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ABSTRACT
Non-coding RNA (ncRNA) molecules have fundamental roles in cells and many are also stable in body
fluids as extracellular RNAs. In this study, we used RNA sequencing (RNA-seq) to investigate the profile of
small non-coding RNA (sncRNA) in human serum. We analyzed 10 billion Illumina reads from 477 serum
samples, included in the Norwegian population-based Janus Serum Bank (JSB). We found that the core
serum RNA repertoire includes 258 micro RNAs (miRNA), 441 piwi-interacting RNAs (piRNA), 411 transfer
RNAs (tRNA), 24 small nucleolar RNAs (snoRNA), 125 small nuclear RNAs (snRNA) and 123 miscellaneous
RNAs (misc-RNA). We also investigated biological and technical variation in expression, and the results
suggest that many RNA molecules identified in serum contain signs of biological variation. They are
therefore unlikely to be random degradation by-products. In addition, the presence of specific fragments
of tRNA, snoRNA, Vault RNA and Y_RNA indicates protection from degradation. Our results suggest that
many circulating RNAs in serum can be potential biomarkers.
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Introduction

Human serum and plasma contain various classes of RNA
molecules [1-3] such as protein-coding messenger RNAs
(mRNA) [4], miRNAs [3,5-10], piRNAs [1,11,12], tRNAs
and miscellaneous other ncRNA molecules [1,11]. These
circulating RNAs are usually packed in extracellular vesicles
and have considerable potential as minimally-invasive bio-
markers [4,5,8,11,13,14], since they are stable and some
have been associated with disease phenotypes [5,6,11,15,16].

miRNAs are the best characterized class of sncRNA mole-
cules. They are approximately 22 nucleotides (nts) in length
and regulate cellular gene expression via RNA-RNA antisense
binding [17-19]. They can also be found as circulating RNAs
[3,5-8,20]. Many studies have investigated the biomarker
potential of miRNAs [2,5-9,16,21,22] and their isoforms, iso-
miRs [23-25]. Small nucleolar RNAs (snoRNAs) are another
well-known member of sncRNA molecules. They play a crucial
role in ribosomal RNA (rRNA) maturation [26] and can be
found as extracellular RNAs [4,12]. piRNAs, initially discov-
ered in germline cells [27,28], are a less studied class of small
RNA molecules, however, recent studies have identified them
as circulating RNAs [1,11,12]. Besides regulatory sncRNAs,
protein-coding mRNAs and tRNAs are also found as circulat-
ing RNAs [11] despite their roles in protein synthesis.

Furthermore, tRNA-derived small RNAs or tRNA-derived
fragments (tRFs) are known to have specific cellular expression
patterns [29,30] and are associated with some cancer types
[31]. This makes extracellular tRNAs and their fragments
potential biomarkers.

Large portions of the human genome are biochemically
and transcriptionally active [32-34]. Efforts have been made
to deduce the roles of cellular RNAs and their fragments
[35-40]. Different body fluids, including serum, have been
investigated for extracellular RNAs [4,41,42]. The functional-
ity of these RNA molecules is an open question [4,11], since
they can be mere degradation by-products, experimental
noise or have alternative roles in circulation. The studies so
far have mostly focused on analyzing circulating miRNAs to
understand their function and determine biomarker poten-
tial. Yet, it has been shown that the variation of circulating
miRNA expression can be influenced by different biological
(e.g. disease, age, sex, body mass index etc.) [2,20,42,43] and
technical factors (e.g. lab processing, platform, noise etc.)
[11,44,45], which can greatly affect profiles of highly
expressed miRNAs [1,12,20,42]. Therefore, it is important to
understand ‘normal’ RNA content of human serum before
utilizing RNAs as biomarkers.
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The aim of this study was to profile RNA molecules in
human serum. We analyzed small RNA-seq data from a large
(N = 477) set of long-term archived serum samples. To assess
potential functionality, we analyzed biological variation of
sncRNAs and expression/degradation patterns of RNA
fragments. To date, this is the most comprehensive analysis of
the sncRNA repertoire in human serum.

