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Abstract

Humans are at the centre of a significant amount of research in computer vision.
Endowing machines with the ability to perceive people from visual data is an immense
scientific challenge with a high degree of direct practical relevance. Success in automatic
perception can be measured at different levels of abstraction, and this will depend on
which intelligent behaviour we are trying to replicate: the ability to localise persons in
an image or in the environment, understanding how persons are moving at the skeleton
and at the surface level, interpreting their interactions with the environment including
with other people, and perhaps even anticipating future actions. In this thesis we tackle
different sub-problems of the broad research area referred to as "looking at people",
aiming to perceive humans in images at different levels of granularity.

We start with bounding box-level pedestrian detection: We present a retrospective
analysis of methods published in the decade preceding our work, identifying various
strands of research that have advanced the state of the art. With quantitative exper-
iments, we demonstrate the critical role of developing better feature representations
and having the right training distribution. We then contribute two methods based
on the insights derived from our analysis: one that combines the strongest aspects of
past detectors and another that focuses purely on learning representations. The latter
method outperforms more complicated approaches, especially those based on hand-
crafted features. We conclude our work on pedestrian detection with a forward-looking
analysis that maps out potential avenues for future research.

We then turn to pixel-level methods: Perceiving humans requires us to both separate
them precisely from the background and identify their surroundings. To this end, we
introduce Cityscapes, a large-scale dataset for street scene understanding. This has since
established itself as a go-to benchmark for segmentation and detection. We additionally
develop methods that relax the requirement for expensive pixel-level annotations, focusing
on the task of boundary detection, i.e. identifying the outlines of relevant objects and
surfaces. Next, we make the jump from pixels to 3D surfaces, from localising and
labelling to fine-grained spatial understanding. We contribute a method for recovering
3D human shape and pose, which marries the advantages of learning-based and model-
based approaches.

We conclude the thesis with a detailed discussion of benchmarking practices in
computer vision. Among other things, we argue that the design of future datasets
should be driven by the general goal of combinatorial robustness besides task-specific
considerations.



Zusammenfassung

Der Mensch steht im Zentrum vieler Forschungsanstrengungen im Bereich des maschinellen
Sehens. Es ist eine immense wissenschaftliche Herausforderung mit hohem unmittel-
barem Praxisbezug, Maschinen mit der Fähigkeit auszustatten, Menschen auf der
Grundlage von visuellen Daten wahrzunehmen. Die automatische Wahrnehmung kann
auf verschiedenen Abstraktionsebenen erfolgen. Dies hängt davon ab, welches intelligente
Verhalten wir nachbilden wollen: die Fähigkeit, Personen auf der Bildfläche oder im
3D-Raum zu lokalisieren, die Bewegungen von Körperteilen und Körperoberflächen zu
erfassen, Interaktionen einer Person mit ihrer Umgebung einschließlich mit anderen
Menschen zu deuten, und vielleicht sogar zukünftige Handlungen zu antizipieren. In
dieser Arbeit beschäftigen wir uns mit verschiedenen Teilproblemen die dem breiten
Forschungsgebiet "Betrachten von Menschen" gehören.

Beginnend mit der Fußgängererkennung präsentieren wir eine Analyse von Methoden,
die im Jahrzehnt vor unserem Ausgangspunkt veröffentlicht wurden, und identifizieren
dabei verschiedene Forschungsstränge, die den Stand der Technik vorangetrieben haben.
Unsere quantitativen Experimente zeigen die entscheidende Rolle sowohl der Entwick-
lung besserer Bildmerkmale als auch der Trainingsdatenverteilung. Anschließend tragen
wir zwei Methoden bei, die auf den Erkenntnissen unserer Analyse basieren: eine
Methode, die die stärksten Aspekte vergangener Detektoren kombiniert, eine andere,
die sich im Wesentlichen auf das Lernen von Bildmerkmalen konzentriert. Letztere
übertrifft kompliziertere Methoden, insbesondere solche, die auf handgefertigten Bild-
merkmalen basieren. Wir schließen unsere Arbeit zur Fußgängererkennung mit einer
vorausschauenden Analyse ab, die mögliche Wege für die zukünftige Forschung aufzeigt.

Anschließend wenden wir uns Methoden zu, die Entscheidungen auf Pixelebene betre-
ffen. Um Menschen wahrzunehmen, müssen wir diese sowohl praezise vom Hintergrund
trennen als auch ihre Umgebung verstehen. Zu diesem Zweck führen wir Cityscapes ein,
einen umfangreichen Datensatz zum Verständnis von Straßenszenen. Dieser hat sich seit-
dem als Standardbenchmark für Segmentierung und Erkennung etabliert. Darüber hinaus
entwickeln wir Methoden, die die Notwendigkeit teurer Annotationen auf Pixelebene
reduzieren. Wir konzentrieren uns hierbei auf die Aufgabe der Umgrenzungserkennung,
d. h. das Erkennen der Umrisse relevanter Objekte und Oberflächen.

Als nächstes machen wir den Sprung von Pixeln zu 3D-Oberflächen, vom Lokalisieren
und Beschriften zum präzisen räumlichen Verständnis. Wir tragen eine Methode zur
Schätzung der 3D-Körperoberfläche sowie der 3D-Körperpose bei, die die Vorteile von
lernbasierten und modellbasierten Ansätzen vereint.

Wir schließen die Arbeit mit einer ausführlichen Diskussion von Evaluationspraktiken
im maschinellen Sehen ab. Unter anderem argumentieren wir, dass der Entwurf zukün-
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ftiger Datensätze neben aufgabenspezifischen Überlegungen vom allgemeinen Ziel der
kombinatorischen Robustheit bestimmt werden sollte.
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1
Introduction

Figure 1.1: What often distinguishes many tasks in human-centric computer vision is
the output abstraction extracted from the image. This includes (a) bounding boxes, (b)
per-class collections of pixels, (c) per-instance masks — sometimes with (d) fine-grained
semantic labels, (e) skeletons both 2D and 3D, (f) 2D contours, (g-i) a variety of 3D
surface representations, as well as high-level semantic outputs such as (j) activities or
(k) social relations and signals. (See main text for explanations and references.)

1.1 Looking at People

Humans are the objects of study in a significant amount of computer vision
research. This is unsurprising, as it would be immensely useful to replicate
in machines our own ability to perceive and understand humans from visual

data. While the goal of machines with human-like intelligence remains distant and ever-
elusive, human-centric computer vision has already delivered advances that are having
a substantial real-world impact across a variety of domains, including transportation,
human-computer interaction, and the creative arts to name just a few.
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To endow intelligent agents, such as autonomous vehicles, with the ability to navigate
physical environments safely, they need to detect nearby people. Intelligent interfaces
that can respond to basic gestures must go beyond merely localising people. They
additionally need to explicitly identify and track individual body parts. Cutting-edge
applications in animation, virtual reality, and telepresence are powered by methods that
retrieve precise information about the three-dimensional surface of the human body.

From this brief list of examples, one can see that different applications target different
output abstractions. In fact, what distinguishes many sub-areas of human-centric
computer vision is the final representation that is extracted from the image. See
Fig. 1.11 for a set of examples. This thesis addresses several tasks broadly related to
this domain, otherwise referred to sometimes as “looking at people” (Pentland, 2000;
Gavrila, 2007). In the next part of this introduction, we thus give an overview of the
sub-areas relevant to this thesis.

1.1.1 Overview

One fundamental task in computer vision is object detection: exhaustively identifying
sub-areas of an image that each contain a single object — in our case a person. The
output here is conventionally the axis-aligned bounding box (Fig. 1.1a). One variant of
this task is pedestrian detection, where the goal is to localise people in street scenes. In
Chapters 4 to 6 we address this task.

Pedestrian detection — or more broadly people detection — is a fundamental task
as it is the base component for many methods that extract spatially or semantically
fine-grained information from images. These methods either explicitly identify image
sub-regions that require further processing as an initial step, or assume that persons of
interest have been pre-localised.

Object detection only leads to a coarse localisation in the image plane, but it is
often useful or even necessary to extract more spatially fine-grained outputs, namely
by labelling individual pixels. Many tasks in computer vision in fact can be cast as
pixel labelling problems even if this is not immediately apparent, including bounding
box-based detection.

Semantic segmentation (Fig. 1.1b) involves assigning a semantic category label to each
pixel from a pre-defined set. The set of categories under consideration is application- or
dataset-dependent. In a street scene setting, this set can include pedestrians, vehicles,
and various kinds of surfaces and structures. This information can provide useful context
for localising people. Other useful categories for perceiving and understanding humans
can include anatomical parts and clothing (Fig. 1.1d).

1Fig. 1.1: (b-c) are ground truth annotations from Cityscapes (Chapter 7) as is the image itself,
(d-g) were generated by an unpublished follow-up to the method in Chapter 9, (h) was generated by
the method of (Li et al., 2019), and (i) is the output from PiFU-HD (Saito et al., 2020) with some
manual intervention to suppress the background.
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When pixels are not only assigned category labels but also instance labels — or in other
words, when pixels are grouped if they belong to the same object — we speak of instance
segmentation (Fig. 1.1c). Sometimes this task is addressed together with fine-grained
semantic labelling and referred to as instance-level human parsing. Grouping pixels into
larger units is challenging, and many instance segmentation methods take a top-down
or instance-first approach. First they localise objects at the bounding box level, then
solve a binary segmentation problem for each identified instance. Bottom-up methods
on the other hand, tackle the grouping problem globally with pixel-level information.
In Chapter 7, we present a benchmark for pixel-level and instance-level segmentation:
Cityscapes, which has become the de facto standard in this domain.

Boundaries are important cues for recognition as they can indicate the transition
from one object or surface to the next. However, boundaries are hard to define since
their perceptual relevance changes depending on the objects we’re interested in. One
variant of this task is semantic boundary detection. Similar to semantic segmentation,
this task focuses on a limited set of categories, but the goal is to only label the outlines
of objects and identify the class (Fig. 1.1f). In Chapter 8, we address different variants
of boundary detection while relaxing the requirement for hand-annotated ground truth.

Another key problem relevant to our work is 2D pose estimation (Fig. 1.1e). Here,
the human body is represented as a sparse set of keypoints corresponding to different
locations either inside or on the surface of the human body, e.g. eyes, hands and knees.
The task is then to localise the 2D projections of these points on the image.

In the above, we described tasks where the output is strictly two-dimensional. Humans
inhabit three-dimensional space and to perceive and reason about them in 3D, we
correspondingly need representations that go beyond the image plane. A wide-variety of
3D representations exist in the literature: 3D bounding boxes, 3D skeletons, pixel-wise
depth maps that can only capture the depth of visible surfaces, or others that can
capture more complete 3D structure, including surfaces not visible to the camera. These
include voxels, meshes, and implicit surface functions (Fig. 1.1g-i).

Such representations in principle can represent any surface and don’t make explicit
assumptions on the structure of the world or the objects occupying it. For humans
however, we can exploit prior knowledge, namely structural regularities of the body.
Parametric mesh models of the human body allow us to efficiently represent the surface
in detail with a smaller number of parameters that separately capture shape and pose
variation. In Chapter 9, we present a method for predicting 3D human shape and pose
which embeds such a model into a neural network. There, we also demonstrate how
reasoning in 3D can benefit from different 2D representations.

1.2 Outline and Contributions

This thesis consists of three parts: The first focuses on pedestrian detection (Chapters 4
to 6). The second part looks at pixel-level classification tasks (Chapters 7 and 8). In the
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third part, we discuss a higher-level recognition task, namely predicting human body
shape and pose (Chapter 9).

Chapter 2: Related Work: Pedestrian Detection. This chapter introduces the
task of pedestrian detection, presenting the relevant evaluation metrics and datasets.
We then describe common approaches to generic detection, and provide an overview
of recent work in area of detecting pedestrians specifically.

Chapter 3: Related Work: 3D Human Shape and Pose Recovery. Here, we dis-
cuss the task of 3D human shape and pose estimation. Representing humans in
3D and acquiring the corresponding ground truth is a challenge, so we spend time
on describing relevant efforts before reviewing methods.

Chapter 4: Lessons from a Decade of Pedestrian Detection: 2004-2014. In this
chapter, we present a survey and quantitative analysis of pedestrian detection
that covers methods published between 2004 and 2014 — complementary to the
discussion in Chapter 2. We analyse several families of methods and identify those
that have led to consistent performance improvements. We combine representative
methods from the latter into a single approach and achieve top performance.
One key takeaway from this chapter is the overwhelming importance of image
representations, as well as using the right data.

Chapter 5: Deep Learning for Pedestrian Detection. Motivated by the critical
importance of features for pedestrian detection identified in the previous chapter,
we look into deep learning (DL) for pedestrian detection. We show how plain
convolutional neural networks (CNNs) can be applied to the task successfully
in combination with a strong traditional detector as a proposal method. We
demonstrate significant improvements over prior DL-based approaches without
resorting to problem-specific modelling.

Chapter 6: Towards a Human Baseline for Pedestrian Detection. This chap-
ter provides a forward-looking analysis complementary to the retrospective analysis
of Chapter 4. We establishes a human baseline as an upper bound for pedestrian
detection performance on one popular benchmark. This involves a novel annotation
protocol for pedestrians that results in more accurate training annotations allowing
us to measure the impact of label noise on pedestrian detectors. Furthermore, we
analyse the failure modes of state-of-the-art detectors in detail, addressing some
of them and suggesting directions for future research.

Chapter 7: The Cityscapes Dataset for Semantic Urban Scene Understanding.
In this chapter we present a large-scale street scene understanding dataset:
Cityscapes. We provide detailed annotations for pixel-level and instance-level
segmentation and conduct an in-depth quantitative analysis of the dataset charac-
teristics. We additionally evaluate several baseline methods as well as state-of-the-
art approaches.
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Chapter 8: Weakly-Supervised Boundary Detection. Here, we look at another
pixel-wise classification task, namely object boundary detection. Obtaining anno-
tations for this task is particularly arduous. We thus experiment with different
methods that relax the requirement for large amounts of ground truth. The
proposed weakly-supervised techniques achieve strong performance compared to
both competing weakly- as well as fully-supervised methods on different variants
of the boundary detection task.

Chapter 9: Neural Body Fitting: 3D Human Shape and Pose Recovery. We
then move on to 3D human shape and pose estimation. Here, we incorporate a
statistical body model into a CNN, thus marrying the benefits of direct prediction
and model-based approaches. We show that high performance and data-efficient
training can also be achieved by breaking the problem down into body part seg-
mentation, followed by a 2D-to-3D lifting step. The presence of the model also
allows us to supervise our prediction network with 2D data.

Chapter 10: Conclusions and Future Directions. We summarise the conclusions
of this thesis and present a wide-ranging discussion of possible future work. In
particular, we take stock of current benchmarking practices in computer vision
and suggest promising directions for improving both evaluation and dataset design.
With regards to the latter, we suggest the pursuit of combinatorial robustness as
a guiding principle besides task-specific considerations. We conclude by discussing
the need for the need for more dynamic models that incorporate recurrence and
feedback.





2
Related Work: Pedestrian Detection

Figure 2.1: Pedestrian detection is a highly challenging task, especially in crowded urban
scenes where methods have to contend with strong occlusions and scale variation. (image
from Cityscapes (Chapter 7), annotations from CityPersons (Zhang et al., 2017b))

Pedestrian detection is a canonical computer vision task that continues to reliably
attract attention from researchers, with new datasets being released on a yearly basis
(Hwang et al., 2015; González et al., 2016; Zhang et al., 2017b; Neumann et al., 2018;
Braun et al., 2019; Zhang et al., 2020b). It endures as a problem that is tackled
separately from general object detection due to a unique set of challenges. Besides the
high variability of pedestrian appearance, other challenges include cluttered environments,
difficult recording conditions and high scale variation.

Challenges

Urban environments are often cluttered (Fig. 3.1), containing a variety of objects both
static and in motion. These objects can confound detectors as they are sometimes
pedestrian-like in appearance, and can also severely occlude pedestrians. A person
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might for example suddenly appear on the street from behind a parked car or some
other obstacle, and thus dealing with occlusions is highly important from a safety
perspective. While person-to-object occlusions are challenging enough, person-to-person
occlusions are arguably even more challenging, given the difficulty of not just having to
recognise occluded persons, but also having to disambiguate different persons when in
close proximity to one another.

Images are typically recorded from a vehicle-mounted — and hence moving — camera.
This results in artifacts such as motion blur, but also makes it necessary to detect
distant pedestrians as one approaches them at speed. Urban computer vision datasets
correspondingly exhibit much more scale variation than more traditional object detection
datasets (Chapter 7). Dealing with this scale variation has been the subject of much
research in this domain. Getting computer vision systems to work in outdoor scenes also
means having to contend with a variety of challenging weather and lighting conditions.
Keeping pedestrians safe does not just involve detecting them but also tracking and
even anticipating their motion (e.g. Rasouli et al. (2017)). While these are interesting
related problems where detection plays an integral part — and can even benefit from
the temporal reasoning involved —, these are out of the scope of this thesis as we focus
on the single-frame detection problem.

Summary

In this chapter we survey recent progress in the domain of pedestrian detection. We
start with a definition of the task as it is addressed today (Sec. 2.1) and describe the
established evaluation metrics and datasets (Sec. 2.2). Contemporary approaches are
almost exclusively based on end-to-end neural networks (NN) which integrate search,
representation learning, classification and localisation into a jointly-optimised pipeline.
In recent years these have gradually displaced the previously dominant approaches that
were based on hand-crafted features. In Chapter 4 we present a detailed analysis that
mostly covers this older class of methods from the years 2004-2014, and in Chapter 5
an early NN-based approach to pedestrian detection. In Chapter 6, we examine failure
modes for both classes of methods. To complement this work, in Sec. 2.3 we first describe
different approaches to detection with an emphasis on modern end-to-end detectors.
We then trace out the transition from detectors fully reliant on hand-crafted features,
through to mixed pipelines combining both classical detectors and NN-based classifiers,
up until the most recent crop of end-to-end detectors.

2.1 Task Definition

Given an image, the task is to produce a set of axis-aligned bounding boxes (detections)
that can be matched one-to-one with another set of bounding boxes (ground truth).
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Figure 2.2: Illustration of the pedestrian detection task. The ground truth bounding
boxes are in red and detections in green. The latter are all true positives according to
the standard evaluation metric, with respective intersection over union (IoU) values of
0.5, 0.7 and 0.9 from left to right. This is meant to demonstrate the looseness of the
target evaluation metric.

Each bounding box is associated with a single pedestrian, tightly enclosing it. This is
illustrated in Fig. 2.2, in which ground truth boxes are in red and detections in green.

Detectors will typically produce an overcomplete set of detections of which multiple
hypotheses can be matched to a single pedestrian based on spatial overlap alone. Thus
to evaluate the output of a detector, one proceeds as follows: Hypotheses are ranked
according to their confidence score, normally produced by the detector together with
the bounding box coordinates. Hypotheses with a confidence score below a threshold c
are discarded. Those remaining are then in sequence either matched to an unassigned
ground truth box or considered to be false positives if no possible match is found.

A match between detection BBdt and ground truth box BBgt is considered success-
ful if the area of their overlap exceeds a specific threshold. This is conventionally
half of the joint area of both boxes, a measure popularised by the PASCAL VOC
benchmark (Everingham et al., 2015). This is expressed as:

IoU .= area(BBdt ∩BBgt)
area(BBdt ∪BBgt)

(2.1)

where IoU stands for “intersection over union”.
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The successfully matched ground truth box is then removed from consideration and
matching proceeds in a similar fashion for the rest of the boxes. For a given confidence
threshold c, successfully matched detections are true positives (TP (c)), unmatched
detections are false positives (FP (c)) and unmatched ground truth boxes are false
negatives (FN(c)).

In pedestrian detection, the selection of an appropriate confidence threshold c conven-
tionally involves a trade-off between the fraction of missed pedestrians (MR(c)) and
the number of false positives per image (FPPI(c)). This choice is dictated by safety
considerations in the automotive domain (Dollár et al., 2012b). We wish to reduce the
number of false alarms regardless of how many objects are present per frame, since every
detection might require a change to the vehicle’s path.

The miss rate is given by:

MR(c) = FN(c)
(TP (c) + FN(c)) (2.2)

To visualise the trade-off, we simply plot the miss rate against the number of false
positives per image as we vary the threshold c. Performance is then summarised using the
log-average miss rate (lower values are better) (Dollár et al., 2012b), which is computed
by averaging MR at nine values of FPPI, evenly distributed in log-space:

laMR = 1
|C|

∑
c∈C

MR(c), (2.3)

C = {c|FPPI(c) ∈ {100, 10−.25, 10−0.5, ..., 10−2}} (2.4)

The matching process is normally complicated by the availability of ground truth
boxes not considered for evaluation for one of two reasons: either (i) because these were
explicitly marked as “ignore” regions during annotation, or (ii) they fall outside size or
occlusion ranges pre-selected for evaluation. Recent benchmarks all define a so-called
“Reasonable” setting, that includes boxes above 40− 50 pixels in height and with only
a small degree of occlusion, e.g. up to 35%. Harder settings involve smaller and more
highly-occluded pedestrians, but performance under the “Reasonable” setting is how
methods are often ranked against one another.

This evaluation approach was established as the de facto standard with the publication
of the Caltech Pedestrian Dataset (Dollár et al., 2009b), further refined in Dollár et al.
(2012b) and has hardly been modified since. Most subsequently released datasets, such as
the KAIST Multispectral Pedestrian Dataset (Hwang et al., 2015), CityPersons (Zhang
et al., 2017b), NightOwls (Neumann et al., 2018) and EuroCity Persons (Braun et al.,
2019), have largely adopted these conventions. Minor modifications include adjusting
the size and occlusion ranges for different evaluation settings.

Previous benchmarks such as INRIA (Dalal and Triggs, 2005), rather than measuring
false positives per image, measured them per window (FPPW). The test set would
consist of pedestrian cutouts and negative windows sampled from pedestrian-free images.
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The advantage of this measure is that it decouples classification performance from other
aspects of detection such as search and non-maximum suppression. The disadvantage
is that classification performance is not a good predictor of detection performance
(Dollár et al., 2009a) as there are interactions between the different components of
a detector. This measure would for example not distinguish between (i) a detector
that produces highly localised positive responses when centered on pedestrians, and
(ii) another which identifies pedestrians correctly, but produces more diffuse responses
causing more difficulties during the non-maximum suppression stage, which removes
redundant detections.

This also differs from the evaluation metric used for generic object detection. There,
precision is plotted against recall while varying the confidence threshold c. Precision
tells us what percentage of positive detections actually belong to the positive class:

Pr(c) = TP (c)
(TP (c) + FP (c)) (2.5)

Recall measures the percentage of positive instances that have been correctly detected:

Rec(c) = TP (c)
(TP (c) + FN(c)) (2.6)

Note that Rec(c) = 1 −MR(c). Older benchmarks such as PASCAL VOC (Ever-
ingham et al., 2015) summarise performance using average precision (AP), which is
computed as the area under the precision-recall (PR) curve — and thus sometimes
alternatively referred to as AUC (for area under the curve). The correctness criterion
for a detection remains the same as above: IoU > 0.5 with an undetected ground truth
bounding box, but in contrast to laMR, higher values are better. The KITTI benchmark
(Geiger et al., 2012) adopts this metric in contrast to most other pedestrian benchmarks.
Newer benchmarks such as MSCOCO (Lin et al., 2014) report mean average precision
(mAP), for which AP is averaged for a range of different IoU thresholds from 0.5 to 0.95.

2.2 Datasets and Benchmarks

Currently, the most widely used benchmarks for pedestrian detection are the Caltech
Pedestrian Dataset (Dollár et al., 2012b) and CityPersons (Zhang et al., 2017b).

The Caltech Pedestrian Dataset (Caltech or sometimes Caltech-USA) (Dollár et al.,
2012b) was the first large-scale pedestrian dataset. It consists of 10 hours of 30Hz video
(640px× 480px) recorded from a car driving through the Los Angeles metropolitan area.
Manual annotations are provided for keyframes (1fps) and annotations for the same
person are linked. This allows for automatic annotation of the remaining frames via
interpolation, resulting in a total of 350 000 bounding boxes covering ∼2 300 unique
pedestrians. As discussed earlier, this benchmark set the standard for evaluating
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pedestrian detection. The established procedure for training is to use every 30th video
frame which results in a total of 4 250 frames with ∼ 1 600 pedestrian annotations.
Recently however, methods which benefit from more training data have resorted to
a finer sampling of the videos (Chapter 5, Chapter 6, Nam et al. 2014, Zhang et al.
2015b), yielding 10× as much training data as the standard “1×” setting: ∼ 1 600
annotations on 42 782 frames. Here 10× and 1× refer to sampling every 3rd and 30th
frame respectively. Detection methods are evaluated on a test set consisting of 4 024
frames. Typically, methods are evaluated under the so-called “Reasonable” setting,
which excludes particularly hard to detect pedestrians from the evaluation. This subset
consists of pedestrians that are taller than 50px and of which less than 35% is occluded.
The provided evaluation toolbox additionally generates plots for different subsets of
the test set based on annotation size, occlusion level and aspect ratio. We undertook a
partial correction of the annotations for the analysis in Chapter 6, and these updated
annotations have been adopted as a replacement in a lot of subsequent work.

The KITTI Vision Benchmark Suite (KITTI ) (Geiger et al., 2012) has a broader focus
than the other datasets mentioned here. It covers several tasks relevant to autonomous
driving beyond just detection, e.g. depth estimation, optical flow, scene flow, tracking,
and semantic segmentation. The detection task covers both pedestrians and cars and
includes 3D annotations. Similar to Caltech, the sequences were recorded in good weather
in and around a single city — the mid-size city of Karlsruhe. It depicts both the inner
city as well as surrounding rural areas and highways. However, Benenson et al. (2014)
(supplementary material) show that it has different appearance statistics compared to
the former. The training set contains 4 445 pedestrian annotations in 7 481 frames, and
the test set consists of 7 518 frames with annotations withheld for evaluation.

CityPersons (Zhang et al., 2017b) is based on the Cityscapes dataset we present in
Chapter 7 and published in Cordts et al. (2016). The annotated part consists of 5000
high resolution images (2048px × 1024px) sourced from videos recorded in 50 cities
in and close to Germany. The original dataset provides pixel-level class and instance
annotations for a variety of classes relevant for automotive applications. CityPersons
focuses on pedestrian detection and extends the original annotations with bounding
boxes that each cover the full extent of a pedestrian, requiring annotators to make a best
guess when the pedestrian is occluded. Given that each annotated image is both part of
a stereo pair and a short video clip, the dataset is suitable for methods that leverage
both 3D and motion information. The additional pixel-wise labels enable methods that
explicitly take semantic context into account for detection. Sequences were recorded in
inner cities, often in crowded areas, resulting in denser images on average than other
datasets in terms of the number of pedestrians.

While Cityscapes (and by extension CityPersons) were larger in scale and geographical
spread than previous datasets, recordings were made during the day with less diversity
in terms of weather conditions as well as location compared to subsequently released
datasets. Several datasets have been compiled recently that cover more diverse and
adverse conditions, with some upping the scale considerably.
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The KAIST Multispectral Pedestrian Dataset (Hwang et al., 2015) consists of daytime
and nighttime sequences, with both RGB and thermal camera data. The NightOwls
dataset (Neumann et al., 2018) focuses on the night-time setting, providing 40 sequences
comprising 279k frames covering different weather conditions and seasons. Sakaridis
et al. (2018) present a method for simulating fog and apply it to Cityscapes resulting in
Foggy Cityscapes.

Recent large-scale datasets include EuroCity Persons (Braun et al., 2019), which
was recorded during day and night in 12 European countries across four seasons. It
includes 238K person instances annotated with both bounding boxes and orientation,
making it relevant as well for pedestrian trajectory prediction. The Berkeley DeepDrive
100K dataset (BDD100K ) (Yu et al., 2020) consists of 100K video sequences from four
different U.S. metropolitan areas, and provides annotations (one frame per sequence)
supporting various semantic understanding tasks including object detection.

Most pedestrian detection datasets consist of recordings from a moving vehicle. This
limits not only scene diversity but also scene density: Crowds tend to occur infrequently
in the direct vicinity of the recording vehicle, unless it for example stops at a crosswalk.
A couple of recent datasets thus target more general settings with the express goal of
capturing more crowded scenes. CrowdHuman (Shao et al., 2018) and WiderPerson
(Zhang et al., 2020b) both contain 10K-20K images with roughly 400K person instances
each. This results in an average of 22.6 and 30 persons per image respectively, comparing
quite favourably to other popular datasets, e.g. Caltech (0.32) and CityPersons (6.4).

Finally, Huang and Ramanan (2017) present the Precarious Pedestrian Dataset, which
focuses on rare cases that are underrepresented elsewhere. They collect 951 images that
depict potentially dangerous situations such as pedestrians texting or children playing
in the street. Additionally, they use an adversarial generation framework to produce
synthetic training data to complement the real images.

2.3 Methods

In this section, we cover recent work on pedestrian detection. In Chapter 4, we present
a retrospective analysis of “classical detectors” from the period 2004-2014 — “classical”
meaning detectors based on hand-crafted features. Here we focus mostly on recent
advances in pedestrian detection since then, i.e. “modern” detectors that rely on deep
neural networks (DNNs). Most of these advances have critically depended on more
general research on representation learning and generic object detection. For an excellent
comprehensive overview of the latter, we recommend the survey of Liu et al. (2020).

Since this thesis covers a very wide span of methods and since pedestrian detection
cannot be discussed in isolation from generic object detection, we have opted to organise
this section as follows. While a lot of progress has been made in detection judging
by improvements in benchmark performance, fundamentally little has changed in the
basic approach to this problem in the last couple of decades. At a high level, both
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(a) (b)

Figure 2.3: Object detection — especially the enduring sliding-window approach — can
be viewed as labelling a multi-dimensional grid, where each grid point represents a 2D
spatial location, an image scale, and potentially a shape prototype. The area surrounding
each point is summarised with a feature vector and then either labelled as background or
as an object with corresponding bounding box coordinates (a). Many classical detectors
involved explicit image rescaling to search for objects of different sizes, but most newer
detectors extract features in a single pass and sample local representations as needed
(b) — the overall approach, however, has fundamentally remained the same.

classical and modern detectors share a common scheme as well as similar design choices
especially when it comes to efficiency. We will thus start by discussing these in Sec. 2.3.1.
Naturally, there are design choices specific to modern detectors that follow from their
reliance on end-to-end representation learning with deep neural networks. These we
then outline in Sec. 2.3.2. Finally, we conclude the section with a detailed look at recent
research in pedestrian detection. In Sec. 2.3.3, we focus on two points in particular: (i)
the transition from classical pedestrian detectors to modern detectors, and (ii) current
research trends in pedestrian detection.

2.3.1 Basic Approach

The very basic approach to object detection consists of the following elements: (i) deciding
where to look in the image, (ii) at each selected location, extract a representation of the
local content, (iii) decide if this represents an object and determine its precise extent,
and finally (iv) aggregate all the local decisions into a coherent, non-redundant set.

This formula has survived the transition from classical to modern detectors, and most
detectors follow one particular instantiation thereof: the “sliding window” paradigm.
This means that the decision on where to look is made in advance and independently
of the image content: namely at every point on a dense multi-dimensional evaluation



2.3 Methods 15

grid that spans different image scales, different 2D locations on the image plane, and
possibly different shapes. Each point on the grid represents a possible sub-image or
image window, and detection can be viewed as assigning class labels to grid points, as
well as bounding box dimensions if a point corresponds to an object (Fig. 2.3).

The naive implementation of the above, whereby each window is processed equally
and independently, is very rare (Rowley et al., 1995). It is neither feasible in most cases,
nor is it even necessary: There are often different types of redundancies that can be
exploited. A good way to introduce different detector variants is by discussing common
design patterns that seek to overcome the intractibility of the naive sliding window
approach. Most detectors use one or more of the following strategies:

• reducing the number of evaluations (sparse evaluation)
• spending more time on promising locations (cascade strategy)
• sharing the computational burden across multiple evaluations (feature sharing)

Since this grid is typically dense, each object will span multiple locations. Later, we
will discuss how objects are commonly assigned to these grid points during training, as
well as methods for handling the redundant detections that result at test-time due to
the prediction density.

Sparse Evaluation

Some methods depart from the sliding window paradigm entirely, and explicitly or
implicitly select a subset of locations to visit on the evaluation grid. Some leverage scene
geometry, e.g. in the form of ground-plane constraints (Sudowe and Leibe, 2011) or via
stereo information (Gavrila and Munder, 2007; Keller et al., 2009; Benenson et al., 2012).
More commonly, promising locations are identified using low-level appearance cues, e.g.
with interest point detection (Weber et al., 2000), segmentation (Gu et al., 2009), or
more recently so-called object proposal methods (Hosang et al., 2016). Some of these
rely on hierarchically building up image segments that might contain objects (Uijlings
et al., 2013; Pont-Tuset et al., 2017). Others sample windows based on saliency cues
and score the “objectness” of these windows “objectness” (Alexe et al., 2012). Previous
top-performing detectors relied on this strategy, e.g. Regionlets (Wang et al., 2013) and
R-CNN (Girshick et al., 2014). In the latter case, roughly 2000 boxes are extracted
using Selective Search (Uijlings et al., 2013) and classified with a CNN. A few methods
rely on active search strategies: i.e. deciding where to look sequentially. The starting
point is either the full image (Caicedo and Lazebnik, 2015; Lu et al., 2016), a sparse set
of proposals (Gonzalez-Garcia et al., 2015; Mathe et al., 2016) or a dense set of image
windows from a low-resolution image and zooming in as needed (Uzkent et al., 2020).
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Cascade Strategy

While grouping-based or active search strategies for identifying a sparse set of object
hypotheses are conceptually attractive, most detectors including the state-of-the-art rely
on dense evaluation (Ren et al., 2015). Denser evaluation grids have been shown to lead
to better results for both classical (Dollár et al., 2009a) and modern detectors (Lin et al.,
2017c). Many methods thus resort to a cascade strategy: Rather than carry out a full
evaluation at every possible location, quickly rule out unpromising ones. This can take
on many forms depending on the nature of the detector. Part-based detectors such as the
Deformable Part Model detector (DPM ) (Felzenszwalb et al., 2010), which consist of a
hierarchy of object and part classifiers, can exclude locations based on merely evaluating
the coarse root classifier. Methods that rely on cascaded classifiers such as AdaBoost
(Viola and Jones, 2004) can use early rejection thresholds to terminate evaluation. The
most popular approach however is using detection-based object proposal methods. A
dense, sliding window approach is used to identify promising subimages, which are
then further processed. Most early CNN-based pedestrian detectors relied on classical
detectors to provide hypotheses to a CNN-based refinement step. We present one such
method in Chapter 5 and further analyse it in Chapter 6. State-of-the-art detectors
on the other hand rely on integrated pipelines with an object proposal generator that
shares features and is jointly trained with the subsequent refinement network, e.g. Faster
R-CNN (Ren et al., 2015).

Feature Sharing

Feature extraction is typically the most expensive part of detection, and correspondingly
a lot of effort has gone into making this step efficient. The most effective hand-crafted
feature representations consist of aggregations of local colour and edge features. Within
a single image scale features can thus be reused for different windows. However, since
these are shallow, local features, they’re sensitive to image scale. Correspondingly, many
classical detectors require dense image pyramids with up to 50 scales (Dollár et al., 2009a;
Benenson et al., 2013). To mitigate the cost of image rescaling and feature recomputation,
some methods instead resort to feature scaling: Extract suitable feature maps for a
sparse set of scales and interpolate between them (Dollár et al., 2014). An alternative
approach that also uses a sparse image pyramid relies on multiple scale-specific models.
These are applied together to each of the pyramid levels, effectively resulting in a dense
scale evaluation. Benenson et al. (2012) combine the last two strategies to reduce
the depth of the image pyramid even further: They use feature-scaling together with
multiple scale-specific models.

While some early CNN-based detectors required the use of image pyramids (Sermanet
et al., 2013, 2014), recent detectors push feature sharing to its limits. They essentially
do away with image pyramids entirely and instead rely on: (i) a deep hierarchy of
increasingly complex feature maps extracted in a single pass over the image, i.e. a
feature rather than an image pyramid, and (ii) several scale-specific classifiers that
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can be attached to different levels of the feature pyramid. These feature maps range
from high-resolution low-level features (e.g. edges, colour differences) to low-resolution
high-level features that correspond to semantic concepts such as objects, groups of
objects and scenes even (Zhou et al., 2015a). CNNs are essentially deeply nested filter
banks that have the capacity to also specialise to the same object at different scales. The
depth and capacity makes them less sensitive to scale than shallow hand-crafted features.
A typical deep pedestrian detector can thus get away with considering fewer than 10
(virtual) image scales rather than 50. The distinction between the two approaches is
illustrated in Fig. 2.3.

2.3.2 Modern Detectors

In this section, we will discuss some design choices that distinguish various CNN-based
detectors. In the previous section, we described how such detectors make heavy use of
feature sharing by extracting a feature pyramid — i.e. a collection of feature maps —
from an image in a single pass. A key distinguishing factor is thus the feature extraction
network (often referred to as the backbone). This is typically a network designed for
single-object recognition (Krizhevsky et al., 2012; Simonyan and Zisserman, 2015; He
et al., 2016) which prior to classification produces low-resolution feature maps at the
highest level through the repeated use of sub-sampling operations.

Since detection also requires fine-grained spatial information, another key element
of modern detectors is addressing this loss of resolution. Popular solutions include the
use of dilated convolutions that avoid some loss of detail (Chen et al., 2015a; Yu and
Koltun, 2016), introducing top-down connections that merge high-level and low-level
feature maps and recover lost detail (Lin et al., 2017b; Tan et al., 2020), or designing
the network from the ground up to maintain high-resolution representations throughout
(Pohlen et al., 2017; Wang et al., 2020).

Once we have a feature pyramid, how do we detect objects? In Sec. 2.3.1, we presented
detection as the problem of labelling a multi-dimensional grid, which represents the
search for objects across different spatial locations and scales. An important question
is then how to map this grid to the feature pyramid, or in other words how to sample
feature vectors for grid points that correspond to different locations and scales. Since
the feature maps are registered to the input image, establishing spatial correspondence
is relatively straightforward. Scale handling, on the other hand, is challenging, especially
since we typically have a small number of feature maps that need to cover a large range
of object scales. Another distinguishing factor between detectors is then the assignment
of different scale ranges to different feature maps. Some assign the full range to the final
feature map (Ren et al., 2015), and others spread these out across the feature pyramid
(Liu et al., 2016).

This is where the other main component of most detectors — besides the feature
extraction network — comes in: a set of classifier-regressor pairs responsible for iden-
tifying and precisely localising objects. Each pair is responsible for a disjoint set of
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grid points, meaning that they are trained to specialise to a separate range of object
scales and sometimes shapes, and sometimes even spatial locations (Redmon et al.,
2016). Classifier-regressor pairs often specialise to narrower scale ranges than the ranges
assigned to one level of the feature pyramid, and thus sometimes several are attached to
the same feature map (Ren et al., 2015).

How do classifier-regressor pairs specialise to different scales? Alternatively, how
do we assign objects to points on the evaluation grid? There are broadly speaking
two approaches to this: anchor-based and anchor-free methods. In the anchor-based
approach (e.g. Ren et al. 2015, Zhang et al. 2017b), each grid point is associated
with a so-called “anchor”: a template bounding-box that represents the default object
size and shape for that point. Any object whose bounding box sufficiently overlaps
with an anchor (measured via intersection-over-union) is assigned to that point and
correspondingly to the responsible classifier-regressor pair. Objects can be assigned to
multiple points on that basis. The regression target is then often the offsets between
the anchor coordinates and the target bounding box.

In contrast, anchor-free approaches (e.g. Tian et al. 2019) assign an object to a grid
point if the latter is within a certain distance to the object centre. These also often
require different regression targets compared to anchor-based approaches, e.g. distance
to the sides of the bounding box (Tian et al., 2019) or the scale of the bounding box
(Liu et al., 2019d). (Zhang et al., 2020a) compare the two approaches on equal footing
and demonstrate that this assignment process matters more for performance than the
regression target.

Since each object can be assigned to multiple grid points, detectors are trained to make
redundant detections. Post-processing is thus necessary to reduce these to a coherent
set. The most common approach is referred to as greedy non-maximum suppression and
involves a simple strategy of eliminating lower-confidence detections that cover an area
already explained by a higher-confidence prediction. We discuss this approach together
with some alternatives towards the end of the chapter.

The final design choice we will discuss here is the number of detection stages. So
far, we assumed only one in our discussion, but many detectors use two stages and
are based on the popular Faster R-CNN detector (Ren et al., 2015). The first stage
produces class-agnostic object hypotheses: The backbone network extracts a feature
pyramid, and multiple classifier-regressor pairs specialise to different object shapes and
sizes but only distinguish between a generic object class and background. In the second
stage, fixed-length feature vectors are sampled for each surviving object hypothesis and
are processed by further classification and regression subnetworks. Two-stage detectors
typically outperform single-stage approaches in part because the feature re-sampling of
the second stage essentially normalises objects to a common scale, making it easier to
model their appearance.
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2.3.3 Recent Research

So far, we discussed general aspects of object detection. Now, we summarise recent
research on pedestrian detection. We start by describing early CNN-based approaches
which mostly focused on classification, relying on separately trained detectors to provide
object hypotheses. Several of these resort to part-based deep mixture models similar to
DPM, or on context modelling. In this setup, complicated domain-specific models do
not show an advantage over generic classification networks as we show in Chapter 5.

Next, we discuss the adaptation of end-to-end detectors to pedestrian detection. The
key to this adaptation is careful scale handling at the input level, feature level and
classifier level. Additionally, we describe examples of end-to-end ensembles and cascaded
detectors.

Another line of research focuses on reformulating the localisation objective, e.g. replac-
ing bounding box coordinate regression with keypoint localisation or other equivalent
targets. Similarly, some methods show that useful weak pixel-level supervision can be
derived from bounding boxes or other data modalities.

Several end-to-end detectors also consider explicit part and/or occlusion handling.
Common approaches include occlusion-aware loss functions, part-aware feature pooling
and reweighting, as well as specialised classification/regression branches. Finally, we
cover a few works that attempt to address the problem of suppressing redundant
detections.

Mixed Pipelines

Early NN-based pedestrian detection methods with few exceptions (e.g. Sermanet et al.
(2013)) relied on a mixed cascade strategy: Hypotheses supplied by a simpler, classical
detector are rescored by a separate neural network. This is in contrast to modern
detectors which process a full image end-to-end, sharing computations across hypotheses.
Different variants of mixed approaches include: (i) operating directly on the detector
scores (Ouyang and Wang, 2012; Ouyang et al., 2013), (ii) merely learning a classifier on
top of hand-crafted features (Zeng et al., 2013), (iii) learning both a feature extractor
and a classifier that process hand-crafted features (Ouyang and Wang, 2013a; Luo et al.,
2014), all the way to (iv) end-to-end classification networks that operate on RGB inputs
(Tian et al. (2015a); Li et al. (2018), and the method we present in Chapter 5).

Some of these methods incorporate problem-specific modelling, mainly inspired by
part-based approaches such as the DPM detector mentioned above (Felzenszwalb et al.,
2010). (Ouyang and Wang, 2013a) include a layer designed to capture part deformation
costs, and (Luo et al., 2014) explicitly model pedestrians with mixtures of full body
and part templates — or “components” in DPM parlance. These aim to cover the
appearance variation of certain object classes that can result from commonly occuring
viewpoints and poses (e.g. “frontal view” vs. “side view” or “standing” vs. “sitting”),
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and are at least as important as capturing part deformations (Divvala et al., 2012). Tian
et al. (2015a) demonstrate a conceptually simpler — if more computationally demanding
— approach to modelling pedestrians as collections of parts. They learn part-specific
CNN detectors that each focus on one rectangular area of the bounding box out of a
pool of 45. An SVM is used to whittle these down to the most relevant ones.

However, vanilla CNNs have the structure and capacity to capture these intra-class
variations and parts automatically (Zhang et al., 2018c). Different filters can specialise
to different “components“, and max-pooling layers for example allow for some robustness
to deformation. Our results in Chapter 5 also provide some evidence for this. We find
that a simple classification network already outperforms a specialised model (Ouyang
and Wang, 2013a) when provided with the same training data and object hypotheses
at test time. Along the same lines, Li et al. (2018) demonstrate strong results with an
ensemble of two scale-specific, but otherwise generic classification sub-networks on top of
the feature extraction network. The classifier scores are fused with weights determined
by the height of the proposal.

Integrated Pipelines

Most methods discussed up until this point rely on object proposals from a classical
pedestrian detector operating on hand-crafted features. This verification approach is
slow and dependent on the quality of the proposal stage, which is also trained separately.

After end-to-end NN architectures became the norm for generic object detection,
e.g. Faster R-CNN (Ren et al., 2015), such integrated approaches only started to
outperform mixed pipelines for pedestrian detection with some delay. What was holding
integrated pipelines back? In a nutshell, the bottleneck was inadequate scale handling.
Detectors such as Faster R-CNN were designed against benchmarks like ImageNet or
PASCAL VOC, where the distribution of object sizes is a much narrower one compared
to pedestrian datasets (see Chapter 7). What it took to adapt such detectors was simply:
(i) higher-resolution inputs, (ii) higher-resolution features, and (iii) the appropriate set
of scale-specific classifiers (Zhang et al., 2016a; Cai et al., 2016; Zhang et al., 2017b).

Zhang et al. (2016a) inverted the usual pipeline of classical detector followed by
CNN-based classification. Their method RPN+BF involved a boosted decision forest
verifying proposals from a modified Region Proposal Network (RPN ) (Ren et al., 2015).
RPN was adapted in several ways: higher input resolution, anchors covering a larger
scale range with a default aspect ratio of 0.41, and dilated convolutions Chen et al.
(2015a); Yu and Koltun (2016) for higher resolution feature maps. The second stage of
Faster R-CNN was discarded as it was found to hurt results.

Concurrently, Cai et al. (2016) addressed the same problems but by carefully adapting
Faster R-CNN rather than resorting to a mixed pipeline. Similarly, they increase the
input resolution as well as the final feature map resolution (but with upsampling rather
than dilated convolutions). More critically, the specialised classifiers for anchors of
different sizes are assigned to different layers of the network. This is a common strategy
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for single-stage detectors such as SSD (Liu et al., 2016), but not so much for two-stage
detectors. With these improvements to RPN, they find that the second stage improves
performance significantly in contrast to the findings from Zhang et al. (2016a).

(Zhang et al., 2017b), besides presenting a new benchmark based on the dataset
we describe in Chapter 7, also successfully modified Faster R-CNN to obtain strong
pedestrian detection performance. Similar to the aforementioned works, they upscale
the input image and increase feature map resolution by removing a sub-sampling layer.
Additionally, they propose to use several scale-specific anchors but based on the training
set statistics.

