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Abstract

The knowledge about protein-protein interactions is rising steadily. Protein do-
mains and signaling proteins in particular are becoming increasingly important in
the search for new drugs to combat many diseases, as they are commonly found in
central positions in protein interaction cascades. They often form complexes with
specific types of peptides which is why it is interesting to study the interaction
properties as well as the way in which the binding can be influenced. For the in-
vestigation of such complexes, computational methods can be used to get a deeper
understanding of the mechanistical binding properties.

In this thesis, I present our approaches on understanding the interactions of 14-3-
3 proteins and PDZ domains with flexible peptides, intrinsically disordered regions
of the partner proteins. Thereby, the main focus is on the influence of phosphory-
lation of serine residues in the peptides and how this effects the binding. Thus, I
illustrate the results of various plain molecular dynamics simulations to study the
mechanistic details of the interactions. Furthermore, the results of alchemical sim-
ulations for the calculation of relative binding free energies and parallel cascade se-
lection molecular dynamics (PaCS-MD) simulations for the calculation of absolute
binding free energies are outlined.

Finally, I present a project where we studied the competitive binding between a
peptide and an inhibitor to the same binding pocket of a PDZ domain using PaCS-
MD simulations.
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Zusammenfassung

Das Wissen über Protein-Protein-Wechselwirkungen nimmt stetig zu. Besonders
Proteindomänen sowie Signalproteine gewinnen bei der Suche nach neuen Medika-
menten zur Bekämpfung diverser Krankheiten zunehmend an Bedeutung, da sie
häufig im Zentrum von Proteinwechselwirkungskaskaden stehen. Da diese oft Kom-
plexe mit bestimmten Peptiden bilden, ist es interessant, Interaktionseigenschaften
und Möglichkeiten zur Beeinflussung der Bindung zu untersuchen. Dabei können
computergestützte Methoden eingesetzt werden, um ein tieferes Verständnis der
mechanistischen Bindungseigenschaften zu erlangen.

In dieser Arbeit stelle ich unsere Ansätze zum Verständnis der Wechselwirkun-
gen von 14-3-3-Proteinen und PDZ-Domänen mit flexiblen Peptiden vor. Hierbei
haben wir vor allem den Einfluss der Phosphorylierung von Serinresten in den
Peptiden auf die Bindungen untersucht. Es werden die Ergebnisse verschiedener
Molekulardynamik (MD)-Simulationen vorgestellt, in denen die mechanistischen
Details der Wechselwirkungen untersucht wurden. Weiterhin werden die Ergeb-
nisse alchemistischer Simulationen zur Berechnung relativer und sogenannter “par-
allel cascade selection molecular dynamics” (PaCS-MD) Simulationen zur Berech-
nung absoluter freier Bindungsenergien dargestellt.

Schließlich stelle ich ein Projekt vor, in dem wir die kompetitive Bindung zwis-
chen einem Peptid und einem Inhibitor an dieselbe Bindungstasche einer PDZ-Domäne
mit Hilfe von PaCS-MD-Simulationen untersucht haben.
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Chapter 1

Introduction

1.1 Motivation

Without proteins and their interactions, affected and altered by various external and
internal influences, life as we know it would not be possible. It is estimated, that
mammals have between 109 − 1010 proteins per cell [17] making up around 60 % of
the cells dry weight [18]. Moreover, proteins are involved in nearly every cellular
process due to their interactions with other proteins, carbohydrates, lipids, RNA or
DNA.

Today, most of our understanding about protein-protein interactions and their
stability is derived from three-dimensional atomistic structures of protein-protein
complexes (see among others Jones and Thornton [19] and Marsh and Teichmann [20]).
Thus, to study protein-protein, protein-peptide or protein-small molecule interac-
tions information about the secondary, i. e. the shape of protein segments, and ter-
tiary structure, i e. the shape of the full proteins, is needed. Usually these structures
are experimentally observed and characterized by structural biology groups using
nuclear magnetic resonance spectroscopy or X-ray crystallography that allow to ob-
tain three-dimensional structures of proteins in high resolution under specific condi-
tions. These processes are very time demanding and costly. However, computer sci-
ence can help with this structure determination as was just recently demonstrated by
the group developing the AlphaFold software for predicting the three-dimensional
structure of proteins very accurately [21] or since many years by the group of Vijay
Pande with their Folding@home software [22, 23] even though experimental vali-
dation is always wanted. Similar computational support for the understanding of
biological processes can be given by the help of the molecular dynamics (MD) or
Monte-Carlo methods that use the determined protein structures as a starting point.
Usual experiments measure only the states of a system but the process in between
stays fuzzy. This is where the computational methods come into play. Simply put,
they can take the initial state of a biological system and propagate the system un-
til it ends up in the final state and thus it is possible to analyze the intermediary
process. Until today, computational studies trying to characterize protein-protein
or protein-peptide interactions using MD simulations in explicit solvent are very
scarce. Though, a few examples exist. For example the binding of a phosphopeptide
to an SH2 domain [24], a peptide binding to a PDZ domain [25] or a study char-
acterizing the binding free energy between a SH2 domain and a peptide [26]. The
existing studies are promising that we are still just in the beginning of this field be-
cause advances are made every day, e. g. Markov state models (MSMs) come into
play for analysing MD trajectories of protein-peptide interactions [27, 28].

Protein-protein interactions are affected by various effects, e. g. post-translational
modifications (PTMs). These highly increase the amount of protein states resulting
in even more possible interactions. PTMs can also strongly influence interactions,
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e. g. they can be interaction switches between the binding to 14-3-3 proteins or PDZ
domains [29–31]. However, the influence and specific effects of peptide phospho-
rylation, one of the most common post-translational modification, on the binding
to proteins has not been targeted in much detail in many experimental or computa-
tional studies so far.

Thus, in this work, the main focus was put on the binding of peptides to proteins
in general but mostly how this binding is influenced by phosphorylation of serine
residues in the peptide and how this can be studied computationally. Additionally,
we were interested in how the competitive binding of peptides and their inhibitors
to proteins can be simulated. We wanted to study these using MD simulations, en-
hanced sampling and free energy methods.

1.2 Overview and Objectives of this thesis

This thesis mainly focuses on the binding of peptides to PDZ domains and 14-3-3
proteins and how this binding is affected by phosphorylation of serine residues in
the peptides. Additionally, the competition between the binding of a peptide and
a small molecule inhibitor to a PDZ domain was studied. In general, we wanted
to get a deeper understanding of (mostly disordered) peptide binding to PDZ and
14-3-3 domains and how this can be influenced through mutation, post-translational
modifications and inhibition.

During the course of my doctoral studies I was also part of several additional
projects which were not directly related to protein-peptide binding but focused on
other properties and task of proteins in mammals. They allowed me to gain broader
insight into the field of computational biophysics and proteomics, helping to under-
stand the greater context of processes in our cells. Two projects focused on the ad-
sorption of salivary proteins on various materials including enamel. The aim was to
understand the differences between the protein concentrations in saliva, on enamel
and materials which could be used for dental prosthesis in order to gain insight
into how different materials behave in the mouth and what protein properties lead
to adsorption of proteins to these materials. Here, I increased my knowledge on
statistical methods and the analysis of proteomics data and got deeper insight into
experimental methods in proteomics. In another project the NK cell cytotoxicity
for melanoma cells was studied. The focus was on finding markers for and path-
ways involved in melanoma killing and developing algorithms to predict NK-cell-
mediated melanoma killing for specific cell lines. In this project, I further developed
my knowledge about statistics and learned a lot about various machine learning
techniques. Further I got insight into possible cancer therapies and ways to develop
possible new therapeutic techniques. The last project I participated in focussed on
the interaction between the alternative spliced form of the STIM1 protein (STIM1A)
and the hOrai1 protein and the specific functions of this spliced variant. In this
project I dived deeper into molecular docking and homology modeling.

1.2.1 First author publications/projects and additional projects related to
doctoral studies

N. Künzel, V. Helms, “How peptide phosphorylation affects its interaction with
14-3-3η domains”, PROTEINS: Structure, Function, and Bioinformatics, Accepted
Author Manuscript, 2021, https://doi.org/10.1002/prot.26224 [32].
Abstract:

https://doi.org/10.1002/prot.26224
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Members of the 14-3-3 domain family have important functions as adapter domains.
Via an amphipathic groove on their protein surface they typically bind to disordered
C-terminals of other proteins. Importantly, binding partners of 14-3-3 domains usu-
ally contain a phosphorylated serine or threonine residue at their binding interface
and possess one of three different sequence motifs. Binding of the respective un-
phosphorylated versions of the peptides is typically strongly disfavored. There is
a wealth of structural and thermodynamic data available for the phosphorylated
forms but not for the unphosphorylated forms as the binding affinities seem to be
too weak to be measurable experimentally. Here, we characterized the mechanis-
tic details that govern the preference for the binding of phosphorylated peptides to
14-3-3η domains by means of molecular dynamics simulations. We found that the
phosphate group is ideally coordinated in the binding pocket whereas the respec-
tive unphosphorylated side-chain counterpart is not. Thus, the binding preference
results from the tight coordination of the phosphorylated residue at the center of the
binding interface. Furthermore, MD simulations of 14-3-3η dimers showed a pref-
erence for the simultaneous binding of two phosphorylated peptides in agreement
with their experimentally observed cooperativity.

My contribution: I chose the systems to study and the simulations to perform, per-
formed the simulations, analyzed the data and wrote the first draft of the manuscript
(see chapter 3 for preprint version of manuscript).

N. Künzel, V. Helms, “How peptides bind to PDZ domains”, in preparation
Abstract:
The highly abundant PDZ domains, protein modules involved in many protein-
protein interactions, play an important role in the assembly of supramolecular com-
plexes and signal transduction. They usually bind to the C-terminals of other pro-
teins via three main sequence motifs. Interactions are often controlled by phospho-
rylation of the peptide at the serine or threonine residue of motif 1. Here, we studied
the mechanistic details of motif 1 peptides with and without a phosphate group at-
tached to the central serine residue, as well as a peptide were serine is mutated to
glutamic acid, binding to the hPTP1E PDZ2 domain and the MAGI1 PDZ1 domain
using molecular dynamics simulations. We identified general binding features for
peptides binding to PDZ domains. These are backbone-backbone interactions with
the beta strand in the binding pocket and specifically very stable interactions involv-
ing the backbone of the residue at position -2 from the C terminus (often a phospho-
rylatable residue is found at this position). The binding is further stabilized by inter-
actions of the hydrophobic C-terminal residue of the peptide with the surrounding
residues of the PDZ domain. Additionally, we observed that specific residues in the
PDZ domains have a strong influence on the binding of specifically phosphorylated
peptides and other peptides that contain a negative charge at position -2 from the
C terminus to these domains. These residues are ARG79 and LYS38 in the hPTP1E
PDZ2 domain and equivalently GLN85 and LYS44 in the MAGI1 PDZ1 domain if
mutated to arginine, as well as LYS72 in the hPTP1E PDZ2 domain.
My contribution: I chose the systems to study and the simulations to perform, per-
formed the simulations, analyzed the data and wrote the first draft of the manuscript
(see chapter 4).

N. Künzel, V. Helms, “How to study competitive binding computationally”, work
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in progress
Abstract:

My contribution: I chose the systems to study and the simulations to perform, per-
formed the simulations, analyzed the data and wrote the first draft of a potential
manuscript (see chapter 5).

1.2.2 Coauthor publications and additional projects during doctoral stud-
ies

S. Trautmann, N. Künzel, C. Fecher-Trost, A. Barghash, P. Schalkowsky, J. Dudek, J.
Delius, V. Helms, M. Hannig, “Deep Proteomic Insights into the Individual Short-
Term Pellicle Formation on Enamel—An In Situ Pilot Study.” Prot. Clin. Appl.
2020, 14, 1900090. https://doi.org/10.1002/prca.201900090 [33]
Abstract:
Purpose
Dental pellicle formation starts instantaneously after oral hygiene due to the adsorp-
tion of salivary proteins to all orally exposed surfaces. The pellicle acts as a physi-
ological mediator, protects the tooth surface from mechanical damages and reduces
acid-induced enamel demineralization. The aim of this pilot study is to identify and
characterize individual proteomic profiles of the initial pellicle formed on dental
enamel and to compare the profiles with the corresponding saliva to analyze spe-
cific adsorption patterns occurring during pellicle formation.
Experimental Design
The 3-min pellicle of five subjects formed in situ on bovine enamel is eluted chem-
ically and analyzed separately by nano-mass spectrometry. The analysis of the cor-
responding saliva is conducted in parallel.
Results
Up to 498 pellicle proteins and up to 1032 salivary proteins are identified on an indi-
vidual level. Comparison of the salivary and pellicle protein profiles demonstrates
the pellicle formation to be highly individual. Nineteen proteins are significantly en-
riched in the 3-min pellicle of all subjects and 22 proteins are significantly depleted
indicating that pellicle formation relies on selective adsorption.
Conclusions and Clinical Relevance
The short-term enamel pellicle is composed of several hundreds of adsorbed sali-
vary proteins and reveals a highly individual proteomic profile.

My contribution: I performed qualitative and quantitative proteomics analysis in-
cluding fold changes, molecular weight distributions, isoelectric point distributions,
GO terms, molecular functions and GO-term enrichment. I also wrote the first drafts
of the respective method and results sections and created most of the figures in the
manuscript.

S. Trautmann, N. Künzel, C. Fecher-Trost, A. Barghash, J. Dudek, V. Flockerzi, V.
Helms, and M. Hannig, “Is the proteomic composition of the salivary pellicle de-
pendent on the substrate material below?”, in preparation
Abstract:
The use of dental restorative materials is a routine task in clinical dentistry. Upon
exposure to the oral cavity, continuous adsorption of salivary proteins and other
macromolecules to all surfaces occurs, representing the process of dental biofilm

https://doi.org/10.1002/prca.201900090
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formation. Each substrate material has different physico-chemical properties and
this may influence the composition of the initial biofilm, termed pellicle. This study
aimed at characterizing the individual proteomic composition of the 3-min pellicle
formed on bovine enamel and six restorative materials. Substrate material-specific
adsorption patterns were analyzed by comparing the proteomic profiles of the 3-
min pellicle with the corresponding saliva. The combination of chemical elution
and nano-LC-HR-MS/MS resulted in the identification of 1348 different pellicle pro-
teins, out of which 187 to 686 proteins were present in individual 3-min pellicles.
Proteomic profiles were analyzed in terms of molecular weights, isoelectric points,
and molecular functions of the identified proteins. Unexpectedly, this yielded quite
similar distribution patterns independent of the substrate materials. Furthermore,
overall similar fold changes were obtained for the major part of commonly enriched
or depleted proteins in the 3-min pellicles. Taken together, the current results point
to a minor important role of the substrate material on the proteomic composition of
the 3-min pellicle.

My contribution: I performed qualitative and quantitative proteomics analysis in-
cluding fold changes, molecular weight distributions, isoelectric point distributions,
GO terms, molecular functions and GO-term enrichment. I also wrote the first drafts
of the respective method and results sections and created most of the figures in the
manuscript.

S. Cappello, H.-M. Sung, C. Ickes, C. Gibhardt, A. Vultur, H. Bhat, Z. Hu, P. Braf-
ford, A. Denger, I. Stejerean-Todoran, R.-M. Köhn, V. Lorenz, N. Künzel, G. Salinas,
H. Stanisz, T. Legler, P. Rehling, M. P. Schön, K. S. Lang, V. Helms, M. Herlyn, M.
Hoth, C. Kummerow, I. Bogeski, NK cell cytotoxicity and protein microarrays pre-
dict efficacy of melanoma immunotherapies, Cancer Research , Accepted Author
Manuscript, 2021
Abstract:
Notwithstanding the impressive advances in melanoma-directed immunotherapies,
resistance is common and many patients still succumb to the metastatic disease. In
this context, natural killer (NK)-cells, although side-lined in the recent development
of melanoma immunotherapy, could provide therapeutic benefits in the future. To
identify molecular determinants of NK-cell-mediated melanoma killing (NKmK), we
quantified NK-cell cytotoxicity against a panel of genetically-diverse melanoma cell
lines and observed a highly heterogeneous susceptibility. Melanoma cell protein mi-
croarrays revealed a correlation between protein abundance/activation and NKmK.
A “protein-killing-signature” identified metabolic factors as essential regulators of
NKmK. Using 2D and 3D killing assays and melanoma xenografts, we demonstrated
that the PI3K/Akt/mTOR signaling-axis controls NKmK via expressional regulation
of NK cell-relevant surface proteins. Moreover, we developed algorithms to predict
NKmK of additional melanoma cell lines and the response of melanoma patients to
anti-PD-1 checkpoint therapy. Our findings identify novel NK-cell-related prognos-
tic biomarkers and might thus contribute to improved and personalized melanoma-
directed immunotherapies.
My contribution: I assisted in analyzing the RPPA dataset and finding proteins
strongly correlated with NK-cell killing using machine learning techniques to pre-
dict whether NK-cell killing will work well or not for specific cell lines.
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M. L. Knapp, D. Alansary, K. Förderer, F. Sommer, D. Zimmer, Y. Schwarz, N. Künzel,
A. Kless, K. Machaca, V. Helms, T. Mühlhaus, M. Schroda, A. Lis, B. A. Niemeyer, “A
longer isoform of Stim1 is a negative SOCE regulator but increases cAMP modu-
lated NFAT signaling”, submitted, preprint available [34]
Abstract:
Alternative splicing is a potent modifier of protein function. Stromal interaction
molecule 1 (Stim1) is the essential activator of store-operated Ca2+ entry (SOCE)
necessary to trigger activation of transcription factors such as NFAT. Here, we char-
acterize Stim1A, a splice variant with an additional 31 amino acid domain inserted
in frame within its cytosolic domain. Prominent expression of exon A is found in
astrocytes, heart, kidney and testes. Full length Stim1A functions as a dominant-
negative regulator of SOCE and ICRAC, facilitating fast calcium dependent inacti-
vation (FCDI). Docking analysis guided mutational analysis shows that STIM1A
destabilizes gating of Orai1 in a sequence-specific manner with downregulation
or absence of native Stim1A resulting in increased SOCE. Despite reducing SOCE,
Stim1A leads to increased NFAT translocation. Differential proteomics revealed in-
terference of Stim1A with the cAMP-SOCE crosstalk by altered modulation of phos-
phodiesterase (PDE8B), resulting in differential cAMP modulated translocation of
NFAT. Our study uncovers cell type specific splicing of Stim1 as a potent means to
regulate Gαs/αi input on the cAMP-SOCE crosstalk.

My contribution: I performed homology modeling and molecular docking with
various settings, analyzed the docked structures in terms of interesting amino acid
interactions and created the respective figures.

1.3 Outline

After introducing the biological and theoretical background for this thesis in chap-
ter 2, the three first-author projects I have worked on during my doctoral research
will be presented. The first two projects are presented as finished manuscripts in the
form that was submitted to scientific journals while the results from the third project
will be submitted in the future. If needed, an addendum is given for a project. For
the first project some additional analyses are included that did not end up in the
manuscript.

Within chapter 3, the first-author project that will be presented, focused on the in-
fluence of serine phosphorylation on the binding of peptides (RSRST[S/pS]TP[NV]
and RLYH[S/pS]LP) to 14-3-3 proteins, specifically the 14-3-3η protein. The main
methodology for the alchemical simulations and the respective charge corrections is
shown which was also used in the following project. The latter will be presented
thoroughly in chapter 4 and focuses on the binding of differently charged peptides
(EQV[S/E/pS]AV) to PDZ domains and on the influence of mutations of positively
charged amino acids, especially a specific arginine, to uncharged ones in the binding
pocket of the studied PDZ domains, hPTP1E PDZ2 and MAGI1 PDZ1. Moreover,
also the methodology for parallel cascade selection molecular dynamics (PaCS-MD)
simulations is presented. This is also used in the third project, that will be described
in chapter 5. The aim of this project was to study the competitive binding of a small
molecule inhibitor and a peptide to a PDZ domain.

In the end, chapter 6 gives concluding remarks and a general outlook on the
research topic and beyond.
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Chapter 2

Background

In order to present the theoretical background of the thesis, this chapter provides the
biological and theoretical background for the systems studied and methods used in
this thesis. Furthermore, it also extends on additional methods that could have also
been used to study binding free energies so that the methods used can be easily clas-
sified. Of course, the focus is mainly placed on the background which is needed to
understand the projects of this thesis and does not claim to give an overall coverage
of the full topics.

In this chapter parts will also be part of a chapter I wrote together with Volkhard
Helms for a book that will be published by Wiley-VCH under the title “Protein Inter-
action. The Molecular Basis of Interactomics”. My contribution to this chapter was
to collect the content and to write the first draft of the chapter. The parts that include
content that will likely also be in the book chapter are parts of sec. 2.2 including
sec. 2.2.1 and parts of sec. 2.5, specifically sec. 2.5.2 with subsections, sec. 2.5.3 with
subsections, sec. 2.5.4 with subsections and sec. 2.5.5.

2.1 Biology

This section serves to give an introduction into the general biological concepts and
systems that have been studied in this thesis. First of all, post-translational modi-
fications are introduced whereby a special focus is placed on phosphorylation. Af-
terwards, the two classes of proteins or protein domains studied in this thesis are
introduced, namely 14-3-3 proteins and PDZ domains.

2.1.1 Post-translational modifications

Post-translational modifications (PTMs) are chemical modifications due to covalent
additions of functional groups or proteolytic cleavage of a polypeptide chain to al-
low forming of a mature protein [35]. The name is most often associated with the
former ones and the focus in this thesis will also be put on these. The covalent modi-
fications allow for interactions and therefore functionalities of proteins which are not
possible when only considering the genetically stored information. The combination
of multiple PTMs leads to an enormous amount of potential molecular states, espe-
cially, because these modifications can happen on a developmental or physiological
time scale and not only on an evolutionary time scale like genetic evolution [36].
PTMs greatly increase the amount of possible specific proteins and protein states.
While only 20000-25000 genes exist in the human genome [35, 37] over 1 million
human proteins or protein states are known to exist because single genes encode
multiple proteins, alternative splicing takes place and most importantly due to the
sheer amount of possible PTMs [35, 38], carried out by enzymes such as kinases, lig-
ases, phosphatases, etc. that can either add or remove functional groups on amino
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acid side chains or peptide linkages [35]. Multiple PTMs can modify a protein at the
same time on different positions or on the same site at different times [39].

PTMs can either be stable, i. e. they stay continuously on a protein, or more
volatile. The former ones, examples are lipidation, glycosylation and disulfide bridge
formation, can help in protein maturation and folding. The latter ones, a prominent
example is phosphorylation, often play a role in intracellular signaling [39] that is
usually processed by modular protein domains or special proteins which recognize
specific types of PTMs on specific residues, like PDZ domains (see sec. 2.1.3) or 14-
3-3 proteins (see sec. 2.1.2). Due to their important role in many crucial functions of
proteins and cellular processes, PTMs and their dysregulation are associated with
various diseases such as cancer [40–45], cardiovascular diseases [40, 46–48] and dia-
betes [49–51].

Phosphorylation

Phosphorylation of proteins, first detected as phosphoserine in 1932 [52] and as en-
zymatic process in 1954 [53], is the most commonly observed PTM [45, 54] (an es-
timated amount of 30 % of all cellular proteins are phosphorylated on at least one
residue [55–57]) and the main study object of this thesis. Phosphorylation is as-
sociated with various processes in biological cells, especially signaling and regula-
tion [58], e. g. through modifications of PDZ or 14-3-3 interactions (see sec. 2.1.3
and 2.1.2). Phosphorylation sites are often located at binding interfaces, are more
likely to be evolutionary conserved than other residues at interfaces and can strongly
influence the binding energies of protein-protein interactions [59]. Intrinsically dis-
ordered proteins and flexible protein regions show tendencies to be phosphory-
lated and phosphorylation may cause strong structural changes in these regions,
like disorder-to-order and order-to-disorder transitions [59–63]. Phosphorylation
and dephosphorylation are regulated by specific classes of enzymes, namely protein
kinases and phosphates, respectively. The former are encoded by around 2 % of the
human genome [64, 65] reflecting the importance of these processes. Nine out of the
20 natural amino acids in proteins can be phosphorylated by kinases to form phos-
phate esters usually using adenosine triphosphate (ATP) (and sometimes guanosine
triphosphate and phosphoenolpyruvate) as a phosphate donor [66]. These amino
acids are serine (SER), threonine and tyrosine (most commonly in eukaryotes), as
well as histidine, aspartic acid and glutamic acid (most commonly in bacteria [67–
69]) and also arginine, cysteine and lysine [66]. Phosphate, PO3−

4 , is a molecule that
has a high solubility in water, forms a large hydrated ionic shell and is found in a
dianionic form at pH 7 due to its three pKa values (2.2, 7.2 (which is 5.8 for an es-
ter) and 12.4) [66]. For example, for phosphoserine the pKa values are 2.19, 5.78 and
9.85 [70, 71].

Phospho-amino acids do not resemble any natural amino acid and can there-
fore increase the chemical diversity in proteins. The phosphate group, usually dian-
ionic at physiological pH, differs from the negatively charged amino acids, aspartate
and glutamate, which have a smaller hydrated shell and carry only one negative
charge [66]. Therefore, these two are not ideal phosphomimetics on their own. Ad-
ditionally, the phosphate group can engage in stronger and more stable hydrogen
bonds and salt bridges especially with arginine than aspartate and glutamate [66,
72]. Hydrogen bond strengths are similar when comparing the monoanionic and
dianionic states of the phosphate but the protonation state of the phosphate can still
be a critical parameter [72].
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In the light of this background, the focus of this thesis is put on the structural and
thermodynamic implication of serine phosphorylation in peptides binding to PDZ
and 14-3-3 domains.

2.1.2 14-3-3 proteins

The first objects of interest for this thesis were 14-3-3 proteins, since they are known
to predominantly bind phosphorylated sequence motifs of their partner proteins.
14-3-3 proteins are a highly conserved protein family with seven isoforms in mam-
mals [73]. These isoforms exhibit high structural and sequence similarity (RMS de-
viations between 0.7 and 1.8 Å) [74]. They are named α/β, γ, ϵ, η, ζ/δ, θ, and σ.
A search on Google Scholar in July 2021 listed around 705 articles published since
2018 that have “14-3-3” in their title, evidence on the high relevance of 14-3-3 pro-
teins in various fields of research. 14-3-3 proteins are associated with apoptosis, ad-
hesion, cellular proliferation, differentiation and survival, cell cycle regulation and
signal transduction pathways [73, 75] and are abundant in nearly all eukaryotic cells.
They also play a role in cancer progression and are associated with various cancer
types [76–79], such as breast [80, 81], lung [82] and gastric [83, 84] cancer. One ex-
ample is their involvement in the p53 pathway which is a key tumor suppressor
mechanism. They interact with various proteins in that pathway, thereby regulat-
ing wild-type p53 activity and they could be possible drug targets for cancer treat-
ment [85]. Furthermore, 14-3-3 proteins are also linked to age-related neurodegen-
erative diseases like Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral
sclerosis and more [86–89]. Additionally, 14-3-3 proteins play a role in viral infec-
tion and replication [90, 91], e. g. they can interact with the Hepatitis C virus core
protein [92] and the severe acute respiratory syndrome coronavirus (SARS-CoV) nu-
cleocapsid protein by binding to a phosphorylation site [93]. Only recently, it was
shown that also the SARS-CoV-2 nucleocapsid protein (N) binds to all seven hu-
man 14-3-3 isoforms, strictly depending on phosphorylation [94] and playing a role
in the control and inhibition of the replication, transcription and packaging of the
SARS-CoV-2 genome [95].

In general, 14-3-3 proteins exist as homo- and heterodimers [32, 97, 98], that are
stably folded and stabilized because of hydrophobic interactions and salt bridges [32,
99, 100] (an example is given in fig. 2.1). Nine α-helices form an amphipathic groove
and build up each monomer. This groove, where lysine and arginine residues form
a basic cluster mediating the interaction with 14-3-3 binding partners [32, 101–103],
is the predominant binding interface between target proteins and 14-3-3 [32, 103].
Moreover, they mainly interact with phosphorylated disordered regions of their
partner proteins. In general, the most important binding motifs can be classified as
motif 1(R[S/F/Y/W]XpSXP), motif 2 (RX[S/Y/FW/T/Q/A/D]Xp(S/T)X[P/L/M]) [104–
106] and motif 3 (RXXp(S/T)XX-COOH) [105], but 14-3-3 proteins also interact with
a few unphosphorylated peptides [101, 103, 107], e. g. the Carbohydrate-response
Element-binding Protein (ChREBP) [108, 109] or the exoenzyme S (ExoS) [110].

During the course of my doctoral research I studied the binding of phosphory-
lated peptides and their unphosphorylated counterparts to 14-3-3 proteins to get a
deeper understanding of the specificity of 14-3-3 proteins binding phosphorylated
peptides. Within this domain family, the 14-3-3η domain was selected as the main
system of interest because it has been shown to interact with various peptides for
which the binding affinities have been characterized in experiments. Especially one
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FIGURE 2.1: 14-3-3η homodimer binding a phosphorylated peptide
(PDB-ID: 2C63 [96]). The protein is shown in ribbon style, the two

peptides in atomistic stick mode.

study by Yaffe et al. [104] has to be mentioned here, because the binding of a phos-
phorylated peptide and the unphosphorylated counterpart to 14-3-3η was exten-
sively studied. Thus, that study provided us with free energy values as references
for our simulations. The 14-3-3η domain is encoded by the gene YWHAH, has a
length of 246 amino acids. Furthermore, it is linked among others to rheumatoid
arthritis [111–115] and could be a potential therapeutic target for cancers due to its
role in mitotic progression [116].

2.1.3 PDZ domains

The second type of systems which were studied in this thesis are PDZ (PSD-95/Discs-
large/ZO-1) [117] domains. These are a family of highly abundant modules in pro-
teins that exist in various species and various proteins [118–121]. They are involved
in many protein-protein interactions and play an important role in several biolog-
ical processes, such as cell cycle, signal transduction, the assembly of supramolec-
ular complexes and metabolism [120, 122–127]. A curated list of PDZ domains re-
cently listed 272 different human PDZ domains in 154 human proteins [128]. In
July 2021, a search in the Protein Data Bank [6] led to a list of 1961 structures that
included PDZ domains and a search on Google Scholar listed around 3050 entries
that included “PDZ” in their title, showing the broad interest in and importance of
this domain family. Since they often have crucial roles in encounter pathways of
protein-protein interaction, PDZ domains are a common target of viruses like ade-
noviruses, influenza viruses or human papillomaviruses [129–135]. Only recently it
was shown that a protein-binding domain in the Envelope protein (E) of SARS-CoV-
2 shows stronger binding to the PALS1 PDZ domain than the respective domain in E
of SARS-CoV. This could be a critical step in triggering viral infection [135], since it
was suggested before that the interaction between PALS1 and E of SARS-CoV plays
an important role in its virulence [135, 136]. Besides, the E protein of SARS-CoV-2
was also shown to interact with the second PDZ-domain of the host tight junction
protein ZO1 [137]. Additionally, Caillet-Saguy et al. found significant interactions



2.1. Biology 11

with dissociation constants in the range of 3 to 82 µmol for sixteen human PDZ
binders of the SARS-CoV-2 proteins E, 3A and N whereby six of them are also in-
teracting with SARS-CoV proteins, including PTPN13 (also known as hPTP1E), and
three were specific to SARS-CoV-2 E protein [138]. Furthermore, PDZ domains are
associated with neurological diseases like Alzheimer’s disease and Parkinson’s dis-
ease, autism spectrum disorder and more [127, 139–142]. PDZ domain-containing
proteins are also strongly involved in different stages and forms of cancer, i. e. from
the formation of tumors to metastasis, mostly through their functions in signaling
pathways [127, 130, 134, 143–146].

PDZ domains usually bind to their interactions partners via the very C-terminal
ends of these proteins. There exist three main PDZ binding motifs (PBMs) that are
commonly found. These are X[S/T]XΦ-COOH (motif I), XΦXΦ-COOH (motif II)
and X[E/D]XΦ-COOH (motif III) where X can be any residue and ϕ means a hy-
drophobic residue [29, 121, 147, 148]. These interactions with motif I peptides can be
controlled by phosphorylation at the serine or threonine residue, e. g. it was shown
that phosphorylation of the C-terminal of PRMT5 modulates an interaction switch
between a 14-3-3 and PDZ domain [29]. The peptides usually form complexes with
a binding pocket of the PDZ domain formed by a beta strand and an alpha helix,
antiparallel to the former.

In this thesis we will study the binding of different peptides to three PDZ do-
mains. The first one is the PDZ2 domain of the human Tyrosine-protein phosphatase
non-receptor type 13 (PTPL1, PTP-BAS, hPTP1E), coded by the gene PTPN13. This
protein was first identified in 1994 under the name PTP-BAS [149] and shortly after
renamed to hPTP1E [150]. The PDZ domains of hPTP1E are associated with carcino-
genesis and/or cytoskeleton organization and cell migration [151], likely playing a
role in several steps of tumor progression [152]. Moreover, the PDZ2 domain in-
teracts with Fas [152, 153], RIL [152, 154], the tumor suppressor PTEN [155] and
more [152]. Thus, we chose this PDZ domain because a publication reported experi-
mental binding constants for unphosphorylated and phosphorylated peptides [156]
which is seldomly found but is needed as reference when studying the influence of
phosphorylation on the binding of peptides.

The second domain that will be studied is the PDZ1 domain of the human Mem-
brane Associated Guanylate Kinase, WW And PDZ Domain Containing 1 (MAGI1)
protein, first discovered in 1997 [157] and coded by the gene MAGI1. It is present in
the cytoplasm and involved in cell-to-cell contacts [158–160]. It interacts, for exam-
ple, with the tumor suppressor PTEN [161] and is a potential tumor suppressor for
subtypes of breast cancer [162]. For the purpose of this thesis, this PDZ domain was
chosen because using the BioGRID interaction database v3.5 [163] and the STRING
database [164] we identified that it also binds the same EQVSAV peptide that binds
to hPTP1E.

The third domain of interest for this thesis is the PDZ domain of the mouse (mus
musculus) Dishevelled-1 (mDvl1) protein. Interacting with the membrane-bound re-
ceptor Frizzled in the Wnt signaling pathway [165], the Dvl1 PDZ domain was pro-
posed as a drug target [166–169]. Moreover, Dvl proteins are associated with vari-
ous cancer types [169–174]. We chose this PDZ domain in order to study competi-
tive binding because a publication by Lee et al. reported experimental binding and
inhibition constants for the peptide SGSLKLMTTV-COOH and the inhibitor Sulin-
dac [175] and this system is therefore well suited for such a study.
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2.2 Thermodynamic Ensembles and Free Energy

This section gives an introduction into the concept of thermodynamic ensembles
and their connected state functions, the free energies. The focus is placed on the
isothermal-isobaric ensemble in which most biological experiments are performed.
Afterwards the Jarzynski equality is explained that is a special equation allowing to
calculate equilibrium free energies from non-equilibrium work values which is later
on used when analyzing the performed alchemical simulations.

The field of statistical mechanics links the classical microscopic states of a system
to the macroscopic observables which can be measured in experiments. These can
be thermodynamic, structural and dynamical properties. A key concept of statisti-
cal mechanics are thermodynamic ensembles [176] that characterize the probability
distribution for all possible microscopic states of a system [177]. Ensembles can be
defined for any possible set of external constraints. The best known ones are the
microcanonical (fixed number of particles N, volume V, and total energy E), canon-
ical (fixed N, V and temperature T), the isoenthalpic-isobaric (fixed N, pressure P,
and entropy S), the isothermal-isobaric (fixed N, P, T), often called NPT, and the
grandcanonical (fixed V, T, and chemical potential µ) ensembles. Because most ex-
periments are performed in the isothermal-isobaric ensemble we will focus on this
one in the following.

As a start, I briefly summarize the laws of thermodynamics. The first law states
that the internal energy change ∆U

∆U = Q + W (2.1)

results from the work W the surrounding performs on the system and the heat Q
that is added to the system during a process. This first law basically describes the
energy conservation, i. e. energy is only transformed from one form into another but
can never be destroyed or created.

The second law of thermodynamics discusses the total entropy S (a state vari-
able), also called disorder, of a system. It states that S cannot decrease in isolated
systems, i. e. when there is no exchange of energy or matter with the surrounding.
Another wording is that the heat from a warmer body will naturally flow to a colder
one. The second law reads

∆S ≥ Q
T

(2.2)

where T is the temperature. This means that the change in entropy equals the
amount of heat Q added to the system with respect to the temperature for reversible
processes. For irreversible processes the entropy exceeds it.

2.2.1 The isothermal-isobaric ensemble and the Gibbs free energy

One can think of isobaric systems as being coupled to external pistons that enable
to compress or expand the volume of the system in order to keep the internal pres-
sure P constant. Analogously, isothermal systems can be viewed as being coupled to
external thermal reservoirs exchanging heat with the system in order to keep the in-
ternal temperature T constant. The respective state function or thermodynamic po-
tential of the isothermal-isobaric ensemble is the Gibbs free energy G(N, P, T) which
is connected to the particle number N, the pressure P, and the temperature T via

dG = µdN + VdP − SdT (2.3)
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where µ is the chemical potential, V is the volume and S is the entropy. G is labeled
“free” energy because it denotes the amount of energy which is “free” to perform
work at a constant temperature T and pressure P [178]. The term was coined by
Hermann von Helmholtz [179]. The Gibbs free energy is related to the isothermal-
isobaric partition function ∆ by

G(N, P, T) = − 1
β

ln ∆(N, P, T) (2.4)

where β = 1/(kBT) is the inverse temperature with the Boltzmann constant kB.
For a mathematical derivation and further background on ensembles, their parti-
tion functions, and their interconnection using Legendre transformations the reader
is referred to [176]. Knowing the Gibbs free energy G and its change ∆GAB be-
tween two system states A and B directly enables one to calculate many macro-
scopic observables of a given isothermal-isobaric system and is thus key to under-
standing macroscopic systems and processes. These are, for example, the enthalpy
H = −∂ ln(∆(N, P, T))/(∂β), the heat capacity CP = ∂H/∂T, and the chemical po-
tential µ = (∂G/∂N)P,T to name just a few.

The change in free energy (the free energy difference) can tell if energy must be
added to the system in order for a reaction to happen or if it occurs spontaneously.
The free energy difference tells, for example, if a chemical compound is a promising
drug candidate [176] or if two protein domains form a stable interaction. The stan-
dard binding free energy difference ∆G0

bind is also directly connected to experimental
observables such as the equilibrium dissociation constant KD

∆G0
bind = −kBT ln(c0KD) (2.5)

with the standard concentration c0 = 1 mol L−1 ≈ 1/1661Å
3
.

It is possible to express the free energy as a function of reaction/generalized co-
ordinates of the system, often also called collective variables (CVs). Depending on
the process one is interested in, these can be, for example, angles, distances, and
root mean squared deviations (RMSDs), or also a parameter of the system Hamilto-
nian such as Lennard-Jones interactions. These coordinates span free energy hyper
surfaces, which contain information about stable conformers of the system (with re-
spect to the chosen coordinates) and their relative stability, barriers, and minimum
free energy paths in-between them. The derivative of the free energy along a CV is
the ensemble-averaged force [180], i.e. the force along the CV averaged over all con-
figurations of a system, whereby the free energy along a CV is often called a potential
of mean force (PMF). The average force is the first part of the instantaneous force act-
ing along the CV, the second part is a random force with zero average. It includes the
fluctuations of all additional degrees of freedom and thus enforces the progression
of the CV. These dynamics take place along the time-independent PMF [181]. Gener-
ally one can obtain the free energy along a reaction coordinate ξ from the probability
density function P(ξ) of the CV using

G(ξ) = −kBT ln P(ξ) [182] (2.6)

if the sampling of the phase-space is sufficient, i.e. the simulation is sufficiently long
and was not trapped inside local free energy minima. However, this does not mean
that the resulting free energy is a meaningful quantity. If ξ was chosen poorly then
G(ξ) will be meaningless in terms of describing the actual system states. There are
two major requirements for CVs in molecular dynamics simulations. The relevant
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metastable states as well as the transition states between them have to be distinct
regions in CV space. Thus, they have to be energetically separate regions in the
chosen space. In contrast, if different metastable states are projected onto the same
CV space, energy barriers are integrated out and major sampling problems occur
when using CV-based sampling methods discussed below [183].

2.2.2 Jarzynski equality

In this section the canonical ensemble with the respective state function F, the Helmholtz
free energy, is used for the derivation of the Jarzynski equality [184] since this is more
convenient. The results can easily be extended to the isothermal-isobaric ensemble
and the Gibbs free energy G. The Jarzynski equality allows to calculate equilibrium
properties from non-equilibrium simulations.

To understand the issue when performing non-equilibrium simulations we start
by multiplying T to both sides of eqn. (2.2), the second law of thermodynamics, and
using eqn. (2.1), the first law of thermodynamics, to substitute Q and we obtain

T∆S ≥ ∆U − W (2.7)

which is equal to
W ≥ ∆U − T∆S . (2.8)

Since the right hand side of the equation is the Helmholtz free energy ∆F = ∆U −
T∆S, the maximum work theorem

W ≥ ∆F (2.9)

is obtained. The external work that is done on a system is

W(t) =
∫ t

0

∂H(z(t′), t′)
∂t′

dt′ [182] (2.10)

where z(t) ≡ (q(t), p(t)) is a point in phase phase. When a process is studied where
some parameters of the system undergo a change in time, this process can be de-
scribed using a parameter λ, a switching time τ and the respective Hamiltonian Hλ

as

W(τ) =
∫ τ

0

∂λ(t)
∂t

∂Hλ

∂λ
(z(t))dt [184]. (2.11)

The maximum work theorem then reads

⟨W(τ)⟩ ≥ ∆F (2.12)

where ⟨· · · ⟩ is the ensemble average over all paths from the initial to the final state in
time τ and the equality only holds, when the system undergoes a reversible process
(τ → ∞) or is in equilibrium because then the entropy can be constant. Jarzynski
then showed, that the inequality in eqn. (2.12) can be transformed into an equality

e−β∆F = ⟨e−βW(τ)⟩ (2.13)

when considering the exponential of the work instead of the work itself [184]. There-
fore the Jarzynski equality enables to perform non-equilibrium simulations and cal-
culate equilibrium properties from them. That is useful for alchemical simulations.
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It is possible to generalize the Jarzynski equality to the isothermal-isobaric en-
semble [185, 186] which then reads

⟨e−βW⟩ = e−β∆G . (2.14)

2.3 Molecular mechanics and force fields

Molecular and cell biological systems are quantum mechanical systems in nature.
At the present day it is still not computationally feasible to study most processes
involving biomolecules extensively using quantum mechanical methods. For this
reason approximations have been derived. The most common one is the Born-
Oppenheimer approximation [187] to the Schrödinger equation. It states that the
wave function can be split into an electronic and a nuclear wave function which
can be described separately, because the masses of the nuclei of atoms are much
larger than the masses of all electrons in the atoms. Therefore, the electronic wave
function only depends on the nucleic positions but not on their momenta. Molecu-
lar mechanics (MM) as a classical method is implicitly based on this approximation
but goes even further by treating atoms as perfect balls which are connected into
molecules via harmonic springs to describe covalent bonds between them as well as
other force terms that keep the angles and dihedrals in a molecule nearby certain
resting positions [188]. The electrons are not included explicitly but their effect is
rather taken into account by allowing different electron shell configurations for the
various atoms of the same chemical element. This is implicitly implemented by uti-
lizing different parameters for the same atoms when they are in a certain chemical
surrounding [189]. These parameters are defined in the so-called MM force fields
(FFs) that represent collections of parameters for various atoms, bonds, angles and
dihedrals between them and additionally parameters for non-bonded interactions
such as Van der Waals or electrostatic interactions. The synthesis of all parameters
for all atoms in a certain molecule is defined in the basic potential energy function

E = ∑
bonds

Estretch + ∑
angles

Ebend + ∑
dihedrals

Etorsion + ∑
pairs

Enonbond . (2.15)

The individual energy terms are the contributions from bond stretching (Estretch), the
bending of angles (Ebend), the rotations or torsions around specific bonds (Etorsion)
and the non-bonded interactions between atoms or groups of atoms which are not
directly connected via bonded terms (Enonbond = EVdW + Eelectrostatic) [188]. Some FFs
like the common CHARMM FFs [190–192] include additional terms like an improper
dihedral term (Eimpr.dihedral) which forces atoms to remain in a plane or the Urey-
Bradley term (EUB) which keeps the not directly interacting atoms in the angle terms
at a certain distance to each other. The specific functions for the energy terms in the
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FIGURE 2.2: Schematic view of a molecule and the most common
molecular mechanics terms.

