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Abstract

In this thesis we study the geometry of Culler–Vogtmann Outer Space CVn with regard
to the Lipschitz metric. We prove that the theorem of Francaviglia and Martino in
[FM12b] about the isometry group of Outer Space also holds for reduced Outer Space,
that is any isometry of CV red

n comes from the Out(Fn)-action on Outer Space. For
this purpose we introduce envelopes in CVn and use them to show how to construct a
piecewise rigid geodesic between two points and all rigid geodesics emanating from a
given point. Another application of these envelopes is the construction of a local geodesic
which passes through a given sequence of points.

Furthermore, we introduce two families of isometric embeddings between Outer Spaces
of different rank, which we call naive embeddings and natural embeddings. We show
that natural embeddings from CVn to CVk exhibit some kind of rigidity for n > 2 while
natural embeddings from CV2 to CVk can be deformed into other isometric embeddings.

Zusammenfassung

In dieser Dissertation untersuchen wir die Geometrie von Culler–Vogtmann Outer Space
CVn bezüglich der Lipschitz-Metrik. Francaviglia und Martino zeigten in [FM12b], dass
jede Isometrie von CVn bereits von der Out(Fn)-Aktion kommt. Wir zeigen, dass dies
auch für den reduzierten Outer Space gilt. Hierfür führen wir Einhüllende in CVn ein
und zeigen wie wir mit diesen eine stückweise starre Geodätische zwischen zwei Punkten
konstruieren und alle starren Geodätischen die von einem Punkt ausgehen berechnen
können. Als weitere Anwendung der Einhüllenden geben wir eine Konstruktion für eine
lokal Geodätische an, die durch eine beliebige zuvor gegebene Folge von Punkten geht.

Weiterhin führen wir zwei Familien von isometrischen Einbettung zwischen Outer
Spaces von verschiedenen Rängen ein, welche wir naive Einbettungen und natürliche
Einbettungen nennen. Anschließend zeigen wir, dass natürliche Einbettungen von CVn
nach CVk für n > 2 eine gewisse Art von Starrheit innehaben wohingegen natürliche
Einbettungen von CV2 nach CVk zu weiteren isometrischen Einbettungen deformiert
werden können.
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Preface

Inspired by the study of the mapping class group via its action on Teichmüller Space
(see [FM12a, Chapter 10]), Marc Culler and Karen Vogtmann introduced in 1986 in their
paper [CV86] a topological space in order to study the outer automorphism group of
the free group Fn. This space is nowadays known as Culler–Vogtmann Outer Space and
denoted by CVn. Outer Space can be described as an analogon of Teichmüller Space
for finite, metric graphs. More precisely, a point in Outer Space can be written as a
finite, metric graph without leaves and with a marking up to some equivalence. In this
context a marking is a homotopy equivalence from the standard rose graph Rn, which
is the graph with one vertex and n edges, to the finite, metric graph. In particular, we
identify in this way the free group Fn with the fundamental group of the finite, metric
graph. Two points in CVn are identified, if there exists a homothety, that is an isometry
up to scaling, between the two underlying marked, metric graphs which carries over the
markings up to free homotopy.

Outer Space comes with a natural simplicial structure. Namely an (open) simplex of
Outer Space consists of all marked, metric graphs which differ only by their edge lengths.
For this description we use that we can normalise points in CVn by scaling such that
the edge lengths have sum one. By setting some of the edge lengths to zero, that is
collapsing the corresponding edges, we obtain a face of the simplex. Observe that there
are some faces missing as we are not allowed to collapse a loop (see Figure 4 for the
simplicial structure of CV2). A short calculation using the Euler characteristic shows
that the maximal dimensional simplex of CVn has dimension 3n− 4.

In analogy to the action of the mapping class group on Teichmüller Space the outer
automorphism group Out(Fn) acts on CVn by change of marking. Culler and Vogtmann
showed that the Out(Fn)-action on CVn is properly discontinuous and Out(Fn) acts
cocompactly on a contractible deformation retract of CVn. Since then Out(Fn) and its
action on Outer Space have been actively studied. For example Mladen Bestvina and
Michael Handel introduced train tracks in [BH92] and proved Scott’s conjecture, namely
that every fixed subgroup of an automorphism of Fn has at most rank n. Bestvina,
Handel and Mark Feighn showed in [BFH00, BFH05] that the Tits alternative holds for
Out(Fn). The bordification of Outer Space was introduced by Bestvina and Feighn in
[BF00], to mention only some of the work. A good place to start reading are the surveys
[Vog02] from Vogtmann and [Bes02] from Bestvina.

Similarly to the asymmetric Thurston metric in Teichmüller Space introduced by
William Thurston in [Thu98], Stefano Francaviglia and Armando Martino introduced in
[FM11] an asymmetric Lipschitz metric for Outer Space. Both metrics can be described
in terms of the minimal Lipschitz constant of change of marking maps. Equivalently they
can be described by the supremal stretching of loops (see [Thu98, Theorem 8.5] for the
Thurston metric and [FM11, Proposition 3.15] for CVn).

While for the Thurston metric the supremum of the stretching of simple loops might
not be attained, Francaviglia and Martino showed that in Outer Space the maximal
stretching is always attained by an element of a finite set of loops called the candidates,
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which depend only on one of the marked graphs. Consequently, given two points in Outer
Space we can algorithmically calculate their distance as described in Section 1.6. We
have implemented the described algorithm in Sage [Sag] and the implementation can be
found in [Ste18] and in the Appendix.

It follows from the definition of the Lipschitz metric in terms of maximal stretchings
of loops that the action of Out(Fn) on CVn is by isometries. Francaviglia and Martino
showed in [FM12b] that all isometries of CVn with regard to the asymmetric Lipschitz
metric dR and its symmetrised version d(A,B) := dR(A,B) + dR(B,A) come from the
action of an element in Out(Fn). The analogue statment for Teichmüller space was proven
up to a few sporadic cases in [Wal14] and for the once punctured torus in [DLRT20].

To name two applications for the Lipschitz metric, observe that we have for an auto-
morphism φ ∈ Out(Fn) the displacement function A 7→ dR(A,A · φ). This displacement
function was used by Bestvina [Bes11] to give an alternative proof that every irreducible
automorphism can be represented as train track map and by Francaviglia and Martino
in [FM21] to reprove an algorithm to solve the conjugacy problem for irreducible auto-
morphisms. For a survey about the Lipschitz metric of Outer Space we refer the reader
to [Vog15].

The goal of this thesis is to continue the study of the geometry of Outer Space with
regard to the Lipschitz metric. Our emphasis lies on isometric maps between Outer
Spaces. We will first study the isometry group of reduced Outer Space. Afterwards we
turn to the question, how isometric embeddings between Outer Spaces of different rank
look like and whether they inherit similar rigidity properties as isometries. Furthermore,
we obtain results about rigid geodesics and local geodesics.

Reduced Outer Space is a deformation retract of CVn which consists of the marked,
metric graphs in CVn without separating edges. We will show in Theorem 3.9 that the
isometry group of reduced Outer Space equals the isometry group of Outer Space. In
order to prove Theorem 3.9 we want to apply the proof of Francaviglia and Martino for
non-reduced Outer Space described in [FM12b]. The missing step is to show that the
isometries of reduced Outer Space are simplicial. We will prove this in Theorem 3.8. The
proof of this theorem and the needed tools are published as preprint in [Ste19].

The crucial tool in the proof of Theorem 3.8 are so called envelopes introduced in
Section 2, which are the sets of all points lying on geodesics between two given points.
We will see that an envelope is always a compact subset of CVn, whose intersection with
a closed simplex of CVn is a polytope. In particular, the intersection of an envelope with
a simplex has a well-defined dimension. However the dimension can differ from simplex
to simplex (see Figure 13).

We will introduce the notion of general position of two points (see Definition 3.4) and
show in Lemma 3.7 that two points in the same simplex and in general position to each
other have in their simplex a full dimensional envelope. In contrast, for any open subset
U intersecting at least two simplices there exist two open subsets UA and UB of U such
that for any pair A ∈ UA and B ∈ UB their envelope has lower dimension near B. Since
envelopes are preserved under isometries we can conclude that the (3n− 5)-skeleton of
CVn is preserved under isometries. To see that an isometry preserves also the skeleton of
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lower dimension, observe that any simplex of dimension lower than 3n− 5 is the facet
of more than two simplices. Hence, we get by induction that an isometry preserves all
skeletons and is in particular simplicial.

Instead of an envelope between two points, we can also consider envelopes with a
starting point and a coarse direction, which yields the notion of in-envelopes and out-
envelopes (see Definition 2.11). An in-envelope of a point B ∈ CVn along a coarse
direction S ⊂ Fn consists of all points A ∈ CVn such that all loops in S are maximally
stretched from A to B. Accordingly an out-envelope of a point A ∈ CVn along S ⊂ Fn
consists of all points B ∈ CVn such that all loops in S are maximally stretched from A to
B. That is A lies in the in-envelope of B along S if and only if B lies in the out-envelope
of A along S. As in the case of envelopes their intersection with simplices are again
polytopes and can be explicitly computed.

As it turns out envelopes are also a useful tool to understand rigid geodesics. Here
we call a geodesic rigid if each subpath is the unique geodesic joining its two endpoints.
Rigid geodesics are quite rare in Outer Space, namely for any given point there exists only
finitely many rigid geodesics in a simplex passing through this point. While a geodesic
between two points in Outer Space is typically not unique, we will show in Theorem 2.14
how to construct for any two points a piecewise rigid geodesic between them by going
along the edges of envelopes.

In Theorem 2.21 we fully classify rigid geodesics. Namely, we show that all rigid
geodesics can be written as concatenation of edges of in- and out-envelopes. Hence, we
can compute all rigid geodesic emanating from a given point.

In Section 4 we will briefly discuss local geodesics in Outer Space. As another
application of envelopes we will see in Theorem 4.4 that given a sequence of points in
CVn we can construct a local geodesic passing through them. Furthermore, we will show
in Proposition 4.6 that we can approximate a given path in Outer Space arbitrarily well
by local geodesics with regard to the symmetric and asymmetric metric.

We will discuss isometric maps between Outer Spaces of different rank in Section 5
and show that there exist continuous families of isometric embeddings of CVn into CVk
for arbitrary n < k. Since we have seen in Section 3 that the simplicial structure is
determined by the Lipschitz metric, it is natural to ask, if all isometric embeddings are
simplicial. We will give examples which show that this is not always the case.

The isometric embeddings we will construct can be divided into the following two
types:

• The naive embeddings: They correspond to identifications of Fn with a free factor
of Fk and come from attaching a graph with fundamental group Fk−n to the points
in CVn.

• The natural embeddings: They come from finite coverings and correspond to
identifying Fk with a finite index subgroup of Fn. By the Nielsen-Schreier formula
we only have natural embeddings for k = 1 + d(n− 1) with d ∈ N.

While we inductively construct a naive isometric embedding for n = 2 in Section 5.1,
we need for higher rank a coherent choice of a base point where we attach the graph.
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We will discuss two ways how to get such a choice of a base point and the resulting
embeddings in Section 5.2. For the first we make use of translation axes. The second
is due to Skora [Sko90] and generalises the length function to a set of loops. It should
be noted here that only the first choice of base points leads to an isometric embedding,
while for the second we obtain isometric embeddings from finite subcomplexes of CVn
into CVk.

We will see in Section 5.2 that from a naive embedding we get a continuous family
of isometric embeddings by slightly deforming the attached graph. We will discuss in
Section 6 whether we can also deform natural embeddings in a similar manner to obtain
new isometric embeddings. As it turns out, all the natural embeddings from CV2 to a
CVk with k > 2 can be deformed. On the other hand the natural embeddings from CVn
have for n ≥ 3 some sort of rigidity: We will see in Theorem 6.8 that if an isometric
embedding differs only in a bounded subset from such a natural embedding, then they
already have to be equal.
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1 Preliminaries

1.1 What is Outer Space?

This section will give a quick introduction into the basic definitions and properties of
Culler–Vogtmann Outer Space introduced in [CV86]. The section mainly follows the
surveys [Vog15] and [Vog02]. Typically a point in Outer Space CVn consists of three
data, a finite graph Γ without leaves, a marking on Γ and the lengths of its edges.

Definition 1.1 (i) For n ∈ N the rose Rn is the graph with one vertex and n edges,
also called petals. We identify the fundamental group π1(Rn, ?) with the free group
Fn generated by x1, . . . , xn by assigning each (oriented) petal an element xi.

x1
x2

x3

x4

x5
x6

x7

x8

x9

Figure 1: The rose graph R9 with labelled petals

(ii) Let Γ be a finite graph where each vertex has at least valency three. A marking
on Γ is a homotopy equivalence m : Rn → Γ. We use the induced isomorphism
m∗ : Fn = π1(Rn, ?) → π1(Γ,m(?)) to identify Fn with the fundamental group
π1(Γ,m(?)). As we will be interested only in the homotopy class of the marking,
we will from now on omit the base points in the fundamental groups and use this
identification to read conjugacy classes of elements of Fn as reduced cycles in Γ (see
Notation 1.2 (ii)).

(iii) Let Γ be a graph and let E(Γ) be the edges of Γ. A function

l : E(Γ)→ R>0

which assigns to each edge e ∈ E(Γ) a positive real length l(e) is called a length
function and the pair (Γ, l) is called a metric graph. We can think of (Γ, l) as the
metric simplicial 1-complex obtained by glueing intervals [0, l(e)] glued together at
their endpoints. The volume of a metric graph is defined as the sum over all edge
lengths, that is

vol(Γ, l) :=
∑

e∈E(Γ)

l(e).
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We call a metric graph normalised if it has volume 1.

(iv) The (projectivised) Outer Space of rank n is defined as the set of marked, metric
graphs (Γ, l,m) together with some equivalence

CVn := {(Γ, l,m) | Γ is a finite graph with all vertices having at least valency 3

together with a length function l : E(Γ)→ R>0

and a marking m : Rn → Γ}/ ∼

where two points (Γ, l,m), (Γ′, l′,m′) are equivalent (Γ, l,m) ∼ (Γ′, l′,m′), if there
exists a homothety h : (Γ, l) → (Γ′, l′) such that the induced marking h ◦ m is
homotopic to m′, that is the following diagram commutes up to homotopy:

(Γ, l)

Rn

(Γ′, l′)

h

m

m′

(v) The reduced Outer Space CV red
n of rank n is the subset of CVn where the graphs

have no separating edges, i.e. a point in CV red
n is a 2-edge-connected metric graph

with a marking.

To rephrase the above definition, a point in CVn can be represented as a finite metric
graph Γ without leaves together with a fixed identification of the free group Fn with its
fundamental group π1(Γ).

Notation 1.2 (i) Conventionally, the marking is written down by a homotopy inverse
m̃ in the following way: Fix a spanning tree of Γ which will be collapsed by m̃ to
the vertex of Rn. The rest of the edges are labelled with an orientation and a basis
of Fn depending on the marking. Each edge will then be sent by m̃ to the sequence
of petals in Rn corresponding to its label (see Figure 2).

Keep in mind that such a homotopy inverse only defines the marking up to homotopy.
Since two homotopic markings are identified under the equivalence in CVn, the
homotopy inverse defines the marking of a point in CVn.

(ii) For a marked graph (Γ,m) we can identify each element of Fn with its image under
the marking in π1(Γ) and vice versa. We call a cycle α : S1 → Γ cyclically reduced if
the map α is an immersion. Observe that each cycle in Γ is homotop to a cyclically
reduced loop by iteratively retracting the edges where α is not locally injective.
This cyclically reduced loop is unique up to change of the start- and endpoint and
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x1

x5

x2x3

x−1
1 x4x2

x9

x6

x6x7

x6x8

• •

••

•

•

••

• •

•

•

x1
x2

x3

x4

x5
x6

x7

x8

x9

Figure 2: A typical element in Outer Space and its homotopy inverse image in R9

parametrisation. As we are only interested in the marking up to homotopy we will
typically identify each (conjugacy class of an) element α ∈ Fn with a cyclically
reduced representation of m(α).

(iii) Let A := (Γ, l,m) ∈ CVn be a point in Outer Space and α ∈ Fn. As in (ii) the
element α has a unique cyclically reduced realization. We will denote its length by
lA(α).

There is an alternative definition of Outer Space as actions of Fn on metric trees, which
we will use in Section 5.2 and Section 5.3. This definition comes from the action of the
fundamental group of Γ on its universal covering. To distinguish the two definitions for
Outer Space here we will denote Outer Space in the latter viewpoint as Xn.

Definition 1.3
A point in Outer Space Xn is a metric, simplicial tree (T, l) together with a free, minimal
action m : Fn → Isom(T, l) up to some equivalence. Here free means that the action has
only trivial stabilisers and minimal means that there exist no non-trivial m-invariant
subtree.

We identify two points (T, l,m), (T ′, l′,m′) ∈ Xn, if there exists an Fn-equivariant
homothety h : T → T ′, i.e. for all α ∈ Fn we have m′(α) ◦ h = h ◦m(α).

It is easy to check that the map from CVn to Xn which sends a metric graph Γ to
its universal cover T and its fundamental group to its deck transformation group is a
bijection. A proof for this statement can for example be found in [AK19, Section 2.3].
The length of an element α ∈ Fn for some (T, l,m) ∈ Xn is its minimal displacement of
points in T by m. By [CM87] the length of some non-trivial element α ∈ Fn \ {id} is
exactly its translation distance along its translation axis:
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Lemma 1.4 ([CM87, 1.3])
Let (T, l,m) ∈ Xn be a point in Outer Space and let α ∈ Fn \ {id} be a non-trivial
element. We denote with

l(T,l,m)(α) := inf
p∈T

dT (p, α · p)

the length of α in (T, l,m) and by

Tα := {p ∈ T | dT (p, α · p) = l(T,l,m)(α)}

its characteristic set. We have then that Tα is an embedding of the real line and α acts
on Tα by translation. We call the set Tα the translation axis of α.

Furthermore we have for any p ∈ T the equality dT (p, α · p) = l(T,l,m)(α) + 2dT (p, Tα).
Observe that the translation axis does not depend on the lengths of the edges but only
on the tree and the action m.

1.2 The topology of Outer Space

There is a natural topology on Outer Space defined as follows.
The length function gives an embedding into the projective space of the product of R

over Fn:
l : CVn → P(RFn) , A = (Γ, l,m) 7→ {lA(α)}α∈Fn

where the injectivity follows from the fact that minimal, free isometric actions of Fn on
trees are determined by their length function ([AB16] Proposition 7.13 (ii) ). Alternatively,
the injectivity also follows from the Lipschitz metric see Definition 1.10. Hence, we
can give CVn the subspace topology of P(RFn), where we endow RFn with the product
topology.

Alternatively we can describe the topology from the fact that we can build CVn as
simplicial complex with some missing faces. Each simplex will correspond to a marked
graph where we vary edge lengths. As each simplex is a face of at most finitely many
simplices, it follows from Remark 1.6 that these two descriptions are indeed equivalent.

Definition 1.5
The data (Γ,m) of an element A = (Γ, l,m) ∈ CVn is called the topological type of A.
We will denote this from now on by ∆(A).

After normalising the volume we will see in Remark 1.6 that points of the same
topological type correspond to an open simplex in CVn. Hence, we will also denote by
∆(A) the corresponding open simplex in CVn.

Remark 1.6
Let (Γ,m) be a marked graph with edges E(Γ) = {e1, . . . , ek}. For the open simplex
∆ = {(l1, . . . , lk) | l1, . . . , lk ∈ R>0,

∑k
i=1 li = 1} we consider the map

ι : ∆ → CVn,

(l1, . . . , lk) 7→ (Γ,m, l) with l(ei) = li for all i ∈ {1, . . . k}.

Then ι is a homeomorphism onto its image.
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Proof. It is clear that ι is continuous as the lengths of cycles continuously depend on the
lengths of the edges. From Lemma 5.7 it will follow directly that ι is also injective and
open.

For each topological type we then get by Remark 1.6 an embedding from an open
simplex to CVn. Their images cover the whole Outer Space. The dimension of a simplex
corresponding to a marked graph is one less than the number of edges in the marked
graph. That means that maximal dimensional simplices correspond to the 3-regular,
marked graphs and by the Euler characteristic such a simplex has dimension 3n − 4.
Accordingly if a simplex has lower dimension, then its corresponding marked graph has a
vertex of valency at least four.

The simplices are glued together in the following natural way. If we can pass from
one marked graph (Γ,m) to another marked graph (Γ′,m′) by collapsing a forest (see
Figure 3), then we identify the open simplex of (Γ′,m′) with the missing face of the
simplex of (Γ,m) were the edges of the forest have length 0.

α1 α2
α3 α4

α5
α6

•

•

•

•

•

•

•

; α1 α2α3

α4

α5
α6•

•
• • ; α1 α2α3

α4

α5
α6•

•
• ••

Figure 3: Collapsing the black forest

Hence, we can represent CVn as a simplicial complex (see Figure 4) with some missing
faces. This will induce the same topology on CVn as the length function. By contracting
separating edges in each graph we get that CV red

n is a deformation retract of CVn. In
Figure 4 this corresponds to retracting the yellow fins into the blue plane.

To denote how far or close we are to such a missing face we introduce the notion
of thinness and thickness. Here a graph is thin if it has a loop of a very short length
compared to its volume. Accordingly if all loops have at least some certain length we call
it thick. By saying we go to the thin part of CVn we mean that we gradually decrease
the length of a loop to be arbitrarily short.

Definition 1.7
Let ε > 0 and A := (Γ, l,m) ∈ CVn be a point in Outer Space. We say A is ε-thin if
there exists an α ∈ Fn \ {id} such that lA(α)/ vol(A) < ε, otherwise we call A ε-thick.
That means a normalised graph is always as thick as its shortest loop.

The following two important facts about Outer Space have been proven by Culler and
Vogtmann:

Theorem 1.8 (Culler–Vogtmann [CV86])
CVn is contractible.
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Figure 4: A picture of CV2 by Karen Vogtmann [Vog15]

On CVn we have a natural right action of Aut(Fn) by changing the marking. Each
element φ ∈ Aut(Fn) can be realised as a homotopy equivalence φ′ : Rn → Rn and
precomposing to the marking yields the action on CVn: (Γ, l,m) • φ := (Γ, l,m ◦ φ′).
Furthermore, inner automorphisms act trivially on CVn since the marking is only defined
up to homotopy, hence we actually have an action of Out(Fn) := Aut(Fn)/ Inn(Fn).

Theorem 1.9 (Culler–Vogtmann [CV86])
The Out(Fn)-action on CVn is fix-point free and each point has a finite stabiliser.

Although this action is not cocompact on CVn, Culler and Vogtmann showed that
it acts cocompactly on the spine Kn of Outer Space. The spine is a simply connected
deformation retract and is the barycentric decomposition of CVn without the simplices
that would hit the missing faces of CVn.

1.3 The metric on Outer Space

Similarly to the Thurston metric on Teichmüller space as introduced in [Thu98], Fran-
caviglia and Martino introduced an asymmetric metric on CVn in [FM11]. The content
of this section is from their paper [FM11].

Definition 1.10
Let A := (Γ, l,m) and B := (Γ′, l′,m′) ∈ CVn be two points in CVn. We call a continuous
map h : (Γ, l) → (Γ′, l′) a change of marking map from A to B if we have h ◦m ∼= m′,
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that is the following diagram commutes up to homotopy:

Rn Γ

Γ′

m

m′
h

Consider the set S of all change of marking maps h from A to B. Since finite metric
graphs are compact, each h ∈ S is Lipschitz continuous with Lipschitz constant L(h).
We call then

ΛR(A,B) := inf
h∈S

L(h)

the stretching factor from A to B and define the Lipschitz distance from A to B as

dR(A,B) := log

(
ΛR(A,B) · vol(A)

vol(B)

)
The symmetric Lipschitz distance is defined as the sum

d(A,B) := dR(A,B) + dR(B,A).

The Arzela-Ascoli theorem yields that the infimum ΛR(A,B) is actually attained by a
map h ∈ S. Thus, it is clear that dR satisfies the triangle inequality. As any surjective
1-Lipschitz map between two volume 1 graphs has to be already an isometry we have
that dR(A,B) = 0 implies A = B. Example 1.13 shows that dR is not symmetric. Hence,
we have that dR is an asymmetric metric on CVn and d is a symmetric metric on CVn.

Similar to the Thurston metric we can calculate ΛR as the supremal stretching of paths
in the graph. By Proposition 1.12 from [FM11] it turns out that in Outer Space this
supremum is always attained and can explicitly be calculated by the stretching of a finite
set of paths, namely the candidates of a graph which are defined as follows:

Definition 1.11
For a given point A ∈ CVn a candidate of A is a cycle in A whose image is a topological
embedding of a simple loop, a figure of eight or a barbell (see Figure 5). We will denote the
set of candidates of A with cand(A) and identify it via the marking as the corresponding
subset (of conjugacy classes) in Fn. Clearly the candidates of A only depend on the
topological type ∆(A). As we have seen in Remark 1.6 a topological type corresponds to
a simplex ∆ ⊂ CVn, hence we will write accordingly cand(∆) := cand(A) for any A ∈ ∆.

Figure 5: A simple loop, a figure of eight and a barbell
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Proposition 1.12 (Francaviglia–Martino [FM11, Proposition 3.15])
For A,B ∈ CVn we have:

ΛR(A,B) = sup
α∈Fn

lB(α)

lA(α)
= max

α∈cand(A)

lB(α)

lA(α)

Since there are only finitely many candidates in a finite graph, we can compute
ΛR(A,B). The algorithm for doing this is described in Section 1.6. An implementation
for Sage [Sag] can be found under [Ste18]. Furthermore this identification also shows
that the topology from dR is the topology on CVn described in Section 1.2.

Example 1.13 (i) As an example that dR is not symmetric, consider the two metric
graphs

A :=

1/4 3/4

B :=

1/2 1/2

with the indicated edge lengths and the same marking. Observe that the candidates
in A are up to orientation the two simple loops and the two figures of eight, namely
the figure of eight with both loops in clockwise direction and the figure of eight
with one loop in clockwise and the other in anticlockwise direction. As the figures
of eight all have length 1, we have as stretching factors

ΛR(A,B) = max

{
1/4

1/2
,
3/4

1/2
, 1

}
= 3/2

ΛR(B,A) = max

{
1/2

1/4
,
1/2

3/4
, 1

}
= 2.

(ii) As a second example involving the thin part of Outer Space let A,B ∈ CVn be of
the same topological type and let A be ε-thin and B be δ-thick for some δ � ε > 0.
After normalising we have ΛR(A,B) ≥ δ

ε and ΛR(B,A) ≤ 1
δ . That means “It’s easy

to get to the boundary of Outer Space, but really hard to come back”.

As we will frequently compare the stretching of different candidates we will regularly
use the following easy but very useful inequality:

Lemma 1.14
Let a, b, c, d ∈ R and c, d > 0, then we have

min

{
a

c
,
b

d

}
≤ a+ b

c+ d
≤ max

{
a

c
,
b

d

}
Furthermore we have a+b

c+d = max{ac ,
b
d} if and only if a

c = b
d .
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Proof. By symmetry we assume a
c ≥

b
d . We have

a

c
=
a · (c+ d)

c · (c+ d)
=

ac+ ad

c · (c+ d)
=

a

c+ d
+
a

c
· d

c+ d

≥ a

c+ d
+
b

d
· d

c+ d
=

a

c+ d
+

b

c+ d
=
a+ b

c+ d

=
a

c
· c

c+ d
+

b

c+ d
≥ b

d
· c

c+ d
+

b

c+ d
=

bc+ bd

d · (c+ d)
=
b

d
,

where the inequalities are equalities if and only if a
c = b

d holds.

As a direct application of this inequality we get the following:

Corollary 1.15
Let A,B ∈ CVn have the same topological type. Let furthermore αβ be a figure of eight
in A with loops α and β. Then αβ is exactly then maximally stretched from A to B if
also α and β are maximally stretched.

Therefore it is only interesting to consider the stretching of a figure of eights if the two
points lie in different simplices of CVn.

Definition 1.16
We say α ∈ Fn is a witness from A to B for the asymmetric metric, if α is maximally
stretched from A to B, i.e. if ΛR(A,B) = lB(α)

lA(α) holds. We denote the set of witnesses

from A to B as WR(A,B).
Most of the time the witnesses we consider will be candidates of A. Such witnesses will

be called candidate witnesses. The set of candidate witnesses is denoted by CWR(A,B) :=
cand(A) ∩WR(A,B).

A pair (α, β) ∈ Fn×Fn is called a (symmetric) witness for A and B for the symmetric
metric, if α is an asymmetric witness from A to B and β is an asymmetric witness from
B to A. We denote the set of symmetric witnesses for A and B as W (A,B) and the set
of symmetric candidate witnesses as CW (A,B) := W (A,B) ∩ (cand(A)× cand(B)).

As all conjugates of an element α ∈ Fn have the same length and for powers of α we
have lA(αk) = |k| · lA(α) we will from now on assume that a given witness is a simple
element in Fn and in particular it has no proper roots. Accordingly we will ignore
conjugated and inverted candidates, that is for (αβ) ∈ cand(A) we will consider βα and
β−1α−1 to be the same candidate as αβ.

By Proposition 1.12 the set of candidate witnesses and in particular the set of witnesses
is never empty. We will see that in most of the cases there is only one candidate witness.

As we will see in the next section, witnesses play a crucial role in the study of geodesics
and can be considered as coarse directions of geodesics.
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1.4 Geodesics in Outer Space

To understand a metric space it is quite often important to understand its geodesics. For
example in [FM12b] Francaviglia and Martino used rigid geodesics in CVn to determine
the isometry group of a simplex corresponding to a multitheta-graph and thereby the
isometry group of CVn. We will also see in Section 3 that the simplicial structure of CV red

n

is encoded in its geodesics. This section contains the basic definitions and properties of
geodesics, which we will use in the later sections. Up to Lemma 1.25 and its corollary
the following statements are well known and can for example be found in [FM11].

As in spaces with a symmetric metric one defines length and geodesic paths in regard
to an asymmetric metric:

Definition 1.17
Let (X, d) be a space with an asymmetric metric d, I ⊆ R an interval and γ : I → X a
path.

(i) Let J := [s, t] ⊆ I be a closed subinterval. Then the length of the arc γ|J is defined
as the supremum

l(γ|J) := sup

{
N∑
i=1

d(γ(ti−1), γ(ti)) | N ∈ N, s =: t0 ≤ t1 ≤ · · · ≤ tN := t

}
.

We call γ rectifiable if and only if the arc length is finite for every arc of γ.

(ii) A rectifiable curve γ is called a geodesic if and only if for every arc J := [s, t] ⊆ I
we have l(γ|J) = d(γ(s), γ(t)).

Be aware that - as d is not symmetric - these definitions highly depend on the orientation
of γ. For example we can have d(γ(s), γ(t)) 6= d(γ(t), γ(s)). In particular, if γ is a dR-
geodesic in CVn, we can still have that γ(t) := γ(−t) is not a dR-geodesic. This is for
example the case in Lemma 1.25. We can alternatively characterise geodesics by the
triangle equality:

Lemma 1.18 ([FM11, Lemma 5.1])
Let (X, d) be a space with an asymmetric metric d, I ⊆ R an interval and γ : I → X a
path. Then we have that γ is a geodesic if and only if it realises the triangle equality

d(γ(s), γ(t)) = d(γ(s), γ(r)) + d(γ(r), γ(t))

for all s, t, r ∈ I with s ≤ r ≤ t.

Proof. Let s ≤ r ≤ t ∈ I.
“⇒”: By the triangle inequality of the metric we have

d(γ(s), γ(t)) ≤ d(γ(s), γ(r)) + d(γ(r), γ(t))

≤ l(γ|[s,t]) = d(γ(s), γ(t))

17



where the last inequality is the definition of length and the last equality comes from the
definition of geodesic. Hence, equality holds.

“⇐”: Let s =: t0 ≤ · · · ≤ tN := t be any subdivision of [s, t]. Then iteratively applying
the triangle equality yields

N∑
i=1

d(γ(ti−1), γ(ti)) = d(γ(t0), γ(t2)) +
N∑
i=3

d(γ(ti−1), γ(ti)) = · · · = d(γ(t0), γ(tN ))

and hence l(γ|[s,t]) = d(γ(s), γ(t))

Remark 1.19
The definition of a geodesic differs slightly in different contexts, for example we do not
require here a geodesic to be parametrised by length. It is also quite common to require
a geodesic to only locally minimise the distance and not globally as we do.

The reason we consider only globally minimising geodesics is that local geodesics
might “change directions” in CVn and behave not the way you normally expect from
geodesics. For example any path in CVn can be approximated arbitrarily close with a
locally minimising geodesic. We will discuss this shortly in Section 4.

