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Abstract: Generating polymer–metal structures by means of additive manufacturing offers huge
potential for customized, sustainable and lightweight solutions. However, challenges exist, primarily
with regard to reliability and reproducibility of the additively generated joints. In this study, the
polymers ABS, PETG and PLA, which are common in material extrusion, were joined to grit-blasted
aluminum substrates. Temperature dependence of polymer melt rheology, wetting and tensile single-
lap-shear strength were examined in order to obtain appropriate thermal processing conditions. Joints
with high adhesive strength in the fresh state were aged for up to 100 days in two different moderate
environments. For the given conditions, PETG was most suitable for generating structural joints.
Contrary to PETG, ABS–aluminum joints in the fresh state as well as PLA–aluminum joints in the
aged state did not meet the demands of a structural joint. For the considered polymers and processing
conditions, this study implies that the suitability of a polymer and a thermal processing condition
to form a polymer–aluminum joint by material extrusion can be evaluated based on the polymer’s
rheological properties. Moreover, wetting experiments improved estimation of the resulting tensile
single-lap-shear strength.

Keywords: structural joints; aging; material extrusion; additive manufacturing; ABS; PETG; PLA;
aluminum; polymer rheology; thermal joining

1. Introduction

Additive manufacturing (AM) offers huge technical potential, especially with regard
to sustainable and customized solutions [1,2]. One of the most common AM technologies
is material extrusion (ME), where the extruded material (i.e., polymer) is dosed in a tar-
geted way to generate a three-dimensional part layer-by-layer—cf. DIN EN ISO/ASTM
52900-2017. This process is also referred to as fused deposition modeling® (FDM®) or fused
filament fabrication (FFF). Lightweight systems in particular often require joining multiple
components or materials due to size limitations of the production process or locally varying
demands concerning functionality and costs [3,4]. Recently, Frascio et al. [3] emphasized
the need for suitable joining concepts with regard to additive manufactured adherends
and adhesives. One approach, examined in this work, is to use the polymer processed
by ME as (hotmelt) adhesive, resulting in a smooth transition between the joint and the
subsequently generated polymer part. Challenges exist primarily with regard to reliability
and reproducibility of the additively generated joints. For industrial applications, lack of
knowledge about joint degradation and aging resistance represents the key issue regarding
this technique.
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From adhesive technology, wetting is known to be a crucial factor to buildup adhesive
interactions between the substrate surface and the adhesive. Habenicht [5] distinguished
between mechanical and specific adhesion. The former corresponds to a form fit on
the microscale, while the latter results from chemical and physical adsorption of the
macromolecule functional groups onto the adherent surface. Due to the absence of highly
chemically reactive functional groups in the thermoplastics used for ME, only physical
adsorption, e.g., Van der Waals forces, dipole–dipole-interactions or H-bonding, is relevant.
Both mechanical and specific adhesion require the polymer melt to penetrate into the
substrate’s surface texture to establish a form fit or short-range interactions, respectively.
Hence, wetting is an indispensable precondition for strong polymer–metal bonding [6].
In thermodynamic equilibrium, the wetting angle, ϕ, results from the interfacial tension
between polymer and substrate, γPS, polymer and atmosphere, σPA, and substrate and
atmosphere, σSA, according to Young’s equation (cf. Equation (1)). The interfacial tension
is defined as the mechanical work that needs to be applied to increase the interfacial area
by 1 cm2. Figure 1 shows a polymer drop on a metal surface where the interfacial tensions
are in equilibrium in a vectorial manner. Adhesion is promoted by proper adherent surface
preparation, which forms interlocking structures, increases the real surface and generates
or exposes highly energetic surface functional groups.

cos(ϕ) =
σSA − γPS

σPA
(1)
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Figure 1. Polymer drop on substrate surface.

The work of adhesion, which is defined as the mechanical work required to separate
two phases with a contact area of 1 cm2, can be calculated according to the Young–Dupré
equation (cf. Equation (2)). Although wetting is crucial to buildup the adhesive interactions,
it is generally not possible to predict the strength of an adhesive joint solely based on the
wetting conditions (Equation (2)) [5].

WA = σPA + σSA − γPS = σPA·[1 + cos(ϕ)] (2)

In general, clean metallic and oxidic surfaces possess a high surface tension, σSA,
and are wetted properly by liquids with a low surface tension, such as polymers—σPA [7].
However, Equation (2) does not account for differences between the advancing and receding
angle or for kinetically ruled processes. In thermal equilibrium, liquids with an elevated
viscosity, such as polymer melts, wet the substrate gradually. The dynamics of wetting
result in viscous friction in the drop and molecular adsorption and desorption processes at
the contact line [8,9]. As a result, the contact angle decreases continuously until equilibrium
is reached. Depending on the viscosity of the polymer melt, this process takes some 10 min
(cf. e.g., [10]). Hence, wetting dynamics depend on polymer melt viscosity, which usually
decreases with increasing shear rate and temperature [11]. Furthermore, the polymer melt
surface tension, σPA, decreases with increasing temperature [12]. Hence, increasing the
temperature promotes wetting in terms of thermodynamic equilibrium (cf. Equation (1))
and dynamics. Besides the polymer, the type of metal and its surface condition also affect
wetting and joint strength due to differences in physical adsorption, interfacial tension (γPS
and σSA), wetting dynamics and thermally induced internal stresses [5]. While the former
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two mainly depend on the substrate’s surface functional groups, the latter two depend on
the thermal conductivity and expansion coefficient, respectively.

