Aus dem Bereich Medizinische Biometrie, Epidemiologie und Medizinische Informatik Klinische Medizin der Medizinischen Fakultät der Universität des Saarlandes, Homburg/Saar Direktor: Univ.-Prof. Dr. Stefan Wagenpfeil

Metaanalyse zur genetischen Prädisposition bei Harnblasenkarzinomen anhand von Polymorphismen

Dissertation

zur Erlangung des Grades eines Doktors der Medizin der Medizinischen Fakultät der UNIVERSITÄT DES SAARLANDES 2021

vorgelegt von:Lukas Schmittgeboren am:26.05.1996 in Lebach

Tag der Promotion:	30.09.2021				
Dekan:	UnivProf. Dr. M. D. Menger				
1. Berichterstatter:	UnivProf. Dr. S. Wagenpfeil				
2. Berichterstatter:	UnivProf. Dr. M. Stöckle				

Inhaltsverzeichnis

1	Zus	sammenfassung5						
2	Aktı	uelle	r Kenntnisstand zum Harnblasenkarzinom	7				
	2.1	Def	inition und Karzinogenese	7				
	2.2	Epio	demiologie	7				
	2.3	Ätio	logie	10				
	2.4	Syn	nptomatik und Diagnostik	11				
	2.5	Klas	ssifikation	13				
	2.6	The	erapie	15				
	2.6.	1	Nicht-muskelinvasives Harnblasenkarzinom	15				
	2.6.	2	Muskelinvasives Harnblasenkarzinom	16				
	2.7	Unt	ersuchte Gene	17				
	2.7.	1	XRCC1	17				
	2.7.	2	ERCC2/XPD	17				
	2.7.	3	TP53	18				
	2.7.	4	XRCC3	18				
	2.7.	5	GSTP1	19				
	2.8	Kar	yogramm	20				
	2.9	Arb	eitshypothese und Fragestellung	21				
3	Mat	erial	und Methoden	22				
	3.1	Lite	raturrecherche	22				
	3.2	Stat	tistische Methoden	24				
4	Erg	ebnis	sse	27				
	4.1	Qua	alitative Auswertung der allgemeinen Literaturrecherche	27				
	4.2	Met	aanalyse	32				
	4.2.	1	XRCC1 Arg399GIn	32				
	4.2.	2	ERCC2/XPD Lys751GIn	39				
	4.2.	3	<i>TP53</i> Arg72Pro	46				
	4.2.	4	XRCC1 Arg149Trp	53				
	4.2.	5	XRCC3 Thr241Met	59				

	4	4.2.6 GSTP1 Ile105Val				
5		Disk	ussi	on7	3	
	5.1	1	XRC	CC17	4	
	ł	5.1.′	1	rs25487 Arg399Gln7	4	
	ł	5.1.2	2	rs1799782 Arg194Trp7	6	
	5.2	2	ERC	CC2/XPD7	7	
	ł	5.2.´	1	Rs13181 Lys751Gln7	7	
	5.3	3	TP5	37	8	
	ł	5.3. ⁻	1	rs1042522 Arg72Pro7	9	
	5.4	1	XRC	CC3	0	
	ł	5.4.´	1	rs861539 Thr241Met8	0	
	5.5	5	GST	TP18	1	
	ł	5.5. ⁻	1	rs1695 lle105Val8	1	
	5.6	3	Eins	schränkungen der Metaanalyse8	3	
	5.7	7	Sch	lusswort8	5	
6	Abkürzungsverzeichnis					
7	Literatur88					
8	Anhang102					
9	Danksagung113					
10	Lebenslauf114					

1 Zusammenfassung

Das Harnblasenkarzinom ist eine maligne Tumorerkrankung, die in den meisten Fällen von den Urothelzellen der Harnblase ausgeht. Männer sind von dieser Krebsart häufiger betroffen als Frauen. In Deutschland ist es die vierthäufigste Tumorlokalisation beim Mann und auf Platz 14 in der Krebsstatistik der Frau. [96] Das relative 5-Jahres-Überleben beträgt bei Männern 77 % und bei Frauen 72 % (2013) [9].

Das Urothelkarzinom ist eine Erkrankung mit multifaktorieller Genese. Der Hauptrisikofaktor für Blasenkrebs ist Tabakkonsum mit einem signifikanten Einfluss auf Entstehung, Progression und Mortalität [94]. Etwa 50–65 % der männlichen und 20–30 % der weiblichen Fälle sind auf Tabakkonsum zurückzuführen [31]. Einen weiteren Risikofaktor stellt die Exposition gegenüber aromatischen Aminen und polyzyklischen aromatischen Kohlenwasserstoffen dar, die zwischen 7,1 % und 20 % der Erkrankungsfälle bedingen [104]. Außerdem werden etwa 31 % der Blasentumoren durch genetische Risikofaktoren erklärt [61]. In zahlreichen Studien wurde der Einfluss von Einzelnukleotid-Polymorphismen auf das Erkrankungsrisiko für das Harnblasenkarzinom untersucht. Dabei kam es teils zu widersprüchlichen Ergebnissen.

Im Rahmen dieser Dissertation wurde daher eine qualitative Auswertung aller bis zum 07.04.2020 auf PubMed veröffentlichten Fall-Kontroll-Studien durchgeführt. Anschließend wurden die Arbeiten zu *XRCC1* Arg399Gln (rs25487), *ERCC2/XPD* Lys751Gln (rs13181), *TP53* Arg72Pro (rs1042522), *XRCC1* Arg194Trp (rs1799782), *XRCC3* Thr241Met (rs861539) und *GSTP1* Ile105Val (rs1695) näher beleuchtet und deren Ergebnisse quantitativ in einer Metaanalyse zusammengefasst. Zusätzlich wurden Subgruppenanalysen nach Ethnie und Art der Kontrollpopulation durchgeführt, um die Vergleichbarkeit der Studien zu steigern. Es wurde jeweils die Odds Ratio und das 95 %-Konfidenzintervall berechnet.

Für GSTP1 lle105Val wurde im rezessiven Modell eine Odds Ratio von 1,340 mit einem 95 %-Konfidenzintervall von 1,038–1,730 berechnet. Weiterhin konnte in den Sensitivitätsanalysen und verschiedenen Subgruppen bei den Polymorphismen XRCC1 Arg399Gln, TP53 Arg72Pro und XRCC1 Arg194Trp teilweise statistische Signifikanz erreicht werden. Jedoch besteht diese Signifikanz nur für einzelne Ethnien oder Studiendesigns und lässt keine generelle Aussage über die genetische Prädisposition zu. Für ERCC2/XPD Lys751Gln und XRCC3 Thr241Met zeigte sich in keinem der berechneten Modelle ein statistisch signifikantes Ergebnis. Die Ergebnisse deuten darauf hin, dass Träger des GG-Genotyps (Val105) ein erhöhtes Risiko besitzen, an einem Harnblasenkarzinom zu erkranken. Die Ergebnisse verdeutlichen die komplexe Ätiologie des Harnblasenkarzinoms als multifaktorielle Erkrankung im Hinblick auf dessen genetische Prädisposition und Interaktion mit zahlreichen Umweltfaktoren.

English summary

Bladder cancer is a malignant tumour disease, which primarily originates from the urothelial cells of the bladder. Men are more frequently affected by this type of cancer than women, but the latter have a worse prognosis. In Germany it is the fourth most common tumour location in men and 14th in the cancer statistics for women. [96] The relative 5-year survival rate is 77 % for men and 72 % for women (2013) [9].

Urinary bladder cancer is a disease with a multifactorial genesis. Tobacco consumption is the main risk factor for bladder cancer with a significant impact on its development, progression and mortality [94]. About 50–65 % of male and 20–30 % of female cases are caused by smoking [31]. The exposition to aromatic amines and polycyclic aromatic hydrocarbons represents another risk factor, which causes between 7,1 % and 20 % of cases [104]. Furthermore, approximately 31 % of bladder tumours are explained by genetic risk factors [61]. Numerous studies have investigated the influence of different single nucleotide polymorphisms on bladder cancer risk, with sometimes contradicting results.

Therefore, a qualitative analysis of all case-control studies published on PubMed until the 7th of April 2020 was conducted in the context of this thesis. Subsequently, the publications concerning *XRCC1* Arg399Gln (rs25487), *ERCC2/XPD* Lys751Gln (rs13181), *TP53* Arg72Pro (rs1042522), *XRCC1* Arg194Trp (rs1799782), *XRCC3* Thr241Met (rs861539) and *GSTP1* Ile105Val (rs1695) were further examined and quantitatively summarized in a meta-analysis. Additionally, subgroup analysis by ethnicity and source of controls were performed, to enhance the comparability of the studies. In each case, the odds ratio and the 95 %-confidence interval were calculated.

For *GSTP1* Ile105Val an odds ratio of 1,340 with a 95 %-confidence interval from 1,038 to 1,730 was calculated in the recessive model. Furthermore, statistical significance was partially achieved in the sensitivity analyses and various subgroups for the polymorphisms *XRCC1* Arg399Gln, *TP53* Arg72Pro and *XRCC1* Arg194Trp. However, this significance only consists in several ethnicities or study designs and does not allow a general statement about genetic predisposition. No significant results were found in any of the calculated models for *ERCC2/XPD* Lys751Gln and *XRCC3* Thr241Met. The findings indicate that carriers of the GG genotype (Val105) have an increased risk of developing bladder cancer. The results illustrate the complex etiology of bladder cancer as a multifactorial disease in terms of its genetic predisposition and interaction with numerous environmental factors.

2 Aktueller Kenntnisstand zum Harnblasenkarzinom

2.1 Definition und Karzinogenese

Das Harnblasenkarzinom ist eine maligne Tumorerkrankung, welche in etwa 95 % der Fälle vom Urothel ausgeht. Rund 5% präsentieren sich als Plattenepithelkarzinome und Adenokarzinome. Generell wird zwischen einem papillären und einem soliden Tumorwachstum unterschieden. [90, 92]

Die Entartung des Urothels zu einem Urothelkarzinom erfolgt nach der Mehrschritttheorie der Karzinogenese in mehreren Phasen. Die Tumorentstehung beginnt mit der Initiierung, bei der Vorgänge in der Zelle durch *"loss of function"* oder *"gain of function"* von Schlüsselgenen aus dem Gleichgewicht geraten. Die Initiierung beginnt spontan und wird durch chemische, physikalische oder virale Noxen begünstigt, wobei beim Harnblasenkarzinom insbesondere die chemischen Noxen eine bedeutende Rolle einnehmen. Anschließend folgt die Tumorpromotion, während der sich zusätzliche genetische Veränderungen etablieren. Diese werden möglich, weil die DNA-Reparaturmechanismen und Tumorsuppressorgene nicht adäquat arbeiten. In der darauffolgenden Progressionsphase proliferiert die neoplastische Zellreihe. [125]

2.2 Epidemiologie

Im Folgenden werden, wenn nicht anders angegeben, Statistiken verwendet, die nicht nur das invasive Harnblasenkarzinom (ICD-10 C67) berücksichtigen, sondern auch nichtinvasive Formen wie "pTa-Tumore" und "In-situ-Karzinome" (ICD-10 D09.0) sowie "Neubildungen unsicheren oder unbekannten Verhaltens" (ICD-10 D41.4). Dies schafft ein besseres Verständnis für die epidemiologische Bedeutung dieser Erkrankung, da das pTa high-grade Karzinom und insbesondere das Carcinoma in situ Varianten mit hohem Progressions- und Rezidivrisiko darstellen. [56]

Im Jahr 2020 erkranken in Deutschland laut Schätzungen des Robert Koch-Instituts etwa 17.300 Menschen neu an einem muskelinvasiven Harnblasentumor (ICD-10 C67). Werden die In-situ-Tumoren dazu gezählt, erhöht sich diese Schätzung sogar auf 30.400 Menschen. Beim Vergleich der Neuerkrankungen im Jahr 2016 von 29.980 Personen mit der Schätzung für 2020, fällt ein leichter Anstieg in den Prognosen auf. Dieser ist wahrscheinlich auf das mittlere Erkrankungsalter von 74 bzw. 77 Jahren und die alternde Bevölkerungsstruktur in Deutschland zurückzuführen. Damit ist Harnblasenkrebs die vierthäufigste Tumorlokalisation beim Mann. Nur etwa ein Viertel der Neuerkrankungen treten bei Frauen auf, weshalb der Tumor der Harnblase den 14. Platz in der Krebsstatistik der Frau belegt. [96] Der Grund für dieses Ungleichgewicht ist nach wie vor unbekannt. Einflussfaktoren auf Prävalenz und Verlauf der Erkrankung könnten jedoch die unterschiedlichen Östrogen- und Androgenspiegel von

Männern und Frauen sein. [22] Auch anatomische Unterschiede, zu späte oder Fehldiagnosen vor allem bei weiblichen Patienten, genetische Unterschiede und soziale Verhaltensweisen könnten eine entscheidende Rolle spielen [68].

Das Harnblasenkarzinom ist eine Erkrankung des Alters und vor dem 20. Lebensjahr generell selten. Bei jungen Patienten treten meist mesenchymale Tumoren, insbesondere Rhabdomyosarkome auf. [56]

Abbildung 1: Altersstandardisierte Neuerkrankungsraten je 100.000 Einwohner für Harnblasenkrebs inklusive In-situ-Karzinome (ICD-10 C67, D09.0, D41.4) Deutschland (ausgewählte Register), nach T-Stadien (siehe 2.5) und Geschlecht, 1999–2013. Quelle: Zentrum für Krebsregisterdaten [9]

Die Zahl der Neuerkrankungen des muskelinvasiven Harnblasenkarzinoms ist für beide Geschlechter seit Jahren weitestgehend konstant. Die Inzidenz der nicht-invasiven Formen steigt jedoch an. Dies könnte jedoch durch eine detailliertere Meldung der Tumorentitäten und einhergehender Verbesserung der Datenqualität des Krebsregisters erklärt werden, dargestellt im Abfall der Kurve für fehlende Stadienangaben. (s. Abbildung 1) [9]

Abbildung 2: Geschätzte altersstandardisierte Inzidenzraten weltweit für das Jahr 2018, ICD-10 C67, Eigene Darstellung nach [27]

Das invasive Harnblasenkarzinom weist global eine unterschiedliche Inzidenz auf. In Europa tritt die Erkrankung beispielsweise deutlich häufiger auf als im weltweiten Vergleich. (s. Abbildung 2)

Abbildung 3: Verteilung der UICC-Stadien bei Erstdiagnose nach Geschlecht, ICD-10 C67, Deutschland 2015-2016 (oben: inklusive fehlender Angaben und DCO-Fälle (Death certificate only); unten: nur gültige Werte) [96]

Die Verteilung der Stadien bei Erstdiagnose ist in Abbildung 3 dargestellt. Bei erstmaliger Diagnosestellung ist bei jedem vierten Mann und jeder dritten betroffenen Frau der Tumor bereits in die Blasenmuskulatur eingewachsen [9]. Es wird somit ein relevanter Anteil der Karzinome erst in fortgeschrittenen Stadien erkannt, was Auswirkungen auf das Therapiemanagement und insbesondere auf das Überleben der Patienten hat. In der Mehrheit der Fälle gibt es keine Informationen zum vorliegenden Stadium.

Abbildung 4: Relatives 5-Jahres-Überleben nach UICC-Stadium und Geschlecht, ICD-10 C67, Deutschland 2015–2016 [96]

Bei Betrachtung aller Tumorstadien beträgt das relative 5-Jahres-Überleben für Männer 77 % und Frauen 72 % (2013) [9]. Die 5-Jahres-Überlebensrate bei nicht muskelinvasiven Harnblasenkarzinomen (bis T1) beträgt sogar über 80%, sinkt aber auf 55 % bzw. auf 46 %, sobald der Tumor den Detrusormuskel infiltriert (ab T2) und damit als muskelinvasiv gilt (2015–2016) [96]. Dieser starke Abfall des Überlebens mit fortschreitendem UICC-Stadium geht auch aus Abbildung 4 hervor.

2.3 Ätiologie

Der Hauptrisikofaktor für Blasenkrebs ist Tabakkonsum mit einem signifikanten Einfluss auf Entstehung, Progression und Mortalität [94]. Etwa 50–65 % der männlichen und 20–30 % der weiblichen Fälle werden durch Rauchen bedingt [31]. Das Erkrankungsrisiko steigt mit der Dauer des Rauchens und der Anzahl der gerauchten Zigaretten. Wird das Rauchen beendet, stagniert auch der Anstieg des Erkrankungsrisikos. [48] Eine aktuelle Studie berichtet außerdem über ein verringertes Rezidivrisiko bei Tumorpatienten zehn Jahre nach Rauchstopp [95]. Es gibt Anzeichen, dass bei gleicher Zahl von Packungsjahren die Inzidenz für Urothelkarzinome höher ist, wenn über einen langen Zeitraum wenig Zigaretten geraucht werden, als bei intensivem Rauchen über einen kurzen Zeitraum. In Metaanalysen wurde kein Zusammenhang zwischen Tabakrauch in der Umgebungsluft ("Passivrauchen") und erhöhter Morbidität für Harnblasenkrebs bei Nichtrauchern nachgewiesen. [107]

Chronische Entzündungen der Harnblase können außerdem die Entstehung eines Karzinoms begünstigen. Diese werden vor allem durch rezidivierende Harnwegsinfekte und Blasensteine verursacht. Auch nach mehrjähriger Harnableitung mittels Dauerkatheter weisen Personen ein erhöhtes Risiko für Harnblasenkarzinome auf. Ebenfalls erhöht ein Befall der Harnblase mit Schistosoma (Bilharziose) das Risiko der Erkrankung. [56]

Bei Patienten mit länger zurückliegender Bestrahlung gynäkologischer Tumoren ist die Rate an Urothelkarzinomen höher als in der Normalbevölkerung [11]. Dieses Risiko steigt, je länger die Strahlentherapie zurückliegt. So wächst die standardisierte Inzidenzrate von 2,70 bei einem Intervall von bis zu 9 Jahren auf 5,83, wenn die Strahlentherapie mindestens 40 Jahre zurückliegt. [16]

Eine weitere Erkrankungsursache stellt die Exposition gegenüber aromatischen Aminen und polyzyklischen aromatischen Kohlenwasserstoffen dar, die zwischen 7,1 % und 20 % der Tumorfälle bedingen [104]. Zu diesen Gruppen gehören bspw. Benzidin und 2-Naphthylamin [56]. Zahlreiche Berufsgruppen sind durch die Exposition mit aromatischen Aminen einem erhöhten Risiko ausgesetzt. Dazu zählen insbesondere Maler und Lackierer, Berufskraftfahrer, Beschäftigte in der Gummiindustrie und Lederarbeiter. [107] Aromatische Amine wirken kanzerogen auf die Blase, indem sie in der Leber hydroxyliert und glucuronidiert und so über den Urin ausgeschieden werden. Über das Enzym N-Acetyltransferase (NAT2) werden sie inaktiviert. Personen mit einer schnellen NAT2-Variante haben ein geringeres Krebsrisiko als langsame Azetylierer. [41]

Ebenso können Medikamente wie Cyclophosphamid, Chlornaphazin, Phenazetin und Aristolochiasäure die Wahrscheinlichkeit für die Entstehung von Blasenkrebs erhöhen. [56]

Lichtenstein et al. (2000) [61] untersuchten in einer Zwillingsstudie den Einfluss des Genoms auf die Erkrankungswahrscheinlichkeit des Harnblasenkarzinoms. Etwa 31 % (95 %-CI = 0 %-45 %) der Harnblasentumoren werden demnach durch genetische Risikofaktoren erklärt. Diese Hypothese erreicht in der Studie jedoch keine statistische Signifikanz. Die genetische Prädisposition bleibt in der Leitlinie der Deutschen Gesellschaft für Urologie (DGU) außerhalb spezieller genetischer Syndrome (bspw. Lynch-Syndrom) weiter umstritten. In dieser Leitlinie sind zwar bereits 14 - durch genomweite Assoziationsstudien (GWAS) identifizierte – Einzelnukleotid-Polymorphismen ("single nucleotide polymorphism" (SNP)) aufgeführt, jedoch haben diese in der Prävention bisher keine klinische Relevanz. [56] Gegenstand dieser Arbeit soll es deshalb sein, die vorliegenden Daten zu sichten, weitere gut untersuchte Polymorphismen zu identifizieren und deren Risiko auf die Erkrankungswahrscheinlichkeit zu quantifizieren. Durch die Ergänzung weiterer Punktmutationen könnten in Zukunft genetische Profile auf die Prävention des Harnblasenkarzinoms Einfluss nehmen.

2.4 Symptomatik und Diagnostik

Da der Beginn der Erkrankung schleichend verläuft und das Wohlbefinden nicht beeinträchtigt, werden die Symptome oft bagatellisiert. Häufigstes Erstsymptom ist eine schmerzlose Mikrohämaturie mit Makrohämaturieepisoden und seltener zusätzlich irritative Symptome wie Pollakisurie, Harndrang oder Dysurie. Hämaturie sowie rezidivierende Zystitiden sollten fachurologisch abgeklärt werden. Bei fortgeschrittenen Tumoren kann es durch eine Harnabflussstörung auch zu Flankenschmerzen und Harnverhalten mit Blasenkrämpfen kommen. [8, 36, 127]

Zu Beginn sollte eine digital rektale und vaginale Untersuchung erfolgen, um tumorverdächtige Verwachsungen und Verhärtungen zu palpieren. Zur Detektion der Mikrohämaturie wird ein Urin-Teststreifen verwendet. Anschließend erfolgt eine lichtmikroskopische Untersuchung des Urinsediments (Urinzytologie) im Nativpräparat sowie eine Begutachtung unter Zuhilfenahme bestimmter histologischer Färbungen. Hierbei liegt besonderes Augenmerk auf der Erythrozytenmorphologie und dem Grad der Differenzierung der Urothelzellen. Ein Nachweis von maligner Entartung der Urothelzellen sowie der markerbasierte Nachweis von molekularen Tumorzell-Komponenten im Urin kann zur Diagnostik dieser Karzinome genutzt werden. [8, 56, 127] Bei high-grade Tumoren weist die Urinzytologie eine hohe Sensitivität auf. Low-Grade Tumoren schilfern aufgrund ihrer ausgeprägten Zelldifferenzierung jedoch seltener Zellen ab, weshalb die Sensitivität der Urinzytologie sinkt und die Differenzierung zu entzündlichen Veränderungen erschwert ist. [131] Markerbasierte Urindiagnoseverfahren weisen entweder spezifische Zellkomponenten von malignen Zellen nach oder detektieren unspezifisch eine Erhöhung des Zellumsatzes. Letztere sind besonders anfällig für falsch-positive Ergebnisse

bei Entzündungen des Urogenitaltraktes. Sie sollten daher nicht regelhaft zur Früherkennung eines Urothelkarzinoms angewendet werden. [56]

Neben der Urindiagnostik gilt die Weißlicht-Zystoskopie als Standard in der Primärdiagnostik des Harnblasenkarzinoms und zur Abklärung einer unklaren Hämaturie. Diese sollte wenn möglich mit einem flexiblen Zystoskop erfolgen, das gegenüber dem starren Instrument bei gleicher Effektivität eine Reduktion der Morbidität und Verbesserung des Patientenkomforts gewährleistet. So können Zystoskopien in der Regel atraumatisch und beschwerdearm in lokaler Betäubung erfolgen. Neben dem höheren Patientenkomfort kann durch die Biegsamkeit des Endoskops der Blasenhals mit dem flexiblen Instrument besser beurteilt werden als mit einem starren Endoskop. Durch den Gebrauch von HD-Video-Zystoskopie-Einheiten mit "narrow band imaging" sowie Photodynamischer Diagnostik (PDD) wird eine verbesserte Erkennung von Frühstadien und eine vollständige Abtragung erleichtert. Die Anwendung des "narrow band imaging"-Modus erfolgt während der Zystoskopie durch spezielle Farbfilter der Kamera. Hierdurch werden Tumorgefäße hervorgehoben und flache Tumore leichter aufgefunden. Bei der PDD wird eine Substanz vor dem Eingriff über einen dünnen Katheter in die Blase eingebracht, welche Blasentumore und deren Vorstufen unter blauem Licht rosa fluoreszieren lässt. Die PDD-Zystoskopie weist gegenüber der Weißlicht-Zystoskopie eine höhere Sensitivität auf, erzeugt jedoch mehr falsch-positive Befunde bei Entzündungen oder nach Instillation mit Bacillus-Calmette-Guérin (BCG), worunter die Spezifität leidet. Bei zystoskopischem Verdacht auf einen Tumor sollte eine histologische Sicherung mittels transurethraler Blasenresektion (TURB) erfolgen. Wird ein Harnblasenkarzinom zystoskopisch ausgeschlossen, sollte der obere Harntrakt untersucht werden, um andere Ursachen für eine Hämaturie oder positive Zytologie abzuklären. [8, 56]

Bei Erstbefund eines nicht-muskelinvasiven Harnblasenkarzinoms erfolgt neben einer Sonographie standardmäßig keine weitere Bildgebung zur Abklärung des oberen Harntrakts [56]. Wenn jedoch das Harnblasenkarzinom im Bereich des Trigonums lokalisiert ist, multiple Tumoren in der Blase existieren oder der Tumor als high-grade klassifiziert wurde, steigt das Risiko für einen Primärtumor im oberen Harntrakt und es erfolgt eine computertomographisch (CT) gestützte Urographie [8].

Ergibt die zystoskopische Biopsie den Befund eines muskelinvasiven Harnblasenkarzinoms, wird für die Abklärung des oberen Harntraktes ein CT des Thorax, Abdomens und Beckens inklusive CT-Urographie durchgeführt. Ein kraniales CT oder eine Knochenszintigraphie sind nur bei klinischen Auffälligkeiten indiziert. [56]

Mithilfe der Sonographie werden Harnstauungszeichen und Tumormassen detektiert, jedoch kann ein Tumor der oberen Harnwege nicht sicher ausgeschlossen werden. Die CT-Urographie sollte daher standardmäßig als bildgebendes Verfahren zur Diagnostik von

Tumoren des oberen Harntrakts verwendet werden. Zusätzlich kann hierdurch der Lymphknotenstatus und die benachbarten Organe mitbeurteilt werden. [8] Alternativen stellen beispielsweise eine Magnetresonanztomographie mit Kontrastmittelapplikation oder ein Ausscheidungsurogramm dar [56].

2.5 Klassifikation

Die TNM-Klassifikation (s. Tabelle 1 und Abbildung 5) ist die meistgenutzte Einteilung, um die Ausbreitung des Harnblasenkarzinoms zu evaluieren. Dabei werden Ausdehnung des Primärtumors (T), das Vorhandensein von regionären Lymphknotenmetastasen (N) und von Fernmetastasen (M) beurteilt. Hilfreich für den klinischen Alltag sind zudem die Stadien der Internationalen Vereinigung gegen Krebs (UICC) (s. Tabelle 2) und die Unterscheidung von nicht-muskelinvasivem Harnblasenkarzinom (pTis, pTa, pT1) und muskelinvasivem Harnblasenkarzinom (\geq pT2) [56].

Abbildung 5: Klassifikation des Tumorwachstums beim Harnblasenkarzinom [41], p: histopathologisch gesichert

т		Primärtumor						
Тх		Primärtumor kann nicht bewertet werden						
Т0		Kein Nachweis eines Primärtumors						
Та		Nicht-muskelinvasives papilläres Karzinom						
Tis		Carcinoma in situ ("Flache Neoplasie")						
T1		Tumor infiltriert subepitheliales Bindegewebe						
Т2		Tumor infiltriert Lamina muscularis propria						
	T2a	Tumor infiltriert oberflächliche Lamina muscularis propria (innere Hälfte)						
	T2b	Tumor infiltriert tiefe Lamina muscularis propria (äußere Hälfte)						
Т3		Tumor infiltriert perivesikales Gewebe						
	T3a	Mikroskopisch						
	T3b	Makroskopisch (extravesikale Masse)						
T4		Tumor infiltriert eines der folgenden: Prostatastroma, Samenbläschen,						
		Uterus, Vagina, Beckenwand						
	T4a	Tumor infiltriert Prostatastroma, Samenbläschen, Uterus oder Vagina						
	T4b	Tumor infiltriert Beckenwand oder Abdominalwand						
Ν		Regionale Lymphknoten						
Nx		Regionale Lymphknoten können nicht bewertet werden						
N0		Keine regionalen Lymphknotenmetastasen						
N1		Metastase in einem Lymphknoten des wirklichen Beckenbereiches (ein						
		hypogastrischer, obturatorischer oder präsakraler Lymphknoten oder ein						
		Lymphknoten aus dem Bereich der Arteria iliaca externa)						
N2		Metastase in mehreren Lymphknoten des wirklichen Beckenbereiches (ein						
		hypogastrischer, obturatorischer oder präsakraler Lymphknoten oder ein						
		Lymphknoten aus dem Bereich der Arteria iliaca externa)						
N3		Metastasen der Lymphknoten an der Arteria iliaca communis						
M		Fernmetastasen						
MO		Keine Fernmetastasen						
M1		Fernmetastasen						
	M1a	Nicht-regionale Lymphknotenmetastasen						
M1b		Andere Fernmetastasen						

Tabelle 1: TNM-Klassifikation des Urothelkarzinoms der Harnblase, Eigene Darstellung nach [12]

UICC-Stadium	т	N	М
Stadium 0a	Та	N0	M0
Stadium 0is	Tis	N0	M0
Stadium 1	T1	N0	M0
Stadium 2	T2a–b	N0	M0
Stadium 2	T3a–b	N0	M0
Staululli S	T4a	N0	M0
	T4b	N0	M0
Stadium 4	Alle T	N1–3	M0
	Alle T	Alle N	M1

Tabelle 2: Stadieneinteilung der UICC (Union for International Cancer Control) [12]

2.6 Therapie

Das Therapieregime richtet sich nach der Infiltration des Tumors in die Harnblasenmuskulatur. Die Therapie des nicht-muskelinvasiven Harnblasenkarzinoms unterscheidet sich maßgeblich von der des muskelinvasiven Harnblasenkarzinoms.

2.6.1 Nicht-muskelinvasives Harnblasenkarzinom

Die transurethrale Resektion des Tumors dient nicht nur als diagnostisches Verfahren, sondern hat auch therapeutischen Nutzen. Falls technisch möglich, sollte der komplette Tumor mit der elektrischen Schlinge entfernt werden. Anschließend erfolgt eine Mitresektion der Muskelschicht und Biopsie des Tumorgrundes, um eine Aussage über die Eindringtiefe des Tumors in die Harnblasenwand zu erhalten und eine R0-Resektion histologisch zu sichern. [41] Bei Patienten mit anamnestisch bekannten multifokalen Tumoren, high-grade Tumoren oder bei Verdacht auf ein Carcinoma in situ sollte eine floureszenzassistierte transurethrale Resektion durchgeführt werden, da diese eine um ca. 20 % höhere Tumor-Detektionsrate hat [56].