Results

Overall RNA profiles

We analyzed the RNAs in the size range of 17 to 47 nts
(Fig 1A). This entails mostly sncRNAs, but it also includes frag-
ments of long non-coding RNAs (lncRNA), mRNAs and other
longer transcripts. miRNAs are represented with a peak at 22
nts. The completeness of the profiles relies on sequencing
depth, and the saturation analyses showed that canonical miR-
NAs and tRNAs are approaching plateau with a sequencing
depth of about 10–15 Million reads (Fig. 1B). However, the
number of piRNAs, isomiRs and tRFs are still increasing at
15 Million reads (Fig. 1B, C).

We found a total of 258 miRNA, 441 piRNA, 411 tRNA, 24
snoRNA, 125 snRNA and 123 misc-RNA genes that passed the
expression threshold that we set (median expression > = 10
reads), representing the core RNA expression profile of serum.

In addition, 87 lncRNAs and 1334 mRNAs were detected
because of the RNA fragments mapped to these annotations.
The transcript origin of RNA reads mapping to multiple geno-
mic locations cannot be determined when mapping qualities
are equal for several locations. For comparability to previous
studies, we show profiles using both uniquely and multi-
mapped reads (Fig. 2). Multi-mapped sequence counts enriches
the abundance of high-copy number genes (e.g. piRNA and
tRNA). We also used this approach for RNA identification in
this study.

The overall RNA expression profile shows that some RNA
classes are highly expressed compared to others and the top
expressed RNAs are listed in Table 1. The misc-RNA class
includes Y_RNAs, Signal Recognition Particle (SRP) RNA and
Vault RNAs etc. (Table 1). The snoRNAs include U3, U8 and
some other related C/D or H/ACA box snoRNAs (Table S4).
The snRNAs include U2, U1, U6 and related snRNA
genes (Table S5). Complete lists of all identified RNAs are in
supplementary tables (Tables S1-S8).

Isoform profiles of miRNAs and tRNAs

We identified 1642 isomiRs in the serum samples, which passed
the detection threshold (i.e. median expression > = 10 among
samples). The average GC contents of serum isomiRs, canoni-
cal forms and miRNA precursors are 0.51, 0.50 and 0.52

Figure 1. (A) The line shows the distribution of trimmed RNA molecule sizes for the serum samples. Our theoretical input library size is between 17 and 47 nts. There are
two peaks for the reads at 22 and 31 nts length. This enabled us to detect numerous RNA types including fragments of lncRNAs and mRNAs. (B) The saturation lines of
canonical genes (i.e. miRNAs, piRNAs, and tRNAs) for a randomly selected subset of serum samples (n = 12) are shown. The number of identified genes are still increasing
for piRNAs (the dark green lines) but the others are about to reach plateau. (C) The non-canonical isoforms (i.e. isomiRs and tRFs) identified are also increasing with the
sequencing depth and far from reaching plateau.

RNA BIOLOGY 243



respectively. The isomiRs are mostly 3 0 isomiRs (78%), fol-
lowed by 5 0 (27%), substitution (22%) and canonical forms
(8%). The identified isomiRs are generally an isoform of highly
expressed miRNAs (Table 1). For example, hsa-miR-320a, hsa-
miR-423-5p, hsa-miR-122-5p and hsa-miR-1246 have 159,
138, 73 and 55 isoforms respectively. A detailed list of the
serum isomiRs and their precursors is provided in supplemen-
tary (Table S1A).

We identified 1900 tRFs in the serum samples. The average
length of these tRNA fragments is »29 nts and the average GC
content is 0.53. A detailed examination of tRFs showed that
they originated from either the 5 0 or 3 0 end of mature tRNAs
(Fig. 3A). This suggests there are no mature tRNAs in serum.
The 3 0 end of tRNAs was the most abundant region with a
uniform distribution throughout a 30 nts region (Fig. 3A).

Profiles of RNA fragments

We also analyzed the profiles of RNA molecules mapped to
other annotated regions, including snoRNAs, Vault RNAs,
Y_RNAs, mRNAs and lncRNAs. First, U3 snoRNAs are the

