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Zusammenfassung

1 Zusammenfassung

Fluoreszenzfarbstoffe und genetisch kodierte Fluoreszenzindikatoren (GEFI) sind gangige
Werkzeuge zur Visualisierung von Konzentrationsdnderungen bestimmter lonen und
Botenmolekile  der intra-  sowie interzellularen Kommunikation. Wahrend
Fluoreszenzfarbstoffe direkt in die Zielzellen eingebracht werden missen und nur Gber einen
begrenzten Zeitraum funktionieren, kann die Expression von GEFIs zell- und zeitspezifisch
gesteuert werden, was daruber hinaus Langzeitanalysen in lebenden Organismen erméglicht.
Farbstoff- und GEFI-basierte Fluoreszenzfluktuationen, die mit Hilfe moderner bildgebender
Verfahren aufgezeichnet werden, bilden die Grundlage fir die Analyse physiologischer
molekularer Kommunikation. Die Analyse einer grof3en Zahl komplexer Fluoreszenzsignale ist
jedoch eine schwierige und zeitaufwandige Aufgabe. Eine automatisierte Analyse ist dagegen
weniger zeitaufwandig und unabhangig von der Voreingenommenheit des Anwenders.
Allerdings mussen hierzu mehrere Herausforderungen bewaltigt werden. Unter anderem die
korrekte Schatzung von Fluoreszenzschwankungen bei Basalkonzentrationen von
Botenmolekilen, die Detektion und Extraktion von Signalen selbst, die Kkorrekte
Segmentierung benachbarter Signale sowie die Verfolgung sich ausbreitender Signale.
Daruber hinaus mussen die Algorithmen zur Signalerkennung empfindlich genug sein, um
lokalisierte Signale mit geringer Amplitude sowie begrenzter rdumlicher Ausdehnung genau

zu erfassen.

In dieser Arbeit werden drei neue Algorithmen, PBaskE, CoRoDe und KalEve, fur die
automatische Extraktion und Analyse von Fluoreszenzsignalen vorgestellt, die entwickelt
wurden, um die oben genannten Herausforderungen zu bewaltigen. Die Algorithmen sind in
eine grafische Anwendung namens MSparkles integriert, die speziell fur die Analyse von
Fluoreszenzsignalen entwickelt und in MATLAB implementiert wurde. Die Fahigkeiten der
Algorithmen werden anhand der Analyse astroglialer Ca?*-Signale demonstriert, die in
narkotisierten sowie wachen Mausen aufgezeichnet und mit den genetisch kodierten Ca?*-
Indikatoren (GECIls) GCaMP3 und GCaMP5 visualisiert wurden. Erlangte Ergebnisse werden
anschliellend mit denen anderer Softwarepakete verglichen. Dartber hinaus dient die Analyse
neuronaler Na*-Signale, die in akuten Hirnschnitten mit SBFI-AM aufgezeichnet wurden, dazu,
den breiten Anwendungsbereich der Algorithmen aufzuzeigen. Zu guter Letzt wird aufgrund
der zunehmenden Indizien auf die zentrale Rolle von Astrozyten bei neurodegenerativen
Erkrankungen wie Epilepsie eine Metrik zur Bewertung des synchronen Auftretens
fluoreszenter Signale eingefiihrt. In einer Proof-of-Principle-Analyse wird diese Metrik

verwendet, um astrogliale Ca?*-Signale mit EEG-Messungen zu korrelieren.
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Abstract

2 Abstract

Fluorescent dyes and genetically encoded fluorescence indicators (GEFI) are common tools
for visualizing concentration changes of specific ions and messenger molecules during intra-
as well as intercellular communication. While fluorescent dyes have to be directly loaded into
target cells and function only transiently, the expression of GEFls can be controlled in a cell
and time-specific fashion, even allowing long-term analysis in living organisms. Dye and GEFI
based fluorescence fluctuations, recorded using advanced imaging technologies, are the
foundation for the analysis of physiological molecular signaling. Analyzing the plethora of
complex fluorescence signals is a laborious and time-consuming task. An automated analysis
of fluorescent signals circumvents user bias and time constraints. However, it requires to
overcome several challenges, including correct estimation of fluorescence fluctuations at basal
concentrations of messenger molecules, detection and extraction of events themselves, proper
segmentation of neighboring events as well as tracking of propagating events. Moreover, event
detection algorithms need to be sensitive enough to accurately capture localized and low

amplitude events exhibiting a limited spatial extent.

