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Abstract

Background: Sensors embedded in smartphones allow for the passive momentary quantification of people’s states in the context
of their daily lives in real time. Such data could be useful for alleviating the burden of ecological momentary assessments and
increasing utility in clinical assessments. Despite existing research on using passive sensor data to assess participants’
moment-to-moment states and activity levels, only limited research has investigated temporally linking sensor assessment and
self-reported assessment to further integrate the 2 methodologies.

Objective: We investigated whether sparse movement-related sensor data can be used to train machine learning models that
are able to infer states of individuals’ work-related rumination, fatigue, mood, arousal, life engagement, and sleep quality. Sensor
data were only collected while the participants filled out the questionnaires on their smartphones.

Methods: We trained personalized machine learning models on data from employees (N=158) who participated in a 3-week
ecological momentary assessment study.

Results: The results suggested that passive smartphone sensor data paired with personalized machine learning models can be

used to infer individuals’ self-reported states at later measurement occasions. The mean R2 was approximately 0.31 (SD 0.29),

and more than half of the participants (119/158, 75.3%) had an R2 of ≥0.18. Accuracy was only slightly attenuated compared
with earlier studies and ranged from 38.41% to 51.38%.

Conclusions: Personalized machine learning models and temporally linked passive sensing data have the capability to infer a
sizable proportion of variance in individuals’ daily self-reported states. Further research is needed to investigate factors that affect
the accuracy and reliability of the inference.

(J Med Internet Res 2022;24(4):e34015) doi: 10.2196/34015
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Introduction

Background
In mental health care, learning about the trajectories of a
patient’s psychological strain often requires repeated verbal
interactions. Interviewing the patient in person is not always
preferable because of the economic burden posed on clinicians
and patients alike. A substitute for these interviews are
questionnaires that patients answer in pen and paper diaries or
on their mobile devices. Although these methods allow for a
relatively cheap and fine-grained examination of the
participants’ condition, responding multiple times to the same
questionnaire can still be tiring and burdensome for patients,
leading to increased noncompliance. In the last decade,
biomarkers from mobile sensors have emerged as a promising
alternative to infer patients’ psychological conditions (eg,
depression severity). However, thus far, many of the proposed
methods incidentally collect plenty of unrelated private data,
require specialized apps on the patients’ devices, or depend on
the environment (eg, cell phone signal strength). Inferring a
patient’s condition from movement sensors commonly available
in smartphones and recorded only while participants fill out a
questionnaire could be an alternative that has not been explored
so far. Therefore, in this study, we investigated the predictive
capabilities of such sparse data collected during an unrelated
web-based study. Although this method initially relies on
questioning the patient via identical web-based questionnaires,
participant burden could be attenuated in the long run by rotating
questionnaire topics or omitting parts of the questionnaire.

Theoretical Background
In the last 40 years, our understanding of fluctuations and
trajectories of psychological characteristics has benefited greatly
from the adoption of ecological momentary assessment (EMA).
EMA studies typically focus on assessing a person’s state at a
set of moments throughout the day. This schedule is then
repeated over a number of days of interest (see Shiffman et al
[1] for a thorough introduction to the methodology). EMA
moves the assessment closer to the real-life occurrence of
relevant phenomena. For example, it allows for the recording
of mood states before medication is misused [2]. This
fine-grained assessment allows investigations to be conducted
on the interplay between variables in everyday life while
diminishing memory biases [3]. Using EMA across a
considerable length of time consequently allows an investigator
to inspect and monitor the course of an individual’s responses
without requiring direct interaction between the participant and
investigator. Consequently, EMA could be a fruitful tool in
researchers’ and practitioners’ toolsets as it can be used to
discover more about the moment-to-moment changes that are
taking place in a person’s condition. However, answering a
sizable number of questions several times a day over many days
can also be disruptive and time-consuming for EMA
participants. Therefore, concerns have been raised about whether
the burden it imposes on the individual may even undermine
the effort of collecting ecologically valid data [1,4].

Reducing burden in general is of fundamental concern for
research ethics [5] and, thus, in the long run, it is of concern for

patients and practitioners using frequently repeated interviews.
Participant attrition, which can be an outcome of burden, has
been highlighted as a major threat to validity in eHealth research
[6,7]. In the case of EMA methodology, increased burden has
also been linked to reduced data quantity and quality [8,9].
Reasons for the additional burden may vary from study to study,
but sampling frequency and number of items per prompt have
repeatedly been identified as relevant factors [9-13].
Consequently, a common strategy for reducing burden in EMA
studies is to shorten the questionnaire [9,14]. At the same time,
omitting items from a questionnaire can negatively affect the
reliability or validity of the measurement. This poses a dilemma
for using EMA to its full potential in research and clinical
application.

A way to overcome this limitation is to passively collect
behavioral data. With behavioral data, one could attempt to
infer participants’ states without requiring them to explicitly
report their symptoms. Smart devices, which can monitor their
users’ behavior in multiple ways [15], enable researchers to
gather, explore, and leverage such data. Today, many field
studies using EMA or comparable methodologies are already
using smartphones for assessment [13,16]. There have also been
several successful attempts to identify behavioral information
that indicates psychological characteristics, often termed digital
biomarkers or behavioral markers, which comprise the field of
personal sensing [17]. Scholarly articles on the exploration of
passively collected data range from inferring participants’ traits
from their smartphone use [18-20] to inferring momentary
expressions [21]. As the field is quite young, it still comprises
a variety of techniques, operationalizations, and outcomes and
requires more evidence regarding the effectiveness of
approaches and measurement validity (see Mohr et al [17] for
an overview pertaining to mental health). Focusing on the areas
of mental health and well-being, Yim et al [22] recently
reviewed studies that explicitly conducted personal sensing
alongside smartphone-based EMA or substituted passive sensing
for EMA in the context of major depression. Most studies
successfully identified participants with depressive symptoms
and inferred their stress levels or their levels of (negative)
emotion. Consequently, passive sensing appears to be a fruitful
option to overcome burden by passively collecting information
from participant biomarkers. At the same time, the studies
reviewed by Yim et al [22] showed considerable heterogeneity
in terms of the sensor data, how the data were collected, and
which methods were used to analyze the data.

