to the application logic layer, the

DAO (Data Access Object) pattern is used: In general terms, DAOs provide specific

methods for searching, retrieving, or storing data, but encapsulate and make transparent

the actual necessary steps and interactions with the database. A simple example of such

a DAO is the GenericDAO, shown in Figure 4.2.2, providing generic methods to find,

store and delete data (objects) in the underlying database. For example, the method call

find(Trial.class, "status", "RUNNING") returns the list of all trials marked

as running that are currently registered in the application.

35

4 General Overview

find(class : Class<C>) : C [0..*]
find(class : Class<C>, key : String, value : Object) : C [0..*]
save(object : Object)
delete(object : Object)
…

GenericDAO

Figure 4.2.2 – Generic DAO class

For more complex queries, which usually include multiple attributes from multiple

entities, special DAOs have been developed. As an example, to return all patients of

a certain trial site, first the entity, and hence database table, holding all trial sites has

to be queried for that particular site and then the entity / table with all patients for the

ones linked to that trial site. In this still quite straightforward case, one could indeed

use the GenericDAO and first query for the trial site and then use the result to query

for the patients in turn. Although this would at least encapsulate the actual database

access in the layer provided for this purpose, two queries would still have to be executed

one after the other from the application logic layer and then linked to each other in this

layer as well: This mixes both the actually intended tasks of the two layers and can

potentially reduce performance. Therefore, it is sensible to create specialized DAOs

where single, dedicated methods combine interrelated queries and subqueries and run

those bundled on the database, as for the example within a PatientDAO into the specific

method findAllPatientsForSite(name : String).

4.2.2 Application Logic

This layer represents the business logic of the system, that is, fundamentally its actual

functionality. Essentially, it receives requests from the user interface layer, performs

processing on those requests, for that interacting with the persistence and storage layer to

retrieve and store data, and finally sends a response back to the user.

Due to the fact that ObTiMA is a complex application covers a plethora of different

tasks, the underlying application logic is accordingly also very extensive and complex.

36

4.2 Application Layers

Therefore, within the scope of this work, which focuses on the MOnSTER component, it

is not possible to cover all of their specific aspects here.

However, one common point that affects all the components within the application

equally is the aforementioned modularization. Since the correct implementation of such

modularization is anything but a trivial endeavor, and as it forms the very foundation

of all proper interaction between the various modules, this needs to be supported by a

standard and robust environment and framework. It is for this reason, that the Spring

Framework (VMware, 2022a) is selected. This concrete framework is chosen, as with

the other software libraries applied in this context, based on the fact that it is open source,

has long proven itself also in large industrial settings, and, of course, offers the specific

functionality required. The most important, relevant capabilities provided in here are that

this framework provides the ability to loosely couple individual modules, automatically

resolve their dependencies and manage their lifecycles, as well as provide some unified

APIs for their development and an overarching configuration management. Another

advantage of this framework is its support of all libraries used in the other two application

layers, which simplifies the development of interfaces to and between them.

For example, the OntologyProvider class, discussed in the next section, is provided as

a so-called Spring “bean”,which means that an object of this class is automatically created

and configured by the framework on application startup without any additional manual

effort. To access the database, the class / object internally requires the aforementioned

GenericDAO object as interface to the persistence and storage layer. Here, the framework

automatically checks whether such kind of object already exists and makes it directly

available to the OntologyProvider or, if not, creates one and associates it with the

provider class, again without any manual effort either.

4.2.3 User Interface

The user interface layer represents the actual interface for the users to interact with the

application. Here, users trigger the underlying application logic to execute processes,

that is, to perform the actual work, and present back the received outcomes.

Commonly, the term user interface is understood to mean the graphical user interface, or

37

4 General Overview

GUI for short, only, as discussed in the below. However, in the context of MOnSTER,

users can also access some of its functionality, namely to export trial data, through another

interface, that is, via a web service, described in Subsection 7.2.2 and Section 11.2.

For realizing the GUI, the JSF (JavaServer Faces) is utilized, which is a Java-based

specification for developing component-oriented user interfaces for web applications

(Eclipse, 2022d) and additionally provides a reference implementation library of this

specification encompassing all the GUI components described therein (Eclipse, 2022g).

As with the libraries and tools before, JSF is selected because of its standardization, open

source availability, and proven applicability also in large commercial applications.

Further, on top of this, the PrimeFaces library (PrimeTek, 2022) is employed, providing

some additional JSF components for GUI development. This library is chosen since its

focus lies on providing components and elements that allow the creation of dynamic,

responsive interfaces for applications with a high degree of user interactions, as it is

exactly the case for both ObTiMA and MOnSTER.

The libraries are used concretely in the implementation as follows: For the actual view

of the application, that is, what is presented to the user in the browser, a set of multiple

(web) base pages is created, such as one for providing and presenting the application’s

trial management functionality or for the functionality to add, list and edit ontologies.

These pages are based fundamentally on HTML (WHATWG, 2019), yet they are not

static as in the case of regular HTML pages. Rather, they use the provided JSF built-in

mechanisms and contain this frameworks (component) elements to import and integrate

different subpages or subviews, like in the trial management the (sub)view to manage

the trial’s general parameters or its CRFs and SEs. They are also dynamic in the respect

that the actual HTML of all interaction elements provided by both JSF and PrimeFaces

is not hardcoded in advance but generated dynamically by the libraries and thus linked to

the defined methods in the back-end layers of the application. Thus, doing do enables

that when an interaction element on the trial management page is activated, such as

by clicking the Save button, in this case, all relevant data on that page is automatically

transmitted using the frameworks mechanisms to the application server and processed in

the application logic layer by the appropriate class and method, such as in this case the

class TrialHandlerAction and its method saveTrial.

38

4.3 Usage Scenarios

4.3 Usage Scenarios

In software engineering, before any architectural or implementation work can be carried

out, it must be clearly and precisely (pre)defined which actual usages and usage scenarios

are envisaged for some planned piece of software. So the goal of setting-up such scenarios

here is to describe at a more abstract, higher level what kind of overall functionality the

component should provide at all and how this can be decomposed into more specific,

individual “work packages“, and to define what tasks and features these packages should

encompass in turn. As their name implies, these scenarios are usage-centric and thus

describe from the user’s point of view which concrete tasks the user should be able to

perform when using that piece of software. It should be noted that the fundamental

requirements, such as the possibility of concurrently using multiple ontologies in the

application, as mentioned in Chapter 3 before, are to be implicitly included as well when

defining such scenarios.

Basically, the following three scenarios, as visually summarized in the diagram in

Figure 4.3.1, are distinguished when using the component. On their basis, and according

to the earlier described modularization approach, the component is in turn logically and

technically divided into three subcomponents, one for each usage scenario.

• To fundamentally enable semantic interoperability in the application, the ontological

base needs to be enabled first. Hence, in order to be able to use ontologies at all,

they must, of course, be available in the application. It is for this reason, that the

first scenario deals precisely with how ontologies can be added by some user to

the application in general and how existing ontologies can be managed, edited and

removed if necessary.

• The second usage scenario addresses the goal of semantic interoperability in the

sense that semantic information can be added to the various components of a trial.

For this, it needs to be ensured first that ontologies are also available for the specific

trial at hand and then, in turn, that all individual trial components can be readily

semantically enriched and tagged with the desired semantic information based on

concepts from the available ontologies.

• Finally, to also ensure syntactic interoperability, all (semantically enriched) trial data

39

4 General Overview

added to and stored within the application must be made available to further, external

systems in the appropriate formats, as described before. This scenario therefore

includes exactly the functionalities required by the user for this purpose, that is, who

trial data can be exported in different formats.

Now, to ensure the clarity of this thesis documentation, the division is also taken up in

all of the following, so that the respective descriptions of the implementation, the results

and the evaluation are all structured according to the given three scenarios.

40

4.3 Usage Scenarios

User

Add
Ontology

Edit
Ontology

Remove
Ontology

<includes>

<includes>

<includes>

Export as
ODM

Export
as RDF

<includes>

<includes>

Enable
Ontology
in Trial

<includes>

Tag
Tria

l

Tag
Study
Event

Tag
CRF

Tag
CRF Item

Group

Tag
CRF Item /

Answer

<includes>

<includes>

<includes>

<includes>

<includes>

Export
as FHIR

<includes>

Manage
Ontologies

Tag Trial
Components

Export
Trial Data

Figure 4.3.1 – Usage scenarios for the MOnSTER component

41

Chapter 5

Ontology Management

To be able to perform any ontology-based semantic tagging with MOnSTER at all, the

desired ontologies need to be made available in the application first. Therefore, the task

of this subcomponent is to provide the functionality to add ontologies to the application,

to manage and edit them within it, and to remove them again from it if necessary.

The implementation of its presentation layer, that is, the necessary GUI, follows

ObTiMA’s standard approach and relies on several predefined JSF and PrimeFaces

elements, which are customized and configured for their use by the component. Here,

the main elements are the modal form popup for adding and editing an ontology, the

dynamic data table for listing the available ontologies, and the confirmation dialog when

removing of an ontology. The actual implementation encompasses the creation of a

dynamic HTML page in which the just named elements are embedded and configured

to interact with the respective back-end layer on the server. That is, for example, when

clicking the Save button during the editing of an ontology, the respective save method

in the back-end is called, which receives the data from the client (browser), validates

the provided data and either, on success, the ontology is saved, or on failure, an error

message is sent back to the client and there presented to the user. A detailed description

of these resulting elements is given in Chapter 9.

For this presentation to function, the underlying processing is performed in the application

layer by the OntologyProvider class, as shown in Figure 5.0.1, which provides the

necessary (interface) methods for both saving and indexing ontologies, as well as for

removing and deindexing them, together with the internal (non-interface) methods that

are needed to process ontologies, validate them, and so forth.

43

5 Ontology Management

saveOntology(ontology : Ontology)
removeOntology(ontology : Ontology)
indexOntology(ontology : Ontology)
deindexOntology(ontology : Ontology)
…

OntologyProvider

Figure 5.0.1 – Ontology provider class

The basic attributes of an ontology are represented within the persistence and storage

layer by the Ontology entity class, depicted in Figure 5.0.2(a), along with the supporting

Namespace class in (b) and the Format enumerator in (c). The specific meaning and

use of each attribute is described within the results in Chapter 9. The implementation

utilizes JPA again as primary mechanism for mapping this class onto the corresponding

database tables. Since there are no complex queries required for storing and retrieving

an ontology and its attributes, there is also no need to develop a specialized DAO, but

the ObTiMA core GenericDAO can be readily used here as well.

At this point, it is important to emphasize that the approach on how an ontology is

processed and stored can be seen as “hybrid” : The just described is concerned with the

basic (metadata) attributes of an ontology only. However, for performance reasons, the

processing, storage and retrieval of the actual content of an ontology, that is, its concepts,

does not rely on JPA and the database, but rather employs a specific indexing approach.

The background for this is that, especially for fast sequential queries, this functions much

more rapidly using a (locally) available index together with a suitable high-performance

search engine, instead of repetitively querying a possibly remote database.

44

id : long
acronym : String
name : String
version : String
description : String
namespace : Namespace
format : Format
regex : Pattern [0..1]
firstLineSkipped : boolean
source : IRI
enabled : boolean

Ontology

(a)

name : String
prefix : String

Namespace

(b)

OWL
CUSTOM_LINE_BASED

«enumeration»
Format

(c)

Figure 5.0.2 – Ontology-related base classes and enumeration

The implementation of this index is realized via Lucene, a widely used, open source

software library providing full-text search capabilities, familiar from the major Internet

search engines (ASF, 2022a). Now, since the concepts are searched for via their respective

labels, within this index, these form the actual lead search element, or field in the library’s

naming scheme. That means that for each label of a concept, a so-called document with

the fields in Table 5.0.1 is created and indexed, as explained below. (The search on this

index is described in the next chapter.)

45

5 Ontology Management

Field Description

code Unique identifier of the concept within an ontology,
as specified in it

ontology Unique identifier, that is, ObTiMA’s internal system
id of the ontology containing the concept, as shown
in Figure 5.0.1

label Single label of the concept

language Language identifier of the label, following the ISO
639-1 standard (ISO, 2002)

preferred Marker whether the label is a preferred one

Table 5.0.1 – Concept index fields

To now combine all the above into a workflow, the following steps are executed when

adding an ontology to the system:

For providing an ontology file to the system,MOnSTER gives the user three options: It

can be either manually (pre)loaded onto the server in advance, uploaded there by using

the GUI, or a remote location can be specified, and the file is automatically downloaded

from there to the server. The implementation of the upload uses a PrimeFaces component,

the download of remote ontology files the built-in standard Java HTTP client.

After loading an ontology onto the server, it is in turn further processed according to the

given format of the file, as described below.

OWL-Based Ontology Files

Here, the file can be read directly into an in-memory OWL model using the OWL

API library (Horridge & Bechhofer, 2011; Horridge et al., 2022). In this model, all

concepts are encoded as OWL classes and corresponding labels via annotation properties.

To ensure that only relevant concepts are processed, only those fitting the predefined

namespace are considered, see Chapter 9.

For the associated labels, the standard RDFS label annotation property (Brickley et al.,

46

2014) is included, as well as the ones for preferred and alternative (synonym) labels

defined by SKOS (Isaac & Summers, 2009). Here, each label can optionally contain an

additional identifier for its language.

For indexing, the matching OWL classes are iterated over, and for each class in turn the

matching labels / annotations are iterated over, so that a corresponding Lucene Document

object is generated with the appropriate field attributes, as shown in Table 5.0.1, and

added to the index. Also, either the first label of an OWL class is marked as preferred or,

if existing, the one marked as SKOS preferred label.

An example excerpt from an OWL ontology file is provided in Section 9.1.

Custom Line-Based Ontology Files

In this case, the processing of the ontology file is performed on a line by line basis.

Custom line-based files often take the form of a CSV (Comma Separated Value), or more

generally, a DSV (Comma Separated Value) file, that is, a comma or another specific

character is used to separate values from each other on a line. But it is also possible

to use files in this context, which use a more complex line structure, which cannot be

readily mapped using CSV or DSV. For this reason, MOnSTER’s implementation is

based on applying regular expressions to extract the required parameters from each line.

The concrete structure of such an expression is described in Section 9.1.

The implementation relies on Java’s core APIs for file input and output, as well as for

regular expressions and pattern matching: With these, the ontology file is read in line

by line in a so-called streaming mode for efficiency reasons. As soon as new line is

read into memory, the pattern matching on this line with the given regular expression is

performed. If the required elements are found, that is, the code and label of a concept,

and optionally a language tag and a flag whether the given label is the preferred one, then

these are extracted. ALucene document is created from the extracted elements, as in the

case above for OWL ontologies, and, in turn, this document is added to the index. For

this as well, an example for a custom line-based ontology file together with the necessary

regular expression is given later in Section 9.1.

47

Chapter 6

Semantic Tagging

After one or more ontologies have been added to the system, the concepts contained

therein can be used to semantically tag trial-related elements.

Again, the presentation layer’s implementation uses the default approach of ObTiMA

using specifically adapted JSF and PrimeFaces elements. The main component in here

is an autocomplete element where search terms can be entered to look up ontology

concepts based on their labels, and which displays a dynamically updated list of matching

concepts from the predefined ontologies, as presented in Chapter 10. Here, the dynamic

update always happens immediately when the query string in the auto-complete’s text

field changes, that is, some characters are entered or deleted again. This functionality

is implemented through a server-side callback method which is executed whenever

such change within the query string occurs. The completeTag method, found in the

TagProvider class and shown in Figure 6.0.1, performs the three steps:

1. Create a Lucene search query,

2. Search the index with this query, and

3. Wrap the results in Tag objects, as depicted in Figure 6.0.2, and return them.

completeTag(query : String) : Tag [0..*]
…

TagProvider

Figure 6.0.1 – Tag provider class

49

6 Semantic Tagging

id : long
iri : IRI
labels : Literal [0..*]
ontology : Ontology

Tag

(a)

label : String
language : String [0..1]
datatype : IRI

Literal

(b)

Figure 6.0.2 – Tag-related base classes

The generation of the search query is also more complex and involves four steps:

1. A subquery is created for selecting all Documents in the index where the ontology

field is equal to the identifier of one of the preselected ontologies.

2. The query string in the auto-complete text field is tokenized based on the spaces

it contains, and for each resulting token, that is substring, a subquery is generated

selecting all Documents in which the label field contains this token.

3. The last step’s subqueries are combined into an boolean “or” query which returns all

index Documents that match at least one of the subqueries, that is, contain at least

one of the tokens in the label field.

4. The very first subquery is again combined with the last step’s boolean “or” query

to form a boolean “and” query, which means that now only the Documents are

matched whose ontology belongs to the preselected ones and at least one of the

tokens is included in the label.

Based on this combined query, the search is performed in the index and the list of all

matching Documents is returned. In order to simplify the subsequent processing of the

list, the resulting Documents are already sorted by the Lucene engine during the search

process: To do this, the actual sort fields are passed directly to the search method. Here

the sorting is done according to the combination of the specified fields in the specified

order. This means, that the results are sorted according to the ontology field, and hence

grouped for to the respective source ontology. Then the results are sorted by preferred

and non-preferred labels based on the preferred field. Finally, the label field is used

to sort the results alphabetically by the labels.

50

The next step is to wrap the results in Tag objects, or rather, create those objects from

the individual returned Lucene Document objects. In order to send these objects to the

client, that is, to the browser GUI, they are automatically serialized into JSON format by

the PrimeFaces library. From that, the autocomplete component generates the drop-down

menu with each row based on a single (JSON-serialized) Tag object.

Now, when the users clicks on a result row, the Tag is added to the trial component. So

the storage of the respective Tag object is triggered, persisting it in the database using

ObTiMA’s GenericDAO and added to the tags list attribute of that component’s object.

This link is also reflected directly in the GUI, as the (visual) tag element is now shown

in the tags element of the trial component.

If the user subsequently removes the tag from the trial component on the GUI, the reverse

happens, namely, the tag is removed from the corresponding list of that component

using the given DAO and then deleted from the database itself.

51

Chapter 7

Data Export

The realization of the data export is a key aspect in achieving MOnSTER’s goal to

promote both semantic and syntactic interoperability.

Here, semantic interoperability aims not only at achieving a common conceptual

understanding via ontologies, but it also addresses the distinct motivations behind ODM,

RDF and FHIR:While the first targets the exchange and archiving of trial data, the second

provides an open, generic model to exchange (basically) any kind of data, and the third

aims at becoming the standard for data exchange in healthcare.

By embracing all these formats, MOnSTER also seeks to bridge the conceptual gap

between them and facilitate the integration of trial data with (large) linked datasets from

the Semantic Web (Egaña Aranguren et al., 2014; Kamdar et al., 2019) or with data from

routine clinical systems (Lehne et al., 2019) to foster research.

7.1 Basic Implementation

The implementation of MOnSTER’s export features builds upon the existing export

functionality, which represents one of the core functionalities of the application from its

very outset. Its central access point in the application logic layer is the ExportAction

class with its export method, as depicted in Figure 7.1.1(a). Previously, this method

could only prepare and produced results in the ODM format, but for this work it is

extended to return RDF and FHIR as well. It performs its task in three steps:

1. All relevant data elements for the given trial are looked up and retrieved using the

corresponding DAOs from the persistence and storage layer.

2. The data is mapped and transformed into the information model of the stated format,

that is, one of (b), by the respective mapper, as described in Section 7.2.

3. The mapped data is returned in the specified, format-specific serialization, namely

53

7 Data Export

one of (c), as presented in Section 7.3.

export(trialAcronym : String)
 format : Format, serialization: Serialization,
 protectedDataIncluded : boolean,
 metadataIncluded : boolean,
 tagLabelsIncluded : boolean,
 firstResult : int, maxResults : int) : String
…

ExportAction

(a)

ODM
RDF
FHIR

«enumaration»
Format

(b)

«interface»
Serialization

XML

«enumeration»
ODM

RDF_XML
TURTLE
N_TRIPLES
JSON_LD

«enumeration»
RDF

JSON
RDF
XML

«enumeration»
FHIR

(c)

Figure 7.1.1 – Export action with format and serialization enumerations

7.2 Format Mappings

Referring to the previous section, the second step which the ExportAction class’

export method needs to perform is the format mapping, that is, to link and transform all

relevant entities in ObTiMA’s internal information model to the corresponding entities

54

7.2 Format Mappings

in the information models of the ODM, RDF, and FHIR export formats.

In order to accomplish this task, the following general steps are performed:

1. Each information model is visualized by an ERM (Entity Relationship Model), a

type of flowchart that graphically represents the entities of a domain together with

their relationships and dependencies (Elmasri & Navathe, 2015).

2. Based on these visualizations, all relevant entities and contained attributes are

identified within each of the information models.

3. Also using the visualizations, correspondences between the identified entities and

attributes in the internal and the target information models are determined.

4. The required transformations for found correspondences are encoded first as

pseudocode (Cormen et al., 2009) and then realized as programming code.

The ERM visualization of ObTiMA’s internal information model is shown in Figure 7.2.1,

for whose creation reverse engineering is applied: As the existing information model is

implemented based on JPA and Hibernate entity classes, the functionality provided by

the IDE IntelliJ IDEA (JetBrains, 2022) to automatically produce a corresponding ERM

in the UML standard notation is used.

In this visualization, each named box represents an entity, and a line between two indicates

that the entity marked with a diamond contains (or may contain) elements of the other

entity. For example, one CRFTemplate holds zero or more (0^..*) Tags, that is, a CRF

may be tagged with one or more semantic tags, or not at all.

If the individual connections between the entities of the test components are now

followed from top to bottom, a strongly nested structure emerges here. This means,

for example, that a Trial contains one or more StudyEventTemplates, and each

StudyEventTemplate in turn contains one or more CRFTemplates, and so on.

55

7 Data Export

1
1..*

Trial

1
1..*

1
1..*

1

1..*

1
1..*

1
1..*

1
1..*

1
1..*

1

1..*
1

1..*

1

1..*

1

1..*

1

1..*

1

1

1

1

1

1

0..*
0..*

0..*

0..*
0..*

0..*

1

0..*

1

1

1

1

1

1 1..*

1..*

1..*

1..*

1..*

1..*

Patient

StudyEventTemplate StudyEventInstance

CRFTemplate CRFInstance

CRFItemTemplateGroup CRFItemInstanceGroup

CRFItemInstance

CodeListTemplate CodeListInstance

CodeListItemTemplate CodeListItemInstance

CRFItemTemplate

Tag

Figure 7.2.1 – Entities of ObTiMA’s internal information model

Therefore, to map this structure and hence the information model, this processing

must occur top-down too. So, staying with the above example, a TrialMapper first

processes a Trial and for each StudyEventTemplate contained therein, calls a

StudyEventTemplateMapper to process it, and so forth. Importantly, since each

56

7.2 Format Mappings

target format’s data modes are different, the mappers are implemented specifically for

each of them. Their realizations are described in Subsections 7.2.1 to 7.2.3.

As an additional note, it should be mentioned here that within the internal information

model instances are always based on and thus linked to an appropriate template. Therefore,

as an example, CRFInstances are always associated with a specific CRFTemplate, that

is, the latter contains all question definitions and the former the related response values

and data. This must also be taken into account when creating the mapping, since the

dependencies between the instances and the respective templates must also be reflected

accordingly in the target model.

In the Figure 7.2.2 below, an overview is given of the general outline and structure of

the classes necessary to map each part of a trial from the internal information model to

the target one. For each target model, the respective, suitable mapper classes need to be

developed. They are described in the sections to follow.

57

7 Data Export

«interface»
Mapper

map(object : Object)

map(object : CodeListItemInstance)

CodeListItemInstanceMapper

map(object : CodeListItemTemplate)

CodeListItemTemplateMapper

map(object : CodeListTemplate)

CodeListTemplateMapper

map(object : CodeListInstance)

CodeListInstanceMapper

map(object : CRFItemInstance)

CRFItemInstanceMapper

map(object : CRFItemInstanceGroup)

CRFItemInstanceGroupMapper

map(object : CRFItemTemplateGroup)

CRFItemTemplateGroupMapper

map(object : CRFItemTemplate)

CRFItemTemplateMapper

map(object : CRFInstance)

CRFInstanceMapper

map(object : CRFTemplate)

CRFTemplateMapper

map(object : StudyEventTemplate)

StudyEventTemplateMapper

map(object : StudyEventInstance)

StudyEventInstanceMapper

map(object : Patient)

PatientMapper

map(object : Tag)

TagMapper

map(object : Trial)

TrialMapper

Figure 7.2.2 – General outline and structure of the necessary mapper classes

58

7.2 Format Mappings

7.2.1 ODM (Operational Data Model)

In the early development phase of ObTiMA, the ODM format as specified by the

CDISC (Clinical Data Interchange Standards Consortium) (CDISC, 2013) served as a

fundational blueprint when defining the application’s trial-related entities. It is against this

background that the two underlying information models are still very similar and agree in

many aspects, often differing in many places only by a different naming convention. For

this reason, the realization of both logical mapping and programmatic implementation

prove to be straightforward and attainable with moderate effort and resources.

The technical specification of the ODM standard provides, in addition to a textual

description, a set of XSD (XMLSchema Definition) files (Gao et al., 2012; Peterson et al.,

2012) to formally define all elements of the ODM XML serialization (CDISC, 2013).

An initial visualization of the XSD is automatically generated using the Oxygen XML

Editor (Soft, S., 2022), which in turn is manually transformed into UML notation. Based

on the latter together with ODM’s textual description, the correspondences between this

information model and the one of ObTiMA are determined and the respective pseudocode

developed to transform between them. An example of a direct correspondence found

is shown in Figure 7.2.3, where ObTiMA CRFTemplate corresponds directly to ODM

FormDef, and ObTiMA CRFInstance directly to ODM FormData, where basically

only the respective entity name needs to be mapped and also the attributes of each are

highly similar and therefore straightforward to map.

59

7 Data Export

ODM

ObTiMA

CRFInstance

FormData1

1 1..*

1..*

CRFTemplate

FormDef

Figure 7.2.3 – Example for a direct correspondence between ObTiMA and ODM entities

For the programmatic implementation of the mapping, a workaround is introduced, since

no official ODM Java library exists providing the standard’s elements as dedicated Java

classes: Applying the JAXB (Jakarta XML Binding, formerly Java Architecture for

XML Binding), a standard API and library for mapping classes and objects to and from

XML (Eclipse, 2022a, 2022e), is used to automatically generate Java classes for each

ODM XML element. This representation as standard classes enables Java’s regular

object-oriented approach and mechanisms for instantiating objects and setting, reading,

and modifying their attributes.

The format-specific realization of the mapping now uses these entity classes and

implements a suitable mapper class for each original ObTiMA entity, proceeding again

from top to bottom adhering to the information model’s nested structure.

This mapping now also includes MOnSTER’s semantic tags, which are not part of the

original ObTiMA information model. To include them in the ODM export, this standard’s

extension mechanism is employed: With the help of such extensions, further elements

can be added to ODM to represent data (types) not covered by the actual standard. The

creation of this MOnSTER extension involves two steps:

60

7.2 Format Mappings

1. An additional XSD is developed, where the necessary elements together with their

attributes and dependencies are defined.

2. ODM’s default extension XSD is adapted to include a reference to the MOnSTER

XSD and so to allow all adapted elements to contain tags.

Based on JAXB, the appropriate classes are automatically generated again, and the

respective TagMapper developed. The complete MOnSTER together with the ODM

extension XSDs are listed in Appendix A.

For example, in the (simplified) code snippet in Figure 7.2.4, the map method of the

CRFTemplateMapper class initially generates a ODM FormDef object and sets its

name attribute to the respective value from the original ObTiMA CRFTemplate object.

Now, for all ChildCRFItemTemplateGroup objects that the CRFTemplate object

holds, the map method of the CRFItemTemplateGroupMapper class is called, and the

FormDef object’s itemGroupRef attribute set to the collected result list. Finally, the

same is applied using the TagMapper class’ map method to process the contained Tag

objects. The resulting TagElement objects list is then wrapped inside a TagsElement

object and added to the FormDefElementExtension list attribute.

FormDef map(CRFTemplate crfTemplate) {

var formDef = new FormDef();

^^...

formDef.setName(crfTemplate.getName());

^^...

formDef.setItemGroupRef(

crfTemplate.getChildCRFItemTemplateGroups().stream()

.map(crfItemTemplateGroupMapper^::map)

.collect(toList()));

^^...

formDef.getFormDefElementExtension().add(

createTagsElement(crfTemplate.getTags().stream()

.map(tagMapper^::map)

.collect(toList())));

^^...

return formDef;

}

Figure 7.2.4 – Example mapping of an ObTiMA entity onto an ODM entity

61

7 Data Export

7.2.2 RDF (Resource Description Framework)

In contrast to themapping of ObTiMA’s internal informationmodel to ODM, an additional

step is necessary here: RDF, which was originally intended to describe metadata, now

represents a cornerstone of the Semantic Web (Berners-Lee et al., 2001) and provides

a generic method for creating and exchanging basically any graph-based information

models (Cyganiak et al., 2014).