Das et al. [13] emphasized the importance of polymer melt rheology in the context of
ME. On the one hand, proper extrusion, wetting and interdiffusion between the adjacent
traces is promoted by a low viscosity, η, and a high loss factor, tan(δ). On the other
hand, geometric accuracy and dimensional stability require high viscosity and a low loss
factor. The loss factor, tan(δ) = G′′/G′, equals the ratio of loss modulus, G′′, and storage
modulus, G′, and specifies whether the polymer melt behaves dominant elastic (tan(δ) < 1)
or dominant viscous (tan(δ) > 1). Based on the local thermal history and the viscoelastic
polymer melt properties, some authors [14–16] derived a polymer healing degree or an
effective weld time between adjacent layers in order to predict the interfacial strength. The
underlying relaxation phenomena were correlated with, e.g., the reptation time td. This
time corresponds to a long-range relaxation or diffusion, respectively, of a macromolecule
and can be calculated according to Equation (3) based on the zero shear viscosity, η0, and
the plateau modulus, G0

N [17]. Another characteristic relaxation time is the rouse relaxation
time, tro, which corresponds to short-range relaxations at the chain ends and equals the
crossover time (cf. Equation (4)) [17].

td =
12·η0

π2·G0
N

(3)

tro = t|G′=G′′ ∨ tan(δ)=1 (4)

For hotmelts, adhesion interface performance is known to be highly sensitive to local
temperature management during application. Due to their high thermal conductivity,
Habenicht et al. [6] suggested preheating of metal substrates to the melting tempera-
ture, Tm, of the hotmelt prior to the joining process. Accordingly, Amancio-Filho and
Falck [18] specified substrate temperatures in between the extrusion temperature, Te,
and the crystallization temperature, Tc, of the polymer processed by ME to optimize
polymer–metal bonding. However, in their recent publications regarding the Addjoining®

process, Falck et al. [19,20] applied a primer onto the aluminum surface before the actual
ME joining process was carried out at significantly lower substrate temperatures. Using
carbon fiber reinforced polyamide 6 (CF-PA6) instead of acrylonitrile–butadiene–styrene
copolymer (ABS) resulted in a higher tensile single-lap-shear strength. Chueh et al. [21]
generated poly(ethylene terephthalate) (PET)–steel joints by ME of the polymer on a pre-
heated (180 ◦C) structured metal substrate with undercuts, which was prepared by selective
laser melting (SLM). After filling the surface structures with polymer, the ME process was
paused to consolidate the polymer–metal interface by pressure and laser stimulation. By
increasing substrate and extrusion temperature, Hertle et al. [22] increased the lap shear
strength of ME-joined polypropylene (PP)–aluminum samples. The increased contact
temperature resulted in improved filling of the microstructures of the electrochemically
treated aluminum surface. Dröder et al. [23] joined ABS to surface structured aluminum
substrates. Higher surface structures and substrate temperatures resulted in increased
tensile single-lap-shear strength. In our previous work [24], we showed the ability of
thermographic process monitoring to characterize the ME joining process in terms of wet-
ting and joint strength, as exemplified by poly(lactic acid) (PLA)–aluminum joints. While
Herlte et al. [22], Dröder et al. [23] and Bechtel et al. [24] observed a large influence due
to substrate temperature, Ts, Falck et al. [19] reported only a minor effect. As Falck et al.
applied a primer beforehand, the polymer was not deposited directly on the metal surface
during the ME process. Due to the significantly lower thermal conductivity of the primer,
substrate temperature dependence was reduced (cf., e.g., [5]). The presented studies all
dealt with polymer–metal joints generated by ME; however, in terms of structural joining
and industrial application of the joining concept, the following questions arise:
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• Which of the common thermoplastics for ME is most suitable to generate structural polymer–
metal joints? Direct comparison between the studies is not feasible, in particular due to
different processing and substrate surface conditions.

• Can structural polymer–metal joints be generated by ME on “simple” practical relevant metal
surfaces (e.g., prepared by grid blasting)? In the relevant studies, either a primer was
applied beforehand or complex surface preparation methods were used. Moreover,
none of the studies considers joint degradation.

This article focuses on the generation of structural polymer–aluminum joints by means
of ME. Structural joints are characterized by high joint strength (shear strength greater than
7 MPa) and significant aging resistance [7]. Moreover, we examined how joint strength
correlates to wetting and polymer (melt) properties for several thermoplastics in order to
obtain appropriate thermal processing conditions. Hence, the originality of this work lies in
the characterization and evaluation of ME-generated polymer–metal joints in terms of joint
strength and aging resistance by taking into account wetting and polymer melt properties.

2. Materials and Methods

The hereafter described approach is a continuation of our previous work [24].

2.1. Aluminum Substrates

The aluminum substrates were received from the water-jet cutting company RS-Evolution
(Saarwellingen, Germany). The deburred substrates were prepared to measure 25 mm by
115 mm from 2 mm thick sheet metal of EN AW-6082-T6. This medium-strength aluminum
alloy has excellent corrosion resistance and is typically used for structural parts in, e.g., the
transportation sector [25]. The substrates were grit blasted with corundum (Al2O3), size
F150, which was received from Oberflächentechnik Seelmann (Dessau-Roßlau, Germany).
Particle size was about 82 µm and laid within standardized range (45–106 µm)—cf. DIN EN
13887-2003. Sandblasting was performed with a ST 800-J (Auer Strahltechnik, Mannheim,
Germany) at a pressure of 6 bar, a working distance of 10 cm and an angle of 90◦ to
the surface.

2.2. Material Extrusion (ME)

The polymers were processed by a customized ME machine based on a desktop FFF
platform (Ender 3, Creality 3D, Shenzhen, China). The extruder was equipped with a
water-cooled heatsink, a “volcano”-type hotend and a brass nozzle with an inner diameter,
wPo, of 0.8 mm (all purchased from E3D Online, Oxfordshire, UK). Three thermoplastic
polymers, common for ME, were considered:

• Acrylonitrile–butadiene–styrene copolymer (ABS), Extrafill™ (Fillamentum, 768 24 Hulín,
Czech Republic), yellow-colored filament

• Poly(ethylene terephthalate) glycol comonomer (PETG), PolyLite™ (Polymaker, Shang-
hai, China), transparent filament

• Poly(lactic acid) (PLA), Ingeo™ 3D870 (Nature Works, Minnetonka, MN, USA), black-
colored filament