Zur Behandlung von zirkulierenden während der Resektion abgeschilferten Tumorzellen oder verbliebenen Tumorresten empfiehlt sich eine unmittelbare postoperative Instillation mit einem Chemotherapeutikum (in der Regel Mitomycin C oder Epirubicin), sofern weder eine ausgeprägte Blutung noch eine Blasenperforation vorliegt [41]. In einer systematischen Übersichtsarbeit mit 2278 Patienten konnte durch die Frühinstillation eine Reduktion der 5-Jahres-Rezidivrate um 14 % (von 59 % auf 45 %) nachgewiesen werden [8]. Bei Patienten mit hohem Rezidivrisiko reicht diese einmalige Behandlung jedoch nicht aus. Hier muss eine Rezidivprophylaxe für mindestens ein Jahr durchgeführt werden. In Metaanalysen wurde eine Überlegenheit der Therapie mit BCG gegenüber der Chemotherapie-Instillation gut belegt. Bei einem Carcinoma in situ oder einem nicht-muskelinvasiven Hochrisikoblasenkarzinom sollen die Patienten ausgiebig über die verschiedenen Therapieoptionen und deren Konsequenzen

aufgeklärt werden. Auch die frühe Zystektomie ist hier eine Therapieoption, die insbesondere bei einem Frührezidiv oder einer Tumorpersistenz durchgeführt werden kann. [56]

2.6.2 Muskelinvasives Harnblasenkarzinom

Die radikale Zystektomie ist die Erstlinien-Therapie des muskelinvasiven Harnblasenkarzinoms und umfasst in der Regel die Entfernung der gesamten Blase sowie unmittelbaren Nachbarorgane, beim Mann Prostata und Samenblasen, bei der Frau Uterus, Adnexe und Anteile der vorderen Vaginalwand. Zudem kann eine beidseitige pelvine Lymphadenektomie das Gesamtüberleben verbessern. Dabei werden mindestens 10-16 Lymphknoten entfernt und beurteilt. Die Operation kann laparoskopisch, roboterassistiert oder offen erfolgen. Werden autonome Nervenfasern geschont, kann dies zum Erhalt der Sexualund Sphinkterfunktion beitragen. Zur inkontinenten oder kontinenten Harnableitung stehen mehrere Techniken zur Verfügung. Als inkontinente Ableitungen gelten Formen der Harnleiterhautfistel sowie das lleum- oder Kolon-Conduit. Kontinente Harnableitungen umfassen katheterisierbare Pouchformen, den orthotopen Harnblasenersatz (Neoblase) und die transrektale Harnableitung, wobei letztere heutzutage kaum mehr angewendet wird. Es ist essenziell, Betroffene über alle Möglichkeiten aufzuklären sowie deren Vor- und Nachteile zu erläutern. Ebenso sollten Patienten individuell über die Möglichkeiten einer neoadjuvanten oder adjuvanten Chemotherapie informiert werden, die jeweils drei bis vier Zyklen einer cisplatinhaltigen Kombinationschemotherapie beinhalten. Um eine Progression des Tumors auszuschließen, soll bei der neoadjuvanten Chemotherapie alle zwei Zyklen ein Re-Staging erfolgen. [56, 127]

Ein alternativer kurativer Ansatz zur radikalen Zystektomie sollte Patienten mit lokal begrenzten, muskelinvasiven Harnblasenkarzinomen (cT2–4 cN0/Nx M0) angeboten werden, bei welchen aufgrund von Nebenerkrankungen die radikale Zystektomie nicht in Frage kommt oder eine Alternative zum radikalen Eingriff gewünscht ist. Diese Therapie besteht aus kompletter transurethraler Resektion der endovesikalen Tumoranteile gefolgt von Radiochemotherapie und gegebenenfalls zusätzlicher Salvage-Zystektomie. [56]

Bei einem weit fortgeschrittenen oder metastasierten Harnblasenkarzinom (pT4b und/oder M1) kann eine palliative Zystektomie durchgeführt werden. Dies lindert meist typische Symptome wie Blutungen, Fäkalurie, Harnstau und Schmerzen. Zusätzlich sollte diesen Patienten auch eine palliative cisplatinbasierte Kombinationschemotherapie angeboten werden. Sind Patienten für diese cisplatinbasierte Chemotherapie nicht geeignet, so können die Checkpoint-Inhibitoren Atezolizumab oder Pembrolizumab eingesetzt werden, sofern ein positiver PD-L1-Status (Programmed Cell Death Ligand 1) vorliegt. [56, 127]

16

2.7 Untersuchte Gene

Die in dieser Metaanalyse untersuchten Gene und ihre dazugehörigen Proteine übernehmen essenzielle Funktionen in der Zelle. So sind die Produkte von *XRCC1*, *ERCC2/XPD* und *XRCC3* bedeutsame Komponenten im DNA-Reparatursystem, *TP53* codiert für den sogenannten "Wächter des Genoms", der den Zellzyklus reguliert und das Enzym GSTP1 hilft bei der Konjugation und Ausscheidung zelltoxischer Stoffe. [80]

2.7.1 XRCC1

Das "X-ray repair cross complementing 1"-Protein (XRCC1), das vom gleichnamigen Gen auf Chromosom 19 (19q13.31) (Abbildung 6) kodiert wird, ist Teil des DNA-Reparatursystems. Es hilft Einzelstrangbrüche zu reparieren, die durch ionisierende Strahlung oder Alkylanzien entstanden sind. XRCC1 besitzt selbst keine katalytische Aktivität, sondern wirkt als zentrales Gerüstprotein zwischen verschiedenen Enzymen und Einzelstrangbrüchen der DNA. Dabei interagiert es mit Proteinen wie der DNA-Ligase III, der Polymerase β und der Poly(-ADP-Ribose)-Polymerase (PARP) als Teil der Basen-Exzisions-Reparatur. XRCC1 besitzt zwei BRCA1-C-terminale Domänen (BRCT), wobei die erste PARP reguliert und die zweite für die Bindung und Stabilisierung der DNA-Ligase III verantwortlich ist. Polymorphismen von XRCC1, die einen Aminosäureaustausch zur Folge haben (bspw. Arg194Trp oder Arg399Gln), haben möglicherweise einen Einfluss auf die Wechselwirkungen von XRCC1 mit anderen Proteinen über diese BRCT-Domänen. Damit beeinflussen sie die Effektivität der Basen-Exzisions-Reparatur, was vermehrte DNA-Schäden und die Entstehung von Harnblasenkarzinomen zur Folge haben könnte. [59, 80]

Laut dem *"allele frequency aggregator"*(ALFA)-Projekt tritt die Variante Gln399 bei Kaukasiern deutlich häufiger (35,6 %) als bei Afrikanern (16,7 %) und Asiaten (23,0 %). Die Variante Trp194 tritt im Vergleich eher seltener auf mit 6,3 % bei Kaukasiern und 6,0 % bei Afrikanern, wobei hier in der asiatischen Bevölkerung (29,9 %) eine Abweichung erkennbar ist. [54]

2.7.2 ERCC2/XPD

"Excision repair 2, TFIIH core complex helicase subunit" (ERCC2) befindet sich an der Position 19q13.32 (Abbildung 6) und kodiert für das Protein *"Xeroderma pigmentosum group D"* (XPD), das einen integralen Bestandteil des Transkriptionsfaktorkomplexes BTF2/TFIIH darstellt. XPD hat eine DNA-abhängige Helikase-Aktivität und gehört zur Unterfamilie der RAD3/XPD-Helikasen. [80] Der Transkriptionsfaktor-IIH-Komplex ist ein zentraler Faktor der Nukleotid-Exzisions-Reparatur, der mithilfe seiner zwei Helikasen XPB und XPD den DNA-Doppelstrang vor der Reparatur in die beiden Einzelstränge eröffnet. Anschließend können dann XPG und XPF den beschädigten Teil der DNA entfernen. Schlussendlich füllen Polymerasen die DNA-Lücke wieder auf. Über die Nukleotid-Exzisions-Reparatur werden vor allem sperrige Addukte von der DNA entfernt, die meist durch UV-Strahlung oder Cisplatin-Therapie entstehen.

Mutationen von *ERCC2*, wie Lys751Gln, beeinflussen nicht die enzymatische Aktivität der Helikase XPD an sich, sondern stören die Interaktion zwischen den Proteinen des Komplexes und deren regulatorischen Partnern. [82] Diese Interaktionspartner sind essenziell für die Funktionalität von XPD. Insbesondere durch die Interaktion mit p44 wird die Helikase-Aktivität zehnfach schneller. Letztendlich hat dadurch *ERCC2* Lys751Gln indirekt einen starken Einfluss auf die Gesamtaktivität der Helikase. TFIIH hat ebenfalls eine Funktion in der Transkription von Genen. Hier formt der Komplex eine ringförmige Struktur um den DNA-Doppelstrang, die essenziell für die Initiation der Transkription ist. XPD ist als Teil dieses Rings zwar entbehrlich, beschleunigt aber den Vorgang der Transkription. [55]

Das ALFA-Projekt berichtet über eine Allelfrequenz der Variante von 37,7 % bei Kaukasiern, 24,2 % bei Afrikanern und nur 7,8 % bei Asiaten, wobei Menschen aus dem südasiatischen Raum (Indien, Pakistan) wiederum zu 37,13 % Mutationsträger sind [54].

2.7.3 TP53

"Tumor protein 53" (TP53) ist auf dem langen Arm des Chromosoms 17 an der Position 13.1 lokalisiert (Abbildung 6). Das von diesem Gen transkribierte Tumorsuppressor-Protein 53 (p53) besitzt Domänen zur Oligomerisierung, DNA-bindende Domänen und einen Abschnitt, der als Transkriptionsfaktor wirkt. Damit reguliert es die Expression von zahlreichen Genen und hat somit Einfluss auf Apoptose, Seneszenz, Zellzyklus-Arrest, DNA-Reparatur und Stoffwechselwege. [80] Mit seinem C-Terminus bindet es gemeinsam mit einem Sensor-Molekül an irreversible DNA-Schäden und wird dann phosphoryliert, wodurch sich seine Halbwertszeit verlängert. Anschließend setzt p53 durch seine Funktion als Transkriptionsaktivator vermehrt Signalwege in Gang, die die Apoptose oder den Zellzyklus-Arrest der Zelle einleiten. Dies geschieht über Moleküle wie p21, MDM2, GADD45, Bax, IGF-BP und Cyclin G. [58] Durch den Polymorphismus rs1042522 in Exon 4 kommt es zu einem Aminosäureaustausch auf Codon 72 von Arginin zu Prolin, der wahrscheinlich eine SH3-Domäne in einer Prolin-reichen Umgebung beeinflusst. In mehreren Studien wurde gezeigt, dass Arg72 die Apoptose effektiver auslösen kann als Pro72. [83]

Dennoch tragen etwa 71,7 % der Kaukasier das Risikoallel, das zur Variante Pro72 führt. Bei Afrikanern sind es etwas weniger mit 57,1 % und damit vergleichbar mit Asiaten (60,0 %). [54]

2.7.4 XRCC3

Doppelstrangbrüche der DNA können auf zwei Wegen repariert werden: der nicht-homologen Endverknüpfung und der homologen Rekombination [42]. Das Gen *"X-ray repair cross complementing 3" (XRCC3)*, das auf Chromosom 14 (14q32.33) lokalisiert ist (Abbildung 6), kodiert für das DNA-Reparaturprotein XRCC3, das Teil der RecA/Rad51 Proteinfamilie ist. Zur Reparatur von Doppelstrangbrüchen und Erhaltung der genetischen Struktur wirkt es an der homologen Rekombination mit [80], die in drei Schritten abläuft: Prä-Synapsis, Synapsis und

Post-Synapsis. Während der Prä-Synapsis werden an den Enden des Doppelstrangbruchs einzelsträngige 3'-Überhänge hergestellt. Bei der Synapsis werden diese von Rad51 als Muster benötigt, um identische Sequenzen im homologen Schwesterchromatid zu finden. Dort wird der Doppelstrang eröffnet und der beschädigte Strang wird entsprechend der homologen Sequenz verlängert. [43] Die Aktivität von RAD51 wird durch fünf Paraloge reguliert: RAD51B, RAD51C, RAD51D, XRCC2 und XRCC3, die in den Komplexen BCDX2 (Rad51B-Rad51C-Rad51D-XRCC2) und CX3 (Rad51C-XRCC3) organisiert sind. Die paralogen Gene besitzen eine zu circa 20 % identische Aminosäuresequenz. [20, 136] Es konnte gezeigt werden, dass eine Deletion von *XRCC3* in einer 25-fachen Abnahme der homologen Rekombination resultiert. Träger des *XRCC3* Met241-Allels weisen vermehrte DNA-Addukte auf, was für eine verminderte Fähigkeit, DNA-Schäden zu reparieren, spricht. [118]

Etwa 38,0 % der kaukasischen Bevölkerung tragen dieses Risikoallel. Unter Afrikanern (22,6 %) und Asiaten (7,3 %) sind es laut ALFA deutlich weniger. Inder und Pakistani unterscheiden sich mit einer Allelfrequenz von 24,6 % wiederum von der restlichen asiatischen Bevölkerung. [54]

2.7.5 GSTP1

"*Gluthatione S-Transferase Pi 1"* (*GSTP1*) ist auf dem langen Arm des Chromosoms 11 in der Region 13.2 lokalisiert (Abbildung 6) und kodiert für das gleichnamige Protein. Die Glutathion S-Transferasen sind eine Enzymfamilie, die eine essenzielle Rolle in der Entgiftung spielt. Anhand ihrer biochemischen, immunologischen und strukturellen Eigenschaften werden sie in vier Kategorien eingeteilt: alpha, mu, pi und theta. Die Enzyme dieser Klasse katalysieren die Konjugation von Glutathion an hydrophobe Substanzen. [80] Damit wird die Ausscheidung von Xenobiotika und elektrophilen Substanzen gefördert, die durch oxidativen Stress entstehen. Folglich verringert sich die Toxizität gegenüber der körpereigenen DNA. GSTP1 besteht aus zwei Domänen. Die N-terminale Domäne bindet das Glutathion, während die C-terminale Domäne die elektrophilen Substrate bindet. [81] Der Polymorphismus *GSTP1* Ile105Val befindet sich direkt in der elektrophilen Substratbindungsstelle und beeinflusst damit die Bindungseigenschaften von GSTP1. In *E. coli* hat sich in Studien ein dreifach höherer K(m)-Wert beim Val105-Allel gezeigt, was auf eine verringerte Effizienz der Entgiftungsvorgänge hindeutet. [93]

Daten des ALFA-Projektes zeigen, dass 33,1 % der kaukasischen Population diese Genvariante tragen, ebenso 45,1 % der afrikanischen und 19,4 % der asiatischen Bevölkerung [54].

2.8 Karyogramm

Abbildung 6: Schematische Darstellung der untersuchten Genabschnitte; Eigene Darstellung nach [37]

2.9 Arbeitshypothese und Fragestellung

Das Harnblasenkarzinom gehört zur Gruppe der malignen Erkrankungen. Nach der Mehrschritttheorie der Karzinogenese initiiert der Funktionsverlust von essenziellen Genen die maligne Entartung von Zellen. Deswegen wurden ausgewählte Gene des DNA-Reparatursystems, der Zellzyklusregulation und der Entgiftung von Noxen in dieser Arbeit näher untersucht. Auf diesen Genabschnitten konnten jeweils mehrere Polymorphismen identifiziert werden.

Studien, die den Einfluss von SNPs auf die Erkrankungswahrscheinlichkeit von Harnblasenkrebs untersuchen, weisen in der überwiegenden Mehrheit der Fälle ein Fall-Kontroll-Design auf. Isoliert betrachtet ist der Evidenzgrad vieler klinischer Studien nur gering, was verschiedene Ursachen haben kann. Zusätzlich weisen die Studienergebnisse teils erhebliche Heterogenität auf, deren Auftreten geklärt werden muss.

Es ist somit von großem Interesse, die Ergebnisse in einer quantitativen Analyse zusammenzufassen, um den Evidenzgrad der Forschung auf diesem Feld zu verbessern und den aktuellen Stand der Wissenschaft widerzuspiegeln. Durch die große Zahl an Studienteilnehmern können so auch kleine Effekte statistische Signifikanz erreichen und damit die These einer genetischen Prädisposition stützen. Weiterhin können einzelne Studien näher betrachtet werden, um besondere Eigenschaften des Studiendesigns oder der untersuchten Population im Vergleich zu anderen Studien darzustellen. Daher wird mithilfe des Hardy-Weinberg-Equilibriums (HWE) untersucht, ob die Kontrollpopulation einer repräsentativen Stichprobe entspricht. Um die Vergleichbarkeit zu verbessern werden die Studien außerdem in Subgruppen gegliedert. Diese Arbeit soll demnach alle Studien erfassen, die das Erkrankungsrisiko von Harnblasenkrebs anhand bestimmter Polymorphismen untersuchen und den aktuellen Stand der Forschung sowohl in einer qualitativen als auch in einer quantitativen Analyse zusammenfassen.

3 Material und Methoden

3.1 Literaturrecherche

Die Literaturrecherche erfolgte unter Verwendung der Literaturdatenbank PubMed der Nationalbibliothek für Medizin der Vereinigten Staaten. Die Publikationen wurden mithilfe der Literaturverwaltungssoftware Citavi 6.4.0.35, Fa. Swiss Academic Software gesichtet und kategorisiert. Das Ziel des ersten Schrittes, der allgemeinen Literaturrecherche, war es, einen Überblick über die Studienlage zum Thema zu erhalten. Wesentlich war hierbei abzuwägen, welche Polymorphismen überhaupt zur Durchführung einer Metaanalyse geeignet sind. Der folgende Terminus wurde für eine erste allgemeine Datenbank-Suche verwendet:

"("polymorphism, single nucleotide"[MeSH Terms] OR snps) AND ("urinary bladder neoplasms"[MeSH Terms] OR urinary bladder cancer[MeSH Terms] OR bladder cancer[MeSH Terms] OR bladder cancer) AND (risk OR disease susceptibility[MeSH Terms] OR susceptibilities, genetic[MeSH Terms] OR susceptibility)"

Nach der qualitativen Auswertung der allgemeinen Literaturrecherche wurden sechs SNPs ausgewählt, die im Folgenden näher betrachtet werden. Zu jedem SNP sollte eine ausreichende Anzahl von mehr als 20 Studien veröffentlicht worden sein, die den Zusammenhang der genetischen Prädisposition für das Harnblasenkarzinom untersuchen. Polymorphismen, die bereits in der "S3-Leitlinie Früherkennung, Diagnose, Therapie und Nachsorge des Harnblasenkarzinoms" der AWMF, DKG und DKH [56] Erwähnung finden, wurden für eine spezifische Untersuchung nicht in Betracht gezogen. Vielmehr soll beleuchtet werden, ob abseits der bereits in der Leitlinie aufgenommenen SNPs noch weitere Polymorphismen existieren, die einen Einfluss auf die genetische Veranlagung der Erkrankung haben. Die Suchtermini der spezifischen Suchen zu den sechs ausgewählten Polymorphismen sahen folgendermaßen aus:

XRCC1 Arg399GIn: "(XRCC1[All Fields] OR "x-ray repair cross complementing protein 1"[MeSH Terms] OR "x-ray repair cross complementing protein 1"[All Fields] OR "x ray repair cross complementing protein 1"[All Fields] OR Arg399GIn[All Fields] OR rs25487[All Fields]) AND ("urinary bladder neoplasms"[MeSH Terms] OR urinary bladder cancer[MeSH Terms] OR "carcinoma, transitional cell"[MeSH Terms] OR bladder cancer[MeSH Terms] OR bladder cancer) AND ("risk"[MeSH Terms] OR "risk"[All Fields] OR disease susceptibility[MeSH Terms] OR susceptibilities, genetic[MeSH Terms] OR susceptibility)"

ERCC2/XPD Lys751GIn: "(ERCC2[All Fields] OR excision repair cross complementing rodent repair deficiency, group 2 protein[MeSH Terms] OR "excision repair cross-complementation group 2"[All Fields] OR "excision repair cross complementation group 2"[All Fields] OR xeroderma pigmentosum complementation group d protein[MeSH Terms] OR "xeroderma pigmentosum complementation group d protein"[All Fields] OR "xeroderma pigmentosum group d protein"[All Fi

Terms] OR urinary bladder cancer[MeSH Terms] OR "carcinoma, transitional cell"[MeSH Terms] OR bladder cancer[MeSH Terms] OR bladder cancer) AND ("risk"[MeSH Terms] OR "risk"[All Fields] OR disease susceptibility[MeSH Terms] OR susceptibilities, genetic[MeSH Terms] OR susceptibility)"

TP53 Arg72Pro: "(TP53[Title] OR P53[Title] OR Arg72Pro[All Fields] OR rs1042522[All Fields]) AND ("urinary bladder neoplasms"[MeSH Terms] OR urinary bladder cancer[MeSH Terms] OR "carcinoma, transitional cell"[MeSH Terms] OR bladder cancer[MeSH Terms] OR bladder cancer) AND ("risk"[MeSH Terms] OR disease susceptibility[MeSH Terms] OR susceptibilities, genetic[MeSH Terms] OR susceptibility)"

XRCC1 Arg194Trp: "(XRCC1[All Fields] OR "x-ray repair cross complementing protein 1"[MeSH Terms] OR "x-ray repair cross complementing protein 1"[All Fields] OR "x ray repair cross complementing protein 1"[All Fields] OR Arg194Trp[All Fields] OR rs1799782 [All Fields]) AND ("urinary bladder neoplasms"[MeSH Terms] OR urinary bladder cancer[MeSH Terms] OR "carcinoma, transitional cell"[MeSH Terms] OR bladder cancer[MeSH Terms] OR bladder cancer) AND ("risk"[MeSH Terms] OR "risk"[All Fields] OR disease susceptibility[MeSH Terms] OR susceptibilities, genetic[MeSH Terms] OR susceptibility]"

XRCC3 Thr241Met: "(XRCC3[All Fields] OR "x-ray repair cross complementing protein 3"[MeSH Terms] OR "x-ray repair cross complementing protein 3"[All Fields] OR "x ray repair cross complementing protein 3"[All Fields] OR Thr241Met[All Fields] OR rs861539[All Fields]) AND ("urinary bladder neoplasms"[MeSH Terms] OR urinary bladder cancer[MeSH Terms] OR "carcinoma, transitional cell"[MeSH Terms] OR bladder cancer[MeSH Terms] OR bladder cancer) AND ("risk"[MeSH Terms] OR "risk"[All Fields] OR disease susceptibility[MeSH Terms] OR susceptibilities, genetic[MeSH Terms] OR susceptibility]"

GSTP1 lle105Val: "(GSTP1[All Fields] OR "glutathione s-transferase pi"[MeSH Terms] OR "glutathione s-transferase p 1"[All Fields] OR "GST Class-Pi"[All Fields] OR lle105Val[All Fields] OR rs1695[All Fields]) AND ("urinary bladder neoplasms"[MeSH Terms] OR urinary bladder cancer[MeSH Terms] OR "carcinoma, transitional cell"[MeSH Terms] OR bladder cancer[MeSH Terms] OR bladder cancer) AND ("risk"[MeSH Terms] OR "risk"[All Fields] OR disease susceptibility[MeSH Terms] OR susceptibilities, genetic[MeSH Terms] OR susceptibility]"

Es wurden alle Publikationen erfasst, die bis zum 07.04.2020 auf PubMed veröffentlicht worden sind.

Ergänzend zur Suche über bestimmte Suchtermini wurden bei allen gefundenen Metaanalysen oder systematischen Übersichtsarbeiten die Primärstudien eingeschlossen, die in den jeweiligen Arbeiten in die qualitative beziehungsweise quantitative Auswertung einbezogen worden sind.

Anschließend wurden die Dubletten entfernt und die verbliebenen Studien nach den Einschlusskriterien für die qualitative Auswertung evaluiert.

In die qualitative Auswertung wurden alle Studien mit Fall-Kontroll-Design eingeschlossen, die den Einfluss von Polymorphismen auf das Erkrankungsrisiko von Harnblasenkarzinomen untersuchen. Aus den entsprechenden Studien wurden folgende Informationen extrahiert: Titel, Autoren, Jahr, Zeitschrift, untersuchter Polymorphismus und/oder zugehöriges Gen, Herkunftsland der Studie. Berichtet eine Publikation über eine GWAS, so wurden nur die Polymorphismen in die Auswertung aufgenommen, die im zweiten Schritt der GWAS (*"fine mapping"*) untersucht worden sind. Es wurden Publikationen aller Sprachen berücksichtigt, sofern sie über eine englischsprachige Zusammenfassung verfügen.

In die quantitative Auswertung (Metaanalyse) der untersuchten Polymorphismen wurden alle Fall-Kontroll-Studien eingeschlossen, die den Einfluss des jeweiligen Polymorphismus auf das Erkrankungsrisiko von Harnblasenkarzinomen untersuchen. Es wurden nur Studien eingeschlossen, die in englischer oder deutscher Sprache verfasst worden sind. Des Weiteren mussten Daten zur Genotypenverteilung beider Gruppen veröffentlicht sein. Falls dies nicht der Fall war, oder der Volltext einer Publikation nicht über die Zugänge der Saarländischen Universitäts- und Landesbibliothek oder der Bayrischen Staatsbibliothek verfügbar waren, wurden entweder die Genotypenverteilung aus einer anderen Metaanalyse extrahiert oder die Studie wurde ausgeschlossen. Bestand der Verdacht, dass in zwei Publikationen die gleiche (Teil-)Population untersucht wird, wurde lediglich die Publikation mit der größeren Anzahl an verfügbaren Genotypendaten eingeschlossen.

Den eingeschlossenen Studien sind – zusätzlich zu den bereits in der qualitativen Analyse extrahierten Informationen – Daten zur Verteilung der Genotypen, zur Anzahl der Probanden in Fall- und Kontrollgruppe, zum Genotypisierungsverfahren, zur Rekrutierung der Kontrollpopulation (krankenhausbasiert oder populationsbasiert), zum Durchschnittsalter beider Gruppen, zum Anteil der weiblichen Probanden und zur Angabe des HWE entnommen worden.

3.2 Statistische Methoden

Die statistische Auswertung der gesammelten Daten erfolgte mithilfe der Statistiksoftware StatsDirect Statistical Software, Fa. StatsDirect Ltd., Version 3.2.10. Weiterhin wurden Microsoft[®] Excel[®] und Microsoft[®] PowerPoint[®] für Office 365 MSO (16.0.13426.20270) in der 32-Bit Version zur Datenverwaltung und Diagrammerstellung genutzt.

Falls in Studien mehrere Tumorentitäten oder unterschiedliche Lokalisationen untersucht worden sind, beschränkte sich die Analyse auf die Daten zur Harnblasenkarzinom-Patientengruppe und der Kontrollgruppe. Wurde die Fallgruppe in verschiedene Tumorstadien nach TNM-Klassifikation oder in Raucher versus Nichtraucher unterteilt, so wurden die Genotypendaten aller Gruppen addiert. Für die Kontrollgruppe jeder Studie wurde das HWE, ein statistisches Modell der Populationsgenetik, auf einem Signifikanzniveau von p = 0,05 geprüft. Das HWE basiert auf einer idealen Population solcher Größe, dass der Verlust eines Individuums keine Veränderung der Genotypenverteilung zur Folge hat. Weitere Kennzeichen dieser Population sind Panmixie (gleiche Wahrscheinlichkeit und gleicher Erfolg aller Paarungen), das Fehlen natürlicher Selektion sowie fehlende Mutationen und Migration. Die Verteilung der Genotypen der Kontrollgruppen können durch diesen Test mit einer idealen Population verglichen werden. Zur Berechnung wurde der Chi-Quadrat Test, mithilfe des Microsoft[®] Excel[®]-Tools "Online HWE Calculator" von Michael H. Court (2005-2008), verwendet. Sofern der p-Wert \ge 0,05 ergab, gilt das HWE der Kontrollpopulation als erfüllt. Wird das HWE nicht erfüllt, so sind die genannten Kennzeichen einer idealen Population nicht erfüllt, bspw. aufgrund eines Selektionsbias.

Zur Darstellung der Ergebnisse der Metaanalyse wurden Odds Ratio (OR) und zugehöriges 95 %-Konfidenzintervall (CI) verwendet. Sofern die Berechnung des Cochran's Q-Tests einen p-Wert < 0,05 ergab, wurde das Random Effects Modell angewendet. Zeigte der p-Wert einen Betrag \geq 0,05, so fand das Fixed Effects Modell Anwendung.

Die genetische Prädisposition des Harnblasenkarzinoms wurde für jeden einzelnen Polymorphismus sowohl im dominanten als auch im rezessiven Modell untersucht. Tabelle 3 stellt die Genotypenverteilung beider Modelle dar.

Polymorphism	nen	Dominantes Modell	Rezessives Modell
rs25487:	XRCC1 Arg399GIn	AA + GA vs. GG	AA vs. GA + GG
rs13181:	ERCC2/XPD Lys751Gln	CC + AC vs. AA	CC vs. AC + AA
rs1042522:	TP53 Arg72Pro	CC + GC vs. GG	CC vs. GC + GG
rs1799782:	XRCC1 Arg194Trp	TT + CT vs. CC	TT vs. CT + CC
rs861539:	XRCC3 Thr241Met	TT + CT vs. CC	TT vs. CT + CC
rs1695:	GSTP1 lle105Val	GG + AG vs. AA	GG vs. AG + AA

Tabelle 3: Verteilung der Genotypen bei dominantem und rezessivem Modell, vs.: versus

Die Metaanalysen wurden mit Hilfe von Forest-Plots visualisiert. Weiterhin wurde jeweils ein Funnel-Plot erstellt und der Egger-Test durchgeführt, um eventuell vorliegende Publikationsbias zu erkennen. Die Ergebnisse wurden im Folgenden kritisch betrachtet und es wurden Sensitivitätsanalysen unter Ausschluss von nicht HWE-konformen Populationen durchgeführt.

Es wurden zusätzlich für jeden Polymorphismus Subgruppenanalysen durchgeführt. Die Studien wurden hierbei in verschiedene Kategorien eingeteilt. Bei der Subgruppenanalyse nach ethnischer Herkunft wurden die Studienteilnehmer in "afrikanisch", "asiatisch" und "kaukasisch" eingeteilt. Es wurde von einer "gemischten" Kategorie abgesehen, da in allen betrachteten Populationen je eine Ethnie mit mindestens 91,5 % vorherrscht. Durch dieses Vorgehen werden eventuell signifikante Effekte in einer Ethnie etwas relativiert. Jedoch gelingt

es, in die jeweilige Subgruppenanalyse eine größere Zahl an Studien und folglich auch Teilnehmern einzuschließen, um die Aussagekraft der Subgruppenanalyse zu erhöhen. Eine weitere Subgruppenanalyse erfolgte unter dem Aspekt der Rekrutierung der Kontrollpopulation. Unterschieden wurde hierbei ein "krankenhausbasiertes" von einem "populationsbasierten" Design. Kontrollen von krankenhausbasierten Studien sind meist Patienten – also Menschen mit einer akuten oder chronischen Erkrankung – eines Krankenhauses oder einer anderen Einrichtung der Gesundheitsversorgung (stationär oder ambulant), die keine malignen Erkrankungen in der Vorgeschichte aufweisen. Studien mit populationsbasiertem Design akquirieren die Kontrollgruppen oft über staatliche Listen, bspw. vom Einwohnermeldeamt oder Straßen- und Verkehrsamt, schließen somit eher gesunde Probanden mit ein. Bei der gepoolten OR der Subgruppenanalysen fand stets das Random Effects Modell Anwendung.

4 Ergebnisse

4.1 Qualitative Auswertung der allgemeinen Literaturrecherche

Abbildung 7 verdeutlicht den Ablauf der Literaturrecherche. Auf alle gefundenen Publikationen wurden die Ein- und Ausschlusskriterien angewendet. Schlussendlich wurden aus 467 Studien die entsprechenden Informationen extrahiert.

