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Abstract 

To be able to swim through the reproductive tracts and fertilize the egg, the spermatozoa 

DNA go through cellular and nuclear changes during spermatogenesis. One of these changes 

is chromatin repackaging so that 15% of sperm DNA will remain compacted with histone 

proteins and 85% compacted with protamines. Beside its importance for the fertilization 

process, chromatin condensation inactivates most of the paternal genes to protect the paternal 

genome from external damages.  

Two lifestyle habits that threaten human health are tobacco smoking and alcohol 

consumption. Different studies have demonstrated the negative effects of these two factors on 

male reproductive health. 

The purposes of the present study were to investigate the impact of cigarrete smoking, acohol 

intake on semen parameters determined by standard parameters (WHO, 2010), sperm DNA 

maturity assessed by Chromomycine staining CMA3, Sperm DNA fragmentation evaluated 

by TUNEL Assay and secondly to determine whether tobacco smoking or alcohol 

consumption is more harmful fur sperm quality by comparing semen parameters, DNA 

maturityand DNA fragmentation betweein smokes group and Alcohol consumer group among 

infertile men. 

According to the number and volume of cigarettes smoked in one day and in a year the 

duration of cigarettes smoked, the participants were categorized to heavy-smoker participants 

(n=48) patients who smoke one pack/day or more at least for ten years or two pack/ day at 

least for five years, and non-smokers (n=70) who did not smoke.   

On the other hand, the measurement used for alcohol intake was estimated by the units of 

alcohol consumed:  1 alcohol consumption unit was taken and considered as follow: 100 

millilitres (ml) wine, and beer one unit equals 200ml, 30 ml of whisky or either vodka. 

According to alcohol consumption, patients were divided into two groups: non-drinkers 

(n=41) and heavy alcohol consumers (> 7 units/week) (n=52). 

All of participant in this study underwent semen analysis according to the 5th WHO criteria. 

Semen parameters, including semen volume, sperm concentration, total sperm count, motility 

(A+B) and morphology, Sperm maturity (CMA 3) and DNA fragmentation, TUNEL –Test) 

were investigated. 
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Cigaratte smoking and Alcohol consumption were assessed by questionnaire. Cigarette 

smoking (≥20 cigarette/per day for 10 years) whereas heavy drinkers (≥9 units/week). 

The present study demonstrates that smoking adversely affects sperms (volume, density, 

membrane, and sperm DNA integrity) in men attending assisted reproduction programs. The 

semen parameters were significantly higher in nonsmokers than in smokers. The total motility 

(PR+NP) in smokers was 24.27 ± 31.32 % vs. 37.86 ± 14.00% (p < 0.0001). The same was 

observed for sperm vitality (36.2 ± 18.56% vs. 42.9 ± 17.74%; p = 0.035), membrane 

integrity (41.6 ± 18.6% vs. 56.2 ± 18.6 %; p = 0.0001), and morphologically normal sperm 

(28.8 ± 11.8% vs. 44.13.85%; p < 0.0001).  

By comparing the level of protamine deficiency and sDF between smokers and non-smokers, 

the results showed that protamine deficiency was significantly higher in smoker in 

comparison to non –smoker group (33.27 ± 8.6% vs. 26.00 ± 8.28%; p<0.0001) and the sDF 

also was significantly higher in smokers (15.55 ± 3.33%) in comparison to non-smokers 

group (8.91 ± 4.15% p < 0.0001). 

By comparing the sperm parameters between the drinker (n=52) and non drinker group 

(n=41), the data showed that sperm count (53.519 ± 32.67 mill/ml), total sperm motility 

(23.75 ±10.750%), sperm vitality (34.62 ± 16.652), membrane functional integrity (45.96 ± 

17.99%)  and morphologically normal spermatozoa (27.06 ± 13.136%), were significantly 

lower in drinker group than in non-drinker group (73.244 ± 30.5219mill/ml; 35.00 ± 19.17%; 

45.24 ± 18.47%; 58.54 ± 18.345% and 35.95 ± 11.97% respectively).  

However, Protamin deficiency CMA3+ (37.03 ± 9.75%) and Sperm DNA fragmentation sDF 

(22.37 ± 7.60%) were significantly higher in drinker in comparison to non-drinker (24.76 ± 

7.44% and 11.98 ± 5.17%; p <0.0001respectively).    

By comparing the deterioration effect of smoking and drinking groups, no significant 

difference in the semen analysis parameters was observed between the smoker and drinker 

groups (semen volume 3.20 ±1.43 (ml), semen count 65.8 ±31. 32(mill/ml)), Total motility 

(24. 27 ± 8. 18%), Sperm vitality (36.15 ±18. 57%), functional integrity (41.6 ± 18.6) and the 

mean percentage of morphologically normal spermatozoa (28.77 ± 11.82% vs. 2.81± 1.56 

(ml), (53.51±32.67 (mill/Ml), 23.75±1.75 (%), 34.62± 16.7(%), 45. 96±17.9% and 27.1±13.13 

respectively). However, Protamine deficiency was significantly higher in the drinker group in 

comparison to the smokers (37.03 ± 9.75 vs. 33.27 ± 8.56, p=0.02).  Similarly, the sDF was 
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significantly higher in the drinker in comparison to the smoker group (22.37 ± 7.602 vs. 15.55 

± 3.33, p < 0.0001). 

These findings suggest that cigarette smoking and heavy alcohol intake deteriorate sperm 

parameters in men seeking infertility treatment. However, alcohole consumption deteriorates 

sperm maturity (CMA3) and damage DNA integrity significantly higher than cigarette 

smoking.  
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Zusammenfassung 

Um durch die Fortpflanzungsorgane schwimmen und die Eizelle befruchten zu können, 

durchläuft die Spermatozoen-DNA während der Spermatogenese zelluläre und nukleare 

Veränderungen. Eine dieser Änderungen ist die Neuverpackung des Chromatins, so dass 15 % 

der Spermien-DNA mit Histonproteinen und 85 % mit Protaminen kompaktiert bleiben. 

Neben seiner Bedeutung für den Befruchtungsprozess inaktiviert die Chromatinkondensation 

die meisten väterlichen Gene, um das väterliche Genom vor äußeren Schäden zu schützen. 

Zwei Lebensgewohnheiten, die die menschliche Gesundheit bedrohen, sind Tabakrauchen 

und Alkoholkonsum. Verschiedene Studien haben die negativen Auswirkungen dieser beiden 

Faktoren auf die männliche reproduktive Gesundheit gezeigt. 

Die Zwecke der vorliegenden Studie waren die Bestimmung des Einflusses des 

Zigarettenrauchens bzw. des Alkoholkonsums auf die durch Standardverfahren bestimmten 

Samenparameter (WHO 2010), die mittels Chromomycin-Färbung CMA3 bewertete 

Spermien-DNA-Reife und die durch den TUNEL-Assay bewertete Spermien-DNA – 

Fragmentierung. Es soll festgestellt werden, ob Tabakrauchen oder Alkoholkonsum 

schädlicher für die Spermienqualität ist, indem Samenparameter, DNA-Reife und DNA-

Fragmentierung zwischen der Rauchergruppe und der Alkoholkonsumentengruppe bei 

unfruchtbaren Männern verglichen werden. 

Zweihundertelf (n=211) Männer im gebärfähigen Alter, die eine Fruchtbarkeitsbehandlung im 

Prince Rashid Ben Al Hassan Military Hospital in der jordanischen Stadt Irbid aufsuchten, 

wurden in diese Studie eingeschlossen. 

Nach Anzahl und Menge der an einem Tag gerauchten Zigaretten und in einem Jahr nach der 

Dauer der gerauchten Zigaretten wurden die Teilnehmer in stark rauchende Teilnehmer 

(n=48) Patienten eingeteilt, die mindestens zehn Jahre lang eine Packung/Tag oder mehr 

rauchten oder Zweierpackungen/Tag mindestens für fünf Jahre und Nichtraucher (n=70), die 

nicht geraucht haben. 

Andererseits wurde das Maß für den Alkoholkonsum anhand der Einheiten des konsumierten 

Alkohols geschätzt: 1 Einheit Alkoholkonsum wurde genommen und wie folgt betrachtet: 100 

Milliliter (ml) Wein und Bier eine Einheit entspricht 200 ml, 30 ml Whisky oder whisk 

entweder Wodka. Nach dem Alkoholkonsum wurden die Patienten in zwei Gruppen 
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eingeteilt: Nichttrinker (n=41) und starke Alkoholkonsumenten (> 7 Einheiten/Woche) 

(n=52). 

Alle Teilnehmer dieser Studie wurden einer Samenanalyse nach den 5. WHO-Kriterien 

unterzogen. Es wurden Samenparameter wie Samenvolumen, Spermienkonzentration, 

Gesamtspermienzahl, Motilität (A+B) und Morphologie, Spermienreife (CMA 3) und DNA-

Fragmentierung, TUNEL-Test) untersucht. Zigarettenrauchen und Alkoholkonsum wurden 

per Fragebogen erfasst. Zigarettenrauchen (≥20 Zigaretten/Tag für 10 Jahre), während starke 

Trinker (≥9 Einheiten/Woche). 

Die vorliegende Studie zeigt, dass Rauchen die Spermien (Volumen, Dichte, Membran und 

Spermien-DNA-Integrität) bei Männern, die an Programmen zur assistierten Reproduktion 

teilnehmen, nachteilig beeinflusst. Die Samenparameter waren bei Nichtrauchern signifikant 

höher als bei Rauchern. Die Gesamtmotilität (PR+NP) bei Rauchern betrug 24,27 ± 31,32 % 

vs. 37,86 ± 14,00 % (p < 0,0001). Das gleiche wurde für die Spermienvitalität (36,2 ± 18,56 

% vs. 42,9 ± 17,74 %; p = 0,035), die Membranintegrität (41,6 ± 18,6 % vs. 56,2 ± 18,6 %; p 

= 0,0001) und morphologisch normale Spermien (28,8 ± 11.8%) beobachtet 11,8 % vs. 

44,13,85 %; p < 0,0001). 

Durch den Vergleich des Ausmaßes von Protaminmangel und sDF zwischen Rauchern und 

Nichtrauchern zeigten die Ergebnisse, dass der Protaminmangel bei Rauchern im Vergleich 

zur Nichtrauchergruppe signifikant höher war (33,27 ± 8,6% vs. 26,00 ± 8,28 %; p<0,0001) 

und der sDF war auch bei Rauchern (15,55 ± 3,33%) signifikant höher im Vergleich zur 

Nichtrauchergruppe (8,91 ± 4,15% p < 0,0001). 

Durch den Vergleich der Spermienparameter zwischen der Trinker- (n=52) und der 

Nichttrinkergruppe (n=41) zeigten die Daten, dass die Spermienzahl (53,519 ± 32,67 Mio 

(34,62 ± 16,652), Membranfunktionsintegrität (45,96 ± 17,99 %) und morphologisch normale 

Spermatozoen (27,06 ± 13,136 %) waren in der Trinkergruppe signifikant niedriger als in der 

Nichttrinkergruppe (73,244 ± 30,5219 Mio./ml; 35,00 ± 19,17 %). ; 45,24 ± 18,47 %; 58,54 ± 

18,345% bzw. 35,95 ± 11,97%). 

Allerdings waren der Protaminmangel CMA3+ (37,03 ± 9,75 %) und die Spermien-DNA-

Fragmentierung sDF (22,37 ± 7,60 %) bei Trinkern signifikant höher im Vergleich zu 

Nichttrinkern (24,76 ± 7,44 % und 11,98 ± 5,17 %; p <0,0001). 
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Beim Vergleich der Verschlechterungswirkung von Raucher- und Trinkergruppen wurde kein 

signifikanter Unterschied in den Samenanalyseparametern zwischen den Raucher- und 

Trinkergruppen beobachtet (Samenvolumen 3,20 ± 1,43 (ml), Samenzahl 65,8 ± 31,32 

(Mill/ml)) , Gesamtmotilität (24, 27 ± 8, 18 %), Spermienvitalität (36,15 ± 18, 57 %), 

funktionelle Integrität ( 41,6 ± 18,6) und der mittlere Prozentsatz morphologisch normaler 

Spermatozoen (28,77 ± 11,82 % vs. 2,81 ± 1,56 1. (ml), (53,51 ± 32,67 (Mill/ml), 23,75 ± 

1,75 (%), 34,62 ± 16,7 (%), 45, 96 ± 17,9 % bzw. 27,1 ± 13,13). Trinkergruppe im Vergleich 

zu den Rauchern (37,03 ± 9,75 vs. 33,27 ± 8,56, p=0,02) Ebenso war der sDF in der 

Trinkergruppe im Vergleich zur Rauchergruppe signifikant höher (22,37 ± 7,602 vs. 15,55 ± 

3,33, p < 0,0001). 

Diese Ergebnisse deuten darauf hin, dass Zigarettenrauchen und starker Alkoholkonsum die 

Spermienparameter bei Männern, die eine Unfruchtbarkeitsbehandlung suchen, 

beeinträchtigen. Alkoholkonsum verschlechtert jedoch die Spermienreife (CMA3) und 

schädigt die DNA-Integrität deutlich stärker als das Rauchen von Zigaretten. 
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1. Introduction 

Over the years, infertility has become a major global problem. Almost 48.5 million couples 

throughout the world are facing this issue (Mascarenhas, 2012; Inhorn, 2015). Infertility is 

described as a disease characterised by a failure to conceive after regular unprotected 

intercourse of one year and is used interchangeably with the term “subfertility” (Zegers‐

Hochschild, 2017).  

Approximately 15% of couples worldwide are subfertile, with male infertility contributing to 

around half of the cases (Pasqualotto et al., 2007). It is estimated that 1 in 20 men in the 

general population is subfertile (Schowell et al., 2014). More than 600,000 cycles of 

Intracytoplasmic sperm injection (ICSI) and in vitro fertilisation (IVF) are performed each 

year in North America and Europe alone (Centers for Disease Control and Prevention, 2017; 

Calhaz-Jorge et al., 2017). Unfortunately, the success rate is found to be very low. In 2015, 

approximately one of three (~33.3%) live births in the United States resulted from assisted 

reproductive technology (ART) cycles (Centers for Disease Control and Prevention, ASRM, 

2015).  

ICSI and IVF have greatly helped infertile and subfertile couples conceive. The success of 

these technologies and techniques depends on the sperm quality parameters (Chemes & Rawe, 

2003). Male-related factors contribute to 50% of infertile cases (Agarwal et al., 2015). 

However, 30% of male infertility is yet to be explained and, thus, classified as idiopathic (Naz 

& Kamal, 2017).  

Several studies reveal a wide variation in the estimation of the occurrence of male infertility 

(estimated to be 5%–35%), thus showing real differences between populations in terms of the 

following factors: quality of primary health care, environment, occupation, exposure to 

toxicants responsible for infertility, age, being overweight and obesity, climate conditions, 

educational status, recreational use of or constant exposure to drugs, and genetic and 

epigenetic factors (Aitken, 2020). 

That tobacco smoking is one of the lifestyle factors associated with male infertility is still 

under debate. However, several studies suggest a strong connection between smoking and 

altered semen parameters (NICE, 2013; NCCWCH, 2004). Further investigation is also 

needed to determine how a moderate exposure to Cd and Pb (heavy metals found in 

cigarettes) affects the male reproductive and endocrine functions, although a few studies 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6416049/#CD007411-bbs2-0215
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6416049/#CD007411-bbs2-0196
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6416049/#CD007411-bbs2-0250
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6416049/#CD007411-bbs2-0250
javascript:;
javascript:;
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suggest that these metals decrease human semen significantly, thus impairing male fertility 

(Pant et al., 2014; Sengupta et al., 2017). 

A smoking habit in males also has an adverse effect on pregnancy outcomes among IVF 

patients (Cinar et al., 2014). An association between cigarette smoking and altered ICSI and 

IVF outcomes was reported (Zitzmann et al., 2003). In a study by Klonoff-Cohen et al. 

(2001), the number of retrieved oocytes decreased by almost 46% in smokers; the males were 

active smokers, and the females were passive smokers. In addition, a decrease in live birth 

rates was noticed in 166 couples seeking pregnancy using ART (Fuentes et al., 2010).   

Alcohol consumption is another factor that influences male fertility. Vital side effects depend 

on the amount consumed. However, the limit beyond which alcohol starts affecting male 

reproductive functions is still unknown. Together, drinking alcohol and smoking may be 

responsible for causing infertility (Martini et al., 2004; Joo et al., 2012). 

No specific evidence of the harmful effects of alcohol and smoking together on semen 

parameters and fertility outcomes has been observed (Gaur et al., 2010; Petraglia et al., 2013). 

However, the degradation of sperm quality is positively associated with alcohol or cigarette 

consumption. 

The contradictions in the literature concerning the deleterious effects of tobacco smoking and 

alcohol consumption on male fertility encouraged us to explore the correlations between 

smoking, alcohol intake, and sperm parameters in fertile and subfertile men and to find out 

which habit causes more damage. 

The aim of evaluating infertile males is to identify the precise reason behind male infertility, 

which can help in making therapeutic decisions regarding the issue (Bach et al., 2018). 

1.1. Spermatogenesis     

Spermatogenesis refers to the proliferation and maturation of males’ germ cells from diploid 

spermatogonia to mature haploid sperm cells through meiotic division. The whole sequence is 

controlled epigenetically, and disruption at any of the stages involved may possibly result in 

infertility (Das et al., 2017). 