It is because of this generality, that an appropriate vocabulary must be utilized in order to

apply RDF meaningfully to some particular task. The task of vocabularies in this context

is therefore the (technical) definition of terms and their interconnecting relationships to

describe and represent a specific area of interest.

Although there were efforts by CDISC (Clinical Data Interchange Standards Consortium)

to develop such RDF vocabularies for some of its standards, this was not the case for ODM

(PhUSE-CS-STWG, 2015;Williams & Oliva, 2017). For this reason, the development of

MOnSTER also includes the creation of a vocabulary for modeling ODM in RDF. Here,

the implementation is based on RDFS (RDF Schema) (Brickley et al., 2014) and closely

follows the general structural and technical approach of PhUSE-CS-STWG;Williams

and Oliva. Furthermore, the prototypical proposals of the W3C HCLS (Healthcare

and Life Sciences) IG (Interest Group) (W3C-SW-HCLS-IG, 2012) are integrated in

the vocabulary implementation as well and its development follow the good practice

principles for Managing RDF vocabularies (Kendall et al., 2008). Fundamentally, the

goal is to express the original ODM information model as accurately as possible in terms

of a native, graph-based RDF model (vocabulary) without compromising the logic and

completeness of the original ODM, but also to avoid workarounds contradicting RDF’s

fundamental approach and principles (Schreiber et al., 2014).

Since, as just mentioned, the developed RDF vocabulary represents the ODM entities

very closely, the development of the logical mapping from ObTiMA’s information model

is straightforward, as the mapping already created for the original ODM can be used as a

basis. From this follows that the abstract pseudocode from that mapping can be reused to

a large extent as well.

The actual realization of the mapping must, of course, take into account the specifics

62

7.2 Format Mappings

of RDF’s triple statement approach to create (data) models (Cyganiak et al., 2014).

For example, the natural language sentence “The researcher John Doe is PI in the trial

UMBRELLA.” could be split into the following three triple statements:

• “John Doe” is a resource of type “Researcher” .

• “UMBRELLA” is a resource of type “Trial” .

• “UMBRELLA” has the property “has PI ” pointing to the resource “John Doe” .

Now, for its realization, the RDF4J library (Eclipse, 2022h) is applied, based on which

specific mappers for each ObTiMA information model entity are developed.

To take up the example from before, the CRFTemplateMapper iterates over each

attribute of the ObTiMA CRFTemplate object, generating a triple statement for each

and adding it to the RDF model: In the (simplified) code snippet in Figure 7.2.5, first,

an IRI is created as identifier for the given CRFTemplate. Then, two statements are

created and added to the model, the first one stating that the RDF resource identified by

crfTemplateIRI is of TYPE (ODM) FORM, and the second one stating that this resource

has a NAMEwhose values are taken from the corresponding attribute of the CRFTemplate

object. Now, the CRFItemTemplateGroupMapper class’ map method gets called for

each ChildCRFItemTemplateGroup object contained in the CRFTemplate object,

and the collected list added as CHILDREN to the RDF resource crfTemplateIRI. Finally,

the same applies for all contained Tag objects, that is, the TagMapper class’ mapmethod

is called for each, and the resulting list added as TAGS.

63

7 Data Export

IRI map(CRFTemplate crfTemplate) {

var crfTemplateIRI = createIRI(crfTemplate);

^^...

addToModel(crfTemplateIRI, TYPE, FORM);

addToModel(crfTemplateIRI, NAME, crfTemplate.getName());

^^...

addToModel(crfTemplateIRI, CHILDREN,

crfTemplate.getChildCRFItemTemplateGroups().stream()

.map(crfItemTemplateGroupMapper^::map)

.collect(toList()));

^^...

addToModel(crfTemplateIRI, TAGS,

crfTemplate.getTags().stream()

.map(tagMapper^::map).collect(toList()));

^^...

return crfTemplateIRI;

}

Figure 7.2.5 – Example mapping of an ObTiMA entity onto RDF statements

It is worth noting here, that by using the RDF4J API to create the RDF it is always

guaranteed that a syntactically valid model is generated in that process. For this reason,

during the development of the (programmatic) mapping, the validity of the generated

RDF is iteratively checked using the developed RDFS of the vocabulary.

7.2.3 FHIR (Fast Healthcare Interoperability Resources)

The underlying logic and structure of ObTiMA’s information model differs to quite some

extent to the one of FHIR, both logically and structurally. Therefore, the mapping is

not entirely straightforward in all places and is not one-to-one for a number of entities

from the original information model. Nevertheless, it is possible to find corresponding

suitable entities in the target model for all source data entities and thus create a complete

mapping in the case of FHIR as well.

Regarding the logical mapping, the current work is strongly based upon existing

work where both the ODM metadata containing definitions of the trial data collection

instruments, that is, SEs, CRFs, and so forth, as well as the actual collected trial data are

64

7.2 Format Mappings

mapped onto the fitting FHIR entities, or resources in the FHIR naming scheme (Doods

et al., 2016; Leroux et al., 2017). Although this work is focused on ODM’s information

model as input, it can support the development here, because of the aforementioned close

match between the ODM’s and ObTiMA’s information models. In addition, further,

recent work on the representation of clinical research using FHIR is also included in this

work as well (Leroux et al., 2019).

Since the FHIR standard specification already represents its entities as UML diagrams,

these can be directly adopted as a base for creating the mapping visualization. For this

purpose, the above-referenced publications are evaluated and all FHIR entities and their

connections mentioned in each of them are included in the visualization. The next step

is to assess the mappings of ODM to FHIR described in the named publications and to

relate and combine them with the mapping of the information model of ObTiMA to the

one of ODM, as described earlier.

Now, albeit there are some differences between the ObTiMA and FHIR information

models, the mapping from the first onto the second is possible without major

difficulties. For example, a direct and complete match can be found with respect to

the core entities required here: Looking at Figure 7.2.6(a), an obvious direct semantic

correspondence between ObTiMA CRFTemplate and FHIR Questionnaire, as well

as between ObTiMA CRFInstance and FHIR QuestionnaireResponse exists, as

their respective purpose and content are equivalent. Another direct correspondence is

shown in Figure 7.2.6(b), as the ObTiMA Trial entity can be readily mapped to the

FHIR ResearchStudy one, since both provide the (metadata) information about some

given trial as well as its overall structure.

However, even for entities in the original information model for which no readily

obvious match exists, suitable entities and connecting links can be identified in the

target model that allow all elements of the original information model entities to be

mapped. For the example in (b), there are no semantically complete equivalents for

ObTiMA’s StudyEventTemplate and StudyEventInstance in FHIR. Therefore,

as a “workaround” , a FHIR PlanDefinition entity is generated to model the

arrangement of SEs (definitions) in a trial, containing each SE template mapped

onto an ActivityDefinition entity, and each activity, in turn, references the

65

7 Data Export

Questionnaire entities mapped to from the SE’s CRFTemplate entities of the original

SE. Then for each ObTiMA StudyEventInstance entity a FHIR Encounter entity

is created and linked to the corresponding ActivityDefinition. The encounter

is subsequently added to a CarePlan, which is based on the respective, fitting

PlanDefinition, and finally all QuestionnaireResponses mapped from the

CRFInstances of the SE are linked to the encounter.

66

7.2 Format Mappings

FHIR

ObTiMA

CRFInstance

Questionnaire
Response1

1 1..*

1..*

CRFTemplate

Questionnaire

(a)

FHIR

ObTiMA

1

Trial

ResearchStudy

(b)

FHIR

ObTiMA

StudyEvent
Instance

Encounter1

1 1..*

1..*

StudyEvent
Template

Activity
Definition

(c)

Figure 7.2.6 – Example for correspondences between ObTiMA and FHIR entities

For the programmatic implementation, the HAPI FHIR library (HAPI FHIR, 2022) is

adopted, since it serves as the reference implementation for processing FHIR in Java

and provides all entities / resources defined by the specification (HL7, 2019) as regular

67

7 Data Export

(entity) classes. This allows for the development of the necessary mappers that the FHIR

information model is expressed in For this reason, the object-oriented approach of Java

and the mechanisms for creating and manipulating objects, that is, setting and changing

their attributes’ values, are also readily applicable here.

Reusing the previous example again, the map method of the CRFTemplateMapper

class, as shown in the (simplified) code snippet in Figure 7.2.7, first creates a

FHIR Questionnaire object and then sets its name attribute to the one from

the ObTiMA CRFTemplate object. In the next step the map method of the

CRFItemTemplateGroupMapper class is called for each of the CRFTemplate object’s

ChildCRFItemTemplateGroup object, and the collected result set as item (list)

attribute of the Questionnaire object. Again, all contained Tag objects are mapped

using the TagMapper class’ map method and the result list added as code list attribute

to the Questionnaire object.

Questionnaire map(CRFTemplate crfTemplate) {

var questionnaire = new Questionnaire();

^^...

questionnaire.setName(crfTemplate.getName());

^^...

questionnaire.setItem(

crfTemplate.getChildCRFItemTemplateGroups().stream()

.map(crfItemTemplateGroupMapper^::map)

.collect(toList()));

^^...

questionnaire.setCode(

crfTemplate.getTags().stream()

.map(tagMapper^::map).collect(toList()))

^^...

return questionnaire;

}

Figure 7.2.7 – Example mapping of an ObTiMA entity onto a FHIR entity

Here, it must be noted that the above use of the HAPI FHIR API always ensures that

the FHIR generated with it structurally conforms to the underlying specification. Yet,

this does not by itself guarantee that all FHIR entities created in the mapping process are

68

7.3 Format Serializations

also filled with the necessary values. In order to ensure this, during the development of

MOnSTER, the validity of the generated FHIR is iteratively checked using the official

FHIR validator (HL7, 2022). For example, for a QuestionnaireResponse entity, it

is always necessary to specify the status of the entity, such as whether it is currently in

progress or completed, which is then easy to provide as the source CRFInstance entity

contains just such a flag attribute.

Finally, it is worth mentioning that in the ongoing development of FHIR for its next

official release version R5, the area for handling studies / trials is also under investigation

and is to be expanded. Therefore, it is also planned here to review and reinvestigate the

current mapping and its implementation and to adapt both for the changes and extensions

of this mentioned version.

7.3 Format Serializations

The previous section presents how the internal information model is mapped onto those of

ODM, RDF and FHIR. This section describes for each format its serialization procedure,

that is, the translation into the respective external form which can be exchanged and

externally stored.

It is important to emphasize that all serializations of a given single format are completely

equivalent in regard to their actual content. They just only express this content in different

syntactic formalisms. The rationale for this is that in some cases external tools wanting

to read and process data may understand a certain format, but may not be able to read all

available serializations.

ODM

This information model implementation is based on classes automatically generated by

JAXB from ODM’s standard XSD files. These files’ fundamental task is to formally

define how correct ODM XML files need to look. Using JAXB, it is now possible to

“marshal” objects created on the basis on these classes, that is, to generate and output

respective XML without the need for any additional transformation code. Concretely, the

marshal method of JAXB’s Marshaller class is called with ODM’s top level (trial)

69

7 Data Export

entity, and the library traverses all dependent, nested entities top-down generating and

returning the appropriate XML for each.

RDF

A standard serialization mechanism provided by the selected library, namely RDF4J, is

used for this information model also. This library includes a toolkit, called Rio (“RDF

I/O”), with several built-in parsers and writers for input and output of RDF in all of

its standard serializations. Here, the write method of the Rio class simply gets the

RDF-based information model along with the parameter of the serialization to be used,

see Figure 7.1.1(c), and the library converts the information model accordingly and

returns the result. As a note, in this context the entire model without the need for a

specific start entity, since the internal representation of the RDF model is not nested

but rather a simple, flat list of triple statements. MOnSTER currently supports the RDF

export in TURTLE (Beckett et al., 2014), RDF/XML (Gandon et al., 2014), N-Triples

(Beckett, 2014), and JSON-LD (Sporny et al., 2020).

FHIR

Again, the HAPI FHIR library too provides by default the necessary functionality to

parse (external) FHIR input and write such out for all serialization types that the FHIR

standard defines. Based on the specified serialization type, see Figure 7.1.1(c), first a

corresponding object of the class Parser whose encodeResourceToString method

then translates the information model, encoded as a bundle with resources for all entities,

into the serialization. Again, only the bundle must be specified here without a top / start

entity, as the bundle contains all generated resources as flat list that can be processed

sequentially. The FHIR export of MOnSTER can produce JSON, XML, and TURTLE/

RDF (HL7, 2019).

7.4 Web Service Interface

Previously, the export of trial data could only be performed in ODM format via the web

interface of the application. Building on this,MOnSTER has slightly extended the given

70

7.4 Web Service Interface

interface to enable the export of not only ODM, but now RDF and FHIR as well, as

presented in Section 11.1.

As an additional possibility to execute the export, MOnSTER introduces a dedicated

export web service. Here, a web service is a software system to support interoperable

machine-to-machine interaction over a network with an interface described in some

machine-processable format (Haas & Brown, 2004). For ObTiMA, this means that with

the help of this web service, the export can now be performed independently of the user

interface without the need for any direct user interactions. Hence, it is now possible to

perform the export from external scripts or applications and integrate it seamlessly into,

for example, automated data analysis workflows and processes.

The realization of the web service follows the general architectural style and concepts

of REST (Representational State Transfer) (Fielding, 2000), which means that it offers

its functionality via a web-based API, accessible through a predefined URI scheme,

using the standard HTTP methods and media types relevant for the given formats and

serializations. All parameters possible here are discussed in Section 11.1.

To ensure that the REST interface can be readily applied for its intended task, its definition

adheres closely to the best practices and guidelines produced within the open source

community and by major industry vendors (Gossman et al., 2022). Also, existing APIs

are evaluated in terms of their design and their implementation and used as blueprints for

the work on MOnSTER (Google, 2022;Microsoft, 2021).

Its implementation also strictly follows the previously emphasized separation of concerns

and is therefore very lightweight: It only implements and provides the actual web service

API in the ExportWebService class, as shown in Figure 7.4.1, and delegates the

execution of the export to the designated class in the application logic layer, namely the

ExportAction class, as described in Section 7.1. So the web service’s exportmethod

itself only mirrors the corresponding application method: It receives a HTTP GET request

from a remote (REST) client which contains all necessary parameters, “unwraps” those

and passes them on to the actual export method. From there it receives back a string

with the export artifact, that is, the ODM, RDF, or FHIR code, “wraps” it into a HTTP

response and sends it back to the client.

71

7 Data Export

export(trialAcronym : String,
 format : Format, serialization: Serialization,
 protectedDataIncluded : boolean,
 metadataIncluded : boolean,
 tagLabelsIncluded : boolean,
 firstResult : int, maxResults : int) : ResponseEntity
…

ExportWebService

Figure 7.4.1 – Export service class

The development of the web service uses the MVC (Model-View-Controller) and web

component of the Spring Framework as its fundation. This allows the entire service to be

developed completely in Java and be implemented within the given, single class only.

From this code, the framework automatically generates the REST API and exposes the

method to trigger the export.

It is important to note that the web service is configured to be protected through the

HTTP basic authentication mechanism (IETF, 2015) as provided by the core ObTiMA

which, in turn, uses Spring Security (VMware, 2022b) as its base. This allows any new

authentication mechanism, once added to the core application, to be readily used by the

web service as well.

The aforesaid machine-readable description of the web service’s interface is realized using

the OpenAPI specification (OAI, 2021), selected for its public, open source availability

and as de-facto standard for creating vendor-neutral descriptions of REST-based web

service APIs. The full OpenAPI description is listed in Appendix B and the definition of

all parameters is presented in Section 11.1.

72

Part III

Results

73

Chapter 8

General Background

In order to make the achieved results more tangible and render their real-world relevance

clearer, they are presented below in the style of a user software manual applying a recent,

concrete use case scenario, introduced in Section 8.1. In this context, it should be noted

that the focus of the following lies on MOnSTER and, therefore, refers to ObTiMA ‘s

core parts only if relevant and necessary. A complete documentation covering the entire

application is available on request too, see (ObTiMA, 2022).

8.1 Project / Data

Quickly after the outbreak of COVID-19, the scientific community launched a large

amount of research activities to investigate the various aspects of the pandemic and to

develop effective vaccines, drugs and treatments as quickly as possible. To this end,

tremendous amounts of highly diverse data has been collected and analyzed worldwide

within a multitude of diverse, concurrent research studies and projects. In this context,

however, it is not only problematic that the data itself is highly heterogeneous but also its

representation, that is, different formats with different identifier schemes and different

measurement units render its integration and analysis extremely difficult. For tackling this

challenge, the GECCO (German Corona Consensus) dataset (Sass et al., 2020) is set-up

within the NUM (Network Univerity Medicine) initiative (NUM, 2020), which aims at

bringing together experts from all German university hospitals to develop and evaluate

diagnostic and treatment strategies for the optimal care of COVID-19 patients. Based on

recent both national and international work and collaborating with (bio)medical experts

from hospitals, professional associations, and research initiatives, a collection of 83 data

(description) elements relevant to COVID-19 research with 281 answer options is created

and organized into 13 categories (von Kalle et al., 2021), as shown in Table 8.1.1.

75

8 General Background

Category Description

Demographics Data like gender, date of birth, weight, height, ethnic group

Anamnesis / Risk

Factors

Data regarding pre-existing conditions, such as cardiovascular
diseases, cancer diseases, HIV, or diabetes

Imaging Data about imaging procedures during COVID-19 treatment,
like computer tomography, radiography, ultrasonography

Epidemiological

Factors

Indicator if the patient had contact with a person likely or proven

to be infected with COVID-19 within the last 14 days

Complications Data on COVID-19-related complications, like thromboembolic
complications, pulmonary embolism, myocardial infarction

Onset of Illness /

Admission

Indicator for the stage of illness when COVID-19 was diagnosed

and the patient admitted to the hospital

Laboratory Values Data about laboratory values collected in COVID-19 therapy

Medication Data on drugs administered for COVID-19 or other diseases

Outcome at

Discharge

Indicator for the respiratory outcome and the type of discharge

from the hospital

Study Enrollment /

Inclusion Criteria

Indicator whether a confirmed COVID-19 diagnosis was the

main reason for admission to a the hospital

Symptoms Data covering loss of taste, abdominal pain, diarrhea, vomiting,
cough, nausea, fever, or dyspnea

Therapy Data regarding the therapy that the patient received, like regular
vs. intensive care, ventilation

Vital Signs Data about vital signs, such as body temperature, blood pressure,
heart rate, or oxygen saturation

Table 8.1.1 – GECCO categories for categorizing the single data elements

The reason for the particular relevance of GECCO in the context of the given work here

is its reliance on and application of several standard ontologies. This means concretely

that all stated categories, data elements, as well as the associated response options are

encoded using concepts, and thus identifier codes, from the ontologies listed below, see

Appendix E for all references:

• SNOMED CT (Systematized Nomenclature of Medicine Clinical Terms)

76

8.1 Project / Data

• LOINC (Logical Observation Identifiers Names and Codes)

• ICD-10-GM (ICD, 10th Revision, German Modification)

• OPS (Operation and Procedure Classification System)

• ATC (Anatomical Therapeutic Chemical Classification System)

As part of the NUM initiative, the CODEX (COVID-19 Data Exchange Platform) project

(Prokosch et al., 2022) now employs GECCO as its basis to establish a central research

data platform for sharing data among its partners. Here, the general idea is to pull and

extract all of the relevant data directly from the clinical information systems used in

patient care and map this according to the above categories and data elements.

However, as many necessary data elements are, at least currently, not routinely captured

in these systems yet, project partners can enter the missing data by means of an additional

EDC (Electronic Data Capture) tool, namely REDCap (Harris et al., 2009, 2019). For

this purpose, CRFs are created, where each of them represents on one of the above

categories, and the questions and answers contained therein are in turn based on the data

elements and answer options within each category.

As part of the recent testing of MOnSTER, these CRFs are re-implemented in ObTiMA

with a particular focus on the component’s specific features for ontology management,

semantic tagging and data export. In this, to test and evaluate some specific aspects of

MOnSTER, such as the support for multilingualism or the simultaneous use of multiple

ontologies, as highlighted in Appendix E, the following additional ontologies originally

not used in the GECCO dataset, have been applied as well:

• MedDRA (Medical Dictionary for Regulatory Activities)

• NCIt (National Cancer Institute Thesaurus)

• ORDO (Orphanet Rare Disease Ontology)

• CTCAE (Common Terminology Criteria for Adverse Events)

77

8 General Background

8.2 Procedure / Realization

Considering the MOnSTER component, it can be said that there are both direct as

well as indirect users of its functionality: On the one hand, direct means that users

interact concretely and actively with the component’s functionalities, that is, they manage

ontologies, semantically tag trial elements, or export data. On the other hand, indirect then

means that users do not actively interact with the component directly, like by performing

semantic tagging, but rather they (only) apply the “outcome” of the component, that is,

they fill in CRFs with previously semantically tagged questions and answers.

Therefore, the focus for the result presentation below lies on the direct and thus visible

and tangible application of the component from the viewpoint of an actual user. This

presentation is thus divided into three distinct parts, with each of them reflecting one of

the general usage scenarios and the respective part of the component. To obtain the given

results, the several steps below are performed:

• Creation of a trial with all necessary elements, namely SEs, CRFs, CRF sections,

questions and answer options

• Identification, loading and adding of all relevant ontologies to the trial according to

the GECCO specification (with the named additions)

• Semantic tagging of all created above trial elements with ontological concepts

following the GECCO specification (again, with the mentioned additions)

• Creation of ten fictional patients, and for them, filling in all SEs and CRFs with

realistic but artificial, manually created data

• Export of the trial and its data in all combinations of the different formats and

serializations available

• Identification within the generated files of the different semantically tagged data

elements and their evaluation and validation

78

Chapter 9

Ontology Management

The following chapter describes from the perspective of a user how to add and manage

ontologies with the help of the component. Its underlying technical realization is presented

previously in Chapter 5.

9.1 Adding and Editing Form

Before MOnSTER can be used for semantic tagging, the intended ontologies first need

to be available in the application. For this, the user selects Administration from the main

menu (Figure 9.1.1,①), then Ontologies in the submenu (②), and in the subsubmenu
Add (③) opening a form to specify the parameters of the ontology to add (see below).

Here, the user can also select Manage (④) to open a table listing all already loaded

ontologies and use the Add button there, as described in Section 9.2.

1

2 4

3

Figure 9.1.1 – Main menu entries for adding and managing ontologies

After clicking the link or button, the ontology can be added and the required parameters,

shown in Table 9.1.1, can be specified. Each parameter is explained in the following

79

9 Ontology Management

based on two examples, one for ontologies in OWL format, as shown in Figure 9.1.2, and

one for ontologies having a custom line-based format, as depicted in Figure 9.1.4.

Parameter Required Examples / Note

Acronym “GO ”

Name “Gene Ontology ”

Version “21.10d” , “2021“

Enabled #

Description

Source cf. Subsection 9.1.1

Namespace cf. Subsection 9.1.2

Format # cf. Subsection 9.1.3

Table 9.1.1 – Parameters of an ontology

Here, the combination of acronym, name and version must be unique, which means

that it is (intentionally) not allowed to add two different ontologies where these three

parameters taken together hold the same the values for each each ontology.

9.1.1 Source

This parameter, to be found at Figure 9.1.2,②, holds the location of the actual file which
contains the ontology and can be provided by

• uploading a local ontology file by clicking the file selection button (③), opening a
file chooser, and selecting the appropriate file, so the parameter is automatically set,

• manually preloading the ontology file onto the server, so the path to that file on the

server needs to be manually specified in the File / URL field, or

• by pointing to a remote location, in which case the full URL where the ontology file

can be found, must be specified in this field.

In the first and last case, the ontology is uploaded from the local file or from the remote

location to the server when the Save button is clicked. As ontology files can potentially

80

9.1 Adding and Editing Form

be very large, it is also possible to provide them in ZIP- or GZIP-compressed form.

1

2 3

4

5

6

Figure 9.1.2 – Popup for editing the metadata of an OWL ontology

9.1.2 Namespace

A namespace is used to provide an unambiguous identifier, usually also unique for an

ontology and its contained concepts. It follows the basic definition from XML (Bray

et al., 2009) and consists of a short prefix and so-called name. The name, represented

here as an IRI (④), acts as the actual identifier and is mostly hidden within the GUI, such
as in the semantic tagging. Rather, the Prefix being a short, abbreviatory string, is used

both in the GUI and in the export to improve clarity.

For OWL-based ontologies, the appropriate namespace is provided in the header of the

ontology file. For ontologies with custom line-based format, an (official) namespace can

usually be found in their documentation or in specific listings (HL7, 2020).

81

9 Ontology Management

9.1.3 Format

As mentioned,MOnSTER can process ontologies provided in either the Semantic Web’s

standard OWL format (Hitzler et al., 2012) or in some Custom Line-Based format.

OWL If the supplied ontology file is in this format, the component is able to process the

file directly without the user having to specify any additional information.

For example, Figure 9.1.3 presents a small OWL file excerpt for a single concept

(class) from SNOMED CT with the identifier code 840539006 in TURTLE (Beckett

et al., 2014) serialization. As can be seen, this class holds five different labels, where

the first one uses the standard RDFS label annotation (Brickley et al., 2014), the

second one the SKOS preferred label and the last three ones the SKOS alternative label

annotation (Isaac & Summers, 2009). For each label the language can be specified

following the ISO 639-1 standard (ISO, 2002), such as en-gb for the English variant

spoken in Great Britain. As the SKOS preferred label always has priority, this means

that in a search for creating semantic tags, as described in the next chapter, the second

label is displayed first before all other concept labels.

<http:^//snomed.info/id/840539006> rdf:type owl:Class ;

rdfs:label "Disease caused by severe acute respiratory syndrome

coronavirus 2 (disorder)"@en ;↪→

^^...

skos:prefLabel "COVID-19"@en ;

skos:altLabel "Disease caused by 2019 novel coronavirus"@en ,

"Disease caused by severe acute respiratory syndrome

coronavirus 2"@en ,↪→

"Disease caused by 2019-nCoV"@en-gb .

Figure 9.1.3 – Example of an OWL class with labels of different type

Custom Line-Based In the case that a custom line-based ontology file is provided, the

user needs to specify the two additional parameters below, shown in Figure 9.1.4,①.

82

9.1 Adding and Editing Form

1

Figure 9.1.4 – Popup for editing the metadata of a custom line-based ontology

Skip First Line Regarding CSV or DSV files, their first lines often contain a header

declaring the individual columns’ names or definitions. In such a case this

parameter needs to be enabled so that the first line is disregarded during in the

further processing.

Regular Expression As for the appearance of custom line-based files,MOnSTER

is highly flexible. The only strict requirement is that each line in such an ontology

file must at least always contain the code of a concept and an associated label. In

addition, the language for that label can be specified, and further, whether the

label in this line is the preferred one for the given concept. If a single concept

has multiple, possibly multilingual labels, for each label a separate line needs to

be provided within the file. For each item to be extracted from a line, the regular

83

9 Ontology Management

expression needs to contain a so-called named capturing group, that is, <code>

for the concept’s identifier code, <label> for a (single) label of the concept,

<preferred> to state the preference of that label, and finally <language> to

specify the label’s language.

To illustrate this, the snippet in Figure 9.1.5 contains the same SNOMED CT

concept 840539006 with the same labels as in the above OWL example, only in

CSV-based form now. In this particular example, at the beginning of each line,

the code of the given concept is to be found. This is followed by the respective

label and its language according to the ISO 639-1 standard (ISO, 2002). If a label

is to be the preferred one then this is marked with p, as shown in the second line.

(If a label is not preferred then any other or no value at all can be given here.)

It is important to note that the arrangement within a line and the used comma

delimiter, as shown here, is only exemplary. As long as the two necessary

parameters, that is, code and label, are contained in a line and can be extracted

by the given regular expression, then a given file can be used as ontology source.

840539006,,Disease caused by severe acute respiratory syndrome

coronavirus 2 (disorder),en↪→

840539006,p,COVID-19,en

840539006,,Disease caused by 2019 novel coronavirus,en

840539006,,Disease caused by severe acute respiratory syndrome

coronavirus 2,en↪→

840539006,,Disease caused by 2019-nCoV,en-gb

Figure 9.1.5 – Lines from an custom line-based ontology file

Now to extract all of the required parameters from a line, a regular expression

needs to be created. In Figure 9.1.6 the necessary expression is shown which can

be used to do this for the given example. As shown there, a matching expression

must provide a so-called named group for each parameter to be extracted. Since

only the concept’s code and label must be necessarily be contained in each line,

a valid regular expression may also contain only the two corresponding groups

<code> and <label>. As specifying language and preference of a label are

84

9.2 Overview and Selection Table

optional, their groups <language> and <preferred> are optional too.