Abbildung 7: Flow-Chart zur qualitativen Auswertung, n: Studienanzahl

Abbildung 8: Übersicht der eingeschlossenen Studien nach Jahr der Publikation

Wie in Abbildung 8 zu sehen, lieferte die Literaturrecherche Ergebnisse, die bis ins Jahr 1979 zurückreichen. Ab der Jahrtausendwende steigt die Anzahl der Fall-Kontroll-Studien zum Thema stetig an bis auf einen Peak im Jahr 2009 von 41 Studien. Die Zahl der Publikationen pro Jahr stagniert im Verlauf und fällt ab dem Jahr 2015 noch einmal deutlich ab. Der Wert für 2020 ist nicht repräsentativ, da die Literaturrecherche im April 2020 abgeschlossen wurde.

Abbildung 9: Übersicht der eingeschlossenen Studien nach Herkunftsland

Abbildung 9 zeigt die Herkunftsländer der eingeschlossenen Studien. Es ist erkennbar, dass die meisten Studien aus Asien, insbesondere China und Indien stammen. Ähnlich viele Studien berücksichtigen Einwohner der USA. Nur vereinzelte Studien wurden mit Menschen des südamerikanischen und afrikanischen Kontinents durchgeführt.

Abbildung 10: Anzahl der Studien nach Genen

In Abbildung 10 ist erkennbar, dass nur ein Bruchteil der untersuchten Gene auch mehrfach in unterschiedlichen Populationen untersucht wurde. Das schränkt die Zahl der Polymorphismen, die überhaupt für eine Metaanalyse infrage kommen, beträchtlich ein. Insgesamt wurden 480 verschiedene Gene auf das Erkrankungsrisiko für Harnblasenkrebs untersucht. Im Folgenden wird betrachtet, wie häufig einzelne Polymorphismen jeweils untersucht wurden.

Abbildung 11: Anzahl der Studien nach rs-Nummern (nur SNPs gezeigt, für die eine rs-Nummer angegeben ist) (bei 362 Publikationen ist mindestens eine rs-Nummer bekannt)

Abbildung 12: Anzahl der Studien nach SNPs ohne rs-Nummer (bei 227 Publikationen ist mind. eine rs-Nummer unbekannt)

Abbildung 11 zeigt, wie oft die insgesamt 1119 verschiedenen SNPs mit angegebener rs-Nummer untersucht wurden. Diverse Polymorphismen wurden allerdings ohne rs-Nummer publiziert. Diese sind in Abbildung 12 nach dem Gen, auf dem sie sich befinden, dargestellt. Wie schon bei der Übersicht der Gene wird klar, dass nur für wenige SNPs die Daten ausreichen, um eine aussagekräftige Metaanalyse zu erstellen.

RS- Nummer	Gen	Bezeichnung	Anzahl Publikationen	Bereits in S3- Leitlinie [56] erwähnt	
	GSTM1	null	90	ja	
	GSTT1	null	72	nein	
	NAT2	slow acetylator	acetylator 59 ja (über v SNP		
rs25487	XRCC1	Arg399Gln	38	nein	
rs1695	GSTP1	lle105Val	38	nein	
rs13181	ERCC2/XPD	Lys751Gln	36	nein	
rs861539	XRCC3	Thr241Met	26	nein	
rs1042522	TP53	Arg72Pro	26	nein	
rs1799782	XRCC1	Arg194Trp	23	nein	
rs1799930	NAT2	Arg197Gln	21	nein	
rs2228001	XPC	Lys939Gln	20	nein	
rs1799793	ERCC2/XPD	Asp312Asn	18	nein	
rs1799931	NAT2	Gly286Glu	18	nein	
rs1801280	NAT2	lle114Thr	17	nein	
rs9642880	MYC, CASC8/CASC11	G/T	16	ja	
rs710521	TP63, TP63/P3H2		16	ja	
rs1799929	NAT2	NAT2 Leu161Leu 16		nein	
rs2294008	PSCA	C/T	14	ja	
rs1495741	NAT2, NAT2/PSD	A/G	14	ja	
rs1052133	OGG1	Ser326Cys	14	nein	
rs1041983	NAT2	Tyr94Tyr	14	nein	
rs1208	NAT2	Lys268Arg	13	nein	
rs798766	FGFR3/TACC3	C/T	12	ja	
rs1800566	NQO1	Pro187Ser	12	nein	
rs11892031	UGT1A	A/C	12	ja	
rs1130409	APE1	Asp148Glu	13	nein	
	XPC	PAT ins/del	12	nein	
rs8102137	CCNE1	C/T	11	ja	
rs1801133	MTHFR	Ala222Val	11	nein	
rs401681	CLPTM1L		10	ja	
rs1801279	NAT2	Arg64GIn	10	nein	
rs1799796	XRCC3	17893A/G	10	nein	
rs17674580	SLC14A1	C/T	10	ja	
rs1014971	CBX6/APOBEC3A		10	ja	
rs2228000	XPC	Ala499Val	10	nein	

Tabelle 4: Übersicht über die am häufigsten (mind. 10-mal) untersuchten SNPs

Tabelle 4 gibt noch einmal Einblick in die Polymorphismen, die mindestens zehnmal untersucht wurden. Wie schon in "3.1 Literatur" erwähnt, werden einige SNPs bereits im Leitlinienprogramm Onkologie [56] als Risikovarianten aufgeführt. Auf diese soll daher im Folgenden nicht näher eingegangen werden. "GSTT1 Null" wurde in dieser Arbeit nicht analysiert, da diese Variante die Deletion eines ganzen Gens und keine Punktmutation darstellt. "NAT2 slow acetylator" wurde ausgeschlossen, weil es eine phänotypische Variante darstellt, die durch unterschiedliche SNPs (bspw. rs1495741, rs1799930) und Kombinationen ausgelöst werden kann. Eine Variante, die maßgeblich über den Azetyliererstatus von NAT2 entscheidet, rs1495741 (sogenannter Tag-SNP) ist außerdem bereits in der S3-Leitlinie enthalten. Schlussendlich wurden die übrigen SNPs untersucht, zu denen mehr als 20 Publikationen existieren. Diese sind in Tabelle 4 gelb markiert.

4.2 Metaanalyse

4.2.1 XRCC1 Arg399GIn

Abbildung 13 zeigt den Verlauf der Literaturrecherche für *XRCC1* Arg399Gln. Die spezifische Suche für den Polymorphismus rs25487 lieferte 62 Ergebnisse. Von den 38 Studien, die die Einschlusskriterien erfüllten, wurden 14 nachrangig ausgeschlossen, da sie über eine Population oder Teilpopulation berichten, über die schon einmal berichtet wurde.

Abbildung 13: Flow-Chart zu XRCC1 Arg399Gln (rs25487), n: Studienanzahl

Autor		Jahr	Land	Ethnie	Studien- design	Genotypisierungs-	n		Mittleres Alter und SD in a		Frauenanteil in %	
						verfahren	F	к	F	К	F	к
Stern et	S	0004		Afrikanisch	HB		19	13	65,6 (10,7)	63,3 (10,4)	22,6	18,8
al. [114]	W	2001	USA	Kaukasisch	HB	PCR-RFLP	214	197	65,6 (10,7)	63,3 (10,4)	22,6	18,8
Shen	et al. [106]	2003	Italien	Kaukasisch	HB	PCR-RFLP	201	214	63 (k. A.)	63 (k. A.)	0	0
Sanyal	l et al. [102]	2004	Schweden	Kaukasisch	k. A.	PCR-RFLP	311	246	70 (k. A.)	70 (k. A.)	k. A.	k. A.
Brober	g et al. [13]	2005	Schweden	Kaukasisch	PB	MALDI-TOF	61	155	69 (k. A.)	69 (k. A.)	14,3	23,4
Karaha	lil et al. [49]	2006	Türkei	Kaukasisch	HB	PCR-RFLP	148	100	59,87 (12,54)	59,33 (13,58)	16,7	16,7
Matull	o et al. [73]	2006	Italien	Kaukasisch	PB	TaqMan	124	1094	61,3 (7,9)	61,2 (8,1)	34,3	65,7
Sak e	et al. [100]	2007	England	98,6 % Kaukasisch	PB + HB	TaqMan	532	560	72,8 (k. A.)	71,9 (k. A.)	29,1	34,5
Andrew et	TBCS	2009	Italien	Kaukasisch	HB	DHPLC, PCR-RFLP, TaqMan	000	1252		$k \wedge (k \wedge)$	10 00	24.50
al. [5]	NHBCS	2006	USA	>95 % Kaukasisch	PB	PCR-RFLP, TaqMan	990	1255	к. А. (к. А.)	к. А. (к. А.)	10.90	54,50
Arizor	no et al. [6]	2008	Japan	Asiatisch	HB	PCR-RFLP	251	251	68,2 (11,2)	68,1 (11,7)	25,5	25,5
Fontan	a et al. [29]	2008	Frankreich	Kaukasisch	HB	TaqMan	51	45	k. A. (k. A.)	k. A. (k. A.)	0	0
Hsu	et al. [46]	2008	Taiwan	Asiatisch	HB	PCR-RFLP	210	218	k. A. (k. A.)	k. A. (k. A.)	30,3	30
Mittal et al. [76]		2008	Indien	Asiatisch	PB	PCR-RFLP	140	190	60,6 (k. A.)	58,3 (k. A.)	12,1	13,68
	EEBCS		Ungarn, Slovakei, Rumänien	Kaukasisch	HB	k. A.	214	533	63,6 (k. A.)	66,6 (k. A.)	17,29	48,52
Ctown of	HBCS		USA	Kaukasisch	HB	k. A.	803	803	61,7 (k. A.)	63,3 (k. A.)	20,64	23,32
al. [117]	SBCS	2009	Spanien	F: 99,6 % Kaukasisch K: 99,9 % Kaukasisch	HB	k. A.	1132	1062	69,8 (k. A.)	54,4 (k. A.)	12,65	12,36
	UCLABCS		USA	F: 95,8 % Kaukasisch K: 97,5 % Kaukasisch	HB	k. A.	150	137	64,9 (k. A.)	42,2 (k. A.)	17,06	22,78
Gao	et al. [34]	2010	England	Kaukasisch	HB	PCR+SSCP	192	313	71,2 (k. A.)	58,86 (k. A.)	20,62	51,44
Wang	ang et al. [122] 20		China	Asiatisch	HB	PCR-RFLP	234	253	k. A. (k. A.)	k. A. (k. A.)	k. A.	k. A.
Mittal	ittal et al. [77] 2012		Indien	Asiatisch	PB	PCR-RFLP	212	250	59,6 (12,4)	58,8 (10,8)	11,8	14
Zhi e	t al. [144]	2012	China	Asiatisch	PB	PCR-RFLP	302	311	63 (k. A.)	61 (k. A.)	20,5	20,6
Wen et al. [124]		2013	China	Asiatisch	HB	TaqMan	116	291	64,86 (13,76)	63,13 (11,84)	20	28,3
Akhmadishina et al. [2]		2014	Russland	Asiatisch	PB	PCR-RFLP	289	173	k. A. (k. A.)	k. A. (k. A.)	k. A.	k. A.
Chiang et al. [19]		2014	Taiwan	Asiatisch	HB	PCR-RFLP	324	647	62,98 (13,36)	62,40 (13,36)	28,4	28,28
Savina et al. [103]		2016	Weißrussland	Kaukasisch	PB	PCR-RFLP	414	364	66,7 (10,9)	64,5 (13,5)	17,7	31,3
Zhu et al. [146]		2016	China	Asiatisch	PB	TaqMan	201	260	54,6 (7,8)	53,8 (8,4)	17,62	15,38
Feki-Tou	ınsi et al. [26]	2017	Tunesien	Afrikanisch	HB	PCR-RFLP	101	157	67,20 (12,66)	61,03 (15,50)	8,6	10
Ahme	ed et al. [1]	2018	Pakistan	Asiatisch	PB	PCR-RFLP	200	200	55,5 (13,24)	54,3 (9,9)	21,5	21,5
						Summe	8136	10290				

Tabelle 5: Charakteristika der Studien zu XRCC1 Arg399Gln (rs25487), n: Probandenzahl, SD: Standardabweichung, F: Fallgruppe, K: Kontrollgruppe, a: Jahre

Tabelle 5 gibt einen Überblick über die eingeschlossenen Publikationen. Stern et al. (2001) [114] untersuchten zwei Gruppen unterschiedlicher Ethnie (*"blacks"* und *"whites"*). Diese wurden als separate Studien betrachtet. Die Publikation Andrew et al. 2008 [5] untersuchte sowohl Probanden der Torino Bladder Cancer Study (TBCS), als auch der New Hampshire Bladder Cancer Study (NHBCS), präsentiert die Ergebnisse jedoch nur für die Gesamtpopulation. Stern et al. (2009) [117] analysierten Daten in einer gepoolten Analyse, die folgende Studien beinhaltet: Eastern European Bladder Cancer Study (EEBCS) als Teil der Arsenic Health Risk Assessment and Molecular Epidemiology Study, Houston Bladder Cancer Study (HBCS), Spanish Bladder Cancer Study (SBCS) und University of California Los Angeles Bladder Cancer Study (UCLABCS). Diese wurden in der Metaanalyse als getrennte Populationen betrachtet.

Insgesamt umfasst diese Metaanalyse demnach 29 Populationen aus 24 Veröffentlichungen, wobei zwölf Populationen aus Europa, elf aus Asien, fünf aus Nordamerika und eine aus Afrika stammen. Es wurden 8136 Fälle und 10290 Kontrollen aus 18 unterschiedlichen Ländern untersucht. 17 Studien weisen ein krankenhausbasiertes Studiendesign auf, wohingegen zehn populationsbasiert konstruiert wurden. Eine Studie verwendet beide Verfahren und eine Publikation macht keine Angaben zur Auswahl der Kontrollen. Die Zahl der Studienteilnehmer variiert zwischen 96 und 2243. Das Durchschnittsalter der erkrankten Gruppe variiert zwischen 54,6 Jahren und 72,8 Jahren, wobei der Anteil der weiblichen Patienten zwischen 0 % und 34,3 % liegt. Die Durchschnittsalter der Kontrollgruppe liegen zwischen 42,2 Jahren und 71,9 Jahren. Der Anteil weiblicher Kontrollen variiert zwischen 0 % und 65,7 %. Tabelle 5 kann auch entnommen werden, dass bei einigen Studien diese Informationen nicht publiziert wurden. Die Berechnungsgrundlage für die Metaanalyse bildeten die Genotypdaten, die in Tabelle 18 (s. Anhang) zusammengefasst sind.

Abbildung 16: Funnel-Plot zu XRCC1 Arg399Gln (rs25487) dominantes Modell (AA + GA vs. GG)

Abbildung 17: Funnel-Plot zu XRCC1 Arg399Gln (rs25487) rezessives Modell (AA vs. GA + GG)

Abbildung 14 zeigt das Ergebnis der Metaanalyse für das dominante Modell. Hier wurde das Random Effects Modell angewendet, da der Cochran's Q-Test einen Wert von p = 0,0076 lieferte. Die gepoolte OR liegt bei 1,00 (95 %-Cl = 0,91-1,09). Die Analyse des rezessiven Modells (Abbildung 15) erfolgte unter Ausschluss von Gao et al. 2010 [34], da hier keine isolierten Informationen zur Anzahl von Studienteilnehmern mit Genotyp AA vorliegt. Das Modell lieferte eine OR von 1,04 (95 %-CI = 0,90-1,18) unter Verwendung des Random Effects Modells bei einem Wert des Cochran's Q-Tests von p = 0,0149.

Beide Modelle wurden auf einen eventuell vorliegenden Publikationsbias untersucht. Abbildung 16 zeigt den Funnel-Plot zum dominanten Modell. Der Egger-Test ergab hier einen p-Wert von p = 0,631. Der Egger-Test des rezessiven Modells ergab p = 0,6831 und den Funnel-Plot in Abbildung 17. Die Funnel-Plots sind symmetrisch verteilt, wodurch in Zusammenschau mit den Ergebnissen der Egger-Tests ein Publikationsbias unwahrscheinlich ist.

Autor	Jahr	HWE berichtet	HWE berechnet
Stern et al. (s) [114]	2001	Erfüllt	Erfüllt
Stern et al. (w) [114]	2001	Erfüllt	Erfüllt
Shen et al. [106]	2003	Erfüllt	Erfüllt
Sanyal et al. [102]	2004	Erfüllt	Erfüllt
Broberg et al. [13]	2005	Erfüllt	Erfüllt
Karahalil et al. [49]	2006	k. A.	Erfüllt
Matullo et al. [73]	2006	Erfüllt	Erfüllt
Sak et al. [100]	2007	Erfüllt	Erfüllt
Andrew et al. [5]	2008	Nicht erfüllt	Nicht erfüllt
Arizono et al. [6]	2008	Erfüllt	Erfüllt
Fontana et al. [29]	2008	k. A.	Erfüllt
Hsu et al. [46]	2008	k. A.	Erfüllt
Mittal et al. [76]	2008	Erfüllt	Erfüllt
Stern et al. (EEBCS) [117]	2009	k. A.	Erfüllt
Stern et al. (HBCS) [117]	2009	k. A.	Erfüllt
Stern et al. (SBCS) [117]	2009	k. A.	Erfüllt
Stern et al. (UCLA) [117]	2009	k. A.	Erfüllt
Gao et al. [34]	2010	Erfüllt	k. A.
Wang et al. [122]	2010	k. A.	Erfüllt
Mittal et al. [77]	2012	Erfüllt	Erfüllt
Zhi et al. [144]	2012	k. A.	Erfüllt
Wen et al. [124]	2013	Erfüllt	Erfüllt
Akhmadishina et al. [2]	2014	Erfüllt	Erfüllt
Chiang et al. [19]	2014	Erfüllt	Erfüllt
Savina et al. [103]	2016	Erfüllt	Erfüllt
Zhu et al. [146]	2016	Erfüllt	Erfüllt
Feki-Tounsi et al. [26]	2017	Nicht erfüllt	Nicht erfüllt
Ahmed et al. [1]	2018	k. A.	Erfüllt

Tabelle 6: Übersicht über den Status des HWE der Kontrollpopulation berechnet mithilfe des Chi-Quadrat Tests

Da zwei der Studien das HWE nicht erfüllen (Tabelle 6), wurde eine Sensitivitätsanalyse für beide Modelle unter Ausschluss von Andrew et al. 2008 [5] und Feki-Tounsi et al. 2017 [26] durchgeführt. Obwohl es bei Gao et al. 2010 [34] nicht möglich ist, das HWE erneut zu berechnen, wurde die Studie dennoch in das dominante Modell der Sensitivitätsanalyse eingeschlossen, da das HWE laut Publikation erfüllt ist. Abbildung 67 und Abbildung 69 (s. Anhang) zeigen die Ergebnisse für das dominante Modell, das eine gepoolte OR von 1,02 (95 %-CI = 0,96–1,09) ergab. Im rezessiven Modell (s. Anhang Abbildung 68 und Abbildung 70) liegt die OR bei 1,03 (95 %-CI = 0,93–1,14). Die Funnel-Plots beider Modelle sind weitgehend symmetrisch und gleichmäßig verteilt. Ebenso ergab der Egger-Test Werte von p = 0,8329 beim dominanten und p = 0,2808 beim rezessiven Modell. Somit ergibt sich auch
bei Ausschluss auffälliger Studien kein signifikantes Ergebnis. Folglich hat auch ein Ausschluss dieser Studien keinen signifikanten Einfluss auf das Ergebnis der Metaanalyse. Ein Publikationsbias kann weitgehend ausgeschlossen werden.

Abbildung 18: Subgruppenanalyse nach Ethnie von XRCC1 Arg399Gln (rs25487) dominantes Modell

Abbildung 19: Subgruppenanalyse nach Ethnie von XRCC1 Arg399Gln (rs25487) rezessives Modell

Source of controls subgroup meta-analysis [random effects]

Abbildung 18 und Abbildung 19 zeigen die Forest-Plots für die Subgruppenanalyse nach ethnischer Herkunft der Teilnehmer. Im rezessiven Modell zeigt sich statistische Signifikanz für die afrikanische Subgruppe. Diese Berechnung basiert jedoch nur auf einer Studie und ist daher nur begrenzt aussagekräftig. Außerdem erfüllt die Kontrollgruppe von Feki-Tounsi et al. 2017 [26] das HWE nicht und ist deshalb keine repräsentative Stichprobe. Weiterhin erreicht die asiatische Subgruppe statistische Signifikanz im rezessiven Modell mit einer OR von 1,24 (95 %-CI = 1,03–1,50). Für die Kaukasier ergab sich in der Analyse in keinem Modell statistische Signifikanz. Wie den Abbildung 20 und Abbildung 21 zu entnehmen, erreicht keine Subgruppe statistische Signifikanz, wenn verschiedene Quellen der Kontrollpopulation betrachtet werden.

4.2.2 ERCC2/XPD Lys751Gln

Die Literatursuche für rs13181 lieferte 60 Treffer (Abbildung 22). Von den 36 infrage kommenden Studien wurden 14 nachrangig ausgeschlossen, weil sie eine Population oder Teilpopulation untersuchen, über die bereits zum Thema publiziert wurde.

Abbildung 22: Flow-Chart zu ERCC2/XPD Lys751Gln (rs13181), n: Studienanzahl

A		lahu	Lond	Etherin	Studien-	Genotypisierungs-	r	า	Mittleres Alter und SD in a		Frauenanteil in %	
£	Autor	Janr	Land	Ethnie	design	verfahren	F	К	F	К	F	к
Stern et	S	2002		Afrikanisch	HB		19	13	65,8 (10,8)	63,4 (10,3)	22,8	18,2
al. [116]	W	2002	05A	Kaukasisch	HB	PCR-RFLP	210	197	65,8 (10,8)	63,4 (10,3)	22,8	18,2
Shen	et al. [106]	2003	Italien	Kaukasisch	HB	PCR-RFLP	201	214	63 (k. A.)	63 (k. A.)	0	0
Sanyal	et al. [102]	2004	Schweden	Kaukasisch	k. A.	PCR-RFLP	307	246	70 (k. A.)	70 (k. A.)	k. A.	k. A.
Brober	g et al. [13]	2005	Schweden	Kaukasisch	PB	MALDI-TOF	61	154	69 (k. A.)	69 (k. A.)	14,3	23,4
Matullo	o et al. [73]	2006	Italien	Kaukasisch	PB	TaqMan	124	1094	61,3 (7,9)	61,2 (8,1)	34,3	65,7
Shao	et al. [105]	2007	China	Asiatisch	HB	PCR-RFLP	215	245	62,9 (12,6)	62,9 (11,9)	16,3	22,4
Andrew	TBCS	2009	Italien	Kaukasisch	HB	DHPLC, PCR-RFLP, TaqMan	1000	1015		kΛ	10 00	34,56
et al. [5]	NHBCS	2006	USA	> 95 % Kaukasisch	PB	PCR-RFLP, TaqMan	1009	1215	ĸ. A.	к. А.	10,90	
Fontan	a et al. [29]	2008	Frankreich	Kaukasisch	HB	TaqMan	51	45	k. A.	k. A.	0	0
Chang	g et al. [15]	2009	Taiwan	Asiatisch	HB	PCR-RFLP	308	308	k. A.	k. A.	k. A.	k. A.
Gangwar et al. [33]		2009	Indien	Asiatisch	HB	PCR-RFLP	206	250	59 (12,9)	57,8 (10,4)	12,6	17,6
Michiels et al. [74]		2009	Frankreich	Kaukasisch	HB	Golden Gate assay, TaqMan, direct sequencing	189	316	66 (11)	67 (10)	16	15
Narter et al. [79]		2009	Türkei	Kaukasisch	k. A.	PCR-RFLP	39	36	63,43 (11,74)	59,98 (9,71)	84,34	100
	HBCS		USA	Kaukasisch	HB	k. A.	803	803	61,7 (k. A.)	63,3 (k. A.)	20,64	23,32
	LABCS		USA	F: 94,3 % Kaukasisch K: 96,2 % Kaukasisch	PB	k. A.	567	660	42,2 (k. A.)	58,6 (k. A.)	28,92	32,37
Stern et al. [117]	SBCS	2009	Spanien	F: 99,6 % Kaukasisch K: 99,9 % Kaukasisch	НВ	k. A.	1168	1143	69,8 (k. A.)	54,4 (k. A.)	12,65	12,36
	SHBCS		China	Asiatisch	PB	k. A.	530	530	62,6 (k. A.)	61,5 (k. A.)	20,7	22,99
	UCLABCS		USA	F: 95,8 % Kaukasisch K: 97,5 % Kaukasisch	HB	k. A.	151	136	64,5 (k. A.)	42,2 (k. A.)	17,06	22,78
Gao	et al. [34]	2010	England	Kaukasisch	HB	PCR+SSCP	194	313	71,2 (k. A.)	58,86 (k. A.)	20,62	51,44
Rouiss	si et al. [97]	2011	Tunesien	Afrikanisch	HB	PCR-RFLP	193	193	65,23 (11,3)	k. A.	8,8	k. A.
Wang	et al. [123]	2011	Taiwan	Asiatisch	HB	PCR-RFLP	460	540	62,7(10,9)	61,9 (11,0)	28,3	31,8
Mittal	et al. [75]	2012	Indien	Asiatisch	PB	PCR-RFLP	212	250	59,6 (12,4)	58,8 (10,8)	11,8	14
Sobti e	et al. [108]	2012	Indien	Asiatisch	k. A.	PCR-RFLP	270	252	57,16 (12,3)	56,47 (10,9)	12,6	15,9
Chiang	g et al. [19]	2014	Taiwan	Asiatisch	HB	PCR-RFLP	324	647	62,98 (13,36)	62,40 (13,36)	28,4	28,28
Savina	et al. [103]	2016	Weißrussland	Kaukasisch	PB	PCR-RFLP	411	365	66,7 (10,9)	64,5 (13,5)	17,7	31,3
Feki-Tou	nsi et al. [26]	2017	Tunesien	Afrikanisch	HB	PCR-RFLP	117	188	67,20 (12,66)	61,03 (15,50)	8,6	10
Ahme	d et al. [1]	2018	Pakistan	Asiatisch	PB	PCR-RFLP	200	200	55,5 (13,24)	54,3 (9,9)	21,5	21,5
						Summe	8329	10356				

Tabelle 7: Charakteristika der Studien zu ERCC2/XPD Lys751Gln (rs13181), n: Probandenzahl, SD: Standardabweichung, F: Fallgruppe, K: Kontrollgruppe, a: Jahre

Einen Überblick über die untersuchten Studien gibt Tabelle 7. Die Population in Stern et al. 2002 [116] wurde – wie auch in der Originalpublikation – in zwei Fall-Kontroll-Gruppen unterschiedlicher Ethnie, *"blacks"* und *"whites"* untergliedert. Andrew et al. (2008) [5] werteten sowohl Daten der TBCS als auch der NHBCS aus. Weiterhin ist Stern et al. 2009 [117] eine gepoolte Analyse, die Primärdaten folgender Studien untersuchte: HBCS, Los Angeles Bladder Cancer Study (LABCS), SBCS, Shanghai Bladder Cancer Study (SHBCS) und UCLABCS.

Die Metaanalyse von rs13181 schließt somit 22 Publikationen ein, die 28 Populationen behandeln und betrachtet insgesamt 8329 Fälle und 10356 Kontrollen aus 13 unterschiedlichen Ländern. Elf dieser Studien wurden in Europa durchgeführt, neun in Asien, sechs in Nordamerika und zwei in Afrika. Die Kontrollgruppe wurde in 17 Studien krankenhausbasiert und in acht populationsbasiert erstellt. Drei Studien machen dazu keine Angaben. Die Anzahl der Probanden liegt zwischen 75 und 2311. Das mittlere Alter der Fallgruppen bewegt sich zwischen 42,2 Jahren und 71,2 Jahren, mit einem Frauenanteil zwischen 0 % und 84,34 % ist. Die Durchschnittsalter der gesunden Kontrollpersonen liegen zwischen 42,2 Jahren und 70 Jahren. Der Anteil weiblicher Kontrollen liegt zwischen 0 % und 100 %. Einige Informationen wurden nicht publiziert. Tabelle 19 (s. Anhang) fasst die Informationen über die extrahierte Genotypenverteilung zusammen, welche die Basis für die Metaanalyse bildet.

Abbildung 26: Funnel-Plot zu ERCC2/XPD Lys751Gln (rs13181) rezessives Modell (CC vs. AC + AA)

Log(Odds ratio)

С

0

Bei einem Cochran's Q-Test von p = 0,0003 wurde für das dominante Modell das Random Effects Modell verwendet (Abbildung 23). Es ergab sich eine gepoolte OR von 1,08 (95 %-CI = 0,97-1,19). Das rezessive Modell (Abbildung 24) wurde ohne Gao et al. 2010 [34] berechnet, da für diese Studie keine Daten zu für das Risikoallel homozygoter Probanden veröffentlicht wurden. Die OR belief sich unter Verwendung des Fixed Effects Modells bei einem Cochran's Q-Test von p = 0,8026 auf 1,094 (95 %-CI = 0,995-1,203).

1,2

1.6

Ein Publikationsbias kann bei Betrachtung der Funnel-Plots in Abbildung 25 und Abbildung 26 weitgehend ausgeschlossen werden. Diese These stützen auch die Ergebnisse der Egger-Tests von p = 0,4887 (dominant) und p = 0,1768 (rezessiv).

Autor	Jahr	HWE berichtet	HWE berechnet
Stern et al. (s) [116]	2002	Erfüllt	Erfüllt
Stern et al. (w) [116]	2002	Erfüllt	Erfüllt
Shen et al. [106]	2003	Erfüllt	Erfüllt
Sanyal et al. [102]	2004	Erfüllt	Erfüllt
Broberg et al. [13]	2005	Erfüllt	Erfüllt
Matullo et al. [73]	2006	Erfüllt	Erfüllt
Shao et al. [105]	2007	Erfüllt	Erfüllt
Andrew et al. [5]	2008	Nicht erfüllt	Erfüllt
Fontana et al. [29]	2008	k. A.	Erfüllt
Chang et al. [15]	2009	k. A.	Nicht erfüllt
Gangwar et al. [33]	2009	Erfüllt	Erfüllt
Michiels et al. [74]	2009	Erfüllt	Erfüllt
Narter et al. [79]	2009	k. A.	Erfüllt
Stern et al. (HBCS) [117]	2009	k. A.	Erfüllt
Stern et al. (LABCS) [117]	2009	k. A.	Erfüllt
Stern et al. (SBCS) [117]	2009	k. A.	Erfüllt
Stern et al. (SHBCS) [117]	2009	k. A.	Erfüllt
Stern et al. (UCLABCS) [117]	2009	k. A.	Erfüllt
Gao et al. [34]	2010	Nicht erfüllt für Pittsburgh control (p<0,01)	k. A.
Rouissi et al. [97]	2011	Erfüllt	Erfüllt
Wang et al. [123]	2011	Erfüllt	Erfüllt
Mittal et al. [75]	2012	Erfüllt	Erfüllt
Sobti et al. [108]	2012	Erfüllt	Nicht erfüllt
Chiang et al. [19]	2014	Erfüllt	Erfüllt
Savina et al. [103]	2016	Erfüllt	Erfüllt
Feki-Tounsi et al. [26]	2017	Erfüllt	Erfüllt
Ahmed et al. [1]	2018	k. A.	Erfüllt

Tabelle 8: Übersicht über den Status des HWE der Kontrollpopulation berechnet mithilfe des Chi-Quadrat Tests

Wie Tabelle 8 zeigt, erfüllen die Kontrollgruppen von Chang et al. 2009 [15] und Sobti et al. 2012 [108] das HWE nicht. In der Publikationen Sobti et al. 2012 [108] und Andrew et al. 2008 [5] wurde das HWE mit abweichenden p-Werten berechnet, was die Differenzen in den Spalten erklärt. Für Gao et al. 2010 [34] konnte kein HWE berechnet werden, da die Zahl der Homozygoten des mutierten Allels nur in der Summe mit den Heterozygoten publiziert wurde. Das HWE ist hier laut Publikation für einen Teil der Kontrollen erfüllt, für die *"Pittsburgh controls"* jedoch nicht. Folglich wurde eine Sensitivitätsanalyse unter Ausschluss dieser drei Studien durchgeführt (s. Anhang Abbildung 71, Abbildung 72, Abbildung 73 und Abbildung 74). Im rezessiven Modell wurde zusätzlich Wang et al. 2011 [123] ausgeschlossen, da hier die Anzahl der homozygoten mutierten Fälle GG = 0 war. Die Sensitivitätsanalyse ergab im dominanten Modell eine gepoolte OR von 1,04 (95 %-CI = 0,97–1,11) und im rezessiven Modells ist weitgehend symmetrisch und gleichmäßig verteilt, jedoch ist dies im dominanten Modell

nicht der Fall. Der Egger Test ergab Werte von p = 0,1195 beim dominanten und p = 0,3127 beim rezessiven Modell. Somit ergibt sich auch bei Ausschluss auffälliger Studien kein signifikantes Ergebnis. Folglich hat auch ein Ausschluss dieser Studien keinen signifikanten Einfluss auf das Ergebnis der Metaanalyse. Ein Publikationsbias kann nicht sicher ausgeschlossen werden.

