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This thesis presents approaches using techniques from the model checking, planning, and
learning community to make systems more reliable and perspicuous. First, two heuristic
search and dynamic programming algorithms are adapted to be able to check extremal
reachability probabilities, expected accumulated rewards, and their bounded versions, on
general Markov decision processes (MDPs). Thereby, the problem space originally solvable
by these algorithms is enlarged considerably. Correctness and optimality proofs for the
adapted algorithms are given, and in a comprehensive case study on established benchmarks it
is shown that the implementation, called MopysH, is competitive with state-of-the-art model
checkers and even outperforms them on very large state spaces. Second, Deep Statistical
Model Checking (DSMC) is introduced, usable for quality assessment and learning pipeline
analysis of systems incorporating trained decision-making agents, like neural networks
(NNs). The idea of DSMC is to use statistical model checking to assess NNs resolving
nondeterminism in systems modeled as MDPs. The versatility of DSMC is exemplified
in a number of case studies on Racetrack, an MDP benchmark designed for this purpose,
flexibly modeling the autonomous driving challenge. In a comprehensive scalability study
it is demonstrated that DSMC is a lightweight technique tackling the complexity of NN
analysis in combination with the state space explosion problem.






III

enfassung

Diese Arbeit prisentiert Ansitze, die Techniken aus dem Model Checking, Planning und
Learning Bereich verwenden, um Systeme verlésslicher und klarer verstiandlich zu machen.
Zuerst werden zwei Algorithmen fiir heuristische Suche und dynamisches Programmieren
angepasst, um Extremwerte fiir Erreichbarkeitswahrscheinlichkeiten, Erwartungswerte fiir
Kosten und beschrinkte Varianten davon, auf generellen Markov Entscheidungsprozessen
(MDPs) zu untersuchen. Damit wird der Problemraum, der urspriinglich mit diesen Algo-
rithmen gelost wurde, deutlich erweitert. Korrektheits- und Optimalitdtsbeweise fiir die
angepassten Algorithmen werden gegeben und in einer umfassenden Fallstudie wird gezeigt,
dass die Implementierung, namens MobpysH, konkurrenzfahig mit den modernsten Model
Checkern ist und deren Leistung auf sehr groBen Zustandsrdumen sogar iibertrifft. Als Zweites
wird Deep Statistical Model Checking (DSMC) fiir die Qualitdtsbewertung und Lernanalyse
von Systemen mit integrierten trainierten Entscheidungsgenten, wie z.B. neuronalen Netzen
(NN), eingefiihrt. Die Idee von DSMC ist es, statistisches Model Checking zur Bewertung von
NNs zu nutzen, die Nichtdeterminismus in Systemen, die als MDPs modelliert sind, auflosen.
Die Vielseitigkeit des Ansatzes wird in mehreren Fallbeispielen auf Racetrack gezeigt,
einer MDP Benchmark, die zu diesem Zweck entwickelt wurde und die Herausforderung
des autonomen Fahrens flexibel modelliert. In einer umfassenden Skalierbarkeitsstudie
wird demonstriert, dass DSMC eine leichtgewichtige Technik ist, die die Komplexitit der

NN-Analyse in Kombination mit dem State Space Explosion Problem bewiltigt.
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1.
Introduction

Already today our life is full of cyber-physical systems (CPS), i.e., computing systems in

which the control software is meant to govern a physical and mechanical part [8, 223]. We use
them all day long, when brushing our teeth in the morning with an intelligent electric tooth
brush, or when interacting with all our small smart home devices which make our daily life
much easier [70, 80, 231]. But they also play a major role in large industry machines [162], in
robotics [72, 237], in medical monitoring [79, 196], in traffic management systems guiding
cars which drive more and more autonomously [145], and in air traffic [254]. We are in the
process of developing Industry 4.0, autonomous cars, smart homes, and smart cities. Who
knows which innovations we can expect in the future?

Many of the innovations in recent years have been enabled by neural networks (NNs).
We often interact with intelligent systems which use NNs to take decisions for us or
recommend which choice seems to be optimal [213, 269]. These techniques are used, e.g.,
in personalized advertisements [151, 232], but also in CPS, like industry robots [72], robot
assisted surgeries [237], computer guided rescue missions [41], and autonomous cars [40].
All these examples demonstrate that increasingly complex software participates in actions

and decisions that affect humans directly.

1.1. System Verification

We interact with all of these small and large intelligent and cyber-physical devices very
closely, and often without thinking about any safety risks. In some cases that is fine because
failures are not critical and do not harm. In other cases small imprecisions or errors can lead
to losses of lives, e.g., in accidents with self-driving cars [265], or to huge economic damage,
e.g., when software is not tested adequately [222]. An exemplary question of a specific use
case which will be with us throughout the thesis is: Shall we really trust a neural network in
the driving seat of our car?
More generally, the main question is: How can we achieve that we trust the systems we are
interacting with in our daily lives?

This shows that there is a growing need for verification of cyber-physical and intelligent

systems. We often do not understand how these systems interact with their components,
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and why certain decisions are taken by the systems. One big reason is that the systems
become increasingly complex which makes it ever harder to verify them. All these devices,
machines, and systems consist of multiple components all interacting with each other, and
sometimes even with other systems in their surrounding. Nevertheless, it is urgently required
for software applications in, e.g., an autonomous car, that all components the car consists of
are guaranteed to work as intended. If this is the case, other parts of the system can rely on the
correctness of the hardware and software systems in use. In the example of an autonomous
car this is then also true for the passengers who can feel safe upon entering the car.

To summarize, the consequences of loosing the understanding and control over systems
surrounding us become more and more severe during the technological progress. This
shows the need for perspicuous systems, i.e., systems which operate lucidly, understandably,
transparently, comprehensibly, and clearly. For perspicuous systems, it should be possible to
describe their behavior using formal mathematical or computational constructs. In addition,
perspicuity is provided by interactive visualizations and verbalizations allowing potential
users of the system with different background knowledge to explore the system’s behavior
and understand it. This also opens the systems for usage in multiple disciplines. It should be
possible to make the behavior of systems plausible to the users, such that they can gain trust
into the systems’ operation and decisions.

Our first goal in this thesis is to contribute research which enables us to tell how high the
safety risk of a given complex system is and what properties it has. Since before being able
to explain why systems behave in a certain way, it is extremely important to verify that they
do what they are intended to do, and especially that they operate in a safe manner. If that is
the case, other systems, but first and foremost we as humans interacting with CPS, can rely
on them and be sure to be safe during interaction. The definition of safety always depends on
the specific context.

On top of that, as a second goal, we want to provide approaches helping in explaining and
in giving reasons why a certain decision has been taken in a system or what exactly the cause
for an error was, i.e., we want to provide strategies to make systems more perspicuous. This
does not only help users in gaining trust in the systems by understanding their decisions but

also gives system engineers deeper insights usable to enhance the functionality and quality.

But before being able to verify a system or to assess its quality by understanding what
it does, it has to be specified unambiguously what its functionality should be. This can,
for example, be done by designing a formal model specifying its behavior, on which the
verification and inspection can be conducted later. Most systems can be modeled as networks
of parallel probabilistic automata in one of the established modeling languages, like the

JANI-model format [53], the Prism language [190], or MobpesT [123]. The systems we are
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talking about in this thesis are often composed of several components working together in
parallel. The communication and interaction of these parts has to be modeled accurately.
In such systems, regularly decisions between multiple options for actions have to be taken.
Often probabilities specify how likely it is for a behavior to happen, e.g., when (parts of)
the system can be modeled as a stochastic process, when randomization is used, or when
unreliable or unpredictable events occur. This behavior is modeled by probabilistic actions. If
the system is underspecified, it can only be modeled abstractly. This is sometimes also done
to leave implementation freedom or to model multiple options at once. When the probability
distribution over actions is not clear in such cases, the states in which these actions occur
are modeled nondeterministically. If this is the case, we say that nondeterminism occurs in
the model. This exemplifies that the modeling process of concurrent probabilistic systems is
often quite complex.

After having build a model, interesting properties can be specified for it. Often the
performance or the reliability of the entire system is of interest and properties like the failure
probability, or the estimated resources consumed to fulfill a predefined task are calculated.

The solution approaches of formal methods [94, 157] rely on such precise and unambiguous
formal specifications of the system and the property under investigation, which need to be
verified to match each other to be sure that the system does exactly what it is supposed to do.

One possible verification approach is called theorem proving [39], where given a formal
model and the required properties, one tries to verify that the property holds with the help of
an interactive proof assistant. This, however, can be very challenging and time consuming
because the key steps often rely on manual proof steps.

Another approach, sometimes more, sometimes less decoupled from formal methods, is to
conduct fests on the CPS itself to check if the behavior matches the expectations. But there
are several limitations to this approach: Finding no errors during a test does not imply that
the system always behaves correctly. Being sure that the system is entirely error-free is only
possible after exhaustive tests of the full system. Testing all possible scenarios to be sure that
the system is always behaving correctly is often infeasible because there are too many options.
In the presence of nondeterminism the approach is infeasible because the nondeterminism is
not controllable to reproduce all possible scenarios. Sometimes also an infinite number of
scenarios would need to be checked. Even if a testing strategy is applicable, it is quite costly,
e.g., for large industrial systems, because it takes excessively long and in some cases uses a
lot of resources [183].

Studies have shown that model checking is a better technique in this respect, because it
is less time consuming, requires less adjustments, and finds substantially more bugs [38].
Model checking [22, 64, 68, 86, 242, 261] is a set of fully automated techniques to check a
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given formal property, i.e., a formal specification of the requirements, on a formal model of
the system.

There are two relevant flavors of model checking, both appearing in this thesis on
probabilistic models called Markov Decision Processes (MDPs) [226] with probabilis-
tic actions and nondeterministic behavior. These are (i) exhaustive probabilistic model
checking [15, 17, 19, 22, 69, 90, 168, 188, 260] and (i1) statistical model checking
(SMC) [28, 44, 51, 141, 197, 198, 240, 273, 271, 275]. The former works on the en-
tire state space of the model and checks for all possible executions, i.e., across the reachable
part of the state space, whether the property under consideration holds. This approach of
checking a property for all possible executions has similarities to exhaustive testing but is
done on the formal model of the system instead of the system itself, which in many cases
makes it feasible to check all possible scenarios in a reasonable amount of time with low costs
in comparison to real testing [38]. In addition, probabilistic model checking is applicable to
nondeterministic models in contrast to testing. But even for exhaustive probabilistic model
checking some CPS are too complex, the model gets too large, and the approach is not feasible
anymore w.r.t. time or memory consumption. This phenomenon of issues arising when trying
to treat increasingly large state spaces is called the state space explosion problem [66, 67].

The second approach for model checking, statistical model checking, is in general only
applicable to deterministic models. It is not exhaustive and employs efficient sampling
techniques to statistically check the validity of a certain formal property. In essence, it builds
up one run through the system model’s state space after the other until enough sample runs
are at hand to provide a result within predefined statistical bounds, i.e., required memory
resources are much lower. This means, hypothesis testing on finitely many simulations of
the system are performed to get a statistical evidence for property satisfaction or violation.
SMC is in general only applicable to models without nondeterminism because during the
execution of the sample runs through the system, it would otherwise not be clear how to
resolve nondeterminism and how to deal with the individual results afterwards. Only in
specific cases under specific assumptions SMC can be used to analyse nondeterministic
models like MDPs.

To meet our goals in this thesis, which we defined above, we build up on both of the
introduced variants of probabilistic model checking. We first present a new approach for
probabilistic model checking by making use of techniques proven successful in the automated
planning community, which do not necessarily explore the whole state space but concentrate
on regions relevant for the property under investigation. Thereby, they often operate more
efficiently w.r.t. time and memory than exhaustive model checkers. The resulting dynamic

heuristic search model checker MopysH [173] shows promising performance in comparison
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to other classical state-of-the-art model checkers and even outperforms them on very large
benchmarks.

Second, we present Deep Statistical Model Checking (DSMC) [106], an approach based
on statistical model checking, usable to analyze and verify NNs and other decision-making
agents, which take decisions resolving nondeterminism in MDPs modeling their environment.
We demonstrate how DSMC can help people from different backgrounds, like domain
engineers, learning experts, engineers in system approval or certification as well as end users
to assess the quality of the neural network’s decisions, to gain an understanding why the
system using the NN behaves in a certain way, and why the NN takes a certain decision. This
analysis makes NNs and systems using such decision-making agents much more perspicuous.

Both approaches have in common that they avoid the exploration of the whole state space
of the system under investigation at once by only considering single executions and a small
part of the state space of the model relevant to answer the property of interest. Thereby, they
often avoid issues related to the state space explosion problem. The contributions have both
been implemented as part of the well-established MopesT TooLser! [128].

To summarize, this thesis presents different approaches on how to verify cyber-physical
systems and systems incorporating trained decision-making agents, like NNs, automatically
with the help of recent methods known from the model checking community in combination

with ideas of the planning and the learning community.

1.2. Using Planning and Heuristic Search for Model
Checking

Automated probabilistic planning [98, 184, 203, 212, 270] operates as follows: Given an
initial state and a goal state description together with a set of possible actions, planners try to
find a sequence of actions which transform the initial state description in such a way that
the outcome meets the requirements of the goal state specification. Often the focus also
lies on how to reach a certain goal in an optimal way, which could be the fastest, safest,
or cheapest way. To find an optimal sequence as fast as possible, often heuristic search
methods [27, 45, 46, 125] are used. In those approaches, approximations or other hints, e.g.,
provided by functions called heuristics, are exploited to guide the search, instead of trying
out every possibility.

In general, a model checking problem with a certain property under investigation can be
turned into a planning task in which goal states are states violating this property [62]. If a

plan is found for this task, it constitutes a counterexample which shows that the property does
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not hold. This demonstrates that there is quite some similarity between planning and model
checking, which has already been exploited in several facets. For example, compilations from
planning into model checking languages and vice versa [24, 150, 175, 176, 206, 218] have
been used, and algorithmic ideas have been exchanged between the communities [7, 84, 185].
More details on that are given in Section 2.3 and 4.3.

In this thesis however, we do not make use of the fact that model checking tasks can
be compiled into planning problems, but we adapt algorithmic techniques known from
automated probabilistic planning to solve model checking tasks directly, and in a more
efficient way w.r.t. time and memory consumption than other state-of-the-art model checkers.
We present a new approach for probabilistic model checking inspired by probabilistic
planning methods [81, 184, 203, 248], heuristic search, and a variation of asynchronous
value iteration, which tries to compute optimal values for reachability probabilities and
expected accumulated rewards based on only a small fraction of the states in the system
model’s state space.

In the last years, a large part of these works in the planning community concentrated
on reachability analysis of MaxProb properties [180, 251, 256], which is the calculation of
maximal reachability probabilities. The algorithms we build upon also stem from this area of
research. While contributions to this research line are manyfold in the literature, as discussed
in Chapter 4, they are quite fragmented with respect to the assumptions on property types
and model characteristics they make.

In our contribution, which is the algorithmic design and the implementation of the
probabilistic model checker MopysH, we instead take care to efficiently support all established
property types, from reachability probabilities to accumulated reward expectations (but no
long-run averages and nested properties), also including bounded versions of these property
types, on MDPs with positive and zero-valued rewards. We harvest and extend a collection of
modified versions of asynchronous value iteration based on heuristic search methods. The core
components of our approach are the Labeled Real-Time Dynamic Programming (LRTDP) [45]
and Find-Revise-Eliminate-Traps (FRET) [180] procedures. The implementation of MobpysH
is based on the combination of these algorithms with several modifications to make the
approach work for MDPs with positive and zero-valued rewards on all established property
types (except long-run averages and nested properties) listed above. As a result, our tool
MobysH considerably enlarges the property types and problem structures supported by
heuristic search methods. The new elements of the algorithms and their integration in the
basic versions are described in detail in Chapter 4. We also give correctness and optimality
proofs for our modified algorithms. A large empirical evaluation, based on the concept of the

QComp competition [54, 121], shows that MopysH is competitive relative to state-of-the-art
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model checkers and is able to solve benchmark instances which are too large to be solved by
any other tool.

MobysH is shipped as an extension component to the Mobpest TooLsgT [128] inside
which it can be considered as an alternative to mcstA [119, 122, 129], which is an exhaustive
explicit-state probabilistic model checker based on traditional value iteration. The functionality
and architecture of the MopesT TooLsgT is described in Section 3.4. The details on the
algorithmic adaptions, the implementation in MopysH, and the comprehensive benchmarking

and scalability study are the subject of Chapter 4.

1.3. Quality Assessment of Trained Decision-Making

Agents in Systems

Neural networks, in particular deep neural networks, are the most prominent representatives
of a large and diverse set of trained decision-making agents developed in the Al community.
Trained decision-making agents in general, but especially NNs, promise astounding advances
across a manifold of computing applications in domains as diverse as image classifica-
tion [182], natural language processing [146], and game playing [244]. Over the last years,
it has been shown that reinforcement learning (RL) algorithms can approximate optimal
decision policies by training deep NNs with very good performances on various complex
tasks [209]. As a result, NNs are pervading the technical core of ever more intelligent
systems, created to assist or replace humans in decision-making. They are being proposed
for automated decision-making under uncertainty in safety-critical cyber-physical contexts,
for example, for the purpose of navigating autonomous vehicles through city traffic.

Against this background, techniques are urgently needed which can assert that the
decisions made by NNs meet crucial requirements w.r.t. robustness, explainability, perspicuity,
and dependability. This development comes with the urgent need to devise methods to
analyze and verify desirable behavioral properties of such systems. Unlike for traditional
programming methods, this endeavor is hampered by the nature of NNs, whose complex
function representation is not suited to human inspection and is highly resistant to mechanical
analysis and thus is highly complex to analyze automatically.

As a matter of fact, remarkable progress is being made towards automated NN analysis, be
it through specialized reasoning methods of the SAT-modulo-theories family [85, 156, 170],
through suitable variants of abstract interpretation [99, 201, 202, 245], or quantitative
analysis [71, 268]. All these works thus far focus on the verification of individual NN decision
episodes, i.e., the behavior of a single input/output function call of the NN.

In contrast, the verification of NNs being the decisive (in the literal sense of the word)

authorities inside larger systems placed in possibly uncertain contexts, i.e., the verification of



Introduction 8

the overall intelligent systems encompassing NN, is wide-open scientific territory. Methods
to systematically analyze and ideally verify behavioral properties of such systems are needed.
This in particular requires the analysis of all possible situations that may result from sequences
of NN decisions, which is extremely challenging as it combines the complexity of analyzing
the NN with that of analyzing the induced system behaviors and interactions. That is, we
have to address the combination of neural network intricacy and the state space explosion
problem.

One step into this direction has been done by computing predicate abstractions of the
subgraph of the state space induced by an NN action policy to verify safety properties [264].
Another approach presents an integrated combination of program analysis together with the
analysis of NN decisions with the help of abstract domains [59].

We present a different approach, called Deep Statistical Model Checking (DSMC),
concentrating on formal models and the verification of trained decision-making agents, with
a strong focus on NN decisions.

The focus on formal models to describe the environment of decision-making agents has a
clear benefit. During training, these environments are typically specified implicitly in the
form of simulation code in the learning community, like in the Arcade Learning Environment
for Atari games [30]. This makes it even harder to check consistency properties on the agents
and is an impediment to the use of such representations in safety-critical applications [262]. If
one strives for a principled understanding of the power of RL algorithms or of the properties
of a specific learned agent in a possibly uncertain environment, a formal, mathematically
precise, and unambiguous description of the training environment appears as a central
asset. A very natural formal model for studying the principles, requirements, efficacy, and
robustness of a trained decision-making agent is the model family of Markov decision
processes (MDPs) [226]. Employing a formal, precise, well-specified, and unambiguous
model of the environment instead of an informally programmed one, bears the promise of
enabling rigorous assessment of decision-making agent properties via formal methods.

Deep Statistical Model Checking has been developed by us for settings where one is facing
a problem which can be described in terms of an MDP, for which a decision-making entity,
like an NN, has been developed by a different party. With DSMC it is then possible to use
the MDP as a context to study properties of the NN acting in the environment. Concretely,
the NN will be put to use as a determinizer of the otherwise nondeterministic choices in the
MDP, so that altogether a Markov chain results, which in turn can be evaluated by statistical
model checking [141, 273]. This combination of the NN and the MDP given to SMC results
in a scalable approach able to tackle the complexity of analyzing the participating NN in

combination with that of analyzing the induced system behaviors and interactions.
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The idea can be further extended by making the technology available to a certification
authority responsible for NN system approval, or to the party designing the NN, as a valuable
feedback mechanism in the design process.

For the sake of experimentation and for use by third parties, we have implemented a
generic connection between NNs as well as arbitrary decision-making agents connected
via a Python function, and the state-of-the-art statistical model checker mopEs [43, 51],
part of the MopesTt TooLseT [128]. This extension of MODES gives the possibility to use a
decision-making agent as a determinizer and to analyze the resulting Markov chain by SMC.
We thus established the first DSMC tool infrastructure. This infrastructure is also part of
MoGywm [107], the toolbox enabling the training and verification of decision-making agents
based on formal models.

DSMC as a scalable method for verification and quality assessment of trained decision-
making agents is the core idea Chapter 5 proposes, where also the tooling in MoDEs and
MoGvywm is described. In addition, we demonstrate in a comprehensive scalability study in
Section 5.3 that DSMC is indeed a lightweight approach and scales well even on extremely
large state spaces. That DSMC makes intelligent systems including NNs more perspicuous
is shown in Section 5.4, where the TRACEVIs tool is demonstrated which visualizes data

collected during the DSMC analysis to make the NN decisions more transparent.

Racetrack. The running example of the chapter centered around DSMC are autonomous
vehicles, e.g., self-driving cars, in a variant of the Racetrack benchmark, which we introduce
in detail in Section 3.3. Racetrack is an instance of many further examples representing
real-world phenomena that involve randomness and decision-making. This is the natural
scenario where NNs are taking over ever more duties. Racetrack constitutes a benchmark
originating in Al autonomous decision-making [27,221], contains basic features of automated
decision-making contexts and can be extended with various further features, ultimately
encompassing the scope of autonomous driving. In full generality, the automated driving
challenge is a vision of (i) swarms of autonomous vehicles, (ii) navigating nimbly through
dense traffic, (iii) using advanced object and position recognition systems, (iv) respecting all
speed limits and other traffic regulations, (v) operating with minimal fuel consumption, (vi)
dynamically adapting to weather and road conditions, (vii) all that in order to get passengers
swiftly and safely to their individual destinations. This autonomous driving vision is among
the most acclaimed applications of future intelligent systems.

To study the potential of DSMC, we use the Racetrack case study family in a variant that
abstractly resembles the autonomous driving challenge albeit with some drastic restrictions
relative to the grand vision. These restrictions are: (i) We consider a single vehicle, there is

no traffic otherwise. (ii) No object or position sensing is in use, instead the vehicle is aware



Introduction 10

of its exact position and speed as well as a description of its environment in form of a map.
(ii1) No speed limits or other traffic regulations are in place. (iv) Fuel consumption is not
optimized for. (vi) Weather and road conditions are constant. (vii) The entire problem is
discretized in a coarse manner. What remains after all these restrictions (apart from inducing
a roadmap of further works beyond what we study) is the problem of navigating a vehicle
from start to goal on a discrete map, with actions allowing acceleration and deceleration in
discrete directions, subject to a probabilistic risk of an action failing to take effect in each
step. The objective is to reach the goal without bumping into a boundary wall. In formal
terms, each environment description in form of a map and parameter combination induces
an MDP.

Racetrack is a simple problem, simple enough to put a neural network in the driver seat:
This NN is then the central authority in the vehicle control loop. It needs to take action
decisions with the objective to navigate the vehicle safely towards the goal. There are a good
number of scientific proposals on how to construct and train an NN for mastering such tasks,
and this thesis is not aiming to innovate in this respect. Instead, the central contribution of
DSMC is a scalable method to verify the effectiveness of an NN trained externally for its
task. This technique is by no means bound to the Racetrack problem domain, instead it is
generally applicable. We evaluate it in the context of Racetrack because we think that this
is a crisp formal model family, which is of value in ongoing activities to systematize our

understanding of NN that are supposed to take over important decisions from humans.

1.4. Outline and Contributions

Outline. In Chapter 2 we introduce the theoretical background and lay the mathematical
foundations to dive deeper into the world of probabilistic model checking techniques as well
as probabilistic planning and heuristic search. In addition, we give a brief introduction to
neural networks and learning techniques.

Chapter 3 describes the modeling context of the benchmarks used in case studies throughout
the thesis and the context of the tool implementations. It introduces the JANI modeling format
in which the models of the Quantitative Verification Benchmark Set (QVBS), we make use
of, are given. In addition, it briefly describes the QVBS and the QComp competition, which
is based on these benchmarks, together with the concepts of the competition we use. In
addition, the Racetrack benchmark is discussed in detail. In the end, the functionality and
architecture of the MopesT TooLsET is presented, in which all tool contributions of the thesis
are integrated.

In Chapter 4, MopysH, a new engine of the MopesT TooLsET, adapting dynamic heuristic

search for model checking, is presented together with all modifications and extensions made
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to the underlying theory. We also give correctness as well as optimality proofs for the adapted
algorithms. A comprehensive benchmarking and scalability study on MopysH is performed
based on the concepts of the QComp competition.

The Deep Statistical Model Checking approach is discussed in detail in Chapter 5. We
first explain the theoretical contribution and procedure of the whole DSMC approach by
introducing NNs as MDP action oracles, and demonstrating how DSMC can be applied for
quality assurance and learning pipeline analysis in multiple case studies. In addition, the
DSMC tooling infrastructure implemented in MmopEs and integrated in MoGyM is presented.
In a comprehensive benchmarking and scalability study we show that DSMC scales very well.
At the end of the chapter, TRACEV1s, a visualization tool to make DSMC analysis results on
Racetrack more perspicuous is presented briefly.

Chapter 6 summarizes the contributions of the thesis and gives an outlook on open topics

and future works for which we layed the foundation and paved the way.

The chapters of the main part of the thesis each start with a short summary paragraph as well
as a survey of the main contributions and an outline of the chapter together with a clear and
detailed statement about the contributions of the author and the origins of the content. A
summary and overview regarding the contributions of the thesis and the contributions of the

author for the whole thesis is already given in the following.

Contributions. The main contributions of the thesis are part of Chapter 3, and especially
Chapter 4 and 5.

We introduce the Quantitative Verification Benchmark Set, which was inspired by previous
works of the author in the planning community, which has been set up with the help of the
author mainly together with Arnd Hartmanns and Tim Quatmann, and to which the author
contributed a lot of benchmarks. In addition, the author was part of a team, consisting of the
same collaborators, initiating the QComp competition based on this benchmark collection,
and was responsible for the technical setup, tool execution, and result evaluation in the second
edition of the competition. Furthermore, we introduce the Racetrack benchmark as a JANI
MDP model and briefly summarize the variants of it developed by the author for different use
cases in multiple projects. We expect this benchmark to be essential in many future works on
the autonomous driving challenge and also in general in works on verification techniques for
cyber-physical systems.

With MobysH, we present a new model checking engine integrated in the MopesT ToOLSET,
which is based on modified and extended versions of well known probabilistic planning
approaches using dynamic heuristic search. These modifications and extensions together with

the implementation of the resulting algorithms have been done by the author. Discussions
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with Holger Hermanns, Jorg Hoffmann, and Marcel Steinmetz about the theory were very
helpful. The implementation is applicable to MDP structures with positive and zero-valued
rewards on all established property types (except long-run averages and nested properties),
i.e., maximal and minimal reachability probabilities, expected rewards, and bounded versions
thereof. We demonstrate in a comprehensive benchmarking study, conducted by the author,
that MopysH is more efficient w.r.t. time and memory consumption than other state-of-the-art
model checkers, especially on very large benchmarks with symmetric structures. With this
benchmarking study, we basically present a new edition of the default probably e-correct
track of QComp 2020 with the newest versions of the participating tools.

The contributions of the works around Deep Statistical Model Checking are manyfold.
We present DSMC to assess the quality of trained decision-making agents, like NNs,
in systems formalized as MDPs. DSMC uses statistical model checking to evaluate the
connection of the decision-making agent determinizing the MDP, which gives insights into
the quality of the agent’s decisions. This approach has been developed by the author in
collaboration with Holger Hermanns, Jorg Hoffmann, Timo P. Gros, and Marcel Steinmetz.
The author established tool infrastructure for DSMC within MoDESs to connect to NNs and
to general decision-making agents, i.e., arbitrary oracles, resolving the nondeterminism in
MDP environments. With MoGyw, the author together with Maximilian A. Kohl and Timo
P. Gros, provides an integrated tool for training decision-making agents on formal models
and their verification with DSMC. How to use DSMC for quality assurance and learning
pipeline assessment is demonstrated in case studies on the Racetrack benchmark, conducted
by the author. In an exhaustive scalability and performance evaluation of DSMC along
multiple dimensions, also done by the author, we show that DSMC is really a lightweight
approach which scales well. To perform all these case studies and experiments, the author
established infrastructure for Racetrack benchmarking, including parsing maps, JANI model
generation and export, and comparison of the decision-making agent’s performance with
optimal behavior. Furthermore, the author extended the standard DSMC implementation to
be able to extract additional analysis data to get deeper insights into the NN decisions and to

make them more perspicuous with the help of the visualization in the TRACEV1s tool.

1.5. Origins of the Chapters

In the following, the publications of the author are ordered w.r.t. the chapters their content
appears in this thesis. For each of the publications, it is stated what the contributions of the

author to the paper are. More details are given at the beginning of each of the chapters.

* Arnd Hartmanns, Michaela Klauck, David Parker, Tim Quatmann, and Enno Ruijters.

The Quantitative Verification Benchmark Set. In Tomds Vojnar and Lijun Zhang,
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editors, Tools and Algorithms for the Construction and Analysis of Systems - 25th
International Conference, TACAS 2019, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11,
2019, Proceedings, Part I, volume 11427 of Lecture Notes in Computer Science, pages
344-350. Springer, 2019

The Quantitative Verification Benchmark Set has been built up with the help of the
author and was motivated by works of the author not covered in this thesis [148, 175,
176]. It is introduced in Section 3.2.

e Ernst Moritz Hahn, Arnd Hartmanns, Christian Hensel, Michaela Klauck, Joachim
Klein, Jan Kfetinsky, David Parker, Tim Quatmann, Enno Ruijters, and Marcel
Steinmetz. The 2019 Comparison of Tools for the Analysis of Quantitative Formal
Models - (QComp 2019 Competition Report). In Dirk Beyer, Marieke Huisman, Fabrice
Kordon, and Bernhard Steffen, editors, Tools and Algorithms for the Construction and
Analysis of Systems - 25 Years of TACAS: TOOLympics, Held as Part of ETAPS 2019,
Prague, Czech Republic, April 6-11, 2019, Proceedings, Part I1I, volume 11429 of
Lecture Notes in Computer Science, pages 69-92. Springer, 2019

The author was part of the team organizing the first QComp competition, which
was partially influenced by previous works of the author [175, 176]. It is covered in

Section 3.2 together with the publication below.

* Carlos E. Budde, Arnd Hartmanns, Michaela Klauck, Jan Kretinsky, David Parker,
Tim Quatmann, Andrea Turrini, and Zhen Zhang. On Correctness, Precision, and
Performance in Quantitative Verification - QComp 2020 Competition Report. In
Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applications of Formal
Methods, Verification and Validation: Tools and Trends - 9th International Symposium
on Leveraging Applications of Formal Methods, ISoLA 2020, Rhodes, Greece, October
20-30, 2020, Proceedings, Part IV, volume 12479 of Lecture Notes in Computer
Science, pages 216-241. Springer, 2020

In the second QComp competition, the author was responsible for the technical setup,

tool execution, and result evaluations.

e Christel Baier, Maria Christakis, Timo P. Gros, David GroB3, Stefan Gumhold, Holger
Hermanns, Jorg Hoffmann, and Michaela Klauck. Lab Conditions for Research on
Explainable Automated Decisions. In Fredrik Heintz, Michela Milano, and Barry

O’Sullivan, editors, Trustworthy Al - Integrating Learning, Optimization and Reasoning
- First International Workshop, TAILOR 2020, Virtual Event, September 4-5, 2020,
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Revised Selected Papers, volume 12641 of Lecture Notes in Computer Science, pages
83-90. Springer, 2020

This publication summarizes works in CPEC? centered around the Racetrack use case
presented in Section 3.3. Many of them have been co-authored by the author of this

thesis. The corresponding website? has been coordinated by the author.

* Michaela Klauck and Holger Hermanns. A Modest Approach to Dynamic Heuristic
Search in Probabilistic Model Checking. In Alessandro Abate and Andrea Marin,
editors, Quantitative Evaluation of Systems - 18th International Conference, QEST
2021, Paris, France, August 23-27, 2021, Proceedings, volume 12846 of Lecture Notes
in Computer Science, pages 15-38. Springer, 2021

The paper introduces the MopysH tool and the base algorithmic innovations of it as
detailed in Chapter 4. All modifications and extensions to the underlying algorithms

and their implementation have been done by the author.

* Timo P. Gros, Holger Hermanns, Jorg Hoffmann, Michaela Klauck, and Marcel
Steinmetz. Deep Statistical Model Checking. In Alexey Gotsman and Ana Sokolova,
editors, Formal Techniques for Distributed Objects, Components, and Systems - 40th
IFIP WG 6.1 International Conference, FORTE 2020, Held as Part of the 15th
International Federated Conference on Distributed Computing Techniques, DisCoTec
2020, Valletta, Malta, June 15-19, 2020, Proceedings, volume 12136 of Lecture Notes
in Computer Science, pages 96—114. Springer, 2020

This is the publication introducing Deep Statistical Model Checking (Chapter 5) and
especially the case studies on Racetrack presented in Section 5.2. The author was
responsible to implement the DSMC approach and to conduct the case studies on it,
which resulted in the heat maps for evaluation purposes. The NN training was done by

Timo P. Gros.

* Timo P. Gros, Holger Hermanns, Jorg Hoffmann, Michaela Klauck, Maximilian A. Kohl,
and Verena Wolf. MoGym: Using Formal Models for Training and Verifying Decision-
making Agents. In Computer Aided Verification - 34th International Conference, CAV
2022, Haifa, Israel, August 7-10, 2022, Proceedings, 2022

The paper introduces the MoGym framework which comprises the newest version of
the DSMC implementation and provides a fully integrated tool chain from learning to
verification, as described in Section 5.1.2. The author implemented extended DSMC

functionality for MoGyMm and helped to connect the individual parts of the tool.

Zhttps://perspicuous-computing.science
3https://racetrack.perspicuous-computing.science/


https://perspicuous-computing.science
https://racetrack.perspicuous-computing.science/
https://perspicuous-computing.science
https://racetrack.perspicuous-computing.science/
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Timo P. Gros was responsible for the learning infrastructure and Maximilian A. Kohl

provided the implementations in Momba.

* Timo P. Gros, Holger Hermanns, Jorg Hoffmann, Michaela Klauck, and Marcel
Steinmetz. Analyzing Neural Network Behavior through Deep Statistical Model
Checking, 2022. under submission

This journal article summarizes the works on DSMC. The extensive scalability study
of DSMC done by the author, which is the core new contribution of that publication, is

part of Section 5.3.

* Timo P. Gros, David GroB3, Stefan Gumhold, Jorg Hoffmann, Michaela Klauck,
and Marcel Steinmetz. TraceVis: Towards Visualization for Deep Statistical Model
Checking. In Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applications
of Formal Methods, Verification and Validation: Tools and Trends - 9th International
Symposium on Leveraging Applications of Formal Methods, ISoLA 2020, Rhodes,
Greece, October 20-30, 2020, Proceedings, Part IV, volume 12479 of Lecture Notes in
Computer Science, pages 27-46. Springer, 2020

The TrRACEV1s tool is presented in this paper in the version discussed in Section 5.4. The
tool was implemented by David Grof3 and Stefan Gumhold. The author implemented
an extended version of DSMC to be able to deliver the data needed for the visualization.
The author ran all the experiments for the paper, processed the data, and gave advice,

which data of interest to select for the visualization.

Further publications not explicitly included, but often related to topics covered in this
thesis, are:

* Michaela Klauck, Marcel Steinmetz, Jorg Hoffmann, and Holger Hermanns. Compiling
Probabilistic Model Checking into Probabilistic Planning. In Mathijs de Weerdt, Sven
Koenig, Gabriele Roger, and Matthijs T. J. Spaan, editors, Proceedings of the Twenty-
Eighth International Conference on Automated Planning and Scheduling, ICAPS 2018,
Delft, The Netherlands, June 24-29, 2018, pages 150-154. AAAI Press, 2018

The paper presents the translation from JANI to PPDDL and is part of the author’s
Master’s thesis, and therefore only cited in this dissertation.