^(?<code>.+?),(?<preferred>p?),(?<label>.+?),

(?<language>\w{2}(-\w{2})?)$↪→

Figure 9.1.6 – Regular expression to extract the parameters from the line

Since it is unfortunately not possible to give a comprehensive introduction to the

creation of regular expressions within the scope of this thesis, reference is made

here to one of the numerous introductions available online, such as (Nield, 2017).

9.2 Overview and Selection Table

The table in Figure 9.2.1 now provides a listing of all ontologies currently loaded and

available in the application together with the identifying information for each, that is,

Acronym, Name, Version, and if currently Enabled. It can be sorted by clicking the little

red arrows above the columns, such as for example at① and the number of ontologies

concurrently displayed can be adjusted (②), as well as if more ontologies are available
than can be shown at once, pagination is possible also(③).

It should be noted here that there exist two distinct entries for ICD-10-GM in the table: It

is possible to have several versions of a single ontology concurrently in the system. Each

one is processed and handled independently and, therefore, can be used both individually

and simultaneously within a given trial.

To add another ontology, the user can click on the Add button (④) to open the respective
form, as detailed in Section 9.1. It is important to emphasize that when ontologies are

added, they are always automatically available system-wide in ObTiMA for all existing

trials as well as when creating new ones.

To edit an ontology, the user can click either on Acronym, Name or Version of an ontology

or on the pencil icon to the right side of the table.

85

9 Ontology Management

1

2

3

4

5

Figure 9.2.1 – List of all ontologies currently loaded

86

9.2 Overview and Selection Table

To remove of an ontology, the user clicks on the icon showing a red circle with a white

minus, which opens a dialog box depicted in Figure 9.2.2 to either confirm or cancel the

removal of the ontology. This icon appears only if an ontology can actually be removed,

that is, if it has not been selected for use in some trial, see Section 10.2.

1

Figure 9.2.2 – List of all ontologies currently loaded

87

Chapter 10

Semantic Tagging

After adding an ontology to the system, its concepts can be used to create semantic tags.

This chapter now illustrates how this can be achieved and how such tags are added to the

different components of a trial within ObTiMA.

10.1 Ontology Preselection

Once added to the system, an ontology is immediately available system-wide and can

be used in any new or existing trial. Yet, as not all ontologies are relevant for all trials,

it is possible to manually select or deselect a particular ontology for a given trial. As a

result, only selected, relevant ontologies are further displayed and used when creating

and adding semantic tags to trial component.

To select an ontology for the currently active trial, the user performs the following steps:

First, to open the trial’s overview, the user chooses Trial from the main menu, shown at

Figure 10.1.1,①, and then Manage from the submenu at②.

1

2

Figure 10.1.1 – Main menu entry for trial management

The trial overview given in Figure 10.1.2 can be divided into three logical parts:

• Input elements for specifying the trial’s general attributes (①)
• Table for (pre)selecting the ontologies for the trial (②, see below)

89

10 Semantic Tagging

• Element for semantically tagging the trial (①, see Section 10.2 for details)

1

2

3

Figure 10.1.2 – Overview of the currently active trial

To select or deselect an ontology for the given trial, the user enables or disables its

checkbox at Figure 10.1.3,①. To select or deselect all ontologies at once, the top-most
checkbox (②) can be used. If more ontologies are available than can be concurrently
displayed, the user can paginate (③) or vary the number of shown ontologies (④).

90

10.2 Concept Selection and Tag Creation

1

2

3 4

Figure 10.1.3 – List of ontologies enabled for the trial

10.2 Concept Selection and Tag Creation

As stated, one advantage realized by MOnSTER is that ontological concepts can now be

applied to all components of a clinical trial, and not just for creating questions within a

CRF. Semantic tags can therefore be added to give additional semantic metadata and to

hence provide semantic “enrichment” , to all the following components:

• trial

• study event (SE)

• case report form (CRF)

• question group

• question

• answer option

To do so, the user can employ the input element depicted in Figure 10.2.1, which is

available in this form when editing any of the above components. This element allows

searching for one or more suitable concepts within one or more ontologies, and adding

91

10 Semantic Tagging

the fitting ones as tags to the given trial component.

Figure 10.2.1 – Entry field to search concepts and select a tag

The previous section showed already how to generally enable or disable an ontology for

a trial. When searching for concepts, the user can now also dynamically further restrict

the ontologies included in this search.

For this, the user clicks the button with the ontology icon at Figure 10.2.2,①. To include
or exclude a single ontology from search, the user enables or disables the corresponding

checkboxes (②). Using the topmost checkbox (③), the user can select or deselect all
ontologies at once. By default, all ontologies are preselected.

1

2

3

Figure 10.2.2 – List of ontologies all selected for tagging in a trial

To further simplify the selection here, the displayed ontologies can be dynamically filtered:

As shown in the example, only ontologies with the (case-insensitive) string medic, as

shown at Figure 10.2.3,①, in their acronym or name are displayed.

92

10.2 Concept Selection and Tag Creation

1

Figure 10.2.3 – List of all ontologies available for tagging filtered by string matching

To now actually perform the search for concepts, the user enters a query in the text field.

This query, such as corona infek in Figure 10.2.4,①, is first tokenized, that is, split into
its substrings, like corona and infek, and based upon these the concept index is searched

(see Chapter 5). Now, a concept matches, if at least one of the substrings is part of one of

that concept’s labels, and the concept belongs to an ontology included for search.

Note, that the search includes all labels, that is, if one of the substrings is found in a

synonym label of a concept, then this concept is matched as well. It is also important

to mention, that the search works incrementally, that is, the list of found concepts is

automatically updated as soon as the query in the input field changes.

The presentation of the matching concepts is organized as follows: All concepts are

grouped according to the ontologies they originate from, and above each group the

corresponding ontology’s acronym, name and version are displayed (②). Then, for each
concept, its prioritized label is shown (③), and if the user hovers over that label, the
concept’s (ontology) code is presented to the right (④), and, if existing, further synonym
or multilingual labels (⑤). Within each group, the list of concepts is sorted alphabetically

according to their prioritized labels. Also, the found substrings from the query are marked

in red within the label.

Note, that for simplifying the initial presentation, the search is limited to the ICD-10-GM

ontology, and a query is chosen that matches a single concept only.

93

10 Semantic Tagging

1

2

3 4

5

Figure 10.2.4 – Found concept with synonym labels

By clicking on the (prioritized) label of a found concept, the user creates a semantic tag

and adds it to the given trial component, as shown in Figure 10.2.5,①. The tag can be
removed again from that component, by clicking the small x at the tag’s right side.

1

Figure 10.2.5 – Semantic tag added to a component

To view the full information of a semantic tag again, the user hovers over the desired tag

at Figure 10.2.6,①, and then, the original concept including its source ontology, code,
and all synonymous and multilingual labels (②) are redisplayed.

94

10.2 Concept Selection and Tag Creation

1

2

Figure 10.2.6 – Same semantic tag as in Figure 10.2.5 with synonym labels shown when

hovering over it

To discover the multilingual capabilities of MOnSTER, multiligual ontologies can also

be used when search concepts. In the example, the search is restricted to the MedDRA

ontology, which has labels in different languages for each concept. Here the user enters

the query corona infec into the text field at Figure 10.2.6,① for which several concepts

in this ontology are matching and shown below at②. The user first hovers the second
match (③) of the results, so that all multilingual concept labels are also displayed (④),
and then selects it. For each label, the language of that label is also displayed.

In the case of multilingual ontologies, the user can also express queries in the languages

and respective alphabets used in them. This means that, for the given example, the same

shown result is obtained when entering the Russian query корона инфек.

At this point, it is worth mentioning, that the display of the different language labels takes

into account the user’s system settings regarding language, which means that labels in

the user’s specified language, such as English here, will be shown first if available.

95

10 Semantic Tagging

1

2

3

4

Figure 10.2.7 – Found concept with multilingual labels

As with semantic tags having labels in only a single language, when hovering over the

tag at Figure 10.2.8,①, the complete concept information can be redisplayed again for
multilingual tags too (②). Note again, that the label in the language of user as specified
in the system settings is shown at the top here as well. Also note, that here you can see the

language directly in the tag as well. The language is displayed here only if the ontology

specifies a language for its concepts.

96

10.2 Concept Selection and Tag Creation

1

2

Figure 10.2.8 – Semantic tag added to the component with multilingual labels when

hovering over it

To render the presentation clearer and simpler, the above examples are limited to the

use of the ontology to be searched. In a normal setting, however, the user most often

performs a search over multiple ontologies simultaneously.

When entering the query covid infe, as shown in Figure 10.2.9,①, and under the condition
that the search is not restricted to a single ontology, the result is a list of concepts (②)
that originate from all ontologies selected for the given trial. Here, the respective groups

are again sorted alphabetically for the ontology’s acronym, name and version.

97

10 Semantic Tagging

1

2

Figure 10.2.9 – Tags from multiple ontologies matching a query string

Also, to simplify the presentation of the above examples, only one semantic tag is

added there at a time. In many cases, this approach of adding only a single tag to

some trial component is sufficient, also in real-world settings. Nevertheless, there

are situations in which several concepts are necessary to semantically describe such

component sufficiently. This is possible without any problems, and the concepts can

stem from different ontologies, from a single one, or a mix of both.

In the given example, presented in Figure 10.2.10,①, four semantic tags are added to
the trial, all of which are generally about COVID-19, yet are based on concepts from

different ontologies. The hovering over the last tag shows another particular feature:

Although SNOMED CT concepts are labeled with standard English terms, this ontology

also contains labels based on local language term variants. For example, the last label

(②) is based on a term specifically used in the United Kingdom.

98

10.3 CRF Question and Answer Option Tagging

1

2

Figure 10.2.10 – Multiple tags added with hovering over the last one showing its labels

10.3 CRF Question and Answer Option Tagging

The previous section described how trial components within ObTiMA can be semantically

tagged. In that sense, the tagging of CRF questions and answer options does basically not

differ from that ot other trial components. It is specifically discussed here, as creating and

using CRFs reflect the most important parts of the system’s trial data management.

As noted, an introduction to managing CRFs can be found in ObTiMA’s core

documentation and this topic is considered here only insofar as it affects MOnSTER’s

functionality directly. In this context, nonetheless, an important and fundamental

distinction in ObTiMA lies between two types of questions:

• Questions without answer options are those where values can be specified directly,

such as a patient’s weight or date of birth.

• Questions with answer options are those where multiple values are predefined for

selection, such as a patient’s gender or pregnancy status.

This distinction is quite important for MOnSTER:While for the first type, the question

itself is semantically taggable alone, that is, to provide semantic meta-data about the

question, for the second type, such additional meta-data can be added via semantic tags

99

10 Semantic Tagging

to each answer option too.

Figure 10.3.1 shows the CRF Demography, which is based on the corresponding category

and data items found in the GECCO dataset (see Section 8.1). From the corresponding

icon symbols, it can be seen that, for example, question Biological Sex is tagged with a

single tag (①)while question Biological Weight holds two or more tags (②). Accordingly,
it can also be seen that, for example, the first answer option for question Pregnancy

Status is tagged by two or more tags (③), but the second option with only one (④).

100

10.3 CRF Question and Answer Option Tagging

1 2

3

4

Figure 10.3.1 – Definition of the CRF Demography

101

10 Semantic Tagging

When adding or editing a question without answer options, like the Body Height of a

patient (Figure 10.3.2), the user specifies the question’s basic attributes (①), selects the
particular Answer Type (②), that is, Input Number in here for entering numeric values,
and, if needed, additional parameters relevant for that answer type (③). Semantic tags
can be added here too, exactly analogous as described in the previous section.

102

10.3 CRF Question and Answer Option Tagging

1

4

2

3

Figure 10.3.2 – Definition of a question without answer options

For a question that should have answer options, like for establishing the Pregnancy

Status (Figure 10.3.3), the user selects a fitting Answer Type, such as Select One Radio

(①) and adds a new answer option or edits an existing one (③). Note here, that for the
question itself, semantic tags can be added as before (②).

103

10 Semantic Tagging

3

1

2

Figure 10.3.3 – Definition of a question with answer options

Also, when editing an answer option, along with its basic attributes, semantic tags can be

provided in this case as well.

104

10.3 CRF Question and Answer Option Tagging

1

2

Figure 10.3.4 – Definition of an answer option

One important aspect of semantic tagging must be mentioned, which has been only

implicit in the above: Tagging occurs alone when editing one of the different trial

components, and so tags are only visible in the GUI for the users that have the system

right to edit those components.

For users who only enter data in the system, such as study nurses, the tags are intentionally

hidden in the GUI (Figure 10.3.5). The reasoning behind this approach is that these users

are usually interested in entering a patient’s data as quickly as possible, so, for example,

whether a patient is pregnant (yes, no, unknown), but not in the technical details of the

actual data encoding in the background. Thus, the addition to display semantic tags

would unnecessarily clutter the the data entering GUI without benefit to the users.

105

10 Semantic Tagging

Figure 10.3.5 – Definition of the (first) answer option Pregnant

106

Chapter 11

Data Export

Finally, this chapter describes how a user exports trial data with the help of MOnSTER

via the GUI as well as via a dedicated web service. The implementation details for these

functionalities are shown in Chapter 7.

Since the ability to export trial data forms one of the core functionalities of any CTMS,

this feature has also been an integral part of ObTiMA from its very beginning. For this,

ODM was chosen as initial format, as it was and still is one of the most prominent and

established standards for storing and exchanging trial data. In the initial implementation,

the user could trigger the export manually via the GUI and the generated ODM could

then be stored locally to be subsequently processed in special analysis tools.

As mentioned above,MOnSTER extends this functionality in two ways: First, the export

format ODM itself is extended to embed semantic tags, and the formats RDF and FHIR

with their different serializations are added. Secondly, the export can now be initiated

not only manually in the GUI, but also triggered via a new, special web service.

Now, the following concentrates on the actual exporting via the GUI in Section 11.1 and

the web service in Section 11.2, as the (logical) content and generation of the formats

have already explained in detail in Section 7.2.

The foundation for this is the realization of the trial, SEs, CRFs, questions and answer

options based on the GECCO dataset, as shown in the previous chapters, together with

entering the respective data of ten fictional patients. After this, the trial data was exported

in all available combinations of formats and serializations, by applying both the GUI and

the web service. The simultaneous use of the GUI and the web service is here only due

to the test purpose. In practice, of course, either the GUI or the web service are usually

used, but not simultaneously.

Unfortunately, since the files resulting from the export are very large, it is not possible

107

11 Data Export

to reproduce them in their entirety here. However, the export files in all formats and

serializations are available for download online (Stenzhorn, 2022).

Nevertheless, for highlighting the differences and commonalities between the various

formats and serializations, exemplary excerpts taken from those export files are

reproduced at Appendix E. For this, the first excerpt for each format and serialization

always contains the tags mentioned in Table 11.0.1 and the second excerpt the tag

described in Table 11.0.2: All tags were added to the trial (description) itself, with all of

them having the general meaning “COVID-19” . It needs to be stressed that the actual

(information) content in each excerpt is the very same, just each expressed in a different

format and serialization. Note also, that to save some space, the output of labels is

disabled for each first excerpts.

Ontology / Terminology Concept / Code

ICD-10-GM U07.1

LOINC 95412-3

MedDRA 10084382

NCIt C171133

SNOMED CT 840539006

Table 11.0.1 – Multiple tags related to COVID-19

Among those tags, one is based on a code from MedDRA as this terminology is

multilingual and hence contains labels in several languages for the selected code in

Table 11.0.2 and in particular labels with distinct alphabets and characters, that is,Chinese,

Japanese, Korean and Russian / Cyrillic.

108

11.1 GUI

Language Label

Chinese 2019冠状病毒疾病
Czech Onemocnění způsobené koronavirem 2019

Dutch Coronavirusziekte 2019

English Coronavirus disease 2019

French Maladie à coronavirus 2019

German Coronavirus-Krankheit 2019

Hungarian Koronavírus okozta megbetegedés 2019

Italian Malattia da Coronavirus 2019

Japanese 2019コロナウイルス病気
Korean 2019코로나바이러스감염증

Portuguese Doença por coronavírus 2019

Portuguese (Brazil) Doença pelo coronavírus de 2019

Russian Коронавирусная инфекция 2019 года

Spanish Enfermedad por coronavirus 2019

Table 11.0.2 – Multilingual labels of the MedDRA code 10084382

11.1 GUI

The functionality to export clinical trial data in ODM format using the GUI (Graphical

User Interface) has been available as key functionality of ObTiMA from its very beginning.

For MOnSTER, as with semantic tagging, the goal is to keep that familiar environment as

much as possible and hence reuse the existing interface and adapt only with the elements

needed for providing the component’s functionality.

To access the export for the current trial, the user selects first Trial from the main menu,

as depicted in Figure 9.1.1,①, and then Export from the submenu at②.

109

11 Data Export

1

2

Figure 11.1.1 – Main menu entry for exporting a trial

After doing so, the interface of the export functionality opens, shown in Figure 11.1.2.

On this page, the user can first select which SEs and CRFs to export: By activating or

deactivating the checkbox at the SE level at①, the user can select or deselect all CRFs
of this SE.Also, the user can select or deselect single CRFs the same way (②).

To select from which patients the data will be actually included in the export, the user can

also select or deselect individual patients (④) or all at once (⑤). If no patient at all is
selected, then only the metadata of the trial is exported. (Following the notion of ODM,

metadata does not only include the actual trial metadata, such as its name, start date, PI,

and so on, but also the (complete) definitions of all selected SEs and CRFs.)

110

11.1 GUI

1

2

3

4

5

6

Figure 11.1.2 – Dialog to export SEs, CRFs and patients of a trial

Additionally some further parameters can be specified at⑤ and which are explained in

Table 11.1.1. With the help of these parameters the user can specify for specific data

elements whether they should be included in the export or not.

111

11 Data Export

Inclusion Option Description

Protected Data Include answers to questions marked as protected during the CRF

creation. Aquestion marked as such could include highly sensitive

items containing unique identifiers, such as the health insurance
number.

Metadata Include not only patient data but all trial metadata, that is, the
definitions of SEs, CRFs, and so forth. If no patients are selected
at all for the export, then this option cannot be deselected.

Tag Labels Include (multilingual) labels of semantic tags along with their

codes / URLs. Normally, systems processing the tags are not

interested in the natural-language labels but only in their actual

codes. Therefore, if this option is disabled, only codes are

exported, potentially rendering the export artifact smaller.

Table 11.1.1 – Export inclusion options

After selecting all relevant SEs, CRFs and patients and setting the desired options, the

actual export is initiated by clicking on the export button at⑥. By clicking the button,
the cascaded drop-down menu, shown in Figure 11.1.3, opens: Here, if the user clicks

the first ODM option ((a),①), then the export is directly initiated. If the second option
RDF is selected ((b),①), then a sub-menu opens to chose the serialization (②), after
which the export is processed. Finally, when chosing the FHIR option ((c),①) then again
the desired serialization can be selected (②) to execute the export.

112

11.2 Web Service Interface

1

(a) ODM

1

2

(b) RDF

1

2

(c) FHIR

Figure 11.1.3 – Export button expanded for specific formats and serializations

After initiating the export, the necessary background processing starts immediately and so

all necessary trial and patient data are read from the database and mapped and transformed

into the selected format and serialization as described in Chapter 7. When this process

is completed after a short instance, the file just generated is ready and its download is

automatically initiated. For this, the browser’s file dialog opens to specify the name of

the export file and the location where it should be saved.

11.2 Web Service Interface

To perform the export of trial data via the GUI, a manual action by the user within the

application required each time. This can, of course, be seen a major drawback, as it

makes it impossible to use the export within any automated scenarios. Therefore, a web

service is provided is now offering the same functionality range as the GUI but functions

independently of it. To use this REST-based service meaningfully, the user should have

at least a basic understanding of this approach and its usage.

To use this particular web service, the URL template in Figure 11.2.1 needs to be

instantiated with the appropriate URL and query parameters according to the settings

of the local environment and the desired outcome, as described in Table 11.2.1. Here

the only really necessary parameter is to specify TRIAL at③, specifying the acronym

113

11 Data Export

of the experiment to be exported. All other (query) parameters are optional and if not

specified, then the respective default value as noted in the mentioned table is applied.

(The meaning of all parameters is described in the previous chapter.)

That means, that if only the trial acronym is specified without any other query parameters

then the trial is exported in format odm using its standard serialization xml, with

protectedData and metadata but not with tagLabels included, and with all patients

included as firstResult is 0 and maxResults is not defined.

BASE_URL/rest/trials/TRIAL/export

1 2 3 4

(a) URL template

…export?PARAMETER=VALUE&PARAMETER=VALUE&…

1

(b) Query parameters

Figure 11.2.1 – URL template with (query) parameters for the export web service

URLComponent Description

BASE_URL Variable for the base URL of the ObTiMA instance

where the trial to export is located.

rest/trials Fixed string indicating that the URL is a REST call

refering to trials in the application.

TRIAL Variable for the acronym of the trial to export.

export Fixed string indicating the actual REST method to

perform, that is, to export.

Table 11.2.1 – Components of the export web service URL

114

11.2 Web Service Interface

Query Parameter Possible Values Default Value

format odm, rdf, fhir odm

serialization

• odm – xml • odm – xml

• rdf – turtle, rdf_xml,
n_triples, json_ld

• rdf – turtle

• fhir – json, ndjson,
xml, rdf

• fhir – json

protectedData true, false true

metadata true, false true

tagLabels true, false false

firstResult ≥ 0 0

maxResults > 0 undefined

Table 11.2.2 – Query parameters of the web service

It needs to be stressed, of course, that the access to this web service is just as restricted

and protected as the access to the export functionality within the GUI. On the one hand,

this means that the service is protected in the same way as the ObTiMA GUI via basic

authentication, that is, by specifying a username plus password. On the other, that

specified user (account)must have the appropriate rights to export data from the specified

trial too. (Since the authentication of the web service shares the one of the core system,

additional authentication methods are directly available to the service once they are

implemented in the core system.)

Further to this textual description, Appendix B also contains a machine-readable

description of the web service based on the OpenAPI specification, as the de-facto

standard for describing REST-based web service interfaces (OAI, 2021).

A small example call to the export web service is given in Figure 11.2.2. Here, the used

ObTiMA instance resides at the BASE_URL https:^//obtima.org/monster/demo

and the trial to be exported has the acronym GECCO. The exported file will have as its

format rdf and as its serialization rdf_xml. Also, for all exported semantic tags

the respective tagLabels are exported as well. Finally, the returned result data set starts

115

11 Data Export

with the firstResult at (patient) 10 and maxResults tells that the data of at most 20

patients are returned.

https:^//obtima.org/monster/demo/rest/trials/GECCO/export?format=rdf

&serialization=rdf_xml&tagLabels=true&firstResult=10&maxResults=20↪→

Figure 11.2.2 – Example of a concrete call to the web service

116

Part IV

Discussion

117

Chapter 12

Evaluation

As mentioned in the beginning, the use of ontologies in the management of clinical

trials is possibly not widespread, yet in fact nothing completely novel. Therefore, the

distinguishing factor of the work here lies on its particular focus on usability and utility:

This means that all functionality should be both easy to use, also for users without specific

ontology or technology background, and also that all functionality should offer some

concrete benefit and added value.

Now, as with any scientific work, it must be evaluated whether these goals were ultimately

achieved and, if not, what the exact causes were. For this, as a single user does not

necessarily come into contact with all parts of MOnSTER, and to ensure that valid and

helpful results are obtained in the evaluation, it is divided in thematically. For example,

a user creating CRFs is usually a medical expert, who probably rarely exports data, and

is hence likely less familiar with the relevant formats. Therefore, to increase validity,

evaluators should be familiar to some degree with the basic thematic background some

functionality under review.

Unfortunately, such an approach is difficult to take in the context of the present evaluation:

As the number of users who agree to participate in the evaluation is already low, it

is imperative that all of them evaluate all areas, regardless of their prior knowledge.

To mitigate this problem to some extent, all participants receive a comprehensive

introduction to MOnSTER in general and to its individual functionalities, including

illustrated instructions, as in Chapters 9 to 11. Also, some basic background to the topics

interoperability and ontology, as in Chapter 1, is provided as well. However, it is helpful

that all participants have worked with ObTiMA in the past and are thus familiar with the

general functioning of the system. In order to strengthen the validity of the evaluation

and to be able to draw better conclusions from it for further development, it is necessary

to increase the number of participants with appropriate knowledge.

The actual realization of the evaluation follows the guidelines proposed by DAkkS

119

12 Evaluation

(DAkkS, 2010) and also includes results from previous evaluations of the ObTiMA core

(Christ-Neumann et al., 2014) in its approach. For this purpose, the descriptions of

the tasks to be performed are provided in written form and deliberately formulated as

general, simple and concise as possible, so that only absolutely necessary information

are given, but no additional notes or help. This procedure should make it possible to

better deduce how easy and fast it is for the user to complete a certain task and at which

points problems or questions arise. Also, it is important to note that the focus lies on

evaluating MOnSTER itself, and so ObTiMA’s core functionality is considered only if

strictly necessary.

Anticipating the next sections, some general conclusions can be already drawn:

• To perform a usability and, especially, utility evaluation is a major challenge in the

context of MOnSTER, as a large number of different parameters interact here, and

also because of its tight, almost transparent, integration in ObTiMA.

• Without at least some prior knowledge on ontologies and interoperability, but also on

managing clinical trial data in general and within ObTiMA, any sensible application

of MOnSTER is extremely limited: Hence, it is absolutely necessary to train users

adequately before using MOnSTER.

12.1 Ontology Management

The goal of the first part of the evaluation is to assess the functionality provided to make

ontologies available to the system and to manage them.

Tasks

Here, each user needs to perform the following four tasks in the given order:

Task 1 Add GO (Gene Ontology) to the system

Task 2 Add ICD-10-GM to the system

Task 3 Add a description for GO

120

12.1 Ontology Management

Task 4 Remove GO from the system

For the first two tasks, some background information about each ontology, the respective

necessary parameters, and the actual ontology file is provided. In the first task, the file

has OWL format, serialized in OWL/XML (Motik et al., 2012), and in the second, it has

a idiosyncratic, line-based format.

Results

To start with the last two tasks, users express that they do not face any questions or

problems here, and are able to perform them without any issue.

Regarding the first two tasks, both the general procedure and the GUI are essentially

considered to be straightforward too by the users. Given the provided information and

ontology files, they encountered no problems in specifying their parameters and adding

the files. Yet, several users state major issues in two specific places:

Namespace Although values for both the prefix and the IRI are provided, their concrete

origin, meaning and use is not clear without any (technical) explanation for the users.

Regular Expression Even though instructions are given and despite of additional,

personal hints and support, none of the users is able to create the expression required

for the second ontology.

Therefore, it must unfortunately be stated that it is difficult for common users without

appropriate prior technical knowledge to add ontologies, even if the actual GUI for this

is considered as not problematic. Especially creating regular expressions is considered

as too complex without some more in-depth prior knowledge.

Also, independent of the actual ontology management functionality, some users state

another issue: In the above tasks, the ontologies to be used are explicitly named and all

necessary information as well as the ontology (file) itself are provided. Of course, this

would usually not be the case in a real-word environment. The resulting problem for

users is, which ontology or ontologies to use for some trial if no guidance or instructions

are provided in this regard. (See also the limitations in Chapter 14.)

121

12 Evaluation

12.2 Semantic Tagging

The second part of the evaluation covers the functionality offered for semantically tagging

the different elements of a trial.

Tasks

The user is asked to execute the following five tasks in that order:

Task 1 Enable SNOMED CT and NCIt for the current trial

Task 2 Add two tags related to COVID-19 using SNOMED CT and NCIt to the

current trial overview

Task 3 Add tags to a question and its answer possibility related to pregnancy status

using any enabled ontology

Task 4 Show the information and labels of the tags in the trial overview

Task 5 Remove a tag from the trial overview

As a precondition, the two mentioned ontologies are preloaded into the system.

Results

Starting again with the last two tasks, users mentioned here too that they do not have any

questions or problems, and can execute them without issue. Regarding the first task, all

users provided the same positive feedback as well.

For the second and third task, the users indicate once again that the actual method and

the interface to semantically tag trial elements is unproblematic by itself. The realization

of the concept search via text field for search terms and list area for found concepts is

perceived by the users as helpful and “natural” , since such an approach is known from

other applications. The possibility of narrowing down the search to specific ontologies is

also found helpful by users here and is therefore well used.

