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Abstract: To meet the world’s growing energy needs, photovoltaic (PV) and electric vehicle (EV)
systems are gaining popularity. However, intermittent PV power supply, changing consumer load
needs, and EV storage limits exacerbate network instability. A model predictive intelligent energy
management system (MP-iEMS) integrated home area power network (HAPN) is being proposed
to solve these challenges. It includes forecasts of PV generation and consumers’ load demand for
various seasons of the year, as well as the constraints on EV storage and utility grid capacity. This
paper presents a multi-timescale, cost-effective scheduling and control strategy of energy distribution
in a HAPN. The scheduling stage of the MP-iEMS applies a receding horizon rule-based mixed-
integer expert system.To show the precise MP-iEMS capabilities, the suggested technique employs a
case study of real-life annual data sets of home energy needs, EV driving patterns, and EV battery
(dis)charging patterns. Annual comparison of unique assessment indices (i.e., penetration levels
and utilization factors) of various energy sources is illustrated in the results. The MP-iEMS ensures
users’ comfort and low energy costs (i.e., relative 13% cost reduction). However, a battery life-cycle
degradation model calculates an annual decline in the storage capacity loss of up to 0.013%.

Keywords: demand-side management; distributed generation; energy management system; energy
scheduling; microgrid; power optimization; predictive load demand; renewable energy

1. Introduction

According to the United States Department of Energy, the residential and commercial
energy usage account for the bulk of energy consumption in the country’s buildings. This
constitutes around 29% of total end-use energy consumption in the United States in 2020 [1].
The majority of edible energy is now generated by traditional power plants, such as those
that use fossil fuels or coal. However, owing to the rapid increase in fuel costs and the
rising pollution issue, the world is shifting toward a better option of harnessing clean,
affordable, and easily available natural renewable energy sources (RESs), such as solar
and wind [2]. Nevertheless, since these RESs are very intermittent, this is not an easy
solution. This uncontrolled behavior is driven by changing wind speeds and time-limited
solar irradiation. Furthermore, incorporating RESs into the conventional grid is ineffective
since present energy networks are unprepared to deal with the unpredictability attached
to them. This is due to a lack of measurement technologies to monitor the grid states
comprehensively. Due to the low inertia of an electric grid with a high RESs absorption, it
may have frequency and voltage stability concerns, making the system’s steady operation
more challenging [3].

To address the aforementioned challenge, an architecture of distributed grids (DGs)
has been introduced in [4]. It efficiently links RESs to traditional power networks by
providing energy storage and control techniques. The DGs re-imagines the traditional
electricity network and makes it self-sufficient, intelligent, self-controlled, and robust.
These DGs, when representing a small sized power network (i.e., <20 kW), especially
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within a building, can be known as nanogrids (NG) [5]. The use of energy storage systems
(ESSs), such as batteries, are a fairly easy solution to the aforesaid problem [6]. The ESS is
utilized in this study to maximize the PV and EV serving capacity in a grid-connected NG.
It helps to manage the nanogrid energy by storing energy when the RESs output is high in
comparison to load demands i.e., PV-to-vehicle (PV2V), and by providing energy back to a
home i.e., vehicle-to-home (V2H) during high energy demands. Hence, the EVs can operate
as a prosumer for NGs, allowing dedicated home battery installation to be reduced with
time [7]. A home owner, for example, might use the energy contained in the EV’s storage
to power up various households throughout peak times as well as when power costs are
high, while it can be recharged later in the night when the energy prices are comparatively
low [8]. They may also be rewarded for allowing their EVs to operate as distributed energy
resources [9].

Moreover, it is now easy to deal with the uncertainties regarding power production
and consumption within a home by introducing the notion of a controlled home area power
network (HAPN) [10]. Some of its critical features include self-reliability and resilience.
However, there are several features, such as self-sufficiency, incorporating appliances, and
coordination among various energy devices that are also of great importance [11]. A so-
phisticated intelligent energy management system (iEMS) based on advanced optimization
algorithms is another method to achieve a cost-optimal functioning. This article discusses a
model predictive iEMS method that helps to optimize the flow of energy within HAPN.
The suggested flexibility in utilizing EV storage to integrate the concept of power flow
from grid-to-vehicle (G2V), vehicle-to-Grid (V2G), PV2V, and V2H is considered to be the
modernistic replacement of a conventional static battery system [12,13]. To reduce the
additional expenses caused by forecasting errors and users’ stochastic features, the moving
sliding-window approach is employed to schedule the energy supply entities (ESEs) on a
regular basis based on real-time information.

2. State of the Art Literature Review

In this section, previous studies have been examined on the use of various energy
sources, EV charging behavior, storage life cycle degradation, cost reduction, energy bal-
ancing phenomenon, and scheduling techniques.

The most advantageous adaptable load is in the form of EV storage, which provides a
wide range of vibrant (dis)charging power [12,14]. As a result, the objective of this work
is to illustrate the power consumer’s flexibility by allowing the use of ESSs in the form
of EV batteries. To deal with the significant penetration of inconsistent RESs, the V2H
idea is viewed as a potential option [15]. In a multi-microgrid system, the idea of an EV
aggregator has been employed to deliver electricity in the event of a contingencies with
a strong emphasis on thermal safety and the deterioration of the on board lithium-ion
battery [16]. In addition, there would be another type of uncertainty that arises during
the scheduling of EV due to the varying real-time electricity tariffs and the arrival and
departure times of EVs [17]. To cope with this challenge, the energy management of EV
parking lots adopt day-ahead scheduling [18], which includes a cancellation penalty for
users to relieve the influence on profits caused by the uncertainty when users change their
original arrival or departure schedules.

Furthermore, load shifting may be accomplished through load management, decreas-
ing the influence of the EV fleet on the grid [19]. To address these characteristics of a smart
grid, well-known demand side management (DSM) or demand response (DR) methods
could be used. DSM can improve energy production and utilization, lowering power
costs and CO2 emissions [20]. To improve this approach, other studies build probabilistic
models that may represent the charging load profile in a better way when compared to
deterministic charging patterns [3]. Javaid et al. [2] applied the higher additional prices
when the consumer’s load demands increase above the suggested power bound to ab-
stain from enormous consumer load requests due to minimum energy price slots. While
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Zhou et al. [21] explored a bilevel model of an energy management system to control the
peak power in a smart home. Table 1 summarizes some of the findings.

Table 1. Objectives, limitations, and critical analysis of the past literature.

Ref #. Objectives Technique(s)
Scheduling Entities Dynamic EV

Charging
Battery

Degradation
Cost

Reduction
Energy

Balancing
Limitation(s)

Grid PV EV

[3]
According to this study, using battery storage for PV and
EV hosting capacity optimization as well as grid voltage
maintenance was critical.

Model Predictive
Control 3 3 3 7 7 3 7

The case study is fictitious. It was confirmed that the
generation of DG and PVs exceeds the consumption
of the load and EV charging and that the ESS
maintains all bus voltages within the permitted limit.

[22]

The purpose of this study is to propose a methodology
for simulating plug-in electric vehicle charging in order
to quantify the impact of this type of load on
power systems.

Monte Carlo
Simulation 3 3 3 7 7 7 3

The proposed technique focused on transmission
networks and provides a deterministic representation
of the EV charge distribution across the network.
It made no reference to any real-world data collection.