* Michaela Klauck, Marcel Steinmetz, Jorg Hoffmann, and Holger Hermanns. Bridging
the Gap Between Probabilistic Model Checking and Probabilistic Planning: Survey,
Compilations, and Empirical Comparison. Journal of Artificial Intelligence Research,
68:247-310, 2020
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The comprehensive journal article includes the translation between JANI and PPDDL
in both directions as well as an exhaustive comparison of the most popular model
checking and planning techniques, and their implementation in different tools. The
experiments and the comparisons of all the approaches have been done by the author

together within Marcel Steinmetz in close collaboration.

* Jorg Hoffmann, Holger Hermanns, Michaela Klauck, Marcel Steinmetz, Erez Karpas,
and Daniele Magazzeni. Let’s Learn Their Language? A Case for Planning with
Automata-Network Languages from Model Checking. In The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Appli-
cations of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium
on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA,
February 7-12, 2020, pages 13569—-13575. AAAI Press, 2020

The paper shows how attractive JANI is for expressing planning tasks because of its

various features. The work was mainly lead by Jorg Hoffmann.

* Christel Baier, Clemens Dubslaff, Holger Hermanns, Michaela Klauck, Sascha Kliip-
pelholz, and Maximilian A. Kohl. Components in Probabilistic Systems: Suitable
by Construction. In Tiziana Margaria and Bernhard Steffen, editors, Leveraging
Applications of Formal Methods, Verification and Validation: Verification Principles -
9th International Symposium on Leveraging Applications of Formal Methods, ISoLA
2020, Rhodes, Greece, October 20-30, 2020, Proceedings, Part I, volume 12476 of
Lecture Notes in Computer Science, pages 240-261. Springer, 2020

In this paper the Racetrack benchmark is used to demonstrate newly introduced notions
of suitability for system components. The author adapted the use case for this purpose

and contributed to the development of the theory and to the evaluation.

* Rasha Faqgeh, Christof Fetzer, Holger Hermanns, Jorg Hoffmann, Michaela Klauck,
Maximilian A. Kohl, Marcel Steinmetz, and Christoph Weidenbach. Towards Dynamic
Dependable Systems Through Evidence-Based Continuous Certification. In Tiziana
Margaria and Bernhard Steffen, editors, Leveraging Applications of Formal Methods,
Verification and Validation: Engineering Principles - 9th International Symposium on
Leveraging Applications of Formal Methods, ISoLA 2020, Rhodes, Greece, October
20-30, 2020, Proceedings, Part II, volume 12477 of Lecture Notes in Computer Science,
pages 416-439. Springer, 2020

This publication presents a process for continuous certification of systems consisting
of multiple components which get independent updates from time to time. The author

implemented the simulation and the model.
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* Maximilian A. Kohl, Michaela Klauck, and Holger Hermanns. Momba: JANI Meets
Python. In Jan Friso Groote and Kim Guldstrand Larsen, editors, Tools and Algorithms
for the Construction and Analysis of Systems - 27th International Conference, TACAS
2021, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021,
Proceedings, Part I, volume 12652 of Lecture Notes in Computer Science, pages
389-398. Springer, 2021

Momba, the flexible Python framework for constructing, exploring, and verifying
formal models is introduced in this paper. Momba was designed and implemented
mainly by Maximilian A. Kohl. The implementation work was supported by the author
of this thesis. Components of Momba are used in MoGym for learning and DSMC
analysis on general formal models.

* Timo P. Gros, Daniel Holler, Jorg Hoffmann, Michaela Klauck, Hendrik Meerkamp,
and Verena Wolf. DSMC Evaluation Stages: Fostering Robust and Safe Behavior
in Deep Reinforcement Learning. In Alessandro Abate and Andrea Marin, editors,
Quantitative Evaluation of Systems - 18th International Conference, QEST 2021, Paris,
France, August 23-27, 2021, Proceedings, volume 12846 of Lecture Notes in Computer
Science, pages 197-216. Springer, 2021

This work integrates DSMC into a feedback-loop for deep reinforcement learning to
determine state space regions in which more training is needed. The work was mainly
done by Timo P. Gros and Hendrik Meerkamp. The author supported them by giving

advice on how to use DSMC.

* Timo P. Gros, Joschka Gro3, Daniel Holler, Jorg Hoffmann, Michaela Klauck, Hendrik
Meerkamp, and Verena Wolf. DSMC Evaluation Stages: Fostering Robust and Safe

Behavior in Deep Reinforcement Learning, 2022. under submission

This paper is an invited journal article on an extended version of the QEST paper with

the same title described above.

* David GroB3, Michaela Klauck, Timo P. Gros, Marcel Steinmetz, Jorg Hoffmann,
and Stefan Gumhold. Glyph-based visual analysis of g-learning based action policy
ensembles on racetrack. In 26th International Conference on Information Visualisation
(1V), 2022

In this paper we extend TRACEV1s to visualize the Q-values used during learning to
get deeper insights about the training progress. Again, the implementation was done
by David GroB3 and Stefan Gumhold. The author conducted the user study and gave

advice during the tool design and evaluation phase.
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2.

cal Background

We start in Section 2.1 by laying the foundations of the following chapters, introduce the
formal background, and the notions used throughout the thesis. This encompasses the
mathematical concepts needed to reason about probabilistic systems, especially Markov
Decision Processes (MDP), on which all approaches of this thesis are based. Different
measures of interest, i.e., different kinds of property types of the models, are discussed, and
probabilistic as well as statistical model checking techniques to calculate these properties are
introduced in Section 2.2. Since verification techniques presented in this thesis also make
use of probabilistic planning approaches, especially heuristic search methods, the theoretical
underpinning of this area is discussed in Section 2.3. Furthermore, a brief introduction into
neural networks and Q-learning methods is given in Section 2.4, because we will later present
a method to analyze and verify neural networks or trained decision-making agents with the

prospect to improve training and learning strategies.

2.1. Mathematical Foundations

First, we introduce the mathematical notation used to represent standard mathematical

concepts and recall the theory behind them.

Sets

Sets are collections of elements. An object x can be an element of the set X, formally written
as x € X. The negation, i.e., x not being in the set X, is expressed by x ¢ X. AsetY is a
subset of X if and only if all elements of ¥ are also elements of X, denoted by ¥ C X. If X
contains additional elements which are notin Y, Y is a proper subset of X, written Y C X.
Sets can be described in two notations. First, if feasible w.r.t. the number of elements,
they can be listed, like X = {1,2,3,4}. Second, a set Y can be defined by a basic set
X, and a property A which has to hold on elements of X to be elements of Y, written
Y = {x € X | A(x)}, which means that Y consists of all elements x of X for which A(x)

holds, and no more. If it is clear from the context, the basic set can be omitted in the notation.
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Throughout the thesis N is the set of natural numbers including 0, Z denotes the integers,
Q are the rational numbers, R is the set of real numbers, and B are the boolean values True
and False.

(0 is the empty set, which does not contain any elements. The powerset Pow(X) = {X’ C X}
is the set containing all subsets X’ of X.

In general, sets are unordered. But for sets of elements for which a certain order can be
defined, the notion of ordered sets has been introduced. A prominent example of ordered
sets are intervals of numbers. We denote by the interval [a, b] over the set X the closed
interval from a to b, including the boundary values a and b, and all elements of X lying
in between a and b according to the order on X. (a, b) is the open interval excluding the
boundary values. Half closed intervals are defined analogously. Depending on the context it
should often be clear if, e.g., an interval of real, or natural numbers, or something else is
meant in mathematical notations. It is possible to shrink sets by specifying an interval or
bounds in the index, like Ny 19 or R0, which describes the natural numbers between 0 and
10 including the bounds, and the real numbers greater or equal to 0, respectively.

In addition, we introduce notations for sums and products over specific sets of numbers.
The elements x; of the set X are indexed over N. For example Y/, x; i= X1 + X2+ -+ - + X,
denotes the sum of all elements x; with i € [1, n] over N. In the same sense, we use []"; x;
to express the product over all x; with i € [1,n] over N. []}_, i would multiply all natural
numbers from 1 ton: 1-2-3----n.

The number of elements in a set ist denoted by | X| and is called the cardinality of X. A
finite set has less elements than the natural numbers, i.e., | X| < |N|. A countably infinite
set has the same cardinality as N, i.e., | X| = |N|. If the set contains more elements than the
natural numbers, i.e., | X| > |N|, it is called uncountable.

We use the following set operations:

o Set difference: X \ Y = {x € X | x ¢ Y}, describes the set of all elements which are in
X and not in Y. In this context the set difference X \ X; of a subset X; of set X is called

complement of X; w.r.t. X, often written as X if it is clear from the context what X is.

o Intersection: X NY = {x € X | x € Y}, is the set of all elements which are in X and

alsoinY.

e Union: X UY = {x|x € X Vx €Y}, describes the set of all elements which are in X
or(V)inY.

Sets are called disjoint if their intersection results in the empty set, i.e., if there is no
common element.
The Cartesian product Xo X X1 X - -+ X X, of non-empty sets Xy, X1, ..., X, consists of all

n-tuples (xg,x1, . ..,X,) Where xg € Xo,x1 € X1,...,x, € X,,. This means Xg X --- X X, =
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{(x0,...,xn) | x; € X;, fori € [0,n]}. Weuse X" for tuples of length n where all components
are elements of X. The elements of a Cartesian product of two sets are called pairs.

It is also possible to build ordered sequences of elements x; of a set X, e.g., the sequence
X0 X1 X2 containing these three elements in exactly this order. A prefix pref (seq) of a sequence
seq is a part, or more precisely a subsequence, of seq starting with the first element seq[0] of
seq, such that pref (seq) can be extended to seq by adding the missing elements at the end. If
pref(.) is applied to a set of sequences X, the result is a set where pref(.) is applied to each
element of X.

A finite, non-empty sequence of elements in X of undefined length is denoted by

X0 X1 X2 - -+ € X ™. Infinite sequences are of the form (x;);eny € X%.

A o-algebra A C Pow(X) over a non-empty set X is a subset A of the power set Pow(X)
of X, which fulfills the following conditions:

e X e A.

» A is closed under complement in X, i.e., if A; € A then its complement X \ A; is also
in A.

* A is closed under countable unions, which means that any union of subsets of A is
again in A, i.e., if the sets A, A9, As,... are elements of A then [,y A, is also

contained in A.

Elements of the o-algebra A, A; € A, are called measurable sets. The tuple (X, A) is then

called measurable space.

Relations and Functions

A binary relation R is defined by a set of pairs R C S7 X S2 over two sets S7 and S». If every
element of S is at most related to a single element of So, i.e., if (s1,52) € R and (s1,5)) € R
implies that so = s/, the binary relation is called functional, i.e., the relation is a function.

Relations can also be defined over more than two sets. A relation over three sets is called a
ternary relation and the elements are called triples. A relation over n sets is called n-ary and
the elements are n-tuples.

A total function f : X — Y is a binary relation which assigns to each element of the
domain X exactly one element of the codomain Y. This means, for each x € X there exists
exactly one y € Y such that f(x) = y. y is the image of x, and x is the preimage or inverse
image of y. In comparison, a partial function f : X — Y does not have to define a value of
the codomain for each element of the domain. In this case, we write f(x) = L if there is no

image of x in Y (under the assumption that L ¢ Y).
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A function f is called injective if two different elements of X are never mapped to the
same elementin Y: x; # xo = f(x1) # f(x2), where = denotes a logical implication.
A function is called surjective if for every y € Y there is an x € X with f(x) =y, i.e., every
y is an image of some x. If a function is injective and surjective, it is called bijective.

f~1:Y — X is the inverse function of f : X — Y. Not all functions have an inverse. An
injective function is invertible. In this case, it holds f~!(y) = x & f(x) = y (& means if
and only if, an equivalence, an implication in both directions). The preimage of Y under f is
always defined as f~1(Y) := {x € X | f(x) € Y'}.

Let X and Y be two sets with their respective o-algebras y and y. A function f : X — Y
defined on the two measurable spaces (X, y) and (Y, y) is called a y-y-measurable function
if and only if the preimage of every set G € y under f is an element of y, i.e., f 1 (G) € y,
forall G € vy.

Probability Theory and Probabilistic Models

This thesis revolves around processes with probabilistic behavior. We first recap the basics
of probability theory, and later apply these concepts on the concrete systems and models
which we investigate. Unless otherwise stated, the theory is based on standard textbooks on
probability theory [10, 60, 88, 234, 252].

A probability space (Q, X, P) consists of:

* A non-empty set Q, the sample space, which consists of all possible outcomes of

the probabilistic process under inspection.

* A set of events Z, the event space, which contains sets of outcomes, called events,

where X is a o-algebra over Q.

* A probability measure often also called probability function P : ¥ — [0, 1],
which assigns to each event in 2 a probability in such a way that the Kolmogorov
Axioms hold.

The Kolmogorov Axioms on a probability space as defined above state:
* % is a non-negative function into Ryg.
s P(Q)=1.

* For disjoint events E; of X it holds that (U E;) = 2, P (E;).
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For a finite or countably infinite set X, Pow(X) is the default o--algebra. A discrete
probability distribution over a finite or countably infinite sample space €2 is a function
u:Q — [0,1] such that .o u(x) = 1. If u is applied on sets of elements of Q, the sum of
( applied to each element is meant, i.e., u(X) = >}; u(x;) with X € Q and x; € X. Thereby,
w induces a probability space with the sample space €, the event space £ = Pow(L), and a
probability measure £ with P(X) = > ; u(x;), where x; € X and X € X.

We denote by D(Q) the set of all discrete probability distributions over Q. We write
Oy : Q — [0, 1] for the Dirac distribution that assigns probability 1 only to the element
x € Q, and 0 to all others.

The support of a probability distribution u is defined as the set of elements of  which
have a positive probability under y, i.e., supp(u) = {x € Q| u(x) > 0}.

Assume a probability space (€2, X, P) as defined above.

B(R) denotes the Borel o-algebra over R, which is the o--algebra containing all open
subsets of R. Open subsets in this context are defined as having no element of R on their
boundaries.

This means, we have the two measurable spaces (Q, X) and (R, B(R)).

A random variable RV for the probability space is a X-B(R)-measurable function
RV : Q — R assigning to each outcome of Q a value in R.

Its cumulative distribution function can be defined as F : R — [0,1], F(r) =
P{we Q| RV(w) <r}).

For discrete random variables RV, for which the domain of F is finite or countably
infinite, the probability mass function is defined as f(r) = P({w € Q| RV(w) =r}).

In case RV is continuous, the cumulative distribution function can also be specified

in the following way:

F(r) = [ h(u) du

for r € R and an integrable function 2 : R — Ry(. This function 4 is called the
probability density function of RV .

Intuitively, the cumulative distribution function gives the probability with which outcomes
of the probabilistic process occur, whose values assigned by the random variable are smaller
or equal to the given threshold.

For random variables, it is often of interest which value the variable has in expectation, i.e.,
what the average of the results obtained when executing an experiment an infinite number of
times is. Hence, the expectation is also called mean. The value depends on the probability

distribution.



Theoretical Background 24

For discrete random variables RV on a probability space as above, the expected value

E(RV) is the sum over all results r; of RV of the product of each possible result 7; and
its probability p;.

E(RV) = Zp,' r = Zso({w €Q|RV(w)=r})  ri.

The sum does not have to be convergent.
If RV is a continuous random variable and 4 is its probability density function, then

we can define the following if the integral exists:

E(RV) = ‘/Oor - h(r)dr,

oo

Probabilities occur very often in processes in the real world, e.g., in biology or chemistry,
where reactions or other processes happen with a certain likelihood. But there are also
cyber-physical systems or other processes where randomization is involved, e.g., in games,
to either distribute things equally or to avoid that always the same order is kept. In addition,
probabilistic models are in use if unreliable or unpredictable events should be represented,
like package losses or failure rates.

These systems and processes can be modeled using states and transitions describing the
transition from one state of the system into another. The very basic type of such models, still

abstracting from probabilities, is called Transition System (TS).

A transition system TS [22] is a tuple (S, A, T, I, AP, L), where:

¢ S is the set of states.

A is the set of actions.

T C S XAXS is the transition relation.

I C S is the set of initial states.

AP is the set of atomic propositions.

L : S — Pow(AP) is the labeling function.
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Transition systems are used to model systems, where the states describe information of a
certain configuration of the system at some point in time. Transitions, given as the elements
of the transition relation, describe the process of changes from one system state to another.
This means, a transition happens if a certain action characterized by its name is taken, i.e.,
applied, in a start state s. During the transition the current state of the system is manipulated
in a specific way, defined by the action, and changed to another system state, the destination
or successor state, as defined by the element of the transition relation. An action a € A is
called applicable in a state s € S if (s,a,t) € 7 for some ¢t € S. In this case, we also say
that s is connected by a to t via the transition (s, a, t). Note that not every action has to be
applicable in every state and that the same action applied in a certain state can lead to different
destination states depending on the transition it belongs to. A state ¢ is called reachable
from state s if there is a set of intermediate states S;yr, such that they are connected via
transitions (s, ag, s1), (S1,a1,52),..., (Sn,an,t) € T with s; € S;per and a; € A, finally
ending in 7. We say that a state ¢ is reached if after taking one or multiple transitions one
finally ends in . To be able to describe a system state by known facts characterizing it, atomic
propositions are used. The labeling function assigns to each system state the characterizing
and describing atomic propositions.

By replacing the possibility to transition with different or even the same action from a
state to different successor states with a probabilistic distribution over the successor states,
this simplest form of system models can be enhanced with probabilities. The fundamental
probabilistic model based on the notion of transition systems only consists of states and
probabilistic transitions which lead from a start state to a set of destination states, where
for each destination state a probability to reach this state by taking the transition is given.
In contrast to transition systems, there is no distinction between different actions anymore.
This model is called Markov Chain if it fulfills the Markov Property, which states that the
probability distributions of transitions starting in a state only depend on this state, and not on

previous decisions and visited states, i.e., it is history-independent, also called memory-less.

A finite Markov Chain [153, 158] is a tuple C = (S, T, 5o, S«) consisting of a finite
set of states S, a transition probability function T : S — D(S), and an initial state

5o € S as well as a set of goal states S, C S.

We assume that there is no state without an outgoing transition. If there are no transitions
leading to another state, we assume that there is a self-loop back to the state itself, which
does not change the types of system behavior we are investigating later because the system

will stay in this state forever. Such states are called ferminal. All goal states are assumed to
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be terminal. This is no restriction because for the purposes considered in this thesis it is only
important if a goal is reached and not what happens afterwards.

To make the models even more realistic for real world and especially cyber-physical
systems, nondeterministic behavior can be added. Nondeterminism means that there is a
choice between multiple transition options but it is not specified or quantified at all which
one will be taken. Nondeterminism is used, e.g., to represent incompletely or not specified
parts of a system, where the probability distribution over multiple options is not known, or to
model different instantiations of the system at once, i.e., for abstraction purposes to allow
implementation freedom. In cyber-physical systems often multiple components work together
concurrently and their unknown scheduling can be modeled with the help of nondeterminism.
In addition, nondeterminism is used when there are multiple possible choices and a separate
entity not part of the model but of its environment has to decide which choice to take. By
adding the possibility to not only have probabilistic transitions but also nondeterministic
states, i.e., by adding states with multiple outgoing transitions, where it has to be resolved
nondeterministically which one to take, we obtain the models this thesis is centered around,

Markov Decision Processes.

A finite Markov Decision Process (MDP)[154,226]isatuple M = (S, A, T, R, 50, S«)
consisting of a finite set of states S, a finite set of actions A, the partial transition
probability function T : S X A — D(S), areward function R : S X A XS — Ry

assigning a reward (or cost) value to each triple of state, action, state, a single initial

state sy € S, and a set of goal states S. C S.

We use non-negative reward structures, including zero-valued rewards, like it is often
the standard in the probabilistic model checking community [22, 127, 164, 226], because
otherwise expected rewards may be unbounded or not even well defined (for more details
see [226, Chapter 7]).

An action a € A is applicable in a state s € S if 7 (s, a) is defined. In this case, we denote
by 7 (s, a, t) the probability u(z) of going to the successor state t according to 7 (s, a) = u.
A(s) € A is the set of all actions that are applicable in state s. 7 (s, a,t) denotes the
probability of going to state # when applying action a in state s. If according to the transition
probability function, an action leads with probability 1 to a state, it is called a Dirac action.
A nondeterministic state is a state s where |A(s)| > 1. Similar to what has been introduced
for transition systems above, we say that there is a transition from state s to state ¢ if there is
an action a applicable in s for which 7 (s, a, t) > 0. In this case, s is connected to t by action
a via this transition, i.e., there exists a connection from s to t. Analogously to transition

systems, we also say that state ¢ is reachable from state s if there is a set of intermediate states
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Sinter, connected via transitions 7 (s, ag, s1) > 0, 7 (s1,a1,52) > 0, ..., T (sp, an,t) >0
with s; € Sinter and a; € A, finally ending in 7, i.e., reaching t.

The reward function assigns to every transition from one state to another a specific reward
depending on the start and destination state as well as the applied action. This enables us, e.g.,
to reason about the sum of the rewards obtained when taking multiple transitions in a row.

Similar to what we defined for Markov chains, we base our work on MDPs where for
each state s, A(s) is non-empty. If there are no transitions to another state, a self-loop with
reward 0 is assumed to exist. This is possible because self-loops do not change the system
behavior we are interested in later. A state s is called terminal if | A(s)| = 1 and for this
a € A(s) it holds that 7 (s,a, s) = 1 and R(s, a, s) = 0. All goal states g are assumed to be
terminal, which forces to stay in g forever without accumulating further reward when taking
this self-loop. Fixing these constraints makes sure that the self-loop in these states has no
effect on the properties we are interested in later. Terminal states not contained in S, are
called dead-ends.

For a given MDP M an infinite sequence of states connected via transitions, £ = (;);en,

is called a path. We often argue about finite paths 7 which are finite prefixes of infinite

paths.

£ [0, 7] denotes the finite prefix of ¢ of length i + 1 from state s to s;. {[i] means the state
s; at position 7 in the path.

The length of a finite path 7 is given by |7|. Analogously to the notation for infinite paths,
7[0, 7] is the finite prefix of 7 from s¢ to s; and 7[i] denotes the state s; of the path, both
under the assumption that |7| > i.

Paths(M) denotes the set of all infinite paths through M rooted in its initial state sg.
Accordingly, Paths(s) is the set of all infinite paths starting in state s.

To get a more concrete impression on how the theory of Markov decision processes can be
applied in practice, we give an illustrative example which we will use throughout the next
sections to demonstrate how interesting properties can be calculated over MDP models of

systems.

In this example we discuss the components an MDP consists of. The MDP below

consists of four states, S = {sg, 51, D, G}, where s is the initial state, G is the goal
state, i.e., S, = {G}, and D is a dead-end state. In addition, there are five actions,

A={a,b,c,d,e}. a, b, d, and e are Dirac actions. c is a probabilistic action leading
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with a probability of 60% to the goal state and with 40% to s1. The states s and s1 are 4
nondeterministic. It has to be decided nondeterministically which action to choose in

50, where a and ¢ could be taken, and in s1, where b and d are applicable actions.
There are two paths leading from the initial state to the goal: 71 = s¢ 51 G and

79 = 5o G. 11 can be induced by taking action a in sg and b in s; or by taking action ¢
in 5o and b in s if ¢ lead to s1. 72 can only be induced by taking action c in sy when
ending directly in G. The last two options depend on the transition probability function.

Rewards are displayed in red. The reward obtained when taking action a, d, or e 1s 0.
When taking b, a reward of 2 is achieved. For ¢ a reward of 1 is obtained independently

of the destination.

Some properties of MDPs or sets of specific states can already be precomputed on an
abstracted version of the MDP without taking probabilities into account. This abstracted

version is called the underlying graph of the MDP.

A directed graph consists of a set V of vertices and a set E of directed edges of the form

(vi,vj) € V x V spanned between vertices. Two vertices v;, v; are called connected if
there exists an edge (v;,v;) from v; to v;. The underlying graph G = (V, E) of an MDP
M=(S, A, T,R, sp,S.) is spanned over V := S by the edge set E := {(s,1) | Ja €
A T (s,a,t) > 0}. The successor states of a vertice-edge pair, or more precisely of a

state-action pair (s, @) in the graph, are given by succ(s,a) = {t | 7 (s,a,t) > 0}.

A cycle is a path in the underlying graph G of an MDP, i.e., a sequence of connected

states, starting and ending in the same state. A strongly connected component (SCC)
in G is a subset of states V’ C V such that V(s,7) € V' x V" a path from s to ¢ exists.
A bottom strongly connected component (BSCC) B is an SCC of maximal size from

which only states in B are reachable.
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When reasoning about the behavior of systems modeled as MDPs, often concrete executions,
described, e.g., by paths in the model, are considered. These paths are often induced by an
entity resolving the nondeterministic choices in the MDP states. Resolving the nondeterminism
in an MDP results in a Markov chain. Depending on the context, this entity deciding which
action to apply in nondeterministic states is called action policy, scheduler, or adversary.
The policy can be deterministic or may use randomization (picking a distribution over the
applicable actions), and it may use the past history when picking, but does not have to.
Histories are represented as finite sequences of states (i.e., sequences over S), thus they are

drawn from S*. We use last(w) to denote the last state in w € S*.

For a given MDP M as above a function 7 : & — A satisfying n(s) € A(s) for

each state s is called a (deterministic) memory-less policy or scheduler. The function
determines the next action to take for any given state.

A (deterministic) memory-full policy or scheduler is a function 7: S* — A such
that Yw € S8*: n(w) € A(last(w)). Memory-full is sometimes also called history-
dependent.

In contrast, a (memory-less) randomized policy is a function 7 : § — D(A), assigning

probability O to actions a ¢ A(s), which determines for each action a probability that it

is taken in a specific state. Memory-full randomized policies are defined analogously.

Throughout the thesis, we will consider deterministic policies and thus present the theory in
the following only for deterministic memory-full and memory-less policies. In later chapters,
we mainly consider memory-less policies and explicitly state when memory-full policies are
meant.

If a memory-less action policy 7 were instead taking a state sequence as input, it would
satisfy 7(w) = m(w”) whenever last(w) = last(w”). Hence, memory-less action policies are
special cases of memory-full action policies.

If a policy is only given by a partial function, i.e., if not every state of § is assigned to an
action by , it is called a partial policy.

We say that a policy is applied on an MDP or in a state if the results of the policy function
are used to determine which action to take next in every state. By starting in the initial state
of an MDP, taking the action given by the current policy and continuing iteratively, a path
induced by the policy is built through the MDP. With Paths(r) we denote the set of all paths
which can be built by applying policy r starting in the initial state of the MDP.

For memory-less policies the subgraph G induced by policy n in the underlying graph G
of an MDP is obtained by restricting the edge set of G to {(s,t) | 7 (s, n(s),t) > 0}. For
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memory-full policies, the edge set of G is restricted to {(s, ) | 7 (s, 7(w), ) > 0} over all
finite paths w which start in the initial state sg of the MDP and end in state s.

An MDP M together with a deterministic memory-less action policy 7: § — A induces
a finite Markov chain (S, 77, 5o, S.), where 77/ (s,t) := 7 (s, n(s),t) for any s,t € S.

An MDP M together with a discrete memory-full action policy 7 : S* — A induces

a countable-state Markov chain (S*, 77, 59, S}) over state histories. With 77 (w, ws) =

T (last(w), r(w), s) for any w € S* and successor state s € S. S consists of all w € S*
with last(w) € S..

A cylinder set C of a finite path 7 contains all infinite paths ¢ which have 7 as a
prefix [22]. Formally, the set is specified by C(7) = {{ € Paths(M) | T € pref({)}.

After having introduced all of this theory, we are ready to define a probability space on
MDPs.

A probability space on an MDP M can be defined as follows [22, 136]:
The sample space Q consists of all possible infinite paths Paths(M) in M:
Q = Paths(M).

The events X are obtained by a cylinder set construction over the finite paths in M. X is
the smallest o--algebra over all cylinder sets of the finite paths in M, which start in the
initial state so: £ = o ({C(7) | T € pref(Paths(M))}).

Each of the sets T in X is thus characterized by one or more finite prefixes. These
characterizing prefixes Tg, of the sets T in X are given by those shortest prefixes,

characterizing the cylinder sets of which 7" consists, which are not prefixes of each other.

The probability function P* : £ — [0, 1] is defined w.r.t. to a deterministic memory-less
policy m as follows. The probability for a set of infinite paths T € ¥ when following
policy r is defined as the sum over the characterizing prefixes of T' given in T, of the

product of the transition probabilities along them w.r.t. 7

zl-1

Pr(1) = Y | | Tlil (i), Tli + 10).

TETﬁn i=0
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For a deterministic memory-full policy 7 the probability function " (T) is defined
similarly by ¥er, [T 7(z[i]. 7(z[0.4]). T[i +1]).

Intuitively, ¥ consists of the empty set, the set of all infinite paths Paths(M), all cylinder
sets of finite paths, and all possible countable unions of these cylinder sets as well as their
complements. From the definition of the events, we can conclude that all sets of infinite paths
of an MDP are measurable subsets of Paths(M).

From the definition of the probability function on MDPs, we can conclude that the
probability that a specific finite path t is taken when following policy 7 (for memory-less
and memory-full ), is given by the probability that any infinite path of the cylinder set
C(7) is taken. This probability can be calculated by a product of the probabilities of the
transitions connecting the states of v when following policy r, i.e., it is calculated by
PT(C(1)) = P (1) = |T| - T (tli], m(7[i]), T[i + 1]) for memory-less policies and by
PT(C(1)) =P (1) = H|T| 1 T (t[i], 7(7[0,7]), 7[i + 1]) for memory-full policies.

Beside calculating the probabilities of paths induced by policies in MDPs, we can also sum
up the rewards of the actions taken to build the paths. This sum is called the accumulated

reward of the path w.r.t. the policy.

The accumulated reward R over an infinite path { induced by a memory-less policy
n through an MDP M is defined by RZ .. : Paths(M) — R where

acc

Rice(£) = ZW (L), £ i+ 1),

For the finite prefixes 7 of such a path the reward summation constituting R? fin (1) can
be calculated and truncated accordingly. This means, the accumulated reward collected
when traversing a finite path t is the sum of the rewards on each of the transitions taken,

i.e.,
Ir|-1

accﬁn(T) - Z R(T 71'(7' ]),T[i+1]).
Analogously, for a memory-full policy m we define:

* Rice() = Lizo R(£i], 7(£]0,]), £[i + 1]), for an infinite path £

e RT

acc-fin

(1) = 2 R (i, 7(2[0, 1), 7[i + 1]), for a finite path 7.
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Using the definition of the probability for a path induced by a specific policy  and the
accumulated reward induced by x, the expected accumulated reward induced by this policy
7 can be defined.

The expected accumulated reward induced by policy x is defined over the accumulated

reward function R].. : Paths(M) — R, which in this case directly constitutes the
random variable assigning to each path the reward obtained when taking this path by

following .

For a deterministic memory-less or memory-full policy x the expected accumulated
reward is defined by

ERL) = >, P RL.()

e Paths(r)

over the infinite paths induced by 7.

We consider again the MDP from Example 1. On path 12 a reward of 1 is accumulated.

Because the path can only be induced by a policy selecting action ¢ in sq, the accumulated
reward on the path is only the reward of this action. Under this policy, the path has a
probability of 0.6. For path 7; the accumulated reward depends on the actions taken,
i.e., on the policy which induces it. In case a and then b were taken, the accumulated
reward is 0 + 2 = 2. The probability for this path under that policy taking a in sg and
b in s1 is 1. If we have a policy choosing ¢ in sg and b in s1, the accumulated reward
sums up to 1 + 2 = 3 on the induced path. This path has a probability of 0.4.

The expected accumulated reward for a policy choosing ¢ in sg and b in sy is
(04-(142))+(0.6-1)=1.8.
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2.2. Model Checking and Verification

Markov decision processes (MDPs) are the base model for probabilistic model checking.
With the probability measure over MDPs, several interesting properties of the MDP models
of, e.g., cyber-physical systems, can be defined. For example, it might be of interest what the
maximal probability for a certain failure in a power plant is, or what the minimal probability
to complete a certain task within a predefined number of steps is for a robot in a production
line. In addition, the expected time (i.e., number of steps) to complete a certain task using
the modeled system, or the expected costs (e.g., consumed fuel in a car) to reach a certain
goal may be of relevance.

Formulating these properties is often done by means of propositional Linear Temporal
Logic (LTL) [224], Computation Tree Logic (CTL) [63], or Probabilistic Computation Tree
Logic (PCTL) [126]. We only consider non-nested formulas to express properties in the
following and therefore do not introduce the full logics.

The basic elements property descriptions consist of are atomic propositions (AP). To
reason about the behavior of MDPs, it is possible to annotate states with state labels which
constitute of the set of atomic propositions holding in these states, as introduced for transition
systems in Definition 4. In practice, atomic propositions are often variable values, for instance
of the form x = 1.

To speak about execution paths of MDPs, i.e., sequences of states, and their properties, we

define the notion of fraces.

A trace t of an infinite path ¢ is the infinite sequence of sets of the atomic propositions

holding in the states of the path. This means, for the path { its trace is given by ¢ =
trace(l) == AP(sg) AP(s1) AP(s2) ..., where AP(s) denotes the atomic propositions
holding in state s.

In this thesis, we concentrate on reachability properties, i.e., properties describing
conditions which have to be fulfilled by the atomic propositions at some point in the trace,
1.e., in some state, called a goal state, while before reaching that state other conditions have
to be satisfied in the trace. To express such reachability properties, atomic propositions
can be combined to a logical formula ¢ using the logical operators and (A), or (V), and
not (—). In addition, we make use of the unary LTL operator < ¢, called eventually, which
means that at some point a state is reached in which the formula ¢ is fulfilled. < ,j¢ means
eventually in [/, u] steps or with accumulated reward in these bounds a state fulfilling ¢
is reached, respectively. Note that not only closed intervals, but also (half) open intervals

and other comparison operators can be used to express bounds. The eventually operator is a
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special case of the binary until operator U. In the form ¢; U ¢, it states that ¢; has to be
fulfilled as long as no state is reached in which ¢9 holds, where ¢, and ¢- are again logical
formulas over atomic propositions in the form defined above. For the satisfaction of the
formula it is required that at some point a state fulfilling ¢ is reached. ¢ ¢ is an abbreviation
for True U ¢. The until operator can also be used with step or reward bounds in the form
¢1 Uy, ¢2, which means that within the given bounds on the number of steps or on the
accumulated reward a state fulfilling ¢2 has to be reached and before that, ¢; has to hold.
Again, other variants for the description of bounds can be used.

The binary operator s = Prop is used to express that in a state s given on the left the
property Prop on the right is satisfied. In a similar way, the operator is used to state that a

path fulfills a property.

Reachability Properties w.r.t. a Policy. We first focus on how to calculate the reachability
probability w.r.t. a certain policy, which is the probability with which a reachability property
is fulfilled when following a given policy. Later, we discuss (expected) accumulated rewards
for reachability properties under a certain policy, i.e., the (expected) reward collected until

reaching a goal state when applying a given policy.

For reachability probabilities w.r.t. a policy, the probability to take one of the infinite paths
in the MDP having a finite prefix fulfilling the property and reaching a goal state using the
policy has to be calculated.

Hence, let Fin-Reach = {t € S* | |t|=n+1As, € Sc AVk <n:s; & S} be the
set of minimal finite prefixes of paths eventually reaching a goal state, i.e., fulfilling ¢8..
Note that with this construction the cylinder sets of all paths in this set are stochastically
independent, i.e., VT # 7’ € Fin-Reach : C(t) N C(7’) = (. This enables the summation
over the probabilities for these cylinder sets to obtain the probability of their union.

Step- or reward-bounded reachability probabilities can be calculated in a similar fashion
by considering the paths which reach the goal in the given number of steps or by gaining a
reward in the given bounds, respectively, when following policy 7. In more detail, the set
of minimal finite prefixes of paths eventually reaching a goal state while accumulating a
reward in the required bounds or by taking a number of transitions within the bounds has to
be considered, respectively.

For rewards in the bounds [/, u], the set is defined as follows: Fin- Bounded- Reachy; ) =
{teS"||t|=n+1As,€SA Rgcc_ﬁn(r) € [l,u]l] AVk <n:s; ¢ S.}. For step bounds
the constraint on the accumulated reward above is replaced by n € [/, u], meaning that the
number of transitions taken until reaching s, in the path lies in the bounds. Note that the

bounds do not have to be given in a closed interval. (Half) open intervals and bounds specified
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through comparison operators are also possible. There are also properties only specifying
a lower or an upper bound but not both. The paths in those sets are also stochastically
independent.

Based on these sets it is possible to define and calculate values for the respective property

types.