All three of the above methods perform similarly well on the Caltech “Reasonable”
test set, but MS-CNN outperforms the others by a significant margin on the occluded
subsets, but it’s hard to say which element is responsible. Incidentally both RPN+BF
and MS-CNN rely on explicit hard negative mining, which was critical for classical
detectors but is less commonly used with modern ones.

While proper scale-handling is one important aspect of detection, another powerful
and recurring element is the cascade as mentioned above. Two-stage detectors such as
Faster R-CNN are a specific form of cascade, whereby in the second stage a fixed-length
representation is sampled for each hypothesis and processed separately. Other works
have explored variations on the cascade idea with single-stage pedestrian detectors Liu
et al. (2018); Brazil and Liu (2019).

With Faster R-CNN, positive training examples are assigned to locations in the first
stage with a more permissive IoU criterion than in the second. Liu et al. (2018) argue
that this successive refinement is more important than the feature resampling between
stages. They thus propose to stack multiple predictors on top of each other, trained with
a successively stricter assignment of hypotheses. Multiple such cascades are attached
to different levels of the feature pyramid. Brazil and Liu (2019) also propose to use
multi-level cascades, but additionally treating them as a form of ensemble. Intermediate
predictions from one cascade are fed to the others.

Alternate Objectives

The above methods involve detectors trained to classify a bounding box and regress to its
adjusted coordinates. Several works recently either: (i) reformulate the task to localise
keypoints on the pixel grid rather than predict continuous bounding box coordinates, or
(ii) include complementary targets.

Bounding box annotations are typically produced by marking the top-left and bottom-
right corners of the box. In Chapter 6, we argue that marking the top of the head and the
midpoint between both feet is easier, and results in more consistently aligned bounding
boxes which benefits performance. Song et al. (2018) propose to train a network to label
these two points as well as the line connecting them. A Markov Random Field is used to
group pairs of keypoints into detections. Instead of two points per detection, Liu et al.
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(2019d) propose to predict the centre point and pedestrian scale, which are sufficient to
generate the corresponding bounding box without an additional grouping step.

These works can be viewed as part of a trend in generic object detection. Law and
Deng (2018) for example detect the upper-left and lower-right corners of the bounding
box and Zhou et al. (2019a) detect the centre and extreme points. Extreme points are
points that lie on the bounding box as well as the object boundary, and they predict one
such point per bounding box side. While this requires annotated segments, it results
in an easier detection task when an object is irregularly shaped and the bounding box
corners are relatively distant from its boundary.

Rather than replace the standard detection objective, other approaches augment
it. Mao et al. (2017) show that performance can be improved by either providing the
network with additional feature channels beyond the RGB image (e.g. edges or optical
flow) or by training it to predict these quantities. Similarly, Xu et al. (2017) train a
detector to additionally predict the thermal image corresponding to the RGB input.
This, however, requires additional recordings to obtain the extra target.

Lin et al. (2018), Brazil et al. (2017) and Noh et al. (2018) all demonstrate that weak
pixel-level supervision derived from bounding boxes is beneficial. If additional pixel-wise
semantic annotations are available, these can also help as previously shown by Tian
et al. (2015b) and Costea and Nedevschi (2016).

Luo et al. (2020) use generative model trained on synthetic data to hallucinate a
birds-eye view map from a frontal street image. A second module localises people in
the hallucinated map which indicates their scale in the frontal image. This informs the
detector as it is applied to the frontal image.

Part Modelling and Occlusion

One aspect of pedestrian detection that an increasing number of methods focus on is
occlusion. Some methods focus on improving the detection loss functions. Wang et al.
(2018c) posit that intra-class occlusion is a bigger problem than inter-class occlusion.
They then propose an expanded bounding box regression loss, which besides encouraging
predictions to match their targets, has two “repulsion” terms: one that penalises overlap
between predictions assigned to different targets, and another that penalises overlap
between predictions and unrelated targets. Similarly, Zhang et al. (2018b) propose an
“aggregation loss” that forces predictions assigned to the same target to cluster.

Other methods present approaches that involve some form of part-modelling, albeit
one that doesn’t require additional part annotations: merely a bounding-box annotation
for the visible part of the pedestrian. Zhang et al. (2018b), besides the aggregation loss,
also address occlusion by pooling features not only from the full template, but also from
five different parts. Visibility for each part is estimated and the resulting visibility scores
are used to compute a weighted combination of these pooled feature vectors for the final
decision. Noh et al. (2018) and Wang et al. (2018a) also predict part visibility. They
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divide the pedestrian template into rectangular grid cells, each representing a “part”.
The latter also uses LSTMs to communicate information bidirectionally between them,
with the motivation being that visible parts should boost scores of less visible ones.
Zhang et al. (2018c) observe that different feature channels are sensitive to different
parts, and learn to predict a vector that reweights feature channels. This amounts to a
flexible part model that attends to visible parts in a dynamic manner.

Several works propose to use use specialised detection branches for different parts
of the body. Zhou and Yuan (2018) propose a two-branch Faster R-CNN, with one
branch for full-body prediction and another that regresses to the visible bounding box,
both trained to be complementary. Huang et al. (2020) propose to do the same, but
additionally use these separate predictions for non-maximum suppression, since the
visible bounding-box is more appropriate for crowded scenes. Zhu et al. (2020) use
separate predictions for head and full body for the same purpose, but this requires
additional bounding-box annotations for the head.

Non-Maximum Suppression

Above, we listed several methods that propose additional detection targets or objectives
such that the detector output becomes more useful for non-maximum suppression. These
methods have largely stuck to the well-worn Greedy NMS procedure: Detections are
sorted by confidence and selected in that order. A detection is suppressed if its IoU
with any previously selected detection exceeds some fixed threshold. In the following,
we discuss a few methods that aim to replace Greedy NMS itself.

First, two methods not specific to pedestrian detection: Soft-NMS (Bodla et al., 2017)
and GossipNet (Hosang et al., 2017). Soft-NMS is a simple extension to Greedy NMS.
When some detection A is selected, the scores of all detections that overlap with A are
decayed based on the degree of their overlap. Hosang et al. (2017) propose to use a
network, GossipNet, that operates on all detection hypotheses in an image. The network
is trained to update the scores of these detections through pairwise comparisons in
multiple stages such that one detection per object remains. Similarly, Liu et al. (2019c),
add a sub-network to the detector which predicts an adaptive NMS threshold for each
detection. The motivation is that a strict threshold is needed in sparsely populated
areas of the image, but a more permissive one in more crowded parts.

Lee et al. (2016) observe that Greedy NMS, when choosing between two competing
detections A and B, only makes the decision based on comparing detection scores, e.g.
A looks more like a pedestrian than B. Instead, they argue that NMS should consider
the following criterion: if B also looks like a pedestrian, does it look sufficiently different
from A? To this end, they propose to use Determinantal Point Processes (DPP). For all
N detection candidates, an N ×N similarity matrix is set up. A DPP helps select the
subset of these detections that results in the matrix with the maximum determinant, i.e.
such that unary terms (diagonal) are high and similarity terms (off-diagonals) are low.
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2.4 Summary

In this chapter we reviewed relevant material for pedestrian detection. We presented the
task definition as well as relevant benchmarks and evaluation metrics. In the methods
section, we started by describing basic patterns underlying both classical and modern
detectors: (i) feature sharing, (ii) classifier cascades, and (iii) dense vs. sparse evaluation.
Modern CNN-based detectors typically rely on efficient feature sharing as well as dense
evaluation. These also differ in many respects, which we summarised next: (i) if and
how low-level to high-level feature maps are combined into a feature pyramid, (ii) how
locations in the feature pyramid are marked as positive or negative targets during
training, (iii) how many classifier-regressor pairs are used and which parts of the feature
pyramid and object space they operate on, (iv) whether a one- or two-stage approach is
used, and (v) the localisation objective beyond mere bounding box coordinate regression.

Finally, we concluded our review with an up-to-date survey of recent research into
pedestrian detection. Here, we focused on the following points: (i) early efforts to
use CNNs for pedestrian detection, (ii) the transition from mixed pipelines — which
used CNNs for verifying sparse object hypotheses supplied by classical detectors —
to fully end-to-end detectors thanks to careful scale handling at multiple levels, (iii)
specialised ensembles and cascaded detectors, (iv) the use of weak pixel-level supervision,
(v) keypoint-based approaches, (vi) part-based modelling and occlusion handling, as
well as (vii) non-maximum suppression.

In the final chapter, we will discuss this review in light of the results we present in
chapters Chapters 4 to 6 and present possible future directions.
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Related Work: 3D Human Shape and Pose
Recovery

Figure 3.1: 3D human shape and pose recovery is a challenging task that requires us to
recover a representation of body pose and surface, as this can help us e.g. determine
where pedestrians are likely to move next. (image from Cityscapes (Chapter 7), results
generated with method described in Chapter 9)

In the previous chapter we focused on localising people in images. Now we turn to the
task of extracting richer human representations from single monocular images, namely
3D pose and shape.

Pose is typically taken to mean the locations of a set of body parts each represented
as a point in 2D or 3D space, or alternatively the relative orientations of body parts
in space, with each part represented as a virtual “bone”. Pose, despite being a sparse
representation of the human body, encodes a lot of information relevant to interacting
with and understanding humans. It can encode simple gestures, activities and even
certain emotional states.

We are also interested in extracting shape, i.e. some representation of the body
surface. While pose is a practical and informative representation, it often abstracts
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away valuable information, including subtle social signals and precise interactions with
objects and the environment. There are also perceptual considerations that make surface
representations desirable: Skeletons are almost always indirectly inferred, whereas the
surface of the body is often — at least partially — observed in the image. This makes
it possible to verify the surface estimates against other observable quantities such as
image edges and depth.

Pose and shape are naturally intertwined not least because our body surface deforms
as we change our pose, so it makes sense to address these tasks together. Previous work
has demonstrated that even when the goal is to merely to extract the body surface of
humans from 3D point clouds — in principle easier than from monocular images — one
can benefit from first explicitly extracting pose to constrain the surface extraction.

Challenges

Most of the challenges associated with localising people in images also apply to shape
and pose recovery. There are a host of others that are more specific to this task.
These include ambiguities resulting from projection and missing information due to
self-occlusion and clutter. The output space is also difficult to define and capture flexibly
and efficiently. Ground truth acquisition in natural settings is also very challenging.

The challenges start with defining the output space itself, which is anything but
straightforward. Skeletons are a natural choice of representation for pose, but the choice
is less obvious in the case of the body surface. There is a trade-off between fidelity to
surface detail and efficiency of representation.

But even just the space of poses, which can be captured by a relatively low-dimensional
skeleton, is rather complicated to navigate. Many possible values in this space will
correspond to implausible or even impossible poses. This affects methods that learn to
predict pose in a discriminative, data-driven manner, as well as model-based approaches
that search for a configuration that explains evidence from the image.

Given that the human body is highly articulated, often one also has to contend with
missing data due to self-occlusion. Occlusions from other people and the environment
result in additional ambiguity. Sometimes resolving these ambiguities will necessitate
jointly reasoning about fine-grained appearance cues, such as shadows and lighting
(Balan et al., 2007a) or the type of activity being carried out (Luvizon et al., 2018),
but also about the geometry of the environment (Hassan et al., 2019). When we try
to perceive 3D pose and shape from 2D images, we have to deal with the projective
ambiguity, namely the fact that many different 3D poses can result in a similar 2D
projection.

Ground truth acquisition is also challenging. Acquiring data in natural settings without
nuisance signals such as visible markers is already challenging enough. Adequately
covering the space of possible poses makes this even more challenging. This also means
that domain adaptation and weakly supervised learning play a larger role here. It’s
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much easier to record 3D data in a studio or to generate synthetic data, but difficult
to transfer what is learned from such data to everyday scenes. It’s also much easier
to obtain 2D data, so many methods resort to learning about humans in 3D without
explicit 3D supervision.

Many methods assume that there is a single person that has been pre-localised, e.g.
with a bounding box-based detector. All the above difficulties apply in this restricted
setting, but the problem becomes even more difficult when dealing with multiple people
who may even be interacting with each other.

Summary

In this chapter, we will mostly focus on 3D pose and shape estimation research in the
last five years, with the occasional nod to older work as needed. We will mostly restrict
our discussion to methods that operate on single, monocular images, as this is the task
we address in the last part of this thesis. While we are ultimately interested in recovering
shape and pose, much of the relevant work — especially on benchmarking — focuses
solely only on 3D pose, i.e. recovering a skeleton rather than a surface representation.
Our discussion will accordingly cover this work as well. We will refer to methods that
recover some three-dimensional structural description of the human body as 3D human
body recovery (3DHBR) methods. This subsumes all methods we cover here.

We will follow a structure similar to that of the previous chapter. We will first
define the task as well as relevant evaluation metrics. We will then describe notable
datasets with a focus on advances in dataset acquisition. Unlike for pedestrian detection,
obtaining consistent ground truth annotations for arbitrary images is itself a challenging
research question and we will describe efforts to address it. We then turn our attention
to recent methods. Methods in this area are diverse and difficult to categorise neatly,
so we will organise a large part of the discussion around two questions: (i) What
parametrisations of pose and shape are conducive to learning and inference? (ii) What
constraints can be applied to encourage valid outputs either during training or inference?
We will then separately discuss two classes of methods: 3DHBR for multiple people,
and neural network-based methods that incorporate rich statistical body models. The
last part of this thesis (Chapter 9) presents a method in the latter group.

3.1 Task Definition

The task of extracting 3D shape and pose is not a well-defined one, as there are many
ways to parametrise these quantities also at different levels of granularity.

The most common model of human pose is the skeleton, a tree-structured collection
of keypoints mostly corresponding to articulated joints (e.g. knees, elbows) or surface
locations (e.g. eyes, nose). Attached to each keypoint is its location, either in pixel
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or in 3D space. In the case of 3D, this is typically relative to some pre-defined root
keypoint. Skeletons encode some information on shape, e.g. limb lengths, and significant
— if incomplete — information on body pose. Depending on the collection of keypoints
under consideration, some pose information will not be encoded: such as axial limb
rotations and head rotation about the longitudinal axis. With the exception of very
recent work (Pavlakos et al., 2019a; Martinez et al., 2019; Weinzaepfel et al., 2020;
Choutas et al., 2020), most pose estimation methods — whether 2D or 3D — ignore the
fine-grained articulation of hands and feet, typically stopping at the wrists and ankles.

In this work, we are interested in extracting a richer output representation, both
in terms of pose and shape. A richer pose representation would encode not just joint
locations but full limb rotations as well, and a richer shape representation would capture
the surface of the body, not just limb lengths. This naturally begets the question: How
do we model the surface of the human body?

3.1.1 Parametric Models of 3D Pose and Shape

There are many representations of the human body shape in the literature. While a full
discussion is beyond our scope, we will cover some relevant aspects to our work.

Popular surface representations include point clouds, voxels, implicit surfaces, meshes
as well as hybrid representations. Here we need to distinguish on the one hand between
the surface representation itself, and on the other hand whether the range of allowable
configurations is further constrained by some underlying parametric model. The rela-
tive advantages and disadvantages of the aforementioned surface representations also
depend on the use case. Here, this is inferring 3D structure from 2D data with a view
towards understanding: where a person might be going, what they might be doing, etc..
Accurate reconstruction or generation of synthetic human models may impose different
requirements.

Meshes for example are very flexible and powerful representations, but their high
fidelity comes at the cost of high dimensionality and unwieldiness when it comes to
handling topological changes. Predicting vertex locations and their connectivity is
highly non-trivial without any limiting assumptions. This poses challenges in the case
of general objects and surfaces, but luckily in the case of humans — a limited class of
shapes — there are statistical regularities we can exploit, making meshes suitable as an
underlying representation for understanding images of people.

For our purposes, we thus opt for a class of articulated body models, which parametrise
a high-dimensional body surface mesh in terms of separate, lower-dimensional shape and
pose representations, e.g. the SMPL model (Loper et al., 2015). Pose is represented as
the rotations of a set of connected body parts that make up a skeleton. Joint locations
are a function of body shape, and the surface of the body deforms rigidly and non-rigidly
as a function of the joint angles. The space of shapes is spanned by a small number of
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basis shapes, and so the shape representation consists accordingly of a small number of
basis weights.

The benefits of such parametric models are legion: They decouple identity-dependent
shape from articulated pose. Location is automatically decoupled from the representation
as well, unlike with e.g. voxel representations. The surface is efficiently modelled by
exploiting the statistics of human body shape as well as the regularities of how it deforms
as one moves. As such, they capture a lot of prior knowledge about the human body and
can be fit to sparse data (Bogo et al., 2016). They are also generic enough to describe
the shape and pose of a wide variety of people in a wide variety of poses. Semantic
correspondences are also built into such models, and there are a number of ways to
match them against observations in the image, e.g. body keypoints and silhouettes, via
efficient model abstraction.

Some such models, specifically the one we make use of in this work, make a number
of mild simplifying assumptions: There is such a thing as rest shape (sometimes referred
to as identity-dependent shape), i.e. the shape of a person in some canonical static pose.
Of course “rest shape” is not fully identity-dependent as it can depend on a variety of
things, e.g. rate of breathing, how much one has just eaten, injuries, or prior activities.
Another assumption is that rest shape will deform both rigidly and non-rigidly purely
as a function of instantaneous pose, but of course in reality speed of motion matters as
well — w.r.t. body fat for example. However, these and similar assumptions are not
particularly limiting for our purposes and such models remain powerful and expressive.

Early parametric 3D models were based on simple geometric primitives, e.g. Metaxas
and Terzopoulos (1993); Gavrila and Davis (1996); Sidenbladh and Black (2001); Plänkers
and Fua (2001); Sigal et al. (2004). Eventually, statistical mesh-based models were
learned from large databases of scans. These were richer than their predecessors but
retained the low-dimensional representation. A key problem here is how to deform
the surface as a function of shape and pose. Initial attempts focused on polygon
deformations (Anguelov et al., 2005; Hasler et al., 2009). This was motivated in part
by the transferability of such deformations across body sizes. On the other hand, this
required costly optimisation to realign the triangles and recover a watertight mesh after
applying shape and pose deformations.

Later models, most notably SMPL (Loper et al., 2015), used linear blend skinning,
which applies deformations via vertex displacements as a function of joint displacements.
Pose-dependent corrective shapes are added to compensate for the artifacts that result
from naive linear blend skinning. As the operations involved are linear functions of a
small number of parameters, these models easily lend themselves to optimisation or
embedding in neural networks as we will demonstrate later. Recent variants of this
class of models have made them more expressive for faces and hands (Joo et al., 2018;
Pavlakos et al., 2019a), suggested improvements in terms of model learning (Xu et al.,
2020) and parameter efficiency (Osman et al., 2020).
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3.1.2 Evaluation Metrics

Prior to the availability of standardised benchmarks, methods would be evaluated
quantitatively in a variety of ways (Sigal et al., 2010). With the introduction of the
HumanEVA-I benchmark, the common evaluation metric became “mean per-joint error”
or MPJPE for short. This is simply the average euclidean distance in terms of millimetres
between predicted and ground truth joints, but with both sets aligned at a common
root. One popular variant on this is the so-called “reconstruction error”, in which
prediction and ground truth additionally undergo a rigid body alignment which removes
discrepancies in global rotation and scale, but sometimes only in scale.

Another metric which is less often used but has been argued for by Ionescu et al.
(2014) and Mehta et al. (2017a) is measuring the percentage of correct 3D keypoints
(3D-PCK). A keypoint is considered successfully detected if it is within 150mm of the
ground truth joint, i.e. roughly half the size of a human head. This is analogous to
the PCKh metric in 2D pose estimation (Andriluka et al., 2014). Additionally, one
can measure 3D-PCK for a range of thresholds and calculate the area under the curve
(AUC). Unlike MPJPE, this metric is robust to small imperfections in the annotations.

Some methods that output a full mesh additionally report per-vertex error and
segmentation accuracy. Per-vertex error is informative, as it can happen that a method
correctly outputs keypoint locations but not limb rotations. Many approaches resort to
keypoint projection losses to learn from 2D annotations, and this can lead to such errors
that visibly affect the mesh but not the skeleton. Segmentation accuracy is similarly
useful. The LSP and LSP-extended datasets (Johnson and Everingham, 2010, 2011)
were annotated with six body part labels by Lassner et al. (2017), and mesh recovery
methods report pixel-wise accuracy as well as F1-score.

For multi-person pose estimation, no special metrics exist. 3D-PCK is simply computed
for all subjects individually and averaged per sequence (Mehta et al., 2018).

3.2 Datasets and Benchmarks

For a long time the evaluation of 3D human body recovery (3DHBR) was a mostly
qualitative affair. Methods were applied to a handful of images or sequences and
the results analysed visually (Sigal et al., 2010). Qualitative evaluation was typically
restricted to either synthetic datasets (Agarwal and Triggs, 2004) or sequences that were
not publicly available (Balan et al., 2007b). While this was the case for other computer
vision tasks as well, it took some time for this area to catch up.

With tasks such as object detection or 2D pose estimation — especially when involving
monocular images — the act of annotating itself tends to be the easy part. While
obtaining consistent annotations across images is certainly difficult, challenges are more
likely to arise when the annotation effort needs to be scaled up, which can be addressed
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via crowd-sourcing with quality control (Johnson and Everingham, 2011; Su et al., 2012)
and human-machine collaboration (Russakovsky et al., 2015b; Benenson et al., 2019).

With 3D shape and pose on the other hand, already obtaining a single ground truth
annotation presents obstacles. This is especially the case if one requires ground truth
recorded both in natural settings and in a manner that does not introduce nuisance
signals to the image, e.g. visible markers on the body surface. Fortunately, a lot of work
has gone into overcoming these difficulties and there is no shortage of challenging and
unsolved datasets.

Since we are interested in recovering a 3D description of the body from monocular
images and measuring our ability to do so, the discussion in this subsection will mostly
focus on datasets of RGB images paired with 3D ground truth. However, stand-alone 3D
data, e.g. body surface measurements recorded from range scanners and skeletal data
obtained from motion capture systems, also play a pivotal role for many techniques.

Anthropometric data captured using range scanners has been critical for realistically
modelling the space of human body shape. It has also enabled the development
of statistical body models that jointly model shape and pose, which we described in
Sec. 3.1.1. An early dataset that played a critical role in this area is CAESAR (Robinette
and Daanen, 1999).

As mentioned above, synthetic datasets often make use of motion capture data to
represent human movements realistically. The most widely-used source of such data
is the (CMU Graphics Lab Motion Capture Database). Some methods rely on such
data to learn priors on human pose and/or motion. Motivated by the limitations of
then existing datasets in terms of the activities and range of motion they cover, Akhter
and Black (2015) put together the PosePrior dataset. This dataset captures trained
athletes carrying out various stretching poses. Recent developments have enabled the
extension of diverse databases of pose and motion to also to cover articulated shape in
a unified manner, e.g. the large-scale AMASS database (Mahmood et al., 2019). This
has been made possible by the development of statistical body models such as SMPL ,
methods to fit the former to a sparse set of markers such as MoSH (Loper et al., 2014)
and extensions.

First standardised benchmarks

The first standardised benchmarks for the task of 3DHBR were HumanEVA-I (Sigal
et al., 2010) followed by Human3.6M (H36M ) (Ionescu et al., 2014). Both consist of
multi-camera sequences of actors performing everyday actions in a studio, and both use
a combination of motion capture (mocap) and software to synchronise video and motion
data. HumanEVA-I established a common evaluation procedure (more on that below)
and H36M scaled things up terms of number of actions as well as the amount of data.
The latter thus functions as a source of training data, and remains the de facto standard
benchmark for 3DHBR, but this is starting to change due to: (i) the increasing interest
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in tackling 3DHBR “in the wild”, as well as (ii) advances in both data acquisition and
3DHBR itself that make the former possible.

Data acquisition in natural settings

Recently, a number of datasets have been released that use a mixture of non-invasive
sensors and creative techniques to obtain ground truth data in outdoor settings: For
their MPI-INF-3DHP dataset, Mehta et al. (2017a) apply a commercial marker-less
mocap system to sequences recorded both outdoors as well as indoors. A subset of the
sequences are recorded against a green screen, allowing for the compositing of actor
footage against natural backgrounds with some appearance augmentation. A total of
1.3M frames from 14 cameras are provided, including 500k images from 5 chest height
cameras. They also show that this yields accurate 2D annotations such as keypoints.

While the use of marker-less motion capture allows for the recording of sequences in
more natural settings, the system employed for the MPI-INF-3DHP dataset requires
multiple cameras (at least six) which remains a limiting factor. The following datasets
rely more heavily on software as well as alternative sensors to relax this requirement
and obtain reasonably approximate 3D ground truth in even more unrestricted settings.

The 3D Persons in the Wild (3DPW ) dataset (von Marcard et al., 2018) is another
recent dataset that has been adopted as a standard 3D pose benchmark. Here the
authors rely on a single hand-held camera and inertial sensors (IMUs) to record sequences
of one or two actors at a time in a variety of outdoor settings. IMUs suffer from a few
issues such as measurement drift and lack of image synchronisation, but these are largely
overcome through an optimisation scheme that combines the IMU readings, 2D keypoint
detections, and a statistical body model which imposes anthropomorphic constraints.
The accuracy of this scheme (2cm error) was verified against TotalCapture (Trumble
et al., 2017), an indoor 3D pose dataset that provides IMU readings, allowing 3DPW to
serve as a challenging benchmark for 3D pose estimation in the wild.

Eschewing the use of additional sensors entirely, the Unite The People (UP-3D)
dataset (Lassner et al., 2017) uses manual segmentation and keypoint annotations paired
with an optimisation scheme (Bogo et al., 2016) and human-in-the-loop verification to
provide 3D ground truth for images from a variety of 2D pose estimation datasets: LSP
(Johnson and Everingham, 2010), LSP-extended (Johnson and Everingham, 2011), MPII
HumanPose (Andriluka et al., 2014), and FashionPose (Dantone et al., 2014). Fitting a
3D mesh to the images allows them to not only generate 3D pose ground truth but to also
generate arbitrary 2D annotations transferred from the mesh that would be infeasible
to collect manually. We make heavy use of this in Chapter 9. Interestingly, Lassner
et al. (2017) also show that 2D keypoint detectors trained on these new annotations
are more accurate and require less data than detectors trained on human-annotated 2D
keypoints, owing to the spatial consistency of the former.



3.2 Datasets and Benchmarks 33

The PedX dataset (Kim et al., 2019) is generated using a very similar approach,
combining manual annotations and the same optimisation scheme as above, but with
3D data as an additional constraint. The dataset consists of a few video sequences
recorded at street intersections using stereo cameras and lidar. Pixel-wise masks as well
as 2D keypoints are labelled manually, and then a parametric body model is fit to the
stereo-lidar data and annotations. This method is verified against a reference sequence
recorded in a more controlled setting, and is shown to result in a small error (∼2 cm,
similar to 3DPW ).

In the same vein, Arnab et al. (2019) generate temporal 3D annotations for the large
scale Kinetics-600 action recognition dataset (Kay et al., 2017). Unlike the UP-3D
and PedX datasets however, they do not resort to manual 2D annotations given the
scale of the underlying dataset, relying entirely on automatic methods. The resulting
ground truth — while somewhat useful as an additional source of training data as they
show — is thus significantly less precise. Is it more useful to generate smaller datasets
with more precise annotations rather than larger ones with less precise ground truth?
Evidence from the literature (e.g. Lassner et al. 2017) suggests that the former might
be preferable, but it is not a resolved question.

Multi-person datasets

With the exception of PedX, all of the above datasets focus on one (or at most two in
the case of 3DPW ) subjects at a time. However, there are other recent datasets devoted
to the challenging multi-person setting.

The MuPoTs-3D dataset (Mehta et al., 2018) is the multi-person follow-up to MPI-
INF-3DHP. The test set consists of five indoor and 15 outdoor sequences with up to eight
subjects, GT obtained from multiview marker-less mocap software. The corresponding
training set (MuCo-3DHP) is obtained by compositing multiple subjects from MPI-INF-
3DHP into single images in a depth-aware fashion.

The Panoptic Studio dataset (Joo et al., 2019) is an in-studio dataset which focuses
on social interactions between groups of people. Parsing such scenes requires the
detection of subtle interaction cues. This requires very precise measurements that
one could traditionally only obtain using marker-based system. Since the presence of
visible markers might influence interactions between subjects, they instead resort to a
special hardware setup consisting of hundreds of cameras — some with active sensors —
distributed over a geodesic sphere. Measurements are integrated to obtain 3D motion
ground truth for up to eight subjects per scene.
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Synthetic datasets

As the preceding discussion makes clear, obtaining 3D pose ground truth paired with
natural images is highly challenging. Only very recently have advances in data acquisition
yielded data outside the traditional setting which focuses on a single actor per sequence
inside a studio. Still, existing datasets are not without limitations, especially with
regards to size, the number of subjects per scene, and the diversity of poses covered.

As a result, much effort has gone into generating synthetic data for 3D pose estimation.
The benefits of synthetic data are limited by a domain gap in terms of appearance, but
several works have shown that some improvement in performance can be gained by
combining natural and synthetic images. The appearance gap also does not matter as
much for pipeline approaches that first extract some intermediate representation from
the image such as silhouettes before predicting 3D pose. Here, synthetic data has been
shown to be especially useful.

Many older works have used synthetic data when 3D data was much harder to come by.
Examples include: Agarwal and Triggs (2004), Shakhnarovich et al. (2003), Grauman
et al. (2003), Sminchisescu et al. (2005), and Ionescu et al. (2009). More recent works
include Chen et al. (2016), Ghezelghieh et al. (2016), Rogez and Schmid (2016), Varol
et al. (2017), and Doersch and Zisserman (2019).

While many of the aforementioned works resort to synthetic data as a one-off means
for training data generation or augmentation, Varol et al. (2017) put together the
SURREAL dataset and benchmark which has found popular use, sometimes in modified
form thanks to the accompanying open-source toolbox and access to the underlying
data. They take 3D mocap sequences from the (CMU Graphics Lab Motion Capture
Database) and apply the MoSH algorithm (Loper et al., 2014) to the marker data to
obtain SMPL model fits. These are then textured and rendered against images from
the LSUN database (Yu et al., 2015), which depict everyday indoor environments. As
a by-product of the rendering process, they obtain semantic part labels, optical flow
ground truth, as well as depth and normal information. They show that combining this
data with natural data boosts part segmentation performance somewhat. One limitation
of this data is that SMPL does not model variations in surface detail that can result for
example from different hairstyles and loose-fitting clothing. This is addressed by Liang
and Lin (2019), who present a dataset that includes renders with more realistic clothing
in terms of surface details if not in terms of texture.

Chen et al. (2016) demonstrate that not just texture but also pose diversity is important
for benefiting from synthetic training data. To this end, they learn a non-parametric,
hierarchical model of the space of human poses that allows them to sample more diverse
poses than are present in datasets such as the CMU Graphics Lab Motion Capture
Database and H36M (Ionescu et al., 2014). Each sample is used to pose a SCAPE
model (Anguelov et al., 2005). Clothing textures are deformed and added to the model
which is rendered with random lighting and camera poses.
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Synthetic data still suffers from a lack of realism in terms of appearance and Doersch
and Zisserman (2019) attempt to sidestep this issue. They paste SURREAL models
onto videos from the Kinetics-400 data set (Kay et al., 2017), and train a model on
the resulting optical flow and keypoint motion as these suffer less from a realism gap.
Indeed, they show that a model trained on this data outperforms a model trained on
synthetic RGB data, even performing on par with a model trained on real RGB data.

Useful synthetic data can also be generated without rendering entirely, as shown by
Rogez and Schmid (2016). Given 3D mocap data and a naturalistic dataset annotated
with 2D keypoints they do the following: They project the 3D pose data, find a collection
of images whose annotations each locally match the pose projection. These images are
blended together to create a new image that corresponds to the original 3D pose. This
is shown to be useful as an additional source of training data.

Most of the above datasets involve single persons rendered against simple backgrounds
in geometry-free environments. Generating convincing looking synthetic people in a
vacuum is hard enough. Positioning people plausibly in 3D scenes, potentially with
multiple interacting people per scene brings its own set of challenges. Some recent work
tackles this difficult problem setting, e.g. Hassan et al. (2021).

3.3 Methods

For the purpose of our discussion, it’s useful to think of methods in this area as being
primarily prediction-based or comparison-based. With the former (see Fig. 3.2a), a
discriminative mapping is learned between image and 3D representation. Comparison-
based methods in contrast recover pose and shape through some search procedure in
which model-to-image comparison plays a central role. Two variants of these are: (i)
model-based generative approaches (see Fig. 3.2b), where the parameters of some model
are optimised to explain the image or some representation thereof, (ii) exemplar-based
or dictionary-based methods, where an image representation is compared against a
database or pose dictionary to retrieve the most likely pose.

This categorisation of course — like most abstractions — is an oversimplification.
To the extent that this distinction was valid maybe one or two decades ago, the lines
between different types of methods have only grown blurrier. For one, virtually all
3D human body recovery (3DHBR) methods nowadays rely on some discriminative
component, not just prediction-based approaches.

Fully discriminative approaches based on convolutional neural networks (CNNs) have
come to dominate this problem area. The methods define some target 3D representation,
typically derived from 3D keypoints, and train a network to produce this representation
given annotated data. While some methods directly map from image to 3D, e.g. Li and
Chan (2014); Pavlakos et al. (2017), the majority take a so-called pipeline approach,
which involves predicting some intermediate quantity — most commonly 2D keypoints.
Such methods come in different flavours: Some use a separate lifting network that maps
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(a)

(b)

(c)

Figure 3.2: Schematic illustrations of representative classes of methods for 3D human
body recovery methods. Prediction-based methods (a) rely on learning a mapping
between an image and some representation of 3D pose and/or shape. Comparison-based
methods rely on finding a common representation of the model and of the input image
(e.g. keypoints) and updating model parameters to match the image observations (b), or
using the input representation to query a database of pose exemplars. Recently, hybrid
approaches (c) that combine elements of both are gaining popularity.

from 2D pose to 3D after abstracting away most image information, e.g. Moreno-Noguer
(2017); Martinez et al. (2017). Others jointly train a network to predict 2D and 3D
representations, e.g. Tekin et al. (2017); Habibie et al. (2019), fusing both image features
and explicit 2D pose representations before the lifting step.

Modern comparison-based methods also almost exclusively resort to a pipeline ap-
proach. Some intermediate representation is extracted from the image in a discriminative
manner in the first stage, e.g. 2D keypoints. These are then used as image evidence
for model fitting (Zhou et al., 2016b; Bogo et al., 2016) or for a database look-up
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procedure (Chen and Ramanan, 2017). This was not the case with earlier model-based
approaches, which relied on simpler and in many ways less reliable image abstractions
such as low-level edges (Hogg, 1983), manually-annotated keypoints (Lee and Chen,
1985), or silhouettes obtained via background subtraction (Sminchisescu and Triggs,
2003).

Recently, more explicitly hybrid approaches have become popular (Tung et al., 2017a;
Kanazawa et al., 2018; Pavlakos et al., 2018b; Omran et al., 2018) (see Fig. 3.2c), in
which a human body model is embedded in a neural network and where the learning
objective includes a term that compares model abstractions to an image. The target isn’t
merely the 3D pose representation; predictions of the model parameters are additionally
encouraged to agree with some auxiliary observation such as 2D keypoints or silhouettes.
Some methods even have an inner optimisation loop during training (Tomè et al., 2017;
Kolotouros et al., 2019a), or additionally resort to test-time optimisation (Tung et al.,
2017a; Pavlakos et al., 2018b; Zanfir et al., 2020).

Given the above, rather than trying to organise methods into an artificial taxonomy,
we will provide on overview of the literature centered around the following points:

• Given the important role that learning plays in 3DHBR methods, one aspect
that distinguishes many methods is the 3D parametrisation of the human body
that is chosen as the primary learning objective. Examples include 3D keypoint
coordinates, various types of heatmaps, limb and joint rotations, body shape
parameters, surface correspondences and pose embeddings.

• More so than with many computer vision problems, the notion of constraints
plays an important role in recovering 3D human shape and pose. Outputs of
3DHBR systems often have to be additionally constrained in some way such that
they represent anatomically valid poses, and this applies to both the training of
discriminative methods as well as inference, especially if some search procedure is
required. Such constraints can take on the form of local regularisers, e.g. to ensure
limb symmetry or prevent interpenetration. Other methods rely on more global
prior models of shape and pose, either with explicit probabilistic models or by
baking this information into the output space itself. Some methods represent pose
and/or shape using a weighted set of basis vectors, and the appropriate regulariser
ensures that estimates don’t stray away from known poses. Another important
class of constraint are observation likelihoods, which measure the fidelity of the
3D estimates to some observation in the image.

• We then take an in depth look at the new crop of hybrid methods mentioned
earlier, in which human body models play an important role during learning. Many
methods in this area (including our own in Chapter 9) are pipeline approaches,
relying on some intermediate representation prior to predicting body model pa-
rameters. The integration of a body model in a neural network also allows us to
supervise the network with any quantity that can be derived from both the body



38 Related Work: 3D Human Shape and Pose Recovery

model and the image. After discussing the various possibilities, we briefly turn to
methods that handle temporal sequences of images.

• Finally, multi-person 3DHBR is starting to attract more interest and this setting
brings with it additional challenges compared to the single-person setting.

3.3.1 Learning Objectives for Discriminative Methods

Coordinate regression

Many methods treat the task (at least partially if not fully) as a regression problem,
i.e. by predicting the keypoint coordinates in metric space. Keypoint locations are
predicted relative to one other, for example relative to some root joint (e.g. head or
pelvis). Martinez et al. (2017) predict root-relative coordinates normalised by mean
and standard deviation. They show that this is achievable with a very simple network
operating purely on 2D keypoint coordinates from a separate method.

Some methods predict a keypoint’s location relative to its parent along the kinematic
tree, arguing that small, local displacements make for easier targets, e.g. Li and Chan
(2014). Distances between neighbouring keypoints have smaller variances, and are more
or less constant even for the same person. Left-right symmetry can also be exploited
and information shared between different sub-predictions. The downside here however,
is that errors can accumulate along the tree when reconstructing the full skeleton from
individual predictions.

Other work suggests to predict denser offsets, i.e. to other joints besides either the
parent or the root joint, e.g. Park et al. (2016); Mehta et al. (2017a). In the latter work
it is argued that a combination of root-, parent- and grandparent-relative offsets are
preferable, as the ideal offset will depend on the keypoint visibility and they show that
this improves performance on hard poses in their setup (e.g. sitting).

A related representation is the distance matrix, proposed by Moreno-Noguer (2017),
which encodes pair-wise distances between all joints, thus removing the location compo-
nent from coordinate regression and only considering lengths. They argue that such a
representation better captures similarity between related poses since encodes structural
information more explicitly. It exhibits a higher correlation between 2D projection and
3D pose when both are represented with distance matrices as opposed to Cartesian coor-
dinates. This representation is also invariant to global rotations, translations and scaling
when normalised, thus obviating the need for pre-alignment of poses as is necessary for
other methods. However, this necessitates an additional constrained optimisation step
to recover the pose and resolve ambiguities.

The main difficulty with the regression approach in general is that the mapping
between an image and the set of numerical values representing 3D keypoint locations is
a highly non-linear one, and is not easy to learn. This is however mitigated by pipeline
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approaches, which predict intermediate quantities such as 2D keypoints, such as the
simple and effective method of (Martinez et al., 2017). Regression methods also tend
to be more sensitive to image scale, requiring a tight crop around the person. These
problems can be addressed by heatmap-based methods, where pose is either fully or
partially represented in a way that corresponds to image pixels.

Volumetric heatmaps

An alternative to the direct regression approach is formulating the problem as one of
pixel-wise prediction. This approach to a significant extent addresses the aforementioned
difficulties with coordinate regression. In the context of 2D pose estimation, the choice
between coordinate regression and pixel-wise prediction has been all but resolved in
favour of the latter. See e.g. Tompson et al. (2014) for a discussion of this issue. In
2D, the correspondence between keypoints and pixel locations is the direct result of
the annotation process. In 3D though, further processing is needed to establish this
correspondence.

Pavlakos et al. (2017) extend the heatmap-based approach to 3D in a straightforward
manner, namely with volumetric heatmaps. The final output of the network is a
64× 64× 64 voxel grid per joint, x/y-axes correspond to pixel locations and the z-axis is
a discretisation of the metric depth range [-1, 1]. A 3D Gaussian is placed at each joint
in the grid. A stacked hourglass network (Newell et al., 2016) is repurposed for the task.
Instead of refining the same prediction from one module to the next, a coarse-to-fine
approach is taken where the depth resolution is increased from 1 in the first module
(i.e. 2D heatmap prediction) to 64 in four stages. The metric location of each joint is
obtained by backprojecting the x/y values using a known camera calibration matrix and
estimating the depth of the root joint based on the likely skeleton size and the size of its
projection on the image. This approach is shown to significantly outperform a coordinate
regression baseline, as well as competing pipeline approaches which up until that point
were the better-performing ones. Heatmap-based approaches are more applicable to the
multi-person case (Fabbri et al., 2020) as there is no built-in assumption on the number
of keypoints to expect, unlike with coordinate regression methods.

Another upside to such an approach is that heatmaps naturally capture uncertainty
about keypoint locations, and are amenable to post-processing that takes this uncertainty
into account. Direct coordinate regression in contrast does not admit straightforward
reasoning about uncertainty. Heatmap outputs such as the above can for example be
processed further using temporal filtering or with generative approaches that infer the
most likely pose based on per-keypoint unary terms representing location uncertainty to-
gether with pairwise terms that explicitly capture structural constraints. Such generative
approaches, most notably ones based on the pictorial structures framework (Felzenszwalb
and Huttenlocher, 2005; Andriluka et al., 2009) were at a time the dominant approach to
2D pose estimation but some have applied these to 3D pose with volumetric heatmaps,
e.g. Kostrikov and Gall (2014); Kinauer et al. (2017).
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While the aforementioned works predict x/y locations in pixel space — i.e. just the
joints with visible projections, Sárándi et al. (2021) argue for volumetric heatmaps that
represent metric space in all dimensions, not just in depth. This allows them to handle
truncated people naturally, as the x/y predictions need not correspond to joints visible
in the image crop. They demonstrate state-of-the-art results with a very simple network
and heavy data augmentation, including artificially truncated and occluded examples.
A differentiable layer that recovers the absolute root location using known focal length
and 2D keypoint predictions in image space allows them to supervise their method with
absolute coordinate locations as well.

Marginal heatmaps

The obvious downside of volumetric heatmaps is that despite requiring a lot of memory,
only coarse discretisations of 3D space are possible given current hardware constraints.
Kinauer et al. (2017) address this by resorting to coarse grids together with a per-voxel
refinement offset. The most common way however to retain the benefits of heatmap-
based representations while avoiding coarse outputs is to take a mixed approach, where
3D continuous predictions are tied to the 2D pixel grid in some manner. Another
disadvantage of the parametrisations previously discussed, whether location coordinates
or volumetric heatmaps is that they typically rely entirely on 3D ground truth.

To address these shortcomings, many methods resort to what can be referred to as
marginal heatmaps. This involves decoupling the different spatial dimensions in some
way, most commonly by predicting finely discretised 2D heatmaps (often corresponding
to the pixel grid) corresponding to the x/y dimensions and then separately regressing to
depth per 2D location Zhou et al. (2017) predict 2D heatmaps then regress separately
to depth per pixel. Mehta et al. (2017b) resort to what they refer to as location maps,
i.e. three 2D output maps, one per 3D coordinate. Their network regresses x/y/z values
per pixel, and loss is only considered for pixels in the 2D vicinity of projected keypoints.
At test time, the final values are read out from predicted 2D keypoint locations followed
by kinematic skeleton-fitting.

An explicit decoupling of the z-dimension allows these methods to supervise their
networks with a mixture of 2D and 3D annotations, which is especially useful given the
availability of large-scale datasets with 2D keypoint annotations. This has shown to
be very effective for increasing performance if not the main factor in some approaches.
The experiments in Mehta et al. (2017a), which proposes a regression-based approach,
demonstrate that the biggest effect on performance comes from transferring weights
from a network trained to 2D pose. Li and Chan (2014) also demonstrate the benefits
of pre-training on 2D data. More beneficial than pre-training is co-training with is
facilitated by such representations (Tekin et al., 2017; Sun et al., 2017b).

One argument in favour of coordinate regression approaches is that they in principle
allow for more precise outputs whereas heatmap-based approaches are limited in this
regard due to the discretised spatial grid. Several approaches thus argue for the use
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of arg-softmax output layers, which combine advantages of heatmaps and numerical
targets. Initially proposed in Chapelle and Wu (2010) for use in information retrieval, it
has been since been rediscovered or used for robot learning Levine et al. (2016), feature
detection Yi et al. (2016), 2D pose estimation Luvizon et al. (2018); Nibali et al. (2018)
and 3D pose estimation Luvizon et al. (2018); Sun et al. (2018); Nibali et al. (2019).
The idea is as follows: heatmaps necessitate the use of an argmax operation to get
location coordinates. This tends to introduce quantisation errors due to the coarseness
of network outputs. Instead, one can compute the expected location over heatmaps in
different dimensions, and additionally supervise these with numerical targets. This still
allows for the decoupling of dimensions, i.e. mixed 2D/3D training.

While Sun et al. (2018) conclude that 3D pose estimation performance does not
necessarily benefit from such an approach, they show that lower resolution volumetric
heatmaps degrade in performance more gracefully when combined with an arg-softmax-
like loss function compared to using only the regular cross-entropy loss. They also
include a nice ablation study that compares different prediction targets on an even
footing. What is however not discussed in these works is that when the detector outputs
two equally-confidence peaks in separate locations, these would be averaged out. An
alternative would then be to perhaps predict spatial offsets at each location, as is often
done for 2D pose estimation, e.g. in Insafutdinov et al. (2016). Sárándi et al. (2021)
also confirm that arg-softmax is important for getting away with coarsely discretised
volumetric predictions.

Joint rotations

Some methods parametrise 3D pose in terms of limb orientations. Luo et al. (2018)
argue that the limitations of coordinate regression-based approaches can be overcome
by predicting 2D keypoints together with normalised limb orientation vectors at pixels
that correspond to limb projections. These are scale-independent, obviate the need for
limb-length regularisation during training, and can in principle handle variable-sized
inputs. As a post-processing step, a skeleton is recovered iteratively from the root joint
outwards using: 2D joint locations, average limb orientation, known limb length ratios
and scale information. Similarly, Liu et al. (2019a) and Xiang et al. (2019) both predict
2D keypoint locations and 3D unit vectors, but the former feeds this information to a
3D keypoint prediction network, whereas the latter fits a parametric human mesh.