[23]
Dynamic programming is used to govern the charging (G2V)
and discharging of the storage device (V2G) in order to extend
the life of the battery and minimizing grid reliance.

Adaptive Dynamic
Programming 3 3 3 3 7 7 3

The model was confined to battery storage alone and
did not include specific information about load
needs. Additionally, constraint functions that do not
have an exact model of the device were estimated.

[24]

The author discussed the challenge of minimizing the total of
energy and thermal discomfort costs. The suggested system
stabilized developing queues for indoor temperature
control, electric car charging, and energy storage.

Lyapunov
Optimization 3 3 3 7 7 3 3

The energy demand model was limited in scope since
it examines only thermal loads. Additionally, the
algorithm was incapable of addressing the issue of
peak forms.

[25]

Maximizing the utility sums of residential customers while
keeping energy consumption costs in check is explored in
this article. It is decentralized, but it protected the
residents’ private information at the same time.

Generalized Benders
Decomposition algorithm 3 3 7 7 7 3 7

The technique might not operate successfully
if the homes’ demand information is inaccurate.
It also did not address the peak-to-average
power demand ratio (PAR).

[20]

A two-stage optimization approach is devised, in which
peak reduction signals are discovered and their flexibility
provision determined by aggregating individual users’
energy use histories.

Mixed Integer Linear
Programming 3 3 7 7 3 3 7

This study made no allowance for incentives for
postponing loading or for the penalty cost
associated with reducing customer suffering.

[26]

The control method outlined in this work is intended
to address power factor concerns associated with
EV charging stations while still allowing
for full PV generation.

Optimal Dynamic
Programming 3 3 3 7 7 3 7

The effort was done to boost the power factor.
The battery management system was designed to
adjust only the power factor, ignoring the demand-
supply balance and ignoring real-world data.

[27]
This study examines the influence of dynamic energy
pricing and home PV system incentives on EV
charging behavior, grid load, and household economics.

Mixed Integter Linear
Programming 3 3 3 3 7 3 7

The battery deterioration model outlined in this
study is critical to the model’s success. Realistic
information about the actions of prosumers
was also not included.

[15]

The suggested technique uses time-of-use pricing,
time-varying residential power demand, solar generating
profiles, and EV specifications to reduce electricity
prices and flatten the load curve.

Rule Based
Optimization 3 3 3 7 7 7 3

The battery degradation model is an important
factor in this study’s model. However,
realistic data sets on prosumer
actions were not included in the investigation.

[28]

The PV produced more energy than needed to meet load
demands and charge the batteries. Battery discharge
happens when PV panel output falls short of
load needs. The controller prevented over(dis)charging.

Fuzzy Logic
Design 3 3 7 7 7 7 3

The focus of this paper was solely on the
supply and demand for energy. Cost reduction
and customer satisfaction were not
adequately addressed.

A two-layered power management system is adapted by Wang et al. and Min-
has et al. [29,30], where the upper layer represents the stochastic nature of the location and
time of charging using traffic survey data. While the second layer adds the effects on the
power distribution system, analyzing the influence of EV penetration on the reliability per-
formance of the distribution system using Monte Carlo simulation [7]. Some studies [22,31]
make use of time series to measure the impact of EVs under deterministic or stochastic
configurations by simulating different EV charging scenarios that take into account the
charging start time, residual state of charge (SOC), and final SOC, among other variables.
Shahab et al. [26] integrated the day-head, hourly, and real-time scheduling programs to
manage the charging and discharging power of charging stations. Minhas et. al [32] adopts
a multi-objective method to make the EV charging and discharging more cost-effective by
considering both the economy and user’s preference. An RESs-integrated iEMS employed
by Abdalla et al. and Trinh et al. [15,33] has adopted the moving sliding-window concept,
which is called the receding horizon model predictive control or rolling horizon [6], to en-
hance the adaptability of scheduling algorithms. Additionally, Wu et al. [34] introduce a
unique machine learning-based energy management technique for a hybrid electric bus
with an emphasis on thermal safety and battery deterioration.

Additionally, storage degradation and battery inefficiencies during a certain period of
operation are susceptible to battery operating limits and energy trading needs, as stated by
Li et al. [4]. It is advised that the battery’s operating cycle should be kept in its safe thermal
limit to extend its life [35]. This is due to the battery’s usable capacity and prospective
electricity prices being both influenced by the grid’s state and execution time [24]. Fuzzy
frameworks likewise approximate these functions, and the expected Newton approach
detects optimal (dis)charging actions [36]. Besides, Hao et al. [37] offers a generic battery
model to illustrate the scalability of buildings energy demand and its storage capacities.
In addition, an internal short circuit diagnostic technique with great robustness to mea-
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surement disturbances and capacity fading was presented in [38] to ensure the battery’s
thermal security.

Our Contribution

In comparison to the prior research discussed in the literature review, this study makes
the following significant contributions:

1. Most significantly, this paper is written keeping in view a call from a special issue
of Energies on the subject “Demand Side Management of Distributed and Uncertain
Flexibilities”, utilizing real-life yearly data sets of household demands, EV driving
patterns, and EV battery (dis)charging patterns to demonstrate the actual iEMS capa-
bilities of the proposed system model. To the best of our knowledge, this is the first
paper written introducing energy management system strategy by utilizing the above
mentioned explicit data sets.

2. Introducing a comprehensive converter-based nanogrid model. This model combines
real-world data sets and operating limitations for conventional and renewable energy
power sources. The model also includes lifespan deterioration of the EV storage’s
capacity given in Appendix B. Data sets are re-processed (i.e., Appendix A) to be used
in MATLAB.

3. Adopting a two-stage co-simulation framework to implement a multi-time scale
iEMS and control strategy. A robust decision-based operation strategy is proposed to
utilize the least expensive energy supply sources and to maximize the consumer’s
satisfaction level.

4. Proposing a computationally efficient mixed integer rule-based sliding horizon dy-
namical algorithm to tackle the prediction uncertainties and to make cost effective
scheduling decisions for supply sources. In addition, comparing daily and seasonal
scheduling decisions for various supply sources in the first stage.

The rest of the article is structured as follows. Section 2 describes the system architec-
ture. It encompasses the modeling of individual components as well as their associated
costs. Section 3 defines the actual problem and proposes a MP-iEMS based numerical
solution. Section 4 presents a case study followed by the simulation findings. Finally,
Section 5 concludes the article.

3. System Architecture

This study proposes a hierarchical scheduling and control framework for a home
area power network. As illustrated in Figure 1, it includes predictive daily load curve for
a household, a solar power curve, a grid electricity price signal, EV loading signal, EV
charging signal, and EV driving indicators, as well as the vehicle’s power consumption
during driving (see Section 5.1). Additionally, the electric grid is connected to the home
through a smart meter. The smart meter has incorporated intelligence in the form of a
home energy management system (HEMS) to enable cost-effective day-ahead scheduling
and real-time control of power flow in HAPN. The framework developed is sufficiently
adaptable to incorporate plug-and-play energy entities, most notably electric vehicles.

