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Abstract

We give a formalised and machine-checked account of computability theory in the Calculus of
Inductive Constructions (CIC), the constructive type theory underlying the Coq proof assistant.

We first develop synthetic computability theory, pioneered by Richman, Bridges, and Bauer,
where one treats all functions as computable, eliminating the need for amodel of computation.
We assume a novel parametric axiom for synthetic computability and give proofs of results
like Rice’s theorem, the Myhill isomorphism theorem, and the existence of Post’s simple and
hypersimple predicates relying on no other axioms such asMarkov’s principle or choice axioms.

As a second step, we introduce models of computation. We give a concise overview of
definitions of various standard models and contribute machine-checked simulation proofs,
posing a non-trivial engineering effort.

We identify a notion of synthetic undecidability relative to a fixed halting problem, allow-
ing axiom-free machine-checked proofs of undecidability. We contribute such undecidability
proofs for the historical foundational problems of computability theory which require the iden-
tification of invariants left out in the literature and now form the basis of the Coq Library of
Undecidability Proofs.

We then identify the weak call-by-value λ-calculus L as sweet spot for programming in a
model of computation. We introduce a certifying extraction framework and analyse an axiom
stating that every function of type N→N is L-computable.





Zusammenfassung

Wir behandeln eine formalisierte und maschinengeprüfte Betrachtung von Berechenbarkeit-
stheorie im Calculus of Inductive Constructions (CIC), der konstruktiven Typtheorie die dem
Beweisassistenten Coq zugrunde liegt.

Wir entwickeln erst synthetische Berechenbarkeitstheorie, vorbereitet durch die Arbeit von
Richman, Bridges und Bauer, wobei alle Funktionen als berechenbar behandelt werden, ohne
Notwendigkeit eines Berechnungsmodells. Wir nehmen ein neues, parametrisches Axiom
für synthetische Berechenbarkeit an und beweisen Resultate wie das Theorem von Rice, das
Isomorphismus Theorem von Myhill und die Existenz von Post’s simplen und hypersimplen
Prädikaten ohne Annahme von anderen Axiomen wie Markov’s Prinzip oder Auswahlaxiomen.

Als zweiten Schritt führen wir Berechnungsmodelle ein. Wir geben einen kompakten
Überblick über die Definition von verschiedenen Berechnungsmodellen und erklären maschi-
nengeprüfte Simulationsbeweise zwischen diesen Modellen, welche einen hohen Konstruk-
tionsaufwand beinhalten.

Wir identifizieren einen Begriff von synthetischer Unentscheidbarkeit relativ zu einem fix-
ierten Halteproblem welcher axiomenfreie maschinengeprüfte Unentscheidbarkeitsbeweise
erlaubt. Wir erklären solche Beweise für die historisch grundlegenden Probleme der Berechen-
barkeitstheorie, die das Identifizieren von Invarianten die normalerweise in der Literatur aus-
gelassen werden benötigen und nun die Basis der Coq Library of Undecidability Proofs bilden.

Wir identifizieren dann den call-by-value λ-Kalkül L als sweet spot für die Programmierung
in einem Berechnungsmodell. Wir führen ein zertifizierendes Extraktionsframework ein und
analysieren ein Axiom welches postuliert dass jede Funktion vom Typ N→ N L-berechenbar
ist.





Acknowledgements

This thesis is a product of more than seven years of research. Since then, my journey through academia has brought
me to many great places and introduced me to many great people. I feel that the final product of the journey – this
thesis – is a result of a big collaboration of all the people who journeyed with me.

Ein riesiger Dank geht an meine Familie. Papa, ich hab die letzten Jahre häufig gemerkt wie viel ich von dir gelernt
habe, und wie viel ich noch lernen kann. Die Leichtigkeit, die du zeigst, während du jeden Morgen so früh aufstehst,
und die Energie, die du trotzdem für dein Umfeld hast, sind mir ein Vorbild. Mama, deine Liebe, dein Interesse,
deine Unterstützung, dein Verständnis und dein Vertrauen waren unabdingbar für mich. Joshua, danke dass du
mich in FIFA bisweilen hast gewinnen lassen. Opa, es macht mich immer noch traurig, dass du meinen Werdegang
nicht begleiten konntest. Danke für das Fördern meiner Neugier und dein Vertrauen in meine Fähigkeiten ab dem
ersten Tag. Ich wäre ohne euch alle nie an den Punkt gekommen, überhaupt diese Dissertation zu schreiben.

Mi familia peruana, gracias por todo. Saskia, Gabriel, Ximena, Miguel, Daniel, Priscilla, Raphita, Yuanse, Hans,
Fanny, Guapo, Veronika, Walter, Nimia: Danke für eure Fröhlichkeit, eure Toleranz und eure Liebe. Danke, dass ihr
mich aufgenommen habt, für die vielen vielen schönen Erinnerungen und danke dass ihr mich behalten habt. Los
quiero mucho! Besonderer Dank an dieser Stelle auch an Saskia und Toni für Jolly Jumper.

Kristin, Christina, Sina, Leah, Ricardo, Peter, Leonie, Lynn, Taek, Miran, Nicola, Joel, Adéle, Susanne, Anela und
Maral: Danke für die tolle Zeit in der Arndtstraße, danke für die vielen schönen Abende und das viele gute Es-
sen, danke für euer Verständnis, wenn ich wieder wochenlang nicht da war, und danke für eure Geduld, wenn ich
wochenlang da war aber trotzdem nicht das Bad geputzt hab. Ich hoffe der Punkt, dass ich hier 16 (!) Menschen
danken muss ist kein Hinweis darauf, dass ich euch ein schlechter Mitbewohner. Ihr wart alle großartig! Peter,
danke dass du mein Home-Office-Büropartner warst und für deine Unterstützung – nicht nur dabei pünktlich beim
Frühstück zu erscheinen. Anela, du fehlst in der Arndtstraße. Immer wenn ich friere denke ich an dich und sage mir
“damals haben wir jahrelang ohne Heizung gelebt, das jetzt ist halb so wild”. Et pour les derniers mois, merci beau-
coup à notre coloc Annick! Ganz besonders danken möchte ich auch Christopher und Wolfang für die regelmäßige
Beherbergung in den ersten Jahren meines Studiums.

Den Kopf frei bekommen habe ich in Saarbrücken immer durch Fußball, Theater und den Lesekreis.
Markus, Dirk, Andreas, Lukas, Amer, Timo, Julian, Hazem, Gastón, Torben, Miran, Rayan, Mustafa, Lena, Tristan,

Peter, Nico, Jan, Roland, Alex, Jasmin: Danke, dass ihr euch die Grätschen erspart habt und dass ihr alle genauso
lauffaul wart wie ich (naja, fast alle). Ich werde viele Dinge an Saarbrücken vermissen, aber mit euch zu kicken
vielleicht am meisten. Ein ganz besonderer Dank geht an Julian. Danke für deine Freundschaft, für die Abende im
Viertel, in Rio und in Cumbuco, für die Triftparties und Klavierkonzerte, danke dass du mich den Fußballern und
dem Lesekreis vorgestellt hast. Kein Dank für den gelegentlichen Tritt ans Schienbein, aber das habe ich gern in
Kauf genommen. Für die Zukunft, das sag ich hier ganz öffentlich, hast du eine Sylvester-Cage-Flatrate bei mir.

An alle Thunis-Mitstreiter, die mit mir auf der Bühne standen, improvisiert haben oder in der Nautilus-Bar gefeiert
haben: Danke für eure Energie, für eure Kreativität und eure Liebe zum Theater. Ganz besonders hervorheben
möchte ich Renée, Peter und Julia: Danke für eure Freundschaft über die Jahre!

Ksenija, Mimi, Julian, Franzi, Tristan, Dominik, Newsha, Lena, Jana, Judith: Der Lesekreis hat mich zurück zum
Lesen gebracht, und allein dafür bin ich euch dankbar. Danke dafür wie offen ihr eure Gedanken geteilt habt und
wie sehr ich dadurch meinen Horizont erweitern und meinen Blick auf die Welt verbessern konnte.

Danke auch an all die anderen Freunde nah und fern. Danke, dass ihr immer verstanden habt, dass eine
WhatsApp-Antwort mal länger dauern kann und danke, dass ihr mich über all die Jahre begleitet habt. Beson-
derer Dank dafür an meinen ältesten Freund Jan und an Lena! Lastly, a big thank you to all the people who made
arriving in Paris so pleasant.

Academically, I was incredibly lucky to be part of various amazing communities.
The special atmosphere that I experienced at Saarland University especially during my first years was second to

none. To the Al Bacio-Crew, the Vorkurs-Team, the various tutor teams I was part of, and to the team of Program-
ming 1 18/19 I send huge thanks! Chris, Clara, Jana, Sebastian: Thank you for your friendship, for keeping me
informed about all the small and big things in the world, and for your wisdom in all things concerning Hühnerzucht.
Chris, it was invaluable for me to have somebody to talk to who was feeling the same things and having the same
problems in the last weeks. Prof. Hermanns, thank you for your support in my first years and the amazing recom-
mendation letters. Andrej, Chris, Dominik, Dominique, Fabian, Felix, Marc, Nils, Kathrin, Simon: Thanks for reading
my thesis, for the invaluable fresh perspectives, and the many, many, many typos I never would have spotted.

The theorem proving, programming languages, and Coq community all were incredibly welcome and open. I have
learned a great deal from many people, and I want to thank you all. I especially want to thank the Coq developers
and attendees of the Coq Users and Developers Workshops for the great atmosphere. I always found that a particular
pleasure of working in this field is that approaching the “big names” is possible. Dana Scott and Thierry Coquand



helped me out with historical reference and valuable advice, thank you! I also want to thank Thorsten Altenkirch,
Andrej Bauer, Jasmin Blanchette, Mario Carneiro, Hugo Herbelin, Cătălin Hrit,cu, Jean-François Monin, Pierre-Marie
Pédrot, and Thomas Streicher for discussions and comments, some of which turned out to be essential for my thesis.
Special thanks to Andrej Bauer, Yves Bertot, and Bas Spitters for reading and reviewing this long piece of work.

I had the huge luck to find many people mentoring and advising me. Ohad, thank you for your wisdom, your
guidance, your hospitality, and your continued interest. Dominique, thank you for joining me in my synthetic un-
decidability endeavours, for your hospitality, and for your endurance regarding seemingly impossible Coq proofs.
Matthieu, thank you for introducing me to the MetaCoq and CertiCoq teams, thank you for your friendship, and
thank you for the occassional beer or two in great places. Nicolas, thanks for your support in the last year. I’m
looking forward to spending the next years in Nantes!

DBLP tells me that I published papers and pre-prints with 25 co-authors in the last years, and I’m sure it counts
better than I do. I also was lucky to work with and learn from the people in the MetaCoq and CertiCoq teams. Fabian,
Gert, Dominik, Ohad, Sam, Dominique, Matija, Dominik, Maximilian, Nicolas, Simon, Simon, Kathrin, Théo, Marc,
Edith, Matthieu, Bohdan, Gregory, Steven, Abhishek, Cyril, Marcel, Florian, Felix, Andrew, Zoe, Joomy, John: I
learned something from each and every one of you. Thank you for your energy, for your ideas, and for the great
time I had working with you.

Lastly, I was incredibly lucky to be part of Prof. Smolka’s group in Saarbrücken. Gert, Andrej, Christian, Dominik,
Fabian, Jonas, Kathrin, Moritz, Sigurd, Steven: Thanks for your interest in literally any topic in the world of logic
and type theory, thanks for your curiosity, thanks for the long discussions, thanks for the many things you taught
me, and thanks for the many memories I will keep from travelling to conferences with you. Very special thanks go
to Fabian, for working so closely with me for so many years. Edith, Maximilian, Simon, Dominik, Marcel, Felix,
Roberto: It was an absolute pleasure working with you. I’m very lucky to be able to say that I learned a lot from
everyone of you, not only scientifically. Ute, I always highly appreciated the all-inclusive care, the chats at the water
heater, and that we were spared the stress regarding all administrative things.

Gert, I struggle to express how thankful I am. Your energy and amazement in every single conversation was
inspiring. For more than eight years I knew that I had an adviser and mentor that I could turn to with every
matter. Thank you for teaching me that further simplification is always possible and worthwhile, for tirelessly
explaining the world of research and its hidden pitfalls, for reminding me of the Wittgenstein quote “Alles, was sich
aussprechen lässt, lässt sich klar aussprechen.” when I needed it, and for following this motto in your criticism. I
can’t imagine a Doktorvater who better masters advising on the full scale from letting complete freedom to offering
close collaboration.

Der größte Dank geht an meine Partner der letzten Jahre.
Saskia, du hast mich dahin gebracht wo ich heute bin und mich zu dem gemacht der ich heute bin. Ich hab viel

gelernt, gesehen und verstanden durch dich. Deine Herzlichkeit, dein unbändiger Wille und dein Ehrgeiz bleiben
mir ein Vorbild. Wenn ich gezweifelt hab warst du immer da um mich zu bestärken, und wenn ich mir meiner selbst
zu sicher war, hast du gebremst. Du weißt selbst am Besten wie groß dein Anteil an allem war. Danke.

Dominik, dein unerreichtes Talent zu erkennen, wann eine Situation Leichtigkeit benötigt, wo ich gerade zu
ernst war, und wann eine Situation ernst genommen werden muss, wo ich sie gerade unterschätzt habe, hat mir
unglaublich oft geholfen. Danke, dass ich mich drauf verlassen konnte, dass da jemand zum reden ist, danke für
die unvergesslichen Reisen, die vielen Abende, für das Bier, die Zauberbohnen, die Triftparties, für dein Interesse
an allem drumherum und an meinem Bizeps. I think nobody apart from Gert has shaped my view on research,
mathematics, and writing as much as you did. Thanks for repeating what you said when I accidentally stopped
listening, thanks for your many many explanations at the whiteboard, thanks for the lunch conversations, and
thanks for occasionally leaving me the sofa after lunch. Also thank you for teaching me many space-saving tricks in
LaTeX. I had to use them all for these acknowledgements. Lastly, thank you for reminding me that scientific texts
are allowed to sound good occasionally. The fact that this thesis contains the words “henceforth” and “moreover” is
solely due to you. To keep up a tradition I let one “overview over” remain in the thesis. Happy searching!

Ksenija, danke dass du mich nimmst wie ich bin, aber auch dafür dass du immer siehst wie ich sein will und alles
dafür gibst mich darin zu unterstützen. Ich hab vor kurzem den klugen Satz gelesen, dass “ein Mensch, der etwas
leistet, das nie allein tut. Er kann nur sein, wer er ist, wegen der Menschen, die ihn lieben: [...] Jene Menschen, die
sich jeden Abend denWust aus Halbgarem anhören, den jemand erzählt, um seine Entscheidungen vorzusortieren.”1

Ich kann’s nicht besser sagen. Ich hätte das letzte Jahr voller Lockdowns, Quarantäne und Schreibfrust so nie ohne
dich, dein Zuhören, deine Hilfe beim Vorsortieren meiner Entscheidungen, deinen Rat und deine Liebe durchstehen
können. Durch dich werde ich diese Zeit jetzt aber schlicht als wunderbar in Erinnerung behalten. Danke für deine
Ruhe, dein Verständnis in jeder Lage, deine Geduld und für deinen Mut, mit mir gemeinsam neue Wege zu gehen.

1Falls ich mal Politiker werde, hier die saubere Zitation: Fritzsche, Lara: Achterbahnfahrt für die Zunge. In: Süddeutsche Zeitung Magazin, Heft
28/2021. Abgerufen am 21. Juli 2021. https://sz-magazin.sueddeutsche.de/getraenkemarkt/gruener-tee-noma-redzepi-90420

https://sz-magazin.sueddeutsche.de/getraenkemarkt/gruener-tee-noma-redzepi-90420


Contents

1. Introduction 1
1.1. Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3. Mechanisation in Coq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

I Synthetic computability 7

2. Introduction 9
2.1. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3. Mechanisation in Coq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3. Aspects of CIC 19
3.1. Constructive proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2. Choice principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3. Pigeonhole principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4. Finite types and predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5. Infinite Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4. Decidability and enumerability 31
4.1. Decidability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2. Enumerability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3. List enumerability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4. Semi-decidability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.5. Partial functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.6. On ∃ vs. Σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5. Reducibility 45
5.1. Many-one reducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2. One-one reducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3. Myhill isomorphism theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4. Truth-table reducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6. Axioms for synthetic computability 53
6.1. Church’s thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.2. Synthetic Church’s Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3. Variations of Synthetic Church’s Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.4. The Enumerability Axiom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.5. Rice’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.6. Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7. Axioms in relation to synthetic computability 65
7.1. Consistency and admissibility of CT . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.2. Kleene trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.3. Extensionality axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.4. Classical logical axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.5. Axioms of Russian constructivism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.6. Choice axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



7.7. Axioms on trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.8. Continuity: Baire space, Cantor space, and Brouwer’s intuitionism . . . . . . . . 77
7.9. CIC as basis for constructive reverse mathematics . . . . . . . . . . . . . . . . . . 79

8. Reducibility Degrees 81
8.1. An m-complete predicate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
8.2. Enumerable, infinite predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.3. Simple predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.4. Post’s simple predicate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.5. A tt-complete simple predicate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
8.6. Hypersimple predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
8.7. Construction of a hypersimple predicate . . . . . . . . . . . . . . . . . . . . . . . . 90
8.8. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

9. Turing reducibility 93
9.1. Turing reducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
9.2. Naive Turing reducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
9.3. Bounded Turing reducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
9.4. Total bounded Turing reducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
9.5. The hypersimple predicate HI Turing-reduces to I . . . . . . . . . . . . . . . . . . 99
9.6. Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
9.7. Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

II Models of computation 101

10. Introduction 103
10.1.Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
10.2.Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
10.3.Mechanisation in Coq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

11. The weak call-by-value lambda-calculus L 109
11.1.Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
11.2.Stack machine semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

12. Turing machines 113
12.1.Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
12.2.Verified programming of Turing machines . . . . . . . . . . . . . . . . . . . . . . . 114
12.3.Binary Turing machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
12.4.Single tape Turing machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
12.5.A universal Turing machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
12.6.Simulating L on Turing machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
12.7.Mechanisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

13. Binary stack machines 121
13.1.Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
13.2.Verified programming of binary stack machines . . . . . . . . . . . . . . . . . . . . 122
13.3.Simple binary Turing machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
13.4.Simulating SBTMs on BSMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
13.5.Mechanisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

14. Counter machines 125
14.1.Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
14.2.Simulating BSMs on CMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



15. FRACTRAN 129
15.1.Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
15.2.Simulating counter machines in FRACTRAN . . . . . . . . . . . . . . . . . . . . . 130

16.Diophantine equations 131
16.1.Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
16.2.FRACTRAN computation is elementary Diophantine . . . . . . . . . . . . . . . . 132
16.3.Diophantine Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
16.4.Hilbert’s tenth problem over integers . . . . . . . . . . . . . . . . . . . . . . . . . . 134

17.Mu-recursive functions 135
17.1.Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
17.2.Diophantine relations are µ-recursive . . . . . . . . . . . . . . . . . . . . . . . . . . 136

III Undecidability reductions 137

18. Introduction 139
18.1.Outline with historical references . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
18.2.Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
18.3.Mechanisation in Coq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

19. Synthetic Undecidability 143
19.1.Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
19.2.Synthetic Undecidability by Reduction . . . . . . . . . . . . . . . . . . . . . . . . . 144
19.3.Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
19.4.Other proof assistants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

20. String rewriting systems 147
20.1.Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
20.2.Reducing HaltSBTM to SRH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
20.3.Reducing SRH to SR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
20.4.Reducing HaltSBTM to TSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
20.5.Reducing SR to PCSnf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

21. The Post correspondence problem 153
21.1.Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
21.2.Reducing SR to MPCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
21.3.Reducing MPCP to PCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
21.4.Reducing PCP to BPCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

22. Context-free grammars 157
22.1.Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
22.2.Reducing PCP to CFPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
22.3.Reducing CFPP to CFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
22.4.Reducing CFP to CFI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

23. First-order logic 161
23.1.Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
23.2.Validity, satisfiability, and minimal and intuitionistic provability . . . . . . . . . . 163
23.3.Reducing BPCP to classical provability . . . . . . . . . . . . . . . . . . . . . . . . . 164

24.Higher-order unification 165
24.1.Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165



24.2.Reducing SHOU to HOU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
24.3.Reducing H10C to SHOU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

25. The Coq Library of Undecidability Proofs 169
25.1.Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
25.2.Other machine-checked undecidability proofs . . . . . . . . . . . . . . . . . . . . . 170
25.3.Other Coq libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
25.4.Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

IV Programming in the call-by-value λ-calculus 173

26. Introduction 175
26.1.Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
26.2.Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
26.3.Mechanisation in Coq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

27. Certifying Extraction 177
27.1.Equational reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
27.2.Scott encodings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
27.3.Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
27.4.Universal term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
27.5.Notions of computability theory in L . . . . . . . . . . . . . . . . . . . . . . . . . . 180
27.6.Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

28. Equivalence proofs 183
28.1.Simulating Turing machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
28.2.TM-computable relations are L-computable . . . . . . . . . . . . . . . . . . . . . . 184
28.3.Simulating µ-recursive functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
28.4.Semi-deciding PCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
28.5.Enumerating first-order logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

29.CT in L 189
29.1.CT for L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
29.2.The Sm

n theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
29.3.Towards mechanised admissibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Bibliography 193

Appendix 206

A. Basic Definitions and Notation 207
A.1. Inductive types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
A.2. Propositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
A.3. Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
A.4. Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

B. Glossary of synthetic computability 211



[189] Post. 1944. Recursively
enumerable sets of positive
integers and their decision
problems.

[178] Norrish. 2011. Mechanised
Computability Theory.

[83] Forster and Smolka. 2017.
Weak Call-by-Value Lambda
Calculus as a Model of
Computation in Coq.

[26] Carneiro. 2019. Formalizing
Computability Theory via Partial
Recursive Functions.

[196] Ramos et al.. 2018.
Formalization of the
Undecidability of the Halting
Problem for a Functional
Language.

[67] Ferreira Ramos et al.. 2020.
Formalization of Rice’s Theorem
over a Functional Language
Model.

CHAPTER 1
Introduction

Most textbooks on computability start by introducing a model of computation and then
develop an abstract structural theory of computability and concrete undecidability results.
Proofs are usually presented on an informal level, with many references to the Church-Turing
thesis to avoid spelling out programs in the chosen model. Research papers do not differ vastly
in this regard.

However, if a reader or reviewer wants to check such proofs carefully for correctness, every
invocation of the Church-Turing thesis has to be checked individually. To do so in full formality,
one would have to construct a program in the chosenmodel of computation. As a consequence,
paper proofs in computability have a second, orthogonal kind of omitted details in a proof, in
addition to the usual logical arguments authors deem easy enough to reconstruct for readers
to leave them out. Recovering the details regarding such constructions is largely “a routine
chore” (as already acknowledged in the seminal work by Post [189]), but induces considerable
overhead when working in an interactive proof assistant, where all details have to be provided.

While many areas of mathematics have been machine-checked in proof assistants like Coq,
Lean, Isabelle, HOL, Agda, etc., themain hinderance for computability theory to catch up is the
tedium of giving explicit constructions in models of computation, which is added on top of the
reconstruction of proof arguments and general enough invariants to allow a proof by induction
usual for machine-checked proofs. For involved algorithmic arguments, we estimate that the
explicit constructions add one to two orders of magnitude in proof engineering time and lines
of code. The most ambitious takes on machine-checked computability are by Norrish [178],
Forster and Smolka [83], Carneiro [26], and Ferreira Ramos et al. [196, 67]. They all construct
universal machines and reach Rice’s theorem, but do not go considerably further.

The subfield of computability theory with the greatest influence on present-day computer
science is likely formed by undecidability proofs for concrete problems with applications like
type-checking, planning, unification, satisfiability, or provability. Both decidability and unde-
cidability proofs rely on intricate details which are hard to check manually and various subtle
errors in such proofs have been discovered.1 Furthermore, natural questions in the area re-
main open, like whether solvability of polynomials over rational numbers is decidable. While
machine-checked decidability proofs can be found in the literature [58, 163, 203, 57], we
are not aware of machine-checked undecidability results for natural problems independent of

1E.g. in 1932 Gödel claimed without proof that his decidability proof for the [∃∗∀2∃∗,all, (0)] fragment of first-
order logic could be extended to include equality [101], but the extended fragment was proved undecidable
in 1984 by Goldfarb [98, 97]. Kfoury, Tiuryn, and Urzyczyn [126] remark in their paper on the undecidability
of semi-unification in 1993 that “among the many erroneous claims announcing the decidability of [semi-
unification] there was also ours [125]” from 1988. A result by Ghelli [90] from 1990 implying the decidability
of type-checking and subtyping in F≤ [43] was found to be erroneous by Ghelli himself [91] and superseded by
an undecidability proof by Pierce [185] in 1994. The decidability proof for the MELL-fragment of linear logic
[22] from 2015 was disputed by Straßburger [219] in 2019, leaving the status of the problem unresolved.
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models of computation,rlap.2 i.e. problems other than halting problems or problems subject
to Rice’s theorem.

This thesis takes a radically different approach compared to textbooks, ultimately leading
to feasible approaches for a machine-checked theory of computability and machine-checked
undecidability proofs, both without the overhead of verifying programs in models of compu-
tation. All proofs in the thesis are formalised in a computational, constructive type theory:
The Calculus of Inductive Constructions (CIC) [182] underlying the Coq proof assistant [222].
Consequently, all proofs are machine-checked by Coq.

A machine-checked theory of computability constitutes a further step in the overarching
goal of mechanising the pillar-stones of mathematics and computer science. The mechanisa-
tion in a proof assistant enforces the isolation of clear invariants, which are often left out in
the literature. Thus, we contribute to a better understanding and clearer presentation of these
often-taught topics. Additionally, with the help of Coq we obtain a simplification of proofs and
logical assumptions: our proofs cover every detail, but are often still easier to convey than text-
book arguments, while additionally being fully constructive.

Machine-checked undecidability proofs complement machine-checked decidability proofs
and could be used to settle debates regarding future and past publications of (un)decidability
results since the machine-checked evidence is undebatable.

By basing the development of computability theory in constructive type theory, a founda-
tional system agnostic towards axioms like the law of excluded middle, the textbook strategy
can be reversed: We first develop computability theory based simply on functions rather than
computable functions – a so-called “synthetic approach”. Since Kleene’s work on realizability
in the 1940s, it is well-known that such an approach is possible in constructive logic, since
all constructively definable functions of type N→ N correspond to programs in some model
of computation. The synthetic approach to computability is arguably most natural in con-
structive type theory, where every function is a program in a variant of the λ-calculus. Only
afterwards, we introduce models of computation, show them Turing-equivalent, and present
undecidability proofs for non-computational problems from logic and theoretical computer
science.

In Part I, we introduce the basic notions of synthetic computability like decidability, enu-
merability, semi-decidability, and reducibility. As is natural in type theory, the notions are
based on predicates rather than sets. We prove basic results like Post’s theorem (“enumerable
predicates with enumerable complement are decidable”) or the Myhill isomorphism theorem
(“one-one equivalent predicates are recursively isomorphic”), where the synthetic approach
allows us to focus only on the mathematical essence of the theorems.

Since CIC is consistent with axioms entailing the synthetic decidability of any problem,
proofs showing the absence of a decision function for problems are impossible in CIC without
assuming axioms. We thus assume a parametric form of synthetic Church’s thesis (CT) we
call SCT, postulating a step-indexed interpreter parametrically universal for functions N→
N. The parametric axiom is strong enough to derive all results and in particular an Sm

n -like
theorem. The strict separation between propositions and computation in CIC which renders
virtually no choice principle provable furthermore makes the resulting synthetic theory of
computability agnostic towards axioms like the law of excluded middle or the axiom of choice:
It does not rely on them and moreover both are respectively consistent with the theory. This
stands in contrast to the pioneering work in synthetic computability by Richman, Bridges, and

2and other than those building on the results developed as part of this thesis.
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Bauer [198, 25, 10], where choice principles are assumed and the law of excluded middle can
be disproved.

To demonstrate the versatility and elegance of the resulting theory based on CIC and the
parametric axiom, we give proofs of the undecidability of the synthetic halting problem, Rice’s
theorem, or the existence of (hyper)simple predicates solving Post’s problem formany-one and
truth-table reducibility.

In Part II, the thesis considers various models of computation. We cover λ-calculus, Turing
machines, binary stack machines, counter machines, FRACTAN, and µ-recursive functions.

We provide simulation proofs between the models, establishing them all to be Turing-
equivalent. We also consider Diophantine equations and show a form of the DPRM theorem,
i.e. show that a relation is Diophantine if and only if it is computable in any of the models of
computation considered. The formal techniques used span a variety of approaches like inter-
pretation via an elaborated abstract machine, compilation and linking, or the arithmetisation
of computation. All simulation proofs are fully constructive. As a result, we obtain synthetic
many-one reductions between the respective halting problems.

In Part III, we identify a notion of synthetic undecidability relative to a halting problem
for one of the models from Part II. Synthetic undecidability can be established without the
assumption of any axioms while still avoiding the verification of programs in models of com-
putation. Thus, synthetic undecidability proofs can focus on the essential reasons a problem
is undecidable and allow the isolation of inductive invariants.

We give machine-checked synthetic undecidability results for concrete problems by verify-
ing many-one reduction chains starting at halting problems: (Semi-Thue) string rewriting,
the word problem for semi-groups, the Post correspondence problem, provability, validity,
and satisfiability for intuitionistic and classical first-order logic, the intersection and palin-
drome problems for context-free grammars, and higher-order unification in the simply-typed
λ-calculus are shown undecidable. These problems constitute the basis for the Coq Library of
Undecidability Proofs, a collaborative effort with many contributors, presenting existing and
novel undecidability proofs in a unified library of more than 100.000 lines of code.

In Part IV, the weak call-by-value λ-calculus L is singled out as sweet-spot for the formali-
sation and mechanisation of concrete results. By developing a certifying extraction to L from
a simply-typed subset of Coq, L becomes a powerful tool to close loops for many-one equiva-
lence and Turing-equivalence proofs. We conclude by discussing the axiom CTL, stating that
any function of type N→N is L-computable, in connection to all parts of the thesis.

The four parts of the thesis have individual, detailed introductions and outlines. Parts I to
III can be read in any order. In particular, parts II and III are written in an encyclopedic style,
presenting a unified mathematical introduction to the problems and proofs in the Coq Library
of Undecidability Proofs [82].

1.1 Publications

Parts of the thesis are based on the following publications:
[71] Forster, Heiter, and Smolka. “Verification of PCP-Related Computational Reductions in Coq.” ITP

2018.
[147] Kunze, Smolka, and Forster. “Formal small-step verification of a call-by-value λ-calculus ma-

chine.” APLAS 2018.
[84] Forster and Smolka. “Call-by-value lambda calculus as a model of computation in Coq.” Journal

of Automated Reasoning. 2019.
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[81] Forster and Larchey-Wendling. “Certified Undecidability of Intuitionistic Linear Logic via Binary
Stack Machines and Minsky Machines.” CPP 2019.

[73] Forster, Kirst, and Smolka. “On synthetic undecidability in Coq, with an application to the
Entscheidungsproblem.” CPP 2019.

[152] Larchey-Wendling and Forster. “Hilbert’s Tenth Problem in Coq.” FSCD 2019.
[76] Forster and Kunze. “A certifying extraction with time bounds from Coq to call-by-value λ-

calculus.” ITP 2019.
[211] Sozeau, Anand, Boulier, Cohen, Forster, Kunze, Malecha, Tabareau, and Winterhalter. “The

MetaCoq Project.” Journal of Automated Reasoning. 2020.
[77] Forster, Kunze, and Roth. “The weak call-by-value λ-calculus is reasonable for both time and

space.” POPL 2020.
[79] Forster, Kunze, and Wuttke. “Verified programming of Turing machines in Coq.” CPP 2020.
[216] Spies and Forster. “Undecidability of higher-order unification formalised in Coq.” CPP 2020.
[74] Forster, Kirst, andWehr. “Completeness Theorems for First-Order Logic Analysed in Constructive

Type Theory.” LFCS 2020.
[153] Larchey-Wendling and Forster. “Hilbert’s Tenth Problem in Coq (extended version).” Logical

Methods in Computer Science. 2020.
[70] Forster. “Church’s thesis and related axioms in Coq’s type theory.” CSL 2021.
[78] Forster, Kunze, Smolka, and Wuttke. “A Mechanised Proof of the Time Invariance Thesis for the

Weak Call-by-value λ-Calculus.” ITP 2021.
Furthermore, some results can be found in the following pre-print:

[72] Forster, Jahn, and Smolka. “A Constructive and Synthetic Theory of Reducibility: Myhill’s Isomor-
phism Theorem and Post’s Problem for Many-one and Truth-table Reducibility in Coq.” 2021.

The author of this thesis was the main author of [84, 79, 70, 72] and advised the Bach-
elor theses of Edith Heiter [103], Maximilian Wuttke [238], Simon Spies [215], Dominik
Wehr [233], and Felix Jahn [124]. More information on the connections of the publications
on the thesis can be found in the introduction of every respective chapter.

1.2 Contributions

Many contributions in the thesis were conceived, formalised, and mechanised in joint work,
indicated by the cited paper being co-authored.

Part I We present the first formalised and machine-checked study of synthetic computability
in type theory.
• We introduce decidability, enumerability, and semi-decidability and analyse their relation-

ship on arbitrary base types [73].
• We introduce one-one, many-one, and truth-table reducibility and prove standard results

from textbooks. Results like the characterisation of truth-table reducibility as one-one re-
ducibility are simplified in comparison to textbook proofs [72].

• We give a fully synthetic proof of the Myhill isomorphism theorem, without any axioms, and
extend it to a computational Cantor-Bernstein theorem stating that discrete enumerable
types X , Y with injections X→ Y and Y→ X between them admit an isomophism, i.e. two
functions X→ Y and Y→ X inverting each other [72].

• We present the axioms SCT and EA as parametric synthetic versions of CT, which enable
formalised and machine-checked synthetic computability theory compatible with classical
intuition [70].

• We survey the computational status of axioms in CIC, especially in relation to CT. We
observe that the strict separation of proposition and computation in CIC makes virtually no
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choice principles provable and thus allows the consistent assumption of the law of excluded
middle together with CT [70].

• We develop synthetic computability theory, to an extent of roughly an introductory lecture
to computability.

• We give two synthetic proofs of Rice’s theorem, based on different formulations of SCT.
• We give a synthetic solution to Post’s problem for many-one reducibility, constructing a sim-

ple predicate. We give a direct proof that simple predicates are undecidable and show that
an undecidability proof by many-one reduction from the halting problem is impossible [72].

• We give a synthetic solution to Post’s problem for truth-table reducibility, constructing a
hypersimple predicate. We give a direct proof that hypersimple predicates are undecidable
and show that an undecidability proof by truth-table reduction from the halting problem is
impossible [72].

• We introduce a notion of synthetic Turing reducibility and analyse that its properties cru-
cially rely on Markov’s principle.

• We show that the constructed hypersimple predicate is Turing-reducibility complete.

Part II We introduce several standard models of computation in a unified formal setting: the
weak call-by-value λ-calculus L, multi-tape and single-tape Turing machines, binary stack ma-
chines, counter machines, FRACTRAN, Diophantine equations, and µ-recursive functions. We
prove the Turing completeness of all of these models, by showing that their halting problems
are inter-reducible and that relations R:Nk→N→P are computable in one of the models if and
only if they are in all other. Technically, the contributions lie in finding the right abstractions
and invariants to enable proofs by induction, which are usually both left out in textbooks.
More precisely, we:

• mechanise a definition of Turing machines in Coq [79], based on a formalisation by Asperti
and Ricciotti in Matita.

• survey a verification framework for Turing machines [79]. The framework also has tools
for the verification of time and space complexity, which we do not cover.

• formalise and mechanise the first verified translation of a λ-calculus to Turing machines.
Specifically, we formalise and mechanise a simulation of the weak call-by-value λ-calculus
L on Turing machines using a stack machine semantics for L. The stack machine semantics
was developed mainly by Fabian Kunze and Gert Smolka [147]. The Coq verification of the
resulting Turing machines was carried out mainly by Maximilian Wuttke and Fabian Kunze,
with contributions by the author of the thesis [78].

• mechanise a translation of multi-tape Turingmachines to single-tape Turingmachines [79],
based on a formalisation in the book of Sipser. The Coq verification of the Turing machines
was carried out mainly by Maximilian Wuttke.

• formalise and mechanise a translation of Turing machines with arbitrary alphabet to one
with binary alphabet.

• formalise andmechanise a translation of single-tape binary Turing machines to binary stack
machines.

• extend the translation of binary stack machines to counter machines due to Dominique
Larchey-Wendling [81] to a full simulation result.

• formalise and mechanise a translation from counter machines to FRACTRAN [152].
• survey the synthetic undecidability proof of Hilbert’s tenth problem, carried out by Do-

minique Larchey-Wendling with contributions by the author of this thesis [152].
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• formalise and mechanise a reduction of solvability of Diophantine equations to solvability
of polynomial integer equations via Lagrange’s theorem[153].

• extend the reduction from solvability of Diophantine equations to the halting problem of
µ-recursive functions due to Dominique Larchey-Wendling to a full simulation result [153].

Part III We introduce the notion of synthetic undecidability, which enables undecidability
proofs in Coq not relying on axioms or models of computation [81, 73]. We give machine-
checked synthetic undecidability proofs for most of the prominent historical foundational
problems in the literature. Technically, the contributions lie in finding the right abstractions
and invariants to enable proofs by induction, which are usually left out in textbooks. We cover:
• Post’s correspondence problem [71],
• (semi Thue) string rewriting [71],
• the word problem for semi-groups (also known as Thue rewriting),
• (naive) Tarski-style validity and minimal, intuitionistic, and classical provability for first-

order logic [73],
• the intersection problem and palindrome problem of context-free grammars [71],
• higher-order unification in the Curry-style simply-typed λ-calculus [216].
We report on the creation of the Coq Library of Undecidability Proofs, together with Dominique
Larchey-Wendling.

Part IV We identify the weak call-by-value λ-calculus as sweet spot for developing concrete
results in a model of computation [77]. We introduce an extraction framework yielding certi-
fied terms in L for simply-typed, non-dependent Coq functions [76, 211]. The tactics for the
automatic verification of terms and the semi-automatic time complexity verification are not
covered and are due to Fabian Kunze [76]. We use the certifying extraction framework for
the following results:
• We verify a simulation of µ-recursive functions in L [153].
• We verify a simulation of Turing-machines in L [78]. We do not cover the time complexity

of the simulation, which is due to Fabian Kunze.
• We verify a reduction of first-order provability to the halting problem of L [74].
• We verify a reduction of the Post correspondence problem to L.
Lastly, we verify the Sm

n theorem for L and discuss several equivalent formulations of CT using
L and other models of computation.

1.3 Mechanisation in Coq

The mechanised proofs of Part I are in a repository on GitHub:
https://github.com/uds-psl/coq-synthetic-computability

The results of Part II, III, and IV are contributed or in the process of being contributed to
the Coq Library of Undecidability Proofs. All results can also be found here:

https://ps.uni-saarland.de/~forster/thesis

Comments on length and authorship of the respective code can be found in the respective
introductions of the four parts of the thesis.

All code compiles with The Coq Proof Assistant version 8.13.2.
The central statements in the pdf of this thesis are hyperlinked with the html-version of the

Coq code, indicated by a clickable -symbol. Furthermore, symbols in sf font are hyperlinked
with their definitions.

https://github.com/uds-psl/coq-synthetic-computability
https://ps.uni-saarland.de/~forster/thesis
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CHAPTER 2
Introduction: SyntheticComputability

Constructive type theory as a foundational system is built on top of a λ-calculus with induc-
tive types, making computation native. Thus, it is natural to treat the function space N→N as
the type of computable functions, and consequentially to define computational notions such as
decidability and enumerability in terms of such functions, without mentioning any traditional
model of computation.

Such definitions can be seen as synthetic. In synthetic approaches to an area of mathematics,
the objects of the logic (which, in our case, is constructive type theory) are turned into the
structures under investigation, often by assuming suitable axioms on the objects of the logic.
Synthetic approaches thereby use the axiomatic freedom provided by constructive foundations
to the fullest. In synthetic computability, one assumes axioms on functions – the objects of the
logic – to ensure they behave like computable functions – the structures under investigation.

In contrast, textbook computability theory is analytic. In analytic approaches, the objects
of the logic are used to model the structures under investigation, often via multiple layers
of encodings and abstraction. Thus, in analytic computability theory, one defines models of
computation, defines which parts of the model are considered programs, defines the behaviour
of these programs, defines encodings for e.g. natural numbers as data, defines when a function
is computed by a program, etc.

This first part of the thesis is devoted to the development of basic results in computability
theory in a synthetic way. It covers the content of about an introductory lecture to computabil-
ity. The synthetic approach to computability enables a clear view on the essence of proofs,
since no distracting routine manipulations of encodings or models are necessary. As such,
it is well-suited for mechanisation: We formalise all our proofs in the Calculus of Inductive
Constructions (CIC), the type theory underlying the Coq proof assistant, and all proofs are
machine-checked by the Coq proof assistant.

Synthetic computability originated in the works of Richman and Bridges [198, 25] for recur-
sive analysis and was developed more generally by Bauer [10, 13, 14]. Richman, Bridges, and
Bauer work in Bishop-style constructive logic with at least the axiom of countable choice and
assume suitable axioms for synthetic computability. Countable choice is used as replacement
for the Sm

n theorem in many results, and thus integral to the development. As a result, the
assumed axioms on synthetic computability render the theory anti-classical, meaning the law
of excluded middle ∀P. P ∨ ¬P is provably wrong. Classical proofs are however omnipresent
in analytic treatments of computability, where the law of excluded middle is routinely used.
Thus, synthetic computability à la Richman, Bridges, and Bauer is incompatible with classical
textbook intuitions. This might have contributed to synthetic computability being a niche of
constructive mathematics rather than the most natural way to carry out computability theory.

We first cover some standard results without appealing to axioms at all. We introduce de-
cidability, enumerability, and semi-decidability as well as one-one, many-one and truth-table
reducibility, and prove standard results like the Myhill isomorphism theorem or the charac-
terisation of many-one and truth-table reducibility in terms of one-one reducibility.
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To show undecidability, non-enumerability, or non-reducibility results, we assume axioms
for synthetic computability. Precisely, we assume SCT, a parametric version of Richman’s
synthetic formulation of the constructivist axiom CT,1 and an analogous parametical version
of Bauer’s enumerability axiom, which we call EA. While CT states that every function N→N
is µ-recursive, SCT postulates a step-indexed interpreter φ which is parametrically universal
for the function space N→N. This means that for every family of functions fi:N→N for i:N,
one obtains a coding function γ:N→N such that φγi and fi agree. SCT can equivalently be
formulated as the axiom EA, postulating an enumerator ϕ which is parametrically universal
for all enumerable predicates N→ P. That means that for every family of predicates pi:N→N
for i:N which has a parameterised enumeration function f such that fi enumerates pi , one
obtains a coding function γ:N→ N such that ϕγi enumerates pi . While SCT is conceptually
closer to the well-studied axiom CT in constructive mathematics, EA allows more elegant
proofs. Both have in common that their formulation – in contrast to CT – does not require a
formalised model of computation.

We build our work on the hypothesis that in CIC, the axiom CT can be consistently assumed
in conjunction with the law of excluded middle LEM. This stands in contrast to set-theoretic
foundations, where LEM and CT are not compatible due to the provability of unique choice.
In Chapter 7 we argue the crediblility of this hypothesis, by an extensive survey of literature
regarding consistency and incompatibility results. Outside of Chapter 7 we assume that the
hypothesis holds without reiterating its status.

We first develop impossibility results solely based on EA: Our proof of Rice’s theorem con-
sists only of the mathematical essence, with no overhead whatsoever. We then present con-
structive proofs of Post’s problem for many-one and truth-table reducibility, i.e. we show that
there are enumerable predicates S and H such that S is undecidable but does not many-one
reduce from the halting problem, since S is a simple predicate, and H is undecidable but does
not truth-table reduce from the halting problem, since H is hypersimple. We then assume
Markov’s principle MP and show that H is Turing-reducibility complete, i.e. every enumerable
predicate Turing-reduces to H.

Overall, we obtain the first machine-checked proof of the Myhill isomorphism theorem, the
first machine-checked proofs of Post’s problem w.r.t. many-one and truth-table reducibility,
the first mechanised definition of Turing reducibility, and the most concise machine-checked
proof of Rice’s theorem.

Since EA assumes a parametrically universal enumerator, we do not have to rely on count-
able choice or unique choice anymore. In CIC, functions and functional relations are separate
objects, and thus both forms of choice are independent in CIC. By basing it in CIC, our de-
velopment of synthetic computability then becomes compatible with classical reasoning, i.e.
the law of excluded middle can be consistently assumed in addition to our axioms. Thus, we
claim that our approach can be considered the most natural way to formalise computability
theory consistent with classical intuitions.

To support this claim we first give a brief overview of the history of both analytic and syn-
thetic computability, before discussing the principles underlying CIC rendering it the ideal
system for synthetic computability.

1Short for Church’s thesis. To avoid confusion with informal Church’s thesis talking about intuitive calculability
we always refer to the formal axiom as CT.
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History of analytic computability

The development of computability theory started in the 1930’s with various proposed for-
malisations of computation by Post, Gödel, Turing, Church, and others. The idea that all
conceivable computations can be captured by such definitions was anticipated by Emil Post in
the 1920s [192], and is nowadays attributed independently to Alonzo Church, who claimed
that all intuitively calculable functions f :N→N are µ-recursive (Church’s thesis) [31] and
Alan Turing, who claimed that all intuitively calculable functions f :N→N are computable by
a Turing machine (Turing’s thesis) [229]. The real matter of investigation of Church’s paper
is however the λ-calculus, which was proved equivalent to µ-recursive functions already be-
fore by Church, Kleene, and Rosser. Kleene [134] combined this with Turing’s proof in the
appendix of his paper that the λ-calculus and Turing machines are equivalent, resulting in an
equivalence proof of Church’s thesis and Turing’s thesis, which are nowadays mostly referred
to together as the Church-Turing thesis.

The Church-Turing thesis is crucially based on the notion of intuitively calculable functions,2
which is inherently non-precise, but from the beginning was connected to constructive logic.
Church states “this merely means that we should take the existential quantifier which appears
in our definition of a set of recursion equations in a constructive sense” when discussing that
every µ-recursive function is intuitively computable (i.e. Church suggests that classical proofs
of µ-recursiveness might not yield intuitively computable functions). Kreisel even doubts
whether “the distinction between [constructively definable] and [intuitively calculable] was
recognised when Church formulated his thesis” [143, p. 143 footnote 2.].

For constructive systems, Kleene in 1943 conjectures that all functions definable in a con-
structive system can be proved µ-recursive in this system (Church’s rule) [132]. In 1945, he
proves the admissibility of Church’s rule for Heyting arithmetic [133], and in his 1952 book
extends it to partial functions [134].

The insights regarding the nature of computability are rightly considered ground-breaking,
and necessary for computer science to arise as a subject of its own. However, if one would
have to pick a founding moment of computability theory really deserving the suffix “theory”,
this would likely be Post’s 1944 paper Recursively Enumerable Sets of Positive Integers and Their
Decision Problems [189]. Post introduces the concept of recursively enumerable sets and anal-
yses their relation to each other via so-called reducibilities. From the early work of Post, a rich
theory of reducibility degrees, i.e. equivalence classes of inter-reducible sets, arose, and nowa-
days computability theorists routinely work with a multitude of reducibility notions, many of
which were introduced or inspired by Post.

Early in his paper, Post remarks “that mathematicians generally are oblivious to the impor-
tance of this work of Gödel, Church, Turing, Kleene, Rosser and others as it affects the subject
of their own interest is in part due to the forbidding, diverse and alien formalisms in which
this work is embodied.” The evolution of “computability” to “computability theory” started by
Post was enabled by a presentation of the lead questions in a more appealing, intuitive way,
abstracting away from the “forbidding, alien formalisms” constituted by µ-recursive functions,
Turing machines, the λ-calculus, or Post’s own tag systems.

The standard textbook reference for the theory developed by and after Post is Hartley
Rogers’ The Theory of Recursive Functions and Effective Computability [202], and Rogers uses
a similar approach: After introducing a universal function φ for µ-recursive functions, no

2often also called effectively calculable or intuitively recursive functions.
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explicit constructions of a program in the form of a µ-recursive function is given. Instead,
Rogers as well as other authors of more modern books such as Soare [210], Cutland [44],
or Odifreddi [180], use informal descriptions of algorithms in prose, and then invoke the
Church-Turing thesis to obtain a code c such that now φc is the representation of the algo-
rithm as computable function. Such a quasi-axiomatic treatment of computability only based
on a universal function φ and the Church-Turing thesis allows the authors to focus on the
mathematical essence of proofs in explanations. An abstract treatment is even more crucial
to prove new results, since dealing with encodings in models of computation would impede
the explorative process to an extent that it becomes impossible. This is to an amount that
machine-checked computability theory, where all encodings have to be given explicitly, has
not been developed substantially beyond Rice’s theorem.

The problem can be mitigated to some extent by basing all informal investigations in con-
structive rather than classical logic, since all definable functions could be proved computable
by applying Church’s rule. However, textbooks implicitly use classical set theory with the
axiom of choice, where some textbooks even announce these foundations explicitly: Rogers
states that “throughout this book we allow nonconstructive methods; we use the rules and
conventions of classical two-valued logic (as is the common practice in other parts of mathe-
matics), and we say that an object exists if its existence can be demonstrated within standard
set theory. We include the axiom of choice as a principle of our set theory.” [202, p. 10 foot-
note †].

As a subfield of computability theory, recursive analysis (often also computable analysis)
has got much and more recent attention in research than classical computability theory.
Odifreddi [180] categorises recursive analysis into theMarkov school and the realm of classical
logic. In the realm of classical logic, recursive analysis makes reference to a model of compu-
tation, like standard textbooks on computability. The Markov school instead does not even
consider non-computable functions. Every function is inherently an algorithm, and developing
analysis becomes synonymous to developing recursive analysis.

Evenmore explicitly, such formal developments of recursive analysis or computability theory
in constructive logic can be based on axioms: If one explicitly assumes that every function
f :N→N is µ-recursively computable in the logic, i.e. that every application of the Church-
Turing thesis to a (constructively defined) function is valid, much of computability theory can
be developed without actually considering details of the model of computation. This axiom
was introduced by Kreisel [142] as CT in constructive logic.

Synthetic computability

The axiom CT enables a synthetic development of computability theory. Philosophically, CT is
however still unpleasing: To state CT and enable synthetic reasoning, an analytic formalisation
of a model of computation is necessary.

The founding stone of true synthetic computability is thus Richman’s 1983 paper Church’s
thesis without tears [198]: Richman identifies a fully synthetic variant of CT he calls CPF,
which does not make reference to a model of computation, by only abstractly assuming the
existence of a function φ enumerating all partial functions of type N* N. Such a universal
function φ is similar to the one used by e.g. Rogers, and indeed the developments in Richman
and Rogers read virtually the same: An algorithm is given in the form of a function f , defined
formally as function in the meta-theory or informally via prose. In Richman’s cases, CPF
immediately yields a code c such that φc extensionally agrees with f . In Rogers case, one
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needs to check that f is indeed intuitively computable and apply the Church-Turing thesis to
f , resulting in a code c such that φc extensionally agrees with f .
The 1983 paper of Richman is mostly concerned with presenting theorems in recursive anal-

ysis based on the axioms, e.g. he constructs Specker’s sequence which yields a counterexample
to the Heine-Borel theorem and to the theorem that every continuous function on the closed
unit interval is uniformly continuous. In his 1987 book with Bridges [25], the authors develop
more results in recursive analysis. Again the development assumes countable choice, but the
authors remark that the assumption of an Sm

n operator would be sufficient for their results as
well, but do not rely on this weaker assumption.

It is only the 2005 paper by Bauer [10] which paves the road for first steps in textbook
computability based on a fully synthetic axiom. Bauer works in a topos, which can be thought
of as constructive logic with extensionality axioms, Markov’s principle, and the axiom of de-
pendent and countable choice. More concretely, the topos is the effective topos [119], where
the set of enumerable sets of natural numbers is enumerable. The focus on enumerable sets
rather than partial functions makes Bauer’s development notably more elegant.

However, due to the assumption of forms of the axiom of choice, the theory stays anti-
classical: The axiom of excluded middle is provably false, and many of Bauer’s theorems,
while conveying interesting constructive results, become classical trivialities.

This situation can be rectified by suitably strengthening Bauer’s enumerability axiom to a
parametic enumerability axiom, such that choice is rendered unneccessary, and then basing
the whole development on CIC, where the axiom of choice is not available. The parametric
enumerability axiom is equivalent to a non-parametric invariant and the assumption of an Sm

n
operator, giving more evidence for Bridges’ and Richman’s conjecture that this indeed suffices.
Before going into detail of our setup, we first discuss the relevant aspects of CIC.

Axiomatic freedom and constructive reverse mathematics in CIC

As in most type theories, logic in CIC is modelled via the propositions as types paradigm based
on the Curry-Howard correspondence. Specifically, in CIC propositions are types in a sepa-
rate, impredicative universe of propositions P, i.e. propositions are types P:P, and proofs are
elements H: P.

The logic is agnostic towards classical logical axioms like the law of excluded middle LEM.
They can be consistently assumed, but are not provable, i.e. are independent. This also holds
for Markov’s principle MP, a consequence of LEM which is assumed in some other constructive
foundations. In CIC, if one wants to use case analysis on predicates or propositions, one first
has to establish that such case analyses are possible via an algorithm, i.e. prove the predicate
decidable. There are three notable exceptions to this rule: If one assumes LEM, then such
a case analysis is always possible. If one assumes MP, then such a case analysis is possible
provided the proof goal is a semi-decidable proposition. A case analysis is always possible
when one wants to prove a contradiction, i.e. when the proof goal is falsity.

Extensionality axioms like proof irrelevance (∀P:P.∀H1H2: P. H1 = H2) and propositional
extensionality (∀P1P2:P. P1←→ P2→ P1 = P2) are similarly independent.

Lastly, almost all formulations of the axiom of choice are also independent in CIC: Total
relations between types X and Y , i.e. R: X→ Y→ P s.t. ∀x .∃y. Rx y , can neither be turned
into functions X→ Y , nor into total functional relations. Not even the axiom of unique choice
turning a total functional relation into a function X→ Y is provable, and neither are forms of
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the axiom of countable choice, where one restricts the domain X of relations to N. This is due
to the fact that propositional existence ∃ and computational dependent pairs Σ are strictly
different objects: CIC’s separation of the universe P from the computational universes T via
the large elimination restriction forbids turning ∃ into Σ. The large elimination restriction
can be seen as a barrier between propositions and computation, which can only be broken
for three interesting use cases: First a proof of falsity can be used computationally, in that a
program does not have to return a value for logically impossible cases. We call this a computa-
tional explosion. Secondly, equality proofs can be used in computations, meaning the type of a
computation can be changed via a propositional equality proof, a so-called type cast. Thirdly,
existential quantification over decidable predicates on natural numbers (i.e. ∃n:N. f n= true)
can be computationally eliminated, yielding a function µN: (∀ f .(∃n. f n = true)→N) return-
ing the least n satisfying f n = true. We call µN a guarded minimisation function. Guarded
minimisation can be seen as a choice principle for decidable relations on countable co-domain
(sometimes called ∆0

0 choice) and also implies a choice principle for enumerable and semi-
decidable relations (Σ0

1 choice)
The independence of virtually all version of choice (despite the ∆0

0 and Σ0
1 versions) make

CIC special in the realm of formalisations of Bishop’s constructive logic. In Bishop’s (non-
formalised) system, a (non-extensional) form of the axiom of choice is provable, and this
also holds for Martin-Löf type theory (where ∃ := Σ). In less formal developments of con-
structive mathematics (see e.g. Diener [55] for an overview), at least countable choice if not
dependent choice is always assumed. Richman critices the universal assumption of such ax-
ioms in constructive mathematics, stating that “countable choice is a blind spot for construc-
tive mathematicians in much the same way as excluded middle is for classical mathemati-
cians” [199, 200]. Put differently, CIC fosters an even larger axiomatic freedom than other
constructive theories.

Axioms like the law of excluded middle or the axiom of choice and weakenings of both are
central in the field of constructive reverse mathematics [56, 121], where one is concerned with
finding sufficient and necessary axioms for results in constructive mathematics (and mostly
in constructive analysis). Basing constructive reverse mathematics in a foundational system
which proves the axiom of (countable) choice means that results cannot be analysed in terms
of whether they can already be proved with weaker forms of choice. Thus, CIC seems to
be a suitable base system for constructive (reverse) mathematics sensitive to applications of
countable choice.

Constructive reverse mathematics has its roots in computability theory. Most well-known,
Markov’s principle (formulated for µ-recursive functions) is equivalent to Post’s theorem [189]
that if a set and its complement are enumerable, it is decidable [228]. For other results in
computability, the constructive status is unknown.

That CT can be assumed consistently in CIC can be proved in various ways, although no
published proof is available. Intuitively, this is because all three exceptions of the large elim-
ination restriction (computational explosion, type casts, and guarded minimisation) can be
given a direct computational interpretation (an arbitrary element for computational explo-
sion, the identity function for type casts, and unbounded minimisation for guarded minimi-
sation). As it seems, CIC’s axiomatic freedom is not impacted much when assuming CT: Since
propositions are strictly separated from computation, assuming the law of excluded middle
does not entail non-computable functions as long as no strong forms of choice are available.
Vice versa, various forms of the axiom of choice can be assumed, and the identification of
functional relations with functions is safe as long as no classical totality proofs are available.
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Synthetic computability retaining axiomatic freedom

To develop a synthetic approach to computability, we have to render both analytic textbook
definitions and theorems in our synthetic theory. We informally write JPKs for the synthetic
rendering of an analytic logical formula P. For instance, we render the analytic formula P :=
∀A ⊆ N. Da A→ Da (N \ A) as JPKs := ∀p:N→ P. Ds p→ Ds (λx:N.¬px). Here Da is the
analytic definition of decidability stating that there is a decision function f : X→B computable
in a fixed model of computation, and Ds the synthetic rendering stating the existence of any
decision function f : X→B.

We then want our synthetic approach to computability compatible with classical, textbook
intuitions to fulfil two central properties. To explain the propertiesmore concretely, wework in
ameta-theory strong enough tomodel CIC and assume an analytic interpretation function J · Ka
of objects of CIC in the meta-theory. For instance, the function should fulfil JDs pKa = Da JpKa.
Furthermore, we write Axs for the synthetic computability axioms assumed in CIC.

First, we require the synthetic rendering to be sound: for an analytic proposition P which
can be synthetically rendered, we require that (⊢CIC Axs→ JPKs)→ P. For instance a synthetic
theory of computability where all predicates can be proved to be undecidable is not valid,
since this directly contradicts a theorem of classical, analytic computability (that there are
decidable predicates). Note however that, as is standard in constructive mathematics, we are
content with less instances of a definition being provable (there might be more classically,
analytically enumerable predicates than constructively synthetically enumerable predicates),
and also with less theorems. This means we want that synthetic computability be sound with
respect to analytic computability, but not complete.

Requiring soundness is standard in synthetic mathematics. The second property is con-
cerned with axiomatic freedom, and usually not fulfilled. We want our approach to be com-
patible with classical presentations, in the sense that we want (at least some) axioms used
in textbook proofs to be consistently assumable on top of our synthetic axioms. Precisely, we
want that ̸⊢CIC Axs→ LEM→⊥.

We achieve both properties by basing our development on EA, a fully synthetic variant of
CT which postulates a parametrically universal enumerator. The axiom is inspired by Bauer’s
axiom, where the set of enumerable sets of natural numbers is assumed enumerable.

Our proofs on paper read similarly to the book of Rogers. The machine-checked proofs
have few to no overhead, since all encodings in a model of computation are avoided. Rices’
theorem in our synthetic presentation reads virtually the same as textbook formulations, but
the formal proof is more elegant and compact, since only the mathematical essence remains.

As further demonstrations of the strengths of this approach, we analyse the construction
and theory of both simple and hypersimple sets. As it turns out, no axioms other than EA
are necessary, not even Markov’s principle, resulting in fully constructive solutions for Post’s
problem for many-one and truth-table reducibility.

Lastly, we introduce Turing reducibility, show that total bounded Turing reducibility agrees
with truth-table reducibility, and that Turing reducibility strictly differs from truth-table re-
ducibility, laying the grounds for future investigations into the Kleene-Post [136] or Friedberg-
Muchnik theorems [172, 85].
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2.1 Outline

In Chapter 3 we give a short overview of relevant aspects of CIC regarding computability. We
discuss constructive proofs, the difference between existential quantification ∃ and computa-
tional existence Σ, and cover definitions of finite and infinite predicates in CIC.

We introduce synthetic definitions of decidability, enumerability, and semi-decidability in
Chapter 4 and prove closure properties and the relation between the notions, all using con-
structive logic. We intentionally choose synthetic definitions based on total functions, and
only in Section 4.5 introduce an abstraction for partial function in CIC, provide an example
implementation, and give equivalent definitions of all notions based on partial functions.

In Chapter 5 we introduce one-one, many-one, and truth-table reducibility, and show cen-
tral properties. All notions of reducibility have in common that they are purely based on total
functions. We give elegant characterisations of both truth-table and many-one reducibility in
terms of one-one reducibility, with conceptually simpler proofs than the analytic analogues
proved e.g. by Rogers [202]. We then give an axiom-free synthetic proof of the Myhill isomor-
phism theorem, stating that one-one equivalent predicates are isomorphic.

Chapters 6 and 7 can optionally be skipped when reading. Chapter 6 introduces the (an-
alytic) axiom CT, a fully synthetic version SCT, the parametric enumerability axiom EA, an
equivalent formulation of SCT. We prove two versions of Rice’s theorem based on a variant of
SCT and EA to compare the axioms. Chapter 7 surveys the literature regarding the relation of
CT and its synthetic variants with axioms like LEM, the axiom of choice, Markov’s principle,
Weak Kőnig’s Lemma, and continuity axioms from Brouwer’s intuitionism.

Chapter 8 is a self-contained development of common results in computability theory based
on EA. We construct solutions to Post’s problem for many-one and truth-table reducibilitity.
That means we construct a simple predicate S such that S is enumerable, undecidable, but
does not many-one reduce from the halting problem, and a hypersimple predicate H such
that H is enumerable, undecidable, but does not truth-table reduce from the halting problem.

Chapter 9 introduces Turing reducibility, a notion of reducibility which is more crucially
based on partial functions. We show how total bounded Turing reducibility is exactly truth-
table reducibility, and that the hypersimple predicate Turing-reduces to the halting problem.

Appendix A contains inductive types and definitions frequently used and well-known in type
theory. Appendix B contains a glossary for the central synthetic notions.