Spermatogenesis starts with cell lines of germ originating from primary germ cells (PGCs), 

commonly called gonocytes (Donovan & de Miguel, 2003). In males, PGC development 
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occurs in the endoderm cells close to the end the third week of embryonic development and 

then move or migrate towards the genital tract by the fifth week, where the existence of the Y 

chromosome in males plays a vital and key role in the proliferation, development, and 

transformation of males’ genital tracts into primary sexual organs (Boe-Hansen et al., 2006; 

Looijenga et al., 2007). During mitosis, spermatogonia halt during the cell cycle at the G3 

phase and remain dormant until birth (Sasaki et al., 2016). After birth, spermatogenesis starts 

with the mitotic proliferation of spermatogonia type A (Brinster et al., 1994; de Kretser et al., 

1998).    

The initial cycle of spermatogenesis in males takes roughly 16 days to complete, and it takes 

about 4.6 cycles for the development and differentiation to produce adult sperm cells (Galdon 

et al., 2016), approximately 74 days in total (Pieri et al., 2017; Xu et al., 2016). 

At the beginning of spermatogenesis, spermatogonia differentiate via mitosis to primary 

spermatocytes (44 chromosomes, XX or XY). These spermatocytes undergo meiosis I and II 

stage that produce haploids spermatids (22, X or Y). Later, the spermatids undergo a series of 

morphological changes (head, midpiece, and tail), and their chromatin structure and function 

change (Balhorn, 2018). In fact, there are imprinted genes in the male genome, epigenetic 

changes in the DNA, and nucleoproteins that edit the chromatins to make them ready for the 

control of the embryonic growth and development (Canovas & Ross, 2016). Then, step by 

step, the chromatins will be genetically silenced in the spermatozoa (Ren et al., 2017). 

Leydig and Sertoli cells are both important in regulating the whole course of spermatogenesis. 

In addition, they provide support to germ cells and play a key role in regulating the fate of 

these cells through several mechanisms and factors. These factors include hormonal, several 

pro- and anti-apoptotic agents, and energy substrates, such as lactate, especially by spermatids 

and spermatocytes (Jutte et al., 1981, 1982).  

During spermiogenesis, spermatids, which are round haploids at this stage, turns into a 

flagellated and highly condensed form known as spermatozoa. Then, these spermatozoa 

differentiate and mature to achieve motility. Sperm nuclear DNA integrity is important in 

enabling the sperm to function properly in early embryogenesis (Coward & Wells, 2013). 

Sertoli cells provide germ cells with mitogens, sources of energy and differentiation factors. 

They are also protective factors against other toxic agents (Russell et al., 1993). Previous 

studies showed that Sertoli cells are one of the main targets of various toxicants that harm 
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normal testicular functions (Boekelheide, 2000). Some of these toxicants include a group of 

plasticisers. Their commonly used form is known as phthalates, which are present abundantly 

in the toys of children and in soft plastics commonly used in healthcare products. They have 

been shown to play a role in the testicular dysgenesis syndrome in rats (Fisher et al., 2003). It 

has been speculated that exposure to environmental toxicants, referred to as disrupters of the 

endocrine system, potentially disrupts physiological hormonal events and balance 

(Skakkebaek et al., 2001).    

1.2. Hormonal pathway regulating spermatogenesis 

The complete spermatogenesis is a lengthy, multipart, and finely tuned process. The 

regulation requires and gets distinguished in two stages (Duan et al., 2016; Garolla et al., 

2017). 

The hypothalamus that secretes the gonadotrophin-releasing hormone (Gn-RH) which 

provokes adenohypophysis to excrete hormones like follicle stimulating hormone (FSH) and 

luteinising hormone (LH). The LH stimulates the Leydig cells to release and produce 

testosterone. The FSH function is to assist Sertoli cells in supporting the gem cells during the 

different phases of spermatogenesis (Figure 1). Besides FSH and LH, other hormones, such as 

prolactin and growth hormone, play crucial roles during spermatogenesis (Sharma & 

Agarwal, 2011).   

As a response to FSH stimulation, Sertoli cells produce the peptide hormones, such as inhibin 

B, into circulation. Inhibin B has a major effect on inhibiting FSH hormone secretion. 

However, its role as an autocrine factor on Sertoli cells must still be studied. Measurements of 

levels of serum inhibin B are clinically indicative of and used to assess the presence and 

functioning of Sertoli cells during childhood. On the other hand, the serum inhibin B levels in 

adults correlate with the presence of germ cells (de Kretser et al., 2004). 
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Figure 1: Gonadotropin and steroid hormone control of spermatogenesis [adapted from 

Mitchell et al. (2017)]. 

1.3. Chromatin remodelling during spermiogenesis 

DNA in the sperm is confined to nucleus because of interaction with protamines, thus 

contributing to sperm cell maturation, as reported by Gunes et al. (2015). 

To obtain a hydrodynamic sperm head and to protect the paternal genome from any 

modifications in the male or female reproductive tracts, the human sperm DNA, in early 

spermiogenic phases, undergoes major cellular and nuclear changes (Ward & Coffey, 1991).  

The first phase in spermiogenesis is the Golgi phase. This phase is characterised by the 

formation of polarity in spermatids. Golgi apparatus differentiate to acrosome responsible for 

the synthesis of proteolytic enzyme. The distal centriole gives raise to the axoneme, and the 

Mitochondria move to the midpiece. Next, the other centriole pair elongates to form flagellum 

(Russell et al., 1993).   

Further, the chromatin in the elongated nucleus becomes ten times more compact than the 

chromatin in the nucleus of a somatic cell through progressive modifications (Braun, 2001; 

Figure 2). 
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So, in early spermiogenic phases, major chromatin packaging takes place. The nucleosome-

bound DNA configuration will first be destabilised by hyperacetylation of the canonical 

histones, which will neutralise the positive charge of lysine, reducing their affinity for DNA. 

Double and single DNA strand breaks by DNA topoisomerase II (topo II), in turn, reduce the 

tension of the DNA (McPherson & Longo, 1993; Laberge & Boissonneault, 2005). 

 

Figure 2: The difference in the chromatin packaging between a somatic cell and a spermatozoon. The chromatin 

changes from a solenoid loop structure (nucleohistone) into a toroid structure (nucleoprotamine). Post-

translational modifications of the proteins facilitated the histone-protamine transition: acetylation, ubiquitination, 

and phosphorylation of histone H4, and phosphorylation and dephosphorylation of the transition proteins 

[adapted from Braun (2001)]. 

“Canonical histones” which are core histone proteins (H2B, H2A, H3, and H4) and a linker 

histone protein (H1) will be replaced by testis-specific histones. These histones are called 

“histone variants” and start to appear during different stages of the spermatozoan formation, 

and they are found in lower quantities during the cell cycle (Cheema & Ausió, 2015; Figure 

3). Among these histones, there are H2A variants, which are major players, like H2A.Bbd 

(González-Romero et al., 2008), H2B variants like H2BFWT (Churikov et al., 2004a), H3 

variants like H3.T (Witt et al., 1996), and H1 variants like H1.T and H1.T2 (Tanaka et al., 

2005). Some of these histone variants are present only in masculine germ cells (Talbert & 

Hanikoff, 2010).  
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Churikov et al. (2004b) demonstrated that the TH3 histone variant is shown in spermatogonia, 

TH2A and TH2B, prior to meiosis and combined with the chromatin of spermatocytes. 

Moreover, there are post-translational modifications of histones that are also important for the 

good progress of the spermiogenesis (Carrell, 2012; Godmann et al., 2007). During the 

elongated spermatid phase, H3 and H4 are acetylated, and consequently, the interactions 

between these histones and the sperm DNA are relaxed, especially in the regulatory regions of 

genes that contribute to embryonic development (Nair et al., 2008; Sonnack et al., 2002). H4 

methylation increases during the differentiation of the spermatogonia to spermatid (Luense et 

al., 2016) but decreases in the elongated spermatids (Sonnack et al., 2002). H3 histone is 

methylated in the round spermatids, and this methylation has previously been demonstrated to 

mark the repressed genes on an evolutionary regulatory site (Godmann et al., 2007), which are 

important for both gamete differentiation and embryo development (Khalil et al., 2004; 

Hammoud et al., 2009). 

It has been previously reported that 10%–15% of canonical histones and their variants remain 

bound to DNA in mature human spermatozoa (Bench et al., 1996; Carrell & Hammoud, 2009; 

Gatewood et al., 1990; Wykes & Krawetz, 2003). This part of genomemainly concerns the 

transcription sites of genes in sperm that are important for the preservation of the paternal 

genome epigenetics for their later expression during early embryonic development (Carrell & 

Hammoud, 2009; Ihara et al., 2014). The regulatory sequences (Castillo et al., 2014; 

Brykczynska et al., 2010), microRNA clusters, transcription factors, paternally imprinted 

genes (Hammoud et al., 2009), the centromeric and telomeric DNA (Zalenskaya & Zalensky, 

2004), retroposons (Pittoggi et al., 1999), matrix-associated regions (Ward, 2009), and genes 

that produce rRNA are transcribed at the final stages of spermatogenesis (Sillaste et al., 2017). 

At the mid-stage of spermatid formation, the changes in chromatin structure will be more 

obvious when transition proteins TP2 (13 kDa) appears in step 1, and TP1 (6.2 kDa) appears 

in step 3 are formed and get deposed (Steger et al., 1998) (Figure 3). 
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Figure 3: Major chromatin structure remodelling events during spermiogenesis [adapted from Teperek & 

Miyamoto (2013)]. 

Pradeepa and Rao (2007) reported that TP1 plays the main role in the destabilisation of the 

nucleosome structure and the initiation of gene transcription termination when TP2 is attached 

to CG-rich sequence by zinc fingers. Also, it is important for the chromatin condensation 

progress (Zhao et al., 2001). It has also been shown that TP1 facilitates the repair mechanism 

of the DNA strand alterations (Caron et al., 2001).   

These proteins are attached to the DNA only for a short period of time. Therefore, they are 

modified in arginine and lysine residues by methylation, acetylation, and phosphorylation to 

lose their ability to attach to the sperm DNA (Nikhil et al., 2015). Moreover, the transition 

proteins have been shown to be important not only for the chromatin condensation procedure 

but also for the DNA damage repair caused during the histones’ replacement (Boissonneault, 

2002). The Transition proteins are then replaced by highly basic proteins: protamines 1 and 2 

in the late spermatid stage (Figure 3). Each of the protamines is encoded each by a single gene 

(PRM1 for P1 and PRM2 for P2) located in a cluster of genes beside the TNP2 gene.  
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They are located on chromosome 16 (16p13.13) (Oliva, 2006; Martins & Krawetz, 2007). The 

messenger RNA of these proteins keeped silence and undergoes translation after the transition 

of histones to transition proteins. This step is important to ensure a good process of chromatin 

repackaging (chromatin decondensation) after the intrusion of sperm cells into the cytoplasm 

of the oocyte (Hecht, 1989; Kleene & Flynn, 1987; Lee et al., 1995) (Figure 4). 

The sperm protamine 1 (P1) (51 AA) is the first to be synthesised as a mature form of protein 

(Queralt et al., 1995; Green et al., 1994). Protamine 2 (101 residues) is created as a precursor 

protein and undergoes cleavage by proteolysis after its deposition onto sperm DNA to 

eliminate short fragments of the peptide (Aoki et al., 2005). Both proteins are reported to be 

expressed and present in equal ratio and quantity (P1/P2 ratio almost equals one) (Brewer et 

al., 2002). Further, Nanassy et al. (2011) suggested a clinical value of the protamine ratio 

between 0.54 and 1.43 for a fertile normozoospermic man. 

These proteins have a characteristic constitution, mainly composed of arginine (48%) and 

cysteine residues (Balhorn, 1989, 2007; Oliva & Castillo, 2011). These amino acids are highly 

positive charged which leads to a highly ordered nucleo-protamine complex in combination 

with negatively charged DNA (Oliva & Castillo, 2011) (Figure 4). 

The cysteine residues are responsible for the formation of inter- and intra-protamine 

disulphide bridges (S-S), which stabilises the nucleo-protamine complex (Lewis et al., 2005; 

Vilfan et al., 2004; Balhorn, 2018). Zinc is abundant in human sperm nuclei (Morisawa & 

Mohri, 1972), and it is likely to get trapped by the S-S (Bedford et al., 1973). The Cys2/His2 

motif of P2 is a zinc finger domain, which leads to the appearance of zinc bridges responsible 

for the high stabilisation of the chromatin in the mature spermatozoa and in the cessation of 

transcription until the fertilisation (Bianchi et al., 1993; Björndahl & Kvist, 2010). 
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Figure 4: The sperm chromatin condensation: from a solenoid structure to a toroid structure [adapted from Ward 

(2009)]. 

1.4. Infertility in relation to oxidative stress 

Various reasons are responsible for male factor infertility. These reasons range from 

physiological and environmental factors, genetic causes, endocrine and immunological 

conditions to infections or obstruction in the male reproductive tract (Wald, 2005; Ghuman & 

Ramalingam, 2018). Genetic causes are also responsible for about 15% of cases of male 

infertility and are classified into two major groups: either chromosomal aberrations or other 

forms of gene mutations (Güney et al., 2012; Stouffs et al., 2014). Genetic diseases are 

responsible for about 14% of cases of males with azoospermia and 2% of cases of males with 

oligozoospermia (Mafra et al., 2011; Pylyp et al., 2013; Figure 5). 

Various genetic diseases associated with male infertility are multiple sclerosis, pituitary 

adenoma, cystic fibrosis, diabetes, hypopituitarism, chromosomal abnormalities like 

Klinefelter syndrome, cancers like prostate cancer and testicular cancer, tumours of the spinal 

cord, endocrine problems like thyroid disease, and infections like UTI (Bach et al., 2018; 
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Walsh et al., 2010). However, the exact etiology is unknown; therefore, labelling them as 

idiopathic infertility (Agarwal & Sekhon, 2011). 

Several other factors, such as adipositas, influence fertility (Fode et al., 2012). Wearing 

restrictive and tight-fitting clothing or underwear results in increased scrotum and testicular 

overall temperature and heat (Jung & Schuppe, 2006; Harlev et al., 2015). Smoking cigarette, 

consuming too much ethanol in the form of alcohol, using steroids, such as anabolic ones, 

excessively (Naz & Kamal, 2017), and amplified and prolonged exposure to environmental 

toxicants and pesticides (Jensen et al., 2006; Walczak–Jedrzejowska et al., 2013) are 

considered responsible for male infertility (Schulte et al., 2010). 

Multiple studies reported on the main etiological factor in infertility: oxidative stress (OS), 

which results in sperm quality impairment and DNA damage (Agarwal et al., 2017; Tremblay 

et al., 2018).  
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Figure 5: Relationship of infertility with male reproductive system and its primary pathologies and oxidative 

stress [adapted from Esteves and Agarwal (2011)]. 

OS, as mentioned earlier, is a common pathological factor observed in about half (30%–80%) 

of all male infertility cases (Agarwal et al., 2006). OS can be the result of multiple factors, 

such as an unhealthy lifestyle, smoking habits and alcohol abuse, and exposure to other 

environmental toxicants or pollutants. 

High quantities of oxygen species, such as reactive oxygene species (ROS), or nitrogen 

species, such as RNS, can be due to previously mentioned factors or impaired ROS/RNS 

clearance as decrease antioxidant levels and concentrations may result in overall OS. ROS 

and RNS are different forms of reactive radical or nonradical forms and derivatives of oxygen 

and nitrogen, respectively (Powers et al., 2011). The high and elevated values of ROS/RNS in 

the semen of males can be due to the existence and presence of leukocytes in the male seminal 

plasma and the presence of mitochondria in the spermatozoa. As reported earlier, leukocytes 

present in the seminal plasma generate and produce 1,000 times more ROS/RNS than those in 

the spermatozoa (Tremellen, 2008; Figure 6).  
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Besides, the production of ROS takes place at various intracellular spaces like that in complex 

I and complex III of the mitochondrial inner membrane during the electron transport chain 

process (Quinlan et al., 2013; Holmström & Finkel, 2014).  

Therefore, OS is defined as the process where there is disproportion in the quantities between 

the generation and production levels of ROS and the capacity of available antioxidants to 

scavenge them, which ultimately leads to redox (Agarwal et al., 2014).  

ROS plays a significant physiological role; besides their harmful effects, they are also 

essential to the regulation of cell signalling pathways, enzymatic activities and their pathways, 

and immune defences (Di Meo et al., 2016). ROS is also crucial for the normal functioning of 

sperm cells. Some of these functions include the compaction of chromatin in maturing stages 

of spermatozoa during its epididymal transit. For the capacitation process, acrosomal reaction, 

hyperactivation, and sperm-oocyte fusion, a delicate balance between reduction and oxidation 

is necessary and required (Wright et al., 2014; Du Plessis et al., 2015). 

On the contrary, a high production and high levels of ROS result in the peroxidation of lipids 

(LPO), DNA (deoxyribonucleic acid) damage, and ultimately, induction of the apoptotic 

process (Agarwal et al., 2003; Sharma et al., 2004), which has been reported earlier to have a 

drastic and adverse effect on total sperm concentration (Agarwal et al., 2014; Takeshima et 

al., 2017), overall motility (Yumura et al., 2017), and morphology (Aziz et al., 2004; Yumura 

et al., 2009; Figure 6).  

