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Abstract

A tremendous amount of upheaval and rethinking of "free-volume" theories to describe
granular systems has made staggering progress. However, owing to a plethora of macro-
scopically equivalent yet microscopically distinct metastable states, the average free volume
density (a single macroscopic degree of freedom) does not fully describe the complex dy-
namics of granular systems. Nonlinear rheology of grains and powders are filled with an
assortment of such micro-macro processes interrupted by shear bands or decorated with
filamentary force chain networks, preventing the homogeneous response, challenging to
predict its physical interpretation. In this regard, FT-rheology combined with Chebyshev
polynomial representation allowed us to efficiently quantify the nonlinear behaviour of
grains and powders where the nonlinear viscoelastic moduli were found to scale with the
characteristic energy by a Boltzmann factor, invoking a temperate-like parameter. Therefore,
to account for both, the spatial heterogeneity and the intermittent dynamics, we referred to
a generalised version of the "trap" model, the Soft Glassy Rheology (SGR) model. Although
intentionally adopted to study glass formers, the crucial ingredient here is the "noise tem-
perature" accounting for the configurational state of a system, recognizing glass transition,
ageing, rejuvenation and nonlinear rheology. Hence, to systematically study this special
class of athermal materials that fall within the purview of this constitutive model, we var-
ied confinement, the surface tension of the wetting fluid and frequency with respect to the
stress-strain response. Our experimental study recognises the crucial physical processes
underlying rapid granular flows, and characterizes the significance of nonlinearities in the
rheology of granular materials.



Zusammenfassung

Die Theorien des "freien Volumens" zur Beschreibung granularer Systeme haben einen enor-
men Umbruch und ein Umdenken bewirkt. Aufgrund einer Fülle makroskopisch gleichw-
ertiger, aber mikroskopisch unterschiedlicher metastabiler Zustände wird die durchschnit-
tliche Dichte des freien Volumens (ein einziger makroskopischer Freiheitsgrad) der kom-
plexen Dynamik granularer Systeme jedoch nicht gerecht. Die nichtlineare Rheologie von
Körnern und Pulvern ist mit einer Vielzahl solcher Mikro-Makro-Prozesse gefüllt, die durch
Scherbänder unterbrochen oder mit filamentären Kraftkettennetzwerken ausgestattet sind,
was eine homogene Reaktion verhindert und damit die Vorhersage ihrer physikalischen
Interpretation erschwert. Das Modell, das sowohl die räumliche Heterogenität als auch
die intermittierende Dynamik berücksichtigt, ist eine verallgemeinerte Version des "Fallen"-
Modells, das Modell der weichen glasartigen Rheologie (engl. soft glassy rheology, SGR).
Obwohl es absichtlich zur Untersuchung von Glasbildnern eingesetzt wird, ist der entschei-
dende Bestandteil hier die "Rauschtemperatur", die den Konfigurationszustand eines Sys-
tems berücksichtigt und Glasübergang, Alterung, Verjüngung und nichtlineare Rheologie
berücksichtigt. In dieser Arbeit untersuchen wir eine spezielle Klasse von athermischen
Materialien, die in den Anwendungsbereich dieses konstitutiven Modells fallen.
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Introduction

Matter and energy seem granular in structure, and so does ”life”, but not so mind.

– Erwin Schrödinger, WHAT IS LIFE? The Physical Aspect of the Living Cell

Amongst athermal materials, granular matter classifies as a system of particles typically of
≥ 1 µm size, characterized by their slow relaxation, which upon perturbation continuously
solidifies under the action of static friction [1–3]. If smaller than a micron, Brownian motions
begin to determine their natural dynamics as thermal fluctuations become apparent [4–6].
At long times, aforesaid dynamics are often recognized as a reminiscence of structural
rearrangements, frustration disorder, or frozen state in systems such as supercooled liquids
(structural glasses) [7, 8], flocculated nanoparticles [9, 10], polymers [11, 12], concentrated
colloids [13, 14] and vortices in superconductors [10]. Although, most physical systems
age when disrupted, the Universe itself at the largest scale is in ever-ageing state to reach
equilibrium and so does the plasmonic and magnetic patterns in solar flares, convection
cells, supergranules, and sunspots [15–18].

Until recently, when the theory of self-organized criticality was introduced [19–21], the gen-
eral view of how simple the sand or a sandpile is, changed to the very antithesis of it.
Unlike materials that are governed by thermodynamics, an intuitive picture of the granular
matter remains a major challenge among complex systems. Favourably, the salient features
of thermal (glasses, colloids, emulsions, and polymers) and athermal (grains, non-Brownian
colloids and powders) materials exhibit striking similarities, such as they flow under spe-
cific deformation or form disordered solid (jamming) under other disruptions. To illustrate
this, Cates [22–24] in the late ’90s, showed that shear driven jammed systems were acknowl-
edged as a class of "fragile matter", clearly captured by the jamming phase diagram, which
hereafter became a standard reference. A thermodynamic view of jamming is demonstrated
in Fig. 0.1 as a concave surface illustration of jamming-transition based on the equation of
state, where jamming is a path-dependent state defined by pressure, shear, and the density
[2, 22, 25]. Ageing temperature Θ is used to identify the metastable packing arrangement
density. A granular system unjams as the jamming point supersede J > 1 and ceases to
compact or age when J = 1 [25]. The images ascribed to the diagram illustrate the signif-
icance of the jamming-unjamming phenomenon in everyday commodities. An emerging
application of such force chains and jammed granular networks has been used as an inspi-
ration to model multifaceted webs of global structures and solve complex network science
problems [26]. Note: the readers who wish to go deeper in details are encouraged to study
[27].

A granular solid will fluidize and exhibit anomalous rheological response with decreasing
density, increasing stress, and increasing pressure, analogously due to temperature in the
case of thermal glasses and owing to confinement or some other form of perturbation in the
case of granular materials. Another hallmark of the granular matter is the formation of force
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Figure 0.1: Jamming phases were first introduced by Liu and Nagel. The modified dia-
gram is redesigned based on the work [28].

chain networks, defined as the inhomogeneous distribution of linear filament-like structures
bifurcating with short-ranged spatial correlation function of stress under isotropic compres-
sion and long-ranged, under shear [1, 2, 8, 9]. Besides, due to absent tensile stresses in dry
grains, inaccessible forces at microscopic scales driven by friction and disorder exhibiting
dissipation, classical fluid dynamics, or elasticity theory are rendered inefficient in describ-
ing the complete mechanical response of sheared granular systems [9, 22, 29]. In this regard,
a statistical framework on how to incorporate structural disorder to elucidate the atypical
rheology of soft glasses, Sollich, Hebraud, and Cates ([30, 31]) proposed a model by in-
troducing an additional degree of freedom to the Bouchaud’s trap model [7, 32] entitled
"Soft Glassy Rheology" model. On further exploration by Fielding, Sollich, and Cates, the
model has been widely acknowledged by [2, 8, 9, 12, 23, 29, 33, 34] in studying the complex
dynamics of foams, polymers, colloids, and grains.

Experimental issues, that most likely stem from inhomogeneous flow, grain anisotropy,
force networks, and those particularly important in rheology, have been broadly studied
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Figure 0.2: Granular Matter and its panoramic existence. Top: Size spanned by granular media, from
volcanic sand (micron) to quasars (light-years). Bottom: Mother Nature and research competence:
from robotic hand using jamming phenomena in picking a heavy spring to the landing of rovers
on Mars, sheep herding, ants (active or granular?), granular jets, and photoelastic illustration of
force chain networks, snow on Saharan dunes, traffic jams, termite colonies, and the three states
of granular matter. All of the images shown here are obtained from google images with suitable
keywords.

by Lu, Brodsky, and Kavehpour [25, 35]. The study correlates granular flow regimes:
grain-inertial, translational, and quasi-static to common industrial and natural processes;
avalanches, landslides, dredging, segregation, and compaction [35]. Moreover, by mini-
mizing the effects of avalanches and shear bands, granular flows in a tube (Poiseuille-like)
and steady-state rheology revealed wet grains flow faster than dry [36]. Nevertheless, de-
spite the attempts [9, 33, 35, 37–41], a long-standing problem of providing a coarse-grained
description of sheared granular matter, lies the accurate quantification of grain-level struc-
tures projected on the macroscopic behaviour, as the associated non-linear contributions
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are often overlooked. Non-equilibrium thermodynamics have made staggering progress in
the light of developing a statistical framework for complex materials. Despite their vast
differences, glasses and grains share a multitude of attributes, much deeper than we may
conjecture. The underlying physical processes governing their dynamics seem similar but
the reality might be surprising. Albeit the ongoing studies, theory of shear transformation
zones (STZs), and the concept of complexity has been a success in understanding the role
of effective disorder (temperature) and entropy in glass formers [42]. As proposed, this
temperature might just be the tipping point to describe the phenomenological processes
of soft condensed matter. Whether manipulated by Nature or industry, the vast majority
of materials are in non-equilibrium, and disruption or rapid change in a physical variable
(quenching) pushes them into a state of disorder. Consequently, the system begins to relax
to attain a new equilibrium state. How fast or slow? hinges upon its plastic response to
applied stresses and the dynamics of ”effective” temperature.

Owing to the ubiquity of granular matter and its broad application span (see Fig. 0.2),
the primary motivation of this thesis is to study the nonlinear rheology of granular matter
and powder (relatively more cohesive) systems at large deformation scales, collecting data
bodies to develop a soft glassy perspective and provide valuable insights on rapid granular
flows. Confined systems under deformation such as kinetically constrained grains, show
a "yield stress", or "freeze" into the arrested states of non-zero stress. By gently shearing,
from quasi-static to near-inertial regime (0.1 Hz to 10 Hz; large amplitude oscillatory shear,
LAOS), granular matter relaxes and stiffens over time exhibiting a plethora of nonlinear
events in their rheological response. We demonstrate this by exploiting the analytical and
qualitative features of the rheology via Soft Glassy Rheology (SGR) model and FT-rheology
combined with Chebyshev Polynomials, the non-linear dynamics of dry and wet granular
matter.

Inertial granular rheology is recognized for its effectiveness in steady simple shear experi-
ments that allows a direct scaling between the ratio of stress to normal pressure and the
inertial number (which non-dimentionalizes the shear rate by mean particle size, normal
pressure, and solid density), but in common practice, granular media strongly deviates
from inertial rheology [43, 44]. For example, if we look at inclined plane flows, their spa-
tially homogeneous stress fields are described by a tilt angle, however, the angle at which the
flowing layer ceases to flow would depend explicitly on the pile thickness [45, 46]. Whereas
in the case of standard rheology measurements, the non-uniform flow profiles begin to
grow in zones such as shear banding, and the direct scaling to exploit inertial rheology is
no longer valid [47, 48]. Inspired by emulsions, the works of Kamrin et. al. [43, 44, 49]
provide a constitutive model for size-dependent nonlocal rheology, where the flow at any
point is influenced by local stress and the flow of neighbouring points. Although the micro-
scopic basis of this nonlocal rheology model stems from the SGR formalism, the focus is on
the macroscopic flows of dense granular media. Nevertheless, an opposite approach would
entail viewing microscopic processes governed by nonlinear events at mesoscopic scales
by virtue of granular rearrangements, which can be too rich in dynamics for the standard
rheology to capture. FT-Rheology and other linear algebraic approaches have been previ-
ously adopted to describe the sinusoidal input to non-sinusoidal output (nonlinear regime)
involving models as Bingham and Giesekus [50], nonetheless, due to overexploitation of
assuming a large or infinite number of basis states in the viscoelastic description, render
these techniques inefficient [50–55]. Soft glassy rheology perspective however provides a
constitutive means to break and solve the nonlinear stress-strain response of a material to
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describe its yield events by a single parameter "the noise temperature" as we will study in
this thesis.

A brief outline of this thesis is as follows, chapter 1 gives a brief overview of the theories
and source models in the vicinity of granular materials. In chapter 2, common difficul-
ties in granular rheology and how to resolve them are presented. Chapter 3 deals with
the identification of dynamical regimes in dry and wet grains, namely linear, nonlinear
and slip, recognized by an onset strain at which, the characteristic degree of nonlinearity
turns intermittently anomalous. By scaling the dissipated energy and viscoelastic moduli
via Boltzmann-like constant, rearrangement dynamics of grains are explored where force
chains were found to govern dry granular flows, but contrarily, breaking and regeneration
of capillary bridges were most pronounced in wet granular systems. Thereupon, by break-
ing the stress-strain waveforms via symmetry arguments, we argue that the solutions to
the SGR model resemble a periodic sequence corroborated by computing the same noise
temperature as standard rheological measures, which were all found to increase logarith-
mically with the applied confinement. The packing dynamics of granular assembly under
rheometer is also investigated that provided valuable insights on the failure of percolating
force chain networks due to epitaxial arrest of quasilinear clusters of dry grains ascribed
to the jamming transition while wet grains expanded as dilatant. Chapter 4 is dedicated
to the cohesive granular flows, ergo examines the wet grains and powders, whereby the
noise temperature was found to decay asymptotically with increasing surface tension of the
wetting fluid, strongly indicating transient caging effects. Besides, we found evidence that
suggests a strong coupling between elasticity and viscosity of a granular sample, scalable
by a factor that is exactly equal to the applied frequency.
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1

Theoretical Background

This chapter is a brief introduction to the theoretical frameworks and formal definitions of
the source models required for the remaining part of the thesis. In particular, the topics of
contact physics and soft glassy rheology.

1.1 Non-linear Contact Mechanics

Bringing two macroscopic solids together, although visibly flat or smooth, the real area at
which the contact takes place is in between the tiny fraction of microscopically rough as-
perities with a plethora of adhesive sites (the birth of a solid-solid multi-contact interface).
For about 250 years, Coulomb conjectured the universal coarse-grained description of gran-
ular material, exclusively to link their mechanical response and the morphological features
(shape, size and topology) which is still not clear [2]. The key to unravelling the mechanisms
behind the exchange of energies at the inter-granular contacts upon perturbation lies in the
foreground of solutions to the constraint satisfaction problem. Granular materials being
athermal adopt mechanically stable packing, as the force and torque constraint is balanced
for all grains. Frictional contacts being the reminiscence of dry granular packings are estab-
lished by virtue of satisfying Coulomb criterion, an additional constraint, ft ≤ µ fn, where µ
is the coefficient of friction and ft(n) is the (normal) tangential contact force [56]. When mod-
elling these systems, the forces are often decomposed into elastic deformation (accounts for
repulsion) and dissipative energy loss (momentum transfer and degrees of freedom) [9, 56].
To describe such complex contacts controlling a material’s behaviour upon deformation, the
stress tensor requires force balance, torque and constitutive equation of stress-strain relation
to be satisfied.

1.1.1 Hertzian Contacts and Cluster Linearity

For a couple of overlapping viscoelastic grains (i and j) with radius Ri and Rj as shown in
Fig. 1.2, a hard-core interactive contact force (see [57]) is given by,

Fh(ξ) =

{
1 for ξ < 0
∞ for ξ ≥ 0.

(1.1)

7



1 Theoretical Background

where ξ = Ri + Rj − |rij| defines the overlap surface of pressure upon hard contact, with
rij being the distance between grain centres. Such that the transferred momentum between
grains i and j with velocity v∗

i , v∗
j (before contact) and vi, vj (after contact) is illustrated in

the Fig. 1.1 below.

Figure 1.1: Schematics of an elastic collision before and after contact between two hard
viscoelastic particles i and j of radii Ri and Rj with corresponding position vectors as ri and
rj, respectively. Where v∗

ij is the velocity of particle i with respect to the particle j before
contact [57], rij is the distance between grain centres, and ξ is the overlap surface upon
contact.

Thenceforth, the dissipation can be defined in terms of the restitution coefficient ϵ as ϵ ≡ p f
pi

[58], with pi and p f being the initial and final momenta, respectively, and the dissipated
energy is ∆Ed = Ei(1 − ϵ2), with Ei being the kinetic energy before the contact. To apply
this formalism in reality, it is often reported analytically rigorous and sometimes impossible
to solve for soft grains, as the time-dependence does not fit to the infinite force systems [57,
58]. Therefore, incorporating the Hertzian contact force is preferred in order to mutually
link simulations and experiments. For a typical granular system, the Hertzian contact force
FHertz combines the elastic repulsion (as ξ) and dissipative damping (as Ad) and is given
as,

FHertz(ξ) =
2Ym

√
Reff

3(1 − ν2)

(
ξ2 + Ad

√
ξ

dξ

dt

)
(1.2)

where Ym is the Young modulus, Reff ≡
Ri+Rj
Ri Rj

is the effective radii, ν is the Poisson ratio,
and Ad is the dissipative constant, can be defined as a function of viscous constants η1 and
η2 [57, 58],

Ad =
1
3
(3η1 − η2)2

3η1 + η2

(1 − ν)(1 − 2ν)

Ymν2 (1.3)

8



1 Theoretical Background

The idea here is that, if we assume a system S we know the dynamics of and rescale for
example all its sizes R

′
i by a constant factor α, such that R

′
i = αRi then how would this new

system S
′

change? or for both S and S
′

to behave identically, then how the material also
has to be changed? In this regard, the table below provides some valuable information on
the elastic and dissipative properties of a material when comparing scaled and original [57].
This can be taken into account when comparing numerical simulations and experiments
where the system is usually scaled for mathematical convenience.

Parameters Original System Scaled System

All Lengths x αx
Time t

√
αt

Elastic Constant Ym
ϕ(1−ν2)

α Ym
ϕ(1−ν2)

Dissipative Constant Ad
√

αAd

Figure 1.2: (a) Schematics of the soft particle interaction model between spheres i and j
employed for modelling clusters with (b) triplets (encircled in magenta) as shown here,
being the smallest cluster in a directed map, here from A to B or B to A in conjunction with
neighbouring contacts that when assigned with a unique identification serves as a graph
representation of particle packing. (c) A sketch to illustrate cluster orientation θi estimation,
where the orientation of the vectors forming a new contact (circles) are measured over an
arbitrary coordinate axis, where its weighted average computes the probability distribution.
The figure is redesigned to briefly summarize the work [59, 60].

Furthermore, when the stress is transmitted through an array of inter-granular contacts,
it gives rise to the networks of percolating filamentary force chains [2, 59, 60]. A recent

9



1 Theoretical Background

approach [59, 60] comes to light as one attempts to understand this percolation behaviour of
force chains, where these networks are classified by virtue of linear connectivity determined
by the critical transition from 1− dimensional systems to silo and hopper flows. Introducing
a rate-independent frictional force in the spring-dashpot model by adding a Coulomb slider
simplifies the overlap contact between grains i and j [59], as shown in Fig. 1.2, where kt and
kn are the tangential and normal coefficients of spring stiffness, and similarly γt and γn are
the damping factors and µ is the friction due to the Coulomb slider.

The smallest network of connected particles can be described as a product of unit normals
at two contacts (n1 and n2) as n1.n2 ≡ rt, allowing us to define the linearity of a contact
network as r = min(rt|rt > 0) [59]. Where this minimum triplet linearity r is intuitively
viewed as the "weakest link" due to the fact that as rt → 0, the fraction of normal force to
be transmitted to the subsequent grain decays gradually.

1.2 Soft Glasses in a Viscoelastic Stress Landscape

Glasses, as ubiquitous as it may sound, are still among the most sought after topic of con-
densed matter physics. The conjecture lies in dramatic shifts in the equilibration ("ergodic
time", τerg(T)) of a glass upon cooling, characterized by the myriad relaxation timescales,
where the longest timescale τe diverges at the experimental glass transition temperature Tg,e
by several orders of magnitude with an exponential tail (T−1) [2, 7, 12]. Although this glass
transition is defined as analogous to supercooled liquids, in nature however the process of
supercooling has been vastly exploited by winter flounder (marine life form) and plants
(such as lignin, suberin) to survive in harsh weather [61]. Nevertheless, soft glasses con-
stitute smooth and soft interactions, characterized by a growing coherence length between
its constituents, similarly diverges at Tg [12, 31] (see Fig. 1.3). Besides, due to assorted
metastable states and unrecognizable order in a given configuration of glass as T < Tg,e,
the underlying physics continues to puzzle. Granular solids, unlike soft glasses, adopts
isostatic states by satisfying the number of degrees of freedom to the number of constraints
[9, 12, 31].

Figure 1.3: A sketch to illustrate ergodic time dependence on the temperature, revealing
divergence at the experimental glass transition temperature [12].

10



1 Theoretical Background

For a constitutive framework of the Soft Glassy Rheology model to work on soft glasses, the
structural disorder is separately introduced by incorporating the strain degree of freedom
in trap model formalism. Analogous to Bouchaud’s trap models, the sample material is
divided into mesoscopic elements, where each individual element is identified by its local
shear strain l (l ∝ γ). Although strain rate γ̇ is assumed uniform in the system, l and stress
vary. Hence, the strain energy ≡ 1

2 kl2 ascend to reach yield energy E, allowing an element
to yield while resetting l = 0, where k is the local shear modulus. Intriguingly, fixing E and
k same for all the elements in the landscape, the SGR model would manifest a non-glassy
model for the ideal case of 2D foam (uniform distribution of hexagonal cells) developed by
Princen in the late ’70s [62]. Consequently, the disorder is conceptualised by picturing the
individual elements in association with their E, whose initial distribution through meso-
scopic elements is determined by the sample preparation. Upon yielding, a mesoscopic
element thereupon rearranges in a local equilibrium structure, where a new yield energy
E is then allocated by a history-independent distribution ρ(E) ∝ e−E/Ē. Wherefore, such
interactions between elements are described by a scalar variable that accounts for yielding
events, termed as noise temperature kBΘ where (Ē � kBT). Eventually, the probability
P(E, l, t) of an element with yield energy E and local strain l at time t can be defined in
terms of an attempt frequency Γ0 as,

Ṗ(E, l, t) = −γ̇
∂P
∂l

− Γ0e−(E− 1
2 kl2)/(kBΘ)P + Γ(t)ρ(E)δ(l) (1.4)

where Γ is the ensemble average yielding rate Γ = Γ0 〈e−(E− 1
2 kl2)/(kBΘ)〉. The first term on

RHS accounts for convection of l second describes the yielding of a mesoscopic element
and third ensure the rebirth of elements subsequent to yielding (rearrangement or hop-
ping). Such that, the macroscopic stress becomes σ(t) = k 〈l〉, and can be calculated when
ascribed to the initial condition P(E, l, 0) and the corresponding strain history (as input
signal). Clearly, by setting E, l, t to output Ē = Γ0 = k = 1, gives typical yield strain of
1. Besides, l = 0 when the flow is absent so that, Ṗ(E, t) = −e(−E/(kBΘ))P + Γ(t)ρ(E). On
equilibration at long t, Peq ∝ exp{E/(kBΘ)}ρ(E) is analogous to the Boltzmann distribution,
allows to estimate glass transition if and only if, ρ(E) is assumed to have an exponential
tail, as shown in figure 1.4.

The viscoelastic response of a material in such a stress ensemble can therefore be described
by a spatial scalar function kBΘ. For sufficiently small kBΘ < 1, the system is a glass and
refrain from equilibration as Peq(E) is not normalised, hence the glass transition occurs at
kBΘ = 1∀ρ(E) = e−E. This ageing thereafter continuously evolve into deeper traps.