Abbildung 27: Subgruppenanalyse nach Ethnie von ERCC2/XPD Lys751Gln (rs13181) dominantes Modell

Abbildung 28: Subgruppenanalyse nach Ethnie von ERCC2/XPD Lys751Gln (rs13181) rezessives Modell

Abbildung 27, Abbildung 28, Abbildung 29 und Abbildung 30 zeigen die Subgruppenanalysen für *ERCC2/XPD* Lys751Gln. Weder in einer Studiendesign-Subgruppe noch in einer ethnischen Subgruppe ist eines der Modelle statistisch signifikant.

4.2.3 TP53 Arg72Pro

Abbildung 31 zeigt das Vorgehen bei der Literaturrecherche für *TP53* Arg72Pro. Der Suchterminus lieferte 94 Ergebnisse. 26 Studien erfüllten die Einschlusskriterien, drei wurden noch nachrangig ausgeschlossen, weil sie über eine (Teil-)Population berichten, für die bereits Daten vorlagen.

Abbildung 31: Flow-Chart zu TP53 Arg72Pro (rs1042522), n: Studienanzahl

Autor	l a la a	Land	Ethnio	Studien-	Genotypisierungs-	n		Mittleres Alte	Frauenanteil in %		
Autor	Janr	Land	Ethnie	design	verfahren	F	К	F	к	F	к
Wu et al. [129]	1995	Japan	Asiatisch	HB	PCR-RFLP	151	403	70,0 (10,0)	35,1 (16,0)	23,48	k. A.
Biros et al. [10]	2000	Slowakei	Kaukasisch	PB	PCR-RFLP	50	145	66,1	k. A.	14	k. A.
Chen et al. [18]	2000	Taiwan	Asiatisch	PB	PCR-RFLP	58	59	66,7	63,2	k. A.	0
Törüner et al. [119]	2001	Türkei	Kaukasisch	HB	PCR-RFLP	121	114	60,15 (11,1	59,33 (13,58)	16,67	16,67
Soulitzis et al. [110]	2002	Griechenland	Kaukasisch	PB	PCR-RFLP	50	99	66,1 (11,4)	k. A.	18	k. A.
Kuroda et al. [53]	2003	Japan	Asiatisch	HB	PCR-RFLP	112	175	68,9 (k. A.)	65,2 (k. A.)	0	0
Mabrouk et al. [71]	2003	Tunesien	Afrikanisch	PB	PCR-RFLP	47	34	k. A.	k. A.	k. A.	k. A.
Chen et al.[17]	2004	Taiwan	Asiatisch	PB	PCR-RFLP	59	81	k. A.	k. A.	27	31
Matullo et al. [73]	2006	Italien	Kaukasisch	PB	TaqMan	102	839	61,3 (7,9)	61,2 (8,1)	34,3	65,7
Chung et al. [21]	2008	Taiwan	Asiatisch	HB	PCR-RFLP	170	402	62,14 (1,08)	61,50 (0,71)	27,65	31,09
Horikawa et al. [44]	2008	Japan	Asiatisch	HB	PCR-CTPP	227	267	67,8 (12,6)	60,6 (12,2)	23,38	23,31
Ye et al. [135]	2008	USA	Kaukasisch	HB	TaqMan	615	598	64,1 (11,2)	62,8 (10,5)	21,87	27,42
Pandith et al. [84]	2010	Indien	Asiatisch	HB	PCR-RFLP	108	138	60 (12)	58 (11,6)	14,81	47,1
Srivastava et al. [111]	2010	Indien	Asiatisch	HB	PCR-RFLP	200	265	k. A.	k. A.	k. A.	k. A.
Santos et al. [101]	2011	Brasilien	Kaukasisch	PB	PCR-RFLP	94	159	67 (13)	55 (21)	19,15	34,81
Zhang et al. [140]	2011	China	Asiatisch	HB	PCR-RFLP	120	120	k. A.	k. A.	k. A.	k. A.
Lin et al. [63]	2012	Taiwan	Asiatisch	PB + HB	PCR-RFLP	223	569	66,73 (11,36)	45,98 (14,91)	37,81	57,67
Lin et al. [64]	2013	Taiwan	Asiatisch	PB	PCR-RFLP	199	140	66,72 (11,275)	72,19 (4,293)	35,8	41,1
Pineda et al. [88]	2014	Spanien	Kaukasisch	HB	Illumina Golden Gate + TaqMan	1032	1100	k. A.	k. A.	13	13
Hosen et al. [45]	2015	Bangladesch	Asiatisch	HB	PCR-RFLP	102	140	k. A.	k. A.	k. A.	k. A.
Avirmed et al. [7]	2017	Mongolei	Asiatisch	k. A.	PCR-RFLP	63	79	55,6 (12,7)	58,3 (13,5)	14	19
Elhawary et al. [24]	2017	Saudi-Arabien	Asiatisch	HB	TaqMan	52	104	61,8 (10,63)	no significant difference, p>0,05	7,69	11,54
Lin et al. [65]	2017	Taiwan	Asiatisch	HB	TaqMan	46	188	58,7	(0,7)	43,5	52,7
					Summe	4001	6218				

Tabelle 9: Charakteristika der Studien zu TP53 Arg72Pro (rs1042522), n: Probandenzahl, SD: Standardabweichung, F: Fallgruppe, K: Kontrollgruppe, a: Jahre

Tabelle 9 zeigt die eingeschlossenen Publikationen. Jede der 23 Studien hat nur eine Population betrachtet.

15 dieser Populationen stammen aus Asien, fünf aus Europa und je eine aus Afrika, Nordamerika und Südamerika. Insgesamt wurden 4001 Fälle und 6218 Kontrollen aus 15 unterschiedlichen Ländern untersucht. In 13 der Studien wurden die Kontrollen krankenhausbasiert rekrutiert, in acht populationsbasiert. In einer Studie gibt es keine Angaben zum Studiendesign und Lin et al. (2012) [63] rekrutierten mithilfe beider Verfahren. Die Zahl der Studienteilnehmer variiert zwischen 81 und 2132. Das Durchschnittsalter der Probanden mit Harnblasenkarzinom liegt zwischen 55,6 Jahren und 70,0 Jahren, mit einem Anteil der weiblichen Patienten zwischen 13 % und 43,5 %. In der Kontrollgruppe bewegt sich das Durchschnittsalter zwischen 35,10 Jahren und 72,19 Jahren, bei einem Frauenanteil zwischen 0 % und 65,7 %. Wie in Tabelle 9 zu sehen, sind die Informationen nicht bei allen Publikationen vorhanden. In Tabelle 20 sind die publizierten Genotypenverteilungen der untersuchten Studien dargestellt, auf deren Grundlage die Metaanalyse durchgeführt wurde.

Abbildung 32: Forest-Plot zu TP53 Arg72Pro (rs1042522) dominantes Modell (CC + GC vs. GG)

Abbildung 33: Forest-Plot zu TP53 Arg72Pro (rs1042522) rezessives Modell (CC vs. GC + GG)

Abbildung34:Funnel-PlotzuTP53Arg72ProAbbildung35:Funnel-PlotzuTP53Arg72Pro(rs1042522)dominantesModell (CC + GC vs. GG)(rs1042522)rezessivesModell (CC vs. GC + GG)

Die Ergebnisse der Metaanalyse sind unter Verwendung des Random Effects Modells bei einem Cochran's Q-Test von p = 0,0007 (dominant) bzw. p = 0,0023 (rezessiv) in Abbildung 32 und Abbildung 33 dargestellt. Die Berechnung des rezessiven Modells erfolgte ohne Chen et al. 2004 [17], wegen mangelnder Daten zum Genotyp CC. Die Modelle lieferten eine OR von 1,01 (95 %-CI = 0,87–1,16) (dominant) und 1,13 (95 %-CI = 0,92–1,39) (rezessiv).

Mithilfe von Funnel-Plots (Abbildung 34 und Abbildung 35) und Egger-Tests wurde auf einen möglichen Publikationsbias getestet. Der Egger-Test lieferte einen Wert von p = 0,3917 im dominanten und p = 0,4349 im rezessiven Modell. Die Egger-Tests geben keinen Hinweis auf einen Publikationsbias, die Funnel-Plots hingegen sind leicht schief verteilt. Es wären allerdings mehr kleine Studien mit einem positiven Effekt zu erwarten, was untypisch für einen Publikationsbias ist und daher gegen dessen Vorliegen spricht.

Autor	Jahr	HWE berichtet	HWE berechnet
Wu et al. [129]	1995	Erfüllt	Erfüllt
Biros et al. [10]	2000	Erfüllt	Erfüllt
Chen et al. [18]	2000	Erfüllt	Erfüllt
Törüner et al. [119]	2001	Erfüllt	Erfüllt
Soulitzis et al. [110]	2002	k. A.	Nicht erfüllt
Kuroda et al. [53]	2003	Erfüllt	Erfüllt
Mabrouk et al. [71]	2003	k. A.	Erfüllt
Chen et al. [17]	2004	k. A.	k. A.
Matullo et al. [73]	2006	Erfüllt	Erfüllt
Chung et al. [21]	2008	Erfüllt	Erfüllt
Horikawa et al. [44]	2008	Erfüllt	Erfüllt
Ye et al. [135]	2008	k. A.	Nicht erfüllt
Pandith et al. [84]	2010	Erfüllt	Nicht erfüllt
Srivastava et al. [111]	2010	Erfüllt	Erfüllt
Santos et al. [101]	2011	Erfüllt	Erfüllt
Zhang et al. [140]	2011	Erfüllt	Erfüllt
Lin et al. [63]	2012	Erfüllt	Erfüllt
Lin et al. [64]	2013	k. A.	Nicht erfüllt
Pineda et al. [88]	2014	Erfüllt	Nicht erfüllt
Hosen et al. [45]	2015	Erfüllt	Erfüllt
Avirmed et al. [7]	2017	Nicht erfüllt	Nicht erfüllt
Elhawary et al. [24]	2017	Erfüllt	Erfüllt
Lin et al. [65]	2017	Erfüllt	Erfüllt

Tabelle 10: Übersicht über den Status des HWE der Kontrollpopulation berechnet mithilfe des Chi-Quadrat Tests

Wie Tabelle 10 zeigt, erfüllen die Kontrollgruppen von sechs Studien [7, 64, 84, 88, 110, 135] das HWE nicht. Weicht die Aussage zum HWE der Publikation von der durchgeführten Berechnung ab, ist dies auf einen anderen p-Wert in der Studie zurückzuführen. Für Chen et al. 2004 [17] konnte kein HWE berechnet werden, da die Zahl der Homozygoten des mutierten Allels nur in der Summe mit den Heterozygoten publiziert wurde. In der Veröffentlichung ist ebenfalls keine Angabe zum HWE zu finden. Schlussendlich wurde die Sensitivitätsanalyse unter Ausschluss dieser sieben Studien berechnet und zeigte folgendes Ergebnis: OR von 1,06 (95 %-CI = 0,94–1,19) (dominant, s. Anhang Abbildung 75), OR von 1,29 (95 %-CI = 1,10–1,52) (rezessiv, ohne Chen et al. 2004 [17], s. Anhang Abbildung 76). Im rezessiven Modell ergibt sich folglich nach Ausschluss auffälliger Studien ein signifikantes Ergebnis. Der Egger-Test ergab Werte von p = 0.3417 beim dominanten und p = 0.1732 beim rezessiven Modell. Der Funnel-Plot des dominanten Modells (s. Anhang Abbildung 77) ist weitgehend symmetrisch und gleichmäßig verteilt, jedoch ist erkennbar, dass diese Verteilung beim rezessiven Modell (s. Anhang Abbildung 78) nicht vorliegt. Hier wären mehr Studien mit kleinen Teilnehmerzahlen zu erwarten, die über einen positiven Effekt (OR > 1) berichten. Da der Gesamtschätzer jedoch bereits in diese Richtung tendiert, ist die Verteilung für das Vorliegen eines Publikationsbias eher untypisch. Dennoch kann dieser nicht sicher ausgeschlossen werden.

Abbildung 36: Subgruppenanalyse nach Ethnie von TP53 Arg72Pro (rs1042522) dominantes Modell

Abbildung 38: Subgruppenanalyse nach Kontrollgruppe Abbildung 39: Subgruppenanalyse nach Kontrollgruppe von TP53 Arg72Pro (rs1042522) dominantes Modell

von TP53 Arg72Pro (rs1042522) rezessives Modell

Die Ergebnisse für die Subgruppenanalyse nach Ethnie sind in Abbildung 36 und Abbildung 37 dargestellt. In keiner ethnischen Subgruppe konnte ein statistisch signifikanter Zusammenhang gezeigt werden. Im dominanten Modell (Abbildung 38 und Abbildung 39) der populationsbasierten Studien ergibt sich jedoch eine OR von 0,699 (95 %-CI = 0,501–0,975).

4.2.4 XRCC1 Arg149Trp

Die spezifische Suche für rs1799782 ergab 62 Ergebnisse (Abbildung 40). Unter den 23 Studien, bei welchen die Einschlusskriterien erfüllt waren, befanden sich 9 Populationsdubletten, die nicht untersucht wurden.

Abbildung 40: Flow-Chart zu XRCC1 Arg194Trp (rs1799782), n: Studienanzahl

A A		1		Ethnia	Studien-	Genotypisierungs-	r	า	Mittleres Alte	r und SD in a	Frauenanteil in %	
A	Autor		Land	Ethnie	design	design verfahren		κ	F	К	F	К
Stern et	S	2001		Afrikanisch	HB		19	13	65,6 (10,7)	63,3 (10,4)	22,6	18,8
al. [114]	W	2001	054	Kaukasisch	HB			197	65,6 (10,7)	63,3 (10,4)	22,6	18,8
Matullo et al. [73]		2006	Italien	Kaukasisch	PB	TaqMan		1094	61,3 (7,9)	61,2 (8,1)	34,3	65,7
Sak e	t al. [100]	2007	England	98,6 % Kaukasisch	PB + HB	TaqMan	535	562	72,8 (k. A.)	71,9 (k. A.)	29,1	34,5
Andrew	TBCS	2000	Italien	Kaukasisch	HB	Qiagen Genomics SNP	070	1202	kΛ	k A	10 00	24 56
et al. [5]	NHBCS	2000	USA	>95 % Kaukasisch	PB	masstagging system, TaqMan	970	1205	K. A.	ĸ. A.	10,90	34,30
Fontana	a et al. [29]	9] 2008 Frankreich Kaukasisch HB TaqMan		51	45	k. A.	k. A.	0	0			
Hsu e	Hsu et al. [46]		Taiwan	Asiatisch	HB	PCR-RFLP	208	218	k. A.	k. A.	30,3	30
Mittal	Mittal et al. [76]		Indien	Asiatisch	PB	PCR-RFLP	140	190	60,6 (k. A.)	58,3 (k. A.)	12,1	13,68
Narter et al. [79]		2009	Türkei	Kaukasisch	k. A.	PCR-RFLP	57	36	63,43 (11,74)	59,98 (9,71)	84,34	100
	HBCS		USA	Kaukasisch	HB	k. A.	803	803	61,7 (k. A.)	63,3 (k. A.)	20,64	23,32
Stern et	SBCS	2009	Spanien	F: 99,6 % Kaukasisch K: 99,9 % Kaukasisch	HB	k. A.	1116	1022	69,8 (k. A.)	54,4 (k. A.)	12,65	12,36
ai. [117]	UCLABCS		USA	F: 95,8 % Kaukasisch K: 97,5 % Kaukasisch	HB	k. A.	144	109	64,9 (k. A.)	42,2 (k. A.)	17,06	22,78
Wang	et al. [122]	2010	China	Asiatisch	HB	PCR-RFLP	234	253	63,5 (k. A.)	62,9 (k. A.)	18,38	22,13
Mittal	et al. [77]	2012	Indien	Asiatisch	PB	PCR-RFLP	212	250	59,6 (12,4)	58,8 (10,8)	11,8	14
Chiang	y et al. [19]	2014	Taiwan	Asiatisch	HB	PCR-RFLP	324	647	62,98 (13,36)	62,40 (13,36)	28,4	28,28
Zhu e	t al. [146]	2016	China	Asiatisch	PB	TaqMan	204	260	54,6 (7,8)	53,8 (8,4)	17,62	15,38
Ahme	d et al. [1]	2018	Pakistan	Asiatisch	PB	PCR-RFLP	200	200	55,5 (13,24)	54,3 (9,9)	21,5	21,5
						Summe	5543	7089				

Tabelle 11: Charakteristika der Studien zu XRCC1 Arg194Trp (rs1799782), n: Probandenzahl, SD: Standardabweichung, F: Fallgruppe, K: Kontrollgruppe, a: Jahre

Tabelle 11 fasst die ausgewählten Publikationen zusammen. Die Population in Stern et al. 2001 [114] wurde in zwei Fall-Kontroll-Gruppen unterschiedlicher Ethnie, *"blacks"* und *"whites"*, untergliedert. Die Publikation Andrew et al. 2008 [5] veröffentlichte Ergebnisse zur TBCS und NHBCS und fasst diese in einer Population zusammen. Außerdem ist Stern et al. 2009 [117] eine gepoolte Analyse, die folgende Populationen untersuchte, welche getrennt betrachtet wurden: HBCS, SBCS, UCLABCS.

In der Metaanalyse wurden 5543 Fälle und 7089 Kontrollen aus zehn unterschiedlichen Ländern in 18 separaten Studiengruppen aus 14 Veröffentlichungen untersucht. Davon haben sieben ihren Ursprung in Asien, sechs in Europa und fünf in Nordamerika. Zehn Studien weisen ein krankenhausbasiertes Studiendesign auf, sechs sind populationsbasiert. Eine Studie verwendete beide Verfahren und eine weitere veröffentlichte keine Details zur Kontrollpopulation. Die Zahl der Studienteilnehmer variiert zwischen 93 und 2181. Das Durchschnittsalter der Tumorpatienten liegt zwischen 54,6 Jahren und 72,8 Jahren, der Anteil der Frauen zwischen 0 % und 84,34 %. Die Kontrollgruppen haben Durchschnittsalter von 42,2 Jahren bis 71,9 Jahren. Der Anteil weiblicher Kontrollen variiert zwischen 0 % und 100 %. Vollständige Informationen konnten nicht allen Studien entnommen werden. Die statistischen Modelle der Metaanalyse beruhen auf den in Tabelle 21 (s. Anhang) dargestellten Genotypdaten.

Abbildung 43: Funnel-Plot zu XRCC1 Arg194TrpAbbildung 44: Funnel-Plot zu XRCC1 Arg194Trp(rs1799782) dominantes Modell (TT + CT vs. CC)(rs1799782) rezessives Modell (TT vs. CT + CC)

Die Ergebnisse der Metaanalyse für *XRCC1* Arg194Trp sind in Abbildung 41 und Abbildung 42 dargestellt. In beiden Modellen wurde das Fixed Effects Modell verwendet, da der Cochran's Q-Test p = 0,058 (dominant) und p = 0,0553 (rezessiv) ergab. Die gepoolten ORs belaufen sich auf 0,977 (95 %-CI = 0,887–1,077) (dominant) und 1,253 (95 %-CI = 0,990– 1,586) (rezessiv).

Ein Publikationsbias ist in Zusammenschau der Funnel-Plots (Abbildung 43 und Abbildung 44) und der Egger-Tests (p = 0,9218 bzw. p = 0,3989) als eher unwahrscheinlich anzusehen. Die Funnel-Plots sind jedoch nicht besonders aussagekräftig, da die Studien alle eine ähnliche Probandenzahl haben und so unklar bleibt, wie die Verteilung sich mit zusätzlichen kleinen Studien verändern würde.

Autor	Jahr	HWE berichtet	HWE berechnet
Stern et al. (s) [114]	2001	k. A.	Erfüllt
Stern et al. (w) [114]	2001	Erfüllt	Erfüllt
Matullo et al. [73]	2006	Erfüllt	Erfüllt
Sak et al. [100]	2007	Erfüllt	Erfüllt
Andrew et al. [5]	2008	Erfüllt	Erfüllt
Fontana et al. [29]	2008	k. A.	Erfüllt
Hsu et al. [46]	2008	k. A.	Nicht erfüllt
Mittal et al. [76]	2008	Erfüllt	Erfüllt
Narter et al. [79]	2009	k. A.	Erfüllt
Stern et al. (HBCS) [117]	2009	k. A.	Erfüllt
Stern et al. (SBCS) [117]	2009	k. A.	Erfüllt
Stern et al. (UCLA) [117]	2009	k. A.	Erfüllt
Wang et al. [122]	2010	Erfüllt	Erfüllt
Mittal et al. [77]	2012	Erfüllt	Erfüllt
Chiang et al. [19]	2014	Erfüllt	Erfüllt
Zhu et al. [146]	2016	Erfüllt	Erfüllt
Ahmed et al. [1]	2018	k. A.	Nicht erfüllt

Tabelle 12: Übersicht über den Status des HWE der Kontrollpopulation berechnet mithilfe des Chi-Quadrat Tests

Wie Tabelle 12 zeigt, erfüllen die Kontrollgruppen von Hsu et al. 2008 [46] und Ahmed et al. 2018 [1] das HWE nicht. Es wurde folglich eine Sensitivitätsanalyse für beide Modelle unter

Ausschluss dieser Arbeiten durchgeführt. Die Ergebnisse für das dominante Modell, das eine gepoolte OR von 0,955 (95 %-CI = 0,863–1,058) ergab, sind in Abbildung 79 und Abbildung 81 zusammengefasst (s. Anhang). Im rezessiven Modell (s. Anhang Abbildung 80 und Abbildung 82) ist die OR 1,63 (95 %-CI = 1,00–2,65). Das rezessive Modell erreicht somit statistische Signifikanz bei Ausschluss nicht-HWE-konformer Studien. Der Egger-Test ergab Werte von p = 0,7531 beim dominanten und p = 0,2528 beim rezessiven Modell. Der Funnel-Plot des dominanten Modells ist symmetrisch und gleichmäßig verteilt. Diese Symmetrie findet sich im Funnel-Plot für das rezessive Modell nicht wieder. Hier wären mehr Studien im unteren linken Bereich zu erwarten, die eine geringe Teilnehmerzahl umfassen und über eine OR < 1 berichten. Der Funnel-Plot hat jedoch nur begrenzte Aussagekraft, da nur elf Studien betrachtet werden. Ein Publikationsbias kann folglich nicht sicher ausgeschlossen werden.

Abbildung 47: Subgruppenanalyse nach Kontrollgruppe von XRCC1 Arg194Trp (rs1799782) dominantes Modell

Abbildung 48: Subgruppenanalyse nach Ethnie von XRCC1 Arg194Trp (rs1799782) dominantes Modell

Abbildung 45 und Abbildung 46 zeigen die Ergebnisse für die Metaanalyse unterteilt in verschiedene ethnische Subgruppen. Weder im dominanten noch im rezessiven Modell konnten in einer Ethnie statistisch signifikante Ergebnisse erzielt werden. In den Forest-Plots der Subgruppenanalyse nach Studiendesign (Abbildung 47 und Abbildung 48) liegt jedoch im rezessiven Modell der populationsbasierten Studien statistische Signifikanz vor (OR = 2,178 (95 %-CI = 1,326–3,578)).

4.2.5 XRCC3 Thr241Met

Die Suche zur Missense-Mutation rs861539 wurde in mehreren Schritten durchgeführt, wie Abbildung 49 zeigt. Es wurden 26 passende Publikationen identifiziert. Anschließend wurden acht Populationsdubletten ausgeschlossen.

Abbildung 49: Flow-Chart zu XRCC3 Thr241Met (rs861539), n: Studienanzahl

Autor		lahr	Lond	Ethnia	Studien-	Genotypisierungs-	n		Mittleres Alte	er und SD in a	Frauenanteil in %	
	Autor	Janr	Land	Ethnie	design	verfahren	F	κ	F	К	F	К
Stern	ı et al. [115]	2002	USA	F: 91,5 % Kaukasisch K: 92,7 % Kaukasisch	HB	PCR-RFLP	233	209	65,6 (10,7)	63,3 (10,4)	22,6	18,8
Shen	et al. [106]	2003	Italien	Kaukasisch	HB	PCR-RFLP	201 214		63 (k. A.)	63 (k. A.)	0	0
Sanya	al et al. [102]	2004	Schweden	Kaukasisch	k. A.	PCR-RFLP	311	246	70 (k. A.)	70 (k. A.)	k. A.	k. A.
Brobe	erg et al. [13]	2005	Schweden	Kaukasisch	PB	MALDI-TOF	61	153	69 (k. A.)	69 (k. A.)	14,3	23,4
Matul	lo et al. [73]	2006	Italien	Kaukasisch	PB	TaqMan	124	1094	61,3 (7,9)	61,2 (8,1)	34,3	65,7
Wu	et al. [128]	2006	USA	Kaukasisch	HB	TaqMan	612	596	63,91 (11,17)	62,77 (10,50)	21,55	27,34
Figuer	oa et al. [28]	2007	USA	Kaukasisch	HB	TaqMan	1083	1010	66 (10)	65 (10)	13	13
Andrew	TBCS	2000	Italien	Kaukasisch	HB		1040	1075		1. 4	10.00	24 50
et al. [5]	al. [5] NHBCS 2008		USA	>95 % Kaukasisch	PB		, к. А.	к. А.	10,90	34,30		
Fonta	na et al. [29]	2008	Frankreich	Kaukasisch	HB	TaqMan	51 45		k. A.	k. A.	0	0
Hao et al. [39]		2008	China	Asiatisch	HB	PCR-RFLP	307	316	k. A.	k. A.	k. A.	k. A.
Gangv	Gangwar et al. [32]		Indien	Asiatisch	HB	PCR-RFLP	212	250	58,5 (12,4)	56,8 (10,8)	11,8	14
Narte	er et al. [79]	2009	Türkei	Kaukasisch	k. A.	PCR-RFLP	55	39	63,43 (11,74)	59,98 (9,71)	84,34	100
	EEBCS		Ungarn, Rumänien, Slovakei	Kaukasisch	HB	k. A.	214	533	63,6 (k. A.)	66,6 (k. A.)	17,29	48,52
Stern et al. [117]	LABCS	2009	USA	F: 94,3 % Kaukasisch K: 96,2 % Kaukasisch	PB	k. A.	555	649	61,8 (k. A.)	64,6 (k. A.)	21,69	21,01
	SBCS		Spanien	F: 99,6 % Kaukasisch K: 99,9 % Kaukasisch	HB	k. A.	1102	1009	69,8 (k. A.)	54,4 (k. A.)	12,65	12,36
	SHBCS		China	Asiatisch	PB	k. A.	526	529	62,6 (k. A.)	61,5 (k. A.)	20,7	22,99
Yang	et al. [134]	2009	China	Asiatisch	PB	PCR-RFLP	220	220	k. A.	k. A.	k. A.	k. A.
Mitta	al et al. [78]	2012	Indien	Asiatisch	HB	PCR-RFLP	211	244	61,3 (13,2)	60,8 (10,3)	14,2	15,6
Zhu	et al. [145]	2012	China	Asiatisch	HB	PCR-RFLP	150	150	k. A.	k. A.	k. A.	k. A.
Chiar	ng et al. [19]	2014	Taiwan	Asiatisch	HB	PCR-RFLP	324	647	62,98 (13,36)	62,40 (13,36)	28,4	28,28
Ahm	ed et al. [1]	2018	Pakistan	Asiatisch	PB	PCR-RFLP	200	200	55,5 (13,24)	54,3 (9,9)	21,5	21,5
						Summe	7274	8781				

Tabelle 13: Charakteristika der Studien zu XRCC3 Thr241Met (rs861539), n: Probandenzahl, SD: Standardabweichung, F: Fallgruppe, K: Kontrollgruppe, a: Jahre

Die ausgewählten Publikationen werden in Tabelle 13 zusammengefasst. Andrew et al. (2008) [5] untersuchten sowohl die TBCS als auch die NHBCS, publizierten die Ergebnisse jedoch nur für die Gesamtpopulation. Stern et al. (2009) [117] veröffentlichten zu rs861539 Genotypdaten folgender Studien: EEBCS, LABCS, SBCS und SHBCS.

In die quantitative Auswertung wurden 18 Publikationen eingeschlossen, die 22 Populationen beinhalten, wobei neun Populationen aus Europa, acht aus Asien und fünf aus Nordamerika stammen. Es wurden 7274 Fälle und 8781 Kontrollen aus elf unterschiedlichen Ländern untersucht. Für 13 Studien wurden die Kontrollen im Krankenhaus rekrutiert, sieben Studien sind populationsbasiert und zwei Mal wurde das Studiendesign nicht näher spezifiziert. Die Anzahl der Probanden liegt zwischen 94 und 2321. Die Fallgruppe umfasst Personen mit einem mittleren Alter zwischen 55,5 Jahren und 70,0 Jahren und einem Frauenanteil zwischen 0% und 84,34%. Die Durchschnittsalter der gesunden Probanden liegen zwischen 54,3 Jahren und 70,0 Jahren, bei einem Frauenanteil zwischen 0% und 100%. Diese Informationen sind nicht für alle Studien verfügbar. Grundlage für die Metaanalyse bildeten die Genotypenverteilungen, die in Tabelle 22 (s. Anhang) zusammengefasst sind.