The proposed framework’s energy management strategies are classified into two sub-
levels and addressed using two distinct solution techniques. The first level discusses the
cost-effective method for obtaining schedule signals for various energy supply entities
(ESEs). These signals are iteratively optimized with a time resolution of 15 min on a
year-ahead basis. It incorporates a forecasting module that forecasts solar energy and
household load demand uncertainties. The second level is concerned with the activation
of energy entities. After obtaining scheduling signals from the upper level, the internal
nanogrid control takes on the active power set-points for various ESEs. These set-points
are transmitted over a communication channel to the device’s local controller. The receiver
then sent the specific set-point signal to the device’s real-time controller as a reference
signal. A device level robust control mechanism continuously tracks down the received
reference signal and regulates the device’s activation based on the monitored power levels.
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Figure 1. Proposed iEMS framework.

3.1. Home Area Power Network Architecture

The HAPN architecture under consideration is seen in Figure 2. The utility grid line
is linked directly to the grid AC bus. Through inverters and a converter, the photovoltaic
array and EV storage are connected to the grid AC bus. Controllable switches are included
in the system to implement the nanogrid’s binary operations.

Figure 2. HAPN architecture.

As shown in the figure, the grid supply power at the AC bus (Pg.ac(t)) is:

Pg.ac(t) ≤ min
[

xg.ac(t)Pg.disp(t), Pac.load(t)
]
, ∀t (1)
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where, xg.ac(t) ∈ {0, 1} is the grid Boolean operator, Pg.disp(t) is the controllable grid power,
and Pac.load(t) are the requested load demands. However, the electricity generated by solar
panels Ppv.ac(t) at the AC bus is limited to:

Ppv.ac(t) ≤ min
[

Ppv.disp(t), Pac.load(t) + Pac.b(t)
]

xpv.ac(t)ηpv.con, ∀t (2)

where, Ppv.disp(t) is the controllable PV power, Pac.b(t) is the power used to charge the EV
battery, and ηpv.con is the inverter efficiency.

Besides, the HAPN integrates a battery in the form of an electric vehicle acting as
a storage entity having instantaneous available power (Pb.av(t)) that is limited to the
maximum capacity of the EV battery (Eb) such as:

Pb.av(t) ≤
(
Eb/4t

)
. ∀t. (3)

the instantaneous power transfer from the attached EV to AC bus (Pb.ac(t)) during discharging is:

Pb.ac(t) = min[ηb.conPb.dch(t), ηb.conPb.av(t), Pac.load(t)]xb.ac(t), ∀t (4)

where, xb.ac(t) ∈ {0, 1}, Pb.dch(t) is the battery discharge rate, and ηb.con is the battery
converter efficiency. However, the instantaneous power required for recharging the EV
battery (Pac.b(t)) is illustrated in Equation (5), along with a Boolean operation of xac.b(t) ∈
{0, 1}.

Pac.b(t) = min
[
Ppv.ac(t) + Pg.ac(t)− Pac.load(t), . . .

η−1
b.conPb.ch(t),

(
Eb/4t

)
− (η−1

b.conPb.av(t))
]
xac.b(t), ∀t

(5)

where, Pb.ch(t) is the charge rate of the battery. Besides, Eb(t) is the battery capacity which
is limited to its maximum Eb and the minimum Eb threshold:

Eb ≤ Eb(t) ≤ Eb. ∀t. (6)

additionally, Pb.ch(t) and Pb.dch(t) are restricted by a maximum and minimum value at any
point in time, such as:

Pb.ch ≤ Pb.ch(t) ≤ Pb.ch, ∀t (7)

Pb.dch ≤ Pb.dch(t) ≤ Pb.dch, ∀t (8)

besides, the AC bus exchanges power transfer as:

xpv.ac(t)Ppv.ac(t) + xb.ac(t)Pb.ac(t) + xg.ac(t)Pg.ac(t) . . .

= xac.b(t)Pac.b(t) + Pac.load(t) + Pdrv(t). ∀t.
(9)

in addition, one of the restrictions on battery operations is that the battery charging and
draining activities cannot occur concurrently:

xb.ac(t) + xac.b(t) ≤ 1. ∀t. (10)

furthermore, the instantaneous state of energy (Eb(t)) of the battery can be determined by:

Eb(t) = Eb(t− 1) +
∫ t

t−1

(
(ηb.con(Pac.b(t) + Pdrv(t)) · 4t)− . . .

(η−1
b.conPb.ac(t) · 4t)

)
dt, ∀t

(11)

where Pdrv(t) is the power consumed by the EV during driving on road.
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3.2. Battery Degradation Model

A common phenomenon of battery aging or degradation is observed during battery
operations. There are two types of degradation that are commonly studied: (1) A reduction
in a battery’s ability to deliver energy and (2) a reduction in the battery’s storage capacity.
According to [39], the parameters involved in the above degradation phenomenon are high
temperatures, high charge and discharge rates, and significant depth of discharge (DOD).

Jin et al. [40] created a reduced-order physical model to forecast the deterioration of
lithium ion phosphate cathode and graphite anode battery cells. The storage cells under
investigation have the individual capacity of 2.3 Ah, combining in series and parallel to
construct a battery pack of a specific capacity power. The capacity loss due to the solid
electrolyte interface (SEI) layer growth and active material (AM) loss are obtained at each
time step t using Equations (12) and (13), respectively:

QSEI(t) =
∫ t

t−1
−

kSEI exp
(
− ESEI

RT

)
2(1 + λθ)

√
t

dt, (12)

QAM(t) =
∫ t

t−1
kAM exp

(
−EAM

RT

)
· SOC(t) ·

∣∣Ibatt,disch(t)− Ibatt,ch(t)
∣∣dt. (13)

A detailed description of the model is given in Appendix B.

3.3. Entities Cost Modeling

Real-time pricing (RTP) information is acquired from [41] in order to show the ef-
ficiency of dynamic grid pricing schemes (θ(t)) for demand side management (DSM)
techniques in the HAPN. Whereas, the cost per watt for PV (φ(t)) and battery (ϕ(t)) op-
erations is obtained from [42]. These operational costs are dependent on the installation
and operation and management (O&M) costs. Additionally, O&M expense categories
include inverter replacement, operations administration, module replacement, component
replacement, system inspection and monitoring, module cleaning, land lease, property tax,
and insurance, as well as asset management and security [42].

4. Problem Formulation & Numerical Solution

The HAPN is a single-phase power network that receives electricity from the utility
grid, solar panels, and electric car batteries, and distributes it to house at a set voltage level.
The paper illustrates energy allocation from different energy sources by implementing a
cost-effective model predictive-based intelligent energy management strategy (MP-iEMS).
This approach is used at the scheduling stage creating an output of set points for charging
and discharging electric vehicles, feed-in from the PV, as well as grid power utilization.
The energy management phase’s operational goal is to increase the customer’s satisfaction
level and to improve the EV charging while keeping electricity operating costs as low as
feasible. In addition, a hard constraint is introduced on meeting the users’ load needs. It
ensures that the amount of energy supply is always equal or higher than the amount of
energy demanded.

This means that priority should always be given to energy sources that provide
relatively affordable power and that, if necessary, a portion of the EV charging load may be
switched otherwise to balance the power. At each time t, the iEMS gains information about
solar power, the state of electric car storage, and the load demands of users.