» The probability of eventually reaching states in S, starting in so when following the
memory-less or memory-full policy 7, is the probability for the set of all infinite paths

having a prefix in Fin- Reach. We use the following notation for it

P (so E ©8:) = P"({ | 31 € pref(¢) At € Fin-Reach}).

This probability can be calculated by the sum of the probabilities of the paths in

Fin-Reach when following r:

P(so EOS) = > PHC(D).

teFin-Reach

* The probability of eventually reaching a state in S, while accumulating a reward in
[, u] or taking a number of steps in [/, u], respectively, when following policy 7, is the
probability for the set of all infinite paths having a prefix in Fin- Bounded-Reach; ).

We use the following notation:

P (s0 E OuuSs) =P "({{ | 31 € pref({) A1 € Fin-Bounded-Reachy,}).

This probability can be calculated in the following way:

PN(SO |: O[l,u]S*) = Z PF(C(T))
TeFin-Bounded-Reach[l,u]

* The accumulated reward obtained on an infinite path { until reaching a state in S,
when following policy , denoted by R7,..({ | ©S8.) to make the property explicit, is

obtained in the following way:

R in(T)s if T € pref({) N Fin-Reach

Rgcc(g |: OS*) = .
0, it Vr € pref({) : 7 ¢ Fin-Reach

This means that, because no reward is accumulated anymore in goal states, the reward
w.r.t. policy & of all paths in the cylinder set of a finite path 7, which ends in a goal state,
is the same as for 7, i.e., V7 € Fin-Reach : ¥{ € C(1) : R® . (1) = RZ..({ E ©8.).

acc-fin
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If the goal cannot be reached along an infinite path, the accumulated reward until
reaching the goal is defined to be oo [22].

* The expected accumulated reward collected when trying to reach a state in S, following
policy x starting in state s, E(R7..) (s = ©S8.), is then defined as the expected value of
the random variable which assigns each infinite path starting in s the reward collected
when following it until reaching a goal state. This random variable is directly given by

the accumulated reward function R” .. : Paths(M) — R. This means:

acc

ERL)(s0 E0S) = > PHC(D)-RE, 4 (7)

acc-fin
teFin-Reach

if P"(so E ©S.) =1 and oo otherwise [22].

Note that, taking memory-less policies into account for bounded properties, will often
not lead to optimal results, just because they are missing the relevant information about the
current value of the accumulated reward or the number of steps left to decide how to proceed
optimally.

Later, E(R7..)(.) is abbreviated by ER"(.).

For until properties ¢1 U ¢2 we use the notation Sy U S., where Sy is the set of states
in which ¢, is satisfied. The properties defined above can be calculated on these formulas in
the same manner by taking the restriction on the states visited before reaching a goal state
into account. In this case the sets Fin-Reach and Fin- Bounded-Reachy; ) are refined as
follows: Fin-Reach = {tr € ST ||t|=n+1As,€ Si AVk <n:s; €Sy Asy¢S.}and
Fin-Bounded-Reachy,) = {t € S*||t|=n+1As, € S, A ﬂgcc_ﬁn(‘r) € [l,u] ANVk <
n:sg €Sy Asi ¢St}

So far, we only inspected reachability probabilities and expected rewards w.r.t. to a certain
policy m, i.e., we basically only dealt with purely probabilistic and not with nondeterministic
parts of models. If nondeterminism occurs in a model, the extremal, i.e., minimal and
maximal, values for reachability probabilities or expected accumulated rewards are often
of special interest, i.e., minimization or maximization of these measures over all possible
policies has to be performed. In the following, we give an overview of the measures on MDPs

used throughout the thesis.

Measures of Interest on MDPs. Typical properties of interest in this context include
(maximal and minimal) reachability probabilities with respect to a set of goal states as well
as (maximal and minimal) expected rewards (or costs) which are accumulated until reaching
a goal state. These properties can also be subject to bounds on the number of steps until
reaching a goal or bounds enforcing a certain reward (or cost) amount to be accumulated on

the way to the goal.
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We denote by $” the probability measure on paths which are induced by policy 7 and
use FR” to denote the expectation of the accumulated reward with respect to sets of paths.
We define the extremal values Prax (') = sup, P (I"), and Ppin(I') = inf, P*(I") as well
as FRyax(T) = sup, ER™(T"), and ERy, (T") = inf, ER™(T), for subsets I' C Paths(M).
sup and inf denote the supremum and infimum over all possible policies, i.e., the smallest
upper bound and the largest lower bound, respectively.

For the sake of brevity, instead of giving the concrete set of paths, we write £ (F') for the
probability to fulfill specification F starting from the initial state of the considered MDP.

We consider the following types of properties where opt € {max, min} (echoing what is
supported in the JANI model format [53, 161], discussed in Section 3.1):

* MaxProb and MinProb: P o, (Sy U S.) = Popt({{ € Paths(M) | Is € S, 1 s =
C[J1]AVYk < j: k] € Si A[k] € Sy}) is the maximal or minimal probability of
eventually reaching a goal state, and all states visited before being in Si7. Pyt (S U S.)
will be abbreviated as P,: (¢ S.).

* Minimal/Maximal expected rewards: ER,,(Sy U S.) = ER,pi({{ € Paths(M) |
As e S, :s=C[j]AVk < j:C[k] ¢ S. Al[k] € Sy}) is the maximal or minimal
reward expectation of eventually reaching a goal state, and all states visited before
being in Sy7. Note that reward oo is accumulated for policies not inducing a goal

reachability of 1 (see above).

* Step-bounded properties: P, (St U1, S») is the maximal or minimal probability
of reaching a goal state in [/, u] steps defined as P, (I'[1,,]) Where I'[; ) is the set of
paths that reach a goal state in [/, u] steps while only passing through Sy before. Step

bounded expected reward properties are defined in a similar fashion.

» Reward-bounded properties: If instead a reward structure is defined which can be used
for the bounds, P, (St U141 S») is the extremal probability of reaching a goal state
with accumulated reward in [/, u] defined as Pp;(I'[;,) Where I'; ) is the set of
paths that have a prefix 7 reaching a goal state with accumulated reward in [/, u], and
only passing through Sy before. Remember again that we defined goal states to be
terminal, which forces to stay in the goal state forever without accumulating further
reward (see Definition 6). Reward-bounded expected reward properties are defined in

a similar way. We also allow open intervals for the bounds.

In many input languages of model checkers it is possible to describe two categories of
properties, quantitative and qualitative properties. Quantitative properties are those which
have been discussed so far, for which the model checker has to calculate the numerical result

(up to an error bound). For qualitative properties it has to be checked if the comparison
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statement given to the model checker as a constraint on the quantitative part of the property
is True or False [19, 127]. An exemplary qualitative property is Ppqx (O Goal) < 0.8.
To validate it, the model checker can calculate the probability of the quantitative part
Pax (O Goal) of the property and compare it to the required value 0.8 to decide if the
property holds. For certain properties, e.g., properties containing a comparison to 0 or 1, and
in certain solution techniques efficient approaches exist which do not require to calculate the
probability and compare it only afterwards but instead return the result by purely structural

reasoning.

Example 3: Calculating Properties of MDPs

Taking up the MDP from Example 1, we can for instance ask for the maximal and
minimal goal reachability probability Ppin (¢ G) and Ppax (O G) when starting in the
initial state sg.

To solve these properties, we have to reason about the goal reachability probabilities
of all possible policies and search for the ones giving the infimum and supremum,
respectively.

The policy which takes action a in sy and action d in s; leads to state D which
can never be left, and hence, G cannot be reached. This leads to the minimal goal
reachability probability of O for the MDP.

The maximal goal reachability probability can be achieved with two different policies.
It is possible to take action a or c in sg, and b in s;. In both cases the goal is reached
with certainty, i.e., Ppax (OG) = 1.

To make the calculation of expected accumulated rewards a little bit simpler to start
with, we relax the example by removing the action d and the state D. In this case, the
goal is always reached with certainty, i.e., Ppax (OG) = Puin(OG) = 1.

The properties of interest are the minimal and maximal expected accumulated reward
when reaching the goal state, ER,.x (< G) and ER i, (¢G). When choosing a policy
which takes action a in sg and then action b in s, we obtain a reward of 2, which is
the maximal expected accumulated reward, since there is no other policy gaining a
higher reward. The second possible policy choosing ¢ in s¢ and b in s; has an expected
accumulated reward of 0.6 - 1 + 0.4 - (1 + 2) = 1.8, which is smaller than 2. Because
there is no other possible policy, 1.8 is the minimal expected accumulated reward.

In the original example, where action d and state D are part of the MDP, the question
about the maximal and minimal expected accumulated reward is more involved. It
is basically a special case, because there is a policy which reaches a dead-end with
probability 1, i.e., the reachability condition ¢ G is never fulfilled with this policy. Since
for this policy the goal reachability probability is smaller than 1, the expected reward
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is defined to be co. Therefore, the maximal expected accumulated reward is co. The
minimal expected accumulated reward is induced by another policy, the one described
above, and turns out to be 1.8.

All of this can be verified using the Mopest model in Appendix A.1 with mcsta [119,

122, 129], the exhaustive model checker of the MobpEST TOOLSET.

After having specified properties of interest over MDPs in the last sections, we will

concentrate on different algorithmic solutions to calculate values for them in the following.

2.2.1. Exhaustive Probabilistic Model Checking

Model checking of probabilistic models (such as MDPs) nowadays comes in two flavors.
Probabilistic model checking (PMC) [15, 17, 19,22, 69, 90, 168, 188, 260] is an algorithmic
technique to determine the extremal (maximal or minimal) probability (or expectation of
accumulated reward) with which an MDP satisfies a certain property when ranging over all
imaginable action policies. For some types of properties (step-bounded reachability, expected
number of steps to reach) it does not suffice to restrict to memory-less policies, while for
others (inevitability, step-unbounded reachability) it does. At the core, solution techniques of
PMC are numerical algorithms that require the full state space to be available [127, 216].
That is the reason why standard PMC is often also called exhaustive PMC to differentiate
it from other techniques on probabilistic models, which we discuss later. A basic, iterative
technique to approximate the solution of these problems is called value iteration. It is often

also the base for more sophisticated or specialized approaches.

Value Iteration. Value iteration (VI) [226] falls into the category of dynamic programming
approaches. Dynamic programming [31, 35, 155] is used to solve optimality problems by
dividing the problem into smaller parts, which have to be solved first, and the intermediate
results produced are then used to approach the optimal solution for the entire problem
incrementally by combining them step-by-step.

Value iteration is a variant of dynamic programming where a value is assigned to each
state by a value function V : § — R which specifies the current approximation of the value
of this state w.r.t. the property which is to be calculated. The value function is placed in an
iterative procedure updating the states’ values depending on the values of their successor
states. Usually, the value function is calculated greedily via the Bellman function [32] (spelled
out below for the calculation of the maximal value, but similar for minimum), which in full

generality takes the reward values of actions into account.

Visi(s) = ag%;sm,a,s') C(R(s,a, ') +Vi(s)) 2.1)
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The value function V{y, with which the iterative process starts, can be initialized arbitrarily
in general, but depending on the property of interest, often at least the terminal states are
initialized with O or 1. For the property types defined above, one would use an initial value of
0 for all states when calculating expected reward properties. When calculating reachability
probabilities, an initial value of 1 for goal states and O for all others would be chosen, where
rewards would be set to 0.

Basic value iteration operates on the full reachable part of the state space of the model.
The values are refined until convergence to the least fixpoint, i.e., until all values have
converged, which means further updates using the Bellman function do not change the values
anymore. In many situations this fixpoint V* = lim,_,« V,, corresponds to the optimal value
function one is looking for, from which the optimal policy can be extracted. In practice,
convergence and thus termination of the value iteration process is checked up to an error
bound &, i.e., the value propagation is terminated as soon as no value changes by more than
& anymore perceivably. Algorithm 1 shows a detailed pseudo code of the standard value

iteration procedure.

1: proc VaLUEITERATION(E: float)
2 given: reachable state space S of an MDP and value function V : S — R initialized for

all states arbitrarily, except for terminal states (0 or 1 depending on which property type to

calculate).
3: repeat
4 A=0
5: for each s € S do
6 Voia(s) = V(s)
. V(s) = maxXaea(s) Lyes P(s,a,5) - (R(s,a,5") + Voul(s'))
5 A = max(A, [Voia(s) = V(s)])

9 until A < ¢

Because of the way the error bound ¢ is used to determine when a fixpoint has been
reached, the standard version of value iteration may not be sound, which means that even if
convergence with the error bound ¢ is reached, the calculated result may still be arbitrarily
far away from the actually correct value [226]. Luckily, such phenomena only occur in very
specific cases.

However, there exist techniques based on linear programming with which it is possible to
compute exact solutions for the properties [77, 189]. In addition, there are techniques like
interval iteration which try to tackle the imprecisions of standard value iteration by calculating

an upper and a lower bound for the final result instead of only approaching the result from
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below [23, 48, 117]. Inspired by this technique, a sound version of value iteration [228] has
been proposed, which is based on the idea of interval iteration approximating the value from
above and below. In contrast to interval iteration, it does not need starting values for upper
and lower bounds to be performant, but splits the reachability probability into the sum of
the probability of reaching the goal within a certain number of steps and the probability of
reaching it only after this number of steps.

There is also a refinement of the standard value iteration procedure, called asynchronous
value iteration [34], in which only one state’s value is chosen to be updated in each step.
This variant is often used in planning and reinforcement learning, in which only a small
fraction of the states is deemed sufficient to answer the considered property and not all states
in the state space are considered. It often converges faster and is less memory-consuming
than standard value iteration. The order in which values are updated is made dependent on
their current value estimates. We make use of a variant of asynchronous value iteration in
our adaption of algorithms presented in Chapter 4.

To speed-up the value iteration process for large models, it is possible to pre-compute
exact results for some of the states instead of propagating their values, which can also avoid
numerical rounding errors. This is possible with the help of a graph-based analysis for states
from which it is not possible to reach any goal state at all and for states from which the
goal is reached with absolute certainty [90]. The values of such states are then set and never
changed anymore during the VI procedure, which thereby improves the overall precision of
the final result.

Policy Iteration. A related approach to value iteration is policy iteration [155], where
first an arbitrary policy defined on the reachable state space of the system under evaluation
is picked with an arbitrary initialization V of the value function, except for terminal
states, like indicated for the value iteration procedure above. Then, policy evaluation and
policy improvement steps alternate in each iteration. First, the current policy 7« is evaluated
by calculating the new value for each state in the policy using the Bellman function
Vit1(s) = Yyes P(s,m(s),s") - (R(s,7(s), s’) + Vi(s")). If the maximal change in the value
function for states on the currently selected policy is smaller than the error bound, a near-
optimal policy has been found and the procedure can be stopped. Otherwise, the policy has
to be improved by manipulating it in such a way that always the action leading to the state
with the currently highest successor value is selected. If the policy does not change anymore

in this step, the procedure can be stopped, too.

Techniques for Large State Spaces. To tackle the state space explosion problem [66, 67]

occurring when trying to build the whole state space of a very large model for model checking
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techniques like the ones discussed so far, various approaches to reduce, abstract, or compactly
store the state space have been invented. For those techniques it is often possible to store the
state space in such a way that model checking can still be executed with clearly quantifiable
and acceptable error bounds, a requirement extremely important for the verification of
critical infrastructure and cyber-physical systems in general. One of these approaches to
compactly store states to allow efficient operations on them are (multi-terminal) binary
decision diagrams (MT)BDDs) [2, 76, 93, 140, 142, 143, 177, 186, 187, 208].

A different idea is implemented in the MobpesT TooLseT with the disk-based exploration
and analysis engine of McsTa usable to model check MDPs by partitioning the state space
and outsourcing parts of it onto disk [129].

Another approach to reduce the treated state space are bisimulation techniques [207] or
minimization algorithms [22]. They often require the full state space upfront to be able to
reduce it, which does not reduce the memory consumption but only the verification time. If the
system under study consists of a network of interacting automata, the reduction techniques can
often be used component-wise before building the full network of interacting automata, which
reduces the considered state space [21]. In contrast, partial order reduction [18, 101, 219]
and confluence reduction [42, 253] construct bisimilar but not necessarily minimal models
on-the-fly.

In addition, there are abstraction techniques which work on a coarser representation of the
model by merging multiple states into one. An example is counterexample guided abstraction
refinement (CEGAR) [65, 144].

Other approaches try to reduce the visited state space size on-the-fly by building only the
parts of the state space necessary to calculate the current property. Such an algorithm, using
heuristic search techniques from planning, will be presented in Chapter 4.

All of these techniques have in common that they more or less work very well on some

model structures but can only achieve a small reduction on others [67, 176, 230].

2.2.2. Statistical Model Checking

A different model checking technique, in general only applicable to deterministic models,
conceived to cope with the state space explosion problem, is statistical model checking (SMC)
[28, 44, 51, 141, 194, 197, 198, 240, 273, 271, 275]. With this approach, the model under
study is evaluated by simulating a certain number of sample executions of the system under
study and evaluating it by performing hypothesis testing on the results to get a statistical
evidence for inferring whether a property holds or what the value of it is. In general, this
technique is not directly applicable to models containing nondeterminism, like MDPs,

because during the simulation it is necessary to somehow resolve the nondeterminism to
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proceed with the sample execution. But still, there are approaches applying SMC to MDPs,
which we discuss at the end of this section.

The sample executions performed during SMC are often also called traces through the
model. In the SMC context, the term should not be confused with a trace induced by a path
in a model, as introduced in Definition 15.

At its core, SMC harvests classical Monte Carlo simulation [112, 211, 233]. In a nutshell,
n finite samples of model executions are generated and evaluated to determine the fraction of
executions satisfying a property under study or resulting in a certain value. This yields an
estimate ¢’ of the actual value g of the property, together with a statistical statement on the
potential error. A typical guarantee is that P (|¢g’ — g| > €) < . This means, the probability
that the estimate ¢’ differs from the actual value ¢ by more than & is smaller than §. 1 — ¢ is
called the confidence that the result is e-correct. To decrease € and d, n must be increased.
Essentially, this means that sequential hypothesis testing techniques are applied [266].

In the model checking settings considered in this thesis, SMC is a popular alternative to
exhaustive probabilistic model checking, because PMC, requiring the full state space, is
limited by the state space explosion problem, but SMC is not, even if the underlying model
has infinite size. The approach only requires constant memory independent of the size of the
state space because only a single trace is treated at once. Furthermore, SMC can be extended
to non-Markovian formalisms or complex continuous dynamics effectively [47, 74]. When
facing rare events, however, the number of samples needed to achieve sufficient confidence
may explode.

In its original basic form, SMC as a simulation-based approach is not meant for nondeter-
ministic processes [9, 57]. For these kinds of models, SMC is based on the idea that fixing a
particular policy turns the MDP into a Markov chain which is easy to evaluate on its own.
Therefore, in the MDP setting (or more complicated settings), SMC analysis is always bound
to a particular action policy turning an otherwise nondeterministic model into a stochastic
process. Nevertheless, there are some approaches for SMC on MDPs [44, 51, 78, 139], and
many SMC tools support nondeterministic models, e.g., Prism [189], UPPAAL SMC [75],
PAC [13], and PLASMA [163]. Often, they use an implicitly defined uniform random action
policy to resolve choices, assign probabilities to the choices in some other form, or use Q-
learning techniques like in the case of PAC. The statistical model checker mopEgs [51], which
is part of the MopEesT TooLskT [128], lets the user choose out of a small set of predefined
policies (also comprising a uniform random action policy), or provides lightweight support
for iterating over policies to statistically approximate an optimal policy [51, 199]. More
details on the SMC engine of the MopEsT TooLSET are given in Section 3.4 and 5.1.1. In

addition, variants of so called sound SMC, which are able to treat nondeterminism in MDPs,
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have been discussed [43, 133, 134]. In most of these cases, results obtained on MDPs by
SMC are to be interpreted relative to the implicitly or explicitly defined action policy.

The full discussion of this issue is not of greater relevance for this thesis because our
Deep Statistical Model Checking approach introducing a new technique based on SMC to
assess the quality of trained decision-making agents, like neural networks, acting in MDP

environments as a determinizer, exploits exactly the fact that the nondeterminism is resolved

prior to applying SMC on the resulting Markov chain.
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Figure 1.: Principle of exhaustive and statistical model checking [127].

Figure 1 visualizes the functionality principles of exhaustive model checking and statistical
model checking. As discussed in detail in Section 2.2.1, an exhaustive model checker explores
and analyzes the whole state space of a model to check a given property. This can be done
with the help of different techniques, like standard value iteration or more involved symbolic
model checking techniques. For qualitative model checking, it is then able to certainly state
that the property is fulfilled or a counter-example can be provided which proves that the
property is violated. For quantitative model checking, it is able to provide, e.g., a probability
or an expected accumulated reward for a property. This result can be exact or lie in a
predefined error range, depending on the concrete PMC algorithm.

In contrast, statistical model checking can only deliver results for qualitative and quantitative
properties up to a predefined confidence level by statistically evaluating sample executions,
1.e., traces, through the model. To reach the desired level of confidence in the statistical
analysis the number of sample traces has to be increased until the result has the desired
quality. If a nondeterministic model is given to the SMC solver, an entity providing a policy

giving information on how to resolve the nondeterminism is required.
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There are comparative studies between statistical and exhaustive model checking [169, 271]
but it is a controversially discussed question if the approaches can really be compared because
of their quite different handling of nondeterminism. But as already mentioned, this discussion

is not of greater importance for the thesis.

2.3. Probabilistic Planning & Heuristic Search

The goal of planning approaches is to find an optimal path w.r.t. a certain specification
through a system. For example, a robot driving around in a factory is supposed to find
the shortest path to grab a specific item. Planning can be divided into the fields of path
planning, like in the previous example, but there is also motion planning, scheduling, and
task planning [236]. The environments where the agents executing the plans act in can
be deterministic but it is also possible that they contain nondeterministic or probabilistic
behavior. Hence, the planning environments can also be modeled as MDPs, although they
are classically defined over a set of facts. Usually, planning tasks consist of a set of facts
which do initially hold. When taking an action, facts are deleted or added until a goal is
reached, which is again defined by a set of facts which have to be fulfilled [236]. Often
specific functions are applied guiding the search for the plans faster to the goal by giving
additional information or estimations. Those functions are called heuristics.

Although the objectives of planning and model checking are different, and therefore
also the problem formulations and solution approaches differ, there are close connections
between probabilistic planning [184, 203, 270] and probabilistic model checking, which
can and should be exploited to get the best solution methods inspired by both worlds. So
far, there were only a few works that started to bridge the gap between planning and model
checking, e.g., [29, 48, 247, 251]. But with translations between the standard language for
describing probabilistic planning domains, the Probabilistic Planning Domain Definition
Language (PPDDL) [272], and JANI [53], an overarching format for probabilistic models,
as well as with a detailed, extensive comparison of different planning and model checking
approaches [175, 176], the author of this thesis layed the foundations for more cross-
fertilization between both communities, and for interchanging and combining algorithmic
approaches. One of these approaches to use planning techniques for model checking is
presented in Chapter 4.

Most of the theory discussed so far is commonly used in both, probabilistic planning with
heuristic search and model checking. But there are additional terms and concepts from the

probabilistic planning context not discussed so far, which are introduced in the following.
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Variants of value iteration methods are not only used in model checking but also in the
probabilistic planning context. For some of those variants it is crucial for the functionality

that the value function, especially its initialization, is admissible.

A value function V is called admissible if it provides an optimistic estimate of the

correct final optimal value of V* w.r.t. the property type under investigation. This means,

if we try to minimize, the value function V is admissible if V(s) < V*(s) forall s € S.

If we instead maximize, a value function with V(s) > V*(s) for all s € S is admissible.

While in probabilistic model checking MDPs often reflect some sort of concurrency
phenomena, they also have a longer tradition in the context of sequential decision-making
under uncertainty [35, 160]. Depending on these differences in the modeling context, MDPs
are usually considered decorated with rewards in model checking, as in Definition 6, but
with costs in planning. The term reward is traditionally used if the goal is to maximize the
earnings. In the dual context of costs, the spendings are usually to be minimized. All of this
is done under the assumption that the decisions in the MDP are controllable. Instead, and
in particular in a setting where the MDP results from concurrent interleavings, it can also
be natural to ask for the maximal cost lurking or the minimal reward obtainable, since in
this case the decisions need to be assumed uncontrollable and the worst case scenario is of
interest.

As discussed above, model checking tools often rely on value iteration techniques, which
are limited by memory for the explicit exploration of the whole state space. The support of
complex temporal properties often requires to consider, and to actually reconstruct, the entire
state space of the model from the compact input description. A considerable portion of work
was therefore spent on developing compact representation methods that efficiently support
operations required for the analysis of the given properties, e.g., (multi-terminal) binary
decision diagrams (MT)BDDs [2, 76, 93, 140, 142, 143, 177, 186, 187, 208]. In contrast,
probabilistic planners focus on plain reachability analysis variants and can therefore make
use of different approaches, called heuristic search algorithms [27, 45, 46, 125], which use
their current knowledge of the value function or other information about the state space in
order to disregard parts of the MDP’s state space that provably cannot be part of an optimal
solution. A central idea underlying many of the algorithms invented in this context is the
incorporation of additional information, automatically extracted from the compact model
description. This information is exploited in order to take only a small part of the whole state
space into consideration, which is deemed to be relevant to answer the desired objective.

Taking the basic value iteration for value maximization (see Algorithm 1) as an example,

a heuristic search algorithm can for instance be based on the observation that for computing
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the maximal goal reachability probability for just the initial state, V*(s¢), it is not necessarily
required to consider and to compute V* for all states reachable from s(. An example is given

in the following.

As a simple example, we consider the snippet of an MDP below. State sy has two

applicable actions: (1) a; leading to a goal state G with probability p > 0.5 and to
another state s with the remaining probability 1 — p, and (2) a2 leading to a terminal
non-goal state so with the same probability p and to some state s3 with the remaining
probability. We do not have more information about the part of the MDP reachable from
s1 and s3.

Assuming we want to maximize the probability of reaching the goal, a3 can never be
the action selected in the maximization part of the Bellman Equation 2.1 for s, because
the goal reachability probability is smaller than 0.5 and a; leads with a probability of
more than 0.5 to the goal.

In particular, we do not need to know the value of s3 to prove that as cannot be chosen
in 5o by any optimal policy. At the same time, s3 might be rooting a large subgraph of
the state space. This entire subgraph could however be ignored, since its consideration

is only required for the computation of V*(s3).

To make already the search’s initial value function estimates more accurate, and thus
to improve the overall efficiency, one can additionally exploit heuristics, functions that
provide per-state approximations of the optimal result. In general, a heuristic is a function
which tries to estimate the optimal value of a state w.r.t. the problem under consideration
as close as possible such that it is not necessary anymore to consider certain paths or areas
of the state space in the expensive straight forward solving method. MDP heuristic search
methods [27, 45, 46, 125, 180, 205, 246] try to shrink the visited state space by using the
help of a heuristic function when interleaving the partial state space exploration with the

value computation and propagation.
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The use of a heuristic function is demonstrated in the next example.

In a slightly modified version of the MDP of Example 4 a heuristic function could for

instance provide estimates of the states’ values. Let us assume that s7 is not terminal,
like s and s3. In this case, it is no longer possible to exclude as from consideration
right away, since now an optimal solution could potentially pass through s2. On the
other hand, assume that we are also given an admissible, i.e., optimistic, approximation
of V*, in the form of an efficient to compute heuristic function 4 : S — R such that
h(s) > V*(s) for all states s.

In this case, & can be used to provide a necessary condition for the probabilistic
transition as to be potentially part of an optimal solution. This condition is p - h(s2) +
(1 - p) - h(s3) > p. This is the case, because h overapproximates the goal reachability
probabilities for the states. If already this overapproximation, in this example for state
s2 and s3, leads to a smaller or equal value for s when taking a9, than what is achieved

for sure when taking a, the latter action has to be taken for optimality.

When calculating extremal values for properties, often optimal policies according to a
certain measure have to be found by building paths through the state space optimizing from

one state to the next. This procedure can be described as being greedy.

A greedy policy is always defined w.r.t. a value function V. For each state the greedy

policy always picks the action leading to the successor state(s) (multiple states in case
of probabilistic actions) with the best value(s) according to the value function. This
action may not be unique, e.g., because two successors have the same value, which
means that there can be multiple possible greedy policies.

A greedy graph Gy of graph G of an MDP (see Definition 8) with respect to the
value function V is the superposition of all graphs G, induced by any greedy policy 7

w.r.t. V. This means, it is the combined reachability graph of all greedy policies.

A trap [179, p. 171 ff.] in a graph is a BSCC (see Definition 9) not containing a goal

state. In our approaches traps are defined on the greedy graph Gy induced on the graph
G of an MDP by the value function V.
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We distinguish between two types of traps. There are permanent traps of Gy which 4
are also BSCCs of G and thereby traps of G, i.e., there is no non-greedy policy which
would lead out of the trap of Gy when considering the full graph G instead.

In contrast, transient traps of Gy are SCCs of G, but not BSCCs, and therefore not
traps of G, i.e., there is a policy in G which is non-optimal under the current value

function V leading out of the trap of Gy.

The planning literature has identified a number of model classes with convenient properties
on which quite a lot of algorithms are based and rely. Initially, some of these approaches
try to cope with arbitrary rewards in R, which in the end is often restricted to only some
property types or narrowed to positive rewards. The supported range of rewards, property
types, and model types is therefore quite fragmented across multiple approaches. Since in
Chapter 4 we will extend one of these procedures to work on MDP models with positive and
zero-valued rewards on all established property types, except long-run averages and nested
properties, which is much more than the original supported properties, we briefly introduce
notions needed to talk about characteristics of these originally considered model classes and

properties in the following.

7 is an almost-sure policy for an MDP if the probability of reaching S, it induces is 1

regardless of the initial state. If, on the other hand, that probability is only guaranteed to

be positive, « is called a proper policy.

A Stochastic Shortest Path (SSP) MDP [35] is an MDP admitting (i) at least one

almost-sure policy and (ii) inducing expected accumulated reward oo for each policy 7

which is not almost-sure.

The latter corresponds to G, containing no reachable cycle on which (in the MDP) the
accumulated reward does not increase. Assuming the former, the latter can trivially be
enforced by restricting to models with reward function R confined to positive values (possibly
except at goal states).

As an apparent relaxation, Bertsekas [36] later introduced conditions (i") and (ii") which
replace the role of almost-sure policies by proper policies in (i), respectively (ii), but showed
them to be (pairwise) equivalent.

In addition, the class of SSPs has been further refined in the planning community by

defining Generalized Stochastic Shortest Path problems.
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In a Generalized Stochastic Shortest Path (GSSP) MDP [179] the first condition (i) of

SSPs is kept while the second condition (ii") from above is further relaxed by instead

assuming that (ii”’) for each policy 7 and state s the expected sum of negative rewards is
bounded from below.

This relaxation in particular allows for zero-valued reward cycles, while it precludes cycles
with alternations of positive and negative rewards that cancel out each other. The latter can
trivially be enforced by restricting to models with reward function R confined to non-negative
values, as we do in our definition of MDPs (see Definition 6). Our contribution in Chapter 4
relinquishes condition (i) and (i") of SSP and GSSP, i.e., our algorithmic contributions do

not rely on the existence of almost-sure or proper policies.

2.4. Neural Networks and Q-Learning

Since we present an approach to assess the quality of neural networks and automated
decision-making agents in general later in this thesis in Chapter 5, a brief overview of the
required neural network learning context is given in the following.

Neural networks (NN), in particular deep neural networks (DNN), promise astounding
advances across a manifold of computing applications in domains as diverse as image
classification [182], natural language processing [146], and game playing [244]. NNs are
the technical core of ever more intelligent systems, created to assist or replace humans in
decision-making. They have recently been applied with dramatic successes to learning of
action policies in large transition systems, from Atari games [209] over Go and Chess [244]
to Rubik’s cube [1]. From the examples we listed here and in the introduction (Chapter 1), it
is clear that NN play a key role in action decisions of many autonomous systems already,
which will become even more in the future. In particular, this pertains to action decisions in
environments which can be formalized as MDPs.

NN consist of neurons, which are atomic computational units that typically apply a
non-linear function, their activation function, to a weighted sum of their inputs [238]. For
example, a neuron can use the activation function f(x) = max(0,x), which is called the
rectified linear unit (ReLu) activation function. We consider relatively simple fully-connected
feed-forward NNs as depicted in Figure 2, a classical architecture where neurons are arranged
in a sequence of layers, each consisting of a specific number of neurons. The first layer is
called input layer and the last layer is the output layer. All layers in between are called hidden

layers. Inputs are provided to the neurons iy, . . ., i, of the input layer, and the computation
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Figure 2.: Structure of a feed-forward neural network.

results of the neurons in each layer are propagated as inputs to all neurons of the next layer in
the sequence until reaching the output layer, consisting of neurons o1, . . . ox. This means,
the values are propagated forward through the layers (called feed-forward) and all neurons of
a layer are connected via input/output to all neurons of the layer in front and behind (called
fully-connected). For a given set of possible inputs 7 and (final layer) outputs O, a neural
network can be considered as an efficient-to-query total function nn: 7 — O. In every
layer, every neuron receives as inputs the weighted outputs of all neurons in the previous
layer, possibly together with an additional value, called a bias, to manipulate the function in
a certain way. During the learning process of a neural network, adequate values for these
weights and biases have to be found such that the outputs fulfill a certain quality requirement
w.r.t. the task the NN should be trained for.

Feed-forward NNs are comparatively simple, yet they are in widespread use [97], and are
in principle able to approximate any function to any desired degree of accuracy [152]. Deep
neural networks consist of many layers. In tasks such as image recognition, successful NN
architectures have become quite sophisticated, involving, e.g., convolutional layers taking

multi-dimensional inputs and max-pooling layers discarding superfluous information [182].

NN are often trained for the usage as agents in environments where they should make
decision in such a way that a predefined goal is reached while taking care of some optimality
criterion, e.g., operating as fast as possible or by consuming as few resources as possible.
For this purpose, the NN is provided with a state description of the environment to identify
the next action to take to reach the predefined goal. When propagating a description of the
current state of the environment as input trough the NN, the values of the neurons in the
output layer are classified, i.e., interpreted, in such a way that a decision of the agent in the

context of the environment can be concluded. These decisions are called classifier outputs.
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NN can be trained in a multitude of ways. In our setting, decision-making agents are
trained by iterative execution and refinement steps. One such execution and refinement step
is called training episode. This means the decision-making agent is taught via trial and
error. The current quality of the NN decisions w.r.t. the predefined goal is measured by the
discounted sum of rewards received for achieving certain (partial) goals while interacting in
the training environment. The final discounted sum of rewards at the end of each training

episode is called training or learning return. Formally, the training return is calculated by:

T
Gi= ) v 'R, (2.2)
k=t+1

which is the accumulated discounted reward from time ¢ on, where R; is the random variable
giving the reward obtained in step i for certain task specific achievements, y € [0, 1] is a
discount factor, and T is the final time step [249]. To define a policy of good quality, each
learning episode executes the current version of the NN from some state of the environment
on, and updates the NN weights and biases using gradient descent optimization [235] w.r.t.
to the training return achieved. The goal during training is always to achieve a certain task by
getting the highest return.

We use deep Q-learning [209], a successful and nowadays widespread form of rein-
forcement learning [91, 166, 236, 259]. When taking decisions in the environment, the
NN approximates per possible action the expected discounted accumulated return to fulfill
the required task in the environment, the so-called Q-value, that will be achieved when
deciding for an action and following the decisions afterwards. An arg-max function on
the Q-values is used to determine the next action to take. Deep Q-learning has been
shown to learn high-quality NN action policies in a variety of challenging decision-making
problems [111, 209, 243, 244, 263].

The area of neural network learning which is closest to our model checking approaches,
and which is based on environments which can be modeled as Markov decision processes,
is model-based reinforcement learning [167, 210, 249]. Tasks to be fulfilled by a trained
decision-making agent in model-based learning are often very similar to the model checking
properties, e.g., in safe reinforcement learning [95], where policies are learned which even
during the learning process always respect safety or performance requirements. Since the
model checking properties and learning tasks are so close in model-based learning, the
reward function of the MDP model of the environment can directly be used as the reward
function for the learning process.

We instead make use of a model-free reinforcement learning approach [55], which
in contrast does not directly make use of the full MDP description, e.g., the transition

probabilities, the reward function, the exact state space information, and the action structure



Theoretical Background 53

of a formal model of the environment, but uses an approach to train an agent with only parts
of these information, modified versions thereof, or by using additional external information.
With this technique an agent is trained to make decisions in an environment modeled often
quite similar to an MDP but optimized for the learning process, e.g., w.r.t. the reward function
used.

