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Abstract

Gene expression is a complex molecular process governing fate and
function of most eukaryotic cells. The fundamental mechanism,
namely that genetic material of a cell is compactly stored on chromo-
somal DNA and at times being transcribed into messenger-RNA to
facilitate on-demand protein biosynthesis, is widely known. How-
ever, the interplay of biochemical regulatory pathways underlying an
individual’s disease phenotype development remains incompletely
understood. Intriguingly, the ∼ 20.000 protein-coding genes only
account for 2% of the human genome, triggering profound questions
on the purpose of remaining segments. In recent years it became
apparent that non-coding RNAs essentially tune the observed gene
expression circuits. In particular the small non-coding RNAs such
as microRNAs, turned out to be regulatory players by switching
on and off protein translation of target messenger-RNAs. Several
thousand mammalian microRNAs have been discovered so far but
little is known about their impact on the transcriptome, which likely
depends on contextual variables like cell type identity, cellular and
tissue environment or phase of activation.

Previous efforts demonstrated that gene expression programs in
human and mouse undergo gradual changes along the life trajectory
with amplification at higher ages. In parallel, age-related diseases are
currently accumulating in our globally aging population, posing a
serious challenge to our society and healthcare systems. Neurodegen-
erative disorders such as Alzheimer’s disease and Parkinson’s disease
show steadily rising incidence rates with several million people al-
ready affected. Both are caused by pathological protein accumulation
in selectively vulnerable neurons and brain regions. Notably, these
neurological disorders do not appear all of a sudden in an individual
but are believed to originate after long asymptomatic phases of subtle
aberrant changes on the cellular level, turning early diagnosis into
an intricate affair. Yet, no single comprehensive model to explain
aging associated changes in gene expression exists and certainly any
such model must take into account the role of microRNAs and other
important non-coding RNAs.

With the advent of ultra-high-throughput sequencing techniques
and unprecedented computational power, the screening of micro-
RNAs and their targets from human biofluids and tissues became
not only affordable but scalable. To deal with the increasing com-
plexity of molecular studies, novel bioinformatics-driven approaches
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are needed to generate reproducible and comprehensive conclusions
from large-scale data sets. Here, the role of small non-coding RNAs in
governing gene expression changes observed in complex age-related
diseases is explored with the aid of new methods and databases as
well as several thousand RNA profiling samples.

This cumulative doctoral thesis comprises eight peer-reviewed pub-
lications. Basic research covers a comprehensive review on most target
prediction tools and a novel experimental and computational work-
flow for microRNA-target pathway identification. In addition, with
miRPathDB 2.0 the so-far largest database on enriched microRNA
pathways for human and mouse is presented. Moreover, the new
versatile web tool miEAA 2.0 allows rapid annotation of statistically
enriched molecular properties and functions for large lists of micro-
RNAs from ten species. The lessons learned from web-based tool
development were condensed in an invited summary and survey
article on scientific web server availability along with best practices
for developers.

The here presented toolkit was used in three applied research
studies to investigate the association between microRNAs and their
target pathways in the context of aging as well as the to date largest
Parkinson’s disease biomarker discovery framework. Circulating
microRNAs obtained low-invasively from whole-blood samples bear
diagnostic and prognostic value in Alzheimer’s and Parkinson’s dis-
ease patients, which was discovered using machine learning models.
Furthermore, selected microRNA families were found to systemati-
cally target entire signaling pathways as to effectively silence gene
expression. Indeed, these pathways are affected in prevalent neurode-
generative disorders.

Taken together, the published candidate signatures and validated
targets are pivotal for subsequent experimental perturbation in mi-
croRNA or gene knockout studies. In future efforts, large-scale single-
cell studies will be required to further dissect disease and cell-type
specificity of aging disease biomarker candidates and their long-term
effect on gene expression, possibly indicating early neuropathological
hallmarks.



Zusammenfassung

Genexpression ist ein komplexer molekularer Prozess, der das Überle-
ben und die Funktion der meisten eukaryotischen Zellen entscheidend
beeinflusst. Der zugrunde liegende Mechanismus, nämlich, dass das
genetische Material einer Zelle kompakt in chromosomaler DNA vor-
liegt und je nach Bedarf in messenger-RNA zur Proteinbiosynthese
genutzt wird, ist weitgehend bekannt. Allerdings ist das Zusammen-
spiel der regulatorischen Pfade im Hintergrund der phenotypischen
Veränderungen von erkrankten Individuen nur wenig verstanden.
Interessanterweise machen die fast 20.000 protein-kodierenden Gene
nur in etwa 2% des menschlichen Erbgutes aus. In den letzten Jahren
hat man festgestellt, dass nicht-kodierende RNAs eine essentielle Rol-
le bei der Einstellung der beobachteten Genexpressionsschaltkreise
spielen. Insbesondere kleine nicht-kodierende RNAs wie microRNAs,
stellten sich als zuvor unterschätzte regulatorische Einheiten heraus,
die die Translation von Ziel-messenger-RNA in Proteine an und aus-
schalten. Mehrere tausend microRNAs wurden bisher bei Säugetieren
entdeckt, trotzdem ist immer noch wenig über ihren Einfluss auf
das Transkriptom bekannt, ein Zusammenhang der wahrscheinlich
vom Kontext wie Zelltypidentität, dem zelluären Umfeld sowie dem
umgebenden Gewebe, und den Aktivierungsphasen abhängt.

Frühere Forschungsarbeiten haben bereits gezeigt, dass das Gen-
expressionsprogramm im Menschen und in der Maus sukzessiven
Änderungen im Laufe des Lebens unterworfen ist, welche sich im
höheren Alter verstärken. Zur gleichen Zeit akkumulieren Fälle von
altersbedingten Krankheiten in unserer immer älter werdenden, globa-
len Population, was ernstzunehmende Herausforderungen für unsere
Gesellschaft sowie unser Gesundheitssystem mit sich bringt. Neuro-
degenerative Krankheiten wie Morbus Alzheimer und Morbus Par-
kinson zeigen eine kontinuierlich ansteigende Inzidenz, wobei bereits
mehrere millionen Menschen weltweit betroffen sind. Besonders für
diese Krankheiten ist, dass sie bei einem Menschen nicht spontan oder
plötzlich entstehen, sondern vermutlich nach langer Zeit der asympto-
matischen Phase aufgrund schleichender, abnormaler Veränderungen
auf zellulärer Ebene entstehen, was eine frühe Diagnose überaus
schwierig gestaltet. Bisher existiert noch kein verständliches Modell
das die altersassoziierten Veränderungen der Genexpression erklä-
ren kann, wobei jedes darauf ausgerichtete Modell mit Bestimmtheit
die Rolle der microRNAs und anderen wichtigen nicht-kodierenden
RNAs zwangsläufig in Betracht ziehen muss.
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Mit dem Aufkommen der Sequenzierung im Ultrahochdurchsatz-
verfahren und der unübertroffenen Leistung moderner Computer-
systeme, wurde die Untersuchung von microRNAs und ihren Ziel-
genen anhand von Proben menschlicher Flüssigkeiten und Geweben
nicht nur möglich gemacht, sondern kann entsprechend hochskaliert
werden. Um mit der zunehmenden Komplexität molekularer Stu-
dien Schritt zu halten, braucht es neue Ansätze der Bioinformatik
um reproduzierbare und nachvollziehbare Schlüsse aus großen Da-
tensätzen gewinnen zu können. Im Rahmen dieser Arbeit wurden
kleine nicht-kodierende RNAs hinsichtlich ihrer Rolle der Genre-
gulation in komplexen altersbedingten Krankheiten anhand neuer
Methoden und Datenbanken sowie mehreren tausend Proben der
RNA-Sequenzierung untersucht.

Diese kumulative Dissertationsarbeit umfasst acht von unabhän-
gigen Experten begutachtete (peer-reviewed), wissenschaftliche Pu-
blikationen. Die Grundlagenforschung enthält einen umfassenden
Übersichtsartikel zu fast allen Methoden der Vorhersage von mi-
croRNA Zielgenen sowie ein neuartiges Protokoll bestehend aus
Labormethoden und computergestützen Berechnungen zur Identifi-
kation von durch microRNAs regulierte Genpfade. Zusätzlich wird
mit miRPathDB 2.0 die bisher größte Datenbank zu signifikant ange-
reicherten microRNA Zielpfaden präsentiert. Des Weiteren, bietet die
neue und vielseitige, web-basierte Software miEAA 2.0 die Möglich-
keit der rasanten Annotation statistisch angereicherter, molekularer
Eigenschaften sowie bekannter Funktionen einer gegebenen Liste an
microRNAs von zehn Spezies. Die durch web-basierte Softwareent-
wicklung zuvor angelernten Fähigkeiten sowie daraus resultierende
Empfehlungen für nachfolgende Entwickler wurden kurz und bün-
dig in einem eingeladenen Übersichtsartikel zum Thema Verfügbarkeit
wissenschaftlicher Software im Internet veröffentlicht.

Die hier präsentierten Werkzeuge wurden gezielt in drei Studien
zur angewandten Forschung genutzt um die Assoziation zwischen
microRNAs und ihren Zielpfaden im Kontext der allgemeinen Al-
tersforschung sowie im Rahmen der bisher größten Studie zur Ent-
deckung von Biomarkern der Parkinson Krankheit zu untersuchen.
Im Blutkreislauf zirkulierende microRNAs, die anhand von Vollblut-
proben extrahiert wurden, zeigen diagnostisches und prognostisches
Potential bei Alzheimer und Parkinson Patienten, was mit Metho-
den des maschinellen Lernens entdeckt werden konnte. Überdies
konnte herausgefunden werden, dass bestimmte microRNA Familien
systematisch Signalwege blockieren können, um die Genexpression
herunterzufahren. Tatsächlich sind diese Pfade auch in neurodegene-
rativen Krankheiten betroffen.

Insgesamt sind die hier publizierten Signaturen von Kandidaten-
microRNAs und einiger validierter Zielgene herausragend dazu ge-
eignet in weiteren Studien anhand von gezielter Ausschaltung im
Labor genauer untersucht zu werden. In zukünftigen Forschungs-
projekten sollten groß angelegte Untersuchungen vieler einzelner
Zellen im Vordergrund stehen, um zu verstehen wie spezifisch für
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Krankheit oder Zelltyp die hier genannten Biomarker-Kandidaten
für altersbedingte Krankheiten sind. Auch wird es wichtig sein die
Langzeiteffekte von dysregulierten microRNAs auf die Genexpressi-
on zu verstehen, die möglicherweise frühzeitig neuropathologische
Kennzeichen widerspiegeln.
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1
Altered gene activity as a latent proxy
to molecular aging phenotypes

1.1 Gene expression

All organisms in the tree and domains of life share core architectural
biological principles that emerged during 4, 6 billion years of evolu-
tion. Principles include compact organization into cells and directed
flow of information through inheritance and transfer of genetic materi-
als [9; 10]. Thereby, information essential for cell survival is naturally
encoded within specific genetic segments termed genes, so-called
blueprints of proteins, on deoxyribonucleic acid (DNA) molecules.
So far, 2, 3 million eukaryote, prokaryote, and archaeal species were
systematically characterized in the tree of life, of which approximately
15.000 genomes are partially or fully reconstructed [11]. While the
DNA can fundamentally be separated into coding and non-coding
regions, they are not functionally independent and constantly evolv-
ing through a tight coupling in evolutionary dynamics [12]. Gene
expression depicts the series of events necessary to translate the parts
of the genetic information into functional molecules governing every
biological process in a cell.

As comparative genomics step-wisely unveiled the purpose of
genes, it became clear that gene expression is affected by changes in
either cis or trans direction. Referring to regulatory changes within a
gene or through other genes and non-coding regions, these mecha-
nisms govern the development of eukaryotic organisms and therefore
shape complex phenotypes [13–15]. In case of Homo sapiens, for ex-
ample, 19.955 protein-coding genes have been discovered so far [16].
Since not all genes are actively transcribed into their RNA counter-
part, the messenger-RNA (mRNA), in every cell at the same time,
researchers conducted tremendous efforts to unravel the mechanisms
of gene regulation. Frequently, much simpler organized model organ-
isms such as yeast and worms were investigated under evolutionary
aspects[17; 18]. On the search for a rigorous theoretic understanding
on how differential gene expression dynamics shapes the phenotype
of an individual or entire populations, the field of epigenetics counts
toward the most important breakthroughs in this matter [19; 20].
Broadly speaking, it unites our theoretic and biochemical understand-
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ing of how gene expression is dynamically altered, the processes
underlying complex developmental and disease phenotypes [21].

In the context of this thesis, gene expression and regulation will
be viewed and discussed as known for mammalian species, but
primarily human, mouse and other model organisms. Starting from
the canonical definition of gene expression, every protein-coding gene
is transcribed from DNA into pre-mRNA by an RNA polymerase II.
Since gene bodies contain both coding and non-coding segments, so-
called exons and introns, in a splicing process introns are removed and
selected exons combined. Then, a 5

′ cap and a 3
′ repetitive adenine

sequence (poly-A tail) are ligated to the pre-mRNA, primarily for
stabilizing and protecting the RNA from degradation by RNAses.
The pre-mRNA is exported from the nucleus into the cytoplasm. Free
mature mRNA is bound by the ribosomal complex and initiating
from the start codon, a specific base triplet, the amino acid-chain
synthesis and elongation is conducted until reaching a stop codon.
During synthesis, each codon stands for one of the 20 amino acids,
which are supplied to the ribosomal complex by bound transfer RNA
(tRNA). The resulting peptide chain folds into secondary and tertiary
structures, eventually producing a functional protein. The complete
process of eukaryotic protein biosynthesis is depicted in Figure 1.1.

Figure 1.1: The process of protein
biosynthesis is illustrated. Each step
is annotated with different regulatory
players that eventually modulate gene
expression strength in eukaryotic cells.
Created with BioRender.com.
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1.1.1 Eukaryotic gene regulation

The cellular gene expression program is influenced and reprogrammed
by a wide array of potentially inducing, inhibiting, or function mod-
ifying mechanisms [22] (Figure 1.1). On the transcriptional level,
onset and strength of transcription are primarily relayed through
transcription factors (TFs) and non-coding segments such as distally
or intergenically located enhancers, which in turn can be bound by
TFs [23–26]. A prominent role of TFs is to guide the gene expression
program during cellular proliferation and differentiation, or to even
induce and maintain pluripotency [27; 28]. Additionally, chemical
modifications and organization of DNA through base methylation
or histone modifications constitute both inductive and repressive mi-
lieus [29; 30]. Collectively, these features have been proven useful for
effective prediction of available mRNA levels for multiple cell lines
independently [31]. However, neither the rate of transcription nor the
mRNA concentration are perfect predictors of protein abundance for
multiple reasons, including additional regulatory steps of interven-
tion, technical and biological noise and environmental context. For
example, through alternative splicing, i.e. a differential selection of
exons inserted in linear order into the final mRNA, protein isoforms
with varying efficacy or function may arise [32; 33].

On the post-transcriptional level also several independent mech-
anisms come into play. First, specific chemical modifications of
RNA nucleotides (nts) modulate mRNA concentration by altering
secondary or tertiary structures and therefore influencing stability or
speed of degradation [34; 35]. For example, dysregulated formation
of 5-methylcytosine (m5C) on tRNAs has been linked to the develop-
ment of human cancer [36]. In addition, several classes of non-coding
RNA (ncRNA) such as microRNA (miRNA), tRNA or ribosomal
RNA (rRNA) are directly involved in post-transcriptional regulation
of mRNAs, eventually affecting protein abundance. The particular
mechanisms of ncRNAs are discussed in more detail in section 1.2
and following. Finally, on the post-translational level, protein half-live
is governed by enzymatic modifications, e.g. amino acid phosphoryla-
tion and targeted proteolysis primarily via the ubiquitin–proteasome
system [22; 37–39].

1.1.2 Deviations from the canonical pathway and the problem of
confounders

Given the basic framework of gene regulation mechanisms in eu-
karyotic cells, it is important to note that many exceptions from the
canonical pathways exist, and depending on the environment are
rather the norm than an exception [40; 41]. Especially upon stress
response or in a disease context, non-canonical pathways seem to
reroute gene expression, offering a potential escape of upregulated
mRNA and protein synthesis from otherwise restrictive regulatory
controls [42–44]. These important observations could explain why
there are often crucial differences when comparing cellular systems in
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vitro and in vivo due to negligence of physiological conditions [45]. In
addition, methods for profiling gene expression are often intrinsically
confounded, making it difficult to distinguish between biological and
technical noise or actual biological variation [46–48]. For example,
personal (epi-)genetic background, demographic features, lifestyle
or age may explain heterogeneity of gene expression [49]. Still, it is
possible to considerably improve expression measurements by careful
in silico correction using modeling techniques and applied statistics.
As shown recently by Parsana et al. more accurate gene regulation
networks can be obtained through the analysis and correction of latent
confounders [50]. Discerning biological covariates from technical per-
turbations in differential abundance analysis is a long-withstanding
issue in bioinformatics and biostatistics, and constantly changes shape
due to the development of new experimental approaches, none of
which is ultimately bias-free [51–54]. In conclusion, gene expression
is an inherent stochastic process with numerous possibilities for fine-
tuning, a process of which we can sample only to a limited extent,
requiring advanced data analysis methods and knowledge.

1.1.3 Biological context dependency

In addition to the reasons for variations in gene expression described
in the previous section, an overwhelming proportion of mammalian
cells rapidly undergo differentiation. As a result, they restrict tran-
scriptome diversity albeit to fulfill a highly specific function. That is
the reason why cells are systematically characterized into cell types,
cell lines, tissues, i.e. physically separated mesh of cell types, and
organs using multi-scale models. Intercellular information exchange
in between these compartments is known to be omnipresent via sig-
naling pathways [55]. Even though any two cells of the same cell type
will have slight variations in their transcriptome, cell type identity
is primarily driven by gene expression programs, even enabling the
estimation of cellular composition just based on mRNA levels [56–58].
From another angle, the interaction between TFs and their target
genes is known to be highly tissue-specific [59]. It is assumed that
gene expression is a multidimensional process, depending on the
individual, genetic background, tissue of origin, cell type, cellular
environment, as well as the temporal and spatial axis [60–63].
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+ 

11 organ systems 

78 organs 

~ 250 subregions 

4 tissue types 

200 cell types 

3,7 x 10 13  cells 
+ 

12 organelles 

1 reference genome  
+ 

~ 2 x 10 7  variations 

46 chromosomes 
+ 
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Figure 1.2: From modeling expression
of a single gene in a single cell (bottom)
to understanding the phenotype on a
global level (top), data complexity in-
creases numerous orders of magnitude.
Feature dimensions for each level were
stated exactly if known and estimated
from the literature otherwise. Created
with BioRender.com.

With over 30 trillion cells distributed over more than 70 organs
composed of at least 200 cell types, a transcriptomic map of the
human body is yet far from complete and comprises an ultra-high-
dimensional search space at the extremes [60; 64–66] (Figure 1.2). To
understand how genotype determines phenotype on the organism-
level, comprehensive multi-scale models are in great demand. Nev-
ertheless, previous efforts already revealed intriguing insights into
some of the restrictions of this data space. The majority of genes seem
to express one dominant form of a transcript, reducing variation due
to isoforms, and for which transcriptome similarity across human
tissues was found to be higher than within tissue similarity between

https://BioRender.com
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mouse and human, even though they are closely related [67; 68]. Pre-
viously underappreciated roles of exogenous RNA in host-pathogen
interactions are now increasingly uncovered as bacterial origins may
explain some of the observed differences [69–72]. Moreover, stress
response pathways induced upon infection are partially conserved
in bacteria and primarily regulated by ncRNAs, which may leak into
the host system upon activation of the immune response [73]. In
sum, eukaryotic gene expression regulation is a complex process
with unlimited facets, requiring further comprehensive assessment
under varying physiological and aberrant conditions to advance our
understanding on how genotype determines phenotype.

1.2 Non-coding RNAs

During the two primary landmark projects of deciphering the human
genome that ended in 2003, it became apparent that protein-coding
segments constitute only a minor fraction of the approximately 3

billion base pairs (bps) [74; 75]. A further characterization concluded
almost half of the transcriptome are nonpolyadenylated molecules
with unknown function, raising questions about the role of transcribed
ncRNA and non-transcribed genomic regions [76]. Debates about
the actual validity of these observations and whether non-coding
regions are simply biological junk and a leftover from evolution
followed [77; 78]. As of today, we know that 2% of the human genome
is covered by protein-coding genes, there are at least as many non-
coding genes than coding, and these fulfill a broad range of regulatory
functions [79–83].

Following the sheer diversity of ncRNAs discovered so far, new
ontologies emerged to systematically characterize biogenesis, function
and sequence relation [84; 85]. To this end, ncRNAs are typically
classified by their size into long non-coding RNA (lncRNA) (> 200
bps) or small non-coding RNA (sncRNA) and whether they occur
inter- or intragenically, whereby some lncRNAs are precursors to
sncRNAs [86; 87]. It was since discovered that lncRNAs exhibit unique
features of biogenesis and function, are found in many cell types, and
have diverse regulatory functions on both the transcriptional and post-
transcriptional level [88–90]. SncRNAs on the other hand, partition
clearly into distinct classes by sequential and structural properties,
biogenesis and function. The most important ones are tRNA, rRNA,
small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), small
Cajal body-specific RNA (scaRNA), miRNA, short interfering RNA
(siRNA), and piwi-associated RNA (piRNA) [16; 79; 91]. An overview
of known coding and non-coding RNAs expressed in eukaryotic
cells is illustrated in Figure 1.3. Several sncRNAs require protein
interaction partners to function, e.g. miRNAs, siRNAs and piRNAs
are selectively loaded by different members of the Argonaute (AGO)
protein families [92]. Through advances in molecular biomedicine
many ncRNAs have been shown to be implicated in human diseases
[93]. The phenomenon is further examined in detail for miRNAs and
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Figure 1.3: Major classes of RNAs ex-
pressed in most eukaryotic cells. From
left to right and top to bottom are shown
mRNA, tRNA, rRNA, snRNA, snoRNA
/ scaRNA, Y RNA, lncRNA, miRNA,
siRNA, and piRNA. Each panel contains
exemplary two-dimensional RNA struc-
ture(s) characteristic for the class. Be-
low each structure a short explanation
on function is given. Coding RNAs are
highlighted in red colored background,
long non-coding RNAs in green and
small non-coding RNAs in blue. Cre-
ated with BioRender.com.
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neurodegenerative diseases in this thesis.

1.2.1 MicroRNAs

The first metazoan miRNA was discovered in 1993 in nematodes
and described as small RNA regulating the expression of the protein-
coding gene LIN-14 through complementary binding [94]. In the early
phase, miRNAs were investigated primarily in model organisms such
as C. elegans and D. melanogaster and found to be highly conserved
[95–99]. Due to a rapid increase in the number of validated miRNAs
across dozens of species that nevertheless exhibit high sequence con-
servation, unified models of annotation and databases were developed
[100–102]. However, these resources needed to undergo substantial
revisions during another two decades of intense research. Reasons
were technological challenges, like addressing sequencing bias, or
emerging biological insights leading to a separation of siRNAs and
snoRNAs that were confused with miRNAs due to their functional
similarity [103–105]. Recently, the number of human miRNAs was re-
liably estimated to be approximately 2.300, many of which have been
experimentally validated so far, but yet another couple of thousand
potential candidates remain [54].

Since their discovery, biogenesis and molecular function of miRNAs
have been extensively described. Briefly, in the canonical biogenesis
pathway pri-miRNAs, which exhibit a characteristic stem-loop struc-
ture, arise from intronic or exonic sequences of host gene transcripts.
These are processed by the Drosha, Pasha, and DGCR8 microprocessor
complex yielding a shorter pre-miRNA hairpin [106–108]. Following
export from the nucleus by the Exportin-5 complex, a second enzyme
called Dicer cleaves the loop structure from the hairpin, resulting in
a double-stranded RNA molecule of 18 to 22 nts length [108; 109].
The double-strand dissolves and preferentially one of the strands is
loaded by a specific member of the AGO protein family. AGO protein

https://BioRender.com
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loading is a selective process depending on the downstream mode
of action of each miRNA [108; 110]. The common miRNA nomen-
clature thus specifies mature strands of each precursor by a −3p or
−5p name suffix. AGO proteins with miRNA embedded are termed
RNA-induced silencing complex (RISC) [111]. Competitive binding of
complementary antisense target sites within the 3′ or 5′ untranslated
region (UTR) typically results in either a prevailing loss of stability
through depolyadenylation, mRNA cleavage, or a complete blockade
of the ribosomal machinery [108; 112–114]. Therefore, miRNAs are
primarily reported as negative gene regulators, although exceptions
exist [115].

1.2.2 MicroRNA target gene relation

By closely studying potential target sequences up to the nucleotide
level, further mechanistic insights on miRNA targeting were gained.
Effective binding sites are at least 5 nts long segments in target
mRNAs and antisense complementary matching to the seed region
of the miRNA, i.e. position 2 to 8 counting from the 5

′ end [116–118].
Additionally, the regulatory site can involve supplemental 3′ pairing
of the miRNA bases 13 to 16 and in rare cases involve no 5′ seed
pairing at all, most likely affecting regulation efficacy [116; 119]. The
subsequent development of more than 100 computational approaches
in combination with high-throughput experimental validation lead to
the discovery of additional determinants of functional miRNA sites.
Well-known examples are sequence conservation, sequence location,
structure, and thermodynamic features [1; 120–122]. Therefore, sev-
eral studies estimated a large proportion of the human protein-coding
genome to be regulated by miRNAs with a pronounced evolution-
ary origin [123–126]. The observed abundance of binding sites in
the genome raised many questions about how miRNAs specifically
regulate developmental processes in a precise temporal and spatial
manner [127–129].

1.2.3 MicroRNA induced pathway modulation

Further evidence and mechanistic insights suggested an inherent
preference of single miRNAs or entire families to target multiple genes
on specific pathways such as apoptosis [130–132]. These findings call
for a systematic analysis and subsequent validation of entire miRNA
targetomes. Functional target pathways were often studied in either
a physiological setting, e.g. cardiovascular disease, cancer [133–139],
or in the context of cell and organ development like proliferation
and differentiation cascades, as for example in neurons [140; 141].
Intriguingly, several miRNAs seem to be involved in cellular immune
system homeostasis and molecular aging, suggesting a potential
role in age-related diseases [142; 143]. Ben-hamo and Efroni were
the first to hypothesize in 2015 whether single miRNAs prefentially
enrich their targets on cellular pathways and showed evidence for
such in ten types of cancer [144]. In a second study by Kehl et al.,
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seed similarity was shown in principle to predict pathway similarity
[145]. Although remarkable exceptions exist where apparent pathway
similarity was not met by seed similarity, the findings suggest a
complex relationship of regulatory dependencies between miRNAs.
However, a considerable imbalance in the number of targets and
functional pathways reported in the literature exists. The human miR-
34a is exceptionally enriched in cancer research, making any objective
comparison of miRNA targetomes a challenging task [146]. Therefore,
several key resources have been developed to collect computational
and experimental evidence for every known miRNA using statistical
methods to judge significant enrichment [2; 147].

Figure 1.4: Comparison of microarray
and high-throughput sequencing work-
flows for RNA profiling. Starting from
tissue, fluid or cell culture samples, cells
are homogenized and then lysed. Fol-
lowing purification and positive RNA
quality analysis, resulting RNA suspen-
sion for each sample is either subject
to microarray (left) or sequencing-based
(right) profiling. Created with BioRen-
der.com.

1.2.4 Screening techniques

A multitude of experimental methods have been used so far to quan-
tify miRNA expression and each has unique features and applica-
tion scopes [148]. Reverse transcription polymerase chain reaction
combined with quantification real-time polymerase chain reaction
(RT-qPCR / qRT-PCR), fluorescent labelling followed by antisense
complementary hybridization on microarrays, and small RNA se-
quencing were established as gold-standard in the field [149–154]. A
comparison of the lab workflows for the latter two is shown in Figure
1.4. Sample preparation, RNA extraction, quantification of RNA con-
centration and quality control belong to the standard workflow and
precede any of the aforementioned methods [148]. In particular, this
common procedure allows profiling of miRNAs across almost any
type of biological aliquot like from solid tissue or body fluids. Sample
handling is considered the most critical step, determining the amount
of successfully recovered RNA [155; 156]. Still, variability due to tech-
nology persists, significantly affecting reproducibility in respective

https://BioRender.com
https://BioRender.com
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scientific literature [157–160]. While there is often a good correlation
between all of the methods, crucial differences arise for miRNAs
with a rather low expression, where microarrays were deemed to be
more sensitive than sequencing-based profiling [157; 158]. In contrast,
sequencing is necessary to discover new miRNAs and isoforms in
a high-throughput manner [161; 162]. Several fundamentally differ-
ent commercial protocols have been published, resulting in different
capture efficiency, for example due to sequence composition or ampli-
fication bias [154; 163–166]. These aspects justify a considerate in silico
analysis of miRNA expression and at best, results should always be
confirmed with a second, independent technology and experiment.

1.2.5 Target validation techniques

MiRNA targets are often identified by computational means and
subsequently validated in vitro using a broad toolset of experimental
methods. The number of experimentally validated pairs per species
contained in the most recent and all previous database releases of the
miRTarBase is shown in Figure 1.5 [167]. In general, these methods
can be classified into low- and high-throughput methods with vary-
ing levels of confidence. Starting with the low-throughput methods,
dual-luciferase reporter assays and western blot are frequently used
to validate in between a few up to a hundred mRNA targets per
miRNA [168–172]. Both techniques act on the protein-level, making it
difficult to judge the efficacy of individual binding sites and coopera-
tive target sites. Nonetheless systematic target knockout through a
number of experiments exponential in the site counts is also possible
[118; 173]. In recent efforts one tried to improve the throughput of
luciferase assays for target validation through cellular multiplexing
and improved automation [6; 174–176]. Reporter-based techniques
have been critiqued for being labor-intensive, overly artificial due
to non-physiological overexpression of miRNA and target, and for
ignoring the intrinsic nature of miRNA networks [6; 177].

High-throughput techniques instead are pivotal for miRNA-target
relationship discovery in a genome-wide scope [178]. Unbiased pro-
filing of miRNAs and mRNAs using paired microarray or sequencing
from the same sample, often combined with overexpression or gene
perturbation, is a popular approach. It provides rich information on
potential regulatory networks at reasonable costs [139; 171]. However,
in this setup a direct regulatory relationship between each miRNA
and target remains difficult to prove and substantial computational
analysis is required to find targets with high specificity [179]. For a
more mechanistic high-throughput profiling, immunoprecipitation-
based approaches such as CLIP-seq or CLASH were developed. AGO
antibody-based purification helps to enrich for RISC complexes, fol-
lowed by enzymatic release of bound miRNA-mRNA duplexes and
sequencing [180–182]. Drawbacks are high noise levels in the obtained
reads and restriction of regulatory pathways to the antibody-specific
member of the AGO family. Similar to miRNA profiling, techniques
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Figure 1.5: Number of validated
miRNA-target pairs (y-axis) per species
and miRTarBase release (x-axis) [167].
Lines are colored according to species.
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should be selected ideally based on the application scope and com-
plemented by independent validation.

1.2.6 Bioavailability and physiology of microRNAs

The in Section 1.2.3 mentioned phenomena motivate further studies to
map miRNA expression in the entire human body and under varying
physiological conditions; otherwise the conjectured relationships be-
tween miRNAs and target mRNAs remain theoretic. Enormous efforts
for creating comprehensive molecular atlases of organs and biofluids
have already been conducted using independent technologies such as
sequencing and microarrays [183–186]. Albeit comparisons between
such data sets should be performed carefully since miRNA expression
measurements are extremely sensitive to tissue structure dissolution,
sample quality and preparation, library protocols, and platform-
dependent biases [148; 187]. Furthermore, comparing miRNAs across
species with matched tissues and fluids is deemed important as se-
quence is often strongly conserved while expression is not necessarily
[188; 189]. Whole-blood, plasma or serum specimens are often favored
in biomarker studies due to the low-invasive sampling procedure and
the high abundance of circulating miRNAs in the peripheral system
[190; 191]. Physiological miRNA expression in blood is remarkably
sensitive to environmental cues through personal lifestyle, like en-
durance and strength training, pointing at possible implications for
biomarker research [192; 193]. It was further discovered that specific
miRNAs vary along the age axis in human peripheral blood mononu-
clear cells (PBMCs) [194]. Furthermore, miRNAs tightly orchestrate
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organismal aging in C. elegans, raising more questions about a poten-
tially conserved role in mediating longevity [195–197]. Another study
found that mmu-miR-204-5p controls proliferation and differentiation
cascades in preadipocytes in a mouse model of obesity [198]. A no-
table upsurge of discoveries on the contribution of lncRNAs to tissue
aging and associated complications such as hypertension and cardio-
vascular incidents occurred in recent years [199; 200]. Taken together,
the increasing body of evidence motivates a systematic description of
physiological alterations caused by ncRNAs upon aging. In particular,
distinguishing which of the conjectured effects are either correlative or
causative towards aging phenotypes will be a continuous challenge.

1.3 Aging and age-related disease

Life on earth is limited by natural means with drastic differences in
longevity between mammals and other vertebrates [201; 202]. Besides
an individual’s experience, genotype identity and epigenetic phenom-
ena have been determined as major underlying factors driving the
aging phenotype of accumulating deficits [203–205]. Aging per se
is a key risk factor for aberrant developments, where a total of 92
age-related diseases have been described to date [206]. Intriguingly,
individuals with similar age-of-onset showed higher genetic similarity
in a comparative study [207]. Prominent examples for age-related
diseases include metabolic disorders such as diabetes or hyperten-
sion, cardiovascular dysfunction, cancer, multiple chronic conditions
and neurodegeneration, together posing a serious threat to global
healthcare systems [208; 209]. Yet, aging is remarkably heterogeneous
and proceeds non-linearly on the population level, motivating the
development of a multi-factorial, cellular model to understand traits
of human longevity [210–212]. With higher ages more and more cells
of the human body fall into a mode of cellular senescence, failing to
counteract the mutational burden [213; 214]. Additionally, a gradual
loss of chromosome telomeres causes a deficiency in stem cells lead-
ing to increased apoptosis and insufficient self-renewal capacity [215].
Tremendous efforts have been directed to unravel the cellular mecha-
nisms of aging, leading to the discovery of key apoptosis modulating
pathways such as mTOR [216].

1.3.1 Gene expression trajectory with age

In order to better understand the development of age-related diseases,
deciphering a solid picture on normal or healthy human aging at
the gene-level is inevitable [217–219]. Previous work led to the first
description of the gene expression hallmarks of cellular aging [220]. A
crucial aspect of aging research is to perform deep longitudinal profil-
ing in order to determine temporal on-set and specificity of alterations
in DNA methylation, mRNA expression or protein abundance, that
means from a multi-omics perspective [221–225]. Respective studies
were able to predict the existence of human ageotypes, personal aging
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markers and lifespan limits [221; 226]. Non-linear changes in mRNA
and protein levels, which were among others linked to inflamma-
tion, immune system activity and energy metabolism, were found
to occur with a high tissue-specifity along the human and mouse
lifespan [222; 227; 228]. In particular, a complicated tissue-dependent
inflammatory signaling between the various cell types of the immune
system as for instance between monocytes and T cells seems to play a
key role in age-related diseases [229–233]. It is increasingly appreci-
ated that many changes in gene expression observed upon aging and
disease are controlled by ncRNAs, especially miRNAs and lncRNAs
[5; 234; 235]. Human miR-34, for example, is a well-characterized
miRNA exhibiting a strong positive correlation of expression with age
and is implicated in cancer and neuron survival [6; 234]. It is therefore
deemed promising to look more closely into the function of miRNAs
in prevalent central nervous system (CNS)-associated diseases such as
Alzheimer’s disease (AD) and Parkinson’s disease (PD) on the search
for novel diagnostic and therapeutic approaches [236–243].

1.3.2 Neurodegenerative disorders

Severe nervous system diseases account for the second-most number
of deaths worldwide with significant regional variation [244; 245].
Neurodegenerative disorders are a type of detrimental neurological
aberrancy defined by varying protein pathologies and gradual loss
of CNS capabilities such as motor and sleep function, cognitive abil-
ities and progressive dementia [246; 247]. Both AD and PD belong
to this type of disorder with the most and second-most number of
cases, respectively [248; 249]. Conservative estimators report that
several million people are already affected globally and the incidence
continuous to rise (Figure 1.6). Many rational classification schemes
have been proposed to set the diseases apart based on clinical and
symptomatic criteria, physiological and anatomic features, or molecu-
lar neuropathology [246]. Early diagnosis is substantially hampered
by the presence of long asymptomatic precursor stages [250]. Even
though much work has already been accomplished to fully character-
ize the clinical and pathological features, only a limited number of
medications and no single curative treatment are currently available.
The overwhelming proportion of cases are classified as idiopathic
but a small percentage is attributable to disease-specific genetic mu-
tations and familial predisposition [251]. Strong neuroinflammation
and activation of immune cells as well as the occurrence of other
chronic conditions adopted during aging accompany neurodegenera-
tive disorders [252; 253]. However, the cellular origins of AD and PD
fundamentally differ by a selective vulnerability of neurons caused
by distinct protein pathologies, as explained in the following.

Alzheimer’s disease (in latin Morbus Alzheimer) is characterized by in-
tracellular accumulation of tau protein and extracellular amyloid-β

plaque formation pathology in the grey matter region of the cerebral
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Figure 1.6: Observed and projected case
numbers of Alzheimer’s disease (purple
line) and Parkinson’s disease (orange
line) in the global population between
1990 and 2030. Incidence rates and
counts were obtained from [264; 265].

cortex [249]. Patients in the mild cognitive impairment (MCI) precur-
sor stage or with terminal AD dementia show quantifiable cerebral
atrophy, especially in the hippocampus region [254]. However, both
plaque accumulation and atrophy are tissue-wide changes that occur
during normal aging but are exacerbated and even accelerated in
AD patients [254; 255]. The gradual accumulation of region specific
neurofibrillary tangles was first described by Braak in 1991, allocating
disease severity into the six so-called Braak stages [256].

Furthermore, genetic factors that relate to the protein patholo-
gies such as the three alternative alleles of the gene Apolipoprotein
E (ApoE), which modulate disease risk, have been identified [257].
Recently it was found that brain-resident, activated microglia both
phagocytose and acummulate lipid-droplets and show a strong over-
lap of inflammatory markers with those previously described in AD
[258]. The disease-associated microglia specifically express TREM2,
which is necessary for proper stress response and accumulating pro-
tein clearance [259]. Intriguingly, AD is associated with a partial
breakdown of the blood-brain barrier among others caused by cere-
bral amyloid angiopathy [260]. These findings suggest an altered
substance and signaling exchange between these otherwise strictly
separated biofluidial systems, questioning the role of the peripheral
immune system in neurodegeneration [261–263].

Parkinson’s disease (in latin Morbus Parkinson) in contrast to AD, was
first characterized by the formation of Lewy bodies and a selective
but severe loss of dopamin-producing (dopaminergic) neurons in the
substantia nigra. The common PD pathology arises from toxic accu-
mulation of misformed α-synuclein (SNCA), likely originating at the
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presynapse terminals and postsynaptic dendritic spines [266]. Braak
also proposed a six-stage classification scheme for PD that correlates
with symptomatic severity by tracking SNCA-immunopositive Lewy
bodies, Lewy neurites and local lesions that ascend the brain stem
[267]. However, in recent years emerging aspects caused a shift in this
paradigm to prefer SNCA accumulation induced synaptic dysfunc-
tion as primary cause of the PD phenotype over the neuronal loss
associated with Lewy body formation, which also occurs in normal
aging [268–270].

The dysfunction of dopaminergic neurons causes the distinctive
tremor and motor symptoms, but often dozens of other quality of
life restricting symptoms such as sleep disruption, constipation, and
anosmia are reported [248]. Some patients undergo cognitive decline
and develop dementia, showing remarkable similarity to the AD
pathology but with accumulation of lewy bodies in the cortex, also
known as dementia with lewy-bodies [271].

Similar to AD, several genetic risk factors involving the genes
SNCA, LRRK2, GBA, and MAPT were described, although most cases
of PD are idiopathic [272; 273]. The cellular and molecular hallmarks
of the disease include mitochondria and reactive-oxygen species dys-
regulation, calcium homeostasis, synaptic and lysosomal dysfunction,
protein misfolding as well as apoptosis and neuroinflammation [274].

Basic research in AD and PD was naturally focused on the cells
surrounding the affected brain regions, which is mirrored by the
established clinical practice reaching diagnosis by comprehensive
clinical and imaging features. Nevertheless, curative or preventive
treatments are still lacking, motivating the search for new diagnostic
and prognostic tools through massively extended biomarker discov-
ery frameworks. To this end, large-scale multi-centered cohorts were
established for each of the disease such as the Parkinson’s Progres-
sion Markers Initiative (PPMI) by the Michael J. Fox Foundation.
Low-invasive and cost-effective biomarkers for early diagnosis are of
particular interest, where peripheral sampling of specific proteins and
(extracellular) RNAs are currently believed to bear great potential
[275]. At best, a good candidate biomarker would robustly correlate
with some of the many objective disease rating scales such as the
Unified Parkinson’s Disease Rating Scale (UPDRS) or Mini–Mental
State Examination (MMSE) [276–278]. Due to their high bioavailabil-
ity and well understood targeting principles, miRNAs are profound
candidates for low-invasive fluid biomarkers, for which an overview
is provided in the next section.

1.3.3 RNA Biomarkers

Reliable biomarkers for neurodegenerative diseases are in great de-
mand and several promising candidates are evaluated in pre-clinical
studies for both AD and PD, although many have failed validation
[279]. Most biomarker candidates are targeted around the specific
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protein pathologies observed in each disease, oftentimes using whole-
blood, plasma, serum or cerebrospinal fluid (CSF)-based detection
methods [280; 281]. In addition, expensive imaging techniques such
as positron emission tomography (PET) provide diagnostic value
[279; 282].

RNA biomarkers for human disease have been extensively studied,
promising better cost-effectiveness and specificity but unfortunately
showing lower stability in biofluids due to circulating RNAses [283].
Blood-borne miRNAs and other ncRNAs, however, were found to be
remarkably stable and bioavailable, showing well-reproducible expres-
sion profiles [284–287]. Circulating miRNAs are commonly found in
serum, plasma, PBMCs and extracellular vesicles [288]. Yet, confound-
ing effects in blood-derived RNA expression profiles promoted an
over-report of non-specific and non-reproducible miRNA biomarkers
[160; 289–291]. Especially domain-specific meta-analysis studies high-
lighted an overly disconcordant picture of miRNA biomarkers in the
literature [292–294]. Thus, to increase specificity, miRNA biomarkers
are nowadays frequently reported as part of signatures or so-called
panels using machine learning methods [3; 290; 295–298]. Different
types of biomarkers exist, each with specific requirements (Figure
1.7).

Besides the traditional application in cancer research, potential
miRNA biomarkers were proposed for infectious, cardiovascular, and
neurodegenerative diseases [286; 301]. Intriguingly, miRNAs are able
to cross tight cell boundaries such as the blood-brain barrier, presum-
ably due to their tiny extent and encapsulation in exosomes [302; 303].
For example, hsa-miR-9-5p and hsa-miR-124-3p are enriched in the
brain but were found in serum exosomes of patients suffering from
acute ischemic stroke [304]. It was only during the last ten years that
miRNA biomarkers gained traction in neurodegenerative disease re-
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search, and many challenges in the field remain to be solved [275; 305].
First, most studies involve only a limited number of patients or repli-
cates [306]. Second, some miRNAs might bear more prognostic than
diagnostic value, however longitudinal expression profiling is rarely
performed. Third, a paired assessment of mRNAs and ncRNAs from
the same biological sample should ideally be performed to capture
the state of disrupted regulatory networks. As disease progression
in AD and PD is often highly individual, research on age- or stage-
specific and prognostic markers offers entirely new aspects to predict
a patient’s disease risk [8; 307]. Solving these challenges along the
way using novel bioinformatics-driven and standardized approaches
is important, with the current lack of such possibly explaining the
very limited success in translating miRNA biomarkers to the clinics
[308; 309].