ABS, PETG and PLA were extruded at a temperature, Te, of 240 ◦C, 220 ◦C and
200 ◦C, respectively. Extruder temperature Te was chosen based on polymer melt viscosity.
During the deposition of the dPo = 0.3 mm high layers, the extruder moved at a velocity,
ve, of 10 mm/s. The polymer-specific substrate temperatures, Ts0, of 100 ◦C, 80 ◦C, and
60 ◦C for ABS, PETG and PLA, respectively, were chosen based on the recommended
build-plate temperatures in the datasheets [26–28]. In the joining and wetting experiments,
the substrate temperature, Ts, was varied. If the substrate temperature at a certain layer
i, Ts,i, differed from the polymer-specific substrate temperature, Ts0, it is specified in
the corresponding section. Slicing was done with Ultimaker Cura 4.0 (Geldermalsen,
The Netherlands).
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2.3. Rheometry

Rheometry was performed with an Ar2000ex (TA Instruments, New Castle, DE, USA)
rheometer using plate–plate configuration. A 1 mm thick polymer disc with a diameter
of 25 mm was generated by ME and placed between the plates of the rheometer. After
preheating to 200 ◦C, the disc was carefully compressed by the rheometer plates to prevent
the polymer from squeezing out. Using deformation-controlled oscillation rheology, the
deformation amplitude was set to 5%. After equalization for 2 min at the set measurement
temperature, oscillation sweeps were carried out in the range from ω = 2π·10 Hz down to
ω = 2π·0.01 Hz. In the first measurement cycle, the set temperature ranged from 200 ◦C to
130 ◦C for all polymers. In the second cycle, the maximum temperature was set to 250 ◦C,
240 ◦C and 220 ◦C for ABS, PETG and PLA, respectively, while the minimum temperature
was kept unchanged at 130 ◦C. The third cycle was identical to the first cycle.

Rheometry was used to access the thermo–rheological properties of the polymer
melts, which are crucial for wetting, cohesive properties [29–31] and adhesion interface
performance [6]. In total, 5 specimens were tested for each polymer.

Providing that all relevant relaxation phenomena show the same temperature depen-
dence, relaxation times, ti, and frequency data, ω, were shifted with the horizontal shift
factor aT (cf. Equation (5)). Based on this time–temperature superposition [17], single
master curves for modulus, G* = G′ + iG′′, and viscosity, η* = η′ + iη′′, at reference tem-
perature T0 were constructed according to Equation (6). The vertical shift factors, bT =
T0/T, solely depend on measurement temperature, T, and reference temperature, T0, while
the horizontal shift factors, aT, were fit to the Williams–Landel–Ferry equation with the
WLF-constants C1 and C2 (cf. Equation (7)).

ti(T0) =
ti(T)

aT(T, T0)
, ω(T0) = aT(T, T0)·ω(T) (5)

G∗(T0, aTω) = bT(T, T0)·G∗(T, ω), η∗(T0, aTω) =
bT(T, T0)

aT(T, T0)
·η∗(T, ω) (6)

log[aT(T, T0)] =
−C1·(T − T0)

C2 + (T − T0)
(7)

2.4. Wetting

To evaluate wetting behavior, an apparatus for contact angle measurement was added
to the ME machine. This apparatus consists of illumination (7W LED spot with diffusor)
and a camera (BFS-U3-04S2M (FLIR, Wilsonville, OR, USA), lens: LM50JC (Kowa, Nagoya,
Japan)) triggered by the ME machine via specific commands in the G-Code (cf. Figure 2).
After preheating the aluminum substrate to the specified first-layer substrate temperature,
Ts,1, the primed extrusion nozzle was placed 1 mm above and 2 mm behind the front
edge of the substrate and within the field-of-view of the camera. A polymer melt drop
with a volume of about 5 µL (referring to the density at room temperature) was extruded
before the extrusion nozzle was moved out of the camera’s field-of-view (standby position).
Dynamic wetting was recorded for up to 120 min at several substrate temperatures, Ts,1.
The highest considered Ts,1 was equal to the polymer specific extrusion temperature Te.
Ts,1 was lowered in increments of 20 ◦C as long as proper deposition of the polymer melt
drop could be achieved.
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Figure 2. Description of the wetting experiment.

Contact angle analysis was done using MATLAB (MathWorks, Natick, MA, USA),
as shown in Figure 3 based on the procedure presented by Andersen et al. [32,33]. After
image segmentation, edge detection, drop separation, fitting (to the left and right of the
apex, 4th-order polynomial) and baseline determination (non-wetted substrate surface on
the left and right of the drop), the contact angle was determined at the triple point. This
apparent macroscopic contact angle was determined by neglecting surface heterogeneity
and roughness. Contact angle measurement was done 3 times for each combination of
polymer and substrate temperature.
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2.5. Mechanical Performance

Tensile tests were carried out using a Kappa 100 DS (ZwickRoell, Ulm, Germany)
equipped with a 100 kN loadcell at a controlled ambient temperature of 23 ◦C. In addition
to adhesion interface performance, bulk properties of polymer samples prepared by ME
were acquired. All tensile tests were driven-displacement controlled, with 1 mm/min
crosshead speed.

Polymer bulk mechanical properties were obtained according to DIN EN ISO 527-
2:2012 (type 1A). The extruded tracks were oriented parallel to the loading direction. The
polymer was extruded on polyimide-taped aluminum substrates. Due to local excessive
tension in the tapered regions [34], these regions were reinforced with an epoxy adhesive
(Loctite EA3430, Henkel, Düsseldorf, Germany) to prevent failure outside the measurement
area (parallel part). The strain measurement within the parallel part was not affected
by the epoxy reinforcement. In total, 6 dog bone tensile test specimens were tested for
each polymer.

