Siekmann

MEMO SEKI-78-1

Raulefs, J.

==

=

L

T

o

(a8

=

(SN)

e 95

—_— =
(e

L.

= =
(&)

=, =

o D

— L

T

<C

(5]

—

L

ey

=

=

Pl

Auewar) 1Sap Auewuan) 1sop
aynispey 00S.L-d uisinejsiasiey 0529-Ad osus -
08€9 Yydoejsod 6¥0€ Yoesod -:um

| YBWIOU| ANy INJISU| NBUWLIOJU| Yola1aqyoe
aynispey 1BlISIaAIuN ulaINe|sIasiey] 1BlSISAIUN

UNTFICATION OF IDEMPOTENT FUNCTIONS

P. Raulefs, J. Sizkmann
Institut fir Infeormatik I
Universitdt Kaerlsruhe
D-7500 Karlsruhe 1

West Germany

Abstract

<

A complete algorithm for ierme iuvcelving Tdempoicut ana
tdempetent—conmutative funetions 1s presented. The main
recults are: The unifiecation problem for both cases 18
decidable and the set of u?ifiers t8 Fixite for both

problems.

Keywords and phrases

Automatic theorem proving, matching alcorithms, T-unification

’

idempotence.

1. Introduction

For almost as long as attempts at proving thecrems by machines
have been made, a critical problem has been well known [1], [2],
[11]: Certain equational axioms, if left without precautions in
the data base of an automatic theorem prover (ATP), will force
the ATP to go astray. In 1967, Robinson [15] proposed that
substantial progress ("a new plateau") would be achieved by
removing these troublesome axioms from the data base and building

them into the deductive machinery.

Four approaches to cope with equational axioms have been proposed:
(1) To write the axioms into the data base, and use an additional

rule of inference, such as paramcdulation [16].

—_
(3]
~

o use special "rewrite rules" [6), [7], [28]), [29].

(3) To design special inference rules incorporating these

axioms [21].

(4) To develop special unification algorithms incorporating

these axioms [12].

At least for equational axioms, the last apprcach (4) appeers
to be most promising, however it hes the drawhback that for

every new set of axioms a new unification alocoriil:m has to be

found.

The thecreticel basis for utilizing unification algorithrs in-
corporating equational axioms has been develcyo by G. FlotkiIn
[12]. Plotkin has shown that whenever an ATP is to ke refutation

complete, its unification procedure must satisfiv conditicns

given as follows: Assume T is the theory (set of axioms)
considered, and tl’ t2 are terms to be unified; then, the
following properties should hold for the set Y of unifiers
of t1 and t,:

B T
1. ¥ is correct, i.e. for every oce¥, ot, = ot, (= denotes

<

equality with respect to the theory T).

2. ¥ is complete, i.e. for any substitution & with &t, = &t
there is some oeY s. t. there exists a substitution * sc

T
that § = X 0.

3. ¥ is minimal, i.e. no unifier o, in ¥ is an instance of
1

some other unifier 0, in Y.

Minimality is a property that has often been overlooked in the

literature:

If minimality is completely ignored we arrive at simply
enumerating all substitutions and removing all that do not
unify as an algorithm satisfying our reguirements. Generating
such a set of all unifiers, instead cof a set of most general
unifiers, essentiélly amounts to provinc a theorem by the
'British Museum Algorithm' (i.e. by enumerating all Herbrand
instances). Such procedures are called conservative in [16]
and are distinctively diZferent from proofs by the resclot. i
principle at the 'lifted' most general level. However, mini-

mality is more difficult to achieve thkan correctrness and

completeness.

Looking at unification of terms in first-order predicate
calculus with an equational theory T, unification problems
may be classified with respect to the cardinalitv of minimal

and complete sets ¥ of unifiers:

(i) ¥ may always be a singleton: e.g. for T = ¢, that is
for ordinary first order unification as in
(1],[6]1,[14]. Another (trivial) prﬁblem in this class is
the string matching problem for constant strings only,
as encountered in string manipulation languaces such
as SNOBOL [31]. The nontrivial aspect of this problem
is to find efficient algorithms [32][33]. Another
example is unification under homomorphism, isomorphism

and automorphism [30].

(i1) Y may have more than one element but at most finitely
many: examples are the theory of idempotence as well
as idempotence plus commutativity presented in this
paper. Othér examples are unification under commutatiVipy
[19]; unification under associativity and commutativity
[22], [9]; unification under associativity, commutativity
and idempotence [9] and the one way unification problem

for strings.

(iii) Y may sometimes be an infinite set: examples are unifi-

cation under associativity [12], [19], [8].

This problem is equivalent to the problem of solving a
set of equations over a free semigroup (the monoia
problem) [23], [27], the decidability of which is an

open problem now for over twentyfive years. Other prcoblems

-4 -

in this class are unification under distributivity [24]
and the unification problem for second order monadic

logic [4]1 [5]1 [25].

(iv) ¥ may sometimes not exist at all, e.g. for unification
in w-order predicate calculus. In such cases there
exist infinite chains of unifiers (ordered by increasing

generality)

O
in

o
n

O
I}

N

with no upper bound [5}, [26].

For unification problems where complete sets of unifiers are
always finite, it is not necessarily important that the uni-
fication procedure returns a minimal set of unifiers, §ince
dependent unifiers can always be checked off. In this case,
minimality of the unification procedure comes down to be a

matter of computational efficiency.

Unification problems have significance beyond automatic
theorem proving: certain axioms define structures which clo-
sely resemble familiar datastructure (e.g. strings, bags, sets
etc.), and most AI-languages have pattern matching algorithms
for these .cases built into their deductive machinery (see e.g.