The objective is to develop a scheduling method u(t) ∈ {ux(t), up(t)}, that balances
electricity from the grid, photovoltaics, and an electric vehicle battery. Whereas ux(t) =
[xpv.ac(t), xb.ac(t), xg.ac(t), xac.b(t)] represents Boolean decision variables. The above vari-
ables indicated in Section 3 reflect the availability of diverse energy sources at the start of
every iteration the algorithm runs and is illustrated as:
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xg.ac(t) =

{
1 i f Pg.av(t) > Pg.disp(t)
0 otherwise

, xb.ac(t) =

{
1 i f Pb.av(t) > Eb(t)
0 otherwise

,

xac.b(t) =

{
1 i f Pb.av(t) < Eb(t)
0 otherwise

, xpv.ac(t) =

{
1 i f Ppv.av(t) > Ppv.disp(t)
0 otherwise

.
(14)

Thus, the aforementioned discrete variables contribute to the decrease in computing
complexity by enabling an earlier decision on whether or not the particular supply source
shall be activated. Furthermore, up(t) = [ppv.ac(t), pb.ac(t), pac.b(t), pg.ac(t)] represents a
vector of continuous power control variables for multiple energy sources. The aforemen-
tioned management policy is used to build a load and supply balance, taking into account
the cost scenario for running HAPN. As a result, two distinct formulations of the problem
are discovered:

P = min
u(t)

T

∑
t=1
{θ(t) · xg.ac(t)Pg.ac(t) + φ · xpv.ac(t)Ppv.ac(t) + ϕ · xb.ac(t)Pb.ac(t)} (15)

s.t. ref, Equations (1) and (2), (4)–(14), (16) and (17).

The first is the cost minimization problem illustrates in Equation (15), and the second
is the energy balancing problem shown in Equation (17), in which the house’s load require-
ments (according to Equation (16)) must be satisfied using the minimum amount of power.
This problem can be resolved by implementing some of the security limitations discussed
in the previous section. The power requirements (Ptarget(t)) for each time slot t, on the
other hand, must be satisfied by a mix of power supplied by different sources. As a result,
the following principles define the energy balancing constraint inherent in accomplishing
the above mentioned goal. Hence, the target power that must be achieved for all timesteps
t is illustrated as:

Ptarget(t) =
{

max(0, Pac.load + xac.b(t)Pac.b), i f xpv.ac(t) | xb.ac(t) | xg.ac(t) = 1
0, otherwise

(16)

The iEMS strategy prioritizes the use of PV energy. Consequently, if it is unable to
meet the load requirements, the battery power is used. Otherwise, energy may also be fed
in from the grid if necessary. The net power, allocated at any time slot t will be:

Ppv.ac(t) + Pb.ac(t) + Pg.ac(t) ≥ Ptarget(t). ∀t. (17)

4.1. Algorithms and Implementation

We have demonstrated three unique operating techniques for supply-side manage-
ment that may be compared to achieve the best results. Among them are the following:

1. Scheme 1: Conventional rule-based strategy involves only the EV storage and grid
energy supply (Conv-EG).

2. Scheme 2: Conventional model predictive rule-based strategy involves PV supply
along with EV storage and grid energy supply (Conv-PEG).

3. Scheme 3: Proposed Model predictive intelligent energy management system (MP-
iEMS).

For all three optimization schemes, the system model is identical to that presented in
Section 3, except that the PV is missing in Scheme 1.

To address the concerns expressed in (15) and (17), we suggest a set of establishing
priorities for acquiring power values from the absolute cheapest and most dependable
source of energy. This set includes two continuous power indicators and three binary
indicators. One of the power indicators cover both the actual load and storage charging
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requirements (Ptarget(t)) and the other is EV consumption when driving (Pdrv(t)). While
binary indicators such as drive bool (EVdrv(t) ∈ {0, 1}), electric vehicle charging Bool
(EVch(t) ∈ {0, 1}), and electric vehicle loading Bool (EVload(t) ∈ {0, 1}) are also accessible.
The feasible solution set is composed of 16 distinct conditions based on these four indicators.
Only six of them seem plausible, and we used a rule-based expert system to apply them
over the operating window. The remaining 10 candidate sets are not feasible operationally
and so cannot be adopted. Consider the following binary loading signals when developing
the control policy u(t), as they are already contained in data sets.

4.1.1. Scheme 1: Conv-EG

The scheduling strategy (Conv-EG) is a priority-based decision algorithm as shown in
Figure 3. We assume that the system model used to apply this algorithm only contains a
supply from the grid and EV storage. In this algorithm, the EV storage has priority over
the grid to supply power to the load demands. It is due to the assumption that the EV
storage might be charged at low peak hours at comparatively lower rates. Hence, at the
initial stage, EV storage is analyzed to determine whether it can fulfill the load demands
completely by itself or not. If the EV is parked at home and the loading Boolean is enabled,
it will automatically discharge. Additionally, if the charging Boolean is active, then it is
capable of charging as well. However, if the EV drive Boolean is set to true, the EV will
drive on the road and will charge itself via charging stations, while the home loads will
be provided by grid electricity. The detailed workflow of the algorithms is illustrated in
Figure 3.

Figure 3. Flowchart of the conventional rule-based scheduling scheme (Conv-EG).

4.1.2. Scheme 2: Conv-PEG

The scheduling method (Conv-PEG) incorporates a rooftop photovoltaic system. As a
result, the working framework contains an additional low-cost source of power as seen
in Figure 4. In this algorithm, the PV source is considered to be the cheapest source of
energy, as it requires only solar energy to generate freely available power. The Conv-PEG
is initiated by initializing the decision window’s system variables and anticipating new
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values for PV in-feed and load demands. Additionally, it updates the battery’s state of
charge (SOC), charging power rate, and battery capacity.

Figure 4. Flowchart of the conventional rule-based scheduling scheme (Conv-PEG).

Thus, the algorithm’s first step determines if there is enough photovoltaic power
available to meet the needs of the customers. If the answer is “yes”, the PV meets all of
the load needs for the time period t right away. Then it comes to the binary indicators,
and analyses if the electric cars can be charged at home or on the road. If it is at home,
the PV power that is not used to meet the needs of the load can be used to charge the
battery. The battery would then be charged until it reaches its full capacity or until it gets
as much power from the PV as it can. It is important to note that the grid is disconnected
during this process. However, if the car is on the road, there are two possibilities. It may be
able to charge itself while on the road if it comes across a charging station. Otherwise, it
will continue until it runs out of charge.

In comparison to the previous choice, if the available PV capacity is less than the load
demand, and the needs are partially met by the PV power, using EV storage becomes a
secondary consideration if it is available for discharging as shown in Figure 4. While, in the
worst-case scenario, the remaining unsatisfied loads are fulfilled by the grid. The grid will
deliver power on a demand basis and charges according to the market price of energy.
Similarly, while the EV is at home and linked to the HAPN, the EV acts as temporary
storage. The home will benefit from this EV storage by balancing and providing low-cost
electricity during periods of poor solar production and high grid costs. Additionally,
during periods of high solar energy output, this EV may charge itself using the HAPN
battery charging system.

4.1.3. Scheme 3: MP-iEMS

The authors propose a two-stage model predictive iEMS framework with a hierarchical
structure. The first stage involves developing an energy scheduler to guarantee that the
net cost of energy generated is kept to a minimum. It combines a predictive sliding
window module with a rule-based decision algorithm that runs at a sample rate of 15 min,
i.e., t ∈ [1, 2, . . . , T]. While the sliding window has a time resolution of 24 h i.e., τ , (t+ 24).
Additionally, the second stage utilizes a current-controlled current source to activate the
ESEs based on the decision signals acquired. This stage runs at a much higher sample
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rate of 1 second , i.e., k ∈ [1, 2, . . . , K], reflecting the electrical devices’ real-time activity.
The suggested MP-iEMS is schematically represented in Figure 5, which depicts the rolling
horizon rule-based decision approach.