Reward structures in MDPs specify numerical rewards to be accumulated when transitioning
along state sequences, i.e., R : SXAXS — R (see Definition 6 where we assume R (). In the
model checking problems for which agents are trained in this thesis, we are instead interested
in the probability of property satisfaction independent of the reward function, i.e., the problem
specification of learning, which requires a reward function to measure the quality of training,
and the model checking problem do not match exactly. Hence, rewards independent from
the MDP used for model checking appear during the model-free reinforcement learning

approach as part of the NN training aiming at optimizing the training return.
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3.

f Benchmarks, Models,

mplementations

Markov models in general, and especially Markov decision processes, are suitable to model
the behavior of many real world cyber-physical systems and technical processes. Thus, as
discussed above, not only the model checking community uses this model family, but, e.g.,
also the planning community often considers MDPs to model and solve their problems. This
shows that in different contexts Markov models are of interest. Various MDP benchmarks have
been created, which are, e.g., collected in the Prism benchmark suite [190], the Quantitative
Verification Benchmark Set [132], and the benchmark set of the International Probabilistic
Planning Competition [272]. In their original versions, they are often modeled in context
specific languages and are thus not even accessible to the whole community they stem from,
not to mention other communities potentially also interested in these model types.

To improve on that, and to foster cross-fertilization between communities, we use JANI
models [53] throughout this thesis which are freely available. Since this thesis is centered
around model checking approaches for systems whose functionality can be modeled as
MDPs, a large MDP benchmark set comprising examples with different foci from various
areas and communities is needed to evaluate the resulting tools in multiple contexts. The
benchmarks used throughout the thesis and their origins are described in this chapter. Most of
them are part of the Quantitative Verification Benchmark Set (QVBS) [132], whose origins,
content, and functionality is discussed in the following. These models also form the basis
of QComp [54, 132], the quantitative verification competition, which we briefly present
in the following. In Chapter 4, we evaluate one of our tool contributions, MobpysH, in this
competition’s setting. In addition, we introduce the Racetrack benchmark in its basic form,
and discuss the variants of it used in many of the authors’s publications, especially also in
the works on Deep Statistical Model Checking in Chapter 5.

All our tool contributions evaluated on these benchmarks are implemented in one common
infrastructure, the MopesT TooLseT. We give a summary of the functionalities available in
the toolset and of its architecture. Thereby, we focus especially on the tools we used for our

purposes and on the tools we extended.
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The chapter does not belong to the deep core of the thesis but nevertheless contains genuine
contributions of value for the communities using MDP models.

In summary, the contributions relate to:

* The development of the Quantitative Verification Benchmark Set.
* The first and second edition of the QComp competition.

* The development of multiple variants of the Racetrack benchmark and infrastructure
for Racetrack benchmarking, including parsing maps, JANI model generation, and

model export.

Information about the QVBS and the QComp competition can be found on their website!.
The artifact providing the technical infrastructure, the tooling, and the results of the second
edition of QComp in 2020 is archived on Zenodo?. All variants of and tool infrastructure
centered around Racetrack can be found online®. Among these materials is also a generator
for JANI Racetrack benchmarks with different parameters. Detailed information on the

MobgsTt TOOLSET is available on its website?.

Organization and Origins of the Chapter. Section 3.1 introduces the JANI model format in
which all of the models used in the thesis are specified. Section 3.2 introduces the Quantitative
Verification Benchmark Set and the QComp competition based on it. In Section 3.3 we
present the Racetrack benchmark and its variants. The functionality and architecture of the

MobEesT TooLsET 1s discussed in Section 3.4.

The JANI model format is clearly not a contribution of the author but necessary to be
aware of before talking about concrete models used throughout the thesis. Similarly, the
information provided on the MopEsT ToOLSET is necessary to understand the context of the
tool contributions of the thesis. The MopEsT TooLsET is maintained and has mainly been
implemented by Arnd Hartmanns with the help of several co-authors, like the author of this
thesis who implemented all tool contributions presented in later chapters in the environment
of the toolset.

Together with Arnd Hartmanns and Tim Quatmann, the author was part of the core team
developing the QVBS, which has been presented in a TACAS 2019 tool demonstration
paper [132]. The benchmark collection as well as the QComp competition based on it was,

beside other influencing factors, inspired by previous works of the author in the planning

Thttps://qcomp.org/
Zhttp://doi.org/10.5281/zenodo.3965312
3https://racetrack.perspicuous-computing.science/
“https://www.modestchecker.net/
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community [175, 176]. The author submitted 50 of the currently 78 benchmarks to the QVBS
and thus considerably contributed to it. In addition, the author together with Arnd Hartmanns
and Tim Quatmann designed and organized the first QComp for the TOOLympics 2019
at TACAS [121], and was responsible for the technical setup, tool execution, and result
evaluation of the second edition at ISoLA 2020 [54, 131].

The Racetrack model has been part of many works of the author, and has been refined and
extended with new features in several of them. The initial JANI model of Racetrack has been
built for the first works on DSMC by the author with the help of Marcel Steinmetz [106],
which has later been discretized in a finer manner by the author for the scalability study
of DSMC in a journal article [109]. An extended version of Racetrack with new features,
like fuel consumption and different engine types, has been implemented by the author of
the thesis for the evaluation of suitability notions of components in probabilistic systems
published at ISoLLA 2020 [20]. A summary of all Racetrack variants used as a laboratory
for research on perspicuous automated decisions and the tools developed in this context is
published in a TAILOR 2020 paper [16], which was co-authored by the author of this thesis,
and which is accompanied by a website> on the works centered around Racetrack coordinated

by the author.

3.1. Probabilistic Models in JANI

Most model checkers have their own, tool-specific input language, like the Prism lan-
guage [190] of the Prism model checker [189], or MopEesT [ 123] of the MopesT TooLseT [ 128].
This makes it notoriously hard to exchange models, e.g., for the purpose of comparing
performance of different tools with similar functionalities or just to exchange interesting use
cases. The JANI-model format [53] has been invented to solve this issue. It is an overarching
format conceived to foster verification tool interoperation and comparability. JANI is targeted
at establishing a common input format for probabilistic model checkers. Apart from others, it
is directly supported as an input format by the state-of-the-art model checkers the MopEesT
TooLset, STorM [77], and EPMC [92, 124]. Translations from and to the Prism language
exist, too [77, 124]. In full generality, JANI models are networks of stochastic hybrid automata
(SHA). But the core formalism are MDPs. Most of the JANI models belong to one of the
following types: Markov automata (MA), timed automata (TA), probabilistic timed automata
(PTA), continuous-time MDPs (CTMDPs) as well as discrete-, and continuous-time Markov
chains (DTMCs/CTMCs). JANI allows users to model a rich variety of distributed and
concurrent systems in the form of quantitative automata networks with variable decorations,

clocks, and probabilities. JANI, as a JSON based format, is designed with a particular focus on

Shttps://racetrack.perspicuous-computing.science/
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extensibility and machine readability. Extensibility simplifies the integration of new features,
not part of the JANI core already. Machine readability makes it easier to add JANI support
to existing tools. In addition, it is a human-readable, but not necessarily a human-writable
format. To write a model by hand, it is possible to select from other more concise modeling
languages, like the MobpEsT or the Prism language, and later translate that to JANI. With
Momba [178] the whole tool-ecosystem of Python functionality is now also accessible to
build and work with JANI models. The author of this thesis has partially been involved in the
developments around Momba.

In addition, language features of JANI are of considerable interest to the Al community. For
example, the thesis’ author was part of a team showing that JANI is much more general and
capable than the Probabilistic Planning Domain Definition Language (PPDDL) [272] even
for describing probabilistic planning tasks [148], which shows that the language of the model
checking community has benefits when used on the planning side. With the compilations
between PPDDL and JANI [175, 176] the author together with others paved the way for
future connections and research in this direction.

A JANI model consists of three main components: 1) a list of global variables, 2) an
automata network, i.e., a set of individual automaton specifications of interacting automata
with variables, and 3) the property to be checked. The format supports the specification of
variables of many different types, including discrete, bounded integers and reals, continuous
variables, and clock variables. This enables the representation of many different kinds of
probabilistic systems. Expressions over these variables can be composed of all standard
arithmetic operations as well as conjunction and disjunction. An automaton is specified
through a set of local variables, and a set of locations connected by directed edges, which
can be labeled with edge labels. Each edge defines a single source location, a guard, i.e., a
condition that must be satisfied to apply the edge, and either a single destination or a discrete
probability distribution over multiple destination locations. Beside the target location, each
destination additionally carries a list of assignments to global and local variables that apply
atomically whenever going to the respective destination.

To give a formal semantics to the overall automata network, JANI requires the definition of
the system composition. The transitions of the network are then obtained by synchronizing
the automata, i.e., in every transition, potentially multiple automata participate with one
edge, respectively. In the simplest case, in each step of the overall system, exactly one
applicable automaton edge is executed nondeterministically. However, JANI also supports
the specification of synchronization vectors, allowing the parallel or synchronized execution
of edges of multiple automata based on action labels. JANI allows the definition of one or

multiple initial states by putting constraints on the global and local variables.
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Properties to be checked are temporal formulas based on computation tree logic (CTL) [63].
The property description in CTL-style may follow different schemes, depending on the exact
type of the quantitative measure to consider. More details on the JANI syntax can be found in
its speciﬁcation6 [161].

An exemplary snippet of a JANI model can be inspected in the following.

1 "variables": [

2 { "name": "num",

3 "type": { "kind": "bounded", "base": "int",

4 "lower-bound": ®, "upper-bound": 3} } 1,

s "restrict-initial": { "exp": "=", "left": "num", "right": 0 },

6 "automata": [

7 { "name": "aut",

8 "locations": [ {"name": "s0"}, {'"name": "s1"} 1,

9 "initial-locations": ["s®"],

10 "edges": [ {

1 "location": "s@",

12 "guard": { "exp": { "op": "<", "left": "num", "right": "2" }},
13 "destinations": [

14 { "probability": { "exp": 0.5 1},

15 "location": "s@",

16 "assignments": [

17 { "ref": "num",
18 "value": { "exp": { "op": "+", "left": "num", "right": 1 } }
19 13,
20 { "probability": { "exp": 0.5 },
21 "location": "s1",
2 "assignments": [ { "ref": "num", "value": 3 } ] } ]
pi] } 1
u 1+ ]

0.5:
num:=3
S0 num < 2 >@
0.5:
num:=num+1
\

Shttps://jani-spec.org/
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The JANI snippet above encodes an automaton which describes the behavior depicted
by the graph below the JANI example. The automaton is called aut and contains a single
global bounded integer variable num initialized with its lower bound 0 and bounded by
3 from above. The automaton has two locations sy and s1. The initial location sg has
one outgoing probabilistic edge with two possible destinations. To be able to take this
edge, the current location needs to be sg and the variable num must be smaller than 2, as
defined in the guard. With a probability of 0.5 the edge leads back to sy and increases
the value of num by 1. The other part of the probabilistic edge leads to the destination

location s with probability 0.5 and num is set to 3

3.2. The Quantitative Verification Benchmark Set and the
QComp Competition

As already hinted at, a large spectrum of JANI case studies exists. To collect them together
with informative metadata and to make them easily accessible for everyone, many of them
are part of the Quantitative Verification Benchmark Set (QVBS )7 [132].

On the one hand, the QVBS was partially inspired by other communities also using MDP
benchmarks. One of them was the planning community which established the benchmarks
of the International Planning Competition (IPC) [258] as the standard benchmark set
the community is working on. The competition also contains a probabilistic track, the
International Probabilistic Planning Competition (IPPC) [272], centered around probabilistic
models, mainly MDPs, written in the Probabilistic Planning Domain Definition Language
(PPDDL) [272]. Probabilistic verification and planning have been connected by the author of
this thesis [175, 176] by providing translations between PPDDL and JANI, which makes the
planning benchmarks also available and attractive for the model checking community, and
which especially enabled the author to contribute JANI versions of planning benchmarks to
the QVBS.

In addition, MDPs have gained interest in the Al and learning community [106, 110] over
the last years, i.e., MDP benchmarks have been designed there too.

On the other hand, in the model checking community only a few sample benchmarks
delivered with the tools in their specific language, and the Prism benchmark suite [190] with
models in the Prism language, existed at the time of the development of the QVBS. Most of
the Prism benchmark suite models were designed for the use in Prism, and therefore they
work the best with the BDD engine of Prism [132]. But there are much more model checking
techniques specialized for the use of other model types, which again highlights that a general

overarching benchmark set comprising models from all areas is required.

https://qcomp.org/benchmarks/
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JANI models were basically not collected so far, only the MobpesT TooLsET contained
some sample models, and a few of the Prism models had been translated to JANI and were
available in a small JANI model repository®.

Therefore, the idea behind the QVBS was to foster cooperations and new developments
in all those communities using formal quantitative models, by providing a collection of
benchmarks usable in planning, model checking, and learning contexts, in JANI as a common

format.

These major factors built the starting point of the QVBS. The QVBS includes established
probabilistic model checking, fault tree, Petri nets, and planning benchmarks originally
designed in a variety of languages together with properties to be analyzed on these models.
They cover industrial case studies, Petri nets, probabilistic programs, queuing systems,
dynamic fault trees, planning models in uncertain environments as well as biological systems.
In addition, the QVBS does not only make the models accessible in JANI together with
the original version and information on the conversion procedure. It also archives detailed
metadata, like tool performance measurements, the state space sizes as well as descriptions
and references for the model. Currently, the QVBS contains 78 DTMC, CTMC, MDP, MA,
and PTA benchmarks of which 50 have been submitted by the author of this thesis.

With the QVBS, the model checking community owns a common set of realistic and
challenging benchmarks on which algorithms and tools can be easily compared, like it is
already standard in the planning [258], SMT [26], and software verification [37] community.

These tool competitions gave the inspiration to launch QComp?®, the Comparison of Tools
for the Analysis of Quantitative Formal Models, a quantitative verification competition based
on a curated subset of the QVBS comprising DTMC, CTMC, MDP, MA, and PTA models.
Participating tools do not have to support all model or property types. In addition, it is not
required to work on the JANI version of the benchmarks, but one of the languages contained
in the QVBS suffices, e.g., the format the original version of the benchmark is specified in.
The competition compares the performance, versatility, and usability of the tools. It is a
friendly competition in the sense that there is no global ranking in the end but data comparing
several facets of the tool is processed in tables, plots, and diagrams. Performance, versatility,
and usability is evaluated in text form such that the strengths and trade-offs between tools can
be highlighted. The competition consists of multiple tracks with different types of correctness
guarantees on results. For this thesis only one of these tracks is of relevance, which is the track

where often e-correct results have to be produced. In this track, tools participate which do not

8https://github.com/ahartmanns/jani-models
https://qcomp.org/
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guarantee any bound on the difference between the correct value and the tool’s result at all
but often deliver results in a predefined bound &, which is set to +/—1072 in the competition.
An example for such an approach is standard value iteration. In all of the tracks, the tools can
participate with default parameters, which have to be the same for all benchmark instances,
and in a second round specific parameters tweaked per benchmark instance are allowed. We
only concentrate on the default track version in this thesis.

A variety of probabilistic model checkers, like EPMC [92, 124], mcsta [119, 122] of the
MobgsT TooLser [128], PET [48], Prism [189], STorM [77], and also our MobDYsH tool
presented in Chapter 4 are being developed in the community nowadays, and are supported by
orchestrated initiatives like the QComp verification competition and the QVBS. The author
of this thesis was involved in the development process of the first QComp in 2019 [121]
and managed the technical setup, the tool executions, and the result evaluations for QComp
2020 [54].

3.3. The Racetrack Benchmark

Figure 3.: Maps of Racetrack benchmarks: Barto-small (left top), Barto-big (left bottom),
Ring (right).

The Racetrack benchmark with all its different versions and extensions is currently not part
of the QVBS, but has been used in different versions in multiple works of the author [16,
20, 103, 105, 106, 109, 107, 110, 178], especially in the works around DSMC presented in
Chapter 5.

Originally, Racetrack is a pen and paper game [96] in which a track consists of a two-
dimensional grid drawn on a squared sheet of paper, where each cell of the grid is either a

starting position, a goal position, a free road cell, or a wall. Exemplary track shapes [27]
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are depicted in Figure 3, where starting positions are marked in green, goal positions are
colored red, and walls are indicated in gray. Throughout the thesis we use track and map as
synonyms for the description of a Racetrack environment with a specific shape induced by
the placement of walls, start as well as goal cells. A vehicle starts with a certain velocity,
usually 0, from a position on the start line and tries to reach a goal cell as fast as possible
without crashing into a wall. During the race, the player, i.e., the driver, can choose out of
nine possible acceleration actions in unit steps to modify the current velocity vector by one
unit in each round after every move. The actions are the acceleration directions up, down, left,
right, the four diagonals, and keeping the current velocity, which is mathematically encoded
as accelerations in x- and y-dimension in {-1, 0, 1}2. The difficulty is, that actions may fail,
i.e., it is possible that the desired action is not applied and the car continues driving with the
previous velocity vector. This behavior models slippery road conditions by introducing noise
with a certain probability. This means, the vehicle does not necessarily reach the goal with
certainty, even if played optimally.

This simple game lends itself naturally as a benchmark for sequential decision-making in
risky scenarios. When modeling the game, it is most natural to construct an MDP. Racetrack
was first adopted as a benchmark for MDP algorithms in the Al community [27, 45, 204,
220, 221].

Racetrack in JANI. We encoded the Racetrack benchmark in a JANI Markov decision
process. The details of the Racetrack encoding in JANI we make use of in the following
chapters are relegated to Appendix A.4. We give a brief summary of the core functionality in
the following.

The track itself is represented as a (constant) two-dimensional array whose size equals
that of the grid. The JANI files of different Racetrack maps differ only in this array. Vehicle
movements and collision checks are represented by separate automata that synchronize using
shared actions.

The vehicle automaton keeps track of the current vehicle state via four bounded integer
variables, which are the x- and y-position and the directional velocity in x- and y-direction.
In addition, two Boolean variables are used indicating whether the vehicle has crashed or
reached a goal. The initial automaton location has edges for each of the 9 different acceleration
vectors. Each of them updates the velocity accordingly, and sends the current source and next
target coordinates to the collision check automaton. It then awaits that automaton to respond
with one of three answers: “valid”, “crash”, or “goal”. For the latter two, the automaton
moves to a terminal location. For ‘“valid”, the vehicle automaton sets the target coordinates

as its new source coordinates, and transitions back to its initial automaton location.
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The collision check automaton checks whether the vehicle’s next target coordinates lie
within the grid. If so, it iterates over the cells on the discretized trajectory from the current
source to the next target, and looks up for each such cell whether it represents a wall or goal
cell. Such a result is sent to the vehicle automaton as soon as available. If the entire trajectory
is found free of such events, the vehicle automaton’s request is answered with “valid”, and
the automaton location is reset, waiting for the next trajectory to check.

Throughout the thesis we consider the single-agent version of the game and use (variations
of) the three traditional Racetrack maps illustrated in Figure 3, originally introduced by Barto
etal. [27].

Racetrack as Autonomous Driving. The benchmark is a variable and configurable, but
admittedly very gross, abstraction of the autonomous driving challenge. This challenge
consists of a vision of multiple vehicles which autonomously navigate smoothly through
city traffic. They avoid accidents by always following the traffic rules, by detecting objects
and obstacles on the road, and by driving carefully while watching the weather and road
conditions. In addition, they should optimally drive economically by reducing the fuel
consumption but reaching the destination as fast as possible. This autonomous driving vision
is the most prominent and discussed application of future intelligent systems.

In the most basic form as presented above, Racetrack at first sight only abstractly resembles
the autonomous driving challenge with some drastic restrictions relative to the grand vision.
Only a single car is considered in the environment, where only walls and the track boundaries
are obstacles, and no other moving traffic is around. In addition, the car has a full view on the
scene, 1.€., not only a certain area in the surrounding is accessible by sensors. Furthermore,
no traffic rules or fuel consumption limitations have to be considered, and the weather or
road conditions, e.g., modeled through noise, are constant along the track. In comparison to
real-life traffic, the Racetrack environment is discretized in a coarse manner, which simplifies
the problem considerably.

But a clear benefit of the Racetrack benchmark is, that it is formal and precise. It connects
the autonomous driving challenge to the modeling world of MDPs and provides a common
formal ground for basic studies in this environment. Racetrack provides laboratory conditions
for a systematic, structured, and extensible analysis of, e.g., machine-learnt entities that are
supposed to act in that environment. In addition, it can easily be extended, scaled, or varied
in such a way that it is usable to investigate machine perception based on collected sensor
data, behavior prediction, risk assessment, or trajectory and resource planning. Therefore, it
is of interest for many research fields, e.g., model checking, machine learning, planning, and

of course cyber-physical systems in general.
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There are endeavors, like image segmentation, semantic segmentation, and instance
segmentation done with the help of NN, especially in the context of autonomous driving [89,
241, 255], which try to make the real-world challenge more abstract by concentrating on
the relevant data needed to act in the environment. These approaches are used to reduce
objects and their properties in an image of the scene to the parts and information relevant for
making decisions by describing the scene more abstractly, such that the data can be processed
more efficiently. With the current version of Racetrack, we are already at this abstraction
level, which is required by many tools and otherwise would have to be achieved by such
segmentation methods first.

If required, the level of abstraction of real-world autonomous driving can easily be
adapted in Racetrack, w.r.t. continuous time, space constraints, linearization of trajectories,
or abstraction from features, like fuel consumption, road surface conditions, speed and
acceleration limits, other traffic participants and traffic regulations, moving obstacles,
different probabilistic perturbances, and the change from map perspective to ego-perspective
of an autonomous vehicle, mediated by vision and other sensor systems, and so on [16].

Finer discretizations of the tracks have, e.g., been considered in the scalability study for
DSMC [109] described in Section 5.3.

A suitability analysis in Racetrack environments considered as probabilistic systems
consisting of selections of different types of components has enlarged the set of Racetrack
variants [20] further. This variant allows the combination of (i) different car engine types,
determining the possible maximal and minimal acceleration, the maximal and minimal speed
as well as the fuel consumption with (ii) various undergrounds, like ice, sand, and tarmac,
and with (iii) different tank sizes, to figure out which car configuration is the most suitable to

drive on a certain track most efficiently, w.r.t. travel time, crash risk, and fuel consumption.

To conclude, Racetrack provides a common formal ground and laboratory environment for
research in autonomous driving, is easily scalable and extensible, and there is a growing tool
support for research on this benchmark [16, 59, 103, 105, 106, 110]. Recently, Racetrack has
been used in many works on probabilistic verification [20, 59, 103, 105, 106, 110, 111, 178].
A summary of all these works centered around Racetrack is also available [16], and a
websitel0 presenting all variants of the benchmark, example tracks, the MDP model variants,

and the works using them, has been coordinated by the author of this thesis.

10https://racetrack. perspicuous-computing.science/
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3.4. The MobEsT TOOLSET

The Mobest Toorser!! [128] is a modular framework currently consisting of an integrated
collection of six tools centered around modeling and the analysis of hybrid, real-time,
distributed, and stochastic systems. It enables the study of probabilities, rewards, real-
time behavior, and continuous dynamics of quantitative models by providing verification
mechanisms for non-functional properties, like quality, reliability, and performance measures.

The modeling contexts supported by the toolset are based on the stochastic hybrid automata
formalism [123], which encompasses networks of stochastic timed automata, (probabilistic)
timed automata, Markov decision processes, labeled transition systems, discrete-time Markov
chains, continuous-time Markov chains, interactive Markov chains, and Markov automata.
Quantitative and qualitative properties on these model types can be evaluated with the tools
provided by the MopEesT TOOLSET.

All tools of the toolset support models expressed in the JANI format and in the MopEsT
language [123], which is a high-level compositional modeling language for stochastic hybrid
systems.

To analyze models of these formalisms, the MobpesT TooLsET provides the tools in the
following list. We lay a focus on those tools used in the remainder of the thesis and those
relevant for the implementation of our contributions by giving a more detailed description of

them.

* McsTA [119, 122] is an exhaustive explicit-state probabilistic model checker based
on standard value iteration usable for stochastic timed automata, probabilistic timed
automata, and MDPs. It features a disk-based model exploration and analysis engine
for very large models which would not fit into memory without the usage of secondary

storage space [129].
* MocCONV can be used to convert models between JANI and MobpEsT in both directions.

* MoODEs [51] is the statistical model checker supporting stochastic hybrid automata,
stochastic timed automata, probabilistic timed automata, and MDPs. MoDEs is capable

of solving reachability probability and expected reward properties on those models.

MoDEs thus far offered the explicit options Uniform and Strict to resolve the
nondeterminism in the input model uniformly at random or to stop if nondeterminism

is detected during simulation, respectively.

In mopEs multiple statistical methods are available, including confidence intervals,
Okamoto bound [215], and SPRT [266], to statistically evaluate the results of the

Uhttps://www.modestchecker.net/
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sample runs. As simulation is easily and efficiently parallelizable, MODEs can exploit

multi-core architectures during simulation.

To calculate the probability of rare events in nondeterministic models, MODES combines
fully automated importance splitting [50, 52, 195] with smart lightweight scheduler
sampling [199] to statistically approximate optimal schedulers. With lightweight
scheduler sampling it is possible to use efficiently constant memory in the number of
states, even for reachability probabilities and undiscounted expected reward properties.
The runtime of the approach only depends on the probability that near optimal policies

are sampled.
* MOSsTA can visualize stochastic hybrid automata semantics of the input model.
* PROHVER [123] is a safety model checker for stochastic hybrid automata.

With the implementation of the probabilistic model checking approach based on dynamic
heuristic search and planning techniques presented in Chapter 4, we were able to contribute
MopbysH as a sixth tool.

In addition, we extended the statistical model checker mopEs with the Deep Statistical
Model Checking functionality presented in Chapter 5 by adding the options NN and Oracle
to resolve nondeterminism in MDPs by querying a neural network or an arbitrary decision-
making agent connected via a socket communication.

The MobEesT TooLsET is available for Windows, Linux, and Mac OS and it is mainly
implemented in C#, except for some special extensions.

With mcsta and MoDEs, the MoDEST TooLsET took part in QComp 2019 and 2020 showing
convincing performance results demonstrating that both tools belong to the state-of-the-art

model checkers.
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4.

Adapting Dynamic Heuristic
Model Checking

As introduced in Section 2.3, heuristic search methods can be used to compute optimal
values for reachability probabilities and expected accumulated rewards based on only a small
fraction of the states which are sufficient to answer the considered properties. MoDYSH is
a probabilistic model checker which harvests and extends such non-exhaustive exploration
methods originally developed in the planning context. It implements a variant of asynchronous
value iteration (see Section 2.2.1). Its core functionality is based on enhancements of the
heuristic search methods Labeled Real-Time Dynamic Programming (LRTDP) [45] and
Find-Revise-Eliminate-Traps (FRET) [ 180] with several modifications and extensions to make
them work for MDPs with positive and zero-valued rewards on all established property types,
except long-run averages and nested properties. MopysH is thus capable of handling efficiently
maximal and minimal reachability probabilities, expected accumulated reward properties as
well as bounded versions thereof. The algorithmic elements and their integration are described
in detail in the following. The implementation of the new MobpysH tool is integrated in the
infrastructure of the state-of-the-art model checking tool the MobpesT TooLsET, and extends
the property types supported by this toolset. We discuss the algorithmic particularities in detail,
and give correctness and optimality proofs. We furthermore evaluate the competitiveness of
MobysH in comparison to state-of-the-art model checkers in a comprehensive case study
rooted in the QVBS introduced in Section 3.2. This study demonstrates that MopysH 1is
especially attractive to be used on very large benchmark instances which are not solvable by
any other tool.

Our contributions with MopysH comprise the following points:

* We extend, modify, and adapt the well known dynamic heuristic search algorithms
FRET and LRTDP in such a way that they are applicable to MDP models with
positive and zero-valued rewards to solve minimal/maximal reachability probability,
and expected reward properties as well as bounded versions thereof. In addition, we

give correctness and optimality proofs for the modified algorithms.
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* We present the implementation of these adapted algorithms in MopysH, a new model

checking engine of the MoDEST TOOLSET.

* In a comprehensive benchmarking study based on the QVBS in the style of the default
often g-correct track of QComp, we compare MobpysH to the other state-of-the-art
model checkers, and demonstrate that it is more efficient, time and memory wise, on

very large models, many of which are not solvable by any other of the considered tools.

The MobysH tool is shipped as part of the MopesT TooLseT and can be downloaded on the
Mobgst TooLser’s website!. It can be considered as an alternative to mcsta [119, 122, 129],
the exhaustive explicit-state probabilistic model checker based on traditional value iteration
in the MopesT TooLsET. Integrating MopysH into the MopesT ToOLSET opens it for property
types not supported thus far.

An artifact enabling the reproduction of all empirical results reported in this chapter is
available online? [174].

Organization and Origins of the Chapter. Section 4.1 discusses in detail how LRTDP and
FRET can be extended and modified such that they are applicable to MDP structures with
positive and zero-valued rewards on the above mentioned set of properties. Section 4.2 presents
a large empirical evaluation on QVBS benchmarks demonstrating that model checking with
MobysH is competitive, outperforming state-of-the-art model checkers especially on very
large state spaces with a parallel structure. In Section 4.3 we review the related literature in
the planning and model checking area. We conclude in Section 4.4 with a short discussion of

our achievements and future work.

The entire Chapter 4 is based on a QEST 2021 publication of the author together with Holger
Hermanns [173]. In this paper the tool MopysH has been introduced and the modifications to
the existing algorithms have been discussed in detail. In addition, the large case study on the
QVBS has been conducted, which compares other model checkers and planners to MopYsH.
In this chapter, we extend the content of the paper by giving several additional examples on
how to apply the algorithms by demonstrating how the procedures operate on exemplary
MDPs in addition to the theoretical explanations. Futhermore, we provide more detailed
results of the evaluation than in the paper.

A clear delineation between this chapter and the author’s Master’s thesis [171] could be
of interest. To give a short summary, no content of or work done for the Master’s thesis

has been used in this chapter. The only commonality of the two works is that they treat

Thttps://www.modestchecker.net/
Zhttp://doi.org/10.5281/zenodo.4922360
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FRET-LRTDP in the context of the MopesT TooLseT. But the Master’s thesis only contains a
pure re-implementation of the original algorithms, whereas this chapter is about modifications
and extensions of them, which resulted in a completely new implementation. The evaluation
parts of the Master’s thesis and this chapter have an entirely different focus and scope, and
are based on different tools and benchmarks.

In more detail, the Master’s thesis contains a translation from JANI into PPDDL, but
not the way back, which in turn is covered in a JAIR article [176]. In addition, it contains
the exact re-implementation of FRET-LRTDP as it is defined in the pseudo code of the
papers introducing these algorithms [45, 180]. Specifically, the implementation does not
contain any of the modifications presented in this chapter and is, like the original works, only
applicable to GSSP problems. The performance comparisons done in the Master’s thesis
have a completely different target and scope w.r.t. the tools und benchmarks used.

The work presented in this chapter is a manifold enhancement of the part of the Master’s
thesis about FRET-LRTDP, not only w.r.t. adaptions to the algorithms to make it applicable
to more MDP and property types, but also w.r.t. the data structures and implementation
details as emphasized by this quote from the Master’s thesis:

In the thesis it has been noted that the implementation is not as efficient as it could be
“[... ] because the compiled network used in the [MopEestT TooLsET] is not meant to be changed.
Following an action in the inverse direction from the target state to the start state is also
not intended. Clearly, a preprocessing step could be done to compile the MopEST TOOLSET’S
network representation into a graph structure providing all functionality for our purposes.
But this would lead to additional memory consumption and longer runtimes [. .. | Compiling
the network in advance into an adequate data structure would destroy the idea of LRTDP
which is avoiding to inspect the whole state space and unfolding it in advance” [171, p. 28].

This issue has been solved with the implementation of efficient data structures especially

tailored to explore the state space in MoDYSH.

4.1. Theoretical Contributions

The research field using probabilistic planning and heuristic search for computing optimal
values for reachability and expected reward properties is quite active as we will see in more
detail in Section 4.3, but the approaches are fragmented w.r.t. to assumptions on the model’s
problem classes and supported property types. This is also the case for LRTDP and FRET,
on which the functionality of MopysH is based.

The original version of LRTDP [45] is designed for SSP models fulfilling the conditions (i)
and (ii") of Definition 20, i.e., there has to be at least one proper policy from every state and all

non-proper policies must accumulate infinite reward. To easily fulfill the second requirement,
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the algorithm acts in an environment with strictly positive rewards, where the goal is to
minimize the expected accumulated rewards. The original work on FRET [179, 180] extends
the problem space to GSSP models (see Definition 21) and operates under the assumptions (i)
and (ii”), stating that there is at least one policy reaching the goal with certainty, and that
the expected sum of negative rewards is bounded from below. FRET allows arbitrary, i.e.,
positive and negative, rewards. In the original work, it is used for cost minimization over
MDPs with bounded negative cost accumulation. The algorithm calculates the optimal policy
over all policies reaching the goal with probability 1, a restriction not needed when dealing
with SSP problems. All these restrictions are necessary to guarantee convergence to the
optimal value in the original version of the algorithms. The authors of FRET showed that
other MDP problems which do not directly fall into the category of GSSPs can be reduced to
it by model transformations, such that FRET is applicable on them. This is for instance the
case for MaxProb properties.

The adaptions of algorithms we propose do not rely on any of those assumptions regarding
the model characteristics and property types, and no model transformations are needed,
which also makes the correctness and optimality proofs easier. Especially, we do not rely
on restrictions regarding goal reachability, allow positive and zero-valued rewards, and the
reward accumulation does not have to be bounded in the model. We do restrict to positive and
zero-valued reward structures which is assumed often in the probabilistic model checking
community [22, 127, 164, 226], because otherwise expected rewards may be unbounded or
not even well defined (for more details see [226, Chapter 7]). Our implementation is applicable
to such MDPs having positive or zero-valued rewards on all established property types
(except for long-run averages and nested properties), i.e., maximal and minimal reachability

probabilities, expected rewards, and bounded versions thereof.

In the discussion of the algorithms in the following, we make use of two notions not
in focus thus far, to talk about states from which a goal is not reachable, and to indicate
that a policy is defined for all states reachable with this policy. We assume an MDP
M=(S8,A,T,R, s0,S.) is given (see Definition 6).

States from which S, cannot be reached with positive probability are called sink states

and collected in S .
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A partial memory-less policy 7« is called closed for a state s € S, if n(¢) is defined for

every state r ¢ S, U S, that is eventually reachable with positive probability from s by
following 7. A partial memory-full policy 7 is closed for a path v € S* if it is defined
for every path Tw € S* for which last(w) ¢ S, U S..

A policy is closed if it is closed for the initial state 5o of the MDP it is used on.

Algorithm Overview. We introduce our algorithmic contributions one-by-one and go in
detail through all parts of the algorithms. Thereby, we describe the original functionality
of LRTDP and FRET in combination with our adaptions. The pseudo code can be found in
Algorithm 2 — 7. All modifications, adaptions, and extensions made to the original versions
are marked in blue. If existing, the original version of modified lines is stated in comments of
the form ». . .. To give an intuition of how the whole procedure works for each of the property
types, examples are given highlighting the subtleties of the specific cases.

For the modified version of the whole procedure, the base algorithm called General Labeled
Real-Time Dynamic Programming (GLRTDP) given in Algorithm 2, describing LRTDP and
our generalized version of it, uses two flags dependent on the property class to be evaluated.
max-rew is set to True if a maximal expected reward property is evaluated, otherwise its
value is False, analogously for min-rew. We do not use explicit flags for indicating maximal
or minimal reachability probabilities because there are no code fragments specific to these
property types (except for line 2 in Algorithm 4 which is to be understood dependent on
the choice of minimum or maximum in general). In addition, we assume that the initial and
current value function, Vy and V;, are always globally accessible in all algorithms.

Before presenting all parts of the procedures in close detail, we give a brief summary and
intuition of how the original algorithms work which build the basis of our contribution.