To emphasise with respect to which metric of CVn a geodesic is considered we will
stick to the following notation:

Notation 1.20
From now on a geodesic in CVn means a geodesic with respect to the asymmetric metric
dR (see Definition 1.10) and a symmetric geodesic is a geodesic with respect to the
symmetric metric d.

Observe that symmetric geodesics are exactly the paths which are geodesics independent
of the orientation. Namely by Lemma 1.18 and Definition 1.10 of the symmetric metric
we have the following corollary:

Corollary 1.21
Let γ : I → CVn be a path and let γ(t) := γ(−t) be the path γ with reversed orientation.
Then γ is a symmetric geodesic if and only if γ and γ are geodesics.

As mentioned before witnesses play the role of coarse directions of geodesics in the
sense that witnesses are preserved along geodesics and encode how to continue a geodesic.

Lemma 1.22
Let A,B ∈ CVn, γ : I → CVn be a geodesic from A to B and t ∈ I. Then we have
WR(A,B) = WR(A, γ(t)) ∩WR(γ(t), B).

Proof. Without loss of generality we assume that all representants are normalised to
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have volume 1. By Lemma 1.18 γ satisfies the triangle equality and we have for all t ∈ I:

α ∈WR(A,B) ⇐⇒ log

(
lB(α)

lA(α)

)
= dR(A,B)

⇐⇒ log

(
lγ(t)(α)

lA(α)

)
+ log

(
lB(α)

lγ(t)(α)

)
= dR(A, γ(t)) + dR(γ(t), B)

(3)⇐⇒ log

(
lγ(t)(α)

lA(α)

)
= dR(A, γ(t)) and log

(
lB(α)

lγ(t)(α)

)
= dR(γ(t), B)

⇐⇒ α ∈WR(A, γ(t)) ∩WR(γ(t), B)

Where we used in the implication (3) that the inequalities

log

(
lγ(t)(β)

lA(β)

)
≤ dR(A, γ(t)) and log

(
lB(β)

lγ(t)(β)

)
≤ dR(γ(t), B)

hold for any β ∈ Fn.

The converse is also true, namely any path preserving a witness is already a geodesic:

Lemma 1.23
Let A,B ∈ CVn and γ : I → CVn be a path from A to B. Then γ is a geodesic if
and only if there exists an α ∈ WR(A,B) such that for all s, t ∈ I with s ≤ t we have
α ∈WR(γ(s), γ(t)).

Proof. If γ is a geodesic then Lemma 1.22 implies WR(γ(s), γ(t)) ⊇ WR(A, γ(t)) ⊇
WR(A,B). By Proposition 1.12 WR(A,B) has at least one element α ∈WR(A,B).
On the other hand if α ∈WR(γ(s), γ(t)) for all s ≤ t ∈ I, then we have after normalising
for all s ≤ r ≤ t ∈ I

dR(γ(s), γ(r)) + dR(γ(r), γ(t)) = log

(
lγ(r)(α)

lγ(s)(α)

)
+ log

(
lγ(t)(α)

lγ(r)(α)

)
= log

(
lγ(t)(α)

lγ(s)(α)

)
= dR(γ(s), γ(t)).

Hence, γ is a geodesic by Lemma 1.18.

In particular we have that geodesics are exactly the paths which preserve a witness and
so by Lemma 1.22 all witnesses between its endpoints. As there always exists a candidate
witness we can also say that geodesics from A to B are the paths which maximally stretch
a candidate from A along its way.

Using the Lemmas 1.22 and 1.23 one can see that two geodesics concatenate to a
geodesic if and only if they share a witness. By Lemma 1.18 this is exactly the case when
their endpoints satisfy the triangle equality.

Corollary 1.24
Let γ : [r, s] → CVn and σ : [s, t] → CVn be two geodesics with γ(s) = σ(s). Then the
following are equivalent:
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(i) Their concatenation γ ∗ σ : [r, t]→ CVn is a geodesic.

(ii) WR(γ(r), γ(s)) ∩WR(σ(s), σ(t)) 6= ∅.

(iii) dR(γ(r), σ(t)) = dR(γ(r), γ(s)) + dR(σ(s), σ(t)).

By [FM11, Theorem 5.5] we have that (CVn, dR) is a geodesic space. The more concrete
statement together with a sketch of the proof can be found later as Theorem 1.35.

While CVn with the asymmetric metric is a geodesic space, this does not hold for the
symmetric metric. As an example we have that for each neighbourhood U of a figure
of eight graph in CV2 we can find two points A,B ∈ U without a symmetric geodesic
joining them as shown in the following lemma.

Lemma 1.25
Let U ⊂ CV red

2 be an open set which intersects at least two simplices. Then U contains
points A,B ∈ U such that there exists no symmetric geodesic from A to B.

Proof. The idea is to choose A and B in two different adjacent simplices and consider
the possible intersection points C and C ′ of geodesics from A to B respectively from B
to A with the common face of the simplices containing A and B (see Figure 6). If there
exists a symmetric geodesic from A to B, then there exists a common intersection point
C = C ′. We will show that choosing A and B appropriately such a common intersection
point does not exist.

U

C

C ′
A

B

Figure 6: A,B and U in CV red
2 with asymmetric geodesics

As U intersects two simplices in CV2 it contains a figure of eight graph X ∈ U . We
denote by α and β its two loops and its edge lengths by a and 1− a as in Figure 7. For
small enough δ, ε > 0 and a± := a ± δ let A,B be as in Figure 7 the two differently
marked theta-graphs near X with the edge lengths a±, ε and 1− a± − ε such that we
have A,B ∈ U . That is A and B are attained from X by first slightly stretching and
shrinking the edge a respectively and afterwards relaxing the 4-valent vertex to an edge
of length ε such that they have different marking.

Observe that reduced Outer Space without the figure of eight-simplex containing X
has two components, one containing A and the other containing B. Hence, each geodesic
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A :=
ε

a+

1− (a+ + ε)

X :=

a

1− a

B :=
ε

a−

1− (a− + ε)

Figure 7: The points A,X and B in U

from A to B must pass through a point C ∈ ∆(X). Let C be such a graph in the same
simplex as X with edge lengths b and 1− b.

By Lemma 1.22 there exists a candidate of A which has to be maximally stretched
from A to C and from C to B. Similarly there exists a candidate of B which is maximally
shrunk along the geodesic. Hence, we consider the stretching factors of the candidates
α, β, αβ and αβ−. The length ratios of the candidates in A and B are as shown in
Table 1.

α β αβ αβ−1

lB(·)
lA(·)

a−+ε
a++ε

1−a−
1−a+

1−ε
1+ε

1+ε
1−ε

lC(·)
lA(·)

b
a++ε

1−b
1−a+

1
1+ε

1
1−ε

lB(·)
lC(·)

a−+ε
b

1−a−
1−b

1−ε
1

1+ε
1

Table 1: The stretching factors of candidates in Lemma 1.25

Observe that we have as stretching factors lB(α)
lA(α) < 1 < lB(β)

lA(β) . As A and B are
normalised this means that α is not stretched from A to B and hence is not a witness
from A to B. Similarly β is not a witness from B to A.

As αβ is not a candidate in A we only need to compare the length ratios lB(β)
lA(β) and

lB(αβ−1)
lA(αβ−1)

to get the candidate witnesses from A to B and compare lB(α)
lA(α) with lB(αβ)

lA(αβ) to

get the candidate witnesses from B to A.
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• αβ−1 is the candidate witness from A to B if lB(αβ−1)
lA(αβ−1)

≥ lB(β)
lA(β) . We have:

lB(αβ−1)

lA(αβ−1)
≥ lB(β)

lA(β)
⇐⇒ 1 + ε

1− ε
≥ 1− a−

1− a+

⇐⇒ (1 + ε)(1− a+) ≥ (1− ε)(1− a−)

⇐⇒ (1 + ε)(1− a− δ) ≥ (1− ε)(1− a+ δ)

⇐⇒ 2δ − 2ε+ 2εa ≤ 0

⇐⇒ δ ≤ (1− a)ε

So we have that αβ−1 is the only candidate witness from A to B if δ < (1− a)ε.

• αβ is the candidate witness from B to A if

lA(αβ)

lB(αβ)
≥ lA(α)

lB(α)
⇐⇒ 1 + ε

1− ε
≥ a+ + ε

a− + ε

⇐⇒ (1 + ε)(a− + ε) ≥ (1− ε)(a+ + ε)

⇐⇒ 2(−δ + ε(a+ ε)) ≥ 0

⇐⇒ δ ≤ εa+ ε2.

Hence, αβ is the only candidate witness from B to A if δ < aε holds.

If we choose δ < min{(1− a)ε, aε} we have that αβ and αβ−1 are witnesses from B to
A and A to B respectively. By Lemma 1.22 this means that for any intermediate point
C on a symmetric geodesic from A to B they are also maximally stretched and shrunk
towards A respectively. Hence, we have the following conditions on the lengths of the
edges of C:

• αβ is maximally stretched from C to A:

lA(αβ)

lC(αβ)
≥ lA(α)

lC(α)
⇐⇒ 1 + ε ≥ a+ + ε

b

⇐⇒ b ≥ a+ + ε

1 + ε

• αβ−1 is maximally stretched from C to B:

lB(αβ−1)

lC(αβ−1)
≥ lB(β)

lC(β)
⇐⇒ 1 + ε ≥ 1− a−

1− b

⇐⇒ 1− b ≥ 1− a−

1 + ε

⇐⇒ b ≤ 1 + ε− (1− a−)

1 + ε
=
a− + ε

1 + ε

As we have a− < a+ we get the desired contradiction b ≤ a−+ε
1+ε < a++ε

1+ε ≤ b.
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Thinking of a simplex ∆ ⊂ CVn with coordinates in Rk, we can take straight lines
in a simplex. Recall that for A,B ∈ ∆ they have the same topological type ∆(A)
and differ only in their edge lengths. Then the straight line between them is the path
γ : [0, 1] → ∆ such that ∆(γ(t)) = ∆(A) and for an edge e ∈ E(∆(A)) the length
lγ(t)(e) = tlA(e) + (1− t)lB(e) varies linearly along γ. We can check that γ(t) satisfies
Lemma 1.23 and hence is a geodesic from A to B. In particular we have:

Lemma 1.26 ([FM11, Proposition 5.9])
Let γ : [0, 1]→ ∆ ⊂ CVn be a straight line in a simplex, then γ is a geodesic between its
two endpoints and hence by Corollary 1.21 a symmetric geodesic.

Since geodesics are preserved under isometries we have by Lemma 1.26 and Lemma 1.25
that an isometry of CV red

2 preserves maximal simplices. This already implies the special
case of Theorem 3.9 for the case n = 2.

Corollary 1.27
Isometries of CV red

2 are simplicial.

Remark 1.28
While Outer Space with the asymmetric metric is geodesic, these geodesics are typically
far from being unique. That is for two points A,B ∈ CVn there are in general several
geodesics from A to B. For example let A,B,C ∈ CV2 be theta-graphs with the same
marking α and β and the following edge lengths:

A :=
1

1

1

, B :=
1

5

5

, C :=
1

2

1

.

By Lemma 1.26 the straight line between A and B that is stretching the blue and red
edges simultaneously, is a geodesic. On the other hand consider the concatenation of the
two straight lines from A to C and from C to B. The candidates of A,B and C are the
paths α, β and αβ−1. Comparing their lengths we have:

lC(αβ−1)

lA(αβ−1)
=

3

2
,

lC(α)

lA(α)
=

3

2
,

lC(β)

lA(β)
=

2

2
= 1

lB(αβ−1)

lC(αβ−1)
=

10

3
,

lB(α)

lC(α)
=

6

3
= 2,

lB(β)

lC(β)
=

6

2
= 3.

By Proposition 1.12 one of these candidates is a maximally stretched loop and hence
αβ−1 is a (candidate) witness from A to C and from C to B. By Corollary 1.24 the
concatenation of the straight lines from A to C and from C to B is also a geodesic.

On the other hand there exists (up to reparametrisation) only one geodesic from B to
A: Similarly to before we have that α and β are both witnesses from B to A. Let now
C ′ be a theta-graph with the same marking as A and B lying on a geodesic from B to
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A. By Lemma 1.22 the elements α and β are also witnesses from B to C ′. So we have
lC′ (α)
lB(α) =

lC′ (β)
lB(β) and in particular the blue and red edge in C ′ have the same length. This

implies that C ′ already has to lie on the straight line from B to A and hence there can
not exist another geodesic from B to A.

Definition 1.29
Let I ⊂ R be an interval and γ : I → CVn be a geodesic. We say γ is rigid if it is up to
reparametrisation the unique geodesic from γ(s) to γ(t) for any s ≤ t ∈ I.
If I = [s, t] is a closed interval, then by Corollary 1.24 γ : I → CVn is rigid if and only if
it is the unique geodesic from γ(s) to γ(t).

Rigid geodesics are typically quite rare, e.g. will see in Section 3 or more exactly
in Lemma 3.7 that given two arbitrary points they are typically not joined by a rigid
geodesic. On the other hand by Proposition 2.13 there exists for a given point A ∈ CVn
a finite number of rigid geodesics in ∆(A) starting at A. Moreover by Theorem 2.14 any
two points in CVn can be joined by a geodesic which is piecewise rigid. By Theorem 2.21
we have a full classification of rigid geodesic in terms of envelopes, which gives us a
method to calculate all rigid geodesics starting or ending at a point.

1.5 Train tracks and folding paths

The important tools used in [FM11] to prove Proposition 1.12 and that (CVn, dR) is
geodesic are so-called train tracks and folding paths. They were first introduced on
graphs in the work of Bestvina and Handel [BH92] inspired by Thurston’s train tracks
on surfaces.

We will roughly sketch the work in [FM11] and use these tools to prove Lemma 1.36,
which states that each geodesic between two points in CVn can be extended to a geodesic
ray.

Definition 1.30
Let Γ be a graph and v ∈ V (Γ) a vertex. A direction at v is the germ of a geodesic ray
starting at v, that is each time v is an endpoint of an edge e we consider a small part
of the edge as a direction, in particular the valency of v is the cardinality of T (v). We
denote the set of directions at v by T (v).

For each vertex v we want to endow T (v) with an equivalence relation. For such
equivalence relations we call the equivalence classes gates. If two edges are in the same
gate at v one typically draws them tangentially close to v as in figure 8.

Figure 8: A visualisation of a train track structure with three gates at each vertex.
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A train track structure on Γ is a collection of equivalence relations on T (v), one for
each vertex v of Γ. We say a train track structure admissible if it has at each vertex at
least two different gates.

A turn is a pair of distinct directions at v. We call a turn legal if the two directions
are in different gates, else we call it illegal. Likewise, we say a path α in a graph with a
train track structure is called legal if at each vertex the entering and leaving directions
of α are in different gates, else we say it is illegal. Observe that for an admissible train
track on a finite graph, there always exist legal cycles, as we can extend a path with legal
turns until we found a cycle.

Train tracks naturally arise from maps between graphs in the following way. Let Γ
and Γ′ be two graphs and h : Γ→ Γ′ be a continuous map, which is locally injective on
the interior of each edge of Γ. For a vertex v ∈ V (Γ) a gate consists then of the preimage
of a direction of h(v) (we might introduce here h(v) as an artificial vertex of Γ′). As h is
locally injective on each edge, this is well-defined. We call this the train track structure
induced by h.

Before we apply induced train tracks to CVn we need to introduce the notion of tension
graph and optimal change of marking map.

Definition 1.31 (see [FM11, Definition 3.8])
Let A,B ∈ CVn and let S be the set of change of marking maps as in Definition 1.10.

(i) Let h ∈ S an edge-wise linear change of marking map. That means along each edge
e ∈ E(A) the map h|e has a constant stretching factor L(h|e). We call the subgraph
∆max(h) := {e ∈ E(A) | L(h|e) = L(h)} consisting of the edges of A which are
maximally stretched under h the tension graph of h.

(ii) We call a change of marking map h ∈ S optimal, if it satisfies the following
conditions:

• h has minimal Lipschitz constant L(h) = ΛR(A,B).

• h is edge-wise linear.

• The train track structure on ∆max(h) induced by h is admissible.

As can be seen in [FM11], an optimal change of marking map always exists: Clearly
“tightening” along edges to make a map edge-wise linear at most decreases the Lipschitz
constant of a map. If ∆max(h) has only one gate at a vertex v, we can slightly relax h at
v to a new change of marking map h′ with L(h′) ≤ L(h) and v 6∈ ∆max(h′) ⊂ ∆max(h).

We can use the induced train track structure from an optimal change of marking map
to distinguish witnesses:

Lemma 1.32
Let A,B ∈ CVn and h : A → B an optimal change of marking map and α ∈ Fn \ {id}.
Then α is a witness from A to B if and only if α is a legal, closed path in ∆max(h) with
respect to the induced train track by h.
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Proof. Let α be a closed, legal path in the train track induced by h. Asα is legal h|α
immerses α at each vertex. Since h is also already locally injective on each edge, we have
that h(α) is cyclically reduced. As α ⊂ ∆max(h) lies in the tension graph we have then
lB(α) = lB(h(α)) = L(h) · lA(α) which concludes that α is a witness.

Let now α be a witness from A to B, then we have that α is maximally stretched that
means lB(α) = ΛR(A,B)lA(α) = L(h)lA(α). This can only happen if α already lies in
the tension graph and there is no cancellation happening at each vertex, i.e. α makes no
illegal turns.

As the induced train track of an optimal change of marking map is admissible, we now
have that there always exists a witness. For example we can construct an infinite long,
legal path ρ in ∆max(h) and take as loop any finite subpath which starts with the same
gate as it would end in ρ.

Similarly to Stallings’ folding in [Sta83] we can continuously identify or “fold” edges
close to a vertex, namely some part of edges close to a vertex v are identified if they are
in the same gate. Gradually folding then yields a continuous path in CVn (see Figure 9).

Γ0 = Γε = Γt1 = Γt1+ε =

Figure 9: Folding first the red and then the blue edges of a graph

Definition 1.33
Let Γ be a metric graph with an admissible train track structure. For every vertex
v ∈ V (Γ) and small enough t > 0 we define on points p, q ∈ Γ the equivalence relation
p ∼v,t q if

• d(v, p) = d(v, q) ≤ t

• and the geodesics from v to p and q respectively are in the same gate.

Increasing t means we slowly fold all edges at v which are in the same gate.
Let ∼t be the union of these equivalence relations over v ∈ V (Γ) and set Γt := Γ/ ∼t.

Keep in mind that (after possibly introducing some new vertices) Γt is itself again a
metric graph with smaller volume than Γ.

Let t1 be the first time when an edge is completely folded and s ≤ t1. We call a path
of the form Γ∗ : [0, s]→ {metric graphs}, t 7→ Γt a simple folding path (of metric graphs).
A folding path is then a path Γ∗ : I ⊆ R≥0 → {metric graphs} such that on each closed
interval it is the concatenation of finitely many simple folding paths.

Observe that folding gives a quotient map σt : Γ → Γt. As we only identify edges
close to a common vertex, we can lift any closed loop and hence its induced map
σt,∗ : π1(Γ)→ π1(Γt) is surjective. As long as we do not completely fold as in Figure 10
then σt,∗ is also injective and by the Whitehead theorem we have that σt is a homotopy
equivalence. Hence, any marking on Γ carries over to a marking on Γt via the projection.
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Moreover, as we continuously change the lengths, folding a point A = (Γ, l,m) ∈ CVn
along an admissible train track without completely folding loops will yield a continuous
path At := (Γt, lt,mt) in CVn with the marking mt := σt ◦m. Here admissible ensures
that the resulting graph Γt does not have leaves.

→ →

Figure 10: Foldings which are not homotopy equivalences

As in Lemma 1.32 we can now determine when a folding path is a geodesic in terms of
legal paths.

Lemma 1.34 (i) Let A0 = (Γ, l,m) ∈ CVn be a point with a train track structure on
Γ. Let γ : [0, t1] → CVn, t 7→ At be a simple fold and α ∈ Fn \ {id}. Then α is a
legal path in the train track if and only if α is a witness from A to At1 .

(ii) Let γ : I ⊆ R→ CVn, t 7→ At be a folding path in CVn. Then γ is a geodesic if and
only if there exists an α ∈ Fn \ {id} which is a legal path in each train track of the
simple folds.

Proof. (i) Let α be a cyclically reduced path in A0. As we only identify points close to
a vertex, the length of α will at most decrease at these foldings. Such a decrease
only happens at the vertices where α has an illegal turn since we have then some
backtracking. That means all legal cycles have the same length in A0 and in At
while all illegal cycles have smaller length in At than in A0. In particular the legal
cycles are exactly the witnesses from A0 to At as the maximal stretching is 1. The
Lipschitz distance from A0 to At comes here solely from the decrease of the volume.

(ii) Follows directly from (i) and Lemma 1.22 and Corollary 1.24 respectively.

We can use these folding paths to construct geodesics in Outer Space. As we want to
extend such a geodesic in Lemma 1.36 in a similar manner we also roughly sketch the
proof the following theorem.

Theorem 1.35 (Francaviglia–Martino [FM11, Theorem 5.5])
Let A,B ∈ CVn. Then there exists a geodesic from A to B which is a concatenation of a
path which linearly shrinks edges in A and a folding path.

Proof. Let h : A→ B be an optimal change of marking map. After shrinking all the edge
lengths of A which do not lie in ∆max(h) and eventually relaxing h at some vertices we
get an optimal change of marking map h0 : A0 → B with ∆max(h0) = A0 where A0 is
obtained from A by shrinking the edge lengths.

We now fold A0 along the train track induced by h0, that means we identify p ∼v,t q
if h0(p) = h0(q) and p and q are less than t away from a vertex v. Let t1 be the first
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time we have completely folded an edge. As we only have identified points with the
same image, this implies that h0 factors through the folded graph At := A0/ ∼t for any
0 ≤ t ≤ t1. In particular we get a change of marking map ht : At → B, [p]t 7→ h0(p).
Since we have folded along an admissible train track and ht is a homotopy equivalence we
get that At is an element in CVn. Observe that ht has on each edge the same Lipschitz
constant as h0. Furthermore, its induced train track has at each vertex at least two gates
and thus is admissible. So we have that ht is again an optimal change of marking map.

We can then either continue folding according to ht or we have already that ht is an
immersion. If ht is an immersion, then it stretches each closed path by L(ht), so we
have already that ht is a homothety and we have At = B in CVn. If we can continue
to fold, observe that by each fold from As to As+t we decrease the volume by at least t.
Given that h0 and ht have the same Lipschitz constant, we have vol(B) = vol(ht(At)) ≤
L(ht) vol(At) ≤ L(h0)(vol(A0)− t) and thus the folding has to stop at some point.

Now let α ∈ Fn be a legal path in A with respect to the train track structure induced
by h, then it is clearly a witness from A to A0 as we only shrink edges outside of ∆max(h).
As it is a legal path in A, it is still a legal path in A0 and by Lemma 1.34 a witness from
A0 to At for some small enough t > 0.

Being a legal path means that the restriction of the optimal change of marking map to
α is an immersion. As h0 factors through any ht, we also have that the restriction of
ht to α is still an immersion. So α is still a legal path in each At and again a witness
for any At to As+t. By Corollary 1.24 we have that the constructed path in CVn is a
geodesic.

We will use this to extend a given geodesic to a geodesic ray of arbitrarily long diameter,
that is it will either go to the thin part or has infinite length.

Lemma 1.36
Let A,B ∈ CVn and γ : [0, 1] → CVn be a geodesic from A to B. Then there exists a
geodesic σ : R≥0 → CVn such that σ|[0,1] = γ and for any L ≥ 0 there exists a t > 0 with
d(σ(0), σ(t)) = dR(σ(0), σ(t)) + dR(σ(t), σ(0)) > L.

Furthermore, for every α ∈WR(γ(0), γ(1)) and t > 0 we also have α ∈WR(σ(0), σ(t)).

Proof. By Corollary 1.24 and Theorem 1.35 we can assume that γ is either a folding
path from A to B or just shrinking edges outside of the tension graph.

If γ only shrinks edges, let E ⊂ E(A) be the edges shrunk by γ. Thus, an element
α ∈ Fn is a witness from A to B if and only if it is disjoint from E. Hence, we can
continue shrinking the edges in E without changing the witnesses to get a geodesic σ.

If E contains a loop, then we can continue shrinking the edges until the loop is
arbitrarily short, that is σ goes into the thin part. Hence, σ already has infinite diameter,
i.e. for any L we have d(σ(0), σ(t)) > dR(σ(t), σ(0)) > L for large enough t as we have
seen in Example 1.13 (ii).

Else E is a forest, hence we can continue to shrink E until we collapse all edges in E
at t = 2 to attain B′ := σ(2). Afterwards we extend σ by folding two arbitrary germs of
edges in B′ which were separated by E as depicted in Figure 11:
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A =
E

; B′ = ; σ(2 + ε) :=

Figure 11: Folding after collapsing a forest

Such two germs always exist, as E is a finite forest and A and B have no leaves. Clearly,
any witness from A to B′ has to be a legal path along this folding, otherwise it would
have crossed the edges in E connecting the two germs. Hence, we can assume that γ is a
folding path by Corollary 1.24.

By Lemma 1.34 α ∈ Fn \ {id} is a witness from A to B if and only if it is a legal path
in the train track for each fold. We will show that we can continue a folding path in such
a manner that each legal path in the previous folds is also a legal path in the next fold.
In particular, extending γ to σ any witness α ∈ WR(A,B) will then also be a witness
from A to σ(t) for t > 0 and by Lemma 1.34 σ will be a geodesic.

Let σ : [0, t]→ CVn be a folding path. As the order of folds does not matter we will
assume that σ only folds at one vertex at a time. We will parametrise the folding path
by the folded length of the edges, that is we consider σ(s) as a graph of volume e−s.
Observe that as any legal path has the same length in σ(s) for all s we have parametrised
σ by its asymmetric length. Let tk < t be the last time when we started folding at a
vertex v, namely we obtain σ(t) by folding the same gate in σ(tk) by some amount ε:

h(tk) :

e2

e1

v
h(t) :

e′2

e′1
ε

v′ v

If here or at some point of the continuation of σ we might fold a loop as in Figure 10, we
continue folding the loop until it becomes arbitrarily small and as before end up in the
thin part and hence are done.

Otherwise we will continue folding until one edge e1 is completely folded at some
tk+1 ≥ t. At this point we can continue folding any of the adjacent edges l1 of e1 with e2

(or to an adjacent edge of e2 if e1 and e2 had the same length), that is l1 plays now the
role of e1 as depicted in Figure 12.

An important fact here is that any legal path α ∈ Fn \ {id} from σ(tk) to σ(t) is
clearly legal from σ(t) to σ(tk+1) and still legal from σ(tk+1) to σ(tk+1 + ε). Namely, if
α took in σ(tk+1) the only illegal turn from l1 to e′2, then it must have already taken
the edge-sequence l1, e1, e2 in σ(t), which is also illegal. In particular, by Lemma 1.34 if
σ|[0,t] is a geodesic, then this continuation is still a geodesic.
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σ(t) :

e1

l1 l2

e2

v
; σ(tk+1) :

e′2

l1 l2

ε

v′ v
; σ(tk+1 + ε) :

l2l′1

e′′2
v′

Figure 12: Extension of a folding path

The described folding decreases the length of the longer edge by the length of the
smaller one and leaves the rest of the edge lengths the same. So after finitely many steps
this longer edge is also completely folded. This implies that unless we run into a fold as in
Figure 10 we can, by choosing the folded adjacent edges accordingly, fold until each edge
is arbitrarily small. That is we can continue σ to the half-open interval [0,∞). Two such
choices of folded edges would be for example to always choose the longest adjacent edge
or to choose the edges which give the shortest path to the longest edge in the current
graph σ(ti).

We now either end up in the thin part of Outer Space or we get for any 0 < t < ∞
that vol(σ(t)) = e−t. Moreover any original witness α is a legal path along all folds and
hence the length of α in σ(t) for t ∈ [0,∞) is constant. Hence, we have dR(σ(0), σ(t)) ≥
log(

lσ(t)(α)

lσ(0)(α) ·
vol(σ(0))
vol(σ(t)) ) = log(1 · 1

e−t ) = t→∞ as t goes to ∞.

1.6 Algorithm to determine the distance of two points

Given two points A,B ∈ CVn, we will give a description of an algorithm to determine
their Lipschitz distance dR(A,B) based on Proposition 1.12. The algorithm takes as
input two marked, metric graphs given as in Figure 2 and returns the candidate witnesses
from A to B, their stretching and the Lipschitz distance from A to B. An implementation
of this algorithm in Sage [Sag] can be found in [Ste18] and is added in the Appendix. We
will split the description of the algorithm in the following steps:

A. Describe elements of CVn for a computer.

B. Find the candidates in a marked graph.

C. Translate words of Fn into immersed loops in a graph.

D. Compare lengths of paths in graphs.

A. An element of CVn

During this subsection a marked, metric graph (Γ, l,m) ∈ CVn consists of the following
data:
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• A set of vertices V (Γ), which we typically enumerate from 1 up to 2n− 2.

• A list of (oriented) edges E(Γ), where each edge e ∈ E(Γ) is a tuple (v1, v2, α) of
two vertices v1, v2 ∈ V (Γ) and a label α ∈ Fn.

• A length function l : E(Γ)→ R≥0 which assigns to each edge a length.

We require additionally that the edges (v1, v2, id) ∈ E(Γ) with the neutral element id ∈ Fn
as label form a spanning tree T of Γ and the labels of the other edges form a basis of Fn.

For an edge (v1, v2, α) we will write (v1, v2, α) = (v2, v1, α) ∈ E(Γ) for the (same) edge
with flipped orientation. Here α := α−1 ∈ Fn denotes the inverse of α in Fn.

B. Computing the candidates of a marked graph

The easiest way to compute all candidates is to first compute all simple loops, i.e. loops
which cross each vertex and edge at most once. Afterwards we can use these simple loops
to compute all barbells and figures of eight. As there is already a rich literature about
effectively calculating all simple loops and paths between two points in a graph, we will
omit this part here. Instead we use that we already have a function or list simpleLoops
of all simple loops in a given graph. Also we assume that we have a function allPaths
which yields all simple edge-paths between two given points, these are paths which do not
cross the same vertex twice. For example Sage [Sag] already implements these functions.

Notation 1.37
For a simple loop α and a vertex v ∈ α we will denote with αv the cyclic permutation of
α starting at v and with α the loop with inverse orientation. For example for the loop
α = ((v1, v2, α1,2), (v2, v3, α2,3), . . . , (vk, v1, αk,1)) we have

αvi = ((vi, vi+1, αi,i+1), (vi+1, vi+2, αi+1,i+2), . . . , (vk, v1, αk,1), . . . , (vi−1, vi, αi−1,i))

and αvi = ((vi, vi−1, αi−1,i), (vi−1, vi−2, αi−2,i−1), . . . , (v1, vk, αk,1), . . . , (vi+1, vi, αi+1,i)).

For two edge-paths α = (e1, . . . , ek) and β = (f1, . . . , fm) we will denote with α ? β =
(e1, . . . , ek, f1, . . . , fm) their concatenation.

To compute all figures of eight and barbells it is enough to go through all pairs α, β of
simple loops and check if they intersect in a vertex. Depending on their intersection we
get the following candidates:

• If they intersect in exactly one vertex {v} = α∩ β, then we get two figures of eight,
namely αv + βv and αv + βv.

• If they do not intersect we get the barbells where α and β are the simple loops.
That is for each simple edge-path χv,w between a vertex v ∈ α and a vertex w ∈ β
we get as barbells αv + χv,w + βw + χv,w and αv + χv,w + βw + χv,w

• If they intersect in more than one vertex we do not get a candidate.

This yields Algorithm 1 to compute all candidates.

31



Algorithm 1 compute figures of eight and barbells as list of edges

Input: A graph Γ and a list simpleLoops of all simple loops in Γ
Output: A list of all candidates in Γ
1: Let eights and barbells be two empty lists.
2: for 0 ≤ i < length(simpleLoops) do
3: for i < j < length(simpleLoops) do
4: Set α := simpleLoops[i] and β := simpleLoops[j].
5: Set common := vertexIntersection(α, β).
6: if length(common) ≥ 2 then
7: Skip
8: else if length(common) == 1 then
9: Set v := common[0]

10: Add αv + βv to eights
11: Add αv + βv to eights
12: else
13: for v ∈ α,w ∈ β do
14: Set Γ′ to be a copy of Γ without the vertices of α \ {v} and β \ {w}.
15: for χ ∈ allPaths from v to w in Γ′ do
16: Add αv + χ \ {w}+ βw + χ \ {v} to barbells.
17: Add αv + χ \ {w}+ βw + χ \ {v} to barbells.
18: end for
19: end for
20: end if
21: end for
22: end for
23: return simpleLoops, eights and barbells

Remark 1.38
It should be noted here that there are more efficient algorithms to determine candidates
in a graph. For example we can use that we already have a spanning tree T . Let
α1, . . . , αn ∈ Fn be the labels of the edges outside of the spanning tree. Then each simple
loop corresponds to a word α = αε1i1 . . . α

εk
ik

with pairwise different αi and ε ∈ {±1} such
that each vertex v occurs at most once in all paths in T joining the terminal vertex of
αεii with the initial vertex α

εi+1

i+1 for 1 ≤ i < k and joining the terminal vertex of αεkk with
the initial vertex of αε11 . Similarly, we get that figures of eight are words α as above with
exactly one vertex occurring twice.