61

Abbildung 52: Funnel-Plot zu XRCC3 Thr241Met Abbild (rs861539) dominantes Modell (TT + CT vs. CC) (rs861

Abbildung 53: Funnel-Plot zu XRCC3 Thr241Met (rs861539) rezessives Modell (TT vs. CT + CC)

Abbildung 50 zeigt die Ergebnisse der Metaanalyse für das dominante Modell. Unter Anwendung des Random Effects Modells, bei einem Cochran's Q-Test von p = 0,0034, ergab sich eine gepoolte OR von 1,03 (95 %-CI = 0,92–1,15). Die Analyse des rezessiven Modells (Abbildung 51) erfolgte unter Ausschluss von Chiang et al. 2014 [19], da hier keine genaue Anzahl von Studienteilnehmern mit Genotyp TT vorliegt. Das Modell ergab im Fixed Effects Modell eine OR von 1,07 (95 %-CI = 0,97–1,19) bei einem Wert des Cochran's Q-Tests von p = 0,1819.

In Abbildung 52 und Abbildung 53 sind die Funnel-Plots zur Untersuchung eines Publikationsbias dargestellt. Dieser kann aufgrund der symmetrischen Verteilung, bestärkt durch die Ergebnisse der Egger-Tests von p = 0,2881 und p = 0,4998, weitgehend ausgeschlossen werden.

Autor	Jahr	HWE berichtet	HWE berechnet
Stern et al. [115]	2002	Erfüllt	Erfüllt
Shen et al. [106]	2003	Nicht erfüllt	Erfüllt
Sanyal et al. [102]	2004	Erfüllt	Erfüllt
Broberg et al. [13]	2005	Erfüllt	Erfüllt
Matullo et al. [73]	2006	Erfüllt	Erfüllt
Wu et al. [128]	2006	k. A.	Erfüllt
Figueroa et al. [28]	2007	Erfüllt	Erfüllt
Andrew et al. [5]	2008	Erfüllt	Erfüllt
Fontana et al. [29]	2008	k. A.	Erfüllt
Hao et al. [39]	2008	k. A.	Erfüllt
Gangwar et al. [32]	2009	Erfüllt	Erfüllt
Narter et al. [79]	2009	k. A.	Nicht erfüllt
Stern et al. (EEBCS) [117]	2009	k. A.	Erfüllt
Stern et al. (LABCS) [117]	2009	k. A.	Erfüllt
Stern et al. (SBCS) [117]	2009	k. A.	Erfüllt
Stern et al. (SHBCS) [117]	2009	k. A.	Erfüllt
Yang et al. [134]	2009	Erfüllt	Erfüllt
Mittal et al. [78]	2012	k. A.	Erfüllt
Zhu et al. [145]	2012	k. A.	Erfüllt
Chiang et al. [19]	2014	Erfüllt	k. A.
Ahmed et al. [1]	2018	k. A.	Nicht erfüllt

Tabelle 14: Übersicht über den Status des HWE der Kontrollpopulation berechnet mithilfe des Chi-Quadrat Tests

Tabelle 14 ist zu entnehmen, dass die Kontrollgruppen von Narter et al. 2009 [79] und Ahmed et al. 2018 [1] das HWE nicht erfüllen. Für Chiang et al. 2014 [19] konnte kein HWE berechnet werden, da die Anzahl für das Risikoallel homozygoter Genotypen nicht veröffentlicht ist. Die Diskrepanzen zwischen berichtetem und berechnetem HWE ergeben sich aus abweichenden Signifikanzniveaus in den Publikationen. Obwohl es bei Chiang et al. 2014 [19] nicht möglich ist, das HWE selbst zu berechnen, wurde die Studie dennoch in das dominante Modell der Sensitivitätsanalyse eingeschlossen, da das HWE laut Publikation erfüllt ist. Im nächsten Schritt wurde die Sensitivitätsanalyse durchgeführt. Hier wurden die beiden Studien, die das HWE verletzen, ausgeschlossen. Abbildung 83 und Abbildung 85 (s. Anhang) zeigen die Ergebnisse für das dominante Modell, das eine gepoolte OR von 1,04 (95 %-Cl = 0,94–1,15) ergab. Im rezessiven Modell (s. Anhang Abbildung 84 und Abbildung 86) liegt die OR bei 1,10 (95 %-CI = 0,99–1,21). Somit ergibt sich auch bei Ausschluss auffälliger Studien kein signifikantes Ergebnis. Die Funnel-Plots beider Modelle zeigen eine symmetrische und gleichmäßige Verteilung. Der Egger-Test ergab Werte von p = 0,6039 beim dominanten und p = 0,9932 beim rezessiven Modell, weshalb ein Publikationsbias weitgehend ausgeschlossen werden kann.

Ethnic subgroup meta-analysis [random effects]

Ethnic subgroup meta-analysis [random effects]

Source of controls subgroup meta-analysis [random effects]

Source of controls subgroup meta-analysis [random effects]

Abbildung 55: Subgruppenanalyse nach Ethnie von

XRCC3 Thr241Met (rs861539) rezessives Modell

Abbildung 56: Subgruppenanalyse nach Kontrollgruppe von XRCC3 Thr241Met (rs861539) dominantes Modell

Abbildung 54, Abbildung 55, Abbildung 56 und Abbildung 57 zeigen die Ergebnisse der Subgruppenanalysen für *XRCC3* Thr241Met. Keine der Studien wurde mit afrikanischen Teilnehmern durchgeführt, sodass diese Subgruppe hier wegfällt. Weder im dominanten noch im rezessiven Modell konnte in einer untersuchten Subgruppe ein Zusammenhang zur Erkrankungswahrscheinlichkeit hergestellt werden.

4.2.6 GSTP1 lle105Val

Wie in Abbildung 58 dargestellt, ergab die spezifische Suche für *GSTP1* IIe105Val 71 Treffer. Von den 38 Studien, welche die Einschlusskriterien erfüllten, wurden elf nachrangig ausgeschlossen, weil sie über eine (Teil-)Population berichteten, die bereits in einer anderen Studie untersucht wurde.

Abbildung 58: Flow-Chart zu GSTP1 Ile105Val (rs1695), n: Studienanzahl

Autor	lahr	Land	Ethnio	Studien-	Genotypisierungs-		n	Mittleres Alte	er und SD in a	Anteil Frauen in %	
Autor	Janr	Land	Ethnie	design	verfahren	F	к	F	К	F	К
Harries et al. [40]	1997	England	Kaukasisch	PB	PCR-RFLP	71	155	72,2 (k. A.)	k. A.	32	k. A.
Katoh et al. [50]	1999	Japan	Asiatisch	HB	PCR-RFLP	106	122	69,9 (10,7)	62,4 (16,5)	20,75	40,98
Peluso et al. [86]	2000	Italien	Kaukasisch	HB	PCR-RFLP	123	54	k. A.	k. A.	0	0
Steinhoff et al. [113]	2000	Deutschland	Kaukasisch	HB	PCR-RFLP	135	127	62 (22)	62 (12)	30	58
Törüner et al. [120]	2001	Türkei	Kaukasisch	HB	PCR-RFLP	121	121	60,15 (11,1)	59,33 (13,58)	16,67	16,67
Ma et al. [69]	2002	China	Asiatisch	PB	PCR-RFLP	61	179	k. A.	k. A.	k. A.	k. A.
Hung et al. [47]	2004	Italien	Kaukasisch	HB	PCR-RFLP	201	214	k. A.	k. A.	0	0
Broberg et al. [13]	2005	Schweden	Kaukasisch	PB	TaqMan	61	155	69 (k. A.)	69 (k. A.)	14,3	23,4
Cao et al. [14]	2005	USA	F: 92,9 % Kaukasisch K: 97,0 % Kaukasisch	HB	PCR-RFLP	145	170	k. A.	k. A.	17,6	24
Garcia-Closas et al. [35]	2005	Spanien	Kaukasisch	HB	TaqMan	1141	1138	66 (10)	65 (10)	13	13
Saad et al. [98]	2005	Ägypten	Afrikanisch	PB	PCR-RFLP	72	82	56,6 (k. A.)	34,7 (k. A.)	22	41
Srivastava et al. [112]	2005	Indien	Asiatisch	HB	PCR-RFLP	106	370	55,5 (1,38)	51,8 (0,59)	k. A.	k. A.
Xing et al. [130]	2006	China	Asiatisch	HB	PCR-RFLP	108	112	k. A.	k. A.	k. A.	k. A.
Hsu et al. [46]	2008	Taiwan	Asiatisch	HB	PCR-RFLP	211	218	k. A.	k. A.	30,3	30
Kopps et al. [52]	2008	Deutschland	Kaukasisch	HB	PCR (Light Cycler)	143	196	k. A.	k. A.	k. A.	k. A.
Yuan et al. [138]	2008	USA	> 93 % Kaukasisch	PB	PCR-RFLP	657	684	55,8 (7,2)	55,7 (8,2)	20,8	21,4
Altayli et al. [3]	2009	Türkei	Kaukasisch	HB	PCR-RFLP	135	128	62,3 (11,91)	64,26 (10,46)	9,6	16,4
Fontana et al. [30]	2009	Frankreich	Kaukasisch	HB	TaqMan	51	45	67,6 (11,4)	67,8 (11)	0	0
Grando et al. [38]	2009	Brasilien	96 % Kaukasisch	k. A.	PCR-RFLP	100	100	66,56 (10,59)	65,76 (10,43)	27	27
Pradubkaew et al. [89]	2009	Thailand	Asiatisch	PB	PCR-RFLP	139	278	k. A.	k. A.	k. A.	k. A.
Zhang et al. [139]	2011	China	Asiatisch	HB	PCR-RFLP	200	200	k. A.	k. A.	k. A.	k. A.
Lesseur et al. [57]	2012	USA	97 % Kaukasisch	PB	Illumina Golden Gate SNP panel	658	928	64 (9)	64 (10)	24	38,9
Matic et al. [72]	2013	Serbien	Kaukasisch	HB	PCR-RFLP	201	122	64,4 (10,1)	62,7 (6,0)	43	42
Pandith et al. [85]	2013	Indien	Asiatisch	HB	PCR-RFLP	180	210	58,5 (12,3)	56,6 (11,6)	20	18,9
Safarinejad et al. [99]	2013	Iran	Asiatisch	HB	PCR-RFLP	166	332	63,8 (9,2)	63,4 (9,7)	0	0
Reszka et al. [91]	2014	Polen	Kaukasisch	PB	TaqMan	244	365	66,5 (10,5)	61,3 (10,4)	25	18,4
Altunkol et al. [4]	2018	Türkei	Kaukasisch	PB	PCR-RFLP	60	60	64,3 (12,7)	63,6 (12,7)	13,33	0,15
					Summe	5126	6108				

Tabelle 15: Charakteristika der Studien zu GSTP1 lle105Val (rs1695), n: Probandenzahl, SD: Standardabweichung, F: Fallgruppe, K: Kontrollgruppe, a: Jahre

Keine der 27 Publikationen untersucht mehrere Populationen (s. Tabelle 15). Katoh et al. (1999) [50] schließen in ihre Fallgruppe nicht nur Probanden mit Harnblasenkarzinom ein, sondern auch Urothelkarzinome anderer Tumorlokalisationen (Nierenbecken, Ureter). Diese Publikation wurde trotzdem eingeschlossen, da lediglich 21 von 106 Patienten eine dieser abweichenden Lokalisationen aufweisen und alle untersuchten Tumoren aus der gleichen Ausgangszelle hervorgehen. In der Metaanalyse zeigten sich dann auch ähnliche Ergebnisse zu vergleichbaren Studien, was das gewählte Vorgehen bestätigt.

13 Studien kommen aus Europa, neun aus Asien, drei aus Nordamerika, und jeweils eine aus Afrika und Südamerika. Insgesamt sind in der Metaanalyse 5126 Fälle und 6108 Kontrollen eingeschlossen. 17 Studien besitzen ein krankenhausbasiertes Studiendesign, wohingegen die Daten von neun Kontrollgruppen aus populationsbasierten Erhebungen stammen. Eine Studie macht keine Angabe zur Rekrutierung der Kontrollen. Die Zahl der Studienteilnehmer variiert zwischen 96 und 2279. Das Durchschnittsalter der Tumorpatienten variiert zwischen 55,5 Jahren und 72,2 Jahren, mit einem Anteil weiblicher Patienten zwischen 0 % und 43 %. Die Durchschnittsalter der gesunden Probanden liegen zwischen 34,7 Jahren und 69,0 Jahren. Der Anteil weiblicher Kontrollpersonen variiert zwischen 0 % und 58 %. Diese Informationen fehlen für einige der Studien. Die Berechnungsgrundlage für die Metaanalyse bildeten die in Tabelle 23 (s. Anhang) vorliegenden Daten.

Abbildung 59: Forest-Plot zu GSTP1 lle105Val (rs1695) dominantes Modell (GG + AG vs. AA)

Abbildung 60: Forest-Plot z u GSTP1 lle105Val (rs1695) rezessives Modell (GG vs. AG + AA))

Abbildung61:Funnel-PlotzuGSTP1Ile105ValAbbildung62:Funnel-PlotzuGSTP1Ile105Val(rs1695) dominantesModell (GG + AG vs. AA)(rs1695) rezessivesModell (GG vs. AG + AA)

Der Cochran's Q-Test lieferte im dominanten Modell ein Ergebnis von p < 0,0001, woraufhin das Random Effects Modell Verwendung fand (Abbildung 59). Damit resultierte eine OR von 1,12 (95 %-CI = 0,98–1,28). Das rezessive Modell (Abbildung 60) konnte aufgrund der fehlenden Anzahl für das Risikoallel homozygoten Genotypen nur ohne die Studien Peluso et al. 2000 [86], Hung et al. 2004 [47] und Grando et al. 2009 [38] berechnet werden. Mithilfe des Random Effects Modells (Cochran's Q-Test: p < 0,0001) ergab sich eine gepoolte OR von 1,340 (95 %-CI = 1,038–1,730) und damit ein signifikantes Ergebnis.

Ein Publikationsbias kann weitestgehend ausgeschlossen werden. Die Funnel-Plots in Abbildung 61 und Abbildung 62 sind gleichmäßig und symmetrisch verteilt. Das Ergebnis des Egger-Tests lautete p = 0,0902 für das dominante und p = 0,5355 für das rezessive Modell.

Autor	Jahr	HWE berichtet	HWE berechnet
Harries et al. [40]	1997	k. A.	Erfüllt
Katoh et al. [50]	1999	Erfüllt	Nicht erfüllt
Peluso et al. [86]	2000	k. A.	k. A.
Steinhoff et al. [113]	2000	Erfüllt	Erfüllt
Törüner et al. [120]	2001	Erfüllt	Erfüllt
Ma et al. [69]	2002	k. A.	Erfüllt
Hung et al. [47]	2004	Erfüllt	k. A.
Broberg et al. [13]	2005	Erfüllt	Erfüllt
Cao et al. [14]	2005	k. A.	Erfüllt
Garcia-Closas et al. [35]	2005	Erfüllt	Erfüllt
Saad et al. [98]	2005	k. A.	Erfüllt
Srivastava et al. [112]	2005	Erfüllt	Nicht erfüllt
Xing et al. [130]	2006	k. A.	Erfüllt
Hsu et al. [46]	2008	k. A.	Erfüllt
Kopps et al. [52]	2008	k. A.	Erfüllt
Yuan et al. [138]	2008	k. A.	Erfüllt
Altayli et al. [3]	2009	Erfüllt	Erfüllt
Fontana et al. [30]	2009	k. A.	Erfüllt
Grando et al. [38]	2009	Erfüllt	k. A.
Pradubkaew et al. [89]	2009	k. A.	Erfüllt
Zhang et al. [139]	2011	k. A.	Erfüllt
Lesseur et al. [57]	2012	k. A.	Erfüllt
Matic et al. [72]	2013	Erfüllt	Erfüllt
Pandith et al. [85]	2013	Erfüllt	Erfüllt
Safarinejad et al. [99]	2013	Erfüllt	Nicht erfüllt
Reszka et al. [91]	2014	Erfüllt	Erfüllt
Altunkol et al. [4]	2018	Erfüllt	Erfüllt

Tabelle 16: Übersicht über den Status des HWE der Kontrollpopulation berechnet mithilfe des Chi-Quadrat Tests

Wie Tabelle 16 zeigt, erfüllen die Kontrollgruppen von Katoh et al. 1999 [50], Srivastava et al. 2005 [112] und Safarinejad et al. 2013 [99] das HWE nicht, das in den Originalpublikationen mit einem abweichenden p-Wert berechnet wurde und damit die Diskrepanz zwischen berichtetem und berechnetem HWE erklärt. Obwohl es bei Hung et al. 2004 [47] und Grando et al. 2009 [38] nicht möglich ist, das HWE aus den vorliegenden Daten zu berechnen, wurden die Studien dennoch in das dominante Modell der Sensitivitätsanalyse eingeschlossen, da das HWE laut Publikation erfüllt ist. Peluso et al. 2000 [86] macht zum HWE keine Angabe und wurde deshalb aus der Sensitivitätsanalyse ausgeschlossen. Abbildung 87 und Abbildung 89 (s. Anhang) zeigen die Ergebnisse für das dominante Modell, das eine gepoolte OR von 1,00 (95 %-CI = 0,90–1,12) ergab. Die OR erzielte im rezessiven Modell ein Ergebnis von 1,159 (95 %-CI = 0,936–1,434) (s. Anhang Abbildung 88 und Abbildung 90). Somit ist nach Ausschluss auffälliger Studien die statistische Signifikanz des rezessiven Modells von GSTP1 Ile105Val nicht mehr nachweisbar. Der Egger-Test ergab Werte von p = 0,2327 im dominanten und p = 0,963 im rezessiven Modell. Die Funnel-Plots beider Modelle zeigen eine symmetrische und gleichmäßige Verteilung. Ein Publikationsbias kann daher weitgehend ausgeschlossen werden.

Abbildung 63: Subgruppenanalyse nach Ethnie von GSTP1 lle105Val (rs1695) dominantes Modell

Abbildung 64: Subgruppenanalyse nach Ethnie von GSTP1 lle105Val (rs1695) rezessives Modell

Die Ergebnisse der Subgruppenanalyse sind in Abbildung 63, Abbildung 64, Abbildung 65 und Abbildung 66 dargestellt. Die asiatische Subgruppe ergab im rezessiven Modell ein statistisch signifikantes Ergebnis mit einer OR von 1,927 (95 %-CI = 1,111–3,343). Auch wurde im dominanten Modell der krankenhausbasierten Studien eine OR von 1,23 (95 %-CI = 1,03– 1,48) und damit ein statistisch signifikantes Ergebnis berechnet.
5 Diskussion

Das muskelinvasive Harnblasenkarzinom ist die vierthäufigste Tumorlokalisation beim Mann. Frauen erkranken deutlich seltener an Harnblasenkrebs und machen nur jeden vierten Erkrankungsfall aus, weshalb der Tumor bei der Frau nur Platz 14 der Krebsstatistik belegt. In Deutschland erkranken jedes Jahr etwa 30.000 Menschen an einem Urothelkarzinom der Blase, das bei einem Drittel bis Viertel der Patienten bei Erstdiagnose bereits die Harnblasenmuskulatur infiltriert. Das relative 5-Jahres-Überleben liegt zwischen 72 % und 77 %, wobei es mit fortgeschrittenem Stadium stark abfällt und es so bei muskelinvasiven Tumoren nur noch etwa 45 % bis 55 % beträgt. [9, 96]

Das Harnblasenkarzinom zählt mittlerweile zu den teuersten Tumorentitäten der USA und verursacht dort direkte Kosten von über 3,7 Milliarden US\$ pro Jahr. Vor dem Hintergrund der Bevölkerungsdemographie und einem mittleren Erkrankungsalter von 74 bzw. 77 Jahren, ist in den nächsten Jahren mit einem kontinuierlichen Wachstum der Inzidenz und damit auch der gesundheitspolitischen Relevanz zu rechnen. [56, 96]

Das häufigste Erstsymptom ist eine schmerzlose Hämaturie in Kombination mit irritativen Symptomen wie Pollakisurie, Harndrang oder Dysurie. Die Symptome werden häufig bagatellisiert, wodurch die Erkrankung erst verspätet diagnostiziert wird. Goldstandard für die Diagnose ist die Zystoskopie, die nach einer auffälligen Urinzytologie indiziert ist. Neben den invasiven Verfahren – von der transurethralen Resektion des Tumors bis hin zur radikalen Zystektomie – gibt es weitere Optionen im Therapiemanagement, wie Instillationen der Blase mit Immun- oder Chemotherapeutika, systemische (neo-)adjuvante Chemotherapie und Strahlentherapie. [36, 56]

Tabakkonsum und die Exposition gegenüber aromatischen Aminen und polyzyklischen aromatischen Kohlenwasserstoffen stellen die stärksten umweltbezogenen Risikofaktoren dar. Der Einfluss verschiedener SNPs auf das Erkrankungsrisiko wurde in zahlreichen Studien untersucht, die verschiedene, teils widersprüchliche Ergebnisse liefern. Einige Varianten erwiesen sich in GWAS bereits als statistisch signifikant, haben jedoch in ihrer Gesamtheit im heutigen ärztlichen Alltag noch keine Relevanz. Diese Metaanalyse soll daher zu weiteren häufig untersuchten SNPs den aktuellen Stand der Wissenschaft zusammenfassen, um gegebenenfalls weitere Risikovarianten zu verifizieren. [31, 56, 104]

Sechs Polymorphismen wurden demnach auf ihren Einfluss hinsichtlich des Erkrankungsrisikos untersucht: rs25487 (*XRCC1* Arg399Gln), rs13181 (*ERCC2/XPD* Lys751Gln), rs1042522 (*TP53* Arg72Pro), rs1799782 (*XRCC1* Arg194Trp), rs861539 (*XRCC3* Thr241Met) und rs1695 (*GSTP1* Ile105Val).

73

5.1 XRCC1

XRCC1 hilft als Teil der Basen-Exzisions-Reparatur DNA-Einzelstrangbrüche zu reparieren, die durch ionisierende Strahlung oder Alkylanzien entstanden sind. In diesem Reparatursystem wirkt es über seine BRCA1-C-terminalen Domänen (BRCT) als Gerüstprotein zwischen DNA-Ligase III, Polymerase β , und der Poly(-ADP-Ribose)-Polymerase (PARP). Veränderungen des Gens, wie bspw. die Polymorphismen rs25487 und rs1799782, haben möglicherweise einen Einfluss auf die Bindungsstärke der BRCT-Domänen mit anderen Proteinen und führen so zu Funktionseinschränkungen des Proteins XRCC1. [59, 80]

Ob diese Beeinträchtigung einen Einfluss auf die Basen-Exzisions-Reparatur und damit auf die Tumorentstehung durch vermehrte DNA-Schäden hat, wurde in zahlreichen Fall-Kontroll-Studien untersucht.

5.1.1 rs25487 Arg399Gln

Die Metaanalyse von rs25487 beinhaltet insgesamt 24 Studien mit 29 untersuchten Populationen. In keinem der Modelle erreichte die Metaanalyse statistische Signifikanz, auch nicht nach Ausschluss der nicht-HWE-konformen Studien. In der Subgruppenanalyse der afrikanischen Ethnie wurde eine signifikante OR von 4,97 (95 %-CI = 1,89–14,49) berechnet, die jedoch nur bedingte Aussagekraft hat, da sie das Ergebnis einer einzigen Studie widerspiegelt. Ein aussagekräftiges signifikantes Ergebnis wird aber in der asiatischen Subgruppe mit einer OR von 1,24 (95 %-CI = 1,03–1,50) beobachtet.

Bei Betrachtung der Ergebnisse der Einzelstudien, fanden im dominanten Modell nur Mittal et al. (2008) [76], Zhu et al. (2016) [146] und Feki-Tounsi et al. (2017) [26] einen signifikanten Einfluss auf das Erkrankungsrisiko. Die 2017 in Tunesien durchgeführte Studie von Feki-Tounsi et al. [26] berechnete ebenfalls ein signifikantes Ergebnis im rezessiven Modell und führt dort zum signifikanten Zusammenhang in der Subgruppenanalyse der afrikanischen Ethnie. Die Kontrollpopulation dieser Studie erfüllt jedoch das HWE nicht und die Untersuchung basiert somit auf einer nicht repräsentativen Kohorte. Bisher wurde keine weitere Studie aus Afrika publiziert, sodass dieses Ergebnis innerhalb der Ethnie nicht verglichen werden kann. Die Studien Mittal et al. 2008 [76] und Zhu et al. 2016 [146] sind asiatischen Ursprungs und beide Kontrollgruppen erfüllen das HWE. Der dort berichtete entgegengesetzte Einfluss von rs25487 auf das Harnblasenkarzinom kann nicht durch die Charakteristika der untersuchten Populationen erklärt werden, da diese sich weitestgehend ähneln. Auffällig ist jedoch, dass 66,4 % der Fälle von Mittal et al. 2008 [76] eine positive Raucheranamnese haben, wohingegen dies in Zhu et al. 2016 [146] nur bei 35,24 % der Fall ist. Ein weiterer Einflussfaktor könnte die ethnische Herkunft sein, denn in der hier durchgeführten Subgruppenanalyse wird nur grob zwischen drei Ethnien weltweit

unterschieden. Mittal et al. (2008) [76] rekrutierten Fälle aus der Region Lucknow und damit nordindische Probanden, Zhu et al. (2016) [146] hingegen ostasiatische Patienten aus der Provinz Gansu. Die genetischen Unterschiede dieser beiden ethnischen Subgruppen wird ebenfalls deutlich bei Vergleich der Risikoallel-Häufigkeiten. Nach Daten des *"1000Genomes"-*Projekts, tragen 34,4 % der Südasiaten (Inder, Pakistani) aber nur 23,5 % der Ostasiaten die Risikovariante. [80]

Über eine Signifikanz im rezessiven Modell berichten neben Feki-Tounsi et al. (2017) [26] auch Stern et al. (2009) [117] mit Daten der UCLABCS und Chiang et al. (2014) [19]. Die UCLABCS untersucht ganz überwiegend weiße Nordamerikaner (Kaukasier) und kommt zum Ergebnis eines protektiven Effekts des AA-Genotyps, der auch im Gesamtergebnis der kaukasischen Subgruppe zu beobachten ist, aber dort keine statistische Signifikanz erreicht (OR = 0,91 (95 %-CI = 0,81–1,02)). Auffällig ist das mittlere Alter der Kontrollgruppe von 42,4 Jahren, welches von allen Studien das jüngste darstellt und um 22,7 Jahre vom Durchschnittsalter der Fallgruppe abweicht. Bei Vergleich der Ergebnisse der UCLABCS mit denen der HBCS (Stern et al. 2009 [117]) und der kaukasischen Subgruppe von Stern et al. 2001 [114] liegt die Vermutung nahe, dass der protektive Effekt zu einem gewissen Teil auf einer fehlenden Paarung ("matching") der Probanden nach Alter beruhen könnte. Eventuell ergibt sich mit wachsender Zahl der Studien in dieser Ethnie in den nächsten Jahren ein klareres Bild. Chiang et al. (2014) [19] berichten über ein erhöhtes Risiko für Träger des AA-Genotyps und stimmen so mit dem Ergebnis der asiatischen Subgruppenanalyse, wo ebenfalls eine OR > 1 berechnet wurde, überein. Im Vergleich zu einer früher durchgeführten Studie in Taiwan, Hsu et al. 2008 [46], rekrutierten Chiang et al. (2014) [19] ihre Probanden in einer Arsen-belasteten Region im Südwesten Taiwans. Die kanzerogene Wirkung von Arsen ist bei besonders hohen Konzentrationen im Trinkwasser belegt, im niedrigen Konzentrationsbereich aber umstritten [56], könnte jedoch hier als Moderator wirken.

Die gepoolte Analyse von Stern et al. [117] aus dem Jahr 2009 ist beschränkt auf *"non-latino whites"* und kommt in beiden Modellen auf fast identische Ergebnisse zur hier berechneten Subgruppenanalyse für Kaukasier. Die Ergebnisse der Metaanalyse Liu et al. 2006 [67] sind nicht signifikant, weichen aber von den Ergebnissen dieser Metaanalyse ab. Dies ist wahrscheinlich auf das Fehlen von Daten zur SBCS in Liu et al. 2006 [67] zurückzuführen. Zusätzlich wird dort keine Signifikanz in der asiatischen Subgruppe beobachtet, weil einige Studien aus Asien nicht berücksichtigt wurden oder noch nicht veröffentlicht waren. Weiterhin berichten die beiden Metaanalysen aus dem Jahr 2014, Dong et al. [23] und Yang et al. [133] sowie Zhang et al. 2017 [142] über kein signifikantes Ergebnis im dominanten bzw. rezessiven Modell.

Die Ergebnisse dieser Analyse lassen demnach vermuten, dass die Ethnie einen wesentlichen Einfluss auf den Effekt hat, der durch rs25487 hervorgerufen wird. In Zukunft durchgeführte Metaanalysen sollten immer auch eine Subgruppenanalyse nach Ethnie beinhalten, um einen statistisch signifikanten Zusammenhang zu entdecken, der in Zukunft – nach Veröffentlichung weiterer Fall-Kontroll-Studien – eventuell auch noch bei Kaukasiern beobachtet werden kann. Die entgegengesetzten Effekte in den Ethnien werden sich in der Gesamtanalyse immer weitestgehend neutralisieren und implizieren damit fälschlicherweise, dass *XRCC1* Arg399Gln keinen Einfluss auf das Morbiditätsrisiko hat. Mithilfe der gegenwärtigen Datenlage kann dieser Effekt jedoch nur für die asiatische Subgruppe ausreichend gemessen werden.

5.1.2 rs1799782 Arg194Trp

Es wurden 14 Studien, die über 18 verschiedene Studienpopulationen berichten, in die Analyse miteinbezogen. In keinem der Modelle konnte unter Einschluss aller Studien ein signifikantes Ergebnis beobachtet werden. In der Sensitivitätsanalyse erreichte allerdings das rezessive Modell mit einer OR von 1,63 und einem 95 %-CI von 1,004 bis 2,65 knapp statistische Signifikanz. Ebenso konnte in der Subgruppe aller populationsbasierten Studien im rezessiven Modell eine OR von 2,178 (95 %-CI = 1,326–3,578) berechnet werden.

Wang et al. (2010) [122] berichten in ihrer Fall-Kontroll-Studie im dominanten und rezessiven Modell über ein signifikant erhöhtes Erkrankungsrisiko bei Trägern des T-Allels, was von der ebenso in China durchgeführten Studie von Zhu et al. (2016) [146] im rezessiven Modell bestätigt wird. Wiederum eine andere asiatische Studie, Chiang et al. 2014 [19], widerspricht dieser These und schreibt dem T-Allel einen protektiven Effekt im dominanten Modell zu. Dies steht im Gegensatz zum Ergebnis aller anderen Studien der asiatischen Subgruppe. Diese Diskrepanz könnte in den ethnischen Unterschieden zwischen chinesischen Probanden aus der Provinz Gansu und taiwanesischen Probanden bestehen. Weiterhin könnten die Abweichungen durch die Vernachlässigung des Matchings nach anderen Risikofaktoren (v.a. Tabakkonsum) und durch eine hohe Arsenbelastung des Trinkwassers im Südwesten Taiwans erklärt werden. Auffällig ist weiterhin die in Tabelle 21 (s. Anhang) gezeigte Genotypenverteilung der Studie Fontana et al. 2008 [29], die laut Publikation deutlich mehr Studienteilnehmer mit dem selteneren T-Allel beinhaltet. Es ist hier entweder von einem Übertragungsfehler der Autoren oder von einem Selektionsbias der Studienpopulation auszugehen, denn andere europäische Studien berichten regelhaft über eine eher geringe Ausprägung des T-Allels. Dies stimmt auch mit den Daten des ALFA-Projekts überein, das über eine T-Allelfrequenz von 6,3 % bei Kaukasiern berichtet [54]. Bei zusätzlichem Ausschluss dieser Studie in der Sensitivitätsanalyse würde das rezessive Modell die statistische Signifikanz verlieren. Dennoch wurde Fontana et al. 2008 [29] - analog zum Vorgehen in anderen Metaanalysen – mit der Genotypenverteilung der Originalpublikation in

76

alle Analysen eingeschlossen, da in der Literatur kein Hinweis auf mangelhafte Studienqualität zu finden war.