(3], (171, [181).

Apart from the fact that these matching algorithms have with-
out exception been designed ad hoc, i.e. without respect to

completeness, minimality or sometimes even correctness, the

basic gquestion of whether a particular matching problem for a

particular data structure is decidable has not been answered.

4 little reflection will show that for very rich matching
structures, as it has e.g. been proposed in MATCHLESS in

PLANNER [3], the matching problem is undecidable. This pre-
sents a problem for the designer of such languaces: on the

one hand, very rich and expressive matching structures are
desirable, since they form the basis for the invocation-

and deduction mechanism. On the other hand, drastic restrictions
will be necessary if matching algerithms are to be found. The

question is just how severe do these restrictions have to be.

In this paper, algorithms are presented for theories of
idempotence and for idempotence together with commutativity.
Idempotent functions appear in group theory, practical
examples being proofs about substitutions which are idem-
potent if they are in normal form ()
The main results are that the unification problem for idem-
potence is decidable and Y, is finite, but not a singleton in
general. We did not concern ourselves with efficiency (in
space and time) of the algorithm. We do believe that the tech-
b See e.g. the proof of Lemma 4.2.2.in this paper. A histcrical examrle
is how Luckhams program verifier found the correctness of Robinson's
unification algorithm cniy after the idempotence for unifiers hac been

added.

nique of [13]

nredicate calculus terms,

allowing for linear unification of first order

could be emploved here as well.

Another interesting problem concerns the relation between

these unification algorithms and the corresponding rewrite

rules [7], which is however outside of the scope of this paper.

The following chart provides a quick survey of unificaticn problems

as investigated so far:

Axioms Problem complete Algorithm ,the set § is investigators
decidable? exists? of mgu's is: minimal

A decidable ves infinite yes [12.,19.,23.,34.]

C decidable yves finite no (20.]

I decidable yes finite no (this paper)
A+C decidable yes finite ves [9.]
A+I 2 ? 2 2

S C+I decidable yes finite no (this paper)
A+C+1 decidable yes finite yes [e.]

D 2 yes infinite ? [24.]
D+A undecidable ? infinite 2 [35.]

H decidable yés singleton yes [30.]
H+A decidable yes singleton yes [30.]

H+A+C ? yes infinite ? [30.]
D+A+C undecidable ? infinite ? [35.]
w-order w > 3 undec. yes Yy does not no [5.]
terms exist
first order decidable yes singleton yes [1.6.14.]
terms
The axioms are: A (associativity) fif(x,y),z) = £(x,f(y,2z))

C (commutativity) f(x,y) = fly,x)

I (ldempotence) f(x,%) = x

D (distributivity) f(x,0(y,z)) = g(£(x,y),£0xt,2)}

H (homomorchism) Qixev) = Q(x) e @(y)

2. Baste Concepts and Terminology
2.1 Terms

We are concerned with unifying terms ci first order logic
containing idempotent binary functions. Since terms starting
with different function symbols cannot be unified at all, we
restrict our investigation to terms involving cne function
symbol only. To simplify our notation, we ignore function

svmbols and write (s,t) instead of f(s,t).

In the following let CONST = {a,b,c,al,b +C, ¢a=e} be an ar-

1 1

bitrary decidable set of constant symbols, and

VAR = {x,y,z,xl,yl,..‘} be an infinite, decidable set of
variable symbols s.t. CONST and VAR are disjoint. Constant

and variable symbols are called atoms forming the set

AT = CONST U VAR.

The set TERM of all terms is the least set s.t.

(1) AT « TERM and (2) if s, t € TERM then (s,t) € TERM.

If an atom u occurs in a term t, we write u € t.

2.7.2. Tree representation

It is convenient to represent terms as labelled binary trees,
using Dewey decimal labelling for marking nodes: the root node
is labelled 0, and the left and right sons of a node labelled

k are marked k1 resp. k2. For example, the labelled binary tree

representation of the term

s = (((a,b),((C:d):e)),(XIY))

is:
o]
P
/’/
/_,/
/'//
01 & ¢ 02
N
."//
o11 ¢ & 012 g 0z1 ¢ 022
X i

Ol11lz ¢ 0112 ¢ 0121 ¢ 0122

We do not distinguish between terms and their tree represen-

tation.

2.1.3. Def.: If k marks a node in a term t then
sub(t,k) is the largest subtree of t
with root k;
lsub(t,k) is the largest subtree in
sub (t,k) with root kJl;
rsub(t, k) is the largest subtree in

sub(t,k) with root k2.

Example: For the above term s:

sub(s,02) = (x,y), lsub(s,01) = (a,b), rsub(s,01) = ((c,d),e).

£.1,4, Normal forms

A term t is in wcrmal form iff there is no label k s.t. lsub(t,k)

and rsub(t,k) are identical terms.

For example, ((a,&),b) is not in normal form, but (a,b) is. So,

in a normal form term there are no subterms that can be collepsed
into a single term because of idempotence. Obviously, each term
has a unique norrmal form. NF[t] denctes the normal forr of a

term t. For example, NF[(((a,a),b),(a,b))] = (a,b).

2.2. Substitutions

A substitution is a finite set {bﬁ+t1)""’<xn+tn)} of sub-
stitution components (xi+ti) with %, € VAR, t; € TERM (1<ign)

s.t. x, and x, are different variable symbols for k % j.

k

A substitution o = {(xl+tl),...,(xn+tn)} is applied to a
term t by consistently replacing each occurence of x; in t

by t, (1€ig¢n), and ot denotes the resulting term.

Any two substitutions o and 1 can be composed to the substitution
"n_n

0 ¢ 1T so that for any term t,(0 e1)t = o(1t), where "=" denotes

symbolwise identity between terms.