LRTDP is a heuristic search dynamic programming optimization of standard value iteration
operating asynchronously. It is the base algorithm of the whole procedure and expects as
inputs the state s of the MDP for which to evaluate the property, and the desired result
precision &. Note that, like for standard value iteration (see Section 2.2 and Algorithm 1)
there are a few specific cases where the algorithm terminates but the result has an error larger
than &, because g-consistency is only checked locally. Speaking in terms of the QComp
categories to classify algorithms w.r.t. their correctness guarantees, FRET-LRTDP and also

our modified version, thus, is often-e-correct (c.f. Section 3.2).
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1. proc GLRTDP(s: state; &: float)
2 max-rew, min-rew = True, if max., resp. min. reward property is calculated.
3 value function V globally accessible.
4 while —Solved(s) do
5: GLRTDP-TRIAL(S, €)
6: return V
7. proc GLRTDP-TrIAL(S: state, &: float)
8: visited = Empty-Stack
9:
10: while —Solved(s) do
1 visited . Push(s)
12 Void = V(s)
13: UPDATE(S)
14; View = V(5)
15: if Is-e-cons(v,;4, Vnew ) then break
> original condition [s-GOAL(s)
16: a = GREEDY-ACTION(sS)
17: if a # NULL then
18: s = PIck-NEXT(a, )
19: if max-rew && wvisited.Contains(s) then
20: if ELiM-cYcLE-MAX-REW() then
21 > returns True if a cycle is eliminated, description in text
2. V (init-node) = oo
23: Solved(init-node) = True
24; return
25: else
26: if min-rew && wvisited.Contains(s) then
27: if ELiM-cYcLE-MIN-REW() then
28: > returns True if a cycle is eliminated, description in text
2: s = MERGED-NODE(S)
30: > returns the merged node replacing the previous node s
3t else
32: break
33:
34 while visited # Empty-Stack do
35: s = visited.Pop()
36: if =CHECK-SOLVED(s, £) then
37: break
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1. proc CHECK-SOLVED(s: state; &: float)

2 rv = True

3 open = Empty-Stack

4 closed = Empty-Stack

5:

6 if —=Solved(s) then open.Push(s)

7:

8 while open # Empty-Stack do

o: s = open.Pop()

10: closed.Push(s)

11:

12: if Dead-end(s) || Goal(s) then continue
13:

14: a = GREEDY-ACTION(S)

15: if max-rew || min-rew then

16: check-oo-loop = False

17: for each s’ s.t. P(s,a,s’) > 0 do

18: if closed.Contains(s”) then

19: check-co-loop = True

20: if max-rew && check-co-loop then
21 if ELiM-cYcLE-MAX-REW() then
2 V (init-node) = oo

23: Solved(init-node) = True

24; return True

25: else

26: if min-rew && check-oo-loop then
27: if ELim-cycLE-MIN-REW() then
28 return False

29:

30 Void = V(s)

3 UPDATE(S)

32: View = V(5)

33 if not Is-g-coNS(Vo1d, View) then

34; rv = False

35: continue

36: for each s’ s.t. P(s,a,s’) >0 do

a7 if =Solved(s”) && —In(s’, open U closed) then
38 open.Push(s”)

39:

40: if rv then

an: for each s € closed do

4 Solved(s) = True

43 else

a4 for s € closed do

as: UPDATE(S)

46: return 7v
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1: proc GREEDY-ACTION(s: state)
2 return argMinMaz e 75y QVALUE(a, 5)
3 > Min/Max depending on the property to calculate

4. proc QVALUE(a: action, s: state)
5: return
2y P(s,a,s") - (R(s,a,s") +V(s))

& proc UPDATE(s: state)
7: a = GREEDY-ACTION(sS)
8: V(s) = QVALUE(a, 5)

9. proc Pick-NEXT(a: action, s: state)
10: pick s’ randomly from all successors with P(s,a,s’) > 0

> originally with probability % (s, a, s”)
11:  return s’

12: proc [s-£-coNs(V 4, Vperw: double)

13: if abs(Voig — Vipew) < €| Voig = 00 && vyew = oo then
14: return True

15: return False

To find an optimal policy, up to a predefined accuracy &, starting in a specific initial state,
LRTDP attempts to avoid the need for exploring the entire state space and delivers the
requested values for the initial state only, rather than for all states like it would be the case in
standard value iteration. It constantly keeps updating a current best solution of the state value
estimates on single exploration paths, i.e., it works on a partial value function providing the
current state value estimates. The procedure operates asynchronously, which means that in
each round only a single state is selected for an update. These updates are performed during
repeatedly sampling trials, i1.e., executions starting in the initial state, selecting the next state
greedily, and ending once a terminal state is reached. While doing so, the optimal policy
is constructed incrementally by extending a partial policy step by step in a greedy fashion
until it is closed. The FRET procedure is wrapped around calls to LRTDP to guarantee
convergence of LRTDP to the optimal value in MDP structures containing cycles of specific
types. It eliminates cycles in the MDP to guide the exploration of LRTDP to the correct

solution.

In the following, we discuss the functionality of the modified and extended algorithms.
In fact, the original algorithmic contributions have been made without a specific focus on
reachability probabilities, which as long as zero-valued rewards are supported, can actually

be cast into reward accumulations. We here make an explicit distinction between these cases
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for the purpose of better explainability and for the purpose of more direct and hence faster

implementation in MoDYSH.

4.1.1. Reachability Probability Properties

For reachability probability properties, max-rew and min-rew are set to False. We first
concentrate on calculating MinProb, i.e., Ppnin(Sy U S.). We detail our modifications to
the original version of the algorithm in order to enable that condition (i) and thus (i) of
Definition 20 of SSPs and Definition 21 of GSSPs can be dropped. Afterwards, we turn to
MaxProb and show how GLRTDP in combination with a slightly modified version of FRET
can be used to solve this kind of property on MDPs with positive and zero-valued rewards,
too. Kolobov et al. [180] already provided a reduction to show that FRET in combination
with LRTDP is applicable to general MaxProb properties, even though condition (i) of
GSSPs is violated at first sight. We will give an alternative proof, based on the proof for
MinProb, demonstrating that our implementation is also valid for MDP types with positive
and zero-valued rewards as defined above, not only for problems having at least one proper
policy.

We denote by V* : & — [0,1] the value function indicating the goal reachability
probabilities induced by policy n. Intuitively, goal states in S, have goal reachability
probability value 1 while sink states and other states enforced to be avoided have probability
value 0. Using a reward function defined as R (s, a, s") = 1if s ¢ S, As” € S, and 0 otherwise,
and then applying the Bellman equation given in Equation 2.1 for the minimum case of
synchronous value iteration will iteratively fill the partial policy bottom up for this case. We
can omit this reward function in the back propagation formula by initializing goal states with
1 while sink states and other states to be avoided get a value of 0 directly. This procedure

leads to the following definition of V* which constitutes the least fixpoint of Equation 4.1.

1 if s € S,,
VZ(s) =30 ifseS, USy\S., 4.1
2ses P(s,m(s),s") - V™(s") otherwise.

Minimum Reach Probability. For MinProb properties Ppin (Sy U S.) (see Section 2.2)
the objective is to find the minimal probability to reach a state in S, if initialized in s¢ while
avoiding the complement of Syy. We are ultimately interested in the minimal value over all

possible policies on the MDP:

V*(so) = mﬂin V7 (s0). 4.2)
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For the calculation of reachability probabilities, it is sufficient to consider partial policies
under the condition that they are closed for state sy because for the values of properties of
this type, it is irrelevant what happens in unreachable parts of the state space. This means,

we can refine Equation 4.2 in the following way:

V*(s0) = min V7 (sp). 4.3)
.7 closed for sq
An admissible initialization for the case of the calculation of the minimum is a valuation
of 0, except for goal states which get a value of 1.

This amounts to replacing the third line of (4.1) by

min Z P(s,a,s’)-V*(s") otherwise. 4.4)
acA(s) o

which echoes the greedy nature of the computation.

However, giving up synchronicity in favor of a heuristic approach is the key to efficiency.
For MinProb the procedure is completely implemented in GLRTDP, a generalization of
LRTDP [45, Algorithm 4]. The pseudocode is shown in Algorithm 2. The subroutines
used in this procedure can be found in Algorithm 3 and 4. As discussed, the algorithm
iteratively selects only a single state for a Bellman update in each round. It constantly updates
a current best solution, i.e., a partial function providing the current state value estimates,
and repeatedly runs trials (Algorithm 2, line 5), i.e., sample executions of the MDP, starting
from the initial state, and ending once a state is reached for which an update does not
change the value by more than ¢, i.e., e-consistency is reached locally in this update step.
This termination check happens in line 15. Lines 19-30 are not relevant for this case. To
determine which successor state to follow after state s in the trial construction, GLRTDP
considers an action a € A(s) greedy with respect to the current value function (line 16),
i.e., one that minimizes Equation 4.4 for s (cf. Algorithm 4, line 2 and 4, without reward
accumulation) [45, Algorithm 2], and then selects a successor state (line 18 in Algorithm 2).
Picking the next state randomly, i.e., with a uniform distribution, from the set of successors of
the greedy action (cf. Algorithm 4, line 9) instead of taking the probabilities into account is an
optimization which leads to better performance as already noted in the probabilistic extension
of Fast DowNwARD [248], because also less likely successors are explored frequently.

To summarize, during these trial executions always a policy greedy w.r.t. the current value
function is followed and the values of visited states are updated such that the values in the
relevant parts of the state space are constantly improved towards the optimal value.

The entire exploration procedure is systematic, which means that it does not starve relevant
states if the heuristic function used for initialization is admissible, i.e., it will not allow a

state, which has not converged so far, to stay in the greedy graph forever without its value
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being revised. Therefore, it is guaranteed to converge to an optimal solution w.r.t. £, the
desired convergence accuracy.

After each trial exploration, those states are labeled as solved whose values and those of
their descendants have reached e-consistency (cf. Algorithm 3) [45, Algorithm 3]. Trials
are terminated immediately at solved states, fostering convergence. GLRTDP terminates the
value update procedure as soon as the initial state is solved (cf. Algorithm 2 line 4, 10, 36).

This is possible because a value remains e-consistent if its descendants’ and its own value
do not change by more than £ anymore (Algorithm 3). This is because V() can only change
by more than ¢ if the greedy graph starting in s changes or the value of a descendant changes
by more than &. The graph can only change if the value of a state within the graph changes.
Updating states outside the greedy graph will never make them part of it, because by the
monotonicity property, updates according to the Bellman function can only make the states
less attractive [35]. Thus, a state’s value can only change by more than & if a descendant
changes by more than & but then it cannot have been marked as solved before.

This algorithm converges faster than classical value iteration because not all states need to
be converged (or even updated) before terminating. The termination criterion is similar to

e-convergence in standard value iteration.

However, if there occurs a cycle in a policy, it needs to be handled during the construction of
trials in GLRTDP to guarantee convergence to an optimal value function. In the MinProb
case permanent as well as transient traps (see Definition 18) have to be treated as dead-ends
because in the worst case it is possible to always nondeterministically take an edge leading
back to a state in the cycle instead of leaving the loop, i.e., Pnin of eventually reaching
the goal is 0 in such traps. This is done indirectly by the termination criteria in line 15 of
Algorithm 2 and the check before adding a new state in line 37 of Algorithm 3, respectively.
Because of the initialization with 0, values of trap states will lead to a cut of this trial
immediately, because these states never change their value in an update and stay £-consistent,

i.e., the cycle is not explored further and the algorithm concentrates on other branches.

To sum up, when calculating MinProb over an MDP, GLRTDP presented in Algorithm 2
with an admissible initialization for this case and CHECk-SoLvED() as in Algorithm 3 can be
used. We will explain in the following why this combination is correct and converges to the
optimal fixpoint. A formal proof can be found in Appendix A.2.

All greedy policies inspected by GLRTDP at some point end in a goal state or a dead-end
state. This could be a real dead-end, i.e., a sink state with only a self-loop, or a trap. Because
of the initialization, their value is already 0. In addition, we tag these states, do not explore

them further and propagate their value back through the graph. Cycling forever is not possible
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because eventually all such cycles in greedy policies are eliminated by setting the values
of the states in the cycle to 0 and not exploring them further. Having this, we can state that
at some point no more states have to be explored in GLRTDP because all relevant traps
are eliminated and a goal or a sink has been found, since the models we treat are finite
MDPs. In this case, the current greedy policy is fully explored. Then GLRTDP runs until the
state values of the current greedy policy are converged up to . Even if the greedy policy
is not the same in every iteration, at some point it will stay within a set of states which
are part of finitely many policies. The values of these states converged close enough to the
optimal ones such that the algorithm concentrates on these policies. The value function used
in GLRTDP is initialized admissibly and therefore can only monotonically increase and
approach the optimal result (fixpoint) from below. When this point is reached, the whole
procedure terminates. This fixpoint has to be optimal because the Bellman equation only has

one fixpoint [36].

To see how all of the theory discussed so far works in practice, we demonstrate the
calculation of MinProb by using GLRTDP. Consider the MDP depicted above. This
example is larger than the MDPs we saw before to show all the facets of the algorithm
after having it introduced in detail above.

If we want to calculate the minimal probability to reach the goal, we initialize the
states admissibly with O for all non-goal states, and with 1 for goal states. This means, if
we start the first trial built by GLRTDP, s is initialized with 0 as well as its successors
s1 and s5. Afterwards, it has to be decided greedily which of them to explore first.

Since both successors currently have a value of 0 the decision is taken randomly with a

\
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uniform distribution. Let us assume s is taken first, which leads to an initialization of
s9 and s3 with 0. Since b is a probabilistic edge, the successors of both states have to be
explored further in this case to get an updated value for s;. In this case, it is decided
randomly which one comes first. Let us assume it is s9. Its only successor is G which
is initialized with 1 and not explored further because it is a goal state. The value is
back propagated to s9 during updating this state’s value. Then s3 is explored further,
which leads to an initialization of s4 with 0. The successors of sy4, i.e., G and s3, are
already initialized. Updating s takes greedily the best value of the two successor states,
which is 0 from s3 in case of MinProb. The current trial at this point is described by:
starting in sg, applying action a, reaching s, applying action b, in case of reaching s»,
applying c, and in case of reaching s3, applying d, reaching s4, applying e, which leads
back to s3. This means, in the end this trial contains a loop between s3 and s4. But as
explained in the description of the algorithm above, the loop in this case is caught by the
termination criterion in the check before adding a new state in line 37 in Algorithm 3,
1.e., the exploration of this part of the graph ends here and the value of s; can be updated
with 0.4 -0+ 0.6 - 1 = 0.6. Being back at sy now in the update procedure called in line
45 of Algorithm 3, the best value of s, which is 0.6, and s5, which has still its initial
value 0 from the beginning, is taken greedily. Because we are calculating MinProb, the
value of s stays 0.

Now, the CHECk-sOLVED() procedure is done and returns Fulse, because several states
have not been e-consistent during the value updates before.

Therefore, GLRTDP starts another trial in sg. As above, the values of the successor
states s1 and s5 are taken into account to decide how to proceed with the trial. This
time it is clear which action to take because g leads to a state with value 0, whereas s,
has currently an admissibly estimated minimal goal probability of 0.6. To update s,
the values of sg and D are needed, which both get initialized with 0. Because D is a
dead-end, only s¢ has to be explored and updated further, which back propagates the
value 1 from G. Then s5 is updated to 0.3 - 1 + 0.7 - 0 = 0.3. Afterwards so again gets
the best value out of the values of s1 and s5, i.e., out of 0.6 and 0.3, which is 0.3.

Once again, in this round not all states have been e-consistent, which leads to a
third trial run of GLRTDP in which finally all states can be marked as solved, and the
procedure terminates with the correct result of 0.3 for the minimal goal reachability

probability.
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Maximum Reach Probability. For MaxProb properties Ppax (S U S.) the objective is
to find the maximal probability to reach a state in S, while avoiding the complement of Sy.
An admissible initialization is 1, except for states from which only dead-end states can be
reached, which get a value of 0. $,.x can be calculated by changing the initialization and

replacing the occurrences of min by max in Equations 4.2, 4.3 and 4.4.

1. M is the graph of the MDP
2 proc FRET(M, s : state)
3 V; = GLRTDP(s, &)
> originally Finp-anD-RevISE(M, V()

(Viz1, elim-trap) = ELIMINATE-TRAPS(M, V)
while elim-trap do

Vi=Vin

Vis1 = GLRTDP(s, &)

PR

> originally Finp-AND-REVISE(M, V;)
8 (Vis1, elim-trap) = ELIMINATE-TRAPS(M, V1)

1 proc ELIMINATE-TRAPS(M, V)

2 elim-trap = False

3: Viext =V

# Gy ={Sv, Ay} « V’s greedy graph
5 SCC = Tarjan(Gy)

6 CSet =0

;

s:  for each SComp C = {Sc,Ac} € SCC do

9: if jﬂ(si,sj) €Ag: (Si € Sc,Sj ¢ Sc)
&& (Ag € G : g € Sc) then
10: CSet = CSet U {C}

12: for each C = {S¢, Ac} € CSet do

13: ifAa e A,seSc,s’ ¢ Sc:T(s,a,s’) >0 then
14: for each s € S¢ do

15: Vnext(s) =0

i6: MergeSCC(C)

17: elim-trap = True

18: else

19: A.={a€A|Fs e Sc;s" € Sc :T(s,a,s’) >0}
20: M = MaZTseSe,acA, QVALUE(S, a)

21: for each s € SC do

22 Vnext(s) =m

23 MergeSCC(C)

24: elim-trap = True

25: return (V, .., elim-trap)
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In MobysH, we use a combination of GLRTDP (Algorithm 2, max-rew=min-rew=~False)
and a modified version of FRET (Algorithm 5 and 6), adapted from the originals [180,
Algorithm 1] to calculate MaxProb. As already shown in the original work on FRET, the
combination is needed to guarantee convergence of GLRTDP for MaxProb [179, 180].
In FRET, iterations of GLRTDP followed by a call to ELimINATE-TrRAPS() to eliminate
zero-valued reward cycles are performed. In the original version of FRET, any Find-and-
Revise algorithm is foreseen, we fix that to GLRTDP (Algorithm 5, line 3 and 7) in our
implementation. The call to ELimiNaTE-TrRAPS() (line 4 and 8) is needed if facing zero-valued
reward cycles, because these may induce convergence of GLRTDP-trials to a non-optimal
value by always choosing an action that loops on the cycle, and thus the goal is never reached
(line 16 and 18 in Algorithm 2). The trap elimination procedure evaluates and accordingly
changes the value function computed in the last iteration of GLRTDP and the graph it is
working on, thus guaranteeing progress in its next call (Algorithm 5, line 4 and 8). This is
achieved by finding and eliminating traps (cf. Algorithm 6). States which are part of a trap
are merged into a single new state replacing all trap states. In contrast to MinProb, where
traps are handled directly during the trial construction, permanent and transient traps have
to be handled differently here. When calling ELimiNATE-TrRAPS(), all SCCs in the current
greedy policy are collected using Tarjan’s Algorithm [250] (Algorithm 6, line 5) and it has
to be checked if these SCCs are traps (line 8). First, permanent traps (line 13) are dead-ends
from which the goal can never be reached. Therefore, all states’ values in this SCC can be set
to 0 (line 15) and the states of the SCC can be merged into one. If the SCC is a transient trap
(line 19), it has to be left to reach the goal eventually. From all states in the SCC it is possible
to take the exit with the highest probability value to reach the goal (line 20). Therefore, we
merge these states and set the resulting state to this value (line 21-23). In the next GLRTDP
trial this will change the greedy policy, i.e., the cycle is eliminated from the greedy graph. The
algorithm terminates if the policy of the last GLRTDP run does not contain a trap anymore.

While the original version of FRET [180] considers in each trap elimination step all
actions that are optimal according to the current value function, our implementation uses an
optimization on the input of Tarjan’s algorithm (line 5), called FRET-7 [248], considering
in the subgraph of the state space inspected during trap elimination only those transitions
which are given by the current greedy policy.

To demonstrate how GLRTDP and FRET are combined to calculate MaxProb and to
highlight why FRET is needed, we discuss the full execution of the algorithms in the following

example.
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If we execute GLRTDP on the MDP depicted above to calculate P« (O G), we start
exploring s after initializing it with 1. There is only one successor state, s1, which is
initialized with 1. Exploring the successors of s; leads (i) to so which is again initialized
with 1, and (ii) back to sop which has already been initialized. GLRTDP now decides
greedily which successor to explore further. But since both successor states have the
same value, the decision is taken randomly, i.e., each of them is considered equiprobable.
We assume that the algorithm takes action b back to sg. Now the trial is done because
there are no successor states of states in the trial, consisting of the subgraph induced by
so and s1, to be explored further, and the two states are £-consistent because an update
of the current value function does not change their values anymore. s is not part of the
trial. It has been initialized just to update the value of s, and to allow the algorithm to
decide how to proceed the trial in s1. Bellman updates do not change the values of s
and s; anymore and GLRTDP is done. Currently, the maximal goal probability of sg
calculated so far is 1, which is not the correct final result.

At this point FRET is called and detects the BSCC {s¢, s1} in the greedy graph
induced by the current value function. This BSCC in the greedy graph forms a transient
trap (see Definition 18) because there is an edge leading out of it in the full graph, i.e.,
it is only an SCC in the full graph of the MDP. The trap has to be eliminated, such that
it is not misleading GLRTDP in the next iteration anymore.

Then GLRTDP starts anew, walks down the path of sq, s1, s2 and initializes the
goal G with 1 and the dead-end D with 0. A Bellman update of s assigns a value of
0.6-1+0.4-0=0.6. This value is propagated back to sy and is the correct maximal

probability to reach the goal.

To sum up, when calculating MaxProb over an MDP, we call FRET, given in Algorithm 5,
with GLRTDP, shown in Algorithm 2, with an admissible initialization for this case. The
trap elimination procedure in FRET is instantiated with Algorithm 6. In the following,

we give an intuition about why the presented combination of GLRTDP and FRET solves
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MaxProb properties on MDP structures having positive and zero-valued rewards correctly
by converging to the optimal fixpoint, not only on problems having at least one almost-sure
policy and without transforming the MDP into a GSSP structure. A proof relying on such
a transformation has been given in [180] but our approach is completely independent of
such assumptions and therefore more direct and easier. A formal proof of the correctness of
this approach for MDPs with positive and zero-valued rewards in the style of the proof for
MinProb can be found in Appendix A.3.

All greedy policies inspected by GLRTDP at some point end in a goal state or a dead-end
state. This could be a real dead-end, i.e., a sink state with only a self-loop or a permanent
trap which has been transformed to a dead-end by the cycle elimination of FRET. If it is a
permanent trap identified by FRET, the values of all states in it are set to 0. Otherwise, when
the sink state is discovered for the first time, its value is also directly set to 0. This means,
we tag these states, do not explore them further, and propagate their value back through the
graph. Cycling forever is not possible because FRET eventually eliminates all such cycles in
greedy policies. With this, we can state that at some point no more states are left to explore
in the current GLRTDP trial because all relevant traps are eliminated or a goal or a sink
has been found. Then GLRTDP runs until the state values of the current greedy policies are
converged up to £. Even if the greedy policy is not the same in every iteration, at some point
it will stay within a set of greedy states which are part of finitely many greedy policies. The
values of these states converged close enough to the optimal ones such that the algorithm
concentrates on these policies. The value function used in GLRTDP is initialized admissibly,
and therefore can only monotonically decrease and approach the optimal fixpoint from above.
When this point is reached (up to &), the entire procedure (GLRTDP + FRET) terminates.
This fixpoint must be the optimal one because the Bellman equation only admits a single
fixpoint [36].

4.1.2. Expected Accumulated Reward Properties

Expected reward properties ER,;(Sy U S.) ask for the minimal or maximal (referred
to by opt) expected accumulated reward when reaching a goal state. For the reachability
probability properties considered thus far, we have been able to ignore the reward function of
the MDP, which is equivalent to assuming it to be 0 except for actions leading to goal states.
The calculation of ER,,; proceeds very much in the same way as the algorithms discussed
before. Iteratively, a variation of the Bellman function updates as presented in Equation 2.1
is performed, where contrary to the #,,;-case, shown in Equation 4.1, rewards are taken
into account. The conceptual variation is that goal states initially get a value of 0 and states
s €8, USy\ S, avalue of co.
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The value function indicating the expected reward to reach a goal state induced by policy

n is then given analogously to Equation 4.1 by Equation 4.5.

0 if s € S,
VZ(s) = { o0 ifseS,USy\S., 4.5)
Yves P(s,m(s),s") - (R(s,n(s),s")+V™(s")) otherwise

Reward maximization and minimization is then calculated similar to the maximal and
minimal reachability probabilities by maximizing and minimizing over all applicable actions
in the third line of the equation.

Correctness and optimality proofs for these property types are very similar to the proofs

for MaxProb and MinProb spelled out in the appendices and are therefore omitted.

Reward Maximization. For ER,,,, max-rew is set to True in GLRTDP. A trivial admissible
initialization is 0 for goal states and co for all others. But this is not practically feasible
everywhere. Dead-ends can directly get a value of oo, according to the definition of
expected rewards, because if the goal is not reachable with certainty, the result is co. In the
implementation, we use the constant Positive-Infinity for this case. Initializing non-goal
states with co, which is equivalent to assuming the largest possible overapproximation, is
not practical. We therefore approach an admissible initialization for non-dead-end states
from below by starting with a smaller current-mazx, obtained by exponential search [33].
This means, we execute full GLRTDP runs, as long as one of the final state values after
termination is larger than the last current-maz, because if this happens, the initialization
has not been admissible. In each iteration the new current-maz is set to the largest state
value of the previous iteration increased by 1 and multiplied by 2, which leads to the fastest
solution we found in our experiments. This is shown in Algorithm 7 (contributed by us but

not colored entirely in blue).

1: M is the graph of the MDP

2 proc MaxiMALEXPECTEDREWARD(M, s : state, & : float)
3 too-low = True

4 current-mazx = 4

5: while too-low do

6: too-low = Fulse

7: V = GLRTDP(s, &)

8 if V(s) == Positive-Infinity then

9 return Positive- Infinity

10: for each v in V do

1 if v > current-maz then |
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12: too-low = True 4
13 current-mazx = [v+ 1] - 2

14: break

is: if —too-low then

16: return V(s)

Cycles again require a special treatment. Before adding the next state to the current trial
(line 18, Algorithm 2 and line 38, Algorithm 3), it has to be checked in a cycle detection
procedure if this state closes an SCC in the current greedy graph. This happens in ELim-
cYcLE-MAX-REW() in line 20 of Algorithm 2 and in line 21 et seq. of Algorithm 3, independent
of the reward accumulated in the SCC. If such an SCC is found, the maximal expected reward
for this property can directly be set to co because in the extreme case always this loop could
be taken to accumulate arbitrary reward before reaching the goal. The following example

shows such a situation.

To calculate the maximal expected reward accumulated on the way to the goal in

the MDP depicted below, GLRTDP starts initializing sg with current-max (in our
implementation set to 2) and continues the trial with s; and s9 which both get initialized
with current-maz. In the process of checking the successors of s9, G is initialized with
0. Then greedily the next action is selected in s92, which is ¢, because in a value update,
it leads to a value of current-maz + 1 for s2, whereas taking action d gives a value of
0+ 1. In line 18 of CHECK-sOLVED(), the cycle between s and s9 in the current trial is
detected. The cycle elimination procedure called in line 21 detects that it is possible to
loop between s1 and s9 forever without reaching the goal. That is why the value of the
initial state sq i1s immediately set to oo, the state is tagged as solved, and the procedure

terminates with the correct result oo for ER,,, (O Goal).

b
e 4
_"L\” s ) T /L”':D 0
LA -~ 1 G
1

Reward Minimization. For ER,,;, min-rew is set to True and the value function is
initialized admissibly with co for dead-ends and with O for all other states. Similar to the
ERpnax case, when adding the next state to the current trial, it has to be checked this time
if it closes a zero-valued reward SCC which has to be eliminated because it has to be left
eventually to reach the goal with minimal reward. This check if a zero-valued reward SCC is
present in the trial, is performed in ELiM-cYCLE-MIN-REW() in line 27 of Algorithm 2, and

also in line 27 of Algorithm 3.
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This behavior of the algorithm is demonstrated in the following example.

To calculate the minimal expected reward to reach the goal in the quite simple MDP

depicted below (which is not exactly the same as in Example 9 because of the reward
structure), GLRTDP starts initializing so with 0 and continues exploring the chain of

successor 51 and s2, which also get 0 as initial value.
When exploring so further, it is detected in line 18 of Algorithm 3 that action ¢, which

would be chosen when greedily selecting the next state, because the reward for this
action is 0, closes a cycle. This cycle has to be eliminated to enforce progress towards a
potential goal state and still accumulate as few reward as possible. The trap elimination
algorithm is called when reaching line 27 of the same procedure. It merges the states s
and s9 because no reward is accumulated in between them.

Afterwards, a new trial of GLRTDP is started on the modified MDP, which does not
contain the cycle anymore. It starts similar to the first trial and can proceed with exploring
the states linearly until reaching G. Then, in the update procedure of CHECK-SOLVED(),
the reward values are back-propagated and accumulated such that sg has a value of 2 in
the end of this trial.

Because the states have not been g-consistent in this trial, a third trial is performed in
which all states can finally be tagged as solved and the algorithm terminates with the
correct result ER i, (O Goal) = 2.

4.1.3. Bounded Reachability Properties

Reachability probability and expected accumulated reward properties can be extended by
step or reward bounds. P,,:(Sty Uj,) S-) is the extremal probability of reaching a goal
state in [/, u] steps or with accumulated reward in [/, u]. Expected reward properties with
bounds are expressed analogously by ER,,;(Sy U|;,) S+) . Notably, and in contrast to the
other properties considered thus far, for such bounded properties, memory-less policies can
be outperformed by policies that are aware of the history regarding their past evolution,
namely with respect to the number of steps left or the reward left for accumulation until
exceeding the bound. So, we here work with memory-full policies (see Definition 10). For

the purpose of bounded reachability properties, it has been shown that it is sufficient that
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a policy can remember how many steps have already been made or how much reward has
been accumulated [119, 120, 214, 257]. We make use of that as explained in the following
and hence only need to change the procedures discussed above for unbounded reachability
probabilities and unbounded expected accumulated rewards over reachability properties
slightly. The changes that are needed for P,,; and ER,,; are similar.

Let us first look at step-bounded properties. For those, updating all state values syn-
chronously in standard value iteration makes it possible to iterate only ¢ times for properties
with upper bound ¢ [120]. Then, a step-dependent policy can be extracted. In heuristic search
algorithms like FRET-LRTDP this is not possible because only the current greedy path is
updated. In this case, a straightforward remedy is to encode a step counter into each state and
consider all states for which the bounds regarding these counters are exceeded as dead-ends.
Formally, one works in a derived MDP where states are enriched with counters and where
states differing in the counter value are different and thus also the policy decision might differ
for them (implying history awareness with respect to the original MDP). States which fulfill
the reachability property and whose bound-counter lies in the target interval are considered as
goal states. In our implementation we use the same variants of GLRTDP and trap elimination
procedures like for the unbounded cases above and only add the bound to the procedure and
the step counter to the states.

For reward-bounded properties the basic strategy is the same, except that the additional
counters are now replaced by real-valued variables for tracking the reward accumulated so
far. If the reward of the current policy exceeds the bound, the current state is considered as a
dead-end. In either case (step or reward bounds), the derived MDP can be constructed in
such a way that it is guaranteed to be finite-state (which is one of our early assumptions).

Since the overall procedures stay the same when adding bounds, the correctness and
optimality proofs follow the respective same strategy.

MobysH is the only tool of the Mopest TooLser which fully supports all variants of
bounds w.r.t. step or reward bounds and interval types. All other tools do not treat step bounds

at all and only support inclusive upper bounds.
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4.2. Benchmarking and Scalability Study

After having studied the functionality of MobpysH, it is of great interest to investigate its
performance and compare it to other state-of-the-art model checkers, which mostly implement
completely different strategies. This will be done on a large set of diverse benchmarks with
different structures coming from multiple domains. The diversity in the origin and structure of
benchmarks is required to identify if approaches developed in one community, like MopysH
with strategies inspired by planning and heuristic search, also work well on benchmarks from
another community whose structure potentially is different.

Using the benchmarks of the QVBS [132] (see Section 3.2) for our scalability study is
obvious, since it is made for exactly this purpose and contains benchmarks of different
structures from diverse domains, including planning problems as well as a lot of classical
model checking benchmarks.

The setup of the QComp competition has been developed to compare different types
of model checkers on QVBS benchmarks and all state-of-the-art model checkers have
participated in the last QComp editions [54, 121]. This means, evaluating MopYsH in
comparison to other model checkers in the same study setup is a natural way to go and
enables the comparison of performances and plots to earlier editions.

For evaluation purposes, we used the setup from QComp 2020 default often -correct
track, which used a precision of € = 1073 and a timeout of 30 min, on an Intel Core 17-4790
CPU @ 3.60GHz with 32 GB RAM.

The benchmark set of QComp comprises, apart from other model types, 36 MDP instances
from the QVBS. In addition, we added 58 additional benchmark instances from the QVBS
to our case study to enlarge the number of MDP benchmarks, and thereby also the number
of minimum reach and bounded properties. Furthermore, we wanted to test the tools on
both smaller benchmarks, because many tools time out on the difficult QComp instances, as
well as on considerably larger instances than the QComp benchmarks, with the intention
to demonstrate the capabilities and benefits of Mopysn when only inspecting a fraction of
the state space. Therefore, we scaled the models for the israeli-jalfon [159], philosophers-
mdp [200], pnueli-zuck [225], rabin [229], and wlan [191] benchmarks up by parallelizing
up to 100 automata for all of them except for wlan, for which 10 parallel processes are already
enough such that only MobpysH is able to solve it. The QVBS contains only smaller instances
of these benchmarks, i.e., we had to write our own scripts to scale them up further. For
israeli-jalfon, the largest instance results in a state space size of (2'9°) — 1, i.e., 1.268 - 10%°.
For 100 dining philosophers the state space grows into the order of 10%Y states, and for
100 parallel processes in pnueli-zuck and rabin it is in the order of 10'%° and 10'%° states,
respectively. 10 parallel senders in wlan result in a size of around 7 - 10® states. We extracted

the state space sizes with STORM.



MobysH: Adapting Dynamic Heuristic Search for Model Checking 91

s
total — P
s
STORM — "
PrisM —
PET
EPMC — N
R
MCSTA I m
prob. FD
s
MobysH — "

| | | | | 3

5 10 15 20 25 30 35 40 45 50 55 60
# Instances

B ERpax & ERpin M ERb oy
u Pmax Pmin u Pbmax u Pbmin

Figure 4.: Number of benchmark instances supported by tools per property type. (Upper
bars: QComp, lower bars: additional benchmarks).

We compare the performance of MopysH to the implementation of the basic FRET-n-
LRTDP version in the planning tool Probabilistic FAst DowNwaRD [248]. In addition, the
state-of-the-art model checkers EPMC [92, 124], mcsta [119, 122, 129] of the MoODEST
TooLset [128], PET [48], Prism [189], and Storm [77] take part in the evaluation. We
contacted the authors of all these tools and asked for the newest version, i.e., improvements in
other tools are also taken into account. With this setup, our evaluation is basically an update
of the results form the often-g-correct track of QCom 2020 [54]. The number of benchmark
instances supported by each tool per property type, w.r.t. the tool’s general functionality, are
listed in Figure 4.

In the quantile plots in Figure 5, a point (x, y) indicates that the runtime of the xth fastest
instance of the tool was y seconds. This allows comparing the overall performance of the
tools. The benchmark instances are ordered independently for each tool depending on its
runtime. The count of correctly solved benchmarks ¢ (no timeout or error) and of supported
instances s is given in the label as c¢/s.

The quantile plot at the top of Figure 5 shows that MopysH is among the best three tools
for a large number of instances of the QComp benchmarks. In addition, the strength of
MobysH is impressively demonstrated by the results on the additional benchmark set in the
lower part of Figure 5. It clearly outperforms the other tools on the extremely large scaled
benchmarks listed above because only a small fraction of the state space needs to be visited.

MobysH is able to solve seven benchmarks in less than 30s for which all other tools time out
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Figure 5.: Quantile plots for default tool versions in often e-correct track.

or do not have enough memory. For five other models only one other tool is able to solve
them. Details can be found in the interactive result tables for the QComp benchmarks? and
for the additional QVBS benchmarks®. For the largest instances of philosophers, pnueli-zuck,
rabin, and wlan only a few thousand states have to be visited in MopysH, and only 1.7 - 103
for israeli-jalfon. That is the reason why MobpysH is often the only tool which is able to
solve them. All these benchmarks have in common that they consist of the parallelization of

automata of symmetric structure.

3https://depend.cs.uni-saarland.de/~klauck/results-qcomp-benchmarks/table_often-epsilon-correct.html
“https://depend.cs.uni-saarland.de/~klauck/results-additional-benchmarks/table_often-epsilon-correct.html
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The results on both benchmark sets show that MopysH is clearly able to compete with
state-of-the-art model checkers and on certain MDP structures it is even able to quickly solve
instances which no other tool is able to handle.