However, numerous studies and research have confirmed that a supraphysiological level of 

ROS causes reduced sperm motility (Kao et al., 2008), a decline in sperm’s overall fertilising 

ability (Mostafa et al., 20015), and as peroxidation of lipids that affects the sperm membrane 

integrity (Agarwal and Said, 2003). All of these factors are important processes and steps that 

affect sperm quality and its function directly. Dutta et al. (2019) demonstrated that higher 

levels and values of ROS cause lipid peroxidation, affecting the integrity of the membrane as 

well, cause sperm DNA fragmentation and apoptosis of germ cells, and ultimately result in 

altered male fertility.  

Prolonged exposure to ROS causing defects within the mid-piece of the sperm has been 

reported as well (Pasqualotto et al., 2000). The formation and development of DNA lesions 

due to ROS cause sperm instability and lead to an increase in negative effects, such as 

increased sperm DNA fragmentation levels (Santiso et al., 2010). The cell membrane is 
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composed largely of lipid molecules (unsaturated fatty acids), which facilitate its oxidation 

through the process of LPO due to the production and the presence of high and elevated levels 

of ROS (Walczak-Jedrzejowska et al., 2013). 

DNA damage caused by ROS can also increase the incidence of germ cell apoptosis, resulting 

in an overall reduction of the sperm concentration, thus affecting the semen parameters and 

quality and causing male infertility (Agarwal et al., 2003). ROS generally affects all forms of 

biological compounds, like carbohydrates, lipids, proteins, and nucleic acids within cells. It 

can also alter the physical and chemical properties of proteins (Luddi et al., 2016). A 

significant high correlation has been reported between the levels of ROS and abnormal 

parameters, such as head problems, acrosomal deformities of structure and function, structural 

midpiece anomalies of the sperm, problem of cytoplasmic droplets, and major tail defects and 

problems (Kobayashi & Suda, 2012). 

ROS also leads to the activation of caspase by disrupting mitochondrial membranes, which 

further leads to apoptosis. The apoptotic pathways also involve the release of cytochrome c, 

augmenting the levels of ROS, DNA damage, and apoptosis. DNA bases are also susceptible 

to damage from OS, resulting in some base pair modifications and strand breaks and 

hindering chromatin cross-linking processes. OS is reported to be a major factor in causing 

damage to the DNA in germ line cells (Agarwal et al., 2005; Thomson et al., 2009).  

Damage to the DNA of the male germ line contributes not only to infertility but also to 

miscarriages and birth defects in future offspring (Aitken & Baker, 2009). 
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Figure 6: Reactive oxygen species sources and their effect on biological systems and infertility. 

1.4.1. Reactive oxygen species endogenous sources 

During metabolism, the ROS generates normally at low concentration, which is needed in 

various cellular functioning (de Lamirande et al., 1997). About 0.2%–2% of the total oxygen 

absorbed and consumed by the cell is converted or either emitted as ROS (Balaban et al., 

2005). Genomic instability can also be caused by ROS accumulation and OS. It also results in 

the buildup of these misfolded proteins in the cell and causes alteration to multiple processes, 

like proteostasis, autophagy, and mitochondrial functions (Liochev et al., 2013; Sala et al., 

2016). The endogenous ROS is formed mainly by leukocytes, such as neutrophils and 

macrophages, and by immature forms of spermatozoa, while other exogenous sources of ROS 

include smoking different forms of tobacco, industrial compounds, and ethanol or alcohol 

consumption (Murphy et al., 2011).  

1.4.1.1. Leukocytes 

Under certain circumstances, leukocytes, particularly neutrophils, can generate high levels of 

ROS. The production of these high levels of ROS plays a very significant and important role 

in the overall body and defence mechanism against any foreign bodies and infections 

(Walczak-Jedrzejowska et al., 2013). 



 
 

 
16 

ROS is also important in the integral mechanism of body defence whereby neutrophils destroy 

pathogens and help defend against infection. This, in turn, provides evidence and markers, 

which links high levels of seminal leukocytes to increased levels of OS, gradually resulting in 

male infertility (Tremellen, 2008). 

Polymorphonuclear leukocytes (50%–60%) and macrophages (20%–30%) are peroxidase-

positive leukocytes (Saleh et al., 2003). In prostate and seminal vesicles, these leukocytes are 

present in large quantities. Infection activates various stimuli for the production of ROS, so 

leukocytes can release up to 100 folds more ROS than they do under normal conditions 

without the stimuli. Infectionalso increases the NADPH production and levels by activating 

the hexose monophosphate shunt (Lavranos et al., 2012; Agarwal et al., 2003). Further, an 

increase in the levels of proinflammatory markers and factors like cytokines and interleukin 

(IL-8) and low quantities of antioxidants, such as superoxide dismutase (SOD), can cause a 

respiratory burst. ROS in elevated quantities can cause damage to the sperm if the seminal 

concentration of leukocyte is high, like in leukocytospermia (Lu et al., 2010). The presence of 

peroxidase-positive cells > 1 mill/ml in male semen is set as a quantitative limit by the World 

Health Organization (WHO, 2010). 

Several studies suggest a correlation between alterations of sperm function and seminal 

plasma with multifactor abnormalities, such as elevated levels of ROS, IL-8, and IL-6 and 

tumour necrosis factor. All of these factors increase the levels of LPO in the membranes of 

the male sperm cell (Lavranos et al., 2012; Nandipati et al., 2005). The important sources of 

OS in the human body and cells are environmental exposure to contaminants, rays in the form 

of radiation, and chemical compounds, such as anti-cancerous medication and drugs, tobacco 

products, and alcohol (Sosa et al., 2013). In vivo nicotine, especially, is an oxidative agent 

that induces double-strand DNA breaks in the DNA of the sperm cells (Arabi, 2004). A 48% 

increase in seminal leukocyte levels and a 100% increase in ROS levels have been reported 

among smokers compared with the nonsmoker group (Saleh & Agarwal, 2002). The values of 

DNA fragmentation (DFI) in sperm cells have been compared between infertile smokers and 

infertile nonsmokers (37.66% vs. 14.51%, P < 0.001, respectively; Elshal et al., 2009). 
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1.4.1.2. Infections 

Inflammatory reactions of male reproductive tract and ducts are considered as an exogenous 

source of ROS (Gonzales et al., 2004). In an earlier study, a high production of ROS in 

chronic inflammation with a nonbacterial cause was reported (D’agata et al., 1990). Mazzilli 

et al. (1994) demonstrated that the production of superoxide anion was elevated in patients 

whose sperm culture tested positive for aerobic bacteria. Also, products of cytokines can 

increase the levels of ROS generation in polymorphonuclear leukocytes (Zhang et al., 2013). 

Increased ROS production has been noticed during virus infection as well. When the cell is 

invaded by a virus, it distorts the normal cellular functions, disrupting the overall ROS system 

(Nabel & Baltimore, 1987). Besides, a strong correlation between the inflammation of the 

male genital system and infertility has been found and reported (Ochsendor, 1999). ROS 

production in the urogenital system is dangerous for sperm cells because ROS can target and 

affect them for a long period and because they have very low antioxidant protection 

(Nicopoullos et al., 2004; Frodsham et al., 2006).  

Infections are found to be responsible for up to 15% of male infertility cases (Moretti et al., 

2009). Chlamydia and gonorrhoea are among the main bacterial infections (Zeyad et al., 

2018). Sexually transmitted diseases (STDs), specifically bacteria, usually transmitted during 

intercourse, can also affect sperm quality and the overall parameters. Reports have shown that 

around 33% of men get affected due to this reason (Moretti et al., 2009). 

1.4.1.3. Immature spermatozoa 

In human spermatozoa, hydrogen peroxide (H2O2) is the main form of ROS. The excessive 

production of ROS by different sources, like abnormal spermatozoa or leukocytes, has been 

linked to male infertility (Sharma & Agawal, 1996). The main sources of ROS reported by 

another study are either immature or abnormal spermatozoa or leukocytes (Lobascio et al., 

2015). 

During the complex process of spermatogenesis, developing spermatozoa prepare for 

fertilisation and shed their cytoplasm. However, an excess amount of cytoplasm (ERC) was 

retained by immature spermatozoa. 

ERC activates the system of NADPH through the process of the hexose monophosphate 

shunt, which is consumed by the spermatozoa as a major source of electrons, which also leads 

to the ROS generation (Rengan et al., 2012). ERC affects sperm parameters, such as overall 
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motility, the structure of the sperm cell, and its fertilisation capability, which may cause male 

infertility (Saalu et al., 2010). High levels of ROS have also been observed in 

morphologically abnormal spermatozoa (Tomlinson et al., 1992; Figure 7). 

 

Figure 7: Generation of ROS. NADPH (nicotinamide adenine dinucleotide phosphate) and NADH 

(nicotinamide adenine dinucleotide), Cu and SOD [Agarwal et al. (2014)]. 

1.4.1.4. Varicocele 

Veins that get abnormally dilated in the pampiniform plexus near and around the spermatic 

cord are known as varicoceles. Varicoceles are also sometimes responsible for infertility as 

they have been detected in 40% of infertile males (Will et al., 2011). Seminal ROS levels 

have been reported to be directly associated with varicoceles and their grade (Shiraishi et al., 

2012). Ha et al. (2011) reported that ROS also possesses the capacity to damage the blood-

testis barrier between Sertoli cells. Therefore, a high level of ROS is harmful in patients with 

varicoceles (Ha et al., 2011). Fisher et al. (2003) stated that sperm cells from such patients 

showed high cytoplasmic droplets, causing the production of ROS in higher levels. Thus, it is 

obvious that a high level of ROS is proportionally related to the high grade of varicoceles 

(Fisher et al., 2003).  

Several studies suggested a link between varicoceles and decreased antioxidant levels in men 

(Agarwal et al., 2003), leading to high levels of ROS (Meucci et al., 2003). Patients with 

varicoceles have more spermatozoa with a high degree of abnormal condensation of the 

chromatin than fertile control males (Talebi et al., 2008). Towards the spermatozoa, NO and 
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superoxide released and produced by monocytes form peroxynitrite and have, in turn, more 

negative effects. NO is a lipophilic molecule and has a tendency to have cytotoxic effects on 

sperm cells adjacent to it (Santoro et al., 2001).    

A meta-analysis demonstrated a direct relationship between a high degree of DNA 

fragmentation (SDF) and the grade of varicoceles in male patients irrespective of fertility 

status and the situation of the individuals (Zini & Dohle, 2011). 

Another meta-analysis showed a significantly raised SDF value of 9.84% in patients with 

varicoceles compared with healthy controls (Wang et al., 2012). There are further reports on 

the impact and consequence of varicoceles on sperm quality or parameters and specifically on 

SDF and pregnancy outcomes. SDF reduction by 3.37% was reported after varicocele ectopy 

(Wang et al., 2012). After varicocelectomy, lower SDF values and a higher chance of 

conception either naturally or with the help of assisted reproduction were observed (Smit et 

al., 2013). Conception and live birth rates in the ICSI cycle also increased after varicocele 

treatment (Esteves et al., 2016). 

OS has been a main concern and major cause of male infertility. In response to varicocele, the 

testis responds differently as the scrotal area temperature increases either by testicular 

hypoxic condition, adrenal metabolite backflow, or the change and increase in the production 

of vasodilators, including compounds like nitric oxide (Shiraishi et al., 2012). 

1.4.2. ROS and its exogenous sources 

Several factors, such as lifestyle, excessive increase in levels of environmental pollutants, 

alcohol consumption, tobacco smoking, e-cigarettes and vaping, physical trauma, and 

different kinds of stress, are considered few among the major exogenous factors and reasons 

for ROS production (Rakhit et al., 2013; Barazani et al., 2014).                                

Water and air pollution are considered major ROS exogenous sources, as well as exposure to 

heavy metals, radiation, and several types of drugs (Agarwal et al., 2016). Besides, regular 

consumption of alcohol leads to ROS production in excessive quantities, resulting in the 

peroxidation of lipids and in reduced SOD activity and GSH levels (Kovacic, 2005). During 

ART procedures, ROS can be produced from spermatozoa, oocyte, embryos, culture media, 

and oxygen concentration in the incubator; these are known as endogenous sources (Agarwal 

et al., 2014; Figure 7). 
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1.4.2.1. Alcohol consumption 

Alcohol is a broad term. The common form used is known as ethyl alcohol or ethanol (EtOH). 

It promotes the excessive production of ROS. These ROS interact with macromolecules of the 

cell producing aldehydes in major forms, such as 4-hydroxynonenal (4-HNE) and 

malondialdehyde (MDA), which are most involved in ROS production. It is also reported that 

these aldehydes and ROS directly interact with both proteins and DNA, ultimately leading to 

transcription-repression of genes and affecting their regulation as well. In fact, the impact of 

ROS and aldehydes appears to serve as a key factor in these alterations and defects, partially 

affirming that antioxidant intake helps prevent EtOH-induced cellular alterations and 

repression (Byun, 2018). In the metabolism pathway of alcohol, chemicals like NADH and 

acetaldehyde are generated. These NADH surges the activity of respiratory chains inside the 

mitochondria, while acetaldehyde interacts with proteins and lipids to produce ROS (Agarwal 

et al., 2005; Saleh & Agarwal, 2002). 

Alcohol is the most studied dietary factors as potential disruptors of fertility. However, the 

results are inconsistent. Various studies showed the deleterious effects of alcohol (Eggert et 

al., 2004; Tolstrup et al., 2003), whereas others demonstrated no association (Hatch et al., 

2012; Peck et al., 2010; Mikkelsen et al., 2016; Spinelli et al., 1997; Hassan et al., 2004). The 

evidence from couples undergoing ART or any of the infertility treatments remains 

controversial (Abadia et al., 2017). A study on 8,344 healthy male subjects reported that 

consuming alcohol in moderate quantities correlated with higher testosterone levels, but 

semen parameters didn’t show any change (Jensen et al., 2014).  

Chronic alcohol consumption showed impact on both semen quality and its parameters and on 

the levels of reproductive male hormones (Muthusami & Chinnaswamy, 2005). High levels of 

ethanol administration decreased testicular steroidogenesis by disrupting testosterone 

synthesis and by decreasing the antioxidant enzyme activity, resulting in an OS increase 

(Maneesh et al., 2005). The nucleous and plasma membrane of spermatozoa abnormalities 

have also been reported with the increase in alcohol consumption (Sharma et al., 2004). An 

experimental study showed a correlation between ethanol consumption and increased 

chromatin abnormalities in sperm cells (Talebi et al., 2011).  
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1.4.2.2. Cigarette smoking 

Worldwide tobacco product consumption directly contributes to multiple health problems, and 

around six million die annually because of it. Roughly 600,000 people also die each year from 

passive smoking, which is from exposure to second-hand smoke (Low & Binns, 2013). 

Currently, smoking contributes to the death of around 1 in 10 adults worldwide, and 

according to the WHO statistical data, the number of people who smoke is increasing, 

especially in developing countries despite various attempts by governments to ban or decrease 

the sale or use of tobacco and its products (Ng et al., 2014).  

Deaths due to tobacco consumption worldwide are among the preventable types. Specifically, 

tobacco cigarettes are known to contain around 4,000 different toxins and chemical 

compounds that are hazardous in nature, including alkaloids, nitrosamines, and many other 

inorganic molecules. These toxins and chemicals cause disproportionate levels of ROS 

generation and antioxidant levels in the semen of tobacco smokers (Lavranos et al., 2012). 

This imbalance (OS) has many effects on the semen quality and its parameters. Studies have 

linked smoking to a 48% increase in leukocyte concentrations in seminal plasma and a 

significant increase of 107% in total ROS levels (Saleh et al., 2002). It decreases sperm 

parameters, such as total motility and morphology (Saleh & Agarwal, 2002). It is also a key 

factor in producing high levels of ROS through lipid peroxidation (Künzle et al., 2003). Dai et 

al. (2015) also reported that tobacco smoking negatively affects sperm parameters, such as 

volume, concentration, motility, morphology, and viability, leading to male infertility (Dai et 

al., 2015). 

Levels of antioxidants, such as vitamins E and C, are decreased among smokers, increasing 

the OS and damaging sperm cells (Esteves et al., 2002). This was also confirmed by a study in 

which a significant increase in the levels of 8-OHdG was noted in the male seminal plasma 

due to tobacco smoking and was considered as marker of the oxidative damage (Dietrich et 

al., 2003; Mohammedi et al., 2013).  

Another study performed on tobacco smokers and its analysis revealed that higher levels of 

heavy metals, such as cadmium and lead, in serum and in semen increase the production of 

ROS, reducing sperm motility (Kiziler et al., 2007). 

Moreover, cigarette smoking increases inflammatory reactions, resulting in increased levels of 

leukocytes in the testicles (Majo et al., 2001; Jorsaraei et al., 2008). Fragmentation of the 

https://www.frontiersin.org/articles/10.3389/fphys.2019.01356/full#B9
https://www.frontiersin.org/articles/10.3389/fphys.2019.01356/full#B9
https://www.frontiersin.org/articles/10.3389/fphys.2019.01356/full#B9
https://www.frontiersin.org/articles/10.3389/fphys.2019.01356/full#B9
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sperm DNA, axonemal damage, and decreased concentrations of sperm cells have also been 

observed among smokers (Rubes et al., 2005; Zavos et al., 1998; Sun et al., 1997).. Some 

other chemicals that are present in tobacco smoke and cause damage to the cells are tar, 

nicotine, CO, hydrocarbons, such as polycyclic aromatic hydrocarbons, some radioactive 

compounds, and toxic heavy metals. All of these chemicals and compounds directly or 

indirectly contribute to male infertility (Halmenschlager et al., 2009). Tobacco smokes either 

directly or indirectly enhances OS—directly through the mechanism of producing reactive 

oxygen radicals and indirectly through the process of reducing antioxidant levels, 

downregulating the antioxidant defence mechanisms (Shiels et al., 2009; Trummer et al., 

2002). 