This thesis presents three novel algorithms, PBaskE, CoRoDe and KalEve, for the automated
analysis of fluorescence events, developed to overcome the aforementioned challenges. The
algorithms are integrated into a graphical application called MSparkles, specifically designed
for the analysis of fluorescence signals, developed in MATLAB. The capabilities of the
algorithms are demonstrated by analyzing astroglial Ca?* events, recorded in anesthetized and
awake mice, visualized using genetically encoded Ca?* indicators (GECls) GCaMP3 as well
as GCaMP5. The results were compared to those obtained by other software packages. In
addition, the analysis of neuronal Na* events recorded in acute brain slices using SBFI-AM
serve to indicate the putatively broad application range of the presented algorithms. Finally,
due to increasing evidence of the pivotal role of astrocytes in neurodegenerative diseases such
as epilepsy, a metric to assess the synchronous occurrence of fluorescence events is
introduced. In a proof-of-principle analysis, this metric is used to correlate astroglial Ca?*

events with EEG measurements.
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3 Introduction

3.1 The central nervous system
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Figure 1: Cells in the CNS. Glial cells and neurons (yellow) closely interact throughout the entire CNS. Microglia
(purple) are the primary immune cells of the CNS surveilling their vicinity. Oligodendrocytes (cyan) ensheathe
neuronal axons. Astrocytes (blue) are in contact with capillaries and participate in tripartite synapses. NG2 glia (red)
connect to nodes of Ranvier and maintain close proximity to synapses.

The central nervous system (CNS) consists of two predominant classes of cells - neurons and
glial cells. Glial cells far exceed neurons in cellular diversity and function (Fields et al., 2014).
Both, glial cells and neurons maintain close contact and interact throughout the entire CNS
(Figure 1). In contrast to neurons, glial cells do not generate action potentials (Fields et al.,
2014), but communicate via the release of gliotransmitters (Araque et al., 2014), like glutamate,
adenosine triphosphate (ATP) or y-aminobutyric acid (GABA). Various types of glial cells are
not only classified based on their function, but with regard to their location within the CNS.
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3.2 Neurons

Neurons (Figure 1, yellow) are electrically excitable cells (Rutecki, 1992), communicating via
the release of neurotransmitters at their synapses. Each synapse thereby consists of a
presynapse at the end of a neuron’s axon, where neurotransmitters are released and the
postsynapse, located on a dendrite of the receiving neuron (Campbell et al., 2011). Neuronal
axons are ensheathed by myelin layers (Figure 1, cyan), produced by oligodendrocytes,
providing electric insulation for fast signal propagation. Myelinated sections are intercepted by
nodes of Ranvier, short unmyelinated gaps, increasing the conduction velocity and ultimately
resulting in the characteristic saltatory conduction of action potentials. In recent years it has
become evident that glial cells play a major role in neurodegenerative diseases, especially in
the context of epilepsy (Carmignoto and Haydon, 2012; Heuser et al., 2018). Therefore, a
compound analysis of glial molecular signalling and neuronal electrical signals has the

potential to reveal new insights into the underlying processes of neurodegenerative diseases.

3.3 Gilial cells

Microglia (Figure 1, purple) are the resident macrophage cells of the CNS, providing the brains
primary immune response (Filiano et al., 2015). Each microglia is continuously monitoring its
surrounding by extending and retracting its processes. Territories of neighboring microglia cells
are non-overlapping (Kettenmann and Verkhratsky, 2013). Upon detection of e.g. an
inflammation or necrotic event, microglia migrate towards the affected region and transition
into a reactive state. Thereby, they undergo a morphological transformation from ramified to

an amoeboid shape (Stopper et al., 2018).

NG2-glia cells (Figure 1, red), also referred to as oligodendrocyte precursor cells or
polydendrocytes, are not only precursor cells to oligodendrocytes, but can further differentiate
into astrocytes as well as neurons during early development as well as under pathological
conditions (Richardson et al., 2011; Huang et al., 2014). NG2-glia maintain close contact to
neurons, by extending their processes to nodes of Ranvier as well as keeping them in close

proximity to synapses (Butt et al., 1999).