most abundant wıthin the snoRNA class (Table S4) and the
average size of all U3 snoRNA mapped reads is around 29 nts
with an average GC content of 0.51. These reads usually come
from two regions, the first 20 nts or the last 22 nts region
(Fig. 3B), but there are also two smaller peaks between nts
48–74 and 169–195. Second, Vault RNAs have a consistent sig-
nal of expression with reads derived from a region covering
75th – 95th nts, while the total size of the Vault MSA is 101 nts
(Fig. 3C). These reads also have higher average GC contents,
0.62, than their host Vault RNAs, 0.52. Third, Y_RNAs consti-
tute most of the misc-RNA group’s expression (Table 1). The
MSA of Y_RNAs consist of 51 Y_RNAs and 179 nts (Fig. 3D).
The expression profiles of Y_RNAs showed that the reads were
mapped to the first 1–50 nts region. The average GC content of
these reads is 0.51 with an average length of 37 nts. Lastly, as
mentioned in the Materials and Methods, we counted the reads
only mapped to exonic regions of mRNAs and lncRNAs. The
fragments mapped to exonic regions of longer annotations
(i.e. mRNA and lncRNA) have average sizes of 29 nts for
mRNAs and 30 nts for lncRNAs with GC contents of 0.52 and
0.51 respectively.

Figure 2. An overall classification of the mapped reads of the serum samples (n = 477). This pie-chart on the left, generated using uniquely-mapped reads, shows an
abundance of miRNA hits followed by protein-coding mRNAs and misc-RNAs. Allowing multi-mapped reads is affecting overall RNA profiles (on the right). For multi-
mapped reads, piRNAs (green) are the most abundant RNA type followed by misc-RNAs (yellow) and tRNAs (purple). The annotations of GENCODE v26 and piRBase were
used to create these plots. Similar pie-charts for the technical replicates are at the supplementary (Fig. S2).

Table 1. A summary table of highly expressed RNAs identified in the serum samples.

Expression Rank miRNA piRNA misc-RNA lncRNA mRNA

1 hsa-miR-423-5p piR-hsa-25779 Y_RNA RP11-1151B14.3 NSRP1
2 hsa-miR-320a piR-hsa-25780 RNY4 RP11-20B24.2 WDR74
3 hsa-miR-1246 piR-hsa-12790 RNY1 LINC00910 VMP1
4 hsa-miR-122-5p piR-hsa-2106 RN7(x) LINC00324 HOXB4
5 hsa-miR-1290 piR-hsa-25783 RNY3 LINC01783 ATP5G3
6 hsa-miR-21-5p piR-hsa-25782 SRP RP11-108M9.3 MTRNR2L8
7 hsa-miR-486-5p piR-hsa-18709 VTRNA1(x) RP11-473M20.16 C9orf3
8 hsa-miR-148a-3p piR-hsa-2107 KCNQ1OT1_5 CARMN MTRNR2L12
9 hsa-miR-451a piR-hsa-25781 7SK RNU11 MTRNR2L1
10 hsa-miR-101-3p piR-hsa-1207 Vault RNA RP11-160E2.6 FAM212A

Note: �these miRNAs are challenged, see the Discussion. ��similar annotations are collapsed for misc-RNAs. The extended lists are available in Supplementary
Tables S1-S8.
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Figure 3. The profiles of mapped reads from highly expressed (A) tRNAs (n = 41), (B) U3 snoRNAs (n = 18), (C) Vault RNAs (n = 4) and (D) Y_RNAs (n = 57). Each panel has a
multiple sequence alignment (MSA) at the bottom and a corresponding density plot at the top. The x-axes of all plots display a nt position on their MSAs. For example, the
MSA of tRNAs is 75 nts long which can be seen at the bottom of the plots. The density plots shows the overall mapping profiles and their x-axes also display nt positions. The
heat-maps provide colored representation of the density plot per RNA in the alignment. Yellow and green correspond to the top expressed regions (i.e. high depth), while
blue contain almost no mapped reads. White are the gaps in the alignment. (A) The reads mapped to mature tRNAs are mostly coming from the 3 0 ends (density plot). (B)
There is a peak at the 5 0 end of the snoRNA density plot that corresponds to a 20 nts long region. (C) The Vault RNAs identified have a clear signal of expression at their 3 0
ends (density plot and yellow bricks at the heatmap). (D) The Y_RNA reads are mostly originating from 5 0 ends and there is a small peak at the 3 0 end (density plot).