For any two substitutions ¢ and T,
a. 0 g 1T 1iff there is a substitution) s.t. Vvt € TERM,.
ot = (A eT)t

b, o~1 iff ¢ g T and T £ O

Clearly, c is a partial order so that ~ is an equivalence re-

lation on substitutions.

2.2.1. Normal form substitutions

A substitution o = le+t1),...,(xn+tn)} is in wermal form iff
X, ¢ tj(1<i,j$n), i.e. no variable to ke replaced occurs in
any of the terms to be substituted. It can be shown that any

substitution o can be transformed into a substitution ¢' in

normal form s.t. o ~ o' [8].

2.3, Unifiers

A substitution ¢ is a unifizer of two terms s and t iff ot = os,
i.e. o makes s and t equal. It can be shown [8] that for ény uni-
fiable set of terms there is a unifier in normal form. o is a
mest general unifier (mgu) of terms s and t iff for any other

unifier 8§ of s and t

2.3.1. R~ and I-unifiers

Two terms s and t are equal with respebt to idempotence_iff

I
NF(s) = NF(t). In this case, we write s = t or simply s = t.

For any two terms s and t, a substitution o is called
o s . I
(a) I-unifier iff os = ot, and

ot

(b) R-unifier iff os

R-unifiers are generated by Robinson's unification algorithm

(14].

2.3.2, Unification problems

Given an equational theory T, the problem of T-unifying two

first order terms s and t is denoted as <T,<s,t>>.

In this paper, we consider two theories:

a. TI = {(x,x) = x} containing the law of idempotence only;
b. T, = {(x,x) = %, (X,y) = (y,x)} containing both the

laws of idempotence and commutativity.

When the theory T is understood from the context,we simply write

<s,t> for a T-unification problem.

S.d4., Notation

We specify algorithms in terins of the familier A-notation,
sugared with let ... Zn clauses to declare abbreviations. If
Ax.h specifies a function, fix x.h denotes its least fixpoint.
Least fixpoints are convenient to specify and prove properties

about recursive algorithms. For any tuple x = (x .,xn), xvi

IREE

denotes the i-th component of x.

2. Algorithm for I-Unification
3.1. Intuitive overview

To obtain a feeling for the problem, let us first consider two
examples of unifying two terms with respect to the theory T,

(idempotence only).

3.1.1. Example: X, (a5

x and (x,a) are clearly not unifiable in the sense of Robinson
[14]), as the variable x of the first term also occurs in the
second term. Under idempotence, however, both terms are ﬁni—

I
fiable with mgu ¢ = {x<«a}, since ox = o(x,a).

- 12 -

In Example 3.1.1. the set of all mgu's is a singleton. The

next example shows that this is not always so.

3.1.2. Example

<(x,y),(a,b)>

This unification problem has two mgu's:

Q
I

1 {x«a,y«b}, and the independent,

less obvious mcu

o, {x+(a,b),y«(a,b)}.

Example 3.1.2. leaves open the possibility of having an infinite
number of mgu's for some I-unification problem. We will show

that this is not so, but this fact is not obvious at all.

3.1.3. Intuitive tdea of the algorithm

Example 3.1.2. already suggest a possible unification algorithm:

Consider the idempotent expansions such as, for the term (a,b):

{(a,b) , ((a,a),b) , (a,(b,b)) , ((a,a),(b,b)) , ((a,b),(a,b)) ,...

First, generate the two sets of all idempotent expansions of

both terms, and then unify the Cartesian product of both sets with
respect to R—unifiFation. The algorithm presented in this paper
is, in a sense, dual to this procedure, although it is much more

efficient by generating less subproblems.

Our algorithm unifying two terms <s,t> is split up into two

iry

interlocking parts: the coilcpsing prase and the

T S B
43

phase.

(1) In the collapsing phase, we look for subterms (rl,rz) in
s so that r, and r, can be R-unified by some substitution
0 to r. Then, applying p to s causes each occurrence of

the subterm (rl,rz) to "collapse" to r.

Example:As = (a, ((x,b),y)) can be collapsed in three ways:
1. p, = {x+b) yields pys = (a,((b,b),y)) = (a,(5,7));
I
2. p, = ly«(x,b)} yields p,s = (a, ((x,b),(x,b))) = (a,(x,b))
3 L y
3. 03 = { (x«b) (y«b) } yields B, = (a2, ((b,b),b)) = (a,b)

The collapsing phase generates the two sets of all possible
collapses of s and t. The Cartesian product of these two

sets is a finite set of pairs of terms, each constituting a
new unification problem to be handed over to the R-unification

phase.

(2) In the R-unification phase, all unification problems re-
sulting. from the collapsing phase are solved by the al-
gorithm RUNIFY. Essentially, RUNIFY follcws the idea of
Robinson's unification algorithm except for the way an
atom and a nonatomic term is unified. RUNIFY returns a
success/failure message (SUCC/FALL) and a substitution

(empty upon failure).

3.2. Collapsing phase

In the collapsing phase we determine the set of all "collapses"
that can be constructed from two terms to be unified initially.

Any such collapse is obtained from collapsing individuzl ncdes.

3.2.1. Collapsing individual nodes

The following definition makes use of the algorithm RUNIFY to
be presented below. RUNIFY is applied to two terms as arguments
and tries to unify them in a certain sense, returning a pair
(m,c). m iS the success/failure message SUCC resp. FAIL, de-
pending on whether RUNIFY could successfully unify its argu-
ment terms; ¢ is the unifying substitution resp. @ for

m = FATL.