Figure 5. Flowchart of the proposed scheduling scheme (MP-iEMS).

As shown in Figure 5, initially, the system architecture is observed, system parameters
are configured, input data are loaded, and rolling horizon control variables are defined.
The current time of the rolling horizon t is then established, and the sliding window’s
settings are set. Additionally, a 24-h sliding window with a k time resolution is explored for
the application of a rule-based decision method. At each instantaneous time step, the MP-
iEMS is initiated by initializing the decision window’s system variables and anticipating
new values for PV in-feed and load demands. Additionally, it updates the battery’s state of
charge SOC, charging power rate, and the capacity of the battery. The operating window is
executed using a receding horizon technique, with the next step t sliding over every 15 min.
Through implementing this strategy, the decision values of the control variables for the
whole year may be derived.

To solve the problem described in Equation (15), the priority criteria for getting power
values from the least expensive and most dependable energy source choice is introduced.
The algorithm suggests alternative cases that are defined in accordance with the scenarios
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produced using the data set’s system input parameters. To create the control policy u(t),
the following scenario configurations can be considered:

1. Case 1: EVdrv(t) = 0 & Pac.load(t) > 0 & EVload(t) = 1 & EVch(t) = 0:
2. Case 2: EVdrv(t) = 0 & Pac.load(t) > 0 & EVload(t) = 1 & EVch(t) = 1:
3. Case 3: EVdrv(t) = 1 & Pac.load(t) > 0 & EVload(t) = 0 & EVch(t) = 0:
4. Case 4: EVdrv(t) = 0 & Pac.load(t) > 0 & EVload(t) = 0 & EVch(t) = 0:
5. Case 5: EVdrv(t) = 0 & Pac.load(t) = 0 & EVload(t) = 1 & EVch(t) = 1:
6. Case 6: EVdrv(t) = 1 & Pac.load(t) = 0 & EVload(t) = 0 & EVch(t) = 0:

Case I

This case is reflected in Figure 6, which indicates that the EV is parked at home and is
attached to HAPN to supply power to the home appliances. However, the charging bool
of EV is inactive and it cannot be charged by any means, however it can be discharged
to satisfy the load demands. Furthermore, the load demands can also be supplied by
the PV and grid power. To supply power from the cheapest source of energy, per unit
energy prices are first compared between the PV, EV battery, and grid power sources (i.e.,
ensuring Equation (15)). If the PV power price is the cheapest, then power is drawn from
the PV source until the demand is met or there is no further power available from PV. If the
demand still persists, then the next power source is selected based on the cheap unit price.
If the power from the battery is cheap and the SOC of the battery is above the threshold,
then the power is obtained from the battery. Otherwise, the loads are met by the grid power
as a worst case scenario. It is worth noting here that grid prices are dynamic, and the cost
per unit can be lower than the cost of energy acquired from the PV or battery in some cases.

Figure 6. Case I flow chart.

Case II

The flow chart for the case II strategy shown in Figure 7 indicates that the working
principle of this case is quite similar to that of case I when supplying power to the load
demands. The only difference is the activation of charging the EV battery at the HAPN.
Hence, the battery could be charged using PV power or grid power. The flow chart indicates
that if the user’s load demand is completely fulfilled by the PV power, then the remaining
PV power could be used to charge the EV until the battery is fully charged or up to the
limit of PV production. However, if the PV power does not fulfill the battery charging
requirements, then the grid comes into action and charges the battery until it is charged to
its limit.



Energies 2022, 15, 1619 13 of 28

Figure 7. Case II flow chart.

Case III

Here, it shows the drive Boolean of the EV, meaning the vehicle may drive out of the
home. Thus, it is also evident that now the EV storage would only be used for driving
purposes. However, in the meantime, there is also a need to fulfill the load demands of
the household. Therefore, the options available to satisfy the demands are the utilization
of the PV and grid power. Again, based on the cost comparison, a scheduling decision
is made on whether the power should be obtained from PV or the grid (i.e., ensuring
Equation (15)). In this case, because the EV is not attached to the HAPN, there is no
opportunity for charging and discharging the EV storage. The flow chart for case III is
illustrated in Figure 8.

Figure 8. Case III flow chart.

Case IV

As shown, Figure 9 indicates that the vehicle is at home but is not participating in the
demand response program. This means that the EV storage will not charge or discharge
itself to fulfill the load demand requirements at the HAPN. Hence, in this case, the EV user
gives up the decision of utilizing EV storage to satisfy the additional constraints i.e., to save
battery life. In this case, the user’s power demand is satisfied by PV and the grid power,
opting the lowest possible cost scenario (i.e., ensuring Equation (15)).
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Figure 9. Case IV flow chart.

Case V

In this case, the electric vehicle that is parked at the home, is attached to the home
power grid, and participates in a demand response program for a HAPN. However, here it
shows in Figure 10 that there are no user’s power requests to be fulfilled at the moment,
but the EV has the option to take advantage of the situation and charge itself using a low
cost power provider (i.e., ensuring Equation (15)). Hence, if the cost of power dispatched
from PV is lower and the storage has the capacity to charge itself, then the EV battery will
be charged by the PV source until it is fully charged or the PV source is depleted. In the
worst case, the battery may be fully charged by grid power at any cost.

Figure 10. Case V flow chart.

Case VI

Case VI in Figure 11 illustrates that the EV is on the road and uses its storage only for
driving purposes. Moreover, there are also no power requests back at home. Hence, the PV
power is curtailed if any and no grid power is requested at this time.

Figure 11. Case VI flow chart.
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4.2. Evaluation Indices

To evaluate the system’s performance and to determine the best combination of various
energy resources, the following important performance metrics are defined:

PV Utilization Factor (KPV.UF)

This refers to the ratio of the total PV power utilization to satisfy the load demands to
the total available PV power. In the previous section, it is demonstrated that the actual PV
power utilization is always less than that of the available and it is due to the losses induced
in the converter. It can be illustrated as:

KPV.UF =
∑ Ppv.ac(t)
∑ Ppv.av(t)

. (18)

PV Penetration Level (KPV.PL)

This describes the ratio of the total PV power used to satisfy the portion of load
demands that make up the total power demands of a home. This can be elaborated as:

KPV.PL =
∑ Ppv.ac(t)

∑(Pac.load(t) + Pac.b(t))
. (19)

Grid Utilization Factor (KG.UF)

This refers to the ratio of the total grid power utilization to satisfy the load demands
to the total available grid power. In the previous section, it is demonstrated that the actual
grid power utilization may be less than that available and is due to the request of HAPN. It
can be illustrated as:

KG.UF =
∑ Pg.ac(t)
∑ Pg.av(t)

. (20)

Grid Penetration Level (KG.PL)

This describes the ratio of the total grid power used to satisfy the portion of load
demands that is lesser than the total power demands of a home because of the involvement
of the PV and EV battery. This is elaborated as:

KG.PL =
∑ Pg.ac(t)

∑(Pac.load(t) + Pac.b(t)
. (21)