For barbells we consider all words of the form αχβχ where α, χ and β are disjoint
words as above such that each vertex occurs at most once in one of the following five sets:

• The three (non-closed) paths of each word α, χ and β.

• The union of the paths from the start and ending vertices of α to the first vertex
of χ (this may look like a tripod).
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• The union of the paths from the start and ending vertices of β to the last vertex of
χ.

To convert a closed edge-path in our graph Γ to an element in Fn we multiply all the
edge labels of the edges along the path. Hence, we have now an algorithm to determine
all candidates of a marked graph as elements of Fn.

C. Translating words of Fn into immersed loops in a graph

To compare the length of a candidate in two different graphs we now need a way to write
a given word as an edge-path in a marked graph. As the labels of the edges outside of
our spanning tree form a basis of Fn this practically boils down to rewriting a word in a
different basis and afterwards connecting the letters via the spanning tree. Again there
already exist efficient algorithms to rewrite a given word as reduced word in another
basis for example in GAP [GAP21]. We will assume that we have such an algorithm at
our disposal and just cyclically reduce the resulting word.

To translate this cyclically reduced word into a loop, we connect the corresponding
sequence of labelled edges, which corresponds to the letters of the word, along our
spanning tree T . Here we use that any two vertices u, v are joined by a unique path
in a our spanning tree T . We will denote this path with χu,v. This gives the following
algorithm:

Algorithm 2 Immerse a word as an edge-path

Input: A marked graph Γ and a word α ∈ Fn.
Output: An immersed loop representing the conjugacy class of α as list of edges.
1: Let (α1, . . . , αn) be the non-trivial labels of edges of Γ.
2: compute α as reduced word ω = (α±j1 , . . . , α

±
jk

) of α1, . . . , αn.
3: while ω1=ωlength(ω) do
4: Remove ω1 and ωlength(ω) from ω.
5: end while
6: Set α to be an empty list of (oriented) edges.
7: Add ω1 at the end of ω.
8: for 1 ≤ i < length(ω): do
9: Add the edge corresponding to ωi to α.

10: Let u be the terminal vertex of the edge corresponding to ωi
11: Let v be the initial vertex of the edge corresponding to ωi+1

12: Add the edge-path χu,v to α
13: end for
14: return α

D. Calculating the distance

To calculate the distance between two points in Outer Space we only need to put the
previous algorithms together. We use as an abbreviation lA(α) =

∑
e∈α lA(e) for the

length of some edge-path α.
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Algorithm 3 Calculate the distance of two points in Outer Space

Input: Two points A,B ∈ CVn
Output: Their distance dR(A,B).
1: Use Algorithm 1 to get a list cand of candidates of A.
2: Set fractions to be an empty list.
3: for α ∈ cand: do
4: Use Algorithm 2 to write α as an edge-path α′ in B.

5: Add lB(α′)
lA(α) to fractions.

6: end for
7: Set ΛR := max(fractions).
8: Set volA :=

∑
e∈E(A) lA(e) and volB :=

∑
e∈E(B) lB(e).

9: Set dR := log(ΛR · volAvolB
)

10: return dR
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2 Envelopes in Outer Space

As we have seen in Remark 1.28 geodesics in Outer Space are not necessarily unique. To
give a measure of how much two points fail to have a unique geodesic, it seems reasonable
to look at the all geodesics at the same time. We borrow the notion of an envelope from
[DLRT20].

Definition 2.1
Let (X, d) be a metric space and A,B ∈ X. Then we define the envelope from A to B as
the set

Envd(A,B) := {C ∈ X | C lies on a geodesic from A to B}.

To distinguish the envelopes in CVn coming from the two different metrics, we will write
EnvR := EnvdR for envelopes with respect to the asymmetric metric and Env := Envd
for the symmetric metric.

Envelopes in CVn have the following important properties which we will use later.

Remark 2.2 (i) It is clear that isometries preserve envelopes as they send geodesics to
geodesics.

(ii) The diameter of an envelope is bounded. More explicitly:

• If the metric is symmetric, the diameter of an envelope is the distance between
the two endpoints by the triangle inequality.

• If d is an asymmetric metric we get for all C,C ′ ∈ Envd(A,B)

d(C,C ′) ≤ d(C,B) + d(B,A) + d(A,C ′) ≤ 2d(A,B) + d(B,A).

(iii) By Lemma 1.18 we have that intermediate envelopes are subsets, namely for
A,B ∈ X and C ∈ Env(A,B) we have

Env(A,C) ∪ Env(C,B) ⊆ Env(A,B).

(iv) Because (CVn, dR) is a geodesic space and by the equivalence of (i) and (iii) in
Corollary 1.24, we can write envelopes in CVn as

EnvR(A,B) = {C ∈ CVn | dR(A,B) = dR(A,C) + dR(C,B)}.

The following example shows that the upper bound in Remark 2.2 (ii) is the best we
can obtain for CVn.

Example 2.3
Let 0 < ε < 1 be a small number and A ∈ CV3 be the rose R3 with loop lengths 1, 1

ε
and ε. Similarly let B ∈ CV3 be the rose obtained from A by shrinking the second and
third petal by the factor ε, that is we have edge lengths (1, 1, ε2) in B. Let furthermore
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C and C ′ be the two rose graphs obtained from A by shrinking only one of the petals as
in B, that is we have the edge lengths (1, 1

ε , ε
2) and (1, 1, ε), respectively. Clearly C and

C ′ lie in the envelope EnvR(A,B) as the first petal is maximally stretched from A to C
and C ′ respectively and from C and C ′ to B:

1

1
ε

εA :=

1

1
ε

ε2C :=

1

1

εC ′ :=

1

1

ε2B :=

That means while the distance from A to B comes purely from the fraction of their
volumes, the distance from C to C ′ includes both, the stretching from B to A as well as
the fraction of the volumes. More exactly we have:

dR(A,B) = log

(
1 · vol(A)

vol(B)

)
= log

(
1 + 1

ε + ε

2 + ε2

)

dR(B,A) = log

(
ε

ε2
· vol(B)

vol(A)

)
= log

(
1

ε

)
− log

(
1 + 1

ε + ε

2 + ε2

)

dR(C,C ′) = log

(
ε

ε2
· vol(C)

vol(C ′)

)
= log

(
1

ε

)
+ log

(
1 + 1

ε + ε2

2 + ε

)

Letting ε go to zero we have that log
(

1+ 1
ε

+ε2

2+ε

)
approaches log

(
1+ 1

ε
+ε

2+ε2

)
, hence have that

the diameter of EnvR(A,B) may approach 2dR(A,B) + dR(B,A) arbitrarily close.

Before we look into envelopes in CVn we will introduce two notations:

Notation 2.4
Let A ∈ CVn, e ∈ E(A) be an edge in the underlying graph of A and α ∈ Fn. Then we
denote by #(e, α) the number of times the cyclically reduced path corresponding to α
passes through e (without considering the orientation). This number depends only on
the topological type ∆(A) of A and not its lengths.
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Definition 2.5
Let A,B ∈ CVn be two points. We define the supporting simplices of the envelope
EnvR(A,B) as the set of all simplices ∆ ⊂ CVn which intersect the envelope:

supp(EnvR(A,B)) := {∆ ⊂ CVn | ∆ is a simplex and ∆ ∩ EnvR(A,B) 6= ∅}.

As the diameter of an envelope is bounded, we have by the following Lemma that the
support is always finite.

Lemma 2.6
For any B ∈ CVn and r > 0 the ingoing ball Bin

r (B) := {A ∈ CVn | dR(A,B) < r}
intersects only finitely many simplices of CVn.

Proof. Without loss of generality we can assume that B is the standard marked rose Rn
with edge lengths all 1/n since we have Bin

r (B) ⊆ Bin
r+dR(B,Rn)(Rn). We will show that

for a fixed graph Γ there are only finitely many markings m : Rn → Γ such that there
exists a length function l the point (Γ, l,m) lies in Bin

r (Rn). Since the unmarked graphs
CVn/Out(Fn) are finite, the claim then follows.

Let Γ be a fixed graph and T a spanning tree of Γ. Recall that a marking corresponds
to labelling the edges outside of T with a basis ω1, . . . , ωn ∈ Fn. As conjugating every
word ωi corresponds to a free homotopy we can always choose ω1, . . . , ωn in such a way
that conjugating does not decrease the sum of the word-lengths.

Let A := (Γ, l,m) ∈ CVn be a normalised representant. Since each ωi corresponds to a
simple loop it has length at most 1 in A. Moreover, for each word ω ∈ Fn its length in B
is 1

n of its cyclically reduced word-length. For A ∈ Bin
r (B) we have log( lB(ωi)

lA(ωi)
) ≤ r, hence

cyclically reduced edge labels of A have at most word-length ner.
On the other hand assume ωi is not cyclically reduced that is we can write ωi = αω̃iα

−1

for some letter α and a shorter word ω̃i. Then there exists an ωj 6= ωi such that the word
concatenation ωjωi is a cyclically reduced word: Assume ωjωi is not a cyclically reduced
word for all ωj , then we either have ωj = ω̃jα

−1 or ωj = αω̃j . But that means we can
simultaneously conjugate all labels of A by α to decrease the word length of ωi without
increasing the word length of any other ωj which contradicts our choice of ω1, . . . , ωn.

This means up to free homotopy we have that each word ωi is either cyclically reduced
or there exists an ωj 6= ωi such that ωjωi is cyclically reduced. Again in the latter case
the length of ωiωj in A is at most 2, thus ωi has word-length of at most 2ner. As there
are only finitely many words of a given word-length we have only finitely many possible
markings for Γ such that A := (Γ, l,m) ∈ Bin

r (B).

Remark 2.7
The statement of Lemma 2.6 does not hold for outgoing balls, i.e. sets of the form
Bout
r (A) := {B ∈ CVn | dR(A,B) < r}. For example let A be the rose R2 with edge

labels α and β and edge lengths 1
2 . For k ∈ N≥2 let Bk be the rose with edge labels αβk

and β and with edge lengths 1− 1
k and 1

k . Then a short calculation shows

dR(A,Bk) = log

(
lBk(α)

lA(α)

)
= log

(
2− 1

k
1
2

)
< log(4)
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Figure 13: Some envelopes EnvR(A,B) in CV2

but all the Bk have a different topological type.

Envelopes in CVn behave nicely with regard to the simplicial structure of CVn. In
particular, their intersection with any simplex is a polytope. We will use this in the proof
of Theorem 2.21 to construct locally rigid geodesics. In the next chapter we will then use
envelopes to determine the simplicial structure of Outer Space.

Lemma 2.8
Let A,B ∈ CVn. Then their envelope EnvR(A,B) is a polytope in the sense that it can
be written as a finite union of polytopes in simplices.

Proof. Let α be a witness from A to B and ∆ ∈ supp(EnvR(A,B)) be a supporting
simplex. For a point C ∈ ∆ we have by Corollary 1.24 and Lemma 1.22 C ∈ EnvR(A,B)
if and only if α is a witness from A to C and from C to B. So each β ∈ cand(A) and
ω ∈ cand(∆) yields a linear inequality in the simplex ∆: The sets of candidates are finite,

lC(α)

lA(α)
≥ lC(β)

lA(β)
⇐⇒

∑
ei∈E(C)

lC(ei) ·
(
lA(β) ·#(ei, α)− lA(α) ·#(ei, β)

)
≥ 0 (?)

lB(α)

lC(α)
≥ lB(ω)

lC(ω)
⇐⇒

∑
ei∈E(C)

lC(ei) ·
(
lB(α) ·#(ei, ω)− lB(ω) ·#(ei, α)

)
≥ 0 (??)

Since the terms
(
lA(β) ·#(ei, α)− lA(α) ·#(ei, β)

)
and

(
lB(α) ·#(ei, ω)− lB(ω) ·#(ei, α)

)
do not depend on the edge lengths we get indeed a linear inequality. As there are only
finitely many candidates, the points C ∈ ∆ satisfying the above inequalities form a
polytope in ∆.

By Proposition 1.12 there always exists a maximally stretched candidate β or ω. This
means α is maximally stretched and thus a witness from A to C and from C to B if and
only if the above inequalities are satisfied for all β ∈ cand(A) and ω ∈ cand(∆), that is if
C lies in the above polytope. As the support of EnvR(A,B) is finite this concludes the
proof.

Remark 2.9
In the following, when we talk about the faces of an envelope we only mean faces arising
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from equalities in the inequalities (?) and (??) above. In particular that means we will
exclude the faces arising solely from intersections of the envelope with a simplex.

Corollary 2.10
EnvR(A,B) is compact.

Proof. Since the diameter of an envelope is bounded, it stays away from missing faces
in CVn and has non-empty intersection with at most finitely many simplices. Hence,
the intersection of the envelope with a simplex is closed in the simplicial closure and
therefore compact. Thus the envelope is compact as finite union of compact sets.

Interpreting the proof of Lemma 2.8 we can view each envelope as the intersection
of two cones coming from the two end-points, namely the intersection of half-spaces
belonging to the inequalities of type (?) and the inequalities of type (??). We can see
these cones as set of points a geodesic ray can reach if we fix a maximally stretched loop
as a coarse direction.

Definition 2.11
Let S ⊆ Fn be a subset. We consider S as a coarse direction or as a set of wanted
witnesses. We call the set

Envout
R (A,S) := {C ∈ CVn | S ⊆WR(A,C)}

the out-envelope of A in the direction of S and

Envin
R(B,S) := {C ∈ CVn | S ⊆WR(C,B)}

the in-envelope of B in the direction of S. If S = {α} is a singleton, we will just write
Envout

R (A,α) and Envin
R(B,α) respectively.

Remark 2.12 (i) By Corollary 1.24 the in- and out-envelopes tell, how we can extend
geodesics in either direction and furthermore we have

EnvR(A,B) = Envout
R (A,S) ∩ Envin

R(B,S)

for all non-empty S ⊆WR(A,B).

(ii) We will see in Proposition 2.16 (iv) and Proposition 2.18 (iv) that in- and out-
envelopes are polytopes in each simplex, namely the out-envelopes are parametrised
by the (?)-inequalities and the in-envelopes by the (??)-inequalities of Lemma 2.8
for some subset of the corresponding candidates.

(iii) By definition the intersection of out-envelopes is the out-envelope of the union
of their directions, that is we have Envout

R (A,S) =
⋂
α∈S Envout

R (A,α) or more
generally Envout

R (A,S) =
⋂
i Envout

R (A,Si) for some cover S =
⋃
i Si. The same also

holds for in-envelopes.
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By Remark 1.28 we know that two points are almost never joined by unique geodesics.
But it turns out that edges of out-envelopes are rigid geodesics. This can be shown by
considering an equality instead of an inequality (?) in Lemma 2.8. Any such equality
yields a hyperplane in the corresponding simplex. We will see that a geodesic which ends
in such a hyperplane already has to stay in the hyperplane the whole time.

Lemma 2.13
Let A,B ∈ CVn be two points in Outer Space, ∆ ∈ supp(EnvR(A,B)) a supporting
simplex of their envelope and ∆ its closure in CVn.

(i) Let H := H(β) ⊂ ∆ be a hyperplane which comes from an equality of the form
(?) for some β ∈ cand(A) and α ∈WR(A,B) in Lemma 2.8. Then we have for any
C ∈ H that the envelope EnvR(A,C) restricted to ∆ stays in the hyperplane H,
namely we have EnvR(A,C) ∩∆ ⊆ H.

Similarly we have EnvR(C ′, B)∩∆ ⊂ H ′ for hyperplanes H ′ := H ′(ω) coming from
equalities of the form (??) and C ′ ∈ H ′.

(ii) Let γ : [0, 1]→ ∆ be an edge of the envelope EnvR(A,B) , that is a 1-dimensional
face of the polytope EnvR(A,B) ∩∆. If γ has a witness from A to B as a coarse
direction, that is we have WR(γ(0), γ(1))∩WR(A,B) 6= ∅, then γ is a rigid geodesic.
In particular all emanating edges from A and incoming edges to B are rigid geodesics.

(iii) Let S ⊂ Fn. Then consecutive edges in Envout
R (A,S) form rigid geodesics. Similarly

consecutive edges in Envin
R(B,S) form rigid geodesics.

Proof. (i) Let β ∈ cand(A) be the candidate corresponding to H and C ∈ H. By
Lemma 1.22 each geodesic γ from A to C must lie completely in H since each point
on γ also has β as a witness from A to C. In other words a geodesic from A to B
never re-enters a hyperplane of the form (?) and never leaves a hyperplane of the
form (??).

(ii) Let A′ and B′ be the endpoints of γ and σ : [0, 1] → ∆ be any geodesic from A′

to B′. By Corollary 1.24 we can extend σ to a geodesic σ̃ : [−1, 2]→ CVn from A
to B.

Since γ is an edge, we can write it as an intersection of hyperplanes H(βi) coming
from equalities in (?) for some βi ∈ cand(A) and hyperplanes H ′(ωj) coming from
equalities in (??) for some ωj ∈ cand(∆). By (i) σ̃|[−1,1] ∩∆ lies in all hyperplanes

H(βi) and σ̃|[0,2] ∩∆ lies in all hyperplanes H ′(ωj). In particular σ lies on their
intersection, i.e. σ = γ.

(iii) Let γ1, . . . , γk be consecutive edges in Envout
R (A,S), i.e. each γi is an edge of the

cone Envout
R (A,S) ∩∆i in some closed simplex ∆i and the endpoint Ai of γi is the

starting point of γi+1. Let γ be a geodesic from A to Ak. By (i) the restriction of γ
to the simplex ∆k must be contained in all hyperplanes containing Ak. Therefore
γ must contain γk and hence Ak−1 lies on γ. Inductively, γ has to go through
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all A1, . . . , Ak and all γi, so we already have γ = γ1 ∗ · · · ∗ γk which means that
γ1 ∗ · · · ∗ γk is the unique geodesic from A to Ak.

We can now use this to construct piecewise rigid geodesics between any two points.

Theorem 2.14
For any A,B ∈ CVn there exist rigid geodesics γ1, . . . , γk such that their concatenation
γ := γ1 ∗ γ2 ∗ · · · ∗ γk is a geodesic from A to B.

Proof. Let A,B ∈ CVn be any two points. We will construct γi for i inductively starting
with A1 := A:

Starting at Ai choose any consecutive edges σ1, . . . , σki in EnvR(Ai, B) until they hit the
first time a hyperplane H ′(ω) coming from an equality of type (??) and denote this point
with Ai+1. This means that σ1, . . . , σki are actually edges of Envout

R (Ai,WR(Ai, B)) (σki
might be only a part of an edge). By Lemma 2.13 (iii) their concatenation γi := σ1∗· · ·∗σki
is a rigid geodesic from Ai to Ai+1. Since there are only finitely many edges in EnvR(Ai, B)
such a sequence of edges is always finite.

As each Ai+1 lies in the envelope of EnvR(Ai, B) we have by Corollary 1.24 that any
concatenation γ1 ∗ · · · ∗ γk of these rigid geodesics is again a geodesic.

To see that this induction stops after finitely many steps consider the set S :=⋃
C∈EnvR(A,B) cand(C) , i.e. S is the set of all possible candidates in the support of

EnvR(A,B). By construction there exists an ω ∈ S ∩WR(Ai+1, B) with ω 6∈WR(Ai, B)
so we get by Lemma 1.22 the strictly increasing sequence:

S ∩WR(A0, B) ( S ∩WR(A1, B) ( · · · ⊆ S

The set S is finite, as there are only finitely many candidates per simplex and the support
of EnvR(A,B) is finite by Lemma 2.6. In particular this sequence and hence the algorithm
has to stop at some point.

Apart from being useful for the construction of piecewise rigid geodesics the out-
envelopes have other interesting properties. For example we can use them to show that
we can slightly vary two points such that we at most decrease the number of their
candidate witnesses. The reason for this is that by continuously varying the base point
A in a simplex we also continuously vary the out- and in-going envelopes. This is due to
the fact that they are parametrised by the inequalities (?) and (??) in Lemma 2.8.

Lemma 2.15
Let A,B ∈ CVn and S := {α ∈ cand(∆) | ∆ is a simplex in CVn and A ∈ ∆} be the
candidates close to A. Then there exist neighbourhoods UA 3 A and UB 3 B such that
for all A′ ∈ UA and B′ ∈ UB we have WR(A′, B′) ∩ S ⊆WR(A,B) ∩ S.

In particular, if A lies in a maximal simplex we can always choose UA ⊂ ∆(A) and
hence at most decrease the candidate witnesses, i.e. we have CWR(A′, B′) ⊆ CWR(A,B)
for all A′ ∈ UA and B′ ∈ UB.
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Proof. Let A′, B′ ∈ CVn be two points and α ∈WR(A,B). We will use that a β ∈ S can

only be a witness from A′ to B′ if we have
lB′ (α)
lA′ (α) ≤

lB′ (β)
lA′ (β) , that is in the (?)-inequality in

Lemma 2.8 the sum is less or equal zero.
We can choose UA small enough such that cand(A′) ⊆ S for all A′ ∈ UA, that is UA

only intersects simplices whose closure contain A. We consider the finite set S instead of
cand(A′) in the (?)-inequalities. Varying A continuously varies the coefficients of lB(ei)
in the (?)-inequality continuously. Since S is finite we can choose UA and UB in such a
matter that if for any β ∈ S the sum lA(β)lB(α) − lA(α)lB(β) is strictly greater than
zero, it stays so for all A′ ∈ UA and B′ ∈ UB. That means that any β ∈ S which was not
already a witness from A to B is less stretched from A′ and B′ than α and hence does
not become a witness.

Previous Lemma 2.15 means that out-envelopes depend continuously on the base point.
As another useful property we will now see that the out-envelopes of a given point yield
a partition of Outer Space into polytopes. That is two out-envelopes of the same point
only intersect at their faces and faces are again out-envelopes. Furthermore, it is enough
to restrict ourselves to out-envelopes in coarse direction of candidates. We will see that
this is also locally true for in-envelopes.

Proposition 2.16
Let A ∈ CVn, then we have:

(i) CVn =
⋃

α∈cand(A)

Envout
R (A,α)

(ii) {A} =
⋂

α∈cand(A)

Envout
R (A,α) = Envout

R (A, cand(A))

(iii) For all α ∈ cand(A) the interior Envout
R (A,α)int is non-empty.

(iv) For all subsets M ⊆ Fn and all simplices ∆ ∈ supp(Envout
R (A,M)), there exists a

subset of candidates S ⊆ cand(A) such that the out-envelopes of M and S are the
same in ∆, i.e. ∆ ∩ Envout

R (A,M) = ∆ ∩ Envout
R (A,S).

(v) Let S1, S2 ⊆ Fn and let ∆ be a simplex in CVn, then Envout
R (A,S1)∩Envout

R (A,S2)∩
∆ is a face of Envout

R (A,S1) ∩∆.

Proof. (i) Follows directly from the fact that for each B ∈ CVn there exists a candidate
witness α ∈ CWR(A,B).

(ii) Let B ∈ Envout
R (A, cand(A)) be a point in the out-envelope and β ∈WR(B,A) be a

witness from B to A. By (iv) we have Envout
R (A, β) ∩∆(B) = Envout

R (A,S) ∩∆(B)
for some S ⊆ cand(A). By Remark 2.12 we have B ∈ Envout

R (A, cand(A)) ⊆
Envout

R (A,S). So we have that β is maximally stretched from A to B and from B
to A. In particular we have ΛR(A,B) = ΛR(B,A)−1 and hence B and A is the
same point in CVn.
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(iii) We will construct an open set contained in Envout
R (A,α).

If A is in a maximal simplex, let ε > 0 be smaller than each edge length of A and
α ∈ cand(A) be a candidate of A. Recall that as A is in a maximal simplex it does
not contain any figures of eight. Let B be an element in CVn obtained from A by
changing the edge lengths in the following way:

• Each edge not contained in α is shrunk by more than ε, i.e. lB(e) < lA(e)− ε.
• If α is a simple loop: Let nα be the number of edges in α. Then each

edge contained in α is stretched but at most by ε/2nα, i.e. lA(e) < lB(e) <
lA(e) + ε/2nα.

• If α is a barbell: We denote by α1, α2 the two circles of α and by ρ the
barbell handle as edge-paths, i.e. looking at α as a sequence of edges we have
α = α1∗ρ∗α2∗ρ−1. We shrink each edge contained in one of the two circles and
the circles are shrunk in total by at most ε/4, i.e. lA(αi)−ε/4 < lB(αi) < lA(αi).
Let nρ be the number of edges in ρ, then stretch each edge contained in ρ by
less than ε/2nρ such that ρ is stretched more than ε/4, that is we have then
lB(α) > lA(α).

We have now that each candidate β ∈ cand(A) which is not completely contained
in α crosses an edge which is shrunk in B. As we stretch the other edges in sum
less than ε/2 we have that such a β is shrunk from A to B. Thus α, and in the
case of the barbell its counterpart with a “flipped” circle, is the only and hence
maximally stretched path from A to B, i.e. B ∈ Envout

R (A,α) holds. As we had
strict inequalities for the edge lengths, the set of such constructed B is open and so
the claim follows. In particular we have shown that Envout

R (A,α) ∩∆(A) has full
dimension when A lies in a maximal simplex.

Let now A be not in a maximal simplex. We can construct similar to B from
above an A′ ∈ Envout

R (A,α) in a maximal simplex with α ∈ cand(A′). Namely we
shrink all edges of A which are not covered by α by some ε and relax all vertices of
valency larger than three with edges of some length ε/2k along α, where k is the
number of newly introduced edges and along α means that α passes over the new
edges whenever possible. We only need to take care in case α is a figure of eight
to relax it into a barbell so that we still have α ∈ cand(A′). Since we have then
Envout

R (A,α) ⊆ Envout
R (A′, α) the claim follows.

(iv) By Remark 2.12 (iii) we can assume without loss of generality that M = {α} is a
singleton. Let B ∈ relint(Envout

R (A,α)∩∆) be a point in the relative interior of the
polytope Envout

R (A,α)∩∆. For S := CWR(A,B) we claim that Envout
R (A,α)∩∆ =

Envout
R (A,S) ∩∆. To prove the claim we show that α has in the corresponding

out-envelopes the same stretching as any β ∈ S.

Let B + V ⊂ ∆ be the affine subset in ∆ spanned by Envout
R (A,α) ∩ ∆ and let

v ∈ V be small enough such that B± v ∈ Envout
R (A,α)∩∆ holds. Here we use that

B is in the relative interior of the out-envelope. For β ∈ S the inequality in (?) is

an equality for B, i.e. we have lB(α)
lA(α) = lB(β)

lA(β) .
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Recall that the length functions lC(α) linearly depend on the edge lengths of C. Since

B + v and B − v are in Envout
R (A,α) we also have the equalities

lB±v(α)
lA(α) =

lB±v(β)
lA(β) .

Elsewise we would have
lB+v(α)
lA(α) >

lB+v(β)
lA(β) or

lB−v(α)
lA(α) >

lB−v(β)
lA(β) which contradicts

B ± v ∈ Envout
R (A,α).

By the linearity of the length function we obtain equality in (?) for α and β ∈ S
for all multiples of v. In particular this equality holds for all B + V , i.e. for
all β ∈ S and C ∈ B + V we have lC(α)

lA(α) = lC(β)
lA(β) . As B + V was the affine

subspace spanned by Envout
R (A,α) we have Envout

R (A,α) ⊆ Envout
R (A,α) and thus

Envout
R (A,α) ∩∆ ⊆ Envout

R (A,S).

Similarly we prove the other inclusion. Let B + W be the affine subset spanned
by Envout

R (A,S) ∩∆ in ∆, and let w ∈W be small enough. As B +W is spanned
by Envout

R (A,S), we assume without loss of generality that B + w ∈ Envout
R (A,S)

holds. If we have B + w ∈ Envout
R (A,α) for all small enough w ∈W , we conclude

as before equality in (?) for α and all β ∈ S for all C ∈ Envout
R (A,S) ⊆ B +W and

thus Envout
R (A,S) ∩∆ ⊆ Envout

R (A,α).

Assume B +w /∈ Envout
R (A,α), then we have

lB+w(α)
lA(α) <

lB+w(β)
lA(β) for one and thus for

all β ∈ S. By the linearity of the lengths we have hence
lB−w(α)
lA(α) >

lB−w(β)
lA(β) and in

particular S ∩ CWR(A,B − w) = ∅. But by choosing |w| small enough we have by
Lemma 2.15 CWR(A,B − w) ⊂ S, which contradicts CWR(A,B − w) 6= ∅.

(v) Follows directly from (iv) and the inequalities (?) in Lemma 2.8, since the defining
half spaces of the polytope come from the candidates.

Remark 2.17
Statement (iii) does not hold in reduced Outer Space, since we might not be able to relax
a figure of eight into a barbell. As example in CV red

2 let A be the rose with petals α and
β. Then the out-envelope Envout

R (A,αβ) of its figure of eight has dimension one: For any
B ∈ CV red

2 the two loops α and β have to intersect in at least one vertex or edge, hence
we have lB(αβ) ≤ lB(α) + lB(β). We use here that α and β are generators of F2, hence
we can assume by Stallings folding that they can be simultaneously cyclically reduced
in B by conjugation. By Lemma 1.14 we have then that αβ is exactly then a witness if
the equality lB(αβ) = lB(α) + lB(β) holds and α and β are also witnesses. As α and β
form a basis of F2, their edge counts can not be multiples in any simplex ∆. Hence, their
equality in the (?)-inequalities of Lemma 2.8 yield a proper restriction, that is we have
dim(Envout

R (A,αβ)) ≤ dim(∆)− 1 ≤ 1. Similarly, let ω ∈ F2 be an element that is not a
power of α or β. Then the out-envelope Envout

R (A,ω) has at most dimension one.

For the in-envelopes we get similar results as in Proposition 2.16.

Proposition 2.18
Let B ∈ CVn and S := {α ∈ Fn | α can be extended to a free generating set of Fn} =⋃
A∈CVn cand(A) the set of possible candidates, then we have:
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(i) CVn =
⋃
α∈S

Envin
R(B,α)

(ii) {B} =
⋂

α∈cand(B)

Envin
R(B,α) = Envin

R(B, cand(B))

(iii) For all α ∈ S the interior Envin
R(B,α)int is non-empty.

(iv) For all sets of witnesses M ⊆ Fn and all simplices ∆ ∈ supp(Envout
R (B,M)),

there exists a subset of candidates S′ ⊆ cand(∆) such that ∆ ∩ Envin
R(B,M) =

∆ ∩ Envin
R(B,S′).

(v) Let S1, S2 ⊆ Fn and let ∆ be a simplex in CVn, then Envin
R(B,S1)∩Envin

R(B,S2)∩∆
is a face of Envin

R(B,S1) ∩∆.

Proof. All statements except (iii) are proven as in Proposition 2.16.
For (iii) let α ∈ S. As α is a candidate it can be extended to a basis (α, α2, . . . , αn) of

Fn. Consider the marked rainbow graph A as in Figure 14, where the two edges covered
by α have length less than some small ε > 0 and all the other edges have length greater
than 1.

αn
αn−1

α2

α

Figure 14: marked rainbow graph

Hence, all candidates of A except α have length greater than 2 and α has length
less than 2ε. Since there are only finitely many candidates, we can choose ε small
enough such that lB(α)

2ε > lB(β)
2 holds for every other candidate β ∈ cand(A). As we have

lB(α)
lA(α) >

lB(α)
2ε > lB(β)

2 > lB(β)
lA(β) and there always exists a candidate witness, we have that

all the rainbow graphs with the above edge lengths lie in Envin
R(A,α). As the conditions

on the edge lengths are strict inequalities these rainbow graphs form an open set.

As a direct application of Proposition 2.18 (iii) and its proof we get a slightly weaker
counterpart to Lemma 1.36, namely we can extend a given geodesic backwards.

Corollary 2.19
Let B,C ∈ CVn be two points and γ : [0, 1] → CVn be a geodesic from B to C. Then
there exists a geodesic σ : R≤1 such that σ|[0,1] = γ and for any L ≥ 0 there exists a t < 0
with dR(σ(t), B) > L.