CHARMM FFs have the form [190]

Estretch = Kb(b − b0)
2

Ebend = Kθ(θ − θ0)
2

Etorsion = Kχ(1 + cos(nχ)− δ)

EVdW = ϵij

[(
Rmin,ij

rij

)12

−
(

Rmin,ij

rij

)6
]

Eelectrostatic =
qiqj

4πDrij

Eimpr.dihedral = Kimp(ϕ − ϕ0)
2

EUB = KUB(S − S0)
2 .

The constants KX in every term are chosen based on the involved atoms in a bond,
angle, dihedral etc. and usually fitted to resemble properties which have been pre-
viously calculated using quantum mechanical (ab initio or density functional) meth-
ods or experimentally measured. This is called parametrizing. Recent versions of
the CHARMM FFs include additional terms to include grid-based energy correc-
tions maps (CMAP) which are cross terms for the backbone dihedral angle values
of protein backbones to allow for better reproduction of the complete quantum me-
chanical potential energy surfaces [191].

The main advantage of MM is, that it requires much less computer power to sim-
ulate molecular systems compared to quantum mechanical methods. Therefore, it is
thus suitable to study large molecules like proteins by molecular dynamics simula-
tions involving millions to billions of force calculations for the entire system. This
efficiency comes at the price of the accuracy of the results, which are highly depen-
dent on the force field parameters, and the impossibility of determining electronic
properties and describing bond breaking or forming.
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2.4 Molecular dynamics simulations

There are two main methods when it comes to simulating molecular and biologi-
cal systems. These are the Monte-Carlo (MC) and molecular dynamics (MD) meth-
ods. In the former one the Metropolis algorithm [193] is used in that the positions
of the atoms in the system are propagated randomly in a fixed search radius in
every simulation step. Afterwards the energy difference ∆E between the old and
new state is calculated and the new configuration is accepted with a probability
p = min (1, exp (−∆E/(kBT))) where T is the temperature of the system and kB is
the Boltzmann constant. Due to the random sampling the MC method is not suit-
able to study the dynamics of systems. Which is why the MD method is used most
commonly to study molecular systems. Here the classical Newton’s equations of
motion for many-body systems are solved numerically with respect to boundary
conditions that are appropriate for the system of choice and the parameters describ-
ing the particle-particle interactions which are stored in the previously described
force fields (FFs). Thus, MD simulations enable to study the microscopical time
evolution of molecular and biomolecular systems and can therefore give insights
into the dynamics of these systems and the respective properties such as rate con-
stants or transport properties. At the same time they also allow to obtain equilibrium
properties like free energies along reaction coordinates, e. g. binding free energies,
and macroscopic thermodynamic properties such as pressure, temperature and vol-
ume by sampling from the statistical mechanical ensemble [194]. Since classical FFs
cannot describe bond breaking or forming, MD simulations can be combined with
electronic structure calculations like density functional theory [195] calculations to
account for the quantum mechanical nature of the electrons involved in atomic inter-
actions. Methods such as path integral molecular dynamics [196] enable to account
for nuclear quantum effects as well which can be important in processes like pro-
ton transfer reactions where the classical approximation for the nuclei is not valid
anymore. These extensions remove the dependency of MD simulations on approx-
imated FF parameters. However, they introduce a large computational overhead
and are therefore not suited to nowadays being generally applied in simulations of
biomolecular systems on common simulation hardware.

The basis of MD simulations are Hamiltonian mechanics where

H(q, p, t) ≡ H(p1(t), · · · , pN(t), q1(t), · · · , qN(t), t) =
N

∑
i=1

(pi(t))2

2mi
+U(q1(t), · · · , qN(t))

(2.16)
is the Hamiltonian H(q, p, t) = H(q(t), p(t), t) for an N-particle system where only
inter-particle interactions are considered. The explicit mentioning of time depen-
dence is omitted in the following for the ease of reading. q1, · · · , qN are the spa-
tial particle positions at time t and p1, · · · , pN with pi = mivi are the momenta
and v1, · · · , vN are the velocities of these particles while U(q1, · · · , qN) is the inter-
particle potential. The positions and momenta can be combined into a so-called
phase space vector x = (bp1, · · · , pN , q1, · · · , qN) and all possible phase space vec-
tors combined are forming the 2dN-dimensional phase space (d is the number of
spatial dimensions) where every phase space vector describes a classical state of the
system [194]. The resulting Newton’s equations of motion from Newton’s second
law

mq̈i = Fi (2.17)
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with the forces F1, · · · , FN on the N particles at time t can be obtained by application
of Hamilton’s equations

q̇i =
∂H(q, p)

∂pi
=

pi

mi
(2.18)

ṗi = −∂H(q, p)
∂qi

= − ∂U
∂qi

= Fi(q1, · · · , qN) . (2.19)

The Hamiltonian H(q, p) is conserved by these equations of motion and these there-
fore generate microscopic configurations which belong to a microcanonical ensem-
ble with energy H(q, p) = const. = E [176]. Additionally, these equations of motions
are time reversible.

If all possible configurations described by the Hamiltonian can be visited in an
infinite amount of time, the system is said to be ergodic. In this case time averaging
can replace the microcanonical phase-space average for any observable a

⟨a(q, p)⟩ = lim
T→∞

1
T

∫ T

0
dt a(q, p, t) [176]. (2.20)

Eqn. (2.18) and eqn. (2.19) are solved numerically in MD simulations with respect
to a number of initial conditions which is the reason why a numerical integration
scheme is needed. The most commonly known algorithms are the Verlet [197], ve-
locity Verlet [198] and leap-frog [199] algorithms, which will be discussed in the
following.

2.4.1 Numerical integration schemes - Finite-difference methods

In order to numerically integrate a continuous equation it has to be transformed
into a discrete form. In order to do this for the equations of motion eqn. (2.18) and
eqn. (2.19), a discrete time step ∆t has to be introduced which allows to propagate
the equations in time. The time step has to be chosen small enough to allow the
sampling of all relevant degrees of freedom in the studied systems but large enough
that it is still computationally feasible to sample a certain amount of time. Thus, it is
always a trade off between accuracy and computational effort whereby a common
choice for MD simulations is ∆t = 2 fs.

Numerical integration methods are often derived by a Taylor expansion of the
relevant degrees of freedom at time t+∆t. Accordingly, for the position qi of particle
i at time t + ∆t the Taylor expansion with terms higher than second order dropped
reads

qi(t + ∆t) = qi(t) + ∆t q̇i(t) +
1
2

∆t2 q̈i(t) + O(∆t3) (2.21)

or

qi(t + ∆t) ≈ qi(t) + ∆t vi(t) +
∆t2

2mi
Fi(t) (2.22)

because q̇i(t) = vi(t) is the velocity of the particle at times t and q̈i(t) = Fi(t)
mi

is
the force acting on the particle at time t. Here, we dropped all higher order error
terms. The same can be done by considering the Taylor expansion for the position
qi(t − ∆t)

qi(t − ∆t) ≈ qi(t)− ∆t vi(t) +
∆t2

2mi
Fi(t) (2.23)



2.4. Molecular dynamics simulations 19

and if both equations (eqn. (2.22) and eqn. (2.23)) are added, the velocity-independent
scheme

qi(t + ∆t) ≈ 2qi(t)− qi(t − ∆t) +
∆t2

2mi
Fi(t) (2.24)

is obtained. This is commonly known as the Verlet algorithm [197] and depends
only on the positions at time t and t − ∆t and the force acting on the particle. The
respective velocity of the particle

vi(t) = q̇i(t) ≈
qi(t + ∆t)− qi(t − ∆t)

2∆t
+ O(∆t2) (2.25)

is obtained by subtraction of eqn. (2.23)) from eqn. (2.22) and can therefore also be
calculated even though they are not directly evolved in time but only calculated
from the change in the positions [176]. This is called the centered difference for the
first derivative that has an accuracy O(∆t2). It is also possible to obtain a forward
and backward difference for the first derivative

q̇i(t) =
qi(t + ∆t)− qi(t)

∆x
+ O(∆t) (2.26)

that can be derived from eqn. (2.22) and eqn. (2.23), respectively, and has an accuracy
of O(∆t) wherefore it is more common to use the centered difference.

To also propagate the velocity explicitly at every time step, another scheme, the
so-called velocity Verlet algorithm [198], can be derived. Here eqn. (2.23) is ex-
panded around t instead of t − ∆t

qi(t) ≈ qi(t + ∆t)− ∆t vi(t + ∆t) +
∆t2

2mi
Fi(t + ∆t) (2.27)

into which qi(t + ∆t) from eqn. (2.22) can be inserted which results in

vi(t + ∆t) ≈ vi(t) +
∆t

2mi
(Fi(t) + Fi(t + ∆t)) (2.28)

where the velocity is propagated from time t to t+∆t using the velocity at time t and
the forces acting on the particle at time t and t + ∆t. This can be used in combination
with eqn. (2.22) to propagate the position q and the velocity v at the same time. The
usual implementation is

1. Calculate the velocity vi(t + 1/2∆t) = vi(t) + ∆t
2mi

Fi(t)

2. Calculate qi(t + ∆t) = qi(t) + vi(t + 1/2∆t)∆t

3. Calculate the new force Fi(t + ∆t) using the new position qi(t + ∆t)

4. Calculate the final velocity vi(t + ∆t) = vi(t + 1/2∆t) + ∆t
2mi

Fi(t + ∆t).

If the force does not depend on the velocity of the particle then the first step can be
ignored and the velocity can be directly calculated as in eqn. (2.28).

Instead of integrating the position and velocity at the same time, like in the ve-
locity Verlet algorithm [198], it is also possible to propagate the position at time t,
t + ∆t, t + 2∆t, · · · and the velocity at time t + 1/2∆t, t + 3/2∆t, t + 5/2∆t, · · · .
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FIGURE 2.3: The leap-frog scheme illustrated.

Accordingly, the numerical equations of motion are

vi(t + 1/2∆t) ≈ vi(t − 1/2∆t) +
∆t

2mi
Fi(t) (2.29)

qi(t + ∆t) ≈ qi(t) + ∆t vi(t + 1/2∆t) (2.30)

This scheme is called the leap-frog algorithm [199] and was used throughout this
thesis. The name evolved due to the leapfrog-look of the scheme as can be seen in
fig. 2.3. The velocities at integer multiples of the time step ∆t can again be calculated
using

vi(t) =
vi(t + ∆t) + vi(t − ∆t)

2
. (2.31)

All of these algorithms are time reversible, which is a fundamental property of
the Hamiltonian equations of motion (eqn. (2.18) and eqn. (2.18)) and is therefore
crucial to be fulfilled by a numerical integrator for these equations. Time reversibility
means that if the system is propagated n steps forward and then n steps backward in
time it will end up in the same state it started from. The second important property
of the Hamiltonian equations of motions which is fulfilled by these algorithms is
symplecticity, i. e. the preservation of volume in phase space.

It is also possible to use higher-order integration methods for higher accuracy of
the integrator, though these methods come at the price of increased computational
costs. Higher accuracy can also be achieved by reducing the time step ∆t which is
usually less computational expensive compared to using a higher-order scheme.

2.4.2 Periodic boundary conditions

Due to computational limitations [200] only a small part of the real system, a unit
cell, is simulated in usual MD simulations. Even very large MD simulations with
millions of atoms are not even close to the amount of atoms in a realistic system
(e. g. 10 million atoms are only 1.66 × 10−17 mol). The extension to the real (on
molecular scales infinite) system is reached using the so-called periodic boundary
conditions (PBCs). Their application can be understood as an infinite repeat of im-
ages of the unit cell in all directions which is equivalent to an infinite Bravais lattice
where the shape of the simulation box determines the type of the lattice [201]. Here,
one assumes that the simulated system is periodic in all directions [193] which is rea-
sonable since diffusion usually leads to an equal distribution of substances. When a
particle leaves the unit cell on one side it moves into a copy of the same unit cell and
thus it is introduced to the system again on the opposite side of the box. In order to
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keep the correct interactions between the particles in the system, each particle inter-
acts with the closest copy (or closest image) of an interaction partner no matter if it
is in the real cell or in a copy of the cell. This is the so-called minimum-image con-
vention [193]. However, the periodicity can still lead to artifacts if molecules interact
with their periodic images e. g. due to long-range electrostatic interactions. These
artifacts can be reduced by increasing of the simulation box size [202].

2.4.3 Electrostatic interactions and lattice-sum methods

Properly treattin electrostatic interactions, one type of the so-called non-bonded in-
teractions, in MD simulations is a challenging task because they are usually long-
ranged. On the one hand, being proportional to the inverse distance r−1 between the
charges they have to be approximated because their exact application would lead to
an enormous computational effort. On the other hand, every approximation has a
strong effect on the accuracy of the simulation [203]. The total Coulomb interaction
energy reads

VCoul =
1

4πϵ0
∑
i,j

qiqj

|rij|
(2.32)

where rij = rj − ri is the distance between the positions ri and rj of ions i and j with
charges qi and qj, respectively. ϵ0 is the vacuum permittivity and the sum is evalu-
ated over all pairs of ions. The easiest method to calculate electrostatic interactions is
to define a fixed cutoff distance, typically in the range of 10− 12 Å beyond which the
interactions are assumed to be zero [204]. This can lead to strong truncation errors
when the simulazion system contains strong interactions. For simulation systems
subject to PBCs the so-called lattice-sum methods [8, 9, 204–214] are the methods of
choice since they assume the system to be a crystal consisting of an infinite lattice of
periodic copies of itself [203] as it is created when using PBCs. This allows to cal-
culate the long-range Coulomb interactions using techniques originally developed
for crystals without being dependent on an unphysical change of the potential [204].
One of the most commonly used lattice-sum methods is the particle-mesh Ewald
method [8] (PME). It was derived from the Ewald method [205] where the electro-
static energy term is split into a short-range and a long-range term. The former
decays fast with increasing distance |rij| and can thus be cut off at a reasonable value
of |rij|. The latter is very smooth and expanded and therefore it is very concentrated
in reciprocal space (or k-space, the Fourier transform of the real space) and can there-
fore be truncated at reasonable values of the wave vector k. In the Ewald method
the lattice summations are performed analytically [204] and it has a runtime of N2,
with N being the number of atoms, due to the calculation of the reciprocal sum. In
contrast, the particle-mesh Ewald method assigns charges to a grid using interpola-
tion, since charges are usually not sitting directly on a grid point. The grid is then
transformed to a reciprocal lattice using a Fast-Fourier transformation and the recip-
rocal sum is calculated as a single sum over the grid on the reciprocal lattice [8]. The
usual implementation of the PME method uses B-splines instead of Lagrange in-
terpolation which significantly improves the accuracy of the method and is usually
called smooth PME [9]. Overall, that leads to a runtime of N log N that is therefore
greatly reduced compared to the Ewald method.

2.4.4 Van-der-Waals interactions

The second type of non-bonded interactions are the so-called Van-der-Waals inter-
actions which include repulsive, resulting from the Pauli exclusion principle, and
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attractive interactions. The latter can be divided into London dispersion interac-
tions [215, 216], which are interactions between induced dipoles, dipole-dipole in-
teractions and dipole-induced-dipole interactions. All these interactions are usually
treated in a combined manner using the Lennard-Jones potential [217–219] in MD
simulations. This consists of a repulsive term ((σ/|rij|)12) and an attractive term
((σ/|rij|)6) and reads

VLJ
ij (σ/|rij|) = 4ϵij

[
(σij/|rij|)12 − (σij/|rij|)6

]
(2.33)

where |rij| is the distance between particles i and j, σij represents the distance where
the potential is zero for these particles and ϵij is the depth of the potential for these
particles and therefore the strength of the interaction.

Van-der-Waals interactions are usually treated by using a cut-off radius in MD
simulations. In order to obtain continuous forces at the cut off force-switch functions
are often used which switch the force to zero at the cut-off. The introduced error is
usually much smaller than other errors in a simulation.

2.4.5 Solvation

Biomolecular systems nearly always involve water and all biological molecules are
usually floating in solvents in our cells. Additionally, they are not only solvated
but water molecules even play an important role for many reactions. For some pur-
poses, it may be adequate to simulate molecules in gas phase, for example if one
is interested in the molecule itself without interactions with the surrounding [188].
However, in order to understand biomolecular properties solvation can typically not
be ignored.

Solvation can be applied computationally in two ways, that is in an implicit and
an explicit way. In the latter case, solvent molecules are placed around the solute
into the simulation box, in the former the solute is surrounded by a continuous
medium [188] which resembles the properties of the solvent [220]. Explicit solvation
is needed when it is likely that solvent molecules are directly involved in the study
system. Implicit solvation, in contrast, mostly influences the charge distribution but
does not allow the solute to directly interact with the solvent, though it has the ad-
vantage of drastically reduced computational effort since much fewer atoms have to
be sampled during the simulation. We will focus on explicit solvation and especially
on water models because we used explicit water as the only solvent throughout this
thesis.

In order to accurately describe real biomolecular and chemical systems, an ex-
plicit water model has to accurately describe solute-solvent interactions, since these
can strongly influence the properties of the solute. As important are solvent-solvent
(or water-water) interactions, since solvent molecules usually account for over 80%
of the simulation particles. Overall the water model should resemble experimental
observations, namely thermodynamic and kinetic properties, of the water itself and
for solutions. The model also has to match the method of treating the long-range
electrostatic interactions, e. g. particle-mesh Ewald (see 2.4.3), since the treatment
of the Coulomb interactions can have an effect on the macroscopic properties of the
solute calculated using the simulations [221, 222].

Water models for MD simulations can be divided into three-, four- or higher-site
models. Common 3-site water models are the Simple Point Charge (SPC) [10] and
the SPC/E [223] (improved SPC by adding an polarization correction) water models
and the TIP3P water model [224] with its special CHARMM FF derivative [190].
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These models have three points of interaction with a point charge at each which
resemble the three water atoms. Three-site models are the most commonly used
ones since they are the most computationally efficient explicit water models.

Higher site models add dummy atoms near the oxygen of the water molecule
which have negative charges and should account for the lone electron pairs on the
oxygen. These should improve the description of the electrostatic interactions and
the interactions of water molecules with each other. Commonly known higher-site
water models are the four-site TIP4P [224] and OPC [225] water models and the five-
site TIP5P [226] water model. The disadvantage is, the more sites a water model has,
the more particles have to be sampled in the simulation and therefore the computa-
tional effort drastically increases with increasing number of sites.

In order to use fixed-geometry water models SPC or TIP3P and to have rigid
water molecules, constraints have to be applied to the water molecules in the MD
simulations. In the original SHAKE algorithm [227] a set of Lagrange multipliers
has to be solved in order for the equations of motion to fulfill the constraints. The
RATTLE algorithm [228] is an advancement to SHAKE since it also adjusts the veloc-
ities and not only the coordinates of the particles and is therefore suited to be used
with the velocity Verlet or leap-frog algorithms (see section 2.4.1). These algorithms
can be used to constrain bonds, angles and distances off pairs of atoms in any sense.
Specifically for rigid water molecules the SETTLE algorithm [229] was created which
is an analytical version of SHAKE and RATTLE whereby it is faster and has a higher
accuracy than the other algorithms [229]. Therefore it was the method of choice for
this thesis to constrain water molecules in the MD simulations. As stated above, sol-
vent molecules make up around 80% of all particles in a simulation system and it is
therefore essential to have fast methods specifically designed for these. Additionally,
constraining of the water molecule bonds and angles allows to use a time step of 2 fs
in the MD simulation because the constraints reduce the need to sample high fre-
quency bond stretches and angle bends. Without the constraints usually only time
steps of 1 fs or lower could be used that drastically increase the computational effort.

It is important to choose a water model suited for the task at hand because the
choice of the water model can have a strong impact on the properties one tries to
obtain from MD simulations. For example it was shown that the choice of the water
model influences the stability of the Trp-cage miniprotein [230] as well as can sup-
press peptide folding by solvating the unfolded state [231]. Additionally, the water
model can strongly influence the binding free energy of conserved water molecules
in binding pockets [232] and also the protein-ligand electrostatic binding free ener-
gies [233].

2.4.6 Thermostatting and barostatting

If MD simulations are performed in a simulation box with fixed size (i. e.volume)
and particle number using a suitable integrator and time step ∆t to keep the total
energy from drifting (i. e. keeping the total energy constant) the simulations sample
the microcanonical ensemble. However, experiments are usually performed in the
isothermal-isobaric ensemble [234] (see section 2.2.1) since this most often best re-
sembles the real system. We will focus on this ensemble since it was used throughout
this thesis. To perform simulations in the isothermal-isobaric ensemble thermostats
and barostats have to be used.

Thermostat algorithms are used to keep the temperature constant in a simula-
tion. These couple the system to an external heat bath with a reference temperature
T0 [234]. An instantaneous temperature T for the simulated system needs to be
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defined to be compared to the reference temperature during the simulation. One
possible definition is

T =
2

kBNdf
K (2.34)

with the Boltzmann constant kB, the number of internal degrees of freedom of the
system Ndf and the instantaneous internal kinetic energy ⟨K⟩ [234]. This ensures
that ⟨T ⟩ = T, i. e. the average temperature in the simulation, ⟨T ⟩, is equal to the
macroscopic temperature, T, which we want the system to be at, because the average
kinetic energy of the system, K, fulfills

K = ⟨K⟩ = 1
2

kBNdfT [234]. (2.35)

For a deeper mathematical derivation of the internal degrees of freedom and the
respective calculation of the kinetic energy and temperature the reader is referred to
Hünenberger 2005 [234].

Various thermostatting schemes exist, e. g. the Langevin thermostat, which ap-
plies a frictional and a stochastic force to the particles. Other examples are the
Andersen thermostat [235], where the velocities of system particles are recurringly
drawn from a Maxwell-Boltzmann distribution with the desired temperature T, the
Nosé-Hoover thermostat [236, 237], where the system is coupled to a friction from
an (or multiple) external heat bath(s) with its own momentum, the Berendsen ther-
mostat [238] and the velocity-rescaling thermostat by Bussi et al. [239] that was used
throughout this thesis. The latter two will be explained in more depth since they
follow a similar approach.

Rescaling thermostats operate by scaling the velocity of each system particle i
with a factor λ that depends on the ratio of the instantaneous temperature T and
the macroscopic temperature T which should be maintained during the simulation,
e. g.

vnew
i = λvi . (2.36)

In the Berendsen thermostatting scheme the scaling factor is

λ =

[
1 +

nTC∆t
τT

(
T
T − 1

)] 1
2

(2.37)

where nTC is the number of time steps after which the thermostat is applied and tT
is the strength of the coupling that has to be carefully chosen. Since the Berendsen
thermostat is not associated with a well-defined ensemble (i. e. it does not create a
canonical ensemble), Bussi et al. derived an extension to this thermostat [239], also
called the Bussi-Donadio-Parrinello thermostat or stochastic velocity rescaling. In
this method, a stochastic term is added to ensure that the distribution for the kinetic
energy is correct. The correction for the instantaneous kinetic energy is

dK = [K −K(t)]
dt
τT

+ 2

√
K(t)K
NdfτT

ξ(t) (2.38)

or the respective correction for the temperature

dT = [T − T (t)]
dt
τT

+ 2

√
T (t)T
NdfτT

ξ(t) (2.39)
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where ξ is a white noise term, the derivative of a Wiener process. The velocity is
then rescaled with a factor

α =

[
e
−∆t
τT +

K
NdfK

(
1 − e

−∆t
τT

)(
R2

1 +
Ndf

∑
i=2

R2
i

)
+ 2e

−∆t
2τT

√
K

NdfK
(

1 − e
−∆t
τT

)
R1

] 1
2

[239]

(2.40)
as

vnew
i = αvi . (2.41)

It was additionally shown that this thermostat can be considered as a global ver-
sion of the Langevin thermostat [240]. The stochastic velocity rescaling has another
strong advantage when compared to the Berendsen thermostat or the original ve-
locity rescaling. The use of the latter two can lead to the so-called “flying ice cube”
effect, first described by Harvey et al. [241]. This effect is understood to mean that the
system freezes with time, meaning that the energy of high-frequency modes is trans-
ferred to low-frequency modes and therefore the system gains increasing center-of-
mass motions and looses energy on internal degrees of freedom. The researchers
showed that this violates the equipartition principle [241, 242].

Another issue with thermostatting in MD simulations is the so-called “hot sol-
vent - sold solute problem”. Here the algorithmic noise of the thermostat can affect
a strongly polar solvent more strongly than a mildly polar solute when using an
electrostatic cut-off [242–246] This can occur when there are different sets of degrees
of freedom with different frequencies or heating rates, that differ strongly due to
algorithmic noise. A solution is to couple the solute and solvent each to a separate
thermostat [234].

When only applying thermostat algorithms MD simulations will sample the canon-
ical ensemble (even though not all thermostat algorithms can fulfill this, as stated
before). When the simulations should sample the isothermal-isobaric ensemble then
barostats have to be used in addition to the thermostat algorithms. The Berendsen
barostat [238] is very similar to the previously described Berendsen thermostat. But
instead of coupling the system to an external heat bath, it is coupled to an external
pressure bath and not the velocities but the simulation box vectors and the coordi-
nates are scaled periodically [247]. But again the sampled ensemble is not well de-
fined and therefore the Berendsen algorithm should not be used for production runs
in an MD simulation. Instead, it can be very successfully be used for equilibration
because it can bring the system to the wanted pressure very fastly. Furthermore,
there exist multiple other methods like the Andersen barostat [235], the Martyna-
Tuckerman-Tobias-Klein barostat [248, 249] or the Parrinello-Rahman barostat [250],
which is an extension of the Andersen barostat and also allows shape changes. The
last was used throughout this thesis for the production runs of the simulations.

2.5 Overview over computational methods to determine bind-
ing free energies

In this section, an overview over computational methods that allow to determine
binding free energies is given. Several concepts are shown and the concepts which
are used in this thesis are presented in detail.

In principle it is possible to obtain binding free energies using unbiased long
molecular dynamics (MD) simulations. Most commonly, however, the time scales of
binding and unbinding are too long to be sampled on common simulation hardware.
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In recent years specialized hardware was developed which allowed to conduct mil-
liseconds long trajectories [251, 252] of solvated protein systems in atomistic detail.
Notably, such simulations were recently applied to study the reversible association
and dissociation kinetics of the five protein-protein complexes barnase-barstar, in-
sulin dimer, ras-raf RBD, RNase HI-SSB-Ct, and TYK2-pseudokinase by atomistic
MD simulations in explicit solvent [253]. The authors performed dozens of conven-
tional MD simulations with aggregated simulation times of hundreds of microsec-
onds. In addition, they performed “tempered” binding simulations, whereby “the
strength of interactions between the protein monomer atoms, and sometimes be-
tween the protein monomer and solvent atoms, [was] scaled at regular time inter-
vals using a simulated Hamiltonian tempering framework” [253]. This scaling was
adjusted to allow dissociation from long-lived bound states to occur within hun-
dreds of microseconds rather than days. Observing reversible binding and unbind-
ing events yielded the following general picture. One may have thought that associ-
ating proteins could in principle form an encounter complex at an arbitrary interface
and proceed from there to the native interface without dissociating by means of an
extensive search [253]. Instead, the authors observed that “in successful association
events the encounter complexes tended to form rather close to the native interface”.
On the other hand, encounter complexes that would not later reach the native in-
terface formed in a wide variety of relative orientations. At present this specialized
hardware is too expensive for the normal scientist to work with and other methods
have been developed in order to deal with the sampling problem. In the follow-
ing we will give an overview of different simulation methods, so-called enhanced
sampling methods, which allow the system to overcome barriers in free energy, thus
moving out of local or the global minima, which then enables one to calculate bind-
ing free energies in silico.

There exist two major forms of binding free energy methods. Methods that are
used to calculate absolute binding free energies, i. e. the change in free energy that
results when a ligand binds to a receptor, and methods used to calculate relative
binding free energies, i. e. the difference in absolute binding free energy between
two ligands binding to the same receptor. Even though both are usually called free
energies, the former is a free energy difference between the bound and unbound
states and the latter is even a difference of free energy differences. In the follow-
ing common methods will be introduced shortly while the focus is placed on the
methods used for this thesis.

2.5.1 Relative binding free energies using alchemical free energy simula-
tions

Alchemical free energy methods are a special form of free energy perturbation ap-
proaches termed alchemical since they involve unnatural changes of the system
structure. This can be atom creation, annihilation and morphing. Such methods
usually involve a so-called thermodynamic cycle (fig. 2.4) defining a path between
the initial state A and final state B of the system.

There are two types of alchemical free energy approaches, namely absolute and
relative methods whereby the latter ones will be called alchemical transformations
in the following. Absolute free energy simulations involve restraining the ligand in
the binding pocket, releasing the interactions between the ligand and the receptor as
well as turning on the interactions of the ligand in the free state (only surrounded
by solvent). Additionally the restraints in the free state have to be removed. These
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bind
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∆GA→B
bound ∆GA→B

free

FIGURE 2.4: Thermodynamic cycle for the difference in binding free
energy between ligands A and B. The figure was taken from ref. [32].

These two vertical processes are alchemical transformations.

types of simulations enable to calculate the absolute binding free energy between
the ligand and the receptor.

In contrast, relative alchemical free energy simulations (or alchemical transfor-
mations) involve mutations of parts of the system. Two states A and B can be de-
fined whose structures vary at these specific positions which should be mutated.
This could be two ligands of a receptor differing in some parts (e. g. a peptide with
alanine at a specific position in state A which should be transformed to a serine in
state B). These transformations have to be performed in the bound and in the free
state. In fig. 2.4 the thermodynamic cycle of an alchemical transformation with two
different ligands A and B is drawn. It shows the four states of the simulation (bound
states with ligand A and B, free states with ligands A and B) and the differences in
free energy between them. This directly allows to calculate the difference in binding
free energy between the two states A and B from the mutation free energies ∆GA→B

bound
and ∆GA→B

free using the equation

∆∆GB−A
bind = ∆GB

bind − ∆GA
bind = ∆GA→B

bound − ∆GA→B
free . (2.42)

From now on the alchemical transformations will further be discussed using the
example of two distinct peptides binding to a protein, since this is the particular
application used during this thesis.

Calculating absolute free energies for the binding of peptides to a protein using
pathway methods suffers from convergence problems because peptides are highly
flexible amino acid chains and thus they involve many degrees of freedom which
all have to be properly sampled in order to reach converged results. The alchemical
transformation method does not suffer from these types of issues since the peptide
will not be pulled away from the receptor and the interactions between the two
partners will not be completely turned on or off. Only a (smaller) change in the pep-
tide will be simulated. The topology is transformed from one state to the other one
(A → B, B → A) by the use of a coupling parameter λ that is changing from 0 to 1.
The resulting binding free energy difference is then calculated using eqn. (2.42). It
is possible to perform these changes fast, i e. pulling the system away from equilib-
rium, or slow, i e. trying to stay in equilibrium. In the former case, only the initial
state A has to be in (thermal) equilibrium and the rest of the simulation does not.
Then the correct free energy is obtained by applying the Jarzynski equality [184]
(see sec. 2.2.2) or the Crooks fluctuation theorem [254]. In these methods, ensemble
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averages have to be calculated and therefore a number of simulations have to be
performed to obtain enough sampling. In contrast, for the slowly changing or equi-
librium approach the change in λ has to be performed continuously very slowly or
in fixed windows so that the system can always adapt to these changes. A common
method for analysing the outcome is the so-called thermodynamic integration [255]
(see sec. 2.5.3) that can also be used as a pathway method when λ is used to change
a geometrical coordinate.

Even though relative free energy alchemical simulations usually do not suffer
from the same convergence issues as absolute free energy methods they are not free
of obstacles. Problems can arise when the two states A and B have a different total
charge. In that case the overall system will not be charge neutral during the course
of the simulation. That introduces errors due to the finite size of the simulation
system, which is a common approximation when simulating biomolecular systems.
As already described in section 2.4.2, the infinite non-periodic realistic system cannot
be computationally handled in an explicit-solvent molecular dynamics simulation.
Thus, finite simulation boxes with periodic boundary conditions (PBCs, see 2.4.2)
are used to represent the real system. Electrostatic interactions in these systems are
simulated using lattice-sum methods [8, 9, 200, 204–214] such as the particle-mesh
Ewald method [8, 9] which are described in more detail in section 2.4.3. Artifacts
can arise which are related to the Wigner self-energy [208, 213, 256–259] of a charge
in a periodic system. Here a charge is interacting with its own copies in the periodic
images and a homogeneous neutralizing background charge density [213]. A second
type of artifact arises because the average potential in a system under PBC is zero
while in a real setup the potential would only be zero at infinity [214, 260–266].

There are different possibilities to perform alchemical transformations. A com-
mon way is to simulate the bound and free legs of the thermodynamic cycle in sep-
arate boxes. The second possibility is to simulate both legs in a single box where
the bound and free states are separated by a sufficiently large distance filled with
solvent in order to keep them from interacting with each other. This is the so-called
"double system in a single box setup" [267]. The different setups will be explained
in the next sections.

Double system in a single box setup

In the "double system in a single box setup" [267] the bound and free states of the
system are simulated together. For one of them the mutation is performed in the
forward (A → B) and the other one in the backward direction (B → A). Look-
ing at fig. 2.4 this would mean that the bound state is simulated from A to B and
the free state from B to A. Thus the sum ∆GA→B

bound + ∆GB→B
free is simulated at once.

Since ∆GB→A
free = −∆GA→B

free we directly obtain the binding free energy difference
(eqn. (2.42)) in a single simulation.

This setup is specifically useful in cases where the mutation introduces or re-
moves a charge and thus there is a charge change in both states. When they are
simulated in the same box at the same time the charge will be created in one of the
two states and annihilated in the other one and the overall charge of the complete
system will not change. The charge distribution of the overall box will still strongly
change which can possibly have a strong influence on the water network and the
distribution of the surrounding ions. Thus it is likely that the artifacts emerging due
to the change of charges in the system will not completely cancel between the legs
of the thermodynamic cycle [200]. It could be expected that introducing the changes
(changing the λ parameter) slowly enough (“slow growth”) [268] would allow for
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the complete system to adapt to the change of the charge distribution and thus the
resulting binding free energy should converge to the correct result. This assump-
tion is commonly used in the context of free energy pertubation simulations but as
shown by Rocklin et al. [200] the artifacts resulting from the use of a discrete solvent
and the residual integrated potential components do not cancel between the two
legs of the alchemical thermodynamic cycle. Thus deviations from the experimental
binding free energy difference should be expected for mutations involving charge
changes when using this method. Additionally the standard state corrections (see
section 2.5.1) cannot be applied easily since it is not clear which concentrations the
free and bound peptide have in these combined simulations boxes.

Simulating bound and free state separately

Instead of simulating both legs of the thermodynamic cycle in a single box together
(see section 2.5.1) they can also be simulated separately in a single box each. Thus
the two legs cannot interact and mutations introduced in one leg will never influence
the other leg and no unknown errors will occur. The resulting mutation free ener-
gies can be combined using eqn. (2.42) to obtain the binding free energy difference
between states A and B. This setup allows for the application of box size and charge
corrections [200, 214, 269–271] for each state. These corrections are applicable to
“explicit-solvent simulations employing lattice-sum methods” [200]. The finite-size
errors which need to be accounted for as well as their corrections will be explained
in section 2.5.1.

Finite-size errors in alchemical free energy explicit-solvent simulations using lattice-
sum methods

For systems simulated subject to PBCs the electrostatic interactions are usually eval-
uated using periodic lattice-sums [8, 9, 200, 204–214]. The most common example is
the particle-mesh-Ewald method [8, 9].

Various corrections need to be applied in order to obtain a correct binding free
energy from an alchemical simulation. The first is needed in order to obtain com-
parable free energies from theory, simulation and experiment. Only with respect to
a defined standard state the free energies from different computational and experi-
mental methods are comparable [271, 272]. Using the equilibrium constant KD, the
standard binding free energy is defined as

∆G0
bind = −kBT ln(c0KD), (2.43)

where kB is the Boltzmann constant, T the temperature and c0 the standard con-
centration (1 mol L−1 ≈ 1/1661Å

−3
). In order to obtain the standard binding free

energy from a simulation of a finite box the result has to be corrected [271]

∆G0
bind = ∆Gsimulation

bind + ∆Gstandardstatecorrection
bind (2.44)

using the correction term

∆Gstandardstatecorrection
bind = −kBT ln(c0Vsimulationbox) . (2.45)

A second group of corrections is needed to correct the free energies for artifacts
resulting from charge changes in a simulation and the treatment of the electrostatic
interactions in a finite box. The finite-size error of ligand-charging free energies can
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be divided into four physical effects, as shown by Rocklin et al. [200], who also in-
troduced a correction scheme for free energy perturbation simulations when using
lattice-sum methods where an alchemical transformation of a ligand into a dummy
molecule, not interacting with the protein anymore, is performed. In relative al-
chemical binding free energy simulations a ligand can be transformed into another
one or into another state of the same ligand and therefore an adaptation of the cor-
rection scheme is needed. This is explained in more detail in section 3.2.3 and the
respective supporting information that is shown in chapter 3 and specifically in sec-
tion A.1.

2.5.2 Endpoint methods

So-called endpoint methods sample the bound and unbound states of a system and
then calculate the binding free energy difference between these two states using
approximations of the system energy. The most simple method is the linear re-
sponse approximation or linear interaction energy (LIE) [273, 274]. It is usually
applied to obtain protein-ligand free energies and not discussed further here. Pop-
ular methods for evaluating protein-protein and protein-ligand binding free ener-
gies are the molecular mechanics with Poisson-Boltzmann and surface area solva-
tion (MM/PBSA) [275, 276] and the molecular mechanics generalized Born surface
area (MM/GBSA) [275, 276] methods, which will be explained in the next section.

MM/PBSA / MM/GBSA

The MM/PBSA [275, 276] and MM/GBSA [275, 276] methods combine molecular
mechanics force fields with continuum solvation models to estimate protein-protein
and protein-ligand binding affinities. The free energy of a system state is evaluated
using

G = Ebond + Eelectrostatic + EvdW + Gpolar + Gnon−polar − TS [275–277]. (2.46)

The terms Ebonded (bond, angle and dihedral energy), Eelectrostatic (electrostatic en-
ergy), and EvdW (van der Waals interactions) are the corresponding standard molec-
ular mechanics (MM) energy terms. Gpolar and Gnon−polar form the solvation free
energy. The distinction between MM/PBSA and MM/GBSA is that the former one
uses the Poisson-Boltzmann (PB) equation and the latter the generalized Born (GB)
model to estimate the polar solvation term. The non-polar solvation is estimated
using the solvent accessible surface area (SASA). The last term includes the system
temperature T as well as the entropy S. This is analyzed using normal-mode analysis
of the systems vibrational frequencies for a standard state in order to be compara-
ble to experimental values [278]. To obtain binding free energies it is necessary to
calculate the free energies of the complex, the unbound ligand and the unbound re-
ceptor based on eqn. (2.46) [279]. Commonly only the complex is simulated and the
ensemble averages for the free ligand and free receptor are obtained by removing
the relevant atoms from the system before the analysis. This leads to

∆Gbind = ⟨Greceptor+ligand − Greceptor − Gligand⟩receptor+ligand . (2.47)

and to more precise results due to cancellation of intramolecular terms and reduces
the required simulation time but ignores the energetic effects of relevant structural
changes of the receptor and/or ligand upon binding [277].
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Overall, MM/PBSA and MM/GBSA often give better results than LIE, docking
and scoring, but worse ones compared to more advanced, e.g. pathway, methods.
Depending on the system, reasonably good binding free energy values can be ob-
tained, but for some systems the methods fail. It has been shown that reasonable re-
sults can already be achieved using less then 100 repeated simulations with a length
of around 200 ps each [277, 280] and therefore much faster than using pathway meth-
ods discussed below. The overall coefficient of determination for the whole PDB
bind database was shown to be r2 = 0.3 but the individual results differed strongly,
r2 = 0.0− 0.8 [277, 281]. MM/PBSA and MM/GBSA highly depend on the choice of
the dielectric constant for the electrostatic energy and the used force field. Addition-
ally, the binding free energy is calculated as a difference of large values and therefore
the precision of the result is very low when the standard deviations of the individ-
ual terms is high and ligands with similar binding affinities cannot be compared
successfully. For a deeper discussion of the MM/PBSA and MM/GBSA methods,
their application and possible issues, the reader is referred to [277].

2.5.3 Potential of Mean Force / Pathway Methods

Contrary to the just discussed endpoint methods, free energies of protein-protein
binding can also be computed using so-called pathway methods where the free en-
ergy is expressed as a function of geometrical reaction coordinates. Such simulations
involve a considerably larger computational effort. In most cases, they are more ac-
curate than the former. Most of the following methods are not only used to accelerate
binding and unbinding processes but are often also used in simulations of protein
folding.

Multiple reviews for these methods and their comparison have been published [282–
285].

Thermodynamic integration

One of the oldest pathway methods is the so-called thermodynamic integration
(TI) [255] that overcomes barriers in free energy by freezing the chosen CV at dif-
ferent values while sampling along all other degrees of freedom at these fixed points
along the reaction coordinate. A free energy profile or PMF is obtained by integrat-
ing the mean force, i.e. the derivative of the free energy with respect to the CV [286].
It is possible to slowly move the constraint instead of simulating the CV at fixed
values. This is called slow growth [287]. Both methods need comparably long simu-
lation times to reach sufficient sampling along the degrees of freedom of the system
and thus a converged PMF. In these methods also the momentum in the direction of
the reaction coordinate is constrained and thus they do not fully sample the momen-
tum space.

Umbrella sampling (US)

Umbrella sampling (US) [288] differs from TI by replacing the fixed constraints using
restraining biasing potentials, allowing to sample the full momentum space [286].
Here a series of windows is selected along the CV of interest so that the window
distributions overlap sufficiently. Usually one uses harmonic potentials of the form

wi(ξ) =
ki

2
(ξ − ξref

i )2 (2.48)
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with center points ξref
i and spring constants ki as biasing restraints for umbrella sam-

pling, but other choices can be imagined. It is also possible to choose an adaptive
bias that tries to match the negative of the free energy at each point of the CV ξ.
This method is thus called adaptive umbrella sampling [289]. It can be extended
to periodically interacting multiple walkers and on-the-fly resampling in order to
sample neglected (undersampled) regions. The method is then called adaptive bias-
ing force (ABF) [290] and will be discussed below. If the bias potential is moved or
pulled along the CV instead of using a finite number of fixed windows, the method
is called steered MD (SMD) or force-probe MD [286, 291]. It will be explained in
more detail in the next section.