1.2.1 Mean Field Theory, Topology Conservation and Quenched Disorder

A stress landscape can be constructed for mechanically stable granular systems approach-
ing jamming (point J) by deriving the conservation principles for 1.) force ensemble where
stress replaces the role of energy, such that the ensemble basis is analogous to the thermo-
dynamic referential frame, and 2.) the force-moment tensor (volume integral of the stress
tensor), which provides a basis to define stress ensemble, computing tensorial analogue of
thermodynamic temperature, the noise temperature kBΘ as acknowledged by the works

11



1 Theoretical Background

Figure 1.4: Schematics showing dynamics of mesoscopic regions (cyan circles, 1-6) at the
different local strain in a quadratic potential well, where each trap is given by its depth
E − 1

2 kl2, where E scales as 〈E〉 ∝ kBΘ ln(t). The blue vertical bars indicate the energy
dissipated by a mesoscopic region while yielding and falling in a less deformed state. The
horizontal displacement is arbitrary, each having its own independent zero for the scale
of the local strain l, thus, any trap can be accessed from every other trap and there is no
specific connectivity. The figure is inspired by the works [12, 30, 31].

of Henekes, Chakraborty and Behringer [2, 8, 34] on developing the Ginzburg-Landau de-
scription of jammed granular systems. The activated yielding events in a viscoelastic stress
landscape is modelled by the interactions between mesoscopic elements. Thermodynamic
description of such an ageing system is assumed quenched in an energy field, initially at
high temperature Ti � Tg,e and evolving to a low temperature T < Tg,e for the waiting
time tw, measures the total relaxation [7, 12]. Hereof, one might ask, what does a plethora
of yielding events and structural disorder have in common? or can a typical rheological
response of material provide a crucial path that connects microscopic processes to macro-
scopic?

The answer lies in the conception of "complexity", and more precisely, defining a naturally
conserved variable that can quantify the collection of metastable states. Mean field theory
(MFT) allows us to establish a constitutive relationship between stress and the microscopic
geometry of the packed granular matter. Assuming that the granular packing is mechani-
cally stable, in the mean field spirit, a path integral is then performed over all the config-
urational states of packing and coarse-grained variables to provide a continuous field as a
collection of microscopic descriptors of the packing, such as the f orce − moment tensor (a
measure of the noise temperature). In MFT of granular packings, a field comprising all the
possible constraints is defined in terms of the Airy stress f unction that accounts for force
and torque balance constraints and by incorporating symmetry arguments and stress fluctu-
ations, a statistical framework for jammed granular packing was proposed [34]. To this end,
such form of complexity to describe disordered systems such as spin glasses, was previ-
ously reported successful, in understanding the free energy minima of metastable states [7,
32]. However, despite their similarities, weak thermal motions in the granular matter make
it really challenging to adopt a similar basis for complexity akin to spin glasses. Notwith-
standing, the mean field theory picture these states in an energy potential well diverging in
the thermodynamic limit [2, 7, 9]. To lay a similar ground for granular materials, their topol-
ogy is assumed conserved, providing an analogous means to define complexity [9, 34]. The
primary notion to demonstrate this stems from drawing a comparison with Boltzmann’s
Stosszahlansatz, first demonstrated by Boltzmann in formulating his conjecture for dilute
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gases, where the distribution of momenta would evolve as a function of translation in time,
resulting in precisely tracking the growth of single-particle distribution in time [63]. Never-
theless, the statistics involved in static granular packings must be defined in space and not
time [9, 63]. In other words, the time dimension from kinetic theory is replaced by a spatial
translation motion, such that the sum of momentum vectors implicated in the action of a
particle colliding is conserved, as shown by Fig. 1.5. Favourably, this theoretical framework
allows defining a rank-2 tensor "temperature", provided that at maximum entropy the inter-
granular contact forces in equilibrium are conserved in all the directions. Consequently, the
partition of stress and fabric fluctuations (joint contact angle distribution) together satisfy
all the possible force-torque constraints. To illustrate this, let’s imagine a dashed line as
shown in Fig. 1.5, passing horizontally and perpendicularly through grains highlighted in
green, exploring the phase space in a packed granular assembly with force contact points
shown as blue dots. Now, if we attempt to calculate the amount of force along horizontal
line, the result will be identical to the perpendicular line, as this sheet of force translate
through a 2D granular packing, hence proving that the contact forces are conserved.

Figure 1.5: Conservation of contact forces in granular packing, in order to introduce an
additional degree of freedom to describe granular packings and their evolution in space
and not time. The figure is inspired from the work [63].

As a final remark, a system in a state of equilibrium by virtue of its internal interactions
(which are self-enforced) would be classified under a statistical framework similar to what
encompasses the ergodic theorem for kinetic systems, where all conserved-energy states
are equally probable, thereby justifying the hallmark entitled for granular packings that
evolve as "self-ergodic" systems. This analogy with Boltzmann-like distribution, allows us
to predict the probability of a microscopic state in an equilibrated packed granular assembly
existing at a certain noise level as the well known Kramers rate [34, 63, 64].

1.3 Non-linear Rheology

Rheology is the study of deformation and flow of matter [65]. As defined, the topic studies
the vast majority of condensed matter, with its prime motivation to explain the unusual
mechanical behaviour (storage and loss moduli) of matter, otherwise rendered inexplicable
via classical models of elasticity and Newtonian fluid dynamics. The objective is to identify
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the underlying mechanism as the matter deforms, expands in two branches; 1) macroscopic
(characterize a material at scales larger than its microstructures) and 2) microscopic (com-
bination of statistical physics and defect mechanics). Being the fundamental concept of
continuum mechanics, the stress-strain relationship is thus the most important one to estab-
lish [65].

The mechanical response of a material to oscillatory shear results in either elastic properties
or viscous properties, or viscoelastic properties. A purely elastic material outputs the stress
response as a function of the applied strain and viscous with respect to strain rate. The
shear modulus G (intrinsic property) can be calculated by a ratio of stress σ to the applied
strain γ, as G = σ/γ [65, 66]. Linear response of material would typically output G as a
constant slope over strain amplitude. Nevertheless, for a nonlinear response, G has a strong
dependence on the strain amplitude, G = G(γ). A convenient alternative to describe me-
chanical response is by the use of tangent modulus Gκ, which would diverge from G as the
response becomes non-linear. Similarly, by applying a constant shear rate, a purely viscous
material can be characterized accredited by the resulting shear stress as η = σ/γ̇, with a
nonlinear viscosity η(γ̇) and the velocity gradient as γ̇ = v/d where v is the velocity and
d is the fluid layer’s thickness (Newton’s law) [65, 66]. Consequently, a tangent viscosity is
therefore defined as, ηκ = dσ/dγ̇ [65]. Common protocols to study and obtain rheological
data, complex behaviour, in particular, involve small amplitude oscillatory shear (SAOS),
large amplitude oscillatory shear (LAOS), stress relaxation on sudden shearing displace-
ment, and creep recovery. Readers, who wish to go deeper in details, are encouraged to
study the following books [51, 65–73].

A nonlinear viscoelastic response however not only depends on the deformation timescale
but also the amplitude of deformation and due to which, many test protocols fails to sys-
tematically provide the full spectrum of important timescales and the respective strain de-
pendence. Alternative to oscillatory deformation to examine nonlinear rheology is the step-
strain or step-rate tests, but neither takes into account, both, linear viscoelasticity and steady
flow [54, 74]. Besides, thixotropic tests are also used typically to probe time-dependent non-
linearities in the viscous response, for example, by setting the shear-rate up to a certain
value over a fixed time followed by successively reverse ramping the shear-rate. Dynamic
viscosity is then depicted by a hysteresis-like loop as σ(γ̇, t), but the linear response of
the ramps often mismatch to the shear-rate and therefore under-perform to characterize a
genuine viscoelastic response [75].

1.3.1 Large Amplitude Oscillatory Shear (LAOS) Rheometry

The most common dynamic oscillatory shear test entails a sinusoidal deformation is ap-
plied on the material and its mechanical response is measured in time [52, 53]. The test
regime that reveals a linear viscoelastic response is termed as small amplitude oscillatory
shear (SAOS), where LAOS would evoke a nonlinear response [54, 74]. As we increase the
amplitude of strain or stress in the test protocol at a fixed frequency, the linear to nonlinear
transition in the material response can be identified [51, 76]. As the strain amplitude in
SAOS is small (γ ∼ 10−2 − 10−1 for polymers while γ < 10−2 for dispersions and emul-
sions), the viscoelastic moduli are found independent of the strain and the stress response
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results as a sinusoidal output [74]. Note: within the resolution limit of the rheometer, a
SAOS test generally depicts the material in a linear regime to describe its complete rheolog-
ical response in terms of the viscoelastic moduli. Albeit the relevance of SAOS in capturing
a thorough view of microstructure and the respective rheology of a material, the picture is
still limited to the linear viscoelastic regime only (i.e. small deformation). Nevertheless, in
industries, the situation is quite nonlinear, as the material is processed rapidly and at large
deformation scales, wherein SAOS fails to provide any relevant information to put into prac-
tice. Thenceforth, for better quality control and deeper characterization of the undergoing
processes when a material is processed, LAOS offers a broader scale to study the nonlinear
response of the material. In LAOS, to simultaneously determine the elastic and viscous re-
sponse, the material is subjected to oscillatory deformation that acknowledges the nonlinear
viscoelastic response pertaining to the steady flow and linear viscoelasticity in a 2D space
{ω, γ0} [69]. Shear deformation depicts the input strain in the form of γ(t) = γ0sin(ωt),
where γ0 is the strain amplitude and ω is the frequency of deformation. As a response,
an oscillatory strain-rate γ̇(t) = γ̇0cos(ωt) with γ̇0 as the strain-rate amplitude, is imposed,
the stress becomes oscillatory with a component in phase with the strain i.e. elastic stress as
σ

′
= f

′
(γ) and a component in phase with the strain-rate i.e. viscous stress as σ

′′
= f

′′
(γ̇),

provided that the strain and strain-rate inputs are 90 deg out of phase as acknowledged by
the phase quadrature [54, 72]. This enables us to decompose viscoelastic stresses as elastic
stress, a function of strain σ ∼ Gγ and viscous stress, a function of strain-rate σ ∼ ηγ̇. The
stress response in the linear regime thus reads,[71],

σ(t) = γ0(G
′
sin(ωt) + G

′′
cos(ωt)) (1.5)

with G
′

as the elastic modulus and G
′′

as the viscous modulus [77, 78]. LAOS approach
requires two input parameters, frequency ω (with Deborah number as De = λω, where λ is
a relaxation time) and strain amplitude γ0 that forms a 2D parameter space, the well known
Pipkin space (see Fig. 1.6) which maps the important response boundaries of viscoelastic
materials [72].

The low frequency limit in vanishing strain-amplitude, γ0 → 0, integrate the material prop-
erties only as a function of the loading timescale, where ω → 0, represents the quasi-static
response in a steady flow test. At the third limit of high frequency, ω → ∞, the response
is purely elastic. Nevertheless, the region of our interest (questioned in Fig. 1.6) belongs to
an intermediate frequency and large amplitudes, where most materials are often processed
and used (the nonlinear viscoelastic region)[53, 54, 72]. It has been since a challenge to
provide complete rheology of material bridging micro-macro processes, ergo answering the
question posed here. By systematically ramping up the strain amplitude γ0, the nonlinear
viscoelastic regime is eventually reached. This approach is entitled the large amplitude os-
cillatory shear (LAOS) test. Works of Harris [77], Philippoff [78] and Onogi et al. [79] in
mid ’60s-late ’70s introduced FT-rheology and the basis for LAOS rheology. In a nonlinear
viscoelastic response, the stress is no longer defined by Newton’s law and the viscoelas-
tic moduli, G

′
and G

′′
possesses what’s called "non-linearities". As challenging as it may

sound to separate and describe these non-linearities from a material’s response, two ana-
lytical concepts are generally used. 1) The time-series response σ(ωt) or 2) the parametric
representation as waveforms of stress vs. strain or stress vs. strain-rate (given the stress is a
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Figure 1.6: Pipkin diagram sourced from the works of A. C. Pipkin [72] on fluids flow
regimes. The viscoelastic flow falls in low frequency regime for viscous behaviour and high
frequency for elastic properties. Linear viscoelasticity is observed at small strain amplitude
γ0. The question mark though, conjecture the region of large strains and frequencies, at
which vast majority of materials are processed and applied.

function of the orthogonal inputs). Owing to its relatively simple transformation, delicately
distinguishing the inherent periodic signals holding within the nonlinearities into a series
of orthogonal trigonometric functions, Fourier Transform (FT-) Rheology, offers a rather tai-
lored approach that suits the time-dependent oscillatory stress to give the periodic response
as [51, 77, 78, 80],

σ(t; ω, γ0) = γ0 ∑
n
{G

′
n(ω, γ0)sin(nωt) + G

′′
n(ω, γ0)cos(nωt)}. (1.6)

Although mathematically strong and most convenient at small strains, FT-Rheology face
two major challenges when applied to LAOS data. 1) Lacks physical definitions of detected
nonlinearities in accordance with Total Harmonic Distortion (T.H.D.), which is known as a
global indicator of nonlinear response [54, 70, 80, 81]. Albeit the typical outcome of com-
mercial rheometers is the first-harmonic viscoelastic moduli (G

′
1 and G

′′
1 ), the stress response

is no longer a single-harmonic sinusoid. 2) Even though the use of strain rate superposi-
tion provide sufficient information pertaining to LAOS data, still fails to acknowledge a
significant amount of nonlinearities. Alternatively, the time-series stress signal for LAOS
[53, 82] analysis can be used to decompose the response into viscoelastic functions by sets
of sinusoidal, square and triangular wave formalism [54, 83, 84] to have a clearer picture of
nonlinearities in the raw data signals. Nevertheless, unlike the harmonic series basis func-
tions in FT-rheology, the aforesaid functions are not mutually orthogonal, are thus reported
obscure [52, 54, 74, 82]. Moreover, Tee and Dealy [54, 70] proposed another viable approach
that quantifies non-linear viscous Lissajous-Bowditch curves but without any physical de-
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scription, hence akin to the earlier demonstration by Philippoff [78]. Eventually, the works
of Cho [52] on the geometrical decomposition of Lissajous-Bowditch loops into a superpo-
sition of elastic and viscous response via symmetry arguments offered a unique distinction
but due to the non-orthogonality and a user dependent choice of polynomial order for re-
gression analysis, rendered pragmatic in quantifying nonlinearity. Taking into consideration
the aforementioned successes and drawbacks, a relatively refined approach was proposed
as an analytical framework, developed by Ewoldt and Mckinley [54, 82, 85].

1.3.2 MITlaos: Characterizing Non-linearities

Decades of studies and efforts have been dedicated to investigating the yield and rheology
of granular matter, with an aim to predict and fine-tune its flow behaviour for industrial
and geological benefits. However, one of the major drawback in predicting granular flows
with basic rheological means, is that the presence of non-linearities in their raw signal, pre-
vent us from obtaining valuable information [35, 43, 86]. This issue was recently resolved
for gels and polymers by applying an analytical framework termed "MITlaos" developed for
the MATLAB platform by Ewoldt and Mckinley [54, 74, 76]. Hence, with this motivation,
we employ this analytical method to precisely characterize the nonlinearities in granular
flows. MITlaos is an open-source licenced tool and the code can be obtained upon a formal
request to the authors. As explained above, MITlaos uses the time-series signals of raw
stress-strain data with options to set user-specified parameters for the analysis (frequency,
strain, stress and time). The code output includes processed data files (in ASCII format) and
analysed datasets in image format. The data file outputs can be used for further analysis,
as it already calculates the viscoelastic moduli and the corresponding time-series signals as,
σ

′
(γ(t)) and σ

′′
(γ̇(t)), respectively [54]. Typically, one applies an oscillatory shear strain,

γ(t) = γ0sin(ωt) and so the orthogonal strain-rate γ̇ = γ0ωcos(ωt). Linear response
of a material is often obtained at small strain amplitudes and can be determined by the
viscoelastic moduli G

′
and G

′′
obtained from the stress in phase with γ(t) and γ̇(t), respec-

tively. Increasing strain amplitude γ0 leads to the nonlinear viscoelastic properties, hence
classifies the large amplitude oscillatory shear (LAOS) test. A complete representation of
stress (caused by a sinusoidal input strain γ(t) = γ0 sin(ωt)) can be written in the following
forms of Fourier series, corresponding to either the elastic or the viscous response,

σ(t; ω, γ0) = γ0 ∑
n, odd

G
′
n(ω, γ0) sin nωt + G

′′
n(ω, γ0) cos nωt (1.7)

σ(t; ω, γ0) = γ̇0 ∑
n, odd

η
′′
n(ω, γ0) sin nωt + η

′
n(ω, γ0) cos nωt (1.8)

Assuming that the stress response is in an odd symmetry to the axial direction of shear
strain, therefore only the odd-harmonics are represented by the Fourier transform [67].
The presence of even-harmonic would imply that the stress response stemmed from the
transient flows, such as secondary flows [87], or the dynamic wall slip [88]. Although this
FT-rheology gives a robust interpretation of linear viscoelastic measures in the small strain
limit, but is still inefficient to satisfy the T.H.D. [89] or the normalized intensity of the
3rd harmonic [90]. Furthermore, Lissajous-Bowditch (LB) loops representation of the raw
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LAOS stress-strain data offers rich analytical features to describe nonlinear properties like
strain-stiffening or shear thickening [37, 52, 54, 74, 82]. The data corresponding to σ(t) vs.
γ(t) refers to the elastic Lissajous-Bowditch loop and similarly, σ(t) vs. γ̇(t) to the viscous
Lissajous-Bowditch loop [54]. Despite the attempts to build on the FT rheology, several
approaches have been put forward for quantifying the nonlinear viscoelasticity in LAOS
[52, 70, 82]. Nonetheless, the methods do not provide sufficient information do not account
for all the viscoelastic materials.

1.3.3 Chebyshev Polynomial and FT-rheology: Illustration of Higher Harmonics

The physical significance of LAOS data lies in the extension of orthogonally decomposed
stress into an elastic stress as σ

′
(x), with x = γ/γ0 = sin ωt and the viscous stress as σ

′′
(y)

with y = γ̇/γ̇0 = cos ωt by exploiting the symmetry arguments [52–54]. Thus, the total
oscillatory stress can be written as a sum of the superposed stresses, σ(t) = σ

′
(t) + σ

′′
(t).

Here, the assumption is that the elastic stress σ
′

is in the odd-symmetry with respect to x,
and even-symmetry to y, and vice versa for viscous stress σ

′′
. A direct correlation of σ

′
and

σ
′′

to the Fourier decomposition ([52, 74, 82]) then reads,

σ′ ≡ σ(γ, γ̇)− σ(−γ, γ̇)

2
= γ0 ∑

n, odd
G

′
n(ω, γ0) sin(nωt), (1.9)

σ′′ ≡ σ(γ, γ̇)− σ(γ,−γ̇)

2
= γ0 ∑

n, odd
G

′′
n(ω, γ0) cos(nωt). (1.10)

Many choices of basis functions have been applied and studied in their quest to simplify
the time-series functions of the stress response, such as polynomial regression fit [52, 85],
in addition to other proposed sets of orthogonal polynomial basis functions as Laguerre,
Hermite, Jacobi, Utraspherical (Gegenbauer), Legendre, and Chebyshev polynomials of the
first and second kind [53, 54, 91]. In this regard, the choice of "efficient" polynomials is
Chebyshev polynomials, as it describes σ

′
and σ

′′
over a specified range [-1,+1], keeping

odd symmetry at x = 0 with access to an additional range of higher-order harmonic contri-
butions. Hence building on the chosen basis set, we can reformulate the elastic and viscous
contributions to the total stress response as

σ
′
(x) = γ0 ∑

n: odd
en(ω, γ0)Tn(x) (1.11)

σ
′′
(y) = γ̇0 ∑

n: odd
vn(ω, γ0)Tn(y) (1.12)

where Tn(x) is the nth-order Chebyshev polynomial of the first kind, with x and y being
γ/γ0 and γ̇/γ̇0, respectively, that lies in [-1,+1] domain to allow orthogonality. Due to the
orthonormal nature of the functions for all orders, the Chebyshev coefficients en and vn are
independent of each other. Henceforth, en(ω, γ0) represents elastic Chebyshev coefficients
and vn(ω, γ0) represents the viscous Chebyshev coefficients. For a linear regime e3/e1 � 1
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and v3/v1 � 1 such that the linear viscoelasticity can be determined as e1 −→ G
′

and
v1 −→ η

′
= G

′′
/ω [76]. Positive contribution of the third-harmonic, i.e. at n = 3 implies

higher elastic stress at maximum strain, and e3 > 0 would be interpreted as an intra-cycle
strain-stiffening of the elastic response, and e3 < 0 would points to the strain-softening.
Likewise, positive values of v3 would corresponds to intra-cycle shear thickening and v3 < 0,
shear-thinning [52, 54]. Favourably, the Chebyshev coefficients en and vn in the strain or
strain-rate test, can be recast in Fourier coefficients (in time domain) as follows,

en = G
′
n(−1)

n−1
2 n : odd (1.13)

vn =
G

′′
n

ω
= η

′
n n : odd (1.14)

We exploit this compatibility clause with FT-rheology to deduce the noise temperature
of grains from their non-linear viscoelastic response, in Chapter 4. Thus, the third-order
Chebyshev coefficients exhibit deviation from linear viscoelasticity however only provide a
rough physical interpretation given that the Fourier coefficients are used as a meaningful
measures of the nonlinearity [82, 85]. Some reports in FT rheology are presented by utilizing
the amplitude and phase [92], in which the above equations can be formulated as,

σ = γ0 ∑
n: odd

|G∗
n| sin(nωt + δn) (1.15)

where |G∗
n| =

√
G′2

n + G′′2
n is the scaled stress magnitude and δn is the phase angle of the ap-

plied strain, γ(t) = γ0 sin ωt. Hereby, we only take the signs of third harmonic Chebyshev
coefficients into consideration to reveal the elastic and viscous nonlinearities. A set of equa-
tions is shown below as a reference adopted from the works [54, 85], to signify the nature
of elastic and viscous Chebyshev coefficients and their underlying physical description, as
illustrated later in Fig. 1.7.

2e3 = −|G∗
3 | cos δ3


> 0, strain-stiffening for π/2 < δ3 < 3π/2
= 0, linear elastic for δ3 = 0, π

< 0, strain-softening for − π/2 < δ3 < π/2

(1.16)

v3 =
|G∗

3 |
ω

sin δ3


> 0 Shear-thickening for 0 < δ3 < π

= 0 linear viscous for δ3 = 0, π

< 0 shear-thinning for π < δ3 < 2π

(1.17)

Where sine transform of the first-harmonic is defined as G
′
1 = ω/(πγ2

0)
∮

σ(t)γ(t)dt to
account for the average elasticity in LAOS coordinate space (ω, γ0). Herein, the set of
elastic moduli can be given in relation to the conventional FT-rheology and the Chebyshev
polynomial decomposition as [80, 85],
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G
′
M ≡ dσ

dγ

∣∣∣
γ=0

= ∑
n odd

nG
′
n = e1 − 3e3 + ... (1.18)

G
′
L ≡ σ

γ

∣∣∣
γ=γ0

= ∑
n odd

G
′
n(−1)

n−1
2 = e1 + e3 + ... (1.19)

with a quoted description as "G
′
M is the minimum-strain modulus or tangent modulus at

γ = 0 and G
′
L is the large-strain modulus or secant modulus at γmax" [52, 54, 82]. The

graphical definitions of these non-linear viscoelastic measures are alternatively illustrated
for a typical Lissajous-Bowditch loop in Chapter 4. Furthermore, since the elasticity can
converge to the linear elastic modulus in small strain limit, entailing, that at e3/e1 � 1,
G

′
L = G

′
M = G

′
1 = G

′
(ω) are equivalent to the linear viscoelastic moduli in the linear

regime and different otherwise in the nonlinear regime. The respective Lissajous-Bowditch
loop with a tangent at γ = 0 and a secant at γ/γ0 = x = 1. In addition, the value of
elastic stress taken at γmax as G

′
κ ≡ dσ

′
/dγ|γ=γ0 results in the differential modulus. A

natural approximation of elastic modulus can be given by measuring the minimum-strain
modulus G

′
M at zero instantaneous strain. Because for oscillatory measurements where

γ(t) = γ0 sin(ωt) at γ = 0, the strain rate is at a local maximum, dγ̇/dt = 0, due to
which the viscosity measures are locally constant. Alternatively, G

′
L, the secant modulus at

maximum strain also results in elastic modulus, given that for γ̇ = 0 at γ = γ0, indicating
zero viscosity [54, 82, 85].