Oligodendrocytes (Figure 1) are the myelinating cells of the CNS, closely associated with
neurons and astrocytes in the developing as well as the adult brain (Kettenmann and
Verkhratsky, 2013) (Figure 1, cyan). Oligodendrocytes ensheathe neuronal axons (Bean,
2007), providing support and insulation, enabling rapid neuronal communication. Via gap
junctions they form direct cellular contacts with other oligodendrocytes but also astrocytes
(Kettenmann and Verkhratsky, 2013). Contacts with other neural cells render oligodendrocytes
as important participants of cellular networks within the CNS (Kettenmann and Verkhratsky,
2013).
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3.4 Astrocytes

Astrocytes (Figure 1, blue) form a vast family of glia cells, expressing a strongly brain region
dependent shape and function. Fibrous astrocytes, located in the white matter, often possess
vascular feet, attached to capillaries (Kettenmann and Verkhratsky, 2013). Protoplasmic
astrocytes of the gray matter possess many, highly branched processes, of which at least one
is bearing one or more perivascular end feet (Kettenmann and Verkhratsky, 2013). Radial
astrocytes reside in the embryonic ventricular zone, but are also common in the spinal cord of
lower vertebrates (Kettenmann and Verkhratsky, 2013). Bergmann Glia, derived from radial
glia, occur solely within the cerebellum, maintaining close contact to Purkinje cells. Finally,
Muller cells are the most prominent retinal glia cells (Kettenmann and Verkhratsky, 2013).
Astrocytes are an integral part of the blood-brain-barrier by maintaining contact to endothelial
cells (Matias et al., 2019) and contribute to the formation of glial scars upon traumatic brain
injuries (Sofroniew, 2009). In addition, astrocytes provide nutrients to neurons and are
responsible for maintaining ion and water homeostasis (Matias et al., 2019). Each astrocyte
occupies and controls a distinct region, only slightly overlapping at interfaces with neighboring
astrocytes (Volterra and Meldolesi, 2005). By attaching to neuronal synapses, so-called
tripartite synapses are formed (Araque et al., 1999; Haydon, 2003), where astrocytes not only
sense neurotransmitters, but actively participate in neuronal communication by releasing
gliotransmitters, such as glutamate, ATP, GABA or D-Serine (Haydon, 2001). Most
importantly, astrocytes communicate via Ca?* mediated release of gliotransmitters, also
modulating neuronal activity (Volterra and Meldolesi, 2005), conferring Ca?* a key role not only

in astroglial communication.

3.4.1 Astroglial Ca?* signaling

One of the challenges in analyzing astroglial Ca%* events (potentially migrating, measurable,
temporary elevations of local Ca?* concentration), lies in the heterogeneous nature of
astrocytes themselves, reflected in the heterogeneity of astroglial Ca?* events (Nimmerjahn et
al., 2009; Oberheim et al., 2012; Caudal et al., 2020). Ca?* events can originate from various
Ca?* stores within an astrocyte, but also via uptake from extracellular space through Ca?*
channels, triggered by diverse mechanisms. For example, inositol trisphosphate (IP3) mediates
the release of Ca?* from intracellular stores like the endoplasmic reticulum (ER), resulting in
large Ca?* events (Brazhe et al., 2018). These large events however are infrequent, and it was
shown that the majority astroglial Ca?* events occur in the highly ramified astroglial processes
(Bindocci et al., 2017), localized at perivascular (Shigetomi et al., 2013) as well as perisynaptic
processes (Agarwal et al., 2017), forming functional microdomains (Agarwal et al., 2017).

Moreover, astroglial Ca?* events can express highly variable kinetics, resulting in transient
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durations from less than a second (Di Castro et al., 2011) up to over one minute (Muller et al.,
2021).

Astroglial Ca?* events have been classified in various ways. Ca?* puffs, also termed
microdomain events, are elementary signals, serving autonomous functions (Smith and
Parker, 2009). They are not location specific and can occur throughout the entire astrocyte.
Occurring in functionally independent cellular subunits, they occupy volumes in the sub ym?
range and cause changes in fluorescence close to noise level (Bindocci et al., 2017; Mdller et
al., 2021). They were found to play a fundamental role in the formation of somatic Ca?* events
as well as global, propagating Ca?* waves (Smith and Parker, 2009). Microdomain events
occur in an IPsindependent manner and originate form mitochondria during brief openings of
the mitochondrial permeability transition pore (Agarwal et al., 2017). Somatic Ca?* events
occur within a single cell (Hausmann, 2003) and can be classified as puffs or sparks,
depending on their generating pathway (Berridge et al., 2003). Intracellular Ca?* events can
be transmitted to neighboring cells, independent of their generating pathway (Scemes and
Giaume, 2006). Their extent is thereby governed by the effective diffusion properties of Ca?*
mobilizing signaling molecules inside and in between cells (Scemes and Giaume, 2006). This
permits the formation and propagation of macroscopic Ca?* waves extending over astroglial
networks via gap-junctions and purinergic signaling in a highly synchronized and coordinated
way (John et al., 1999; Haas et al., 2006). In Bergmann-Glia, Ca?* waves have been classified
as sparkles, bursts and flares (Nimmerjahn et al., 2009), restricted to individual fibers, radially
spreading across fibers, or appearing across large networks of cells during locomotion,
respectively. In addition, depending on their size, Ca?* events can be termed focal events, or
expanded events (Volterra et al., 2014). From a purely detection-oriented point of view, Ca?*
events can be termed as stationary, with virtually no change in position and only moderate
changes in morphology or, non-stationary, with measurable changes in position and