122

12.3 Data Export

However, some users also indicate that searching for concepts based on string matching

alone, that is, a purely lexical search, is a limiting factor for them and would also like

to search semantically. For example, a query with the string wilms tumor should also

return concepts where only the string nephroblastoma appears in its label. However, the

aforementioned problem is mitigated in most larger ontologies by the fact that they often

also provide the corresponding synonyms and spelling variants for each concept. Since

these are considered by MOnSTER in the search as well, corresponding concepts are

also found.

The visual representation of the concepts found is generally deemed as easy to understand,

but it is criticized by some users for quickly becoming confusing when a multitude of

concepts from several ontologies are returned for a search. Therefore, for future work

on MOnSTER, new possibilities are being investigated to make the display of results

visually clearer and, in turn, more effective for the user.

Another suggestion from users is to introduce color coding when displaying tags, that

is, tags from different ontologies are to be shown in different colors. It is planned to

implement this proposal as part of the next MOnSTER development iteration.

Yet, in contrast to the rather favorable feedback above, the semantic tagging is still

generally perceived as highly difficult: In the vast majority of searches, several similar

matching concepts are returned for some given search query, often stemming from

different ontologies. In this case, the evaluating users express that is difficult or even

not possible at all to judge which of those concept actually represents the right one. (See

also the limitations in Chapter 14.)

12.3 Data Export

Finally, in the third part of the evaluation, the functionality offered to export trial data is

reviewed. This part slightly differs from the previous two: While these mainly examined

the user’s interaction with MOnSTER, the actual result of the component, that is, the

exported artifacts, are to be assessed as well.

123

12 Evaluation

Tasks

The user is asked to execute the following five tasks in that order: Here, each user needs

to perform the following four tasks in the given order:

The user is prompted to perform the following three tasks, in any order:

Task 1 Export the trial in ODM format

Task 2 Export the trial in RDF format and TURTLE serialization

Task 3 Export the trial in FHIR format and JSON serialization without tag labels

As basis, users received a complete trial, that is, the trial introduced in Part III based on

NUM CODEX, including all SEs, CRFs and its (artificial) patients.

Results

The opinion towards the only MOnSTER element visible here, that is, the extended

export button allowing also the selection of export format and serialization, is divided

among users: Although all users are able to solve the given tasks quickly and without any

issues, some dislike the realization of that selection. In their view, it is not sensible that

they need to click the button first and only then perform the selection. As an alternative,

they suggest a separation of button and selection menus, with the latter positioned above

the button and hence always visible.

124

Chapter 13

Limitations and Mitigations

Although both usability and usefulness are among the key aspects of MOnSTER

development, some problematic aspects emerge in both the evaluation and the actual

application of the component.

13.1 Usability

In the previous evaluation, the received results are indeed quite ambivalent. Asmentioned

above, the basic usability and usefulness of the component is generally rated as basically

good by the test users. Thus, the integration of MOnSTER into the application’s overall

GUI is considered straightforward and the functionality to be easily accessible.

On the other hand, users still feel very overwhelmed when using the component, whereas,

as already alluded to before, it is not the component itself that causes problems here:

Rather, it is related to the fact that users are not at all clear about exactly which ontologies

they can or should use for their particular tasks. For example, because both SNOMEDCT,

NCIt, or ICD-10-GM each contain specific concepts to express a COVID-19 infection,

it is not obvious to the user which of these three ontologies now contains the correct

concept and which concept should thus be selected. But even if a single ontology is

already preselected or predefined, this often contains, and especially in the case of larger

ontologies like SNOMED CT, several concepts which might all have a highly similar or

possibly even the same meaning, so that is again not clear at all to the user which concept

to select in the end.

However, exactly these two problems are unfortunately a well-known general and

fundamental problem when using of ontologies, regardless of their concrete task or

field of application, be it to add concepts to clinical research questions on CRFs as in this

thesis’ case (Andrews et al., 2007; Patrick et al., 2008) or when annotating laboratory

data (Lin et al., 2011): As soon as the topical scope of a given ontology is not clearly

125

13 Limitations and Mitigations

and unambiguously delimited to a specific and well-defined area, its thematic content

may overlap with other ones’ to some lesser or greater extent. Here, an example of

an ontology whose content focuses on a very specific subject area is the HPO (Human

Phenotype Ontology), which contains concepts about medically relevant phenotypes,

disease phenotype annotations, and the needed algorithms for this (Köhler et al., 2021;

Robinson & Mundlos, 2010). On the other hand, if SNOMED CT is considered, the

exact opposite is true, as this one aims to comprehensively capture clinical documentation

and thus includes such diverse domains as clinical findings, procedures, body structures,

organisms, drugs, devices, and specimens, for each of which there exist also other more

targeted ontologies.

In this context, the actual advantage of MOnSTER, that any ontology can be used

by this component and all at the same time, can even be seen as a disadvantage here.

Unfortunately, it seems highly unlikely at this point that any technical or automatic

solution can be developed for this problem at all.

In order to contain and mitigate this issue, at least to some degree,when using MOnSTER,

the following is suggested:

Ontology Directories There exist several services providing ontology directories and

repositories, the two most prominent ones being the OLS (Ontology Lookup Service)

(EMBL-EBI, 2021; Jupp et al., 2015) and the BioPortal (NCBO, 2021;Whetzel et al.,

2011), which both encompass a large number of ontologies in the field of biomedicine.

For each ontology included in these, the respective directory contains corresponding

basic information, such as its creator, license, last update date, or the number of

contained concept, and descriptions to facilitate finding a suitable ontology.

Guidelines Another option that could promise to help in both the selection of the

appropriate ontolologies and the selection of the suitable concepts is the use of

predefined guidelines and rules (Miñarro-Giménez et al., 2018). Here, on the one

hand, exact specifications are given as to which concrete ontologies and/or concepts

should be used for a specific task, or even for specific data element, and on the other

hand, assistance is given for decisions in unclear cases. But even if such guidelines

or rules do not yet exist or do not fit for a particular use case, it is still useful in this

126

13.2 Utility

case to design them yourself, especially in view of the fact that, for the specific case

of MOnSTER, different people are involved in developing a trial in ObTiMA.

Another “remedy” to this issue is directly built into MOnSTER itself and basically

shown at the end of Section 10.2: The component allows adding multiple semantic tags

to one single trial component. So, if it is either not clear or not defined from which

ontology concepts for tagging a particular component must come, or if multiple concepts

in one ontology are applicable for tagging, then in these cases all tags from one or more

ontologies deemed to be suitable can be added to a component.

13.2 Utility

The usefulness of MOnSTER can best be assessed in the context of its extensions to the

existing export functionality. An important factor here is that the export no longer has to

be executed actively and manually by the user via the GUI, but that a web service now

enables its scripted execution in automated environments. Another key point that should

improve the given export functionality is the extension of ODM and the inclusion of the

new formats RDF and FHIR. It is hence necessary to examine the extent to which these

additional formats are now actually proving useful.

ODM MOnSTER extends standard ODM by adding only very few elements, namely

tags and tag, through a mechanism built into the standard itself, and leaving all other

standard elements untouched. Therefore, tools capable of processing ODM, such as

SAS CST (Clinical Standards Toolkit) (SAS, 2021), can ingest the extended ODM

with minimal or no change at all. Admittedly, in the case of such additional extension

elements, they are usually simply ignored by those tools by default. However, due to

the fact that MOnSTER extends ODM, and the processing tools, such as SAS CST

(Holland & Shostak, 2016), are extendable too, MOnSTER’s semantic tags can be

processed and productively used within analyses of trial data as well.

RDF Even though the ODM RDF vocabulary developed as part of MOnSTER orients

itself towards (PhUSE-CS-STWG, 2015) in its overall structure and scope, it is not an

official and supported standard. In the context of the Semantic Web, however, it is

a very common and widespread approach to create specific vocabularies which are

127

13 Limitations and Mitigations

tailored for some particular task.

For example, the LOV catalog provides many openly available task-specific

vocabularies – at the time of this writing, 774 – with their corresponding metadata

and descriptions in order for people wanting to create and publish data can find the

vocabulary appropriate for their tasks at hand (Vandenbussche et al., 2017, 2021).

In any case, it should be ensured that such vocabularies are of high quality and comply

with the aforementioned best practices for vocabulary development (Kendall et al.,

2008) and publication (Berrueta et al., 2008). As noted, the development of the

MOnSTER ODM vocabulary strictly adheres to these given principles.

FHIR Also regarding the FHIRmapping of ObTiMA’s informationmodel, it is not official

either and based in principle “only” on the three referenced scientific publications

(Doods et al., 2016; Leroux et al., 2017, 2019).

In reality, however, this point can be safely disregarded for several reasons: Indeed,

not for all entities of the original information model semantically completely matching

entities can be found in the target one, so that the actual information content of

the original entities can still be fully expressed. Nevertheless, the chosen target

entities still provide a sufficiently large coverage for all original entities and their

respective attributes. Moreover, the CRFTemplate and CRFInstance core entities,

as actual “data carriers” of the source model, can be completely and directly mapped

onto the Questionnaire and QuestionnaireResponse entities in the target FHIR

information model.

It is also important to mention that the created FHIR entities are fully standard

compliant and, therefore, can be processed by FHIR tools or stored on appropriate FHIR

servers without issues. For this, the FHIR generated and exported using MOnSTER is

successfully validated using the official FHIR validator (HL7, 2022)

128

Chapter 14

Related Work

In Chapter 3 of the introduction, an overview of the overall scope and the contributions

of the developed component is given. To summarize this briefly: Since its beginnings

ObTiMA contains an ontology component which can be used in CRFs to create questions

based on a predefined ontology, hardwired into the application, and it can export the trial

data in the ODM format. MOnSTER now replaces this functionality by allowing the

simultaneous use of multiple ontologies within the application for semantic tagging of

all trial components and exporting the data to an (extended) ODM and now also to RDF

and FHIR. This needs to be kept in mind when comparing MOnSTER concretely with

other related work, as a distinction should be made here between the core functionality

of ObTiMA on the one hand, and on the other, the functionality that is actually provided

by the newly developed component. Nonetheless, the descriptions in the previous parts

show that, to some extent, such a distinction is difficult to realize, because MOnSTER’s

functionality is, after all, very tightly integrated with the core application, both in terms

of the GUI and underlying code.

Now, before referring to the individual related systems in the below, some general

aspects and differences with regard to these systems need to be illustrated first:

Because of MOnSTER’s stated tight integration, it is a strict and explicit goal in its

development to adopt and reuse ObTiMA’s existing architecture and implementation

as comprehensively as possible. Hence, an important part of this effort is the adoption

of the underlying internal information model, which is logically based on the ODM

standard, as mentioned in Section 7.2, and technically implemented through an ORM

(Object Relational Mapping) methodology, as described in Subsection 4.2.1. To put it

somewhat exaggeratedly, because of its clear ODM foundation, it is possible to say that

the very core of ObTiMA’s realization is not actually, as its name implies, ontology-based

on the general conceptual level, and therefore does not employ any ontology-related

technologies, such as OWL, to model and define its (trial-related) data elements or RDF

as a means to store any of the application’s (trial) data.

129

14 Related Work

This is a fundamental difference from the systems below, as each of them defines all

necessary trial data elements using ontologies. This means, that both the general trial

components that make up every trial are defined, as well as the specific instantiations of

these components to realize a particular trial in the system. As for the general components,

by creating ontological concepts, it is (conceptually) defined what, for example, a CRF

is and contains, or that contained trial items can either query values or provide answer

options. Within ObTiMA, this task is assumed by the corresponding predefined entities

of the ODM based information model, realized as ORM entity classes. As for the

trial-specific realization, in the mentioned systems, either new specific concepts are

derived from the general one for each trial or instances of these general concepts are

created directly. When creating a new trial or new trial-specific component in ObTiMA,

then for each an instance object of the corresponding ORM entity classes is created.

Now, by applying an (open) ontological methodology, these systems may be considered

as generally more flexible in two ways: First, they can define and develop their own

information model independently in terms of content according to their specific needs

and priorities, without being restricted by external stipulations or having to take them into

account. Second, when employing appropriate software libraries to process ontologies,

such information models can be potentially generated and used more or less dynamically

without the need to hardwire their components into the program code.

However, this flexibility also entails two corresponding disadvantages: First, if such

information models are created and used in complete independence, this leads to a

problem that ontologies are supposed to solve in the first place, namely that so-called

data silos evolve which are incompatible and semantically not interoperable due to their

disparate underlying data definitions. Second, even though dynamic information models

without hard coding are ideal in theory, their comprehensive realization and practical

implementation in reality is challenging though (Knublauch et al., 2006), especially in

case of complex ontological structures, which in turn can also lead to performance issues

when handling larger amounts of data.

Therefore, it must be weighed up whether such flexibility outweighs the advantages of

a possibly more rigid standard, like ODM. In ObTiMA’s case, the ODM foundation of

its internal information model is very helpful, as it allows the quasi direct mapping onto

130

ODM for export, without the need for extensive transformations that always include the

danger of possible information loss or data misinterpretation. Admittedly, in ObTiMA the

ODM standard is not translated one-to-one into programming code, but in some places

the resulting Java classes are slightly adapted and extended to allow for an easier and

more performant processing with the relevant software libraries. However, the overall

semantics of ODM and its elements is fully adopted and retained, and the mentioned

changes are of technical nature only. In this respect, the “invariable“ nature of these

elements is not causing any major issues to date when setting-up and defining trials and

their components in ObTiMA. This also allows applying the given ORM approach with

fixed and independent entity classes for all information model elements, which is highly

relevant for a real-world CTMS: On the one hand, this simplifies the implementation of

the data management and processing, as all common Java methodologies and relevant

APIs/ libraries can also be applied here. On the other hand, established, robust and

scalable standard database systems can be used, which are highly beneficial for handling

non-trivial amounts of data.

At this point, after what is said above, it is certainly necessary to clarify a bit more

precisely what role ontologies in ObTiMA and MOnSTER play concretely in this context.

As described, it is not the intention to design and develop own ontologies and concepts

for defining a own information model, as this relies on an ODM basis. Rather, with the

help of MOnSTER, it is intended to employ established, standard ontologies in order

to apply their concepts for defining metadata of all trial-related components. In this

sense, the goal of this component, from the ontological point of view, is different and

maybe less ambitious, since ontologies are not used as extensively as in the other systems.

Nevertheless, the component achieves exactly its intended interoperability objective

through the given approach: The (re)use of ODM enables syntactic interoperability in

the context of clinical trials by allowing the exchange of trial data with other CTMS

and systems, as well as their integration, based on a widely used, accepted standard.

Furthermore, the added support for FHIR, as another established standard, now enables

syntactic interoperability alss beyond clinical trials. Semantic interoperability is, in turn,

achieved by ensuring that the actual data (values) being collected and stored can also

reference and be based upon standardized ontological artifacts.

131

14 Related Work

Coming back to the related work, the topic of semantic interoperability in clinical trials

is, of course, very broad and highly diverse, which makes it impossible to even try to

address all the possibly relevant existing work within this area. Therefore, the following

focuses on systems directly related to the application of ontologies in clinical trial (data)

management, and thus comparable to the overall task of ObTiMA and MOnSTER.

In this, Löbe et al. (Löbe et al., 2009) proposes a system to enable the creation of CRFs and

the management of clinical trial items, that is, questions in the ObTiMA naming, within

a repository. For this purpose, a general vocabulary ontology was initially manually

developed as its basis holding concepts to define the generic components of a trial, such

as the hierarchical structure of containers for CRFs, modules and data values for input

or check fields, or code lists contained therein. Based on these generic concepts, a

browser-based GUI allows creating specific item instances, like for asking a creatinine

level, and to store them on a RDF basis in a triplestore referencing the generic, ontological

concept. From the user’s perspective, the (visual) definition of such items is logically very

similar to the approach used in ObTiMA, as in both cases, the GUI makes the inherent

complexities the underlying ontology or information model transparent to user. However,

a fundamental difference here is that in its published state, the system does not integrate

any external ontologies, such as SNOMED CT, LOINC or ICD in its implementation,

albeit it is deemed to be advantageous.

In contrast, the system of Esteban-Gil and Fernández-Breis is presented as a full CTMS.

Thus, the system not only allows to define trials and their data collection items, but also

supports the actual collection of corresponding patient data, exactly as it is the case with

ObTiMA. For defining trial items, an approach similar to the previous system is taken:

That is, a foundational ontology with generic trial concepts was manually created first by

the authors and which needs to be extended by appropriate concepts for each new trial

and its trial items. Now, initially, this ontology extension was to be performed manually,

using the ontology editor Protégé (Gonçalves et al., 2021;Musen & Team, 2015). This

was rejected by the users / researchers, as such work requires experts with the appropriate

ontological and technical background. Therefore, a dedicated editor was developed

providing a simpler GUI for defining trial items, shielding users from the ontology’s

complexity. Based on these definitions, browser-based CRFs are automatically generated

132

to allow the entry of patient data. Compared to MOnSTER, it is directly not clear from

the publication whether and how the inclusion of external standard ontologies and their

concepts is possible.

Another earlier system is proposed by Tran et al. (Tran et al., 2011),which represents again

a complete CTMS employing ontologies as its foundation. However, unlike the previous

system, this system does not provide its own GUI functionality for creating or editing a

trial and its items. Although the CRFs to enter patient data are generated automatically

from ontological concept definitions too, these ontologies have to be manually edited

and extended for each trial and trial item. As can be seen with the previous system, this

is of course a significant disadvantage, as it means that only experienced experts can

develop new trials and their items.

The very same issue arises in the approach described by Shankar et al. (Shankar et

al., 2006, 2007): In this case, not a single CTMS is proposed but rather a complex

ontology-based architecture together with a set of ontologies is proposed to provide

support for the interoperation of different software applications involved in clinical trials.

For this, not each application is “ontologized“ regarding their internal data processing

but rather a rule-based model-database mapper is employed along with an ontological

knowledge base that maps data onto a common RDBMS. Here, all ontologies as well

as the mapping rules are developed and curated by ontology experts and so, as with the

previous system, if additional use cases, and data (elements) are to be covered, these

experts must manually extend the ontologies and the rule set.

As a side note, it may also be useful to make a comparison at a more abstract

level in addition to the direct system comparison: When comparing the above with

the approach of ObTiMA and MOnSTER, the interpretation of semantic versus

syntactic interoperability may be blurred to some extent. As mentioned, ObTiMA’s

internal information model is fundamentally based on ODM, which is mentioned in

Chapter 2 in the context of syntactic interoperability. That is because this standard

defines the precise (XML) syntax, that syntactically well-formed ODM documents

must exhibit. Nonetheless, it is equally possible to regard the ODM definitions as

semantic too as the standard also provides natural language descriptions for each

element to define their concrete meaning. In the same chapter ontologies are declared

133

14 Related Work

as vehicle of semantic interoperability by expressing concepts unambiguously and

independently of natural language terms and labels. Looking at the related systems

above, the concepts of the foundational ontologies are actually not completely used

in that specific sense but rather also to describe content container elements and their

linking (containment) relations to mimick syntactical structures. The RDF vocabulary

developed to map from the ObTiMA-internal information model onto RDF for export,

as described in Subsection 7.2.2, can be seen as a small ontology following this

idea too, as it (re)models ODM’s XML elements and structure through concepts

and relations. For example, using this vocabulary, the statement _:some_trial

odm:studyEventDefs _:some_study_event_defs tells that some_trial holds

the list some_study_event_defs of SEs definitions and so provides a structural,

containment statement. Therefore, ontologies might not be used to define semantics /

meaning only, but can, to some extent, also prescribe structure, and so in a certain sense a

syntax. Taking this into account, there is no fundamental difference in the underlying logic

between the above systems’ foundational ontologies and MOnSTER’s RDF vocabulary.

The biggest difference is though that the used ontologies are independent, “homegrown”

developments, whereas this vocabulary, albeit also a custom development, is closely

adhering to the official ODM standard, and therefore the generated RDF can be considered

as ODM-compliant.

To conclude this overview, it is important to also reference the system by Dugas et al.

(Dugas, 2016; Dugas et al., 2016). This system proposes a web-based CRFs editor with

the intention to foster the development and reuse of more standardized CRFs by resuing

existing data elements as much as possible. For this, the data elements are provided

together with corresponding codes and are evaluated and maintained by experts in a

MDR (Metadata Registry). Here the codes originate from the UMLS (Unified Medical

Language System), a repository of a multitude controlled vocabularies in the biomedical

sciences (Bodenreider, 2004; NLM, 2022). To find a suitable data element in the MDR,

the user specifies a string with which all data elements stored there are searched, and

then can select the appropriate element from the list of returned matches. If no suitable

data element is contained within the MDR, then it is possible to perform a lookup in the

UMLS and create a new data element.

134

From the above description it is clear that the basic idea here is very similar to semantic

tagging at MOnSTER. However, there are two major differences between the two in

this context: First, the given system refers to the data elements within a CRF alone, like

the initial ontology implementation in ObTiMA, but the very goal of MOnSTER is to

enable the semantic enrichment of all components of a clinical trial. Second, in this

system UMLS is fixed as the source of semantic resources. While UMLS contains a very

large number of different standard resources, such as SNOMED CT or LOINC, more

specialized ontologies may not be found here. MOnSTER is not restricted in such a way

and allows to include any ontology, and thus can cover any subject area as long as a

corresponding ontology is available.

135

Chapter 15

Outlook and Perspective

As with every “living” piece of software there is the wish to not only foster its current

deployment but also to continue its development and add some additional features. To this

end, it is planned to address the issues raised by some of the users during the evaluation

as quickly as possible, and to evaluate their expressed ideas and, if possible, realize them

within the component. Some of the issues and ideas that are currently under investigation

are presented in the following sections.

15.1 Improved Visualizations

As stated earlier, some users express the idea that the tags added to a trial component

should have different colors depending on which ontology they come from, that is, to

introduce a proper color coding scheme. When doing so, an option could be added when

adding or editing an ontology to select some specific color for that particular ontology.

This selected color could in turn be displayed as, for example, a small marker in

• the menu to enable ontologies for a trial,

• the selection of ontologies for a specific search,

• the ontology and concept labels in the drop-down list of found concepts, and

• the tag added to a trial component.

The idea is that such a relatively small change could possibly improve the usability to

quite some extent, as users could then always easily detect which ontology is currently

in focus or where it is used.

In addition, it should be further investigated whether improved display options can be

developed for the concept search. As some users complain during the evaluation that

they are overwhelmed by the sheer number of returned concepts, it needs to be examined

whether some more manageable representations are possible here.

137

15 Outlook and Perspective

Because of the multitude of different options in this context, any development must be

preceded by a comprehensive study including the opinions of the users and evaluate

the respective effectiveness of each option (Joho & Jose, 2006). This also includes the

development of visual mockups in order to be able to evaluate and, if necessary, adapt

the conceived solution options together with the users before their actual programmatic

implementation. In this context, it will also be investigated whether some more advanced

visual techniques may be feasible, for example, to visually group and cluster large

numbers of results (Anderson &Wischgoll, 2020).

15.2 Ontological Relations in Search

At this point, the search for concepts for semantic tagging is based solely on their

natural language labels. Within (proper) ontologies, however, there always exist

additional relations between the individual concepts. One such fundamental relation is

the parent-child relation between a (more general) superconcept and a (more specific)

subconcept, such as in SNOMED CT where concept 840539006 (COVID-19) is a child

of its parent concept 186747009 (Coronavirus infection).

Based on this, the search could then be extended so that two buttons appear in the results’

drop-down list for each concept found. Now, if you click on the “parents” button, all

parents of the given concept will be displayed, and one of them can be selected as a

semantic tag. The same applies for the “children” button, returning the concept’s children

in turn. However, it is not clear to what extent such an additional option represents an

actually valuable and useful feature for the user in general, or whether some advanced

visual presentation would be beneficial here as well.

It is assumed that the necessary implementation could be realized with manageable effort:

For this, ontologies in OWL format are unproblematic, since expressing parent-child

relationships between concepts is one of their essential, native features. To enable the

search based on that relationship, the indexing as described in Chapter 5 needs to be

expanded: When iterating over all matching OWL classes, the unique identifying codes

of the parent class or classes are extracted and added to the parent field of the Lucene

document for that class / concept and indexed accordingly.

138

15.3 Tag-based CRF Repository Search

With respect to custom line-based ontologies, all that would be required here is the ability

to express that a concept has another concept as a parent. An example snippet is given

in Figure 15.2.1 to demonstrate how this could be realized in a CSV file: Here, the two

concepts 398447004 and 840539006, each with two labels, have the common parent

concept 186747009, and the concept 398447004 has an additional parent 312133006.

Then, only an additional group parents needs to be added to the regular expression to

capture the respective value. If a concept has multiple parents, then their codes could be

concatenated with a space separating each code, like 186747009 312133006. Again,

each parent concept code is added to the concept’s Lucene document and indexed.

186747009,27619001,p,Coronavirus infection,en

312133006,275498002 34014006,p,Viral respiratory

infection,en↪→

398447004,186747009 312133006,,SARS,en

398447004,186747009 312133006,p,Severe acute

respiratory syndrome,en↪→

840539006,186747009,,Disease caused by severe

acute respiratory syndrome coronavirus 2,en↪→

840539006,186747009,p,COVID-19,en

(a)

^(?<code>.+?),(?<parents>.+?),(?<preferred>p?),

(?<label>.+?),(?<language>\w{2}(-\w{2})?)$↪→

(b)

Figure 15.2.1 – Lines from an custom line-based ontology file with parent provided and

suitable regular expression with the added parents group

15.3 Tag-based CRF Repository Search

In addition to the functionality for creating and editing CRFs, ObTiMA also possesses

an independent CRF repository where templates of CRFs can be stored independently of

the trial being edited to make them available to other trial. If another user now creates

or edits another trial, then the CRF repository can be looked up to see if a suitable CRF

template can be found there, which can reused in the created / edited trial.

139

15 Outlook and Perspective

Currently, the repository can be searched for the CRFs based on various criteria, such

as its name or its creator. Since MOnSTER now also makes it possible to tag CRFs

with semantic tags as metadata, it also makes sense to extend the aforementioned search

within the CRF repository accordingly. Here it is then possible to specify semantic tags

and appropriately tagged CRFs will be returned.

In this context, it should be evaluated whether it is also sensible and useful to extend the

search in such a way that not only the metadata of the CRF itself is searched for by the

specified tags, but the semantic tags / metadata of all of its contained components too.

For example, if a specific tag is provided for the search, then a CRF also matches and is

already returned if only one question in the CRF contains that tag.

15.4 Rules and Guidelines

As mentioned in the previous chapter, the use of rules and guidelines can provide support

for the correct selection of ontologies and concepts. Therefore, it is expected to be very

helpful if they could be included as additional information in MOnSTER as well.

However, a both meaningful and user-friendly implementation of this idea is not trivial

either, as there exist, for example, a multitude of different approaches to the visual

representation of guidelines and rules. Thus, to provide the most suitable and helpful

solution, the users must again be involved in the planning and implementation from the

beginning. For this, it is planned also to create visual mockups of the different possibilities

to receive feedback early and plan the actual implementation accordingly.

15.5 Training

In addition to the above, the evaluation also clearly shows that there is a definite need

for further training. Whereby not only the actual use of MOnSTER is meant, that is, the

correct use of the GUI for ontology management, semantic tagging and export, but also

the background behind the component.

This means concretely that a suitable training and corresponding material must be

140

15.5 Training

developed, which does not only cover the handling of the actual GUI elements, but

rather also encompasses the provision of both conceptual and technical descriptions on

interoperability and ontologies. Nevertheless, great care must be taken, of course, to

ensure that these topics are handled in a concise and comprehensible manner and not to

overload users with unnecessary and unnecessarily extensive information.

141

Part V

Appendix

143

Appendix A

ODM Extension Definition

The following lists the MOnSTER and ODM extension XSDs as introduced in

Subsection 7.2.1. These can be used to test whether some given ODM file containing tag

elements as proposed by the component is fully compliant with the prescribed element

definitions.