The most critical part of umbrella sampling is the correct choice of the CVs and
of the spring constants ki defining the strength and thus the width of the biasing
potentials. They have to be chosen in advance of the simulations. An advantage of
umbrella sampling is that the MD simulations of different windows are completely
independent from each other so that they can be executed in parallel. It is even pos-
sible to later insert additional windows with larger spring constants if the overlap
between originally chosen windows was not sufficient.

Results from umbrella sampling simulations are usually combined either by the
umbrella integration [286, 292] or by the popular weighted histogram analysis method
(WHAM) [293].

For a more detailed description of umbrella sampling and its analysis the reader
is referred to [286].

When it comes to studying the assembly or dissociation of protein complexes,
simple umbrella sampling simulations are potentially facing huge sampling prob-
lems due to the sheer number of possible relative orientations of the two binding
partners, which have to be sampled in every window of the simulation [294]. This is
less of a problem if the two proteins each have strongly dipolar character so that they
will adopt a preferred orientation relative to each other during association and dis-
sociation processes. The Brownian Dynamics simulations of Spaar et al. discussed
above showed that this is the case e.g. for the barnase-barstar complex. When barstar
binds to barnase, it approaches barnase “from the right side” due to favorable elec-
trostatic interactions. Also, its binding interface is pre-oriented toward the binding
interface like a space-ship that plans to land on the moon. In such cases, it appears
plausible to employ a one-directional reaction coordinate to describe protein-protein
association and dissociation, e.g. the distance between the proteins’ center of masses.
The direction of approach can be taken parallel to the vector connecting the COMs
in the bound complex assuming that this is known either from structural studies
or from docking. When comparing the unbinding of the three complexes barnase-
barstar, cytochrome c – cytochrome c peroxidase, and enzyme 1 – histidine phospho-
carrier, it turned out that the PMF computed via umbrella potential simulations had
a monotonous uphill profile without transition states. In all cases, the two proteins
attracted each other up to distances of about 1.4 to 1.5 nm. Afterwards, the PMF
curve was flat reflecting that the protein interaction was shielded by the solvent. Be-
yond such distances, the relative orientation of the two proteins is not relevant any-
more. The same calculations were also performed for a dissociation process starting
from a non-specific short-lived contact of the same protein pairs [295]. In that case,
the PMF profiles had the same shape, but a shorter attraction basin of only about
0.8 nm and the contact conformation was only about half as stable as the specific
complex.

In order to treat sampling issues it is possible to use additional external restraints.
Gumbart et al. [26, 294] applied geometrical and conformational restraints that are
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enforced on the overall relative protein motions and also to constituent amino acids
forming the interface region. They showed that the resulting binding free energy of
the studied barnase-barstar complex compares well to the experimental value and
that the statistical error of the method is low for a system of this complexity. The
time the method needs to reach convergence is also much lower than for umbrella
sampling without additional restraints. One has to note that the contributions of the
external restraints to the overall binding free energy difference were calculated using
the adaptive biasing force method. Only the main separation PMF was calculated
using umbrella sampling. In a recent study Suh et al. [296] showed that various
advanced methods including their newly developed “String Method for Protein-
Protein Binding Free-Energy Calculations” can lead to converged results far off from
the experimental binding free energy of barnase-barstar. They discuss this in much
detail and compare these results to the one obtained by Gumbart et al. [26, 294].

Another recent example of restraint umbrella sampling simulations of protein-
protein interactions is found in [297].

Steered MD (SMD)

As already described, steered molecular dynamics (steered MD) or force-probe MD
utilizes moving bias potentials in order to push the simulation system over barriers
in the free energy. The mean force and thus the PMF can be sufficiently sampled and
thus estimated if the movement of the potential is slow compared to the relaxation
times of the system [286]. Thus usually very slow movements have to be chosen that
drastically increase the amount of sampling in order to converge these simulations.
An interesting feature of SMD is its equivalency to atomic-force microscopy [286].
Fast SMD is often used to obtain approximate starting positions for umbrella sam-
pling simulations. If the results of steered MD are evaluated using nonequilibrium
analysis methods such as the Jarzynski equality [184] or the Bennet acceptance ratio
(BAR) [298] the movement of the potential can be performed much faster than the
relaxation time scales of the system. In order to obtain a suitable ensemble average
of the PMF these simulations have to be performed repeatedly. A few examples for
the usage of steered MD to obtain protein-protein binding free energies are given
in [299, 300].

Metadynamics

Metadynamics [301], like all other related methods, strongly depends on the choice
of the used reaction coordinates. An advantage of metadynamics is the fact that it is
possible to sample multiple CVs at the same time, which is not as easily possible in
other methods. Usually only two or three CVs are chosen, because larger numbers
would necessitate much more sampling.

In order to overcome barriers in free energy and to escape minima on the free en-
ergy surface, metadynamics uses history dependent bias potentials, which are often
called hills. These are Gaussian functions dependent on the CVs ¸(x) = (ξ1(x), · · · , ξn(x))
which themselves depend on the coordinates x of the system. These are added to the
potential energy V of the study system at a chosen frequency. The overall resulting
bias potential is

VG(¸(x), t) = ∑
t′<t

W(t′) exp

(
−

n

∑
i=1

(ξi(x)− ξi(xG(t′)))2

2σ2
i

)
(2.49)
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where t′ = τG, 2τG, 3τG, · · · are multiples of the hill-deposition time τG, where ξ(xG(t))
is the trajectory of the system subject to the action of V + VG, where W is the height
of the Gaussian potentials, and where the σi are the widths of the Gaussian poten-
tials in the respective CV [301–303]. As is clear from eqn. (2.49) the hills are adding
up during the course of the simulation and thus fill up the free energy minima over
time. Higher and wider hills increase the speed of convergence but reduce the sharp-
ness of details on the free energy surface.
In metadynamics the free energy surface cannot be calculated from eqn. (2.6) because
canonical sampling is hindered by the bias potential and thus it has to be calculated
differently. After a certain time the biasing potential has completely filled all min-
ima on the free energy surface and the effective potential becomes flat. At this point
convergence is reached. The free energy surface is then simply the negative of the
biasing potential

G(ξ(x)) = −VG(ξ(x)) . (2.50)

An advancement of the original metadynamics approach is the so-called well-
tempered metadynamics [304]. Here the height of the hills is decreased while the
bias potential is accumulated, resulting in high hills at the beginning and lower
hills at the end of the metadynamics simulations [303], thus strongly improving
convergence speed while keeping the sharpness of details on the free energy sur-
face. Furthermore, the well-tempered metadynamics approach leads asymptotically
to an exact free energy surface [305], which is highly advantageous over the original
approach.

Various extensions to the metadynamics method have been developed since it
was first published. These are, for example, funnel metadynamics [306], volume-
based metadynamics [307], multiple walkers metadynamics [308], and flux-tempered
metadynamics [309], to name just a few [310]. By using a method called infrequent
metadynamics [311, 312] it is possible to also calculate the dynamics of a given sys-
tem, e.g. the kinetic rate constants [310] kon and koff.

Metadynamics in combination with parallel tempering [313] has been success-
fully used for protein oligomerization/dissociation studies [314, 315].

There are also a range of other methods utilizing history-dependent potentials.
One example is the accelerated weight histogram method [316].

For recommendable tutorials on how to perform metadynamics simulations and
to choose collective variables the reader is referred to articles describing the tool
Plumed [317, 318].

Adaptive biasing force (ABF)

The adaptive biasing force (ABF) method [290] tries to retain the dynamics of the
system along the PMF, including the random force described in section 2.5, while
additionally leveling the PMF in order to easily move along the PMF, because barri-
ers in free energy are removed. This leads to an acceleration of the passage between
the relevant states along the CV [181] and thus improves sampling along the CV.
This is achieved by calculating the mean force along a reaction coordinate ξ and re-
moving it via an external biasing force, which is exactly the negative of the current
estimate of the mean force. This results in uniform sampling along ξ [182]. ABF has
been successfully used to obtain reasonable protein-protein binding free energies,
e.g. in [294] and [319]. For a detailed explanation of the ABF method, a suitable
choice of the reaction coordinates, error analysis, and extended methods the reader
is referred to [181].
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Parallel Cascade Selection Molecular Dynamics

Parallel Cascade Selection Molecular Dynamics (PaCS-MD) was first proposed in
2013 by Harada and Kitao as a simulation method to generate conformational tran-
sition pathways when reactant and product structures are known a priori [320]. In
their original manuscript, they state that PaCS-MD differs from other pathway meth-
ods like the ones described in the previous sections, because it allows to gener-
ate transition pathways without utilizing external perturbations like biasing forces.
The method was originally intended to study protein folding and conformational
changes but it was extended to protein-ligand (un)binding simulations in 2018 [321].
It was also shown that it is possible to use PaCS-MD to study protein-peptide disso-
ciation [27] and also association and dissociation [322].

The overall framework, as similarly described in [320] and [321] is the following:
First an equilibration followed by a short equilibrium MD simulation of the bound
state is performed (cycle 0). A certain number nrep of the best snapshots of the re-
sulting trajectory in terms of a previously defined reaction coordinate are extracted
from the equilibrium simulation. In this case, best means that these snapshots are
the closest to the wanted product structure in terms of the reaction coordinate. For
the dissociation PaCS-MD the center-of-mass (COM) distance between the protein
and the ligand or peptide is used as a reaction coordinate. The best snapshots are
then the ones where the COM distance is largest. From each of these snapshots, a
new short MD simulation (further called repeat or replica) with length tcyc is started
after a rerandomization of the initial velocities of every atom (cycle 1). Afterwards,
all new trajectories are analyzed and again the best nrep snapshots are extracted and
used to start new simulations where again the velocities are rerandomized before-
hand (cycle 2). This process is repeated (cycles 3, · · · ) until the reaction coordinate
reaches the value describing the product state or a pre-defined number of cycles
is reached. By always selecting the snapshots which are the best in terms of pro-
gression along the reaction coordinate the system is brought closer and closer to the
product structure while the system is sampled in the intermediate structures without
external biases. When the new snapshots are worse in terms of progression along
the reaction coordinates, the old snapshots will be kept and the new cycle is started
from these. All trajectories are stored for later use for analysis. The challenge in
this method is to choose a reasonable number of repeats nrep and the length of the
simulations in each cycle tcyc which give reasonable sampling along all important
degrees of freedom. It makes sense to perform the whole process a number of times
to obtain good sampling, each of these process repeats is called a trial.

Afterwards, the short trajectories can be combined into “reactive trajectories”
connecting the initial and final state [320]. In the case of dissociation PaCS-MD
these can be used as representative dissociation pathways or initial structures for
umbrella sampling [321]. It is also possible to utilize all generated trajectories (also
those that do not form the reactive trajectories) to build Markov state models (MSMs,
see sec. 2.5.6). Even though a specific reaction coordinate was chosen to rank the
snapshots of the cycles of the PaCS-MD simulation no biasing along a reaction coor-
dinate was performed and therefore all positional data for all atoms can be used to
build the MSMs. Due to the rerandomization of velocities, the kinetic information is
rather less useful. It was shown that it is possible to obtain thermodynamic proper-
ties of the system, like the binding or dissociation free energy, by utilizing different
features for building the MSMs. Reasonable dissociation free energies were obtained
using the inter-COM distance [27, 321], as well as the 3D-COM position of the lig-
and or peptide relative to the protein [27, 321] and the Cα positions of the peptide
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relative to the protein [27]. The choice of the cycle length tcyc strongly influences the
possibility to choose the lag time τ ≤ tcyc for the MSM so good thoughts have to
be put into the choice beforehand since longer tcyc at a fixed number of replicas nrep
extends the total simulation time. A lower number of nrep reduces the possibility of
finding good snapshots which show progress along the reaction coordinate.

2.5.4 Replica-exchange methods

In Replica-exchange methods for molecular dynamics [323] the system is simulated
in different system states at the same time. At regular time intervals, individual
simulations may exchange properties such as temperature or coordinates at certain
steps so that barriers in free energy can be overcome more easily. Subsequently,
replica-exchange methods were combined with pathway methods to be used in the
calculation of free energies and PMFs. A great advantage of many parallel/replica-
exchange methods is the possibility of simulating in parallel on multiple computer
nodes because the interconnection is only required for the exchange steps for which
one does not need high-speed connections between the individual nodes.

Parallel tempering

Increasing the simulation temperature is an obvious way to more easily overcome
the free energy barriers along the CVs. Arrhenius law tells us that reaction rates in-
crease with temperature because an increased number of particles have an energy
greater than the minimum energy needed for the reaction at increased tempera-
ture [183]. Usually simulated tempering methods [324] are performed as follows:
First, the system is propagated at a fixed temperature Ti for a number of time steps.
Second, the acceptance for switching between two temperatures Ti and Tj is evalu-
ated as a Monte Carlo step with the acceptance probability of

α = min
(

1,
Zj

Zi
exp

[
−U(x)

kBTj
+

U(x)
KBTi

])
(2.51)

where i is the index of the present temperature and j the temperature of the new one.
In general it is nontrivial to choose the weights Zi in a suitable way so that all values
of i are equivalently sampled [183].

In order to overcome the issue of finding the correct weights it is possible to
simulate multiple replicas of the system at the same time at different temperatures.
Here not the temperature of a single system is changed but rather the coordinates of
two replicas are exchanged with the acceptance probability

α = min
(

1, exp
[(

1
kBTj

− 1
kBTi

) (
U(xj)− U(xi)

)])
(2.52)

which is independent of the weights Zi and Zj. Equal sampling of each index i is
achieved by only allowing pairwise swapping [183].

One example of a pathway method extended with parallel tempering is the com-
bination of metadynamics with parallel tempering [313] which has been used in [314,
315] to study protein oligomerization/dissociation. For further information on par-
allel tempering, the reader is referred to [183, 325].
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Generalized/Hamiltonian replica-exchange methods

In the previous section the replicas differed in temperature. It is, however, also
possible to change other parameters of the system such as parts of the Hamilto-
nian [326] or combine various changes, e.g. replicas can have different temperatures
and Hamiltonians at the same time and their acceptance probability then reads

α = min

1,
exp

[
−
(

Ui(xj)
kBTi

+
Uj(xi)
kBTj

)]
exp

[
−
(

Ui(xi)
kBTi

+
Uj(xj)
kBTj

)]
 [183]. (2.53)

2.5.5 Additional pathway methods

The methods explained in the previous sections are just a brief summary of the most
popular computational methods to calculate binding free energies of protein-protein
interactions. Many more interesting methods, combinations of the aforementioned
ones, as well as combinations with machine learning techniques have been success-
fully used to study association and dissociation of protein-protein systems. It was
also beneficial to combine pathway methods with or derive CVs from experimental
data such as in SAXS-guided metadynamics [327].

2.5.6 Markov state models

Markov state models (MSMs) have become an important technique for analyzing
MD data. They can be used in combination with unbiased MD simulations and var-
ious enhanced sampling methods to extract thermodynamics properties and mech-
anistic insights from the trajectory data. MSMs are models which fulfill the Markov
assumption or property, which means that a stochastic process should be memory-
less, i. e. the state of the system has no information about the past states and the
following state only depends on the present state. This can be summarized in the
following equation with x, A ∈ Ω and τ ∈ R0+

p(x, A; τ) = P[x(t + τ) ∈ A|x(t) = x] (2.54)

for the probability density p that a trajectory which was started from a certain point
x ∈ Ω (the state space Ω usually contains position and velocity when considering
MD simulations) at time t will end up in set A at time t + τ [328]. In biophysics
MSMs are often used to analyze data from MD simulations and to extract observ-
ables to compare them to experiment.

In order to obtain self-consistent MSMs the states of the system also need to be
ergodic and reversible, i. e. for the former condition the network of states must be
fully connected [328]. In MD simulation this means that from any state of the system
it should be possible to reach any other state, i. e. sufficient sampling is needed, es-
pecially when combining multiple simulations with different starting conformations
to obtain enough overlap [328]. For the latter condition the probability distribution
p(x, y; τ) needs to fulfill detailed balance or microscopic reversibility, i. e. for a system
in equilibrium, the same number of transitions from x to y and from y to x need to be
observed. Otherwise the model would include source and sink states which leads to
a wrong description of the long time scale behavior [328].

The first step when building MSMs from MD data is to project the high-dimensional
trajectory data onto a lower-dimensional space by dimensionality reduction onto
a feature set, i. e. collective variables, that best catches the variations in the data.
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Multiple feature sets can be compared and optimized using the GMRQ [329] or
VAMP [330, 331] methods [332]. Common feature sets for binding simulations are
protein-ligand (pairwise) distances of amino acids or center of masses. Feature sets
usually used to describe internal motions of proteins or for folding simulations are
backbone torsions, dihedrals, angles or contacts. The featurized MD data can then
be further projected on the time-lagged independent components (tICs) using the
time-lagged independent component analysis (tICA) [12–15]. Its goal is to find most
time-correlated degrees of freedom existing in the data via linear combinations of
features [332]. For tICA a lag time (which is independent of the MSM lag time) has
to be chosen to filter out the fastest processes. The result of tICA is that the tICs then
display the slowest processes in the simulations. For binding simulations it is likely
that the slowest degree of freedom is the binding or unbinding process.

After reducting the dimensionality and projecting the data on to the most time-
correlated degrees of freedom the data it has to be decomposed into a number of
microstates or clusters. Simulation snapshots should fall into the same microstate, if
they are close in an appropriate distance metric and the system can quickly transition
between them, i. e. the clustering has to be kinetically relevant. The number of mi-
crostates is a weighing between having enough statistics in each state to accurately
calculate transition probabilities between states and the goal of having states that
best divide the phase space as finely as possible to exclude all large free energy bar-
riers from within states [328]. Poorly sampled microstates can break detailed balance
why it makes sense to cut them off after clustering [328]. The most common algo-
rithm to perform the microstate clustering is the k-means [333] algorithm. Usually
it is good to use a subsample of the data to cluster it, thereby reducing the impact
of outliers [334] and to assign all data to the defined microstates afterwards [328].
Clustering can be difficult for binding simulations due to the different time scales in
the bound and unbound states [328] wherefore an eye has to be kept on this while
analysing the data.

After clustering, the transition matrix C is built by counting the transitions from
and to every state i from every other state j and storing the counts in the matrix entry
Cij. For infinite data that would allow to directly calculate the transition probabilities
via

Tij(τ) =
Cij

∑k Cik
[328]. (2.55)

With finite sampling and shortcomings in the microstate clustering, this will not
work as easily. It has to be assured that detailed balance between any pair of states
is fulfilled and a reasonable lag time τ has to be chosen. This choice can be validated
using the Chapman-Kolmogorov equation

T(nτ) = T(τ)n (2.56)

with an integer number of steps n with a length τ each, i. e. taking n steps with a lag
time of τ should be equal to taking a MSM with lag time nτ [328]. This can be used
with the relaxation time scales ti of a model

ti = − τ

ln λi
(2.57)

with the corresponding eigenvalue λi of the transition matrix, because application of
the Chapman-Kolmogorov equation will lead to the finding that the relaxation time
scale should get nearly constant when increasing τ. The lowest value of τ for which
the relaxation time scale gets nearly constant is an appropriate value of τ fulfilling
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Markovianity [328].
To obtain models that can be interpreted easily it often makes sense to coarse-

grain the MSM into a few macrostates between which the slowest transitions and
processes in the system happen. The most common method to combine microstates
into macrostates is the “Robust Perron Cluster Cluster Analysis" (PCCA+) spectral
clustering method [335–337].

MSMs can be used to obtain rate constants of processes, e. g. the dissociation
and association rate constants, koff and kon, of binding and therefore the equilibrium
dissociation constant KD = koff

kon
. One way is to use the transition path theory (TPT)

analysis [16].
For a detailed discussion of MSMs, their theoretical background and their appli-

cations, the reader is referred to the book by Bowman, Pande and Noé [328].
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Chapter 3

How peptide phosphorylation
affects its interaction with 14-3-3η
domains

This chapter introduces our approaches on understanding the interaction of 14-3-3
proteins with phosphorylated and unphosphorylated peptides. It was already ac-
cepted for publishing in PROTEINS: Structure, Function, and Bioinformatics under
the title “How phosphorylation of peptides affects their interaction with 14-3-3η do-
mains” [32]. My contributions were the choice of the systems to study and the sim-
ulations to perform, performing the simulations, analyzing the data and writing the
first draft of the manuscript. In the following sections the preprint version of the
manuscript is presented. The abstract is given in the introduction chapter 1.

3.1 Introduction

14-3-3 proteins are a family of adapter proteins performing regulatory functions in
cell-cycle control, signal transduction, protein trafficking, and apoptosis. They are
abundant in nearly all eukaryotic cells and occur predominantly as stably folded
homo- and heterodimers [97, 98] being stabilized by salt bridges and hydrophobic
interactions [99, 100]. There exist seven known isoforms in human, namely α/β, γ, ϵ,
η, ζ/δ, θ, and σ, exhibiting high sequence and structural similarity (RMS deviations
between 0.7 and 1.8 Å) [74]. Each monomer is composed of nine α-helices, forming
an amphipathic groove that creates the main binding interface between 14-3-3 and
their target proteins [103]. In this groove lysine and arginine residues form a basic
cluster that mediates the interaction with 14-3-3 binding partners [101–103].

14-3-3 proteins interact with disordered regions of various phosphorylated pro-
teins that most commonly contain motif 1 (R[S/F/Y/W]XpSXP), motif 2
(RX[S/Y/FW/T/Q/A/D]Xp(S/T)X[P/L/M]) [104–106] or motif 3 (RXXp(S/T)XX-
COOH) [105] but also with a few unphosphorylated peptides [101, 103, 107], such as
the exoenzyme S (ExoS) [110] or the Carbohydrate-response Element-binding Pro-
tein (ChREBP) [108, 109]. To our knowledge there exist hardly any experimental
data, such as binding constants, for the unphosphorylated counterparts of phos-
phorylated motif 1 and motif 2 peptides. The binding of these unphosphorylated
peptides seems to be too weak to be measurable [104, 338, 339] and only a lower bar-
rier for the binding constant Kd for the RSRSTSTP peptide exists [104]. Interestingly,
it was shown that 14-3-3 dimers are able to bind simultaneously to two target se-
quences contained in a single polypeptide chain, that leads to an increase in binding
affinity compared to the binding at only one binding site [104, 339–341]. This effect
has been termed cooperative binding [104]. It was suggested that complexation at
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the first binding site acts as a gatekeeper necessary for 14-3-3 binding but may not
be sufficient in order to enable full biological activity [340].

The main aim of this study was therefore to mechanistically explain why 14-3-3
proteins preferably bind to phosphorylated peptides. To do so we studied com-
plexes of 14-3-3η proteins with phosphorylated motif 1 (c-RAF-pS259 (RSRSTpSTP)
and c-Raf-pS233 (HRYpSTP)) as well as motif 2 (RLYHpSLP) peptides together with
their unphosphorylated counterparts by means of unbiased molecular dynamics
(MD) and alchemical transformation simulations in silico.

3.2 Methods

3.2.1 Structure preparation

For this study we selected the 14-3-3η domain with various peptides because their
binding affinities have been extensively characterized by Yaffe et al. [104]. So far, no
crystal structures for the complex of the 14-3-3η domain bound to the c-RAF-1 pep-
tides RSRSTpSTP, RSRSTSTP, HRYpSTP and HRYSTP have been reported. Thus, we
superimposed an X-ray structure of the 14-3-3ζ dimer in complex with the RSRSTp-
STPNV peptide (Protein Data Bank (PDB) [6] entry 4FJ3 [341]) onto a crystal struc-
ture of the 14-3-3η dimer bound to another peptide (PDB entry 2C63 [342]) using
UCSF Chimera [343]. The overall alignment yielded a low RMSD of 0.98 Å for the
corresponding Cα atoms. Also the binding modes of the two peptides were very
similar (Cα-RMSD with aligned 14-3-3 dimers: 1.52 Å). We used the coordinates of
the superimposed RSRSTpSTPNV and HRYpSTP peptides as starting points for the
MD simulations of the 14-3-3η dimers bound to these peptides. When studying com-
plexes with the shorter RSRSTpSTP peptide we simply deleted the last two residues.

The same procedure was applied to obtain starting conformations of 14-3-3η
bound to the RLYHpSLP peptide. Here, we used an X-ray structure of a 14-3-3ζ
dimer binding this peptide (PDB entry 1QJA [344]) and superimposed it onto the
same crystal structure of the 14-3-3η dimer binding another peptide (PDB entry
2C63 [342]) as above. Again, the alignment resulted in a very low Cα-RMSD of
0.835 Å. For all monomer simulations we used the structure of the 14-3-3η monomer
binding the respective ligand taken from the aligned dimer structures.

In order to obtain starting conformations of 14-3-3η bound to the unphosphory-
lated peptides we removed the phosphate group from the phosphoserine residues
using the rotamer replacement function implemented in UCSF Chimera [343] by
applying the serine rotamer from the Dunbrack rotamer library [345]. After en-
ergy minimization and equilibration, the structure showed only minor deviations
(RSRSTSTP Cα-RMSD of 1.47 Å from the RSRSTpSTP structure in the bound state).

For the alchemical free energy simulations, hybrid structures and topologies in-
cluding the unphosphorylated and phosphorylated residues in the same file were
obtained using the tool PMX [267, 346]. Since no hybrid structures for phosphory-
lated serines existed in the published program, these were kindly provided by V.
Gapsys for the CHARMM36m [192] force field.

3.2.2 Molecular dynamics simulations

All MD simulations were performed using the GROMACS [4] 2018.8 software pack-
age with the CHARMM36m [192] force field for proteins and peptides. Water molecules
were represented by the TIP3P [224] model modified for the CHARMM force field [190].
Hydrogen atoms were generated using the internal GROMACS tool pdb2gmx. In
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the simulations we applied a time step of 2 fs and periodic boundary conditions [201].
Long-range electrostatic interactions were computed with the particle-mesh-Ewald
summation method [8] and the non-bonded interaction cutoff was set to 12 Å. All
bonds were constrained using the LINCS [347] algorithm (in plain MD simulations
only H-bonds were constrained). Long range dispersion corrections were applied
for energy and pressure. A concentration of 0.15 mol L−1 NaCl was included in all
simulation boxes in order to mimic physiological conditions.

Initially, the systems were minimized in two steps. First the unsolvated molecu-
lar system was minimized using the steepest descent algorithm for a total of 50000
steps with an initial step size of 0.01 nm and a convergence value for the maximal
force of 5 kJ mol−1 nm−1. After solvating and ionizing the system, a minimization
was carried out, using the steepest descent algorithm for a total of 100000 steps with
an initial step size of 0.01 nm and a convergence value of 500 kJ mol−1 nm−1. Dur-
ing these steps the positions of the heavy protein and peptide atoms were kept rigid
using position restraints.

Afterwards the systems were thermalized for 500 ps each at 100 K, 200 K, and at
the final temperature of 298.15 K, respectively while keeping the position restraints
for the proteins and peptides. These steps used the velocity-rescaling thermostat [239]
with a coupling time constant of 0.1 ps and a separate temperature bath for solute
and solvent. The equilibration was continued for another 500 ps in the NPT ensem-
ble by adding a Berendsen barostat [238] with a time constant of 2.0 ps, a reference
pressure of 1 bar, and an isothermal compressibility of 4.6 · 10× 10−5 bar−1 while still
keeping the position restraints of the solute. Thereafter, the Berendsen barostat [238]
was changed to a Parrinello-Rahman extended-ensemble pressure coupling [250,
348] because the former does not yield a correct thermodynamic ensemble, but is
very efficient for the scaling of a box during the start of a simulation. The position
restraints were released in three steps from 1000 via 100, and 10 to 0 kJ/mol/nm2.

Subsequently, unbiased production runs were performed. The trajectory was
recorded every 10 ps.

Unbiased MD simulations

For the plain MD simulations a triclinic box was created such that the minimal dis-
tance of every solute atom from the edge of the box was at least 1.5 nm. This re-
sulted in a size of 8.5 nm × 7.5 nm × 9.0 nm for the 14-3-3η monomer and 12.0 nm ×
8.0 nm × 10.0 nm for the 14-3-3η dimer simulations, respectively.

We simulated two systems in the absence of a peptide: the 14-3-3η monomer and
the 14-3-3η dimer, as well as six systems containing a single peptide: the 14-3-3η
monomer with the peptides RSRSTpSTP, RSRSTSTP, RLYHpSLP, and RLYHSLP and
the 14-3-3η dimer with the peptides RSRSTpSTP and RSRSTSTP. Additionally, we
simulated another four dimer systems where each monomer was bound to a peptide:
the 14-3-3η dimer with RSRSTpSTP and HRYpSTP, with RSRSTpSTP and HRYSTP,
with RSRSTSTP and HRYpSTP and with RSRSTSTP and HRYSTP. Each system was
simulated three times for 1 µs each. To compare the results with the free states
we also simulated the unbound RSRSTSTP/RSRSTpSTP and RLYHSLP/RLYHpSLP
peptides in a water box, each one once for 1 µs. All together this sums up to a total
of 40 µs of simulation time.
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∆GS→pS
bound ∆GS→pS
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FIGURE 3.1: Thermodynamic cycle to compute the difference in bind-
ing free energy between phosphorylated (denoted pS) and unphos-
phorylated peptides (on serine, denoted S) complexed in complex
with a protein domain (depicted in blue). The figure was taken from

ref. [32].

Analysis tools

Hydrogen bonds and contacts were identified in the trajectories using the MDTraj[349]
python toolkit using the “Baker-Hubbard” [350] and “compute contacts” algorithms.
The number of hydrogen bonds formed by the phosphoserine or serine residues at
the relevant positions were computed with the gmx hbond tool. The Root mean
square fluctuations (RMSFs) were characterized by the gmx rmsf tool and the prin-
cipal component analysis (PCA) was carried out with the gmx colvar and gmx aneig
tools, all included in GROMACS [4].

3.2.3 Alchemical free energy simulations

Alchemical free energy differences were computed by performing repeated non-
equilibrium simulations along the reaction path and calculating the free energy dif-
ference using two methods based on the Jarzynski equality[184], namely the Bennett
acceptance ratio (BAR) [298] and the Crooks Gaussian Intersection [351] method, re-
spectively.

The four relevant states of each system were the unbound phosphorylated pep-
tide, the unbound unphosphorylated peptide, the bound phosphorylated peptide
and the bound unphosphorylated peptide. These can be arranged into the ther-
modynamic cycle shown in Fig. 3.1. The difference in binding free energy is then
obtained from the thermodynamic cycle as

∆∆Gbind = ∆GpS
bind − ∆GS

bind = ∆GS→pS
bound − ∆GS→pS

unbound . (3.1)

The superscript S denotes the unphosphorylated peptide containing a serine while
the superscript pS denotes the phosphorylated peptide containing a phosphoser-
ine. These kind of simulations do not allow to calculate absolute free energy values
for the binding of a peptide to a protein but yield the difference in binding free
energy between two different peptides (here, the phosphorylated and unphospho-
rylated peptide) binding to the same protein. In free energy perturbation methods
the change from one state A to the other state B is typically achieved by using a
coupling parameter λ that changes the topology from A to B gradually. During the
course of the simulation the work performed on the system is computed and the
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change in free energy during that process is evaluated using the Bennett acceptance
ratio (BAR) [298]. In our case the resulting binding free energy difference is calcu-
lated as the difference between the two alchemical transformations in the bound and
free state (see eqn. (3.1)).

In experiments one usually measures the dissociation constant KD that is directly
related to the binding free energy by

∆G0
bind = −kBT ln(c0KD), (3.2)

with the Boltzmann constant kB, temperature T, at the standard concentration c0 =

1 mol L−1 ≈ 1/1661 Å
−3

. Since the transformations of the free and bound peptides
are performed in simulation boxes of different, finite sizes resulting in different con-
centrations of the solute, both transformation free energies have to be corrected for
the box size using the standard concentration. The corrected standard binding free
energy [269, 271] is then

∆G0
bind = ∆Gsimulation

bind − kBT ln(c0Vbox) (3.3)

whereby Vbox is the volume of the simulation box.
Introducing a phosphate group during the course of a simulation substantially

alters the total charge of the system. This can lead to artifacts in the simulations and
thus the calculated free energies have to be corrected [200, 213, 214, 352, 353]. An
elaborate correction scheme when using lattice-sum methods was derived by Rock-
lin et al. [200]. This method was originally designed for free energy perturbation
simulations calculating absolute binding free energies where the bound ligand is al-
chemically transformed into a non-interacting dummy molecule. In our alchemical
transformations the ligand is transformed from one state to another one and thus the
correction scheme has to be adapted. Chen et al. [354] derived a correction scheme
for relative binding free energies for ligands with different charges, as is the case in
our systems. They assumed that the protein charge is zero, thus all terms involving
it were left out. We also included the empirical correction term of Rocklin et al. [200].
A derivation is shown in the appendix. The resulting corrections terms are

∆∆GA→B
NET_USV, state(Lstate) = − ξLS

8πϵ0ϵS

[
(QB

L)
2 − (QA

L )
2 + 2QP(QB

L − QA
L )
] 1

Lstate
(3.4)

for the periodicity-induced net-charge interactions and undersolvation [200],
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RIP, state(Lstate) =
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L,state)Q

B
L − (IA
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A
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for the residual integrated potential effects [200],
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as additional empirical correction term [200] with RX
L,state =

([
1

8πϵ0

4π
3

(
1 − 1

ϵS

)
QX

L

]−1
IX
L,SLV,state

)1/2

and
∆∆GA→B

DSC, state(Lstate)(NS, L) = − γS

6ϵ0

NS,state

L3
state

(QB
L − QA

L ) (3.7)

for discrete solvent effects. “X” can be either state “A” or “B”, QP is the net charge of
the protein, QX

L denotes the net charge of the ligands, ϵS is the static relative dielec-
tric permittivity of the solvent, ξLS ≈ −2.837297 is the cubic lattice-sum (Wigner)
integration constant, “state” can be either “bound” or “free”, and Lstate is the size of
the simulation box in the respective state.

For the alchemical simulations of a 14-3-3η monomer bound to a peptide and
another unbound peptide, a cubic box was created such that the minimal distance of
every atom of the solute was at least 1.5 nm from the box edge resulting in a size of
around 10.2 nm per edge for the simulations of the bound state and 5.3 nm per edge
for the simulations of the free state. The (unbiased) equilibrium simulation lasted
20 ns. The first 4 ns were discarded and 100 starting structures for the alchemical
transformations were recorded every 16 snapshots (i. e. every 160 ps). Each of these
100 transformations was performed for 1 ns by gradually changing the parameter
λ each step by ∆λ = 0.2 · 10−5 from 0 to 1 during the course of the simulation.
The change of the Hamiltonian with respect to the coupling parameter λ was saved
every time step. We repeated these simulations four to seven times for every system
to obtain a statistical error.

To ensure smooth convergence of the derivatives of the non-bonded energy terms
while creating or annihilating atoms, we used a soft-core potential with soft-core pa-
rameter αSC = 0.3, soft-core power pSC = 1 and radius of the interaction set to
σSC = 0.25. The alchemical transformations were performed both in the forward
and backward directions, i.e. from λ = 0 to 1 and from λ = 1 to 0, in order to
achieve better convergence. The results were then combined using an analysis tool
included in the PMX package [267], which calculates the free energy difference using
the Bennett acceptance ratio (BAR) [298], the Jarzynski equality[184] and the Crooks
Gaussian Intersection [351] method. All results shown in this study were obtained
using BAR, but results were only considered valid when all three estimators gave
similar estimates, which is a good measure for convergence of such non-equilibrium
methods [184, 355].

As stated before, the simulations for the transformation of the free and bound
peptides were performed in simulation boxes of different, finite sizes resulting in
different concentrations of the solute. Thus the results were corrected for the box
size using the standard concentration c0 [271] and likewise for electrostatic finite-
size effects [200].

3.3 Results

3.3.1 Unbiased MD simulations

MD simulations of 14-3-3η monomers and dimers complexed with either phospho-
rylated or unphosphorylated peptides or both were stable on the 1 µs time scale
studied here. The mean Cα-RMS deviations from (modified) crystal structures are
listed in table 3.1. The only exceptions to this were a single simulation of 14-3-
3η with the RLYHSLP peptide and another simulation of a 14-3-3η dimer with the
RSRSTpSTP and HRYSTP peptides bound at the same time. In these simulations un-
binding of the unphosphorylated peptides happened. Hence, we repeated the one
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(A) RSRSTpSTP peptide (SP2) bound to 14-3-3η (B) RSRSTSTP peptide bound to 14-3-3η

FIGURE 3.2: Representative structures of a phosphorylated RSRSTp-
STP (doubly charged, SP2; left hand side) and a unphosphorylated
RSRSTSTP peptide (right hand side) bound to 14-3-3η obtained by
a centroid search of all trajectory frames. Pairwise RMSD was com-
puted as a distance metric and the pairwise distances were then used
to calculate a pairwise similarity. The centroid is the frame with the

highest sum of similarities. The figures were taken from ref. [32].

Simulation mean Cα-RMSD [Å]

14
-3

-3
η

m
on

om
er

without peptide 2.952 ± 0.001
with RSRSTSTP 3.686 ± 0.002

with RSRSTpSTP 2.909 ± 0.001
with RLYHSLP 3.355 ± 0.001

with RLYHpSLP 2.795 ± 0.001

14
-3

-3
η

di
m

er

without peptides 3.628 ± 0.002
with RSRSTSTP 3.397 ± 0.002

with RSRSTpSTP 3.794 ± 0.002
with RSRSTSTP + HRYSTP 3.995 ± 0.002
with RSRSTSTP + HRYpSTP 3.566 ± 0.002
with RSRSTpSTP + HRYSTP 4.127 ± 0.003
with RSRSTpSTP + HRYpSTP 3.490 ± 0.001

TABLE 3.1: Mean Cα-RMSD from starting structures. The table was
taken from ref. [32].
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RSRSTpSTP (31 contacts)

Residue pair Distance Int. energy

ARG57 – SP2259 1.7 -512.26
ARG132 – SP2259 1.66 -488.15
LYS50 – PRO261 2.26 -250.97
LYS125 – PRO261 3.14 -250.01
LYS50 – SP2259 3.5 -240.85

GLU185 – ARG254 3.3 -233.96
TYR133 – SP2259 1.7 -120.62
LYS125 – THR260 2.49 -48.92
ASN178 – THR260 1.93 -40.68
LYS50 – THR260 3.74 -30.07

ASN229 – THR258 2.09 -26.34
ASN178 – SP2259 2.58 -25.64
ASN229 – SER257 2.64 -19.68
VAL181 – SP2259 2.5 -18.23
TRP233 – SER257 2.57 -14.28

LEU232 – ARG256 2.77 -7.32
LEU225 – SP2259 3.42 -5.66
LEU225 – THR258 2.44 -5.23
GLY174 – THR260 2.36 -5.19
ILE222 – THR260 2.57 -4.89
LEU177 – SP2259 2.86 -4.83
GLU185 – SER257 3.73 -4.8
LEU177 – THR260 2.33 -3.59
TYR184 – SER257 2.84 -3.56
VAL181 – THR258 3.35 -3.08
LEU177 – THR258 2.93 -2.49
VAL181 – SER257 3.11 -2.46
LEU225 – THR260 2.76 -0.88
LEU232 – SER257 2.71 -0.79

ARG132 – ARG254 3.9 0.0
ARG57 – ARG254 3.34 123.28

RSRSTSTP (13 contacts)

Residue pair Distance Int. energy

LYS50 – PRO261 2.07 -239.55
LYS125 – PRO261 3.21 -211.84
LYS125 – THR260 2.39 -56.84
ASN178 – THR260 2.47 -23.84
ASN178 – SER259 2.71 -18.34
ARG132 – SER259 3.96 -13.34
LEU225 – THR258 3.94 -5.74
LEU177 – SER259 2.56 -3.48
LEU177 – THR260 3.17 -3.19
ILE222 – THR260 3.93 -2.41
LEU177 – THR258 3.51 -2.11
GLY174 – THR260 3.71 -1.47
VAL181 – SER259 3.56 -1.17

TABLE 3.2: Residue contacts between a 14-3-3η monomer and
RSRSTpSTP/RSRSTSTP peptides and respective mean interaction en-
ergies in kJ/mol. Here, all contacts were counted if the mean of the
shortest atom distance (in Å) between two residues over all frames of
three repeated simulations was below 4 Å. The first residue belongs
to the protein and the second one to the peptide. SP2259 denotes
the phosphorylated (doubly charged) SER259. The tables were taken

from ref. [32].
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with RLYSLP and cut the trajectory with RSRSTpSTP and HRYSTP in order to keep
only the part of the trajectory without the unbinding event in order to obtain trajec-
tories without unbinding events. Fig. 3.2 shows representative snapshots from the
simulations of a 14-3-3η monomer with the RSRSTpSTP and RSRSTSTP peptides.
Both peptides remained bound in the binding groove.

The X-ray structure of 14-3-3η bound to RSRSTpSTP and the conformations sam-
pled in the simulations suggest that there exists a strong difference in how tightly
phosphorylated and unphosphorylated peptides are coordinated in the 14-3-3 bind-
ing groove. To quantify this, we extracted mean distances between peptide and
protein residues from the plain MD simulations. Protein and peptide residues were
defined to be in contact when the mean distance between them was below 4 Å over
the full simulation length. Overall, the 14-3-3η protein formed a total of 31 rele-
vant contacts with the RSRSTpSTP peptide (four contacts had distances of less than
2 Å) and 13 relevant contacts with the RSRSTSTP peptide (no contact had a distance
shorter than 2 Å) (see table 3.2).

In particular, both peptides formed very strong interactions between their Pro261
and Lys50 and Lys125 of the protein (van-der-Waals contacts and very negative
mean interaction energies) even though hydrogen bonds between these residues are
only found in around 35 − 40% of the frames with the phosphorylated RSRSTpSTP
peptide bound and in 65 − 70% of the frames with the unphosphorylated RSRST-
STP peptide bound (see table 3.4). Similar interactions were observed for the 14-3-
3η monomer binding RLYHSLP/RLYHpSLP with hydrogen bonds and contacts of
Pro9 of the peptide with Lys50 and Lys125 of the protein and hydrogen-bond occu-
pancies in the same range (see table A.1), as well as for 14-3-3η dimers binding two
peptides (RSRSTSTP/RSRSTpSTP + HRYSTP/HRYpSTP) at the same time. For the
14-3-3η dimer complexed with RSRSTpSTP no hydrogen bonds were formed that
involve Pro261 whereas the occupancy of the hydrogen bonds for Pro261 for RSRST-
STP was much lower for the dimer than for the monomer bound to RSRSTSTP (see
table A.11). In both cases Pro261 formed contacts with Ser46 and Val47 of the pro-
tein (see table A.6). These interactions likely exist due to the negatively charged C-
terminal placed at Pro261 (for RSRSTSTP/RSRSTpSTP) or Pro9 (for RLYHSLP/RLYHpSLP)
in the simulated peptides. This could be an artifact of simulating only a short pep-
tide instead of a long one, which would place its C-terminal outside of the binding
groove. This could also be the reason why we observed nearly no unbinding of the
unphosphorylated peptides in our simulations even though their binding affinity
to 14-3-3 proteins is too weak to be measured in experiment [104, 338, 339]. Thus
the binding affinity of the unphosphorylated peptides is likely altered and possibly
overestimated in our later performed alchemical simulations of 14-3-3η monomers
with the RSRSTSTP/RSRSTpSTP and RLYHSLP/RLYHpSLP peptides. Previously it
was argued that a proline at position +2 from the phosphoserine opens up the pos-
sibility for the peptide chain to make a turn in order to be able to also bind to the
other binding pocket of a 14-3-3 dimer [104–106].