Figure 1.7: Diagram adapted from the study [54, 85] to capture the physical significance
of the third-harmonic phase angle δ3 pertaining to Chebyshev coefficients, via quadrant
picture.

Many have reported [79, 81, 83, 84] that the first-harmonic loss modulus G
′′
1 determines the

total energy dissipated by the material under oscillatory shear deformation. Therefore, the
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energy dissipated per unit volume can be written as πγ2
0G

′′
1 , with the average coefficient of

dissipation per cycle being, G
′′
1 = η

′
1ω. Furthermore, a similar set of measures relative to

elastic response can be defined as below, to capture the viscous contribution in the present
nonlinearities,

η
′
M ≡ dσ

dγ̇

∣∣∣
γ̇=0

=
1
ω ∑

n: odd
nG

′′
n(−1)(n−1)/2 = v1 − 3v3 + ..., (1.20)

η
′
L ≡ dσ

dγ̇

∣∣∣
γ̇=±γ0ω

=
1
ω ∑

n: odd
G

′′
n = v1 + v3 + ... (1.21)

Where η
′
M is the minimum-rate dynamic viscosity at γ̇ = 0 and η

′
L is the large-rate dy-

namic viscosity at γ̇ = γ0ω. G
′
1 is the first harmonic (linear) elastic modulus and η

′
1 is the

corresponding dynamic viscosity.

1.4 Differential Rheology: Proof of Stress-Strain Symmetry

Thus defined, the stress under LAOS is depicted in the following form, with proof expressed
in axioms as; (1) Stress under LAOS is a continuous and differentiable function of x and y,
and (2) The dependence of stress on the strain amplitude, frequency and time is implicit
through x(t) and y(t) [52]:

σ(ω, γ0, t) = σ(x, y) (1.22)

(3) By changing the sign of the strain, it follows:

σ(−x,−y) = −σ(x, y) (1.23)

The stress in the case of arbitrary deformation is a form of nonlinear differential or integral
equation, however, for a steady oscillatory shear can be represented in a nonlinear algebraic
function of the strain, strain rate and its higher time derivatives [52, 93, 94]. Although
these derivative of the strain are independent, they are directly scalable with the strain or
strain rate, validating the use of algebraic form. This further ensures that the LB-loops are
true "loops" and not open or "broken" (so implies the axiom (1)). Consequently, the second
axiom is satisfied when the direction of flow is reversed. Lastly, the third axiom then proves,
that the stress is in odd symmetry for both x and y [52, 95], thenceforth can be decomposed
as:

σ(x, y) =
σ(x, y)− σ(−x, y)

2
+

σ(x, y)− σ(x,−y)
2

(1.24)
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such that,

σ(−x, y) = −σ(x,−y) (1.25)

where the first term on the rhs is odd for x and even for y, and the second term is even for x
and odd for y [93, 94, 96]. This mathematically acknowledge the symmetry of stress-strain
relationship [52, 97, 98] (that we ought to invoke to reveal symmetry lines of viscoelastic
stress-strain waveforms in correspondence with the SGR model in Chapter 4). This equality
or stress-strain symmetry can be described as:

σElastic =
σ(x, y)− σ(−x, y)

2
, σViscous =

σ(x, y)− σ(x,−y)
2

, (1.26)

As defined previously, the stress σElastic, is odd for x and even for y (vice-versa for viscosity),
therefore

∮
σElasticdx = 0; and

∮
σViscousdy = 0 (1.27)

so that,

∮
σdx =

∮
σElasticdx,

∮
σdy =

∮
σViscousdy. (1.28)

As we recall the symmetry breaking equations first defined in 1.11 and 1.12, and here in
1.26, it satisfies equations 1.29 and 1.30 and eventually shows that σ

′
= σElastic the elastic

stress, and σ
′′
= σViscous the viscous stress. To prove this, we take the loop integral of a

function f of x and y and g of x and y, and separately show that with respect to x or y, the
integral outputs zero provided that the odd-even symmetrical basis is not violated [52, 94,
95], we thus write,

∮
f (x, y)dx =

∫ γ0

−γ0

f (x,
√

γ2
0 − x2)dx +

∫ −γ0

γ0

f (x,−
√

γ2
0 − x2)dx = 0,∮

g(x, y)dy =
∫ γ0

−γ0

g(
√

γ2
0 − y2, y)dy +

∫ −γ0

γ0

g(−
√

γ2
0 − x2, y)dy = 0.

(1.29)

Solving for x and y being zero ∀γ0, we get even f and g ∀x and ∀y respectively,
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f (x, y)− f (x,−y) = 0,
g(x, y)− g(−x, y) = 0 (1.30)

Similarly, satisfying the fundamental symmetry of stress-strain would result in odd func-
tions of x and y [52]. Additionally, for elastic stress to depend implicitly on y and viscous
on x happens by strain amplitude dependence of the form γ0 =

√
x2 + y2 [52]. Thenceforth,

a central point between linear and non-linear viscoelasticity reads as,

σ
′
(x, y) = σ

′
(x, γ0), σ

′′
(x, y) = σ

′′
(x, γ0) (1.31)

and so does the elastic and viscous stress,

σ
′
= Γ

′
(x, γ0)x, σ

′′
= Γ

′′
(y, γ0)y, (1.32)

where Γ
′

and Γ” represents dynamic moduli, which in the linear viscoelastic limit reads,

lim
γ0→0

Γ
′
(x, γ0) = G

′
(ω), lim

γ0→0
Γ”(y, γ0) = G”(ω). (1.33)

1.5 Summary

This chapter briefly summarises some important theoretical concepts and recent develop-
ments in contact mechanics, soft glassy rheology and FT-rheology, relevant for this thesis.
Section 1.1 highlights previous works where the nonlinear contacts were defined by adding
a Coulomb friction slider to the conventional Hertzian contact theory and its significance
in cluster linearity. These concepts will aid us in drawing conclusions and inferences in
chapter 3 and chapter 4 regarding force chain percolation failure and structural arrest of
quasilinear clusters as the granular system approaches jamming. Section 1.2 describes the
key components required to develop the SGR model and how it can be applied to study
the dynamics of granular matter analogous to soft glasses. The definitions and explanation
provided in this section will be extensively used in chapter 3 and chapter 4 in order to
invoke characteristic energy scaling, validating and verifying our estimations of the noise
temperature and draw analogies. Section 1.3 is dedicated to the rheophysics with emphasis
on the applications of MITlaos to analyse rheological measurements, FT-rheology and the
differential rheology. This section provides an extensive analytical and technical foreground,
which serves as the basis to qualitatively demonstrate the experiments carried out in this
work.
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2

Experimental Methods and Challenges

This chapter briefly discusses the experimental and analytical procedures employed in this
work. From an experimentalist standpoint, much attention is given to the major challenges
and how to avoid or solve them, that one might face when studying granular matter via
rheometer.

2.1 Rheometry

All the rheological measurements were made on HAAKE MARS II rheometer (Thermo
Fisher Scientific, Karlsruhe, Germany; see Fig. 2.1(a)). The machine is operated by a Rhe-
owin software that offers to operate both, controlled deformation (CD) or controlled shear
(CS) tests. In a CD test, a torque is applied to obtain the angular displacement, while in the
CS test, the torque is measured on application of rotational motion.

Figure 2.1: (a) HAAKE MARS II Rheometer (b) Plexiglass cup-plate geometry before test.
(c) Dynoseeds of 500 µm diameter being sheared between cup-plate setup. (d) A view of
Dynoseeds from top after the test is performed. (e) A retracted glass-blasted plate with a
chain of wet grains.
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2 Experimental Methods and Challenges

In a standard protocol, a granular sample was added to the cup-plate shear cell (as shown
in Fig. 2.1 (b), (c) and (d)) and the upper plate is axially rotated with a steady angular
frequency. As an experimentalist, the prime task is usually to optimize and carefully cal-
ibrate the operating system and its constituents we ought to study, thereby avoiding any
peculiar artefacts or even prevent from damaging the machine. In our attempt to begin
rheological operations on granular materials, we came across some noteworthy anomalies,
as illustrated in Fig. 2.2.

Figure 2.2: Micrographical illustration of artefacts or anomalous phenomenon captured
for shear rheology of granular samples confined between parallel plates of plexiglass
(5 cm × 5 cm), posing data risks and the credibility of experiments as they also occurred
in a cup-plate, although mostly at the interface between the shear plate and the sample.
Images in (a) and (b) shows morphological deformation and irregular contact with the
shearing plate, caused by granular jamming. In (c) rectangle, a fractured grain after 5 repe-
titions of the same granular sample at γ0 ∼ 0.1, f = 1 Hz. From (d) to (f) the aggregation/
percolation behaviour (marked in blue ellipses) in wet grains due to improper mixing when
preparing the sample, and dilution due to high void density in a polydisperse granular sam-
ple (unfiltered grains). The size of one grain shown in (a) to (d) and (f) are 500 µm.

The images in red are a result of premature jamming (causing plastic deformation of grain
and bulging as a convex-concave sample-air interface). To avoid this, pre-shearing a gran-
ular sample before one begins the test protocol can be taken into consideration, ensuring
a flat interface and uniform distribution. Pre-shearing not only prevents bulging but also
minimizes the non-uniform distribution of granular clusters as marked in blue, exhibiting
percolation/ aggregation and premature jamming, as shown in Fig. 2.2. Furthermore, the
image in cyan answers of why only a fresh granular sample should be used for each stress-
strain cycle, because the grains wear off upon repetitive use, hence break or fracture. All
the tests were carried out in a plexiglass cup (height h: 30 mm)-sandblasted plate (diameter
d: 50 mm) geometry (Fig. 2.2 (b)). Where the bottom plate is fixed, the angular motion
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ω of the plate is regulated by a DC motor mounted on a vertical positioning stage. The

current applied by the motor is translated to the torque
⟲−→
M while the moment of inertia

I of the geometry and load bearing forces are optimized as we set the rheometer while
calibration. The resolution limit of the rheometer required to obtain reliable data lies at

the torque of
⟲−→
Mmin = 2 µN m. Where the axial force Fz measures a strain gauge up to the

values of 10 mN. The shear component of the rate-of-strain tensor in cylindrical coordinates
(R: radius, φ: azimuth angle and h: height of cylinder) can be written as [73, 99, 100],

γ̇θh(R) =
sin φ

R
∂

∂φ

(
vh

sin φ

)
=

v
h
= γ̇ (2.1)

where, vh is velocity of the shear plate. Thus the strain can be calculated as γ = ∆ℓ(φ)/h,
with ℓ being the distance spanned by the moving plate in radians as φ.

2.1.1 On choosing the right setup for confined granular flows

This is important when deciding between cup-plate or parallel plate geometries. In a
parallel-plate or a cup-plate, the biggest disadvantage is that, at a constant rotational speed
of the rheometer, shear rate γ̇ is not constant throughout the sample and depends on the
distance x from the rotational axis as 0 ≥ x ≤ R. For that reason, cone-plate or conicylinder
geometries are highly preferred among rheologists for polymer melts or emulsions [65, 66]
as it facilitates the homogeneous shear flow, however for a granular sample it is more so-
phisticated than a parallel plate as the particulate features become critical. For example, by
sandblasting the cone to shear grains in a cylinder seems plausible however in reality the
first compromise will be on the exact dimension of the cone such as its surface, cone angle
and cone centre. Not only that, for samples described by their limited maximum particle
size, such as pastes, granulates, gels, powders [100], a number of inhomogeneities most
likely at the cone edge might occur, that includes: turbulent flow, inertial effects, migration
or discharge off the gap, premature jamming, skin formation and surface fracture due to
concave-convex contact with cone [65, 66, 70, 100]. Nevertheless, the shear flow gradient
is still a disadvantage in cup-plate geometry however ensuring constant contact between
shearing plate and the granular sample with additional normal force control outweighs the
cone-cylinder for this particular case. Not to mention, that the shear rate range can be con-
trolled by changing h. Although, typical rheological calculations and analysis for polymers
or suspensions in parallel-plate setup are obtained from the region with maximum shear
rate i.e. γ̇max (typically at the edge boundaries), the granular sample on the other hand is
relatively sensitive as the rearrangements begin to define its response to shear. Such that,
the shear rate varies linearly as γ̇ = 0|x=0 to γ̇ = γ̇max|x=R, where for large h at same rota-
tional speed or φ, a low shear rate γ̇ or deformation will occur, that encourages the growth
of shear bands and other inhomogeneities [65, 70, 100]. Hereof, we first set the standard
reference to support our identification of strain amplitude γ0 as an indicator of nonlinear
response (invoked later in the next chapters) in terms of displacing a grain by its size when
the shear plate moves φ radians. For example, if we attempt to displace a grain of diameter
d = 500 µm by its own size in a cup-plate setup (R = 25 mm) with a gap of h = 10 mm i.e.
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20 monolayers of grains, what shear strain we must apply? To estimate this, we incorporate
the distance spanned by φ over the gap h from ∠ = 0 to ∠ = φ and radially integrate the
strain γ from x = 0 to x = R,

γ =
1

hR

( ∫ R

0
RdR +

∫ φ

0
φdφ

)
(2.2)

Using the aforementioned values, we find that for one grain to move by its own d, i.e. total
length span is 2d = 1 mm in a cup-plate gap of 10 mm, a shear strain of γ ≈ 0.1 is required,
such that,

γ =
∆ℓ(φ)

h
=

1 × 10−3m
10 × 10−3m

= 0.1 (2.3)

where the plate has moved by φ ≈ 0.04 rad with plate velocity in the range
vh ≈ 10−3m s−1.

2.1.2 Computing viscoelastic measures via rheometer

For a standard rotational rheometer, the constant shear component (σ) and rate for a cup-
plate geometry is calculated by the integral torque at a constant rate of rotation [65, 73,
100],

γ̇ =
ωR
h

; σ =
2

⟲−→
M

πR3h
(2.4)

where ω is the angular frequency, h the height of the cup,
⟲−→
M =

∫ h
0 2πσ(R)R2dR the torque

and R is the radius of the plate. In addition, the normal force N for a cup-plate setup can
be obtained by translating the axial normal force Fz as [99],

FN =
2(Fz − Finitial

z )

πR2h
(2.5)

Since the shear plate and cup radii are equal, the viscosity then reads for a large cylinder
gap, [100],

η =

⟲−→
M(R)
γ̇(R)

=
2b

⟲−→
M

πωR4 . (2.6)
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Furthermore, a standard shear rate sweep test entails a stepwise increment of shear rate
at some frequency in a shear cell with a fixed gap (initially set during calibration), with
several other options of parameters, that are otherwise important to run specific tasks. The
operation mode applied, for example, control of angular velocity (constant rate, CR) or
torque (constant stress, CS), decides the representation of storage modulus G

′
and the loss

modulus G
′′

as a function of dissipation per cycle of deformation [101, 102]. Consider an
imposed strain γ of the form γ = γ0 cos ωt with the amplitude γ0, the angular frequency ω
and the sinusoidal strain rate γ̇ = −ωγ0 sin(ωt), while stress and strain are 90 deg out of

phase. In such a scenario, the total torque measured
⟲−→
M would then be computed partially

in
⟲−→

M′ and
⟲−→

M′′, lagged in phase and out of phase δ with excitation, respectively and is given
as [65, 99],

⟲−→
M =

⟲−→
M′ cos ωt −

⟲−→
M′′ sin ωt (2.7)

Alternatively, in its complex form [65, 103],

⟲−→
M =

πh4

2b
η⋆ω0iωeiωt (2.8)

with viscosity being, η⋆ = G⋆/iω = (G
′
cos ωt + iG

′′
sin ωt).

Comparing above equations, we get,

G
′
=

2b
πh4ω0

⟲−→
M′, G

′′
=

2b
πh4ω0

⟲−→
M′′ (2.9)

where the shear stress σ(t) directly scales with γ by a phase difference [66]:

σ(t) = σ0 sin(ωt + δ) = γ0[G
′
(ω) sin(ωt) + G

′′
(ω) cos(ωt)]. (2.10)

Where the phase difference is given as tan δ = G
′′

G′ . For a purely elastic material, G
′′
= 0 and

δ = 0, but contrarily, for a purely viscous materials G
′
= 0 and δ = 90 deg. Nevertheless,

for yield-stress fluids, both G
′

and G
′′
, are non-zero. The storage modulus G

′
= σ0

γ0
cos δ

measures the in-phase elasticity, the loss modulus G
′′
= σ0

γ0
sin δ measures the out-of-phase

viscosity and as a result, complex modulus G⋆ = σ0
γ0

=
√

G′2 + G′′2 measures the total
strength of a material. See chapter 1 for a detailed explanation of how nonlinear rheology
data is evaluated.

29
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Additional parameters of interest for non-linear rheology have been thoroughly covered
in the theoretical works of Baravian-Quemada [94], emphasizing Kelvin-Voigt mechanical
model to elucidate instrumental inertia and viscoelasticity [93–97]. Note that this section
below was used for cross-identifying critical or transition points in the rheological data and
thus serves as an alternative approach to check for nonlinearity in the data for rheologists.
The critical parameters defined here have been helpful in confirming the robustness of the
experiments presented in this thesis, as the critical elasticity and differential modulus served
as the initial reference map to check whether the rheological data corresponds to creep [51,
94, 97] and as if it truly lies in the linear or non-linear regime [57, 79, 89].

We begin with the equation of motion for a moving apparatus,

I
∂Ωw

∂t
=

⟲−→
Mapplied −

⟲−→
Mwall (2.11)

where
⟲−→
Mapplied is the imposed torque and

⟲−→
Mwall is the resistant torque at the moving wall,

I is the momentum of inertia for the non-stationary part of the setup and Ωw is the angular
velocity. Furthermore, space and time variables are partitioned by default in a constitutive
equation, connoting the parallel attributes between shear rate and angular velocity scaled
by a factor of Fγ̇ where shear stress and the torque are scaled with Fσ [94, 95]. Thus, we can
rewrite the equation of motion as,

aγ̈w = σapplied − σwall, where a = I
Fσ

Fγ̇
. (2.12)

Upon conjugation with Maxwell-Jeffreys model and coupling (η1 + η2)σ̇ + Gσ =
η2Gγ̇ + η1η2γ̈ with equation of motion, the applied shear with step amplitude σ0 is can
be expressed as following,

(η1 + η2)σ̈ +
(

G +
η1η2

a

)
σ̇ +

Gη2

a
σ =

Gη2

a
σ0h(t) +

η1η2

a
σ0δ(t) (2.13)

where h(t) is the Heaviside distribution function and δ(t) is the Dirac delta impulsion. The
implication here being, that any elastic material coupled to this equation 17 provide an oscil-
lating solution, where purely viscous materials are incapable of exhibiting any oscillations.
Therefore, the analytical solution of this equation can be further divided in oscillating and
non-oscillating parts, thereby the critical elasticity Gcritical can be defined in accordance with
Maxwell-Jeffery model as,

η2G
a(η1 + η2)

− A2 ≥ 0 (2.14)
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with A = aG+η1η2
2a(η1η2)

, such that,

G ≥ Gcritical =
2η2

2
a

(
1 +

η1

2η2
+

√
1 +

η1

η2

)
(2.15)

For G ≥ Gcritical:

σwall(t) = σ0

{
1 − e−At

[
cos(ωt) +

aG − η1η2

2aω(η1η2)
sin(ωt)

]}
(2.16)

with ω =
√

η2G
a(η1+η2)

− A2 and integrating this computes the shear rate at the wall,

γ̇wall(t) =
σ0

η2

{
1 − 1 − e−At

[
cos(ωt) +

1
aω

(αA − η2) sin(ωt)
]}

(2.17)

and correspondingly the strain at the wall as,

γwall(t) = σ0

{
t

η2
− B + e−At

[
B cos(ωt) +

A
ω

(
B − 1

Aη2

)
sin(ωt)

]}
(2.18)

with B = a(η1+η2)
η2G

(
2A
η2

− 1
a

)
and γ(0) = 0. Since η1

0−→ (Maxwell model) critical elasticity

then reduce to: Gcritical =
4η2

2
a and the shear stress, shear rate and strain then simplifies as,

σwall = σ0

{
1 − e−

G
2η2

[
cos(ωt) +

G
2η2ω

sin(ωt)
]}

(2.19)

γ̇wall =
σ0

η

{
1 − e−

G
2η2

t
[

cos(ωt) +
1
ω

(
1

2η2
− η2

a

)
sin(ωt)

]}
(2.20)

and

γwall =
σ0

η2

{
t − a

G

(
G
η2

− η2

a

) [
1 − e−

G
2η2

t
(

cos(ωt) +
G

2η2ω

G/η2 − 3η2/a
G/η2 − η2/a

sin(ωt)
)]}

(2.21)
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with ω =
√

G2

4η2
2
− G

a . Whereas according to Kelvin-Voigt model, η2 → ∞, similarly the

Gcritical evolves to Gcritical =
η2

1
4a , with shear stress, shear rate and strain as following,

σwall = σ0

{
1 − e−

η1
2a t
[
cos(ωt) +

η1

2aω
sin(ωt)

]}
(2.22)

γ̇wall =
σ0

aω
e−

η1
2a t sin(ωt) (2.23)

and

γwall(t) =
σ0

G

{
1 − e−

η1
2a t
[
cos(ωt) +

η1

2aω
sin(ωt)

]}
(2.24)

where ω =
√

G
a +

( η1
2a

)2. As defined previously, that stress is determined by superposing
on strain via symmetry arguments, also can be used to derive the differential modulus and
can be used to answer how dominantly the material is driven by elasticity or favourably
in case of granular materials, might provide an alternative indication of filamentary force
chain networks in granular packings upon shear stress. However this modulus might not
be the best choice when viscous dissipation equally governs the material response (such
as for wet granular systems) [94, 95, 97], hence it was only used as partial fulfilment to
acknowledge the presence of force chain networks. Following works [93, 94, 96, 97, 104,
105] gives a general description of differential stress modulus. In a typical rheometry, the
elastic and loss modulus are usually derived as previously I(Fσ/Fγ)(d2γ/dt2) = σA − σS,
where I is the moment of inertia of the rheometer, Fσ here relates to the stress and torque,
with σA = Fστ, as Fγ relates to strain and the angular displacement, lastly, γ = Fγθ with
σA being the applied stress and σS, the resistant stress of the sample [94]. As defined above
in Kelvin-Voigt model, σS can be determined as in σS = Eγ + η(dγ/dt) and so the Gcritical,
by combining the constitutive law and the equation of motion [94, 95, 105]. A threshold for
the onset of oscillation must be defined as E > η2/4a so the oscillations can occur where
a = I(Fσ/Fγ) and η is the viscosity. We can now solve the coupled differential equations
under critical shear stress σc [52, 93, 94, 96, 105] and obtain the analytical solution,

σS = σc

[
1 − e−βt

(
cos(ωt)− β

ω
sin(ωt)

)]
(2.25)

and

dγ

dγ
=

σc

aω
e−βtsin(ωt), (2.26)

where β = η/2a and ω =
√

E/a − β2. Integrating this at γ(0) = 0, yields the value of γ
as,
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γ =
σc

E

[
1 − e−βt

(
cos(ωt) +

β

ω
sin(ωt)

)]
(2.27)

where the complex dynamic modulus G∗ and the elastic modulus K
′

can be expressed as:
G∗ = E + iηω yielding K′

c(σc) = E = a(ω2 + β2), respectively.