Some of the studies also indicated that tobacco smoking has a major effect on both types of 

cells (Leydig & Sertoli) cells. It can cause a change in levels of PRL (Halmenschlager et al., 

2009), E2, FSH, testosterone, LH, and SHBG in plasma (Shiels et al., 2009; Trummer et al., 

2002).  

Besides altering semen parameters, smoking also affects glands, such as pituitary, thyroid, 

and adrenal glands. These effects were observed in both fertile and infertile males (Kapoor & 

Jones, 2005). ART procedure outcomes have also been observed to be lower in couples 

undergoing IVF and ICSI treatment when the male partners are smokers (NCCWCH, 

2004; NICE, 2013). 

1.4.2.3. Radiation 

Radiation on humans has significant effects clinically. Exposure to radiation causes an 

increase in chromosomal aberrations and abnormalities (Martin et al., 1986). 

The male organ most sensitive to radiation exposure is the testis, including the germinal 

epithelium and spermatogonia (Fischbein, 1997; Xu et al., 2008). Several studies concerning 

male reproductive health reported that mobile phone radiation increased ROS production in 

semen samples and caused impaired parameters (Agarwal et al., 2008; Aitken et al., 2005). 

Further, the duration of exposure correlated with impaired semen quality and parameters, such 

as concentration, total motility, and morphological aspect (Agarwal et al., 2008). Another 

study demonstrated that radiation types, such as electromagnetic energy and radiation, can 

induce ROS production, which can damage the DNA of spermatozoa. The duration of 

radiation exposure affects sperm parameters as well (De Iuliis et al., 2009).  
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Another study states that radio frequency electromagnetic wave (RF-EMR) causes DNA 

fragmentation (De Iuliis et al., 2013). The conclusion of these studies confirmed the impact of 

radiations on multiple factors related to male fertility. In addition, radiofrequency 

electromagnetic waves (RF-EMR) disrupt normal cellular and organelle functions (Lavranos 

et al., 2012).                       

Studies revealed that radiation from cell phones and related equipments, microwave ovens, 

laptops, or even Wi-Fi produces has deleterious effects on the testes’ functions, which may 

damage the sperm quality and increase damage to the DNA, causing micronuclei formation 

and leading towards genomic instability, protein kinases, other hormones, and antioxidant 

enzyme disruption. RF-EMF can also induce OS with an increased level of ROS, which, as 

described earlier, has negative effects on sperm quality and may lead to infertility (Kesari et 

al., 2018). 

1.4.2.4. Toxins 

Toxins possess a potential negative on the structure and the function of the sperm cell 

(Esfandiari et al., 2002). Phthalates are found in both domestic and industrial products (Pant et 

al., 2008; Latini et al., 2006). They harm spermatogenesis and damage the DNA of the sperm 

cell (Kasahara et al., 2002). Occupational exposure to toxins, such as heavy metals, including 

cadmium, chromium, lead, manganese, and mercury, impairs semen concentration and other 

semen parameters (Jurasović et al., 2004). 

Furthermore, levels of polychlorinated biphenyls (PCBs) and semen quality have been found 

to be correlated. Mitochondrial dysfunction can be caused by the loss of intracellular 

molecules, such as ATP, increasing ROS production and decreasing sperm motility (Jiang et 

al., 2017). These toxins can also bring estrogenic or anti-androgenic effects to an altered state 

of the hypothalamic-pituitary-gonadal axis. This damages the sperm and its DNA. These 

toxins have also been reported to cause epigenetic changes to the sperm (Mima et al., 2018). 

1.4.2.5. Obesity 

Obesity has been linked to various health issues (Lastra et al., 2006). According to WHO, 

obesity is classified as someone with a body mass index (BMI) greater than 30, and an 

overweight person is someone with a BMI of 25 (Sikaris, 2004). Obesity has physiological, 

psychological, and economical effects irrespective of the cultural and ethnic status (Zhang et 

al., 2020). Obesity can also lead to the production of superoxide from multiple pathways, like 
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from oxidases of NADPH (NOX), oxidative phosphorylation, protein kinase C (PKC) 

activation, glyceraldehyde auto-oxidation, and polyol and hexosamine pathways (Savini et al., 

2013; Serra et al., 2012). ROS has also been reported to affect body weight by interacting 

with the hypothalamic neurons, which are normally involved in the control of satiety and 

hunger behaviour (Horvath et al., 2009). Obesity has been linked to the systemic induction of 

OS, which is associated with the disruptive and irregular production of adipokines, resulting 

in metabolic problems (Esposito et al., 2006). 

Various studies have shown that fat- and carbohydrate-rich diet increases OS and has a role in 

inflammation in people already suffering from obesity (Patel et al., 2007). Different studies 

reported that OS plays a major role in the pathogenesis of obesity and can lead to infertility 

(Savini et al., 2013). Suboptimal semen quality and disrupted hormonal balance in obese 

people are due to ROS and OS overproduction (Kashou et al., 2012). The OS in such patients 

may be further promoted by the dysregulation of adipocytokine and high levels of ROS 

(Furukawa et al., 2004). High saturated fat intake has also been reported to be associated with 

decreased sperm concentration, linking obesity with male infertility (Tsai et al., 2013). A 

large meta-analysis reported that sperm morphology was disrupted among obese males 

(Campbell et al., 2015).  

Spermatogenesis is further affected by the increased ROS production and testicular 

temperature, which has the tendency to denature the required enzymes (Hjollund et al., 2000). 

Decreased sperm concentrations are also correlated with the increased scrotal skin 

temperature (Hjollund et al., 2000).  

1.4.2.6. Diabetes 

A metabolic disorder, such as diabetes mellitus, is characterised by high blood sugar levels 

and is linked to intense and higher levels of free radicals along with reduced and antioxidant 

capabilities. All these factors lead to macro- and microvascular complications (Bashan et al., 

2009). 

The mechanism through which OS works and sometimes expedites the complications of 

diabetes is still under research. Atli et al. (2004) pointed out that there was an increase in OS 

in patients suffering from type 2 diabetes (T2D), which can be comparatively balanced or 

tackled by an improved antioxidant defence system. For the first time, Baynes et al. (1991) 

linked ROS elevation to diabetes mellitus. ROS levels increased in diabetic patients, and 
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antioxidant defence capacity was impaired (Bloch-Damti et al., 2005). However, the 

overgeneration of superoxide in mitochondria in hyperglycaemic patients (Valko et al., 2007) 

resulted in OS (Bloch-Damti et al., 2005). Agbaje et al. (2007) showed that sperm cells had 

more fragmented DNA in men with diabetes. Further, studies demonstrated that sperm 

chromatin DNA integrity in diabetic patients was affected (Alves et al., 2013; Mangoli et al., 

2013). Spermatozoa’s quality was also impaired in these patients (Talebi et al., 2014; Vignera 

et al., 2012).  

1.4.2.7. Aging 

The progressive loss of tissue and organ functions is associated with age. Aerobic cells in the 

body produce reactive oxygen and nitrogen species (RONS), and they have a huge impact on 

ageing and diseases associated with it (Venkataraman et al., 2013). Drastic decreases in 

semen parameter have been observed in males above the age of 40 years (Katib et al., 2014; 

Ramasamy et al., 2015). In addition, the increased deterioration of the DNA of sperm has 

been reported to correlate with increasing age in fertile males (Wyrobek et al., 2006; 

Moskovtsev et al., 2006). Moreover, single- or double-strand breaks among nuclear DNA, 

modification of bases (8-oxo guanine, 8-oxo-7, 8-dihydro- 2′deoxyguanosine), in addition, to 

cytosine glycol and to thymine glycol has been registered (Jacob et al., 2013).  

The total sperm volume, vitality, motility, concentration, morphological abnormality, and 

overall poor sperm kinematics have been observed and increase with age (more than 40 

years). Oxidative damage appears to increase with age (Jacob et al., 2013). Thus, changes in 

sperm parameters may be related to ROS production in elderly patients (Veron et al., 2018; 

Desai et al., 2017).  

In addition, the process of ageing predominantly includes loss of telomere caps, oxidative 

damage to the subcellular structures, and overall damage to the DNA from oxidation due to 

free radicals. These species include ROS, nitrogen species (RONS), reactive aldehyde species, 

transition metal intermediates, and products of advanced glycation end (AGE) (Singh et al., 

2001; Jacob et al., 2013). 

Accoding to Harman’s free radical theory of ageing, collective oxidative DNA damage and 

other cellular components and tissue over a period of time cause ageing and ultimately lead to 

death (Adams et al., 2015). Among the elderly, low cognitive capabilities were reported to be 
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associated with high levels of inflammatory cytokines, which increase the levels of OS 

markers (i.e., MDA, GSH-Px, and PC; Baierle et al., 2015). 

1.4.2.8. Physical exercise 

Personal routines and habits affect one’s quality of life and may expose a person to various 

risk factors and diseases. For example, a physical activity or exercise can cause adverse 

effects, like extreme exertion leading to the production of large amounts of ROS, which then 

causes OS (Peake et al., 2007). ROS production has been examined during and after exercise, 

and the results have shown that excessive exercise leads to ROS production and OS, which in 

turn give rise to infertility (Cooper et al., 2010; Nikolaidis & Jamurtas, 2009; Berryman, 

2010). 

However, ROS production has some supportive functions, such as in muscle metabolism, 

homeostasis, and the adaptive response to exercise (Pattwell, 2004; Powers et al., 2011). 

Extreme physical activity increases oxygen consumption, energy demand, and consequently, 

ROS production to meet the energy demands of the body for carrying out various activities 

(Gomes et al., 2017). However, ROS produced because of intense exercise is important in cell 

signalling. This elevated production may not only pose a risk to the health of the person but 

also represent a signalling adaptation response to exercise (Silva, 2015).  

Various studies have shown that acute exercise-induced OS contributes to proteinuria in 

untrained rats in a post-exercise scenario (Gündüz & Şentürk, 2003). Maximal bicycle 

workouts and exercise have also led to DNA strand breaks (Moller et al., 2001). 

It has been reported in various studies that strenuous forms of exercise for at least half an hour 

increases oxidant production in the muscles, limiting a person’s overall performance and 

causing ROS production (Reid, 2016). 

Furthermore, it has been suggested that ROS may be produced and generated enzymatically 

by extra-mitochondria in contracting muscle, including NADPH oxidase (NOX) (Sakellariou 

et al., 2013) and xanthine oxidase (Powers et al., 2016).  

Exposure to cold and heat results in stress, which is acute in nature, depends on the presence 

of causative factors, and is removed with the removal of the aetiological factor. Similarly, 
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stress that occurs due to physical activities or even due to complete immobilisation is 

considered acute (Rahal et al., 2009).  

1.4.2.9. Psychological stresses 

A person having mental stress is exposed to many hazards. Sperm quality is decreased by 

psychological stress, which enhances ROS production inside seminal plasma by diminishing 

the capacity of antioxidants (Fenster et al., 1997). The presence of psychological stress 

distorts the function of gonadotrophins, which are important hormones regulating many 

functions within the body (Eskiocak et al., 2006). Psychological stress increases the serum 

level of cortisol (in human), causing apoptosis in Leyding cells (Gao et al., 2002). 

In a meta-analysis including 29 different studies, Jiménez-Fernández et al. (2015, 2021) 

reported that different OS markers, such as MDA and others like total nitrites, were higher in 

patients with depression disorders, whereas various antioxidants types, like uric acid, zinc, or 

antioxidant-enhancing enzymes, such as SOD, catalase (CAT), and glutathione peroxidase 

(GPX), were lower in comparison to healthy controls. They suggest that OS plays a role in 

depression and that antidepressant activity may be mediated by improving the antioxidant 

function (Jiménez-Fernández et al., 2015, 2021).    

It was demonstrated that associated directly with higher OS, MDA levels (P < 0.001), lower 

antioxidant uric acid (p = 0.06; p = 0.030) and zinc levels (P < 0.0001), and higher SOD 

levels were reported as well (n = 902; SMD <0.62; 95% CI, 0.07–1.17; P < 0.028). However, 

changes in the levels of total nitrites, CAT and GPX, were found to be nonsignificant.  

Treatment of patients using antidepressant medication significantly reduced the Hamilton 

depression rating scale scores (SMD = 2.65; 95% CI, 1.13–4.15; P = 0.00065), reduced MDA 

levels (4 studies; n = 194; SMD = −1.45; 95% CI, −2.43 to −0.47; P = 0.004), and increased 

uric acid levels (3 studies; n = 212; SMD = 0.76; 95% CI, 0.03–1.49; P = 0.040) and zinc 

levels (3 studies; n = 65; SMD = 1.22; 95% CI, 0.40–2.04, P = 0.004) without differences in 

MDA levels (P = 0.60), uric acid (P = 0.10), and zinc (P = 0.163) compared to the normal and 

healthy control group. 

1.5. Relationship between cigarette smoking and male fertility alterations 

Tobacco consumption is another factor that negatively affects human health. Despite efforts 

worldwide to make people aware of its consequences on health, there are still 1.1 billion 
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smokers worldwide, with majority of them suffering from negative effects produced by 

tobacco (WHO, 2018).   

Cigarette smoke has many hazardous substances, including tar, nicotine (addictive 

compound), carbon monoxide, and heavy metals (e.g., cadmium and lead). The more smokers 

are exposed to these, the more they are at increased or immediate risk of developing various 

conditions, including infertility (Dai et al., 2015). 

Cigarette smoke contains around >7,000 chemicals, such as nitrosamines, which are tobacco-

specific [e.g., nitrosonornicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone], 

polycyclic aromatic hydrocarbons, and further different volatile organic compounds, such as 

benzene (CDC, 2010). These chemical substances could cause damage in almost all the 

human organs, for example, in the lungs, heart, circulatory system, immune system, and male 

and female reproductive systems (Drope et al., 2018). 

Cigarette smoke and tobacco usage are considered to be among the main factors causing 

infertility. Smoking results in leucocytospermia, as discussed previously, and is considered as 

a major endogenous source of ROS. Tobacco smoke contains various hazardous and 

endogenous substances that result in increased ROS generation and production. The level of 

ROS increases in semen, and the spermatozoa become more prone to the risk of OS. As a 

result, the function of sperms gets impaired, thus affecting male fertility (Harlev et al., 2015). 

However, the mechanism by which smoking affects the quality of sperms is not yet fully 

explained.  

Many studies were previously conducted to explain the adverse effects of smoking on 

different sperm parameters. In a meta-analysis involving regular male smokers from 26 

countries, the results showed that smoking was responsible for reducing the overall sperm 

quality, count, and other parameters in fertile and nonfertile males (Li et al., 2011). The study 

also revealed that among male smokers, the sperm count declined to 13%–17% compared to 

the sperm count among nonsmokers (Vine et al., 1994).  

The total decline in semen parameters was found to be more prominent in heavy smokers who 

smoke >20 cigarettes/day, in the moderate group (10–20 cigarettes/day), and in the mild 

smoker group (1–10 cigarettes/day).  
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Thus, the sperm quality and the chance of developing infertility are directly related to the 

number of cigarettes smoked. The negative effect of cigarette smoking was shown to be 

higher in infertile male patients than in the general population (Sharma et al., 2016). 

Another meta-analysis including 13.317 men was conducted to analyse the effect of smoking 

on sperm quality, showing that cotinine was responsible for breaking down testosterone 

hormones (Zhao et al., 2016). Also, paternal smoking is a factor that may result in a number 

of abnormalities in the offspring.  

It has also been reported that pre-conception paternal tobacco smoking increases the chances 

and risk of multiple forms of morbidities in the foetus and offspring, which could be mediated 

through epigenetic modifications (Jenkins et al., 2017).  

Male tobacco smokers showed a tendency towards increased alteration levels of global 

methylation patterns genome-wide among their sperm DNA compared with those who never 

smoked (Jenkins et al., 2017). 

Mothers who smoked during the pregnancy or lactation period could potentially cause 

harmful effects on male children. The changes that occur as a result of maternal smoking 

during gestation and lactation include decreased number of germ cells, damage to the DNA 

inside the germ cells, and the formation of defective sperms in male offspring (Sobinoff et al., 

2014).  

Paternal smoking may decrease the success rate of ART outcomes (Kovac et al., 2015). 

Moreover, male smoking habits could influence the outcomes and clinical pregnancy rate per 

intrauterine insemination (IUI) cycle, thus posing a threat to fertility (Thijssen et al., 2017). 

However, smoking cessation by male partners reduces the risk of ART failure by 4% 

(Vanegas et al., 2017).    