The adhesion interface performance in polymer–aluminum assemblies was evaluated
based on ISO 19095 (type B, without specimen retainer). Deviating from the standard, the
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joint width of the single-lap joints (SLJ) was increased from 10 mm to 20 mm to improve
handling. The clamping length was set to 20 mm for the polymer part and 45 mm for the
aluminum part to achieve comparable bending stiffness of both adherents. The dimensions
and the ME buildup strategy of the polymer part are shown in Figure 4. The tensile single-
lap-shear strength, τSLJ = FB/AJ, was calculated based on the breaking load, FB, and the
joint area, AJ. Failure patterns are classified as polymer part failure (PF, outside the joining
area), cohesive failure (CF), adhesive failure (AF) and mixed adhesive and cohesive failure
(ACF). The eccentric load path within the joint led to rotation during loading and caused,
among other things, additional peel stresses (cf. e.g., [6]). These local stress concentrations
caused early joint failure.
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Figure 4. (a) Schematic test setup—tensile single lap shear strength; (b) ME buildup strategy of the
polymer part.

The polymer–aluminum joints were prepared by fixing the aluminum substrates
on an aluminum hot plate (cf. Figure 2) while extruding the polymer layer-wise on the
substrate surface. The part of the polymer adherent beyond the overlap was supported
by an aluminum spacer, partially taped with polyimide tape, which was removed after
the ME process. The thermal joining process was evaluated by means of the first-layer
substrate temperature, Ts,1. For higher layers, the substrate temperature was gradually
decreased down to the polymer-specific substrate temperature, Ts0. Table 1 shows the
substrate temperature increments for the explored temperature settings. As with wetting,
the highest considered Ts,1 was equal to the polymer-specific extrusion temperature Te.
Ts,1 was lowered in increments of 20 ◦C until the adhesive strength of the joint was too low
for handling.

Table 1. Substrate temperature at each layer i, Ts,i, during ME of the polymer part of the SLJ for the
explored temperature settings.

Temperature Setting Ts,1/(◦C) Ts,2/(◦C) Ts,3/(◦C) Ts,i/(◦C), i > 4

1 240 150 100 Ts0/(◦C)
2 220 150 100 Ts0/(◦C)
3 200 150 100 Ts0/(◦C)
4 180 150 100 Ts0/(◦C)
5 160 150 100 Ts0/(◦C)
6 140 100 Ts0/(◦C)
7 120 100 Ts0/(◦C)

Figure 5 shows the substrate and extruder temperature profiles during the production
of an SLJ specimen in the case of a substrate temperature, Ts,1, of 200 ◦C and an extruder
temperature, Te, of 220 ◦C. Sample preparation was carried out on three identical substrates
per sequence. In total, 6 specimens were tested for each set of parameters. The fresh SLJ
were tested within 5 h after sample production to reduce aging effects.
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Figure 5. Temperature time profile of the nominal and actual temperature of the extruder, Te, and the
substrate, Ts, during production of an SLJ specimen. Cooling rates represent averaged values.

2.6. Aging

Two different moderate environments, which represent real operating conditions,
were considered, and are referred to as aging and storing:

• Aging (moist–warm conditions): Darkness, 40 ◦C and humid air (75% r. h., setup
above saturated NaCl solution [35])

• Storing (dry conditions): Darkness, 23 ◦C and dry air (<8% r. h., setup above silica gel
desiccant)

Storing was considered as a reference, in order to separate the effect of internal thermal
stresses from hygro–thermo–oxidative aging effects.

SLJs with the highest tensile single-lap-shear strength, τSLJ, in the fresh state were aged
and stored for up to 100 days. Before mechanical testing, the specimens were acclimatized
for at least 1 h at the test climate. Dog bone tensile test specimens were also aged for
100 days to achieve the mechanical polymer bulk properties in the aged state as a reference.
For each aging time, 6 samples were tested.

3. Results and Discussion
3.1. Material Properties

Table 2 gives a summary of selected properties of the aluminum (Al) substrates and
polymers used.

Table 2. Overview of selected thermal and mechanical properties of the materials used. The melting,
crystallization and glass transition temperatures (onset) of the polymers were measured with a
DSC3 (Mettler-Toledo, Columbus, OH, USA) at cooling and heating rates of 10 K/min. The thermal
expansion coefficients α were not obtained for the polymers used; instead, typical ranges for ABS,
PETG and PLA, respectively, are given. (*: for Al, the liquidus and solidus temperatures are given).

Property Al ABS PETG PLA

thermal expansion coefficient α/(10−6/K) 23 [25] 108–234 [36] 120–123 [36] 126–145 [36]
density ρ/(g/cm3) 2.7 [25] 1.04 [26] 1.25 [27] 1.22 [28]
melting temperature Tm/(◦C) 650 * [25] amorphous amorphous 169 ± 0
crystallization temperature Tc/(◦C) 575 * [25] amorphous amorphous 119 ± 0
glass transition temperature Tg/(◦C) - 99 ± 1 75.5 ± 0 58 ± 2
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Table 2. Cont.

Property Al ABS PETG PLA

elastic modulus E/(GPa) 70 [25] 2.3 ± 0.1 2.1± 0.1 2.9± 0.1
yield strength σy/(MPa) 280 [25] 30 ± 1 47 ± 1 48 ± 1
elongation at yield εy/(%) 1.8 ± 0.2 4.1 ± 0.1 2.5 ± 0.2

surface roughness Ra/(µm)
- blank 0.18 ± 0.02 [24]
- sandblasted (FEPA 150) 1.9 ± 0.5 [24]

Due to the viscoelastic nature of the polymers, their properties were a function of
heating, strain rate and temperature. For the technical polymer components investigated,
material properties depended, in addition to molecular weight, on additives, such as
plasticizers (e.g., [37]). Moreover, the mechanical properties were particularly sensitive
to process conditions and buildup strategy (e.g., [38]). While the investigated ABS and
PETG were amorphous (no crystallization and melting event), PLA showed crystallization
at a cooling rate of 10 K/min. At room temperature, all polymers were in the glassy
state, while ABS (Tg = 99 ◦C) showed the highest and PLA (Tg = 58 ◦C) the lowest glass
transition temperature, Tg. The thermal expansion coefficient, α, of the polymers was about
an order of magnitude higher than that of aluminum. Hence, the thermal joining process
resulted in thermally induced interfacial stresses. Internal stress buildup occurred below
the glass transition temperature, Tg, in the amorphous phase and below the crystallization
temperature, Tc, in the crystalline phase. Consequently, thermally induced interfacial
stresses were particularly relevant for PLA and ABS due to crystallization and high glass
transition temperature, Tg, respectively. With regard to the sensitivity to the polymer
formulation, the process and buildup parameters, and the strain rate, the observed values
for elastic modulus, E, yield strength, σy, and elongation at yield, εy, lay in the data
range reported in the literature (e.g., [38–42]). The elongation at failure could not be
determined reliably, as fracture behavior showed a high variation depending on failure
position (parallel part or tapered regions). Moreover, if failure occurred in the tapered
regions, strain measurement was inaccurate after the yield point, as failure proceeded
outside the measurement marks of the video extensiometry.