2.2 Related Work

The Russian school of constructivism was founded by Andrei Markov Jr. in 1954 [166]. The
school is concerned with constructive developments of mathematical theories, with a particu-
lar focus on analysis (see e.g. Nagorny’s paper for a high-level overview [176]). What makes
the school special is that there is no native notion of numbers or functions. Instead, all of
these are defined in terms of words, which can serve as the input to or encode Markov’s nor-
mal algorithms, a Turing complete model of computability devised by Markov. The only axiom
is Markov’s principle, which allows proofs by contradiction exactly for termination proofs of
algorithms. Switching the perspective, Russian constructivism can be seen as a constructive
development of computability theory. It can be seen as both anti-synthetic and anti-analytic:
algorithms are the only native object, which are in turn used to model everything else.
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Russian constructivism was highly influenced by Kleene’s realizability interpretation for
constructive logic [133], explicitly hard-wiring realizability. Kleene proves that every total
functional relation in Heyting arithmetic corresponds to a µ-recursive function, i.e. the ad-
missibility of Church’s Rule for Heyting arithmetic, by interpreting all logical formulas as com-
putable functions. In 1965, Kreisel [142] introduces the name CT (Church’s thesis) for the
corresponding axiom, stating that every function is µ-recursive. In fact, he introduces two
versions: The axiom CT0, stating that every function is µ-recursive (we simply call this axiom
CT), and the axiom CT1, stating that every total functional relation is µ-recursive. Troelstra
and van Dalen [228] discuss the relation of CT to other axioms. CT plays a prominent role in
constructive reverse mathematics, see Diener’s [55] overview. It is also used in investigations
of the constructiveness of completeness proofs for first-order logic [143]. We are however not
aware of any substantial developments of computability theory based on CT.

Bishop-style constructive analysis [23] can be seen as an implicitly synthetic development
of recursive analysis, since every function is considered to be computable rather than explicitly
assumed to be. In this framework, Richman [198] identifies a purely synthetic variant of CT
allowing to prove results in recursive analysis which contradict classical analysis. The book by
Bridges and Richman [25] develops recursive analysis based on Richman’s axiom, but does not
consider more standard computability theoretic topics such as reducibility or Rice’s theorem.

The first steps in synthetic computability theory are due to Bauer [10]. Bauer works in
the effective topos, which can be understood as constructive set theory with (1) Markov’s
principle, (2) dependent and countable choice, and (3) the axiom that the set of enumerable
sets of natural numbers is enumerable. The last axiom is equivalent to Richman’s axiom,
but this is not discussed in detail. As is well-known [228], the assumption of choice and
such an enumerability axiom makes the theory anti-classical, i.e. the law of excluded middle
is false. Bauer makes advantages of these anti-classical theories and simplifies theorems to
their essence. For instance, Rice’s theorem (usually stating that non-trivial semantic sets are
undecidable) becomes “If A is a set such that all functions of type A→ A have a fixed-point,
every function of type A→B is constant”. The proof of this theorem in Bauer’s setting captures
indeed exactly the essence of Rice’s theorem, but unfortunately the statement of the theorem
becomes a classical triviality: If all functions A→Ahave a fixed-point, A is a subsingleton. Thus,
Bauer’s goals can be seen as orthogonal to ours: While Bauer condenses theorems and proofs
to their essence, we want to keep theorem statements directly connected to their analytic
versions, and only then try to condense the proofs as much as possible.

2.3 Mechanisation in Coq

The Coq code covering the results of this chapter can be found in the following repository:

https://github.com/uds-psl/coq-synthetic-computability

The repository contains around 10.000 LoC (25% specification vs. 75% proofs), of which
around 1.000 LoC were implemented by Felix Jahn as part of his Bachelor’s thesis advised by
the author.

https://github.com/uds-psl/coq-synthetic-computability
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CHAPTER 3
Aspects of CIC

We work in the Calculus of Inductive Constructions (CIC) [39, 181, 182], the computa-
tional and constructive type theory underlying the Coq proof assistant [222].

Despite CIC being a historical system which was extended in multiple dimensions over the
time, we reserve the term CIC exactly for the type theory Coq implements at the time of
writing this thesis, i.e. in version 8.13.2. For the scope of the thesis, this terminology is not
misleading: we believe that all results also hold in the initial, historical version of CIC– but
of course do not have formal proof of this claim. The reference manual of Coq provides an
overview of CIC as it is currently implemented [223].1

CIC, as all type theories, is both a logical and a computational system. What makes CIC
stand out in comparison to other type theories such as impredicative Martin-Löf type theory
(MLTT) or univalent type theory (HoTT). is that there is a syntactic impredicative2 universe
of propositions P, which is separated from the computational universes denoted by Ti (where
we leave out the index i henceforth). Since proposition are types, they behave constructively,
meaning e.g. proof by contradiction is not allowed in general. However, Coq fosters an almost
maximal axiomatic freedom: Classical axioms cannot be proved, but they can be consistently
assumed. This holds for the law of excluded middle and the axiom of choice, but also of
weakenings thereof, such as the (weak) limited principle of omniscience, Markov’s principle,
or unique choice on countable types. In contrast, MLTT proves the axiom of choice, whereas
HoTT with a semantic notion of propositions satisfies unique choice.

The separation of the logical universe P in CIC entails that almost no computational elim-
inations on proofs H: P where P:P into a computation x: X where X :T are allowed. Thus,
total functional relations and functions are different objects. While they correspond on the
meta-level, i.e. for every relation which can be proved total and functional without assump-
tions one can also construct a function, this correspondence is not logically available inside the
type theory. The correspondence can be made available via an axiom, thereby breaking the
separation of propositions and computation: The type-theoretic axiom of (functional) choice
yields a function f : X→ Y for every total relation.

In this chapter, we illustrate the interplay between proof/computation and relation/func-
tion with three examples: Pigeonhole principles, definitions of finiteness, and definitions of
infinitness of predicates. All crucially rely on the constructive interpretation of a ∀∃ quantifi-
cation in classical logic, which can be rendered as the existence of a function, a ∀∃, or a ∀¬¬∃
quantification in type theory, which all have different computational content.

In this first part of the thesis, these variations will play a big role, since we identify functions
with computable functions, meaning constructive definitions with computational content will
also be implicitly interpreted differently.
1To be more precise, CIC is Martin Löf type theory with a hierarchy of type universes [179], with an impredica-

tive universe of propositions as in the calculus of constructions (CoC) [39], inductive types [181] potentially
polymorphic in universes [226], template polymorphism, and η-expansion for functions.

2i.e. P:P is a judgement which can be inferred by the type checker, not a proof obligation.
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Further details like inductive types and functions on these types we use can be found in
Appendix A.

Outline In Section 3.1 we discuss which classical proof rules are available in constructive
proofs, whereas in Section 3.2 we illustrate in which restricted cases choice principles are
available. In Section 3.3 we prove three pigeonhole principles, illustrating the three forms of
forall-exists available in Coq. in Section 3.4 and Section 3.5 we discuss standard constructive
definitions of finite and infinite predicates and types.

Publications All sections apart from Section 3.2 contain adapted pieces of text from [72],
which were written solely by the author of this thesis.
[72] Forster, Jahn, and Smolka. “A Constructive and Synthetic Theory of Reducibility: Myhill’s Isomor-

phism Theorem and Post’s Problem for Many-one and Truth-table Reducibility in Coq.” Pre-print.

3.1 Constructive proofs

A proposition P : P is stable if it is unchanged under double negation, i.e. ¬¬P→ P. Further-
more, we say that P is logically decidable, if P ∨¬P holds.

Fact 3.1. Logically decidable propositions are stable.

Note that the converse direction is not provable: For an independent proposition P, ¬P is
stable but not logically decidable.

The law of excluded middle LEM states that every proposition is logically decidable.3

LEM := ∀P:P. P ∨¬P

LEM is routinely used inmany branches ofmathematics, often in the form of double negation
elimination:

Fact 3.2. LEM←→∀P:P. ¬¬P→ P

The converse direction of double negation elimination is however probable:

Fact 3.3. ∀P:P. P→¬¬P

It is folklore that LEM is independent in CIC: It can be consistently assumed, but cannot be
proved. We will discuss classical logical axioms in more detail in Chapter 7.

In general, a case analysis on a proposition P is possible without LEM if P is logically decid-
able, but also if the conclusion Q is a stable proposition:

Fact 3.4. If P→Q and Q is stable, then ¬¬P→Q.

Corollary 3.5. If Q is stable, then ((P ∨¬P)→Q)→Q.

Proof. By Fact 3.4, since ¬¬(P ∨¬P) is a tautology in constructive logic. ■

Markov’s Principle (MP) is a consequence of LEM accepted for instance in Russian con-
structivism and states that satisfiability of a boolean test on natural numbers is stable:

MP := ∀ f :N→B. ¬¬(∃n. f n= true)→ (∃n. f n= true)

https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Shared.Pigeonhole.html#ldec_stable
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Shared.Pigeonhole.html#ldec_stable
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Shared.Pigeonhole.html#LEM_DNE
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Shared.Pigeonhole.html#LEM_DNE
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Shared.Pigeonhole.html#DNI
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Shared.Pigeonhole.html#DNI
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Shared.Pigeonhole.html#negative_dn
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Shared.Pigeonhole.html#negative_dn
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Shared.Pigeonhole.html#negative_ca
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Shared.Pigeonhole.html#negative_ca
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MP is also independent in CIC [40] and will be discussed in more detail in Chapter 7.
Furthermore, MP is admissible in CIC [184]: Whenever for a defined function f the propositon
¬¬(∃n. f n = true) is provable, one can turn the proof into a proof of ∃n. f n = true without
use of axioms.

Markov’s principle allows case analysis for arbitrary propositions P on goals of the form
Q := ∃n. f n= true:

Fact 3.6. Let MP be given and Q := ∃n. f n= true for some f :N→B. Then ((P ∨¬P)→Q)→Q.

In Chapter 7 we will discuss the limited principle of omniscience LPO, which conversely
allows case analysis for P := ∃n. f n= true and arbitrary Q.

For ease of language we reserve the term “fully constructive” to mean “provable in CIC
without any axioms”. With this meaning of the word, LEM is not fully constructive, and
neither is MP.4

3.2 Choice principles

In CIC, both dependent pairs (Σ) and existential quantification ∃ can be defined using induc-
tive types. We verbalise ∃x with “there exists x” and in contrast Σx as “one can construct x”.
Dependent pairs can be eliminated into arbitrary contexts, i.e. there is an elimination function
of type

∀p: (Σx .Ax)→T. (∀x: X .∀y: Ax . p(x , y))→∀s. ps.

In contrast, existential quantification can only be eliminated for p: (∃x .Ax)→ P.
This is because CIC forbids so-called large eliminations [181] on the inductively defined ∃

predicate. To avoid dealing with Coq’s match-construct for eliminations in detail, we instead
talk about large elimination principles. A large elimination principle for ∃, which would
have the following type, is not definable in CIC:

∀p: (∃x .Ax)→T. (∀x: X .∀y: Ax . p(x , y))→∀s. ps.

In particular, this means that one cannot define a function of the following type in general

∀p: Y→ P. (∃y. p y)→Σy: Y . p y.

However, such an elimination of ∃ into Σ is admissible in CIC. This means that any con-
cretely given, fully constructive proof of ∃y. p y without assumptions can always be given as
a proof of Σy. p y . Note that admissibility of a statement is strictly weaker than provability,
and in general does not even entail its consistency.

Crucially, CIC allows defining large elimination principles for the falsity proposition ⊥ and
for equality. Additionally, for some restricted types Y and restricted predicates p, one can
define a large elimination principle for existential quantification. In particular, this holds for
Y = N and p(n:N) := f n= true for a function f :N→B.

3Note that all symbols in sf-font like LEM or MP are hyper-linked with their definition in the pdf version of this
thesis.

4In e.g. the Russian school of constructivism, MP is deemed constructive. We want to emphasise that that our
use of the word is a mere simplification of language, not implying any philosophical standpoint considering
the constructiveness of MP.

https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Shared.Pigeonhole.html#MP_ca
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Shared.Pigeonhole.html#MP_ca
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Fact 3.7. One can define functions of type

∀A:T.⊥→ A

∀X :T.∀A: X→T.∀x1 x2: X . x1 = x2→ Ax1→ Ax2.

∀ f :N→B. (∃n. f n= true)→Σn. f n= true

Corollary 3.8. There is a guarded minimisation function µN of the following type:

µN : ∀ f :N→B. (∃n. f n= true)→Σn. f n= true∧∀m. f m= true→m≥ n

There are two different implementations of such a minimisation function in Coq’s Standard
Library.5 One is based on a predicate admitting large elimination like G above, the other proof
uses the fact that Coq’s type theory allows the definition via fix and match as opposed to
other type theories relying on recursors for types. See e.g. [155, §2.7, §4.1, §4.2] and [20,
§14.2.3, §15.4] for a contemporary overview how to implement large eliminations principles.

We will not need any other large elimination principle in this thesis. A restriction of large
elimination in general is necessary for consistency of Coq [38]. As a by-product, the compu-
tational universe T is separated from the logical universe P, allowing classical logic in P to be
assumed while the computational intuitions for T remain intact.

The intricate interplay between Σ and ∃ is in direct correspondence to the status of the
axiom of choice in CIC. The axiom of choice was first stated for set theory by Cantor. In
the formulation by Cantor, it is equivalent to the statement that every total, binary relation
contains the graph of a function, i.e.:

∀R ⊆ X × Y. (∀x .∃y.(x , y) ∈ R)→∃ f : X→ Y .∀x . (x , f x) ∈ R

Here X→ Y is the set-theoretic function space. As usual, such a classical principle can also
be stated in type theory. However, the concrete formalisation crucially depends on how the
notion of a (set-theoretic) function is translated: While in set theory the term function is just
short for functional relation, in CIC functions and (total) functional relations are different
objects, we thus discuss both possible translations of the axiom of choice here.

The more common version, used e.g. by Bishop and Bridges [23], is to use type-theoretic
functions for set-theoretic functions, i.e. state the type-theoretic axiom of (functional)
choice as

∀R: X→ Y→ P. (∀x .∃y. Rx y)→∃ f : X→ Y .∀x . Rx( f x)

Since in type theory proofs are first class object, one can equivalently state

||∀p: Y→ P. (∃y. p y)→Σy: Y . p y||

Note how this is exactly the non-provable correspondence of ∃ and Σ discussed above. This
formulation makes clear why in Martin-Löf type theory as implementation of Bishop’s con-
structive mathematics, where one defines ∃ := Σ, the axiom of choice is accepted since it can
be proved. In the context of Church’s simple type theory, this axiom is also known as axiom
of indefinite description [3].

5The idea was conceived independently by Benjamin Werner and Jean-François Monin in the 1990s.

https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Shared.Pigeonhole.html#computational_explosion
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Shared.Pigeonhole.html#computational_explosion
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Shared.Pigeonhole.html#mu_nat
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Shared.Pigeonhole.html#mu_nat
https://coq.inria.fr/library/Coq.Logic.ConstructiveEpsilon.html
https://coq.inria.fr/library/Coq.Logic.ConstructiveEpsilon.html
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A third, simpler characterisation is possible and used in the book on Homotopy Type The-
ory [231]:

∀X :T. ∀P: X→T. (∀x . ||P x ||)→||(||∀x . P x)

A variant of the axiom of choice is the axiom of unique choice:

∀R: X→ Y→ P. (∀x .∃!y. Rx y)→∃ f : X→ Y . Rx( f x)

The axiom of unique choice holds in homotopy type theory [231].
Note that the condition implies that R is total and functional. Thus, using the notation

R: X⇝Y for functional relations, the axiom of unique choice can also be stated as

∀R: X⇝Y . (∀x .∃y. Rx y)→∃ f : X→ Y . Rx( f x)

Again, in type theory one can equivalently state

||∀p: Y→ P. (∃y!. p y)→Σy: Y . p y||

In the context of Church’s simple type theory, this axiom is also known as axiom of definite
description [16].

Due to the separation of P from the computational universes T, neither of the two variants
of the axiom of choice are provable in CIC. There are however two notable classes of choice
principles which are provable: First, choice principles built on top of the guarded minimisation
operator µN from Corollary 3.8. Second, when X is a finite discrete type, choice principles
are provable, see Lemma 3.29. We discuss all provable choice principles in Section 7.6.1. In
Section 7.6 we more generally discuss the axiom of choice, the axiom of countable choice, and
the axiom of dependent choice.

3.3 Pigeonhole principles

Similar to choice principles, pigeonhole principles are omnipresent in discrete mathematics.
We prove three constructive variants of pigeonhole principles, based on duplicate-free lists:
Our formulation of the pigeonhole principle is that for any duplicate-free list l1 longer than a
list l2 one can obtain an element x which is in l1 but not in l2 – for different formalisations of
“obtain” in CIC .6

Precisely, we will prove principles of the following forms:

1. x is computable: ∀l1l2. · · ·→Σx . . . .

2. x constructively exists: ∀l1l2. · · ·→ ∃x . . . .

3. x classically exists: ∀l1l2. · · ·→¬¬∃x . . . .

These are exactly the three possible formalisations of “obtain” in CIC. A function returning a
dependent pair (Σ), a proof of an existential proposition (∃), or of a double-negated existential
proposition (¬¬∃, equivalently ¬¬Σ).

6Admittedly, this formulation of the pigeonhole principles is more a “pigeon-less hole principle”: Instead of
proving that if there are more pigeons than holes, then two pigeons end up in the same hole, we show that if
there are more holes than pigeons, then there is hole which stays empty.
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Formulating existence asΣ inherently means that the result has to be computable, a property
unchanged by the assumption of logical axioms like LEM. In the absence of axioms, ∃ has to
be proved using a (computable) function, but the function cannot be used computationally
after the proof.

We now turn towards proving the principles, which will vary in the requirements on the
underlying type X . For the formalisation, we define #l:P for a list l:LX inductively to state
that l does not contain any duplicates:

#[]

x ̸∈ l #l

#(x :: l)

The ∀Σ-version of the pigeonhole principle is straightforward given a computational equal-
ity decider for X . We model a computational equality decider X for now via a dependently
typed function of type ∀x1 x2: X . (x1 = x2) + (x1 ̸= x2).

Lemma 3.9. Let d:∀x1 x2: X .(x1=x2) + (x1 ̸=x2), and l1, l2:LX . If #l1 and |l1| > |l2|, then
Σx . x ∈ l1 ∧ x ̸∈ l2.

Proof. By induction on the derivation of #l1, with l2 generalised.
The case l1 = [] is contradictory, since |[]|= 0> |l2| is impossible.
Let x ̸∈ l1 and #l1. Case analysis on (x ∈ l2) + (x ̸∈ l2), possible using d. If x ̸∈ l2,

the claim is immediate. If x ∈ l2, the claim follows from the induction hypothesis for l2 :=
filter(λy.¬B(d x y))l2 (i.e. for l2 with x removed). ■

Note that the proof could be adapted such that a function d:∀x y: X .(x ̸=y) + (¬x ̸=y)would
also suffice. The proof could alternatively be given in form of a function of type LX→LX→OX
which returns the element x specified by Σ provided #l1 and |l1|> |l2|.

Note how thus this ∀Σ version crucially depends on computationally removing an element
from a list via the equality decider d. If no such d is available, a removal function is not
definable. However, for the ∀∃ and ∀¬¬∃ forms of the pigeonhole principle, a removal function
is not needed.

Instead, for the ∀∃ version it suffices to prove that for any list l0 and any element x0, there
exists (∃) a list with the same elements of l0, just x0 removed. This becomes possible provided
x1 ̸= x2 is logically decidable for all x1, x2, i.e. we assume ∀x y: X . (x ̸= y)∨ (¬x ̸= y).

For the ∀¬¬∃ version of the pigeonhole principle, consequently a removal principle of
the form ¬¬∃l . . . suffices, which can be proved fully constructively without assumptions:
∀x y: X . ¬¬((x = y)∨ (x ̸= y)) is provable for any X .

To prove the two removal principles, we define a generalised filter predicate l0 ⊇p l w.r.t. a
predicate p: X→ P stating that l is exactly the sublist of l0 with all elements which fulfil p:

[] ⊇p []

px l0 ⊇p l

(x :: l0) ⊇p (x :: l)

¬px l0 ⊇p l

(x :: l0) ⊇p l

Fact 3.10. Let l0 ⊇p l. Then the following hold:

1. x ∈ l←→ x ∈ l0 ∧ px

2. |l| ≤ |l0|

3. ∀x ∈ l. ¬px→|l|< |l0|

https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Shared.Pigeonhole.html#pigeonhole_Sigma
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Shared.Pigeonhole.html#pigeonhole_Sigma
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Shared.Pigeonhole.html#IsFilter_spec
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Shared.Pigeonhole.html#IsFilter_spec
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We can prove two existence principles, one assuming that p is logically decidable, and one
proving a double negation.

Fact 3.11. Let l0:LX and x0: X .
1. (∀x .px ∨¬px)→∃l. l0 ⊇p l

2. ¬¬∃l. l0 ⊇p l

Using the two removal principles, we can immediately prove the ∀∃ and ∀¬¬∃ forms of the
pigeonhole principle.

Lemma 3.12. If #l1 and |l1|> |l2|, then ¬¬∃x .x ∈ l1 ∧ x ̸∈ l2.

Proof. By induction on the derivation of #l1, with l2 generalised.
The case l1 = [] is contradictory, since |[]|= 0> |l|2 is impossible.
Let x ̸∈ l1 and #l1. Since the claim is negative, we can do a case analysis on x ∈ l2 by

Corollary 3.5. If x ̸∈ l2, the claim is immediate. If x ∈ l2, we obtain l s.t. l2 ⊇(λy.x ̸=y) l from
Fact 3.10 (2). The claim follows by induction for l. ■

Lemma 3.13. If ∀x1 x2: X .x1 ̸= x2 ∨¬x1 ̸= x2, #l1 and |l1|> |l2|, then ∃x . x ∈ l1 ∧ x ̸∈ l2.

Proof. Similar to the last proof. We use the case analysis x ̸∈ l2 ∨ ¬x ̸∈ l2, possible by the
assumption that non-equality is logically decidable, and Fact 3.10 (1) with p y := x ̸= y . ■

3.4 Finite types and predicates

The most straightforward definition of finite types in CIC is to ask for a list l:LX such that
∀x: X . x ∈ l. This notion can be generalised to predicates p: X→ P, and it is then possible to
recover the notion of finite types by instantiating to the full predicate λx .⊤.

For predicates, several notions based on lists are possible as definition of finiteness. This is
well-known in conventional presentations of constructive mathematics, where one talks about
(Bishop-)finite (B-finite) and subfinite ( eB-finite) sets.

We discuss both notions of finiteness in the setting of CIC, and for conciseness call them
finiteness and subfiniteness. Note however that the use of the word finite then differs from
more usual formalisations of Bishop style constructive mathematics, e.g. to predicative Martin-
Löf type theory (MLTT) as implemented in the proof assistant Agda [177]. In CIC, equality on
finite predicates and types is not necessarily logically decidable, whereas in predicative MLTT
it is even computationally decidable [68]. However, also in CIC the equivalence of finiteness
and subfiniteness is equivalent to the law of excluded middle.

Since finite types can be recovered from finite predicates we start with the discussion of
predicates.

A list l:LX lists a predicate p: X→ P if ∀x: X . px ←→ x ∈ l. A predicate p is finite if there
exists such a list, i.e.

Fp := ∃l:LX .∀x: X . px←→ x ∈ l

Note that the predicate λx . ⊥ is only listed by [] and no other list, while the predicate
λx . x = x0 is listed by [x0], [x0, x0] and so on - but the list is not allowed to contain elements
not fulfilled by a predicate. To ensure finiteness, this is unnecessarily strict, and we can relax
the condition.
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Def. subfinite
predicate

1 :Sec. A.1, Page 207

A list l:LX exhausts a predicate p: X→ P of ∀x: X . px→ x ∈ l. A predicate p: X→ P is
subfinite if there exists an exhausting list, i.e.:

X p := ∃l:LX . ∀x: X . px→ x ∈ l

Clearly, listability implies subfiniteness, but the converse implication is equivalent to ex-
cluded middle – even when considered just on the unit type 1:

Fact 3.14. If l lists p, l exhausts p.

Corollary 3.15. Finite predicates are subfinite.

Lemma 3.16. Every exhaustible predicate is not not finite, i.e. ∀p. X p→¬¬Fp.

Proof. We first prove the general lemma

∀l0:LX .∀p: X→ P.¬¬∃l ′.∀x . x ∈ l ′←→ x ∈ l0 ∧ px

by induction on l0.
Let l exhaust p and let p be not finite. We have to prove falsity. Using the lemma, we obtain l ′

s.t.∀x . x ∈ l ′←→ x ∈ l0 ∧ px and still have to prove falsity. Now l ′ lists p. Contradiction. ■

Lemma 3.17. If every subfinite predicate is finite, the law of excluded middle holds.

Proof. Let every subfinite predicate be finite and P:P. We define p(x:1) := P. p is finite
because it is exhausted by [⋆]. If p is listed by l, case analysis on l allows proving P ∨¬P. ■

Corollary 3.18. Every subfinite predicate is finite if and only if excluded middle holds.

We conclude by establishing some predicates as finite and with useful closure properties.

Fact 3.19. Let n1, n2:N and x0: X . The following are all finite:
1. λx . x = x0,

2. λn. n1 ≤ n≤ n2,

3. λn. n1 ≤ n< n2.

4. λl:LB. |l|= n1, and

5. λl:LB. |l|< n1.

Lemma 3.20. Let p, q: X→ P be sub-finite, and r: X→ P be any predicate.
1. λx . px ∧ r x is sub-finite.

2. λx . px ∨ qx is sub-finite.

Proof. For (1), if l exhausts p, l exhausts λx . px ∧ r x . For (2), if l1 exhausts p and l2
exhausts q, l1 ++ l2 exhausts λx . px ∨ qx . ■

Lemma 3.21. Let p and q be finite, and r any predicate.
1. λx . px ∧ r x is sub-finite.

2. λx . px ∨ qx is finite.

Proof. For (1) if p is finite it is sub-finite by Corollary 3.15, thus λx . px ∧ r x is exhaustible
by Lemma 3.20 (1). For (2), if l1 lists p and l2 lists q, l1 ++ l2 lists λx . px ∨ qx . ■
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Def. finite type

:Sec. A.4, Page 209

3.4.1 Finite types

A list l:LX lists a type X if ∀x: X . x ∈ l. A type X is finite if there exists such a list, i.e.:

FX := ∃l:LX . ∀x: X . x ∈ l

As mentioned, the definition of finite types is equivalent to instantiating both finiteness and
subfiniteness to the full predicate:

Fact 3.22. The following are equivalent:
1. X is finite.

2. λx: X .⊤ is subfinite.

3. λx: X .⊤ is finite.

Canonical finite types arise from the type family F:N→T, defined inductively with two
constructors as follows:

O:FS n

i:Fn

S i:FS n

Fact 3.23. 1, B, and Fn are finite types.

Proof. 1 is listed by [⋆], B is listed by [true, false], and one can construct a list ln listing Fn by
recursion on n. ■

Fact 3.24. Finite types are closed under pairs, sums, options, and vectors of length n.

Proof. If lX lists X and lY lists Y ,
1. lX × lY lists X × Y .

2. [inl x | x ∈ lX ] ++ [inr y | y ∈ lY ] lists X + Y .

3. None :: [Some x | x ∈ lX ] lists OX

4. l0 := [ [] ] lists X 0, and lS n := [x :: v | (x , v) ∈ lX × ln] lists X S n. ■

Corollary 3.25. If X is finite and there is a function d : ∀x y : X .(x = y)+(x ̸= y), then there
exists n:N such that X is isomorphic to Fn.

Finite types have special properties. Every predicate on a finite type is sub-finite.

Fact 3.26. If X is finite and p: X→ P, then p is sub-finite.

A finite choice principle is provable for all total relations. The easiest proof of the principle
is obtained for the following formulation.

Lemma 3.27. Let L:LX , R: X→ Y→ P, and ∀x ∈ L.∃y. Rx y . Then ∃L′. Forall2 R L L′.

Proof. By induction on L. ■

The principle can be more conveniently used if there instead is a function returning the
corresponding elements for L, which requires X to have decidable equality.
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Eq :Sec. 4.2, Page 33

Def. non-finite
predicate

Fp :Sec. 3.4, Page 25

X p :Sec. 3.4, Page 25

Def. generative
predicate

Lemma 3.28. Let X , Y be types, y0 : Y , D:∀x y: X . (x = y) + (x ̸= y), R: X→ Y→ P, p: X→ P
be finite, and ∀x .px→∃y. Rx y , then ∃ f : X→ Y.∀x . px→ Rx( f x).

Proof. Let L list p. By induction on L. If L = [], pick λx .y0. If L = x ′ :: L we have
y ′ s.t. Rx ′ y ′ by assumption. Let f be the function from the inductive hypothesis and pick
λx . if Dx x ′ then y ′ else f x ′. ■

Lemma 3.29. If X is finite, D:∀x y. (x = y) + (x ̸= y), R: X→ Y→ P, and ∀x .∃y. Rx y , then
∃ f : X→ Y.∀x . Rx( f x).

Proof. Let L list X . If L = [], f can be defined using computational explosion. If L contains x0

one can obtain y0 : Y and use Lemma 3.28. ■

3.5 Infinite Predicates

Similar to finite predicates, there are several classically equivalent but constructively different
definitions of infinite predicates. The different notions become especially interesting when
analysed under the lens of synthetic computability theory, i.e. by interpreting the function
space as computable functions.

We discuss three possible definitions of infinity: Non-finiteness, generativity, and Cantor
infinity. A predicate p: X→ P is
1. non-finite if ¬Fp holds – a stable proposition.

2. generative (Gp) if for every list there exists an element satisfying p not in the list – a ∀∃
proposition.

3. Cantor-infinite (N ,→ p) if there exists an injection of type N→ X returning only elements
in p – equivalent to a ||∀Σ|| proposition.
We obtain the following graph:

N ,→ p Gp ¬Fp

∀x1 x2. x1 ̸=x2∨¬x1 ̸=x2

∃q⊆p. Gq∧Eq LEM no conditions

sufficient condition

necessary and sufficient condition

We now turn to the formal definitions and proofs.
A predicate p: X→ P is called non-finite if ¬Fp holds, i.e. if

¬∃l.∀x . px←→ x ∈ l

Lemma 3.30. A predicate is non-finite if and only if ¬X p holds, i.e. ¬Fp←→¬X p.

Proof. X p→¬¬Fp proved in Lemma 3.16 implies the direction from left to right.
Fp→X p proved in Corollary 3.15 implies the converse direction. ■

A predicate p: X→ P is called generative if for every list one can find an element satisfying p
which is not in the list:

Gp := ∀l:LX .∃x . px ∧ x ̸∈ l
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LEM :Sec. 3.1, Page 20

Def. unbounded
predicate

Fact 3.31. Generative predicates are inhabited, and non-finite predicates are not not inhab-
ited.

Generative predicates on N can be characterised as follows:

Fact 3.32. ∀p:N→ P. Gp←→∀n.∃m≥ n. pm

The following characterisation lemma of non-finiteness as ∀¬¬∃-form of generativity allows
proving the connection of the two notions:

Lemma 3.33. If ∀x1 x1: X . x1 = x1 ∨ x1 ̸= x2, then ¬X p←→∀l:LX .¬¬∃x .px ∧ x ̸∈ l.

Proof. The direction from right to left is straightforward.
For the direction from left to right, let equality on X be logically decidable and p be non-

finite. Let l:LX . We have to prove that ¬¬∃x . px ∧ x ̸∈ l. We assume ¬∃x . px ∧ x ̸∈ l and
derive a contradiction.

We do so by proving that p is exhausted by l: Let x s.t. px . We have to show x ∈ l. Since
equality on X is logically decidable, x ∈ l is logically decidable. It thus suffices to assume x ̸∈ l
and derive a contradiction.

But now px ∧ x ̸∈ l holds. Contradiction. ■

Thus, on types with logically decidable equality, and in particular on discrete types, non-
finiteness is the ∀¬¬∃ version of generativity.

Corollary 3.34. ∀p:N→ P. ¬Fp←→∀n.¬¬∃m≥ n.pm

The direction from left to right did not depend on logical decidability of equality, we thus
can prove:

Fact 3.35. Generative predicates are non-finite.

Lemma 3.36. If LEM holds and p is non-finite, p is generative.

Proof. By Lemma 3.33 since under LEM equality on any type is logically decidable. ■

We introduce a second ∀∃-notion of infinite predicates: A predicate p: X→ P is unbounded
if there exist duplicate-free lists of arbitrary length with elements from p:

Up := ∀n:N.∃l. |l|= n∧#l ∧∀x ∈ l. px

Fact 3.37. ¬Fp←→∀n:N.¬¬∃l. |l|= n∧#l ∧∀x ∈ l. px

Lemma 3.38. Generative predicates are unbounded.

Proof. Let p be generative and n:N. We construct l by induction on n. For n = 0 we pick
l = []. For n= S n′ we use the inductive hypothesis to obtain l, and use generativity to obtain
x s.t. px and x ̸∈ l. Now x :: l is the wanted list. ■

We then can prove the following using Lemmas 3.12 and 3.13.

Fact 3.39. Unbounded predicates are non-finite.

Fact 3.40. Unbounded predicates are generative for types X s.t. ∀x1 x2: X . x1 ̸= x2∨¬x1 ̸= x2.
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Def. Cantor-infinite
predicate

LEM is necessary for non-finite predicates to be unbounded:

Lemma 3.41. LEM if all non-finite p:N→ P are unbounded.

Proof. Let P:P and pn := P ←→ n is even. If p is inhabited, LEM holds: Given pn we can
analysing whether n is even.

Since unbounded predicates are inhabited, by assumption it suffices to prove that p is non-
finite. So let p be subfinite, we have to prove falsity. We can thus decide P and it suffices to
prove that p is generative to obtain a contradiction.

If P holds, pn←→n is even, which is generative. If ¬P holds, pn←→n is odd, which is generative
as well. ■

Corollary 3.42. Non-finite predicates are unbounded if and only if LEM holds.

Corollary 3.43. Non-finite predicates are generative if and only if LEM holds.

Lastly, we introduce Cantor infinity, often used in classical presentations of mathematics
and computability theory. A predicate p: X→ P is Cantor-infinite if there exists an injection
f :N→ X only returning elements in p:

N ,→ p := ∃ f :N→ X .∀n1. p( f n1)∧∀n2. f n1 = f n2→ n1 = n2

Lemma 3.44. Cantor-infinite predicates are unbounded.

Proof. Let N ,→ p via f . For n, [ f 0, . . . , f n] proves Up. ■

Cantor-infinity is the ∀Σ version of generativity:

Lemma 3.45. Let X be discrete and p: X→ P. Then

N ,→ p←→∀l:LX .Σx . px ∧ x ̸∈ l.

Proof. The direction from left to right is a direct adaption of Lemma 3.44 using Lemma 3.9.
Conversely, let F :∀l:LX .Σx .x ̸∈l ∧ px and f l := π1(F l). Let g0 := [] and g(S n) := gn ++
[ f (gn)]. Then λn. f (gn) proves N ,→ p. ■
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CHAPTER 4
Decidability and enumerability

In this chapter we give a concise synthetic presentation of decidability and recursive enu-
merability in CIC. In textbook presentations, these notions are defined as properties of sets
of natural numbers. We here define them as properties of predicates X→ P over arbitrary
types X . Thus, we can directly say that a predicate over e.g. lists of numbers is decidable,
without having to define Gödel codes for lists.

Most results about the decidability or enumerability of sets of natural numbers do not actu-
ally rely on the full structure of N. Sometimes discreteness of N (i.e. decidability of equality)
is needed, sometimes the fact that N can be enumerated, sometimes infinity of N, and some-
times the fact that N has an order structure on which to perform recursion. We always state
the weakest possible assumption on types for our results.

For instance, over arbitrary types, the well-known equivalent presentations of recursive enu-
merability as the domain or co-domain of a partial function become non-equivalent. We thus
distinguish the notions and present them based on total functions as enumerability (focussing
on the co-domain) and semi-decidability (focussing on the domain).

We define all notions using total functions, which simplifies proofs. However, we also define
an interface for partial functions in CIC, provide a reference implementation, and prove that
all notions can also be defined in terms of such partial functions instead of total functions as
sanity check of the definitions.

Outline In Section 4.1 we introduce synthetic decidability and prove closure properties. Sec-
tion 4.2 introduces synthetic enumerability. We prove most closure properties in Section 4.3,
where list enumerability is introduced as equivalent but easier to treat notion of enumerability.
Section 4.4 introduces semi-decidability. Section 4.5 introduces synthetic partial functions. All
definitions are crucially placed in the universe P, as discussed in Section 4.6.

Publications The results in this chapter are based on
[73] Forster, Kirst, and Smolka. “On synthetic undecidability in Coq, with an application to the

Entscheidungsproblem.” Proceedings of the 8th ACM SIGPLAN International Conference on Certi-
fied Programs and Proofs. 2019.

[70] Forster. “Church’s thesis and related axioms in Coq’s type theory.” 29th EACSL Annual Conference
on Computer Science Logic (CSL 2021).

4.1 Decidability

A function f : X→B is a decider for p: X→ P if ∀x: X . px←→ f x = true. If f is a decider for p,
we also say that f decides p.

A predicate is decidable if there exists a decider:

D(p: X→ P) := ∃ f : X→B.∀x . px←→ f x = true

https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Synthetic.Definitions.html#decider
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≡ :Sec. A.3, Page 208

Def. dependently
typed decider

if . . . is
:Sec. A.1, Page 207

|| · || :Sec. A.4, Page 209

p :Sec. A.4, Page 209

µN :Sec. 3.2, Page 22

Def. equality decider

Def. discrete

We extend the notion of decidability defined on unary predicates to n-ary predicates, i.e.
deciders of predicates p: X1→·· ·→ Xn are functions f : X1→·· ·→ Xn→B.

Fact 4.1. Let f ≡
X→B

g, p ≡
X→P

q, and p′, q′: X→ P.
1. f decides p if and only if g decides q.

2. p is decidable if and only if q is decidable: Dp←→Dq.

3. If f decides p′ and g decides q′, then p′ ≡
X→P

q′.

In CIC, deciders can equivalently be defined using dependent types. A dependently typed
decider for a predicate p: X→ P is a function f :∀x: X .(px) + (¬px).

Fact 4.2. The following hold:
1. If f decides p one can construct a dependently typed decider for p.

2. If f is a dependently typed decider for p, λx .if f x is inl H then true else false decides p.

Corollary 4.3. Predicates p are decidable if and only if ||∀x . (px) + (¬px)||.

We will prove all statements in this chapter without making use of dependent deciders,
since boolean functions are easier to write out in detail than dependently typed functions
returning proofs. For the Coq mechanisation, the dependently typed versions however can be
advantageous because they are easier to construct in proof scripts.

We now turn to closure properties of decidable predicates. We first state the constructions
for deciders regarding complement, and pointwise conjunction and disjunction:

Lemma 4.4. Let f : X→B decide p and g: X→B decide q. Then

1. λx . ¬B( f x) decides p.

2. λx . f x ∧B g x decides λx . px ∧ qx .

3. λx . f x ∨B g x decides λx . px ∨ qx .

The following corollary is then immediate:

Corollary 4.5. Decidable predicates are closed under complement, pointwise conjunction,
and pointwise disjunction.

Finally, we can construct choice functions for total relations into N given a decider:

Lemma 4.6. Let R: X→N→ P be total, i.e. ∀x .∃n. Rxn, and g be a decider for R. Then one
can construct f : X→N such that ∀x . Rx( f x).

Proof. We first prove ∀x .∃y.g x y = true by exploiting totality of R. Let H be this proof. Then
we can define f x := π1(µN(H x)), which clearly fulfils ∀x . Rx( f x). ■

4.1.1 Discrete types

A function f : X→ X→N is an equality decider for a type X if ∀x1 x2: X . x1 = x2←→ f x1 x2 =
true. A type X is discrete if there exists an equality decider, i.e. if D(λx1 x2: X .x1 = x2).

Fact 4.7. λb1 b2:B. if b1 then b2 else ¬Bb2 is an equality decider for B and one can construct
an equality decider for N.
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Def. enumerable
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≡ :Sec. A.3, Page 208

Def. enumerator for a
type

Def. enumerable type

〈n, m〉
:Sec. A.1, Page 207

Fact 4.8. Let f and g be equality deciders for X and Y respectively. Then one can construct
equality deciders for X × Y , X + Y , OX , and LX .

Corollary 4.9. B and N are discrete, and discrete types are closed under pairs, sums, options,
and lists.

Fact 4.10. If l:LX lists p and f decides equality on X , then λx . x ∈ f
B l decides p.

Corollary 4.11. Finite predicates on discrete types are decidable.

4.2 Enumerability

Rogers [202] defines a predicate p to be enumerable if it is either empty or the range of a total
function. The built-in case distinction requires omnipresent use of classical logic to establish
enumerability, we thus use the option type instead:

A function f :N→OX is an enumerator for p: X→ P if ∀x . px←→∃n. f n = Some x . We also
say that f enumerates p.

A predicate is enumerable if there exists an enumerator:

E(p: X→ P) := ∃ f :N→OX .∀x . px←→∃n. f n= Some x

Note that with this definition, the empty predicate is enumerated by λx . None.
To lift enumerability to n-ary predicates we use (implicit) uncurrying: We call a predicate

p: X1→·· ·→ Xn→ P enumerable if its uncurrying λ(x1, . . . , xn).px1 . . . xn is enumerable.
Classically, a predicate is called co-enumerable if Ep holds. We refrain from using the ter-

minology to avoid clashes with the constructively stronger notion of co-semi-decidability we
introduce later.

We call predicates where both Ep and Ep holds bi-enumerable.

Fact 4.12. Let f ≡
ran

g, p ≡
X→P

q, and p′, q′: X→ P.
1. f enumerates p if and only if g enumerates q.

2. p is enumerable if and only if q is enumerable: Ep←→ q.

3. If f enumerates p′ and g enumerates q′, then p′ ≡
X→P

q′.

Similarly to discrete types, the notion of enumerability can be lifted to the type level as
well. A function f :N→OX is an enumerator for a type X if ∀x .∃n. f n= Some x , and we call
such types enumerable types.

Lemma 4.13. If f decides p and e enumerates X , then one can construct an enumerator for p.

Proof. Take λn.if en is Some x then if f x = true then Some x else None else None. ■

Corollary 4.14. If p is decidable and X is enumerable then p and p are enumerable.

Lemma 4.15. Let f enumerate p: X→ P and g enumerate q: X→ P.
1. λ〈n, m〉. if ( f n, gm) is (Some x ,Some y) then if d x y then Some x else None else None

enumerates λx . px ∧ qx

2. λ〈n, m〉. if n is 0 then f m else gm enumerates λx . px ∨ qx .
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Corollary 4.16. Enumerable predicates are closed under pointwise conjunction and disjunc-
tion.

Lemma 4.17. Let f enumerate p and g enumerate q.
1. p× q is enumerated by

λ〈n, m〉. if ( f n, gm) is (Some x ,Some y) then Some (x , y) else None

2. p+ q is enumerated by

λ〈n, m〉. if n is 0 then omap inl ( f m) else omap inr (gm)

where omap h z := if z is Some z then Some (hz) else None.

Corollary 4.18. If p and q are enumerable, p× q and p+ q are enumerable.

Lemma 4.19. If f enumerates p: X→ Y→ P then one can construct enumerators for both
projections, i.e. for λx .∃y. px y and λy.∃x . px y .

Proof. Let f :N→O(X × Y ) enumerate p. Then

λn.if f n is Some (x , y) then Some x else None

enumerates λx .∃y.px y and similarly for λy.∃x .px y . ■

Corollary 4.20. If p is enumerable, then λx .∃y.px y and λy.∃x .px y are enumerable.

Note that for inhabited predicates (and consequently for inhabited types) we do not
need the O type in enumerators. A function f :N→ X is a strong enumerator for a predi-
cate p: X→ P if ∀x . px←→∃n. f n= x .

A predicate is strongly enumerable if there exists a strong enumerator:

E+(p: X→ P) := ∃ f :N→ X .∀x . px←→∃n. f n= x

Fact 4.21. Let p: X→ P.
1. If f enumerates p and x0: X such that px0, then λn. if f n is Some x then x else x0

strongly enumerates p.

2. If f strongly enumerates p, then λn. Some ( f n) enumerates p.

Fact 4.22. E+p←→ Ep ∧ ∃x .px

A predicate p: I→ X→ P is parametrically enumerable if there exists a function
f : I→N→OX such that fi enumerates pi:

E2 p := ∃ f : I→N→OX .∀i x . pi x←→∃n. fin= Some x

Fact 4.23. Let p: I→ X→ P.
1. If f enumerates p and g decides equality on I , then p is parametrically enumerated by
λin. if f n is Some ( j, x) then if gi j then Some x else None else None.
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2. If f parametrically enumerates p and g enumerates I , then p is enumerated by
λ〈n, m〉. if gm) is Some i then if f im is Some x then Some (i, x) else None else None.

Corollary 4.24. If X is enumerable and discrete and p: I→ X→ P, then E2 p←→ Ep.

We will need the result that the graph of a total function over enumerable domain is enu-
merable:

Fact 4.25. Let X be enumerable and f : X→ Y . Then E(λx y. f x = y).

Similar to Lemma 4.6 we can prove a choice principle for relations which have an enumer-
ator and where the domain has an equality decider:

Lemma 4.26. Let R: X→ Y→ P, d decide equality on X , e enumerate R, and R be total, i.e.
∀x .∃y.Rx y . Then one can construct f : X→ Y such that ∀x . Rx( f x).1

Proof. We define R′(x: X )(n:N) := ∃y. en = Some (x , y). R′ is total since R is total and
e enumerates R. R′ is decided by λxn. if en is Some (x ′, y) then d(x ′, x) else false since d
decides equality on X .

We use Lemma 4.6 for R′ to obtain a function g: X→N s.t. ∀x . R′x( f x). Now f x :=
if e(g x) is Some (x ′, y) then y else _, where _ is irrelevant because this case can never oc-
cur, fulfils ∀x . Rx( f x). ■

4.2.1 Enumerable types

Fact 4.27. f :N→OX enumerates X if and only if it enumerates λx: X .⊤.

Corollary 4.28. X is enumerable if and only if λx: X .⊤ is enumerable.

Fact 4.29. N is enumerated by λn. Some n and B is enumerated by
λn. if n is 0 then Some true else Some false.

Corollary 4.30. N and B are enumerable.

Fact 4.31. Let f enumerate X , g enumerate Y , and let Z: X→T and h:∀x: X .N→O(Z x) such
that hx enumerates Z x .

1. λ〈n, m〉. if ( f n, gm) is (Some x ,Some y) then Some (x , y) else None enumerates X × Y .

2. λn. if n is S n then f n else None enumerates OX .

3. λ〈n, m〉. if f n is Some x then if hxm is Some y then Some (x , y) else None else None
enumerates Σx: X . Z x .

4. λ〈n, m〉. if n is 0 then lift f m inl else lift g m inr enumerates X + Y ,
where lifth n ins := if hn is Some z then Some (insz) else None.

Corollary 4.32. Enumerable types are closed under pairs, sums, and options.

We postpone the closure of enumerable types under lists to the next section.
We will frequently require types to be discrete and enumerable in the following chapters.

Such types are called datatypes in [73]. Equivalently to imposing that a type is discrete and
enumerable, one can ask for a retraction into natural numbers:
1A similar result was anticipated by Larchey-Wendling [150], who formulated it for µ-recursively enumerable

instead of synthetically enumerable predicates.
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Def. list enumerator
Def. list enumerable

_[_] :Sec. A.1, Page 207

Def. cumulative

Lemma 4.33. The following hold:
1. If d decides equality on X and f enumerates X , then

(λx . π1(µN(λn. if f n is Some y then d x y else false)), f )

is a retraction from X to N.

2. If (I , R) is a retraction from X to N, then λx1 x2.I x1 =B I x2 decides equality on X .

3. If (I , R) is a retraction from X to N, then R enumerates X .

Corollary 4.34. X is discrete and enumerable if and only if there exists a retraction from X
to N.

4.3 List enumerability

Some closure properties of enumerable predicates and types, e.g. closure of enumerable types
under lists are hard to show directly. We thus introduce list enumerability as a tool. List
enumerability is equivalent to enumerability, but often easier to treat in proofs, and we will
also use it later to show the enumerability of concrete predicates. A function L:N→LX is a
list enumerator for p: X→ P if ∀x . px←→∃n. x ∈ Ln.

A predicate p is list enumerable if there exists a list enumerator:

ELp := ∃L:N→LX .∀x . px←→∃n.x ∈ Ln

Similarly, a function L:N→LX is a list enumerator for a type X if ∀x .∃n.x ∈ Ln.

Fact 4.35. If f is an enumerator for p then λn. if f n is Some x then [x] else [] is a list enu-
merator for p.

Fact 4.36. If L is a list enumerator for p then λ〈n, m〉. (en)[m] is an enumerator for p.

Corollary 4.37. p is enumerable if and only if it is list enumerable: Ep←→ ELp.

Closure constructions for both types and predicates are easier when working with cumula-
tive list enumerators. A function L:N→LX is cumulative if ∀n.∃l. L(Sn) = Ln++ l.

Fact 4.38. If L is cumulative and m≥ n then ∃l. Lm= Ln++ l.

We define an operation cumul : (N→LX )→ (N→LX ) as

cumul L 0 := L0

cumul L (Sn) := cumul L n++ L(Sn)

Fact 4.39. cumul L is cumulative and we have (∃n.x ∈ Ln)←→ (∃n.x ∈ cumul Ln).

Lemma 4.40. If f is a list enumerator for X one can construct a list enumerator for LX .

Proof. Let LX be a list enumerator for X . Define

L0 := []
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Def. semi-decider

Def. co-semi-decider

Def. semi-decidable
predciate

Def. co-semi-decidable
predciate

≡ :Sec. A.3, Page 208

L(Sn) := Ln++ [x :: l | (x , L) ∈ cumul LX n× Ln]

Clearly L is cumulative. ∀l:LX .∃n.l ∈ Ln follows by induction on l. ■

Corollary 4.41. List enumerable types and enumerable types are closed under lists.

4.4 Semi-decidability

Semi-decidable predicates are traditionally defined as the domain of a partial function from
natural numbers to natural numbers. Since only the domain matters and not the results of
the function, we do not use partial functions and instead directly define f : X→N→B to be a
semi-decider for a predicate p: X→ P if ∀x . px←→∃n. f xn= true. We introduce the notion of a
co-semi-decider, where f : X→N→B is a co-semi-decider for a predicate p: X→ P if ∀x . px←→
∀n. f xn= false.

A predicate is semi-decidable if there exists a semi-decider, and co-semi-decidable if there
exists a co-semi-decider:

S(p: X→ P) := ∃ f : X→N→B.∀x . px←→∃n. f xn= true

Sp := ∃ f : X→N→B.∀x . px←→∀n. f xn= false

In the literature propositions P such that P←→ (∃n. f n= true) are often called Σ0
1 or “simply

existential”, and P such that P ←→ (∀n. f n = false) are called Π0
1 or “simply universal”. In

our setting, semi-decidable predicates are pointwise Σ0
1, and co-semi-decidable predicates are

pointwise Π0
1.

As for decidability we lift semi-decidability to n-ary predicates, i.e. semi-deciders of predi-
cates p: X1→·· ·→ Xn are functions f : X1→·· ·→ Xn→N→ P.

Fact 4.42. Let ∀x .(∃n. f xn= true)←→ (∃n. g xn= true), p ≡
X→P

q, and p′, q′: X→ P.
1. f semi-decides p if and only if g semi-decides q.

2. p is semi-decidable if and only if q is semi-decidable.

3. If f semi-decides p′ and g semi-decides q′, then p′ ≡
X→P

q′.

The complement of semi-decidable predicates is co-semi-decidable, due to the following
intuitionistic tautology:

Fact 4.43. ∀n. f n= false←→¬∃n. f n= true

Corollary 4.44. Co-semi-decidable predicates are stable.

Fact 4.45. If f is a semi-decider for p, then f is a co-semi-decider for p.

Corollary 4.46. The complement of semi-decidable predicates is co-semi-decidable: Sp→S p.

Note that Sp→ Sp seems to be not provable.
As for enumerable predicates, decidable predicates are semi-decidable and co-semi-

decidable:

Fact 4.47. If f is a decider for p, λxn. f x is a semi-decider for p and λxn. ¬B f x is a co-semi-
decider for p.
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Corollary 4.48. Decidable predicates are semi-decidable and co-semi-decidable. Further-
more, the complement of decidable predicates is semi-decidable.

As mentioned, semi-decidable predicates are often called Σ0
1 in the literature. This is due

to the following observation, stating that semi-decidable predicates can be expressed as one
existential quantification over a decidable predicate:

Fact 4.49. A predicate p is semidecidable if and only if there exists q:N→ X→ P such that q

is decidable and ∀x .px←→∃n. qnx .

We now prove closure properties of semi-decidable and co-semi-decidable predicates:

Lemma 4.50. Let f and g be semi-deciders for p and q. Then one can construct a semi-decider
for λx . px ∧ qx .

Proof. One can construct a function
∨n
B : (N→B)→B s.t.

∨n
B h= true←→∃i ≤ n. hi = true. Then

λx . (
∨n
B( f x)) ∧B (
∨n
B(g x)) is a semi-decider for λx . px ∧ qx because px ∧ qx ←→ ∃n.(∃i ≤

n. f x i = true)∧ (∃i ≤ n. g x i = true). ■

Lemma 4.51. Let f and g be semi-deciders for p and q. Then λxn. f xn ∨B g xn is a semi-
decider for λx . px ∨ qx .

Fact 4.52. Let f be a co-semi-decider for p and g be a co-semi-decider for q. Thenλxn. f xn∨B
g xn is a co-semi-decider for λx . px ∧ qx .

Corollary 4.53. The following hold:
1. Semi-decidable predicates are closed under pointwise conjunction and disjunction.

2. Co-semi-decidable predicates are closed under pointwise conjunction.

On predicates over natural numbers, enumerability and semi-decidability are equivalent.
However, when generalising the notions to arbitrary base types instead of natural numbers,
as we do here, one has to impose conditions on the base types to prove the equivalence. In
particular, the two directions of the equivalence can be proved for strictly more types than
natural numbers:

Fact 4.54. Let f be a semi-decider for p: X→T and e enumerate X . Then

λ〈n, m〉.if en is Some x then if f xm then Some x else None else None

enumerates p.

Corollary 4.55. If p is semi-decidable and X is enumerable then p is enumerable.

Fact 4.56. Let e enumerate p and d decide equality on X . Then

λxn.if en is Some y then d x y else false

is a semi-decider for p.

Corollary 4.57. If p is enumerable and X is discrete then p is semi-decidable.
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Def. A* B

Def. x ↓

Def. equivalent partial
values

As before, we can construct choice functions for semi-decidable relations. In fact, this direct
strenghtening of Lemma 4.6.2

Lemma 4.58. Let R: X→N→ P be total, i.e. ∀x .∃n. Rxn, and let g be a semi-decider for R.
Then one can construct a function f : X→N such that ∀x . Rx( f x).

Proof. We define R′x〈n, m〉 := g(x , n)m = true. R′ is total, since R is total and g semi-
decides R. R′ is decided by λx〈n, m〉. g(x , n)m.

We use Lemma 4.6 for R′ to obtain a choice function f ′: X→N s.t. ∀x . R′x( f ′x). The wanted
choice function for R then is λx . (λ〈n, m〉. n)( f ′x). ■

For co-semi-decidable relations no choice principle seems to be provable, we will discuss
this in more detail in Chapter 7.

4.5 Partial functions

In textbooks, recursive enumerability is often defined in terms of partial computable functions.
We could not do so, because in type theory all definable functions are total by definition.
Modelling partiality by functional relations R: A→ B→ P is not an option for us, because they
subsume non-computable functions.

An alternative is to resort to step-indexed functions A→ (N→OB), sometimes with the addi-
tional constraint that once a value is found, i.e. f an= Some v, it is not changed by increasing
the step index. This approach was for instance pioneered by Richman [198] in constructive
logic. Escardó and Knapp [65] provide a comprehensive overview of other approaches.

To show that indeed enumerability and semi-decidability can be defined using various mod-
els of partial functions in type theory, we assume a type part A for A:T and write A* B for
A→ part B. We for now abstract away from a concrete implementation of partial functions to
obtain the result for all possible implementations. At the end of this section, we then discuss
one implementation of partial functions in type theory, namely as stationary sequencesN→OA.

Before that, we specify several required operations on the type part A, and then show that
1. Enumerable predicates can be defined as the co-domain of partial functions from the

natural numbers:
Ep←→∃ f :N* X .∀x: X . px←→∃n. f n ▷ x

2. Semi-decidable predicates can be defined as the domain of arbitrary partial functions:
Sp←→∃(Y :T)( f : X* Y ).∀x . px←→∃y. f x ▷ y

4.5.1 Partial values

An abstract definition of partial values is centered around a type former part :T→T and a
definedness relation ▷:partA→ A→ P. We immediately define a termination relation in terms
of definedness as x ↓ := ∃a. x ▷ a. Two partial values are equivalent if they have the same
value (or no value): x ≡part A y := (∀a. x ▷ a←→ y ▷ a).

2A formulation of this construction for disjunctions (equivalently: R: X→B→ P) is due to Andrej Dudenhefner
and was received in private communication.
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part A:T

▷:partA→ A→ P x ▷ a1→ x ▷ a2→ a1 = a2

ret : A→ partA ret a ▷ a

>>= :partA→ (A→ partB)→ partB x >>= f ▷ b←→ (∃a. x ▷ a ∧ f a ▷ b)

undef:partA ∄a.undef ▷ a

µ: (N→B)→ partN
µ f ▷ n←→ f n= true∧

∀m< n. f m= false

seval:partA→N→OA x ▷ a←→∃n. seval xn= Some a

seval xn= Some a→

m≥ n→ seval xm= Some a

Figure 4.1.: Type and operations for partial values

We assume monadic structure for part (ret and >>=), an undefined value (undef), a min-
imisation operation (µ), and a step-indexed evaluator (seval). The operations and their spec-
ifications are listed in Figure 4.1.

Lemma 4.59. There is eval:∀x:partA.x↓→A such that if H: x ▷ a we have eval x H = a.

Lemma 4.60. One can construct a parallelisation operator _ ∥ _:partA→ partB→ part(A+ B)
such that

1. x ∥ y ▷ inl a→ x ▷ a

2. x ∥ y ▷ inr b→ y ▷ b

3. x ↓ ∨ y ↓→ (x ∥ y) ↓

Similar to Fact 4.25, the graph of partial functions is enumerable:

Fact 4.61. Let X be an enumerable type. Then the graph of partial functions f : X* Y is
enumerable: E(λx y. f x ▷ y).

If furthermore X and Y are discrete, the graph of partial functions is semi-decidable:
S(λx y. f x ▷ y).

4.5.2 Enumerability and semi-decidability revisited

In textbooks, recursively enumerable predicates are defined as either the domain or co-domain
of a partial function, and then the other alternative is shown equivalent. In our synthetic ap-
proach, the two alternatives are made explicit as semi-decidability (domain) and enumerabil-
ity (co-domain), which we have however both modelled using total functions only.

However, one can define enumerability and semi-decidability based on partial functions
also in the synthetic settings.

Recall that we defined enumerable predicates as the range of functions f :N→OX and
proved that for non-empty predicates one can equivalently ask for a function f :N→ X in
Fact 4.22. Alternatively, we could have asked for a function f :N* X :
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Def. stationary
sequence

Fact 4.62. Ep←→∃ f :N* X .∀x . px←→∃n. f n ▷ x

Proof. If f :N→OX enumerates p, λn. if f n is Some x then ret x else undef is a partial enu-
merator of type N* X .

If vice versa f :N* X is a partial enumerator for p, λ〈n, m〉.seval ( f n)m enumerates p. ■

And similarly, our definition of semi-decidable predicates in terms of total functions is equiv-
alent to defining semi-decidable predicates as the domain of partial functions:

Fact 4.63. Sp←→∃Y ( f : X* Y ).∀x . px←→∃y. f x ▷ y

Proof. If f : X→N→B is a semi-decider for p, λx . µ(λn. ret ( f xn)) has type X*N and do-
main p.

Vice versa, if the domain of f : X* Y is p, λxn. if seval ( f x)n is Some y then true else false
semi-decides p. ■

Lastly, we fix that a partial function f : X* Y computes a functional relation R: X⇝Y if

∀x y. Rx y←→ f x ▷ y.

4.5.3 Stationary sequences as partial values

We call f :N→OA a stationary sequence (or just stationary) if ∀na. f n = Some a→∀m ≥
n. f m= Some a. For instance, the always undefined function λn. None is stationary.

We define the type of partial values as part A := Σ f :N→OA. f is stationary. In this section,
we use the letters f and g for stationary sequences. We define:

f ▷ a := ∃n. π1 f n= Some a

This definition of definedness is deterministic, since f is stationary.
It is straightforward to define step-indexed evaluation as:

seval f n := π1 f n

Lemma 4.64. f ▷ a←→∃n. π1 f n= Some a

Proof. By computation, the two sides are equal. ■

It is similarly straightforward to define the sequences for return, bind and the undefined
value:

ret a := (λn. Some a, Hret )

undef := (λn. None, Hundef)

f >>= F := (λn. if π1 f n is Some a then π1(Fa)n else None, H)

It is straightforward to provide proofs Hret , Hundef , and H that all constructred sequences
are indeed stationary. Correctness of ret and undef is easy, we only show the correctness proof
for bind:
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Lemma 4.65. f >>= F ▷ b←→ (∃a. f ▷ a ∧ Fa ▷ b)

Proof. The direction from left to right is straightforward.
For the direction from right to left, let π1 f n1 = Some a and π1(Fa)n2 = Some b. Then

π1( f >>= F)(n1 + n2) = Some b. ■

The most interesting construction is to implement µ.
We do so by implementing a function mu(F :N→ partB)(i:N)(u:N) where i is a step-index,

and u is an upper bound. The function returns an element of the type

res ::= Diverged | Allfalse | Trueat (n:N)

such that the following correctness statement holds:

Fact 4.66. The following hold:
1. If mu F i u= Diverged then ∃m< u. π1(Fm)i = None∧∀k < m. π1(Fk)i ̸= Some true.

2. If mu F i u= Allfalse then ∀m< u.π1(Fm)i = Some false.

3. If mu F i u= Trueat m then m< u∧π1(Fm)i = Some true∧∀k < m. π1(Fk)i ̸= Some false.

We can then define

µF := (λn.if mu F n n is Trueat n then Some n else None, H)

where the proof H uses Fact 4.66.
Correctness of µ is then proved relying on the following fact:

Fact 4.67. Let R:N→ X→ P such that ∀m ≤ n.∃x . Rmx . Then there exists l:LX such that R
holds pointwisely on [0, . . . , n] and l.

Lemma 4.68. µ f ▷ n←→ f n= true∧∀m< n. f m= false

Proof. The forward direction is easy. The backward direction uses Facts 4.66 and 4.67 and
essentially consists in proving that the conclusions of Fact 4.66 are mutually excluding. ■

We can use µ to define a function mkstat to turn any function f :N→OA into a stationary
sequence:

mkstat f := µ(λn.if f n is Some a then true else false)>>= λn.if f n is Some a then ret a else undef

Fact 4.69. mkstat f ▷ a←→∃n. f n= Some a ∧∀m< n. f n= None

4.6 On ∃ vs. Σ

We defined all synthetic computability notions using existential quantification ∃ in P, and thus
for instance enumerability is a proposition, i.e. Ep:P. On a first view, an alternative would
have been to define

EΣp:T := Σ f :N→OX .∀x: X . px←→∃n. f n= Some x

However, this is not a faithful synthetic rendering of the textbook notion of enumerability, be-
cause it would yield an unsound synthetic approach. In Chapter 2, we have discussed that in a
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synthetic approach to mathematics, if the synthetic rendering of a logical formula P is provable
in the synthetic setting, then P should be provable in textbook approaches to computability.