3.2.1. Def.: The collapse of a node k in a term t is defined
by coll(t,k) := let (m,0) := RUNIFY[lsub(t,k), rsub(t,k)]
in 2f m = SUCC then (ollsub(t,k)],o)

else (sub(t,k),®?)

The collapse cf a node in a term is the pair consisting
of the term obtained after having collapsed, and the

associated substitution as generated from RUNIFY.

Example: For t = (((a,b),((c,d),e)),(x,y)) (tree representation

in section 2.1.2.),we obtain:

coll (t,02) = [(((a,b),((c,d),e)),(y,y)) {x<y}]

(since x and y trivially unify by {x<y}).
goll [(t:01) = [t.4]

(since (a,b) and ((c,d),e) cannot be unified)
coll (t,0) = [(((a,b),((c,d),e)),((a,b),((c,d),e))),

{X+(alb) ,y*‘((Crd)e) }]

Note that the normal form of the above terms shows the intuitive

reason for the 'collapsing': e.qg.

NF(coll (t,02)) [(((a,b), ((c,d),e)),y), {x=y}]

NF (coll (t,0)) [((a,b),((c,d),e)), {x=(a,b),y«((c,d),e)l}]

I

For technical reasons (in Def. 3.2.2. below) we did not include
the normal form already in this definition but delayed the

actual "collapsing" until last.

o 2}

3.2.8. Collapsing terms

The intention of the following definition is to obtain all
possible collapses of a term t. This is achieved by deter-
wining for each set L = {kl,...,kn} of individual nodes the

collapse of k _, in the collapse of kn in the collapse

_1,¢oo[
of k1 in t.

Let labels(t) be the set of all labels marking nodes in t.

Example: For t = (((a,b),((c,d),e)),(x,y)) as in the above
example, labels(t) = {0,01,02,011,012,021,022,0111,0112,

0121,0122,01211,01212}.

3.2.2. Def.: The collapse of a term ¢ is the set collapse(t)

of terms obtained as follows:

(1) For any subset L ¢ labels(t) with L = {k,,...,k_ J,
let
o, := coll(t,k,)+2 and t, := colllt,k,)¥1;
0, = coll(tl,k2)¢2 and t, = coll(tj,kr)41;
on. = coll(tn“i,kn)¢2and - coll(tn_i,kn}¢1

3.

3.

Let
ty = NF(tn), and
oy = 2 F o, = NIL for some i,
1<ign then NIL ¢lse O o0 % .20,
(2) collapse(t) := {(tL,oL)IL c labels(t)}.

That is, collapse(t) returns a set of pairs with
first elements being terms and second elements

substitutions.

R-Unification phase

R-unification follows the operations and flow of control of

Robinson's unification algorithm [14] until atomic terms are

encountered. The algorithm UNIAT unifies pairs of terms where

at least one term is an atom. UNIAT is called from the R-

unification algorithm RUNIFY.

3.

1.

.1. Notation

For any domain D, and variable x, x:D indicates that x takes

values from D.

For any term t,

const (t)

var (t)

{c € CONST N t} denotes the set off all constants

occurring in t;

{x € VAR N t} denotes the set of all variables

occurring in t.

For any term t and k € M *, brother(t,k) denotes the subterm

in t having the brother node of k in t as its root noce; if

no such node exists for t, krother(t,k) is the empty term.

AT, TERM,

and SURST denote the domains of atoms, terrs and

substitutions.
5. disagree(s,t) denotes the disagreement set of s and t

(see [14]).

5.3.2. Unifying atoms and terms

When applied to an atom u and a term %, UNIAT returns a wair

consisting of a success/failure messace and a substitutiocn.

UNIAT := A u:AT t:TERM.

case u (1) u € CONST : <2f {u} U const(t) % {ul} then (FAIZ,Q)

else (SUCC,{x+u|x € var(t)})

{The atom u is a constant. If t contains a cowstant
other than u, then u and t are not untfiable; other-
wise, every variable in t ©s substituted with u

(see Examples 3.3.2.1,2 below)}

(2) u € VAR:
case u
(2.1) u ¢ t: (succ,{u«t})
(2.2) u € t: Zlet 1 € {j|u ¢ sub(t,j)
and brother(t,j) = u} ixn
let 0 := {u<~sub(t,1l)} in
2f NF[sub(t,l)] = NFlot] tken (SUCC,0c)

¢lse¢ (FAIL,Q)

{The atom u is a variable. If w is wnot oecciz.iw

t, the substitution {u«r} <Immediately subszitutes

(8N}
[N
o

t for uw without changing + (see Exampie I.7.

Fowever, 1f u 18 a variebie that dces ocue =

%)
!
-

1. Look for a subtree q in t s.t. u does not
oceur in q but the brother of q in t is an
occurrence of u.

2. Let o := {u<ql; <f the normal form of ot and
the normal form éf q are identical, thén g
unifies u and t; otherwice, u and t are rot

2)

unifiable (see Examples 3.3.2.4,5).}

The following examples illustrate how UNIAT works and do also

exhibit some particulars of unification under idempotence.
3.3.2.1. Example: UNIAT [c, ((c,d),x)]
Since ¢ is a constant, case (1) applies. As const[((c,d),x)] =

{c,d} # {c}, UNIAT returns (FAIL,@).

.3.2.2. Example: UNIAT [c,((c,x),y)]

w

Again ¢ is a constant and we are in case (1). Now const[((c,y),y)] =

{c}, hence UNIAT returns (SUCC,{x+c,y+cl).

3.3.2.3. Example: UNIAT [x,(a,b)]

This is the trivial case (2.1) with UNIAT returning (SUCC,{x<+(a,b)l).