Die Metaanalyse Zhang et al. 2017 [142] kam zu einem ähnlichen Ergebnis, wie hier errechnet, und berichtete über statistische Signifikanz im rezessiven Modell bei vorherigem Ausschluss von nicht-HWE-konformen Studien. Fang et al. (2013) [25] und Li et al. (2013) [59] berichten über einen Zusammenhang von Studien asiatischen Ursprungs, konnten jedoch zum Zeitpunkt der Veröffentlichung noch nicht die Studie von Chiang et al. (2014) [19] berücksichtigen, die das Ergebnis maßgeblich zum Negativen verändert. Stern et al. (2009) [117] untersuchten Studien mit Kaukasiern und kamen ebenfalls zu dem Ergebnis, dass kein Zusammenhang zum Erkrankungsrisiko bei derzeitiger Datenlage vorliegt.

Zum jetzigen Zeitpunkt ist es somit nicht möglich, eine generelle Aussage über den Einfluss von *XRCC1* Arg194Trp auf die Inzidenz von Harnblasenkarzinomen zu machen. Insbesondere im asiatischen Raum wäre eine groß angelegte Fall-Kontroll-Studie von hohem Wert, um das Ergebnis von Chiang et al. (2014) [19] eventuell zu relativieren oder zu bekräftigen.

5.2 ERCC2/XPD

Das von *ERCC2* kodierte Enzym XPD ist ein essenzieller Bestandteil des Transkriptionsfaktors TFIIH. XPD besitzt eine DNA-abhängige Helikase-Aktivität und eröffnet damit den DNA-Doppelstrang im Rahmen der Nukleotid-Exzisions-Reparatur. Anschließend kann der beschädigte Strang entfernt und die DNA repariert werden. Der Polymorphismus Lys751Gln steht im Verdacht, die Interaktion des TFIIH-Komplexes mit seinen regulatorischen Partnern zu beeinflussen. Deren bedeutendster Vertreter p44 verzehnfacht die Helikase-Aktivität von XPD und nimmt damit maßgeblichen Einfluss auf die Nukleotid-Exzisions-Reparatur. [55, 80, 82]

In mehreren Fall-Kontroll-Studien wurde untersucht, ob dieser Einfluss von rs13181 auch zu einer signifikant höheren Inzidenz von Harnblasenkarzinomen bei Trägern des Risikoallels führt.

5.2.1 Rs13181 Lys751Gln

Durch die Literaturrecherche stand eine Zahl von 22 Fall-Kontroll-Studien mit 28 untersuchten Populationen für die Analyse zur Verfügung. In keinem untersuchten Modell konnte in der Metaanalyse ein statistisch signifikanter Zusammenhang berechnet werden. In den Subgruppenanalysen bestätigte sich diese Beobachtung.

Bei Betrachtung der Ergebnisse der Einzelstudien fällt auf, dass im rezessiven Modell keine Studie statistische Signifikanz zeigte, im dominanten Modell jedoch vier Studien (Shao et al. 2007 [105], Gao et al. 2010 [34], Sobti et al. 2012 [108], Savina et al. 2016 [103]) über ein erhöhtes Risiko für Träger des C-Allels berichten. Shao et al. (2007) [105] untersuchten eine Population aus dem Südosten Chinas und rekrutierten dafür deutlich mehr Raucher für die Fall- als für die Kontrollgruppe (58,6 % vs. 39,6 %), was dazu führt, dass die OR besonders hoch ausfällt. Nach Adjustierung der Variablen Alter, Geschlecht, Raucher- und Alkoholstatus blieb die OR allerdings weiter signifikant. Die Studien Gao et al. 2010 [34] und Sobti et al. 2012 [108] erfüllen beide das HWE für die Kontrollpopulation nicht und sind somit nicht repräsentativ für die Gesamtpopulation. Die Studienpopulation von Savina et al. 2016 [103] unterscheidet sich ebenfalls stark im Anteil der Raucher. So sind lediglich 31 % der Kontrollen Raucher, wohingegen 68 % der Tumorpatienten eine positive Raucheranamnese haben. Die Ergebnisse dieser Studie sind damit nur eingeschränkt aussagekräftig. Wie schon bei rs1799782, ist außerdem die Genotypenverteilung der Studie Fontana et al. 2008 [29] auffällig, mit einer umgekehrten Allelfrequenz im Vergleich zu den anderen untersuchten Studien. Wieder muss hier von einem Übertragungsfehler der Autoren oder einem Selektionsbias der Studienpopulation ausgegangen werden. Da jedoch das Vertauschen der Genotypen nichts am Ergebnis ändert und der Ausschluss dieser Studie in der Sensitivitätsanalyse auch keinen nennenswerten Effekt auf den Gesamtschätzer hätte, wurden die Daten, wie auch in anderen Metaanalysen gehandhabt, entsprechend der Originalpublikation übertragen.

Li et al. (2014) [60] kommen in ihrer Metaanalyse zu dem Schluss, dass in einigen Modellen statistische Signifikanz vorliegt, das CI jedoch nur knapp die eins nicht schneidet und mit jeder weiter hinzukommenden Studie die Signifikanz wieder verschwinden kann. Die Studie berücksichtigt keine Daten zur LABCS, SHBCS und UCLABCS. Die gepoolte Analyse Stern et al. 2009 [117] berichtet ebenfalls über ein signifikantes Ergebnis im rezessiven Modell, beschränkt die Analyse allerdings auf Kaukasier. Das CI verbreitert sich und schneidet wiederum die eins, wenn zusätzlich die SHBCS und damit asiatische Probanden berücksichtigt werden. Die von Wildenberg (2017) [126] berechneten Daten konnten in der hier durchgeführten Metaanalyse unter Einschluss von zwei neueren Studien bestätigt werden. Interessant ist auch die dort durchgeführte Subgruppenanalyse, die nur Studien mit ähnlichem Raucheranteil in Fall- und Kontrollgruppe beinhaltet und ebenfalls zu keinem statistisch signifikanten Ergebnis kommt.

Der Einfluss von rs13181 kann folglich mithilfe der derzeitigen Datenlage nicht gezeigt werden. Die Ergebnisse präsentieren sich heterogen und sind wahrscheinlich stark abhängig von Einflussfaktoren wie dem Tabakkonsum. Ein Matching der untersuchten Fall-Kontroll-Gruppen nach dem Risikofaktor Rauchen könnte in Zukunft helfen, ein klares Bild zu schaffen.

5.3 *TP53*

Das Tumorsuppressorprotein p53 reguliert die Expression von bedeutsamen Genen der Zelle und hat dadurch Einfluss auf Apoptose, Seneszenz, Zellzyklus-Arrest, DNA-Reparatur und Stoffwechselwege. Es erkennt irreversible DNA-Schäden und setzt Kaskaden über bspw. p21 und MDM2 in Gang, die Einfluss auf den Zellzyklus nehmen. Der Polymorphismus rs1042522 beeinflusst wahrscheinlich eine SH3-Domäne von p53 und hat Einfluss darauf, wie effektiv die Apoptose ausgelöst werden kann. [80, 83]

Der Zusammenhang dieses Polymorphismus mit dem Erkrankungsrisiko für Harnblasenkrebs wurde in einigen Fall-Kontroll-Studien untersucht.

5.3.1 rs1042522 Arg72Pro

Für diese Metaanalyse konnten 23 Studien als geeignet identifiziert werden. Wurden alle Studien eingeschlossen, so ergab sich kein signifikantes Ergebnis. Nach Ausschluss von sechs Studien, die nicht das HWE erfüllen, wurde in der Sensitivitätsanalyse ein statistisch signifikanter Wert von 1,29 (95 %-CI = 1,10–1,52) berechnet. Außerdem erreichte die Subgruppe aller populationsbasierten Studien im dominanten Modell Signifikanz (OR = 0,699 (95 %-CI = 0,501–0,975)).

Insgesamt berichten drei Studien im dominanten Modell und fünf Studien im rezessiven Modell über statistische Signifikanz. Drei dieser Studien, Soulitzis et al. 2002 [110], Pandith et al. 2010 [84] und Lin et al. 2013 [64], erfüllen das HWE nicht und können damit die Vergleichbarkeit der untersuchten Gruppen nicht gewährleisten. Die asiatischen Studien geben insgesamt ein heterogenes Bild ab. Srivastava et al. (2010) [111] berichten über einen statistisch signifikant protektiven Effekt des CC-Genotyps bei nordindischen Probanden im Widerspruch zu anderen, ebenfalls krankenhausbasierten Studien aus dem ostasiatischen Raum (Zhang et al. 2011 [140]: China, Kuroda et al. 2003 [53]: Japan). Gegebenenfalls sind hier ethnische Unterschiede ausschlaggebend, denn Daten des *"1000Genomes"*-Projekts zeigen Differenzen in der Risikoallelfrequenz von Südasiaten (Inder) (50,8 %) und Ostasiaten (Chinesen, Japaner) (58,6 %) [54]. Warum allerdings die Studie Hosen et al. 2015 [45] aus Bangladesch ebenfalls über einen pathologischen Effekt berichtet, kann mit keinem der vorliegenden Studiencharakteristika erklärt werden.

Liu et al. (2013) [66] und Yang et al. (2013) [132] berichten in ihren Metaanalysen über ein signifikantes Risiko der asiatischen Subgruppe für Harnblasenkrebs im dominanten Modell unter Einschluss einer weiteren Studie, die in dieser Arbeit als Populationsdublette ausgeschlossen wurde. Zu einem signifikanten Ergebnis kommen auch Zhang et al. (2018) [143] im dominanten beziehungsweise Wildenberg (2017) [126] in beiden untersuchten Modellen. Ebenfalls wurde dort jedoch diese zusätzliche Studie (Lin et al. 2011 [62]) in die Berechnungen eingeschlossen, obwohl bereits die eingeschlossene Publikation Lin et al. 2012 [63] die gleiche Population betrachtet, die 2012 jedoch noch um weitere Studienteilnehmer ergänzt wurde. So sind die dort berechneten gepoolten ORs durch die zweifache Zählung dieser Population verfälscht. Die Tendenz eines protektiven Effekts für Kaukasier und eines pathologischen Effekts auf Asiaten ist jedoch ebenfalls in den hier durchgeführten

Berechnungen zu erkennen. Dies steht wahrscheinlich auch in Zusammenhang mit der unterschiedlichen C-Allelfrequenz in diesen Ethnien.

Die Wirkung des Polymorphismus *TP53* Arg72Pro ist somit abhängig von der jeweiligen Ethnie der Studienpopulation. Der aktuelle Stand der Literatur lässt einen pathologischen Effekt auf Asiaten vermuten, ist jedoch noch nicht mit ausreichend qualitativ hochwertigen Daten untermauert, sodass in den Berechnungen dieser Arbeit kein statistisch signifikanter Wert berechnet wurde.

5.4 XRCC3

XRCC3 ist Teil der RecA/Rad51-Proteinfamilie und wirkt im Rahmen der homologen Rekombination an der Reparatur von Doppelstrangbrüchen der DNA mit. Es ist an der Bildung des CX3-Komplexes beteiligt, der die Rad51-Aktivität reguliert und damit Einfluss darauf nimmt, wie gut identische Sequenzen im Schwesterchromatid gefunden werden. Träger des *XRCC3* Met241-Allels weisen vermehrte DNA-Addukte auf, besitzen also eine verminderte Fähigkeit, Schäden der DNA zu reparieren. Eine Deletion von *XRCC3* resultiert sogar in einer 25-fachen Abnahme der homologen Rekombination. [20, 43, 80, 118, 136]

5.4.1 rs861539 Thr241Met

Für die quantitative Auswertung dieses Polymorphismus standen Daten aus 18 Publikationen mit 22 untersuchten Populationen zur Verfügung. Keines der verwendeten statistischen Modelle konnte mithilfe der derzeitigen Datenlage ein signifikantes Ergebnis liefern und somit den Zusammenhang von rs861539 mit dem Erkrankungsrisiko für Harnblasenkrebs darstellen. In der Subgruppenanalyse zeigt sich für Kaukasier keine Tendenz. Die OR für asiatische Personen tendiert in den Bereich > 1, beruht aber auf eher kleinen Studien mit heterogenen Ergebnissen.

Bei Betrachtung der Einzelstudienergebnisse zeigen sich fünf Studien im dominanten Modell signifikant und zwei Studien im rezessiven, wobei jedoch zu gleichen Teilen über protektive sowie pathologische Einflüsse berichtet wird. Narter et al. 2009 [79] zeigt sich in beiden Modellen signifikant, erfüllt jedoch das HWE für die Kontrollpopulation nicht. Drei Studien aus China, Hao et al. 2008 [39], Yang et al. 2009 [134] und Zhu et al. 2012 [145], berichten in jeweils einem Modell über eine signifikante OR > 1, Stern et al. 2009 [117] unter Verwendung der Daten der SHBCS jedoch über eine OR < 1. Shen et al. (2003) [106] präsentieren Daten der Brescia Bladder Cancer Study, bei der nur italienische Männer Teil der Studienpopulation waren und kommen zu einem signifikanten Ergebnis (OR = 0,62 (95 %-CI = 0,41–0,95)). Diese Population ist damit vergleichbar mit Fontana et al. 2008 [29], einer französischen Studie, die ebenso lediglich männliche Kaukasier als Teilnehmer zulässt. Fontana et al. 2008 [29] umfasst jedoch nur 96 Studienteilnehmer, was ein besonders breites CI zur Folge hat.

Dadurch ist es nicht möglich, solch kleine Effekte zu messen. Bei Betrachtung der Genotypenverteilung (s. Anhang Tabelle 22) ist diese Studie, wie auch schon bei rs1799782 und rs13181, ebenfalls auffällig mit stark abweichenden Allelfrequenzen. Ein Ausschluss dieser Studie im Rahmen der Sensitivitätsanalyse hätte keinen Effekt auf die gepoolte OR. Läge ein Übertragungsfehler vor, würde sich die OR dieser Studie bei Vertauschen nicht ändern. Dies veranlasste dazu, Fontana et al. 2008 [29] in sämtliche Analysen einzuschließen.

Zhang et al. (2017) [142] kommen im Rahmen ihrer Metaanalyse ebenfalls zum Ergebnis, dass kein statistisch signifikanter Effekt für Harnblasenkarzinome vorliegt. He et al. (2013) [42], Peng et al. (2014) [87] und Ma et al. (2014) [70] berichten wiederum von statistisch signifikanten Werten für den Polymorphismus, besonders bei Betrachtung der asiatischen Subgruppe. Diese Metaanalysen sind jedoch nicht mehr auf dem aktuellen Stand der Forschung und umfassen nicht alle Studien, die hier eingeschlossen wurden. Weiterhin wird auch hier die Heterogenität der vorliegenden Daten erwähnt, die eine sinnvolle quantitative Auswertung erschwert.

Es scheint demnach, dass rs861539 keinen Einfluss auf das Tumorrisiko hat. Allerdings sind die Studienergebnisse heterogen und es braucht sicher weitere groß angelegte Studien, die den Polymorphismus in einer klar definierten Population untersuchen. Damit könnte eine abschließende Aussage getroffen werden, insbesondere um den Einfluss auf asiatische Populationen zu klären. Weiterhin sollten die Ethnien "südasiatisch" und "ostasiatisch" bei dieser Variante in Zukunft getrennt betrachtet werden, um den erheblich abweichenden Risikoallelfrequenzen von 24,6 % bzw. 7,3 % gerecht zu werden [54].

5.5 GSTP1

GSTP1 und die anderen Vertreter der Glutathion S-Transferasen katalysieren die Konjugation von Glutathion an elektrophile hydrophobe Substanzen. Diese sind toxisch gegenüber der körpereigenen DNA und können so leichter ausgeschieden werden. Der Polymorphismus rs1695 befindet sich direkt in der elektrophilen Substratbindungsstelle und beeinflusst damit die Bindungseigenschaften und den Umsatz des Enzyms. [80, 81, 93]

Durch die eingeschränkte Funktionalität fallen vermehrt DNA-toxische Stoffe in der Zelle an, die Strangbrüche verursachen. *GSTP1* IIe105Val wurde deshalb in zahlreichen Studien im Zusammenhang mit der Erkrankungshäufigkeit für verschiedene Tumorarten untersucht.

5.5.1 rs1695 lle105Val

27 Studien konnten in der Literaturrecherche als geeignet identifiziert werden und wurden in der Metaanalyse zusammengefasst. Das dominante Modell zeigt mit einer OR von 1,12 (95 %-CI = 0,98-1,28) kein statistisch signifikantes Ergebnis, aber das rezessive Modell mit einer OR von 1,340 (95 %-CI = 1,038-1,730) ist signifikant. Werden allerdings im Rahmen der

Sensitivitätsanalyse nur die Studien mit erfülltem HWE betrachtet, also unter Ausschluss der Studien Katoh et al. 1999 [50], Srivastava et al. 2005 [112] und Safarinejad et al. 2013 [99], so verschiebt sich der Gesamtschätzer in Richtung eins und das Modell ergibt keinen signifikanten Wert. Die ethnische Subgruppenanalyse zeigt, dass insbesondere über einen Effekt in asiatischen Populationen berichtet wurde. Die asiatische Subgruppenanalyse ergab einen signifikanten Wert von 1,927 (95 %-CI = 1,111–3,343). Dieses Ergebnis erklärt, warum die Sensitivitätsanalyse unter Ausschluss der drei oben genannten ausschließlich asiatischen Studien, im Gegensatz zur Metaanalyse unter Einschluss aller Studien, kein statistisch signifikantes Ergebnis zeigt. Weiterhin ergab die Gruppe aller krankenhausbasierten Studien im dominanten Modell ein signifikantes Ergebnis (OR = 1,23 (95 %-CI = 1,03–1,48)).

Im dominanten Modell berichten acht Studien über ein statistisch signifikantes Ergebnis, sechs davon mit einer OR > 1. Nur Hsu et al. (2008) [46] und Pradubkaew et al. (2009) [89] berichten in ihren untersuchten Populationen über einen protektiven Effekt, jedoch liegen keine Charakteristika der Studienteilnehmer vor, die diese Abweichung gegenüber den übrigen Studien erklären könnte. Weiterhin gibt es keine vergleichbaren Studien aus dem südostasiatischen Raum. Die Metaanalyse des rezessiven Modells enthält fünf Studien mit signifikanten Ergebnissen, drei davon aus der asiatischen Subgruppe. Bis auf Cao et al. 2005 [14] wurden nur Ergebnisse publiziert, die den GG-Genotyp als Risikovariante vermuten. Cao et al. (2005) [14] nutzen als Kontrollgruppe gesunde Blutspender, die als Stichprobenkohorte nicht repräsentativ für die Fallgruppe ist, bestehend aus neudiagnostizierten oder zystektomierten Blasenkarzinom-Patienten. Trotz des Matchings der Teilnehmer nach Alter, Geschlecht und Ethnie sind daher die Gruppen nicht vergleichbar und die Ergebnisse nur bedingt generalisierbar.

Die vor kurzem veröffentlichte Metaanalyse von Song et al. (2019) [109] kommt zum gleichen Ergebnis, wie hier berechnet. Val105 wird auch dort als Risikoallel bezeichnet, das insbesondere in asiatischen Populationen die Morbidität erhöht. Yu et al. (2016) [137] und Zhang et al. (2016) [141] kommen zu dem Ergebnis, dass kein Zusammenhang zwischen rs1695 und Harnblasenkarzinomen besteht. In einer Fall-Kontroll-Studie (123 Fälle, 757 Kontrollen) im Rahmen der European Prospective Investigation into Cancer and Nutrition Cohort (EPIC) berichten Vineis et al. (2007) [121] ebenfalls über keinen Zusammenhang zwischen GSTP1 Ile105Val und Harnblasenkarzinomen.

Die Metaanalyse für rs1695 kommt zu dem Ergebnis, dass unter Berücksichtigung der derzeitigen Datenlage, *GSTP1* IIe105Val ein statistisch signifikanter Risikofaktor für die Inzidenz von Harnblasenkarzinomen ist. Es muss jedoch erwähnt werden, dass der beobachtete Effekt in der asiatischen Subgruppe aus vielen Studien mit wenigen Teilnehmern

82

berechnet wurde und es insbesondere im asiatischen Raum hochqualitative Studien mit einer großen Teilnehmerzahl braucht, um dieses Ergebnis zu verifizieren.

5.6 Einschränkungen der Metaanalyse

Abschließend müssen noch Einschränkungen dieser Metaanalyse berücksichtigt werden. Erstens wurden die Literaturrecherche und anschließende Entscheidung über Ein- und Ausschluss der Studien von nur einer Person durchgeführt. Möglicherweise wurden Studien demnach nicht berücksichtigt. Es fehlt die Kontrolle durch eine zweite Person, wodurch die Auswahl der Studien subjektiv ist und das Vorliegen eines Selektionsbias nicht ausgeschlossen werden kann. Zweitens wurden nur Studien in englischer und deutscher Sprache eingeschlossen. Ob Publikationen anderer Sprachen das Ergebnis verändern würden, ist nicht abzuschätzen. Drittens wurden nur Veröffentlichungen über eine einzige Literaturdatenbank (PubMed) gesucht und durch Studien ergänzt, die bereits früher Teil einer Metaanalyse waren. Dies kann dazu führen, dass insbesondere weniger neue Studien berücksichtigt werden, weil nicht alle auf PubMed verfügbar sind. Ob dies einen Einfluss auf das Gesamtergebnis hat, kann überprüft werden, indem die Literaturrecherche auf alle gängigen Datenbanken ausgeweitet wird. Viertens wurden Genotypdaten aus älteren Metaanalysen als Berechnungsgrundlage verwendet, wenn über die Zugänge der BSB und der SULB der Volltext einer Publikation nicht zugänglich war. Über diesen Weg können bestehende Übertragungsfehler nicht nachvollzogen werden.

Fünftens ist hervorzuheben, dass die untersuchten Populationen nicht weiter in Untergruppen aufgeteilt wurden, um beispielsweise den Einfluss des Tumorstadiums, des Geschlechts, des Alters oder des Raucherstatus zu untersuchen. Die vorliegenden Daten sind nur unzureichend homogen publiziert und es werden verschiedene Einteilungen verwendet, sodass keine sinnvolle einheitliche Unterteilung möglich ist. Besonders der Tabakkonsum der Studienpopulation hat erheblichen Einfluss auf die OR und sollte in Fall-Kontroll-Studien immer erfasst werden. Ebenso ist in den teils erheblich unterschiedlichen Allelfrequenzen erkennbar, dass die Aufteilung in drei große Ethnien nicht ausreichend ist. Weiterhin sind die Kategorien "krankenhausbasiert" und "populationsbasiert" nur unscharf, wobei einige Details des Studiendesigns nicht berücksichtigt werden. Von großer Bedeutung wäre es daher, auch die Matching-Kriterien zu erfassen und den genauen Vorgang der Probandenselektion nachzuvollziehen.

Sechstens kann trotz Auswertung der Funnel-Plots und Durchführung der Egger-Tests ein Publikationsbias nie sicher ausgeschlossen werden. Es ist somit möglich, dass Fall-Kontroll-Serien existieren, deren Daten nie veröffentlicht wurden. Beispielsweise wird in Kellen et al. 2007 [51] eine in Deutschland durchgeführte Fall-Kontroll-Studie von Golka et al. erwähnt, deren Ergebnisse nicht publiziert wurden.

Zuletzt bleibt noch eine Einschränkung der statistischen Auswertung. Es wurden zu jedem SNP nur das dominante (aa + Aa vs. AA) und rezessive (aa vs. Aa + AA) Modell berechnet. Andere Modelle könnten weitere Zusammenhänge aufdecken.

5.7 Schlusswort

Abschließend ist zu sagen, dass Träger des GG-Genotyps des Polymorphismus rs1695 (*GSTP1* IIe105Val) ein signifikant erhöhtes Risiko haben, an einem Harnblasenkarzinom zu erkranken. Dies gilt insbesondere für Personen asiatischer Abstammung. Für drei weitere Polymorphismen (rs25487 (*XRCC1* Arg399Gln), rs1042522 (*TP53* Arg72Pro), rs1799782 (*XRCC1* Arg194Trp)) konnten in einzelnen Modellen der Subgruppenanalyse oder Sensitivitätsanalyse signifikante Werte erzielt werden. Für rs13181 (*ERCC2/XPD* Lys751Gln) und rs861539 (*XRCC3* Thr241Met) konnte kein statistisch signifikantes Risiko nachgewiesen werden.

Die Metaanalyse bekräftigt die hohe Relevanz von ethnischen Subgruppenanalysen, ohne die statistisch signifikante Effekte einzelner Ethnien unter Umständen in der Gesamtanalyse maskiert werden. Die Subgruppenanalyse nach Kontrollpopulation konnte kein einheitliches Bild über die untersuchten SNPs hinweg ergründen. Welche Methode in Studien letztlich Verwendung findet, ist von unterschiedlichen Faktoren abhängig. Ein wesentlicher Aspekt des Studiendesigns ist das konsequente Matching nach mehreren Variablen sowie die mögliche Vermeidung eines Selektionsbias bei Auswahl der Studienpopulation.

Es braucht in Zukunft weitere groß angelegte Fall-Kontroll-Studien mit hoher Studienqualität, um die berechneten Ergebnisse zu verifizieren und eine gesicherte Aussage treffen zu können. Besonderes Augenmerk sollte hierbei auf dem Einfluss verschiedener Ethnien liegen. Zusätzlich sind Gen-Umwelt-Interaktionen ein Faktor, der nicht zu vernachlässigen ist. Hier muss besonders der Tabakkonsum der untersuchten Population berücksichtigt werden.

Mit dem rapiden Preisverfall von Sequenzierungsverfahren werden GWAS in Zukunft eine immer größere Rolle spielen. Essenziell für die Identifikation von Risikovarianten sind dabei Replikationsstudien, die die gefundenen SNPs und deren Einfluss in unterschiedlichen Populationen bestätigen oder widerlegen. Doch auch nach Bestätigung von Varianten als statistisch signifikante Risikofaktoren, muss in Zukunft abgeschätzt werden, ob diese auch klinische Relevanz haben.

Insgesamt konnte mit dieser Arbeit der Evidenzgrad für die genetische Prädisposition des Harnblasenkarzinoms erhöht und dem Stand der aktuellen Forschung angepasst werden. Durch die Identifizierung und Verifizierung weiterer Risikovarianten wird in Zukunft die Erstellung genetischer Profile erhebliche Relevanz für den klinischen Alltag dieser multifaktoriellen Erkrankung bekommen. Damit leistet diese Metaanalyse einen Beitrag zur Einführung von genetischen Risikoprofilen zur Prävention des Harnblasenkarzinoms.