Polymer Melt Rheology

Viscosity depended on shear rate,
.
γ, and temperature, T. In order to determine an

appropriate and, in terms of processing viscosity, comparable extrusion temperature for all
polymers, the shear rate,

.
γ, of the polymer melt during the extrusion process was obtained

by Equation (8) as a function of extruder velocity, ve, layer height, dPo, and nozzle diameter,
wPo, as

.
γ = 48 1/s [43].

.
γ =

32
π
·ve·dPo

w2
Po

(8)

Based on the Cox–Merz rule, |η∗(ω)| = η
( .
γ = ω

)
, which applies to the polymers

used [15,44,45], the steady shear viscosity could be approximated based on the oscillatory
measurements. For an extrusion temperature Te of 240 ◦C, 220 ◦C and 200 ◦C, respectively,
ABS, PETG and PLA showed comparable viscosity at ω = 48 Hz (cf. Figure 6), which
lies in a suitable range for the application of hotmelts and extrusion (i.e., 1 × 100 to
1 × 104 Pa s [5,46]).
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Figure 6. Frequency dependence of the complex viscosity, η*, at a reference temperature T0 of 240 ◦C
(ABS), 220 ◦C (PETG) and 200 ◦C (PLA), respectively, for three subsequent measurement runs. The
target viscosity range (gray area) and the shear rate (48 1/s) during the ME process are indicated.
Horizontal shift factors, aT, with corresponding WLF-fit are shown for the first run.

Comparing the three polymers in terms of modulus, G′ and G′′, or loss factor, tan(δ),
revealed pronounced differences, particularly in terms of the loss factor (cf. Figure 7).
Especially for low frequencies, the loss factor, tan(δ), and thus the viscous character of the
polymer melt, was significantly higher for PETG than for PLA and ABS.
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Figure 7. Frequency dependence of storage modulus, G′, loss modulus, G′′, and loss factor, tan(δ),
at a reference temperature T0 of 180 ◦C for the first run. The loss factor was determined based on
smoothed master curves of the storage and loss modulus.

For ABS as well as for PLA in the second and third run, no zero shear viscosity, η0,
could be determined, as there was a continuous increase in viscosity for small frequencies,
ω (cf. Figure 6). The plateau modulus, G0

N, could not be obtained for PLA because there was
not a minimum in G′ nor a maximum in G′′ in the available frequency range (cf. Figure 7).
Therefore, the reptation time, td, which is calculated based on zero shear viscosity, η0,
and plateau modulus, G0

N, was not ascertainable for all polymers. Hence, only the rouse
relaxation time, tro, which could be determined for all polymers, was considered. To
account for the differences in viscous character of the polymer melts, the maximum of the
loss factor, tan(δ)|max, in the available frequency range, ω, was considered. The maximum
of the loss factor, tan(δ)|max and the rouse relaxation time, tro, are listed in Table 3.
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Table 3. Maximum of the loss factor, tan(δ)|max, and rouse relaxation time, tro, at a reference
temperature T0 of 180 ◦C for three subsequent measurement runs.

Property ABS,
Run 1

ABS,
Run 2

ABS,
Run 3

PETG,
Run 1

PETG,
Run 2

PETG,
Run 3

PLA,
Run 1

PLA,
Run 2

PLA,
Run 3

tan(δ)|max
1.9 1.3 1.3 23 25 14 8.0 3.3 2.8
±0.1 ±0.0 ±0.0 ±5 ±6 ±3 ±1.8 ±0.3 ±0.2

tro (T0)/(ms)
1500 2020 2440 80 48 47 33 15 13
±100 ±180 ±190 ±5 ±5 ±6 ±3 ±5 ±4

All polymers showed degradation phenomena, resulting in deviations between the
subsequent measurement runs. PETG und PLA contain ester groups in their backbones that
make them vulnerable to thermally activated, hydrolytic chain scission [47]. Shortening of
the macromolecules leads to a reduced relaxation time, tro, and viscosity, η, (cf. Figure 6 and
Table 3). The hydrolysis products are new chain ends with carboxyl-groups [47]. In ABS,
the acrylnitril–styrol phase is more stable than the butadiene phase. Thermo–oxidative
processes mainly take place at the butadiene double bonds [47]. However, the result is not
a chain scission. Instead, subsequent reactions lead to functional groups and cross-linking,
which explains the increase in relaxation time, tro, and viscosity, η, (cf. Figure 6 and Table 3).

Due to heat-induced polymer degradation, the first measurement run is most relevant.
However, in the thermal joining and wetting process, the polymers were exposed to
similar conditions by means of temperature and atmospheric contact. Hence, the observed
degradation phenomena may also be decisive in these processes, in particular with regard
to the following aspects:

• ABS and degraded PLA (second and third run) behaved like viscoplastic fluids. These
types of fluids do not converge to a zero shear viscosity, η0, for low shear rates. Instead,
the viscosity continuously increases, as the fluids have a yield stress [46]. This is of
great relevance for the thermal wetting and joining processes since there is no external
force (except gravity) acting on the polymer (melt) after it leaves the extrusion nozzle.

• The carboxyl-(end-) groups resulting from hydrolysis of PETG and PLA can form
strong physical bonds (H-bonding) to the metal substrate [5].