Open Challenges for Alleviating the EMA Burden
With Personal Sensing
Many passive sensing approaches seem to work equally well
for inferring states related to mental health. However, the
heterogeneity in these approaches leaves unclear which
methodological choices should inform a reliable and applicable
approach that could alleviate burden in EMA surveys. For
example, Mohr et al [17] identified open challenges pertaining
to study quality, reproducibility, variability, uncertainty, and
privacy. This investigation addressed 3 of these major
challenges.
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First, passive sensing studies have shown a distinct lack of
agreement on the implemented validation strategies. At the same
time, choosing an inappropriate validation strategy for the
intended application threatens the validity of the inference. In
this vein, Saeb et al [23] investigated the cross-validation
scheme of 64 passive sensing studies that aimed to infer clinical
outcomes. They found that 45% of the studies used a
cross-validation that overestimated the capabilities of the
models. Hence, choosing a correct training and cross-validation
method is of special concern when data from passive sensing
will be used to infer unobserved characteristics of the
participants. One of the most popular methods in the studies
reviewed by Yim et al [22] and Saeb et al [23] is training and
cross-validating the models on a random subset of the entire
sample. However, Saeb et al [23] noted that personalized
models, in which an individual’s past relationships between
indicators and states are used to derive models that can infer
future states based on future indicator data, might be more
appropriate. The viability of such personalized models has only
been explored in a few studies related to EMA [24-26]. For
example, Asselbergs et al [24] collected the self-reported mood
of 27 participants at 5 time points each day over the course of
6 weeks. In addition, the authors unobtrusively logged
information about phone calls, SMS text messages, screen
activation, app use, and camera use. Asselbergs et al [24] used
these data to compute personalized models to infer each
participant’s mood using forward stepwise regression. Within
an error margin of 0.5 around the observed scores, the models
inferred between 55% and 76% of the responses on average.
However, the authors were not able to replicate the rate of 93%
that had been presented in an earlier study [27]. As previous
research has not explored which validation strategy can be
deemed most appropriate for the use case of substituting EMA
responses with collected sensor data, our study compared the
most common approaches of training and cross-validating
models across the entire sample to computing personalized
models for each individual. Furthermore, we contrasted the
performance of 2 popular machine learning algorithms that are
common in passive sensing studies.

A second challenge in determining an appropriate method to
alleviate EMA burden is the variety of available sensors and
other use data. This confronts researchers with countless degrees
of freedom in how features are computed and modeled [17].
Mixing sensors with distinct characteristics (eg, device
orientation and geolocation) might underestimate the importance
of one feature in favor of the other and, thus, lead to a biased
evaluation of the predictive capabilities of a sensor in a certain
setting. This mixing and matching of sensors may further lead
to an unwanted interdependence of sensor readings and person
and environmental characteristics [17]. Cell phone or Wi-Fi
signal strength might not be the same indicator between a city
and a rural area, and battery capacity as an indicator might be
confounded with participants’ choice of smartphone.
Furthermore, Bähr et al [28] raised concerns about several
quality issues related to geolocation data. Unfortunately,
geolocation data have been a favorite for inferring depressive
symptoms. Underestimating the external factors influencing
these data may lead to failed replication when transitioning from
small-scale validation studies to studies with larger and more

diverse samples. For example, Saeb et al [29] were able to train
classifiers to infer the participants’ (N=208) semantic location
(eg, at home, at friends’ place, or at a restaurant) from sensor
data but then could not find a substantial connection to
self-reported depressive symptoms. Besides the possibility that
there may be no such connection, the authors partially attributed
this discrepancy from previous literature to sampling from the
broader American population instead of relying on samples that
had been restricted to a single location (eg, available students).
Such interdependencies between sample and sensor readings
must be considered when choosing sensors that may be capable
of being substituted for or used to complement self-reported
data in a wide variety of studies. To avoid such issues, one could
also restrict the investigation to a set of sensors that are for the
most part independent from environmental interference.
Therefore, in this investigation, we chose data from sensors that
detect device movement, which are common in smart devices.

A third challenge in substituting EMA responses with sensor
data is that the chosen method must not coincidentally inflict
burden in any other way. Most studies investigating mobile
sensing have collected and combined considerable quantities
of data from various sensors throughout the day. This leads to
significant requirements regarding storage and processing
capabilities on the side of the investigators and might inflict
considerable battery drain and unresponsiveness on the
participant’s device [30]. Furthermore, collecting large quantities
of sensor data may encompass information that is inherently
personally identifiable (eg, names of other connected devices)
or that is able to reveal sensitive details about a person (eg,
geolocation) [30]. This level of detail is not necessarily needed
to infer a mental state. For example, a feature Saeb et al [31]
used to infer depression was the distance covered by
participants, not the participants’ actual geolocations. However,
once data with such detail and semantic information have been
collected for a person, the data can be used to reconstruct a large
portion of the person’s daily habits without the need for
elaborate analysis methods [32]. At the same time, practitioners
and participants might overestimate the informational security
of software [33]. Participants might further dismiss privacy
concerns about activity data as part of a boundary management
strategy [34,35]. If the requirements for a certain health
condition or the study incentives outweigh their concerns,
participants might agree to data collection that they would not
have consented to under other circumstances. Therefore, modern
methods should strive to maximize participant privacy at a
technical level. Ideally, data collection methods will ensure this
data sparsity without sacrificing predictive performance or
potential treatment efficacy [36,37]. Therefore, in our
investigation, we chose to restrict the data collection to the times
when participants were responding to their EMA questionnaires.