2.1.3 Where lies the effective shearing zone? or How to be sure if the response
is homogeneous?

An important characteristic of grains, that can easily be overlooked, is their notorious inho-
mogeneous flow that often leads to the formation of shear band(s) [2, 36, 38, 43, 44, 106].
For a cup-plate shear cell, we find that the number of layers of grains that make up the test
sample can affect the rheology by a considerable number. To demonstrate this for a broader
scope, different granular materials (including powders) were deformed at large strains at
f = 1 Hz as their number of monolayers nm were allowed to vary subsequent to each stress-
strain cycle until a homogeneous-like flow was achieved. Since we are taking into account
the presence of one shear band, the energy that will be dissipated by the system, in this
case, should potentially be affected by the sample size [65, 107, 108]. To illustrate this point,
let’s assume a fluid is subjected to permanent deformation, where the mechanical energy
that is spent to work on the fluid is dissipated as heat in response, and especially gran-
ular matter as a fluid system can "heat" up to a Terakelvin range [65, 109]. As the fluid
begins to evolve upon deformation (from a stationary state) for infinite time t → ∞, the
stress σApplied(t → ∞) is measured at a shear rate γ̇. Hence, to find out how much heat is
dissipated per unit volume, we calculate the work done per unit time by the applied stress
on the fluid, that is the dissipated power per unit volume of the fluid P(γ̇) = σAppliedγ̇
[65]. And since the viscosity η(γ̇) plays the role of dissipating heat, the dissipated power
can therefore be written as P(γ̇) = η(γ̇)γ̇2. Nevertheless, in reality, the experiments are
performed at finite amplitude γ, henceforth the total dissipated energy Ed(γ) ≡

∮
P(γ̇)dγ

would provide a rather realistic measure which can be defined as [65],

Ed(γ) =
∮

P(γ̇)dγ = σAppliedγ = η(γ̇)γ̇γ. (2.28)

where
∮

⇒ is a loop integral to quantify the area of stress-strain loop in Ed. This implies
that for a quasi-static case, Ed vanishes as γ̇ → 0, wherefore, σApplied becomes the total stress
σ [65] and the dissipated energy can be calculated as [36, 65, 76],

Ed(γ) =
∮

σdγ (2.29)

One might here ask, how come strain rate replaced the strain to compute the dissipation
energy as the fluid is deformed in time? It is interesting to know that albeit the validity of
Boltzmann’s Stosszahlanzatz in thermal fluids, meaning that the fluid in "quasi-static limit"
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(in its ergodic state) exist at a finite temperature (kBT, thermal motions) where Ed → 0 at
γ̇ → 0. Contrarily, for granular materials (athermal), Ed does not vanish and is relatively
finite for a quasi-static deformation [65], thus ruling out the strain rate γ̇, and is instead
defined by a strain γ. Coming back to the problem at hand, on how to identify the "effective
shear zone" to ensure that the rheological response of granular assemblies remains uniform
(homogeneous-like) in a cup-plate geometry. We solve this by depicting the total dissipated
energy Ed of granular materials as a function of the number of monolayers nm of grains,
as shown in Fig. 2.3. Since a LAOS test typically outputs stress-strain loops (LB Loops),
wherein by integrating the area enclosed by these loops of σ vs. γ reveals the energy
dissipated by the sample [36, 76].

Figure 2.3: Dissipated energy as a function of number of monolayers, for different types
of powders in a plexiglass cup-plate geometry. Legends 7→ Dynoseeds: square, 140 µm;
circle, 250 µm; and triangle, 500 µm; diamond: glass (140 µm), half filled diamond: Lactose
monohydrate (140 µm) and sphere: glass (1.5 mm). The sketch of rheometer cup-plate cell
with a zoomed-in image of 500 µm Dynoseeds represents the threshold (nc ∼ 15 − 20) of
monolayers forming a shear band, and for nm ≥ nc, begins the "true" deformation of a
granular sample.

This also let us define a critical number of monolayers nc ∼ 15− 20(grain diameters) (when
Ed →constant), required to reach the "true shearing zone" as previously predicted by [107]
(nc ∼ 5 − 15 grain diameters) for a vane-in-cup geometries. A slightly higher threshold
of nc obtained for cup-plate than vane-in-cup can be attributed to low or no confinement
in the latter geometry than the former. Note: the number of monolayers (nm ≥ nc) that
contribute to the non-homogeneous response begins at the shearing plate as the shear band
forms at the bottom, and the image above (Fig. 2.3) only captures a rough boundary where
the non-homogeneous shear zone comes into effect.

2.1.4 How to avoid bad data in rheology of granular materials?

Additionally, in our attempt to cover the generic aspects and issues related to the standard
data resolution for the rheometry of granular flows, we reviewed the recent work of Ewoldt
[55] on How to avoid bad data in shear rheology? Although the relevance of their study
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revolves around soft materials, the viewpoint is general and raise critical concerns about
the measuring instrument used [55]. Therefore, to test and find the resolution limit of the
HAAKE Mars II rheometer, we provide a data window to identify where lies the bad data
(outliers or artefacts) and where lies the meaningful response. Fig. 2.4 summarizes several
steady shear experiments made with different materials; Glycerol, Milli-Q Water, Glycerol-
Water Mixture, Polyacrylamide, Blood, Lactose Powder, and Glass Particles.

Figure 2.4: Summary of steady shear rheology of different classes of materials, providing a
rheological map to distinguish between good and bad data regions. Legend: water-glycerol
70:30 (magenta) and water-glycerol 50:50 (green), other legends can be directly referred on
the figure. The region of interest, where the data is mostly unreliable has been shaded
for quick reference. The samples were used following standard preparation protocols and
pre-treatments.

Furthermore, we highlight the slipping of a shearing plate on a granular sample. Unlike
fluids such as polymer solutions or liquids, granular sample on the other hand does not
really stick to the shearing plate (smooth surface, partially in contact), hence the plate slips
over the sample surface. This slipping can cause the rheological data to deviate from stan-
dard references, and by a considerable amount. To illustrate this and how to avoid slip
when performing a rheological test on granular samples, we compare three different cases;
1) Glass-blasted shear plate (80 µm size particles), 2) Sandpaper attached shear plate (200

grit), 3) Standard shear plate (smooth surface). Keeping frequency f = 1 Hz and volume of
the granular sample (20 layers of 500 µm size Dynoseeds i.e. the gap h = 10 mm) constant,
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2 Experimental Methods and Challenges

we depict the viscosity in Fig. 2.5. Clearly, the standard shear plate with a smooth sur-
face caused a significant deviation in the viscosity, as corroborated by the square symbols
(closed red: first attempt, black: second attempt and open red: final attempt). Whereas, the
viscosity calculated for Dynoseeds sheared by sandpaper attached or glass-blasted shear
plate, showed a relatively cleaner response (blue symbols; circles: glass-blasted, cross: sand-
paper).

100 101 102
101

102

103

Figure 2.5: Comparison of shear plate surface and its effect on the rheology of granular
materials. The anomalous behaviour of Dynoseeds sheared by standard rheometer plate is
clearly visible in contrast to roughened shear plate. The data shown by the square symbols
(closed red: first attempt, black: second attempt and open red: final attempt) belongs to the
standard shear plate, while data in blue are an average of 5 attempts each with sandpaper
attached (cross symbols) and glassblasted (circles) shear plates, respectively.

Hereof, the use of sandpaper (preferred due to longer life) or glass particles (effective but
can erode or wear due to highly abrasive contacts, usually after 15-20 times of application)
can efficiently prevent the inconsistencies in rheological data, obtained for granular materi-
als in particular.

2.2 Bright Field Microscopy

To capture and demonstrate the differences between dry and wet grains, granular con-
tacts and capillary bridges, in particular, we used a bright field microscope (Nikon Eclipse
TE2000-s), shown in Fig. 2.6. A uniform projection is ensured by an illuminating hollow
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2 Experimental Methods and Challenges

cylinder of light coming from an incandescent source triggered by a beam halter subsequent
to the condenser lens setting a bright field for the objective. Advantageously, this allows
to cover the oblique angles (including all azimuths) and only filtering the first-order wave-
forms through the objective lens. Consequently, high contrast and bright appearance of the
test sample is facilitated by such attenuation of light. All micrographs shown in this thesis
have been obtained with the aforesaid settings.

Figure 2.6: Nikon Eclipse TE2000-s Microscope with a horizontal moveable stage, controlled
by a switch, precisely calibrated to the distance spanned and an image of a 3D granular
cluster (a pentamer in the pendular state) of 500 µm Dynoseeds.

In contrast to dry grains, the capillary bridges in wet granular materials are dynamically
rich when examined under a microscope, and upon a thorough study, can provide valuable
insights on how these bridges break, rearrange and regenerate. We, therefore, mounted a
2D moving stage (shown in green, Fig. 2.6) that allows us to apply unidirectional strain γe

0
to shear a monolayer of wet grains in a parallel plate geometry. For further details, chapter
4 covers the physical aspects of capillary bridges relevant to the compaction and dilatant
behaviour of granular matter.

2.3 Pendant Drop Tensiometry

As pointed out, the significance of capillary bridges in governing the rheology of wet gran-
ular materials is crucial. In Chapter 5, we will study the role of physical properties (such
as surface tension) of the wetting fluid giving rise to slow compaction flows of grains. A
straightforward approach to systematically vary the cohesivity of wet granular materials
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2 Experimental Methods and Challenges

is by changing the surface tension of the interstitial fluid wetting the grains. We thus em-
ployed a pendant drop method, DataPhysics OCA 20 with the attached CCD camera, as
shown in Fig. 2.7, offering a maximum resolution of 768pixels× 576pixels (which can be en-
hanced by magnification objective of: 0.7× to 4.5×, in special cases), to calculate the surface
tensions and fluid densities of liquids we chose to wet the grains.

Figure 2.7: (a) DataPhysics OCA 20: for the pendant-drop method to measure surface
tension of a fluid, equipped with a CCD-camera (max resolution: 768pixels × 576pixels)
operated by an embedded software to analyse real-time information as shown on the mon-
itor screen (b), an image to highlight the contour and positioning of a drop at the end of
a needle. (c) A typical experimental state of pendant drop tensiometry; where the drop
hangs on a needle, the annotations illustrate the important variables (as described in the
text below) necessary for numerical analysis to approximate the surface tension.

In a typical apparatus, a liquid drop is deposited on the tip of a needle (the absolute bottom
of the needle, as shown in Fig. 2.7(a)). The contour of a droplet is then analysed from
an optical image to compute the surface tension [110, 111]. The shape and contour of the
droplet are estimated by the surface tension and gravity [112]. The shape of a droplet is the
result of surface tension competing with gravity to achieve minimum surface area, therefore,
the drop appears spherical as it simultaneously gets pulled by the gravity. Consequently,
the droplet adopts a pear-like pendant shape, hence the name of this method. For systems
in equilibrium, the surface tension µ can be approximated by balancing the Laplace pressure
PL and the hydrostatic contribution (ρgh) as PL = ρgh [113], where PL is the curvature of the
droplet surface, ρ the density of the liquid and g the acceleration due to gravity [112]. In
a cylindrical coordinate system (see Fig. 2.2(c)), the curvature can be defined by assuming
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2 Experimental Methods and Challenges

a symmetrical drop in the z-axis, with z being the direction of gravity, R is the radius of
curvature at the point with coordinates (x, z) with azimuth angle Φ, given as [112, 113],

R =
ds
dΦ

=
[1 +

(
dz
dx

)2
]3/2

d2z
dx2

, sin Φ =
dz
dx√

1 +
(

dz
dx

)2
. (2.30)

This numerical approximation process is based on the model of Bashforth and Adams as
described in [98, 114, 115], a straightforward derivation of Laplaces equation that ascribe the
state of the drop to the interfacial tension via nonlinear differential equation as µ = gD2

e ∆ρ
H .

Where µ is the interfacial tension, De is the equatorial diameter of the drop, H is a shape s
dependent parameter, defined as, s = Ds

De
, where Ds is the horizontal diameter of the drop at

De, away from the apex of the drop. Nevertheless, these methods are relatively difficult to
fully implement as software to characterize the shape of the drop in real-time. Recent work
by [98, 114] on [115], provides an improved methodology to measure the surface tension,
summarised in four steps as demonstrated in Fig. 2.8 (a)-(d): (a) capture and digitization
of the pendant drop to an image; (b) estimation of the radius of curvature at the apex and
drop contour; (c) polynomial regression fit on the contour for smoothing; (d) use of the
reference scale to compare the shape and approximate the surface tension.

Figure 2.8: Schematic illustration to estimate surface tension µ by polynomial regression
fitting (in red, (d)) of the raw experimental image (a) via pendant drop tensiometry process.

Subsequent to the smoothing of a pendant drop, the shape is then compared to a theoretical
and an experimental reference, to fit with the fourth-order Runge-Kutta method to precisely
calculate the surface tension [98, 115]. We henceforth, provide a table of physical constants
obtained by aforesaid methods, for interstitial fluids, applied to wet the grains to varying
their cohesiveness. These values will be used later to calculate capillary forces and rupture
energies of liquid bridges in chapter 3.

39



2 Experimental Methods and Challenges

Table 2.1: Physical constants of fluids calculated by the methods as shown heretofore

Fluid Property Grade

µ η ρ

N m−1 Pa s kg m−3

Silicon Oil 0.021 0.18 1070 KF − 6011
Triton® 0.033 0.24 1061 X − 100
Polysorbat® 0.043 0.44 1076 PS − 80
Polyethylene oxide 0.055 0.75 1045 N750
Optiprep® 0.079 0.9 1032 V35
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3

Non-linear Granular Flows from a Soft Glassy
Perspective

In this chapter, we experimentally study what has been extensively researched and yet an
obscure topic: the nonlinear rheology of granular matter at large deformations near jam-
ming. The mechanical stress in such dynamic granular matter system, is governed by the
ensemble of strain fluctuations by the virtue of active rearrangements of inter-granular con-
tacts (translation motion) causing force chain network at mesoscopic scale to percolate [59,
60, 63, 116]. Consequently, granular materials begin to yield once the applied deformation
exceeds the stored elastic energy, which otherwise acts as a barrier against structural rear-
rangement [8, 9, 30, 34, 117]. As a result, we observe that the rheological response of dry
and wet granular matter at large deformations is greatly affected by nonlinearities [35, 37].
The first section of this chapter addresses the significance of nonlinearities by introducing a
characteristic degree of nonlinearity ξ analogous to Q-parameter in FT-rheology for LAOS
rheometry [80, 82]. In addition, by scaling the nonlinear viscoelastic moduli with strain
amplitude, characteristic energy is invoked, previously shown to measure a non-thermal
temperature (the noise temperature) via a Boltzmann-like parameter [36]. In addition, a
good fit of ξ for elastic and viscous nonlinearities with a stretched exponential function
revealed a strong coupling between elasticity and viscosity by a scaling margin of the ap-
plied frequency ω. Wherein, the aforesaid dynamics were recognised to roughly match the
description of the SGR model [9, 23, 30, 33, 34]. Therefore, in the next section, we adopt this
constitutive model and study the stress-strain behaviour of granular materials, in the hope
to provide a complete rheological picture.

3.1 Non-linear Rheology of Granular Materials

To tentatively demonstrate the fundamental differences between dry and wet grains, we
first investigate a monolayer of Dynoseeds with and without the addition of Silicon oil (2
wt. %) confined between parallel plexiglass plates (5 cm × 5 cm) under the microscope in
bright field settings. Fig. 3.1 illustrates via optical micrographs, the significance of contacts
in dry (high Coulomb’s friction [35, 56, 118]) and wet granular materials [109, 119, 120] as
shown by the rearrangement dynamics of a triplet of beads (encircled in red) from (a) to
(c) compared to the triplet in case of wet beads from (d) to (g). These capillary bridges
as captured in a pendular wetting regime in (d) has been previously shown to provide a
spring-like action upon breaking or regenerating in [86, 119, 120], resulting in a higher yield
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3 Non-linear Granular Flows from a Soft Glassy Perspective

strength and cohesivity [119–122].

Figure 3.1: (a) to (c) Micrographical illustration of a monolayer of Dynoseeds to capture
their dry contact dynamics as the granular layer is allowed to deform between parallel
plates of plexiglass. Note that the strain applied here via moving stage is unidirectional
γe

0, and should not be confused with γ0 for rheometer. Beads encircled in red demonstrate
the maximum contact state, as the assembly evolves with the deformation, the beads begin
to rearrange, which in the next scenario is displaced with the other set of beads (encircled
in blue). (d) to (g) Dynoseeds with capillary bridges in pendular regime at same strain
deformation as dry, illustrating the process of rupture of a liquid bridge and separation.

Nevertheless, whether dry or wet, grains under shear in a cup-plate geometry tends to
adopt inhomogeneous flow profiles with a random distribution of shear bands as confine-
ment effects emerge [35, 37, 43, 106, 123]. Recently, the work [106] on the numerical ap-
proximation of a linear force model to predict the correlation between friction, inertia, and
cohesion in granular flows finds that the inhomogeneity results from the geometrical and
local constraints at the grain scale. These constraints in dry granular materials are primar-
ily the result of varying time scales of local interaction in contrast to the invariant global
timescales associated with particle size and its density. Moreover, in wet granular materials,
cohesive time scales are shown to dominate as global constrains, which although weakly
depends on the volume of a capillary bridge, is defined by the surface tension instead
and determines the maximum cohesion [106]. In addition, a recent study [124] proposed
a general model to determine the additive rheology by a dimensionless number (a further
generalization of µ(I)-rheology) however still lacks to connect inherent dynamics of grains
(microscopic processes) to their macroscopic properties.
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3 Non-linear Granular Flows from a Soft Glassy Perspective

In our attempt to systematically study and develop an experimental strategy to understand
the nonlinear rheology of granular materials, we shear grains with and without a small
addition of wetting fluid (Silicon oil) in a rotational rheometer under LAOS mode. We used
Polystyrene beads (Dynoseeds®) of 80 µm, 140 µm, 250 µm and 500 µm diameter, purchased
from Microbeads, USA. All the measurements were made at 23 °C coupled with a plexiglass
cup-plate geometry (diameter d = 50 mm). We sheared dry and wet (2 vol.% silicon oil- Shin
Etsu SE KF-6011 with viscosity η = 0.18 Pa s, surface tension µoil = 21 mN m−1 and density
ρ = 1,070 kg m−3) Dynoseeds with these physical constants. The global packing fraction
was kept at ϕ

dry
i ∼ 0.611 and ϕwet

i ∼ 0.612 (to ensure a liquid bridge network formation
[36]) and subsequently, it was measured later as (ϕ f ≡ change in the total volume of a
granular sample) after every LAOS test. The values for the packing fractions were found
consistent in all the experiments: wet grains 7→ ϕi = 0.612± 0.01 and ϕ f = 0.619± 0.03; and
dry grains 7→ ϕi = 0.611 ± 0.02 and ϕ f = 0.620 ± 0.05. Note that these values are obtained
for experiments made at a constant normal force of N = 1 N and a frequency of 1.5 Hz.
A strain range of 10−3 ≤ γ0 ≤ 500 was chosen to cover the significant regions of LAOS
rheometry. In a good agreement to [36], the Lissajous-Bowditch (LB) loops were found
reproducible and stable for at least 10 cycles. Estimating the Savage number to be Sa =
ρ(ωd/3)2/(F/(πd2/2)) ∼ 0.05 confirms that the granular sample is in the quasi − static
regime [35]. As described previously in Chapter 3, the stress response for a temporal
sinusoidal strain input can be written as γ(t) = γ0 sin(ωt), with ω the imposed oscillation
frequency, t time and γ0 the strain amplitude [68, 74, 125]. Where the rate of deformation
γ̇ = γ0ω cos(ωt), determines the viscous and elastic moduli G

′
(ω) and G

′′
(ω) respectively.

The linear viscoelastic response however can be reformulated by eliminating the time t, for
which the LB curve becomes an ellipse, as sketched here in Fig. 3.1,

γ(t) = γ0 sin(ωt) andγ̇(t) = (γ0ω) cos ωt (3.1)

σ(t) = γ0[G
′
sin(ωt) + G

′′
cos(ωt)]. (3.2)

Ti

Figure 3.2: Basic definitions of viscoelastic moduli.

A general overview of MITlaos approach combining FT-rheology with Chebyshev polyno-
mials is therefore delineated in Fig. 3.3 (a)-(g).

The analytical benefit of using Chebyshev polynomials is due to their orthonormality and
near-optimal polynomial interpolation, offering reproducible physical interpretation even
when the response is temporal, further allowing to write the elastic σ

′
and viscous stresses
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Figure 3.3: A schematic illustration of MITlaos analysis. (a) Typical raw data obtained from LAOS
rheometry, as marked by sinusoidal input strain (dashed line in red) and distorted (non-sinusoidal) stress
output (solid line in black). (b) LB loop representation of the elastic response as a function of strain,
to extract linear and nonlinear elastic moduli: G

′
1 as the first harmonic, G

′
M is measured at minimum

strain and G
′
L is measured at large strain. Similarly, (c) describes the LB loop for a viscous response as a

function of strain-rate, with definitions for dynamic viscosities: η
′
1 as the first harmonic, η

′
M at minimum

strain-rate and G
′
L at maximum strain-rate. (d) FT response generated via MITlaos for the depicted stress-

strain data marked with the harmonics as n = 3, 5, 7 accounting for the contribution of nonlinearities in
descending order, thus n = 7 is chosen as the terminal harmonic as the response saturates, subsequently
admissible for further analysis with Chebyshev polynomials. Consequently, (e) and (f) depicts the elastic
and viscous nonlinear measures, characterized by Chebyshev polynomials en and vn, respectively. (g) A
3D illustration of nonlinear stress-strain LB loops.

σ
′′

by Fourier decomposition as shown in Chapter 2. Following are the formal definitions of
nonlinear viscoelastic moduli (as defined in Chapter 2 and 3), which otherwise are briefly
previewed in Fig. 3.3 (b) and (c) as an extrapolation of the corresponding slopes of elastic
and viscous stress-strain loops.
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G
′
M ≡ dσ

dγ

∣∣∣
γ=0

=
1

γ0
∑

n: odd
nσn cos(δn) = ∑

n: odd
nG

′
n = e1 − 3e3 + ..., (3.3)

G
′
L ≡ σ

γ

∣∣∣
γ=±γ0

=
1

γ0
∑

n: odd
(−1)(n−1)/2σn cos(δn) = ∑

n: odd
G

′
n(−1)(n−1)/2 = e1 + e3 + ..., (3.4)

η
′
M ≡ dσ

dγ̇

∣∣∣
γ̇=0

=
1
ω ∑

n: odd
nG

′′
n(−1)(n−1)/2 = v1 − 3v3 + ..., (3.5)

η
′
L ≡ dσ

dγ̇

∣∣∣
γ̇=±γ0ω

=
1
ω ∑

n: odd
G

′′
n = v1 + v3 + ..., (3.6)

The viscoelastic response of granular materials obtained by the methods shown heretofore,
is first categorised in three characteristic regimes; linear regime I, nonlinear regime II and
slip regime III, as depicted in Fig. 3.4.
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Figure 3.4: A semi-logarithmic plot of the amplitude sweep experiments with dry (closed
symbols) and wet (open symbols) Dynoseeds. Squares represent G

′
and circles G

′′
. The

normal force was fixed to N = 1 N and frequency to f = 1.5 Hz. Fitting wet grains in
regime I by equation Gj = Gj

0. ln
( γ0

0.1
)
+ Gj|γ0=0.1; j =′,′′ with G

′ |γ0=0.1 ∼ 33.3 Pa and

G
′′ |γ0=0.1 ∼ 41.44 Pa, the characteristic moduli revealed the slopes to be Gj

0 ∼ G
′
0 ∼ G

′′
0 ∼

0.2 ± 0.2 nJ/grain. The onset of nonlinearity in regime II is denoted by γonset
0 ∼ 0.1. The

inset of G
′ ,′′(γ0) is a zoomed-in part of the dry Dynoseeds data in a log-log scale with

a slope of ∼ 3/2. The second inset shows the frequency dependence of the viscoelastic
moduli measured at γ0 ∼ 0.1. The shaded area marks the onset strain for the corresponding
flow regime.