3.3.8.4. Example: DNIAT [x,(((a,b).,x),x)]

This is case (2.2) with the variable x occurring in the term.
(a,b) is the largest subterm with brother x but not containing x
itself, so the substitution 7 = {x<(a,b))} is generated.

ox = NFlo(((a,b),x),x)] = (a,b) UNIAT terminates with (SUCC,0o).

?.3.2.5. Examples: UNIAT [x, (((a,b),x),c)]

Again case (2.1) applies as in the previous example, and the
same substitution o = {x~(a,b)} is generated. But

ox # NF[a(((a,b),x),c)] = ((a,b),c) so that UNIAT returns

(FAIL, Q).

€

.3. Dhe algorithm RUNIFY

RUNIFY := {fix RU.A0:SUBST. As:TERM t:TERM.
1f disagree(s,t) = @
then (SUCC,@®)
else let (rl,rz) := disagree(s,t) <in
let r, € AT and i # j for i,j € {1,2} 1in
lat least one of r, and r, ¢ an atom, cay r,)
let (m,0,) := UNIAT rirj in
i1f m = SUCC
then let G, := 0,¢
if 0,8 < o,t then (SUCC,0,)
else RU[0,,0,5,0,t]

else (FAIL,Q®)

} o

RUNIFY is a recursive algorithm unifying two arbitrary terms
s and t. Recursion is specified in terms of the familiar fix-
point notation that abstracts from particular implementations.
RUNIFY is the least function constructing a unifier frcmo the

empty substitution @ and s and t in the following way:

First, we check the disagreement set of s and t; if it is
empty, we are done. From the disagreement set {rl,r2} we
pick an atom r, and apply UNIAT to r, and X (3 = 1, i.e.

the other member of {rl,rz}). If UNIAT {rl,rz} successfully
returns a substitution Oy s 04 is appended to the substi-
tution having been worked out so far (initially @), resulting
in a substitution o,. If 0, already does the job, we are
done; otherwise, the whole procecdure is applied acain to
0,10,8, and ¢,t. In case UNIAT fails, RUNIFY terminates with

2

a failure.

3.4. Adlgorithm for Idempotent Unification

Combining 3.2. and 3.3, we obtain the following algorithm

IONIFY for unifying two terms with respect to idempotence:

IUNIFY := As:Term t:Term.

{RUNIFY rlrzl(rl,rz) € (collapse s) x (collapse t)}

Note that instead of collapsing we could employ the conceptually
equivalent strategy of expansion. However, collapsing is more
efficient with respect to both time (interlacing RUNIFY avoids

redundant steps) and space.

4. Completeness of the Unification Algorithm

We show the completeness of our unification algorithm IUNIFY

in two steps:

(1) First, we show that for any unifier § of terms s and t

not collapsing any non-leaf nodes ("immediate unifiex"),

RUNIFY applied to s and t successfully returns a unifier
0 s.t. § £ 0. T.e., RUNIFY is complete with respect to
immediate unifiers.

(2) We then show that for any arbitrery unifier ¢ of s and t
we can find substitutions T and 1' s.t.

1. 7s € collapse(s) and 't € collapse(t), and

e

2. there is an immediate unifier © with 97s Ot't and

§ £ QeTet’.

4.1. Partial completeness of RUNIFY

To aid our subsequent exposition, we single out nodes that

can be "immediately" collapsed.

4.1.1. Def.: For any term t, the set ICnode(t) of immediately
collapsible nodes in t is defined by:
vk € labels(t).

I
k € ICnode(t) iff 1lsub(t,k) = rsub(t,k)

$.1.1.1. Example: Intuitively, a node k is immediately
collapsible iff its two subtrees are equal under idempotence.
For t = (((a,a),(a,b)), (a,(a,b))), ICnode(t) = {0,011]}.

£.1.2. Immediate unifiers

Taking NLnode(t) to be the set of all non-leaf nodes in 2 term t

- 22 -

an immediate unifier is a substitution not immediately

collapsing any non-leaf nodes.

4.1.2.1. Def.: A unifier o of two terms t, and t, is called
an immediate unifier for t, and t, iff

ICnode(oti) n NLnode(ti) = @ for i =1,2.

2.2. fxarzle: Let s = (x,y) and t = (a,b); then

0y

{x«a,yv<b! is an immediate unifier, but ¢ = {x-(a,b),y<(a,b)}

a

is a unifier which is not immediate.

4,1.3. Lemma: Let 0 be an immediate unifier for two terms t1
and t,, and disagree(t,,t,) = {si,sz}.

Then.os1 = 052.

Proof: Suppose the lemma is false, i.e. os, 0s,. Since we

= -

assumed ¢ to be a unifier, we know that ot1 0t2, hence
NF[otl] = NF[otz] and we conclude that ¢ must collapse at
least one node in t1 or t2. This node cannot be a leaf node,

contradicting our assumption that the unifier o is immediate.

4.1.3.1. Remark: Lemma 4.1.3 is always tacitly assumed in the
unification theorém of ordinary unification (see e.g. [141]).
However, it is not obvious, and usually not true, for T-uni-
fication with certain equational theories T. From the above
Example 4.1.2.2, we can see that restricting the lemma to
immediate unifiers is crucial: The disagreement set for
<(x.v),(a,b)> 1is {x,a}, and for the non-immediate unifier

¢ = {x+(a,b),y<(a,b)}, ox % oca.