To demonstrate the issue, we look at the following statement, which is false in analytic
textbook presentations of computability theory:

Let Ai∈N be a famility of sets of natural numbers such that every Ai is recursively
enumerable. Then

⋃

i∈N Ai is recursively enumerable.

For the synthetic analogue we model families of sets of natural numbers Ai∈N as predi-
cates p:N→N→ P, and a big union

⋃

i∈N Ai as λx .∃n. pnx . If we now model “recursively
enumerable” as EΣ, we can prove this statement:

Lemma 4.70. Let p:N→ X→ P such that ∀n.EΣ(pn). Then EΣ(λx .∃n. pnx).

Proof. Let F :∀n.EΣ(pn). Then λ〈n, m〉.π1(Fn)m enumerates λx .∃n.pnx . ■

Note that the Lemma becomes provable because modelling recursive enumerability as EΣ
changes the meaning of ∀i. Aiis recursively enumerable to mean that Ai is parametrically enu-
merable, i.e. “there is a fixed computable function f :N→N→OX such that for all i, f i enu-
merates Ai”, which is strictly stronger than the intended meaning “for all i there exists a
computable function fi : N→OX enumerating Ai”.

However, as mentioned, the statement is clearly false in traditional computability theory. To
see this, we define the family of sets

Ai :=

¨

{i} if the i-th Turing machine does not halt on the empty tape
{ } otherwise

Now for every i, Ai is a sub-finite set and thus classically finite. Thus, every Ai is recursively
enumerable (similar to Corollary 4.11). However, we have:
⋃

i∈N
Ai = {i | the i-th Turing machine does not halt on the empty tape}

Note that the set on the right is the complement of the specialized halting problem – which
is not recursively enumerable – and thus the statement above is indeed false in traditional
computability theory.

Thus EΣ is not a faithful synthetic definition of enumerability in type theory and we have
to choose Ep as definition of enumerability. To be able to develop basic computability theory
like done in this chapter, we accordingly also have to place the definition of enumerability and
all other notions in P.

We conclude by remarking that Lemma 4.70 can be proved for the propositional definition of
decidability under the axiom of countable choice. We will discuss the compatibility of axioms
with synthetic computability in Chapter 7 in more detail.
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CHAPTER 5
Reducibility

The concept of reducibility of one problem to another was prevalent already in early devel-
opments of computability. Intuitively, a problem p is reducible to a problem q if a decider for
q can be computationally turned into a decider for p. Conversely, if p is reducible to q and p
is undecidable, q is undecidable as well.

The first formal definition of reducibility is due to Turing [230] and based on oracles, the
terminology “Turing reducibility” was first used in the seminal paper by Post [189]. Post sets
out to analyse the order structure of degrees of enumerable sets, a degree being an equivalence
class of problems under reducibility. His lead question is whether there is an enumerable but
undecidable set with degree strictly below the degree of the halting problem, and since he is
unable to do so, develops notions of reducibility for which he can answer the question.

In this chapter we introduce Post’s notions of one-one, many-one, and truth-table reducibil-
ity, and synthetically prove positive results about them (i.e. inclusion or existence results, but
no non-inclusion or non-existence results). In Chapter 8 we will also settle Post’s problems
w.r.t. the latter two notions, i.e. find enumerable but undecidable predicates to which the
halting problem is not many-one and truth-table reducible. As corollaries, we first obtain that
all of the mentioned reducibility notions differ, even on enumerable, undecidable predicates,
and secondly that not all undecidability proofs work by reduction from the halting problem.

For the presentation in this chapter, we largely follow the textbooks by Rogers [202],
Soare [210], and Cutland [44]. Besides establishing that one-one, many-one, and truth-table
reducibility are indeed reducibilities (i.e. are pre-orders and transport decidability backwards)
we also connect and characterise the notions in various ways: We show that many-one re-
ducibility p ⪯m q can be equivalently characterised as one-one reducibility of p× X ⪯1 p× X .
Similarly, truth-table reducibility p ⪯

tt
q can be expressed as ptt ⪯1 qtt. Lastly, we give a

fully synthetic proof of the Myhill isomorphism theorem [174] stating that one-one equiva-
lent predicates are in fact isomorphic.

Note that in this chapter we do not give constructions in theorem statements, i.e. instead of
stating “If f is a many-one reduction from p to q and g is a decider for q, then . . . is a decider
for p” we only state “If q is decidable and p ⪯m q, p is decidable.”.

Outline In Sections 5.1 and 5.2 we prove basic results on many-one and one-one reductions.
Section 5.3 contains the Myhill isomorphism theorem, while in Section 5.4 we prove basic
results on truth-table reductions.

Publications Section 5.1 is largely based on [73]. The other section contain adapted pieces
of text from [72], which were written solely by the author of this thesis.
[73] Forster, Kirst, and Smolka. “On synthetic undecidability in Coq, with an application to the

Entscheidungsproblem.” Proceedings of the 8th ACM SIGPLAN International Conference on Certi-
fied Programs and Proofs.

[72] Forster, Jahn, and Smolka. “A Constructive and Synthetic Theory of Reducibility: Myhill’s Isomor-
phism Theorem and Post’s Problem for Many-one and Truth-table Reducibility in Coq.” Pre-print.
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Def.
many-one reduction

Def. many-one
reducibility: p ⪯m q

:Sec. A.4, Page 209

stable predicate
:Sec. A.4, Page 209

5.1 Many-one reducibility

A function f : X→ Y is a many-one reduction from p to q if ∀x . px←→ q( f x). A predicate p is
many-one reducible to a predicate q if there exists a many-one reduction.

p ⪯m q := ∃ f : X→ Y .∀x . px←→ q( f x)

The intuition here is that f translates instances of p to instances of q. We extend many-one
reducibility to n- and m-ary predicates by (implicit) uncurrying of the target problem, i.e. for
p: X1→·· ·→ Xn→ P and q: Y1→·· ·→ Ym→ P a many-one reduction from p to q is a function
f : X1→·· ·→ Xn→ Y1 × . . . Ym.

Fact 5.1. Many-one reducibility is a pre-order, i.e. reflexive and transitive.

Fact 5.2. If p ⪯m q and q is decidable then p is decidable.

Lemma 5.3. If p ⪯m q and q is semi-decidable then p is semi-decidable.

Proof. Let f reduce p to q and g be a semi-decider for q. Then λxn.g( f x)n semi-decides p.
■

Lemma 5.4. Let X be enumerable, Y discrete, and p: X→ P, q: Y→ P. If p ⪯m q and q is
enumerable then p is enumerable.

Proof. By Lemmas 4.55, 5.3, and 4.57. ■

Fact 5.5. If p ⪯m q then p ⪯m q.

However, note that many other traditional theorems concerning the complements of predi-
cates require classical reasoning:

Lemma 5.6. All of the following are equivalent to the law of excluded middle LEM:
p ⪯m p, p ⪯m p, and p ⪯m q→ p ⪯m q.

Proof. Take p(x:N) := P and q(x:N) := ¬¬P. Then ¬¬P→ P in all cases. ■

Many-one reducibility forms an upper semi-lattice:

Lemma 5.7. Let p: X→ P and q: Y→ P. Then for p + q: X + Y→ P we have p ⪯m p + q,
q ⪯m p+ q, and for all r if p ⪯m r and q ⪯m r then p+ q ⪯m r.

Proof. (1) and (2) are immediate. For (3), let r: Z→ P, f : X→ Z reduce p to r, and g: Y→ Z
reduce q to r. h(inl x) := f x , h(inr y) := g y reduces p+ q to r. ■

Recall that a predicate p is stable if ∀x .¬¬px→ px .

Fact 5.8. If q is stable and p ⪯m q then p is stable.

In textbooks, the halting problem for the chosen model of computation plays a central role
to explain the order structure of many-one reducibility. When excluding trivial predicates, we
have that decidable predicates reduce to all semi-decidable predicates, and all semi-decidable
predicates reduce to the halting problem. Synthetically, we can for now only partially replicate
this result:

KN→B := λ f :N→B.∃n. f n= true
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Def. many-one
complete

Def. m-equivalent

Def. one-one reduction
injection
:Sec. A.3, Page 209

Def. one-one
reducibility: p ⪯1 q

Def. 1-equivalent

Fact 5.9. If p is decidable and q is nontrivial then p ⪯m q.

Fact 5.10. Sp←→ p ⪯m KN→B

In general, we call predicates q on enumerable, discrete types such that Ep→ p ⪯m q

many-one complete. Note that KN→B is not many-one complete, since KN→B: (N→B)→ P,
and N→B is not an enumerable type. We will construct and discuss a many-one complete
predicate based on axioms in Chapter 6.

If p ⪯m q and q ⪯m p, we say that p and q are many-one equivalent or m-equivalent, and
write p ≡

m
q.

5.2 One-one reducibility

A special case of many-one reducibilitity is one-one reducibility. An injection f : X→ Y is a
one-one reduction from p to q if f is a many-one reduction. A predicate p: X→ P is one-one
reducible to a predicate q: Y→ P if there exists a many-one reduction.

p ⪯1 q := ∃ f : X→ Y . f is injective∧∀x . px←→ q( f x)

If p ⪯1 q and q ⪯1 p, we say that p and q are one-one equivalent or 1-equivalent, and
write p ≡

1
q.

Lemma 5.11. One-one reducibility is a pre-order, i.e. reflexive and transitive.

Proof. The identity and composition of injective functions are injective. ■

Fact 5.12. If p ⪯1 q then p ⪯m q.

Due to this fact, one-one reducibility also transports decidability, enumerability and semi-
decidability. We only state the former:

Fact 5.13. If p ⪯1 q and q is decidable then p is decidable.

Lemma 5.14. (λx .x ̸= 0)⪯m (λx .x = 0) but (λx .x ̸= 0) ̸⪯1 (λx .x = 0).

Proof. A many-one reduction is immediate by λx .if x is 0 then 1 else 0.
However, given a one-one reduction f , we need to have f 1 = f 2 = 0. But since f is an

injection we have 1= 2, contradiction. ■

Note that the lemma leaves open whether there are two enumerable, but undecidable pred-
icates p, q such that p ⪯m q but p ̸⪯1 q, which is the more interesting case and will be settled
in Chapter 8.

Many-one reducibility can be characterised in terms of one-one reducibility [202, §7.6 The-
orem VIII]. The traditional proofs works via so called cylindrification and we generalise it
slightly to apply to base types other than N. In our setting, a cylindrification of a predi-
cate p: X→ P is p× Z for an inhabited type Z , and predicates of the form p× Z in general are
called cylinders. First, we can prove that a cylindrification of p is many-one equivalent to p:

Fact 5.15. Let p: X→ P.
1. p ⪯1 p× Z given z: Z
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[195] Pradic and Brown. 2019.
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Def. correspondence
sequences

2. p× Z ⪯m p

Then, we can show that any many-one reduction to a cylinder can be turned into a one-one
reduction:

Lemma 5.16. If q ⪯m p× Z then q ⪯1 p× Z , provided an injection g: Y × X→ Z .

Proof. Let f reduce q to p × Z . Then λy.(π1( f y), g(y,π1( f y))) is the wanted one-one re-
duction. It is injective since g is injective and correct since f is correct. ■

This suffices to establish the following characterisation:

Lemma 5.17. Let p: X→ P, q: Y→ P, z: Z , and f : Y × Z ,→ Z . Then q ⪯m p←→ q× Z ⪯1 p× Z .

Proof. The forward direction follows by Lemma 5.16 and Fact 5.15. The backwards direction
is by Fact 5.15. ■

Furthermore, the cylindrification of p is 1-maximal in the m-degree of p:

Lemma 5.18. Let p: X→ P, q: Y→ P, z: Z , f : Y→ Z , q ≡
m

p and p ⪯1 q. Then q ⪯1 p× Z .

Proof. Direct from Lemma 5.16 and Fact 5.15 (1). ■

5.3 Myhill isomorphism theorem

The Myhill isomorphism theorem [174] is a generalisation of the restriction of the Cantor-
Bernstein theorem to enumerable, discrete types. In general, the (inherently classical [195])
Cantor-Bernstein theorem constructs a bijection between sets A and B from two injections
A→ B and B→ A. When restricted to enumerable, discrete types, Cantor-Bernstein be-
comes fully constructive. As a generalisation, the Myhill isomorphism theorem states that
1-equivalent predicates p: X→ P and q: Y→ P (i.e. there are injective reductions between them,
but the reductions are in no relation to each other) are isomorphic (i.e. there are reductions
f , g between them such that f (g y) = y and g( f x) = x).
The isomorphism theorem does not rely on universal machines and can thus be synthetically

replicated without axioms.
We loosely follow Rogers [202, §7.4 Th. VI], where the isomorphism is constructed in

stages. The stages are formed by correspondence sequences between predicates p and q,
which are finitary bijections represented as lists C:L(X × Y ) such that
(a) ∀(x , y) ∈ C . px←→ q y

(b) ∀(x , y1) ∈ C .∀(x , y2) ∈ C . y1 = y2

(c) ∀(x1, y) ∈ C .∀(x2, y) ∈ C . x1 = x2

We write x ∈1 C if x is an element of the first projection of C , and y ∈2 C if y is an element
of the second.

The crux of the theorem is that for any C as above such that p ⪯1 q and x0 ̸∈1 C one can
compute y0 such that (x0, y0) :: C is a correspondence sequence again, with no condition on p
and q:

Lemma 5.19. Let f be a one-one reduction from p to q. One can construct a function
find:L(X × Y )→ X→ Y such that if C is a correspondence sequence for p and q and x0 ̸∈1 C ,
then find C x0 ̸∈2 C and px0←→ q(find C x0).
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[213] Sozeau and Mangin. 2019.
Equations reloaded: High-level
dependently-typed functional
programming and proving in Coq.

Proof. We first define a function γ:L(X × Y )→ X→ X recursive in |C |:

γC x := x if f x ̸∈2 C

γC x := γ (filter(λt.t ̸=B (x ′, f x))C) x ′ if (x ′, f x) ∈ C

For a correspondence sequence C between p and q and x ̸∈1 C we have (1) px←→ p(γC x),
(2) γC x = x or γX x ∈1 C , and (3) f (γC x) ̸∈2 C . The proof is straightforward by induction
on the length of C , exploiting the injectivity of f .

Now find C x0 := f (γC x0) is the wanted function. ■

The implementation of γ in Coq is greatly eased by using the Equations plugin [213].
For the rest of this section we fix enumerable, discrete types X and Y such that (IX , RX ) and

(IY , RY ) are retractions from X and Y respectively to N by Corollary 4.34. We construct the
isomorphism via a cumulative correspondence sequence Cn such that IX x < n→ x ∈1 Cn and
IY y < n→ y ∈2 Cn.

C0 := []

C ′n :=

¨

(x ,find Cn x) :: Cn if RX n= Some x ∧ x ̸∈1 Cn

Cn otherwise

CS n :=

(

(find
←→
C ′n y, y) :: C ′n if RY n= Some y ∧ y ̸∈2 Cn

C ′n otherwise

where
←→
C := map (λ(x , y).(y, x))C is a correspondence sequence for q and p if C is one for

p and q.

Fact 5.20. Cn is a correspondence sequence for p and q such that

1. n≤ m→ Cn ⊆ Cm

2. IX x < n→ x ∈1 Cn

3. IY y < n→ y ∈2 Cn

Cn now gives rise to the wanted isomorphism:

Lemma 5.21. There are functions f ′: X→ Y and g ′: Y→ X such that

1. ∀x . px←→ q( f ′x) and ∀y. q y←→ p(g ′ y).

2. g ′( f ′x) = x and f ′(g ′ y) = y .

Proof. f ′x is defined as the unique y for which (x , y) ∈ CS (IX x) (which exists by Fact 5.20
(2) and is unique because CS (IX x) is a correpsondence sequence), and g ′ y is symmetrically
defined as the unique x for which (x , y) ∈ CS (IY y).

(1) is immediate since Cn is a correspondence sequence. (2) is by case analysis whether
IX x ≤ IY y or vice versa. ■
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Def. truth-table
reducibility: p ⪯

tt
q

Forall2
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Theorem 5.22. Let X and Y be enumerable, discrete types, p: X→ P, and q: Y→ P. If p ⪯1 q

and q ⪯1 p, then there exist f : X→ Y and g: Y→ X such that for all x: X and y: Y :

px←→ q( f x), q y←→ p(g y), g( f x) = x , f (g y) = y

Corollary 5.23 (Computational Cantor-Bernstein). Let X and Y be enumerable, discrete
types and f : X→ Y and g: Y→ X be injections. Then one can construct f ′: X→ Y and g ′: Y→ X
such that for all x: X and y: Y :

g ′( f ′x) = x , f ′(g ′ y) = y

5.4 Truth-table reducibility

Recall that p is many-one reducible to q if a decision for px can be computed from one instance
of q, namely q( f x). Truth-table reducibility generalises this intuition: A predicate p is truth-
table reducible to q if a decision for px can be computed by evaluating a boolean formula
with atoms of the form q yi for finitely many queries yi . Equivalently, boolean formulas with n
inputs can also be expressed as truth-tables with 2n rows, explaining the name “truth-table
reducibility”. We model the type of truth-tables by defining truthtable:T := LB. Given an
assignment l: truthtable of length n, we use a canonical listing function gen:N→L(LB) such
that |gen n|= 2n and ∀l:LB. l ∈ gen n←→|l|= n to define

l ⊨ T :=

¨

T[i] = Some true if (gen |l|)[i] = Some l

⊥ otherwise

When convenient, we assume l ⊨ T :B since λlT. l ⊨ T is decidable. Any f :LB→B can be
converted into the truth-table map f (gen n)with n inputs such that l ⊨ map f (gen n)←→ f l = true

provided |l|= n. On paper, we abuse notation and treat any function f :LB→B as truth-table.
A function f : X→LY × truthtable is a truth-table reduction from p to q if ∀x .px ←→ l ⊨

π2( f x) for all lists l which pointwisely reflect q on the query list π1( f x). A predicate p: X→ P
is truth-table reducible to a predicate q: Y→ P if there is a truth-table reduction:

p ⪯
tt

q :=∃ f : X→LY × truthtable.

∀x l. Forall2 (λy b. q y←→ b = true) (π1( f x)) l

→ px←→ l ⊨ π2( f x) (“p is tt-reducible to q”)

Proving that tt-reducibility is indeed a reducibility is straightforward:

Lemma 5.24. Truth-table reducibility is a pre-order, i.e. reflexive and transitive.

Proof. The function λx .([x],λ [b].b) reduces p to p.
The transitivity proof is slighly more intricate, we omit it here. ■

Lemma 5.25. If p ⪯
tt

q and q is decidable then p is decidable.

Proof. Let f reduce p to q and d be a decider for q. Then d can be used to supply the input
for the truth-table for x , i.e. λx .π2( f x)(map d (π1( f x))) is a decider for p. ■
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Lemma 5.26. If p ⪯m q then p ⪯
tt

q.

Proof. Let f be a many-one reduction from p to q. Then λx .([ f x],λ [b]. b) is a truth-table
reduction from p to q. ■

The converse direction is not true in general:

Lemma 5.27. λx .⊤⪯
tt
λx .⊥, but λx .⊤ ̸⪯m λx .⊥.

Proof. λx .([],λx . true) is a truth-table reduction.
Any many-one reduction yields ⊤←→⊥, which is contradictory. ■

Corollary 5.28. Many-one and truth-table reducibility differ.

Later on we will also see enumerable but undecidable predicates where the reducibilities
differ.

Lemma 5.29. p ⪯
tt

p

Proof. By λx .([x],λ [b]. ¬Bb). ■

Lemma 5.30. Truth-table reducibility is an upper semi-lattice.

Proof. The proof for many-one reducibility can be adapted easily. ■

Lastly, we show how to characterise truth-table reducibility in terms of one-one reducibility.
Given a predicate p: X→ P we define the predicate ptt:LX × truthtable→ P:

ptt := λz. ∀l. Forall2 (λx b. px←→ b = true)(π1z) l→ l ⊢ π2z

The characterisation seems to be inherently non-constructive, we thus assume p to be stable.

Lemma 5.31. Let p: X→ P, q: Y→ P, x0: X , y0: Y , and g:LX × truthtable→ Y be an injection.
If p is stable, then p ⪯

tt
q←→ ptt ⪯1 qtt.

Proof. We loosely follow the proof by Rogers [202, §8.4 Th. IX] and prove the following
statements:

1. If p is stable then p ⪯1 ptt.

2. ptt ⪯
tt

p.

3. Every reduction p ⪯
tt

q can be given via an injective reduction function, provided an
injection f : X→ Y exists.

4. If p is stable, f : X→ Y injective then p ⪯
tt

q→ p ⪯1 qtt.
(1) and (2) are straightforward. For (3) assume p ⪯

tt
q via a reduction function g and con-

struct g ′x := ( f x :: π1(g x),λ b :: L. π2(g x)L). g ′ is injective since f is injective. For (4), let
p ⪯

tt
q via an injection f by (3). Then f 1-reduces p to qtt.

The claim from left to right follows using (1), (2), and (4), the direction from right to left
needs (1) and (4). ■

Corollary 5.32. If p, q:N→ P and p stable, p ⪯
tt

q←→ ptt ⪯1 qtt.
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CHAPTER 6
Axioms for synthetic computability

Results in textbooks on computability can roughly be split into positive results, like inclu-
sions, reductions, or decidability results for certain problems, and into negative results, like
undecidability, non-enumerability, or non-reducibility of problems. Until now we have proved
various positive results by an intuitive identification of functions with computable functions,
but we have neither proved negative results nor made this identification formally precise.

The development of negative results in textbooks starts with the definition of the self-halting
problem, employing an encoding of programs as data. Via a direct diagonalisation, one shows
that the complement of the self-halting problem is not enumerable. Afterwards, other un-
decidability or non-enumerability results can be deduced by positive intermediate lemmas:
For instance the undecidability of the halting problem follows from the undecidability of the
self-halting problem by many-one reduction.

While our introduced notions work well to verify these positive auxiliary results, we cannot
prove negative results: Since CIC is consistent with strong classical axioms entailing the de-
cidability of every problem, without axiomatic assumptions there is no hope in obtaining any
undecidability result. To prove an initial negative result, we have to assume an axiom. We
discuss various equivalent formulations of a parametric and synthetic version of the axiom CT
(“Church’s thesis”). The axiom CTφ postulates that φ is a step-indexed interpreter universal
for the function spaceN→N, i.e. that every f :N→N has a code c:N such thatφc agrees with f .
We also consider an axiom SMNφ , postulating an Sm

n operator for φ. We introduce five axioms
equivalent to assuming φ such that CTφ ∧ SMNφ . Working with Sm

n operators in applications
explicitly is tedious. We thus define all axioms via a respective notion of parametric universal-
ity. As a consequence, the statements of the axioms become more uniform and compact. At
the same time, the axioms become easier to use in applications.
• SCT, postulating a step-indexed interpreter φ which is parametrically universal for N→
N. More precisely, every family of functions fi:N→N parameterised by i:N has a coding
function γ:N→N such that φγi agrees with fi for all parameters i.

• SCTB, restricting the parametric universality of φ to functions N→B.
• EPF, extending the parametric universality of φ to partial functions N*N.
• EPFB, restricting the parametric universality of φ to partial functions N*B.
• EA, abstracting away from functions, focussing on parametrically enumerable predicates.
The following diagram depicts the connections we will prove:

(Σφ. stationaryφ ∧ CTφ ∧ SMNφ)

EPFB EPF SCT SCTB

EA
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[228] Troelstra and van Dalen.
1988. Constructivism in
mathematics. Vol. I.

All axioms have in common that they allow defining an enumerable but undecidable pred-
icate K. In Chapter 7 we discuss that SCT is a consequence of the constructivist axiom CT,
and thus consistent in CIC but not in contradiction to the law of excluded middle. Thus, our
formulations of SCT allow developing synthetic computability, agnostic towards classical logic.

As case studies we give two synthetic proofs of Rice’s theorem [197]: One based on the
axiom EPF, following the proof approach by Scott [204] relying on Rogers’ fixed-point the-
orem [202], and one based on the axiom EA, establishing a many-one reduction from an
undecidable problem. We furthermore provide solutions for Post’s problem for many-one and
truth-table reducibility in Chapter 8.

Outline We motivate and introduce CTφ and SMNφ in Section 6.1. SCT is introduced in
Section 6.2, its variants EPF, SCTB, and EPFB in Section 6.3. We use EPF to prove synthetic
version of Rogers’ and Rice’s theorems in Section 6.5, and introduce EA in Section 6.4.

Publications Preliminary versions of the axioms discussed here can be found in the following
publications.
[70] Forster. “Church’s thesis and related axioms in Coq’s type theory.” 29th EACSL Annual Conference

on Computer Science Logic (CSL 2021).
[72] Forster, Jahn, and Smolka. “A Constructive and Synthetic Theory of Reducibility: Myhill’s Isomor-

phism Theorem and Post’s Problem for Many-one and Truth-table Reducibility in Coq.” Pre-print.

6.1 Church’s thesis

Textbooks on computability start by defining a model of computation, Rogers [202] uses µ-
recursive functions. As center of the theory, Rogers defines a step-indexed interpreter φ of
all µ-recursively computable functions. An application φn

c x:ON denotes executing the µ-
recursive function with code c on input x for n steps.

Once some evidence is gathered, Rogers (as well as other authors) introduce the Church-
Turing thesis, stating that all intuitively calculable functions are µ-recursively computable.
Using the Church-Turing thesis, φ has the following (informal) universal property:

∀ f :N→N. intuitively computable f→∃c:N.∀x:N.∃n. φn
c x = Some ( f x)

Note that the property is really only pseudo-formal: The notion of intuitive calculability is
not made precise, which is exactly what allowsφ to stay abstract for most of the development.
Every invocation of the universality could be replaced by an individual construction of a (µ-
recursive) program, but relying solely on the notion of intuitive calculability allows Rogers to
build a theory based on a function φ which could equivalently be implemented in any other
model of computation. Since not every function f :N→N in the classical set theory Rogers
works in1 is intuitively computable, every invocation of the universality ofφ has to be checked
individually to ensure that it is indeed for an intuitively calculable function.

We however do not work in classical set theory, but in CIC, a constructive system. As in
all constructive systems, every definable function is intuitively calculable. It is thus natural
to assume that the universal function φ is universal for all functions f :N→N. For historical
reasons, this axiom is called CT (“Church’s thesis”) [142, 228].

1“We use the rules and conventions of classical two-valued logic (as is the common practice in other parts of
mathematics), and we say that an object exists if its existence can be demonstrated within standard set theory.
We include the axiom of choice as a principle of our set theory.” Rogers [202, pg. 10, footnote †]
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stationary sequence
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Def. synthetic Church’s
thesis
Def. parametrically
universal

We define CTφ parameterised in a step-indexed interpreter φ:N→N→N→ON. As before,
we write an evaluation of code c on input x for n steps as φn

c x instead of φ c x n. For step-
indexed interpreters, the sequence λn.φn

c x is always stationary, i.e.

∀cxn1v. φn1
c x = Some v→∀n2. n2 ≥ n1→φn2

c x = Some v

Now CTφ states that φ:N→N→N→ON is universal for all functions f :N→N:

CTφ := ∀ f :N→N.∃c:N.∀x:N.∃n:N. φn
c x = Some ( f x)

Instead of seeing φ as a step-indexed interpreter, one can also see it as an enumeration of
stationary functions from N to N, which enumerates every total function f .

CTφ is not provable in CIC, independent of the definition of φ. However, when φ is a
step-indexed interpreter for a Turing-complete model of computation, one can give a meta-
theoretical consistency proof of CTφ , we discuss this in more detail in Section 7.1.

In contrast to textbook proofs, proofs of theorems based on CTφ do not have to be individ-
ually checked for valid applications of the Church-Turing thesis.

As stated above, CTφ applies to unary total functions, but is immediately extensible to n-ary
functions f :Nn→N using pairing. Partial application for such n-ary functions is realised via
the Sm

n theorem. We only state the case m= n= 1, which implies the general case:

SMNφ := Σσ:N→N→N.∀cx yv. (∃n. φn
σcx y = Some v)←→ (∃n. φn

c 〈x , y〉= Some v)

Note that we formulate SMN with aΣ rather than an ∃. For the results we prove in Chapter 8,
the difference is largely cosmetic. For now, the formulation with Σ allows the construction of
functions accessing σ directly, rather than only being able to prove the existence of functions
based on σ.

The key property of CTφ is that it allows the definition of an enumerable but undecidable
problem:

Lemma 6.1. Let φ be stationary. Then CTφ→Σp:N→ P. Sp ∧¬Sp ∧¬Dp ∧¬Dp.

Proof. One can define pc := ∃nm. φm
c 〈c, n〉 = Some0. p is semi-decided by

λc〈n, m〉. if φm
c 〈c, n〉 is Some0 then true else false. If f :N→ N→ B is a semi-decider for

the complement of p, let c be its code w.r.t. φ. Then pc←→¬pc, contradiction. Thus p is also
not decidable. ■

If one fixesφ to the step-indexed interpreter of µ-recursive functionsφµ, then CTφµ implies
an identification of synthetic definitions of standard notions like decidability, enumerability,
and reducibility with their respective analytic textbook definitions based on µ-recursive func-
tions.

6.2 Synthetic Church’s Thesis

By keeping φ abstract and assuming CTφ , one never has to deal with encodings in a model of
computation. However, formal proofs involving the SMNφ axiom are tedious.

We identify the axiom synthetic Church’s thesis SCT as a more convenient variant of CTφ∧
SMNφ , which postulates a step-indexed interpreter φ parametrically universal for N→N:
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SCT := Σφ:N→N→N→ON.

(∀cxn1n2v. φn1
c x = Some v→ n2 ≥ n1→φn2

c x = Some v) ∧

∀( f :N→N→N). ∃γ:N→N. ∀i x .∃n. φn
γi x = Some ( fi x)

By parametrically universal we mean that for any family of functions fi:N→N parame-
terised by i:N, we obtain a coding function γ s.t. γi is the code of fi , i.e. φγi agrees with fi .

The consistency of SCT follows from the consistency of CT formulated for a Turing-complete
model of computation. For this purpose, we choose the weak call-by-value λ-calculus L, which
we discuss in detail in Part IV. Conversely, one can recover non-parametric universality of φ
from parametric universality:

Theorem 6.2. Let φL be a step-indexed interpreter for L. For any φ such that λn.φn
c x is

stationary we have the following:
1. CTφL

→Σφ. CTφ ∧ SMNφ

2. CTφ→ SMNφ→ SCT

3. SCT→Σφ. CTφ

Proof. (1) follows by proving SMNφL
, which we do in Chapter 29, see Corollary 29.10.

For (2), let φ and σ be given. We prove that φ satisfies the condition in SCT. Let
f :N→N→N be given. We obtain a code c for λ〈x , y〉. f x y . Now define γx := σcx .
(3) is trivial by turning the unary function f :N→N into the (constant) family of functions

f ′x y := f y . Now a coding function γ for f ′ allows to choose γ0 as code for f . ■

In Theorem 6.6 we prove that SCT also implies Σφ. CTφ ∧ SMNφ .

6.3 Variations of Synthetic Church’s Thesis

We have defined SCT to postulate a step-indexed interpreter φ:N→ (N→N→ON), parametri-
cally universal for N→N. In this section, we develop alternative equivalent definitions of SCT.
In general, there are three obvious points where SCT can be modified.

1. The return type of φ can be stationary functions N→ (N→ON), partial functions N*N,
stationary functions N→ (N→OB), or partial functions N*B,

2. φ can be postulated to be parametrically universal for N→N, N→B, N*N, N*B, or
stationary functions N→ (N→ON) or N→ (N→OB).

3. Coding functions γ can be existentially quantified (∃), computably obtained (Σ), or
classically existentially quantified ¬¬∃.

For SCT, the return type of φ is stationary functions N→ (N→ ON), φ is parametrically
universal for N→N, and γ is existentially quantified.

For (1), it is important to see that letting φ return total functions is no option, since such
an enumeration is inconsistent in any logic with functions,2even up to extensionality:

2Note that conversely an injection of (N→N)→N can likely be consistently assumed [12].
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[169] McCarty. 1991.
Incompleteness in intuitionistic
metamathematics..

Def. enumerability of
partial functions axiom

Fact 6.3 (Cantor’s theorem). There is no e:N→ (N→ A) such that ∀ f :N→ A. ∃c.ec ≡N→A f
for A= N or A= B.

For (3), the variant with Σ is consistent, but negates functional extensionality, we discuss
this in Section 7.3. Variants with ¬¬∃ are often called Weak CT [169], we refrain from dis-
cussing it in this thesis.

In this section, we discuss how all other variations of SCT are equivalent, and single out
three of them:

1. EPF, the enumerability of partial functions axiom, postulating θ :N→ (N*N) paramet-
rically universal for N*N,

2. SCTB, postulating φ:N→ (N→ (N→OB)) universal for N→B, and

3. EPFB, postulating θ :N→ (N*B) universal for N*B.
The enumerability of partial functions axiom EPF is defined as:

EPF := Σθ :N→ (N*N).∀ f :N→N*N.∃γ:N→N.∀i. θγi ≡N*N fi

Instead of seeing θ as enumeration, we can also see θ as surjection from N to N* N up
to ≡

N↛N . Proving that SCT←→ EPF amounts to showing that any implementation of partial
functions is equivalent to the implementation based on stationary sequences we gave in Sec-
tion 4.5, and that any stationary function can be encoded in a total function N→N via pairing.

Theorem 6.4. SCT←→ EPF

Proof. The direction from left to right is by observing that there is a function
mktotal: (N→N*N)→N→N→N s.t. fi x ▷ v ←→ ∃n. mktotal f i 〈x , n〉 = S v using seval. We
then define

θ cx :=(µ(λn. if φn
c x is Some (S v) then ret true else ret false))

>>= λn. if φn
c x is Some (S v) then ret v else undef

The direction from right to left constructsφn
c x := seval (θc y)n. Let f :N→N→N. Define the

partial function f ′i x := ret ( fi x). Now a coding function γ for f ′ by EPF is a coding function
for f to establish SCT. ■

Instead of stating EPF as enumeration of partial functions, we can equivalently state it w.r.t.
parameterised functional relations:

Fact 6.5. EPF is equivalent to the following:

Σθ :N→ (N*N). ∀R:N→ (N⇝N). (∃ f .∀i. fi computes Ri)→∃γ.∀i. θγi computes Ri

Theorem 6.6. EPF→Σφ. CTφ ∧ SMNφ

Proof. Let θ be given as in EPF and define φn
c x := seval (θc y)n, which allows proving CTφ

as in Theorem 6.4. Let furthermore f〈c,x〉 y := θ c〈x , y〉 and γ be a coding function for f by
EPF. Define Scx := γ〈c, x〉. We have

θScx y ≡ θγ〈c,x〉 y ≡ θ c〈x , y〉 ■
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Def. parametric
enumerability of partial
boolean functions

≡N*B :Sec. 4.5, Page 39

We introduce SCTB, postulating a step-indexed interpreter parametrically universal for
N→B:

SCTB := Σφ:N→N→N→OB.

(∀cxn1n2v. φn1
c x = Some v→ n2 ≥ n1→φn2

c x = Some v) ∧

∀ f :N→N→B. ∃γ.∀i x .∃n. φn
γi x = Some ( fi x)

SCTB is equivalent to SCT. One direction is immediate since B is a retract of N (i.e.
can be injectively embedded). The other direction follows by mapping the infinite sequence
f 0, f 1, f 2, . . . to the sequence

false f 0 true false f 1 true false f 2 true . . .

Theorem 6.7. SCTB←→ SCT

Proof. The direction from right to left is trivial. For the converse direction, define I : (N→N)→
N→B and R: (N*B)→N*N as

I( f : N→N)x := [falsentrue | n ∈ [ f 0, . . . , f x , 1+ f x]] Rf 0 := µ f

R f (S x) := µ f >>= λn. R(λm. f (m+ 1+ n))x

We have (∀x . g x ▷ I f x)→∀x . Rg x ▷ f x .
Given φ parametrically universal for N→ B as in SCTB, define φ′c := R(λx . φcx). Now

given f :N→N→N we use SCTB for f ′i x := I fi x to obtain γ.
By the characteristic property of R, we can choose γ for f as well to prove SCT. ■

Lastly, we define the parametric enumerability of partial boolean functions axiom

EPFB := Σθ :N→ (N*B).∀( f :N→N*B).∃γ:N→N.∀i. θγi ≡N*B fi

Recall that θγi ≡N*B fi if and only if ∀x v. θγi x ▷ v←→ fi x ▷ v. Proving EPFB equivalent to SCT
is easiest done by proving the following:

Theorem 6.8. EPFB←→ SCTB

Proof. Exactly as in Theorem 6.4. ■

Using EPFB it is easy to establish an enumerable, undecidable problem:

Fact 6.9. EPFB→Σp:N→ P. Ep ∧¬Ep ∧¬Dp

Proof. Let θ be given as in EPF. Define Kc := ∃v.θcc ▷ v. K is semi-decided by
λcn.if seval(θcc)n is Some v then true else false and thus enumerable by Corollary 4.55.

We prove that K is not semi-decidable, yielding both ¬EK and ¬DK by Lemmas 4.55 and
4.48. Let K be semi-decidable, i.e. by Fact 4.63 there is f :N* Y s.t. ¬Kx ←→ ∃y. f x ▷ y .
Define f ′:N*B as f ′x := f x >>= λ_. ret true. Now f ′ has a code c s.t. ∀x . ecx ▷ f ′x by
universality of θ .
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Def. parametric
enumerability axiom

parametric enumerability
:Sec. 4.2, Page 34

Def. universal table

We have a contradiction via

¬Kc←→ (∃y. f c ▷ y)←→ (∃y. f ′x ▷ y)(∃y.ecc ▷ y)←→Kc. ■

6.4 The Enumerability Axiom

Using EPF or SCT as basis for synthetic computability requires the manipulation of partial
functions or stationary functions, which is tedious. Alternatively, synthetic computability
can be presented even more elegantly by an equivalent axiom concerned with enumerable
predicates rather than partial functions. A non-parametric enumerability axiom is used by
Bauer [10] together with countable choice to develop synthetic computability results.

We introduce the parametric enumerability axiom postulating an enumerator
ϕ:N→ (N→ ON) which is parametrically universal for all parametrically enumerable predi-
cates p:N→N→ P:

EA :=Σϕ:N→ (N→ON).∀(p:N→N→ P).

(∃( f :N→N→ON).∀i. fi enumerates pi)→∃γ:N→N.∀i. ϕγi enumerates pi

That is, EA states that whenever p is parametrically enumerable, then λi. ϕγi parametrically
enumerates p for some γ.

Note the two different roles of natural numbers in the axiom: If we would consider predi-
cates over a general type X we would have ϕ:N→ (N→OX ).

Equivalently, we could have required that p is enumerable:

Lemma 6.10. EA←→Σϕ. ∀p:N→N→ P. E(λ(x , y). p(x , y))→∃γ:N→N.∀i. ϕγi enumerates pi

Proof. Immediate by Corollary 4.24. ■

Again equivalently, EA can be stated to only mention enumerators instead of predicates,
which is the formulation of EA used in [70].

Fact 6.11. EA←→Σϕ:N→ (N→ON).∀ f :N→N→ON.∃γ.∀x . ϕγx ≡ran
f x

In this formulation, ϕ is a surjection w.r.t. range equivalence f ≡
ran

g, where ϕc ≡ran

f ←→∀x .(∃n.ϕcn= Some x)←→ (∃n. f n= Some x).
Given ϕ, we define Wc x := ∃n. ϕcn = Some x and the problem K as the diagonal of W,

i.e. Kc :=Wcc. We call W a universal table. In Section 8.1 we will show that W and K are
m-equivalent, and both are m-complete. For now we only use K to note the following result:

Lemma 6.12. EA→Σp:N→ P. Ep ∧¬Ep ∧¬Dp

Proof. We pick p as Kc :=Wcc. K is enumerated by λ〈c, m〉. if ϕcm is Some x then if x =B
c then Some c else None else None. If K would be enumerable, there would be a code c s.t.
∀x . Wc x←→Kx . In particular Wcc←→Kc←→¬Wcc. ■

Similarly to how SCT can be reformulated by letting φ be universal for unary functions and
introducing an explicit S1

1 -operator, EA can also be stated in this fashion, with an S1
1 -operator

w.r.t. W.

Lemma 6.13. EA←→Σϕ.(∀p.Ep→∃c.ϕc enumerates p)∧Σσ:N→N→N.∀cx y.W(σcx) y←→Wc〈x , y〉
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[197] Rice. 1953. Classes of
recursively enumerable sets and
their decision problems.

Proof. The direction from right to left is straightforward using Lemma 6.10.
For the direction from left to right, let ϕ be given.
For the first part of the conclusion let p be given and enumerable. Then λx y. p y is para-

metrically enumerable, so let γ be given from EA. Then ϕγ0 enumerates p.
For the second part, let p〈c, x〉y := ∃n.ϕcn = Some 〈x , y〉. Since p is enumerable, by

Lemma 6.10 and EA there is γ s.t.ϕγ〈c,x〉 enumerates p〈c, x〉. Now Scx := γ〈c, x〉 is the wanted
function. ■

SCT and EA are equivalent. For the forwards direction, we show that enumerators N→ON
can be equivalently given as functions N→N.

Theorem 6.14. SCT→ EA

Proof. Let a universal function φ be given. Define:

ϕc〈n, m〉 := if φn
c m is Some (S x) then Some x else None

Let f :N→N→ON be a parametric enumerator for p. We define f ′:N→N→N as f ′xn :=
if f xn is Some y then S y else 0. By SCT, we obtain a function γ for f ′, and we have

px y←→∃n. f xn= Some y

←→∃n. f ′xn= S y

←→∃nm. φn
γx m= Some (S y)

←→∃nm. ϕγx〈n, m〉= Some y

←→∃k. ϕγx k = Some y

For the converse direction, we use that the graph of functions is enumerable.

Theorem 6.15. EA→ SCT

Proof. Let ϕ as in EA be given. Recall mkstat: (N→OX )→N→OX from Section 4.5.3
turning arbitrary F :N→ON into stationary sequences. We define

ϕn
c x := mkstat(λn. if ϕcn is Some 〈x ′, y〉 then if x ′ =B x then Some y else None else None)n

Let f :N→N→N and let ϕγx enumerate λx〈n, m〉. f xn = m via EA. Now γ serves as coding
function for f by Fact 4.69. ■

6.5 Rice’s theorem

One of the central results of every introduction to computability theory is Rice’s theorem [197],
stating that non-trivial semantic predicates on programs are undecidable. Two proof strategies
can be found in the literature: By using a fixed-point theorem or by establishing a many-one
reduction from K. We here give synthetic variants of both proofs.

We base the first proof on the axiom EPF, since the notion of a fixed-point is more natural
there. We base the second proof on the axiom EA. Here the choice is less canonical, but using
EA enables a comparison of EA and EPF as axioms for synthetic computability.
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[83] Forster and Smolka. 2017.
Weak Call-by-Value Lambda
Calculus as a Model of
Computation in Coq.

We start by assuming EPF and proving a fixed-point theorem due to Rogers [202].

Theorem 6.16. Let θ be given as in EPF and γ:N→N, then there exists c such that θγc ≡ θc .

Proof. Let γ:N→N. Let fxz := θx x >>= λy.θyz and γ′ via EPF be such that θγ′x ≡ fx (1).
Let c via EPF be such that ∀x . θc x ▷ γ(γ′x) (2).

Now fc ≡ θγ′c by (1).
Also fcz ≡ (θcc >>= λy.θyz)≡ θγ(γ′x)z by the definition of f and (2).
Now γ′c is a fixed-point for λi.θγi: θγ(γ′c) ≡ fc ≡ θγ′c . ■

Rice’s theorem can then be stated and proved as follows:

Theorem 6.17. Let θ be given as in EPF and p:N→ P. If p treats elements as codes w.r.t. θ
and is non-trivial, then p is undecidable. Formally:

(∀cc′. θc ≡ θc′→ pc←→ pc′)→∀c1c2. pc1→¬pc2→¬Dp

Proof. Let f decide p and let pc1 and ¬pc2. Define h:N→N*N as hx :=
if f x then θc2

else θc1
and let γ via EPF be such that θγx y ≡ hx y . Let c be a fixed-point for γ

via Theorem 6.16, i.e. θγc ≡ θc .
Then either f c = true and thus pc, but θc ≡ θc2

and thus pc2. A contradiction.
Or f c = false and thus ¬pc, but θc ≡ θc1

and thus ¬pc1. A contradiction. ■

Rice’s theorem is often also stated for predicates p: (N*N)→N. This formulation has the
advantage that the requirement on p does not have to mention θ .

Corollary 6.18. EPF implies that if p: (N* N)→ P is extensional and non-trivial, then p is
undecidable. Formally:

EPF→ (∀ f f ′:N*N. f ≡
N*N

f ′→ p f ←→ p f ′)→∀ f1 f2. p f1→¬p f2→¬Dp

Proof. Let p be decidable. We define the index predicate of p as Ip := λc:N. p(θc), and have
Ip ⪯m p. Thus since p is decidable, Ip is decidable. Since Ip treats elements as codes and is
non-trivial using EPF, we have that Ip is undecidable by Theorem 6.17. Contradiction. ■

A second proof strategy for Rice’s theorem is by establishing a many-one reduction from
a problem proved undecidable via diagonalisation. We could use K defined using EPF in
Fact 6.9, but here use EA to compare the two axioms. Thus, we use the problem K as used in
Lemma 6.12. We follow Forster and Smolka [83], who mechanise a fully constructive proof of
Rice’s theorem based on the call-by-value λ-calculus by isolating a reduction lemma (“Rice’s
Lemma”).

Lemma 6.19. Let ϕ be given as in EA and p:N→ P. If p treats elements as codes w.r.t. ϕ, p

is non-trivial and pc; for c; being a code for the empty predicate, then K ⪯m p.
Formally let Wc x := ∃n. ϕcn= Some x be the universal table for ϕ. We then have:

(∀cc′. (∀x . Wc x←→Wc′ x)→ pc←→ pc′)→∀c;c0. (∀x .¬Wc; x)→ pc;→¬pc0→K ⪯m p

Proof. The predicate q := λx y. Kx ∧Wc0
y is enumerable by Corollary 4.18, meaning we

obtain γ from EA s.t. ∀x y. Wγx y←→Kx ∧Wc0
y .
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[142] Kreisel. 1965.
Mathematical logic.

[228] Troelstra and van Dalen.
1988. Constructivism in
mathematics. Vol. I.

[10] Bauer. 2006a. First steps in
synthetic computability theory.

Let ¬Kx . We have Wγx y←→⊥←→Wc; y . Since pc; and p is semantic also p(γx).
Conversely, let p(γx) and Kx . We have Wγx y ←→Wc0

y . Since p is semantic, also pc0.
Contradiction. ■

Theorem 6.20. Let ϕ be given as in EA and p:N→P. If p treats inputs as codes w.r.t. ϕ and p
is non-trivial, then p is not bi-enumerable.

Formally let Wc x := ∃n. ϕcn= Some x be the universal table for ϕ. We then have:

(∀cc′.(∀x . Wc x←→Wc′ x)→ pc←→ pc′)→∀c1c2. pc1→¬pc2→¬(Ep ∧ Ep)

Proof. Since λx:N.⊥ is enumerable, by EA there is c; s.t. ∀x .¬Wc; x . Now let pc1, ¬pc2, and
let p be bi-enumerable.

If pc;, we have K ⪯m p, a contradiction since K would be enumerable by Lemma 5.4.
If ¬pc; we have K ⪯m p, again a contradiction. ■

Corollary 6.21. Let ϕ be given as in EA and p:N→ P. If p treats inputs as codes w.r.t. ϕ and
p is non-trivial, then p is undecidable.

We can state this second version of Rice’s theorem for p: (N→ P)→ P.

Corollary 6.22. EA implies that if p is extensional and non-trivial w.r.t. enumerable predicates,
then p is undecidable. Formally:

EA→ (∀qq′:N→ P.(∀x . qx←→ q′x)→ pq←→ pq′)→∀q1q2. Eq1→ Eq1→ pq1→¬pq2→¬Dp

Proof. Let p be decidable. We define the index predicate of p as Ip := λc:N. p(Wc), and have
Ip ⪯m p. Thus since p is decidable, Ip is decidable. Since Ip treats elements as codes and is
non-trivial using EA, we have that Ip is undecidable by Corollary 6.21. Contradiction. ■

We have formulated both theorems to explicitly assume θ and ϕ and their respective spec-
ification, to contrast the axioms EPF and EA. One can however obtain Theorem 6.17 from
Corollary 6.21 – and vice versa – constructing θ from ϕ and constructing a predicate q treat-
ing elements as indices w.r.t. θ from a predicate p treating elements as indices w.r.t. ϕ – and
vice versa.

Proofs based on EPF require themanipulation of partial functions, which is formally tedious.
We will thus use EA as basis for synthetic computability: In contrast to SCT, it does not force
us to encode every computation as total function N→ N, and in contrast to EPF it does not
force us to work with partial functions either.

Instead, we can simply consider enumerable predicates (with many closure properties from
Chapter 4) and their enumerators (which are total functions).

6.6 Related work

We have discussed the history of CT and synthetic computability in Chapter 2.
When we write CT without an index, we mean CTφµ , i.e. the version of CT stating that a

step-indexed interpreter is universal forN→N, or equivalently that every function of typeN→N
is µ-recursively computable. This axiom was introduced by Kreisel [142], and is discussed
extensively e.g. by Troelstra and van Dalen [228]. We discuss a mechanised definition of CT
in Chapter 29, and its consistency for CIC in Section 6.1.
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[204] Scott. 1968. A system of
functional abstraction.

[178] Norrish. 2011. Mechanised
Computability Theory.

We here in detail compare our axioms with the ones used by Bauer [10] and the ones used
by Richman [198] and Bridges and Richman [25].

Bauer [10] develops synthetic computability based on an axiom stating that the set of enu-
merable sets of natural numbers is enumerable. Translating to our type theoretic setting this
yields the following axiom:

EA′ := ∃W:N→ (N→ P).∀p:N→ P. Ep←→∃c. Wc ≡N→P p

That is, EA′ states that there is an enumerator W of all enumerable predicates, up to exten-
sionality.

Additionally to EA′, Bauer also assumes countable choice and Markov’s principle. In gen-
eral however, the assumption of countable choice makes the theory anti-classical, i.e. assuming
LEM is inconsistent. We discuss this interplay between axioms like EA′, MP, LEM, and count-
able choice in detail in Chapter 7. Countable choice allows extracting the enumerator for every
enumerable predicate in the range of W computationally, corresponding to a non-parametric
version of our axiom EA. Countable choice also can be used to prove a synthetic Sm

n theorem
w.r.t. W, but apart from those two applications is not needed.

Our parametric formulation of EA implies EA′, and conversely EA′ implies EA under the
presence of countable choice. We only prove the former:

Theorem 6.23. EA→ EA′

Proof. Let a universal enumerator ϕ be given. Define Wc x := ∃n.ϕcn = Some x . Since we
have that ϕc enumerates p if and only if Wc ≡N→P p we have Ep→∃c. Wc ≡N→P p.

Vice versa if Wc ≡N→P p, ϕc enumerates p and thus Ep. ■

Richman [198] introduces the axiom CPF (“Countability of Partial Functions”). It states that
the set of partial functions is (extensionally) countable, i.e. there is a surjection N→ (N*N)
w.r.t. equivalence on partial functions. Intensionally, Richman models the partial function
space N* N as stationary functions as discussed in Section 4.5. Thus, written out fully his
axiom is a non-parametric version of EPF, just instantiated to the stationary functions model
of partial functions.

Theory based on CPF is developed in the book by Bridges and Richman [25], where CPF
is taken as basis for the constructivist system RUSS. In RUSS, the axiom of countable choice
is also assumed. Bridges and Richman discuss that “in RUSS countable choice can usually be
avoided” [25, p. 54] by postulating a composition operator for θ or, equivalently, an SMN
operator. The theory we develop in Chapter 8 is in strong support of this conjecture.

In this chapter we have also given two proof of Rice’s theorem. The first proof is based on a
parametrically universal partial function θ , while the second proof is based on a parametrically
universal enumerator ϕ. The two proofs of Rice’s theorem use different proof strategies.

The second strategy establishes a reduction from K. This strategy is used in the textbooks
by Cutland [44], Odifreddi [180], Soare [210], and Cooper [36], whereas Rogers [202] and
Sipser [207] pose Rice’s theorem as an exercise.

The first strategy, based on Rogers’ fixed-point theorem or equivalently Kleene’s recursion
theorem is less frequently found. It is however mentioned in the Wikipedia article on Rice’s
theorem [236]. The technique appears first in the lecture notes by Scott [204], who shows a
variant of Rice’s theorem for the λ-calculus. Scott’s proof can also be found in [209, 8].

https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Synthetic.Rice.html#EA_to_EA'
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Synthetic.Rice.html#EA_to_EA'
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We are aware of five machine-checked proofs of Rice’s theorem in the literature: Nor-
rish [178] proves Rice’s theorem for the λ-calculus, formulated for predicates p: (N→ON)→P,
using the proof strategy via reduction. Forster and Smolka [83] prove Rice’s theorem for
the weak call-by-value λ-calculus, formulated for predicates on terms of the considered cal-
culus which have the same extensional behaviour, using the proof strategy via reduction.
Forster [69] proves Scott’s variant of Rice’s theorem for the weak call-by-value λ-calculus,
formulated for predicates on terms of the considered calculus which do not distinguish β-
equivalent terms, using a fixed-point theorem. Carneiro [26] proves Rice’s theorem for µ-
recursive functions, formulated for predicates p: (N* N)→ P, using a fixed-point theorem.
Ferreira Ramos, Almeida, and Ayala-Rincón [67] prove Rice’s theorem for the functional lan-
guage PVS0, formulated for predicates on PVS0, using an assumed fixed-point theorem for
PVS0.

Bauer [10] also presents a synthetic variant of Rice’s theorem. His formulation reads “If A is
a set such that all functions of type A→ A have a fixed-point, every function A→B is constant”
and uses the enumerability axiom as discussed above, but does not rely on countable choice
to the best of our knowledge. Note that our variants of Rice’s theorem presented in this thesis
are trivialities in classical set theory, the foundation of textbook computability, since both EPF
and EA are false in classical set theory where all problems have a characteristing decision
function. In contrast, Bauer’s theorem is a triviality in classical set theory in two ways: First,
the enumerability axiom is contradictory in classical set theory, and second the statement of
the theorem is a trivial even without axioms since if all functions A→ A have a fixed-point,
A is a sub-singleton: two distinct elements a1, a2 would allow constructing a fixed-point free
function λx .if x = a1 then a2 else a1.

We thus sacrifice identifying the minimal essence of theorems to better preserve classical
intuitions.
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CHAPTER 7
Axioms in relation to
synthetic computability

In the previous chapter we have introduced synthetic, parametric variants of CT. It is easy
to see that both CT and its synthetic variants are in conflict with traditional classical mathe-
matics, since the law of excluded middle LEM together with a form of the axiom of countable
choice ACN,N allows the definition of non-computable functions [228]. This observation can
be sharpened in various ways: To define a non-computable function directly, the weak limited
principle of omniscience WLPO and the countable unique choice axiom AUCN,B suffice. Al-
ternatively, Kleene noticed that there is a decidable tree predicate with infinitely many nodes
but no computable infinite path [135]. If functions and computable functions are identified
via SCT, a Kleene tree is in conflict with weak Kőnig’s lemma WKL and with Brouwer’s fan
theorem.

It is however well-known that CT is consistent in Heyting arithmetic with Markov’s principle
MP [133] which given CT states that termination of computation is stable under double nega-
tion. Recently, Swan and Uemura [220] proved that CT is consistent in univalent Martin-Löf
type theory with propositional truncation and MP, and Yamada [240] proved that a formula-
tion of CT in predicative intensional Martin-Löf type theory is consistent.

While predicative Martin-Löf type theory as formalisation of Bishop’s constructive mathe-
matics proves full axiom of choice AC (since ∃ is modelled as Σ), univalent type theory usually
only proves the axiom of unique choice AUC (since there is a notion of homotopy propositions
to define ∃). But since AUCN,B suffices to show that LEM implies ¬CT, classical logical axioms
are incompatible with CT in both predicative and in univalent type theory.1

In CIC neither AC, nor AUC or AUCN,B are provable, as discussed in Section 7.6. However,
choice axioms as well as LEM can be consistently assumed in CIC [235]. Furthermore, it seems
likely that the consistency proof for CT in [220] can be adapted for CIC.

It seems like to disprove CT in CIC one needs a (weak) classical logical axiom to perform
logical decisions for non-decidable predicates in proofs, and a (weak, non-extensional) choice
axiom to turn total functional relations into functions subject to CT. This puts CIC in a special
position: Since it proves no classical logical axioms and virtually no choice axioms, assuming
just classical logical axioms or just choice axioms might be consistent with CT. This chapter
is intended to serve as a preliminary report towards this consistency question, approximat-
ing it by surveying results from intuitionistic logic and constructive reverse mathematics in
constructive type theory with a separate universe of propositions, with a special focus on CT
and other axioms based on notions from computability theory. Specifically, we discuss the
following propositional axioms:

• Kleene trees (KT) in Section 7.2

1For this chapter, we reserve the term “classical logical axioms” for axioms implying or implied by LEM. In
particular, non-extensional versions of the axiom of choice are not covered by this wording.
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• extensionality axioms like functional extensionality (Fext), propositional extensionality
(Pext), and proof irrelevance (PI) in Section 7.3

• classical logical axioms like the principle of excluded middle (LEM, WLEM), indepen-
dence of premises (IP), and limited principles of omniscience (LPO, WLPO, LLPO) in
Section 7.4

• axioms of Russian constructivism like Markov’s principle (MP) in Section 7.5
• choice axioms like the axiom of choice (AC), countable choice (ACC, ACN,N, ACN,B),

dependent choice (ADC), and unique choice (AUC,AUCN,B) in Section 7.6
• axioms on trees like weak Kőnig’s lemma (WKL) and the fan theorem (FAN) in Sec-

tion 7.7
• axioms regarding continuity and Brouwerian principles (Homeo, Cont, WC-N) in Sec-

tion 7.8
The following hyper-linked diagram displays provable implications and incompatible ax-

ioms.

DNE LEM DGP WLEM ADC AC

MP LPO WLPO LLPO ACC AC
N→N,N

Homeo(BN,NN) Homeo(NN,BN) WKL ACN,N WC-N

KT FAN AUCN,B

EPFB

EA EPF SCT CTφµ

Fext

MP

PFP S-ACN,B

Fext

Cont

WLPO

Figure 7.1.: Overview of results. → are implications, denotes incompatible axioms.

Outline Section 7.1 recaps the constructivist axiom CT and its synthetic variant EPF. Sec-
tion 7.2 introduces decidable binary trees and constructs a Kleene tree. The connection of CT
to the classes of axioms as listed above is surveyed in Sections 7.3 to 7.8. Section 7.9 contains
concluding remarks.

Publications Many pieces of text of this chapter are adapted from [70].
[70] Forster. “Church’s thesis and related axioms in Coq’s type theory.” 29th EACSL Annual Conference

on Computer Science Logic (CSL 2021).

7.1 Consistency and admissibility of CT

The axiom CT states that every total function f :N→N is computable in a fixed, Turing-
complete model of computation:

CT := ∀ f :N→N.∃c:N.∀x:N.∃n:N. φn
c x = Some ( f x)
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Here, φ is a step-indexed interpreter for µ-recursive functions, i.e. φn
c x evaluates the c-th

µ-recursive function on input x for n steps. Recall that in Section 6.1 we have discussed the
axiom CTφ for arbitrary interpreters φ.

In 1943, Kleene conjectured that whenever ∀x .∃y. Rx y is constructively provable, there in
fact exists a µ-recursive function f such that ∀x . Rx( f x) [132]. This corresponds to a strong
form of the admissibility of CT. In 1945, Kleene [133] proved his conjecture for Heyting
arithmetic, using number realizability. An independent proof of this is due to Beth [21].

Troelstra and van Dalen [228, §4.5.1 p. 204] state an even stronger result, using Gödel’s
Dialectia interpretation [95], namely that in Heyting arithmetic CT, MP and a restricted form
of the independence of premise rule IP (with P logically decidable, see Section 7.4) are con-
sistent as schemes.

Odifreddi states that “for all current intuitionistic systems (not involving the concept of
choice sequence) the consistency with CT has actually been established” [180, §1.8 pg. 122].
We do not discuss other systems for constructive or intuitionistic mathematics in detail.

For CIC, the result is not explicitly stated in the literature. An admissibility proof of CT seems
to be immediate as a consequence of Letouzey’s semantics extraction theorem for Coq [156],
we discuss this in more detail in Chapter 29. Regarding a consistency proof one cannot mir-
ror the situation in Heyting arithmetic, since a Dialectia interpretation for Coq is not avail-
able [183].

However, several approaches seem to yield the result:

First, CT is consistent in intuitionistic set theory (e.g. IZF) [102], and IZF can be used to
model CIC [9].

Secondly, realizability models based on the first Kleene algebra prove CT consistent. Luo
constructs anω-set model for the Extended Calculus of Constructions (ECC, a type theory with
type universes and impredicative P, but no inductive types), where “[t]he morphisms between
ω-sets are ’computable’ in the sense that they are realised by partial recursive functions” [161,
§6.1 pg. 118].

Thirdly, it is well known how to build topos models of the calculus of constructions [120].
The effective topos, due to Hyland [119], validates CT.

Fourthly, Swan and Uemura [220] give a sheaf model construction proving that CT is con-
sistent in Martin Löf type theory, together with propostional truncation, Markov’s principle,
and univalence. It seems like the syntactic universe of propositions P does not hinder adapting
their model construction to CIC.

Fivthly, Yamada [240] gives a game-semantic proof that a ∀ f .Σc form of CT is consistent in
intensional Martin Löf type theory, settling an open question of at least 15 years [123]. Note
that this form is significantly stronger, since it allows defining a strictly intensional higher-
order coding function of type (N→ N)→ N, which is inconsistent under the assumption of
functional extensionality. We discuss this in Section 7.3. It is not obvious how to extend
Yamada’s proof to our ∀ f .∃c formulation of CT in CIC with the impredicative universe P.

We have discussed SCT as fully synthetic variant of CT in Chapter 6. All variants of SCT we
discussed are consequences of CT, and thus similarly consistent. For this chapter, we recall
SCT and the equivalent variant EPFB:
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functional extensionality
:Sec. 7.3, Page 70
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functions and intuitionistic
mathematics.

Def. binary tree

SCT := Σφ:N→N→N→ON.

(∀cxn1n2v. φn1
c x = Some v→ n2 ≥ n1→φn2

c = Some v) ∧

∀( f :N→N→N). ∃γ:N→N. ∀i x .∃n. φn
γi x = Some ( fi x)

EPFB := Σθ :N→ (N*B).∀( f :N→N*B).∃γ:N→N.∀i. θγi ≡N*B fi

Fact 7.1. EPFB ∨ SCT→∃p:N→ P. Ep ∧¬Ep ∧¬Dp ∧¬Dp

Note that SCT and EPFB as we defined them are no propositions, but can be made proposi-
tions by existentially quantifying φ and θ respectively. This difference however seems to have
no consequences for consistency or compatibility with other axioms.