1.6. Alcohol intake and male fertility alterations 

The consumption of alcohol affects the male reproductive function by altering the entire HPG 

axis (hypothalamus–pituitary–gonadal). The production and distribution of GnRH, FSH, LH, 

and testosterone is affected by alcohol intake, and Leydig and Sertoli cells functions get 

altered as well. Thus, alcohol intake impairs the spermatozoa production, shape (morphology 

of sperm), and sperm maturation (Emanuele & Emanuele, 1998).  
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Several studies have shown the mechanism by which alcohol interferes with spermatozoa 

production. Alcohol affects GnRH by various mechanisms, which include distorting its 

cleavage from its precursor forms and interfering with the movement of protein kinase, C15 

proteins, which is required for GnRH to stimulate the production and release of FSH and LH 

from the pituitary gland (Uddin et al., 1996; Kim et al., 2003). Eventually, the endocrine 

balance is disrupted, and consequently, the semen parameters are negatively affected (Salonen 

& Huhtaniemi, 1990).  

The levels of various hormones in the body, such as FSH, LH, and testosterone, are affected 

by chronic alcohol consumption, which negatively affects the interactions between the neural 

and endocrine systems (Emanuele & Emanuele, 2001; Maneesh et al., 2006). 

It is evident from several studies of animals and humans that increased alcohol consumption 

eventually increases the level of a hormone called estradiol, which stimulates the production 

and release of beta-endorphin (Emanuele & Emanuele, 2001). Various experimental studies 

have shown that the chronic use of alcohol affects semen total parameters, its quality, and the 

levels of male reproductive hormones (Pajarinen et al., 1996; Muthusami et al., 2005). Studies 

involving heavy drinkers and nondrinkers have shown that in heavy drinkers, spermatogenesis 

is arrested either partially or completely; it also results in the Sertoli-cell-only syndrome 

(Pajarinen et al., 1994). 

Sertoli cells tend to be more affected by chronic and prolonged alcohol intake (Zhu et al., 

1997). Prolonged alcohol intake causes Sertoli, Leydig, and germ cell atrophy (testicular 

atrophy) and decreases the size of seminiferous tubules and their lumen, leading to apoptosis 

of Sertoli cells and, consequently, male infertility (Zhu et al., 1997). 

Studies on various infertile couples made it evident that teratozoospermia was found in 

around 63% of moderate alcohol drinkers (40–80 gm/day) and in 72% of heavy alcohol 

drinkers (who drank more than 80 gm/day). These studies suggest that alcohol consumption 

plays a very significant and complex role in male infertility (La Vignera et al., 2012). In a 

study conducted by Gaur et al. (2010), around 64% of the participants were oligozoospermic, 

suggesting the damage of the testes in response to regular alcohol consumption (Gaur et al., 

2010). Similarly, oligozoospermia was significantly higher in men with extreme alcohol 

consumption than those in the control group (Zhang et al., 2012). Therefore, alcohol intake 
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does play a pivotal role in causing infertility, but the threshold amount has not yet been 

determined.  

One study also addressed and reported the dose-dependent response and relationship between 

recent alcohol consumption (during the last five days) and semen parameters among young 

Danish men (n = 347). They found that semen characteristics decline with increasing alcohol 

consumption, but not in a dose-dependent way. Also, the estradiol/testosterone ratio increased 

proportional to alcohol intake (Hansen et al., 2012).  

1.7. Purpose  

The aim of this research and study was to investigate the effect of alcohol consumption and 

tobacco smoking on sperm parameters determined according to the WHO laboratory manual 

(pH, sperm volume, count, total motility, morphologically normal spermatozoa, vitality, and 

membrane functional integrity) in male partners of couples undergoing ART.  

Moreover, to determine whether alcohol intake or cigarette smoke causes more deterioration 

to sperm DNA maturity (CMA3) positivity.and sperm DNA fragmentation (sDF). 
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2. Materials and Methods 

2.1. Study Population 

It is a cross-sectional study performed and conducted at the Laboratory facility of 

Reproductive Medicine, Department of Obstetrics and Gynaecology, at the Saarland 

University Hospital, Germany. Semen samples were collected from Prince Rashid Ben Al 

Hassan Military Hospital, located in Irbid city of Jordan and the samples were approved to be 

used, based on the approval received from the Medical Services Human Research Committee 

approval having an approval number of (8/2018) and all participants were given a written 

consent before they were getting included in this study. Two hundred and eleven men in 

reproductive age with primary infertility were included in this study.  After excluding the 

infertility reasons from and caused by female factors and in this study women younger or less 

than 40 years of age with normal menstrual cycles were included only, also with normal 

ovulation, and uterine cavity. 

Moreover, the criteria that were kept to include the patients visiting for treatment, were as 

follow, males who never or did not suffered from or have any form of cryptorchidism, or have 

received any sort of present or past cancer or chemotherapy treatment and medication, further 

genetic or inherited and acquired abnormalities and anomalies such as Klinefelter's syndrome 

patients or having microdeletions at Y-chromosome, hypogonadotropic hypogonadism 

(hormonal disorder), any other drug abuse, having varicocele of any grade, and/or recent fever 

episode. Each patient included in the study had a physical evaluation and examination. 

Repeat participants or Males who did not provide complete data and information about 

smoking habits and further about alcohol consumption were excluded. According to the 

number and volume of cigarettes smoked in one day and in a year the duration of cigarettes 

smoked, the participants were categorized to heavy-smoker participants (n=48) patients who 

consumers or smokes cigarette more than one pack/day for 10 years at least or two pack/ day 

for at least 5 years, and non-smokers (n=70) who did not smoke.  

On the other hand, the measurement used for alcohol intake and consumption was estimated 

by the unites of alcohol consumed:  1 alcohol consumption unit was taken and considered as 

follow: 100 milli litre (ml) wine, and beer one unit equals to 200ml, 30 ml of whisky or either 

vodka. Two groups were studied: no alcohol consumers (n=41) and heavy alcohol consumers 

(n=52) drinking > 7 unites / week.  
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2.2. Methods 

2.2.1. Reproduction and Andrology laboratory materials 

 

Reagent or chemical Company 

Combur 2 Test LN Roche, Switzerland 

Eosin G (Sperm staining) Merck, Germany 

Immersion Oil Merck, Germany 

PureSperm 100 (Sperm preperation) Nidacon international, Sweden 

Sodium chloride (NaCl) 0,9% B.Braun, Germany 

1 ml insulin Syringe sterile U-40 BD Medical, USA 

Biosphere Filter tips (10-20-200-100 ml) Sarstedt, Germany 

Centrifuge tube (15 ml) Vitrolife, Sweden 

Coverslips R. Langenbrinck, Germany 

Handling micropipettes Origio, Denmark 

Handling pipette for assisted reproduction MTG Medical, Germany 

Microscope Slides R. Langenbrinck, Germany 

Pipettes Eppendorf, Germany 

centrifuge bench-top  Sigma-Aldrich, Germany. 

light microscope (Binocular) Olympus, Japan. 

CO2 incubator (C200) Labotect, Germany 

Incubator C16 Labotect, Germany 

Makler Counting Chamber Origio, Germany 

Vortex-Genie 2 Scientific industries, USA. 
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2.2.2. During experimental part Reagents, chemicals, kits, and equipment 

Reagent or chemical used. Manufacturer  

Ethanol (Absolute) Merck, Germany. 

Chromomycin A3 (CMA3) Merck, Germany 

DAPI(4′,6-Diamidine-2′-phenylindole 

dihydrochloride). 
Merck, Germany 

Methanol  

Nuclease-free water  

Paraformaldehyde (PFA) 4% in PBS Merck, Germany 

Phosphate buffer saline (PBS) Qiagen, Germany 

Sodium citrate Morphisto, Germany 

Tris-Acetate-EDTA buffer (TAE) Sigma-Aldrich, Germany 

Tris-EDTA (TE) Merck, Germany 

In-Situ cell death detection kit, Fluorescein 

(TUNEL) 
Sigma-Aldrich, Germany 

Fluorescence Microscope  

Light Microscope Roche Diagnostics, Germany. 
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2.2.3. Collection of the Sample’s Procedure 

All Semen samples from the patients were collected, through the process of masturbation, 

after a period of sexual abstinence for minimum of three days. The container for the collection 

and storage of specimen was kept till the analysis on the heating stage or incubated at (37°C 

temprature) for minimum of 30 minutes to 1 hour for liquefaction process. Then, macroscopic 

examination was performed which included analysis such as (ejaculate appearance of the 

sample, its viscosity, and its pH further analysing volume) and during microscopic analysis 

(The total spermatozoa count and concentration, its total motility along with form of motility, 

vitality, also the aggregation, and morphology of the semen were observed and analysed) all 

of the evaluations was done according and by guidance of the WHO laboratory manual 

(WHO, 2010).  

Table 1: Semen values according to the World health organization in 2010 

Parameters  Reference value (Unit) 

Semen samples volume 1.5 ml 

Sperm concentration (106 per ml) 15 x 106/ml 

Total motility (PR + NP) 40% 

Progressive motility (PR) 32% 

Vitality  58% 

Sperm normal morphology 4% 

              *NP: non-progressive motility, *PR: progressive motility.  

To examine sperm morphology, protamine deficiency and sperm DNA fragmentation, 4 

smears were prepared using 20 µl of ejaculate. After the semen has liquified (>30 minutes), 

the specimen was good mixed before pipetting the aliquot onto the slide and then mixed again 

before preparing the next slide. The Slides air dried for 24hours.  

Papanicolaou staining was performed to analyze and evaluate the sperm total morphology 

according to WHO (2010) strict criteria. After Slides preparation they were analyzed and 

evaluated for the morphological normal spermatozoa percentages and their head, midpiece, 

and flagellum defects with the aid of a bright-field microscope (Zeiss, Jena, Germany) under 

magnification power of 1,000x and included minimum evaluation of 200 spermatozoa. 
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All semen samples were later subjected to the process of purification to remove the somatic 

cells in the sample and other debris as well, the process was as follow: all of the semen 

samples from the patients were loaded onto 45%–90% “two-layer” discontinuous Pure-sperm 

gradients by (Nidacon International) and then subject to centrifugation at 500g at room 

temperature at least for 20 min, which completely separates normal sperm cells from other 

cells like of lymphocytes, epithelial cells, and also from abnormal or immature sperm cells, 

also from bacterial cells, and seminal fluid. 

The supernatant was then discarded and by leaving behind only the sperm pellet at the bottom 

of the 95% fraction and further layered with sperm washing medium which was pre-incubated 

before and centrifuged again for another 500-x g for the time period of 10 min. The 

supernatant this time again was discarded leaving the pellet of sperm cells behind settled in 

the bottom of the tube. A desired and calculated volume and concentration of sperm washing 

media or solution was added to sperm pellet to make 1 ml final sperm suspension.  then it was 

kept and stored at - 80ºC temperature for later use and for analysis.  

2.2.4. Sperm Cells Vitality Assessment (Eosin-Nigrosin-analysis) 

Sperm vitality test and analysis was performed and then analyzed on wet mount smears after 

using the supravital staining with aqueous eosin-nigrosin process as defined as follows. One 

drop of the semen sample was mixed on a fresh slide with one drop of 0.5% aqueous 

yellowish color eosin solution and one drop of nigrosin (10% in water) and covered with the 

help of cover slip. After analyzing again after time of 1–2 minutes the spermatozoa or sperm 

cells which stained red (indicated dead sperm cells) can be easily distinguished from theones 

who left unstained which were representing live sperm cells or spermatozoa. Nigrosine was 

further used to counterstain to facilitate visualization of the unstained live sperm cells. On 

each slide arround 100 sperm cells from each slide were analyzed and evaluated.  

2.2.5. Assessment of Sperm Membrane Integrity (Hos-Test) 

For the analysis of membrane integrity of the sperm cells, hos (hypo-osmotic swelling)-

testwas used, total of 100 µl semen sample from the sperm suspension was added to 

hypoosmotic solution of 1 ml (containg equal parts of 150 mmol/l fructose and total of 150 

mmol/l sodium citrate solutions), then after addition it was followed by a 60 min period of 

incubation at 37 ºC temprature. After this incubation period, a minimum number of 200 sperm 

cells were examined and analyzed for each slide with the help of light microscope and further 
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the percentage and number of spermatozoa that showed abnormalities like in tail part such as 

curly tail is an indicative of changes like swelling in it, these changes were noted and 

calculated. 

2.2.6. Chromomycine (CMA3) staining: Protamine deficiency assessment 

Proteins like protamine deficiency was measured in the sperm cells, by using chromomycin 

A3 (CMA3) staining method as previously presented by Hammadeh et al. (2010). Described 

as, semen sample aliquots were subject to washing in Dulbecco’s Ca2+ – Mg2+ free phosphate 

buffer saline (PBS) and centrifuged at the speed of 250xg for 10 minutes. The sperm cells 

were then subjected to washing, then fixed in Carnoy’s solution (methanol/glacial acetic acid, 

3:1) at 48ºC for the period of 5 min and then spread on fresh clean slides. The CMA3 (Sigma, 

St. Louis, MO, USA) was then dissolved in Mcilvaine buffer (pH 7.0) supplemented with 10 

mmol/l MgCl2 (17 ml of 0.1 mmol/l citric acid mixed with 83 ml of 0.2 mol/l Na2HPO4 and 

10 mmol/l MgCl2) to a total concentration of 0.25 mg/ml.  

Each of these slides was further treated for period of 20 min with using 100 ml of CMA3 

solution in th ecomplete dark environment. Fluorochrome was then analysed and examined 

using a Zeiss photomicroscope III using a combination of exciter dichromic barrier filter of 

BP 436/10: FT 580: LP 470. A total number of 200 sperm cells were analyzed and evaluated 

on each slide prepared. Evaluation of CMA3 staining is reported and done by distinguishing 

between spermatozoa that stain bright yellow considered as positive (CMA3 positive) from 

those staining dull yellow considered as CMA3 negative. 

2.2.7. The Terminal deoxyribonucleotidyltransferase-mediated dUTP Nick-End Labelling assay 

(TUNEL) 

TUNEL assay for Sperm DNA fragmentation was performed as described previously by 

Borini et al., 2006, using in situ Cell Death Detection Kit method according to the 

manufacturer (Roche Diagnostics GmbH, Mannheim, Germany) guidelines.  

All the semen samples from the patients were smeared on a microscopic slide, after smearing 

they all were subject to air dried then fixed in 4% of paraformaldehyde in PBS, at a pH of 7.4 

and then permeabilized with 0.1% Triton X-100 in 0.1% of the sodium citrate, at pH of 6.0. 

DNA that was fragmented was detected with the help of the TUNEL assay kit following the 

manufacturer’s guidelines. For evaluation, a total number of 500 spermatozoa were analyzed 

on each slide and noted, analysis was done by distinguishing spermatozoa that stained bright 
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green (TUNEL positive, indicating fragmented sperm DNA) from those stained dull green 

(TUNEL negative, representing intact DNA of the sperm cell). A Zeiss Photomicroscope III 

was used for the analysis and for fluorochrome evaluation via a combination of exciter 

dichromic barrier filter of BP 436/10: FT 580: LP 470. For quality control, a negative control 

was performed for each sample by using fluorescein-isothiocyanate-labelled dUTP without 

enzyme (Borini et al., 2006).  