EV Storage Utilization Factor (KEV.UF)

This refers to the ratio of the total power discharged from EV storage to fulfill the
house energy requirements to the total capacity of the storage and the extra power being
charged in the EV battery. In the previous section, it is demonstrated that the actual storage
power utilization in HAPN is always less than that available. It is due to the losses induced
due to conversion losses. Moreover, most of the energy is used for driving purposes. It can
be illustrated as:

KEV.UF =
∑ η−1

b.conPb.ac(t)
∑(Pb.av(t) + ηb.conPac.b(t))

. (22)

EV Storage Penetration Level (KEV.PL)

This describes the ratio of the total discharge power from the EV storage used to satisfy
the portion of load demands. This can be elaborated as:

KEV.PL =
∑ η−1

b.conPb.ac(t)
∑ Pac.load(t)

. (23)
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Degree of Self-Sufficiency (KSS)

The degree of self-sufficiency refers to the ratio of the total energy consumption that is
covered by the PV and EV storage and is defined as:

KSS =
∑(Pload(t)− Pg.ac(t))

∑ Pac.load(t)
. (24)

5. Case Study & Simulation Results

The suggested iEMS techniques are being assessed on several performance metrics
stated in Section 4.2 to demonstrate its actual capability. Along with this, a comparison of
HAPN operational costs to conventional rule-based optimal approaches is made. In ad-
dition, a real-world annual data set [43] of EV storage (dis)charging, PV power, and grid
energy pricing is utilized to supply input data to the algorithms. These approaches then
determine the actual optimal output power levels for each energy supply entity. The para-
metric values for the various power entities contained in our system model are summarized
in Table 2.

Table 2. System parameters.

Parameters Value Parameters Value Parameters Value

Pg.disp 20 kW ηb.con 0.98 4t 15 min
Eb,0 110 kWh ηpv.con 0.98 4k 1 s
Eb 120 kWh φ [42] 130 $/MWh Pb.ch Figure A4
Eb 1 kWh ϕ [42] 201 $/MWh Pb.dch Figure A4

The cost associated with various ESEs is examined during scheduling process to
obtain the ideal outcome. The dynamical grid energy cost, which fluctuates with time t
and is depicted in Figure 12, is the most crucial cost parameter. Furthermore, as stated in
Section 3.3, there are certain fixed operating and maintenance expenses connected with
PV operations and EV storage consumption. Furthermore, the parameters linked with the
deterioration of the specifications of the EV battery bank are provided in Table 3.

Table 3. Coefficients of the simplified reduced-order model.

Parameters Value Unit Parameters Value Unit

kSEI 6684.8
√

1
s ESEI 39,146 J/mol

kAM 1.368 1/Ah EAM 39,500 J/mol
R 8.314 J/K·mol λ 5.5× 10−5 -
F 96,485.3 C/mol UOCP

s 0.4 -

The suggested MP-iEMS is intended to demonstrate the scheduling framework’s
response for the whole year on the receding time horizon of 15 min. The algorithm that
seeks the lowest cost also seeks to improve a HAPN’s self-consumption and self-sufficiency.
Forecasting of PV power generation and user load demands are the important components
of the entire process. Additionally, minimum and maximum energy limits are established
for matching energy supply and demand entities in order to define a realistic operating
range.
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Figure 12. Grid energy price signal.

5.1. Data Preparation

The complete dataset for one year used in the simulations has been published by
Rheinberger [43]. It comprises of the following subsets:

• Day-ahead energy market prices for the bidding zone Germany-Austria-Luxembourg [44];
• Photovoltaic production in a localized place in Germany [41];
• Photovoltaic production prediction [45];
• Electric vehicle usage from the UK [46];
• Household demand from Ireland [47].

MATLAB/Simulink is used to simulate the data and the given data sets have to be
converted according to the workaround described in Appendix A. Whereas, Figure 12
shows the actual auctioned day-ahead energy price information.

5.2. Comparative Analysis of Power Scheduling Schemes

Within the scope of supply side management, we have examined and compared the
operating expenses of various energy supply entities. We chose three distinct operating
strategies to compare for the best outcomes. Among these are: (1) Scheme 1: Conv-
EG, (2) Scheme 2: Conv-PEG, and (3) Scheme 3: MP-iEMS.

Schemes 1 and 2 represent greedy priority-based algorithms. In which attention is
given to a low-cost energy source such as PV and EV storage. Scheme 3, on the other hand,
makes use of intelligence by anticipating future changing grid energy costs and optimizing
the capacity usage of EV storage and the PV source. All of these techniques provide for the
required power to be accessible from any supply entity at the lowest feasible cost, while
also ensuring maximum comfort for energy users by meeting their demands with their
immediate energy requests, as indicated in Equation (17).

Initially, an examination of several performance measures is presented that are pre-
viously mentioned in Section 4.2. Table 4 compares the indices for various ESEs among
various optimum schemes.

Table 4. Comparison of ESEs utilization factor (UF) and penetration level (PL) for various schemes.

Scheme / Parameters KPV .UF KG.UF KEV .UF KPV .PL KG.PL KEV .PL KSS

Scheme 1: (Conv-EG) 0 0.0307 0.9597 0 0.8598 0.4198 0.1402

Scheme 2: (Conv-PEG) 0.6634 0.0268 0.9598 0.1129 0.7639 0.4098 0.2361

Scheme 3: (MP-iEMS) 0.6272 0.0269 0.9579 0.1175 0.8447 0.3533 0.1553

It shows that the typical optimum scheme that does not incorporate PV has a high grid
utilization factor (KG,UF) and penetration level (KG,PL) when compared to other schemes,
which is understandable. Nevertheless, the grid usage factor for Schemes 2 and 3 is nearly
the same. However, the grid penetration level in Scheme 2 is high, indicating that Scheme
3 uses grid electricity a slightly less than Scheme 2. Furthermore, the PV usage factor
(KPV,UF) in Scheme 2 is high, even though the penetration level (KPV,PL) in both schemes is
very similar. It demonstrates that in Scheme 3, when grid prices are negative, as shown in
Figure 12, the MP-iEMS algorithm disconnects the PV and instead obtains energy from the
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grid. This would also reduce energy conversion losses from DC to AC, thereby increasing
the shelf life of PV modules. Furthermore, the EV usage factor (KEV,UF) is about identical
for Schemes 1 and 2, while it is somewhat lower in Scheme 3. Similarly, the penetration
level of the EV storage (KEV,PL) is also lower in Scheme 3, which indicates that the MP-iEMS
algorithm engages the EV operations sporadically in comparison to Scheme 2. In this way,
the storage has been utilized more efficiently. In comparison, the self-sufficiency indicator
(KSS) is high in Scheme 2, where the operations of PV and EV storage are involved more
often. However, due to the optimal and efficient utilization of PV and EV storage, this
factor is less in Scheme 3 while it is at its lowest in Scheme 1 due to the absence of the PV
energy source.

In addition, Figure 13 depicts the comparative contribution of various ESEs in various
energy optimal schemes. Where Scheme 3 uses less energy overall due to lower energy
losses incurred during battery and PV operations.

Figure 13. Comparative power utilization.