1.4 Bioinformatics

Even though the gigantic increase in molecular data reaching exponen-
tial scales since the late 1990s and early 2000s is commonly attributed
to the origins of bioinformatics, the actual history dates back to the
1950s [310]. Back then, computational biology arose at interface
of biology and computer science, both of which faced tremendous
technological advances in the last 70 years [311]. Today, bioinformat-
ics is a diverse, multi-faceted and therefore hard to delineate field
that is closely intertwined with molecular biology and clinical re-
search. Among the grand challenges are the development of standard
databases and computational models supporting interpretable data
analysis, to provide reproducible and scalable standard-workflows
as well as developing efficient software tools based on modern algo-
rithms [312; 313]. The almost paralleled increase in computational
power and amount of generated data required continuous overhaul-
ing of software, fostering a high level of innovation in the field. As
for this profession replication of results is a major concern and follow-
ing the reproducibility crisis, gets increasingly appreciated [314–316].
In addition, the massive upsurge in data-driven industrial research
renders it even more difficult to distinguish between branches of
data science and traditional bioinformatics, which show trends of
mutual convergence [62; 317; 318]. Thus, several rather generic and
wide-spread application platforms have emerged, each of which is
introduced in turn.

1.4.1 Application types

Databases are systematic collections of almost any kind of scientific
data — and at the very heart of many bioinformatics applications. The
National Center for Biotechnology Information (NCBI) lists more than
40 resources in the core collection, together covering a broad range
of -omics and clinical data sets. Moreover, the journal Nucleic Acids
Research (NAR) dedicates one issue a year with 28 iterations so far
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for publishing peer-reviewed databases that are of broader interest for
the community [319]. Therefore, a variety of standard databases exist
in each of the specific domains. For example, Ensembl, RefSeq, UCSC
Genome Browser, ENCODE, UniProt, and PDB are the largest refer-
ence collections for genome, transcriptome and proteome sequence
and function annotation in vertebrates [320–325]. For ncRNAs in
general, the resource RNAcentral whereas in particular for miRNAs,
the databases miRBase, miRCarta, and MirGeneDB are most popular
and together established a common nomenclature [101; 326–328].

Figure 1.8 shows the canonical steps covered in a standard miRNA
analysis pipeline, and for each dozens of specialized database appli-
cations have been proposed. Typically, popular databases offer rich
custom and interactive analysis functionality to support interpretation
instead of just being pure data repositories. The scientific databases
developed by the group of Clinical Bioinformatics at Saarland Univer-
sity collectively attracted 22.622 individual visitors from all around
the globe within 1 year, causing a total of 53.822 unique page views
(Figure 1.9).

Profiling
•Preprocessing
•Quality control

Quantification
•Mapping & Alignment
•Post-alignment QC

Normalization
•Depth-correction
•Covariate-correction

Differential expression
•Effect size & Significance
•Correlation

Target identification
•Prediction
•Validation

Functional analysis
•Pathway enrichment
•Network analysis

Figure 1.8: Workflow performed in a
standard miRNA analysis pipeline of
small RNA profiling data sets. The six
major steps are profiling, quantification,
normalization, differential expression,
target identification and functional anal-
ysis, each comprising multiple subrou-
tines.

Web servers are web-based tools performing repetitive analyses or
complex workflows based on user-provided input and that comple-
ment static data collections. The need for bioinformatics-driven web
servers is ubiquitous, so that NAR decided to dedicate another annual
special-issue exclusively to web servers with 18 iterations completed
so far [329]. Traditional sequence alignment tools such as BLAST
rank among the most popular web server applications, generating
millions of user-queries each year [7; 330]. However, a high availabil-
ity of user-friendly development frameworks caused an inflation of
available web servers showing low half-life times [7]. Therefore, new
standards of good scientific practice are emerging to increase tool
availability. Among others, common testing strategies, regular main-
tenance, comprehensive tutorials, and minimum security measures
are required.

Computational models. Bioinformatics analyses inevitably rely on com-
putational models combining different sources of data to predict a
certain feature of interest. Also, they often incorporate prior statisti-
cal and biological knowledge. For instance, hidden markov models
simulate stochastic and sequential processes with state transitions
governing hidden factors [331]. Markov chains were used by EN-
CODE to assign function to regulatory elements in the genome based
on epigenomic sequencing data. Thousands of models of varying
flavors and scope have been published so far. Yet, specific assump-
tions and limitations are intrinsic to every such, and failing to know
those is one of, if not the most frequent source of errors in the scien-
tific literature. Since most public databases and web servers involve
the application of computational models the potential impact is vast.
Moreover, while use a priori information tends to improve prediction
performance, models are at risk to pick up hidden bias, having sig-
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Figure 1.9: Combined usage statis-
tics for seven peer-reviewed databases
published by the Clinical Bioinformatics
group at Saarland University. Presented
data was collected for one year starting
on the 31st of May in 2020.
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nificant implications especially for machine learning [332–336]. Bias
hidden in computational models contributes to a low success rate in
translational research, where they fail to generalize to a larger and
often more diverse set of observations. Therefore, it is crucial to assess
as many confounding factors as possible during model development
but also to explore new methods to detect such.

Algorithm, software and programming standards. As standardization is
a common task in bioinformatics, rich libraries containing efficient
implementations of algorithms exist in the community. Frequently
they appear in combination with a set of standard data formats. For
example, the Binary Sequence Alignment/Map format (BAM) ac-
companied by the Samtools software suite is completely technology
independent and thus part of almost any sequencing pipeline, and
has been cited more than 5.500 times according to the Web of Science
(WoS) (accessed on June 19, 2021)[337]. Similarly, the Browser Exten-
sible Data (BED) format and General Feature Format (GFF) storing
genomic features, i.e. annotated locations and intervals, and the asso-
ciated bedtools suite (> 8.200 citations at WoS; accessed on June 19,
2021) are de facto standard in any genome annotation pipeline [338].
While downstream analysis and visualization is primarily performed
using scripting languages such as R or Python, high-throughput sce-
narios require more efficient solutions. In the context of this thesis,
most code requiring computational efficiency for sequence analysis
was developed using the module-based Seqan C++ template library
[339].

Pipelines. Following the successful development of key computa-
tional methods within domain-specific scopes, there is an unprece-
dented need for pipelines. A pipeline is a complex, non-linear work-
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flow to transform given input data to output data under a set of
transformation rules. Features inherent to each pipeline framework
are definition of input format(s), output format(s), transformation
command(s), necessary and optional parameters as well as resource
management, e.g., space and time constraints. A pipeline is commonly
interpreted as directed acyclic graph (DAG). Abstract definitions can
be formulated in the Common Workflow Language (CWL) [340]. The
most common workflow managers are Snakemake, Nextflow and
Galaxy that interpret CWL or custom syntax in order to execute fully-
defined pipelines [341–343]. Still, pipelines per se are deliberately kept
abstract as to be independent from technical variables that would
affect portability. Thus, to make results truly reproducible, they must
be run in fully isolated environments. That is often achieved by
combining any of the above frameworks with proper virtualization
techniques such as Docker, Singularity, or software package manage-
ment through Bioconda [344–346]. Each data transformation step is
then performed on a selected compute node using automatic depen-
dency deployment, enabling massive scaling through parallelization.
Pipelines are becoming ever more popular and already have shown
great success through commercial applications in biomedical industry.
Together, the above introduced flexible toolbox of bioinformatics ap-
plications promoted fundamental advancements in molecular biology.
Next, the actual role for some of these tools in sncRNA research and
analysis is further elucidated.

1.4.2 Role in non-coding RNA research

Analyzing small RNA sequencing data using a high-throughput bioin-
formatics pipeline involves the application of dozens of methods and
tools, which are configured using hundreds of parameters. Here, we
focus on the standard workflow required for miRNA research, how-
ever, similar pipelines exist for other sncRNAs. The necessary steps
can be basically grouped into miRNA quantification, normalization and
differential expression, target identification and in silico functional analysis
(Fig. 1.8). Each is introduced in more detail in the following sections.

MiRNA quantification The first step is to process raw high-throughput
sequencing data eventually computing a miRNA to sample count
matrix. Besides enforcing minimum base quality-thresholds, platform
adapters are trimmed from sequencing reads and mapped against the
target genome. Because of their small size, standard read lengths (75

bps) are often sufficient to cover entire miRNAs. They align against
their precursor origins, forming characteristic read profiles with one
major and one minor read stack per precursor. Then, known miRNAs
are identified using reference genome annotation data from public
standard databases. To date, hundreds of sequence and structure fea-
tures of what makes a good precursor were described, and multiple
tools for miRNA discovery and quantification from next-generation
sequencing (NGS) data have been proposed [347]. Results presented
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in this thesis were primarily obtained using miRMaster for this par-
ticular job [348; 349]. Possible extensions to this analysis include
isomiR and single-nucleotide variant (SNV) identification, miRNA
arm shift quantification, contaminant analysis or novel candidate
ranking [111; 347; 348; 350].

Normalization and differential expression Like for most sequencing pro-
tocols, raw miRNA quantification results should be normalized and
scaled to account for technical variability, differences in sequencing
depths and varying RNA quality. Several methods are commonly
used for miRNAs including counts per million (CPM), reads per mil-
lion (RPM), reads per million mapped miRNA (RPMMM), quantile-
normalization or variance-stabilization transformation (VST) [351].
Most are suitable to compare miRNA counts between samples, al-
though quantile-normalization is often favored for microarray-based
profiling [352]. Inter-sample comparisons can be performed using
statistical tests such as the Student’s t assuming normal distribution,
non-parametric Wilcoxon test or measures of effect size such as Co-
hen’s d. The Shapiro-Wilk test can be used to judge the normality
of miRNA expression before continuing with DE analysis. Good
scientific practice involves a prefiltering of miRNAs with a very low
expression as to yield a set of well detected features [160]. The signifi-
cance of relationships between miRNAs and technical or biological
covariates can be judged under the F test via an Analysis of Vari-
ance (ANOVA) or with correlation tests. Importantly, downstream
applications as for example principal component analysis (PCA) tend
to return better results for similarly distributed features, i.e. having
equal mean and variance (z-scores), otherwise results are primarily
driven by a successive hierarchy of expression strength.

Target prediction Following quantification and normalization, the
next main step is to perform targetome prediction for each miRNA
[347]. In high-throughput profiling studies several hundred miRNAs
are typically of greater interest, thus in silico target prediction is often
preferred over expensive target validation techniques in the early
stages. In principle, every target prediction tools utilizes one or several
of the four core features to varying extents; complementary sequence
alignment, structural features, sequence homology and conservation
or site accessibility [1]. It was previously shown that none of the many
tools available consistently outperforms the others, although some
seem to perform considerably better in certain setups. In addition, the
required runtime varies on several orders of magnitude, precluding
poorly scalable tools from any high-throughput pipeline. However,
unbiased performance benchmarks for miRNA target prediction tools
are notoriously hard to achieve in general. High quality validation
sets for negative targets, i.e. non-functional targets that still contain
a binding site are rare, even though many such non-functional sites
are predicted to exist [353]. As a result of frequently underpowered
validation, most tools predict a couple of hundred to thousand targets
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per miRNA, accumulating to several million miRNA-target pairs
in human [354; 355]. It is therefore deemed necessary to develop
new methods for prioritizing likely targets over low-quality ones.
For instance, grouping predicted genes into enriched pathways or
reaction networks, which are listed in popular databases such as Gene
Ontology (GO) or the Kyoto Encyclopedia of Genes and Genomes
(KEGG), has been shown to increase specificity of target predictions
by filtering false positives [6; 356–360].

In silico functional analysis The last step is to combine findings about
(dysregulated) miRNA expression and predicted / validated targets
for a context-specific interpretation of function. The focus of such
an analysis varies in several aspects, sometimes turning it difficult
to discern the actual miRNA function, since different modes of ac-
tion and regulatory dependencies are strongly interwoven [361; 362].
Substantial evidence suggests the existence of additional rules gov-
erning miRNA targeting for phenotype regulation in vivo [363–365].
These observations call for systematic methods and resources facilitat-
ing a comprehensive functional characterization of each mammalian
miRNA [362]. To begin with, enrichment analysis is one of the most
popular applications in miRNA research, borrowing statistical meth-
ods like gene set enrichment analysis (GSEA) from earlier approaches
developed for whole-transcriptome studies [362; 366]. Furthermore,
miRNA-pathway databases offer pre-computed annotations for miR-
NAs using validated or predicted target genes that are enriched
on certain pathways from knowledge databases like GO or KEGG
[2; 147; 362]. Also, more specialized databases such as miR2disease
list specific associations for miRNAs being implicated in human
disease [362; 367]. Finally, in silico reconstruction of miRNA-target
coexpression networks as bipartite graph is frequently performed to
generate further insights into regulatory dependencies and network
motifs [362]. More explanations on methodological details are given
in the upfollowing sections.

1.4.3 Computational methods

In the following paragraphs essential methodological and statisti-
cal background knowledge underlying the resources developed in
this thesis (miRNA pathway dictionary database (miRPathDB) 2.0;
miRNA Enrichment Analysis and Annotation tool (miEAA) 2.0) are
introduced [2; 4].

Set statistics Two main techniques exist to judge whether a given
set M of feature-annotated items is significantly covered in another
sample set S. The abstract question is whether S contains more,
less, or similar featured items than M than one would expect to
observe in a random process. First and foremost, over-representation
analysis (ORA) can be performed using the hypergeometric test,
which is in fact used to judge whether a given statistical sample stems
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from a certain base population or not. There are four parameters
involved; the background population size, the number of times a
certain feature is contained within the population, the sample size and
the number of times that same feature is contained within the sample.
By enumerating all possible sampling combinations, a likelihood (p-
value) for the null hypothesis that the data was randomly sampled
from the population, is obtained. If this p-value is sufficiently small,
the likelihood to observe the sample distribution or a more extreme
one under the null hypothesis is small and therefore gets rejected.

The second main technique is not based on an unordered set but
based on the rank of each item on a sorted list, also known as GSEA
[366]. Thereby, a significant accumulation of a given feature at the
beginning or the end of the item list should be tested. Briefly, the
GSEA algorithm involves the enumeration of a running sum, which is
equal to zero at the beginning of the list. The sum is then increased or
decreased by a pre-defined amount depending on whether the item
at the current rank position has the feature of interest or not. The
significance and a therefore a p-value is determined from the maximal
absolute deviation from zero, the so-called enrichment score. The p-
value can be estimated through permutation or even calculated exactly
using dynamic programming, and depending on the desired level of
precision the one or the other is computationally more expensive [368].
Optional weights for each item in the list can be given, corresponding
either to an unweighted or weighted Kolmogorov-Smirnov test with
fixed or dynamic steps of the running sum, respectively [4].

Both aforementioned techniques were extensively applied in
transcriptomics studies and during the last ten years adapted to other
fields, including ncRNAs and miRNAs [369; 370]. While ontology-
based methods were shown to improve detection of batch effects and
interpretation of genomic or transcriptomic data sets, the translation
of enrichment analysis to miRNA research yielded critical concerns
about confounding bias [371–373]. Reasons are the significant im-
balance of validated targets across all the known pathways and a
general over-representation of cancer in the miRNA literature [372].
In addition, the level on which the comparisons using set statistic are
performed (miRNA, gene, pathway), strongly influence the results.
As a remedy, best practices have emerged that were also taken into
account during the implementation of miEAA and miRPathDB [2; 4].
Finally, when testing more than one feature or category of interest
among the same set of items, measures to correct for multiple hypoth-
esis testing must be implemented, otherwise significant results occur
simply by type-I error rate inflation. Prominent examples are the
Bonferroni correction or the false-discovery rate controlling procedure
by Benjamini and Hochberg [374].

Optimization Many practical programming tasks in Bioinformatics
can be reformulated as optimization problem, allowing elegant and
concise formulations of highly complex models [375; 376]. The tech-
nique was originally described in computer science and is broadly
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used in economics. A standard optimization problem basically in-
volves a linear target function f (x) depending on a fixed number of
input variables and one or multiple side equations or inequalities,
also known as constraints. Optimization problems with side con-
straints that require equation satisfying variables to be integer are
called integer linear program (ILP). The feasibility of such a prob-
lem and the existence of an optimal solution is of primary interest,
however, it has been shown to be a hard problem in general and there-
fore is of complexity NP-complete. Several independent techniques
have been developed to solve ILPs exactly such as cutting planes
or branch and bound methods, or approximately to a certain level
of precision using heuristic approaches. Practical problems tend to
have numerous optimal solutions, with important implications for
the functional interpretation of gene selection models in the context
of genomic or transcriptomic studies; disjoint sets may solve the same
requirements equally well obfuscating their genuine importance. For
instance, "what are the minimal number of miRNAs to cover a certain
set of target genes", is a question that can be formulated as an ILP,
and a solution to this problem was implemented in miRPathDB 2.0
[2].

Networks Graph theory has found broad applications in bioinfor-
matics and was successfully used for creating genome assemblies,
biological networks, or protein-complex simulations [377–379]. Every
graph can be described as tuple G = (V, E) with the set V being the
nodes (vertices) and the set E denoting the undirected or directed links
(edges) between any two vertices, with E ⊆ {(v, v′)} where ∀v, v′ ∈ V
and v 6= v′. Via algorithms interesting properties about large graphs
can be computed such as the shortest path between two nodes, the
existence of fully connected subgraphs, so-called cliques, or biological
network motifs such as feedback loops [380; 381]. Regulatory net-
works of miRNA-target interactions were often modeled as bipartite
graphs, i.e., a graph with two types of nodes where only edges be-
tween nodes of different types exist, but not within one type [382]. In
such networks, miRNA and gene nodes are often context-specifically
selected based on their differential expression or association with
a particular disease [383]. The edges, on the other hand, can be
derived by means of multiple sources, for example, experimentally
validated miRNA-target interactions or significant anti-correlation
between miRNA and mRNA expression [384]. MiRNA-mediated
networks are intrinsically redundant and exhibit specific degree distri-
butions, where the topology can be indicative of disease-associations
[385–389]. In addition, tools tailored for miRNA analysis that spawn
networks based on established knowledge databases have been pro-
posed, combining also different layout clusterings for comprehensive
visualization [390].

Machine learning and data science The information content of certain
features, e.g. gene or miRNA expression, as diagnostic or prognostic
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signatures predicting a certain clinical outcome can be assessed using
machine learning (ML). The techniques combine advanced mathemat-
ics with unmatched performance of modern computers to uncover
hidden relations from large data sets, a task that is impossible for
humans to perform manually. Two primary purposes exist; prediction
and inference. The former is used to determine robustness and accu-
racy, including sensitivity and specificity of individual feature sets.
The latter refers to the interpretation of important features and gener-
ating insights about the relation between the dependent and indepen-
dent variables of interest. For instance, promising results have been
described for the detection of lung cancer with 91, 4% accuracy using
ML-derived signatures of circulating miRNAs [295]. However, numer-
ous pitfalls exist that frequently cause non-reproducible findings in
biomedicine and frustrate translational research, and consequently
predictive models should be evaluated from independent viewpoints
[391; 392]. Errors might arise from undetected confounding factors or
by mixing up correlation with causation [393]. In addition, improper
handling of imbalanced data classes, e.g. case and control, and pre-
selection of features before performing cross-validation introduce bias
and obfuscate prediction performance.

Dozens of models have been evaluated for miRNA signature iden-
tification, ranging from linear regression to deep neural networks.
Still, tree-based models such as gradient boosting machines (GBM)
seem to frequently outperform others. Generating a GBM involves a
sequential training of shallow decision trees (weak learners), eventu-
ally reaching an ensemble of weak but independent predictors, with
a strong collective prediction performance. For instance, GBMs were
used to accurately distinguish AD patients from controls based on
expression levels of 21 circulating miRNAs [3].

1.4.4 Role in clinical non-coding RNA research

Clinical bioinformatics provides domain-specific expertise of com-
puter science to streamline clinical research and applications. It is
characterized by high-throughput data generation with quick turn-
arounds, high standards for data curation and robust modeling
[394–396]. Many challenges have to be overcome to make precision
medicine feasible [397]. Rigorous validation and reproducibility of
sequencing-derived results is a major concern in the field, as for exam-
ple clinical covariates like patient age or sex are known to influence
-omics data. Taking into account the known biological or technical co-
variates is thus deemed essential [398]. Furthermore, it encompasses
appropriate use of biostatistics to test differential data distribution
together with pre-checking of statistical assumptions. For biomarker
studies replication using an independent cohort along with the use of
an independent technology is considered best practice. Standardiza-
tion of data processing pipelines is thus another important challenge
[399].

As compared to transcriptomics applications, ncRNA research
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is not yet as mature and specific challenges need to be overcome
for more efficient clinical research. Most classes of ncRNAs are
under-characterized, especially in non-primate species, leaving much
room for improvement to reduce existing uncertainty in modelling
ncRNA pathways [400]. Since many miRNAs are not yet functionally
characterized and together with the existing literature bias towards
cancer-associated miRs, interpretation of small non-coding assays
is a challenging task [400; 401]. They also obey different levels of
bioavailability and pathways to permeate physiological barriers in
biofluids as compared to mRNAs [402]. Due to their broad versatility
in mediating essential gene regulation, miRNA-based therapeutics
have shown low success rate so far, motivating the development for
new in silco methods and resources that take into account all relevant
aspects.





2
Goals of the PhD thesis

The aim of this thesis was to advance our understanding of miRNA-
induced gene regulation in a differentiated, step-wise fashion. It
was hypothesized earlier that these gene regulatory mechanisms
differentially govern cellular pathways at either homeostatic condi-
tions, during aging or in age-releated diseases of Homo sapiens. The
eight main publications included herein systematically approach this
goal. Successive interleaving of basic research on miRNA-target gene
relationships, methodological advances, and applied research on neu-
rodegenerative diseases, facilitated a comprehensive analysis of most
human miRNAs in the aging context. In the following, each publica-
tion is thus briefly introduced in chronological order and the most
important accomplishments are mentioned. An overview of the cov-
ered projects is given in Figure 2.1 and respective publications are
presented in full in Chapter 3.

To begin with, by comparing almost 100 tools for in silico miRNA-
target prediction, a comprehensive overview of the most effective
targeting features was generated as well as assumptions and intrinsic
biases of these models were unveiled [1]. Even though four frequently
cited mechanisms are utilized for target prediction, output and pa-
rameters of most published tools are difficult to interpret. In addition,
individual prediction features show considerably varying importance
based on the biological context. Subsequently, a novel version of
miRPathDB was developed, including a revised selection of predicted
and experimentally validated miRNA-target pairs, generating the
so far largest database of statistically enriched miRNA pathways in
human and mouse [2]. New interactive analysis functionality enables
straightforward dissection of large panels of interesting miRNA and
gene candidates as often encountered in high-throughput sequencing
studies. We then compiled a well-performing blood-based miRNA-
signature for AD detection using machine learning methods together
with a functional interpretation of the selected miRNAs through
miRPathDB [3].

Since miRNAs are increasingly described in terms of more special-
ized features, as for instance cellular localization, tissue specificity or
interaction with other regulatory players such as TFs, a new major
release of miEAA was developed [4]. It now allows to annotate a set
of miRNAs from ten different species by a variety of new, potentially



48

Figure 2.1: The main projects presented
in this thesis were classified either as
basic research, tools and databases or ap-
plied research. Arrows in between the
three groups indicate flow of knowledge
gained during development. Projects
were numbered according to increas-
ing chronological order of publication,
which is also depicted at the top.

enriched aspects derived from the literature, further broadening the
application scope. From a technical viewpoint, miEAA was also com-
pletely redesigned allowing users automated access to the algorithm
and facilitating inclusion in custom bioinformatics pipelines. Both
miEAA 2.0 and miRPathDB 2.0 were used extensively to interpret
large sequencing and microarray data sets as shown hereafter.

Seeking to understand how blood-borne miRNAs are affected
by human aging, a large-scale analysis of 4.393 microarray samples
revealed strong disease- and age-specific but less gender-specific
changes in physiological patterns of expression [5]. Age-declining
miRNAs significantly overlapped with those described being down-
regulated in AD. Most importantly, miRNA expression was observed
to change in a non-linear way along human lifespan and those changes
were partially reflected in anti-correlated protein levels of affected
target mRNAs.

Yet, experimental validation of entire candidate target pathways
for one or several miRNAs was still considered impractical, especially



49

with high-confidence but low-throughput methods like reporter as-
says. Therefore, a novel workflow combining multiple computational
and experimental approaches was developed to specifically narrow
down the most likely set of target genes or target pathway(s) for a pre-
selected miRNA [6]. Because most target prediction tools suffer from
Type-I error inflation, experimental validation previously yielded low
rates of success and specificity. By executing this new workflow for
hsa-miR-7-5p and hsa-miR-34a-5p, both of which are implicated in PD,
unprecedented target validation success rates were obtained, both
on the per-gene and per-pathway level. In order to support users in
performing the workflow, a new web-based tool for target plasmid
design and a database containing validated miRNA-target pathways
were published alongside.

Having gained fundamental experience from developing multiple
web-based tools and databases, each accessed by thousands of users
annually, an invited survey and summary paper was published in
Nucleic Acids Research [7]. After continuously tracking the availabil-
ity of a semi-automatically curated set of several thousand scientific
web servers, a 50% availability ratio just ten years following initial
publication was observed. High citation rates correlated with high
availability and good maintenance, and therefore best practices for
web server development were derived and discussed.

Finally, the most complete, longitudinal description of circulating
sncRNAs in PD was performed [8]. In total, 5.450 small RNA se-
quencing samples were analyzed, yielding a comprehensive atlas of
miRNA expression in human blood cells and pivotal candidates for
diagnostic and prognostic biomarkers of PD. Similar to our previous
observations, miRNAs were affected non-linearly across the lifespan
in PD and recapitulate all molecular hallmarks of the disease. Using
paired RNA-seq, the impact of disease progression-associated miRNA
modules on the transcriptome was modeled in silico, motivating a
further experimental characterization of these pathways in the future.
The main results from the larger PPMI cohort were then successfully
replicated in the independent National Centre for Excellence in Re-
search on Parkinson’s Disease (NCER-PD) cohort from Luxembourg
using microarray technology instead of sequencing. This study was
selected as cover story for the 2021 March issue of Nature Aging. Fig-
ure 2.2 shows the original cover artwork of Volume 1 Issue 3 (March
2021) as it appeared in the journal
(https://www.nature.com/nataging/volumes/1/issues/3).

Despite the main collection of papers presented above, a total of
24 ancillary manuscripts were published in related fields. In brief,
topics comprise basic research and reviews on miRNAs and tar-
gets [105; 118; 145; 350], miRNA physiology [193; 403], circulating
miRNA dysregulation in cancer [404–406], properties of small RNA se-
quencing technologies and data [91; 154], new miRNA databases and
repositories [188; 327; 407] as well as novel web servers for miRNA
analysis [111; 349; 390; 408]. In translating our observations from the
summary and survey report we created a monitoring web service,

https://www.nature.com/nataging/volumes/1/issues/3
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which continuously creates long-term availability reports for thou-
sands of peer-reviewed web tools [7; 409]. In the broader context
of gene regulation, two collaborative projects on integrative models
for transcription factor binding and gene expression prediction were
successfully completed [31; 410]. Last but not least, following an
unprecedented global pandemic caused by the human SARS-CoV-2,
a scientometric literature analysis and two transcriptome studies on
the emerging coronavirus disease 2019 (COVID-19) were published
[411–413].
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Figure 2.2: Cover artwork of Volume
1 Issue 3 (March 2021) in Nature Ag-
ing. Original source caption: Image:
Dr. Valentina Galata, University of
Luxembourg, 2021. Cover design: Lau-
ren Heslop. All required permissions
were obtained.





3
Results

This cumulative thesis is based on eight peer-reviewed publications
whose published versions are included in full in this chapter.
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Abstract

Motivation: Since the initial discovery of microRNAs as post-transcriptional, regulatory key-players in the
1990s, a total number of 2, 656 mature microRNAs have been publicly described for Homo sapiens. As
discovery of new miRNAs is still on-going, target identification remains to be an essential and challenging
step preceding functional annotation analysis. One key challenge for researchers seems to be the selection
of the most appropriate tool out of the larger multiverse of published solutions for a given research study
set up.
Results: In this review we collectively describe the field of in silico target prediction in the course of time
and point out long withstanding principles as well as recent developments. By compiling a catalogue
of characteristics about the 98 prediction methods and identifying common and exclusive traits, we
signpost a simplified mechanism to address the problem of application selection. Going further we devised
interpretation strategies for common types of output as generated by frequently used computational
methods. To this end, our work specifically aims to make prospective users aware of common mistakes
and practical questions that arise during the application of target prediction tools.
Availability: An interactive implementation of our recommendations including materials shown in the
manuscript is freely available at https://www.ccb.uni-saarland.de/mtguide.
Contact: andreas.keller@ccb.uni-saarland.de, Ph. +49 (174) 1684638
Supplementary information: Supplementary data are available at Briefings in Bioinformatics online.
Keywords: microRNAs; target prediction; model interpretation; post-transcriptional gene regulation;
model selection guide

Introduction
Almost twenty years ago Lee and Ambros initiated the era of small,
non-coding RNAs by describing the existence of gene regulatory RNA
sequences in C. elegans [1]. They found that short RNA sequences of about
22 nts in length, thereafter termed microRNAs, confer post-transcriptional
regulation of target messenger-RNAs (mRNAs) by interrupting translation.
In the mean time microRNAs have been described across a wide range
of mammalian species [2, 3, 4]. From microRNA genes stem-loop like
structured, ncRNA precursors (pri-miRNAs) are typically transcribed [5].
These are subsequently processed by the enzyme complexes Drosha-
DGCR8 and Dicer to trim precursor ends and to cut away the central

hairpin, respectively [5]. This process leaves behind a double-stranded
stretch of RNA from which mostly one single-stranded form, either
the 5′ major (-5p) or the 3′ major (-3p) mature miRNA, is selected as
guide strand and to accumulate in the cytoplasm [6]. To confer gene
regulation, mature microRNA transcripts are loaded into proteins of the
AGO(1-4) family to bind sequence stretches in target molecules through
extensive Watson-Crick base pairing [7]. As a result targets are either
endonucleolytically cleaved, destabilized through exonucleolytic decay,
or the ribosomal machinery is blocked [8]. While in plant species miRNAs
are prefentially conserved and known to form hairpin precursors similar to
metazoan miRNAs, enzymes associated with biogenesis and underlying
modes of action are different [9, 10]. For example, AGO1 was shown to be
the most effective member of the AGO family in Arabidopsis [10]. More
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prominently, miRNAs hybridize almost perfectly to their target site along
the entire mature sequence, allowing for minor mismatches and bulges
more often at the 3′ end of the mature strand [11]. In turn, this property
not only simplifies the search for target sites but also suggests a higher
specificity of gene regulation in plants, resulting in a lower number of
potential targets that can be predicted computationally. Also, the RISC
binds mostly to coding regions, i.e. the open reading frame (ORF) of
mRNAs in plants, whereas the 3′ UTR preferentially harbors the target
sites of RISCs in animals [11, 12]. Following these observations, target
prediction in plants obeys different rules where exact alignments can be
more strict with respect to mismatches and hence are faster to compute.
Due to an asymmetric affinity of target binding in metazoan species, the
seed region became the most important notion in the field; it defines the
nucleotide sequence from position 2 of the 5′ end to 7 in the microRNA
that preferentially determines the targetome, i.e. a set of mRNAs targeted
by a microRNA [13]. Since the true binding motifs may vary in length
and involve mismatches or bulges, searching for potential targets in the
human genome turned out to be a classical needle in a haystack problem.
Therefore, comprehensive and efficient computational methods for target
prediction are in great demand. Choosing one or several from the existing
tools may not be simple at all; one should at least know the underlying
assumptions as well as how to interpret the output. Here, we systematically
organize existing programs into methodological categories and provide
practical hints for the aforementioned challenges to simplify the entrance
into the field. Notably, this review refrains from providing a detailed
technical benchmark as there are several reviews on this topic that can
be recommended [14, 15, 16].

Literature overview
The rapid development of next-generation sequencing (NGS) techniques
catalyzed an explosion in the number of annotated microRNAs [17]. In
turn this promoted the development of target identification methods [18].
In Figure 1 the number of publications describing computational methods
for target-prediction from 2003 to 2019, split into articles for novel tools
and update notes, is shown. Listing approximately 8 articles per year
(Mean≈ 7.6, SD≈ 4.0), in silico miRNA-target prediction remains an
attractive field within bioinformatics and life sciences. Intriguingly, the
number of publications has an apparent peak at and around the year 2013,
which we contribute towards the increasing application of cross-linking
immunoprecipitation-high-throughput sequencing (CLIP-seq) techniques
that allow to map microRNA interaction sites in a genome-wide manner
[19, 20]. Even though the publishing activity started to decline from
2017 onwards, recent advancements in graphics processing unit (GPU)
computing, in particular its applications such as deep learning in genomics
lead to an upsurge in publications, which is expected to further increase
within the next years [21]. Lastly, the update cycle is fairly frequent for
some tools e.g. TargetScan, receiving updates more than 10 years after
their initial publication (Supplementary Figure 1) [22].

Principles of target prediction

A catalogue comprising 32 features and meta-characteristics about 98 tools
was compiled from the literature and analyzed (Supplementary Table 1). To
provide a simple measure to categorize and classify tools according to their
underlying methodology, five key-principles used as features for miRNA-
target identification by any tool under consideration were identified.
Those are sequence or seed complementary (SC), structural and energetic
properties (ST), site accessibility (SA), species conservation (C), and
expression analysis (E). While the former four are typically derived from
sequence information only, the latter one can be performed in combination
with Microarrays or RT-qPCR experiments. In Figure 2 the four sequence
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Fig. 1: Number of publications per year describing mammalian
microRNA-target prediction methods, split by the number of original in
dark blue color and updates including web server applications in green
color, respectively. In total 130 publications have been collected during
an initial literature study and were subsequently organized into a tool
catalogue (Supplementary table 1).

feature categories are illustrated. Beginning with the sites-level descriptors
a fundamental feature of target prediction programs consists of searching
for any sequential match between a short query, i.e. a microRNA, and
a large target sequence, i.e. 3′ UTR, to find a seed match. Optionally,
several tools scan for additional 3′ binding of nucleotides at positions 13

to 16 of the microRNA. Sequence matches can also be characterized from a
thermodynamics point of view; substantial base pairing provides a negative
binding free energy to favor a duplex structure between microRNA and
target site. miRanda was the first tool that successfully combined these
two notions as it seeks for site matches and filters any hits according to
their computed minimum free energy (MFE), where lower values of MFE
indicate more stable bindings as measured in kcal/mol [23]. Subsequent
publications mostly adopted this mechanism or were solely dependant
on structural properties without requiring a seed match at all, e.g. rna22
and RNAhybrid [24, 25, 26]. Later it was hypothesized that the structure
of the target site before getting occupied by the RNA-induced silencing
complex (RISC) plays an informative role as well leading to the discovery
of the site accessibility features, which were first indirectly and directly
measured in MicroTar and PITA, respectively [27, 28]. In parallel, tools
were developed that take conservation levels of microRNA and target
into account, presumably to reduce the number of weak site mappings
and with TargetScan and DIANA-microT leading these findings [29, 30].
Over the years more features have been described such as the flanking
AU nucleotide content as replacement for site accessibility, synergistic
regulatory effects by closely located binding sites, or preferential locations
of sites within 3 ′ UTRs that were predominantly combined with machine
learning [31, 22, 32]. Tools incorporating the last of the five key-principles
namely the expression analysis pursue an idea that is orthogonal to the
aforementioned ones. Using any experiment that is capable of reporting the
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Fig. 2: Schematic overview of the key-principles and features of
microRNA-gen targeting as implemented by methods collected for this
review. On top, the sites-level features are depicted with the most
prominent features being the seed-type match, the minimum free energy of
the microRNA-target duplex ∆duplex, the flanking AU content, and the
site accessbility ∆∆G = ∆Gduplex − ∆Gopen. On the whole-target
level, i.e. 3′ UTR or mRNA, more complex features such as the binding site
multiplicity, the location bias of target sites and the secondary structure
folding of the target sequence constitute important descriptors. Finally,
sequence conservation analysis of microRNAs and / or targets between
closely located species, for example measured through the branch-length,
is commonly used to restrict sensitive methods towards highly conserved
patterns. Hence, conservation can be used to balance specificity against
sensitivity, whereby forcing a conservation of microRNAs tends to be more
effective than it is for the targets.

expression levels of both miRNA and mRNA simultaneously, one searches
for anti-correlated expression patterns. Pearson and Spearman correlation
or mutual information are popular measures to assess these patterns, for
example as implemented by MMIA, CoMeTa, and Cupid [33, 34, 35].

Systematic categorization according to model features

We labelled each tool with the corresponding key-principle or multiple of it
to identify N = 17 groups, i.e. unique combinations. The methodological
overlaps are shown as Venn diagram in Figure 3. As expected the largest
group (N = 17) is defined by tools implementing the full palette of
sequence-based features, because one would expect the full-feature models
to have higher predictive power. Taking only the sequence match and
structure features into account the second largest group is formed, showing
that these two criteria seem to go well together. Intuitively this makes sense
since one can obtain a paired RNA sequence alignment by minimizing the
duplex free energy over two nucleotide strings. Still, 13 tools also take
the site accessibility into account, which is a simple and natural extension
of the minimum free energy based models. Another noticeable overlap
concerns the category about expression analysis as it primarily appears
together with several or all of the sequence-based features, suggesting that
expression data can effectively be used to complement or refine classical
sequence-based prediction models. Moreover, 49 programs do not include
information on conservation, supporting earlier findings that conservation
is not an appropriate measure for functionality of target sites but rather just
acts as an efficient false-positive site filter for very sensitive methods [36].

Fig. 3: Venn-diagram illustrating the categorization of tools from the
catalogue with respect to their methodological key-principles as described
in the main text. Categories and abbreviations are seed or sequence match
(SC), structural properties (ST), site accessibility (SA), conservation filter
(C), and expression analysis (E). Each uniquely colored region highlights
a distinct overlap of the five key-principles along with the number of tools
that implement the corresponding features.

Interpreting tool outputs
Correctly understanding assumptions, parameters and output of
computational methods promotes effective research as recent work by
Shah et al on misunderstood parameters of BLAST, a popular sequence
alignment tool, showed [37]. In case of microRNA-target prediction the
most canonical workflow comprises two FASTA files provided by the
user that are turned into a list of paired predictions along with one or
several kind of output scores [38]. Depending on the tool each pair on
the list can either be a microRNA and a binding site within some target
sequence, a microRNA and an entire target mRNA, or both. While the
former provides a more fine-grained, molecular description of how the
miRNA is predicted to interact with its target, the latter is easier to
understand and even mandatory to perform functional enrichment analysis.
More importantly, not all available models are capable of generating
predictions that are ready to use for downstream applications and thus
require manual postprocessing. Therefore, we sought to provide a more
generalized description of the most common types of output from the
models in our catalogue and sketch possible interpretations in Table 1.

Starting with the most simple type of result a binary class label may be
reported, which can be useful to generate a simple separation of prospective
candidates from unlikely ones but on the other hand might be too generous.
To generate a ranking of pairs residing in the same output class one can
consult the mapped seed types or the number of extracted binding sites to
reassess the predictions. Next, the computed MFE is a popular measure
to rank different binding sites among each other. However, low values
may occur by chance, a likelihood that increases with the length of the
target sequence if not corrected properly [49]. As argued earlier, relying
on conservation scores to rank predictions may effectively be used to
filter false-positives and boost specificity [31]. Nevertheless, conservation
does not necessarily imply functionality nor does it the other way around
[50, 51]. In particular, if one seeks to perform de novo predictions we
recommend to go for non-conservation models. Context scores provide
an independent way of judging the binding quality of distinct target sites
as they capture the direct and surrounding nucleotide content and thus
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Table 1. Common types of output generated by microRNA-target prediction tools. In the second column the numeric range(s) for each type are defined. In the
third column the possibility of using the output to rank predictions among each other, in particular with respect to functionality are listed. Each type is assigned a
granularity level (fourth column), depending on its usage to characterize either binding-sites, entire target sequences, or both. In the literature, the term binding
site is also commonly referred to as microRNA recognition element (MRE), marking stretches of target RNA that exhibit partial Watson-Crick pairing to a
miRNA. The last two columns state a possible interpretation for each type of output along with an associated example method.

Output type Range of values
Suitable for

ranking?
Granularity Interpretation Example(s)

Binary classes
Discrete (e.g.
b = {0, 1}) N Target, Binding site 0=Interaction unlikely, 1=Interaction likely * homoTarget [39]

Minimum free energy R P Binding site
The lower the more stable the duplex indicating

an efficient binding. Standard thresholds are
defined between−17 and −12 kcal/mol [40].

IntaRNA 2.0 [41]

Conservation score R P Target, Binding site
Higher scores indicate greater conservation

across a larger number or very closely related
species.

phastCons score
[42], Probability

of conserved
targeting (PCT )

[43]

Context score R P Binding site
Indicates favorable nucleotide compositions

and position of a site.

TargetScan
(Context++ score)

[22]

Fold-change R Y Target
Expected fold-change of miRNA x on target y

assuming that both are expressed above
background.

miRepress [44]

Correlation / Mutual
information

[−1, 1], R>0 Y Target
Anti-correlations suggest regulatory

dependencies, e.g. microRNA is upregulated
and respective targets are downregulated

CoMeTa [34]

P-value / Z-score /
Signal-to-noise ratio

[0, 1],
[−3SD, 3SD]

P Target, Binding site
Extreme values or significant p-values mark

divergence from a norm, and in turn increased
regulatory potential.

RNAhybrid [26]

Probability [0, 1] P Target, Binding site Likelihood of miRNA x and target y to interact. mirMark [45]

Seed type / Match
length

R>0 P Binding site
Rate sites based on the accepted seed type

hierarchy: 8mer >7mer-m8 >7mer-A1 >6mer
>Offset 6mer

GUUGle [46]

Custom score R NA Target, Binding site

Prioritize targets according to several,
convoluted criteria. Note that respective score

ranges might be specifically distributed or
normalized for one microRNA or target

sequence, or across the entire input dataset
[47].**

DIANA-microT-
CDS: Linear

combination of
summed MRE

scores from CDS-
and 3′

UTR-derived sites
[48].

SD = Standard deviation, N = No, P = Partial, Y = Yes, NA = Not available, * Neglecting a possible switch of classes, ** Always conduct the corresponding manuscript.

other hidden features such as the site accessibility. The most popular
implementation is the context++ model as provided by TargetScan, which
ranks predictions by combining sequence descriptors with estimated seed
type contributions that can correlate with experimentally measured target
repression [22]. Predicted fold-changes suggest a very convenient way of
assessing efficacy of regulatory interactions, however only 5 out of 98 tools
report such. We reason that fold-changes may be highly microRNA specific
making it difficult to provide models that generalize well for previously
unseen microRNA sequences. Furthermore, fold-changes might be overly
optimistic since side-effects such as sponge behavior or cross-targeting
events have to be taken into account as well [52]. Correlation and mutual
information are classical scoring functions to assess microRNA and mRNA
co-expression data. While significant anti-correlations in their expression
patterns are indicative of a regulatory dependency, combining expression
analysis models with sequence-based predictors could be necessary to
resolve ambiguous multi-correlations and cooperative targetings of several
microRNAs targeting the same mRNA. In particular early approaches were
designed to report p-values or signal-to-noise ratios based on the estimation
of a background distribution, e.g. the number of seed matchings for
randomly shuffled microRNA sequences, to infer enrichments above this

noise level. Not only are these methods sensitive towards outliers but must
be applied with caution since a recalibration with newer datasets might be
required in order to get a better estimate of the statistical parameters. In
addition, growing sample sizes can cause significant p-values to occur by
chance, an effect that can be counteracted by correcting the p-values or
considering statistical effect sizes instead. On the other hand probabilities
provide an intuitive way of ranking and classifying predictions. Most of
the selected tools directly report the probability of a pre-trained machine
learning model, e.g. a support-vector machine, which can be used in
combination with some reasonable decision threshold to distribute the
pairs into two or more regulatory classes. Conceptually, probabilities
located close to the decision threshold are understood to be less confidently
assigned than those being extremely distributed, i.e. close to 0 or 1.

As a special case for per-binding site predictors, considering the seed
type matches of one microRNA along a target can be used to judge the
regulatory potential. For example, targets harboring only one or two
minor site types such as 6-mers tend to be less effective and thus have
a higher chance of being false-positives [47]. Consequently, binding site
multiplicity in combination with seed type distributions can in principle be
used to point out target candidates. Lastly, tools that compute specifically
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designed scores for a weighted combination of multiple features constitute
a special category for which we recommend to check the individual
definition carefully. Understanding the hypothetical range of values a score
can take on and verifying whether simple confounding factors exist that
influence the distribution makes up an acceptable starting point. Note
that in Table 1 partial rankings refer to types typically accompanied by
some pre- or user-defined threshold, e.g. keeping binding-sites with an
MFE of −12 kcal/mol or less, and discarding otherwise. This implies
that all pairs passing a reasonable threshold should be treated as being
significant. In contrast, ranking-compatible scores such as the fold-change
are not dependent on an associated cut-off, so that one can directly traverse
predictions in a prioritized manner.