2.2.8. Statistical Analysis 

For the statistical modelling and analysis of the data IBM SPSS (Windows software package 

version 24.0 SPSS Inc., USA) was used. After checking and application of the skewness test, 

Kurtosis test, Z-value, and Shapiro test, it has been revealed and demonstrated that the 

samples were not normally distributed. Thus, for the comparison of the quantitative variables 

between the heavy-smokers and non-smokers groups, another test such as the Mann-Whitney 

U-test was primarily used and for the determination of the correlation between the different 

studied parameters of the sperm, further Spearman test was further used and applied as well.  
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3. Results 

3.1. The characteristic of the alcohol consumption study group 

Table 2: Descriptive statistics of the studied parameters, for all the population in Alcohol 

consumption group (N= 93) 

Parameters 

 

Mean SD 

Range 

(Min-Max) 

Age (Years) 35.74 6.542 24-50 

PH 8.65 0.39 7.7-9.5 

Semen volume (ml) 2.97 1.49 0.5-8.5 

Sperm count (mill/ml) 62.21 33.07 1-100 

Total motility (PR + NP %) 28.71 15.98 0-90 

Sperm Vitality (%) 39.30 18.17 5-80 

Functional integrity (%) 51.51 19.10 10-90 

Morphologically normal 

spermatozoa (%) 
30.98 13.33 4-58 

CMA3 positivity (%) 31.62 10.68 13-66 

Sperm DNA fragmentation 

(sDF)(%) 
17.79 8.39 3-41 

Mill/ml: million per ml, PR: progressive, NP: non-progressive, SD: standard deviation 

The patients mean age was 35.74 ± 6.542 years. The sperm parameters: pH, semen volume 

(ml), sperm count (mil/ml), also total motility (PR + NP. %), sperm vitality (%), functional 

integrity (%), and morphologically normal spermatozoa (%) were (8.65 ± 0.39; 2.97 ± 1.49; 

62.21 ± 33.07; 28.71± 15.98; 39.30 ± 18.17; 51.51± 19.10; 30.98 ± 13.33, respectively) 

(Table 2). By those patients, the protamine deficiency (CMA3 positivity) determined by the 

CMA3 staining was ranged between 13 and 66 % with a mean of 31.62 ± 10.688 %, and the 

sperm DNA fragmentation (sDF) determined by the TUNEL assay was in the range (3-41) 

with a mean of 17.79 ± 8.398 %.  
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Table 3: Comparison between the semen analysed parameters between drinkers and non-

drinkers 

Parameters 

Drinker (N=52) 

(M±SD) 

Non-Drinker 

(N=41) 

(M±SD) 

Significance 

(P-value) 

Age (Year) 35.19 ±7.055 36.44 ± 5.840 0.441 

Semen volume (ml) 2.817±1.5688 3.171 ± 1.3828 0.118 

pH 8.685 ±0.3770 8.620 ± 0.4094 0.369 

Sperm count 

(mill/ml) 
53.519 ± 32.6728 73.244 ± 30.5219 0.002** 

Total motility 

(PR+NP) (%) 
23.75 ±10.750 35.00 ± 19.170 0.001** 

Sperm Vitality (%) 34.62 ± 16.652 45.24 ± 18.471 0.009** 

Functional integrity 

(%) 
45.96 ± 17.988 58.54 ± 18.345 0.001** 

Normal sperm 

morphology (%) 
27.06 ± 13.136 35.95 ± 11.969 0.001** 

  M: mean; N: number; SD: standard deviation; **P-value is statistically high significant at the 0.01 level 

By comparing the parameters between drinker (N=52) and non-drinker (N=41), we found that 

the count of the sperms, its total motility, also sperm vitality, functional integrity and normal 

morphology were significantly higher in the non-drinker group (p= 0.002, p=0.001, p=0.009, 

p=0.001 and p=0.001 respectively) (Table 3). 
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Table 4: Comparison of the grade of protamine deficiency in sperm DNA assessed by 

Chromomycine-A3 (CMA3 +) and sperm DNA fragmentation assessed using TUNEL-assay 

(sDF) between drinkers and non-drinkers 

Parameters 

Drinker (N=52) 

(M±SD) 

Non-Drinker (N=41) 

(M±SD) 

Significance 

(P-value) 

Protamine 

deficiency 

(CMA3+) (%) 

37.03 ± 9.753 24.76 ± 7.435 <0.0001** 

Sperm DNA 

fragmentation sDF 

(%) 

22.37 ± 7.602 11.98 ± 5.172 <0.0001** 

M: mean; N: number; SD: standard deviation; **P-value is statistically high significant at the 0.01 level 

The protamine deficiency was observed and showed a significantly lower deficiency values in 

non-drinker group in comparison to drinker group (24.76 ± 7.435 vs. 37.03 ± 9.753, 

p<0.0001). The sDF also showed to be significantly raised and higher in drinker in 

comparison to non-drinker (22.37 ± 7.60 vs. 11.98 ± 5.17 p<0.0001) (Table 4). 
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Table 5: Correlation between the investigated sperm parameters in non-drinker group (N=41) 

 

Total 

Semen 

volume 

(ml) 

pH 

Sperm 

count 

(mill/ml) 

Total 

motility 

(PR+NP) 

(%) 

Sperm 

Vitality 

(%) 

Functional 

integrity 

(%) 

Normal 

sperm 

morphology 

(%) 

Age (Year) 
r -0.207 0.118 -0.333* -0.270 -0.374

*
 -0.287 -0.400

**
 

p 0.195 0.461 0.033 0.088 0.016 0.069 0.010 

Semen volume 

(ml) 

r - 0.021 -0.055 -0.061 0.060 0.095 -0.015 

p - 0.895 0.733 0.704 0.709 0.556 0.924 

pH 
r 0.021 - -0.173 0.023 -0.037 -0.224 -0.186 

p 0.895 - 00.279 0.884 0.817 0.159 0.244 

Sperm count 

(mill/ml) 

r -0.055 -0.173 - 0.242 0.120 0.077 0.545
**

 

p 0.733 0.279 - 0.128 0.454 0.632 0.0001 

Total motility 

(PR+NP) (%) 

r -0.061 0.023 0.242 - 0.436
**

 0.451
**

 0.238 

p 0.704 0.884 0.128 - 0.004 0.003 0.134 

Sperm Vitality 

(%) 

r 0.060 -0.037 0.120 0.436
**

 - 0.698
**

 0.277 

p 0.709 0.817 0.454 0.004 - 0.0001 0.080 

Functional 

integrity (%) 

r 0.095 -0.224 0.077 0.451
**

 0.698
**

 - 0.356
*
 

p 0.556 0.159 0.632 0.003 0.0001 - 0.022 

Normal sperm 

morphology (%) 

r -0.015 -0.186 0.545
**

 0.238 0.277 0.356
*
 - 

p 0.924 0.244 0.0001 0.134 0.080 0.022 - 

** highly significant correlation at the 0.01 level,  * significant Correlation at the 0.05 level. 

In Non-drinker group, the age correlated negatively with sperm count (r=-0.333, p= 0.033), 

sperm vitality (r=-0.374, p= 0.016), and normal sperm morphology (r=-0.400, p=0.010) 

(Table 5).  

A high positive correlation was found between the sperm count and the normal sperm 

morphology (r=0.545, p=0.0001). The functional integrity correlated highly positive with total 

motility (r=0.451, p=0.003), sperm vitality (r=0.698, p=0.0001), and normal sperm 

morphology (r=0.356, p=0.022) (Table 5). 
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Table 6: Correlation between the investigated sperm parameters, protamine deficiency 

(CMA3 positivity (CMA3+)) and fragmentation of the DNA of the sperm(sDF) (%) in non-

drinker group (N=41) 

 Protamine deficiency 

(CMA3+) (%) 

Sperm DNA fragmentation 

sDF (%) 

Age (Year) r 0.193 0.154 

p 0.227 0.338 

Semen volume 

(ml) 

r 0.116 0.021 

p 0.470 0.895 

pH r 0.123 0.087 

p 0.443 0.589 

Sperm count 

(mill/ml) 

r -0.235 -0.214 

p 0.139 0.180 

Total motility 

(PR+NP) (%) 

r -0.319* -0.066 

p 0.042 0.683 

Sperm Vitality 

(%) 

r -0.495** -0.357* 

p 0.001 0.022 

Functional 

integrity (%) 

r -0.436** -0.209 

p 0.004 0.190 

Normal sperm 

morphology 

(%) 

r -0.403** -0.313* 

p 0.009 0.046 

Protamine 

deficiency 

(CMA3+) (%) 

r - 0.291 

p - 0.065 

                   **Correlation is high significant at the 0.01 level, *Correlation is significant at the 0.05 level 

Table 6 shows and presented the correlations between the mean percentage of the different 

parameters of the sperm, the total protamine deficiency (CMA3 positivity) and sperm DNA 

fragmentation (sDF) in non-drinkers group. The protamine deficiency (CMA3+) correlated 

negatively with total motility of the sperms (r= -0.319, p= 0.042), the sperm vitality (r= -

0.495, p=0.001), functional integrity (r= -0.436, p= 0.004) and normal sperm morphology (r=-

0.403, p=0.009). The sperm DNA fragmentation index (sDF) correlated negatively or 

inversely with the total sperm vitality (r=-0.357, p= 0.022) and normal sperm morphology 

(r=-0.313, p=0.046). 
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Table 7: Correlation between the investigated sperm parameters in drinker group (N=52) 

 

Semen 

volume 

(ml) 

pH 

Sperm 

count 

(mill/ml) 

Total 

motility 

(PR+NP) 

(%) 

Sperm 

Vitality 

(%) 

Functional 

integrity 

(%) 

Normal 

sperm 

morphology 

(%) 

Age (Year) 

r 0.098 
0.07

7 

0.332
*
 -0.106 -

0.372
**

 

-0.229 -0.324
*
 

p 0.488 
0.58

9 

0.016 0.456 0.007 0.102 0.019 

Semen volume (ml) 

r - 
0.02

7 

-0.013 0.060 0.029 0.024 -0.095 

p - 
0.85

1 

0.928 0.671 0.841 0.868 0.503 

pH 
r 0.027 - 0.093 0.072 0.018 -0.150 -0.155 

p 0.851 - 0.513 0.610 0.900 0.287 0.273 

Sperm count 

(mill/ml) 

r 
-0.013 0.09

3 
- 

0.298
*
 0.229 0.210 -0.029 

p 
0.928 0.51

3 
- 

0.032 0.0102 0.135 0.840 

Total motility 

(PR+NP) (%) 

r 
0.060 0.07

2 

0.298
*
 

- 
0.458

**
 0.231 0.344

*
 

p 
0.671 0.61

0 

0.032 
- 

0.001 0.099 0.012 

Sperm Vitality (%) 

r 
0.029 0.01

8 

0.229 0.458
*
 

- 
0.617

**
 0.451

**
 

p 
0.841 0.90

0 

0.102 0.001 
- 

0.0001 0.001 

Functional integrity 

(%) 

r 

0.024 -

0.15

0 

0.210 0.231 0.617
**

 

- 

0.287
*
 

p 
0.868 0.28

7 

0.135 0.099 0.0001 
- 

0.039 

Normal sperm 

morphology (%) 

r 

-0.095 -

0.15

5 

-0.029 0.344
*
 0.451

**
 0.287

*
 

- 

p 
0.503 0.27

3 

0.840 0.012 0.001 0.039 
- 

**Correlation is high significant at the 0.01 level, *Correlation is significant at the 0.05 level 

In drinkers’ group (Table 7), the age correlated positively or directly with the sperm count (r= 

0.332, p= 0.016), but negatively with the sperm vitality (r=-0.372, p= 0.007) and the normal 

morphologically sperm (r= -0.324, p= 0.019). In addition, Total motility correlated 

positively with the sperm count (r=0.298, p=0.032), sperm vitality (r=0.458, p=0.001) and 
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normal sperm morphology (r=0.344, p=0.012). Besides, a high positive correlation is found 

between the sperm vitality and functional integrity (r=0.617, p=0.0001). Furthermore, the 

normal morphology showed and demonstrated a high positive correlation with the sperm 

vitality (r= 0.451, p=0.001) and a positive correlation, with the functional integrity (r= 0.287, 

p=0.039) (Table 7). 

Table 8: Correlation between protamine deficiency (CMA3 positivity (CMA3+)) and 

fragmentation of the DNA of the sperm (sDF) (%) with the investigated sperm parameters in 

drinker group (N=52) 

 

Protamine 

deficiency 

(CMA3+) (%) 

Sperm DNA 

fragmentation sDF 

(%) 

Age (Year) 
r 0.215 0.026 

p 0.126 0.857 

Semen volume (ml) 
r -0.111 0.055 

p 0.433 0.701 

pH 
r 0.010 -0.048 

p 0.942 0.738 

Sperm count (mill/ml) 
r -0.359** -0.178 

p 0.009 0.206 

Total motility (PR+NP) (%) 
r -0.442** -0.058 

p 0.001 0.681 

Sperm Vitality (%) 
r -0.347* -0.082 

p 0.012 0.564 

Functional integrity (%) 
r -0.105 0.289* 

p 0.459 0.038 

Normal sperm morphology (%) 
r -0.382** -0.101 

p 0.005 0.477 

Protamine deficiency 

(CMA3+) (%) 

r - 0.402** 

p - 0.003 

**Correlation is high significant at the 0.01 level,    *Correlation is significant at the 0.05 level 

By studying the correlation between the protamine deficiency and the standard sperm 

parameters, we found that the CMA3+ have a high negative correlation with the sperm count 

(r= -0.359, p=0.009), total motility (r= -0.442, p= 0.001) and the morphologically normal 

sperm (r=-0.382, p= 0.005). Besides, it correlates negatively with the sperm vitality (r= -

0.347, p=0.012) (Table 8). 
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In the other hand, the sDF correlated positively with the sperm functional integrity (r=0.289, 

p=0.038) and with the protamine deficiency (r=0.402, p=0.003) (Figure 8) (Table 8). 

 

Figure 8: Correlation between protamine deficiency and sperm DNA fragmentation in group 

of drinker patients (r=0.402, p=0.003) 

3.2. The characteristic of the Cigarette Smoking study group  

Table 9: Descriptive statistic of studied parameters for all population in Cigarette Smoking study 
group (N=118) 

Parameters 

 

Mean SD 

Range 

(Min-Max) 

Age (Year) 32.39 7.98 18.0 – 51.0 

Semen volume (ml) 3.55 1.60 0.8 - 9.5 

pH 8.65 0.37 7.9 - 9.5 

Sperm count (mill/ml) 66.60 31.23 1.0 – 10.0 

Total motility (PR+NP) (%) 32.33 13.69 5.0 – 75.0 

Sperm Vitality (%) 40.13 18.31 1.0 – 80.0 

Functional integrity (%) 50.25 19.83 5.0 – 90.0 

Normal sperm morphology (%) 37.88 15.06 5.0 – 76.0 

Protamine deficiency (CMA3+) (%) 28.95 9.09 12.0 – 76.0 

Sperm DNA fragmentation sDF (%) 11.61 5.03 2.0 – 23.0 

Mill/ml: million per ml, PR: progressive, NP: non-progressive, SD: standard deviation 
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Table 9 gave a brief description about the statistical analysis of all the sperm parameters, its 

protamine deficiency, and DNA fragmentation of the sperm cells. The means ± SD of the age 

was 32.39±7.98 years, the sperm volume was 3.33 ± 1.60 (ml), the pH was 8.65 ± 0.37, sperm 

count was 66.60 ± 31.23 (106/ml), total motility was 32.33 ± 13.69%, sperm vitality was 

40.13±18.31%, functional integrity was 50.25 ± 19.83%, and normal spermatozoa 

morphology was 37.88 ± 15.06%.  

The protamine deficiency ranged between 12 and 76% and had a mean value of 28.95 ± 

9.09%. The sperm DNA fragmentation (sDF) ranged between 2 and 23% and had a mean of 

11.61 ± 5.03% (Table 7). Based on their smoking status the participants were divided into a 

group of smokers of the tobacco and non-smokers: A group of non-smokers (n=70) and a 

group of smokers (n=48). 

By doing comparison between these two groups (Table 10), we have found that the semen 

volume and sperm vitality were significantly raised and higher in the group of non-smokers in 

comparison to smokers (3.79 ± 1.67 vs. 3.20 ± 1.43, p=0.037; 42.86 ± 17.74 vs. 36.15 ± 

18.57, p=0.035 respectively). The same was noticed for the total motility, functional integrity, 

and the percent of normal morphology sperm (p< 0.0001) (Table 9).  

However, the CMA 3+ and the sDF were significantly higher in the group of smokers in 

comparison to smokers (33.27 ± 8.56 vs. 26.00 ± 8.28; 15.55 ± 3.33 vs. 8.91 ± 4.14 

respectively, p< 0.0001) (Table 10). 

Table 10: Comparison of the semen total parameters between smokers and non-smokers 

Parameters 

Smoker (N=48) 

(M±SD) 

Non-smoker (N=70) 

(M±SD) 

Significance 

(P-value) 

Age (Year) 33.12 ± 8.21 31.89 ± 7.84 0.454 

Semen volume (ml) 3.20 ± 1.43 3.79 ± 1.67 0.037* 

pH 8.64 ± 0.37 8.65 ± 0.37 0.913 

Sperm count (mill/ml) 65.75 ± 31.32 67.18 ± 31.38 0.726 

Total motility (PR+NP) (%) 24.27 ± 8.18 37.86 ± 14.00 < 0.0001** 

Sperm Vitality (%) 36.15 ± 18.57 42.86 ± 17.74 0.035* 

Functional integrity (%) 41.56 ± 18.57 56.21 ± 18.54 < 0.0001** 

Normal sperm morphology 

(%) 
28.77 ± 11.82 44.13 ± 13.85 <0.0001** 

  M: mean; N: number; SD: standard deviation; **P-value is statistically high significant at the 0.01 level, *P-

value is statistically significant at the 0.05 level 
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Table 11: Comparison of the grade of protamine deficiency in sperm DNA assessed by 

Chromomycine-A3 (CMA3 +) and sperm DNA fragmentation assessed by TUNEL-assay 

(sDF) between smokers and non-smokers 

Parameters 

Smoker (N=48) 

(M±SD) 

Non-smoker (N=70) 

(M±SD) 

Significance 

(P-value) 

Protamine 

deficiency 

(CMA3+) (%) 

33.27 ± 8.561 26.00 ± 8.283 < 0.0001** 

Sperm DNA 

fragmentation sDF 

(%) 

15.55 ± 3.334 8.91 ± 4.147 < 0.0001** 

M: mean; N: number; SD: standard deviation; **P-value is statistically high significant at the 0.01 level 

Table 12: Correlation between the investigated sperm parameters in non-smokers group 

(N=70) 

 Semen 

volume 

(ml) 

pH Sperm 

count 

(mill/ml) 

Total 

motility 

(PR+NP) 

(%) 

Sperm 

Vitality 

(%) 

Functional 

integrity 

(%) 

Normal 

sperm 

morphology 

(%) 

Age (Year) r -0.174 0.203 -0.396
**

 -0.434
**

 -0.292
*
 -0.147 -0.442

**
 

p 0.151 0.091 0.001 0.0001 0.014 0.226 0.0001 

Semen 

volume 

(ml) 

r - -0.003 0.072 0.284
*
 0.125 -0.060 0.199 

p - 0.981 0.556 0.017 0.304 0.622 0.098 

pH r -0.003 - -0.428
**

 -0.134 -0.045 0.131 -0.020 

p 0.981 - 0.0001 0.270 0.713 0.281 0.869 

Sperm 

count 

(mill/ml) 

r 0.072 -0.428
**

 - 0.371
**

 0.170 -0.008 0.314
**

 

p 0.556 0.0001 - 0.002 0.159 0.945 0.008 

Total 

motility 

(PR+NP) 

(%) 

r 0.284
*
 -0.134 0.371

**
 - 0.527

**
 0.380

**
 0.481

**
 

p 0.017 0.270 0.002 - 0.0001 0.001 0.0001 

Sperm 

Vitality (%) 

r 0.125 -0.045 0.170 0.527
**

 - 0.492
**

 0.286
*
 

p 0.304 0.713 0.159 0.0001 - 0.0001 0.016 

Functional 

integrity 

(%) 

r -0.060 0.131 -0.008 0.380
**

 0.492
**

 - 0.222 

p 0.622 0.281 0.945 0.001 0.0001 - 0.065 

Normal 

sperm 

morphology 

(%) 

r 0.199 -0.020 0.314
**

 0.481
**

 0.286
*
 0.222 - 

p 0.098 0.869 0.008 0.0001 0.016 0.065 - 

**Correlation is high significant at the 0.01 level, *Correlation is significant at the 0.05 level 



 
 

 
49 

In non-smokers, the age has a high negative correlation presented with respect to the sperm 

count (r=-0.396, p=0.001), total motility (r=-0.434, p=0.0001) and the percent of normal 

morphology spermatozoa (r=-0.442, p=0.0001) and a significant negative correlation (r=-

0.292, p=0.014) (table 10). Moreover, the sperm count correlated negatively with the pH (r=-

0.428, p=0.0001) but showed a high positive correlation with percent of normal morphology 

sperm (r=0.314, p=0.008) (Table 12).  