morphology, also known as Ca?* waves.

Analyzing and understanding the “language of Ca?* events” is a major step in unravelling
complex regulatory functions of astrocytes, as well as the role of all glial cells in health and
disease (Araque et al., 1999; Alberdi et al., 2005; Giaume et al., 2007; Caudal et al., 2020).
Moreover, due to the pivotal role of astrocytes in health and disease, astroglial Ca?* events are
of particular interest. Reliable detection, analysis and interpretation of fluorescence events in
general and astroglial Ca?* events in particular however, is a non-trivial task and has been a
research subject for over two decades (Cheng et al., 1999; Picht et al., 2007; Ellefsen et al.,
2014; Srinivasan et al., 2015; Agarwal et al., 2017; Giovannucci et al., 2019; Wang et al.,
2019).
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3.4.2 Visualizing Ca?* transients in vivo

Genetically encoded Ca?* indicators (GECIs) can not only be
expressed in a cell type and time-specific manner, but in living
organisms. GCaMP (Figure 2) expresses a high Ca?* affinity,
consisting of a single GFP molecule, connected to the M13
fragment of myosin light chain kinase, as well as calmodulin
(CaM) (Nakai et al., 2001). Ca?* binding to CaM causes a

conformational change due to the Ca?*-CaM-M13 interaction,

causing a subsequent conformational change in the GFP
barrel, resulting in an increased fluorescence intensity (Nakai
et al., 2001). The rationale of using GCaMP as a Ca?*
indicator is to obtain a stronger fluorescence response with
increasing Ca?* concentrations. Since GCaMP is not a

ratiometric fluorescence indicator one cannot deduce a

specific Ca?* concentration based on a given fluorescence
response. Current GCaMP sensors are suspected to cause
Figure 2: Structure of GCaMP. P P

Image credit: By Akerboom, Rivera,  side effects, ranging from changed Ca?* dynamics up to
Guilbe, Malavé, Hernandez, Tian,

Hires, Marvin, Looger, Schreiter ER  possible cytotoxicity, due to the buffering effect of CAM and
http://www.jbc.org/content/284/10/6  incidental perturbations of signaling networks (Yang et al.,
455/F1.large.jpg, CC BY 3.0,
https://commons.wikimedia.org/w/i  2018). These drawbacks can be overcome by novel GECls,

ndex.php?curid=15140508 such as GCaMP-X (Yang et al., 2018).

3.5 Analysis of astroglial and neuronal signals

3.5.1 Analysis of fluorescence events

Reliable detection, analysis and interpretation of fluorescence events is a non-trivial task and
has been a research subject for over two decades (Cheng et al., 1999; Picht et al., 2007;
Ellefsen et al., 2014; Srinivasan et al., 2015; Agarwal et al., 2017; Giovannucci et al., 2019;
Wang et al., 2019). Fluorescence events are classically analyzed using regions of interest
(ROIs). Thereby, ROIs are meticulously placed at locations exhibiting fluorescence changes.
Individual, per-ROI signals are then obtained via ROI integration. Hereby, the individual mean
fluorescence per time-point is computed for any given ROI. Within each obtained ROI signal
discrete transients can be extracted by detecting amplitude peaks. Recently, new approaches
utilizing the analytical concept of so-called dynamic events (Wang et al., 2019; Bojarskaite et
al., 2020; Mudiller et al., 2021) to extract and analyze non-stationary fluorescence events have