This Study: Concurrent Sensing

Our approach for tackling the aforementioned challenges
involved restricting sensor dependencies and narrowing
measurement time to a required minimum. Even with such
sparse data, personalized models could be fit to a participant’s
peculiarities within a relatively short amount of time and
accurately infer future self-reports only from future sensor data.
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We chose 2 sensors that are widespread in smartphones: the
acceleration and orientation sensors [38]. These 2 sensors track
how participants move and rotate their devices. As sensor
readings are device-centric, they are mostly independent of
environmental factors such as signal strength. Although
accelerometers and gyroscopes are part of the sensor ensemble
of many studies, it is rather uncommon for them to be used as
the sole source for studies pertaining to EMA. Nevertheless,
previous research has demonstrated that they can be suitable
for detecting participants’ conditions. For example, wireless
accelerometers have been used in medical applications to
monitor Parkinson disease [39]. Data from acceleration and
orientation sensors have also allowed researchers to infer
participants’ emotions [40,41]. Furthermore, Kern et al [42]
showed that the accelerometer data recorded alongside the
survey provided information about survey completion conditions
(eg, whether a participant moved while taking the survey).
Well-being has also historically been linked to posture [43]. In
this regard, Kuhlmann et al [44] explored the possibility of
inferring momentary subjective well-being from smartphone
tilt in a recent preprint and were at least partially successful.
Many more studies have shown that movement-related data can
be used to infer information about the device holder, from
location to personality traits, thus underscoring the predictive
capabilities of such data. Summarizing several of these studies,
Kröger et al [45] recently even voiced privacy concerns about
the accelerometer. Consequently, also for these 2 sensors, there
is a need for solutions that allow sensor data to be collected
more sparsely while retaining meaningful predictive capabilities.

A solution to this problem is to collect data from sensors only
while participants fill out the EMA questionnaire. Data collected
in this way are usually referred to as the paradata of the survey.
According to Kreuter [46], paradata are behavioral by-products
of computer-assisted data collection that are often neglected in
studies. In the past, they have primarily been used to reduce
survey error within the total survey error framework [47]; for
example, by uncovering participants’ insecurity while
responding to particular survey items [48]. In the same manner
that paradata can be collected from web surveys, it is possible
to record sensor readings directly from participants’ web
browsers without relying on additional applications. Such data
are naturally restricted to the moments when participants interact
with the survey. In this way, readings between time points
always correspond to a similar task and are therefore somewhat
standardized. This implicit standardization could be helpful for
reducing heterogeneity in the data. While completing the survey,
participants inevitably move their phones in a particular way.
Thus, it is likely that sensor data collected from moment to
moment also hold a relevant amount of information that is
usually covered up by continuously recorded data. Fluctuations
between time points may be more informative than features
extracted from sensor readings throughout the day. For example,
the change in mean acceleration along a spatial axis while
completing the questionnaire might be indicative of increased
arousal during that particular measurement period. This subtle
information might be discarded in comparison with stronger
signals such as acceleration from walking during the entire day.

In our study, we explored such sensor paradata as a solution for
alleviating burden in EMA methodology. We collected sensor
readings from the accelerometer and gyroscope alongside an
unrelated EMA study. Participants in this study were 158
employees who were recruited to report on factors pertaining
to their work-related stress and after-work detachment 6 days
a week for 3 weeks. We then used those data to train machine
learning models on the first 13 mornings of the data collection
period to infer all of a participant’s self-reported states on the
last 5 mornings based on the sensor data from these days.
Furthermore, this study contrasted personalized models with
between-participant models for the purpose of inferring states.
Personalized (or idiographically weighted) models have already
been demonstrated to be feasible solutions [23-26]. However,
there is no evidence about whether between-participant machine
learning models might not also be a feasible or better solution
when using movement sensor paradata. Finally, we inspected
the results of the algorithms regarding commonalities between
personalized models that may lead to a comprehensible
interpretation of how characteristics of movement are related
to successful inferences. Taken together, this study aimed to
answer the following open questions pertaining to substituting
privacy-friendly personal sensing for EMA responses: (1) Can
future self-reported states be accurately inferred from sparse
accelerometer and gyroscope paradata by models trained on
past data? (2) Do between-person and personalized models
perform differently when inferring such self-reports? (3) Are
there sensor features that are particularly suitable for inferring
states?

Methods

Recruitment
The data for this investigation were collected as part of a
research project by Reis and Prestele [49]. In this project, 158
employees from different professions voluntarily participated
in an experience sampling assessment for 3 weeks. The mean
age of the sample was 41.6 (SD 10.9) years, and 67.1%
(106/158) of the participants were women. Most of the
participants (125/158, 79.1%) worked >36 hours per week. The
participants were further incentivized to complete ≥50% of the
measurement points with a compensation of €30 (US $34.13)
or the opportunity to access 3 weeks of web-based mindfulness
stress reduction training subsequent to the end of the study.

Data Collection and Procedure
After providing informed consent and completing an intake
survey, the participants began the experience sampling
procedure. For each workday during the 3 weeks, the
participants were prompted in the morning, directly after work,
and in the evening to fill out a short questionnaire. On Saturdays,
they were asked to fill out only the morning questionnaire. The
content of the questionnaire varied throughout the day. Further
information about the research project by Reis and Prestele [49]
is provided in the publication and in the corresponding
repository.