More detailed results can be inspected in Figure 6, 7, and 8, showing scatter plots
comparing individual benchmark instances between two tools or a tool and the best of all
other tools. A point (x, y) indicates a runtime of x seconds for the tool on the x-axis and
a runtime of y seconds for the tool on the y-axis. This means, if the point lies above the
diagonal line, the tool on the x-axis was the fastest. If the point lies above the dotted line, it
was more than ten times faster. “TO”, “ERR”, and “INC” mean timeout, error, e.g., out of
memory, and incorrect result, respectively. “n/a” means that the tool is not able to handle the
benchmark instance. The number w of benchmark instances on which the tool on the x-axis
outperformed the tool(s) on the y-axis and the number of in general supported instances s is
given in parenthesis in the label in the form w/s. Note that, timeouts are not counted in w in

case the other tool does not support the benchmark at all.
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Figure 6.: Scatter plots MopysH vs. best of all other tools (left: QComp, right: additional
benchmarks).

Figure 6 shows the performance of MopysH compared to the best result achieved by any
of the other tools, i.e., the other tools are basically treated as one tool and always the best
performance is taken. We see that MopysH is able to compete with the other tools, especially
on the additional benchmark set for which the results are depicted on the right.

This gets even more clear when having a look at the more detailed scatter plots in Figure 7,
and especially in Figure 8 comparing MopysH against each of the other tools separately

on the QComp and the additional benchmark sets. MopysH solves way more instances and
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property types than probabilistic FAst DowNwarbD (first row, right in both figures), which
is based on the same algorithms. It also supports more properties than mcsta (first row,
left in both figures), i.e., it improves the range of the MobpesT TooLsET and shows better
performances on many instances, especially where mcsta or various other tools (second and
third row in both figures) are not able to deliver results at all.

This demonstrates the potential of the methods implemented in MopysH. First, it improves
the model checking performance of the MopEsT TOOLSET in comparison to McsTA on the
same code base. Second, integrating these techniques specifically in STorm looks promising.
If MopysH was dominated by a competitor, e.g., on the QComp benchmarks (Figure 6 left
and 7 bottom left), it was often outperformed by StormM. From QComp 2020 it is already
known that STorm’s code base is highly efficient and the performance is currently out of
reach for other model checkers on most of the benchmarks. Implementing our approach in
StorM would boost its performance even more, especially on the very large instances of the
additional benchmark set.

Interactive result tables which enable a direct runtime comparison across tools and
benchmark instances are available online for the QComp benchmarks® and for the additional
QVBS benchmarks®. Furthermore, an artifact enabling the reproduction of all empirical

results reported in this chapter is available online’ [174].

>https://depend.cs.uni-saarland.de/~klauck/results-qcomp-benchmarks/table_often-epsilon-correct.html
®https://depend.cs.uni-saarland.de/~klauck/results-additional-benchmarks/table_often-epsilon-correct.html
"http://doi.org/10.5281/zenodo.4922360
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Figure 7.: Scatter plots for single tool comparison on QComp benchmarks. Legend as in
Figure 6.
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Figure 8.: Scatter plots for single tool comparison on additional benchmarks. Legend as in
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4.3. Related Work

There have already been several endeavors trying to connect or combine planning and
verification, mostly in two different categories: (i) by compiling input languages and hence,
models, from one community into the standard of the other area, and (ii) by utilizing
algorithmic approaches developed by the other community for own purposes. We start with
a discussion of related work in the first area and afterwards summarize the related work

regarding algorithms in both communities.

Compilations. It has been shown that system models represented as Kripke structures [181],
e.g., in the SMV modeling language [206], can be translated into planning problems in PDDL..
LTL safety, liveness, and fairness properties can then be checked using planning techniques
for automated verification, especially heuristic search methods [6]. There exist further similar
approaches solving translated LTL properties with classical planning [24, 218]. As has been
shown by a compilation of the verification of safety properties in protocols modeled in the
Promela language [150] into classical planning, simple safety properties, where there exists
a finite counterexample, can easily be checked by heuristic search planners [83]. In contrast
to the compilations between JANI and PPDDL done by the author of this thesis [175, 176],
that compilation is not structure-preserving as it requires the introduction of several artificial
state variables and actions for each individual Promela automaton transition.

This hints at what has already been noted in other works of the author, namely, that “the
more promising approach, though, is to instead port probabilistic heuristic search algorithms
to model checking tools, to obtain a native realization tackling all the syntactic elements
that cannot be easily compiled” [176]. With the implementation of MopysH, we realized
this. In this sense, our research motivates a large area of cross-fertilization, pertaining to the
exchange of algorithms. The integration of probabilistic heuristic search into probabilistic
model checkers also provides access to the wealth of abstraction techniques developed by the
latter community, e.g., BDDs (see Section 2.2.1).

Algorithms. There are quite a lot of works in the area of sharing algorithmic approaches
between the communities which we discuss in the following together with works on algorithms
relevant for our contribution or close to it.

As already described in Section 4.1, our algorithms in MopysH are generalizations of
well-known approaches used in the planning community for the purpose of cost-optimal
planning. Of course, ideas behind heuristic search and planning have already been used in
model checking. We highlight the parallels of works in both fields but also the differences to

our approach.
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Probabilistic Planning and Heuristic Search. As discussed, the original LRTDP work [45]
is tailored to SSPs, with strictly positive action rewards (except at goal states). Kolobov et
al. [179, 180] instead discussed GSSP problems for the usage of FRET on rewards in R but
with lower bounds on negative rewards.® They showed that several MDP problems, including
MaxProb, can be reduced to the GSSP problem class [179, 180], and that the respective
properties can be solved using FRET with LRTDP. In MobpysH, we do not need to assume
any of these problem classes, but restrict to positive and zero-valued reward structures.

A variant of the original FRET-LRTDP algorithms is available in the probabilistic version
of Fast DowNwaRD [138] which is one of the classical progression planning systems based
on heuristic search. It has been extended by Steinmetz et al. [248] for goal probability
analysis, in more detail, for computing the maximal probability to reach a goal, but not for
other problem classes not originally supported.

A quite different approach using heuristic search to solve reachability properties has
been introduced by Trevizan et al. [256]. They introduced I-Dual, a heuristic search method
capable of directly dealing with MaxProb MDPs, and thus making the FRET outer-loop
obsolete. [-Dual’s key to the support for more general MDPs is the use of linear programming
instead of following the asynchronous value iteration scheme, which underlies most of the
SSP heuristic search algorithms.

Probabilistic Model Checking. MobysH is not the first work exploring probabilistic
planning and heuristic search approaches for probabilistic model checking. For instance,
heuristic search dynamic programming methods have been applied to MDPs, but for
generating probabilistic counterexamples [7].

In addition, it has already been demonstrated that directed search algorithms can be
exploited in explicit state model checking [84].

Another strand of works has been pursued in planning for MDP heuristic search [27, 45, 125]
with a class of algorithms particularly tailored for reachability analysis. In this context,
Brézdil et al. [48] applied and extended the heuristic search algorithm Bounded Real-Time
Dynamic Programming (BRTDP) [205] for probabilistic model checking, showing promising
results in their preliminary experiments.

Closer to our work, Kfetinsky et al. developed heuristics for initializing policies in policy
iteration such that the computation time to solve long-run average reward properties on MDPs

is reduced [185] with specific treatments of SSCs and maximal end components similar to

8Note that the LRTDP paper [45] presents the case where rewards are positive and should be minimized,
whereas in the FRET paper [180] they are assumed to be mostly negative and should be maximized. By
inverting the sign of rewards and switching minimization and maximization, the problem specifications can
be aligned. That is the reason why our GSSP definition is not literally the same as in the FRET paper. In
addition, note that the term proper is used with the meaning of almost-sureness in the paper on FRET.



MobysH: Adapting Dynamic Heuristic Search for Model Checking 99

the approach of MopysH. Handling of end components has also been discussed in several
other works [61, 73].

The PAC tool [13] uses asynchronous bounded value iteration techniques, with reinforce-
ment learning, interleaved with guided simulation phases for permanent and transient trap
elimination to perform reachability analyses with upper and lower bounds on MDPs and
stochastic games with a focus on unknown probability functions.

Partial exploration of the state space for time-bounded reachability analysis of CTMDPs
similar to our approach of building up trials through the state space and updating the state
values on them has also been done [12]. To do so, a heuristic is needed on how to explore the
system during trial construction. For that, a combination of BRTDP and Monte Carlo Tree
Search has been devised with MaxProb objectives similar to ours [11]. In contrast to LRTDP,
BRTDP works on upper and lower bounds for the property of interest, which means, one has
to find a suitable initialization for the upper bound to boost the performance of the algorithm.
For initializing the lower bound for MaxProb, we make use of the simple admissible dead-end
heuristic during initialization described above, and we do not need an upper bound for
LRTDP. Another difference is that LRTDP gives e-convergence guarantees w.r.t. the Bellman
equation on all states reachable with the current greedy policy, while BRTDP only requires a
small residual on states reachable with significant probability. In addition, choosing the next
action during exploration in BRTDP is biased towards states with larger differences between
the lower and upper bound values. This difference is also taken into account for breaking
exploration paths. In LRTDP, this is done based on the labeling procedure, which gives the
algorithm its name. Such a labeling process is not performed in BRTDP. Furthermore, both
algorithms, FRET-LRTDP and BRTDP, are originally only applicable to SSPs. We lifted
the SSP condition for the FRET-LRTDP case in this chapter. The BRTDP methods [48] are
made applicable to MDP structures with positive and zero-valued rewards by additionally
triggering an end-component elimination after a certain number of steps to be safe. We do not
introduce additional elimination steps periodically. Technical differences aside, this approach
has only been applied to solve MaxProb properties.

Machine learning techniques have been exploited to verify reachability properties on
MDPs using (1) BRTDP, and (2) delayed Q-learning for MDPs with limited information [48].
The techniques are also applicable to positive and zero-valued reward MDPs due to special
treatments of end components and are implemented in PET (aka. Prism-TUM), which is part
of our evaluation in Section 4.2. In parts, the approach is close to ours for simple reachability
properties, but restricted to that, and uses BRTDP instead of FRET-LRTDP. The paper
explicitly mentions that so far no attempts have been made to adapt FRET-LRTDP methods

in the context of probabilistic verification. With MopysH we completely fill this gap.
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As became clear in our empirical evaluation, heuristic search can be especially attractive
for handling excessively large models. An entirely different approach to attack such problems
is the use of external storage to slowly but exhaustively model check problem sizes that

otherwise do not fit in memory [129].

4.4. Discussion

We introduced a heuristic approach to probabilistic model checking. It supports all established
property types, except long-run averages and nested properties, on MDP structures with
positive and zero-valued rewards based on LRTDP combined with FRET. To the best of our
knowledge it has not been shown so far that an algorithm based on the core of FRET-LRTDP
with some substantial changes is applicable across all these problems. We gave a correctness
and optimality proof that the modified version solves all established property types except
long-run averages and nested properties of MDP problems with positive and zero-valued
rewards, i.e., a much broader spectrum of problems than the original works.

Originally, implementations of FRET-LRTDP as per Kolobov et al. have often only been
used for MaxProb analysis in the planning community, e.g., in the probabilistic version
of Fast DowNwARD. Our new approach is implemented in MobpysH, which is part of the
MobksT TooLset. With this tool we are now able to use enhanced probabilistic planning and
heuristic search methods for model checking without translating model checking benchmarks
to planning languages. We reported on a large empirical evaluation that has demonstrated
the competitiveness of MobpysH relative to other state-of-the-art model checking tools. On
very large state spaces our tool outperforms its competitors, demonstrating that planning
techniques can indeed be used to enhance the performance and capabilities of model checkers.
We expect further performance optimizations when exploring the trade-offs between memory
usage and runtime even further or when implementing other heuristics known to work well
in the planning community.

With our work we showed that the model checking community can benefit from collab-
orating and exchanging ideas with the planning community. We layed a cornerstone for
further collaborations of the model checking and planning community, e.g., to treat also other
automata types, or to investigate if an efficient sound version of our modified algorithms
could be implemented.
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.

tistical Model Checking

Neural networks (NNs) are taking over ever more decisions thus far taken by humans, even
though verifiable system-level guarantees are far out of reach. Neither is the verification
technology available, nor is it even understood what a formal, meaningful, extensible, and
scalable testbed might look like for such a technology. The new approach, called Deep
Statistical Model Checking (DSMC), presented in this chapter, is an attempt to improve on
both of the above aspects. As a testbed we use a family of formal models which are variants
of the Racetrack benchmark. Due to the possibility to model random noise in the decision
actuation, each model instance induces a Markov decision process as verification object. The
NN in this context has the duty to actuate (near-optimal) decisions. From the verification
perspective, the externally learnt NN serves as a determinizer of the MDP, the result being a
Markov chain which as such is amenable to statistical model checking. The combination of
an MDP and an NN encoding the action policy is the central attack point of what we call
DSMC. While being a straightforward extension of statistical model checking, it enables
to gain deep insights into questions like “How high is the NN-induced safety risk?”, “How
good is the NN compared to the optimal policy?” (obtained by exhaustive model checking of
the MDP), or “Does further training improve the NN?”. This means, the approach is usable
for quality assurance done by end users or engineers, in system approval or certification, and
for assessment of the infrastructure and algorithms used during training by learning experts.

We report on an implementation of DSMC inside the MopesT TooLSET in combination
with externally learnt decision-making agents, e.g., NNs, demonstrating the potential of
DSMC on various instances of the Racetrack model family, and illustrating its scalability
in a detailed study as a function of instance size as well as other factors, like the degree of
training. The DSMC implementation is part of MoGywm, which is the first tool enabling
the training of decision-making agents on formal models in combination with its quality
assessment. We present MoGyM with a focus on the DSMC functionality. In addition, we
have a look at TRACEV1s, an interactive visualization tool for DSMC analysis on Racetrack.
It fosters the analysis of DSMC results with the help of visualization, and forms a first step in

combining model checking and visualization for the analysis of NN behavior.
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In summary, our contributions around DSMC are as follows:

* We present Deep Statistical Model Checking, which statistically evaluates the connec-

tion of a decision-making agent and an MDP formalizing the problem context.

* We establish tool infrastructure for DSMC in MmoDEs to connect to NNs and general
decision-making agents, resolving the nondeterminism in MDP environments. Fur-
thermore, we introduce MoGym as a framework for training such agents and directly

verifying and assessing them in one tool.

* We illustrate the use and feasibility of DSMC for quality assurance and learning

pipeline assessment in Racetrack case studies.

* We demonstrate the scalability and performance of DSMC, along multiple dimensions,
e.g., model size and number of training episodes as well as NN quality, in a huge,

exhaustive study on scaled Racetrack benchmarks.

* We show how the analysis data we can generate and extract during DSMC evaluations
can be visualized in the TRACEVIs tool implemented by our co-authors to get even
more detailed insights into the quality of the NN. To do so, the DSMC implementation
provides the option to extract the additional data needed for visualization in TRACEVIs.

The benchmarks for the case studies with their JANI models and all infrastructure, including
our DSMC implementation in MoDEs, are archived and publicly available on Zenodo! [172].
This archive also includes the tool infrastructure of MoGym. The benchmarks for the
scalability study as well as the study framework in which the experiments have been
performed, are also available. In addition, we provide all data produced for demonstration

purposes of TRACEV1s and the tool itself in this archive.

Organization and Origins of the Chapter. We start with the discussion of the theoretical
contribution of the whole Deep Statistical Model Checking approach in Section 5.1, which
introduces NNs as MDP action oracles and describes the procedure of DSMC in detail. In
addition, the tool infrastructure combined under the umbrella of MoGywm is presented briefly
with a clear focus on the DSMC part of the tool. Subsequently, the presentation of the work
on DSMC is split in three major parts.

First, Section 5.2 shows how DSMC evaluations can be applied in the Racetrack domain.
A comprehensive case study on quality assurance in system approval is carried out and it
is shown how the learning pipeline can be analysed and revised with the help of DSMC

evaluations. Section 5.2.1 illustrates the use of DSMC for quality assurance by human

Thttp://doi.org/10.5281/zenodo.6362696
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analysts, like end users and engineers, in system approval. Section 5.2.2 demonstrates the use
of DSMC as a tool for engineers designing the NN learning pipeline. Section 5.2.3 evaluates
the computational effort incurred by DSMC compared to a conventional SMC setting where
the MDP policy is coded in the model itself.

Second, the scalability of the DSMC analysis is investigated and examined further in an
extensive benchmarking study in Section 5.3.

Third, Section 5.4 briefly shows how the processed data collected during the DSMC analysis
can be visualized in the TRACEVIs tool to gain even more insights into the decision-making
agent’s quality and deficiencies.

The related work centered around NN quality analysis and verification as well as visualiza-
tion of NN behavior is summarized in Section 5.5. We conclude with a summary of the main

contributions of our work and a discussion of future directions in Section 5.6.

The theoretical work and the introduction of the concept of DSMC (Section 5.1 and 5.2)
is part of the FORTE 2020 publication [106] of Timo P. Gros, Holger Hermanns, Jorg
Hoffmann, Marcel Steinmetz, and the author of this thesis. The author implemented the
DSMC approach in the MobpesT TooLsET, mainly in MoDEs, and did all the benchmarking,
scalability, and case study evaluations with the help of the heat maps designed for this purpose.
The following sections show more evaluations of data and more details than provided in the
paper. Timo P. Gros was responsible for the training of the used NNs.

The DSMC functionality and its integration in the MoGym [107] framework is presented
in more detail in this thesis than in the paper. The other parts of MoGywm, i.e., Momba
Gym and the DSMC API of Momba, have been implemented by Maximilian A. Kohl. Timo
P. Gros was responsible for the training and learning part.

The large scalability and performance evaluation in Section 5.3 is part of a submitted
journal paper centered around DSMC [109]. This evaluation has been conducted by the
author of this thesis and is shown in more detail than in the journal in the following.

We will also briefly summarize the follow-up works on DSMC co-authored by the author
of this thesis. The TRACEVis tool [103] considered in Section 5.4 has been implemented
by David Grof3 and Stefan Gumhold. The author of this thesis assisted in the design and
construction process by giving advice on which data could be visualized and which features
would be helpful for a domain engineer and for quality analysis. In addition, the huge data set
containing traces and meta-information about the DSMC analysis used for visualization in
the tool has been generated and processed by the author of this thesis. To collect the data, the
option to export TRACEV1s compatible meta-data from the DSMC analysis in MODEs has been
used, which was implemented by the author. Furthermore, features, including new properties,

were added to the Racetrack model by the author. A second part of the tool focussing on the
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learning side by visualizing internal behavior of the NN and the learning process, especially
the Q-values used during training [113], has been constructed with the participation of the
author.

In addition, DSMC has been integrated into a feedback-loop to improve NN quality directly
during the training process [105, 110]. In this paper, whose content is only summarized
in the related work in Section 5.5, the author of the thesis supported their co-authors with
information about the DSMC tool usage in the Mopest TooLset and helped during the

writing process.

5.1. Theoretical Contributions

The core theoretical contribution of DSMC is the functionality of connecting MDPs and
action oracles which decide how to act in the environment defined by the MDP fo assess the
oracles’ quality with statistical model checking. In essence, the role of action oracles is very
close to that of an action policy (see Definition 10): Oracles decide in each situation which
option to pick next. If we consider the situations (inputs 1) as the states S of a given MDP,
and the options (outputs Q) as actions ‘A, then the action oracle, which could for instance
be a neural network or any other trained decision-making agent, is a function o: S — A.
Indeed, this is what the reinforcement learning process in Q-learning and other approaches
delivers naturally (see Section 2.4).

Observe that an action oracle can be cast into an action policy except for a subtle problem.
Action policies only pick actions from A(s), thus applicable at the current state s, while
action oracles may not (cf. Definition 10). A better fitting definition would constrain oracles
to always return an applicable action.

Yet it is not clear how to guarantee this for NNs. It would be necessary to add a safety
constraint to the network such that it does not return an output ranking an inapplicable
action the highest. But it is an open question how this can be implemented. Even for
linear multi-classification, the hard constraints required to guarantee action applicability
lead to non-convex optimization problems [58, 100, 192, 193]. An easy fix would use the
highest-ranked applicable action instead of the NN classifier output itself. For our purposes
however, where we want to analyze the quality of the NN oracle, it makes sense to explicitly
distinguish inapplicable actions as a form of low quality.

If an oracle returns an inapplicable action, then no valid behavior is prescribed and in that

sense the system can be considered stalled.
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Let M = (S, A, T, sp) be an MDP, and 0-: S — A be an action oracle. We say that
s € S is stalled under o if o (s) ¢ A(s).

To accommodate for stalling, we augment the MDP upfront with a fresh action  available at
every state. This action is chosen upon stalling, leading to a fresh state i with only that action
to continue. So M = (S, A, T, so) is transformed into M* = (S U {}, A U {§}, 77, s0),
where for each state s, 77(s, T) = d; and otherwise 7(s,a) = 7 (s, a) wherever the latter is
defined.

Let M = (S, A,T,sp) be an MDP, and let o be an action oracle for M. Then the

Markov chain C” induced by o is the one induced in M* by the memory-less action

policy 7 defined by n(s) = { whenever s is £ or o°(s) ¢ A(s) (i.e., stalled), and

otherwise by 7(s) = o (s).

In words, the oracle induced policy fixes the probability distribution over transitions in
each state to that of the chosen action. If that action is inapplicable, then the chain transitions

to the fresh state I which represents stalled situations.

Overall, C™ is a Markov chain induced by the policy m that uses o as an oracle to
determinize the MDP M whenever possible, and stalls otherwise. With o, for instance
implemented by a neural network, we can use statistical model checking on C” to analyze
the NN behavior in the context of M. This analysis has the potential to deliver deep insights
into the effectiveness of the NN applied, allowing for comparisons with other policies and
also with optimal policies, the latter obtained from exhaustive model checking.

From a practical perspective, an important remark is that in the definitions above and
in our implementation of DSMC described below, the inputs to the NN action oracles are
assumed to be the MDP states S or often only relevant parts of it. This captures the scenario
where the NN takes the role of a classical system controller, whose inputs are system state
attributes, such as program variables. Often the controller only has a partial view on the
environment and the system, e.g., an autonomous car can only observe a certain area of its
surrounding.

More generally, the connection from the MDP model to the NN input may require an
intermediate function f mapping S to the input domain of the NN. This is in particular the

case for NNs processing image sequences, like in vision systems in autonomous driving.
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This advanced form of connection remains a topic for future work. It lacks the crisp nature of
the problem considered here.

But there are also developments in the autonomous driving domain, which go exactly into
the opposite direction and thereby are quite close to our approach. With image segmentation,
semantic segmentation, and instance segmentation done by NNs, especially for autonomous
driving, there is already research on filtering and abstracting the image sequences of the
scene which are usually processed by the NNs [89, 241, 255]. Objects and their properties in
an image have to be reduced to the parts and information relevant for making decisions in
the scene, i.e., the information have to be described more abstractly. In such scenarios, the
decision-making entity is then not working on the image anymore but on a selected set of

information relevant for making decisions, like it is the case in DSMC.

5.1.1. DSMC Core-Implementation in MODES

Deep Statistical Model Checking takes as input a trained decision-making agent and an MDP
modeling the same environment the agent operates in. Usually, the decision-making agent
is an NN. Since conceptually, there is no difference for the DSMC procedure between the
various forms of decision-making agents, we will continue to talk about NN in the following,
but want to highlight that all of the work can be done with arbitrary decision-making agents
or general oracles, and especially that the implementation of DSMC supports them. This
means that we also often do not explicitly distinguish between these terms.

The NN is assumed to be trained externally, e.g., by deep reinforcement learning with the
help of PyTorch [227], a leading Python library for NN learning, prior to the analysis in
which it is combined with the MDP. To experiment with this concept, we have developed a
DSMC implementation inside the Mopest TooLseT [128] (see Section 3.4), as an add-on
to the statistical model checker mopEs [51]. For the comparison of the policy induced by
the decision-making agent to the optimal policy we also make use of the explicit-state
model checker mcsta [119, 122]. We implemented two novel options in MODES to resolve
nondeterminism during simulation of sample traces. The first option is called NN and is
usable to evaluate a neural network. The second option is called Oracle and works with an
arbitrary external procedure connected via a socket communication.

With the new options in place, every time the next action has to be chosen in a nonde-
terministic state in the MDP while simulating a trace in SMC, moDEs provides the current
model state to the action oracle, which then returns the chosen action to MoDEs. In this way,
the SMC procedure can, e.g., connect to an external NN serving as an action oracle from
MODES’s perspective.

At the implementation level, connecting to standard NN tools is non-trivial due to the

programming languages used. The MopEesT TooLsET is implemented in C#, whereas standard



Deep Statistical Model Checking 109

NN tools are bound to languages like Python or Java. Our observation to overcome this issue
was that a seamless integration is not actually required. Standard NN tools are primarily
required for NN training, which is computationally intensive and requires highly optimized
code. In contrast, implementing our NN oracle requires only NN evaluation, i.e., calling the
NN on a given input, which is easy — it merely requires to propagate the input values through
the network. We thus implemented the NN evaluation directly in the MopgsT TOOLSET’s code
base, as part of our extension. This variant is used for the experiments shown in Section 5.2.

The main variant of the DSMC implementation presented in the following sections uses
TorchSharp [115], a NET library that provides C# access to the library that powers PyTorch.
In this variant, the NN access is simplified by exporting a JSON file describing the NN
structure, and containing the NN weights and biases learned using standard NN tools. Our
extension of MODEs reads that file, and uses it to reconstruct the same NN with TorchSharp,
for the usage in the DSMC evaluation. When the oracle is called, MODEs connects via
TorchSharp to the NN. The performance of DSMC stays the same for both variants of NN
querying, but the connection to TorchSharp makes the tool handling easier for the user. The
concrete implementation details and command line options to call Mmobes for DSMC are
described in the next section together with MoGywm, the tool for training decision-making

agents on formal models and directly perform DSMC on them.

5.1.2. DSMC Integration in MoGym

MoGywm [107] is an integrated toolbox enabling the training, analysis, and verification of
decision-making agents based on formal models in one common tool infrastructure. Given
a formal model of a decision-making problem in JANI format and a reach-avoid objective,
MoGywm enables (a) training a decision-making agent for the reach-avoid objective using
reinforcement learning (RL) techniques directly on the formal model, and (b) rigorously
assessing the quality of such decision-making agents using DSMC. With these two parts,
MoGywm bridges the gap between formal methods and reinforcement learning and thereby
helps to solve the issue discussed in Section 1.3, that so far, environments of decision-making
agents during training are typically specified implicitly in the form of simulation code making
it hard to check consistency properties on them. MoGym gives the opportunity to define a
formal, mathematically precise and unambiguous description of the training environment
to get a principled understanding of the power of RL algorithms and of the properties of a
specific learned agent with the help of DSMC.

As depicted in Figure 9, MoGywm consists of the following parts:

* Momba Gym is implemented on top of Momba [178], a Python toolbox for dealing

with quantitative models from construction to analysis centered around JANI. With



Deep Statistical Model Checking 110

Momba Gym, a training environment for reinforcement learning techniques can
be built from a formal model together with a reach-avoid objective given by a
JANI file using the explicit state space exploration engine of Momba. Momba Gym
implements and extends the OpenAl Gym API [49], which is the widely used standard
interface for connecting environments to different (deep) reinforcement learning
algorithms [82, 116, 147, 217, 239]. The OpenAI Gym API enables the comparison
of reinforcement learning algorithms and fosters the development of new techniques,

thereby connecting to existing work in the reinforcement learning community.

* The DSMC API is also implemented on top of Momba. This is a Python API to access
the DSMC functionality of the MoDEST TOOLSET.

* DSMC is implemented in Mcsta of the MopesT TooLseT. With the DSMC functionality,
it is possible to statistically model check the probability with which formal properties,
i.e., reach-avoid objectives, are fulfilled when resolving nondeterminism during
statistical evaluation in the formal model under investigation by querying the decision-

making agent.
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Figure 9.: The architecture of MoGywm and its components [107].

The diagram in Figure 9 shows how the different parts of MoGym are connected to each
other. First, a decision-making agent can be trained on a formal model and a reach-avoid
property, specified in a JANI model, against the OpenAl Gym API by using Momba Gym with
arbitrary reinforcement learning techniques implemented by the user of MoGym. Afterwards,
the trained decision-making agent can be verified w.r.t. the property of interest by invoking
the DSMC API, which makes use of the DSMC extension of the statistical model checker
MODEs. Alternatively, the training step can be skipped, and an arbitrary external oracle can
be checked by MODEs.

With this infrastructure, MoGym opens the JANI benchmark set for reinforcement learning.

Employing a formal, precise, well-specified, and unambiguous model of the environment
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instead of an informally programmed one, bears the promise of enabling rigorous assessment
of decision-making agent properties via formal methods. The integration of the OpenAl
Gym API in MoGywm together with the DSMC functionality contributes an efficient feedback

mechanism for improving in particular reinforcement learning algorithms.

Implementation Details. We assume that a decision-making agent controls a single
automaton in the automaton network of the formal model describing the environment, i.e., the
agent resolves the nondeterminism of this automaton. To train a network for this automaton,
the OpenAl Gym API and thereby Momba Gym requires the definition of an action space
and an observation space. In response to receiving observations from the observation space,
the agent takes a decision from the action space. During the DSMC evaluation of the trained
decision-making agent, exactly these two spaces have to be used, too. The inputs to the trained
decision-making agent are part of this observation space and the outputs fed back to the SMC
simulation engine are part of this action space. This means, the DSMC functionality in MODES
has to communicate with the decision-making agent via the same action and observation
space as used by the Momba Gym API during training. To enable the usage of general JANI
MDP models, the action space and observation space have to be extracted from the model.
Depending on the model, there are multiple ways to do so. Momba Gym, and also DSMC
in MODES, implement multiple strategies for this extraction. For the action space, edges of
the controlled automaton can be selected by index or by label. For the observation space,
either (i) only global variables, (ii) global and local variables of the controlled automaton, or
(iii) all variables can be made observable.? Other strategies can easily be added. The default
setting is to make global variables the only observable ones.

Whenever the agent selects a decision in response to an observation, the decision is first
mapped to an edge of the controlled automaton, and then to a transition of the network (for
details on the structure of JANI models, see Section 3.1). If there are other entities in addition
to the controlled automaton (e.g., adversaries modeled in another automaton of the automata
network) nondeterministically influencing the environment of the decision-making agent,
the user receives a warning and the remaining nondeterminism is resolved uniformly.? This
should be taken into account when inspecting the results. Technically, this approach would
extend to a multi-agent setting where different agents resolve the nondeterminism in different
parts of the model.

After taking the respective transition, Momba’s state space exploration engine during
learning and mopEs during the DSMC analysis continue simulating a trace through the model

until a state is reached where the agent can make a decision again.

ZFor more details about those strategies see https://momba.dev/gym/.
3That is, each of the remaining nondeterministic options is considered equiprobable.
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Usage of MoGym and mobpes for DSMC. The DSMC API of Momba implements two
functions, one for verifying arbitrary decision-making agents accessible via a Python function,
and one for verifying PyTorch neural networks. Both functions rely on the DSMC functionality
in the statistical model checker mopEs, which accepts both forms of decision entities, and
both functions return the value of the reach-avoid property calculated by the model checker.

An arbitrary Python function mapping observations to decisions can be checked with

MoGywm by executing:

gym.checker.check_oracle(oracle, model, automaton)

Here, oracle is the Python function implementing the decision-making agent. Note that this
is not limited to trained decision-making agents in any way. Any arbitrary Python function
with an appropriate signature can be used. automaton is the automaton the decision-making
agent controls within the model specified. All properties specified in the JANI model are
checked. The optional arguments actions and observations can be used to specify the
strategy for the extraction of the action and observation space (i.e., by index or by label, and
which variables to observe, see above).

While check_oracle involves executing Python code, a more efficient approach is
available when the decision-making agent is a PyTorch neural network. In this case, the

neural network can be directly verified with check_nn:

gym.checker.check_nn(nn, model, automaton, property_name)

To this end, e.g., in case the NN consists of a sequence of layers, the structure of the NN and
its characteristics have to be communicated. The function check_nn extracts these layers
from the provided neural network nn and exports them in a JSON-based format. The neural
network is then loaded by mopes with TorchSharp and used for model checking without
calling back into the Python runtime. With the help of TorchSharp, MopEs supports networks
with arbitrary dimensions and activation functions. Convolutional networks are in principle
also supported, though we did not experiment with those.

Alternatively to the DSMC API provided by Momba, it is also possible to invoke MODES
on the command line to check an NN in MoGym’s JSON format or to connect to an arbitrary
decision-making agent via a socket connection. This could then be any program taking the
information of the observation space as input and sending an action decision back.

The DSMC evaluation of an NN oracle with MmopEs can be called directly via:

modest.exe modes path/to/model.jani -R NN -NN path/to/NN/JSON -A
controlled-automaton

The general oracle can be called over a socket communication on a given port by executing:
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modest.exe modes path/to/model.jani -R Oracle -SOC host:port -A
controlled-automaton

controlled-automaton is the name of the automaton controlled by the NN in the JANI
model. If the automaton is not named explicitly in the model, MoDEs assigns a default name
autN to it where N is the number of the automaton in the JANI file. MODEs starts counting
at 0 from top to bottom in the file. The new option --max-run-length-as-end treats
reaching the maximum length of a simulation run as if a dead-end state would have been
reached, i.e., such a situation is treated in the simulation as if the goal were not reachable.
This flag can be used in situations where it is necessary to avoid that the simulation is aborted
if the maximum run length is reached and not all properties are decided. However, it should
be checked how such a phenomenon has to be interpreted in the specific context of the
model under investigation and how the SMC results are effected by this modification in the
respective case.

--observations-local-global is the option to make global and local variables of
the controlled automaton observable. To see all variables of all automata and the global

variables, --observations-omniscient has to be set.

5.2. Application: DSMC Evaluations on Racetrack

After having discussed the technical details of the DSMC functionality and its implementation,
we are now ready to apply DSMC in practice. As previously outlined, we consider Racetrack as
a formal, simple, and discrete, yet highly extensible approximation of real-world phenomena
that involve randomness and decision-making. In this section we demonstrate all facets of
the usage of DSMC on the Racetrack benchmark. But first, we briefly summarize how the

NNs we assess later with DSMC are obtained and what structure they have.

Learning Neural Networks for Racetrack. For the sake of realistic empirical studies, we
have drawn on established NN learning techniques to obtain NN decision-making agents for
the Racetrack case studies. Here, we briefly summarize the main design decisions. Notably,
DSMC is entirely independent of the concrete learning process, depth, and shape of the NN
employed.

NN for Racetrack are learnt for a specific map (cf. Figure 3), with the inputs being 15
integer values, encoding the two-dimensional position, the two-dimensional velocity, the
distance to the nearest wall in 8 directions, the x and y differences to the goal coordinates,
and the Manhattan goal distance, which is the absolute x- and y-difference summed up.

Actions to accelerate in the 9 possible directions are encoded as classification outputs, 1.e.,
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Figure 10.: Training plots of a policy trained in the normal start setting and a policy trained
in the random start setting on the Ring map. The curves depict the sliding mean
of the last 500 observed returns during training. The dashed lines indicate the
first time a cell on the goal line was reached, i.e., the first time a positive return
was observed in one episode.

the output layer consists of 9 neurons, where each neuron is semantically associated to one
of the possible directions.

A crucial design decision is the learning objective, i.e., the rewards used in deep Q-learning.
We set the reward for reaching a cell on the goal line to 100, and for crashing into a wall
to values within [-50, —20], depending on the map shape and the task to solve. We used a
discount factor of 0.99 (see Equation 2.2) to encourage short trajectories to the goal. This
arrangement was chosen because, empirically, it resulted in an effective learning process [102].
Such a procedure to choose the learning parameters is common in the learning community.
With higher negative rewards for crashing, the policies learn to prefer not to move or to move
in circles. Similarly, smaller negative rewards make the learnt policies prefer to crash quickly.
Using a discount factor yields better learning performance, but does not match the overall
Racetrack setup. This exemplifies that the choice of objectives for learning is governed by
learning performance. Both hyper-parameters and numeric parameters, such as rewards,
typically require fine-tuning orthogonal to, or at least below the level of abstraction of, the
qualities of interest in the application, but this is out of scope of this thesis.

We experimented with a range of NN architectures and hyperparameter settings, the
objective being to keep the NNs simple while still able to learn useful oracles in our
Racetrack benchmarks. The NNs we settled on have the above described input and output
layers, and two hidden layers each of size 64. All neurons use the ReLLU activation function
f(x) = max(0, x).

NN are learnt in two variants: First, starting alternatingly on all cells on the start line, so

called normal start (NS), vs. second, starting from a random point anywhere on the map,
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called random start (RS), each with initial velocity 0. The random start variant turned out to
yield much more effective and robust learning. Intuitively, RS seems to be a more challenging
task as there is more that the policy needs to learn. Still, for NS it takes the policy a long
time to reach the goal at all, while with RS this happens more quickly yielding earlier and
more robust learning also farther away from the goal.