In amplitude sweep protocol, γ0 was increased successively after 10 complete oscillations.
In regime I as entailed in SAOS [85], G

′
and G

′′
are found independent of strain amplitude
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(in the range, 10−3 ≤ γ0 ≤ 10−2) confirming the linear viscoelastic response for grains. As
the strain increases 10−2 < γ0 < 10−1, G

′
and G

′′
begins to follow a power-law behaviour

(dashed fits in black) for dry grains, which we relate with the formation of force chain
networks [59, 118, 126], whereas for wet grains, logarithmic growth is followed that can
be alluded to the oscillating capillary bridges, provided that the applied strain does not
exceed the energy required to rupture a capillary bridge [40, 86]. Nonlinear regime II
comes into effect as the strain amplitude, in our case is larger than γ0 ≥ 10−1 ≡ γonset

0 , as
corroborated by the onset strain wherein the slope of G

′
and G

′′
decays for both dry and wet

grains. The slip regime III then follows as the material response flattens. Note: although
SAOS test assumes that the material is in the linear regime I until γ0 ≈ 10−1 within the
resolution limits of the rheometer, the response becomes nonlinear as the inter-granular
contact dynamics (such as force chains for dry and capillary bridges for wet grains) begins
to contribute before LAOS even starts. In the inset of Fig. 3.4, G

′
and G

′′
for both dry

and wet grains were found independent over the applied frequency measured at γ0 ∼ 1.
Comparing our values of G

′
and G

′′
of wet grains to the results of [127], we find G

′
< G

′′
,

implying viscous flow for liquid bridge network under confinement and not purely elastic.
Since in the aforesaid study a vane-in-cup geometry (low or no confinements) was employed
to shear 100 µm beads at relatively (to our) small strain amplitude (γ0 ∼ 10−6 to 10−2) finds
G

′
> G

′′
. Therefore to understand this contribution of viscous effects arising from a network

of capillary bridges in G
′

and G
′′
, we estimate the energy released in rupturing a standard

capillary bridge in a pendular regime as previously proposed in the works [36, 109]. By
following the study of [128] a schematic approach was adopted, as illustrated in Fig. 3.5.

This method allowed us to calculate the dynamic forces between two grains, capillary and
viscous Fc and Fv, respectively, which can be further integrated to estimate the rupture
energy required to form or break a capillary bridge. Forces describing the capillary (source:
Young-Laplace equation) and viscous (source: Lubrication approximation and Reynold’s
equation) action of the liquid bridge reads as,

Fc = πµRmeridian

[
1 +

Rmeridian

Rneck

]
(3.7)

Rneck =
(H/2) + R(1 − cos α)

cos
(
θp + α

) , Rmeridian = R sin α − [1 − sin
(
θp + α

)
]× Rneck (3.8)

Fv =
3
2

π
Ca
H

× 1 −
(

1 +
2x2H
R3H̃2

)−1

(3.9)

where H is the distance between the surface of the two beads, x is the azimuthal radius of
the liquid bridge at its contact line, R is the radius of the particle, d is the distance between
the surface of the bead at the centre of the capillary bridge and the line that connects the
two opposite points of the contact line, θp is the contact angle between liquid-particle, µ

is the surface tension, Ca ≡ ηẋ
µ is the capillary number [128] with η the viscosity and α is

the embracing angle. For analytical precision, we divide Fc and Fv by the liquid volume
µR and then integrate them with respect to the distance between two grains H, from zero
to quasi − static rupture distance H̃ for Fc and from characteristic surface roughness length
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Figure 3.5: A schematic illustration of a capillary bridge between two Dynoseeds (i and j) inspired by the
works of [128, 129]. All the parameters displayed here describes the state of a capillary bridge as formally
defined in the text below, with the respective values used in calculating how much energy is required to
break such a capillary bridge. The encircled image in blue is a plexiglass cup-plate geometry employed for
rheological measurements.

[109, 128] d̃ to H̃, such that the rupture energies associated with capillary and viscous forces,
W̃c and W̃v respectively, yields

W̃c =
∫ H̃

0

Fc

µR
dH ≈ 2π cos θp

{
(1 + θp/2)(1 − A)π1/3 x + H

2R
+

√
2x2H

R3

}
, (3.10)

W̃v =
∫ H̃

d̃

Fv

µR
dH =

3
2

πCa
[

ln
(

A
√

π

(1 + A)2

)
− ln d̃ − 2 ln

(
d̃ +

√
d̃2 +

2x2H
R3

)
+

1
2

ln
(

πd̃2 + 2
πx2H

R3

)]
. (3.11)
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where A = (1+ 2π1/3 x+H
2R /π(1+ θp/2)1/2)1/2 and rupture distance is H̃ ' (1+ θp

2 )π
1/3 x+H

2R .
Therefore the total rupture energy, W̃tot = W̃c + W̃v can be estimated for a capillary bridge
between two grains. The dynamic forces for a liquid bridge (used in this study) between
grains at γ ≈ 0.1 as described with following constants; µ ≈ 21 mN m−1, η = 0.18 Pa s,
H ≈ 50 µm, R ≈ 250 µm, x ≈ 60 µm, α ≈ 8.75 deg, θp ≈ 32.3 deg and dsp/sp ≈ 4.57 µm, reads
Fc ≈ 7.64 ± 0.02 µN and Fv ≈ 6.24 ± 0.02 µN. Adding both contributions gives a total force
as Ftot = (Fc + Fv) ≈ 13.88 ± 0.15 µN, with Rmeridian ≈ −74 ± 5 µm and Rneck ≈ −48 ± 5 µm.
With a large capillary number Ca ≈ 0.85 at high velocity v ≈ 10.5 µm s−1, gives the approx-
imate rupture distance as H̃ ' 5.525 ± 0.035 µm and the characteristic surface roughness
length, assuming minimum roughness and uniform distribution of adhesive asperities [109,
128–131] gives d̃ ∼ 0.05 ± 0.02 µm. Henceforth, with A ≈ 1.36 and the dimensionless capil-
lary bridge volume Ṽ = (x2πH)× R−3 ≈ 0.001152, we calculate the total rupture energy of
a capillary bride as described here, by using a relation of the following form,

W̃tot =2π cos θp

{
(1 + θp/2)(1 − A)π1/3 x + H

2R
+
√

2Ṽ

}

+
3
2

πCa
[

ln
(

A
√

π

(1 + A)2

)
− ln d̃ − 2 ln

(
d̃ +

√
d̃2 + 2Ṽ

)
+

1
2

ln
(
πd̃2 + 2πṼ

)]
(3.12)

yielding,

W̃tot ≈ W̃c + W̃v ≈ 8.4 ± 0.5 nJ/bridge. (3.13)

Although, the significance of this estimation corresponds to grains sheared in I and require
a reference scale to make a comparison, to reveal the threshold of W̃ when oscillating
capillary bridges begin to break. Since the average loss modulus accounts for the energy
dissipated while a capillary bridge breaks, has to balance the rupture energy W̃tot. Thus,
on the basis of regime I, terminating at γ0 = 0.1 estimates an average loss modulus of
〈G′′〉 = 25 ± 5 Pa ≈ 1.6 ± 0.3 nJ/grain, a volume unit in terms of ’grain’ can be defined for
a grain of diameter 500 µm.

Non-linear regime II typically begins at strain amplitudes larger than the grain diameter
(γ0 > 500 µm) in our case with the range 10−1 ≤ γ0 ≤ 10, clearly indicated by the differ-
ences between G

′
and G

′′
for wet and dry grains. Albeit an order of magnitude difference

found for W̃tot ≈ 8.4 ± 0.5 nJ/bridge > 0.26 ± 0.02 nJ/grain (see fits in Fig. 3.4) and the iden-
tification of dynamical regimes via G′ and G′′, for nonlinear flow aspects to be quantified
a rigorous analytical approach with a strong mathematical foundation is therefore required.

Fig. 3.6 (a) and (b) summarizes the LB-loops for wet and dry granular matter, respectively,
with arrows showing their clockwise rotation (i.e. strain stiffening). In (c) a clear transition
from linear (ellipse) to non-linear (distorted ellipse) viscoelastic response is shown at γ <
γonset

0 in green and γ > γonset
0 in magenta, respectively. Fig. 3.6 (d) shows the stored elastic

energy per unit cycle τa depicted for dry (open circles in red) and wet (open squares in blue)
granular matter. The slopes τonset

0 and τoffset
0 were measured at the onset of nonlinearity and
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the offset to slip regime III, respectively, in correspondence to the scaling relation γ0
γonset =

exp
(

τa
τ0

)
, as previously proposed for tube rheometer in [36, 120, 132] and later demonstrated

by [36] to estimate a non-thermal temperature. Therefore, the slopes of τonset
0 and τoffset

0 will
be invoked in the next section for a comparison with other similar scaling relations.
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Figure 3.6: A summarised overview of LB loops for (a) wet and (b) dry Dynoseeds of 500 µm as a function
of γ. (c) Illustrates a linear to nonlinear transition of the viscoelastic response, as the LB ellipse clearly
distorts at large γ for dry (solid line) and wet (dashed line) grains. (d) Stored elastic energy per unit cycle
as a function of strain amplitude with slopes corresponding to a non-thermal temperature, corroborated
by the fits to the equation shown here, where circles represent wet grains and squares, dry grains.

3.1.1 Characteristic Degree of Nonlinearity

By applying FT-rheology with Chebyshev polynomials as shown before in Fig. 3.3, we
present the first harmonic viscoelastic moduli G′

1 and G′′
1 in Fig. 3.7 as a function of γ0

and ωγ0. Fig. 3.7 (c) depicts the non-linear elastic moduli and (d) the dynamic viscosities,
obtained by MITlaos analysis and subsequently verified from the representative LB loops.

Furthermore, building on the characteristic moduli scaling described in equation 14 for
linear viscoelastic response and at γonset

0 , we, therefore, rewrite the scaling relation explicitly
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Figure 3.7: Semi-logarithmic representation of viscoelastic moduli corresponding to the linear and
nonlinear stress-strain response. In (a) the first harmonic elastic modulus G

′
1 as a Chebyshev polyno-

mial e1 and (b) the first harmonic dynamic viscosity G
′′
1 as ωv1 is presented for dry (closed squares)

and wet (open circles) Dynoseeds, respectively. Similarly, (c) represents the non-linear elastic mod-
uli as a function of strain amplitude with squares as large strain elastic modulus GL, and circles,
the minimum strain elastic modulus GM, and (d) highlights the non-linear dynamic viscosity as a
function of the evaluated (by MITlaos) strain rate ωγ0, with fixed ω = 9.42 rad s−1. Squares repre-
sent large strain rate viscosity ηL, and circles correspond to the minimum strain rate viscosity, ηM.
Dashed lines are fits of the equation 3.14.

for the non-linear regime. Hereof characterized in the strain limit γonset
0 ≤ γ0 ≤ γoffset

0
and estimate the characteristic energy associated with nonlinear response, and since the
representative slope values (including τonset

0 and τoffset
0 ) are found similar, strongly indicate

a correlation with structural rearrangements.

γ0

γoffset
0

= exp

(
−G

′
1

G′0
1

)
; γonset

0 ≤ γ0 ≤ γoffset
0 (3.14)

Upon fitting, G0 j ∼ 1.3 nJ/grain is found for the wet grains and G0 j ∼ 3.4 nJ/grain for the
dry grains. Comparing to what we obtained in Fig. 3.4 and the experimental conclusions of
[36], the values are in good agreement to support the characteristic moduli scaling for shear-
cell geometry. By ruling out the first harmonic, the moduli collapsed in the vanishing strain

50



3 Non-linear Granular Flows from a Soft Glassy Perspective

limit, and revealed a clean non-linear response calculated for wet grains in γ0 ≤ γonset
0 , and

dry in γ0 ≤ γoffset
0 as:

ωγ0

ωγ
j
0

= exp

(
− G

′′
1

G′′0
1

)
γ0 ≤ γ

j
0 j = γonset

0 , γoffset
0 , (3.15)

evaluating γonset
0 = 0.11 ± 0.02 and G

′′0
1 = 4.9 ± 0.3 nJ/grain for wet grains and

γoffset
0 = 1.5 ± 0.5 and G

′′0
1 = 1.9 ± 0.2 nJ/grain for dry grains. As indicated earlier in

Fig. 3.4, these values strongly indicate γoffset
0 ∼ 2 being the offset for the force branching

out, such that at γ0 < γoffset
0 , the network of force chains acts as the reinforcement and

strengthen the contacts between grains, as additionally evidenced by high Coulomb friction
of µ f = 0.33 ± 0.2, explaining the strain stiffening behaviour. However, the viscous first
harmonic for the wet grains captured a contrasting image than elastic moduli, in revealing
a pre-yielding range γ0 ≤ γonset

0 (Fig. 3.7 (b)). This allowed us to express pure non-linear
viscoelastic response via third harmonic only e3 and v3, respectively:

e3 ∼ (G
′
M − G

′
L)

3
v3 ∼ (η

′
L − η

′
M)

3
(3.16)

Correspondingly, these nonlinear measures (including the higher odd harmonics) can be in-
tegrated into a single Q-parameter-like (FT-rheology [51, 52, 82]) variable, the characteristic
degree of nonlinearity ξ. In Fig. 3.8 we depict elastic ξe and viscous ξv degree of nonlin-
earity, which are found consistent with the linear regime I, as ξe ∼ ξv ≈ 0. Furthermore,
positive values of ξe are attributed to strain stiffening among dry and wet granules, as we
find ξ

dry
e > ξwet

e . However, in the non-linear regime II, ξe gradually increased until satura-
tion with ξv exhibiting a peak behaviour at γonset

0 ≈ 0.1 suggesting a relation between elastic
and viscous non-linearities ξe and ξv, respectively. To understand the physical significance
of ξ, defined as,

ξe =

√
e2

3 + e2
5 + e2

7

e2
1

, and ξv =

√
v2

3 + v2
5 + v2

7

v2
1

(3.17)

we intuitively draw an analogy with a study on compaction experiments [133] and fit ξ
with a stretched exponential equation [25, 133, 134]. Although the fits corroborates the
compaction-like dynamics due to applied normal force, an accurate demonstration to in-
voke Kohlrausch-William-Watts law (as shown in the referred studies) requires a clear relax-
ation in ξ. Besides, at large strain amplitudes the granular system may exhibit accelerated
rejuvenation as found previously for glasses and colloids [33, 41], also known as overageing,
wherefore the time frame to capture such accelerated relaxation processes is too small. Nev-
ertheless, we assume that the underlying physics in compaction study and the steady-state
rheology of granular matter is inherently similar however the rapid deformation or large
strain amplitudes, can also suppress the relaxation mechanisms as grains begin to slip or
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Figure 3.8: (a) Semi-logarithmic and (b) linear representation of elastic and viscous nonlin-
earity: ξe and ξv, quantified with equations 3.1.1 by the Chebyshev polynomials of higher
order as a function of the strain amplitude γ0 and the evaluated strain rate ωγ0, respec-
tively. Open symbols: wet dynoseeds, closed symbols: dry dynoseeds, colour code: red
represents elastic non-linearities and blue, viscous non-linearities. The red lines are the
corresponding fits for ξe curves according to equation 3.1.1 reveal a relation with the ad-
justment of the blue lines representing ξv peak curves following the equation 3.1.1 (see
text). The shaded area corresponds to the slip regime III

stick as shear banding dominates (jammed-like). Furthermore, this suggests that the vis-
cous non-linearities ξv can be ascribed to the rearrangement of mesoscopic domains caused
by external shear forces, implying that the undulations of elastic non-linearities ξe until sat-
uration is governed by the growth and coalescence of mesoscopic domains (as we interpret
from Fig. 3.8). Thereupon, ξe should be scalable with viscous non-linearity analogous to
the scaling of macroscopic packing fraction ρ̃ demonstrated in [133, 134], thence follows,

y =
ξe

ξ∞
e

= 1 − exp
(

γ0

γ∞
0

)δ

(3.18)

ξν

ξ∞
v

∼ dy2

dx
|kx; where kx =

ωγ0

(ω/k)γ∞
0

. (3.19)

By fitting the data in Fig. 3.8 with these equations, we obtain the stretched exponent and the
elastic range for the dry grains as, δ = 0.9 ± 0.1 and γ∞

0 = 8.7 ± 0.6; and for the wet grains,
δ = 0.9 ± 0.2 and γ∞

0 = 7 ± 3. The undulations in the data were tweaked in accordance
with values of δ and γ∞

0 to adjust the error margins for more accurate approximations. Con-
sequently, a relation between the elastic and viscous non-linearities based on the fits of ξv
with respect to ωγ0 defines a k−parameter to adjust the position of the data curves, where
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k ≈ 1.5 indicate that there exist a coupling between elastic and viscous nonlinearities where
ξe and ξv can e consistently scaled by a factor ω. Taking into account an existence of at least
one shear band, where the deformation gradient hinders the granular rearrangements, this
coupling can thus be attributed to the phase lag between shearing plate and the granular
sample in a cup-plate geometry. On a side note: it would appear as if ξ is allowed to evolve
only in the nonlinear regime II as the δ is directing the corresponding stretched exponential
fit, Kohlrausch-William-Watts law can thus be invoked, and we thenceforth leave it as a par-
tial outlook of this thesis, because further in-depth investigation on this matter, is required.

On these grounds, we propose that the characteristic scaling (τ0, G0,j, and G0,′′
1 ) as demon-

strated above, invokes a proportionality constant similar to the Boltzmann-like parame-
ter hitherto adopted in [36] to estimate a non-thermal variable, the mean-field noise tem-
perature for tube rheometer. Moreover, the values of ξe and ξv can be attributed to
the phenomenon that the ensemble of elastic structures undergoing rearrangements at
γonset

0 ≥ γ0 ≤ γoffset
0 seems to be governed by the mesoscopic flows. Finding that the

rearrangement dynamics or the competition between microstructural relaxation and macro-
scopic elasticity, although from different origins in dry and wet grains, begins at γ0 ≥ γonset

0 ,
strongly implies yield-like events similar to thermal glasses. We, therefore, draw an analogy
with glasses to study and view the dynamics of these mesoscopic elements with the Soft
Glassy Rheology (SGR) model [12, 30, 135], heretofore acknowledged by [2, 8, 9, 33] for slow
granular flows. It is in light of these aforesaid studies, the next section is concerned, focus-
ing on the inherent dynamics of granular materials from a standpoint of the SGR model.
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3.2 Soft Glassy Rheology of Confined Granular Flows

In this section, we introduce two additional parameters, constant confinement with pressure
and the size of granulates to study the physical significance of nonlinearities via the SGR
model on the accounts of the rheology of granular matter at large strains. Henceforth, we
study the stress-strain behaviour of confined granular matter with a constitutive approach
to approximate the noise temperature via decomposition of LB loops in elastic and viscous
symmetry lines using the equations in 1.3.3. To ensure that the structural rearrangements
are maintained near jamming while the granular sample stays confined, a normal force N
was applied to the shear cell without violating the strain cycle malfunction. This allowed
estimating the noise temperature of a quenched granular sample at a fixed normal force,
as additionally corroborated by its strong dependence on the packing fraction ϕ. Further-
more, upon scaling ϕ with P identified a jamming confinement pressure (PJ at ϕJ) in a good
agreement with the studies [2, 9, 59, 60] that associated this pressure to the force chain per-
colation failure [59, 60], by demonstrating that the force chains and the linearity percolation
stem from the topological constraints of the granular contact networks and not the friction
and force-torque balance [56, 59, 60], hence serving as a relevant statistical feature. In Fig.
3.9 below, a typical decomposition process of LB loops is shown for dry (solid lines) and
wet (dashed lines) Dynoseeds of 80 µm diameter, obtained from the LAOS rheometry exper-
iments made at N = 1 N and f = 1.5 Hz. An LB loop at γ ≈ 3 is then chosen (Fig. 3.9 (b))
to illustrate the decomposition via symmetry arguments (as shown by the σ − γ relation)
and later summarised in (c) for all the loops shown in (a).

This process is hereafter repeated for all the experiments made in the nonlinear regime
γonset

0 ≥ γ0 ≤ γoffset
0 at different N ≈ 0.5 N − 12 N and at constant frequency f = 1.5 Hz for

dry (solid lines) and wet (dashed lines) grains.
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Figure 3.9: (a) Lissajous-Bowditch loops as obtained from a LAOS experiment on Dynoseeds beads
of 80 µm diameter with (dashed lines) and without (solid lines) small additions of Silicon oil. (b)
Decomposition of a selected LB loop (at γ ≈ 3) via stress-strain symmetry arguments. (c) Elastic
symmetry lines summarised correspondingly to the LB loops shown in (a).
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Fig. 3.10 and 3.11 gives a general overview of the representative LB loops and elastic
symmetry lines, respectively, summarised for 80 µm Dynoseeds with (dashed lines) and
without (solid lines) the addition of Silicon oil.
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Figure 3.10: LB loops summarised for Dynoseeds beads of 80 µm diameter with (dashed
lines) and without (solid lines) small additions of Silicon oil as a function of strain γ for
each normal force as N = 1 N − 12 N, respectively.

The additional data summary for other sizes (d : 140 µm − 500 µm) is given in Appendix
A. The strain at which G′

L and G′
M diverges, fixes an onset strain γonset

0 , separating linear
viscoelastic (LVE) regime and non-linear viscoelastic regime (NLVE).

In Fig. 3.12 (a) and (b), a series of LB loops and the corresponding elastic symmetry lines
chosen at (γ ∼ 2) are shown for increasing N for dry and wet grains represented by solid
and dashed lines, respectively. As demonstrated previously, the LB loops were addition-
ally processed via Fourier transform and Chebyshev polynomial interpolation, to extract
the associated non-linear viscoelastic measures. The slope extrapolation to obtain G′

L, G′
M

and the basic definition of auxiliary rheological measures (Ed, τa) is still shown in Fig. 3.12

(a) (for further details, see chapter 2 and 3). Although clearly visible, the evolution of LB
loops with increasing N, as G′

L, G′
M, Ed and τa vary along, the idea here is to define a single

variable that is deeply ingrained in aforesaid variables. In connection with this comes the
consideration of the constitutive model (SGR), where the complete viscoelastic response of
a system can be expressed via noise temperature alone, and thus must be true contrariwise,
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Figure 3.11: Corresponding elastic symmetry lines summarised for Dynoseeds beads of
80 µm diameter with (dashed lines) and without (solid lines) small additions of Silicon oil
as a function of strain γ for each normal force as N = 1 N − 12 N, respectively.

i.e. definable by virtue of basic viscoelasticity measures.
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Figure 3.12: (a) Lissajous-Bowditch loop from a LAOS experiment on Dynoseeds beads of
80 µm diameter with (dashed lines) and without (solid lines) small additions of Silicon oil.
(b) Elastic symmetry lines corresponding to the LB loops. The data is chosen at γ0 ≈ 2 >
γonset

0 for normal force N(= 0.5 N − 12 N)

We begin this verification by first analysing the elastic symmetry lines as an alternative
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approach, which upon fitting with a periodic function of the following form computes
solutions resembling the constitutive formalism of SGR model,

σ
′
= σ

′
0 + Aγ − B sin

(
γ

γ0

)
; B = ln

(
γ0

γonset
0

)
kBΘ (3.20)

where σ
′

on lhs is the elastic response the system, first two terms on rhs accounts for stored
energy in the system, and the third term on rhs describes the dissipation. Besides, B either
represents the noise temperature or proportionality to it. Fig. 3.13 (a)-(c), compares the
similarity between the first harmonic elastic moduli G′

1, non-linear elastic moduli G′
M and

B, respectively calculated for dry (closed symbols, black) and wet (open symbols, blue)
grains.

10-2 10-1 100 101
0

20

40

10-2 10-1 100 101
0

20

40

10-2 10-1 100 101
0

20

40

Figure 3.13: Comparison of non-linear elastic modulus (G′
1(a), G′

M(b)) and the amplitude B
(Symmetry Line) in (c); for dry (black) and wet (blue) grains of 80 µm diameter, the fittings
shown here acknowledges the ubiquitous presence of noise temperature.