While Lemma 2.13 (iii) tells us that consecutive edges of out- and in-envelope are rigid
geodesics, we will see that in fact all rigid geodesics are of that form. To prove this, we
will need the following lemma.
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Lemma 2.20
Let ∆ ⊂ CVn be a closed simplex, A ∈ ∆ and S ⊆ Fn such that E := Envout

R (A,S) ∩∆
has dimension k. Then for each relative interior point B ∈ relint(Envout

R (A,S)) ∩∆ we
have dim(EnvR(A,B) ∩∆) = k. In particular, if we have k ≥ 2, then there exists no
rigid geodesic from A to B.

The analogue statement holds for in-envelopes.

Proof. Let B ∈ relint(Envout
R (A,S)) ∩∆, S′ := WR(A,B) and E ′ := Envout

R (A,S′) ∩∆.
By B ∈ E we have S ⊆ S′ and thus E ′ ⊆ E . Applying Proposition 2.16 (v) to E and E ′
we get that E ′ is a face of E . But E ′ contains an interior point B of E and thus we have
E ′ = E .

Now let UA be as in Lemma 2.15 and A′ ∈ UA ∩ E . By A′ ∈ E = E ′ we get
S′ ⊆WR(A,A′) and by A′ ∈ UA and Lemma 2.15 we have CWR(A′, B) ⊆ S′. But then
Corollary 1.24 implies that A′ lies on a geodesic from A to B, i.e. A′ ∈ EnvR(A,B)∩Delta.

This means we have UA ∩ E ⊂ EnvR(A,B) ∩ ∆ ⊂ E and thus k = dim(E) =
dim(EnvR(A,B) ∩ ∆). In particular, for k ≥ 2 there exist several geodesic from A
to B as otherwise EnvR(A,B) would be the unique geodesic and hence would have
dimension 1.

Similar we get the statement for in-envelopes.

We have now the tools to classify rigid geodesics in terms of envelopes.

Theorem 2.21
Let I ⊂ R be any interval, t ∈ I and γ : I → CVn a geodesic. Then the following is
equivalent:

(i) γ is a rigid geodesic.

(ii) For all t ∈ I, γ|≥t is the concatenation of consecutive edges of an out-envelope of
γ(t) and γ|≤t is the concatenation of consecutive edges of in-envelopes of γ(t).

Proof. Recall Definition 1.29 that γ is rigid, if each arc γ|[s,t] is rigid for any s ≤ t ∈ I.
By Lemma 2.13 (iii) we have then (ii) ⇒ (i).

For the converse assume that for some t ∈ I γ|≥t does not lie on the edges of an out-
envelope. Let s ≥ t be minimal such that γ|>s does not lie on edges of an out-envelope of
γ(t). Let ε > 0 be small enough such that for s′ := s+ ε the points γ(s) and γ(s′) lie in
the same closed simplex ∆ and that γ(s′) does not lie on an edge of an out-envelope. Let
S := WR(γ(t), γ(s′)) be the set of witnesses from γ(t) to γ(s′). As γ(s′) does not lie on
an edge we have that the envelope E := Envout

R (γ(t), S) has at least dimension two in ∆
and γ(s′) lies in the relative interior of E . By Lemma 2.20 there exist several geodesics
from γ(s) to γ(s′), which contradicts that γ is rigid.

Similarly, we get that γ is not rigid, if γ|≤t is not the concatenation of consecutive
edges of in-envelopes.

Remark 2.22
In Theorem 2.21 observe that while each bounded segment γ|[s,t] lies in a single in-envelope
of γ(t), we will see that the whole negative part γ|≤t might not lie in a single in-envelope of
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B

Figure 15: In-envelopes for a figure of eight B in CV red
2 .

γ(t). That means we have to consider in Theorem 2.21 edges of possibly several different
in-envelopes but only need the edges of a single out-envelope. The reason one out-envelope
is enough is that for a given geodesic γ : I → CVn and t ∈ I we have by Lemma 1.22
CWR(γ(t), γ(s2)) ⊂ CWR(γ(t), γ(s1)) 6= ∅ for all t ≤ s1 ≤ s2. Since CWR(γ(t), γ(s)) is
finite for all s > t this implies CWR(γ|>t) :=

⋂
s>tCWR(γ(t), γ(s)) 6= ∅ and CWR(γ|>t) ⊆

CWR(γ(t), γ(s)) ⊆ for all s > t, thus the out-envelope EnvR(γ(t), CWR(γ|>t)) suffices.
This argument does not hold for the negative direction γ|<t, since the candidates here

depend on γ(s) and not γ(t). We might even get that
⋂
s<tWR(γ(s), γ(t)) is an empty

set. We can construct such a counterexample in CV red
2 . The idea for the construction is

that in each theta-simplex we have three in-envelopes coming from the three candidates.
That means each time we cross a face in CV red

2 along the edge of two in-envelopes we
have the two in-envelopes “fanning out” to three in-envelopes. So at each face we can
choose two ways how to continue our incoming geodesic. Choosing appropriately we can
then eliminate all elements as witnesses:

Enumerate all possible witness as (αi)i∈N and start with any maximal simplex ∆0 ⊂
CV red

2 . Let A0 ∈ ∆0 be a figure of eight graph. A short calculation shows that we have
three in-envelopes of A0 in ∆0 where the middle in-envelope comes from a figure of eight
in A0. Furthermore, the two rigid geodesics in ∆0 ending in A0 will pass the two other
faces of ∆0. That means we can choose inductively Ai to be the figure of eight in ∆0

such that the geodesic γi from Ai to Ai−1 is rigid and we have αi 6∈WR(Ai, Ai−1) unless
αi is a figure of eight in Ai. In this case observe that αi is not a figure of eight in Ai+1,
so we can simply rearrange αi with αi+1. We define then ∆i to be the other maximal
simplex with Ai ∈ ∆i.

We now need to show that that the concatenation of the γi yields a geodesic. Let
α ∈ CWR(Ai, A0) be a candidate witness. By choosing i large enough we can assume
that α 6∈ cand(∆0). Similar to Remark 2.17 we have dim(Envin

R(A0, α) ∩∆0) < 2. As
CV red

2 is simply connected, any geodesic from Ai to A0 has to pass through ∆0 and
∆(A1). By Proposition 2.18 (v) the envelope then has to be the rigid geodesics from
A1 to A0 in ∆0. Inductively, we get that the concatenation γi−1 ∗ · · · ∗ γ0 is the unique
geodesic from Ai to A0. In particular all the γi concatenate to a rigid geodesic γ which
has by construction

⋂
s≤tWR(γ(s), γ(t)) = ∅.
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3 Simplicial structure of CV red
n

In this section we will see how to distinguish faces in CV red
n by the use of envelopes. The

important observation we use is that envelopes may have different dimensions in different
simplices. You can see an example of this behaviour in the third image in Figure 13. In
reduced Outer Space we can construct such envelopes near any face as follows:

Lemma 3.1
Let C ∈ CV red

n be in a face, i.e. the underlying graph of C has a vertex of degree
at least four. Furthermore, let U 3 C be a neighbourhood of C in CVn

red. Then
there exist open sets UA, UB ⊂ U such that for any A ∈ UA, B ∈ UB the envelope
EnvR(A,B) has near A full dimension while it has lower dimension near B, i.e. we have
dim(EnvR(A,B) ∩ UA) = 3n− 4 > dim(EnvR(A,B) ∩ UB).

Proof. Since we can slightly relax all vertices of valency four in any open set, we can
without loss of generality assume that C has exactly one vertex v of valency four. Let us
look at the star around v:

v

Since C ∈ CV red
n , there exists no separating edge and hence we find embedded circles α

and β passing through v:

v

Furthermore, we can assume that α and β are disjoint apart from v by cutting out
common edges and glueing the paths back together:

=⇒

Giving α and β an orientation, we can see them as elements in Fn.
For small enough ε > 0 we construct the following graphs in U :

• A is obtained by relaxing v to an edge (v1, v2) of length ε as in figure 16 and keeping
the rest as in C.

• B is obtained by relaxing v to an edge (v1, v2) of length ε in a different manner
than in A by swapping the edges belonging β. Thus we effectively reverse the
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orientation at which β passes through (v1, v2) when compared to A (see Figure 16).
Additionally we shrink each edge which does not lie in α or β by 2ε, i.e. we have
lB(e) = lC(e)− 2ε for such an edge e.

v2v1 v2v1

Figure 16: v relaxed to get A and B

Observe that A and B now lie in maximal simplices. Since topologically A and B are
the same outside of v and most of the edges of B are shorter than in A, each candidate
of A can only be stretched from A to B if it crosses v1 or v2 and does not cross edges
outside of α and β. Hence, αβ is the only maximally stretched candidate from A to
B. Considering the inequalities for the envelope around A, we have that in a small
neighbourhood around A the inequalities of type (??) are always satisfied and as in
Proposition 2.16 (iii) it has full dimension 3n− 4.

On the other hand let D ∈ EnvR(A,B) be close to B, i.e. with the same topological
type as B. By Lemma 1.22 αβ has to be a witness from D to B. By Lemma 1.14 α and
β are also witnesses from D to B. But this yields a non trivial equality condition in (??)

for the edge lengths of D, namely lB(α)
lD(α) = lB(β)

lD(β) , thus EnvR(A,B) has close to B at most
dimension 3n− 4− 1.

By Lemma 2.15 we can choose small enough neighbourhoods UA 3 A and UB 3 B
such that we do not change the candidate witness, that is we have CWR(A′, B′) = {αβ}
and hence as before dim(EnvR(A′, B′) ∩ UA) > dim(EnvR(A′, B′) ∩ UB) for all A′ ∈ UA
and B′ ∈ UB.

We saw an example for such a dimension change in Figure 13. In that example A
and B are theta-graphs with marking as depicted in Figure 16 and αβ is the candidate
witness from A to B.

Remark 3.2
The argumentation of Lemma 3.1 does not necessarily hold in non-reduced Outer Space,
for example consider C as a doubled barbell graph in Figure 17.

Regardless on how we resolve the 4-valent vertex, we will always get the same sets
of candidates. Fixing the edge lengths of C we can now easily find a neighbourhood of
C which contains only the topological types gained by slightly stretching the 4-valent
vertex.

Recall that envelopes are polytopes in a simplex and thus have a fixed dimension in
each simplex. With previous Lemma 3.1 and the fact that envelopes are preserved under
isometries we get that isometries of CV red

n send maximal simplices to maximal simplices.
The lower dimensional skeleton of CV red

n is preserved for topological reasons and we get:
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Figure 17: doubled barbell graph and its adjacent topological type

Theorem 3.3
An isometry in regard to the asymmetric metric of CV red

n is simplicial.

For the symmetric version of this theorem, which also implies the last theorem, we
will need a little bit more work. We will first show that almost all points A,B ∈ ∆ in
the same maximal simplex ∆ have a symmetric envelope Env(A,B) with full dimension
3n − 4. On the other hand by Lemma 3.1 there are open sets at faces, where this is
not satisfied. To quantify what “almost all points” means we will introduce a notion of
general position.

Definition 3.4
Let A,B ∈ CVn be two points in maximal simplices. We say B is in general position to A
if there exist neighbourhoods UA 3 A and UB 3 B such that for all A′ ∈ UA and B′ ∈ UB
the sets of candidate witnesses CWR(A,B) = CWR(A′, B′) are the same. Otherwise we
say B is in special position to A.

It should be remarked that our notion of general position is not symmetric, i.e. B can
be in general position to A while A is in special position to B. Before we go into more
detail how to use this notion, we want to point out that, as the name suggests, almost
every pair is in general position. More precisely we have:

Proposition 3.5
Let A ∈ CVn be in a maximal simplex then the set of points B in general position to A
is dense and open. The same statement holds if we fix B and vary A.

Proof. The open property follows directly from the definition. The dense property follows
from the following Lemma 3.6 and Proposition 2.16.

We can find points in general position with the help of in- or out-envelopes, namely a
point is in general position to another if the two points lie in the interior of the others
in-envelope and out-envelopes, respectively:

Lemma 3.6
Let A,B ∈ CVn be points in maximal simplices, then the following are equivalent:

(i) B is in general position to A.
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(ii) B ∈ Envout
R (A,α)int for an α ∈ Fn.

(iii) A ∈ Envin
R(B,α)int for an α ∈ Fn.

Proof. “(i)⇒(ii) and (iii)” follows directly from the definition of general position for every
α ∈ CWR(A,B).

“(iii)⇒(i)”: By Proposition 2.18 (iv) we can assume that α is a candidate of A. If there
exists no other candidate witness β ∈ CWR(A,B), we are done by Lemma 2.15. Hence,
assume β ∈ CWR(A,B) \ {α} is another candidate witness. Since A is in the interior of
Envin

R(B,α), we have by Proposition 2.18 (v) Envin
R(B, β) ∩∆(B) = Envin

R(B,α) ∩∆(B).
Consider the edge-counts of α and β in A in the (??)-equality. As we have that the equality
holds for any C in a small neighbourhood of A, the coefficient in the (??)-equality for every
edge length have to be zero, that is we gave

(
lB(α) ·#A(ei, ω)− lB(ω) ·#A(ei, α)

)
= 0.

In particular the edge-counts of α and β in A are multiples of each other and thus α and
β are in A either the same candidate or a barbell and its counterpart, that is we reverse
the orientation of a petal e.g. ω1ω2 and ω1ω

−1
2 ) – as A is in the a maximal simplex there

exist no 4-valent vertices and hence no figures of eight. Furthermore we have shown that
CWR(A,B) = {α, β} consists only of the barbell and its counterpart β.

We will now show that α and β also have the the same edge-counts in B. Let h : A→ B
be an optimal change of marking map (see Definition 1.31). Since α and β are witnesses,
their images in B under h are reduced paths. As they have the same edge counts in A,
this implies they have also the same edge counts in B. In particular they also have the
same lengths in the simplices of A and B, i.e. lA′(β) = lA′(α) and lB′(β) = lB′(α) for all
A′ ∈ ∆(A), B′ ∈ ∆(B).

By Lemma 2.15 we can choose neighbourhoods UA and UB small enough such that
CWR(A′, B′) ⊆ CWR(A,B) = {α, β}. As α and β are equally stretched between two
points in the corresponding simplices we conclude CWR(A′, B′) = CWR(A,B).

“(ii)⇒(i)”: As before assume β 6= α with β ∈ CWR(A,B) exists. We show that α
and β are are again a barbell and its counterpart in A. As in (iii) we have that the
edge-counts of α and β in B are multiples of each other. In particular the letter counts
of the word α ∗ β ∈ Fn are multiples of some number k ≥ 2. This implies that α ∗ β and
hence the pair α and β can not be extended to a basis of Fn: Any basis of Fn is send by
abelianisation to a basis of Zn, but α ∗ β would be a multiple of k in Zn and hence can
not be extended to a basis of Zn.

Assume that α and β are two different candidates and the pair (α, β) is not a barbell
or a figure of eight and its counterpart. Then the set {α, β} can be extended to a basis
of Fn, as the following sketches:

• Let α, β ∈ Fn be such a pair and fix a spanning tree which contains as much as
possible of α that means all up to one or two edges.

• Label the edges according to the marking with elements ωj ∈ Fn. The labels form
a basis of the fundamental group. If α is a simple closed loop, it is one of the labels
α = ωi1 , otherwise α is a barbell or figure of eight and we have α = ωi1ωi2 for two
edge labels ωi1 and ωi2 .
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• If β is a barbell we write it as a word

β = (ω1 . . . ωk)(ωk+1 . . . ωl)(ωl+1 . . . ωm)(ωk+1 . . . ωl)
−1

in this basis. As the loops and the handle of β are disjoint all the ωi are different
edge labels and only the handle (ωk+1 . . . ωl) might be empty.

As β is not the counterpart of α, there exists an i ∈ {1, . . . ,m} such that the letter
ωi is neither ωi1 nor ωi2 . Hence, we can exchange ωi with β and ωi1 with α and
get again a basis of Fn.

• If β is not a barbell its word has either again a letter not contained in α or it is
one of the two letters of α so we can again extend α and β to a basis.

Therefore, α and β must be as in the case (iii) and the claim follows.

Looking at the proof of Proposition 2.16 (iii) we get that Envout
R (A,α) ∩∆(A) has

already full dimension for all α ∈ cand(A) near a point A ∈ CVn. Comparing this to the
proof of Lemma 3.6, we will see the following Lemma 3.7 (i), namely we can distinguish
for two points A,B if B is in general position to A by the dimension of their envelope
near A. As a more direct application of Lemma 3.6 we will also see that the property of
general position of two points in a common maximal simplex is preserved along a straight
line joining them.

Lemma 3.7
Let A,B ∈ CVn be in maximal simplices.

(i) B is in general position to A if and only if EnvR(A,B) has full dimension in ∆(A).

(ii) Let A,B be in the same maximal simplex ∆ and in general position to each other.
Furthermore, let γ : [0, 1]→ ∆ be the straight line in this simplex joining A and B.
Then for any 0 ≤ s ≤ t ≤ 1 we have that γ(s) and γ(t) are also in general position
to each other.

(iii) Let A,B be as in (ii), then their envelope in regard to the symmetric metric has
full dimension, i.e. we have dim(Env(A,B)) ∩∆ = 3n− 4.

Proof. (i) Let B be in general position to A and α ∈ CWR(A,B). By definition of
general position there exists a neighbourhood UA with α ∈ CWR(A′, B) for all
A′ ∈ UA. In Proposition 2.16 (iii) we have seen that Envout

R (A,α) ∩∆(A) has full
dimension and as Envout

R (A,α) is a cone at A we have UA ∩ Envout
R (A,α) has full

dimension. By Corollary 1.24 we have UA ∩ Envout
R (A,α) ⊂ EnvR(A,B) which

implies the claim.

For the converse statement observe that A is always a point in the relative inte-
rior of Envin

R(A,CWR(A,B)). Since we have EnvR(A,B) ⊂ Envin
R(A,CWR(A,B)),

Envin
R(A,CWR(A,B)) has full dimension in ∆(A) and thus A lies in

Envin
R(A,CWR(A,B))int. In particular, we have A ∈ Envin

R(A,α)int for any α ∈
CWR(A,B), thus B is in general position to A by Lemma 3.6.
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(ii) By Lemma 3.6 we have that A lies in the interior of in- and out-envelopes coming
from B. These envelopes are cones in ∆ and γ is a straight line in ∆, hence γ lies
in the interior of the same in- and out-envelopes and in particular γ(s) and B are in
general position to each other. Similarly, we have that γ(t) and γ(s) lie in general
position to each other.

(iii) Let γ be the straight segment as in (ii) and C := γ(t) for any 0 < t < 1. By (ii) C lies
in general position to A and B and vice versa. Hence, there exists a neighbourhood
UC of C such that all C ′ ∈ UC have the same candidate witnesses as C from and
to A and B, respectively. By Corollary 1.24 that means UC ⊂ Env(A,B), which
concludes the proof.

We now use Lemma 3.7 and Lemma 3.1 to distinguish faces with envelopes in the
symmetric metric. Since envelopes are preserved under isometries we get the following
theorem:

Theorem 3.8
An isometry in regard to the symmetric Lipschitz metric of CV red

n is simplicial.

Proof. Let ϕ ∈ Isom(CV red
n ) be an isometry with respect to the symmetric metric. We

will first show that ϕ preserves maximal simplices. Therefore let C ∈ CV red
n be a

point in a maximal simplex. Assume that ϕ(C) lies on a face and let U ⊂ ∆(C) be a
neighbourhood of C contained in the maximal simplex.

Let ϕ(A), ϕ(B) ∈ ϕ(U) be as in Lemma 3.1. By the dense property of general position
we assume that their preimages A and B are in general position to each other. Since ϕ is
an isometry, it restricts to an isometry of Env(A,B) to Env(ϕ(A), ϕ(B)). In particular,
it preserves the dimension of envelopes close to its endpoints. But by Lemma 3.7 (iii)
Env(A,B) has near B full dimension while by Lemma 3.1 Env(ϕ(A), ϕ(B)) has smaller
dimension near ϕ(B).

We have thus proven that ϕ sends maximal simplices to maximal simplices and thus
preserves the (3n− 5)-skeleton of CV red

n . If C belongs to the (3n− 6)-skeleton of CV red
n ,

then C has either two 4-valent vertices or one 5-valent vertex, which can be resolved
to points in at least 4 different (3n− 5)-dimensional simplices of CV red

n . This means C
belongs to a face of at least 4 simplices of dimension 3n− 5. So by topological reasons
ϕ(C) must belong to the (3n− 6)-skeleton of CV red

n . Inductively, ϕ sends each simplex
to a simplex of the same dimension.

We can now apply the proof of Stefano Francaviglias and Armando Martinos in [FM12b]
for non-reduced Outer Space and get the same result for reduced Outer Space, namely:

Theorem 3.9
The isometry groups of CV red

n with regard to the symmetric and the asymmetric Lipschitz
metric are the same as in non-reduced case:

Isom(CV red
n ) = Isom(CVn) =

{
Out(Fn), if n ≥ 3,

PGL(2,Z), if n = 2.
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Remark 3.10
Another way to distinguish faces is directly by the property of general position. By
Lemma 3.7 the property of general position of two points is preserved under isometries
if both points are sent into maximal simplices. If γ : [0, 1]→ CVn is a straight line in a
maximal simplex, then by Lemma 3.7 (ii) γ(1) is in general position to γ(0) if and only
if γ(t) is in general position to γ(s) for all 0 ≤ s < t ≤ 1. On the other hand let A and
B be as in Lemma 3.1 and γ : [0, 1] → CVn any geodesic from a A to B. Then there
exists 0 < s < t < 1 such that γ(s) and γ(t) are not in general position since as soon as γ
passes the face, the envelope EnvR(γ(s), γ(t))∩∆(γ(s)) lies in EnvR(A,B)∩∆(B) which
has not full dimension. This behaviour just relies on the fact that the coarse direction of
γ is not a candidate of (the simplex of) B.

Having this in mind we can actually deduce similar behaviour for all geodesic rays,
namely that if a geodesic runs long enough, it looses one dimension of freedom or in
other words gains a small amount of rigidity:

Proposition 3.11
Let γ : R≥0 → CVn be an asymmetric geodesic ray parametrised by length, then there
exists a T > 0 such that for all T ≤ s < t we have dim

(
EnvR(γ(s), γ(t))

)
≤ dim(CVn)−1.

In particular γ(t) is not in general position to γ(s).

Proof. Let α ∈
⋂
t∈RCWR(γ(0), γ(t)) be a coarse direction of γ. Such an α exists since

γ is a geodesic ray. By Lemma 1.22 we have α ∈W (γ(s), γ(t)) for all 0 ≤ s < t. Since α
is a witness for all elements of γ, its length is stretched exponentially to the length of γ.
Hence, there exists a T > 0 with lγ(s)(α) > 2 vol(γ(s)) for all s ≥ T . In particular, α is
not a candidate for all γ(s) with s ≥ T as at least one edge is covered by α more than
three times.

Let now β ∈ CWR(γ(s), γ(t)) for some T ≤ s < t. We will show that the equalities in
(?) for β and α yield a non-trivial restriction for γ(t). Assuming the contrary we would
have (lγ(s)(β) ·#(ei, α)− lγ(s)(α) ·#(ei, β)) = 0 for all edges ei. In other words in the
abelianisation of Fn the element α would be the (lγ(s)(α)/lγ(s)(β))-multiple of β. By
construction we havelγ(s)(α) > 2 vol(γ(s)) > lγ(s)(β), hence α would be a proper multiple
in the abelianisation. But α can be extended to a basis of Fn and hence its image in the
abelianisation can not be a proper multiple of another element. Since the geodesic ray
has to satisfy this non-trivial equality for t > T , we have dim(Envout

R (γ(s))) < 3n − 4
and by Lemma 3.7 γ(t) is not in general position to γ(s).

Since a geodesic is rigid if and only if the envelope has everywhere dimension 1, we get
the following corollary:

Corollary 3.12
Let γ : R≥0 → CV2 be an asymmetric geodesic ray parametrised by length, then there
exists a T > 0 such that γ|≥T is a rigid geodesic ray.

Remark 3.13
Observe that Proposition 3.11 is sharp for every n ≥ 2, namely there exist long geodesic
rays γ : R≥0 → CVn with dim

(
EnvR(γ(s), γ(t))) = dim(CVn)− 1 for all 0 < s < t as we

can see in the following example.
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Example 3.14
Let A0 ∈ CV2 be the figure of eight with marking α and β and edge lengths a and 1− a
for a =

√
5−1
2 . If we choose γ to be the geodesic ray starting at A0 with direction {αβ},

a 1− a

Figure 18: marked figure of eight

which is the same direction as {α, β}, a short calculation shows that γ is the unique
geodesic from A0 to A1, where A1 is the figure of eight with marking αβ−1, β and again
with edge lengths 1− a and a, respectively. In terms of envelopes the closed simplex
∆0 containing A0 and A1 is covered by the envelopes of Envout

R (A0, α) and Envout
R (A0, β)

and γ is exactly the intersections of those two envelopes and hence rigid.
Furthermore, for the adjacent theta-simplex ∆1 containing A1 the out-envelopes

Envout
R (A1, α) and Envout

R (A1, β) lie in the interior of ∆1, hence the envelope
Envout

R (A1, {α, β})∩∆1 is one dimensional and by Proposition 2.16 (iv) it is the intersec-
tion of out-envelopes of candidates of A1. But these look exactly like for A0 and ∆0, i.e.
there are only two envelopes belonging to αβ−1 and β and hence Envout

R (A1, {α, β})∩∆1

intersects the next face at A2 with again edge lengths a and 1− a.
Since we can continue γ along the out-envelopes with coarse direction {α, β} we

inductively get that γ is a rigid geodesic ray with infinite length. Figure 19 is a picture
of γ where the letters in the brackets denote the marking of the figures of eight.

(α, β)

(αβ−1, β)

(αβ−1, β2α−1)

. . .

Figure 19: An infinite long rigid geodesic ray in CV2

We consider the graphs A′i ∈ CVn where we add to each Ai the same additional marked
subgraph, for example a bouquet of roses with petal length 1 and the same marking:

A′i :=

a 1− a

It is easy to check that the added green graph does not distribute anything to the distance
between the A′j . Hence, we can slightly vary the corresponding green edges, that is their
lengths and their endpoints, without changing the witnesses. In particular we get that the
corresponding ray γ′ is an infinite geodesic ray with EnvR(γ′(s), γ′(t)) = dim(CVn)− 1
for all 0 ≤ s < t.
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4 Local geodesics

In this section we will discuss how symmetric, locally minimising geodesics alias local
geodesics look like in Outer Space. An asymmetric, local geodesic is here a path γ : I →
CVn such that for each t ∈ I there exists an open subinterval t ∈ J ⊂ I such that
γ|J is a geodesic and a local geodesic is a path which is an asymmetric, local geodesic
independent of orientation. In particular, we have that a path is an asymmetric, local
geodesic if and only if it can be written as a concatenation of countably many geodesics
(γi)i∈Z : [0, 1]→ CVn such that for all i ∈ Z we have γi(1) = γi+1(0) and there exists an
εi > 0 with WR(γi(1− εi), γi(1)) ∩WR(γi+1(0), γi+1(εi)) 6= ∅ (see Corollary 1.24). With
this in mind we can construct a locally geodesic loop:

Example 4.1

Consider the marked theta-graph Γ :=
c
a

b

with marking α and β and the three

points A,B,C ∈ CV2 corresponding to Γ with edge lengths (a, c, b) = (1, 1, 1), (2, 1, 1)
and (1, 1

3 , 1), respectively.
Observe that the candidates of Γ are α, β and αβ, hence for each ordered pair

of A,B,C at least one of them is a witness. A short calculation shows {α, αβ} ⊂
WR(A,B), {β, αβ} ⊂ WR(B,C) and {α, β} ⊂ WR(C,A). By Lemma 1.23 the concate-

nation of the straight lines
−−→
AB,

−−→
BC and

−→
CA yields a closed, asymmetric, local geodesic

as any two consecutive lines share a witness.
Similarly we can construct a local geodesic for the symmetric metric in the shape

of a hexagon. For example the hexagon in ∆(Γ) where the vertices have edge lengths
(1, 2, 2), (1, 1, 2), (2, 1, 2), (2, 1, 1), (2, 2, 1) and (1, 2, 1) is a local geodesic (see Figure 20)
as each two consecutive lines (in either direction) share at least one candidate witness.

Figure 20: A local geodesic

We can make such changes of directions of a local geodesic arbitrarily small. That
means for any two points we can give a local geodesic between them which starts and
ends with a given direction. We will first give the statement only for points in the same
simplex and in general position and construct from this the general case.

Lemma 4.2
Let ∆ ⊂ CVn be a maximal simplex, A,B ∈ ∆ two points in general position to each
other and γA, γB be two local geodesic respectively ending at A and starting at B, i.e.

56



we have for a, b ∈ R>0 ∪ {∞} that γA : [−a, 0] → CVn, γB : [1, 1 + b] → CVn are local
geodesics with γA(0) = A and γB(1) = B.

Then there exists a path σ : [0, 1]→ CVn such that the concatenation γA ∗ σ ∗ γB is a
local geodesic. Moreover, σ may approximate the distance between A and B arbitrarily
well, that is for every ε we can find such a σ that l(σ) < d(A,B) + ε.

Proof. For a point C in ∆ consider the fan F (C) in ∆ originating at C and generated by
the in- and out-envelopes of C, that is each cone in F (C) can be written as an intersection
of an in-envelope and an out-envelope of C. As in Proposition 2.16 and Lemma 3.7 each
full dimensional cone in F (C) corresponds to a pair of candidates of C and we write
C(α, β) := Envout

R (C,α)∩Envin
R(C, β) for such a cone. Since the in- and out-envelopes in

∆ depend continuously on the point C there exists a neighbourhood UA ⊆ ∆ such that
for all points A′ ∈ UA their fans F (A) and F (A′) have the same structure. This means
two (3n− 4) dimensional cones in F (A) have a (3n− 5)-dimensional intersection if and
only if their corresponding cones in F (A′) have a (3n− 5)-dimensional intersection.

As A and B are in general position, we can choose UA small enough that A′ and B are in
general position for all A′ ∈ UA. Let now ε > 0 be small enough such that γA(−ε) ∈ ∆ and
γA|[−ε,0] is a geodesic. Let (β, α) ∈ cand(A)2 correspond to a full dimensional cone of F (A)
containing γA(−ε). A andB are in general position, thus we have by Lemma 3.6 thatB lies
in the interior of a full dimensional cone A(ω, µ) for (ω, µ) ∈ CW (A,B). In F (A) we fix a
sequence of full dimensional cones A(α0, β0), . . . , A(αN , βN ), which represents a path from
the cone A(α, β) to the cone A(ω, µ), that is for all i the cones A(αi, βi) and A(αi+1, βi+1)
share a facet and (α0, β0) = (α, β), (αN , βN ) = (ω, µ). As we have chosen UA small enough
this path of cones is the same for any A′ ∈ UA. Without loss of generality let UA = Bδ(A)
be the δ-ball around A with respect to the symmetric distance for some δ > 0. We define
inductively A0 := A and Ai ∈ Ai−1(αi−1, βi−1)∩Ai−1(αi, βi)∩Bδ/N (Ai−1) for 1 ≤ i ≤ N .
In particular we have Ai ∈ UA for all i and thus the intersection of the cones is not empty.
By construction we have furthermore (αi, βi) ∈ CW (Ai−1, Ai) ∩ CW (Ai, Ai+1).

Let σA,i be a geodesic from Ai−1 to Ai, for example the straight line between them.
Since they share a witness, their concatenation σA,1 ∗ · · · ∗ σA,N yields a local geodesic
by Corollary 1.24. As (α, β) ∈ CW (A,A1) ∩ CW (γA(−ε), A), the concatenation γA ∗
σA,1 ∗ · · · ∗ σA,N is still a local geodesic. Furthermore, AN and B are still in general
position and we have (ω, µ) ∈ CW (AN , B) = CW (A,B) and by construction (ω, µ) ∈
CW (AN−1, AN ).

Similarly, we construct points B1, . . . , BM ∈ ∆ and obtain a local geodesic σB,M ∗ · · · ∗
σB,1 ∗ γB such that (µ, ω) ∈ CW (BM−1, BM ). Let σA,B be a symmetric geodesic from
AN to BM , e.g. a straight line in ∆. As A and B are in general position and we chose
the neighbourhoods small enough, we still have (ω, µ) ∈ CW (AN , BM ). By construction
we also have (ω, µ) ∈ CW (AN−1, AN ) ∩ CW (BM , BM−1) and hence the concatenation
γA ∗ σA,1 ∗ · · · ∗ σA,N ∗ σA,B ∗ σB,M ∗ · · · ∗ σB,1 ∗ γB is a local geodesic. In particular we
have that σ : = σA,1 ∗ · · · ∗ σA,N ∗ σA,B ∗ σB,M ∗ · · · ∗ σB,1 is the desired path.