Consider Figure 10, which depicts the training curve of two policies for the Ring map
(see Figure 3), one trained in the NS setting and the other in the RS setting. The training
plot shows the sliding mean of the returns achieved during the training episodes. For the RS
mode, the goal line is already reached shortly after the training starts, as indicated by the
dashed orange line, and the return of the policy increases steadily until a plateau is reached,
where the policy only improves slightly. In contrast, for the NS mode, the goal line is reached
for the first time after about 17 000 episodes, indicated by the blue dashed line, and therefore
just then receives the first positive reward. Thus, the policy can only start to learn how to
reach the goal after these 17 000 episodes, which explains the abrupt increase of achieved
returns afterwards.

Note that, the average values of achieved returns in the end of training cannot directly be
compared to each other. As the episodes trained with random start in average are shorter,
as they regularly start closer to the goal line, the achieved returns are discounted less and
therefore are higher (see Equation 2.2).

The insights in the quality of the learned NNs, and the differences between normal and
random start gained by checking the learning curve and training parameters will become

even more clear and detailed with the help of DSMC as shown in the following.

DSMC Case Studies in Racetrack. We now demonstrate the Deep Statistical Model
Checking approach for NN policy verification through case studies in Racetrack. There are a
variety of use cases for DSMC, pertaining to end users and domain engineers alike. These

can be grouped in two main categories, which we will inspect in the following.

* Quality Assurance. DSMC can be a tool for end users or engineers in system approval
or certification regarding safety, robustness, absence of deadlocks, or performance
metrics. The generic connection to model checking furthermore enables the comparison
of decision-making agents to provably optimal choices on moderate-size models: taking
out the agent, the original MDP results and can be submitted to standard exhaustive
probabilistic model checking. In our evaluations, we use the probabilistic explicit-state

model checker mcsta [128] for this purpose.

* Learning Pipeline Assessment. DSMC can serve as a tool for NN engineers designing
the NN learning pipeline in the first place. This is because the DSMC analysis can
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reveal specific deficiencies in that pipeline. For example, we show how heat maps can
highlight where the decision-making agents are unsafe. Furthermore, we exhibit cases
where NN decision-making agents turn out highly unsafe despite this phenomenon
not being derivable from standard measures of learning performance. Such problems

would likely have remained undetected without DSMC.

Throughout the experiments, we use MODEs with an error bound P (error > ) < &, where
€ =0.01 and § = 0.05, i.e., a confidence of 95%. We set the maximal run length to 10 000
steps. Unless otherwise stated, we set the slippery-noise level in Racetrack, i.e., the probability
of action failure, to 20%. The NN oracles are learnt by training runs starting anywhere on
the map, i.e., in a random start setting. We also illustrate how DSMC can highlight the
deficiencies of the alternate approach starting on the start line only. All experiments were
run on an Intel Core 17-4790 CPU @ 3.60GHz (4 cores, 8 threads) with 32 GB RAM and a
450 GB HDD.

5.2.1. Quality Assurance in System Approval

The variety in abstract property specification gives versatility to the quality assurance process.
This is important in particular because, as previously argued in Section 2.4, the relevant
quality properties will typically not be identical to the objectives used for NN learning. In
the Racetrack example, NN learning optimizes the expected return subject to fine-tuned
reward and discount values. For the quality assurance we consider the crash probability and
the goal probability in JANI, namely < crashed (“eventually crashed”) for the former, and
—crashed U goal (“not crashed until reaching goal”) for the latter. Further properties of
interest could be, e.g., bounded goal probability (How likely is it that we will reach the goal
within a given number of steps?), expected number of steps to goal, or risk of stalling.

The strength of DSMC analysis is that in addition to pointing out that an NN oracle has
deficiencies, it is also possible to show where, i.e., in which regions of the MDP state space
S. In cyber-physical systems it is natural to use the spatial dimension underlying S for
systematizing the analysis and visualizing its result. This delivers not only a yes/no answer,
but an actual quality report. We illustrate the results through the use of heat maps over the
Racetrack road map, designed for this purpose by us.

Figure 11 shows quality assurance results for crash probabilities in all the Racetrack
benchmarks considered in this thesis introduced in Section 3.3, using for each the best NN
oracle from reinforcement learning, i.e., the one yielding highest returns in the training
plots. We are aware that for highly critical and dependable software systems, an acceptable
error rate is often (much) lower than the values we present for Racetrack in the following

evaluations. Our aim was not to optimize the decision-making agents as much as possible but
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Figure 11.: Heat maps of NN induced crash probabilities for all Racetrack benchmarks.

to present illustrative results demonstrating the potential of the DSMC approach. In addition,
due to the noise probability, even an optimal policy cannot reach the goal with certainty (see
Section 3.3). The heat maps use a simple color scheme to illustrate the analysis results for
human analysts. Similar color schemes will be used in all plots below.

From the displayed DSMC results, quality assurance analysts can directly conclude that
the NN oracles are relatively safe in Barto-small (left top) and in Barto-large (left bottom)
with crash probabilities mostly below 0.1; but not on Ring (right) where crash probabilities
are above 0.25 on significant parts of the map.

Generally, the crash probability increases with the distance to the goal line. Some interesting
subtleties are also visible, for example that crash probabilities are relatively high in the
left-turn before the goal in Barto-small.

The next results in Figure 12 illustrate the quality-assurance versatility afforded by DSMC
through an analysis quite different from the previous one. Assume that the NN analysts
here decide to evaluate the goal probability (—~crashed U goal), (a quality stronger than
not crashing because that may be achieved by idling). Apart from the original setting, they
consider a stress-test scenario where the road is significantly more slippery than during NN
training, namely 50% instead of 20% noise. They finally decide to compare with optimal
goal probabilities, computable with the probabilistic model checker mcsTa, so that they can
see whether any deficiencies are due to the NN, or are unavoidable given the high amount of
noise.

The figure shows the outcome for Barto-large. One of the deficiencies is immediately

apparent, the NN policy does not pass the stress test. Its goal probability matches the optimal
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Figure 12.: Goal probability of NN oracle on the Barto-big benchmark trained and executed
with 20% noise (left) vs. stress-test executed with 50% noise using the same
NN (middle) vs. optimal policies obtained by exhaustive probabilistic model
checking with 50% noise (right).

values only near the goal line, and exhibits significant deficiencies elsewhere. Striking is the
small area close to the start line, where the goal probability increases slightly from below
25% to 25 — 50%, which is caused by the high amount of noise leading the car out of the area
where the NN learned to drive in circles or to stop on the track without continuing to drive
further. Based on these insights, the quality analysts can now decide whether to relax the
stress-test (after all, even optimal behavior here does not reach the goal with certainty), or

whether to reject these NN polices and request re-training, e.g., with a focus on specific areas.

5.2.2. Learning Pipeline Analysis and Revision

DSMC can yield important insights not only for quality assurance, but also for the engineers
designing the NN learning pipeline in the first place. For this purpose, there are two distinct

scenarios:

(i) The engineers run the same success tests as in quality assurance, and re-train if a test
is not passed.

(i) The engineers assess different properties of interest to the learning process itself (e.g.,
expected length of policy runs), or assess the impact of different hyperparameter

settings.

In both scenarios, the DSMC analysis results point to specific state space regions that require
improvement. This can be directly operationalized to revise the learning pipeline by starting
more training runs from states in the critical regions.

Figures 11 and 12 above have already demonstrated (i). Next, we demonstrate (ii) through

two case studies analyzing different hyperparameter settings.
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Figure 13.: Goal probabilities on the Barto-big benchmark, for NN oracles learnt over
n = 70000 (top left), and n = 90 000 (top right) training episodes, together with
the Q-learning curve (bottom).

Our first case study, for which the results are depicted in Figure 13, analyzes the number n
of training episodes as a central hyperparameter of the learning pipeline. The only information
available in deep Q-learning for the choice of this hyperparameter is the learning curve,
1.e., the expected return as a function of n, depicted on the bottom of the figure. Yet, as
our DSMC analysis here shows, this information is insufficient to obtain reliable policies.
In Barto-big, the highest return is obtained after n = 90 000 episodes. From n = 70 000 to
n = 90 000, the return slightly increases. Yet we see in Figure 13 that the additional 20 000
training episodes, while increasing overall goal probability, lead to highly deficient behavior
in an area near the start of the map, where the goal probability drops below 0.25. If provided
with that information, the engineers can focus additional training on that area, for instance.

In our next case study, we assume that the NN engineers decide to analyze the impact

of starting training runs on (a) the start line vs. (b) random points anywhere on the map.



Deep Statistical Model Checking 120

B> 09
B ->09
B> o97 5

> 0.9

> 075

W-o2
W<o02 -

(a) (b)

Figure 14.: Goal probabilities in Ring for NN oracles where training was carried out with
reinforcing runs from (a) the start line only vs. (b) from anywhere on the map.

Figure 14 shows the results for the Ring map, where they are most striking. In variant (a),
the top part of the Racetrack map was completely ignored by the learning process. Looking
into this issue, one finds that during training the first solution happens to be found via the
bottom route. From there on, the reinforcement learning process has a strong bias to that
route, preventing any further exploration of other routes.

Phenomena like this are highly detrimental if the learnt policy needs to be broadly robust
across most of the environment. The deficiency is obvious given the DSMC analysis results,
and these results make it obvious how the problem can be fixed, namely by focusing the
(re-)training on the more difficult areas. But neither can be seen in the learning curves, like

the one for this Ring map example for random and normal start in Figure 10.

5.2.3. Computational Effort of the Analysis

As discussed, it can be highly demanding or infeasible to verify the input/output behavior
of even a single NN decision episode, and that complexity is potentially compounded by
the state space explosion problem when endeavoring to verify the behavior induced by an
NN oracle. Deep Statistical Model Checking carries promise as a lightweight approach to
this formidable problem, as no state space needs to be stored and on the NN side it merely
requires to call the NN on sample inputs. In addition, it is efficiently parallelizable, just like
SMC. Yet (1) the approach might suffer from an excessive number of sample runs needed to
obtain sufficient confidence, and/or (2) the overhead of NN calls might severely hamper its

runtime feasibility.
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Figure 15.: Heat maps showing the computational effort needed by DSMC, measured by
the number of sample runs performed by MoDEs to analyze goal probability for
each map location. Results are shown for the policies induced by our learnt NN
in the top row, vs. a simple hand-coded policy (see text) at the bottom. Each cell
on the map shows |log, (#runs)].

Figure 15 shows data regarding (1). We compare the effort for analyzing our NN policies to
that required for analyzing a conventional hand-coded policy that we incorporated into our
JANI models.

The hand-coded policy implements a simple reactive controller that brakes if a wall is
near, and otherwise accelerates towards the goal. In more detail, the controller is directly
implemented in the JANI model and resolves nondeterminism using shared action synchro-
nization. The controller’s overall goal is to navigate the car towards the closest goal cell
according to Manhattan distance. To avoid crashes, the controller tries to ensure that the
car’s speed is low enough to come to a complete stand before hitting a wall. In the case when
keeping the current speed of the car would lead to a crash, the car is decelerated accordingly.

Otherwise, the controller chooses acceleration values in x and y directions according to
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the difference between the car’s current position and that of the targeted goal cell. If the
resulting speed vector is still considered to be safe, i.e., satisfies the aforementioned property,
then the acceleration vector is executed. Otherwise, the speed is left unchanged. When the
straight line connecting the car’s start position and the targeted goal position contains walls,
following this policy will eventually cause the car to stop in front of a wall. In that case, the
controller moves the car alongside the wall as long as progress towards the goal becomes
possible again.

As the heat maps show, the effort for checking the hand-coded policy with MoDEs is higher.
This is due to a tendency to more risky behavior in the hand-coded policy, resulting in higher
variance which leads to more sample runs needed to gain the required statistical confidence.

We do not provide an extra figure for the goal probabilities of the NN because for Barto-
small and Ring the heat maps look exactly the same as in Figure 1 1 when interpreting the colors
with the legend for goal probabilities given in Figure 12. This is because 1 — goal probability
results in the same value as the crash probability but only if no stalling occurs in the traces
generated by DSMC and if all traces reach a goal cell or crash at some point, i.e., do not end
up driving a cycle trajectory. This is the case for Barto-small and Ring. For Barto-big the
goal probability heat map is depicted in Figure 12 on the left. Comparing it to the respective
crash probability heat map in Figure 11, one can see that especially in the first half of the
map there are a lot of start states in which stalling occurs or neither a goal is reached nor a

crash happens.

Figure 16.: Heat maps of goal probabilities of the hand-coded controller for all Racetrack
benchmarks.
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The more risky behavior of the hand-coded policy is clearly visible in the heat maps
showing their goal probability on all maps in Figure 16. The probability to reach the goal is
in large areas only moderately worse than that of the best NN policies. But especially near
the start cells in Ring, and in the first half of Barto-big, it is clearly worse. In Barto-big the
goal reachability probability rises once the vehicle is beyond the curves when coming closer
to the goal, and when it is not needed to navigate narrow curves anymore. This behavior is
obviously caused by the controller’s strategy to navigate very closely along the wall if the
direct straight connection to the goal is blocked. The NN policies instead learned to keep a

safety distance to the walls to prevent crashes when noise occurs.

Regarding (2), the runtime overhead for NN calls is actually negligible in our study. Each
call takes between 1 and 4 ms. There is an additional overhead for constructing the NN prior
to the analysis, but that takes at most 6 ms. Deeper analysis of DSMC scalability is done in
the next section.

5.3. Benchmarking and Scalability Study

As the previous chapter showed, the DSMC approach enables detailed insights into questions
like “How high is the NN-induced safety risk?” or “Does further training improve the NN?”.
The case studies so far were of limited size though, leaving open the question how the
DSMC approach scales up. This section sheds light on that question by presenting a profound
scalability study, systematically extending the previous case studies.

We present a thorough analysis of DSMC performance and its scalability, depending on
multiple dimensions as a function of model size as well as other factors, like the degree of
NN training affecting the NN quality. For this study, we extend the Racetrack case studies
originally considered to systematically scale the size of the map. In addition, the effect
of the training degree on the effort needed in DSMC is measured over different stages of

reinforcement learning.

5.3.1. Scalability Study Design

In our scalability study, we concentrate on the Barto-big Racetrack map. The scaled JANI
benchmarks in our case studies are generated with the same tools in the same formalism as
the benchmarks used in the previous sections, but in a setting with a noise probability of
10% to make the task easier on very large maps. The objective in the scalability context is

calculating the maximal goal reachability probability per state.
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Scaling Racetrack. DSMC runtime is influenced by multiple factors, including map shape,
policy quality, and of course the map size, i.e., the model size of the system or scenario under
inspection. We scale the Barto-big track shape up by using finer discretizations, thereby
effectively making the track larger to navigate. This scaling approach is simple and canonical,
and facilitates a detailed, direct comparison across different sizes. Specifically, we scale by a
factor N where every cell in the original map is replaced by a square of N2 smaller cells. The
map growth thus is quadratic in N, i.e., the original map has a size of 30 x 33 cells, while
with N = 2 we get 60 X 66 cells, with N = 3 we get 90 x 99 cells, and so on.

Study Setup. This size scaling may impact the performance of DSMC, measurable, e.g.,

in the number of sample runs or the runtime, in several ways:

(1) Analyzing policy behavior by starting from every map cell (with initial velocity 0), the

number of calls to DSMC equals the number of cells after scaling.

(i1)) The MDP becomes larger and individual policy runs become longer, which may affect
the number of sample runs required to obtain the desired statistical confidence in the

analysis result and the execution time needed per run.

(111) The quality of an NN oracle — its ability to successfully navigate the map — may affect

the number of sample runs required in DSMC.

We now summarize the results of our study examining these effects. We consider (iii) first,
as it turns out to influence DSMC performance quite substantially, thus being important
to understand as a prerequisite for our scalability study. We analyze (iii) as a function of
training degree, which is of interest in itself if one is interested in analyzing the NN oracle
under training at different stages, which is a natural application of DSMC. Given our insights
into (iii), we then turn to our study of (i) and (ii) using NN oracles of comparable quality.
All experiments were run on 5 virtual machines having an AMD EPYC Processor at
approximately 2.5 GHz using Ubuntu 18.04 with 8 vCPUs and 16 GB RAM. A total of
114 129 processing hours have been invested in this study, i.e., reproducing already a fraction
of these results takes a lot of time. All scripts and infrastructure used for the scalability study

is available online* [172] together with all other supplementary material on DSMC.

5.3.2. Performance as a Function of Training Episodes

To evaluate the impact of training strength on the runtime of DSMC, we extracted networks
for the Barto-big map shape, e.g., depicted in Figure 3, after 5k, 10k, 15k, 20k, and 25k
training episodes for scaling factor N = 1, and for N = 2 additionally after 30k, 35k, 40k,

4http://doi.org/10.5281/zenodo.6362696
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and 45k training episodes, because for the latter training takes longer. Figure 17 summarizes

the results by averaging.
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Figure 17.: Average runtime of DSMC per map cell over training episodes.

DSMC exhibits an easy-hard-easy pattern as the training degree grows, because low- and
high-quality networks can be checked quickly whereas NNs with rather undecided action
outputs need more time in the statistical model checker. This is characteristic, since for
other scaling factors N the same pattern emerges. Indeed, the pattern is easily explained and
makes sense. Little-trained NN oracles tend to crash quickly and thus are easy to analyze.
Strongly trained policies tend to reach the goal reliably with little variance. The performance
of DSMC is more stable in terms of the runtime difference among cells in the same area on
the map. This again results in high statistical confidence after relatively few sample runs.
The hard cases lie in the middle, where the NN oracle exhibits high variance between runs
that crash and ones that reach the goal. The reason is that the oracle is more undecided or has
a more risky driving behavior, necessitating more analysis effort, because more SMC runs
are needed to obtain a result with the statistical guarantees.

To corroborate these findings, let us have a closer look at the dependency between oracle
quality and DSMC runtime. Fixing N = 3, we examine two NN action oracles 0,4 and
O 4004 Of different quality (same number of training episodes but different hyperparameters),
analyzing their goal probability and DSMC runtime locally, specific to different regions of
the map, in difference to the global analysis considered in Figure 17. Figure 18 shows the
data.

In Figure 18 (a) and (b), we depict for two different NN action oracles 044 and 0004
for each map cell the goal probability when starting the policy from that cell with an initial

velocity of 0. This goal probability was determined by running DSMC on the respective
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(a) (b)

(c)

Figure 18.: (a), (b): Goal probability per cell for N = 3 with a bad-quality NN oracle o4 ()
vs. a good-quality NN oracle 004 (b). (¢): DSMC runtime difference quotient
Tbad per cell.

Tgood
MDP state. In Figure 18 (c), we depict the difference in runtime between (a) and (b), namely
the quotient of DSMC runtime for 044 over DSMC runtime for 0,4 0n a cell-by-cell
basis. Briefly put, dark green to yellow colors mean that DSMC on 07,4 takes less time than
DSMC on 0704, Orange to light red means that both are analyzed in similar runtime, darker
red to blue means that 0,4 takes more time to analyze up to a factor of more than 10. The
exact color-coding legend can be found on the left of (c).

The heat maps clearly show the effect of local policy quality on DSMC runtime. Near
the starting line, where 0,4 typically does not reach the goal, and crashes frequently and
quickly (black stripes and cells in (a)), 044 is much easier to analyze than o, (dark green
stripes and cells in (c)). This changes drastically in the first curve of the map, where o744
exhibits high variance and becomes much harder to analyze than 0,,4. As we move closer
to the goal, this latter phenomenon gradually diminishes, except for the last curve in which
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Opaq has again lower goal reachability probabilities (light green, yellow, orange cells) than
before, resulting in higher DSMC runtimes (dark red, blue cells) because of higher variance.
At first glance, one would expect that in the black cells where the quality of o4 is really
low, also its DSMC runtime should be much lower than for 0,4, similar to the behavior in
the beginning of the track. But since we are now closer to the goal and the quality of 004 18
much better than in the beginning of the track, its runtime is also much lower and in the case
of Barto-big even lower than the runtime for o,y in these cells. Additionally, the runtimes
of DSMC for cells so close to the goal are in general quite low, which makes the measures

quite sensitive.

5.3.3. Scalability Over Instance Size

We now turn to the main purpose of our study, examining DSMC scalability as a function of
instance size. Given the above insights, in this part of the study we only compare NN oracles
of similar global quality, as measured by the training return they achieve and a DSMC quality
analysis. Furthermore, to account for variance in local policy quality (which is impossible
to avoid), we train and analyze five different NN oracles for each value of N. In addition,
if not stated otherwise, the results show averages over all cells on the map factoring out
complexity source (i) from above, i.e., that the number of calls to DSMC varies with the map
size because one call of DSMC is performed per map cell, which is a trivial phenomenon
here due to our complete coverage of cells on the track.

Figure 19 (a) displays the size of the MDP state spaces, given in terms of the number of
states to be considered by the analysis. The plots in (b) and (c) present our main scalability
result as functions of the map size, in terms of (b) average DSMC runtime per map cell
(initialized with velocity zero) and (c) average number of sample runs per map cell. We detail
these results for the most demanding policy (max), and for the easiest policy (min) at each
scale, together with the average (avg).

The model sizes shown in (a) indicate that the analyzed MDPs are quite non-trivial, with
millions of states already for N = 1 and N = 2, and going up to almost 150 million states for
N = 5. Against this background, (b) clearly shows that the effort needed by DSMC increases
linearly as a function of map size, e.g., because the run length grows. This is corroborated by
(c) which shows that the required number of sample runs barely has any tendency to increase
with increasing map size at all. The scaling curve is dominated instead by the amount of
variance across different policies.

We also ran these scalability experiments with lesser training, choosing low and middle
quality policies following related work [59] as ones that deliver 20% and 50% of the maximal
achieved return for the good policies during training, respectively. The results for these

settings depicted in Figure 20 and 21, respectively, show similar tendencies as the ones
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Figure 19.: (a) Total number of states in the MDPs of the scaled maps.
For good quality policies: (b) runtime of DSMC per map cell; (c) number of
runs in DSMC per map cell. Each shown as a function of map size. (b) and (c)
show min/average/max over 5 policies.

above in terms of the scaling behavior over N. Note that we used different scales to make
the trend of the curves still visible by using intuitive value representations and scales. One
should not be mislead by the outliers of the curve showing the maximum, and also not by the
results for N = 5 which deviate minimally because of the difficulty of the largest instance.
In terms of scaling over training degree, as discussed in the previous section, low-quality
policies are much easier to analyze, as expected. For middle-quality policies, the results are
less conclusive, with DSMC effort roughly similar to high-quality policies but with more
variance. We conclude from this that the hard region as displayed in Figure 17 tends to be

narrow, and correlates only loosely with training return.
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Figure 20.: Middle (70% return) policies: (a) runtime of DSMC per map cell; (b) number of
runs in DSMC per map cell. Each shown as a function of map size, min/aver-
age/max over 5 policies.
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Figure 21.: Bad (20% return) policies: (a) runtime of DSMC per map cell; (b) number of runs
in DSMC per map cell. Each shown as a function of map size, min/average/max
over 5 policies.

Together, these findings indicate that DSMC can be scalable in non-trivial application
scenarios. The data confirms the expected result that, all other circumstances being equal,
run length is the determining factor for DSMC performance, and thus the advantages of

statistical model checking carry over to DSMC.

Next, we have a look at a straightforward measure for scalability over instance sizes, which

is the overall runtime of DSMC executed on all cells of a map. In contrast to the previous
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Figure 22.: Accumulated runtime of DSMC over whole map as function of map size for (a)
good, (b) middle, and (c) bad quality policies; max, min, avg over 5 policies.

evaluations, this does not factor out complexity source (i), i.e., it is clear that the runtime has
to increase for larger map instances just because more DSMC calls are needed and therefore
this measure does not give the fine grained analysis insights obtained above.

Figure 22 (a) shows that the accumulated effort for DSMC across all map cells grows
substantially as a function of N for the good policies, simply due to map size. This illustrates
that an exhaustive analysis of the state space is highly demanding in these benchmarks. Note
though, that this task is trivial to parallelize, so that it can still be feasible to check large
fractions of the state space. Indeed, this was exploited in our experimental setup, running on
a cluster of multicores. As already seen in the previous evaluations, for this setting again,
low-quality policies are much easier to analyze (see Figure 22 (c)), as expected, and the results

for middle-quality policies are less conclusive because of higher variance (see Figure 22 (b)).
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Figure 23.: DSMC runtime difference quotient % per cell for N = 1 vs. N = 2 (left)
and N = 2 vs. N =5 (right).

With the help of heat maps it is also possible to compare even more detailed data w.r.t.
scalability. Figure 23 provides a fine-grained view of differences in DSMC performance as a
function of scaling size, comparing different NN action policies, first, one for N = 1 vs. one
for N = 2 (left), and second, one for N = 2 vs. one for N = 5 (right). Each cell in the heat
maps shows the quotient of DSMC runtime of the policy for the smaller map over the policy
for the larger map, like it was done in Figure 18 (c) for the comparison of a good and a bad
quality policy for N = 3. Map cells are aligned and compared across different map sizes
according to their positions in the respective discretization. This means, a single cell of the
smaller map is compared with all cells of the larger map it is partitioned into when scaling
up. Therefore, the maps in Figure 23 each have the size of the larger map in the comparison.

In both heat maps “strong” colors are rare, i.e., there is only little dark green and
dark red/blue. The runtime differences hence are mostly not extreme, corroborating our
observations from Figure 19. There is however a certain degree of variation, which turns out
to be again mostly caused by policy quality differences.

To understand this, consider first the left-hand side heat map. Near the start line and the
goal of the track, orange and yellow dominate — indicating similar runtimes — because DSMC
analysis for both values of N tends to be quick. This is different in the remaining middle part
of the track, where there is more policy-success variance, and hence more sample runs are
needed, for both values of N. The smaller map size for N = 1 then results in significantly
smaller runtimes.

In the right-hand side heat map, the picture is not as clear. Differences are again small close
to the goal (light green this time as the size gap from N = 2 to N = 3 is larger), but elsewhere

the picture is very mixed. The latter is due to local policy-quality variation, which is more
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pronounced in the larger maps. All the areas with distinctly large performance differences,

e.g., the dark green stripe in the last curve, are due to poor quality of one of the two policies.

Summarizing the findings from all parts of the scalability study, we find that the policy
quality yields a characteristic easy-hard-easy pattern in the effort of the DSMC analysis
caused by the nature of the NN action policies at different stages. The results of the study on
many instances of scaled Racetrack benchmarks turn out to be quite favorable, attesting to
the potential of DSMC. With respect to instance size, our finding is that the average DSMC
runtime per initial state grows linearly, indicating that DSMC is indeed scalable and inherits

the beneficial properties of statistical model checking.

5.4. DSMC Visualization in TRACEVI1s

In the domain of cyber-physical systems, which can be modeled by state spaces predestined
for easy and vivid visualization, it is natural to explore the use of visualization to support
DSMC users, like human analysts and domain engineers, considered already in the DSMC
evaluation scenarios above.

The author of this thesis assisted in the design and construction of an interactive visualization
tool for DSMC results of the Racetrack case study, called TRACEV1s, by implementing
additional features in the Racetrack model and in MoDEs to extract the required DSMC
metadata used for visualization. In addition, the author contributed by giving advice on
which data could be visualized or which features would be helpful for a domain engineer and
for quality analysis. The tool implementation and design was done by David Gro8 and Stefan
Gumbhold. With this short section, we want to give an outlook on how valuable DSMC can
be to gain deep insights in the behavior of learned agents to strengthen the contribution of
DSMC even further.

The TrRACEV1s tool enables exploration of crash probabilities for particular wall segments
and goal reachability probabilities for individual goal states as a function of start position and
velocity. This means, the more general goal and crash properties from above were refined
to crash-probability-into-x-y and goal-probability-into-x-y where x and y specify the exact
coordinates where the crash happens or where the goal is reached, respectively. Like before,
the individual start position for which the property is evaluated is fixed by the initial state of
the model given to DSMC.

The tool furthermore supports the in-depth examination of policy traces generated by
DSMC, in aggregated form as well as individually. This demonstrates how visualization can
foster the effective analysis of DSMC results, and it forms a first step in combining model

checking and visualization in the analysis of NN behavior.
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At this point, we want to highlight that with the usage of the term trace in this chapter the
sample executions performed in SMC (see Section 2.2.2) are referred to, instead of the traces
induced by paths as specified in Definition 15.

Since Racetrack acts in a 2-dimensional space, in a 3-dimensional visualization space
TRACEVIs can make use of the third dimension to map additional features. TRACEVIs is
implemented as a plugin to the CGV-Framework [114], which allows rapid prototyping of
interactive 3D tools.

The concrete visualization techniques used in the tool and its implementation is out
of scope of the thesis. Details can be found in the two respective papers [103, 113]. We
concentrate on the information and data visualizable in the tool as well as the data collection
and processing. We start with outlining the concept of the tool in terms of the data space it is

able to visualize.

Data Collection. We collected extensive information about the to-be-analyzed action
policies from MoDEs, allowing to analyze policy behavior as a function of start position p
and start velocity v, in combination with showing not only whether the policy succeeded or
crashed but also where. To this end, we ran separate DSMC runs with MoDEs for every pair
(p,v), with properties encoding every possible terminal (goal/crash) position. The number of
calls to DSMC is thus given by the map size and the number of boundary wall cells and goals,
with a constant factor of 25 for the start velocities in {—2,-1,0, 1,2} x {-2,-1,0, 1, 2}. We
ignored start velocities that immediately lead to a crash in the first step.

We furthermore collected all policy traces generated by mopes during DSMC, with
detailed per-step information: position, velocity, action taken by policy, and a Boolean
indicating whether the action succeeded or failed, i.e., whether noise occurred. In Barto-big,
to keep computation times reasonable, we generated this data only for 7 of the 25 possible
start velocities.

Computation and export of this data for Barto-small and Barto-big took 17 and 20 hours,
respectively, on 25 virtual machines having an AMD EPYC Processor at approximately 2.5
GHz using Ubuntu 18.04 with 8 vCPUs and 16 GB RAM. The data comprises 5473 (3 826)
start configurations consuming 1.25 MB (1.18 MB) for probabilities, and 15.3 GB (13.4 GB)
for traces of Barto-small (reduced traces of Barto-big) on disk, in a concise text file format
organized in two folders for probabilities and traces with one file per start configuration. The
largest trace file has 13 MB on disk and contains 18 270 traces of average length 44 and
maximal length 65. The data and infrastructure used for demonstrating the tool is publicly
available, together with a video in which the tool usage is demonstrated, in the Zenodo
archived [172] of the DSMC material.

Shttp://doi.org/10.5281/zenodo.6362696
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Figure 24.: Overview screenshot of TRACEV1s. Interactive 3D view of the track and traces,
classical UI on the right showing current tool state and providing tooltip based
help.

Tool Overview. Figure 24 illustrates the design of TrRaceVis. Each track position is
depicted by a color coded box: start and goal locations in green and blue, respectively, walls
in red, other track locations in light gray or color-mapped, and an additional row of dark gray
boundary cells added around the track.

A visualization, similar to the one we used in the heat maps for manual evaluation of the
DSMC results, serves as overview over all start configurations. The user can select individual
start configurations to view crash and goal probabilities. In addition, it is possible to dive into
more detail by switching to trace visualization mode where the corresponding trace file is
read on the fly. The traces can further be navigated from main clusters down to single traces.

All these visualization modes are demonstrated in the next sections.

5.4.1. Visualizing Probabilities

We next describe the techniques for visualizing crash and goal probabilities for individual
wall and goal states as a function of start position p and start velocity v.

From the DSMC analysis with the refined crash and goal reachability probability properties,
it is possible to calculate for each start configuration (p, v), and each wall, boundary, and
goal location ¢ the probability that traces from (p, v) end in ¢, by executing DSMC on a
property considering exactly this start and goal, respectively, crash position. Visualizing the
entire probability mapping (p, v, ¢) in a single image or 3D-scene seems futile. Therefore,
TrRACEVIs supports the selection of a single p and/or a single v at a time. The velocity is

visualized by a bent arrow with a direction dependent color scale also used for the respective
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Figure 25.: Start configuration selection and different probability visualization approaches.
Left: selected start configuration (p, V) shown as yellow box and pink arrow.
Summed crash probabilities 2. ; P(p, v, §) over all wall cells g mapped to color
of all valid track locations p. Pink bar charts show crash and goal probabilities
for selected start configuration (p, v). Middle: Same as left, with additional
mapping of summed crash probabilities to height of track boxes. Right: All
velocity mode shows summed probabilities aggregated over all start velocities —
here the aggregation function is the maximum. Colored charts show crash and
goal probabilities for all start configurations (p, v), fixing p and ranging over all
velocities.

crash and goal probabilities as shown in Figure 25 (left). It is also possible to select multiple
or even all velocities for a starting position as illustrated in Figure 25 (right).

The crash and goal probabilities for each terminal position g for the selected start
configurations is depicted by colored bar charts, visible in all parts of Figure 25. The bar
heights indicate the probability of crashing or reaching the goal, respectively.

We extended the original heat maps (e.g., in Figure 11) by the option to adjust the height
of the track boxes according to the crash probability, as shown in Figure 25 (middle). It is
also possible to aggregate the probabilities per start location over all start velocities with one
of the aggregation operators min, max or range = max — min. These visualizations can be
used as a guidance to find start configurations of interest and continuing further investigation

from there.

5.4.2. Visualizing Policy Traces

Once a start configuration of interest is found, a natural means to investigate further is to
inspect the actual policy traces generated by DSMC starting from there. TRACEV1s supports
this in depth through the techniques we describe next. We modified the implementation of
MODES in such a way that the traces can be logged in a file with all information needed for
the visualization. This file is then read by TrRacEVis. Details about the data collection are
described in Section 5.4 above.

Figure 26 illustrates the three distinct modes to visualize traces: stacked, spatial, and

spacetime. Traces are visualized as colored 3D tubes or, in the case of an aggregated view, as
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17530(2856)

Figure 26.: Comparison of different trace rendering modes for a start configuration with
17530 traces of which 2856 remain after duplicate filtering. Left: stacked
rendering of 2 856 traces, sorted and color coded by end location. Top right:
spatial aggregation showing segments as arcs with appearance counts mapped
to height and luminance. Bottom right: spacetime mode disaggregates segments
over time, mapping time to height.

bent arrows with an arrow texture on the tubes to indicate the direction.

In stacked mode, all traces of the DSMC evaluation calculated for a specific start
configuration are shown stacked vertically above the track (see Figure 26, left). Traces are
sorted by their end location, and are arranged into two main clusters: one for traces that end
at a goal position, colored blue to cyan, and one for those that crash, colored red to orange.

Given the number of traces, simply visualizing the set of all traces is often not helpful.
Hence, two aggregation modes are available aggregating over discrete time and space. In
the spatial aggregation, depicted in Figure 26 in the top right, segment histograms map
the number of occurrences of the segments, defined by a common start and end state, in
the DSMC traces to the height and to the luminance. On the bottom right of the figure the
spacetime mode is depicted which disaggregates segments over time, mapping time to height,
which allows to observe if an agent temporarily stops or if a segment is visited multiple times.
Time is mapped to an increasing height offset. This allows the user to efficiently identify
faster and slower runs. It is possible to navigate through clusters of traces down to individual
traces.

Red or green spheres are placed at the map cells where two segments are connected, to
indicate if noise occurred in the trace at that point or not, respectively. This is especially

useful for the in-depth examination of individual traces, visualizing the policy reacting to
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action failures at difficult track locations. For aggregated views, the color is interpolated
between red and green according to the noise frequency in the traces produced by MoDEs. In

the limit, this would result in the noise probability of the Racetrack configuration used.

5.4.3. Using TRACEVIS

To illustrate the use of TRACEVis for policy behavior analysis, we shortly highlight some

interesting observations supported by TRACEV1s when analyzing the NN policies in Racetrack.

Figure 27.: Left: Unsafe behavior near goal line. Overview of crash and goal probabilities
across start velocities. Right: Unsafe turning of an individual trace between
walls.

Figure 27 on the left shows the crash and goal probabilities for a position just before the
goal curve in Barto-small. We can see that overall the policy has a high chance of reaching
the goal line. However, there are two start velocities not directed right away into the wall for
which that is not the case, because the policy tends to “cut the corner” and crash.

On the right, a trace is depicted with the start position in a tight spot between walls on the
left and right, with a start velocity away from the goal and to the left. The safest decision
would be to “turn around on the spot”, i.e., decelerate, get left-right velocity down to 0 and
then accelerate to the goal. Instead, the policy over-accelerates to the right, going for a curve
that would only just avoid the right-hand side wall if no noise occurs, i.e., it relies on action
success, and is brittle to action failure (red balls), as we see in the crashing trace.