Orientation vectors, however, only partially describe a joint’s rotation, as these discard
axial rotations. Some, e.g. Yoshiyasu et al. (2018), thus predict per-joint rotation
matrices rather than orientation vectors, using a Gram-Schmidt orthogonalisation layer
in the network to ensure valid outputs. They argue that this representation of rotations
are more well-behaved compared to: (i) Euler angles which are discontinuous and (ii)
quaternions which are invariant to sign flips. Additionally, they discretise the global
rotation, treating it as a classification problem. A heuristic projection approach plus a
learned decoder is used to obtain joint heatmaps.



42 Related Work: 3D Human Shape and Pose Recovery

Instead of using heuristic projections, learned decoders or optimisation to derive joint
locations from joint rotations, these can be obtained deterministically by embedding
a kinematic model into the network. Zhou et al. (2016a) for example use a kinematic
skeletal model parametrised by global position, global orientation, and joint orientations.
Bone lengths are assumed to be known and are not part of the estimate. They show that
this improves over a baseline model which predicts joint locations directly. Contemporary
approaches embed more sophisticated statistical models, such as SMPL (Loper et al.,
2015), that capture both skeletal pose and surface-level shape, besides also decoupling
shape from pose entirely as described above. These methods resort to different rotation
parametrisations as we will discuss shortly in Sec. 3.3.3.

Surface representations

There is evidence from the literature that richer output spaces can have a regularising
effect and positively impact performance. Lassner et al. (2017) for example demonstrate
this for 2D keypoint prediction, showing that training a network to predict 91 keypoints
is better than using just 14 keypoints as a target on the same training data. Manually
collecting such detailed annotations on in-the-wild images, let alone obtaining them in a
consistent manner, is very difficult which is why Lassner et al. resort to a semi-automatic
approach.

Some methods predict dense surface correspondences. One recent notable example is
DensePose (Güler et al., 2018), who find a way to get reliable manual annotations for
surface correspondences to the SMPL body model, together with body part segmenta-
tions. While they do not recover 3D human pose or shape, subsequent work has shown
this to be a useful proxy representation for lifting to 3D, e.g. Rong et al. (2019); Xu
et al. (2019). Prior to the availability of such annotations for in-the-wild data, obtaining
dense correspondence data for prediction and model fitting required depth data, e.g.
Taylor et al. (2012); Pons-Moll et al. (2015).

Instead of predicting surface correspondences, Varol et al. (2018) predict volumetric
3D shape from data then fit a body model to that output. The model fitting step allows
for recovery of fine detail, but voxel-based outputs suffer from the same limitations
as volumetric heatmaps for 3D pose, e.g. a trade-off between resolution and memory
requirements. Gabeur et al. (2019) propose an alternate non-parametric surface rep-
resentation that sidesteps the resolution issue. They assume that the body surface
can be split into hidden and visible depth maps, which applies to many frontal poses
with limited self-occlusion. They then train network to predict both and use Poisson
reconstruction to recover the surface from the resulting point cloud.

We discuss methods that directly recover the parameters of statistical body models
in detail later, but as discussed above the surface is partly a function of a few pose-
independent shape parameters, as well as the pose vector itself.which control the
pose-dependent deformation of the body surface. Besides besides estimating pose, these
methods typically just regress to the shape parameters.



3.3 Methods 43

Pose Embeddings

Some methods rely on learned pose embeddings that replace metric per-joint coordi-
nates, arguing that poses occupy a lower-dimensional manifold in coordinate space.
Such embeddings have long found use in 3D pose estimation, to make both discrimi-
native mappings easier (Elgammal and Lee, 2004), as well as generative model-based
optimisation (Sminchisescu and Jepson, 2004).

Some recent methods that use similar ideas includes Li et al. (2015), who train a
network that maps image and pose vector to a common embedding space, such that the
dot product of the two embedding vectors is highest when they match. At test-time,
training set poses are scored against the input image and the average of the highest
scoring poses is returned. Tekin et al. (2016) and Katircioglu et al. (2018) propose a
more efficient method along similar lines. They train a denoising autoencoder for pose
reconstruction and a separate network that maps images to the pose encoding space.
At test-time, the image is mapped to the encoding space, and the decoder directly
reconstructs the 3D pose.

Auxiliary tasks

Several works have shown that auxiliary learning targets can be useful, both when
3D pose annotations are and are not available. Ideas that have been explored in the
literature include: binary depth relations, joint visibility and global orientation.

One idea is to use weak supervision in the form of relative orderings of joints, that is
merely predicting whether or not a certain depth relation exists. The main motivation
here is that it’s easier to obtain such weak 3D supervision through manual annotation
than it is to obtain precise 3D coordinates. Pons-Moll et al. (2014) thus propose to
learn a set of 30 PoseBits that represent such relations as “joint x is in front of joint y“.
They additionally show that this is useful for sampling.

Pavlakos et al. (2018a) use a more exhaustive set of such ”ordinal“ relations, finding
a way to get a minimal set that yields a global ordering on all 3D joints. They show
that a network trained to predict 2D joints and ordinal relations using a ranking loss
provides useful representations for a separate lifting stage, trained merely on unpaired
3D pose data. They also show that this helps in an end-to-end approach, with a network
that is additionally trained to predict relative coordinates.

Wang et al. (2019) predict 2D joints, as well as the relative location of limb joints to
torso (front, back, on-plane). In a second stage, they lift to 3D based on the preceding
outputs together with image features. Additionally, they predict 3D pose in multiple
stages: first from the torso outwards, then back towards the torso utilising previous
predictions for each subsequent stage.

Another auxiliary task that helps with predictions, is e.g. predicting the person’s
orientation or more specifically their yaw angle relative to the ground plane, as in
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Ghezelghieh et al. (2016). Unlike earlier work (e.g. Andriluka et al. (2010)) which used
viewpoint prediction together with viewpoint-specific detectors and kinematic priors,
here viewpoint prediction is used as a side task and source of information on the global
configuration within the same network for the main objective. (Kiciroglu et al., 2020)

Some methods show that joint visibility is a useful auxiliary task: Luvizon et al. (2018)
show that training the network to predict joint visibility as a function of max-pooled
heatmaps boost performance. As not all 3D datasets include joint visibility labels,
Cheng et al. (2019) use a cylindrical person model to add occlusion labels, and show
that these help when training 2D pose. They also train the lifting network to do the
completion in 3D, but the biggest improvement results from training over sequences.

3.3.2 Constraints for Learning and Inference

There are different ways to constrain the outputs of a 3D human body recovery system.
Broadly speaking, we can separate these into constraints that rely on prior knowledge
and constraints based on observation likelihoods.

In the former case, a priori knowledge about the human body — whether its shape or
the space of poses it can occupy — is used to guide learning and/or inference. This can
include local kinematic constraints based on things like limb length statistics and joint
angle limits, but also prior models of global pose probability. In some cases, some prior
knowledge might be baked into the output space, e.g. with heatmap or dictionary-based
representations. Monocular 3D pose estimation is an ill-posed task with ambiguities
resulting from projection or occlusion. Accordingly, prior models of pose conditioned on
partial observations also play a role but are less commonly used in modern methods, as
these typically target point estimates of 3D pose.

The other class of constraints involves making sure that the output respects some
observed quantity extracted from the image, such as 2D keypoints or silhouettes. Tradi-
tionally used by generative model-based approaches, discriminative methods increasingly
add such terms to the loss function to provide a form of weak supervision.

Local kinematic constraints

The easiest, and thus most common way to constrain the output of pose estimation
systems is through simple, local kinematic constraints. With discriminative methods,
this takes the form of additional loss terms applied during training. In Zhou et al.
(2017), bones in the same limb type (e.g. upper leg and lower leg) are required to
have a constant ratio w.r.t. limbs in a canonical skeleton. Dabral et al. (2018) use the
previous regulariser together with two other anatomically-inspired losses: They both
penalise pairs of symmetric limbs that have unequal lengths, and penalise joints that
bend unnaturally with heuristically set limits.
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Similar penalty terms are also common in model-based based generative approaches
to guide inference. Bogo et al. (2016) for example also use a heuristic penalty term
that discourages unrealistic joint angles. They additionally use an interpenetration
term enabled by their use of a surface rather than skeletal model. The SMPL mesh is
approximated by a set of "capsules", which allows for fast and differentiable penalisation
of self-intersection. A more precise version of this is proposed in Pavlakos et al. (2019a).

Global pose priors

The constraints previously discussed involve penalising unwanted configurations of
individual limbs or at most pairs of limbs. Many methods instead resort to more
global constraints in the form of prior models which assign probabilities to individual
configurations of pose. However, among recent pose estimation methods, such explicit
priors are not particularly common.

Rather than resort to fixed heuristics to penalise implausible poses, Akhter and
Black (2015) point out that joint angle limits aren’t static. To this end, they record
a new mocap dataset with a wider range of poses and use it to learn a prior that
distinguishes valid from invalid poses with pose-dependent joint angle limits, assigning
uniform probability to valid poses.

Bogo et al. (2016) and Pavlakos et al. (2019a) use global priors that assign probabilities
to individual poses: in the former case a Gaussian mixture model (GMM) and in the
latter case a variational autoencoder that assumes a simple Gaussian latent space.
While such formulations are convenient as well as effective provided the right amount of
training data, they are not without flaws. Treating each pose vector as a point in global
latent space neglects the compositional nature of pose, making it difficult to generalise
to unseen poses (Lehrmann et al., 2013). Jahangiri and Yuille (2017) also show that
GMM-based priors reflect the statistics of the training set to a fault. Rare but not at
all unusual poses (e.g. sitting poses) — rarity often being an artifact of a particular
training set — are assigned low probabilities. This in all likelihood applies to VAE-based
priors as well.

Several methods resort to implicit priors of pose by means of adversarial learning.
A separate sub-network is trained to distinguish plausible from implausible poses and
provide an error signal accordingly. Tung et al. (2017b) apply this approach to a latent
PCA space of pose, while Kanazawa et al. (2018) train the discriminator directly on
SMPL pose parameters. This biases the training away from implausible poses and
allows them to use external mocap data unpaired with images. Kanazawa et al. (2018)
additionally demonstrate that this allows for reasonable performance without paired
annotations entirely. Yang et al. (2018) use the network from Zhou et al. (2017) as a
generator. The discriminator receives 2D heatmaps, depth maps, image features and
pairwise joint distance features and is applied to the generator outputs. This is shown
to help with training the latter.



46 Related Work: 3D Human Shape and Pose Recovery

Drover et al. (2018) motivate their work with the observation that a predicted 3D
pose might look plausible when projected from one viewpoint, but not from another. To
this end, they train the lifting network from Martinez et al. (2017). Then, predictions
are projected from a random view and passed to a discriminator which decides if these
are plausible 2D configurations. This performs as well as a baseline trained with ground
truth 2D joints. Similarly, in Wandt and Rosenhahn (2019) a network predicts 3D
pose and camera parameters, and a separate GAN judges the plausibility of the pose.
Chen et al. (2019) use a similar approach but with the express goal of only relying on
2D annotations to train their 3D pose estimation network. They also close the loop
between 2D and 3D representations in more ways than one: For one, they apply a
random 3D transformation, project the joints and use a discriminator to determine if
2D pose is a plausible one. Additionally, they lift transformed projection and compare
to transformed 3D joints. They also invert the transformation, project the joints and
compare to original 2D pose. Both of these works demonstrate strong performance
compared to other weakly-supervised approaches.

There are two types of uncertainty when lifting 2D pose estimates to 3D: Uncertainty
stemming from the depth ambiguity and uncertainty in the 2D observations themselves.
Some methods have sought to explicitly take these into account.

Conditional prior models are also useful given the ambiguities involved in lifting 2D
pose to 3D, e.g. depth ambiguities and uncertainty in the 2D observations themselves.
Simo-Serra et al. (2012) focus on handling noisy 2D observations. Their idea is to
generate several pose candidates from 2D joint detections. They achieve this by fitting
Gaussians to observations in 2D and projecting these into 3D space. They then sample
solution candidates in 2D, and efficiently select among these by minimising reprojection
error to find the best pose.

Sharma et al. (2019) present a method that uses a sampling-based strategy, similarly
to Simo-Serra et al. (2012), but to better handle the multi-modal nature of 3D lifting
rather than to integrate 2D observation uncertainty. There, they predict 2D joints and
ordinal relations. They train a conditional variational autoencoder (CVAE) Sohn et al.
(2015) that can sample 3D poses from 2D and rank the samples based on agreement with
the ordinal scores. The best-performing sample is picked as the final prediction. While
this in principle allows for training with unpaired 3D data, they observe that the CVAE
needs to see a pose distribution similar to the test set. Jahangiri and Yuille (2017) also
propose a rejection sampling approach to obtain diverse 3D hypotheses conditioned
on 2D pose estimates. They use the pose limit data from Akhter and Black (2015)
to restrict samples to physically plausible poses while also accounting for observation
uncertainty in 2D.

Constrained output spaces

An alternative to using prior models is to reparametrise the output space such that it
reflects the statistics of pose. Volumetric heatmap-based representations for example
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by design impose an upper bound on the possible spatial dimensions of the output,
informed by the statistics of skeleton dimensions (Pavlakos et al., 2017), but these are
very mild restrictions on predictions compared to the following methods.

Some methods take a classification-based approach to pose. Rogez et al. (2020)
treat the full pose vector as an instance of one of 100 pose classes. For each person
hypothesis, they propose to predict the pose class, as well as an offset to compensate
for the difference between an instance and the class prototype. This pose prediction
component is embedded in a network similar to Faster R-CNN (Ren et al., 2015)
which, in addition to predicting 3D pose, localises persons as well. Similarly, Yoshiyasu
et al. (2018) discretise global pose into classes but use continuous regression for per-
joint rotations Güler and Kokkinos (2019) in contrast take a classification approach to
predicting individual joint rotations. This allows them to incorporate constraints on
relative rotations as they only consider physically plausible joint extensions and leads to
more robust predictions.

Exemplar-based approaches, e.g. Shakhnarovich et al. (2003); Mori and Malik (2006);
Yasin et al. (2016); Chen and Ramanan (2017), take classification-based approaches
to their logical extreme by relying on a database of poses. Chen and Ramanan (2017)
argue that 3D human pose estimation boils down to ”2D pose estimation + matching“.
Accordingly, the camera and 3D pose pair are retrieved from a database that best match
2D pose detections. The retrieved pose is warped with a simple procedure to better
match the observed projection. Yasin et al. (2016) take a similar approach but with the
k-nearest 3D poses. Exemplar-based methods are limited by the stored poses, but this
arguably applies to CNN-based discriminative methods as well, which can be viewed as
performing a sophisticated and efficient form of exemplar-matching against a database
— the training set (Tatarchenko et al., 2019).

Dictionary-based methods, e.g. Ramakrishna et al. (2012); Wang et al. (2014b); Zhou
et al. (2016b); Tomè et al. (2017), represent the space of poses as an overcomplete
dictionary of basis vectors. This can be accomplished for example by applying PCA
separately to individual actions (Ramakrishna et al., 2012) or to pose clusters (Tomè
et al., 2017) and concatenating the resulting basis vectors. Together with the appropriate
regulariser on the basis vector weights, e.g. one that encourages sparsity (Wang et al.,
2014b), this ensures that outputs somewhat reflect the statistics of pose. As pointed out
in Akhter and Black (2015) however, this does not guarantee outputs that are plausible
— provided we assume all bones are intact.

Observation likelihoods

So far, we have mostly discussed constraints based on prior knowledge. These are
independent of the underlying image and are derived from our knowledge of the human
body, e.g. its common shapes and poses. Another very important type of constraint
— albeit one that has become less important given the rise of discriminative methods
— are those derived from image observations, e.g. edges, silhouettes, keypoints and
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depth information. Prior to the availability of large annotated datasets and strong
discriminative methods, 3DHBR methods typically relied on optimisation schemes where
a model of the human body was matched against simple image abstractions. These
were often difficult to extract reliably and also difficult to match the model against,
e.g. low-level edges (Hogg, 1983) and binary silhouettes obtained with background
subtraction (Sminchisescu and Triggs, 2003; Balan et al., 2007c) or more involved
methods (Guan et al., 2009; Gall et al., 2010). In contrast, 2D keypoints are significantly
easier to recover in a differentiable manner from human body models. While some early
approaches relied on manually-annotated keypoints (Lee and Chen, 1985; Taylor, 2000;
Guan et al., 2009), advances in 2D pose estimation have made it easy to also predict 2D
keypoints automatically and reliably from images. 2D keypoints are accordingly a very
popular choice of constraint both during training (Kanazawa et al., 2018) and inference
(Bogo et al., 2016). Constraints based on image observations are very relevant to the
hybrid methods we present next, and will thus continue the discussion thereof in the
next section.

3.3.3 Hybrid Methods for Mesh Recovery

In this section we focus on a class of methods that is particularly relevant to this
thesis, as we present one such method in Chapter 9. These are methods that combine
elements of prediction-based and comparison-based approaches in a fairly novel way that
has been enabled by advances in data acquisition, parametric body modelling, neural
network training and differentiable rendering. These approaches address one of the key
shortcomings of comparison-based approaches — especially generative, model-based
approaches — namely initialising the search for good model parameters. The integrated
model also helps to constrain the predictions of the discriminative prediction function
during training and enables more flexible supervision than would otherwise be possible.

The basic structure of such approaches is as follows: A discriminatively-trained encoder
predicts the parameters of a body model, possibly after predicting an intermediate repre-
sentation (e.g. keypoints or silhouettes). Many recent works integrate the SMPL model
(Loper et al., 2015) as it produces a mesh from pose and shape representations with dif-
ferentiable, as well as mostly linear operations. The body model can thus be instantiated
from network shape and pose predictions, and is then followed by a decoder that renders
the resulting skeleton and mesh in some form, e.g. by projecting skeleton keypoints to
2D or by rendering the mesh surface. The full model can be trained end-to-end using a
variety of losses on both the model parameters, but also on any quantity that can be
derived from the model. While this not common, in principle the presence of the model
allows for iterative optimisation at test-time to refine the parameters on the basis of the
initial prediction (Tung et al., 2017a; Pavlakos et al., 2018b; Zanfir et al., 2020).

In the following, we will focus on different aspects relevant to such methods: (i)
intermediate representations prior to predicting body model parameters, (ii) which
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body models are used and how they can be mapped back to the image, (iii) how such
approaches can be supervised, and (iv) extensions of such models to image sequences.

Intermediate Representations

One of the main aspects that distinguishes methods in this space is the type of proxy
representation used prior to the lifting step. Various proxies have been explored in the
literature including in 2D (e.g. keypoints, segmentations) and 3D (e.g. keypoints, mesh
vertex locations, limb orientations). Another line of work involves breaking down the
global shape and pose representation into a hierarchy of part-based representations.

Some methods avoid proxy representations altogether (Kanazawa et al., 2018), but it
has been shown that intermediate representations can result in more sample-efficient
learning as well as better reconstruction results (Chapter 9). Examples include 2D
keypoints & silhouettes (Pavlakos et al., 2018b)), body part segmentations (Chapter 9),
surface correspondences (Rong et al., 2019; Xu et al., 2019; Zhang et al., 2019) or even
meshes (Kolotouros et al., 2019b) and voxel reconstructions (Varol et al., 2018). In
contrast to our work, Rong et al. (2019) find that the benefits of using intermediate
representations are limited to non-existent depending on how the network is supervised.
We’re not sure what explains this discrepancy, but in any case there are other benefits
to using intermediate representations, such as the use of synthetic data or using the
proxy representation for self-supervision of the lifting network. Pavlakos et al. (2018b)
for example separately train networks that map from silhouette and 2D keypoints
to SMPL shape and pose parameters. These sub-networks are then embedded into
an end-to-end pipeline. Another benefit of intermediate representations is improved
interpretability, as body model parameters are global vectors less tied to the image than
2D pixel-wise representations.

The aforementioned methods treat the pose parameters as a global representation
to be estimated in one shot, but others break it down into components. (Güler and
Kokkinos, 2019) predict individual joint rotations separately by pooling information
from connected joints. For this, they use 2D keypoint estimates. (Zhang et al., 2019)
also use 2D keypoint locations as a guide. In addition to using a global IUV map as an
intermediate representation, they use RoI-pooling (Ren et al., 2015) to extract separate
per-keypoint features. From these they predict part-level IUV maps and intermediate
rotation features before estimating the full global pose. A dropout-like mechanism
(Srivastava et al., 2014) at the level of parts is used to encourage robustness against
bottom-up errors and occlusions. Georgakis et al. (2020) also exploit the hierarchy of
the kinematic chain to avoid the standard ”features-in-parameters-out“ approach as
they call it. The SMPL skeleton is split into six kinematic sub-chains including a root
chain that serves as parent to the rest. The pose parameters of all chains are estimated
separately in an iterative fashion, and child chains additionally depend on the root
estimate. They show that this results in more graceful degradation under occlusion
compared to competing approaches.
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While some methods use surface correspondences to the SMPL mesh as a proxy
representation, others output the surface itself in 3D. Varol et al. (2018) output a voxel
representation of the SMPL mesh after first estimating 2D keypoints, 3D keypoints and
part segmentations. SMPL can be subsequently fit to the volumetric output which is
limited in terms of resolution. Kolotouros et al. (2019b) take a more structured approach
and predict the vertex locations of the SMPL mesh. They use graph convolutions
that smooth predictions within local neighbourhoods while taking image features into
account. A simple regressor predicts the SMPL shape and pose parameters using
the mesh as input. The intermediate output thus captures some surface details (e.g.
clothing, hair) as a by-product, but Zheng et al. (2019) show that these are more easily
extracted by first estimating SMPL parameters (i.e. posing the model) and then refining
the corresponding mesh with surface normal estimates. Choi et al. (2020) similar to
Kolotouros et al. (2019b). use graph convolutions to predict a mesh but instead take a
coarse-to-fine approach. After lifting 2D pose estimates to 3D using the SimpleBaseline
network (Martinez et al., 2017), they predict a sparsified human mesh consisting of 96
vertices, that is refined in multiple steps until the full SMPL mesh is produced. Moon
and Lee (2020) propose a so-called lixel representation for 3D coordinates. They output
three 1D heatmaps per joint or per vertex (i.e. one per spatial coordinate). This is a
more efficient representation than volumetric heatmaps (e.g. (Pavlakos et al., 2017))
and that scales to the SMPL mesh. Vertex coordinates are thus predicted in a way
that is registered spatially to the image along each dimension separately, and such that
prediction uncertainty is represented.

Body Models

Most methods in this space use SMPL as the parametric body model but there are some
exceptions. Xu et al. (2019) use a custom, SMPL -like model whose parameters are
learned from all scans in the CAESAR database (Robinette and Daanen, 1999). The
goal is to learn a richer, gender-neutral shape space. They also add 28 joints to the
default SMPL skeleton to capture fingers and five additional joints for spine and head.
Xiang et al. (2019) use a model derived from SMPL — Frankenstein (Joo et al., 2018) —
that additionally captures facial expressions besides fine-grained hand pose, but does
away with the pose blend shapes. The latter leads to a drop in realism with respect to
vanilla SMPL but it’s not clear if this provides benefits in terms of ease of optimisation.
Zanfir et al. (2020)

As the mapping from parametric body model to keypoints or part segmentation maps
is deterministic, decoders are typically parameter-free. Keypoints can be recovered with
simple projection and binary silhouettes can either be obtained via projecting mesh
points (Pavlakos et al., 2019b) or via differentiable rendering (Loper and Black, 2014;
Henderson and Ferrari, 2018). In the latter case, we can also obtain more complicated
more abstractions such as part segmentations provided that labels are attached to mesh
vertices.
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Deriving keypoints or silhouettes necessitates estimating camera parameters together
with the SMPL parameters. Most methods apply a weak perspective model (or scaled
orthographic projection), which requires estimating just three parameters (Kanazawa
et al., 2018). This approximation works because humans tend to be compact in the
depth dimension relative to their distance to the camera.

One exception to the use of parameter-free decoders is the method of Tan et al.
(2017), who resort to a learned decoder instead. Theirs is a neural network trained to
reconstruct silhouettes from SMPL parameters on an artificial dataset. This decoder is
then kept fixed, and the encoder is trained to produce parameters that result in accurate
silhouettes. The encoder can additionally be trained using a regression loss on the model
parameters if available.

Types of Supervision

The embedded parametric body model enables a diverse array of losses for training these
methods. The most common ones are losses on body model parameters, mesh vertex
locations and 3D and/or 2D keypoints. Some methods also use part segmentations,
dense surface correspondences, optical flow and photometric losses as well.

Most methods use direct supervision in the form of body model parameters that
encode shape and pose whenever available. Kanazawa et al. (2018) among others uses
the default axis-angle rotation used to represent poses in SMPL , but others argue
for the use of rotation matrices as these are better behaved and can lead to faster
convergence if not to better results (Lassner et al., 2017; Pavlakos et al., 2018b; Omran
et al., 2018; Kolotouros et al., 2019b). Similarly, Zhou et al. (2019b) propose an alternate
6D-representation for rotations that — unlike axis-angle representations, Euler angles,
and quaternions — is also continuous, and leads to better empirical results on different
pose estimation tasks than full rotation matrices. Kolotouros et al. (2019a) use this
representation for 3D shape and pose estimation. Ground truth body model parameters
are difficult to obtain, but Omran et al. (2018) and Rong et al. (2019) show that a
small amount of such annotations is sufficient when combined with alternate sources of
supervision, such as 3D or 2D keypoints. We will discuss other methods that attempt to
do away with such supervision entirely. (Kanazawa et al., 2018) additionally show good
results with indirect supervision using body model parameters from a motion capture
dataset. An adversary is trained on this data to judge the results of the main regressor,
and in the ”unpaired setting“ the regressor is trained to fool the adversary with only 2D
keypoint supervision.

Besides supervision through body model parameters, the most common type is
supervision via keypoint losses. 2D keypoint annotations are available in abundance for
in-the-wild datasets and help with generalising to in-the-wild settings. 3D keypoints
can be used for supervision as well, either derived from the body model parameters
or from 3D pose datasets such as H36M (Ionescu et al., 2014) or MPI-INF-3DHP
(Mehta et al., 2017a). This requires a separate regressor from the SMPL mesh to the
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keypoints. Similarly, some methods use mesh vertex error as a loss as this is richer than
merely keypoint supervision. Only training with a loss on the keypoints can result in
the prediction of unnatural shapes. (Güler and Kokkinos, 2019) demonstrate that a
combination of multiple losses is important for achieving balanced results that improve
both shape and pose estimation.

Zanfir et al. (2020) use a loss based on semantic part segmentation, similar to the one
used by Zanfir et al. (2018a). This loss doesn’t use differentiable rendering, but simply
projects all mesh vertices to the image. Each pixel of a bottom-up part segmentation
attracts the closest mesh vertex with the same part label. This can be viewed as ICP-like
process with 2D-3D correspondences.

Rong et al. (2019) look into question of which data to acquire for supervision, as
getting SMPL parameters in-the-wild is tricky DensePose annotations are a good proxy
for supervision (much more so than sparse 2D keypoints). Xu et al. (2019), besides
arguing for predicting the body pose parameters from an IUV map (obtained from
DensePose), use a differentiable rasterizer that allows them to supervise the network
with a combination of losses from part maps / 2D pose / IUV map and on the parameters.
Additionally, they produce a new synthetic dataset (MOCA) with 2M images which
gives an edge in performance.

While most recent methods rely on purely semantic correspondences to the image
as an optimisation target, some additionally use low-level information as optimisation
targets — much more common in older methods. Besides using keypoints and silhouettes
for supervision, Tung et al. (2017a) also use motion information as source of supervision
during training but also at test-time to refine body parameter estimates. Given model
predictions in successive frames, vertex displacements in time are compared against
estimates of optical flow and the discrepancy is used as a loss signal. Similarly, direct
photometric losses are uncommon in this space given the diversity of human appearance
that is not captured by statistical body models. These are more commonly used for
hand pose estimation and 6DOF rigid object reconstruction and tracking when the
object is known beforehand. Recent methods that leverage these for 3D human shape
and pose estimation are those of Pavlakos et al. (2019b) and Rueegg et al. (2020).

One way to use such appearance-based losses is together with multi-view images
or monocular video sequences.Pavlakos et al. (2019b) train their model with batches
consisting of images of the same person. They estimate model parameters for each
image, figure out which vertices are visible across images and project these to get the
corresponding texture value. Colour consistency among corresponding vertices is then
used as a supervision signal. At test-time their method is applied to single images, and
they find that this training procedure helps a little both in the unpaired setting as well
as when 3D ground truth is available. This also allows them to use unlabelled in-the-wild
video for training but this does not appear to improve in-the-wild performance.

All of the above methods use 3D supervision in some form or other. Most use at least
some amount of direct supervision, but can use unpaired 3D data to constrain network
outputs such as HMR. In contrast, Rueegg et al. (2020) attempt to tackle the challenging
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problem of learning 3D without access to any 3D data. They use a CycleGAN -like
architecture (Zhu et al., 2017a), where one loop learns to go back and forth between an
image to separate part segmentation, appearance features, and the background. The
second loop connects the part segmentations to SMPL body parameters. The network
is supervised by objective that encourages the estimated SMPL parameters together
with the background, appearance features, and part segmentations to produce an image
that matches the input.

Image Sequences

Several works extend these methods to video, e.g. Sun et al. (2019), Kanazawa et al.
(2019) and Kocabas et al. (2020). The latter work is an extension of SPIN to video,
while Kanazawa et al. (2019) extend HMR to receive multiple frames. These are jointly
encoded, SMPL parameters are predicted both at the current frame and at a temporal
offset in both directions. A separate single-frame model is trained to mimic this joint
frame encoding, allowing for the hallucination of motion from a single frame. They show
that this also helps improve single-frame 3D shape and pose estimation performance.

3.3.4 Multi-person 3D Pose Estimation

As with multi-person 2D pose estimation, there are two classes of methods that address
the task in 3D: person-first or top-down methods which start from person detections
and for each estimate 3D person, and keypoint-first or bottom-up methods which first
proceed in a person-agnostic manner and then group detected keypoints into person
hypotheses. However, unlike with 2D pose estimation, top-down methods here often
resort to an extra optimisation step to ensure global consistency of some quantity such
as distance to the observer or camera parameters.

Person-first methods

In a previous section, we described the method of Rogez et al. (2020). Others include
the work of Zanfir et al. (2018a), in which they first detect people in the scene, then
use the multi-task network from Popa et al. (2017) to produce 2D/3D joints as well as
semantic labels. Additionally, an initial shape and pose estimate is made per person
per-frame. They then optimise over all people in the scene with terms that consider
ground plane constraints as well as a penalty term for simultaneous volume occupancy.

Moon et al. (2019) first detect people then for each person they estimate the absolute
depth of the root joint as well as root-relative joint offsets. Dabral et al. (2019) replace
the keypoint head in Mask R-CNN (He et al., 2017) with a Stacked Hourglass Network
(Newell et al., 2016). Each 2D estimate is with Simple 3D Baseline network (Martinez
et al., 2017). Afterwards, they optimise for global positions and focal length.
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Keypoint-first methods

Methods that produce bottom-up 3D-pose evidence for multiple people at once includes
the work of Mehta et al. (2018). They build on the location maps proposed in Mehta
et al. (2017b) which were designed for single person 3D pose estimation, meaning that
they assume all joints are visible and that at most one instance per joint needs to be
read out from the corresponding map. This is not the case with multiple people, so they
propose so-called occlusion-robust pose maps. The key idea is to introduce redundancy
such that information on different joints can be obtained in multiple ways. The full-pose
can be read out at torso locations, per-joint poses can be read out at the corresponding
2D locations, and complete limb poses are encoding at any 2D location of one of the
limb joints. An occlusion-aware inference strategy reads out 3D information as needed.

Zanfir et al. (2018b) predict 2D joint locations and use a learned scoring function
to group these into limbs. An integer linear optimisation is performed to assemble
skeletons that respect kinematic constraints. The same network that predicts 2D joints
also trained to predict full 3D pose at every pixel corresponding to a limb as a source of
additional evidence.

The problem with approaches that proceed from the bottom-up is the potential for
decoding conflicts when estimates for similar joints belonging to different people coincide
or are in close proximity. Mehta et al. (2020) propose to address this as follows: A fully-
convolutional network predicts 2D joint maps, 2D part affinity fields, and parent-relative
3D offsets. Rather than assemble 3D pose based on bottom-up evidence, this is fed to a
separate network that predicts the full 3D pose for each person hypothesis.

3.4 Summary

In this chapter we reviewed recent work on 3D human shape and pose estimation.
We discussed different variants of this task, as it is less well-defined than pedestrian
detection. This included a discussion of various 3D representations of the human body,
in particular the class statistical mesh models relevant to our work. We then described
relevant datasets as well as the unique challenges of obtaining 3D ground truth especially
outside of controlled studio settings.

We then dedicate the rest of the chapter to reviewing methods. We start with
discriminative approaches and specifically the different kinds of targets used to train
such methods, as these are relevant to recent methods with a strong generative component.
The notion of constraints plays an important role in this area, whether to constrain
predictions of discriminative methods or to constrain the search for suitable parameters
in generative approaches. There are many types of constraints that include simple
physical or anatomical constraints and probabilistic priors of pose, but also output
spaces that incorporate constraints from the outset. While these are constraints that
rely on prior knowledge, another important class of constraints are ones based on image
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observations such as keypoints and silhouettes. Before concluding, we review hybrid
methods that integrate statistical body models into a discriminative NN-based predictor.
Finally, we briefly discuss methods designed for handling multiple people, which are
starting to attract more interest.





Part I

D E T E C T I O N





4
Lessons from a Decade of Pedestrian
Detection: 2004-2014

Paper-by-paper results make it easy to miss the forest for the trees. We analyse
the remarkable progress of the decade from 2004–2014 by discussing the main
ideas explored in the 40+ detectors present in the Caltech Pedestrian Dataset

(Caltech) (Dollár et al., 2009b). We observe that there exist three families of approaches,
all reaching similar detection quality. Based on our analysis, we study the complemen-
tarity of the most promising ideas by combining multiple published strategies. This
new decision forest detector achieves the best performance on the challenging Caltech
dataset in July 2014.

This work has been published at the “Computer Vision for Road Scene Understanding
and Autonomous Driving” workshop (Benenson et al., 2014). Rodrigo Benenson was
the lead author, Mohamed Omran conducted most of the experiments, and Jan Hosang
contributed experiments incorporating context using 2Ped (Ouyang and Wang, 2013b)
in Sec. 4.4.2, plots, writing, and analyses.

4.1 Introduction

The aim of this chapter is to review progress over a decade of pedestrian detection
between 2004 and 2014 (40+ methods), identify the main ideas explored, and try to
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Figure 4.1: The last decade has shown tremendous progress on pedestrian detection.
What have we learned out of the 40+ proposed methods?
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(a) INRIA test set (b) Caltech test set (c) KITTI test set

Figure 4.2: Example detections of a top performing method (SquaresChnFtrs).

quantify which ideas had the most impact on final detection quality. In the next sections
we review existing datasets (Sec. 4.2), provide a discussion of the different approaches
(Sec. 4.3), and experiments reproducing/quantifying the recent years’ progress (Sec. 4.4,
presenting experiments over ∼ 20 newly trained detector models). Although we do not
aim to introduce a novel technique, by putting together existing methods we report best
detection results at the time of publication on the challenging Caltech dataset.

4.2 Datasets

In the period covered by this analysis, multiple public pedestrian datasets have been
collected over the years: INRIA (Dalal and Triggs, 2005), ETH (Ess et al., 2008), TUD-
Brussels (Wojek et al., 2009), Daimler (Enzweiler and Gavrila, 2009) and the related
Daimler Stereo (Keller et al., 2009), Caltech (Dollár et al., 2009b), and KITTI (Geiger
et al., 2012) are the most commonly used ones. They all have different characteristics,
weaknesses, and strengths.

INRIA is amongst the oldest and as such has comparatively few images. It benefits
however from high quality annotations of pedestrians in diverse settings (city, beach,
mountains, etc.), which is why it was commonly selected for training (see also Sec. 4.4.4).
ETH and TUD-Brussels are mid-sized video datasets. Daimler is not considered by
all methods because it consists of greyscale images. Daimler Stereo, ETH, and KITTI
provide stereo information. All datasets except INRIA are derived from video sequences,
and thus support the use of optical flow as an additional cue.

At the time we conducted this analysis, Caltech and KITTI were the predominant
benchmarks for pedestrian detection. Both are comparatively large and challenging.
Caltech stands out for the large number of methods that have been evaluated side-by-side.
KITTI stands out because its test set is slightly more diverse, but had not been yet
used as frequently as Caltech. INRIA, ETH (monocular), TUD-Brussels, Daimler
(monocular), and Caltech are available under a unified evaluation toolbox. KITTI uses
its own separate evaluation server with unpublished test annotations. Both benchmarks
maintain an online ranking which provide a quick overview of results.

In this chapter we primarily use Caltech for comparing methods, and INRIA and
KITTI as secondary benchmarks. See Fig. 4.2 for example images. Caltech and INRIA
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results are measured in log-average miss rate (laMR, lower is better), while KITTI uses
area under the precision-recall curve (AUC, higher is better). Chapter 2 contains a more
comprehensive discussion of datasets (Sec. 2.2) as well as of these evaluation metrics
(Sec. 2.1).

Individual papers usually only show a narrow view over the state of the art on a
dataset. Having an official benchmark that collects detections from all methods greatly
facilitates comparisons against the state of the art for both authors and reviewers. The
collection of results enable retrospective analyses such as the one we present next.

4.3 Elements of Pedestrian Detectors

Tab. 4.1 and Fig. 4.3 together provide a quantitative and qualitative overview over 40+
methods whose results are published on the official Caltech benchmark up until July
2014. Methods marked in italics are our newly trained models (described in Sec. 4.4).
We refer to all methods using their Caltech benchmark shorthand. Instead of discussing
the methods’ individual particularities, we identify the key aspects that distinguish each
method (ticks of Tab. 4.1) and group them accordingly. We discuss these aspects in the
next subsections.

Brief Chronology. Our analysis starts with the seminal Viola-Jones (VJ ) detector,
which Viola et al. (2003) applied to the task of pedestrian detection after its success with
face detection (Viola and Jones, 2001). Soon after, Dalal and Triggs (2005) introduced
the landmark HOG detector, which later served as a building block for the now classic
Deformable Part Model detector (DPM — or LatSvm on the Caltech leaderboard)
(Felzenszwalb et al., 2008). In 2009, Caltech was introduced (Dollár et al., 2009b) with
a comprehensive quantitative comparison of seven pedestrian detectors. Since then,
the evaluation metric changed from per-window (FPPW) to per-image (FPPI), once
the flaws of the per-window evaluation were identified (Sec. 2.1, Dollár et al. 2012b).
This new metric was more suited for evaluating detection rather than classification
performance, and weaknesses in older methods that had otherwise been obscured came
to light.

About one third of the methods considered here were published during 2013, reflecting
a renewed interest in the problem. Similarly, half of the KITTI results for pedestrian
detection were submitted in 2014.

4.3.1 Training Data

Fig. 4.3 shows that differences in detection performance are, unsurprisingly, dominated by
the choice of training data. Methods directly trained on Caltech systematically perform
better than methods that attempt to generalise from INRIA to Caltech. Tab. 4.1 gives
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VJ (Viola and Jones, 2004) 94.73% DF X X Haar I
Shapelet (Sabzmeydani and Mori, 2007) 91.37% - X Gradients I

PoseInv (Lin and Davis, 2008) 86.32% - X HOG I+
LatSvm-V1 (Felzenszwalb et al., 2008) 79.78% DPM X HOG P

ConvNet (Sermanet et al., 2013) 77.20% DN X Pixels I
FtrMine (Dollár et al., 2007) 74.42% DF X HOG+Color I

HikSvm (Maji et al., 2008) 73.39% - X HOG I
HOG (Dalal and Triggs, 2005) 68.46% - X X HOG I

MultiFtr (Wojek and Schiele, 2008) 68.26% DF X X HOG+Haar I
HogLbp (Wang et al., 2009) 67.77% - X HOG+LBP I
AFS+Geo (Levi et al., 2013) 66.76% - X Custom I

AFS (Levi et al., 2013) 65.38% - Custom I
LatSvm-V2 (Felzenszwalb et al., 2010) 63.26% DPM X X HOG I

Pls (Schwartz et al., 2009) 62.10% - X X Custom I
MLS (Nam et al., 2011) 61.03% DF X HOG I

MultiFtr+CSS (Walk et al., 2010) 60.89% DF X Many T
FeatSynth (Bar-Hillel et al., 2010) 60.16% - X X Custom I

pAUCBoost (Paisitkriangkrai et al., 2013) 59.66% DF X X HOG+COV I
FPDW (Dollár et al., 2010) 57.40% DF HOG+LUV I

ChnFtrs (Dollár et al., 2009a) 56.34% DF X X HOG+LUV I
CrossTalk (Dollár et al., 2012a) 53.88% DF X HOG+LUV I
DBN−Isol (Ouyang and Wang, 2012) 53.14% DN X HOG I

ACF (Dollár et al., 2014) 51.36% DF X HOG+LUV I
RandForest (Marín et al., 2013) 51.17% DF X HOG+LBP I&C

MultiFtr+Motion (Walk et al., 2010) 50.88% DF X X Many+Flow T
SquaresChnFtrs (Benenson et al., 2013) 50.17% DF X HOG+LUV I

Franken (Mathias et al., 2013) 48.68% DF X HOG+LUV I
MultiResC (Park et al., 2010) 48.45% DPM X X X HOG C
Roerei (Benenson et al., 2013) 48.35% DF X X HOG+LUV I
DBN−Mut (Ouyang et al., 2013) 48.22% DN X X HOG C

MF+Motion+2Ped (Ouyang and Wang, 2013b) 46.44% DF X X Many+Flow I+
MOCO (Chen et al., 2013) 45.53% - X X HOG+LBP C

MultiSDP (Zeng et al., 2013) 45.39% DN X X X HOG+CSS C
ACF-Caltech (Dollár et al., 2014) 44.22% DF X HOG+LUV C

MultiResC+2Ped (Ouyang and Wang, 2013b) 43.42% DPM X X X HOG C+
WordChannels (Costea and Nedevschi, 2014) 42.30% DF X Many C

MT-DPM (Yan et al., 2013) 40.54% DPM X X HOG C
JointDeep (Ouyang and Wang, 2013a) 39.32% DN X Color+Gradient C

SDN (Luo et al., 2014) 37.87% DN X X Pixels C
MT-DPM+Context (Yan et al., 2013) 37.64% DPM X X X HOG C+

ACF+SDt (Park et al., 2013) 37.34% DF X X ACF+Flow C+
SquaresChnFtrs (Benenson et al., 2013) 34.81% DF X HOG+LUV C

InformedHaar (Zhang et al., 2014) 34.60% DF X HOG+LUV C
Katamari-v1 (ours) 22.49% DF X X X HOG+Flow C+

Table 4.1: List of methods with Caltech results sorted by log-average miss rate (lower is
better). Consult Sec. 4.3 for descriptions of each column. See also matching Fig. 4.3.
“HOG” refers to our re-implementation of (Dalal and Triggs, 2005).
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SquaresChnFtrs

Katamari-v1

Figure 4.3: Caltech detection results.

additional details on the training data used2. High performing methods with “other
training” use extended versions of Caltech. For instance MultiResC+2Ped uses Caltech
plus an extended set of annotations over INRIA, MT-DPM+Context uses an external
training set for cars, and ACF+SDt employs additional frames from the original Caltech
videos.

4.3.2 Solution Families

Overall we notice that out of the 40+ methods we can discern three families: 1) DPM
variants (e.g. MultiResC (Park et al., 2010), MT-DPM (Yan et al., 2013)), 2) Deep

2“Training” data column: I→INRIA, C→Caltech, I+/C+ →INRIA/Caltech and additional data,
P→Pascal, T→TUD-Motion, I&C→both INRIA and Caltech.
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networks (e.g. JointDeep (Ouyang and Wang, 2013a), ConvNet (Sermanet et al., 2013)),
and 3) Decision forests (e.g. ChnFtrs, Roerei (Benenson et al., 2013)). In Tab. 4.1 we
identify these families as DPM, DN, and DF respectively.

Based on raw numbers alone, boosted decision trees (DF) seem particularly suited for
pedestrian detection, reaching top performance on both the “train on INRIA, test on
Caltech”, and “train on Caltech, test on Caltech” tasks. It is unclear, however, what
gives them an edge. The deep networks explored also show interesting properties and
fast progress in detection quality.

Conclusion. Overall, among the methods compared, DPM variants, deep networks,
and (boosted) decision forests all reach top performance in pedestrian detection (around
37 % laMR on Caltech, see Fig. 4.3).

4.3.3 Better Classifiers

Since the original proposal of HOG+SVM (Dalal and Triggs, 2005), linear and non-linear
kernels have been considered. HikSvm (Maji et al., 2008) considered fast approximations
of non-linear kernels. This method obtains improvements when using the flawed FPPW
evaluation metric (see Sec. 4.3), but fails to perform well under the proper evaluation
(FPPI). In the work on MultiFtrs (Wojek and Schiele, 2008), it was argued that given
enough features, AdaBoost and linear SVMs perform at roughly similar levels for
pedestrian detection.

Recently, more and more components of the detector are optimized jointly with the
“decision component” (e.g. pooling regions in ChnFtrs (Dollár et al., 2009a), filters in
JointDeep (Ouyang and Wang, 2013a)). As a result the distinction between features
and classifiers is not clear-cut any more (see also Sections 4.3.8 and 4.3.9). This is a
trend that has continued with modern day end-to-end-trained detectors.

Conclusion. There is no conclusive empirical evidence indicating whether non-linear
kernels provide meaningful gains over linear kernels when using non-trivial features for
pedestrian detection. Similarly, it is unclear whether one particular type of classifier (e.g.
SVM or decision forests) is better suited for pedestrian detection than another. Recent
results appear to bear this out, as modern detectors rely on simple linear classifiers
together with powerful learned features.

4.3.4 Additional Data

The core problem of pedestrian detection focuses on individual monocular RGB images.
Some methods explore the use of additional information at training and test time to
improve detections. They consider stereo images (Keller et al., 2011), optical flow (using
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More data
Context

Figure 4.4: Caltech detection improvements for different method types. The improvement
is reported relative to each method’s relevant baseline as indicated by the labels of the
x-axis (“method vs. baseline”).

preceding frames, e.g. MultiFtr+Motion (Walk et al., 2010) and ACF+SDt (Park et al.,
2013)), tracking (Ess et al., 2009), or data from other sensors (such as lidar (Premebida
et al., 2014) or radar).

For monocular methods it is still unclear how much tracking can improve per-frame
detection itself. As seen in Fig. 4.4 exploiting optical flow provides a non-trivial
improvement over the baselines. Curiously, the top results at the time of publication of
this work (ACF-SDt, Park et al., 2013) are obtained using coarse rather than high quality
flow. In Sec. 4.4.2 we examine the complementarity of flow with other ingredients. Good
success exploiting flow and stereo on the Daimler dataset has been reported (Enzweiler
and Gavrila, 2011), but similar results have yet to be attained on newer datasets such
as KITTI.