4.1.4. Theorem: [Completeness of RUNIFY with respect to imme-
diate unifiers.] Let ¢ be an immediate unifier
of two terms t, and t2ﬂhen RUNIFY terminates
successfully with RUNIFY t, t, = (sUCC,z) and

8 & 0.

rrcof: The proof is done by computational induction [1C] on the
functional:
Runi := ARU.X0:SUBST. A s:TERM t:TERM.
1f disagree(s,t) = @
then (SUCC,@)
else let (rl,rz) := disagree(s,t) in
let r, € 2T and i # j for i,j € {1,2} 1in

{at least one of r, and r, is an atom, say r,}

1 2
Let (m,ol) := UNIAT r.lrj in
2f m = SUCC

then let o

]
Q
-]
Q
)
S

2

=

©f 0,8 o,t then (SUCC,GZ)

,
else RU[oz,ozs,ozt]

else (FAIL,Q)

We show inductively that for all k € N and terms t, and t,

there are substitutions Oy with:

k

{1) (Runi”™ h) @ tltz = (succ,ok),

where h maps any substitution ¢ and terms s,.8, to

hosls2 := (SUCC,41), taking SUBST to be a discrete

domain with least element L.

(2) Skk-G = kk° Oy -

- 24 -

Since this is obvious for k = 0, we assume inductively for
any k
(*1) Runi”® hgt,t, = (SUCC,o0,) and

(*2) Bkk-é = kko Oy s

leaving to show that (1), (2) hold for k+1.

Case 1: ckt1 = okt2

o . _ okl -)
Then dlsagree(zktl,oktz) = @ so that Runi h¢t1t2 (SUCC,Lk)
by (*1), and i, , := A, does the job to prove (2).

Case 2: o, t, % o.t,

Let disagree(ck 1’0kt2) = {rl,rz} and, say, u = Iy € AT. Then
Runi®*? hgt .t = let (m,0) = UNIAT u r, in

1f m = SUCC then (SUCC,0 0 lse (FAIL,Q®).

k) €

Our case analysis proceeds by considering u to be (a) a

variable and (b) a constant.

(a) u € Var.

(1) Let u € r,; from assumption (*2) and Lemma 4.1.3 we conclude
(*) Aku = A\ r,, so there is some term q with u<«qg € A+ Because
all substitutions.are assumed to be in normal form, A, does not
substitute for any variable occurring in g, whence there is an
occurrence of u in r, paired with a term equal to g as its
brother. Taking 1 € {j]u § éub(rz,j) and brother(r,j) = u} to
be the label of any such occurrence of u in r,, ve obtain for

G := {u+sub(r2,l)} that sub(r2,l) = Or, énd UNIAT u r2 = (SUCC,0).

- 25 -

Let Xk+1 = Ak - 0 and Opsyg = @ ° gy ; then
Ak = {u+Aku} U Ak+1
= {ud [sub(r,,1)1} U A, ., Dby (¥)
= {u+kk+1[sub(r2,l)]}u A4q Since u ¢ sub(r,,1)
= A4y 0 O
Eence § = Akook by induction hypothesis (*2)
= Ak+1 0 eok
= Bieer ® Tpage
(2) Let u ¢ r,; then UNIAT u r, = (SUCC,0) with 0 := {u<r,}
so that for
Ak+1 = Xk - ©® and 0k+1 := 0 °ec, we cbtain
Ak = {u+Aku} U Ak+1
= {u+kkr2}tjkk+] since XAu = A I, as in (1)

= {u+Ak+1r2}U A4q Since u ¢ r,
= Xk+1 LIRC)
so that & = A, 4 ° 0y

(b) u € Const.

follows as in

(1)

If r, contains a constant different from u then u and r, are

o~

obviously not unifiable, contradicting inductive hypothesis

(*¥*2). Hence we obtain UNIAT u r,

0 := {x+ulx € var(rz)} and for Xk+J

A

Q@ e 0. we conclude §

and © X

k+1

(SUCC,0) with

K+1

= 2

k

e 0

k+1

&)
)

similarly to (a).

- 26 =

4.2, Completeness of IUNIFY

To establish the overall completeness of our unification

algorithm we need two auxiliary lemmas about substitutions.

4.2.1. Lewma. Let p and 0 be substitutions with p © ¢. Then,

for any substitution 7 : peT € 0 e

Prcof: Obviously, Ae(cet) € 0 e T for any); assume in parti-

cular

o0 = A eg, whence: Ao (0eT) = (Aeoeo) T
= peT
T OoeT

Unfortunately, Lemma 4.2.1 does not hold for composition from
the left side. This is demonstrated by the example

p := {z+c,x+al}, o0 := {z+«c}, and 1 := {x+«b}:

p € 0 holds, but te p = {z+c,x+«a} ¢ {z+c,x«b} = T+ 0. This fact

makes the proof of the following lemma more complicated:

4.2.2. Lemma: For any substitutions §,0,, and o.:

B A 2
If ¢ o, and ¢ € &, then § € 0,° 0,.
Proof: By assumption there exist A, s.t. & = A e o;(i =1,2).

Among all kl with ¢ = A, ® 0 choose %, s.t. it is minimal with

respect to £. Let A, = {vn+tn|1gn§N}

(4.2.2.1) 8o £ 6

27

Proof: From § = A1° o, we conclude Vn (1<n<N). v, <t € &. This

can be easily seen by assuming the contrary, i.e. v <t g o
for some m, 1<m<N; then, for

Ay o= A, - {vm+tm} we obtain § = Al e contradicting the

1
1 1 d 17

(minimal) definition of AJ.
Hence we have:

Ay, € & (considered as sets of pairs)
Thus follows:

8 ~A1 c § e (by e-multiplying ¢ from the 1eft)

= § (since ¢ is assumed in normal form).