Note that TRACEVIs is key to all these observations. We miss them if we aggregate over
start velocities (or fix these to 0 as in the previous sections), if we aggregate over crash
positions, or if we have no in-depth visualization of policy traces.

During the construction of our evaluation setup we ourselves benefited from the visualiza-
tion. Interestingly, TRACEV1s enabled us to find bugs in our own technology stack. Apart
from initial data discrepancies due to bugs in cross-tool communication, this pertained also
to a bug in our JANI model introduced when modifying it for the data extraction needed for

the TRACEVIs tool. Examining crash probabilities as a function of start velocity as illustrated
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above, we observed unintuitive results where start velocities heading directly into a wall did
not lead to a crash. This behavior prompted us to re-examine the JANI model, identifying a
bug in the vehicle automaton (where an initialization value was set incorrectly).

Similarly, we observed discrepancies between the crash probabilities computed by MODES
vs. the traces visualized in TRACEV1s, leading us to identify a bug in the process of giving
MODES’ traces to TRACEVIs.

Such a faulty behavior would not have been visible in the simple heat maps as these ignore
start velocities. Such bugs would be exceedingly hard to identify based solely on MODEs,
given the overwhelming amount of log data. Hence, the visualization in TRACEV1s can be
useful also for debugging the model itself and for verifying the model construction, arguably

a crucial part of model checking.

5.5. Related Work

As mentioned at the beginning of Chapter 5, the need to analyze and verify NNs is becoming
more and more important. Thus, several quite different methods have been invented for
automated NN analysis, e.g., special methods based on SAT-modulo-theories [85, 156, 170],
abstract interpretation [99, 201], or quantitative analysis [71, 268] have been developed. But
all these techniques have in common that they try to verify individual NN decision episodes,
1.e., the behavior of a single input/output function call. The field of analyzing NN taking the
decisions in the context of a larger system with uncertainty, which we enter with our work
here, is quite new and unexplored.

Only very recently, there have been endeavors into the direction of the verification of the
overall system encompassing an NN. One of them is in the area of predicate abstraction on the
state space induced by the NN action policy [264] on which safety properties can be verified
using satisfiability checks. Another work [59] presents an approach called Neuro-Aware
Program Analysis to verify safety properties of systems that symbiotically combine existing

program and neural-network analyzers based on abstract interpretation.

There are a lot of other works combining formal methods with NNs, which we want to
summarize in the following. For example, strategy synthesis for partially observable MDPs
(POMDPs) to find strategies that fulfill certain probabilistic timed properties, has been
conceived. In that approach a recurrent neural network (RNN) is trained to encode POMDP
strategies. The RNN is then used to construct a Markov chain for which the temporal property
can be checked using standard verification techniques [56]. The key difference to our work is

that the Markov chain induced by a strategy given by the RNN is fully built and not simulated
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to check if a given property holds. If it does not hold, a counterexample is generated for the
purpose of locally improving the strategy.

Another work combining formal methods and machine learning studies the behavior of
NN structures by extracting a decision-tree model of it over which reasoning is possible using
model checking [5]. Based on this decision-tree model a synthesis procedure is proposed to
create a stand-alone correct-by-design controller with performances similar to NNs trained
with reinforcement learning methods. This controller can be integrated in a bounded model
checking procedure to find retraining opportunities for the original NN.

To be able to add features to NNs acting as a controller without retraining and loosing too
much performance, quantitative runtime shields have been proposed [14]. The shields may
alter the command given by the controller before passing it to the system under control. To
generate these shields, a stochastic model of the system is built. The goal is to construct a
shield interfering as less as possible by guaranteeing the best performance. The controller’s
performance and the number of shield interferences is defined by quantitative measures on
weighted automata. The shield construction task can then be reduced to finding an optimal
strategy in a stochastic 2-player game on the stochastic model of the system by using a
property combining requirement on the performance and number of interferences.

Furthermore, an iterative learning procedure consisting of SMT-solving and learning phases
has been used to construct controllers for stochastic and partially unknown environments [ 165].
The problem is given as an MDP with an a-priori unknown cost function. Learning techniques
can be used to get cost-optimal strategies but without safety guarantees. By first constructing
a set of safe schedulers using an SMT-solver and then refining this set to an optimal scheduler,
the problem can be solved.

In addition, a reinforcement learning algorithm has been proposed to synthesize policies
which fulfill a given linear time property on an MDP [135]. By expressing the property as a
Limit Deterministic Biichi Automaton, a reward function over the state-action pairs of the
MDP can be defined such that the policy is only constructed by considering the part of the
MDP which satisfies the property.

Another work on controller synthesis and verification uses policy refinement to construct
strategies fulfilling temporal logic syntactically co-safe properties, which can be unbounded
in time, on general MDPs (gMDPs) (discrete-time stochastic models over uncountable state
spaces) by using approximately similar abstract models [118].

Statistical model checking for Bounded Linear Temporal Logic (BLTL) properties on
MDPs has been done by first resolving the nondeterminism probabilistically and afterwards
improving these resolutions of nondeterminism w.r.t. the satisfaction of the property with the
help of reinforcement learning by building candidates for schedulers maximizing, respectively

minimizing, the probability of the property [139].
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Reachability properties have been verified on neural agent-environment systems represented
as feed-forward ReLU NNs by expressing the problem as a mixed-integer linear program [3].
This approach has been applied to arbitrary-step reachability properties and properties asking
if an action will be applied. An extension of this work [4] also supports agents defined
on recurrent NNs [137] using a simplified version of linear temporal logic on bounded

executions.

Our DSMC approach and the infrastructure we implemented in MoDEs has already been
used to foster robust and safe behavior in deep reinforcement learning (DRL). It has been
demonstrated that DSMC can be applied during DRL to determine state space regions with
weak performance to concentrate on them during the learning process [105, 110]. The author
of this thesis was involved in the development of this feedback mechanism used during the
learning process. Especially in safety-critical applications DRL has two main deficiencies:
(i) the training objective maximizes average rewards, which may disregard rare but critical
situations and hence lack local robustness; (ii) optimization objectives targeting safety
typically yield degenerated reward structures which for DRL to work must be replaced with
proxy objectives. That is why we incorporated evaluation stages (ES) into DRL, leveraging
DSMC. Our ES apply DSMC at regular intervals to determine state space regions with weak
performance. We adapted the subsequent DRL training priorities based on the outcome,
focusing DRL on critical situations, and allowing to foster arbitrary objectives. Our results
show that DSMC-based ES can significantly improve both (i) and (ii).

With the help of MoGyw, this technique can now be done much more integrated, and

there is room for further implementations in this direction in our toolchain.

Regarding the TRACEV1s tool, in the context of explainable Al research a lot of recent
works have been devoted to interactive visualization of NNs [149]. Goals for such techniques
include interpretability, explainability, NN debugging as well as model comparison and
selection. Most of the work has been dedicated to NNs for image analysis tasks. Only few
recent works address the debugging and interpretation of deep networks used in reinforcement
learning [267, 274]. These are dedicated to deep Q-Learning of agents playing Atari Retro
Games, where high state-space dimensionality is the core problem addressed. To solve such
issues, an analysis of the MDP through spacetime clustering of the state space has been
made available [274]. The resulting hierarchical decomposition into skills allows for a better
interpretation of the strategy of the learned agents. Wang et al. [267] developed a visual
analysis tool with multiple coordinated views supporting a hierarchical navigation from an

overview of the learning process down to individual traces of moves.
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5.6. Discussion

NNs are an increasingly widespread decision-making component in intelligent systems.
Verifying the overall behavior of systems incorporating such components is a grand challenge.
When such a network is integrated into a control loop, the verification needs to intertwine
controller and network verification [59].

This chapter has described the cornerstones of an effective methodology, called Deep
Statistical Model Checking, which is a promising approach to address this challenge,
leveraging the strength of statistical model checking as a lightweight approach for the purpose
of checking the behavior of systems incorporating NNs, or trained decision-making agents in
general, treated as blackbox functions that merely need to be called and not analyzed.

From a general perspective, DSMC provides a refined form of SMC for MDPs where thus
far only implicitly defined random action policies have been available. If those were applied
to Racetrack, goal probabilities smaller than 1% would result — except for cells directly at the
goal line. DSMC instead can harvest available data for a far better suited action policy, in the
form of an NN oracle trained on the data at hand. Of course, other forms of oracles, based
on, e.g., random forests, can be considered with DSMC right away, too.

We have built up a tool infrastructure around DSMC for different contexts. This includes
(1) benchmarking with Racetrack variants, (i1) DSMC evaluation of NNs and arbitrary oracles
in MoDES, and (iii) MoGywm usable for learning formal models and directly assessing their
quality with DSMC, as well as (iv) the TRACEV1s tool for getting even deeper insights into the
results of DSMC and also into the learning process. We hope that with this tool infrastructure
we made DSMC accessible for a variety of users and purposes.

The most important aspects of the DSMC approach are (i) its genericity — in that it provides
a generic and scalable basis for analyzing learnt action policies; (ii) its openness — since the
approach is put into practice using the JANI format, supported by many tools for probabilistic
or statistical model checking. Another important contribution basically decoupled from the
DSMC approach is (iii) the focus on the Racetrack benchmark all evaluations were performed
on, which focuses on a formal and extensible, but abstract fragment of the autonomous driving
challenge. We consider these contributions as a conceptual nucleus of broader activities to
foster the scientific understanding of neural network efficacy, by providing the formal and
technological framework for precise, yet scalable problem analysis.

We have contributed case studies suggesting that the DSMC approach is indeed useful
and feasible. In addition to these case studies, the benchmarking and scalability study gave
evidence that DSMC is indeed scalable. The advantages of statistical model checking are
inherited in our study, exhibiting a linear runtime increase per state as a function of instance

size. We have furthermore shown that there are significant interactions between policy quality
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and analysis performance, which become important when using DSMC during the training
process, e.g., to identify weak-quality regions for re-training [105, 110].

Note also, that DSMC is highly parallelizable in terms of all its major activities, (i) statistical
model checking (independent sample runs), (ii) NN evaluation (GPU/TPU hardware), and
(1i1) sweeping a state space partition. So, by leveraging large amounts of hardware, there is
hope that very large scalability challenges can be tackled. We hope that the studies provide a
compelling basis for further research on Deep Statistical Model Checking.

Our Racetrack case study makes it easy to produce heat maps, as a way to represent a
partitioned perspective on the state space and sampling states as representatives. We believe
that such a representative analysis makes sense in many scenarios, e.g., to provide an overview
for human users. An open question is how to partition states, or how to support users in doing
so. Physical location might work in many cases, especially for cyber-physical systems.

Inspired by the simple but helpful illustration of the DSMC results with heat maps
TrAcCEV1s has been developed for visualizing and navigating DSMC results as well as for
deeply understanding the underlying causes by examining the actual policy traces.

Even though we focused on the Racetrack benchmark, we showed that our contribution
is not limited to it since we opened the DSMC approach to other formal models with
MoGyw, and argued that many cyber-physical systems fit into the DSMC framework, i.e.,
many ideas and concepts will carry over to other and more complex domains. That said, we
believe that the Racetrack case study was useful, and remains useful, to focus on key aspects
of many cyber-physical systems. Apart from the extension of our study to more general
Racetrack maps and to examples with larger state spaces, an important scaling dimension
yet to be evaluated is NN complexity. In particular, convolutional networks from computer
vision are of interest, in a context where the inputs given to a decision entity are images.
Such an architecture is possible in principle, but would require an extension of DSMC to
incorporate a model-to-NN adapter producing or approximating the image based on the MDP
state. Inspirations for this could be taken from the field of semantic segmentation, image
segmentation, and instance segmentation [89, 241, 255], which has already been applied in
the autonomous driving context in the opposite direction to abstract the view of the car to the
inputs relevant for the decision-making agent.

In addition, an extension of the DSMC approach to other model types such as PTA would
also be beneficial, and as already mentioned earlier, a multi-agent setting for DSMC is also
possible as a straightforward extension of the approach.

Recently, SMC has been extended to parametric Markov chains [25] to check the flight
plan of unmanned aerial vehicles. This application and case study is quite close to Racetrack
and the autonomous driving challenge. It would be worth exploring the combination of both

strategies in a common use case featuring NN decision-making and parametric models.
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0.

ion

We formulated two main goals in the introduction of this thesis. In the first goal, we stated
that we intend to contribute research enabling us to check properties of complex systems,
e.g., to measure safety risks of such systems. The second goal was to conceive approaches to
make systems more perspicuous, i.e., we wanted to develop tools helping in explaining and
in giving reasons why certain decisions were taken in such complex systems or what the
causes of errors were.

With the contributions presented in the thesis, we met our goals by introducing new
methodologies to analyze complex systems’ behaviors, to assess their quality, and to make
them more perspicuous. These methodologies have in common that they avoid the exploration
of the whole state space of the system under investigation by only considering a small part of
the state space of the model relevant to answer the properties of interest. Of course, there is
plenty of room for improvements and continuations of our work. Some of these ideas for
further and also new developments are discussed in the following after summarizing our

achievements.

Prior to describing the core contributions of the thesis, we first layed the foundations
for benchmarking and testing the algorithmic innovations by introducing the Quantitative
Verification Benchmark Set and the QComp competition to which we contributed significantly.
In addition, we discussed the Racetrack benchmark and its variants, which model the
autonomous driving challenge as a formal testbed, and are quite flexible w.r.t. the considered

abstraction level.

With MobysH and Deep Statistical Model Checking, we contributed two new and, w.r.t. to
the application purpose, quite different, promising approaches to make the cyber-physical
world of today and of the future more perspicuous and safe. But Mopysa and DSMC also
have a strong commonality w.r.t. to the procedure they use. Both approaches try to tackle
issues rooted in the state space explosion problem by considering only a small part of the
state space of the model sufficient to answer the properties of interest.

MobysH is a more classical verification approach at the interface between probabilistic

model checking and planning. It uses the knowledge about dynamic heuristic search gained
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in the automated planning community to address the state space explosion problem of
exhaustive model checkers. We adapted and modified the established LRTDP and FRET
algorithms such that they are applicable to MDPs with positive and zero-valued rewards,
on all properties considered interesting in the model checking community (except long-run
averages and nested properties). These properties are extremal reachability probabilities,
expected reward properties, and bounded versions thereof. To the best of our knowledge, we
are the first to enhance FRET-LRTDP to work for these problems, and to give correctness
and optimality proofs for the adapted algorithms on these problems. MobpysH does not only
enlarge the supported set of properties in the MopesT TooLsET but it especially also enlarges
the set of property types and problem classes solvable with the combination of FRET and
LRTDP. By only visiting parts of the state space relevant to solve the property of interest,
MonbysH is able to deliver results for benchmarks not solvable by any other state-of-the-art
model checking tool so far. We demonstrated its strengths in a comprehensive benchmarking
study in a setting similar to the QComp competition. With MopysH, planning approaches
are now readily available for model checking benchmarks without the need for a priori
translations to planning languages or formalisms. The development of MobpysH contributes

significantly to our first goal.

For the quality assessment of trained decision-making agents, like neural networks, we
introduced a new technique based on statistical model checking which we call Deep Statistical
Model Checking. The idea behind DSMC is to use the decision-making agent as an oracle
to resolve nondeterminism in the formal MDP model of the environment the agent is
trained to act in to examine its quality with statistical model checking. We have built up
tool infrastructure for DSMC in different areas and contexts, comprising model checking,
learning, and visualization. DSMC is one of the first approaches for verification of neural
network decision-making agents used in a larger system environment as a whole instead
of only analyzing single decision episodes. With DSMC, we tackle the entire complexity
of analyzing the NN in combination with the analysis of the potentially quite large system
it acts in. In other words, DSMC can handle the complexity of NN analysis in face of the
state space explosion problem. In a comprehensive scalability study, we have demonstrated
that it is indeed a lightweight approach to which the properties of SMC carry over. We have
illustrated its broad applicability for learning pipeline assessment and quality assurance
of trained decision-making agents by delivering insights which cannot be obtained from
standard learning performance measures. With the integration of DSMC into MoGym, we
have provided a single tool incorporating all functionality from learning on formal models
to quality assessment. With the heat maps we used in our comprehensive case studies and

especially with the visualizations in TRACEV1s, we have contributed to the solution of the
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notorious problem of the complex internal NN function representation which is usually not
suited to human inspection and highly complex to analyze automatically. We have shown
that DSMC can make systems more perspicuous for people from different backgrounds, like
domain engineers, learning experts, engineers in system approval or certification as well
as end users, who want to assess the quality of the neural network’s decisions to gain an
understanding why the system behaves in a certain way, or why a certain decision is taken.
This shows how DSMC mainly contributes to reaching our second goal and at the same time

supports us in achieving the first goal.

To summarize, in this thesis we showed how to combine knowledge developed over years
in the model checking community with approaches from the planning community and
developments of the learning area to solve recent problems arising in a cyber-physical world.
We layed the foundations for more cooperations to join forces to make it possible to trust and
rely on increasingly complex systems.

More concretely, we believe that further approaches of the heuristic search and planning
community can be ported to the model checking area, e.g., by extending MobpysH with
the implementation of other heuristics helpful for specific system model structures, or by
exploring the trade-off between memory usage and runtime even further in such algorithms
which explore only the parts relevant for the problem under investigation. In addition, it
would be beneficial to develop a sound version of the algorithms in MopysH to obtain results
with more strict guarantees on the result precision, inspired by sound value iteration, interval
iteration, and optimistic value iteration [23, 48, 117, 130, 228].

Furthermore, extending both approaches, the implementation of MobpysH as well as DSMC,
to more automata types and problem definitions is worth exploring. Such an extension of
DSMC could, e.g., also encompass parametric models harvesting SMC for parametric Markov
chains [25] in combination with DSMC in use cases close to the automated driving challenge.

Speaking about enlarging the domain of inputs, it is definitely necessary to investigate the
application of DSMC in settings with quite different types of decision-making agents, e.g.,
convolutional networks. Such an implementation is already prepared for in the interfaces of
MoGym and MobpEs, but most likely would require an intermediate layer or adapter similar
to applying semantic segmentation or instance segmentation [89, 241, 255], as done in other
systems attacking the autonomous driving challenge.

In addition, it would be beneficial to extend DSMC to be able to handle a multi-agent
setting, where more than one automaton is controlled by decision-making agents.

Since neural networks and other trained decision-making agents are more and more
integrated and deeply interweaved inside cyber-physical systems, the model checking

community has to work hand in hand with the learning and Al experts to intertwine
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the verification of the system and the decision-making agent even more. We did already
make a first step into this direction with the functionality provided by MoGywm, and of
course with the evaluation stages made possible with the interleaving of DSMC and deep
Q-learning [105, 110], but there is more potential to investigate.

In addition, because of the genericity, scalability, and openness of the approach, one could
imagine to make the DSMC infrastructure accessible to even more user groups and purposes,
always depending on where and with which interests users interact with decision-making
agents. Such adaptions and extensions mainly depend on the intended application for which
the users want to get more information on the system’s functionality and quality. Porting of
visualization approaches can play a major role here. We started to contribute research in this
direction with the heat maps, and especially the TRACEV1s tool, which both build up on the
scheme of partitioning the state space into representatives w.r.t. to the physical location. Such
an analysis of representatives of states providing an overview could make sense in many
cyber-physical systems.

Of course, the support which can be provided by visualization approaches should be
explored for many more model checking problems to make systems more perspicuous
and accessible by more user groups. Making formal analysis results accessible for human
inspection seems to be a key instrument for the future.

For all these future works, Racetrack constitutes a challenging benchmark because it is a
formal and precise testbed, and because of its flexibility and extensibility into the direction

of a more and more realistic environment resembling the autonomous driving challenge.
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A.

A.1. Mopest MDP Model of Example 1, 2, and 3

This is the MDP model used in Example 1, 2, and 3 in the MopesT language. The results for
the properties given in comments are obtained with the mcsta explicit probabilistic model

checking engine of the MopEST TOOLSET.

1 // Test with dead-end
2 action a, b, c, d;

3

4 int n = 0Q;

s int rew = 0;

6

7 process test()

s {

9 alt{

10 c:when(n==0) c palt{

1 :0.6: {= rew = 1, n=2 =}; test(Q)

12 :0.4: {= rew = 1, n=1 =}; test(Q)

13 }

14 :when(n==0) a {= rew = 0, n=1 =}; test()

15 c:when(n==1) alt{

16 b {= rew = 2, n=2 =}; test()

17 :d {= rew = 0, n=3 =}; test()

18 }

19 }

20 }

21

2 test()

23

u property checkemax = xmax(s(rew), n==2); // infinity
25 property checkemin = xmin(s(rew), n==2); // 1.8
26 property checkpmax = pmax(<> (n==2)); // 1

27 property checkpmin = pmin(<> (n==2)); // 0
28
29

30
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31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

// Test without dead-end

action a, b, c;

int n = 0;

int rew = 0;

process Test()
{
alt{
::when(n==0) c
:0.6: {= rew
:0.4: {= rew
}
::when(n==0) a
c:when(n==1) b

Test()

property checkEmax
property checkEmin
property checkPmax
property checkPmin

palt{
= 1, n=2 =}; Test()
=1, n=1 =}; Test(Q)

{= rew 0, n=1 =}; Test(Q)
{= rew = 2, n=2 =}; Test()

Xmax(S(rew), n==2);
Xmin(S(rew), n==2);
= Pmax(<> (n==2));

= Pmin(<> (n==2));

// 2
// 1.8
/11
/11
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A.2. MobysH: Proof for MinProb

As announced in Section 4.1.1, this appendix provides a proof that GLRTDP solves MinProb
properties on MDPs with positive and zero-valued rewards correctly by converging to the
optimal fixpoint.

To show convergence to the optimal value function from below in case of an admissible

initialization, we can argue along the invariant
Vk, 7 : Vi(s) < PI(OG), where m s.t. PT(OG) = V*(s)

stating that the value function for every state s in every iteration k is always at most the
value under the optimal policy r starting in s. This means that an initially admissible value
function always stays admissible. This is true for the admissible initialization when k = 0,
because then Vy(s) = 1 if s € G and 0 otherwise. For all other iterations it holds that

Vis1(s) = 2o P(s,a,s") - Vi(s) for some action a and we can derive that

E P(s,a,s’) Vi(s') < E P(s,a,s’) - min P (CG)
T
s’ s’

< Z mﬂin(?’(s,a,s') -PL(OG)) < mﬂlnz P(s,a,s) - PL(OG).
s’ s’

The second inequality holds because 7, is memory-less and independent of s’.
Now assume m,,; is such that PP (¢G) is minimal for all s. Then for action a =

greedy(s, Vi) we have for any action b, and in particular for b = 7,,(s),

Z P(s,a,s)  Vi(s) < Z P(s,b,s") - Vi(s).

Moreover Vi (s') < Pg”” *(©G), which allows us to derive
D P(5.a.8) Vi(s) £ ) P8, Topi(5),8') - P (0G) = PL7(0G).
s’ s’

Claim: If V} is a fixpoint for k — oo then P (OG) = Vo (s9) Vo greedy in V. (A.1)

Since V* () = min, P7(<©G) this means V*(s9) < Vo (s0), and with the result from above
(Vk : Vi < V*) we can conclude V*(sg) = Vo (50).

It remains to show that (A.1) holds:

Let g = greedy(Vy), i.e., a greedy policy with respect to the value function Vi, and Sy =
{s|Psr(Os) > 0},1.e.,all states reachable with this greedy policy, then max (residual(Sk)) <
0y and for k — oo it holds that 6; — 0. (Where max residual(Sy) is the maximal difference

between a state’s new and old value in iteration k over the state set Sy.)
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To show that ¢, will approach 0 it is enough to argue about the states which will be updated
an infinite number of times, i.e., in the end, about the states on optimal policies. These are
the states in Seo = ();50 Ur>i Sk-

Let K be such that Vk > K : ;5 Si = Sw, i.€., a step from which on we only consider states
which will be infinitely often visited when running GLRTDP infinitely long. Assume we are

inastep j+1> K. Lets € So. We have to distinguish two cases:
* If 5 has not been updated then V.1 (s) = V;(s).
* If s is the updated state then V;,1(s) = min, 2. P(s,a,s’) - V;(s')

But this is the same as for simple synchronous value iteration, for which convergence against
the optimal fixpoint is proven. For our asynchronous case in GLRTDP we nevertheless have
to guarantee fairness among the states in S, 1.€., we have to make sure that they are updated
infinitely often. This is the case because each possible trial of S, (there are finitely many
trials) appears infinitely often, i.e., the states in this trial are updated infinitely often (by
construction of GLRTDP when choosing the next greedy action). All other states not in S«
can be ignored because they will not influence the greedy policy and optimal values because
they are already too large:

For any s € S\ S« it holds that Vo (s) = Vg (s) < V*(s), and for any s € S by definition
of S and K we know that an action leading again to a state in S, will be chosen, i.e., an
A € Moot Voo (5) < Yyes.. P (8, Moo, 8") - Voo (s”) but for every action we choose the greedy one
and for any k£ > K it holds that Vi (s) < X ocg P(s,a,5") - Vi (s") < Vo (s), i.e., the action in
T must have been the greedy action not leading to S \ S«. This means that V,, defines an
optimal strategy on S, for sg € Se Which is also an optimal strategy on S because no state
s’ € §\ S is visited even with Vi, (s”) < V*(s”). In addition, the initial state lies in Sy, by
construction, i.e., Ppnin (OGG) = V7ort () reaches the fixpoint and is updated infinitely often.

In summary, when running GLRTDP in an infinite number of iterations, the value function
for states in S, will approach the optimal values of the minimal probability to reach the goal
from below, will never get larger than the optimal value and the difference between V and
V* always becomes strictly smaller for these states. In addition, we can at some point stop
updating the value function for parts of the state space because these values will not have an
influence on the correct optimal result for the initial state. In our implementation GLRTDP
is designed in such a way that it stops when the values on the optimal policy only change by

less than &, which is the same convergence criterion as for simple value iteration.
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A.3. MobysH: Proof for MaxProb

Taking up our promise from Section 4.1.1, we sketch a more formal proof answering why
the presented combination of GLRTDP and FRET solves MaxProb properties on general
MDP structures correctly, not only on problems having at least one almost-sure policy as
proven in [180], by converging to the optimal fixpoint.

To show convergence to the optimal value function from above in case of an admissible

initialization, we can argue along the invariant
Vk, 7 : Vi(s) > PI(OG), where mr s.t. PT(OG) = V*(s)

stating that the value function for every state s in every iteration k is always greater or
equal than the optimal value under the optimal policy 7 starting in s. This means that an
initially admissible value function always stays admissible. This is true for the admissible
initialization when k = 0, because then Vj(s) = 0 if s € S, and 1 otherwise. For all other

iterations it holds that

Via(s) = ) P(s,a,5) - Vi(s)
s’
for some action a and we can derive that
Z P(s,a,s’) Vi(s') > Z P(s,a,s’) max P (CG)
Ve

> Z max(P(s,a,s’) - Pr(0G)) > maXZ P(s,a,s) - PL(0G)

The second inequality holds because 7, is memory-less and independent of s’.
Now assume m,,; is such that P (¢G) is maximal for all s. Then for action a =

greedy(s, Vi) we have for any action b, and in particular for b = 7,,:(s),
D P(s,a,8)  Vi(s) = ) P(s,b,s) - Vie(s).
= =~
Moreover Vi (s") > P;f“p *(¢G) and hence
D P(s,a,8) Vi) 2 Y P, mopi(s), ) - PL7(OG) = PL7(OG).
~ >
Claim: If V} is a fixpoint for k — oo then P7(OG) = Vo (sg) Vrr greedy in V. (A.2)

Since V*(s) = max, PI(OG) this means V*(s9) > Ve (s9) and with the result from above
(Vk : Vi = V*) we can conclude V*(sp) = Vo (50).
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It remains to show that (A.2) holds:
Let mry := greedy(Vy), i.e., a greedy policy with respect to the value function V; and Sy

{s|Pgf (Os) > 0}, 1.e.,all states reachable with this greedy policy, then max (residual(Sk)) <
Oy and for k — oo it holds that 6; — 0. (Where max residual(Sy) is the maximal difference
between a state’s new and old value in iteration k over the state set Sy)

To show that 6 will approach 0 it is enough to argue about the states which will be updated
an infinite number of times, i.e., in the end, about the states on optimal policies. These are
the states in Sco = ();50 Ur>i Sk-

Let K be such that Vk > K : ;>4 Si = Sw. 1.€., a step from which on we only consider states
which will be infinitely often visited when running FRET-LRTDP infinitely long. Assume

we are inastep j + 1 > K. Let s € So,. We have to distinguish two cases:
* If 5 has not been updated then V.1 (s) = V;(s).
* If 5 is the updated state then V;,1(s) = max, 2o P (s, @, ) - V;(s’)

This is the same as for simple synchronous value iteration, for which convergence against
the optimal fixpoint is proven. For our asynchronous case in GLRTDP we are left with the
duty to guarantee fairness among the states in S, i.e., we have to make sure that they are
updated infinitely often. This is the case because each possible trial of S., (there are finitely
many trials) appears infinitely often, i.e., the states in this trial are updated infinitely often
(by construction of GLRTDP when choosing the next greedy action). All other states not
in S« can be ignored because they will not influence the greedy policy and optimal values
because they are already too large:

For any s € § \ S it holds that Vo (s) = Vk(s) = V*(s) and for any s € S by definition
of Se and K we know that an action leading again to a state in S, will be chosen, i.e., an
a € Moo: Voo (8) = Yyes,. P (8, Moo, §) - Voo (s”) but for every action we choose the greedy one
and for any k > K it holds that Vi (s) > > vcs P(s,a,s’) - Vi(s”) > Vo (s), i.e., the action in
7. must have been the greedy action not leading to S \ Se.

This means that V,, defines an optimal strategy on S, for s¢g € So Which is also an optimal
strategy on S because no state s € S \ S is visited even with Vi, (s") > V* ().

In addition, the initial state lies in So, by construction, i.e., P.x (OG) = V7ort(sg) reaches
the fixpoint and is updated infinitely often.

To sum up, this shows that when running FRET-LRTDP over an infinite number of
iterations, the value function for states in So, will approach the optimal values of the maximal
probability to reach the goal from above, will never get smaller than the optimal value and
the difference between V and V* always becomes smaller for these states. In addition, we
can at some point stop updating the value function for parts of the state space because these

values will not have an influence on the correct optimal result for the initial state. In our
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implementation FRET-LRTDP is designed in such a way that it stops when the values on the

optimal policy only change by less than &, which is the same convergence criterion as for
simple value iteration.
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A.4. Details of the Racetrack Implementation

For reference, this compendium provides details regarding Racetrack and our JANI models
thereof appearing in Chapter 5. The models, along with all other infrastructure to generate
Racetrack benchmarks from track shapes is publicly available in this Zenodo archive [172]!
containing the whole DSMC infrastructure.

States of the vehicle are described by two vectors: its current position (x, y) indexing a cell
within the grid, and its current velocity (dy, dy) € Z? in x and y-direction. The state of the
vehicle is updated at discrete steps. At each step, the speed of the vehicle can be controlled
via 9 different actions corresponding to the acceleration vectors (ay,ay) € {-1,0, 1}2.
Acceleration is applied additively, i.e., the vehicle’s new velocity vector (d, d;) after
applying acceleration (ay, ay) is given by d} = d + a, and dj, = dy + ay. The position of the
vehicle is updated according to the updated velocity vector, i.e., x" = x +d} and y' = y + dj.

What we just specified is the deterministic variant of Racetrack. In the noisy variant,
acceleration only succeeds with a probability of p € [0, 1), while with probability (1 — p)
the vehicle’s velocity remains the same.

We say that the vehicle has crashed if the vehicle either moved out of the grid (i.e., its
position no longer constitutes a valid grid coordinate), or the vehicle’s last movement trajectory
crossed a wall cell. Determining whether the vehicle has crashed is done by discretizing
the trajectory from the vehicle’s former position (xg,yg) := (x,y) to its new position
(Xn, yn) = (¥’,y") into a sequence of coordinates 7' = ((xg, y0), (X1, Y1), - - -» (Xn> Y1))-
Then, the vehicle has touched a wall if and only if 7 references a coordinate of a wall cell.
Checking whether the vehicle traversed a goal cell is done in the same fashion. The trajectory

discretization 7 is defined as follows:

((x, ) ifd,=0andd, =0 (1)
((X,y),(x+0'x,y),(x+2'O'x’)’)---,(x,»y’» ifdx;t()anddy:() (2)
(), (y+oy), (xy+2-0y) ..., (¥,)) ifd,=0andd, #0

if d # 0and dy # 0
and |dy| > |d,|

<(x,y) , (x + o, |_y + my]) J(x+2- 0, |_y +2- m}-|) cees (x’,y’)> 4

ifde#0andd, # 0
and |dy| < |dy|

<(x,y),(|_x+mx],y+0'y),(|_x+2-mx],y+2-0'y)...,(x’,y’)> (5)

where o, = sgn(dy), o, = sgn(dy) (sgn is the signum function returning the sing) and
d . . . . .
m, = |Z—X|, my = ﬁ. In words, if either the horizontal or vertical speed is 0 (cases 1 to
y X

3), the trajectory contains exactly all grid coordinates on the straight line between (x, y)

Thttp://doi.org/10.5281/zenodo.6362696
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and (x’, y’). Otherwise, we linearly interpolate n points between the two positions and then
for each such point round to the closest position on the map. In our model »n is given by
max (|dx| , |dy|), while the original discretization model [27, 45] always chooses n = d,.
The latter is problematic when having a velocity which moves more into the y (case 5) than
into the x direction (case 4), as then only few points will be contained in the trajectory and
counterintuitive results are produced.

Our JANI implementation is a straightforward encoding of the model described above.
The track is encoded as a (constant) two-dimensional array whose size equals that of the grid.
The JANI files of different Racetrack instances differ only in this array.

Vehicle movements and collision checks are represented by separate automata that
synchronize using shared actions. The vehicle automaton keeps track of the current state
of the vehicle via four bounded integer variables (position and directional velocity), and
two Boolean variables, indicating whether the vehicle has crashed, or has reached a goal
cell. The automaton starts at a location with one edge for each of the 9 different acceleration
vectors. Each of the edges updates the velocity accordingly, and sends the start and resulting
end coordinates to the collision check automaton. The collision check can respond with
three different answers: “valid”, “crash”, or reached “goal”. If the trajectory was valid, the
vehicle automaton transitions back to its initial location. Otherwise, the vehicle automaton
transitions into a terminal location where no further moves are possible.

The collision check automaton takes care of two things. It first checks whether the vehicle’s
destination lies within the grid. If so, it then iteratively computes the discretized trajectory 7',
and looks up for each referenced coordinate whether the corresponding entry in the grid array
represents a wall or a goal cell. If the trajectory leads out of the track, or when an intersection
of the trajectory with either a wall or a goal cell is detected, the result is immediately sent
to the vehicle automaton. If the trajectory was completely generated without detecting a
collision, the vehicle automaton’s request is answered with “valid”, and the location is reset,

waiting for the next trajectory to test.
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A.5. Supplementary Material

Below, we provide a list summarizing supplementary material published online (co-)authored
by the author of this thesis which is related to the contents covered in this thesis.

* All works on research on perspicuous automated decisions which are centered around
Racetrack in the Center for Perspicuous Computing (CPEC) are presented online at

https://racetrack.perspicuous-computing.science/

 All infrastructure used to conduct QComp 2020 [121] and detailed results are available

on the QComp 2020% website, and in the Zenodo archive? of the competition.

* The artifact of the tool paper on MopysH [173] is available on Zenodo® [174] with all
infrastructure to reproduce the experiments. The tool itself can also be downloaded

with the official version of the MopesT TOOLSET>.

* An artifact containing all tools, infrastructure, and data used for studies in the context
of DSMC is archived at Zenodo® [172]. Beside the latest version of the DSMC

implementation in MODES, it summarizes the content of the following items.

* The models and infrastructure used for Deep Statistical Model Checking and the case
studies on it can be found online’ [108]. The infrastructure for the scalability study is

also publicly available online®.

* An artifact demonstrating MoGywm and containing its tool infrastructure can be found

here? [107]. In addition, a good reference for MoGyM is this documentation'?.

* The TrRACEVIs tool together with a demonstration video and the data together with the

MoODEs version used in the tool demonstration and evaluation can be found here!! [104].

Zhttps://qcomp.org/competition/2020/
3https://doi.org/10.5281/zenodo.3965313
“http://doi.org/10.5281/zenod0.4922360
>https://www.modestchecker.net/
®http://doi.org/10.5281/zenodo.6362696
"http://doi.org/10.5281/zenodo.3760098
8https://dcloud.cs.uni-saarland.de/s/Qs4DTLXx7FsMaRx
https://doi.org/10.5281/zenodo.5643442
0https://momba.dev/gym/
Mhttp://doi.org/10.5281/zen0do.3961196
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