Observe that the path σ has length l(σ) = l(σA,1) + · · ·+ l(σA,B) + · · ·+ l(σB,1). Each
of the segments σA,i has at most length δ/N and AN , BM lie in the δ-neighbourhoods of
A and B, that is we have by the triangle inequality l(σA,B) = d(AN , BM ) ≤ 2δ+ d(A,B).
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In particular we have then l(σ) = δ+ 2δ+d(A,B) + δ = 4δ+d(A,B), that is by choosing
δ small enough σ approximates the distance arbitrarily close.

While we have seen in Lemma 1.25 that not all points in different simplices are joined
by a symmetric geodesic, we will now see that we can join any two adjacent simplices of
CVn by a symmetric geodesic:

Lemma 4.3
Let ∆1,∆2 ⊂ CVn be two adjacent simplices and C ∈ F := ∆1 ∩ ∆2 be a point on
their common face F . Then there exist points A ∈ ∆1, B ∈ ∆2 such that C lies on a
symmetric geodesic from A to B.

Proof. The idea of the proof is to go “skew” over the face F that means we have two
witnesses α and β which are so much stretched that the collapsed edges of ∆1 and ∆2 do
not matter.

Similar to the proof of Lemma 3.1 there exist two edge-disjoint simple loops α, β ∈ Fn
in C. Assume that C is normalised an let l := mine∈E(C) lC(e) be the minimal length of
an edge in C.

Recall that the underlying marked graph of F is obtained by collapsing a forest in the
marked graph of ∆1. Hence, we can define the point A ∈ ∆1 with the following edge
lengths

lA(e) =


2 · lC(e), if e is contained in α,
1
2 · lC(e), if e is contained in β,

δ, if e is collapsed from ∆1 to F,

lC(e), otherwise

,

for some small enough 0 < δ < l
2(2n−3) ,

lC(β)2l
4(2n−3)(2+l) . We will show that α is maximally

stretched from C to A and β is maximally stretched from A to C. Observe that the
collapsed forest contains at most 2n− 3 edges, hence we have for the stretching of α and
β in A the following inequalities:

lA(α)

lC(α)
≥ 2lC(α)

lC(α)
= 2

lC(β)

lA(β)
≥ lC(β)

1
2 lC(β) + (2n− 3)δ

= 2− 4(2n− 3)δ

lC(β) + 2(2n− 3)δ

> 2− 4(2n− 3)δ

lC(β)
> 2− 2l

2 + l
.

Here we used in the last inequality δ < lC(β)2l
4(2n−3)(2+l) .

Let ω ∈ (cand(A) ∪ cand(C)) \ {α, β} be another candidate. Since α and β are simple
loops in C, there exist edges eα, eβ ∈ E(C) which are covered by ω but eα is not covered
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by α and eβ is not covered by β. So we have the inequalities:

lA(ω) ≤ 2lC(ω)− lC(eα) + 2 · (2n− 3)δ < 2lC(ω)− l + l = 2lC(ω)

⇒ lA(ω)

lC(ω)
< 2 ≤ lA(α)

lC(α)

lA(ω) ≥ 1

2
lC(ω) +

1

2
lC(eβ) ≥ 1

2
lC(ω) +

1

2
l

⇒ lC(ω)

lA(ω)
≤ lC(ω)

1
2 lC(ω) + 1

2 l
≤ 2− 2l

lC(ω) + l
≤ 2− 2l

2 + l
<
lC(β)

lA(β)

We used here δ < l
2(2n−3) in the first line.

We construct the point B ∈ ∆2 in the same manner with the roles of α and β exchanged
and get by Corollary 1.24 that C lies on a symmetric geodesic from A to B.

Using these two lemmas, we can construct a local geodesic through any given sequence
of points in CVn.

Theorem 4.4
Let (Ai)i∈Z ⊂ CVn be a sequence of points in CVn. Then there exists a local geodesic
γ : R→ CVn passing through these points, i.e. we have γ(i) = Ai for all i ∈ Z.

Proof. By Proposition 3.5 being in general position is an open and dense property. Thus,
after possibly introducing some additional intermediate points, we can assume that the
two consecutive points Ai and Ai+1 are either as in Lemma 4.2, that is in the same
simplex and in general position to each other, or belong to a triplet as in Lemma 4.3.
Hence, we can construct inductively a local geodesic passing through these points.

As each simplex contains a countable dense set and there are countably many simplices
in CVn we get that:

Corollary 4.5
There exists a local geodesic which is dense in CVn.

Similarly to above we can approximate any given path by a local geodesic:

Proposition 4.6
Let γ : I → CVn be a continuous path and ε > 0. Then there exists a local geodesic
σ : J → CVn such that γ lies in the ε-neighbourhood of σ in regard to the symmetric
metric and vice versa.

Proof. As points in general position are dense, we can find a sequence (Ai)i∈Z in the ε-
neighbourhood of γ such that d(Ai, Ai+1) < ε and the points Ai lie either as in Lemma 4.2
or Lemma 4.3 and we have γ ⊂

⋃
i∈ZBε(Ai). By Lemma 4.2 we can assume that the

constructed local geodesic σ|Ai,Ai+1 has at most length l(σ|Ai,Ai+1) ≤ d(Ai, Ai+1) + ε
and hence is contained in a 2ε-neighbourhood of Ai. In particular we have that the
constructed local geodesic is contained in the 3ε-neighbourhood of γ and γ is contained
in the ε-neighbourhood of σ.
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5 Isometric embeddings

While we know by [FM12b] and by Section 3 that the isometry group of Outer Space and
reduced Outer Space is (virtually) Out(Fn), there is so far nothing known about isometric
embeddings from CVn to CVk for k > n. We will discuss and explicitly construct two
different types of such embeddings in this section. Each of these types of embeddings
correspond to a different way of identifying one free group as a subgroup of another. The
first type introduced in Sections 5.1 and 5.2 is the “naive way” to increase the rank of
the fundamental group, which is attaching a rose to a marked graph and corresponds
to Fn being a free factor of Fk. The second type is the more natural embedding from
Section 5.3, which derives from finite coverings and corresponds to identifying Fk with a
finite index subgroup of Fn. While the naive embedding leaves a lot of freedom where
and which graph we attach, the natural embedding is restricted by the Nielsen-Schreier
formula, that is we find such an embedding only for k = 1 + d(n− 1) for some d ∈ N.

One of the questions we will answer is: Are embeddings from CVn to CVk in some
sense discrete? For comparison the isometry group acts properly discontinuously on CVn
as each simplex has a finite stabiliser. Furthermore, the automorphism group of Fn is
finitely presented by [Nie24] and hence countable. In contrast the naive embeddings can
be continuously deformed as we will see in Example 5.6 and we will see in Section 6
that we can also continuously and locally deform a natural embedding from CV2 to CVk.
Hence, we have families of arbitrarily close isometric embeddings. However, we will also
see that one can not locally deform a natural embedding from CVn to CVk for n ≥ 3, so
in this sense these natural embeddings are more rigid.

Before we start with isometric embeddings from CVn to CVk recall that we have seen
in Section 3 that the simplicial structure of CVn is not only determined topologically but
in reduced Outer Space also by the Lipschitz metric, as we can locally distinguish faces
with envelopes (see Theorem 3.8). In contrast we will see that there is no local reason
that an isometric embedding should be simplicial. For instance we can isometrically
embed three adjacent simplices of CV2 into a single rose-simplex of CVk for any large
enough k, as we will see in Example 5.1.

The idea of this example is that the distance of two points is determined by the
stretching of their candidates. Since the distance inside a rose-simplex is determined by
the stretching of its petals (see Corollary 1.15), we will give each petal the length of a
candidate. To avoid different volumes of the representants in the image we will add another
petal which normalises the volume. Here we have to be careful that this “normalising
petal” is never a witness in the image. One way to avoid that the “normalising petal”,
is a witness is to add a large constant to the length, i.e. give it length K −

∑
α l(α) for

some large enough K � 0, where α ranges over the set of all candidates in the preimage.

Example 5.1
Let ∆1,∆2,∆3,∆4 ⊂ CV2 be the simplices corresponding to following the topological
types with marking α and β (see Figure 21).

Let U =
⋃

1≤i≤4 ∆i ⊂ CV2 be their union. Observe that ∆4 is the shared face of
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∆1 :=

∆2 :=

∆4 :=

∆3 :=

Figure 21: Three simplices in CV2 sharing a common face.

∆1,∆2 and ∆3. We denote for any A ∈ U with R5(A) := R5(l1(A), . . . , l5(A)) the rose
with petal-lengths

l1(A) := lA(α), l2(A) := lA(β),

l3(A) := lA(αβ), l4(A) := lA(αβ−1),

l5(A) := 4 vol(A)−
(
l1(A) + l2(A) + l3(A) + l4(A)

)
and standard marking. We will show that the map

ι : U → ∆(R5) ⊂ CV5 , A 7→ R5(A)

is isometric in regard of the Lipschitz metric. In particular when we pass the common
face of ∆1,∆2 and ∆3 in U , we do not pass a face in its image.

Proof. For any element A ∈ U we have for the lengths of the candidates li(A) ≤ 2 vol(A)
for 1 ≤ i ≤ 4. Hence, R5(A) has strict positive lengths, which scale linearly with vol(A).
Thus, ι is a well defined map. Since α, β, αβ, αβ−1 are exactly all the candidates occurring
in U , we now want to show that their stretching factors determine the distance in the
image of ι.

By Corollary 1.15 we have that the maximal stretching of two roses of the same
topological type is the maximal stretching of their petals. That means we have

ΛR(R5(l1, . . . , l5), R5(l′1, . . . , l
′
5)) = max

{
l′1
l1
, . . . ,

l′5
l5

}
.

These fractions are exactly the stretching factors of the candidates in U and of l5. So we
only need to show that l5 is never maximally stretched in the image of ι. Now let A,B ∈ U
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be two normalised representants with edge lengths a, b, c and a′, b′, c′, respectively. Then
we have as the edge lengths in R(A)

for A ∈ ∆1 ∪∆3 : l5(A) = 4 vol(A)− ( lA(α) + lA(β) + lA(αβ) + lA(αβ−1) )

= 4− ( (a+ c) + (b+ c) + (a+ 2c+ b) + (a+ b) )

= 4− (3(a+ b+ c) + c) = 1− c = a+ b

for A ∈ ∆2 : l5(A) = 4− (a+ b+ 2(1 + c)) = 1− c = a+ b

We used here the normalisation a+ b+ c = 1 and consider ∆4 as a special case of any of
the above with c = 0.

For any topological type of B we also have lB(αβ) ≥ a′ + b′, hence we have for A ∈ ∆1

the inequality l4(B)
l4(A) ≥

a′+b′

a+b = l5(B)
l5(A) and for A ∈ ∆3 the inequality l3(B)

l3(A) ≥
a′+b′

a+b = l5(B)
l5(A) .

For A ∈ ∆2 we have by Lemma 1.14 the inequality l5(B)
l5(A) = a′+b′

a+b ≤ max{a′a ,
b′

b } ≤
max

{ l1(B)
l1(A) ,

l2(B)
l2(A)

}
.

As the maximal stretchings of the corresponding candidates in A and R5(A) are the
same, we have that ΛR(R5(A), R5(B)) = ΛR(A,B). Since vol(R5(A)) = 4 vol(A), this
already implies dR(R5(A), R5(B)) = dR(A,B), i.e. ι is an isometric embedding.

While we can construct such examples for any given finite number of simplices, we can
not construct a global isometric embedding in this manner. The reason for this is that
we have infinitely many candidates in CVn and by Proposition 2.16 (iii) each of them
appears as the only witness between two points. Furthermore, we can never embed CVn
isometrically into a simplex for the following reason: If a point A ∈ CVk is ε-thick (see
Definition 1.7), then any point B ∈ CVk with distance dR(A,B) > log(2

ε ) has a different
topological type than A as the candidate witness from A to B has length bigger than
2 vol(B) and thus can not be a witness in B.

Nevertheless the above example implies that there is no local reason to expect isometric
embeddings to be simplicial. We will also see in Corollary 5.15 how to construct global
examples where the image of a simplex intersects multiple simplices.

5.1 Naive embedding for CV2

The first naive idea to embed CVn into CVk is to attach a bouquet of n− k petals for a
given representative in CVn as in Figure 22:

α1 α2

α3
α4

•

•
• •• 7→ α1 α2

α3
α4

α5
α6

α7

•

•
• ••

Figure 22: Attaching a bouquet of petals to a marked graph
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This naive approach has the following obstructions, which we need to take care of:

• The map depends on the choice of the representant of a point in CVn. Since the
attached rose prevents free homotopy, two different representants of the same point
in CVn may have different images in CVk if we attach the same bouquet of petals.

• For each representant there is a choice of the point where we attach the rose.

• It introduces new candidates which might be more stretched, so this might not be
an isometric embedding.

The first problem comes from the fact that attaching a rose prevents some of the free
homotopy which would occur otherwise, namely each free homotopy would move around
the attaching point. For example conjugating with an element in Fn would also conjugate
the attached petal.

The last problem can be partially solved by choosing the attached petals large enough
similar to Example 5.1.

We will visualise these problems in the following examples. In Example 5.2 (i) we
will see an isometric, local embedding, which we will use later for a global isometric
embedding. In comparison we will choose in Example 5.2 (ii) a different representant
and will see that it can not be extended to an isometric embedding. Example 5.2 (iii)
shows that we might increase the distance by introducing a too small petal.

Example 5.2 (i) Let ∆1,∆2 ⊂ CV2 be the two adjacent (open) simplices corresponding
to a marked theta-graph. That is as before there exist α, β ∈ F2 such that ∆1 and
∆2 are all the marked graphs with a representant of the form

∆1 :=

α

β

and ∆2 :=

α

β

.

Consider the map φ1 : ∆1 ∪∆2 → CV3, which attaches to each normalised repre-
sentant a loop with marking ω ∈ F3 of fixed length l(ω) > 0, that is:

φ1 : ∆1 ∪∆2 → CV3,

α

β

7→

α

β

ω

α

β

7→

α

β

ω
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We will show that φ1 preserves the distance. As φ1 adds a loop of constant length
to normalised representants, it is enough to consider the stretching factor ΛR for
the distance. Observe that each candidate in the image φ1(∆1 ∪∆2) is of the form
ω, µ or µω±1, where µ ∈ {α, β, βα, β−1α} is a loop, i.e. one of the candidates in
the preimage. For the candidates of the form µω±1 we have l(µω) = l(µ) + l(ω).
Since l(ω) is fixed in each image, we have by Lemma 1.14 that for two points
φ1(A), φ1(B) ∈ φ1(∆1 ∪∆2) all the µω are either less stretched than l(µ) or not
stretched at all from φ1(A) to φ1(B). Thus, the stretching factor from φ1(A) to
φ1(B) is the same as the stretching for A to B. By allowing edges with length zero
we can extend φ1 to an isometric embedding of the closure of the two simplices and
in particular to their shared face

∆3 := ∆1 ∩∆2 =

α

β

.

(ii) Let ∆1,∆2 ⊂ CV2 be the same simplices as in Example (i). Observe that we can
choose a different representative for the graphs in ∆2, namely we have

α

β

=

βαβ−1

β

=: ∆2.

As before we define a map:

φ2 : ∆1 ∪∆2 → CV3,

α

β

7→

α

β

ω

βαβ−1

β

7→

βαβ−1

β

ω

In contrast to before, φ2 can not be extended continuously to ∆1 ∪∆2. Any such
extension would have to send the common face ∆3 of Example (i) to two different
faces: to the rose with marked petals α, β, ω and the rose with marked petals
βαβ−1, β, ω. The problem is that the free homotopy which sends the marking α to
βαβ−1 would also conjugate ω and so these faces are indeed different. In particular
we have that φ2 is not an isometric map, since points A ∈ ∆1 and B ∈ ∆2 may be
arbitrarily close near ∆3 but their images are distant to each other.
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(iii) Let ∆ ⊂ CV2 be the simplex in CV2 corresponding to a barbell graph and let
(a, c, b) be the edge lengths for some normalised point A ∈ ∆. For some λ ∈ [0, 1]
let c1 := λc and c2 := (1− λ)c. We define the map

ψλ : ∆→ CV3 ,

a
c

b

7→
a

c1 c2

b

l(ω)

that attaches to each (normalised) point in ∆ a petal of some fixed length l(ω)
at the separating edge. We will show that ψλ is an isometric embedding if and
only if l(ω) ≥ max{2λ, 2(1 − λ)} holds. In particular, if l(ω) ≥ 2, then ψλ is an
isometric embedding for every λ. As l(ω) is constant, it is again enough to consider
the stretching factors.

For the proof let α, β and ω denote the marking of the petals as depicted in the
above figure and assume by symmetry that λ ≥ 1

2 .

First we show that for an l(ω) ≥ 2λ the map ψλ is an isometric embedding. Let
ψλ(A), ψλ(B =∈ ψλ(∆) be two points in the image. We show that from A to B
there is at least one of the candidates α, β, αβ as much stretched as one of the
new candidates ω, αω and βω in ψλ(A). As α, β and αβ are also candidates in the
preimage with the same stretching factor we can then again conclude that ψλ is an
isometric embedding. Let A,B ∈ ∆ be the points with lengths a, c, b, respectively
a′, c′, b′. As ω has constant length l(ω), it can never be a witness. Assume αω is a
witness from ψλ(A) to ψλ(B) and α is not maximally stretched. Then we have the
following inequalities:

lψλ(B)(α)

lψλ(A)(α)
<
lψλ(B)(αω)

lψλ(A)(αω)

⇐⇒ a′

a
<
a′ + 2c′1 + l(ω)

a+ 2c1 + l(ω)
1.14
≤ max

{
a′

a
,
2λc′ + l(ω)

2λc+ l(ω)

}
=

2λc′ + l(ω)

2λc+ l(ω)

=
2λc′ + 2λ+ (l(ω)− 2λ)

2λc+ 2λ+ (l(ω)− 2λ)

1.14
≤ 2λ(c′ + 1)

2λ(c+ 1)
=
lψλ(B)(αβ)

lψλ(A)(αβ)

where we used in the last inequality that the maximal stretching and thus the

fraction
lψλ(B)(αω)

lψλ(A)(αω) has to be at least 1 and l(ω)−2λ ≥ 0. Hence, αβ is also a witness

from ψλ(A) to ψλ(B) and thus we have ΛR(ψλ(A), ψλ(B)) = ΛR(A,B). A similar
calculation holds if βω is a witness and β is not a witness. Since the stretching
factors are the same as in the preimage, we have that ψλ is indeed an isometry.
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We now give an example that if we have l(ω) < 2λ, then ψλ is not an isometry.
For some small ε > 0 let A,B ∈ ∆ be the two (normalised) points with lengths
a = c = b = 1

3 and a′ = 1
3 + ε, c′ = 1

3 + 4ε, b′ = 1
3 − 5ε. Then we have as stretching

factors for α, β, αβ and αω:

lB(α)

lA(α)
=

1/3 + ε

1/3
= 1 + 3ε

lB(β)

lA(β)
=

1/3− 5ε

1/3
< 1

lB(αβ)

lA(αβ)
=

1 + 1
3 + 4ε

1 + 1
3

= 1 + 3ε

lψλ(B)(αω)

lψλ(A)(αω)
=

1
3 + ε+ 2

3λ+ 8ελ+ l(ω)
1
3 + 2

3λ+ l(ω)

= 1 +
ε+ 8ελ

1
3 + 2

3λ+ l(ω)

> 1 +
ε+ 8ελ

1
3 + 2

3λ+ 2λ

= 1 +
3ε(1 + 8λ)

1 + 8λ
= 1 + 3ε

In particular we have that ΛR(ψλ(A), ψλ(B) > ΛR(A,B), which shows that ψλ is
not an isometric embedding for l(ω) < 2λ.

To avoid the first two obstructions of the naive embedding mentioned at the beginning
of this section we need to make a coherent choice of representants and attaching points.
For the case n = 2 this can be done inductively as we will see in the following section.
To make such a choice for any n ≥ 2 we will consider Outer Space as in Definition 1.3 as
action on trees and choose the base point on the tree instead. We will discuss two such
constructions of a base point in the tree in Section 5.2.

Recall that by the third obstruction we may increase the distance of two points by
attaching a petal. Observe that we solved this in Example 5.1 and Example 5.2 (iii) by
attaching large enough petals. This will also be the solution for the upcoming embeddings,
namely we need to take care that the attached graph is thick enough (see Lemma 5.8).
It will turn out that we can even slightly deform the attached graph along the preimage
without changing the distance in the image of an embedding.

Example 5.3
Starting with the isometric embeddings φ1 and ψλ from Example 5.2 we will construct in-
ductively a global embedding from CV2 into CV3 by extending the constructed embedding
step by step to adjacent simplices.

The reason we can do this construction is the following: Given a non-empty connected
simplicial subcomplex Σ ⊆ CV2 and ∆′ ⊂ CV2 a simplex adjacent to Σ, then Σ and ∆′

share exactly one face of dimension 1 since otherwise we would have a closed loop around

66



the missing vertex of two common faces of Σ and ∆′, which contradicts that CV2 is
contractible. So we extend a given embedding of a subcomplex one simplex after another
without worrying about the order of the extended simplices. We start to construct such
an embedding from CV red

2 to CV3 and extend it afterwards to CV2.
Let Σ ⊆ CV red

2 be a connected simplicial subcomplex and φ : Σ → CV3 a locally
isometric embedding which looks on each simplex like φ1, that is for a maximal simplex
∆ ⊂ Σ we have α, β ∈ F2 such that for the given representants of points in ∆ we have

φ|∆ :

α

β

7→

α

β

ω

Any adjacent simplex ∆′ ⊆ CV red
2 shares a face with a unique simplex ∆ ⊂ Σ. Recall

that changing the spanning tree just corresponds to renaming α and β:

α

β

=
α−1

α−1β

and

α

β

ω =
α−1

α−1β

ω

Hence, we can up to relabelling assume that ∆ and ∆′ look like in Example 5.2. That
means we can extend φ like φ1 to a locally isometric embedding φ : Σ ∪∆′ → CV3 such
that φ|∆∪∆′ looks like φ1. Inductively we get a global map φ : CV red

2 → CV3, which is
locally isometric.

To get an embedding for non-reduced Outer Space CV2 observe that φ1 and ψλ are
equal on their common face i.e. the simplex corresponding the rose R2. Hence, we can
extend φ to the whole Outer Space CV2 via ψλ for some λ ∈ [0, 1] on the barbell graphs.

To justify that φ from Example 5.3 is indeed an isometric embedding, observe that
φ at most increases the distance. As we just attach a loop to a given graph A ∈ CV2

we can identify any original loop α ∈ F2 of A with a loop α̃ in φ(A). In particular
we have for a loop α ∈ F2 and a normalised representant A ∈ CV2 that the length
lA(α) = lφ(A)(α) is preserved. By the following Lemma we have then that φ is indeed an
isometric embedding.

Lemma 5.4
Let φ : CVn → CVk be a map not decreasing the distance, that means for all A,B ∈ CVk
we have dR(φ(A), φ(B)) ≥ dR(A,B). Then φ is an isometric embedding if and only if it
is restricted to each closed simplex ∆ ⊂ CVk an isometric embedding.

Proof. Assume φ : CVn → CVk does not decrease the distance and is restricted to each
simplex an isometric embedding. Let A,B ∈ CVn. Since (CVn, dR) is a geodesic space
there exists a geodesic γ from A to B. Let A1, . . . , AN be the points when γ enters or
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leaves a simplex and set A0 := A,AN+1 := B. Since Ai and Ai+1 lie in a common closed
simplex we have dR(Ai, Ai+1) = dR(φ(Ai), φ(Ai+1)) for all i. By the triangle inequality
we have

dR(φ(A), φ(B)) ≤
∑
i

dR(φ(Ai), φ(Ai+1)) =
∑
i

dR(Ai, Ai+1) = dR(A,B).

On the other hand we have by assumption dR(φ(A), φ(B)) ≥ dR(A,B). Thus equality
holds and φ is an isometric embedding.

Proposition 5.5
Let φ : CV2 → CV3 be constructed as in Example 5.3 with l(ω) ≥ 2. Then φ is an
isometry.

Proof. The proof follows directly form Example 5.2 and Lemma 5.4.

To get an embedding from CV2 to CVk for any k > 2 we can instead of a single petal
attach any marked, metric graph C to gain an isometric embedding, as long as the
smallest loop of C has at least length 2. Note here that changing the volume of C also
changes the corresponding map and in particular C is not normalised. Furthermore,
observe that C does not have to be fixed along CV2, namely we can slightly vary the
graph we attach as long as the changing of C is reasonably small compared to the actual
distance in CV2 as can be seen in the following example.

Example 5.6
Let φ : CV2 → CV4 be constructed similar to Proposition 5.5 but instead of a loop
we attach a (fixed) marked theta-graph with varying edge lengths to a normalised
representant. That is for a full dimensional simplex ∆ ⊂ CV2 we have either

φ|∆ :
c

a

b

7→ c

a

b

2 + c

2 + a

2 + b

or φ|∆ :

a
c

b

7→
a

c1 c2

b

2
+
c

2
+
a

2
+
b

.

Here we need to take care that we name the edge lengths a, b, c such that they coincide
when we pass a face in CV2. As before we can check that the new candidates are
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less stretched than the old candidates. Let a, b, c and a′, b′, c′ be edge lengths of two
normalised points A,B ∈ ∆. By Lemma 1.14 we have

1 + a′

1 + a
=
a′ + b′ + c′ + a′

a+ b+ c+ a

≤ max

{
a′ + b′

a+ b
,
a′ + c′

a+ c

}
.

This means we have 1+a′

1+a ,
1+b′

1+b ,
1+c′

1+c ≤ ΛR(A,B) if ∆ is a theta-graph. By Lemma 1.14
we thus have that φ|∆ is an isometric embedding if ∆ corresponds to a theta-graph.

Let now ∆ correspond to a barbell. By rewriting 1 + a = a+ b+ c+ a = 3/2a+ 1/2b+
1/2(a + 2c + b) we get by Lemma 1.14 1+a′

1+a ,
1+b′

1+b ,
1+c′

1+c ≤ ΛR(A,B). Let α be a simple
loop in A and ω be a loop in the attached graph. Then we have by Lemma 1.14:

lφ(B)(αω)

lφ(B)(αω)
=
lB(α) + 2c′1 + 2 + lφ(B)(ω)− 2

lA(α) + 2c1 + 2 + lφ(A)(ω)− 2

≤ max

{
lB(α) + 2λc′ + 2

lA(α) + 2λc+ 2
,
1 + a′

1 + a
,
1 + b′

1 + b
,
1 + c′

1 + c

}
≤ ΛR(A,B)

where we use in the last inequality that all of the fractions in the maximum are bounded
by ΛR(A,B) (see Example 5.2 (iii) for the first term), hence φ is again an isometric
embedding.

In a similar manner we can also construct an example where the attached graph crosses
a face inside a simplex ∆ ⊂ CV2, e.g. by attaching a figure of eight which slightly deforms
to a theta-graph near the center of ∆.

Similarly we can attach a graph or petal at any given vertex of a marked graph to
get an embedding from a simplex of ∆ ⊂ CVn to some CVk for k > n. We will see in
Lemma 5.8 that attaching a large enough petal yields again an isometric embedding. To
give a rough bound what large enough means, we will use the following lemma:

Lemma 5.7
Let ∆ = (Γ,m) ⊂ CVn be a closed simplex, A,B ∈ ∆ be two normalised representants
and e ∈ E(Γ) an edge of Γ. Then we can bound the shrinking and stretching of e in
terms of the distance from A to B:

(i) If e is shrunken by s := lA(e) − lB(e) > 0, then the stretching from A to B is at
least ΛR(A,B) ≥ 1 + s.

(ii) If e is stretched by s := lB(e) − lA(e) > 0, then the stretching from A to B is at
least ΛR(A,B) ≥ 1 + s

3n−4 .

Proof. (i) Let A′ be a connected component of A \ {e} and B′ be the corresponding
connected component of B \ {e}. We can view A′ and B′ as elements of the same
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CVk for some k ≤ n− 1. Hence, we get by the definition of the metric that there
exists a loop α in A′ with

lB′(α)

lA′(α)
= ΛR(A′, B′) ≥ vol(B′)

vol(A′)

⇒ ΛR(A,B) ≥ lB(α)

lA(α)
=
lB′(α)

lA′(α)
≥ vol(B′)

vol(A′)
.

If A \ {e} has two components, we choose A′ to be the component such that the

fraction vol(B′)
vol(A′) is maximal. We have then by Lemma 1.14

vol(B′)

vol(A′)

1.14
≥ 1− lB(e)

1− lA(e)
=

1− lA(e) + s

1− lA(e)

1.14
≥ 1− lA(e) + s+ lA(e)

1− lA(e) + lA(e)
= 1 + s,

which concludes the proof.

(ii) There are at most 3n − 3 edges in Γ. Since A and B are normalised, we have
1 =

∑
e∈E(Γ) lA(e) =

∑
e∈E(Γ) lB(e), hence there exists at least one edge e′ ∈ E(Γ)

with lA(e′)− lB(e′) ≥ s
3n−4 . The inequality follows then by part (i).

As before we get now an isometric embedding for any simplex:

Lemma 5.8
Let ∆ ⊂ CVn be a closed simplex with topological representant (Γ,m) and
K ≥ 2(2n− 3)(3n− 4). Then for each vertex p ∈ V (Γ) the map

ψp,K : ∆→ CVn+1 , (Γ, l,m) 7→ ψp(Γ, l,m)

that attaches to a normalised representant (Γ, l,m) a loop of length K with marking ω
is an isometric embedding.

Proof. As in Example 5.2 we only need to check that none of the new candidates are
witnesses. The attached loop has constant length and by Corollary 1.15 a figure of eight
containing the attached loop will never be a witness. Hence, we only need to consider
barbells containing the attached loop. Let A,B ∈ ∆ be two normalised points, ωβ be
such a barbell and ρ be the path between its two loops ω and α. As a spanning tree of Γ
has at most 2n− 3 edges also the path ρ contains at most 2n− 3 edges. By Lemma 5.7
we have then lB(ρ)− lA(ρ) ≤ (2n− 3)(3n− 4)(ΛR(A,B)− 1). Assuming ωβ is a witness
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from A to B, then it is at least as stretched as α and we have the following inequalities:

lB(ωβ)

lA(ωβ)
=
lB(ω) + 2lB(ρ) + lB(α)

lA(ω) + 2lA(ρ) + lA(α)

=
K + 2(lB(ρ)− lA(ρ)) + 2lA(ρ) + lB(α)

K + 2lA(ρ) + lA(α)
1.14
≤ K + 2(lB(ρ)− lA(ρ)) + 2lA(ρ)

K + 2lA(ρ)
5.7
≤ K + 2(2n− 3)(3n− 4)(ΛR(A,B)− 1) + 2lA(ρ)

K + 2lA(ρ)

= 1 + (ΛR(A,B)− 1) · 2(2n− 3)(3n− 4)

K + 2lA(ρ)

< 1 + (ΛR(A,B)− 1) = ΛR(A,B),

which contradicts that ωα is maximally stretched. Hence, any barbell containing ω is
never a witness between two points in ∆ and so ψp,K is an isometric embedding.

We will see in the next section how to extend this embedding to a global isometric
embedding.

5.2 Naive embedding via trees

To get a similar embedding as in Proposition 5.5 for all CVn we need to construct a
coherent choice of representant and attaching point for each element in CVn. Recall that
points in Outer Space can also be written as metric trees with free, minimal, isometric
actions of Fn (see Definition 1.3) by passing to their universal cover. So instead of
choosing a representant and a point in the finite graph, we will choose a point in the
covering tree. The glueing of two finite graphs corresponds then to the following “glueing”
or interweaving of two trees:

Definition 5.9
Let (T (1), p1) and (T (2), p2) be two pointed, metric trees with a minimal, free action of
G1 := Fn1 and G2 := Fn2 respectively. For n = n1 + n2 we identify Fn ∼= G := G1 ∗G2

and define their interweaving at p1 and p2 as

T (1)#(p1,p2)T
(2) := G× (T (1) t T (2))/ ∼

= {(α, p) | p ∈ T (1) t T (2), α ∈ G}/ ∼,

where ∼ is the equivalence relation generated by the two relations

(α, p)R1(β, q) :⇐⇒ ∃i ∈ {1, 2} : β−1α ∈ Gi, p, q ∈ T (i) and β−1α · p = q

and (α, p)R2(β, q) :⇐⇒ p = p1, q = p2 and α = β.