Polymorphismus	OR Dominantes Modell	OR rezessives Modell	Kriterium Sensitivitäts-/Subgruppenanalyse		OR Dominantes Modell	OR Rezessives Modell
			HWE		1,02 (0,96–1,09)	1,03 (0,93–1,14)
				Kaukasisch	1,03 (0,95–1,11)	0,91 (0,81–1,02)
XRCC1 Arg399Gln	1 00 (0 91-1 09)	1.04 (0.90-1.18)	Ethnie	Asiatisch	1,02 (0,86–1,22)	1,24 (1,03–1,50)
(rs25487)	1,00 (0,91–1,09)	1,04 (0,90–1,18)		Afrikanisch	0,84 (0,13–5,41)	4,97 (1,89–14,49)
			Kontrollon	НВ	0,92 (0,83–1,03)	0,98 (0,77–1,25)
			Kontrollen	PB	1,14 (0,93–1,39)	1,18 (0,98–1,41)
				HWE	1,04 (0,97–1,11)	1,078 (0,977–1,190)
				Kaukasisch	1,11 (0,98–1,26)	1,100 (0,982–1,231)
ERCC2/APD	1 08 (0 97_1 19)	1 094 (0 995-1 202)	Ethnie	Asiatisch	1,10 (0,89–1,37)	1,110 (0,866–1,422)
(rs13181)	1,08 (0,97–1,19)	1,094 (0,995-1,203)		Afrikanisch	0,75 (0,55–1,03)	0,973 (0,655–1,447)
(1313101)			Kontrollen	НВ	1,09 (0,94–1,27)	1,063 (0,926–1,221)
			Kontronen	РВ	0,98 (0,83–1,16)	1,006 (0,819–1,235)
				HWE	1,06 (0,94–1,19)	1,29 (1,10–1,52)
				Kaukasisch	0,819 (0,623–1,077)	0,853 (0,682–1,065)
TP53 Arg72Pro	1,01 (0,87–1,16)	1,13 (0,92–1,39)	Ethnie	Asiatisch	1,126 (0,947–1,339)	1,280 (0,993–1,649)
(rs1042522)				Afrikanisch	0,766 (0,282–2,060)	1,091 (0,118–13,753)
			Kontrollen	НВ	1,160 (1,000–1,347)	1,184 (0,918–1,526)
			Kontronen	РВ	0,699 (0,501–0,975)	1,046 (0,656–1,669)
		1,253 (0,990–1,586)	HWE		0,955 (0,863–1,058)	1,63 (1,00–2,65)
				Kaukasisch	0,955 (0,838–1,088)	1,254 (0,690–2,278)
<i>XRCC1</i> Arg194Trp (rs1799782)	0 977 (0 887–1 077)		Ethnie	Asiatisch	1,099 (0,838–1,441)	1,441 (0,831–2,500)
	0,077 (0,007 1,077)			Afrikanisch	0,185 (0,003–2,804)	-
			Kontrollen	НВ	0,956 (0,745–1,227)	1,296 (0,733–2,291)
			Kontronen	РВ	1,126 (0,903–1,403)	2,178 (1,326–3,578)
				HWE	1,04 (0,94–1,15)	1,10 (0,99–1,21)
XRCC3 Thr2/11Met			Fthnie	Kaukasisch	1,00 (0,88–1,14)	1,03 (0,89–1,18)
(rs861539)	1,03 (0,92–1,15)	1,07 (0,97–1,19)	Lunne	Asiatisch	1,12 (0,88–1,41)	1,35 (0,85–2,16)
· · · /			Kontrollon	НВ	1,06 (0,92–1,21)	1,07 (0,94–1,22)
			Kontrollen	PB	1,04 (0,80–1,35)	0,95 (0,74–1,23)
				HWE	1,00 (0,90–1,12)	1,159 (0,936–1,434)
				Kaukasisch	1,04 (0,92–1,19)	1,063 (0,840–1,344)
GSTP1 lle105Val	1 12 (0 08 1 28)	1 240 (1 028-1 720)	Ethnie	Asiatisch	1,23 (0,88–1,73)	1,927 (1,111–3,343)
(rs1695)	1,12 (0,30-1,20)	1,340 (1,030-1,730)		Afrikanisch	0,93 (0,47–1,84)	2,791 (0,917–9,451)
			Kontrollon	НВ	1,23 (1,03–1,48)	1,396 (0,946–2,060)
			KUITUUIEII	PB	0,95 (0,79–1,14)	1,234 (0,888–1,714)

 Tabelle 17: Übersicht über die Ergebnisse der Metaanalyse, Odds Ratio (95%-Konfidenzintervall)

6 Abkürzungsverzeichnis

A	Adenin
ALFA	Allele Frequency Aggregator
Arg	Arginin
С	Cytosin
CI	Konfidenzintervall
СТ	Computertomographisch, Computertomographie
DNA	Desoxyribonukleinsäure
EEBCS	Eastern European Bladder Cancer Study
ERCC2	Excision repair 2, TFIIH core complex helicase subunit
G	Guanin
Gln	Glutamin
GSTP1	Glutathion S-Transferase Pi 1
GWAS	Genomweite Assoziationsstudie
НВ	Hospital-Based
HBCS	Houston Bladder Cancer Study
HWE	Hardy-Weinberg-Equilibrium
ICD	International Statistical Classification of Diseases
lle	Isoleucin
k. A.	Keine Angabe
LABCS	Los Angeles Bladder Cancer Study
Lys	Lysin
MALDI-TOF	Matrix-Assisted Laser Desorption/Ionization – Time Of Flight
Met	Methionin
NAT2	N-Acetyltransferase 2
NHBCS	New Hampshire Bladder Cancer Study
OR	Odds Ratio
PB	Population-Based
PCR-RFLP	Polymerase Chain Reaction – Restriction Fragment Length Polymorphism
PCR-SSCP	Polymerase Chain Reaction – Single Strand Conformation Polymorphism
Pro	Prolin
S	schwarz
S.	siehe
SBCS	Spanish Bladder Cancer Study
SHBCS	Shanghai Bladder Cancer Study
SNP	Einzelnukleotid-Polymorphismus, Single Nucleotide Polymorphism
Т	Thymin
TBCS	Torino Bladder Cancer Study
TNM	Klassifikation maligner Tumoren (Tumor, Nodus, Metastasen)
TP53	Tumor protein 53
Trp	Tryptophan
UCLABCS	University of California Los Angeles Bladder Cancer Study
UICC	Union internationale contre le cancer
Val	Valin
W	weiß
XPD	Xeroderma pigmentosum group D
XRCC1	X-ray repair cross complementing 1
XRCC3	X-ray repair cross complementing 3

7 Literatur

- Ahmed T, Nawaz S, Noreen R, Bangash KS, Rauf A, Younis M, Anwar K, Khawaja MA, Azam M, Qureshi AA, Akhter S, Kiemeney LA, Qamar R, Ali SHB (2018) A 3' untranslated region polymorphism rs2304277 in the DNA repair pathway gene OGG1 is a novel risk modulator for urothelial bladder carcinoma. Ann Hum Genet 82(2):74–87. doi:10.1111/ahg.12225
- Akhmadishina LZ, Giliazova IR, Kutlyeva LR, Korytina GF, Kochetova OV, Urmantsev MF, Izmaĭlova SM, Izmaĭlov AA, Kunsbaeva GB, Zagidullin AA, Haliullin AA, Pavlov VN, Viktorova TV, Husnutdinova EK (2014) DNA repair XRCC1, XPD genes polymorphism as associated with the development of bladder cancer and renal cell carcinoma. Genetika 50(4):481–490
- Altayli E, Gunes S, Yilmaz AF, Goktas S, Bek Y (2009) CYP1A2, CYP2D6, GSTM1, GSTP1, and GSTT1 gene polymorphisms in patients with bladder cancer in a Turkish population. Int Urol Nephrol 41(2):259–266. doi:10.1007/s11255-008-9444-6
- 4. Altunkol A, Savaş M, Dilmeç F, Utanğaç MM, Abat D, Gümüş K, Karlıdağ İ, Yeni E (2018) Detection of CYP1A1 and GSTP1 gene polymorphisms in bladder cancer patients in a Turkish population using a polymerase chain reaction-restriction fragment length polymorphism method. Turk J Urol 44(2):125–131. doi:10.5152/tud.2018.23571
- Andrew AS, Karagas MR, Nelson HH, Guarrera S, Polidoro S, Gamberini S, Sacerdote C, Moore JH, Kelsey KT, Demidenko E, Vineis P, Matullo G (2008) DNA repair polymorphisms modify bladder cancer risk: a multi-factor analytic strategy. Hum Hered 65(2):105–118. doi:10.1159/000108942
- Arizono K, Osada Y, Kuroda Y (2008) DNA repair gene hOGG1 codon 326 and XRCC1 codon 399 polymorphisms and bladder cancer risk in a Japanese population. Jpn J Clin Oncol 38(3):186–191. doi:10.1093/jjco/hym176
- Avirmed S, Wang B-S, Selenge B, Sanjaajamts A, Ganbat B, Erdenebileg U, Purevsuren M, Jigjidsuren S, Batmunkh M, Lee Y-J (2017) Association between MDM2-SNP309 and p53R72P polymorphisms and the risk of bladder cancer in the Mongolian population. Mol Clin Oncol 7(3):412–420. doi:10.3892/mco.2017.1317
- Babjuk M, Burger M, Compérat E, Gontero P, Mostafid AH, Palou J, van Rhijn BWG, Rouprêt M, Shariat SF, Sylvester R, Zigeuner R (2020) European Association of Urology Guidelines. 2020 Edition. EAU Guidelines on Non-muscle-invasive Bladder Cancer (TaT1 and CIS) 2020, presented at the EAU Annual Congress Amsterdam 2020. European Association of Urology Guidelines Office
- Barnes B, Kraywinkel K, Nowossadeck E, Schönfeld I, Starker A, Wienecke A, Wolf U (2016) Berichts zum Krebsgeschehen in Deutschland 2016. RKI-Bib1 (Robert Koch-Institut)

- 10. Biroš E, Kalina I, Salagovic J, Habalová V, Hriv ák M, Valanský L (2000) p53 single nucleotide polymorphisms and bladder cancer. Neoplasma 47(5):303–306
- Boice JD, Day NE, Andersen A, Brinton LA, Brown R, Choi NW, Clarke EA, Coleman MP, Curtis RE, Flannery JT (1985) Second cancers following radiation treatment for cervical cancer. An international collaboration among cancer registries. J Natl Cancer Inst 74(5):955–975. doi:10.1093/jnci/74.5.955
- 12. Brierley J, Gospodarowicz MK, Wittekind C (Hrsg) (2017) TNM classification of malignant tumours. John Wiley & Sons Inc, Chichester, West Sussex, UK, Hoboken, NJ
- Broberg K, Björk J, Paulsson K, Höglund M, Albin M (2005) Constitutional short telomeres are strong genetic susceptibility markers for bladder cancer. Carcinogenesis 26(7):1263– 1271. doi:10.1093/carcin/bgi063
- Cao W, Cai L, Rao J-Y, Pantuck A, Lu M-L, Dalbagni G, Reuter V, Scher H, Cordon-Cardo C, Figlin RA, Belldegrun A, Zhang Z-f (2005) Tobacco smoking, GSTP1 polymorphism, and bladder carcinoma. Cancer 104(11):2400–2408. doi:10.1002/cncr.21446
- Chang C-H, Wang R-F, Tsai R-Y, Wu H-C, Wang C-H, Tsai C-W, Chang C-L, Tsou Y-A, Liu C-S, Bau D-T (2009) Significant association of XPD codon 312 single nucleotide polymorphism with bladder cancer susceptibility in Taiwan. Anticancer Res 29(10):3903– 3907
- Chaturvedi AK, Engels EA, Gilbert ES, Chen BE, Storm H, Lynch CF, Hall P, Langmark F, Pukkala E, Kaijser M, Andersson M, Fosså SD, Joensuu H, Boice JD, Kleinerman RA, Travis LB (2007) Second cancers among 104,760 survivors of cervical cancer: evaluation of long-term risk. J Natl Cancer Inst 99(21):1634–1643. doi:10.1093/jnci/djm201
- 17. Chen Y-C, Xu L, Guo Y-LL, Su H-JJ, Smith TJ, Ryan LM, Lee M-S, Christiani DC (2004) Polymorphisms in GSTT1 and p53 and urinary transitional cell carcinoma in south-western Taiwan: a preliminary study. Biomarkers 9(4-5):386–394. doi:10.1080/13547500400010122
- Chen WC, Tsai FJ, Wu JY, Wu HC, Lu HF, Li CW (2000) Distributions of p53 codon 72 polymorphism in bladder cancer--proline form is prominent in invasive tumor. Urol Res 28(5):293–296. doi:10.1007/s002400000117
- Chiang C-I, Huang Y-L, Chen W-J, Shiue H-S, Huang C-Y, Pu Y-S, Lin Y-C, Hsueh Y-M (2014) XRCC1 Arg194Trp and Arg399Gln polymorphisms and arsenic methylation capacity are associated with urothelial carcinoma. Toxicol Appl Pharmacol 279(3):373– 379. doi:10.1016/j.taap.2014.06.027
- 20. Chun J, Buechelmaier ES, Powell SN (2013) Rad51 paralog complexes BCDX2 and CX3 act at different stages in the BRCA1-BRCA2-dependent homologous recombination pathway. Mol Cell Biol 33(2):387–395. doi:10.1128/MCB.00465-12

- 21. Chung C-J, Huang C-J, Pu Y-S, Su C-T, Huang Y-K, Chen Y-T, Hsueh Y-M (2008) Polymorphisms in cell cycle regulatory genes, urinary arsenic profile and urothelial carcinoma. Toxicol Appl Pharmacol 232(2):203–209. doi:10.1016/j.taap.2008.06.011
- 22. Dietrich K, Demidenko E, Schned A, Zens MS, Heaney J, Karagas MR (2011) Parity, early menopause and the incidence of bladder cancer in women: a case-control study and metaanalysis. Eur J Cancer 47(4):592–599. doi:10.1016/j.ejca.2010.10.007
- Dong LM, Zhang XY, Teng H, Li MS, Wang P (2014) Meta-analysis demonstrates no association between XRCC1 Arg399Gln polymorphism and bladder cancer risk. Genet Mol Res 13(4):9976–9985. doi:10.4238/2014.November.28.2
- 24. Elhawary NA, Nassir A, Saada H, Dannoun A, Qoqandi O, Alsharif A, Tayeb MT (2017) Combined Genetic Biomarkers Confer Susceptibility to Risk of Urothelial Bladder Carcinoma in a Saudi Population. Dis Markers 2017:1474560. doi:10.1155/2017/1474560
- 25. Fang Z, Chen F, Wang X, Yi S, Chen W, Ye G (2013) XRCC1 Arg194Trp and Arg280His polymorphisms increase bladder cancer risk in Asian population: evidence from a metaanalysis. PLoS ONE 8(5):e64001. doi:10.1371/journal.pone.0064001
- 26. Feki-Tounsi M, Khlifi R, Louati I, Fourati M, Mhiri M-N, Hamza-Chaffai A, Rebai A (2017) Polymorphisms in XRCC1, ERCC2, and ERCC3 DNA repair genes, CYP1A1 xenobiotic metabolism gene, and tobacco are associated with bladder cancer susceptibility in Tunisian population. Environ Sci Pollut Res Int 24(28):22476–22484. doi:10.1007/s11356-017-9767-x
- Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I, Bray F (2018) Global Cancer Observatory: Cancer Today. Lyon, France: International Agency for Research on Cancer. https://gco.iarc.fr/today. Zugegriffen: 17. April 2020
- 28. Figueroa JD, Malats N, Rothman N, Real FX, Silverman D, Kogevinas M, Chanock S, Yeager M, Welch R, Dosemeci M, Tardón A, Serra C, Carrato A, García-Closas R, Castaño-Vinyals G, García-Closas M (2007) Evaluation of genetic variation in the doublestrand break repair pathway and bladder cancer risk. Carcinogenesis 28(8):1788–1793. doi:10.1093/carcin/bgm132
- Fontana L, Bosviel R, Delort L, Guy L, Chalabi N, Kwiatkowski F, Satih S, Rabiau N, Boiteux J-P, Chamoux A, Bignon Y-J, Bernard-Gallon DJ (2008) DNA repair gene ERCC2, XPC, XRCC1, XRCC3 polymorphisms and associations with bladder cancer risk in a French cohort. Anticancer Res 28(3B):1853–1856
- Fontana L, Delort L, Joumard L, Rabiau N, Bosviel R, Satih S, Guy L, Boiteux J-P, Bignon Y-J, Chamoux A, Bernard-Gallon DJ (2009) Genetic polymorphisms in CYP1A1, CYP1B1, COMT, GSTP1 and NAT2 genes and association with bladder cancer risk in a French cohort. Anticancer Res 29(5):1631–1635

- Freedman ND, Silverman DT, Hollenbeck AR, Schatzkin A, Abnet CC (2011) Association between smoking and risk of bladder cancer among men and women. JAMA 306(7):737– 745. doi:10.1001/jama.2011.1142
- 32. Gangwar R, Ahirwar D, Mandhani A, Mittal RD (2009) Do DNA repair genes OGG1, XRCC3 and XRCC7 have an impact on susceptibility to bladder cancer in the North Indian population? Mutat Res 680(1-2):56–63. doi:10.1016/j.mrgentox.2009.09.008
- 33. Gangwar R, Ahirwar D, Mandhani A, Mittal RD (2009) Influence of XPD and APE1 DNA repair gene polymorphism on bladder cancer susceptibility in north India. Urology 73(3):675–680. doi:10.1016/j.urology.2008.09.043
- 34. Gao W, Romkes M, Zhong S, Nukui T, Persad RA, Smith PJB, Branch R, Keohavong P (2010) Genetic polymorphisms in the DNA repair genes XPD and XRCC1, p53 gene mutations and bladder cancer risk. Oncol Rep 24(1):257–262. doi:10.3892/or_00000854
- 35. García-Closas M, Malats N, Silverman D, Dosemeci M, Kogevinas M, Hein DW, Tardón A, Serra C, Carrato A, García-Closas R, Lloreta J, Castaño-Vinyals G, Yeager M, Welch R, Chanock S, Chatterjee N, Wacholder S, Samanic C, Torà M, Fernández F, Real FX, Rothman N (2005) NAT2 slow acetylation, GSTM1 null genotype, and risk of bladder cancer: results from the Spanish Bladder Cancer Study and meta-analyses. Lancet 366(9486):649–659. doi:10.1016/S0140-6736(05)67137-1
- 36. Gasser T (2019) Basiswissen Urologie, 7. Aufl. Springer-Lehrbuch. Springer Berlin, Berlin
- 37. Genome Decoration Page. National Center for Biotechnology Information, U. S. National Library of Medicine
- 38. Grando JPS, Kuasne H, Losi-Guembarovski R, Sant'ana Rodrigues I, Matsuda HM, Fuganti PE, Gregório EP, Júnior FL, Menezes RP de, Freitas Rodrigues MA de, Syllos Cólus IM de (2009) Association between polymorphisms in the biometabolism genes CYP1A1, GSTM1, GSTT1 and GSTP1 in bladder cancer. Clin Exp Med 9(1):21–28. doi:10.1007/s10238-008-0015-z
- 39. Hao Gang-yue, Zhang Yue-ying, Zhang Wei-dong, Yang Ming-shan, Jia Qing (2008) Relationship between XRCC3 gene polymorphism and bladder cancer in the Han population. Journal of Shandong University(Health Sciences) (6)
- 40. Harries LW, Stubbins MJ, Forman D, Howard GC, Wolf CR (1997) Identification of genetic polymorphisms at the glutathione S-transferase Pi locus and association with susceptibility to bladder, testicular and prostate cancer. Carcinogenesis 18(4):641–644. doi:10.1093/carcin/18.4.641
- 41. Hautmann R, Huland H Urologie, 3. Aufl. Springer Medizin Verlag
- 42. He X-F, Wei W, Li J-L, Shen X-L, Ding D-p, Wang S-L, Liu Z-Z, Qin J-B, Wu L-X, Xie D-L (2013) Association between the XRCC3 T241M polymorphism and risk of cancer:

evidence from 157 case-control studies. Gene 523(1):10–19. doi:10.1016/j.gene.2013.03.071

- 43. Heyer W-D, Ehmsen KT, Liu J (2010) Regulation of homologous recombination in eukaryotes. Annu Rev Genet 44:113–139. doi:10.1146/annurev-genet-051710-150955
- 44. Horikawa Y, Nadaoka J, Saito M, Kumazawa T, Inoue T, Yuasa T, Tsuchiya N, Nishiyama H, Ogawa O, Habuchi T (2008) Clinical implications of the MDM2 SNP309 and p53 Arg72Pro polymorphisms in transitional cell carcinoma of the bladder. Oncol Rep 20(1):49–55
- 45. Hosen MB, Salam MA, Islam MF, Hossain A, Hawlader MZH, Kabir Y (2015) Association of TP53 gene polymorphisms with susceptibility of bladder cancer in Bangladeshi population. Tumour Biol 36(8):6369–6374. doi:10.1007/s13277-015-3324-3
- 46. Hsu L-I, Chiu AW, Huan SK, Chen C-L, Wang Y-H, Hsieh F-I, Chou W-L, Wang L-H, Chen C-J (2008) SNPs of GSTM1, T1, P1, epoxide hydrolase and DNA repair enzyme XRCC1 and risk of urinary transitional cell carcinoma in southwestern Taiwan. Toxicol Appl Pharmacol 228(2):144–155. doi:10.1016/j.taap.2007.12.003
- 47. Hung RJ, Boffetta P, Brennan P, Malaveille C, Hautefeuille A, Donato F, Gelatti U, Spaliviero M, Placidi D, Carta A, Di Scotto Carlo A, Porru S (2004) GST, NAT, SULT1A1, CYP1B1 genetic polymorphisms, interactions with environmental exposures and bladder cancer risk in a high-risk population. Int J Cancer 110(4):598–604. doi:10.1002/ijc.20157
- 48. IARC Working Group on the Evaluation of Carcinogenic Risk to Humans (2004) Tobacco smoke and involuntary smoking, Bd 83. International Agency for Research on Cancer
- 49. Karahalil B, Kocabas NA, Ozçelik T (2006) DNA repair gene polymorphisms and bladder cancer susceptibility in a Turkish population. Anticancer Res 26(6C):4955–4958
- 50. Katoh T, Kaneko S, Takasawa S, Nagata N, Inatomi H, Ikemura K, Itoh H, Matsumoto T, Kawamoto T, Bell DA (1999) Human glutathione S-transferase P1 polymorphism and susceptibility to smoking related epithelial cancer; oral, lung, gastric, colorectal and urothelial cancer. Pharmacogenetics 9(2):165–169
- 51. Kellen E, Hemelt M, Broberg K, Golka K, Kristensen VN, Hung RJ, Matullo G, Mittal RD, Porru S, Povey A, Schulz WA, Shen J, Buntinx F, Zeegers MP, Taioli E (2007) Pooled analysis and meta-analysis of the glutathione S-transferase P1 Ile 105Val polymorphism and bladder cancer: a HuGE-GSEC review. Am J Epidemiol 165(11):1221–1230. doi:10.1093/aje/kwm003
- 52. Kopps S, Angeli-Greaves M, Blaszkewicz M, Prager H-M, Roemer HC, Lohlein D, Weistenhofer W, Bolt HM, Golka K (2008) Glutathione S-transferase P1 ILE105Val polymorphism in occupationally exposed bladder cancer cases. J Toxicol Environ Health Part A 71(13-14):898–901. doi:10.1080/15287390801988483

- 53. Kuroda Y, Tsukino H, Nakao H, Imai H, Katoh T (2003) p53 codon 72 polymorphism and urothelial cancer risk. Cancer Lett 189(1):77–83. doi:10.1016/S0304-3835(02)00518-9
- L. Phan, Y. Jin, H. Zhang, W. Qiang, E. Shekhtman, D. Shao, D. Revoe, R. Villamarin, E. Ivanchenko, M. Kimura, Z. Y. Wang, L. Hao, N. Sharopova, M. Bihan, A. Sturcke, M. Lee, N. Popova, W. Wu, C. Bastiani, M. Ward, J. B. Holmes, V. Lyoshin, K. Kaur, E. Moyer, M. Feolo, and B. L. Kattman ALFA: Allele Frequency Aggregator. National Center for Biotechnology Information, U.S. National Library of Medicine
- 55. Lehmann AR (2001) The xeroderma pigmentosum group D (XPD) gene: one gene, two functions, three diseases. Genes Dev. 15(1):15–23. doi:10.1101/gad.859501
- Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF) (2020) S3-Leitlinie Früherkennung, Diagnose, Therapie und Nachsorge des Harnblasenkarzinoms. Langversion 2.0. AWMF-Registrierungsnummer 032/038OL
- 57. Lesseur C, Gilbert-Diamond D, Andrew AS, Ekstrom RM, Li Z, Kelsey KT, Marsit CJ, Karagas MR (2012) A case-control study of polymorphisms in xenobiotic and arsenic metabolism genes and arsenic-related bladder cancer in New Hampshire. Toxicol Lett 210(1):100–106. doi:10.1016/j.toxlet.2012.01.015
- 58. Levine AJ (1997) p53, the Cellular Gatekeeper for Growth and Division. Cell 88(3):323– 331. doi:10.1016/S0092-8674(00)81871-1
- 59. Li S, Peng Q, Chen Y, You J, Chen Z, Deng Y, Lao X, Wu H, Qin X, Zeng Z (2013) DNA repair gene XRCC1 polymorphisms, smoking, and bladder cancer risk: a meta-analysis. PLoS ONE 8(9):e73448. doi:10.1371/journal.pone.0073448
- Li S, Zeng XT, Ruan XL, Liu TZ, Wang XH (2014) Association between XPD Lys751Gln polymorphism and bladder cancer susceptibility: an updated and cumulative meta-analysis based on 6,836 cases and 8,251 controls. Mol Biol Rep 41(6):3621–3629. doi:10.1007/s11033-014-3226-2
- Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K (2000) Environmental and heritable factors in the causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343(2):78–85. doi:10.1056/NEJM200007133430201
- 62. Lin H-Y, Huang C-H, Yu T-J, Wu W-J, Yang M-C, Lung F-W (2011) p53 codon 72 polymorphism was associated with vulnerability, progression, but not prognosis of bladder cancer in a Taiwanese population: an implication of structural equation modeling to manage the risks of bladder cancer. Urol Int 86(3):355–360. doi:10.1159/000323599
- Lin H-Y, Huang C-H, Yu T-J, Wu W-J, Yang M-C, Lung F-W (2012) p53 codon 72 polymorphism as a progression index for bladder cancer. Oncol Rep 27(4):1193–1199. doi:10.3892/or.2011.1610

- Lin H-Y, Yang M-C, Huang C-H, Wu W-J, Yu T-J, Lung F-W (2013) Polymorphisms of TP53 are markers of bladder cancer vulnerability and prognosis. Urol Oncol 31(7):1231– 1241. doi:10.1016/j.urolonc.2011.11.031
- 65. Lin Y-C, Hour T-C, Tsai Y-C, Huang S-P, Wu W-J, Chen C-H, Pu Y-S, Chung S-D, Huang C-Y (2017) Preliminary evidence of polymorphisms of cell cycle regulatory genes and their roles in urinary tract urothelial cancer susceptibility and prognosis in a Taiwan population. Urol Oncol 35(9):543.e7-543.e16. doi:10.1016/j.urolonc.2016.08.001
- 66. Liu C, Yin Q, Hu J, Weng J, Wang Y (2014) Quantitative assessment of the association between XPG Asp1104His polymorphism and bladder cancer risk. Tumour Biol 35(2):1203–1209. doi:10.1007/s13277-013-1161-9
- Liu N, Fei X, Shen Y, Shi W, Ma J (2016) Correlation between XRCC1 Arg399Gln genetic polymorphisms and susceptibility to bladder cancer: a meta-analysis. Onco Targets Ther 9:579–586. doi:10.2147/OTT.S95658
- Lucca I, Klatte T, Fajkovic H, Martino M de, Shariat SF (2015) Gender differences in incidence and outcomes of urothelial and kidney cancer. Nat Rev Urol 12(12):653. doi:10.1038/nrurol.2015.257
- Ma Q-W, Lin G-F, Chen J-G, Shen J-H (2002) Polymorphism of glutathione S-transferase T1, M1 and P1 genes in a Shanghai population: patients with occupational or nonoccupational bladder cancer. Biomed Environ Sci 15(3):253–260
- 70. Ma Q, Zhao Y, Wang S, Zhang X, Zhang J, Du M, Li L, Zhang Y (2014) Genetic polymorphisms of XRCC3 Thr241Met (C18067T, rs861539) and bladder cancer risk: a meta-analysis of 18 research studies. Tumour Biol 35(2):1473–1480. doi:10.1007/s13277-013-1203-3
- 71. Mabrouk I, Baccouche S, El-Abed R, Mokdad-Gargouri R, Mosbah A, Saïd S, Daoud J, Frikha M, Jlidi R, Gargouri A (2003) No evidence of correlation between p53 codon 72 polymorphism and risk of bladder or breast carcinoma in Tunisian patients. Ann N Y Acad Sci 1010:764–770. doi:10.1196/annals.1299.137
- 72. Matic M, Pekmezovic T, Djukic T, Mimic-Oka J, Dragicevic D, Krivic B, Suvakov S, Savic-Radojevic A, Pljesa-Ercegovac M, Tulic C, Coric V, Simic T (2013) GSTA1, GSTM1, GSTP1, and GSTT1 polymorphisms and susceptibility to smoking-related bladder cancer: a case-control study. Urol Oncol 31(7):1184–1192. doi:10.1016/j.urolonc.2011.08.005
- Matullo G, Dunning AM, Guarrera S et al (2006) DNA repair polymorphisms and cancer risk in non-smokers in a cohort study. Carcinogenesis 27(5):997–1007. doi:10.1093/carcin/bgi280
- 74. Michiels S, Laplanche A, Boulet T, Dessen P, Guillonneau B, Méjean A, Desgrandchamps F, Lathrop M, Sarasin A, Benhamou S (2009) Genetic polymorphisms in 85 DNA repair

genes and bladder cancer risk. Carcinogenesis 30(5):763–768. doi:10.1093/carcin/bgp046

- 75. Mittal RD, Mandal RK (2012) Genetic variation in nucleotide excision repair pathway genes influence prostate and bladder cancer susceptibility in North Indian population. Indian J Hum Genet 18(1):47–55. doi:10.4103/0971-6866.96648
- 76. Mittal RD, Singh R, Manchanda PK, Ahirwar D, Gangwar R, Kesarwani P, Mandhani A (2008) XRCC1 codon 399 mutant allele: a risk factor for recurrence of urothelial bladder carcinoma in patients on BCG immunotherapy. Cancer Biol Ther 7(5):645–650. doi:10.4161/cbt.7.5.5763
- 77. Mittal RD, Mandal RK, Gangwar R (2012) Base excision repair pathway genes polymorphism in prostate and bladder cancer risk in North Indian population. Mech Ageing Dev 133(4):127–132. doi:10.1016/j.mad.2011.10.002
- Mittal RD, Gangwar R, Mandal RK, Srivastava P, Ahirwar DK (2012) Gene variants of XRCC4 and XRCC3 and their association with risk for urothelial bladder cancer. Mol Biol Rep 39(2):1667–1675. doi:10.1007/s11033-011-0906-z
- 79. Narter KF, Ergen A, Agaçhan B, Görmüs U, Timirci O, Isbir T (2009) Bladder cancer and polymorphisms of DNA repair genes (XRCC1, XRCC3, XPD, XPG, APE1, hOGG1). Anticancer Res 29(4):1389–1393
- 80. NCBI Resource Coordinators (2016) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 44(D1):D7-19. doi:10.1093/nar/gkv1290
- Oakley AJ, Lo Bello M, Battistoni A, Ricci G, Rossjohn J, Villar HO, Parker MW (1997) The structures of human glutathione transferase P1-1 in complex with glutathione and various inhibitors at high resolution. J Mol Biol 274(1):84–100. doi:10.1006/jmbi.1997.1364
- Oksenych V, Coin F (2010) The long unwinding road: XPB and XPD helicases in damaged DNA opening. Cell Cycle 9(1):90–96. doi:10.4161/cc.9.1.10267
- Olivier M, Hollstein M, Hainaut P (2010) TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol 2(1):a001008. doi:10.1101/cshperspect.a001008
- 84. Pandith AA, Shah ZA, Khan NP, Rasool R, Afroze D, Yousuf A, Wani S, Siddiqi M (2010) Role of TP53 Arg72Pro polymorphism in urinary bladder cancer predisposition and predictive impact of proline related genotype in advanced tumors in an ethnic Kashmiri population. Cancer Genet Cytogenet 203(2):263–268. doi:10.1016/j.cancergencyto.2010.08.010
- 85. Pandith AA, Lateef A, Shahnawaz S, Hussain A, Malla TM, Azad N, Shehjar F, Salim M, Shah ZA (2013) GSTP1 gene Ile105Val polymorphism causes an elevated risk for bladder carcinogenesis in smokers. Asian Pac J Cancer Prev 14(11):6375–6378. doi:10.7314/apjcp.2013.14.11.6375

- Peluso M, Airoldi L, Magagnotti C, Fiorini L, Munnia A, Hautefeuille A, Malaveille C, Vineis P (2000) White blood cell DNA adducts and fruit and vegetable consumption in bladder cancer. Carcinogenesis 21(2):183–187. doi:10.1093/carcin/21.2.183
- Peng Q, Mo C, Tang W, Chen Z, Li R, Zhai L, Yang S, Wu J, Sui J, Li S, Qin X (2014) DNA repair gene XRCC3 polymorphisms and bladder cancer risk: a meta-analysis. Tumour Biol 35(3):1933–1944. doi:10.1007/s13277-013-1259-0
- 88. Pineda S, Milne RL, Calle ML, Rothman N, López de Maturana E, Herranz J, Kogevinas M, Chanock SJ, Tardón A, Márquez M, Guey LT, García-Closas M, Lloreta J, Baum E, González-Neira A, Carrato A, Navarro A, Silverman DT, Real FX, Malats N (2014) Genetic variation in the TP53 pathway and bladder cancer risk. a comprehensive analysis. PLoS ONE 9(5):e89952. doi:10.1371/journal.pone.0089952
- Pradubkaew K, Pramyothin P, Limwongse C, Suwannasri P, Assawamakin A (2009) Glutathione S-transferase polymorphisms and risk of bladder cancer in Thais. Thai J. Pharm. Sci.
- 90. Raghavan D, Huben R (1995) Management of bladder cancer. Curr Probl Cancer 19(1):1–
 64
- 91. Reszka E, Jablonowski Z, Wieczorek E, Jablonska E, Krol MB, Gromadzinska J, Grzegorczyk A, Sosnowski M, Wasowicz W (2014) Polymorphisms of NRF2 and NRF2 target genes in urinary bladder cancer patients. J Cancer Res Clin Oncol 140(10):1723– 1731. doi:10.1007/s00432-014-1733-0
- Riede UN, Schaefer HE, & Wehner H (1995) Allgemeine und spezielle Pathologie. Georg Thieme Verlag, Stuttgart, New York
- Rihs HP, Brüning T (2002) Glutathion-S-transferase P1 (Genotypisierung) [Biomonitoring Methods in German language, 2004] The MAK-collection for occupational health and safety. Wiley-VCH Verl., Germany, S 1–20
- 94. Rink M, Xylinas E, Babjuk M, Hansen J, Pycha A, Comploj E, Lotan Y, Sun M, Karakiewicz PI, Abdennabi J, Fajkovic H, Loidl W, Chun FK, Fisch M, Scherr DS, Shariat SF (2012) Impact of smoking on outcomes of patients with a history of recurrent nonmuscle invasive bladder cancer. J Urol 188(6):2120–2127. doi:10.1016/j.juro.2012.08.029
- 95. Rink M, Zabor EC, Furberg H, Xylinas E, Ehdaie B, Novara G, Babjuk M, Pycha A, Lotan Y, Trinh Q-D, Chun FK, Lee RK, Karakiewicz PI, Fisch M, Robinson BD, Scherr DS, Shariat SF (2013) Impact of smoking and smoking cessation on outcomes in bladder cancer patients treated with radical cystectomy. Eur Urol 64(3):456–464. doi:10.1016/j.eururo.2012.11.039
- 96. Robert Koch-Institut, Gesellschaft der epidemiologischen Krebsregister in Deutschland e.V. (2019) Krebs in Deutschland | 2015/2016, 12. Aufl, Berlin