The percent of total motile spermatozoa correlated highly significant with the sperm count 

(r=0.371, p=0.002), the sperm vitality (r= 0.527, p=0.0001), the functional integrity (r=0.380, 

p=0.0001) and the percent of normal morphology sperm (r=0.481, p=0.0001) (Table 12). 

The sperm vitality correlated highly positive with the functional integrity (r=0.492, p=0.0001) 

and the percent of normal morphology spermatozoa (r=0.286, p=0.016) presented in Table 12. 

Table 13: Correlation between the investigated parameters of the semen, the deficiency of 

protamine (CMA3 positivity (CMA3+)) and sperm DNA fragmentation (sDF) (%) among 

non-smoker group (N=70) 

 
Protamine deficiency 

(CMA3+) (%) 

Sperm DNA 

fragmentation 

sDF (%) 

Age (Year) 
r 0.446** 0.484** 

p 0.0001 0.0001 

Semen volume (ml) 
r -0.175 -0.023 

p 0.148 0.851 

pH 
r 0.252* 0.154 

p 0.035 0.203 

Sperm count (mill/ml) 
r -0.391** -0.309** 

p 0.001 0.009 

Total motility (PR+NP) (%) 
r -0.409** -0.276* 

p 0.0001 0.021 

Sperm Vitality (%) 
r -0.277* -0.031 

p 0.020 0.796 

Functional integrity (%) 
r -0.158 0.012 

p 0.190 0.920 

Normal sperm morphology (%) 
r -0.573** -0.452** 

p 0.0001 0.0001 

Protamine deficiency 

(CMA3+) (%) 

r - 0.451** 

p - 0.0001 
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**Correlation is high significant at the 0.01 level, *Correlation is significant at the 0.05 level 

Table 13 showed that the protamine deficiency in the non-smokers group correlated 

positively with the age (r=0.446, p=0.0001) and the pH (r=0.252, p=0.035) but negatively 

with the sperm count (r=-0.391, p=0.001), the total motility (r=-0.409, p=0.0001), the sperm 

vitality (r=-0.277, p=0.020) and the normal morphologically sperm (r=-0,537, p=0.0001). 

Like the CMA3+, the sperm DNA fragmentation correlated with the age positively (r=0.484, 

p=0.0001) but its correlation was found to be negatively with the sperm count (r=-0.309, 

p=0.009) and the percent of normal morphology sperm (r=-0.452, p=0.0001). Besides, a high 

positive association was shown between the CMA3+ and the sDF (r=0.451, p=0.0001) (Table 

13). 

Table 14: Correlation among the investigated sperm parameters in smokers’ group (N=48) 

 
Semen 

volume 

(ml) 

pH 

Sperm 

count 

(mill/ml) 

Total 

motility 

(PR+NP) 

(%) 

Sperm 

Vitality 

(%) 

Functional 

integrity 

(%) 

Normal 

sperm 

morphology 

(%) 

Age (Year) 
r -0.245 0.215 -0.168 -0.068 -0.128 -0.294

*
 -0.476

**
 

p 0.093 0.142 0.255 0.648 0.387 0.042 0.001 

Semen 

volume (ml) 

r - -0.162 0.204 -0.017 -0.053 -0.008 0.079 

p - 0.271 0.163 0.910 0.719 0.957 0.591 

pH 
r -0.162 - 0.018 -0.281 -0.196 -0.053 0.069 

p 0.271 - 0.901 0.053 0.181 0.719 0.641 

Sperm count 

(mill/ml) 

r 0.204 0.018 - 0.115 0.125 0.063 0.164 

p 0.163 0.901 - 0.436 0.396 0.668 0.264 

Total motility 

(PR+NP) (%) 

r -0.017 -0.281 0.115 - 0.313
*
 0.159 -0.158 

p 0.910 0.053 0.436 - 0.030 0.280 0.282 

Sperm 

Vitality (%) 

r -0.053 -0.196 0.125 0.313
*
 - 0.557

**
 -0.347

*
 

p 0.719 0.181 0.396 0.030 - 0.0001 0.016 

Functional 

integrity (%) 

r -0.008 -0.053 0.063 0.159 0.557
**

 - 0.033 

p 0.957 0.719 0.668 0.280 0.0001 - 0.826 

Normal sperm 

morphology 

(%) 

r 0.079 0.069 0.164 -0.158 -0.347
*
 0.033 - 

p 0.591 0.641 0.264 0.282 0.016 0.826 - 

**Correlation is significant at the 0.01 level, *Correlation is significant at the 0.05 level 

The age in smokers group correlated negatively with the functional integrity r=-0.294, 

p=0.042) and the percent of normal morphologically sperm (r=-0.476, p=0.001) (Table 14). 

The sperm vitality correlated positively with the total motility percent (r=0.313, p=0.030), 

functional integrity (r=0.557, p=0.0001) but correlated negatively with the morphologically 

normal spermatozoa (r=-0.347, p=0.016) (Table 14).  
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In contradiction to non-smokers group, no correlation is observed between the CMA3+ and 

the sDF (Figeure 9). Besides, the CMA3+ correlated positively with the age (r=0.377, 

p=0.008) and negatively with the sperm count (r=-0.289, p=0.046). However, the sDF showed 

no correlation to any of the studied parameters mentioned in the table 15. 

Table 15: Correlation between the investigated sperm parameters, protamine deficiency 

(CMA3 positivity (CMA3+)) and sDF (%) in smoker group (N=48) 

 

Protamine 

deficiency 

(CMA3+) (%) 

Sperm DNA 

fragmentation sDF (%) 

Age (Year) 
r 0.377** 0.117 

p 0.008 0.427 

Semen volume (ml) 
r 0.089 -0.158 

p 0.549 0.284 

pH 
r -0.007 -0.050 

p 0.963 0.738 

Sperm count (mill/ml) 
r -0.258 0.113 

p 0.076 0.443 

Total motility (PR+NP) (%) 
r 0.031 0.209 

p 0.835 0.154 

Sperm Vitality (%) 
r -0.289* -0.044 

p 0.046 0.767 

Functional integrity (%) 
r -0.259 -0.128 

p 0.075 0.386 

Normal sperm morphology (%) 
r -0.090 -0.069 

p 0.543 0.643 

Protamine deficiency (CMA3+) (%) 
r - 0.099 

p - 0.503 

**Correlation is significant at the 0.01 level, *Correlation is significant at the 0.05 level 
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Figure 9: Correlation between protamine deficiency and sperm DNA fragmentation in group 

of smoker patients (r=0.099, p=0.503). 

3.3. The characteristic of groups according to the lifestyle 

Table 16: Descriptive statistic of studied parameters for all population in Lifestyle group (N= 

100) 

Parameters 

 

Mean SD 

Range 

(Min-Max) 

Age (Years) 34.20 7.66 21.0 – 5.0 

PH 8.66 0.37 7.9 – 9.5 

Semen volume (ml) 3.00 1.51 0.5 – 9.5 

Sperm count (mill/ml) 59.39 32.45 10.0 – 100.0 

Total motility (PR + NP %) 24.00 9.56 0 – 70.0 

Sperm Vitality (%) 35.35 17.52 5.0 – 80.0 

Functional integrity (%) 43.85 18.31 5.0 – 85.0 

Morphologically normal 

spermatozoa (%) 
27.88 12.48 5.0 – 58.0 

CMA3 positivity (%) 35.22 9.34 21.0 – 76.0 

Sperm DNA fragmentation 

(sDF)(%) 
19.09 6.83 7.0 - 41.0 

Mill/ml: million per ml, PR: progressive, NP: non-progressive, SD: standard deviation 
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The statistical analysis performed on the sperm different parameters such as protamine 

deficiency, sperm DNA fragmentation with respect to the lifestyle of population (N=100) was 

summarized in the table 14. The means ± SD of the age was 34.20±7.66 years, the pH was 

8.66±0.37, the sperm volume was 3.00 ± 1.51 (ml), sperm count was 59.39 ± 32.45 (106/ml), 

total motility was 24.0 ± 9.51%, sperm vitality was 35.35±17.52%, functional integrity was 

43.85 ± 18.31%, and normal spermatozoa morphology was 27.88 ± 12.48% (Table 16).  

The protamine deficiency ranged between 21 and 76% and had a mean value of 35.22 ± 

9.34%. The sperm DNA fragmentation (sDF) ranged between 7 and 41% and had a mean of 

19.09 ± 6.83% (Table 16). 

Table 17: Comparison of the semen analysis parameters between smokers group and drinkers 

group 

Parameters 

Smoker (N=48) 

(M±SD) 

Drinker (N=52) 

(M±SD) 

Significance 

(P-value) 

Age (Year) 33.12 ± 8.21 35.19 ± 7.05 0.127 

Semen volume (ml) 3.20 ± 1.43 2.81± 1.56 0.073 

pH 8.64 ± 0.37 8.685 ± 0.37 0.479 

Sperm count (mill/ml) 65.75± 31.32 53.51± 32.67 0.056 

Total motility (PR+NP) 

(%) 
24.27 ± 8.18 23.75 ± 1.750 0.470 

Sperm Vitality (%) 36.15 ± 18.57 34.62 ± 16.65 0.835 

Functional integrity (%) 41.56 ± 18.57 45.96 ± 17.98 0.127 

Normal sperm 

morphology (%) 
28.77 ± 11.82 27.06 ± 13.13 0.332 

M: mean; N: number; SD: standard deviation 

As illustrated in table 17, no significant difference was observed in the semen analysis 

parameters between the smoker and drinker groups. 

However, the protamine deficiency was significantly higher in the drinker group in 

comparison to the smokers (37.03 ± 9.75 vs. 33.27 ± 8.56, p=0.02) (Table 18). The same for 

the sDF which was significantly higher in the drinker in comparison to the smoker (22.37 ± 

7.602 vs. 15.55 ± 3.33, p < 0.0001) (Table 18). 
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Table 18: Comparison of the grade of protamine deficiency in sperm DNA assessed by 

Chromomycine-A3 (CMA3 +) and sperm DNA fragmentation assessed by TUNEL-assay 

(sDF) between smokers’ group and drinkers’ group 

Parameters 

Smoker (N=48) 

(M±SD) 

Drinker (N=52) 

(M±SD) 

Significance 

(P-value) 

Protamine deficiency 

(CMA3+) (%) 
33.27 ± 8.56 37.03 ± 9.75 0.020** 

Sperm DNA 

fragmentation sDF (%) 
15.55 ± 3.33 22.37 ± 7.60 < 0.0001** 

M: mean; N: number; SD: standard deviation; **P-value is statistically high significant at the 0.01 level 
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4. Discussion  

In the last decade specifically, infertility has become a global health problem not only for 

aged couples but also for couples in their reproductive ages (Fang et al., 2018). Different 

studies have shown that the number of couples with secondary infertility is increasing 

compared to couples with primary infertility diagnosis (Fang et al., 2018). Male infertility 

factors are subdivided into extrinsic ones, including environmental and lifestyle factors, and 

intrinsic ones, like congenital disorders (Wang et al., 2020) 

In fact, different studies conducted showed that semen parameters may be affected by various 

lifestyle (Hammadeh et al., 2010; Jensen et al., 2014) and environmental (Boeri et al., 2019; 

Amor et al., 2021) factors. The issue concerning the relationship between tobacco smoking 

and the quality of semen still remains controversial. A different number of studies and 

research failed to establish the association between tobacco smoking and sperm parameters 

and quality (Ozgur et al., 2005; Kumar et al., 2014). On the contrary, some other studies 

pointed out that tobacco smoking acts as a risk factor for infertility (Amor et al., 2021; Hamad 

et al., 2014).  

Therefore, in the first part of the study, we focused on how smoking adversely affects sperms 

(volume, density, functional or membrane integrity, and sperm DNA maturation in men 

attending assisted reproduction programs). The results indicated that the semen parameters 

were significantly higher in nonsmokers than in smokers. The total motility (PR+NP%) in 

smokers was 24.27 ± 31.32 % vs. 37.86 ± 14.00% (p < 0.0001). The same was observed for 

sperm vitality (36.2 ± 18.56% vs. 42.9 ± 17.74%; p = 0.035), membrane integrity (41.6 ± 

18.6% vs. 56.2 ± 18.6%; p = 0.0001), and morphologically normal sperm (28.8 ± 11.8% vs. 

44.13.85%; p < 0.0001). However, protamine deficiency (33.3 ± 8.6% vs. 26.0 ± 8.3%; 

p<0.0001) and DNA fragmentation (15.6 ± 3.3 vs. 8.9 ± 4.1%; p<0.0001) were significantly 

higher in smokers than in nonsmokers (Tables 8 and 9). However, it did not have any 

significant effect on the ejaculation volume (3.2 ± 0.37 ml vs. 3.79 ± 1.6 ml; p = 0.913) or 

sperm cell count (65.7 ± 31.32 vs 67.19 ± 31. 39 mill/ml) (Table 8). The current study shows 

that smoking causes sperm DNA damage, thus affecting its quality and eventually leading to 

infertility (Tables 8 and 9). These findings confirm earlier studies conducted by Hammadeh et 

al. (2010) and Amor et al. (2021).  
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The present results agree with those of several previous studies on the impacts of tobacco and 

cigarette smoking on human sperm cells (Aitken et al., 2014; Asare-Anane et al., 2016) and 

sperm parameters (Sharma et al., 2016; Mostafa et al., 2006).   

Nicotine in low concentration (≤1 mmol) affects the motility of sperm. In higher amounts (≥1 

mmol l), it decreases sperm viability (Oyeyipo et al., 2014; Bundhun et al., 2019). Cigarette 

smoke negatively influences the DNA integrity of spermatozoa, the protamination process 

(Hamad et al., 2014), and the spermatozoa DNA methylation patterns (Al Khaled et al., 2018; 

Hamad et al., 2018; Amor et al., 2021).  

Cigarette smoking produces and promotes ROS production, as reported earlier (Kumar et al., 

2015; Hammadeh et al., 2010; La Maestra et al., 2015; Perrin et al., 2011), causing OS. A 

cigarette’s components affect the DNA by ROS (Opuwari & Henkel, 2016; Cui et al., 2016), 

sperm motility (Agarwal et al., 2003; Agarwal et al., 2015; Athayde et al., 2007), morphology 

(Aziz et al. 2004), and sperm DNA damage (Desaiet al., 2009; Agarwal et al., 2015; 

Hammadeh et al., 2010). They also cause apoptosis (Agarwal et al., 2005). It was suggested 

that smoking increases leukocyte levels in sperms by 48% compared to nonsmokers (Saleh et 

al., 2002). Smoking also elevates the DNA fragmentation index (37.66% vs. 14.51%, 

P < 0.001) (Elshal et al., 2008). Further, ROS production in smokers leads not only to OS but 

also to target protamine (Hammadeh et al., 2008). OS affects the sperm mitochondrial 

respiratory activity and nuclear DNA fragmentation (Ferramosca et al., 2013). Consequently, 

the motility of spermatozoa could be decreased by tobacco smoking. Extrinsic factors causing 

OS could damage the DNA of the sperm, which may result in several pathologies of the male 

reproductive system (Cho & Agarwal, 2017). An excessive production of ROS affects the 

endocrine function, leading to infertility (Darbandi et al., 2018). 

OS affects sperm parameters, including total motility and overall sperm morphology in 

subgroups (Ramya et al., 2010; Oumaima et al., 2018; Dobrakowski et al., 2017; Bui et al., 

2018), thus deteriorating fertilisation, implantation, pregnancy, and embryonic development 

(Osman et al., 2015; Simon et al., 2017). In addition to OS, nicotine (Haque et al., 2014) also 

damages the DNA of spermatozoa (Arabi, 2004). It also causes spermatozoa capacitation, 

causing infertility (Sofikitis et al., 2000).  