We also investigate the yearly accumulative price of the energy associated with grid
power utilization, PV usage, and EV storage utilization as shown in following figures.
Figure 14 demonstrates that Scheme 3 has overall exhibited a lower energy cost, followed
by Schemes 1 and 2, respectively. Scheme 1 exhibits high costs due to the absence of a cheap
energy source, i.e., PV, as shown in Figure 13. The load demands are satisfied exclusively
by grid power, where the grid power is also used for charging the EV storage when needed.

Figure 14. Total energy cost.

Figure 15 and 16 refer to the high grid cost and storage operating cost for Scheme 1,
respectively. It may be due to the high charge and discharge rates associated with high grid
energy prices.

Figure 15. Total grid energy cost.
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Figure 16. Total EV storage utilization cost.

On the other hand, in Scheme 2, the PV source is added. It is then utilized to satisfy
the loads along with charging the EV storage when the grid energy prices are high and
extra power is available from the PV source. However, both of these schemes opt for the
same price for the EV operational costs, and so the storage utilization is almost the same.

Furthermore, in Scheme 3 the system model is similar to that of Scheme 2 where
the cheap PV source is included, however in this scheme, an extra intelligence is placed
to look into the cheapest option of energy available at any instance of time. As seen in
Figure 12, sometimes the grid energy prices become negative or gaining energy from the
grid is sometimes cheaper as compared to the energy obtained from the PV (i.e., due to
operational and maintenance costs). Hence, our proposed MP-iEMS algorithm used in
scheme 3 can have this intelligence about when to use PV or when it is cheap to utilize
grid power both for satisfying user load demands and charging the EV. One can see in
Figure 13 that the PV utilization is lower in Scheme 3 in comparison to Scheme 2. It takes
more energy from the grid at the lowest possible price and still exhibits a quite lower grid
energy price when looking into the zoom window of Figure 15. However, on the other
hand, this scheme also utilizes EV storage quite efficiently and achieves the lowest battery
operational costs as compared to other schemes as shown in Figure 16.

Moreover, if we want to know the difference in the behavior of utilizing EV storage
especially for Scheme 2 and Scheme 3, a histogram of state of charge (SOC) in Figure 17
shows that Scheme 2 maintains a quit low range of SOC in between 25% to 75%. While
Scheme 3 maintains this SOC approximately in between 55% to 75%. It indicates that
Scheme 2 experiences deep discharges and high battery utilization as compared to Scheme 3.

Figure 17. Histogram of EV storage SOC.

Similarly, if we look into Figure 18, Schemes 1 and 2 opt for normally high charge
rates around 23 kW, while Scheme 3 experiences low charge rates in comparison to other
schemes around 12 kW.
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Figure 18. Histogram of EV storage charge rates.

Another comparison in terms of yearly accumulative charge and discharge energy
for various schemes is shown in Figure 19. It demonstrates that Scheme 1 encounters
a significant amount of energy exchange throughout the battery’s charge and discharge
cycles. It is due to the absence of a third source of energy when compared to Scheme 2,
where these values are comparatively low around 2.6 MWh, and it is due to the induction
of the PV source. Which takes over some of the supply from EV storage. However, Scheme
3 experiences the lowest charge and discharge energy exchange of around 2 MWh, and it is
due to the intelligence of utilizing the optimum share of energy from each source at a very
optimal price.

Figure 19. Annual accumulative charge and discharge energy for EV storage.

Moreover, Figure 20 demonstrates the accumulative EV storage losses. These losses
are evident during the charge and discharge of EV storage and are due to the inefficiency
of the conversion (i.e., AC-DC or DC-AC). As illustrated above, Scheme 3 experiences less
EV storage utilization, so it also exhibits less storage loss as compared to Scheme 2 and 3. It
is worth mentioning that the driving behavior and EV consumption on the road are the
same for all the study schemes. However, there are differences in the number of times the
EV battery is charged and discharged

Figure 20. Total EV storage loss.

Furthermore, EV storage capacity loss analysis is carried out to demonstrate the effects
of dynamic storage SOC and (dis)charge rates. This loss analysis is done using the battery
model data available from [40]. The battery SOC, charge/discharge power, and the elapsed
lifespan are all inputs into the storage degradation model, which then determines the
percentage capacity loss. Degradation models are usually complex and non-linear.
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Figure 21 shows the variations in the accumulative capacity loss of the storage for the
whole year. While Figure 22 illustrates individual scheme-based capacity losses induced
due to charge, discharge, and the SOC of the storage. Moreover, two types of losses (e.g.,
SEI and AM capacity loss) are shown individually for every scheme.

Figure 21. Comparison of total capacity loss.

Figure 22. Comparison of various capacity losses among different schemes.

All three systems have AM losses greater than SEI losses, as seen in the figure.
The charging and discharging rates affect the AM losses, hence higher rates result in
higher losses. With increasing SOC, such as Scheme, the AM capacity loss grows in a
monotone pattern. The AM variation pattern is time-invariant since it is unaffected by the
amount of time the battery has been in use. Due to high charge rates, AM charge losses are
larger than AM discharge losses, especially when the car charges itself using the charging
station’s high charge power option. SEI losses are reliant on the storage’s SOC, whereas
SOC losses are independent. With increasing net discharge power, the SEI capacity loss
reduces in a linear fashion. The battery run duration has an adverse effect on the SEI
capacity decrease rate.

Compared to the other three schemes, the overall AM losses in Scheme 3 are lower.
Scheme 2 and 3 have very little difference, on the other hand. However, there is not a
significant difference in overall SEI losses between these schemes. This may be because
there are not as many changes in SOC between them, and that the battery runs for a long
time i.e., the whole year. In addition, a heat map can provide another perspective to analyze
the losses during the hour of the day and the month of the year. Figure 23–25 show the
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heat maps for Schemes 1–3, respectively. In all these schemes it is evident that the storage
capacity losses are high in winter, especially during 3:00 p.m. to 8:00 p.m. It is due to higher
driving utilization of battery during the winter season.

Figure 23. Hourly mean total loss increment for Scheme 1 (Conv-EG).

Figure 24. Hourly mean total loss increment for Scheme 2 (Conv-PEG).

Figure 25. Hourly mean total loss increment for Scheme 3 (MP-iEMS).

6. Conclusions

This article analyzes energy distribution by various energy resources in a HAPN on a
multi-time scale. To make time-ahead cost effective scheduling decisions, the iEMS uses
a receding horizon rule-based mixed-integer dynamic algorithm. It reduces spontaneous
consumer’s energy costs by utilizing the cheapest available energy source at any instanta-
neous time while maintaining high customer comfort and improving HAPN self-sufficiency.
The storage life-cycle deterioration phenomenon is also observed to increase the overall
practical usefulness of the battery. However, for real-time device actions, the previously
acquired decision values from the scheduler are fed into the device-level control. The pro-
posed model predictive iEMS capabilities are demonstrated using real-life annual data
sets for homes, EV driving patterns, and EV battery (dis)charging patterns. The proposed
MP-iEMS Scheme has demonstrated that by incorporating dynamic energy prices, the total
energy demands are fully met by the energy obtained from the cheapest power source.
Additionally, we have also studied the cost reduction phenomenon by comparing three
different schemes. It shows that by using the proposed MP-iEMS technique, we have
reduced the cost of energy up to 13% as compared to conventional optimal techniques
for the whole year. The total energy utilization is also less because of the reduced losses
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during energy transformation from DC to AC and vice versa. Using MP-iEMS, we have
utilized optimal storage capacity of the EV battery with around 23% reduced (dis)charging
rates, and with battery deep discharges up to 50% of capacity. While the conventional
algorithms maintains the battery deep discharge at up to 73%, which reduces the shelf life
of the storage. Similarly, as compared to standard rule-based optimization procedures,
the proposed MP-iEMS lowers annual storage capacity loss owing to material deterioration
by 0.013%.
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Appendix A. Data Preparation