Resolution of common usage pitfalls
Besides methodological considerations about individual tools, we asked
whether common usage issues exist that may arise while working with
computational models for target prediction. Our respective findings
that describe both biologically and technically motivated challenges are
summarized in Table 2. First and foremost, a single gene locus can give rise
to different transcripts and taken together with alternative polyadenylation
mechanisms, 3′ UTR shortening or lengthening can occur in vivo,
effectively altering the landscape of regulatory binding sites [53, 54].
Most target prediction resources solve this problem by selecting either
any or the longest 3′ UTR from available databases such as Ensembl or
NCBI’s Refseq. However, this may be too simplistic as a counter example
shows. The human gene MDM2 exhibits 19 protein-coding transcripts
(GRCh38) with partly non-overlapping 3′ UTRs (Supplementary Figure
2). Moreover, due to their nature of being non-coding, UTR sequences
tend to exhibit a lower nucleotide complexity as compared to sequences
in the open reading frame, i.e. increasing risk of spurious binding site
matchings because of repetitive sequences. As a case example, we analyzed
the 3′ UTR of the human gene ARHGEF10L using the latest version of
RepeatMasker resulting in 104 bases (21.27%) to be masked due to simple
repeats (Supplementary Notes 1, Supplementary Figure 3) [55]. We then
applied rna22 v2 on the unmasked sequence and searched for targets of all
human microRNAs from miRBase v22, resulting in 924 distinct predicted
binding sites, 269 of which (≈ 29%) are located within the extracted
repeats [2]. Recent findings also support the hypothesis that functional
microRNA binding sites reside within coding sequences and 5′ UTRs
as well, motivating the question whether existing models can be applied
seamlessly to the full-length mRNA [56]. Interestingly, binding principles
and sequence features described earlier are only partly transferable and
specific models for these novel target regions are in favor of classical
3′ UTR algorithms [57]. Due to the inherent complexity of microRNA
gene targeting and the fact that no tool consistently outperforms all others,
intersecting or taking the union of the output from several tools established
to be common practice among end-users. Indeed, earlier studies report
that union approaches provide a good trade-off between specificity and
sensitivity [58]. Albeit this approach bears some caveats; first one must
make sure to use the same reference databases, i.e. sources for microRNA
and gene annotation to prevent mapping issues, second there may be
instances where prediction programs disagree with each other, and finally
the amount of methodological overlap between tools under consideration
confounds the bias-variance trade-off [59].

Turning to the experimental side, predicted interactions are often
validated by either Microarrays, qRT-PCR, Western Blots, Luciferase
assays, pSILAC, or NGS-based methods including CLIP-seq and CLASH
[69]. While each method has its own strengths and weaknesses the principal
difference between transcriptomics-based and proteomics-based evidence
is crucial. While methods that rely on the presence of the mRNA of interest

like Microarrays and qRT-PCR can only detect cleaved but not repressed
targets, methods that capture the assembled protein like Luciferase assays
or Western Blots fail to distinguish cleavage from repression events. Even
though the latter techniques usually come at a higher cost than the former,
they are guaranteed not to miss any regulatory effect, contrasting the
accuracy of their transcriptomic counterparts. Also, popular databases like
miRTarBase and TarBase report not only positively confirmed interactions
but also negative ones, whereby negative results should be understood as
having no evidence for a regulation instead of showing the absence of any
regulatory interaction at all [74, 75, 16]. Finally, a popular downstream
application concerns the enrichment of target genes within functional
categories or biological pathways as provided by Gene Ontology or
Kyoto Encyclopedia of Genes and Genomes (KEGG) among the predicted
targetome of microRNAs [76, 77, 78, 79, 80]. As pointed out earlier,
enrichment analyses should be performed using highly stringent p-value
cut-offs to avoid likely false-positive associations [59].

Challenges associated with prediction benchmarks

Since it might be desirable to perform customized prediction benchmarks
for a set of candidate tools that suit a given research setup, several probable
issues are required to be overcome for a reliable benchmark. Reconsidering
the key-principles introduced in Figure 3 it is apparent that not all of
these categories are directly comparable with each other. Therefore, we
propose that a respective benchmark should at least distinguish between
classical sequence-based, expression analysis, and NGS-based methods,
the latter of which include mapping reads from CLIP-seq or CLASH
experiments, to ensure a certain base-level of commensurability. As shown
in Supplementary Table 1, published tools were either in a minority of
cases not validated, tested with simulated data, or in most cases verified
using experimental data sets, adding yet another level of complexity
into benchmarks. To this end, it is crucial to know which interactions
have been used for evaluating the implementations, especially in case
of machine-learning driven applications, otherwise one is at risk to test
a model with a sub-set from the training data. Additionally, validated
interactions as publicly available through miRTarBase and TarBase are
categorized into distinct levels of confidence, depending whether a low-
throughput method, e.g. Western Blot or a high-throughput method, e.g.
Microarray was used. In the respective databases the number of weak and
strong interactions differs more than ten-fold raising a class-imbalance
problem that should be taken into account during the design of test sets as
well. To increase the complexity even more, benchmarks can get biased
towards already established methods because a selection of prospective
candidates subject to wet-lab validation was likely accomplished with one
or several prediction methods beforehand. Further, interactions labelled
with a negative outcome require special care. A non-positive outcome can
be interpreted as missing evidence of a regulatory dependency, however
in some manuscripts, negative interactions are simulated by re-shuffling
the features of positively tested pairs. Finally, not all approaches were
developed to function ab initio where the input from one or several tools
might be required to apply tools falling in this particular category in a
correct fashion. It is conceivable that depending on the parameters of the
tool(s) used upstream, the outcome of any down-stream application can
be altered considerably.

Method selection guides
To simplify the task of selecting appropriate and use-case specific tools
from the larger set of available solutions as listed in Supplementary Table 1
we devised an ordered set of questions to guide the selection procedure:

1. For which organism(s) should the targets be predicted?
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Table 2. Common questions, problems, and pitfalls researchers may face while working with in silico microRNA-target prediction methods. For each case
example, the pitfall is described in the second column, followed by an example or source for each pitfall. Further, at least two solutions are given in the
remaining columns of the table.

Problem / Question /
Usecase

Pitfall(s)
Example / Citation /

Source
Possible solution Alternative solution

Multiple transcripts, 3’
UTRs per gene

Often only the longest 3’ UTR
isoform is selected

MDM2 gene showing 19 3′

UTR isoforms.*

Ensembl: Take
Havana-Ensembl overlap,
TSL: 1-2, NCBI: Choose

the principal isoform

Take overlap between refseq
and Ensembl

Low-complexity target
sequences

Spurious binding site mappings
Repeats in 3′ UTR of gene

ARHGEF10L.*
Use pre-masked genome

Apply repeat masker on
custom sequences

Predict targets for 5’ UTR
or CDS

Using a tool developed for 3’
UTR prediction on CDS

sequences

MinoTar [60], See also
review by Chipman and

Pasquinelli [61]

Use a tool specifically
crafted for CDS

Search for the
supplementary bindings

Intersect default predictions
from different tools

Non-matching reference
databases, e.g. Ensembl, NCBI

See study by Ritchie et al
[59]

Convert identfiers / genome
coordinates using utility

tools, e.g. UCSC’s LiftOver
[62]

Re-run the tools on updated
datasets and then merge

Compute overlap of tool
predictions

Bias-Variance trade-off,
Sensitivity vs Specificity

trade-off

See study by Oliveira et al
[58]

Search for tools using
distinct features on distinct

datasets

Stick with one tool and
search for other criteria to

re-rank the predictions

Applying sequence
conservation filter

Conservation != Functionality,
Conservation in CDS is implied

hsa-miR-15a targets from
mirSVR study [31]

If possible run with and
without conservation filter

Run other tool that makes
no assumptions about

conservation

Getting large number of
predictions

Detecting targets with very low
specificity

Default prediction counts
vary up to 4 orders of

magnitude [16]

Use conservation filter or
expression data to filter

false positives

Re-rank or filter predictions
using some third-party
ranking methods, e.g.

MirAncesTar or
SeedVicious [63, 64].

Comparing tool output with
measured fold-change

Output score is not a measure for
fold-repression

mirWIP: aggregates
context-specific scorings
unrelated to fold-change

[65]. miRNALasso:
explicitly quantifies

down-regulation from
expression data [66].

Define two discrete
regulatory classes and

iterate all possible
thresholds to compute a

ROC-AUC

Use dedicated ranking
methods developed for this
purpose, e.g. myMIR [67]

Predicting targets for
reference sequences only

Missing the sequence variation,
e.g. isomiRs, SNPs / SNVs in

UTRs

Variants in COPD
application: SubmiRine [68]

Rerun selected tools on
input sequence with variants

applied

Use specific tools for this
purpose, e.g. SubmiRine

Working with "negative"
interactions from

experimental databases

"Negative" means absence of
evidence not evidence of

absence, Class imbalance

mirDIP prediction database
[16]

Correct for class imbalance
using standard methods, e.g.

down- and upsampling,
imputing

Perform binding site
knockout experiments, e.g.

Luciferase assays to label
each binding site

Validating predictions with
Luciferase or

Immunoblotting

Cleaving and translational
repression of ribosome cannot be

distinguished

hsa-miR-15a-5p regulates
TP53 (MIRT005763), See

review [69]

Combine with
transcriptomics-based

experiments (see below)

Confirm with tool that
predicts mRNA change, for

example targetScore [70]

Validating predictions with
Microarray and qRT-PCR

Contrary to previous one; Can
detect cleaved but not repressed

targets

hsa-miR-197-3p regulates
TSPAN3 (MIRT000215),

See review [69]

Combine with protein-based
experiments (see above)

Confirm with tool that
predicts protein fold change,

for example miSTAR or
DIANA-microT-ANN

[71, 72]
Extracting significant

targets / enriched pathways
using p-values

Hitting a significance by chance
See study by Ritchie et al

[59]

Correct for the p-values, e.g.
using Benjamini-Hochberg

procedure [73]

Take only highly significant
p-values

TSL = Transcript Support Level, * Genome browser screenshot can be found in Supplementary Data,
* Source: http://mirtarbase.mbc.nctu.edu.tw/php/detail.php?mirtid=MIRT005763,*** Source: http://mirtarbase.mbc.nctu.edu.tw/php/detail.php?mirtid=MIRT000215

2. Which target region should be scanned, e.g. 3′UTR, coding sequences
or entire mRNAs?

3. What type of input is available, i.e. sequences, expression levels or
both?

4. Should predictions comprise a list of target sites, a list of target
transcripts or both?

5. Are NGS reads (e.g. from CLIP-seq experiments) available or not?

6. Should ab initio methods be preferred over ensemble / deductive
methods?

If the remaining set of tools remains to be unspecific one can consult
additional attributes to prioritize the candidates. For example, one might
prefer full sequence-feature (SC, ST, SA, C) methods over simpler
models. An alternative requirement might be whether targets should only
be computed using known or novel microRNAs or even custom target
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sequences as well. To enhance the flexibility of the provided data set with
respect to a broader range of applications we computed a hierarchical
clustering of all collected methods using 16 categorical variables depicted
as a tree in Figure 4. In its essence the tree combines the information
of 1, 568 informative cells to group similar tools together, i.e. a lower
vertical distance in the tree reflects a higher similarity between any two
given methods. We motivate this procedure by two case examples;

1. Suppose the tool miRanda was selected using the above outlined
questionnaire and one wants to check similar tools to intersect the
output with. The tree reveals that the lowest branch occurs between
miRanda and CUDA-miRanda, a GPU based high-throughput re-
implementation that allows to analyze extremely large sets of miRNAs
and mRNAs [81]. Moreover, MicroInspector, which is located at the
next upper branch, not only implements the same key-principles as
miRanda but provides a secondary-structure filter for miRNA-target
site hairpins exhibiting self-folding artifacts that cannot be detected
solely by MFE-based scorings (Supplementary Figure 4)[82].

2. Same assumption as in (1) but a combination of the output with a tool
having a distinct methodology is desired. For example, targetScore
makes up a good candidate as it is located in the tree several
branches away from miRanda. A closer look into the catalogue affirms
the selection, because targetScore not only takes distinct sequence
features into account but also makes use of expression data [70].

We have implemented an interactive webpage that supports user requested
queries based on any criteria available in our literature catalogue
to perform tool selection. The implementation is freely available at
https://www.ccb.uni-saarland.de/mtguide.

Future perspectives
MicroRNA target prediction tools constitute a crucial step in sncRNA
analyses seeking to understand the transition from geno- to phenotype.
Given the yet limited availability of experimentally verified interactions,
computational methods remain the method of choice for researchers to
make a pre-selection of likely functional targets. However, as shown
by a recent study of Fridrich et al., prediction tools tend to exhibit
a substantial level of noise, especially in non-model organisms or
previously unexplored lineages, residing between 65% and 85% [84].
Even though experimentally validated tools for non-model organisms
remain to be explored, several current advancements in genomics motivate
the need for novel methods of model organisms as well. First, the
development of single-cell sequencing techniques, in particular co-
sequencing of microRNA- and mRNA molecules from the same cell offer
new possibilities in understanding microRNA mediated gene regulation
by modelling sequence-family specific regulatory networks [85]. For
example, such a co-sequencing offers a great potential in understanding
the heterogeneity of cancer tissues and differentially regulated RISC
targetomes. Moreover, augmenting existing data sets with time-series
measurements could provide an entirely new dimension of how we view
development-specific regulatory interactions. To this end, recent findings
suggest that the dominantly expressed mature arm of a microRNA can
alternate either from the 5′ dominant to the 3′ dominant form or the other
way around, a mechanism also known as microRNA arm switching [86].
Furthermore, flexible models taking into account the natural sequence
variation typically in form of isomiRs, and SNPs in respective target
mRNAs are superior to static reference models, especially in clinical
contexts [68]. Here, deep learning delineates itself as an excellent
candidate to drive the next-generation of target prediction methods since
it scales well with large data sets while offering the potential to unveil

previously undetected coherences, mitigating the need for handcrafted
features [87, 88].

Methods
Literature study
For the initial literature catalogue we collected relevant publications
describing either original work or updates including applications such
as web servers in the field of microRNA-gene targeting using NCBI’s
PubMed. From each publication 32 features described in Supplementary
Table 1 were extracted from either the main text or the supplementary
documents. Citation counts were collected on 4th of February 2019 using
Web of Science (https://apps.webofknowledge.com/).

Figure design
Figure 1 was rendered using the R package ggplot2 and Figure 3 using
VennDiagram and ggsci [89, 90, 91]. The initial distance matrix underlying
Figure 4 was computed using the gower distance implemented in the R
package cluster and subsequently visualized with circlize, dendextend, and
viridis [83, 92, 93, 94]. The column indices for the 16 features selected
for clustering the tools are 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 18, 23,
32. Respective columns are also highlighted with italic column names in
Supplementary Table 1.

Case example analysis
Sequences for human microRNAs were obtained in FASTA format from
miRBase release v22 [2]. Genomic locations for the tested 3′ UTR
sequences of the human genes MDM2 and ARHGEF10L were acquired
using Ensembl’s BioMart Release 96 [95]. Respective sequences were
cut from the human reference genome assembly GRCh38.p12 as obtained
through GENCODE release 30 [96]. Subsequently, RepeatMasker and
rna22 configured with default parameters were run on the selected 3′ UTR
of ARHGEF10L followed by manual analysis of the output [55, 25].

Interactive website guide
The webservice was implemented using Django v2.1.7, SQLite3 and
bootstrap v4.3.1 for the back- and front-end, respectively. To support
interactive and flexible user-queries the content of Supplementary Table
1 was stored across several query-optimized tables in a SQLite database.
Acting on top of this dataset an ordered set of questions was implemented,
once supporting exactly the recommended procedure as presented in the
manuscript and once in an arbitrary fashion for advanced usage. A more
natural selection of domains and taxonomic rankings up to single species,
as supported by individual tools, was implemented using a phylogenetic
mapping from the organisms annotation file of miRBase v22.
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Fig. 4: Hierarchical clustering of 98 target prediction methods based on 16 categorical variables, a subset from Supplementary Table 1, illustrated as polar
tree dendrogram. Pairwise dissimilarities were calculated using the gower coefficient as distance metric from the CRAN R-package cluster [83]. Each
leaf in the tree is labelled with a corresponding tool name or the first author of the publication if no name is given. Tool labels are colored according to the
last year of publication, i.e. original or latest update publication where yellow color indicates very recent and dark blue colors older publications. Partial
sub-trees were colored at the cut k = 8 to highlight groups of similar methods. Circular annotations around the tree provide additional information about
categories being enriched among even larger groups of tools that possibly span multiple sub-trees.

Key points
• In silico microRNA target-prediction tools incorporate a broad

collection of molecular aspects but are mostly based on five
key-features.

• Serving all possible research questions is difficult to accomplish
using a standalone implementation. Intersection approaches that
combine tools with distinct methodology can provide a possible
remedy.

• Knowing the underlying assumptions and input requirements of
a given tool is crucial for a successful interpretation of model
output.

• The application of microRNA-target prediction tools bears
several pitfalls that can influence down-stream analysis
considerably.
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ABSTRACT

Since the initial release of miRPathDB, tremendous
progress has been made in the field of microRNA
(miRNA) research. New miRNA reference databases
have emerged, a vast amount of new miRNA candi-
dates has been discovered and the number of ex-
perimentally validated target genes has increased
considerably. Hence, the demand for a major up-
grade of miRPathDB, including extended analysis
functionality and intuitive visualizations of query re-
sults has emerged. Here, we present the novel re-
lease 2.0 of the miRNA Pathway Dictionary Database
(miRPathDB) that is freely accessible at https://mpd.
bioinf.uni-sb.de/. miRPathDB 2.0 comes with a ten-
fold increase of pre-processed data. In total, the up-
dated database provides putative associations be-
tween 27 452 (candidate) miRNAs, 28 352 targets and
16 833 pathways for Homo sapiens, as well as interac-
tions of 1978 miRNAs, 24 898 targets and 6511 func-
tional categories for Mus musculus. Additionally, we
analyzed publications citing miRPathDB to identify
common use-cases and further extensions. Based
on this evaluation, we added new functionality for
interactive visualizations and down-stream analyses
of bulk queries. In summary, the updated version of
miRPathDB, with its new custom-tailored features,
is one of the most comprehensive and advanced re-
sources for miRNAs and their target pathways.

INTRODUCTION

Understanding the mechanisms of gene regulation is one of
the major challenges in molecular biology and bioinformat-
ics. In order to get the big picture, diverse sub-fields emerged

to study the underlying principles of transcriptional, post-
transcriptional, translational and post-translational levels
of gene regulation. Short, conserved and non-coding RNA
families, so-called microRNAs (miRNAs), were shown to
orchestrate major pathways in a post-transcriptional man-
ner by targeting 3′ untranslated regions (UTRs) of mR-
NAs in mammals and plants (1,2). While early studies fo-
cused on the validation of human microRNAs and those
found in important model organisms such as mouse and
rat, the focus has been broadly expanded to characterize
miRNAs in a larger set of metazoan species (3). To this
end, several reference databases such as miRBase, miR-
Carta and miRGeneDB and different nomenclatures were
established (4–6). Since the number of miRNAs discovered
is steadily rising (7), a remarkable amount of studies al-
ready validated microRNA target genes and their function
in a multitude of cell-types, tissues and disease phenotypes
(8,9). These global research efforts have led to an accumu-
lation of novel data. To scale up with these developments
and to gain deeper insights into miRNA functionality, ro-
bust statistical methods and curated databases are in great
demand, especially to integrate all the important findings
from miRNA discovery, target validation and target gene
function (10,11).

One of the key questions of functional miRNA analysis
is which pathways or cellular functions are regulated by a
given miRNA (miRNA-centric view), or conversely, which
miRNAs regulate a given gene set or pathway (pathway-
centric view) (12,13). To solve these problems, several tools
and databases have been proposed so far. From a miRNA-
centric view, the miRTar database, which links individual
miRNAs to metabolic pathways (14) and miRSystem, pro-
viding pre-computed enrichments of target genes in path-
ways (15), should be noted. Moreover, pure enrichment-
based tools like miEAA, the bioconductor package miR-
NApath, or BUFET that are based on many-to-many rela-
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tionships can process lists of miRNA identifiers to compute
pathway associations (16–18). More specialized miRNA-
centric tools include miRNet (19), which is a networks-
based approach and miTALOS v2 (20) that annotates
miRNA functions in a tissue-specific manner. PolymiRTS
(21) is a pathway-centric database that maps SNPs in target
sites to gene categories and phenotypes, i.e. disease traits.

Only a minor fraction of the tools and databases sup-
port both miRNA- and pathway-centric applications. These
include the online database miRNApath (22), the R pack-
age CORNA (23), DIANA-miRPath v3.0 (24) incorporat-
ing GO and KEGG enrichments derived from predicted
and validated miRNA-target interactions, and finally miR-
PathDB v1 (25), which in turn is based on our very first dic-
tionary on miRNAs and target pathways (26).

After the initial release of miRPathDB, miRNA research
has made notable progress. Novel miRNAs have been
discovered, the number of experimentally validated tar-
get genes has increased tremendously. Most importantly,
new reference databases emerged that either catalog val-
idated miRNAs with high confidence (6), or that con-
tain thousands of novel miRNA candidates (5). Addi-
tionally, we evaluated publications, citing our database, to
identify common application scenarios, new visualizations
and useful downstream applications (27–29). An overview
of these publications can be found in Supplementary
Table S1.

The new version of miRPathDB, provides access to tar-
get genes and regulated pathways not only for miRNAs
from miRBase (Version 22.1), but also from miRCarta (Ver-
sion 1.1). This increases the provided information by more
than a factor of ten compared to the original version. Sec-
ond, our database now also provides similarity informa-
tion for all miRNAs based on their sequence, genomic po-
sition, target genes and target pathways. This information
not only allows to query miRNAs with similar properties
and to cluster miRNAs based on their similarity, but also to
assess the regulatory potential of new candidate miRNAs.
On top of the new data compilation, miRPathDB provides
several interactive tools for user-specific analyses. From a
miRNA perspective, we developed an appealing miRNA-
to-pathway heatmap visualization that intuitively shows
which pathways are regulated by a given set of miRNAs.
To serve the pathway-centric use-case as well, we have for-
mulated and implemented an Integer Linear Program (ILP)
to automatically extract a set of miRNAs whose targetome
covers a user-provided pathway or set of genes. Taken to-
gether, the new version of miRPathDB is a comprehensive
resource to study the function of miRNAs in human and
mouse.

MATERIALS AND METHODS

Our database integrates information of miRNAs, miRNA–
target interactions (MTIs), and signaling pathways from
several third-party resources. In the following sections, we
describe the respective data sources and all processing steps
performed to create the underlying data collection. Addi-
tionally, we describe the methodology of new downstream
analysis features.

miRNA resources

The database stores information on all human and mouse
miRNAs from miRBase (Version 22.1) and from miR-
Carta (Version 1.1), including miRNA candidates. Val-
idated MTIs were acquired from miRTarBase (Version
7) (30) and pre-processed to create two subsets for each
miRNA: all MTIs independent of their type of experimen-
tal evidence and only those with a strong level of evidence.
On top of this, we predicted target genes for each miRNA
sequence using TargetScan (Version 7.1) (31) and MiRanda
(Version 3.3a) (32). Based on the prediction output, we also
created two further list of MTIs: the intersection and the
union of all predictions, which is a common strategy to ac-
count for putative sources of bias from target prediction
tools and to balance sensitivity versus specificity (25,33).
As 3

′
UTR input target set for the two algorithms, we used

the curated annotations from targetscan.org for both hu-
man and mouse runs. Each program was executed using its
default set of parameters.

Pathway databases and enrichment analysis

In order to determine whether a specific miRNA is associ-
ated with a particular biological process or signaling path-
way, we used the enrichment analysis functionality of the
GeneTrail2 C++ library (34). To this end, we analyzed func-
tional categories from the Gene Ontology (35), as well as
signaling pathways from KEGG (36), Reactome (37) and
WikiPathways (38). For each pair of miRNA and functional
category, we applied a hypergeometric test to check if the
pathway contains significantly more target genes than ex-
pected by chance. Resulting p-values were FDR-adjusted
(39) and a significance level of 0.05 was selected.

miRNA similarities

We also calculated similarities between all miRNAs and
miRNA candidates based on their seed sequence, mature
sequence, target genes and target pathways. For the string
comparison, we calculated the Hamming distance between
the sequences of all miRNA pairs, once using the full ma-
ture sequences and once the 7-nt substrings starting at po-
sition 2 from the 5

′
end of the mature sequence. Given the

hamming distance Hd between two sequences of length l,
we defined the pairwise sequence similarity as 1 − ( Hd

l ). The
similarity of two sets containing either target genes or path-
ways was calculated using the Jaccard coefficient. Moreover,
we compared miRNAs according to the positions of their
genomic loci by computing the minimal distance between
miRNAs annotated to the same chromosome.

Customized pathway heatmaps

The custom heatmap depicts which pathways are regulated
by a user defined set of miRNAs. To create a heatmap, we
first select all pathways that are significantly enriched for
the targets of at least one of the specified miRNAs. The
obtained p-values are used to construct a matrix that con-
tains the −log10-transformed and discretized P-values for
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Figure 1. Example of the new pairwise miRNA similarity table. The figure shows the pre-computed similarities for hsa-miR-106a-5p sorted by sequence
similarity (mature) in increasing order. Furthermore, the table is filtered to show only miRNAs and miRNA candidates having 100% seed similarity. The
Jaccard index provides additional information about the functional similarity of each miRNA and miR-106a-5p for predicted targets and target pathways.

Figure 2. Example of the custom heatmap visualization. The figure depicts the enrichment results of hsa-miR-18b-5p, hsa-miR-135a-5p, hsa-let-7a-5p
and hsa-miR-200a-3p for the categories of the KEGG database and strongly experimentally validated MTIs. Rows represent the enrichment results for
the targets of the four miRNAs. Columns represent all KEGG pathways that are significant for the different miRNAs. For demonstration purposes, the
heatmap was filtered to only show pathways with at least two associated miRNAs. The color of individual fields represent the −log10-transformed P-value
of the respective enrichment results. Darker colors indicate more significant associations between miRNA and target pathway.

the set of miRNAs and all enriched pathways. Finally, sim-
ilar miRNAs and pathways are clustered together by apply-
ing an hierarchical approach (Ward’s method with Euclid-
ian distance) to both rows and columns of the matrix. The
clustered matrix is subsequently displayed as an interactive
heatmap, implemented using the Highcharts JavaScript li-
brary.

Maximum targetome coverage analysis

A noteworthy issue in functional miRNA research is to find
a small number of miRNAs that are sufficient to regulate a
given gene set, e.g. a particular signaling cascade or path-
way. To solve this problem, we first search for the ‘best’
miRNA (k = 1) that regulates the maximal number of genes
of the given target set. Next, we increase the considered
number of miRNAs step-by-step (k := k + 1) until all target
genes are covered or a predefined kmax is reached. For each

k, we report an optimal set of miRNAs and the regulated
target genes.

The problem to find the optimal set of miRNAs for one
particular k is closely related to the maximum coverage
problem, which can be solved using Integer Linear Pro-
gramming (ILP). A formal definition of this problem can
be found in the online documentation and Supplement S2.
The ILP was implemented in C++ using the CPLEX opti-
mization framework. Finally, results of an analysis are visu-
alized by an interactive plot using the Highcharts JavaScript
library.

OVERVIEW OF MIRPATHDB 2.0

miRPathDB stores information on (candidate) miRNAs,
their target genes and their target pathways. To access
this information, our database offers users two distinct
representations: a miRNA-centric and a pathway-centric
view. An overview table and a detailed description of each
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Figure 3. Example of the interactive visualization for a user-specific maximum-coverage analysis. The curve on the left indicates how many of the specified
target genes can be targeted by an increasing number of miRNAs. Here the x-axis shows the increasing number of miRNAs and the Y-axis the number of
covered target genes. Users are able to click on every point of the curve to inspect the corresponding miRNAs and targeted genes. An example for k = 2 is
depicted on the right-hand side.

miRNA or pathway are available. The representations can
either be accessed through the overview tables or a query
in the quick-search bar. A general description of these
representations has already been presented in the original
manuscript (26). Hence, we describe the extensive changes
of the miRNA-centric view, the interactive analysis tools,
and the new export functionality in the following sections.

NEW MIRNA-CENTRIC VIEW

Here, we explain the different levels of information miR-
PathDB offers for each miRNA or miRNA candidate.

General information

On the top of each miRNA page, we provide general
information about the respective miRNA: the precursor
mapping, the sequence of the mature miRNA, seed and
corresponding parent stem loops, and all annotated ge-
nomic loci. Additionally, specific links to external reference
database (miRBase and miRCarta) entries for all miRNAs
and for corresponding precursors and family assignments
are deposited. On top of this, each miRNA entry is linked
to other third-party databases, like the TissueAtlas (40) or
miRTargetLink (41), not only to improve the usability, but
also to complement the features of miRPathDB with other
essential tools for miRNA analysis.

miRNA-target interactions (MTIs)

Below the general information section, the website renders
a responsive, sortable, and fully searchable table containing
all target genes of an examined miRNA. For each gene, we
also highlight in which of the four evidence sets it is con-
tained. Table rows can be filtered using the text boxes below
each column. Users can export both filtered and unfiltered
tables in different file formats (CSV, Excel and PDF).

Targeted pathways

One major focus of our database is to provide information
on associations between miRNAs and their putative target

pathways. Likewise to the table for target genes, the path-
ways are shown in another fully responsive table. It con-
tains, for the different evidence sets, all pathways that are
significantly enriched with targets of the examined miR-
NAs. For each pathway, the number of contained target
genes, the number of target genes that are expected by
chance, and a FDR-adjusted P-value are listed. Since users
might be interested in a specific subset of results, the table
can be filtered with respect to all fields. For example, users
can select significant pathways for a certain MTI evidence
level, or only pathways that contain a specific gene of in-
terest. Each pathway cell is linked to the corresponding ex-
ternal database entry, which often displays additional infor-
mation like a description of the pathway or the underlying
gene network.

miRNA similarities

At the bottom of each miRNA page, a novel table contain-
ing similarity information of the selected miRNA with re-
spect to all other miRNAs from the same organism, includ-
ing miRNA candidates, is displayed (Figure 1). The table
lists the seed and full sequence similarities, the chromoso-
mal distance, in case miRNAs are annotated on the same
chromosome and eight Jaccard coefficients, measuring the
similarity of target genes and target pathways for the dif-
ferent evidence sets of MTIs. Analogously to information
about target genes and pathways, this table can be filtered,
searched, sorted, resized, and exported for further usage.

NEW INTERACTIVE DATABASE FUNCTIONALITY

In addition to a new data compilation, miRPathDB fea-
tures several new interactive tools for advanced user-specific
database queries and analyses.

Custom pathway heatmaps

A common question in miRNA research is, whether targets
of deregulated miRNAs are similarly enriched in certain bi-
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ological processes or are associated with distinct molecu-
lar functions (27,28). In order to help users to tackle this
question, we developed an interactive heatmap visualiza-
tion. To create this plot, a user needs to specify a list of
miRNAs as well as the evidence level for the MTIs. miR-
PathDB automatically selects all functional categories that
are significantly enriched for the targets of at least one of the
specified miRNAs. Results are represented as a heatmap,
where each row depicts enrichment results for the respec-
tive functional categories. The color of individual entries
corresponds to the p-value of the associated enrichment re-
sult. Darker colors indicate more significant enrichments of
miRNA target genes in the corresponding biological pro-
cesses. On top of this, users may specify the resolution of
the resulting heatmap and download the image in differ-
ent file formats (PNG, JPEG, PDF and SVG). An example
heatmap is shown in Figure 2. Our customized heatmap fea-
ture provides a rapid overview of molecular functions and
signaling pathways that are potentially regulated by a spe-
cific miRNA set. This analysis might even be helpful to as-
sess possible downstream effects of deregulated miRNAs in
high-throughput studies.

Maximum targetome coverage analysis

While the previous feature allows downstream analysis from
a miRNA-centric view, by mapping a given miRNA set to
enriched target pathways, miRPathDB also provides func-
tionality for the reverse direction, i.e. given a set of target
genes G, find a minimal set of miRNAs that target all genes
in G. To this end, we provide a tool that iteratively computes
k miRNAs (for all k ∈ {1, 2, ..., kmax}) with a maximal num-
ber of targets in G (see Materials and Methods). To start
the maximum coverage analysis, a user must upload a list
of genes, select the desired level of evidence that should be
used to lookup the MTIs and set the largest k = kmax where
the algorithm should stop. The results of such an analysis
are displayed in an interactive line-graph that plots k against
the number of covered target genes (Figure 3, left). For each
k, a node is inserted in the graph that can be selected. Upon
selection of a node, the website displays an optimal set of
miRNAs of the corresponding size k along with the list of
overlapping target genes (Figure 3, right).

DATA EXPORT

Most of the views in miRPathDB offer dedicated export
functionality. All tables in the miRNA-centric and the
pathway-centric view can be filtered and downloaded in
different formats (CSV, Excel and PDF). Additionally, we
host downloads for all processing steps of the enrichment
analyses. Users are able to acquire the unprocessed enrich-
ment results, i.e. a table containing detailed information
for each functional category. Furthermore, a table contain-
ing all pairs of miRNA and pathways and their −log10-
transformed p-values is available. miRPathDB also sup-
plies all functional categories in Gene Matrix Transposed
(GMT) format (cf. Online documentation).

CONCLUSION

Recent advancements in miRNA research yielded huge
numbers of novel miRNAs, miRNA candidates, and exper-
imentally validated MTIs. This circumstance motivated a
novel release of miRPathDB. Besides miRNAs and their
targets, our database also provides information about as-
sociations between pathways and miRNAs. Beyond the ten-
fold increase of data, our database now offers powerful tools
for the visualization and downstream analysis of database
queries. In particular, users are able to search similar miR-
NAs, create interactive clustered heatmaps and to deter-
mine a minimal set of candidate regulators that are suffi-
cient to target a specified gene list. In summary, miRPathDB
2.0 is the most comprehensive publicly available resource
to assess the relationship between microRNAs, their targets
and cellular functions for human and mouse.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Abstract Blood-borne small non-coding (sncRNAs) are among the prominent candidates for

blood-based diagnostic tests. Often, high-throughput approaches are applied to discover biomarker

signatures. These have to be validated in larger cohorts and evaluated by adequate statistical learn-

ing approaches. Previously, we published high-throughput sequencing based microRNA (miRNA)

signatures in Alzheimer’s disease (AD) patients in the United States (US) and Germany. Here, we

determined abundance levels of 21 known circulating miRNAs in 465 individuals encompassing AD

patients and controls by RT-qPCR. We computed models to assess the relation between miRNA

expression and phenotypes, gender, age, or disease severity (Mini-Mental State Examination;

MMSE). Of the 21 miRNAs, expression levels of 20 miRNAs were consistently de-regulated in

the US and German cohorts. 18 miRNAs were significantly correlated with neurodegeneration

(Benjamini-Hochberg adjusted P < 0.05) with highest significance for miR-532-5p (Benjamini-

Hochberg adjusted P = 4.8 � 10�30). Machine learning models reached an area under the curve

(AUC) value of 87.6% in differentiating AD patients from controls. Further, ten miRNAs were sig-

nificantly correlated with MMSE, in particular miR-26a/26b-5p (adjusted P = 0.0002). Interest-

ingly, the miRNAs with lower abundance in AD were enriched in monocytes and T-helper cells,

while those up-regulated in AD were enriched in serum, exosomes, cytotoxic t-cells, and B-cells.

Our study represents the next important step in translational research for a miRNA-based AD test.

Introduction

Alzheimer’s disease (AD) represents one of the most demand-
ing challenges in healthcare [1,2]. In light of demographic
changes and failures in drug development [3], early detection
of the disease offers itself as one of the most promising

approaches to improve patients’ outcome in the mid- to long
term. Especially minimally invasive molecular markers seem
to have a significant potential to facilitate a diagnosis of AD,

even in early stages.
The importance of minimally invasive molecular markers

for AD is reflected by over 3000 original articles and reviews

related to AD diagnosis from blood, serum, or plasma samples
published and indexed in PubMed. Among the promising
approaches are plasma proteomic markers measured by mass
spectrometry [4], metabolic patterns [5], gene expression pro-

files [6], DNA methylation [7], and small non-coding RNAs
(sncRNAs) [8]. However, cohort sizes of such studies are often
limited and larger validation cohorts frequently did not always

match the original results [9]. One of the major challenges is
the complexity of signatures that is often required to reach
high specificity and sensitivity.

For AD, many miRNA-related studies from tissue [10],
blood [11], serum [12], exosomes, [13] or cerebrospinal fluid
(CSF) [12] have been performed. In one of the most compre-

hensive reviews [14], Hu and co-workers investigated 236
papers and reviewed the de-regulated miRNA abundance in
different parts of AD patients. In another comprehensive
recent review, Nagaraj and co-workers show that out of 137

miRNAs found to exhibit altered expression in AD blood,
36 have been replicated in at least one independent study.
Moreover, out of 166 miRNAs being differentially abundant

in AD CSF, 13 have been repeatedly found [15].

In previous studies, we performed deep sequencing to mea-
sure blood-borne AD miRNA signatures in a cohort of 54 AD

patients and 22 controls from the United States (USA) that
have been partially validated on a larger cohort of 202 samples
by RT-qPCR [8]. In a second study using the same technique,
we aimed to validate the results in a patient cohort collected in

Germany (GER) that included 49 AD cases, 55 controls and
110 disease controls [16]. The results of both studies were lar-
gely consistent with a correlation between both studies of 0.93

(95% confidence interval 0.89–0.96; P < 10�16).
Although deep-sequencing applications are increasingly

introduced into clinical care, they are mostly performed for

the analysis of DNA or RNAs coding for genes. Small non-
coding RNA profiling, however, is mostly achieved by
microarray and RT-qPCR based approaches. In the present

study, we provide further evidence that blood-borne miRNA
signatures can be measured by standard RT-qPCR, becoming
valuable tools for the minimally-invasive detection of AD.
From our above-mentioned studies and the literature, we

selected a set of 21 miRNAs and determined the abundance
of these miRNAs in the blood of 465 individuals. The 465 indi-
viduals consist of 169 individuals from our initial study (36%)

[8], 107 individuals from the second study (23%) [16] as well as
189 newly collected individuals (41%). An overview and sum-
mary on the German and US samples is provided in Fig-

ure 1A–C, the full details for each individual samples,
including age gender, diagnosis, Mini-Mental State Examina-
tion (MMSE), and the miRNA measurements, are provided
in Table S1.

With the present study we pursue the five main goals to
demonstrate that (1) miRNAs from NGS studies can be well
reproduced by RT-qPCR experiments; (2) given a reasonable

heterogeneity in samples still reproducible measurements in
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larger cohorts are possible; (3) miRNAs are also correlated to
clinical features such as the MMSE value; (4) statistical learn-

ing approaches with as few as possible features lead to accurate
diagnostic results; (5) the miRNAs likely have functionality in
AD via targeting genes.

Results

Two endogenous control RNAs show concordant results

Because the selection of the most appropriate endogenous con-

trol RNAs for RT-qPCR experiments can be challenging, we
previously evaluated systematically whether different endoge-
nous controls lead to differences in miRNA measurements

[17]. Especially, most miRNAs seem to be affected by develop-
ment stages, tissues [18], or diseases [19], limiting their ability
as controls and calling for endogenous controls other than

miRNAs. Our results suggested that differences can be
observed that are however moderate. In the present study we
nonetheless evaluated and compared the performance of two
commonly used endogenous controls RNU48 and RNU6.

Both endogenous controls have been measured in duplicates.
In comparing the results, we verified the generally high concor-
dance between the two endogenous controls with a Pearson

correlation of 0.854 (95% CI: 0.828–0.877; P < 10�16). We
thus report the result in the current study based on our stan-
dard endogenous control RNU48.

In the same direction we also investigated the general stabil-
ity of RT-qPCR based miRNA measurement. One control
sample has been measured 12 times over the study for all miR-

NAs. The median Pearson correlation coefficient (PCC)

exceeded 0.99 as the heatmap and the box plot in Figure S1
show.

miRNAs are highly significantly correlatedwith neurodegeneration

In total, 465 participants have been analyzed by RT-qPCR. The

abundance levels of 18 of the 21 miRNAs were significantly dif-
ferent between the four groups considered, i.e., AD, mild cogni-
tive impairment (MCI), other neurological diseases (OND), and

healthy controls (HC). With an Benjamini-Hochberg (BH)
adjusted P value of 4.8 � 10�30, the most significant miRNA
was miR-532-5p, which showed markedly decreased levels in
AD patients, and slightly decreased levels in patients with

OND and MCI (Figure 2A). The abundance levels of miR-17-
3p, the miRNA with the second lowest P value
(P = 8.8 � 10�28), showed a similar pattern as miR-532-5p

(PCC > 0.9). The overall correlation matrix between the 21
miRNAs showed three large clusters of miRNAs with similar
expression in the following referred to as Clusters A, B, and C

(Figure 2B). The third and fourth most significant miRNAs in
ANOVA, i.e., miR-103a-3p and miR-107 (P = 2.4 � 10�18

and P = 3.6 � 10�15, respectively), came from Cluster C, like

miR-532-5p, and miR-17-3p. MiR-1468-5p (Cluster A,
P = 6.2 � 10�12; Figure 2C) shows an opposite expression pat-
tern, i.e. a higher abundance inADpatients as compared toHC.
The boxplots in Figure 2A/2C also underline that the deregula-

tion of these miRNAs is strongest in AD compared to the HC.
There is, however, a deregulation in MCI or OND, but to a les-
ser extent, such that the altered abundance is at least partially

specific for AD. This result is consistent with our previous work
based on high-throughput sequencing.

Figure 1 Distribution of age, gender, diseases, and MMSE

A. Histogram for the age distribution in the different cohorts. The diagram shows for each cohort/disease the age distribution. Only the

OND group from the US shows a deviation towards younger patients, while all other groups have similar age ranges. B.Histogram for the

MMSE values. HCs and MCI patients show significantly larger MMSE values as compared to AD and OND patients. C. Metrics. For

each of the cohorts and diseases, the number of patients in the US and Germany, the mean and SD for age and MMSE as well as the

gender distribution are provided. GER, Germany; MMSE, Mini-Mental State Examination; AD, Alzheimer’s disease; OND, other

neurological diseases; HC, healthy control; MCI, mild cognitive impairment.
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For a more detailed understanding of the miRNAs and
their correlation to AD and other factors, we next assessed
whether the abundance levels were correlated to age or gender,
or, in case of AD and MCI with the MMSE results (Table 1).

As Table 1 highlights, none of the miRNAs was associated
with gender and five miRNAs were weakly associated with
age of patients. Following adjustment for multiple testing, 14

miRNAs showed a significant differential expression in AD
patients compared to controls (i.e., HC, MCI, and OND com-
bined). The above mentioned miR-532-5p and miR-17-3p were

again the most significant markers for AD. Furthermore, ten
miRNAs were significantly correlated with the MMSE value.
Interestingly, all three miRNAs of Cluster B (Figure 1B),
i.e., miR-26a, 26b-5p, and let-7f-5p, showed the highest signif-

icance for the correlation to MMSE (P< 0.005). Since neither
all miRNAs nor the MMSE values were normally distributed
we repeated the analyses with non-parametric and ranked

based Spearman correlation coefficient (SCC), overall leading
to comparable results (see Table S2).

Besides the comparison of healthy controls to AD we also

asked whether MCI patients can be separated from AD
patients using miRNAs. Indeed, eleven miRNAs had signifi-
cant differential expression in MCI versus AD following

adjustment for multiple testing: miR-17-3p (P = 10�12; down

in AD), miR-532-5p (P = 8 � 10�10; down in AD), miR-
103a-3p (P = 10�8; down in AD), miR-107 (P= 4 � 10�7;
down in AD), let-7d-3p (P = 9 � 10�7; up in AD), let-7f-5p
(P= 3 � 10�5; down in AD), miR-345-5p (P = 0.0002; down

in AD), miR-26a-5p (P = 0.002; down in AD), miR-26b-5p
(P= 0.009; down in AD), miR-1468-5p (P = 0.02; up in
AD), and miR-139-5p (P = 0.03; up in AD).

miRNA profiles from the US and German cohort show consistent

results

It is essential to understand whether biomarkers can be con-
cordantly determined in different cohorts. Although a direct
comparison of ethnic groups was not in the scope of our anal-

ysis we nonetheless asked whether miRNA profiles for one dis-
ease measured on two different continents are concordant to
each other. We thus compared the profiles measured from
GER and USA cohorts. As the GER cohort was about twice

as large as the USA cohort and P values depend on the num-
ber of individuals in each cohort, a comparison based only on
P values is potentially biased. Therefore, we computed the fold

changes (on a logarithmic scale) between AD and controls
(Figure 3A). In this plot miRNAs in the upper right quadrant
are down-regulated and miRNAs in the lower left quadrant

Figure 2 miRNAs are specifically dysregulated in the four cohorts and are partially co-expressed

A. Expression of miR-532-3p. The boxes display the 2nd and 3rd quartile of expression values for miR-532-3p in HC, patients with AD,

MCI, or OND. The range of expression values in the four groups is indicated by the error bars with outliers represented by unfilled dots.