Owing to the time-varying nature of the study’s measurement
points, we had to choose a subset of constructs that we would
try to infer from the sensor data. We decided to omit constructs
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that were exclusively related to the participants’ judgments of
their workplace experiences. The remaining constructs were
sleep quality, life engagement, work-related rumination, fatigue,
and mood (with 2 subscales). Fatigue and mood were assessed
at each measurement occasion, whereas the other 3 constructs
were only assessed in the morning. Using all measurement
occasions for those 2 predictors would have made them
incomparable with the other 3 constructs because of a much
larger data corpus (48 instead of 18 measurements) and would
have required the inference of mixed trajectories (from morning
to evening and from day to day instead of from day to day only).
Consequently, we decided to also restrict our mood and fatigue
subsample to the morning measurement occasions. This resulted
in 18 measurements for mood, fatigue, and sleep quality and
15 measurements for the remaining outcomes as those were not
asked about on Mondays. Although all constructs were intended
to be predictors, mediators, or outcomes for the model in the
initial study, this paper refers to all of them as predicted
outcomes of the sensor-related models in this study.

Sensor data were acquired by assessing the JavaScript device
orientation application programming interface of the web
browser at 2 Hz while the participants filled out the

questionnaire, which provided data for the acceleration of the
device on 3 axes and the tilting of the device at 3 angles.
Although the questionnaires could be completed on a website
on any computer, the participants were encouraged to use
smartphones, and the questionnaires were optimized for
presentation on smaller screens. Most participants complied
with this recommendation, resulting in 1995 processable sensor
streams out of 2204 measurements, already excluding missing
or irregular data (eg, streams with an SD of 0, indicating
measurement failure). Overall, adherence in this subsample was
comparable between measurement occasions (Figure 1), with
a visible decline over the course of the assessment. Nevertheless,
the participants completed 15 out of 18 surveys on average
(mean 15.11, SD 4.06). On all measurement occasions, between
65% and 75% of the questionnaires were completed, which is
on par with previous EMA studies [13]. Over the course of the
assessment, there was a noticeable decline in compliance
common to EMA studies [9]. The start of the study and
Saturdays appeared to be the least favored days by the
participants. Consequently, we concluded that compliance in
our sample was comparable with that reported in earlier EMA
studies.

Figure 1. Number of questionnaires completed during the 3 weeks of assessment. Adherence varied throughout the weeks, with a declining trend
toward the end of the assessment.

Measures

Overview
As the sensor paradata for this study were collected alongside
an EMA study, we were restricted to scales that the authors had
chosen for investigating their hypotheses. All the self-reported
measures have been validated and are commonly used in
occupational health psychology. For further information

regarding the underlying research project, please refer to the
article by Reis and Prestele [49].

Fatigue
Momentary fatigue was measured on a 5-point rating scale
ranging from 1 (not at all) to 5 (extremely) using a subset of 4
items from the Profiles of Mood State [50].
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Mood and Arousal
Mood and arousal were assessed on 6 bipolar adjective pairs of
the Multidimensional Mood State Questionnaire
(Mehrdimensionaler Befindlichkeitsfragebogen) [51]. The
participants expressed their momentary mood on a 6-point scale
regarding good mood (feeling well, good, satisfied, or happy)
and tense arousal (feeling tense or restless).

Life Engagement
Life engagement was measured using the Utrecht General
Engagement Scale–3 [52], a shortened version of the Utrecht
General Engagement Scale [53], which is a generalized version
of the Utrecht Work Engagement Scale [54,55], which inquires
about vigor, dedication, and absorption with a single item per
dimension. The participants were asked to report the levels of
life engagement they had experienced the previous evening on
a 5-point rating scale ranging from 1 (not at all) to 5 (extremely).

Rumination
Work-related rumination was assessed with a selection from
the items by Flaxman et al [56] (I worried about things I need
to do at work, I worried about how I would deal with a work
task or issue, and my thoughts kept returning to a stressful
situation at work) that were adapted for state use from the
perseverative cognition scale [57]. The participants reported
the levels of rumination they had experienced the previous
evening on a 5-point rating scale ranging from 1 (not at all) to
5 (extremely).

Sleep Quality
The sleep quality of the previous night was assessed using the
sleep quality subscale of the Standardized Sleep Inventory [58].
The participants rated three adjectives (good, undisturbed, and
ample) on a 5-point agreement scale ranging from 1 (not at all)
to 5 (very much).

Extracted Features
To extract features based on the sensor data [17], we followed
the recommendations of Hoogendoorn and Funk [59], who
proposed that information should be aggregated within
participants by computing descriptives such as central tendency,
range, and variability. These recommendations were targeted
toward working with self-tracking data from wearable activity
trackers, thus resembling our approach of recording part of the
participants’movements while they filled out the questionnaires.
For each measurement occasion, we computed the mean, the
maximum of the absolute readings, the SD, the root mean square
of successive differences, and the SD of successive differences
across all measurements. In addition, we computed
autocorrelations and partial autocorrelations up to a lag of 15.
In our case, autocorrelation features imply that the device was
moved or rotated similarly in a periodic manner (eg, a lag-6
autocorrelation on the z-axis would imply that the smartphone
was similarly accelerated along the z-axis every 3 seconds). We
also extracted the 2 highest-power frequencies from a Fourier
analysis as an additional feature of periodicity in the data.