We also compared the number of hydrogen bonds accepted by the phosphate
oxygen atoms of phosphoserine in the bound and free (completely solvated) states
(see table 3.3). The phosphate of the phosphorylated RSRSTpSTP peptide formed
slightly more hydrogen bonds in the bound state compared to the free state. This
holds true no matter if the OG oxygen from the original serine side chain is taken
into account (∆# = 0.109 ± 0.017, d = 0.08) or not (∆# = 0.453 ± 0.018, d = 0.40),
but calculating Cohen’s d shows that the former is not a relevant difference whereas
the latter one is. If only the hydrogen bonds involving the oxygen atoms and the
protein or water are considered, instead of also including intra-peptide hydrogen
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RSRSTpSTP

H2O + protein + peptide H2O + protein

atom bound free bound free

OG
0.395 ± 0.002

(SD: 0.547)
0.740 ± 0.002

(SD: 0.640)
0.240 ± 0.002

(SD: 0.451)
0.740 ± 0.002

(SD: 0.640)

OE1
3.580 ± 0.003

(SD: 0.576)
3.426 ± 0.003

(SD: 0.770)
2.539 ± 0.003

(SD: 0.692)
1.881 ± 0.004

(SD: 0.992)

OE2
3.122 ± 0.002

(SD: 0.346)
3.402 ± 0.003

(SD: 0.730)
3.122 ± 0.002

(SD: 0.346)
1.826 ± 0.004

(SD: 1.039)

OE
4.041 ± 0.003

(SD: 0.674)
3.461 ± 0.003

(SD: 0.735)
3.413 ± 0.003

(SD: 0.676)
3.461 ± 0.003

(SD: 0.735)

Total
(no OG)

10.743 ± 0.006
(SD: 0.952)

10.289 ± 0.008
(SD: 1.294)

9.074 ± 0.006
(SD: 1.027)

7.168 ± 0.009
(SD: 1.613)

Total
11.137 ± 0.008

(SD: 1.098)
11.029 ± 0.010

(SD: 1.444)
9.314 ± 0.007

(SD: 1.122)
7.907 ± 0.011

(SD: 1.736)

RSRSTSTP

H2O + protein + peptide H2O + protein

atom bound free bound free

OG
0.978 ± 0.003

(SD: 0.627)
1.191 ± 0.002

(SD: 0.623)
0.975 ± 0.003

(SD: 0.628)
1.173 ± 0.002

(SD: 0.629)

TABLE 3.3: Mean number (#) of hydrogen bonds of each oxy-
gen atom in the serine/phosphoserine side chains of the RSRST-
STP/RSRSTpSTP peptides in the bound (monomer simulation) and
free state. Columns two and three termed H2O + protein + peptide
(free: H2O + peptide) list the counts of hydrogen bonds between the
oxygen atoms of (phospho)serine listed in the first column from the
left and atoms from the surrounding water, the protein and the rest of
the peptide (free: water and peptide). Columns four and five labeled
H2O + protein (free: H2O) contain the counts of hydrogen bonds
without the ones connecting the oxygen atoms to the peptide itself.

The tables were taken from ref. [32].
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RSRSTpSTP (26 pairs)

Residue pair Occupancy [%]

TYR133-OH – SP2259-OE2 99.99
ARG132-NH1 – SP2259-OE1 99.91
ARG132-NH2 – SP2259-OE2 99.17
ASN178-OD1 – THR260-N 98.23
ARG57-NH2 – SP2259-OE1 97.31
ARG57-NH1 – SP2259-OE 96.11
ASN229-ND2 – THR258-O 83.71
ASN178-ND2 – THR260-O 66.00
ASN229-OD1 – THR258-N 48.12
TRP233-NE1 – SER257-OG 39.83
LYS50-NZ – PRO261-OXT 39.25

LYS50-NZ – PRO261-O 37.74
LYS125-NZ – PRO261-OXT 37.24

LYS125-NZ – PRO261-O 34.88
ARG57-NH1 – SP2259-OE1 34.41

GLU185-OE1 – ARG254-NH2 31.68
GLU185-OE2 – ARG254-NH2 31.09

LYS125-NZ – THR260-OG1 29.84
LYS125-NZ – THR260-O 28.53

ASN178-OD1 – THR260-OG1 27.03
ARG132-NH1 – SP2259-OE2 26.80
GLU185-OE2 – ARG254-NE 23.47
GLU185-OE1 – ARG254-NE 21.38

LYS50-NZ – SP2259-OE 18.23
ASN178-ND2 – THR260-OG1 15.58
ASN229-OD1 – SER257-OG 11.10

RSRSTSTP (20 pairs)

Residue pair Occupancy [%]

ASN229-ND2 – THR258-O 86.86
ASN229-OD1 – THR258-N 75.79
ASN178-OD1 – THR260-N 74.06
LYS50-NZ – PRO261-OXT 69.97

LYS50-NZ – PRO261-O 66.16
TRP233-NE1 – SER257-OG 43.83
LYS125-NZ – THR260-OG1 39.35
ASN178-ND2 – THR260-O 38.32

ASN178-ND2 – THR260-OG1 37.01
GLU185-OE1 – SER255-OG 28.99
ARG132-NH1 – SER259-OG 28.19

LYS125-NZ – PRO261-O 24.68
GLU185-OE2 – SER255-OG 23.05
GLU185-OE2 – SER257-OG 20.75
GLU185-OE2 – SER257-N 20.63

LYS125-NZ – PRO261-OXT 17.08
GLU185-OE2 – ARG256-N 16.44
GLU185-OE1 – SER257-OG 13.80
GLU185-OE1 – SER257-N 13.53
LYS125-NZ – THR260-O 13.08

TABLE 3.4: Percent of hydrogen-bond occupancies for hydrogen
bonds between 14-3-3η monomers and RSRSTSTP/RSRSTpSTP pep-
tides, which exist in more than 10 % of all simulation frames. The first
residue belongs to the protein and the second one to the peptide. The

tables were taken from ref. [32].
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FIGURE 3.3: Hydrogen bonds present in more than 10 % of all frames
(white = no hydrogen bond, blue = hydrogen bond) between a 14-3-
3η monomer and the RSRSTSTP (top) and RSRSTpSTP (bottom) pep-
tides in a monomer simulation. The figure was taken from ref. [32].

bonds, the effect is even more pronounced (∆# = 1.406 ± 0.019, d = 0.96 with OG
and ∆# = 1.906 ± 0.015, d = 1.41 without OG). Thus, the phosphate is energetically
better coordinated in the bound state than in the free state. Also three of the four very
close contacts (< 2 Å) between the protein and the RSRSTpSTP peptide are formed
as strong salt bridges between a charged protein residue and the phosphoserine.

For the unphosphorylated RSRSTSTP peptide one can only analyze the OG atom
of the serine side chain. Its coordination in the free state is clearly stronger than in
the bound state. Also, its hydrogen-bonding pattern shows more variability (high-
est occupancy is around 87 %) than for the phosphorylated peptide where multiple
hydrogen bonds involving mostly phosphoserine exist for close to 100 % of the time
(see table 3.4). The same holds true for the 14-3-3η dimer binding a single RSRST-
STP/RSRSTpSTP peptide (see table A.3). The representative snapshot of the bound
RSRSTSTP peptide in Fig. 3.2 also supports these findings. In that figure, the serine
side chain is trying to orient towards the surrounding water instead of binding to a
14-3-3η residue. The same also applies to the 14-3-3η dimer binding the RSRSTSTP
and RSRSTpSTP peptides (see tables A.3, A.4 and A.5). Interestingly, the interaction
between Asp178 of the protein and the backbone of peptide residue Thr260 is much
tighter and more stable when the phosphorylated peptide rather than the unphos-
phorylated RSRSTSTP peptide is bound either to the 14-3-3η monomer (see tables 3.2
and 3.4) or to the 14-3-3η dimer (compare tables A.6 and A.3). The stronger contacts
formed by phosphorylated peptides are thus not only due to the direct interactions
of the phosphate with charged protein residues but also involve further hydrogen
bonds/contacts.

When the 14-3-3η monomer is instead bound to the RLYHSLP and RLYHpSLP
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FIGURE 3.4: Root mean square fluctuations (RMSFs) of the residues
in the free 14-3-3η monomer and when bound to the RSRSTSTP and
RSRSTpSTP peptides. The helices of the monomer are indicated as
colored bars at the bottom of the plot. The figure was taken from

ref. [32].

peptides, one observes a very similar coordination of the phosphate group in the
bound and free states (the effect is much stronger here, see table A.1). Yet the hydro-
gen bonds are more variable for the phosphorylated RLYHpSLP peptide than for the
motif 1 peptide RSRSTpSTP (see table A.2). A particularly noteworthy interaction
is that between Asp229 of the 14-3-3η monomer and His6 of the peptide, which is
at position +1 from the serine/phosphoserine. This tight interaction seems to pull
the entire peptide chain away from the basic pocket that usually accommodates the
phosphate group, as well as the side chain of the serine. This effect explains the
reduced hydrogen-bond occupancy of the phosphate group but could also further
reduce the binding affinity of the unphosphorylated peptide, because all interactions
with the binding pocket are reduced in favor of this single interaction.

Next we investigated the contacts between peptide residues next to phospho-
serine and protein residues. Interestingly, such contacts mostly involved backbone
atoms of these peptide residues (except for His6 in the RLYHSLP/RLYHpSLP pep-
tides). This matches the experimental findings that motif 1 and 2 peptides do not
have preferred amino acids at positions -1 and +1 next to the phosphorylated residue.

In the simulation of the 14-3-3η monomer with phosphorylated RSRSTpSTP pep-
tide and the one of the dimer with the same peptide we noticed interactions between
Arg254 and Arg256 of the peptide and the phosphate group of pSer259 (combined
in around 58 % of frames). Similar interactions were formed between Arg3 and the
phosphate of pSer7 in the simulations of a 14-3-3η monomer with the phosphory-
lated RLYHSLP peptide (in around 78 % of frames). These interactions led to a nearly
completely closed positively charged pocket that shields the phosphoserine from
the water and leads to an even better coordination of the phosphate oxygen atoms.
No such interaction with the respective serine side chain was found in simulations
where an unphosphorylated peptide was bound to 14-3-3η. In order to study how
peptide binding affects the stability of the 14-3-3η monomer we then performed an
RMSF analysis of the trajectories. Fig. 3.4 shows that the binding of peptides did not
notably influence the fluctuations of the 14-3-3η monomer. A small difference can be
seen for residues 166 to 233 when binding the phosphorylated RSRSTpSTP peptide
(blue curve) whereas for the monomer binding the same peptide in a dimer simu-
lation with a single peptide (not shown) only residues 204 to 233 showed slightly
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reduced fluctuations. The second monomer in the dimer simulation showed no dif-
ferences between binding no peptide, RSRSTSTP, or RSRSTpSTP, respectively. For
the 14-3-3η monomer binding either the RLYHSLP or the RLYHpSLP peptides no
differences were found when compared to each other or to the monomer without
peptides. The 14-3-3η dimer bound to two peptides also showed hardly any differ-
ence no matter if both peptides were phosphorylated, unphosphorylated, or mixed.

3.3.2 Principal Component Analysis (PCA)

Next we wanted to find out if the binding of the peptides has an influence on the
internal low-frequency modes of the 14-3-3η dimer. For this we performed a PCA
analysis on the three concatenated simulations of each system. As baseline we used
the main modes of the 14-3-3η dimer without bound peptides. As expected, the
first mode is an open-closing movement of the two monomers towards each other
without twisting, where the tips of the monomers (at the opposite ends of the dimer
interface) move closer to each other when closing and away from each other when
opening. The movement of the monomer tips is quite pronounced (≈ 15 Å for each
tip). Similar first modes were obtained when the dimer is bound at the same time to
the RSRSTpSTP and HRYpSTP peptides or to the RSRSTSTP and HRYSTP peptides.
All other cases include strong twisting in their first modes.

The second PCA mode is a twisting movement of the two monomers that is
coupled to a small opening-closing movement. The opening happens when the
monomers twist left, the closing when the monomers twist right. Similar second
modes are found in all other dimer simulations no matter which peptides are bound.
The third PCA mode is an alternating opening and closing of the two monomers
where one monomer is open while the other one is closed. Similar third modes were
found when the RSRSTpSTP and HRYpSTP peptides or the RSRSTSTP and HRYSTP
peptides simultaneously bind to the dimer, when the dimer binds to a single RSRST-
STP peptide and when the RSRSTSTP and HRYpSTP peptides simultaneously bind
to the dimer, though in these cases some twisting movement can be seen as well.
The third PCA modes of all other simulations differ from this one and likewise from
each other.

Overall the principal components of the 14-3-3η dimer with both peptides either
both phosphorylated or both unphosphosporylated at the same time resemble most
strongly the ones of the dimer without peptides. The main principal components
for dimers bound to a single peptide or when bound to two peptides with differ-
ing phosphorylation state differ strongly from the other cases. This shows that the
binding of peptides has a strong influence on the dynamics of the full dimer.

3.3.3 Alchemical free energy simulations

The results of the unbiased MD simulations suggest that the phosphorylated pep-
tides are much more tightly coordinated in the 14-3-3 binding groove than in the
unphosphorylated peptides. Additionally, the phosphates were better coordinated
inside the binding pocket than in bulk water. On the other hand, the side-chain
oxygen atoms of the serines in the unphosphorylated peptides were better coordi-
nated in the free state compared to the bound state. Hence, we set out to quantify
the binding free energy differences between the phosphorylated and unphosphory-
lated forms of three peptides bound to the 14-3-3η monomer with the alchemical
transformation method. We analyzed three transformations of the RSRSTSTP to the
RSRSTpSTP peptide, of the RSRSTSTPNV to the RSRSTpSTPNV peptide, and of the
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exp. ∆Gbind ∆∆Gbind

peptide S pS exp. alch. sim. (SP1) alch. sim. (SP2)

RSRSTpSTP > −24.55† −35.92† < −11.37 −14.84 ± 5.27 −41.32 ± 6.42
RSRSTpSTPNV −39.11 ± 4.14

RLYHpSLP −42.39‡ −50.80 ± 7.32

TABLE 3.5: Binding free energy differences in kJ mol−1 between phos-
phorylated/unphosphorylated peptides binding to the 14-3-3η do-
main obtained by alchemical transformations in comparison with ex-
periment at 298.15 K. Values labeled by †were calculated from exper-
imental KI values and those by ‡ were calculated from experimental

KD values by Yaffe et al. [104]. The table was taken from ref. [32].

RLYHSLP to the RLYHpSLP peptide, respectively. All transformations were also
performed in the backward direction in order to obtain improved convergence.

At physiological pH = 7.2, the phosphate group exists predominantly in the
dibasic form (–OPO−2

3 , further called SP2) and not in the monobasic form (–OHPO−2
2 ,

further called SP1) (phosphoserine pKa = 5.6[356]). Therefore, we used the dibasic
form in most of our simulations but tested also the monobasic form for the RSRST-
STP to RSRSTpSTP transformation.

The results are listed in table 3.5. The experimental value for the absolute binding
free energy of the unphosphorylated RSRSTSTP peptide represents a lower margin
to the real binding free energy, since the value could not be precisely determined
in the experimental assay [104]. Therefore it is likely much less negative and the
binding is therefore much weaker than the binding to the phosphorylated RSRSTp-
STP peptide. To our knowledge there exist no experimental binding free energies
or binding constants for unphosphorylated motif I, II and III peptides [29, 338].
The only available binding data for unphosphorylated peptides binding to 14-3-3
proteins exist for a range of peptides whose sequences are unrelated to the known
14-3-3 binding motifs [103, 110]. Thus, one can expect that the binding free energy
for the unphosphorylated peptides studied here is close to zero. The lower experi-
mental limit of the equilibrium binding constant is 50 µmol (for RSRSTSTP binding
14-3-3η) [104] resulting in a minimum binding free energy of −24.55 kJ mol−1.

All binding free energy differences reported in this study are defined as the bind-
ing free energy of the phosphorylated peptide minus the one of the unphosphory-
lated peptide ∆∆Gbind = ∆Gphosphorylated

bind − ∆Gunphosphorylated
bind . We will discuss the

implications of the reported values in the discussion section.

3.4 Discussion

The aim of this work was to find out mechanistically why the phosphorylated forms
of 14-3-3 binding peptides bind stronger to 14-3-3 domains than their unphospho-
rylated counterparts. We selected several systems for which thermodynamic and
structural data are available. Thus, we simulated the 14-3-3η monomer with the
RSRSTSTP/RSRSTpSTP and RLHYSLP/RLYHpSLP peptides. Additionally we stud-
ied the 14-3-3η dimer binding a single RSRSTSTP/RSRSTpSTP peptide and the dimer
binding two peptides at the same time (RSRSTSTP + HRYSTP, RSRSTSTP + HRYp-
STP, RSRSTpSTP + HRYSTP, RSRSTpSTP + HRYpSTP). Our results suggest that there
exist (if at all) only small differences between a single peptide binding to a 14-3-3η
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monomer or to a dimer in terms of the coordination of the phosphate oxygens, the
hydrogen bonds, and the contacts between the peptide and the protein, no matter
whether the peptide is phosphorylated or not. However, the simulations provide a
clear picture why the complex between the 14-3-3η domain (no matter if as monomer
or dimer) and the phosphorylated RSRSTpSTP peptide is much more favorable than
with the unphosphorylated RSRSTSTP peptide. The main reasons are the strong
interactions of the phosphate group with charged residues of the 14-3-3η domain,
the strengthening of additional hydrogen bonds due to close peptide-protein con-
tacts of the phosphorylated RSRSTpSTP peptide, and the better coordination of the
phosphoserine side chain, as well as the weaker coordination of the serine side chain
in the bound state compared to the free state. Similar arguments apply to the case
when either a phosphorylated RLYHpSLP peptide or an unphosphorylated RLYH-
SLP peptide (motif 2) binds to a 14-3-3η monomer. We also observed contacts be-
tween the arginines at positions -3, -4 and -5 next to the phosphoserine and the phos-
phate group that likely enhance its coordination in the bound state. This would ex-
plain why the most common binding motifs almost always contain arginine residues
at positions -3 (motif 1) and -4 (motif 2) [104–106]. The same effect will likely also
exist for motif 3 peptides that also usually contain an arginine at position -3 from the
phosphoserine/phosphothreonine [105].

We performed simulations of all systems three times over 1 µs each. As can be
seen from the hydrogen-bonding patterns (compare Fig. 3.3, A.3, A.4, A.5, A.6) there
exist certain differences between repeated simulations. Even hydrogen bonds that
include atoms from the phosphoserine residue vary to some extent. Overall this
suggests that 1 µs long simulations are too short to sample all important dynamics
of the systems. By integrating the results from three independent simulations, we
suggest that our findings are an approximation to the real system properties. This is
even more relevant for the simulations of the 14-3-3η dimers, since for these many
more interactions and also additional dimer movements play a role in the system
dynamics.

The binding free energy differences computed using the alchemical free energy
transformation method are more negative than the experimental binding free ener-
gies for the phosphorylated peptides. Even if the unphosphorylated peptides had
absolute binding free energies of zero (so no binding at all, which could be ex-
pected since these were too small to be measured experimentally [104, 338, 339]),
the binding free energy difference could not be more negative than the absolute
values for the phosphorylated peptides. If the binding free energies of the un-
phosphorylated peptides are indeed close to zero, the absolute free energies of the
phosphorylated peptides would lie in the error range of the results from the al-
chemical simulations we report here. Reassuringly, the difference computed for
the comparison of RSRSTpSTP/RSRSTSTP and RLYHpSLP/RLYHSLP transforma-
tions (9.48 kJ mol−1) compares well to the difference of the experimental absolute
free energies of the RSRSTpSTP and RLYHpSLP peptides (6.47 kJ mol−1). Possi-
bly, the interactions with the phosphate residue are slightly overestimated in the
CHARMM36m force field [192].

Cooperative effects among the two binding sites of 14-3-3 dimers have been sug-
gested based on experimental observations [104, 339, 341]. We tried to analyze if
this cooperativity results from entropic effects of the peptide chain or if it stems
from some interactions inside the 14-3-3 dimer. However, no particular differences
were observed in the contacts between the peptides and the 14-3-3η monomers in
simulations of 14-3-3η dimers with two bound peptides at the same time. When the
first bound peptide was the phosphorylated RSRSTpSTP, it did not matter if there
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was a second peptide and what phosphorylation status the second peptide had. The
same result was found for HRYpSTP as the first peptide. Hence, this specific result
does not support a model where intra-dimer interactions give rise to cooperativity.

A hint to an explanation of the cooperativity between the binding of two peptides
in addition to entropic effects of the peptide could be the following: The results from
the principal component analysis of the various 14-3-3η dimer simulations show
a substantial influence of the peptide binding on the low frequency modes of the
dimer. The binding of a single peptide, no matter if phosphorylated or not, as well
as of two peptides with different phosphorylation states alters dimer dynamics com-
pared to what is observed when no peptide is bound. Instead, when two peptides
with the same phosphorylation state are bound then the normal dimer dynamics
were observed. Thus, the internal conformational dynamics of the dimer are left un-
changed. This could explain to some extent why it is favorable for the 14-3-3η dimer
to bind two phosphorylated peptides at the same time and therefore the cooperativ-
ity of the binding.

In summary, we found that studying complexes of 14-3-3 domains with phos-
phorylated vs. non-phosphorylated peptides by means of molecular dynamics sim-
ulations is quite challenging. One µs simulations appear not fully converged in
terms of conformational dynamics, since repeated simulations show slightly differ-
ent binding behavior of the peptides. Alchemical free energy calculations involving
doubly charged groups such as phosphate remain challenging even if one applies
tricks such as including a mirror peptide where the perturbation is performed in the
opposite direction or corrections for electrostatic effects. Nonetheless, a clear picture
emerged from our simulations whereby the 14-3-3 binding groove provides a unique
superior coordination for phosphorylated peptides compared to their non-modified
counterparts highlighting biomolecular recognition.

3.5 Acknowledgement

This project was supported by Deutsche Forschungsgemeinschaft grant He3875/14-
1.

Molecular graphics and analyses were performed with UCSF Chimera [343], de-
veloped by the Resource for Biocomputing, Visualization, and Informatics at the
University of California, San Francisco, with support from NIH P41-GM103311.

Special thanks go to V. Gapsys for providing hybrid structures for phosphory-
lated serines for the CHARMM36m force field to be used in the PMX [267, 346]
program.

3.6 Supporting Information

The supporting information is shown in the appendix of this thesis in chapter A.



58
Chapter 3. How peptide phosphorylation affects its interaction with 14-3-3η

domains

3.7 Addendum

3.7.1 Additional analysis which did not end up in the manuscript - Residue
couplings inside and between monomers

Experimentally, it has been observed that binding of a long peptide to both binding
sites of a 14-3-3 dimer at the same time has a stronger binding affinity than bind-
ing to a single site [104, 339–341]. We posed the question whether there exists con-
formational coupling between the two monomer units and how this is affected by
the phosphorylation status of the peptide. The residue correlations were calcu-
lated using the “corr” function of the gRINN tool [357]. Based on the interaction
energies between all residues the tool first calculates the interaction energy corre-
lation between two pairs of residues using only interactions which have a strength
of 1 kcal mol−1 or stronger. Additionally, a correlation cutoff of 0.4 was used. This
new information is then used to calculate the residue correlation which is a sum of
all interaction energy correlations which include the specific residue. By way of de-
sign, the residue correlation value can be larger than 1 (since it is a sum of multiple
interaction energy correlations each having a value in the range 0 to 1). As input
all non-covalent interaction energies (interaction energies between non-neighboring
residues) were provided. The whole interaction energy analysis was done similar to
Kong and Karplus, 2009 [358]. We tested different numbers of simulations frames
for the analysis and in the end we used every 20th frame which showed a converged
result in all cases. We analyzed each of the three repeats of every simulation on its
own and took the mean over all correlations afterwards.

The 14-3-3η monomer binding the phosphorylated RSRSTpSTP peptide shows
an overall higher total correlation between the monomer residues (199.96) as the
monomer binding the unphosphorylated RSRSTSTP peptide (173.32) and more residues
are correlated as can be seen in the upper plots of Fig. 3.5. We performed the same
analysis with a monomer without a bound peptide and did not obtain any correla-
tions. The residue LYS125 shows the strongest correlations in the case of a monomer
binding the RSRSTSTP peptide, these are much weaker when binding a phosphory-
lated peptide. This residue mostly binds the side chain of the threonine at position
+1 of the serine/phosphoserine. Another residue which has strong correlations in
both cases is LYS50. It binds the negative oxygen atoms of the peptides C-terminal
(here the proline at position +2 of the serine/phosphoserine in the peptide.) which
could thus be an artifact due to a short peptide and would maybe not be this present
when simulating the system with longer peptides. This could also be an additional
reason why hardly any unbinding of the unphosphorylated peptides in the simula-
tions is observed.

The corresponding clustered graphs (Fig. 3.5 bottom) clearly display one big
cluster of residues (which are all interconnected) for the unphosphorylated and the
phosphorylated case as well. These clusters are of similar size (phosphorylated: 32
residues, unphosphorylated: 27 residues) and contain ten residues which are present
in both clusters. Eight of them are binding pocket residues (LYS50, ARG57, LYS125,
ARG132, GLU136, LEU177, ASN178, GLU185) and the other two (PRO36, ASP41)
lie on the connection of helices two and three of the 14-3-3η monomer. Both clus-
ters also include two more binding interface residues each which differ in both cases
(phosphorylated: ARG61, TYR130; unphosphorylated: ASP129, TYR133). The clus-
ter in the phosphorylated case also includes a few residues (ARG4, ARG12, GLU15,
GLU18) which sit in the first helix of the 14-3-3η monomer and are mostly inter-
acting with residues sitting in the helices two and three (ALA24, GLU32, LEU37,
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FIGURE 3.5: Top: Residue correlation in the 14-3-3η monomer when
bound to the RSRSTSTP/RSRSTpSTP peptides. Bottom: Clustered
residue correlation in the 14-3-3η monomer when bound to the

RSRSTSTP/RSRSTpSTP peptides using markov clustering.
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FIGURE 3.6: Difference between residue correlations in the 14-3-3η
monomer with RSRSTSTP and RSRSpSTP peptides. Red/positive
values mean that the correlations are higher in the simulations with
the phosphorylated RSRSTpSTP and blue/negative values that the
correlations are higher in the simulations with the unphosphorylated

RSRSTSTP peptide.
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GLU40, LEU44 and PRO36 and ASP41 which have been named before). Thus the
interconnection between the helices one and two with the binding pocket is stronger
than in the case of a bound unphosphorylated peptide. All other differences be-
tween the clusters are residues far away from the dimer interface. A few clusters
are completely the same in both cases. These are mostly clusters of residues which
are either inside the same helix or coupling two helices to each other. So they are
relevant for the stability of the tertiary structure of the 14-3-3η monomer. One of the
clusters could be interesting for a further analysis. It contains the same residues in
both cases (ARG19, TYR20, ASP21, ARG56, GLU92). These are all dimer interface
residues. In the case of a 14-3-3η monomer binding the phosphorylated RSRSTpSTP
peptide the residues in this cluster show some correlations with residues in the big
cluster described before which is not the case when binding the unphosphorylated
RSRSTSTP peptide. This, together with the stronger interaction of helices one and
two with the binding pocket, could be a hint of a relevant connection between the
binding pocket and the dimer interface (which includes many residues of helices
one and two) when binding phosphorylated peptides which does not exist, at least
this strong, when binding unphosphorylated peptides. This has to be investigated
further.

We also analyzed the residue correlations of a 14-3-3η dimer binding an unphos-
phorylated RSRSTSTP or a phosphorylated RSRSTpSTP peptide. Here the dimer
with the RSRSTSTP peptide (329.62) has an overall higher total correlation than the
dimer binding the RSRSTpSTP peptide (230.90) which is the opposite of the results
we obtained for the monomers binding the peptides. The same holds true when
we compare the total correlation only inside the monomer which actually binds the
peptide in these dimer simulations (with RSRSTSTP peptide: 110.69, with RSRSTp-
STP peptide: 83.10), which is further called monomer A. Comparing the two cases
further we see that there exist only weak correlations that include binding pocket
residues when binding a unphosphorylated RSRSTSTP peptide compared to when
binding a phosphorylated RSRSTpSTP peptide.

The residue correlations which we obtained in simulations of a dimer with a
single RSRSTSTP peptide are very different to the ones we obtained for a monomer
with the RSRSTSTP peptide. While LYS125 was the strongest correlated residue in
the latter, this residue has nearly no correlations in the former. Additionally, for the
dimer GLU90 has the strongest correlations while it has very few weak correlations
for the monomer. These results would suggest that there exist no single specific
binding mode for the unphosphorylated RSRSTSTP peptide with 14-3-3η.

While for simulations where an unphosphorylated RSRSTSTP peptide was bound
the monomer and dimer simulations lead to totally different residue correlations,
simulations of a 14-3-3η dimer binding a single phosphorylated RSRSTpSTP pep-
tide are very similar to simulations of a 14-3-3η monomer binding the same peptide
even though the correlations inside the monomer which binds the peptide (further
called monomer A) are overall less and weaker. The opposite is the case for simu-
lations of a 14-3-3η dimer binding two phosphorylated peptides (RSRSTpSTP and
HRYpSTP) at the same time. Here the correlations inside the monomer binding the
RSRSTpSTP peptide are similar but much stronger than in the case of a monomer
binding the RSRSTpSTP peptide and also new residue correlations are found which
do not exist in the latter case. Interestingly strong correlations between ASP129 and
other binding pocket residues (e.g. LYS50, ARG57 and LYS125) are found which are
not present when only a single phosphorylated RSRSTpSTP peptide is bound no
matter if to a dimer or a monomer.

In both cases where a dimer with a single peptide was simulated correlations
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between both monomers are found. For the dimer binding a single phosphorylated
RSRSTpSTP peptide these are most strongly between the binding pocket residues of
the monomer binding the peptide (further called monomer A) and residues in the
first and second helix of the other monomer (further called monomer B) but these
are no dimer interface residues. Another cluster of correlations exists between dimer
interface residues of monomer A and B and further residues in the second last he-
lix of monomer B. A similar cluster is found for the dimer binding the RSRSTSTP
peptide which is also the biggest cluster in that case. The binding pocket residues of
monomer A are mostly found in one cluster in the case of a dimer binding RSRSTp-
STP which also includes residues of the helices one and two and of the connection
between helices two and three of monomer B. Even more binding pocket residues of
monomer A in a single cluster are found for the dimer binding RSRSTSTP but their
correlations are much weaker than in the former case and there are only very weak
correlations with residues of monomer B (which are not even in the same cluster).

For the dimer binding the two phosphorylated peptides RSRSTpSTP and HRYp-
STP the picture is different when compared to the dimer binding a single RSRSTp-
STP peptide. In the former case there exists a cluster of correlations (the main cluster
here) between the binding pocket of the monomer binding the RSRSTpSTP peptide
(further called monomer A), the dimer interface of monomer A and the binding
pocket of the monomer binding the HRYpSTP peptide (further called monomer B)
even though the correlations inside the binding pocket of monomer A are much
stronger than the ones inside the binding pocket of monomer B or between the bind-
ing pockets or with the dimer interface of monomer A. There exists another cluster
with residues in the dimer interface of monomer B which is not completely isolated
but has correlations with the binding pocket residues of monomer B.

When studying the residue correlations for simulations of a 14-3-3η dimer bind-
ing the unphosphorylated RSRSTSTP (bound at monomer A) and HRYSTP (bound
at monomer B) peptides at the same time one huge cluster is found which includes
binding pocket residues of monomer A and B and dimer interface residues as well.
The correlations inside the binding pockets are much weaker than when binding the
two phosphorylated peptides. The correlations between the two binding pockets are
similar in strength. The correlations of the binding pockets with the binding inter-
faces are weak and there is no evidence for a stronger interaction with one side of
the dimer interface than with the other

These findings suggest that the cooperativity between the binding pockets which
is found in experiment when binding two phosphorylated peptides [104, 339, 341]
is maybe provoked by an information transfer from the binding pocket of monomer
A over the dimer interface at helices one and two of monomer A to the binding
pocket of monomer B but not over the dimer interface at helices one and two of
monomer B. This would also fit into the picture of a gatekeeping mechanism which
was found for this system, where the RSRSTpSTP peptide is the gatekeeper for the
HRYpSTP peptide due to which the strength of the interaction between the HRYpSTP
peptide and the 14-3-3 dimer increases [340]. The mechanism seems to be weak as
the strongest correlations were found inside each binding pocket. When binding
two unphosphorylated peptides there was no evidence found for such a specific
information transfer. This could be a hint that specifically the binding of phosphates
is relevant to start this.

Overall it is clear that simulations of a 14-3-3η monomer binding peptides are no
good substitutes for simulations of 14-3-3η dimers binding the same peptides even
though this would greatly reduce the needed computation time.
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This part did not end up in the manuscript because we realized deviations be-
tween taking the mean of correlations after analyzing the three simulations on their
own and directly analyzing a combined trajectory. The reason is likely the cutoff of
1 kcal mol−1 when calculating the interaction energy correlation. When analyzing
a singly trajectory it can occur that other residue pairs fall into the cutoff as when
analyzing the combined trajectory. And since the results were not very conclusive,
we did not include them in the manuscript.
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FIGURE 3.7: Residue correlation in the 14-3-3η monomer and dimer
when bound to one or two peptides.
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FIGURE 3.8: Clustered residue correlation in the 14-3-3η dimer when
bound to one or two peptides using Markov clustering.
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Chapter 4

How peptides bind to PDZ
domains

This chapter introduces our approaches on understanding the interaction of PDZ
domains with phosphorylated and unphosphorylated peptides and what influences
specific residues in the PDZ domains have on these interactions. My contributions
were the choice of the systems to study and the simulations to perform, performing
the simulations, analyzing the data and writing the first draft of the manuscript.
In the following sections the manuscript is presented. The abstract is given in the
introduction chapter 1.

4.1 Introduction

PDZ (PSD-95/Discs-large/ZO-1) [117] domains are highly abundant protein mod-
ules involved in many protein-protein interactions and play an important role in
the assembly of supramolecular complexes and signal transduction [120, 122–126].
PDZ domains usually bind to the C-terminal ends of their partner proteins via the
three main sequence motifs X[S/T]XΦ-COOH (motif 1), XΦXΦ-COOH (motif 2) and
XEDXΦ-COOH (motif 3) [29] where X means any residue and Φ means a hydropho-
bic residue. The interactions are often controlled by phosphorylation of the peptide
at the serine or threonine residue of motif 1.

Previous in silico studies have already adressed the binding of peptides to PDZ
domains. Blöchliger et al. studied the binding of the Acetyl-EQVSAV peptide to the
second PDZ domain of protein tyrosine phosphatase 1E [25]. Their results showed
that non-native salt bridges helped in kinetically stabilizing the encounter com-
plex during the binding and they suggested that binding of charged peptides to
PDZ domain can be steered by non-native interactions. The allosteric effects of
the same interaction on the structure of the PDZ domain were studied by Morra
et al. [359]. They found that in PDZ2 a dynamic and energetic reorganization takes
place when a ligand binds. Panel et al. studied the binding of C-terminal peptides
to the TIAM1 PDZ domain by calculating the relative binding free energy differ-
ences using alchemical simulations and additive and polarizable force fields [360]
and found that alchemical simulations of C-terminal peptides bindign to the TIAM1
PDZ2 domain can reproduce experimental results within an error range between
1 − 3 kcal mol−1 ≈ 4 − 13 kJ mol−1 when using additive force fields. Harish et al.
designed and converted a low-affinity tetrapeptide to a tight binding one and stud-
ied its interactions with the PSMD9 PDZ domain by docking, molecular dynamics
simulations and MMPBSA calculations [361]. They found a so far unknown occu-
pancy for cysteine at the P−2 position that increases the affinity of the peptide to the
PDZ domain.
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Here, in contrast to Blöchliger et al. we were not only interested in the binding
of the EQVSAV peptide to the PDZ domain but how the binding of a PDZ domain
to the C-terminus of a protein is affected by mutation of the central residue or by the
phosphorylation of this terminal peptide. For this reason we studied the binding
of a six amino acid long peptide derived from the C-terminus of the rap guanine
nucleotide exchange factor 6 (RAPGEF6, other names: PDZ-GEF2, RA-GEF2) to the
second PDZ domain of human tyrosine-protein phosphatase non-receptor type 13
(PTPN13, other names: hPTP1E, PTP-BAS, PTPL1), which is the same system that
was studied by Blöchliger et al. [25]. The peptide has the sequence EQVSAVCOO−

and can be phosphorylated at the serine at position -2 from the C terminus. Our plain
molecular dynamics simulations showed that the of the EQVEAVCOO− peptide and
the phosphate group of the phosphorylated EQVpSAVCOO− peptide bind strongly to
ARG79 of hPTP1E. Thus, we additionally studied the influence of this residue on the
binding of the unphosphorylated and phosphorylated peptides to the hPTP1E PDZ2
domain. ARG79 was also shown to play an important role for peptide binding by
Blöchliger et al. [25]. To test this in simulations, we mutated the arginine to alanine
and re-performed our simulations in order to study the importance of this specific
residue interaction.

We also wanted to study if the EQVSAVCOO− peptide binds in a similar or dif-
ferent manner to other PDZ domains, especially if they have no arginine at the po-
sition similar to ARG79 in hPTP1E PDZ2. Using the BioGRID interaction database
v3.5 [163] and the STRING database [164] we found the first PDZ domain of the
membrane-associated guanylate kinase, WW and PDZ domain-containing protein 1
(MAGI1, other names: AIP3, BAP1, WWP3) and used it as our test case. This protein
was shown to bind RAPGEF6 as well as the rap guanine nucleotide exchange fac-
tor 2 (RAPGEF2, other names: PDZ-GEF1, CNrasGEF, nRapGEP, RA-GEF1) which
also contains a C terminus consisting of the sequence EQVSAVCOO− . Furthermore,
the MAGI1 PDZ1 domain does not contain a lysine at the position equivalent to
LYS72 in hPTP1E PDZ2 that may also form multiple interactions with glutamate
and phosphoserine. By introducing the mutation Q85R in MAGI1 PDZ1 (position
85 in MAGI1 PDZ1 is equivalent to position 79 in hPTP1E PDZ2), we then studied
all four possible combinations of arginine and lysine being present or absent at these
specific positions.

We present results from a comprehensive series of plain MD simulations for com-
plexes of PDZ domains bound to the peptides EQVSAVCOO− , EQVEAVCOO− and
EQVpSAVCOO− . Also, we performed alchemical transformation simulations to ob-
tain binding free energy differences between the phosphorylated and unphospho-
rylated peptides as well as between the peptide with glutamate and the one with
serine. Additionally, we performed two parallel cascade selection molecular dy-
namics simulations to calculate the absolute binding free energy differences for the
EQVSAVCOO− and EQVpSAVCOO− peptides binding to the hPTP1E PDZ2 domain.

4.2 Materials and Methods

4.2.1 Structure preparation

When we started this project there was no crystal structure available for the MAGI1
PDZ1 domain binding the RA-GEF2 peptide. Thus another structure (PDB ID: 2KPL [362])
was used, where the MAGI1 PDZ1 domain binds a peptide from human papillo-
mavirus (HPV) E6. The first model from the set of NMR structures in the PDB-file
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was used as the starting conformation for the molecular dynamics (MD) simula-
tions. Afterwards the residues of the HPV E6 peptide were exchanged to the ones
of the RA-GEF2 peptide (EQVSAVCOO− , in the following we will skip the COO−

for ease of reading). Both the MAGI1 PDZ1 NMR structure (PDB ID: 2KPL [362])
as well as the X-ray diffraction structure for the second PDZ domain from human
PTP1E (hPTP1E) in complex with a RA-GEF2 peptide (PDB ID: 3LNY [363]) were
taken from the Protein Data Bank (PDB) (www.rcsb.org) [6, 7].

The protonation states of histidine residues were calculated using PROPKA3.0 [364,
365] as part of the PDB2PQR [366] webserver. They are different to the ones in the
crystal structure of 3LNY since the structure was determined at pH = 6.8, while the
experimental values [156] for the binding free energy were measured at pH = 7.2
which we wanted to reproduce in our simulations.

To perform alchemical free energy simulations for the change of phosphorylated
to unphosphorylated peptides or the opposite, we needed topologies and hybrid
structures that include the unphosphorylated and phosphorylated residue in a sin-
gle file (similar to our previous project [32]). Such files were kindly given to us
by V. Gapsys for the CHARMM36m force field [192] for the use in the PMX pro-
gram [267, 346]. This program incorporates a hybrid structure library and allows to
create topologies with hybrid structures.

Since we found that arginine located at position 79 of the hPTP1E PDZ2 domain
could have a strong influence on the binding of the phosphorylated peptide, we re-
placed this residue by alanine using the rotamers tool in UCSF Chimera [343] for
additional simulations and created a hPTP1E PDZ2 R79A structure. We also ex-
changed glutamine at position 85 to arginine of the MAGI1 PDZ1 domain to obtain
a MAGI1 PDZ1 Q85R structure. For the simulations with the EQVEAV peptides we
exchanged the serine in the RA-GEF2 peptide EQVSAV to glutamic acid using the
rotamers tool of UCSF Chimera [343]. For the simulations with the EQVpSAV pep-
tide we added the phosphate group to the serine side chain using the build structure
tool of UCSF Chimera [343].

4.2.2 Molecular dynamics (MD) simulation protocol

We followed the same plain MD simulations protocol as we used in our previous
study [32] but describe it here for completeness. All simulations in this project were
performed using the GROMACS [4] 2018.8 software package. The properties of the
protein and peptide atoms were provided by the CHARMM36m [192] force field
and we used the CHARMM-force-field-modified TIP3P [224] [190] water model for
the water molecules. We generated the hydrogen atoms with GROMACS internal
tool pdb2gmx. The simulations were performed using a time step of 2 fs and peri-
odic boundary conditions (PBCs). For the long-range electrostatic interactions the
particle-mesh-Ewald method [9] was used and we set the non-bonded interaction
cutoff to 12 Å. We used the LINCS [347] algorithm to constrain all bonds for our
alchemical simulations while for plain MD and PaCS-MD we constrained only the
bonds that involved hydrogen atoms. Additionally, we applied long range disper-
sion corrections for energy and pressure.

For the plain MD simulations a triclinic box was created such that the minimal
distance of every atom of the solute is at least 1.5 nm from the box edges resulting
in box dimensions of around 6.5 nm per side for the hPTP1E PDZ2 and the MAGI1
PDZ1 domain.

For the alchemical simulations with the “double system in a single box setup” [267]
a triclinic box was created such that the minimal distance of every atom of the solute

https://www.rcsb.org/
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is at least 2 nm away from the box edges resulting in a box size of around 13 nm x
7.5 nm x 7.5 nm. One side is much longer than the other two since the simulation
box contains two systems at the same time which have to be separated far enough
in order to make sure that interactions between the two are of negligible magnitude.

For the alchemical simulations where the bound and free states were studied in
separate boxes we created triclinic boxes with a size of around 6.9 nm x 6.9 nm x
6.9 nm for the bound and 5.2 nm x 5.2 nm x 5.2 nm for the free state.

For the parallel cascade selection molecular dynamics (PaCS-MD) simulations a
triclinic box with a size of around 8.5 nm x 8.5 nm x 14.1 nm was created. The z-
direction was set to a larger value because the binding pocket was aligned along this
direction in order to follow the dissociation of the protein and peptide mostly in this
direction.