Median expression of miR-532-3p is indicated as thick black line. B. Correlation of miRNA expression. This correlation matrix

graphically represents the pair-wise correlation coefficient for all miRNAs tested. According to the color scale on the right side of the

matrix, positive and negative correlations are indicated in shades of blue and red, respectively. PCC is given for each pair-wise correlation.

Three clusters of miRNAs with highly similar expression patterns are indicated as Clusters A, B, and C on the left side. C. Expression of

miR-1468-5p. The boxes display the 2nd and 3rd quartile of expression values for miR-1468-5p in HC, patients with AD, MCI, or OND.

The range of expression values in the four groups is indicated by the error bars with outliers represented by unfilled dots. Median

expression of miR-1468-5p is indicated as thick black line. PCC, Pearson correlation coefficient.
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are up-regulated in AD compared to controls concordantly in
both cohorts. Of 21 miRNAs, only miR-4482-3p was down-

regulated in the GER cohort, but up-regulated in the USA

cohort. The differences in abundance levels of this miRNA
in AD compared to controls were, however, not significant,

neither in the GER nor in the USA cohort, nor in the

Figure 3 Differentially-expressed miRNAs are concordantly expressed in the German and the US cohorts and belong to specific blood

compounds

A. Fold change in the USA cohort compared to the GER cohort. The X- and Y-axes represent the fold change between AD and HC on a

log2 scale for the USA and GER patient cohorts, respectively. Each miRNA is represented by one dot. The dashed orange line is the

segregation between up- and down-regulation. miRNAs in the upper right or lower left quadrant are concordantly up- or downregulated

in AD compared to HC in both cohorts, respectively. The solid red line is a linear regression fit and the shaded area is the 95% confidence

interval of that fit. B. Radar chart showing the blood compound distribution. The plot shows the relative abundance of up-regulated,

down-regulated, and all miRNAs in different blood compounds. Since the relative abundance is provided, it is more appropriate to

compare the different groups within one specific compound rather than comparing different compounds to each other.

Table 1 Raw and adjusted P values of miRNAs for age, gender, AD, and MMSE

Note: P values for gender and AD were calculated based on t test; P values for age and MMSE were calculated based on Pearson’s

product moment correlation coefficient. P values were adjusted by the Benjamini-Hochberg procedure. Adjusted P values <0.05 are

indicted in orange and those <0.005 are put in bold with blue background. AD, Alzheimer’s disease; MMSE, Mini-Mental State

Examination.
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combined analysis. Thus, miR-4482-3p likely represents a sin-
gle false positive marker from the initial deep-sequencing
based miRNA discovery study. In contrast, the results for

the remaining 20 miRNAs were concordant between the
USA and the GER cohort. Furthermore, eleven of these miR-
NAs were nominally significant in both cohorts, when analyz-

ing the USA cohort and the GER cohort separately, and
remained significant in the combined analysis. These signifi-
cant miRNAs include miR-103a-3p, miR-107, miR-1285-5p,

miR-139-5p, miR-1468-5p, miR-17-3p, miR-28-3p, miR-361-
5p, miR-5006-3p, miR-5010-3p, and miR-532-5p.

Up- and down-regulated miRNAs are expressed in different blood

compounds

We asked whether the miRNAs that are up- and down-
regulated are expressed to the same amount in different blood

cell types, serum or exosomes. To this end we made use of a
public miRNA blood cell type atlas [20]. For the up- and
down-regulated miRNAs we then compared the average

expression in the different compounds and compared them
to the background distribution of all human miRNAs (Fig-
ure 3B). Interestingly, we observed a highly specific pattern.

miRNAs up-regulated in AD were expressed mostly in serum,
exosomes, cytotoxic t-cells, and b-cells while those that were
down-regulated in AD were expressed in monocytes and t-
helper cells. These results suggest a complex regulatory pattern

of miRNAs in the different blood cell compounds which would
have been likely not observed if only a specific blood cell type
or serum would have been investigated.

Machine learning facilitates accurate diagnosis of AD

To obtain more accurate diagnostic results, molecular markers

can be considered as ‘‘weak learners” that can be combined by
machine learning approaches. For our present data set, we
explored common statistical and deep learning approaches

including support vector machines, decision trees, neural net-

works and gradient boosted trees and others using five

repeated runs of a ten-fold cross validation. While the perfor-

mance of all approaches was similar (data not shown), the best

results were obtained by gradient boosted trees. Compared to

other classifiers, gradient boosted trees have the additional

advantage that missing values do not have to be imputed. In

the classification, two scenarios were modeled: First, the diag-

nosis of AD patients with unaffected controls (HC) as back-

ground group, and second, the diagnosis of AD patients

with all controls, i.e., HC, OND, and MCI combined, as back-

ground group. In the first and apparently less complex sce-

nario the gradient boosted tree model reached an area under

the curve (AUC) of 87.6% (Figure 4A). For the second and

more complex case, an AUC of 83.5% was reached (Fig-

ure 4B). A further advantage of the gradient boosted tree mod-

els is that sensitivity and specificity can be well balanced and

traded-off. Depending on whether a diagnosis trimmed for

sensitivity or for specificity is required e.g., in screening tests,

as confirmatory tests or tests for enrollment for clinical studies,

a sensitive or a specific model can be chosen.

Feature importance values for each miRNA based on the

relative gain obtained via their splits were extracted from both

models using the method provided by LightGBM (Table S3)

According to this metric, miR-17-3p had the highest impor-

tance value in both models, followed by miR-5010-3p. For

the model comparing AD to all controls, the next most impor-

tant miRNAs were let-7d-3p, miR-26b-5p, and miR-28-3p.

For the model comparing to unaffected controls, miR-361-

5p, let-7d-3p, and miR-532-5p were the next most important

features. Interestingly, let-7d-3p and miR-26b-5p were not sig-

nificantly associated with AD on their own, suggesting that

their discriminative power might come from the combination

with other miRNAs or their association with different stages

of the disease. For example, miR-26b-5p was recently reported

to be likely deregulated early in AD, even before the appear-

ance of clinical symptoms [21].

A BAD vs. HC AD vs. HC + OND + MCI

Figure 4 miRNA classifiers show a high diagnostic performance to detect AD

Diagnostic performance of the miRNA classifiers. A. ROC AUC for the diagnosis of AD patients compared to HC. B. ROC AUC for the

diagnosis of AD patients compared to all controls combined (HC, MCI, and OND). The black line indicates the average ROC values of all

replicates and folds of the 5 � 10-fold cross-validation models, and the gray area represents the resulting standard deviation. The average

AUC obtained over all replicates and folds is displayed for each classification scenario. ROC, receiver operator characteristics; AUC, area

under the curve.
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miRNAs are enriched in specific functional categories

To get insights into the targeting of the dysregulated miRNAs,

we performed different miRNA target analyses. First, we indi-
vidually searched for each miRNA those pathways that are
enriched with target genes of that miRNA. The result is pre-

sented as heat map in Figure 5A. Most significant pathways
were computed for miR-34a-5p miR-26a-5p followed by
miR-107. Among the pathways, many transcription regulated
categories have been observed. This result is however to be

expected since the main biological function of miRNAs is to
regulate the gene expression.

To get more insights, we next performed a miRNA Enrich-

ment analysis [22]. Following adjustment for multiple testing,
we identified three categories to be significantly enriched
including ‘‘Dys-regulation in AD” (P = 4.8 � 10�8), ‘‘Up-

regulation in AD” (P = 0.00018), and ‘‘Age” (P = 0.02).
Two of three categories were directly related to AD. Also this
is an expected result for miRNAs that were known to be asso-
ciated with AD. In addition, these miRNAs are negatively cor-

related with age. Although this was a weak correlation, it still
suggests that the abundances of these miRNAs are lower in
older patients. Figure 5B presents for each miRNA in the sig-

nature on which categories it has been observed. Performing

an enrichment analysis for each of the three miRNAs clusters
indicated in Figure 2B, we found cluster A to be especially
enriched with miRNAs that are ‘‘up-regulated in AD”

(P = 4.9 � 10�6) while for cluster B the only significant cate-

gory was ‘‘down-regulated in AD” (P = 0.04).
In a third analysis we analyzed all target genes of the miR-

NAs that had strong evidence in the miRTarBase and were

extracted from miRTargetLink. This analysis highlighted that
for most miRNAs in our signature, target genes that have been
experimentally validated are known. The target network

shown in Figure 5C highlighted a dense structure. This net-
work was enriched for genes associated with AD including
ABCA1, DAPK1, IGF1R, and VEGFA according to the
national institute of aging (NIA). Likewise, ‘‘DNA damage

response” represented by CCND1, CCNE1, CCNE2, CDK6,
MYC, RAD51, and RB1 was over represented. Moreover,
the genes in that network were also enriched for the notch sig-

naling pathway.

Discussion

In the current study we present results of our ongoing efforts
to develop a diagnostic test for AD patients based on circulat-
ing miRNA profiles extracted from blood cells.
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hsa-miR-361-5p x x
hsa-miR-5006-3p x x
hsa-miR-5010-3p x x
hsa-miR-532-5p xx
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Figure 5 AD miRNAs regulate distinct pathways and form a dense regulatory core network

A. Heatmap of the miRPathDB results. The heatmap presents the negative decade logarithm of miRNAs and target pathways, and the

color represents the significance values. B. Overview of miRNAs in significant categories. For the three significant miEAA categories we

highlight the miRNAs participating in the respective categories. C. miRNA target network from miRTargetLink. From miRTargetLink

we extracted the target network of the miRNAs and generated a representation in R using the igraph library. Each node is a miRNA/gene

and an edge means that the miRNA targets that gene. As an example of an enrichment of target genes, the genes on the Notch pathway are

shown on the right side of the network.
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As Figure 1 and Table S1 highlight, the samples were lar-
gely homogenous with respect to the age and gender distribu-
tion. With respect to other characteristics the cohort was

however heterogenous (e.g., the origin of the samples from
two continents, different diagnostic procedures to identify
the patients, potentially different treatment regimens, or a

spectrum of patients with higher and lower MMSE values).
This heterogeneity helps us to understand whether the de-
regulation in miRNA patterns between AD patients and con-

trols is of general nature and helps to assess whether e.g., miR-
NAs are associated with the MMSE state.

The current outcomes are consistent with our previous
studies in the US and Germany on smaller cohorts. In contrast

to the previous studies relying on deep sequencing, we here
applied RT-qPCR as molecular profiling technique that can
be more easily driven towards application in clinical care. In

the context of the known variability and the bias introduced
by sample integrity and sample treatment [23–25] in deep
sequencing data, RT-qPCR offers a promising alternative for

routine application. But also for RT-qPCR experiments, there
is a debate whether RNA samples with low integrity, i.e., low
RIN values, compromise miRNA expression data [26,27]. In

our study, we also measured RIN as quality criterion for
RNA integrity of the samples. The markers that we validated
in this study seem to play partially an important role in differ-
ent diseases. As an example, our most significant marker miR-

532-5p is not only correlated and functionally associated to
cancer [28–30]. The miRNA and its target network is also asso-
ciated to sporadic amyotrophic lateral sclerosis [31]. Further,

the miR-532-5p has also been discovered in exosomes of mul-
tiple sclerosis patients [32] and in exosomes of patients with the
geriatric frailty syndrome [33]. Also, our analyses indicate a

very essential role of exosome derived miRNAs.
The results of the two cohorts from the US and from Ger-

many were highly concordant. As to be expected by the selec-

tion of AD-associated miRNAs for this study, the miRNAs
and the target genes of the miRNAs were both significantly
associated with the development of AD. Our test that is highly
reproducible can be applied with a model based on specificity,

sensitivity or trimmed for overall performance. The quality of
the results is indicated by an AUC of 87.6% for the compar-
ison between AD and unaffected controls, and an AUC of

83.5% for a comparison between AD and a combined group
of unaffected controls, MCI patients and patients with
OND. It is known that complex statistical learning approaches

can lead to overfitting, especially considering the curse of
dimensionality [34] and the fact that usually many more fea-
tures (p) are measured as compared to the number of patients
(n), the p�n problem. In our study we however measured

p = 21 markers and n= 465 individuals. Further, we even
select small subsets of these markers for our models and per-
form comprehensive re-sampling to prevent potential overfit-

ting. Although the de-regulation of miRNAs was generally
concordant between the GER and the USA cohort, miRNAs
have shown differences in the expression level in the two

cohorts. This might be due to technical reasons such as ship-
ment, other batch effects or biological differences. Despite this
fact, the statistical learning approach succeeded to separate

AD and controls in the GER and the USA cohort. In sum,
the performance of our diagnostic solution compares well to
other recently-developed tests, such as the plasma amyloid
marker introduced by Nakamura and co-workers [4]. While

already such single ‘‘omics” tests have a large potential, the
targeted combination of few representatives from different
‘‘omics” classes can add even more diagnostic information,

supporting clinicians in detecting AD patients in time. One
challenge of respective studies is that the clinical diagnosis
may be imperfect. The MCI patients that are an important sec-

ond control group besides the unaffected controls may have
already early forms of AD that are not yet detected with the
current diagnostic means.

A pathway based analysis of miRNAs and target genes
indicated a functional role of the miRNAs. This is further sup-
ported by a different blood compound distribution of those
miRNAs that are up- and down-regulated in AD. Respective

pathway analyses have however always considered with cau-
tion, especially when small sets of miRNAs are considered.
Although the results of the analysis seem to be reasonable, a

potential bias is hard to be excluded. e.g., we picked already
miRNAs known from literature to be associated with AD.
An enrichment of AD related miRNAs itself is thus an

expected result. Similarly, also the target gene analyses might
be biased for miRNAs and target genes that are in the focus
of many research groups.

As for other omics types, confounders including age and
gender potentially influence also the results of miRNA biomar-
ker studies [35]. To minimize the influence of such con-
founders, our cohorts largely show similar age and gender

distribution (Table 1). In addition, we investigated the influ-
ence of the age and gender on the miRNA profiles. Except
for a very modest influence of age, we found no evidence for

an influence of these confounders on the miRNA pattern.
Notably, miRNAs that are down-regulated in AD were par-
tially expected to be lower expressed with increasing age in a

normal population. Among the many different candidates
for minimally-invasive and potentially early stage tests for
AD, our study indicates that circulating miRNAs likely in

combination with other blood-born omics profiles will con-
tribute to stable tests applicable to specific diagnostic questions
with regard to this highly complex disease.

Materials and methods

Overview of the study

In the current study we included patients from the US [8] and

Germany [16] that were partially collected within the longitu-
dinal Tübinger Erhebung von Risikofaktoren zur Erkennung
von Neurodegeneration (TREND) study. From the former
studies we included those individuals, where a sufficient

amount of high-quality RNA was left for analysis. In detail,
169 individuals from our initial study (36%) [8], 107 individu-
als from the second study (23%) [16], as well as 189 newly col-

lected individuals (41%) were included in the study. The
studies were approved by the institutional review boards of
Charité – Universitätsmedizin Berlin (EA1/182/10), or the eth-

ical committee of the Medical Faculty of the University of
Tuebingen (Nr. 90/2009BO2). All subjects gave written
informed consent. Besides AD patients and HC, patients with
OND such as Parkinson’s disease (PD), schizophrenia or bipo-

lar disorder were included and grouped together, termed
OND. Further, patients with MCI were included to evaluate
the specificity of the miRNA markers for AD. For each of
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the four groups and separately for the USA and GER cohorts,
total number, age, gender distribution, and MMSE value are
presented in Table 1. Moreover, from one individual, 12 tech-

nical replicates were measured continuously during the project
as process control.

miRNA marker set selection

From our two previous studies [8,16] we selected the top miR-
NAs that were concordant between the two studies, and also

checked for evidence that the miRNAs are associated with
AD in literature. A final set of 21 miRNAs was selected. These
are listed in Supplemental Table 4 where additional selection

criteria are provided. In more detail, 17 miRNAs were signif-
icantly associated with AD in our first study, 14 miRNAs were
significant in our second study. miR-34a-5p was not detected
in our previous studies by NGS but in a study by Cosin-

Tomas [36]. Further, this miRNA is one of our main targets
regulating calcium signaling, NFKappaB pathway and T-cell
killing and is down-regulated significantly in aging [37,38].

miR-151-3p is one of the most stable miRNAs in our studies
as well as miR-486-5p, which is a red blood cell miRNA that
serves as positive control [20].

RNA extraction and quality control

Total RNA from PAX-Gene Blood Tubes (Catalog No.
762165, BD Biosciences, Franklin Lakes, NJ) was isolated

using the Qiacube robot with the PAXgene Blood miRNA
Kit (Catalog No. 763134, Qiagen, Hilden, Germany) accord-
ing to manufacturer’s instructions. In the tubes, 2.5 ml blood

are collected, typically yielding around 1 mg total RNA.
RNA quantity and quality were assessed using Nanodrop
(Thermo Fisher Scientific) and RNA Nano 6000 Bioanalyzer

Kit (Catalog No. 5067-1511, Agilent Technologies, Santa
Clara, CA). Mean RNA integrity number (RIN) value of the
RNA samples was 7.5 (STDEV 1.4).

RT-qPCR

Quantification of miRNAs was performed using miScript PCR
system and custom miRNA PCR arrays (all reagents from

Qiagen, Hilden, Germany). Custom miRNA PCR arrays were
designed in 96-well plates to measure the expression of 21
human miRNAs and RNU48 as well as RNU6 as two endoge-

nous controls in duplicates. Two process controls (miR-TC for
RT efficiency, PPC for PCR efficiency) were included as single
probes. A total of 100 ng total RNA was used as input for

reverse transcription reaction using miScriptRT-II kit accord-
ing to manufacturer’s recommendations in 20 ml total volume
(Catalog No. 218161). Subsequently, 1 ng cDNA was used

per PCR reaction. PCR reactions with a total volume of
20 ml were setup automatically using the miScript SYBR Green
PCR system (Catalog No. 218076) in a Qiagility pipetting
robot (Qiagen, Hilden, Germany) according to manufacturer’s

instructions. Data from samples that failed the quality criteria
for the process controls was excluded, leaving expression data
from 465 samples available for analysis. For process control

over the course of the project, eleven technical replicates of
one cDNA sample were measured throughout the course of
the project to estimate technical reproducibility. We computed

55 pair-wise correlation coefficients between any pair of the
replicates and found a median correlation of 0.996, indicating
high technical reproducibility of our assay.

Statistical approaches

From the Cq values, delta Cq values in relation to the endoge-

nous control (RNU48) were computed. Mean delta Cq value
per individual was scaled to zero. Missing values were not
imputed. As estimate of the expression on a linear scale,

2deltaCq values were computed. For multi group comparisons,
Analysis of Variance (ANOVA) was performed. Since the
miRNA data and partially the response variable were not

always normally distributed according to Shapiro Wilk tests,
we performed for the pair-wise comparisons and for the corre-
lation analysis parametric as well as non-parametric tests. For
pair-wise comparisons, both, parametric t-test and non-

parametric Wilcoxon Mann-Whitney test were calculated. If
not mentioned explicitly and where applicable, all P values
were adjusted for multiple testing by the Benjamini-

Hochberg approach. For correlating miRNAs to the age and
the MMSE value, the P value was computed based on para-
metric Pearson’s product moment correlation coefficient as

well as non-parametric Spearman Correlation. To find enrich-
ment of miRNAs in specific blood compounds we used data of
an NGS based blood cell miRNA repertoire [20]. Each
miRNA was normalized to 100% and the different expression

ratios in the different blood compounds were compared to
each other.

miRNA target analysis

We performed three different approaches on miRNA target
analysis. First, for each single miRNA the target pathways

have been extracted from miRPathDB [39] and the Cus-
tomHeatmap tool was used to find miRNAs that target at least
5 pathways and pathways targeted by at least 5 miRNAs from

biological GO processes. Next, we performed a so-called
miRNA set enrichment analysis relying on the hypergeometric
distribution using MIEAA [22]. Here, the miRNAs in the
study were compared to the background distribution of all

miRNAs and the procedure was repeated for the dys-
regulated miRNAs. All pathways with an adjusted P value
below 0.05 were considered to be significant. Finally, we used

the miRTargetLink tool [40] to extract the experimentally val-
idated targets of the miRNAs. In this analysis only the strong
target category from miRTarBase has been used to obtain

specific results. From that data we computed a network using
the R igraph package and performed an enrichment analysis of
the target genes in that network.

Machine learning

A prediction model based on the RT-qPCR Cq values was
developed using gradient boosted trees from the LightGBM

framework (version 2.1.0). Since not all miRNAs were consis-
tently measured for all patients, tree-based methods are partic-
ularly suited for this task, as they can handle missing values

and no imputation is required. LightGBM ignores the missing
values when computing the splits of the trees and assigns all
samples with missing values to the side that reduces the loss
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most. The performance of the model was assessed using five
repetitions of stratified ten-fold cross-validation using scikit-
learn 0.19.1 with Python 3.6.4 [41]. Each repetition was initi-

ated with an integer seed (0–4). Thus, in total 50 combinations
of different training and validation sets were considered. The
reported ROC AUC corresponds to the average performance

over all repetitions and folds of the model, on data not used
for training. The models were manually tuned (i.e., no grid
search was performed) over the number of leaves (testing

ranges between 5 and 50), number of estimators (between 40
and 120), learning rate (0.01 to 0.2), and depth (3 to no restric-
tion). The final model comparing patients with AD to all con-
trols uses 30 leaves, a learning rate of 0.1 and 100 estimators.

The model comparing patients with AD to unaffected controls
uses 9 leaves, a learning rate of 0.05 and 100 estimators. The
depth of both models was not restricted. Gradient boosted

trees outperformed other tree-based methods such as random
forests, or classifiers as Support Vector Machines or Neural
Networks (data not shown). As an input for the classification

task, the expression matrix of the delta Cq values has been
used.

Data availability

The full data set is available as Table S1 without any
restrictions.
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ABSTRACT

Gene set enrichment analysis has become one of the
most frequently used applications in molecular bi-
ology research. Originally developed for gene sets,
the same statistical principles are now available for
all omics types. In 2016, we published the miRNA
enrichment analysis and annotation tool (miEAA)
for human precursor and mature miRNAs. Here, we
present miEAA 2.0, supporting miRNA input from ten
frequently investigated organisms. To facilitate inclu-
sion of miEAA in workflow systems, we implemented
an Application Programming Interface (API). Users
can perform miRNA set enrichment analysis using
either the web-interface, a dedicated Python pack-
age, or custom remote clients. Moreover, the num-
ber of category sets was raised by an order of mag-
nitude. We implemented novel categories like an-
notation confidence level or localisation in biologi-
cal compartments. In combination with the miRBase
miRNA-version and miRNA-to-precursor converters,
miEAA supports research settings where older re-
leases of miRBase are in use. The web server also
offers novel comprehensive visualizations such as
heatmaps and running sum curves with background
distributions. We demonstrate the new features with
case studies for human kidney cancer, a biomarker
study on Parkinson’s disease from the PPMI cohort,
and a mouse model for breast cancer. The tool is
freely accessible at: https://www.ccb.uni-saarland.
de/mieaa2.

INTRODUCTION

Transcriptomics designates an indispensable set of tech-
niques to study gene expression, often in a genome-wide
manner, as the backbone of modern molecular biology and
clinical research. The innumerable amount of classical bulk-
sequencing datasets is further augmented by the recent ad-
vancements in high-resolution single-cell approaches. Since
gene expression is constituted by many biological factors,
experimental focus has been enlarged to include the reg-
ulatory non-coding transcriptome (ncRNAs), i.e. to RNA
classes that regulate messenger RNAs (mRNAs) either di-
rectly or indirectly. Among these, microRNAs (miRNAs)
are small non-coding RNAs, typically 18-25 nucleotides in
length, loaded into proteins of the AGO-family to build
RNA-induced silencing complexes (RISC) (1). Gene reg-
ulation through the RISC complex is facilitated by one
or two mature (−5p; −3p) miRNA arms, arising from
one or several transcribed precursors (2). Besides other
modes of action, activated complexes target preferentially
3

′
-untranslated regions of mRNAs to induce either catalytic

cleavage or translation repression. Hence, profiling miRNA
expression contributes to the understanding of gene regu-
lation and potentially portrays cellular states. To date, nu-
merous studies highlight their informative role in disease de-
tection, sub-type classification, or progression, such as for
cancer (3), neurodegenerative (4), or metabolic disorders (5)
with a variety of bio-specimens (6).

Considering that several thousands of miRNAs have al-
ready been discovered, many novel miRNA candidates have
been additionally proposed (7), while the total number of
human miRNAs is estimated to be 2300 (8). Finding dif-
ferences in expression for miRNAs is similar to mRNAs
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and therefore non-trivial. Differential gene expression stud-
ies often lead to dozens, hundreds, or even thousands of de-
regulated genes. Thus, large scale studies often make use of
the functionality of gene set enrichment analysis (GSEA)
(9). GSEA can further reduce large amounts of informa-
tion towards a significant set of molecular functions, bio-
logical properties, or pathways of genes. In principle, a user
inputs either a set or ordered list of genes and the tool runs
the required statistical algorithms and provides background
datasets to compare against.

Similar functionality was also implemented for other
omics types, including proteomics, metagenomics or epige-
nomics. An in-depth review of gene set analysis methods
for data other than mRNAs demonstrates the increasing
interest and demand of the community in respective tools
(10). We previously developed a statistical approach tai-
lored for both miRNA precursor and mature miRNA in-
put, the miRNA enrichment analysis and annotation tool
(miEAA) (11). Here, we present an update of this tool that
includes more categories, supports nine additional species,
has new statistical functionality and offers a standardised
Application Programming Interface (API) to facilitate the
inclusion in modern data analysis workflows (12).

Given the growing interest in miRNAs, other tools with
similar functionality to miEAA exist. The pioneering tool
providing functionality for miRNA enrichment was TAM
(13), which covers in it’s latest version 2.0 (14) as many
as 1238 human miRNA categories obtained from man-
ual literature review of ∼9000 scientific manuscripts, along
with new query and visualization features. In addition to
the over- and under-representation analysis, users can com-
pare the correlation of two miRNA lists under different
disease conditions. Another important tool with similar
functionality is miSEA (microRNA Set Enrichment Anal-
ysis) (15). It facilitates the selection of a large set of mi-
croRNA categories, including family classification, disease
association, and genome coordinate. Furthermore, custom
miRNA sets can be defined by the user. All kinds of enrich-
ment tools rely on high quality sets of miRNA categories
that were either obtained by curation of scientific literature
or collected from specific databases. For instance, curated
miRNA annotations can be obtained from miRBase (16) or
miRCarta (17), miRNA–target interactions from miRTar-
Base (18), miRNA–pathway associations from miRPathDB
(19), tissue-specific miRNAs from the human TissueAt-
las (20), or miRNA-disease associations from HMDD (21)
or MNDR (22), many of which were updated in the last
two years. Further specialized annotations like miRNA
and transcription factor interactions from TransmiR (23),
miRNA sub-cellular localisations collected in RNALocate
(24), or extra-cellular circulating miRNAs contained in mi-
Randola (25) provide target categories for comprehensive
enrichment analysis.

MATERIALS AND METHODS

In miEAA 2.0, we provide support for ten species whereas
the first release of miEAA only supported Homo sapiens, 31
new category sets, and updates to our pre-existing datasets.
To unify data preprocessing, we implemented an automated
pipeline using Snakemake (26), Python 3.6, and the pan-

das (27) Python package facilitating data collection and fil-
tering steps. For each species and their corresponding data
sources our pipeline performs the same basic process, con-
sisting of downloading the datasets, cleaning and updating
the miRNA and precursor identifiers, transforming the re-
sults into a Gene Matrix Transposed (GMT) file, and creat-
ing background reference sets. Files were copied to the web
server without further modification.

Data collection

Novel datasets were obtained to build our enrichment cat-
egories, consisting of Gene Ontology (28), miRTarBase
8.0 (18), KEGG (29), miRandola 2017 (25), miRPathDB
2.0 (19), TissueAtlas (20), MNDR v2.0 (22), NPInter
4.0 (30), RNALocate v2.0 (24), SM2miR (31), TAM 2.0
(14) and TransmiR v2.0 (23). Further annotations for cell-
type and tissue specific expression of miRNAs and precur-
sors were derived from three dedicated atlas publications
(32,33) (10.1101/430561). Other pre-existing datasets have
been updated, including HMDD v3.0 (21) and miRBase
v22.1 (16). We retained the rest of our pre-existing datasets,
namely miRWalk2.0 (34), published age and gender depen-
dent miRNAs and distribution of miRNAs in immune cells
(11). Most of the datasets contain miRNAs or precursors
for H. sapiens. When available, we also utilise the data to de-
rive categories representing the non-human organisms. Raw
datasets were obtained either through a direct download or
via an API. In particular, the QuickGO and KEGG datasets
are compiled by querying corresponding REST APIs.

Category data preprocessing

First, data from QuickGO was mapped back to miRBase
using RNAcentral (35). NCBI Gene was used in conjunc-
tion with miRTarBase to produce the indirect annotations.
With the aid of the miRBaseConverter R package (36),
miRNA and precursor names were translated to the latest
version of miRBase. For KEGG Pathways and GO Anno-
tations (direct and indirect through target genes from miR-
TarBase) we only keep miRNAs for which functional MTI
support is available. In the MNDR diseases category set, we
exclude HMDD data as it is precursor based, and MNDR
is for mature miRNAs. To determine tissue-specific expres-
sion we computed the tissue specificity index (20) and ap-
plied a threshold filtering at 0.75.

Web server, statistics, and API implementation

The miEAA web server was built using a dockerized Django
Web Framework v2.1, which exposes a web-API using the
Django REST framework. The celery software was used as
the job scheduler. Frontend libraries comprise Highcharts,
dataTables, jquery, and Bootstrap. P-value correction meth-
ods were implemented using the R stats package. As gene
set enrichment analysis (GSEA) implementation we pro-
vide an un-weighted variant of the algorithm. This implies
the amount by which the running sum is changed in each
step is constant, corresponding to a Kolmogorow–Smirnow
test. This approach enables to compute the exact P-value
without requiring permutations of either the case / con-
trol labels, or the miRNA lists (37). As an exception, the
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static GSEA running sum plots are computed by randomly
permuting the test set 100 times and traversing the run-
ning sum for each random permutation. If the absolute
maximal deviation from zero is positive, miEAA assumes
an enrichment on top of the ordered list and results are
shown in red colour to denote an enrichment. If the abso-
lute maximal deviation from zero is negative, miEAA as-
sumes an enrichment at the end of the ordered list and re-
sults are displayed in green color to denote an inverse en-
richment, i.e. a depletion. Alongside our new API we pro-
vide a lightweight Python package, as well as a command
line interface (CLI) tool, supporting Python 3.5 or higher.
These are made freely available through the Python Package
Index (pip) and through the ccb-sb conda channel. The al-
ready existing miRNA to precursor and miRBase convert-
ers were upgraded to miRBase v22.1. The former offers new
output modes to simplify the review of ambiguous conver-
sion results and proper down-stream usage.

Case studies

Raw and reads per million miRNA mapping (rpmmm) nor-
malized miRBase v21 precursor counts and metadata of
kidney renal clear cell carcinoma case and control samples
were obtained from The Cancer Genome Atlas (TCGA).
Since multiple sequencing results might be associated with
the same sample ID in TCGA, we kept only one result file
for each sample by preferring files from H over R over T an-
alytes and selecting the aliquot with the highest plate num-
ber and / or lexicographical sorting order. Subsequently,
miRNAs with fewer than 5 raw reads in less than 50% of
either case or control samples were discarded from the anal-
ysis. All remaining miRNA counts were log2-scaled. Effect
size was calculated using the implementation of Cohen’s d
from the R package effsize. Lists of precursor names, either
selected by statistical significance or ordered by effect size,
were converted from miRBase v21 to v22.1 using the online
miRBase converter feature of miEAA. The list of all pre-
cursors from miRBase v21, converted to v22.1, were used
as a reference set. The configured parameters included de-
fault precursor category sets without the PubMed ID and
TransMiR Tissues sets, BH-FDR adjustment to a signif-
icance level of 0.05 with independently adjusted P-values
per category set, and a minimum of 2 required hits per sub-
category.

For the second case study, raw Agilent microarray data
and sample metadata was downloaded from NCBI’s GEO
using accession ID GSE117000. Array parsing and probe
signal processing was performed identically to the descrip-
tion in the first publication of miEAA (11). Subsequently,
all counts were quantile-normalized and log2-transformed.
All further down-stream analyses were performed analo-
gous to the first case-study described above.

To provide a non-cancer case study we evaluated the per-
formance of miEAA on a high-resolution dataset of small
non-coding RNAs in whole blood (38). This dataset is freely
available from the Parkinson’s Progression Markers Initia-
tive (PPMI) data portal. In summary, for 1600 individuals
up to five blood samples from a time frame of over three
years were acquired and sequenced for sncRNAs. We quan-
tified all human miRBase v22 precursors from the 4340 se-

quencing samples. Raw counts were normalized to reads
per million (rpm) and precursors were filtered analogously
to the criteria defined for the TCGA case study. Next, we
compared the miRNA precursor profiles of 2337 Parkin-
son’s samples to 1538 age-matched controls. For this case
study we also mapped back the precursors to miRBase v21
to perform a detailed comparison of enrichment results to
TAM 2.0.

RESULTS

Overview on miEAA 2.0

In the following, changes and novelties introduced by the
second major release of miEAA are described. Since all
annotations of miRNAs to categories and databases are
with respect to the miRNA reference database, miRBase,
we converted the datasets to match its latest public version
22.1. This also affects the miRBase-version and miRNA-
to-precursor converters, the former of which was designed
to be fully backwards compatible. Moreover, both ORA
and GSEA algorithms accept lists of either precursors or
miRNAs, from H. sapiens, Mus musculus, Rattus norvegi-
cus, Arabidopsis thaliana, Bos taurus, Caenorhabditis el-
egans, Drosophila melanogaster, Danio rerio, Gallus gal-
lus and Sus scrofa. In total, 134 525 categories from 16 pub-
lished databases/resources are available to test against. A
detailed breakdown of the counts by source and organism,
on database and category set level, are available from Sup-
plementary Table S1 and S2, respectively. For the precursor
annotations, we curated family assignments, re-computed
genomic clusters of miRNA genes, updated the chromo-
somal locations for human, and added all similar cate-
gories for other species. We also updated the category set
representing PubMed IDs of manuscripts that contributed
miRNA entries to miRBase. This feature has both, a bio-
logical and technical aspect. From the technical view, miR-
NAs could have been reported by the original paper due to
experimental bias. In case a new input query is enriched for
respective miRNAs it could be due to the same kind of bias.
From a biological perspective, a study might have found
miRNAs in the context of a disease. If such a manuscript
is identified in a similar context in miEAA, additional ev-
idence for the validity can be inferred. All species except
A. thaliana are annotated with a new category listing high
confidence precursors according to miRBase criteria. For
human data, we transferred the disease annotations from
HMDD to the new major release v3. We added associa-
tions from MNDR to allow disease comparisons against
HMDD, and incorporated functional RNA interactions
from NPInter. Lastly, novel categories such as the cellu-
lar localisation of miRNAs and regulatory interactions be-
tween miRNAs and transcription factors were incorporated
from RNALocate and TransmiR, respectively. For the ma-
ture miRNAs, comparable changes apply as for the pre-
cursors in the cases of miRBase, MNDR, NPInter, and
RNALocate-derived category sets. The gap between anno-
tations of miRNA properties and their function is filled by
categories on target genes taken from miRTarBase. More-
over, known miRNA to drug assocations are provided from
SM2miR. To facilitate target-based enrichment of molecu-
lar pathways or biological function, we computed enrich-

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/48/W

1/W
521/5831177 by Saarlaendische U

niversitaets- und Landesbibliothek user on 03 M
ay 2021

84



W524 Nucleic Acids Research, 2020, Vol. 48, Web Server issue

ments on target genes of miRNAs using Gene Ontology and
KEGG. As an alternative for end-users, pre-computed sig-
nificant enrichments of miRNAs associated with pathways
provided by miRPathDB were made available for analysis.
As the data from miRPathDB already involves a statistical
pre-filtering, we implemented a new list of expert categories
to highlight the underlying differences. Manually curated
classifications from miRandola about known circular or ex-
tracellular miRNAs are also integrated. Finally, new anno-
tations for cell-type and tissue-specific precursors and miR-
NAs have been integrated. Supposedly, the substantially en-
larged number of categories might increase the average run-
time of our algorithms, especially for the computationally
intensive GSEA. Therefore, we profiled and improved our
GeneTrail-based implementation to be three times faster, on
average (39).

We raised the available number of statistical parameter
settings as well. First, users can request unadjusted or ad-
justed P-values using six published techniques to account
for multiple hypothesis testing on the same dataset. In ad-
dition to the classical Bonferroni and Benjamini–Hochberg
False discovery rate (BH-FDR) procedures, the adjust-
ments proposed by Benjamini-Yekuteli, Hochberg, Holm
and Hommel can be selected. Moreover, the default behav-
ior of miEAA to correct P-values database / category set-
wise was extended by a P-value pooling approach. In sum-
mary, the well-established alternatives for P-value correc-
tion can support highly customized research setups where
alternate levels of stringency are required (40).

We also evaluated new visualization features for the out-
put of enrichment analyses to provide a simple overview
and to improve comprehension. As a result, we made exist-
ing graphs interactive and implemented enrichment graphs
with simulated background distributions for GSEA as well
as automatic word cloud and heatmap plots for all enrich-
ment algorithms. Word clouds display the names of ob-
tained categories while scaling the size of the terms relatively
to the number of hits that occurred (on a linear or logarith-
mic scale) and allow one to qualitatively compare the cate-
gories. On top of that, category to miRNA heatmaps depict
log-transformed P-values for the hits obtained. This feature
permits to compare the similarity of enriched / depleted cat-
egories with respect to associated miRNAs or precursors in
a simple fashion. The workflow of miEAA and example vi-
sualizations are displayed in Figure 1. Finally, we enhanced
the general accessibility of miEAA through the implemen-
tation of a public API and a Python package, for which
more details are provided below.

Case study 1: Human kidney renal clear cell carcinoma

As the first case-study of miEAA 2.0, we acquired 591 hu-
man miRNA-seq samples from the kidney renal clear cell
carcinoma (KIRC) project of TCGA, which can be divided
into 520 Primary tumor (PT) and 71 Solid tissue normal
(STN) samples. Sample information can be found in Sup-
plementary Table S3. Of the 1881 precursors from miR-
Base v21, 321 are consistently detected in at least 50% of
the samples for each biogroup. Among these, 282 were dif-
ferentially expressed between PT and STN according to
the FDR-adjusted wilcoxon test P-values (P < 0.01). Over-

representation analysis of the precursors resulted in 541 sig-
nificantly enriched and seven significantly depleted (FDR-
adjusted; P < 0.05) categories. As shown in Figure 2A, a
subset of precursors is ubiquitously present in significant
categories, while others seem to be more specific. The top 10
categories sorted by increasing P-value are associated with
cancer, including renal cell carcinoma. Also, the observed
over expected ratio (123/48.6) indicates a strong enrichment
(P = 2.80 × 10−38) of the de-regulated precursors with kid-
ney and other types of cancer. A miRNA set enrichment
analysis, using the list of detected precursors and sorted by
effect size, revealed 253 enriched and 40 depleted categories.
Here, the miRNA gene cluster 147, 189, 704 : 147, 284, 728
on the X chromosome is the most depleted category (P =
8.64 × 10−10), an observation that is in line with the de-
pletion of precursor family hsa-mir-506. Interestingly, the
list of highly enriched terms contains many transcription
factors, the top 5 being HEY1, WDR5, ELF1, BRD4 and
FLI1.

Case study 2: mouse model for breast cancer progression

To showcase the novel support for model organisms in
miEAA, we selected a dataset from GEO where circulat-
ing miRNAs from a breast-cancer mouse model were mea-
sured with microarrays (41). The dataset comprises 36 sam-
ples from mutation-carrier (NeuT+) and age-matched wild-
type (NeuT–) mice that were collected at the premalignant,
preinvasive and invasive stages of the disease. In this partic-
ular study, agilent microarrays probed with miRNAs from
miRBase v19 were used on mice’s plasma extracted RNA
samples. Sample information can be found in Supplemen-
tary Table S4. Following a detection threshold procedure
similar to our first case study, 212 miRNAs remained for
differential expression analysis. Of these, mmu-miR-6243
had to be discarded as a result of mapping the identifiers
from miRBase v19 to v22.1, which we performed with the
miEAA miRBase version converter. Subsequently, we ap-
plied GSEA on the list of miRNAs sorted by decreasing ef-
fect size between the premalignant and the invasive stage,
for NeuT+ and NeuT- samples separately. Strikingly, the
former run returned 311 significant categories, while the lat-
ter returned none. Overall, many more categories seemed to
be depleted (N = 301) than enriched (N = 9), suggesting a
wide-spread up-regulation of molecular pathways as miR-
NAs get down-regulated in NeuT+. For example, we found
Macrophage differentiation (P = 2.54 × 10−5), Vasculature
development (P = 1.60 × 10−4), and VEGF signaling path-
way (P = 0.0016) to be depleted, which might be a signal
for the increased tumor burden of NeuT+ mice at the in-
vasive breast cancer stage. Moreover, we evaluated GSEAs
for the comparison of NeuT+ and NeuT- at all three stages.
While the first two setups returned a rather unspecific set of
categories with all P-values located close to the significance
boundary, the last comparison yielded many interesting re-
sults. First, observations were in line with the group-wise
comparison along the age dimension, because all categories
are depleted, i.e. no enrichments at the top of the sorted list.
Further, the results show that several dozen conserved miR-
NAs (P = 4.53 × 10−5) are down-regulated in the NeuT+
model at the invasive stage. More significant categories we
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Figure 1. miEAA workflow and exemplary results. (A) Each miRNA/precursor enrichment analysis consists of at most five steps. First, users should select
whether they want to perform enrichment on precursors or miRNAs. Second, the enrichment algorithm, i.e. either ORA or GSEA must be selected. Next,
the desired test set can be defined either through a textbox or a file upload. The fourth step only appears for ORAs where custom background reference sets
can be inserted or uploaded. This is optional since miEAA provides pre-computed reference sets for all categories. Lastly, the set of categories and databases
as well as statistical parameters should be selected. (B) Typical result view for an ORA. Users can sort, select, filter, and export the obtained enrichment
results interactively. Moreover, several visualizations of the results are provided for each run, such as the precursor/miRNA to category heatmap and the
category word cloud.

found such as exosome (P = 2.31 × 10−5) and circulating (P
= 0.0086) miRNAs, breast cancer (P = 0.0094, Figure 2(b)),
microRNAs in cancer (P = 0.028), and PI3K-Akt signaling
pathway (P = 0.028) can be associated with the research
setup of this exemplifying study.