Statistical Analysis
To investigate relationships between sensor data and outcomes,
the sensor streams were arranged to follow the order of the
scales during the morning assessment, thereby constructing a
continuous sensor stream across all pages of the questionnaire.
We then extracted features from each stream for every
measurement occasion, and these features served as predictor
variables for the later models. The median length of a sensor
recording period across participants and measurement occasions
was 68.00 seconds (5th percentile=35.00 seconds; 95th
percentile=171.00 seconds) if the measurement occasion
included life engagement and rumination and 45.00 seconds
(5th percentile=21.20 seconds; 95th percentile=107.00 seconds)
on days where only fatigue, mood, and arousal were assessed.
Next, we split the data into a training set and a testing set
following a 70%/30% testing scheme along the timeline of the
assessment, resulting in 1455 (mood, fatigue, and sleep) or 1119
(rumination and life engagement) cases in the training set and
543 cases in the testing set. Consequently, we used our models
to infer the last 5 mornings of week 3 from learning the
participants’ idiosyncrasies on all previous mornings of the
assessment. The final data set consisted of 230 variables (ie, 6
outcomes and 224 predictors), which we analyzed with 2
different machine learning algorithms using the caret package
in R (R Foundation for Statistical Computing) with a separate
model for each outcome. After analyzing the complete data set,
individual models were computed for each participant. We then
looked into relationships between self-report characteristics and
feature performance that could have determined the predictive
capabilities of the models.

We evaluated model performance by inspecting the R2 values
of the resulting models that inferred the participants’ states using
values in the testing set. In this way, we could assess how well
the inferred data points recreated the observed data. For
comparability with earlier studies, we further computed the
accuracy criterion by LiKamWa et al [27] and Asselbergs et al
[24] for the personalized models, allowing for an error margin
of 0.5 around the observed value to classify the inferred value
as either correct or incorrect. Finally, we explored the
relationship between the sensor features and outcomes by
clustering feature importance over all outcomes by means of a
latent profile analysis (LPA).

Machine Learning Algorithms
To analyze the sensor features, we chose 2 algorithms suitable
for supervised learning that have been found to be reliable for
different problems: random forest [60] and a penalized general
linear model (GLM) [61]. Random forests make use of decision
trees, whereas the penalized GLM uses regularization to fit a
linear model to the data. The implementations that we chose in
R were ranger (random forests) and glmnet (least absolute
shrinkage and selection operator and elastic net regularized
GLM). All algorithms were trained with their default values in
the caret package and a 10-fold cross-validation of the training
set.
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Ethics Approval
The study received ethics approval from the Ethics Committee
of the Department of Psychology of the University of
Koblenz-Landau (145_2018). Informed consent was obtained
from all individual participants.

Results

Model Performance
Initially, we explored the models’capabilities to infer outcomes
in the complete training sample from the set of 224 predictors.

The models included the features as well as the unique
participant identifier (ie, a character string corresponding to the
respective case) and the measurement occasion identifier (ie,
an integer corresponding to the place of the measurement within
the study) to provide the algorithms with information about the
relationship of the repeated measurements. These results
resemble a common approach in personal sensing in which a
fraction of the entire data set is used to train the models. The
results for all models and outcomes are shown in Table 1.

Table 1. R2 and the root mean square error (RMSE) for all models and outcomes using the full feature set.

Penalized GLMaRandom forestOutcome

RMSER2RMSER2

Training sample

0.850.19 b0.870.16Sleep quality

0.800.280.850.21Fatigue

0.820.330.880.25Good mood

1.010.371.130.24Tense arousal

0.990.221.030.14Life engagement

0.930.391.050.24Rumination

Testing sample

0.900.160.920.12Sleep quality

0.890.290.940.21Fatigue

0.890.350.940.28Good mood

1.070.321.140.23Tense arousal

1.170.251.210.21Life engagement

0.980.401.060.31Rumination

aGLM: general linear model.
bItalics indicate the highest R2 values for each outcome.

In the training sample, the penalized GLM performed best on
all outcome measures. In the testing sample, the penalized GLM
again performed the best followed by the random forest model.

Inspecting the most impactful predictors revealed that each
model chose one or more unique participant identifiers as their
primary source of information. Given that the rating scales
restricted the participants’ answers to ranging between 1 and 5,
we concluded that the models might have identified prototypical
participant trajectories that were able to represent a larger
proportion of the sample. Considering these results, it was
unclear whether the sensor data would provide any meaningful
information about the participants’ states on their own when
the models were trained on between-participant data. Therefore,
we continued the analysis by splitting the predictor set into the
sensor data and the participant identifier.

Omitting the participant identifier resulted in a reduction in the

predictive performance of both models. The R2 values for the
random forests ranged from 0.01 (rumination and life

engagement) to 0.05 (good mood) in the training sample and
was approximately 0.01 in the testing sample for all outcomes.

The R2 values for the penalized GLM ranged from 0.01 (sleep
quality and rumination) to 0.03 (good mood and tense arousal)
in the training sample and ranged from <0.01 (life engagement
and rumination) to 0.01 (all other outcomes) in the testing
sample.

Inspecting the importance of the predictors for the models using
only the identifiers showed that the random forests and the
penalized GLM chose the same participant identifiers to infer
the outcomes except for tense arousal, which both models still
inferred equally well. Such similarities were not found in the
models without the person identifier.

On the basis of these results, it appeared that the sensor data
obtained from the questionnaire were not suitable for training
models that could replace self-reports.
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Personalized Models
After analyzing the data for the complete sample, we continued
to train the models on the individual trajectory of each
participant. Model performance was then evaluated by inferring
the same participant’s responses on the last 5 mornings. We
trained a total of 948 possible models for each algorithm. With
the missing data now weighted against each individual model,
302 models could not be computed using random forests (sleep
quality: 46/302, 15.2%; fatigue: 41/302, 13.6%; good mood:
48/302, 15.9%; tense arousal: 57/302, 18.9%; life engagement:
52/302, 17.2%; rumination: 58/302, 19.2%). Another 283
models could not be computed for the penalized GLM (sleep
quality: 43/283, 15.2%; fatigue: 40/283, 14.1%; good mood:
44/283, 15.5%; tense arousal: 54/283, 19.1%; life engagement:
48/283, 17%; rumination: 54/283, 19.1%). Most (208/302,
75.5%) of the missing models were related to the same 38
participants with very low compliance in the morning
questionnaire.