3.2. Wetting

The temporal change in contact angle, ϕ(t), depended on substrate temperature, Ts,1,
and polymer (cf. Figure 8). Equilibration took between a few minutes and some hours.
According to Table 4, the equilibrium contact angles, ϕeq, lay in the range from 15 to 140◦,
representing optimal (ϕeq < 30◦) to insufficient (ϕeq > 90◦) wetting conditions [5].
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Figure 8. Contact angle, φ, between polymer drop and aluminum substrate as a function of wetting 

time, t, for several substrate temperatures, Ts,1. 
Figure 8. Contact angle, ϕ, between polymer drop and aluminum substrate as a function of wetting
time, t, for several substrate temperatures, Ts,1.
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Table 4. Equilibrium contact angles, ϕeq, for the explored temperature settings in terms of substrate
temperature, Ts,1. (*: Equilibrium was not reached in the wetting experiment. Therefore, ϕeq was
estimated as the last observed contact angle (cf. Figure 8)).

Ts,1/(◦C) ϕeq/(◦), ABS ϕeq/(◦), PETG ϕeq/(◦), PLA

240 95 ± 4 - -
220 101 ± 1 14 ± 2 -
200 - 16 ± 1 46 ± 8
180 - 34 ± 3 * 67 ± 3
160 - 87 ± 1 88 ± 3
140 - 113 ± 1 *
120 - 139 ± 1

For all three polymers, wetting improved with increasing substrate temperature, Ts,1,
which is consistent with temperature dependence of surface tension, σPA [12], and viscosity,
η (cf. Figure 6). However, there were significant differences between the polymers. PETG
showed good wetting, even for substrate temperatures, Ts,1, 40 ◦C below the extrusion
temperature, Te. Contrary, wetting through ABS was already poor for a substrate tempera-
ture, Ts,1, equal to the extrusion temperature, Te. The polymer-specific wetting behavior
is attributed to differences in surface tension, σPA, and polymer melt rheology. While the
surface tension of the polymer melts and their temperature dependence was not in the
scope of this work, the influence of polymer melt rheology on wetting can be discussed. The
viscous character of the polymer melts, by means of tan(δ)|max, was highest for PETG and
lowest for ABS (cf. Table 3). Additionally, ABS and degraded PLA behaved like viscoplastic
fluids (cf. Figure 6). Since there was no external force acting on the polymer (melt) drop,
the yield stress required to start flow may not have been reached. Both the viscoplastic
character and the low loss factor, tan(δ)|max, were adverse for wetting.

3.3. Adhesion Interface Performance
3.3.1. Influence of Thermal Processing

Wetting of the aluminum substrates through the polymer melts depended signifi-
cantly on wetting time and took up to several hours to reach equilibrium. Therefore, first,
the influence of wetting time on tensile single-lap-shear strength, τSLJ, was investigated,
exemplarily for PETG and Ts,1 = 200 ◦C (cf. Figure 9). Increasing the wetting time by
1 h decreased τSLJ by about 10 MPa. Hence, contrary to wetting, tensile single-lap-shear
strength did not increase with wetting time. Considering the failure patterns reveals that
ongoing degradation of the polymer weakened the mechanical bulk properties, leading to
polymer part failure (PF). Hence, polymer–metal joints with no additional wetting time
were considered.

Figure 10 shows the tensile single-lap-shear strength, τSLJ, as a function of substrate
temperature, Ts,1. In conjunction with the improved wetting (cf. Table 4), τSLJ increased
with increasing substrate temperature. Differences between the polymers were also con-
sistent with wetting. ABS, which wetted the substrate insufficiently (ϕeq > 90◦) at all
substrate temperatures, showed the lowest tensile single-lap-shear strength. Contrary, the
well-wetting PETG had the highest τSLJ. With increasing substrate temperature and tensile
single-lap-shear strength, the failure pattern changed from adhesive (AF) over than mixed
(ACF) and cohesive (CF) to polymer part failure (PF). For PETG, the shear strength reached
a plateau for Ts,1 above 180 ◦C. This is in accordance with the equilibrium contact angle,
ϕeq, which decreased only slightly between 180 and 220 ◦C (cf. Table 4). Moreover, for Ts,1
greater than 180 ◦C, cohesive failure (CF) dominated, which means the polymer–metal
interface was no longer the weak point. For Ts,1 = 220 ◦C, there was even a small decrease
in τSLJ, accompanied by an increase in polymer part failure (PF). Similar to the effect of
the additional wetting time (cf. Figure 9), this decrease in τSLJ for the highest substrate
temperatures is attributed to degradation of the mechanical polymer bulk properties.
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Figure 9. Influence of additional wetting time (1 h pause @ Ts,1) on tensile single-lap-shear strength,
τSLJ. (a) Temperature–time profiles of the actual temperature of the substrate, Ts, during ME of the
SLJ; (b) Corresponding force–displacement diagrams, F(u), and SLJ fracture surfaces.

Materials 2022, 15, x FOR PEER REVIEW 13 of 20 
 

 

effect of the additional wetting time (cf. Figure 9), this decrease in τSLJ for the highest sub-

strate temperatures is attributed to degradation of the mechanical polymer bulk proper-

ties. 

0 30 60 90 120 150 180

50

100

150

200

T
s/

(°
C

)

t/(min)

pause

0 1 2 3

0

500

1000

1500

2000

2500

3000

F
/(

N
)

 pause @ Ts, 1

 no pause 

u/(mm)

(a)   (b) 

tSLJ = 25 MPa

tSLJ = 15 MPa

 

Figure 9. Influence of additional wetting time (1 h pause @ Ts,1) on tensile single-lap-shear strength, 

τSLJ. (a) Temperature–time profiles of the actual temperature of the substrate, Ts, during ME of the 

SLJ; (b) Corresponding force–displacement diagrams, F(u), and SLJ fracture surfaces. 

 

Figure 10. Tensile single-lap-shear strength, τSLJ, as a function of substrate temperature, Ts,1. Percent-

ages of the failure patterns: polymer part failure (PF, outside the joining area), cohesive failure (CF), 

adhesive failure (AF) and mixed adhesive and cohesive failure (ACF) are given. 