Case study 3: Parkinson’s Biomarkers from PPMI and com-
parison to TAM 2.0

At last we aimed to test a non-cancer disease (Parkinson’s),
to present a direct comparison between TAM 2 and miEAA
2.0. We compared the raw P-values of the tools to exclude
an influence of the size of available categories. A direct com-
parison highlighted 72 hits by both tools (additional 70 re-
ported only by TAM and 144 only by miEAA). Very similar
but not exactly matching category names (e.g. Alzheimer’s
versus Alzheimers or Carcinoma, Lung, Non-Small-Cell ver-
sus Carcinoma, Lung. Non-Small-Cell) had to be matched

manually. After matching those, several ambiguously de-
fined categories remained, e.g. Human Immunodeficiency
Virus Infection in miEAA and Acquired Immunodeficiency
Syndrome in TAM and that had to be mapped. As a result,
the overlap increased to 94 hits. Asking whether the overlap
between the output of the two tools is larger for the cate-
gories with higher significance than expected, we performed
a DynaVenn analysis of the result sets ordered by increas-
ing P-value (42). Selecting the 32 most significant miEAA
sets and the 30 most significant TAM sets we observed an
overlap of 23 categories (P = 10−8), indeed suggesting bet-
ter comparable results for the most significant categories.
Also, when comparing the miRNA hits for the obtained cat-
egories we observed very similar results. Alzheimer’s Dis-
ease was covered by 10 miRNAs in miEAA and nine in
TAM with P-values of 3.31 × 10−4 and 2.19 × 10−3, re-
spectively. We also observed the function category of TAM
to be advantageous in this case, revealing direct hits such

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/48/W

1/W
521/5831177 by Saarlaendische U

niversitaets- und Landesbibliothek user on 03 M
ay 2021

86



W526 Nucleic Acids Research, 2020, Vol. 48, Web Server issue

Figure 2. Web server visualisation of case study results. (A) Category (x-axis) to precursor (y-axis) heatmap with −log10-scaled enrichment P-values for
the first case study. (B) GSEA plot with simulated background distributions (green to orange lines) and actual depletion for breast cancer (dark blue
line) observed during evaluation of the second case study.

as Aging, which remained partially hidden in miEAA. On
the other hand, miEAA seems to have slight advantages in
the disease-associated categories, reporting 176 entries com-
pared to 106 in TAM. This extended list contains among
others Parkinson’s Disease which was covered by three miR-
NAs in TAM and missing the alpha level while being cov-
ered by six miRNAs in miEAA and thus being significant
(P = 0.019). The full list of results obtained from both tools
in direct comparison is shown in Supplementary Table S5.
Besides the case study benchmark, we performed a detailed
feature comparison with respect to 22 criteria between our
tool and TAM that is shown in Supplementary Table S6.

New data export and browsable API

All data, results, and interactive plots shown on the web
server are exportable to common data formats. To support
the trend towards the development of reproducible and au-
tomated data analysis pipelines (12), miEAA hosts a pub-
lic, browsable API offering the same functionality as the
web site, allowing one to access the miRNA converters and
statistical algorithms remotely. This functionality is further
augmented by a full-featured Python package with API li-
brary code and a command-line interface (CLI). For exam-
ple, a regular workflow as performed on the website can be
accomplished with three sequential calls to the web API or
one call to the CLI. We provide code examples in the com-
mon data science programming languages Python and R to
demonstrate this use-case. We also implemented the inter-
face to solve two recurring problems in biological data anal-
ysis. First, reproducibility of statistical experiments can be
improved, because usage of the versioned API in the context
of a workflow manager such as Snakemake (26) or Nextflow
fosters self-documenting research setups (43). Second, of-
tentimes the analysis of miRNA high-throughput data in-
volves the comparison of multiple biogroups, timepoints or
other annotation variables. By using our API and the pack-
age, multiple runs of miEAA can be performed at ease while
minimising the time spent for set up and results aggregation.

DISCUSSION

Statistical tools for biological enrichment analysis are a key
to understanding data from high-throughput omics assays.
However, the performance primarily depends on the qual-
ity of the underlying annotations and the statistical sound-
ness. We show that new developments in the miRNA re-
search field yielded an unprecedented set of biological cat-
egories, covering most aspects of miRNA properties and
function, with cross-species analysis becoming increasingly
important. On the other side, as with every statistical frame-
work applied on biological data, assumptions are not al-
ways met and findings should be assessed critically in the
light of further validation experiments. The novel release
of miEAA attempts to cover these aspects by enhancing
the set of available categories both quantitatively and qual-
itatively as well as through offering more (stringent) ap-
proaches for P-value correction. Also, a major limitation of
some datasets concerns the availability of mature miRNA
identifiers, as only precursor names were available for some
of the sources. However, especially in the context of dis-
eases, mature miRNA resolution is preferable to match the
biological selectivity for one major miRNA arm being ex-
pressed. Datasets incorporated in miEAA were compiled ei-
ther automatically or manually. The competitor tool TAM
uses a fewer number of high-quality annotations. In partic-
ular, an advantage of TAM arises from the manual curation
of datasets (14). The case study on Parkinson’s disease high-
lighted the results of miEAA 2.0 and TAM 2.0 to be similar
whereas individual advantages in usability, functionality, or
scope in the one or the other tool remain.

We have demonstrated the capability of miEAA to yield
novel biological results in cancer research. For the kidney
renal clear cell carcinoma case study, we found a depletion
of the mir-506 precursor family, which has been observed
before in other types of cancers (44,45). Many interactions
to transcription factors were also found for the up-regulated
miRNAs, suggesting an increased regulatory burden due
to the exceeding transcriptional up-regulation observed in
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cancer. For example, HEY1, which is a transcriptional re-
pressor has been characterised to be up-regulated in renal
cell carcinomas (46). For the mouse breast cancer progres-
sion study, we illustrated the backwards compatibility of
miEAA with respect to miRBase. The overall observed de-
pletion of pathway regulating miRNAs in mice agrees with
our first case study. Moreover, the significant categories
like vasculature development that are associated with mor-
phogenesis, resemble an increased tumor burden of NeuT+
mice, which was previously confirmed with a large human
RNA-seq dataset on breast cancer (47). In both case stud-
ies, we observed many associations with other types of can-
cers or diseases. While this may speak for a molecular and
biological similarity, a certain publication bias, e.g. for can-
cer, is a confounding factor that skews the statistics (14).

Establishing a standardized nomenclature is an on-going
challenge in miRNA research. Results of the implemented
manual converters are more accurate as compared to auto-
mated mappings since the naming schemes changed along
the different releases. miEAA supports an exact mapping of
old (e.g. miR*) to new nomenclature which would be am-
biguous using automatic conversion (e.g. hsa-miR-499a-3p
could be converted to hsa-miR-499a-3p or hsa-miR-499b-
3p). Similar ambiguity issues would arise by performing a
case insensitive miRNA to precursor mapping (‘miR’ to
‘mir’), in case multiple precursors with the same miRNA
exist (for example hsa-let-7a-5p is annotated in three precur-
sors). Finally, we sought to improve accessibility of miEAA
and developed a web-API in combination with a Python
package. These features enhance its usability in other ap-
plications for miRNA research, for example to annotate
functional sub-graphs in regulatory network analysis (48).
In conclusion, miEAA 2.0 is a flexible, comprehensive, and
highly accessible tool for high-throughput miRNA annota-
tion and enrichment analysis.
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Aging is a key risk factor for chronic diseases of the elderly. MicroRNAs regulate post-

transcriptional gene silencing through base-pair binding on their target mRNAs. We identified

nonlinear changes in age-related microRNAs by analyzing whole blood from 1334 healthy

individuals. We observed a larger influence of the age as compared to the sex and provide

evidence for a shift to the 5’ mature form of miRNAs in healthy aging. The addition of 3059

diseased patients uncovered pan-disease and disease-specific alterations in aging profiles.

Disease biomarker sets for all diseases were different between young and old patients.

Computational deconvolution of whole-blood miRNAs into blood cell types suggests that cell

intrinsic gene expression changes may impart greater significance than cell abundance

changes to the whole blood miRNA profile. Altogether, these data provide a foundation for

understanding the relationship between healthy aging and disease, and for the development

of age-specific disease biomarkers.
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Aging is the leading risk factor for cardiovascular disease,
diabetes, dementias including Alzheimer’s disease, and
cancer, together accounting for the majority of debilitat-

ing illnesses worldwide1. Uncovering common therapeutic targets
to prevent or treat these diseases simultaneously could convey
enormous benefits to quality of life. It is therefore essential to
model the cellular processes culminating in these diverse maladies
through an understanding of the molecular changes underlying
healthy and pathological aging2. Accordingly, a variety of mole-
cular studies have been conducted in humans, including whole
genome analysis of long-lived individuals3, transcriptomic ana-
lyses of tissues4, plasma proteomic profiling5, and the exploration
of epigenetic control of aging clocks6. Recent organism-wide
RNA-sequencing data of whole organs and single cells across the
mouse lifespan provide an important and complementary data-
base from which to build models of molecular cascades in
aging7,8.

Functional improvement of aged tissues has been achieved by
an expanding number of techniques, ranging from dietary
restriction9 to senescent cell elimination and partial cellular
reprogramming. This also includes heterochronic parabiosis, in
which an old mouse is exposed to a young circulatory system.
These experiments point to systemic factors in the blood of young
mice that modulate organ function in aged animals10,11. Indeed,
the list of individual plasma proteins with beneficial or detri-
mental effects on different tissues is growing. It is likely, however,
that each plasma protein interacts with complex intracellular
regulatory networks, and that alterations to such networks are a
key component of aging and rejuvenation.

Non-coding ribonucleic acids like microRNAs (miRNAs)
represent essential players governing these molecular cascades, and
they show a highly complex spectrum of biological actions12–14.
MicroRNAs are a family of short single stranded non-coding RNA
molecules that regulate post-transcriptional gene silencing through
base-pair binding on their target mRNAs13, thereby regulating
most if not all cellular and biological processes15. Yet, their
involvement in the aging process and rejuvenation of aged tissues
is often ignored by transcriptomic studies and is thus largely
uncharacterized. A single microRNA targets not only untranslated
regions (UTRs) of numerous genes, but it can also bind multiple
sites within a single UTR16. Similarly, a UTR of a specific gene can
contain target sites for dozens or even hundreds of miRNAs. Since
their discovery, miRNA changes have been reported for almost all
cancers and many non-cancer diseases like Alzheimer’s
disease17,18, multiple sclerosis19, or heart failure20. And although
relatively sparse, several studies have measured aging miRNA
expression in different human and primate tissues21. For example,
Somel and co-workers analyzed miRNA, mRNA, and protein
expression linked to development and aging in the prefrontal
cortex of humans and rhesus macaques over the lifespan22. Like-
wise, changes of miRNA levels in aging human skeletal muscle
have been characterized23, as have miRNA levels in body fluids
such as serum24,25. In whole blood, we previously reported a sig-
nificant number of age-related miRNAs26, and Huan and co-
workers measured a selection of miRNAs by RT-qPCR in whole
blood from over 5000 individuals from the Framingham Heart
Study27. While these initial studies are intriguing, they can be
limited by the use of discrete time points, incomplete lifespan
coverage, limited cohort sizes, and incomplete miRNA panels.

Here, we performed a comprehensive characterization of all
2549 annotated miRNAs (miRBase V21) in 4393 whole blood
samples from both sexes across the lifespan (30–90 years). To
understand the relationship between healthy aging and disease,
we included 1334 healthy controls (HC), 944 patients with
Parkinson’s disease (PD), 607 with heart diseases (HD), 586
with non-tumor lung diseases (NTLD), 517 with lung cancer

(LC), and 405 with other diseases (OD) (Fig. 1a, b; Supple-
mentary Data 1).

Results
miRNA profiles are stronger associated with the age as com-
pared to the sex. We first sought to model healthy aging as a
baseline for understanding disease. As males have shorter life-
spans than females, and each sex suffers a different array of age-
related diseases, we investigated the interplay between age and sex
on blood miRNA profiles. Confirming our previous observation
in a cohort of 109 individuals26, we found that age has a more
pronounced influence than sex. In fact, 1568 miRNAs sig-
nificantly correlated with age, but only 362 correlated with sex
according to Benjamini–Hochberg adjusted p-values of the Wil-
coxon Mann–Whitney test (Fig. 2a, b). While 231 miRNAs
overlapped between these groups, this number was not significant
(two-sided Fisher’s exact test p-value of 0.35; Pearson’s Chi-
squared Test of 0.36), suggesting that, in general, those miRNAs
changing with age are shared by both sexes, and those specific to
one sex do not change with age. In consequence, the Spearman
correlation coefficient (SC) of age-related changes between males
and females was high (SC of 0.884, p < 10−16, Fig. 2c).

We next sorted miRNAs by their correlation with age,
regardless of their significance, and assigned each to one of 5
groups: strongly decreasing with age (cluster 1: 174 miRNAs, SC
<−0.2), moderately decreasing (cluster 2: 382 miRNAs; −0.2 <
SC <−0.1), unaltered (cluster 3: 1451 miRNAs; −0.1 < SC < 0.1),
moderately increasing (cluster 4: 368 miRNAs; 0.1 < SC < 0.2),
and strongly increasing (cluster 5: 174 miRNAs, SC > 0.2)
(Supplementary Data 2). As miRNAs regulate a diverse array of
critical pathways28, we performed microRNA enrichment
analysis and annotation (miEAA) on this sorted list, thereby
calculating a running sum of miRNAs associated with each of
~14,000 biochemical categories and pathways. We revealed a
remarkable disequilibrium between the number of pathways
related to downregulated miRNAs (76 pathways) and upregulated
miRNAs (620 pathways; adjusted p-value < 0.05; Supplementary
Data 3). This is even more striking considering the number of
miRNAs increasing or decreasing did not differ significantly (556
with SC <−0.1; 542 with SC > 0.1), and suggests that miRNAs
increasing with age have a higher functional relevance. Reassur-
ingly, for miRNAs decreasing with age we found “Negative
Correlated with Age” (p= 4 × 10−10) among the most significant
categories (Fig. 2d). A large fraction of the top pathways
regardless of the miRNA direction were enriched for brain
function and neurodegeneration, including “Downregulated in
Alzheimer’s Disease” (p= 10−5), “regulation of synaptic trans-
mission” (p= 0.028), and “APP catabolic processes” (p= 0.032)
(Fig. 2e, Supplementary Fig. 1a–l).

Although such linear correlation analyses can reveal mean-
ingful biological features, the importance of nonlinear aging
changes, such as those found for plasma proteins5 and tissue gene
expression, is becoming increasingly evident. We therefore aimed
to use the high temporal resolution of the dataset to more
thoroughly understand whole blood miRNA dynamics across the
lifespan. We first plotted miRNA trajectories for each of the 5
clusters (Supplementary Fig. 2), confirming many miRNAs
exhibit non-linear patterns. By comparing linear and nonlinear
correlations for each, we uncovered nonlinear changes in 116 of
the 1098 miRNAs altered with age, of which 90 decreased and 26
increased (Fig. 2f, g, Supplementary Data 4). A miEAA analysis
highlighted a significant enrichment of miRNAs following
nonlinear trajectories with aging in basically all human tissues29

(Fig. 2h). This finding stands out considering the high degree of
tissue specificity of miRNAs. We thus speculate that diseases
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affecting these organs might be associated with changes in blood
miRNA profiles.

miRNA arm shifts are associated with aging. A shift in the
expression of the 3’ and 5’ mature arm of miRNAs is observed
between different tissues30 tissues but also in healthy and dis-
eased conditions such as cancer31. We speculated that likewise
aging may affect the arm distribution and searched for respective

arm shift events. Indeed, we observed a correlation of the arm
specific expression in 40 cases (Supplementary Data 5). For 27
miRNAs (67.5%) we observed increasing 5’ mature expression
and decreasing 3’ expression over age while in 13 cases 32.5% of
cases the 3’ form increased and the 5’ form decreased. These
results indicate a generally increasing 5’ mature miRNA
expression with aging. The largest absolute increase of 5’ mature
expression was identified for miR-6786. A miRSwitch analysis
highlighted that usually the 3’ form is dominating in H. sapiens
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Fig. 1 Study characteristics. a Study set up and analysis workflow from high-throughput data to a specific aging network. The cohort consist of
4393 samples of which the age distribution is provided. For the 4393 samples genome wide miRNA screening using microarrays has been performed. The
first analysis describes 1568 miRNAs that are correlated to age in healthy individuals. In the second step we identified disease specific miRNA changes with
aging and finally define a set of 1242 miRNAs that are not affected by diseases. Finally, to model regulatory cascades in healthy aging we related the miRNA
data to plasma proteins and identified a core aging network. b The circular plot shows the genome wide nature of our miRNA approach, all miRNAs from
miRBase V21 were included in the experimental analysis. We measured 4393 samples for the abundance of these miRNAs, resulting in a 2549 times 4393
data table containing 11.2 million miRNA measurements that correspond to over 2 × 108 spots on the arrays.
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with 5’ dominance mostly in plasma samples. For the miRNA
with the most decreasing 5’ expression ratio (miR-4423) we
found dominating 3’ expression mostly in breast milk, the heart,
testis, stem cells and blood cells. Our results thus suggest an
altered ratio of the 3’ to 5’ mature expression ratio that might be
attributed to or effect different tissues.

The association between age and miRNA expression is partially
lost in diseases. Although the cellular and molecular degeneration
of aging often instigates age-related disease, there are nonetheless
elderly individuals who have lived entirely disease-free lives. We
therefore asked what differentiates such healthy aging from aging
resulting in disease. For each disease and healthy controls, we
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computed the Spearman correlation (SC) with age for all 2549
miRNAs (Fig. 3a, Supplementary Data 6). Overall, healthy controls
reached the largest absolute SC, greater than twice that of the pooled
disease cohort, and larger than any individual disease. Using an
Analysis of variance, we found highly significant differences (p <
2.2 × 10−16) and a non-parametric Wilcoxon Mann–Whitney test
confirmed the significant differences of absolute Spearman corre-
lation in healthy versus diseased samples (p < 2.2 × 10−16). In line
with these findings, samples from healthy individuals showed far
more miRNAs with significant age correlations (Fig. 3b), suggesting
that the presence of an age-related disease may disrupt healthy aging
miRNA profiles (Wilcoxon Mann–Whitney test p < 2.2 × 10−16).
For example, lung cancer patients were enriched for a positive
correlation with age, while miRNAs in patients with heart disease
were enriched for negative correlation with age. We then compared
the miRNA trajectories from the 5 clusters of healthy individuals to
the matched clusters in diseased patients (Supplementary Fig. 2),
and similarly, miRNAs from diseased individuals show far weaker
aging patterns. This held true both when each disease was analyzed
separately, or pooled.

To determine the extent to which diseases affect miRNA
abundance compared to healthy controls, we computed the number
of differentially expressed miRNAs between cases and controls
using a sliding window analysis. That is, we first compared diseased
individuals aged 30–39 years to healthy individuals aged 30–39
years, then increased the window in increments of one year (31–40
years, 32–41 years, etc.) to the final window of 70–79 years (Fig. 3c,
Supplementary Fig. 3a, b). As the age distribution varied between
these groups, we excluded any window in which there were fewer
than 20 disease cases and 20 healthy controls. Interestingly, for all
diseases the number of differentially expressed miRNAs was high in
young adults but decreased sharply into middle age, plateauing
around age 60 for lung cancer and 50 for non-tumor lung diseases.
Heart diseases largely plateaued by the early 50s. Parkinson’s disease
(PD), on the other hand, reached a minimum around age 47 before
sharply increasing. With the exception of PD, these data show that
aged healthy and diseased individuals are more similar than
younger healthy and diseased individuals, perhaps suggesting that
aged healthy individuals share some phenotypic characteristics of
heart and lung disease.

We next asked if these diseases shared any miRNA alterations,
and surprisingly we found that those miRNAs most commonly
dysregulated were also those with the largest effect size (Fig. 3d).
These pan-disease miRNAs included miR-191-5p (Fig. 3e), which
targets mRNAs involved in cellular senescence28. We also
observed disease-specific miRNAs like miR-16-5p, which targets
the PI3K-Akt signaling pathway and microRNAs involved in lung

cancer28. In summary, miRNA expression seems to be orche-
strated in healthy aging with a loss of regulation in disease. In
addition to disease-specific miRNAs, there appears to be a group
of pan-disease miRNAs that change in a distinct manner. We
thus asked on the specificity of biomarkers for diseases, especially
in an age dependent context.

Distinct miRNA biomarker sets exist in young and old
patients. The previous analyses of biomarkers in diseases were
largely quantitative, i.e., we computed the number of dysregulated
miRNAs in diseases for young and old patients. Here, we set to
evaluate changes in the miRNA sets for young and old patients in
the diseases. In this context we made use of the dimension
reduction and visualization capabilities of self-organizing maps
(SOMs). First, we considered the effect sizes of miRNAs for the
two most global comparisons, i.e., healthy controls versus diseases
and old (60–79 years) versus young (30–59 years) individuals.
The heat map representation for the healthy versus disease
comparison (Fig. 4a) and for young versus old individuals
(Fig. 4b) highlights distinct patterns for the two comparisons and
indicates that the aging miRNAs are different from the general
disease miRNAs. This analysis however calls for a disease specific
consideration. To this end we computed for each of the four
diseases biomarkers in old and young patients using again the
effect size as performance indicator and the self-organizing map
analysis followed by a hierarchical clustering (Fig. 4c). While the
cluster heat maps identify larger differences between the disease
biomarker sets as compared to young and old biomarkers, also
the sets within the diseases vary greatly (Fig. 4c). In line with the
previous analyses we observe larger effects for all diseases but PD
in young patients (middle row of Fig. 4c). In old patients, the
respective biomarkers are partially lost. Only in few cases new
biomarkers emerge in old patients that are not present in young
patients. As the full annotation of the SOM grid shows, each SOM
cell has an average of 8 cluster members with a standard deviation
of 3.5 miRNAs (Supplementary Data 7). The distribution largely
corresponds to a normal distribution, only four cells (24, 62, 81,
and 82 in Supplementary Data 7) contain more than 15 miRNAs
(mean+ two times the standard deviation).

The previous analyses suggest distinct biomarker sets for young
and old patients in the different diseases. As a consequence,
future biomarker test based on miRNAs may not only be
established for a disease but for a specific age range of patients
with that disease.

Given the results from this and the previous section we
computed for each miRNA in each disease and each age window

Fig. 2 miRNAs dependency on age and gender. a Smoothed scatter plot of the two-tailed age and gender association p-value for 2549 miRNAs. P-values
for the sex are computed using Wilcoxon Mann–Whitney test and for the Spearman Correlation via the asymptotic t approximation. The p-values are
Benjamini–Hochberg adjusted. b Boxplot of the age and gender p-value from a for 2549 miRNAs. The box spans the 25% and 75% quantile, the solid
horizontal line represents the median and the whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from
the box. c Correlation of miRNAs with age in males and females. Gray dots: not significant; orange and blue dots: miRNAs significantly correlated with age
only in males or females; green dots: miRNAs significantly correlated with age in males and females. d Results of the miRNA enrichment analysis. Colored
curves in the background represent random permutations of miRNAs. The cluster membership is projected next to the order of miRNAs. The category
“negative correlated with age” is highly significant and confirms our data in general. Also, the category “downregulated in AD” is enriched with miRNAs
decreasing over age. e Regulation of synaptic transmission is among the categories being enriched in miRNAs going up with age. Moreover, APP catabolic
processes is another category being enriched in miRNAs going up with age. f Linear Pearson correlation versus non-linear distance correlation for the
association of age to miRNAs. Orange dots have a high non-linear correlation that is not explained by linear correlation and are decreasing with age, green
dots have a high non-linear correlation that is not explained by linear correlation and are increasing with. The orange dotted line represents a smoothed
spline and the four numbers in gray circles represent the position of miRNAs where examples are provided in g. g Examples of correlation for miRNAs with
age. (1) gray: no correlation; (2) orange dominantly positive linear correlation; (3) blue dominantly negative linear correlation; (4) non-linear correlation.
Each solid line is a smoothing spline. h Tissue enrichment for the miRNAs that are correlated with age in a non-linear fashion. The human model has all
organs highlighted in gray that are significantly enriched. The table on the right lists the organs with corresponding p-values. P-values have been computed
using the hypergeometric distribution and were adjusted for multiple testing using the Benjamini–Hochberg approach.
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the effect size (Supplementary Data 8). The respective supple-
mentary data provides detailed insights in how specific certain
miRNAs are for specific diseases and age ranges and can support
ongoing biomarker studies significantly.

All results obtained so far argue for a strong immunological
component of the miRNAs, and as a consequence of miRNA
target networks. Since our experimental system profiles whole

blood miRNAs, we set out to determine the cellular origin by
computational deconvolution.

White blood cells are the major repository of miRNAs in whole
blood. Circulating immune cells have been implicated in aging
and a variety of age-related diseases, and one of the most
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common diagnostic tests for disease is blood cell profiling. Since
miRNAs are known to be enriched in different blood cell types32,
we performed computational deconvolution of the whole blood
miRNA profile, thereby grouping miRNAs by their predicted cell
type(s) of origin (Fig. 5a). A total of 196 miRNAs were attributed
to one specific cell type, including 127 miRNAs arising from
monocytes. Most others derive from three or more types. For
example, the largest group of 139 miRNAs stems from a com-
bination of white and red blood cells (WBCs, RBCs), exosomes,
and serum. And the third largest group of 119 is restricted to six
types of WBCs. We also observed 31 miRNAs specific for NK
cells, 19 specific for T-helper cells, 11 specific for B cells, and
8 specific for cytotoxic T cells. Overall, for those miRNAs for
which we could assign a prospective origin, we found WBCs as
the main contributor, even though they represent a substantially
smaller volume of whole blood relative to RBCs and serum
(Fig. 5b).

We then applied this analysis to those miRNAs changing with
age, and found that those increasing appear to largely originate
from B cells, monocytes, NK cells, cytotoxic T cells, and serum
(Fig. 5c). In contrast, miRNAs decreasing with age are those
enriched in neutrophils, T helper cells, and RBCs. These data
indicate shifts in aging miRNA trajectories of specific blood cell
types (Supplementary Fig. 4). Interestingly, for the above cell
types, known age-related abundance changes largely follow
opposite trends: lymphocytes generally decrease with age while
neutrophils increase with age33. This suggests that cell-intrinsic
gene expression changes age may significantly contribute to the
observed whole blood miRNA profiles.

miRNAs associated with healthy aging regulate the expression
of plasma proteins. An increasing body of evidence points to
functional roles of systemic plasma proteins in aging and disease5.
These proteins may represent downstream targets of blood-borne
miRNAs. We thus compared our data to a recent dataset of
plasma proteins associated with age in healthy individuals5.
Because miRNAs regulate genes/proteins in a complex network,
miRNAs increasing with age do not necessarily lead to down-
regulation of all target genes/proteins, and vice versa. Accord-
ingly, we observed only one tendency: miRNAs decreasing with
age (cluster 1 and 2) showed a slight enrichment for regulating
proteins increasing with age (Fig. 6a). Considering such com-
plexity, we employed a network-based analysis. Using all pair-
wise interactions of miRNAs with plasma proteins, we first
computed a regulatory network (Fig. 6b). From this, we extracted
a core network containing the top 5% downregulated miRNAs

and the top 5% upregulated proteins, which was then further
refined by including only experimentally validated miRNA/target
genes mined from the literature34, as well as miRNA/target pairs
with an absolute Spearman correlation of at least 0.6. This
stringent core network consists of 36 miRNAs targeting 26 genes
(proteins) and splits into two larger and six smaller connected
components (Fig. 6c). The densest part of the core network
contains the axon guidance related semaphorin 3E (SEMA3E)
and serine and arginine rich splicing factor 7 (SRSF7), which were
targeted by 8 miRNAs including miR-6812-3p (Fig. 6d, Supple-
mentary Fig. 5, Supplementary Fig. 6). Intriguingly, there exist no
studies of this miRNA, but it targets SEMA3E in an age depen-
dent manner with a Spearman correlation of −0.89.

Finally, we investigated the possible cell type of origin of these
core miRNAs with deconvolution, which showed enrichment for
neutrophils, monocytes, and B cells (Fig. 6e). We then used
single-cell PBMC transcriptomic data to determine if SEMA3A or
SRSF7 were expressed in these same cell types. While SEMA3E
was not detectable, we did observe SRSF7 expression widely
across cell types, including neutrophils, monocytes, and B cells
(Fig. 6f, g). SRSF7 plays a role in alternative RNA processing and
mRNA export, but has no known role in aging or neurodegen-
eration. Further research will be required to determine if miRNAs
like miR-6812-3p do indeed target SRSF7 in these specific cell
types, and to uncover if this process contributes to the global
decline of transcription observed with age.

Discussion
Our analysis of blood derived microRNAs provides insights into
changes in microRNA abundance dependent on age, sex, and
disease. While age clearly contributes to expression changes, sex
has a more modest effect. In fact, most miRNAs show a similar
behavior over the lifespan in males and females. This is generally
in-line with recent results in transcriptomic mouse tissue aging7,8.
Generally, our results compare well to other studies of miRNAs in
aging27, especially regarding miRNAs increasing with age, for
which we observe high concordance. There are, however, miR-
NAs decreasing with age reported in the previous study for which
we did not find evidence. The most extreme examples are miR-
30d-5p and miR-505-5p, both increasing with age in our study in
the healthy individuals. Nonetheless, given different cohorts with
different ethnicity, varying age range, and distinct profiling
technologies, we observed remarkable concordance between the
studies.

Here, we observed that diseases globally disturb the normal
aging progression of blood-borne miRNAs. While linear

Fig. 3 Diseases miRNAs are affected by age effects. a Boxplot of the Spearman correlation coefficient for each miRNA to all samples, healthy individuals,
and patients. Group sizes: nHC= 1334, nPD= 944, nHD= 607, nNTLD, nLC= 517, nOD= 405. The box spans the 25% and 75% quantile, the solid horizontal
line represents the median and the whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from the box.
b Boxplot of p-values for the Spearman correlation coefficient of each miRNA to all samples, healthy individuals, and patients from a. Group sizes: nHC=
1334, nPD= 944, nHD= 607, nNTLD, nLC= 517, nOD= 405. The box spans the 25% and 75% quantile, the solid horizontal line represents the median and
the whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from the box. The p-values have been
computed via the asymptotic t approximation. c Number of deregulated miRNAs in disease groups depending on different ages in a sliding window
analysis. Each solid line is a smoothing spline (green–heart diseases; red–non tumor lung diseases; gray–lung cancer; blue–Parkinson’s disease). The areas
represent the 95% confidence intervals. For all disease groups, the number of deregulated miRNAs decreases with age while it increases for Parkinson’s
Disease. d Smoothed scatterplot showing the average effect size per miRNA dependent on the number of diseases where the miRNA is associated with. In
the lower right corner (the y-axis value of 1) the specific miRNAs with high effect sizes can be found. In the upper right corner, miRNAs with high effect
sizes independent of the disease are located. The two numbers represent the location of the examples provided in e and f. e Example of a miRNA that is
downregulated in heart diseases of younger patients, upregulated in older Parkinson’s patients and not deregulated in lung diseases. Each solid line is a
smoothing spline (green–heart diseases; red–non tumor lung diseases; gray–lung cancer; blue–Parkinson’s disease). The areas represent the 95%
confidence intervals. f Example of a miRNA from the lower right part of Fig. 3d. The miRNA is significant upregulated in lung cancer independent of age but
basically not associated with other diseases. Color codes of panels c, e, and f are matched. Each solid line is a smoothing spline (green–heart diseases;
red–non tumor lung diseases; gray–lung cancer; blue–Parkinson’s disease). The areas represent the 95% confidence intervals.
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Fig. 4 Disease specificity of miRNA biomarkers. a Heat map representation of the SOM analysis as a 10 × 10 grid with 100 entries. Each cell contains at
least one miRNA and up to 20 miRNAs. The full annotation of miRNAs to cells are provided in Supplementary Data 7). The cells are colored by the effect
size of miRNAs for the comparison in old versus young. Red cells contain miRNAs with effect sizes >0.5 that are upregulated and in blue miRNAs that are
downregulated with effect sizes <−0.5. b Same heat map as in a but colored for the difference in young versus old. The scale for the effect size has been
kept the same as a. Thus fewer yellow/red, as well as blue spots indicate overall lower effect sizes. c Clustering of the SOM results in biomarkers for the
four diseases and in all biomarkers independently of age, biomarkers for young patients and biomarker for old patients. The dendrogram has been
computed from hierarchical clustering (complete linkage on the Euclidean distance). In all cases the biomarkers cluster by disease and not by age and the
old biomarker set is closest to the all biomarker set while the young biomarker set has larger distances. Overall, NTLD and LCa markers are closest to each
other, second closest are heart biomarkers and most different PD biomarkers. The SOM cells clearly highlight differences between biomarkers for diseases
in young and old patients.
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modeling insufficiently explained changes with aging, distance
correlation analysis identified 90 miRNAs that were decreasing
and 26 that were increasing with age in a non-linear manner.
These effects are, however, frequently not disease specific. If
disease specific effects occur, they appear to establish themselves
in given time windows throughout live. For example, lung and
heart diseases show the largest effect sizes in the 4th to 5th decade

of life, and Parkinson’s disease showed the largest effect size in the
6th to 7th decade. All known biological factors including age, sex,
and disease status together only explained part of the overall data
variance. Thus, unknown biological variables and technical fac-
tors also contribute to miRNA abundance.

Our results underline not only the importance of age as a con-
founder in biomarker studies, but they show that age needs to be

a

c

e

f

g

d

b

m
iR

N
A

 d
ec

re
as

in
g 

pr
ot

ei
ns

 d
ec

re
as

in
g

4.5 5.0 5.5

Celltype_encod
B-cells

SRSF7

CD4+ T-cells
CD8+ T-cells

3.42

3.44

3.46

3.48

3.50

hsa−miR−6812−3p

S
E

M
A

3E

30 40 50 60 70

age

h sa-mip5-041-R

AFGEV

h sa-mi701-R

h sa-mip5-61-R

h sa-mia991-Rp3-

1KPAM

h sa-mip5-39-R

h sa-mip5-71-R

h sa-mip5-591-R

h sa-mip5-b51-R

h sa-mia51-Rp5-

h sa-mia02-Rp5-

h sa-mip5-b02-R

h sa-mip5-89-R

CCL5

h sa-mip5-13-R

D K K 1

h sa-leta7-p5-

EWSR1

h sa-mip3-101-R

H K 2

h sa-mip3-241-R

ROCK2

h sa-letp5-f7-

SOCS3

CCL7

h sa-mip3-823-R

SFRP1

BDNF

h sa-mia72-Rp3-

GRB2

h sa-mia91-Rp3-

CXCL1 0

1TATS

CHGA

h sa-mip5-621-R

MRC1

h sa-mip5-1074-R

ST3 GAL1

IPFT

CRK

h sa-mip5-441-R

h sa-mi316-R

SSDA

CSK

HNRNPDL

MCFD2

ITGAV

h sa-mip5-381-R

ARFGAP2

h sa-mia301-Rp3-

HNRNPA1B2

GABARAPL1

ARL3

G G A 3

CAPN2

GRPEL1

CANT1

5STMADA

h sa-mip5-69-R

TOLLIP

ARHGAP1

h sa-mip5-23-R

DNAJ21B

h sa-mip5-b62-R

TAXPB13

RNASE1

MYBPC1

TGFBI

DIABLO

EIF1B2

1PTSG

SRSF6

RBM3

ARFIP2

DCTPP1

SFHTM

DCBLD2

GREM2

IGFLR1

FOPA

A N X A 1

1FMALS

NPSA

RNASE6

1TPT

RUALP

RMDN1

PEX1 4

EIF5

h sa-mip3-9221-R

KDM

IPG

h sa-mip3-8221-R

h sa-mip5-b031-R

PTPN1 1

h sa-mip3-b601-R

h sa-mip5-b691-R

TXNDC5

h sa-mia473-Rp5-

HMGB2

h sa-mip5-941-R

DIB

h sa-mip3-b72-R

2TMHE

RBM2 3

RPS7

CTSA

h sa-mia81-Rp5-

TRA2 B

SYT1 1

h sa-lete7-p5-

TNFRSF1 A

RPS4 X

h sa-mip3-0976-R

h sa-mip5-424-R

h sa-letp3-g7-

SMC3

h sa-mi8964-R

h sa-mi0234-R

CROT

h sa-mip3-d915-R

h sa-mip3-545-R

h sa-mip3-939-R

h sa-mip3-3163-R

h sa-mip3-0786-R

APAV

h sa-mip5-285-R

h sa-mi0563-R

PRKCB

h sa-mip5-b641-R

SA0011 2

SRSF7

PPPB3R1

h sa-mip5-9964-R

GCG

h sa-mip3-3321-R

h sa-mip5-4163-R

h sa-mi5281-R

3GSP

h sa-mip3-0105-R

CCD08C

h sa-mip3-4855-R

h sa-mi7281-R

G4BALT7

h sa-mip3-9464-R

h sa-mi049-R

h sa-mip3-8664-R

h sa-mip5-394-R

h sa-mip3-0074-R

HAVCR1

h sa-mi4844-R

1NGMH

HAVCR2

h sa-mip3-684-R

1NTN

PDIA5

h sa-mip5-0676-R

NBL1

h sa-mip3-8293-R

h sa-mia031-Rp5-

h sa-mic32-R

h sa-mi894-R

h sa-mip3-2976-R

h sa-mip3-4986-R

h sa-mip5-6915-R

h sa-mi6074-R

h sa-mip5-992-R

EIF1 AD

h sa-mia103-Rp3-

h sa-mip3-454-R

CHRDL1

GFRA1

BFGDP

ILAR5

h sa-mi9606-R

h sa-mip3-5976-R

h sa-mip3-3186-R

YPP

h sa-mip3-0464-R

7GTA

h sa-mi0054-R

h sa-letp5-g7-

h sa-mia2263-Rp3-

SCUBE1

SSR1

h sa-mip5-5274-R

h sa-mip3-2476-R

h sa-mi8134-R

h sa-mip5-b81-R

MAPK1 3

h sa-mia091-Rp5-

h sa-mia845-Rsp5-

h sa-mip5-351-R

CBR1

h sa-mip3-0521-R

h sa-mip5-631-R

FCGB3R

h sa-mi3924-R

h sa-mi1154-R

CXCL1 1

FCGA2R

h sa-mip3-881-R

EDA2 R

h sa-mi712-R

h sa-mip3-8886-R

h sa-mip3-4031-R

h sa-mip3-1476-R

h sa-mip3-0986-R

h sa-mi3513-R

h sa-mic203-Rp5-

h sa-mip3-b81-R

h sa-mip5-2-b055-R

h sa-mia055-Rp5-

h sa-mip3-9886-R

h sa-mia02-Rp3-

LRPAP1

h sa-mip3-89-R

h sa-letp3-1-f7-

h sa-letp3-b7-

h sa-mip3-1986-R

h sa-mi4797-R

KIAA0 0 4 0

h sa-mip3-7586-R

h sa-mip3-5586-R

h sa-mic298-Rp3-

h sa-mip3-5156-R

h sa-mip3-7664-R

SEMA3 E

h sa-mip3-8774-R

CCL1 6

AFGDP

h sa-mip3-767-R

h sa-mia103-Rp5-

LILRB2

h sa-mip3-2386-R

h sa-mip3-1376-R

h sa-mia51-Rp3-

h sa-mip3-2564-R

h sa-mi7621-R

STC1

h sa-mip3-b9676-R

h sa-mip3-5486-R

h sa-mip3-5686-R

h sa-mip3-7786-R

h sa-mip3-9186-R

TREM1

WISP1

h sa-mip3-6112-R

h sa-mip5-0813-R

CSAFN

ITPPIRL1

h sa-mip5-0913-R

ITGA1

h sa-mi8824-R

ARRDC3

h sa-mip3-8321-R

TBCA

h sa-mip3-6915-R

h sa-mip5-3244-R

h sa-mip3-2186-R

ITIH5

h sa-mip3-8486-R

h sa-mip3-71-R

TARIP

h sa-mip3-4321-R

h sa-mip5-1755-R

h sa-mip3-8586-R

h sa-mip3-7221-R

2MOYM

h sa-mi9524-R

h sa-mip5-9074-R

h sa-mip3-6776-R

h sa-mip3-4976-R

h sa-mi946-R

THSD7 A

FSTL3

FAM3 D

h sa-mip3-9474-R

h sa-mi3134-R

2XTPN

h sa-mip3-7776-R

h sa-mip5-8374-R

3LSYPD

GDF1 5

h sa-mi1821-R

h sa-mip3-441-R

LTBP4

h sa-mip3-b33-R

2PLPA

h sa-mip3-363-R

h sa-mip3-7964-R

h sa-mip3-7056-R

h sa-mi3708-R

h sa-mip3-739-R

h sa-mip5-8321-R

SHPB32

h sa-mi8724-R

h sa-mia845-Rp3-o

h sa-mip5-426-R

h sa-mip3-8276-R

h sa-mip3-0676-R

9TDUN

h sa-mi9824-R

h sa-mip3-0086-R

h sa-mip5-89-R

CCL5

HNRNPDL

h sa-mip3-241-R

MCFD2

ITGAV

CANT1

TFPI

ADAMTS5

h sa-mip5-941-R

BID

h sa-mip3-b72-R

HNRNPA2B1

h sa-mip5-424-R

GABARAPL1
h sa-mip3-3163-R

h sa-mip3-9464-R HAVCR1

h sa-mi4844-R

PDIA5

h sa-mic32-R

h sa-mip5-0676-R

CHRDL1

h sa-mip5-6915-R

SCUBE1

h sa-mip5-5274-R

h sa-mip3-2476-R

h sa-mip3-0521-R

CBR1

EDA2R

PPP1R3B

h sa-mia055-Rp5-

h sa-mip3-9886-R

h sa-mic203-Rp5-

h sa-mip3-7664-R

SEMA3E h sa-mip3-4031-R

SRSF7

h sa-mip3-1376-R

h sa-mip3-0464-R

NFASC

h sa-mip3-8321-R

h sa-mip3-0105-R

PPY

TBCA

h sa-mip3-71-R

h sa-mip3-8486-R

h sa-mip3-8586-R

h sa-mip3-7221-R

h sa-mip3-89-RMYOM2

h sa-letp3-1-f7-

h sa-letp3-b7-

h sa-mi3134-R

NTN1

DCTPP1

h sa-mip3-0786-RPTPN11

h sa-mip5-4163-R

h sa-mip3-5686-R

h sa-mip3-0086-R

h sa-mip3-2186-R

0

5

10

15

20

Neutrophil

Monocyte

B cell

RBC

serum exosomes

NK cell

Cytotoxic T
cell

T helper 
cell

all miRNAs
miRNAs in network

31% (679)

20% (446)

26% (573)

22% (490)

E
xp

re
ss

io
n

(lo
g 

co
un

ts
)

0

CD8+
T-cells

CD4+
T-cells

DC

Monocytes

Monocytes
HSC

NK cells
NA

SRSF7

Eosinophiles

Eosinophiles
DC

3
2
1
0

Erythrocytes

Erythrocytes

NK cells

B cells

HSC

2

4

6

UMAP 1

U
M

A
P

 2

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19665-1

10 NATURE COMMUNICATIONS |         (2020) 11:5958 | https://doi.org/10.1038/s41467-020-19665-1 | www.nature.com/naturecommunications

99



incorporated into the definition of disease biomarkers. The age
dependency of miRNA biomarkers may be even more prominent
for acute diseases that are accompanied by drastic molecular chan-
ges. Furthermore, the influence of a disease on healthy aging miRNA
patterns suggests that it is conceivable to define “negative bio-
markers”, i.e., biomarkers that reflect the degree of disturbance of a
given time-dependent pattern typically found in healthy individuals.

miRNAs comprise complex gene regulatory networks, and it is
essential to identify the miRNA-targets that are regulated by a
given miRNA network. However, this is already a demanding task
for static networks, and it becomes even more challenging when
considering how entire networks change with age. We attempted
to overcome this complexity and identify a core miRNA network
by implementing several stringent criteria: (i) the inclusion of
miRNA-gene pairs only if experimental evidence exists, (ii) lim-
iting the analysis to the top 5% of miRNAs decreasing with age,
and (iii) the top 5% of proteins increasing with age and with
pairwise absolute correlation of at least 0.6. This stringent para-
meter set identified a core network of 36 miRNAs and 26 proteins
organized in two larger hubs with eight miRNAs targeting the
axon guidance related semaphorin 3E (SEMA3E) and serine and
arginine rich splicing factor 7 (SRSF7). Semaphorines play crucial
roles during the development of the nervous system, especially in
the hippocampal formation35. SEMA3E suppresses endothelial
cell proliferation and angiogenic capacity, and in complex with
PlexinD1 it inhibits recruitment of pericytes in endothelial cells36.
Since we did not detect SEMA3E mRNA expression in single
blood cell data we also explored other sources such as the
Genotype-Tissue Expression (GTEx) project37. But also in the
GTEx data no expression for the gene was reported in bulk
sequencing data. It thus remains unclear how or if these miRNAs
directly or indirectly impact SEMA3E protein levels in plasma. In
this context, low abundant fractions of the blood such as exo-
somes might play a role. However, SRSF7, which belongs to a
protein family linking alternative RNA processing to mRNA
export38, is expressed across a variety of circulating immune cells.
This is intriguing as no role in aging or neurodegeneration
is known.