Even without axioms, we can define two fully synthetic problems where the definition does
not rely on axioms:

KN→B( f :N→B) := ∃n. f n= true KN→N( f :N→N) := ∃n. f n ̸= 0

Fact 7.2. Sp←→ p ⪯m KN→B

Lemma 7.3. KN→B ≡m
KN→N, KN→N ≡(N→N)→P λ f . ∀n. f n = 0, and thus EPFB ∨ SCT→

¬D(λ f . ∀n. f n= 0).

Proof. Claims (1) and (2) are easy. For (3), let p:N→ P be the enumerable, undecidable
predicate from Fact 7.1. Since p is semi-decidable by Corollary 4.57, we have p ⪯m KN→B by
(1) and Fact 7.2. Since p is undecidable, KN→B is as well, and the claim follows by (2). ■

Thus, when assuming functional extensionality, we know that (λ f . ∀n. f n = 0) does not
many-one reduce to any predicate on natural numbers.

Lemma 7.4. Let p:N→ P and assume functional extensionality. If (∀n. f n = 0) ⪯m p, then
D(∀n. f n= 0). Thus EPFB ∨ SCT→¬((∀n. f n= 0)⪯m p).

Proof. Let F : (N→N)→N reduce (∀n. f n= 0) to p.
We prove that

F f = F(λx . 0)←→∀ f . f n= 0

For the direction from left to right, assume F f = F(λx . 0). We have ∀n. f n = 0←→ p(F f )←→
p(F(λn. 0))←→∀n.0= 0. For the direction from right to left, assume ∀ f . f n= 0. By functional
extensionality, we have that f = λn. 0, which proves the claim

Thus, λ f . F f =B F(λx . 0) decides ∀n. f n= 0. ■

7.2 Kleene trees

In a lecture in 1953 Kleene [135] gave an example how the axioms of Brouwer’s intuitionism
fail if all functions are considered computable by constructing an infinite decidable binary tree
with no computable infinite path. The existence of such a Kleene tree (KT) is in contradiction
to Brouwer’s fan theorem, which we will discuss later. We prove that EPFB implies KT.

For this purpose, we call a predicate τ:LB→ P a (decidable) binary tree if

https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Axioms.halting.html#EPF_SCT_halting
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Axioms.halting.html#EPF_SCT_halting
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Axioms.halting.html#K_nat_bool_complete
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Axioms.halting.html#K_nat_bool_complete
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Axioms.halting.html#K_nat_equiv
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Axioms.halting.html#K_nat_equiv
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Axioms.halting.html#K_nat_nored
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Axioms.halting.html#K_nat_nored
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Def. bounded
Def. well-founded

Def. infinite path

Def. infinite tree

[11] Bauer. 2006b. König’s
Lemma and Kleene Tree.

(a) τ is decidable: ∃ f .∀u.τu←→ f u= true,

(b) τ is non-empty: ∃u.τu,

(c) τ is prefix-closed: If τu2 and u1 ⊑ u2, then τu1 (where u1 ⊑ u2 := ∃u′. u2 = u1 ++ u′).
We will just speak of trees instead of decidable binary trees in the following.

Fact 7.5. For every tree τ, τ[] holds.

Furthermore, a decidable binary tree τ . . .
• . . . is bounded if ∃n.∀u. |u| ≥ n→¬τu.
• . . . is well-founded if ∀ f .∃n. ¬τ[ f 0, . . . , f n].
• . . . has an infinite path if ∃ f .∀n. τ[ f 0, . . . , f n].
• . . . is infinite if ∀n.∃u. |u| ≥ n∧τu.

Fact 7.6. A tree is not bounded if and only if it is infinite.

Fact 7.7. Every bounded tree is well-founded and every tree with an infinite path is infinite.

Note that both implications are strict: In our setting we cannot prove bound-
edness from well-foundedness nor obtain an infinite path from infiniteness, as can
be seen from a Kleene tree:

KT := There exists an infinite, well-founded, decidable binary tree.

We follow Bauer [11] to construct a Kleene tree. First we construct a partial function d differ-
ent to all total functions via diagonalisation.

Lemma 7.8. Given EPFB one can construct d:N*B such that ∀ f :N→B.∃nb. dn▷ b∧ f n ̸= b.

Proof. Define dn := enn>>= λb. ret (¬Bb). ■

We then use d to define a Kleene tree:

τKu := ∀n< |u|.∀x . seval (dn) |u|= Some x→ u[n] = Some x

Intuitively, τK contains all paths u = [b0, b1, . . . , bn] which might be prefixes of d given n as
step index, i.e. where n does not suffice to verify that d is no prefix of d. An infinite path
through τK would be a totalisation of d, which is impossible due to Lemma 7.8.

Theorem 7.9. EPFB→KT.

Proof. We prove the following:
(a) τK is decidable because it is defined as finite quantification over a decidable predicate.

(b) τK is prefix-closed because seval and thus D are stationary.

(c) τK[] is vacuously true.

(d) To show that τK is infinite let k be given. We define f 0 := [] and f (Sn) := f n ++
[if Dkn is Some x then x else false]. We have | f n| = n. In particular, | f k| ≥ k and
τK( f k).

(e) For well-foundedness let f : N→ B be given. There is n such that dn ▷ b and f n ̸= b.
Thus there is k such that seval (dn) k = Some b. Now ¬τKu for u := [ f 0, . . . , f (n+ k)].

■
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7.3 Extensionality axioms

CIC is intensional, i.e. f ≡
A→B

g and f = g do not coincide. Extensionality properties can
however be consistently assumed as axioms. In this section we briefly discuss the relationship
between CT and functional extensionality Fext, propositional extensionality Pext and proof
irrelevance PI, defined as follows:

Fext := ∀AB.∀ f g : A→ B. (∀a. f a = ga)→ f = g

Pext := ∀PQ : P. (P←→Q)→ P =Q

PI := ∀P : P.∀(x1 x2 : P). x1 = x2

Fact 7.10. Pext→ PI

Swan and Uemura [220] prove that intensional predicative Martin-Löf type theory remains
consistent if CT, the axiom of univalence, and propositional truncation are added. Since func-
tional extensionality and propositional extensionality are a consequence of univalence, and
propositions are semantically defined as exactly the irrelevant types, Fext, Pext, and PI hold in
this extension of type theory. It seems likely that the consistency result can then be adapted
to CIC, yielding a consistency proof for CT with Fext, Pext, and PI.

It is however crucial to formulate SCT using ∃ instead of Σ. Already the non-parametric
formulation of SCT as

SCTΣ := ∃φ. ∀ f . Σc.∀x .∃n. φn
c x = Some ( f x)

is inconsistent with functional extensionality Fext, as observed in [228].

Lemma 7.11. SCTΣ→ Fext→⊥

Proof. Since SCTΣ implies SCT, it suffices to prove that λ f .∀n. f n = 0 is decidable by
Lemma 7.3. Assume G : ∀ f . Σc. ∀x .∃n. φn

c x = Some ( f x) and let F f := if π1(G f ) =
π1(G(λx .0)) then true else false.

If F f = true, then π1(G f ) = π1(G(λx .0)), and since φ is stationary, f n= (λx .0)n= 0.
If ∀n. f n= 0, then f = λx . 0 by Fext, thus π1(G f ) = π1(G(λx . 0)) and F f = true. ■

7.4 Classical logical axioms

In this section we consider consequences of the law of excluded middle LEM. Precisely,
besides LEM, we consider the weak law of excluded middle WLEM, the Gödel-Dummett-
Principle DGP,2 and the principle of independence of premises IP, together with their respec-
tive restriction of propositions to the satisfiability of boolean functions, resulting in the limited
principle of omniscience LPO, the weak limited principle of omniscience WLPO, and the lesser
limited principle of omniscience LLPO.

2We follow Diener [55] in using the abbreviation DGP, which stands for “Dirk Gently’s principle”, and refer to
footnotes 4 and 5 in [55] for an explanation of this joke.
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Def. principle of finite
possibility

Def. Kripke’s schema

LEM := ∀P : P. P ∨¬P LPO := ∀ f : N→B. (∃n. f n= true)∨¬(∃n. f n= true)

WLEM := ∀P : P. ¬¬P ∨¬P WLPO := ∀ f : N→B. ¬¬(∃n. f n= true)∨¬(∃n. f n= true)

DGP := ∀PQ : P.(P→Q)∨ (Q→ P) LLPO := ∀ f g : N→B. ((∃n. f n= true)→ (∃n. gn= true))

∨ ((∃n. gn= true)→ (∃n. f n= true))

IP := ∀P : P.∀q : N→ P. (P→∃n.qn)→∃n. P→ qn

Fact 7.12. LEM→DGP, DGP→WLEM, and LEM→ IP.

The converses are likely not provable: Diener constructs a topological model where DGP
holds but not LEM, and one where WLEM holds but not DGP [55, Proposition 8.5.3]. Pédrot
and Tabareau [184] construct a syntactic model where IP holds, but LEM does not.

Fact 7.13. LPO→WLPO and WLPO→ LLPO.

The converses are likely not provable: Both implications are strict over IZF with dependent
choice [105, Theorem 5.1].

LPO is Σ0
1-LEM and WLPO is simultaneously Σ0

1-WLEM and Π0
1-LEM, due to the following:

Fact 7.14. (∀n. f n= false)←→¬(∃n. f n= true)

Both can also be formulated for predicates.

Fact 7.15. The following equivalences hold:
1. LPO ←→∀X .∀(p : X→ P). Sp→∀x . px ∨¬px

2. WLPO←→∀X .∀(p : X→ P). Sp→∀x .¬px ∨¬¬px

3. WLPO←→∀X .∀(p : X→ P). Sp→∀x . px ∨¬px

In our formulation, LLPO is the Gödel-Dummet rule for Σ0
1 propositions. It can also be

formulated as Σ0
1 or S De Morgan rule (items (2) and (3) in the following Lemma), S-DGP

(4), or as a double negation elimination principle on S relations into booleans (5).

Lemma 7.16. The following are equivalent:
1. LLPO

2. ∀ f g : N→B. ¬((∃n. f n= true)∧ (∃n.gn= true))→¬(∃n. f n= true)∨¬(∃n.gn= true)

3. ∀X .∀(p q : X→ P). Sp→ Sq→∀x . ¬(px ∧ qx)→¬px ∨¬qx

4. ∀X .∀(p : X→ P). Sp→∀x y. (px→ p y)∨ (p y→ px)

5. ∀X .∀(R : X→B→ P). SR→∀x . ¬¬(∃b. Rx b)→∃b. Rx b

6. ∀ f . (∀nm. f n= true→ f m= true→ n= m)→ (∀n. f (2n) = false)∨ (∀n. f (2n+ 1) = false)

We define the principle of finite possibility as PFP := ∀ f .∃g. (∀n. f n= false)←→ (∃n. gn=
true). PFP unifies WLPO and LLPO.

Fact 7.17. WLPO←→ LLPO∧ PFP

A principle unifying the classical axioms with their counterparts for Σ0
1 is Kripke’s schema

KS := ∀P : P.∃ f : N→B. P←→∃n. f n= true.
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Def. Markov’s principle

[40] Coquand and Mannaa.
2017. The Independence of
Markov’s Principle in Type
Theory.

[184] Pédrot and Tabareau.
2018. Failure is Not an Option.

[106] Herbelin. 2010. An
Intuitionistic Logic that Proves
Markov’s Principle.

Fact 7.18. LEM→KS

Fact 7.19. Given KS we have LPO→ LEM, WLPO→WLEM, and LLPO→DGP.

KS could be strengthened to state that every predicate is semi-decidable (to which KS is
equivalent using AC

N,N→N). The strengthening would be incompatible with CT.

In general, the compatibility of classical logical axioms (without assuming choice princi-
ples) with CT seems open. We conjecture that Coq’s restriction preventing large elimination
principles for non-sub-singleton propositions makes LEM and CT consistent in Coq.

7.5 Axioms of Russian constructivism

The Russian school of constructivism analyses recursive analysis based on computable func-
tions and constructive logic under the assumption of Markov’s principle:

MP := ∀ f : N→B. ¬¬(∃n. f n= true)→∃n. f n= true

Markov’s principle is independent in type theory [40, 184], consistent with CT [220], and
follows from LPO.

Fact 7.20. LPO←→WLPO∧MP

Corollary 7.21. LPO→MP.

It seems likely that the converse is not provable: There is a logic where MP holds, but not
LPO [106]. As observed by Herbelin [106] and Pedrót and Tabareau [184], IP ∧MP yields
LPO.

Lemma 7.22. MP→ IP→ LPO

Proof. Given f : N→B there is n0 : N s.t. ∀k. f k = true→ f n0 = true using MP and IP: By MP,
¬¬(∃k. f k = true)→∃n. f n= true and by IP, ∃n.¬¬(∃k. f k = true)→ f n= true, which suffices.
Now f n0 = true←→∃n. f n= true and LPO follows. ■

Note that in the last proof, IP is used for a proposition which is neither decidable nor Σ0
1. A

nicer factorisation would be to prove IP→WLPO, but the implication seems unlikely.

Lemma 7.23. The following are equivalent:
1. MP

2. ∀X .∀p : X→ P. Sp→∀x . ¬¬px→ px

3. ∀X .∀p : X→ P. Sp→ Sp→∀x . px ∨¬px

4. ∀X .∀p : X→ P. Sp→ Sp→Dp

5. ∀X .∀(R : X→B→ P). SR→∀x . ¬¬(∃b. Rx b)→∃b. Rx b

6. ∀p : N→ P. Sp→¬¬(∃x . px)→∃x . px

Proof. • (1)→ (2) is immediate.
• (2)→ (3): Since S is closed under disjunctions and since ¬¬(px ∨¬px) is a tautology.
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[189] Post. 1944. Recursively
enumerable sets of positive
integers and their decision
problems.

• (3)→ (4) is immediate by Lemma 4.58 with Rx b := (px ∧ b = true)∨ (¬px ∧ b = false).
• (4)→ (1): Let ¬¬(∃n. f n = true). Let p(x : N) := ∃n. f n = true. Now p is semi-decided

by λx . f , p by λxn.false, and p0∨¬p0 by (4). One case is easy, the other contradictory.
■

• (5)→ (2): Since ∃b. Rx b is semi-decidable if R is semi-decidable.
• (2)→ (5): Since for Rx b := px we have px←→∃b.Rx b.
• (2)←→ (6) is straightforward.

Note that (4) is often called “Post’s theorem” since it was first proved by Post [189, §1].
(1)←→(3)←→(4) is already discussed in [73]. (5) is dual to Lemma 7.16 (5). Replacing Sp with
Sp in (2) does however not result in an equivalent of LLPO, but turns (2) into an assumption-
free fact. While in general Sp←→Sp does not hold it seems possible that they can be exchanged
in (3) and (4), but we are not aware of a proof.

When proving the termination of a program, many textbooks rely to a proof by contradic-
tion, and occasionally we will need this technique as well. It is also well-known that Markov’s
principle MP suffices for this restricted class of proofs by contradiction, and the full power of
LEM is not needed. This also holds for our definition of partial functions, as made precise by
the following extension of the previous lemma:

Fact 7.24. The following are equivalent.
1. MP

2. ∀x : part A. ¬¬(x ↓ )→ x ↓

3. ∀x : part A.∀a : A. ¬¬(x ▷ a)→ x ▷ a

7.6 Choice axioms

We consider the axioms of functional choice AC, unique functional choice AUC, dependent
functional choice ADC, countable functional choice ACC, and the axiom of relational choice
UNIF as well as the special cases of functional number-number choice ACN,N, and functional
function-number choice ACN→N,N, which are sometimes called AC0,0 and AC1,0 in the litera-
ture. The abbreviation UNIF is supposed to remind of the axiom of uniformisation in descrip-
tive set theory, which is a restriction of UNIF for Polish spaces.

ACX ,Y := ∀R : X→ Y→ P.(∀x .∃y.Rx y)→∃ f : X→ Y.∀x . Rx( f x)

AUCX ,Y := ∀R : X→ Y→ P.(∀x .∃!y.Rx y)→∃ f : X→ Y.∀x . Rx( f x)

ADCX := ∀R : X→ X→ P.(∀x .∃x ′.Rx x ′)→∀x0.∃ f : N→ X . f 0= x0 ∧∀n. R( f n)( f (n+ 1)))

UNIFX ,Y := ∀R: X→ Y→ P. (∀x .∃y. Rx y)→∃R′.(∀x y. R′x y→ Rx y)∧ (∀x .∃!y.R′x y)

AC := ∀X Y : T. ACX ,Y AUC := ∀X Y. AUCX ,Y ADC := ∀X : T. ADCX ACC := ∀X : T. ACN,X

UNIF := ∀X Y : T.UNIFX ,Y

Fact 7.25. ACX ,X→ADCX , ACX ,Y→AUCX ,Y , ADC→ACC, ACC→ACN,N, and ACN→N,N→ACN,N.
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[9] Barras. 2010. Sets in Coq,
Coq in Sets.

The axiom of functional choice can be factored into the axiom of functional unique choice
and the axiom of relational choice.

Fact 7.26. AC←→AUC∧UNIF

The following well-known fact is due to Diaconescu [54] and Myhill and Goodman [99].

Fact 7.27. AC→ Fext→ Pext→ LEM

Given that ACN→N,N turns SCT into SCTΣ, we have:

Fact 7.28. ACN→N,N→ Fext→ SCT→⊥

Wewill later see that LLPO∧ACN,N implies weak Kőnig’s lemma, which is incompatible with
KT. Already now we can prove that WLPO∧AUCN,B is incompatible with EPFB.

Fact 7.29. AUCN,B→ (∀n : N. pn∨¬pn)→Dp

Lemma 7.30. WLPO→AUCN,B→ EPFB→∀p:N→ P.Sp→Dp

Proof. Let p be enumerable. WLPO implies ∀n. ¬pn∨¬¬pn. By AUCN,B and the last lemma
p is decidable. ■

Corollary 7.31. WLPO→AUCN,B→ EPFB→⊥

CT seems to be consistent with full AC in CIC, since this is true in IZF, IZF can be used to
model CIC [9]. Of course, this only holds as long as classical axioms like WLPO are absent.
However, it is conceivable that CT, LEM, and UNIF are consistent in CIC, since the universe of
(then classical) propositions seems to be still strictly separated from any computation, because
none of the axioms can be used to define actual functions f :N→N.

7.6.1 Provable choice principles

In contrast to predicative Martin-Löf type theory, CIC does not prove the axiom of choice, nor
the axioms of dependent and countable choice. This is due to the fact that arbitrary large
eliminations are not allowed. However, recall that a large elimination principle for the acces-
sibility predicate is provable, resulting in Corollary 3.8. To make this chapter self-contained,
we recall the consequences of Corollary 3.8 we already proved in Chapter 4.

Using Corollary 3.8 we were then able to prove that relations with a decider, enumerator,
or semi-decider have choice functions. As a consequence, CIC allows proving the following
choice principles:

Lemma 7.32. Let X be a type and Y be a discrete type. Then D-ACX ,N, S-ACX ,N and E-ACY,X

are provable, i.e.:
1. ∀R : X→N→ P. DR→ (∀x .∃n. Rxn)→∃ f : X→N.∀x . Rx( f x)

2. ∀R : X→N→ P. SR→ (∀x .∃n. Rxn)→∃ f : X→N.∀x . Rx( f x)

3. ∀R : Y→ X→ P. ER→ (∀y.∃x . Ry x)→∃ f : Y→ X .∀y. Ry( f y)

Proof. (1) follows immediately from Lemma 4.6. (2) and (3) can be directly proved from
(1), but also directly via 4.58, and 4.26. ■

https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Axioms.principles.html#Diaconescu
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Axioms.principles.html#Diaconescu
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Axioms.principles.html#AC_1_0_Fext_incompat
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Axioms.principles.html#AC_1_0_Fext_incompat
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Axioms.principles.html#AUC_to_dec
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Axioms.principles.html#AUC_to_dec
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Axioms.principles.html#AC_0_0_LPO_incompat'
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Axioms.principles.html#AC_0_0_LPO_incompat'
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Axioms.principles.html#AC_0_0_LPO_incompat
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Axioms.principles.html#AC_0_0_LPO_incompat
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Axioms.principles.html#decidable_AC
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Axioms.principles.html#decidable_AC
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Axioms.principles.html#decidable_AC
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Axioms.principles.html#semi_decidable_AC
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Axioms.principles.html#enumerable_AC


7.7. Axioms on trees 75

Def. subtree
Def. direct subtree

Furthermore, in Lemma 3.29 we proved a choice principle for relations with finite, discrete
domain type.

Fact 7.33. Let X be a discrete and finite type and Y any type. We have:

∀R: X→ Y→ P. (∀x .∃y. Rx y)→∃ f : X→ Y.∀x . Rx( f x)

Note that in particular S-ACN,B follows from S-ACN,N.We briefly discuss consequences of
the here mentioned principles with regards to CT for oracles and in the next section S-ACN,B
will be central.

7.6.2 Modesty and Oracles

Using D-ACN,N from Lemma 7.32 allows proving a choice axiom w.r.t. models of computation,
observed by Larchey-Wendling [150] and called “modesty” by Forster and Smolka [83].

Lemma 7.34. Let φ:N→N→N→ON be stationary. We have

∀c.(∀x .∃vn. φn
c x = Some v)→∃ f : N→N.∀x .∃n. φn

c x = Some ( f x).

Note that this is reminiscent to the function eval on partial values defined in Lemma 4.59.
We will prove the lemma concretely for a step-indexed interpreter of the weak call-by-value
λ-calculus in Lemma 27.11.

That is, if c is the code of a function inside the model of computation which is provably total,
the total function can be computed outside of the model. This modesty principle simplifies the
mechanisation of computability theory in type theory as e.g. in [84]. For instance, it allows
to prove that defining decidability as “a total function in the model of computation deciding
the predicate” and as “a meta-level function deciding the predicate which is computable in
the model of computation” is equivalent.

However, the modesty principle prevents a naive extension of CT to oracles. Traditionally,
computability theory based on oracles is formulated using a computability function φp, such
that for p : N→P there exists a code cp representing a total function such that ∀x .(∃k.(φp)nc x =
Some0)←→ px .

Synthetically, we may want to assume φp for every p as “Church’s thesis with oracles”.
“Church’s thesis with oracles” implies SCT, and we know that under SCT there is a predicateK
which is undecidable. However, under the presence of D-ACN,N we can use φK and obtain cK
which can be turned into a decider f : N→ B for K using the choice principle above – a
contradiction.

We discuss a more appropriate formulation of oracles in Chapter 9, which allows working
solely with SCT.

7.7 Axioms on trees

We have already introduced (decidable) binary trees and Kleene trees in Section 7.2. We now
give a broader overview and give formulations of LPO, WLPO, LLPO, and MP in terms of
decidable binary trees, following Berger et al. [18].

Fact 7.35. Let τ be a tree. Then τuv := τ(u++ v) is a tree if and only if τu.
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Def. fan theorem

Def. weak Kőnig’s
lemma

If τu holds we call τu a subtree of τ and if furthermore u= [b] we call τu a direct subtree
of τ.

Lemma 7.36. The following equivalences hold:
1. LPO←→ every tree is bounded or infinite.

2. WLPO←→ every tree is infinite or not infinite.

3. LLPO←→ every infinite tree has a direct infinite subtree.

4. MP←→ if a tree is not infinite it is bounded.

5. MP←→ if a tree has no infinite path it is well-founded.

Recall Fact 7.7 stating that every bounded tree is well-founded and that every tree with
an infinite path is infinite. The respective converse implications are known as Brouwer’s fan
theorem FAN and weak Kőnig’s lemma WKL respectively:

FAN := Every well-founded decidable binary tree is bounded.

WKL := Every infinite decidable binary tree has an infinite path.

Fact 7.37. KT→¬FAN and KT→¬WKL.

Note that FAN is called FAN′∆ in [122] and FAN∆ in [55], and WKL is called WKLD in [75].
Ishihara [122] shows how to deduce FAN from WKL constructively:

Fact 7.38. Bounded trees τ have a longest element, i.e. ∃u. τu∧∀v. τv→|v| ≤ |u|.

Lemma 7.39. For every tree τ there is an infinite tree τ′ such that for any infinite path f of
τ′ ∀u. τu→τ[ f 0, . . . , f |u|].

Proof. Let τ be given and τ′u := τu∨ ∃v ⊑ u.τv ∧¬∃w.|w|= |v|+ 1∧τw.
It’s obvious that τ′ is inhabited and decidable. Proving that τ′ is closed under prefixes is

not trivial and explained in [122, Proposition 2].
To prove that τ′ is infinite, let n : N be given. Since τ is decidable it is also decidable whether

∃u.τu∧ |u|= n. If there is such a u, τ′u also holds. If there is no such u, τ is bounded and by
Fact 7.38 there is a longest element v in τ. Then τ′w for w := v++[0, . . . , 0] (with n times 0)
holds and |w| ≥ n.

Now let ∀n.τ′[ f 0, . . . , f n] and τu. Since τ is decidable we can assume ¬τ[ f 0, . . . , f |u|]
and have to obtain a contradiction. Since τ′[ f 0, . . . , f |u|] either τ′[ f 0, . . . , f |u|] and the
contradiction is immediate or there is v ⊑ [ f 0, . . . , f |u|] s.t.τv and ¬∃w.|w| = |v|+ 1 ∧ τw.
Thus |v| ≤ |u|. Case distinction:

1. |v|< |u|. Then if u1 = [x1, . . . , xn] we have τ[x1, . . . , x|v|+1], a contradiction.

2. |v|= |u|. Then v = [ f 0, . . . , f |u|]. But τv and ¬[ f 0, . . . , f |u|]. ■

Theorem 7.40. WKL→ FAN

Proof. By Lemma 7.39 and WKL, for every τ there is f s.t. ∀a. τu→τ[ f 0, . . . , f |u|]. If τ is
well-founded, there is n s.t. ¬τ[ f 0, . . . , f n]. Then n is a bound for τ: For u with |u| > n and
τu we have τ[ f 0, . . . , f n, . . . , f |u|]. But then τ[ f 0, . . . , f n], contradiction. ■
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[75] Forster, Kirst, and Wehr.
2021b. Completeness theorems
for first-order logic analysed in
constructive type theory.

Def. Baire space

Def. Cantor space

Def. continuous

Corollary 7.41. KT→¬WKL

Berger and Ishihara [17] show that FAN←→WKL!, a restriction of WKL stating that every
infinite decidable binary tree with at most one infinite path has an infinite path. Schwichten-
berg [104] gives a more direct construction and mechanises the proof in Minlog.

Berger, Ishihara, and Schuster [18] characterise WKL as the combination of the logical
principle LLPO and the function existence principle S-ACN,B (called Π0

1-ACC
∨ in [18]). We

observe that WKL can also be characterised as one particular choice or dependent choice
principle. The proofs are essentially rearrangements of [18, Theorem 27 and Corollary 5]:

Theorem 7.42. The following are equivalent:
1. WKL

2. LLPO∧ S-ACN,B

3. ∀R: N→B→ P. SR→ (∀n.¬¬∃b.Rnb)→∃ f :N→B.∀n. R n ( f n)

4. ∀R:LB→B→ P. SR→ (∀u.¬¬∃b.Rub)→∃ f :N→B.∀n. R [ f 0, . . . , f (n− 1)] ( f n)

Proof. For WKL→ LLPO we use the characterisation (3) of LLPO from Lemma 7.36. Let τ be
an infinite tree. By WKL there is an infinite path f . Then τ[ f 0] is a direct infinite subtree.

For WKL→ S-ACN,B let R be total and f s.t. ∀nb. Rnb←→∀m. f nbm = false. Define the tree
τu := ∀i < |u|.∀m < |u|. f i(u[i])m = false. Infinity of τ follows from ∀n.∃u.|u| = n ∧ ∀i <
n.Ri(u[i]), proved by induction on n using totality of R. If g is an infinite path of τ, Rn(gn)
follows from ∀m.τ[g0, . . . , g(n+m+ 1)].

(2)→ (3) is immediate using characterisation (3) of LLPO from Lemma 7.16.
For (3)→ (4) let F : N→ LB and G : LB→ N invert each other.3 Let R : LB→ B→ P and f

be the choice function obtained from (3) for λnb.R(Fn)b. Then λn. f (G(gn)) where g0 := []
and g(S n) := gn++ [ f (G(gn))] is a choice function for R as wanted.

For (4)→(1) let τ be an infinite tree and let dum := ∃v.|v|= m∧τuv, i.e. dum if τu has depth
at least m and in particular τu is infinite iff ∀m.dum. Define Rub := ∀m.du++[b]m∨¬du++[¬Bb].
R is co-semi-decidable (since d is decidable), and ¬R u true ∧ ¬Ru false is contradictory. Thus
(4) yields a choice function f which fulfils τ[ f 0, . . . , f n] by induction on n. ■

Diener [55] explains the connection of WKL with the model existence theorem occurring in
the completeness proof of classical propositional logic. Forster, Kirst, and Wehr [75] analyse
this connection for classical first-order logic.

7.8 Continuity: Baire space, Cantor space, and Brouwer’s intu-
itionism

The total function space N→ N is often called Baire space, whereas N→ B is called Cantor
space. In this chapter we write NN and BN for the spaces.

Constructively, one cannot prove that NN and BN are in bijection. However, KT is equivalent
to the existence of a continuous bijection BN→NN with a continuous modulus of continuity,
i.e. a modulus function which is continuous (in the point) itself [55]. Furthermore, KT yields
a continuous bijection NN→BN [15].

We call a function F : AN→ BN continuous if ∀ f : AN.∀n : N.∃L : LN.∀g : AN. (map f L =

3These so called coding functions is easy to construct even formally using e.g. techniques from [73].
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Def. modulus of
continuity

Def. leaf of a Kleene
tree

Def. Brouwer’s
continuity principle

map g L)→ F f n = F gn. A function M : AN→N→LN is called the modulus of continuity for
F if ∀n : N.∀ f g : AN. map f (M f n) =map g (M f n)→ F f n= F gn. We define:

Homeo(AN, BN) := ∃F : AN→ BN.∃M . M is a continuous modulus of continuity for F

We start by proving that KT←→Homeo(BN,NN). To do so, we say that u++ [b] is a leaf of a
Kleene tree τK if τKu, but ¬τK(u++ [b]).

Fact 7.43. For every τK , there is an injective enumeration ℓ : N→LB of the leaves of τK .

We define F( f : N→N)n := (ℓ( f 0) ++ · · ·++ ℓ( f (n+ 1)))[n]. Since leaves cannot be empty,
the length of the accessed list is always larger than n and F is well-defined.

Lemma 7.44. F is injective w.r.t. ≡
NB

and ≡
NN

.

Lemma 7.45. F is continuous with continuous modulus of continuity.

Lemma 7.46. The following hold for a Kleene tree τK :
1. There is a function ℓ−1 : LB→N such that for all leafs l, ℓ(ℓ−1l) = l.

2. For all l such that ¬τK l there exists l ′ ⊑ l such that l ′ is a leaf of τK .

3. There is pref : (N→ B)→ LB such that pref g is a leaf of τK and ∃n. pref g =
map g [0, . . . , n].

We can now define the inverse as G g n := ℓ−1(pref (nxtn g)) where nxt g n := g(n+ |pref g|).

Lemma 7.47. F (G g)≡
N→B

g

Lemma 7.48. G is continuous with continuous modulus of continuity.

To implement F and G in Coq the theorems on lists from the std++ Coq library were very
valuable [224].

The following proof is due to Diener [55, Proposition 5.3.2].

Lemma 7.49. Homeo(BN,NB)→KT

Proof. Let F be a bijection with continuous modulus of continuity M . Then τu := ∀0 < i ≤
|u|.∃k < i.k ∈ M(λn.if l[n] is Some b then b else false) 0 is a Kleene tree. ■

Theorem 7.50. KT←→Homeo(BN,NN) and KT→Homeo(NN,BN).

Deiser [51] proves in a classical setting that Homeo(NN,BN) holds. It would be interesting
to see whether the proof can be adapted to a constructive proof WKL→Homeo(NN,BN).

We have already seen that CT is inconsistent with FAN. Besides FAN, in Brouwer’s intuition-
ism the continuity of functionals NN→N is routinely assumed:

Cont := ∀F : (N→N)→N. ∀ f : N→A.∃L : LN.∀g : N→A. (map f L = map g L)→ F f ≡
B

F g

Since every computable function is continuous, we believe Cont to be consistent with CT.
Combining Cont with ACN→N,N yields Brouwer’s continuity principle,4 called WC-N in [228]:

WC-N := ∀R : (N→N)→N→ P.(∀ f .∃n.Rf n)→∀ f .∃Ln.∀g. map f L = map g L→ Rgn
4But note that Cont→ACN→N,N→⊥, since the resulting modulus of continuity function allows for the construction

of a non-continuous function [114].
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Theorem 7.51. WC-N→ Cont

WC-N is inconsistent with SCT, since the relation between codes and functions is not con-
tinuous:

Theorem 7.52. WC-N→ SCT→⊥

Proof. Recall that if two functions have the same code they are extensionally equal. By SCT,
λ f c.∀x .∃n.φn

c x = Some ( f x) is a total relation. Using WC-N for this relation and λx . 0 yields
a list L and a code c s.t. ∀g. map g L = [0, . . . , 0]→∀x .∃n.φn

c x = Some (g x).
The functions λx . 0 and λx . if x ∈ L then 0 else 1 both fulfil the hypothesis and thus have

the same code – a contradiction since they are not extensionally equal. ■

7.9 CIC as basis for constructive reverse mathematics

In this chapter we surveyed the known connections of axioms in CIC, a constructive type theory
with a separate, impredicative universe of propositions, with a special focus on Church’s thesis
CT and formulations of axioms in terms of notions of synthetic computability.

In constructive mathematics, countable choice is often silently assumed, as critised e.g. by
Richman [199, 200]. In contrast, constructive type theory with a universe of propositions
seems to be a suitable base system for matters of constructive (reverse) mathematics sensitive
to applications of countable choice. Due to the separate universe of propositions, such a con-
structive type theory neither proves countable nor dependent choice, allowing equivalences
like the one in Theorem 7.42 to be stated sensitively to choice. We conjecture that Lemma 7.32
deducing S-ACX ,N and E-ACN,X directly from D-ACX ,N cannot be significantly strengthened.
The proof of D-ACX ,N in turn crucially relies on a large elimination principle for ∃n. f n= true
(Corollary 3.8). The theory of [18] proves D-ACN,B and thus likely also S-ACN,B.

Based on the current state of knowledge in the literature it seems likely that S-ACN,B and
LEM together do not suffice to disprove CT, which seems to require at least classical logic of
the strength of LLPO and a choice axiom for co-semi-decidable predicates. Thus we conjecture
that a consistency proof of e.g. LEM ∧ CT might be possible for CIC. We discuss consistency
and admissibility of CT for CIC in Section 29.3.

In predicative Martin-Löf type theory (MLTT), there is no universe of propositions. If one
defines ∃ := Σ, MLTT proves AC. Thus, it is less versatile than CIC as basis for constructive re-
verse mathematics. If one wants to develop synthetic computability theory, the assumption of
SCT makes the theory anti-classical: Not even LLPO can be assumed. If one defines ∃ := ¬¬Σ,
MLTT does not prove AC, but MP. Consequently, one would have to define ∨ in terms of +
with double negation, leading to LEM being provable as well. Thus, again, it is less versatile
than CIC as basis for constructive reverse mathematics.

Type theories with propositional truncation and a semantic notion of (homotopy) propo-
sitions (such as univalent type theories) prove AUCN,B. If one wants to develop synthetic
computability theory, the assumption of SCT makes the theory anti-classical: WLPO cannot
be assumed.

Lastly, the Lean proof assistant implements a version of CIC [49]. Most parts of its standard
library assumes propositional extensionality Pext, a quotient type axiom implying Fext, and
a choice operator [6]. The initial development of µ-recursive functions in Lean [26] was
transitively based on Fext and the choice operator since it is used in standard number-theoretic
facts for N, meaning CT could not be consistently assumed. However, recently the standard
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library was re-factored such that µ-recursive functions do not depend on classical axioms, and
consequently CT could be assumed.

Moreover, results using the choice operator however have to be explicitly prefixed with
the noncomputable keyword. Thus, developing synthetic computability theory seems to be
feasible as long as the noncomputable keyword is forbidden, however comes at the price of
not being able to use big parts of the standard library.



[189] Post. 1944. Recursively
enumerable sets of positive
integers and their decision
problems.

CHAPTER 8
Reducibility Degrees

In this chapter, we develop the theory of reducibility degrees by analysing the order-
structure of many-one, one-one, and truth-table reducibility introduced in Chapter 5, roughly
to the extent as it is covered by Post [189]. We have already proved that ⪯1, ⪯m, and ⪯

tt
form

upper semi-lattices and how to characterise ⪯m and ⪯
tt
in terms of ⪯1, results that did not

require a universal function and thus hold without the assumption of any axioms.
By assuming the enumerability axiom EA introduced in Chapter 6, i.e. a parametrically uni-

versal enumerator, we can prove textbook results relying on universal machines. In his seminal
paper, Post was driven by the question whether the class of enumerable but undecidable pred-
icates is equivalent (under Turing reducibility) to the halting problem, or whether there exist
enumerable but undecidable problems strictly between the decidable problems and the halt-
ing problem. This question became known as Post’s problem, but Post was unable to answer
the question himself and instead introduced one-one, many-one, and truth-table reducibility,
and posed and solved Post’s problem for these notions by introducing simple and hypersimple
predicates. We here follow the same route and give synthetic answers to Post’s problem for
⪯m and ⪯

tt
, as corollaries yielding that ⪯1, ⪯m, and ⪯

tt
are all distinct.

The central results in this chapter are
1. Post’s problem for ⪯m: Construction of a simple predicate, which is enumerable, unde-

cidable, and m-incomplete.

2. Post’s problem for ⪯
tt
: Construction of a hypersimple predicate, which is enumerable,

undecidable, and tt-incomplete.
Textbook proofs of reducibility theory are heavily classical, but we manage to fully construc-

tivise all of the results in the present chapter. The successful constructivisation mostly relies
on suitable constructively weak or strong definition of textbook notions.

For Post’s problem for⪯m, the definition of a simple predicate in the synthetic setting is most
interesting. The complement of a simple predicate has to be infinite, but is not allowed to have
an infinite, enumerable subpredicate. In classical mathematics, p is infinite if and only if it is
Cantor-infinite, i.e. if there is an injective functionN ,→ p. However, Cantor-infinite predicates
(defined via functions) have a (synthetically) enumerable, infinite subpredicate – enumerated
by the function witnessing Cantor infinity. In constructive mathematics, a predicate p is called
infinite if for any sequence [x1, . . . , xn] there exists a y different from all x i but such that p y .
However, any fully constructive proof of infinity in this sense can be turned into a proof of
Cantor infinity, meaning there can be no such proof for the complement of a simple predicate.
It is thus crucial that infinity is defined to be exactly non-finiteness. The complement of a
simple predicate is then non-finite, but not Cantor-infinite. Only with this definition of infinity
Post’s problem for ⪯m can be settled constructively.

For Post’s problem for ⪯
tt
several interesting aspects of constructivisation appear: First, the

definition of hypersimple predicates has to be chosen carefully to ensure that hypersimple
predicates are constructively tt-incomplete. The construction of a hypersimple predicate H as
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Def. universal
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the deficiency predicate of the halting problem is then easier. The literature contains multiple
undecidability proofs of H, and we discuss three of them: The most conventional proof is to
prove undecidability via simpleness of H. But since proofs showing that hypersimple predi-
cates are simple seem to be inherently classical and we only manage to weaken the assumption
to MP we also give a direct, fully constructive undecidability proof for H, which however does
not generalise to arbitrary hypersimple predicates. Lastly, in the next chapter, we propose a
definition of Turing reducibility following Bauer and show that the halting problem Turing
reduces to H, again using MP.

The proofs in this chapter require the most involved intuitions of the thesis. We thus try
to give intuitive conceptual outlines, but focus on the interesting synthetic and constructive
aspects more than the proof ideas. Since we largely follow the excellent book by Rogers [202],
supplemented by the books by Cutland [44], Soare [210], and Odifreddi [180], it might be
helpful for non-experts in computability theory to consult one of the books in cases where the
presented intuition is not sufficient.

Outline We recap the basics of synthetic computability theory based on the axiom EA in
Section 8.1. Simple predicates solving Post’s problem for ⪯m are introduced in Section 8.3
and constructed in Section 8.4. We construct a truth-table complete simple predicate S∗ in
Section 8.5 and formalise the solution of Post’s problem for⪯

tt
by introducing and constructing

hypersimple predicates in Sections 8.6 and 8.7.

Publications This chapter contains adapted pieces of text from the following publication,
which were written solely by the author of this thesis.
[72] Forster, Jahn, and Smolka. “A Constructive and Synthetic Theory of Reducibility: Myhill’s Isomor-

phism Theorem and Post’s Problem for Many-one and Truth-table Reducibility in Coq.” Pre-print.

8.1 An m-complete predicate

To develop synthetic computability theory agnostic towards classical axioms like LEM, we
assume the enumerability axiom EA. The axiom EA postulates

1. a universal enumerator ϕ:N→ (N→ON)

2. such that for all p:N→N→ P

(∃ f .∀i. fi enumerates pi)→∃γ:N→N.∀i. ϕγi enumerates pi

To ease language, we often refer to (2) as EA in this chapter.
EA implies that ϕ in particular is an enumeration of all enumerable predicates.

Fact 8.1. ∀p:N→ P. Ep→∃c. ϕc enumerates p

Sometimes the following variant of EA concernedwith enumerability rather than parametric
enumerability is easier to use,

Lemma 8.2. Let X be enumerable and discrete and p: X→N→ P be enumerable. Then
∃γ:N→N.∀x . ϕγx enumerates px .

For many applications it is more convenient to work with a general parameter type I .
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Def. universal table

m-complete
:Sec. 5.1, Page 47

Lemma 8.3. Let I be a discrete, enumerable type and p: I→N→ P. We have

(∃ f .∀i. fi enumerates pi)→∃γ:N→N.∀i. ϕγi enumerates pi

As is common in developments of computability, we start by defining an enumerable, un-
decidable, m-complete predicate:

Wc x := ∃n. ϕcn= Some x

We call W the universal table of enumerable predicates, justified by the following property:

Fact 8.4. ∀p:N→ P. Ep←→∃c. ∀x . Wc x←→ px

The universal table W is enumerable, undecidable and m-complete, i.e. takes the role of
the halting problem from textbook computability. We define the predicate K:N→ P as the
diagonal of W. K will play a similar role as the self-halting problem, instead of the codes
halting on themselves, Kc holds if c is in the range of ϕc .

Kc :=Wcc

As in textbook proofs that K and W are undecidable we start by showing that the comple-
ment of K is not enumerable. Thus K is undecidable, and undecidability can be transported
to W via a many-one reduction.

Lemma 8.5. ¬EK

Proof. If EK there is c s.t. ∀x . Wc x ←→Kx ←→¬Wc x by Fact 8.1. In particular Wcc←→¬Wcc.
Contradiction. ■

Lemma 8.6. K ⪯m W

Proof. By f c := (c, c). ■

Corollary 8.7. ¬DK, ¬DK, ¬EW, ¬DW, ¬DW.

To show the enumerability of both K and W, we show the enumerability of W and again
transport via the above many-one reduction, this time positively.

Lemma 8.8. EW

Proof. By λ〈n, m〉.if ϕnm is Some k then Some (n, k) else None. ■

Corollary 8.9. EK

We now turn towards m-completeness of W, i.e. that all p: X→ P for enumerable, discrete
X many-one reduce to W:

Lemma 8.10. W is m-complete.

Proof. Let p be enumerable by ϕc via Fact 8.1 Then λx .(c, x) reduces p to W. ■

Establishing that K is m-complete as well now for the first time requires the full strength of
EA, whereas before the non-parametric Fact 8.1 would have sufficed.
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MP :Sec. 3.1, Page 20

Lemma 8.11. W ⪯m K

Proof. We obtain the reduction function γ from Lemma 8.3 with p(x , y)z := Wx y . Since
∀x yz. Wγ(x ,y)z←→W x y we have Wx y←→Wγ(x ,y)(γ(x , y))←→K(γ(x , y)). ■

Corollary 8.12. W ≡
m
K and K is m-complete.

8.2 Enumerable, infinite predicates

In the next section we will define simple predicates. The complement of simple predicates is
infinite and does not contain an infinite, enumerable sub-predicate. In our setting of synthetic
computability, the formalisation of infinity has to be carefully chosen. In Section 3.5 we have
discussed three notions of infinity: Non-finiteness, generativity, and Cantor-infinity.

We will see here that only non-finiteness can be used in the definition of simple predicates,
since otherwise the existence of hypersimple predicates is either disprovable or logically inde-
pendent.

We start by a general discussion of the three notions in connection with enumerability.
Recall that we have proved that non-finite predicates are generative if and only if LEM holds
in Corollary 3.42. However, semi-decidable, non-finite predicates on natural numbers are
generative already if MP holds:

Lemma 8.13. Assume MP and let p:N→ P. Then Sp→¬Fp→ Gp.

Proof. Let p be semi-decidable and non-finite, and let l be given. We have to prove ∃x . x ̸∈
l ∧ px .

Since p is semi-decidable, so is λx . x ̸∈ l ∧ px . Using characterisation (6) of MP from
Lemma 7.23 it suffices to prove ¬¬∃x . x ̸∈ l ∧ px , which holds by Lemma 3.33. ■

In general, using injective countability as formalisation of infinity is perfectly valid in con-
structive mathematics. However, when seeing constructive type theory from the perspective of
synthetic computability theory, injectively enumerable predicates contain computable struc-
ture, which usually is not implied by infinity: The injective function f :N→ X can be obtained
from an injective enumerator but also can be turned into an injective enumerator of its range.

We start by the former and show that generative, enumerable predicates are Cantor infinite:

Lemma 8.14. Generative enumerable predicates over discrete types have a strong injective
enumerator: Let X be a type and p: X→ P. Then Gp→Ep→∃ f . f injective∧∀x . px←→∃n. f n= x .

Proof. Let f enumerate p. We construct a function nxt : LX→ X s.t.∀l. nxt l ̸∈ l ∧ p(nxt l)∧
∀n1n2 x . f n1 = Some (nxt l)→ f n2 = Some x→ x ̸∈ l→ n1 ≤ n2 using µN from Corollary 3.8
and generativity of p.

Then for g0 := [], g(S n) := gn++ [nxt (gn)] and Fn := nxt (gn) we have
1. n< m→ Fn ∈ gm

2. Fn ̸∈ gn

3. p(Fn)

4. f n= Some x→ x ∈ g(S n)

Injectivity of f follows from (1) and (2), that F is a strong enumerator from (3) and (4). ■
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[189] Post. 1944. Recursively
enumerable sets of positive
integers and their decision
problems.

Def. simple

Def. productive

Def. simple predicate

Corollary 8.15. Generative enumerable predicates over discrete types are Cantor-infinite.

In synthetic computability, Cantor-infinite predicates are problematic because the function
f :N→ X can be turned into an enumerator. From N ,→ p we cannot conclude that p is enu-
merable, but that p has a Cantor-infinite, enumerable subpredicate:

Lemma 8.16. N ,→ p→∃q. Eq ∧ (∀x . qx→ px)∧N ,→ q

Proof. Given p and an injection f witnessing N ,→ p, define qx := ∃n. f n = x . Clearly,
∀x . qx→ px since ∀n. p( f n), and λn. Some ( f n) enumerates p. f still proves N ,→ q. ■

Since the complement of simple predicates is supposed to be infinite and not contain an
infinite, enumerable sub-predicate, taking Cantor-infinity as notion of infinity is not possible
for the definition of simple predicates. Since any fully constructive proof of generativity could
be turned into a proof of Cantor-infinity by Lemma 3.45, we have that under the assumption
of a universal enumerator ϕ, defining infinity as. . .
1. Cantor infinity proves there is no simple predicate.

2. generativity makes the existence of simple predicates logically independent.

3. non-finiteness allows to construct a simple predicate.

8.3 Simple predicates

We now turn to Post’s problem for ⪯m. Post’s problem for ⪯m can be seen as a statement on
the structure of enumerable predicates under ⪯m: It shows the existence of an enumerable,
m-incomplete predicate S, i.e. a predicate which is neither decidable nor equivalent to W.
Post’s problem can also be seen as a statement on undecidability proofs: There are predicates
S which are enumerable and undecidable, but where the undecidability proof can not be
carried out by a reduction W ⪯m S.

Post [189] observed that the complement of K is productive, and that productive predi-
cates have a non-finite, enumerable subpredicate. Since productivity transports along ⪯m this
means in particular that the complement of an m-complete predicate has a non-finite, enu-
merable subpredicate.

Thus it suffices to construct an enumerable, undecidable predicate S such that S has no
non-finite, enumerable subpredicate. Post called such predicates simple, likely due to the fact
that they are less hard to solve than W. Formally, a predicate p:N→ P is productive if its non-
enumerability is witnessed by a function f such that for every subpredicate q of p enumerated
by ϕc , p and q differ on the element f c

productive p := ∃ f : N→N. ∀c. (∀x . Wc x→ px)→ p( f c)∧¬Wc( f c)

A predicate p: X→ P is simple if it is enumerable, and its complement is both non-finite (oth-
erwise p would at least classically be decidable) and does not contain a non-finite, enumerable
predicate:

simple p := Ep ∧¬Fp ∧¬∃q. (∀x . qx→ px)∧ Eq ∧¬Fq

Lemma 8.17. Productive predicates are not enumerable.
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Proof. Let p have a productive function f and be enumerable by ϕc via Fact 8.1. Then by the
specification of f , p( f c), i.e. Wc( f c), and ¬Wc( f c). Contradiction. ■

Lemma 8.18. K is productive.

Proof. Pick λn.n as function. Let c be given s.t. ∀x . Wc x→¬W x x . In particular, Wcc→¬Wcc,
i.e. ¬Wcc as required. ■

Every productive predicate is Cantor-infinite and thus has an enumerable, Cantor-infinite
subpredicate.

Lemma 8.19. Every productive predicate is Cantor-infinite.

Proof. From Lemma 8.2 and since x ∈ l is decidable, we obtain c : LN→N s.t. Wcl x←→ x ∈ l
for every l:LN.

Let p : N→P have a productive function f . We prove ∀l : LN.Σx . (∀x0 ∈ l.px0)→ px∧ x ̸∈ l,
which suffices by a slight adaption of Lemma 3.45.

Given l : LN, pick x := f (cl). ■

Corollary 8.20. Every productive predicate has an enumerable, Cantor-infinite subpredicate.

Proof. Using Lemma 8.16. ■

We now extend this result and show that the complement of m-complete predicates contains
an enumerable, Cantor-infinite subpredicate since productiveness transports along many-one
reductions:

Lemma 8.21. Let p ⪯m q. If p is productive, q is productive.

Proof. Let f many-one reduce p to q, and let g be a productive function for p. Lemma 8.2
yields k s.t. W(kc)x←→Wc( f x).

Then λc. f (g(kc)) is a productive function for q. ■

Note that for Lemma 8.21 parametric universality of ϕ is crucial.

Lemma 8.22. Let p be m-complete. Then p has a Cantor-infinite, enumerable subpredicate.

Proof. Since productiveness of p follows from K ⪯m p and productiveness of K. ■

We conclude by showing that simple predicates are undecidable and m-incomplete:

Fact 8.23. Complements of simple predicates are not enumerable.

Corollary 8.24. Simple predicates are undecidable.

Theorem 8.25. Simple predicates are m-incomplete.

Proof. Let p be simple and m-complete. Then p contains an enumerable, Cantor-infinite and
thus non-finite subpredicate. Thus p is not simple. Contradiction. ■

We can also use simple predicates to show that ⪯1 and ⪯m do not agree on an enumerable,
undecidable predicate:

Lemma 8.26. If p:N→ P and p×N⪯1 p, then p is not simple.
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Proof. Let f be a one-one reduction from p ×N to p and let p be simple. We have to prove
falsity, thus we can assume an element x0 s.t. px0 since p is non-finite by Fact 3.31.

Now λx .∃n. f (x0, n) = x (i.e. the range of f on {x0} × N) is a non-finite, enumerable
subpredicate of p. ■

Since for every simple predicate S, trivially S×N⪯m S but not p×N⪯1 p we have that ⪯m

and ⪯1 differ, we state the fact formally after establishing a concrete simple predicate.

8.4 Post’s simple predicate

We follow the presentation of Rogers [202, §8.1 Th. II] to construct the same simple predicate
as Post [189, §5].

Recall that simple predicates are enumerable and that their complement is non-finite but
may not contain a non-finite, enumerable subpredicate. The latter two properties will drive
the construction, since either one is easy to establish on their own, but the combination needs
care. Post’s idea was to construct a predicate S containing an element from every non-finite
(enumerable) predicate Wc . Thus, S cannot have a non-finite, enumerable subpredicate. To
ensure that S is still non-finite, S contains only a unique x > 2c with Wc x for every large
enough Wc . The condition x > 2c ensures that there are at least n elements less or equal 2n
in S, and thus S is non-finite.

The only technical difficulty in the definition of S is to obtain a unique x satisfying x > 2c
and Wc x for every large enough Wc . Post ensures this by choosing the x enumerated first
by ϕc satisfying x > 2c, i.e. the x with the least index n such that ϕcn= Some x . We abstract
away from this property, and observe that any function mapping c to x does the job.

We fix a function ψ : ∀c. (∃x . Wc x ∧ x > 2c)→N such that ψcH = x→Wc x ∧ x > 2c and
ψcH1 =ψcH2, i.e. a proof-irrelevant choice function for the predicate λx . Wc x ∧ x > 2c.

We then define

Sx := ∃c(H : ∃x . Wc x ∧ x > 2c).ψcH = x

We verify S to be indeed a simple predicate:

Lemma 8.27. S is enumerable.

Proof. There is a strong enumerator E : N→ N for λc.∃x .Wc x ∧ x > 2c, i.e. we have
H:∀n.∃x .W(En)x ∧ x > 2 · En. Then, λn.ψ(En)(Hn) strongly enumerates S. ■

Lemma 8.28. S is non-finite.

Proof. We prove the following, which is sufficient by Fact 3.37:

∀n.¬¬∃L.|L|= n∧#L ∧∀x ∈ L.Sx ,

Given n, let px := Sx ∧ x ≤ 2n. p is exhausted by [0, . . . , 2n], thus it is not not listable. Since
the claim is negative, we can assume some duplicate-free Lp listing p.

Now |Lp| ≤ n: by decomposing Sx for every x ∈ Lp, we obtain L′p with #L′p, |L
′
p| = |Lp|,

and ∀c ∈ L′p. c < n∧∃H.ψcH ∈ Lp. Hence, |Lp| ≤ n. Now the first n elements of filter(λx . x ̸∈
Lp) [0, . . . , 2n] form the wanted list. ■

Lemma 8.29. S contains no non-finite enumerable subpredicate.
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[72] Forster, Jahn, and Smolka.
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Myhill’s Isomorphism Theorem
and Post’s Problem for Many-one
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Coq.

[124] Jahn. 2020. Synthetic
One-One, Many-One, and
Truth-Table Reducibility in Coq.

Def. majorising
function

Def. exceeds

Proof. Let q be non-finite, contained in S and enumerated by ϕc via Fact 8.1, i.e. (∗) :
∀x .Wc x ←→ qx . We derive a contradiction by showing [0, . . . , 2c] to exhaust q: Assume qx .
Then Wc x since ϕc enumerates q. We have to prove x ∈ [0, . . . , 2c], which is decidable and
thus stable. So let x /∈ [0, . . . , 2c], i.e. x > 2c, and derive a contradiction. Thus we have a
proof H : ∃x . Wc x ∧ x > 2c, and both Wc(ψcH) and S(ψcH). By (∗) we have q(ψcH), and
by assumption thus ¬S(ψcH) – contradiction. ■

Theorem 8.30. S is a simple predicate.

Proof. Direct by Lemmas 8.27, 8.28, and 8.29. ■

The construction of S settles Post’s problem for ⪯m.

Theorem 8.31. There exists an enumerable, undecidable, and m-incomplete predicate.

Proof. A function ψ can be constructed from an enumerator of λx .Wc x ∧ x > 2c for every c
via Lemma 4.26. The claim then follows directly from Theorem 8.25 and Theorem 8.30. ■

Theorem 8.32. ⪯1 and ⪯m differ on enumerable undecidable predicates.

Proof. S ×N⪯m S holds, but S ×N ̸⪯1 S by Lemma 8.26. ■

8.5 A tt-complete simple predicate

Post’s problem for the more general notion of truth-table reducibility raises the question
whether simple predicates also serve as a solution for this problem, i.e. whether they are
also tt-incomplete. Post showed this is not the case in general by constructing a tt-complete
simple predicate S∗ extending S:

Theorem 8.33. There is a simple tt-complete predicate S∗.

Proof. We refer to [72] Appendix B and [124] for the construction of S∗. ■

Thus, simple predicates do not solve Post’s problem for truth-table reducibility, but S∗ yields
a distinction of ⪯m and ⪯

tt
on enumerable but undecidable predicates.

Theorem 8.34. m- and tt-completeness do not coincide. In particular, ⪯m and ⪯
tt
differ on

enumerable undecidable predicates.

Proof. S∗ is m-incomplete as a simple predicate, but tt-complete by Theorem 8.33. ■

8.6 Hypersimple predicates

For settling Post’s problem w.r.t. ⪯
tt
in our synthetic setting we once more follow Rogers [202,

§9.5] and introduce majorising functions: f :N→N majorises a predicate p:N→ P if

∀n.¬¬∃l. #l ∧ |l|= n∧∀m ∈ l.pm∧m≤ f n.

In this section we will be slightly more liberal in inserting double negations than before,
but as before with the sole goal of obtaining constructive results. In this spirit we slightly
adapt the definition of majorising in order to be more suitable for constructive, formalised
proofs. We immediately introduce a strengthening of the notion following Odifreddi [180]: A
function f :N→N exceeds a predicate p:N→ P if ∀n.¬¬∃i. n< i ≤ f n∧ pi.

https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Synthetic.simple_construction.html#S_simple
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Synthetic.simple_construction.html#S_simple
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Synthetic.summary_reducibility_degrees.html#Posts_problem_many_one
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Synthetic.summary_reducibility_degrees.html#Posts_problem_many_one
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Synthetic.summary_reducibility_degrees.html#one_one_and_many_one_differ
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Synthetic.summary_reducibility_degrees.html#one_one_and_many_one_differ
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Synthetic.simple_construction.html#tt_red_W_S_Star
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Synthetic.simple_construction.html#tt_red_W_S_Star
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Synthetic.summary_reducibility_degrees.html#many_one_truth_table_differ
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Synthetic.summary_reducibility_degrees.html#many_one_truth_table_differ


8.6. Hypersimple predicates 89

Def. hypersimple
predicate

Fact 8.35. If f exceeds p, then λn. f n0 majorises p.

Lemma 8.36. If ∀x .qx→ px and q is Cantor-infinite, then there exists f exceeding p.

Proof. Take λn. π1(F[0, . . . , n]), where F :LN→N is obtained from N ,→ q and Lemma 3.45.
■

Corollary 8.37. Given MP, if there is no f majorising p, then p does not have a non-finite,
enumerable subpredicate.

Proof. Let no f majorise p and let q be a non-finite, enumerable subpredicate of p. By MP
and Lemma 8.13, q is generative. By Corollary 8.15, q is Cantor-infinite. By Lemma 8.36
there is f exceeding p. By Fact 8.35, p is majorised – contradiction. ■

The following is an adaption of Theorem III.3.10 in [180], with

p ⊨ (Q, T ) := ∀l. Forall2 (λx b. px←→ b = true)Q l→ l ⊨ T

for predicates p: X→ P, query lists Q:LX and truth-tables T : tt.

Lemma 8.38. If K ⪯
tt

p there exists a function exceeding p.

Proof. Let g be a tt-reduction from K to p. By Lemma 8.2 there is γ:LN→N s.t. ∀l x . Wγl x←→
¬(λx .x ̸∈ l) ⊨ g x .

Let genn : L(LN) contain exactly all duplicate-free lists l s.t. max l ≤ n. We define an,i :=
c(genn[i]) for i < ln and an,i := c[] otherwise. Then λn. 1+max

�

π1(gan,i) | i < 2n
�

exceeds
p. To show this, let n be given and assume

(∗) : ∀ j. n< j < max
�

π1(gan,i) | i < 2n
�

→ p j

We have to prove falsity. Note that ¬¬∃.i < 2n. ∀z. z ̸∈ genn[i]←→ p∗z where p∗z := (¬¬pz∧
z ≤ n)∨ z > n. Since we have to prove falsity, we can assume such an i. Now by (∗) we have
∀ j.n< j ∈ π1(gan,i)→p j since π1(gan,i)< max

�

π1(gan,i) | i < 2n
�

follows from i < 2n. Since
for x ≤ n, px←→ p∗x by definition, we have ∀x ∈ π1(gan,i). px←→ p∗x . But now we obtain the
following contradiction:

p ⊨ gan,i←→Wan,i
an,i←→Wγ(genn[i]) an,i

←→¬(genn[i] ⊨ gan,i)←→¬(p∗ ⊨ gan,i)

←→¬(p ⊨ gan,i) ■

A predicate p:N→ P is hypersimple if it is enumerable and its complement is non-finite and
not majorised:

hypersimple p := Ep ∧¬Fp ∧¬∃ f . f majorises p

Fact 8.39. Hypersimple predicates are not tt-complete.

Lemma 8.40. Given MP we have that hypersimple predicates are simple.

Proof. Direct by Corollary 8.37. ■
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8.7 Construction of a hypersimple predicate

We now construct and verify a hypersimple predicate, a result due to Post [189, §9]. We
however follow Rogers [202, §8.1 Th. II], who presents a (more general) construction due
to Dekker [52], defining a hypersimple predicate HI for an arbitrary undecidable I :N→ P
with a strong, injective enumerator EI :N→N. By instantiating with W we obtain that HW is
hypersimple, and thus enumerable, undecidable, and tt-incomplete. The predicate HI :N→ P
is defined as the so called “deficiency predicate” of I :

HI x := ∃x0 > x . EI x0 < EI x

Lemma 8.41. HI is non-finite.

Proof. By Corollary 3.34 it suffices to prove

∀x .¬¬∃y ≥ x .HI y.

We use complete induction on EI x . Given x:N assume (∗) : ¬∃y ≥ x .HI y . The claim is
negative, thus we can decide HI x:
1. If HI x , there exists x0 > x with EI x0 < EI x . Hence, induction for x0 yields ¬¬∃y ≥ x0.HI y

contradicting (∗).

2. If HI x holds, x is an element as required. ■

Lemma 8.42. If f majorises HI , then I is decidable.

Proof. Let f majorise HI . We prove that g := λx .x ∈B map EI [0, . . . , f (S x)] decides I , i.e.
∀x . I x ←→ g x = true. The direction from right to left is easy, since EI enumerates I . For the
converse direction let EI n= x for some n. We show n ∈ [0, . . . , f (S x)], which is stable. Thus
let n /∈ [0, . . . , f (S x)], i.e. n > f (S x). Since f majorises HI and the goal is falsity, we can
assume l with #l, |l|= S x and ∀y ∈ l. HI y ∧ y ≤ f (S x). Let m :=max(mapEI l). We have

1. m≥ x , since |mapEI l|= |l|> x and #(mapEI l).