Conclusion. At the time of the initial publication of this study (Benenson et al.,
2014), using additional data provides meaningful improvements. However, on modern
datasets stereo and flow cues have yet to be fully exploited. Methods that merely rely on
single monocular frames have been able to keep up with the performance improvements
introduced by the use of auxiliary information whether depth or motion.

4.3.5 Exploiting Context

Sliding window detectors score potential detection windows using the content inside
that window. Drawing on the context of the detection window, i.e. image content
surrounding the window, can improve detection performance. Strategies for exploiting
context include: ground plane constraints (MultiResC (Park et al., 2010), RandForest
(Marín et al., 2013)), variants of auto-context (Tu and Bai (2010), MOCO (Chen et al.,
2013)), other category detectors (MT-DPM+Context (Yan et al., 2013)), and person-to-
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person patterns (DBN-Mut (Ouyang et al., 2013), +2Ped (Ouyang and Wang, 2013b),
and JointDeep (Ouyang and Wang, 2013a)).

Fig. 4.4 shows the performance improvement for methods incorporating context.
Overall, we see improvements in absolute terms of 3%− 7% laMR. The negative impact
of AFS+Geo is due to the use of the updated evaluation metric (FPPI vs. FPPW)
— see Sec. 4.3. Interestingly, +2Ped (Ouyang and Wang, 2013b) obtains a consistent
absolute improvement of 2%− 5% laMR over existing methods, even top performing
ones (Sec. 4.4.2).

Conclusion. Context provides consistent improvements for pedestrian detection, al-
though the amount of improvement is lower compared to additional test data (Sec. 4.3.4)
and deep architectures (Sec. 4.3.8). The bulk of detection quality must come from other
sources.

4.3.6 Part-based Models

DPM (Felzenszwalb et al., 2010) was originally motivated for pedestrian detection.
Modelling pedestrians with hierarchical part-based models that allow for flexible part
compositions is an idea that has become very popular and dozens of variants have
been explored. For pedestrian detection the results are competitive, but not noticeably
stronger than other detector families. Variants include here are LatSvm (Yan et al.,
2014; Felzenszwalb et al., 2008), MultiResC (Park et al., 2010), and MT-DPM (Yan
et al., 2013). More interesting results have been obtained when modelling parts and
their deformations inside a deep architecture, e.g. DBN-Mut (Ouyang et al., 2013) and
JointDeep (Ouyang and Wang, 2013a).

DPM and its variants are systematically outmatched by methods using a single
component and no parts, e.g. Roerei (Benenson et al., 2013) and SquaresChnFtrs
(Sec. 4.4.1, casting doubt on the need for explicit part modelling. Recent work has
explored ways to capture deformations entirely without part-specific detectors (Hariharan
et al., 2014b; Pedersoli et al., 2014). Some work has even suggested that DPM ’s use of
multiple templates (or “components”) per class is more critical to its success than the
modelling of part deformations (Divvala et al., 2012).

Conclusion. For pedestrian detection there is still no clear evidence for the necessity of
components and parts, beyond the case of occlusion handling. Rigid detectors perform
just as well, but this is most likely a result of the pose distribution of pedestrians which
can be captured adequately by rigid templates.
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4.3.7 Multi-scale Models

Typically for detection, both high and low resolution candidate windows are resampled
to a common size before extracting features. It has recently been noticed that training
different models for different resolutions systematically improve absolute performance
by 1%− 2% laMR (Park et al., 2010; Benenson et al., 2013; Yan et al., 2013), since the
detector has access to the full information available at each window size. This technique
does not impact computational cost at detection time (Benenson et al., 2012), although
training time increases.

Conclusion. Multi-scale models provide a simple and generic extension to existing
detectors. Despite consistent improvements, their contribution to the final quality is
rather minor overall.

4.3.8 Deep Architectures

Large amounts of training data and increased computing power have lead to recent
successes of deep architectures — typically convolutional neural networks (CNNs) — on
diverse computer vision tasks, such as large-scale classification and detection (Krizhevsky
et al., 2012; Girshick et al., 2014; Sermanet et al., 2014), and semantic labelling (Pinheiro
and Collobert, 2014). These results have inspired the application of deep architectures
to the pedestrian task.

ConvNet (Sermanet et al., 2013) uses a mix of unsupervised and supervised training
to create a CNN trained on INRIA. This method obtains fair results on INRIA, ETH,
and TUD-Brussels, however fails to generalise to Caltech. This method learns to extract
features directly from raw pixel values.

Another line of work focuses on using deep architectures to jointly model parts and
occlusions (DBN-Isol (Ouyang and Wang, 2012), DBN-Mut (Ouyang et al., 2013),
JointDeep (Ouyang and Wang, 2013a), and SDN (Luo et al., 2014)). The absolute
performance improvements of such models varies between 1.5% to 14% laMR. Note that
these works use edge and colour features as inputs (Ouyang and Wang, 2013a; Ouyang
et al., 2013; Ouyang and Wang, 2012), or initialise network weights to edge-sensitive
filters, rather than discovering features from raw pixel values as usually done in deep
architectures. No results had yet been reported using features pre-trained on ImageNet
at the time of publication, as in Girshick et al. (2014) and Azizpour et al. (2015). In
Chapter 5, we present such results.

Conclusion. At the time of this study, deep networks had not yet extended their
success at learning features to pedestrian detection. Neural networks were used to model
higher-level aspects of people such as part relations occlusions, and context, while still
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relying on traditional feature extraction pipelines. The obtained results were on par
with DPM - and decision-forest-based approaches. This has since changed drastically as
we outline in Chapter 2. Neural networks have taken over this subdomain as well.

4.3.9 Better features

The most popular approach (about 30 % of the considered methods) for improving
detection quality is to increase and diversify the features computed over the input image.
By having richer and higher dimensional representations, the classification task becomes
somewhat easier, enabling improved results. A large set of feature types have been
explored: edge information (Dalal and Triggs, 2005; Dollár et al., 2009a; Lim et al., 2013;
Luo et al., 2014), colour information (Dollár et al., 2009a; Walk et al., 2010), texture
information (Wang et al., 2009), local shape information (Costea and Nedevschi, 2014),
covariance features (Paisitkriangkrai et al., 2013), among others. More and more diverse
features have been shown to systematically improve performance.

While various decision forest methods use 10 feature channels (e.g. ChnFtrs, ACF,
Roerei, SquaresChnFtrs), some papers have considered up to an order of magnitude more
channels (Wojek and Schiele, 2008; Lim et al., 2013; Paisitkriangkrai et al., 2013; Marín
et al., 2013; Costea and Nedevschi, 2014). Despite the improvements obtained by adding
more diverse channels, top performance can still reached with only 10 channels (6 gradient
orientations, 1 gradient magnitude, and 3 colour channels, we name these HOG+LUV
(see Tab. 4.1 and Fig. 4.3). In Sec. 4.4.1 we study different feature combinations in more
detail.

From VJ (95% laMR) to ChnFtrs (56.3% laMR, by adding HOG and LUV channels),
to SquaresChnFtrs-Inria (50.2% laMR, by exhaustive search over pooling sizes, see
Sec. 4.4), improving feature representations drives progress. Switching training sets
(Sec. 4.3.1) enables SquaresChnFtrs-Caltech to reach state of the art performance on
Caltech, improving over significantly more sophisticated methods. InformedHaar (Zhang
et al., 2014) obtains top results by using a set of Haar wavelet-like features manually
designed for the pedestrian detection task. In contrast SquaresChnFtrs-Caltech obtains
similar results without using hand-crafted pooling regions.

More recent studies show that using more and better features yields further improve-
ments (Paisitkriangkrai et al., 2014; Nam et al., 2014). It should be noted that better
features for pedestrian detection had at this point not yet been obtained via deep
learning approaches (see caveat on ImageNet features in Sec. 4.3.8).

Conclusion. In the decade preceding this analysis, improved features were a constant
driver for detection quality improvement, suggesting that this would continue to be the
case in the years that followed. Most of this improvement had been obtained by extensive
trial and error in feature design. Our contention was that the next scientific step would
be to develop a more profound understanding of the what makes good features good,
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and how to design or learn even better ones. Results that followed demonstrate that
features continue to play an outsize role in driving performance gains in detection.

4.4 Experiments

Based on our analysis in the previous section, three aspects seem to be the most promising
in terms of impact on detection quality: better features (Sec. 4.3.9), additional data
(Sec. 4.3.4), and context information (Sec. 4.3.5). We thus conduct experiments on the
complementarity of these aspects.

Among the three solution families discussed (Sec. 4.3.2), we choose the Integral
Channels Features framework (Dollár et al., 2009a) (a decision forest) for conducting
our experiments. Methods from this family have shown good performance, train in
minutes∼hours, and lend themselves to the analyses we aim.

In particular, we use the (open source) SquaresChnFtrs baseline described in (Benen-
son et al., 2013): 2048 level-2 decision trees (3 threshold comparisons per tree) over
HOG+LUV channels (10 channels), composing one 64× 128 pixels template learned via
vanilla AdaBoost and few bootstrapping rounds of hard negative mining.

4.4.1 How Much Do Features Matter?

In this section, we evaluate the impact of increasing feature complexity. We tune all
methods on the INRIA test set, and demonstrate results on the Caltech test set (see
Fig. 4.5).

The first series of experiments aims at mimicking landmark detection techniques, such
as VJ (Viola et al., 2003), HOG+linSVM (Dalal and Triggs, 2005), and ChnFtrs (Dollár
et al., 2009a). VJLike uses only the luminance colour channel, emulating the Haar
wavelet-like features from the original (Viola et al., 2003) using level-2 decision trees.
HOGLike-L1/L2 use 8× 8 pixel pooling regions, 1 gradient magnitude and 6 oriented
gradient channels, as well as level 1/2 decision trees. We also report results when adding
the LUV colour channels HOGLike+LUV (10 feature channels total). SquaresChnFtrs
is the baseline described in the beginning of Sec. 4.4, which is similar to HOGLike+LUV
to but with square pooling regions of any size.

Inspired by Nam et al. (2014), we also expand the 10 HOG+LUV channels into 40
channels by convolving each channel with three DCT (discrete cosine transform) basis
functions (of 7 × 7 pixels), and storing the absolute value of the filter responses as
additional feature channels. We name this variant SquaresChnFtrs+DCT.

Conclusion. Much of the progress since VJ can by explained by the use of better
features, based on oriented gradients and colour information. Simple tweaks to these
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Figure 4.5: Effect of features on detection
performance on the Caltech “Reasonable”
test set.
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Figure 4.6: Caltech training set perfor-
mance. (I)/(C) indicates the use of either
INRIA or Caltech for training.

well known features (e.g. projection onto the DCT basis) can still yield noticeable
improvements.

4.4.2 Complementarity of Detector Elements

After revisiting the effect of single frame features in Sec. 4.4.1 we now consider the
complementarity of better features (HOG+LUV+DCT), additional data (via optical
flow), and context (via person-to-person interactions).

We encode the optical flow using the same SDt features from ACF+SDt (Park et al.,
2010) (image difference between current frame T and coarsely aligned T-4 and T-8).
The context information is injected using the +2Ped re-weighting strategy (Ouyang and
Wang, 2013b) (the detection scores are combined with the scores of a “2 person” DPM
detector). In all experiments both DCT and SDt features are pooled over 8× 8 regions
(as in Park et al. (2010)), instead of “all square sizes” for the HOG+LUV features.

We refer to our method combining SquaresChnFtrs+DCT+SDt+2Ped as Katamari-v1.
It reaches the best performance on the Caltech dataset in 2014. In Fig. 4.7 we show it
together with the best performing method for each training set and solution family at
the time (see Tab. 4.1).

Conclusion. Our experiments show that extra single-frame features, motion features,
and context information are largely complementary (12 % gain, instead of 3 + 7 + 5 %),
even when starting from a strong detector. It remains to be seen if future progress
in detection quality will be obtained by further insights of the “core” algorithm (thus
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Figure 4.7: Some of the top quality detection
methods for Caltech. See Sec. 4.4.2.
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Figure 4.8: Pedestrian detection re-
sults on the KITTI dataset.

further diminishing the relative improvement of add-ons), or by extending the diversity
of techniques employed inside a system.

4.4.3 How Much Model Capacity is Needed?

The main task of detection is to generalise from training to test set. Before we analyse
the generalisation capability (Sec. 4.4.4), we consider a necessary condition for high
quality detection: is the learned model performing well on the training set?

In Fig. 4.6 we see the detection quality of the models considered in Sec. 4.4.1, when
evaluated over their training set. None of these methods performs perfectly on the
training set. In fact, the trend is very similar to performance on the test set (see Fig. 4.5)
and we do not observe yet symptoms of overfitting.

Conclusion. Our results indicate that research on increasing the discriminative power
of detectors is likely to further improve detection quality. More discriminative power
can originate from more and better features or more complex classifiers.

4.4.4 Generalisation across Datasets

For real world application beyond a specific benchmark, the generalisation capability of
a model is key. In that sense results of models trained on INRIA and tested on Caltech
are more relevant than the ones trained (and tested) on Caltech.
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Test
set

Training
set INRIA Caltech KITTI

INRIA 17 .42 % 60.50 % 55.83 %
Caltech 50.17 % 34 .81 % 61.19 %
KITTI 38.61 % 28.65 % 44 .42 %
ETH 56.27 % 76.11% 61.19 %

Table 4.2: Effect of training set on the detection quality on different test sets. Bold
indicates second best training set for each test set, except for ETH where bold indicates
the best training set.

Tab. 4.2 shows the performance of SquaresChnFtrs over Caltech when using different
training sets (laMR for INRIA/Caltech/ETH, AUC for KITTI. These experiments
indicate that training on Caltech or KITTI provides little generalisation capability
towards INRIA, while the converse is not true. Surprisingly, despite the visual similarity
between KITTI and Caltech, INRIA is the second best training set choice for KITTI and
Caltech. This shows that Caltech pedestrians are of “their own kind”, and that training
with INRIA is effective due to its diversity. In other words, a training set containing
few diverse pedestrians (INRIA) is better than many similar ones (Caltech/KITTI ).

The good news is that the best methods considered here seem to perform well both
across datasets and when trained on the respective training data. Fig. 4.8 shows methods
trained and tested on KITTI, and we see that SquaresChnFtrs (referred to here as
SquaresICF) is better than vanilla DPM and on par with the best DPM variant. The
best method on KITTI as of July 2014, pAUC (Paisitkriangkrai et al., 2014), is a variant
of ChnFtrs using 250 feature channels (see the KITTI website for details). These two
observations are consistent with our discussions in Sections 4.3.9 and 4.4.1.

Conclusion. While detectors learned on one dataset may not necessarily transfer well
to others, their ranking is stable across datasets, suggesting that insights can be learned
from well-performing methods regardless of the benchmark.

4.5 Conclusions

Our experiments show that most of the progress in the preceding decade of pedestrian
detection can be attributed to the improvement in features alone. Evidence suggests that
this trend will continue. Although some of these features might be driven by learning,
they are mainly hand-crafted via trial and error.

Our experiment combining the detector ingredients that our retrospective analysis
found to work well (better features, optical flow, and context) shows that these ingredients
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are mostly complementary. Their combination produces best published detection
performance on Caltech in July 2014.

While the three big families of pedestrian detectors (deformable part models, decision
forests, deep networks) are based on different learning techniques, their state-of-the-art
results are surprisingly close.

We also showed that cross-dataset generalisation is an issue, which requires research
into better features and better domain adaptation.

The main challenge ahead seems to develop a deeper understanding of what makes
good features good, so as to enable the design of even better ones.





5
Deep Learning for Pedestrian Detection

In Chapter 4 we saw that the progress of a decade of research on pedestrian detection
has been driven by improvements in feature engineering. While representation
learning for pedestrian detection had been explored by then, at that point the

strongest detectors were still built on top of hand-crafted “feature channels”.

In this chapter we study the use of convolutional neural networks (CNNs) that operate
on raw pixel values and without the use of hand-crafted features. Despite their recent
diverse successes, CNNs had not yet caught up to classical pedestrian detectors. Unlike
competing work, we deliberately avoided explicitly modelling the problem into the
network (e.g. by considering parts or occlusion handling) and show that this is adequate
for competitive performance. In a wide range of experiments we analyse differently sized
CNNs, various architectural choices, hyperparameters, and the influence of different
training sets — including pre-training on surrogate tasks.

This work was published at CVPR (Hosang et al., 2015) and Jan Hosang was the
lead author. Mohamed Omran contributed the experiment that motivated this work —
demonstrating that with the same training and test data a simple image classification
network outperforms state-of-the-art domain-specific deep detectors — as well as the
experiments on smaller networks. We present the best CNN detector on the Caltech and
KITTI dataset at the time, improving over all previous CNNs both for the Caltech1×
and Caltech10× training setup (see Sec. 2.2). Using additional data at training time, our
strongest CNN model is competitive even with previous detectors that use additional
data (optical flow) at test time.

5.1 Introduction

In recent years the field of computer vision has seen an explosion of success stories
involving CNNs. Such architectures currently provide top results for general object
classification (Krizhevsky et al., 2012; Russakovsky et al., 2015a; Szegedy et al., 2015),
general object detection (Girshick et al., 2014), feature matching (Long et al., 2014),
stereo matching (Zbontar and LeCun, 2015), scene recognition (Zhou et al., 2014; Chen
et al., 2014), pose estimation (Toshev and Szegedy, 2014; Tompson et al., 2014), action
recognition (Karpathy et al., 2014; Simonyan and Zisserman, 2014) and many other
tasks (Razavian et al., 2014; Azizpour et al., 2015). Here, our motivation is to apply to
the task of pedestrian detection recent insights regarding the training of large CNNs.
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Figure 5.1: Comparison of CNN methods on the Caltech “Reasonable” test set (see
Sec. 5.7). At the time of publication of this chapter, our CifarNet and AlexNet results
significantly improved over previous CNNs, and matched the best reported results at
that time (SpatialPooling+, which additionally uses optical flow).

Previous work on neural networks for pedestrian detection has relied on special-
purpose designs, e.g. the use of hand-crafted features as inputs, part and occlusion
modelling. Although these proposed methods perform reasonably, previous top methods
are all based on decision trees learned via AdaBoost (e.g. Benenson et al., 2014; Zhang
et al., 2014; Paisitkriangkrai et al., 2014; Nam et al., 2014; Wang et al., 2013). This
makes pedestrian detection an outlier among the many tasks enumerated above in which
CNNs have left traditional methods in the dust performance-wise.

In this work we revisit the question, and show that both small and large vanilla CNNs
can reach top performance on the challenging Caltech dataset (Dollár et al., 2012b). We
provide extensive experiments that cover training settings, network parameters, and
different methods for generating object hypotheses or proposals.

Object detection. CNNs have been successfully applied to the task of generic object
detection, showing strong results on datasets like ImageNet (Russakovsky et al., 2015a;
Krizhevsky et al., 2012; He et al., 2014; Szegedy et al., 2015; Ouyang et al., 2015;
Simonyan and Zisserman, 2015) and PASCAL VOC (Girshick et al., 2014; Agrawal
et al., 2014). The most successful generic object detectors are variants of the R-CNN
framework (Girshick et al., 2014). Given an input image, a sparse set of hypotheses
are generated by a separate method. These so-called object proposals are subsequently
classified via a CNN. This is essentially a two-stage cascade sliding window method.

The most popular proposal method for generic objects at the time of publication was
SelectiveSearch (Uijlings et al., 2013), which was also used with the original R-CNN
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detector (Girshick et al., 2014). A fast and effective alternative is EdgeBoxes (Zitnick
and Dollár, 2014). However, pedestrian detection methods based on neural networks
(NNs) use classical detectors as a first stage proposal generator. DBN-Isol and DBN-Mut
for example use DPM (Felzenszwalb et al., 2010), while JointDeep, MultiSDP, and SDN
rely on a HOG+CSS+linearSVM detector similar to the method of Walk et al. (2010).
Only ConvNet (Sermanet et al., 2013) applies a CNN in a sliding window fashion to the
raw input image. For a more detailed comparison of these early NN-based pedestrian
detector methods see Sec. 2.3.3, and for a more complete discussion of proposal methods,
we refer the interested reader to the survey of Hosang et al. (2016).

Decision forests. Until 2015, most proposed methods for pedestrian detection did
not use CNNs, relying instead on hand-crafted features. Focusing on single-frame
methods, the top performing methods (on Caltech and KITTI ) at the time of publication
were SquaresChnFtrs (Chapter 4), InformedHaar (Zhang et al., 2014), SpatialPooling+
(Paisitkriangkrai et al., 2014), LDCF (Nam et al., 2014), and Regionlets (Wang et al.,
2013). All of them consist of boosted decision forests and can be considered variants
of the integral channels features architecture (Dollár et al., 2009a). Regionlets and
SpatialPooling+ use a large set of features, including HOG, LBP and CSS, while
SquaresChnFtrs, InformedHaar, and LDCF build on HOG+LUV. On the Caltech
benchmark, the previously best CNN, SDN, had been outperformed by all aforementioned
methods.3

Input to CNNs. It is also important to highlight that ConvNet (Sermanet et al., 2013)
learns to predict from YUV input pixels, whereas all other methods use additional
hand-crafted features. DBN-Isol and DBN-Mut use HOG features as input. MultiSDP
uses HOG+CSS features as input. JointDeep and SDN use YUV+Gradients as input
(and HOG+CSS for the detection proposals). We will show in our experiments that
good performance can be reached using RGB inputs alone, but we also show that more
sophisticated inputs systematically improve detection quality. Our data indicates that
end-to-end features still have room for improvement and do not fully make hand-crafted
features obsolete.

5.1.1 Contributions

In this chapter we propose to revisit pedestrian detection with CNNs by carefully
exploring the design space (e.g. number of layers, filter sizes), and critical implementation
choices (e.g. training data preprocessing, effect of detection proposals). We show that
both small (105 parameters) and large (6 · 107 parameters) networks can reach good
performance when trained from scratch (even when using the exact same training data

3Regionlets matches SpatialPooling+ on the KITTI benchmark, and based on our results in the
previous chapter showing that rankings of methods are mostly preserved across datasets, would most
likely improve over SDN on Caltech as well.
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as previous methods). We also show the benefits of using extended and external data,
which leads to the strongest single-frame detector on Caltech at the time of this study.
At the time of publication, we report the best known performance for a CNN on the
challenging Caltech dataset (improving by more than 10% in absolute terms) and the
first CNN results on the KITTI dataset.

5.2 Training Data

It is well known that modern deep CNNs can exploit large amounts the training data and
that this is in fact critical for performance. We will make use of two types of datasets:
pedestrian detection datasets as well as large-scale image classification datasets for the
purpose of pre-training our CNNs.

Pedestrian Detection: Caltech & KITTI. In Sec. 2.2, we describe both datasets in
detail, but here we would like to describe the dataset splits we use for validation. For
the Caltech experiments we use one of the validation splits suggested by Dollár et al.
(2012b): the first five training videos are used for validation training and the sixth
training video for validation testing. With KITTI (Geiger et al., 2012), we split the
public training set into train/validation (~4k/2k images) sets.

Large-scale Classification: ImageNet & Places. In Sec. 5.5 we will consider using
large CNNs that can benefit from pre-training for surrogate tasks. We consider two image
classification datasets: the ImageNet ILSVRC2012 classification benchmark (object
classification with 1000 categories) (Krizhevsky et al., 2012; Russakovsky et al., 2015a)
and the Places dataset (scene classification with 205 categories) (Zhou et al., 2014). The
datasets provide 1.2 · 106 and 2.5 · 106 annotated images for training respectively.

5.3 From Decision Forests to Neural Networks

Before describing our experimental results, it is worth noting that the proposal method
we are using — SquaresChnFtrs (see Sec. 5.4.1) — can be converted into a CNN.
The overall system then becomes a cascade of two neural networks. SquaresChnFtrs
(Chapter 4, Benenson et al. (2013)) is a decision forest composed of 2 048 level-2 decision
trees, applied to ten hand-crafted feature channels (HOG+LUV). Rectangular regions
of these feature channels are sum-pooled and fed to the split nodes of the trees. This
architecture can be mapped to a CNN. Older work exploring this connection includes
Sethi and Otten (1990); Cios and Ning (1992); Ivanova and Kubat (1995); Banerjee
(1994); Setiono and Leow (1999).

As mentioned in Sec. 4.3.8, using hand-crafted features as inputs was common practice
among early CNN-based pedestrian detectors (more on this in Sec. 5.4.4). We thus
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examined the possibility of initialising a neural network with the parameters of hand-
crafted detector, since the operations involved can be straightforwardly mapped to
standard neural network building blocks. The sum-pooling stage maps directly to an
inner product layer. Each decision tree maps to a small column of two hidden layers,
with sign-function non-linearities (hard non-linearities). Finally the output of all trees
is combined via linear weighting.

The mapping from SquaresChnFtrs to a deep neural network is exact: evaluating
the same inputs results in the exact same outputs. What is special about the resulting
network is that it has not been trained by backpropagation but via AdaBoost. This
network already performs better than the previously best CNN on Caltech, SDN
(Luo et al., 2014). Unfortunately however, experiments to soften the non-linearities
and use backpropagation to fine-tune the model parameters did not show significant
improvements. We suspect that the parameters found via AdaBoost are a local minimum
that is hard to escape via stochastic gradient descent.

5.4 Vanilla Convolutional Neural Networks

In our experience many CNN architectures and training hyperparameters do not enable
effective learning for diverse and challenging tasks. Following best practices, we thus
start our exploration from architectures and parameters that are known to work well
and progressively adapt them to the task at hand. In this section we thus first consider
CifarNet, a small network designed to solve the CIFAR-10 classification problem (10
objects categories, (5 + 1) · 105 colour images of 32×32 pixels) (Krizhevsky, 2009). In
Sec. 5.5 we consider AlexNet, a network that has 600 times more parameters than
CifarNet and designed to solve the ILSVRC2012 classification problem (1 000 objects
categories, (1.2 + 0.15) · 106 colour images of ∼VGA resolution). Both of these networks
were introduced in Krizhevsky et al. (2012) and are re-implemented in as part of the
open source Caffe project (Jia et al., 2014)4.

Although pedestrian detection is quite a different task than CIFAR-10, we decide to
start our exploration from CifarNet, which provides fair performance on CIFAR-10. Its
architecture is depicted in Fig. 5.2, and unless otherwise specified we use raw RGB inputs.
We first discuss how to use the CifarNet network (Sec. 5.4.1). This naive approach
already improves over the previously best CNNs for pedestrian detection (Sec. 5.4.2).
Sections 5.4.3 and 5.4.4 explore the design space around CifarNet and further push the
detection quality. All models in this section are trained using Caltech data only (see
Sec. 5.2).

4http://caffe.berkeleyvision.org
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Figure 5.2: Illustration of the CifarNet architecture, ∼105 parameters.
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Figure 5.3: Recall of ground truth annotations versus Intersection-over-Union threshold
on the Caltech test set. The legend indicates the average number of detection proposals
per image for each curve. A pedestrian detector generates much better proposals than a
state of the art generic method (EdgeBoxes (Zitnick and Dollár, 2014)).

5.4.1 How to use CifarNet?

Given an initial network specification, there are still several design choices that affect
the final detection quality. We discuss some of them in the following paragraphs.

Detection proposals. Unless otherwise specified we use the SquaresChnFtrs (Chap-
ter 4) detector to generate proposals because, at the time of publication, it was the
best performing pedestrian detector on Caltech with accessible source code. In Fig. 5.3
we compare SquaresChnFtrs against EdgeBoxes (Zitnick and Dollár, 2014), a state
of the art class-agnostic proposal method. Using class-specific proposals allows us to
reduce the number of proposals by three orders of magnitude. Other than ConvNet
(Sermanet et al., 2013) which does not use proposals, all other competing CNNs also
use a pedestrian detector for proposals (see also Sec. 5.4.2).
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Positives Negatives laMR
GT Random 83.1%
GT IoU < 0.5 37.1%
GT IoU < 0.3 37.2%

GT, IoU > 0.5 IoU < 0.5 42.1%
GT, IoU > 0.5 IoU < 0.3 41.3%
GT, IoU > 0.75 IoU < 0.5 39.9%

Table 5.1: Effect of positive and negative training sets on the detection quality. laMR:
log-average miss rate on Caltech validation set. GT: ground truth bounding boxes.

Window size laMR
32× 32 50.6%
64× 32 48.2%
128× 64 39.9%
128× 128 49.4%
227× 227 54.9%

Table 5.2: Effect of window size on
performance. (laMR: see Tab. 5.1)

Ratio laMR
None 41.4%
1 : 10 40.6%
1 : 5 39.9%
1 : 1 39.8%

Table 5.3: Performance as function of strictly en-
forced ratio of positives:negatives in each training
batch. None: none enforced. (laMR: see Tab. 5.1)

Thresholds for positive and negative samples. Given both training proposals and
ground truth (GT) annotations, we now consider which training label to assign to each
proposal. A proposal is considered to be a positive example if it exceeds a certain
Intersection over Union (IoU) threshold for at least one GT annotation. It is considered
negative if it does not exceed a second IoU threshold for any GT annotation, and is
ignored otherwise. We find that using GT annotations as positives is beneficial (i.e. not
applying significant jitter, see Tab. 5.1).

Model window size. A typical choice for pedestrian detectors is a model window size
of 128×64 pixels in which the pedestrian occupies an area of 96×48 (Dalal and Triggs,
2005; Dollár et al., 2009a; Benenson et al., 2013, 2014). It is unclear that this is the ideal
input size for CNNs. Despite CifarNet being designed to operate over 32×32 pixels,
Tab. 5.2 shows that a model size of 128×64 pixels indeed works best. We experimented
with other variants that involved stretching the proposals to different aspect or adding
more context, but these led to no clear improvement.

Training batch. In a detection setup, training samples are typically highly imbalanced
towards the background class. Although in our validation setup the imbalance is limited,
we found it beneficial throughout our experiments to enforce a strict ratio of positive
to negative examples per batch of the stochastic gradient descent optimisation (see
Tab. 5.3). The final performance is not sensitive to this parameter as long as some fixed
ratio (vs. None) is maintained. We use a ratio of 1 : 5.
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Method Proposals Test laMR
Proposals of JointDeep - 45.5%

JointDeep Proposals of
JointDeep

39.3%
SDN 37.9%

CifarNet 36.5%
SquaresChnFtrs - 34.8% (Chapter 4)

CifarNet SquaresChnFtrs 30 .7%

Table 5.4: Detection quality as a function of the method and the proposals used for
training and testing (laMR: log-average miss rate on Caltech test set). When using the
exact same training data as JointDeep (Ouyang and Wang, 2013a), our vanilla CifarNet
already improves over the previous best known CNN on Caltech (SDN, Luo et al. 2014).

5.4.2 How far can we get with CifarNet?

Given the parameter selection on the validation set from previous sections, how does
CifarNet compare to previous CNN results on the Caltech test set? Tab. 5.4 and Fig. 5.1
show that our naive network immediately improves over the previously best CNN: 30.7%
vs. 37.9% laMR (SDN, Luo et al. 2014).

To decouple the contribution of our strong SquaresChnFtrs proposals from the classi-
fication performance of CifarNet, we also train CifarNet with the exact same proposals
used by JointDeep (Ouyang and Wang, 2013a). When using these both at training
and test time (provided together with the official implementation), the vanilla CifarNet
already improves over both the custom-designed JointDeep and SDN. Our CifarNet
results are surprisingly close to the previously best known pedestrian detector trained
on Caltech1×: 30.7% vs. 29.2% laMR (SpatialPooling, Paisitkriangkrai et al. 2014).

5.4.3 Exploring different architectures

Encouraged by our initial results, we proceed to explore different parameters for the
CifarNet architecture.

Number and size of convolutional filters. Using the Caltech validation set we perform
a sweep over different convolutional filter sizes (3×3, 5×5, or 7×7 pixels) and number of
filters at each layer (16, 32, or 64 filters). We observe that using large filters hurts quality,
while the varying the number of filters shows less impact. Although some fluctuation
in log-average miss rate is observed, overall there is no clear trend indicating that a
configuration is clearly better than another. For the sake of simplicity, we thus keep
using CifarNet (32-32-64 filters of 5×5 pixels) in subsequent experiments.
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# Architecture laMR
layers

3
CONV1 CONV2 FC 47.6%
CONV1 CONV2 LC 43.2%
CONV1 CONV2 CONV3 (CifarNet, Fig. 5.2) 37 .1%

4

CONV1 CONV2 CONV3 FC 39.6%
CONV1 CONV2 CONV3 LC 40.5%
CONV1 CONV2 FC1 FC2 43.2%
CONV1 CONV2 CONV3 CONV4 43.3%

4 CONV1 CONV2 CONV3 CONCAT23 FC 38.4%

Table 5.5: Performance of different architectures, sorted by the number of layers before
the softmax classifier. CONCAT23: concatenates CONV2 and CONV3 and passes on
the resulting feature map. laMR: log-average miss rate on Caltech validation set

Input channels # channels CifarNet
RGB 3 39.9%
LUV 3 46.5%

G+LUV 4 40.0%
HOG+L 7 36.8%

HOG+LUV 10 40.7%

Table 5.6: Detection quality for different input configurations. G indicates luminance
channel gradient, HOG indicates G plus G spread over six orientation bins (hard-binning).
These are the same input channels used by our SquaresChnFtrs proposal method. Results
in laMR (log-average miss rate) on Caltech validation set.

Number and type of layers. In Tab. 5.5 we evaluate the effect of changing the number
and type of layers, while keeping other CifarNet parameters fixed. Besides convolutional
layers (CONV) and fully-connected layers (FC), we also consider locally-connected layers
(LC) (Taigman et al., 2014), and concatenating features across layers (CONCAT23)
(used in ConvNet, Sermanet et al. 2013). None of the considered architectural changes
improve over the original CifarNet.

5.4.4 Input Channels

As mentioned above, the majority of previous CNNs for pedestrian detection use gradient
and colour features as inputs, instead of raw RGB values. In Tab. 5.6 we evaluate the
effect of different input features over CifarNet. It seems that HOG+L channels provide
a small advantage over RGB. To allow for direct comparisons with the large networks
we consider later, in the next sections we continue to use raw RGB as the input for our
CifarNet experiments. We report CifarNet test set results in Sec. 5.6.
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Figure 5.4: Illustration of the AlexNet architecture, ∼6 · 107 parameters.

5.5 Large Convolutional Neural Networks

An appealing characteristic of CNNs is their ability to leverage large amounts of training
data. Batch training with stochastic gradient descent also avoids the prohibitive memory
requirements of other classifiers. We now explore larger CNNs trained with more data.

We base our experiments on the R-CNN detector (Girshick et al., 2014), which
at the original time of writing was a top-performing method on the PASCAL VOC
detection benchmark (Everingham et al., 2015). We are thus interested in evaluating its
performance on pedestrian detection.

5.5.1 Surrogate tasks for improved detections

The R-CNN approach (“Regions with CNN features”) relies on AlexNet (see Fig. 5.4), a
large network pre-trained for the ImageNet classification task (Krizhevsky et al., 2012).
We use “AlexNet” as shorthand for “R-CNN with AlexNet” with the distinction made
clear by the context. During R-CNN training AlexNet is fine-tuned for the detection
task, and in a second step, the softmax classifier is replaced by a linear SVM. Unless
otherwise specified, we use the default parameters of the open source, Caffe-based
R-CNN implementation5. Like in the previous sections, we use SquaresChnFtrs to
produce detection proposals. For consistency with other AlexNet experiments in the
literature, we use the default RGB and 227×227 input size, also noting that the optimal
CifarNet parameters might not apply to the larger AlexNet.

Pre-training. If we only train the SVM classifier without fine-tuning the lower layers
of AlexNet, we obtain 39.8% laMR on the Caltech test set. This is already surprisingly
close to the result (37.9% laMR) of the previous best CNN for the task (SDN ). When
fine-tuning all layers on Caltech, the test set performance increases dramatically, reaching
25.9% laMR. This confirms the effectiveness of the general R-CNN recipe for detection
(train AlexNet on ImageNet, then fine-tune for the task of interest).

5https://github.com/rbgirshick/rcnn
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AlexNet Fine- SVM Test laMRtraining tuning training
Random none Caltech1x 86.7%
ImageNet none Caltech1x 39.8%

Places+Imagenet
Caltech1x Caltech1x

30.1%
Places 27.0%

ImageNet 25.9%

ImageNet Positives10x Positives10x 23.8%
Caltech10x Caltech10x 23 .3%

Caltech1x - Caltech1x 32.4%
- Caltech10x 32.2%

Caltech10x - Caltech1x 27 .4%
- Caltech10x 27 .5%

SquaresChnFtrs (Chapter 4) 34.8%

Table 5.7: Detection quality when using different training data in different training
stages of AlexNet: initial training of the CNN, optional fine-tuning of the CNN, and the
SVM training. Positives10x: positives from Caltech10× and negatives from Caltech1×.
Detection proposals provided by SquaresChnFtrs, result included for comparison. See
Sections 5.5.1 and 5.5.2 for details.

In Tab. 5.7 we investigate the influence of the pre-training task by considering instances
of AlexNet that have been trained for scene recognition (Zhou et al., 2014) (”Places”, see
Sec. 5.2) and on both Places and ImageNet. “Places” provides results close to ImageNet,
suggesting that the exact pre-training task is not critical and that there is nothing
special about ImageNet.

Caltech10x. Due to the large number of parameters of AlexNet, we consider providing
additional training data using Caltech10× for fine-tuning the network (see Sec. 5.2).
Despite the strong correlation across training samples, we do observe further improvement
(see Tab. 5.7). Interestingly, the bulk of the improvement is due to more pedestrians
(Positives10× uses positives from Caltech10× and negatives from Caltech1×). Our top
result, 23.3% laMR, makes our AlexNet setup the best reported single-frame detector
on Caltech (i.e. without using optical flow) at the time of publication.

5.5.2 Caltech-only training

To compare with CifarNet, and to verify whether pre-training is necessary at all, we
train AlexNet “from scratch” solely using the Caltech training data (Tab. 5.7).
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Parameters fc7 fc6 pool5 conv4
Default 32.2% 32.5% 33.4% 42.7%
Best 32.0% 31.8% 32.5% 42.4%

Table 5.8: Detection quality when training the R-CNN SVM over different layers of the
finetuned CNN. “Best parameters” are found by exhaustive search on the validation set.
laMR: log-average miss rate on Caltech validation set.

Training AlexNet solely on Caltech yields 32.4% laMR, which improves over the
proposals (SquaresChnFtrs, 34.8% laMR) and the previous best known CNN on Caltech
(SDN, 39.8% laMR). Using Caltech10× further pushes this down to 27.5% laMR.

Although these numbers are inferior to the ones obtained with an ImageNet pre-trained
model (23.3% laMR, see Tab. 5.7), we can get surprisingly competitive results using
only pedestrian data with randomly initialised network parameters despite the 107 free
parameters of the AlexNet model. At the time we published this study (Hosang et al.,
2015), AlexNet with Caltech10× was the second best single-frame pedestrian detector to
only use Caltech data — behind LDCF (24.8% laMR), which also uses Caltech10×).

5.5.3 Additional experiments

How many layers? So far all experiments use the default parameters of R-CNN.
Previous works have reported that, depending on the task, using features from lower
AlexNet layers can provide better results (e.g. Razavian et al., 2014; Agrawal et al., 2014;
Azizpour et al., 2015). Tab. 5.8 reports Caltech validation results when training the
SVM output layer on top of layers four to seven (see Fig. 5.4). We report results when
using the default parameter settings and parameters that have been optimised via grid
search. These parameters are the SVM regularisation parameter as well as the criterion
for choosing negative examples (upper bound on IoU with a ground truth example).

We observe a negligible difference between default and optimised parameters (at most
−1%). Results for default parameters exhibit a slight trend of better performance for
higher levels. These validation set results indicate that the R-CNN default parameters
are a good choice overall for pedestrian detection.

Effect of proposal method. When comparing the performance of the proposal method
compared to AlexNet fine-tuned on Caltech1×, we see an improvement of 9 pp (percentage
points) in miss rate. In Tab. 5.9 we show the impact of using weaker or stronger proposals.
Both ACF (Dollár et al., 2014) and SquaresChnFtrs (Chapter 4, Benenson et al. 2013)
provide source code, allowing us to generate training proposals. Katamari (Chapter 4)
and SpatialPooling+(Paisitkriangkrai et al., 2014) are top performers on the Caltech
dataset, both using optical flow, i.e. additional information at test time. There is a
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Fine- Training Testing Test laMR ∆ vs.
tuning proposals proposals proposals

1×

ACF ACF 34.5% 9.7%
SCF ACF 34.3% 9.9%
ACF SCF 26.9% 7.9%
SCF SCF 25.9% 8.9%
ACF Katamari 25.1% −2.6%
SCF Katamari 24.2% −1.7%

10×

SCF LDCF 23.4% 1.4%
SCF SCF 23.3% 11.5%
SCF SP+ 22.0% −0.1%
SCF Katamari 21.6% 0.9%

ACF (Dollár et al., 2014) 44.2%
SCF (SquaresChnFtrs, Chapter 4) 34.8%
LDCF (Nam et al., 2014) 24.8%
Katamari (Chapter 4) 22.5%
SP+ (SpatialPooling+, Paisitkriangkrai et al. 2014) 21.9%

Table 5.9: Effect of proposal methods on detection quality of R-CNN. 1×/10× indicates
fine-tuning on Caltech1× or Caltech10×. The last section of the table contains reference
results for competing methods. Test laMR: log-average miss rate on Caltech test set. ∆:
the improvement in laMR of the rescored proposals over the test proposals alone.

∼10 pp gap between the detectors ACF, SquaresChnFtrs, and Katamari/SpatialPooling+,
allowing us to cover different operating points.

The results in Tab. 5.9 indicate that, despite the 10 pp gap, there is no noticeable
difference between AlexNet models trained with ACF or SquaresChnFtrs. It is seems
that as long as the proposals are not random (see top row of Tab. 5.1), the obtained
quality is rather stable. The results also indicate that the quality improvement from
AlexNet saturates around ∼22% laMR. Using stronger proposals does not lead to further
improvement. This means that the discriminative power of our trained AlexNet is on
par with the previously best known models on Caltech, but does not overtake them.

KITTI test set. In Fig. 5.5 we show AlexNet performance on the KITTI pedestrian
detection benchmark (Geiger et al., 2012). The network is pre-trained on ImageNet
and fine-tuned using KITTI training data. SquaresChnFtrs reaches 44.4% AP (average
precision), which AlexNet can improve to 50.1% AP. These are the earliest published
results for CNNs on KITTI.

Given the ranking changes w.r.t. Caltech esp. of SpatialPooling+, it should be noted
that (i) the two datasets use different evaluation metrics, (ii) the two datasets are more
dissimilar than they seem on the surface (see Tab. 4.2), and (iii) overall AlexNet results
on KITTI are satisfactory but proposals with higher recall might further improve results.
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Figure 5.5: AlexNet results on the KITTI test set.

5.5.4 Error analysis

Results from the previous section are encouraging, but not as good as could be expected
based on how R-CNN fares on PASCAL VOC compared to classical detectors. So what
are the limits on performance? The proposals? The localisation accuracy of the CNN?

A cursory look at the highest scoring false positives suggests that the problem is
localisation errors, made by the proposal method as well the R-CNN classifier and
even errors present in the ground truth. By localisation, we mean predicting accurate
bounding box coordinates once we’ve identified the presence of a pedestrian in some
part of the image.

To quantify this effect we rerun the Caltech evaluation but remove all false positives
that overlap with an annotation. This experiment provides an upper bound on perfor-
mance that assumes precise localisation in detectors together with ideal non-maximum
suppression. We see a surprisingly consistent and limited improvement for all methods
of not more than 2% laMR. This means that our initial guess based on looking at false
positives is wrong and actually almost all of the mistakes that worsen the laMR are
actually background windows that are mistaken for pedestrians. What is striking about
this result is that this is not just the case for our R-CNN experiments on detection
proposals but also for methods that are trained as a sliding window detector. In the
next chapter, we will see that fixing localisation errors tends to have a bigger effect in
the low FPPI range not considered for evaluation (between [10−4, 100]) and thus do not
show up in the standard metrics.
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Architecture # Test laMR
training parameters Caltech1x Caltech10x
CifarNet ∼105 30.7% 28.4%

MediumNet ∼106 − 27.9%
AlexNet ∼107 32.4% 27.5%

SquaresChnFtrs (Chapter 4) 34.8%

Table 5.10: Selection of results from previous sections when training different networks
solely using Caltech training data. laMR: log-average miss rate on Caltech test set.

5.6 Small or big CNN?

So far we analysed CifarNet and AlexNet separately, and now compare them side by
side. Tab. 5.10 shows performance on the Caltech test set for models that have been
trained only on Caltech1× and Caltech10×. With a smaller training set CifarNet reaches
30.7% laMR, performing 2pp better than AlexNet. On Caltech10×, we find CifarNet
performance improves to 28.4%, while AlexNet improves to 27.1% laMR. The trend
confirms the intuition that lower capacity models saturate earlier when increasing the
amount of training data than models with higher capacity. We also conclude that
AlexNet would profit from better regularisation when training on Caltech1×.

Timing. Runtime during detection is ~3ms per proposal window. This is too slow for
sliding window detection, but given a fast proposal method with high recall at fewer
than 100 windows per image, scoring takes about 300ms per image. In our experience,
SquaresChnFtrs runs in 2s per image, so the proposal stage is more expensive.

5.7 Takeaways

Work preceding this study suggested that CNNs for pedestrian detection underperform,
despite sophisticated architectures with problem-specific modelling (see Chapters 2
and 4). In this chapter we showed that neither has to be the case. We present a wide
range of experiments with two off-the-shelf models that reach competitive performance:
the small CifarNet and the big AlexNet.

We present two networks that are trained on Caltech only, which outperform all
previously published CNNs on Caltech. The CifarNet shows better performance than
related work, even when using the same training data as the respective methods
(Sec. 5.4.2). Despite its size, AlexNet also improves over previous CNNs even when it is
trained on Caltech only (Sec. 5.5.2).

At time of publication we advanced the state of the art for pedestrian detectors that
have been trained on Caltech1× and Caltech10×. The CifarNet was the best single-frame
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Figure 5.6: Comparison of our key results (thick lines) with published methods on
Caltech test set. Methods using optical flow are dashed.

pedestrian detector that has been trained on Caltech1× (Sec. 5.4.2), while AlexNet was
the best single-frame pedestrian detector trained on Caltech10× (Sec. 5.5.2).

In Fig. 5.6, we include all previously published methods on Caltech for the comparison,
which also adds methods that use additional information at test time. AlexNet when
pre-trained on ImageNet yields results that are competitive with the best previously
published methods, but without using additional information at test time (Sec. 5.5.1).