Since the SGR model takes only the elastic stress landscape into consideration to describe
glassy materials via constitutive laws, we will therefore aim to address this with elastic
stresses and demonstrate viscous profile, briefly in the discussion section at the end of this
chapter. Note: even though the SGR model only considers elastic contributions, in this
study viscous symmetry lines are taken into consideration, however only up to the pre-
yielding range. To further support this analysis, we calculated (as shown in Fig. 3.12 (a))
the dissipated energy Ed and the stress amplitude of the LB loop τa ∝ stored elastic energy
[109, 132], as a function of strain exclusively in the nonlinear regime γonset

0 ≥ γ0 ≤ γoffset
0 .

Note that the supporting data of Ed and τa is presented below in Fig. 3.16 and Fig. 3.17, re-
spectively, for increasing strain amplitude with the corresponding data fits that are obtained
from the fitting functions of the following form,
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ln
(

γ0

γonset
0

)
× (γoffset

0 ) =
Ed

E0
, γonset

0 ≤ γ0 ≤ γoffset
0 (3.21)

ln
(
(γ0 + τ∞

0 )

γonset
0 τ0

)
× (γoffset

0 ) =
τa

τ0
, γonset

0 ≤ γ0 ≤ γoffset
0 . (3.22)

where τ∞ and has been introduced to obtain the meaningful slopes in the nonlinear regime
II, because upon comparison to the other rheological measures, the data for Ed and τa
shows logarithmic increase for all γ0 with γonset

0 and γoffset) being non-zero. To fit the linear

regime I of Ed and τa, following equations can be followed instead: ln
(

γ0
γ∞

0

)
= Ed

E0
and

ln
(

γ0
γ∞

0

)
= τa

τ0
.

Finding consistency in the values of G
′
M ≡ G

′
1 ≡ B at γonset

0 = 0.12 ± 0.01 for varying nor-
mal force, support the calculations made for the noise temperature, as the minimum and
maximum values of the fittings are shown below in the captions of each figure from Fig.
3.14 to Fig. 3.18.

It is with these proofs, we present a summarized representation of the following measures
at constant N over γ0: the B−parameter (Fig. 3.14), G′

1 (Fig. 3.15), G′
M (Fig. 3.16), Ed (Fig.

3.17) and τa (Fig. 3.18) as a function of strain amplitude (γ0). The figures represent grains
of d : 80 µm − 500 µm with (open symbols, blue) and without (closed symbols, black) a
small addition of Silicon oil. The fittings are according to the corresponding equations, as
described above. All these statistics is thence applied to approximate the noise temperature
for all confinement pressures kBΘ(N). The region highlighted in light magenta is ascribed
to the nonlinear regime II.
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Figure 3.14: Summary of the proposed parameter B to approximate the noise temperature
of dry (solid black) and wet (open blue) granular matter as a function of strain ampli-
tude for (a) 500 µm with |Bdry

min| ≈ 4 nJ/grain, |Bwet
min| ≈ 9 nJ/grain, |Bdry

max| ≈ 48 nJ/grain,

|Bwet
max| ≈ 49 nJ/grain, (b) 250 µm with |Bdry

min| ≈ 8 nJ/grain, |Bwet
min| ≈ 13 nJ/grain,

|Bdry
max| ≈ 94 nJ/grain, |Bwet

max| ≈ 61 nJ/grain, (c) 140 µm with |Bdry
min| ≈ 12 nJ/grain,

|Bwet
min| ≈ 18 nJ/grain, |Bdry

max| ≈ 118 nJ/grain, |Bwet
max| ≈ 65 nJ/grain, and (d) 80 µm with

|Bdry
min| ≈ 16 nJ/grain, |Bwet

min| ≈ 21 nJ/grain, |Bdry
max| ≈ 140 nJ/grain, |Bwet

max| ≈ 95 nJ/grain,
respectively. The dashed lines are the fits of the characteristic scaling law described in 3.2
with minimum and maximum values presented here. The legend on the right side corre-
sponds to the applied confinement N for each experimental set. Thus defined, the exact
legend henceforth applies to the following figures: Fig. 3.15 to Fig. 3.18.
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Figure 3.15: Summary of the elastic moduli G
′
1 in support to approximate the non-

thermal motions of dry (solid black) and wet (open blue) granular matter as a function

of strain amplitude for (a) 500 µm with |G
′dry
1;min| ≈ 3.5 nJ/grain, |G′wet

1;min| ≈ 7 nJ/grain,

|G
′dry
1;max| ≈ 49 nJ/grain, |G′wet

1;max| ≈ 47 nJ/grain, (b) 250 µm with |G
′dry
1;min| ≈ 10 nJ/grain,

|G′wet
1;min| ≈ 14 nJ/grain, |G

′dry
1;max| ≈ 97 nJ/grain, |G′wet

1;max| ≈ 63 nJ/grain, (c) 140 µm

with |G
′dry
1;min| ≈ 15 nJ/grain, |G′wet

1;min| ≈ 21 nJ/grain, |G
′dry
1;max| ≈ 120 nJ/grain,

|G′wet
1;max| ≈ 68 nJ/grain, and (d) 80 µm with |G

′dry
1;min| ≈ 19 nJ/grain, |G′wet

1;min| ≈ 24 nJ/grain,

|G
′dry
1;max| ≈ 143 nJ/grain, |G′wet

1;max| ≈ 93 nJ/grain. The dashed lines are the fits of the charac-
teristic scaling law described in 3.14 with minimum and maximum values presented here.
The legend follows up with Fig. 3.14 for the applied N for each experiment.
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Figure 3.16: Summary of the nonlinear elastic moduli G
′
M in support to approximate the

non-thermal motions of dry (solid black) and wet (open blue) granular matter as a function

of strain amplitude for (a) 500 µm with |G
′dry
M;min| ≈ 4.2 nJ/grain, |G′wet

M;min| ≈ 8.5 nJ/grain,

|G
′dry
M;max| ≈ 51 nJ/grain, |G′wet

M;max| ≈ 49 nJ/grain, (b) 250 µm with |G
′dry
M;min| ≈ 11 nJ/grain,

|G′wet
M;min| ≈ 13 nJ/grain, |G

′dry
M;max| ≈ 98 nJ/grain, |G′wet

M;max| ≈ 62 nJ/grain, (c) 140 µm

with |G
′dry
M;min| ≈ 16 nJ/grain, |G′wet

M;min| ≈ 19 nJ/grain, |G
′dry
M;max| ≈ 117 nJ/grain,

|G′wet
M;max| ≈ 64 nJ/grain, and (d) 80 µm with |G

′dry
M;min| ≈ 20 nJ/grain, |G′wet

M;min| ≈ 27 nJ/grain,

|G
′dry
M;max| ≈ 144 nJ/grain, |G′wet

M;max| ≈ 98 nJ/grain. The dashed lines are the fits of the charac-
teristic scaling law described in 3.14 with minimum and maximum values presented here.
The legend follows up with Fig. 3.14 for the applied N for each experiment.
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Figure 3.17: Summary of the dissipated energy Ed in support to approximate the non-
thermal motions of dry (solid black) and wet (open blue) granular matter as a function
of strain amplitude for (a) 500 µm with |Edry

d;min| ≈ 3.5 nJ/grain, |Ewet
d;min| ≈ 7 nJ/grain,

|Edry
d;max| ≈ 49 nJ/grain, |Ewet

d;max| ≈ 47 nJ/grain, (b) 250 µm with |Gdry
d;min| ≈ 10 nJ/grain,

|Ewet
d;min| ≈ 14 nJ/grain, |Edry

d;max| ≈ 97 nJ/grain, |Ewet
d;max| ≈ 63 nJ/grain, (c) 140 µm

with |Edry
d;min| ≈ 15 nJ/grain, |Ewet

d;min| ≈ 21 nJ/grain, |Edry
d;max| ≈ 120 nJ/grain,

|Ewet
d;max| ≈ 68 nJ/grain, and (d) 80 µm with |Edry

1;min| ≈ 19 nJ/grain, |Ewet
d;min| ≈ 24 nJ/grain,

|Edry
d;max| ≈ 143 nJ/grain, |Ewet

d;max| ≈ 93 nJ/grain. The dashed lines are the fits of the charac-
teristic scaling law described in 3.21 with minimum and maximum values presented here.
The legend follows up with Fig. 3.14 for the applied N for each experiment.
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Figure 3.18: Summary of the stress amplitude τa in support to approximate the non-
thermal motions of dry (solid black) and wet (open blue) granular matter as a function
of strain amplitude for (a) 500 µm with |τdry

a;min| ≈ 3.5 nJ/grain, |τwet
a;min| ≈ 8 nJ/grain,

|τdry
a;max| ≈ 46 nJ/grain, |τwet

a;max| ≈ 40 nJ/grain, (b) 250 µm with |τdry
a;min| ≈ 11 nJ/grain,

|τwet
a;min| ≈ 15 nJ/grain, |τdry

a;max| ≈ 93 nJ/grain, |τwet
a;max| ≈ 60 nJ/grain, (c) 140 µm with

|τdry
a;min| ≈ 13 nJ/grain, |τwet

a;min| ≈ 17 nJ/grain, |τdry
a;max| ≈ 123 nJ/grain, |τwet

a;max| ≈ 66 nJ/grain,

and (d) 80 µm with |τdry
a;min| ≈ 22 nJ/grain, |τwet

a;min| ≈ 29 nJ/grain, |τdry
a;max| ≈ 146 nJ/grain,

|τwet
a;max| ≈ 98 nJ/grain. The dashed lines are the fits of the characteristic scaling law de-

scribed in 3.21 with minimum and maximum values presented here. The legend follows
up with Fig. 3.14 for the applied N for each experiment.

Albeit the significance of applied frequency in soft glasses has been well demonstrated in
the following reports [9, 33, 136], the granular matter is found to have relatively monotonous
noise temperature, as clearly depicted in Fig. 3.19. Nonetheless, the parameter A (Fig. 3.19

(e)) that was used for adjusting the fitting margins of the elastic symmetry lines (see Fig.
3.19 (c)) followed a Carreau-Yasuda-like scaling, whose implications are discussed in the
next section with a supporting Fig. 3.22. The noise temperature kBΘ, hitherto defined in the
unit of Joule per grain for dry (closed symbols, black) and wet (open symbols, blue) grains
at different P, is presented in Fig. 3.20.

The inset revealing the particle size dependence of noise temperature d(kBΘ) is found in a
good agreement with propositions raised in [109, 132]. We find that the noise temperature
kBΘ followed a decay of d−1 for dry and d−

1
2 for wet grains until arrest wherefrom the
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Figure 3.19: Frequency dependence of the noise temperature. (a), (b), (c) and (d) summa-
rizes the elastic and viscous LB loops and symmetry lines, respectively for dry (solid lines)
and wet (dashed lines) granular matter of 500 µm size. (e) As defined in 3.2, the parameter
A is depicted as a function of f averaged for the corresponding symmetry lines in (c) and
(d), where open circles represent wet grains and solid squares, dry grains. (f) represents the
parameter B (3.2) as a function of strain amplitude for varying f (see legends), with inset
showing a monotonous response of the noise temperature obtained from B over frequency
for dry (solid symbols) and wet (open symbols) grains.

granular matter begins to jam (slip regime III), as identified at a jamming pressure PJ ≈
20 kPa.

Consequently, for high P, the percolative quasi-linear clusters of force chains are expected to
drive the arrested granular system to relax faster [59, 60]. Thus, to investigate the similarities
or phase transition and the compaction behaviour in non-linear confined granular flows, we

measured the variation in the packing fraction for each experimental run as ϕ∗ =
(ϕ f −ϕi)

ϕi
.

Where ϕ f is the final packing fraction calculated at the end of every LAOS cycle at constant
P (while the shearing plate is still intact, and the system is allowed to anneal at γ = 0), ϕi
is the initial packing fraction measured after pre-shearing of grains and kept constant to
minimize the error in the measurements. Packing dynamics are hereby shown as a function
of confinement P in figure 3.21.

The next section will provide a tentative view on these experimental findings presented here,
with a general commentary, drawing analogies and future outlook of the current work.
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Figure 3.20: Noise temperature as estimated in accordance to 3.2 as a function of confine-
ment pressure for dry (solid symbols) and wet (open symbols) grains. Squares: 500 µm,
circles: 250 µm, triangles: 140 µm and diamonds: 80 µm. The inset shows a size depen-
dence of noise temperature for dry (black-white) and wet (blue-cyan) grains. Note that the
noise temperature estimated in accordance to 3.2 is negative, however, presenting (as here)
in its magnitude facilitate a thorough interpretation. Henceforth, the higher is the mag-
nitude of the noise temperature for a corresponding data set, the lesser are the granular
rearrangements. For instance, 80 µm grains will jam significantly faster than 500 µm grains.
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Figure 3.21: Variation in the packing fraction per experiment depicted as a function of
confinement pressure for dry (solid symbols) and wet (open symbols) grains. Squares:
500 µm, circles: 250 µm, triangles: 140 µm and diamonds: 80 µm. The variable ϕJ

f is the
maximum packing fraction observed for the experiments shown here, at which the granular
sample jams.
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3.3 Discussions and General Remarks

In the first section of this chapter 3.1, we identified the dynamical regimes (linear, nonlinear
and slip) of granular flows in a shear cell under SAOS to LAOS rheology. The rheological
response of grains was found nonlinear upon increasing strain, while the sample is still
under SAOS, as shown in Fig. 3.4 for G

′
and G

′′
. The differences found in G

′
and G

′′
for dry

and wet grains indicated the importance of their respective contact dynamics. A prevalent
phenomenon yet an outstanding feature of granular matter is the sudden change of physi-
cal attributes upon introducing a small amount of interstitial fluid (such as water in sand)
[86, 109, 137]. Unlike dry (Fig. 3.1 (a)), the wet granular matter is driven by cohesive bonds
between adjacent grains as shown in Fig. 3.1(b), a characteristic of well-defined energy
scale and strong dissipation [138–140]. At large deformation, dry grains in the non-linear
regime, exhibit filamentary force-chain networks due to friction-driven elasticity [3, 35, 44,
118]. Whereas, the logarithmic dependence of the wet grains on strain in SAOS regime,
suggested the oscillation of capillary bridges [36, 119, 127]. As the wet granular sample was
subjected to LAOS scales, breaking and regeneration of capillary bridges began to control
the rheological response. To address the role of capillary bridges in wet granular matter
flows, we followed the works [119, 128, 129] to estimate the rupture energy W̃tot, which
turns out to be 8.4 ± 0.5 nJ/bridge for a standard bridge of pendular regime in our case. As
described, the experimental conditions for a capillary bridge in this study and the typical
state of the capillary breakup extensional rheometer (CaBER) with silicon oil are similar,
implying that the filament thinning of oil is found to be independent of the piston speed
for a considerable range. Therefore, v under capillary pressure scales as v ∼

√
2µH/ρ with

ρ being the drop density, and unless the system is static, v will correspond as a velocity
gradient (∇v(x, H)) to the profile of a capillary bridge, which in our case estimated a cap-
illary number Ca < 1. As studied in [128], one finds that due to small rupture lengths
(H̃) and surface asperities (d̃), viscous effects tend to participate while capillary forces still
dominate during rupture process, which is also corroborated by the respective values we ob-
tained. Moreover, the time scale for the contacts resisting tangential forces is found at least
10 times smaller, thence neglected. Thus, with an optimal coordination number of CN = 6
[109, 117], and provided that the granular sample is confined within all the boundaries of
a shear cell and does not have any convex-concave contact with parallel plates forming the
cylinder, the total rupture energy of maximum capillary contacts on one grain then reads
W̃tot ≈ 50 ± 5 nJ/grain. In light of our earlier remarks, the inhomogeneous shear flows
and assuming at least one shear band in our cup-plate geometry in the linear regime, the
viscous dissipation was found to be caused by small oscillations (insufficient to break the
bridge) around the length of the liquid bridge.

In SAOS regime, obtaining a logarithmic dependence of G
′,′′ at γ0 ≥ γonset

0 [35, 44, 119]
with slope values corresponding to the rupture energy W̃tot, implies that the nonlinear vis-
coelastic response of wet grains explicitly depends on linear to non-linear transition as the
breaking and regeneration of capillary bridges begins. Thus described, wet grains in the
linear viscoelastic state (I) are under the action of capillary bridges being deformed by small
oscillations and only begin to break and rearrange as γonset

0 ∼ 0.1 is reached (II). At γ0 > 10,
grains slip past each other (III) and the response is relatively arbitrary or trivial. Further-
more, slope values obtained for dry grains in regime I, G

′
and G

′′
indicated the formation

of filamentary force-chain networks spreading in branch-like fashion over the strain direc-
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tion as the friction continues to increase the elasticity until the granular sample begins to
"yield". Whereas for wet grains, the slope values corresponded to the oscillating capillary
bridges, which eventually begins to yield at γ0 ≈ γonset

0 . Nevertheless, to account for the
nonlinearities present in the viscoelastic response via G

′
and G

′′
alone, is still insufficient,

as the further breakdown of higher harmonics becomes necessary.

The entire spectrum of chosen harmonics showed a weak dependence on strain at small
deformations (regime I). The onset of non-linearity at γ0 ∼ 0.1 can also be recognized as
the large and minimum strain elastic moduli diverges with a non-linear slope. At large
deformations as in LAOS, grains begins to transmit stresses through successive granular
contacts, causing total stress to be out of phase with applied shear. A sudden acceleration
in elastic moduli, therefore, indicate the hardening of grains (strain stiffening), followed by
the softening at large deformations (see Fig. 3.7). Elastic moduli were decreased gradually
for dry than wet, indicating microstructural rearrangements with shear fields [35, 44, 117].
In this state, due to anisotropic forces, grains begin to dissipate energy due to non-affine
motions [106, 118, 126]. However, the relaxation dynamics continues to vary [37, 106]. Simi-
larly, the non-linear viscosities were found decreasing (Fig. 3.7), though pronounced in the
case of dry grains, was caused by the compression at large deformation, where capillary
bridges between grains squeeze out to the bottom due to compressive stresses, resulting in
the partial saturation of the liquid bridge network into pendular and capillary regimes [109,
119, 132]. Hence, dry and wet granular matter behaves as a quasi-Newtonian solid in slip
regime III. Taking into account the correlation between raw LAOS data and the processed
one with non-linear measurements, we compared the characteristic elastic energy to the
capillary energy of ∼ 8.4 nJ/bridge, which in reference to [36], we find that smaller charac-
teristic energy G0 j for the wet granulate alludes to better f lowability than dry grains, which
can be ascribed to the extension and contraction of capillary bridges. Furthermore, the
viscous dissipation state drops to zero at the onset of breaking and regeneration dynamics
γonset

0 . However, in the case of dry grains, the range γ0 ≤ γoffset
0 corresponds to the vis-

cous dissipation driven by friction between grains, which not only include the pre-yielding
range of small movements around the contacts between particles but also from the onset of
particle rearrangements.

Upon comparing all these remarks and inferences drawn from all the statistics shown here,
with the previous studies on the rheology of dense granular matter [36, 38, 86], a clear
distinction between its dry and wet state thus follows as, that dry grains rearrange under
the action of dissipative friction of filamentary force chain branches, whereas wet grains
dissipate capillary energy due to breaking and regeneration of liquid bridges. Therefore,
to describe the viscous non-linearity, we draw analogies between steady state rheology and
compaction experiments [133, 134], assuming both studies share the same origin for non-
linearities, i.e. rearrangements of the grains, described as non-linear events. In retrospect
of these experimental findings, the compaction dynamics are characterized by three dif-
ferent spatial and temporal scales: (1) evolution of the packing fraction to its saturation
value fitted by the stretched exponential function ρ̃ = 1− exp−(t/τ)β, where τ is the relax-
ation time and β is the stretched exponent; (2) diffusion-controlled growth of mesoscopic
domains determined by scaling the mesoscopic packing fraction ϕ̃ with the macroscopic
packing fraction ρ̃ via power function as ϕ̃ = ρ̃2; and (3) the mobility of grains directly
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scales with packing fraction variable provoked by an external force, µ ∼ dρ̃/dt. Contrarily,
the peak functions for the viscous non-linearities ξ

dry
v < ξwet

v were found to characterize the
rearrangements at the mesoscopic scale that is proportional to the elastic nonlinearity by a
factor equivalent to the applied frequency ω ≈ 9.42 rad s−1. This implies that there exist an
autocorrelation between viscoelastic nonlinearities at mesoscopic and macroscopic scale.

Before we proceed to discuss on SGR model, let’s have a brief recall from Chapter 2, where
the rearrangements of grains are viewed as a set of mesoscopic elements, and each individ-
ual element is identified by its local shear strain l (l ∝ γ). These elements are assumed to be
in a quenched-in distribution of energy barriers which interacts by escaping and hopping
out (yielding) of the potential well once they cross an energy barrier of E − 1

2 kl2. This pro-
cess is sketched in Fig. 1.6 to illustrate how circle number 1 (mesoscopic region) hops to
the subsequent trap ("favourable" metastable state, at number 2) [7, 31, 116], where k is an
elastic constant (shear modulus) and l is a local strain variable. The mesoscopic element,
subsequent to yielding becomes unstrained and deforms at l = 0, hence resetting l to zero.
Regardless of the yielding event, caused by either the noise or strain or both, SGR model
view these events as an activated process such that the average lifetime of a mesoscopic
element undergoing rearrangement follows Γ = Γ0 〈e−(E− 1

2 kl2)/(kBΘ)〉, where Γ0 is an inverse
of attempt frequency for yielding. Analogous to Bouchaud’s trap model retrospective [7,
22, 32], the SGR model develops on the same ground assuming a similar energy barrier dis-
tribution ρ(E) = exp

(
−E/(kBΘg)

)
/(kBΘg), where (kBΘg) = 〈E〉 is the average trap depth.

Thereby, supporting the analogue of Boltzmann (

Stosszahlansatz) probability distribution (Peq(E)) which for a given (kBΘ) scales as Peq(E) ∝
Γ(E)ρ(E) = exp(−E/(kBΘ)) exp

(
−E/(kBΘg)

)
, redefines the average lifetime of an element

hopping as 〈Γ〉E =
∫ ∞

0 dEΓ(E)ρ(E). This Arrhenius form of an average lifetime leads to the
glass transition at kBΘ = kBΘg. Therefore, at kBΘ < kBΘg, the soft glassy material ages and
undergo ergodicity breaking [2, 9, 30, 31, 34, 63, 135]. The overall yielding rate can thus be
given as, Y(t) =

∫ ∞
0 dE

∫ ∞
0 dlΓ(E, l)P(E, l, t), where Γ(E, l) is the local yielding rate [30, 33].