2. m= EI m0 for some m0 ∈ l and therefore m0 ≤ f (S x) and HI m0 by the properties of l.
We now prove HI m0 to obtain a contradiction. We have n> f (S x)≥ m0 and EI n= x ≤ m=
EI m0. By the injectivity of EI , EI n = EI m0 implies n = m0 (a contradiction), such that we
have EI n< EI m0 as required. ■

Theorem 8.43. There exists a hypersimple predicate.

Proof. EHI follows by Corollary 4.20. λ〈c, x〉.Wc x is an undecidable, strongly enumerable
predicate I as assumed. ■

Finally, we need to show HI to be undecidable.
• First, we could show that HI is simple. The general result that hypersimple predicates

are simple (Lemma 8.40) seems to require MP, and the same holds for any obvious
proof that HI or HW is simple. We thus do not consider this route.

• Secondly, we can give a direct proof of undecidability of HI by showing that if HI is
decidable, then I is decidable.

• Thirdly, we can follow Rogers and give a Turing reduction HI ⪯T I [202, §8.1 Th. II].
We do so for our proposed notion of Turing reducibility in Section 9.5, again using MP.
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Corollary 8.44. HI is undecidable.

Proof. For a direct proof without assumptions, see [72] Appendix C. We will obtain the result
as well in Corollary 9.20 using Turing reductions, but under the assumption of MP. ■

Theorem 8.45. There exists an enumerable, undecidable, and tt-incomplete predicate.

Proof. By Fact 8.39, Corollary 8.44 and Theorem 8.43. ■

8.8 Related Work

Bauer [10] also proves the existence of a synthetic simple set. Translated to our setting, in
Bauer’s definition simple predicates are predicates p: X→ P such that ¬Fp ∧ ∀q: X→ P. Gq→
∃x .qx ∧ px . It seems like our definition and Bauer’s are equivalent using MP, and that both
directions of the equivalence rely on MP. We choose our definition to obtain a fully construc-
tive proof of ¬Ep for any simple p. In the construction of a simple set, Bauer uses a partial
selection function, where we use the total function ψ:∀c. (∃x . Wc x ∧ x > 2c)→N, i.e. use an
explicit proof argument as propositional guard. Both constructions rely on the enumerability
of λc. ∃x . Wc x ∧ x > 2c, we use Lemma 4.26 to construct ψ, whereas Bauer uses Fact 4.62.

Our construction of both the simple and the hypersimple predicate is crucially based on the
m-complete problem K, where the non-enumerability of K is shown directly using diagonali-
sation. Formally, we have Kc if ϕc does not have c in its range.

Other authors use different (m-complete) problems which are shown undecidable directly,
and then center their analysis around these problems.

For instance, Turing [229] uses the problem “Given a Turing machine M and a symbol a,
does M ever print a when started on the empty tape?”, and Church [31] uses the problem
“Given a λ-term t, does t have a normal form?”.

Amongst authors concerned with simple sets, we have the following: Post [189] uses the
problem “Given a Post system in normal form with basis B and a number n, does B produce
n?”. Davis [47] uses the problem “Given a Turing machine M and a string s, does M halt
when started on a tape containing s?”. Rogers [202] uses the problem “Given a number n,
does the n-th µ-recursive function terminate on input n?”.
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CHAPTER 9
Turing reducibility

One-one, many-one, and truth-table reducibility all have in common that their textbook
definitions only rely on total computable functions in the chosen model of computation. For
Turing reducibility, introduced by Turing [230], and dubbed like this by Post [189], the situa-
tion is different: Turing reducibility is based on oracle machines, an extension of the model of
computation by oracles for arbitrary sets which can be queried arbitrarily often. Alternatively,
Turing reducibility can be defined in terms of µ-recursive functionals [134, 47]. Intuitively,
µ-recursive functionals as used for Turing reductions can computably transport potentially
non-computable functions N→B (which can be thought of as oracles) to potentially non-
computable functions N→B.

We use this intuition to define synthetic Turing reducibility, based on continuous Turing func-
tionals. We follow an idea by Bauer [14] and define Turing functionals based on a two-layered
approach: They consist of a (continuous) functional r: (Y⇝B)→ (X⇝B) mapping functional
relations Y ⇝ B to functional relations X ⇝ B factoring through a (then also continuous)
computational core r ′: (Y*B)→ (X*B).

We also introduce two well-known refinements of Turing reducibility: Bounded Turing
reducibility, which requires reduction functions to have a modulus of continuity, and total
bounded Turing reducibility, which is equivalent to truth-table reducibility due to a result by
Nerode [202, §9.6 Thm. XIX].

Lastly, we compare Bauer’s definition of Turing reducibility to ours.
Three central theorems concerning Turing reducibility one finds in text-books are: Tur-

ing reductions differ from truth-table reducibility, proved by showing that the tt-incomplete
hypersimple predicate H is Turing-reduction complete. We give a synthetic proof of this theo-
rem in this chapter. The Kleene-Post theorem, stating that there are incomparable predicates
under Turing-reducibility. The Friedberg-Muchnik theorem solving Post’s problem for Tur-
ing reducibility, i.e. stating that there is an enumerable but undecidable predicate where the
undecidability proof cannot be by Turing-reduction from the halting problem.

Outline We explain how the analytic definition of Turing reducibility based on µ-recursive
functionals induces a synthetic definition of Turing reducibility in Section 9.1. We compare
our definition with more naive definitions of Turing reducibility in Section 9.2.

In Section 9.3 and Section 9.4 we discuss bounded and total bounded Turing reducibility.
In Section 9.5 we show that W reduces to the hypersimple predicate H. In Section 9.6 we
compare Bauer’s definition of Turing reducibility with ours.

Publications All results in this chapter are unpublished. The definition of Turing reducibility
was conceived in joint work with Dominik Kirst.

9.1 Turing reducibility

Turing reducibility was introduced in Turing’s PhD thesis [230], based on Turing machines
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which are extended with oracle calls to query non-computational functions in their execu-
tion. Kleene equivalently defines Turing reducibility via µ-recursive functionals [134]. A
µ-recursive functional (in one function and one variable) F maps a partial function α and a
number x partially to a number y . We suggestively write F(α)x ▷µ y to indicate the situation
where the µ-recursive functional F is defined on α and x with value y . Notably, the input
function α has not to be a partial recursive function, but if it is, F(α) is a µ-recursive function
as well. This means that although F accepts non-computational input, it can be completely
described by computable means, and in particular if α is computable, F(α) is.

The theorem that any partial µ-recursive functional F is both compact and monotonic is due
to Kleene [134] and Davis [47]. We immediately use a constructivisation of the Kleene/Davis
theorem, where
1. F is compact, if whenever F(α)x ▷µ y there does not not exist a finite µ-recursive function

u ⊂ α such that F(u)x ▷µ y .

2. F is monotonic, if whenever F(α)x ▷µ y for every µ-recursive function β such that α ⊆ β
we have F(β)x ▷µ y .
We use this theorem by Kleene and Davis to define the synthetic notion of Turing functionals.

A Turing functional is a functional F : (Y⇝B)→ (X ⇝B) which is compact, monotonic, and
factors through a computational core F ′: (Y*B)→ (X*B).

More precisely, a Turing functional F : (Y⇝B)→ (X ⇝B) . . .
1. . . . is compact if:

(∀R: Y⇝B.∀x: X .∀b:B. FRx b→¬¬∃L : LY.∃RL : (Y ⇝B).

(∀y b. RL y b→ y ∈ L ∧ Ry b)∧ FRL x b)

2. . . . is monotonic if:

∀RR′. (∀y b. Ry b→ R′ y b)→∀x b. FRx b→ FR′x b

3. . . . factors through a computational core F ′: (Y*B)→ (X*B) if:

∀ f : Y*B.∀R: Y⇝B. f computes R→ F ′ f computes FR

where a partial function f : Z1* Z2 computes a functional relation R: Z1⇝Z2 if
∀x y. Rx y←→ f x ▷ y .

To simplify the formal treatment, we assume propositional extensionality Pext and func-
tional extensionality Fext for the rest of the chapter. In particular, this implies extensionality
of predicates.

PredExt := ∀X :T.∀pq: X→ P. (∀x . px←→ qx)→ p = q

Fact 9.1. Given propostional and functional extensionality we have PredExt.

A Turing reduction is a Turing functional which maps the characteristic relation of q to the
characteristic relation of p. The characteristic relation of a predicate p: X→ P is the relation
char p := λx b. px←→ b = true.

https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.Synthetic.Turing.html#PredExt
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Def. Turing-reducibleTo sum everything up, a predicate p: X→ P is Turing-reducible to a predicate q: Y→ P if
there exists a compact, monotonic Turing reduction:

p ⪯T q := ∃F : (Y⇝B)→ (X⇝B). F(char q) = char p ∧

(∀R: Y⇝B.∀x: X .∀b:B. FRx b→¬¬∃L : LY.∃RL : (Y ⇝B).

(∀y b. RL y b→ y ∈ L ∧ Ry b)∧ FRL x b) ∧

(∀RR′. (∀y b. Ry b→ R′ y b)→∀x b. FRx b→ FR′x b) ∧

(∃F ′: (Y*B)→ (X*B).∀ f : Y*B.∀R: Y⇝B.

f computes R→ F ′ f computes FR)

Without assuming extensionality axioms, the first condition would have to be spelled out
in more detail. Furthermore, we would have to require that both F and F ′ map extensionally
equal inputs to extensionally equal outputs, otherwise not even the following is provable:

Fact 9.2. Turing reducibility is a pre-order.

For other reducibility notions we considered, the degree of decidable predicates formed
a minimum, i.e. decidable predicates reduced to every (non-trivial) predicate. Recall that
decidable predicates are bi-enumerable, i.e. enumerable and their complement is, and that
the converse (“Post’s theorem”) is equivalent to MP. For bounded Turing reducibility, the
degree of bi-enumerable predicates is already a minimum:

Lemma 9.3. Let X be discrete and p: X→ P. If Ep and Ep, then p ⪯T q.

Proof. Let f enumerate p and g enumerate p. Then there exists a function h:N*B comput-
ing char p. Define FR := char p and F ′ f := h. F is clearly compact and monotonic and factors
through F ′. ■

Corollary 9.4. Let X be enumerable and discrete and p: X→ P. Then Dp→ p ⪯T q.

Lemma 9.5. Given MP we have p ⪯T q→Dq→Dp.

Proof. Let p ⪯T q via F and F ′. Let f decide q. Then F ′(λx . ret ( f x)) computes char p true.
Furthermore, ∀x . ¬¬(F ′(λx . ret ( f x)) ↓ ) follows by case analysis on px , allowed since the
proof goal is negative. By MP, we have ∀x . F ′(λx . ret ( f x)) ↓ . ■

Since bi-enumerable predicates reduce to any predicate (in particular to arbitrary decidable
predicates), a proof of backwards transport of decidability implies Post’s theorem, meaning
MP is necessary and sufficient for the previous theorem.

Lemma 9.6. MP if and only if ∀pq:N→ P. p ⪯T q→Dq→Dp.

Proof. The forward direction is Lemma 9.5. For the backward direction, we use Lemma 7.23
and prove that any bi-enumerable predicate p:N→ P is decidable, i.e. Ep→ Ep→ Dp, which
suffices by Lemma 7.23 (4). It then suffices to prove that p ⪯T (λx .⊤), which holds by bi-
enumerability of p and Lemma 9.3. ■
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9.2 Naive Turing reducibility

The most naive synthetic definition of Turing reducibility would be to just focus on the
core: A predicate p: X→ P is naively Turing reducible to q: Y→ P if there is a func-
tion F : (Y→B)* (X→B) such that whenever f decides q, then F f ▷ f ′ and f ′ decides p.

However, the fact that naive Turing reducibility is only defined for computable input means
every predicate reduces to an undecidable predicate:

Lemma 9.7. If q is undecidable, then p naively Turing reduces to q.

Proof. Take the function F f := undef. Any f deciding q yields a contradiction. ■

Under the presence of EA, this means that Post’s problem for naive Turing reducibility is
unsolvable, since W would reduce to any undecidable predicate, i.e. there is no enumerable,
undecidable predicate incomplete under naive Turing-reducibility.

Thus, we model the reduction via functional relation transformers F : (Y⇝B)→ (X⇝B).
Here, a naive approach would be to leave out compactness and monotonicity and just require
that F factors though some F ′. However, one can check in F whether the input is computable.

Lemma 9.8. Let q: Y→ P be undecidable, let p: X→ P and assume MP. Then there are
functions F : (Y⇝B)→ (X⇝B) and F ′: (Y*B)→ (X*B) such that F(char q) = char p and
∀( f : Y*B)(R : (Y ⇝B)). computes R→ F ′ f computes FR.

Proof. Define F ′ f := f and

FRx b := ((∃ f . f computes R)∧Rx b←→ b = true)∨ (¬(∃ f . f computes R)∧ px←→ b = true)

Clearly, F ′ is the computational core of F , because if R is computable, FR= R.
If R is not computable, FR = char p. Since q is undecidable, char q is not computable, and

thus F(char q) = char p. ■

9.3 Bounded Turing reducibility

A bounded Turing reduction is a Turing reduction with an additional function B: X→LY
such that the reduction on input x only queries the oracle on elements of Bx . Given
F : (Y⇝B)→ (X⇝B), this renders B a modulus of continuity of FR for all R, i.e. a modulus
of continuity uniform in the relation argument.

Bounded Turing reducibility was initially introduced as weak truth-table reducibility by
Friedberg and Rogers [86], see also the book by Odifreddi [180, p. 340].

A predicate p: X→ P is bounded Turing-reducible to q: Y→ P if there exists a bounded
Turing reduction reducing the characteristic relation of q to the characteristic relation of p:

p ⪯bT q := ∃F : (Y⇝B)→ (X⇝B). F(char q) = char p ∧

(∃F ′: (Y*B)→ (X*B).∀ f : Y*B.∀R : (Y ⇝B).

f computes R→ F ′ f computes FR) ∧

(∃B: X→LY .∀x: X .∀RR′: (Y⇝B).

(∀y ∈ Bx .∀b. Ry b→ R′ y b)→∀b. FRx b→ FR′x b)



9.4. Total bounded Turing reducibility 97

Def. total bounded
Turing-reducible

Verbalised, the condition on B states that whenever two relations R and R′ agree on Bx ,
then F treats them the same, meaning intuitively F only queries the oracle for the relation on
inputs in Bx (or queries the oracle but ignores the result).

Note that we can leave out compactness and monotonicity, since they are implied by the
bound function, which is used in the following proof:

Lemma 9.9. p ⪯bT q→ p ⪯T q

Proof. Any bounded Turing reduction F is a Turing reduction. The bound function B implies
compactness (even without a double negation) and monotonicity of F . ■

The converse direction is not provable because one cannot turn a proof of compactness and
monotonity to a bound function. One might be able to give a synthetic proof that the notions
are distinct base on EA.

Fact 9.10. Bounded Turing reducibility is a pre-order.

Similar to Turing reducibility, MP is necessary and sufficient for the transport of decidability.

Fact 9.11. MP if and only if p ⪯bT q→Dq→Dp.

9.4 Total bounded Turing reducibility

A Turing reduction from p to q only has to produce a total relation as output when it is given
the characteristic relation for q as input. This condition can be strengthened such that any
total input relations is mapped to a total output relation, resulting in the concept of total
bounded Turing reducibility.

Formally, a predicate p: X→ P is total bounded Turing-reducible to a predicate q: Y→ P if
there exists a bounded Turing reduction which reduces the characteristic relation of q to the
characteristic relation of p and which transports total inputs to total outputs:

p ⪯tbT q := ∃F : (Y⇝B)→ (X⇝B). F(char q) = char p ∧

(∀R: (Y⇝B). (∀y.∃b.Ry b)→ (∀x .∃b.FRx b)) ∧

(∃F ′: (Y*B)→ (X*B).∀( f : Y*B)(R : (Y ⇝B)).

f computes R→ F ′ f computes FR) ∧

(∃B: X→LY .∀(x : X )(RR′ : (Y ⇝B)).

(∀y ∈ Bx .Ry = R′ y)→ FRx = FR′x)

Fact 9.12. p ⪯tbT q→ p ⪯bT q

Total bounded Turing reductions implicitly contain a total computational core.

Fact 9.13. Let F : (Y⇝B)→ (X⇝B), F ′: (Y*B)→ (X*B), and B: X→LY be given such that
• ∀R: (Y⇝B).(∀y.∃b.Ry b)→ (∀x .∃b.rRx b),
• ∀( f : Y*B)(R: (Y⇝B)). f computes R→ F ′ f computes FR,
• ∀(x: X )(RR′: (Y⇝B)). (∀y ∈ Bx .Ry = R′ y)→ rRx = rR′x).
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Then there exists a function F ′′ : : (Y→B)→ (X→B) such that

1. ∀ f : Y→B. F(λx b. f x = b)x b←→ F ′′ f x = b

2. ∀x( f f ′: Y→B). (∀y ∈ Bx . f y = f ′ y)F ′′ f x = F ′′ f ′x

This total part can be used to transport decidability backwards fully constructively.

Lemma 9.14. If p ⪯tbT q and q is decidable, then p is decidable.

Proof. Let f decide q. Then F ′′ f decides p. ■

As expected, truth-table reducibility implies total bounded Turing reducibility. We need MP
for the proof.

Lemma 9.15. MP→ p ⪯
tt

q→ p ⪯tbT q

Proof. Let f ′: X→LY × truthtable be a truth-table reduction from p to q.
One can define a function f : X→LP→ P s.t.using MP

1. ∀l : LB.∀x : X . l ⊨ π2( f ′x)←→ f x(map(λb. b = true)l)

2. ∀x . px←→ f x (mapq(π1( f ′x)))

The function f can be seen as the extension of λx l.l ⊨ π2( f ′x) to propositions, or vice versa
λx l.l ⊨ π2( f ′x) is the computational core of f .

Now we define

FRx b := ∃L : LP. Forall2(λx P. (P→ Rxtrue) ∧ (¬P→ Rx false)) (π1( f x)) L

∧ f x L←→ b = true

F ′ f x := mappart g(π1( f
′x))>>= λl. ret (π2( f

′x)L)

Bx := π1( f
′x)

where mappart : (X* Y )→LX*LY s.t.if f computes R, mappart f computes Forall2R. ■

Rogers attributes a proof that total bounded Turing reductions have a bound and thus are
truth-table reductions to Anil Nerode [202, §9.6, Thm. XIX]. We prove the latter part as well
and show that total bounded Turing reductions are in fact truth-table reductions, crucially
relying on the total computational core from above.

Theorem 9.16. Let Y be discrete. If p ⪯tbT q, then p ⪯
tt

q.

Proof. Let F be the bounded total Turing reduction, F ′ its computational core, B: X→LY

their bound function, and F ′′ : : (Y→B)→ (X→B) its total computational core by Fact 9.13.
For input x , we define the queries of the truth-table reduction to be Bx . For the truth-table,

given a list of answers l for Bx , we feed F ′′ with a function mapping every element of Bx to
its answer defined in l, i.e. as λl.F ′′( f l) where

f l y := if pos y (Bx) is Some n then if l[n] is Some b then b else false else false ■
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9.5 The hypersimple predicate HI Turing-reduces to I

Recall that we defined the hypersimple predicate HI :N→ P as the deficiency predicate of a
strongly enumerable predicate I :N→ P. That is, if EI is an injective, strong enumerator of I

(∀x . I x←→∃n.EI n= x), we have

HI x := ∃x0 > x . EI x0 < EI x

Algorithmically, we can decide Iz given a partial function f :N*B computing HI as follows:
We search for x such that f x ▷ false and EI x > z, i.e. ¬HI x . Such an x does (not not) exists
because H I is non-finite. Then Iz holds if and only if z ∈ [EI0, . . . EI(x + 1)].

Formally:

Fact 9.17. If p: X→ P is non-finite and f : X→N is injective, then ¬¬∃x . px∧ f x ≥ z∧∀y. p y→
f y ≥ z→ f x ≤ f y .

Fact 9.18. If ¬HI x and EI x > z, then Iz←→ [EI0, . . . , EI(x + 1)].

Theorem 9.19. Assume MP and let I be a strongly enumerable undecidable predicate. Then
I ⪯T HI .

Proof. We define

F ′ f z := µ(λx .( f x)>>= λb.if ¬Bb ∧ EI x > z then ret true else ret false)>>=

λx .ret (z ∈B [EI0, . . . , EI(x + 1)])

FRzb := ¬¬∃x .Rx false∧ EI x > z ∧

(∀x ′ < x .¬¬(Rx ′true∨ (Rx ′false∧ EI x ′ ≤ z))) ∧

b = true←→ z ∈ [EI0, . . . , EI(x + 1)]

Note that we need the second line in F to ensure that the unbounded search in F ′ indeed
computes F .

To prove that F ′ computes F we need MP, which allows us to prove FRzb←→¬¬F ′ f z ▷ b
by Fact 7.24. Functionality, compactness, and monotonicity of F are technical to prove, but
overall straightforward.

We again useMP to prove the correctness of F , which allows us to prove F(char HI)zb←→¬¬Iz
by Lemma 7.23 (1), since I is enumerable.

The direction from left to right is immediate from Fact 9.18. For the direction from right
to left, let b = true←→ Iz. Let x be obtained for HI and EI from Fact 9.17. Then x fulfils the
claim by Fact 9.18. ■

Corollary 9.20. Assume MP and let I be a strongly enumerable undecidable predicate. Then
I is undecidable.

9.6 Related work

While we define Turing reducibility with a focus on functional relations and computing func-
tions, Bauer defines Turing reducibility based on predicates and enumerability [14]. We trans-
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late his definition to type theory by modelling P(X ) as X→ P.
The type of oracles oracle is defined as the type of pairs (S0: X→ P, S1: X→ P) such that

∀x . S0 x→ S1 x→⊥. Oracles are in direct correspondence to total functional relations via the
following two translations:

R(S0,S1) := λx b. (S0 x←→ b = true)∧ (S1 x←→ b = false) OR := (λx . R x true,λx . R x false)

Fact 9.21. ROR
= R and ORO

= O.

Fact 9.22. Let X be discrete. If f0 and f1 enumerate S0 and S1, respectively, then
λx .µ(λn.ret ( f0n=B Some x ∨B f1n=B Some x))>>= λn. f0n=B Some x computes R(S0,S1).

Fact 9.23. Let g enumerate X . If f computes R, then S0 of OR is enumerated by the following
function (and S1 has a similar enumerator):

λ〈m, n〉. if gm is Some x then if seval ( f x) n is Some true then Some x else None else None

We denote Bauer’s definition of Turing reducibility with ⪯B.

p ⪯B q := ∃F : oracle→ oracle. F(q, q) = (p, p) ∧

∃e0 : (N→OX )→ (N→OX )→ (N→OX )

∃e1 : (N→OX )→ (N→OX )→ (N→OX )

∀ f0 f1S0S1. f0 enumerates S0→ f1 enumerates S1→

let (S′0, S′1) := F(S0, S1) in

e0 f0 f1 enumerates S′0 ∧ e1 f0 f1 enumerates S′1

As for our definition of Turing reducibility, Bauer’s notion has to be extended with a con-
dition that F is continuous, e.g. that it preserves directed suprema. We leave an analysis of
which continuity conditions to choose for the two otherwise equivalent definitions of Turing
reducibility to future work.

9.7 Future work

Three directions for future work are apparent:
First, it would be interesting to study the exact connection to Bauer’s notion of Turing re-

ducibility. It might be possible to find a formalisation of the preservation of concrete suprema
in a way that our and Bauer’s notion become exactly equivalent, but since interesting prop-
erties of Turing reducibility rely on MP, assuming MP for an equivalence proof also seems
unproblematic.

Secondly, it would be interesting to settle Post’s problem synthetically: to formalise the
priority method due to Friedberg and Muchnik [172, 85] and establish that there is a pred-
icate which is enumerable, undecidable, but Turing-reducibility incomplete. Alternatively,
Kučera [144] solves Post’s problem without the priority method by using Peano arithmetic.
A synthetic machine-checked version of this proof could work on the synthetic treatment of
Peano arithmetic by Kirst and Hermes [127].

Thirdly, as an intermediate step for exploration, it would be interesting to formalise the
Kleene-Post theorem [136] and establish that there are two (non-enumerable) predicates
which are not comparable under Turing reducibility.
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Figure 10.1.: Outline of Part II.
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CHAPTER 10
Introduction: Models of computation

In this part of the thesis, we give machine-checked Turing-equivalence proofs for several
models of computation in the Coq proof assistant. We show that the weak call-by-value λ-
calculus L, multi-tape Turing machines, single-tape Turing machines, binary single-tape Tur-
ing machines, binary stack machines, counter machines, FRACTRAN, Diophantine equations,
and µ-recursive functions are all equivalent.

We are not aware of a previous complete and uniform formalisation of all mentionedmodels.
Besides this, the contribution of this part of the thesis is two-fold.

First, we identify levels of abstraction sufficient to implement and verify non-trivial con-
structions and algorithms in the respective models. We contribute a verification framework
for Turing machines which allows giving and verifying algorithms in the style of a register-
based while-language, and an extraction framework for the weak call-by-value λ-calculus L
which automatically yields verified L-terms computing simply-typed functions.

Secondly, we invest the proof engineering effort to fully mechanise all simulations, in total
comprising 52k lines of collaborative Coq code (for more details see Section 10.3) We observe
that often folklore parts or routine chores take the most proof engineering time.

We first discuss the challenges involved in machine-checked proofs in comparison to proof
sketches and formalised proofs, before giving amathematical outline of the shape of simulation
theorems we prove.

Informal proofs vs. formalised proofs vs. machine-checked proofs

The first work on a Turing-equivalence proof for a model of computation was started by
Church, Kleene, and Rosser, who proved in the early 30s that the λ-calculus and µ-recursive
functions are equivalent. The first published such proof is due to Kleene [131].

Shortly after, Turing published his result that the λ-calculus and his (Turing) machines are
equivalent [229]. Turing sketched the high-level ideas for the constructions necessary for the
two directions of the equivalence. He neither spelled out µ-recursive functions or λ-terms
involved, nor gave an actual proof why the functions and terms are correct.

In contrast, Kleene’s proofs are more detailed, but still only remain informal proofs: for
instance, generalised invariants necessary for successful induction are not spelled out. Kleene’s
direct equivalence proof of Turing machines and µ-recursive functions [134], without mention
of the λ-calculus, is given on a similar level.

More detailed equivalence proofs stem from the 21st century and investigations into the
invariance thesis, asserting that reasonable models of computation can simulate each other
with polynomial time and constant factor space overhead [208]. Dal Lago and Martini [149]
give a detailed proof that Turing machines can simulate (a form of) the λ-calculus, arguing
about the content of tapes at different points of the simulation. Dal Lago and Accatoli [148]
give a formalised proof that any λ-calculus can simulate Turing machines on paper, spelling
out all details.
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In general, textbooks and research papers tend to give proofs for interesting novel parts,
while omitting proofs for folklore parts. This technique is omnipresent in theoretical computer
science and mathematics: The folklore parts of results are only sketched or are entirely left
out, while the interesting parts are formalised and detailed proofs are given.

When mechanising a result in an interactive theorem prover, both aspects form their own
challenges: Starting with a formal proof, only missing details of an argument have to be
recovered. Starting with folklore results, first a proof has to be found, then formalised, then
mechanised, and each individual step can prove challenging.

Thus, for machine-checked proofs it can happen that the folklore parts are harder to mech-
anise than the non-folklore parts, since the amount of missing details can vary greatly.

Simulation proofs

That two models of computation can simulate each other is not a formally defined notion. In
fact, we will usually prove one theorem and deduce two corollaries to establish the simulation
of a model M1 in a model M2. All three statements can be argued to express that M2 can
simulate M1.

For all models we define an evaluation relation _(_) ▷M _: PM→ IM→OM→ P. The program
type PM , input type IM , and output type OM differ for different M . For some models IM = OM ,
e.g. for Turing or counter machines. For others like the λ-calculus, there is no native input,
i.e. IM = 1, and the output are programs, i.e. OM = PM .

The theorem we prove for a simulation of M1 on M2 is either a compilation or interpretation
theorem. Compilation theorems establish translation functions δP : PM1

→ PM2
, δI : I M1

→ IM2
,

and δO: OM1
→ OM2

such that if c(x) ▷M1
v then δP c (δI x) ▷M2

δOv. Interpretation theorems
establish a single program I of M2 and encodings γ: PM1

→ IM1
→ IM2

and γ′: OM1
→OM2

such
that if c(x)▷M1

v then I(γcx)▷M2
γ′v. In both cases there are further requirements for the full

theorem which we omit here.
Interpretation theorems directly imply compilation theorems by use of the Sm

n theorem (i.e.
partial application) for M2. Vice versa, compilation theorems yield interpretation theorems by
use of a universal machine for M2.

We choose between proving a compilation or interpretation theorem depending on the
models M1 and M2 we consider. Note that both interpretation and compilation theorems have
encodings of programs and data of M1 as programs and data of M2 built into the statement.
Composing compilation theorems with each other or with interpretation theorems is possible
in principle, but results in complicated composed encoding functions.

For instance, encoding natural numbers (the input of counter machines) on Turing ma-
chines is easy. Composing the interpretation theorem of µ-recursive functions with the inter-
pretation theorem of L on Turing machines results in an interpretation theorem converting µ-
recursive functions to Turing machines, which however work on the Turing machine-encoding
of the L-encoding of natural numbers. Thus, using such composed theorems is unfeasible in
practice, and we always deduce two corollaries which are uniform for all M1 and M2. In con-
trast to compilation or interpretation theorems, composing the corollaries does not alter input
encodings and we do not need encodings of one model in the other for the specification of the
corollaries.

The first corollary is a simulation result w.r.t. halting. It states that the halting problem of M1

many-one reduces to the halting problem of M2, i.e. that the problem of determining whether



105

⪯m :Sec. 5.1, Page 46

MP :Sec. 3.1, Page 20

a program in M1 halts on some input data can be turned into the problem of determining
whether a program in M2 halts on some input data. Formally, we always prove

HaltM1
⪯m HaltM2

where HaltM (c : PM , x : IM ) := ∃v: OM .c(x) ▷ v.

We use the definition of many-one reducibility ⪯m for p: X→ P and q: Y→ P from Part I:

p ⪯m q := ∃ f : X→ Y .∀x . px←→ q( f x)

Note how the halting problem corollary is concerned with halting only, and not with the
concrete return value of a computation. As such it can be used to transport semi-decidability
results: If a problem p is semi-decidable in M1, and HaltM1

⪯m HaltM2
, then p is also semi-

decidable in M2. This result comes for free since semi-decidability is only concerned with
the halting of a program on some input. To prove a similar result for the decidability of
problems, one could still rely on halting only by assuming MP and proving Post’s theorem
that a problem p is decidable if both p and its complement are semi-decidable for every M2

individually. However to state for example that a many-one reduction proof via a function
f :N→N can be transported between equivalent models, it is crucial to consider the output of
a computation as well.

As second corollary, we thus always deduce a simulation results w.r.t. computability, consid-
ering both input and output. The different models of computation we consider have different
types of input and output. Since we aim at uniform statements of the simulation results w.r.t.
computability, we formulate them for k-ary relations on natural numbers. More precisely,
we define for all models what it means to compute a k-ary (functional) relation on natural
numbers. In Chapter 9 we have defined that a relation R: X→ Y→ P is computed by a partial
function f : X* Y if ∀x y. Rx y←→ f x ▷ y . To define when a function in a model of computation
computes a relation, we use a similar approach.

For every model M we define encoding functions · :N→OM and · :Nk→ IM and define that
a program c computes a k-ary relation R:Nk→N→ P if the following hold:

1. ∀n1 . . . nkm : N. R(n1, . . . , nk)m←→ c(n1, . . . , nk) ▷m

2. ∀n1 . . . nk : N.∀v: D. c(n1, . . . , nk) ▷ v→∃m.v = m

Condition (1) is similar to the condition for partial functions. Condition (2) can be read
as well-typedness condition on M . This becomes necessary because evaluation in models
is untyped, and M could terminate with ill-formed output not corresponding to a natural
number. In fact, for every considered model, condition (2) can be proved superfluous: Any
program M ′ can be turned into a well-typed program M satisfying condition (2), but this
requires writing a program which detects whether an output is well-formed, which is tedious.
We thus include the condition explicitly to obtain more elegant proofs.

Equivalently, if M has a deterministic evaluation relation then c computes R if and only if

1. ∀n1 . . . nkm : N. R(n1, . . . , nk)m→ c(n1, . . . , nk) ▷m

2. ∀n1 . . . nk : N.∀v: M .c(n1, . . . , nk) ▷ v→∃m.R(n1, . . . , nk)m.

Note that it is crucial to consider relations rather than functions Nk→ N to transport
uncomputability proofs between models. Since CIC only allows the definition of computable
functions, an uncomputable relation cannot be defined as a function.
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10.1 Outline

A graphical outline of this part can be found in Figure 10.1.
The translation from L to Turing machines is the most intricate: L is a higher-order lan-

guage, where terms are tree-like and contain binders, while Turing machines are the most
low-level model we consider. We thus narrow the gap from two directions: We introduce
a stack machine semantics for L, which has a linearised encoding of terms and no binder
structure. We then introduce a verification framework for Turing machines, allowing us to
program Turing machines via a shallowly embedded imperative instruction language treating
tapes as registers. We assemble all ingredients to a Turing machine constituting a verified
L-interpreter. The compiler from Turing machines to binary stack machines is novel. It uses
a compilation from multi-tape to single-tape Turing machines, and a novel compilation from
arbitrary Turing machines to binary Turing machines. We introduce simple binary Turing ma-
chines as intermediate model, and give a direct compiler from simple binary Turing machines
to binary stack machines. The compilation theorem for binary stack machines to counter ma-
chines was devised and implemented by Dominique Larchey-Wendling [81]. We recap the
compilation and linking phases involved and use the theorem to deduce a simulation w.r.t.
computability theorem in addition to the halting problem reduction. The translation from
counter machines to FRACTRAN is a direct compiler, following the initial proof idea by Con-
way [35]. The translation from FRACTRAN to Diophantine equations amounts to proving
that the reflexive, transitive closure of the FRACTRAN transition relation is Diophantine.
This proof was carried out by Larchey-Wendling [81], we only summarise the main points. A
preliminary interpretation theorem for Diophantine equations using µ-recursive functions is
also due to Larchey-Wendling [153]. We extend it to prove a simulation theorem w.r.t. com-
putability. Finally, we close the loop by an interpretation theorem for µ-recursive functions
using L in Section 28.3.

10.2 Related work

History of models of computation

The notion of intuitive calculability of functions1 is already prevalent in early 20th century
math: The “process using finitely many operations”2 asked for in Hilbert’s tenth problem re-
garding the solvability of Diophantine equations is exactly such an intuitively calculable func-
tion. The Entscheidungsproblem, which asked for an intuitively calculable function to deter-
mine the validity of a formula in first-order logic, was identified by Hilbert and Ackermann to
be the “central problem of mathematical logic”3 in 1928 [110]. Hilbert’s dream of a negation-
complete logic with intuitively calculable provability relation would have entailed a universal
decider for every problem expressible in logic.

As hinted by the name, intuitive calculability is not a formal notion. Already in the 19th
century it was however common to formally define closed sub-classes of intuitively calculable
functions. For instance, primitive recursive functions were already defined by Dedekind [50].
The term primitively recursive was coined by Péter after Ackermann proved that not every
intuitively calculable function is primitively recursive [1].
1often also called effectively calculable or intuitively recursive functions.
2“Verfahren [...] durch endlich viele Operationen” in the original German formulation.
3“das Entscheidungsproblem muß als das Hauptproblem der mathematischen Logik bezeichnet werden”
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In 1933, Gödel, inspired by earlier work of Herbrand [107, 108], defined the µ-recursive
functions (extending primitively recursive functions by unbounded minimisation) [93]. He
explicitly posed the question whether µ-recursive functions comprise all intuitively calculable
functions, but remains unconvinced that an answer can be positive.

In 1932, Church proposed the λ-calculus as system for logic [30], which was proved logi-
cally inconsistent by Kleene and Rosser [137]. However, Church, Kleene, and Rosser proved
that λ-definability of a function is equivalent to µ-recursiveness, see for instance the paper
published by Kleene [131]. The equivalence proof and the work by Kleene and Rosser on
proving larger and larger classes of intuitively calculable functions to be λ-definable moti-
vated Church to take up the question by Gödel, and announce µ-recursiveness as definition of
intuitive calculability [31]. The thesis claiming that every intuitively calculable functions is
µ-recursive (and equivalently λ-definable), later became known as Church’s thesis. Based on
a diagonal argument, Church proved that the characteristic function of the halting problem
is not λ-definable and by his thesis thus not intuitively calculable. As a consequence, there
is no λ-definable and by Church’s thesis no intuitively computable decision function for the
Entscheidungsproblem. Gödel however states that he is “not at all convinced that [Church’s]
concept of recursion comprised all possible recursions” in a letter to Davis [46].

Simultaneously to the development of Church’s thesis, Turing devised machines which later
became to be known as Turing machines. Turing machines are a form of finite state machines
operating on an infinite tape [229]. Turing provided a proof that every function which is
mechanically calculable by a human computor is computable by a Turing machine. Since me-
chanical calculability and intuitive calculability can be identified, this amount to Turing’s thesis
that every intuitively calculable function is Turing machine-computable. Also using diagonal-
isation, Turing proved that the problem of determining whether a Turing machine ever prints
a given symbol4 is not Turing-computable, and deduces that the Entscheidungsproblem is
also not Turing-computable. By Turing’s thesis, this means that a decider for the Entschei-
dungsproblem is not intuitively calculable.

After learning about Church’s thesis, Turing sketches in an appendix that Turing machines
and the λ-calculus are equivalent, thus making Church’s thesis and Turing’s thesis equivalent
– the terminology “Church-Turing thesis” was coined by Kleene [134]. Only Turing’s argu-
ment convinces Gödel: He described it as “most satisfactory” and “correct [. . . ] beyond any
doubt” [94].

Machine-checked formalisations

Machine-checked formalisations of models of computation are relatively frequent in the lit-
erature. Most of this related work does not translate between models of computation, with
one notable exception: Xu, Zhang, and Urban [239] mechanise Turing machines, abacus ma-
chines (a form of counter machines), and µ-recursive functions in the higher order logic of
the Isabelle theorem prover. They present machine-checked translations of µ-recursive func-
tions to abacus machines, and of abacus machines to Turing machines, employing a Hoare
logic for Turing machines. Besides a proof that the halting problem for Turing machines is
not decidable by Turing machines they also verify a universal µ-recursive function, resulting
in a universal Turing machine by translation.
4Turing did not consider the halting problem. The definition of the Turing machine halting problem is due

to Kleene [134], and the terminology “halting problem” due to Davis [47]. See the chapter by Copeland [37,
pp. 39-45] and the paper by Lucas [159] for a precise historical account.
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Asperti and Ricciotti mechanise single-tape [4] and multi-tape Turing machines [5] in the
proof assistant Matita. They verify a translation between the two variants of Turing machines
and a universal multi-tape Turing machine.

Norrish [178] formalises the full λ-caclulus in HOL4. He verifies a universal term and proves
Rice’s theorem. Forster and Smolka [83] formalise the weak call-by-value λ-calculus in Coq.
They give a universal term, prove that total λ-definable relations yield total Coq functions,
and prove Rice’s theorem, while also analysing the constructive status of basic results in com-
putability theory. Catt and Norrish [27] build on Norrish’s work and prove the undecidability
of Kolmogorov complexity.

Zammit [241] formalises µ-recursive functions in Coq and proves the Sm
n theorem.

Pous [193] mechanises an equivalence proof between counter machines and µ-recursive func-
tions in Coq. Larchey-Wendling [150] proves in Coq that total recursive functions can always
be turned into Coq functions. Carneiro [26] formalises µ-recursive functions in Lean, gives a
universal function, and proves Rice’s theorem.

Ferreira Ramos, Ayala-Rincón, et al. [196, 67] formalise the partial recursive subset PVS0
of the PVS proof assistant, show that the respective halting problem is undecidable and prove
Rice’s theorem.

10.3 Mechanisation in Coq

The code concerning this chapter is contributed or in the process of being contributed to the
Coq Library of Undecidability Proofs. It can also be found on the following website:

https://ps.uni-saarland.de/~forster/thesis

In total, the Coq code concerned with Turing-equivalence proofs comprises 52k lines of code
(LoC), with about 46% specifications and 54% proofs. Of them, around 12k LoC are library
code contributed by various authors, 8k LoC belong to the certifying extraction framework
for L and were jointly contributed by Fabian Kunze and the author of this thesis, and 14k LoC
concerned with the compilation of binary stack machines to counter machines, the Diophan-
tineness of FRACTRAN evaluation, and the µ-recursive solvability of Diophantine equations
were contributed by Dominique Larchey-Wendling. Around 4k LoC verifying the Turing ma-
chine for the simulation of L were contributed mainly by Maximilian Wuttke and Fabian Kunze
with some contributions by the author of this thesis. In total 14k LoC were contributed by the
author of this thesis and Maximilian Wuttke as part of his Bachelor’s thesis supervised by the
author. We hyperlink the central theorems with the html version of the Coq code, indicated
by a clickable -symbol.

For the present chapter, the key feature of Coq we rely on is setoid rewriting [214], i.e.
rewriting with equivalence relations without specifying congruence lemmas manually. For-
ward reasoning able to deal with failure was also crucial for the verification of Turing ma-
chines, where we use the smpl plugin [206].

For the present chapter, we conjecture that any other similarly expressive, tactic-based
proof assistant with good support for rewriting with equivalence relations and some meta-
programming features would have worked similarly well. Our formalisation in constructive
type theory makes explicit that the equivalence proofs are fully constructive. While some
proofs use computational explosion, type casts, and guardedminimisation µN for convenience,
none of them seems integral, and all of them could likely be removed with some effort.

https://ps.uni-saarland.de/~forster/thesis
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CHAPTER 11
The weak call-by-value λ-calculus L

The call-by-value λ-calculus was introduced by Plotkin [186] as variant of Church’s λ-
calculus [30]. The concrete variant of the call-by-value λ-calculus we present here is
called L [83]. Programming in L is possible almost like in general-purpose functional pro-
gramming languages from the ML family: Inductive types are supported by the use of Scott
encodings and recursion is enabled by a recursion combinator. We discuss programming in L
in Part IV, and here only define syntax, big-step semantics, and a stack machine with a heap
for L.

Publications The material in Section 11.1 is based on [84]. The stack machine semantics of
11.2 is based on [147, 77] and is mainly due to Fabian Kunze, we include it here to keep the
thesis self-contained.
[84] Forster and Smolka. “Call-by-value lambda calculus as a model of computation in Coq.” Journal

of Automated Reasoning 63.2 (2019): 393-413.
[147] Kunze, Smolka, and Forster. “Formal small-step verification of a call-by-value λ-calculus ma-

chine.” Asian Symposium on Programming Languages and Systems. 2018.
[77] Forster, Kunze, and Roth. “The weak call-by-value λ-calculus is reasonable for both time and

space.” Proceedings of the ACM on Programming Languages 4. POPL (2020).

11.1 Definition

We define the syntax of L using de Bruijn indices as the syntax of the full λ-calculus, i.e. as
variables, applications, or abstractions.

s, t, u : tmL ::= n | st | λs where n : N

We use names for concrete terms on paper, e.g. write (λx y.x x)(λz.z) for (λλ11)(λ0).
We define a simple substitution operation sn

t , agreeing with a more standard parallel sub-
stitution operation when the term substituted with is closed.

nm
u := if n= m then u else n (st)nu := sn

u tn
u (λs)nu := λ(sS n

u )

Formally, we say that a term s is a closed term if ∀nu. sn
u = s.

We define big-step weak call-by-value evaluation s ▷ t following Plotkin [186].

λs ▷ λs

s ▷ λu t ▷ t ′ u0
t ′ ▷ v

st ▷ v

Note that we have for example (λx y.x x)(λz.z)▷λy.(λz.z)(λz.z). Evaluation is called weak
because the bodies of abstractions are not evaluated and call-by-value because arguments are
evaluated before a function is called.

The L halting problem is defined as
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Def. L-computable

Def. compilation
function

O :Sec. A.1, Page 207

HaltL(s : tmL) := ∃t. s ▷ t.

Obviously, we have HaltL((λx y.x x)(λz.z)), but ¬HaltL((λx .x x)(λx .x x)).
We immediately define a second halting problem for L for closed terms as

Halt′L(x : Σs : tmL. closed s) := ∃t. π1 x ▷ t.

Clearly, Halt′Lx ⪯m HaltL viaπ1. Wewill show thatHaltL ⪯m Halt′L in part III using a universal
machine, but already use the result in this part.

To define L-computability we define the Scott encoding of natural numbers:

0 := λx y.x S n := λx y.yn

We will introduce recursive functions on natural numbers in Section 27.2.
A relation R : Nk→N→ P is L-computable if

∃s : tmL.closed s ∧∀n1 . . . nk.(∀m. R(n1, . . . , nk)m←→ sn1 . . . nk ▷m)∧

∀t. sn1 . . . nk ▷ t→∃m. t = m.

11.2 Stack machine semantics

The big-step semantics allows for a compact definition, but is not ideal for implementations
of L. To prepare for a simulation of L on Turing machines we introduce a stack machine for L,
utilising references to a heap instead of substitution, similar to the heap machine by Kunze,
Smolka, and Forster [147]. In contrast to the results there, we give a direct correctness proof
instead of a step-wise refinement via several machines. Our machine is also similar to the
heap machine by Forster, Kunze, and Roth [77], but more geared towards verification. It
can be used to show that L is reasonable for time, i.e. that one can define a time measure
on L such that Turing machines can simulate L with polynomial overhead, but we omit all
complexity-theoretic arguments.

Instead of terms, we will work with programs P,Q : Pro := LCom, which are lists of com-
mands. Commands are reference, application, abstraction, or return tokens:

c : Com ::= ref n | app | lam | ret

The compilation function γ : Ter→ Pro compiles terms to programs:

γn := [ref n] γ(st) := γs++ γt ++ [app] γ(λs) := lam :: γs++ [ret ]

We have γ((λx y.x x)(λz.z)) = [lam; lam; ref 1; ref 1; app; ret ; ret ; lam; ref 0; ret ; app].
Compiled abstractions start with the token lam and end with ret . We can thus define a

function δP : O(Pro× Pro) that extracts the body of an abstraction by matching the tokens
like parentheses. We define δP := δ0,[] P, where δk,Q P is an auxiliary function storing the
number k of unmatched lam and the processed prefix Q:

δk,Q [] := None δ0,Q (ret :: P) := Some (Q, P) δS k,Q (ret :: P) := δk,Q++[ret ] P

δk,Q (lam :: P) := δS k,Q++[lam] P δk,Q (c :: P) := δk,Q++[c] P if c = ref n or app
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Def. heap

We reuse the example term (λx y.x x)(λz.z) from above and have:

δ[lam; ref 1; ref 1; app; ret ; ret ; lam; ref 0; ret ; app]

=Some ([lam; ref 1; ref 1; app; ret ], [lam; ref 0; ret ; app])

The states of the heap machine are tuples T, V, H. The control stack T and the value
stack V are lists of closures g : Clos := Pro×N. A closure (P, a) denotes an open program,
where the reference 0 in P has to be looked up at address a : N in the heap when evaluating.

The heap H is a linked list of heap entries e : Entry := O(Clos×N), i.e. an entry is either
empty, or contains the head of the list and the address of its tail. Given a heap H and an
address a, H[a] :OEntr denotes the a-th element of H. We define H[a, n] to be the n-th entry
on the heap starting at address a as follows:

H[a, n] := if H[a] is Some (Some (g, b)) then if n is S n then H[b, n] else Some g else None

We can now define the small-step semantics of the stack machine for L:

(lam :: P, a) :: T, V, H ≻ (P ′, a) ::tc T, (Q, a) :: V, H if δP = Some (Q, P ′)

(ref n :: P, a) :: T, V, H ≻ (P, a) ::tc T, g :: V, H if H[a, n] = Some g

(app :: P, a) :: T, g :: (Q, b) :: V, H ≻ (Q, |H|) :: (P, a) ::tc T, V, H ++ [Some (g, b)]

Here, (P, a) ::tc T := if P is [] then T else (a, P) :: T .
In the abstraction rule, the machine parses the complete abstraction using δ and puts the

body on the value stack. In principle :: instead of ::tc could be used to obtain a correct machine,
however the time complexity of this machine is easier to verify using this optimising operation.
We refrain discussing time complexity of the machine, which is due to Fabian Kunze.

Similarly, in the reference rule, the machine looks up the body of the abstraction corre-
sponding to the variable n in the heap starting at address a and puts the result on the value
stack.

In the application rule, the machine takes closures of the called function (b,Q) and its
argument g from the value stack. The address b is bound to g in the heap, the entry being
appended to H, thus obtaining address |H|. The machine continues evaluating the body Q,
where the value for reference 0 can be looked up at address |H|, where it was just placed.

Given a closed term s, the initial state of the machine is ([(γs, 0)], [], []), i.e. we start with
an empty value stack, an empty heap, and the closure (γs, 0) on the task stack. In fact, for
a closed term s, the address 0 can be replaced by an arbitrary address since there will be no
free reference to be looked up.

For example, a run of the machine for (λx y.x x)(λz.z) reads as follows, using a as start
address instead of 0:

[([lam; lam; ref 1; ref 1;app; ret ; ret ; lam; ref 0; ret ;app], a)], [], []

≻ [([lam; ref 0; ret ;app], a)], [([lam; ref 1; ref 1;app; ret ], a)], []

≻ [([app], a)], [([ref 0], a), ([lam; ref 1; ref 1;app; ret ], a)], []

≻ [([lam; ref 1; ref 1;app; ret ], 0)], [], [Some (([ref 0], a), a)]

≻ [[], [([ref 1; ref 1;app], 0)], [Some (([ref 0], a), a)]]
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To state the correctness of the stack machine we need to define an unfolding operation
unfH(P, a). We will use functional notation for unfolding on paper, but define it as a functional
relation in Coq, since the algorithm is not structurally recursive, and not even terminating on
cyclic heaps. The function unf : Pro→ tmL unfolds programs from the value stack into a term
by inversing γ. It adds λ to the result, since only the bodies of abstractions are saved on the
value stack. The function unfH,a,k : tmL→ tmL substitutes free variables n ≥ k in a term by
H[a, n− k]. Finally, unfH : Pro×N→ tmL unfolds a result using the two previous functions.

unfP := λt (if γt = P)

unfH,a,kn := n (if n< k)

unfH,a,kn := unfH,b,0(unfP) (if n≥ k and H[a, n− k] = Some (P, b))

unfH,a,k(st) := (unfH,a,ks)(unfH,a,ks)

unfH,a,k(λs) := unfH,a,S ks

unfH(P, a) := unfH,a,0(unfP)

Continuing the example from above, we have

unf[Some (([ref 0],a),a)]([ref 1; ref 1;app], 0)

=unf[Some (([ref 0],a),a)],0,0(unf[ref 1; ref 1;app])

=unf[Some (([ref 0],a),a)],0,0(λ11)

=λunf[Some (([ref 0],a),a)],0,1(11)

=λ(unf[Some (([ref 0],a),a)],0,11) (unf[Some (([ref 0],a),a)],0,11)

=λ(unf[Some (([ref 0],a),a)],0,0(unf[ref 0])) (unf[Some (([ref 0],a),a)],0,0(unf[ref 0]))

=λ(λ0)(λ0) = λy.(λz.z)(λz.z)

The final correctness theorem then reads:

Theorem 11.1. Let s be closed.
1. If s ▷ t then ([(γs, 0)], [], [])≻∗ ([], [(P, a)], H) for some P and a such that unfH(P, a) = t.

2. If σs ≻∗ (T, V, H) and ¬∃σ.(T, V, H)≻ σ, then T = [], V = [(P, a)], and s ▷ t for some P,
a, and t such that unfH(P, a) = t is defined.
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CHAPTER 12
Turing machines

Turing machines [229] are the most low-level model of computation we consider. They have
an explicit representation of data as strings stored on tapes unbounded in both directions. The
transition function of a Turing machine is a table.

Turing machines are widely used in books on computability theory and are the standard
model of computation for complexity theory. Despite their universal use, there is no con-
sensus on how to formally define Turing machines. We define multi-tape Turing machines
following Asperti and Ricciotti [4, 5]. We give an overview of a Turing machine verifica-
tion framework, which allows giving and verifying algorithms in the style of a register-based
while-language. We introduce a compiler to machines with binary alphabet, a compiler to
single-tape machines, and a universal machine. We then explain how to simulate L on Turing
machines, based on the stack machine for L.

Turing machines and L constitute the two most extreme data points on the spectrum of
models from machines which are easy to define and simulate, but where it is hard to pro-
gram in to machines which are harder to define, tedious to simulate, but which have good
abstractions for programming. The reason we opt for a direct translation instead of going via
intermediate models is rooted in time complexity analyses of the translation not covered in
this thesis, which would have been impeded by intermediate models.

Publications Sections 12.1, 12.2, 12.4, and 12.5 are based on [79]. The other sections con-
tain adapted pieces of text from [78], which were written solely by the author of this thesis.
[79] Forster, Kunze, and Wuttke. “Verified programming of Turing machines in Coq.” Proceedings of

the 8th ACM SIGPLAN Conference on Certified Programs and Proofs. 2020.
[78] Forster, Kunze, Smolka, and Wuttke. “A Mechanised Proof of the Time Invariance Thesis for the

Weak Call-by-value λ-Calculus.” International Conference on Interactive Theorem Proving. 2021.
12.1 Definition

We start by defining a tape over type Σ using four constructors:

tpΣ ::= niltp | leftof r rs | midtp lsm rs | rightof l ls where m, l, r : Σ and ls, rs : LΣ

Following Asperti and Ricciotti [5], the representation does not allow for blank symbols, in-
stead a blank symbol has to be part of the alphabet Σ. The seeming redundancy allows for a
unique representation of every tape and disposes of well-formedness predicates.

We define a type of moves Move, a function mv applying a move to a tape, a function wr
writing to a tape, and a function curr obtaining the current symbol of a tape in Figure 12.1 We
define Turing machines M :TMn

Σ where n : N and Σ is a finite and discrete type as dependent
pairs (Q,δ, q0,halt) where Q is a finite and discrete type, δ : Q× (OΣ)n→Q× (OΣ×Move)n,
q0 : Q is the starting state, and halt : Q→ B indicates halting states. The definition of Turing
machine evaluation M(q, t) ▷ (q′, t ′) and the Turing machine halting problem HaltTM are
defined in Figure 12.1. The evaluation relation is deterministic.
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Def. TM-computable

Def. labelled Turing
machine

Def. realisation

A relation R : Nk→N→ P is TM-computable if

∃n : N. ∃Σ. ∃s bl : Σ. s ̸= bl∧ ∃M : TM1+k+n
Σ .∀n1 . . . nk.

(∀m. R (n1, . . . , nk)m→ ∃q t. M(q0, (niltp, n1, . . . , nk,niltp, . . . ,niltp)) ▷ (q, t)∧ t[0] = m) ∧

∀q t i. M(q0, (niltp, n1, . . . , nk,niltp, . . . ,niltp)) ▷i (q, t)→∃m.t[0] = m

with n := midtp []bl [s, . . . , s
︸ ︷︷ ︸

n times

].

Move ::= L | N | R

mv : Move→ tp→ tp

mvL (rightof l ls) := midtp ls l [] mvR (leftof r rs) := midtp [] r rs

mvL (midtp []m rs) := leftof m rs mvR (midtp ls a []) := rightof a ls

mvL (midtp (l :: ls) a rs) := midtp ls l (a :: rs) mvR (midtp ls a (r :: rs)) := midtp (a :: ls) r rs

mv m t := t in all other cases

wr :OΣ→ tp→ tp

wrNone t := t wr (Some a)niltp := midtp [] a [] wr (Some a) (midtp ls b rs) := midtp ls a rs

wr (Some a) (leftof r rs) := midtp [] a (r :: rs) wr (Some a) (rightof l ls) := midtp (l :: ls) a []

curr : tp→OΣ
curr(midtp ls a rs) := Some a currt := None otherwise

haltq = true

M(q, t) ▷ (q, t)

haltq = false δ(q, curr t) = (q′, a)
M(q′,map2(λ(c, m)t.mv m (wr c t)) a t) ▷ (q′′, t ′)

M(q, t) ▷ (q′′, t ′)

HaltTMn
Σ
(M : TMn

Σ, t : tpn
Σ) := ∃q′ t ′. M(q0, t) ▷ (q′, t ′)

HaltTM(n : N,Σ, M : TMn
Σ, t : tpn

Σ) := HaltTMn
Σ
(M , t)

Figure 12.1.: Definitions for Turing machines

12.2 Verified programming of Turing machines

As presented, Turing machines are not compositional: There is no canonical way how to
execute a 5-tape machine over alphabet B after a 3-tape machine over O(B×B).

To allow for the composition of Turing machines and their verification, we first introduce
labellings in order to abstract away from the state space. A labelled Turing machine over
a type L, written M : TMn

Σ(L), is a dependent pair (M ′, labM ) of a machine M ′ : TMn
Σ and a

labelling function labM : QM ′→ L.
To prove the soundness of machines, we introduce realisation. A Turing machine M :



12.2. Verified programming of Turing machines 115

Def. termination

Def. primitive
machines

Def. combinators

Def. sequential
combinator

TMn
Σ(L) realises a relation R : tpn

Σ→ (L × tpn
Σ)→ P if

M ⊨ R := ∀t q t ′. M(q0, t) ▷ (q, t ′)→ R t (labM q, t ′)

Dually, we introduce termination. M : TMn
Σ(L) terminates in T : tpn

Σ→ P if

M ↓ T := ∀t. T t → ∃q t ′. M(t) ▷ (q, t ′).

We call a machine total if M ↓ λt.⊤, i.e. if it holds on any tape.

Fact 12.1. The introduced predicates are (anti-)monotone:
1. If M ⊨ R′ and ∀t ℓ t ′. R′ t (ℓ, t ′)→ R t (ℓ, t ′), then M ⊨ R.

2. If M ↓ T ′ and ∀t. T t→ T ′ t, then M ↓ T .

We will use the following total machines we call primitive machines:

Read : TM1
Σ(O(Σ)) ⊨ λ t (ℓ, t ′). ℓ= curr t[0]∧ t = t ′ Write s(1) : TM1

Σ ⊨ λ t t ′. t ′[0] = wr s t[0]

Move d(1) : TM1
Σ ⊨ λ t t ′. t ′[0] = mv d t[0] Returnℓ : TMn

Σ(L) ⊨ λ t (ℓ′, t ′). t ′ = t ∧ ℓ′ = ℓ

The last necessary tool now are combinators to compose machines. Given M : TMn
Σ(L) and

f : L→ TMn
Σ(L

′) we introduce the combinator Switch M f : TMn
Σ(L

′), which executes M and
depending on the label ℓ returned by M executes f ℓ.

M ⊨ R ∀(ℓ : L). f ℓ ⊨ R′ℓ
Switch M f ⊨ λt0 (ℓ

′, t ′). ∃t (ℓ : L). R t0 (ℓ, t)
∧ R′ℓ t (ℓ′, t ′)

M ↓ T M ⊨ R ∀(ℓ : L). f ℓ ↓ T ′ℓ
Switch M f ↓ λ t. T t ∧ ∀ ℓ t ′. R t (ℓ, t ′)

→ T ′ℓ t ′

We define the sequential combinator M1; M2 := Switch M1 (λ _. M2) such that

Lemma 12.2. The following hold:

M1 : TMn
Σ(L1) ⊨ R1 M2 : TMn

Σ(L2) ⊨ R2

M1; M2 : TMn
Σ(L2) ⊨ R1 ◦ R2

M1 ⊨ R1 M1 ↓ T1 M2 ↓ T2

M1; M2 ↓ λt. T1 t ∧∀t ′ ℓ. R1 t (ℓ, t ′)→ T2 t ′

Given M_: L1→TMn
Σ(L1+L2) and ℓ0: L1 we introduce the combinatorMemWhile M ℓ0:TMn

Σ(L2),
which first runs Mℓ0

. If this results in label inlℓ1, MemWhile runs Mℓ1
, and so on. Once Mℓn

results in inr ℓ, MemWhile returns ℓ. The realisation relation for MemWhile is defined induc-
tively, whereas the termination relation is the co-inductively defined accessibility relation
(the dashed line indicates coinduction).

∀ℓ : L1. Mℓ ⊨ R′ℓ
MemWhile M ℓ0 ⊨MemWhileR R′ ℓ0

Mℓ0
⊨ Rℓ0

∀ℓ. Mℓ ↓ Tℓ

MemWhile Mℓ0
↓MemWhileT R T ℓ0

Rℓ0
t (inlℓ1, t ′) MemWhileR M ℓ1 t ′ (ℓ, t ′′)

MemWhileR M ℓ0 t (ℓ, t ′′)

Rℓ0
t (inr ℓ2, t ′)

MemWhileR M ℓ0 t (ℓ2, t ′)

Tℓ0
t ∀t ′ℓ1.Rℓ0

t (inlℓ1, t ′)→MemWhileT M ℓ1 T R t ′

MemWhileT M ℓ0 T R t
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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The composition operator from Lemma 12.2 can only compose machines over the same al-
phabet and the same number of tapes. To remedy this situation we introduce lifting operations
for alphabets and tapes, and also a relabelling operation Relabel.

Given a retraction f : Σ→ Γ , a default symbol d : Σ, and a machine M : TMn
Σ, the alphabet

lift ⇑( f ,d) M : TMn
Γ translates every read symbol via f −1, passes it to M , and translates the

symbol M writes via f . In case f −1 returns None, d is passed to M .
Given a retraction I : Fm→Fn and a machine M : TMm

Σ , the tape lift ⇑I M : TMn
Σ replicates

the behavior of M on tape i on tape I i, and leaves all other tapes untouched.
Given a function r : L1→ L2 and a machine M : TMn

Σ(L1), Relabel M r : TMn
Σ(L2) behaves

like M , but returns label f ℓ where M returned ℓ.
We omit the correctness relations of the constructions, since they are similar to what we

have seen before.

12.3 Binary Turing machines

We describe a compiler from arbitrary single-tape Turing machines M : TM1
Σ to binary single-

tape Turing machines of type TM1
B. Given the compiler from multi-tape Turing machines to

single-tape machines described in the next section, this actually suffices to compile arbitrary
multi-tape machines to binary single-tape machines.

We fix a machine M : TM1
Σ with states in Q and alphabet Σ= {c1, . . . , cn}.