We report first results for CNNs on the KITTI pedestrian detection benchmark.
AlexNet improves over the proposal method (another pedestrian detector) but there is
still room to further improve KITTI performance with CNNs.

5.8 Conclusion

We have presented extensive experimental evidence for the effectiveness of CNNs for
pedestrian detection. Compared to previous CNNs applied to pedestrian detection our
approach avoids problem-specific design. When using the exact same proposals and
training data as previous approaches our “vanilla” networks outperform previous results.

We have shown that with pre-training on surrogate tasks, CNNs can reach top
performance on this task. Interestingly we have shown that even without pre-training
competitive results can be achieved, and this result is quite insensitive to the model size
(from 105 to 107 parameters). Our experiments also detail which parameters are most
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critical to achieve top performance. At the time of publication of this study, we report
the best known results for CNNs on both the challenging Caltech and KITTI datasets.

Our experience with CNNs indicates that they show good promise on pedestrian
detection, and that reported best practices do transfer to this task. That being said, on
this more mature field we do not yet observe the large improvement seen on datasets
such as PASCAL VOC and ImageNet.





6Towards a Human Baseline for Pedestrian
Detection

With our retrospective analysis in Chapter 4, we demonstrated how crucial
feature design has traditionally been for improving pedestrian detection
performance. In Chapter 5, we showed that standard convolutional neural

networks (CNNs) when trained appropriately work better than custom-designed networks
with domain-specific elements. Since the publication of that work, more research on
CNNs for pedestrian detection has resulted in significant improvements without signs of
slowing down.

In this chapter, rather than looking back we want to look forward and characterise
the gap between the current state of the art and the “perfect single frame detector”. To
this end, we set a human baseline for the Caltech dataset with a manual re-annotation
of the test set in a detection-like setting. Furthermore, we manually group the errors of
a top detector, allowing us to perform a more targeted analysis of performance, and try
to separate out the impact of improving classification and localisation precision. Our
results suggest shortcomings with the original annotations that may preclude a reliable
evaluation especially when precise localisation is required.

To that end, we undertake a full reannotation of the training and test sets with a
model in-the-loop to help cover the full training sequences. We demonstrate that our
improved annotation protocol leads to better-aligned bounding boxes, which in turn
results in higher quality detections when used for training. This also suggests that
dealing with label noise in training remains an issue. We provide the sanitised set of
training and test annotations for future research. We also suggest modifications to
the standard Caltech evaluation metric to better reflect improvements on localisation
performance.

Finally, based on our preliminary analysis and reannotations, we revisit R-CNN -like
detectors consisting of a classical detector that supplies proposals and a CNN-based
verification step (a lá Chapter 5). CNNs exhibit superior classification performance, but
are less precise than the top classical detectors. Bounding box regression helps, but
this suggests that improved architectures are necessary to make progress on addressing
localisation errors.

An earlier version of this work was published at CVPR (Zhang et al., 2016b) and
subsequently at PAMI (Zhang et al., 2018a). Shanshan Zhang was the lead author
and provided most experiments, Rodrigo Benenson and Mohamed Omran provided
annotations and contributed to the analysis and discussion, while Jan Hosang contributed
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the AlexNet experiments in Sec. 6.5.2 and the localisation/background analysis in
Sec. 6.3.3 and Sec. 6.5.2.

6.1 Introduction

Despite the extensive research on pedestrian detection, recent methods still attain
significant improvements, suggesting that a saturation point has not yet been reached.
In this chapter we analyse the gap between the state of the art and a newly created
human baseline (Sec. 6.3.1) for the Caltech Pedestrian Dataset (Caltech) (Dollár et al.,
2012b). The results indicate that there is still a ten-fold improvement to be made before
reaching human-like performance on this benchmark. We aim to investigate which
factors will help close this gap.

We analyse the errors made by top performing pedestrian detectors and make rec-
ommendations for addressing these. We conduct several kinds of analyses (Sec. 6.3.2),
including manual inspection, automated analysis of certain problem cases (e.g. blur,
contrast), and oracle experiments to isolate sources of error. Our results indicate that
inaccurate localisation is an important source of high-confidence false positives. We
address this by improving the training set alignment quality, both by manually sanitising
the default Caltech training annotations, as well as fixing the remaining annotations
algorithmically (Sec. 6.4 and Sec. 6.5.1).

To address problems with foreground-background discrimination, we study CNNs for
pedestrian detection given their strength at object classification (Chapter 5, Krizhevsky
et al. 2012) and discuss which factors affect their performance (Sec. 6.5.2).

6.1.1 Contributions

Our key contributions are as follows:

1. We analyse the performance of a state-of-the-art pedestrian detector, providing
detailed insights into its shortcomings.

2. We set a human baseline for the Caltech benchmark; and extend the resulting
detections to a full, sanitised version of the annotations. These can serve as new,
high quality ground truth for training and test sets and are publicly available6.

3. We analyse the effects of training data quality and determine the effect of better
aligned and labelled annotations on performance.

4. Based on the above, we explore variants of top-performing methods: the Filtered
Channel Features (Checkerboards) detector of Zhang et al. (2015b) and R-CNN

6http://www.mpi-inf.mpg.de/pedestrian_detection_cvpr16

http://www.mpi-inf.mpg.de/pedestrian_detection_cvpr16
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Figure 6.1: Overview of the top results on the Caltech benchmark. At ∼95% recall,
state-of-the-art detectors make ten times more errors than the human baseline.

(Girshick et al. 2014 and Chapter 5), and demonstrate improvements over the
baselines.

6.2 Preliminaries

Before presenting our analysis, we want to introduce the experimental setting, including
the relevant datasets, evaluation metrics and baseline detectors. We conduct our analysis
in this chapter on the Caltech (Dollár et al., 2012b) and KITTI (Geiger et al., 2012)
datasets, which we describe at length in Sec. 2.2. In the discussion that follows, we
distinguish between classification and localisation. Given an image window, the detector
needs to classify it as either corresponding to background or pedestrian. In the latter
case, the detector needs to additionally localise the pedestrian, i.e. produce accurate
bounding box coordinates. These are not independent tasks but useful to consider
separately for the purpose of our analysis.
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Filter type MRO−2

ACF (Dollár et al., 2014) 44.2
SquaresChnFtrs (Benenson et al., 2014) 34.8
LDCF (Nam et al., 2014) 24.8
RotatedFilters 19.2
Checkerboards (Zhang et al., 2015b) 18.5

Table 6.1: The type of filters applied to the baseline feature channels strongly determines
the performance of detectors in the ICF family.

Base detector MRO−2
+Context +Flow
∆MRO

−2 ∆MRO
−2

Orig. 2Ped (Ouyang and Wang, 2013b) 48 + 5 /
Orig. SDt (Park et al., 2013) 45 / + 8
SquaresChnFtrs (Chapter 4) 35 + 5 + 4
Checkerboards (Zhang et al., 2015b) 19 + 0 + 1

Table 6.2: Performance improvement as a result of adding context (Ouyang and Wang,
2013b) or optical flow (Park et al., 2013) to different baseline detectors.

6.2.1 Evaluation metrics

MR−2, MR−4. For the standard Caltech evaluation procedure (Dollár et al. 2012b,
Sec. 2.1), the miss rate is averaged over the low precision range of [10−2, 100] FPPI
(false positives per image). In the course of our analysis, we found that this does
not adequately reflect improved localisation performance. The latter instead affects
the lowest FPPI rates. Accordingly, we extend the support region of the log-average
operation from the standard range of [10−2, 100] to an expanded range of [10−4, 100]. We
will refer to these metrics as MR−2 and MR−4 respectively, and drop the reference to
the “log-average” in the abbreviation for the sake of readability. We expect the MR−4
metric to become more important as detectors get stronger.

MRO, MRN . In Sec. 6.4 we introduce new annotations for the test set. We show
evaluations on both original and new annotations for a more comprehensive (and
backward-compatible) comparison. The O superscript indicates the use of the original
annotations for evaluation, and N the use of the new ones.

In total, we thus use four evaluation metrics: MRN
−2 , MRN

−4 , MRO
−2 and MRO

−4 for
our Caltech experiments in this chapter.
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6.2.2 Detectors: Filtered Channel Features

We consider two members of the ICF detector family (Dollár et al., 2009a) for our
analysis. The Checkerboards detector of (Zhang et al., 2015b) is the top detector in this
family on the Caltech benchmark at the time of writing. It is an extension of the original
ICF detector, which applies various filters to the base HOG+LUV feature channels
before feeding them to a boosted decision forest for classification. Additionally, we also
consider the RotatedFilters detector, which is a simplified variant of LDCF (Nam et al.,
2014), that almost matches the performance of Checkerboards while being 6× faster at
training and test time.

We compare the performance of several detectors from the ICF family in Tab. 6.1,
where we can see a big improvement from 44.2% to 18.5% MRO

−2 by introducing filters
over the feature channels and optimising the filter bank. These results complement
the experiment in Chapter 4 (Sec. 4.4.1), which demonstrates how merely improving
features while keeping the method otherwise fixed reproduces performance improvements
achieved in a decade of work on pedestrian detection. There, we mostly varied the base
feature channels (from a simple luminance channel to 10 HOG+LUV channels), whereas
here we show the effect of additionally applying filters to these channels.

We should also note that many top-performing CNN-based methods (Fig. 6.1) use
ICF detectors for generating pedestrian hypotheses, e.g. DeepParts (Tian et al., 2015a),
CompACT-Deep (Cai et al., 2015), and SA-FastRCNN (Li et al., 2018). Therefore, the
insights derived from analysing RotatedFilters and Checkerboards are also applicable to
other top methods.

Additional cues. The review in Chapter 4 showed that context and optical flow
information can help improve detections. However, as the detector quality improves
(Tab. 6.1) the benefit of including such additional cues erodes (Tab. 6.2). It is plausible
that with some adaptation more gains can be squeezed out from the use of these cues,
but for the purposes of our current analysis we will only consider pure ICF detectors.

6.2.3 Detectors: CNN-based

In the standard R-CNN framework (Girshick et al., 2014), external methods are used
to generate detection proposals, which are then fed into CNNs for feature extraction
and classification. Such a two-stage strategy saves computation by reducing the number
of windows for CNNs to process, but on the other hand introduces a dependency of the
final detection results on proposal quality — especially in terms of recall. Tweaking the
sensitivity of the proposal method to generate more hypotheses can thus be helpful to
potentially achieve higher recall, but also increases the chance for false positives.
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As reported in Chapter 5 and Tian et al. (2015b), current top-performing CNN
methods are sensitive to the underlying detection proposals. We thus first focus on
improving the proposals by optimising the Filtered Channel Features detectors, and turn
to the CNNs themselves in Sec. 6.5.2).

6.3 Preliminary Analysis of the State of the Art

In this section we seek to understand the shortcomings of current detectors. To this
end, we estimate a lower bound for the log-average miss rate on Caltech with a human
baseline detector. We then manually categorise the mistakes of state-of-the-art detectors,
identifying several problem areas. Besides the fine-grained categorisation, errors can
be roughly separated into localisation and classification errors. With the help of an
oracle, we identify the contribution of each to the performance of several recent detectors.
Our results all in all suggest that the current Caltech annotations preclude a precise
evaluation and might be holding current methods back, which we address in later
sections.

6.3.1 Are we reaching saturation?

How much progress can still be expected on current pedestrian detection benchmarks?
To answer this question, we propose to use a human baseline as a lower bound: As
domain experts familiar with the benchmarks, we manually “detect” pedestrians in the
Caltech test set with an improved annotation protocol.

Human baseline protocol. To collect human detections, we used custom annotation
software. We discuss two important design decisions: the process of marking a pedestrian,
as well as the order of presenting frames.

The Caltech benchmark normalises the aspect ratio of all bounding boxes to 0.41
(Dollár et al., 2012b). Since the original annotations cover the extent of the full body,
this can result in inconsistent alignments especially for asymmetrical poses (e.g. if an
arm or a leg is outstretched). To remedy this, we resorted to a different annotation
scheme than the usual one: Rather than marking upper and lower left corners of the
bounding box, we annotated pedestrians by drawing a line the top of the head to a
point between both feet. A bounding box is then automatically generated such that its
centre coincides with the centre point of the manually-drawn axis (see Fig. 6.2). This
procedure ensures that the box is well-centred on the subject, which is hard to achieve
when marking the bounding box corners.

To ensure a fair comparison with existing detectors, most of which operate over a
single frame at a time, we focus on the single-frame monocular detection setting. Our
software thus presents frames in random order and without access to surrounding frames
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1 2 3

Figure 6.2: Illustration of bounding box generation for human baseline. The annotator
only needs to draw a line from the top of the head to the central point between both
feet, a tight bounding box is then automatically generated with the desired aspect ratio.
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Figure 6.3: Detection quality (log-average miss rate) for different subsets of the Caltech
test set. Each group shows the human baseline, the Checkerboards (Zhang et al., 2015b)
and RotatedFilters detectors (see legend), as well as three other highest-ranked methods
(different for each setting).

from the source videos. While this does not control for annotators remembering their
decisions for past frames, this still helps ensure that detections are mostly dependent on
appearance and single-frame context rather than long-term motion.

To check for consistency among the two annotators who generated these results, we
let both annotate a subset of test images (∼ 10%) and evaluated these separately. With
an Intersection over Union (IoU) ≥ 0.8 matching criterion, the results were identical up
to a single bounding box.

In Fig. 6.3, we compare our human baseline to Checkerboards, RotatedFilters and
other competing methods on various subsets of the test data. We find that the human
baseline outperforms state-of-the-art detectors under all settings7. We also notice the
gap between human baseline and state-of-the-art detectors is especially large for harder
cases, e.g. small-scale and heavily occluded pedestrians.

Fig. 6.3 also shows that Checkerboards and RotatedFilters perform well across all
subsets. In the few cases where they are not top-ranked, all methods exhibit low
detection quality. Checkerboards is not optimised for the most common case on the

7Except for IoU ≥ 0.8. This is due to inaccuracies of the ground truth, discussed in Sec. 6.4.
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Figure 6.4: Error sources of Checkerboards (Zhang et al., 2015b) on the Caltech test set.

Caltech dataset, but nevertheless shows good performance across a variety of situations
and is thus an interesting method to analyse.

Conclusion. There is still room for improvement for automatic methods on the Caltech
benchmark, and we have not yet reached saturation.

6.3.2 Manual Error Analysis

Since there is room for improvement for existing detectors: When and how do they
currently fail? In this section we analyse the errors made by the Checkerboards detector,
which obtains top performance on most subsets of the test set (Fig. 6.3). Since most
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(a) Low-scoring objects (b) High-scoring objects

Figure 6.5: Failure cases of Checkerboards (Zhang et al., 2015b). Each group shows
image patches of similar scores: some background objects have high scores, while some
persons have low scores. We aim to understand when the detector fails through analysis.

top methods are from the ICF family (Fig. 6.1), we expect this analysis to apply more
broadly. Methods that apply CNNs to proposals from ICF detectors are also affected.

There are two types of errors a detector can make: false positives (detections on
background, redundant detections, or poorly-localised detections) and false negatives
(low-scoring or missing detections). Fig. 6.5 shows examples of both low-scoring and
high-scoring detections, and each group contains a mixture of both error types.

In this analysis, we look at false positives and negatives at 0.1 FPPI, and manually
cluster them into visually distinctive groups. A total of 402 false positives and 148 false
negatives are categorised by error type, as shown in Fig. 6.4.

False positives. We manually assign false positives to one of eleven categories, shown
in Fig. 6.4a. These fall into three groups: localisation, background, and annotation
errors. We show examples for each category in Fig. 6.6. Localisation errors are defined
as detections that have insufficient overlap with ground truth bounding boxes, whereas
background errors are detections that don’t overlap with any annotations at all (Figs. 6.6a
to 6.6c).

Background errors are most the common type of false positive, and mainly correspond
to vertical structures (e.g. Fig. 6.6b), and to a lesser to extent to other types of objects
such as tree leaves and traffic lights. This indicates that the detectors could benefit
from the inclusion of more vertical context, providing visibility over larger structures
and a rough height estimate. In Sec. 6.5.2 we explore how to better handle background
errors by using CNNs, which has a larger receptive field than Checkerboards, i.e. takes
more context into account.

Localisation errors are dominated by double detections, i.e. high scoring detections
covering the same person (see the first two examples in Fig. 6.6a). This indicates that
improved detectors need to have more localised responses (peakier score maps) and/or
a different non-maximum suppression strategy. In Sec. 6.4 and Sec. 6.5.1 we explore
how to improve the detector localisation.
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Figure 6.6: Different types of false positive errors made by Checkerboards. True/false
positives in red/green, annotations in blue, and ignore regions in dashed blue.

Some detection errors can be traced back to problems with the annotations. These are
mainly missing ignore regions, e.g. annotations that would otherwise exclude depictions
of persons in the environment such as mannequins or billboards. There are also a
handful of unmarked pedestrians. In Sec. 6.4 we revisit the Caltech annotations.

False negatives. Our clustering results in Fig. 6.4b reflect the well-established difficulty
of detecting small and occluded objects. We hypothesise that poor performance on
cyclists and persons viewed from the side may be the result of underrepresentation in
the training set: Most persons are walking on the pavement with a trajectory parallel
to that of the vehicle. Augmenting the training set with external images that address
this bias of the dataset might be an effective strategy.

Is it scale? Or rather visual quality? For false negatives, a major source of errors is
small scale. We additionally observe that small persons are commonly saturated (over-
or under-exposed) and blurry. We thus hypothesise that this might also interfere with
detection quality, besides the mere availability of fewer pixels for making a decision.
To this end, we define two automated measures for contrast and blur that we apply to
detections whether true or false. Contrast is measured via the difference between the
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Figure 6.7: Examples for images with different levels of contrast/blur. The number on
top of each image indicates the contrast/blur measure.

(a) Size versus score (b) Contrast versus score (c) Blur versus score

Figure 6.8: Correlation between size/contrast/blur and score.

top and bottom quantiles of the grey scale intensity of the pedestrian patch. Blur is
measured as the difference between the input and its blurred patch, which is generated
by applying a mean filter to input image (Crete et al., 2007). Note that all patches are
rescaled to the input size expected by our model (120× 60 pixels) prior to measuring
the degree of blur. Both contrast and blur measures have a range of [0, 1], and higher
values indicate a higher degree of contrast or blur. Fig. 6.7 shows pedestrians ranked
by our contrast and blur measures. One can observe that our quantitative measures
correlate well with human notions of blur and contrast.

In order to investigate the three factors separately, we observe the correlation between
size/contrast/blur and detection score, as shown in Fig. 6.8. We can see that the overlap
between false positive and true positive is equally distributed across different levels of
contrast and blur, while for scale, the overlap is quite high at small scale. Thus we
conclude that small scale itself is the main factor negatively impacting detection quality
and that high blur and low contrast are not.

Discussion. As a sanity check, we conduct the same analysis of errors for other detectors
and datasets, namely for Checkerboards on KITTI and for RPN+BF (Zhang et al.,
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Figure 6.9: Types of false positive errors made by Checkerboards (Zhang et al., 2015b)
on the KITTI validation set.
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Figure 6.10: Types of false positive errors made by RPN+BF on the Caltech test set.

2016a), another state-of-the-art detector, on Caltech. While comparing the statistics
shown in Figs. 6.4a, 6.9 and 6.10, we observe similar trends for the error sources, e.g.
double detections, vertical structures, annotation errors.

Conclusion. Our analysis shows that false positive errors have well defined sources
that can be specifically targeted with the strategies suggested above. A fraction of the
false negatives are also addressable, although the small and occluded pedestrians remain
a hard and significant problem.
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Figure 6.11: Oracle cases evaluation over Caltech test set.

6.3.3 Oracle Experiments

So far, our analysis focused on error counts. For metrics that depend on the area under
a performance curve (e.g. log-average miss rate or average precision), high-scoring errors
matter more than low-scoring ones as they more strongly impact the curve’s trajectory:
The miss rate is computed from fewer detections early on. In this section we use oracle
test cases to directly measure the impact of two types of errors on Caltech: localisation
errors and positive classification errors (i.e. misidentifying background as foreground).
In the oracle case for localisation, all false positives that overlap with ground truth are
ignored for evaluation. In the oracle tests for positive classification, all false positives
that do not overlap with ground truth are ignored.

Fig. 6.11a shows that fixing localisation mistakes improves performance in the low
FPPI region, while fixing background mistakes improves results in the high FPPI region.
In Fig. 6.11b we show the gains that can be obtained in terms of MRO

−4 by fixing
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localisation or positive classification issues. When comparing the eight top-performing
methods we find that fixing either problem would boost performance significantly for
most. It is important to note that localisation and positive classification errors together
comprise all false positives. If we were to remove both types, the only mistakes that
would remain are missed pedestrians and the result would be a horizontal line with very
low miss rate. However, due to the log-scale, the sum of localisation and background
deltas do not add up to the total miss rate.

Conclusion. For most top performing methods localisation and positive classification
errors are an issue, however CNN-based methods are less affected by the latter.

6.4 Reannotating Caltech

When evaluating our human baseline and other methods with a strict criterion of
IoU ≥ 0.8, we notice that performance drops for all methods (Fig. 6.3), and — perhaps
counter-intuitively — our human baseline no longer outperforms the rest. Our analysis
also shows that localisation errors are a problem for most detectors, and even for CNN-
based detectors which make fewer classification errors than the rest. Taken together,
these results suggest that the Caltech annotations might get in the way of a reliable
evaluation, especially for closing the final gap on this benchmark.

The original annotation protocol is based on interpolating sparse annotations across
multiple frames (Dollár et al., 2012b), and these annotations are not necessarily located
on the evaluated frames. Upon inspection we notice that this interpolation indeed
generates a systematic spatial offset in the annotations. Humans walk with a natural
vertical oscillation that is not captured by the linear interpolation scheme. This effect is
not noticeable when using a generous IoU ≥ 0.5 threshold, but causes problems when
we require more precise localisation.

To fix this issue together with the errors previously identified, we create a new set
of improved annotations for Caltech. Our aim is two-fold: On the one hand, we want
to provide a more accurate evaluation of the state of the art, especially in light of low
log-average miss rates on the “Reasonable” set. On the other hand, with the high quality

Figure 6.12: Examples of original (red) vs. new annotations (green). Ignore regions are
marked with dashed lines. These are the ten annotation pairs with the largest IoU gap.
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(a) False annotations (b) Poor alignment

Figure 6.13: Examples of errors in original annotations. New annotations in green,
original ones in red.

training annotations we could evaluate how much these lead to better detections — or
in other words, how sensitive detectors are to label noise (Sec. 6.5.1).

6.4.1 Manual Single-frame Annotation Protocol

We re-annotate both the Caltech1× training and test sets (Sec. 2.2), and focus on high
quality. We use the same labelling procedure as for our human baseline but with some
modifications. As before, each person is annotated with a line from the top of the
head to the point between both feet. The annotators must hallucinate head and feet if
these are not visible. However, when the person is not fully visible, they must now also
annotate a rectangle around the largest visible region. This allows us to estimate the
occlusion level as with the original annotations. Additionally, annotators are allowed to
look at the full video to decide if a person is present or not. They are requested to mark
ignore regions in areas covering crowds, human shapes that are not persons (posters,
statues, etc.), and in areas where the presence of pedestrians could not be excluded with
certainty. After creating a full independent set of annotations, we validated the new
annotations against the originals. We added any correct annotation from the original
set that was not accounted for in the new set.

In summary, our new annotations differ from the human baseline in the following
aspects: both training and test sets are annotated, ignore regions and occlusions are
also annotated, the video data is used for decisions, and multiple revisions of the same
image are allowed.

We show some examples of differences between original and new annotations in
Fig. 6.12. Our new annotations correct several types of errors in the existing annota-
tions, such as misalignments (Fig. 6.13b), missing annotations (false negatives), false
annotations (false positives, Fig. 6.13a), and the inconsistent use of “ignore” regions.
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Figure 6.14: Examples of automatically realigned ground truth annotations.
Red/yellow→ before/after realignment.

1×
data

10× data
aligned with MRO

−2 (MRO
−4) MRN

−2 (MRN
−4)

Orig. Ø 19.20 (34.28) 17.22 (31.65)
Orig. Orig. 10× 19.16 (32.28) 15.71 (28.13)
Orig. New 1/2× 16.97 (28.01) 14.54 (25.06)
New New 1× 16.77 (29.76) 12.96 (22.20)

Table 6.3: Test set performance of RotatedFilters when using training annotations re-
aligned in different ways. All models trained with Caltech10×, composed with different
1× + 9× combinations.

6.4.2 Semi-automatic Sequence Annotation

The detectors we consider here, whether from the ICF family (Nam et al., 2014;
Zhang et al., 2015b) or CNN-based (Chapter 5), benefit from an expanded training set:
Caltech10× vs. Caltech1×. Since we only manually reannotate the Caltech1× images,
we use a model trained on these new annotations to re-align the annotations in the
remaining frames. Fig. 6.14 shows example results of this process.

In Tab. 6.3 we report results for different sets of training annotations and different
automatic realignment schemes. The results indicate that using a detector to improve
overall data alignment is indeed effective across both metrics, especially when the
realignment model is trained with the more accurate annotations — even with a partial
set (1/2). This is in line with the analysis of Sec. 6.3.2.

6.4.3 Quantitative Analysis

Prior to using the new annotations for training in the next section, we examine their
impact when evaluating methods trained on the original annotations.
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Figure 6.15: Plot of log-average miss rate versus overlap threshold (IoU) for the top-
performing methods on the “Reasonable” experimental setting. When evaluating against
the new annotations, methods trained on INRIA (represented with solid curves) are
better behaved than methods trained on the original Caltech annotations when stricter
overlap criteria are applied.
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Figure 6.16: Ranking of methods when evaluated against the new Caltech annotations on
the “Reasonable” test set (MRN−2). As in Chapter 4, DF: decision forest, DPM: deformable
parts model, DN: deep network.
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Alignment Quality. Fig. 6.15 plots MRO
−2 and MRN

−2 of top performing methods versus
the IoU criterion for accepting detections as true positives. The standard evaluation
uses a threshold of 0.5. On these plots, methods trained on INRIA have continuous
lines, methods trained on Caltech dashed ones (see also Fig. 6.16).

In Fig. 6.15a (original annotations) the ranking of the methods remains stable as the
overlap threshold becomes stricter, which is consistent with observations in Dollár et al.
(2012b). Interestingly, we observe a different trend in Fig. 6.15b, where all methods are
evaluated against the new annotations (MRN

−2). Those methods trained on INRIA, while
performing poorly at IoU = 0.5, perform comparatively well at higher IoU thresholds,
eventually passing all methods trained on the original Caltech data. We attribute this
to the fact that INRIA annotations are of higher quality (esp. in terms of alignment),
which is reflected in detector localisation ability.

This discrepancy between original and new annotations confirms that our improved
annotations are better with respect to localisation.

Re-ranking the State-of-the-Art. As a sanity check, we re-rank all published Caltech
results (Fig. 6.16) using the new annotations (MRN

−2). Compared to the MRO
−2 metric,

the overall trend is preserved — some minor ranking changes notwithstanding (e.g.
JointDeep versus SDN ). This is a good sign that the improved annotations are not a
radical departure from previous ones. As discussed previously, the improved annotations
matter most for future methods that aim to make progress on the hardest cases, especially
in the low FPPI region where high-confidence mistakes show up.

6.5 Improving the state of the art

In the previous section, we described our reannotation protocol for Caltech. We provided
evidence that these are indeed better aligned. The behaviour of the methods trained on
INRIA with stricter IoU-thresholds for evaluation suggests that well-aligned labels are
critical for good localisation performance. Equipped with the new training annotations,
we can examine this further and measure their impact on both localisation and overall
detection quality.

6.5.1 Impact of Improved Training Annotations

Examining localisation quality. In Tab. 6.4 we measure a detector’s localisation quality
via the median IoU between true positive detections and a given set of annotations.
When evaluating with the original annotations (“Median IoUO” column), only the model
trained with the original annotations has good localisation. However, when evaluating
with the new annotations (“Median IoUN” column) both models trained either on INRIA
or with the new annotations reach high localisation accuracy. This indicates that our
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Detector Training
data

Median
IoUO

Median
IoUN

Roerei (Benenson et al., 2013) INRIA 0.76 0.84
RotatedFilters Orig. 10× 0.80 0.77
RotatedFilters New 10× 0.76 0.85

Table 6.4: Median IoU of true positives for detectors trained on different data, evaluated
on both original and new Caltech annotations. Models trained on INRIA align well with
our new annotations, confirming that they are more precise than previous ones.

Detector Anno. variant MRO
−2 MRN

−2

ACF (Dollár et al., 2014)
Original 36.90 40.97
Pruned 36.41 35.62
New 41.29 34.33

RotatedFilters
Original 28.63 33.03
Pruned 23.87 25.91
New 31.65 25.74

Table 6.5: Effects of different training annotation sets on detection quality on validation
set performance (Caltech1× training set). Results in italics indicate the use of matching
training and test sets. The “pruned” variant improves performance for both detectors.

new annotations are indeed better aligned, just as INRIA annotations are better aligned
than Caltech.

Decoupling classification from localisation errors. Next, we examine the impact of
the new annotations on detection quality. We train ACF (Dollár et al., 2014) and
RotatedFilters models using different training sets and evaluate against both original
and new annotations (i.e. MRO

−2, MRO
−4 and MRN

−2, MRN
−4).

To help us decouple the effect of labelling errors from the effect of alignment errors,
we generate a set of “pruned” annotations which addresses false positives and false
negatives in the original set without improving alignment. To this end, we match new
and original annotations with a criterion of IoU ≥ 0.5. Then we (i) mark as “ignore
regions” any unmatched original annotations, and (ii) add new annotations absent in
the original set. The resulting set of annotations can be viewed as a midpoint between
original and new sets.

Tab. 6.5 shows results when trained with original, new, and pruned annotations
using our Caltech training/validation split of 5/6 + 1/6. As expected, models trained
on original/new and tested on original/new perform better than training and testing
on different annotations. Since the pruned annotations address labelling errors, these
have a strong impact on the MRO

−2 which doesn’t reflect alignment errors as strongly
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Test proposals Proposal +AlexNet +VGG
+bbox reg
& NMS

ACF (Dollár et al., 2014) 48.0% 28.5% 22.8% 20.8%
SquaresChnFtrs (Benenson et al., 2014) 31.3% 21.2% 15.9% 14.7%
LDCF (Nam et al., 2014) 23.7% 21.6% 16.0% 13.7%
RotatedFilters 17.2% 21.5% 17.8% 13.8%
Checkerboards (Zhang et al., 2015b) 16.1% 21.0% 15.3% 11.1%
RotatedFilters-New10× 13.0% 17.2% 11.7% 10.0%

Table 6.6: Detection quality of CNNs with different proposal methods. Grey numbers
indicate worse results than the input proposals. All numbers are reported in terms
of MRN

−2 on the Caltech test set. The last column indicates bounding box regression
followed by a second non-maximum suppression step after VGG16 re-scoring.

as discussed above. We also observe in the “MRN
−2” column that the stronger detector

benefits more from better data.

Conclusion. Using high quality annotations for training improves the overall detection
quality, thanks both to improved alignment and to reduced annotation errors.

6.5.2 CNNs for pedestrian detection

The results of Sec. 6.3.2 indicate that we can improve results by focusing on the
classification subtask of detection. Chapter 5 and other recent work (Tian et al., 2015b)
have demonstrated competitive performance with convolutional neural networks (CNNs)
for pedestrian detection. As these can help address classification errors, what is their
behaviour w.r.t. localisation accuracy? To what extent is performance driven by the
quality of the detection proposals?

AlexNet and VGG16. We consider two CNNs for detection: (i) AlexNet (used in
Chapter 5), and (ii) the VGG16 model used by Girshick (2015). Both are pre-trained on
ImageNet and fine-tuned with Caltech10× (original annotations) using SquaresChnFtrs
proposals. Both are instantiations of the R-CNN framework (Girshick et al., 2014),
albeit with slightly different training/test-time approaches (vanilla R-CNN versus Fast
R-CNN ). Nonetheless, we expect differences in the results to be dominated by the
discriminative power of the respective CNNs. VGG16 for example improves over
AlexNet by 8pp (mAP) on the PASCAL VOC detection task (Girshick et al., 2014).

Tab. 6.6 shows that as the quality of the detection proposals improves, AlexNet fails
to provide consistent gains, eventually performing worse than the ICF -based proposal
method. VGG16 on the other hand almost consistently improves over the proposal
method, but the gains shrink as the proposals improve.
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Figure 6.17: Distribution of overlap between false positives and ground truth, for
different ICF detectors. The curves are histograms with coarse IoU bins (0 overlap case
omitted). Number in the legend indicates the average number of proposals per image
(after filtering to reach ∼3 proposals per image on average). Note that most detectors
have many false positives near true detections.

By inspecting the resulting curves, we notice that both AlexNet and VGG16 lower
the scores of negative hypotheses but also generate a large number of high-scoring false
positives. To get to the bottom of this, we look at the distribution of proposals. We
find that ICF detectors are able to provide a set of proposals with high recall but also
introduce many redundant detections that surround pedestrians (see Fig. 6.17). CNNs
struggle to suppress the latter, as they produce more diffuse score maps. We hypothesise
this is an intrinsic limitation of the AlexNet and VGG16 architectures, due to the
heavy reliance on subsampling operations during feature extraction. Obtaining “peakier”
responses from a CNN will most likely require using rather different architectures,
possibly ones that are designed for dense pixel-wise prediction tasks, such as semantic
labelling or boundary detection.

Fortunately, we can compensate for the imprecise score maps by resorting to bounding
box regression. We add such a regressor to VGG16 and a second round of non-maximum
suppression (NMS) separate from the one applied to the proposals. We use the usual
IoU ≥ 0.5 merging criterion for the second NMS round. Neighbouring proposals that
previously resulted in strong false positives are now combined into a single high-scoring
detection. The last column of Tab. 6.6 demonstrates the resulting gains even over the best
proposal method RotatedFilters-New10×. Evaluated against the original annotations,
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Figure 6.18: Oracle case analysis of proposals + CNNs (after a second round of NMS).
The gain in miss rate is reported with ∆MRO

−4. The CNN significantly improves
background errors, while slightly increasing localisation errors.

RotatedFilters-New10×+VGG reaches 14.2% MRO
−2, which improves over Chapter 5 and

Tian et al. (2015b) as well as other state-of-the-art detectors (Fig. 6.19).

Fig. 6.18 repeats the oracle tests of Sec. 6.3.3 over our CNN results. We make
comparisons for three CNN detectors and their corresponding ICF proposal methods, to
observe how localisation and background errors change after VGG16 re-scoring. One can
see that for each proposal method, VGG16 significantly cuts down on the background
errors, while at the same time slightly increasing localisation errors. These comparisons
verify that CNNs have strong discriminative ability against background objects, but on
the other hand also demonstrate that CNNs fail to reduce the number of false positives
close to ground truth objects.

Runtime comparisons. Our best performing detector RotatedFilters-New10×+VGG
runs on a 640× 480 image for ~3.5 seconds, including the ICF sliding window detection
and VGG16 re-scoring. Training RotatedFilters and fine-tuning VGG16 each require
1~2 days. We compare the runtime versus performance for different detectors in Tab. 6.7.
All detectors are tested on the same hardware: Intel Xeon E5-2680 2.70GHz CPU; and
Tesla K40 GPU. Although RotatedFilters-New10x+VGG runs slower than previous ICF
detectors, it reduces the errors by a large margin.

Conclusion. Although CNNs achieve strong results in image classification and general
object detection, they seem to have limitations when it comes to producing well localised
detection scores around small objects. Bounding box regression and NMS are key to
addressing this limitation with current architectures. Despite this issue, classification
remains the main source of errors, suggesting that there is still room for improvement
for CNNs here as well.
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(a) Original annotations, legend indicates MRO
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(b) New annotations, legend indicates MRN
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−4).

Figure 6.19: Performance of top detectors evaluated on original and new annotations.
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Runtime (seconds) MRN−2CPU GPU Total
ACF 0.1 / 0.1 27.6

Checkerboards 3.0 / 3.0 15.8
RotatedFilters-New10x 2.5 / 2.5 13.0

RotatedFilters-New10x+VGG 2.5 1.0 3.5 10.0

Table 6.7: Comparison of runtime versus performance for different detectors on the
Caltech benchmark. Runtime is the average test time on one 640× 480 image.

Detector aspect MRO
−2 (MRO

−4) MRN
−2 (MRN

−4)
Checkerboards 18.47 (33.20) 15.81 (28.57)
RotatedFilters 19.20 (34.28) 17.22 (31.65)

+ Alignment Sec. 6.5.1 16.97 (28.01) 14.54 (25.06)
+ New annotations Sec. 6.5.1 16.77 (29.76) 12.96 (22.20)

+ VGG Sec. 6.5.2 16.61 (34.79) 11.74 (28.37)
+ bbox reg & NMS 14.16 (28.39 ) 10.00 (20.77 )

Table 6.8: Step by step improvements from previous best method Checkerboards to
RotatedFilters-New10x+VGG.

6.6 Conclusion

In this chapter, we analysed the failures of top-performing detectors on the Caltech and
KITTI datasets. With our human baseline, we have provided a lower bound on how
much improvement there is to be expected on Caltech. There is a 10× gap in terms of
errors still to be closed. To better measure the next steps in detection progress, we have
provided new sanitised Caltech training and test set annotations.

Through a careful manual analysis, we identified different types of errors, which lead
to specific suggestions on how to engineer better detectors (mentioned in Sec. 6.3.2; e.g.
data augmentation for side-view persons, or extending the detector receptive field along
the vertical axis).

We have partially addressed some of the issues by measuring the impact of better
annotations on localisation accuracy, and by investigating the use of CNNs to improve
the background to foreground discrimination. Our results indicate that significantly
better alignment can be achieved with properly trained ICF detectors, and that, for
pedestrian detection, CNNs struggle with localisation issues, which can be partially
addressed via bounding box regression. Both on original and new annotations, the
described detection approach reaches top performance, see progress in Tab. 6.8.

We hope the insights and data provided in this work will guide the path to closing
the gap between machines and humans in the pedestrian detection task.





Part II

P I X E LW I S E L A B E L I N G





7
The Cityscapes Dataset for Semantic Urban
Scene Understanding

Visual understanding of complex urban street scenes is an enabling factor for a
wide range of applications. Object detection has benefited enormously from
large-scale datasets, especially in the context of deep learning. For semantic

urban scene understanding, there was a lack of datasets that adequately captured the
complexity of real-world urban scenes.

To address this, we introduced Cityscapes, a benchmark suite and large-scale dataset to
train and test approaches for pixel-level and instance-level semantic labelling. Cityscapes
is comprised of a large, diverse set of stereo video sequences recorded in streets from 50
different cities. 5000 of these images have high quality pixel-level annotations; 20 000
additional images have coarse annotations to enable methods that leverage large volumes
of weakly-labelled data. Crucially, our effort exceeded previous attempts in terms of
dataset size, annotation richness, scene variability, and complexity. Our accompanying
empirical study provides an in-depth analysis of the dataset characteristics, as well as a
performance evaluation of several state-of-the-art approaches based on our benchmark.
The dataset has since established itself as a go-to benchmark for pixel-level and instance-
level semantic segmentation, but also has found use in other problem areas such as
domain adaptation and generative modelling.

This work was published at CVPR (Cordts et al., 2016). Marius Cordts was the
lead author and Mohamed Omran contributed towards the defining and collecting the
annotations, compiling dataset statistics, setting up the benchmark and the instance-level
segmentation experiments.

7.1 Introduction

Visual scene understanding has moved from an elusive goal to a focus of much recent
research in computer vision (Hoiem et al., 2015). Semantic reasoning about the contents
of a scene is thereby done on several levels of abstraction. Scene recognition aims
to determine the overall scene category by putting emphasis on understanding its
global properties, e.g. Zhou et al. (2014); Oliva and Torralba (2001). Scene labelling
methods, on the other hand, seek to identify the individual constituent parts of a whole
scene as well as their interrelations on a more local pixel- and instance-level, e.g. Long
et al. (2015); Tighe et al. (2015). Specialized object-centric methods fall somewhere in
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Figure 7.1: Number of finely annotated pixels (y-axis) per class and their associated
categories (x-axis).

between by focusing on detecting a certain subset of (mostly dynamic) scene constituents,
e.g. Felzenszwalb et al. (2010); Dollár et al. (2012b); Enzweiler and Gavrila (2009);
Benenson et al. (2012). Despite significant advances, visual scene understanding remains
challenging, particularly when taking human performance as a reference.

The resurrection of deep learning (LeCun et al., 2015) has had a major impact
on the current state-of-the-art in machine learning and computer vision. Many top-
performing methods in a variety of applications are nowadays built around deep neural
networks (Krizhevsky et al., 2012; Sermanet et al., 2014; Long et al., 2015). A major con-
tributing factor to their success is the availability of large-scale, publicly available datasets
such as ImageNet (Russakovsky et al., 2015a), PASCAL VOC (Everingham et al., 2015),
PASCAL-Context (Mottaghi et al., 2014), and Microsoft COCO (MSCOCO) (Lin et al.,
2014) that allow deep neural networks to develop their full potential.

Despite the existing gap to human performance, scene understanding approaches have
started to become essential components of advanced real-world systems. A particularly
popular and challenging application involves self-driving cars, which make extreme
demands on system performance and reliability. Consequently, significant research
efforts have gone into new vision technologies for understanding complex traffic scenes
and driving scenarios (Franke et al., 2013; Furgale et al., 2013; Geiger et al., 2014;
Scharwächter et al., 2014; Ros et al., 2015; Badrinarayanan et al., 2017).

Also in this area, research progress can be heavily linked to the existence of datasets
such as the KITTI Vision Benchmark Suite (Geiger et al., 2013), CamVid (Brostow
et al., 2009), Leuven (Leibe et al., 2007), and Daimler Urban Segmentation (Scharwächter
et al., 2013) datasets. These urban scene datasets are often much smaller than datasets
addressing more general settings. Moreover, we argue that they do not fully capture
the variability and complexity of real-world inner-city traffic scenes. Both shortcomings
currently inhibit further progress in visual understanding of street scenes. To this end,
we propose the Cityscapes benchmark suite and a corresponding dataset, specifically
tailored for autonomous driving in an urban environment and involving a much wider
range of highly complex inner-city street scenes that were recorded in 50 different cities.
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Cityscapes significantly exceeds prior efforts in terms of size, annotation richness, and,
more importantly, regarding scene complexity and variability. We go beyond pixel-level
semantic labelling by also considering instance-level semantic labelling in both our
annotations and evaluation metrics. To facilitate research on 3D scene understanding,
we also provide depth information through stereo vision.

Concurrently with this work, Xie et al. (2016) announced a new semantic scene
labelling dataset for suburban traffic scenes. It provides temporally consistent 3D
semantic instance annotations with 2D annotations obtained through back-projection.
We consider our efforts to be complementary given the differences in the way that
semantic annotations are obtained, and in the type of scenes considered, i.e. suburban
vs. inner-city traffic. To maximize synergies between both datasets, a common label
definition that allows for cross-dataset evaluation has been mutually agreed upon and
implemented.

7.2 Dataset

Designing a large-scale dataset requires a multitude of decisions, e.g. on the modalities
of data recording, data preparation, and the annotation protocol. Our choices were
guided by the ultimate goal of enabling significant progress in the field of semantic
urban scene understanding.

7.2.1 Data specifications

Our data recording and annotation methodology was carefully designed to capture the
high variability of outdoor street scenes. Several hundreds of thousands of frames were
acquired from a moving vehicle during the span of several months, covering spring,
summer, and fall in 50 cities, mostly in Germany but also in a couple of neighbouring
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Figure 7.2: Proportion of annotated pixels (y-axis) per category (x-axis) for Cityscapes,
CamVid (Brostow et al., 2009), DUS (Scharwächter et al., 2013), and KITTI (Geiger
et al., 2013).
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countries. We deliberately did not record in adverse weather conditions, such as heavy
rain or snow, as we believe such conditions require specialized techniques and datasets
(Pfeiffer et al., 2013).

Our camera system and post-processing reflect the current state-of-the-art in the
automotive domain. Images were recorded with an automotive-grade 22 cm baseline
stereo camera using 1/3 in CMOS 2 MP sensors (OnSemi AR0331) with rolling shutters
at a frame-rate of 17 Hz. The sensors were mounted behind the windshield and yield
high dynamic-range (HDR) images with 16 bits linear colour depth. Each 16-bit stereo
image pair was subsequently debayered and rectified. We relied on the method of Kruger
et al. (2004) for extrinsic and intrinsic calibration. To ensure calibration accuracy we
re-calibrated on-site before each recording session.

For comparability and compatibility with existing datasets we also provide low
dynamic-range (LDR) 8-bit RGB images that are obtained by applying a logarithmic
compression curve. Such tone mappings are common in automotive vision, since they
can be computed efficiently and independently for each pixel. To facilitate highest
annotation quality, we applied a separate tone mapping to each image. The resulting
images are less realistic, but visually more pleasing and proved easier to annotate. 5000
images were manually selected from 27 cities for dense pixel-level annotation, aiming
for high diversity of foreground objects, background, and overall scene layout. The
annotations (see Sec. 7.2.2) were done on the 20th frame of a 30-frame video snippet,
which we provide in full to supply context information. For the remaining 23 cities, a
single image every 20 s or 20 m driving distance (whatever comes first) was selected for
coarse annotation, yielding 20 000 images in total.

In addition to the rectified 16-bit HDR and 8-bit LDR stereo image pairs and
corresponding annotations, our dataset includes vehicle odometry obtained from in-
vehicle sensors, outside temperature, and GPS tracks.

7.2.2 Classes and annotations

We provide coarse and fine annotations at the pixel level including instance-level labels
for humans and vehicles.

Our 5000 fine pixel-level annotations consist of layered polygons à la LabelMe (Russell
et al., 2008). These were collected in-house to guarantee the highest levels of quality.
Annotation and quality control required more than 1.5 h on average for a single image.
Annotators were asked to label the image from back to front such that no object
boundary was marked more than once. Each annotation thus implicitly provides a depth
ordering of the objects in the scene. Given our labelling scheme, annotations can be
easily extended to cover additional or more fine-grained classes.

For our 20 000 coarse pixel-level annotations, accuracy on object boundaries was
traded off against annotation speed. We aimed to correctly annotate as many pixels
as possible within a 7 min window per image. This was achieved by labelling coarse
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polygons under the sole constraint that each polygon must only include pixels belonging
to a single object class.

We assessed the quality of our labelling with two experiments. In the first, 30 images
were finely annotated twice by different annotators. A comparison of the two sets
of annotations showed that 96 % of all pixels were assigned to the same label. Our
annotators were instructed to choose a void label if unsure of the object class. We thus
repeated the comparison without pixels covered by at least one void polygon. This
yielded a label agreement of 98 %. For the second experiment, we coarsely reannotated
all images with fine annotations, with the purpose of enabling research on densifying
coarse labels. Comparing coarse and fine annotations showed that 97 % of all coarsely
labelled pixels were assigned the same class as in the fine annotations.