Thus, the solution to the equation of motion [30, 31] for kBΘ < kBΘg reads,

P(E, t) =P0(E) exp

[
− Z(t, 0)

exp(E/(kBΘ))

]

+ ρ(E)
∫ t

0
Y(t′) exp

[
− Z(t, t′)

exp(E/(kBΘ))

]
dt′ (3.23)

where P0(E, l) is initial probability and Z(t, t′) is the effective time of survival probability
[31, 33]. The overall yielding rate Y(t) can be obtained by differentiating further with respect
to t [12],

0 =
dG0(Z(t, 0))

dt
+ Y(t) +

∫ t

0
Y(t′)

dGρ(Z(t, t′))
dt

dt′ (3.24)
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To solve this numerically, we can follow the study [33], where the assumption is that the
time is discretized, t0(= 0), t1, t2, ..., tn−1, tn, tn+1, such that for any tn−1 < t′ ≤ tn, the linear
interpolation of Y(t′) would result in [12, 30, 33],

0 =
dG0(Z(t, 0))

dt
+ Y(tn) +

∫ tn−1

0
Y(t′)

dGρ(Z(tn, t′))
dtn

+ Y(tn)
∫ tn

tn−1

dGρ(Z(tn, t′))
dtn

dt′

−
(

Y(tn)− Y(tn−1)

tn − tn−1

) ∫ tn

tn−1

(tn − t′)
dGρ(Z(tn, t′))

dtn
dt′ (3.25)

Note: the numerical solution provided here is not used in this study and therefore, it only
serves as an alternative extension of the SGR model to soft materials, however the intuitive
picture can still be drawn for athermal materials. Since the initial conditions are of the form
Y(t0) = (kBΘ)/(1 + kBΘ), Y(ti), we can use forward differentiation method to solve the
above differential terms, and trapezoidal method to solve the integral terms [33] leading to
a constitutive equation,

σ(t) = γ(t)G0(Z(t, 0)) +
∫ t

0
dt′Γ(t′)[γ(t)− γ(t′)]Gρ(Z(t, t′)) (3.26)

where, the functions G0 and Gρ, that purely describes the stress decay due to noise are
shown to be governed by an "effective time interval" z = Z(t, t′) which are defined as
[31],

G0(z) =G0(z) =
∫

dEP0(E) exp
(
−ze−E/(kBΘ)

)
Gρ(z) =

∫
dEρ(E) exp

(
−ze−E/(kBΘ)

)
(3.27)

This section then builds on the following fundamental differences found between dry and
wet granular matter in a shear cell; (1) the presence of filamentary force chain networks
[35, 59] branching out at γ0 → γoffset

0 , comprising percolating quasilinear clusters of grains
[59, 60] and (2) the breaking and regeneration of capillary bridges, as the variation in the
packing fraction per experiment ϕ∗ competes with the jamming point ϕ∗ < ϕJ

f . Therefore, to
understand these differences between long-range force structures originating from the non-
linear flow fluctuations of dry and wet granular assemblies, we employ the SGR model and
estimate the noise temperature under the assumption that it holds the complete viscoelastic
description of a material [9, 30, 33, 41]. Moreover, the values of noise temperature at γonset

0
and the approximate amount of work required to cause one rearrangement of a grain by its
diameter (d = 500 µm) at given conditions is G

′′0
1 = 3.5 ± 0.3 nJ/grain for dry and G

′′0
1 =

7.0 ± 0.5 nJ/grain for wet. Additionally, based on the analytical approaches, as shown in Fig.
3.6, 3.7 and 3.8, we obtained relatively congruent values between the characteristic measures
of linear and nonlinear variables. This strongly supports the idea that noise temperature
might just be the key parameter to unlock the mechanism of: how the mesoscopic scale
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viscosity govern the macroscopic elasticity? Therefore, we argue that the solutions to the fits
of stress symmetry lines with a periodic function can be interpreted in light of the solution
to the constitutive equations of the SGR model, i.e. the complete viscoelastic response of a
material inherently caused by its constitutional rearrangements. Furthermore, in Fig. 3.22

(b) and (c), a typical comparison is depicted between Belastic|viscous and G
′,′′
M as a function of

strain and strain-rate amplitude, respectively, estimated from the corresponding LB loops
of elastic (a) and viscous stress (b) shown in Fig. 3.12. Note that, SGR model does not take
into account the viscous effects however the formalism for the dynamic viscosity can still
be written as η′

1 and η′′
1 as ωγ0/ωγ

j
0 = exp

(
−η′

1/η′0
1

)
∈ γ0 ≤ γ

j
0; j = γonset

0 , γoffset
0 . Although

we find this valid up to the pre-yielding range, therefore relevant to describe the percolation
dynamics of force chain networks.
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Figure 3.22: A typical comparison of elastic (a) and viscous (b) symmetry lines for dry
(solid lines) and wet (dashed lines) grains of d ≈ 500 µm. Hereof, (c) and (d) acknowledges
the close similarities between dry (squares, red) and wet (circles, blue) grains, hence the
entailed deductions between nonlinear elastic moduli with Belastic and dynamic viscosity
with Bviscous, respectively. The inset of (f) depicts the adjustment parameter A illustrating
the strain-rate independence, however, followed a Carreau-Yasuda scaling upon varying
frequency f .

Since B is numerically accurate and assuming that it takes the mesoscopic and macroscopic
variables into consideration, our findings therefore compliment the constitutive laws of the
SGR model in application to granular matter. Nevertheless, the Carreau-Yasuda like scal-
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ing as
(

A = A∞ + A0−Av
∞

[1+(τωγ0)a]
1−n

a

)
, obtained for 〈A〉 as a function of frequency f in Fig.

3.22 might just be an indication of pseudoplastic-like response stemming from the transi-
tion of strain-stiffening to quasi-Newtonian behaviour as the granular assembly is close to
jamming. Where a is the transition control factor, n is the power index and τ is the time
constant. As a topic of our ongoing investigation, we are currently studying the physical
significance of these properties, relating pseudoplasticity and compactivity to the confined
granular flows.

Intriguingly, comparing the noise temperature of dry to wet grains suggested a possible
transition from high mesoscopic flow fluctuations to the low density arrested states of grains
as kBΘdry < kBΘwet for ddry ∼ (kBΘdry)

−1±0.1 and dwet ∼ (kBΘwet)−1/2±0.1. This might sup-
port our aforesaid arguments, that for decreasing grain size, dry grains exhibit structural
arrest driven by Coulomb friction coefficient maximizing the Hertzian force contacts, which
rapidly decays with grain size, and contrarily, for wet grains, the breaking and regeneration
of liquid bridges decays with rearrangements approaching a jamming point. However, this
transition for wet grains would not hold for high P ≈ PJ as compressive stresses would
prevent wet grains from readjusting to the adjacent neighbouring locations due to reduced
activity of breaking and regeneration of capillary bridges, causing low meta-stability and
consequently high kBΘ. Such a non-uniform spatial ordering of dry and wet grains driven
by a combination of confinement and packing fraction (P; ϕ), also indicate the similarities
with the compaction dynamics of grains, as illustrated in Fig. 3.21.

Clearly, the system gradually packs at increasing P, which, near jamming PJ ∼ 20 kPa, fol-
low a bifurcation-like transition. The dry granular system followed saturation and evolved
to a deeper state of arrest while decreasing rapidly with d toward dilation (Fig. 3.20). Con-
trastingly, wet grains showed strong dilatant behaviour. This outcome has strong implica-
tions, as the faster grains are packed, the higher is the probability of dilation, and vice versa
to attain jamming or arrest at slow packing. Noise temperature and the energy required
for force-chains to percolate is found to scale with the size and packing fraction, accounting
for the epitaxial coalescence of rattlers and non-rattlers, attributed to the volume expan-
sion at ϕ∗ < ϕJ

f . The accelerated fall of ϕ∗
wet in contrast to dry grains indicate that the wet

grains expand in volume 50 times faster than dry at large deformation under confinement.
Furthermore, the crossover at which, wet grains dilate and dry grains arrests by epitaxial
jamming of quasilinear clusters, the percolating force-chain networks therefore must fail to
allow this dilation-arrest transition. This decay of elastic fluctuations controlling the spatial
and structural rearrangements ("attraction and repulsion") ϕ∗(P) ∼′?′ϕ∗(kBΘ), poses an im-
portant proposition (?), whether this is a point of Singularity or a first order phase transition
in granular matter near or at jamming?

3.4 Summary

This chapter systematically studied the non-linear dynamics of dry and wet granular mat-
ter at large deformations. By employing a standard rotational rheometer in LAOS mode
with confinement at constant pressure to trigger a non-linear material response, we present
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3 Non-linear Granular Flows from a Soft Glassy Perspective

a descriptive picture of nonlinear viscoelasticity in granular materials and the character-
istic degree of non-linearity via FT-rheology and Chebyshev Polynomials. The degree of
non-linearity identified the dynamical regimes of granular flows in a shear cell; linear, non-
linear and stick-slip. On finding that the deformation larger than the size of grain set the
divergence from the linear response (at γonset

0 ), confirmed that the nonlinear events are the
reminiscence of rearrangements. In addition, logarithmic dependence for G

′
and G

′′
for wet

Dynoseeds strongly indicated the breaking and regeneration of capillary bridges between
grains. Contrarily, for dry grains, G

′
and G

′′
scaled as ∼ γ3/2, acknowledged the presence of

filamentary force-chain networks of polycrystalline quasilinear clusters driven by friction,
within the SAOS limits. Wherein, the viscoelastic non-linearities were quantified by the
virtue of higher order harmonics revealing timescales corresponding to the compaction-like
dynamics. Supporting analysis of nonlinear viscoelastic moduli (G

′
M and G

′
L) as a function

of strain amplitude was found scalable with the characteristic energy via a Boltzmann-like
factor, in reference to the study [36]. Consequently, the slope values of characteristic moduli
(τ0, G0,j and G0,′′

1 ) implied that the wet granular system can be assumed to be driven by a
network of damped elastic oscillators, fluctuating around this characteristic energy while
friction governed force chain networks in dry grains are the origin of their elasticity. This
allowed us to invoke the non-thermal temperature to provide a general view of these com-
plex dynamics of grains.

Based on these experimental findings, the granular dynamics were recognized to follow the
concepts of the SGR model. Thenceforth we followed the works [7, 12, 30–32] to extend
our understanding of this non-thermal temperature (≡ noise temperature), in the vicinity
of granular matter rheology. Thereon, in pursuant to the lemmas of SGR formalism, the
granular assembly is assumed a quenched-in distribution of mesoscopic regions in an elas-
tic stress landscape. We first confirmed the strain onset of non-linearity, a transition point
of oscillating grains to the yielding of mesoscopic regions. Intriguingly, in our study we
find that the viscous flow at mesoscopic scale controls the macroscopic elastic response,
thereby complimenting, that the mesoscopic flow affects the macroscopic attributes in a
more complicated manner than previously assumed. Since the constitutive description of
noise temperature involves the contribution of viscoelastic moduli, we, therefore, provide
an experimental approach using basic measures of viscoelasticity to study the inherent
dynamics (e.g. fluctuations, rearrangements and caging) of dry and wet grains, exhibit-
ing shear induced compaction-like flows, dilatant-like expansion and the jamming. This
analytical strategy entailing the decomposition of stress-strain signal via its symmetry ar-
guments reveal the noise temperature as a periodic solution in a close resemblance to the
constitutive equations of the SGR model. The ubiquity of noise temperature in defining
a complete rheological response of granular matter was supported by different flow as-
pects (γonset

0 , τ, Ed, G
′
1, G

′
M, B) computing approximately the same noise temperature. Upon

scaling with packing fraction, the noise temperature of different sized grains at constant
confinement identified a sub-transition point, where percolation of filamentary force chains
fails and grains solidifies by the epitaxial arrest of quasilinear clusters. Additionally, this
jamming pressure was found in good agreement with the Jamming point as defined in
standard literature [2, 25, 35, 60] which demonstrated the phase change from compaction
to solidification for dry grains and dilatancy for wet grains. Obtaining such an accelerated
volume expansion in wet grains under LAOS with constant confinement raised concerns
about its significance in the complex flow behaviour of cohesive powders under such con-
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3 Non-linear Granular Flows from a Soft Glassy Perspective

ditions. Thenceforth, to illuminate the interplay between cohesivity (dynamic contact and
capillary forces) and non-thermal motions, we made an extensive study on wet granular
systems that the next chapter will demonstrate. The prime motivation for this study stems
from the phenomenological inferences conjectured on using surface tension to control the
noise temperature, in [30, 135, 136].
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4

Role of Cohesion in Wet Granular Matter

At some point in our life, we have all witnessed how dramatically a small amount of wa-
ter can transform sand. From dust to a complicated termite mound with an extensive
architecture of tunnels and conduits is nothing but pure inspiration. Not only prevalent in
nature, granular matter owing to their complex dynamics: agglomeration, cement binding,
segregation, compaction, colloidal flocculation, contact fusion of metal particles in sinter-
ing, capillary adhesion, solute recrystallization, and dilatancy, has accumulated industrial
grandeur over the past decades. Understanding their deformation dynamics by means of
disruption and predict the mechanical failure or the point of critical instability is crucial for
geophysical and industrial benefits [21, 117, 124, 141]. Myriad studies are filled with an
assortment of various flow aspects of granular matter [40, 133, 134, 142–148]. It has been
shown that dissipative contacts (force chain networks) and structural rearrangements are
what determines if a granular assembly will compact, jam or dilate [2, 3, 25, 35, 44, 86, 122].
Nevertheless, often-times homogeneous shear flow fields are assumed [106, 109, 120, 132,
149] however, in reality, the flow is particularly affected by inhomogeneities, shear banding
and nonlinearity as the material approaches rigidity transition (jamming) [56] and the re-
spective models/ theories are rendered inconsistent to account for the f lowability [119, 127]
or cohesive behaviour subsequent to yielding [123]. The underlying physics of cohesive
granular flows is much more complicated than it is generally assumed. Although, despite
the attempts to address the aforesaid concepts, the role of the compaction mechanism in
wet granular matter is still unclear. Whether grains really diffuse under the action of tran-
sient caging effects analogous to thermal glasses or if it is due to the critical slowdown of
fluidization in granular matter leading to a glassy state, and how the interstitial fluid affect
its structural rearrangements, it is still unclear.

As we found in the preceding chapter, the interplay of breaking and regeneration of capil-
lary bridges (elasticity) and the dissipation (viscous) are both inherently linked to a single
parameter, the noise temperature should thus elucidate the importance of caging driven
cohesive granular flows. Therefore we apply the constitutive formalism of the SGR model
on wet granular media at large deformations under constant confinement. Furthermore, the
primary motivation for this work stems from the following studies [30, 36, 136] that have
previously argued that the noise temperature can be manipulated by varying the surface
tension of the wetting fluid.
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4 Role of Cohesion in Wet Granular Matter

4.1 Non-linear Viscoelasticity in Wet Granular Matter

For oscillations with strain amplitude larger than γ0 ≥ γonset
0 in the non-linear regime, wet

granular assembly begins structural rearrangements under the action of breaking and regen-
eration of capillary bridges as illustrated in Fig. 4.1 (a)-(h). The micrographic simulation
to demonstrate this breaking and regenerating action is captured for a monolayer of wet
grains confined between parallel plates of plexiglass (5 cm× 5 cm) (for experimental details,
see Chapter 3).

Figure 4.1: (a) to (d) demonstrate the cyclic stress-strain contact points captured on the grain surface
in a monolayer of wet grains confined between the plexiglass plates, as pointed out by the red
arrowheads. (e) to (f) rearrangement of grains wet with Silicon oil (2 wt. %) by the action of
breaking and regeneration of capillary bridges. In (e) red arrows represents the force chain direction
as the capillary bridge (encircled in red) undergoes elastic stretching, and continues to stretch in (f)
and break in (g) while grains rearrange. As this process continues (followed on the scalebar of γ0),
another bridge begins to stretch in (g) and thins in (h). Top: illustration of a granular chain attached
to a sand-blasted shear-plate upon retraction from a granular assembly in a cup-plate setup used
for rheometry. The linearity concept is merely to show the significance of the granular clustering
process.

The markings (red arrowheads) in (a) to (d) point out the area of contact between applied
shear and granular sample. Fig. 4.1 (e) to (g) with guiding arrows and circles highlights
the elastic stretching of a liquid bridge (e)-(f), followed by breaking while the stretching
begins elsewhere (g) and finally capillary thinning is shown in (h). The top part of the Fig.
4.1 serves as an observation, complimentary to the practical importance of triplet in the
clustering of wet grains, displayed by a carefully retracted chain of grains from its sample.
The surface tension of the fluids is determined in accordance with [150], using a pendant
drop method as sketched in Fig. 4.2 (b) (see Chapter 3 for details) with measurements
depicted in Fig. 4.2 (a).
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Figure 4.2: The surface tension of fluids applied to wet the grains from highest to lowest
surface tension as Optiprep® (green), PEO (brown), Polysorbitol 80 (blue), Triton X (red),
Silicon oil (black). (b) A standard analytical sketch to measure the surface tension by the
pendant drop method. The image strips in (a) depict a size span of pendular capillary
bridges (thick at high surface tension µ and gets thinner at low µ), with arrows illustrating
extensional and compressive stresses.

In Fig. 4.1 (a), the nonlinear rheology of granular assemblies wet with different fluids is
shown by the first harmonic (a) elasticity (G

′
1) and (b) viscosity (G

′′
1 ) as a function of strain

and strain-rate amplitude, respectively. In (c), the noise temperature kBΘ is depicted by fit-
ting the nonlinear viscoelastic moduli for different cases of wet grains, as shown previously
in Chapter 4.
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Figure 4.3: Nonlinear rheology overview of the wet granular matter: (a) First harmonic
elastic modulus (G

′
1 = e1) as a function of strain amplitude, (b) first harmonic viscous mod-

ulus (G
′′
1 = ωv1) as a function of strain rate and (c) the estimated noise temperature (kBΘ)

obtained by fitting G
′
1 with γ0

γoffset
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= exp
(

−G
′
1

G′0
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)
and G

′′
1 with ωγ0

ωγoffset
0

= exp
(
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′′
1
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1

)
in regime

II (where γonset
0 ≥ γ0 ≤ γoffset

0 ), for Dynoseeds (d = 500 µm) wet by; Optiprep® (diamond);
Polyethylene oxide (downward triangle); Polysorbitol 80 (upward triangle); Triton X (circle)
and Silicon oil (square), respectively. The dotted lines in regime I of (b) are fits obtained
by adjusting G

′′0
1 , to compare Dynoseeds wet with different surface tensions. Inset: slope

values of G
′
1|γ0>γonset

0
, G

′′
1 |γ0<γonset

0
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0
, G

′
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0
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0
as a function

of µ.
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The corresponding LB loops are summarized below in Fig. 4.4 (a)-(d), (excluding the case
of Silicon oil, as it can be referred in chapter 3). The loops were further analysed to obtain
the characteristic degree of elastic ξe and viscous ξv nonlinearity in accordance with our
approach as shown in chapter 3. The characteristic degree of viscoelastic nonlinearity is
illustrated here in Fig. 4.1 (a) to (b), and as a support, the frequency dependence for one
such case of Silicon oil in (c) and (d), respectively.
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Figure 4.4: LB loops summarised for grains wet with (a) Optiprep®, (b) Polyethylene oxide,
(c) Polysorbitol 80 and (d) Triton X. Note: the LB loops regarding Silicon oil can be referred
in Chapter 4.

We fit ξe and ξv with a stretched exponential function, given as y = ξe
ξ∞

e
= 1 − exp

(
γ0
γ∞

0

)δ

for elastic nonlinearities and ξν

ξ∞
v

∼ dy2

dx |kx for viscous nonlinearities, where kx = ωγ0
(ω/k)γ∞

0
.

The dashed lines shown in Fig. 4.1 are the representative fits to the aforesaid relations
where the corresponding values of the parameters involved for different surface tension
and frequencies are given in table 4.1 and 4.2, respectively. The data shown in black (Fig.
4.1 (c) and (d)) belongs to the case of Silicon oil, with inset depicting monotonous behaviour
of k−parameter while γ∞

0 was found to show strong dependence on the applied frequency
f . Nevertheless, the successful working of the stretched exponential model can be pointed
out by the fact that for all the values of γ∞

0 obtained for ξe was found consistently scalable
to compute all the values of γ∞

0 for ξv by ω, which for our case is = 9.42 rad s−1, such that
γ∞

0,viscous ≈ γ∞
0,elastic × ω. . In other words, at low µ, the frequency at which the material

response is measured, differs from the input or applied frequency, for example in case of
Silicon oil by a factor of 0.69, which gets closer to the input frequency as µ is increased.
Therefore, the significance of γ∞

0 lies in the frequency range f = 1 Hz to f = 3 Hz, where
the material responds to the input frequency.

Therefore, to understand the relevance of viscoelasticity in wet granular material at a meso-
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Figure 4.5: Semi-logarithmic representation of the characteristic degree of (a) elastic ξe and
(b) viscous ξv nonlinearity as a function of strain amplitude and strain rate at f = 1.5 Hz
and N = 1 N, respectively for Dynoseeds (d = 500 µm) wet by fluids as shown in the legend.
The dashed lines are the stretched exponential fits as described. Frequency dependence of
(c) elastic ξe and (d) viscous ξv nonlinearity is shown for Dynoseeds (d = 500 µm) wet with
Silicon oil, to show the relevance of applied frequency in the rheology of wet grains. Inset
captures the coupling dynamics between material response and the applied frequency.

Table 4.1: Stretched exponential fitting parameters for different surface tensions.

µ(mN m−1) γ∞
0 1/k δ ξ∞

e : ξ∞
v

10−3 8.7 0.45 0.9 4.5 : 2.3
21 7.0 0.46 0.9 3.1 : 4.2
33 6.8 0.54 0.9 1.7 : 3.7
43 6.3 0.54 0.9 1.3 : 2.8
55 5.0 0.69 0.9 0.7 : 1.7
79 5.0 0.72 0.9 0.4 : 0.9

scopic scales and the relative contribution of the surface tension of the interstitial fluid, we
incorporate the role of capillary bridges (in terms of the rupture energy). Henceforth, in the
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Table 4.2: Stretched exponential fitting parameters for different frequencies f .

f (Hz) γ∞
0 1/k δ ξ∞

e : ξ∞
v

0.01 3.2 0.95 0.9 0.66 : 0.27
0.05 3.3 0.96 0.9 0.70 : 0.30
0.10 3.5 1.01 0.9 0.95 : 0.36
0.30 3.9 1.01 0.9 1.7 : 0.53
0.50 4.5 0.81 0.9 3.4 : 1.3
0.75 5.7 0.76 0.9 4.9 : 2.13
1.00 6.4 0.73 0.9 6.5 : 2.88
1.25 7.1 0.69 0.9 8.0 : 3.7
1.50 7.6 0.52 0.9 3.1 : 4.2
2.00 8.1 0.80 0.9 10.9 : 4.9
3.00 8.8 0.61 0.9 11 : 5.25
5.00 9.1 0.54 0.9 11.4 : 5.4
10.00 9.15 0.65 0.9 11 : 5.5

next section, the significance of surface tension in packing, dissipation and rearrangement
dynamics of wet granular flows are studied.

4.2 Rearrangement Dynamics of Wet Grains and Powders

As found in chapter 3 in comparison to dry grains and the above section, that the non-
linear stress-strain response of wet granular matter strongly depends on the breaking and
regeneration dynamics of capillary bridges, that intrinsically stem from the surface tension
governed cohesion. Thenceforth, we thoroughly study the role, the interstitial fluid’s sur-
face tension is playing in evoking such capillary profiles in a granular assembly. Primarily,
the total force of cohesion Ftot = Fc + Fv is calculated for capillary bridges, followed by
later use in estimating the total rupture energy W̃tot. We integrate the ratio of these forces
with capillary bridge volume µR from zero to the rupture length H̃ for the capillary force
Fc and from characteristic surface roughness length d̃ ≈ 0.005 with respect to the length of
the capillary bridge H for each strain amplitude. Where H̃ is given as ' (1 +

θp
2 )π

1/3 x+H
2R ,

allowing the total rupture energy required to break the liquid bridge in pendular regime is
directly proportional to the surface tension µ and viscosity η of the wetting fluid. Note: the
values and definitions of additional parameters used for estimating 〈W̃tot〉 can be found in
Chapter 2 and 3. The significance of surface tension on the rupture energy (as a measure of
cohesion), the energy dissipated Ed by the system and the variation in the packing fraction
per experiment, in governing slowly compacting or packing wet granular matter is shown
in Fig. 4.6. Note: that the experimental strain defined here as γe

0, is a unidirectional strain
(devoid of oscillations) applied on the parallel-plate setup of plexiglass under the micro-
scope by a 2D moving stage (as described in Chapter 2). Moreover, the noise temperature
obtained for different confinement pressure P for dry and wet grains (d = 500 µm) in Chap-
ter 3 is compared with grains wet with Optiprep in Fig. 4.6 (d). Whereas the packing of wet
grains is depicted as a function of a qualitative strain defined as γ∗

0 . This qualitative strain
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γ∗
0 here represents the average of strain per number of oscillations and not the applied strain

(i.e. γ) at which the rheological measurements were made, such that for example, ϕ∗ ≈ 0.01
represents a measurement that is an average of ϕ∗ measured for 5 complete sinusoidal os-
cillations at γ0 ≈ 0.01. With all these unique variables, this figure is intended to describe
the rearrangement dynamics from mesoscopic flow aspects.
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Figure 4.6: Fast to slow rearrangement dynamics of wet granular matter governed by the
surface tension driven rupture energy (W̃tot(µ) : a measure of cohesion). The dynamics are
represented as a function of different forms of strains for (a) W̃tot (γe

0), (b) Ed (γ0), (c) ϕ∗

(γ∗
0 ). (d) compares the kBΘ calculated in Chapter 3 for dry and wet grains with the grains

wet with Optiprep as a function of confinement pressure P. The inset of (a), (b), (c) and
(d) represents the surface tension (µ) dependence for the corresponding variables chosen at
γonset

0 or at the equivalent measurement specific strains, as defined here. The second inset
of (d) corresponds to the elastic symmetry lines obtained at P = 1 kPa for dry (in black),
Silicon (in blue) and Optiprep (in green). Legends: Optiprep® (diamond); Polyethylene
oxide (downward triangle); Polysorbitol 80 (upward triangle); Triton X (circle); Silicon oil
(square); and dry grains (black spheres).