Figure 4. (A) The y-axis shows the log10 of standard deviations of normalized expression and the x-axis shows the log10 mean expression of identified sncRNAs. (B) The
boxplots show the distribution of CV values in the serum samples and the technical replicates. A pairwise MWU test (��� p << 0.0001) confirmed higher CV values in the
serum samples than the technical replicates suggesting higher biological variation for the serum samples than the technical replicates. Randomly generated subsamples
of the serum samples (n = 17) also produces similar results (Fig. S3) excluding variation due to different samples sizes.
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Coefficient of variation (CV) analyses of sncRNA expression

We analyzed variation in expression of identified sncRNAs to
investigate biological signals. In the serum samples, there is a
linear relationship between log-normalized mean expression
and the standard deviation of identified sncRNAs (Fig. 4A),
which shows that the variation is higher for the highly
expressed sncRNAs.

A CV value measures dispersion of a distribution and is a
standardised measure of the standard deviation. Distributions
of CV values per sncRNA class for both the serum samples and
the technical replicates were calculated. We hypothesized that
RNA expression in the serum samples will vary more than the
technical replicates due to biological variance, because the vari-
ation in RNA expression of the serum samples is a combination
of technical and biological factors. We tested the null hypothe-
sis: there is no difference in CV values of these two sample sets
in three sncRNA types (i.e. miRNA, piRNA and tRNA) and in
two different isoforms. We found that the RNA expression
varies more in the serum samples than the technical replicates
(one sided Mann-Whitney U test (MWU), p << 0.0001 for all)
(Fig. 4B). This means that the CV values of RNA expression in
the technical replicates are consistently lower than in the serum
samples for all sncRNA types, including isoforms (i.e. isomiRs
and tRFs).

Low technical variation is preferable for a biomarker 44], so
removing the sncRNAs with high technical variation should create
a better set of biomarkers. As an example we tested this with clus-
ter analyses using isomiRs identified both in the serum and techni-
cal replicates. The detected isomiRs were divided into four groups
based on their CV: all isomiRs (n = 1642, identified in both sample
groups), low CV (lower than median CV, n = 797), very low CV
(lower than first quantile, n = 403) and high CV isomiRs (higher
than median CV, n = 845). The four dendrograms created from
these groups showed that the low CV and very low CV isomiRs
can successfully cluster a set of randomly selected serum samples
(n = 17) and technical replicates (Fig. S4). However, all isomiRs
and the high CV isomiRs cannot successfully cluster these two
sample types (Fig. S4). We detected a GC difference between the
high CV (0.52) and low CV (0.49) isomiRs (two sided MWU,
p = 0.003) which may be a reason for the additional technical
variation in some isomiRs. Their average internal folding energies,
¡1.19 kcal/mol for the high and ¡1.17 kcal/mol for the low CV
group, are also slightly different (two sided MWU, p = 0.014),
which is most likely an effect of the GC difference.

Discussion

A biomarker is a measurable indicator of a biological state or a
phenotype [46,47]. There is increasing interest in early-detec-
tion of diseases using RNA biomarkers, and numerous studies
have investigated circulating miRNAs as candidate non-inva-
sive biomarkers [2,5-9,16,21,22]. We expanded previous
research by generating the most comprehensive RNA profile of
serum which reports existence of some RNA classes in human
serum for the first time. Our in-depth analyses include not only
miRNAs, but also piRNAs, tRNAs, snoRNAs, snRNAs, misc-
RNAs, lncRNAs, mRNAs and RNA fragments such as isomiRs,
tRFs, RNA derived particles.

To be able to analyse all the sncRNAs, a size filtering of
15–40 nts is sufficient [46]. With our insert size selection
(17-47 nts) we were able to do a complete profiling of serum
sncRNAs (Fig. 1A). The fragments of lncRNAs, mRNAs and
other longer transcripts were also detected in serum. Sequenc-
ing depth influences sensitivity of RNA-seq (Fig. 1B) and this is
especially notable for isoforms (Fig. 1C). The average sequenc-
ing depth is high and selection of a lower threshold (i.e 5)
would allow identification of 23% more miRNAs (i.e. 318),
10% more piRNAs (i.e. 482) and 11% (i.e. 457) more tRNAs,
compared to the reported core set (Tables S1-S8). The total
number of identified miRNAs in serum was reported between
90 and 700 in the previous profiling studies [7,10,20,45], which
was between 123 and 500 for plasma samples [1,12,20,42]. The
total piRNA counts in plasma samples were reported to be
around 120 [11,12], while our data identified at least three
times as many piRNAs. The serum samples in this study can be
up to 40 years old, however, the results suggest that many RNA
classes are still recoverable with a high expression signal. There
is a slight difference between the overall RNA contents of the
serum (Fig. 1) and the (fresh) technical replicates (Fig. S2).
This difference is most likely an artifact of pooling several sam-
ples together rather than of degradation. Although our data
revealed some loss of miRNAs and isomiRs over time, the
effects (R2 = 0.11 and R2 = 0.14, respectively) are low (Fig. S5).