We defined 30 visual classes for annotation, which are grouped into eight categories:
flat, construction, nature, vehicle, sky, object, human, and void. Classes were selected
based on their frequency, relevance from an application standpoint, practical consider-
ations regarding the annotation effort, as well as the desire to facilitate compatibility
with existing datasets, e.g. Geiger et al. (2013); Brostow et al. (2009); Xie et al. (2016).
Classes that ended up being rarely annotated were subsequently excluded from our
benchmark, leaving 19 classes for evaluation, see Fig. 7.1 for details. Our annotation
tool is also publicly available.8

7.2.3 Dataset splits

We split our densely annotated images into separate training, validation, and test sets.
The coarsely annotated images are solely meant to serve as additional training data.
We chose not to split the data randomly, but rather in a way that ensures each split is
representative of the variability of different street scene scenarios. The underlying split
criteria were chosen to ensure a roughly balanced distribution of geographic location
and population size of the individual cities, as well as of the time of year during which
recordings took place. Specifically, each of the three split sets is comprised of data
recorded with the following properties in equal shares: (i) in large, medium, and small
cities; (ii) in the geographic west, centre, and east; (iii) in the geographic north, centre,
and south; (iv) at the beginning, middle, and end of the year. Note that the data is
split at the city level, i.e. the images recorded in a single city are completely contained
within a single split. Following this scheme, we arrive at a unique split consisting of
2975 training and 500 validation images with publicly available annotations, as well as
1525 test images with annotations withheld for benchmarking purposes.

In order to assess how uniform (representative) the splits are regarding the four split
characteristics, we trained a fully convolutional network (Long et al., 2015) on the 500
images in our validation set. This model was then evaluated on the whole test set, as well
as on the eight subsets thereof that reflect the extreme values of the four characteristics.

8http://github.com/mcordts/cityscapesScripts
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#pixels [109] annot. density [%]

Ours (fine) 9.43 97.1
Ours (coarse) 26.0 67.5
CamVid 0.62 96.2
DUS 0.14 63.0
KITTI 0.23 88.9

Table 7.1: Absolute number and density of annotated pixels for Cityscapes,
DUS, KITTI, and CamVid (upscaled to 1280 × 720 pixels to maintain the
original aspect ratio).

#humans [103] #vehicles [103] #h/image #v/image

Ours (fine) 24.4 41.0 7.0 11.8
KITTI 6.1 30.3 0.8 4.1
Caltech 1921 - 1.5 -

Table 7.2: Absolute and average number of instances (humans and vehicles) for
Cityscapes, KITTI, and Caltech (1 via interpolation) on the respective training
and validation datasets.

With the exception of the time of year, the performance is very homogeneous, varying
less than 1.5 % points (often much less). Interestingly, the performance on the end
of the year subset is 3.8 % points better than on the whole test set. We hypothesise
that this is due to softer lighting conditions in the frequently cloudy fall. To verify
this hypothesis, we additionally tested on images taken in low- or high-temperature
conditions, finding a 4.5 % point increase in low temperatures (cloudy) and a 0.9 % point
decrease in warm (sunny) weather. Moreover, specifically training for either condition
leads to an improvement on the respective test set, but not on the balanced set. These
findings support our hypothesis and underline the importance of a dataset covering a
wide range of conditions encountered in the real world in a balanced way.

7.2.4 Statistical analysis

We compare Cityscapes to other datasets in terms of (i) annotation volume and density,
(ii) the distribution of visual classes, and (iii) scene complexity. Regarding the first two
aspects, we compare Cityscapes to other datasets with semantic pixel-wise annotations, i.e.
CamVid (Brostow et al., 2009), DUS (Scharwächter et al., 2014), and KITTI (Geiger
et al., 2013). Note that there are many other datasets with dense semantic annotations,
e.g. Ardeshir et al. (2015); Song et al. (2015); Sengupta et al. (2012); Riemenschneider
et al. (2014); Tighe and Lazebnik (2013). However, we restrict this part of the analysis
to those with a focus on autonomous driving.

CamVid consists of ten minutes of video footage with pixel-wise annotations for over
700 frames. DUS consists of a video sequence of 5000 images from which 500 have been
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annotated. KITTI addresses several different tasks including semantic labelling and ob-
ject detection. As no official pixel-wise annotations exist for KITTI, several independent
groups have annotated approximately 700 frames (Xu et al., 2013; Sengupta et al., 2013;
He and Upcroft, 2013; Ladicky et al., 2014; Kundu et al., 2014; Ros et al., 2015; Güney
and Geiger, 2015; Zhang et al., 2015a). We map those labels to our high-level categories
and analyse this consolidated set. In comparison, Cityscapes provides significantly more
annotated images, i.e. 5000 fine and 20 000 coarse annotations. Moreover, the anno-
tation quality and richness is notably better. As Cityscapes provides recordings from
50 different cities, it also covers a significantly larger area than previous datasets that
contain images from a single city only, e.g. Cambridge (CamVid), Heidelberg (DUS),
and Karlsruhe (KITTI ). In terms of absolute and relative numbers of semantically
annotated pixels (training, validation, and test data), Cityscapes compares favourably to
CamVid, DUS, and KITTI with up to two orders of magnitude more annotated pixels,
cf. Tab. 7.1. The majority of all annotated pixels in Cityscapes belong to the coarse
annotations, providing many individual (but correlated) training samples, but missing
information close to object boundaries.

Figs. 7.1 and 7.2 compare the distribution of annotations across individual classes and
their associated higher-level categories. Notable differences stem from the inherently
different configurations of the datasets. Cityscapes involves dense inner-city traffic with
wide roads and large intersections, whereas KITTI is composed of less busy suburban
traffic scenes. As a result, KITTI exhibits significantly fewer “flat” ground structures,
fewer “humans”, and more “nature”. In terms of overall composition, DUS and CamVid
seem more aligned with Cityscapes. Exceptions are an abundance of “sky” pixels in
CamVid due to cameras with a comparably large vertical field-of-view and the absence
of certain categories in DUS, i.e. “nature” and “object“.

Finally, we assess scene complexity, where density and scale of traffic participants
(humans and vehicles) serve as proxy measures. Out of the previously discussed datasets,
only Cityscapes and KITTI provide instance-level annotations for humans and vehicles.
We additionally compare to the Caltech Pedestrian Dataset (Dollár et al., 2012b), which
only contains annotations for humans, but none for vehicles. Furthermore, KITTI
and Caltech only provide instance-level annotations in terms of axis-aligned bounding
boxes. We use the respective training and validation splits for our analysis, since test
set annotations are not publicly available for all datasets. In absolute terms, Cityscapes
contains significantly more object instance annotations than KITTI, see Tab. 7.2. Being
a specialised benchmark, Caltech provides the most annotations for humans by a margin.
The major share of those labels was obtained, however, by interpolation between a
sparse set of manual annotations resulting in significantly degraded label quality. The
relative statistics emphasize the much higher complexity of Cityscapes, as the average
numbers of object instances per image notably exceed those of KITTI and Caltech. We
extend our analysis to MSCOCO (Lin et al., 2014) and PASCAL VOC (Everingham
et al., 2015), which also contain street scenes while not being restricted to them. We
analyse the frequency of scenes with a certain number of traffic participants, see Fig. 7.3.
We find that our dataset covers a greater range of scene complexity and has a higher
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Figure 7.4: Histogram of object distances in meters for class vehicle.

proportion of highly complex scenes compared to previous datasets. Using stereo data,
we analyse the distribution of vehicle distances to the camera. From Fig. 7.4 we observe
that in comparison to KITTI, Cityscapes covers a larger distance range. We attribute
this to both our higher-resolution imagery and the careful annotation procedure. As a
consequence, algorithms need to account for a larger range of scales and object sizes to
score well in our benchmark.

7.3 Semantic Labelling

The first Cityscapes task involves predicting a per-pixel semantic labelling of the image
without considering higher-level object instance or boundary information.

7.3.1 Tasks and metrics

To assess labelling performance, we rely on one standard and one novel metric. The first
is the standard Jaccard Index, commonly known as the PASCAL VOC intersection-
over-union metric IoU = TP

TP+FP+FN (Everingham et al., 2015), where TP, FP, and FN
are the numbers of true positive, false positive, and false negative pixels, respectively,
determined over the whole test set. Owing to the two levels of semantic granularity, i.e.
classes and categories, we report two separate mean performance scores: IoUcategory and
IoUclass. In either case, pixels labelled as void do not contribute to the score.
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The global IoU measure is biased toward object instances that cover a large image area.
In street scenes with their strong scale variation this can be problematic. Specifically
for traffic participants, which are the key classes in our scenario, we aim to evaluate
how well the individual instances in the scene are represented in the labelling. To
address this, we additionally evaluate the semantic labelling using an instance-level
intersection-over-union metric iIoU = iTP

iTP+FP+iFN . Here, iTP, and iFN denote weighted
counts of true positive and false negative pixels, respectively. In contrast to the standard
IoU measure, the contribution of each pixel is weighted by the ratio of a class’s average
instance size to the size of the respective ground truth instance. As before, FP is the
number of false positive pixels. It is important to note here that unlike the instance-level
task in Sec. 7.4, we assume that the methods only yield a standard per-pixel semantic
class labelling as output. Therefore, the false positive pixels are not associated with
any instance and thus do not require normalization. The final scores, iIoUcategory and
iIoUclass, are obtained as the respective means for the two levels of semantic granularity,
while only classes with instance annotations are included.

7.3.2 Control experiments

We conduct several control experiments to put our baseline results below into perspective.
First, we count the relative frequency of every class label at each pixel location of the
fine (coarse) training annotations. Using the most frequent label at each pixel as a
constant prediction irrespective of the test image (called static fine (SF) and static coarse
(SC) respectively) results in roughly 10 % IoUclass, as shown in Tab. 7.3. These low
scores emphasize the high diversity of our data. SC and SF having similar performance
indicates the value of our additional coarse annotations. Even if the ground truth (GT)
segments are re-classified using the most frequent training label (SF or SC) within each
segment mask, the performance does not notably increase.

Secondly, we re-classify each ground truth segment using FCN-8s (Long et al., 2015),
cf. Sec. 7.3.4. We compute the average scores within each segment and assign the
maximizing label. The performance is significantly better than the static predictors but
still far from 100 %. We conclude that it is necessary to optimise both classification and
segmentation quality at the same time.

Thirdly, we evaluate the performance of subsampled ground truth annotations as
predictors. Subsampling was done by majority voting of neighbouring pixels, followed
by resampling back to full resolution. This yields an upper bound on the performance at
a fixed output resolution and is particularly relevant for deep learning approaches that
often apply downscaling due to constraints on time, memory, or the network architecture
itself. Downsampling factors 2 and 4 correspond to the most common setting of our
3rd-party baselines (Sec. 7.3.4). Note that while subsampling by a factor of 2 hardly
affects the IoU score, it clearly decreases the iIoU score given its comparatively large
impact on small, but nevertheless important objects. This underlines the importance of
the separate instance-normalised evaluation. The downsampling factors of 8, 16, and 32
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are motivated by the corresponding strides of the FCN model. The performance of a
GT downsampling by a factor of 64 is comparable to the current state of the art, while
downsampling by a factor of 128 is the smallest (power of 2) downsampling for which
all images have a distinct labelling.

Lastly, we employ 128-times subsampled annotations and retrieve the nearest training
annotation in terms of the Hamming distance. The full resolution version of this training
annotation is then used as prediction, resulting in 21 % IoUclass. While outperforming
the static predictions, the poor result demonstrates the high variability of our dataset
and its demand for approaches that generalise well.

7.3.3 State of the art

Drawing on the success of deep learning algorithms, a number of semantic labelling
approaches have shown very promising results and significantly advanced the state of
the art. These new approaches take enormous advantage from recently introduced
large-scale datasets, e.g. PASCAL-Context (Mottaghi et al., 2014) and Microsoft COCO
(MSCOCO) (Lin et al., 2014). Cityscapes aims to complement these, particularly in the
context of understanding complex urban scenarios, in order to enable further research
in this area.

The popular work of Long et al. (2015) showed how a top-performing Convolutional
Neural Network (CNN) for image classification can be successfully adapted for the task
of semantic labelling by the careful use of upsampling layers. Similarly, Yu and Koltun
(2016) adapt a classification CNN by introducing dilated convolutions that avoid a loss
of resolution that results from sub-sampling pooling layers.

Several other methods propose to combine the strengths of CNNs and Conditional
Random Fields (CRFs) (Chen et al., 2015a; Zheng et al., 2015; Schwing and Urtasun,
2015; Liu et al., 2015b; Lin et al., 2016).

Other work takes advantage of deep learning for explicitly integrating global scene
context in the prediction of pixel-wise semantic labels, in particular through CNNs
(Liu et al., 2015a; Badrinarayanan et al., 2017; Mostajabi et al., 2015; Sharma et al.,
2015) or Recurrent Neural Networks (RNNs) (Pinheiro and Collobert, 2014; Byeon
et al., 2015). Last but not least, several recent studies have explored different forms of
weak supervision, such as bounding boxes or image-level labels, for training CNNs for
pixel-level semantic labelling (Papandreou et al., 2015; Dai et al., 2015; Pinheiro and
Collobert, 2015; Xu et al., 2015; Pathak et al., 2015b,a; Bearman et al., 2016; Wei et al.,
2017). We hope our coarse annotations can further advance this area.
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Average over Classes Categories

Metric [%] IoU iIoU IoU iIoU

static fine (SF) 10.1 4.7 26.3 19.9
static coarse (SC) 10.3 5.0 27.5 21.7
GT segmentation with SF 10.1 6.3 26.5 25.0
GT segmentation with SC 10.9 6.3 29.6 27.0
GT segmentation with Long et al. (2015) 79.4 52.6 93.3 80.9
GT subsampled by 2 97.2 92.6 97.6 93.3
GT subsampled by 4 95.2 90.4 96.0 91.2
GT subsampled by 8 90.7 82.8 92.1 83.9
GT subsampled by 16 84.6 70.8 87.4 72.9
GT subsampled by 32 75.4 53.7 80.2 58.1
GT subsampled by 64 63.8 35.1 71.0 39.6
GT subsampled by 128 50.6 21.1 60.6 29.9
nearest training neighbour 21.3 5.9 39.7 18.6

Table 7.3: Quantitative results of control experiments for semantic labelling
using the metrics presented in Sec. 7.3.1.

7.3.4 Baselines

Our own baseline experiments (Tab. 7.4, top) rely on fully convolutional networks
(FCNs), as they are central to most state-of-the-art methods (Long et al., 2015; Schwing
and Urtasun, 2015; Chen et al., 2015a; Lin et al., 2016; Zheng et al., 2015). We adopted
VGG16 Simonyan and Zisserman (2015) and utilise the PASCAL-Context setup of Long
et al. (2015) with a modified learning rate to match our image resolution under an
unnormalised loss. According to the notation in Long et al. (2015), we denote the
different models as FCN-32s, FCN-16s, and FCN-8s, where the numbers are the stride
of the finest heatmap. Since VGG16 training on 2 MP images exceeds even the largest
GPU memory available, we split each image into two halves with sufficiently large
overlap. Additionally, we trained a model on images downscaled by a factor of 2. We
first train on our training set (train) until the performance on our validation set (val)
saturates, and then retrain on train+val with the same number of epochs.

To obtain further baseline results, we asked selected groups that have proposed state-
of-the-art semantic labelling approaches to optimise their methods on our dataset and
evaluated their predictions on our test set. The resulting scores are given in Tab. 7.4
(bottom) and qualitative examples of three selected methods are shown in Fig. 7.5.
Interestingly enough, the performance ranking in terms of the main IoUclass score on
Cityscapes is highly different from PASCAL VOC (Everingham et al., 2015). While
DPN is the 2nd best method on PASCAL VOC, it is only the 6th best on Cityscapes.
FCN-8s is last on PASCAL, but 3rd best on Cityscapes. Adelaide-CNN-CRF performs
consistently well on both datasets with rank 1 on PASCAL and 2 on Cityscapes.
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Classes Categories

IoU iIoU IoU iIoU

FCN-32s X X 61.3 38.2 82.2 65.4
FCN-16s X X 64.3 41.1 84.5 69.2
FCN-8s X X 65.3 41.7 85.7 70.1
FCN-8s X X 2 61.9 33.6 81.6 60.9
FCN-8s X 58.3 37.4 83.4 67.2
FCN-8s X 58.0 31.8 78.2 58.4

SegNet-extended (Badrinarayanan et al., 2017) X 4 56.1 34.2 79.8 66.4
SegNet-basic (Badrinarayanan et al., 2017) X 4 57.0 32.0 79.1 61.9
DPN (Liu et al., 2015b) X X X 3 59.1 28.1 79.5 57.9
CRFasRNN (Zheng et al., 2015) X 2 62.5 34.4 82.7 66.0
DeepLab-CRF (Chen et al., 2015a) X X 2 63.1 34.5 81.2 58.7
DeepLab-CRF-weaksup (Papandreou et al., 2015) X X X 2 64.8 34.9 81.3 58.7
Adelaide-CNN-CRF (Lin et al., 2016) X 66.4 46.7 82.8 67.4
Dilated10 (Yu and Koltun, 2016) X 67.1 42.0 86.5 71.1

Table 7.4: Quantitative results of baselines for semantic labelling using the metrics
presented in Sec. 7.3.1. The first block lists results from our own experiments, the
second from those provided by 3rd parties. All numbers are given in percent and we
indicate the used training data for each method, i.e. train fine, val fine, coarse extra as
well as a potential downscaling factor (sub) of the input image.

From examining these results, we draw several conclusions: (1) The amount of
downscaling applied during training and testing has a strong and consistent negative
influence on performance (cf. FCN-8s vs. FCN-8s at half resolution, as well as the 2nd

half of the table). The ranking according to IoUclass is strictly consistent with the degree
of downscaling. We attribute this to the large scale variation present in our dataset, cf.
Fig. 7.4. This observation clearly indicates the demand for additional research in the
direction of memory and computationally efficient CNNs when facing such a large-scale
dataset with high-resolution images. (2) Our novel iIoU metric treats instances of
any size equally and is therefore more sensitive to errors in predicting small objects
compared to the IoU. Methods that leverage a CRF (CRFasRNN, DPN, DeepLab-CRF,
DeepLab-CRF-weaksup) for regularisation tend to over smooth small objects, cf. Fig. 7.5,
hence show a larger drop from IoU to iIoU than SegNet or FCN-8s. Adelaide-CNN-CRF
is the only exception; its specific FCN-derived pairwise terms apparently allow for a
more selective regularisation. (3) When considering IoUcategory, Dilated10 and FCN-8s
perform particularly well, indicating that these approaches produce comparatively many
confusions between the classes within the same category, cf. the buses in Fig. 7.5 (top).
(4) Training FCN-8s with 500 densely annotated images (750 h of annotation) yields
comparable IoU performance to a model trained on 20 000 weakly annotated images
(1300 h annot.), cf. rows 5 & 6 in Tab. 7.4. However, in both cases the performance is
significantly lower than FCN-8s trained on all 3475 densely annotated images. Many
fine labels are thus important for training standard methods as well as for testing, but



7.3 Semantic Labelling 133

the performance only using coarse annotations does not collapse and presents a viable
option. (5) Since the coarse annotations do not include small or distant instances,
their iIoU performance is worse. (6) Coarse labels can complement the dense labels if
applying appropriate methods as evidenced by DeepLab-CRF-weaksup outperforming
DeepLab-CRF, which it extends by exploiting both dense and weak annotations (e.g.
bounding boxes). Our dataset will hopefully stimulate research on exploiting the coarse
labels further, especially given the interest in this area, e.g. (Oquab et al., 2015; Hattori
et al., 2015; Misra et al., 2015).

Overall, we believe that the unique characteristics of our dataset (e.g. scale variation,
amount of small objects, focus on urban street scenes) allow for more such novel insights.

Figure 7.5: Qualitative examples of selected baselines. From top to bottom: (i) image
with partially overlayed stereo depth maps, (ii) ground truth annotation, (iii) DeepLab-
CRF-weaksup (Papandreou et al., 2015), (iv) Adelaide-CNN-CRF (Lin et al., 2016), and
(v) Dilated10 (Yu and Koltun, 2016). The colour coding of the semantic classes matches
Fig. 7.1.

7.3.5 Cross-dataset evaluation

In order to show the compatibility and complementarity of Cityscapes regarding related
datasets, we applied an FCN model trained on our data to CamVid Brostow et al.
(2009) and two subsets of KITTI (Ros et al., 2015; Sengupta et al., 2013). We use
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Dataset Best reported result Our result

CamVid (Brostow et al., 2009) 62.9 (SegNet) 72.6
KITTI (Ros et al., 2015) 61.6 (SegNet) 70.9
KITTI (Sengupta et al., 2013) 82.2 (DenseSemFusion) 81.2

Table 7.5: Quantitative results (avg. recall in percent) of our half-resolution
FCN-8s model trained on Cityscapes images and tested on CamVid and two
pixel-wise labelled subsets of KITTI. We compare against the results of SegNet
(Badrinarayanan et al., 2017) and DenseSemFusion (Vineet et al., 2015)

the half-resolution model (cf. 4th row in Tab. 7.4) to better match the target datasets,
but we do not apply any specific training or fine-tuning. In all cases, we follow the
evaluation of the respective dataset to be able to compare to previously reported results
(Badrinarayanan et al., 2017; Vineet et al., 2015). The obtained results in Tab. 7.5
show that our large-scale dataset enables us to train models that are on a par with or
even outperforming methods that are specifically trained on another benchmark and
specialised for its test data. Further, our analysis shows that our new dataset integrates
well with existing ones and allows for cross-dataset research.

7.4 Instance-Level Semantic Labelling

The pixel-level task, cf. Sec. 7.3, does not aim to segment individual object instances.
In contrast, in the instance-level semantic labelling task, we focus on simultaneously
detecting objects and segmenting them. This is an extension to both traditional object
detection, since per-instance segments must be provided, and semantic labelling, since
each instance is treated as a separate label.

7.4.1 Tasks and metrics

For instance-level semantic labelling, algorithms are required to deliver a set of detections
of traffic participants in the scene, each associated with a confidence score and a per-
instance segmentation mask. To assess instance-level performance, we compute the
average precision on the region level (APr) (Hariharan et al., 2014a) for each class and
average it across a range of overlap thresholds to avoid a bias towards a specific value.
Specifically, we follow Lin et al. (2014) and use 10 different overlaps ranging from 0.5 to
0.95 in steps of 0.05. The overlap is computed at the region level, making it equivalent
to the IoU of a single instance. We penalise multiple predictions of the same ground
truth instance as false positives. To obtain a single, easy to compare compound score,
we report the mean average precision (mAPr), obtained by also averaging over the class
label set. As minor scores, we add mAPr50% for an overlap value of 50 %, as well as
mAPr100m and mAPr50m where the evaluation is restricted to objects within 100 m and
50 m distance, respectively.
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7.4.2 State of the art

As detection results have matured (70 % AP on PASCAL (Everingham et al., 2015;
Ren et al., 2015)), the last years have seen a rising interest in more difficult settings.
Detections with pixel-level segments rather than traditional bounding boxes provide a
richer output and allow (in principle) for better occlusion handling. We group existing
methods into three categories.

The first encompasses segmentation, then detection and most prominently the
R-CNN detection framework (Girshick et al., 2014), relying on object proposals for
generating detections. Many of the commonly used bounding box proposal methods
(Hosang et al., 2016; Pont-Tuset and Gool, 2015) first generate a set of overlapping
segments, e.g. Selective Search (Uijlings et al., 2013) or MCG (Arbeláez et al., 2014). In
R-CNN, bounding boxes of each segment are then scored using a CNN-based classifier,
while each segment is treated independently.

The second category encompasses detection, then segmentation, where bounding-
box detections are refined to instance specific segmentations. Either CNNs (Hariharan
et al., 2014a, 2015) or non-parametric methods (Chen et al., 2015b) are typically used,
however, in both cases without coupling between individual predictions.

Third, simultaneous detection and segmentation is significantly more delicate.
Earlier methods relied on Hough voting (Leibe et al., 2008; Riemenschneider et al., 2012).
More recent works formulate a joint inference problem on pixel and instance level using
CRFs (Maire et al., 2011; Yao et al., 2012; He and Gould, 2014; Dai et al., 2015; Tighe
et al., 2015; Zhang et al., 2015c). Differences lie in the generation of proposals (exemplars,
average class shape, direct regression), the cues considered (pixel-level labelling, depth
ordering), and the inference method (probabilistic, heuristics).

7.4.3 Lower bounds, oracles & baselines

In Tab. 7.6, we provide lower-bounds that any sensible method should improve upon, as
well as oracle-case results (i.e. using the test time ground truth). For our experiments, we
rely on publicly available implementations. We train a Fast R-CNN detector (Girshick,
2015) on our training data in order to score MCG object proposals (Arbeláez et al.,
2014). Then, we use either its output bounding boxes as (rectangular) segmentations,
the associated region proposal, or its convex hull as a per-instance segmentation. The
best main score mAPr is 4.6 %, is obtained with convex hull proposals, and becomes
larger when restricting the evaluation to 50 % overlap or close instances. We contribute
these rather low scores to our challenging dataset, biased towards busy and cluttered
scenes, where many, often highly occluded, objects occur at various scales, cf. Sec. 7.2.
Further, the MCG bottom-up proposals seem to be unsuited for such street scenes and
cause extremely low scores when requiring large overlaps.
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Proposals Classif. mAPr mAPr50% mAPr100m mAPr50m

MCG regions Fast R-CNN 2.6 9.0 4.4 5.5
MCG bboxes Fast R-CNN 3.8 11.3 6.5 8.9
MCG hulls Fast R-CNN 4.6 12.9 7.7 10.3
GT bboxes Fast R-CNN 8.2 23.7 12.6 15.2
GT regions Fast R-CNN 41.3 41.3 58.1 64.9
MCG regions GT 10.5 27.0 16.0 18.7
MCG bboxes GT 9.9 25.8 15.3 18.9
MCG hulls GT 11.6 29.1 17.7 21.4

Table 7.6: Baseline results on instance-level semantic labelling task using the
metrics described in Sec. 7.4. All numbers in %.

We confirm this interpretation with oracle experiments, where we replace the proposals
at test-time with ground truth segments or replace the Fast R-CNN classifier with an
oracle. In doing so, the task of object localization is decoupled from the classification
task. The results in Tab. 7.6 show that when bound to MCG proposals, the oracle
classifier is only slightly better than Fast R-CNN. On the other hand, when the proposals
are perfect, Fast R-CNN achieves decent results. Overall, these observations unveil that
the instance-level performance of our baseline is bound by the region proposals.

7.5 Conclusion

In this chapter, we presented Cityscapes, a comprehensive benchmark suite that has
been carefully designed to spark progress in semantic urban scene understanding by: (i)
creating the largest and most diverse dataset of street scenes with high-quality and coarse
annotations at the time of publication; (ii) developing a sound evaluation methodology
for pixel-level and instance-level semantic labelling; (iii) providing an in-depth analysis
of the characteristics of our dataset; (iv) evaluating several state-of-the-art approaches
on our benchmark.

One key observation from our analysis is that the relative order of performance for the
state-of-the-art on our dataset is notably different than on more generic datasets such
as PASCAL VOC. Our conclusion is that serious progress in urban scene understanding
may not be achievable through such generic datasets, as the latter (exemplified by
Cityscapes) pose unique challenges, such as highly crowded scenes, difficult imaging
conditions due to motion blur and contrast variation, as well as a large variance in
object scale.

At publication time, the best-performing baseline for pixel-level semantic segmentation
obtains an IoU score of 67.1 %. 144 entries later on the public benchmark table, the
current record stands at 83.6 %. The instance-level task has proven to be particularly
challenging with an mAPr score of 38.0 %. For comparison: The best current method
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on the MSCOCO Lin et al. (2014) instance-level segmentation benchmark attains an
mAPr score of 49.0 %.

Since publication of the dataset, several large-scale street scene understanding datasets
have been released, e.g. Mapillary Vistas (Neuhold et al., 2017), Berkeley DeepDrive
(Yu et al., 2020), Apolloscape (Huang et al., 2018). While these exceed Cityscapes in
terms of size and image diversity, the former remains the de facto standard benchmark
for pixel-level and instance-level street scene understanding, that is far from solved
especially when it comes to the latter task. It has also found further uses beyond the
intended ones, e.g. for the generative modelling and synthesis of images (Wang et al.,
2018b; Zhu et al., 2017b; Liu et al., 2017), and has been extended with new annotations
(Zhang et al., 2017b) and imagery (Sakaridis et al., 2018), with further extensions
targeting more fine-grained annotations in the pipeline.





8Weakly-Supervised Boundary Detection

As seen in previous chapters, deep learning-based recognition methods benefit
from — if not outright require — large amounts of annotated data. Obtaining
this data is more feasible for some tasks (e.g. detection, semantic labelling)

than others. Boundary detection is an instance of the latter set of problems, for which
there is a need to relax the requirement to carefully annotate images to make both the
training more affordable and to extend the amount of training data.

In this chapter we propose a technique to generate weakly supervised annotations
and show that bounding box annotations alone suffice to reach high-quality object
boundaries without using any object-specific boundary annotations. With the proposed
weak supervision techniques we achieve the top performance on the object boundary
detection task, outperforming by a large margin the current strongly supervised state-
of-the-art methods.

This work was published at CVPR (Khoreva et al., 2016). Anna Khoreva was the lead
author and Mohamed Omran conducted all the experiments involving neural networks.

8.1 Introduction

Boundary detection is a classic computer vision problem. It is an enabling ingredient
for many vision tasks such as image/video segmentation (Arbelaez et al., 2011; Galasso
et al., 2013), object detection (Hosang et al., 2016; Zhu et al., 2015), and semantic
labelling (Banica and Sminchisescu, 2015). What constitutes a boundary in the image
is task-dependent. In the context of the aforementioned tasks, boundaries are taken to
mean the edges that separate objects from the background or from other objects. As
these tasks typically target a pre-defined set of classes, we are accordingly interested in
detecting the boundaries of objects from these classes. In this chapter, we address the
class-specific (or semantic) boundary detection problem.

State-of-the-art boundary detection relies on learning-based methods which in turn
require extensive training data. However, instance-wise boundary annotations are
very expensive to obtain. Compared to two clicks for a bounding box, annotating the
boundary of an object often requires drawing a polygon with 20~100 clicks, i.e. an
increase in effort of 1-2 orders of magnitude.

To better train deep models and extend their coverage to more object classes, there is
a need to relax the requirement of high-quality image annotations. Our starting point
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(a) Image (b) SE(VOC) (c) Det.+SE (VOC)

(d) SE(BSDS) (e) SE (weak) (f) Det.+SE (weak)

Figure 8.1: Object-specific boundaries (a) differ from generic boundaries such as the ones
detected in (d). The proposed weakly supervised approach drives boundary detection
towards the objects of interest. Example results in (e) and (f). Red/green indicate
false/true positive pixels, grey are undetected boundary pixels. All methods shown at
50% recall.

in this chapter is thus the following question: Can we obtain reliable object-specific
boundaries without having access to object boundary annotations at training time?

In this chapter we focus on learning object boundaries in a weakly supervised fashion
and show that high quality object boundary detections can be obtained without using
any class-specific boundary annotations. We propose several ways of generating object
boundary annotations with different levels of supervision: either with a boundary
detector trained on generic boundary annotations (from the BSDS500 dataset), as well
as just using a bounding-box-based object detector. In the latter case, we generate
weak object boundary annotations by combining unsupervised image segmentation
(Felzenszwalb and Huttenlocher, 2004), region-based object proposal methods (Uijlings
et al., 2013; Pont-Tuset et al., 2017) and object detectors (Girshick, 2015; Ren et al.,
2015). We show that with bounding box annotations alone, we can obtain high quality
object boundary estimates.

We present results using a decision forest (Dollár and Zitnick, 2015) and a CNN-based
edge detector (Xie and Tu, 2017). We report top performance on the PASCAL VOC2012
object boundary detection benchmark (SBD) (Hariharan et al., 2011; Everingham et al.,
2015) with our weakly supervised approaches, already surpassing previously reported
strongly supervised results.

Our main contributions are summarised below:
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• We introduce the problem of weakly supervised object-specific boundary detection.

• We show that good boundary estimates can be obtained on BSDS500, PASCAL
VOC2012, and SBD using only weak supervision, namely by leveraging bounding box
detection annotations without the need for instance-wise object boundary annotations.

• We report the best known results on PASCAL VOC2012 and SBD. Our weakly
supervised results alone improve over the previous strongly supervised state-of-the-art.

The rest of this chapter is organised as follows. In Sec. 8.2, we introduce some related
work on boundary detection and weakly-supervised learning. Sec. 8.3 describes different
types of boundary detection and the relevant datasets we consider here. In Sec. 8.4, we
proposal several approaches for generating boundary annotations with varying levels
of supervision. We then experiment with these schemes and report the results for the
different boundary detection tasks in the remaining sections.

8.2 Related work

Generic boundaries Early methods in boundary detection rely on a fixed prior model
of what constitutes a boundary, e.g. the Canny detector (Canny, 1986). Modern
methods resort to data-driven techniques that learn to predict if a pixel belongs to a
boundary. From well-crafted features and simple classifiers, e.g. gPb (Arbelaez et al.,
2011), to powerful decision trees over fixed features, e.g. SE (Dollár and Zitnick, 2015)
and OEF (Hallman and Fowlkes, 2015), and recently to end-to-end learning via CNNs,
e.g DeepEdge (Bertasius et al., 2015), N4 (Ganin and Lempitsky, 2014), and HED (Xie
and Tu, 2017). CNNs are usually pre-trained on large classification datasets, so as to be
initialised with reasonable features. The more sophisticated the model, the more data is
required to learn it.

As an alternative to direct boundary prediction, segmentation techniques can also
be used to improve boundary estimates or to generate closed contours, e.g. F&H
(Felzenszwalb and Huttenlocher, 2004), gPb-owt-ucm (Arbelaez et al., 2011), and MCG
(Pont-Tuset et al., 2017).

While the overwhelming majority of recent methods rely on supervised learning, a few
recent works have addressed unsupervised detection of generic boundaries (Isola et al.,
2014; Li et al., 2016). PMI (Isola et al., 2014) detects boundaries by modelling them as
statistical anomalies amongst all local image patches, reaching competitive performance
without the need for learning. Recently, Li et al. (2016) propose to train edge detectors
using motion boundaries obtained from a large corpus of video data instead of resorting
to manually annotated images. Both approaches attain similar detection performance.

Object-specific boundaries In many applications, there is interest in boundaries of
specific object classes. The class-specific object boundary detectors need then to be
trained or tuned to the classes of interest. This problem is more recent and still relatively
unexplored. Hariharan et al. (2011) introduced the SBD dataset to measure this task
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over the 20 PASCAL VOC categories (Everingham et al., 2015). Additionally, they
present a method that re-weights generic boundaries using the activation regions of a
detector. Uijlings and Ferrari (2015) propose to train class-specific boundary detectors,
and weigh them at test time according to an image classifier.

Weakly supervised learning In this work we are interested in object-specific bound-
aries without using class-specific boundary annotations. We only use bounding box
annotations, and in some experiments, generic boundaries from the BSDS500 dataset
(Arbelaez et al., 2011). Multiple works have addressed weakly supervised learning for
object localisation (Oquab et al., 2015; Cao et al., 2015), object detection (Prest et al.,
2012; Wang et al., 2014a), or semantic labelling (Vezhnevets et al., 2011; Xu et al., 2015;
Pinheiro and Collobert, 2015). To the best of our knowledge, there is no previous work
attempting to learn object boundaries in a weakly supervised fashion.

8.3 Setting: Tasks, Datasets & Baselines

8.3.1 Tasks

In this work we distinguish between three types of boundaries: (i) generic boundaries
(delineating both “things” and “stuff”, as well as salient surface and texture boundaries),
(ii) instance-wise boundaries (external object instance boundaries), and (iii) class specific
boundaries (object instance boundaries of a certain semantic class).

8.3.2 Datasets

For detecting these three types of boundaries we consider different datasets: the Berkeley
Segmentation Dataset and Benchmark (BSDS500 or hereafter: BSDS) (Martin et al.,
2001; Arbelaez et al., 2011), PASCAL VOC2012 (VOC ) (Everingham et al., 2015),
MSCOCO (COCO) (Lin et al., 2014), and the Semantic Boundary Dataset (SBD)
(Hariharan et al., 2011), where each represents boundary annotations of a given boundary
type (see Fig. 8.2).

BSDS We first present our results on the BSDS, the most established benchmark for
generic boundary detection. The dataset contains 200 training, 100 validation and
200 test images. Each image has multiple ground truth annotations. To evaluate the
quality of estimated boundaries three measures are used: fixed contour threshold (ODS),
per-image best threshold (OIS), and average precision (AP). Following the standard
approach, prior to evaluation we apply a non-maximal suppression technique to boundary
probability maps to obtain thinned edges (Dollár and Zitnick, 2015; Canny, 1986).

VOC For evaluating instance-wise boundaries we propose to use the VOC segmentation
dataset. The dataset contains 1 464 training and 1 449 validation images, annotated
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(a) BSDS (Arbelaez et al., 2011) (b) VOC2012 Everingham et al. (2015)

(c) COCO Lin et al. (2014) (d) SBD Hariharan et al. (2011)

Figure 8.2: Datasets considered.

with contours for 20 object classes for all instances. The dataset was originally designed
for semantic segmentation. Therefore only object interior pixels are marked and the
boundary location is recovered from the segmentation mask. Here we consider only object
boundaries without distinguishing between different classes, treating all 20 classes as
one. For measuring the quality of predicted boundaries the BSDS evaluation software is
used. Following Uijlings and Ferrari (2015) the maxDist parameter (maximum tolerance
for edge matches) is set to 0.01.

Since we generate boundary annotations in a weakly supervised fashion, we are able to
generate boundaries over arbitrary image sets. Besides the VOC segmentation dataset,
we can also use images from the VOC detection set. The combination of the two is
referred to here as VOC+.

COCO As an additional benchmark for instance-wise boundary detection, we use
COCO. The dataset provides semantic segmentation masks for 80 object classes. For
our experiments we consider only images that contain the 20 VOC classes and objects
larger than 200 pixels. The subset of COCO images that contain VOC classes consists
of 65 813 training and 30 163 validation images. For computational reasons we limit
evaluation to 5 000 randomly chosen images of the validation set. The default settings
of the BSDS evaluation software is used (maxDist = 0.01). Only object boundaries are
evaluated without requiring these to be assigned class labels.

SBD We use SBD for evaluating class-specific object boundary predictions. The dataset
consists of 11 318 images from the trainval set of the PASCAL VOC2011 challenge,
divided into 8 498 training and 2 820 test images. This dataset has object instance
boundaries with accurate figure/ground masks that are also labelled with one of 20 VOC
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classes. The boundary detection accuracy for each class is evaluated using the official
evaluation software (Hariharan et al., 2011). During the evaluation process all internal
object-specific boundaries are set to zero and the maxDist parameter is set to 0.02. We
report the mean ODS F-measure (F), and average precision (AP) across 20 classes.

Note that there are overlaps between the training and test sets of VOC and SBD. For
cross-dataset experiments we make sure not to re-use any images included in the test
set considered.

8.3.3 Baselines

For our experiments we consider two different types of boundary detectors as baselines:
SE (Dollár and Zitnick, 2015) and HED (Xie and Tu, 2017).

SE is at the core of multiple related methods, e.g. SCG (Ren and Bo, 2012), MCG
(Pont-Tuset et al., 2017), and OEF (Hallman and Fowlkes, 2015). SE builds a “structured
decision forest” which is a modified decision forest, where the leaf outputs are local
boundary patches (16 × 16 pixels) as opposed to single pixel-wise predictions. The
patch-wise outputs are averaged at test time, and the split nodes are built taking into
account the local segmentation of the ground truth input patches. The split decision
function uses binary comparisons, selecting among hand-crafted edge and self-similarity
features. This method requires closed contours (i.e. segmentations) as training inputs.
This detector is reasonably fast to train/test and yields good detection quality.

HED is currently the top performing CNN for BSDS boundaries. It builds upon a
VGG16 network (Simonyan and Zisserman, 2015) pre-trained on ImageNet (Russakovsky
et al., 2015a), and exploits features from all layers to build its output boundary probability
map. By also exploiting the lower layers (which have higher resolution) the output is
more detailed, and the fine-tuning is more effective (since all layers are guided directly
towards the boundary detection task). To reach top performance, HED is trained using
a subset of the annotated BSDS pixels, on which annotators agree. These are so called
“consensus” annotations (Hou et al., 2013), and correspond to ∼15% of all true positives.

8.4 Methods: Generating Weak Supervision

Our goal is to generate (noisy) training data for boundary detectors to reduce the
annotation burden. In this section we describe several approaches to generating such
weak supervision. Different combinations of methods will be applicable depending
on whether we target generic or class-specific (semantic) boundaries. Some of the
approaches we consider are illustrated in Fig. 8.3.

BBs For class-specific boundary detection, as the classes of interest are specified in
advance, we can use an object detector to filter generic boundary detections to generate
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(a) Ground truth (b) F&H (c) F&H ∩ BBs (d) GrabCut∩BBs (e) SeSe ∩ BBs

(f) MCG ∩ BBs (g) cons.MCG∩BBs (h) SE(SeSe ∩ BBs) (i) cons.S&G∩BBs (j) cons.ALL ∩ BBs

Figure 8.3: Different generated boundary annotations. Cyan/black indicates posi-
tive/ignored boundaries.

the required training data. This potentially alleviates the need for class-specific boundary
annotations. To this end, we use the Fast R-CNN detector (Girshick, 2015), which
for training only requires weak annotations in the form of bounding boxes. We apply
this detector to the training set (and possibly a larger set of images), and retain boxes
with confidence scores above 0.8. We also experimented with using the ground truth
annotations directly, but saw no noticeable difference. We thus report numbers only
using the “detections over the training set”.

F&H As a source of unsupervised boundaries we consider F&H, the classical graph-
based image segmentation technique proposed by Felzenszwalb and Huttenlocher (2004)
(Fig. 8.3b). We use this directly as a form of weak supervision for the generic boundary
detection task in Sec. 8.5. As described above, we additionally use the bounding boxes
produced by an object detector to focus the resulting data on classes of interest. This
combination is referred to as F&H ∩ BBs. Only the boundaries of segments that are
contained inside a bounding box are retained. Poorly-aligned detections can thus result
in missed boundaries as can be seen in Fig. 8.3c.

GrabCut Boundaries from F&H will trigger on any kind of edge, including the internal
edges of objects that results from texture or surface changes. One way to exclude
internal edges is to extract the external boundaries via figure-ground segmentation of the
sub-image enclosed within a bounding box. We use GrabCut (Rother et al., 2004) for this
purpose. We also experimented with DenseCut (Cheng et al., 2015), but did not obtain
any gains and thus we only report results for GrabCut∩BBs (Fig. 8.3d). GrabCut might
result in inaccurate segments, so we reject a segment if it has an intersection-over-union
score (IoU) ≥ 0.7 with the corresponding bounding box. In this case, the area of the
bounding box is marked as an ignore region (see Fig. 8.3e for an example).

Object proposals Another way to bias generation of boundary annotations towards
object contours is to consider object proposal methods. Selective Search (SeSe) (Uijlings
et al., 2013) is based on F&H segmentations — thus is fully unsupervised, while MCG
(Pont-Tuset et al., 2017) employs boundaries estimated via SE (BSDS) — thus uses
generic boundary annotations.
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As with GrabCut∩BBs, we generate SeSe∩BBs (Fig. 8.3e) and MCG∩BBs (Fig. 8.3f)
by matching proposals to bounding boxes based on IoU. We use a stricter threshold of
IoU ≥ 0.9 as object proposals tend to be better localised. When more than one proposal
is matched to a detection bounding box we use the union of the proposal boundaries as
positive annotations. This maximises boundary recall, and somewhat imitates the BSDS
annotation protocol which involves multiple human annotators. We also experimented
with using only the highest overlapping proposal, but the union provides marginally
better results; thus we report only results with the union. Once we select a proposal, we
do not exclude boundaries that lie outside the bounding box as the latter might not be
well-aligned with the object.

Consensus boundaries Due to the ill-defined nature of boundaries, different human
annotators will produce different boundary annotations. Some methods thus resort to
selecting as positive training examples boundaries on which there is agreement among
annotators. In fact as we will demonstrate later in Tab. 8.1, HED requires such consensus
boundaries to reach good performance.

Thus rather than taking the union between proposal boundaries, we consider using
the consensus between object proposal boundaries. The boundary is considered to be
present if the agreement is higher than 70%, otherwise the boundary is ignored. We
denote such generated annotations as “cons.”, e.g. cons.MCG ∩ BBs (Fig. 8.3g).

Another way to generate sparse, consensus-like boundaries, is to threshold the bound-
ary probability map out of an SE (·) model. SE (SeSe ∩ BBs) uses the top 15% quantile
per image as weakly supervised annotations (Fig. 8.3h).

Finally, besides the consensus between proposals, we can also rely on the consensus be-
tween methods. cons.S&G∩BBs (Fig. 8.3i) is the intersection between SE (SeSe ∩ BBs),
SeSe and GrabCut (fully unsupervised), while cons.ALL ∩ BBs (Fig. 8.3j) is the inter-
section between MCG, SeSe and GrabCut (uses BSDS data).

8.5 Results: Generic Boundary Detection

We start by exploring weakly supervised training for generic boundary detection, i.e.
the task specified by BSDS. In the case of this task, weak supervision means deriving
targets from learning-free boundary detectors such as Canny (Canny, 1986) and F&H
(Felzenszwalb and Huttenlocher, 2004), which provide relatively low quality detections.
We notice that correct boundaries tend to have consistent appearance, while boundaries
with inconsistent appearance more often result in erroneous detections. Robust training
methods should however be able to pick up the signal in such noisy detections. In
Fig. 8.4 and Tab. 8.1 we report our results when training a structured decision forest
(SE) and a CNN (HED) with noisy boundary annotations. By (·) we denote the data
used for training.
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Figure 8.4: BSDS results. Canny and F&H points indicate the boundaries used as noisy
annotations. When trained over noisy annotations, both SE and HED provide a large
quality improvement.

SE When training SE either using Canny — SE (Canny)) — or using F&H — SE (F&H))
— we observe a notable jump in boundary detection quality. SE (F&H) closes up to
80% of the gap between SE trained with the BSDS ground truth — SE (BSDS) (strong
supervision) — and F&H (∆AP% column in Tab. 8.1). Using only noisy weak supervision
SE (F&H) is only 3 points behind the strongly supervised case (76 vs. 79).