Often, different technologies are available for high-throughput
studies. To characterize the complete miRNome, usually micro-
arrays or high-throughput sequencing are used. The choice of the
best technology depends both, on technical factors and on the
underlying biological question to be addressed. We decided to use
microarray technology mostly because of the high dynamic range
of blood miRNAs. In whole blood, the majority of reads
(90–95%) are matching to few (2–5) miRNAs39. While generally a
depletion is feasible40, it bears the risk to alter the profile of other
miRNAs especially since it has to be tailored for the respective
sequencing technology. To use microarrays has however also
disadvantages. MicroRNAs are often modified and build so-called
isomiRs and basically all human miRNAs express different iso-
forms41. Likewise, data from the Rigoutsos lab demonstrate the
importance and presence of isomiRs42. To address the age specific
expression of isomiRs, single nucleotide resolution is required.
Improved library preparation and sequencing methods together

with increasing read numbers per sample will likely allow for an
in-depth characterization of isomiRs in challenging specimens
such as whole blood.

Another aspect for respective studies is the underlying speci-
men type. A literature search reveals that for human miRNA
biomarker studies mostly plasma, serum, and blood cells (either
PBMCs or whole blood) are considered with a more recent trend
towards exosomes. Since we are interested in the connection of
miRNA expression and the immune system by analyzing multiple
diseases43 we measured blood cells. Different aspects can be used
to provide an even more comprehensive systemic picture of
miRNAs and aging. First, the cell free part of the blood is also
correlated to miRNA aging44,45. One important aspect are vesi-
cles. Cellular senescence for example contributes to age-
dependent changes in circulating extracellular vesicle cargo46.
Moreover, the differential loading of vesicles is correlated to
different human diseases47–49. Likewise, for the cellular part,
resolution can be increased. For example, the miRNomes could be
investigated per blood cell type50. One challenge is in that the
purification of the different cell types by different isolation
techniques potentially alters the miRNA content. Positive and
negative selection, as well as Fluorescence-activated cell sorting
(FACS) have a highly significant influence on the physiological
miRNA content32. Here, single cell miRNA profiling might help
to improve our understanding of age-related miRNA patterns in
the future. At best, single cell miRNA data and cell free miRNA
profiles are combined in the future using advancing sequencing
technologies. Finally, such data might further our understanding
of miRNAs in aging, diseases and their interplay with organ
patterns that are only partially understood29,51.

Over recent years, numerous studies have emerged highlighting
systemic molecular aging factors detected with different omics
technologies, including epigenetics, transcriptomics, and pro-
teomics. Our study specifically extends our knowledge of blood
and plasma-based miRNA patterns in aging. In our study we
observe non-linear miRNA aging patterns. Moreover, the high
degree of age-related biomarker patterns challenges the concept
of age independent miRNA biomarker profiles, calling for dif-
ferent statistical models in aged and younger individuals. The
changes with aging are not only attributed to one mature form,
we also provide detailed insights into changes of the usage of the
3’ and 5’ mature arms in aging.

Furthering our understanding of age-related miRNA changes
in healthy individuals and diseased patients will not only increase
our understanding of age-related blood-borne gene regulation,
but also improve miRNA-based biomarker development, and aid
the development of RNA-based therapies.

Methods
Cohort. In this study, we processed data from ntotal= 4433 whole blood samples.
We excluded 40 individuals (0.9%) because of insufficient data quality or missing
clinical or demographic information. The final cohort consists thus of 4393 sam-
ples. These include unaffected controls (nHC= 1,334), Parkinson’s Disease (nPD=
944), heart diseases (nHD= 607), non-tumor lung diseases (nNTLD= 586), lung
cancer (nLC= 517), and other diseases (nOD= 405). The diseases can be split
further in sub-classes. For lung cancer, we included non-small cell, as well as small

Fig. 6 Age related miRNAs are correlated to age related proteins. a Correlation of miRNAs to proteins. miRNAs and proteins are sorted by increasing
correlation with age. Thin lines are miRNA/gene interactions between top/bottom 10% of miRNAs and proteins. Numbers represent actual count of edges.
b, c Core network. Proteins (larger nodes) are targeted by miRNAs (smaller nodes). Edge width correspond to the correlation. Blue nodes represent
increase with age, red nodes decrease with age. The outer circles of the protein nodes indicate an expected an influence of the miRNAs leading to an
increase with age. Panel c represents a more stringent version of the network from panel b. d One representative example of an edge from the network in b,
c: SEMA3E and miR-6812-3p. Each dot represents all individuals in a time interval of 10 years, shifted between 30 and 70 years. SEMA3E is high expressed
in older individuals while miR-6812-3p is low expressed (dark red points in the upper right corner). In young individuals the pattern is opposite (tale points
in the lower right corner). e Blood cell compound distribution. miRNAs from the core network come from neutrophils, monocytes and B cells. f Violin plot of
expression of SRSF7 in human blood cells. g UMAP embedding of human blood cells colored by expression of SRSF7.
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cell lung cancer. For non-small cell lung cancer, we can further divide them in
adenocarcinoma and squamous cell carcinoma. These split in low grade and high-
grade tumors according to the TNM grading. The lung cancer cohort has been
previously described in more detail52. The heart diseases include coronary artery
disease, dilated cardiomyopathies and acute coronary syndrome. The non-tumor
lung diseases include mostly chronic obstructive pulmonary diseases, the other
diseases include sepsis, liver cirrhosis, breast cancer, endometriosis, and melanoma
patients. We aggregate the diseases to an organ level (heart, brain and lung). Only
for the lung we split the cohort in cancer and non-cancer samples. This aggregation
level has been selected in a manner to be able to distinguish between healthy and
diseased aging by having sufficient cohort sizes. Detailed diagnoses for each sample
are provided in Supplementary Data 1. All participants gave informed consent. The
local ethics committee of Saarland University approved the study. The study has
been conducted in compliance with all relevant ethical regulations regarding the
use of human study participants.

RNA extraction and measurement of miRNAs. RNA from 4433 whole blood
samples in PAXgeneTubes (BD Biosciences, Franklin Lakes, NJ, USA) was isolated
using the PAXgene Blood miRNA Kit (Qiagen, Hilden, Germany) using manu-
facturers recommendation. The extractions were done manually or semi-
automatically on the Qiacube robot. The RNA was quantified using Nanodrop
(Thermo Fisher Scientific, Waltham, MA, USA) and the RNA integrity was
checked using a bioanalyzer with the RNA Nano Kit (Agilent Technologies, Santa
Clara, CA, USA). The genome-wide expression profiles of human mature miRNAs
was determined with Human miRNA microarrays and the miRNA Complete
Labeling and Hyb Kit (Agilent Technologies). The labeled RNA was hybridized to
the arrays for 20 h at 55 °C with 20 rpm rotation. The microarrays were subse-
quently washed twice, dried and scanned with 3 µm resolution in double-path
mode (Agilent Technologies). The raw data were extracted using the manufacturers
Feature Extraction software (Agilent Technologies). Details on the RNA extraction
and microarray measurement procedure have been also previously described53,54.
In difference to our previous studies we tried to further minimize any variability. In
this study, we thus only included genome wide miRNA profiles that have been
measured using the Agilent miRBase V21 biochip.

Blood cell deconvolution. To analyze the miRNA blood cell composition, we
made use of our previous study that presented a high-resolution representation of
human miRNAs in different blood compounds50. From the data, we asked which
miRNAs are present in at least one sample of the respective blood compound and
generated an upset plot from the data. In some detail, we included serum,
microvesicles, red blood cells, CD15, CD19, CD8, CD56, CD4, and CD14 cells.

Correlation of age and sex to miRNAs. To find associations between the sex and
the miRNA expression we applied 2-tailed non-parametric Wilcoxon
Mann–Whitney tests. To compute linear correlation values between the age and
miRNA expression values we computed the Pearson Correlation Coefficient (PC)
and Spearman Correlation (SC). Further, to detect potentially non-linear relations
between single miRNAs and the age we also computed the Distance Correlation
(DI) between age and sex. To relate the DI and the SC, we computed a smoothed
spline with eight degrees of freedom and computed the minimal Euclidean distance
of each data point from the spline. Points with a distance of 0.02 (the threshold of
0.02 has been computed by a histogram-based approach) were highlighted and are
considered to follow a non-linear trend with aging. In the further analyses, we
applied only the rank-based Spearman Correlation (SC) instead of the Pearson
Correlation that assumes linear effects in data. Beyond linear and non-linear
correlations between single miRNAs and the age we also performed different
standard dimension reduction technologies, including principal component ana-
lysis, t-stochastic neighborhood embedding (t-SNE) and Uniform Manifold
Approximation and Projection (UMAP). To calculate the fraction of variance
attributed to the age and sex we applied principal variant component analysis
(PVCA), originally developed to discover batch effects in microarray experiments.

Analysis of arm shift events. Recently, we developed the miRSwitch database and
analysis tool to identify and characterize human arm shift and arm switch events30.
To detect associations between aging and differential arm usage we considered the
following criteria. First, the percentage of the 5’ mature arm given the total
expression of 3’ and 5’ arm must correlate with an absolute Spearman Correlation
Coefficient > 0.2. Second, the correlation must reach a p-value of at least 0.05. The
p-value is computed by the R cor.test function via the asymptotic t approximation.
Third, the difference between the minimal and maximal percentage of 5’ arm
expression for any samples must exceed 0.2 (20%). As fourth and last condition,
the 3’ and 5’ mature form must have a different sign, i.e., the 5’ has to increase with
age and the 3’ to decrease or vice versa. The miRNAs that were discovered by this
procedure where then checked by miRSwitch.

Cluster analysis and miRNA enrichment analysis. We split the miRNAs in 5
groups, strongly decreasing with age (SC <−0.2), decreasing with age (SC between
−0.2 and −0.1), not changing with age (SC between −0.1 and 0.1), miRNAs
increasing with age (SC > 0.1 and <0.2) and miRNAs increasing strongly with age

(SC > 0.2). For each cluster, we computed smoothed splines for each miRNA and
the cluster average allowing three degrees of freedom. Further, we computed for
disjoint age windows of five years whether miRNAs are significantly higher or
lower in cases versus controls at an alpha level of 0.05 and colored them, respec-
tively, in red and green. To find categories that are significantly enriched either for
miRNAs increasing or decreasing over age we performed a miRNA enrichment
analysis using the miEAA tool55, which has been recently updated56. Thereby, for
over 14,000 categories running sum statistics are computed. The sorted list of
miRNAs (increasing correlation with age) is processed from left to right. Whenever
a miRNA is located in a category the running sum is increased otherwise it is
decreased. The running sum is then plotted along with 100 random permutation
tests. Notably, the p-value is not computed from the permutations but exactly by
using dynamic programming. A category showing a perfect “V” like shape would
contain miRNAs that are increasing over age while a category following a pyramid
like shape contains miRNAs that are decreasing over age.

Sliding window analysis based on Cohen’s d. Since p-values rely on the effect
size and the cohort size different group sizes bias the results frequently. In our
sliding window analysis, we observed substantial differences, i.e., cases and controls
are not equally distributed across the age range. We thus performed all analyses
using Cohen’s d as effect size. All effects with an absolute value of above 0.5 were
considered relevant. Negative effect sizes thereby characterize downregulation and
positive effect sizes upregulation. We computed effect sizes for each disease in
windows of 10 years, shifted by one year, starting from 30 and ending at 70 years
(i.e., the last window is from 70 to 79 years). Only when at least 20 cases and
control measurements were available effect sizes were computed. The calculated
effect sizes were then summarized and a smoothed spline with eight degrees of
freedom were computed.

Self-organizing map (SOM) for finding disease patterns. One task in high
dimensional data analysis is to group features and to generate lower dimensional
representation of high dimensional data. Self-organizing maps (SOMs) are one type
of artificial neural networks (ANNs), relying on competitive learning. As described
by Kohonen already in 198257, in a network of adaptive elements “receiving signals
from a primary event space, the signal representations are automatically mapped
onto a set of output responses in such a way that the responses acquire the same
topological order as that of the primary events”. From input data, a typically two-
dimensional discretized representation of the input space is derived that can be
visualized by heat maps. To compute self-organizing maps for patients and con-
trols in an age dependent manner we computed the effect size for each disease
group over all patients, for young patient (30–60 years) and for old patients (60–80
years) separately. Only 801 highest expressed miRNAs were included in this
analysis. For the biomarker sets, a 10 × 10 hexagonal som grid was used to train a
network. The data set was presented 10,000 times to the network. The learning rate
was set to be between 0.05 and 0.01, meaning that the learning rate linearly
decreased from 0.05 to 0.01 over the 10,000 iterations. To cluster the SOM cells, we
performed hierarchical clustering. In more detail, we applied the R hclust function
to carry out agglomerative complete linkage clustering. As distance measure we
computed the Euclidean distance using the R dist function.

Plasma proteomics measurements. We used data from a recent study investi-
gating the effect of aging on the human plasma proteome. In this study, 2925
proteins were measured using the SomaScan assay in 4264 subjects from the
INTERVAL and LonGenity cohorts5. The SomaScan platform is based on modified
single-stranded DNA aptamers binding to specific protein targets. Assay details
were previously described. Relative Fluorescence Units (RFUs) were log10-
transformed and we used a 10 years sliding window to estimate proteins trajec-
tories throughout lifespan.

Target analysis and target network analysis. The main biological function of
miRNAs is to bind the 3’ UTR of genes and to degrade the target mRNAs. In
reality, miRNAs and genes thereby follow a n:m relation, i.e., one miRNA can
regulate many genes and one gene is regulated by many miRNAs. Further, there
exist different confidence levels to assume a pair-wise regulation of a miRNA to a
target gene. Most relations are only predicted by one or several computational
analyses. Another set is composed of miRNA gene pairs with weak evidence, e.g.,
from microarray experiments. The most reliable category consists of miRNA gene
pairs with strong evidence, e.g., validated by reporter assays. We only considered
this most reliable set of miRNA gene interactions and extracted the set from the
miRTarBase database34,58. Our analysis highlighted that around 20% of miRNAs
are increasing with age, 20% are decreasing and 60% are not age dependent. We
assumed the same distribution for human plasma proteins changing with age and
asked how many miRNAs going down with age regulate genes/proteins going up
and down with age, respectively. Similarly, we asked how many miRNAs going up
with age regulate genes/proteins going up and down with the age.

To construct a reliable core network, we combined five stringed filtering
approaches and only considered those connections between miRNAs and genes
that fulfill all filtering criteria. In the least stringent version the filters include (a) a
strong experimental evidence of a target interaction from the literature; (b) one of
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the most decreasing miRNAs (5%) regulates (c) one of the most upregulated
proteins (5%) over aging. To avoid a bias towards genes/proteins that are targeted
only by one or few miRNAs, potentially also fragmenting the network, we (d) only
considered proteins that are regulated by more than eight miRNAs. Next, we
analyzed the correlation between miRNAs and genes/proteins in the network over
40 discrete age ranges from 30 to 70 years. Each age range thereby spans 10 years.
For the 40 data points corresponding to 40 age windows we computed the
Spearman correlation between miRNA expression in this age window and protein
expression. As last criterion we added (e) only edges that have an absolute
Spearman correlation of at least 0.6. This network has been visualized with the
igraph library. Nodes were colored with respect to changes in age and edges
weights relative to the absolute Spearman correlation.

Single cell analysis. We used data that have been made available by 10× genomics
(https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/
pbmc_10k_v3). The profiles were subsequently processed with scater59 and scran60

with default parameters, cell type annotations with singleR61.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw microarray measurements are freely available for any scientific purpose upon
request as Excel Table and Tab Delimited Text file (110 MB) to data@ccb.uni-saarland.
de. The use of the data for commercial purposes is prohibited.

Code availability
The data analysis has been performed using the R software for statistical computation (R
3.3.2 GUI 1.68 Mavericks build (7288)) using freely available packages. The following
packages were used: ROC, RColorBrewer, preprocessCore, tsne, effsize, UpSetR,
kohonen, fmsb, igraph. All packages are available from Bioconductor or CRAN.
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ABSTRACT

MicroRNAs are regulators of gene expression. A
wide-spread, yet not validated, assumption is that the
targetome of miRNAs is non-randomly distributed
across the transcriptome and that targets share
functional pathways. We developed a computational
and experimental strategy termed high-throughput
miRNA interaction reporter assay (HiTmIR) to facili-
tate the validation of target pathways. First, targets
and target pathways are predicted and prioritized by
computational means to increase the specificity and
positive predictive value. Second, the novel webtool
miRTaH facilitates guided designs of reporter assay
constructs at scale. Third, automated and standard-
ized reporter assays are performed. We evaluated
HiTmIR using miR-34a-5p, for which TNF- and TGFB-
signaling, and Parkinson’s Disease (PD)-related cat-
egories were identified and repeated the pipeline for
miR-7-5p. HiTmIR validated 58.9% of the target genes
for miR-34a-5p and 46.7% for miR-7-5p. We confirmed
the targeting by measuring the endogenous protein
levels of targets in a neuronal cell model. The stan-
dardized positive and negative targets are collected
in the new miRATBase database, representing a re-
source for training, or benchmarking new target pre-
dictors. Applied to 88 target predictors with different

confidence scores, TargetScan 7.2 and miRanda out-
performed other tools. Our experiments demonstrate
the efficiency of HiTmIR and provide evidence for an
orchestrated miRNA-gene targeting.

INTRODUCTION

MicroRNAs (miRNAs) are small non coding RNAs, which
regulate the gene expression post-transcriptionally (1).
Specifically, miRNAs repress protein translation of target
mRNAs by binding to target sequences mainly in 3′ un-
translated regions (3′UTRs) and less commonly in 5′ un-
translated regions or open reading frames of their target
mRNAs (2,3). Aberrant expression of miRNAs is not only
a hallmark of various cancers and can be detected in tu-
mor cells and body fluids including urine, saliva, and blood
(4–6), but also in solid tissue, cerebrospinal fluid, and blood
of neuropathological disorders like Alzheimer’s Disease and
Parkinson’s Disease (PD) (7–10).

While miRNA gene targeting relies on a complementary
binding of the seed region to the target gene, non-canonical
binding between gene and miRNA also seems to have a de-
terministic influence on the targeting process (11,12). The
limited understanding of the true complexity of the inter-
actions between miRNAs and genes poses substantial chal-
lenges for the computational prediction of miRNA targets.
In response to this challenge, many tools have been de-
veloped including TargetScan (13), PicTar (14), miRanda
(15) and other consensus methods like miRWalk (16), which

*To whom correspondence should be addressed. Tel: +49 174 1684638; Fax: +49 174 1684638; Email: andreas.keller@ccb.uni-saarland.de
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in turn combines the predictive power of several other pre-
dictors. The expectable number of targets per miRNA has
not yet been reliably determined as a single miRNA can tar-
get between a few up to several hundred genes. Considering
an overall search space of 62.5 million possible miRNA-
gene interactions (25 000 human genes × 2500 human miR-
NAs) and the estimated number of targets of single miR-
NAs, a substantial class imbalance exists. Learning from
imbalanced data however still poses challenges for machine
learning in life sciences and beyond (17,18). When the a pri-
ori likelihood of a positive event gets small and the speci-
ficity is not close to an optimal value, the positive predictive
value, i.e. the likelihood that a predicted event is actually
positive, becomes extremely low (19).

Accumulating evidence suggests that the targetome of a
miRNA is not randomly distributed across the transcrip-
tome and that it covers genes of shared biochemical path-
ways. This information can support the design of predic-
tion tools by increasing the specificity of target predictions
while at the same time maintaining the sensitivity. Based on
this assumption we previously developed the miRNA target
pathway dictionary (20), which we subsequently extended
into the miRPathDB (21), now existing in the second ver-
sion (22). The wide-spread assumption that miRNAs tar-
get complex networks in an orchestrated manner to facili-
tate the discovery of new true positive targets has not yet
been validated at scale. However, respective computational
approaches, which use consensus prediction and target en-
richment by pathways, motivate a systematic and standard-
ized experimental validation of predicted targets. To vali-
date miRNA targets, different experimental approaches ex-
ist with inherent advantages and disadvantages. One of the
most common choices are reporter assays (23,24). As for
the majority of similar technologies, limitations of reporter
assays are known (25). In addition, manuscripts frequently
report only one validated gene or small sets thereof. The
miRTarBase in the most recent update 2020 (26) indicates
that 6046 manuscripts describe 9679 human miRNA/gene
pairs (including duplications) validated by reporter assays.
Thus, on average, manuscripts validate only 1.6 targets. Ad-
ditionally, 97% of the database entries are positive associa-
tions while negative results of reporter assays are frequently
not reported.

To address the challenge of identifying true miRNA tar-
gets in the overall search space of 62.5 million possible
miRNA-mRNA interactions, we developed an approach
termed high-throughput miRNA interaction reporter as-
say (HiTmIR). Our approach combines computational and
experimental work steps into a new pipeline. In the com-
putational part, targets are first predicted by a consensus
approach relying on well-established tools. Subsequently,
targets are filtered by enriched pathways or diseases using
the GeneTrail (27) pathway analysis software. From the en-
riched targetome a novel web-based software (miRTaH) can
automatically design reporter sequences for luciferase re-
porter assays at scale, a task that is challenging and time
consuming when performed manually. The final reporter
assay target sequences can be obtained from various ven-
dors and get handled by an automated microfluidic device.
Therefore, our pipeline allows to identify a higher fraction

of true miRNA target interactions than previously reported
in an efficient manner. The identified targets and target
pathways used to benchmark a variety of target prediction
tools and databases in a low, medium, and high stringency
set-up have been stored in the miRATBase data warehouse.
The overall workflow of our study together with the main
contributions to the field are shown in Figure 1.

We applied the HiTmIR workflow to two strongly con-
served miRNAs, miR-34a-5p and miR-7-5p, which are both
known to be deregulated in cellular PD models and brain
tissue of PD patients (28–33). While miR-34a-5p is upreg-
ulated in PD, downregulation of miR-7-5p has been previ-
ously demonstrated to effect �-synuclein and to contribute
to neurodegeneration (28,34). PD is the second most com-
mon neurodegenerative disorder following Alzheimer’s Dis-
ease. Its prevalence strongly increases with age, resulting
in 2% of the female world population and 7% of the male
world population affected being over 85 years old (35). The
clinical symptoms are caused by the loss of dopaminer-
gic neurons within the substantia nigra pars compacta and
coupled to the accumulation of �-synuclein into intraneu-
ronal structures, known as Lewy bodies and Lewy neurites
(36,37). In the last decade, the role of deregulated miRNAs
in the pathogenesis of PD has been characterized, for exam-
ple by the identification of several disease associated miR-
NAs involved in the progression of PD (38).

MATERIALS AND METHODS

We here describe an overview of the applied methods and
analyses. Further details on each of them are available in the
supplement and online methods (Supplemental document).

Automated dual luciferase reporter assay

For this assay 2–2.5 × 104 HEK 293 T cells were seeded out
per well of a 96-well plate (Eppendorf, Hamburg, Germany)
by the liquid handling system epMotion 5075 (Eppendorf,
Hamburg, Germany). HEK 293 T cells were transfected
with 50 ng/well reporter vector with or without 3′UTR and
200 ng/well pSG5 empty vector or pSG5-miR-34a expres-
sion plasmid. Forty-eight hours after transfection cells were
lysed and the cell lysates were prepared according to manual
of the Dual-Luciferase® Reporter Assay System (Promega,
Madison, USA) and measured with the GlowMax nav-
igator microplate luminometer (Promega, Madison,
USA).

miRNA expression plasmid and reporter constructs

The pSG5-miR-34a expression vector (Eurofins Genomics,
Ebersberg, Germany) contains the nucleotides 9 151 617–
9 151 816 of chromosome 1. The pSG5-miR-7 expression
vector (Eurofins Genomics, Ebersberg, Germany) contains
the nucleotides 88 611 724–88 612 046 of chromosome 15.
For miR-34a-5p target gene validation, the sequences of
the 191 3′UTRs of the TNF-, TGFB-signaling and the
PD-related target genes were synthetized and the ∼490 nt
long inserts were cloned into the pMIR-RNL-TK vector
(Eurofins Genomics, Ebersberg). The 3′UTR sequences of
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Consensus 
Prediction

Database

assay
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Figure 1. Study set-up, rational and contribution. The main goals of our study are to demonstrate an orchestrated targeting of miRNAs on specific
pathways by experimental means and to provide novel useful resources for the scientific community. Originally, we increased the specificity of miRNA target
interactions by in-silico approaches alone (green curve and green vertical arrow). By combining improved target selection strategies, we provide evidence
for a higher specificity and validation rate in this study (blue curve and blue vertical arrow). We also provide evidence that in iterative improvements the
specificity and validation rate can be further increased by improved target selection using advanced machine learning and pattern recognition techniques
(orange curve and orange vertical arrow). Besides the main contribution of validated target pathways (1), our approach includes (2) a novel online tool
miRTaH that facilitates reporter assay design at scale and (3) a database of validated pathways as well as positive and negative targets for single miRNAs.
Finally, we demonstrate that a standardized target database is a valuable source for (4) evaluating the performance of individual tools and (5) improving
target prediction and thus can support the development and evaluation of current and new miRNA target tools.

CREB1 1 mut, CREB1 2 mut, TNFSF14 mut, DNM1L 1
mut, DNM1L 2 mut, AKT2 mut, SMAD7 mut, BMP8B
mut, SMAD2 1 mut, SMAD2 2 mut, TGFB2 mut and
EP300 mut, with mutated binding sites were synthetized
and the inserts were cloned into the pMIR-RNL-TK vec-
tor. For miR-7-5p target validation, the sequences of the 160
3′UTRs of the PD-related target genes were synthetized and
the ∼690 nt long inserts were cloned into the pMIR-RNL-
TK vector (BGI, Shenzhen, China).

Cell lines, tissue culture

Lund human mesencephalic (LUHMES) cells were pur-
chased from the American Type Culture Collection (ATCC)
and transfected for GFP-expression. The cells were cul-
tured as previously described by Scholz et al. (39) in flasks
pre-coated with 50 �g/ml poly-L-ornithin and 1 �g/ml Fi-
bronectin. HEK 293T cells were cultured as described previ-
ously (40). SH-SY5Y cells were cultivated in DMEM (Life
Technologies GmbH, Darmstadt, Germany) supplemented
with 20% fetal bovine serum (Biochrom GmbH, Berlin,
Germany), Penicillin (100 U/ml), and streptomycin (100

�g/ml). All cell lines were cultured for less than 3 months
after receipt.

Differentiation of LUHMES cells

For differentiation of LUHMES cells towards dopaminer-
gic neurons, cells were cultured in advanced DMEM/F12
(Life Technologies GmbH, Darmstadt, Germany) supple-
mented with 1% N2-Supplement, 2 mM L-glutamine, 1 mM
dibutyryl cAMP, 2 ng/ml GDNF and 1 �g/ml tetracycline.
After 48 h, cells were trypsinized and seeded with 7.5 × 104

cell/cm2 in pre-coated flasks.

Neurotoxin treatment and RNA isolation

To induce a PD-like phenotype, LUHMES cells were
treated with 10 �M 1-methyl-4-phenylpyridinium (MPP+;
Sigma Aldrich, Munich, Germany) 6 days after initiation
of differentiation for 48 hours. Control cells were supple-
mented with H2O. For RNA-Isolation, cells were lysed by
QIAzol Lysis Reagent (Qiagen, Hilden, Germany) and total
RNA was isolated using the miRNeasy Mini Kit (Qiagen,
Hilden, Germany).
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Immunocytochemistry

For immunocytochemistry staining of TH and D2R,
LUHMES cells were cultured and seeded on pre-coated 8-
well �-slides (ibidi GmbH, Gräfelfing, Germany) with 7.5
× 104 cells/cm2. Medium was exchanged 48 hours after re-
seeding. The primary antibodies were diluted in PBS con-
taining 1% bovine serum albumin and incubated at 4◦C
overnight. TH was stained using a polyclonal rabbit anti-
body (Cat# ab112, RRID: AB 297840, abcam, Cambridge,
UK) and D2R was detected using a goat polyclonal anti-
body (Cat# ab32349, RRID: AB 2094849, abcam, Cam-
bridge, UK). Images were taken with a Leica TCS SP8 mi-
croscope (Leica Microsystems, Wetzlar, Germany) and ana-
lyzed using LAS X software (version 3.5.5.19976, Leica Mi-
crosystems, Wetzlar, Germany).

miRNA Microarray

miRNA expression profiles after MPP+ treatment in
dopaminergic neurons were monitored by using Agilent
miRNA Complete Labeling and Hyb Kit as well as Agi-
lent SurePrint G3 Human miRNA 80 × 60K Microarrays
(Cat. No. G4872A, miRBase release 21.0, Agilent Tech-
nologies, Santa Clara, CA, USA) as described previously
(41). The raw microarray data has been deposited at the
GEO database (GSE135151).

Western blot

For western blot analysis of JNK3, SMAD2, SMAD7,
CREB1, TH, CLOCK, PARK2 and GRIA4 4.5 × 105

SH-SY5Y cells were seeded out per well of a six well
plate. After 24 hours the cells were transfected either
with the Allstars Negative Control (ANC) or with hsa-
miR-34a-5p miScript miRNA Mimic (MIMAT0000255:
5′UGGCAGUGUCUUAGCUGGUUGU). For endoge-
nous miR-34a-5p inhibition, cells were transfected with
miScript Inhibitor Negative Control or anti-hsa-miR-34a-
5p miScript miRNA Inhibitor (MIMAT0000255: 5 ′UG
GCAGUGUCUUAGCUGGUUGU). Quantification of
the western blots was carried out with Image Lab Soft-
ware Version 5.2.1 (Bio-Rad Laboratories Inc., Hercules,
CA, USA).

Quantitative real-time PCR (qRT-PCR)

qRT-PCR was performed using miScript Primer Assay
for hsa-miR-34a-5p, hsa-miR-7-5p, hsa-miR-181a-3p, hsa-
miR-134-5p, hsa-miR-129-5p, hsa-miR-129-1-3p, hsa-miR-
335-3p, hsa-miR-106b-3p, hsa-miR-412-5p, and Custom
miScript Primer for hsa-miR-4284 (Qiagen, Hilden, Ger-
many) and the StepOnePlus Real-Time PCR System (Ap-
plied Biosystems, Foster City, United States) following the
manufacturer’s protocol. RNU6B (Qiagen, Hilden, Ger-
many) served as endogenous control. Statistical signifi-
cance of differentially expressed miRNAs in MPP+ treated
LUHMES as well as miR-34a-5p over-expression was ana-
lyzed by paired, two-tailed t-tests.

Automated reporter assay construct generation using miR-
TaH

To facilitate the bioinformatics aided design of several hun-
dred reporter assays we implemented miRTaH (miRNA
Target assay Helper). In brief, miRTaH receives a paired
list of miRNAs and genes as input query and searches for
known miRNA-target interactions from public databases.
Next, seed binding sites for each miRNA in the correspond-
ing target gene 3′UTRs are searched. For a list of selected
pairs, the 3′UTR sequences are displayed along with the
detected miRNA binding sites and potential cut sites of
restriction enzymes. Long sequences can be automatically
split into any number of chunks, which then can be pro-
cessed independently. Finally, the tool generates a report of
the generated sequence inserts to be synthesized and cloned
into reporter plasmids. As organisms, our web service sup-
ports H. sapiens and M. musculus. miRTaH is freely avail-
able online (https://www.ccb.uni-saarland.de/mirtah). Fur-
ther descriptions on the tool are available from the supple-
mental materials.

miRATBase––a database for validated targets and target
pathways of miRNAs

To make the validated targets and target pathways accessi-
ble we implemented a data warehouse termed miRNA Re-
porter Assay Database (miRATBase). In this data ware-
house we store for each miRNA the validated target path-
ways and the positive and negative target data sets. mi-
RATBase is freely available online (https://www.ccb.uni-
saarland.de/miratbase). In its current release, miRATBase
contains over 500 target associations for four miRNAs. For
each entry we also link to miRTarbase (26), miRBase (42),
miRCarta (43) and MirGeneDB (44).

MiRNA target prediction

Consensus lists of predicted miRNA targets were obtained
using the online interface of miRWalk 2.0 (16). The pre-
diction tools in addition to miRWalk comprise microT v4,
miRanda, mirBridge, miRDB, miRMap, miRNAMap, Pic-
Tar2, PITA, RNA22, RNAhybrid and TargetScan (45–55).
Target transcripts were sorted by the number of algorithms
predicting a target and aggregated on the gene level for all
entries surpassing the applied cut-offs. For TargetScan the
version used during study conception and implementation
(6.2) was benchmarked to the currently most recent version
7.2. To this end, all miRNA targets showing a conserved
and a non-conserved target site were downloaded from the
TargetScan website and processed in the same manner as
the targets from version 6.2. Further, aggregated predictions
have been extracted from the recent mirDIP release 4.1 (56).
Specifically, we made use of 25 tools in the low, medium and
high stringency set-up. The final list of evaluated tools thus
comprises 88 (25 × 3 + 13) prediction tools with different
stringencies.

Statistical analysis

Analysis of microarray data was performed with Gene-
Spring (version 14.9, Agilent Technologies, Santa Clara,
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CA, USA). Statistical analysis of qRT-PCR and western
blots was performed with Prism7.04 (GraphPad Software,
La Jolla, USA) applying paired, two tailed t-tests. Quan-
tification of the western blots was carried out with Im-
age Lab Software Version 5.2.1 (Bio-Rad Laboratories Inc.,
Hercules, California, USA). Statistical analysis, including
evaluation of the automated dual luciferase reporter as-
says, was performed with R version 3.6.3 applying two-
tailed, one-sample t-tests. Heatmaps were generated using
the pheatmap R package while all remaining plots were
compiled with the ggplot2, cowplot and RColorBrewer
packages. The association mining of predicted and vali-
dated targets was performed using the apriori function of
the arules package. For data handling and transformations,
the R packages tidyr, dplyr, stringr, data.table and openxlsx
were utilized. To test the hypothesis whether 3′UTR lengths
systematically influence the results we computed a ratio for
each gene using the long and short assay RLUs and per-
formed a one-sample, two-sided Student’s t-test while set-
ting � equal to 1.

RESULTS

Overview on HiTmIR: a novel pipeline for validating target
pathways of single miRNAs

Our HiTmIR protocol, which was applied to two miRNAs,
consists of three computational filters to increase the speci-
ficity of the target prediction and to reduce the size of the
predicted targetome stepwise, followed by one experimen-
tal step (Figure 2A). The first computational filter includes
a consensus target prediction (16). We then performed an
over-representation analysis using GeneTrail2 (27) to iden-
tify enriched target pathways. Third, we added the disease
association to the pathway information. Based on the sig-
nificant categories, we built a consensus target gene set to
narrow the experimental search space. A novel web-service
supports the design of reporter constructs that are cloned
into target plasmids and subjected to systematic experimen-
tal testing. To this end, a liquid handling system was pro-
grammed to perform an automated luciferase reporter as-
say in a 96-well format containing the commercially ob-
tained constructs. This pipeline allows to detect and validate
complete pathways for single miRNAs, which we exemplify
for miR-34a-5p and miR-7-5p. The validated target path-
ways as well as the positive and negative targets are stored
in a data warehouse, miRATBase, a resource for testing and
evaluating new target prediction tools.

Selecting microRNAs implicated in aging-related diseases to
be screened with HiTmIR

To demonstrate the performance of HiTmIR we selected
PD as role model. To further elucidate the role of miR-
NAs in PD, we differentiated lund human mesencephalic
(LUHMES) cells to dopaminergic neurons and subse-
quently induced a PD-like phenotype using the neuro-
toxin MPP+ (1-methyl-4-phenylpyridinium). We verified
the dopaminergic phenotype after differentiation by im-
munocytochemistry using tyrosine hydroxylase (TH) in
combination with D2 receptor (D2R) as markers for
dopaminergic neurons (Figure 2B and C). We analyzed four

replicates each after stimulation with MPP+ and four ac-
cording controls without MPP+ stimulation and identi-
fied 686 expressed miRNAs by genome-wide miRNA ex-
pression profiling. Following the stimulation by MPP+, we
found 13 significantly deregulated miRNAs encompassing
four down-regulated miRNAs including miR-7-5p and nine
up-regulated miRNAs including miR-34a-5p (adjusted t-
test P-values at an alpha level of 0.05) (Figure 2D and
E). We validated the expression changes by qRT-PCR for
10 selected miRNAs comprising seven of the significantly
deregulated miRNAs and three of the miRNAs with high
fold-changes. The qRT-PCR analysis confirmed the dereg-
ulation for eight miRNAs including an up-regulation of
miR-34a-5p and a down-regulation of miR-7-5p (Figure 2F,
Supplemental Table S1). Since miR-34a-5p plays a crucial
role in cancer and in neuropathologies, we investigated its
abundance and dependency on age in blood of patients and
controls. Analyzing a collection of 4393 individual blood
samples (57), we examined miRNA expression of individ-
uals who were between 30 and 80 years old (Figure 2G).
We found a steady increase of miR-34a-5p expression over
lifetime (P < 2.2 × 10−16). Since the observations sug-
gest a prominent role of miR-34a-5p and miR-7-5p in neu-
ropathological processes, these miRNAs were selected for
systematic target pathway validation using the HiTmIR
pipeline.

Three computational filters decrease the predicted targetome
size to 1% of the transcriptome

The HiTmIR workflow was designed to start with a sensi-
tive set of potential target genes, increasing the specificity in
each of the computational steps (Figure 3A, Supplemental
Table S2). One challenge in miRNA target prediction re-
search are enormous sets of target genes for single miRNAs
as exemplified for miR-34a-5p (Figure 3B). Seven of the 12
tools predict 20% or more of the transcriptome each. Con-
sidering the union of all target prediction algorithms basi-
cally the full transcriptome is identified as target for miR-
34a-5p while each individual gene is only predicted by 2.4 of
the 12 tools on average. The union of predictions thus rep-
resents a highly sensitive but very unspecific––and therefore
unrealistic––representation of the targetome, calling for a
more specific target set. While requiring more complex in-
tersections, the number of targets predicted by a respective
number of tools decreases significantly (Figure 3B). Around
75% of targets are already excluded by requiring an inter-
section of four tools to predict a gene, leaving 5198 target
genes. At the same time, each of the genes is predicted on
average by 5.2 tools. Still, this set is too unspecific and does
likely not represent a reasonable targetome of miR-34a-5p.
To add specificity, we next performed a pathway predic-
tion as second filter step. By running an over-representation
analysis in GeneTrail2 we detected a significant enrichment
of target genes in 4507 pathways and biological processes
(Supplemental Table S3). This analysis reduced the target
gene set further by 33%. Yet again, the remaining number of
3475 genes likely represents an overestimation of the actual
targetome. We then dissected targets enriched for pathways
being pivotal for neurological diseases or for biological cat-
egories that have been associated with PD as a third filter.
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Figure 2. HiTmIR overview and representative selection of miR-34a. (A) Combined experimental and computational workflow of HiTmIR. Three com-
putational steps are carried out consecutively before target gene sets are validated by an automated reporter assay. (B) Immunocytochemistry of D2R
expression in differentiated LUHMES cells. (C) Immunocytochemistry of TH expression in differentiated LUHMES cells. (B, C) Expression of dopamin-
ergic markers in differentiated LUHMES cells were analyzed by immunocytochemistry with antibodies against TH and D2R. The nuclei were visualized by
DAPI staining. Scale bars are 25 �m. (D) Heatmap of the 50 most down-regulated miRNAs in LUHMES cells that were differentiated toward dopamin-
ergic neurons and treated with MPP+ to induce a PD-like phenotype. (E) Heatmap of the 50 most up-regulated miRNAs. (D, E) Shown are z-scores of
quantile-normalized expression values. (F) Validation of microarray results by qRT-PCR of up-regulated and down-regulated miRNAs. Bars present the
log2 fold change between PD-like and controls together with the respective standard deviation. (G) Increased expression of miR-34a-5p in the blood of
patients, spanning an age range from 20 to 80 years. The orange line shows a smoothed spline with 8 degrees of freedom and the shaded area represents
the 95% confidence interval.
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A B

C

D

E F

Figure 3. Application of HiTmIR to miR-34a-5p and miR-7–5p. (A) Adapted from the workflow in Figure 2A, the actual numbers of the application to
miR-34a-5p (blue numbers) and miR-7-5p (green numbers) in the context of PD are shown. (B) Histogram of the number of predicted targets dependent
on the number of tools predicting this target for miR-34a-5p. Most targets are predicted by one tool only. From the histogram, setting a threshold between
three and five tools is a reasonable starting point because large parts of the unspecific hits are already excluded. We then set the initial number of predictions
by requiring at least four tools to predict a target. The line represents a smoothed spline. The right-hand side plot of the panel displays the number of target
predictions of the 12 individual tools. (C) The four experimental steps of the automated reporter assay required to validate target genes in a high-throughput
manner. (D) Overview on HiTmIR results for miR-34a-5p in the TNF- and TGFB-signaling pathways. (E) Overview on HiTmIR results for miR-34a-5p
in the PD-related categories. (F) Overview on HiTmIR results for miR-7-5p in the PD-related categories. (D–F) The x-axis displays the RLU while the
y-axis depicts the density of experimental results. For each set, four curves of experimental transfection designs for targets of miR-34a-5p are shown; two
times empty control plasmids (gray), empty miR plasmid + target control 3′UTR (light gray), miR-34a-5p plasmid + empty target control plasmid (blue),
and the miR-34a-5p + target control 3′UTR plasmid (orange). The experimental transfection design for miR-7-5p was performed analogously.
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Specifically, we found 45 predicted miR-34a-5p target genes
in the TNF-pathway and 32 in the TGFB-pathway, both
of which have been studied in connection to neurological
diseases (Supplemental Table S4). We further investigated
categories relevant for PD. Here, GeneTrail2 highlighted a
significant enrichment of 274 initially predicted miR-34a-
5p targets in 14 PD categories, 10 of which are related to
dopamine.

We compared the performance of the pipeline if applied
to individual tools. For all 12 tools, we thus performed the
exact same pathway analysis as for the consensus prediction
(Supplemental Table S5). Here, we observed a higher con-
cordance as compared to the gene-level prediction. On aver-
age, the pathways were predicted by 8.2 tools while using the
above sketched consensus approach only 5.2 tools predicted
a gene (P < 10−5). While most of the more complex KEGG
pathways were covered by basically all tools (Dopaminer-
gic synapse by all tools, TNF signaling pathway and TGF-
beta signaling pathway by 11 tools), some of the smaller yet
important Gene Ontology biological processes would have
been missed by individual tools (Dopamine metabolism (six
tools), Pink/Parkin Mediated Mitophagy (four tools) or
dopamine catabolic process (three tools)). These results sug-
gest that incorporating the information of different tools
can add to the identification of relevant pathways, especially
if these pathways are small.

To identify novel miR-34a-5p targets we relied on the in-
formation from the original consensus prediction but ex-
cluded all predicted target genes that did not have canoni-
cal binding sites and those targets, which were already vali-
dated by others according to the miRTarBase (58). Thereby,
we obtained a final set of 150 target genes. For some of the
predicted target genes, sequence analysis revealed multiple
miRNA binding sites within the 3′UTR. To cover longer
3′UTRs that harbor multiple target sites, we split the se-
quence stretches into different segments to allow for testing
of the miRNA effect on each target site separately (Sup-
plemental Table S6). To this end, 3′UTR segments were
cloned and separately tested. The respective segments were
numbered consecutively starting at the 5′ end, with the
number of the corresponding segment added to the plas-
mid name (as for example pMIR-CLOCK 1 and pMIR-
CLOCK 2). In sum, we cloned 30 predicted target 3′UTRs
for the TNF-pathway, 23 for the TGF-beta-pathway and
138 for genes associated with PD pathways. In generating
the reporter assay constructs (cf. Supplemental Table S6) we
recognized the need for a tool that automates this step and
implemented the miRNA target assay helper tool miRTaH.
The tool, which is freely available as web service (https:
//www.ccb.uni-saarland.de/mirtah), generates reporter con-
struct sequences for arbitrary miRNA gene target pairs for
H. sapiens and M. musculus. miRTaH supports binding site
matching, restriction enzyme site analyses, and selection as
well as modification of target sequences. The final sequences
can be stored, exchanged, and downloaded easily.

We repeated the above described computational strat-
egy for miR-7-5p. The consensus prediction yielded 5710
unique target genes (Supplemental Table S7). The analo-
gous over-representation analysis returned 4484 pathways
and functional categories (Supplemental Table S8). Since
miR-7-5p is well described in the context of PD by target-

ing �-synuclein (34), we focused on the predicted targets
for the same set of PD-related categories as screened for
miR-34a-5p (Supplemental Table S9). Following the filter-
ing with the same criteria, we generated reporter construct
sequences and split 3′UTRs accordingly to a different size
of ∼700 nts (Supplemental Table S10). Altogether, 150 and
92 genes were tested by automated dual luciferase assays for
miR-34a-5p and miR-7-5-p, respectively.