The core set of RNAs were reported by selecting a high
expression threshold, which filtered out the RNA products with
less stable expression. Our analyses produced comparable
results with previous circulating sncRNA profiling of different
body fluids in terms of RNA diversity. However, the RNA pro-
files can vary between studies, which is also true for highly
expressed RNAs [1]. We found examples of highly expressed
serum sncRNAs that were previously reported as circulating
RNAs. For example, the highly expressed miRNAs in our
serum samples, hsa-miR-423-5p, hsa-miR-320a, hsa-miR-122-
5p, hsa-miR-486-5p, hsa-miR-486-3p were detected in blood
samples [1,6,46]. Hsa-miR-451a, among our top 10 expressed
miRNAs, was reported to be the most abundant miRNA in
plasma [12]. Hsa-miR-1290 and hsa-miR-1246 were detected
in serum and associated with metastasis of lung cancer tumors
[48]. Some of the highly expressed piRNAs in our serum
samples (e.g. piR-hsa-2106 (pir-001311), piR-hsa-27493
(pir-019825), piR-hsa-23209 (pir-020496), piR-hsa-28223
(pir-020388), piR-hsa-28527 (pir-020582), piR-hsa-28374
(pir-020485)) are known to exist in plasma and a few of them
were also associated with cancer phenotypes [11].

A single miRNA locus can produce various isomiRs with
distinct length or sequence [49] and they have been associ-
ated with phenotypes and diseases [23-25]. Both in animal
and plants, 3 0 isomiRs are the most common ones [49],
consistent with our results. We found that only 8% of the
isomiRs are the canonical forms from miRBase, and highly
expressed potential isomiRs can be identified in serum. tRFs
are another less-known class of sncRNAs which are isoforms
of tRNA genes [29]. They are derived either from mature
tRNAs or 3 0 of tRNA precursors [29,30] and expressed
under various stress conditions [50,51]. Many tRFs were
associated with different cancer phenotypes [30,31] and
some were found to be functional like a regulatory miRNA
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[52]. Random degradation of tRNAs should give a uniform
distribution of tRFs covering the entire tRNA annotation
[30]. However, we found that tRFs have non-uniform
expression patterns (Fig. 3A), suggesting a regulated
cleavage. This is consistent with known tRF biogenesis [29].
We also found potentially functional tRNA derived frag-
ments. For example, tRF-5001 was detected in prostate cells
in high amounts [29]. Moreover, 107 tRFs identified were
associated with Argonaute family proteins and predicted to
have possible mRNA targets [53]. One of these 5 0 end tRFs
have the maximum median expression in our serum samples
(Table S3A). It was deposited to MINTbase tRF database (id
tRF-30-PNR8YP9LON4V) [54] and also found to bind 12
different mRNAs (e.g. EI24, SUGP2 etc.) according to
CLASH data [53].

There are RNA fragments originating from well-known
annotations, such as snoRNA, misc-RNA, lncRNA and mRNA,
that can be functional independent of their host gene
[38,40,55]. In our dataset these RNA fragments are abundant
(at least 40% of the all RNA molecules). SnoRNA derived frag-
ments can act like miRNAs to suppress target gene expression
[39] and Figure 3B shows that snoRNA in serum also have a
non-uniform expression pattern, similar to tRFs. Y_RNAs are
short misc-RNAs with functional roles in DNA replication and
RNA stability [56,57]. These fragments, previously found as cir-
culating RNAs in mammals [14,56], have been associated with
apoptosis in human cells [58]. Vault RNAs and their fragments
were also associated with drug resistance [55,59]. Vault RNAs
are a part of ribonucleoprotein complexes [60,61]. They were
identified as circulating RNAs in mammals [14]. Both Y_RNAs
and Vault RNAs are highly abundant in our serum (Tables 1
and S6) and have a non-uniform expression patterns (Fig. 3C,
D). Furthermore, lncRNA and mRNA fragments are known to
have different roles such as competing for protein/oligonucleo-
tide binding [62,63], and target gene regulation [64,65]. The
RNA fragments mapped to them have similar size and GC dis-
tribution with other sncRNA fragments in our dataset. The
expression is often high and stable for these fragments and
they cover only small fractions of their host gene (i.e. non-
uniformity).