been published. In contrast to classic ROls, dynamic events are in principle not fixed in location
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and can adapt to morphological changes of a fluorescence event. However, most fluorescence
events, especially astroglial Ca?* events are stationary (Wang et al., 2019) and exhibit only
small to no changes in signal morphology and location. For this reason, classical ROl analysis
remains a valid and powerful tool for their quantification. The analysis of propagating and
morphing events however, is an important extension and can reveal new insights. This is
especially important in the context of analyzing large scale network dynamics, as can be
observed in the cerebellum (Hoogland et al., 2009) or in the context of neurodegenerative
diseases, such as epilepsy (Heuser et al., 2018). Moreover, dynamic events can overcome
inherent limitations of the classic approach. For example, if multiple events occur at the same
location but at different time points, they likely vary in spatial extent and magnitude. Classic
ROI-based analysis uses a single ROI to segment both events. Such improper segmentation
in turn leads to underestimated transients in case of over-sized ROIls. Contrary, ROls
significantly smaller than the spatial extend of the actual event cause overestimation of the
resulting transient. Another issue arises, if multiple fluorescence events partially overlap in
space. Using stationary ROIs may result in a single event being detected as multiple transients,

if a superimposed detection threshold of the neighboring ROI is overcome.

It is important to note, that neither of the above analysis paradigms automatically qualifies or
disqualifies for the analysis of fluorescence events in general, and low amplitude events e.g.
occurring in the gliapil or microdomain events in particular. A necessary requirement for
genuine signal extraction, especially important for microdomain and other miniscule, low
amplitude events, is the ability to compensate fluorescence fluctuations at basal molecule
concentrations, allowing to extract fluorescence events independent of the underlying tissue
structure and brain region. Moreover, this process should be independent of the level of a
microscope’s optical magnification as well as temporal resolution, and must work equally well

in single cell and network recordings.

However, limiting factors for the analysis of fluorescence events can be the optical resolution
of a microscope or the pixel sampling factor, contributing to underrepresented events in digital
images. Low photon yields and insufficient signal amplification can result in low amplitude
fluorescence changes being discarded as statistical noise. In combination, these factors can

lead to indiscriminable, diffuse fluctuations, rendering an analysis impossible.
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3.5.2 Electroencephalography
/ Electroencephalography (EEG) measures potentials,

reflecting electrical activity in the brain (Siuly et al.,

7~ 2016) using a pair of electrodes either inside or
f outside the scalp (Im, 2018). The main sources of
‘ - these potentials are cortical neurons (Im, 2018).
a“‘°"P°‘e"“='/ There are two main types of intracellular potentials
i contributing to EEG signals, action potentials and

' & : postsynaptic potentials (Im, 2018) (Figure 3). Action

potentials occur due to rapid changes in

)
N

™ transmembrane resting potential, caused by changes

2 i T in intracellular and extracellular ion concentrations

Bearden et al., 1 ; Im, 2018). When an action

Figure 3: Action potentials and (Bearden et al., 1980; Im, 2018) en an aclio

postsynaptic ~ potentials. Saltatory  potential propagates along a neuron’s axon towards
conduction of action potentials (green) along a

myelinated axon from one node of Ranvier o a synapse, a postsynaptic potential is generated

another.  Postsynaptic  potentials  (blue) ) ) )
generated at the postsynaptic terminal can ~across a pair of neighboring neuronal membranes

spawn (or inhibit) new action potentials. (Im, 2018), via the presynaptic release of
neurotransmitters. If this postsynaptic potential exceeds a certain threshold, the action
potential is delivered from one neuron to another (Im, 2018). Postsynaptic potentials are
believed to have a higher contribution to the generation of measurable signals (Siuly et al.,
2016; Im, 2018). Although action potentials exhibit a higher signal amplitude, postsynaptic
potentials last longer (~30 ms) and can thus occur synchronously over a large number of
neurons (Siuly et al., 2016; Im, 2018). EEG signals can be recorded as scalp EEG, where the
electrodes are attached non-invasively to the scalp surface. Alternatively, intracranial EEG
records signals inside the skull. In order to avoid brain damage, brain surface electrodes can
be used to record a so-called electrocorticogramm (ECoG). In the context of this thesis, EEG
refers to ECoG unless specified otherwise. A brain surface electrode was developed in our
lab, specifically designed for recording ECoG signals while simultaneously performing 2P-LSM

in awake mice (Schweigmann et al., 2021).

EEG recordings not only help to understand normal processes and functions in the brain, but
also to detect various brain pathologies. In the case of epilepsy, electrical brain activity is
drastically increased during periods of hyper synchronized neuronal activity (Stevanovic,
2012).