Lead and cadmium are important constituents of tobacco smoking, causing mutagenesis and 

testicular degeneration (Jurasovic et al., 2004) and leading to male infertility (Wang et al., 

https://www.frontiersin.org/articles/10.3389/fphys.2019.01356/full#B10
https://www.frontiersin.org/articles/10.3389/fphys.2019.01356/full#B6
https://www.frontiersin.org/articles/10.3389/fphys.2019.01356/full#B6
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2016; de Angelis et al., 2017). However, the correlation between them remains controversial, 

as described by Pant et al. (2014). Also, a minimal exposure apparently has no effect (Pant et 

al., 2014). The findings of the present study demonstrated that sperm parameters were more 

affected in male smokers than in male nonsmokers (Tables 8 and 9).  

In addition, male patients who were not smoking cigarettes (n = 70) showed that the mean % 

of the sperm DNA fragmentation (sDF) (8.9 ± 4.14%) showed significant positive correlation 

with the age of the patients (r = 0.0484; p < 0.0001), sperm count (r = -0.309; p < 0.009), total 

motility (r =-0.276; p < 0.021), morphologically normal spermatozoa (r = -452, p < 0.0001), 

and protamine deficiency (r = 0.451; p < 0.0001) (Table 11). In contrast, in the smoker group 

(n = 48), the mean percentage of sDF (15.55 ± 3.33%) showed that the semen volume, pH, 

sperm vitality, morphologically normal spermatozoa, and protamine deficiency (CMA3+) 

were negatively correlated with the age of the patients (r = 0.377, p < 0.008) and sperm 

vitality (r = -0. 289, p = 0.046) (Table 13). 

Other studies have shown that the DNA of sperm cells of the smoker group have higher levels 

of fragmentation in male subjects in comparison to those of the nonsmoker group (Elshal et 

al., 2009; Andrabi., 2007; Hammadeh et al., 2010; Aydin et al., 2013). Smoking decreases the 

level of antioxidants in seminal plasma (Pasqualotto et al., 2008). Damage to the DNA may 

be idiopathic or due to excessive ROS production (Saleh et al., 2003). Abnormalities during 

the arrangement of chromatin may also cause infertility (Sakkas et al., 2000; Saleh et al., 

2002; Spanò et al., 2005), affecting embryo development (Gannon et al., 2013; Simon et al., 

2014). DNA damage may also be caused by apoptosis, DNA strand breakage, and any defect 

during the sperm maturation process (Sakkas &and Alvarez, 2010; Cho & Agarwal, 2017).  

The epigenetic mechanism that leads to infertility is yet to be explained (Laqqan et al., 2017). 

Smoking may lead to infertility through methylation (Shenker et al., 2013; Al Khaled et al., 

2018). In addition to smoking, alcohol consumption may affect the sperm quality (Condorelli 

et al., 2015) and the morphology of sperm reversibly (Hadi et al., 1987). Giving up alcohol 

intake may reverse the changes (Mokdad et al., 2004). 

As shown by various studies, alcohol increases OS and consequently causes infertility 

(Yuksel et al., 2005). Loft et al. (2005) demonstrated that the breakage of DNA had no 

relation to the consumption of alcohol. However, Muthusami and Chinnasswamy (2005) 

showed that FSH, LH, E2, and testosterone levels decreased. One of the meta-analysis with 
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57 total studies (n = 29,914 participants) found a positive association between alcohol intake, 

semen volume, and morphology and motility of spermatozoa (Li et al., 2016). These findings 

were also supported by Rossi et al. (2011). 

In the present study, a comparison between the alcohol drinker group (n = 52) and the 

nondrinker group (n = 41) showed that the mean sperm count (53.5±32.7 mill/ml), total 

motility (23.8±10.8%), sperm vitality (34.6±16.6%), membrane functional integrity 

(45.9±17.9%), morphologically normal spermatozoa (27.0±13.13%) were significantly lower 

in drinkers (p < 0.001) than in nondrinkers (73.2±30.5 mill/ml, 35.0±19.2%, 45.2±18.4%, 

58.5±18.3%, 35.9±11.9%, p < 0.001, respectively) (Table 2). The chromatin deficiency 

(CMA3+) and sDF of the drinker group were significantly higher than those in the nondrinker 

group (37.0±9.7 and 22.4 ±7.6% vs. 24.8 ±7.4 and 11.9 ± 5.2%, respectively) (Table 3).  

Also, the present study demonstrated that all investigated parameters differed significantly 

between alcohol drinkers and nondrinkers except in semen volume and pH values. These 

results were in accordance with other study results that reported that those who are regular 

drinkers have decreased volume and concentration of sperms (Kucheria et al., 1985) even for 

a few days (Hansen et al., 2012). Another meta-analysis involving 15 different cross-sectional 

studies suggests that regular alcohol consumption affects sperm parameters to a greater extent 

(Ricci et al., 2017). Boeri et al. (2019) reported a negative correlation between alcohol 

drinking and sperm parameters, but age and smoking may distort the result. In a cohort study 

(n = 258) by Dunphy et al. (1991) at an infertility treatment centre, 21% of the participants 

consumed around 1 unit per week of alcohol; 10% of these patients consumed 1–5 units per 

week; 23% consumed 6–10 units of alcohol per 7 days, 27% consumed alcohol in the range of 

11–20 units per week, and 19% consumed 20 units of alcohol per week. This longitudinal 

study showed no association and link between alcohol consumption and infertility. Goverde et 

al. (1995) failed to find statistically significant differences between the volume of seminal 

fluid (4.16 ml vs. 3.363 ml), total sperm concentration (10.667.8 mill/ml vs. 8.965.8 mill/ml), 

and percentage of the motile form of spermatozoa (27.0% ± 6.5% vs. 25.5% ± 6.16%) 

between cases and controls with respect to the alcohol consumption pattern. They concluded 

that smoking and alcohol intake did not seem to play a pivotal role in decreasing semen 

quality. However, excessive alcohol intake may further decrease an already low percentage of 

sperm parameters. 
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NADH and acetaldehyde are produced through the alcohol metabolic pathway, leading to 

ROS production (Goverde et al., 1995; Agarwal et al., 2005) and affecting the DNA through 

apoptosis (Shiraishi et al., 2007). Alcohol affects GnRH, leading to an adverse impact on LH 

and FSH (Uddin et al., 1996; Kim et al., 2003) and decreasing testosterone levels (Emanuele 

& Emanuele, 2001; Maneesh et al., 2006), which destroy the endocrine balance and thus 

cause infertility (Salonen et al., 1990). A study involving alcohol consumers and a control 

group showed an increase in E2, FSH, and LH levels in the plasma (Maneesh et al., 2006). 

Also, higher 17-beta estradiol hormone levels and lower concentrations of testosterone affect 

the sperm quality (Muthusami et al., 2005).  

In the nonalcohol drinker group (n = 41), the sperm count (mill/ml) showed significant 

negative correlation with age (r = -0.333; p < 0.033) and positive correlation with normal 

morphological values in ejaculate (r = 0. 545, p < 0.001). Total motility correlated positively 

with the overall spermatozoa vitality (r = 436; p < 0.004) and with the sperm membrane 

integrity or functional integrity (r = 0.451; p < 0.003). Semen vitality showed a correlation 

with the age of the patients (r = 0.374, p < 0.016) and with the functional integrity of sperm (r 

= 698; p < 0.0001). The functional integrity of sperm membranes significantly correlated with 

total sperm motility, sperm vitality, and morphologically normal spermatozoa (r = 0.451, p < 

0.003; r = 0698, p = 0.0001; r = 0.356, p = 0.022, respectively). The mean percentage of 

morphologically normal spermatozoa correlated with the age of the patients (r = -0.400, p < 

0.010), sperm count (r = 0.545; p < 0.0001), and spermatozoa’s functional integrity (r = 

0.356; p < 0.022) (Table 4). 

Protamine deficiency (CMA3) demonstrated a significantly negative correlation with the total 

motility (r = -0.319, p< 0.042) and vitality (r = -0.495, p < 0.001) and positive correlation 

with the functional integrity (r = 0.436, p < 0.004) and with the morphologically normal 

spermatozoa (r = 0.004, p < 0.009). Further, sDF correlated negatively with the vitality of the 

sperm (r = -0.357, p < 0.022) and with sperm morphology (r = -0.313, p < 0.046) (Table 5).    

In the alcohol drinker group, several positive correlations were found between the total sperm 

count and the age (r = 0.332, p < 0.016) and between the sperm count and the total motility (r 

= 0.298, p < 0.032) of the patients.   

Total motility correlated positively with sperm count (r = 0.298, p < 0.032) and sperm vitality 

(r = 0.458, p < 0.001). The functional integrity of spermatozoa correlated with sperm vitality 
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(r = 0.617, p < 0.001) and the mean percentage of morphologically normal spermatozoa (r = 

0.287, p < 0.039). Sperm vitality correlated negatively with the age of the patients (r = -0.372, 

p < 0.007). However, total motility positively correlated with (r = 0.458, p < 0.001), 

functional integrity (r = 617, p < 0.0001) and morphologically normal spermatozoa (r = 0.451, 

p < 0.046) (Table 6).  

The mean percentage of morphologically normal spermatozoa showed a significantly negative 

correlation with the age of the patients (r =- 0.324, p < 0.019) and positively correlated with 

total motility (r = 0.344, p < 0.012), sperm vitality (r = 0.451, p < 0.001), and functional 

integrity of the spermatozoa membrane (r = 0.287, p = 0.039) (Table 6). Protamine deficiency 

(CMA3+) has demonstrated a negative correlation with sperm count, concentration, total 

motility, sperm vitality, and morphologically normal spermatozoa (Table 7). As shown in 

Table 7, SDF (%) correlated with functional integrity and protamine deficiency (r = 0.402, p < 

0.003). These findings confirm previous several studies showing a correlation between 

abnormal protamination (chromatin deficiency) and DNA strand breaks (Aoki et al., 2006; 

Carrell et al., 2007; Hammadeh et al., 2006).  

The results of the present study also agree with previous studies conducted by Martini et al. 

(2004). Increased β-endorphin levels caused DNA fragmentation, resulting in degenerated 

spermatozoa (Anifandis et al., 2014). Alcohol and ethanol consumption negatively affected 

sperm parameters, like sperm count, DNA integrity, and sperm maturation (protamination) 

(Jana et al., 2010; Sansone et al., 2018).  

ROS production may be enhanced by various lifestyles, advancement in technologies, 

environmental pollution, alcohol intake, smoking, and psychological stress (Rakhit et al., 

2013; Barazani et al., 2014; Sullivan & Pfefferbaum, 2014). Obesity and dietary factors are 

also keys and important factors, as reported earlier (Mendiola et al., 2009; Li et al., 2011; 

Afeiche et al., 2013). Further, it has been shown that the risk of not achieving a live birth 

increased by 2.28 (1.08–4.80) to 8.32 (1.82–37.97) times in patients who drink alcohol (odds 

ratio: 55.49–45.64). Modifying drinking habits may increase ART outcomes (Klonoff-Cohen 

et al., 2005).   

The 100 patients in this study were divided into heavy smokers (G.1 = 48) and alcohol 

drinkers (G.2 = 52). Sperm parameters in G.1 and G.2 were compared to determine whether 

smoking or alcohol consumption causes more deterioration in sperm parameters (Table 16). 
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By analysing the sperm quality in the two groups, we found that the age of the patients, semen 

volume, mean concentration of spermatozoa, total motility (PR+NP), sperm vitality, 

functional integrity, and mean percentage of morphologically normal spermatozoa were 

similar in both groups (33.12±8.21 years, 3.20±1.43 ml; 65.75±31.3 mill/ml, 24.27± 8.18%; 

36.15±18.57%, 41.56±18.57, 28.8±11.8% vs. 35.19±7.1 years, 2.8±1.6 ml; 53.5±32.67 

mill/ml; 23.75±1.7%; 34.6±16.6%; 45.9±17.9; 27.1±13.13%, respectively). 

The findings in this study showed that smoking and alcohol intake have similar deleterious 

effects on the sperm parameters. Also, these results confirm previous studies’ findings 

(Muthusami & Chinnaswamy, 2005; Martini et al., 2004; Gaur et al., 2010; Li et al., 2009). 

Various studies showed changes only in sperm morphology (Condorelli et al., 2015). Others 

showed contradictory results (Lopez et al., 2007; Povey et al., 2012; Hansen et al., 2012).  

Furthermore, in the present study, the mean percentage of protamine deficiency (CMA3+) 

was significantly higher in the alcohol consumer group than in the heavy smoker patient 

group (37.0±9.75 vs. 33.3±8.6, p = 0.020). DNA fragmentation levels and the mean 

percentage of sDF in the alcohol consumer group (22.4±7.6%) were significantly higher (p < 

0.0001) than in the heavy smoker group (15.6±3.3%) (Figure 18).               

In the heavy tobacco smoker group (Figure 15), the mean percentage of protamine deficiency 

(CMA3+) showed no significant correlation with the DNA fragmentation of the sperm cells 

(SDF) (r = 0.099, p < 0.503). The alcohol consumer group (Figure 8) showed that DNA 

fragmentation SDF levels correlated significantly with the mean percentage of protamine 

deficiency (r = 0.402, p < 0.003). The present study suggests the adverse effects of cigarette 

smoking and alcohol consumption at various sperm parameters. Alcohol causes a 

peroxidation of lipids and consequently increases ROS production, protein degradation, and 

DNA fragmentation (Wu & Cerdebaum, 2003; Zorn et al., 2003). 

ROS and nitrogen production affects the whole process of spermatogenesis (Agarwal & 

Allamaneni, 2004; Doshi et al., 2012). Exposure to high quantities and levels of ROS can 

generate various modified forms of DNA bases, causing mutagenicity as well as 

carcinogenicity (Soultanakis et al., 2000; Singh et al., 2011). Marselos and Vainio (1991) 

studied the effects of nicotine on sperm cells. Taken et al. (2016) and Ramgir and Abilash 

(2019) noted that nitrous oxide affected sperm motility. Decreased levels of GSH in 

spermatozoa also resulted in loss of sperm cell integrity (Bhardwaj et al., 2000). Heavy 
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alcohol consumption causes an increase in ROS generation, leading to infertility (Das & 

Vasudevan, 2007; Jensen et al., 2014a, 2014b). Moreover, smoking and alcohol consumption 

affect and suppress Nrf2 expression, which plays a major role in protecting against oxidative 

damage and stress (Elsamanoudy et al., 2017).    

Alcohol intake decreases the sperm count and concentration (asthenozoospermia) and causes 

a progressive damage to sperm morphology, especially in the sperm head. So, the 

deterioration in sperm quality appears in direct proportion to the quantity of alcohol intake. 

However, moderate or heavy smoking affects the sperm motility and deteriorates sperm 

quality (Gaur et al., 2010).  

It was demonstrated that in spermatozoa of infertile patients, a negatively significant (p = 

0.01) association was observed between alcohol consumption (daily alcohol intake) and 

polycyclic aromatic hydrocarbon-DNA (which is an early indicator and marker for sperm 

genotoxicity). In addition, PAH-DNA adducts were negatively correlated with the mean 

percentage of morphological normal spermatozoa (r = -0.18, p = 0.016) and with the 

abnormalities of the neck of the spermatozoa (r = -0.21, p < 0.009) (Gaspari et al., 2003).  

Therefore, patients should adopt lifestyle modifications, such as quitting smoking (Wright et 

al., 2014), losing weight through different methods, like diet, education, and exercise (Reis & 

Dias, 2012), and decreasing exposure to harmful toxins, like phthalate (Sedha et al., 2015). It 

was also previously reported that heavy alcohol consumption caused an elevation of scrotal 

temperature and testis, which increased the risk of infertility (Koch et al., 2004). A mild 

sustained increase in testicular and epididymal temperature leads to the production of 

morphologically abnormal spermatozoa (Ahmad et al., 2012).   

Exposures to environmental toxins, like heavy metals and organic solvents, from cigarettes, 

alcohol, or other sources are able to induce toxicity even at low levels of exposure, increasing 

OS and the incidence of abnormal sperm production. As a result, the total sperm count 

decreases (Acharya et al., 2003).                 

Sengupta (2018) recommended few lifestyle changes from tobacco or cigarette smoking, 

ethanol or alcohol consumption, and the use of other illicit and recreational drugs, avoiding 

too much psychological stress, losing weight, and reducing caffeine intake to avoid their 

detrimental effect on male fertility and to bring improvement in the fertility outcome. 

https://www.frontiersin.org/articles/10.3389/fphys.2019.01356/full#B13
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5. Conclusion  

In the light of the present study, tobacco smoking and alcohol intake have deleterious effects 

on the sperm parameter. Separately or together, they negatively affect the sperm parameters, 

sperm maturation, and DNA integrity, but the total impact of these two lifestyle factors on 

sperm parameters is still controversial.  

Chromomycin (CMA3) and TUNEL tests are useful and could be considered as 

supplementary tests to ART treatment to ensure a good prognosis for a patient. However, 

more advanced studies at the molecular level, like DNA methylation and gene polymorphism, 

are necessary to elucidate the harmful effect of tobacco and alcohol on sperm structure and 

quality.    

Moreover, patients who like to undergo assisted reproductive treatment could be advised to 

avoid smoking and drinking alcohol at least three months before they start their ART therapy 

to improve their sperm quality and function. 
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