On T (1)#(p1,p2)T
(2) we define an G-action by left multiplication α · (β, p) := (αβ, p). This

is well defined as the relations R1 and R2 are invariant under left-multiplication.
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By the following lemma T (1)#(p1,p2)T
(2) is the universal cover of the glueing of the

two quotient graphs of T (1)/G1 and T (2)/G2. In particular T (1)#(p1,p2)T
(2) is again a

tree and the G-action on it is minimal. Recall that given a point in CVn as a marked,
metric graph, its corresponding point in terms of trees with a minimal, free Fn action
is its universal cover together with the deck transformation group. That means after
identifying once and for all Fn with G we have that T (1)#(p1,p2)T

(2) together with the
Fn-action is a point in CVn and the interweaving yields a similar map as the glueing of
finite, marked graphs in Section 5.1.

Lemma 5.10
Let (T (1), p1), (T (2), p2) and G1, G2 be as in Definition 5.9 and Γ1 := T (1)/G1,Γ2 :=
T (2)/G2 be their quotient graphs. Then the interweaved tree T := T (1)#(p1,p2)T

(2) is the
universal cover of the wedge sum Γ1 ∨ Γ2, that is Γ1 and Γ2 glued at the points [p1] and
[p2], and the Fn action defined in 5.9 is the corresponding deck transformation group. In
particular we have that T , together with the Fn action and the metric induced by T (1)

and T (2), is an element of Outer Space CVn.

Proof. Observe that the relation R1 only identifies points in (Fn, T
(i)) by the Gi-action

on T (i), that is for α ∈ Fn, β ∈ Gi, p ∈ T (i) we have (αβ, p) = (α, β · p). Furthermore, R2

only identifies pairs of glued points (α, p1) and (α, p2). Hence, we get for each α ∈ Fn an
embedding φα : T (1) → T (1)#(p1,p2)T

(2), p 7→ (α, p). Two such embeddings φα, φβ have
the same image if and only if α and β are in the same right G1-coset. Indeed, if we have
α = βω1 for some ω1 ∈ G1, then we have φα(p) = (α, p) = (α, ω1ω

−1
1 p) = (αω1, ω

−1
1 p) =

φβ(ω−1
1 p) and on the other hand if φα(p) = φβ(q) for some point p ∈ T (1) then (α, p) and

(β, q) are at most identified by relation R1 and we have β−1α =: ω1 ∈ G1. In particular
all these embeddings are either disjoint or have the same image.

Similar we have embeddings ψα : T (2) → T (1)#(p1,p2)T
(2) for α ∈ Fn. By construction

it is clear that the images of the φα and ψα for all α ∈ Fn cover the whole space
T (1)#(p1,p2)T

(2). In particular we have that at each vertex T looks locally like a part of

the wedge sum of T (1) and T (2) at p1 and p2.
We will write for a point p ∈ T (1) t T (2) its image in the glued quotient graph as

[p] ∈ Γ := Γ1∨Γ2 and define the map π : T → Γ, (α, p) 7→ [p]. As R1 and R2 only identify
points which are also identified under the quotient maps and wedge sum, this is well
defined. Since T looks locally like the wedge sum of T (1) and T (2), we have that π is a
covering map. As we have embedded T (1) and T (2) into T we can see the monodromy
actions as right multiplication in these embeddings, i.e. for a path ω ∈ π1(Γ1, [p1])
we have by the anti-isometry between π1(Γ1, [p1]) and the deck transformation group
deck(T1/Γ1) = G1 the equalities (α, p1) • ω = φα(p1) • ω = φα(ω · p1) = (αω, p1)
and similar for a path in π1(Γ2, [p2]) = G2. As we can write a path ω ∈ π1(Γ, [p1])
uniquely as a word of paths ω = ω1 . . . ωk ∈ π1(Γ1, [p1]) ∗ π1(Γ2, [p2]), we get inductively
(id, p1) • ω = (ω1, p1) • ω2 . . . ωk = · · · = (ω1 . . . ωk, p1) = (ω, p1). Since each element in
the fibre π−1([p1]) can be uniquely written as an element (ω, p1) for some ω ∈ Fn, the
monodromy action gives a bijection between π1(Γ, [p1]) and the fibre π−1([p1]), which
means that T is the universal cover of Γ. As the Fn action on (id, p1) is the dual of the
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monodromy action of π1(Γ, [p1]), we have that Fn is the deck transformation group of
π.

Observe here that interweaving (T (1), p1) and (T (2), p2) yields a different element in
CVn than interweaving (T (1), αp1) and (T (2), p2) for some α ∈ G1, namely in terms of
finite graphs we conjugated Γ1 by α while keeping Γ2 the same. This means when we lift
the wedge sum of two finite graphs to an interweaving of their universal covers the fibres
of the attaching points play an important role.

A direct corollary of Lemma 5.10 is that interweaving trees does not change length:

Corollary 5.11
Let T (1) ∈ CVn1 and T (2) ∈ CVn2 be two elements in Outer Space, p1 ∈ T (1) and
p2 ∈ T (2) two points and let T = T (1)#p1,p2T

(2) be their interweaving. For i ∈ {1, 2}
and an element α ∈ Gi := Fni we identify it with its corresponding element α ∈ G1 ∗G2.
Then α has the same length in T and Ti, i.e. we have lT (α) = lTi(α).

Proof. There are now two easy ways to see this: For example we can calculate the length
of α as the length of its cyclically reduced representation in the quotient graph. By
Lemma 5.10 these representations are equal and hence have the same length.

Alternatively let without loss of generality α ∈ G1 and take the length of α as the

translation length along its axis T
(1)
α ⊂ T (1) or Tα ⊂ T , respectively. Recall that Tα ⊂ T

is the unique embedding of R in T on which α acts as translation. Since we already have

the embedding φid(T
(1)
α ) ⊂ T on which α acts via translation, we have Tα = φid(T

(1)
α )

and so for any p ∈ Tα:

lT (α) = d((id, p), α(id, p)) = d(p, αp) = lT (1)(α).

In our setting T (1) will be a (normalised) element of CVn with a chosen base point
p1 ∈ T (1) and T (2) will be a fixed marked graph with a base point p2, for example the
standard Cayley-graph of Fk with the origin as base point. We will present two slightly
different ways to coherently construct such base points p1 for each element of CVn. For
the first construction we use translation axes to determine a point in the tree. The second
constructions is due to Skora in [Sko90, Chapter 5]. It should be noted here that the
second construction only yields an isometric embedding for bounded subsets of CVn and
not an isometric embedding for the whole Outer Space.

We will use the translation axes from Lemma 1.4 to define a base point for each
element of CVn. Observe that two elements of Fn have the same translation axes in a
marked graph (T, l,m) ∈ CVn if and only if they have a non-trivial common power in Fn,
otherwise we would have a non-trivial stabiliser of a vertex. Since T is a tree and the
translation axes are embeddings of R, we have in particular that two different translation
axes intersect at most on finitely many edges.

Definition 5.12
Let α, β ∈ Fn be two non-trivial elements with no common power. Then we define for
each (T, l,m) ∈ CVn the base point p ∈ T as follows:
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(i) If the translation axes Tα and Tβ are disjoint, then p ∈ Tα is the point in Tα which
is the closest to Tβ.

(ii) If the translation axes Tα and Tβ intersect, then p ∈ Tα ∩ Tβ is the first point of
Tα ∩ Tβ in the direction of the α-translation.

As Tα and Tβ are different translation axes, their intersection is always at most a finite
segment and hence the base point is a well-defined vertex. Furthermore, an optimal
change of marking map between two representants of the same point in CVn preserve
the translation axes and hence also the base point.

Observe that this base point does not depend on the lengths of the edges and collapsing
edges sends base points to base points. In particular we have a coherent choice of a
base point: Let ∆,∆′ ⊂ CVn be two simplices sharing a face F ⊂ CVn. Then the base
point for any T ∈ F identifies with the base point from T ′ ∈ ∆ or ∆′ after collapsing the
corresponding edges. Similar to Proposition 5.5 we get the following isometric embedding.

Theorem 5.13
Let K ≥ 2(2n − 3)(3n − 4) and α, β ∈ Fn \ {id} be two elements without a non-
trivial common power. For (T, l,m) ∈ CVn let p ∈ T be the base point defined as in
Definition 5.12. Let R be the Cayley-graph of Z with generator 1 endowed with the
metric such that each edge has length K. As in Definition 5.9 we now interweave the
marked tree (T, l,m) ∈ CVn at p with R at the point 0, that is in terms of finite graphs
we attach a single loop to Γ = T/Fn. Then the resulting map

ψK : CVn → CVn+1 , T 7→ T#(p,0)R.

is an isometric embedding.

Proof. The map ψp,K is by Lemma 5.8 restricted to each closed simplex ∆ ⊂ CVn an
isometric embedding. As the translation lengths for elements α ∈ Fn are equal for
(T, l,m) ∈ CVn and ψp,K(T, l,m) we have that ψK at most increases the distance. Hence,
by Lemma 5.4 it follows that ψp,K is an isometric embedding.

It is clear that instead of the Cayley-graph of Z we can attach any thick enough marked
tree and slightly vary the attached tree as we did in Example 5.6.

Instead of attaching one marked tree to an element in CVn, recall that Definition 5.9
gives an embedding CVn × CVk → CVn+k by interweaving two points together. To get
an isometric embedding we will, instead of glueing two graphs directly on each other,
introduce a long enough edge in between the two elements. That is we first add a leaf to
an element of CVn and afterwards attach an element of CVk to the other vertex of that
leaf. As before this yields the following proposition:

Proposition 5.14
Let K ≥ 2(2n− 3)(3n− 4) + 2(2k− 3)(3k− 4) and for (T, l,m) ∈ CVn, (T ′, l′,m′) ∈ CVk
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let p ∈ T and q ∈ T ′ be the base points as defined in Definition 5.12 for two fixed tuples
α, β ∈ Fn, α′, β′ ∈ Fk. We define the map

ψ : CVn × CVk → CVn+k , (T, T ′) 7→ T#(p,0)[0,K]#K,qT
′,

which interweaves two normalised T and T ′ and adds an edge of length K between
each glued pair of base points. Then ψ is an isometric embedding in regard to
the product metric on CVn × CVk, that is for A,B ∈ CVn, A

′, B′ ∈ CVk we have
dR(φ(A,A′), φ(B,B′)) = max{dR(A,B), dR(A′, B′)}.

We can use this to construct isometric embeddings where we vary the attached graph.
Namely we have:

Corollary 5.15
Let ψ be as in Proposition 5.14.

(i) Let φ : CVn → CVk be a map which at most decreases the distance, i.e. dR(A,B) ≥
dR(φ(A), φ(B)). Then the map

ψ ◦ (id, φ) : CVn → CVn+k , A 7→ ψ(A, φ(A))

is an isometric embedding.

(ii) Let γ : R≥0 → CVk be a rectifiable path parametrised by its symmetric length and
C ∈ CVn. Then the map

φ : CVn → CVn+k , A 7→ ψ
(
A, γ(d(A,C))

)
is an isometric embedding.

Proof. (i) follows directly from Proposition 5.14. For (ii) we have for A,B ∈ CVn by the
triangle inequality and since γ is parametrised by length

d(γ(d(A,C)), γ(d(B,C))) ≤ |d(A,C)− d(B,C)| ≤ d(A,B) ≤ dR(A,B),

which by (i) concludes the proof.

As a direct application of Corollary 5.15(ii) we can now construct isometric embeddings
from CVn to CVn+k such that the image of a simplex in CVn intersects arbitrarily many
simplices in CVn+k by choosing γ accordingly.

An alternative way to construct a base point is due to Skora. The following definitions
and lemmas up to and including Definition 5.20 are besides slight variations from [Sko90]
Chapter 5. We start with a generalisation of length functions and the characteristic set
from Lemma 1.4.
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Definition 5.16
Let S ⊂ Fn \ {id} be a non-empty, finite subset. For A = (T, l,m) ∈ CVn we define the
length function as

lA(S) := min
p∈T

max
α∈S

dA(p, α · p).

The characteristic set of S is then the set of minimally displaced points

AS := {p ∈ T | max
α∈S

dA(p, α · p) = lA(S)}.

We will see in Lemma 5.17 that the characteristic set is non-empty and hence the minimum
in the length function is indeed attained. While the translation axes Tα depend only on
the topological type (T, l,m), the characteristic set also depends on the edge lengths,
which is reflected by the notion AS instead of possibly TS .

Observe that if S = {α} is a singleton, then its length is just the length of α and its
characteristic set is the translation axis Tα of α. It is a useful fact that α acts on its
translation axis via a translation and on T as an isometry, hence for any p ∈ T we have
by [CM87, 1.3] for its displacement length dA(p, α · p) = 2dA(p, Tα) + lA(α):

Tα Tαp′ α · p′

p α · p

Figure 23: Displacement of a point relative to the translation axis of α.

We will now see that the characteristic set AS is either a translation axis, a bounded
subset of a translation axis or a point.

Lemma 5.17
Let S ⊂ Fn \ {id} be a non-empty, finite subset and A = (T, l,m) ∈ CVn. Then the
characteristic set is non-empty and of one of the following types:

(i) If for all α, β ∈ S the translation axes Tα = Tβ are the same, then the characteristic
set AS = Tα is this translation axis and we have lA(S) = maxα∈S lA(α).

(ii) If there exist α, β ∈ S with different translation axes Tα 6= Tβ and lA(S) = lA(α),
then the characteristic set is a closed, bounded segment AS ⊂ Tα of the translation
axis Tα.

(iii) If lA(S) > maxα∈S lA(α) holds, then AS = {pS} is a single point and there exist
two elements α, β ∈ S with disjoint translation axes Tα ∩ Tβ = ∅ which realise the
length of S, i.e. we have dA(pS , α · pS) = lA(S) = dA(pS , β · pS). In particular pS
lies on the shortest path connecting Tα and Tβ.
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Tα

Br(βR)(TβR)

TβR

TβL

Br(βL)(TβL)

ASpL pR

TβR

Tα

ρ′

ρ
AS

Figure 24: Characteristic sets of type (ii) and (iii) from Lemma 5.17

Proof. (i) If all elements of S have the same translation axis Tα, then clearly the minimum
of dA(p, α · p) is attained only by points in Tα and (i) follows.

Let now α, β ∈ S be two elements with different translation axes Tα and Tβ . For some
positive number R > 0 we denote as usual by

BR(Tα) := {p ∈ T | ∃q ∈ Tα with dA(p, q) ≤ R}

the closed ball of radius R around Tα. As Tα and Tβ are two different isometric embeddings
of R, we have that Tα and Tβ diverge, i.e. for every R > 0 the intersection of their closed

R-neighbourhoods BR(Tα) ∩BR(Tβ) is a finite subtree of T .
We will first show that AS is not empty. Let p ∈ T be some point on the tree and

let R = maxω∈S dA(p, ω · p)/2 be half of its maximal displacement by elements of S. Let
furthermore χ :=

⋂
ω∈S BR(Tω) be the intersection of the closed R-neighbourhoods of

the axes of the elements in S.
Let q ∈ T \ χ be a point outside of χ, then we have dA(q, Tω) > R for some ω ∈ S and

hence
dA(q, ω · q) = 2dA(q, Tω) + lA(ω) > 2R = max

ω∈S
dA(p, ω · p) ≥ lA(S).

This means we only need to consider points in χ to calculate lA(S). As χ is a finite
subtree, the continuous function maxω∈S dA(•, ω · •) attains its minimum in χ and hence
AS is non-empty.

(ii): Consider again the equality dA(p, α · p) = 2dA(p, Tα) + lA(α). By the definition of
characteristic set we have AS =

⋂
ω∈S Br(ω)(Tω) with r(ω) := (lA(S)− lA(ω))/2. If we

have now lA(α) = lA(S), then we have clearly AS ⊂ Tα. Let now β ∈ S be an element
with a different translation axis than α. We have then AS ⊂ Tα ∩Br(β)(Tβ) and hence

AS is a bounded subsegment of Tα. As each Br(β)(Tβ) ∩ Tα is a closed subsegment the
characteristic set AS is also a closed subsegment of Tα.

(iii): Assume now the conditions of statement (iii). Let p ∈ AS and α ∈ S be
such that dA(p, α · p) = lA(S) holds. Since we have lA(S) > lA(α) we have p 6∈ Tα.
Let ρ be the shortest path from p to Tα. There exists at least one β ∈ S \ {α} with
dA(p, β · p) = lA(S) such that the shortest path ρ′ from p to Tβ is disjoint from ρ,
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else we could slightly move p along ρ and ρ′ to decrease the maximal displacement
length. In particular we have that Tα and Tβ are disjoint and their shortest connection
is along the paths ρ and ρ′. For the uniqueness of p let q ∈ T \ {p}. As T is a
tree q lies in the component of T \ {p} which does not contain Tα or Tβ. Hence,
we have without loss of generality dA(q, Tα) = d(q, p) + d(p, Tα) and in particular
dA(q, α · q) = 2dA(q, Tα) + lA(α) > 2dA(p, Tα) + lA(α) = dA(p, α · p) = lA(S), thus
q 6∈ AS .

As the displacement length dA(p, α · p) depends continuously on p ∈ T and the lengths
of the edges of A, we can convince ourselves that the length lA(S) and the characteristic
set depend continuously on A ∈ CVn. For completeness we will give a short proof for
this as the following lemma:

Lemma 5.18
Let S ⊂ Fn \ {id} be a non-empty finite subset. Then the function l•(S) : CVn → R,
A 7→ lA(S) is continuous.

Proof. If S is a singleton {α} or all elements of S have a common root α, then the
statement follows as lA(S) = lA(α)k is continuous. Hence, we can assume that S has at
least two elements with different translation axes.

As CVn is a locally finite simplicial complex (with some faces missing), it is enough
to show that l•(S)|∆ is continuous for closed simplices. Let ∆ = (T, ·,m) ⊂ CVn be a
closed simplex in CVn. For each α ∈ S choose a vertex pα ∈ Tα on the translation axis
and for distinct α, β ∈ S let ρα,β be the shortest path between pα and pβ . Each of these
ρα,β is a finite subtree of T and any tuple of them can be connected by a third one at
their endpoints. Hence, their union χ =

⋃
α,β∈S ρα,β is also a finite subtree of T . By

Lemma 5.17 the characteristic set lies either on a translation axis Tα or on a path ρα,β.
Let A ∈ ∆ be some point. We will now show that in the former case AS intersects

with a ρα,β. To this end assume pα 6∈ AS and let q ∈ AS be the closest point in AS
to pα. As we have seen in the proof of Lemma 5.17 (ii) there exists a β ∈ S with
d(q, Tβ) = (lA(S)− lA(β))/2 and d(q′, Tβ) > d(q, Tβ) for any point q′ ∈ Tα between pα
and q. Thus, any path from pα to Tβ and in particular ρα,β has to pass through q ∈ AS .

This means we have χ ∩AS 6= ∅ and hence lA(S) = minp∈χ maxω∈S dA(p, ω · p). Since
χ is a finite subtree and dA(p, α · p) depends continuously on p ∈ χ and the edge lengths,
the length function l•(S) is continuous.

Example 5.19
Let S = {α, βαβ−1} for some α, β ∈ Fn. Then the characteristic set can be described
nicely as we will see in the following. Recall that conjugation does not change the length,
i.e. α and βαβ−1 have the same lengths lA(α) = lA(βαβ−1) for all A ∈ CVn. Hence, we
have the following two cases.

If the intersection Tα ∩ Tβαβ−1 6= ∅ is non-empty, then we have by Lemma 5.17 (ii)
AS = Tα ∩ Tβαβ−1 (see Figure 25).

Otherwise the two translation axes Tα and Tβαβ−1 = β · Tα are disjoint, hence there
exists a unique shortest path from Tα to β · Tα with midpoint p. Each other point
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p′ ∈ T \ {pS} is further away from Tα or β · Tα as p, thus the characteristic set is
AS = {p}.

ββ

ω

ω

ω

ω

β

Tω

Tβωβ−1

id AS

ββ

ω

ω

ω

β

Tα

Tβαβ−1

AS

id

Figure 25: The Cayley-graph of F2 with generators ω and β and its characteristic set
with respect to S = {ω, βωβ−1} and S′ = {α, βαβ−1} for α := βωβ−1ω−1.

From now on let S ⊂ Fn be a fixed finite subset with at least two elements α, β ∈ S with
different translation axes Tα 6= Tβ. For example we can take a basis {α1, . . . , αn} ⊂ Fn
or {α, βαβ−1} ⊂ Fn an element and its conjugate where α and β generate a subgroup of
rank two.

Definition 5.20
By Lemma 5.17 AS is either a point or a bounded segment of a translation axis. We
call the middle point of AS the base point pS ∈ AS . Observe that for two different
representants (T, l,m) = (T ′, l′,m′) ∈ CVn the base point pS is preserved under the
corresponding homothety between T and T ′ as the translation axes are also preserved,
that is the homothety has to send the base point pS of T to the base point of T ′.

We will now apply the base point constructed from Skora to get again an embedding
from CVn to CVn+k.

Definition 5.21
Let K > 0 and Rk be the Cayley-graph of the free group Fk with k generators where
each edge has length K and pid ∈ Rk is the vertex corresponding to the identity. In
terms of marked graphs this means Rk corresponds to the rose with edge length K. We
define the map

φS,K : CVn → CVn+k , T 7→ T#(pS ,pid)Rk,

where T is any normalised representant and pS ∈ T be as in Definition 5.20.

Observe that the basepoint pS ∈ T moves continuously with respect to on A ∈ CVn so
the map φS,K is continuous. As the base point moves around, we can not use Lemma 5.8
to get an isometric embedding. Nevertheless, if we restrict to a simplex ∆, we still have
that φS,K |∆ is an isometric embedding for large enough K:
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Proposition 5.22
Let ∆ ⊂ CVn be a closed simplex. Then there exists a κ > 0 such that for all K ≥ 2κ
the map φS,K |∆ from Definition 5.21 is an isometric embedding.

We will later see that this κ is determined by the simplex and by Proposition 5.26
we can not find a fixed κ for all simplices, in particular this construction does not yield
an isometric embedding for the whole CVn as in Theorem 5.13. Keep in mind that by
Corollary 5.11 the map φS,K at most increases the distance of two points in CVn, as the
lengths of the original paths are the same after interweaving. The main idea of the proof
of Proposition 5.22 is that in some sense the base point moves Lipschitz continuously
along the underlying tree corresponding to ∆. This movement of the base point can be
absorbed by stretching the edges of Rk along the movement (see Lemma 5.23).

To make this argument precise, we will need the following rather technical lemmas
to bound the movement of the base point. For two points A,B ∈ CVn we get an upper
bound for the distance of their images by an optimal change of marking map:

Lemma 5.23
Let φS,K : CVn → CVn+k be as in Definition 5.21, A,B ∈ CVn and let h : A → B be
a change of marking map with Lipschitz constant Λ. Furthermore, let pA,S ∈ A and
pB,S ∈ B be the base points of A and B, respectively, and r := dB(pB,S , h(pA,S)) the
distance of the base point of B to the image of the base point of A.

Then there exists a change of marking map h̃ : φS,K(A) → φS,K(B) with Lipschitz
constant max{Λ, K+2r

K }. In particular if r ≤ (Λ− 1)K2 holds, then h and h̃ have the same
Lipschitz constant.

Proof. Recall that the interweaving φS,K(A) consists of copies of the trees A and Rk.
We choose h̃ to map each copy of A like h, i.e. h̃((α, p)) = (α, h(p)) for all p ∈ A. This is
well-defined as h is equivariant. Afterwards we extend h̃ linearly to edges of Rk such that
it connects their endpoints accordingly. That is h̃ maps each edge of Rk linearly to the
path connecting the image of its two endpoints, i.e. for a generator β ∈ Fk h̃ sends the
edge e := [(α, pA,S), (αβ, pA,S)] linearly to the path [(α, h(pA,S)), (αβ, h(pA,S))]. Since
for a point p ∈ B any path from (α, p) to (αβ, p) passes through the points (α, pB,S) and
(αβ, pB,S), we get for the length of the image of e:

lφS,K(B)(h̃(e)) = dφS,K(B)

(
(αβ, h(pA,S)), (α, h(pA,S))

)
= dφS,K(B)

(
(αβ, h(pA,S)), (αβ, pB,S)

)
+ dφS,K(B)

(
(αβ, pB,S), (α, pB,S)

)
+ dφS,K(B)

(
(α, pB,S), (α, h(pA,S))

)
= dB(h(pA,S), pB,S) + l(β) + dB(pB,S , h(pA,S))

= 2r +K

By construction h̃ is continuous and commutes with the Fn+k-action. As it stretches the
copies of A like h and the edges of Rk by the factor 2r+K

K it satisfies the claim.
As the following inequalities are equivalent

K + 2r

K
≤ Λ ⇐⇒ K + 2r ≤ ΛK ⇐⇒ 2r ≤ (Λ− 1)K,
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h and h̃ have the same Lipschitz constant if and only if r ≤ (Λ− 1)K2 holds.

Lemma 5.23 in particular implies that if the base points are mapped under an optimal
change of marking map close to each other, i.e. if their distance r can be bounded by a
linear function r ≤ (ΛR − 1)κ, then for any K ≥ 2κ the embedding φS,K is isometric.

Lemma 5.24
Let A := (T, l,mA), B := (T, l,mB) ∈ CVn be two normalised points in CVn with the
same topological type and h : A→ B be an optimal change of marking map. Furthermore,
let α ∈ Fn, p ∈ A and r := dA(p, Tα) be the distance of p to the translation axis Tα of α.
Then we have

dB(h(p), Tα) ≤ ΛR(A,B)r + (ΛR(A,B)− 1) ·#T (α) =: r′,

where #T (α) is the number of edges of α in T , i.e. for any vertex q ∈ Tα the number of
edges of the shortest path from q to α · q.

In other words h sends r-neighbourhoods of Tα in A into r′-neighbourhoods of Tα in
B.

Proof. Let ΛR := ΛR(A,B). Since h is Fn-equivariant and ΛR-Lipschitz we have

dB(h(p), α · h(p)) = dB(h(p), h(α · p)) ≤ ΛR · dA(p, α · p).

Applying this to the distance formulas

dA(p, α · p) = 2 · dA(p, Tα) + lA(α) = 2r + lA(α),

dB(h(p), α · h(p)) = 2 · dB(h(p), Tα) + lB(α),

we get the following inequality

2 · dB(h(p), Tα) = dB(h(p), α · h(p))− lB(α)

≤ ΛRdA(p, α · p)− lB(α)

= ΛR2r + ΛRlA(α)− lB(α)

= ΛR2r + (ΛR − 1)lA(α) + (lA(α)− lB(α))

≤ ΛR2r + 2(ΛR − 1)#T (α),

where we used lA(α) ≤ #T (α) in the last inequality and that by Lemma 5.7(i) each edge
of α is at most shrunken by ΛR − 1, hence lA(α)− lB(α) ≤ #T (α)(ΛR − 1).

We now have the tools we need in order to prove Proposition 5.22:

Proof of Proposition 5.22. Let A,B ∈ ∆ and γ : [0, 1] → ∆ be the straight line from
A to B. As the length functions along γ depend linearly on t, we can split [0, 1] into
subintervals 0 = t0 < t1 < · · · < tm = 1 such that for each i ∈ {1, . . .m} we have

(i) either lγ(t)(S) > maxα∈S lγ(t)(α) for all ti−1 < t < ti
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(ii) or there is an α ∈ S such that lγ(t)(S) = lγ(t)(α) for all ti−1 ≤ t ≤ ti.
We will show that for all these subsegments the distance dR(γ(ti−1), γ(ti)) is preserved
under φS,K for some large enough K. Recall that γ is a geodesic, thus dR(A,B) is realised
by the length of γ. Then the triangle inequality implies dR(A,B) ≥ dR(φS,K(A), φS,K(B))
and since φS,K at most increases the distance, equality follows. Let C := γ(ti−1) and
D := γ(ti) be the endpoints of a segment and ΛR := ΛR(C,D) be their stretching factor.

To prove the claim we want to apply Lemma 5.23, i.e. we show that there exists a
constant κ = κ(∆) depending only on ∆ such that for any optimal change of marking map
h : C → D with Lipschitz constant ΛR the inequality dD(pD,S , h(pC,S)) ≤ (ΛR − 1) · κ
holds. For the following rather technical calculation of κ observe that the following
constants only depend on the topological type of ∆.

Let (T, ·,m) be a marked tree corresponding to ∆ and let throughout the proof
N := maxα∈S #T (α) be the maximal number of edges of the elements α ∈ S in T , L be
the maximal number of edges in the intersections Tα ∩ Tβ for α, β ∈ S and M be the
maximal number of edges between two translation axes Tα and Tβ for α, β ∈ S, that is
the distance of Tα and Tβ in T by edges. As usual we consider normalised representants,
that means in particular each edge has at most length 1.

The main idea in the two cases is that we approximate dD(pD,S , h(pC,S)) by the
distances of pC,S and pD,S to two translation axes whose shortest connection always
contain the base point.

For case (i) recall that by Lemma 5.17 the base point pS lies on the shortest path
between the two translation axes of two elements α, β ∈ S. In particular we have:

lγ(t)(S) = lγ(t)(α) + 2dγ(t)(pS , Tα) = lγ(t)(β) + 2dγ(t)(pS , Tβ)

⇒ 2lγ(t)(S) = lγ(t)(α) + lγ(t)(β) + 2dγ(t)(Tα, Tβ)

Again as there are only finitely many pairs α, β ∈ S and all these distances and lengths
are continuous we can, up to further subdividing of the interval, assume that in the
interval [ti−1, ti] the above equalities are always satisfied for some fixed pair α, β ∈ S.
In particular the base point pS of γ(t) always lies on the shortest path between the
translation axes Tα and Tβ . We denote the endpoints of this shortest path as pβ and pα,
respectively (see Figure 26).

Recall that we want to estimate some κ > 0 such that we have an upper bound for the
distance dD(h(pC,S), pD,S) ≤ (ΛR − 1)κ. For this consider the triangle in D spanned by
the points h(pC,S), pα and pβ. We denote the distances of the base points to pα and pβ
as in Figure 26, that is we have

dα := dC(pα, pC,S), dβ := dC(pβ, pC,S)

d′α := dD(pα, pD,S), d′β := dD(pβ, pD,S)

rα := dD(pα, h(pC,S)), rβ := dD(pβ, h(pC,S)).

As pD,S lies on the path from pα to pβ and D is a tree, we have that the point pD,S
also lies on the path from pα to h(pC,S) or on the path from pβ to h(pC,S). We will
assume without loss of generality the former and thus get dD(pD,S , h(pC,S)) = rα − d′α .
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Figure 26: Image of base point under change of marking.

By Lemma 5.24 we have the inequality

rα ≤ ΛRdα + (ΛR − 1) ·#T (α) ≤ ΛRdα + (ΛR − 1)N.

Recall the equalities lC(S) = lC(α) + 2dα = lC(β) + 2dβ and similarly for D. Applying
these to Lemma 5.7 (i) we get the following inequality on the length of S

2(lC(S)− lD(S)) =
(
lC(α)− lD(α) + 2(dα − d′α)

)
+
(
lC(β)− lD(β) + 2(dβ − d′β)

)
= (lC(α)− lD(α)) + (lC(β)− lD(β)) + 2

(
dα + dβ − (d′α + d′β)

)
= (lC(α)− lD(α)) + (lC(β)− lD(β)) + 2

(
dC(Tα, Tβ)− dD(Tα, Tβ)

)
≤ (ΛR − 1)N + (ΛR − 1)N + 2(ΛR − 1)M

= 2(ΛR − 1)(N +M).

Again using the equalities lC(S) = lC(α) + 2dα and lD(S) = lD(α) + 2d′α, we can now
bound the difference of dα and d′α by the above inequality and Lemma 5.7 (ii):

2(dα − d′α) = (lC(S)− lD(S))− (lC(α)− lD(α))

≤ (ΛR − 1)(N +M) + (ΛR − 1)(3n− 4)N

= (ΛR − 1)((3n− 3)N +M)

Using the two above inequalities for rα and dα − d′α we get:

dD(pD,S , h(pC,S)) = rα − d′α
≤ ΛRdα + (ΛR − 1)N − dα + (dα − d′α)

≤ (ΛR − 1)

(
dα +N +

3n− 3

2
N +

1

2
M

)
≤ (ΛR − 1)

(
3

2
M +

3n− 1

2
N

)
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We used here in the last inequality that each edge has at most length 1 and hence we
have dα ≤ dC(Tα, Tβ) ≤M .