An important question is whether the discovered sncRNAs
and their fragments are genuine functional products. The above
mentioned high expression pattern and regulated cleavage sug-
gest function. Random degradation and experimental noise
from RNA-seq studies [66-69] might introduce false positive
prediction of biological function and associations due to lack of
RNA-seq sensitivity [66,70]. We proposed that CV analysis
(Fig. 3 and Fig. S4) is suited for suggesting biological variation,
because in an ideal setting, technical replicates should contain
no biological variation, only technical variation. However, vari-
ation in serum samples is a sum of both biological and technical
variability. We identified a statistically significant difference in
average CV between technical and serum samples for all
sncRNA classes (including isoforms) that shows higher varia-
tion for serum samples. This supports a biological signal in
serum RNA expression and suggests potential function for
circulating RNA molecules.

Technical variation in RNA-seq may vary depending on
RNA molecule characteristics such as expression level, size,

sequence and secondary structure. We measured a range of CV
values in our technical replicates even though we expected
them to be closer to zero (Fig. 4B). High technical variation can
decrease biomarker value by influencing reproducibility. This
can be observed in our cluster analysis: the low CV and very
low CV isomiRs best discriminate the serum and technical rep-
licate group. We detected a statistically significant difference
between the GC contents of high and low CV isomiRs which
may partly explain technical variation. Some of those highly
discriminatory isomiRs (e.g. isomiRs of hsa-miR-192-5p, hsa-
miR-375 etc.) were successfully clustering various cancer tissues
in a binary classification approach [23]. Another 5 0 end isoform
of hsa-miR-101-3p, with a low technical variation in our study,
was also found to have a role in gene silencing in brain tissues
[25]. In short, this analysis showed that a set of isomiRs with
low CV is less prone to technical variation and they successfully
cluster the two groups.

The large sample size, high coverage and the diversity of
RNA products analyzed are the strengths of our study. We
extensively profiled abundant RNA fragments in serum, and
showed specific cleavage patterns of some RNA fragments for
the first time. We also utilized a set of technical replicates to
measure biological signal of serum RNA expression. This anal-
ysis suggested functionality for RNA fragments. However, there
are potential limitations that we should address.

First, long-term storage may degrade some unstable RNAs,
though our results suggested that the degradation effect is not
strong for sncRNAs (Figure S5). It has been proven for miR-
NAs that they remain stable in severe conditions [10] and in
circulation [9]. They can be extracted from long-term serum
[7,71]. Moreover, any RNA found in serum stored up to
40 years is evidently quite stable, which is one of the critical
criteria for good biomarkers. Second, although all samples are
processed in the same way, slight differences in laboratory
processing may still introduce some technical variance into
expression which cannot be removed totally. We addressed
this variation (Fig. 4B) using the technical replicate samples
and CV values, which showed that higher technical variation
was introduced into some sncRNAs than the others. Third,
the lab and bioinformatic analysis methods chosen may com-
promise generalizability of results. For example, differences in
gel cut size will change proportions of sncRNAs and narrower
cut will limit detection of certain sncRNA classes. Detection
threshold and allowing multi-mapped reads will also change the
overall RNA profiles substantially (Fig. 2). Selection of read map-
per and algorithm parameters are other bioinformatics related
factors that can influence overall results [72]. Furthermore, high
quality annotations are also essential to correctly identify tran-
scripts [73], which is still a major barrier even for well-studied
human miRNAs [74]. For example, highly expressed miRNAs,
hsa-miR-1246 and hsa-miR-320a, are questioned for not being a
miRNA gene [74]. Since they are part of miRBase, we reported
them (and their isoforms) as miRNAs to be consistent with the
literature. However, improving annotation quality is an on-going
process and still far from perfect. It is also reasonable to consider
possible alternative functions of the RNA fragments derived
from longer host genes rather than counting them as a single
piece of a large annotation. For instance, counting tRFs or misc-
RNA derived fragments as their host genes would have
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overshadowed the specific expression patterns that we reported
in Figure 3.