In Fig. 4.6 (a) W̃tot is shown decaying for increasing γe
0, with a linear dependence on µ shown

in the inset [109, 119, 128, 132]. Packing (compaction-like) of grains is illustrated by the
variation in the packing fraction per experiment ϕ∗ =

ϕ f −ϕi
ϕi

calculated for each strain cycle.
All the insets illustrate surface tension dependence of the corresponding variables, roughly
scaling as W̃tot ∼ µ in (a), Ed ∼ log µ in (b), ϕ∗ ∼ exp(−µ) in (c) and kBΘ ∼ exp(−µ)
in (d). Fig. 4.6 (d) compares two systems composed of 500 µm grains, the wet grains
(low to high surface tension as 21 mN m−1 and 79 mN m−1) to dry grains. For accurate
estimation of the noise temperature, we analysed the LB loops in accordance with our
approach to SGR dynamics, as shown earlier in Chapter 3. Upon obtaining the elastic
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symmetry lines, illustrated in Fig. 4.2(a) to (d), and fitting them with an equation of the form
σ

′
= σ

′
0 + Aγ − B sin

(
γ
γ0

)
revealed the noise temperature as B = ln

(
γ0

γonset
0

)
kBΘ. Wherein,

the parameter B for different surface tension and normal force N is depicted in Fig. 4.8 (a)
and (b), as a function of strain amplitude γ0, respectively. Note: the LB loops for the case
of Optiprep at different normal forces is given in Appendix A Fig. .13.
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Figure 4.7: Elastic symmetry lines summarised for grains wet with (a) Optiprep®, (b)
Polyethylene oxide, (c) Polysorbitol 80 and (d) Triton X. Note: the symmetry lines obtained
for Silicon oil can be referred in Chapter 4.
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Figure 4.8: Calculations made for B−parameter as a function of strain amplitude for vary-
ing (a) surface tension and (b) normal force (N) (see legends). Note: (b) only represents the
case of Optiprep® at different N. The dashed lines are the fits with equation 3.2 to estimate
the noise temperature kBΘ Legend: Optiprep® (diamond); Polyethylene oxide (downward
triangle); Polysorbitol 80 (upward triangle); Triton X (circle) and Silicon oil (square), cohe-
sive powders in solid symbols involves: hydrophobic glass (d ≈ 140 µm), lactose coated
glass (d ≈ 140 µm) and lactose monohydrate (lactosa®; d ≈ 200 µm).

4.3 Discussions and General Remarks

This study is a foremost demonstration of surface tension driven noise temperature in wet
granular matter. We varied the cohesiveness of grains by wetting them with interstitial fluids
of different surface tension in a pendular regime such that the system maintains effective
capillarity, where the cohesive forces act exclusively via liquid bridges [59, 119, 120]. This
allowed us to avoid pressure or suction effects that often arise in the funicular or capillary
regime and ensure that the cohesive behaviour results from liquid bridges only [119, 120].
The non-linear dynamics are first addressed via FT-rheology combined with Chebyshev
polynomials, as applied previously in Chapter 3. The nonlinear rheology clearly illustrated
an elastic fluid-like to a viscous gel-like transition based on the first harmonic viscoelastic
moduli and the corresponding noise temperature, which was found high at small surface
tension, and approaching zero as µ was increased, indicating the drop in the number of re-
arrangements (see Fig. 4.1). In addition, the vast differences in slopes of G

′′0
1 for highest and

lowest surface tension cases (as shown in Fig. 4.1) strongly imply that the lower is the fluid
surface tension, lower energy is required to break the capillary bridges and high energy is
needed to break and move capillary bridges of wetting fluid with high surface tension. Be-
sides, for an accurate estimation, the fact that the number of capillary bridges in a granular
sample made by fluids of different surface tensions may also vary, and so the rupture en-
ergy. Furthermore, upon fitting the characteristic degree of nonlinearity ξ with a stretched
exponential function, the exponent δ was found the same for all the cases of grains wet with
different fluids as δ ≈ 0.9, despite the differences in their overall rheology and k−parameter
values (Fig. 4.1; 4.1). This additionally compliments the question and proposition raised
in [40, 86], that the fluid properties play an important role in governing material response
in bulk as well as mesoscopic scales. The successful working of the stretched exponential
model in fitting ξe and ξv was acknowledged by finding a constant proportionality between
ξ∞

e and ξ∞
v by exactly of the order of ω = 9.42 rad s−1, which might be more than just

a correlation. This interdependence between viscoelastic nonlinearities strongly indicates
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that irrespective of the stress-strain response, elastic or viscous, the behaviour of granular
material stays viscoelastic, as the viscous flows at mesoscopic scales govern the bulk elas-
ticity and vice − versa. Henceforth, to study the significance of wetting fluids in granular
materials and powders, we followed the works [86, 119, 128, 129, 132] and calculated the
viscous and capillary forces as a measure of cohesion. Followed by estimating the energy
spent (W̃tot) and released Ed as grains began to rearrange at γ0 ≤ γonset

0 . Upon applying the
analytical approach hitherto illustrated in Chapter 4, we find 〈Ftot〉 of a standard capillary
bridge between two grains wet with (a) Silicon oil as 7.4 µN, (b) Triton X as 10.3 µN, (c)
Polysorbitol 80 as 21.5 µN, (d) Polyethylene oxide as 33.7 µN and (e) Optiprep® as 59.3 µN.

Therefore, to provide valuable insights on the intrinsic relationship between rearrangement
dynamics and the physical properties of the wetting fluid, we made a comparative illustra-
tion by incorporating the role of cohesion W̃tot compared to the dissipation Ed, and variation
in the packing fraction per experiment ϕ∗ representing the compaction-like dynamics to the
noise temperature kBΘ. Finding a linear dependence of W̃tot on the surface tension validates
our calculations of liquid forces and rupture energy to a reasonable degree of accuracy and
in agreement with [3, 130]. As shown in Fig. 4.6 (b), the logarithmic growth of Ed over
strain clearly acknowledges our aforesaid proposition, that the breaking and regeneration
of liquid bridges in wet granular matter account for the energy dissipated. To capture a
deeper view on the rearrangement dynamics in wet granular assemblies and how can they
be controlled, we calculated the initial and final packing fraction as we illustrated earlier in
Chapter 4, for every strain cycle per number of oscillations, and normalised in accordance
with [133, 134, 151], denoted as ϕ∗. The behaviour for granulates wet with the fluid of
low surface tension µ ≈ 21 mN m−1 and viscosity η ≈ 0.018 mPa showed compaction-like
dynamics, which got slower as the surface tension and the viscosity of the wetting fluid was
increased, with slowest at high µ ≈ 79 mN m−1 and η ≈ 0.9 mPa (see Fig. 4.6 (c)). Wherein,
the inset further corroborates the fact that at high surface tension, large energy input is
needed to pack the grains via rearrangements, and vice − versa. Apparently, the slow pack-
ing of wet granulates, that gets slower with increasing µ and the energy dissipated by wet
grains due to breaking and regeneration of capillary bridges can be assumed interlinked
with the surface tension of the fluid as such assumption has been already used for dry
grains with emergent surface tension effects (≈ 1 µN m−1) by [121, 142, 148]. In that case,
the structural rearrangements being the inherent origin of dissipation and compaction [7, 9,
22, 30, 34, 41, 116], must recognize these events of breaking and regeneration of capillary
bridges by a temperature-like variable, the noise temperature, defined in this thesis as kBΘ
in the units of J/grain [36].

Thenceforth, following with the SGR model-based analytical approach demonstrated in
chapter 4, we decomposed the LB loops via stress-strain symmetry arguments and fitted
the stress symmetry lines with a periodic series function to estimate the noise temperature.
Moreover, to reveal a clear distinction between granular material types, we found cohesive
powder systems, in contrast to wet granular matter, exhibited approximately a constant
noise temperature, clearly indicating that the structural rearrangements are invariant to the
applied deformation. Besides, the cohesive powder flow profile fits in a good agreement
with gel-suspension like flows, as their monotonous dependence on noise temperature, sug-
gests that cohesivity "prefers" an equal number of rearrangements regardless of the powder
type. This implies that increasing the amount of energy required to rupture a capillary
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4 Role of Cohesion in Wet Granular Matter

bridge between grains can eventually collapse the rearrangements in a granular assembly,
thereby shifting its phase from an elastic fluid-like to a solid or viscous gel-like state, which
is analogous to the transient caging phenomena in thermal glasses [2, 3, 9, 22, 63]. Such
rearrangement dynamics may results from caging by hindering the structural movements
in wet granular materials, as the energy requirements to break and regenerate a capillary
bridge exceeds the applied deformation. Thus, such a slow decay of rearrangements might
be viewed as a reminiscence of the glass-like relaxation of wet granular systems. The afore-
said findings presented heretofore have strong implications in industrial processes such as
compaction, segregation, jamming and mixing of wet grains and cohesive powders.
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5

Conclusions and Outlook

Granular unrest (or jam), from food to earthquakes, ice floes, or torus belts of asteroids,
serves as a model system to understand the governing dynamics of hard-sphere systems,
hallmarked by their non-thermal motions [1, 4, 6]. Amid this endless pursuit to fully de-
scribe complex matter and establish a mean field theoretical framework (vis-a-vis thermo-
dynamics) of granular matter, thermal glass formers are often exploited to draw analogies
with granular dynamics [3, 5, 152]. Hereof, applications of trap and SGR models [2, 8, 9,
33–35, 153] have made staggering progress in describing slowly sheared granular matter,
however, the presence of viscous effects at large deformation scales has earned it a notori-
ous status of complex matter [3, 35, 106], a hard problem to address.

In this thesis, we have systematically studied the non-linear rheology of dry and wet gran-
ular matter at large deformations. By exploiting the stress-strain symmetry arguments via
FT-rheology and Chebyshev polynomials, the material response is decomposed into elas-
tic and viscous contributions (including the nonlinearities), providing a simplified means
to make qualitative and quantitative analysis formulated in a characteristic degree of non-
linearity ξ. Subsequent to the identification of three dynamical regimes of granular flows in
a shear cell; linear, non-linear and stick-slip via ξ, we find that the deformation larger than
the size of grain set the divergence from the linear response (at γonset

0 ) representing nonlin-
ear events as the reminiscence of rearrangements (as yield stress fluids, YSFs). In the SAOS
regime, the logarithmic dependence for G

′
and G

′′
for wet Dynoseeds strongly suggested

the oscillating capillary bridges between grains before rearrangements begin. Contrastingly,
G

′
and G

′′
for dry grains scaled as ∼ γ3/2 were found in good agreement with the for-

mation of filamentary force-chain networks of polycrystalline quasilinear clusters driven by
friction. Wherein, the viscoelastic non-linearities revealed a strong coupling between elastic-
ity and viscosity in sheared granular systems. Supporting analysis of nonlinear viscoelastic
moduli (G

′
M and G

′
L) was done in accordance with [36], as a function of strain amplitude

to compute the characteristic energy via a Boltzmann-like scaling parameter. Whence, the
values of characteristic moduli (τ0, G0,j and G0,′′

1 ) implied that the wet granular system can
be assumed to be driven by a network of damped elastic oscillators, fluctuating around this
characteristic energy while friction governed force chain networks in dry grains serving as
the origin of their elasticity. These values were found to represent a non-thermal tempera-
ture, henceforth intended to provide a general view of these complex dynamics of grains.

Based on aforesaid findings, the underlying physics of dry and wet granular dynamics
were recognized to be governed by similar concepts as of the SGR model. We followed
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the works [7, 12, 30–32] to extend our understanding of this non-thermal temperature, "the
noise temperature", in the vicinity of granular matter rheology. Thereupon, we began with
the axiomatic description of the SGR formalism, where the granular assembly is viewed as
a quenched-in distribution of mesoscopic regions in an elastic stress landscape. We first con-
firmed the γonset

0 as an indicator of non-linearity, a transition point where oscillating grains
begins to yield as mesoscopic regions (YSFs). In this part of the study, we found that the
viscous flow at mesoscopic scale controls the macroscopic elastic response, complimenting
the conjecture that the mesoscopic flow affects the macroscopic attributes in a more compli-
cated manner than previously assumed. Note: viscous effects are not taken into account in
SGR models, however, the model argues with a caveat that such effects must be considered
as the system is deformed at larger scales. Favourably, the constitutive description of noise
temperature comprises the viscoelastic moduli which allowed us to provide an experimen-
tal approach using basic measures of viscoelasticity to study the inherent dynamics (e.g.
fluctuations, rearrangements and caging) of dry and wet grains, exhibiting shear induced
compaction, dilatancy and jamming.

In this analytical strategy, the stress-strain symmetry was exploited to reveal the noise tem-
perature as a periodic solution in a close resemblance to the constitutive equations of the
SGR model. This finding additionally compliments the questions and propositions raised in
the study [50] that reviewed how linear algebraic approaches conflate the information on the
elastic and viscous processes whereas a periodic sequence can suffice the response of yield
stress fluids. The complete rheological response of granular matter in terms of the noise
temperature was additionally supported by scaling different flow aspects (τa, Ed, G

′
1, G

′
M, B)

computing approximately the same noise temperature. Upon scaling with packing fraction,
the noise temperature of different sized grains at constant confinement was found to follow
bifurcation-like paths, where percolation of filamentary force chains in dry grains fails and
grains jams by the epitaxial arrest of quasilinear clusters whereas wet granular samples be-
gin to expand as dilatant fluid. The confinement pressure and the packing fraction at which
these phenomena occur were found in good agreement with ∼ Jamming point [2, 25, 35, 60].

Finding dilatant behaviour in wet grains under constant confinement and the associated
rich dynamics of capillary bridges, provoked our interest to study the significance of wet-
ting fluid in granular media. As we found that this interplay of breaking and regeneration
of capillary bridges (elasticity) and the dissipation (viscous) are both intrinsically linked to
a single parameter, the noise temperature, should therefore answer: whether wet granular
flows are governed by the transient caging effects analogous to thermal glasses or not? Be-
sides, our prime motivation for this study also stems from the inferences made on surface
tension driven noise temperature in [30, 136].

Compared to the raw rheology data G
′

and G
′′

for grains wet with different fluids, the
nonlinear viscoelastic moduli showed an elastic fluid-like to a viscous gel-like transition at
low to high surface tension, respectively, which is inherently related to the adjustment in
local packing density (compaction-like). From the stretched exponential fits of ξ for grains
wet with the fluids of different surface tension (µ) and viscosity (η), showing the amount of
nonlinearity is significantly small at high surface tension, complimented the idea proposed
in [40, 86], conjecturing that at high µ or η, it would take longer for a capillary bridge
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to break. Herein, we calculated the total rupture energy of the possible capillary bridges
present in a layer of grains deformed by a unidirectional strain γe

0 under the microscope as
W̃tot to provide valuable insights on the wetting dynamics and fluid properties. A linear
dependence of W̃tot on µ and η validated our analysis to a reasonable degree of accuracy
and efficiency [3, 130]. As the slow compaction is taking place, the energy required to break
and regenerate capillary bridges between grains decreases and simultaneously the energy
dissipation of the system increases. This was illustrated by studying the packing dynamics,
where a fast growth of ϕ∗ for grains wet with fluid of low µ and η was found compared to
the slowest at high µ and η, corroborating that large energy input is required to pack the
grains via rearrangements for a system wet with high surface tension fluid. As indicated
by ϕ∗ and Ed, compaction-like dynamics are most likely governed by the action of breaking
and regeneration of capillary bridges, which in fact are controlled by the surface tension of
the fluid. Therefore, the structural rearrangements in the granular matter when viewed as
a reminiscence of the noise temperature can be tuned by changing the surface tension alone.

In contrast to wet granular media, the cohesive powders showed a monotonous response
to the noise temperature, indicating that their structural rearrangements are invariant to
the applied deformation, and resembled the flow profile similar to a gel-suspension. In
this regard, a stronger indication however alludes to the identification of the point of crit-
ical instability where rearrangements would collapse as the amount of energy required to
rupture a capillary bridge between grains exceeds the applied deformation, corroborating
to the transition from an elastic fluid-like to a solid or viscous gel-like state, analogous to
the transient caging effects in thermal glasses. Furthermore, in contrast to the surface ten-
sion dependence of Ed ∼ log µ, ϕ∗ ∼ exp(−µ), and noise temperature as kBΘ ∼ exp(−µ)
supports the caging hindered structural rearrangements in wet granular materials. Because,
since the dissipation is balanced by the energy spent in breaking and regenerating capillary
bridges, slow decay of rearrangements is nevertheless, bound to the glass-like relaxation of
the system.

These aforesaid findings provide valuable insights on the industrial processes such as com-
paction, segregation, jamming and mixing of wet grains and cohesive powders. The knowl-
edge gained from this work offers an extensive experimental and analytical foreground to
further develop and contribute to the coarse-grained description of non-linear dynamics of
granular matter. We find our approach more general than it was intended to be and plan to
apply this framework to describe the dynamical response of surface-treated powders, com-
modity polymers, electrical conductance and ferromagnetic dielectric discharge, provided
that the response is nonlinear and satisfy symmetry arguments for analytical division.

This thesis captures a generic picture of nonlinear granular flows governed by the rearrange-
ments viewed as a reminiscence of the noise temperature to describe compaction, dilatancy
and jamming, particularly on the accounts of rheology.
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A Supplementary Figures: LAOS and Soft Glassy Rheology
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Figure .1: LB loops summarised for Dynoseeds beads of 140 µm diameter with (dashed
lines) and without (solid lines) small additions of Silicon oil as a function of strain γ for
each normal force cycle (N = 1 N − 12 N, top-left to bottom-right, respectively)
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Figure .3: LB loops summarised for Dynoseeds beads of 500 µm diameter with (dashed
lines) and without (solid lines) small additions of Silicon oil as a function of strain γ for
each normal force cycle (N = 1 N − 12 N, top-left to bottom-right, respectively)
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with the applied N in each experimental set.

112



Bibliography

0.5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0.5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

10-2 10-1 100 101

0.0

0.5

1.0

1.5

2.0

10-2 10-1 100 101

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

10-2 10-1 100 101
0.0

0.2

0.4

0.6

0.8

1.0

1.2

10-2 10-1 100 101
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure .11: Summary of the first harmonic dynamic viscosity v1 in support to ap-
proximate the non-thermal motions of dry (solid black) and wet (open blue) granular
matter as a function of strain amplitude for (a) 500 µm with |vdry

1;min| ≈ 3.5 nJ/grain,

|vwet
1;min| ≈ 7 nJ/grain, |vdry

1;max| ≈ 49 nJ/grain, |vwet
1;max| ≈ 47 nJ/grain, (b) 250 µm with

|vdry
1;min| ≈ 10 nJ/grain, |vwet

1;min| ≈ 14 nJ/grain, |vdry
1;max| ≈ 97 nJ/grain, |vwet

1;max| ≈ 63 nJ/grain,

(c) 140 µm with |vdry
1;min| ≈ 15 nJ/grain, |vwet

1;min| ≈ 21 nJ/grain, |vdry
1;max| ≈ 120 nJ/grain,

|vwet
1;max| ≈ 68 nJ/grain, and (d) 80 µm with |vdry

1;min| ≈ 19 nJ/grain, |vwet
1;min| ≈ 24 nJ/grain,

|vdry
1;max| ≈ 143 nJ/grain, |vwet

1;max| ≈ 93 nJ/grain. The dashed lines are the fits of the charac-
teristic scaling law described above with minimum and maximum values presented here.
The legend follows up with the applied N in each experimental set.
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Figure .12: Summary of the third harmonic dynamic viscosity v3 in support to ap-
proximate the non-thermal motions of dry (solid black) and wet (open blue) granular
matter as a function of strain amplitude for (a) 500 µm with |vdry

3;min| ≈ 3.5 nJ/grain,

|vwet
3;min| ≈ 7 nJ/grain, |vdry

3;max| ≈ 49 nJ/grain, |vwet
3;max| ≈ 47 nJ/grain, (b) 250 µm with

|vdry
3;min| ≈ 10 nJ/grain, |vwet

3;min| ≈ 14 nJ/grain, |vdry
3;max| ≈ 97 nJ/grain, |vwet

3;max| ≈ 63 nJ/grain,

(c) 140 µm with |vdry
3;min| ≈ 15 nJ/grain, |vwet

3;min| ≈ 21 nJ/grain, |vdry
3;max| ≈ 120 nJ/grain,

|vwet
3;max| ≈ 68 nJ/grain, and (d) 80 µm with |vdry

3;min| ≈ 19 nJ/grain, |vwet
3;min| ≈ 24 nJ/grain,

|vdry
3;max| ≈ 143 nJ/grain, |vwet

3;max| ≈ 93 nJ/grain. The dashed lines are the fits of the charac-
teristic scaling law described above with minimum and maximum values presented here.
The legend follows up with the applied N in each experimental set.
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Figure .13: LB loops summarised for Dynoseeds beads of 500 µm diameter with small
additions of Optiprep as a function of strain γ for each normal force cycle (N = 1 N − 12 N
as indicated.)
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Appendix B

B Powder Formulation for Glass Particles

In our attempt to achieve hydrophilic, hydrophobic and lactose coated features on glass
grains of 140 µm diameter, we adopted the protocol optimised in [154] as a Powderreg
Project initiative, and amended additional steps to ensure the desired properties. The step-
wise instructions on the chemical treatment of raw powders are as follows.

B.1 Hydrophilic and Hydrophobic Functionalization

We begin with adding sulphuric acid (95%-97% concentrated) and hydrogen peroxide (50%
concentrated grade) in 3:1 ratio, primarily to remove organic impurities followed by intro-
ducing hydroxy (-OH) groups on the surface, thence hydrophilic nature as illustrated in
Fig. .14. The beads were allowed to cool in the hood for 4 h under ambient conditions, then
further washed with distilled water (∼ 5 times) and oven-dried at 70 °C for ∼ 4 h.

       Ein/Aus            Ein/Aus     

Figure .14: Corresponding elastic symmetry lines summarised for Dynoseeds beads of
140 µm diameter with (dashed lines) and without (solid lines) small additions of Silicon oil
as a function of strain γ for each normal force cycle (N = 1 N − 12 N, top-left to bottom-
right, respectively).
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To add hydrophobic functionalities, we start with hydrophilic glass beads (note: not oven-
dried, just washed), and add toluene with 2.5 g silane (1H,1H,2H,2H-perfluorooctyltriethoxysilane)
purchased from Sigma-Aldrich GmbH. The beads were allowed to stay immersed in the
aforesaid solution for 72 h under ambient conditions. Hereafter, the beads were finally
washed with toluene, then filtered to be dried at room temperature for 24 h, as sketched in
the Fig. .15.

       Ein/Aus            Ein/Aus     

Figure .15: Corresponding elastic symmetry lines summarised for Dynoseeds beads of
140 µm diameter with (dashed lines) and without (solid lines) small additions of Silicon oil
as a function of strain γ for each normal force cycle (N = 1 N − 12 N, top-left to bottom-
right, respectively)
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