For PETG, tensile single-lap-shear strength, τSLJ, decreased for the highest substrate 

temperatures and long wetting times. Hence, in the thermal ME joining process, two op-

posing effects in terms of tensile single-lap-shear strength took place. On the one side, 

wetting improved with increasing substrate temperature and wetting time, but, on the 

other hand, degradation at high temperatures and long times weakened polymer bulk 

properties. Wetting time in the ME joining process was just a few minutes (cf. Figure 5) 

and, hence, significantly shorter than the time required to reach the equilibrium contact 

angle (cf. Figure 8). However, there was sufficient adhesion formation to reach high tensile 

single-lap-shear strength and cohesive failure (CF) in the case of PETG and high substrate 

120 130 140 150 160 170 180 190 200 210 220 230 240

0

5

10

15

20

25

30

 Al-ABS

 Al-PETG

 Al-PLA

t S
L

J/
(M

P
a)

Ts, 1/(°C)

AF100% AF100% 

ACF100% 

CF83%

ACF17% 

CF67%

ACF33% 
PF20%

CF40% 

ACF40%

CF17%

AF83% 

AF100% 

CF50% 

ACF33%

AF17%
AF100% 

AF100% 

Figure 10. Tensile single-lap-shear strength, τSLJ, as a function of substrate temperature, Ts,1. Per-
centages of the failure patterns: polymer part failure (PF, outside the joining area), cohesive failure
(CF), adhesive failure (AF) and mixed adhesive and cohesive failure (ACF) are given.

For PETG, tensile single-lap-shear strength, τSLJ, decreased for the highest substrate
temperatures and long wetting times. Hence, in the thermal ME joining process, two
opposing effects in terms of tensile single-lap-shear strength took place. On the one side,
wetting improved with increasing substrate temperature and wetting time, but, on the
other hand, degradation at high temperatures and long times weakened polymer bulk
properties. Wetting time in the ME joining process was just a few minutes (cf. Figure 5) and,
hence, significantly shorter than the time required to reach the equilibrium contact angle (cf.
Figure 8). However, there was sufficient adhesion formation to reach high tensile single-lap-
shear strength and cohesive failure (CF) in the case of PETG and high substrate temperatures
(Ts,1 > 180 ◦C). Consequently, arrangement and orientation of the macromolecules in the
wetted area, which is required to form adhesive interactions (i.e., mechanical adhesion and
physical adsorption), proceeded much faster than the macroscopic wetting.



Materials 2022, 15, 3120 14 of 20

3.3.2. Aging Resistance

First, the effect of aging on the mechanical polymer bulk properties is presented.
Figure 11 shows stress–strain diagrams of the polymers in the fresh and aged (100 days) state.
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Figure 11. Exemplary stress–strain diagrams, σ(ε), of the polymers in the fresh and aged state. Graphs
in the enlarged section are shifted to (0/0).

Elastic modulus, E, yield strength, σy, and elongation at yield, εy, are given in Table 5.
Aging effects were much more pronounced for PETG and PLA than for ABS. In particular,
the yield strength of PLA as well as the elongation at yield of PLA and PETG decreased
significantly due to aging. Moreover, while PLA and PETG showed predominantly ductile
failure (elongation at failure, εf > 10%) in the fresh state, they broke brittle (εf < 10%) in
the aged state. Hence, PLA and PETG became brittle due to aging, which made them
more sensitive to notches and local stress concentrations. Reasons for the embrittlement
could include the extraction of plasticizers, swelling and hydrolysis (ester groups) [47]. The
observed elongation at failure for PLA in the fresh state was higher than usually reported
in the literature (e.g., [38]). One explanation for this particularly high elongation at failure
is strain crystallization [48]. Due to the low strain rate and material heating caused by
plastic deformation, the mechanical glass transition, which depends on strain rate, could
be reached, and hence, strain crystallization occurred.

Table 5. Elastic modulus, E, yield strength, σy, and elongation at yield, εy, of the polymers in the
fresh and aged (100 days) state.

Property ABS, Fresh ABS, Aged PETG, Fresh PETG, Aged PLA, Fresh PLA, Aged

E/(MPa) 2260 ± 50 2320 ± 40 2100 ± 80 2210 ± 80 2880 ± 70 2640 ± 120
εy/(%) 1.8 ± 0.2 1.7 ± 0.1 4.1 ± 0.1 2.5 ± 0.3 2.5 ± 0.2 1.8 ± 0.0

σy/(MPa) 29.6 ± 1.3 30.3 ± 1.0 46.9 ± 0.9 46.2 ± 3.4 48.1 ± 1.3 41.4 ± 2.0

Due to low τSLJ in the fresh state, Al–ABS-SLJ was not considered for aging and storing
experiments. PETG- and PLA-SLJs, with the highest τSLJ in the fresh state, were aged and
stored for up to 100 days (cf. Figure 12). The substrate temperature, Ts,1, was set to 200 ◦C
for both polymers.
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Percentages of the failure patterns polymer: part failure (PF, outside the joining area), cohesive failure
(CF), adhesive failure (AF) and mixed adhesive and cohesive failure (ACF) are given.

In the course of aging, τSLJ of Al–PETG-SLJ decreased within 5 days from 25 MPa
to 17 MPa and then remained constant. Even in the aged state, no adhesive failure (AF)
occurred. Hence, the decrease in τSLJ cannot be attributed to interfacial aging effects. In-
stead, embrittlement of the polymer component due to aging (cf. Figure 11) in combination
with the stress concentrations at the joint edges led to the decrease in τSLJ. Storing had no
significant effect on tensile single-lap-shear strength, τSLJ, of Al–PETG-SLJ.

Tensile single-lap-shear strength, τSLJ, of Al–PLA-SLJ decreased continuously from 11
to 3 MPa within 100 days of aging. Additionally, the failure pattern changed in favor of
adhesive failure (AF), indicating a weakening of the polymer–metal interface. Contrary
to PETG, storing caused an even faster decrease in τSLJ. Consequently, the decrease in
τSLJ is attributed to thermally induced internal stresses. These stresses built up below
the crystallization temperature, Tc, of PLA. Compared to storing, the mobility of the
macromolecules increased during aging due to the higher temperature and the plasticizing
effect of water. Moreover, swelling counteracted the thermally induced internal stresses.
This explains the faster decrease in τSLJ during storing compared to aging.