Conclusion

Here we present a comprehensive characterization of human
serum sncRNA content. Our results unveiled that most of the
RNAs identified in serum are not random by-products but
most likely have roles as circulating RNAs. This conclusion is
supported by (1) stable high expression, (2) biological signal
and (3) distinct expression patterns of many identified RNA
molecules. Our results suggest new opportunities for novel
biomarker discovery in serum, but they are also transferable to
other body fluids and tissues.

Materials and methods

Study design

The JSB cohort is a population-based cancer research biobank
containing pre-diagnostic serum samples from 318 628 Norwe-
gians [75]. By linking data from the Cancer Registry of Norway
[76] with the JSB cohort, we identified serum donors (n = 477)
that were cancer-free at least 10 years after sample collection
(male/female ratio: 2.13, average age at sampling: 49 years
(range 19–77 years) ). We do not have any information about
non-malignant conditions. A previous study showed that
miRNA (and other sncRNA) discovery is possible in long-term
archived serum samples [7]. In addition to investigate technical
variation, fresh serum from 6 individuals were pooled into one
sample and divided into 17 aliquots. They were analysed as
technical replicate samples. The downstream analyses were
identical for all samples (Fig. S1). The donors have given broad
consent for the use of the samples in cancer research. The study
was approved by the Norwegian regional committee for
medical and health research ethics (REC no: 2016/1290).

Laboratory processing

RNA was extracted from 2 £ 200 ml serum using phenol-chloro-
form phase separation and the miRNeasy Serum/Plasma kit (Cat.
no 1071073, Qiagen) on a QIAcube (Qiagen). Glycogen (Cat. no
AM9510, Invitrogen) was used as carrier during the RNA extrac-
tion step. Small RNA-seq was performed using NEBNext® Small
RNA Library Prep Set for Illumina (Cat. No E7300, New England
Biolabs Inc.). Size selection was performed using a 3% Agarose
Gel Cassette (Cat. No CSD3010) on a Pippin Prep (Sage Science)
with a cut size optimized to cover RNA molecules from 17 to
47 nt in length. Sequencing libraries were indexed and 12 samples
were sequenced per lane of a HiSeq 2500 (Illumina).

Bioinformatics analyses

The total number of reads generated was approximately 10 bil-
lion. The average sampling depths of the serum and technical
replicate samples were 17.9 and 19.5 million raw reads, respec-
tively. The reads were initially trimmed for adapters using
AdapterRemoval v2.1.7 [77]. We then mapped the collapsed
reads (generated by FASTX v0.14) to the human genome

(hg38) using Bowtie2 v2.2.9 (10 alignments per read were
allowed). We compiled a comprehensive annotation set from
miRBase/MirGeneDB [74,78] for miRNAs, pirBAse/pirnabank
for piRNAs [79,80], GENCODE [73] for other RNAs and
tRNAs. We used SeqBuster [81] to get isomiR and miRNA pro-
files of our samples. To count the reads mapped on other
RNAs, HTSeq [82] was utilized in a Python script. We used a
threshold of 10 median read count per sncRNA to get a robust
signal of expression. For longer transcripts (e.g. mRNA or
lncRNA), we counted reads only mapped to exonic regions.
However, this does not mean that the non-exonic mapped
reads are not important. We are interested in bona fide frag-
ments of longer genes but many non-exonic reads usually over-
lap with other short annotations, so it can be hard to determine
their correct origin. Read counts were normalized to get reads
per million (RPM) values. The coefficient of variation (CV)
was calculated based on RPM values for the genes identified
both in the serum and technical replicates in order to test
biological and technical variation.

In order to get isoform and coverage profiles of tRNAs, we
counted the reads mapped to tRNAs. There are 649 mature
tRNA annotations available in GENCODE. We selected 41
tRNAs accounting for 99% of all reads mapped to tRNA anno-
tations. The tRNAs were aligned to Rfam model (RF00005)
using the cmalign tool 83] to get a multiple sequence alignment
(MSA) of expressed tRNAs. Similar analyses were conducted
for U3 snoRNAs and other misc-RNA (the models are
RF00012, RF00006 and RF00019). Misc-RNAs denote RNA
transcripts that are not classified into any other groups [73],
which were taken from Rfam [84].

The processed data is available upon request.
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