Hence in particular:

Proof: 6§ = § 3§ (since § assumed in normal form)
= (A, 20,) e (A ¢0,) (by definition)
E 0, A, 00,
= O, e é
c 6

(4.2.2.3) 6 € 020 o1

Proof: From: 6er, € by (4e¢2:2+14)

follows (*) (¢ vkl)o o, 80 by lemma 4.2.1.

1

Hence we have:

§ = 8 ¢6 (since § in NF)
= § °(Alo 01) (by definition)
c ¢ °a, (by (*))
= Az' 0, 0,4 by definition
€ 0,0,

- 28 -

From Lemma 4.2.2. we obtain immediately

.,GN(N € N):

4.2.2. Corollary: For any substitutions Oy ree

If § € o, for 1<n<N then 6 £ 0, o... c0, for any permuta-

1 N

tion (i .,iN) of (1,...,N).

IRAK

Our final result is the overall completeness of IUNIFY which

is an immediate conseguence of the next theorem:

4.2.4. Theorem: Let § be any unifier for two terms t, and t,.
Then, there are substitutions Ty and T, s.t.
(1) Titi € collapse(ti) (i =1,2), and

(2) RUNIFY applied to T,t, and 1,t

) successfully returns an

immediate unifier © with § € 0 *T, 0T,

Proof: Let Icoll, := ICnode (&t) (i = 1,2) be the sets of
labels marking immediately collapsible nodes in ét,,

i.e. nodes "collapsed by §". Then for any k € Icolli

[}

there is a substitution ¢ s.t. sub(o, .t.,k)

- kibi sub(&ti,k)

and o, ., t, € collapse(t;). Because of Theorem 4.1.4.,

Oy s is most general.

Let 1; := o{o,, |k € Icoll;} be the combination of all

such substitutions. Since 71, combines all substitutions
yielding collapses of nodes also collapsed by 6, all other
substitutions carried out by § do not result in collapses.
Hence, there is a substitution 0 s.t.

RUNIFY (Tltl) (1,t,) = (SUCC,0), and é§ & O e T,0T, again by

22
Theorem 4.1.4.

4.2.5. Corollary: IUNIFY is complete; i.e. for
any terms t1 and t2 with unifier
6 6(t1) ! 6(t2) there is a unifier
0 generated by IUNIFY tlt2 and some

substitution A such that

{len]

8 AecC

& Mintmality

The set of unifiers returned by IUNIFY is not minimal in
general. For example, IUNIFY applied to (x,b) and ((a,y),b)'
returns the unifiers o, = {x+(a,y)} and o0, = {x+a,y«b}. How-
ever, o, is an instance of 0y - IUNIFY can be improved with
respect to minimality by restricting the set of collapses

to be formed from "hot" nodes only:

5.1. Def.: Given a pair tl and t, of terms, the set of

2
hot nodes of t; with respect to tj(i =1,2, 1i#%3)
is defined by

Hnode(ti,tj) := {k|k € labels(t;) and k € NLnode(tj)}.

In other words, any node k of t, is hot with respect to tj e

k also marks a non-leaf node in tj.

Let IUNIFYH be similar to IUNIFY except that forming collapses
is restricted to hot nodes only. Then, following Section 4, it

is straightforward to show:

_30..
5.2. Lemma: IUNIFYH is complete.

IUNIFY applied to (x,b) and ((a,y).,b) only returns the
above unifier o, = {x«(a,y)} but not ¢, = {x+a,y«b}. How-
ever, IUNIFYH is also not minimal in general. For example
IUNIFYH applied to ((x,a),b) and ((y,a),z) returns the
unifiers T, = {z<b,x+«y} and Ty = {z+b,x<a,y+a} but T, & Ty,
We did not find a criterion ensuring minimality of an accor-
dingly modified IUNIFY-algorithm. However, since the complete
set of unifiers is always finite, substitutions that are

instances of other unifiers can always be eliminated.

Consequently, any useful criterion guaranteeing minimality
should be computationally cheaper than checking off instances

of other unifiers.

6. Unification of Commutative and Idempotent Terms

In [20] an algorithm, CUNIFY for the unification of commutative
terms is presented. The problem there is to prove whether or
not the set V¥ of mgu's is finite and to find a computationally

cheap condition to ensure minimality.

Essentially the algorithm permutes all the arguments of the
commutative function subject to certain conditions and then

applys Robinson's unification algorithm to each permutation.

Replacing Robinson's Unification in CUNIFY by IUNIFY gives an

algorithm for functions which are both commutative and

idempotent.

The set Y of mgu's thus obtained is finite, however not

minimal in general.

It may deserve mentioning that such a combination of algorithms

is not always possible: the axioms for commutativity (C) znd

[\l

associativity (A) provide a counterexample in that the ali-
gorithm for a theory with both C and 2 is totally differert

from the algorithms for C and A alone: WC is finite, the

unification problem for C is decidable; WA is infinite [8],

[12], [19], the decision problem is an open problem now for
@) 'y, is finite and the unification problem

is decidable [9], [22].

cver 25 years

() . _ . 3 - i s
) in its equivalent form as: the wordproblem over a free monocid, L&b's

Problem, Markov's Problem; the "crossreference problem" for van Wijn-

gaarden grammars; second crder mcnadic unification;

7.

1

\c

References

[BE67]

[co65]

[BEEW72]

[HUE75]

[HUE75]

[KB67]

[LA77]

[1875]

rLs76]

- 39 =

Bennett, Easton, Guard, Settle. CRT-aided
semiautomated mathematics. Techn. Report
AFCRL 67-0167, 1967, Applied Logic Corp.,

Princeton.

S. Cook. Algebraic technigues and the
mechanization of number theory. Techn. Rep.
RM-4319-PR, 1965, Rand Corp., Santa Monica,
Cal.