For all outcomes, the R2 values archived in the testing sample
ranged from 0 to 1 for the random forests and penalized GLMs.

For 75.3% (119/158) of the participants, the models showed an

R2 value of ≥0.18. The descriptive statistics for the R2

distributions are presented in Table 2. Furthermore, we
computed the accuracy criterion used in earlier studies [24,27].
The mean accuracy of the random forest models ranged from
41.37% (SD 30.86%) for life engagement to 51.38% (SD
32.05%) for good mood (sleep quality: mean 46.4%, SD 31.5%;
fatigue: mean 42.4%, SD 29.29%; tense arousal: mean 41.88%,
SD 29.62%; rumination: mean 45.06%, SD 33.78%). The mean
accuracy for the penalized GLM ranged from 38.41% (SD
29.18%) for rumination to 48.19% (SD 31.48%) for good mood
(sleep quality: mean 42.03%, SD 31.46%; fatigue: mean 43.92%,
SD 29.87%; tense arousal: mean 41.19%, SD 28.58%; life
engagement: mean 40.08%, SD 27.42%). On average, between
38.41% and 51.38% of the participants’ answers on the last 5
measurement occasions could be inferred from models trained
on the individual sensor paradata of the first 13 measurements.
Relating the accuracy to the mean compliance of participants
during the last 5 mornings (mean 4.44, SD 0.82), this means
that the models correctly inferred between 1.71 and 2.28 answers
on average.

Table 2. Descriptive statistics for the distributions of R2 values achieved on the testing set. Except for the tense arousal outcome, the penalized general
linear model (GLM) performed better at inferring the last 5 mornings.

100th percentile75th percentile50th percentile25th percentilePercentile 0Values, mean (SD)Outcome

Random forest

10.440.180.0300.27 (0.28)Sleep quality

10.540.210.0500.32 (0.32)Fatigue

10.430.20.0500.28 (0.28)Good mood

10.520.30.100.34 (0.28)Tense arousal

0.990.490.20.0400.3 (0.3)Life engagement

10.410.160.0300.27 (0.29)Rumination

Penalized GLM

10.630.260.0500.35 (0.33)Sleep quality

10.470.210.0500.28 (0.27)Fatigue

10.510.210.0700.3 (0.28)Good mood

10.590.260.0700.34 (0.3)Tense arousal

10.50.260.0700.33 (0.29)Life engagement

10.480.180.0700.31 (0.31)Rumination

Further Analyses Regarding Features and
Performance
To analyze the importance of the features, we summed the
feature importance of all the individual models for each
outcome. The algorithms predominantly used autocorrelations
and partial autocorrelations from both sensors. Both algorithms
tended to harness the higher-order autocorrelations, representing
a correlation of values between 2 and 5 seconds rather than the
lag-1 or lag-2 autocorrelations. The same held true for the partial
autocorrelations. For the penalized GLM, the set of important
features was complemented by the mean acceleration along the
y-axis (vertical movement) for good mood, tense arousal, and
rumination. In addition, the mean acceleration along the x-axis

(horizontal movement) appeared to be important for inferring
tense arousal. The random forest models used the measurement
occasion to infer fatigue, tense arousal, and rumination. The
algorithm also used the maximum acceleration along the y-axis,
the maximum rotation around α (turning the phone to landscape
mode), and the root mean square of successive differences of
the rotation around α to infer good mood. It also used the SD
of the acceleration along the z-axis (moving the phone back and
forth) to infer life engagement. None of the algorithms showed
a pattern that could be interpreted point-blank in terms of posture
or exerted force.

We attempted to identify further similarities between the models
by clustering the predictors based on their importance across
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all outcomes. To determine an empirical number of clusters,
we conducted an LPA using the mclust package in R [62].
Inspecting the progression of the Bayesian information criterion
(BIC) and the integrated completed likelihood for the random
forests, both clustering algorithms favored a 1-cluster solution
(BICEEI=−3828.916; integrated completed
likelihoodEEI=−3828.916) regardless of the cluster
parameterization [62]. We explored this further by testing the
preferred solution of equally sized and distributed clusters (EII
parameterization) with a bootstrap likelihood ratio test, testing
successive cluster solutions for an improvement in model fit.
This analysis also pointed toward a single-cluster solution
(likelihood ratio test statistic1 vs 2=7.98; P=.54).

Contrary to the LPA for the random forests, the results for the
penalized GLMs indicated a solution with multiple clusters.
The BIC peaked between a solution with 5 and 7 clusters, with
5 clusters that were variable in size and rotation (VVE
parameterized) as the favored outcome. However, the cluster
solutions found for the penalized GLM aggregated the features
into clusters of similar performance across all models instead

of clusters targeted at individual outcomes. The cluster
containing the features with the highest importance contained
the most features (n=86) and, therefore, provided no advantage
over the unclustered importance sums.

Furthermore, we explored the relationships between the
variability in the outcomes and model performance. All of the
following correlations are Holm-corrected [63] for multiple
comparisons. Correlation analyses (2-sided) between the square

root–transformed individual models’ R2 results and the
log-transformed variability of the self-report measures revealed
no meaningful results for either algorithm. This was true for all
outcomes as well as for the correlation between performance
and variability within 3 weeks or only within the last week. The
relationships between the (untransformed) model performance
and the 3-week variance are depicted in Figure 2. Next, we

included only results with R2≥0.01 in the analysis to explore
whether more or less variability in the outcomes was correlated
with models that explained ≥1% of the variance. This analysis
also revealed no meaningful relationships.

Figure 2. Scatterplots exploring the relationships between the variability of the outcomes across 3 weeks and the performance of the individual random
forest models. Although some trends were depicted in the plot, we found no substantial correlations between variability and model performance.