For all simulations the system was first minimized for a maximum number of
50000 steps and an initial step size of 0.01 nm using steepest descent minimiza-
tion. It was stopped when the maximum force reached a convergence value of
5.0 kJmol−1nm−1. Afterwards the system was solvated in explicit water using the
TIP3P [224] water model and neutralized and ionized to a concentration of 150 mmol
NaCl (if not mentioned otherwise for a specific simulation) as it was also done in the
binding experiments of Toto et al. [156] for the binding between the hPTP1E PDZ2
domain and the EQVSAV peptide to which we wanted to compare our results. This
was followed by another energy minimization using the steepest descent method
for a maximum number of 50000 steps, an initial step size of 0.01 nm and a conver-
gence value of 500.0 kJmol−1nm−1 whereby the heavy protein and peptide atoms
were kept rigid using position restraints.

Next we thermalized the systems for 500 ps each at 100 K, then at 200 K and fi-
nally at 283 K (final temperature as in the experiment [156]) using the stochastic ve-
locity rescaling algorithm by Bussi et al. [239] with two temperature groups, one
for the protein and one for the rest, and a coupling time constant of 0.1 ps for both
groups. The system was then further equilibrated for another 500 ps in the NPT en-
semble. Here, a Berendsen barostat [238] with a time constant τp = 2 ps, an isother-
mal compressibility of 4.6× 10−5 bar−1 and reference pressure p = 1.0 bar was used.
Afterwards the contraints on the positions of the protein atoms were removed in
three steps (1000 to 100 to 10 to 0 kJ/mol/nm2) for 400 ps each, from this point the
pressure coupling was changed to a Parinello-Rahman barostat [250, 348] with time
constant τp = 5 ps and reference pressure p = 1.0 bar). In the last step all constraints
were released and the system was allowed to equilibrate freely. This creation and
equilibration protocol was implemented for all simulations.

Plain MD simulations

Unbiased production runs of 1 µs length were performed for all thirteen plain MD
simulations (hPTP1E PDZ2, hPTP1E PDZ2 R79A, MAGI1 PDZ1 and MAGI1 PDZ1
Q85R all with the unphosphorylated EQVSAV peptide, the phosphorylated EQVp-
SAV peptide (monobasic phosphoserine) and the EQVEAV peptide and hPTP1E
PDZ2 with the phosphorylated EQVpSAV peptide with dibasic phosphate). Snap-
shots of the trajectories were recorded every 10 ps. Since we observed unbinding
events for MAGI1 PDZ1 with the EQVEAV peptides and hPTP1E PDZ2 R79A with
the EQVEAV peptide and partial unbinding for MAGI1 PDZ1 with the EQVSAV
peptide as well as for MAGI1 PDZ1 Q85R with the EQVpSAV peptide we repeated
these simulations each once. The second simulation of hPTP1E PDZ2 R79A with the
EQVEAV peptide showed partial unbinding wherefore we repeated this once more.
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Alchemical free energy simulations

The general procedure of the alchemical free energy simulations was performed sim-
ilar to our previous work [32]. For the alchemical free energy simulations first an
unbiased production run of 20 ns was performed. Snapshots of the trajectories were
recorded every 10 ps. From this production we discarded the first 4 ns for further
equilibration purposes and initial structures for the alchemical transformation sim-
ulations were taken every 16 snapshots (160 ps) from the resulting equilibrium tra-
jectory. Afterwards alchemical transformation simulations were started from each
of these 100 starting structures for a simulation time of 1 ns each (if not stated other-
wise) where the coupling parameter λ was changed from 0 to 1 during the course of
the simulation. Because atoms are created and annihilated in these processes abrupt
changes of Lennard-Jones and Coulomb potentials can lead to poor convergence.
Therefore, a soft-core potential was used that removes the singularities in the poten-
tials. Every time step we saved how the Hamiltonian changed with respect to the
coupling parameter λ. The simulations were performed forward and backward, i. e.
a change of λ from 0 to 1 and from 1 to 0. This allowed to obtain a better converged
resulting binding free energy differences. We then combined the results using the
analysis tool of PMX [267]. With this the free energy difference can be calculated
via the Bennet acceptance ratio (BAR) [298], the Jarzynski equality [184], and/or the
Crooks Gaussian Intersection [351] method. We obtained all our results by using
BAR but to get a better level of convergence we only used results when all of the
three estimators provided results within 4 kJ mol−1.

Parallel Cascade Selection Molecular Dynamics (PaCS-MD)

Parallel cascade selection MD (PaCS-MD) was used to obtain absolute binding free
energies for the binding of the unphosphorylated EQVSAV peptide as well as for the
binding of the phosphorylated EQVpSAV peptide with singly charged (SP1) phos-
phate to the hPTP1E PDZ2 domain. The simulations were performed similar to [27]
and we used the center-of-mass (COM) distance as the reaction coordinate to sepa-
rate the protein and the peptide during the PaCS-MD simulations.

For the PaCS-MD simulations we kept restraints on the Cα atoms of residues 7-
10, 58-60, and 86-69 with a strength of 100 kJ/mol/nm2 to prevent the protein from
rotating and moving around.

33 trials (independent runs) for the unbinding of the unphosphorylated peptide
and 30 trials for the unbinding of the phosphorylated peptide of PaCS-MD simu-
lations were performed to obtain a reasonable amount of sampling. The starting
structures for these trials were taken every 1 ns from the last 30 ns of an initial plain
MD simulation with 100 ns length. For each trial, a 1 ns long MD simulation (cy-
cle 0) was started from these initial structures. 30 replicas were started from the 30
snapshots with the largest inter-COM distance between the protein and the peptide.
Each replica was simulated for 100 ps in each cycle and we recorded snapshots of
the trajectories every 0.5 ps. The simulations of a trial were stopped when the inter-
COM distance between protein and peptide exceeded d = 6 nm for all the 30 best
snapshots of the previous cycle.

We used pyEMMA [367] to estimate and analyze reversible discrete Markov state
models (MSMs) from the PaCS-MD trajectories using the relative three-dimensional
center of mass positions (3D-COM) of the peptide with respect to the protein as
was shown to be a good choice in [27]. All trajectories from the PaCS-MD trials



72 Chapter 4. How peptides bind to PDZ domains

were used but all snapshots with inter-COM distances larger than 5 nm were dis-
carded from the analysis since complete phase-space sampling in the regions far
away from the binding pockets is hard to achieve and the protein and the peptide
are already completely separated at 5 nm. This resulted in a total analyzed simula-
tion time of 2.620 µs for hPTP1E PDZ2 with the unphosphorylated EQVSAV peptide
and of 3.898 µs for hPTP1E PDZ2 with the phosphorylated EQVpSAV peptide with
SP1 phosphate.

In order to find a reasonable number of cluster centers or microstates we es-
timated unvalidated Markov models for various numbers of cluster centers which
were discretized using the Kmeans clustering [368] approach. As a heuristic we used
the VAMP-2 score [331] (with cross validation). We estimated the MSM lag time as 20
steps for the PaCS-MD of hPTP1E PDZ2 with the unphosphorylated EQVSAV pep-
tide which is equal to 10 ps to perform this analysis. The lag time had to be adjusted
later on. Repeated discretization rounds were performed in order to account for the
stochastic nature of the clustering algorithm. A reasonable cluster number turned
out to be 3000 clusters where the VAMP-2 score reached a plateau as is shown in
fig. 4.4.

The trajectory was then transformed into a discretized trajectory along these mi-
crostates and MSMs were built for various lag times and the resulting time scales for
the 10 slowest processes were plotted to find the optimal lag time to build the MSMs
which is usually chosen to be the lag time where the time scales reach a converged
plateau. A reasonable lag time to build our MSMs was found to be 40 ps.

The stationary distribution π(rj) of each microstate j of the Markov state model
based on the relative 3D-COM position of the peptide was mapped into a 1D-PMF
by

W(di) = − 1
β

ln ∑
di−δd/2≤d(rj)<di+δd/2

π(rj) [27]. (4.1)

with the inverse temperature β = 1/(kBT), the position in 3D of microstate j, rj, and
the bin size δd. The bin size was chosen to be δd = 0.05 nm.

4.2.3 Analysis tools

We applied different tools our data in order to analyze the differences between the
bound states of hPTP1E PDZ2, hPTP1E PDZ2 R79A, MAGI1 PDZ1 and MAGI1
PDZ1 Q85R in complex with the various peptides. For the analysis of hydrogen
bonds and their strength we processed our trajectories with the MDTraj [349] python
toolkit and applied the Kabsch-Sander [369] and Baker-Hubbard [350] algorithms.

4.3 Results

In the following peptide residues will be labeled XXX-Pep and protein residues will
be labeled XXX-Prot, where XXX is the short acronym of the peptide or protein name.
The peptide residue numbering always begins at 3 and ends at 8, since this is the
numbering used in the structure PDB ID 3LNY [363].

4.3.1 Unbiased molecular dynamics of PDZ domains binding the EQVSAV
and EQVEAV peptides

Most of the performed plain MD simulations of the EQVSAV and EQVEAV peptides
bound to the PDZ2 and PDZ2 R79A domains of hPTP1E and to the PDZ1 and PDZ1
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(A) hPTP1E PDZ2 binding EQVSAV
(B) Sketch of binding pocket and hydrogen bonds
for binding of the EQVSAV peptide to hPTP1E

PDZ2.

(C) hPTP1E PDZ2 binding EQVpSAV with singly
charged (SP1) phosphate

(D) Sketch of binding pocket and hydrogen
bonds for binding of the EQVpSAV peptide with
singly charged (SP1) phosphate to hPTP1E PDZ2.

FIGURE 4.1: Representative structures of the EQVSAV peptide (top
left) and the EQVpSAV peptide with singly charged (SP1) phosphate
group (bottom left) binding to the hPTP1E PDZ2 domain. These
structures were extracted similar to our previous study [32] (see chap-
ter 3) by finding the centroid, the frame with the highest sum of sim-
ilarities, of all trajectory frames of 1 µs plain MD simulations with
2D sketches of the binding pocket and the relevant hydrogen bonds
between protein and peptide on the right side, respectively. As a dis-
tance metric we used the pairwise RMSD and then used the pairwise

distances to calculate a pairwise similarity.
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(A) MAGI1 PDZ1 binding EQVSAV
(B) Sketch of binding pocket and hydrogen bonds

for binding of the EQVSAV to MAGI1 PDZ1.

(C) MAGI1 PDZ1 binding EQVpSAV with singly
charged phosphate group

(D) Sketch of binding pocket and hydrogen
bonds for binding of the EQVpSAV with singly
charged (SP1) phosphate group to MAGI1 PDZ1.

FIGURE 4.2: Representative structures of the EQVSAV peptide (top
left) and the EQVpSAV peptide with singly charged (SP1) phosphate
group (bottom left) binding to the MAGI1 PDZ1 domain. These struc-
tures were extracted similar to our previous study [32] (see chapter 3)
by finding the centroid, the frame with the highest sum of similarities,
of all trajectory frames of 1 µs plain MD simulations with 2D sketches
of the binding pocket and the relevant hydrogen bonds between pro-
tein and peptide on the right side, respectively. As a distance metric
we used the pairwise RMSD and then used the pairwise distances to

calculate a pairwise similarity.
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Likely important positions of the domains

Domain
pos

17/26
pos

28/35
pos

38/44
pos

71/77
pos

72/78
pos

79/85
hPTP1E PDZ2 SER THR LYS HIS LYS ARG

hPTP1E PDZ2 R79A SER THR LYS HIS LYS ALA
MAGI1 PDZ1 GLY ASP LYS HIS ALA GLN

MAGI1 PDZ1 Q85R GLY ASP LYS HIS ALA ARG

TABLE 4.1: Comparison of the four studied PDZ domains regard-
ing the residues at specific positions which where found to be im-
portant for binding. Only residues are shown, where side-chain in-
teractions and not only backbone interactions played a role because
only here the difference in the residues should matter. Special fo-
cus is on the positions 72/78 and 79/85 because these are close to
SER6/GLU6/SP16/SP26 in the peptide and could therefore have a
strong influence on the binding especially of peptides with charged

side chains.

Q85R domains of MAGI1 were stable during the course of 1 µs plain MD simulations
and the peptides remained in the binding groove. We observed unbinding events for
MAGI1 PDZ1 with the EQVEAV peptide and hPTP1E PDZ2 R79A with the EQVEAV
peptide and partial unbinding for MAGI1 PDZ1 with the EQVSAV peptide. We
thus repeated all of these simulations once to obtain stably bound trajectories for
analysis. The second simulation of hPTP1E PDZ2 R79A with the EQVEAV peptide
showed a partial unbinding so we repeated it once more but obtained another partial
unbinding event. We also observed a few very short partial unbinding events where
we did not repeat the simulations because the short time frames of these unbindings
should not influence the results too much. In the following “mean distances” is the
term describing mean distances between the closest heavy atoms and they will be
given as mean ± standard deviation to get a feeling how strong the residues move
relative to each other and how stable the interaction is.

When studying the results from the individual simulations it catches the eye
that hydrogen bonds between the backbone of the peptides and the backbone of
the beta strand in the PDZ domain, no matter if hTPT1E PDZ2 or MAGI1 PDZ1,
play the most important role in the binding, especially hydrogen bonds involving
the backbone of SER6/GLU6. Additionally, the interactions between VAL8-COO−-
Pep and various residues in the binding pocket are usually as important. The latter
are more important for the binding of the peptides to the hPTP1E PDZ2 domain
and hPTP1E PDZ2 R79A domain than for the MAGI1 PDZ1 and MAG1 PDZ1 Q85R
domains. It is important to mention, that the studied domains differ at positions
that are likely important for the binding of charged peptides. Namely positions 79
(ARG) and 72 (LYS) in hPTP1E PDZ2 that are positions 85 (GLN) and 78 (ALA) in
MAGI1 PDZ1. A focus will be on these positions in the following.

Representative snapshots of the hPTP1E PDZ2 and the MAGI1 PDZ1 domain
bound to the EQVSAV peptide and EQVpSAV peptide with singly charged phos-
phate group are shown in fig. 4.1 and fig. 4.2. Additionally, these figures show two-
dimensional sketches of the peptides inside the binding pocket and the hydrogen
bonds in the system with their occupancy. The hydrogen bond occupancies and dis-
tances are listed in table 4.2 and the hydrogen bond pattern in fig. 4.3 for the hPTP1E
PDZ2 domain binding the EQVSAV peptide. The tables and figures for all other sim-
ulations are shown in the supplementary material.
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hPTP1E PDZ2 with EQVSAV

Interacting atoms Occupancy [%] Distance (STD) [Å]

SER6-O – VAL22-N 99.08 2.86 (0.21)
SER6-N – VAL22-O 96.71 3.03 (0.38)
VAL8-N – ILE20-O 96.42 2.98 (0.21)

GLN4-O – THR23-OG1 93.07 2.92 (0.97)
ALA7-O – ARG79-NH2 68.56 3.54 (1.38)

VAL8-O – SER17-OG 67.68 3.38 (1.14)
SER6-OG – HIS71-NE2 61.20 3.78 (1.31)
VAL8-OXT – SER17-OG 58.63 3.36 (0.97)
VAL8-OXT – LEU18-N 55.28 3.56 (0.92)
VAL8-OXT – GLY19-N 40.79 3.86 (1.21)

VAL8-O – LEU18-N 40.28 3.77 (1.05)
VAL8-OXT – ILE20-N 35.85 4.37 (1.28)
VAL8-O – GLY19-N 21.79 4.40 (1.24)

GLU3-OE1 – SER29-N 19.22 7.50 (3.99)
GLU3-OE2 – SER29-N 19.16 7.49 (3.99)
ALA7-O – ARG79-NE 18.24 4.10 (1.01)

GLU3-OE2 – SER29-OG 17.24 7.63 (4.48)
GLU3-OE1 – SER29-OG 17.21 7.63 (4.47)

VAL8-O – ILE20-N 17.06 5.05 (1.23)
GLU3-OE2 – LYS38-NZ 11.43 9.60 (3.76)
GLU3-OE1 – LYS38-NZ 11.36 9.57 (3.75)
SER6-OG – ARG79-NH2 10.69 5.09 (1.76)

TABLE 4.2: Percentage of hydrogen-bond occupancies and the dis-
tances between the involved heavy atoms for hydrogen bonds be-
tween hPTP1E PDZ2 and the EQVSAV peptide, existing in 10 % or
more of all simulation frames. In the left column, first the peptide

residue and second the protein residue is given.

(A) hPTP1E PDZ2 binding EQVSAV

FIGURE 4.3: Hydrogen bonds that exist in more than 10 % of all
frames (white = no hydrogen bond, blue = hydrogen bond) between

the PDZ2 domain of hPTP1E and the EQVSAV peptide.
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We will first compare the complexes of the EQVSAV peptide and wildtype hPTP1E
PDZ2 vs MAGI1 PDZ1. In the simulations, the EQVSAV peptide showed a similar
binding behavior to both PDZ domains. In both cases the strongest interactions
included backbone atoms of residues SER6-Pep and VAL8-COO−-Pep (see fig. 4.1,
fig. 4.2, fig. 4.3, fig. B.3, and tables 4.2 and B.7). The interactions of atoms from VAL8-
COO−-Pep play a weaker role when binding to MAGI1 PDZ1 than when binding
to hPTP1E PDZ2. Also, the side chain of SER6-Pep has frequent interactions with
hPTP1E PDZ2 but not with MAGI1 PDZ1.

Then we asked what happens for the binding of EQVSAV to hPTP1E PDZ2 when
R79 is mutated to alanine. The mutation R79A in hPTP1E PDZ2 has apparently no
strong influence on the binding of the EQVSAV peptide to the domain (see fig. 4.1,
fig. 4.3, fig. B.2, B.6, and tables 4.2 and B.4). In both cases the hydrogen bond between
the backbone oxygen atom of SER6-Pep and the backbone nitrogen atom of VAL22-
Prot seems to be the most important one. Also the other backbone interactions of
residues 3, 4, 6 and 8 in the peptide play important roles in both simulations. Upon
the mutation R79A, the interaction of ALA7-Pep with residue 79 in the protein is
lost. In both cases, the side-chain oxygen atom of SER6-Pep interacts with a side-
chain nitrogen atom of HIS71-Prot even though the occupancy is reduced in the
case of the mutated domain when compared to the original one. Overall in both
simulations most interactions are formed between the peptide backbone and the
beta strand of the PDZ domain and also between the oxygen atoms of VAL8-COO−

and various residues in the binding pocket.
Next, we asked if the contacts of EQVSAV to the R79A mutant of hPTP1E PDZ2

are similar to those formed with MAGI1 PDZ1, because both do not have an arginine
at position 79 (or 85 in MAGI1 PDZ1). While SER6-Pep interacts with HIS71-Prot in
the hPTP1E PDZ2 domain it does not interact with HIS78-Prot in the MAGI1 PDZ1
domain, even though they are at the same position (see fig. 4.2, fig. B.2, fig. B.3,
B.6, and tables B.4 and B.7). All other interactions look similar even though the
specific occupancies and distances are hard to compare because of the short partial
unbinding in the simulation of hPTP1E PDZ2 R79A with EQVSAV.

We now turn to the MAGI1 PDZ1 domain. What changes when EQVSAV binds
either to MAGI PDZ1 or to a MAGI1 PDZ1 Q85R mutant? The overall binding
modes of the EQVSAV peptide to MAGI1 PDZ1 and MAGI1 PDZ1 Q85R are quite
similar (see fig. 4.2, fig. B.3, fig. B.4, fig. B.8, and tables B.7 and B.10). Notably, the
mutation Q85R does not strongly alter the interaction of VAL8-COO−-Pep with the
protein residue at position 85. It forms hydrogens bonds with similar occupancies
with GLN85-Prot in the MAGI1 PDZ1 domain as well as with ARG85-Prot in MAGI1
PDZ1 Q85R. Though, due to the mutation a new hydrogen bond between the back-
bone oxygen atom of ALA7-Pep and ARG85-Prot is formed.

Finally, we compare the binding of the EQVSAV peptide to this MAGI1 PDZ1
Q85R mutant where an arginine residue was introduced at the equivalent position
of R79 to the binding of the peptide to the hPTP1E PDZ2 domain. In both cases,
this arginine interacts with the backbone oxygen atom of ALA7-Pep. But the side
chain of SER6-Pep has frequent interactions with hPTP1E PDZ2 including those with
arginine and HIS71-Prot (which is HIS77-Prot in MAGI1 PDZ1) but not with MAGI1
PDZ1 Q85R (see fig. 4.1, fig. 4.3, fig. B.4, fig. B.8, and tables 4.2 and B.10).

Here, we briefly summarize the findings from the MD simulations of the EQVSAV
peptide bound to various PDZ domains and variants. We found that the EQVSAV
peptide binds similar to all studied PDZ domains and that mutations at position 79
in the hPTP1E PDZ2 domain and equivalently at position 85 in the MAGI1 PDZ1 do-
main do not strongly influence the binding. Overall, the binding of the C-terminal
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residue of the peptide to the respective domain seems to be more important for the
binding to the hPTP1E PDZ2 domain than to the the MAGI1 PDZ1 domain.

Now we turn to the simulations of the same PDZ domains with the EQVEAV
peptide. First we compare again the complexes with the two wild-type domains.
While the EQVEAV peptide formed multiple interactions with ARG79-Prot when
binding to the hPTP1E PDZ2 domain it did not interact at all with GLN85-Prot (sim-
ilar position to ARG79) in the MAGI1 PDZ1 domain (see fig. B.1, fig. B.3, fig. B.5,
fig. B.7, and tables B.1 and B.8). Overall mainly backbone interactions play a role
when binding to the MAGI1 PDZ1 domain while the binding to ARG79-Prot seems
to be important for the binding to the hPTP1E PDZ2 domain. ARG79-Prot play a
stronger role for the EQVEAV peptide than for the EQVSAV peptide.

To see what would happen if we introduce an analogous arginine in the MAGI1
PDZ1 domain, we introduced a Q85R mutation and studied its complex with the
EQVSAV peptide. The EQVEAV peptide binds in a similar manner to MAGI1 PDZ1
and MAGI1 PDZ1 Q85R but introducing an arginine at position 85 in MAGI1 PDZ1
leads to the formation of several hydrogen bonds between GLU6-Pep and ARG85-
Prot (see fig. B.3, fig. B.4, fig. B.7, fig. B.8, and tables B.8 and B.11). Additionally, also
ALA7-Pep interacts with ARG85-Prot.

Now we compare again the binding to the Q85R mutant of MAGI1 PDZ1 to that
with the hPTP1E PDZ2 domain. The main difference in the binding modes of the
EQVEAV peptide to the hPTP1E PDZ2 domain and to the MAGI1 PDZ1 Q85R do-
main are the hydrogen bonds between GLU6-Pep and LYS72-Prot in hPTP1E PDZ2
(see fig. B.1, fig. B.4, fig. B.5, fig. B.8, and tables B.1 and B.11). In MAGI1 PDZ1
an alanine is located at position 78 which is similar to position 72 in hPTP1E PDZ2
(see table 4.1). The backbone interactions and the hydrogen bonds with ARG79-
Prot/ARG85-Prot are similar for both domains.

As mentioned before, ARG79-Prot plays a crucial role for the interaction of the
hPTP1E PDZ2 domain with the peptide EQVEAV. What happens if this arginine is
mutated to alanine? Upon mutating R79A in the hPTP1E PDZ2 R79A domain, multi-
ple hydrogen bonds between ARG79-Prot and peptide residues are lost (see fig. B.1,
fig. B.2, fig. B.5, fig. B.6, and tables B.1 and B.5). Furthermore, we observed a par-
tial unbinding in the simulation of hPTP1E PDZ2 R79A with the EQVEAV peptide,
which underlines the crucial role of ARG79-Prot.

Finally, we compared the binding of the EQVEAV peptide to the hPTP1E PDZ2
R79A mutant to that with the MAGI1 PDZ1 domain. As mentioned, the MAGI1
PDZ1 domain does not have a residue corresponding to ARG79-Prot. Whereas the
hydrogen bonds of the backbone of GLU6-Pep of the EQVEAV peptide with the beta
strand of the domain play the most important role for MAGI1 PDZ1, the interactions
of VAL8-COO−-Pep are more important for the binding of the peptide to the hPTP1E
PDZ2 domain (see fig. B.2, fig. B.3, fig. B.6, fig. B.7, and tables B.5 and B.8). Whereas
the side chain of GLU6-Pep interacts with LYS38-Prot in the hPTP1E PDZ2 domain it
does not interact with any residue of the MAGI1 PDZ1 domain. Though, this could
be an artifact of the partial unbinding in the simulation of hPTP1E PDZ2 R79A with
the EQVEAV peptide.

Again, we briefly summarize the main findings from the MD simulations of PDZ
domains and their variants with the EQVEAV peptide. We found that the binding of
the EQVEAV peptide to the domains without ARG79-Prot (or ARG85-Prot) is mainly
due to backbone interactions while the presence of the arginine leads to strong inter-
actions with GLU6-Pep in the peptide. Furthermore, GLU6-Pep also binds to LYS72-
Prot in hPTP1E PDZ2 that does not exist in MAGI1 PDZ1. The main difference to
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the EQVSAV peptide seems to be that ARG79-Prot/ARG85-Prot is much more im-
portant for the binding of the EQVEAV peptide than for the binding of the EQVSAV
peptide. If the arginine is not present, mostly the peptides backbones bind to the
PDZ domains.

4.3.2 Binding free energy of the EQVSAV peptide

Alchemical free energy differences by simulating bound and free state separately

Next, we performed alchemical simulations to obtain the binding free energy dif-
ference between the EQVSAV and EQVEAV peptides in complex with the hPTP1E
PDZ2 domain which has also been studied by Toto et al. [156]. The experimental
binding free energy difference is

∆∆Gexp,EQVEAV−EQVSAV
bind = 6.19 ± 0.73 kJ mol−1 (4.2)

at a NaCl concentration of nNaCl = 150 mmol. This alchemical transformation of a
peptide involves a charge change since glutamic acid is most commonly found in
the form of glutamate at physiological pH which has a total charge of −1. Glutamic
acid is thus a good system to study the effect of charge changes since the common
force fields are usually more reliable for natural amino acid side chains compared to
the ones with post-translational modifications such as phosphorylation that are also
relevant for peptide binding to PDZ domains. The resulting binding free energy
difference from an alchemical simulation where bound and free states simulated
separately is shown in table 4.5. The difference between the simulation result and
the one from experiment is 1.55 kJ mol−1 which is a very small deviation for common
binding free energy methods. This suggests that the methodology works as expected
also for alchemical simulations where the total system charge is altered during the
course of the simulation.

Absolute binding free energy using PaCS-MD and Markov state models

We also performed PaCS-MD simulations to obtain the absolute binding free energy
for the EQVSAV peptide binding to the hPTP1E PDZ2 domain. Fig. 4.4 shows the
inter-COM distance between the hPTP1E PDZ2 domain and the EQVSAV peptide
as a function of the number of cycles in the PaCS-MD trials by plotting always the
largest inter-COM distance in each cycle. From these plots we estimated the dis-
tance ranges of the bound (inter-COM distance < 1.4 nm), partially-bound (1.4 nm
< inter-COM distance < 2.2 nm) and unbound (2.2 nm < inter-COM distance) states.
The PaCS-MD simulation needed about 27 ± 8 cycles corresponding to 40 ± 12 ns of
simulation time on average to completely dissociate the protein and the peptide. For
the analysis of the simulations we built MSMs using the 3D-COM positions of the
peptides as a feature set similar to the work on dissociation PaCS-MD by Tran and
Kitao [27].

The absolute binding free energy resulting from PaCS-MD for the unphosphory-
lated EQVSAV peptide binding to the hPTP1E PDZ2 domain is

∆GEQVSAV
bind,PaCS ≈ −26.68 kJ mol−1 (4.3)

for a MSM lag time of 40 ps which nearly perfectly matches the experimental binding
free energy ∆GEQVSAV

bind,exp. = −27.86 kJ mol−1 [156].
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FIGURE 4.4: Analysis of the PaCS-MD simulation of the EQVSAV
peptide undergoing stimulated dissociation from the hPTP1E PDZ2
domain. Top: Inter-COM distance as a function of the number of
PaCS-MD cycles. The inter-COM distance range is divided in the
bound, partially-bound and unbound regions. Bottom left: VAMP-2
scores for as a function of the number of cluster centers. The analysis
was repeated five times for every studied number of cluster centers
and the standard deviation is shown as light-blue area. Bottom right:

Implied MSM time scales as a function of the lag time τ used.
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4.3.3 Unbiased molecular dynamics of PDZ domains binding the phos-
phorylated EQVpSAV peptide

Most of the performed plain MD simulations of the EQVpSAV peptides bound to
the PDZ2 and PDZ2 R79A domains of hPTP1E and to the PDZ1 and PDZ1 Q85R do-
mains of MAGI1 were stable during the course of 1 µs plain MD simulations and the
peptides remained in the binding groove. We observed partial unbinding events for
MAGI1 PDZ1 Q85R with the EQVpSAV peptide and thus repeated this simulation
once but obtained another trajectory with partial unbinding.

For the hPTP1E PDZ2 domain, we compared the binding of the two versions of
the EQVpSAV peptide, namely with a singly charged phosphate group and with a
doubly charged phosphate group. The hPTP1E PDZ2 domain shows similar very
frequent hydrogen bonds when binding the EQVpSAV peptide either with singly
or doubly charged phosphate (see fig. 4.1, fig. B.1, fig. B.5 and tables B.2 and B.3).
These are the backbone interactions between VAL8-Pep and ILE20-Prot, SP16-Pep
and VAL22-Prot and the interaction of the backbone of ALA7-Pep with the side
chain of ARG79-Prot. In both simulations, the phosphate group interacts with the
nitrogen atoms in the side chain of ARG79-Prot but the mean distances between the
phosphate oxygen atoms and the nitrogen atoms of the ARG79-Prot side chain are
shorter on average in the simulation with a doubly charged phosphate compared
to the one with a singly charged phosphate. The effect is even stronger for the dis-
tances between the phosphate oxygen atoms and the side-chain nitrogen atoms of
LYS72-Prot.

As will be described below, the binding thermodynamics of the peptide with
doubly charged phosphate deviated strongly from the experimental value. Hence,
only the singly charged phosphate variant was used in the remaining MD simula-
tions.

First, we compared binding of unphosphorylated and phosphorylated variants
of EQVSAV to the hPTP1E PDZ2 domain (see fig. 4.1, fig. 4.3, fig. B.1, and tables 4.2
and B.2). When the phosphate group is added to the EQVSAV peptide, the interac-
tion between the backbone nitrogen atom of SER6-Pep/SP16-Pep and the backbone
oxygen atom of VAL22-Prot in hPTP1E PDZ2 is lost and the occupancy of the interac-
tion between the backbone oxygen atom of SER6-Pep/SP16-Pep with the backbone
nitrogen atom of VAL22-Prot is reduced. Additionally, the latter interaction shows
a larger standard deviation for the distance between the atoms for the binding of
the EQVpSAV peptide suggesting, that the interaction is more flexible in this case.
Whereas the side-chain oxygen atom of SER6-Pep in EQVSAV is interacting with
HIS71-Prot, the phosphate oxygen atoms of EQVpSAV are interacting with ARG79-
Prot and LY72-Prot instead. ARG79-Prot in the hPTP1E PDZ2 domain usually forms
a hydrogen bond with the backbone oxygen atom of ALA7-Pep. This interaction is
populated even more often when the peptide is phosphorylated. Therefore it seems
that the phosphorylation of SER6-Pep stabilizes the interaction of the peptide with
ARG79-Prot. The hydrogen bond between the backbone nitrogen atom of VAL8-
COO− in the peptide and the backbone oxygen atom of ILE20 in the protein is one
of the most important interactions for the binding of the peptides to the protein,
independent of the phosphorylation state, even though other interactions, for exam-
ple the one between the backbone oxygen atom of SER6/SP16/SP26 in the peptide
and the backbone nitrogen atom of VAL22 in the protein, are as important for the
binding.

Next, we analyzed whether the glutamate-containing peptide EQVEAV peptide
is a good mimic of the EQVpSAV peptide when bound to hPTP1E PDZ2. Even
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though EQVEAV and EQVpSAV with singly charged phosphate both carry a single
negative charge, they form different interactions with the hPTP1E PDZ2 domain.
In particular, the side chains of GLU6-Pep in EQVEAV and SP16-Pep in EQVpSAV
show different interactions (see fig. 4.1, fig. B.1, fig. B.5 and tables B.1 and B.2).
Whereas the phosphate oxygen atoms of SP16-Pep are binding repeatedly to the
nitrogen atoms of the ARG79-Prot side chain with specific interactions having an
occupancy of nearly 50 %, leading to a continuous interaction between SP16-Pep
and ARG79-Prot, the side-chain oxygen atoms of GLU6-Pep bind to ARG79-Prot
only sometimes and more often to LYS72-Prot. SP16-Pep binds to LYS72-Prot with a
similar occupancy as GLU6-Pep.

As mentioned before, ARG79-Prot plays a crucial role for the interaction of the
hPTP1E PDZ2 domain with the peptide EQVEAV but less for the interaction with the
EQVSAV peptide. Thus we wanted to compare the interactions of the hPTP1E PDZ2
R79A mutant with the EQVSAV and EQVEAV peptides to the interactions with the
EQVpSAV peptides (see fig. B.2, B.6, B.7, and tables B.4, B.5, and B.6). Whereas the
side chain of SER6-Pep of the EQVSAV peptide forms a hydrogen bond with HIS71-
Prot, SP16-Pep of the EQVpSAV peptide forms hydrogens bonds with LYS38-Prot
and LYS72-Prot. Upon the mutation R79A no interactions are formed with residue
79 of the domain. Due to the partial unbinding in the simulation of hPTP1E PDZ2
R79A binding the EQVEAV peptide, the results are hard to compare. Though, it is
interesting to see that in both simulations, with the EQVEAV peptide and with the
EQVpSAV peptide, GLU6-Pep/SP16-Pep form hydrogen bonds with LYS38-Prot.

Now we turn to the simulations with the MAGI1 PDZ1 domain, that also does
not have an arginine at position 79/85 like the hPTP1E PDZ2 R79A mutant. Com-
paring the simulations of the EQVpSAV peptide binding these two domains we see
that the hydrogen bonds between the backbone oxygen atom of SP16-Pep and a
backbone nitrogen atom in the beta sheet of the protein, as well as between vari-
ous atoms of VAL8-COO−-Pep and the protein seem to be similarly important for
the binding of the EQVpSAV peptide with singly charged phosphate (see fig. 4.2,
fig. B.2, B.3, B.7, and tables B.6 and B.9). The binding modes differ mostly in the in-
teractions between the phosphate oxygen atoms of SP16-Pep and backbone nitrogen
atoms of LYS38-Prot and LYS72-Prot in hPTP1E PDZ2 R79A which have no similar
interactions when the peptide binds to MAGI1 PDZ1 even though MAGI1 PDZ1
also has a lysine (LYS44-Prot) at the same position as LYS38-Prot in hPTP1E PDZ2.

While it is interesting to study the different binding behaviour of the EQVp-
SAV peptide to different domains, it is also interesting to study the differences be-
tween the binding of the EQVSAV, EQVEAV and EQVpSAV peptides to the MAGI1
PDZ1 domain (see fig. 4.2, B.3, B.7, and tables B.7, B.8, and B.9). The hydrogen
bond between the backbone oxygen of SER6-Pep/SP16-Pep and the backbone ni-
trogen of VAL31-Prot seems to be similarly important for MAGI1 PDZ1 binding to
the EQVSAV as for the EQVpSAV peptide with singly charged phosphate. On the
other hand, the interaction between the backbone nitrogen atom of SER6-Pep/SP16-
Pep and the backbone oxygen atom of VAL31-Prot is lost for SP16-Pep compared to
SER6-Pep, similarly to the hPTP1E PDZ2 domain binding the EQVSAV and EQVp-
SAV peptide with singly charged phosphate. Overall the interactions of the MAGI1
PDZ1 domain with the EQVSAV peptide and with the EQVpSAV peptide are hard
to compare because the simulation of MAGI1 PDZ1 binding EQVpSAV peptide
showed a partial unbinding. Similarly, specificities of the binding of the phosphory-
lated EQVpSAV peptide with singly charged phosphate and the EQVEAV peptide to
the MAGI1 PDZ1 domain are hard to compare due to a partial unbinding in the sim-
ulation with the EQVpSAV peptide though the binding looks similar. One important
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result to mention is that in both simulations the side chains of GLU6-Pep/SP16-Pep
do not show any hydrogen bonds with any protein residue.

As before, we also introduced a Q85R mutation in MAGI1 PDZ1 and studied its
complex with the EQVpSAV peptide. The mutation Q85R in MAGI1 PDZ1 intro-
duces interactions between the phosphate oxygen atoms of SP16-Pep of the EQVp-
SAV peptide with singly charged phosphate and the ARG85-Prot side-chain nitrogen
atoms even though they are not very frequent. The hydrogen bonds between VAL8-
COO−-Pep and the MAGI1 PDZ1 domain seem to be weakened in the simulation
with the mutation compared to the simulation without mutation (see fig. 4.2, B.3,
B.4, B.9, and tables B.9 and B.12). This simulation of the EQVpSAV peptide bind-
ing the MAGI1 PDZ1 Q85R domain showed a partial unbinding in two simulations
wherefore it is hard to compare the results with the results for the binding of the
EQVSAV and EQVEAV peptides to the same domain.

Similarly, it is hard to compare the binding of the EQVpSAV peptide to the
hPTP1E PDZ2 domain and to the MAGI1 PDZ1 Q85R mutant that both have an argi-
nine at position 79 (or equivalently 85 in MAGI1 PDZ1). Though, there it is apparent,
that the peptide binds much more tightly to the hPTP1E PDZ2 domain and moves
much stronger in the binding pocket of MAGI1 PDZ1 Q85R which could be an ar-
tifact of the partial unbinding of the N-terminal tail when binding to MAGI1 PDZ1
Q85R. All interactions of the phosphate oxygen atoms of SP16-Pep have higher oc-
cupancies when binding to the hPTP1E PDZ2 domain (see fig. 4.1, B.1, B.4, B.9, and
tables B.2 and B.12).

In summary, the MD simulations of PDZ domains and variants complexed with
phosphorylated peptides led to the following general findings. The overall binding
behaviour is similar. The binding is mainly mediated by backbone-backbone inter-
actions. When an arginine is present at position 79 (or 85 in the MAGI1 PDZ1 Q85R
domain) or when a lysine is present at position 72 in the hPTP1E PDZ2 domain and
its variants, the glutamate and the phosphate both form hydrogen bonds with these
residues. The presence of the phosphate also increases the occupancy of a hydro-
gen bond between the backbone oxygen of ALA7-Pep with ARG79-Prot. Overall it
seems that the phosphorylation of the EQVSAV peptide leads to a weaker binding to
MAGI1 PDZ1 because we had multiple simulations of the EQVpSAV peptide with
MAGI1 PDZ1 and MAGI1 PDZ1 Q85R showed unbinding or partial unbinding. Fur-
thermore, the interactions between the glutamate and the protein and between the
phosphate and the protein appear to be different, at least in their occupancies. There-
fore, glutamic acid is likely not a good mimic for phosphorylation in the EQVSAV
peptide.

4.3.4 Binding free energy of the phosphorylated EQVpSAV peptide bind-
ing to PDZ domains

Alchemical free energy differences using the “Double system in a single box”
setup

At first we simulated the alchemical change from the EQVSAV peptide to the EQVp-
SAV peptide binding to the hPTP1E PDZ2 domain using the “double system in a
single box setup”. The phosphate group is usually found in the dibasic form (–
OPO−2

3 , called SP2 in the CHARMM force field) at physiological pH (phosphoserine
pKa = 5.6 [356]). Since our simulations were run at pH = 7.2, we used this proto-
nation state for our first simulations. In the following the index SP2 will be used to
label results for the peptide EQVpSAV with the phosphate group in the dibasic form
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∆∆Gbind [kJ mol−1]

nNaCl [mmol] exp. alch. sim. (SP1) alch. sim. (SP2)

0 3.79 ± 0.28 −4.25 ± 0.56
150 4.65 ± 0.35 −4.68 ± 0.48 −15.94 ± 1.68
300 5.57 ± 0.35 −4.12 ± 0.65

TABLE 4.3: Binding free energy differences between EQVp-
SAV/EQVSAV peptides binding to hPTP1E PDZ2 domain obtained
by “double system in a single box” alchemical simulations in com-

parison with experiment at 283 K.

while SER will be used for the unphosphorylated EQVSAV peptide. The resulting
binding free energy difference between the phosphorylated and unphosphorylated
states using a salt concentration in the simulation of nNaCl = 150 mmol was

∆∆Gsim,SP2−SER
bind = −15.94 ± 0.17 kJ mol−1 (4.4)

which favors binding of the phosphorylated peptide. This did not reproduce the ex-
perimental value of ∆∆Gexp,phosphorylated−unphosphorylated

bind = 4.65 ± 0.35 kJ mol−1 [156]
at the same salt concentration which favors binding of the unphosphorylated pep-
tide. The experimental results were calculated from the experimental KD values
reported by Toto et al. [156] using ∆G = RT ln KD

C0 with the standard concentra-
tion C0 = 1M. In this manuscript all presented relative binding free energy dif-
ferences are always the absolute binding free energy of the phosphorylated peptide
minus the absolute binding free energy of unphosphorylated peptide ∆∆Gbind =

∆Gphosphorylated
bind − ∆Gunphosphorylated

bind .
In order to test the influence of the phosphate protonation state onto the results

we additionally simulated the monobasic form (–OPO3H−, called SP1 in CHARMM
force field) using the same setup and salt concentration. In the following the in-
dex SP1 will be used to label results for the peptide EQVpSAV with the monobasic
phosphate group. The result was

∆∆Gsim,SP1−SER
bind = −4.68 ± 0.30 kJ mol−1 (4.5)

which is of similar absolute magnitude but of opposite sign than the experimental re-
sult. Such a deviation between experimental and simulated results of 9.33 kJ mol−1 ≈
2.23 kcal mol−1 is a common size of error ranges in binding free energy simulations
involving charge changes and flexible ligands. The different sign could thus be an
artifact due to a similar size of common free energy error and the binding free energy
difference between phosporylated and unphosphorylated peptide.

In order to understand the influence of the ionic concentration onto the alchem-
ical binding free energy simulations we further simulated the systems at other con-
centrations of NaCl. The results are shown in table 4.3. In the experiments, a lin-
ear increase of the salt concentration linearly shifts the free energy difference in the
direction favouring the binding of the unphosphorylated peptide. At higher salt
concentration, the phosphorylated form can be more favorably coordinated in the
solvent.

As shown in table 4.4, mutating ARG79-Prot to alanine destabilizes binding of
the phosphorylated peptide as can be expected. The MAGI1 PDZ1 domain actually
showed an even more pronounced preference for the unphosphorylated peptide.
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∆∆Gbind [kJ mol−1]

PDZ domain alch. sim. (SP1) alch. sim. (SP2)

hPTP1E PDZ2 −4.68 ± 0.48 −15.940 ± 1.68
hPTP1E PDZ2 R79A 1.33 ± 0.46

MAGI1 PDZZ1 7.66 ± 0.57

TABLE 4.4: Comparison of binding free energy differences between
EQVpSAV/EQVSAV peptides binding to hPTP1E PDZ2, hPTP1E
PDZ2 R79A and MAGI1 PDZ1 obtained by “double system in a sin-

gle box” alchemical simulations at 283 K and 150 mmol NaCl.

∆∆Gbind [kJ mol−1]

uncorrected standard state corr. elec. corr. corrected

alch. sim. (GLU) 6.38 −0.03 −1.71 4.64
alch. sim. (SP1) −4.34 ± 0.90 −1.91576 ± 0.00009 −2.11 ± 0.64 −8.36 ± 1.54
alch. sim. (SP2) −7.94 −1.92 −4.69 −14.55

TABLE 4.5: Binding free energy differences between EQVp-
SAV/EQVSAV peptides as well as between EQVEAV/EQVSAV pep-
tides binding to hPTP1E PDZ2 domain obtained by simulating al-
chemical changes of bound and free state separately at 283 K and
nNaCl = 150 mmol with standard state and electrostatic corrections
similar to our previous study [32]. The alchemical simulations for
the change between SER and SP1 were repeated five times and a sta-
tistical error could therefore be estimated. The perturbations between
SER and SP2 and the one between SER and GLU were only performed

once.