We define an encoding function ϵ : LΣ→LB as

ϵ[] := [] ϵ(ci :: l) := false :: ϵci ++ true :: ϵl ϵci := falseitruen−i

and extend it to tapes:

ϵ niltp := niltp

ϵ(midtp ls ci rs) := midtp (rev (ϵ(rev ls))) false (ϵ ci ++ true :: ϵ rs)

ϵ (leftof ci rs) := leftof false (ϵ ci ++ true :: ϵ ls)

ϵ (rightof ci ls) := rightof true (rev (ϵ ci) ++ false :: (rev (ϵ(rev ls))))

We define the one-tape machine as MemWhile StepM , where StepM : Q→TM1
B(Q+Q) is a total

machine, comprised of several other total machines with the following realisation relations:

ReadB : TM1
B(Σ) ⊨ λ t (ℓ, t ′).∀tΣ : tpΣ.t = ϵtΣ→ t ′ = t ∧ ℓ= curr tΣ

WriteB (c :OΣ) : TM1
B(1) ⊨ λ t t ′.∀tΣ : tpΣ.t = ϵtΣ→ t ′ = ϵ(wr c tΣ)

MoveB (m : Move) : TM1
B(1) ⊨ λ t t ′.∀tΣ : tpΣ.t = ϵtΣ→ t ′ = ϵ(mv m tΣ)

StepM q := SwitchReadB (λci .if haltq = true then Return(inr q)

else let (q′, m, c′) := δ(q, ci)

in WriteB c′ ; MoveB m ; Return(inlq′))

Theorem 12.3. Let M ⊨ R, M ↓ T , and Sim q := Relabel (MemWhile StepM ) q labM .
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1. Sim q0 ⊨ λt (ℓ, t ′). ∀tΣ.t = ϵtΣ→∃t ′Σ.R tΣ (ℓ, t ′Σ)∧ t ′ = ϵt ′Σ
2. Sim q0 ↓ λt.∃tΣ. t = ϵtΣ ∧ T tΣ

Proof. An inductive relation R′q s.t. Sim q ⊨ R′q holds can be derived by definition. One then
proves Sim q ⊨ λt (q′, t ′). ∀tΣ. t = ϵtΣ→∃t ′Σ.M(q, tΣ)▷ (q′, t) using Fact 12.1 by induction on
R′q. The claim follows again by Fact 12.1. The termination proof is dual. ■

Corollary 12.4. HaltTM1 ⪯m HaltTM1
B

12.4 Single tape Turing machines

We give a high-level overview of a compiler from multi-tape Turing machines M : TMn
Σ to

single-tape machines TM1
Γ . As described in [79] we follow Sipser [207] and encode the

content of n tapes over Σ, each with length ni and content cn,1 . . . cn,nn
, on a single tape as

#c1,1 . . . c1,n1
# . . .#cn,1 . . . cn,nn

$. To mark the current symbol on each tape and the end of
tapes, we work with the alphabet Γ also containing some administrative symbols:

Γ ::= # | $ | START | STOP | B |
←−
B |
−→
B |
←−
B |
−→
B | x | x (x : Σ)

Underlining denotes current symbols and B is a boundary symbol. The symbols START and
STOP are technically not necessary, but simplify the implementation.

Given a tape vector ts : tpn
Σ we define its encoding ϵ(tp) : LΓ as

ϵ [] := [$] ϵ (t :: ts) := # :: ϵ(t) ++ ϵ(ts)

ϵ (niltape) := [B] ϵ (leftof r rs) :=
←−
B :: r ++ rs++ [

−→
B ]

ϵ (midtape ls m rs) :=
←−
B :: rev ls++m :: rs++ [

−→
B ] ϵ (rightof l ls) :=

←−
B :: rev ls++ [l;

−→
B ]

Similar to the compilation to binary machines, we implement the final machine using
MemWhile and a step machine StepM . Implementing StepM is however considerably harder
than before. To read the vector of n current symbols, which still can be passed as label from a
finite type via MemWhile, StepM has to traverse the whole tape. Similarly, writing and moving
requires global operations on the whole tape. We thus omit the concrete implementation here
and only state the correctness theorem.

To do so, we define for t : tpΓ and ts : tpn
Σ the containment relation t ≃ ts as

t ≃ ts := t = midtape [] START (ϵ(ts) ++ [STOP])

Theorem 12.5. Let M ⊨ R and M ⊨ T . Then the following hold:
1. Relabel (MemWhile StepM ) labM ⊨ λt t ′.∀ts. t ≃ ts→∃ts′.R ts ts′ ∧ t ′ ≃ ts′

2. Relabel (MemWhile StepM ) labM ↓ λt.∃ts.t ≃ ts∧ T ts

Corollary 12.6. HaltTM ⪯m HaltTM1

The proofs in Coq also reason about the time and space usage of the machines, which both
are in O(n) of the usage of the initial machine. We omit these parts here, more details can be
found in [79].

https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.TM.Reductions.Arbitrary_to_Binary.html#reduction_tobin
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.TM.Reductions.Arbitrary_to_Binary.html#reduction_tobin
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.TM.Reductions.mTM_to_TM.html#MTM_to_stM
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.TM.Reductions.mTM_to_TM.html#MTM_to_stM
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Def. TM-encodable
type

Def. tape containment

Note that we do not introduce TM1-computability and go directly from TM-computability
to BSM-computability.

12.5 A universal Turing machine

Universal machines are prevalent in computability theory. We here show how to implement
and verify a universal Turing machine Univ : TM6

Γ . Univ simulates the computation of single-
tape machines M : TM1

Σ on a tape tM : tpΣ
For this verification, we introduce a new layer of abstraction treating tapes as registers,

based on a notion t[i] ≃ v expressing that tape t[i] contains an encoded value v : V . A type
V is a TM-encodable type on alphabet Σ if there is an injective function ϵ : V→LΣ.

We define tape containment t ≃ f v where V is TM-encodable on alphabet Σ, v : V , f :
Σ→ Γ , and t : tpΓ+ is an injection as follows:

Γ+ ::= START | STOP | UNKNOWN | (s : Γ )

t ≃ f v := ∃ls.t = midtp lsSTART (map f (ϵv) ++ [STOP])

In Coq, we automatically infer f via type classes, and also omit f when specifying machines
on paper. Void tapes (written isvoid t) do not contain values. The head of the tape is located
at the right-most symbol:

isvoid t := ∃m ls. t = midtp ls m []

We omit the condition isvoid t when specifying machines and treat any unspecified tape as
void.

In the Coq code, all notions are strengthened to allow the verification of the space consump-
tion of machines, which we omit here.

Fact 12.7. The types 1, B, and N are TM-encodable. If X and Y are encodable, then O(X ),
L(X ), X + Y , and X × Y are encodable.

The central part of Univ is the encoding of δM . This is handled using a so-called association
list, i.e. a list L(A× B) where

A :=O(ΣM )× (B×N) B := (O(ΣM )×Move)× (B×N)

Note that N is used to encode states, and B is a flag indicating whether the state is halting.
We implement a 5-tape machine Lookup which can look up the symbol to write, the move, and
the successor state given the current symbol and current state.

The correctness theorem then reads:

Theorem 12.8. There is a machine Univ : TM6
Γ such that the following hold:

1. Univ ⊨ λt t ′. ∀M q0.→ t[1]≃ δM→ t[2]≃ q0→
∀q′ t ′M . M(q0, t[0]) ▷ (q′, t ′M )→ t ′[0] = t ′M ∧ t ′[1]≃ δM ∧ t ′[2]≃ q′

2. Univ ⊨ λt. ∃M t ′M q′.t[1]≃ δM ∧ t[2]≃ q′ ∧M(q0, t[0]) ▷ (q′, t ′M )

Using the compilers from the last two sections we can compile Univ to a class of binary
single-tape universal Turingmachines simulating single-tapemachines over arbitrary alphabet
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(parametrised over an alphabet ΣM). Furthermore, if we see the compiler from multi-tape to
single-tape machines as an encoding for n-tape machines, we can even define a class of binary
single-tape single-tape universal Turing machines (again parametrised over ΣM) simulating
multi-tape Turing machines.

12.6 Simulating L on Turing machines

The simulation of L on Turing machines needs no new concepts. We simply implement the
relation ≻ of the heap machine from Section 11.2 as multi-tape Turing machine Step : TM11

Σ .
The alphabet Σ consists of 30 symbols, allowing to encode commands, programs, addresses,
closures, the task and value stack, heap entries, and the heap.

The two central components of Step are machines implementing the heap lookup operation
H[a, n] and the parsing operation δ:

Fact 12.9. There is a machine Lookup : TM5
Σ(B) such that the following hold:

1. Lookup ⊨ λt(ℓ, t ′). ∀H a n. t[0]≃ H→ t[1]≃ a→ t[2]≃ n→
if ℓ then ∃g. H[a, b] = Some g ∧ t ′[0]≃ H ∧ t ′[3]≃ g else H[a, b] = None

2. Lookup ↓ λt. ∃H a n. t[0]≃ H ∧ t[1]≃ a ∧ t[2]≃ n

Fact 12.10. There is a machine Parse : TM5
Σ(B) such that the following hold:

1. Parse ⊨ λt (ℓ, t ′).∀P.t[0]≃ P→
if ℓ then ∃Q P ′. δP = (Q, P ′)∧ t ′[o]≃ P ′ ∧ t ′[1]≃Q else δP = None

2. Parse ↓ λt. ∃P. t[0]≃ P

While tedious in detail, in principle it is straightforward to compose the machine Step:

Fact 12.11. There is a machine Step : TM11
Σ (B) such that the following hold:

1. Step ⊨ λt (ℓ, t ′). ∀T V H. t[0]≃ T→ t[1]≃ V→ t[2]≃ H→
if ℓ then ∃T ′ V ′ H ′. (T, V, H)≻ (T ′, V ′, H ′)∧ t ′[0]≃ T ′ ∧ t ′[1]≃ V ′ ∧ t ′[2]≃ H ′

else (¬∃σ. (T, V, H)≻ σ)∧ T = []→ t ′[0]≃ []∧ t ′[1]≃ V ∧ t ′[2]≃ H

2. Step ⊨ λt. t[0]≃ T ∧ t[1]≃ V ∧ t[2]≃ H

Lemma 12.12. There are a machine Sim : TM11
Σ and a function init such that

(∃T ′ V ′H ′.(T, V, H)≻∗ (T ′, V ′, H ′)∧¬∃σ.(T ′, V ′, H ′)≻ σ)←→HaltTM(Sim, init(T, V, H)).

Proof. Sim can be defined as While Step. init initialises the tapes with the respective encodings
of T , V , and H. ■

Corollary 12.13. HaltL ⪯ HaltTM

Corollary 12.14. Every L-computable relation R : Nk→N→ P is TM-computable.

Proof. Given numbers n1, . . . , nk on the first k tapes, the machine has to write the encoding of
the term s n1 . . . nk to a tape. Running Sim results in a heap containing the final result. Finally,
running a machine implementing unf and a conversion from m to the TM-encoding of m yield
the claim. ■

https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.TM.Reductions.L_to_mTM.html#HaltL_HaltTM
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.TM.Reductions.L_to_mTM.html#HaltL_HaltTM
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.TM.Reductions.L_computable_to_TM_computable.html#L_computable_to_TM_computable
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.TM.Reductions.L_computable_to_TM_computable.html#L_computable_to_TM_computable
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12.7 Mechanisation

Turing machines are notoriously hard to mechanise, as already acknowledged by Asperti and
Ricciotti [2012, 2015], Xu, Zhang, and Urban [239], and Ciaffaglione [32]. The literature
contains various definitions of Turing machines. We almost literally follow Asperti and Ric-
ciotti [5] for our definition. Here, we compare our definition to the one by Hopcroft, Motwani,
and Ullman [113], chosen for instance by Wikipedia as reference definition [237]:
1. The logical system in [113] is classical set theory, whereas we work in constructive type

theory. We discuss the impact of these foundational choices after the technical differences.
2. The alphabet in [113] is separated into a set of input symbols Σ and a superset of tape

symbols Γ , where we unify both into a single type.
3. The blank symbol in [113] is an explicit part of Turing machines as an element of Γ , but

not of Σ. We do not specify blank symbols explicitly and instead leave it to a user to specify
a blank symbol or even various blank symbols.

4. Tapes in [113] are not formally defined. It is only stated that tapes “extend infinitely to
the left and right, initially hold[ing] [...] the input”. Instantaneous descriptions of Turing
machines are formally defined as strings over Γ and Q, which contain “the portion of the
tape between the leftmost and the rightmost nonblank, unless the head is to the left of the
leftmost nonblank or to the right of the rightmost nonblank.” In the latter case, the blanks
between the head and the nonblank content are part of the string.

5. The transition function in [113] is a partial function, whereas ours is total. If the transition
function is unspecified, the computation of the machine halts, whereas we have an explicit
boolean halting function. In Coq’s type theory one requires classical logic and AUCN,N to
compile Turing machines with a partial transition function into an equivalent definition
with total transition functions. In general, any compilation of partial functions on finite
types to total functions is in contradiction to CT.

6. A machine in [113] always writes a symbol and always moves the head. We allow to not
write a symbol and to not move the head. The first is important regarding our definition
of tapes (otherwise a fully empty niltp can never stay fully empty), whereas the second is a
relatively arbitrary choice to allow more freedom in the definition of concrete machines.

7. Turing machines have an explicit set of accepting states in [113]. Our more flexible def-
inition of labels subsumes the binary notion of accepting states, but also allows for more
interesting constructions like the Switch and MemWhile machines.

Subtle difficulties might arise when defining notions of computability theory in classical set
theory. For instance, defining Turing machines with a transition function which takes as input
the whole tape is problematic: arbitrary problems become decidable by encoding the decision
into the transition function. When imposing the transition function to be computable one
obtains a circular dependency: The notion of computability is needed to define transition
functions, transition functions are needed to define Turing machines, but Turing machines
are needed to define the notion of computability.

The well-known solution here is to define Turing machines as finite objects, i.e. use a tran-
sition table modelled by a (partial) function with finite domain and codomain. In classical set
theory one can then always show afterwards that this transition function is computable, since
every function with finite domain and codomain is.

In our type-theoretic setting, we can also show that the transition function is computable,
provided it is, as we defined it, a total function. We will do so in Part III. Note however that
the same would not be possible when employing a functional and total transition relation.
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CHAPTER 13
Binary stack machines

We introduce binary stack machines BSMs as a device to simulate Turing machines. Essen-
tially, binary stack machines can be seen as a variant of Turing machines, with three changes:
(1) there is an explicit representation of programs as code consisting of instructions, (2) the
state is a single natural number, the program counter, (3) the alphabet is fixed to B, and (4)
stacks are only unbounded in one dimension. Aspects (1)–(3) are also present in Post’s def-
inition of Turing machines [187]. The concrete formal definition of BSMs we use is due to
Dominique Larchey-Wendling [81].

We give a high-level overview how to verify BSMs and define simple binary Turing machines
SBTMs as intermediate model for the translation from TM1

B to BSMs. Translating from TM1
B

to SBTMs abstracts away from the state space and uses Fn instead, ensures that there only
is a single halting state and that the starting state has index 0, and encodes a tape more
explicitly as LB×OB× LB. Translating from SBTMs to BSMs involves expressing a tape as
three counters, and expressing the expression table as sequence of instructions.

Publications The definition of SBTM and the reduction of TMs to SBTMs and further on to
BSMs are novel. The definition of binary stack machines and the verification framework are
due to Dominique Larchey-Wendling and are based on
[81] Forster and Larchey-Wendling. “Certified Undecidability of Intuitionistic Linear Logic via Bi-

nary Stack Machines and Minsky Machines.” Proceedings of the 7th ACM SIGPLAN Conference on
Certified Programs and Proofs. 2019.

13.1 Definition

For n-stack machines, a program (i, P) is a start label i and a list of instructions P : L instrn. A
state (c, v) is a program counter c : N and the stack configuration v : (LB)n. We define

instrn ::= POP ( j : Fn) (c1c2 : N) | PUSH ( j : Fn) (b : B).

The POP j c1 c2 instruction pops the top element the j-th stack. If this is true, the program
counter is increased. If it is false, the program counter is set to c1. If the stack was empty, the
program counter is set to c2. The PUSH j b instruction pushes b on top of the j-th stack and in-
creases the program counter. We define the (deterministic) evaluation relation in Figure 13.1
and the BSM halting problem as

HaltBSM (n : N, i : N, P : L instrn, v : (LB)n) := ∃c′ v′. (i, P)//(c, v) ▷ (c′, v′).

A relation R : Nk→N→ P is BSM-computable if

∃n.∃i (P : L instr1+k+n). ∀n1 . . . nk.

(∀m. R (n1, . . . , nk)m←→

∃cv.(i, P)//(i, [ [], [true, . . . , true
︸ ︷︷ ︸

n1 times

], . . . , [true, . . . , true
︸ ︷︷ ︸

nk times

], [], . . . , [] ]) ▷ (c, [true, . . . , true
︸ ︷︷ ︸

m times

] :: v))∧

∀c v. (i, P)//(i, [ [], [true, . . . , true
︸ ︷︷ ︸

n1 times

], . . . , [true, . . . , true
︸ ︷︷ ︸

nk times

], [], . . . , [] ]) ▷ (c, v)→∃m v′. v = [true, . . . , true
︸ ︷︷ ︸

m times

] :: v′.
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c < i ∨ i + |P| ≤ c

(i, P)//(c, v) ▷ (c, v)

c ≥ i P[c − i] = Some (PUSH j b)
(i, P)//(c + 1, v[ j := b :: v[ j]]) ▷ (c′, v′)

(i, P)//(c, v) ▷ (c′, v′)

c ≥ i P[c − i] = Some (POP j c1 c2)
v[ j] = true :: l (i, P)//(c + 1, v[ j := l]) ▷ (c′, v′)

(i, P)//(c, v) ▷ (c′, v′)

c ≥ i P[c − i] = Some (POP j c1 c2)
v[ j] = false :: l (i, P)//(c1, v[ j := l]) ▷ (c′, v′)

(i, P)//(c, v) ▷ (c′, v′)

c ≥ i P[c − i] = Some (POP j c1 c2)
v[ j] = [] (i, P)//(c2, v) ▷ (c′, v′)

(i, P)//(c, v) ▷ (c′, v′)

Figure 13.1.: Evaluation relation of binary stack machines

Def. subprograms

Def. out of code

Σ :Sec. A.1, Page 207

13.2 Verified programming of binary stack machines

We briefly describe how to verify binary stack machines compositionally. For BSMs, compo-
sitionality is based on a notion of subprograms. We call (i1, P1) a subprogram of (i2, P2) if
∃l r.P2 = l ++ P1 ++ r ∧ i1 = i2 + |l|. Furthermore, a program counter c is considered out of
code for a program (i, P) if c < i ∨ c ≥ |P|+ i.

The program counter of any result of an evaluation is out of code (otherwise the computation
would continue):

Fact 13.1. If (i, P)//(c, v) ▷ (c′, v′) then c′ is out of code for (i, P).

Properties of programs can be verified by compositionally verifying the computation of sub-
programs:

Fact 13.2. If (i1, P1) is a subprogram of (i2, P2), (i1, P1)//(c, v) ▷ (c′, v′), and (i2, P2)//(c′, v′) ▷
(c′′, v′′), then (i2, P2)//(c, v) ▷ (c′′, v′′).

Dually, the evaluation of a program can be inverted into evaluation of its subprograms:

Fact 13.3. If (i1, P1) is a subprogram of (i2, P2), (i2, P2)//(c, v) ▷ (c′, v′), and (i1, P1)//(c, v) ▷
(c′′, v′′), then (i2, P2)//(c′′, v′′) ▷ (c′, v′).

13.3 Simple binary Turing machines

Simple binary Turing machines (SBTM) simplify five aspects in comparison to TM1
B. First,

they use tapes rather than unary vectors of tapes. While on paper we identify the two types,
in the Coq mechanisation this difference matters considerably. Secondly, they work with a
simplified representation of tapes, namely LB×OB×LB. Thirdly, SBTMs do not work with
a finite type of states, but use FS n for some n as type of states. Fourthly, they do not have a
halting function and halting states are identified by returning None in the transition function.
Lastly, there is no dedicated starting state, instead 0 : FS n is always the starting state. We
define

SBTM := Σn : N. (FS n ×OB)→O(FS n ×OB×move).

We write δM for the second component of a machine, and |M | for the first. The evaluation
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Def. SBTM halting
problem

relation on configurations of type FS (|M |) × (LB×OB×LB) is defined as

δM (q, c) = None

M(q, (ls, o, rs)) ▷ (q, (ls, o, rs))

δM (q, c) = Some (q′, w, m)
M(q′,mv m (wr w (ls, o, rs))) ▷ (q′′, t ′)

M(q, (ls, o, rs)) ▷ (q′′, t ′)

where

wr (Some c) (ls, o, rs) := (ls,Some c, rs) wr None t := t

mv L (l :: ls,None, rs) := (ls,Some l, rs) mv L (l :: ls,Some c, rs) := (ls,Some l, c :: rs)

mv L ([],Some c, rs) := ([],None, c :: rs) mv R (ls,None, r :: rs) := (ls,Some r, rs)

mv R (ls,Some c, r :: rs) := (c :: ls,Some r, rs) mv R (ls,Some c, []) := (c :: ls,None, [])

mv m t := t

Note that in principle, SBTMs could be simplified further: Instead of returning 1 + 9 ·S |M |
different possible actions in δ, we could reduce to the actions “halt”, “move left and set state
to q′”, “move right and set state to q′”, and “write c and set state to q′”, i.e. 1 + 3 ·S |M |
many. However, this would not fundamentally simplify proofs, and proof automation in the
mechanisation seems to make the simplification superfluous.

The SBTM halting problem is defined as

HaltSBTM(M , t) := ∃q′ t ′.M(0, t) ▷ (q′, t ′)

Theorem 13.4. HaltTM ⪯m HaltSBTM

Proof. Translating unary vectors of tapes to triples is straightforward. Given a machine M ,
translating its states to FS |M | as S ( f q) via the bijection from Corollary 3.25. If a state is
halting, δ(S ( f q), o) := None. Otherwise, δ can be inferred directly from δM . Lastly, we
define δ(0, o) := Some (S ( f q),None,N), i.e. the starting state of the constructed SBTM simply
transitions to the starting state of M . ■

Note that we do not introduce SBTM-computability and go directly from TM-computability
to BSM-computability.

13.4 Simulating SBTMs on BSMs

We simulate a simple binary Turing machine M : SBTM on a binary stack machine with 4
stacks. Three stacks are used to represent the left, current, and right part of the tape (we de-
note the stacks with LEFT,CURR,RIGHT), while the fourth stack (denoted EMPTY) is always
empty and used to execute (unconditional) jumps. We define JMP c := POP EMPTY c c.
A tape is encoded as stack configuration via

ϵ(ls, o, rs) := (ls, if o is Some c then [c] else [], rs, []).

It is relatively straightforward to implement a machine MOVE moving the tape:

https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.TM.Reductions.HaltTM_1_to_HaltSBTM.html#reduction
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.TM.Reductions.HaltTM_1_to_HaltSBTM.html#reduction
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Lemma 13.5. Given q : FS |M |, o : OB, and i : N there is a machine MOVE q o i with
|MOVE q o i|= 23 such that the following hold:

(i,MOVE q o i)//(i,ϵt) ▷ (i + 23,ϵ(mv m t)) (if δ(q, o) = Some (q′, w, m))

(i,MOVE q o i)//(i,ϵt) ▷ (i + 23,ϵt) (if δ(q, o) = None)

Given MOVE we can define the program PROGq corresponding to a state q as follows, where
|PROGq|= 76, off := 76 ·q, and END= (2+ n) ·76:

off : POP CURR (26+ off) (51+ off)
1+ off : PUSH CURR (if δ(q,Some true) is Some (_,Some false,_) then false else true)
2+ off : MOVE i (Some true) (2+ off)

25+ off : JMP (if δ(q,Some false) is Some (q′,_,_) then c ·q′ else END)
26+ off : PUSH CURR (if δ(q,Some false) is Some (_,Some true,_) then true else false)
27+ off : MOVE i (Some false) (27+ off)
50+ off : JMP (if δ(q,Some false) is Some (q′,_,_) then c ·q′ else END)
51+ off : match δ(q,None) with None⇒ JMP END

| Some (_,Some w,_)⇒ PUSH CURR w
| Some_⇒ JMP (52+ off) end

52+ off : MOVE i None(52+ off)
75+ off : JMP (if δ(q,None) is Some (q′,_,_) then c ·q′ else END)

Lemma 13.6. (76 ·q,PROGq)//(c ·q,ϵ(ls, o, rs)) ▷ if δ(i, o) is Some (q′, w, m)
then (c ·q′,ϵ(mv m (wr w t)))
else(END,ϵ(ls, o, rs))

Theorem 13.7. Given a SBTM M = (n,δ) we have that the following hold:
1. If M(t) ▷ t ′ then ∃c. (0,PROG0 ++ · · ·++ PROGn)//(0,ϵt) ▷ (c,ϵt ′).

2. If (0,PROG0 ++ · · ·++ PROGn)//(0,ϵt) ▷ (c, v) then ∃t ′. M(t) ▷ t ′.

Corollary 13.8. HaltSBTM ⪯m HaltBSM

Corollary 13.9. Every TM-computable relation R:Nk→N→ P is BSM-computable.

13.5 Mechanisation

Binary stack machines are not a standardmodel of computation, so we refrain from comparing
them to similar models found in the literature. Several formalisation choices were however
taken that could be taken differently. For instance, there is no unconditional jump operation,
meaning an unconditional jump needs an additional register. Thus, by some extra work, one
can easily prove that the halting problem for 3-stack binary stack machines is undecidable
(by encoding the content of CURR into the state space), but it is unclear what the situation
for machines with 2 stacks is. The decision that the machine increases the program counter
when popping true is arbitrary. This choice does however matter less for concrete results and
is mainly a convention one has to keep in mind when programming.

The verification of the BSMs defined in Section 13.4 is not carried out using the shown
evaluation relation, but based on the small step semantics used by Forster and Larchey-
Wendling [81]. In particular, the general framework for the definition and verification of
models of computation defined using small step semantics and programs due to Dominique
Larchey-Wendling was very helpful. The main mathematical ideas based on small step seman-
tics coincide with the ideas explained in Section 13.2.

https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.StackMachines.Reductions.HaltSBTM_to_HaltBSM.html#SBTM_to_BSM
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.StackMachines.Reductions.HaltSBTM_to_HaltBSM.html#SBTM_to_BSM
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.StackMachines.BSM.TM_computable_to_BSM_computable.html#TM_computable_to_BSM_computable
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.StackMachines.BSM.TM_computable_to_BSM_computable.html#TM_computable_to_BSM_computable
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CHAPTER 14
Counter machines

Counter machines (CMs) were independently introduced by various authors, see Appendix
A of the paper by Shepherdson and Sturgis [205]. Counter machines have programs composed
of instructions, a program counter, and a fixed amount of counters that can be manipulated
by the current instruction. Depending on the author, the instruction sets of counter machines
differ. We use n-counter machines with only increment and decrement instructions as defined
by Minsky[170, Chapter 14]. Counter machines are oftentimes also called register machines,
abacus machines, or after the person who first defined the particular flavour of counter ma-
chines.

To translate BSMs to CMs, we encode a binary stack as natural number and BSM instruc-
tions as sequence of CM instructions, meaning program indices for jumps have to be adjusted
accordingly.

Publications The definition of counter machines is based on [81].1 This paper also contains a
general compiler for instruction-basedmodels of computation. We do not explain the compiler,
but only the operation of the compiler on the instances BSM and CM.
[81] Forster and Larchey-Wendling. “Certified Undecidability of Intuitionistic Linear Logic via Bi-

nary Stack Machines and Minsky Machines.” Proceedings of the 7th ACM SIGPLAN Conference on
Certified Programs and Proofs. 2019.

14.1 Definition

For n-counter machines, a program (i, P) is a start label i and a list of instructions P : L instrn.
A state (c, v) is a program counter c : N and the stack configuration v : Nn.

Instructions for n-stack machines are defined as follows:

instrn ::= DEC ( j : Fn) (c : N) | INC ( j : Fn)

The DEC j c instruction decreases the j-th counter and increases the program counter. If
counter j is already 0, it is left at 0 and the program counter set to c. The INC j instruction in-
creases counter j and the program counter. We define the (deterministic) evaluation relation
in Figure 14.1 and the CM halting problem as

HaltCM(n : N, i : N, P : L instrn, v : Nn) := ∃c′ v′. (i, P)//(i, v) ▷ (c′, v′).

A relation R : Nk→N→ P is CM-computable if

∃n.∃i (P : L instr1+k+n). ∀n1 . . . nk.

(∀m. R (n1, . . . , nk)m←→∃cv.(i, P)//(i, [0, n1, . . . , nk, 0, . . . , 0]) ▷ (c, m :: v)).

1Note that there counter machines are called Minsky machines (MM).
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c < i ∨ i + |P| ≤ c

(i, P)//(c, v) ▷ (c, v)

c ≥ i P[c − i] = Some (INC j)
(i, P)//(c + 1, v[ j := v[ j] + 1]) ▷ (c′, v′)

(i, P)//(c, v) ▷ (c′, v′)

c ≥ i P[c − i] = Some (DEC j c′′)
v[ j] = S n (i, P)//(c + 1, v[ j := n]) ▷ (c′, v′)

(i, P)//(c, v) ▷ (c′, v′)

c ≥ i P[c − i] = Some (DEC j c′′)
v[ j] = 0 (i, P)//(c′′, v) ▷ (c′, v′)

(i, P)//(c, v) ▷ (c′, v′)

Figure 14.1.: Evaluation relation of counter machines

Since counter machines natively work on natural numbers, no second condition is needed.

14.2 Simulating BSMs on CMs

Let an n-stack binary stack machine (i, P) be given. We interpret a stack [b1, . . . , bn] as the
natural number corresponding to the binary number bn · · · b1, i.e.

ϵ[] := 1 ϵ(true :: l) := 1+ 2 ·ϵl ϵ(false :: l) := 2 ·ϵl

To work with encoded stacks we need three auxiliary programs: A program adding two
counters, a programmultiplying the value of a counter by 2, and a program computing division
and modulo 2 in one go.

Note that for all programs we will need a counter which is guaranteed to be 0 to implement
unconditional jumps. Due to the definition of the instruction set, decreasing a counter until it
is 0 is only possible if there already is a 0 counter.

Fact 14.1. Given a number of counters n, different counters src,dst, tmp : Fn, and an index i
there are programs add, divtwo, and multwo such that if v[tmp] = 0 we have:

(i,add)//(i, v) ▷ (3+ i, v[src := 0,dst := k+ x])

v[src] = 2 · k→ (i,divtwo)//(i, v) ▷ (6+ i, v[src := 0,dst := k+ v[dst], tmp := 0])

v[src] = 1+ 2 · k→ (i,divtwo)//(i, v) ▷ (6+ i, v[src := 0,dst := k+ v[dst], tmp := 1])

(i,multwo)//(i, v) ▷ (4+ i, v[src := 0,dst := 2 · v[src] + v[dst]])

We simulate (i, P) by a counter machine (i,Q) with 2+n stacks and thus lift ϵ to a function
ϵ : (LB)n→N2+n by defining ϵv := 0 :: 0 :: map ϵ v. Every instruction in P is simulated by a
subprogram of Q composed of the auxiliary programs defined before. We refer to the first and
second counter of Q as tmp1 and tmp2. Before and after simulating an instruction, tmp1 and
tmp2 will both contain 0.

Lemma 14.2. There are 2+n-counter programs POP i j c1 c2, PUSHT i j, PUSHF i j : instr2+n

where i : N, j : Fn and c1, c2, c3 : N with length kPOP, kPUSHT, and kPUSHT respectively, such
that for all v : (LB)n:

v[ j] = true :: l→ (i,POP i j c1 c2 c3)//(i,ϵv) ▷ (c1,ϵ(v[ j := l]))

v[ j] = false :: l→ (i,POP i j c1 c2 c3)//(i,ϵv) ▷ (c2,ϵ(v[ j := l]))
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v[ j] = []→ (i,POP i j c1 c2 c3)//(i,ϵv) ▷ (c3,ϵv)

(i,PUSHT i j)//(i,ϵv) ▷ (7+ i,ϵ(v[ j := true :: v[ j]]))

(i,PUSHF i j)//(i,ϵv) ▷ (7+ i,ϵ(v[ j := false :: v[ j]]))

Proof. We define PUSHF i j := add i (2 + j) tmp1 tmp2 ++ multwo i tmp1 (2 + j) tmp2 and
PUSHT i j := PUSHF i j++[INC (2+ j)]. The POP program is relatively complicated, we omit
it here. ■

Note that the programs in the last lemma are not all of the same length, but the length also
does not depend on either of the parameters. Even before defining a compilation function γ,
we can define a labelling function as follows:

ℓ′[] := 1 ℓ′(POP j c1 c2 :: P) := kPOP + ℓ
′P

ℓ′(PUSH j true :: P) := kPUSHT + ℓ
′P ℓ′(PUSH j false :: P) := kPUSHF + ℓ

′P

ℓc := if i ≤ c < i + |P| then ℓ′(take c P) else 1+ ℓ′P

Thus, label c in P will correspond to label ℓc in Q. We define Q := γ0P where

γi(POP j c1 c2 :: P) := POP (ℓi) (2+ j) (ℓ(1+ i)) (ℓc1) (ℓc2) ++ γ1+i P

γi(PUSH j true :: P) := PUSHT (ℓi) (2+ j) ++ γ1+i P

γi(PUSH j false :: P) := PUSHF (ℓi) (2+ j) ++ γ1+i P

Fact 14.3. Let i ≤ c < i + |P|. Then ℓc = |γ0(take c P)|.

Theorem 14.4. The following hold:
1. (i, P)//BSM(i, v) ▷ (c, v′)→ (1,Q)//CM(1,ϵv) ▷ (1+ |M |,ϵv′)

2. (1,Q)//CM(1,ϵv) ▷ (c, w)→∃c′v′. (i, P)//BSM(i, v) ▷ (c, v′)

Corollary 14.5. HaltBSM ⪯m HaltCM

Corollary 14.6. Every BSM-computable relation R : Nk→N→ P is CM-computable.

https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.MinskyMachines.Reductions.BSM_MM.html#BSM_MM_HALTING
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.MinskyMachines.Reductions.BSM_MM.html#BSM_MM_HALTING
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.MinskyMachines.Reductions.BSM_computable_to_MM_computable.html#BSM_computable_to_MM_computable
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.MinskyMachines.Reductions.BSM_computable_to_MM_computable.html#BSM_computable_to_MM_computable
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CHAPTER 15
FRACTRAN

FRACTRAN was invented as an esoteric programming language by Conway [35].
FRACTRAN programs are lists of (positive) fractions, and a state is comprised of a sin-
gle natural number. In state s, the program steps to s · f , where f is the first fraction in
the program such that s · f is a natural number. If no such f exists, the program halts. By
interpreting the state (c, [x1, . . . , xn]) of a counter machine as product of prime numbers,
FRACTRAN can simulate CM programs, which we explain in Section 15.2.

Publications The mechanisation of FRACTRAN and the simulation of CM is from
[152] Larchey-Wendling and Forster. “Hilbert’s Tenth Problem in Coq.” 4th International Conference

on Formal Structures for Computation and Deduction (FSCD 2019). 2019.

15.1 Definition

A FRACTRAN program is a list of fractions P, modelled as pairs of natural numbers p/q. The
state of a FRACTRAN program is single natural number n. The one step relation ≻, and the
evaluation relation ▷ are defined as

q ·m= p ·n

p/q :: P //n≻ m

(∄m. q ·m= p ·n) P //n≻ m′

p/q :: P //n≻ m′

(∄m. P //n≻ m)

P //n ▷ n

P //n≻ m P //m ▷m′

P //n ▷m′

The FRACTRAN-halting problem is then defined as

HaltFRACTRAN(P : L(N×N), n : N) := ∃m. P //n ▷m.

A FRACTRAN program P is regular if ∀p/q ∈ P. q ̸= 0. For regular programs, evaluation is
deterministic.

To define FRACTRAN computability, we fix two distinct, non-repeating sequences pi and qi

of prime numbers. A relation R : Nk→N→ P is FRACTRAN-computable if

∃P : L(N×N). P is regular∧

∀n1 . . . nk. ∀m. R (n1, . . . , nk) m←→∃ j. P //q1 · p
n1
1 . . . pnk

k ▷ pm
0 · j ∧¬∃d. j = d · p0.

Fact 15.1. Every FRACTRAN-computable relation is functional.
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15.2 Simulating counter machines in FRACTRAN

How to simulate counter machines in FRACTRAN is already hinted at by Conway [35], stating
“it is usually even easier to write a FRACTRAN program to simulate other machines [than Tur-
ing machines]”. The idea is straightforward. Given a program (1, P), we define the encoding
of states as natural numbers as follows, reusing the sequences pi and qi of prime numbers
from before:

ϵ(c, [x1, . . . , xn]) := q1
c · p

x1
1 · · · p

xn
n .

That means we use the exponents of prime numbers as registers and have distinct registers
used as Booleans indicating the current state. Note that in principle, it would also have been
possible to encode the program counter as qc

0, but verifying this translation is harder.
The compilation of a program P is defined as

Q := γ1P γi(INC j :: P) := (qi+1 · p j/qi) :: γS i P

γi[] := [] γi(DEC j c :: P) := (qi+1/qi · p j) :: (qc/qi) :: γS i P

It is crucial to have (qc/qi) appear after (qi+1/qi · p j) in the compilation of DEC, because
only if there are no factors p j in the state to decrease counter j we want to jump to c. Note
that if P contains an instruction c : DEC j c, i.e. an instruction potentially looping to itself the
corresponding fraction is a natural number and thus can always be chosen. We thus have to
assume that P does not have such self-loops.

Fact 15.2. For every CM program P there exists a program P ′ with one more counter and no
self-loops such that:

(∃c. (1, P)//(1, v) ▷ (c, v′))←→ (∃c.(1, P ′)//(1, 0 :: v) ▷ (c, 0 :: v′))

Fact 15.3. The following hold:
1. qc divides ϵ(c′, v) if and only if c = c′.

2. pi divides ϵ(c′, v) if and only if v[i]> 0.

Theorem 15.4. The following hold:
1. If (i, P)//CM(1, v) ▷ (c, v′), then ∃c′. Q //FRACTRANϵ(1, v) ▷ ϵ(c′, 0 :: v′).

2. If Q //FRACTRANϵ(1, v) ▷m, then ∃cv′.(i, P)//CM(1, v) ▷ (c, v′).

Proof. Both parts are straightforward inductions, with some lemmas on prime numbers and
division. ■

Corollary 15.5. HaltCM ⪯m HaltFRACTRAN

Corollary 15.6. Every CM-computable relation R : Nk→N→ P is FRACTRAN-computable.

Proof. Immediate, since no pre- and post-processing of input and output is necessary. ■

https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.FRACTRAN.Reductions.MM_FRACTRAN.html#MM_FRACTRAN_HALTING
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.FRACTRAN.Reductions.MM_FRACTRAN.html#MM_FRACTRAN_HALTING
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.FRACTRAN.Reductions.MM_computable_to_FRACTRAN_computable.html#MM_computable_to_FRACTRAN_computable
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.FRACTRAN.Reductions.MM_computable_to_FRACTRAN_computable.html#MM_computable_to_FRACTRAN_computable
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CHAPTER 16
Diophantine equations

Diophantine equations, named after the Greek mathematician Diophantus, are polynomial
equations with natural coefficients. The questionwhether the problem of determiningwhether
a Diophantine equation has a natural number solution became known as Hilbert’s tenth prob-
lem. A line of work originated by Martin Davis and successfully finished by Yuri Matiyasevich
culminated in the Davis-Putnam-Robinson-Matiyasevich theorem, or short DPRM-theorem,
stating that a set is recursively enumerable if and only if it is Diophantine, i.e. the solution set
of a polynomial.

We define Hilbert’s Tenth Problem H10 and Diophantine relations in Section 16.1, show
that every FRACTRAN-computable relation R : Nk→ N→ P seen as a relation Nk+1→ P is
Diophantine, and thereby deduce undecidability of H10 (Section 16.2). In Section 16.3 we
introduce a constraint version of H10, which is easier to use as seed for undecidability proofs.
In Section 16.4 we define polynomials and Hilbert’s tenth problem on integers and show it
undecidable.

Publications Sections 16.1 and 16.2 are from [152], Section 16.4 from [153].
[152] Larchey-Wendling and Forster. “Hilbert’s Tenth Problem in Coq.” 4th International Conference

on Formal Structures for Computation and Deduction (FSCD 2019). 2019.
[153] Larchey-Wendling and Forster. “Hilbert’s Tenth Problem in Coq (extended version).” arXiv

preprint arXiv:2003.04604. 2019.

16.1 Definition

We define the type of polynomials over N with n variables and m parameters polyN(n, m) as

P1, P2 : polyN(n, m) ::= c : N | v : Fn | p : Fm | P1+̇P2 | P1×̇P2.

Given ν : Nn and ρ : Nm we define evaluation of polynomials as follows:

JcKν,ρ := c JvKν,ρ := ν[v] JpKν,ρ := ρ[p]

JP1+̇P2Kν,ρ := JP1Kν,ρ + JP2Kν,ρ JP1×̇P2Kν,ρ := JP1Kν,ρ · JP2Kν,ρ

Hilbert’s tenth problem is defined as

H10(n : N, P1 : polyN(n, 0), P2 : polyN(n, 0)) := ∃ν.JP1Kν,λx .0 = JP2Kν,λx .0.

A relation R : Nk→ P (without distinguishing input and output) is Diophantine if

∃k′.∃P1P2 : polyN(k
′, k).∀n1 . . . nk.

R (n1, . . . , nk)←→∃ν : Nk′ . JP1Kν,ρ = JP2Kν,ρ where ρ := (n1, . . . nk).

A relation R : Nk→ N→ P (distinguishing input and output) is Diophantine
ifλ(m, n1, . . . , nk). R(n1, . . . , nk)m is Diophantine.
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Def. elementary
Diophantine relation

[168] Matijasevič. 1970.
Enumerable sets are Diophantine.

16.2 FRACTRAN computation is elementary Diophantine

The results in the present section were mostly conceived and verified by Dominique Larchey-
Wendling. A high-level overview is given here to keep the explanation of the translation chain
self-contained. The proof uses two alternative definitions of Diophantineness: One based on
elementary Diophantine constraints and one based on Diophantine logic, which is the first-
order fragment of ∃ ∧ ∨ over elementary Diophantine constraints. In this section, we omit
Diophantine logic and explain the structure of the reduction based on elementary Diophantine
constraints.

Elementary diophantine constraints EDIOC with a satisfaction relation ⊨ w.r.t. valuations
ν,ρ:N→N are defined as follows

econstr ::= x=̇c | x=̇p | x+̇y=̇z | x×̇y=̇z

where x , y, z:N denote variables and c:N denotes constants and p:N denotes parameters and:

ν,ρ ⊨ x=̇c := νx = c ν,ρ ⊨ x=̇p := νx = ρp

ν,ρ ⊨ x+̇y=̇z := νx + νy = νz ν,ρ ⊨ νx×̇νy=̇νz

We define the decision problem for elementary Diophantine constraints as

EDIOC(C : L(econstr),ρ:N→N) := ∃ν:N→N.∀c ∈ C . ν,ρ ⊨ c

A relation R : Nk→ P is elementary Diophantine if

∃k′.∃C : L(econstr).∀n1 . . . nk. R (n1, . . . , nk)←→∃ν : Nk′ . ν, (λi.if 1≤ i ≤ k then ni else 0) ⊨ C

And analogously to before a relation R : Nk→ N→ P (distinguishing input and output) is
elementary Diophantine if λ(m, n1, . . . , nk). R(n1, . . . , nk)m is elementary Diophantine.

Lemma 16.1. Let R1:Nk→N→ P and R2:Nk→N→ P be elementary Diophantine.
The following relations are then all elementary Diophantine:
1. λ(n1, . . . , nk).⊤

2. λ(n1, . . . , nk).⊥

3. λ(n1, . . . , nk).∃m1m2. R1(n1, . . . , nk)m1 ∧ R2(n1, . . . , nk)m2 ∧m1 ≤ m2

4. λ(n1, . . . , nk).∃m1m2. R1(n1, . . . , nk)m1 ∧ R2(n1, . . . , nk)m2 ∧m1 < m2

5. λ(n1, . . . , nk).∃m1m2. R1(n1, . . . , nk)m1 ∧ R2(n1, . . . , nk)m2 ∧m1 ̸= m2

6. λ(n1, . . . , nk).∃m1m2. R1(n1, . . . , nk)m1 ∧ R2(n1, . . . , nk)m2 ∧ ∄m′. m2 = m1 ·m′

Similarly to how we defined FRACTRAN evaluation P //n ▷m one can also define a small-
step relation P //n≻ m such that P //n▷m←→ P //n≻∗ m∧¬∃m′.P //m≻ m′ where ≻∗ denotes
reflexive, transitive closure of ≻. One then obtains:

Corollary 16.2. The relations λ(p1, q1, . . . , pk, qk, n, m. [(p1, q1), . . . , (pk, qk)]//n ≻ m and
λ(p1, q1, . . . , pk, qk, n. ¬∃m. [(p1, q1), . . . , (pk, qk)]//n≻ m are elementary Diophantine.

To extend the result to evaluation, one needs that exponentiation is elementary Diophan-
tine, and that bounded universal quantification is exponentially elementary Diophantine. The
first result was an open question for multiple years and solved by Matiyasevich [168].
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Def. Diophantine
constraint solvability

Lemma 16.3. Let R1, R2:Nk→N→ P, R3:NS k→ P, R:N→N→ P be elementary Diophantine.
The following relations are then all elementary Diophantine:

1. λ(n1, . . . , nk)m.∃m1m2.R1(n1, . . . , nk)m1 ∧ R2(n1, . . . , nk)m2 ∧m= mm2
1

2. λ(n1, . . . , nk)m.∃m1m2.R1(n1, . . . , nk)m1 ∧∀m≤ m1. R3(m, n1, . . . , nk)

3. λ(n1, . . . , nk)m.∃m1m2.R1(n1, . . . , nk)m1 ∧ R2(n1, . . . , nk)m2 ∧ R∗m1m2

Corollary 16.4. The relations λ(p1, q1, . . . , pk, qk, n, m. [(p1, q1), . . . , (pk, qk)]//n ≻∗ m and
λ(p1, q1, . . . , pk, qk, n. ¬∃m. [(p1, q1), . . . , (pk, qk)]//n ▷m are elementary Diophantine.

Corollary 16.5. FRACTRAN-computable relations R:Nk→N→P are elementary Diophantine.

Lastly, one can reduce a list of elementary constraints to a single polynomial as follows:

Theorem 16.6. Let [(p1, q1), . . . , (pn, qn)] be given. Then

p1 = q1 ∧ · · · ∧ pn = qn←→ 2(p1q1 + · · ·+ pnqn) = p2
1 + q2

1 + · · ·+ p2
n + q2

n.

Corollary 16.7. EDIOC⪯m H10

Corollary 16.8. FRACTRAN-computable relations R:Nk→N→ P are Diophantine.

Proof. Immediate, since no pre- and post-processing of input and output is necessary. ■

16.3 Diophantine Constraints

We introduce Diophantine constraints as a slightly simpler representation of Hilbert’s tenth
problem. Diophantine constraints have no parameters and the only constant appearing is 1.1

We define constraints and constraint satisfaction for a valuation ν : N→N as

constr ::= x=̇1 | x+̇y=̇z | x×̇y=̇z

ν ⊨ x=̇1 := νx = 1 ν ⊨ x+̇y=̇z := νx + νy = νz ν ⊨ νx×̇νy=̇νz := νx ·νy = νz

Diophantine constraint solvability is defined as

H10C(C : L constr) := ∃ν : N→N.∀c ∈ C . ν ⊨ c

We reduce elementary constraint solvability to H10C by encoding constants c as variables xc

via the equations x0=̇0, x1=̇1, x2=̇1+ x1, . . . , xc=̇1+ xc−1.

Fact 16.9. For every n one can compute Cn such that ν ⊨ Cn←→∀i < n.νi = i.

One can compute the maximal constant appearing in an elementary constraint list after
applying a parameter valuation ρ:

Fact 16.10. There is a function maxcρ s.t. ∀p=̇x ∈ C . ρp < maxcρ C and ∀c=̇x ∈ C . c < maxcρ C .

Theorem 16.11. EDIOC⪯m H10C

1The naming scheme is a bit unfortunate: Diophantine constraints are more elementary than elementary Dio-
phantine constraints. We however follow the scheme already published in the literature.

https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.H10.Reductions.FRACTRAN_computable_to_Diophantine.html#FRACTRAN_computable_to_Diophantine
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.H10.Reductions.FRACTRAN_computable_to_Diophantine.html#FRACTRAN_computable_to_Diophantine
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.DiophantineConstraints.Reductions.FRACTRAN_to_H10C_SAT.html#DIO_ELEM_SAT_H10C_SAT
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.DiophantineConstraints.Reductions.FRACTRAN_to_H10C_SAT.html#DIO_ELEM_SAT_H10C_SAT
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Def. Hilbert’s tenth
problem over integers

Def. H10Z

Proof. Let the constraint translation function γ be defined as

γρ,m(y=̇x) := (m+ y)+̇0=̇(m+ x) γρ,m(x1+̇x2=̇x) := (m+ x1)+̇(m+ x2)=̇(m+ x)

γρ,m(p=̇x) := ρp+̇0=̇(m+ x) γρ,m(x1×̇x2=̇x) := (m+ x1)×̇(m+ x2)=̇(m+ x)

The reduction function is f (C ,ρ) := C1+maxcρC ++map γρ,1+maxcρC C . Let m := 1+maxcρC .
For the direction from left to right, let ν,ρ ⊨ C . Then λi.if i < m then νi else ν(i −m) ⊨

f (C ,ρ). For the other direction, let ν ⊨ f (C ,ρ). Then (λi.ν(m+ i)),ρ ⊨ C . ■

16.4 Hilbert’s tenth problem over integers

We prove Hilbert’s tenth problem over integers H10Z undecidable by reduction from H10. We
define the type of polynomials over integers with n variables and m parameters polyN(n, m) as

P1, P2 : polyZ(n, m) ::= c : Z | v : Fn | p : Fm | P1+̇P2 | P1×̇P2

Given ν : Zn and ρ : Zm we define evaluation of polynomials as

JcKν,ρ := c JvKν,ρ := ν[v] JpKν,ρ := ρ[p]

JP1+̇P2Kν,ρ := JP1Kν,ρ + JP2Kν,ρ JP1×̇P2Kν,ρ := JP1Kν,ρ · JP2Kν,ρ

Hilbert’s tenth problem over integers is defined as

H10Z(n : N, P : polyZ(n, 0)) := ∃ν. JPKν,λx .0 = 0

The core of the reduction is to show that the natural numbers are a Diophantine subset
of the integers, i.e. to characterise non-negativity of integers as Diophantine equation over
integers, which is a direct consequence of Lagrange’s theorem:

Fact 16.12. ∀z:Z. z ≥ 0←→∃abcd : N. z = a2 + b2 + c2 + d2

Theorem 16.13. H10⪯m H10Z

Proof. Let f : polyZ(n, 0)→ polyZ(4 ·n, 0) be the function replacing every variable i : Fn in a
polynomial by the polynomial expression

((4 ·n)×̇(4 ·n))+̇((4 ·n+1)×̇(4 ·n+1))+̇((4 ·n+2)×̇(4 ·n+2))+̇((4 ·n+3)×̇(4 ·n+3)).

Now given polynomials P1, P2 : polyN(n, 0), the reduction function returns the polynomial
f P1 +̇ (−1) ×̇ f (P2) : polyZ(4 ·n, 0). If H10(n, P1, P2), H10Z( f P1 +̇ (−1) ×̇ f (P2)) follows by
Fact 16.12. If J f P1 +̇ (−1) ×̇ f (P2)Kν,λx .0 = 0 with ν = [a1, b1, c1, d1, . . . , an, bn, cn, dn], then
in particular J f P1Kν,λx .0 = J f P2Kν,λx .0 and thus JP1Kν′,λx .0 = JP2Kν′,λx .0 with ν′ := [a2

1 + b2
1 +

c2
1 + d2

1 , . . . , a2
n + b2

n + c2
n + d2

n]. ■

https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.H10.H10Z_undec.html#H10_H10ZZ
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.H10.H10Z_undec.html#H10_H10ZZ
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CHAPTER 17
µ-recursive functions

The notion of µ-recursive functions, also known as general or partial recursive functions,
was formally introduced by Gödel [93], who conceived the definition based on discussions
with Herbrand [107, 108]. Programming in µ-recursive functions is combinatorial: There
are no variables, but functions like successor or projection are composed via a composition
operator. Recursion is enabled by an unbounded minimisation operator µ f , returning the
least zero of f . The input of µ-recursive functions have explicit input and output, respectively
of type Nk and N.

In Section 17.1 we define µ-recursive functions and their halting problem. In Section 17.2
we show that Diophantine relations are µ-recursive.

Publications This chapter is based on
[153] Larchey-Wendling and Forster. “Hilbert’s Tenth Problem in Coq (extended version).” arXiv

preprint arXiv:2003.04604. 2019.

17.1 Definition

We use the syntax of µ-recursive functions computing a partial function of type Nk*N defined
as dependent inductive type funck by Larchey-Wendling [150]:

c : N

cst c : func0 zero : func1 succ : func1

j : Fk

proj j : funck

f : funci G : (funck)
i

comp f G : funck

f : funck g : func2+k

primrec f g : func1+k

f : func1+k

µ f : funck

The constructor cst c is used for constants, zero is the constant 0 function, succ is the succes-
sor function, proj j is the projection on the j-th component of argument Nk, comp is function
composition, primrec is primitive recursion, and µ is unbounded minimisation. Note that the
constructor comp makes funck a nested inductive type, due to the use of vectors of type (funck)i .
The evaluation relation ▷ : funck→Nk→N→ P is defined in Figure 17.1.

We define the halting problem for µ-recursive functions as

Haltµ(k : N, f : funck, v : Nk) := ∃x . f (v) ▷ x .

A relation R : Nk→N→ P is µ-recursive if

∃ f : funck.∀n1 . . . nk.∀m.R [n1, . . . , nk] m←→ f [n1, . . . , nk] ▷m.

Note that for µ-recursive functions we could – in contrast to Turing machines or the λ-
calculus – define µ-recursive computability of a relation directly as inductive predicate, omit-
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cst n (v) ▷ n zero(v) ▷ 0 succ([x]) ▷ 1+ x proj j (v) ▷ v[ j]

(∀ j : Fk. G[ j](v) ▷w[ j]) f (w) ▷ x

comp f G (v) ▷ x

f (x :: v) ▷ 0 ∀ j : Fx . f ( j :: v) ▷ 1+w[ j]

µ f ▷ x

f (v) ▷ x

primrec f g (0 :: v) ▷ x

primrec f g (n :: v) ▷ y g(n :: y :: v) ▷ x

primrec f g (1+ n :: v) ▷ x

Figure 17.1.: Evaluation for µ-recursive functions

[26] Carneiro. 2019. Formalizing
Computability Theory via Partial
Recursive Functions.

ting the need for syntax, similar to Carneiro [26, Figure 5]. We however follow the textbook
approach here, to be more in line with the other presentations.

17.2 Diophantine relations are µ-recursive

The construction essentially consists of two auxiliary and total µ-recursive functions: A func-
tion e evaluating polynomials, a function t testing whether two natural numbers are equal,
and a functions pi translating a natural number to a vector v : Nn and projecting out the i-th
component.

Fact 17.1. Given P : poly(n, m) there is e : funcn+m such that e(ν++ρ) ▷ JPKν,ρ.

Fact 17.2. There is t : func2 such that ∀x1, x2.∃x . t([x1, x2]) ▷ x ∧ (x1 = x2←→ x = 0).

Fact 17.3. Given n there are p0, . . . , pn−1 : func1 such that ∀v : Nn.∃x .;∀i. pi(v) ▷ v[i].

Theorem 17.4. Every functional Diophantine relation R:Nk→N→ P is µ-recursive.

Proof. Let R, k′. and P1, P2 : poly(S k, k′) be given s.t. for all n1, . . . , nk and m:

R (n1, . . . , nk) m←→∃ρ : Nk′ . JP1Kν,ρ = JP2Kν,ρ where ν := [m, n1, . . . nk]

We first derive polynomials P ′1, P ′2 : poly(k,S k′) remapping the first parameter in P1 and P2

to a variable, i.e. ∀mνρ. JPiKm::ν,ρ = JP ′i Kν,m::ρ.
Now e1, e2 evaluate P ′1, P ′2 as in Fact 17.1. We define f : funck as follows:

comp p0 (µ (comp t
�

comp e1[proj 1, . . . ,proj k, comp p1 (proj0), . . . , comp pk′ (proj0)],

comp e2[proj 1, . . . ,proj k, comp p1 (proj0), . . . , comp pk′ (proj0)]
�

))

The test function passed to µ is a 1+ k ary function. The k arguments are the k inputs of f ,
whereas the additional argument x is decomposed into 1+k′ arguments for the search. If the
test succeeds on x , the minimisation µ returns x , and we return the first projection of x . ■

Corollary 17.5. H10⪯m Haltµ

https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.MuRec.Reductions.Diophantine_to_MuRec_computable.html#Diophantine_to_MuRec_computable
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.MuRec.Reductions.Diophantine_to_MuRec_computable.html#Diophantine_to_MuRec_computable
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.MuRec.Reductions.H10_to_MUREC_HALTING.html#H10_MUREC_HALTING
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.MuRec.Reductions.H10_to_MUREC_HALTING.html#H10_MUREC_HALTING
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Undecidability reductions
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H10 H10Z H10C

Haltµ SHOU

HOU

Figure 18.1.: Problems covered in Parts II and III.
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CHAPTER 18
Introduction:
Undecidability reductions

Machine-checked decidability proofs can be frequently found in the literature [58, 163,
203, 57, 33]. Usually, such proofs work in constructive foundations such as CIC underlying
the Coq proof assistant and define decidability in terms of boolean functions of type X→ B.
We used such synthetic definitions in Part I as well, relying on the fact that all functions
definable in CIC correspond to a program in a Turing-complete model of computation. For
undecidability proofs, a similarly simple approach fails: Since CIC is consistent with axioms
entailing the decidability of every problem, an axiom-free proof of the absence of a decision
function is impossible.

However, most undecidability proofs of machine-independent problems in the literature
are by reduction rather than directly exploiting a logical paradox. To prove the undecidability
of an involved problem, reduction chains are used which stepwise reduce a problem already
known to be undecidable to the problem in question. Wemake use of this technique to establish
the undecidability of problems in CIC without assuming axioms. Concretely, we establish a
notion Up for predicates p: X→P such that for any p undecidable by (constructive) reduction
from the halting problem, Up can be proved without the assumption of axioms. In Part I we
have discussed the axiom CT, stating that every function f :N→N is computable in a Turing-
complete model of computation from Part II. We will see that assuming CT implies Up←→¬Dp.

To demonstrate the power of the approach, we cover the problems which build the historical
basis of undecidability, also displayed in Figure 18.1: (Semi-Thue) string-rewriting, the word
problem for semi-groups, Post’s correspondence problem, the intersection and palindrome
problem for context-free grammars, the Entscheidungsproblem, and higher-order unification
in the simply-typed Curry-style λ-calculus. The reduction corollaries deduced in Part II from
the simulation results all can also be seen as synthetic undecidability proofs for the covered
halting problems and H10.

The contributed undecidability proofs are the first machine-checked undecidability proofs
for machine-independent problems. Textbooks usually only outline proof ideas, but do not
give fully verified proofs and in particular omit constructions of programs in models of com-
putations. As in Part II, a crucial part of the contribution is thus again to identify the inductive
invariants sufficient to make proofs by induction possible. The constructions of programs in
models are omitted in our approach as well, but in contrast to textbooks this approach is
sound-by-construction and omissions do not have to be individually checked to trust a proof.
Again a significant proof engineering effort is involved, in total comprising 6000 lines of code
(for more details see Section 18.3).

The problems covered in this part also form the basis for the Coq Library of Undecidability
Proofs, on which we report in Chapter 25. This part is written in encyclopedic style and can
be read as introduction to the basic problems of the library, with self-contained explanation of
their definitions.
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18.1 Outline with historical references

In 1914, Axel Thue defined Semi-Thue and Thue string rewriting SR and TSR [225]. Semi-
Thue string rewriting is first-order string rewriting, i.e. the reflexive transitive closure of a
directed rewriting relation x ≻R y . Thue string rewriting is the reflexive, symmetric, transi-
tive closure of this relation. In 1947, Emil Post [191] and Andrey Markov [165] independently
proved the undecidability of TSR. Post’s proof is by reduction from Turing machines, whereas
Markov’s uses a reduction from Post canonical systems. We prove (Semi-Thue) string rewrit-
ing SR undecidable by reduction from the halting problem of simple binary Turing machines
HaltSBTM.

In the 1920s, Post introduced canonical systems, which are a more general form of string
rewriting. In 1943, Post [188] proved that canonical systems can be brought into a normal
form, and that the corresponding rewriting problem PCSnf is undecidable. We prove PCSnf

undecidable by reduction from SR.
In 1945, Post [190] defined the Post correspondence problem PCP and proved it unde-

cidable by reduction from PCSnf . We define a boolean and a modified variant of PCP (BPCP
and MPCP) [113], and prove many-one reductions SR⪯m MPCP⪯m PCP⪯m BPCP, inspired
by a reduction by Davis [48].

In 1956, context-free grammars were introduced by Noam Chomsky [29]. In 1961,
Bar-Hillel, Perles, and Shamir [7] proved that the intersection problem CFI of context-free
grammars is undecidable by reduction from PCP. It is folklore that the reduction can also
be factored by first showing that PCP can be reduced to the problem CFP of determining
whether a context-free grammar contains a palindrome, and then reducing CFP to CFI. We
factor the proof via an intermediate problem: the palindrome problem for Post grammars
CFPP, which is a special form of linear grammars suitable for reduction from PCP, and show
PCP⪯m CFPP⪯m CFP⪯m CFI.

In 1936, the undecidability of the Entscheidungsproblem of first-order logic was inde-
pendently published by Church [31] (by reduction from the halting problem of the λ-calculus)
and Turing [229] (by reduction from the printing problem of Turing machines, see footnote 4
on page 107). Already in the 1920s, the unsolvability of the Entscheidungsproblem was an-
ticipated by Post [192], by reduction from canonical systems. We give an undecidability proof
for various formulations of the Entscheidungsproblem for classical, intuitionistic, and minimal
first-order logic by reduction from BPCP.

In 1972 and 1973, Claudio Lucchesi [160] and Gérard Huet [117] independently proved the
undecidability of third-order unification in the full, Curry-style, simply-typed λ-calculus. In
1983, William Goldfarb [96] improved the result to second-order unification with one binary
constant. We prove the general higher-order unification problem for the full, Curry-style,
simply typed λ calculus HOU undecidable by reduction from Hilbert’s tenth problem H10,
following a proof employing Church encodings by Giles Dowek [60].

The problems covered in this part of the thesis, together with the halting problems covered
in Part II, are depicted in Figure 18.1.

18.2 Related work

Machine-checked undecidability proofs of machine-independent problems have – to the best
of our knowledge – not been considered previous to the proofs described here. However,
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various machine-checked undecidability results now depend on our results. We discuss these
results in Section 25.2.

We have already discussed related work regarding reductions between halting problems of
models of computation in Section 10.2.

18.3 Mechanisation in Coq

The results of the present chapter are all contributed to the Coq Library of Undecidability
Proofs. They are also part of the following repository:

https://ps.uni-saarland.de/~forster/thesis

The Coq code concerning the present chapter comprises around 6.300 lines code. About
20% of the code was contributed by Simon Spies as part of his Bachelor’s thesis advised by
the author of this thesis.