We similarly analyzed the relationships between the
questionnaires completed in the first 2 weeks and model
performance. As we were not able to correct the skewed
distribution of the compliance variable (most participants were
very compliant), we calculated a 2-sided percentage bend
correlation [64] as a nonparametric alternative to the Pearson
correlation coefficient. This resulted in a negative relationship
between compliance and model performance for the good mood
outcome (rpercentage bend(99)=−0.32; P=.02).

Finally, we visually inspected the outcome trajectories as well
as the distributions of the sensor feature values between the
25% best-performing models and the 25% worst-performing

models. Both visual analyses revealed no evident differences
between the best- and worst-performing models.

Discussion

Principal Findings
This study examined the utility of sensor paradata that were
passively collected while participants filled out EMA
questionnaires to infer participants’ future self-reported mental
states. Our results suggested that the sparse data collected only
from movement-related sensors allowed us to infer participants’
self-reports on several outcomes related to mental well-being

J Med Internet Res 2022 | vol. 24 | iss. 4 | e34015 | p. 9https://www.jmir.org/2022/4/e34015
(page number not for citation purposes)

Hart et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


to some degree. For half of the participants, our models already
performed well on all 6 outcomes. Using the accuracy criterion
by Asselbergs et al [24], the mood-related personalized models
in this study were able to replicate the lower boundary of
previous work. Given that our models relied only on sparse data
from the 2 movement-related sensors, this result is quite
remarkable. This was even more remarkable given that the
sample in our study was 5 times the size and consisted of a
rather heterogeneous group of employees. This gives us
confidence that further development in this area will refine the
assessment to a point where passive sensing can actually replace
self-reports.

Another result of our exploration was that our approach did not
appear to be suitable for predictions trained on data from all
participants, but it was suitable for modeling the states of the
participants idiographically. The models resulting from training
on the complete data set relied on the peculiarities of
interindividual responses and started treating individual
participant identifiers as the major source of information. Given
the restricted ranges of Likert-type rating scales, deriving
prototypes is a perfectly reasonable approach for capturing a
good portion of the common variance between people, which
could heuristically explain the results of the algorithms.
Consequently, the models based on participant identifiers also
worked, but the information from passive data had little to no
impact on the final models. Another explanation could be that
random variation between participants (eg, sensor readings that
differed by device [44,65]) might have concealed relevant
variance. This supports the point of Saeb et al [23] that models
focusing on inferring future data from the same source should
use personalized models. Consequently, we also advise future
studies to clearly determine and disclose whether their goal is
to classify participants or to infer participants’ future states with
the trained models when choosing on which part of the data
models should be trained and tested. As predicting the
commonalities of a sample might most likely not be the goal of
all studies using passive data and EMA, we suggest that the
default of training between-participant models should be treated
with caution when inferring participant mental states from sensor
data instead of classifying passive data patterns. However, as
demonstrated by Jacobson and Chung [25], such models can
most likely be used to inform personalized models.

A final question we investigated was whether the working
models could be traced back to a pattern of successful predictors
that would be indicative of a certain outcome. In the related
analyses, we found that, despite finding that the algorithms
performed similarly, they treated the data differently. This was
not too surprising as random forests rely on subsets based on
chance and pick up on nonlinear relationships, whereas
penalized GLMs rely on the complete data. For the random
forest models, the LPA suggested a 1-cluster solution regarding
the importance of features, but the LPA of the penalized GLMs
showed no such classification tendencies. Instead, the analysis
clustered indicators according to their impact with respect to
all outcomes. Although both outcomes are semantically
appealing, we would recommend that any interpretation be
adapted with caution in future research on the relationships
between sensor readings and psychometric outcomes.

We also did not find any intuitive relationships between model
performance and the variability of the outcome data, participant
compliance, the trajectory of the outcomes, or the distribution
of the feature values. Although a singular negative relationship
between the collected data and the model performance appeared
to be significant, we assume this to be purely by chance despite
the applied correction. As we asked about both mood subscales
on the same questionnaire page, discovering an effect for only
1 subscale points to the difference in failed models between the
2 outcomes rather than a true correlation with compliance.
Consequently, we would not expect to find this association
between compliance and model performance in future studies.

Potential Applications
We presented evidence that sparse movement sensor data
collected in a privacy-friendly manner contain valuable
information about the participant’s psychological state.
However, so far it has not become explicit how these data might
be used to significantly alleviate participant burden in EMA
studies. At the moment, we envision 2 approaches that may
foster participants’ compliance.

First, researchers might be able to omit arbitrary questionnaires
after the training period. Reducing the length of the assessment
comes with direct benefits for experienced burden and
participant compliance [9]. Researchers would start with all
relevant questionnaires in the survey and attempt to train
personalized models on the relationship between sensor paradata
features and scale values. Once those models are successfully
established for the required number of participants and
constructs, researchers could then omit arbitrary questionnaires
from the survey and infer these missing responses by means of
the trained models and the sensor paradata from the remaining
questionnaires.

Second, researchers might be able to change the content of the
survey during the assessment without compromising the
completeness of the data set. Researchers would start with a
subset of the relevant questionnaires. After training the
personalized models on these data, one or more questionnaires
could be replaced with other questionnaires. The trained models
could then be used to infer the now unobserved constructs.
Furthermore, if personalized models are trained on the added
constructs, the resulting models could be used to infer the
previously unobserved constructs. In this way, longer
assessments could be shortened significantly to reduce the initial
burden. Participants may also find the assessment less
burdensome because of the regularly refreshed novelty.