MOnSTER XSD

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns="http:^//obtima.org/schema/odm-ext/monster/v1.0"

xmlns:xs="http:^//www.w3.org/2001/XMLSchema"

xmlns:odm="http:^//www.cdisc.org/ns/odm/v1.3"

targetNamespace="http:^//obtima.org/schema/odm-ext/monster/v1.0"

elementFormDefault="qualified" attributeFormDefault="unqualified">

↪→

↪→

↪→

↪→

<xs:import namespace="http:^//www.cdisc.org/ns/odm/v1.3"

schemaLocation="ODM1-3-2-foundation.xsd"/>↪→

<xs:element name="Tags">

<xs:complexType>

<xs:sequence>

<xs:element ref="Tag" minOccurs="1" maxOccurs="unbounded"/>

^</xs:sequence>

^</xs:complexType>

^</xs:element>

<xs:element name="Tag">

<xs:complexType>

<xs:sequence>

<xs:element ref="Labels"/>

^</xs:sequence>

<xs:attribute name="URI" type="xs:anyURI"/>

^</xs:complexType>

^</xs:element>

<xs:element name="Labels">

145

A ODM Extension Definition

<xs:complexType>

<xs:sequence>

<xs:element ref="odm:TranslatedText" minOccurs="1"

maxOccurs="unbounded"/>↪→

^</xs:sequence>

^</xs:complexType>

^</xs:element>

^</xs:schema>

ODM Extension XSD

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns="http:^//www.cdisc.org/ns/odm/v1.3"

xmlns:xs="http:^//www.w3.org/2001/XMLSchema"

xmlns:monster="http:^//obtima.org/schema/odm-ext/monster/v1.0"

targetNamespace="http:^//www.cdisc.org/ns/odm/v1.3">

↪→

↪→

↪→

<xs:import namespace="http:^//obtima.org/schema/odm-ext/monster/v1.0"

schemaLocation="monster-1.0.xsd"/>↪→

<xs:redefine schemaLocation="ODM1-3-2.xsd">

<xs:group name="GlobalVariablesElementExtension">

<xs:sequence>

<xs:element ref="monster:Tags" minOccurs="0" maxOccurs="1"/>

<xs:group ref="GlobalVariablesElementExtension"/>

^</xs:sequence>

^</xs:group>

<xs:group name="StudyEventDefElementExtension">

<xs:sequence>

<xs:element ref="monster:Tags" minOccurs="0" maxOccurs="1"/>

<xs:group ref="StudyEventDefElementExtension"/>

^</xs:sequence>

^</xs:group>

<xs:group name="FormDefElementExtension">

<xs:sequence>

<xs:element ref="monster:Tags" minOccurs="0" maxOccurs="1"/>

<xs:group ref="FormDefElementExtension"/>

^</xs:sequence>

^</xs:group>

146

<xs:group name="ItemGroupDefElementExtension">

<xs:sequence>

<xs:element ref="monster:Tags" minOccurs="0" maxOccurs="1"/>

<xs:group ref="ItemGroupDefElementExtension"/>

^</xs:sequence>

^</xs:group>

<xs:group name="ItemDefElementExtension">

<xs:sequence>

<xs:element ref="monster:Tags" minOccurs="0" maxOccurs="1"/>

<xs:group ref="ItemDefElementExtension"/>

^</xs:sequence>

^</xs:group>

<xs:group name="CodeListItemElementExtension">

<xs:sequence>

<xs:element ref="monster:Tags" minOccurs="0" maxOccurs="1"/>

<xs:group ref="CodeListItemElementExtension"/>

^</xs:sequence>

^</xs:group>

^</xs:redefine>

^</xs:schema>

147

Appendix B

OpenAPI Description

The below lists the complete OpenAPI description as introduced in Subsection 7.2.2

and Section 11.2 which gives a machine-readable, standards compliant description of the

web service interface that is provided by MOnSTER.

openapi: 3.1.0

info:

version: 1.0.0

title: ObTiMA Export REST API Documentation

servers:

- url: '{scheme}:^//{host}:{port}/{basePath}'

variables:

scheme:

enum: [http, https]

default: https

host:

default: obtima.org

basePath:

default: test/rest

port:

default: '443'

paths:

"/trials/{trialAcronym}/export":

get:

summary: Export a trial

parameters:

- name: trialAcronym

in: path

description: Acronym of the trial

required: true

schema:

type: string

- name: format

in: query

description: Target of the export

required: false

schema:

149

B OpenAPI Description

type: string

enum: [odm, fhir, rdf]

default: odm

- name: serialization

in: query

description: Format of the export

required: false

schema:

type: string

enum: [xml, turtle, rdf_xml, n_triples, json_ld, json,

rdf]↪→

default: xml

- name: protectedData

in: query

description: Include protected data

required: false

schema:

type: boolean

default: true

- name: metadata

in: query

description: Include trial metadata including definitions of

study events and case report forms↪→

required: false

schema:

type: boolean

default: true

- name: firstResult

in: query

description: First result to return

required: false

schema:

type: integer

minimum: 0

default: 0

- name: maxResults

in: query

description: Maximum number of results returned

required: false

schema:

type: integer

minimum: 1

default: 0x7fffffff

150

responses:

"200":

description: OK

content:

application/xml: {}

application/ld+json: {}

application/json: {}

application/rdf+xml: {}

text/turtle: {}

application/n-triples: {}

"401":

description: Unauthorized

"403":

description: Export of trial denied

"404":

description: Trial not found

"500":

description: Export failed

"501":

description: Format not supported

"503":

description: RDF export failed because MOnSTER is disabled

151

Appendix C

Applied Specifications

The table below provides references to all of the relevant specifications employed in

the development and application of MOnSTER. These encompass the formats and

serializations that the export is capable to produce (ODM, RDF and FHIR), the format of

ontologies that can be loaded by the component (OWL), the format used for creating the

technical webservice description (OpenAPI), and the format employed for the creating

the code visualizations in this thesis’ descriptions (UML).

Name Version Serialization Reference

FHIR R4 (4.0.1) (HL7, 2019)

ODM 1.3.2 (CDISC, 2013)

OpenAPI 3.1.0 (OAI, 2021)

OWL 2 (W3C-OWG, 2012)

RDF 1.1 (Cyganiak et al., 2014)

RDF/XML (Gandon et al., 2014)

Turtle (Beckett et al., 2014)

JSON-LD (Sporny et al., 2020)

N-Triples (Beckett, 2014)

UML 2.5.1 (OMG, 2017)

Table C.1 – Specifications used for developing and in applying MOnSTER

153

Appendix D

Applied Libraries and Licenses

The following tables list all of the software libraries used for developing and in applying

MOnSTER along with the respective license employed by each. Their actual use in the

component’s implementation is described in Part II.

In this context, it must be emphasized that when selecting these libraries, the primary

consideration is, of course, their functionality and usefulness, but another important factor

is their licensing: Great care is taken to select libraries that have open source licenses

that are permissive in the sense that they do not restrict their application to specific

usage scenarios, such as exclusive use in non-commercial environments, or that force

developers to distribute an application’s source code along with its binary artifacts.

Name Version License Reference

Spring Framework 5.3.16 Apache-2.0 (VMware, 2022a)

JPA 2.2.3 EPL-2.0 (Eclipse, 2022c)

Hibernate ORM 5.6.5 LGPL-3.0 (Red Hat, 2022)

JSF 2.3.17 EPL-2.0 (Eclipse, 2022d, 2022g)

PrimeFaces 8.0.0 MIT (PrimeTek, 2022)

JAXB 2.3.6 EDL-1.0 (Eclipse, 2022a, 2022e)

OWLAPI 5.1.20 Apache-2.0 (Horridge et al., 2022)

RDF4J 3.7.4 EDL-1.0 (Eclipse, 2022h)

Jackson 2.13.1 Apache-2.0 (FasterXML, 2022)

HAPI FHIR 5.7.0 Apache-2.0 (HAPI FHIR, 2022)

Lucene 9.0.0 Apache-2.0 (ASF, 2022a)

Table D.1 – Libraries used for developing and in applying MOnSTER

155

D Applied Libraries and Licenses

Name Version SPDX Reference

Apache License 2.0 Apache-2.0 (ASF, 2014)

Eclipse Distribution License 1.0 EDL-1.0 (Eclipse, 2007)

Eclipse Public License 2.0 EPL-2.0 (Eclipse, 2017)

(GNU) Lesser General Public License 3.0 LGPL-3.0 (FSF, 2007)

MIT License - MIT (OSI, 1987)

Table D.2 – Licenses applied by the libraries listed in Table D.1

156

Appendix E

Applied Ontologies

The table below provides a list of all ontologies successfully tested with the component

until now. These include both the ones referenced and applied for the GECCO use

case Chapter 12, but also additional ones that are employed in other projects and for

testing purposes only. In this context, successful testing means that, without any kind of

problems, an ontology can be loaded into the application and that any component of a

trial can be semantically tagged with concepts from that given ontology.

For the sake of brevity, only the latest version of each tested ontology is listed in the

below, even if earlier versions were successfully tested as well before.

Name Version Reference

ChEBI 2021-12-01 (EMBL-EBI, 2018)

CTCAE 5.0 (NCI, 2017)

FMA 5.0.0 (SIG, 2019)

GO 2021-11-16 (GOC, 2021)

ICD-10-GM 2021 (BfArM, 2022a)

LOINC 2.71 (Regenstrief, 2022)

MedDRA 24.1 (ICH-TRPHU, 2022)

NCIt 21.11 (NCI, 2022)

OBI 2021-08-18 (OBI, 2021)

OPS 2021 (BfArM, 2022b)

ORDO 4.0 (Orphanet, 2022)

SNOMED CT 2022-01 (SNOMED, 2022)

Table E.1 – Ontologies succesfully tested and used in MOnSTER

157

Appendix F

Data Export Excerpts

The following are exemplary excerpts from data exports in all formats and respective

serializations which MOnSTER currently supports, that is, in ODM, RDF serialized

in RDF/XML, Turtle, JSON-LD, and N-Triples, and FHIR serialized in JSON, XML,

and RDF/Turtle. A thematic background on their overall content is given in Chapter 8

and details on their actual, concrete content in Section 11.1. All files in all formats and

serializations are available in their entirety online, see (Stenzhorn, 2022).

F.1 ODM

Multiple Tags without Labels

<ODM FileType="Snapshot" Granularity="All" FileOID="1939501217"

CreationDateTime="1111-11-11T11:11:11.111+01:00" ODMVersion="1.3.2"

SourceSystem="ObTiMA" xmlns="http:^//www.cdisc.org/ns/odm/v1.3"

xmlns:monster="http:^//obtima.org/schema/odm-ext/monster/v1.0">

↪→

↪→

↪→

<Study OID="Project.NUMCODEX">

<GlobalVariables>

<StudyName>NUM CODEX (NUM CODEX)^</StudyName>

^^...

<monster:Tags>

<monster:Tag

URI="http:^//terminology.hl7.org/CodeSystem/mdr/10084382"/>↪→

<monster:Tag

URI="http:^//fhir.de/CodeSystem/bfarm/icd-10-gm/U07.1"/>↪→

<monster:Tag URI="http:^//loinc.org/95412-3"/>

<monster:Tag URI="http:^//snomed.info/id/840539006"/>

<monster:Tag URI="http:^//ncicb.nci.nih.gov/xml/owl/EVS/

Thesaurus.owl#C171133"/>↪→

^</monster:Tags>

^</GlobalVariables>

^^...

^</Study>

^</ODM>

159

F Data Export Excerpts

Single Tag with Multilingual Labels

<monster:Tag URI="http:^//terminology.hl7.org/CodeSystem/mdr/10084382">

<monster:Labels>

<TranslatedText xml:lang="cn">2019 冠状病毒疾病^</TranslatedText>

<TranslatedText xml:lang="cz">Onemocnění způsobené koronavirem

2019^</TranslatedText>↪→

<TranslatedText xml:lang="de">Coronavirus-Krankheit

2019^</TranslatedText>↪→

<TranslatedText xml:lang="en">Coronavirus disease

2019^</TranslatedText>↪→

<TranslatedText xml:lang="es">Enfermedad por coronavirus

2019^</TranslatedText>↪→

<TranslatedText xml:lang="fr">Maladie à coronavirus

2019^</TranslatedText>↪→

<TranslatedText xml:lang="hu">Koronavírus okozta megbetegedés

2019^</TranslatedText>↪→

<TranslatedText xml:lang="it">Malattia da Coronavirus

2019^</TranslatedText>↪→

<TranslatedText xml:lang="jp">2019

コロナウイルス病気^</TranslatedText>↪→

<TranslatedText xml:lang="ko">2019 코로나바이러스

감염증^</TranslatedText>↪→

<TranslatedText xml:lang="nl">Coronavirusziekte

2019^</TranslatedText>↪→

<TranslatedText xml:lang="pt-BR">Doença pelo coronavírus de

2019^</TranslatedText>↪→

<TranslatedText xml:lang="pt">Doença por coronavírus

2019^</TranslatedText>↪→

<TranslatedText xml:lang="ru">Коронавирусная инфекция 2019

года^</TranslatedText>↪→

^</monster:Labels>

^</monster:Tag>

160

F.2 RDF

F.2 RDF

F.2.1 RDF/XML

Multiple Tags without Labels

<rdf:RDF xmlns:dc="http:^//purl.org/dc/elements/1.1/"

xmlns:export="https:^//obtima.org/export/"

xmlns:odm="https:^//rdf.cdisc.org/odm#"

xmlns:rdf="http:^//www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http:^//www.w3.org/2000/01/rdf-schema#">

↪→

↪→

↪→

↪→

<rdf:Description rdf:about="https:^//obtima.org/export/1939501217">

<rdf:type rdf:resource="https:^//obtima.org/export/Export"/>

^^...

<export:contains

rdf:resource="https:^//obtima.org/export/81075958-164"/>↪→

^</rdf:Description>

^^...

<rdf:Description rdf:about="https:^//obtima.org/export/81075958-164">

<rdf:type rdf:resource="https:^//rdf.cdisc.org/odm#Study"/>

<odm:acronym>NUM CODEX^</odm:acronym>

<odm:name>NUM CODEX^</odm:name>

^^...

<odm:tags rdf:nodeID="node1fna3gt02x130343"/>

^</rdf:Description>

^^...

<rdf:Description rdf:nodeID="node1fna3gt02x130343">

<rdf:type

rdf:resource="http:^//www.w3.org/1999/02/22-rdf-syntax-ns#List"/>↪→

<rdf:first rdf:resource="https:^//obtima.org/export/83834-1070"/>

<rdf:rest rdf:nodeID="node1fna3gt02x130344"/>

^</rdf:Description>

<rdf:Description rdf:nodeID="node1fna3gt02x130344">

<rdf:first rdf:resource="https:^//obtima.org/export/83834-1071"/>

<rdf:rest rdf:nodeID="node1fna3gt02x130345"/>

^</rdf:Description>

<rdf:Description rdf:nodeID="node1fna3gt02x130345">

<rdf:first rdf:resource="https:^//obtima.org/export/83834-1072"/>

<rdf:rest rdf:nodeID="node1fna3gt02x130346"/>

^</rdf:Description>

<rdf:Description rdf:nodeID="node1fna3gt02x130346">

<rdf:first rdf:resource="https:^//obtima.org/export/83834-1073"/>

161

F Data Export Excerpts

<rdf:rest rdf:nodeID="node1fna3gt02x130347"/>

^</rdf:Description>

<rdf:Description rdf:nodeID="node1fna3gt02x130347">

<rdf:first rdf:resource="https:^//obtima.org/export/83834-1074"/>

<rdf:rest

rdf:resource="http:^//www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>↪→

^</rdf:Description>

^^...

<rdf:Description rdf:about="https:^//obtima.org/export/83834-1070">

<rdf:type rdf:resource="https:^//rdf.cdisc.org/odm#Tag"/>

<rdfs:seeAlso

rdf:resource="http:^//terminology.hl7.org/CodeSystem/mdr/10084382"/>↪→

^</rdf:Description>

<rdf:Description rdf:about="https:^//obtima.org/export/83834-1071">

<rdf:type rdf:resource="https:^//rdf.cdisc.org/odm#Tag"/>

<rdfs:seeAlso

rdf:resource="http:^//fhir.de/CodeSystem/bfarm/icd-10-gm/U07.1"/>↪→

^</rdf:Description>

<rdf:Description rdf:about="https:^//obtima.org/export/83834-1072">

<rdf:type rdf:resource="https:^//rdf.cdisc.org/odm#Tag"/>

<rdfs:seeAlso rdf:resource="http:^//loinc.org/95412-3"/>

^</rdf:Description>

<rdf:Description rdf:about="https:^//obtima.org/export/83834-1073">

<rdf:type rdf:resource="https:^//rdf.cdisc.org/odm#Tag"/>

<rdfs:seeAlso rdf:resource="http:^//snomed.info/id/840539006"/>

^</rdf:Description>

<rdf:Description rdf:about="https:^//obtima.org/export/83834-1074">

<rdf:type rdf:resource="https:^//rdf.cdisc.org/odm#Tag"/>

<rdfs:seeAlso

rdf:resource="http:^//ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl

#C171133"/>

↪→

↪→

^</rdf:Description>

^^...

^</rdf:RDF>

Single Tag with Multilingual Labels

<rdf:Description rdf:about="https:^//obtima.org/export/83834-1070">

<rdf:type rdf:resource="https:^//rdf.cdisc.org/odm#Tag"/>

<rdfs:label xml:lang="cn">2019 冠状病毒疾病^</rdfs:label>

<rdfs:label xml:lang="cz">Onemocnění způsobené koronavirem

2019^</rdfs:label>↪→

<rdfs:label xml:lang="de">Coronavirus-Krankheit 2019^</rdfs:label>

162

F.2 RDF

<rdfs:label xml:lang="en">Coronavirus disease 2019^</rdfs:label>

<rdfs:label xml:lang="es">Enfermedad por coronavirus

2019^</rdfs:label>↪→

<rdfs:label xml:lang="fr">Maladie à coronavirus 2019^</rdfs:label>

<rdfs:label xml:lang="hu">Koronavírus okozta megbetegedés

2019^</rdfs:label>↪→

<rdfs:label xml:lang="it">Malattia da Coronavirus 2019^</rdfs:label>

<rdfs:label xml:lang="jp">2019 コロナウイルス病気^</rdfs:label>

<rdfs:label xml:lang="ko">2019 코로나바이러스 감염증^</rdfs:label>

<rdfs:label xml:lang="nl">Coronavirusziekte 2019^</rdfs:label>

<rdfs:label xml:lang="pt-BR">Doença pelo coronavírus de

2019^</rdfs:label>↪→

<rdfs:label xml:lang="pt">Doença por coronavírus 2019^</rdfs:label>

<rdfs:label xml:lang="ru">Коронавирусная инфекция 2019

года^</rdfs:label>↪→

<rdfs:seeAlso

rdf:resource="http:^//terminology.hl7.org/CodeSystem/mdr/10084382"/>↪→

^</rdf:Description>

F.2.2 Turtle

Multiple Tags without Labels

@prefix export: <https:^//obtima.org/export/> .

@prefix icd-10-gm: <http:^//fhir.de/CodeSystem/bfarm/icd-10-gm/> .

@prefix loinc: <http:^//loinc.org/> .

@prefix meddra: <http:^//terminology.hl7.org/CodeSystem/mdr/> .

@prefix ncit: <http:^//ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#> .

@prefix odm: <https:^//rdf.cdisc.org/odm#> .

@prefix rdf: <http:^//www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http:^//www.w3.org/2000/01/rdf-schema#> .

@prefix snomed-ct: <http:^//snomed.info/id/> .

^^...

export:1939501217 a export:Export; ^... export:contains

export:81075958-164 .↪→

^^...

export:81075958-164 a odm:Study; odm:acronym "NUM CODEX"; odm:name

"NUM CODEX"; ^... odm:tags _:node1 .↪→

^^...

_:node1 a rdf:List; rdf:first export:83834-1070; rdf:rest _:node2 .

_:node2 rdf:first export:83834-1071; rdf:rest _:node3 .

_:node3 rdf:first export:83834-1072; rdf:rest _:node4 .

163

F Data Export Excerpts

_:node4 rdf:first export:83834-1073; rdf:rest _:node5 .

_:node5 rdf:first export:83834-1074; rdf:rest rdf:nil .

^^...

export:83834-1070 a odm:Tag; rdfs:seeAlso meddra:10084382 .

export:83834-1071 a odm:Tag; rdfs:seeAlso icd-10-gm:U07.1 .

export:83834-1072 a odm:Tag; rdfs:seeAlso loinc:95412-3 .

export:83834-1073 a odm:Tag; rdfs:seeAlso snomed-ct:840539006 .

export:83834-1074 a odm:Tag; rdfs:seeAlso ncit:C171133 .

^^...

Single Tag with Multilingual Labels

export:83834-1070 a odm:Tag; rdfs:seeAlso meddra:10084382 . rdfs:label

"2019 冠状病毒疾病"@cn, "Onemocnění způsobené koronavirem 2019"@cz,

"Coronavirus-Krankheit 2019"@de,"Coronavirus disease 2019"@en,

"Enfermedad por coronavirus 2019"@es, "Maladie à coronavirus

2019"@fr, "Koronavírus okozta megbetegedés 2019"@hu, "Malattia da

Coronavirus 2019"@it, "2019 コロナウイルス病気"@jp, "2019

코로나바이러스 감염증"@ko, "Coronavirusziekte 2019"@nl, "Doença pelo

coronavírus de 2019"@pt-BR, "Doença por coronavírus 2019"@pt,

"Коронавирусная инфекция 2019 года"@ru;

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

F.2.3 JSON-LD

Multiple Tags without Labels

[

{

"@id" : "https:^//obtima.org/export/1939501217",

"@type" : ["https:^//obtima.org/export/Export"],

^^...

"https:^//obtima.org/export/contains" : [{

"@id" : "https:^//obtima.org/export/81075958-164"

}]

},

^^...

{

"@id" : "https:^//obtima.org/export/81075958-164",

"@type" : ["https:^//rdf.cdisc.org/odm#Study"],

"https:^//rdf.cdisc.org/odm#acronym" : [{ "@value" : "NUM CODEX" }

],↪→

"https:^//rdf.cdisc.org/odm#name" : [{ "@value" : "NUM CODEX" }],

164

F.2 RDF

^^...

"https:^//rdf.cdisc.org/odm#tags" : [{

"@list" : [{ "@id" : "https:^//obtima.org/export/83834-1070" },

{ "@id" : "https:^//obtima.org/export/83834-1071" },

{ "@id" : "https:^//obtima.org/export/83834-1072" },

{ "@id" : "https:^//obtima.org/export/83834-1073" },

{ "@id" : "https:^//obtima.org/export/83834-1079" }]

}]

},

^^...

{

"@id" : "https:^//obtima.org/export/83834-1070",

"@type" : ["https:^//rdf.cdisc.org/odm#Tag"],

"http:^//www.w3.org/2000/01/rdf-schema#seeAlso" : [{

"@id" : "http:^//terminology.hl7.org/CodeSystem/mdr/10084382"

}]

}, {

"@id" : "https:^//obtima.org/export/83834-1071",

"@type" : ["https:^//rdf.cdisc.org/odm#Tag"],

"http:^//www.w3.org/2000/01/rdf-schema#seeAlso" : [{

"@id" : "http:^//fhir.de/CodeSystem/bfarm/icd-10-gm/U07.1"

}]

}, {

"@id" : "https:^//obtima.org/export/83834-1072",

"@type" : ["https:^//rdf.cdisc.org/odm#Tag"],

"http:^//www.w3.org/2000/01/rdf-schema#seeAlso" : [{

"@id" : "http:^//loinc.org/95412-3"

}]

}, {

"@id" : "https:^//obtima.org/export/83834-1073",

"@type" : ["https:^//rdf.cdisc.org/odm#Tag"],

"http:^//www.w3.org/2000/01/rdf-schema#seeAlso" : [{

"@id" : "http:^//snomed.info/id/840539006"

}]

}, {

"@id" : "https:^//obtima.org/export/83834-1074",

"@type" : ["https:^//rdf.cdisc.org/odm#Tag"],

"http:^//www.w3.org/2000/01/rdf-schema#seeAlso" : [{

"@id" :

"http:^//ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#C171133"↪→

}]

},

^^...

165

F Data Export Excerpts

]

Single Tag with Multilingual Labels

{

"@id" : "https:^//obtima.org/export/83834-1070",

"@type" : ["https:^//rdf.cdisc.org/odm#Tag"],

"http:^//www.w3.org/2000/01/rdf-schema#label" : [

{ "@language" : "cn", "@value" : "2019 冠状病毒疾病" },

{ "@language" : "cz", "@value" : "Onemocnění způsobené koronavirem

2019" },↪→

{ "@language" : "de", "@value" : "Coronavirus-Krankheit 2019" },

{ "@language" : "en", "@value" : "Coronavirus disease 2019" },

{ "@language" : "es", "@value" : "Enfermedad por coronavirus 2019"

},↪→

{ "@language" : "fr", "@value" : "Maladie à coronavirus 2019" },

{ "@language" : "hu", "@value" : "Koronavírus okozta megbetegedés

2019" },↪→

{ "@language" : "it", "@value" : "Malattia da Coronavirus 2019" },

{ "@language" : "jp", "@value" : "2019 コロナウイルス病気" },

{ "@language" : "ko", "@value" : "2019 코로나바이러스 감염증" },

{ "@language" : "nl", "@value" : "Coronavirusziekte 2019" },

{ "@language" : "pt-br", "@value" : "Doença pelo coronavírus de

2019" },↪→

{ "@language" : "pt", "@value" : "Doença por coronavírus 2019" },

{ "@language" : "ru", "@value" : "Коронавирусная инфекция 2019 года"

}],↪→

"http:^//www.w3.org/2000/01/rdf-schema#seeAlso" : [{

"@id" : "http:^//terminology.hl7.org/CodeSystem/mdr/10084382"

}]

}

F.2.4 N-Triples

Multiple Tags without Labels

<https:^//obtima.org/export/1939501217>

<http:^//www.w3.org/1999/02/22-rdf-syntax-ns#type>

<https:^//obtima.org/export/Export> .

↪→

↪→

<https:^//obtima.org/export/1939501217>

<https:^//obtima.org/export/contains>

<https:^//obtima.org/export/81075958-164> .

↪→

↪→

166

F.2 RDF

^^...

<https:^//obtima.org/export/81075958-164>

<http:^//www.w3.org/1999/02/22-rdf-syntax-ns#type>

<https:^//rdf.cdisc.org/odm#Study> .

↪→

↪→

<https:^//obtima.org/export/81075958-164>

<https:^//rdf.cdisc.org/odm#acronym> "NUM CODEX" .↪→

<https:^//obtima.org/export/81075958-164>

<https:^//rdf.cdisc.org/odm#name> "NUM CODEX" .↪→

^^...

<https:^//obtima.org/export/81075958-164>

<https:^//rdf.cdisc.org/odm#tags> _:node1 .↪→

^^...

_:node1 <http:^//www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http:^//www.w3.org/1999/02/22-rdf-syntax-ns#List> .↪→

_:node1 <http:^//www.w3.org/1999/02/22-rdf-syntax-ns#first>

<https:^//obtima.org/export/83834-1070> .↪→

_:node1 <http:^//www.w3.org/1999/02/22-rdf-syntax-ns#rest> _:node2 .

_:node2 <http:^//www.w3.org/1999/02/22-rdf-syntax-ns#first>

<https:^//obtima.org/export/83834-1071> .↪→

_:node2 <http:^//www.w3.org/1999/02/22-rdf-syntax-ns#rest> _:node3 .

_:node3 <http:^//www.w3.org/1999/02/22-rdf-syntax-ns#first>

<https:^//obtima.org/export/83834-1072> .↪→

_:node3 <http:^//www.w3.org/1999/02/22-rdf-syntax-ns#rest> _:node4 .

_:node4 <http:^//www.w3.org/1999/02/22-rdf-syntax-ns#first>

<https:^//obtima.org/export/83834-1073> .↪→

_:node4 <http:^//www.w3.org/1999/02/22-rdf-syntax-ns#rest> _:node5 .

_:node5 <http:^//www.w3.org/1999/02/22-rdf-syntax-ns#first>

<https:^//obtima.org/export/83834-1074> .↪→

_:node5 <http:^//www.w3.org/1999/02/22-rdf-syntax-ns#rest>

<http:^//www.w3.org/1999/02/22-rdf-syntax-ns#nil> .↪→

^^...

<https:^//obtima.org/export/83834-1070>

<http:^//www.w3.org/1999/02/22-rdf-syntax-ns#type>

<https:^//rdf.cdisc.org/odm#Tag> .

↪→

↪→

<https:^//obtima.org/export/83834-1070>

<http:^//www.w3.org/2000/01/rdf-schema#seeAlso>

<http:^//terminology.hl7.org/CodeSystem/mdr/10084382> .

↪→

↪→

<https:^//obtima.org/export/83834-1071>

<http:^//www.w3.org/1999/02/22-rdf-syntax-ns#type>

<https:^//rdf.cdisc.org/odm#Tag> .

↪→

↪→

<https:^//obtima.org/export/83834-1071>

<http:^//www.w3.org/2000/01/rdf-schema#seeAlso>

<http:^//fhir.de/CodeSystem/bfarm/icd-10-gm/U07.1> .

↪→

↪→

167

F Data Export Excerpts

<https:^//obtima.org/export/83834-1072>

<http:^//www.w3.org/1999/02/22-rdf-syntax-ns#type>

<https:^//rdf.cdisc.org/odm#Tag> .