We believe that the strong noise robustness of SE can be attributed to the way it
builds its leaves. The final output of each leaf is the medoid of all segments reaching it.
If the noisy boundaries are randomly spread in the image appearance space, the medoid
selection will be robust.

HED HED reaches top quality when trained over consensus annotations. When using
all annotations (“non-consensus”), its performance is comparable to other CNN-based
alternatives. When HED is trained with annotations derived from F&H, the relative
improvement is smaller than the corresponding improvement for SE. When combined
with SE (denoted HED(SE (F&H))) it reaches 69 ∆AP%. This two-stage approach
provides better boundaries than SE (F&H) alone, and reaches a quality comparable to
the classic gPb method Arbelaez et al. (2011) (75 vs. 73).
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Family Method ODS OIS AP ∆AP%

Unsupervised
Canny 58 62 55 -
F&H 64 67 64 -
PMI 74 77 78 -

Trained on
ground truth

gPb-owt-ucm 73 76 73 -
SE(BSDS) 74 76 79 -
HED(BSDS) noncons. 75 77 80 -
HED(BSDS) cons. 79 81 84 -

Trained on unsupervised
boundary estimates

SE (Canny) 64 67 64 38
SE (F&H) 71 74 76 80
SE (SE (F&H)) 72 74 76 80
SE(PMI) 72 75 77 -
HED (F&H) 69 72 73 56
HED (SE (F&H)) 73 76 75 69

Table 8.1: Detailed BSDS results, see Fig. 8.4 and Sec. 8.5. Underlined results correspond
to baselines that rely on ground truth boundaries, and our best weakly supervised results
are in boldface. (·) denotes the data used for training. ∆AP% indicates the ratio between
the same model trained on ground truth, and the noisy input boundaries. The closer to
100%, the lower the drop due to using noisy inputs instead of ground truth.

We should note that on BSDS, the unsupervised PMI method provides better bound-
aries than our weakly supervised variants. However PMI cannot be adapted to provide
object-specific boundaries. For this we need to rely on methods than can be trained
with class-specific annotations, such as SE and HED.

Conclusion SE is surprisingly robust to annotation noise during training. HED is also
robust but to a lesser degree. By using noisy boundaries generated from unsupervised
methods, we can reach a performance competitive with recent strongly supervised
methods.

8.6 Results: Class-specific Boundary Detection

In this section we analyse the variants of weakly supervised methods for object boundary
detection proposed in Sec. 8.4. Here, we’re interested in detecting the boundaries of
object instances belonging to a specific set of classes, but not in predicting the class
labels themselves. This means that all 20 VOC classes are treated as a single class. The
evaluation protocol is described in Sec. 8.3.1. Since we’re interested in the boundaries for
specific objects, we take weak supervision to mean generic boundary annotations as well
as bounding box-level object annotations. We use the bounding box annotations in two
ways: (i) to filter out noisy boundaries for the training data, but also (ii) to post-process
boundary predictions by upweighting ones that coincide with object detections and
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downweighting the others. We will describe the exact process shortly. First, we discuss
results using SE then results with HED.

8.6.1 Structured Forests (VOC)

We’ll start by establishing different baseline results using strong supervision, and then
compare these against models trained with different variants of weak supervision.

8.6.1.1 Strong Supervision

SE Fig. 8.5a and Tab. 8.2 show results of SE trained over the ground truth of different
datasets (dashed lines). Our results of SE (VOC) are on par with the ones reported in
Uijlings and Ferrari (2015). The gap between SE (VOC) and SE (BSDS) reflects the
difference between generic boundaries and boundaries specific to the 20 VOC object
categories (see also Fig. 9.1).

SB To improve object-specific boundary detection, the Situational Object Boundary
detector (SB) (Uijlings and Ferrari, 2015), trains 20 class-specific SE models. These
models are combined at test time using a CNN-based image classifier. The original SB
results as well as our reproduction of these results SB (VOC) are shown in Fig. 8.5a.
Our version obtains better results (+4AP) due to training the SE models with more
samples per image, and using a stronger CNN (Simonyan and Zisserman, 2015).

Detector + SE Rather than training and testing 20 SE models plus an image classifier,
we propose to leverage the same training data using a single SE model together with
a detector (Girshick, 2015). By computing a per-pixel maximum among all detection
bounding boxes and their score, we construct an “objectness map” that we multiply
with the boundary probability map from SE. False positive boundaries are thus down-
weighted, and boundaries in high confidence regions for the detector are boosted. The
detector is trained with the same per-object boundary annotations used to train the SE
model, no additional data is required.

Our Det.+SE (VOC) obtains the same detection quality as SB (VOC) while using only
a single SE model. These are the best reported results on this task (top of Tab. 8.2),
when using strong supervision. One could in principle also combine object detection
with SB for even stronger results, but we leave this for future work.

8.6.1.2 Weak Supervision

Given the reference performance of Det.+SE (VOC), can we reach similar boundary
detection quality without using the boundary annotations from VOC?
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Figure 8.5: VOC results for (a) strongly- and (b) weakly-supervised SE-based models
(Sec. 8.6.1), as well as for (c) weakly-supervised HED models (Sec. 8.6.2). (·) indicates
the data used for training. Curves with continuous lines correspond to models that
rely on an additional CNN-based classifier or detector at test time, and dashed lines
correspond to models that don’t. The curves are summarised in the legend with AP. The
modifier “orig.” indicates original results from Dollár and Zitnick (2015) and Uijlings
and Ferrari (2015) respectively, which we also reproduce ourselves here. Det. indicates
results that involve post-processing with object detections (see Sec. 8.6.1).
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Family Method Data Without BBs With BBs
F AP ∆AP F AP ∆AP

GT SE VOC 43 35 - 48 41 -

Other GT
SE COCO 44 37 2 49 42 1
SE BSDS 40 29 -6 47 39 -2

MCG 41 28 -7 48 39 -2

Weakly supervised SE

F&H ∩ BBs 40 29 -6 46 36 -5
GrabCut ∩ BBs 41 32 -3 47 39 -2
SeSe ∩ BBs 42 35 0 46 39 -2
SeSe+ ∩ BBs 43 36 +1 46 39 -2
MCG ∩ BBs 43 34 -1 47 39 -2
MCG+ ∩ BBs 43 35 0 48 40 -1

Unsupervised F&H - 34 15 -20 41 25 -16
PMI 41 29 -6 47 38 -3

Table 8.2: VOC results for SE models, see Figs. 8.5a and 8.5b for the full curves.
Underlined results correspond to baselines that rely on ground truth boundaries, and
our best weakly supervised results are in boldface.

SE (·) An SE model trained using the BSDS annotations attains relatively low perfor-
mance (see SE (BSDS) in Fig. 8.5b), as does PMI. The same BSDS data can be used to
generate MCG object proposals for the VOC training data, and a detector trained on
VOC bounding boxes can generate bounding boxes for the same data. We combine these
to generate boundary annotations (MCG ∩ BBs) as described in Sec. 8.4. These lead to
improved results over the BSDS -trained baseline. By extending the training set to the
additional VOC+ images (SE (MCG+ ∩ BBs) in Tab. 8.2) we match the performance
of a strongly-supervised SE model (SE (VOC)). We also consider variants that do not
require the BSDS ground truth, such as SeSe and GrabCut. SeSe-derived boundaries
lead to essentially the same results as data obtained with MCG.

Det.+SE (·) Post-processing the results at test time with an object detector as pre-
viously described minimises the differences between all weakly supervised methods.
Det.+PMI shows strong results, but (since PMI is learning-free) fails to reach high
precision. The high quality of Det.+BSDS indicates that BSDS annotations, despite
being in principle “generic boundaries” reflect object boundaries well, at least in the
proximity of an object. This is further confirmed in Sec. 8.6.2. Compared to Det.+BSDS
our weakly supervised annotation further close the gap to Det.+SE (VOC) (especially
in the high precision regime), even when not using any BSDS data.

Conclusion By using bounding box annotations via an object detector, our weakly
supervised boundary annotations enable the Det.+SE model to match the strongly
supervised model, improving over the best reported results on the task. We also observe
that BSDS data allows us to train models that detect object boundaries well.
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Family Method Data Without BBs With BBs
F AP ∆AP F AP ∆AP

GT SE VOC 43 35 - 48 41 -
HED 62 61 26 59 58 17

Other
GT HED BSDS 48 41 6 53 48 7

COCO 59 60 25 56 55 14

Weakly
super-
vised

SE MCG ∩ BBs 43 34 -1 47 39 -2

HED

SE(SeSe ∩ BBs) 45 37 3 49 40 -1
MCG ∩ BBs 50 44 9 48 42 1

cons. S&G ∩ BBs 51 46 +11 52 47 +8
cons. MCG ∩ BBs 53 50 15 52 49 8
cons.ALL∩BBs 53 50 +15 53 50 +9

Table 8.3: VOC results for HED models, see Fig. 8.5c. Underlined results correspond to
baselines that rely on ground truth boundaries, and our best weakly supervised results
are in boldface.

8.6.2 CNNs (VOC)

This section analyses the performance of HED (Xie and Tu, 2017) trained with the
weakly supervised variants proposed in Sec. 8.4. We use our re-implementation of HED
which performs on par with the original (see Fig. 8.4). We use the same evaluation
setup as in the previous section. Fig. 8.5c and Tab. 8.3 show the results.

HED (·) HED(VOC) outperforms SE(VOC) by a large margin. By comparing their
predictions qualitatively, we observe that HED manages to suppress the internal object
boundaries well, while SE fails to do so probably due to its decisions being based on
more local support, whereas HED incorporates more context.

HED(BSDS) achieves high performance on the object boundary detection task, despite
being trained with generic boundaries. Specifically, HED(BSDS) is trained on “consensus”
annotations which are closer to object-like boundaries: The fraction of annotators
agreeing on the presence of external object boundaries is much higher than for non-
object or internal object boundaries.

For training HED, in contrast to the SE model, we do not need closed contours
and can use the consensus between different weak annotation variants. This results
in better performance. Using the consensus between boundaries of MCG proposals
HED(cons.MCG ∩ BBs) improves AP by 6% compared to using the union of object
proposals HED(MCG ∩ BBs) (see Tab. 8.3).

The HED models trained with weak annotations outperform the fully supervised
SE(VOC) and do not reach the performance of HED(VOC). As has been shown in
Sec. 8.5 the HED detector is less robust to noise than SE.
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Method Family Data Without BBs With BBs
F AP ∆AP F AP ∆AP

SE

GT COCO 40 32 - 45 37 -
Other GT BSDS 34 23 -9 43 33 -4
Weakly

supervised
SeSe+ ∩ BBs 40 31 -1 44 35 -2
MCG+ ∩ BBs 39 30 -2 44 35 -2

HED

GT COCO 60 59 27 56 55 18
Other GT BSDS 44 34 2 49 42 5
Weakly

supervised
cons. S&G∩BBs 47 39 7 48 42 5
cons.ALL∩BBs 49 43 +11 50 44 +7

Table 8.4: COCO results. Underlined results correspond to baselines that rely on ground
truth boundaries.

Det.+HED (·) Combining an object detector with HED(VOC) (see Det.+HED (VOC)
in Fig. 8.5c) is not beneficial to the performance as the HED detector already has notion
of objects and their location due to pixel-to-pixel end-to-end learning of the network.

For HED models trained with the weakly supervised variants, employing an object
detector at test time brings only a slight improvement of the performance in the high
precision area. The reason for this is that we already use information from the bounding
box detector to generate the annotation and the CNN-based method is able to learn it
during training.

Det.+HED (MCG ∩ BBs) outperforms Det.+HED (BSDS) (see Tab. 8.3). Note that
the HED trained with the proposed annotations, generated without using boundary
ground truth, performs on par with the HED model trained on generic boundaries
(Det.+HED (cons. S&G∩BBs) and Det.+HED (BSDS) in Fig. 8.5c).

The qualitative results are presented in Fig. 8.6 and provide support for the quantitative
evaluation.

Conclusion Similar to other computer vision tasks CNN-based methods show superior
performance compared to more traditional approaches. Due to the pixel-to-pixel training
and global view of the image CNNs seem to have a notion of objects and their locations
which allows us to omit the use of the detector at test time. With our weakly supervised
boundary annotations we can gain fair performance without using any instance-wise
object boundary or generic boundary annotations. We leave out object detection at test
time, and only feed object bounding box information during training.

8.6.3 Further Results (COCO)

Additionally we show the generalisation of the proposed weakly supervised variants for
object boundary detection on COCO. We use the same evaluation protocol as for VOC.
For weakly supervised cases the results are shown with the models trained on VOC
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Image Ground truth SE(BSDS) SB(VOC)

Det.+SE (VOC) Det.+SE (weak) Det.+HED (weak)

Figure 8.6: Qualitative results on VOC. (·) denotes the data used for training. Red/green
indicate false/true positive pixels, grey is missing recall. All methods are shown at 50%
recall. Det.+SE (weak) refers to the model Det.+SE (SeSe+ ∩ BBs) Det.+HED (weak)
refers to Det.+HED (cons.S&G ∩ BBs). Object-specific boundaries differ from generic
boundaries (such as the ones detected by SE(BSDS)). By using an object detector we can
suppress non-object boundaries and focus boundary detection on the classes of interest.
The proposed weakly supervised techniques allow to achieve high quality boundary
estimates that are similar to the ones obtained by strongly supervised methods.
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Family Method mF mAP
Other GT Inverse Detectors (Hariharan et al., 2011) 28 21

SE

GT
SB(SBD) orig. (Uijlings and Ferrari, 2015) 39 32
SB(SBD) 43 37
Det.+SE (SBD) 51 45

Other
GT

Det.+SE (BSDS) 51 44
Det.+MCG (BSDS) 50 42

Weakly
super-
vised

SB(SeSe ∩ BBs) 40 34
SB (MCG ∩ BBs) 42 35
Det.+SE (SeSe ∩ BBs) 48 42
Det.+SE (MCG ∩ BBs) 51 45

HED

GT HED (SBD) 44 41
Det.+HED (SBD) 49 45

Other
GT

HED(BSDS) 38 32
Det.+HED (BSDS) 49 44

Weakly
super-
vised

HED(cons. MCG ∩ BBs) 41 37
HED (cons. S&G ∩ BBs) 44 39
Det.+HED (cons. MCG ∩ BBs) 48 44
Det.+HED (cons. S&G ∩ BBs) 52 47

Table 8.5: SBD results. Results are mean F(ODS)/AP across all 20 categories. (·)
denotes the data used for training. See also Fig. 8.7. Underlined results correspond to
baselines that rely on ground truth boundaries, and our best weakly supervised results
are in boldface.

The results are summarised in Tab. 8.4. On the COCO benchmark for both SE
and HED the models trained on the proposed weak annotations perform as well as the
strongly supervised SE models. Similar to the VOC benchmark the HED model trained
on ground truth shows superior performance.
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Figure 8.7: SBD results per class. (·) denotes the data used for training. Det.+
HED (weak) refers to the model Det.+HED (cons. S&G ∩ BBs).

8.7 Results: Semantic Boundary Detection

In this section we analyse the performance of the proposed weakly supervised boundary
variants trained with SE and HED on the SBD dataset (Hariharan et al., 2011). In
contrast to the VOC benchmark we move from object boundaries to class specific object
boundaries. We are interested in external boundaries of all annotated objects of the
specific semantic class and all internal boundaries are ignored during evaluation following
the benchmark Hariharan et al. (2011). The results are presented in Fig. 8.7 and in
Tab. 8.5.

Strongly supervised Applying the SE model plus object detection at test time
outperforms the class-specific situational boundary detector (for both the original SB
(Uijlings and Ferrari, 2015) and our re-implementation) as well as the Inverse Detectors
method (Hariharan et al., 2011). The model trained with SE on ground truth performs
as well as the HED detector. Both of the models are good at detecting external object
boundaries, however SE as it considers more local inputs triggers more on internal
boundaries than HED. In the VOC evaluation detecting internal object boundaries is
penalised, while in SBD these are ignored. This explains the small gap in the performance
between SE and HED on this benchmark.

Weakly supervised The models trained with the proposed weakly-supervised bound-
ary variants perform on par with the strongly supervised detectors, while only using
bounding boxes or generic boundary annotations. We show in Tab. 8.5 the top result with
the Det. + HED(cons. S&G∩BBs) model, achieving the state-of-the-art performance
on the SBD benchmark. As Fig. 8.7 shows our weakly supervised approach considerably
outperforms SB (Uijlings and Ferrari, 2015) and Inverse Detectors (Hariharan et al.,
2011) on all 20 classes.
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8.8 Conclusion

In this chapter, we presented experiments which demonstrate that high quality object
boundaries can be detecting using bounding box annotations. Relying on these alone,
our proposed weakly-supervised training already improves over previously reported
strongly supervised results for object-specific boundaries. When using generic boundary
or ground truth annotations, we achieve the top performance on the object boundary
detection task at the time, outperforming previously reported results by a large margin.
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9
Neural Body Fitting: 3D Human Shape and
Pose Recovery

In previous chapters, we considered the tasks of person localisation and pixel-wise
prediction. Here, we go one step further and address the task of predicting 3D
human body pose and shape.

This is a challenging task even for highly parametrised deep learning models. Mapping
from the 2D image space to the prediction space is difficult: perspective ambiguities
make the loss function noisy and training data is scarce.

We tackle this problem with a novel approach we call Neural Body Fitting (NBF)
that marries aspects of direct prediction and model-based approaches. This involves
incorporating a model of the human body into a deep learning architecture, which has
several advantages. First, the model incorporates limb orientations and shape, which are
required for many applications such as character animation, biomechanics and virtual
reality. Second, anthropomorphic constraints are automatically satisfied — for example
limb proportions and symmetry. Third, the 3D model output is one step closer to a
faithful 3D reconstruction of people in images.

In detailed experiments, we analyse how the components of our model affect perfor-
mance, especially the use of part segmentations as an explicit intermediate representation
prior to lifting, and present a robust, efficiently trainable framework for 3D human pose
estimation from 2D images with competitive results on standard benchmarks.

This work was published at 3DV (Omran et al., 2018) and won the best student paper
award. All the experiments and analysis were conducted by Mohamed Omran, and
Christoph Lassner provided help with the implementation. Gerard Pons-Moll and Peter
Gehler contributed to the writing and discussion9.

9.1 Introduction

Our goal is to fit an articulated 3D mesh of a human to a single monocular image
(Fig. 9.1), thus recovering both body shape and pose. Traditional model-based approaches
typically optimise an objective function that measures how well a body model fits the
image observations — for example, 2D keypoints (Bogo et al., 2016; Lassner et al.,
2017). These methods do not require paired 3D training data (images with 3D pose),

9We would also like to thank Dingfan Chen for help with re-training HMR Kanazawa et al. (2018).
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Figure 9.1: Given a single 2D image of a person, our goal is to recover a rich 3D
reconstruction of the body. As a first step, we predict a semantic body part segmentation.
This is provided in colour-coded form to a lifting network which predicts the parameters
of a 3D body model.

but only work well when initialised close to the solution. By contrast, initialisation is
not required in learning-based approaches, such as those based on convolutional neural
networks (CNNs), which directly predict the desired 3D output. However these methods
typically require many images with 3D shape and pose annotations, which are difficult
to obtain unlike images with 2D keypoint annotations.

We therefore propose a hybrid architecture — Neural Body Fitting (NBF) — that
integrates a statistical body model within a CNN, allowing us to directly predict shape
and pose while taking top-down body model constraints into account. Specifically,
from an image, a CNN predicts the parameters of the SMPL body model (Loper et al.,
2015), and the model is re-projected onto the image to evaluate the loss function in 2D
space. Consequently, 2D keypoint annotations can be used to train such architectures
reducing the need for 3D annotations. A few recent works have proposed very similar
architectures that are trained using model-based loss functions (Tung et al., 2017a;
Kanazawa et al., 2018; Pavlakos et al., 2018b). While all these hybrid approaches share
similarities, they all differ in essential design choices, such as the amount of 3D vs.
2D annotations for supervision and the input representation used to lift to 3D. (See
Sec. 3.3.3 for an extensive discussion of these and other subsequent methods that follow
the same approach.)

One key question we address with our study is whether to use an intermediate
representation rather than directly lifting to 3D from the raw RGB image. Images of
humans can vary due to factors such as illumination, clothing, and background clutter.
Those effects do not necessarily correlate with pose and shape, thus we investigate



9.2 Method 163

Proxy
CNN

CNN
w

pose ✓

shape �

SMPL
M(✓,�)

P (·)

Input Model Output 2D keypoints

Training data with matching samples hard to obtain.

3D keypoints

End-to-end supervision

Figure 9.2: Summary of our proposed pipeline. We process the image with a standard
semantic segmentation CNN into 12 semantic parts (see Sec. 9.3.2). An encoding CNN
processes the semantic part probability maps to predict SMPL body model parameters
(see Sec. 9.2.2), then via an embedded SMPL model produces a projection of the pose-
defining keypoints to 2D. With these keypoints, a loss on 2D vertex positions can be
backpropagated through the entire model (see Sec. 9.2.3).

whether a simplification of the RGB image into a semantic segmentation of body parts
improves 3D inference. We also consider the granularity of the body part segmentation
as well as segmentation quality, and find that:

• a colour-coded 12-body-part segmentation contains sufficient information for
reliably predicting shape and pose,

• the use of such an intermediate representation results in competitive performance
and easier, more data-efficient training compared to similar methods that predict
pose and shape parameters from raw RGB images,

• segmentation quality is a strong predictor of shape and pose fit quality.

We also demonstrate that only a small fraction of the training data needs to be paired
with 3D annotations. We make use of the UP-3D dataset (Lassner et al., 2017) that
consists of 8515 images in the wild along with 3D pose annotations. Larger 2D datasets
exist, but UP-3D allows us to perform a controlled study.

9.2 Method

There are two main stages in the proposed architecture (see Fig. 9.2 for an overview): In
the first stage, a body part segmentation is predicted from the RGB image. The second
stage takes this segmentation to predict the body model parameters: a low-dimensional
parametrisation of a mesh. Those parameters are passed to SMPL (Loper et al., 2015)
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to produce a 3D mesh attached to a skeleton. The skeleton joints are then projected to
the image closing the loop. Hence, NBF admits both full 3D supervision (in the model
or 3D Euclidean space) and weak 2D supervision (if images with only 2D annotations
are available).

9.2.1 Body Model

For our experiments we use the SMPL body model due to its good trade-off between
high anatomic flexibility and realism. SMPL parametrises a triangulated mesh with
N = 6890 vertices with pose parameters θ ∈ R72 and shape parameters β ∈ R10 –
optionally the translation parameters γ ∈ R3 can be taken into account as well.

Shape Bs(β) and pose dependent deformations Bp(θ) are first applied to a base
template Tµ; then the mesh is posed by rotating each body part around skeleton joints
J(β) using a skinning function W :

SMPL (β,θ) = W (T (β,θ), J(β),θ,W), (9.1)

T (β,θ) = Tµ +Bs(β) +Bp(θ), (9.2)

where SMPL (β,θ) is the SMPL function, and T (β,θ) outputs an intermediate
mesh in a T-pose after pose and shape deformations are applied. SMPL produces
realistic results using relatively simple mathematical operations – most importantly for
us SMPL is fully differentiable with respect to pose θ and shape β. All these operations,
including the ones to determine projected points of a posed and parametrised 3D body
can be represented as layers of a neural network. We use them to make the 3D body a
part of our deep learning model.

9.2.2 Lifting Network

NBF predicts the parameters of the body model from a colour-coded part segmentation
map I ∈ R224×224×3 using a CNN-based predictor parametrised by weights w. The
estimators for pose and shape are thus given by θ(w, I) and β(w, I) respectively.

We integrate the SMPL model and a simple 2D projection layer into our CNN
estimator, as described in Sec. 9.2.1. This allows us to output a 3D mesh, 3D skeleton
joint locations or 2D joints, depending on the kind of supervision we want to apply for
training while keeping the CNN monolithic.
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Mathematically, the function N3D(w, I) that maps from semantic images to meshes is
given by

N3D(w, I) = M(θ(w, I),β(w, I)) (9.3)
= W (T (β(w, I),θ(w, I),

J(β(w, I)),θ(w, I),W)), (9.4)
which is the SMPL equation (Eq. (9.1)) parametrised by network weights w. From this
it is obvious that we can easily find the derivatives ∂N3D

∂w
by using chain rule. NBF

can also predict the 3D joints NJ(w, I) = J(β(w, I), because they are a function of the
model parameters. Furthermore, using a projection operation π(·) we can project the
3D joints onto the image plane

N2D(w, I) = π(J(w, I)), (9.5)
where N2D(w, I) is the NBF function that outputs 2D joint locations. All of these
operations are differentiable and allow us to use gradient-based optimisation to update
model parameters with a suitable loss function.

9.2.3 Loss Functions

We experiment with the following loss functions:

3D latent parameter loss: This is an L1 loss on the model parameters θ and β.
Given a paired dataset {Ii,θi,βi}Ni , the loss is given by:

Llat(w) =
N∑
i

|r(θ(w, Ii))− r(θi)|+ |β(w, Ii)− βi|, (9.6)

where r are the vectorised rotation matrices of the 23 parts of the body together with
a global rotation matrix. Similar to Lassner et al. (2017); Pavlakos et al. (2018b), we
observed better performance by imposing the loss on the rotation matrix representation
of θ rather than on its ‘native’ axis angle encoding as defined in SMPL . This requires
us to project the predicted matrices to the manifold of rotation matrices. We perform
this step using singular value decomposition (SVD) to maintain differentiability.

3D joint loss: Given a paired dataset with skeleton annotations {Ii,θi,J}Ni we compute
the loss in terms of 3D joint position differences as:

L3D(w) =
N∑
i

‖NJ(w, Ii)− Ji‖2 (9.7)

2D joint loss: If the dataset {Ii,J2D}Ni provides solely 2D joint position ground truth,
we define a similar loss in terms of 2D distance and rely on error backpropagation
through the projection:

L2D(w) =
N∑
i

‖N2D(w, Ii)− J2D,i‖2 (9.8)
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Joint 2D and 3D loss: To maximise the amounts of usable training data, ideally
multiple data sources can be combined with a subset of the data D3D providing 3D
annotations and another subset D3D providing 2D annotations. We can trivially integrate
all the data with different kinds of supervision by falling back to the relevant losses and
setting them to zero if not applicable.

L2D+3D(w,D) = L2D(w,D2D) + L3D(w,D3D) (9.9)

In our experiments, we analyse the performance of each loss and their combinations.
In this work, we are mostly interested in the last case scenario, with a mixture of 3D
and 2D data. In particular, we evaluate how much gain in 3D estimation accuracy can
be obtained from weak 2D annotations which are much cheaper to obtain than accurate
3D annotations.

9.3 Results

9.3.1 Experimental Settings

We used the following three datasets for evaluation: UP-3D (Lassner et al., 2017),
HumanEva-I (Sigal et al., 2010), and Human3.6M (H36M ) (Ionescu et al., 2014). These
datasets are described in detail in Chapter 3.

We perform a detailed analysis of our approach on UP-3D and Human3.6M, and
compare against state-of-the-art methods on HumanEVA-I and Human3.6M. Sec. 3.2
contains detailed descriptions of these datasets. For our analysis on UP-3D, we use the
training (5703 images) and validation (1423 images) sets. For experiments on H36M, we
reserve subjects S1, S5, S6 and S7 for training, and hold out subject S8 for validation.
We compare to the state of art on the test sequences S9 and S11.

9.3.2 Implementation

Data preparation To train our model, we require images paired with 3D body model
fits (i.e. SMPL parameters) as well as pixel-wise part labels. The UP-3D dataset
provides such annotations, while Human3.6M does not. However, by applying MoSH
(Loper et al., 2014) to the 3D mocap marker data provided by the latter we obtain the
corresponding SMPL parameters, which in turn allows us to generate part labels by
rendering an appropriately annotated SMPL mesh (Lassner et al., 2017).

Scale ambiguity The SMPL shape parameters encode among other factors a person’s
size. Additionally, both distance to the camera and focal length determine how large a
person appears in an image. To eliminate this ambiguity during training, we constrain
scale information to the shape parameters by making the following assumptions: The
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camera is always at the SMPL coordinate origin, the optical axis always points in the
same direction, and a person is always at a fixed distance from the camera. We render
the ground truth SMPL fits and scale the training images to fit the renderings (using
the corresponding 2D joints). This guarantees that the the only factor affecting person
size in the image are the SMPL shape parameters. At test-time, we estimate person
height and location in the image using 2D DeeperCut keypoints (Insafutdinov et al.,
2016), and centre the person within a crop of 512× 512 pixels (px) such that they have
a height of 440px, which roughly corresponds to the setting seen during training.

Architecture We use a two-stage approach: The first stage receives the 512px× 512px
input crop and produces a part segmentation. We use our own re-implementation of the
RefineNet (Lin et al., 2017a) semantic segmentation network, which uses ResNet-101
(He et al., 2016)) as a feature extraction backbone. The resulting part segmentation is
then colour-coded, resized to 224px× 224px and fed as an RGB image to the second
stage. The latter is based on a repurposed ResNet-50 ) network. We replace the final
pooling layer with a single fully-connected layer that outputs the 10 shape and 216 pose
parameters of SMPL . This is followed by a non-trainable set of layers that implement
the SMPL model and an image projection. Such layers can produce a 3D mesh, 3D
joints or 2D joints given the predicted pose and shape. We implement our method in
TensorFlow (Abadi et al., 2016)..

Training We train the segmentation network for 20 epochs with a batch size of 5
using the ADAM optimiser (Kingma and Ba, 2015). Learning rate and weight decay
are set to 0.00002 and 0.0001 respectively, with a polynomial learning rate decay. For
training the segmentation network on UP-3D we used the 5703 training images. For
Human3.6M we subsampled the videos, only using every 10th frame from each video,
which results in about 32000 frames. Depending on the amount of data, training the
segmentation networks takes about 6-12 hours on a Volta V100 machine. We train the
fitting network for 75 epochs with a batch size of 5 also using ADAM. The learning rate
is set to 0.00004 with polynomial decay and we use a weight decay setting of 0.0001.
We found that an L1 loss on the SMPL parameters was a little better than an L2 loss.
We also experimented with robust losses (e.g. Geman-McClure (Geman and McClure,
1987) and Tukey’s biweight loss (Belagiannis et al., 2015)) but did not observe benefits.
Training this network takes about 1.5 hours for the UP-3D dataset and six hours for
Human3.6M. Thus all in all training both stages requires a maximum total of 18 (12+6)
hours on a single machine.

Data Augmentation At test-time we cannot guarantee that the person will be per-
fectly centred in the input crop, which can lead to degraded performance. We found it
thus critical to train both the segmentation network and the fitting network with strong
data augmentation, especially including random jitter, scaling (0.9− 1.1×), horizontal
reflection (which requires re-mapping the labels), as well as rotations (up to 45 degrees).
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Figure 9.3: Example training image annotations illustrating different types of inputs at
different levels of granularities. We generate these automatically from the corresponding
3D ground truth if available. From left to right: 1-, 3-, 6-, 12-, and 24-part segmentations,
followed by 14- and 24-joint skeletons.

type of input UP H36M
RGB 98.5 48.9
Segmentation (1 part) 95.5 43.0
Segmentation (3 parts) 36.5 37.5
Segmentation (6 parts) 29.4 36.2
Segmentation (12 parts) 27.8 33.5
Segmentation (24 parts) 28.8 31.8
Joints (14) 28.8 33.4
Joints (24) 27.7 33.4

Table 9.1: Input Type vs. 3D error in millimeters

9.3.3 Analysis

Which Input Encoding? We investigate here what input representation is effective
for pose and shape prediction. Full RGB images certainly contain more information than
for example silhouettes, part segmentations or 2D joints. However, some information
may not be relevant for 3D inference, such as appearance, illumination or clothing,
which might make the network overfit to nuisance factors

To this end, we train a network on different image representations and compare
their performance on the UP-3D and Human3.6M validation sets. We compare RGB
images, colour-coded part segmentations of varying granularities, and colour-coded
joint heatmaps (see Sec. 9.3.3 for examples). We generate both using the ground truth
SMPL annotations to establish an upper bound on performance, and later consider the
case where we do not have access to such information at test time.
The results are reported in Tab. 9.1. We observe that explicit part representations

(part segmentations or joint heatmaps) are more useful for 3D shape/pose estimation
compared to RGB images and plain silhouettes. The difference is especially pronounced
on the UP-3D dataset, which contains more visual variety than the images of Human3.6M,
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Val
Train VGG ResNet RefineNet GT

VGG-16 107.2 119.9 135.5 140.7
ResNet 97.1 96.3 112.2 115.6

RefineNet 89.6 89.9 82.0 83.3
GT 62.3 60.5 35.7 27.8

Table 9.2: Effect of segmentation quality on the quality of the 3D fit prediction modules
(errjoints3D)

with an error drop from 98.5 mm to 27.8 mm when using a 12 part segmentation. This
demonstrates that a 2D segmentation of the person into sufficient parts carries a lot
of information about 3D pose/shape, while also providing full spatial coverage of the
person (compared to joint heatmaps). Is it then worth learning separate mappings first
from image to part segmentation, and then from part segmentation to 3D shape/pose?
To answer this question we first need to examine how 3D accuracy is affected by the
quality of real predicted part segmentations.

Which Input Quality? To determine the effect of segmentation quality on the results,
we train three different part segmentation networks. Besides RefineNet, we also train two
variants of DeepLab (Chen et al., 2015a), based on VGG-16 (Simonyan and Zisserman,
2015) and ResNet-101 (He et al., 2016). These networks result in IoU scores of 67.1,
57.0, and 53.2 respectively on the UP-3D validation set. Given these results, we then
train four 3D prediction networks — one for each of the part segmentation networks, and
an additional one using the ground truth segmentations. We report 3D accuracy on the
validation set of UP-3D for each of the four 3D networks, diagonal numbers of Tab. 9.2.
As one would expect, the better the segmentation, the better the 3D prediction accuracy.
As can also be seen in Tab. 9.2, better segmenters at test time always lead to improved
3D accuracy, even when the 3D prediction networks are trained with poorer segmenters.
This is perhaps surprising, and it indicates that mimicking the statistics of a particular
segmentation method at training time plays only a minor role. For example a network
trained with GT segmentations and tested using RefineNet segmentations performs on
par with a network that is trained using RefineNet segmentations (83.3mm vs 82mm).
To further analyse the correlation between segmentation quality and 3D accuracy, in
Fig. 9.4 we plot the relationship between F1-score and 3D reconstruction error. Each
dot represents one image, and the colour its respective difficulty — we use the distance
to mean pose as a proxy measure for difficulty. The plot clearly shows that the higher
the F1-score, the lower the 3D joint error.

Which Types of Supervision? We now examine different combinations of loss terms.
The losses we consider are Llat (on the latent parameters), L3D (on 3D joint/vertex
locations), L2D (on the projected joint/vertex locations). We compare performance
using three different error measures: (i) errjoints3D, the Euclidean distance between
ground truth and predicted SMPL joints (in mm). (ii) PCKh (Andriluka et al., 2014),
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Figure 9.4: Segmentation quality (F1-score) vs. fit quality (3D joint error). The darkness
indicates the difficulty of the pose, i.e. the distance from the upright pose with arms by
the sides.

the percentage of correct keypoints with the error threshold being 50% of head size,
which we measure on a per-example basis. (iii) errquat, quaternion distance error of the
predicted joint rotations (in radians).

Given sufficient data — the full 3D-annotated UP-3D training set with mirrored
examples (11406) — only applying a loss on the model parameters yields reasonable
results, and in this setting, additional loss terms don’t provide benefits. When only
training with L3D, we obtain similar results in terms of errjoints3D, however, interestingly
errquat is significantly higher. This indicates that predictions produce accurate 3D joints
positions in space, but the limb orientations are incorrect. This further demonstrates
that methods trained to produce only 3D keypoints do not capture orientation, which is
needed for many applications.

We also observe that only training with the 2D reprojection loss (perhaps unsurpris-
ingly) results in poor performance in terms of 3D error, showing that some amount of
3D annotations are necessary to overcome the ambiguity inherent to 2D keypoints as a
source of supervision for 3D.

Due to the SMPL layers, we can supervise learning with any number of joints/mesh
vertices. We thus experimented with the 91 landmarks used by Lassner et al. (2017) for
their fitting method but find that the 24 SMPL joints are sufficient in this setting.
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Loss errjoints3D PCKh errquat

Llat 83.7 93.1 0.278
Llat + L3D 82.3 93.4 0.280
Llat + L2D 83.1 93.5 0.278
Llat + L3D + L2D 82.0 93.5 0.279
L3D 83.7 93.5 1.962
L2D 198.0 94.0 1.971

Table 9.3: Loss ablation study. Results in 2D and 3D error metrics (joints3D: Euclidean
3D distance, mesh: average vertex to vertex distance, quat: average body part rotation
error in radians).

Error
Ann.perc. 100 50 20 10 5 2 1 0

errjoints3D 83.1 82.8 82.8 83.6 84.5 88.1 93.9 198
errquat 0.28 0.28 0.27 0.28 0.29 0.30 0.33 1.97

Table 9.4: Effect of 3D labelled data. We show the 3D as well as the estimated body
part rotation error for varying ratios of data with 3D labels. For all of the data, we
assume that 2D pose labels are available. Both errors saturate at 20% of 3D labelled
training examples.

How Much 3D Supervision Do We Need? The use of these additional loss terms
also allows us to leverage data for which no 3D annotations are available. With the
following set of experiments, we attempt to answer two questions: (i) Given a small
amount of 3D-annotated data, does extra 2D-annotated data help?, (ii) What amount
of 3D data is necessary? To this end we train multiple networks, each time progressively
disabling the 3D latent loss and replacing it with the 2D loss for more training examples.
The results are depicted in Sec. 9.3.3. We find that performance barely degrades as
long as we have a small amount of 3D annotations. In contrast, using small amounts of
3D data and no extra data with 2D annotations yields poor performance. This is an
important finding since obtaining 3D annotations is difficult compared to simple 2D
keypoint annotations.

Qualitative Results A selection of qualitative results from the UP-3D dataset can
be found in Sec. 9.3.3. We show examples from the four different error quartiles. Fits
from the first three quartiles still reproduce the body pose somewhat faithfully, and only
in the last row and percentile, problems become clearly visible. To illustrate the high
correlation between input segmentation quality and output fit quality, we present the
four worst examples from the validation set in terms of 3D joints reconstruction error
when (i) we use our trained part segmentation network (Fig. 9.6a), and when (ii) the
network is trained to predict body model parameters from ground truth segmentations
(Fig. 9.6b). In the latter case, there are still errors but these are noticeably less severe.
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Figure 9.5: Qualitative results by error quartile in terms of errjoints3D. The rows show
representative examples from different error quartiles, top to bottom: 0-25%, 25-50%,
50-75%, 75-100%

9.3.4 Comparison to State-of-the-Art

Here we compare to the state of the art on HumanEva-I (Tab. 9.5) and Human3.6M
(Tab. 9.6). We perform a per-frame rigid alignment of the 3D estimates to the ground
truth using Procrustes Analysis and report results in terms of reconstruction error, i.e.
the mean per joint position error after alignment (given in mm). The model we use
here is trained on Human3.6M data.

We compare favourably to similar methods, but these are not strictly comparable
since they train on different datasets. Pavlakos et al. (2018b) do not use any data
from Human3.6M, whereas HMR (Kanazawa et al., 2018) does, along with several other
datasets. We retrained the latter with the original code only using Human3.6M data for
a more direct comparison to ours (HMR (H36M -trained) in Tab. 9.6). Given Tab. 9.1,
we hypothesise that their approach requires more training data for good performance
because it uses RGB images as input.
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Method Mean Median
Ramakrishna et al. (Ramakrishna et al., 2012) 168.4 145.9
Zhou et al. (Zhou et al., 2015b) 110.0 98.9
SMPLify (Bogo et al., 2016) 79.9 61.9
Random Forests (Lassner et al., 2017) 93.5 77.6
SMPLify (Dense) (Lassner et al., 2017) 74.5 59.6
Ours 64.0 49.4

Table 9.5: HumanEva-I results. 3D joint errors in mm.

Method Mean Median
Akhter & Black (Akhter and Black, 2015) 181.1 158.1
Ramakrishna et al. (Ramakrishna et al., 2012) 157.3 136.8
Zhou et al. (Zhou et al., 2015b) 106.7 90.0
SMPLify (Bogo et al., 2016) 82.3 69.3
SMPLify (dense) (Lassner et al., 2017) 80.7 70.0
SelfSup (Tung et al., 2017a) 98.4 -
Pavlakos et al. (Pavlakos et al., 2018b) 75.9 -
HMR (H36M-trained) (Kanazawa et al., 2018) 77.6 72.1
HMR (Kanazawa et al., 2018) 56.8 -
Ours 59.9 52.3

Table 9.6: Human3.6M. 3D joint errors in mm.
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(a)

(b)

Figure 9.6: Worst examples from the validation set in terms of 3D error when the
fitting network is provided with (a) imperfect segmentations, and (b) ground truth
segmentations at test-time. In each case we train a separate fitting network on the
corresponding inputs.
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9.4 Conclusion

In this chapter, we make several principled steps towards a full integration of parametric
3D human pose models into deep CNN architectures. We analyse (1) how the 3D model
can be integrated into a deep neural network, (2) how loss functions can be combined
and (3) how a training can be set up that works most efficiently with scarce 3D data.

In contrast to existing methods we use a region-based 2D representation, namely a
12-body-part segmentation, as an intermediate step prior to the mapping to 3D shape
and pose. This segmentation provides full spatial coverage of a person as opposed to the
commonly used sparse set of keypoints, while also retaining enough information about
the arrangement of parts to allow for effective lifting to 3D.

We used a stack of CNN layers on top of a segmentation model to predict an encoding
in the space of 3D model parameters, followed by instantiation of an articulated body
mesh and a projection of the corresponding skeleton to the image plane. This full
integration allows us to finely tune the loss functions and enables end-to-end training.
We found a loss that combines 2D as well as 3D information to work best. The flexible
implementation allowed us to experiment with the 3D losses only for parts of the data,
moving towards a weakly supervised training scenario that avoids expensive 3D labelled
data. With 3D information for only 20% of our training data, we could reach similar
performance as with full 3D annotations.

We believe that this encouraging result is an important finding for the design of future
datasets and the development of 3D prediction methods that do not require expensive
3D annotations for training. Future work will involve extending this to more challenging
settings involving multiple, possibly occluded, people. We also plan on exploring the use
of part segmentations for supervision as well as test-time optimisation, as these provide
complementary information to 2D keypoints, such as depth relations and self-occlusion.
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Conclusions and Future Directions

In this thesis, we’ve addressed several different recognition tasks: pedestrian detection,
different pixel labelling tasks — boundary detection, semantic segmentation, instance
segmentation —, as well as 3D human shape and pose estimation. Before concluding
with a discussion of possible future work, we will enumerate some conclusions.

Since the discussion of future work will partly touch upon aspects relevant to all of
the problems we address, we need to first clarify the use of some terms. The tasks we
addressed in this thesis and related ones such as image classification will be referred to
as recognition tasks. We will refer to benchmarks commonly used to measure progress
on these tasks (e.g. Caltech, Cityscapes, MSCOCO, Human3.6M, 3DPW, ImageNet) as
standard recognition benchmarks. When we refer to modern recognition methods, we
mostly mean methods based on feedforward neural networks and CNNs in particular as
these dominate the standard benchmarks at the time of writing. We distinguish between
datasets and benchmarks, with the latter referring to the combination of a dataset and
a suitable evaluation scheme.

10.1 Conclusions

10.1.1 Summary

Chapters 4 to 6 dealt with detection, specifically of pedestrians. In Chapter 4 we
analysed a decade’s worth of methods leading up to — and including the beginnings
of — the deep learning boom. Among other things, this analysis demonstrated how
critical image representations have been for performance. For the experiments we used
a conceptually simple detector: a boosted decision forest consisting of level-2 trees
operating on spatially-pooled input features. Our results showed that merely varying
the input image representation was enough to replicate the leap in performance during
the time period covered by our analysis. Starting with just intensity images, we matched
the performance of the Viola-Jones detector Viola et al. (2003), and could continually
improve results simply by adding further colour and gradient input feature channels.
As a final step, we applied a small set of filters to these input feature channels (Nam
et al., 2014) which resulted in performance on par with the state of the art. Our analysis
of the literature also showed the importance of context modelling and additional data
modalities. Following these results, we augmented this simple detector with motion
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features and a simple person-to-person context model. This significantly outperformed
the state-of-the-art.

In another set of experiments, we looked at cross-dataset generalisation. This involved
training a detector on one dataset and evaluating it on others. Our results showed that
detectors specialise on their respective training sets and do not generalise well to test
sets from other sources. However, datasets vary in their suitability as generic training
sets. In this particular setting, INRIA fared better than Caltech and KITTI, possibly
due to the former being more diverse in terms of setting and of higher image quality.

Chapter 5 presented a simple CNN-based detector that did not rely on any problem-
specific modelling. This outperformed competing methods that were explicitly designed
to be sensitive to body parts and pedestrian-specific occlusion patterns. We showed
that further gains were achievable by simply oversampling the training set as well as
increasing the architecture size.

Chapter 6 concluded the section on detection with a forward-looking analysis com-
plementary to the retrospective analysis of Chapter 4. There, we focused on the
shortcomings of the then state of the art. We introduced a human baseline on the
Caltech dataset that significantly outperformed pedestrian detectors across different
evaluation settings. We then manually categorised errors into distinct groups: false
positives (localisation, background, and annotation errors) as well as false negatives
(small scale, occlusion, rare classes, and annotation errors). We then revisited the
evaluation metric and find that it overlooks localisation errors — something that was
foreshadowed by our results in Chapter 5. Additionally, we showed that cleaning up
the annotations was very beneficial to CNN- and non-CNN-based methods. Both are
sensitive to annotation noise, including imprecisely aligned bounding boxes. While
CNNs provide stronger foreground-background disambiguation, the feature responses
are somewhat diffuse, hence the need for additional bounding box regression for accurate
localisation.

In Chapters 7 and 8, we focus on pixel-wise labelling tasks. Chapter 7 presents
Cityscapes, a benchmark for two such tasks: pixel-level semantic labelling and instance-
level semantic labelling. In the first, each pixel is assigned a semantic label and in the
second, pixels additionally need to be grouped if they belong to a single instance. The
latter is considered an extension of object detection that targets more precise outputs
than a bounding box and is often addressed with similar methods. We present an
empirical study together with the dataset which provides an in-depth analysis of its
characteristics. We also evaluate several state-of-the-art approaches and demonstrate
the dataset’s difficulty. It has since established itself as a go-to benchmark for pixel-level
and instance-level segmentation as well as for other uses, e.g. generative image modelling.
A widely used pedestrian benchmark also relies on the data (Zhang et al., 2017b).