- 97. Rouissi K, Bahria IB, Bougatef K, Marrakchi R, Stambouli N, Hamdi K, Cherif M, Ben Slama MR, Sfaxi M, Othman FB, Chebil M, Elgaaied AB, Ouerhani S (2011) The effect of tobacco, XPC, ERCC2 and ERCC5 genetic variants in bladder cancer development. BMC Cancer 11:101. doi:10.1186/1471-2407-11-101
- Saad AA, O'Connor PJ, Mostafa MH, Metwalli NE, Cooper DP, Povey AC, Margison GP (2005) Glutathione S-Transferase M1, T1 and P1 Polymorphisms and Bladder Cancer Risk in Egyptians. Int J Biol Markers 20(1):69–72. doi:10.1177/172460080502000111
- Safarinejad MR, Safarinejad S, Shafiei N, Safarinejad S (2013) Association of genetic polymorphism of glutathione S-transferase (GSTM1, GSTT1, GSTP1) with bladder cancer susceptibility. Urol Oncol 31(7):1193–1203. doi:10.1016/j.urolonc.2011.11.027
- 100. Sak SC, Barrett JH, Paul AB, Bishop DT, Kiltie AE (2007) DNA repair gene XRCC1 polymorphisms and bladder cancer risk. BMC Genet 8:13. doi:10.1186/1471-2156-8-13
- 101. Santos LEMdC, Guilhen ACT, Andrade RA de, Sumi LG, Ward LS (2011) The role of TP53 PRO47SER and ARG72PRO single nucleotide polymorphisms in the susceptibility to bladder cancer. Urol Oncol 29(3):291–294. doi:10.1016/j.urolonc.2009.03.026
- Sanyal S, Festa F, Sakano S, Zhang Z, Steineck G, Norming U, Wijkström H, Larsson P, Kumar R, Hemminki K (2004) Polymorphisms in DNA repair and metabolic genes in bladder cancer. Carcinogenesis 25(5):729–734. doi:10.1093/carcin/bgh058
- 103. Savina NV, Nikitchenko NV, Kuzhir TD, Rolevich AI, Krasny SA, Goncharova RI (2016) The Cellular Response to Oxidatively Induced DNA Damage and Polymorphism of Some DNA Repair Genes Associated with Clinicopathological Features of Bladder Cancer. Oxid Med Cell Longev 2016:5710403. doi:10.1155/2016/5710403
- 104. Selinski S (2014) Urinary bladder cancer risk variants: recent findings and new challenges of GWAS and confirmatory studies. Arch Toxicol 88(7):1469–1475. doi:10.1007/s00204-014-1297-4
- 105. Shao J, Gu M, Xu Z, Hu Q, Qian L (2007) Polymorphisms of the DNA gene XPD and risk of bladder cancer in a Southeastern Chinese population. Cancer Genet Cytogenet 177(1):30–36. doi:10.1016/j.cancergencyto.2007.05.005
- 106. Shen M, Hung RJ, Brennan P, Malaveille C, Donato F, Placidi D, Carta A, Hautefeuille A, Boffetta P, Porru S (2003) Polymorphisms of the DNA repair genes XRCC1, XRCC3, XPD, interaction with environmental exposures, and bladder cancer risk in a case-control study in northern Italy. Cancer Epidemiol Biomarkers Prev 12(11 Pt 1):1234–1240
- 107. Silverman DT, Koutros S, Figueroa JD, Prokunina-Olsson L, Rothman N (2017) Bladder Cancer. In: Michael J. Thun, Martha S. Linet, Christopher A. Haiman, James R. Cerhan, David Schottenfeld (Hrsg) Schottenfeld and Fraumeni Cancer Epidemiology and Prevention, 4. Aufl, Bd 1. Oxford University Press, S 977–996

- 108. Sobti RC, Kaur S, Sharma VL, Singh SK, Hosseini SA, Kler R (2012) Susceptibility of XPD and RAD51 genetic variants to carcinoma of urinary bladder in North Indian population. DNA Cell Biol 31(2):199–210. doi:10.1089/dna.2011.1283
- 109. Song Y, Chen J, Liu K, Zhou K, Lu Y, Wang X, Yang Y, Liu X (2019) Glutathione S-Transferase Pi 1 (GSTP1) Gene 313 A/G (rs1695) polymorphism is associated with the risk of urinary bladder cancer: Evidence from a systematic review and meta-analysis based on 34 case-control studies. Gene 719:144077. doi:10.1016/j.gene.2019.144077
- 110. Soulitzis N, Sourvinos G, Dokianakis DN, Spandidos DA (2002) p53 codon 72 polymorphism and its association with bladder cancer. Cancer Lett 179(2):175–183. doi:10.1016/S0304-3835(01)00867-9
- 111. Srivastava P, Jaiswal PK, Singh V, Mittal RD (2010) Role of p53 gene polymorphism and bladder cancer predisposition in northern India. Cancer Biomark 8(1):21–28. doi:10.3233/DMA-2011-0816
- 112. Srivastava DSL, Mishra DK, Mandhani A, Mittal B, Kumar A, Mittal RD (2005) Association of Genetic Polymorphism of Glutathione S-transferase M1, T1, P1 and Susceptibility to Bladder Cancer. Eur Urol 48(2):339–344. doi:10.1016/j.eururo.2005.02.007
- Steinhoff C, Franke KH, Golka K, Thier R, Römer HC, Rötzel C, Ackermann R, Schulz WA (2000) Glutathione transferase isozyme genotypes in patients with prostate and bladder carcinoma. Arch Toxicol 74(9):521–526. doi:10.1007/s002040000161
- 114. Stern MC, Umbach DM, van Gils CH, Lunn RM, Taylor JA (2001) DNA repair gene XRCC1 polymorphisms, smoking, and bladder cancer risk. Cancer Epidemiol Biomarkers Prev 10(2):125–131
- Stern MC, Umbach DM, Lunn RM, Taylor JA (2002) DNA repair gene XRCC3 codon 241 polymorphism, its interaction with smoking and XRCC1 polymorphisms, and bladder cancer risk. Cancer Epidemiol Biomarkers Prev 11(9):939–943
- 116. Stern MC, Johnson LR, Bell DA, Taylor JA (2002) XPD codon 751 polymorphism, metabolism genes, smoking, and bladder cancer risk. Cancer Epidemiol Biomarkers Prev 11(10 Pt 1):1004–1011
- 117. Stern MC, Lin J, Figueroa JD et al (2009) Polymorphisms in DNA repair genes, smoking, and bladder cancer risk: findings from the international consortium of bladder cancer. Cancer Res 69(17):6857–6864. doi:10.1158/0008-5472.CAN-09-1091
- Sun H, Qiao Y, Zhang X, Xu L, Jia X, Sun D, Shen C, an Liu, Zhao Y, Jin Y, Yu Y, Bai J, Fu S (2010) XRCC3 Thr241Met polymorphism with lung cancer and bladder cancer: a meta-analysis. Cancer Sci 101(8):1777–1782. doi:10.1111/j.1349-7006.2010.01608.x

- 119. Törüner GA, Uçar A, Tez M, Cetinkaya M, Ozen H, Ozçelik T (2001) P53 codon 72 polymorphism in bladder cancer--no evidence of association with increased risk or invasiveness. Urol Res 29(6):393–395. doi:10.1007/s002400100218
- 120. Törüner GA, Akyerli C, Uçar A, Aki T, Atsu N, Ozen H, Tez M, Cetinkaya M, Ozçelik T (2001) Polymorphisms of glutathione S-transferase genes (GSTM1, GSTP1 and GSTT1) and bladder cancer susceptibility in the Turkish population. Arch Toxicol 75(8):459–464. doi:10.1007/s002040100268
- 121. Vineis P, Veglia F, Garte S et al (2007) Genetic susceptibility according to three metabolic pathways in cancers of the lung and bladder and in myeloid leukemias in nonsmokers. Ann Oncol 18(7):1230–1242. doi:10.1093/annonc/mdm109
- 122. Wang M, Qin C, Zhu J, Yuan L, Fu G, Zhang Z, Yin C (2010) Genetic variants of XRCC1, APE1, and ADPRT genes and risk of bladder cancer. DNA Cell Biol 29(6):303– 311. doi:10.1089/dna.2009.0969
- 123. Wang Y-H, Yeh S-D, Shen K-H, Shen C-H, Tung M-C, Liu C-T, Chiou H-Y (2011) Association of hOGG1 and XPD polymorphisms with urothelial carcinoma in Taiwan. Anticancer Res 31(11):3939–3944
- 124. Wen H, Feng CC, Fang ZJ, Xia GW, Jiang HW, Xu G, Huang XD, Ding Q (2013) Study on bladder cancer susceptibility and genetic polymorphisms of XPC, XPG, and CYP in smokers and non-smokers. Actas Urol Esp 37(5):259–265. doi:10.1016/j.acuro.2012.04.007
- Werner M (2010) Allgemeine Onkogenese und Tumorpathologie. In: Siewert JR (Hrsg) Onkologische Chirurgie, 3. Aufl. Springer Medizin Verl., Heidelberg, S 3–12
- 126. Wildenberg L (2017) Metaanalyse zur genetischen Prädisposition beim Urothelkarzinom anhand von Polymorphismen. Dissertation, Universität des Saarlandes
- 127. Witjes JA, Bruins M, Cathomas R, Compérat E, Cowan NC, Gakis G, Hernández V, Lorch A, Ribal MJ, Thalmann, G.N. van der Heijden, A.G., Veskimäe E (2020) European Association of Urology Guidelines. 2020 Edition. EAU Guidelines on Muscle-invasive and metastatic Bladder Cancer 2020, presented at the EAU Annual Congress Amsterdam 2020. European Association of Urology Guidelines Office
- 128. Wu X, Gu J, Grossman HB, Amos CI, Etzel C, Huang M, Zhang Q, Millikan RE, Lerner S, Dinney CP, Spitz MR (2006) Bladder cancer predisposition: a multigenic approach to DNA-repair and cell-cycle-control genes. Am J Hum Genet 78(3):464–479. doi:10.1086/500848
- 129. Wu WJ, Kakehi Y, Habuchi T, Kinoshita H, Ogawa O, Terachi T, Huang CH, Chiang CP, Yoshida O (1995) Allelic frequency of p53 gene codon 72 polymorphism in urologic cancers. Jpn J Cancer Res 86(8):730–736. doi:10.1111/j.1349-7006.1995.tb02461.x

- 130. Xing DL (2006) Association study of polymorphisms in the human drug metabolism enzyme gene and bladder cancer risk. Zhengzhou Daxue (12):1–61
- 131. Yafi FA, Brimo F, Steinberg J, Aprikian AG, Tanguay S, Kassouf W (2015) Prospective analysis of sensitivity and specificity of urinary cytology and other urinary biomarkers for bladder cancer. Urol Oncol 33(2):66.e25-31. doi:10.1016/j.urolonc.2014.06.008
- 132. Yang Z, Nie S, Zhu H, Wu X, Jia S, Luo Y, Tang W (2013) Association of p53 Arg72Pro polymorphism with bladder cancer: a meta-analysis. Gene 512(2):408–413. doi:10.1016/j.gene.2012.09.085
- 133. Yang D, Liu C, Shi J, Wang N, Du X, Yin Q, Wang Y (2014) Association of XRCC1 Arg399GIn polymorphism with bladder cancer susceptibility: a meta-analysis. Gene 534(1):17–23. doi:10.1016/j.gene.2013.10.038
- 134. Yang Q, Chen K, Han Q (2009) Studies on polymorphisms of XRCC1, XRCC3 and bladder cancer risk. Chin J Misdiagn (9):8393–8394
- 135. Ye Y, Yang H, Grossman HB, Dinney C, Wu X, Gu J (2008) Genetic variants in cell cycle control pathway confer susceptibility to bladder cancer. Cancer 112(11):2467–2474. doi:10.1002/cncr.23472
- Yonetani Y, Hochegger H, Sonoda E, Shinya S, Yoshikawa H, Takeda S, Yamazoe M (2005) Differential and collaborative actions of Rad51 paralog proteins in cellular response to DNA damage. Nucleic Acids Res 33(14):4544–4552. doi:10.1093/nar/gki766
- 137. Yu Y, Li X, Liang C, Tang J, Qin Z, Wang C, Xu W, Hua Y, Shao P, Xu T (2016) The relationship between GSTA1, GSTM1, GSTP1, and GSTT1 genetic polymorphisms and bladder cancer susceptibility: A meta-analysis. Medicine (Baltimore) 95(37):e4900. doi:10.1097/MD.000000000004900
- Yuan J-M, Chan KK, Coetzee GA, Castelao JE, Watson MA, Bell DA, Wang R, Yu MC (2008) Genetic determinants in the metabolism of bladder carcinogens in relation to risk of bladder cancer. Carcinogenesis 29(7):1386–1393. doi:10.1093/carcin/bgn136
- 139. Zhang R, Xu G, Chen W, Zhang W (2011) Genetic polymorphisms of glutathione Stransferase P1 and bladder cancer susceptibility in a Chinese population. Genet Test Mol Biomarkers 15(1-2):85–88. doi:10.1089/gtmb.2010.0162
- 140. Zhang R, Chen W, Zhang W, Jiang Q, Liu C, Lin Y, Hu Z, Yu S, Xu G (2011) Genetic polymorphisms of p53 codon 72 and bladder cancer susceptibility: a hospital-based case-control study. Genet Test Mol Biomarkers 15(5):337–341. doi:10.1089/gtmb.2010.0230
- 141. Zhang Y, Yuan Y, Chen Y, Wang Z, Li F, Zhao Q (2016) Association between GSTP1 Ile105Val polymorphism and urinary system cancer risk: evidence from 51 studies. Onco Targets Ther 9:3565–3569. doi:10.2147/OTT.S106527
- 142. Zhang M, Li W, Hao Z, Zhou J, Zhang L, Liang C (2017) Association Between Twelve Polymorphisms in Five X-ray Repair Cross-complementing Genes and the Risk of

Urological Neoplasms: A Systematic Review and Meta-Analysis. EBioMedicine 18:94– 108. doi:10.1016/j.ebiom.2017.03.009

- 143. Zhang L, Wang Y, Qin Z, Li R, Cong R, Ji C, Meng X, Wang Y, Xia J, Song N (2018) TP53 codon 72 Polymorphism and bladder cancer risk: a meta-analysis and emphasis on the role of tumor or smoking status. J Cancer 9(19):3522–3531. doi:10.7150/jca.26264
- 144. Zhi Y, Yu J, Liu Y, Wei Q, Yuan F, Zhou X, Song B, Chen Z, Yang J (2012) Interaction between polymorphisms of DNA repair genes significantly modulated bladder cancer risk. Int J Med Sci 9(6):498–505. doi:10.7150/ijms.4799
- 145. Zhu X, Zhong Z, Zhang X, Zhao X, Xu R, Ren W, Li S (2012) DNA repair gene XRCC3 T241M polymorphism and bladder cancer risk in a Chinese population. Genet Test Mol Biomarkers 16(6):640–643. doi:10.1089/gtmb.2011.0334
- 146. Zhu G, Su H, Lu L, Guo H, Chen Z, Sun Z, Song R, Wang X, Li H, Wang Z (2016) Association of nineteen polymorphisms from seven DNA repair genes and the risk for bladder cancer in Gansu province of China. Oncotarget 7(21):31372–31383. doi:10.18632/oncotarget.9146

8 Anhang

Otudia		Fälle)		Kontrollen				
Studie	Gesamt	GG	GA	AA	Gesamt	GG	GA	AA	
Stern et al. (s) 2001 [114]	19	9	10	0	13	9	4	0	
Stern et al. (w) 2001 [114]	214	87	106	21	197	79	92	26	
Shen et al. 2003 [106]	201	93	87	21	214	92	98	24	
Sanyal et al. 2004 [102]	311	124	155	32	246	113	110	23	
Broberg et al. 2005 [13]	61	26	31	4	155	80	62	13	
Karahalil et al. 2006 [49]	148	70	58	20	100	41	42	17	
Matullo et al. 2006 [73]	124	54	53	17	1094	484	482	128	
Sak et al. 2007 [100]	532	218	248	66	560	226	259	75	
Andrew et al. 2008 [5]	990	412	456	122	1253	533	536	184	
Arizono et al. 2008 [6]	251	139	102	10	251	140	90	21	
Fontana et al. 2008 [29]	51	21	25	5	45	18	18	9	
Hsu et al. 2008 [46]	210	119	74	17	218	121	83	14	
Mittal et al. 2008 [76]	140	37	76	27	190	73	81	36	
Stern et al. (EEBCS) 2009 [117]	214	95	93	26	533	215	252	66	
Stern et al. (HBCS) 2009 [117]	803	350	362	91	803	353	354	96	
Stern et al. (SBCS) 2009 [117]	1132	469	530	133	1062	468	479	115	
Stern et al. (UCLA) 2009 [117]	150	57	78	15	137	53	58	26	
Gao et al. 2010 [34]	192	85	10)7*	313 136		17	177*	
Wang et al. 2010 [122]	234	113	102	19	253	105	126	22	
Mittal et al. 2012 [77]	212	67	106	39	250	102	109	39	
Zhi et al. 2012 [144]	302	121	151	30	311	148	143	20	
Wen et al. 2013 [124]	116	67	40	9	291	153	119	19	
Akhmadishina et al. 2014 [2]	289	86	143	60	173	60	88	25	
Chiang et al. 2014 [19]	324	179	108	37	647	350	253	44	
Savina et al. 2016 [103]	414	170	197	47	364	151	165	48	
Zhu et al. 2016 [146]	201	125	51	25	260	128	106	26	
Feki-Tounsi et al. 2017 [26]	101	51	31	19	157	43	107	7	
Ahmed et al. 2018 [1]	200	97	73	30	200	95	80	25	

Tabelle 18: Übersicht der Genotypenverteilung zu XRCC1 Arg399Gln (rs25487); * GA + AA

Ctudia		Fälle			Kontrollen			
Studie	Gesamt	AA	AC	СС	Gesamt	AA	AC	CC
Stern et al. (s) 2002 [116]	19	11	6	2	13	5	7	1
Stern et al. (w) 2002 [116]	210	84	99	27	197	79	88	30
Shen et al. 2003 [106]	201	79	87	35	214	80	98	36
Sanyal et al. 2004 [102]	307	110	141	56	246	95	114	37
Broberg et al. 2005 [13]	61	23	24	14	154	59	76	19
Matullo et al. 2006 [73]	124	50	58	16	1094	397	504	193
Shao et al. 2007 [105]	215	167	47	1	245	211	32	2
Andrew et al. 2008 [5]	1009	371	483	155	1215	450	602	163
Fontana et al. 2008 [29]	51	11	18	22	45	6	17	22
Chang et al. 2009 [15]	308	280	21	7	308	278	22	8
Gangwar et al. 2009 [33]	206	86	104	16	250	110	121	19
Michiels et al. 2009 [74]	189	62	105	22	316	127	140	49
Narter et al. 2009 [79]	39	20	13	6	36	17	17	2
Stern et al. (HBCS) 2009 [117]	803	324	360	119	803	342	365	96
Stern et al. (LABCS) 2009 [117]	567	230	261	76	660	272	307	81
Stern et al. (SBCS) 2009 [117]	1168	502	514	152	1143	520	495	128
Stern et al. (SHBCS) 2009 [117]	530	460	67	3	530	438	90	2
Stern et al. (UCLABCS) 2009 [117]	151	63	63	25	136	49	65	22
Gao et al. 2010 [34]	194	64	13	80*	313	174	13	9*
Rouissi et al. 2011 [97]	193	97	76	20	193	86	86	21
Wang et al. 2011 [123]	460	390	70	0	540	472	67	1
Mittal et al. 2012 [75]	212	90	105	17	250	110	121	19
Sobti et al. 2012 [108]	270	74	104	92	252	104	81	67
Chiang et al. 2014 [19]	324	278	45	1	647	551	92	4
Savina et al. 2016 [103]	411	120	212	79	365	132	160	73
Feki-Tounsi et al. 2017 [26]	117	31	53	33	188	39	95	54
Ahmed et al. 2018 [1]	200	75	98	27	200	66	102	32

Tabelle 19: Übersicht der Genotypenverteilung zu ERCC2/XPD Lys751Gln (rs13181); * AC + CC

Ctudio		Fälle	9		Kontrollen			
Studie	Gesamt	GG	GC	сс	Gesamt	GG	GC	сс
Wu et al. 1995 [129]	151	69	60	22	403	170	189	44
Biros et al. 2000 [10]	50	28	18	4	145	71	54	20
Chen et al. 2000 [18]	58	26	25	7	59	25	26	8
Törüner et al. 2001 [119]	121	43	57	21	114	42	55	17
Soulitzis et al. 2002 [110]	50	30	18	2	99	24	64	11
Kuroda et al. 2003 [53]	112	38	38	36	175	63	77	35
Mabrouk et al. 2003 [71]	47	21	23	3	34	13	19	2
Chen et al. 2004 [17]	59	22	3	7*	81	21	60*	
Matullo et al. 2006 [73]	102	58	38	6	839	480	309	50
Chung et al. 2008 [21]	170	47	87	36	402	134	194	74
Horikawa et al. 2008 [44]	227	73	118	36	267	93	136	38
Ye et al. 2008 [135]	615	390	186	39	598	390	156	52
Pandith et al. 2010 [84]	108	22	68	18	138	59	53	26
Srivastava et al. 2010 [111]	200	103	93	4	265	141	106	18
Santos et al. 2011 [101]	94	64	24	6	159	90	60	9
Zhang et al. 2011 [140]	120	37	59	24	120	55	47	18
Lin et al. 2012 [63]	223	63	110	50	569	173	296	100
Lin et al. 2013 [64]	199	50	102	47	140	36	86	18
Pineda et al. 2014 [88]	1032	588	372	72	1100	628	388	84
Hosen et al. 2015 [45]	102	22	45	35	140	41	78	21
Avirmed et al. 2017 [7]	63	35	20	8	79	37	23	19
Elhawary et al. 2017 [24]	52	14	22	16	104	28	60	16
Lin et al. 2017 [65]	46	10	23	13	188	31	100	57

Tabelle 20: Übersicht der Genotypenverteilung zu TP53 Arg72Pro (rs1042522); * GC + CC

Chudio		Fälle	e		Kontrollen			
Studie	Gesamt	СС	СТ	тт	Gesamt	СС	СТ	тт
Stern et al. (s) 2001 [114]	19	18	1	0	13	10	3	0
Stern et al. (w) 2001 [114]	213	189	24	0	197	163	34	0
Matullo et al. 2006 [73]	124	108	16	0	1094	951	141	2
Sak et al. 2007 [100]	535	476	56	3	562	498	61	3
Andrew et al. 2008 [5]	978	857	115	6	1203	1041	152	10
Fontana et al. 2008 [29]	51	0	4	47	45	0	5	40
Hsu et al. 2008 [46]	208	88	95	25	218	104	83	31
Mittal et al. 2008 [76]	140	111	27	2	190	159	30	1
Narter et al. 2009 [79]	57	36	17	4	36	20	15	1
Stern et al. (HBCS) 2009 [117]	803	693	105	5	803	700	101	2
Stern et al. (SBCS) 2009 [117]	1116	987	124	5	1022	906	115	1
Stern et al. (UCLA) 2009 [117]	144	121	23	0	109	91	17	1
Wang et al. 2010 [122]	234	109	102	23	253	142	102	9
Mittal et al. 2012 [77]	212	172	37	3	250	207	41	2
Chiang et al. 2014 [19]	324	184	112	28	647	295	278	74
Zhu et al. 2016 [146]	204	103	67	34	260	136	106	18
Ahmed et al. 2018 [1]	200	178	15	7	200	182	12	6

Tabelle 21: Übersicht der Genotypenverteilung zu XRCC1 Arg194Trp (rs1799782); * CT + TT

Chudia	k.	Fälle)		Kontrollen			
Studie	Gesamt	CC	СТ	TT	Gesamt	СС	СТ	TT
Stern et al. 2002 [115]	233	90	110	33	209	94	91	24
Shen et al. 2003 [106]	201	89	87	25	214	71	116	27
Sanyal et al. 2004 [102]	311	131	129	51	246	107	109	30
Broberg et al. 2005 [13]	61	23	33	5	153	60	72	21
Matullo et al. 2006 [73]	124	46	61	17	1094	383	544	167
Wu et al. 2006 [128]	612	230	290	92	596	250	261	85
Figueroa et al. 2007 [28]	1083	392	524	167	1010	398	468	144
Andrew et al. 2008 [5]	1046	397	477	172	1275	482	617	176
Fontana et al. 2008 [29]	51	8	28	15	45	4	23	18
Hao et al. 2008 [39]	307	268	37	2	316	292	23	1
Gangwar et al. 2009 [32]	212	135	68	9	250	159	80	11
Narter et al. 2009 [79]	55	23	5	27	39	5	2	32
Stern et al. (EEBCS) 2009 [117]	214	89	94	31	533	180	265	88
Stern et al. (LABCS) 2009 [117]	555	222	253	80	649	275	280	94
Stern et al. (SBCS) 2009 [117]	1102	400	531	171	1009	400	465	144
Stern et al. (SHBCS) 2009 [117]	526	477	48	1	529	458	70	1
Yang et al. 2009 [134]	220	191	27	2	220	205	15	0
Mittal et al. 2012 [78]	211	134	68	9	244	154	79	11
Zhu et al. 2012 [145]	150	91	44	15	150	96	49	5
Chiang et al. 2014 [19]	324	290	34	4*	647	585	62	2*
Ahmed et al. 2018 [1]	200	178	15	7	200	182	12	6

Tabelle 22: Übersicht der Genotypenverteilung zu XRCC3 Thr241Met (rs861539); * CT + TT

Studio		Fälle	9		Kontrollen			
Studie	Gesamt	AA	AG	GG	Gesamt	AA	AG	GG
Harries et al. 1997 [40]	71	25	32	14	155	79	66	10
Katoh et al. 1999 [50]	106	75	26	5	122	93	24	5
Peluso et al. 2000 [86]	123	50	73	3*	54	32	2	2*
Steinhoff et al. 2000 [113]	135	67	59	9	127	70	46	11
Törüner et al. 2001 [120]	121	67	42	12	121	83	33	5
Ma et al. 2002 [69]	61	33	27	1	179	110	59	10
Hung et al. 2004 [47]	201	103	98	8*	214	112	10	2*
Broberg et al. 2005 [13]	61	24	27	10	155	71	69	15
Cao et al. 2005 [14]	145	77	66	2	170	93	66	11
Garcia-Closas et al. 2005 [35]	1141	486	525	130	1138	488	531	119
Saad et al. 2005 [98]	72	40	19	13	82	44	32	6
Srivastava et al. 2005 [112]	106	33	58	15	370	191	166	13
Xing et al. 2006 [130]	108	59	42	7	112	69	39	4
Hsu et al. 2008 [46]	211	164	45	2	218	149	65	4
Kopps et al. 2008 [52]	143	66	56	21	196	82	82	32
Yuan et al. 2008 [138]	657	301	274	82	684	284	327	73
Altayli et al. 2009 [3]	135	75	46	14	128	62	58	8
Fontana et al. 2009 [30]	51	20	27	4	45	28	13	4
Grando et al. 2009 [38]	100	73	2	7*	100	67	3	3*
Pradubkaew et al. 2009 [89]	139	94	35	10	278	153	108	17
Zhang et al. 2011 [139]	200	83	72	45	200	92	81	27
Lesseur et al. 2012 [57]	658	294	289	75	928	411	414	103
Matic et al. 2013 [72]	201	84	95	22	122	49	52	21
Pandith et al. 2013 [85]	180	129	45	6	210	159	48	3
Safarinejad et al. 2013 [99]	166	54	88	24	332	172	152	8
Reszka et al. 2014 [91]	244	116	109	19	365	160	166	39
Altunkol et al. 2018 [4]	60	38	19	3	60	34	21	5

Tabelle 23: Übersicht der Genotypenverteilung zu GSTP1 lle105Val (rs1695); * AG + GG

Abbildung 74: Funnel-Plot zur Sensitivitätsanalyse von ERCC2/XPD Lys751Gln (rs13181) rezessives Modell (CC vs. AC + AA)

Wu et al. 1995

Biros et al. 2000

Chen et al. 2000

Törüner et al. 2001

Kuroda et al. 2003

Mabrouk et al. 2003

Matullo et al. 2006

Chung et al. 2008

Horikawa et al. 2008

Srivastava et al. 2010

Santos et al. 2011

Zhang et al. 2011

Hosen et al. 2015

Lin et al. 2017

combined [fixed]

Elhawary et al. 2017

Lin et al. 2012

Abbildung 77: Funnel-Plot zur Sensitivitätsanalyse von TP53 Arg72Pro (rs1042522) dominantes Modell (CC + GC vs. GG)

Abbildung 76: Sensitivitätsanalyse zu TP53 Arg72Pro (rs1042522) rezessives Modell (CC vs. GC + GG)

Abbildung 78: Funnel-Plot zur Sensitivitätsanalyse von TP53 Arg72Pro (rs1042522) rezessives Modell (CC vs. GC + GG)

Abbildung 81: Funnel-Plot zur Sensitivitätsanalyse von XRCC1 Arg194Trp (rs1799782) dominantes Modell (TT + CT vs. CC)

Abbildung 82: Funnel-Plot zur Sensitivitätsanalyse von XRCC1 Arg194Trp (rs1799782) rezessives Modell (TT vs. CT + CC)

9 Danksagung

Zuerst danke ich meinem Doktorvater und Betreuer Herr Univ.-Prof. Dr. Stefan Wagenpfeil für den Vorschlag, dieses Thema zu bearbeiten. Danke auch für die jederzeit schnellen und hilfreichen Antworten auf alle meine Fragen und für die Freiheit, dass ich Schwerpunkte nach eigenem Ermessen setzen konnte. Weiterhin danke ich meiner Freundin Laura Sophia Stini für die vielen Stunden des gegenseitigen Austauschs und weil sie mich immer wieder motiviert, wenn ich es am meisten benötige. Zuletzt gilt mein Dank meinen Eltern Judith und Stefan Schmitt und meiner ganzen Familie für die bedingungslose Unterstützung während meines Studiums und während des Verfassens dieser Arbeit. Ohne euch alle wäre diese Promotion nie möglich gewesen.

10 Lebenslauf

Aus datenschutzrechtlichen Gründen wird der Lebenslauf in der elektronischen Fassung der Dissertation nicht veröffentlicht.