↪→

↪→

<https:^//obtima.org/export/83834-1072>

<http:^//www.w3.org/2000/01/rdf-schema#seeAlso>

<http:^//loinc.org/95412-3> .

↪→

↪→

<https:^//obtima.org/export/83834-1073>

<http:^//www.w3.org/1999/02/22-rdf-syntax-ns#type>

<https:^//rdf.cdisc.org/odm#Tag> .

↪→

↪→

<https:^//obtima.org/export/83834-1073>

<http:^//www.w3.org/2000/01/rdf-schema#seeAlso>

<http:^//snomed.info/id/840539006> .

↪→

↪→

<https:^//obtima.org/export/83834-1074>

<http:^//www.w3.org/1999/02/22-rdf-syntax-ns#type>

<https:^//rdf.cdisc.org/odm#Tag> .

↪→

↪→

<https:^//obtima.org/export/83834-1074>

<http:^//www.w3.org/2000/01/rdf-schema#seeAlso>

<http:^//ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#C171133> .

↪→

↪→

^^...

Single Tag with Multilingual Labels

<https:^//obtima.org/export/83834-1070>

<http:^//www.w3.org/1999/02/22-rdf-syntax-ns#type>

<https:^//rdf.cdisc.org/odm#Tag> .

↪→

↪→

<https:^//obtima.org/export/83834-1070>

<http:^//www.w3.org/2000/01/rdf-schema#seeAlso>

<http:^//terminology.hl7.org/CodeSystem/mdr/10084382> .

↪→

↪→

<https:^//obtima.org/export/83834-1070>

<http:^//www.w3.org/2000/01/rdf-schema#label> "2019 冠状病毒疾病"@cn .↪→

<https:^//obtima.org/export/83834-1070>

<http:^//www.w3.org/2000/01/rdf-schema#label> "Onemocnění způsobené

koronavirem 2019"@cz .

↪→

↪→

<https:^//obtima.org/export/83834-1070>

<http:^//www.w3.org/2000/01/rdf-schema#label> "Coronavirus-Krankheit

2019"@de .

↪→

↪→

<https:^//obtima.org/export/83834-1070>

<http:^//www.w3.org/2000/01/rdf-schema#label> "Coronavirus disease

2019"@en .

↪→

↪→

<https:^//obtima.org/export/83834-1070>

<http:^//www.w3.org/2000/01/rdf-schema#label> "Enfermedad por

coronavirus 2019"@es .

↪→

↪→

168

F.3 FHIR

<https:^//obtima.org/export/83834-1070>

<http:^//www.w3.org/2000/01/rdf-schema#label> "Maladie à coronavirus

2019"@fr .

↪→

↪→

<https:^//obtima.org/export/83834-1070>

<http:^//www.w3.org/2000/01/rdf-schema#label> "Koronavírus okozta

megbetegedés 2019"@hu .

↪→

↪→

<https:^//obtima.org/export/83834-1070>

<http:^//www.w3.org/2000/01/rdf-schema#label> "Malattia da

Coronavirus 2019"@it .

↪→

↪→

<https:^//obtima.org/export/83834-1070>

<http:^//www.w3.org/2000/01/rdf-schema#label> "2019

コロナウイルス病気"@jp .

↪→

↪→

<https:^//obtima.org/export/83834-1070>

<http:^//www.w3.org/2000/01/rdf-schema#label> "2019 코로나바이러스

감염증"@ko .

↪→

↪→

<https:^//obtima.org/export/83834-1070>

<http:^//www.w3.org/2000/01/rdf-schema#label> "Coronavirusziekte

2019"@nl .

↪→

↪→

<https:^//obtima.org/export/83834-1070>

<http:^//www.w3.org/2000/01/rdf-schema#label> "Doença pelo

coronavírus de 2019"@pt-BR .

↪→

↪→

<https:^//obtima.org/export/83834-1070>

<http:^//www.w3.org/2000/01/rdf-schema#label> "Doença por coronavírus

2019"@pt .

↪→

↪→

<https:^//obtima.org/export/83834-1070>

<http:^//www.w3.org/2000/01/rdf-schema#label> "Коронавирусная

инфекция 2019 года"@ru .

↪→

↪→

F.3 FHIR

F.3.1 JSON

Multiple Tags without Labels

{

"resourceType": "Bundle",

"id": "d62042b2c2b6cabc",

"type": "transaction",

"entry": [{

"fullUrl": "0d15be86abd7eea5",

"resource": {

169

F Data Export Excerpts

"resourceType": "CarePlan",

"id": "0d15be86abd7eea5",

"identifier": [{

"system": "https:^//obtima.org/fhir/NamingSystem/acronym",

"value": "NUM CODEX"

}, {

"system": "https:^//obtima.org/fhir/NamingSystem/name",

"value": "NUM CODEX"

}],

^^...

"addresses": [{ "reference": "Condition/f3ebecd70f219cd9" },

{ "reference": "Condition/3b7d56d64176a370" },

{ "reference": "Condition/af52d0d05763d100" },

{ "reference": "Condition/00f3a1c86a3dc1a9" },

{ "reference": "Condition/2077111e09bb927a" }],

^^...

}

}, {

^^...

}, {

"fullUrl": "f3ebecd70f219cd9",

"resource": {

"resourceType": "Condition",

"id": "f3ebecd70f219cd9",

"code": {

"coding": [{

"system": "http:^//terminology.hl7.org/CodeSystem/mdr",

"code": "10084382"

}]

}

}

}, {

"fullUrl": "3b7d56d64176a370",

"resource": {

"resourceType": "Condition",

"id": "3b7d56d64176a370",

"code": {

"coding": [{

"system": "http:^//fhir.de/CodeSystem/bfarm/icd-10-gm",

"code": "U07.1"

}]

}

}

170

F.3 FHIR

}, {

"fullUrl": "af52d0d05763d100",

"resource": {

"resourceType": "Condition",

"id": "af52d0d05763d100",

"code": {

"coding": [{

"system": "http:^//loinc.org",

"code": "95412-3"

}]

}

}

}, {

"fullUrl": "00f3a1c86a3dc1a9",

"resource": {

"resourceType": "Condition",

"id": "00f3a1c86a3dc1a9",

"code": {

"coding": [{

"system": "http:^//snomed.info/id",

"code": "840539006"

}]

}

}

}, {

"fullUrl": "2077111e09bb927a",

"resource": {

"resourceType": "Condition",

"id": "2077111e09bb927a",

"code": {

"coding": [{

"system": "http:^//ncithesaurus-stage.nci.nih.gov",

"code": "C171133"

}]

}

}

}, {

^^...

}],

^^...

}

171

F Data Export Excerpts

Single Tag with Multilingual Labels

{

"fullUrl": "f3ebecd70f219cd9",

"resource": {

"resourceType": "Condition",

"id": "f3ebecd70f219cd9",

"code": {

"coding": [{

"system": "http:^//terminology.hl7.org/CodeSystem/mdr",

"code": "10084382",

"display": "Coronavirus-Krankheit 2019",

"_display": {

"extension": [{

"url":

"http:^//hl7.org/fhir/StructureDefinition/translation",↪→

"extension": [{ "url": "lang", "valueCode": "cn" }, {

"url": "content",

"valueString": "2019 冠状病毒疾病"

}]

}, {

"url":

"http:^//hl7.org/fhir/StructureDefinition/translation",↪→

"extension": [{ "url": "lang", "valueCode": "cz" }, {

"url": "content",

"valueString": "Onemocnění způsobené koronavirem 2019"

}]

}, {

"url":

"http:^//hl7.org/fhir/StructureDefinition/translation",↪→

"extension": [{ "url": "lang", "valueCode": "de" }, {

"url": "content",

"valueString": "Coronavirus-Krankheit 2019"

}]

}, {

"url":

"http:^//hl7.org/fhir/StructureDefinition/translation",↪→

"extension": [{ "url": "lang", "valueCode": "en" }, {

"url": "content",

"valueString": "Coronavirus disease 2019"

}]

}, {

172

F.3 FHIR

"url":

"http:^//hl7.org/fhir/StructureDefinition/translation",↪→

"extension": [{ "url": "lang", "valueCode": "es" }, {

"url": "content",

"valueString": "Enfermedad por coronavirus 2019"

}]

}, {

"url":

"http:^//hl7.org/fhir/StructureDefinition/translation",↪→

"extension": [{ "url": "lang", "valueCode": "fr" }, {

"url": "content",

"valueString": "Maladie à coronavirus 2019"

}]

}, {

"url":

"http:^//hl7.org/fhir/StructureDefinition/translation",↪→

"extension": [{ "url": "lang", "valueCode": "hu" }, {

"url": "content",

"valueString": "Koronavírus okozta megbetegedés 2019"

}]

}, {

"url":

"http:^//hl7.org/fhir/StructureDefinition/translation",↪→

"extension": [{ "url": "lang", "valueCode": "it" }, {

"url": "content",

"valueString": "Malattia da Coronavirus 2019"

}]

}, {

"url":

"http:^//hl7.org/fhir/StructureDefinition/translation",↪→

"extension": [{ "url": "lang", "valueCode": "jp" }, {

"url": "content",

"valueString": "2019 コロナウイルス病気"

}]

}, {

"url":

"http:^//hl7.org/fhir/StructureDefinition/translation",↪→

"extension": [{ "url": "lang", "valueCode": "ko" }, {

"url": "content",

"valueString": "2019 코로나바이러스 감염증"

}]

}, {

173

F Data Export Excerpts

"url":

"http:^//hl7.org/fhir/StructureDefinition/translation",↪→

"extension": [{ "url": "lang", "valueCode": "nl"

}, {

"url": "content",

"valueString": "Coronavirusziekte 2019"

}]

}, {

"url":

"http:^//hl7.org/fhir/StructureDefinition/translation",↪→

"extension": [{ "url": "lang", "valueCode": "pt-BR" }, {

"url": "content",

"valueString": "Doença pelo coronavírus de 2019"

}]

}, {

"url":

"http:^//hl7.org/fhir/StructureDefinition/translation",↪→

"extension": [{ "url": "lang", "valueCode": "pt" }, {

"url": "content",

"valueString": "Doença por coronavírus 2019"

}]

}, {

"url":

"http:^//hl7.org/fhir/StructureDefinition/translation",↪→

"extension": [{ "url": "lang", "valueCode": "ru" }, {

"url": "content",

"valueString": "Коронавирусная инфекция 2019 года"

}]

}]

}

}]

}

}

}

F.3.2 XML

Multiple Tags without Labels

<Bundle xmlns="http:^//hl7.org/fhir">

<id value="d62042b2c2b6cabc"/>

<type value="transaction"/>

174

F.3 FHIR

<entry>

<fullUrl value="0d15be86abd7eea5"/>

<resource>

<CarePlan xmlns="http:^//hl7.org/fhir">

<id value="0d15be86abd7eea5"/>

<identifier>

<system

value="https:^//obtima.org/fhir/NamingSystem/acronym"/>↪→

<value value="NUM CODEX"/>

^</identifier>

<identifier>

<system value="https:^//obtima.org/fhir/NamingSystem/name"/>

<value value="NUM CODEX"/>

^</identifier>

^^...

<addresses><reference

value="Condition/f3ebecd70f219cd9"/>^</addresses>↪→

<addresses><reference

value="Condition/3b7d56d64176a370"/>^</addresses>↪→

<addresses><reference

value="Condition/af52d0d05763d100"/>^</addresses>↪→

<addresses><reference

value="Condition/00f3a1c86a3dc1a9"/>^</addresses>↪→

<addresses><reference

value="Condition/2077111e09bb927a"/>^</addresses>↪→

^^...

^</CarePlan>

^</resource>

^</entry>

^^...

<entry>

<fullUrl value="f3ebecd70f219cd9"/>

<resource>

<Condition xmlns="http:^//hl7.org/fhir">

<id value="f3ebecd70f219cd9"/>

<code>

<coding>

<system

value="http:^//terminology.hl7.org/CodeSystem/mdr"/>↪→

<code value="10084382"/>

^</coding>

^</code>

^</Condition>

175

F Data Export Excerpts

^</resource>

^</entry>

<entry>

<fullUrl value="3b7d56d64176a370"/>

<resource>

<Condition xmlns="http:^//hl7.org/fhir">

<id value="3b7d56d64176a370"/>

<code>

<coding>

<system

value="http:^//fhir.de/CodeSystem/bfarm/icd-10-gm"/>↪→

<code value="U07.1"/>

^</coding>

^</code>

^</Condition>

^</resource>

^</entry>

<entry>

<fullUrl value="af52d0d05763d100"/>

<resource>

<Condition xmlns="http:^//hl7.org/fhir">

<id value="af52d0d05763d100"/>

<code>

<coding>

<system value="http:^//loinc.org"/>

<code value="95412-3"/>

^</coding>

^</code>

^</Condition>

^</resource>

^</entry>

<entry>

<fullUrl value="00f3a1c86a3dc1a9"/>

<resource>

<Condition xmlns="http:^//hl7.org/fhir">

<id value="00f3a1c86a3dc1a9"/>

<code>

<coding>

<system value="http:^//snomed.info/id"/>

<code value="840539006"/>

^</coding>

^</code>

^</Condition>

176

F.3 FHIR

^</resource>

^</entry>

<entry>

<fullUrl value="2077111e09bb927a"/>

<resource>

<Condition xmlns="http:^//hl7.org/fhir">

<id value="2077111e09bb927a"/>

<code>

<coding>

<system value="http:^//ncithesaurus-stage.nci.nih.gov"/>

<code value="C171133"/>

^</coding>

^</code>

^</Condition>

^</resource>

^</entry>

^^...

^</Bundle>

Single Tag with Multilingual Labels

<entry>

<fullUrl value="f3ebecd70f219cd9"/>

<resource>

<Condition xmlns="http:^//hl7.org/fhir">

<id value="f3ebecd70f219cd9"/>

<code>

<coding>

<system value="http:^//terminology.hl7.org/CodeSystem/mdr"/>

<code value="10084382"/>

<display value="Coronavirus-Krankheit 2019">

<extension

url="http:^//hl7.org/fhir/StructureDefinition/translation">↪→

<extension url="lang"><valueCode value="cn"/>/extension>

<extension url="content"><valueString value="2019

冠状病毒疾病"/>^</extension>↪→

^</extension>

<extension

url="http:^//hl7.org/fhir/StructureDefinition/translation">↪→

<extension url="lang"><valueCode

value="cz"/>^</extension>↪→

<extension url="content"><valueString value="Onemocnění

způsobené koronavirem 2019"/>^</extension>↪→

177

F Data Export Excerpts

^</extension>

<extension

url="http:^//hl7.org/fhir/StructureDefinition/translation">↪→

<extension url="lang"><valueCode

value="de"/>^</extension>↪→

<extension url="content"><valueString

value="Coronavirus-Krankheit 2019"/>^</extension>↪→

^</extension>

<extension

url="http:^//hl7.org/fhir/StructureDefinition/translation">↪→

<extension url="lang"><valueCode

value="en"/>^</extension>↪→

<extension url="content"><valueString value="Coronavirus

disease 2019"/>^</extension>↪→

^</extension>

<extension

url="http:^//hl7.org/fhir/StructureDefinition/translation">↪→

<extension url="lang"><valueCode

value="es"/>^</extension>↪→

<extension url="content"><valueString value="Enfermedad

por coronavirus 2019"/>^</extension>↪→

^</extension>

<extension

url="http:^//hl7.org/fhir/StructureDefinition/translation">↪→

<extension url="lang"><valueCode

value="fr"/>^</extension>↪→

<extension url="content"><valueString value="Maladie à

coronavirus 2019"/>^</extension>↪→

^</extension>

<extension

url="http:^//hl7.org/fhir/StructureDefinition/translation">↪→

<extension url="lang"><valueCode

value="hu"/>^</extension>↪→

<extension url="content"><valueString value="Koronavírus

okozta megbetegedés 2019"/>^</extension>↪→

^</extension>

<extension

url="http:^//hl7.org/fhir/StructureDefinition/translation">↪→

<extension url="lang"><valueCode

value="it"/>^</extension>↪→

<extension url="content"><valueString value="Malattia da

Coronavirus 2019"/>^</extension>↪→

^</extension>

178

F.3 FHIR

<extension

url="http:^//hl7.org/fhir/StructureDefinition/translation">↪→

<extension url="lang"><valueCode

value="jp"/>^</extension>↪→

<extension url="content"><valueString value="2019

コロナウイルス病気"/>^</extension>↪→

^</extension>

<extension

url="http:^//hl7.org/fhir/StructureDefinition/translation">↪→

<extension url="lang"><valueCode

value="ko"/>^</extension>↪→

<extension url="content"><valueString value="2019

코로나바이러스 감염증"/>^</extension>↪→

^</extension>

<extension

url="http:^//hl7.org/fhir/StructureDefinition/translation">↪→

<extension url="lang"><valueCode

value="nl"/>^</extension>↪→

<extension url="content"><valueString

value="Coronavirusziekte 2019"/>^</extension>↪→

^</extension>

<extension

url="http:^//hl7.org/fhir/StructureDefinition/translation">↪→

<extension url="lang"><valueCode

value="pt-BR"/>^</extension>↪→

<extension url="content"><valueString value="Doença pelo

coronavírus de 2019"/>^</extension>↪→

^</extension>

<extension

url="http:^//hl7.org/fhir/StructureDefinition/translation">↪→

<extension url="lang"><valueCode

value="pt"/>^</extension>↪→

<extension url="content"><valueString value="Doença por

coronavírus 2019"/>^</extension>↪→

^</extension>

<extension

url="http:^//hl7.org/fhir/StructureDefinition/translation">↪→

<extension url="lang"><valueCode

value="ru"/>^</extension>↪→

<extension url="content"><valueString

value="Коронавирусная инфекция 2019

года"/>^</extension>

↪→

↪→

^</extension>

179

F Data Export Excerpts

^</display>

^</coding>

^</code>

^</Condition>

^</resource>

^</entry>

F.3.3 RDF

Multiple Tags without Labels

@prefix fhir: <http:^//hl7.org/fhir/> .

@prefix rdf: <http:^//www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http:^//www.w3.org/2000/01/rdf-schema#> .

@prefix xsd: <http:^//www.w3.org/2001/XMLSchema#> .

fhir:d62042b2c2b6cabc a fhir:Bundle ;

fhir:nodeRole fhir:treeRoot ;

fhir:Resource.id _:node1 ;

fhir:Bundle.type _:node2 ;

^^...

fhir:Bundle.entry _:node3, _:node4, _:node5, _:node6, _:node7,

_:node8, ^... .↪→

_:node1 fhir:value "d62042b2c2b6cabc" .

_:node2 fhir:value "transaction" .

^^...

_:node3 fhir:Bundle.entry.fullUrl _:node9 ;

^^...

fhir:Bundle.entry.resource

<http:^//hl7.org/fhir/CarePlan/0d15be86abd7eea5> .↪→

_:node9 fhir:value "0d15be86abd7eea5"^^xsd:anyURI .

<http:^//hl7.org/fhir/CarePlan/0d15be86abd7eea5> a fhir:CarePlan ;

fhir:Resource.id _:node10 ;

^^...

fhir:CarePlan.identifier _:node11, _:node12 ;

fhir:CarePlan.addresses _:node13, _:node14, _:node15, _:node16,

_:node17.↪→

_:node11 fhir:Identifier.system _:node18 ;

fhir:Identifier.value _:node19.

_:node18 fhir:value

"https:^//obtima.org/fhir/NamingSystem/name"^^xsd:anyURI .↪→

_:node19 fhir:value "NUM CODEX" .

180

F.3 FHIR

_:node12 fhir:Identifier.system _:node20 ;

fhir:Identifier.value _:node21 .

_:node20 fhir:value

"https:^//obtima.org/fhir/NamingSystem/acronym"^^xsd:anyURI .↪→

_:node21 fhir:value "NUM CODEX" .

^^...

_:node13 fhir:Reference.reference _:node22 .

_:node22 fhir:value "Condition/f3ebecd70f219cd9" .

_:node4 fhir:Bundle.entry.fullUrl _:node23 ;

^^...

fhir:Bundle.entry.resource

<http:^//hl7.org/fhir/Condition/f3ebecd70f219cd9> .↪→

_:node23 fhir:value "f3ebecd70f219cd9"^^xsd:anyURI .

<http:^//hl7.org/fhir/Condition/f3ebecd70f219cd9> a fhir:Condition ;

fhir:Resource.id _:node24 ;

fhir:Condition.code _:node25 .

_:node24 fhir:value "f3ebecd70f219cd9" .

_:node25 fhir:CodeableConcept.coding _:node26 .

_:node26 fhir:Coding.code _:node27 ;

fhir:Coding.system _:node28 .

_:node28 fhir:value

"http:^//terminology.hl7.org/CodeSystem/mdr"^^xsd:anyURI .↪→

_:node27 fhir:value "10084382" .

^^...

_:node14 fhir:Reference.reference _:node29 .

_:node29 fhir:value "Condition/3b7d56d64176a370" .

_:node5 fhir:Bundle.entry.fullUrl _:node30 ;

^^...

fhir:Bundle.entry.resource

<http:^//hl7.org/fhir/Condition/3b7d56d64176a370> .↪→

_:node30 fhir:value "3b7d56d64176a370"^^xsd:anyURI .

<http:^//hl7.org/fhir/Condition/3b7d56d64176a370> a fhir:Condition ;

fhir:Resource.id _:node31 ;

fhir:Condition.code _:node32 .

_:node31 fhir:value "3b7d56d64176a370" .

_:node32 fhir:CodeableConcept.coding _:node33 .

_:node33 fhir:Coding.code _:node34 ;

fhir:Coding.system _:node35 .

_:node35 fhir:value

"http:^//fhir.de/CodeSystem/bfarm/icd-10-gm"^^xsd:anyURI .↪→

_:node34 fhir:value "U07.1" .

^^...

_:node15 fhir:Reference.reference _:node36 .

181

F Data Export Excerpts

_:node36 fhir:value "Condition/af52d0d05763d100" .

_:node6 fhir:Bundle.entry.fullUrl _:node37 ;

^^...

fhir:Bundle.entry.resource

<http:^//hl7.org/fhir/Condition/af52d0d05763d100> .↪→

_:node37 fhir:value "af52d0d05763d100"^^xsd:anyURI .

<http:^//hl7.org/fhir/Condition/af52d0d05763d100> a fhir:Condition ;

fhir:Resource.id _:node38 ;

fhir:Condition.code _:node39 .

_:node38 fhir:value "af52d0d05763d100" .

_:node39 fhir:CodeableConcept.coding _:node40 .

_:node40 fhir:Coding.code _:node41 ;

fhir:Coding.system _:node42.

_:node42 fhir:value "http:^//loinc.org"^^xsd:anyURI .

_:node41 fhir:value "95412-3" .

^^...

_:node16 fhir:Reference.reference _:node43 .

_:node43 fhir:value "Condition/00f3a1c86a3dc1a9" .

_:node7 fhir:Bundle.entry.fullUrl _:node44 ;

^^...

fhir:Bundle.entry.resource

<http:^//hl7.org/fhir/Condition/00f3a1c86a3dc1a9> .↪→

_:node44 fhir:value "00f3a1c86a3dc1a9"^^xsd:anyURI .

<http:^//hl7.org/fhir/Condition/00f3a1c86a3dc1a9> a fhir:Condition ;

fhir:Resource.id _:node45 ;

fhir:Condition.code _:node46 .

_:node45 fhir:value "00f3a1c86a3dc1a9" .

_:node46 fhir:CodeableConcept.coding _:node47 .

_:node47 fhir:Coding.code _:node48 ;

fhir:Coding.system _:node49 .

_:node49 fhir:value "http:^//snomed.info/id"^^xsd:anyURI .

_:node48 fhir:value "840539006" .

^^...

_:node17 fhir:Reference.reference _:node50 .

_:node50 fhir:value "Condition/2077111e09bb927a" .

_:node8 fhir:Bundle.entry.fullUrl _:node51 ;

^^...

fhir:Bundle.entry.resource

<http:^//hl7.org/fhir/Condition/2077111e09bb927a> .↪→

_:node51 fhir:value "2077111e09bb927a"^^xsd:anyURI .

<http:^//hl7.org/fhir/Condition/2077111e09bb927a> a fhir:Condition ;

fhir:Resource.id _:node52 ;

fhir:Condition.code _:node53 .

182

F.3 FHIR

_:node52 fhir:value "2077111e09bb927a" .

_:node53 fhir:CodeableConcept.coding _:node54 .

_:node54 fhir:Coding.code _:node55 ;

fhir:Coding.system _:node56 .

_:node56 fhir:value

"http:^//ncithesaurus-stage.nci.nih.gov"^^xsd:anyURI .↪→

_:node55 fhir:value "C171133" .

Single Tag with Multilingual Labels

_:node1 fhir:Reference.reference _:node2 .

_:node2 fhir:value "Condition/f3ebecd70f219cd9" .

_:node3 fhir:Bundle.entry.fullUrl _:node4 ;

^^...

fhir:Bundle.entry.resource

<http:^//hl7.org/fhir/Condition/f3ebecd70f219cd9> .↪→

_:node4 fhir:value "f3ebecd70f219cd9"^^xsd:anyURI .

<http:^//hl7.org/fhir/Condition/f3ebecd70f219cd9> a fhir:Condition ;

fhir:Resource.id _:node5 ;

fhir:Condition.code _:node6 .

_:node5 fhir:value "f3ebecd70f219cd9" .

_:node6 fhir:CodeableConcept.coding _:node7 .

_:node7 fhir:Coding.code _:node8 ;

fhir:Coding.system _:node9 ;

fhir:Coding.display _:node10 ;

_:node9 fhir:value

"http:^//terminology.hl7.org/CodeSystem/mdr"^^xsd:anyURI .↪→

_:node8 fhir:value "10084382" .

_:node10 fhir:Element.extension _:node11, _:node12, _:node13,

_:node14, _:node15, _:node16, _:node17, _:node17, _:node18,

_:node19, _:node20, _:node21, _:node22, _:node23 ;

↪→

↪→

fhir:value "Coronavirus-Krankheit 2019" .

_:node11 fhir:Element.extension _:node24, _:node25 ;

fhir:Extension.url _:node26 .

_:node24 fhir:Extension.url _:node27 ;

fhir:Extension.valueString _:node28 .

_:node27 fhir:value "content"^^xsd:anyURI .

_:node28 fhir:value "Doença por coronavírus 2019" .

_:node25 fhir:Extension.url _:node29 ;

fhir:Extension.valueCode _:node30 .

_:node29 fhir:value "lang"^^xsd:anyURI .

_:node30 fhir:value "pt" .

183

F Data Export Excerpts

_:node26 fhir:value

"http:^//hl7.org/fhir/StructureDefinition/translation"^^xsd:anyURI .↪→

_:node12 fhir:Element.extension _:node31, _:node32 ;

fhir:Extension.url _:node33 .

_:node31 fhir:Extension.url _:node34 ;

fhir:Extension.valueString _:node35 .

_:node34 fhir:value "content"^^xsd:anyURI .

_:node35 fhir:value "Коронавирусная инфекция 2019 года" .

_:node32 fhir:Extension.url _:node36 ;

fhir:Extension.valueCode _:node37 .

_:node36 fhir:value "lang"^^xsd:anyURI .

_:node37 fhir:value "ru" .

_:node33 fhir:value

"http:^//hl7.org/fhir/StructureDefinition/translation"^^xsd:anyURI .↪→

_:node13 fhir:Element.extension _:node38, _:node39 ;

fhir:Extension.url _:node40 .

_:node38 fhir:Extension.url _:node41 ;

fhir:Extension.valueString _:node42 .

_:node41 fhir:value "content"^^xsd:anyURI .

_:node42 fhir:value "Coronavirus-Krankheit 2019" .

_:node39 fhir:Extension.url _:node43 ;

fhir:Extension.valueCode _:node44 .

_:node43 fhir:value "lang"^^xsd:anyURI .

_:node44 fhir:value "de" .

_:node40 fhir:value

"http:^//hl7.org/fhir/StructureDefinition/translation"^^xsd:anyURI .↪→

_:node14 fhir:Element.extension _:node45, _:node46 ;

fhir:Extension.url _:node47 .

_:node45 fhir:Extension.url _:node48 ;

fhir:Extension.valueString _:node49 .

_:node48 fhir:value "content"^^xsd:anyURI .

_:node49 fhir:value "Malattia da Coronavirus 2019" .

_:node46 fhir:Extension.url _:node50 ;

fhir:Extension.valueCode _:node51 .

_:node50 fhir:value "lang"^^xsd:anyURI .

_:node51 fhir:value "it" .

_:node47 fhir:value

"http:^//hl7.org/fhir/StructureDefinition/translation"^^xsd:anyURI .↪→

_:node15 fhir:Element.extension _:node52, _:node53 ;

fhir:Extension.url _:node54 .