Chapter 8 deals with the task of boundary detection. Given the difficulty of obtaining
ground truth for this task, we explored the use of weak supervision with classical
and CNN-based approaches. We derived pseudo-annotations for different variants
of boundary detection, relying on classical unsupervised techiques, generic boundary
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detectors, and bounding box-based object detectors. We demonstrate that this can result
in strong performance compared to both competing weakly- as well as fully-supervised
methods.

Finally, we turn to the task of 3D human shape and pose estimation. We present a
method that embeds a statistical body model in a neural network trained to regress
shape and pose. This allows us to supervise the regressor with a mixture of data, both
3D and 2D. Unlike similar methods in the literature, we also use a part segmentation as
an intermediate step. This provides an extra layer of interpretability and also results in
data efficiency for the lifting step. We also showed a link between pose difficulty and
rarity as well as segmentation quality and 3D pose accuracy.

10.2 Future Directions: An Overview

While each of the tasks we’ve addressed in this thesis has its own particularities, they
naturally also have a lot in common. Our discussion of possible future directions will
mostly by centred around these commonalities.

These tasks are related at the conceptual level in obvious ways: We seek to understand
images of people at different levels of granularity, with the specific output being dictated
by the task. All of these tasks also require some form of figure-ground organisation,
i.e. separating an object from its background, either implicitly (Chapters 4 to 6), or
as the explicit target output (Chapters 7 and 8), or as an explicit intermediate step
(Chapter 9).

The methods we describe in this thesis also follow a common paradigm: supervised
statistical learning in the i.i.d. setting. To find a good mapping from image to desired
output, we design a parametric model — here based on CNNs — with task-specific
components. A loss function is selected that encourages this output, also either explicitly
(e.g. Chapter 5) or implicitly together with the appropriate model constraint (Chapter 9).
A large annotated training set, annotated either manually (Chapter 7) or with the help
of automatic methods (Chapters 8 and 9), guides the search for good model parameters.
To verify the outcome of the training process, we evaluate methods on a corresponding
test set where the data is assumed to be drawn from the same distribution as the training
set. Evaluation metrics summarise performance across the entire test set.

This general approach has lead to massive advances in what automatic visual recog-
nition methods can do. However, one major shortcoming of this approach — which
also happens to be the source of its apparent power — is the reliance on statistical
correlations in the data. One of the things that makes this problematic is that the
learning procedure does not distinguish between relevant and spurious correlations. The
latter are artifacts of a particular dataset (Torralba and Efros, 2011), e.g. persons only
appear in a specific room (Ionescu et al., 2014) or during certain times of day (Chapter 7).
This leads to poor performance when these correlations do not apply — in the so-called
out-of-distribution setting. This phenomenon is the subject of much discussion in the
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recent literature (Arjovsky et al., 2019), and has been referred for example as Clever
Hans prediction (Lapuschkin et al., 2019) or shortcut learning (Geirhos et al., 2020).

Ultimately, spurious correlations are inescapable in the statistical machine learning
setting. No dataset no matter how large will adequately reflect the statistical properties
of the real world — not least because the world is constantly changing (Raji et al., 2021).
Some aspects of visual perception are also difficult to acquire on the basis of correlations
in the data, such as the ability to recognise a familiar object independently of its spatial
relation to the viewer. While increasing the size of the training set can address this
fundamental inadequacy of datasets as well as of the statistical approach, it will never
resolve it. We won’t either in this section, but we will outline some promising directions
for future work that we believe will help overcome this issue. These are complementary
to a fundamentally important reframing of learning in terms of discovering causal rather
than purely statistical relations (Schölkopf et al., 2012; ?).

Before outlining future directions, we will present a couple of failure modes of the
method from Chapter 9. These will provide some motivation for the subsequent
discussion, which will first focus on benchmarking (Sec. 10.3). Benchmarking plays a
central role in modern computer vision — besides also relating to a central contribution
of this thesis (Chapter 7). We will argue that guarding against shortcut learning requires
improvements to both aspects of benchmarking: dataset design and evaluation. Our
main argument is that dataset design in particular should be explicitly guided by the
goal of encouraging combinatorial generalisation.

In Sec. 10.4, we will discuss directions for future work on the model side. Here we will
focus on the need for better figure-ground organisation as it is relevant to higher-level
recognition tasks. Current recognition models are largely static and feedfoward which
makes them ill-equipped to respond flexibly to unfamiliar visual inputs. Dynamic
models that rely on recurrence and feedback should play a larger role, which will benefit
low-level grouping processes. Finally, we will briefly take up some open problems related
to detecting and representing people.

10.2.1 Motivating Examples

In Chapter 9 we present a method for 3D human shape and pose estimation that relies on
body part segmentation as an intermediate task. The task is to identify pixels belonging
to a person and assign to each a body part label. We assume that a single person in the
centre of the image is to be labelled. This can thus be viewed as a simplified form of
instance segmentation. We use large amounts of data (> 100K examples from a mixture
of datasets) and the standard per-pixel cross entropy loss to train models for this task
based on a state-of-the-art labelling approach (Chen et al., 2018a). We will demonstrate
two types of undesirable behaviour exhibited by our models: (i) failing to generalise to
unfamiliar poses not present in the training data, (ii) memorising label noise for specific
training examples.
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(a) input (b) outputs (c) outputs for rotated inputs

Figure 10.1: We train three different semantic segmentation models with varying degrees
of rotation augmentation (up to 30, 60, and 90 degrees respectively). We apply these
models to the input image in Fig. 10.1a resulting in the three outputs in Fig. 10.1b.
All three models output reasonable labellings with some small amount of degradation
for the model trained with the heaviest amount of augmentation. When we rotate the
input image by 90 degrees and apply the three models, the difference between the three
models becomes clearer.

First, we train three models with varying degrees of rotation augmentation (up to
30, 60, and 90 degrees respectively). In Fig. 10.1, we show some example outputs
and observe that all models perform similarly well when a person is upright. Model
performance can, however, degrade when the person is viewed from an unusual angle.
The model trained without heavy rotation augmentation fails to adequately segment the
person spread horizontally across the image. Relatedly, as people are typically upright,
common benchmarks will barely distinguish between models that perform differently on
such rare instances. In fact, the three models that result in the predictions visualised in
Fig. 10.1 preform very similarly on two validation sets (both from the UP and H36M
datasets) in quantitative terms.

Now we consider the second type of undesirable behaviour. The segmentation models
we mentioned above are trained on a mixture of datasets including UP-3D (Lassner
et al., 2017). This dataset is annotated semi-automatically: For each instance, a set of
keypoints and the binary silhouette are annotated by hand and an automatic method
based on SMPLify (Bogo et al., 2016) fits the SMPL model to the 2D evidence. Poor fits
are discarded but reasonable ones which may contain small errors are kept. Since the
semantic labels we use as a target output for our task are derived from these fits they
inherit the same errors, such as small misalignments of the limbs that vary from one
training example to the next. Remarkably, the model trained to predict these labels has
enough capacity to memorise annotation errors specific to individual training examples
(see Fig. 10.2) despite the large training set and despite only seeing each example no
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Figure 10.2: A body part segmentation network trained on a mixture of datasets learns
to memorise annotation errors for individual training examples. For nine pairs of images,
we show the ground truth labelling (left) together with the network prediction (right).
We include a mixture of severe annotation errors (first two rows) and more subtle ones
such as slightly shifted body parts (last row).

more than 20− 30 times during training — including with data augmentation (rotation,
scaling, and horizontal flipping).

We will refer to these examples in the subsequent discussion.

10.3 Towards Better Benchmarks

Computer vision is a highly benchmark-driven field. For better and for worse, strong
performance on standardised benchmarks is critical for the wider adoption of ideas,
and drives innovation in models for visual recognition. Accordingly, shortcomings of
benchmarks and evaluation practices can have a negative influence on the research
priorities of the field. It is thus important to continuously reflect on these shortcomings
and address them carefully as a means to guide progress (Paullada et al., 2020). In the
following, we will start with a discussion of current dataset collection and evaluation
practices before outlining some future directions for work on this topic. The discussion
will mainly be informed by the problems we address in this thesis, but to some extent
applies more broadly.
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10.3.1 Current Benchmarking Practices: An Appraisal

Given the dizzying amount of problems addressed in the field, there is no single recipe
for the creation of a benchmark. There are however are some practices and assumptions
that broadly apply to most when it comes to data collection and evaluation, as well as
common problems that can result from both.

Data Collection

The default assumption underpinning statistical machine learning is that of i.i.d. data.
In practice, this means that datasets are created by collecting or recording a large
amount of data, and then subsequently splitting this data into training and test sets:
either randomly or with loose domain-specific considerations to avoid overlaps between
the two sets. This notion of overlap is a very fuzzy one and will mean different things
depending on the task and dataset.

In the case of Cityscapes (Chapter 7), which was recorded in multiple cities, we split
the data by city: both to achieve a balanced distribution by size and geographical
location. In terms of separation between training and test set, this means that the exact
same scenes and object instances (persons, vehicles, etc.) will most likely not appear
in both, and that there will be some variance in architectural styles between the two
sets. For Human3.6M (Ionescu et al., 2014), a set of actors separately perform a set of
pre-defined actions in the same studio. The resulting data is split by subject, and thus
requires generalising across person appearance and across different styles of carrying out
the same action.

With custom-recorded or -generated data, some mild guarantees can be made for train-
test separation. The situation is more complicated when it comes to large web-sourced
datasets. Such datasets allow for a larger diversity and scale than is typically feasible
with custom data, but with less control when it comes to maintaining a clean split.
Metadata, such as the photographer, date, and location, can be helpful in this regard
(Lin et al., 2014; Neuhold et al., 2017), but metadata is not always available — especially
not in the very large-scale setting involving millions (Russakovsky et al., 2015a) or even
hundreds of millions of images (Sun et al., 2017a). In different domains, it has been
observed that well-established datasets suffer from overlaps between training and test
sets, e.g. by Tatarchenko et al. (2019), Barz and Denzler (2020) and Krishna et al.
(2021) in shape reconstruction, image classification and long-form question answering
respectively.

Efforts to automatically detect duplicates (Kolesnikov et al., 2020) can only provide
limited guarantees in the large-scale setting. “No duplicates” is also the mildest possible
condition for considering two sets of data disjoint, and is not enough to ensure that
a task is being solved as intended. Tatarchenko et al. (2019) conclude on the basis of
a nearest-neighbour oracle that well-performing shape reconstruction methods do not
need to perform reconstruction at all. Methods can achieve strong results simply by
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retrieving similar training set shapes, and they find that many in fact do. Similarly in
image classification, (Feldman and Zhang, 2020) show that predictions for several test
examples can be traced back to very similar — if not identical — training examples.
These results also suggest a partial reliance on a naive retrieval mechanism, which they
conclude is necessary for less representative examples that belong to the long tail of
the data distribution — and not just necessary for mislabelled examples (Zhang et al.,
2017a). These results can be read in several ways, but our takeaway is that a less than
carefully designed dataset can obscure, or even encourage, the reliance on shortcuts
such as memorisation Tatarchenko et al. (2019) and that merely avoiding duplicates
— to the extent that it is possible — is not a sufficiently rigorous guarantee; similarity
between data points is after all a continuum.

Evaluation Schemes

For many vision benchmarks, performance is reduced to an overall summary statistic
and/or curve appropriate for the task, e.g. top-1 or top-5 error, precision-recall curves
and mAP, mIoU, PCKh, and MPJPE. Individual test points contribute more or less
equally to such aggregate measures. While these measures make it very convenient
to compare algorithms, they will naturally reflect performance on the most typical
examples in the test set. Without further interventions, they provide little incentive to
address corner cases. Many benchmarks thus resort to either implicitly reweighting test
examples, or reporting performance for subsets of the data together with the top-line
aggregate result.

In certain problem areas, measures are commonly balanced in terms of some discrete
semantic attribute, e.g. object class in image classification and object detection (Rus-
sakovsky et al. 2015a, Chapter 7, Lin et al. 2014). This results in additional challenges
when the training data has a purposefully lopsided class distribution (Horn et al., 2018;
Gupta et al., 2019).

However, long-tailed distributions do not merely occur at the level of class. For
example, within the person class some poses are much rarer than others, but benchmarks
which treat persons as one class among many, such as the aforementioned, don’t consider
this aspect. Even benchmarks centred around people often treat all poses — over- or
under-represented — equally for the purposes of evaluation, e.g. for pedestrian detection
(Zhang et al., 2017b), 2D pose (Lin et al., 2014) or 3D pose (Ionescu et al., 2014; von
Marcard et al., 2018). Other characteristics of the data which are relevant for robust
recognition and also aren’t distributed uniformly include among others: object location
and size, occlusion level and occluder type, imaging conditions and capture angle. For
most standard benchmarks, an aggregate performance measure that is simultaneously
balanced according to multiple such attributes is simply not feasible. This would require
overly detailed annotations as well as sufficiently diverse data that covers enough of the
relevant combinations.
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Given that a scalar performance summary will inevitably end up emphasizing some
performance aspect over others, some benchmarks also resort to separately summarising
performance for different subsets of the test set. Andriluka et al. (2014) for example
provide tools for a more detailed analysis of 2D pose estimation methods, reporting
performance for different pose clusters, activity types, occlusion levels and truncation
levels. In the case of pedestrian detection, several benchmarks provide multiple evaluation
settings of varying difficulty based on size and occlusion level (Dollár et al., 2009b;
Geiger et al., 2012). For general object detection, Hoiem et al. (2012) proposed an
early approach to in-depth evaluation of object detectors. These practices have been
adopted for the MSCOCO object detection benchmark (COCO Analysis Toolkit), and
an updated evaluation protocol building on this work was proposed recently by Bolya
et al. (2020).

While such approaches provide a more nuanced picture of a method’s strengths and
weaknesses, they are also limited by what we can extract from the available annotations.
A detailed quantitative analysis of classification performance on ImageNet for example
is far from straightforward provided just the image-level labels. This is easier for tasks
such as pose estimation thanks to the more fine-grained annotations. But even then, we
are limited to analysing performance as it varies in pose space, while having to neglect
the other underlying data characteristics mentioned above. Additional annotations
can help but are not always practical to acquire. Hoiem et al. (2012) for example
introduce additional super-class labels for PASCAL VOC to be able distinguish between
different semantic errors, but Bolya et al. (2020) sacrifice this distinction for the sake of
applicability to more datasets with more complicated semantic compositions.

An emphasis on quantitative evaluation over a painstaking error-driven and qualitative
approach can also easily obscure the reliance on shortcuts. By analysing decision
attribution maps, (Lapuschkin et al., 2016) find that a (non-deep) classifier was relying
on a source tag present in one fifth of the horse images in the widely used PASCAL
VOC2007 dataset (Everingham et al., 2015).

10.3.2 What Then?

Judging methods by a handful of numbers on large standardised benchmarks is a practice
deeply embedded in the culture of the field. In their seminal paper on dataset bias,
Torralba and Efros (2011) refer to common laments that "the field is now getting too
obsessed with evaluation, spending more time staring at precision-recall curves than at
pixels". As this hasn’t changed in the intervening decade and is unlikely to change any
time soon, it is worth considering ways to make such aggregate performance measures
more informative, and we will focus on the question of optimising test set quality without
relying on detailed annotations.

Aggregate results on large static test sets — even when these are carefully curated
— will nevertheless provide little insight into specific failure modes and can mask a
method’s brittleness to minor changes in the input. We will argue that work on visual
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recognition will benefit from dynamic, adversarial evaluation as is common in the
robustness literature. By that we mean exploring parameter space in the vicinity
of individual test points, as well as seeking out the performance limits of particular
models. Analytical tools from the study of human vision, specifically the field of visual
psychophysics, can play a role here as well.

Any discussion of evaluation is incomplete without considering the problems that can
result from the data collection process. As discussed above, impressive performance
on some benchmarks can be achieved while relying on statistical particularities of the
underlying dataset instead of performing the task as intended. Addressing this will also
require carefully designed datasets with strong experimental controls typically absent
from the large i.i.d. setting. We will argue that encouraging combinatorial generalisation
is a key goal that can guide dataset design. A broader emphasis on ability-oriented
evaluation rather than narrow task-oriented evaluation also matters. We will discuss
these terms in greater detail later in this section.

Both the dynamic evaluation and experimental controls we will argue for are very
difficult to achieve with natural data. While overcoming this difficulty poses a research
challenge in its own right, we believe that synthetic datasets should play a larger role
in the areas we address here, in which natural data has traditionally dominated in
benchmarking. This would also help address the difficulty of test set selection without
access to detailed annotations.

10.3.3 Improving Aggregate Performance Measures

Given a fixed test set, how do we gain more nuanced quantitative insights about
model performance? Above we mentioned evaluation schemes that rely on splitting the
dataset according to different domain-relevant factors. However, these require detailed
annotations that are typically not sufficiently exhaustive if at all available. Are there
then alternatives for selecting informative subsets of the data for evaluation?

One simple approach that is surprisingly uncommon would be to report worst-case
performance using pre-determined percentages of the test data. This would provide some
information on a method’s reliability that might otherwise be obscured by an average
score. Large i.i.d. test sets often suffer from redundancy, often containing very similar
test points that water down the results and bias the comparison between methods. A
method that performs well across a wide range of conditions will be penalised relative
to a method that excels on average but performs poorly on difficult test cases.

Along these lines, recent work has sought to identify fixed “difficult” subsets. Li and
Vasconcelos (2019) propose to remove examples that are biased towards an unwanted
representation. They apply this to action recognition data by identifying examples
that are easily classified with single-frame cues. However, this type of “representation
bias” is difficult to define in a problem-agnostic manner and can involve overly strong
assumptions. Bras et al. (2020) instead suggest a general criterion, namely how often a
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test point is correctly identified under different train-test splits. They propose a simple
heuristic algorithm to efficiently remove examples with a high “predictability” score.

Influence functions represent a technique from robust statistics that has been adopted
for model interpretability (Koh and Liang, 2017), and which might be useful for the
purpose of evaluation. In the interpretability setting, these capture the influence of
training points on model predictions. They could be used to derive difficulty scores for
individual test points, especially since we know that memorisation plays a large role
in contemporary deep learning (Zhang et al., 2017a; Arpit et al., 2017; Feldman, 2020;
Feldman and Zhang, 2020). In some problem domains, detailed annotations could also
be used to derive difficulty scores, e.g. in 2D/3D pose estimation and 3D reconstruction.
Test examples could be assigned weights based on their distance to the training set,
possibly also taking training-time augmentations into account.

An alternative to seeking difficult subsets is identifying a balanced test set that
contains a mixture of easy and hard examples. This could be used to improve existing
test sets rather than merely complementing them. There is limited work on this problem
but it deserves more attention. Balduzzi et al. (2018) take a step in this direction
with the goal of ranking a set of agents that each perform a set of tasks or compete
against every other agent. Their proposed evaluation scheme relies on finding the
latent structure in performance tables (agent-vs-task or agent-vs-agent). With this they
addresses a number of shortcomings they identify with performance averages or ELO
rankings, including sensitivity to redundant tasks — discussed above. Contrary to what
standard evaluation schemes suggest, they find that reinforcement learning agents had
not in fact yet outperformed humans on widely-used Atari benchmarks.

Psychometrics, the field of study devoted to measuring latent abilities and traits of
humans, can provide useful tools for evaluating algorithms. One particular methodology
in this area, item-response theory, has found limited use in machine learning (Lalor
et al., 2016; Martínez-Plumed et al., 2019). This involves fitting statistical models to the
“responses” of different test participants — predictions of recognition models — to a set
of “items” — test examples. This methodology allow us to estimate item characteristics
such as difficulty and suitability for discriminating between participants with the goal of
arriving at more informative test sets and rankings. Possible extensions to this approach
can perhaps incorporate information on the training set to which we have full access
unlike with human subjects.

10.3.4 Dynamic, Adversarial Evaluation and Synthetic Benchmarks

To better understand the shortcomings of recognition models, it is imperative to move
beyond evaluating them on static test benchmarks. In the robustness literature, this is
common practice (Carlini et al., 2019). To probe model robustness, one seeks the smallest
possible additive change to the image that induces a false prediction by maximising the
loss w.r.t. the image. When no restriction is placed on such a corruption other than a
bound on its norm, these are then referred to as adversarial perturbations and are often
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imperceptible to humans. While pixel space perturbations still pose a very challenging
problem, there is more room for work on robustness in world space or object space.

Simple geometric transformations (e.g. rotations and translations of the full image) can
confound models as shown by Engstrom et al. (2019), who similarly use an adversarial
approach to discover small changes that cause image classification methods to fail. Liu
et al. (2019b) propose the concept of a parametric norm-ball. Rather than considering
distance in pixel space they use a differentiable renderer to consider robustness in the
space of parameters, such as lighting and shape distance. Similarly, Alcorn et al. (2019)
use a differentiable renderer to adversarially discover out-of-distribution poses for rigid
objects. Shetty et al. (2020) train a model to perform a type of adversarial image editing.
This modifies the texture of objects while keeping shape and scene composition intact.

Synthetic datasets — given that they grant complete control over the underlying scene
parameters — can enable the kind of rigorous and flexible evaluation we have discussed
so far. Advances in generating synthetic datasets (Richter et al., 2016; Qiu and Yuille,
2016; Wrenninge and Unger, 2018; Roberts and Paczan, 2020; Devaranjan et al., 2020;
?) as well as in differentiable rendering (Nimier-David et al., 2020; Laine et al., 2020;
Kato et al., 2020) allow for generating more realistic adversarial benchmarks, for people
detection and analysis especially. Besides providing easy access to the underlying scene
variables, they also have the benefit of making it easier to generate annotations that are
tedious if not very difficult to generate manually, such as pixel masks and continuous
3D quantities.

Here it is important to note the following: There is a distinction between generating
realistic surface appearance (Wrenninge and Unger, 2018; Roberts and Paczan, 2020)
and generating realistic scene compositions (Devaranjan et al., 2020; Hassan et al., 2021)
and both represent separate, if related, challenges, whose relative importance depends
on the goal. For evaluating recognition methods, realistic and varied scene compositions
as well as potentially differentiable control over scene variables can result in challenging
benchmarks even without realistic surface appearance (Zitnick et al., 2016).

Control over scene variables can also allow for a more robust analysis of model
behaviours, similar to how human vision is studied using the tools of visual psychophysics
(Lu and Dosher, 2013). Methods and insights from this field can be adopted to rigorously
characterise failure modes beyond merely finding specific points of failure or generating
individual difficult test examples. Recent efforts along these lines include the work of
Wichmann et al. (2017); RichardWebster et al. (2018a,b).

10.3.5 Towards Combinatorial Robustness and Ability-Oriented Evaluation

So far we have mainly focused on evaluation schemes, but designing the right training
and test sets is of equal importance. Naturally, the details will depend on the nature
of the problem being considered but we will attempt to articulate a principle here
that should apply more generally. Our view is that dataset design should be explicitly
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guided by the goal of encouraging combinatorial robustness. By this we mean the ability
to generalise to unseen combinations of known parameter settings. This is a broad
definition that encompasses a wide range of challenges relevant to recognition. Before
enumerating a number of concrete examples, let us first attempt to draw a distinction
between combinatorial generalisation and domain adaptation.

Defining Combinatorial Robustness

Let there be two sets of images: Xtrain and Xtest. We assume that each image x is the
result of a complicated generative process which operates on a set of latent variables
Z = {z1, ..., zN} (alternatively: “factors of variation” Bengio 2009). These can include
continuous and discrete quantities such as sensor properties, lighting conditions, the
weather, what objects are present, properties of these objects such as their appearance
or pose, their spatial configuration in the scene, and numerous others. They need not be
independent and for any given recognition task we will be only interested in recovering
a strict subset, e.g. the class of the dominant object in the image. We will furthermore
assume that for any arbitrary subset of the latent variables Zs ⊆ Z, the values of its
members will be jointly distributed according to ptrain(Zs) and ptest(Zs) in Xtrain and
Xtest respectively.

In the traditional domain adaptation setting, the assumption is that the individual
marginal distributions of one or more parameters will undergo a shift from training to
test set. Often in fact, a pair of marginal distributions ptrain(zi) and ptest(zi) will have
non-overlapping mass. This means that the test set is designed such that all its elements
share some underlying characteristic(s) not present in the training set, e.g. captured
with a different sensor (Saenko et al., 2010), synthetic rather than real (or vice versa)
(Peng et al., 2018), corrupted in a specific manner (Hendrycks and Dietterich, 2019),
captured under different weather conditions (Chen et al., 2018c), contains different
sub-classes (Santurkar et al., 2021), and others.

In the case of combinatorial generalisation, there need not be such a restriction on the
marginal distributions of individual factors; they may even be equivalent across train
and test sets. Instead, what matters is that the joint distribution of a subset of the
factors undergoes a controlled shift between training and evaluation, e.g. ptrain(zi, zj)
vs. ptest(zi, zj). This means that the test set should contain unseen combinations of
possibly familiar latent factor values. We will refer to the ability to handle such shifts
as combinatorial robustness w.r.t. some property of the data. Depending on the setting
and on what latent parameters are assumed, this can result in a very diverse set of
challenges, and we will now discuss examples to clarify these definitions.

Examples

One well-studied problem that requires combinatorial robustness is the recognition of
objects in unfamiliar contexts. If we assume a simplified image classification setting
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where we have a limited set of object instances and scenes, the relevant factors would be
zclass and zbg respectively. That current models struggle with unfamiliar combinations
of these factors has been often demonstrated, e.g. in Rosenfeld et al. (2018) and Shetty
et al. (2019). Some datasets have been proposed recently to study this problem from
a robustness perspective. Sagawa et al. (2020) present a synthetic dataset that mixes
and matches two species of birds (waterbirds and land birds) against two types of
backgrounds (land and water). The combinations are distributed differently in training
and test sets. Xiao et al. (2021) use automatic segmentation methods to generate
challenge sets from ImageNet in a similar fashion.

Other examples that are highly relevant to recognition but are not commonly studied
in isolation would be combinatorial robustness w.r.t. object scale, rotation, or scene
illumination. Consider a training set for object classification in which objects occur at a
wide range of scales, but where specific classes are restricted to separate scale ranges
for training and evaluation. Evidence suggests that current models would struggle to
handle such a shift (Engstrom et al., 2019; Alcorn et al., 2019). Robustness to geometric
transformations such as scale and rotation are currently addressed in a data-driven
manner via heavy data augmentation (see Fig. 10.1). This robustness is naively encoded
in the model in the form of redundant weights for different cases encountered during
training. In top performing models, there is no mechanism for handling unseen sizes
and orientations in an object-agnostic manner, and standard benchmarks provide little
incentive to develop such mechanisms. Benchmarks like Caltech (Dollár et al., 2012b)
and MSCOCO (Lin et al., 2014) do report performance for different object scale ranges,
but without explicit controls for what is seen during training. To be clear, scale handling
is challenging even without the pursuit of combinatorial robustness, as we for example
discuss in Chapter 2. However, datasets with such controls are necessary to drive further
modelling innovation and avoid the heavy reliance on data that is customary at present.

Similarly, we can imagine an object detector trained on images captured under a wide
range of illumination conditions, but with certain objects only showing up in poorly-lit
scenes during evaluation. There is a lot of evidence for texture bias in state-of-the-art
recognition methods (Baker et al., 2018; Geirhos et al., 2019). Objects appear to us as
the result of interactions between light, viewpoint and material-dependent properties. If
current models do not implicitly learn to perform a kind of intrinsic image decomposition
(Barrow and Tenenbaum, 1978) — which they most likely don’t, they will end up learning
biased statistics of object appearance and be unable to generalise accordingly. It should
be noted that scene illumination also affects the ability to perceive edges and surfaces
thus affecting models that may rely more on shape cues than texture (Tuli et al., 2021).

Combinatorial robustness is naturally relevant to the detection of multiple objects.
It also matters at the level of individual objects as it pertains to e.g. (i) recognising
objects consisting of unfamiliar configurations of known parts, (ii) occlusion handling
with diverse occluders and levels of occlusion, and (iii) recognising familiar poses for
objects with unfamiliar appearances. This especially applies to highly articulated objects
e.g. the human body, but targeted evaluations of the kind we describe here are rare.
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One example of this can be found in Lehrmann et al. (2013), where they propose a
structured prior over human pose. In one experiment, they learn the prior on a set of
standing poses where at most one arm is raised in any given example. They show that
in contrast to competing models, theirs can produce samples where both arms are raised.
The model — despite not seeing such examples during training — has learned from the
data that the spatial correlation between arms is weak and generalises accordingly. It’s
not obvious that modern pose priors based on generic deep generative models (Pavlakos
et al., 2019a; Xu et al., 2020), which model pose in a global manner, can exhibit this kind
of generalisation. Similarly, contemporary methods for pose estimation will possibly
struggle if an artificial correlation between pose and appearance is introduced into the
training set, e.g. if trained on a mixture of real humans and humanoid-like figures,
where each subset covers a different part of pose space.

Ability-oriented Evaluation

As we pointed out, many of these problems have been studied in some form or the other.
Especially in recent work however, they are often addressed from a separate robustness
perspective: The goal is either to shed light on a problem (Engstrom et al., 2019; Alcorn
et al., 2019; Xiao et al., 2021) or to propose a specialised solution (Sagawa et al., 2020)
that is rarely adopted outside of the robustness literature.

This disconnect between work on model robustness and work on specific recogni-
tion tasks can be partly bridged with newer benchmarks that don’t focus on narrow
task performance in the large i.i.d. setting. Combinatorial robustness to changes in
background, scale and illumination for example are arguably basic requirements for
robust recognition, but are not measured explicitly by standard benchmarks. What we
are in sense then also arguing for here is what (Hernández-Orallo, 2017) refers to as
“ability-oriented” vs. “task-oriented” evaluation (there albeit in reference to higher-level
cognitive “abilities” compared to the more basic ones we discuss here). We should also
emphasize that we think both approaches are complementary.

While not explicitly focused on combinatorial robustness, a similar approach is starting
to gain traction in natural language processing (NLP): one that focuses on specific
linguistic competencies that are common to different tasks. One recent example is
Checklist (Ribeiro et al., 2020), in which model evaluation is approached from a software-
testing perspective. A battery of tests that cover different behaviours or abilities (e.g.
synonym handling, robustness to typos) is designed to evaluate models in a more targeted
manner, as a complement to task performance. This would be a useful approach to
problems like pose estimation and object detection but with carefully designed controls
on the training side.

Related Work

To conclude this section, we would like to discuss some connections to recent work.
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The importance of pursuing the goal of combinatorial generalisation has been artic-
ulated elsewhere, e.g. by Battaglia et al. (2018). There, however, this goal is cited
to motivate the adoption of graph neural networks. These models exhibit some forms
of combinatorial robustness by virtue of the inputs they require and how these are
processed: partly as separate nodes and edges. As they acknowledge, this does not
address the challenging problem of extracting such graphs from raw inputs to begin
with, e.g. images.

A related problem is the unsupervised learning of disentangled representations (Schmid-
huber, 1992; Desjardins et al., 2012; Higgins et al., 2018). There the goal is to learn
a generative model of images such that a set of relevant latent factors are discovered
automatically and made separable in each image representation. Such methods are
typically applied to simple synthetic datasets with a limited number of factors. While
no assumptions are made on the type of factors in advance, recent approaches rely on
an unrealistic inductive bias in the form of a strong independence assumption (Higgins
et al., 2017; Kim and Mnih, 2018). The datasets used for training contain every possible
combination of factors and thus no nuisance correlations exist. (Exceptions that relax
this assumption include the work of Bozkurt et al. (2019) and Träuble et al. (2020),
who find that standard approaches struggle as a result.)

It is our contention, however, that stronger inductive biases are required on the model
side. These will also most likely be very different for different factors of variation, and
not be discoverable with a generic CNN-based architecture and the right loss function.
Instead, carefully designed datasets focusing on different “abilities” are required to spur
the development of the corresponding architectural features. This is a more specific
version of the argument made by (Locatello et al., 2019) who, based on both theoretical
and empirical results, show that more inductive biases are necessary in this setting —
even with the strong independence assumption. This argument is also aligned with
work on unsupervised object-centric representation learning (van Steenkiste et al., 2018;
Burgess et al., 2019; Greff et al., 2019; Locatello et al., 2020), where an architectural
bias towards handling multiple objects is shown to be useful for the generative modelling
of corresponding data.

A highly related concept is the assumption of “independent causal mechanisms” from
the causal machine learning literature (Schölkopf et al., 2012). To discover the causal
structure that underlies the data generation process — as opposed to merely learning
surface correlations — it is assumed that the data is generated by a set of independent
“mechanisms”. The learning approach is set up such that these can be discovered.
Parascandolo et al. (2018) apply this principle to a modified version of MNIST with
an appropriate architectural inductive bias and learning objective: A set of CNNs are
adversarially trained to each specialise in undoing a simple transformation, such as some
spatial shift, colour inversion, or denoising. We argue that handling more challenging
transformations on more natural data will require more challenging benchmarks as well
as more complicated architectures, especially when multiple such transformations are
composed arbitrarily.
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The problem of generalising to unseen combinations of known elements is the subject
of much work in NLP, as well as at the intersection of vision and language (Johnson et al.,
2017). This is typically referred to as compositional (Keysers et al., 2020) or systematic
(Lake and Baroni, 2018; Bahdanau et al., 2019) generalisation based on related linguistic
concepts. A complete treatment of the extensive related work is beyond the scope of our
discussion, but a couple of contributions are particularly relevant. Hupkes et al. (2020)
define different types of “compositional behaviour” to address inconsistencies in the
literature. Some of their definitions are directly applicable to vision problems. Keysers
et al. (2020) propose a metric and algorithm for automatically generating datasets from
natural language data requiring varying degrees of combinatorial robustness.

Applying such a method to visual data is not straightforward. In the case of language
it relies on measuring word distributions which in principle can be obtained reliably via
tokenisation. Obtaining different visual elements of interest on the other hand from
natural images is extremely difficult. In general, creating controlled datasets is a key
challenge, especially with natural data. Thus we think synthetic data should in general
play a larger role as argued above. However, there are also efforts to collect such data
in the real-world. Barbu et al. (2019) propose a smart data collection protocol that
allows them to gather data from real-world indoor scenes while controlling for various
variables such as object pose and background. While this is intended for use as an image
classification test set, such an approach could potentially be used to create challenging
train-test set pairs.

Finally, we started this discussion by drawing a contrast between the problem of
combinatorial robustness and domain adaptation in a formal sense. In an informal
sense, domain adaptation requires of the model a “blind leap” between training and
test data. A model for example that has only learned to recognise objects on the basis
of natural texture is expected to generalise to synthetic texture without having been
exposed to the latter. This is particularly challenging given the strongly data-driven
nature of current standard models. Instead, with a dataset designed to encourage
combinatorial robustness the requirement is less stringent, and can thus perhaps direct
model development in a more targeted fashion.

10.4 Towards Better Models

In the previous section we discussed issues surrounding benchmarking. These were
primarily motivated by the larger goal of designing stronger recognition models. In
Sec. 10.3.5, we outlined some specific problems and desiderata that can inform dataset
design in service of this goal.

In this section, we will discuss some specific future directions regarding model design
itself. In the first part, we will focus on the need for dynamic models that use recurrence
and feedback. We will motivate this primarily via low-level vision problems. These, as
we’ve argued above, are relevant to every recognition task we address here.
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10.4.1 Dynamic Models with Recurrence and Feedback

Models that currently dominate visual recognition — based on CNNs — are largely
static and feedforward. By static we mean that models consist of filters whose weights
and support remain fixed after training10, i.e. are applied as is to every subsequent input
without adaptation. This descriptor also applies to recurrent units, e.g. LSTMs, when
these are optimised and applied for a fixed number of iterations. By feedforward, we mean
that visual processing occurs in a hierarchical manner, successively extracting low-level
to high-level features. This describes most successful models for image classification (e.g.
Simonyan and Zisserman 2015, He et al. 2016). For tasks with a localisation component,
some commonly used models depart from this in a limited fashion (Lin et al., 2017b;
Tan et al., 2020). In these models features are combined in a top-down manner, still
however, with fixed operations. There are models that depart more dramatically from
the static feedforward paradigm. However, these have not yet attained either widespread
adoption or meaningfully better performance as measured on standard benchmarks.

Nonetheless, we think that models that incorporate dynamic recurrence and feedback
should play a larger role in recognition as we will subsequently argue. For a wider-ranging
discussion on potential computational benefits of recurrence in artificial vision models,
we recommend the position paper of van Bergen and Kriegeskorte (2020). We will
present some additional motivation here, and discuss some recent work that points to
fruitful research directions.

In Sec. 10.3.5 we argued that standard models are not sufficiently flexible when it
comes to certain basic abilities relevant to recognition, e.g. being able to recognise
a familiar object when it appears in unfamiliar conditions such as illumination or
distance to camera. When it comes to recognising some object at different scales,
using static operations has the following consequences: (i) It requires redundant model
weights for different scales, (ii) information on scale is inseparable from information on
object appearance, (iii) and the model does not generalise beyond scales encountered
during training. Scaling, like some other transformations (e.g. rotation, Fig. 10.1) or
corruptions (e.g. noise and blur) can be approximated with the repeated application
of simple operations. By repeatedly rescaling or rotating an image by a small amount,
or by repeatedly applying a small amount of noise, we can approximate an arbitrarily
scaled or noisy image (see Fig. 10.3).

Current recognition models evidently have the capacity to learn to “undo” such
operations in some form before classifying the underlying object (Rusak et al., 2020).
However, these models have no built-in inductive bias to learn simple inverse operations
that can be repeatedly invoked in a manner that allows for generalising to unseen degrees
of transformation or corruption. Instead, we must rely on having the right training
distribution (see Fig. 10.3). Furthermore, with static networks the same computational
budget is allocated to images with very different characteristics and which might require
very different amounts of processing. For example: Detecting edges in uncorrupted

10This also applies to “weight-less” operators such as max-pooling, which have fixed support.
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Figure 10.3: Many image transformations that can occur in practice, such as noise, blur,
changes in contrast and brightness (depicted above) but also geometric transformations
such as scaling and rotation, can be approximated by the repeated application of simple
operations. While current recognitions models can learn to handle these given the right
data distribution, they struggle when faced with an unseen transformation. Models with
inductive biases that allow for learning and recursively applying the inverses of such
operations might overcome this limitation.

images is more straightforward than in noisy images. Reliable detection in the latter case
is more dependent on being able to integrate neighbourhood statistics or applying the
proper smoothing in an structure- or edge-aware manner, which in classical approaches
requires longer processing (Weickert, 1998; Mrázek and Navara, 2003; Roth and Black,
2009).

A promising line of work that can help address these problems involves so-called
implicit (Bai et al., 2019) — or alternatively declarative (Gould et al., 2019) — layers.
These are layers which are specified in terms of an objective rather than a fixed sequence
of computations. Examples include differentiable layers that compute a fixed point (Bai
et al., 2019), or solve a differential equation (Chen et al., 2018b) or convex minimisation
problem (Agrawal et al., 2019). Key to making this work is directly differentiating the
solution w.r.t. the layer inputs, as opposed to differentiating through each computational
step. This enables layers that can carry out powerful variable-length computations with
a constant memory requirement during training.

One recent approach related to this idea is the method of Linsley et al. (2020). They
apply a recurrent neural network (RNN) to a contour following task, where the goal is to
segment out a simple contour among several distractors. The conventional approach to
training RNNs, “backpropagation through time“ (BPTT), requires unrolling recurrent
computations to a fixed number of steps, which comes at a high memory cost. More
importantly, Linsley et al. (2020) show that the RNN performs optimally at the same



196 Conclusions and Future Directions

number of unrolling steps but degrades afterwards. As a result, a conventionally-trained
RNN does not generalise to longer contours than those seen during training. When
using implicit gradients on the other hand, the RNN generalises ably to longer inputs
in contrast to RNNs optimised for a fixed number of steps and in contrast to CNNs,
which have fixed depth. They additionally integrate recurrent units into a Mask R-CNN
network (He et al., 2017), and show that this segments objects with a gradual flood-filling
approach while matching the performance of the baseline Mask R-CNN on the MSCOCO
instance segmentation task. While this is not explicitly argued, such an approach has
the potential to enable generalisation to unseen object configurations in the same way it
enables length generalisation on the contour following task.

There are several possibilities for building on this work, and we will briefly discuss
a few here: (i) exploring the design space of such models, (ii) focusing on improving
the robustness of early CNN layers to low-level corruptions, (iii) integrating control
mechanisms for implicit layers possibly recruiting high-level information, and also (iv)
using such approaches for fitting complicated shapes to data, e.g. articulated human
body models.

Linsley et al. (2020) show that the behaviour of known recurrent units (Linsley et al.,
2018) can change when trained in a manner that allows for more flexible computa-
tions. These units have fixed weights and support, and one could revisit or extend
more complicated neural network components, especially ones that allow for geometric
transformations of filter weights, e.g. Spatial Transformer Networks (Jaderberg et al.,
2015) and Deformable Convolutions (Dai et al., 2017), or adjustments to the weights
themselves, as in e.g. Dynamic Filter Networks (Jia et al., 2016). These methods rely
on learned adaptation functions that are similarly static and dependent on the training
distribution. More flexible adaptation of the filters in a recurrent manner can result in
more powerful behaviour.

A further area of focus could be improving early layers of CNNs to be more robust to
low-level corruptions. Some recent work on robustness deals with so-called ”common
corruptions“ (see e.g. the ImageNet-C benchmark from Hendrycks and Dietterich
2019). These are modifications in pixel space that resemble named image corruptions
encountered in practice, such as specific types of noise and blur artifacts, weather effects
or colour distortions. Many methods addressing these corruptions focus on improvements
to the training data (Rusak et al., 2020) and it’s unclear how combinatorially robust
such approaches are (see Sec. 10.3.5). Instead, architectures with specially designed
low-level processing modules might be able to address this problem more robustly.

One line of work relevant to the above involves reformulating classical approaches to
image restoration (Rudin and Osher, 1994; Roth and Black, 2009) as learning problems
with modern deep architectures (Chen and Pock, 2017; Kobler et al., 2017; Effland et al.,
2020; Kobler et al., 2020). These models still largely rely on a fixed number of layers.
One could leverage advances in training implicit layers to obtain models that can process
images more flexibly, and also train models that can handle different types of restoration
tasks as opposed to training corruption-specific or even corruption level-specific models.
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Figure 10.4: How would current 3D shape and pose estimation approaches handle this
artificial example? This is a useful way to think about their limitations at different
levels, whether prediction or modelling.

There is also some redundancy in these models: See Figs. 11 and 12 in Effland et al.
(2020), which show the learned filters and activation functions corresponding to one
denoising and one deblurring network. The filters for both are remarkably similar
but the activation functions aren’t. More sophisticated network designs with different
activation pathways (Goodfellow et al., 2013) can make use of this fact.

Another exciting possibility is designing mechanisms for controlling the execution
of implicit layers with high-level information through feedback connections. Similar
ideas have been previously explored with traditional architectures, e.g. by deriving
some control signal from the classifier confidence (Spoerer et al., 2020). Controlling
low-level processing modules such as the above with high-level information, e.g. learning
to suppress nuisance information, will in turn lead to more robust high-level recognition
and also to advances in image restoration.

Flexible computation is useful not just for low-level vision, but also for object recogni-
tion. Models such as Capsule Networks (Sabour et al., 2017) use iterative computations
to explain object appearance dynamically rather than through the use of fixed templates.
This kind of dynamic inference would be particularly beneficial when estimating the
pose of articulated objects such as people, and make methods less dependent on having
access to the right distribution of poses during training.

To emphasize this point, we consider an artificial example (Fig. 10.4) and its im-
plications for current 3D human body recovery methods. Humans have no problem
understanding the admittedly unlikely pose and shape, but for automatic methods
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it would cause problems at multiple levels: ”Bottom-up“ predictors that extract 2D
keypoints or part segmentations would struggle. Even though these produce pixel-wise
predictions, evidence suggests that their predictions are strongly correlated (Fig. 10.2)
and dependent on the pose distribution (Fig. 9.4) at training time. This will naturally
cause problems for lifting to 3D whether through prediction or fitting. Methods that
attempt to predict the parameters of a body model would naturally struggle, not least
because current parametric models (e.g. SMPL ) could not accurately represent this
pose. Addressing this will at the very least require pixel-wise methods that are more
sensitive to low-level evidence and more tightly integrated with flexible object-level
reasoning that can adjust object models to fit unfamiliar inputs. Developing more
advanced human body models to support this flexible inference also poses a significant
challenge.

10.4.2 Towards Stronger Object Detection

We conclude with a short discussion of our results on pedestrian detection. What
generally stands out both from these results as well as from the subsequent literature on
detection is that certain key things have changed very little despite the wealth of work
on the subject: The fundamental approach to detection has remained the same. When
it comes to performance, the primacy of the training data as well as having strong but
conceptually simple image representations also matters significantly.

Already in Munder and Gavrila (2006) it was observed that “[t]he greatest performance
gain was, however, achieved by increasing the training sample size” when comparing
different feature and classifier types on the task of pedestrian classification. The benefits
of using larger training sets have been observed repeatedly since in detection, e.g. in
Nam et al. (2014) with hand-crafted features and decision forests, and similarly in
Chapter 4 with our cross-dataset generalisation experiments. This is all the more true
for CNN-based methods that are able to benefit from even more large amounts of data.
We demonstrated this for example in Chapter 5, as have subsequently Zhang et al.
(2017b) and Braun et al. (2019). They both show that pre-training CNN-based detectors
on their respective large-scale datasets gives a performance boost on smaller ones.

Recent state-of-the-art detectors, e.g. (Tan et al., 2020), still demonstrate the success
of these basic ingredients together with the sliding-window approach to detection. We
depict this approach in Chapter 2 (Fig. 2.3) as a multi-dimensional grid-labelling problem,
where each grid point typically represents a spatial location and scale and, by implication,
a sub-area of the image. The labelling is such that sub-areas of the image either contain
or do not contain an object of interest. Detectors are trained to separate these groups
of sub-images, and additionally to refine the location of object hypotheses.

Despite the successes of this approach as evidenced by strong benchmark performance,
there are some problems with it. Some of them stem from modern DNNs’ ability to
effectively minimise the learning objective via memorisation if need be (Zhang et al.,
2017a). The objective imposes an artificial, binary separation of feature vectors into
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objects and non-objects, and current networks are capable of confidently learning these
labels even in more ambiguous cases. Some evidence of this in the context of object
detection can be seen in Jiang et al. (2018) (Fig. 2a). This shows that the network to
a significant degree successfully learns how to separate positives from negatives with
perfect confidence for many training examples regardless of how much (or how little)
they overlap with ground truth boxes. There is a lot of work that attempts to propose
improvements to the objective function, e.g. the aforementioned paper. We believe that
here, as above, stronger low-level processing with dynamic models will help produce
image representations that can better separate foreground from background. These will
benefit from explicit exchange of information not merely at the window level (Rothe
et al., 2014) but also at earlier stages of the processing pipeline, in contrast to the late
integration of redundant decisions that is common in current methods.
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