—
—



Introduction

3.5.3 Spectral analysis

Compared to advanced imaging methods used in fluorescence microscopy, EEG recordings
exhibit a low spatial resolution. However, their temporal resolution is significantly higher, and
signals are typically recorded at a sampling rate of 1200 Hz. This permits spectral analysis of
EEG recordings, where signals are subdivided into specific wave bands (Table 1) (Drongelen,
2007). The definitions of wave bands for EEG analysis may vary however, and (Siuly et al.,
2016; Im, 2018) both use slightly different bands. Some authors even specify additional sub-
bands (e.g. the mu-band (u) as an additional sub-band within the range of 8 — 12 Hz (Im,
2018)). In this thesis, the w and y wave bands were adapted in order to comply with recent
literature (Deshpande et al., 2020). Wave-bands can be associated with different brain
functions. Delta waves, for example, can be associated with deep sleep, serious brain
disorders and waking state (Siuly et al., 2016). Theta waves can be related to emotional stress,
but also creative inspiration and deep meditation (Siuly et al., 2016). Although it is not known
if the latter two can occur in mice. It is also known, that higher frequencies are more common

in abnormal brain states, such as epilepsy (Siuly et al., 2016).

Table 1: Frequency bands of EEG signals. Frequency bands used to classify EEG activity with their respective
frequency ranges.

Band name Frequency range
Delta () 0.5-4Hz

Theta (8) 4-8Hz

Alpha (a) 8-12Hz

Beta (B) 12 -30 Hz
Gamma (y) 30 - 50 Hz
Omega (w) 50-120 Hz

Rho (p) 120 — 250 Hz
Sigma (o) 250 — 600 Hz
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4 Aim

Automated detection and analysis of fluorescence events has been an active research topic
over the past two decades. Estimation of the fluorescence signal at basal concentrations of
messenger molecules is thereby a crucial step for analysing fluorescence events, laying the
foundation for the analysis of low amplitude events predominantly occurring in the highly
ramified processes of neuronal and glial cells. On top of that, event detection algorithms need
to be sensitive enough to extract such low amplitude signals. Recently, the interplay between
neurons and glial cells has moved into the focus of research, especially in the context of
neurodegenerative diseases. Correlated analysis of EEG recordings in relation to molecular
signalling is therefore highly intriguing, requiring the combined analysis of electrical and
fluorescence signals. However, this requires the combined analysis of inherently different
signals. These challenges can be met by developing new, interactive algorithms and

automating computations, allowing to generate highly detailed analyses.

The aims of this thesis are 1) to devise a fully automated, unbiased, interactive and user-
friendly system for the analysis of fluorescence fluctuations. 2) integrate the fluorescence
analysis with EEG analysis, and 3) to thoroughly characterize fluorescence events with this

application. This will require to develop:

Standardized, data-driven analysis routines, requiring minimal user input.
2. An adaptive algorithm to estimate the fluorescence signal at basal concentrations of
messenger molecules (PBasE).
3. Algorithms, to detect and analyze macroscopic, as well as microscopic events, by
a. Generating and analyzing stationary ROIs (CoRoDe).
b. Tracking dynamic events and capturing their morphological changes (KalEve).
4. Methods for automatic detection, analysis, classification and statistical evaluation of
transients, obtained from detected ROls.
Automated documentation of analyses, results, as well as analysis parameters.
Analysis of EEG signals using spike-train analysis e.g. for the analysis of epileptic
seizures.
7. Correlation and synchronization of EEG recordings with fluorescence events to analyze

combined temporal characteristics.

These aims pose several challenges to algorithm development. In particular, the developed
algorithms must not only be capable to work with arbitrary subsets of data to generate
previews, but are also subject to time constraints in order to maintain interactivity. Moreover,
signals recorded with fundamentally different technologies and differing spatial as well as

temporal resolutions have to be brought together for a thorough combined analysis.
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5 Mathematical foundations and methods

Digital signals, such as EEG recordings or images require discretization of the original
(continuous) signal or image in order to be processable by a computer. One can thereby
consider one-dimensional signals, such as EEG recordings, as a simplified case, compared to
two-dimensional signals, such as images. In most cases it is possible to extend signal
processing techniques from 1D to 2D and even to higher dimensional cases, such as image
series or multi-spectral images. The discretization of n-dimensional, continuous signals is

typically based on amplitude measurements of the continuous signal at a regular sampling

interval T, (resulting in the sampling frequency F;, = Tl), and is the basis for the digital