In case (ii) let α ∈ S be such that lγ(t)(S) = lγ(t)(α) for all t ∈ [ti−1, ti]. As in
Figure 24 let pγ(t),L ∈ γ(t)S be the “leftmost” point of the characteristic set, that is we
have a βL ∈ S with dγ(t)(pγ(t),L, βL · pγ(t),L) = lγ(t)(S) and dγ(t)(p, βL · p) > lγ(t)(S) for
any point p ∈ Tα further left along Tα. Similarly we denote pγ(t),R and βR and again
up to further subdividing the interval we assume that βL and βR are the same for all
t ∈ [ti−1, ti].

Let u := dC(pC,L, pC,R) and u′ := dD(pD,L, pD,R) be the diameter of the characteristic
sets CS and DS , respectively. We now want to bound the difference u − u′ by some
inequality of the form u−u′ ≤ (ΛR− 1)κu. If Tα and TβL do not intersect, let qL ∈ Tα be
the vertex in Tα closest to Tβ , otherwise let qL ∈ Tα ∩ TβL be the leftmost vertex on the
intersection, i.e. we have dC(pC,L, TβL) = dC(pC,L, qL) + dC(qL, TβL). Similarly we have a
vertex qR. Since lC(S) = dC(pC,L, βL · pC,L) ≥ dC(p, βL · p) for any point p ∈ CS and TβL
is an embedded line in a tree, we have that qL lies to the right of pC,L and similarly to
the right of pD,L. Similarly qR lies to the left of pC,R and pD,R. As all four points lie on
the embedded line Tα we have the following two possible equalities for u: If qL lies left of
qR we get the equality u = dC(pC,L, qL) + dC(qL, qR) + dC(qR, pC,R) and if qL lies right of
qR we get the equality u = dC(pC,L, qL) + dC(qR, pC,R)− dC(qL, qR). Hence we conclude:

u− u′ =
(
dC(pC,L, qL)− dD(pD,L, qL)

)
±
(
dC(qL, qR)− dD(qL, qR)

)
+
(
dC(pC,R, qR)− dD(pD,R, qR)

)
By definition of βL we have

lC(S) = 2dC(pC,L, TβL) + lC(βL)

= 2(dC(pC,L, qL) + dC(Tα, Tβ,L) + lC(βL)

⇒ 2dC(pC,L, qL) = lC(S)− 2dC(Tα, TβL)− lC(βL)

and thus by Lemma 5.7:

2
(
dC(pC,L, qL)− dD(pD,L, qL)

)
=
(
lC(S)− lD(S)

)
+ 2
(
dD(Tα, TβL)− dC(Tα, TβL)

)
+ (lD(βL)− lC(βL))

≤ (ΛR − 1)
(
#T (α) + (3n− 4)M + (3n− 4)#T (βL)

)
≤ (ΛR − 1)

(
N + (3n− 4)(M +N)

)
Recall that for any β ∈ S and p ∈ T we have the equality dγ(t)(p, β ·p) = 2dγ(t)(p, Tβ) +

lγ(t)(β). That means we have γ(t)S ⊆ Br(Tβ) ∩ Tα for any r ≥ lγ(t)(α). In particular we
have for each γ(t) that its characteristic set is contained in the same subsegment ρ of
Tα with at most L+ 2N edges as depicted in Figure 27, namely at most L edges from
Tα ∩ Tβ and at most N ≥ #T (α) edges on each side from the l(α)-neighbourhood in Tα.
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Tαρ
N N

Tβ

L

Tω Tµ

Figure 27: A subsegment ρ of Tα containing the characteristic set.

That is we have by Lemma 5.7 |dC(qL, qR)− dD(qL, qR)| ≤ (ΛR − 1)(3n− 4)(2N + L)
and hence we get as a bound for u− u′:

u− u′ ≤ (ΛR − 1)
(
N + (3n− 4)(M +N)

)
+ (ΛR − 1)(3n− 4)(2N + L)

= (ΛR − 1)
(
N + (3n− 4)(M + L+ 3N)

)︸ ︷︷ ︸
=:κu

= (ΛR − 1)κu

To bound how far a point in ρ moves we construct two elements ω, µ ∈ Fn such that –
similar to the situation we already had in case (i) – their two translation axes Tω and Tµ
lie in the two complements of ρ as depicted in Figure 27.

Let e be the leftmost edge of ρ and choose an infinitely long path ζ in T \ (Fn · e)
starting at the leftmost vertex of ρ which does not cross any edge in the orbit of e and is
locally injective. Let v1, v2, . . . ∈ V (T ) be the vertices of ζ and define ω ∈ Fn by the first
time when two such vertices are in the same Fn orbit, i.e. we have ω · vj = vj+l. As T
has at most 2n− 2 different vertex orbits, we have j + l ≤ 2n− 1. Recall that we have
dT (vi, ωvi) = lT (ω) + 2dT (vi, Tω) and hence as in Figure 23 we have that the edge count
of ω is at most #T (ω) ≤ 2n− 1. Furthermore, we have because of j + l ≤ 2n− 1 that the
edge distance from Tω to ρ is at most 2n− 2. Moreover, each edge of Tω lies in the orbit
of an edge in ζ. As ζ does not contain an orbit of the first edge of ρ, we have that e is
not an edge in Tω and thus Tω intersects ρ at most at the starting vertex of ζ. Similarly
we construct µ ∈ Fn for the right-hand side of ρ.

As the base point pC,S lies in the middle of the characteristic set CS , we have for the
distance dC(Tω, pC,S) = dC(Tω, pCL) + 1

2u ≤ 2n− 2 +N + L and accordingly for D. We
will use this to get a κ > 0 as in case (i).

As Tω lies left of the characteristic set, each path from Tω to TβL has to pass through
pC,L. Hence we have the equality dC(Tω, TβL) = dC(Tω, pC,L)+dC(pC,L, TβL) and similarly
for D.

Observe that the shortest path from TβL to Tω contains at most 2n− 2 +N +M edges
and we have 2dC(pC,L, TβL) = lC(S)− lC(βL). Hence, we get by Lemma 5.7 the following
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inequalities:

dC(Tω, pC,L)− dD(Tω, pD,L) = (dC(Tω, TβL)− dC(pC,L, TβL))

− (dD(Tω, TβL)− dD(pD,L, TβL))

= (dC(Tω, TβL)− dD(Tω, TβL))

+
1

2

(
(lC(S)− lD(S)) + (lD(βL)− lC(βL))

)
≤ (ΛR − 1)(2n− 2 +N +M) + (ΛR − 1)

3n− 3

2
N

= (ΛR − 1)κL,

with κL := 2n− 2 +N +M + 3n−3
2 N . In particular we have the inequality

dC(Tω, pC,S)− dD(Tω, pD,S) = dC(Tω, pC,L) +
1

2
u−

(
dD(Tω, pD,L) +

1

2
u′
)

≤ (ΛR − 1)
(
κL +

1

2
κu
)
.

Accordingly we get dC(Tµ, pC,S)− dD(Tµ, pD,S) ≤ (ΛR − 1)
(
κL + 1

2κu
)
. We are now in

a similar situation as in case (i), where Tω and Tµ play the role of Tα and Tβ, namely
we fixate pC,S and pD,S by their distance to Tω and Tµ. By Lemma 5.24 we have the
inequality

dD(Tω, h(pC,S)) ≤ ΛRdC(Tω, pC,S) + (ΛR − 1)(2n− 1).

Up to renaming Tω and Tµ we can again assume that pD,S lies on the path from Tω to
h(pC,S), hence we have

dD(pD,S , h(pC,S)) = dD(Tω, h(pC,S))− dD(Tω, pD,S)

≤ ΛRdC(Tω, pC,S) + (ΛR − 1)(2n− 1)− dD(Tω, pD,S)

≤ (ΛR − 1)
(
2n− 1 + κL +

1

2
κu + dC(Tω, pC,S)

)
≤ (ΛR − 1)

(
2n− 1 + κL +

1

2
κu + 2n− 2 +N + L

)
.

Now we can combine the results for the cases (i) and (ii) to get an upper bound

dD(pD,S , h(pC,S)) ≤ (ΛR − 1) · κ(n,N,L,M)︸ ︷︷ ︸
=:κ(∆)

where the numbers N,L,M only depend on ∆. By Lemma 5.23 we then have that
dR(φS,K(C), φS,K(D)) = dR(C,D) for all K ≥ κ(∆)

2 .

We also get a version of Proposition 5.22 for bounded subsets by taking the maximum
the corresponding κ(∆).

Corollary 5.25
Let U ⊂ CVn be a bounded subset, then there exists a K > 0 such that φS,K |U is an
isometry.
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Proof. Let U ⊂ CVn be a (non-empty) bounded subset, r := diam(U) its diameter and
D ∈ U any point. Let A,B ∈ U be two points, then the envelope EnvR(A,B) is contained
in the 2r-ingoing neighbourhood Bin

2r(D) of D, since we have for every C ∈ EnvR(A,B)
by the triangle inequality:

dR(C,D) ≤ dR(C,B) + dR(B,D) ≤ dR(A,B) + dR(B,D) ≤ 2 diam(U) = 2r.

By Lemma 2.6 the ingoing ball Bin
2r(D) intersects finitely many simplices ∆ ⊂ CVn, hence

we can choose K to be the maximum of the κ(∆) from Proposition 5.22 over all these
∆. As any geodesic from A to B is now piecewise isometrically send to a (piecewise)
geodesic, we have that φS,K at most decreases the distance from A to B. But as φS,K also
preserves the stretching factor of candidates in A, it also at most increases the distance
from A to B. Hence, φS,K |U is an isometric embedding.

While for any given simplex or bounded subset U ⊂ CVn we can find a large enough
K such that φS,K |U is an isometric embedding, it is in general not a global isometric
embedding from CVn to CVn+k as we can see in the following example.

Proposition 5.26
Let n ≥ 3, S = {s1, . . . , sn} ⊂ Fn be a generating set and K > 0. Then the map
φS,K : CVn → CVn+1 is not an isometric embedding.

Proof. To construct a counterexample, consider for some k ∈ N the set of generators
(α1, . . . , αn) with αi := si for i > 2, α2 := s−k3 s2s

k
3 and α1 := α−1

2 s1α2, that is we have
s2 = αk3α2α

−k
3 , s1 = α2α1α

−1
2 and si = αi for i > 2. Let R be the Cayley-graph of Fn

with respect to the basis (α1, . . . , αn):

. . . Tα3

Tα2

Ts2

Tsi

Ts1

id αk3

α2

Figure 28: A Cayley-graph of Fn with two shifted translation axes.

For k large enough and 0 < ε < 1
k let A = (R, lA,m), B = (R, lB,m) ∈ CVn be the two

points where m denotes the standard left-multiplication on the Cayley-graph together
with the following length functions:

lA(αi) =

{
1
k , if i = 3,

1, if i 6= 3,

lB(αi) =


1 + ε, if i = 1,
1
k − ε, if i = 3,

1, if i 6= 3.
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We have vol(A) = vol(B) = n − k−1
k . Note that R can also be seen as the rose with

α1, . . . , αn as marking on the petals and α1 is the only stretched loop from A to B.
Hence, we have by Corollary 1.15

dR(A,B) = log(ΛR(A,B)) = log

(
lB(α1)

lA(α1)

)
= log(1 + ε).

We will show that for large enough k we have ΛR(φS,K(A), φS,K(B)) ≥ ΛR(A,B).
To do so we first calculate their characteristic sets. We assume that pA,S and pB,S lie

on the path between the translation axes Ts1 and Ts2 and show in afterwards that it is
indeed the base point. Let S′ := {s1, s2}. As Ts1 and Ts2 are shifts of Tα1 and Tα2 by α2

and αk3 , respectively, we get the following identities:

lA(S′) = lA(s1) + 2dA(Ts1 , pA,S′) = lA(s2) + 2dA(Ts2 , pA,S′)

⇒ 2lA(S′) = lA(s1) + lA(s2) + 2dA(Ts1 , Ts2) = 2 + 2(1 + k · 1

k
) = 6

dA(Ts1 , pA,S′) =
lA(S′)− lA(s1)

2
=

3− 1

2
= 1

⇒ pA,S′ = id

where id denotes the vertex corresponding to the neutral element of Fn. As for each
si ∈ S we have dA(pA,S′ , si · pA,S′) ≤ 3, we get lA(S) ≤ 3. On the other hand for any
point p ∈ R \ {pA,S′} we have dA(p, s1 · p) > 3 or dA(p, s2 · p) > 3 and hence we have that
pA,S = pA,S′ = id is indeed our base point. Similarly we get for B:

2lB(S′) = lB(s1) + lB(s2) + 2dB(Ts1 , Ts2)

= 1 + ε+ 1 + 2(1 + k(1/k − ε)) = 6− (2k − 1)ε

dB(Ts1 , pB,S′) =
lB(S′)− lB(s1)

2

=
3− (k − 1

2)ε− (1 + ε)

2

= 1− 2k + 1

4
ε.

Since we have dB(Ts1 , pB,S′) < dB(Tsi , id), the point pB,S′ lies on Tα2 and we have

dB(id, pB,S′) = dB(Ts1 , id)− dB(Ts1 , pB,S′) =
2k + 1

4
ε

If we choose ε small enough such that 2k+1
4 ε < 1

2 holds, we have as before that pB,S′ is
less displaced by any other si. In particular, we have pB,S = pB,S′ is indeed the base
point for B.
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We apply now the map φS,K and calculate the stretching factor of the newly introduced
candidate α3αn+1:

lφS,K(B)(α3αn+1) = lB(α3) + 2dB(id, pB,S) +K

=
1

k
− ε+

2k + 1

2
ε+K

⇒ ΛR(φS,K(A), φS,K(B)) ≥
lφS,K(B)(α3αn+1)

lφS,K(A)(α3αn+1)

=
1
k − ε+ 2k+1

2 ε+K
1
k +K

= 1 +
2k − 1

2( 1
k +K)

· ε

> 1 + ε = ΛR(A,B)

where we get the last inequality by choosing k large enough such that 2k − 1 > 2( 1
k +K)

holds. Since φS,K(A) and φS,K(B) have again the same volume, we have dR(A,B) <
dR(φS,K(A), φS,K(B)), thus φS,K is not an isometric embedding.

5.3 Embeddings via coverings

Another more natural embedding from CVn to CVk comes from finite coverings. Recall
that by universal covering theory the finite covers of a finite, connected graph Γ correspond
to finite index subgroups of the fundamental group π1(Γ). That is after fixing a finite
index subgroup Fk ∼= G in Fn we get for every A ∈ CVn its corresponding finite cover
in CVk. In terms of marked, metric trees as in Definition 1.3 this means that a free,
minimal Fn-action on a tree T is also a free, minimal G-action on T .

Lemma 5.27
Let G ≤ Fn be a finite index subgroup, T a simplicial, metric tree and m : Fn → Isom(T )
a free, minimal action by isometries. Then its restriction m|G : G→ Isom(T ) is a free,
minimal action.

Proof. That m|G acts freely is clear. Since Fn acts minimally on T , we have that T is
covered by the translation axes of Fn, that is

T =
⋃

α∈Fn\{id}

Tα,

as we can extend any finite subsegment of T to be a part of a translation axis. Recall
that taking powers of α does not change the translation axis, i.e. we have Tα = Tαr for
any r ∈ N. Since G has finite index in Fn, there exists for each α ∈ Fn a number r ∈ N
with αr ∈ G and thus we also have

T =
⋃

α∈G\{id}

Tα.
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An α-invariant subtree has to contain all translation axes Tα, thus T has no non-trivial
G-invariant subtrees, that is the action m|G is minimal.

This means, given a finite index subgroup G ≤ Fn and identifying it with Fk, gives us
an embedding from CVn to CVk. Since the distance can be calculated as the maximal
quotient of the translation lengths, we get the following natural isometric embedding.

Proposition 5.28
Let φ : Fk → Fn be an injective group homomorphism such that φ(Fk) has finite index
in Fn. Then the map

φ∗ : CVn → CVk , (T, l,m) 7→ (T, l,m ◦ φ)

is an isometric embedding.

Proof. By Lemma 5.27 we have that m ◦ φ is a free, minimal action of Fk on T so φ∗

is well defined. Let A,B ∈ CVn, then ΛR(A,B) = supα∈Fn
lB(α)
lA(α) . Since lA(α) is the

translation length of α along its translation axis Tα, we have lA(αm) = m · lA(α) for all
m ∈ N. Again φ(Fk) is a finite index subgroup of Fn and so there exists for each α ∈ Fn
an m ∈ N with αm ∈ φ(Fk). Hence, we have:

ΛR(A,B) = sup
α∈Fn

lB(α)

lA(α)
= sup

α∈Fn

mlB(α)

mlA(α)

= sup
α∈Fn

lB(αm)

lA(αm)
= sup

β∈φ(Fk)

lB(β)

lA(β)

= ΛR(φ∗(A), φ∗(B)).

As φ∗(A) corresponds to a finite cover of A, we have vol(φ∗(A)) = [Fn : φ(Fk)] vol(A) and
similarly vol(φ∗(B)) = [Fn : φ(Fk)] vol(B) and thus dR(A,B) = dR(φ∗(A), φ∗(B)).

Sometimes it is more convenient to write down the isometric embedding from Proposi-
tion 5.28 in terms of finite coverings T/(m ◦ φ) � T/m of finite marked graphs.

Remark 5.29
Let φ : Fk → Fn and φ∗ : CVn → CVk be as in Proposition 5.28 and A = (Γ, l,m) ∈ CVn.
Consider a representant of A as in Notation 1.2(i), that is a finite, metric graph Γ with
labelled (oriented) edges as in Figure 2, where we label the edges of the spanning tree
with id ∈ Fn. As slight abuse of notation we will also denote the corresponding labelling
of an edge e ∈ E(Γ) as m(e) ∈ Fn.

Recall from the theory of coverings that we can describe the covering Υ of Γ which
corresponds to φ∗(A) the following way: Let R := φ(Fk)\Fn be the right cosets of φ(Fk).
Then vertices and edges of Υ are R-multiples of vertices and edges of Γ, respectively:

V (Υ) := {(r, v) | r ∈ R, v ∈ V (Γ)}
E(Υ) := {(r, e) is an edge from (r, v1) to (r ·m(e), v2)

| r ∈ R, e ∈ E(Γ) is an edge from v1 to v2}
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We set the same labels and lengths on edges in Υ as for Γ, i.e. mΥ((r, e)) := m(e) and
lΥ((r, e)) := l(e).

Observe that in Remark 5.29 the edges of Υ with trivial labels under mΥ do not
form a spanning tree. In order to write down the marking as in Notation 1.2(i) we
need to do the same as if we change the spanning tree: Fix a vertex (1, v) ∈ V (Υ)
and a spanning tree T ⊂ Υ and label all edges in T by the neutral element of Fk. Let
(r, e) ∈ E(Υ \ T ) be an oriented edge outside of T , then there exists a unique reduced,
closed path ρ = (r1, e1) . . . (rs, es) ⊂ T ∪ {e} starting and ending at (1, v) and crossing e
exactly once. We label then (r, e) as the product φ−1(mΥ(r1, e1) · . . . ·mΥ(rs, es)) of the
original edge labels along ρ. Note here that the product of the labels is indeed in φ(Fk)
since we have chosen a loop starting and ending at (1, v).

Example 5.30
Let F2 be the free group generated by α and β and U := 〈α, βαβ, β2〉 one of its finite
index subgroups isomorphic to F3. Let φ∗ : CV2 → CV3 be the corresponding isometric
embedding as in Proposition 5.28. Then we have:

φ∗ :

α

β

7→

α

α

β β =

α

β−1αβ

β2

To distinguish for which k ∈ N we have such an embedding, recall that the free rank
of a finite index subgroup of a free group is given by the Nielsen-Schreier formula (see
[Ser80, Section 3.4]).

Theorem 5.31 (Nielsen–Schreier)
Let Fn be a free group of rank n and U ≤ Fn a subgroup with finite index [Fn : U ] =
d <∞. Then U is a free group of rank 1 + d(n− 1).

As there exists for any d ∈ N a degree d covering of a finite graph, there exists such
an isometric embedding φ∗ : CVn → CVk, if and only if k = 1 + d(n− 1) holds for some
d ∈ N. In particular we can embed CV2 into any CVk for k ≥ 2.

91



6 Deformations of embeddings

As we have seen in Example 5.6 and Corollary 5.15 we can slightly deform naive
embeddings from Section 5.2 to get continuous families of isometric embeddings. We will
see in Theorem 6.7 that we can also locally deform a natural embedding from Section 5.3
from CV2 to CVk to get a continuous family of isometric embeddings. In contrast we
will see in Theorem 6.8 that the natural embeddings from CVn to CVk for n ≥ 3 have
some sort of rigidity, that is they can not be locally deformed into another isometric
embedding.

Definition 6.1
Let k, n ∈ N be two natural numbers and φ, ψ : CVn → CVk be isometric embeddings.
We say φ and ψ are deformations of each other, if there exists a homotopy of isometries
H : CVn × [0, 1]→ CVk between them. That means H is continuous, the map H( · , t) is
for all 0 ≤ t ≤ 1 an isometry and we have H( · , 0) = φ and H( · , 1) = ψ.

We say φ and ψ are bounded deformations of each other, if the homotopy additionally
satisfies that the difference set {A ∈ CVn | H(A, · ) is not constant} is a bounded subset
of CVn.

Observe slight varying of the attached graph in Section 5.2 yields deformations of
isometric embeddings in the above sense.

The following Lemma 6.2 can be used to construct explicit bounded deformations of
isometric embeddings. Namely, if we deform an isometric embedding in the interior of
a bounded area such that its restriction to the interior is isometric, then the deformed
embedding is globally still isometric. The idea for this is to skewer interior points with a
geodesic ray which enters and leaves the deformed area.

Lemma 6.2
Let U ⊆ CVn be a subset of finite diameter and U c := CVn \ U be its complement.
Furthermore, let ψ : CVn → CVk be a map such that its restrictions to the closures ψ|Uc
and ψ|U are isometric embeddings, then ψ is an isometric embedding.

Proof. We will show that for any A ∈ U c and B ∈ U we have dR(A,B) = dR(ψ(A), ψ(B)).
Let γ : [0, 1]→ CVn be a geodesic from A to B. By Lemma 1.36 we can continue γ to a
geodesic ray γ : R≥0 → CVn leaving U . Let s < 1 < t be two times when γ passes the
boundary of U .

A
B γ(t)γ(s)

U

γ

In particular, we have γ(s), γ(t) ∈ U c ∩ U and hence ψ preservers their distances to A
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and B. By the triangle inequality and Lemma 1.18 we have then the following inequalities:

dR(ψ(A), ψ(B)) ≤ dR(ψ(A), ψ(γ(s))) + dR(ψ(γ(s)), ψ(B))

= dR(A, γ(s)) + dR(γ(s), B) = dR(A,B),

dR(ψ(A), ψ(B)) ≥ dR(ψ(A), ψ(γ(t)))− dR(ψ(B), ψ(γ(t)))

= dR(A, γ(t))− dR(B, γ(t)) = dR(A,B)

Hence, equality holds. Analogously, we have dR(ψ(B), ψ(A)) = dR(B,A) and thus ψ is
an isometric embedding.

Lemma 6.2 also holds for more general cases. Namely, when X is a geodesic space and
U ⊂ X a subset such that each geodesic starting outside and ending inside U can be
continued to a geodesic ending outside U .

Remark 6.3 (i) The condition in Lemma 6.2 that the area U is bounded, is essential,
otherwise the geodesic may not leave U and we could, for example, flip U onto
its complement. As concrete example of such a flip let ∆ ∈ CV2 be a simplex
corresponding to the standard figure of eight and U ⊂ CV2 be a component of
CV2 \ ∆. Then the automorphism φ : F2 := 〈α, β〉 → F2 with φ(α) = α−1 and
φ(β) = β yields an isometric embedding φ∗ : U → CV2 with φ∗|∆ = id∆. But if U
contains a theta-graph the map

ψ : CV2 → CV2 , A 7→

{
A, A 6∈ U
φ∗(A), A ∈ U

is not injective as we have φ∗(U) ⊂ CV2 \ U .

(ii) To deform a bounded set by Lemma 6.2 it is actually enough that for all A ∈
∂U,B ∈ U we have dR(A,B) = dR(ψ(A), ψ(B)) and dR(B,A) = dR(ψ(B), ψ(A)).
From this follows similarly to the proof of Lemma 6.2 that ψ|U is an isometric
embedding. We use here that we can extend a geodesic in both directions by
Corollary 2.19 and Lemma 1.36.

We will see in the following example, that we can also locally deform natural embeddings
from CV2 to CV3.

Example 6.4
Let φ∗ be the isometric embedding from Example 5.30 and 0 < ε, δ < 1

3 be some small
numbers. Let U ⊂ CV2 be the theta-graphs with some fixed marking such that after
normalising each edge has at least length δ. For A ∈ U we set

ε(A) := ε · (min{lA(e) | e ∈ E(A)} − δ)

to be the desired deformation depending on the minimal edge length of A.
Then we define ψ : CV2 → CV3 by ψ(A) := φ∗(A) for A 6∈ U and on U as follows:
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ψ :
c
a

b

7→
c

c

a

a

b
+
ε(
A

) b−
ε(A

)
with marking α, β and ω. For A ∈ ∂U we have ε(A) = 0, hence ψ is also equal to φ∗ on
the boundary of U and in particular restricted to the closure of the complement of U an
isometric embedding. Since U is contained in the 2δ-thick part of a simplex it has finite
diameter.

We now want to apply Lemma 6.2. To do this, it is left to show that ψ|U is an isometric
embedding. There are up to orientation only two candidates of ψ(A) which have a
different length than in φ∗(A), namely the barbells µ+ := αβωβ−1 and µ− := αω. We
will show that for A,B ∈ U they are never maximally stretched from ψ(A) to ψ(B), that
means we have dR(ψ(A), ψ(B)) = dR(A,B). Let A,B be normalised and (a, c, b) and
(a′, c′, b′) be their edge lengths, respectively. We then have:

lψ(B)(µ
±)

lψ(A)(µ±)
=

2 · (a′ + b′ + c′ ± ε(B))

2 · (a+ b+ c± ε(A))
=

1± ε(B)

1± ε(A)

We now want to compare these quotients with the stretching factors of α, β, αβ−1 from

A to B. For the case µ+ we assume a = min{a, b, c}, that is we have 1+ε(B)
1+ε(A) ≤

1+ε(a′−δ)
1+ε(a−δ) .

Likewise, for the case µ− we assume a′ = min{a′, b′, c′} and get 1−ε(B)
1−ε(A) ≤

1−ε(a′−δ)
1−ε(a−δ) . It

follows:

1± ε(B)

1± ε(A)
≤ 1± ε(a′ − δ)

1± ε(a− δ)
=

(1∓ δε− ε) + ε(1± a′)
(1∓ δε− ε) + ε(1± a)

1.14
≤ max

{
1,

1± a′

1± a

}
= max

{
1,
a′ + b′ + c′ ± a′

a+ b+ c± a

}
1.14
≤ max

{
a′ + b′

a+ b
,
a′ + c′

a+ c
,
b′ + c′

b+ c

}
= ΛR(A,B)

where we used in the last inequality that at least one candidate from B is maximally
stretched, that is at least one of the stretching factors of the candidates in the last term
is greater or equal to 1.

So we have that ψ|U is an isometric embedding and by Lemma 6.2 ψ is an isometric
embedding.

We can even set δ = 0 and deform the whole (unbounded) simplex in the same way.
As in the example we then have that ψ|∆ is an isometric embedding. Furthermore,
for a theta-graph A ∈ ∆ there exists a small δ′ > 0 and an ε′ > 0 such that the
image ψ(A) is equal to ψ′(A) with ψ′ as in example 6.4 with ε′ and δ′. Since we have
dR(A,B) = dR(ψ′(A), ψ′(B)) = dR(ψ(A), ψ(B)) and dR(B,A) = dR(ψ(B), ψ(A)) for
A ∈ ∆, B ∈ CV2 \∆ we have that ψ is also globally an isometric embedding.
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By continuously varying either ε or δ in Example 6.4 it is clear that the example gives a
(bounded) deformation of φ∗. Alternatively we can use the following lemma for bounded
deformations.

Lemma 6.5
Let φ, ψ : CVn → CVk be two isometric embeddings such that their difference set U :=
{A ∈ CVn | φ(A) 6= ψ(A)} is bounded and for every A ∈ U its images φ(A), ψ(A) ∈ CVk
lie in the same simplex ∆ ⊂ CVk. Then they are bounded deformations of each other.

Proof. For A ∈ CVn let γA : [0, 1] → CVk be the straight line between φ(A) and ψ(A)
and set H(A, t) := γA(t). This is well defined as φ(A) and ψ(A) lie in the same simplex.
Clearly we have H( · , 0) = φ and H( · , 1) = ψ.

We want to apply Remark 6.3 (ii) to show that H( · , t) is an isometric embedding. Let
therefore be B ∈ ∂U and A ∈ U . Keep in mind that for B ∈ ∂U we have φ(B) = ψ(B)
and hence we have H(B, t) = φ(B) = ψ(B) for all t ∈ [0, 1]. By Lemma 1.36 there exists
a geodesic passing through B and A and a point C ∈ ∂U . Let α ∈WR(ψ(B), ψ(C)) =
WR(φ(B), φ(C)). By Lemma 1.22 we have α ∈WR(ψ(B), ψ(A)) ∩WR(φ(B), φ(A)). In
particular, we have γA(0), γA(1) ∈ Envout

R (ψ(B), α) and since envelopes are polytopes
and γA is a straight line in ∆, we have α ∈WR(ψ(B), γA(t)) = WR(H(B, t), H(A, t)) for
all t ∈ [0, 1].

As α is a witness from φ(B) = ψ(B) to φ(A) and ψ(A) and φ and ψ are isometric
embeddings, we get lφ(A)(α) = ΛR(B,A)lφ(B) = lψ(A)(α). In particular as the length of
α is linear along the straight segment γA, we have that lH(A,t)(α) = lφ(A)(α) is constant
along γA. Since α is a witness from H(B, t) to H(A, t) for all t ∈ [0, 1], we have

dR(H(B, t), H(A, t)) = log(ΛR(H(B, t), H(A, t))

= log

(
lH(A,t)(α)

lH(B,t)(α)

)
= dR(φ(B), φ(A)) = dR(B,A).

Similarly we get dR(H(A, t), H(B, t)) = dR(A,B).

We can see Example 6.4 as an elementary case for a family of bounded deformations.
Keep in mind that as described in Remark 5.29 a natural embedding φ∗ : CVn → CVk
gives a covering π : φ∗(A)→ A.

This means that for a basepoint p ∈ A, we have the monodromy action of the
fundamental group π1(A, p) on the fibres L := π−1(p) ⊂ φ∗(A), i.e. a loop α moves a
point q ∈ L along the lift of α starting at p. We say that the monodromy action of α is
transitive, if the only α-invariant subsets of L are trivial. This means there exists only
one closed loop α̃ in φ∗(A) which projects to a power of α.

Lemma 6.6
Let φ∗ : CV2 → CVk be an isometric embedding as in Proposition 5.28 and ∆ ⊂ CV2 a
simplex corresponding to a marked theta-graph (Γ,m). If Γ has a simple loop α ∈ F2

with non-transitive monodromy action, then φ∗ has a bounded deformation ψ such that
their difference set is a subset of ∆.
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Proof. Let U ⊆ ∆ and 0 < ε, δ < 1
3 be as in Example 6.4 and A ∈ U normalised. Let

furthermore α be as in the statement.
We colour the edges of φ∗(A) depending on which edge of A they cover as usually with

red, blue and black. Similarly we get a two-colouring of the vertices and since Γ has no
loops we have that φ∗(A) is bipartite.

Let α̃ be a simple loop in φ∗(A) which covers a power of α, namely it is a closed two
coloured path. We may assume that α̃ consists of alternating red and blue edges. By
assumption the red-blue subgraph of φ∗(A) has at least two such simple loops and hence
at least two components. In particular α̃ does not span the whole graph.

Similar to Example 6.4 we construct a deformation ψ of φ∗ on U . Let ε(A) :=
ε · (min{lA(e) | e ∈ E(A)} − δ). We deform φ∗(A) to ψ(A) by alternatingly adding
±1

2ε(A) to the lengths of the black edges adjacent to α̃:

+

+ −

− 0 +

−
...

...

This is well defined since α̃ has an even number of vertices as φ∗(A) is bipartite and α̃ is
a closed loop. If an edge connects two vertices of α̃, these two vertices cover different
vertices in A and we do not change the length of the edge. As α̃ does not span the whole
graph there is at least one edge non-trivially deformed.

Observe that any two-coloured loop does not change its length in ψ(A) since any two-
coloured path entering and leaving the subgraph spanned by α̃ does so at two differently
coloured vertices, that is it has to cross two edges which are oppositional deformed.