HiTmIR performance is comparable to manual reporter as-
says

We tested all 351 selected target gene 3′UTRs using the ex-
perimental part of HiTmIR (Figure 3C). To control the va-
lidity of the assay, each 96-well plate contained two positive
controls in variable wells to exclude positioning-effects. The
miR-34a-5p positive controls of the TNF/TGFB-signaling
assays showed similar RLU distributions to those of the
PD-related categories (Figure 3D and E, Supplemental Ta-
ble S11). Upon co-transfection with miR-34a-5p, the posi-
tive control pMIR-TCRA showed a significant down regu-
lation of the relative luciferase activity (relative light units;
RLU) to 54.7% for TNF/TGFB-assays (P ≤ 0.001) and
to 52.5% for PD related assays (P ≤ 0.001), comparable
to previous effects obtained by manual assays (59). Next,
we repeated the experiments for miR-7-5p. Following co-
transfection of miRNA and target plasmid we also found
a clear downshift of the RLU values to a mean of 38.6%
(Figure 3F, Supplemental Table S12).

HiTmIR validates 40% of miR-34a-5p targets in TNF-
/TGFB-signaling pathways

Out of the 30 tested 3′UTR sequences of the TNF-signaling
pathway, 12 (40%) reporter constructs showed a signifi-
cant RLU down regulation upon co-transfection with miR-
34a-5p (Figure 4A, Supplemental Table S13). For TGFB-
signaling, 9 of 23 (39%) tested target 3′UTRs showed a
significant RLU reduction (Figure 4B). To verify the di-
rect binding of miR-34a-5p to its predicted target sites,
we mutated the binding sites and performed compara-
tive HiTmIR experiments between the wild type constructs
and the mutated reporter vectors (Figure 4C and D, Sup-
plemental Table S14). For each signaling pathway, we
chose six positively tested target gene segments. In sum,
we tested CREB1 1, CREB1 2, TNFRSF14, DNM1L 1,
DNM1L 2 and AKT2 from TNF-signaling, and SMAD7,
BMP8B, TGFB2, SMAD2 1, SMAD2 2 and EP300 from
TGFB-signaling. We verified the binding of miR-34a-5p
to its predicted target sites for six 3′UTRs showing a sig-
nificant difference in RLU after mutation. For the non-
significant cases, the assay results still suggested a trend to
lower RLU values upon a knockout of binding sites.

HiTmIR validates 60% of PD-related pathways for miR-34a-
5p and miR-7-5p

We applied the experimental pipeline of HiTmIR to the pre-
dicted and PD-related 3′UTR target genes of miR-34a-p
and miR-7-5p (Supplemental Tables S13 and S15). Upon
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Figure 4. Detailed experimental results of HiTmIR for miR-34a-5p in TNF- and TGFB-signaling. (A, B) RLU values for eight replicates for each 3′UTR
from selected target genes. The dashed line shows the normalized reference level, i.e. the expected level with no effect. (A) Results for pre-selected genes
from TNF-signaling. (B) Results for pre-selected genes from TGFB-signaling. (C, D) RLU values for eight replicates for each wild-type and mutated
(binding-site knock-out) 3′UTR from selected target genes. The dashed line shows the normalized reference level, i.e. the expected level with no effect. (C)
HiTmIR results for binding-site knockout mutants of selected genes from TNF-signaling pathway. (D) HiTmIR results for binding-site knockout mutants
of selected genes from TGFB-signaling pathway.

co-transfection with miR-34a, we detected a significant re-
duction (P < 0.05) of the RLU for 119 target 3′UTRs pre-
dicted by at least one algorithm (86.2%). Grouping the plas-
mids into RLU ranges, we found 51 cases in the range be-
tween 33% (KIF5C) and 70% (GSK3B 1) (Figure 5A). We
observed a less pronounced decrease between 70% and 80%
for 28 target 3′UTRs (Figure 5B). We next evaluated how
the cut-off for the minimal number of consensus predic-
tions potentially influences the results. Employing the cut-
off, which we already used in the TNF-/TGFB-signaling

validation, we observed a slight drop of the validation rate
to 84.4%. However, only 39 (32.8%) genes that were pre-
dicted by at least four algorithms were removed due to non-
detectable binding sites as compared to the 235 (68.7%)
genes that were predicted by at least one algorithm. These
results suggest an inflated false-positive rate for the genes
predicted by a small number of tools only.

Of the 160 sequences tested for miR-7-5p, 106 (66.3%)
were significant (P < 0.05). Mapping the constructs into the
ranges of mean RLUs we only observed 24 targets under
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Figure 5. Detailed experimental results of HiTmIR for miR-34a-5p and miR-7–5p in PD-related categories. (A–D) RLU values for eight replicates for each
3′UTR from selected target genes. The dashed line shows the normalized reference level, i.e. the expected level with no effect. (A) Results for miR-34a-5p
in the PD-related gene sets. Shown are the genes for which mean RLU was less or equal than 70%. (B) Analogous to (A) but with mean RLU between 70%
and 80%. (C) Results for miR-7-5p in the PD-related gene sets. Shown are the genes for which mean RLU was less or equal than 70%. (D) Analogous to
(C) but with mean RLU between 70% and 80%.

70% (Figure 5C) and 40 targets (Figure 5D) of moderate
reduction. These results suggest the validation rate of HiT-
mIR to primarily depend on the chosen cut-offs as well as
the miRNAs under investigation. To elaborate on the rela-
tion between high validation rates and the chosen cut-off
(standard) parameters per miRNA, we enumerated a set of
thresholds for both the minimum mean RLU and the mini-
mum P-value cut-offs and computed the corresponding val-
idation rates (Supplemental Table S16). We found that even
with permissive cut-offs (P < 0.005 & mean RLU < 80%)
the validation rates for the PD-related target sets of miR-
34a-5p and miR-7-5p remained competitive with 55% and

35%, respectively. After showing a significant decrease of
target expression upon miRNA transfection, we next asked
whether the protein expression levels are decreased accord-
ingly.

miR-34a-5p effects target protein expression in SH-SY5Y
cells

To investigate the effects of miR-34a-5p targeting on the
endogenous protein levels, SH-SY5Y cells were transfected
by miR-34a-5p mimics or by ANC as a non-targeting con-
trol. We confirmed the over-expression of miR-34a-5p in
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the transfected SH-SY5Y cells by qRT-PCR (Supplemen-
tal Table S17). We next analyzed the endogenous protein
levels of JNK3, SMAD7, SMAD2, CREB1, TH, CLOCK,
GRIA4 and PARK2 each in three independent experiments
by western blotting using specific antibodies (Supplemen-
tal Table S18). We observed significantly reduced endoge-
nous protein levels for all tested proteins (Figure 6A–F)
ranging from 46% for CREB1 (0.001 ≤ P-value ≤ 0.01)
to 76% for CLOCK (P-value ≤ 0.05) (Figure 6G). To fur-
ther validate miR-34a-5p endogenous targeting, we trans-
fected SH-SY5Y cells with miR-34a-5p inhibitor or an in-
hibitor control and analyzed the endogenous protein lev-
els of JNK3, SMAD7, SMAD2, CREB1, TH, CLOCK,
GRIA4 and PARK2 each in three independent experiments
(Supplemental Table S19). In line with the previous obser-
vations, we found significantly induced endogenous protein
levels for all of the tested proteins ranging from 118% for
TH (P-value ≤ 0.05) to 163% for CLOCK (0.001 ≤ P-value
≤ 0.01) (Figure 7).

Variation in cloned 3′UTR lengths does not lead to a system-
atic bias

Since the validation rates of HiTmIR varied between miR-
34a-5p and miR-7-5p, we asked whether this is confounded
by the fact that 3′UTR splits of varying lengths were trans-
fected. As independent control experiments we selected nine
target 3′UTRs of miR-34a-5p and created reporter con-
structs containing the full-length 3′UTR sequence. The full-
length 3′UTR sequences (∼991 nts) were approximately two
times the length of the shorter sequence chunks (∼477 nts)
(Supplemental Table S20). Although several cases could be
identified where the shorter 3′UTR sequence showed either
a better or worse mean RLU, these differences were not sig-
nificant on the overall distribution (P = 0.9962, cf. Materi-
als and Methods). As a conclusion, the length of the 3′UTR
reporter constructs does not significantly skew the distribu-
tion of RLU values obtained, as long as the technically up-
per limit (∼1500 nts) is not surpassed.

Evaluating the performance of single tools toward a more ac-
curate consensus prediction

By design, the HiTmIR system facilitates validation of
miRNA targets that are predicted and prioritized by in sil-
ico methods. In turn, it does not only provide a set of val-
idated target pathways but also positive and negative sets
of targets for miRNAs. These can be used to evaluate the
performance of individual target predictors, utilized to test
new individual tools, or used to evaluate consensus predic-
tion. First, we calculated the performance of the individual
tools that were originally contained in the target gene selec-
tion step to determine whether and how performance varies
between the tools (Figure 8A). Our results suggest one set
of tools (mirbridge, miRDB, miRNAMap and Pictar2) to
be very specific. While this specificity is on a level we are
seeking for, it here comes at the price of a sensitivity of only
9%. On the other extreme, RNAhybrid shows a sensitivity
of 99.4% but also zero specicitity on our data set. As pre-
viously suggested, TargetScan (6.2) and miRanda show a
well-balanced specificity and sensitivity. The only other tool

that performs similarly well is MicroT v4. However, it is in
the nature of successful tools that they are constantly im-
proved. Therefore, we evaluated more recent programs (56).
Altogether, 25 tools were tested and most notably for these
tools low (Figure 8B and C), medium (Figure 8D and E)
and high (Figure 8F and G) confidence sets of targets were
acquired to evaluate the performance. Additionally, we in-
cluded the 12 original tools and TargetScan 7.2. In total we
evaluated 88 tools at varying levels of prediction stringency.
For each of the tools, we computed the specificity, sensi-
tivity, balanced accuracy, and other measures such as pre-
cision, recall, and the F1 score (Supplemental Table S21).
As expected, the number of predicted targets generally de-
creases with stringency increasing. Still, the most stringent
sets yield targetome sizes over 20% of the transcriptome.
The high confidence set retained a sensitivity, specificity and
balanced accuracy of 47%, 60% and 53%. The medium con-
fidence set 39%, 67% and 53%, respectively. The low confi-
dence set yielded 39%, 68% and 53%, almost identical to the
medium confidence set. Most importantly, the original set
we used reached 46%, 58% and 52% sensitivity, specificity
and balanced accuracy, similar to the high confidence set of
mirDIP (Figure 8H). The most remarkable difference be-
tween the four groups of tools was the increased sensitivity
of the high confidence sets, at the cost of the lowest speci-
ficity. Of note, there was no tool that clearly outperformed
all others, i.e. reaching exceptional specificity and sensitiv-
ity. The best-balanced accuracies, exceeding values of 60%,
were reached for microrna.org, miRDB, miRanda and Tar-
getScan (7.2).

We then evaluated how an updated algorithm improved
the results on the example of TargetScan and compared
version 6.2 (the available version when we originally im-
plemented HiTmIR) with the most recent version 7.2. We
specifically asked whether a tool update has an impact on
single target genes and on the validation success rate. With
respect to the original gene sets we observed an overlap
of 3384 target genes, for which the newer version had an
additional 1000 targets while 444 former targets were not
predicted anymore. Most intriguingly, the pathway predic-
tion was 100% concordant between TargetScan 6.2 and Tar-
getScan 7.2 (Supplemental Table S5). In predicting more
targets, we might expect also an increased false positive rate
but for the genes involved in our study we observed three
more true positives and two more true negative genes. For
TargetScan 6.2 we computed 124 TP, 32 TN, 32 FP and 54
FN. For TargetScan 7.2 the numbers slightly changed to 126
TP (+2), 33 TN (+1), 31 FP (–1) and 52 FN (–2). The bal-
anced accuracy improved from version 6.2 (59.8%) to 7.2
(61.2%) by 1.4% and in a non-significant manner (P > 0.05).
Although the overall improvement is statistically not signif-
icant, the data nonetheless indicate that advancing individ-
ual target tools can improve the accuracy further. The vary-
ing performance of the single tools and limitations in con-
sensus approaches as applied in our study also motivates the
question whether the obtained wet-lab results in turn can be
used to rank the prediction tools used in the first step. To
this end, we concatenated the predictions of the 12 tools for
miR-34a-5p and miR-7-5p to create a binary matrix. Next,
we filtered for the combination of miRNA and validated
targets and added a binary response vector (1 = validated,
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Figure 6. Western blot analysis of JNK3, SMAD7, SMAD2, CREB1, TH, CLOCK, PARK2 and GRIA4 in miR-34a-5p over-expressing cells. SH-SY5Y
cells were transfected either with ANC or miR-34a-5p mimic. Forty-eight hours after transfection, the endogenous protein levels were analyzed by western
blotting using specific antibodies against the aforementioned proteins. GAPDH or �-Actin served as loading control. One representative western blot out
of three independent experiments is shown, respectively. All three western blots were quantified by densitometry using the Image Lab Software. (A) Western
blot results for JNK3. (B) Western blot results for SMAD7. (C) Western blot results for SMAD2 and CREB1. (D) Western blot results for TH. (E) Western
blot results for CLOCK. (F) Western blot results for GRIA4 and PARK2. (G) Combined expression analysis for genes from (A) to (F) tested by western
blot analysis. The y-axis displays the relative expression levels with respect to the ANC (100%, dashed line). Each blue bar represents the triplicates (black
dots) of a gene with mean (orange dot) and a range of two times the standard deviation (orange lines). P-values shown in parenthesis were computed using
two-tailored, paired Student’s t-tests.
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Figure 7. Western blot analysis of JNK3, SMAD7, SMAD2, CREB1, TH, CLOCK, PARK2 and GRIA4 in miR-34a-5p inhibitor transfected cells.
SH-SY5Y cells were transfected either with inhibitor control or miR-34a-5p inhibitor. Forty-eight hours after transfection, the endogenous protein levels
were analyzed by western blotting using specific antibodies against the aforementioned proteins. GAPDH or �-Actin served as loading control. One
representative western blot out of three independent experiments is shown, respectively. All three western blots were quantified by densitometry using
the Image Lab Software. (A) Western blot results for JNK3. (B) Western blot results for SMAD7. (C) Western blot results for SMAD2 and CREB1. (D)
Western blot results for TH. (E) Western blot results for CLOCK. (F) Western blot results for GRIA4 and PARK2. (G) Combined expression analysis for
genes from (A) to (F) tested by western blot analysis. The y-axis displays the relative expression levels with respect to the control inhibitor (100%, dashed
line). Each blue bar represents the triplicates (black dots) of a gene with mean (orange dot) and a range of two times the standard deviation (orange lines).
P-values shown in parenthesis were computed using two-tailored, paired Student’s t-tests.
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Figure 8. Performance evaluation of individual tools and association rules. (A) The scatter plot shows the specificity and sensitivity of the 12 individual
tools and the association rules. The point size of the tools and rules correspond to the balanced accuracy. (B) Targetome sizes for the most stringent
parameters for the new set of tools. (C) Specificity and sensitivity of the most stringent parameter set for the new set of tools. (D) Targetome sizes for the
medium stringent parameters for the new set of tools. (E) Specificity and sensitivity of the medium stringent parameter set for the new set of tools. (F)
Targetome sizes for the least stringent parameters for the new set of tools. (G) Specificity and sensitivity of the least stringent parameter set for the new set
of tools. (H) Balanced accuracy, specificity, and sensitivity for the four tool groups presented in A, C, E, G.
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0 = not validated) using the standard cut-off (P < 0.05)
on the experimental HiTmIR results. Based on an associ-
ation mining procedure, we searched for a set of rules with
high confidence to indicate tools or combinations of such,
which are most informative towards the outcome vector. Af-
ter setting a stringent cut-off for the confidence (≥80%) and
a moderate level for the minimal support (≥25%), we com-
puted nine rules (sets of tools) that could help to improve
the validation rate in a retrospective manner (Supplemental
Table S22). For example, the rule to combine the predic-
tions of miRanda and TargetScan has the largest effect on
the validation rate. These results suggest that several com-
binations of the tools incorporated in our pipeline give a
better consensus prediction. Also, this means that the likeli-
hood of a validation to turn out positively is higher than for
any other single tool or combination of such. By contrast,
negating the binary values of the outcome vector and re-
peating the association analysis did not yield any signature
with high confidence (≥0.4) or support (≥0.3). This shows
that non-validated targets are not predicted systematically
by any subset of tools. We recommend to potential HiTmIR
users to compare the global consensus prediction with the
predictions obtained from the derived signatures of tools.

DISCUSSION

With millions of theoretically possible interactions between
miRNAs and mRNAs the known human miRNA targe-
tome is far from being complete. Thus, novel methods com-
bining high-throughput experimental and computational
methods are in great demand to bring the field closer to-
wards a comprehensive characterization of the targeting
mechanisms of miRNAs. Although >100 prediction tools
have been proposed, performance largely varies and even
well performing tools typically report between several hun-
dred and many thousand targets per miRNA (60). In the
light of an expected low a priori likelihood of a miRNA
targeting a gene, the specificity is of crucial importance.
Considering a scenario with a low a priori likelihood and
a specificity below 80%, the positive predictive values gets
extremely low. To partially address this issue, consensus pre-
dictions of multiple predictors were used to further sharpen
the set of predicted genes. Nonetheless, the methodological
similarity of the approaches and their feature sets certainly
influence the effectiveness of this filtering technique, still
leading to high number of potential target candidates. Re-
searchers face the situation to validate either a small set of
selected candidates using traditional low-throughput tech-
niques like reporter assays or to perform unbiased genome-
wide assays that exhibit high levels of noise and complicate
down-stream analysis. In addition, recent findings suggest
that miRNAs orchestrate entire target pathways, an obser-
vation that has been claimed repeatedly, but never system-
atically been shown (59,61).

Therefore, we developed the novel HiTmIR pipeline,
specifically designed to close the gap by mapping pre-
dicted targets to enriched pathways. The pipeline allows to
rapidly design hundreds of recombinants based on 3′UTR
sequences, which are tested using an automated parallel
dual luciferase assay system. Our requirements for targets
to be predicted by at least four tools followed by the filtering

of enriched pathways or gene sets, improves state-of-the-art
validation rates.

As for the experimental arm of our strategy, we imple-
mented an automated dual luciferase reporter assay for
high-throughput miRNA target gene validation. Although
luciferase-based target validation has its inherent limita-
tions, reporter assays provide an important piece of ev-
idence whether a miRNA directly binds to its predicted
mRNA target site. Here, we addressed two major limi-
tations of reporter assays. First, cloned target sequences
mostly do not represent the entire sequence context of the
target site. Second, miRNAs are over-expressed in a non-
physiological context (62). Examining the effects of differ-
ent 3′UTR length on the results of reporter assays, we de-
tected altered RLUs for varying 3′UTR lengths but no sys-
tematic bias that significantly influences the overall results.
Moreover, we confirmed physiological targeting by miRNA
inhibition. Using western blotting on transfected cells, we
confirmed miRNA targeting for all of the proteins that were
indicated as miR-34a-5p targets by reporter assays. To date,
there is no gold-standard method for defining target gene
regulation by miRNAs. Other high-throughput approaches
like the combination of immunoprecipitation of argonaute
(AGO) family members with next-generation sequencing
(AGO-HITS-CLIP) do only provide evidence of miRNA-
mRNA interaction but do not reflect the functional con-
sequences (63). Comparable, high-throughput approaches
that are also based on dual luciferase assays reported a
significantly lower conformation rate for positive miRNA–
mRNA-interactions (63,64). HiTmIR combines the com-
putational target prediction, pathway analysis, automated
reporter construct design as well as automated dual lu-
ciferase reporter assay for the identification of miRNA tar-
gets within a cellular signaling pathway and yields improved
target validation rates.

To demonstrate the performance of HiTmIR we selected
miR-34a-5p and miR-7-5p as use cases in the context of
PD-related pathways. Besides specific evidence for an al-
tered miRNA expression associated with PD, there is a sys-
temic increase of miR-34a-5p with age correlating with the
prevalence of neurodegenerative diseases along the lifespan.
Also, the observed down-regulation of miR-7-5p has been
previously described to effect �-synuclein and to contribute
to neurodegeneration (34). Also in a MPTP induced PD
model in mice, this miRNA was reduced (33). For both
miRNAs, we showed up-scaled reporter assays to resemble
the performance of manually performed experiments. Fur-
thermore, automation allows to test batches of targets un-
der replicable conditions. For TNF- and TGFB-signaling
selected from our computational workflow, HiTmIR vali-
dated about 40% of target genes for miR-34a-5p. Validation
rates were further improved for the PD-related categories,
with a mean validation rate of 60% when considering both
miRNAs. Moreover, we independently validated many of
the targets for miR-34a-5p using binding site knockout as-
says and western blots with miRNA mimics and inhibitors.
We then elaborated to which extent the performance de-
pends on several parameters in the pipeline and argued that
it can be miRNA specific. For the sake of simplicity, we cal-
culated the validation rate primarily on a per 3′UTR ba-
sis as there is no gold-standard to compute it per gene. Ac-

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/49/1/127/6030235 by Saarländische U

niversitäts- und Landesbibliothek user on 03 M
ay 2021

118



142 Nucleic Acids Research, 2021, Vol. 49, No. 1

cording to a technical limitation of reporter assays, several
3′UTRs had to be split into smaller constructs, an auxiliary
technique that seems not to cause a systematic bias on the
validation rates. Thereby, several justifiable ways exist to ag-
gregate the HiTmIR results to compute a validation rate on
the gene-level. For example, a simple rule could be to clas-
sify a gene as validated if at least one 3′UTR sequence of
that gene is regulated by the chosen miRNA. Using the pro-
posed stringent cut-offs (P < 0.005 & mean RLU < 80%) in
combination with this rule yields a validation rate of 58.9%
for miR-34a-5p and 46.7% for miR-7-5p on the gene-level
for the PD-related pathways.

Our computational analysis highlighted TNF- and
TGFB-pathways as target sets for miR-34a-5p and further
14 PD-related categories for miR-34a-5p and miR-7-5p.
Regulation of different target genes by these miRNAs in the
context of PD has been described only for a limited num-
ber of genes (30,34,65). Applying our new computational
and experimental strategy HiTmIR, we demonstrate a com-
plex regulation of cellular pathways for both miRNAs. This
has been broadly claimed, but has never been proven to
such an extent, especially in a disease-specific context. Via
multiple points of interaction, deregulation of these miR-
NAs strongly impacts the signaling pathways and likely
promotes cell death of dopaminergic neurons. As for ex-
ample, TNF-signaling and TGFB-signaling regulate crucial
processes in the central nervous system including synapse
formation, synapse regulation, neurogenesis, regeneration
and general maintenance of neuronal cells (66–69). Thus,
a reduced TGFB-signaling by miR-34a-5p could promote
nigrostriatal degeneration (68). Beyond this, we identified
not only several PD-associated target genes for miR-34a-
5p and miR-7-5p but also multiple targets that are crucial
for dopamine metabolism and signaling. In this context,
we identified the tyrosine hydroxylase, which converts L-
tyrosine to L-dihydroxyphenylalanine (L-DOPA) and is a
key enzyme of the dopamine metabolism as direct target
of miR-34a-5p. Loss of TH is found within the striatum
in 90% of postmortem samples obtained within a five-year
period of diagnosis (70). As for miR-7-5p, which has been
described as regulator of �-synuclein, HiTmIR identified
key components of the PI3K/AKT signaling pathway like
AKT3 and GSK3B as direct target genes. Balanced regu-
lation of this signaling pathway is crucial for neuronal cell
proliferation, migration, and plasticity (71). In general, the
proposed pipeline allows the identification of a large num-
ber of target genes for a single miRNA in several cellular
pathways and offers the possibility to discover previously
hidden parts of the complex regulation network for con-
served miRNAs.

Although some of the work steps of HiTmIR such as
the consensus prediction and the validation by reporter as-
say are already described in the literature, the entire proto-
col, i.e. the combination of computational and experimen-
tal techniques to a systematic pipeline, is novel. With this
pipeline, a new web service was developed to facilitate (i)
the rapid design of potential reporter plasmid inserts by
automating the steps of finding and excluding already val-
idated targets, (ii) the search for all annotated transcripts
and 3′UTRs per gene and (iii) the search for canonical bind-
ing sites in selected targets in real-time. Moreover, we in-

corporated functionality to split 3′ UTRs at different user-
defined sequence locations and to highlight cut sites of re-
striction enzymes as well as a list of restriction enzymes
without a cut motif in the target. These features were ex-
tensively fine-tuned and tested to improve the practical us-
ability for massively parallel reporter assays and to reduce
time intensive manual labor as much as possible. To the best
of our knowledge there is no comparable free available tool
published to date.

We implemented a data warehouse storing validated tar-
get pathways as well as positive and negative target gene
sets. Especially negative target genes are lacking in the lit-
erature. Of 9679 reported target gene associations for H.
sapiens in the miRTarBase, 9357 (97%) are positive and
only 322 (3%) negative. In turn this highlights that neg-
ative targets are to a large extent not reported. However,
such negative results are essential for developing new tar-
get predictors. Another challenge is that reporter assay re-
sults in databases such as the miRTarBase often come from
heterogenous sources. Each manuscript contained in miR-
TarBase validates on average 1.6 target genes. This might
pose challenges in the training process of individual target
prediction programs. Our highly standardized positive and
negative data set thus represents a valuable source to train
or evaluate miRNA target prediction programs.

To further improve the sensitivity of our approach, it
could be useful to include the analysis of synergistic ef-
fects due to multiple binding sites in the target 3′UTRs.
As further down-stream validation strategy, miRNA target
pathways additionally could be examined in a tissue-specific
context (72,73). Other future developments include the ex-
tension from two miRNAs to a multitude of miRNAs that
co-regulate the same signaling cascade in a systemic manner
and to consider the dynamics of regulatory processes by ex-
ploring quantitative regulatory signals over time. Moreover,
the setup of HiTmIR can be broadened to a more holis-
tic approach, e.g. through testing of non-canonical binding
sites.
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ABSTRACT

Web services are used through all disciplines in life
sciences and the online landscape is growing by hun-
dreds of novel servers annually. However, availabil-
ity varies, and maintenance practices are largely in-
consistent. We screened the availability of 2396 web
tools published during the past 10 years. All servers
were accessed over 133 days and 318 668 index files
were stored in a local database. The number of ac-
cessible tools almost linearly increases in time with
highest availability for 2019 and 2020 (∼90%) and
lowest for tools published in 2010 (∼50%). In a 133-
day test frame, 31% of tools were always working,
48.4% occasionally and 20.6% never. Consecutive
downtimes were typically below 5 days with a median
of 1 day, and unevenly distributed over the weekdays.
A rescue experiment on 47 tools that were published
from 2019 onwards but never accessible showed that
51.1% of the tools could be restored in due time. We
found a positive association between the number of
citations and the probability of a web server being
reachable. We then determined common challenges
and formulated categorical recommendations for re-
searchers planning to develop web-based resources.
As implication of our study, we propose to develop a
repository for automatic API testing and sustainabil-
ity indexing.

GRAPHICAL ABSTRACT

INTRODUCTION

Scientific web servers and web services are frequently de-
veloped to make complex algorithms available to a broad
research and user community. They have facilitated sub-
stantial contributions to the development of the current
research landscape in the life sciences and biomedicine.
As one example, the web service to the basic local align-
ment search tool BLAST, originally published by Altschul
in 1990 (1) has become one of the most popular web-
based tools in sequence analysis. Also, extensions for pro-
tein alignment such as Gapped BLAST and PSI-blast (2)
have been made available as web services and are accessed
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thousands of times each day. Belonging to one of the most
frequently applied tools, it is evident that the web service is
carefully maintained and continuously improved (3). Sim-
ilarly, other successful web services such as STRING are
regularly updated and maintained (4–6). Also, the Euro-
pean Bioinformatics Institute (EMBL-EBI) provides access
to several essential analysis tools via web services that are
regularly updated, extended and maintained in a sustain-
able manner (7).

Web services have become of such a high relevance that
the journal Nucleic Acids Research (NAR) dedicates a
whole special issue each year to this topic. Staring in 2003
with 131 of the most widely perceived web services from the
years before (8), the annual web server issue has steadily
extended its scope and has become a world-renowned re-
source for peer-reviewed web servers (9–11). The most re-
cent web server issue got as much as 269 proposals of which
79 manuscripts were finally accepted after peer-review, re-
sulting in an overall acceptance rate of 29% (12). These
numbers underline the tremendous popularity but show
that scientific rigorousness must be assured for online im-
plementations as well. It became a perception that com-
putational biology resources lack persistence and usability
(13,14). Following the study by Veretnik et al. (13) in 2008
that investigated the availability of all NAR web servers
published in the preceding 4 years, Schultheiss et al. pre-
sented a similar but extended analysis in 2011 (15). They
found that of the 927 web servers published in NAR be-
tween 2003 and 2009, 72% were still available at their orig-
inal addresses while 9% were gone offline. The study by
Schultheiss et al. excels by a survey among all authors
and a functionality test of each server providing exam-
ple data. In 2017, the survey by Wren et al. (16) high-
lighted that ∼27% of URLs from web servers decayed
since their original publication and that this is a rela-
tively stable phenomena observed among scientific web
tools.

Since these studies had been conducted another 1026 web
instances have been published in a total of 11 issues in NAR.
Here, we set to provide an up-to-date and comprehensive
evaluation of the general availability of web services. Thus,
we collected 2727 articles describing 2396 unique tools pub-
lished by PubMed indexed journals from 2010 onwards and
tested their availability over time.

The main goals of the present study are: i) to present
a comprehensive analysis of the accessibility of web ser-
vices; ii) to get insights into the availability dynamics of
web services over a longer period of time, e.g. to under-
stand differences across weekdays and to estimate the ex-
tent of typical downtimes; iii) to evaluate with an experi-
ment whether and to which extent recent web services can be
rescued by contacting the corresponding authors; iv) pro-
vide an analysis on the dependency between tool metadata
such as service hoster or host country and site availability
and v) use the observations to formulate reasons for the ob-
served web server decay. We use this information to derive
practical recommendations for web server developers to im-
prove upon security, maintainability and user experience,
that should ultimately extend the expected lifetime of web
services.

MATERIALS AND METHODS

Literature search

To get a list of web servers we performed a comprehensive
PubMed query using the following search term:

(((http://[title/abstract]) or (www.[title/abstract]) or
(https://[title/abstract])) and (‘web server’[title/abstract]
or (web service[title/abstract]) or webserver[title/abstract]
or ‘web service’[title/abstract] or web-server[title/abstract]
or web-service[title/abstract])) and ((‘2010/01/01’[Date–
Publication]: ‘3000’[Date–Publication])).

The output resulted in 2727 articles. For each article, the
abstract and available meta information was downloaded
as CSV file and further processed. From the CSV files we
extracted the primary web addresses.

Filtering of tools

The list of tools was further processed and filtered. In 2327
cases a single Uniform Resource Identifier (URL) was pro-
vided whereas in the remaining cases several URLs could
be determined. This includes special cases where different
web servers have been included or where a mirror URL to
the same endpoint has been provided. Other examples for
articles with two URLs comprise a direct link to the tuto-
rial or to related databases. In these cases only the URL to
the actual tool was selected. Another 12 tools were removed
since they rather described meta analyses instead of web
services in the common sense as used in this work. In ad-
dition, 37 other tools were removed because the mentioned
web servers were to be deployed locally or not originally
published in the linked articles. Finally, one tool was ex-
cluded since it had been retracted in the meantime (17). As
a next step, we curated redirects and iteratively removed du-
plicated tools.

Download of landing pages

We accessed the web pages by using the download.file func-
tion of R with the curl method selected. With the parameter
-m 30 we restricted the maximum operation time to 30 s and
with the -L option up to 50 redirects were allowed.

Filtering of non-working tools

To classify web pages either in reachable or offline we
extended the search beyond the typical error messages
(e.g. response codes 403, 404, 406, 502 and 503). Screen-
ing manually through the non-accessible web pages we
identified 44 phrases such as ‘Maintenance in progress’,
‘has been discontinued’ or ‘Our server is down temporar-
ily’. If one of the determined keywords or phrases could
be detected the site was classified as non-accessible. On
three non-consecutive days, the number of available tools
dropped considerably (to less than 80% compared to the
preceding day), potentially to technical issues at national
hub nodes or internet service providers. Therefore, the
affected daily counts were excluded from downstream
analysis.
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Additional curation steps for static analysis

After the collection of the long-term availability statistics
for all tools we semi-automatically curated the entries by
inspecting the URLs provided by bio.tools (18), searching
for patterns in failed URLs and manually checking for new
URLs of unavailable services. In addition, we improved the
PubMed provided URLs linking to lab homepages using
the address to the corresponding tool explicitly. Further-
more, we also curated tool URLs that are reachable but host
different and irrelevant content. Tools that were affected by
these steps were then excluded from the long-term analy-
sis. After this final step, a total of 2396 of 2727 tools re-
mained (Supplementary Table S1). Notably, in this set also
databases with a limited web service functionality were kept.
For the tools that were available but modified their host
URL without a suitable scientific publication we provide
separate statistics in Supplementary Table S2. Downstream
analyses have been carried out using the binary matrix of p
= 2396 tools (rows) and n = 133 days (columns).

Determining hosting providers

We first collected the IP addresses of all tools and retrieved
usage information, hosting domain and ISP information
from two IP information services, IP2Location.com and
IPinfo.io. We then manually checked all non-educational
and non-governmental entries for cloud hosting providers.
When no IP address could be found no hosting provider was
derived.

Determining institutional e-mail addresses

First, e-mail addresses of the corresponding authors
were extracted from Web of Science. We then searched
the hosting domains in a list of free e-mail provider
domains found at https://gist.github.com/okutbay/
5b4974b70673dfdcc21c517632c1f984.

Statistical analyses

All analyses have been carried out with R 3.3.2 GUI 1.68
Mavericks build (7288). To evaluate the availability of tools
over time, splines from the smooth.spline function with 10
degrees of freedom (DF) were used. Pie charts, ridgeline, vi-
olin and bar plots were compiled using ggplot2. Clustered
heat maps were generated using the superheat function in
the superheat package. Hypothesis tests (Student’s t-test,
Wilcoxon rank-sum test) were conducted using the R stats
implementations.

RESULTS

Study set-up to answer the four research questions

To reach the main goals set we extracted 6727 articles pub-
lished after 2010 from PubMed. After removing duplicates
and false positive hits of our literature search (e.g. meta
analyses of tools) 2618 tools remained. After manually cu-
rating these (cf. ‘Materials and Methods’ section), 222 tools
were removed, retaining the final set of 2396 articles/tools
(Supplementary Table S1). The web addresses of the tools

were accessed beginning on the 13 April 2020 for a total
of 133 days. During this process 318 668 index pages were
downloaded and stored to a local database (Figure 1A).

Static analysis of web services highlights a half-lifetime of 10
years

On 13 April, we completed the first download of all tool
landing pages. As a first result 25.7% of the tools were not
reachable opposing the 74.3% that were working on that
day (Figure 1B). Tracking the number of tools published by
year we see a generally increasing trend from ∼200 tools in
2010 to ∼300 tools in 2019 (Figure 1C). These numbers fit
well to the overall growth of scientific literature and knowl-
edge (19). With increasing time after publication, we esti-
mate an almost linear decreasing availability of the web ser-
vices. While tools published in 2019 and 2020 are available
to more than 90%, this rate drops to 50% for tools published
in 2010 (Figure 1D and E). Considering the source journals,
we observe an uneven distribution. As explained in the in-
troduction, the annual web server issue of NAR has become
a pivotal resource in the field. Indeed, with over 550 contri-
butions NAR is the leading journal in this regard. However,
also Bioinformatics showed a large number of contribu-
tions, most likely driven by the application note manuscript
category. Two other journals, PLoS One and BMC Bioin-
formatics reached almost 200 contributions while the re-
maining ones were distributed among many other journals
(Figure 1F). Interestingly, we observed substantial differ-
ences in the availability of web servers depending on the
journal they were published in. For example, tools pub-
lished in NAR, Bioinformatics, Scientific Reports or Meth-
ods on Molecular Biology had higher long-term availabil-
ity rates as compared to PLoS One or BMC Bioinformat-
ics (Figure 1G). To further limit the influence of the time
variable on these results we repeated the analysis only for
the articles published in the past 5 years. Here, the trend of
aforementioned differences diminished but was still notice-
able (Figure 1H). This first snapshot analysis on the 2396
tools already provides interesting insights on the average
lifetime of bioinformatics web services. It is however fair
to speculate that these results are influenced by many fac-
tors, e.g. the actual weekday when the tools were accessed
or seasonal fluctuations. To limit respective effects, we ac-
cessed the tools between 13 April and 31 August 2020.

Monitoring over time indicates short downtimes and higher
availability toward the mid of the week

We have collected reliable data on the availability over time
and first asked whether and how reachability varies between
the tools. We found 31% could always be reached, 20.6%
could never be reached and 48.4% could be reached at least
once (Figure 2A). The shape of the density distribution of
the percentage of days on which tools were working basi-
cally supports the existence of these three groups. Only few
tools were working between 25 and 75% of the tested days
(Figure 2B). For the fraction of tools that was neither con-
sistently off- nor online, we computed the duration of con-
secutive downtimes. The distribution highlights that indi-
vidual service outage times were rather short with the com-
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Figure 1. Study set-up and static monitoring. (A) Schematic representation of the conducted tool filtering steps. (B) Pie chart representing the number
of tools that are accessible and not accessible at the start of the observation period. (C) Bar chart of the number of tools published by year included in
our study. (D) Bar chart of the fraction of available tools (snapshot) per publication year. (E) Smoothed spline (solid orange line) with surrounding 95%
confidence interval (shaded blue area) for the data presented in panel D. (F) Number of tools collected per journal. (G) Fraction of available tools per
journal. (H) Available tools per journal restricted to manuscripts published in the past 5 years (2016–2020).
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Figure 2. Dynamic monitoring over time. (A) Pie chart showing the distribution of tools that were tracked over time into the categories never available,
always available and sometimes available. (B) Smoothed spline representation of the availability of web servers in percent of days. (C) Smoothed spline
representation of the observed web server downtime intervals. (D) Heat map of the availability matrix for all tools included in the dynamic study. Blue
means available, light green not available. The curve on the top represents the smoothed spline representation of the tool availability over time. The histogram
on the right shows a bar for each tool proportional to the number of days it was accessible. (E) Clustering of those tools that belong to the category of
being sometimes available. Notably, this largely corresponds to the middle cluster of panel D but includes also several tools from the other clusters. (F)
Line chart on the availability categories of tools tracked over time and the trend of daily changes. Toward the end of the observed period we see the green
and orange line (lost versus gained per day) diverging. (G) Ridgeline plots on the availability of tools per weekday. The solid black vertical line represents
the overall mean of tools available per day.
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puted median and mean downtime of 1 and 2.9 days, re-
spectively (Figure 2C). A clustering of the tools times days
availability matrix confirmed the observations on the gen-
eral functionality of tools (Figure 2D and E). The heat map
indicates three main clusters, one with the tools that work
always or almost always, one with the tools that work never
or almost never and one smaller cluster in the middle with
the tools that show a more heterogenous pattern. On aver-
age, 1773 of the 2396 tools (74%) were working per day. The
minimal number of 1637 tools was reached on 2 July and the
maximal number of 1822 tools on Thursday, 28 April. We
observed an almost continuous decrease of web server avail-
ability along the test timeframe. Deviations from this expec-
tation could possibly be due to two reasons. First, the pri-
mary observation of decreasing tool availability over time
has been performed on a 10-year horizon while we tracked
only another four months, which still might be too short to
observe respective long-term trends. Second, as we describe
in the next section, we performed a rescue experiment af-
ter 2 weeks, which contributed to a temporarily increased
tool availability. If we exclude these cases, we again observe
the negative correlation between time since publication and
fraction of working tools. In line with these results, we de-
tect similar patterns for daily gains and losses of tools over
time, only showing divergence toward the end of the ob-
served period (Figure 2F). As last aspect of the analysis we
assessed the dynamics on the distribution across weekdays
(Figure 2G). The results suggest a tendency of higher avail-
ability of tools toward the mid of the week. On average, the
lowest number of tools working was obtained on Sundays
(∼1761, 73.5%), while on Wednesdays the highest fraction
of tools (∼1781, 74.4%) was available. Although the dif-
ferences are percentage-wise small, still an average of addi-
tional 20 tools were working on Wednesdays as compared
to Sundays with the difference being statistically significant
(P = 0.006501).

Rescue experiment shows that over 50% of web servers can be
brought back to service

Our analysis highlights that even tools published in 2019
and 2020 exist that have lost functionality, some even few
weeks after their initial publication. Especially in the light
of editorial policies requiring the continued availability over
at least several years (e.g. the NAR web server issue states:
‘It is expected that the website will be maintained for at
least 5 years’) this observation is unexpected. To exclude
likely false positives, i.e. tools that were only down for 1 or
2 days because of maintenance work, we compiled a list of
tools published in 2019 and 2020 that did not work over
the entire first 2 weeks of the observation period. For the
resulting 47 instances we contacted the corresponding au-
thors and asked to restore the functionality of the tool. In
57.4% of the cases we got a reply, leaving 42.6% of the en-
quiries unanswered (Figure 3A). However, the speed of the
replies obtained was remarkable: for all but three cases the
first reply was received on the same day. The latest reply oc-
curred 3 days after the initial request and altogether, 96 e-
mails were exchanged. Already one day after contacting the
corresponding authors, 14 tools (29.8%) were brought back
to service (Figure 3B). Although this sum slowly increased
over the tracking period, we again detected a small decline

in availability for the successfully recovered web servers to-
ward the end.

Frequently cited web services invalidate URLs from scientific
publications

We also tracked which services modified their URL with-
out providing a new link in a scientific publication, i.e. the
185 tools that were removed in our last filtering step (cf.
Figure 1A & ‘Materials and Methods’ section). The top-
ranking journals mirrored the larger distribution reported
before (Figure 4A), however, the average publication year
is notably shifted toward the early years considered in the
study (Figure 4B). This matches our expectation for services
to take several years before a new host URL is released.
Nevertheless, we found that for those tools changing the
URL offside the scientific literature, a higher citation was
obtained on average when they were accessible at least once
in our testing frame (Figure 4C), corroborating previous
observations (16). We conclude that web server availabil-
ity and community popularity are robust against sometimes
inevitable URL modifications, an observation we largely at-
tribute to the capabilities of modern search engines, which
rapidly re-index new websites and their keywords in a few
hours or days.

Tool metadata sheds light onto global web server landscape

An intriguing question is whether publication or web server
metadata can be used to judge the a priori likelihood of a
tool to be inaccessible. Therefore, we collected various fea-
tures for the total 2581 tools investigated (cf. Supplemen-
tary Tables S1 and 2). First, the community has built key
resources such as bio.tools to index and track scientific web
servers along their lifetime. Interestingly, 40.5% of the tools
considered are contained in bio.tools and an overwhelming
fraction were accessible (Figure 4D). As a matter of fact,
the subset of tools not contained in the service comprises
more non-reachable tools, both percentage- and count-wise.
By analyzing the host services, we found 71.6% of the tools
to be hosted by individual research institutions and an-
other 13.8% managed by cloud services but with overall
similar accessibility rates (Figure 4E). Likewise, the distri-
bution of corresponding contact information highlighted
most e-mail addresses to be institutional but when compar-
ing fractions the instances with non-institutional addresses
are more prone to be unavailable. (Figure 4F). In fact, in-
stitutional addresses can be affected by personnel reloca-
tion and thus become unavailable, while non-institutional
addresses are less likely to change. Lastly, the distribution of
host countries matches the global distribution of countries
by Gross National Income with the United States, China,
and Germany hosting the most scientific web servers, the
latter of which is closely followed by India (Figure 4G). Re-
markably, many European countries do not list a single web
server instance that was inaccessible in our study.

Analysis of impact reveals hallmarks of web server develop-
ment

We next sought to investigate the relation between web
server availability and number of citations for the respec-
tive manuscript, similar to the approach of Schultheiss et al.
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A B

Figure 3. Results of rescue experiment. (A) Pie chart of the binarized e-mail responses. (B) Bar chart representing the number of tools published in 2019
and 2020 that were not working in the first 2 weeks of the tracking period. The solid orange line represents a smoothed spline with the confidence interval
as surrounding blue shaded area.