N

measurement of any signal, including EEG recordings as well as digital images. The
mathematical concept behind this is based on the Dirac impulse function &. Simply speaking,
0 is shifted across the continuous signal, generating measurement pulses in regular intervals,
resulting in a so-called Dirac comb. At each measurement pulse, the current amplitude of the
continuous signal is measured and appended to the discretized signal. In technical terms, the

sampling function
xs(n) = x(t)6r, 5-1

generates the n-th sample of the signal x; as a result of the continuous signal x at time ¢t
multiplied with the Dirac function § with sampling interval T;. In order to discretise any signal
without compromising its relevant information, the minimally required sampling rate is twice
the value of the so-called Nyquist frequency, being the highest frequency to be recorded. It is
derived from the sampling theorem, which states that the sampling rate must be > 2E,,,
(where F,,,, is the maximum frequency of interest). This is important to reduce aliasing
artefacts and distortions in the discretized signal. Amplitude changes occurring at a higher
frequency than the Nyquist frequency cannot be reconstructed properly or may even be
completely lost. For more details and exact derivations, the interested reader is referred to
(Drongelen, 2007; Gonzalez and Woods, 2008).

5.1 Signal processing

When referring to signal processing, there is in general no restriction to the dimensionality of
a given signal, and image processing can be treated as a sub-discipline of signal processing.
However, for a better readability, signal processing shall refer to one-dimensional, time
dependent signals, such as EEG recordings or fluorescence signals obtained by ROI
integration. The concepts introduced for signal processing can in many cases be directly

extended from one dimension to n-dimensions, and be adapted to apply to digital images.
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5.1.1 Correlation & cross-correlation
Linear correlation quantifies the similarity, or relation between two given signals a and b. In the
context of this thesis, (linear) correlation is used synonymously for the computation of

Pearson’s linear correlation coefficient

aila; = pg) (b — pp)
_
(57001 — o) Xy by — 1)) 2

p(a,b) =

here n is the number of samples in each signal, and u,, y; are the mean values of the signals
a and b, respectively. The resulting correlation coefficient p is in the range [—1,1], where —1
indicates a negative correlation, 0 indicates no correlation and 1 indicates full positive
correlation. The cross-correlation of two signals is computed by shifting one signal against the

other while keeping the second signal fixed
Pa,b(m) = E{an+mbn} = E{anbs_n}, 5-3

where —oo < n < oo, * denotes the complex conjugate and E denotes the expected value

operator.

5.1.2 Frequency analysis and Fourier transform

Any periodic function can be expressed as the sum of weighted sines and/or cosines of
different frequencies, independent of the complexity of the function (Gonzalez and Woods,
2008). This sum is called the Fourier series. Moreover, even non-periodic functions (with a
finite area under their curve) can be expressed as the integral of weighted sines and cosines
(Cheng et al., 1999; Gonzalez and Woods, 2008). This formulation is known as the Fourier

transform, and is defined as

SOy = [ roe e dr 5.4

Where t and p are continuous variables. Any function expressed as a Fourier series or
transform can be reconstructed completely by an inverse process without loss of information
(Gonzalez and Woods, 2008). Using the Fourier transform, it is possible to transfer a function
or signal to the frequency (Fourier) domain. The Fourier transform of a sampled, band-limited
function extending from —oo to o« also extends from —oo to oo (Gonzalez and Woods, 2008).
To work with a finite set of samples, the discrete Fourier transform (DFT) is used. Computing
the brute-force DFT of a signal however, comes with a significant computational burden and is
practically infeasible (Gonzalez and Woods, 2008). The Fast Fourier Transform (FFT) (Cooley

and Tukey, 1965) is an efficient algorithm, significantly reducing the computational overhead
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of the DFT, permitting the widespread use of Fourier transform in science and engineering.
For a full derivation of the Fourier Transform, DFT and FFT, refer to (Drongelen, 2007;
Gonzalez and Woods, 2008).

5.1.3 Power-spectral density

The distribution of power into the frequency components of a signal is described by a signal’s
power spectrum. These individual frequency components can be obtained employing the
Fourier transform 3{f (t)}. The power spectral density (PSD) (of a finite total energy) can then
be computed within a finite, but sufficiently large time interval, representing the spectral energy

distribution per unit time. It can be computed by

[ee)

a7 | 1@ di= g7 [3UD@E do. 55

where fr(t) is a finite interval of the time dependent signal f(t) and J(f;)(w) is the Fourier

transform of the finite interval for all frequencies w.