C. Hewitt. Description and theoretical
analysis of PLANNER. Ph.D.-Thesis, M.I.T.,
1972, Art. Int. Lab., Cambridge.

G. Huet. Unification in typed lambda cal-
culus, "Springer Lecture Notes", No. 37,

(ed) Goos, Hartmanis, 1975.

G. Huet. A unification algorithm for typed
A-calculus, Theoretical Comp. Sci. 1.1.,
1975.

D. E. Knuth, P. B. Bendix. Simple Word
Problems in Universal Algebras, in "Com-
putational Problems in Abstract Algebra",
J. Leech (ed), Pergamon Press, Oxford 1870.

D. Lankford. Complete sets of reductions.
Univ. of Texas, Automatic Theorem Proving
Project, Austin, Texas, Techn. Rep. ATP-35,
ATP-37, ATP-39, 1977.

M. Livesey, J. Siekmann. Termination and
Decidability Results for String Unification.
Essex University, Computing Centre; Memo
CsM-12, 1975.

M. Livesey, J. Siekmann. Unification o=
Bags and Sets. Interner Bericht 3/76,
Institut fir Informatik I, Universitdt
Karlsruhe, 1976.

10.

11.

12.

13.

14.

15,

16.

17

18.

19.

20.

5

[(MA74]

[NE71]

[PL72)

[PW72]

[ROB65]

[ROB67]

[RW73])

[RDW72]

[BFR76]

[S175]

[S176)

[sL72)

= 33

Z. Manna. Introduction to the Theory of

Computation. Addison-Wesley, 1974.

A. Nevins. A human-oriented logic for
automatic theorem proving. JACM, vol 21,
No. 4, 1971.

G. Plotkin. Building in equational theories.

Machine Intelligence, vol 7, 1972.

M. S. Paterson, M. N. Wegman. Linear Unifi-
cation. IBM Research Rept. 5804, 1976.

J. A. Robinson. A machine criented logic
based on the resolution principle. JACM:12,
1965.

J. A. Robinson. A review on automatic theo-
rem proving. Symp. Appl. Math., vol 19,
1-18, 1967.

G. Robinson, L. Wos. Maximal models and
refutation completeness: Semidecision proce-
dures in automatic theorem proving. In Boone
et al. (eds.), "Word problems", North Holland,

1973,

Rulifson, Derksen, Waldinger, QA4: A proce-.
dural calculus for intuitive reasoning, Techn.
Rep:, Stanford Res. Inst., Nov. 1972.

BShm, Fischer, Raulefs. Dialogs in Actor Nets.
Universitidt Karlsruhe, Institut flir Informatik
I, 1976.

J. Siekmann. String unification. Essex Uni-

versity, Memo CSM-7.

J. Siekmann. Unification of commutative terms.
Interner Bericht 2/76, Universitdt Karlsruhe,
Institut fir Informatik I.

J. R. Slagle. ATP with built in thecries in-
cluding equality, partial ordering, and sets.
JACM:19, 1972.

22,

23.

24.

L5

26.

27.

28,

29 .

30.

31«

32.

33.

[sT75]

[HM64]

[szUu78]

(WI76]

[GO66]

[MAS54]

[sTI77]

[HUE77])

[vo78]

[FGP64)

[FIP74]

[KMP74]

- B4 =

M. Stickel. A complete unification algo-
rithm for associative-commutative functicons.
Proc. 4th IJCAI, Tblisi, USSR, 1975,

J. Hmelevskij. The solution of certain systems
of word eguations. Dokt. Akad. Nauk. SSR (1964),
(1966), (1967), (Soviet Math. Dokl.).

P. Szabo, E. Unvericht. D-unification has
infinitely many mgu's. Universitdt Karlsruhe,
Institut flir Informatik I, 1978.

G. Winterstein. Monadic Second Order Unifi-

cation. Universitd&t Kaiserslautern, 1976.

W. E. Gould. A matching procedure for w-or-
der logic. Scientific report No. 4, AFCRL-
666-781, 1966.

A. A. Markov. Trudy Mat. Inst. Steklov, No. 42,
Izdat. Akad. Nauk SSR, 1954.

M. F. Stickel, G. E. Peterson. Complete Sets
of Reductions for Equational Theories with

Complete Unification Algorithms. Dept. Comp.
Sci., University of Arizona, Tucson, Techn.

Rep., 1977.

G. Huet. Confluent Reductions: "Abstract
Properties and Applications to Term Rewriting
Systems", Pap. Rech. No. 250, IRIA Laboria,
Rocquencourt, France, 1977.

E. Vogel: Unifikationsalgorithmen fiir Morphis-
men. Diplomarbeit (forthcoming), Universitdt

Karlsruhe, Institut fir Informatik I, 1978.

P.J. Faber, R.E. Griswald, I.P. Polonsky:
'SNOROL as String Manipulation Language'.
JACM, vol 11, no. 2, 1966.

J. Fischer, S. Patterson: 'String Matchinc and

other Prcducts', MIT, Project MAC, Report 41, 1974.

Knuth, Morris, Pratt: 'Fast Pattern Matchinc in
Strings', Stan-CS-74-440, Stanford University,

Computer Science Dept., 1974.

35.

34. [MRK77] G.S. Makanin: The Problem cf Sclvability of
Equations in a Free Semigroup,

Soviet Akad. Nauk SSSR, Tom 233, nec. 2, 1977.

35. [sza78] P. Szabd: 'The uncdecidebility of the D+A-
unification problem' ,
(forthcoming), Universitdt Karlsruhe, In-

stitut fir Informatik I, 1978.