_:node52 fhir:Extension.url _:node55 ;

fhir:Extension.valueString _:node56 .

_:node55 fhir:value "content"^^xsd:anyURI .

184

F.3 FHIR

_:node56 fhir:value "Maladie à coronavirus 2019" .

_:node53 fhir:Extension.url _:node57 ;

fhir:Extension.valueCode _:node58 .

_:node57 fhir:value "lang"^^xsd:anyURI .

_:node58 fhir:value "fr" .

_:node54 fhir:value

"http:^//hl7.org/fhir/StructureDefinition/translation"^^xsd:anyURI .↪→

_:node16 fhir:Element.extension _:node59, _:node60 ;

fhir:Extension.url _:node61 .

_:node59 fhir:Extension.url _:node62 ;

fhir:Extension.valueString _:node63 .

_:node62 fhir:value "content"^^xsd:anyURI .

_:node63 fhir:value "Koronavírus okozta megbetegedés 2019" .

_:node60 fhir:Extension.url _:node64 ;

fhir:Extension.valueCode _:node65 .

_:node64 fhir:value "lang"^^xsd:anyURI .

_:node65 fhir:value "hu" .

_:node61 fhir:value

"http:^//hl7.org/fhir/StructureDefinition/translation"^^xsd:anyURI .↪→

_:node17 fhir:Element.extension _:node66, _:node67 ;

fhir:Extension.url _:node68 .

_:node66 fhir:Extension.url _:node69 ;

fhir:Extension.valueString _:node70 .

_:node69 fhir:value "content"^^xsd:anyURI .

_:node70 fhir:value "2019 冠状病毒疾病" .

_:node67 fhir:Extension.url _:node71 ;

fhir:Extension.valueCode _:node72 .

_:node71 fhir:value "lang"^^xsd:anyURI .

_:node72 fhir:value "cn" .

_:node68 fhir:value

"http:^//hl7.org/fhir/StructureDefinition/translation"^^xsd:anyURI .↪→

_:node17 fhir:Element.extension _:node73, _:node74 ;

fhir:Extension.url _:node75 .

_:node73 fhir:Extension.url _:node76 ;

fhir:Extension.valueString _:node77 .

_:node76 fhir:value "content"^^xsd:anyURI .

_:node77 fhir:value "Coronavirusziekte 2019" .

_:node74 fhir:Extension.url _:node78 ;

fhir:Extension.valueCode _:node79 .

_:node78 fhir:value "lang"^^xsd:anyURI .

_:node79 fhir:value "nl" .

_:node75 fhir:value

"http:^//hl7.org/fhir/StructureDefinition/translation"^^xsd:anyURI .↪→

185

F Data Export Excerpts

_:node18 fhir:Element.extension _:node80, _:node81 ;

fhir:Extension.url _:node82 .

_:node80 fhir:Extension.url _:node83 ;

fhir:Extension.valueString _:node84 .

_:node83 fhir:value "content"^^xsd:anyURI .

_:node84 fhir:value "2019 코로나바이러스 감염증" .

_:node81 fhir:Extension.url _:node85 ;

fhir:Extension.valueCode _:node86 .

_:node85 fhir:value "lang"^^xsd:anyURI .

_:node86 fhir:value "ko" .

_:node82 fhir:value

"http:^//hl7.org/fhir/StructureDefinition/translation"^^xsd:anyURI .↪→

_:node19 fhir:Element.extension _:node87, _:node88 ;

fhir:Extension.url _:node89 .

_:node87 fhir:Extension.url _:node90 ;

fhir:Extension.valueString _:node91 .

_:node90 fhir:value "content"^^xsd:anyURI .

_:node91 fhir:value "Enfermedad por coronavirus 2019" .

_:node88 fhir:Extension.url _:node92 ;

fhir:Extension.valueCode _:node93 .

_:node92 fhir:value "lang"^^xsd:anyURI .

_:node93 fhir:value "es" .

_:node89 fhir:value

"http:^//hl7.org/fhir/StructureDefinition/translation"^^xsd:anyURI .↪→

_:node20 fhir:Element.extension _:node94, _:node95 ;

fhir:Extension.url _:node96 .

_:node94 fhir:Extension.url _:node97 ;

fhir:Extension.valueString _:node98 .

_:node97 fhir:value "content"^^xsd:anyURI .

_:node98 fhir:value "Onemocnění způsobené koronavirem 2019" .

_:node95 fhir:Extension.url _:node99 ;

fhir:Extension.valueCode _:node100 .

_:node99 fhir:value "lang"^^xsd:anyURI .

_:node100 fhir:value "cz" .

_:node96 fhir:value

"http:^//hl7.org/fhir/StructureDefinition/translation"^^xsd:anyURI .↪→

_:node21 fhir:Element.extension _:node101, _:node102 ;

fhir:Extension.url _:node103 .

_:node101 fhir:Extension.url _:node104 ;

fhir:Extension.valueString _:node105 .

_:node104 fhir:value "content"^^xsd:anyURI .

_:node105 fhir:value "2019 コロナウイルス病気" .

_:node102 fhir:Extension.url _:node106 ;

186

F.3 FHIR

fhir:Extension.valueCode _:node107 .

_:node106 fhir:value "lang"^^xsd:anyURI .

_:node107 fhir:value "jp" .

_:node103 fhir:value

"http:^//hl7.org/fhir/StructureDefinition/translation"^^xsd:anyURI .↪→

_:node22 fhir:Element.extension _:node108, _:node109 ;

fhir:Extension.url _:node110 .

_:node108 fhir:Extension.url _:node111 ;

fhir:Extension.valueString _:node112 .

_:node111 fhir:value "content"^^xsd:anyURI .

_:node112 fhir:value "Coronavirus disease 2019" .

_:node109 fhir:Extension.url _:node113 ;

fhir:Extension.valueCode _:node114 .

_:node113 fhir:value "lang"^^xsd:anyURI .

_:node114 fhir:value "en" .

_:node110 fhir:value

"http:^//hl7.org/fhir/StructureDefinition/translation"^^xsd:anyURI .↪→

_:node23 fhir:Element.extension _:node115, _:node116 ;

fhir:Extension.url _:node117 .

_:node115 fhir:Extension.url _:node118 ;

fhir:Extension.valueString _:node119 .

_:node118 fhir:value "content"^^xsd:anyURI .

_:node119 fhir:value "Doença pelo coronavírus de 2019" .

_:node116 fhir:Extension.url _:node120 ;

fhir:Extension.valueCode _:node121 .

_:node120 fhir:value "lang"^^xsd:anyURI .

_:node121 fhir:value "pt-BR" .

_:node117 fhir:value

"http:^//hl7.org/fhir/StructureDefinition/translation"^^xsd:anyURI .↪→

187

Appendix G

Acronyms

ACGTAdvancing Clinico Genomic Trials on Cancer

APIApplication Programming Interface

ATCAnatomical Therapeutic Chemical Classification System

CDISC Clinical Data Interchange Standards Consortium

CIACOVID-19 Interoperability Alliance

CODEX COVID-19 Data Exchange Platform

COVID-19 Coronavirus Disease 2019

CRF Case Report Form

CST Clinical Standards Toolkit

CSV Comma Separated Value

CTCAE Common Terminology Criteria for Adverse Events

CTMS Clinical Trial Management System

DAkkS Deutsche Akkreditierungsstelle (German Accreditation Body)

DAO Data Access Object

DiGADigitale Gesundheitsanwendung (Digital Health Application)

DIN Deutsches Institut für Normung (German Institute for Standardization)

DSV Comma Separated Value

DVG Digitale-Versorgung-Gesetz (Digital Healthcare Act)

EDC Electronic Data Capture

EHR Electronic Health Record

ERM Entity Relationship Model

EU European Union

FHIR Fast Healthcare Interoperability Resources

GCPGood Clinical Practice

GECCO German Corona Consensus Dataset

GO Gene Ontology

189

G Acronyms

GUI Graphical User Interface

HCLS Healthcare and Life Sciences

HDOT Health Data Ontology Trunk

HIMSS Healthcare Information and Management Systems Society

HIS Hospital Information System

HIV Human Immunodeficiency Virus

HPO Human Phenotype Ontology

HTMLHypertext Markup Language

HTTPHypertext Transfer Protocol

ICD International Statistical Classification of Diseases and Related Health

Problems

ICD-10-GM ICD, 10th Revision, German Modification

IDE Integrated Development Environment

IG Interest Group

IRI Internationalized Resource Identifier

ISO International Organization for Standardization

JAXB Jakarta XML Binding, formerly Java Architecture for XML Binding

JPA Jakarta (previously, Java) Persistence API

JSF JavaServer Faces

JSON JavaScript Object Notation

JSON-LD JSON for Linked Data

LOINC Logical Observation Identifiers Names and Codes

LOV Linked Open Vocabularies

MDRMetadata Registry

MedDRAMedical Dictionary for Regulatory Activities

MIOMedizinisches Informationsobjekt (Medical Information Object)

MOMaster Ontology

MOnSTERMulti-Ontology Semantic Trial Enrichment Resource

MVCModel-View-Controller

NCIt National Cancer Institute Thesaurus

190

NUM Netzwerk Universitätsmedizin (Network University Medicine)

OBO Open Biological and Biomedical Ontologies

ObTiMAOntology-Based Trial Management Application

ODM Operational Data Model

OLS Ontology Lookup Service

OPS Operationen- und Prozedurenschlüssel (Operation and Procedure Classification

System)

ORDO Orphanet Rare Disease Ontology

ORM Object Relational Mapping

OWLWeb Ontology Language

p-medicine From Data Sharing and Integration via VPH Models to Personalized

Medicine

PHR Personal Health Record

PI Principal Investigator

RDBMS Relational Database Management System

RDF Resource Description Framework

RDFS RDF Schema

REDCap Research Electronic Data Capture

REST Representational State Transfer

SE Study Event

SKOS Simple Knowledge Organization System

SNOMED CT Systematized Nomenclature of Medicine Clinical Terms

SQL Structured Query Language

TURTLE Terse RDF Triple Language

UI User Interface

UMLUnified Modeling Language

UMLS Unified Medical Language System

URI Uniform Resource Identifier

W3CWorld Wide Web Consortium

191

G Acronyms

XML Extensible Markup Language

XSD XML Schema Definition

192

Bibliography

Ambler, S. (2013). Mapping Objects to Relational Databases: O/R Mapping In

Detail. http://www.agiledata.org/essays/mappingObjects.html (Last

Access: 03/31/2022)

Anderson, J., and Wischgoll, T. (2020). Visualization of Search Results of Large

Document Sets. Electronic Imaging, 2020 (1), 388-1–388-7.

Andrews, J., Richesson, R., and Krischer, J. (2007). Variation of SNOMED CT Coding

of Clinical Research Concepts Among Coding Experts. Journal of the American

Medical Informatics Association, 14 (4), 497–506.

Apache Software Foundation (ASF). (2014). Apache License, Version 2.0. https:

//www.apache.org/licenses/LICENSE-2.0 (Last Access: 03/31/2022)

Apache Software Foundation (ASF). (2022a). Lucene Core. https://lucene.

apache.org/core (Last Access: 03/31/2022)

Apache Software Foundation (ASF). (2022b). Tomcat. https://tomcat.apache.

org (Last Access: 03/31/2022)

Apple Incorporated. (2021). ResearchKit and CareKit. https://www.

researchandcare.org (Last Access: 03/31/2022)

Apple Incorporated. (2022). HealthKit. https://developer.apple.com/

documentation/healthkit (Last Access: 03/31/2022)

Beckett, D. (2014). RDF 1.1 N-Triples: A Line-Based Syntax for an RDF Graph

(W3C Recommendation). https://www.w3.org/TR/n-triples (Last Access:

03/31/2022)

193

http://www.agiledata.org/essays/mappingObjects.html
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://lucene.apache.org/core
https://lucene.apache.org/core
https://tomcat.apache.org
https://tomcat.apache.org
https://www.researchandcare.org
https://www.researchandcare.org
https://developer.apple.com/documentation/healthkit
https://developer.apple.com/documentation/healthkit
https://www.w3.org/TR/n-triples

Bibliography

Beckett, D., Berners-Lee, T., Prud’hommeaux, E., and Carothers, G. (2014). RDF 1.1

TURTLE: Terse RDF Triple Language (W3C Recommendation). https://www.w3.

org/TR/turtle (Last Access: 03/31/2022)

Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The Semantic Web: A New Form

of Web Content That Is Meaningful to Computers Will Unleash a Revolution of New

Possibilities. Scientific American, 284 (5), 34–43.

Berrueta,D., Phipps, J.,Miles,A.,Baker,T., and Swick,R. (Eds.). (2008). Best Practice

Recipes for Publishing RDF Vocabularies (W3C Working Group Note). https://

www.w3.org/TR/swbp-vocabpub (Last Access: 03/31/2022)

Bloch, J. (2018). Effective Java (Third Edition).

Bodenreider, O. (2004). The Unified Medical Language System (UMLS): Integrating

Biomedical Terminology. Nucleic Acids Research, 32 (Database Issue), D267–D270.

Bray, T., Hollander, D., Layman, A., Tobin, R., and Thompson, H. (Eds.). (2009).

Namespaces in XML 1.0 (Third Edition) (W3C Recommendation). https://www.

w3.org/TR/xml-names (Last Access: 03/31/2022)

Bray, T., Paoli, J., Sperberg-McQueen, C.M.,Maler, E., and Yergeau, F. (Eds.). (2008).

Extensible Markup Language (XML) 1.0 (Fifth Edition) (W3C Recommendation).

https://www.w3.org/TR/xml (Last Access: 03/31/2022)

Brickley, D., Guha, R., and McBride, B. (Eds.). (2014). RDF Schema 1.1

(W3C Recommendation). https://www.w3.org/TR/rdf-schema (Last Access:

03/31/2022)

Brix,T.,Bruland, P., Sarfraz, S., Ernsting, J.,Neuhaus, P., Storck,M.,Doods, J., Ständer,

S., and Dugas,M. (2018). ODM Data Analysis - A Tool for the Automatic Validation,

Monitoring and Generation of Generic Descriptive Statistics of Patient Data. PLOS

ONE, 13 (6), e0199242.

Brochhausen,M., Spear,A., Cocos, C.,Weiler, G.,Martín, L.,Anguita,A., Stenzhorn,

H., Daskalaki, E., Schera, F., Schwarz, U., Sfakianakis, S., Kiefer, S., Dörr,M., Graf,

194

https://www.w3.org/TR/turtle
https://www.w3.org/TR/turtle
https://www.w3.org/TR/swbp-vocabpub
https://www.w3.org/TR/swbp-vocabpub
https://www.w3.org/TR/xml-names
https://www.w3.org/TR/xml-names
https://www.w3.org/TR/xml
https://www.w3.org/TR/rdf-schema

N., and Tsiknakis, M. (2011). The ACGT Master Ontology and Its Applications -

Towards an Ontology-Driven Cancer Research and Management System. Journal of

Biomedical Informatics, 44, 8-25.

Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM). (2022a). ICD-10-GM:

Internationale statistische Klassifikation der Krankheiten und verwandter

Gesundheitsprobleme, German Modification. https://www.bfarm.de/DE/

Kodiersysteme/Klassifikationen/ICD/ICD-10-GM/_node.html (Last

Access: 03/31/2022)

Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM). (2022b). OPS:

Operationen- und Prozedurenschlüssel. https://www.bfarm.de/DE/

Kodiersysteme/Klassifikationen/OPS-ICHI/OPS/_node.html (Last

Access: 03/31/2022)

Canonical Limited. (2022). Ubuntu. https://www.ubuntu.com (Last Access:

03/31/2022)

CDISC Consortium. (2013). ODM-XML 1.3.2. https://www.cdisc.org/

standards/foundational/odm-xml/odm-xml-v1-3-2 (Last Access:

03/31/2022)

Christ-Neumann,M.-L., Escrich,A.,Anguita,A., Stenzhorn, H., Taylor,M., Ramay, H.,

Rüping, S., Krauth, C., Kuchinke,W., Graf, N., and Rossi, S. (2014). Usability on

the p-medicine Infrastructure: An Extended Usability Concept. ecancermedicalscience,

8, 399.

Connolly, D. (Ed.). (2003). XMLDevelopment History. https://www.w3.org/XML/

hist2002 (Last Access: 03/31/2022)

Cormen, T., Leiserson, C., Rivest, R., and Stein, C. (2009). Introduction to Algorithms

(Third Edition)

COVID-19 Interoperability Alliance Members. (2021). COVID-19 Interoperability

Alliance. https://covid19ia.org (Last Access: 03/31/2022)

195

https://www.bfarm.de/DE/Kodiersysteme/Klassifikationen/ICD/ICD-10-GM/_node.html
https://www.bfarm.de/DE/Kodiersysteme/Klassifikationen/ICD/ICD-10-GM/_node.html
https://www.bfarm.de/DE/Kodiersysteme/Klassifikationen/OPS-ICHI/OPS/_node.html
https://www.bfarm.de/DE/Kodiersysteme/Klassifikationen/OPS-ICHI/OPS/_node.html
https://www.ubuntu.com
https://www.cdisc.org/standards/foundational/odm-xml/odm-xml-v1-3-2
https://www.cdisc.org/standards/foundational/odm-xml/odm-xml-v1-3-2
https://www.w3.org/XML/hist2002
https://www.w3.org/XML/hist2002
https://covid19ia.org

Bibliography

Cyganiak, R.,Wood, D., Lanthaler,M., Klyne, G., Carroll, J., and McBride, B. (Eds.).

(2014). RDF 1.1 Concepts and Abstract Syntax (W3C Recommendation). https:

//www.w3.org/TR/rdf11-concepts (Last Access: 03/31/2022)

Davis, N. (2020). Medical Abbreviations That Have Contradictory

or Ambiguous Meanings. https://www.ismp.org/resources/

medical-abbreviations-have-contradictory-or-ambiguous-meanings

(Last Access: 03/31/2022)

Deutsche Akkreditierungsstelle (DAkkS). (2010). Leitfaden Usability.

DIN-Normenausschuss Informationstechnik und Anwendungen (NIA). (2020). DIN

5008 Schreib- und Gestaltungsregeln für die Text- und Informationsverarbeitung.

Doods, J., Neuhaus, P., and Dugas, M. (2016). Converting ODM Metadata to FHIR

Questionnaire Resources. Studies in Health Technology and Informatics, 228,

456–460.

Dron, L.,Dillman,A., Zoratti,M.,Haggstrom, J.,Mills, E., and Park, J. (2021). Clinical

Trial Data Sharing for COVID-19-Related Research. Journal of Medical Internet

Research, 23 (3), e26718.

Dugas,M. (2016). Design of Case Report Forms Based on a Public Metadata Registry:

Re-Use of Data Elements to Improve Compatibility of Data. Trials, 17 (1), 566.

Dugas, M., Meidt, A., Neuhaus, P., Storck, M., and Varghese, J. (2016). ODMedit:

Uniform Semantic Annotation for Data Integration in Medicine Based on a Public

Metadata Repository. BMC Medical Research Methodology, 16, 65.

Eclipse Foundation. (2007). Eclipse Distribution License (EDL) v 1.0. https://www.

eclipse.org/org/documents/edl-v10.php (Last Access: 03/31/2022)

Eclipse Foundation. (2017). Eclipse Public License (EPL) - v 2.0. https://www.

eclipse.org/legal/epl-2.0 (Last Access: 03/31/2022)

196

https://www.w3.org/TR/rdf11-concepts
https://www.w3.org/TR/rdf11-concepts
https://www.ismp.org/resources/medical-abbreviations-have-contradictory-or-ambiguous-meanings
https://www.ismp.org/resources/medical-abbreviations-have-contradictory-or-ambiguous-meanings
https://www.eclipse.org/org/documents/edl-v10.php
https://www.eclipse.org/org/documents/edl-v10.php
https://www.eclipse.org/legal/epl-2.0
https://www.eclipse.org/legal/epl-2.0

Eclipse Foundation. (2022a). Eclipse Implementation of JAXB. https://projects.

eclipse.org/projects/ee4j.jaxb-impl (Last Access: 03/31/2022)

Eclipse Foundation. (2022b). Jakarta EE Web Profile. https://jakarta.ee/

specifications/webprofile (Last Access: 03/31/2022)

Eclipse Foundation. (2022c). Jakarta Persistence. https://jakarta.ee/

specifications/persistence (Last Access: 03/31/2022)

Eclipse Foundation. (2022d). Jakarta Server Faces. https://jakarta.ee/

specifications/faces (Last Access: 03/31/2022)

Eclipse Foundation. (2022e). Jakarta XML Binding. https://jakarta.ee/

specifications/xml-binding (Last Access: 03/31/2022)

Eclipse Foundation. (2022f). Jetty. https://www.eclipse.org/jetty (Last

Access: 03/31/2022)

Eclipse Foundation. (2022g). Mojarra: Eclipse EE4J Implementation of Jakarta Faces.

https://eclipse-ee4j.github.io/mojarra (Last Access: 03/31/2022)

Eclipse Foundation. (2022h). RDF4J. https://rdf4j.org (Last Access:

03/31/2022)

Egaña Aranguren,M., Fernández-Breis, J., and Dumontier,M. (2014). Special Issue on

Linked Data for Health Care and the Life Sciences. Semantic Web, 5 (2), 99–100.

Elmasri, R., and Navathe, S. (2015). Fundamentals of Database Systems (Seventh

Edition).

Esteban-Gil,A., and Fernández-Breis, J. (2016). Case Report Form Based on Semantic

Web Technologies. Proceedings of the International Conference on Semantic Web

Applications and Tools for Life Sciences (SWAT4LS).

European Molecular Biology Laboratory - European Bioinformatics Institute

(EMBL-EBI). (2018). Chemical Entities of Biological Interest (ChEBI). https:

//www.ebi.ac.uk/chebi (Last Access: 03/31/2022)

197

https://projects.eclipse.org/projects/ee4j.jaxb-impl
https://projects.eclipse.org/projects/ee4j.jaxb-impl
https://jakarta.ee/specifications/webprofile
https://jakarta.ee/specifications/webprofile
https://jakarta.ee/specifications/persistence
https://jakarta.ee/specifications/persistence
https://jakarta.ee/specifications/faces
https://jakarta.ee/specifications/faces
https://jakarta.ee/specifications/xml-binding
https://jakarta.ee/specifications/xml-binding
https://www.eclipse.org/jetty
https://eclipse-ee4j.github.io/mojarra
https://rdf4j.org
https://www.ebi.ac.uk/chebi
https://www.ebi.ac.uk/chebi

Bibliography

European Molecular Biology Laboratory - European Bioinformatics Institute

(EMBL-EBI). (2021). Ontology Lookup Service (OLS). https://www.ebi.ac.

uk/ols (Last Access: 03/31/2022)

European Parliament and European Council (EP-EC). (2017a). Regulation (EU)

2017/745 on Medical Devices. https://eur-lex.europa.eu/eli/reg/2017/

745 (Last Access: 03/31/2022)

European Parliament and European Council (EP-EC). (2017b). Regulation (EU)

2017/746 on In Vitro Diagnostic Medical Devices. https://eur-lex.europa.

eu/eli/reg/2017/746 (Last Access: 03/31/2022)

FasterXML. (2022). Jackson. https://github.com/FasterXML/jackson (Last

Access: 03/31/2022)

Fielding, R. (2000). Representational State Transfer (REST).Architectural Styles and

the Design of Network-Based Software Architectures.

Fowler, M., Rice, D., Foemmel, M., Hieatt, E., Mee, R., and Stafford, R. (2011).

Patterns of Enterprise Application Architecture (Seventeenth Edition).

Free Software Foundation (FSF). (2007). GNU Lesser General Public License (LGPL)

- Version 3. https://www.gnu.org/licenses/lgpl-3.0.html (Last Access:

03/31/2022)

Friedman, L., Furberg, C., DeMets, D., Reboussin, D., and Granger, C. (2015).

Fundamentals of Clinical Trials.

Gandon, F., Schreiber, G., and Beckett, D. (Eds.). (2014). RDF 1.1 XML Syntax

(W3C Recommendation). https://www.w3.org/TR/rdf-syntax-grammar

(Last Access: 03/31/2022)

Gao, S., Sperberg-McQueen, C. M., Thompson, H., Mendelsohn, N., Beech, D., and

Maloney,M. (Eds.). (2012). XML Schema Definition Language (XSD) 1.1: Part 1:

Structures (W3C Recommendation). https://www.w3.org/TR/xmlschema11-1

(Last Access: 03/31/2022)

198

https://www.ebi.ac.uk/ols
https://www.ebi.ac.uk/ols
https://eur-lex.europa.eu/eli/reg/2017/745
https://eur-lex.europa.eu/eli/reg/2017/745
https://eur-lex.europa.eu/eli/reg/2017/746
https://eur-lex.europa.eu/eli/reg/2017/746
https://github.com/FasterXML/jackson
https://www.gnu.org/licenses/lgpl-3.0.html
https://www.w3.org/TR/rdf-syntax-grammar
https://www.w3.org/TR/xmlschema11-1

Gene Ontology Consortium (GOC). (2021). The Gene Ontology Resource: Enriching a

Gold Mine. Nucleic Acids Research, 49 (D1), D325–D334.

Gerke, S., Stern, A., and Minssen, T. (2020). Germany’s Digital Health Reforms in

the COVID-19 Era: Lessons and Opportunities for Other Countries. NPJ Digital

Medicine, 3 (1), 94.

Gonçalves, R., Hardi, J., Horridge, M., Tu, S., and Musen, M. (2021). Protégé: A

Free, Open-Source Ontology Editor and Framework for Building Intelligent Systems.

https://protege.stanford.edu (Last Access: 03/31/2022)

Google LLC. (2022). Cloud Healthcare API Documentation. https://cloud.

google.com/healthcare-api/docs (Last Access: 03/31/2022)

Gossman, J., Mullins, C., Jones, G., Dolin, R., and Stafford, M. (Eds.).

(2022). Microsoft REST API Guidelines. https://github.com/microsoft/

api-guidelines (Last Access: 03/31/2022)

Greene, D.,McClintock, D., and Durant, T. (2021). Interoperability: COVID-19 as an

Impetus for Change. Clinical Chemistry, 67 (4), 592–595.

Gulden, C., Blasini, R., Nassirian,A., Stein,A.,Altun, F. B., Kirchner,M., Prokosch,

H.-U., and Boeker, M. (2021). Prototypical Clinical Trial Registry Based on Fast

Healthcare Interoperability Resources (FHIR): Design and Implementation Study.

JMIR Medical Informatics, 9 (1), e20470.

Haas, H., and Brown,A. (Eds.). (2004). Web Services Glossary (W3C Working Group

Note). https://www.w3.org/TR/wsgloss (Last Access: 03/31/2022)

HAPI FHIR Team. (2022). HAPI FHIR. https://hapifhir.io (Last Access:

03/31/2022)

Harris, P., Taylor, R., Minor, B., Elliott, V., Fernandez, M., O’Neal, L., McLeod, L.,

Delacqua,G.,Delacqua, F.,Kirby, J., and Duda, S. (2019). The REDCap Consortium:

Building an International Community of Software Platform Partners. Journal of

Biomedical Informatics, 95, 103208.

199

https://protege.stanford.edu
https://cloud.google.com/healthcare-api/docs
https://cloud.google.com/healthcare-api/docs
https://github.com/microsoft/api-guidelines
https://github.com/microsoft/api-guidelines
https://www.w3.org/TR/wsgloss
https://hapifhir.io

Bibliography

Harris, P., Taylor, R., Thielke, R., Payne, J., Gonzalez, N., and Conde, J. (2009).

Research Electronic Data Capture (REDCap) - A Metadata-Driven Methodology and

Workflow Process for Providing Translational Research Informatics Support. Journal

of Biomedical Informatics, 42 (2), 377–381.

Health Level 7 (HL7) International. (2019). FHIR Release 4 Specification (R4). https:

//hl7.org/fhir/R4 (Last Access: 03/31/2022)

Health Level 7 (HL7) International. (2020). Hl7 Terminology (3.1.0). https://

terminology.hl7.org (Last Access: 03/31/2022)

Health Level 7 (HL7) International. (2022). Using the FHIR Validator. https:

//confluence.hl7.org/display/FHIR/Using+the+FHIR+Validator (Last

Access: 03/31/2022)

Healthcare Information and Management Systems Society Incorporated (HIMSS).

(2021). Interoperability in Healthcare. https://www.himss.org/resources/

interoperability-healthcare (Last Access: 03/31/2022)

Hitzler, P., Krötzsch,M., Parsia, B., Patel-Schneider, P., and Rudolph, S. (Eds.). (2012).

OWL 2 Web Ontology Language Primer (Second Edition) (W3C Recommendation).

https://www.w3.org/TR/owl2-primer (Last Access: 03/31/2022)

Holland, C., and Shostak, J. (2016). Implementing CDISC Using SAS: An End-to-End

Guide (Second Edition).