Alchemical free energy differences by simulating bound and free state separately

The results from the alchemical simulations using the “double system in a single
box” setup had the wrong sign. This was supposedly due to a too high error of
the alchemical simulation binding free energies due to the force field which did not
correctly reproduce the differential stabilization of phosphoserine in the protein vs.
in solvent and possibly also due to the methodology and the non-existent possibil-
ity to use error corrections for results from “double system in a single box” setups.
In order to test how the methodology influences the results and if the established
correction terms of another methodology improve the results we also performed
alchemical simulations of the bound and free states separately and applied the stan-
dard state and electrostatic finite-size corrections similar to our previous study [32].
The resulting binding free energy differences and corrections are listed in table 4.5.
Using this methodology the binding free energy difference between the phospho-
rylated EQVpSAV peptide with a monobasic phosphate group and the unphospho-
rylated EQVSAV peptide deviated even further from the experimental value than
the one from the “double system in a single box setup”. The difference between the
monobasic and dibasic forms of the phosphate was smaller compared to the latter
method but was still large and simulations with the dibasic form also did not match
the experimental binding free energy difference.

To validate that the wrong sign we obtained for the free energy difference be-
tween the phosphorylated and unphosphorylated versions of the EQVSAV peptide
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∆∆Gbind [kJ mol−1]

uncorrected standard state corr. elec. corr. corrected

HSD −4.34 ± 0.90 −1.91576 ± 0.00009 −2.11 ± 0.64 −8.36 ± 1.54
HSE −7.11 −1.92 −2.29 −11.32
HSP −10.11 ± 3.36 −1.92 −3.13 −14.49 ± 3.36

TABLE 4.6: Binding free energy differences between EQVp-
SAV/EQVSAV peptides binding to hPTP1E PDZ2 domain with dif-
ferent protonation states of HIS71 obtained by simulating alchemical
changes of bound and free states separately at 283 K and nNaCl =
150 mmol with standard state and electrostatic corrections similar to
our previous study [32]. The monobasic form (SP1) of phosphoserine
was used. The alchemical simulations were repeated five times and a
statistical error could therefore be estimated except for the one with

HSE which was performed only once.

was not an artifact due to an incorrect protonation state of HIS71 in the binding
pocket of hPTP1E, we performed alchemical simulations for the change between
EQVSAV and EQVpSAV with the monobasic form of phosphoserine for all three
possible protonation states of this residue. The proton can be either on the atom
ND1 (HSD), on NE2 (HSE) or on both (HSP). Usually the protonation was set to
HSD using PROPKA3 [364, 365] as mentioned in the structure preparation section.
The results are shown in table 4.6. Modifying the histidine protonation increases the
difference between the experimental and simulation results and is therefore also not
the reason for the overall difference.

Another reason for the difference between experiment and simulation could be
the speed at which the alchemical simulations were performed. Therefore we per-
formed one simulation for the change between EQVSAV and EQVpSAV with monoba-
sic phosphoserine and histidine protonation HSD at T = 283 K and nNaCl = 150 mmol
with a switching time of 10 ns instead of 1 ns. The resulting free energy difference
was

∆∆Gsim10ns,SP1−SER
bind = −8.62 kJ mol−1 (4.6)

including all correction terms which is very similar to the simulations with a switch-
ing time of 1 ns (−8.36 kJ mol−1). Thus we conclude that the switching time was
chosen long enough to obtain converged binding free energy differences from the
alchemical simulations.

Absolute binding free energy of phosphorylated EQVpSAV peptide using PaCS-
MD and Markov state models

Fig. 4.4 shows the inter-COM distance between the hPTP1E PDZ2 domain and the
EQVpSAV peptide as a function of the number of cycles in the PaCS-MD trials by
plotting always the largest inter-COM distance in each cycle. From these plots we
estimated the bound (inter-COM distance < 1.5 nm), partially-bound (1.5 nm < inter-
COM distance < 2.2 nm) and unbound (2.2 nm < inter-COM distance) states. For the
unphosphorylated peptide the bound state ranged up to 1.4 nm. The PaCS-MD sim-
ulation for hPTP1E PDZ2 and the phosphorylated EQVpSAV with singly charged
(SP1) phosphate needed 45 ± 46 cycles corresponding to 67 ± 68 ns simulation time
on average to completely dissociate the peptide from the protein. For the analysis



4.4. Discussion 87

of the simulations we built MSMs using the 3D-COM positions of the peptides as a
feature set similar as has was for dissociation PaCS-MD by Tran and Kitao [27].

The absolute binding free energy resulting from PaCS-MD for the phosphory-
lated EQVpSAV peptide with singly charged (SP1) phosphate binding the hPTP1E
PDZ2 domain at a lag time of 40 ps is

∆GEQVpSAV(SP1)
bind,PaCS ≈ −40.68 kJ mol−1 (4.7)

which is also in the same order of magnitude as the experimental binding free en-
ergy ∆GEQVpSAV(SP1)

bind,exp. = −23.21 kJ mol−1 [156] but has a stronger deviation from the
experimental value

∆∆Gexperiment−PaCS,SP1
bind = 17.47 kJ mol−1 (4.8)

than the result for the unphosphorylated peptide. The resulting calculated binding
free energy difference between the binding of the phosphorylated EQVpSAV pep-
tide and the unphosphorylated EQVSAV peptide is

∆∆GPaCS,SP1−SER
bind = −14.00 kJ mol−1 (4.9)

which again incorrectly favors binding of the phosphorylated peptide as was found
by the non-equilibrium alchemical perturbation simulations.

Therefore it is likely that the deviations of the alchemical simulations of systems
with phosphorylated serines are due to unoptimized force field parameters for phos-
phoserine.

4.4 Discussion

In this work we wanted to study how peptides bind to PDZ domains and how this is
influenced by mutation in the PDZ domains as well as by mutation and phosphory-
lation in the peptide. We studied several systems, namely the hPTP1E PDZ2 domain
and the mutated domain hPTP1E PDZ2 R79A as well as the MAGI1 PDZ1 domain
and the mutated domain MAGI1 PDZ1 Q85R all binding the EQVSAV, EQVEAV
and phosphorylated EQVpSAV peptides with singly charged phosphate. Addition-
ally, we studied the binding of the phosphorylated EQVpSAV peptide with doubly
charged phosphate to the hPTP1E PDZ2 domain to get insight into the influence of
the phosphate charge state on the binding.

Based on the simulations we identified the following general features of motif
1 peptides binding to PDZ domains. Overall, they bind mostly due to backbone-
backbone interactions with the beta strand in the binding pocket of the PDZ do-
mains. Most prominently the backbone of the residue at position -2 from the C
terminus (serine, phosphoserine or glutamic acid) forms very stable backbone in-
teractions. Additionally, the hydrophobic C-terminal residue of the peptide (here
valine), usually present as a charged C-terminus at physiological pH, forms strong
hydrogen bonds with surrounding residues of the PDZ domain (residues 17-20 in
hPTP1E PDZ2 and residues 27-29 in MAGI1 PDZ1). It is interesting to note, that
the former effect is stronger for the MAGI1 PDZ1 domain while the latter is more
important when binding to the hPTP1E PDZ2 domain but both are relevant in both
cases. Overall, most of the simulations with MAGI1 PDZ1 or MAGI1 PDZ1 Q85R
showed dissociation or partial unbinding. Therefore we conclude that the binding of
the peptides is overall much weaker to the MAGI1 PDZ1 domain than to the hPTP1E
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FIGURE 4.5: Analysis of the PaCS-MD simulation of the EQVpSAV
peptide undergoing stimulated dissociation from the hPTP1E PDZ2
domain. Top: Inter-COM distance as a function of the number of
PaCS-MD cycles. The inter-COM distance range is divided in the
bound, partially-bound and unbound regions. Bottom left: VAMP-2
scores for as a function of the number of cluster centers. The analysis
was repeated five times for every studied number of cluster centers
and the standard deviation is shown as light-blue area. Bottom right:

Implied MSM time scales as a function of the lag time τ used.



4.4. Discussion 89

PDZ2 domain where much fewer of these events were observed. Maybe this results
from the weaker binding of the C-terminal residue in MAGI1 PDZ1.

It is important to mention that our simulations were always started from bound
states and we had to create several structures by exchanging the serine for glutamate
or by adding the phosphate group. Even though equilibration simulations were
performed in each case, it is not certain whether the simulation time was sufficient
for the PDZ domains to adapt to the change in the peptide. This could influence
the results because results from Morra et al. for the PDZ2 domain in complex with
the RAGEF2 C-terminal peptide with sequence ENEQVSAV (similar to our system)
showed that the core of the PDZ2 domain rearranged upon ligand binding in the
region between beta strand 2 and loop L23 [359].

Furthermore, we were interested in how the change of serine to glutamate or
phosphoserine affects the binding of the peptide to the PDZ domains. From unbi-
ased simulations with these charged peptides, we realized that glutamate as well as
phosphoserine like to bind to ARG79 in the hPTP1E PDZ2 domain. Therefore we in-
troduced the mutation R79A in the hPTP1E PDZ2 domain and performed additional
plain MD simulations with this mutated domain. Because we also observed hydro-
gen bonds of these charged residues to LYS72, we additionally wanted to study the
influence of this residue on the binding of the peptides. We searched for another
PDZ domain which we could use as a study system and found MAGI1 PDZ1 that
does not contain an arginine at position 85 that maps onto position 79 in hPTP1E
PDZ2. Instead, MAGI1 PDZ1 has a glutamine and additionally has an alanine in-
stead of a lysine at the position 78 that maps onto position 72 in hPTP1E PDZ2. To
have the possibility to study all four cases, i. e. a PDZ domain having lysine at posi-
tion 72 and arginine at position 79 (positions in the hPTP1E PDZ2 domain), a domain
having only the former, a domain having only the latter and a domain that has none
of both, we also introduced the mutation Q85R in the MAGI1 PDZ1 domain. All of
these domains also contain a lysine at position 38 in hPTP1E PDZ2 or 44 in MAGI1
PDZ1 (which is the same structural position).

From the plain MD simulations, we see that the glutamate of the EQVEAV pep-
tide as well as the phosphate group of the EQVpSAV peptide interact repeatedly
with ARG79-Prot (or ARG85-Prot in MAGI1 PDZ1 Q85R) if it is available. Addition-
ally, both also repeatedly form hydrogen bonds with LYS72-Prot (only in hPTP1E
PDZ2 and hPTP1E PDZ2 R79A) when it is available.

To mechanistically characterize the strength of peptide binding to PDZ domains
we performed multiple alchemical simulations to obtain relative binding free energy
differences as well as two parallel cascade selection molecular dynamics (PaCS-MD)
simulation to obtain the absolute binding free energies for the EQVSAV peptide and
the EQVpSAV peptide with singly charged phosphate to the hPTP1E PDZ2 domain.
We obtained a reasonable result close to the experimental result for the binding free
energy difference between the EQVEAV peptide and the EQVSAV peptide, suggest-
ing that the procedure worked as expected. Inconveniently, the calculated bind-
ing free energy difference between the phosphorylated EQVpSAV peptide and the
EQVSAV peptide has the wrong sign, i. e. even though the experimental results sug-
gests that the phosphorylated peptide should bind weaker to the hPTP1E PDZ2 do-
main it bound stronger in our simulations. We performed simulations for EQVpSAV
peptide with either singly or doubly charged phosphate to see if the phosphoryla-
tion state is the reason for this deviation. However, the deviation was even larger for
the alchemical simulations with the EQVpSAV peptide with doubly charged phos-
phate. To understand if the deviation is an artifact of the setup of the alchemical
simulations we performed them in two ways, using the so-called “double system
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in a singly box”-setup and by performing both the free and bound state separately
and then using standard state and charge corrections. The deviations were similar
for both setups. Furthermore, we wanted to rule out that this deviation is a gen-
eral artifact of alchemical simulations, even though this is not likely because the
alchemical simulations for the difference between the EQVEAV peptide (that is also
charged) and the EQVSAV peptide worked well. Hence, we also performed PaCS-
MD simulations to determine the absolute binding free energies for the EQVSAV.
Here, we obtained a reasonable result close the experimental result for the EQVSAV
peptide. Using the same setup for the PaCS-MD simulations with the EQVpSAV
peptide we obtained a similar difference between our and the experimental result
as we obtained from the alchemical simulations. This suggests that the issue is not
with the setup of our simulations but likely due to nonoptimal force field parame-
ters of the phosphate group or especially phosphoserine in the CHARMM36m force
field. This is backed by results for the binding of phosphorylated peptides to 14-3-
3 proteins which we recently studied [32]. In this study, we analyzed the binding
of phosphorylated and unphosphorylated peptides to the 14-3-3η protein. 14-3-3
proteins usually bind only phosphorylated peptides and the binding of their un-
phosphorylated counterparts is too weak to be measured experimentally [104, 338,
339]. Also for that system we performed alchemical simulations where we simulated
the bound and the free state separately. Considering, that one would expect abso-
lute binding free energies for the binding of the unphosphorylated forms of nearly
0 kJ mol−1, the resulting binding free energy difference obtained from the alchemical
simulations should be close to the absolute binding free energy of the phosphory-
lated form. Following this path, a deviation of around 6− 8 kJ mol−1 from the exper-
imental value was observed. This deviation has a similar size as the deviation of the
relative binding free energy difference between the phosphorylated EQVpSAV and
unphosphorylated EQVSAv peptide binding the hPTP1E PDZ2 domain from the ex-
perimental difference and also the deviation of the absolute binding free energy dif-
ference of the phosphorylated EQVpSAV peptide to the hPTP1E PDZ2 domain from
the experimental value obtained by PaCS-MD. Additionally, another recent study
also suggested that recent force fields still “inconsistently portray the microscopic
details of phosphorylation” [370]. There, also a deviation of around 8 kJ mol−1 from
the experimental result was found. Panel et al. also experienced errors in the range
between 1 − 3 kcal mol−1 ≈ 4 − 13 kJ mol−1 in their alchemical simulation for C-
terminal peptides binding to the TIAM1 PDZ domain when using an additive force
field [360]. They suggested that at least around 0.8 kcal mol−1 were the result of a
systematic error.

Because the experimental binding free energy difference between the EQVpSAV
peptide and the EQVSAV peptide binding to the hPTP1E PDZ2 domain is only
around 4 kJ mol−1, an error of this size, i. e. for an error of around double the actual
experimental value, could explain the wrong sign. If we assume that the phosphate
parameters overestimate the interactions, the unbiased MD simulations are also in-
fluenced by these deviations. It is possible that salt bridges between the phosphate
group and other charged residues are overestimated. Another possibility is that the
coordination of the phosphate group in water in our simulations is less favorable
than in a real system. Overall, we expect these deviations to influence the binding
of the peptide but we feel that the general effects are still comparable. The errors in
the alchemical simulations should be similar for all the ones involving a phosphate
group and thus we can still compare them to each other.

The mutation R79A in the hPTP1E PDZ2 domain shifted the binding free energy
difference between the EQVpSAV peptide with singly charged phosphate and the
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EQVSAV peptide by around 6 kJ mol−1, i. e. the phosphorylated peptide binds much
stronger to the hPTP1E PDZ2 domain than to the hPTP1E PDZ2 R79A domain. Simi-
larly, the phosphorylated peptide binds much stronger to the hPTP1E PDZ2 domain
than to the MAGI1 PDZ1 domain, the difference here is around 12 kJ mol−1. We
suspect that here also the absence of the lysine at position 72 (78 in MAGI1 PDZ1)
reduces the binding free energy of the phosphorylated peptide to the MAGI1 PDZ1
domain. By forming a positively charged surrounding, ARG79 and LYS72 seem to
play a very important role for the binding of phosphorylated peptides and likely
peptides in general that contain a negative charge at position -2 from the C termi-
nus. This is also seen in the plain MD simulations since the glutamate and phosphate
repeatedly interact with ARG79 and LYS72 in the various simulations.

The results from the alchemical simulations and the binding patterns in the plain
MD simulations also suggest that glutamate is not a good mimic for phosphoserine
in such binding studies, as it was already stated before, because the phosphate group
has the possibility to engage in stronger and more stable hydrogen bonds and salt
bridges [66, 72, 156].

A question that remains open is why in experiments the phosphorylated EQVp-
SAV peptide binds weaker to the hPTP1E PDZ2 domain than the unphosphorylated
EQVSAV peptide even though the phosphate group forms very stable hydrogen
bonds with positively charged residues in the binding pocket. In our simulations
with MAGI1 PDZ1 and hPTP1E PDZ2 R79A we also observed that the phospho-
rylated peptide binds weaker to the protein than the unphosphorylated one. The
phosphorylated peptide binds even weaker when there are no positive residues sur-
rounding the phosphate group (like in MAGI1 PDZ1). This makes perfect sense
because the phosphate group can then not form strong salt bridges and freely in-
teracts with the surrounding water. It seems like the phosphorylated peptide has
a better coordination in the free (completely solvated) state as in the bound state.
Maybe the interaction between the serine of the unphosphorylated EQVSAV pep-
tide and the histidine in the binding pocket plays a role too because serine pulls the
peptide further into the binding pocket but this was only observed for the hPTP1E
PDZ2 domain and not for the MAGI1 PDZ1 domain.
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Chapter 5

How to study competitive binding
computationally

5.1 Introduction

Within biological systems, a protein and its ligand are never alone, but are always
influenced by external sources, such as other macromolecules or ligands. Multiple
molecules usually compete to bind to the available proteins and when this competi-
tion is about a single binding pocket, it is called competitive binding.

In experimentl research, competitive binding assays are a common way to de-
termine the binding strength of small molecule inhibitors and peptides to proteins.
Thereby, the apparent value of the dissociation constant KD of a ligand is measured
when it is inhibited by another ligand. With the help of this information the disso-
ciation constant KI of the inhibitor can be determined. In drug design, the goal is to
find an inhibitor with a dissociation constant that is similar or lower than the one of
the original ligand.

Even though drug design is increasingly performed by aid of computational
methods like virtual screening, docking and molecular dynamics, computational
methods to examine the competitive binding of two ligands to the same receptor
binding pocket are still missing to the best of our knowledge. Therefore, in this
study we wanted to test a new computational methodology for competitive bind-
ing, namely parallel cascade selection molecular dynamics simulations (PaCS-MD)
with a bound peptide and an inhibitor floating close to the binding pocket in com-
bination with Markov state models (MSMs). We wanted to test if it is possible to
obtain reasonable apparent dissociation constants or binding free energies for the
bound ligand influenced by the inhibitor.

Due to their central role in various biological events and their conserved, well-
defined binding mode [371] and the consequently growing interest in PDZ domains
as potential drug targets [127, 372], PDZ (PSD-95/Discs-large/ZO-1) [117] domains
are interesting systems to study competitive binding. They represent protein mod-
ules that are highly abundant in human cells and play a role in various protein-
protein interactions, e. g. they are involved in signal transduction [120, 122–126].
Various experimental studies of competitive binding to PDZ domains exist [165, 175,
373–377] and different types of inhibitors are constantly developed [371].

The system of choice to study competitive binding in this project was the PDZ
domain of the mus musculus (mouse) Dishevelled1 protein, further called mDvl1
PDZ binding a peptide with sequence SGSLKLMTTV peptide inhibited by the small-
molecule inhibitor Sulindac [11] (SUZ). An experimental characterization has been
previously provided by Lee et al. [175] and Zhang et al. [376]. In the former, they
showed that Sulindac binds specifically to the mDvl1 PDZ domain. Using a compet-
itive binding assay they observed that Sulindac inhibits the binding of a C-terminal
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peptide of the Dapper protein with the sequence SGSLKLMTTVCOOH. The inhibi-
tion constant of SUZ was in the same order of magnitude as the dissociation constant
of the peptide. Sulindac is a commonly used non-steroidal anti-inflammatory drug
that was demonstrated to help in prevention of colon cancer [378–383]. Addition-
ally, Sulindac was shown to play a role in suppression of canonical β-catenin-related
Wnt signaling in breast cancer and lung cancer cell lines [175, 384]. Dishevelled
PDZ domains are involved in the transfer of Wnt signals from the membrane-bound
receptor Frizzled to other cells [165] and since a nonnormal signaling of Wnt was
connected to tumorigenesis, the Dishevelled PDZ domains are studied as targets for
inhibition of Wnt signaling [375].

5.2 Materials and Methods

5.2.1 Structure preparation

For the purpose of this study we wanted to analyze the binding of the SGSLKLMTTV
peptide and the small molecule inhibitor SUZ to the mDvl1 PDZ domain. A dock-
ing structure existed for SUZ binding the mDvl1 PDZ domain ((Protein Data Bank
(PDB) [6] entry: 2KAW [175]) but at the time of starting this project there was no
crystal structure available for the SGSLKLMTTV peptide binding to the mDvl1 PDZ
domain. Consequently, we used another X-ray diffraction structure (PDB entry:
1L6O [385]), where the Xenopus Dishevelled PDZ domain binds a SLKLMTTV pep-
tide from Dapper, to obtain a structure for the mDvl1 domain with the peptide.
In doing so, we superimposed the PDZ domains (RMSD: 0.483 Å) and created a
new structure of the mDvl1 PDZ domain binding the SLKLMTTV peptide to be
used as our main study system. The binding of the SGSLKLMTTV peptide and the
SLKLMTTV peptide should be very similar since protein binding to PDZ domains
usually involves only a few C-terminal residues of the protein. All structures were
taken from the Protein Data Bank (PDB) (www.rcsb.org) [6, 7].

Optimization of small molecule inhibitor SUZ

For the small molecule inhibitor SUZ we used the .mol2-file stored at PDB entry
2KAW [175] and used the CHARMM General Force Field (CGenFF) [1, 2] program [386,
387] to parametrize the ligand and obtain the CHARMM [3] files for this specific lig-
and. We then inserted this files into the FFParam program [388] to optimize the lig-
and parameters. This program helps performing molecular mechanics calculations
using OpenMM [389] and quantum mechanical calculation using Psi4 [390]. After
performing both types of simulations for the study system, the software is able to
compare the quantum mechanical and molecular mechanical results and helps in
optimizing the parameters so that the molecular mechanical results best resemble
the quantum mechanical ones. First, geometry optimization was performed. We
used the second-order Møller-Plesset perturbation theory [5] (MP2) with the 6-31G*
basis set [391], as recommended in the FFParam documentation, to obtain the quan-
tum mechanical structural properties. Afterwards, the electrostatic parameters, e. g.
charges, were fitted. To do so, the quantum mechanical calculations for the water
interactions were performed using the Hartree-Fock theory (HF) with the 6-31G*
basis set, as recommended in the FFParam documentation and the molecular me-
chanics results were compared to them. In a last step, bonded parameters were

https://www.rcsb.org/
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optimized using the MP2 level of theory with the 6-31G* basis set again. The result-
ing CHARMM files were then transformed into GROMACS [4] format using a script
provided by the authors of CGenFF on their website [392].

5.2.2 Molecular dynamics (MD) simulation protocol

The plain molecular dynamics simulations and the equilibration of the systems was
performed similarly to our previous projects [32] (also see chapters 3 and 4) but is
described here for completeness. We performed all our MD simulations with the
GROMACS [4] 2018.8 software package and the CHARMM36m [192] force field for
proteins and peptides. In order to represent the water molecules, we made use of the
TIP3P [224] model modified for the CHARMM force field [190] and used the internal
GROMACS tool pdb2gmx in order to generate hydrogen atoms. Moreover, a time
step of 2 fs was applied in our simulations and periodic boundary conditions [201]
were used. Additionally, we computed the long-range electrostatic interactions with
the particle-mesh-Ewald summation method [8], whereby 12 Å were used as the
non-bonded interaction cutoff. Furthermore, we constrained the hydrogen bonds
using the LINCS [347] algorithm and applied long range dispersion corrections for
energy and pressure. In order to simulate physiological conditions we included a
concentration of 0.15 mol L−1 NaCl in all simulation boxes.

The minimization of our simulation systems was performed in two steps. First,
we minimized the unsolvated molecular system for a total of 50000 steps using the
steepest descent algorithm with an initial step size of 0.01 nm. Minimization was
stopped when a value of convergence for the maximal force of 5 kJ mol−1 nm−1 was
reached. Second, solvation and ionization of the system was performed and another
round of minimization was carried out where the positions of the heavy atoms of
protein and peptide were kept rigid via position restraints. Here again, the steepest
descent algorithm was used. The total number of steps was 100000 and the ini-
tial step size 0.01 nm. We stopped the minimization when a convergence value of
500 kJ mol−1 nm−1 was reached.

After minimization we applied the velocity-rescaling thermostat [239] to our sys-
tems using a coupling time constant of 0.1 ps and separate temperature baths for
solute and solvent. Thermalization was performed at 100 K, 200 K, and at the final
temperature of 283 K, respectively, for 500 ps each while the position restraints for
the proteins and peptides were still intact. We then continued the equilibration for
500 ps in the NPT ensemble. For this reason we added a Berendsen barostat [238] to
the systems while the position restraints of the solutes were kept. Here, we used a
barostat time constant of 2 ps, a reference pressure of 1 bar, and an isothermal com-
pressibility of 4.6 · 10−5bar−1. For the last equilibration steps, namely the release of
the restraints on the solute in three steps, from 1000 via 100, and 10 to 0 kJ/mol/nm2,
we changed the Berendsen barostat [238] to a Parrinello-Rahman extended-ensemble
pressure coupling [250, 348]. This was needed because even though the former is
great for box scaling in the start of simulations it does not reproduce a correct ther-
modynamic ensemble.

For the parallel cascade selection molecular dynamics (PaCS-MD) simulations
of the small molecule inhibitor SUZ binding the mDvl1 PDZ domain and for the
SLKLMTTV peptide binding the mDvl1 PDZ domain we created triclinic boxes with
a size of around 8.6 nm x 8.6 nm x 14.1 nm. Here, the size in z-direction was larger
because we aligned the binding pocket along this direction so the dissociation of the
protein and peptide could happen mostly along this direction. For the PaCS-MD
simulation for the SLKLMTTV peptide binding the mDvl1 PDZ domain where the
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small molecule inhibitor SUZ was floating around close to the binding pocket (i. e.
the simulations to study competitive binding) the box size was approx. 9 nm x 9 nm
x 14.1 nm.

Parallel Cascade Selection Molecular Dynamics (PaCS-MD)

Parallel cascade selection molecular dynamics (PaCS-MD) simulations were used in
order to obtain absolute binding free energies for the SLKLMTTV peptide binding
to the mDvl1 PDZ domain and for the small molecule inhibitor SUZ binding to the
same domain. Furthermore, PaCS-MD simulations were also used to study the un-
binding of the SLKLMTTV peptide when the inhibitor SUZ floats around nearby
the binding pocket. The simulations were performed similar to the ones by Tran
and Kitao [27] and our previous project (see chapter 4). To separate the protein and
the ligand, i. e. the peptide or the small molecule inhibitor, during the PaCS-MD
simulations the center-of-mass (COM) distance was used as the reaction coordinate.

In order to keep the protein from moving and rotating during our simulations
we kept restraints on the Cα atoms of residues 2-7 and 84-89 with a strength of
100 kJ/mol/nm2.

We performed 30 independent runs (called trials) of PaCS-MD simulations for
the unbinding of the SLKLMTTV peptide from the mDvl1 PDZ domain and another
30 trials for the unbinding of the small molecule inhibitor SUZ. Every 1 ns from the
last 30 ns of an initial plain MD simulation with 100 ns length we took a snapshot to
obtain starting structures for the trials. To start the PaCS-MD procedure we started
1 ns MD simulations (cycle 0) from each initial structure. Afterwards, we started 30
replicas from each of the 30 snapshots in the 1 ns MD simulations with the highest
inter-COM distance between the protein and the peptide. We then simulated each
replica for 100 ps in every cycle while recording snapshots every 0.5 ps. When the
inter-COM distance between protein and peptide was greater than d = 6 nm for
all of the 30 best snapshots of the previous cycle in a trial, we stopped the simula-
tions of this specific trial. For the PaCS-MD simulations of the SLKLMTTV peptide
binding the mDvl1 PDZ domain where the small molecule inhibitor SUZ is floating
around close to the binding pocket we performed many trials and analyzed different
numbers of them to see how this affected the results.

To analyze the trajectories of the PaCS-MD simulations, we used pyEMMA [367]
for the estimation of reversible discrete Markov state models (MSMs). We used the
relative three-dimensional center-of-mass position (3D-COM) of the peptide with re-
spect to the protein as a feature for the creation of MSMs as already done by Tran and
Kitao [27]. Furthermore, we incorporated all of the trajectories from all PaCS-MD
trials into the MSMs. Howeverm we removed all snapshots where the inter-COM
distances were larger than 5 nm, because it is hard to perform a complete phase-
space sampling in regions far away from the binding pocket. At 5 nm the protein
and the peptide are completely separated and this is thus no issue for the analysis.
In our analysis we had a total analyzed simulation time of 4.62 µs for mDvl1 PDZ
with the SLKLMTTV peptide and of 1.73 µs for mDvl1 PDZ with the small molecule
inhibitor SUZ.

We estimated unvalidated Markov models for a number of cluster centers us-
ing the Kmeans clustering [368] algorithm with repeated rounds of discretization
to obtain a reasonable number of cluster centers or microstates and to account for
the stochastic nature of the clustering algorithm. For examination of the clustering
we used the VAMP-2 score [331] (with cross validation) to find an optimal value
of cluster centers. In doing so, we used a MSM lag time of 20 steps for starting
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this analysis which was then adjusted later on to a reasonable lag time for the final
MSM. We found 1000 clusters to be a good number of clusters for the binding of the
SLKLMTTV peptide to the mDvl1 PDZ domain and 3000 clusters for the binding of
the small molecule inhibitor SUZ to the mDvl1 PDZ domain because the VAMP-2
score reached a plateau at these values (see fig. C.1 and fig. C.2).

After these steps, the trajectory was transformed into a discretized trajectory
along these clusters. We built MSMs for multiple lag times and plotted the resulting
time scales for the ten slowest processes to find an optimal lag time to build the final
MSMs. Usually one chooses the lag time where the time scales reach a converged
plateau and in doing so we obtained a reasonable good final lag time of 10 ps for our
MSMs for the binding of the SLKLMTTV peptide to the mDvl1 PDZ domain because
there our results for the absolute binding free energy best resembled the experimen-
tal value. For the small molecule inhibitor SUZ binding the mDvl1 PDZ domain, we
did not find a lag time where we obtained a binding free energy close to the result
calculated from the experimental KI value. Therefore, we chose the same lag time as
for the SLKLMTTV peptide.

In order to calculate the binding free energy from the work performed along the
reaction coordinate, we mapped the stationary distribution π(rj) of each microstate
j of the Markov state model based on the relative 3D-COM position of the peptide
into a 1D-PMF by

W(di) = − 1
β

ln ∑
di−δd/2≤d(rj)<di+δd/2

π(rj) [27] (5.1)

where β = 1/(kBT) is the inverse temperature, j is the position in 3D of microstate,
rj is the position of the microstate, and δd is the bin size. We chose the bin size as
δd = 0.05 nm.

Competitive binding

When two ligands compete in binding to a receptor, in our case the mDvl1 PDZ
domain, the dissociation constant KD of the bound ligand reduces to the apparent
dissociation constant Kapp

D as

Kapp
D = KD

(
1 +

[I]
KI

)
(5.2)

where [I] is the concentration of the inhibitor and KI is the inhibition constant of the
inhibitor.

To examine competitive binding and to obtain these apparent dissociation con-
stants or binding free energies, we performed PaCS-MD simulations for the un-
binding of the SLKLMTTV peptide from the mDvl1 PDZ domain where the small
molecule inhibitor SUZ was floating around close to the binding pocket. We started
multiple short plain MD simulations with different initial positions of the small
molecule inhibitor SUZ scattered around the binding pocket to obtain a plethora of
starting positions for the PaCS-MD simulations. From each short plain MD simula-
tion we took nine starting positions. To keep the inhibitor close to the binding pocket
we applied restraints on the center of mass (COM) of SUZ using the pull code in
GROMACS. Those were one that kept the COM from moving to the other side of the
protein away from the binding pocket by defining a minimum z-coordinate value in
a flat-bottom potential (since the protein is aligned and fixed so the binding pocket
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opens up into z-direction) and one that kept the COM distance between SUZ and
the protein below 3 nm.

From the initial positions extracted from the short plain MD simulations we
started various PaCS-MD simulations. Beforehand, we released the restraints on the
inhibitor to obtain an unbiased simulation system during PaCS-MD. We took differ-
ent sets of initial positions and created MSMs using the PaCS-MD trajectories that
were started from these positions to study how the initial positions of the inhibitor
influenced the resulting apparent binding free energy of the peptide and the features
of the MSM in general. For matter of comparison, we also performed one long plain
MD simulation, extracted multiple initial positions for PaCS-MD from this, and cre-
ated a MSM using only PaCS-MD trajectories that were started from initial positions
from this single run. The total analyzed simulation times are given in table 5.1.

5.3 Results

5.3.1 Parallel Cascade Selection Molecular Dynamics of the SLKLMTTV
peptide binding the mDvl1 PDZ domain

To obtain the absolute binding free energy for the binding of the SLKLMTTV peptide
to the mDvl1 PDZ domain we performed PaCS-MD simulations to dissociate the
peptide from the protein. In fig. C.1 the inter-COM distance between the SLKLMTTV
peptide and the mDvl1 PDZ domain as a function of the number of cycles in the
PaCS-MD trials is shown. There, always the largest inter-COM distance of each cycle
is presented. We estimated the bound (inter-COM distance < 1.45 nm), partially-
bound (1.45 nm < inter-COM distance < 2.1 nm) and unbound (2.1 nm < inter-COM
distance) states from this plot. Overall, 52 ± 35 cycles and 78 ± 53 ns on average
of PaCS-MD simulation were needed to completely dissociate the peptide from the
protein. To analyze the PaCS-MD simulations MSMs were built with the 3D-COM
position of the peptide as feature as was similarly done by Tran and Kitao [27] for
dissociation PaCS-MD and as we already did in our previous study (see chapter 4).

The resulting absolute binding free energy for the binding of the SLKLMTTV
peptide to the mDvl1 PDZ domain is

∆GSLKLMTTV
bind,PaCS ≈ −27.19 kJ mol−1 (5.3)

for a MSM lag time of 10 ps. This is nearly perfectly the experimental binding free
energy ∆GSGSLKLMTTV

bind,exp. = −27.75 kJ mol−1 [175].

5.3.2 Parallel Cascade Selection Molecular Dynamics of the small molecule
inhibitor SUZ binding the mDvl1 PDZ domain

To obtain the absolute binding free energy for the binding of the small molecule
inhibitor SUZ to the mDvl1 PDZ domain we performed PaCS-MD simulations to
dissociate the SUZ from the protein. In fig. C.2 the inter-COM distance between
the small molecule inhibitor SUZ and the mDvl1 PDZ domain as a function of the
number of cycles in the PaCS-MD trials is shown. There, always the largest inter-
COM distance of each cycle is presented. We estimated the bound (inter-COM dis-
tance < 1.35 nm), partially-bound (1.35 nm < inter-COM distance < 2.1 nm) and un-
bound (2.1 nm < inter-COM distance) states from this plot. Overall, 20± 6 cycles and
29 ± 9 ns on average of PaCS-MD simulation were needed to completely dissociate
the peptide from the protein. To analyze the PaCS-MD simulations MSMs were built
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PaCS-MD
simulations

analyzed

Number of
trajectories
analyzed

Total
simulation
time in µs

Mean
number
of cycles

Mean length
of

trials in ns
0 34 5.98 33 ± 16 48 ± 23

1+2+3 27 4.66 58 ± 62 86 ± 93
1+2+4 27 5.61 70 ± 59 104 ± 88
1+3+4 27 4.46 56 ± 58 83 ± 87
2+3+4 27 4.20 52 ± 30 78 ± 45

1+2+3+4 36 6.31 59 ± 54 88 ± 81

TABLE 5.1: Number of analyzed trajectories, total simulation time in
µs, mean number of cycles and mean length of trials in ns of trajec-
tories from PaCS-MD for the creation of the MSMs. The standard
deviation is displayed for the number of cycles and the length of tri-

als.

with the 3D-COM position of SUZ as feature as was similarly done by Tran and Ki-
tao [27] for dissociation PaCS-MD and as we already did in our previous study (see
chapter 4).

The resulting absolute binding free energy for the binding of the small molecule
inhibitor SUZ to the mDvl1 PDZ domain is

∆GSLKLMTTV
bind,PaCS ≈ −7.33 kJ mol−1 (5.4)

for a MSM lag time of 10 ps. At none of the lag times the experimental binding free
energy ∆GSUZ

bind,exp. = −27.90 kJ mol−1 [175] could be reproduced wherefore we chose
the same lag time as for the SLKLMTTV peptide.

5.3.3 Competitive binding of the small molecule inhibitor SUZ and the
SLKLMTTV peptid to the mDvl1 PDZ domain by PaCS-MD

To analyze the influence of the initial position of the small molecule inhibitor SUZ on
the features of the MSM created from the PaCS-MD trajectories for the SLKLMTTV
peptide bound to the mDvl1 PDZ domain where SUZ was floating around close to
the binding pocket, we combined the starting positions extracted from four short
plain MD simulations into three sets. We always analyzed all trajectories that were
started from initial positions extracted from a single plain MD simulations together
but then analyzed these together with trajectories started form the initial positions
from two or three other plain MD simulations. To keep track of the combinations,
we labeled the plain MD simulations from 1 to 4. Since we also performed one long
plain MD simulation and extracted initial positions from this one and analyzed them
without combination of initial positions from other plain MD simulations we labeled
this simulation with 0. In the following, the results from all the MSMs analyzing
combinations of trajectories from PaCS-MD simulations will be shown in tables 5.1
and 5.2 for ease of comparison. To be comparable to each other and also to the MSM
built from the PaCS-MD simulation for the SLKLMTTV peptide binding the mDvl1
PDZ domain without the small molecule inhibitor SUZ we used a lag time of 10 ps
for all MSMs as it was found to reproduce the correct experimental absolute binding
free energy for the SLKLMTTV peptide binding the mDvl1 PDZ domain.

All the resulting apparent binding free energies differed less than 4 kJ mol−1 ≈
1 kcal mol−1 from the apparent binding free energy ∆Gapp

bind = kBT ln Kapp
D = −15.11 kJ mol−1
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PaCS-MD
simulations analyzed

MSM lag time
in ps

Apparent absolute
binding

free energy in kJ mol−1

0 10 −11.46
1+2+3 10 −13.66
1+2+4 10 −14.20
1+3+4 10 −16.36
2+3+4 10 −13.83

1+2+3+4 10 −14.63

TABLE 5.2: Apparent absolute binding free energy in kJ mol−1 com-
puted from MSMs at a lag time of 10 ps for the SLKLMTTV peptide
binding the mDvl1 PDZ domain when the small molecule inhibitor

SUZ is close to the binding pocket and competes in binding.

calculated from the experimental dissociation constant of the peptide, the inhibitor
concentration in our simulations and the experimental inhibition constant of the in-
hibitor using eqn. (5.2). This deviation is a common size of error for absolute binding
free energies obtained from computational methods. The result from the MSM built
from the PaCS-MD trajectories started from initial positions that were all extracted
from a single long plain MD trajectory (labeled 0) deviated the strongest from the
expected value.

From fig. 5.1 and 5.2 it is clear, that the choice of initial positions of the small
molecule inhibitor SUZ highly influences the 3D-COM positions of SUZ during the
PaCS-MD trajectories and thus the features with which the MSMs are built. There-
fore, different clusters will be found for different sets of trajectories and thus the
MSMs and the resulting apparent binding free energies will differ.

5.4 Discussion

We realized that the choice of the initial position of the small molecule inhibitor close
to the binding pocket has a strong impact on the length, i. e. the number of cycles, of
a PaCS-MD simulation for a peptide bound to a protein domain when the inhibitor
is trying to disturb this interaction. When the inhibitor is positioned directly on
top of the binding pocket, the PaCS-MD simulation takes much longer than with
the inhbitor being on the side because the inhibitor really blocks the peptide from
moving out of the binding pocket. Since the simulation does not apply a pulling
force or the like, it takes some time until the peptide pushes the inhibitor out of the
way.

Our result for the absolute binding free energy of the small molecule inhibitor
SUZ to the mDvl1 PDZ domain is far from reproducing the experimental result.
Maybe the parametrization of SUZ was not ideal even though we optimized the
parameters. Probably the initial position of SUZ obtained from PDB entry 2KAW
was not optimal since it was obtained using docking [175].

Thus, it is interesting that the resulting apparent binding free energies from the
PaCS-MD simulations where the peptide was bound and the small molecule in-
hibitor SUZ floated close to the binding pocket are well reproducing the apparent
binding free energy that can be calculated from the experimental dissociation con-
stant of the peptide, the experimental inhibition constant of SUZ and the concen-
tration of SUZ in our simulations. We cannot be sure that this is just a coincidence
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FIGURE 5.1: Densities of the 3D-COM inhibitor positions of all trajec-
tories used to build a MSM. (A) Trajectories started from initial po-
sitions of the plain MD simulation labeled 0. (B) Trajectories started
from initial positions of the plain MD simulations labeled 1, 2 and 3.
(C) Trajectories started from initial positions of the plain MD simula-

tions labeled 1, 2 and 4.
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FIGURE 5.2: Densities of the 3D-COM inhibitor positions of all trajec-
tories used to build a MSM. (A) Trajectories started from initial posi-
tions of the plain MD simulations labeled 1, 3 and 4. (B) Trajectories
started from initial positions of the plain MD simulations labeled 2, 3
and 4. (C) Trajectories started from initial positions of the plain MD

simulations labeled 1, 2, 3 and 4.
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due to undersampling or other reasons. Because the results are so close to the cal-
culated apparent binding free energy maybe the results for the competitive binding
are correct and just the initial position of SUZ in the bound state for the PaCS-MD
of SUZ binding the mDvl1 PDZ domain was non-optimal, therefore resulting in a
too weak binding free energy for SUZ binding the mDvl1 PDZ domain. In this case,
the parametrization could still be correct and thus the competitive binding worked
well. Overall, it is clear from the inhibitor 3D-COM densities for the trajectories
from the PaCS-MD simulations in fig. 5.1 that each MSM sampled different states
of the system, i. e. different positions of the inhibitor relative to the binding pocket
and peptide. This is a hint on a lack of enough sampling of all relevant states in the
system. Here, it makes sense that the result from the MSM built from the PaCS-MD
trajectories that were started from initial positions all extracted from a single long
plain MD trajectory (labeled 0) deviated the strongest from the expected value, since
here the sampling of 3D-COM positions of SUZ was the worst compared to the other
MSMs. Additionally, the choice of the 3D-COM positions of peptide and inhibitor
as features for the MSMs does not allow to differentiate between different binding
states between peptide and inhibitor, peptide and protein, and inhibitor and protein
that can occur during the course of the simulations.