5.1.4 The Kalman filter

The Kalman filter (Kalman, 1960) is an iterative filter to estimate a new state of a linear,
dynamic system, based on previous measurements. It explicitly models not only measurement
noise, but also the uncertainty of the current system state. Kalman filters have been used to
control the lunar landing of the Apollo 11 mission in 1969. Nowadays, Kalman filters find their
most prominent use in GPS navigation systems (Marchthaler and Dingler, 2017), correcting
measurement errors and predicting positions during temporals signal loss (e.g. when driving

through a tunnel). The underlying model is based on a state space of the following form
St+1 = ASt + EVt + ft 5-6
X, =CS; + 1, 5-7

starting at time t = 1 with initial state S;. A, C, and E are the known system matrices and V; is
the observable input process (measurement). &, and 7, are latent (unobserved) noise terms.
Kalman filters are considered very robust and used in a wide variety of applications, such as
navigation, control systems and signal processing. The ability of a Kalman filter to predict a
new system state solely based on a previous state will be used later in a predictor-corrector
approach to track dynamic fluorescence events (section 6.1.3). For an in-depth introduction,
further applications and mathematical derivations, refer to (Bohn and Unbehauen, 2016;
Marchthaler and Dingler, 2017; Deistler and Scherrer, 2018).
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5.2 Image processing

This section introduces some fundamental concepts of image processing, laying the
foundation for the analysis of image sequences obtained using fluorescence microscopy,
depicting temporal, localized fluorescence fluctuations. First, images and their internal
structure are introduced, followed by digital filters. In addition to these essential concepts, an
informal introduction to scalar field topology and scale spaces is given. All of these concepts
build upon the definitions presented in section 5.1, thus images can be interpreted as multi-
dimensional signals. However, some image dimensions can be treated as independent, e.g.

color channels, reducing the analytical complexity.

5.2.1 Digital images
A digital image I is typically represented using a 2D rectangular grid, of which each individual
pixel stores a scalar (grayscale) value and can be addressed via a pair of coordinates (x,y),

specifying a row and column index.

p =1(x,y). 5.8

Color or multi-channel images do not only store a single value per pixel, but a vector p of size
n, where n is the number of recorded colors or band-limited channels. Color images are thus

typically represented as 3D grids, where the 3 coordinate specifies a color channel.

p=1I1(xy,c). 5.9

Volumetric (3D) images possess image data recorded in three spatial dimensions and can also

be represented by a 3D grid, where the 3™ coordinate refers to the 3" spatial dimension.
p =1y, 2). 5-10

Moreover, scalar 2D, time-dependent data is also frequently represented as 3-dimensional

data, with time in the 3™ dimension

p=1(xy,t). 5-11

These ambiguities however conflict with each other, and require context-sensitive knowledge
by the analyst. Moreover, additional challenges are imposed when the data at hand
simultaneously requires three spatial dimensions, multiple color channels and is further time-
dependent. By convention, such data is typically recorded as a 5D matrix with the following

order of dimensions

p=I(xyc2zt). 5-12
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However, due to technical reasons, popular microscope operating software, such as

Scanimage (Pologruto et al., 2003), uses a 6D representation of images
p=1(x7yczs,t), 5-13

Where s is a slice, or position index, allowing to record multiple image slices per discrete time-
step (e.g. used for image stitching). This representation of images will be used throughout this
thesis. For simplicity, one usually assumes that all pixels (or voxels in case of thee spatial

dimensions) are recorded instantaneously and the time to acquire a single frame is neglected.

5.2.2 Spatial filters
A B

Figure 4: Image filters. A) The filter matrix is moved across an image. Each pixel in the resulting image is replaced
one-by-one by a combination of the current pixel (orange) and its neighbors (blue) based on the filter coefficients
of the kernel. B) The filter matrix of the averaging filter, covering a 5x5 neighborhood, exhibiting the same
coefficients (weights) for each pixel covered by the matrix.

Filters in image processing operate within a pixel's neighborhood (Figure 4 A). For example,
an averaging or boxcar filter, computes a smoothed version of an image, by replacing each
pixel’s value in the result image with the average value of the neighborhood around said pixel.
Since the filter is moved across all pixels (Figure 4 A), these filters are also called moving
window or sliding window filters. Generally speaking, linear filters, such as an averaging filter
(Figure 4 B), can be represented by a matrix H, also called filter mask or filter kernel (Figure
4 B). This matrix contains the filter coefficients and the resulting pixel values are computed as
the weighted s