Horridge,M., and Bechhofer, S. (2011). The OWLAPI: A Java API for OWLOntologies.

Semantic Web, 2 (1), 11–21.

Horridge, M., Palmisano, I., Spero, S., and Ansell, P. (2022). OWL API. https://

github.com/owlcs/owlapi (Last Access: 03/31/2022)

Hume, S.,Aerts, J., Sarnikar, S., and Huser,V. (2016). Current Applications and Future

Directions for the CDISCOperational DataModel Standard: AMethodological Review.

Journal of Biomedical Informatics, 60, 352–362.

200

https://hl7.org/fhir/R4
https://hl7.org/fhir/R4
https://terminology.hl7.org
https://terminology.hl7.org
https://confluence.hl7.org/display/FHIR/Using+the+FHIR+Validator
https://confluence.hl7.org/display/FHIR/Using+the+FHIR+Validator
https://www.himss.org/resources/interoperability-healthcare
https://www.himss.org/resources/interoperability-healthcare
https://www.w3.org/TR/owl2-primer
https://github.com/owlcs/owlapi
https://github.com/owlcs/owlapi

Huser, V., Sastry, C., Breymaier,M., Idriss,A., and Cimino, J. (2015). Standardizing

Data Exchange for Clinical Research Protocols and Case Report Forms: An

Assessment of the Suitability of the Clinical Data Interchange Standards Consortium

(CDISC) Operational Data Model (ODM). Journal of Biomedical Informatics, 57,

88–99.

International Business Machines Corporation (IBM). (2021).

Interoperability in Healthcare. https://www.ibm.com/topics/

interoperability-in-healthcare (Last Access: 03/31/2022)

International Council for Harmonisation of Technical Requirements for Pharmaceuticals

for Human Use (ICH-TRPHU). (2022). MedDRA. https://www.meddra.org

(Last Access: 03/31/2022)

International Organization for Standardization (ISO). (2002). ISO 639 Language

Codes. https://www.iso.org/iso-639-language-codes.html (Last

Access: 03/31/2022)

International Organization for Standardization (ISO). (2019). ISO 8601 Date and Time

Format. https://www.iso.org/iso-8601-date-and-time-format.html

(Last Access: 03/31/2022)

Internet Engineering Task Force (IETF). (2015). The Basic HTTP Authentication

Scheme: Request for Comments 7617. https://datatracker.ietf.org/doc/

html/rfc7617 (Last Access: 03/31/2022)

Isaac, A., and Summers, E. (Eds.). (2009). SKOS Simple Knowledge Organization

System Primer (W3C Recommendation). https://www.w3.org/TR/

skos-primer (Last Access: 03/31/2022)

JetBrains s.r.o. (2022). IntelliJ IDEA. https://www.jetbrains.com/idea (Last

Access: 03/31/2022)

Joho, H., and Jose, J. (2006). A Comparative Study of the Effectiveness of Search Result

Presentation on the Web. Advances in Information Retrieval, 302–313.

201

https://www.ibm.com/topics/interoperability-in-healthcare
https://www.ibm.com/topics/interoperability-in-healthcare
https://www.meddra.org
https://www.iso.org/iso-639-language-codes.html
https://www.iso.org/iso-8601-date-and-time-format.html
https://datatracker.ietf.org/doc/html/rfc7617
https://datatracker.ietf.org/doc/html/rfc7617
https://www.w3.org/TR/skos-primer
https://www.w3.org/TR/skos-primer
https://www.jetbrains.com/idea

Bibliography

Jupp, S., Burdett, T., Malone, J., Leroy, C., Pearce, M., McMurry, J., and Parkinson,

H. (2015). A New Ontology Lookup Service at EMBL-EBI. Proc. of the International

Conference on Semantic Web Applications and Tools for Life Sciences (SWAT4LS).

Kamdar,M., Fernández, J., Polleres,A.,Tudorache,T., andMusen,M. (2019). Enabling

Web-Scale Data Integration in Biomedicine Through Linked Open Data. NPJ Digital

Medicine, 2, 90.

Kassenärztliche Bundesvereinigung (KBV). (2022). Medizinische informationsobjekte

(MIO). https://mio.kbv.de (Last Access: 03/31/2022)

Kendall, E., Novacek, V., Baker, T., and Miles, A. (Eds.). (2008). Principles of

Good Practice for Managing RDF Vocabularies and OWL Ontologies (W3C Editor’s

Draft). https://www.w3.org/2006/07/SWD/Vocab/principles (LastAccess:

03/31/2022)

Knublauch, H., Oberle, D., Tetlow, P., Wallace, E., Pan, J., and Uschold, M. (Eds.).

(2006). A Semantic Web Primer for Object-Oriented Software Developers (W3C

Working Group Note). https://www.w3.org/TR/sw-oosd-primer (LastAccess:

03/31/2022)

Köhler, S., Haendel, M., and Robinson, P. (2021). The Human Phenotype Ontology.

https://hpo.jax.org (Last Access: 03/31/2022)

Kuchinke,W.,Aerts, J., Semler, S., and Ohmann, C. (2009). CDISC Standard-Based

Electronic Archiving of Clinical Trials. Methods of Information in Medicine, 48 (5),

408–413.

Kuchinke, W., Ohmann, C., Stenzhorn, H., Anguista, A., Sfakianakis, S., Graf, N.,

and Demotes, J. (2016). Ensuring Sustainability of Software Tools and Services by

Cooperation With a Research Infrastructure. Personalized Medicine, 13 (1), 43–55.

Kuchinke, W., Wiegelmann, S., Verplancke, P., and Ohmann, C. (2006). Extended

Cooperation in Clinical Studies Through Exchange of CDISC Metadata Between

Different Study Software Solutions. Methods of Information in Medicine, 45 (4),

441–446.

202

https://mio.kbv.de
https://www.w3.org/2006/07/SWD/Vocab/principles
https://www.w3.org/TR/sw-oosd-primer
https://hpo.jax.org

Lehne,M., Luijten, S., Vom Felde Genannt Imbusch, P., and Thun, S. (2019). The Use

of FHIR in Digital Health - A Review of the Scientific Literature. Studies in Health

Technology and Informatics, 267, 52–58.

Leroux, H., Denney, C., Hastak, S., and Glover, H. (2019). A Framework for

Representing Clinical Research in FHIR. Proceedings of the International Workshop

on Semantic Web Applications and Tools for Life Sciences (SWAT4LS), 26–35.

Leroux, H.,Metke-Jimenez,A., and Lawley,M. (2017). Towards Achieving Semantic

Interoperability of Clinical Study Data With FHIR. Journal of Biomedical Semantics,

8 (1), 41.

Lin, M.-C., Vreeman, D., and Huff, S. (2011). Investigating the Semantic

Interoperability of Laboratory Data Exchanged Using LOINC Codes in Three Large

Institutions. Proceedings of the Annual Symposium of the American Medical

Informatics Association (AMIA), 805–814.

Löbe,M., Knuth,M., and Mücke, R. (2009). TIM: A Semantic Web Application for the

Specification of Metadata Items in Clinical Research. Proceedings of the International

Workshop on Semantic Web Applications and Tools for Life Sciences (SWAT4LS)

Mandel, J., Kreda, D.,Mandl, K., Kohane, I., and Ramoni, R. (2016). Smart on FHIR: A

Standards-Based, Interoperable Apps Platform for Electronic Health Records. Journal

of the American Medical Informatics Association (JAMIA), 23 (5), 899–908.

Marés, J., Shamardin, L., Weiler, G., Anguita, A., Sfakianakis, S., Neri, E., Zasada,

S., Graf, N., and Coveney, P. (2014). p-medicine: A Medical Informatics Platform

for Integrated Large Scale Heterogeneous Patient Data. Proceedings of the Annual

Symposium of the American Medical Informatics Association (AMIA), 872–881.

Martin, L.,Anguita,A., Graf, N., Tsiknakis,M., Brochhausen,M., Rüping, S., Bucur,A.,

Sfakianakis, S., Sengstag, T., Buffa, F., and Stenzhorn, H. (2011). ACGT: Advancing

Clinico-Genomic Trials on Cancer - Four Years of Experience. Studies in Health

Technology and Informatics, 169, 734–738.

203

Bibliography

McDonald, C., Huff, S., Suico, J., Hill, G., Leavelle, D.,Aller, R., Forrey,A.,Mercer,

K., DeMoor, G., Hook, J.,Williams,W., Case, J., and Maloney, P. (2003). LOINC,

A Universal Standard for Identifying Laboratory Observations: A 5-Year Update.

Clinical Chemistry, 49 (4), 624–633.

Microsoft Corporation. (2021). Azure Health Data Services Documentation.

https://docs.microsoft.com/en-us/azure/healthcare-apis (Last

Access: 03/31/2022)

Millar, J. (2016). The Need for a Global Language - SNOMED CT Introduction. Studies

in Health Technology and Informatics, 225, 683–685.

Miñarro-Giménez, J.,Martínez-Costa, C.,Karlsson,D., Schulz, S., and Rosenbeck-Gøeg,

K. (2018). Qualitative Analysis of Manual Annotations of Clinical Text With SNOMED

CT. PLOS ONE, 13 (12).

Motik, B., Parsia, B., Patel-Schneider, P., Bechhofer, S., Cuenca Grau, B., Fokoue,

A., and Hoekstra, R. (Eds.). (2012). OWL 2 Web Ontology Language XML

Serialization (Second Edition) (W3C Recommendation). https://www.w3.org/

TR/owlxml-serialization (Last Access: 03/31/2022)

Musen,M., and Protégé Team (2015). The Protégé Project: A Look Back and a Look

Forward. AI Matters, 1 (4), 4–12.

National Cancer Institute (NCI). (2017). Common Terminology Criteria for Adverse

Avents (CTCAE) v5.0. https://ctep.cancer.gov/protocoldevelopment/

electronic_applications/ctc.htm#ctc_50 (Last Access: 03/31/2022)

National Cancer Institute (NCI). (2022). NCI Thesaurus. https://ncithesaurus.

nci.nih.gov (Last Access: 03/31/2022)

National Center for Biomedical Ontology (NCBO). (2021). BioPortal. https://

bioportal.bioontology.org (Last Access: 03/31/2022)

Nationales Forschungsnetzwerk der Universitätsmedizin zu COVID-19 (NUM).

(2020). Nationales Forschungsnetzwerk der Universitätsmedizin zu COVID-19

204

https://docs.microsoft.com/en-us/azure/healthcare-apis
https://www.w3.org/TR/owlxml-serialization
https://www.w3.org/TR/owlxml-serialization
https://ctep.cancer.gov/protocoldevelopment/electronic_applications/ctc.htm#ctc_50
https://ctep.cancer.gov/protocoldevelopment/electronic_applications/ctc.htm#ctc_50
https://ncithesaurus.nci.nih.gov
https://ncithesaurus.nci.nih.gov
https://bioportal.bioontology.org
https://bioportal.bioontology.org

(NUM). https://www.netzwerk-universitaetsmedizin.de (Last Access:

03/31/2022)

Nield, T. (2017). An Introduction to Regular Expressions: Decoding

Simple Regex Features https://www.oreilly.com/content/

an-introduction-to-regular-expressions (Last Access: 03/31/2022)

Nourani, A., Ayatollahi, H., and Dodaran, M. S. (2019). A Review of Clinical Data

Management Systems Used in Clinical Trials. Reviews on Recent Clinical Trials, 14

(1), 10–23.

Object Management Group (OMG). (2017). OMG Unified Modeling Language (UML)

- 2.5.1. https://www.omg.org/spec/UML/2.5.1 (Last Access: 03/31/2022)

OBO Technical WG. (2021). The Open Biological and Biomedical Ontology (OBO)

Foundry https://obofoundry.org (Last Access: 03/31/2022)

ObTiMA Team. (2022). ObTiMA - Ontology-Based Trial Management Application.

https://obtima.org (Last Access: 03/31/2022)

Odgen, C., and Richards, I. (1923). The Meaning of Meaning: A Study of the Influence

of Language Upon Thought.

National Library of Medicine (NLM) (2022). Unified Medical Language

System (UMLS). https://www.nlm.nih.gov/research/umls (Last Access:

03/31/2022)

Ohmann, C., Kuchinke, W., Canham, S., Lauritsen, J., Salas, N., Schade-Brittinger,

C., Wittenberg, M., McPherson, G., McCourt, J., Gueyffier, F., Lorimer, A., and

Torres, F. (2011). Standard Requirements for GCP-Compliant Data Management in

Multinational Clinical Trials. Trials, 12, 85.

Ontology for Biomedical Investigations (OBI). (2021). Ontology for Biomedical

Investigations. http://obi-ontology.org (Last Access: 03/31/2022)

205

https://www.netzwerk-universitaetsmedizin.de
https://www.oreilly.com/content/an-introduction-to-regular-expressions
https://www.oreilly.com/content/an-introduction-to-regular-expressions
https://www.omg.org/spec/UML/2.5.1
https://obofoundry.org
https://obtima.org
https://www.nlm.nih.gov/research/umls
http://obi-ontology.org

Bibliography

Open Source Initiative (OSI). (1987). The MIT License. https://opensource.org/

licenses/MIT (Last Access: 03/31/2022)

Open Source Initiative (OSI). (2007). The Open Source Definition. https://

opensource.org/docs/osd (Last Access: 03/31/2022)

OpenAPI Initiative (OAI). (2021). OpenAPI Specification. https://github.com/

OAI/OpenAPI-Specification (Last Access: 03/31/2022)

Oracle Corporation. (2022a). Java. https://www.java.com (Last Access:

03/31/2022)

Oracle Corporation. (2022b). MySQL. https://www.mysql.com (Last Access:

03/31/2022)

Orphanet. (2022). Orphanet Rare Disease Ontology (ORDO). http://www.

orphadata.org/cgi-bin/index.php#ordomodal (Last Access: 03/31/2022)

Patrick, T., Richesson, R., Andrews, J., and Folk, L. (2008). SNOMED CT Coding

Variation and Grouping for “Other Findings” in a Longitudinal Study on Urea Cycle

Disorders. Proceedings of theAnnual Symposium of theAmericanMedical Informatics

Association (AMIA), 11–15.

Peterson, D., Gao, S., Malhotra, A., Michael, S.-M. C., Thompson, H., and Biron, P.

(Eds.). (2012). XMLSchemaDefinition Language (XSD) 1.1: Part 2: Datatypes (W3C

Recommendation). https://www.w3.org/TR/xmlschema11-2 (Last Access:

03/31/2022)

PhUSE CS Semantic Technology Working Group (PhUSE-CS-STWG). (2015). CDISC

Standards in RDF Reference Guide (Technical Report).

Pisanelli, D., Gangemi, A., Battaglia, M., and Catenacci, C. (2004). Coping With

Medical Polysemy in the Semantic Web: The Role of Ontologies. Studies in Health

Technology and Informatics, 107 (1), 416–419.

206

https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://opensource.org/docs/osd
https://opensource.org/docs/osd
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
https://www.java.com
https://www.mysql.com
http://www.orphadata.org/cgi-bin/index.php#ordomodal
http://www.orphadata.org/cgi-bin/index.php#ordomodal
https://www.w3.org/TR/xmlschema11-2

PostgreSQL Global Development Group. (2022). PostgreSQL. https://www.

postgresql.org (Last Access: 03/31/2022)

PrimeTek Informatics. (2022). PrimeFaces. https://primefaces.org (Last

Access: 03/31/2022)

Prokosch, H.-U., Bahls, T., Bialke,M., Eils, J., Fegeler, C., Gründner, J., Haarbrandt,

B., Hampf, C., Hoffmann, W., Hund, H., Kampf, M., Kapsner, L., Kasprzak, P.,

Kohlbacher,O.,Krefting,D.,Mang, J.,Marschollek,M.,Mate, S.,Müller,A., Prasser,

F., Sass, J., Semler, S., Stenzhorn, H., Thun, S., Zenker, S., and Eils, R. (2022). The

COVID-19 Data Exchange Platform of the German University Medicine Proceedings

of the Medical Informatics Europe Conference (MIE). (accepted).

RedHat. (2022). Hibernate ORM. https://hibernate.org/orm (Last Access:

03/31/2022)

Regenstrief Institute. (2022). Logical Observation Identifiers Names and Codes

(LOINC). https://loinc.org (Last Access: 03/31/2022)

Robinson, P., and Mundlos, S. (2010). The Human Phenotype Ontology. Clinical

Genetics, 77 (6), 525–534.

Saripalle, R., Runyan, C., and Russell, M. (2019). Using HL7 FHIR to Achieve

Interoperability in Patient Health Record. Journal of Biomedical Informatics, 94,

103188.

SAS Institute Incorporated. (2021). SAS Clinical Standards Toolkit. https://

support.sas.com/rnd/base/cdisc/cst (Last Access: 03/31/2022)

Sass, J., Bartschke,A., Lehne,M., Essenwanger,A., Rinaldi, E., Rudolph, S., Heitmann,

K., Vehreschild, J., von Kalle, C., and Thun, S. (2020). The German Corona

Consensus Dataset (GECCO): A Standardized Dataset for COVID-19 Research in

University Medicine and Beyond. BMC Medical Informatics and Decision Making,

20 (1), 341.

207

https://www.postgresql.org
https://www.postgresql.org
https://primefaces.org
https://hibernate.org/orm
https://loinc.org
https://support.sas.com/rnd/base/cdisc/cst
https://support.sas.com/rnd/base/cdisc/cst

Bibliography

Schreiber, G., Raimond, Y., Manola, F., Miller, E., and McBride, B. (Eds.).

(2014). RDF 1.1 Primer (W3C Working Group Note). https://www.w3.org/

TR/rdf11-primer (Last Access: 03/31/2022)

Shankar, R., Martins, S., O’Connor, M., Parrish, D., and Das,A. (2006). Epoch: An

Ontological Framework to Support Clinical Trials Management. Proceedings of

the International Workshop on Healthcare Information and Knowledge Management,

25–32.

Shankar, R., Martins, S., O’Connor, M., Parrish, D., and Das, A. (2007). An

Ontology-Based Architecture for Integration of Clinical Trials Management

Applications. Proceedings of the Annual Symposium of the American Medical

Informatics Association (AMIA), 661–665.

Sioutos, N., de Coronado, S., Haber,M., Hartel, F., Shaiu,W.-L., andWright, L. (2007).

NCI Thesaurus: A Semantic Model Integrating Cancer-Related Clinical and Molecular

Information. Journal of Biomedical Informatics, 40 (1), 30–43.

SNOMED International. (2022). SNOMED CT. https://www.snomed.org/

snomed-ct (Last Access: 03/31/2022)

Sporny, M., Longley, D., Kellogg, G., Lanthaler, M., Champin, P.-A., and

Lindström, N. (2020). JSON-LD 1.1: A JSON-Based Serialization for Linked Data

(W3C Recommendation). https://www.w3.org/TR/json-ld11 (Last Access:

03/31/2022)

Stenzhorn, H. (2022). MOnSTER Online. https://purl.org/monster (Last

Access: 03/31/2022)

Stenzhorn, H., David, R., and Kuchinke, W. (2012). Report on the Validation and

Certification of ObTiMA and DoctorEye: Deliverable No. 9.3 (Technical Report).

Stenzhorn, H.,Weiler, G., Brochhausen,M., Schera, F., Kritsotakis, V., Tsiknakis,M.,

Kiefer, S., and Graf, N. (2010). The ObTiMA System - Ontology-Based Managing of

Clinical Trials. Studies in Health Technology and Informatics, 160 (2), 1090–1094.

208

https://www.w3.org/TR/rdf11-primer
https://www.w3.org/TR/rdf11-primer
https://www.snomed.org/snomed-ct
https://www.snomed.org/snomed-ct
https://www.w3.org/TR/json-ld11
https://purl.org/monster

Structural Informatics Group (SIG). (2019). Foundational Model of Anatomy (FMA).

http://si.washington.edu/projects/fma (Last Access: 03/31/2022)

SyncRO Soft SRL. (2022). Oxygen XML Editor. https://www.oxygenxml.com

(Last Access: 03/31/2022)

Taye, M. (2010). Understanding Semantic Web and Ontologies: Theory and

Applications. Journal of Computing, 2, 182–192.

Tran, V.-A., Johnson, N., Redline, S., and Zhang, G.-Q. (2011). OnWARD:

Ontology-Driven Web-Based Framework for Multi-Center Clinical Studies. Journal of

Biomedical Informatics, S48–S53.

Vandenbussche, P.-Y., Atemezing, G., and Poveda-Villalón. (2021). Linked Open

Vocabularies (LOV). https://lov.linkeddata.es (Last Access: 03/31/2022)

Vandenbussche, P.-Y., Atemezing, G., Poveda-Villalón, M., and Vatant, B. (2017).

Linked Open Vocabularies (LOV): A Gateway to Reusable Semantic Vocabularies on

the Web. Semantic Web, 8 (3), 437–452.

van Rees, R. (2008). Clarity in the Usage of the Terms Ontology, Taxonomy and

Classification. Civil Engineering, 20, 432.

VMware, Incorporated. (2022a). Spring Framework. https://spring.io/

projects/spring-framework (Last Access: 03/31/2022)

VMware, Incorporated. (2022b). Spring Security. https://spring.io/projects/

spring-security (Last Access: 03/31/2022)

von Kalle, C., Thun, S., and Vehreschild, J. (2021). German Corona Consensus Data

Set (GECCO) (Technical Report).

W3C OWLWorking Group (W3C-OWG). (2012). OWL 2 Web Ontology Language

Document Overview (Second Edition) (W3C Recommendation). https://www.w3.

org/TR/owl2-overview (Last Access: 03/31/2022)

209

http://si.washington.edu/projects/fma
https://www.oxygenxml.com
https://lov.linkeddata.es
https://spring.io/projects/spring-framework
https://spring.io/projects/spring-framework
https://spring.io/projects/spring-security
https://spring.io/projects/spring-security
https://www.w3.org/TR/owl2-overview
https://www.w3.org/TR/owl2-overview

Bibliography

W3C Semantic Web Healthcare and Life Sciences Interest Group (W3C-SW-HCLS-IG).

(2012). Clinical Observations Interoperability - CDISC. https://www.w3.org/

wiki/HCLS/ClinicalObservationsInteroperability/CDISC (Last Access:

03/31/2022)

Walther, B., Hossin, S., Townend, J.,Abernethy, N., Parker, D., and Jeffries, D. (2011).

Comparison of Electronic Data Capture (EDC) With the Standard Data Capture

Method for Clinical Trial Data. PLOS ONE, 6 (9), e25348.

Web Hypertext Application Technology Working Group (WHATWG). (2019). HTML

(Living Standard). https://html.spec.whatwg.org (Last Access: 03/31/2022)

Weber, S., and Heitmann, K. (2021). Interoperabilität im Gesundheitswesen: Auch

für digitale Gesundheitsanwendungen (DiGA) verordnet. Bundesgesundheitsblatt -

Gesundheitsforschung - Gesundheitsschutz, 64 (10), 1262–1268.

Whetzel, P., Noy, N., Shah, N.,Alexander, P., Nyulas, C., Tudorache, T., and Musen,M.

(2011). BioPortal: Enhanced Functionality via New Web Services From the National

Center for Biomedical Ontology to Access and Use Ontologies in Software Applications.

Nucleic Acids Research, 39 (Web Server issue),W541-5.

World Health Organization (WHO). (2022). International Statistical Classification

of Diseases and Related Health Problems (ICD). https://www.who.int/

standards/classifications/classification-of-diseases (Last Access:

03/31/2022)

Williams, T., and Oliva,A. (2017). Breaking the Mold: Clinical Trials Data as RDF.

Proceedings of the PhUSEAnnual Conference.

Yiallouros,M.,Graf,N., and Tallen,G. (Eds.). (2009). Wilms Tumour (Nephroblastoma)

– Brief Information. https://www.gpoh.de/kinderkrebsinfo/content/

diseases/solid_tumours/wilms_tumour_nephroblastoma/pohwilms_

patinfokurz120120611/index_eng.html (Last Access: 03/31/2022)

Zemmouchi-Ghomari, L., and Ghomari,A. (2012). Ontology Versus Terminology, From

the Perspective of Ontologists. International Journal of Web Science, 1, 315–331.

210

https://www.w3.org/wiki/HCLS/ClinicalObservationsInteroperability/CDISC
https://www.w3.org/wiki/HCLS/ClinicalObservationsInteroperability/CDISC
https://html.spec.whatwg.org
https://www.who.int/standards/classifications/classification-of-diseases
https://www.who.int/standards/classifications/classification-of-diseases
https://www.gpoh.de/kinderkrebsinfo/content/diseases/solid_tumours/wilms_tumour_nephroblastoma/pohwilms_patinfokurz120120611/index_eng.html
https://www.gpoh.de/kinderkrebsinfo/content/diseases/solid_tumours/wilms_tumour_nephroblastoma/pohwilms_patinfokurz120120611/index_eng.html
https://www.gpoh.de/kinderkrebsinfo/content/diseases/solid_tumours/wilms_tumour_nephroblastoma/pohwilms_patinfokurz120120611/index_eng.html

Curriculum Vitae

For data protection reasons, the curriculum vitae is not published in the electronic version

of the dissertation.

211

Curriculum Vitae

Blindtext

212

Blindtext

213

Erklärung gemäß§ 7 Abs. 1 Nr. 2

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit ohne unzulässige Hilfe

Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe.

Die aus anderen Quellen direkt oder indirekt übernommenen Daten und Konzepte sind

unter Angabe der Quelle gekennzeichnet.

Bei der Auswahl und Auswertung folgenden Materials haben mir die nachstehend

aufgeführten Personen in der jeweils beschriebenen Weise

� unentgeltlich

� entgeltlich

geholfen:

1. -

2. -

Weitere Personen waren an der inhaltlich-materiellen Erstellung der vorliegenden Arbeit

nicht beteiligt. Insbesondere habe ich nicht die entgeltliche Hilfe von Vermittlungs- bzw.

Beratungsdiensten (Promotionsberaterinnen/Promotionsberater oder anderer Personen)

in Anspruch genommen. Niemand hat von mir unmittelbar oder mittelbar geldwerte

Leistungen für Arbeiten erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten

Dissertation stehen.

Die Arbeit wurde bisher weder im Inland noch im Ausland in gleicher oder in ähnlicher

Form in einem anderen Verfahren zur Erlangung des Doktorgrades einer anderen

Prüfungsbehörde vorgelegt.

Ich versichere an Eides statt, dass ich nach bestemWissen die Wahrheit gesagt und nichts

verschwiegen habe.

215

Erklärung gemäß§ 7 Abs. 1 Nr. 2

Die Bedeutung der eidesstattlichen Erklärung und die strafrechtlichen Folgen einer

unrichtigen oder unvollständigen eidesstattlichen Erklärung sind mir bekannt.

Sankt Ingbert, den 27. April 2022

Holger Stenzhorn

216

Tag der Promotion: 03. August 2022

Dekan: Univ.-Prof. Dr. med. Michael D.Menger

Berichterstatter: Prof. Dr. med. Norbert Graf

Univ.-Prof. Dr. rer. nat. Andreas Keller

	Dedication
	Acknowledgements
	Abstract / Zusammenfassung
	Abstract
	Zusammenfassung

	Contents
	I Introduction
	General Background
	Interoperability
	Structural / Syntactic Interoperability
	Semantic Interoperability

	Scope and Contributions

	II Materials and Methods (Implementation)
	General Overview
	Infrastructure
	Application Layers
	Persistence / Storage
	Application Logic
	

	Usage Scenarios

	Ontology Management
	Semantic Tagging
	Data Export
	Basic Implementation
	Format Mappings
	
	
	

	Format Serializations
	Web Service Interface

	III Results
	General Background
	Project / Data
	Procedure / Realization

	Ontology Management
	Adding and Editing Form
	Source
	Namespace
	Format

	Overview and Selection Table

	Semantic Tagging
	Ontology Preselection
	Concept Selection and Tag Creation
	Question and Answer Option Tagging

	Data Export
	
	Web Service Interface

	IV Discussion
	Evaluation
	Ontology Management
	Semantic Tagging
	Data Export

	Limitations and Mitigations
	Usability
	Utility

	Related Work
	Outlook and Perspective
	Improved Visualizations
	Ontological Relations in Search
	Tag-based Repository Search
	Rules and Guidelines
	Training

	V Appendix
	Extension Definition
	OpenAPI Description
	Applied Specifications
	Applied Libraries and Licenses
	Applied Ontologies
	Data Export Excerpts
	ODM
	RDF
	RDF/XML
	Turtle
	JSON-LD
	N-Triples

	FHIR
	JSON
	XML
	RDF

	Acronyms
	Bibliography
	Curriculum Vitae
	Erklärung gemäß § 7 Abs. 1 Nr. 2