The latter technique shares similarities with planned missingness
designs [66] where certain items of a scale are randomized
between participants. However, in contrast to planned
missingness, the missing data are not inferred based on the entire
sample’s answering behavior but through the biomarker
provided by the individual participant. Given that further
research can improve the accuracy of our method to the rates
presented by LiKamWa et al [27], rotating questionnaires
flanked by biomarkers might provide data with higher
intrapersonal validity than planned missingness designs.
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Both methods will still require an initial period to gather enough
data to train the personalized models. In addition, we also
assume that participants will be required to fill out
questionnaires of a similar format after the training period, thus
adhering to a semistandardized procedure. Other activities that
might be enjoyable for the participants (eg, playing games) but
require more physical activity might considerably affect the
validity of the computed sensor features. However, these
boundaries of applicability are subject to further systematic
research as well as questions about the quantity of viable
omissions and substitutions, the length of the required training
period, and whether nonrectangular questionnaire formats (eg,
slider bars and swipe choice) are suitable for training the
personalized models.

Limitations and Future Directions
One of the strongest points of this study is that we were able to
demonstrate that models trained on paradata that can be collected
while participants fill out a survey can be used to infer
self-reported states over time. As demonstrated, this can be done
completely unobtrusively alongside an already existing research
project without a dedicated study setting focused on the
exploration of passive data or special laboratory hardware.
However, as this study is still exploratory, we want to emphasize
some limitations that come with the degrees of freedom that the
researchers will use when conducting research on passive data.
As outlined in our theoretical introduction, changing the
parameters may lead to different results in future examinations
on the topic.

First, choosing the same resolution for the sensors (2 Hz) might
be crucial for replicating our results. Smartphone sensors of
movement values are usually able to report up to approximately
100 readings per second (100 Hz). Choosing a frequency that
is appropriate for the task is an important part of analyzing
sensor data [65]. In our study, these rather conservative values
were chosen based on three deliberations targeting the
applicability of the methods presented in this study:

• Sensor output should remain manageable by statistical
software that is typically used in the social sciences. Sensor
readings become big data very quickly, where traditional
data analytic methods might still suffice, but data have to
be handled via external databases. Data preparation then
requires experience with software and programming that
is not part of many medical or social science curricula. For
comparison, the low-resolution sensor readings in this study
already added up to approximately 7.5 million data points.

• Sensor data collection should be applicable to many
different survey frameworks without the need for
proprietary software. This perspective does not comprise
the technical implementation regarding the application
programming interface, which will be the same for all
frameworks; rather, it is concerned with the space required
to save the sensor streams. For example, in this study, we
used the method of temporarily collecting the data per
survey page in a long string of text in the web browser’s
memory and then saved it to the survey’s database. Some
survey frameworks might be limited even further when
storing large chunks of text to a study variable.

• Sensor data collection should not interfere with the main
questionnaire or device use. Collecting large chunks of data
in the web browser’s memory may slow down the
experience of using the questionnaire when older
smartphones are used. As the training of the sensor models
still relies on the self-reported outcomes, unnecessary
dropout owing to inconvenience when completing the
questionnaire should be avoided. In settings where dedicated
apps are used, the sampling frequency could easily be
increased.

Regarding the overall variation in the performance of the
individual models, retrospectively, it would have been preferable
to collect data on the specific devices that might have indicated
some issues related to a family of devices or an operating
system. Therefore, we recommend that future studies should at
least record basic parameters such as screen resolution and the
web browser that was used to rule out some device-specific
issues.

Sensor data are also subject to the same black box problem that
is immanent in any study in which experimenters and
participants rarely meet each other. We do not know exactly
what the participants were doing or experiencing while filling
out the questionnaire. Consequently, a very poor-performing
model might simply originate from a participant’s irregular
behavior when filling out the questionnaire. However, contrary
to the same issues with self-report data, combining sensors with
pretrained classification algorithms might be fruitful for
determining participants’ activity levels for each measurement
and informing the models beyond the aggregated features
[25,42].

Finally, although we were able to validate our method for a
variety of psychological constructs, it is unclear whether this
transitions to all possible time frames and topics. As
demonstrated in our analyses, models will not learn when there
are not sufficient data. This might limit the implementation of
this personalized approach to studies that comprise contexts
with at least 10 to 20 measurement points. Our study was also
unable to answer questions about the underlying processes that
determine a good model or features responsible for being a good
marker regarding the outcomes we investigated. Consequently,
the process between features and mental state itself remains
largely unexplored. As we demonstrated in this study that data
can be acquired almost effortlessly, we encourage future studies
to examine and define the connections between the mind and
the behavior we can record concurrently with the self-report.

Conclusions
In our study, we demonstrated that a few unobtrusively collected
movement sensor data are a capable foundation to train models
that are able to infer a range of psychological constructs with
sizable effects [67]. This study contributes to previous research
by inspecting differences between models trained on
between-person variance and personalized models. Our study
showed that validating such models by inferring participants’
states in an independent data set can prove to be a fruitful
approach. This applies even when relying on a privacy-friendly
small amount of data that were only collected during
measurement occasions of the self-report data collection. Finally,
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we expanded on previous work on combining personalized
models with sensor data in the EMA context using a large and
diverse sample. Despite basing our models only on
movement-related sensors, we were able to replicate a
comparable degree of accuracy. This worked best for outcomes
that have already been demonstrated to work well in the
literature (ie, mood) but also showed its potential regarding
other outcomes (eg, life engagement).

Although sensor readings of physiological properties have a
strong root in the history of medicine and psychology, the
exploration of the relationships between everyday fluctuations

in psychometric values and smartphone sensors is still in its
infancy. Much more research on this topic will be required
before it can become a valuable tool in mental health. We
contributed to this goal by demonstrating that the accessible
method of obtaining sparse movement sensor data that we
outlined can be temporally interlinked with EMA studies without
sacrificing accuracy compared with studies with specialized
hardware, software, or a much larger data set. In the future, such
methods might be able to provide valuable insights into the
mental well-being of the participants while reducing burden in
research and clinical application.
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