Overall, this project is far from being completely finished but we obtained a way
of studying the competitive binding of a peptide and a small molecule inhibitor to a
protein including the calculation of the reduced apparent binding free energy of the
peptide when the inhibitor is present close to the binding pocket. It is a functioning
way of performing an unbinding simulation without external forces and thus allows
to obtain various structures that could be intermediate states of the unbinding. Even
though this is a positive result, further efforts have to be taken to get a deeper un-
derstanding of the influence of the initial inhibitor position on the computed binding
free energies and the micro- and macrostates in a resulting MSM. Moreover, the in-
fluence of the number of different initial positions for sufficient sampling has to be
further evaluated. Additionally, other features for the creation of the MSMs, like the
Cα-atom positions, could be used to see how this influences the results. In the future,
the same methodology could also be tested for other small molecule inhibitors, e. g.
one studied by Shan et al. [375]. Furthermore, also the initial position of SUZ could
be optimized by new docking simulations.
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Chapter 6

Conclusion and Outlook

Overall, in this thesis the aim of a deeper understanding of protein-peptide interac-
tions, specifically of 14-3-3 proteins and PDZ domains with C-terminal peptides of
partner proteins, and of the influence of mutations in protein and peptide as well as
phosphorylation of serine residues in the peptides on these interactions, was met.
Computational studies of peptides binding to 14-3-3 proteins and PDZ domains are
still scarce and even less computational studies exist that developed an understand-
ing of the influence of phosphorylation on such binding.

6.1 14-3-3 proteins binding peptides

In our first two studies we performed plain MD simulations to determine mecha-
nistic details of the binding of peptides to the respective protein or protein domain.
In the first project [32] (see chapter 3), we gained new insight into the binding be-
haviour of unphosphorylated peptides to 14-3-3 domains, a binding that has not
been observed in experiments until today, likely because the binding affinity of the
unphosphorylated peptides is very low (at least the binding is too weak to determine
dissociation constants for such peptides [104, 338, 339]). Our simulations clearly
showed why complexes between phosphorylated peptides and 14-3-3 proteins are
much more favorable than complexes with unphosphorylated peptides. Charged
residues in the 14-3-3η domain, that we studied, formed strong interactions with
the phosphate group and the phosphoserine side chain was better coordinated in
the binding pocket compared to the unbound state while the opposite holds true for
the serine side chain. Moreover, these interactions led to a strengthening of addi-
tional hydrogen bonds involving residues around the phosphorylated residue. We
additionally obtained evidence for the common existence of arginine residues not
further than three positions away from the phosphorylated residue inside the pep-
tide chain in all three main binding motifs [104–106]. Usually, these interact with the
phosphate group and lead to a better coordination in the bound state by closing the
charged pocket formed by the 14-3-3 domain in that the phosphate group sits inside.

Furthermore, we learned that there are only very small differences between the
binding of a single peptide (phosphorylated or not) to a 14-3-3 monomer or a 14-3-3
dimer and that it is challenging to reproduce or observe cooperative effects among
the two binding sites of a 14-3-3 dimer that were previously suggested by exper-
imentalists [104, 339, 341] (see chapter 3). We observed no specific differences in
contacts between peptides and the proteins in a 14-3-3 dimer. The phosphorylation
state of the peptide binding to the first 14-3-3 protein in the dimer had no influence
on the binding of the second peptide binding to the second 14-3-3 protein in the
dimer. Though, we saw an alteration of the main modes in a PCA analysis of 14-3-3
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dimers based on the number of bound peptides (one or two) and their phosphory-
lation states.

To conclude, we realized that 1 µs plain MD simulations are likely too short to
sample all relevant important dynamics of the 14-3-3 dimers since these are large sys-
tems with various conformational changes and movements and that it is generally
very challenging to study complexes of these flexible peptides with 14-3-3 proteins.
Thus, in the future it would be interesting to perform multiple long MD simulations
of the 14-3-3 dimer with and without one or more peptides and to analyze the con-
formations using Markov state models (MSMs). Additionally, it would be insightful
to compare the main conformations between systems with and without peptides to
see what influence peptide binding has on the movements in the 14-3-3 dimer.

To complete the picture it would also make sense to additionally study com-
plexes of 14-3-3 protein with motif 3 (RXXp(S/T)XX-COOH) [105] peptides in the
future and to check whether the results differ from the ones in our study where we
only studied motif 1 (R[S/F/Y/W]XpSXP) and motif 2
(RX[S/Y/FW/T/Q/A/D]Xp(S/T)X[P/L/M]) [104–106] peptides binding to 14-3-3
proteins.

6.2 PDZ domains binding peptides

In our second project, we aimed to study the binding of unphosphorylated and phos-
phorylated motif 1 peptides to PDZ domains and find out how this binding is influ-
enced by mutations in the PDZ domains as well as by mutations in the peptide. We
identified that peptides generally bind to PDZ domains due to backbone-backbone
interactions with the binding-pocket beta strand and that the backbone of the residue
at position -2 from the C terminus (often a phosphorylatable residue is found at this
position) is involved in the most stable interactions. The binding is further stabi-
lized by interactions of the hydrophobic C-terminal residue of the peptide with the
surrounding residues of the PDZ domain.

Furthermore, we observed that specific residues in the PDZ domains have a
strong influence on the binding of specifically phosphorylated peptides and other
peptides that contain a negative charge at position -2 from the C terminus to these
domains. These residues are ARG79 and LYS38 in the hPTP1E PDZ2 domain and
equivalently GLN85 and LYS44 in the MAGI1 PDZ1 domain if mutated to arginine,
as well as LYS72 in the hPTP1E PDZ2 domain.

In our simulations we did not focus on possible rearrangements in the PDZ do-
mains due to binding since we always started from a bound state. Morra et al.
showed, that strong rearrangements inside the PDZ can occur when a peptide binds
to it. Therefore, it would be interesting to study the effects of these conformational
changes on the binding and binding free energies in the future.

6.3 Binding free energies for peptides binding 14-3-3 pro-
teins and PDZ domains and the influence of phospho-
rylation and the parametrization of the phosphate group

In the first two studies we also performed simulations to obtain binding free ener-
gies for the binding of the peptides to the respective proteins or protein domains.
In the first project we used alchemical simulations to obtain binding free energy dif-
ferences between the binding of phosphorylated and unphosphorylated peptides to
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14-3-3 proteins. These revealed that there exist strong challenges to obtain good re-
sults for systems involving large charge changes, e. g. systems that involve doubly
charged residues such as phosphoserine that should be alchemically transformed
to a serine. Moreover, we observed deviations of the relative binding free energy
differences from the experimental values. Thus, it would be interesting to perform
absolute binding free energy simulation, like parallel cascade selection molecular
dynamics (PaCS-MD) or umbrella sampling simulations, in order to see if the devia-
tions exist for the phosphorylated and unphosphorylated peptides. If the deviations
are different or lower for the unphosphorylated one this could be a hint, that the
phosphate parameters in the CHARMM36m force field should maybe be updated to
allow for calculation of correct binding free energies. Since there exist no experimen-
tal absolute binding free energy values for the unphosphorylated peptides (several
publications state that the values are too small to be measured) it would be inter-
esting to join forces with an experimental group and try to understand the binding
of unphosphorylated peptides to 14-3-3 domains. In our study, we obtained bound
states at least for 1 µs and saw some hydrogen bonds and contacts that existed nearly
the full simulation time and therefore it is likely that the binding free energy of the
unphosphorylated peptides is not 0 but just small.

In the second project (see chapter 4), we came across similar issues when calcu-
lating binding free energies as in the work on the binding of phosphorylated and
unphosphorylated peptides to 14-3-3 domains [32] (see also chapter 3). The differ-
ence between our calculated alchemical free energy difference between the bind-
ing of a phosphorylated and an unphosphorylated peptide was around 9 kJ mol−1.
Here, that resulted in a better binding of the phosphorylated peptide compared to
the unphosphorylated one even though the experimental result stated the opposite.
We tested this using different setups for the alchemical transformation simulations,
namely the “double system in a single box” setup and a setup, where we simulated
the bound and free states seperately and applied box-size and electrostatic correc-
tion terms, but this did not strongly change the results. The reason could be the
parametrization of the phosphate group in the CHARMM36m FF that could be opti-
mized in the future to reproduce correct binding free energies for systems involving
phosphate groups.

We additionally performed PaCS-MD simulations in our second project to obtain
absolute binding free energy differences in addition to the relative binding free en-
ergy differences calculated using alchemical transformations. Here, it was possible
to obtain an absolute binding free energy for the unphosphorylated peptide close to
the experimental result but not for the phosphorylated peptide. Thus, we suspected
that salt bridges between the phosphate group and charged residues in the bind-
ing pockets led to an overestimation of the binding strength of the phosphorylated
peptide due to nonoptimal force field parameters for phosphoserine. We also tried
to use glutamate as a mimic for phosphoserine in our simulations since common
force fields are usually more reliable for natural amino acid side chains compared
to the ones with post-translational modifications. We obtained good results for rel-
ative binding free energy differences from alchemical simulations using glutamate
but our results from the plain MD simulations rather suggested that glutamate is not
a good mimic for phosphoserine in such binding studies. This was also previously
described [66, 72, 156].

It would be interesting to repeat both of the two studies with another force field
that also includes phosphate parameters, e. g. the Amber ff14SB [393] or ff19SB [394]
force fields, to see if the results strongly depend on the force field itself and if similar
issues arise there. Furthermore, only since a few years force fields were optimized to
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also describe intrinsically disordered proteins like C-terminal peptide chains well.
This could also have an influence on the binding of the peptides to the 14-3-3 do-
mains in our simulations because the treatment of flexible chains can be different in
different force fields.

In recent years a few experimental studies found evidence that specific binding
motifs show a specificity to 14-3-3 and PDZ domains and that phosphorylation could
be switching the interaction of a partner protein between these two [29–31]. Thus,
in the future it would be very interesting to computationally study these specific
binding motifs and systems to analyze how the phosphorylation changes the affinity
of the peptide from PDZ to 14-3-3 or the opposite.

6.4 Competitive binding between a peptide and a small molecule
inhibitor binding a PDZ domain

Our third study falls somewhat out of line with the other two since the focus is
not mainly on the specific interactions between a peptide and a protein domain but
rather how this interaction can be inhibited or how such a competitive binding can
be studied computationally. As already mentioned in the discussion of chapter 5
(see sec. 5.4), this study is far from being finished. Though, we showed, that it is in
general possible to study the competitive binding of a peptide and an inhibitor to
the same binding pocket in a PDZ domain using PaCS-MD simulations, something
that has, to our knowledge, not been done before. We saw a decrease in the apparent
absolute binding free energy of the peptide and found a strong influence of the initial
inhibitor positions on the results. Thus in the future, more sampling of inhibitor
positions is needed. Furthermore, other features of the creation of MSMs could be
used and more systems should be analyzed to further validate this approach.

6.5 Final conclusion

In summary, there are various challenges when performing molecular dynamics
(MD) and free energy simulations but these are always evolving. They can help to
obtain a deeper understanding of the interactions between proteins and their bind-
ing partners, which is not possible solely by experimental methods. In this thesis we
identified a few possible challenges when studying the binding of peptides, espe-
cially phosphorylated peptides, to protein domains. Nevertheless, we have devel-
oped a deeper understanding of the binding of such peptides to PDZ domains and
14-3-3 proteins. Moreover, we showed that it is possible to study the competitive
binding of peptides and inhibitors to PDZ domains using parallel cascade selection
molecular dynamics (PaCS-MD) simulations. I am certain, that the field of protein-
peptide simulations is still at the beginning and we will see strong developement in
this area in the future due to increasingly more powerful hard- and software.
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Appendix A

Supplementary Material for
chapter 3

This supporting information is the preprint version of the supporting information
for our manuscript “How phosphorylation of peptides affects their interaction with
14-3-3η domains” that has been accepted for publishing in PROTEINS: Structure,
Function, and Bioinformatics [32].

A.1 Derivation of Correction Terms for Electrostatic Finite-
Size Effects

From figure A.1 it is clear that:

∆∆GB−A
bind = ∆GB

bind − ∆GA
bind (A.1)

= ∆GA→B
bound − ∆GA→B

free (A.2)

and with corrections

∆∆GB−A
bind, corr = ∆GB

bind, corr − ∆GA
bind, corr

= ∆GA→B
bound, corrected − ∆GA→B

free, corr . (A.3)

From figure A.2 it is clear that

∆GX
bind = ∆GX

complex − ∆GX
solution , (A.4)

S S

pS pS
∆GB

bind

∆GA
bind

∆GA→B
bound ∆GA→B

free

FIGURE A.1: Thermodynamic cycle for the difference in binding free
energy between state A and B of a ligand bound to a receptor. The

figure was taken from ref. [32].
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FIGURE A.2: Thermodynamic cycle for the absolute binding free en-
ergy. On the left is the free (solution) leg with total free energy
∆Gsolution (considering the turning on of interactions, so from bot-
tom to top) and on the right the bound (complex) leg ∆Gcomplex
(also bottom to top) of the absolute binding simulation. Graph
is taken from http://alchemistry.org/wiki/Absolute_Binding_

Free_Energy_-_Gromacs_2016 [395].

http://alchemistry.org/wiki/Absolute_Binding_Free_Energy_-_Gromacs_2016
http://alchemistry.org/wiki/Absolute_Binding_Free_Energy_-_Gromacs_2016
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where X is a charge state of the ligand.
Using the correction terms we then obtain

∆GX
bind, corr = ∆GX

complex, corr − ∆GX
solution, corr

= ∆GX
complex + ∆∆GX

NET_USV, complex + ∆∆GX
RIP, complex + ∆∆GX

EMP, complex + ∆∆GX
DSC, complex

− (∆GX
solution + ∆∆GX

NET_USV, solution + ∆∆GX
RIP, solution

+ ∆∆GX
EMP, solution + ∆∆GX

DSC, solution)

= ∆GX
complex − ∆GX

solution︸ ︷︷ ︸
∆GX

bind

+ ∆∆GX
NET_USV, complex + ∆∆GX

RIP, complex + ∆∆GX
EMP, complex + ∆∆GX

DSC, complex

− (∆∆GX
NET_USV, solution + ∆∆GX

RIP, solution + ∆∆GX
EMP, solution + ∆∆GX

DSC, solution)

(A.5)

where
∆∆GNET_USV(L) = − ξLS

8πϵ0ϵS

[
(QP + QL)

2 − Q2
P
] 1

L
, (A.6)

∆∆GRIP(L) = [(IP + IL)(QP + QL)− IPQP]
1
L3 , (A.7)

∆∆GEMP(L) = − 1
8πϵ0

16π2

45

(
1 − 1

ϵS

)
×
[
(QP + QL)

2 − Q2
P
] R5

L
L6 (A.8)

and
∆∆GDSC(NS, L) = −γSQL

6ϵ0

NS

L3 . (A.9)

The corrected relative binding free energy eqn. (A.3) is thus

∆∆GB−A
bind, corr = ∆GB

bind, corr − ∆GA
bind, corr

= (∆GB
bind − ∆GA

bind)

+ ∆∆GB
NET_USV, complex + ∆∆GB

RIP, complex + ∆∆GB
EMP, complex + ∆∆GB

DSC, complex

− ∆∆GB
NET_USV, solution − ∆∆GB

RIP, solution − ∆∆GB
EMP, solution − ∆∆GB
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− (∆∆GA
NET_USV, complex + ∆∆GA

RIP, complex + ∆∆GA
EMP, complex + ∆∆GA

DSC, complex

− ∆∆GA
NET_USV, solution − ∆∆GA

RIP, solution − ∆∆GA
EMP, solution − ∆∆GA

DSC, solution)

(A.10)
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The first term in eqn. (A.10) can be substituted by eqn. (A.2) yielding

∆∆GB−A
bind, corr = (∆GA→B

bound − ∆GA→B
free )

+ ∆∆GB
NET_USV, complex + ∆∆GB

RIP, complex + ∆∆GB
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DSC, solution

− (∆∆GA
NET_USV, complex + ∆∆GA
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DSC, complex
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DSC, solution − ∆∆GA
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= ∆GA→B
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free, corr (A.11)

and thus we obtain the instructions for correcting the relative binding free energies.
In the following we will try to combine the correction terms of the same kind starting
with ∆∆GB

NET_USV, state − ∆∆GA
NET_USV, state where “state” is either “bound” or “free”

and Lstate is the size of the simulation box in the specific state.
The correction for periodicity-induced net-charge interactions and undersolvation is
thus
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Continuing with the residual integrated potential correction we obtain

∆∆GA→B
RIP, state(Lstate)

= ∆∆GB
RIP, state(Lstate)− ∆∆GA

RIP, state(Lstate)

=
[
(IB

P,state + IB
L,state)(QP + QB

L)− IB
P,stateQP

] 1
L3

state

−
[
(IA

P,state + IA
L,state)(QP + QA

L )− IA
P,stateQP

] 1
L3

state

= [(IB
P,state + IB

L,state)(QP + QB
L)− IB

P,stateQP

− (IA
P,state + IA

L,state)(QP + QA
L ) + IA

P,stateQP]
1

L3
state

= [(IB
P,state + IB

L,state)QP + (IB
P,state + IB

L,state)Q
B
L − IB

P,stateQP

− (IA
P,state + IA

L,state)QP − (IA
P,state + IA

L,state)Q
A
L + IA

P,stateQP]
1

L3
state

= [IB
P,stateQP + IB

L,stateQP + (IB
P,state + IB

L,state)Q
B
L − IB

P,stateQP

− IA
P,stateQP − IA

L,stateQP − (IA
P,state + IA

L,state)Q
A
L + IA

P,stateQP]
1

L3
state

=
[

IB
L,stateQP + (IB

P,state + IB
L,state)Q

B
L − IA

L QP − (IA
P,state + IA

L,state)Q
A
L

] 1
L3

state

=
[
(IB

P,state + IB
L,state)Q

B
L − (IA

P,state + IA
L,state)Q

A
L + (IB

L,state − IA
L,state)QP

] 1
L3

state
.

(A.13)

Next the EMP correction gets calculated:

∆∆GA→B
EMP, state(Lstate)

= ∆∆GB
EMP, state(Lstate)− ∆∆GA

EMP, state(Lstate)

= − 1
8πϵ0

16π2

45

(
1 − 1

ϵS

)
×
[
(QP + QB

L)
2 − Q2

P

] (RB
L,state)

5

L6
state

+
1

8πϵ0

16π2

45

(
1 − 1

ϵS

)
×
[
(QP + QA

L )
2 − Q2

P

] (RA
L,state)

5

L6
state

= − 1
8πϵ0

16π2

45

(
1 − 1

ϵS

)
×
([

(QP + QB
L)

2 − Q2
P

]
(RB

L,state)
5 −

[
(QP + QA

L )
2 − Q2

P

]
(RA

L,state)
5
) 1

L6
state

(A.14)

with

RX
L,state =

([
1

8πϵ0

4π

3

(
1 − 1

ϵS

)
QX

L

]−1

IX
L,SLV,state

)1/2

. (A.15)
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FIGURE A.3: Hydrogen bonds present in more than 10 % of all frames
(white = no hydrogen bond, blue = hydrogen bond) between a 14-3-
3η monomer and the RLYHSLP (top) and RLYHpSLP (bottom) pep-
tides in a monomer simulation. The figures were taken from the sup-

porting information of ref. [32].

The last correction is the DSC correction

∆∆GA→B
DSC, state(Lstate)(NS, L)

= ∆∆GB
DSC, state(Lstate)− ∆∆GA

DSC, state(Lstate)

= −γSQB
L

6ϵ0

NS,state

L3
state

+
γSQA

L
6ϵ0

NS,state

L3
state

= − γS

6ϵ0

NS,state

L3
state

(QB
L − QA

L ) . (A.16)
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RLYHpSLP (39 pairs)

Residue pair Occupancy

ARG57-NH2 – SP27-OE1 84.83
ARG57-NH1 – SP27-OE 74.88

ARG132-NH1 – SP27-OE1 73.32
ARG132-NH2 – SP27-OE2 69.31
TYR133-OH – SP27-OE2 66.65
LEU8-N – ASN178-OD1 66.15
LYS50-NZ – PRO9-OXT 65.64
ASN229-ND2 – HIS6-O 59.81
HIS6-N – ASN229-OD1 56.33
ASN178-ND2 – LEU8-O 53.36

LYS125-NZ – LEU8-O 39.93
LYS50-NZ – PRO9-O 39.59

TYR5-OH – GLU185-OE2 32.80
ARG132-NH1 – SP27-OE2 24.88
TYR5-OH – GLU185-OE1 24.30

ARG3-NH2 – GLU185-OE1 20.44
ARG57-NH1 – SP27-OE1 20.40
ARG3-NE – GLU185-OE2 19.20

LYS50-NZ – SP27-OE 19.16
ARG61-NH2 – SP27-OE2 18.12
ARG57-NH1 – SP27-OE2 18.06
LEU4-N – GLU185-OE1 16.87
LYS125-NZ – PRO9-O 16.80

ARG132-NH1 – LEU8-O 16.10
ARG3-NH2 – GLU185-OE2 15.94

LEU4-N – GLU185-OE2 15.68
ARG3-NE – GLU185-OE1 15.09
TYR5-N – GLU185-OE1 14.92

LYS125-NZ – PRO9-OXT 14.62
TYR5-N – GLU185-OE2 14.25

ARG3-NH2 – GLU136-OE2 13.19
ARG61-NH1 – SP27-OE2 12.30
ARG61-NH2 – SP27-OE 11.12

ARG3-NH2 – GLU136-OE1 11.07
TYR133-OH – PRO9-O 11.01

ARG132-NH2 – PRO9-O 10.73
ARG57-NH2 – SP27-OE 10.48

TYR133-OH – PRO9-OXT 10.44
ARG57-NH2 – SP27-OE2 10.21

RLYHSLP (20 pairs)

Residue pair Occupancy

HIS6-N – ASN229-OD1 92.32
ASN229-ND2 – HIS6-O 88.74
LEU8-N – ASN178-OD1 48.33
ASN178-ND2 – LEU8-O 46.45
LYS50-NZ – PRO9-OXT 45.72
LYS125-NZ – PRO9-OXT 43.74

LYS125-NZ – PRO9-O 41.33
TYR5-OH – GLU185-OE2 35.99
TYR5-OH – GLU185-OE1 35.84
HIS6-NE2 – ASP228-OD2 33.71

LYS50-NZ – PRO9-O 32.40
HIS6-NE2 – ASP228-OD1 30.34

ARG3-NH2 – ASP228-OD1 17.24
ARG3-NH2 – ASP228-OD2 16.72

SER46-OG – PRO9-OXT 15.72
ARG3-NH1 – ASP228-OD1 15.54
ARG3-NH1 – ASP228-OD2 15.24

SER46-OG – PRO9-O 13.35
LYS125-NZ – LEU8-O 12.58

SER7-OG – ASN178-OD1 11.05

TABLE A.1: Hydrogen-bond occupancy for hydrogen bonds between
14-3-3η monomers and RLYHSLP/RLYHpSLP peptides which exist
in more than 10% of all simulation frames. ARG3, LEU4, TYR5,
HIS6, SER7/SP27, LEU8 and PRO9 are the residues of the RLYH-
SLP/RLYHpSLP peptides. The tables were taken from the supporting

information of ref. [32].
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RLYHpSLP

H2O + protein + peptide H2O + protein

atom bound free bound free

OG
0.740 ± 0.002

(SD: 0.592)
0.681 ± 0.0020

(SD: 0.633)
0.313 ± 0.002

(SD: 0.464)
0.660 ± 0.002

(SD: 0.627)

OE1
3.619 ± 0.002

(SD: 0.595)
3.409 ± 0.003

(SD: 0.858)
2.381 ± 0.002

(SD: 0.639)
2.507 ± 0.004

(SD: 0.996)

OE2
3.324 ± 0.002

(SD: 0.477)
3.377 ± 0.003

(SD: 0.901)
3.158 ± 0.002

(SD: 0.651)
2.604 ± 0.004

(SD: 1.017)

OE
3.787 ± 0.002

(SD: 0.591)
3.404 ± 0.003

(SD: 0.878)
3.335 ± 0.003

(SD: 0.805)
2.589 ± 0.004

(SD: 0.995)

Total
(no OG)

10.7287 ± 0.006
(SD: 0.965)

10.190 ± 0.009
(SD: 1.522)

8.872 ± 0.006
(SD: 1.216)

7.701 ± 0.010
(SD: 1.736)

Total
11.468 ± 0.007

(SD: 1.132)
10.870 ± 0.011

(SD: 1.649)
9.185 ± 0.008

(SD: 1.302)
8.361 ± 0.012

(SD: 1.846)

RLYHSLP

H2O + protein + peptide H2O + protein

atom bound free bound free

OG
1.083 ± 0.002

(SD: 0.630)
1.175 ± 0.002

(SD: 0.617)
1.056 ± 0.002

(SD: 0.639)
1.128 ± 0.002

(SD: 0.631)

TABLE A.2: Mean number (count) of hydrogen bonds of each oxy-
gen atom in the serine/phosphoserine side chains of the RLYH-
SLP/RLYHpSLP peptides in the bound (monomer simulation) and
free state. Columns 2 and 3 labeled H2O + protein + peptide (free:
H2O + peptide) lists the counts of hydrogen bonds between the oxy-
gen atoms of (phospho)serine listed in the first column from the left
and atoms from the surrounding water, the protein and the rest of
the peptide (free: water and peptide). Columns 5 and 5 labeled H2O
+ protein (free: H2O) contain the counts of hydrogen bonds without
the ones connecting the oxygen atoms to the peptide itself. The tables

were taken from the supporting information of ref. [32].
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RSRSTpSTP (24 pairs)

Residue pair Occupancy

ARG132-NH2 – SP2259-OE2 100.00
TYR133-OH – SP2259-OE2 100.00

ARG132-NH1 – SP2259-OE1 99.90
ARG57-NH2 – SP2259-OE1 99.88
ASN178-OD1 – THR260-N 99.26
ARG57-NH1 – SP2259-OE 98.98

LYS50-NZ – SP2259-OE 93.13
ASN229-ND2 – THR258-O 90.50
TRP233-NE1 – SER257-OG 76.98

ASN178-OD1 – THR260-OG1 57.33
GLU185-OE2 – SER257-N 53.07

GLU185-OE2 – SER257-OG 51.35
ARG57-NH1 – SP2259-OE1 44.01
ASN229-OD1 – THR258-N 40.30
GLU185-OE1 – SER257-N 38.87

GLU185-OE1 – SER257-OG 38.29
LYS125-NZ – THR260-OG1 35.52

GLU185-OE2 – ARG254-NH2 32.64
GLU185-OE1 – ARG254-NH2 30.01
GLU185-OE1 – ARG254-NH1 28.30
ASN178-ND2 – THR260-OG1 28.18
GLU185-OE2 – ARG254-NH1 22.24
ARG132-NH1 – SP2259-OE2 20.77

LYS50-NZ – SP2259-OE2 13.02

RSRSTSTP (28 pairs)

Residue pair Occupancy

ASN178-OD1 – THR260-N 88.67
ASN229-ND2 – THR258-O 82.60
ASN178-ND2 – THR260-O 66.81
ASN229-OD1 – THR258-N 64.96
TRP233-NE1 – SER257-OG 55.87

LYS125-NZ – THR260-O 39.98
ARG132-NH1 – SER259-OG 39.74

SER46-OG – PRO261-O 26.35
SER46-OG – PRO261-OXT 25.91
LYS125-NZ – PRO261-O 25.13

ASN178-OD1 – THR260-OG1 25.03
GLU185-OE2 – SER257-N 24.98

LYS125-NZ – THR260-OG1 22.14
LYS125-NZ – PRO261-OXT 22.00
GLU185-OE1 – SER257-N 21.79

GLU185-OE2 – SER257-OG 20.71
ARG132-NH2 – SER259-OG 19.64

LYS50-NZ – PRO261-O 19.47
LYS50-NZ – PRO261-OXT 18.84

ASN178-ND2 – THR260-OG1 18.21
GLU185-OE1 – SER257-OG 17.30
GLU185-OE1 – SER255-OG 13.82

GLU185-OE2 – ARG256-NH2 12.34
GLU185-OE2 – ARG256-N 11.97

GLU185-OE1 – ARG256-NE 10.83
GLU136-OE1 – ARG256-NH2 10.67
GLU136-OE2 – ARG256-NH2 10.64
GLU136-OE2 – ARG256-NH1 10.16

TABLE A.3: Hydrogen-bond occupancy for hydrogen bonds between
14-3-3η dimers and RSRSTSTP/RSRSTpSTP peptides (only one bind-
ing pocket occupied) which exist in more than 10% of all simulation
frames. The first residue belongs to the protein and the second to the
peptide. The tables were taken from the supporting information of

ref. [32].
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H2O + protein + peptide

atom RSRSTSTP RSRSTpSTP
RSRSTSTP
+ HRYSTP

RSRSTpSTP
+ HRYSTP

RSRSTSTP
+ HRYpSTP

RSRSTpSTP
+ HRYpSTP

R
SR

ST
ST

P/
R

SR
ST

pS
TP OG

1.124 ± 0.003
(SD: 0.642)

0.485 ± 0.002
(SD: 0.588)

1.087 ± 0.002
(SD: 0.632)

0.497 ± 0.002
(SD: 0.593)

1.127 ± 0.002
(SD: 0.628)

0.694 ± 0.002
(SD: 0.629)

OE1 /
3.645 ± 0.002

(SD: 0.560)
/

3.822 ± 0.003
(SD: 0.668)

/
3.750 ± 0.002

(SD: 0.640)

OE2 /
3.139 ± 0.002

(SD: 0.369)
/

3.631 ± 0.002
(SD: 0.600)

/
3.583 ± 0.002

(SD: 0.648)

OE /
3.927 ± 0.002

(SD: 0.654)
/

3.425 ± 0.002
(SD: 0.593)

/
3.719 ± 0.003

(SD: 0.654)

Total
(no OG)

/
10.711 ± 0.006

(SD: 0.961)
/

10.878 ± 0.006
(SD: 1.076)

/
11.052 ± 0.007

(SD: 1.121)

Total
1.124 ± 0.003

(SD: 0.642)
11.195 ± 0.007

(SD: 1.126)
1.087 ± 0.002

(SD: 0.632)
11.375 ± 0.008

(SD: 1.228)
1.127 ± 0.002

(SD: 0.682)
11.746 ± 0.009

(SD: 1.286)

H
R

Y
ST

P/
H

R
Yp

ST
P OG / /

0.993 ± 0.002
(SD: 0.628)

1.100 ± 0.002
(SD: 0.636)

0.903 ± 0.002
(SD: 0.610)

0.992 ± 0.002
(SD: 0.648)

OE1 / / / /
3.494 ± 0.002

(SD: 0.568)
3.437 ± 0.002
(SD: 0.5514)

OE2 / / / /
3.321 ± 0.002

(SD: 0.523)
3.408 ± 0.002

(SD: 0.569)

OE / / / /
3.516 ± 0.002

(SD: 0.547)
3.460 ± 0.002

(SD: 0.598)

Total
(no OG)

/ / / /
10.330 ± 0.006

(SD: 0.946)
10.428 ± 0.006

(SD: 1.008)

Total / /
0.993 ± 0.002

(SD: 0.628)
1.100 ± 0.002

(SD: 0.636)
11.233 ± 0.008

(SD: 1.126)
11.389 ± 0.008

(SD: 1.225)

TABLE A.4: Mean number (count) of hydrogen bonds of each oxy-
gen atom in the serine/phosphoserine side chains of the RSRST-
STP/RSRSTpSTP and HRYSTP/HRYpSTP peptides in the bound
state of dimer simulations with two peptides. H2O + protein + pep-
tide are the hydrogen bonds between the oxygen atoms and atoms
from the surrounding water, the protein and the rest of the peptide.

The table was taken from the supporting information of ref. [32].
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H2O + protein

atom RSRSTSTP RSRSTpSTP
RSRSTSTP
+ HRYSTP

RSRSTpSTP
+ HRYSTP

RSRSTSTP
+ HRYpSTP

RSRSTpSTP
+ HRYpSTP

R
SR

ST
ST

P/
R

SR
ST

pS
TP OG

1.111 ± 0.002
(SD: 0.640)

0.343 ± 0.002
(SD: 0.521)

1.078 ± 0.002
(SD: 0.633)

0.334 ± 0.002
(SD: 0.513)

1.120 ± 0.002
(SD: 0.632)

0.662 ± 0.002
(SD: 0.633)

OE1 /
2.753 ± 0.003

(SD: 0.840)
/

3.270 ± 0.003
(SD: 0.865)

/
2.946 ± 0.004

(SD: 1.068)

OE2 /
3.139 ± 0.002

(SD: 0.369)
/

2.514 ± 0.003
(SD: 0.768)

/
2.810 ± 0.004

(SD: 1.044)

OE /
3.676 ± 0.003

(SD: 0.677)
/

3.033 ± 0.003
(SD: 0.750)

/
2.691 ± 0.004

(SD: 0.999)

Total
(no OG)

/
9.568 ± 0.006

(SD: 1.140)
/

8.817 ± 0.008
(SD: 1.379)

/
8.447 ± 0.010

(SD: 1.798)

Total
1.111 ± 0.002

(SD: 0.640)
9.911 ± 0.008

(SD: 1.254)
1.078 ± 0.002

(SD: 0.633)
9.151 ± 0.009

(SD: 1.747)
1.120 ± 0.002

(SD: 0.632)
9.109 ± 0.012

(SD: 1.906)

H
R

Y
ST

P/
H

R
Yp

ST
P OG / /

0.919 ± 0.002
(SD: 0.632)

1.025 ± 0.003
(SD: 0.660)

0.253 ± 0.002
(SD: 0.455)

0.290 ± 0.002
(SD: 0.437)

OE1 / / / /
3.035 ± 0.002

(SD: 0.544)
3.178 ± 0.003

(SD: 0.713)

OE2 / / / /
3.023 ± 0.002

(SD: 0.621)
3.227 ± 0.003

(SD: 0.655)

OE / / / /
3.147 ± 0.002

(SD: 0.583)
2.738 ± 0.003

(SD: 0.737)

Total
(no OG)

/ / / /
9.205 ± 0.006

(SD: 1.011)
9.143 ± 0.007

(SD: 1.217)

Total / /
0.919 ± 0.002

(SD: 0.632)
1.025 ± 0.003

(SD: 0.660)
9.458 ± 0.007

(SD: 1.108)
9.433 ± 0.008

(SD: 1.293)

TABLE A.5: Mean number (count) of hydrogen bonds of each oxy-
gen atom in the serine/phosphoserine side chains of the RSRST-
STP/RSRSTpSTP and HRYSTP/HRYpSTP peptides in the bound
state of dimer simulations with two peptides. H2O + protein are the
hydrogen bonds without the ones connecting the oxygen atoms to the
peptide itself. The table was taken from the supporting information

of ref. [32].
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FIGURE A.4: Hydrogen bonds present in more than 10 % of all frames
(white = no hydrogen bond, blue = hydrogen bond) between a 14-3-
3η monomer and the RSRSTSTP (top) and RSRSTpSTP (bottom) pep-
tides in a dimer simulation. The figures were taken from the support-

ing information of ref. [32].
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FIGURE A.5: Hydrogen bonds present in more than 10 % of all frames
(white = no hydrogen bond, blue = hydrogen bond) between the
monomers and the RSRSTSTP + HRYSTP (top) and RSRSTpSTP +
HRYpSTP (bottom) peptides in a 14-3-3η dimer simulation. The fig-

ures were taken from the supporting information of ref. [32].
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FIGURE A.6: Hydrogen bonds present in more than 10 % of all frames
(white = no hydrogen bond, blue = hydrogen bond) between the
monomers and the RSRSTSTP + HRYpSTP (top) and RSRSTpSTP +
HRYSTP (bottom) peptides in a 14-3-3η dimer simulation. The fig-

ures were taken from the supporting information of ref. [32].
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RSRSTpSTP (31 contacts)

Residue pair Distance Int. energy

AARG57 – CSP2259 1.69 -514.86
AARG132 – CSP2259 1.66 -486.69
ALYS50 – CSP2259 3.04 -300.36
ALYS50 – CPRO261 2.43 -233.27

ALYS125 – CPRO261 3.45 -227.94
AGLU185 – CARG256 3.81 -152.31
ATYR133 – CSP2259 1.7 -120.24
ALYS125 – CTHR260 2.49 -48.7
AASN178 – CTHR260 1.9 -43.36
ALYS50 – CTHR260 3.55 -36.44

AASN229 – CTHR258 2.1 -30.13
AASN178 – CSP2259 2.65 -25.64
AGLU185 – CSER257 3.22 -18.51
AVAL181 – CSP2259 2.58 -17.08
AASN229 – CSER257 2.85 -16.4
ATRP233 – CSER257 2.46 -15.11
ASER46 – CPRO261 4.0 -14.7

AGLY174 – CTHR260 2.47 -6.62
ALEU225 – CTHR258 2.44 -5.74
ALEU177 – CSP2259 2.79 -4.69

ALEU232 – CARG256 3.31 -4.32
AILE222 – CTHR260 2.67 -4.29
ALEU225 – CSP2259 3.9 -4.0
ATYR184 – CSER257 2.87 -3.56
AVAL181 – CSER257 2.68 -3.47
AVAL181 – CTHR258 3.16 -3.46
ALEU177 – CTHR260 2.27 -3.41
AVAL47 – CPRO261 3.86 -2.93

ALEU177 – CTHR258 2.77 -2.26
ALEU232 – CSER257 2.87 -0.91
ALEU225 – CTHR260 3.01 -0.65

RSRSTSTP (26 contacts)

Residue pair Distance Int. energy

ALYS125 – CPRO261 3.4 -229.36
AGLU185 – CARG256 3.33 -144.57

ALYS50 – CPRO261 2.23 -131.91
ALYS125 – CTHR260 2.53 -47.81
AGLU185 – CSER257 2.6 -41.36
ASER46 – CPRO261 3.32 -39.75

AASN178 – CTHR260 2.1 -37.94
AASN229 – CTHR258 2.14 -35.4
AASN178 – CSER259 2.75 -22.16
AARG132 – CSER259 2.77 -18.39
ATRP233 – CSER257 2.47 -15.21
AASN229 – CSER257 2.92 -14.84
ALEU225 – CTHR258 2.31 -7.23
AGLY174 – CTHR260 2.75 -4.96
ALEU232 – CARG256 3.57 -4.67
AVAL181 – CSER257 2.47 -4.48
AVAL181 – CTHR258 2.86 -4.26
AVAL47 – CPRO261 3.93 -4.1
AILE222 – CTHR260 2.74 -3.84
ALEU177 – CTHR260 2.35 -3.43
ALEU177 – CSER259 2.63 -3.12
ATYR184 – CSER257 2.98 -2.69
ALEU177 – CTHR258 2.81 -2.16
ALEU225 – CTHR260 3.04 -1.48
ALEU232 – CSER257 3.13 -0.82
AVAL181 – CSER259 2.76 0.02

TABLE A.6: Residue contacts between a 14-3-3η dimer and the
RSRSTSTP or RSRSTpSTP peptides (only one peptide bound to the
dimer) and respective mean interaction energies in kJ mol−1. Here,
all contacts were counted when the mean of the shortest atom dis-
tance (in Å) between two residues over all frames of three repeated
simulations was lower than 4 Å. The first residue belongs to the pro-
tein and the second one to the peptide. SP2259 is the phosphorylated
(doubly unprotonated) SER259. The tables were taken from the sup-

porting information of ref. [32].
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RSRSTSTP (8 contacts)

Residue pair Distance Int. energy

ALYS125 – DPRO261 3.05 -237.42
ALYS50 – DPRO261 2.37 -200.85
ALYS50 – DTHR260 3.4 -30.16

AASN178 – DTHR260 3.07 -25.34
AASN178 – DPRO261 3.52 -23.55
ALEU225 – DTHR258 3.47 -4.8
ALEU177 – DTHR260 3.68 -1.81
ALEU225 – DTHR260 3.93 -0.74

HRYSTP (15 contacts)

Residue pair Distance Int. energy

BLYS50 – CPRO235 2.31 -249.85
BLYS125 – CPRO235 3.2 -222.1

BGLU185 – CARG231 3.94 -175.58
BARG132 – CTHR234 3.78 -25.32
BASN229 – CTYR232 2.53 -23.04
BASN178 – CTHR234 2.4 -22.56
BLYS125 – CTHR234 3.84 -20.0
BASP228 – CTYR232 3.17 -16.06
BASN229 – CARG231 3.85 -15.63
BLEU225 – CTYR232 3.0 -8.74
BVAL181 – CTYR232 3.93 -3.05
BVAL181 – CTHR234 3.78 -2.04
BLEU177 – CTHR234 3.07 -2.02
BVAL181 – CSER233 3.79 -1.84
BLEU232 – CARG231 3.8 0.61

TABLE A.7: Residue contacts between a 14-3-3η dimer and RSRST-
STP and HRYSTP peptides (one in each binding pocket) and respec-
tive mean interaction energies in kJ mol−1. Here, all contacts were
counted when the mean of the shortest atom distance (in Å) between
two residues over all frames of three repeated simulations was lower
than 4 Å. The first residue belongs to the protein and the second one
to the peptide. SP2259 is the phosphorylated (doubly unprotonated)
SER259. The tables were taken from the supporting information of

ref. [32].
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RSRSTpSTP (8 contacts)

Residue pair Distance Int. energy

AARG57 – DSP2259 1.73 -453.53
AARG61 – DSP2259 3.46 -331.85
ALYS50 – DPRO261 2.14 -285.48

AGLU185 – DARG254 3.4 -257.41
AARG132 – DSP2259 3.7 -244.83
ATYR133 – DSP2259 3.63 -51.46
ALYS50 – DTHR260 3.32 -42.37

AARG61 – DARG254 3.94 120.01

HRYpSTP (33 contacts)

Residue pair Distance Int. energy

BARG57 – CSP2233 1.68 -520.4
BARG132 – CSP2233 1.67 -493.06
BLYS50 – CSP2233 3.06 -288.3

BGLU185 – CARG231 1.83 -281.08
BLYS50 – CPRO235 2.71 -226.62

BLYS125 – CPRO235 3.5 -221.65
BTYR133 – CSP2233 1.72 -119.71

BGLU136 – CARG231 4.0 -87.04
BLYS125 – CTHR234 2.22 -59.7
BLYS50 – CTHR234 3.35 -43.38

BASN178 – CTHR234 1.97 -40.1
BASN229 – CTYR232 1.98 -36.41
BASN178 – CSP2233 2.82 -28.04
BVAL181 – CSP2233 2.75 -19.4
BASP228 – CTYR232 2.75 -18.03
BASN229 – CARG231 2.86 -17.97
BSER46 – CPRO235 3.63 -17.89

BLEU225 – CTYR232 2.39 -14.84
BGLY174 – CTHR234 2.45 -6.15
BVAL181 – CARG231 2.53 -5.06
BVAL181 – CTYR232 2.81 -4.65
BVAL47 – CPRO235 3.49 -4.07
BLEU177 – CSP2233 2.84 -3.65
BILE222 – CTHR234 2.75 -3.41
BLEU177 – CTHR234 2.34 -2.65
BLEU177 – CTYR232 2.73 -2.14
BLEU225 – CTHR234 3.4 -0.19
BARG57 – CARG231 2.35 0.0
BLEU232 – CARG231 2.88 1.41
BTYR184 – CARG231 2.85 2.61
BLEU232 – CHIS230 3.66 2.63
BTRP233 – CARG231 3.06 4.25
BARG132 – CARG231 2.43 106.4

TABLE A.8: Residue contacts between a 14-3-3η dimer and RSRSTp-
STP and HRYpSTP peptides (one in each binding pocket) and respec-
tive mean interaction energies in kJ mol−1. Here, all contacts were
counted when the mean of the shortest atom distance (in Å) between
two residues over all frames of three repeated simulations was lower
than 4 Å. The first residue belongs to the protein and the second one
to the peptide. SP2259 is the phosphorylated (doubly unprotonated)
SER259. The tables were taken from the supporting information of

ref. [32].
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RSRSTSTP (10 contacts)