MATLAB/Simulink [48] is used to simulate the data. Therefore, the given datasets
have to be converted from the Python-specific “pickle” format to a MATLAB readable data
format, where the “.mat” format has been chosen. Additionally, a prediction is made for
the day-ahead electrical load and PV power values. The complete data conversion and load
prediction calculation is shown in Figure A1, separated in part one Pickle2Mat and second
part LoadDataPrediction. MATLAB script DSM_data_preparation_agg is the main script
and creates output folders, calls the data conversion function load_agg_pickle, load data
prediction function load_prediction, and plots a sample day.

https://github.com/klaus-rheinberger/DSM-data
https://github.com/klaus-rheinberger/DSM-data
https://github.com/chargeprice/open-ev-data
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Figure A1. Data conversion framework (*: placeholder for all subsets) .

In function load_agg_pickle inline Python code has been called using the
scipy.io.savemat method (Figure A2). The aggregated variables are saved in a MAT-
LAB timetable.

Figure A2. MATLAB implementation of Python source code.
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Additional predictions of electrical day-ahead load values PL,pred(t) in Equation (A2)
have been generated in function load_prediction using the same method as PPV,pred has
been generated in the proposed data set according to Equation (A1):

PPV,pred(t) = pPPV(t) + (1− p)PPV(t− τday) (A1)

PL,pred(t) = pPL(t) + (1− p)PL(t− τday) (A2)

where τday is the same time one day before, PPV(t) is the PV power production, and PL(t)
is the actual load demand at time t, and p is a weighting factor of value 0.75, which was
similarly used for PV power prediction in the given data set.

The following section explores the predictability of the anticipated values. Such
as in Figure A3a,b, the annual pattern electrical power consumption and photovoltaic
power production of the measured and predicted values are illustrated as reflected in
Equations (A1) and (A2). Figure A3c shows the box plot of the error distribution between
measured and predicted values of residential energy consumption on a week-day basis
and on a monthly basis respectively. The median percentage error on a daily basis ranges
from about 18–30%, the 25th percentile is about 14%, and the 75th percentile between 26%
and 61%. The maximum error is between 69–191%, where minimal percentage error on
a daily basis is between 3% and 10%. On a monthly view, one can see, that in summer
months, the 75th percentile is higher (48–64%), than in the rest of the year (27–34%) with
a median percentage error between 18–30%. In addition, the maximum error values are
higher (148–191%) in summer. The heat map in Figure A3e shows that the maximum
prediction error is in the morning and in the evening in both directions, underestimation
and overestimation.

Prediction of photovoltaic energy production shows higher maximum error values,
on a week-day basis (Figure A3d) ranging from 126–943% and on a monthly perspective of
view between 71% and 943%. Whereas the median percentage error is lower (week-day:
15–23%, monthly: 5–26%), compared to the load prediction values. Monthly 75th percentile
values are between 14% and 24% in the summer months, April to September with a peak in
June (51%) compared to 43–95% in the other months. The 25th percentile values in summer
is between 2–10%, compared to rest of the year with 14–19%. As expected, the higher
fluctuations in the prediction error outside summer time result from the corresponding
fluctuations of the solar irradiation due to unstable weather conditions (cloudiness) that
lead to high errors at low values as shown in Figure A3f.
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Figure A3. (a) Measured and predicted values of electrical power consumption of a household,
(b) PV power production, (c) relative prediction error distribution statistics of residential power
consumption, and (d) pv power production, (e) corresponding absolute error values over one year
for power consumption, and (f) PV power production [43].

Furthermore, to depict the behavior of EV (dis)charging, a Tesla Model Y Performance
has been chosen as the electrical vehicle. The charging curve data has been extracted
from [49], and is limited by a maximal grid demand of 20 kW for EV charging, as shown in
Figure A4. As one can see, the charging behavior can be split into two sections:

• Fast charging between 0–35% of SOC and;
• Decreased charging between 35–100% of SOC.

By limiting the charging power from the grid to a maximum of 20 kW, particularly
for the HAPN, there is only a reduction of the charging power above 99.5% to 18 kW. This
value can be higher for commercial charging ports.
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Figure A4. EV charging curve of a Tesla Model Y Performance [49] limited by 20-kW grid demand
power.
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Appendix B. Battery Degradation Model

The capacity loss due to the solid electrolyte interface (SEI) layer growth and active
material (AM) loss at each time step t may be computed using Equations (A3) and (A4),
respectively [40].

QSEI(t) =
∫ t

t−1
−

kSEI exp
(
− ESEI

RT

)
2(1 + λθ)

√
t

dt, (A3)

QAM(t) =
∫ t

t−1
kAM exp

(
−EAM

RT

)
· SOC(t) ·

∣∣Ibatt,disch(t)− Ibatt,ch(t)
∣∣dt, (A4)

where kSEI , ESEI , λ, kAM, and EAM are constant parameters given in Table 3. QSEI represents
the capacity loss caused by the SEI layer in percent, QAM represents the capacity loss caused
by active material decomposition in percent. Where R is the ideal gas constant, and T
represents the cell temperature. SOC is the state of charge, Ibatt,dch is the discharging
current, Ibatt,ch is the charging current, θ is a function of SOC and the current, also given in
Equation (A5):

θ = exp
[

nF
RT

(
ηk + UOCP

n −UOCP
s

)]
(A5)

where n = 2 represents the number of electrons reduced in the reaction, F represents
the Faraday constant, and UOCP

s represents the side reaction’s open circuit potential. ηk is
specified in Equation (A6), and UOCP

n is the open circuit potential of the anode as determined
by Equation (A8):

ηk =
RT
αF

ln
(

ξ +
√

ξ2 + 1
)

, (A6)

where α = 0.5 is the transfer coefficient of the electrochemical reaction, and ξ is defined by
Equation (A7).

ξ =
Rs I

6εAM,0i0V
. (A7)

In this equation, Rs = 7.5× 10−6 is the particle radius of the active material in m, I is the
ampere current, εAM,0 = 0.552 is the active material’s initial volume fraction, i0 = 0.05 is
the complexation current exchange current density in amp/m2, and V = 1.26× 10−5 is the
anode’s total volume in m3 [40].

UOCP
n =0.6379 + 0.5416 exp(−305.5309z)

+ 0.044 tanh
(
− z− 0.1958

0.1088

)
− 0.1978 tanh

(
z− 1.0571

0.0854

)
− 0.6875 tanh

(
z + 0.0117

0.0529

)
− 0.0175 tanh

(
z− 0.5692

0.0875

)
,

(A8)

where z = CLi
CLi.max

. The concentration of lithium ions at the graphite particle interface is
denoted by CLi, and the highest lithium concentration in the graphite electrode is denoted
by CLi.max [40]. Besides, z and SOC are related as z = SOC · (z100% − z0%) + z0%, where
z100% = 0.9 and z0% = 0.
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