Comparing the web servers in our tool collection grouped
by publication date, we asked whether tools published in
2010 only, 2010 to 2011, and 2010 to 2012 have a different,
i.e. higher citation count on average if they were reachable at
least once in our tracking frame, as opposed to those being
not reachable at all. The resulting P-values of 1.278 × 10−07,
2.457 × 10−11 and 6.758 × 10−15, and the about five times
higher mean citation counts for the first group in each of the
comparisons, strongly support these hypotheses. However,
we reason that simply guaranteeing a long-term availability
does not necessarily pay off with a high citation count, as
70 tools, which were still available and published in between
2010 and 2012, had less than 10 citations. To the contrary,
only four tools that had been published in this period were
not reachable at all in our time frame, even though they all
received more than 100 citations. Whether the causal impli-
cation is that tools being well-cited early following publi-
cation are also subject to better long-term maintenance, or
the other way around, tools that are well maintained tend to
be cited more often on the long run, remains to be shown,
e.g. through invited host surveys. Nevertheless, besides the
quality of the work and the breadth of scope, we propose
that many other factors influence the long-term impact of a
web server. For example, we found that tools providing only
an IP address or which were hosted in user-home directo-
ries were overall considerably less reachable (only 31 out of
68 tools (45.6%) reachable over IP and 20 out of 37 tools
(54.1%) hosted in home directories were still available).

Based on our and previous findings, we collected a set of
guidelines split into four categories to delineate good web
server development practices targeted for beginners in the
field, all of which are easy to implement and ultimately can
prevent major sustainability issues (Table 1). In general, the
guidelines are designed to support reproducibility of compu-
tational results, security by enforcing service integrity and
privacy of user data, the maintainability through environ-
ment isolation and dependency minimization and usability
via complementary ways of access, e.g. through an API, or
strict documentation policies. We also ordered the specific
recommendations in each category by decreasing priority
to simplify selection of the most important ‘DOs’ and ‘DO

NOTs’. To enumerate on those, switching to production set-
tings of all software components in-use, performing regular
security updates, e.g. at least once every six months, and re-
placing standard admin access URLs and logins with hard
to guess strings is essential for a reliable base level of secu-
rity. To improve reproducibility, developers should encap-
sulate the software environment, e.g. through Docker, as
much as possible, use proper code and data version control,
e.g. using GIT, and publicly state any package dependen-
cies and their version tested during development. For better
maintainability, we recommend to minimize any effort that
is needed to migrate the service, again by encapsulating the
environment, properly fixing the software dependencies to
prevent implicit updates when using package managers such
as conda or pip, and document all required steps to reset the
service, should it be necessary. Popular scripting languages
like Python and R are especially vulnerable to implicit de-
pendency updates as respective packages are updated at a
high frequency. We also suggest developers to provide ex-
tensive sets of tutorials and example inputs or files to the
user. Finally, hosting on official domain names instead of
plain IP-addresses improves usability because names can be
remembered and referred to significantly better than long
numbers.

DISCUSSION

With increasing frequency and broader applications, the im-
portance of bioinformatics web services and web servers is
growing. This calls for an in-depth consideration on the
availability and sustainability of respective services, since
it might have severe consequences for research projects. In
case a web-based program is used in other manuscripts to
present analyses and the original tool is discontinued, later
publications can be impacted by non-reproducible results.
Aims of our study were to present a comprehensive anal-
ysis of the availability of web services, to get insights into
the dynamics and to monitor the availability over a longer
period of time, and to get an understanding whether more
recent web services can be rescued by contacting the corre-
sponding authors. There are more measures that could be
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A B C

D
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E F

Figure 4. Distribution of publication metadata for altered (A–C) and all (D–G) tool URLs. (A) Bar chart for the number of tools with altered URL collected
per journal. (B) Bar chart of the number of tools with altered URL by publication year. (C) Back-to-back violin-dot plot for the number of citations by
accessibility status. (D) Stacked bar chart for the total number of tools and corresponding availability split by their presence in bio.tools. (E) Like in (D)
but for determined host origins. (F) Like in (D) but for the type of corresponding e-mail address given in the associated publications. (G) Analogously to
(D) but split by the web server host country. The special bars Other and Unknown summarize tools for countries with <10 web servers and indeterminable
destination, respectively.
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Table 1. Good practice guidelines for developing scientific web servers by category

Security Reproducibility Maintainability Usability

Switch to production mode
when deploying

Use virtual machines or
container virtualization (e.g.
Docker)

Minimize migration effort,
encapsulate the software
environment as much as possible

Create very detailed tutorials,
one for each aspect of the web
server

Perform regular security
updates

Version control web server
code and data

Keep all software dependencies
fixed (e.g. YAML files)

Provide multiple example files

Do not use standard admin
panel access domains and/or
passwords

List software packages in use
along with version numbers

Document internals as much as
possible

Provide access over a domain
name instead of an IP address

Escape user-input to prevent
remote-code execution (e.g.
SQL injection)

List main analysis parameters
and provide timestamps in
custom downloads (e.g. plots
and tables)

Backup database onto external
storage (e.g. user data)

Do not switch the top-level
domain when publishing an
update

Use DDoS protection service Offer downloads for core data Use popular frameworks, avoid
implementing everything from
scratch

Render progress bar and
generate unique job ID for
compute-intensive jobs

Use encryption (SSL/https) Provide versioned subdomains
and APIs

Avoid hosting in home
directories, potentially
depending on a user
environment

Provide valid author contact
details

Use valid SSL certificates to
prevent malicious browser
errors

Keep older versions running as
archive

Include JavaScript libraries via
CDN and keep a local copy as
backup

Use a caching framework

Keep user submitted files
private

Implement helper text
messages

Set rate limits for public APIs Use color-blind friendly
palettes

Set file size limits for user
uploads

Provide an (REST-ful) API in
addition to standard interface

Set strict timeouts and use
queue managers for compute
intensive jobs

Announce maintenance slot to
user before performing updates

Each column denotes a set of guidelines from the same category. Specific items in each category (column) are ordered by decreasing priority to simplify
selection of the most important guidelines.

added to the analysis, e.g. usage rates, the number of up-
date publications per tool, implementation technology and
influence of international collaboration in the development
of web servers. However, these aspects rather resemble a sci-
entometric analysis (20), which does not belong to the core
of our present study.

Among the most comprehensive articles on the availabil-
ity of web based tools, Schultheiss et al. analyzed 927 web
services published in the annual NAR Web Server Issues
between 2003 and 2009 (15). Their test on the functionality
on 77% of all tools showed that 13% were truly no longer
working and for 45% of all services the functionality could
be fully validated. A survey among 872 web server issue cor-
responding authors returned 274 replies, suggesting that the
majority of tools are developed solely by students and re-
searchers without a permanent position. Our analysis gen-
eralizes the results of the Schultheiss study. Around three
times more tools were considered and also other journals
than NAR were included. Additionally, we monitored the
availability of web-based programs over a four-month pe-
riod, which has not been performed in this manner before.
Our results are nonetheless very well aligned with the obser-
vations by Schultheiss et al. described 10 years ago. We also
provide a novel intervention experiment to demonstrate re-
sponsiveness and the estimated percentage of web servers
that can be brought back to life by contacting correspond-
ing authors.

It is important to elaborate on possible limitations of the
present study. First, the literature search might already be
biased since our search query requires the abstract to con-
tain both, the keyword web service (or similar) and a web
address and the strings ‘www’, ‘http’ or ‘https’. While this
holds for many tools, obviously not all web servers are cov-
ered by a respective literature search leading to false neg-
atives in our data set. A second limitation is the resolu-
tion of redirection triggers. While we followed html redi-
rects in the download routine, other redirects were checked
manually since they might also be triggered by client-side
resolved JavaScript code. Whether and how redirects have
been changed during the study runtime might also influ-
ence the results. A third limitation arises from the defini-
tion of availability. Many tools do not provide example files
nor (RESTful-)APIs to test proper functionality in an auto-
mated fashion. In that, our analysis represents rather an up-
per boundary since a working main page of the web servers
was already sufficient to count the tools as available. How-
ever, automatic testing the proper functionality for several
thousand server instances without a common and standard-
ized access interface is currently infeasible and requires ex-
tensive manual work. One strength of the study is at the
same time a confounding factor: the rescue experiment po-
tentially influenced the availability of tools. Likely, a sub-
stantial fraction of the 20 tools that were brought back to
service by our e-mail initiative would have remained offline
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for a longer period of time without the intervention. Still,
the 20 tools represent only a minor fraction of 0.8% of the
2581 tools included in the study. In the light of the on-going
pandemic caused by SARS-CoV2, we did not detect a sig-
nificant association between a reduced web server availabil-
ity and the lockdown faced in most Asian and European
countries between March and May of 2020. For three rea-
sons this imaginable association is unlikely; First, our track-
ing frame reaches until the end of August, a time by which
many universities returned to regular operations. Second,
we compared availability for web servers hosted in Spain
and Italy, the countries that were severely hit by the pan-
demic lockdown procedures and did not find an altered dis-
tribution of downtimes. Lastly, the reasons for server outage
communicated by web server authors participating in the in-
tervention experiment did not yield any COVID-19 related
impact in all but one case. Similarly to the aforementioned
analysis the common summer break, which is entirely con-
tained in our tracking time-frame, did not have considerable
influence on the availability rates, although it might be con-
ceivable that the course of the summer break itself might
have been altered by the SARS-CoV2 induced pandemic.

Our study raises questions about how to overcome the
increasing trend of unavailable tools. First, cloud-based
hosting and container-based applications such as Docker
can simplify maintenance procedures and add to the re-
producibility of research (21). In addition, open and com-
prehensive code-sharing is increasingly recognized and fa-
cilitated through major open-source platforms such as
GitHub (https://github.com) and Docker hub (https://hub.
docker.com). Further, recent community efforts such as
udocker (22) promote usability of complex software tools
by non-experts in multi-user environments, which closely
matches most institutional compute server policies. Build-
ing upon these community efforts and our study results,
we defined simple guidelines for developers that easily in-
tegrate into existing web server development workflows
but are expected to substantially improve sustainability
and long-term impact. Moreover, at best, one central
repository would host a comprehensive list of web ser-
vices. For this purpose several repositories and collections
have already been established (e.g. https://www.biostars.
org (23), https://bioinformaticssoftwareandtools.co.in/, or
https://bio.tools/). Also, the EMBRACE Registry has been
proposed as an active database for bioinformatics web
services (24). Unfortunately, the web presence cannot be
reached anymore (http://www.embraceregistry.net). Even
though central and well-maintained databases are impor-
tant, common standards and scientific guidelines become
essential for large-scale data and code sharing practices. For
example, ELIXIR (25) is one of the largest multi-national
endeavors to integrate and coordinate computing facili-
ties, web services, and databases across more than 220 re-
search organizations. The FAIRsharing service (26) is a
part of ELIXIR, providing community-based and reviewed
standards/policies for sharing and maintaining databases.
A comprehensive summary and detailed descriptions on the
individual web service repositories can be found in (27).

Mechanisms for finding services automatically have al-
ready been discussed in 2008 (28) but still no perfect solu-
tion seems to exists and oftentimes manual curation is re-

quired. We suggest that a respective resource should con-
tain at least the actual web link and a contact consisting of
a full name and an e-mail address. Further, it would be de-
sirable that web-based tools offer a well-defined API along
with a standardized input file facilitating automated and
daily remote tests. If testing fails, the respective contact can
then be alerted automatically and mitigate the errors in due
time. This could be a fair compromise to balance required
efforts between the community, trying to keep the set of sci-
entific web servers persistent, and the authors who need to
provide suitable testing functionality on their services. It is
conceivable for future artificial intelligence-based applica-
tions to further reduce manual intervention by automat-
ically screening web sites to classify both availability and
functionality. On the other hand, it is however also fair to
mention that this task at present is implicitly performed on
a large-scale by the entire research community.

As conclusion of our study we propose the timely devel-
opment of a central web resource for monitoring the avail-
ability of web-based tools via automated API testing to gen-
erate on-going availability reports and statistics that serve
both the web server developers and user community.
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4
Discussion

The new age of data has led to a massive increase in the number of
data-driven studies ranging on an exponential scale, in contrast to
traditional hypothesis-driven research. Experiencing also a massive
diversification in the last ten years, bioinformatics continues to drive
most modern molecular research in both academia and industry. Even
though the biological phenomenon of aging has been described on
the population and organism level for several decades already, much
remains to be understood when it comes to the cellular pathways un-
derlying healthy aging and age-related disease. Circulating proteins
currently bear great value to be used as neurodegenerative disease
biomarkers, however a general lack of advanced tools and representa-
tive human cohorts has frustrated the use of ncRNAs. In this thesis,
novel methods and resources for miRNA-target and pathway analysis
have been established to support these efforts, proving first success in
large-scale screening applications.

Still, limitations and room for further improvements exist. First,
more complex determinants for effective miRNA-target regulation
than previously anticipated were identified, which is reflected by
the observed varying and overall very limited performance of target
prediction tools [6]. For instance, recent evidence suggests that target
mRNAs may escape the miRNA induced decay through triggering a
much faster miRNA turnover [414]. Moreover, lncRNAs and circular
RNAs may function as so-called miRNA-sponges, effectively binding
hundreds of free miRNA molecules for a timed and targeted release
[415]. In that aspect, ncRNAs run a kind of competition against each
other, further complicating our ability to predict protein levels based
on mRNA abundance [416]. Furthermore, the mammalian miRNome
is far from complete, requiring further discovery studies especially
for non-model organisms [188]. Similarly, the number of validated
miRNA targets is shallow in species other than human. This issue
manifests in miRPathDB 2.0 where validation data was only suffi-
ciently available for human and mouse in order to report enriched
pathways. Further directed efforts are necessary to assess the degree
of conservation at the pathway-level, another important criteria deter-
mining the success of biomarker discovery. In addition, a substantial
imbalance towards cancer within the current body of published work
on miRNAs confounds applications in other fields such as aging,
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justifying a more stringent analysis of functional associations derived
with tools like miEAA [4].

Technology-wise, sequencing is the de facto standard technique for
large-scale profiling of coding and ncRNAs. The applied research
publications presented herein are based on miRNA-enriched bulk
sequencing or microarray profiling of whole-blood samples. Small
RNA sequencing on the Illumina platform is bias-afflicted by differ-
ential ligation and capture efficiency [417–419]. Further, whole-blood
contains a mixture of erythroid cells, leukocytes and thrombocytes
at varying proportions, leaving room for improvements to dissect
miRNA expression at the individual cell type level. However, whether
the success story of comprehensive RNA single-cell studies that re-
defined our understanding on human diseases could be repeated for
sncRNAs remains to be demonstrated in the future [413; 420–423]. A
recent study on total RNA profiling of single cells yielded a miRNA
detection rate an order of magnitude lower than observed for standard
bulk sequencing [424]. Until tremendous advancements in single-cell
miRNA sequencing are accomplished, in silico unsupervised decon-
volution of bulk data remains a technique of choice, which already
revealed a cell type specific footprint of various RNAs in aging and PD
[5; 8; 425]. Yet, these methods are naturally limited in their accuracy
because no suitable ground-truth for miRNAs is currently available.
Remarkable efforts dissecting single-cell transcriptomes of AD and
PD patients, thereby comparing between the primarily affected brain
regions and the peripheral system are just about to emerge [420; 426–
429]. Similar advances for sncRNAs are desirable and may help to
explain some of the cell type-specific mRNA perturbations observed
in neurodegenerative diseases, but the throughput is currently limited
by technology [430; 431]. Nonetheless, any single-cell method yields
platform-specific biases, making it tricky to distinguish between true
signals and technical or biological noise. While there is a strong moti-
vation to develop equivalent protocols for miRNAs, it will certainly
add another layer of complexity to the data analysis. A subsequent
success of that endeavor will only be reached by developing new
computational models that aid interpretation of high-dimensional
data sets [62].

Gene and miRNA expression levels are modulated by a multitude
of factors. It is therefore crucial to consider known confounding
factors such as patient demographics, e.g. age and gender, lifestyle, or
medication in analyzing larger cohorts. An evaluation of sncRNAs in
the PPMI and NCER-PD cohorts yielded a significant bias of deregu-
lated miRNAs along the lifespan [8]. However, appropriate modeling
of treatment effects for miRNAs was found to be difficult due to mul-
tiple reasons. First, even though all patients were enrolled as de novo,
i.e. being diagnosed within two years preceding enrollment, drug-
naiveness was guaranteed only until the first follow-up and could
then be initiated at any time. Second, treatments were apparently
tuned for each patient in order to yield the best outcome, complicating
a systematic comparison across the cohort. Third, only little is known
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whether and how miRNA expression responds to drugs, a process
presumable depending on pharmacodynamic and pharmacokinetik
aspects [432–434]. One tailored computational model using non-
negative matrix factorization shed light onto drug-associated changes
of oncomiRs following chemotherapy in breast cancer patients [435].
Together, differences in technology, sample origin and quality, cohort
demographics and the heterogeneous treatments likely explain the so
far rather low concordance of RNA biomarkers in neurodegenerative
diseases.

4.0.1 Future directions

Future developments in basic and clinical miRNA research will cer-
tainly involve parallel breakthroughs in both experimental and com-
putational platforms. A continuous intertwining of machine learning
and artificial intelligence with traditional methods is likely. Most
importantly, the ability to efficiently scale to huge amounts of data
will be crucial for a long-term success of bioinformatics approaches
in the field. As more and more aspects of ncRNA biogenesis and reg-
ulatory pathways are revealed, a major challenge for the community
will be to unify the various models of different flavors into a logically
well-defined theory. To this end, smart and integrative research based
on multi-omics profiling approaches will be essential. Once a solid
understanding of every single -omics field could be established, more
realistic systems biology applications become feasible [407]. Moreover,
better flexibility and interconnectivity between existing software im-
plementations using open APIs would be desirable, simplifying broad
access for researchers from across the life sciences. Also, open com-
munity standards for reporting reproducible results and automated
pipelines will become more important than ever.

4.0.2 Conclusions

Taken together, the here presented tools and resources have created
fundamental knowledge on the peripheral, cellular pathways con-
trolled by miRNAs in aging and prevalent age-related diseases. While
miEAA and miRPathDB are frequently used and cited by the commu-
nity, our novel findings for progression markers in PD have triggered
sustainable interest on fully characterizing the role of ncRNAs in this
yet incurable disease of the elderly.
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[30] Rosa Karlić, Ho-Ryun Chung, Julia Lasserre, Kristian Vla-
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[217] Ulaş Işıldak, Mehmet Somel, Janet M. Thornton, and Han-
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Nuno Cortez-Dias, and Francisco J. Enguita. The circulating
non-coding rna landscape for biomarker research: lessons and
prospects from cardiovascular diseases. Acta Pharmacologica
Sinica, 39(7):1085–1099, 2018. ISSN 1745-7254. doi: 10.1038/
aps.2018.35. URL https://doi.org/10.1038/aps.2018.35.

[287] Tobias Fehlmann, Nicole Ludwig, Christina Backes, Eckart
Meese, and Andreas Keller. Distribution of microrna
biomarker candidates in solid tissues and body fluids.
RNA Biology, 13(11):1084–1088, 2016. ISSN 1547-6286.
doi: 10.1080/15476286.2016.1234658. URL https://doi.org/

10.1080/15476286.2016.1234658.

[288] Christine Happel, Aniruddha Ganguly, and Danilo A. Tagle.
Extracellular rnas as potential biomarkers for cancer. Journal
of Cancer Metastasis and Treatment, 6:32, 2020. ISSN 2454-2857.
doi: 10.20517/2394-4722.2020.71. URL http://dx.doi.org/

10.20517/2394-4722.2020.71.

[289] Colin C. Pritchard, Evan Kroh, Brent Wood, Jason D. Ar-
royo, Katy J. Dougherty, Melanie M. Miyaji, Jonathan F.
Tait, and Muneesh Tewari. Blood cell origin of cir-
culating micrornas: A cautionary note for cancer
biomarker studies. Cancer Prevention Research, 5(3):492–
497, 2012. doi: 10.1158/1940-6207.Capr-11-0370. URL
https://cancerpreventionresearch.aacrjournals.org/

content/canprevres/5/3/492.full.pdf.

https://doi.org/10.1038/s41582-018-0079-7
https://doi.org/10.1038/s41582-018-0079-7
https://doi.org/10.3390/ncrna3010009
https://doi.org/10.3390/ncrna3010009
https://doi.org/10.1038/nmeth.1682
https://doi.org/10.1038/nmeth.1682
https://www.pnas.org/content/pnas/105/30/10513.full.pdf
https://www.pnas.org/content/pnas/105/30/10513.full.pdf
https://doi.org/10.1038/aps.2018.35
https://doi.org/10.1080/15476286.2016.1234658
https://doi.org/10.1080/15476286.2016.1234658
http://dx.doi.org/10.20517/2394-4722.2020.71
http://dx.doi.org/10.20517/2394-4722.2020.71
https://cancerpreventionresearch.aacrjournals.org/content/canprevres/5/3/492.full.pdf
https://cancerpreventionresearch.aacrjournals.org/content/canprevres/5/3/492.full.pdf


195

[290] Christina Backes, Eckart Meese, and Andreas Keller. Specific
mirna disease biomarkers in blood, serum and plasma: Chal-
lenges and prospects. Molecular Diagnosis & Therapy, 20(6):
509–518, 2016. ISSN 1179-2000. doi: 10.1007/s40291-016-0221-4.
URL https://doi.org/10.1007/s40291-016-0221-4.

[291] Ana Mompeón, Luis Ortega-Paz, Xavier Vidal-Gómez,
Tiago Januario Costa, Daniel Pérez-Cremades, et al. Dis-
parate mirna expression in serum and plasma of patients with
acute myocardial infarction: a systematic and paired com-
parative analysis. Scientific Reports, 10(1):5373, 2020. ISSN
2045-2322. doi: 10.1038/s41598-020-61507-z. URL https:

//doi.org/10.1038/s41598-020-61507-z.

[292] Ana E. Jenike and Marc K. Halushka. mir-21: a non-specific
biomarker of all maladies. Biomarker Research, 9(1):18, 2021.
ISSN 2050-7771. doi: 10.1186/s40364-021-00272-1. URL https:

//doi.org/10.1186/s40364-021-00272-1.

[293] Baqer A. Haider, Alexander S. Baras, Matthew N. Mc-
Call, Joshua A. Hertel, Toby C. Cornish, and Marc K.
Halushka. A critical evaluation of microrna biomarkers
in non-neoplastic disease. PLOS ONE, 9(2):e89565, 2014.
doi: 10.1371/journal.pone.0089565. URL https://doi.org/

10.1371/journal.pone.0089565.

[294] Shirin Moradifard, Moslem Hoseinbeyki, Shahla Mohammad
Ganji, and Zarrin Minuchehr. Analysis of microrna and gene
expression profiles in alzheimer’s disease: A meta-analysis
approach. Scientific Reports, 8(1):4767, 2018. ISSN 2045-2322. doi:
10.1038/s41598-018-20959-0. URL https://doi.org/10.1038/

s41598-018-20959-0.

[295] Tobias Fehlmann, Mustafa Kahraman, Nicole Ludwig, Christina
Backes, Valentina Galata, et al. Evaluating the use of circu-
lating microrna profiles for lung cancer detection in symp-
tomatic patients. JAMA Oncology, 6(5):714–723, 2020. ISSN
2374-2437. doi: 10.1001/jamaoncol.2020.0001. URL https:

//doi.org/10.1001/jamaoncol.2020.0001.

[296] Petra Leidinger, Christina Backes, Stephanie Deutscher, Katja
Schmitt, Sabine C. Mueller, et al. A blood based 12-mirna
signature of alzheimer disease patients. Genome Biology, 14(7):
R78, 2013. ISSN 1474-760X. doi: 10.1186/gb-2013-14-7-r78.
URL https://doi.org/10.1186/gb-2013-14-7-r78.

[297] Nicolai A. Schultz, Christian Dehlendorff, Benny V. Jensen,
Jon K. Bjerregaard, Kaspar R. Nielsen, et al. Microrna
biomarkers in whole blood for detection of pancreatic can-
cer. JAMA, 311(4):392–404, 2014. ISSN 0098-7484. doi:
10.1001/jama.2013.284664. URL https://doi.org/10.1001/

jama.2013.284664.

https://doi.org/10.1007/s40291-016-0221-4
https://doi.org/10.1038/s41598-020-61507-z
https://doi.org/10.1038/s41598-020-61507-z
https://doi.org/10.1186/s40364-021-00272-1
https://doi.org/10.1186/s40364-021-00272-1
https://doi.org/10.1371/journal.pone.0089565
https://doi.org/10.1371/journal.pone.0089565
https://doi.org/10.1038/s41598-018-20959-0
https://doi.org/10.1038/s41598-018-20959-0
https://doi.org/10.1001/jamaoncol.2020.0001
https://doi.org/10.1001/jamaoncol.2020.0001
https://doi.org/10.1186/gb-2013-14-7-r78
https://doi.org/10.1001/jama.2013.284664
https://doi.org/10.1001/jama.2013.284664


196

[298] Bill Qi, Laura M Fiori, Gustavo Turecki, and Yannis J Trakadis.
Machine learning analysis of blood microrna data in major
depression: A case-control study for biomarker discovery. In-
ternational Journal of Neuropsychopharmacology, 23(8):505–510,
2020. ISSN 1461-1457. doi: 10.1093/ijnp/pyaa029. URL
https://doi.org/10.1093/ijnp/pyaa029.

[299] Francisco Azuaje, Yvan Devaux, and Daniel Wagner. Chal-
lenges and standards in reporting diagnostic and prognostic
biomarker studies. Clinical and Translational Science, 2(2):156–161,
2009. ISSN 1752-8054. doi: 10.1111/j.1752-8062.2008.00075.x.
URL https://ascpt.onlinelibrary.wiley.com/doi/abs/

10.1111/j.1752-8062.2008.00075.x.

[300] Ravi Dhingra and Ramachandran S. Vasan. Biomarkers in
cardiovascular disease: Statistical assessment and section on
key novel heart failure biomarkers. Trends in Cardiovascular
Medicine, 27(2):123–133, 2017. ISSN 1050-1738. doi: 10.1016/
j.tcm.2016.07.005. URL https://www.sciencedirect.com/

science/article/pii/S1050173816301050.

[301] Leon Tribolet, Emily Kerr, Christopher Cowled, Andrew G. D.
Bean, Cameron R. Stewart, Megan Dearnley, and Ryan J. Farr.
Microrna biomarkers for infectious diseases: From basic re-
search to biosensing. Frontiers in Microbiology, 11(1197), 2020.
ISSN 1664-302X. doi: 10.3389/fmicb.2020.01197. URL https://

www.frontiersin.org/article/10.3389/fmicb.2020.01197.

[302] Kenta Hyeon Tae Cho, Bing Xu, Cherie Blenkiron, and Mhoyra
Fraser. Emerging roles of mirnas in brain development and
perinatal brain injury. Frontiers in Physiology, 10(227), 2019.
ISSN 1664-042X. doi: 10.3389/fphys.2019.00227. URL https://

www.frontiersin.org/article/10.3389/fphys.2019.00227.

[303] Chiranjib Chakraborty, Ashish Ranjan Sharma, Garima Sharma,
Manojit Bhattacharya, and Sang-Soo Lee. Micrornas: Pos-
sible regulatory molecular switch controlling the bbb mi-
croenvironment. Molecular Therapy - Nucleic Acids, 19:933–936,
2020. ISSN 2162-2531. doi: 10.1016/j.omtn.2019.12.024. URL
https://doi.org/10.1016/j.omtn.2019.12.024.

[304] Qiuhong Ji, Yuhua Ji, Jingwen Peng, Xin Zhou, Xinya Chen,
Heng Zhao, Tian Xu, Ling Chen, and Yun Xu. Increased brain-
specific mir-9 and mir-124 in the serum exosomes of acute
ischemic stroke patients. PLOS ONE, 11(9):e0163645, 2016.
doi: 10.1371/journal.pone.0163645. URL https://doi.org/

10.1371/journal.pone.0163645.

[305] S. Swarbrick, N. Wragg, S. Ghosh, and Alexandra Stolzing.
Systematic review of mirna as biomarkers in alzheimer’s dis-
ease. Molecular Neurobiology, 56(9):6156–6167, 2019. ISSN
1559-1182. doi: 10.1007/s12035-019-1500-y. URL https:

//doi.org/10.1007/s12035-019-1500-y.

https://doi.org/10.1093/ijnp/pyaa029
https://ascpt.onlinelibrary.wiley.com/doi/abs/10.1111/j.1752-8062.2008.00075.x
https://ascpt.onlinelibrary.wiley.com/doi/abs/10.1111/j.1752-8062.2008.00075.x
https://www.sciencedirect.com/science/article/pii/S1050173816301050
https://www.sciencedirect.com/science/article/pii/S1050173816301050
https://www.frontiersin.org/article/10.3389/fmicb.2020.01197
https://www.frontiersin.org/article/10.3389/fmicb.2020.01197
https://www.frontiersin.org/article/10.3389/fphys.2019.00227
https://www.frontiersin.org/article/10.3389/fphys.2019.00227
https://doi.org/10.1016/j.omtn.2019.12.024
https://doi.org/10.1371/journal.pone.0163645
https://doi.org/10.1371/journal.pone.0163645
https://doi.org/10.1007/s12035-019-1500-y
https://doi.org/10.1007/s12035-019-1500-y


197

[306] Ian Fyfe. Rna biomarkers of parkinson disease. Nature Reviews
Neurology, 17(3):132–132, 2021. ISSN 1759-4766. doi: 10.1038/
s41582-021-00470-3. URL https://doi.org/10.1038/s41582-

021-00470-3.

[307] Ronald B. Postuma and Daniela Berg. Advances in markers of
prodromal parkinson disease. Nature Reviews Neurology, 12(11):
622–634, 2016. ISSN 1759-4766. doi: 10.1038/nrneurol.2016.152.
URL https://doi.org/10.1038/nrneurol.2016.152.

[308] Johora Hanna, Gazi S. Hossain, and Jannet Kocerha.
The potential for microrna therapeutics and clinical re-
search. Frontiers in Genetics, 10(478), 2019. ISSN 1664-
8021. doi: 10.3389/fgene.2019.00478. URL https://

www.frontiersin.org/article/10.3389/fgene.2019.00478.

[309] Kioomars Saliminejad, Hamid Reza Khorram Khorshid, and
Seyed Hamidollah Ghaffari. Why have microrna biomarkers
not been translated from bench to clinic? Future Oncology, 15

(8):801–803, 2019. doi: 10.2217/fon-2018-0812. URL https://

www.futuremedicine.com/doi/abs/10.2217/fon-2018-0812.

[310] Jeff Gauthier, Antony T Vincent, Steve J Charette, and Nicolas
Derome. A brief history of bioinformatics. Briefings in Bioin-
formatics, 20(6):1981–1996, 2018. ISSN 1477-4054. doi: 10.1093/
bib/bby063. URL https://doi.org/10.1093/bib/bby063.

[311] Joel B. Hagen. The origins of bioinformatics. Nature Reviews
Genetics, 1(3):231–236, 2000. ISSN 1471-0064. doi: 10.1038/
35042090. URL https://doi.org/10.1038/35042090.

[312] Arcady Mushegian. Grand challenges in bioinformatics and
computational biology. Frontiers in Genetics, 2(60), 2011. ISSN
1664-8021. doi: 10.3389/fgene.2011.00060. URL https://

www.frontiersin.org/article/10.3389/fgene.2011.00060.

[313] Jonathan C Fuller, Pierre Khoueiry, Holger Dinkel, Kristof-
fer Forslund, Alexandros Stamatakis, Joseph Barry, Aidan
Budd, Theodoros G Soldatos, Katja Linssen, and Abdul Ma-
teen Rajput. Biggest challenges in bioinformatics. EMBO
reports, 14(4):302–304, 2013. ISSN 1469-221X. doi: 10.1038/
embor.2013.34. URL https://www.embopress.org/doi/abs/

10.1038/embor.2013.34.

[314] Monya Baker. 1,500 scientists lift the lid on reproducibility.
Nature, 533(7604):452–454, 2016. ISSN 1476-4687. doi: 10.1038/
533452a. URL https://doi.org/10.1038/533452a.

[315] Neha Kulkarni, Luca Alessandrì, Riccardo Panero, Maddalena
Arigoni, Martina Olivero, Giulio Ferrero, Francesca Cordero,
Marco Beccuti, and Raffaele A. Calogero. Reproducible bioin-
formatics project: a community for reproducible bioinformat-
ics analysis pipelines. BMC Bioinformatics, 19(10):349, 2018.

https://doi.org/10.1038/s41582-021-00470-3
https://doi.org/10.1038/s41582-021-00470-3
https://doi.org/10.1038/nrneurol.2016.152
https://www.frontiersin.org/article/10.3389/fgene.2019.00478
https://www.frontiersin.org/article/10.3389/fgene.2019.00478
https://www.futuremedicine.com/doi/abs/10.2217/fon-2018-0812
https://www.futuremedicine.com/doi/abs/10.2217/fon-2018-0812
https://doi.org/10.1093/bib/bby063
https://doi.org/10.1038/35042090
https://www.frontiersin.org/article/10.3389/fgene.2011.00060
https://www.frontiersin.org/article/10.3389/fgene.2011.00060
https://www.embopress.org/doi/abs/10.1038/embor.2013.34
https://www.embopress.org/doi/abs/10.1038/embor.2013.34
https://doi.org/10.1038/533452a


198

ISSN 1471-2105. doi: 10.1186/s12859-018-2296-x. URL https:

//doi.org/10.1186/s12859-018-2296-x.

[316] Jason A. Papin, Feilim Mac Gabhann, Herbert M. Sauro, David
Nickerson, and Anand Rampadarath. Improving reproducibil-
ity in computational biology research. PLOS Computational
Biology, 16(5):e1007881, 2020. doi: 10.1371/journal.pcbi.1007881.
URL https://doi.org/10.1371/journal.pcbi.1007881.

[317] Bartholomeus van den Bogert, Jos Boekhorst, Walter
Pirovano, and Ali May. On the role of bioinformat-
ics and data science in industrial microbiome applica-
tions. Frontiers in Genetics, 10(721), 2019. ISSN 1664-
8021. doi: 10.3389/fgene.2019.00721. URL https://

www.frontiersin.org/article/10.3389/fgene.2019.00721.

[318] Teresa K Attwood, Sarah Blackford, Michelle D Brazas, Angela
Davies, and Maria Victoria Schneider. A global perspective
on evolving bioinformatics and data science training needs.
Briefings in Bioinformatics, 20(2):398–404, 2017. ISSN 1477-4054.
doi: 10.1093/bib/bbx100. URL https://doi.org/10.1093/

bib/bbx100.

[319] Daniel J Rigden and Xosé M Fernández. The 2021 nucleic
acids research database issue and the online molecular biology
database collection. Nucleic Acids Research, 49(D1):D1–D9, 2020.
ISSN 0305-1048. doi: 10.1093/nar/gkaa1216. URL https://

doi.org/10.1093/nar/gkaa1216.

[320] Kevin L Howe, Premanand Achuthan, James Allen, Jamie Allen,
Jorge Alvarez-Jarreta, et al. Ensembl 2021. Nucleic Acids Research,
49(D1):D884–D891, 2020. ISSN 0305-1048. doi: 10.1093/nar/
gkaa942. URL https://doi.org/10.1093/nar/gkaa942.

[321] Nuala A. O’Leary, Mathew W. Wright, J. Rodney Brister, Stacy
Ciufo, Diana Haddad, et al. Reference sequence (refseq)
database at ncbi: current status, taxonomic expansion, and
functional annotation. Nucleic Acids Research, 44(D1):D733–
D745, 2015. ISSN 0305-1048. doi: 10.1093/nar/gkv1189. URL
https://doi.org/10.1093/nar/gkv1189.

[322] Jairo Navarro Gonzalez, Ann S Zweig, Matthew L Speir, Daniel
Schmelter, Kate R Rosenbloom, et al. The ucsc genome browser
database: 2021 update. Nucleic Acids Research, 49(D1):D1046–
D1057, 2020. ISSN 0305-1048. doi: 10.1093/nar/gkaa1070. URL
https://doi.org/10.1093/nar/gkaa1070.

[323] Carrie A Davis, Benjamin C Hitz, Cricket A Sloan, Esther T
Chan, Jean M Davidson, et al. The encyclopedia of dna elements
(encode): data portal update. Nucleic Acids Research, 46(D1):
D794–D801, 2017. ISSN 0305-1048. doi: 10.1093/nar/gkx1081.
URL https://doi.org/10.1093/nar/gkx1081.

https://doi.org/10.1186/s12859-018-2296-x
https://doi.org/10.1186/s12859-018-2296-x
https://doi.org/10.1371/journal.pcbi.1007881
https://www.frontiersin.org/article/10.3389/fgene.2019.00721
https://www.frontiersin.org/article/10.3389/fgene.2019.00721
https://doi.org/10.1093/bib/bbx100
https://doi.org/10.1093/bib/bbx100
https://doi.org/10.1093/nar/gkaa1216
https://doi.org/10.1093/nar/gkaa1216
https://doi.org/10.1093/nar/gkaa942
https://doi.org/10.1093/nar/gkv1189
https://doi.org/10.1093/nar/gkaa1070
https://doi.org/10.1093/nar/gkx1081


199

[324] The UniProt Consortium. Uniprot: the universal protein knowl-
edgebase in 2021. Nucleic Acids Research, 49(D1):D480–D489,
2020. ISSN 0305-1048. doi: 10.1093/nar/gkaa1100. URL
https://doi.org/10.1093/nar/gkaa1100.

[325] Stephen K Burley, Charmi Bhikadiya, Chunxiao Bi, Sebastian
Bittrich, Li Chen, et al. Rcsb protein data bank: powerful new
tools for exploring 3d structures of biological macromolecules
for basic and applied research and education in fundamental
biology, biomedicine, biotechnology, bioengineering and energy
sciences. Nucleic Acids Research, 49(D1):D437–D451, 2020. ISSN
0305-1048. doi: 10.1093/nar/gkaa1038. URL https://doi.org/

10.1093/nar/gkaa1038.

[326] RNAcentral Consortium. Rnacentral 2021: secondary struc-
ture integration, improved sequence search and new member
databases. Nucleic Acids Research, 49(D1):D212–D220, 2020.
ISSN 0305-1048. doi: 10.1093/nar/gkaa921. URL https:

//doi.org/10.1093/nar/gkaa921.

[327] C. Backes, T. Fehlmann, F. Kern, T. Kehl, H. P. Lenhof, E. Meese,
and A. Keller. mircarta: a central repository for collecting mirna
candidates. Nucleic Acids Res, 46(D1):D160–d167, 2018. ISSN
0305-1048 (Print) 0305-1048. doi: 10.1093/nar/gkx851. URL
https://doi.org/10.1093/nar/gkx851.

[328] Bastian Fromm, Diana Domanska, Eirik Høye, Vladimir Ovchin-
nikov, Wenjing Kang, et al. Mirgenedb 2.0: the metazoan
microrna complement. Nucleic Acids Research, 48(D1):D132–
D141, 2019. ISSN 0305-1048. doi: 10.1093/nar/gkz885. URL
https://doi.org/10.1093/nar/gkz885.

[329] Editorial: the 18th annual nucleic acids research web server
issue 2020. Nucleic Acids Research, 48(W1):W1–W4, 2020. ISSN
0305-1048. doi: 10.1093/nar/gkaa528. URL https://doi.org/

10.1093/nar/gkaa528.

[330] Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W.
Myers, and David J. Lipman. Basic local alignment
search tool. Journal of Molecular Biology, 215(3):403–410,
1990. ISSN 0022-2836. doi: 10.1016/S0022-2836(05)80360-
2. URL https://www.sciencedirect.com/science/article/

pii/S0022283605803602.

[331] Yoon Byung-Jun. Hidden markov models and their applica-
tions in biological sequence analysis. Current Genomics, 10

(6):402–415, 2009. ISSN 1389-2029/1875-5488. doi: 10.2174/
138920209789177575. URL http://www.eurekaselect.com/

node/69904/article.

[332] Jacob Schreiber, Ritambhara Singh, Jeffrey Bilmes, and
William Stafford Noble. A pitfall for machine learning methods
aiming to predict across cell types. Genome Biology, 21(1):282,

https://doi.org/10.1093/nar/gkaa1100
https://doi.org/10.1093/nar/gkaa1038
https://doi.org/10.1093/nar/gkaa1038
https://doi.org/10.1093/nar/gkaa921
https://doi.org/10.1093/nar/gkaa921
https://doi.org/10.1093/nar/gkx851
https://doi.org/10.1093/nar/gkz885
https://doi.org/10.1093/nar/gkaa528
https://doi.org/10.1093/nar/gkaa528
https://www.sciencedirect.com/science/article/pii/S0022283605803602
https://www.sciencedirect.com/science/article/pii/S0022283605803602
http://www.eurekaselect.com/node/69904/article
http://www.eurekaselect.com/node/69904/article


200

2020. ISSN 1474-760X. doi: 10.1186/s13059-020-02177-y. URL
https://doi.org/10.1186/s13059-020-02177-y.

[333] Raquel Dias and Ali Torkamani. Artificial intelligence in clinical
and genomic diagnostics. Genome Medicine, 11(1):70, 2019. ISSN
1756-994X. doi: 10.1186/s13073-019-0689-8. URL https://

doi.org/10.1186/s13073-019-0689-8.

[334] Lieyang Chen, Anthony Cruz, Steven Ramsey, Callum J.
Dickson, Jose S. Duca, Viktor Hornak, David R. Koes, and
Tom Kurtzman. Hidden bias in the dud-e dataset leads
to misleading performance of deep learning in structure-
based virtual screening. PLOS ONE, 14(8):e0220113, 2019.
doi: 10.1371/journal.pone.0220113. URL https://doi.org/

10.1371/journal.pone.0220113.

[335] Polina Mamoshina, Marina Volosnikova, Ivan V. Ozerov, Evgeny
Putin, Ekaterina Skibina, Franco Cortese, and Alex Zha-
voronkov. Machine learning on human muscle transcriptomic
data for biomarker discovery and tissue-specific drug tar-
get identification. Frontiers in Genetics, 9(242), 2018. ISSN
1664-8021. doi: 10.3389/fgene.2018.00242. URL https://

www.frontiersin.org/article/10.3389/fgene.2018.00242.

[336] Aidan R O’Brien, Gaetan Burgio, and Denis C Bauer. Domain-
specific introduction to machine learning terminology, pitfalls
and opportunities in crispr-based gene editing. Briefings in Bioin-
formatics, 22(1):308–314, 2020. ISSN 1477-4054. doi: 10.1093/
bib/bbz145. URL https://doi.org/10.1093/bib/bbz145.

[337] Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan,
Nils Homer, Gabor Marth, Goncalo Abecasis, Richard Durbin,
and Genome Project Data Processing Subgroup. The sequence
alignment/map format and samtools. Bioinformatics, 25(16):
2078–2079, 2009. ISSN 1367-4803. doi: 10.1093/bioinformatics/
btp352. URL https://doi.org/10.1093/bioinformatics/

btp352.

[338] Aaron R. Quinlan and Ira M. Hall. Bedtools: a flexible suite of
utilities for comparing genomic features. Bioinformatics, 26(6):
841–842, 2010. ISSN 1367-4803. doi: 10.1093/bioinformatics/
btq033. URL https://doi.org/10.1093/bioinformatics/

btq033.

[339] Knut Reinert, Temesgen Hailemariam Dadi, Marcel Ehrhardt,
Hannes Hauswedell, Svenja Mehringer, et al. The se-
qan c++ template library for efficient sequence analy-
sis: A resource for programmers. Journal of Biotechnol-
ogy, 261:157–168, 2017. ISSN 0168-1656. doi: 10.1016/
j.jbiotec.2017.07.017. URL https://www.sciencedirect.com/

science/article/pii/S0168165617315420.

https://doi.org/10.1186/s13059-020-02177-y
https://doi.org/10.1186/s13073-019-0689-8
https://doi.org/10.1186/s13073-019-0689-8
https://doi.org/10.1371/journal.pone.0220113
https://doi.org/10.1371/journal.pone.0220113
https://www.frontiersin.org/article/10.3389/fgene.2018.00242
https://www.frontiersin.org/article/10.3389/fgene.2018.00242
https://doi.org/10.1093/bib/bbz145
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btq033
https://doi.org/10.1093/bioinformatics/btq033
https://www.sciencedirect.com/science/article/pii/S0168165617315420
https://www.sciencedirect.com/science/article/pii/S0168165617315420


201

[340] Amstutz Peter, Crusoe Michael R., Tijanić Nebojša, Chap-
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