Once again, the key feature of Coq used is setoid rewriting [214]. In contrast to Part II, the
choice of proof assistant is crucial for the meaningfulness of results. Our definition of synthetic
undecidability relative to a halting problem only works in a constructive foundation, ruling
out e.g. HOL-based proof assistants. If one would like to verify synthetic undecidability in
Lean, the noncomputable keyword has to be avoided.

The central theorems in this part of the pdf of this thesis are hyperlinked with the html-
version of the Coq code, indicated by a clickable -symbol.

https://ps.uni-saarland.de/~forster/thesis
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CHAPTER 19
Synthetic Undecidability

We here discuss a notion of synthetic undecidability relative to a halting problem which
can be established without the use of any axioms. The key observation is that any proof of
the absence of a decision function (i.e. ¬Dp) by reduction can be factored into a proof of a
property Up such that in general ¬Dp→ Up and CT→ Up→¬Dp.

19.1 Definition

We fix a halting problem Halt from one of the models introduced in Part II, for instance
Halt := HaltTM1

. A problem p: X→ P is called synthetically undecidable relative to Halt
if its decidability implies that Halt is co-enumerable:

Up := Dp→ E(Halt)

We emphasise the term relative, since the notion depends on the definition of Halt. While
we use a halting problem from Part II, one can obtain a weaker notion by replacing Halt with
a solution for Post’s problem for Turing machines or another model from Part II. A solution of
Post’s problem via the Friedberg-Muchnik theorem [85, 172] is a predicate p such that Halt
does not Turing-reduce to p, meaning decidability of p does not imply decidability of Halt.
Thus, such a definition would be weaker, since a synthetic undecidability proof respective i.e.
the new definition is weaker. One could also use D(Halt) or D(Halt) in the conclusion of Up,
but we pick E(Halt) since it is the weakest condition of the three.

We will leave out both “relatively” and “synthetically” when talking about undecidability in
this part of the thesis, since no other notion of undecidability other than Up appears.

In general, we are only interested in problems on enumerable and discrete types X . Occa-
sionally, we will have that X is not provably discrete and enumerable, since we have that X is
a dependent type, e.g. the type of closed terms X := Σt: tmL. closed t. Such a type X is enu-
merable, but to prove discreteness one would have to reformulate the definition of closedness
or assume proof irrelevance PI.

Based on the results established in Chapter 4, it is straightforward to prove the following
closure properties:

Fact 19.1. U(HaltTM1
)

Proof. Since D(HaltTM1
)→ E(HaltTM1

) by Facts 4.5 and 4.14. ■

Fact 19.2. Up→ Up

Proof. Let Dp→ E(Halt) and Dp. Then Dp by Corollary 4.5. Thus E(Halt) as wanted. ■

Lemma 19.3. If Dq→Dp then Up→ Uq.
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Proof. Let Dq→Dp, Dp→ E(Halt), and Dq. By the first and third assumption we have Dp,
and by the second E(Halt) as wanted. ■

Note that one could weaken the definition of Up as follows:

U ′ p := ¬E(Halt)→¬Dp

We have that Up→ U ′ p, but the converse direction requires classical logic. The weaker
definition U ′ p has the advantage that it has a negative conclusion, and thus case arbitrary
distinctions are possible to start the proof. However, the stronger version Up suffices for all
our use cases, and has a more constructive flavour, ruling out arbitrary case distinctions.

19.2 Synthetic Undecidability by Reduction

Undecidability proofs are rarely given directly by exhibiting a logical contradiction. Usually,
one derives a logical contradiction from the assumption of enumerability of the complement
of the self-halting problem. Afterwards, the halting problems and other problems are proved
undecidable by reduction.

In fact, most published results on machine-independent undecidable problems use many-
one reductions as defined in Section 5.1. Since many-one reductions transport decidability
backwards, we have:

Lemma 19.4. If p ⪯m q and p is undecidable, then q is undecidable.

Proof. Immediate using Fact 5.2. ■

Using the results from the last chapter, we immediately have:

Corollary 19.5. U(HaltTM), U(HaltBSM), U(HaltCM), U(HaltFRACTRAN), and U(Haltµ).

Corollary 19.6. U(H10), U(H10C), and U(H10Z).

We deduce U(HaltL) from a reduction HaltTM ⪯m HaltL and the already established reduction
HaltTM1

⪯m HaltTM in Section 28.1.
We can also show the undecidability of a problem formulated purely in terms of functions:

Lemma 19.7. The predicate K
N→B( f :N→B) := ∃n. f n= true is undecidable.

Proof. We show that HaltTM1
⪯m KN→B, which suffices by Fact 19.1 and Lemma 19.4. The

reduction function takes as input a single tape Turing machine M , a tape t and maps them
to the function of type N→B which takes n, runs M on t for n steps, and outputs true iff the
computation halted. ■

Note that the proof inlines a semi-decidability proof for HaltTM and Fact 5.10. One can
prove the undecidability of similar problems on functions. Since we focus on problems on
enumerable, discrete types and N→B is neither, we do not develop more such results.

We are only aware of two non-artificial problems which are not shown undecidable bymany-
one reductions: Kolmogorov complexity [138, 139] is only truth-table reducible from the
halting problem [146]. The undecidability proof for semi-unification [126] was first given
by weak truth-table reduction from Turing machine immortality [112]. While there might be
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an inherent need for weak truth-table reducibility if factoring the proof via Turing machine
immortality, a recent simplified undecidability proof by Dudenhefner [62] is by many-one
reduction from Turing machine halting via a uniform boundedness problem.

Since truth-table reducibility also transports decidability backwards we have:

Lemma 19.8. If p ⪯
tt

q and p is undecidable, then q is undecidable.

Proof. Immediate using Lemma 5.25. ■

We omit similar results regarding bounded Turing reducibility or equivalently weak truth-
table reducibility because they require MP and immediately state the how to recover a syn-
thetic undecidability proof by relying on Turing reductions as defined in Chapter 9.

Lemma 19.9. If p ⪯T q, MP holds, and p is undecidable, then q is undecidable.

Proof. Immediate using Lemma 9.5. ■

Note how we require the axiomatic assumption of Markov’s principle MP in this theorem:
without MP, Turing reductions do not transport decidability backwards.

In the setting of synthetic undecidability, assuming axioms is never harmless, since some
axioms might allow the definition of non-computable functions.

19.3 Axioms

When assuming axioms like the axiom of choice and the law of excluded middle together in
CIC, one can prove that every problem is synthetically decidable. Thus, a synthetic study of
undecidability can only work with no or restricted axioms available. In general, every axiom
which is consistent with CT as discussed in Chapter 7 is not problematic.

Recall that Markov’s principle MP, functional extensionality, and propositional extensional-
ity are consistent with CT and can thus be freely assumed in synthetic undecidability proofs.
For stronger axioms like the law of excluded middle there is still good reason to believe that
they can be assumed for synthetic undecidability arguments. Lacking formal proof of this be-
lief, we outline how one can obtain sound undecidability proofs in the presence of axioms, by
focusing on undecidability by reduction.

The idea is to define reducibility notions ⪯A, where A is an axiom, such that to establish
p ⪯A q one has to give the reduction function fully-constructively, but is allowed to use A for
the verification of the reduction.

We define that a problem p: X→ P is many-one reducible to q: Y→ P under axiom A if

p ⪯A
m q := ∃ f : X→ Y. A→∀x . px←→ q( f x).

Now if e.g. LEM implies that p is undecidable by many-one reduction from the halting
problem, we can prove HaltTM ⪯LEM

m p. Since the axiom A is only used in the proof and not for
the construction of the function f , we know that f still corresponds to e.g. a Turing machine,
which however now has a classical correctness proof.

One can introduce similar notions p ⪯A
tt q and p ⪯A

T q, but we refrain from doing so here
because we do not use debatable axioms, but only use functional extensionality to simplify
the treatment of binders in syntax.
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19.4 Other proof assistants

We assess that at the time of writing, the Coq proof assistant is the only prominent system
in which undecidability proofs can be feasibly mechanised. While proof assistants based on
classical HOL such as Isabelle/HOL cannot guarantee the computability of functions for free,
other type theory-based proof assistants also seem not to scale. Agda does not support the
various complex automation techniques necessary for undecidability proofs, especially regard-
ing automatic case analysis and arithmetic reasoning. Lean could be used in principle as it is
also built on top of CIC, but Lean’s standard library decidedly uses classical logic and choice
operators already for basic results on natural numbers.
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CHAPTER 20
String rewriting systems

String rewriting problems are amongst the oldest decision problems. In their modern form,
string rewriting systems are usually presented as finite sets of rules, where a rule consists of
two strings (u, v). If x = x1ux2 and there is a rule (u, v), then x can be rewritten to x1vx2.

A first systematic treatment of string rewriting problems goes back to Thue [225], who
posed the decidability of the word problem for Thue systems as an open question.1 Thue Sys-
tems are string rewriting systems where all rules can be applied both ways. Equivalently, the
word problem for Thue systems (TSR) can be seen as deciding the equality of two terms in a
finitely presentable semigroup, the so-called word problem for semigroups.

In the same paper, Thue introduced Semi-Thue systems, which are nowadays simply known
as string rewriting systems. The SR decision problem asks whether a string can be reached
from another string with rewrites from a given set of rules.

In 1947, Emil Post [191] and Andrey Markov [165] independently proved the undecidabil-
ity of TSR, which implies the undecidability of SR. Post’s proof reduces the printing problem
of Turing machines to TSR (see footnote 4 on page 107), whereas Markov’s proof is by reduc-
tion from Post canonical systems [188]. Post canonical systems were devised by Post in the
1920s and are a more general and complicated form of rewriting. In his 1943 paper, Post im-
mediately showed that canonical systems can be brought into a considerably less complicated
normal form.

In this chapter we cover the word problem for Thue systems (TSR), i.e. reachability in
rewriting systems with a symmetric set of rules, the generalised halting problem for string
rewriting systems (SRH), reachability for string rewriting systems (SR), and reachability for
Post canonical systems in normal form (PCSnf).

We reduce HaltSBTM to SRH and SRH to SR. We then combine the ideas from these two
proofs to a proof HaltSBTM ⪯m TSR⪯m SR, and finally reduce SR to PCSnf .

Publications Sections 20.1–20.3 are based on the following paper, all other parts are novel.
[71] Forster, Heiter, and Smolka. “Verification of PCP-Related Computational Reductions in Coq”

International Conference on Interactive Theorem Proving. 2018.

20.1 Definition

We model strings over a finite alphabet by LN, rather than modelling finite alphabets directly.
Rewriting rules are pairs of strings, and we define the type of string rewriting systems as a
list of rewriting rules: SRSX := L(LX × LX ) and SRS := SRSN. Given R : SRS, we define the
symbols of R, symR, to be the list of all numbers occurring in a rule of R.

1Technically, “decidability” was not yet used as a term. Thue asked for “a method, where one can always calculate
in a predictable number of operations” [194].
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In this chapter, for strings x and y we write x y instead of x ++ y for conciseness. We define
string rewriting with two inductive predicates:

(x , y) ∈ R

ux v ≻R uyv x ≻∗R x

x ≻R y y ≻∗R z

x ≻∗R z

The SRS reachability problem is defined as

SR(R : SRS, x : LN, y : LN) := x ≻∗R y.

The generalised SRS halting problem asks for the reachability of a string y1a0 yn for a
given symbol a0 from a string x via a SRS R:

SRH(R : SRS, x : LN, a0 : N) := ∃y. a0 ∈ y ∧ x ≻∗R y

Thue systems are rewriting systems where all rules can be used in both directions. Instead
of defining Thue systems as R : SRS with the extra property that ∀(u, v) ∈ R. (v, u) ∈ R,
we directly use SRS to model the Thue system reachability problem using the operations
←→
R := R++

←−
R and←−R := [(v, u) | (u, v) ∈ R].

TSR(R : SRS, x : LN, y : LN) := x ≻∗←→
R

y

Lastly, Post canonical systems in normal form differ from string rewriting in that a rule (u, v)
only applies to strings ux , which are rewritten to x v:

(u, v) ∈ R

ux ⊃R x v x ⊃∗R x

x ⊃ y y ⊃∗R z

x ⊃∗R z

The reachability problem for Post canonical systems in normal form is then defined as

PCSnf(R : SRS, x : LN, y : LN) := x ⊃∗R y.

20.2 Reducing HaltSBTM to SRH

To reduce SBTM halting to SRH we encode instantaneous configurations (q, t) where q is a
state and t a tape as strings (q, t) and introduce rewriting rules according to the transitions of
the machine. This proof is a simplification of the undecidability proof for TSR by Post [191].

To define the encoding of tapes, let a simple binary Turing machine M with |M | states be
given. We fix symbols ␣, L, M, tt and ff, and with n0, . . . , n|M | fix S |M | many symbols corre-
sponding to the states of M , all mutually different.

We define the encoding of a configuration (q, t) consisting of a state q and a tape (ls, c, rs)
as the string L (rev ls) q c rs M, where c is defined as true := tt, false := ff, None := ␣, Some c := c,
and i : FS |M | := ni . The encoding function is extended to lists by pointwise application.

We now define a string rewriting system R corresponding to M in Figure 20.1 and can
immediately prove the forward direction of a simulation:

Fact 20.1. If M(q, t) ▷ (q′, t ′), then (q, t)≻∗R (q′, t ′).

The reverse direction, we first need two auxiliary results:
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Read Write Move u v u v
None None L Lq1 ␣ Lq2 ␣ l q1 ␣ q2 l
None None N q1 ␣ q2 ␣
None None R q1 ␣ M q2 ␣ M q1 ␣ r q2 r
None Some b L Lq1 ␣ Lq2 ␣ b l q1 ␣ q2 l b
None Some b N q1␣ q2 b
None Some b R q1 ␣ M b q2 ␣ M q1 ␣ r b q2 r
Some a None L Lq1 a Lq2 ␣ a l q1 a q2 l a
Some a None N q1 a q2 a
Some a None R q1 a M a q2 ␣ M q1 a r a q2 r
Some a Some b L Lq1 a Lq2 ␣ b l q1 a q2 l b
Some a Some b N q1 a q2 c
Some a Some b R q1 a M b q2 ␣ M q1 a r b q2 r

Figure 20.1.: Rewriting rules (u, v) ∈ R if δ(q1, c) = (q2, w, m), where c is in the column Read,
w in the column Write, and m in the column Move.

Fact 20.2. If x q y = (q′, (ls, crs)), then x = L (rev ls), q = q′, and y = c rsM.

This suffices to prove the following inversion lemma:

Fact 20.3. If (q, (ls, c, rs)) ≻R z, then δM (q, c) = Some (q′, w, m) for some q′, w, m, and z =
(mv m (wr w (ls, c, rs))).

To prove the reduction theorem reducing HaltSBTM to SRH we need to be able to pick a
single symbol indicating halting, but in general a single tape binary Turing machine can have
more than one halting state. We thus first introduce the halting problem for single tape binary
Turing machines with a unique halting state HaltSBTMu:

HaltSBTMu(M : SBTM, t : LB×OB×LB, q : FS |M |, H : uhalt M q) := ∃t ′. M(0, t) ▷ (q, t ′)

where uhalt M q := ∀c. δM (q, c) = None∧∀q′.δM (q′, c) = None→ q = q′.

Lemma 20.4. HaltSBTM ⪯m HaltSBTMu

Proof. Given M construct M ′ with exactly one more state qh, δM ′(qh, c) = None and whenever
δM (q, c) = None, δM ′(q, c) = Some (qh,None,N). ■

Theorem 20.5. HaltSBTMu ⪯m SRH and thus U(SRH).

Proof. We prove HaltSBTMu(M , t, q, H)←→SRH(R, (0, t), q). The forward direction is immediate
from Fact 20.1. The reverse direction follows by induction on ≻∗R, Fact 20.3, and exploiting
that q is the unique halting state. ■

20.3 Reducing SRH to SR

To reduce SRH to SR, fix R : SRS, a string x and a symbol a0 and define:

R′ := R++ [(a0a, a0) | a ∈ Σ] ++ [(aa0, a0) | a ∈ Σ] with Σ := symR++ x ++ [a0]

https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.TM.Reductions.HaltSBTM_to_HaltSBTMu.html#reduction
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.TM.Reductions.HaltSBTM_to_HaltSBTMu.html#reduction
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.StringRewriting.Reductions.HaltSBTMu_to_SRH.html#reduction
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.StringRewriting.Reductions.HaltSBTMu_to_SRH.html#reduction


150 20. String rewriting systems

That is, R′ has the same rules as R, but once a0 is reached via R (and SRH(R, x , a0) holds),
all symbols apart from a0 are deleted. The idea of using deletion rules is also present in the
TSR undecidability proof by Post [191].

Lemma 20.6. If a0 ∈ x , then x ≻∗R′ a0.

Proof. If a0 ∈ x then x = x1a0 x2 for some x1, x2. We first prove x1a0 x2 ≻∗R′ x1a0 by induction
on x2, and then x1a0 ≻∗R′ a0 by induction on x1. ■

Theorem 20.7. SRH⪯m SR and thus U(SR).

Proof. We show SRH(R, x , a0)←→ SR(R′, x , a0). The direction from right to left is a straight-
forward induction on ≻∗R. For the other direction, the claim then follows by induction on ≻∗R′
using Lemma 20.6. ■

20.4 Reducing HaltSBTM to TSR

The proof ideas from Sections 20.2 and 20.3 are essentially a decomposition of the undecid-
ability proof of TSR by Post [191]. We now re-compose the ideas and extend the rewriting
system R for a given SBTM with carefully chosen deletion rules to prove the undecidability for
TSR. Note that we cannot simply prove HaltSBTM ⪯m SR⪯m TSR to obtain the undecidability
of TSR: Post’s proof idea only applies to rewriting systems in a very particular shape, which is
fulfilled by the rewriting system corresponding to a SBTM. Transforming arbitrary SRS into
such a shape would likely be harder than starting the undecidability proof at HaltSBTM.

Let again a SBTM M be given, with starting state q0 and unique halting state qh. We reuse
the system R constructed in Section 20.2, and add some carefully chosen deletion rules D,
similar to the reduction from SRH to SR. Let � be a fresh symbol not occurring in R. We
define:

D :=
�

(qhca, qhc) | c ∈ [tt,ff, ␣], a ∈ [tt,ff]
�

++
�

(aqh, qh) | a ∈ [tt,ff]
�

++
�

(LqhcM,�) | a ∈ [tt,ff]
�

Note that the rules only delete symbols ␣, tt, and ff to the right and left of a halting state, no
tape delimiters L and M and no state symbols qi . In particular, that means that the tape delim-
iters L and M stay in the string until the very end, where they are replaced by �. Additionally,
by not adding deletion rules for symbols qi we avoid that←→D contains rules introducing a sec-
ond state qi in a string, which then again would be subject to forward applications of rules
from R.

In the system R++ D a SBTM run

(q0, t0)⇝ (q1, t1)⇝ · · ·⇝ (qh, th)

can be simulated with a rewriting sequence

(q0, t0)≻R (q1, t1)≻R . . .≻R (qh, th)≻∗D LqhcM≻D �

The following fact then suffices for the forward direction of the reduction:

https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.StringRewriting.Reductions.SRH_to_SR.html#reduction
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.StringRewriting.Reductions.SRH_to_SR.html#reduction
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Fact 20.8. (qh, t)≻←−→
R++D

�

Corollary 20.9. If HaltSBTM(M , t), then (q0, t)≻←−→
R++D

�.

The other direction is considerably more intricate. We have to prove that using rules from
←−
R , D, or←−D in a rewriting sequence (q0, t)≻∗←−→

R++D
� still allows to deduce HaltSBTM(M , t).

Similar to Fact 20.3 we prove the following inversions, which suffice for the reduction the-
orem.

Fact 20.10. The following hold:
1. If (q, t)≻←−

R
z, then there are q′, ls, c, rs, w, and m such that δM (q′, c) = Some (q, w, m),

t = mv m (wr w t ′) and z = (q′, t ′).

2. If (q, t)≻D z, then q = qh and either z =� or z = (q, t ′) for some tape t ′.

3. If (q, t)≻←−
D

z, then q = qh and z = (q, t ′) for some tape t ′.

Theorem 20.11. HaltSBTMu ⪯m TSR and thus U(TSR).

Proof. The forward direction is by Corollary 20.9. The backwards direction follows by induc-
tion on ≻∗←−→

R++D
via Fact 20.10. ■

20.5 Reducing SR to PCSnf

Let R : SRS, x0, y0 : LN, Σ := x0 ++ y0 ++ symR and let # be fresh for Σ.
We define

R′ := R++ [(a, a) | a ∈ Σ].

Using the copy rules (a, a) we can prove:

Fact 20.12. If x ⊆ Σ then x y ⊃∗R′ y x .

The forward direction of the simulation is then straightforward.

Fact 20.13. If x ⊆ Σ, y ⊆ Σ and x ≻∗R y , then x# ⊃∗R′ y#

The backwards direction is more involved. We prove the following generalised inductive
invariant:

Lemma 20.14. If x1, x2, y1, y2 ⊆ Σ and x2#x1 ⊃∗R′ y2#y1, then x1 x2 ≻∗R y1 y2.

Proof. By induction on ⊃∗R′ with x1, x2, y1, y2 generalised. ■

Theorem 20.15. SR⪯m PCSnf and thus U(PCSnf)

Proof. We prove x ≻∗R y ←→ x# ⊃∗R′ y#. The forward direction is immediate by Fact 20.13.
The backwards direction follows from Lemma 20.14 by picking x1 = y1 = []. ■

https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.StringRewriting.Reductions.HaltSBTMu_to_TSR.html#reduction
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.StringRewriting.Reductions.HaltSBTMu_to_TSR.html#reduction
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.StringRewriting.Reductions.SR_to_PCSnf.html#reduction
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.StringRewriting.Reductions.SR_to_PCSnf.html#reduction
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CHAPTER 21
The Post correspondence problem

The Post correspondence problem PCP [190] is often used as seed for undecidability results
due to its simplicity. It is considered part of the curriculum in computability theory and covered
in many textbooks. Various undecidability proofs for PCP are in the literature:

• by a direct reduction HaltTM1 ⪯m PCP [207],
• via modified PCP (MPCP) proving HaltTM1 ⪯m MPCP⪯m PCP [113],
• via SR proving HaltTM ⪯m SR⪯m PCP [48].

In his seminal paper, Post himself gives a reduction PCSnf ⪯m PCP [190].
We here factor the undecidability proof of PCP as reduction SR⪯m MPCP⪯m PCP, obtain-

ing simple proofs with clear inductive invariants. Note that while a reduction PCSnf ⪯m MPCP
is possible (and simpler than Post’s reduction PCSnf ⪯m PCP), it seems to be not simpler than
SR⪯m MPCP.

In Section 21.1 we define PCP, MPCP and a boolean version, BPCP. In Section 21.2 we
prove the undecidability of MPCP, in Section 21.3 we reduce MPCP to PCP and in Section 21.4
PCP to BPCP.

Publications The chapter is mainly based on [71]. The inductive definition of PCP was
introduced in [73], and Section 21.4 is based on [81].
[71] Forster, Heiter, and Smolka. “Verification of PCP-Related Computational Reductions in Coq.”

International Conference on Interactive Theorem Proving. 2018.
[73] Forster, Kirst, and Smolka. “On Synthetic Undecidability in Coq, with an Application to the

Entscheidungsproblem.” Proceedings of the 7th ACM SIGPLAN Conference on Certified Programs
and Proofs. 2019.

[81] Forster and Larchey-Wendling. “Certified Undecidability of Intuitionistic Linear Logic via Bi-
nary Stack Machines and Minsky Machines.” Proceedings of the 7th ACM SIGPLAN Conference on
Certified Programs and Proofs. 2019.

21.1 Definition

We give several equivalent definitions of the Post correspondence problem, suitable for differ-
ent reductions. In all cases, the Post correspondence problem is defined over a set of cards
containing a top and a bottom string over a type X . Cards are modelled as c : LX ×LX , and
sets of cards as R : L(LX ×LX ).

We define the post correspondence problem PCPX using a relation R ▷ (x , y):

(u, v) ∈ R

R ▷ (u, v)

(u, v) ∈ R R ▷ (x , y)

R ▷ (u++ x , v ++ y)

We then define the Post correspondence problem PCP and the binary Post correspon-
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Def. stack (of cards)

Def. modified Post
correspondence
problem

dence problem BPCP as follows:

PCPX (R : SRSX ) := ∃x . R ▷ (x , x)

PCP(R : SRSN) := PCPNR BPCP(R : SRSB) := PCPBR

While the modified Post correspondence problem can be defined using an adapted deriv-
ability relation, we refrain from doing so and immediately proceed to a definition based on
stacks, which is more suitable to define MPCP.

21.1.1 Definition using stacks

We call a list A : L(LX ×LX ) a stack. We define the first and second trace of stacks as

τ1[] := [] τ2[] := []

τ1((x , y) :: A) := x ++τ1A τ2((x , y) :: A) := y ++τ2A

We can then define PCP′ as

PCP′X (R : SRSX ) := ∃A⊆ R. A ̸= []∧τ1A= τ2A

and the modified Post correspondence problem MPCP as

MPCP(R : SRSN, (x , y) : LN×LN) := ∃A⊆ (x , y) :: R.x ++τ1A= y ++τ2A

Fact 21.1. PCPX R←→ PCP′X R

21.1.2 Definition using indices

The most commonly found definition of PCP in the literature, and also the definition used by
Post [190] is based on natural number indices. Given I : LN and R : SRSX , we define the
traces of I as:

τ1 R [] := [] τ2 R [] := []

τ1 R (i :: I) := x ++τ1 R I τ2 R (i :: I) := y ++τ2 R I (if R[i] = Some (x , y))

τ1 R (i :: I) := τ1 R I τ2 R (i :: I) := τ2 R I (if R[i] = None)

We then define PCPi:SRSX→ P and MPCPi:SRSX × (LX ×LX )→ P based on indices:

PCPi,X (R) := ∃I : LN. (∀i ∈ I . i < |R|)∧ I ̸= []∧τ1 R I = τ2 R I

MPCPi,X (R, (x , y)) := ∃I : LN. (∀i ∈ I . i ≤ |R|)∧ x ++τ1 ((x , y) :: R) I = τ2 ((x , y) :: R) I

PCPi(R : SRSN) := PCPi,N R BPCPi(R : SRSB) := PCPi,B R

Fact 21.2. PCPX R←→ PCPi,X R and MPCPX (R, (x , y))←→MPCPi,X (R, (x , y)).
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21.2 Reducing SR to MPCP

Let R : SRS, x0 : LN, and y0 : LN be given. Let Σ := x0 ++ y0 ++ symR and let # and $ be
different and both fresh for Σ. We define

d := ($ , $x0#)

e := (y0#$ , $)

R′ := d :: e :: R++ (#, #) :: [(a, a) | a ∈ Σ]

The idea of the reduction is as follows: Assume R = [(bc, a), (aa, b)] and x0 = abc ≻R

aa ≻R b = y0. We then have Σ = [a, b, c], d = ($,$abc#), e = (b#$, $), and R′ =
[d, e, (bc, a), (aa, b), (a, a), (b, b), (c, c)]. Written suggestively, the following stack mirroring
the rewriting sequence from above has matching traces:

$

$abc#

a

a

bc

a

#

#

aa

b

#

#

b#$

$

And, vice versa, every matching stack starting with d yields a derivation of abc ≻∗R b.
For the general reduction we will use MPCP as target. We first prove the inductive invariant

for the forward direction:

Fact 21.3. Let x ⊆ Σ and x ≻∗R y0. Then ∃A⊆ R′. τ1A= x#τ2A.

For the other direction we again need a more involved inductive invariant:

Fact 21.4. Let x , y ⊆ Σ, A⊆ R, and τ1A= x#yτ2A. Then y x ≻∗R y0.

Theorem 21.5. SR⪯m MPCP and thus U(MPCP).

Proof. We show x0 ≻∗R y0←→MPCP(R′, (x0, y0)). The direction from left to right is by Fact 21.3,
the other direction follows from Fact 21.4 with y = []. ■

21.3 Reducing MPCP to PCP

We reduce MPCP to PCP following the proof by Hopcroft, Motwani, and Ullman [113].
The idea of the reduction is that for a stack A = [(x1, y1), . . . , (xn, yn)] and a first card

(x0, y0) where x i = a0
i . . . ami

i we have

(a0
0 . . . am0

0 )(a
0
1 . . . am1

1 ) . . . (a0
n . . . amn

n )

=(b0
0 . . . bm0

0 )(b
0
1 . . . bm1

1 ) . . . (b0
n . . . bmn

n )

if and only if we have

$(#a0
0 . . .#am0

0 )(#a0
1 . . .#am1

1 ) . . . (#a0
n . . .#amn

n )#$

=$#(b0
0# . . . bm0

0 #)(b0
1# . . . bm1

1 #) . . . (b0
n# . . . bmn

n #)$.

This idea is already present in Post’s work [190] as a component of the reduction from PCSnf

to PCP.

https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.PCP.Reductions.SR_to_MPCP.html#reduction
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.PCP.Reductions.SR_to_MPCP.html#reduction
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Now let R : SRS, x0 : LN, and y0 : LN be given. Let Σ := x0 ++ y0 ++ symR and let # and $
be distinct and both fresh for Σ.

We define two interleaving functions # x and x# as follows:

#[] := [] []# := []

#(a :: x) := # :: a :: ++(# x) (a :: x)# := a :: # :: (x#)

We then define:

d := ($(# x0) , $#(y#
0 ))

e := (#$, $)

R′ := d :: e :: [(# x , y#) | (x , y) ∈ (x0, y0) :: R∧ (x/y) ̸= ([], [])]

The inductive invariant for the forward direction of the reduction is as follows:

Fact 21.6. Let A⊆ (x0, y0) :: R. If x++τ1A= y++τ2A, then ∃B ⊆ P. # x++τ1B = # :: y#++τ2B.

The backwards direction reads similarly.

Fact 21.7. Let B ⊆ R′ and x , y ⊆ Σ. If # x ++ τ1B = # :: y# ++ τ2B, then ∃A ⊆ (x0, y0) ::
R. x ++τ1A= y ++τ2A.

Theorem 21.8. MPCP⪯m PCP and thus U(PCP).

Proof. We prove MPCP(R, (x0, y0))←→PCP′R. The direction from left to right is by Fact 21.6,
the other direction by Fact 21.7. ■

21.4 Reducing PCP to BPCP

We define a function f : LN∗→LB∗ encoding natural number strings as booleans strings as

f [] := [] f (n :: x) := truen ++ false :: f x

and we extend f to cards and stacks by pointwise application.
We define the inverse function g : LB→N→LN with an auxiliary argument by

g [] n := [] g (true :: x) n := g x (1+ n) g (false :: x) n := n :: g x 0

We define g x := g x 0 and again extend it pointwise to cards and stacks.

Fact 21.9. g( f x) = x

Theorem 21.10. PCP⪯m BPCP and thus U(BPCP).

Proof. We prove that PCPR←→ BPCP( f R). The direction from left to right is easy. The other
direction uses Fact 21.9. ■

https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.PCP.Reductions.MPCP_to_PCP.html#reduction
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.PCP.Reductions.MPCP_to_PCP.html#reduction
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.PCP.Reductions.PCP_to_PCPb.html#reduction
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.PCP.Reductions.PCP_to_PCPb.html#reduction
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CHAPTER 22
Context-free grammars

Context-free grammars were introduced by Chomsky [29] to describe the structure of nat-
ural language. Their use in computer science was popularised by the Algol programming
language, and context-free grammars still form the main tool to describe the syntax of pro-
gramming languages.

The central problem concerning context-free grammars is the word problem, which is decid-
able. In 1961 Bar-Hillel, Perles, and Shamir [7] proved that the problem CFI of determining
whether two context-free grammars intersect is undecidable, by reduction from PCP. Hes-
selink [109] factors the proof into a reduction from PCP to the problem CFP of determining
whether a context-free grammar contains a palindrome. Since the grammar of all palindromes
is context-free, it is straightforward to deduce a reduction from CFP to CFI.

We here use Hesselink’s idea, but factor the proof via Post grammars, a special case of
context-free grammars tailored for reductions from PCP.

Publication This chapter is based on:
[71] Forster, Heiter, and Smolka. “Verification of PCP-Related Computational Reductions in Coq”

International Conference on Interactive Theorem Proving. 2018.

22.1 Definition

Context-free grammars are a restricted form of string rewriting systems, namely such where
the left-hand side of a rule only consists of one (non-terminal) symbol. Conventionally, one
separates the alphabet into terminal symbols (which cannot appear on the left hand side of
rules) and non-terminal symbols. Different to string rewriting system, context-free grammars
have a (non-terminal) start symbol.

We model context-free grammars as pairs of start symbols and rules: CFG := N×L(N×LN).
We do not formally distinguish terminal and non-terminal symbols, but rather consider every
symbol occurring on the left-hand side of a rule as non-terminal and all others as terminal.

We reuse the string rewriting relation from Chapter 20 to define the language of a context-
free grammar:

x ∈ LCFG(a, G) := a ≻∗
Ĝ

x ∧ ∄y.x ≻Ĝ y where Ĝ := [([l], r) | (l, r) ∈ G]

A string x is a palindrome if x = rev x . The context-free palindrome problem CFP is
defined as

CFP(G : CFG) := ∃x ∈ LCFGG. x = rev x .

The context-free intersection problem CFI is defined as

CFI(G1 : CFG, G2 : CFG) := ∃x . x ∈ LCFG(G1)∧ x ∈ LCFG(G2).
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Def. context-free Post
grammar palindrome

Post grammars are special context-free grammars with a single non-terminal symbol S
where all rules are of the form S ≻ xS y or S ≻ xa y for a fixed symbol a. We model Post
grammars as pairs PG := N × SRS. Given a Post grammar (a, R) we model derivations as
stacks A⊆ R and define a projection function translating derivations to words:

σa[] := a σa((x , y) :: A) := x ++σaA++ y

The language of a Post grammar is defined via the projection function:

x ∈ LPG := ∃A⊆ R. A ̸= []∧σaA= x

The context-free Post grammar palindrome problem is defined as

CFPP(a, R) := ∃x ∈ LPG. x = rev x .

22.2 Reducing PCP to CFPP

Notice that a stack A= [(x1, y1), . . . , (xn, yn)] matches if and only if the string

x1 . . . xn#rev yn . . . rev y1

is a palindrome due to the following:

Fact 22.1. Let # be fresh for x and y . Then x++#++ y is a palindrome if and only if y = rev x .

Provided an SRS R we prove that PCP R holds if and only if the Post grammar (#,γR)
contains a palindrome, with

γA := [(x , rev y) | (x , y) ∈ A.]

Lemma 22.2. If # is fresh for A then the following hold:
1. σ#(γA) = τ1A++#++ rev (τ2A)

2. τ1A= τ2A if and only if σ#(γA) is a palindrome.

3. γ(γA) = A

4. A⊆ γB→ γA⊆ B

Proof. All are by induction on A. The proof of (2) needs (1) and Fact 22.1 ■

Theorem 22.3. PCP⪯m CFPP and thus U(CFPP).

Proof. Let R be a string rewriting system and # fresh for R. We prove PCPR←→ CFP(#,γR).
The direction from left to right follows with (2), (3), and (4).
For the direction from right to left let [] ̸= B ⊆ γR s.t. σ#B is a palindrome. By (3) and (4)

we have γB ⊆ R. Since also B = γ(γB) by (3) and (4) we have τ1(γB) = τ2(γB) by (2). ■

22.3 Reducing CFPP to CFP

We reduce the word problem for context-free Post grammars to the word problem of context-
free grammars, yielding immediately a reduction from CFPP to CFP.

https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.CFG.Reductions.PCP_to_CFPP.html#reduction
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.CFG.Reductions.PCP_to_CFPP.html#reduction
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Let a Post grammar (a, R) be given. Let S be fresh for a, R and

G := (S, (S, [S]) :: [(S, u++ [S] ++ v) | (u, v) ∈ R] ++ [(S, u++ [a] ++ v) | (u, v) ∈ R]).

We will prove that x ∈ LPG(a, R)←→ x ∈ LCFGG.
The direction from left to right needs the following three properties:

Lemma 22.4. The following hold:
1. S ̸∈ x if and only if ¬∃y. x ≻G y .

2. If S ≻∗G x then S occurs at most once in x .

3. If A⊆ R then A= [] or S ≻∗G σaA.

Proof. (1) is proved by induction on x , (2) by induction on the derivation, and (3) by induc-
tion on A. ■

The direction from right to left needs the following:

Fact 22.5. The following hold:
1. Let σbA= x ++ [c] ++ y and c not occur in x , y , or A. Then b = c.

2. Let σbA= x++[b]++ y and b not occur in x , y . Then σc(A++[(u, v)]) = x++u++[c]++
v ++ y .

Fact 22.6. LPG ⪯m LCFG

Theorem 22.7. CFPP⪯m CFP and thus U(CFP).

22.4 Reducing CFP to CFI

The language of palindromes is context-free:

Lemma 22.8. Let Σ : LN be given. There is G such that for all x with x ⊆ Σ, x ∈ LCFGG if
and only if x = rev x .

Proof. LetΣ be given and S be fresh forΣ. Define G := (S, (S, []) :: [(S, c) | c ∈ Σ]++[(S, cSc) |
c ∈ Σ]).

For the direction from left to right we prove that if x ⊆ S :: Σ, x = rev x , and S occurs at
most once in x , then S ≻∗G x via the induction scheme

∀X p. p[]→ (∀x .p[x])→ (∀x1l x2. pl→ p(x1 :: l ++ [x2]))→∀l.pl.

For the converse direction we prove that if S ≻∗G x then x = rev x and S occurs at most once
in x by induction on the derivation. ■

Theorem 22.9. CFP⪯m CFI and thus U(CFI).

Proof. Let a grammar G′ be given. Let Σ all symbols in G′.
Then CFP(S, G′) if and only if CFI(G′, G) with G from Lemma 22.8. ■

https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.CFG.Reductions.CFPP_to_CFP.html#reduction
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.CFG.Reductions.CFPP_to_CFP.html#reduction
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.CFG.Reductions.PCP_to_CFPI.html#reduction
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.CFG.Reductions.PCP_to_CFPI.html#reduction
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CHAPTER 23
First-order logic

The Entscheidungsproblem was identified by Hilbert and Ackermann to be the “central prob-
lem of mathematical logic” in 1928 [110], and can be considered as one of the main driv-
ing forces in the development of computability. From a classical perspective, the Entschei-
dungsproblem can be equivalently phrased as asking for a decision procedure for the problem
of determining whether a first-order formula
• is valid in all Tarski-models,
• is satisfiable in any Tarski-model, or
• is provable in classical natural deduction.
While they are constructively not equivalent, we prove all of these problems undecidable, and
furthermore factor the proofs such that we also obtain undecidability proofs for the problems
of determining whether a first-order formula
• is provable in intuitionistic natural deduction, or
• is provable in minimal natural deduction (i.e. intuitionistic deduction without explosion).

Other model-theoretic semantics for first-order logic such as Kripke, Heyting, or dialogue
semantics can be similarly treated, but we do not cover them here.

Instead of using first-order formulas to encode Turing machines (as Turing did) or λ-terms
(as Church did), we express the solvability of a BPCP instance as first order formula ϕR which
is valid (or provable) if and only if BPCPR holds. We follow the proof of Manna [164], who at-
tributes the proof idea to Floyd. We encode lists of booleans [b1, . . . , bn] as terms fb1

(. . . ( fbn
e))

and use Horn clauses to express the inductive rules of BPCP introduced in Section 21.1.
Furthermore, the proof for classical natural deduction relies crucially on a combination of

the Gödel-Gentzen double negation translation [92, 89] and Friedman’s A-translation [87].

Publications This chapter is based on
[73] Forster, Kirst, and Smolka. “On synthetic undecidability in Coq, with an application to the

Entscheidungsproblem.” Proceedings of the 8th ACM SIGPLAN International Conference on Certi-
fied Programs and Proofs. 2019.

23.1 Definition

We fix the term signature to contain a constant symbol e and two unary functions f0 and f1:

t : tm ::= x | e | f0 t | f1 t where x:N

We consider the ∀→ fragment of first-order logic with falsity, one propositional constant Q
and one binary predicate P:

ϕ,ψ : fm ::= ⊥̇ | Q | P t1 t2 | ϕ→̇ψ | ∀ϕ

The current Coq mechanisation as part of the Coq library of Undecidability Proofs contains
two formalisations of this proof. One [73] due to the author of this thesis using names, and
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one parametric in operations, quantifiers, term-, and predicate signatures by Kirst [128].
A previous now deprecated formalisation [74] by the author was based on the Autosubst 2
tool [218, 217].

Given a (naive Tarski-style) model M for first-order logic consisting of a domain D:T, term
interpretations JeKM: D, J f0KM: D→ D and J f1KM: D→ D, and propositional interpretations
JQKM:P and JPKM: D→ D→ P and also given an environment ρ:N→ D, we define the satis-
faction relation ⊨ as

ρ̂x := ρx ρ̂e := JeK ρ̂( f0 t) := J f0K(ρ̂t) ρ̂( f1 t) := J f1K(ρ̂t)

M ⊨ρ ⊥̇ :=⊥ M ⊨ρ Q := JQK M ⊨ρ P t1 t2 := JPK(ρ̂t1)(ρ̂t2)

M ⊨ρ ϕ→̇ψ :=M ⊨ρ ϕ→M ⊨ρ ψ M ⊨ρ ∀ϕ := ∀d: D. M ⊨d;ρ ϕ

where d;ρ := λx . if x is S x then ρx else d. A formula ϕ is valid if ∀M.∀ρ. M ⊨ρ ϕ and
satisfiable if ∃M.∀ρ. M ⊨ρ ϕ.

We call the models naive, because they are usually defined in a classical meta theory.
We define a parallel substitution operation ϕ[σ] for a substitution σ:N→ tm as

x[σ] := σx e[σ] := e ( f0 t)[σ] := f0(t[σ]) ( f1 t)[σ] := f1(t[σ])

⊥̇[σ] := ⊥̇ Q[σ] :=Q (P t)[σ] := P(t[σ])

(ϕ→̇ψ)[σ] := (ϕ[σ])→̇(ψ[σ]) (∀̇ϕ)[σ] := ∀̇ϕ[0;λx . ↑ (σx)]

where ↑ t := t[σx;S x].
We define minimal, intuitionistic, and classical provability using natural deduction systems.
Minimal natural deduction ⊢ :L(fm)→ fm→ P is defined as follows:

ϕ ∈ Γ

Γ ⊢ ϕ

Γ ⊢ ϕ→̇ψ Γ ⊢ ϕ

Γ ⊢ψ

ϕ :: Γ ⊢ψ

Γ ⊢ ϕ→̇ψ

Γ ⊢ ∀̇ϕ

Γ ⊢ ϕ[t]

↑ Γ ⊢ ϕ

Γ ⊢ ∀̇ϕ

To obtain intuitionistic natural deduction ⊢i :L(fm)→ fm→ P we use the same rules as for
⊢ and add the explosion rule (left). To obtain classical natural deduction ⊢c :L(fm)→ fm→ P
we use the same rules as for ⊢, and add the double negation rule (right).

Γ ⊢i ⊥̇

Γ ⊢i ϕ

Γ ⊢c (ϕ→̇⊥̇)→̇⊥̇

Γ ⊢c ϕ

If [] ⊢ ϕ (or [] ⊢i ϕ or [] ⊢c ϕ) we say that ϕ is minimally (or intuitionistically or classically)
provable. Clearly, minimal provability implies intuitionistic provability. That intuitionistic
provability implies classical provability requires weakening, which holds for all systems.

Fact 23.1. Let Γ ⊆ Γ ′. Then Γ ⊢ ϕ→ Γ ′ ⊢ ϕ, Γ ⊢i ϕ→ Γ ′ ⊢i ϕ, and Γ ⊢c ϕ→ Γ ′ ⊢c ϕ.

Fact 23.2. If Γ ⊢ ϕ, then Γ ⊢i ϕ and if Γ ⊢i ϕ then Γ ⊢c ϕ.

Furthermore, intuitionistic provability is sound w.r.t. naive Tarski models.

Fact 23.3. If [ψ1, . . . ,ψn] ⊢i ϕ, then ψ1→̇ . . .→̇ψn→̇ϕ is valid.
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In contrast, classical provability is only sound w.r.t. naive Tarski models if and only if the
meta-theory is classical. A non-naive version of Tarski semantics such that classical provability
is sound and for completeness the assumption of MP suffices is discussed in [74].

Fact 23.4. LEM holds if and only if [ψ1, . . . ,ψn] ⊢c ϕ implies that ψ1→̇ . . .→̇ψn→̇ϕ is valid.

23.2 Reducing BPCP to validity and minimal and intuitionistic
provability, and BPCP to satisfiability

The most economical undecidability proof for validity, minimal and intuitionistic provability,
and satisfiability is by doing it in one take. The proof idea is based on the observation that
PCP can be expressed without inductive predicates, instead using Horn clauses as follows:

Lemma 23.5. PCPX R if and only if for all P:LX→LX→ P and for all Q:P,

(∀(u, v) ∈ R. Puv)→ (∀(u, v) ∈ R.∀x y. P x y→ P(u++ x)(v ++ y))→ (∀x . P x x→Q)→Q

Proof. The direction from left to right is by induction on PCPX . The direction from right to
left by instantiating P x y := R ▷ x y and Q := PCPX R. ■

We now mirror this characterisation in first-order logic and define a formula ϕR such that
BPCPR implies that ϕR is minimally provable (and thus both intutionistically provable by
Fact 23.2 and valid by Fact 23.3).

We then define a naive Tarski model B instantiating P and Q above, such that B ⊨ρ ϕR is
equivalent to BPCPR. Thus validity of ϕR implies BPCPR, and both intuitionistic and minimal
provability imply BPCPR as well, again using Facts 23.2 and 23.3. Since then ¬BPCPR if and
only if the negation of ϕR is satisfiable, we obtain a reduction from BPCP to satisfiability.

To define ϕR we have to express ++ in terms of e, f0, and f1. We define an encoding u: tm
of lists u:LB via a function ++:LB→ tm→ tm, and the formula ϕR as follows:

[] ++ t := t (b :: u) ++ t := if b then f0(u++ t) else f1(u++ t) u := u++ e

Γ1 := [Puv | (u, v) ∈ R] Γ2 := [∀̇x y. P x y→̇P(u++ x)(v ++ y) | (u, v) ∈ R]

ϕ3 := ∀̇x . P x x→̇Q ϕR := Γ1→̇Γ2→̇ϕ3→̇Q

For the direction from left to right, we show that solutions can be constructed in provability:

Fact 23.6. If R ▷ (u, v) then for all Γ , Γ ++ Γ1 ++ Γ2 ⊢ P u v.

Corollary 23.7. BPCPR→ [] ⊨ ϕR

For the other direction, we define a standard model B such that satisfiability of ϕR in B
allows reconstructing a solution for BPCPR. The model B interprets e as [], f as ::, P as
R ▷ (_,_), and Q as BPCPR:

JeKB := [] J f0KB t := false :: s J f1KB t := true :: s

JQKB := BPCPR JPKB t1 t2 := R ▷ (t1, t2)

Fact 23.8. ρ̂(l ++ t) = t ++ ρ̂t, ρ̂l = l, and B ⊨ρ P t1 t2←→ R ▷ (ρ̂t1, ρ̂t2).
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Fact 23.9. For all ρ, B ⊨ρ ϕ3 and for all ϕ ∈ Γ1 ++ Γ2, B ⊨ρ ϕ.

Corollary 23.10. B ⊨ρ ϕR→BPCPR

Theorem 23.11. BPCP reduces to validity and minimal and intuitionistic provability:

BPCP⪯m λϕ. ∀Mρ. M ⊨ρ ϕ BPCP⪯m λϕ. [] ⊢ ϕ BPCP⪯m λϕ. [] ⊢i ϕ

Proof. The only interesting part is to prove that if [] ⊢i φR, then BPCPR, which follows
immediately using soundness (Fact 23.3). ■

Note that when using a non-naive Tarski-semantics restricting to classical models, using
soundness requires proving that B is classical, which only holds provided MP.

Fact 23.12. ¬BPCPR if and only if ϕR→̇⊥̇ is satisfiable.

Corollary 23.13. BPCP reduces to satisfiability: BPCP⪯m λϕ. ∃M.∀ρ.M ⊨ρ ϕ

23.3 Reducing BPCP to classical provability

Our proof strategy before crucially relied on soundness of provability w.r.t. naive Tarski se-
mantics to use the model B. Since classical provability is not constructively sound w.r.t. naive
Tarski semantics, we in principle have two possibilites: First, we could devise a less naive ver-
sion of Tarski semantics where every model has to validate the double negation rule, as e.g.
done in [74]. However, the defined model B does only validate double negation under MP.

To obtain a fully constructive undecidability proof we stick to naive Tarski semantics and
choose the second possible route: We define a translation ϕQ satisfying (⊢c ϕ)→ (⊢ ϕQ) and
(B ⊨ρ ϕ

Q
R )→(BPCPR). The translation is a combination of the Gödel-Gentzen double negation

translation [92, 89] and Friedman’s A-translation [87], with A fixed to be Q.

⊥̇Q :=Q QQ :=Q (P t1 t2)
Q := ((P t1 t2)→̇Q)→̇Q

(ϕ→̇ψ)Q := ϕQ→̇ψQ (∀̇ϕ)Q := ∀̇(ϕQ)

Lemma 23.14. Γ ⊢ ((ϕ→̇⊥)→̇⊥))Q→̇ϕQ

Proof. By induction on the size of ϕ with Γ generalised. ■

Corollary 23.15. Γ ⊢c ϕ→ ΓQ ⊢ ϕQ

Note that by using an alternative translation with ⊥̇ in place of Q we could reduce classical
provability to intuitionistic provability. We refrain from doing so here, because this direction
does not contribute anything with regards to undecidability proofs.

Theorem 23.16. BPCP reduces to classical provability: BPCP⪯m λϕ. [] ⊢c ϕ

Proof. We prove that BPCPR←→ [] ⊢c ϕR.
The direction from left to right is immediate using Corollary 23.7 and Fact 23.2.
For the direction from right to left let [] ⊢c ϕR. By Facts 23.15 and 23.3 we have that

B ⊨λx . [] ϕ
Q
R . Since ϕQ

R = [ϕ
Q | ϕ ∈ Γ1]→ [ϕQ | ϕ ∈ Γ2]→ ϕ

Q
3→Q and for all ϕ ∈ Γ1 ++ Γ2,

B ⊨λx . [] ϕ
Q as well as B ⊨λx . [] ϕ

Q
3 follows from Fact 23.9 by simple calculation, we have

B ⊨λx . [] Q and thus BPCPR. ■

https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.FOL.Reductions.PCPb_to_FOL.html#prv_red
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.FOL.Reductions.PCPb_to_FOL.html#prv_red
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.FOL.Reductions.PCPb_to_FOL.html#satis_red
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.FOL.Reductions.PCPb_to_FOL.html#satis_red
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.FOL.Reductions.PCPb_to_FOL_class.html#cprv_red
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.FOL.Reductions.PCPb_to_FOL_class.html#cprv_red
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CHAPTER 24
Higher-order unification

Higher-order unification – where abstractions λx . s can be substituted for variables – is fun-
damental for many applications in modern programming languages. It is the foundation of
languages such as λ-Prolog, is used in automated deduction, and is crucial for type inference
in dependent type theories such as CIC for type inference. In the form in which we con-
sider it, higher-order unification HOU is the problem of finding a substitution making two
given, simply-typed Curry-style λ-terms convertible. One can also consider n-th order unifi-
cation, where for free variables the nesting depth of function types in argument positions is
restricted. First-order unificationwas proved decidable in 1965 by Robinson [201], third-order
unification was proved undecidable independently by Huet [116, 117] and Lucchesi [160] by
reduction from PCP, and subsequently second-order unification was proved undecidable by
Goldfarb [96] by reduction from H10.

We establish undecidability based on a reduction by Dowek [60], who reduces H10 to HOU
by devising characteristic typed unification equations for Church numerals. The resulting
equations are of order 3 but simpler to understand and verify than Goldfarb’s proof. We
present a similar proof based on equations devised by Simon Spies [215], which are charac-
teristic untyped unification equations.

Publications This chapter is based on
[216] Spies and Forster. “Undecidability of higher-order unification formalised in Coq” Proceedings of

the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs. 2020.

24.1 Definition

We consider the syntax of the λ-calculus with Curry-style abstraction (i.e. the argument type
is not annotated), application, and variables:

s, t : tm ::= st | λs | n where n:N

As before, we use de Bruijn indices for the formal definition, but write named terms on paper.
We only consider function types and type variables, modelled by natural numbers:

A, B : ty ::= α | A→̇B where α:N

The simple type system ⊢ :L(ty)→ tm→ ty→ P is defined as follows:

Γ [n] = SomeA

Γ ⊢ n : A

A :: Γ ⊢ s : B

Γ ⊢ λs : A→̇B

Γ ⊢ s : A→̇B Γ ⊢ t : A

Γ ⊢ st : B

We define renaming s〈ρ〉 for ρ:N→N and parallel substitution s[σ] for σ:N→ tm:
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Fext :Sec. 7.3, Page 70

n〈ρ〉 := ρn (λs)〈ρ〉 := λ(s〈↑ ρ〉) (st)〈ρ〉 := (s〈ρ〉)(t〈ρ〉)

n[σ] := σn (λs)[σ] := λ(s[⇑ σ]) (st)[σ] := (s[σ])(t[σ])

where (↑ ρ)n := if n is S n then S (ρn) else 0 and (⇑ σ)n := if n is S n then (σn)〈λx . S x〉 else 0.
We write ∆ ⊢ σ : Γ for ∀nA. Γ [n] = SomeA→∆ ⊨ σn : A.
In Coq, we generate the definition of substitution and its basic properties using the Auto-

subst 2 tool [218]. As a consequence, basic results depend on the functional extensionality
axiom Fext. The dependency could be eliminated by improvements to the tool or manual
adaption of the generated code.

We define β-equivalence ≡ : tm→ tm→ P as the reflexive, transitive, symmetric closure of
β-reduction ≻ : tm→ tm→ P:

t1 ≻ t ′1
t1 t2 ≻ t ′1 t2

t2 ≻ t ′2
t1 t2 ≻ t1 t ′2 (λt1)t2 ≻ t1[λx . if x is S x then x else t2]

t ≡ t

t1 ≻ t ′1 t ′1 ≡ t2

t1 ≡ t2

t2 ≡ t1

t1 ≡ t2

It is well-known that the simply-typed λ-calculus is strongly normalising. We only need
weak normalisation:

Fact 24.1. If Γ ⊢ t : A then there exists v such that t ≡ v, Γ ⊢ v : A, and ¬∃t ′. v ≻ t ′.

If t1[σ]≡ t2[σ] we say that σ unifies (t1, t2).
The decision problem higher-order unification HOU asks whether two terms of the same

types can be unified by substitutions:

HOU (Γ :L(ty), A: ty, t1: tm, t2: tm, H1 : (Γ ⊢ t1: A), H2 : (Γ ⊢ t2: A)) :=

∃∆:L(ty).∃σ:N→ tm.∆ ⊢ σ : Γ ∧ t1[σ]≡ t2[σ]

Similarly, system unification SHOU asks whether all pairs in a list can be pointwise unified:

SHOU (Γ :L(ty), L:L(tm× tm× ty), H : (∀(t1, t2, A) ∈ L. Γ ⊢ t1 : A∧ Γ ⊢ t2 : A)) :=

∃∆:L(ty).∃σ:N→ tm.∆ ⊢ σ : Γ ∧∀(t1, t2, A) ∈ L. t1[σ]≡ t2[σ]

24.2 Reducing SHOU to HOU

To reduce SHOU to HOU we have to encode a list of terms as single term. We define

f [(s1, t1, A1), . . . , (sn, tn, An)] := (λx . x s1 . . . sn,λx . x t1 . . . tn)

g[(s1, t1, A1), . . . , (sn, tn, An)] := A1→̇ . . .→̇An→̇α

where α := 0.
We fix Γ :L(ty), L:L(tm× tm× ty) such that ∀(t1, t2, A) ∈ L. Γ ⊢ t1 : A∧ Γ ⊢ t2 : A.

Fact 24.2. Γ ⊢ f L : g L→α
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Fact 24.3. If σ:N→ ty such that ∆ ⊢ σ : Γ we have ∀(t1, t2, A) ∈ L. t1[σ]≡ t2[σ] if and only
if ( f t1)[σ]≡ ( f t2)[σ].

Theorem 24.4. SHOU ⪯Fext
m HOU and thus Fext→ U(HOU ).

24.3 Reducing H10C to SHOU

We reduce diophantine constraints H10C to a system of equations by using Church numerals,
where

JnK := λa f . f na f 0a := f f S na := f ( f na)

Fact 24.5. If Jn1K≡ Jn2K then n1 = n2.

Church numerals can be assigned a simple type.

Fact 24.6. For all A, Γ ⊢ JnK : A→̇(A→̇A)→̇A

We use standard definitions of addition andmultiplication [8], which Hinze [111] attributes
to Rosser:

addt1 t2 := λa f . t1(t2a f ) f mult1 t2 := λa f . t1a(λb. t2 b f )

Fact 24.7. addJn1KJn2K≡ Jn1 + n2K and mulJn1KJn2K≡ Jn1 ·n2K.

The inverse of J · K is computable.

Fact 24.8. There is inv: tm→ON such that if inv t is S n then t = JnK else ¬∃n. s = JnK.

Dowek [60] observes that t:α→̇(α→̇α)→̇α is a Church numeral if and only if

λz.tz(λy.y)≡ λz.z.

We instead use Spies equations, which also work in an untyped setting. Recall that a Church
numeral JnK expects two arguments f and a and then applies f to a for n times. Thus, the
equations characterise that t is a Church numeral by observing the commutative property of
iteration, i.e. ∀ f a. f (JnKa f )≡ JnK( f a) f .

Fact 24.9. Let t be normal. We have that t = JnK for some n if and only if (λa f . f (ta f )) ≡
(λa f . t( f a) f ).

We can then define the reduction function where again α̇ := 0:

Ṅ := α→̇(α→̇α)→̇α N x := (λa f . f (ta f ),λa f . t( f a) f , Ṅ)

f [] := [] f (x+̇y=̇z :: C) := [N x , N y, Nz, (add x y, z, Ṅ)] ++ f C

f (x=̇1 :: C) := [N x , (x , J1K, Ṅ)] ++ f C f (x ×+y=̇z :: C) := [N x , N y, Nz, (mul x y, z, Ṅ)] ++ f C

Theorem 24.10. H10C⪯Fext
m SHOU and thus Fext→ U(SHOU ).

Proof. Let a list of constraints C be given and let vars l be the list of variables occurring in l.
We prove H10C C←→ SHOU ([Ṅ | x ∈ vars C], f C , H) where H proves that

∀(t1, t2, A) ∈ f C . ([Ṅ | x ∈ vars C] ⊢ t1 : A) ∧ ([Ṅ | x ∈ vars C] ⊢ t1 : A).

https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.HOU.unification.systemunification.html#SU_U
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.HOU.unification.systemunification.html#SU_U
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.HOU.second_order.dowek.reduction.html#Dowek
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.HOU.second_order.dowek.reduction.html#Dowek
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For the direction from left to right let ϕ s.t. ϕ ⊨ C be given. Let ∆ := [] and σx := JϕxK.
The claim follows by Facts 24.6 and 24.7 and induction on C .

For the converse direction, let σ unify f C and ∆ ⊢ σ : [Ṅ | x ∈ vars C]. By the lat-
ter and Fact 24.1 let L be the list of normal forms of [σx | x ∈ vars C]. Then ϕn :=
if L[n] is Some t then if inv t is Some n then n else 0 else 0 solves C by Facts 24.8, 24.9, and
24.7. ■



CHAPTER 25
The Coq Library of Undecidability
Proofs

Since 2018, the problems described in this part of the thesis have formed the foundation of
the Coq Library of Undecidability Proofs, a collaborative effort of several researchers at various
institutions spanning more than 110.000 lines of code.

The library contains various undecidable problems, which can roughly be classified into
seed problems, advanced problems, and target problems. Seed problems have simple definitions
and work well as starting point for reductions, i.e. for a seed S and a problem p, it is often
easy to establish e.g. S ⪯m p. Typical seed problems include PCP and H10C. Target problems
are expressive problems, usually with more involved definitions, and work well as end points
for reductions, i.e. for a target problem T and a problem p, it is often easy to establish e.g.
p ⪯m T . Thus, once a target problem is proved undecidable by many-one reduction from the
halting problem, it can be used for many-one equivalence proofs. Typical target problems
include first-order logic or L. Advanced problems are problems where a machine-checked
undecidability proof is of interest independent to its use for other proofs. Typical advanced
problems part of this thesis include higher-order unification, but more generally are problems
like semi-unification or type-checking and typability for System F.

We first give a brief statistical overview over the library. We then survey work which is part
of the undecidability library without the involvement of the author (Section 25.2), give a com-
parison of the Undecidability Library with other libraries in the Coq ecosystem (Section 25.3),
and directions for future work (Section 25.4).

25.1 Statistics

At the time of writing, the Coq Library of Undecidability proofs spans 117k lines of code (LoC),
with 51k lines of specification and 66k lines of proofs, i.e. with a ratio of 44% specification vs.
56% proofs. Figure 25.2 shows how the code is organised into sub-projects.

The library was founded by the author of this thesis and Dominique Larchey-Wendling in
October 2018, but plans to do so date back to early 2018 [80]. Initially, the library comprised
the code accompanying four papers [83, 71, 81, 73]. The library is collaboratively developed
via GitHub, were Dominique Larchey-Wendling and the author of this thesis act asmaintainers.
Collaboration is arranged via pull requests, of which 109where filed since 2018, and discussed
in issues (19 in total as of May 2021). Figure 25.1 shows an overview of contributed lines per
author.

Continuous integration (CI) first using Travis and then GitHub’s built-in CI tremendously
speeds up the checking of PRs by maintainers. CI has checked over 800 intermediate states
of the repository, with successful runs taking around 25 minutes.
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Figure 25.1.: Contribution statistics

TM: 23364 MuRec: 4529 CounterMachines: 839

TRAKHTENBROT: 10635 MinskyMachines: 3883 HilbertCalculi: 769

L: 10202 ILL: 2623 SemiUnification: 652

HOU: 9755 FOLP: 2234 SeparationLogic: 575

FOL: 8142 StringRewriting: 1704 DiophantineConstraints: 507

H10: 7300 PCP: 1127 PolynomialConstraints: 227

StackMachines: 5820 FRACTRAN: 1083 Shared: 15001

SystemF: 4922 SetConstraints: 846 Synthetic: 973

Figure 25.2.: Line counts of subdirectories

[227] Trakhtenbrot. 1950. The
impossibility of an algorithm for
the decidability problem on finite
classes.

[129] Kirst and
Larchey-Wendling. 2020.
Trakhtenbrot’s Theorem in Coq.

[130] Kirst and
Larchey-Wendling. 2021.
Trakhtenbrot’s Theorem in Coq:
Finite Model Theory through the
Constructive Lens.

[81] Forster and
Larchey-Wendling. 2019.
Certified undecidability of
intuitionistic linear logic via
binary stack machines and
Minsky machines.

[157] Lincoln et al.. 1992.
Decision problems for
propositional linear logic.