In the following we will subdivide any other loop in φ∗(A) into segments similar to
those in Example 6.4, namely into undeformed lifts of simple loops, which are always
two-coloured, and possible deformed segments which contain all three edge colours. As
in Example 6.4 each of these segments is less or equally stretched between φ∗(A) and
φ∗(B) than a simple loop between A and B. By Lemma 1.14 we will then have that any
loop is less or equally stretched from ψ(A) to ψ(B) than from A to B.

It is clear that any loop contained in the subgraph spanned by either α̃ or the vertices
not covered by α̃ is not deformed at all, hence without loss of generality let β be a
cyclically reduced loop in φ∗(A) entering and leaving the subgraph spanned by α̃.

As we might slightly rotate β without changing its length, we assume that the first
edge of β is a black edge entering α̃. We cut β at the beginning of each black edge
which leaves or enters the subgraph spanned by α̃. Namely, we have the subdivision
β = β1 . . . β2m as edge-paths such that for 1 ≤ l ≤ m all but the first vertices of β2l−1 lie
in α̃ and all but the first vertices of β2l lie outside α̃. We denote by vi the deformation
of each βi:

vi := lψ(A)(βi)− lφ∗(A)(βi) = ±1

2
ε(A).
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Keep in mind that two adjacent edges have different colours. As the first edge of each
βi is black, each βi contains at least two edges and any two adjacent edges are a lift of a
simple loop in A. If βi = e1 . . . e2r+1 contains an odd number of edges, then let e2r′+1 be
the first odd and non-black edge. Such an edge exists as βi can not end with a black
edge. By definition of r′ the edge e2r′−1 is black and has a different colour than e2r′+1.
Since adjacent edges have different colours, the three edges e2r′−1, e2r′ and e2r′+1 have
all different colours. This means we can subdivide every βi into lifts of simple loops in A
and possibly a segment of three differently coloured edges if βi contains an odd number
of edges.

Observe that we have for the deformations of the subpaths v2i−1 + v2i 6= 0 if and only
if β2i−1 contains an odd number of edges. This implies that if the deformations of β2i−1

and β2i do not cancel each other out, then we have three differently coloured subsequent
edges in β2i−1.

Let now A,B ∈ U be normalised and β be a loop segmented into β1 . . . β2m as before.
We get then for the stretching factor of β by the previous paragraphs and by Lemma 1.14

lψ(B)(β)

lψ(A)(β)
=

∑m
i=1

(
lψ(B)(β2i−1) + lψ(B)(β2i)

)∑m
i=1

(
lψ(A)(β2i−1) + lψ(A)(β2i)

)
≤ max

1≤i≤m

{
lψ(B)(β2i−1) + lψ(B)(β2i)

lψ(A)(β2i−1) + lψ(A)(β2i)

}
≤ max

1≤i≤m

{
ΛR(A,B), 1,

1± ε(B)

1± ε(A)

}
= ΛR(A,B).

The last inequality follows from the decomposition of the β2i−1 and β2i into lifts of simple
loops and a possible segment with three colours and some deformation v2i−1 +v2i = ±ε(·).
Recall that three differently coloured edges have up to some deformation length 1. The
last equality comes from Example 6.4. Since any two-coloured simple loop in ψ(A) has
the same length as in φ∗(A), we have ΛR(ψ(A), ψ(B)) = ΛR(A,B). By Lemma 6.2
we have then that ψ is an isometric embedding and by Lemma 6.5 that ψ is indeed a
bounded deformation of φ∗.

Using Lemma 6.6 we can now construct bounded deformations of any natural embedding
φ∗ : CV2 → CVk.

Theorem 6.7
Let φ∗ : CV2 → CVk be an isometric embedding as in Proposition 5.28 for some k ≥ 3.
Then φ∗ can be locally deformed.

Proof. Let ∆ ⊂ CV2 be the simplex corresponding to the theta-graph (Γ,m) with the
standard marking, i.e. we have the two simple loops α and β. We now want to apply
Lemma 6.6, that is we need a non-transitive monodromy action of a simple loop. Assume
the monodromy action of α and β are both transitive, then there exists a r ∈ N such that
βαr fixes a lift of the basepoint. In particular the simplex ∆′ ⊂ CV2 corresponding to the
theta-graph (Γ,m′) with the edge labels (βαr, α) satisfies the conditions of Lemma 6.6.

97



While we can deform any natural embedding from CV2 to CVk, the same does not
hold if we naturally embed CVn to CVk for n ≥ 3. As it turns out these embeddings
are rigid in the sense that they have no bounded deformation. The informal reason for
this is that the three-coloured path in the proof of Lemma 6.6 can now be a witness and
deforming it would properly change the distance in CVk.

Theorem 6.8
Let φ : Fk → Fn and φ∗ : CVn → CVk be as in Proposition 5.28 and n ≥ 3. Then φ∗ has
no non-trivial bounded deformations.

We will use the remainder of this section to prove Theorem 6.8. Let from now on n ≥ 3,
φ∗ : CVn → CVk be as in Proposition 5.28 a natural embedding and ψ : CVn → CVk
another isometric embedding such that their difference set U := {A ∈ CVn | φ∗(A) 6=
ψ(A)} is bounded. Assume φ∗ 6= ψ, that is we suppose U 6= ∅. We will split the proof
into the following smaller steps:

(i) Show that there exists an A ∈ U such that φ∗(A) and ψ(A) differ only in their edge
lengths.

(ii) Create families of closed paths in φ∗(A) which have the same lengths in φ∗(A) and
ψ(A).

(iii) Use these families to show that each edge in φ∗(A) and ψ(A) already has the same
length, which contradicts φ∗(A) 6= ψ(A).

Lemma 6.9
There exists an A ∈ U such that φ∗(A) and ψ(A) have the same topological type.

Proof. Since isometries are continuous, U is open and hence has non-empty intersection
with an open maximal simplex ∆. As U has finite diameter there exists a small enough ε
such that the ε-thin graphs are disjoint from U . In particular we have ∂U ∩∆ 6= ∅. φ∗
sends points of maximal simplices to maximal simplices Since φ∗ and ψ are continuous,
we have for any A ∈ U ∩∆ close enough to ∂U that the images φ∗(A) and ψ(A) have
the same topological type.

We will from now on fix such an A in a maximal simplex and write φ∗(A) = (Γ, l1,m)
and ψ(A) = (Γ, l2,m) such that the (Γ, li) are normalised. For any not necessarily closed
edge-path α̃ in Γ we will denote the difference of their length as v(α̃) := l2(α̃)− l1(α̃).

Recall that by construction Γ is a finite cover of A and the fundamental group of A
acts via deck transformation. Hence, we consider as in Remark 5.29 the vertices and
edges of Γ as [Fn : φ(Fk)] = k−1

n−1 =: d copies of the vertices respectively edges of A.
Similarly we will denote the lifts of a path α in A by α1, . . . αd. For a path in Γ we will

write α̃ and denote its projection in A again as α. Keep in mind that for closed paths this
projection is up to conjugation exactly the identification of elements in Fk as elements of
Fn via φ. The projection of a cyclically reduced path α will be again cyclically reduced
since the cover is unramified. For the purpose of this section identifying paths via the
projection will be clearer and avoids ambiguities in regard to the base point.
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Since the projection of (Γ, l1,m) onto A is locally isometric, we have l1(αi) = lA(α),
hence witnesses are preserved under this projection. In particular we have for a closed
loop α̃ in Γ that α̃ is a witness from φ∗(A) to φ∗(B) if and only if α is a witness from A
to B. We will see that this implies that witnesses can not be deformed.

Lemma 6.10
Let α̃ be a cyclically reduced, closed path in Γ and α its projection in A. If there
exist BL, BR ∈ CVn \ U such that α is a witness from BL to A and from A to BR, i.e.
α ∈WR(BL, A) ∩WR(A,BR), then we have v(α̃) = 0.

Proof. By Corollary 1.24 there exists a geodesic γ from BL to BR which passes through A.
Since ψ is isometric, it also sends γ to a geodesic. Furthermore, α̃ is a witness from
φ∗(BL) = ψ(BL) to φ∗(BR) = ψ(BR) and thus by Lemma 1.22 also a witness from ψ(BL)
to ψ(A).

As φ∗ and ψ are isometric, we have (after normalising) that the maximal stretching of
paths are equal:

ΛR(φ∗(BL), φ∗(A)) = ΛR(BL, A) = ΛR(ψ(BL), ψ(A))

Since α̃ is a witness, we have

l1(α̃)

lφ∗(BL)(α̃)
= ΛR(φ∗(BL), φ∗(A)) = ΛR(ψ(BL), ψ(A)) =

l2(α̃)

lψ(BL)(α̃)

and by using φ∗(BL) = ψ(BL) we have the desired equality l1(α̃) = l2(α̃).

We can now use Lemma 6.10 to show that any path α̃ whose projection does not cover
the whole graph A has no deformation:

Lemma 6.11
Let α̃ be a cyclically reduced, closed path in Γ and α its projection in A. If there exists
an edge e ∈ E(A) which is not covered by α, then we have v(α̃) = 0.

Proof. We will construct two points BL, BR as in Lemma 6.10.
To obtain BL we shrink each edge of A covered by α̃ by a factor ε > 0 and leave the

rest with the same length, that is we have BL ∈ ∆(A) with length function

lBL(e) =

{
ε · lA(e), if e is an edge contained in α

lA(e), if e is an edge not contained in α

Since lBL(α) = εlA(α), we have ΛR(BL, A) ≥ 1
ε . On the other hand there exists an

unshrunk edge e and hence we have

dR(BL, A) = log

(
vol(BL)

vol(A)
· ΛR(BL, A)

)
≥ log

(
lA(e)

1 · ε

)
.

As U is bounded, we have that BL 6∈ U for small enough ε. Furthermore, each path
β ∈ Fn is at most stretched by 1/ε from BL to A and hence we have α ∈WR(BL, A).
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We construct BR similarly, that is we shrink the edges not covered by α̃ by a factor ε
to obtain B′R. Note that B′R might be still in U , as the shrunk edges might be a forest
and thus even setting ε = 0 can yield a point in U . Nevertheless we have α ∈WR(A,B′R).
By Lemma 1.36 there exists a geodesic ray γ : R≥0 → CVn continuing the geodesic from
A to B′R and keeping α as a witness. Hence, for large enough t we have BR := γ(t) 6∈ U
and by construction α ∈WR(A,BR). The claim follows now from Lemma 6.10.

Observe that for n ≥ 3 and a candidate α in A ∈ CVn there exists an edge e ∈ E(A)
which is not covered by α. For example if α is a barbell, there exists a spanning tree
T ⊂ A which contains all but two edges of α. As π1(A) has at least rank three, there exist
at least three edges in e \ T and hence α does not cover all edges of A. This means that
by Lemma 6.11 closed loops which project to a power of a candidate are never deformed.
Nevertheless, we still have that a lift of a candidate α may be deformed if it is not closed
in Γ. For instance we have seen this in Example 6.4 where we have v((β2)i) = 0 but
v(βi) = ±ε(A). To get that non-closed paths are not deformed, we consider them as
handles of barbells:

Lemma 6.12
Let α and β be two not necessarily distinct, cyclically reduced loops in A and ρ ⊂ A a
path connecting them such that αρβρ is cyclically reduced and not every edge of A is
covered by α, β and ρ. Furthermore, let ρ̃ be a lift of ρ in Γ. Then ρ̃ is not deformed,
that is we have v(ρ̃) = 0.

Proof. Let α̃d, β̃d be the lifts of αd and βd starting at the endpoints of ρ̃. As d is
the index of the subgroup, both α̃d and β̃d are loops in Γ. By Lemma 6.11 we have
v(α̃d) = 0 = v(β̃d) and as edge-path v(α̃dρ̃β̃dρ̃) = 0, where ρ̃ denotes as usual the path ρ̃
with reversed orientation. On the other hand the variation is additive, hence we have

0 = v(α̃dρ̃β̃dρ̃) = v(α̃d) + v(ρ̃) + v(β̃d) + v(ρ̃) = 2v(ρ̃),

which concludes the proof.

Lemma 6.12 in particular implies that the handle of a barbell is never deformed. We
will now finish the proof of Theorem 6.8.

Proof of Theorem 6.8. Let e ∈ E(A) be an edge and e1 ∈ E(Γ) one of its lifts. We will
now show, that v(e1) = 0, that is there exists no deformed edge. We have the following
three cases for e:

e is a loop in A: As A is in a maximal simplex and e is a loop, e can be separated from
the rest of A by its adjacent edge. That means we can see it as a petal of a barbell, i.e.
we have a disjoint simple loop α and a path ρ between e and α such that the edge-path
eρα is a barbell in A. Keep in mind that for each lift αi of a closed loop α there exists a
lift αdi := (αd)i which is a closed loop starting with αi.
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We will enumerate the lifts in Γ in such a manner that e1 . . . em is a simple loop in Γ
and the ρi share their starting vertex with ei and their ending vertex with the loops αdi
for i = 1, . . .m. Namely we have the following image in Γ:

e
ρ

α ;

e1

ρ1
αd1

e2

...

ρ2
αd2

...

em

ρm
αdm

As eρα is a barbell in A and n ≥ 3, it does not cover the whole graph A. Hence, by
Lemma 6.12 we have v(ρ1) = 0 = v(ρ2) and v(ρ1e1ρ2) = 0. By additivity of v we have
then 0 = v(ρ1e1ρ2) = v(ρ1) + v(e1) + v(ρ2) = v(e1).

e is a separating edge: If the edges adjacent to e are not separating, then there exists
in each component of A \ e a simple loop sharing a vertex with e. Hence, by Lemma 6.12
e is not deformed.

If some edges adjacent to e are separating, then there exist two disjoint paths ρα, ρβ
connecting e to two simple loops α, β in one component of A \ e. Let ω be a simple loop
in the other component connected to e by a path ρω:

ραα

ρββ

e ρω
ω

By Lemma 6.12 each lift of the paths ραρβ, ραeρω, ρβeρω has trivial deformation.
Let ρα,1, ρβ,1 and ρω,1 be the lifts of these paths adjacent to e1. By additivity of the
deformation we then have

v(ρα,1ρβ,1) = 0

⇒ v(ρα,1) = −v(ρβ,1)

v(ρα,1e1ρω,1) = 0 = v(ρβ,1e1ρω,1)

⇒ v(ρα,1) = v(ρβ,1)

and hence v(ρα,1) = v(ρβ,1) = 0.
Similar we get v(ρω,1) = 0, either by choosing ρω to be trivial if the adjacent edge of e

is no separating or as in the case of α and β if the adjacent edge of e is separating. By
v((ραe1ρω)1) = 0 we have then v(e1) = 0.
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e is a non-separating edge: We will construct two disjoint simple paths α and β starting
and ending at the endpoints of e. That is we have the two cases:

e
α

β

or α
e

β

In the first case αβ is a simple loop, hence there exists an edge not covered by α, β and e.
So in both cases we can apply Lemma 6.12 to get v(e1) = 0.

The existence of one such simple path α is given since e is non-separating. For example
take a shortest path between the endpoints of e in A \ {e}. Furthermore as each vertex
has valency 3, we have two additional edges f and g adjacent to e and disjoint from α:

e

α

f g

We assume f 6= g, else we set β = f and are done. If f and g are separating edges,
we extend them to be maximal paths consisting of separating edges and let β, ω be two
simple loops adjacent to the endpoints of f and g. By applying Lemma 6.12 to the
three barbells with simple loops β, αe, ω we have for their lifts v(f1) = 0 = v(g1) and
v(f1e1g1) = 0, from which follows directly v(e1) = 0. Similarly if f is a separating edge
and g is non-separating, then there exists a simple loop ω in A \ {e, f} containing g and
we get from Lemma 6.12 v(f1e1) = 0 for the barbell with loops β and ω and as before
v(f1) = 0, thus v(e1) = 0:

e

α

f

β

g

ω
e

α

f

β

g
ω

Assume now that f and g are non-separating edges, then we can extend them to a
path β connecting the endpoints of e:

e

β

α

f g

The path β may intersect α on some edges. As in the proof of Lemma 3.1 we can
construct from α and β two disjoint paths α′ and β′ by iteratively cutting out common
edges. Since α and β are disjoint in the neighbourhood of e, the disjoint paths created
α′ and β′ still join the vertices of e. Hence, we have also for the final case v(e1) = 0.
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Appendix: An implementation in Sage of the algorithm
described in Section 1.6

The following code represents a point in Outer Space as an object in Sage [Sag] and
includes the methods to compute the candidates of a point and the Lipschitz distance
between two points as described in Section 1.6. The code together with some examples
can be found in [Ste18].

class MarkedGraph(object):
”””
Class for marked graphs, e.g. elements of Outer Space aka Culler−Vogtmann space.

This class provides some additional functions, e.g. to find candidates for
maximal stretching ((topologically) embedded simple curves, figure of eights
and barbells) and conversion of cycles to elements of fundamental group and back.
The calculation of the Lipschitz distance comes from the paper
https://arxiv.org/pdf/0803.0640.pdf

CONDITIONS:

The labels of the edges must be elements of a group (to make sense the
fundamental group, but you can abuse this) or None.

The graph is directed in the following sense: an edge is oriented from
the smaller index to the bigger one (i.e. (2, 3, g) means if you go from
vertex 2 to 3 corresponds g and from 3 to 2 corresponds to gˆ−).

None will be converted to the neutral element and at least one label
must be not None.

The giving weights function is a map from edges to your weights, where
an edge is given by the triple (’smaller vertex’, ’bigger vertex’, ’label’).
Only tested, when vertices of graph are (real) numbers (they should be
at least comparable/totally ordered).
”””
# Variables:
# ∗ candidates = [[], [], []]
# ∗ weights = {}
# ∗ graph = Graph()

# INIT
def init (self, graph=Graph(), weights=None):

”””
Initialize

If no weights are given, all edges are given weight ’wi j l’
(edge = (i, j, l) and change the label accordingly) before making it nice
”””
# setting the standard variables to trivial
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# first entry are simple curves, second are eights, third are barbells
self. candidates = [[], [], []]
if weights:

# since we actually change the graph for computation, use a copy
self. weights = deepcopy(weights)

else:
# self. weights = {edge: 1 for edge in graph.edges()}
self. weights = {edge: var(’w%s %s %s’ % (edge[0], edge[1],

str(edge[2]).replace(’∗’, ’’).replace(’ˆ−1’,’ inv’))
) for edge in graph.edges()}

self.setGraph(graph)

# HELPER CLASSES
def getOne(self):

”””
Return the 1 of the corresponding group for the labels or ’t’ if there are no edges.

If first not None edges label is not in a group, an error is raised.
”””
edges = self. graph.edges()
for edge in edges:

if edge[2]:
return edge[2].parent().one()

print(’WARNING: getOne() was called without any edges/not None labels. ’
’Returned None as value.’)

return None

# GRAPH AND SPANNING TREE
# The methods to define/get the graph, spanning tree and to make graph nice

def setGraph(self, graph=Graph()):
”””
Set the graph to given variable and change None−labels to the neutral element.
”””
self. graph = graph
self. convertNone()

def convertNone(self):
”””
Convert all None edges to neutral element.
”””
one = self. getOne()
for edge in self. graph.edges():

if edge[2] == None:
self. graph.delete edge((edge[0], edge[1], None))
self. graph.add edge(edge[0], edge[1], one)
self. weights.update(
{(edge[0], edge[1], one):
self. weights.pop((edge[0], edge[1], None), None)})
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def getGraph(self):
”””
Return (non−copy) graph on which the element is based
”””
return self. graph

def getSpanningTree(self):
”””
Return subgraph of the edges with neutral element label
”””
one = self. getOne()
self. convertNone()
spanEdges = [e for e in self. graph.edges() if e[2] == one]
tree = self. graph.subgraph(edges=spanEdges)
if tree.has loops() or tree.has multiple edges():

print(’WARNING: Spanning tree has loops or multiple edges.’
’Check the labeling. This might cause errors later on.’)

return(tree)

def makeGraphNice(self, graph=None, stretchVariable=None, considerWeights=False):
”””
Split edges so graph has no loops or multiple edges.

This is done by introducing the minimal number of vertices on edges midpoints.

Respects marking (and weights) (new introduced edges have label
’stretchVariable’ and (weight 0) and ’old’ edge keeps marking(&weight)).

WARNING: This method might throw an error, if weights and marking are
not correctly set, e.g. if edges are indistuingishable. To keep weights,
set it on True, else it will break the weights!
”””
if graph is None:

graph = self. graph
vertices = graph.vertices()
if not vertices:

print ’Warning: Given graph has has no vertices!’
return

newVertexNumber = max(vertices) + 1

for edge in graph.loops():
start = min([edge[0], edge[1]])
end = max([edge[0], edge[1]])
graph.add vertices([newVertexNumber, newVertexNumber + 1])

# introduce edges of three and assign and markings
graph.add edge(start, newVertexNumber, edge[2])
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graph.add edge(newVertexNumber, newVertexNumber + 1, stretchVariable)
graph.add edge(end,newVertexNumber+1, stretchVariable)

# weightspart
if considerWeights:

self. weights.update({(start, newVertexNumber, edge[2]): self. weights.pop(
edge)})

self. weights.update({(newVertexNumber, newVertexNumber + 1,
stretchVariable): 0})

self. weights.update({(end, newVertexNumber + 1, stretchVariable): 0})

# cleanup
graph.delete edge(edge)
newVertexNumber = newVertexNumber + 2

for edge in graph.multiple edges():
start=min([edge[0], edge[1]])
end=max([edge[0], edge[1]])
graph.add vertex(newVertexNumber)

# introduce edges and assign marking
graph.add edge(start, newVertexNumber, edge[2])
graph.add edge(newVertexNumber, end, stretchVariable)

# weightspart
if considerWeights:

self. weights.update({(start, newVertexNumber, edge[2]): self. weights.get(edge
)})

self. weights.update({(end, newVertexNumber, stretchVariable): 0})
self. weights.pop(edge)

#cleanup
graph.delete edge(edge)
newVertexNumber = newVertexNumber + 1

# MARKINGS AND WEIGHTS
# Methods to set and get markings in different ways
# Every method that changes marking also resets fundamental group.

def setWeights(self, weights):
self. weights = weights

def updateWeights(self, weights):
self. weights.update(weights)

def getWeights(self):
return deepcopy(self. weights)

def setCentralWeights(self):
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”””
Set all weights to 1 and return copy of the weighting function
”””
weights = {}
G = Graph(self. graph)
for edge in G.edges():

weights.update({edge: 1})
self. weights = weights
return deepcopy(weights)

# CANDIDATES
# This part involves how to get the candidates and simple cycles
def simple cycles(self, Gamma=None, non duplicates=True):

”””
Return a copylist of all simple cycles in the given graph Gamma as lists vertices

OPTIONS:

− non duplicates=True enforces the list to have unique elements (only important for
multiedges).

”””
if Gamma is None:

Gamma = self. graph
G = Graph(Gamma) # make copy of given graph
cycleList = []

multi = []

if non duplicates:
for edge in G.multiple edges() + G.loops():

if not [edge[0], edge[1]] in multi:
multi.append([edge[0], edge[1]])

else:
multi = G.multiple edges() + G.loops()

for mult in multi:
# case of loops
if mult[0] == mult[1]:

cycleList.append([mult[0], mult[0]])
# case of multiple edge
else:

cycleList.append([mult[0], mult[1], mult[0]])
G.allow loops(False)
G.allow multiple edges(False)
edges = G.edges()
for edge in edges:

G.delete edge(edge) # delete starting edge to avoid duplicates
# add all cycles containing this edge
cycleList.extend([[edge[0]] + path for path in

G.all paths(edge[1], edge[0])])
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self. candidates[0] = deepcopy(cycleList)
return cycleList

def candidates(self, Gamma=None, reevaluate=True):
”””
Return the candidates as group elements.
”””
if not reevaluate and self. candidates[0]:

return self. candidates
if Gamma is None:

Gamma = self. graph
simples = self.simple cycles(Gamma=Gamma)
candidates = []
for cycle in simples:

candidates.extend(self.path to elementList(cycle))
candidates = [candidates] # the simple loops
for path in simples: # delete last vertex in loops

path.pop()

eights = [] # list of eights
barbells = [] # list of barbells

loops = Gamma.loops()
for i in range(len(loops)):

for j in range(i + 1, len(loops)):
if loops[i][0] == loops[j][0]:

eights.append(loops[i][2]∗loops[j][2])
eights.append(loops[i][2]/loops[j][2])

number simples = len(simples)
while simples:

cyc = simples.pop()
for other cyc in simples:

intersec = list(set(cyc) & set(other cyc))
if len(intersec) == 1: # single point intersection gives eight

firstCyc = cyc[cyc.index(intersec[0]):]
firstCyc.extend(cyc[:cyc.index(intersec[0]) + 1])
firstCyc = self.path to elementList(firstCyc)
i = other cyc.index(intersec[0])
secondCyc = (other cyc[i:])
secondCyc.extend(other cyc[:i+1])
secondCyc = self.path to elementList(secondCyc)
for first in firstCyc:

for second in secondCyc:
eights.append(first∗second)
eights.append(first/second)

if len(intersec) == 0: # no intersection might gives barbells
length = len(other cyc)
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barb = []
for vertcyc in cyc:

firstCyc = cyc[cyc.index(vertcyc):]
firstCyc.extend(cyc[:cyc.index(vertcyc)+1])
firstCyc = self.path to elementList(firstCyc)
for i in range(length):

G = Graph(Gamma)
G.delete vertices([vert for vert in cyc if vert != vertcyc])
G.delete vertices([vert for vert in other cyc if vert != other cyc[i

]])
secondCyc = (other cyc[i:])
secondCyc.extend(other cyc[:i+1])
secondCyc = self.path to elementList(secondCyc)
for path in G.all paths(vertcyc, other cyc[i]):

middlePart = self.path to elementList(path)
for first in firstCyc:

for second in secondCyc:
for mid in middlePart:

barbells.append(first∗mid∗second/mid)
barbells.append(first∗mid/second/mid)

candidates.append(eights)
candidates.append(barbells)
self. candidates = deepcopy(candidates)
return candidates

def path to elementList(self, path):
”””
Take a path as list of vertices and return a list of words each representing the path.
”””
self. convertNone() # if there were changes in between
one = self. getOne()
letters = []
for i in range(len(path)−1):

if path[i] < path[i+1]:
letters.append(self. graph.edge label(path[i], path[i+1]))

else:
letters.append([letter.inverse() for letter in

self. graph.edge label(path[i], path[i+1])])
words = []
word = one

treshHolds = [len(l) for l in letters]
treshHolds.append(0)
i = [0] ∗ (len(letters) + 1)
j = 0
nextIterate = True
while nextIterate:

if (j > 0 and path[j−1] == path[j+1] and
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letters[j][i[j]]∗letters[j−1][i[j−1]] == one):
# don’t walk back and forth again
i[j] += 1

else:
word ∗= letters[j][i[j]]
j += 1
if j == len(letters):

words.append(word)

#increase list indices and shorten word back again:
while i[j] == treshHolds[j]:

i[j] = 0
j −= 1
if j >= 0:

word /= letters[j][i[j]]
i[j] += 1

else:
nextIterate = False
break

# if the path is a loop or 2 multiedges we didn’t sort out the inverse yet.
oldwords = words
words = []
for word in oldwords:

if not (word.inverse() in words or word in words):
words.append(word)

return words

# FUNDAMENTAL GROUP
# Functions to generate the fundamental group and to translate it to closed paths in the

graph and back

def generateFundGroup(self):
”””
Return the subgroup generated by the labels.

If there are no edges, return None.
”””
generators = self. graph.edge labels()
if generators:

return generators[0].parent().subgroup(generators)
else:

return None

def groupelementAsPath(self, word):
”””
Take an element of the fundamental group and return a cyclically reduced path (list of

edges) realizing the word.
”””
tree = self.getSpanningTree() # also converts None to 1
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tree.allow multiple edges(False) # force it to have no multiple edges (implies unique
labels)

edges = self. graph.edges()

converter = {} # dictionary of generator to edge
generators = [] # the edge−labels generate the group, these are svaed here
for edge in self. graph.edges():

if edge[2] == word.parent().one():
continue

generators.append(edge[2])
converter.update({len(generators):edge})

# write a word as tietze with the new generators
tietze = self.convertGroupelementToHereTietze(word, gens=generators)
tietze = self.cyclycallyReduced(tietze) # cyclically reduce word

number = tietze[−1] # throw an error if the word was trivial
# check orientation of last edge to get first vertex of cycle
if number > 0:

lastVertex = converter.get(abs(number))[1]
else:

lastVertex = converter.get(abs(number))[0]

path = []
for number in tietze:

edge = converter.get(abs(number))
if number > 0:

start = edge[0]
end = edge[1]

else:
start = edge[1]
end = edge[0]

# add path in tree
treeWalk = tree.shortest path(lastVertex, start)
for i in range(len(treeWalk) − 1):

if treeWalk[i] < treeWalk[i+1]:
path.append((treeWalk[i], treeWalk[i+1],

tree.edge label(treeWalk[i], treeWalk[i+1])))
else:

path.append((treeWalk[i+1], treeWalk[i],
tree.edge label(treeWalk[i+1], treeWalk[i])))

path.append(edge)
# save lastVertex of path
lastVertex = end

return path

def convertGroupelementToHereTietze(self, word, gens):
”””
Take a word and write it in terms of the given generators.

111



”””
# make it compatible for translation into GAP
rank = len(gens)
xTietze = list(word.Tietze())
tgens = [list(gen.Tietze()) for gen in gens]

# translate word and generators to GAP
gap.eval(’tWord := %s;; tgens := %s;; rank := %s;;’

% (xTietze, tgens, rank))
gap.eval(’G := FreeGroup(rank);; ’

’Ggens := GeneratorsOfGroup(G);;’)
gap.eval(’word := One(G);; for i in tWord do ’

’nextLetter := Ggens[AbsInt(i)]; ’
’if i>0 then word := word∗nextLetter; ’
’else word := word/nextLetter; fi; od;’)

gap.eval(’newGens := [];; ’
’for tWord in tgens do newGen := One(G);; ’
’for i in tWord do nextLetter := Ggens[AbsInt(i)]; ’
’if i>0 then newGen := newGen∗nextLetter; ’
’else newGen := newGen/nextLetter; fi; ’
’od; Add(newGens, newGen); od;’)

gap.eval(’H := Subgroup(G, newGens);;’)

# change the base in GAP
gap.eval(’hom := EpimorphismFromFreeGroup(H);;’)
gap.eval(’newWord := PreImagesRepresentative(hom, word);;’)

# and translate new Tietze−word back to Sage
newTietze = gap(’TietzeWordAbstractWord(newWord);’).sage()
return newTietze

def cyclycallyReduced(self, tietzeWord):
”””
Take a Tietze represenation of a word and return a cyclycally reduced copy of it.

Does only conjugate and not check interior of word.
”””
tietzeList = list(tietzeWord)
while tietzeList and tietzeList[0] == −tietzeList[−1]:

tietzeList.pop()
tietzeList.pop(0)

newWord = tuple(tietzeList)
return newWord

# DISTANCES
# Functions to determine the Lipschitz distance and lengths of paths.

def lengthOfElement(self, groupElement):
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”””
Return length of the cyclycally reduced path corresponding to the element of the

fundamental group.
”””
return(self.lengthOfPath(self.groupelementAsPath(groupElement)))

def lengthOfPath(self, path, weights=None, graph=None):
”””
Take a list of edges (=path) and return the length, i.e. sum of edge weights.

If path is empty or point, return 0.
”””
if not weights:

weights = self. weights
if not graph:

graph = self. graph
if not path:

return 0
length = 0
for edge in path:

weight = weights.get(edge)
length = length + weight

return length

def distanceTo(self, markedGraph, lazy=False):
”””
Compute asymmetric Lipschitz distance to given markedGraph

If lazy, it takes the saved candidates if possible.
”””
distance = log(max(self.candFractions(markedGraph, lazy).values()

)∗self.volume()/markedGraph.volume())
return distance

def volume(self):
”””
Return the volume, i.e. the sum of edge lengths of this graph
”””
edges = self. graph.edges()
sum = self. weights.get(edges[0])
for edge in edges:

sum += self. weights.get(edge)
sum −= self. weights.get(edges[0])
return sum

def candFractions(self, markedGraph, lazy=False):
”””
Return a dictionary of all ratios of lengths
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These are ratios of lenghts of the candidates here and their image in the given marked
graph

Keys are elements in fundamental group
If lazy, it will not reevaluate the candidates (if there are at least some simple cycles).
”””
candidates = self.candidates(reevaluate= (not lazy))
candidates = candidates[0] + candidates[1] + candidates[2]
fractionCand = {}
for candidate in candidates:

denominator = self.lengthOfElement(candidate)
numerator = markedGraph.lengthOfElement(candidate)
fractionCand.update({candidate: numerator/denominator})

return fractionCand
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