3.4. Correlating Polymer Properties, Wetting and Adhesion Interface Performance

First, wetting was correlated with the polymer melt properties. Instead of the contact
equilibrium angle, ϕeq, the term cos(ϕeq) + 1 was considered, which is proportional to
the work of adhesion (cf. Equation (2)). Figure 13a shows cos(ϕeq) + 1 as a function of
the rouse relaxation time, tro. Temperature dependence of the Rouse relaxation time is
given by the horizontal shift factors, aT. Taking the maximum loss factor, tan(δ)|max, into
account revealed a correlation between polymer melt rheology and wetting, which is almost
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independent of the polymer material (cf. Figure 13b). According to Figure 13b, wetting
improved with decreasing Rouse relaxation time, tro, and increasing maximum loss factor,
tan(δ)|max. This is plausible, as tro describes the time dependence of the polymer dynamic
processes and tan(δ)|max the viscous character of the polymer melt.
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Figure 13. Equilibrium contact angle, ϕeq, as a function of (a) Rouse relaxation time, tro, and (b) Rouse
relaxation time, tro, and maximum loss factor, tan(δ)|max. Corresponding substrate temperatures,
Ts,1, are indicated.

Figure 14a shows the tensile single-lap-shear strength, τSLJ, as a function of cos(ϕeq) + 1.
There were significant differences between the polymers. For a given equilibrium contact
angle, ϕeq, single lap shear strength, τSLJ, was higher for PETG than for ABS and PLA.
Again, by taking the maximum loss factor, tan(δ)|max, into account, the differences between
polymers were significantly reduced (cf. Figure 14b).
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Figure 14. Tensile single-lap-shear strength, τSLJ, as a function of (a) equilibrium contact angle,
ϕeq, and (b) equilibrium contact angle, ϕeq, and maximum loss factor, tan(δ)|max. Corresponding
substrate temperatures, Ts,1, are indicated.
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By combining the correlations from Figures 13b and 14b, single-lap-shear strength,
τSLJ, is shown as a function of the rheologically derived quantities of Rouse relaxation time,
tro, and maximum loss factor, tan(δ)|max, in Figure 15.
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4. Conclusions

This study focused on the generation of structural polymer–aluminum joints by means
of ME. Based on the relevant literature [3,19–24], the following questions arose:

• Which of the common thermoplastics for ME is most suitable to generate structural polymer–
metal joints?

• Can structural polymer–metal joints be generated by ME on “simple” practical relevant metal
surfaces (e.g., prepared by grid blasting)?

These questions were addressed by investigating ME-generated joints between grid-
blasted aluminum substrates and the thermoplastics ABS, PETG and PLA as a function
of thermal processing (substrate temperature) and aging. For all polymers, tensile single-
lap-shear strength increased with increasing substrate temperature. However, there were
significant differences between the polymers. For the given conditions and material com-
binations, PETG was the most suitable to generate structural polymer–metal joints. Ap-
propriate thermal processing conditions for the joining were an extrusion temperature of
220 ◦C and a substrate temperature of 200 ◦C. For this case, cohesive failure dominated,
and the demands of a structural joint in terms of joint strength and aging resistance were
met. Increasing the substrate temperature beyond 200 ◦C or increasing the time PETG was
exposed to the elevated temperatures led to pronounced polymer degradation and reduced
joint strength. While storing (dry conditions) had no significant effect on PETG–aluminum
joint strength, aging (moist-warm conditions) reduced the tensile single-lap-shear strength
due to degradation of the mechanical polymer bulk properties. Hence, this decrease did
not result in reduced adhesive strength. Contrary to PETG, ABS–aluminum joints in the
fresh state as well as PLA–aluminum joints in the aged state did not meet the demands
of a structural joint. PLA–aluminum joint strength decreased faster during storage than
aging, which was attributed to internal stresses resulting from the thermal joining process.
In particular, crystallization of PLA favored internal stress buildup.

Wetting is known to be crucial to buildup adhesive interactions between substrate
surface and adhesive [5]. Polymer melt rheology is a key property in terms of wetting (sub-
strate and adjacent polymer traces) and interdiffusion (between adjacent traces) [6,8,9,13].
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Considering this, tensile single-lap-shear strength, τSLJ, equilibrium contact angle, ϕeq, and
the rheologically derived quantities of Rouse relaxation time, tro, and maximum loss factor,
tan(δ)|max, were correlated with each other. For the considered polymers and processing
conditions, this study implied that the suitability of a polymer and a thermal processing
condition to form a polymer–aluminum-joint by ME could be evaluated based on the
polymer’s rheological properties (cf. Figure 15). Moreover, taking into account wetting
experiments allowed improved estimation of the resulting tensile single-lap-shear strength,
τSLJ, (cf. Figure 14b). Remaining deviations between the polymers are attributed to differ-
ences in chemical structure and internal stresses. The former is decisive for the types of
physical adsorption, and the latter mainly depends on crystallization tendency and glass
transition temperature.

To reveal the effect of internal stresses, it would be interesting to vary the crystal-
lization tendency of the polymer or adjust its thermal expansion coefficient by fillers or
additives. Moreover, taking into account the temperature-dependent interfacial energies of
the polymer melts could improve estimation of the adhesion interface performance based
on polymer melt rheology and wetting. This study focused on joining the thermoplastics
ABS, PETG and PLA to grit-blasted aluminum substrates. In order to reveal an optimal
combination of metal substrate and polymer for the ME joining process, further polymers
and metals should be tested. Finally, for a deeper understanding of the ongoing dam-
age mechanism, combining numerical modeling (e.g., [49]) with a characterization of the
deformation and failure process by nondestructive testing methods (e.g., [50]) is advisable.
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