[154] Larchey-Wendling and
Galmiche. 2010. The
undecidability of boolean BI
through phase semantics.

[151] Larchey-Wendling. 2021.
Synthetic Undecidability of
MSELL via FRACTRAN
mechanised in Coq.

[28] Chaudhuri. 2018.
Expressing additives using
multiplicatives and
subexponentials.

[128] Kirst and Hermes. 2021b.
Synthetic Undecidability and
Incompleteness of First-Order
Axiom Systems in Coq.

25.2 Other machine-checked undecidability proofs

Several results in the library were contributed independently, see fig. 25.3.

Logic Kirst and Larchey-Wendling prove Trakthenbrot’s theorem [227] in Coq, i.e. the un-
decidability of satisfiability for first-order logic w.r.t. a model with finite domain FSAT by
reduction from BPCP [129]. In an extended version, they also verify a reduction from FSAT
to satisfiability in minimal separation logic MSLSAT and separation logic SLSAT [130].

Forster and Larchey-Wendling prove the undecidability of entailment in elementary intu-
itionistic linear logic EILL and intuitionistic linear logic ILL [81]. The undecidability of ILL
was first proved by Lincoln, Mitchell, Scedrov, and Shankar [157] by reduction from and-
branching two-countermachines without zero-test. The undecidability of EILLwas first proved
by Larchey-Wendling and Galmiche [154] by reduction from two-counter machines. Larchey-
Wendling mechanises a reduction from ILL to entailment in classical linear logic CLL. The un-
decidability of entailment in (intuitionistic) multiplicative sub-exponential linear logic IMSELL
by reduction from HaltFRACTRAN was proved and mechanised by Larchey-Wendling [151]. The
undecidability of IMSELL before was proved on paper via reduction from the halting problem
of two register counter machines [28].

Kirst and Hermes [128] mechanise the undecidability of naive Tarski validity for Peano
arithmetic PA, provability in Heyting arithmetic HA, naive Tarski validity in ZF set theory,
and provability in a system similar to IZF (the arithmetical problems are displayed as Arith
in the diagram). They conclude via Post’s proof idea [192] that if HA or respectively IZF are
negation-complete, HaltTM would be synthetically decidable, i.e. HA and IZF are synthetically
negation-incomplete.
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Figure 25.3.: overview of the results currently in the library. In red: results without the in-
volvement of the author of this thesis.
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Semi-Unification Semi-unification was proved undecidable by Kfoury, Tiuryn, and Urzy-
czyn [126] via reduction from the immortality problem of Turing machines. Dudenhefner
verifies a many-one reduction from unboundedness of a certain form of counter machines to
simple semi unification (SSemiU) and semi unification (SemiU) [61]. He sketches a weak truth-
table reduction from the immortality problem of Turing machines to unboundedness, relying
on the fan theorem. In follow-up work, Dudenhefner then verifies a constructive many-one re-
duction from the halting problem of two-counter machines (HaltMM2

), via a more specialised
problem of two-counter machines (HaltCM2

) and via a halting problem for specialised one-
counter machines (HaltCM1

) to unboundedness [62].

Typed λ-calculi Spies and Forster prove the undecidability of 2nd order (Unif2) and 3rd
order unification (Unif3) by reduction from H10C and BPCP, respectively [216].

Dudenhefner and Rehof verify a reduction from H10C to the inhabitation problem for System
F SysFinhab [64]. Equivalently, the problem can be seen as provability in the implicational
fragment of intuitionistic second-order propositional logic IPC2, originally proved undecidable
by reduction from provability in first-order logic by Löb [158]. Dudenhefner verifies a many-
one reduction from simple semi unification to the typability problem of System F SysFTyp, and
further to the typechecking problem for System F SysFTC [63]. The proof is a less versatile
simplification of the original undecidability proof on paper by Wells [234].

Projects outside of the library We are aware of two projects outside of the context of the
library, which are concerned with the verification of reductions.

The first is a reduction of the bounded quantification problem in F−<: (a version of System
F with subtyping) to subtyping in D<: by Hu and Lhoták [115], a subset of the core calculus
DOT of the Scala programming language. The proofs are mechanised in Agda. Porting the
proofs to Coq seems feasible, but would first need a result for subtyping in System F.

The second is a simulation of µ-recursive functions in a choreographic language [42], mech-
anised in Coq. An integration into the library seems feasible.
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[146] Kummer. 1996. On the
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25.3 Other Coq libraries

Lean mathlib 544 k GeoCoq 134 k

UniMath 182 k Coq Library of Undecidability Proofs 117k

Gaia 154 k mathcomp 96k

CoRN 151 k Iris (core repository) 43k

Table 25.4.: Lines of Code of selected Coq projects.1

The awesome-coq repository [34] curates a list of Coq libraries, plugins, tools, and re-
sources. As of May 7th 2020, it lists 18 projects in the category “Libraries”, amongst them
the Coq Library of Undecidability Proofs. Of all the libraries listed, the Coq Library of Undecid-
ability Proofs is the biggest in terms of lines of code. This is however also due to the fact that
the ecosystems around mathcomp [162] or Iris [141] are developed in separate repositories.

The category “Type Theory and Mathematics” lists 19 projects. Here, the Undecidability Li-
brary is surpassed by the UniMath project (covering univalent mathematics) [232], the GeoCoq
project (covering “a formalization of geometry in Coq based on Tarski’s axiom system”) [221],
the Gaia project (covering results from “Elements of Mathematics by N. Bourbaki in Coq using
the Mathematical Components library, including set theory and number theory”) [100], and
the CoRN project (the “Coq Repository at Nijmegen”) [53, 41].

The mathlib is the centralised mathematical library of the Lean proof assistant. As of De-
cember 2019, it contained 174k LoC [167]. As of May 7th 2020, it contains 544k LoC.

25.4 Future work

Pierce proves undecidability of subtyping in System F, called F<: [185], by reduction from the
halting problem of counter machines. A machine-checked proof of the reduction seems fea-
sible, especially since it could potentially be simplified by basing it on Dudenhefner’s HaltCM2

problem [62] or Larchey-Wendling’s HaltMM2
problem.

A seed problem not yet included in the library is Wang tiling, proved undecidable by reduc-
tion from HaltTM1 by Berger [19]. Wang tilings are frequently used in undecidability proofs
for logics, for instance for the Entscheidungsproblem [24]. A machine-checked proof of the
reduction seems feasible in principle, but it is an interesting open question whether another
seed problem simplifies the reduction. Since the reduction seems to make crucial use of deter-
minism of Turing machines, problems like PCP seem to be no obvious alternative, but counter
machine problems like HaltCM2

or HaltMM2
might work better.

The undecidability proof of λΠ typability due to Dowek [59] starts at third-order unification
Unif3 and might be a candidate for an elegant machine-checked proof.

Catt and Norrish [27] verify the undecidability of the problem N of nonrandomness of num-
bers defined via Kolmogorov complexity [138, 139], based on the λ-calculus in HOL4. The
problem N does not many-one reduce from the halting problem, since it is a simple predi-
cate [180, III.2.12]. However, Kummer [146] proves that N is truth-table complete. Thus,
a synthetic undecidability proof of N defined via Kolmogorov complexity of e.g. L, by truth-
table reduction from the halting problem of L might be feasible, but likely requires machinery
like fixed-point theorems for L, which however are already machine-checked [83]. A fully
synthetic direct proof of ¬DN using SCT might also be feasible and easier.

1All lines of code counted with the cloc tool [45].
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CHAPTER 26
Introduction: Programming in the
call-by-value λ-calculus

In Parts I and III we have obtained result in computability theory completely independent
of models of computation, whereas Part II was agnostic towards a model and covered various
different models. In particular, in Part II we proved that computability and consequently
uncomputability results can be transported between models.

However, there are results for which working in a concrete model of computation cannot
be avoided. In this chapter, we will establish a universal machine, prove that there exists a
predicate of typeN→Pwhich is not decidable in any of the coveredmodels of computation, and
prove the Sm

n theorem. For all of these results, it helps to focus on one fixed model and develop
powerful tools for working in the model as easy as possible. Furthermore, singling out one
model eases equivalence proofs, where one wants to show that a model M is Turing-equivalent
to the models discussed or that a problem p is m-equivalent to the problems discussed.

We identify the weak call-by-value λ-calculus L as a sweet spot for concrete results in com-
putability (and even complexity) theory. In particular, this is due to the fact that programming
in L is significantly easier than in any of the other models covered in this thesis, and seems
superior also in comparison to other λ-calculi. Several aspects of L contribute to this fact.

First, due to its weak call-by-value semantics, programming in L is similar to programming
in general-purpose programming languages. By using our certifying extraction mechanism,
which fully automatically extracts simply-typed Coq functions into λ-terms together with a
proof of correctness, manual implementation and verification of terms become rare. But since
the tool only supports total functions, for partial functions manual verification is occasionally
necessary and greatly eased by an expressive language with intuitive semantics.

Secondly, we define L using simple, capturing, point-wise de Bruijn substitution. Parallel
substitution as in the full λ-calculus is more complicated to define, since it is not structurally
recursive. Thus, implementing and verifying an abstract machine as in Chapter 11 for the
simulation of L on Turing machines is considerably eased by a substitution operation which is
easy to implement.

Thirdly, L is a reasonable model of computation for time and space complexity theory [77].
In fact, the simulation of L on Turing machines we covered in Chapter 12 only has polynomial
overhead in the number of β-steps the L-term needs to find a normal-form [78]. We do not
cover this time complexity property, but note that the work by Gäher and Kunze on a machine-
checked proof of the Cook-Levin theorem [88] relies on the property.

In this part of the thesis, we will largely use L for equivalence proofs. With the results we
already have, proving that a model of computation M is Turing-equivalent amounts to proving
that computability in any of the models covered in Part II implies computability in M , and
vice versa that computability in M implies computability in L.
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Similarly, a textbook proof that the problems discussed in Part III are many-one equivalent
would usually show that they are intuitively enumerable, which implies that they reduce to
Turing machine halting via the Church-Turing thesis. Uses of the informal Church-Turing
thesis or the formal axiom CT can be circumvented in our setting by using the certifying
extraction framework, which allows extracting synthetic enumerators to L.

Lastly, we analyse notions of computability and CT defined using L. By verifying the L-
computability of the many-one reductions established in Part II, it would in principle be pos-
sible to prove that none of the problems is decidable in any of the models covered in Part II.

26.1 Outline

We give a high-level overview of a certifying extraction mechanism in Chapter 27. The extrac-
tion allows one to turn a simply-typed, non-dependent Coq function f into a λ-term t f , and
also generates a certificate that the term indeed computes f . We use the certifying extraction
framework for the following results:

• We obtain a verified universal machine for L by extracting a step-indexed interpreter
and implementing an unbounded minimisation operation,

• we show that L can simulate Turing machines by giving a proof that every function with
finite and discrete domain and discrete co-domain is L-computable,

• we show that L can simulate µ-recursive functions by extracting a step-indexed inter-
preter for the untyped, syntactic shape ofµ-recursive functions and conclude that formu-
lating CT for L, Turingmachines, binary stackmachines, counter machines, FRACTRAN,
Diophantine equations, or µ-recursive functions is equivalent,

• we show that every L-enumerable problem reduces to HaltL, and that thus provability in
minimal first-order logic is many-one equivalent to HaltL, and

• we show that every L-semi-decidable problem reduces toHaltL, and that thus the boolean
Post’s correspondence problem BPCP is many-one equivalent to HaltL.

Lastly, in Chapter 29 we define CT using L and give a machine-checked proof of the Sm
n the-

orem for L, yielding a proof that CT defined using L implies SCT as introduced in Section 6.2,
and briefly discuss directions for a future mechanised consistency proof of CT in CIC.

26.2 Related work

For related work regarding simulation proofs of models of computation, see Section 10.2. In
Section 27.6 we give related work regarding extraction and certifying compilation.

26.3 Mechanisation in Coq

The Coq code for this chapter is partially contributed to the Coq Library of Undecidability
proofs, partially part of the artifacts of papers, and can also be found on the following website:

https://ps.uni-saarland.de/~forster/thesis

The central theorems in this part of the pdf of this thesis are hyperlinked with the html-
version of the Coq code, indicated by a clickable -symbol.

https://ps.uni-saarland.de/~forster/thesis
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CHAPTER 27
Certifying Extraction

When working in any model of computation, one is frequently in the situation that one
wants to implement a function f as a program in the model. Textbook proofs usually gloss
over this part of proofs, of which Post assessed that once the informal proof not mentioning
concrete programs was “gotten, transforming it into the formal proof [mentioning programs]
turned out to be a routine chore” [189]. In a proof assistant, leaving out these proofs is no
option. We discussed one possible way out in Part I by the axiom CT, stating that a program
can be found for every function f :N→N. We here discuss a second route, namely a certifying
extraction framework which allows obtaining programs in the weak call-by-value λ-calculus
together with a correctness proof corresponding to almost arbitrary functions of CIC. By using
the framework, proofs do not depend on axioms and internally λ-terms are constructed and
verified, but this tedium is largely hidden from the user and carried out automatically.

Turning functions of the CIC into L-terms is a form of extraction, since CIC is a rich λ-
calculus itself (with inductive types, a native pattern matching construct, and a fixed-point
construct). The certifying extraction framework applies to a simply-typed, non-dependent
subset of CIC without mutual or nested inductive types. Our framework is implemented as a
plugin in the Coq proof assistant, relying on tools of the MetaCoq project [211] and elaborated
Ltac programming to obtain automated verification tactics. The tactics were implemented by
Fabian Kunze and are not covered here.

In this chapter, we introduce equational reasoning for L, Scott encodings of arbitrary first-
order datatypes in L, and an extraction relation f ⇝ t f stating that t f behaves like an ex-
traction of f , i.e. that t f computes f . To explain how to work with the framework, we verify
a self-interpreter for L and introduce notions like decidability, semi-decidability, and enumer-
ability in terms of L.

Publications The chapter is based on
[76] Forster and Kunze. “A certifying extraction with time bounds from Coq to call-by-value λ-

calculus.” International Conference on Interactive Theorem Proving. 2019.
[84] Forster and Smolka. “Call-by-value lambda calculus as a model of computation in Coq.” Journal

of Automated Reasoning 63.2 (2019): 393-413.

27.1 Equational reasoning

We have presented L in a big-step evaluation semantics. For equational reasoning one needs
an equivalence relation≡ : tmL→tmL→P. We define≡ in terms of a small-step semantics for L:

(λs)(λt)≻ s0
λt

s ≻ s′

st ≻ s′ t

t ≻ t ′

st ≻ st ′

Here, sn
u is the capturing de Bruijn substitution operation.
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We then define ≡ as the reflexive, transitive, symmetric closure of ≻:

s ≡ s

s ≻ t

s ≡ t

s ≡ u u≡ t

s ≡ t

s ≡ t

t ≡ s

Fact 27.1. If s is closed, then s ▷ t←→ s ≡ t ∧ ∃u. t = λu.

Corollary 27.2. If s ▷ t and s ≡ s′, then s′ ▷ t.

To perform recursions, we introduce a recursion function

ρs := λa. (λx y. y(λz. x x yz) (λx y. y(λz.x x yz)) sa).

Theorem 27.3. If s and t are closed abstractions, ρs is a closed abstraction and ρst ≡ s(ρs)t.

27.2 Scott encodings

To encode natural numbers, booleans, and other first-order types as L-terms, we rely on Scott
encodings [204]. The idea behind Scott encodings is that case analysis is by application.

For instance, if b encodes a boolean b:B, and we want to perform a case analysis on b
which proceeds with a term s1 if b = true and a term s2 otherwise, then b s1 s2 implements
this case analysis.

Similarly, if n encodes a natural number n:N, and we want to perform a case analysis on n
which proceeds with a term s2m if n= S m and s1 otherwise, then n s1 s2 implements this case
analysis.

We write ϵX for the Scott encoding function on an encodable type X . The Scott encoding
functions for booleans, natural numbers, and for L-terms are defined as follows:

ϵBtrue := λx1 x2. x1 ϵBfalse := λx1 x2. x2

ϵN0 := λx1 x2. x1 ϵN(S n) := λx1 x2. x2(ϵNn)

ϵtmL
n := λx1 x2 x2. x1(ϵNn) ϵtmL

(st) := λx1 x2 x3. x2(ϵtmL
s)(ϵtmL

t)

ϵtmL
(λs) := λx1 x2 x3. x3(ϵtmL

s)

Scott encoding for terms was first used by Mogensen [171], but using a HOAS approach in
the Scott encoding rather than relying on de Bruijn indices.

One can define Scott encodings for all first-order types, where an inductive type is first-order
if all its parameters, indices, and all argument types of all constructors are first-order [184].
In general, for a first-order inductive type X with n constructors, the constructor ci of in-
dex i which takes a arguments of types X1, . . . , Xa has Scott encoding ϵX (ci x1 . . . xa) :=
λy1 . . . yn.yi(ϵX1

x1) . . . (ϵXa
xa).

Fact 27.4. For an inductive type X with n constructors with a constructor ci of index i which
takes a arguments, and for closed abstractions t1, . . . , ta and s1, . . . , sn we have that

ϵX (ci t1 . . . ta) is closed and ϵX (ci t1 . . . ta) s1 . . . sn ≡ si t1 . . . ta.
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We use the meta-programming tools of MetaCoq to implement Coq commands which on
input X generate encoding functions ϵX and proofs of the equations as described in Fact 27.4.
As a result, using functions on datatypes other than natural numbers is almost automatic,
which significantly eases programming.

27.3 Extraction

We now introduce a meta-logical relation x ⇝X t x for a CIC term x : X and an L-term t x . If
x ⇝X t x , we say that x extracts to t x , or vice versa that t x computes x . If we do not want to
make t x explicit, we say that x is L-computable.

By “meta-logical” we want to hint that the relation is a logical relation in the usual sense,
but also that is defined only on the meta-level, not in CIC.

X is first-order
x ⇝X ϵX x

t f is a closed abstraction ∀x : X . ∀t x : tmL. x ⇝X t x→∃t ′. t f t x ≡ t ′ ∧ f x ⇝Y t ′

f ⇝
X→Y

t f

Note that for concrete X , the relation ⇝X can be spelled out and defined. In Coq, we use
a reified type of simple types such that the reification X̃ can be obtained from X using type
classes. Then one can define⇝X̃ by recursion on X̃ .

For instance, for X := (N→ B)→ LN→ LB (the type of the mapN,B function), we have that
for a closed abstraction s, the proposition mapN,B⇝ s is equivalent to

∀ f :N→B.∀t f : tmL. (∀x:N. f (ϵNx)≡ ϵB( f x))→∀l:LN. s (t f ) (ϵl)≡ ϵ(mapN,B f l).

The core of the certifying extraction framework is a Coq command which on input x gen-
erates a term t x and a proof that x ⇝X t x . The command can also be accessed via the tactic
extract, see e.g. the Ackermann.v file in the accompanying Coq code. For the command to
work, all auxiliary functions and constructors a function uses have to be encoded first.

For instance, to extract mapN,B relying on the constructors [] and ::, one first has to use the
command for :: obtaining t:: and then can extract mapN,B to the term t:

t:: := λx1 x2 y1 y2. y2 x1 x2 t := ρ(λmf l. l (ϵ[]) (λx l ′. t:: ( f x) (ml))

Note that one does not need to generate t[], since ϵ[] can be used instead.

27.4 Universal term

To obtain a universal term for L, we implement a step-indexed interpreter
eval:N→ tmL→O(tmL). The defining equations follow the rule of the evaluation relation ▷:

eval (S n) (st) = if (eval n s, eval n t) is (Some (λu),Some t ′) then eval n (u0
t ′) else None

eval (S n) (λs) = Some (λs) eval n t = None in all other cases

https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.L.Functions.Ackermann.html#term_ackermann
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Fact 27.5. λn. eval n s is stationary.

Fact 27.6. s ▷ t←→∃n. eval n s = Some t

The interpreter uses naive de Bruijn substitution, which in turn uses equality test of natural
numbers. Thus when using the Coq commands of the extraction framework, one proves the
following results:

Fact 27.7. The following hold:
1. There is a term teq such that (λn1n2:N. n1 =B n2)⇝ teq.

2. There is a term tsubst such that (λsnu.sn
u)⇝ tsubst.

3. There is a term teval such that eval⇝ teval.

Lastly, we implement a term µL performing unbounded search.

Theorem 27.8. There is a closed abstraction µL such that for all closed abstraction s satisfying
∀n:N.∃b:B. s(ϵNn)≡ ϵBb, the following hold:

1. If s(ϵn)≡ ϵ true, then ∃m. µLs ≡ ϵm.

2. IfµLs▷v, then there exists n such that v = ϵn, s(ϵn)≡ ϵ true and ∀m< n. s(ϵm)≡ ϵ false.

Proof. Define µL := λs. ρ(λrn. (sn) n (r(tS n)))(ϵN0). ■

Theorem 27.9. There is a closed abstraction U: tmL such that s ▷ t←→U(ϵtmL
s) ▷ ϵtmL

t.

Proof. First obtain a term t s.t.(λs: tmL.λn:N.if eval n s is Some v then true else false) ⇝ t.
Then define U := λs. eval (µL(ts)) s (λx . x) (λx . x). ■

Using U, we can now prove that HaltL reduces to the halting problem of L on closed terms.

Corollary 27.10. HaltL ⪯m Halt′L

Proof. Since U is closed by Theorem 27.9. ■

27.5 Notions of computability theory in L

One can define notions like decidability, semi-decidability, and enumerability in terms of L. A
predicate p: X→ P where X is L-encodable is

• L-decidable if ∃t: tmL. closed t ∧∀x . (px ∧ t(ϵX x) ▷ ϵBtrue)∨ (¬px ∧ t(ϵX x) ▷ ϵBfalse.
• L-recognisable if ∃t: tmL. closed t ∧∀x . px←→HaltL(t (ϵX x)).
• L-enumerable if ∃t: tmL. closed t ∧∀x . px←→∃n. t (ϵX n) ▷ ϵX x .

Note how these notions only depend on L-terms and do not mention functions.
Fundamentally, total L-terms computing a value of type Y when applied to a type X can be

turned into total functions X→ Y . The construction uses the guarded minimisation function
µN:∀ f :N→B.(∃n. f n=true)→N from Corollary 3.8 and the step-indexed interpreter eval.

Lemma 27.11 ([83, Lemma 27]). ∀s.(∃v. s ▷ v)→Σv. s ▷ v

Proof. Let s be given and define f n := if eval n s is Some v then true else false. If
(∃v. s ▷ v), then also ∃n. f n = true, and we have that f (µN f ) = true. Thus s ▷
if eval (µN f )s is Some v then v else λx .x . ■

https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.L.Functions.Eval.html#eval_Eval
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.L.Functions.Eval.html#eval_Eval
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We have discussed a similar, more abstract theorem in Section 7.6.2.
We can then show the following characterisation theorem.

Theorem 27.12. Let X→ P where X be L-encodable. We have that p is. . .
• L-decidable if and only if there is an L-computable decider f : X→B for p.
• L-recognisable if and only if there is an L-computable semi-decider f : X→N→B for p.
• L-enumerable if and only if there is an L-computable enumerator f :N→OX for p.

We can use these notions to obtain many-one reductions of problems to HaltL.

Theorem 27.13. Let X be L-encodable and p: X→ P be L-recognisable. Then p ⪯m HaltL.

Proof. Let s f compute f obtained via Theorem 27.12 (2). Then λx . µL(s f x) many-one
reduces p to HaltL since

px←→ (∃n. f xn= true)←→ (∃n. s f x n ▷ true)←→HaltL(µL(s f x)) ■

Since enumerable predicates on discrete types are semi-decidable, we can reduce them to
the L-halting problem as well:

Theorem 27.14. Let p: X→ P be L-enumerable and d be an L-computable equality decider
for X . Then p ⪯m HaltL.

Proof. Let f be an enumerator for p by Theorem 27.12 (3). The function g xn :=
if f n is Some x ′ then d x x ′ else false semi-decides p as in Corollary 4.57. Since f and d are
L-computable, g is L-computable. By Theorem 27.13 we have p ⪯m HaltL. ■

Lastly, it is often more convenient to give list enumerators, and the construction converting
list-enumerators to enumerators also preserves L-computability:

Corollary 27.15. Let p: X→ P be list-enumerated by f (i.e. ∀x . px←→∃n. x ∈ f n), and d be
an equality decider for X . If d and f are L-computable, then p ⪯m HaltL.

We can now prove that the L-halting problem is L-undecidable:

Lemma 27.16. λs.¬HaltL(s(ϵtmL
s)) is not L-recognisable.

Proof. Let t be an L-term satisfying ∀s. ¬HaltL(s(ϵtmL
s))←→HaltL(t(ϵtmL

s)). Then in particular
¬HaltL(t(ϵtmL

t))←→HaltL(t(ϵtmL
t)), contradiction. ■

Corollary 27.17. HaltL is not L-recognisable.

Proof. If t would recognise HaltL, then λx . t(tappx(tϵtmL
x), (where tapp computes application

and tϵtmL
computes ϵtmL

) would recognise λs.¬HaltL(s(ϵtmL
s)). Contradiction. ■

Corollary 27.18. HaltL is L-undecidable.

We can deduce the same results for the halting problem on closed L-terms Halt′L:

Corollary 27.19. Halt′L is not L-recognisable and Halt′L is L-undecidable.

Proof. Let t recognise Halt′L. Let t ′ := (λx .t(tapp(ϵtmL
U)(tϵtmL

x))). Then HaltL s ←→

Halt′L(U(ϵtmL
s))←→HaltL(t ′(ϵtmL

s)), i.e. t ′ recognises Halt′L. ■

https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.L.Computability.Synthetic.html#L_decidable_iff
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.L.Computability.Synthetic.html#L_decidable_iff
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.L.Computability.Synthetic.html#L_recognisable_HaltL
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.L.Computability.Synthetic.html#L_recognisable_HaltL
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.L.Computability.Synthetic.html#L_enumerable_HaltL
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.L.Computability.Synthetic.html#L_enumerable_HaltL
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.L.Computability.Synthetic.html#L_enum_HaltL
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.L.Computability.Synthetic.html#L_enum_HaltL
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We can lift HaltL to a relation of type N→N→ P by defining RHaltLnm := m = 0←→∃s. en =
Some s ∧HaltLs, where e is an enumerator of tmL.

Corollary 27.20. The relation RHaltL:N1→N→ P is not L-computable.

27.6 Related work

Myreen and Owens [175] implement a proof-producing translation from the higher-order
logic implemented in the HOL4 system with a state-and-exception monad into CakeML [145].
The translation also produces proofs for the translated terms, similar to our approach. Hu-
pel and Nipkow [118] give a verified compiler from a deep embedding of Isabelle/HOL to
CakeML. Similar to our work, they use a logical relation to connect Isabelle definitions to an
intermediate representation.

Mullen et al. [173] provide a verified compiler from a subset of Coq to assembly. Anand et
al. [2] report on ongoing work on verifying a compiler for Coq to assembly, also based on the
MetaCoq framework. They first compile Coq functions into Clight, an intermediate language
of the CompCert compiler. Letouzey [156] describes the theoretical foundations of extraction
in Coq. Our logical relation can be seen as a light-weight version of his simulation predicate
for simple polymorphic types.

Köpp [140] verifies program extraction for functions in the Minlog proof assistant into a
λ-calculus-like system and obtains a certifying extraction by instantiating the correctness the-
orem.
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CHAPTER 28
Equivalence proofs

We here explain two techniques how to simulate other models of computation in L, and two
techniques to prove many-one equivalences, respectively.

First, we show that every finite function, i.e. every function where the domain is a finite
discrete type, is L-computable. Since step-functions of Turing machines are finite functions,
they are always L-computable. We can use this to obtain a compilation of Turing machines to
L by looping the step-function.

Secondly, we show that TM-computable relations are L-computable. Until now, we have
glossed over the details of such proofs, but here now exemplarily show how pre- and post-
processing of input and output works.

Thirdly, we show that L can simulate µ-recursive functions. The challenge here is that
µ-recursive functions are defined using a dependent inductive type, and that the certifying
extraction framework does not support functions on it. We thus introduce a novel general
technique of identifying the shape of a type, on which functions can be defined which are
extractable to L.

Lastly, we employ the results from the last chapter to show that PCP andminimal provability
in first-order logic both reduce to HaltL.

Publications Sections 28.1 and 28.2 contain adapted pieces of text from [76], and section
28.3 contains adapted pieces of text from [153], which were all written solely by the author
of this thesis. Section 28.5 is based on [74].
[76] Forster and Kunze. “A certifying extraction with time bounds from Coq to call-by-value λ-

calculus.” International Conference on Interactive Theorem Proving. 2019.
[153] Larchey-Wendling and Forster. “Hilbert’s Tenth Problem in Coq (extended version).” arXiv

preprint arXiv:2003.04604. 2020.
[74] Forster, Kirst, andWehr. “Completeness Theorems for First-Order Logic Analysed in Constructive

Type Theory” International Symposium on Logical Foundations of Computer Science

28.1 Simulating Turing machines

To simulate Turing machines in L, we first give an alternative, executable semantics for Turing
machines based on iteration of a step-function. Secondly, we implement a (potentially non-
terminating) iteration combinator in L.

We define a function nxtM : QM × tpn
Σ→ (QM × tpn

Σ) + tpn
Σ and a polymorphic function loop :

(X→ X + Y )→ X→N→OY as follows:

nxtM (q, t) := if haltq then inr t

else let (q′, a) := δM (q, curr t) in

inl (q′,map2(λ(c, m)t.mv m (wr c t)) a t)
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loop f x 0 := None loop f x (S n) := loop f x ′ n (if f x = inl x ′)

loop f x (S n) := Some y (if f x = inr y)
Fact 28.1. (∃i. loopnxtM (q0, t) i = Some t ′)←→∃q′. M(q, t) ▷ (q′, t ′)

Theorem 28.2. Let X be finite and L-encodable, dX decide equality on X and be L-
computable, and Y be L-encodable. Then any function f : X→ Y is L-computable.

Proof. Let l be a list containing all elements of X . If l = [], i.e. there are no elements in X ,
the claim is trivial (via the term λx .x .). If l contains at least the element x0 : X , we define

g[] := f x0 g((x ′, y ′) :: l)x := if dX x x ′ then y ′ else g x l

Clearly, g is L-computable by a term tg . We furthermore have that f x = g [(x , f x) | x ∈ l] x .
Thus, f is L-computable by tg (ϵL(X×Y ) [(x , f x) | x ∈ l]). ■

Corollary 28.3. Let M : TMn
Σ. There is snxtM

: tmL such that snxtM
(q, t) ▷ nxt(q, t).

We define a term sloop which loops a given function f on a given value x until a value y
is found, or indefinitely if not. Since the extraction framework only covers total functions we
manually implement sloop, relying on the recursion combinator ρ:

sloop := ρ(λr f x . f x(λx ′z.r f x ′)(λyz.y)(λz. z))

Note that we could have implemented sloop by using µL, which would however be inefficient.
This simulation we use has linear overhead, but we do not prove this result formally.

Lemma 28.4. Let f be computable by s f , i.e. ∀x . s f x ▷ f x . We have the following:

1. If loop f x i = Some y , then sloop s f x i ▷ y .

2. If sloop s f x terminates, there exist i and y such that loop f x i = Some y .

This suffices to prove the simulation theorem.

Theorem 28.5. There is ssim : tmL such that for all M : TMn
Σ and t : tpn

Σ:

1. If M(q0, t) ▷ (q, t ′), then ssim snxtM
t ▷ t ′.

2. If ssim snxtM
t ▷ v, then ∃qt ′. M(q0, t) ▷ (q, t ′).

28.2 TM-computable relations are L-computable

Let R : Nk→N→ P be computable by M : TMn
Σ. We define an L-term computing R by taking

n1, . . . , nk as input, converting them to their respective TM-encoding, and then running M
with the help of ssim. For conciseness, we define sn := [s, . . . , s]

︸ ︷︷ ︸

n times

. Step-by-step, s has to:

1. Expect input in the form s n1 . . . nk,

2. for 1≤ i ≤ k compute t i := midtp []bl sni , i.e. the L-encoding of the TM-encoding of ni .

3. run the simulation s
sim

snxtM
(niltp, t1, . . . , tk,niltp, . . . ,niltp).

4. this computation will (if it terminates) terminate with a value (midtp [] b sm, t ′2 . . . , t ′n),

5. meaning s has to output m.
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Def. shape

Three challenges arise: the term s has to be defined parametric in k, the L-encoding of the
numbers n1, . . . , nk has to be converted to the L-encoding [niltp, t1, . . . , tk,niltp, . . . ,niltp], and
the L encoding of a result t ′ has to be analysed, and the TM-encoding of a number m contained
in t ′[0] has to be converted to the L-encoding of m.

For the first task, we implement k-ary substitutions and combinators.

Fact 28.6. One can define functions sn
u : tmL where s : tmL, n : N, u : tmk

L and

λk : tmL→ tmL appk : tmL→ tmk
L→ tmL varsk : tmk

L

such that the following hold:
1. varsS k = k :: varsk,

2. (appks(s1, . . . , sk))nu = appk(sn
u)((t1)nu, . . . , (tk)nu),

3. if all elements of u are closed abstractions, then appk(λks)u≻k s0
u.

The second and third tasks can again be done by extraction.

Fact 28.7. There is a closed abstraction sprep such that sprep (n1, . . . , nk)▷[niltp, t1, . . . , tk,niltp, . . . ,niltp],
where t i := midtp []bl sni .

Fact 28.8. There is a closed abstraction sunencTM
such that if t[0] = midtp []bl sm we have

sunencTM
t ▷ Some m and sunencTM

t ▷None otherwise.

Theorem 28.9. TM-computable relations R : Nk→N→N are L-computable.

Proof. Define sM := λk.sunencTM
(ssim snxtM

(sprep(sconsk(. . . (scons 0 0))))) (λx .x)0. ■

Corollary 28.10. HaltTM ⪯m HaltL

Corollary 28.11. The relation RHaltL:N1→N→ P is not TM-computable.

28.3 Simulating µ-recursive functions

To simulate µ-recursive functions in L we implement a step-indexed interpreter. Recall that
the type funck of µ-recursive functions is heavily dependent: It has a type index in k, makes use
of finite types Fk, and has a nested use of the dependent vector type, i.e. contains subterms of
type (funck)i . Since the extraction from Coq to L does not support dependent or nested types,
a direct step-indexed interpreter will not be extractable. Thus, we use a general technique
and implement a step-indexed interpreter working on the shape of µ-recursive functions.

A shape for a type I mirrors the constructors of I , but without any dependent types. If I
furthermore has nested applications of types N1, . . . , Nn, the shape also contains the construc-
tors of N1, . . . , Nn. That is, if I has i constructors and N1, . . . , Nn have m1, . . . , mn constructors
respectively, the shape of I has i+m1+ · · ·+mn constructors. The type shape of the type func
is defined as in Figure 28.1.

Note that we re-use constructor names. In the shape we have j:N instead of j:Fk for proj ,
g: shape instead of G: (funck)i for comp , and the constructors cons and nil as the constructors
of the vector type are added.

It is straightforward to implement mutually recursive functions erase: funck→ shape and
erase′: (funck)i→ shape which are essentially the identity. We call a shape s: shape valid

https://github.com/uds-psl/time-invariance-thesis-for-L/blob/main/theories/summary.v#L141
https://github.com/uds-psl/time-invariance-thesis-for-L/blob/main/theories/summary.v#L141
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.L.Reductions.TM_to_L.html#HaltMTM_to_HaltL
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.L.Reductions.TM_to_L.html#HaltMTM_to_HaltL


186 28. Equivalence proofs

c : N

cst c : shape zero : shape succ : shape

j : N

proj j : shape

f : shape g : shape

comp f G : shape

f : shape g : shape

primrec f g : shape

f : shape

µ f : shape

f : shape g : shape

cons f g : shape nil : shape

Jcst cKm
S i l := Some (inl c)

JzeroKm
S i l := Some (inl0)

JsuccKm
S i(x :: l) := Some (inl (1+ x)) if l[n] = Some x

Jproj jKm
S i l := Some (inl x) if l[ j] = Some x

Jcomp f gKm
S i l := Some (inl x) if JgKm

i = Some (inr l ′) and J f Km
i l ′ = Some (inl x)

Jprimrec f gKm
S i(0 :: l) := Some (inl x) if J f Km

i l = Some (inl x)

Jprimrec f gKm
S i(S n :: l) := Some (inl x) if Jprimrec f gKm

i (n :: l) = Some (inl x) and JgKm
i (n :: y :: l) = Some (inl x)

Jµ f Km
S i l := Some (inl m) if J f K0

c (m :: l) = Some inl0

Jµ f Km
S i l := Some (inl x) if J f K0

c (m :: l) = Some inr (S y) and Jµ f KS m
i l = Some (inl x)

JnilKm
S i l := Some (inr [])

Jcons f gKm
S i l := Some (inr (x :: l ′)) if J f Km

c l = Some (inl x) and JgKm
i l = Some (inr l ′)

J f Km
i l := None in all other cases

Figure 28.1.: Shape and step-indexed interpreter of µ-recursive functions.
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if it corresponds to a µ-recursive function or a vector of µ-recursive functions, i.e. if
∃k:N. (∃ f : funck. s = erase f )∨ (∃i:N.∃l: (funck)i . s = erase′l).

For shape we can now define a step-indexed evaluation function

J · K: shape→N→N→LN→O(N+LN).

A call J f Km
i l uses i as step-index, m as auxiliary counter to implement unbounded search,

and l as input. If J f Km
i l = Some (inl v), then v is the value of the evaluation. If J f Km

i l =
Some (inr l ′), then f encoded a list of functions via cons and nil which pointwise evaluated to
l ′:LN. If J f Km

i l = None either as usual the step-index c was not big enough, or the function f
does not terminate on input l, or f is not a valid shape. The definition of J f Km

i is displayed in
Figure 28.1.

Lemma 28.12. For all f : funck and v:Nk we have f [v] ▷ n←→∃i. J f K0
i v = Some (inl n).

Proof. By first defining a predicate f [v] ▷i n s.t. f [v] ▷ n←→ ∃i. f [v] ▷ n and then proving
f [v] ▷i n←→ J f K0

i v = Some (inl n) by complete induction on i. ■

Fact 28.13. The function J · K: shape→N→N→LN→O(N+LN) is L-computable by a term tint.

Fact 28.14. For every f , the function λi.if J f K0
i v is Some (inl n) then true else false is L-

computable by a term ttest( f , v).

Theorem 28.15. For all f : funck and v:Nk we have

f [v] ▷ n←→ tsim(µL(ttest( f , v)))(ϵ(erase f ))(ϵv) ▷ ϵn.

Corollary 28.16. Haltµ ⪯m HaltL

Since there is no pre- and post-processing of input necessary, we immediately also obtain:

Corollary 28.17. Every µ-recursive relation R:Nk→N→ P is L-computable.

Corollary 28.18. The relation RHaltL:N1→N→ P is not µ-recursive.

28.4 Semi-deciding PCP

We construct a semi-decider for BPCP and extract it to L. Recall that

BPCP(R:L(LB×LB)) := ∃A:L(LB×LB). A ̸= []∧ A⊆ R∧τ1A= τ2A

Since the condition after the existential quantification is decidable, a semi-decider can take as
input n:N, obtain A via an enumerator for L(LB×LB) and then decide the condition for A.

We thus need the following, which are straightforward:

Fact 28.19. There is an L-computable . . .
1. equality decider deq for LB.

2. enumerator e for L(LB×LB).

3. decider dsub for λAR. A⊆ R.

https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.L.Reductions.MuRec.html#MUREC_WCBV
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.L.Reductions.MuRec.html#MUREC_WCBV
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.L.Reductions.MuRec.html#computable_MuRec_to_L
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.L.Reductions.MuRec.html#computable_MuRec_to_L


188 28. Equivalence proofs

Furthermore we have:

Fact 28.20. τ1 and τ2 are L-computable.

We can thus plug these functions together to obtain:

Theorem 28.21. BPCP is semi-decided by the following L-computable function:

f Rn := if eLBn is Some (c :: A) then dsub(c :: A)R∧B deq(τ1(c :: A))(τ2(c :: A)) else false

Corollary 28.22. BPCP≡
m

HaltL

28.5 Enumerating first-order logic

We construct a parametric list enumerator for the minimal natural deduction system and ex-
tract it to L. The structure of the natural deduction systems seems to make an enumerability
proof easier than a semi-decidability proof, and in general list enumerators are easier to con-
struct than enumerators. The constructed list enumerator e will be parametric in the sense
that Γ ⊢ ϕ←→∃n. ϕ ∈ eΓ n.

We again need some results which are automatic to prove using the certifying extraction
framework:

Fact 28.23. There is an L-computable . . .
1. equality decider dtm for tm.

2. enumerator etm for tm.

3. equality decider dfm for fm.

4. enumerator efm for fm.

We then provide a parameterised list enumerator for minimal natural deduction:

Lemma 28.24. There is an L-computable, cumulative, parametric list-enumerator
e:L(fm)→N→O(fm) of minimal natural deduction, i.e. ∀Γϕ. Γ ⊢ ϕ←→∃n. ϕ ∈ eΓ n.

Proof. The following definition of eΓ does the job:

eΓ0 := Γ eΓ (S n) :=
�

ϕ→̇ψ |ψ ∈ eϕ::Γ n
�

++[ψ |ψ ∈ efmn,ϕ ∈ eΓ n, (ϕ→̇ψ) ∈ eΓ n] ■

Note that providing enumerators for intuitionistic and classical natural deduction is also
easy, but since they many-one reduce to minimal provability via double-negation and A-
translation, there is no need.

Theorem 28.25. There is an L-computable list-enumerator for minimal provability, i.e.
λϕ. [] ⊢ ϕ.

Corollary 28.26. λϕ. [] ⊢ ϕ ≡
m

HaltL

We can now compose the two corollaries to prove the many-one equivalence of BPCP and
first-order provability. Note that this is a synthetic many-one equivalence not mentioning L,
which was however easy to prove by using L and the certifying extraction internally.

Corollary 28.27. BPCP≡
m
λϕ. [] ⊢ ϕ

https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.L.Reductions.PCPb_to_HaltL.html#reduction_PCPb_HaltL
https://ps.uni-saarland.de/~forster/thesis/library-coq/Undecidability.L.Reductions.PCPb_to_HaltL.html#reduction_PCPb_HaltL
https://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.Markov.html#iprv_halt
https://www.ps.uni-saarland.de/extras/fol-completeness/html/Undecidability.FOLC.Markov.html#iprv_halt
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CHAPTER 29
CT in L

In Chapter 7 we discussed the constructivist axiom CT stating that every function f :N→N
is L-computable, but without defining CT formally.

In this final chapter, we tie loose ends regarding CT. We define φL:N→N→ON universal
for all L-computable functions N→N and define CTL. We then give characterisations of CTL in
terms of boolean functions N→B and semi-decidable, enumerable, and decidable predicates.
Using the results from Part II, we show that CT can equivalently be defined using the other
models of computation. We also prove that CTL implies Up→¬Dp as motivated in Part III.
Lastly, we prove the Sm

n theorem, necessary to deduce SCT from CT as motivated in Part I, and
discuss a possible mechanised admissibility proof for CT in CIC.

Publications All results are novel.

29.1 CT for L

Recall that we introduced the axiom CTφ for φ:N→N→N→ON as follows:

CTφ := ∀ f :N→N.∃c:N.∀x:N.∃n:N. φn
c x = Some ( f x)

In Section 27.4 we introduced a step-indexed interpreter eval: tmL→N→OtmL. We here use
eval to implement φ:N→N→N→ON.

To do so, we first verify a retraction (R, I) of closed terms to N, i.e. (closed s ∧ ∃t. s =
λt)←→ R(Is) = Some s, and an inverse function unenc of ϵN, i.e. unenc(ϵNn) = Some n.

Fact 29.1. There is a function unenc: tmL→ON such that unenc(ϵNn) = Some n.

Fact 29.2. The type of L-terms tmL is discrete and enumerable.

Lemma 29.3. There are functions R:N→O(tmL) and I : tmL→N such that closed s←→ R(Is) =
Some s.

Proof. Since tmL is discrete and enumerable by Fact 29.2, we obtain a retraction (I , R′) from
tmL to N by Corollary 4.34, i.e. ∀s. R′(Is) = Some s. Let dclosed decide closedness of terms. Pick
(I , R) with Rn := if R′n is Some t then if dclosed t then Some t else None else None. ■

For an application φn
c x we translate the code c to a term t obtained from Rc, and then

evaluate the application t (ϵNn) for n steps using the step-indexed interpreter eval:

φn
c x := if Rc is Some t then if eval (t (ϵNn)) n is Some v then unenc v else None else None

We define

CTL := CTφ
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for φ defined using eval as above.
Similar to how SCT is equivalent to EA, we can prove that CTL can equivalently be phrased

employing various other notions in L.

Fact 29.4. There are tembed and tunembed computing λ〈n, m〉.(n, m) and λnm.〈n, m〉, respec-
tively.

Theorem 29.5. The following are equivalent:
1. CTL

2. ∀ f :N→N. ∃t: tmL. closed t ∧∀x : N. t (ϵNx) ▷ ϵN( f x)

3. ∀ f :N→B. ∃t: tmL. closed t ∧∀x : N. t (ϵNx) ▷ ϵB( f x)

4. ∀p:N→ P. Sp→ p is L-recognisable
5. ∀p:N→ P. Ep→ p is L-enumerable
6. ∀p:N→ P. Dp→ p is L-decidable

Proof. (1)←→(2) is by using the correctness theorem of eval. (6)←→(3) and (2)→(3) are trivial.
It thus suffices to prove an implication chain (3)→ (4)→ (5)→ (2):
(3)→ (4): Let f be a semi-decider f of p. Obtain t for λ〈x , n〉. f xn via (2). Now

λxn. t (tembedxn) computes f .
(4)→ (5): Let p be enumerable. Then it is also semi-decidable by Corollary 4.57. By (4),

we have an L-computable semi-decider f for p. Since the construction of Fact 4.54 is L-
computable, p is L-enumerable.
(5)→ (2): Let f be given. Then λ〈x , y〉. f x = y is enumerable. Thus via (5) there is g

enumerating it, with tg computing g. Then unbounded search µL allows searching for the
value of x in the co-domain of tg . ■

We can then deduce that Up is indeed a synthetic characterisation of undecidability:

Theorem 29.6. Let p: X→ P and CTL. Then Up→¬Dp.

Proof. Assume Up and Dp. Thus by definition we have E(HaltTM1
). Since HaltTM1

≡
m

Halt′L
by Corollary 28.10 we have E(Halt′L). Since tmL is discrete we have S(Halt′L) by Corollary 4.57.

By use of CTL and Theorem 29.5 (4) we have that (Halt′L is L-recognisable. Contradiction
to Corollary 27.19. ■

Using the equivalence proofs from Part II and Section 28.3, we have:

Corollary 29.7. The following are equivalent:
1. CTL

2. ∀ f :N→N. (λx v. f x = v) is L-computable
3. ∀ f :N→N. (λx v. f x = v) is TM-computable
4. ∀ f :N→N. (λx v. f x = v) is BSM-computable
5. ∀ f :N→N. (λx v. f x = v) is CM-computable
6. ∀ f :N→N. (λx v. f x = v) is FRACTRAN-computable
7. ∀ f :N→N. (λx v. f x = v) is Diophantine
8. ∀ f :N→N. (λx v. f x = v) is µ-recursively computable

https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.L.Computability.CT.html#CT_L_iff_CT_L_elem
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.L.Computability.CT.html#CT_L_iff_CT_L_elem
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Assuming CTL implies an identification of synthetic definitions with definitions in L:

Fact 29.8. Assuming CTL we have for all p:N→ P:

1. Dp←→∃t: tmL. closed t ∧∀n. (pn∧ t(ϵNn) ▷ ϵBtrue)∨ (¬pn∧ t(ϵNn) ▷ ϵBfalse)

2. Sp←→∃t: tmL. closed t ∧ ∀n. pn←→HaltL(t(ϵNn))

3. MP←→∀t: tmL. ¬¬(HaltL t)→HaltL t

4. Ep←→ p ⪯m HaltL

By Theorem 29.5, (1) and (2) are equivalent to CTL. (3) is clearly strictly weaker, since it
is implied by LEM, but LEM does not imply CTL. (4) is weaker as well: One needs to know
that the many-one reduction is L-computable to conclude CTL.

29.2 The Sm
n theorem

Recall the axiom SMNφ stating the m = n = 1 case of the Sm
n theorem, which implies the

general case:

SMNφ := Σσ:N→N→N.∀cx yv. (∃n. φn
σcx y = Some v)←→ (∃n. φn

c 〈x , y〉= Some v)

We can now define the partial application function σ using R and I from Lemma 29.3 and
the terms from Fact 29.4

σcx := if Rc is Some t then I(λy. t(tembed(ϵNx)y)) else c

Note that λy. tembed(ϵNx)y is an L-term, which is translated to a natural number using I .

Theorem 29.9. ∀cx yv. (∃n. φn
σcx y = Some v)←→ (∃n. φn

c 〈x , y〉= Some v)

Proof. We only prove the direction from right to left, the other direction is similar. Let
φn

c 〈x , y〉 = Some v. Then Rc = Some t and t ϵN(〈x , y〉) ▷ v for some closed abstraction t.
Let s := (λy. tembed(ϵNx)y) (ϵN y). We have t ϵN(〈x , y〉) ≡ s and thus s ▷ v. Thus there is m
s.t. eval m s = Some v and we have φm

σcx = Some v. ■

Corollary 29.10. CTL→Σφ. CTφ ∧ SMNφ

29.3 Towards mechanised admissibility

CTL is admissible if for every function f :N→ N definable without assumptions (i.e. in an
empty context) in CIC, one can externally prove that there exists a proof of ∃c.∀x .∃n. φn

c x =
Some ( f x) in CIC. Equivalently, one can ask for a proof of ∃s: tmL.∀n : N. s n ▷ f n (Theo-
rem 29.5). The present thesis is built on the assumption that CTL is indeed admissible.

We here outline how a mechanised proof of this fact might look like, based on the verified
(type and proof) erasure function from the MetaCoq project [211, 212]. MetaCoq provides
types tmCIC and ctxCIC representing terms and definition contexts of CIC as a deep embedding,
an inductive typing predicate (_ ⊢CIC _ : _): ctxCIC→ tmCIC→ tmCIC→ P, and an inductive weak
call-by-value evaluation predicate (_ ⊢CIC _ ▷ _): ctxCIC→ tmCIC→ tmCIC→ P.

The erasure function is a function erase: ctxCIC→ tmCIC→ tm□. The type tm□ is similar to
the type of terms tmCIC, but has no constructors to represent types or proofs and instead a

https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.L.Computability.CT.html#decidable_Ldecidable_iff
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.L.Computability.CT.html#decidable_Ldecidable_iff
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.L.Computability.CT.html#SMN
https://ps.uni-saarland.de/~forster/thesis/synthetic-coq/Undecidability.L.Computability.CT.html#SMN
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constructor □ which indicates that a sub-term was erased. An operational semantics of tm□
can be specified via a weak call-by-value evaluation predicate (_ ⊢□ _▷_): ctx□→tm□→tm□→P.

The verified type and proof erasure function preserves evaluation on the base type N. To
specify this formally, we require functions ϵCIC:N→ tmCIC and ϵ□:N→ tm□ which encode num-
bers in the respective calculi via application and representations of the constructors S and 0.
The correctness theorem of erase relies on an assumption of strong normalisation for CIC.

Theorem 29.11 ([212, Corollary 4.8.1]). If Σ contains no axioms and Σ ⊢CIC n : N, then
one can obtain m such that Σ ⊢CIC n ▷ ϵCICm and map erase Σ ⊢□ erase n ▷ ϵ□m.

Verbalised, the theorem states that every a n:N evaluates to a value which is just an iterated
application of constructors S and 0, and that its erasure evaluates to the same term.

To prove that CT is admissible, we require that the proof of map erase Σ ⊢□ erase n▷ϵ□m can
actually be turned into a proof H s.t. ; ⊢CIC H: (map erase Σ⊢̇□erase n ▷ ϵ□m). By ⊢̇□ we mean
the predicate ⊢□ turned into a predicate of the ⊢CIC type system. We note this as a conjecture.

Conjecture 29.12. If Σ contains no axioms and Σ ⊢CIC n : N, then one can obtain m such that
Σ ⊢CIC n▷ϵCICm and one can obtain H: tmCIC such thatΣ ⊢CIC H: (map erase Σ⊢̇□erase n▷ϵ□m).

The proof of the conjecture likely would be similar to the semantic verification of type and
proof erasure by [156], but simpler since we only are interested in axiom-free contexts.

By implementing a step-indexed interpreter for the evaluation relation of the tm□ calculus
and extracting it to L, one could prove the following conjecture. Note that since tm□ is a nested
inductive type, the extraction requires defining the shape of tm□.

Conjecture 29.13. There is an L-term t▷ such that if Σ ⊢□ s ▷ v, then t▷(ϵtm□s) ▷ ϵtm□ v.

The two conjectures together would lead to the admissibility of CTL.

Conjecture 29.14. If Σ contains no axioms and Σ;; ⊢CIC f : N→ N, then one can obtain a
proof term H: tmCIC such that Σ;; ⊢CIC H : (∃s: tmL.∀n : N. s n ▷ f n).

A mechanised consistency proof of CT for CIC might be possible by syntactically analysing
the normal form of a proof term H with Σ ⊢CIC H : CT→⊥ for an axiom-free Σ. This will
be a function λC:CT.t, where the term t will have n applications of C to a function f . By
applying admissibility of CT to these n instances, one might obtain a proof term H ′ such that
Σ ⊢CIC H ′:⊥, which contradicts the consistency of ⊢CIC provable from the assumed strong
normalisation. Even more interesting opportunities for future work arise by the questions
whether and how Conjectures 29.12 and 29.13 can be generalised to contexts Σ assuming
axioms and whether this can give rise to a consistency proof of LEM∧ CT.
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Def. natural numbers
Def. unit type

Def. booleans
Def. options

Def. lists
Def. sums
Def. pairs

Def. dependent pairs

Def. list prefix

APPENDIX A
Basic Definitions and Notation

We here give an overview of inductive types and notations well-known in type theory and
constructive mathematics. This chapter is thus mostly to keep the thesis self-contained and
not meant for linear reading.

A.1 Inductive types

The inductive types of interest for this paper are natural numbers, the unit type, booleans,
options, lists, sums, pairs, and dependent pairs:

n : N ::= 0 | S n (natural numbers)

1 ::= ⋆ (unit type)

b : B ::= false | true (booleans)

o :OA ::= None | Some a where a : A (options)

l : LA ::= [] | a :: l where a : A (lists)

A+ B := inl a | inr b where a : A and b : B (sums)

A× B := (a, b) where a : A and b : B (pairs)

Σx : X . Ax := (x0, a) where A : X→T, x0 : X , and a : Ax0 (dependent pairs)

We define the projection functions π1(x , y) := x and π2(x , y), overloading the notation for
both pairs of type A× B and dependent pairs of type Σx . Ax .

One can easily construct a pairing function 〈_ , _〉:N→N→N and for all f :N→N→ X an
inverse construction λ〈n, m〉. f nm of type N→ X such that (λ〈n, m〉. f nm)〈n, m〉= f nm.

We write n =B m for the boolean equality decider on N, and ¬B, ∧B, ∨B for boolean nega-
tion, conjunction, and disjunction.

We oftentimes use the notation if o is Some x then . . . else . . . for an inline case analysis
on options, and similarly for other types like lists.

As is common, we write [x1, . . . , xn] for x1 :: · · · :: xn :: []. We write x ∈ l if x occurs in l,
and l1 ⊆ l2 if ∀x ∈ l1. x ∈ l2.

We say that l1 is a list prefix of l2 if l1 ⊑ l2 := ∃l.l1 = l2 ++ l.
We use the functionsmap: (X→ Y )→LX→LY , _++_:LX→LX→LX , filter: (X→B)→LX→LX ,

_×_:LX→LY→L(X × Y ), _[_]:LA→N→OA, _ ∈ f
B _: X→LX→B for f : X→ X→B defined as

follows:

map f [] := [] map f (x :: l) := f x :: map f l
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[] ++ l2 := l2 (x :: l1) ++ l2 := x :: (l1 ++ l2)

filter f [] := [] filter f (x :: l) := if f x then x :: filter f l else filter f l

[]× l2 := [] (x :: l1)× l2 := map(λy. (x , y))l2 ++ (l1 × l2)

[] [n] := None (x :: l)[n] := if n is S n then l[n] else Some x

pos f x l := None pos f x (y :: l) := if f x y then Some0

else if pos f x l is Some n then Some (S n)

else None

x ∈ f
B [] := false x ∈ f

B (y :: l) := if f x y then true else x ∈ f
B l

We define the predicate Forall2: (X→ Y→ P)LX→LY→ P as

Forall2 p [] []

px y Forall2 p l1 l2

Forall2 p (x :: l1) (y :: l2)

If n < |l| we sometimes abusively assume l[n]: A. When convenient we use the notation
[ f x | x ∈ l] for map f l and the notation [ f x | x ∈ l, g x] for filter g (map f l).

Finally, we introduce vectors over X as type X n, where n:N with the constructors

nil : X 0

v: X n x: X

x :: v : X S n

We write elements of X n as (x1, . . . , xn), and otherwise reuse notation for lists for vectors.
When convenient we identify X 1 with X on paper.

A.2 Propositions

The universe of propositions P is impredicative, so e.g. (∀X :P. X ):P, and a sub-universe of T,
i.e. whenever P:Pwe also have P:T. Propositions can be combined using the usual connectives
∧, ∨, and ¬. We denote the true proposition by ⊤ and the false proposition by ⊥.

We write ∀x: X . Ax for both dependent functions and logical universal quantification, and
∃x: X . Ax where A: X→ P for existential quantification. We write ∃!x: X . Ax to denote that
there is a unique x satisfying A, i.e. ∃x: X . Ax ∧∀y. Ay→ x = y .

A.3 Functions

Besides intensional equality (=), we consider other more extensional equivalence relations
in this thesis. Amongst them are extensional equality of functions f , g (∀x . f x = g x), ex-
tensional equivalence of predicates p, q (∀x . px←→ qx), or range equivalence of functions f , g

(∀x . (∃y. f y = x)←→ (∃y. g y = x)). We denote all of these equivalence relations with the
symbol ≡ and indicate what is meant by an index. For discrete X (e.g. N, ON, LB, . . . ), ≡

X

denotes equality, ≡
P
denotes logical equivalence, ≡

A→B
denotes an extensional lift of ≡

B
, ≡

A→P

denotes extensional equivalence, and ≡
ran

denotes range equivalence.
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Def. injection

Def. isomorphism w.r.t.
≡A and ≡B

Def. retraction from X
to Y

Def. p

Def. p+ q

Def. p× q

Def. singleton
predicate

Def. sub-singleton
predicate

Def. inhabited
predicate

Def. non-empty
predicate

Def. ||X ||

Def. stable predicate

Def. domain
Def. range

Assuming the existence of surjections A→ (A→ B) may or may not be consistent, depending
on the particular equivalence relation. We introduce the notion of surjection w.r.t. ≡

B
as

∀b: B. ∃a: A. f a ≡
B

b. We call a function f : A→ B an injection w.r.t.≡
A
and≡

B
if ∀a1a2. f a1 ≡B

f a2→ a1 ≡A
a2 and a bijection if it is an injection and surjection. If we do not specify the

equivalence relation we mean equality, i.e. f is an injection if ∀a1a2. f a1 = f a+2→a1 = a2.

A.4 Predicates

An isomorphism w.r.t. ≡A and ≡B between two types A and B is a pair of two functions
f : A→ B and g: B→ A such that ∀a. g( f a) = a and ∀b. f (g b) = b.
Functions (I , R)where I : X→Y and R: Y→OX form a retraction from X to Y if ∀x . R(I x) =

Some x .
Note that if (I , R) is a retraction from X to Y , I is injective.
Let p: X→ P and q: Y→ P.
The complement p : X→ P of p is defined as p := λx .¬px .
Furthermore we define the sum and the product of predicates analogously to the traditional

notions on sets:
p+ q : X + Y→ P := λs.match s with inl x ⇒ px | inr y ⇒ q y end
p× q : X × Y→ P := λ(x , y).px ∧ q y .
We call a predicate p a singleton if ∃x .px∧∀y.p y→ x = y and a sub-singleton if ∀x y.px→

p y→ x = y .
A predicate is inhabited if ∃x .px and non-empty if ¬∀x .¬px .
Note that a predicate is non-empty if and only if ¬¬∃x .px , and inhabited predicates are

non-empty.
A type X is inhabited if λx: X .⊤ is inhabited. We then write ||X ||. A type X is non-empty of

λx: X .⊤ is non-empty.
A predicate p is called stable predicate under double negation if ∀x .¬¬px→ px .
Relations are 2-ary predicates R: X→ Y→ P. We call X the domain and Y the range of R. A

relation R is total if ∀x .∃y. Rx y and functional if ∀x y1 y2. Rx y1→ Rx y2→ y1 = y2. We write
R: A⇝B if R: A→ B→ P and R is functional.





APPENDIX B
Glossary of synthetic computability

• Decidable predicate: : Sec. 4.1, Page 31

D(p: X→ P) := ∃ f : X→B.∀x . px←→ f x = true

• Discrete type: : Sec. 4.1, Page 32

X is discrete := ∃ f : X→ X→B.∀x1 x2. x1 = x2←→ f x1 x2 = true

• Enumerable predicate: : Sec. 4.2, Page 33

E(p: X→ P) := ∃ f :N→OX .∀x . px←→∃n. f n= Some x

• Enumerable type: : Sec. 4.2, Page 33

X is enumerable := ∃ f :N→OX .∀x .∃n. f n= Some x

• Parametrically enumerable predicate: : Sec. 4.2, Page 34

Ep (p: I→ X→ P) := ∃( f : I→N→OX ).∀i x . pi x←→∃n. fin= Some x

We have Ep p←→ E(λ(i, x). pi x).
• Parametrical Enumerability Axiom : Sec. 6.4, Page 59

EA :=Σϕ:N→ (N→ON).∀(p:N→N→ P).

(∃( f :N→N→ON).∀i. fi enumerates pi)→∃γ:N→N.∀i. ϕi enumerates pi

• Parametrically Universal Enumerator: : Sec. 6.4, Page 59
ϕ:N→ (N→ON) such that

∀p:N→N→ P. (∃( f :N→N→ON).∀i. fi enumerates pi)→∃γ:N→N.∀i. ϕi enumerates pi

as assumed in the axiom EA.
• Semi-decidable predicate: : Sec. 4.4, Page 37

S(p: X→ P) := ∃ f : X→N→B.∀x . px←→∃n. f n= true

• Universal Enumerator: : Sec. 6.4, Page 59

ϕ:N→ (N→ON) s.t. ∀p:N→ P. Ep→∃c:N. ϕc enumerates p

A parametrically universal enumerator is also universal.
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• Universal Table: : Sec. 6.4, Page 59

Wc x := ∃n.ϕcn= Some x

where ϕ is a universal enumerator or parametrically universal enumerator. We
have:

∀p:N→N→ P. Ep p→∃γ.∀i x:N. pi x←→Wγi x

if ϕ is parametrically universal and

∀p:N→ P. E p→∃c.∀x:N. px←→Wc x

if ϕ is universal.
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