Residue pair Distance Int. energy

ALYS125 – DPRO261 2.71 -272.79
ALYS50 – DPRO261 2.4 -199.6
ALYS50 – DTHR260 3.4 -31.97

AASN178 – DTHR260 2.55 -30.93
AASN178 – DPRO261 3.6 -27.94
ALYS125 – DTHR260 3.68 -25.84
AASN229 – DTHR258 3.86 -18.32
ALEU225 – DTHR258 3.44 -4.34
ALEU177 – DTHR260 2.91 -1.31
ALEU225 – DTHR260 3.31 -0.83

HRYpSTP (32 contacts)

Residue pair Distance Int. energy

BARG57 – CSP2233 1.69 -519.13
BARG132 – CSP2233 1.67 -487.69
BLYS50 – CSP2233 2.87 -344.51

BGLU185 – CARG231 1.83 -280.24
BLYS50 – CPRO235 2.34 -194.26
BLYS125 – CPRO235 3.77 -187.3
BTYR133 – CSP2233 1.71 -120.65
BLYS125 – CTHR234 2.01 -59.87
BASN178 – CTHR234 1.92 -36.01
BASN229 – CTYR232 1.96 -35.54
BLYS50 – CTHR234 3.47 -29.94
BSER46 – CPRO235 3.57 -25.4
BASN178 – CSP2233 2.7 -22.84

BASN229 – CARG231 2.85 -19.68
BVAL181 – CSP2233 2.55 -19.18
BASP228 – CTYR232 2.94 -17.11
BLEU225 – CTYR232 2.36 -14.45
BVAL181 – CARG231 2.48 -5.08
BLEU177 – CSP2233 2.67 -4.58
BVAL181 – CTYR232 2.75 -4.5
BGLY174 – CTHR234 2.51 -4.22
BVAL47 – CPRO235 3.8 -4.12
BILE222 – CTHR234 2.85 -3.16
BLEU177 – CTHR234 2.33 -2.91
BLEU177 – CTYR232 2.69 -2.54
BLEU225 – CTHR234 3.47 -0.51
BARG57 – CARG231 2.37 0.0
BLEU232 – CARG231 2.92 0.94
BLEU232 – CHIS230 3.56 2.81
BTYR184 – CARG231 2.87 2.97
BTRP233 – CARG231 3.11 4.17
BARG132 – CARG231 2.44 105.55

TABLE A.9: Residue contacts between a 14-3-3η dimer and RSRST-
STP and HRYpSTP peptides (one in each binding pocket) and respec-
tive mean interaction energies in kJ mol−1. Here, all contacts were
counted when the mean of the shortest atom distance (in Å) between
two residues over all frames of three repeated simulations was lower
than 4 Å. The first residue belongs to the protein and the second one
to the peptide. SP2259 is the phosphorylated (doubly unprotonated)
SER259. The tables were taken from the supporting information of

ref. [32].
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RSRSTpSTP (23 contacts)

Residue pair Distance Int. energy

AARG57 – DSP2259 1.71 -492.64
AARG132 – DSP2259 2.73 -331.95
ALYS125 – DPRO261 2.28 -313.91
ALYS50 – DPRO261 2.43 -241.73
ATYR133 – DSP2259 2.57 -83.19

AASN178 – DTHR260 2.03 -41.46
ALYS50 – DTHR260 3.59 -38.69
ALYS125 – DTHR260 3.43 -33.3
AASN178 – DPRO261 3.5 -25.21
AASN229 – DTHR258 3.28 -17.16
AVAL181 – DSP2259 3.64 -12.09
AASN229 – DSER257 3.65 -11.8
ALEU232 – DARG256 2.96 -6.07
AGLY174 – DTHR260 3.59 -5.65
ALEU225 – DTHR258 3.13 -3.76
AILE222 – DTHR260 3.78 -3.36
ALEU225 – DPRO261 3.79 -2.73
ALEU177 – DTHR260 2.36 -2.67
ALEU232 – DSER255 3.88 -1.93
ALEU232 – DSER257 3.51 -1.28
ALEU225 – DTHR260 2.9 -1.07
AVAL181 – DTHR260 3.85 -0.88

HRYSTP (1 contact)

Residue pair Distance Int. energy

BLYS50 – CPRO235 2.78 -190.59

TABLE A.10: Residue contacts between a 14-3-3η dimer and RSRSTp-
STP and HRYSTP (no contacts found) peptides (one in each binding
pocket) and respective mean interaction energies in kJ mol−1. Here,
all contacts were counted when the mean of the shortest atom dis-
tance (in Å) between two residues over all frames of three repeated
simulations was lower than 4 Å. The first residue belongs to the pro-
tein and the second one to the peptide. SP2259 is the phosphorylated
(doubly unprotonated) SER259. The tables were taken from the sup-

porting information of ref. [32].
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RSRSTpSTP (26 pairs)

Residue pair Occupancy

ARG132-NH2 – SP2259-OE2 100.00
TYR133-OH – SP2259-OE2 100.00

ARG132-NH1 – SP2259-OE1 99.90
ARG57-NH2 – SP2259-OE1 99.88
ASN178-OD1 – THR260-N 99.26
ARG57-NH1 – SP2259-OE 98.98

LYS50-NZ – SP2259-OE 93.13
ASN229-ND2 – THR258-O 90.50
TRP233-NE1 – SER257-OG 76.98

ASN178-OD1 – THR260-OG1 57.33
GLU185-OE2 – SER257-N 53.07

GLU185-OE2 – SER257-OG 51.35
ARG57-NH1 – SP2259-OE1 44.01
ASN229-OD1 – THR258-N 40.30
GLU185-OE1 – SER257-N 38.87

GLU185-OE1 – SER257-OG 38.29
LYS125-NZ – THR260-OG1 35.52

GLU185-OE2 – ARG254-NH2 32.64
GLU185-OE1 – ARG254-NH2 30.01
GLU185-OE1 – ARG254-NH1 28.30
ASN178-ND2 – THR260-OG1 28.18
GLU185-OE2 – ARG254-NH1 22.24
ARG132-NH1 – SP2259-OE2 20.77

LYS50-NZ – SP2259-OE2 13.02

RSRSTSTP (20 pairs)

Residue pair Occupancy

ASN178-OD1 – THR260-N 88.67
ASN229-ND2 – THR258-O 82.60
ASN178-ND2 – THR260-O 66.81
ASN229-OD1 – THR258-N 64.96
TRP233-NE1 – SER257-OG 55.87

LYS125-NZ – THR260-O 39.98
ARG132-NH1 – SER259-OG 39.74

SER46-OG – PRO261-O 26.35
SER46-OG – PRO261-OXT 25.91
LYS125-NZ – PRO261-O 25.13

ASN178-OD1 – THR260-OG1 25.03
GLU185-OE2 – SER257-N 24.98

LYS125-NZ – THR260-OG1 22.14
LYS125-NZ – PRO261-OXT 22.00
GLU185-OE1 – SER257-N 21.79

GLU185-OE2 – SER257-OG 20.71
ARG132-NH2 – SER259-OG 19.64

LYS50-NZ – PRO261-O 19.47
LYS50-NZ – PRO261-OXT 18.84

ASN178-ND2 – THR260-OG1 18.21
GLU185-OE1 – SER257-OG 17.30
GLU185-OE1 – SER255-OG 13.82

GLU185-OE2 – ARG256-NH2 12.34
GLU185-OE2 – ARG256-N 11.97

GLU185-OE1 – ARG256-NE 10.83
GLU136-OE1 – ARG256-NH2 10.67
GLU136-OE2 – ARG256-NH2 10.64
GLU136-OE2 – ARG256-NH1 10.16

TABLE A.11: Hydrogen-bond occupancy for hydrogen bonds be-
tween a 14-3-3η dimer and the RSRSTSTP or RSRSTpSTP peptide
which exist in more than 10 % of all simulation frames. The first
residue belongs to the protein and the second to the peptide. The

tables were taken from the supporting information of ref. [32].
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FIGURE A.7: Root mean squared deviations from the crystal structure
during the courses of three combined simulations of a 14-3-3η dimer
with a single RSRSTpSTP peptide bound to one monomer. The bind-
ing is stable during the course of all three simulations. The figure was

taken from the supporting information of ref. [32].

free energy
difference

RSRSTpSTP
(SP2)/

RSRSTSTP

RSRSTpSTP
(SP1)/

RSRSTSTP

RSRSTpSTPNV
(SP2)/

RSRSTSTPNV

RLYHpSLP
(SP2)/

RLYHSLP

∆∆Gbound,SER→SP1/SP2 −1193.99 ± 0.76 −701.01 ± 3.80 −1188.99 ± 0.81 −1200.94 ± 2.67

− ∆∆Gfree,SER→SP1/SP2 −1167.08 ± 3.02 −695.66 ± 0.32 −1162.04 ± 2.86 −1163.65 ± 1.65

+
C

or
re

ct
io

ns ∆∆Gbound,SER→SP1/SP2
electrostatictotal 135.13 75.41 151.47 152.19

∆∆Gfree,SER→SP1/SP2
electrostatictotal 149.54 79.99 159.66 162.34

∆∆Gbound,SER→SP1/SP2
standardstate −16.03 −16.03 −16.03 −16.03

∆∆Gfree,SER→SP1/SP2
standardstate −11.12 −11.12 −12.06 −11.18

= ∆∆Gbind,SP1/SP2−SER −41.32 ± 6.42 −14.84 ± 5.27 −39.11 ± 6.17 −50.80 ± 7.32

TABLE A.12: Binding free energy differences calculated from alchem-
ical transformation simulations shown in table 3.5. All values are in
kJ mol−1. The binding free energy ∆∆Gbind is the difference of bound
and free energy differences with the added corrections and is always
given as the difference of the binding free energy of the phosphory-
lated minus the one of the unphosphorylated peptide. The table was

taken from the supporting information of ref. [32].
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FIGURE A.8: Root mean squared deviations from the crystal structure
during the courses of three combined simulations of a 14-3-3η dimer
with a RSRSTpSTP and a HRYSTP peptide bound to one monomer
each. During the course of the third simulation, the HRYSTP peptide
is unbinding. The figure was taken from the supporting information

of ref. [32].
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Appendix B

Supplementary Material for
chapter 4

This supporting information belongs to chapter 4.

B.1 Hydrogen Bonds
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(A) hPTP1E PDZ2 binding EQVEAV

(B) hPTP1E PDZ2 binding EQVpSAV with singly charged phosphate

(C) hPTP1E PDZ2 binding EQVpSAV with doubly charged phosphate

FIGURE B.1: Hydrogen bonds that exist in more than 10 % of all
frames (white = no hydrogen bond, blue = hydrogen bond) between
the PDZ2 domain of hPTP1E and (a) the EQVEAV peptide, (b) the
phosphorylated EQVpSAV peptide with singly charged phosphate
(SP1) and (c) the phosphorylated EQVpSAV peptide with doubly

charged phosphate (SP2).
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(A) hPTP1E PDZ2 R79A binding EQVSAV

(B) hPTP1E PDZ2 R79A binding EQVEAV

(C) hPTP1E PDZ2 R79A binding EQVpSAV with singly charged phosphate

FIGURE B.2: Hydrogen bonds that exist in more than 10 % of all
frames (white = no hydrogen bond, blue = hydrogen bond) between
the PDZ2 R79A domain of hPTP1E and (a) the EQVSAV peptide, (b)
the EQVEAV peptide and (c) the phosphorylated EQVpSAV peptide

with singly charged phosphate (SP1).
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(A) MAGI1 PDZ1 binding EQVSAV

(B) MAGI1 PDZ1 binding EQVEAV

(C) MAGI1 PDZ1 binding EQVpSAV with singly charged phosphate

FIGURE B.3: Hydrogen bonds that exist in more than 10 % of all
frames (white = no hydrogen bond, blue = hydrogen bond) between
the PDZ1 domain of MAGI1 and (a) the EQVSAV peptide, (b) the
EQVEAV peptide and (c) the phosphorylated EQVpSAV peptide with

singly charged phosphate (SP1).



B.1. Hydrogen Bonds 135

(A) MAGI1 PDZ1 Q85R binding EQVSAV

(B) MAGI1 PDZ1 Q85R binding EQVEAV

(C) MAGI1 PDZ1 Q85R binding EQVpSAV with singly charged phosphate

FIGURE B.4: Hydrogen bonds that exist in more than 10 % of all
frames (white = no hydrogen bond, blue = hydrogen bond) between
the PDZ1 Q85R domain of MAGI1 and (a) the EQVSAV peptide, (b)
the EQVEAV peptide and (c) the phosphorylated EQVpSAV peptide

with singly charged phosphate (SP1).
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hPTP1E PDZ2 with EQVEAV

Interacting atoms Occupancy [%] Distance (STD) [Å]

VAL8-N – ILE20-O 96.21 2.98 (0.23)
VAL8-OXT – SER17-OG 67.73 3.17 (0.74)

VAL8-O – SER17-OG 51.93 3.69 (1.18)
ALA7-O – ARG79-NH2 49.85 3.84 (1.53)

GLU6-O – VAL22-N 49.18 3.95 (1.13)
VAL8-OXT – LEU18-N 48.17 3.59 (0.79)
GLU6-O – SER21-OG 40.43 3.55 (0.78)

VAL8-OXT – GLY19-N 39.43 4.04 (1.13)
VAL8-O – ARG79-NE 27.50 5.14 (1.71)
VAL8-O – LEU18-N 23.63 4.48 (1.37)
GLU6-N – VAL22-O 23.13 5.75 (2.13)

VAL8-O – ARG79-NH2 19.32 5.61 (1.87)
GLN4-O – THR23-OG1 18.56 8.81 (3.83)
GLU6-OE2 – LYS72-NZ 18.53 8.87 (4.86)
VAL8-OXT – ILE20-N 18.14 4.65 (1.10)

GLU6-OE1 – LYS72-NZ 17.63 8.86 (4.84)
GLU6-OE2 – ARG79-NH1 13.49 7.24 (3.47)
GLU6-OE2 – ARG79-NH2 13.05 7.00 (3.44)

VAL8-O – GLY19-N 13.04 5.26 (1.55)
GLU6-OE1 – ARG79-NH1 12.27 7.23 (3.46)
GLU6-OE1 – ARG79-NH2 11.58 7.00 (3.42)

ALA7-O – ARG79-NE 10.40 4.53 (1.09)

TABLE B.1: Percentage of hydrogen-bond occupancies and the dis-
tances between the involved heavy atoms for hydrogen bonds be-
tween hPTP1E PDZ2 and the EQVEAV peptide, existing in 10 % or
more of all simulation frames. In the left column, first the peptide

residue and second the protein residue is given.
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hPTP1E PDZ2 with EQVpSAV
(singly charged (SP1) phosphate)

Interacting atoms Occupancy [%] Distance (STD) [Å]

VAL8-N – ILE20-O 88.78 3.10 (0.24)
ALA7-O – ARG79-NH2 88.46 2.84 (0.26)

SP16-O – VAL22-N 80.85 3.18 (0.74)
GLN4-O – THR23-OG1 72.07 4.43 (3.08)
VAL8-O – ARG79-NE 57.85 4.00 (1.41)

SP16-OE1 – ARG79-NH2 48.91 3.92 (1.25)
SP16-OE2 – ARG79-NH2 39.22 4.12 (1.18)

SP16-O – SER21-OG 39.05 3.50 (0.71)
VAL8-O – SER17-OG 33.99 5.17 (1.94)

VAL8-OXT – LEU18-N 30.48 4.45 (1.16)
VAL8-OXT – GLY19-N 27.83 4.40 (1.10)

SP16-OE1 – ARG79-NH1 26.87 4.38 (1.35)
VAL8-OXT – SER17-OG 25.55 4.11 (1.15)
GLN4-N – THR28-OG1 18.70 7.55 (4.55)
VAL8-OXT – ILE20-N 18.47 4.88 (1.11)
SP16-OE2 – LYS72-NZ 18.19 6.09 (2.59)

SP16-OE2 – ARG79-NH1 14.49 4.48 (1.14)
SP16-OE1 – LYS72-NZ 13.78 6.29 (2.74)
VAL8-O – ARG79-NH2 13.76 4.54 (1.31)
GLU3-OE2 – LYS38-NZ 11.84 8.36 (3.75)

VAL8-O – LEU18-N 10.95 5.76 (1.73)
GLU3-OE1 – LYS38-NZ 10.75 8.38 (3.72)

TABLE B.2: Percentage of hydrogen-bond occupancies and the dis-
tances between the involved heavy atoms for hydrogen bonds be-
tween hPTP1E PDZ2 and EQVpSAV peptide with singly charged
(SP1) phosphate, existing in 10 % or more of all simulation frames.
In the left column, first the peptide residue and second the protein

residue is given.
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hPTP1E PDZ2 with EQVpSAV
(doubly charged (SP2) phosphate)

Interacting atoms Occupancy [%] Distance (STD) [Å]

VAL8-N – ILE20-O 98.51 2.94 (0.18)
ALA7-O – ARG79-NH2 93.23 2.87 (0.24)

SP26-O – VAL22-N 93.00 2.96 (0.32)
VAL8-O – SER17-OG 83.71 2.94 (0.50)

VAL8-OXT – SER17-OG 69.93 3.04 (0.46)
VAL8-OXT – LEU18-N 64.47 3.25 (0.44)
GLN4-O – THR23-OG1 55.96 4.67 (2.43)
VAL8-OXT – GLY19-N 52.93 3.51 (0.83)

VAL8-O – LEU18-N 42.55 3.47 (0.48)
SP26-OE2 – ARG79-NH1 39.93 3.72 (0.96)
SP26-OE1 – ARG79-NH2 39.23 3.72 (0.94)

VAL8-OXT – ILE20-N 36.07 4.15 (1.06)
SP26-OE – ARG79-NH1 34.96 3.84 (0.96)
SP26-OE – ARG79-NH2 33.20 3.85 (0.93)
SP26-OE1 – ARG79-NH1 32.79 3.78 (0.92)
SP26-OE2 – ARG79-NH2 32.49 3.76 (0.88)

VAL8-O – GLY19-N 26.12 4.07 (0.86)
SP26-OE2 – LYS72-NZ 24.59 4.90 (2.22)
SP26-OE1 – LYS72-NZ 21.19 5.01 (2.22)
SP26-O – SER21-OG 19.88 3.88 (0.72)
SP26-OE – LYS72-NZ 16.95 4.96 (2.11)

VAL8-O – ILE20-N 14.81 4.90 (1.03)
GLU3-OE1 – THR28-OG1 14.04 10.34 (5.91)

GLU3-OE2 – SER29-N 13.95 10.84 (6.39)
GLU3-OE1 – SER29-N 13.27 10.85 (6.38)
ALA7-O – ARG79-NE 12.32 3.65 (0.37)

GLU3-OE2 – SER29-OG 12.06 11.34 (6.66)
GLU3-OE2 – THR28-OG1 11.96 10.37 (5.87)
GLU3-OE1 – SER29-OG 11.33 11.38 (6.61)
SP26-OG – ARG79-NH2 11.01 3.91 (0.41)

TABLE B.3: Percentage of hydrogen-bond occupancies and the dis-
tances between the involved heavy atoms for hydrogen bonds be-
tween hPTP1E PDZ2 and EQVpSAV peptide with doubly charged
(SP2) phosphate, existing in 10 % or more of all simulation frames.
In the left column, first the peptide residue and second the protein

residue is given.
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hPTP1E PDZ2 R79A with EQVSAV

Interacting atoms Occupancy [%] Distance (STD) [Å]

SER6-O – VAL22-N 97.63 2.91 (0.26)
VAL8-N – ILE20-O 96.75 2.97 (0.21)

VAL8-O – SER17-OG 72.61 3.09 (0.69)
VAL8-OXT – SER17-OG 71.61 3.05 (0.59)

SER6-N – VAL22-O 63.38 3.63 (1.06)
VAL8-O – LEU18-N 57.36 3.40 (0.67)

GLN4-O – THR23-OG1 55.33 5.45 (3.73)
VAL8-OXT – LEU18-N 55.13 3.39 (0.59)
SER6-OG – HIS71-NE2 42.13 5.07 (3.11)
VAL8-OXT – GLY19-N 40.45 3.78 (0.96)

VAL8-O – GLY19-N 33.81 3.95 (1.02)
VAL8-OXT – ILE20-N 32.00 4.43 (1.16)

VAL8-O – ILE20-N 24.91 4.66 (1.18)
GLU3-OE1 – SER29-N 16.83 10.55 (7.37)
GLU3-OE2 – SER29-N 16.59 10.57 (7.38)

GLU3-OE1 – SER29-OG 14.75 11.31 (8.16)
GLU3-OE2 – SER29-OG 13.86 11.34 (8.16)

SER6-O – SER21-OG 12.18 3.85 (0.63)

TABLE B.4: Percentage of hydrogen-bond occupancies and the dis-
tances between the involved heavy atoms for hydrogen bonds be-
tween hPTP1E PDZ2 R79A and the EQVSAV peptide, existing in 10 %
or more of all simulation frames. In the left column, first the peptide

residue and second the protein residue is given.

hPTP1E PDZ2 R79A with EQVEAV

Interacting atoms Occupancy [%] Distance (STD) [Å]

VAL8-N – ILE20-O 94.50 3.02 (0.23)
VAL8-OXT – SER17-OG 78.27 3.04 (0.70)

VAL8-O – SER17-OG 66.21 3.04 (0.44)
VAL8-O – LEU18-N 64.94 3.31 (0.67)
VAL8-O – GLY19-N 58.11 3.53 (0.98)

GLU6-O – SER21-OG 57.57 3.37 (0.83)
GLU6-O – VAL22-N 55.94 3.77 (1.03)

VAL8-OXT – LEU18-N 30.68 3.79 (0.92)
VAL8-O – ILE20-N 30.08 4.20 (1.07)

GLU6-OE1 – LYS38-NZ 23.52 6.38 (3.54)
GLU6-OE2 – LYS38-NZ 22.17 6.40 (3.54)
VAL8-OXT – GLY19-N 19.84 4.42 (1.14)
GLN4-O – LYS72-NZ 14.32 7.39 (4.10)

TABLE B.5: Percentage of hydrogen-bond occupancies and the dis-
tances between the involved heavy atoms for hydrogen bonds be-
tween hPTP1E PDZ2 R79A and the EQVEAV peptide, existing in 10 %
or more of all simulation frames. In the left column, first the peptide

residue and second the protein residue is given.
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hPTP1E PDZ2 R79A with EQVpSAV
(singly charged (SP1) phosphate)

Interacting atoms Occupancy [%] Distance (STD) [Å]

VAL8-N – ILE20-O 96.40 2.98 (0.24)
SP16-O – VAL22-N 84.85 3.18 (0.66)

VAL8-O – SER17-OG 70.81 3.10 (0.65)
VAL8-OXT – SER17-OG 70.36 3.12 (0.66)

VAL8-O – LEU18-N 61.93 3.31 (0.52)
VAL8-OXT – LEU18-N 55.58 3.40 (0.64)

VAL8-O – GLY19-N 40.87 3.79 (0.95)
VAL8-OXT – GLY19-N 38.21 3.89 (1.02)

VAL8-O – ILE20-N 26.32 4.52 (1.15)
VAL8-OXT – ILE20-N 23.54 4.64 (1.18)
SP16-O – SER21-OG 21.86 3.66 (0.67)

GLN4-O – THR23-OG1 19.48 8.49 (3.56)
SP16-OE1 – LYS38-NZ 18.73 8.74 (4.47)
SP16-OE1 – LYS72-NZ 17.66 7.84 (4.12)
SP16-OE2 – LYS72-NZ 12.51 7.62 (3.87)
SP16-OE2 – LYS38-NZ 11.17 8.80 (4.26)

GLU3-OE2 – LYS72-NZ 10.95 9.46 (4.74)

TABLE B.6: Percentage of hydrogen-bond occupancies and the dis-
tances between the involved heavy atoms for hydrogen bonds be-
tween hPTP1E PDZ2 R79A and EQVpSAV peptide with singly
charged (SP1) phosphate, existing in 10 % or more of all simulation
frames. In the left column, first the peptide residue and second the

protein residue is given.

MAGI1 PDZ1 with EQVSAV

Interacting atoms Occupancy [%] Distance (STD) [Å]

SER6-O – VAL31-N 99.74 2.88 (0.13)
SER6-N – VAL31-O 98.12 2.97 (0.18)
GLN4-O – GLY33-N 73.13 3.44 (0.91)
VAL8-N – PHE29-O 62.45 3.31 (0.41)
GLN4-N – GLY33-O 46.04 4.19 (1.43)

GLU3-N – ASP35-OD2 39.61 4.92 (2.85)
VAL8-O – PHE27-N 35.02 4.18 (1.25)

GLU3-N – ASP35-OD1 34.38 5.02 (2.82)
VAL8-OXT – PHE27-N 29.26 4.30 (1.24)

VAL8-OXT – GLN85-NE2 18.55 5.58 (1.85)
GLU3-N – GLY33-O 18.34 5.01 (1.93)
VAL8-O – GLY28-N 13.40 5.06 (1.38)

VAL8-O – GLN85-NE2 11.84 5.79 (1.75)
VAL8-OXT – GLY28-N 10.18 5.28 (1.37)

TABLE B.7: Percentage of hydrogen-bond occupancies and the dis-
tances between the involved heavy atoms for hydrogen bonds be-
tween MAGI1 PDZ1 and EQVSAV peptide, existing in 10 % or more
of all simulation frames. In the left column, first the peptide residue

and second the protein residue is given.
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MAGI1 PDZ1 with EQVEAV

Interacting atoms Occupancy [%] Distance (STD) [Å]

GLU6-O – VAL31-N 99.79 2.87 (0.13)
GLU6-N – VAL31-O 95.03 3.07 (0.18)
GLN4-O – GLY33-N 89.79 3.09 (0.60)
VAL8-N – PHE29-O 87.51 3.08 (0.29)
GLN4-N – GLY33-O 77.66 3.38 (1.08)

VAL8-OXT – PHE27-N 64.41 3.23 (0.54)
VAL8-O – PHE27-N 60.50 3.27 (0.57)

GLU3-N – ASP35-OD1 41.65 4.48 (2.39)
GLU3-N – ASP35-OD2 41.27 4.51 (2.41)
VAL8-OXT – GLY28-N 36.29 3.94 (1.04)

VAL8-O – GLY28-N 33.58 4.05 (1.08)
GLN4-NE2 – GLY34-O 15.23 5.56 (1.87)
VAL8-OXT – PHE29-N 14.89 4.80 (1.21)

VAL8-O – PHE29-N 14.75 4.93 (1.24)

TABLE B.8: Percentage of hydrogen-bond occupancies and the dis-
tances between the involved heavy atoms for hydrogen bonds be-
tween MAGI1 PDZ1 and EQVEAV peptide, existing in 10 % or more
of all simulation frames. In the left column, first the peptide residue

and second the protein residue is given.

MAGI1 PDZ1 with EQVpSAV
(singly charged (SP1) phosphate)

Interacting atoms Occupancy [%] Distance (STD) [Å]

SP16-O – VAL31-N 94.60 3.03 (0.53)
VAL8-N – PHE29-O 92.92 2.99 (0.31)

VAL8-OXT – PHE27-N 54.44 3.48 (0.79)
VAL8-OXT – GLY28-N 52.27 3.73 (1.14)

VAL8-O – PHE27-N 34.86 3.75 (0.86)
VAL8-O – GLY28-N 22.86 4.46 (1.15)

VAL8-OXT – PHE29-N 16.79 4.49 (1.20)

TABLE B.9: Percentage of hydrogen-bond occupancies and the dis-
tances between the involved heavy atoms for hydrogen bonds be-
tween MAGI1 PDZ1 and EQVpSAV peptide with singly charged
(SP1) phosphate, existing in 10 % or more of all simulation frames.
In the left column, first the peptide residue and second the protein

residue is given.



142 Appendix B. Supplementary Material for chapter 4

(A) hPTP1E PDZ2 binding EQVEAV

(B) Sketch of binding pocket and hydrogen bonds
for binding of the EQVEAV peptide to hPTP1E

PDZ2.

(C) hPTP1E PDZ2 binding EQVpSAV with dou-
bly charged (SP2) phosphate

(D) Sketch of binding pocket and hydrogen
bonds for binding of the EQVpSAV peptide
with doubly charged (SP2) phosphate to hPTP1E

PDZ2.

FIGURE B.5: Representative structures of the EQVEAV peptide (top
left) and the EQVpSAV peptide with doubly charged (SP2) phosphate
group (bottom left) binding the hPTP1E PDZ2 domain. These struc-
tures were extracted similar to our previous study [32] (see chapter 3)
by finding the centroid, the frame with the highest sum of similarities,
of all trajectory frames of 1 µs plain MD simulations with 2D sketches
of the binding pocket and the relevant hydrogen bonds between pro-
tein and peptide on the right side, respectively. As a distance metric
we used the pairwise RMSD and then used the pairwise distances to

calculate a pairwise similarity.
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(A) hPTP1E PDZ2 R79A binding EQVSAV

(B) Sketch of binding pocket and hydrogen bonds
for binding of the EQVSAV peptide to hPTP1E

PDZ2 R79A.

(C) hPTP1E PDZ2 R79A binding EQVEAV

(D) Sketch of binding pocket and hydrogen
bonds for binding of the EQVEAV peptide to

hPTP1E PDZ2 R79A.

FIGURE B.6: Representative structures of the EQVSAV peptide (top
left) and the EQVEAV peptide (bottom left) binding the hPTP1E
PDZ2 R79A domain. These structures were extracted similar to our
previous study [32] (see chapter 3) by finding the centroid, the frame
with the highest sum of similarities, of all trajectory frames of 1 µs
plain MD simulations with 2D sketches of the binding pocket and the
relevant hydrogen bonds between protein and peptide on the right
side, respectively. As a distance metric we used the pairwise RMSD
and then used the pairwise distances to calculate a pairwise similar-

ity.
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(A) hPTP1E PDZ2 R79A binding EQVpSAV with
singly charged (SP1) phosphate group

(B) Sketch of binding pocket and hydrogen bonds
for binding of the EQVpSAV peptide with singly
charged (SP1) phosphate group to hPTP1E PDZ2

R79A.

(C) MAGI1 PDZ1 binding EQVEAV

(D) Sketch of binding pocket and hydrogen
bonds for binding of the EQVEAV to MAGI1

PDZ1.

FIGURE B.7: Representative structures of the EQVpSAV peptide with
singly charged (SP1) phosphate group binding the hPTP1E PDZ2
R79A domain (top left) and the EQVEAV peptide binding the MAGI1
PDZ1 domain (bottom left). These structures were extracted similar
to our previous study [32] (see chapter 3) by finding the centroid, the
frame with the highest sum of similarities, of all trajectory frames of
1 µs plain MD simulations with 2D sketches of the binding pocket
and the relevant hydrogen bonds between protein and peptide on
the right side, respectively. As a distance metric we used the pairwise
RMSD and then used the pairwise distances to calculate a pairwise

similarity.
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(A) MAGI1 PDZ1 Q85R binding EQVSAV (B) Sketch of binding pocket and hydrogen bonds
for binding of the EQVSAV to MAGI1 PDZ1

Q85R.

(C) MAGI1 PDZ1 Q85R binding EQVEAV
(D) Sketch of binding pocket and hydrogen
bonds for binding of the EQVEAV to MAGI1

PDZ1 Q85R.

FIGURE B.8: Representative structures of the EQVSAV peptide (top
left) and the EQVEAV peptide (bottom left) binding the MAGI1 PDZ1
Q85R domain. These structures were extracted similar to our previ-
ous study [32] (see chapter 3) by finding the centroid, the frame with
the highest sum of similarities, of all trajectory frames of 1 µs plain
MD simulations with 2D sketches of the binding pocket and the rele-
vant hydrogen bonds between protein and peptide on the right side,
respectively. As a distance metric we used the pairwise RMSD and

then used the pairwise distances to calculate a pairwise similarity.
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(A) MAGI1 PDZ1 Q85R binding EQVpSAV with
singly charged phosphate group

(B) Sketch of binding pocket and hydrogen bonds
for binding of the EQVpSAV with singly charged
(SP1) phosphate group to MAGI1 PDZ1 Q85R.

FIGURE B.9: Representative structure of the EQVpSAV peptide with
singly charged (SP1) phosphate group binding the MAGI1 PDZ1
Q85R domain (left). These structures were extracted similar to our
previous study [32] (see chapter 3) by finding the centroid, the frame
with the highest sum of similarities, of all trajectory frames of 1 µs
plain MD simulations with 2D sketches of the binding pocket and the
relevant hydrogen bonds between protein and peptide on the right
side, respectively. As a distance metric we used the pairwise RMSD
and then used the pairwise distances to calculate a pairwise similar-

ity.
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MAGI1 PDZ1 Q85R with EQVSAV

Interacting atoms Occupancy [%] Distance (STD) [Å]

SER6-O – VAL31-N 97.22 2.93 (0.44)
VAL8-N – PHE29-O 93.59 2.99 (0.42)
SER6-N – VAL31-O 81.92 3.25 (0.71)
GLN4-O – GLY33-N 56.40 4.27 (2.25)

VAL8-OXT – GLY28-N 55.23 3.79 (1.26)
VAL8-OXT – PHE27-N 50.74 3.54 (0.95)

VAL8-O – PHE27-N 39.85 3.72 (1.00)
VAL8-O – GLY28-N 30.73 4.26 (1.23)

GLU3-N – ASP35-OD2 25.64 6.26 (3.39)
GLU3-N – ASP35-OD1 21.86 6.40 (3.38)
VAL8-O – ARG85-NH1 20.45 6.48 (2.80)
ALA7-O – ARG85-NH2 16.19 5.76 (2.71)
VAL8-OXT – PHE29-N 15.82 4.65 (1.31)

GLN4-NE2 – HIS77-ND1 13.10 7.09 (3.21)
VAL8-O – ARG85-NH2 12.31 6.47 (2.48)

GLN4-N – GLY33-O 10.52 6.36 (2.66)

TABLE B.10: Percentage of hydrogen-bond occupancies and the dis-
tances between the involved heavy atoms for hydrogen bonds be-
tween MAGI1 PDZ1 Q85R and EQVSAV peptide, existing in 10 % or
more of all simulation frames. In the left column, first the peptide

residue and second the protein residue is given.
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MAGI1 PDZ1 Q85R with EQVEAV

Interacting atoms Occupancy [%] Distance (STD) [Å]

GLU6-O – VAL31-N 98.95 2.89 (0.22)
GLU6-N – VAL31-O 96.18 3.04 (0.35)
VAL8-N – PHE29-O 87.55 3.04 (0.36)
GLN4-O – GLY33-N 80.42 3.35 (1.13)

VAL8-OXT – PHE27-N 66.47 3.34 (0.75)
GLN4-N – GLY33-O 61.15 4.11 (1.96)

VAL8-OXT – GLY28-N 46.28 3.92 (1.24)
VAL8-O – PHE27-N 43.99 3.64 (0.86)

ALA7-O – ARG85-NH2 42.91 4.29 (2.07)
GLU3-N – ASP35-OD1 40.91 4.88 (3.04)
GLU3-N – ASP35-OD2 37.64 4.96 (3.05)

GLU6-OE2 – ARG85-NH2 20.02 5.41 (2.41)
GLU6-OE1 – ARG85-NH2 19.72 5.43 (2.41)

VAL8-O – GLY28-N 14.99 4.69 (1.14)
VAL8-OXT – PHE29-N 14.67 4.67 (1.29)
GLN4-NE2 – GLY34-O 13.00 6.52 (2.80)
VAL8-O – ARG85-NH2 12.85 6.21 (2.11)

GLU6-OE1 – ARG85-NH1 11.29 5.85 (2.20)
GLU6-OE2 – ARG85-NH1 10.89 5.84 (2.19)

TABLE B.11: Percentage of hydrogen-bond occupancies and the dis-
tances between the involved heavy atoms for hydrogen bonds be-
tween MAGI1 PDZ1 Q85R and EQVEAV peptide, existing in 10 % or
more of all simulation frames. In the left column, first the peptide

residue and second the protein residue is given.
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MAGI1 PDZ1 Q85R with EQVpSAV
(singly charged (SP1) phosphate)

Interacting atoms Occupancy [%] Distance (STD) [Å]

VAL8-OXT – ARG85-NH2 30.07 5.69 (2.70)
GLU3-O – GLY33-N 22.37 8.30 (4.97)
VAL5-N – VAL31-O 22.12 6.36 (3.49)

SP16-OE2 – ARG85-NH2 20.70 6.12 (3.00)
VAL8-O – ARG25-NE 20.09 6.88 (2.93)
GLN4-O – GLY33-N 19.40 8.05 (4.35)

VAL8-OXT – ARG25-NH2 18.19 7.97 (3.61)
GLU3-N – GLY33-O 17.91 9.14 (5.92)

GLU3-N – ASP35-OD1 16.01 9.35 (6.30)
VAL8-O – ARG25-NH2 15.43 7.67 (3.48)
VAL8-O – ARG85-NH1 14.62 6.62 (2.50)

GLN4-N – GLY33-O 13.00 8.67 (5.12)
ALA7-O – ARG85-NH1 12.89 5.96 (2.21)
VAL8-O – ARG85-NE 12.26 6.28 (2.25)

SP16-OE1 – ARG85-NH2 12.14 6.42 (3.00)
VAL8-OXT – ARG85-NE 11.17 5.82 (2.48)
SP16-OE1 – ARG85-NE 10.83 7.31 (2.79)
ALA7-O – ARG85-NH2 10.74 5.65 (1.81)
GLU3-N – ASP35-OD2 10.73 9.43 (6.13)
VAL8-O – ARG85-NH2 10.58 6.35 (2.55)

SP16-O – VAL31-N 10.32 7.24 (2.27)

TABLE B.12: Percentage of hydrogen-bond occupancies and the
distances between the involved heavy atoms for hydrogen bonds
between MAGI1 PDZ1 Q85R and EQVpSAV peptide with singly
charged (SP1) phosphate, existing in 10 % or more of all simulation
frames. In the left column, first the peptide residue and second the

protein residue is given.
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FIGURE C.1: Analysis of the PaCS-MD simulation of the SLKLMTTV
peptide binding the mDvl1 PDZ domain. Top: Inter-COM distance
as a function of the number of PaCS-MD cycles. The inter-COM dis-
tance range is divided in the bound, partially-bound and unbound
regions. Bottom left: VAMP-2 scores for as a function of the number
of cluster centers. The analysis was repeated five times for every stud-
ied number of cluster centers and the standard deviation is shown as
light-blue area. Bottom right: Implied MSM time scales as a function

of the lag time τ.
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FIGURE C.2: Analysis of the PaCS-MD simulation of the small
molecule inhibitor SUZ binding the mDvl1 PDZ domain. Top: Inter-
COM distance as a function of the number of PaCS-MD cycles. The
inter-COM distance range is divided in the bound, partially-bound
and unbound regions. Bottom left: VAMP-2 scores for as a function
of the number of cluster centers. The analysis was repeated five times
for every studied number of cluster centers and the standard devi-
ation is shown as light-blue area. Bottom right: Implied MSM time

scales as a function of the lag time τ.
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FIGURE C.3: MSM analysis of the PaCS-MD simulation with 34 initial
position from a single long plain MD simulation of the SLKLMTTV
peptide binding the mDvl1 PDZ domain when the small molecule
inhibitor SUZ is competing for the binding pocket. Top: Inter-COM
distance as a function of the number of PaCS-MD cycles. The inter-
COM distance range is divided in the bound, partially-bound and
unbound regions. Bottom left: VAMP-2 scores for as a function of the
number of cluster centers. Bottom right: Implied MSM time scales as

a function of the lag time τ.
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FIGURE C.4: MSM analysis of the PaCS-MD simulation with 27 initial
position from the plain MD simulation 1, 2 and 3 of the SLKLMTTV
peptide binding the mDvl1 PDZ domain when the small molecule
inhibitor SUZ is competing for the binding pocket. Top: Inter-COM
distance as a function of the number of PaCS-MD cycles. The inter-
COM distance range is divided in the bound, partially-bound and
unbound regions. Bottom left: VAMP-2 scores for as a function of the
number of cluster centers. Bottom right: Implied MSM time scales as

a function of the lag time τ.
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FIGURE C.5: MSM analysis of the PaCS-MD simulation with 27 initial
position from the plain MD simulation 1, 2 and 4 of the SLKLMTTV
peptide binding the mDvl1 PDZ domain when the small molecule
inhibitor SUZ is competing for the binding pocket. Top: Inter-COM
distance as a function of the number of PaCS-MD cycles. The inter-
COM distance range is divided in the bound, partially-bound and
unbound regions. Bottom left: VAMP-2 scores for as a function of the
number of cluster centers. Bottom right: Implied MSM time scales as

a function of the lag time τ.
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FIGURE C.6: MSM analysis of the PaCS-MD simulation with 27 initial
position from the plain MD simulation 1, 3 and 4 of the SLKLMTTV
peptide binding the mDvl1 PDZ domain when the small molecule
inhibitor SUZ is competing for the binding pocket. Top: Inter-COM
distance as a function of the number of PaCS-MD cycles. The inter-
COM distance range is divided in the bound, partially-bound and
unbound regions. Bottom left: VAMP-2 scores for as a function of the
number of cluster centers. Bottom right: Implied MSM time scales as

a function of the lag time τ.
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FIGURE C.7: MSM analysis of the PaCS-MD simulation with 27 initial
position from the plain MD simulation 2, 3 and 4 of the SLKLMTTV
peptide binding the mDvl1 PDZ domain when the small molecule
inhibitor SUZ is competing for the binding pocket. Top: Inter-COM
distance as a function of the number of PaCS-MD cycles. The inter-
COM distance range is divided in the bound, partially-bound and
unbound regions. Bottom left: VAMP-2 scores for as a function of the
number of cluster centers. Bottom right: Implied MSM time scales as

a function of the lag time τ.
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FIGURE C.8: MSM analysis of the PaCS-MD simulation with 36 initial
position from the plain MD simulation 1, 2, 3 and 4 of the SLKLMTTV
peptide binding the mDvl1 PDZ domain when the small molecule
inhibitor SUZ is competing for the binding pocket. Top: Inter-COM
distance as a function of the number of PaCS-MD cycles. The inter-
COM distance range is divided in the bound, partially-bound and
unbound regions. Bottom left: VAMP-2 scores for as a function of the
number of cluster centers. Bottom right: Implied MSM time scales as

a function of the lag time τ.
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FIGURE C.9: Chapman-Kolmogorov test for the MSM built from the
34 initial positions extracted from the long plain MD simulation la-

beled 0. It is clear, that the MSM fulfills Markovianity.
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FIGURE C.10: Chapman-Kolmogorov test for the MSM built from the
27 initial positions extracted from the three plain MD simulation la-

beled 1, 2 and 3. It is clear, that the MSM fulfills Markovianity.
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FIGURE C.11: Chapman-Kolmogorov test for the MSM built from the
27 initial positions extracted from the three plain MD simulation la-

beled 1, 2 and 4. It is clear, that the MSM fulfills Markovianity.
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FIGURE C.12: Chapman-Kolmogorov test for the MSM built from the
27 initial positions extracted from the three plain MD simulation la-

beled 1, 3 and 4. It is clear, that the MSM fulfills Markovianity.
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FIGURE C.13: Chapman-Kolmogorov test for the MSM built from the
27 initial positions extracted from the three plain MD simulation la-

beled 2, 3 and 4. It is clear, that the MSM fulfills Markovianity.
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FIGURE C.14: Chapman-Kolmogorov test for the MSM built from the
36 initial positions extracted from the four plain MD simulation la-

beled 1, 2, 3 and 4. It is clear, that the MSM fulfills Markovianity.
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