
Provision of Multi-Camera Footage for Professional
Production and Consumer Environments

Dissertation

zur Erlangung des Grades

des Doktors der Ingenieurwissenschaften (Dr.-Ing.)

der Fakultät für Mathematik und Informatik
der Unversität des Saarlandes

vorgelegt von

Tobias Lange

Saarbrücken, 2021

Öffentliches Kolloquium
Tag des Kolloquiums: 16. Dezember 2021
Dekan der Fakultät: Prof. Dr. Thomas Schuster

Prüfungsausschuss
Vorsitzender: Prof. Dr. Jan Reineke
Berichterstatter: Prof. Dr. Thorsten Herfet

Prof. Dr. Aljosa Smolic
Dr. Joachim Keinert

Beisitzer: Dr. Jan Alexandersson

Short Abstract

Multi-camera footage contains much more data in comparison to that of conventional
video. While the additional data enables a number of new effects that previously required a
large amount of CGI magic and manual labor to achieve, it can easily overpower consumer
hardware and networks. In this thesis, we explore the necessary steps to create an interactive
multiview streaming system, from the cameras via the compression and streaming of the
material, to the view interpolation to create immersive perspective shifts for viewers. By
only using freely available consumer hardware, and making sure all steps can run in real-time,
in combination with the others, the benefits of multi-camera video are made available to a
wider public.

With the construction of a modular camera array for lightfield recording, we highlight
the most important properties of such an array to allow for good post-processing of the
recorded data. This includes a flexible yet sturdy frame, the management of computational
and storage resources, as well as the required steps to make the raw material ready for
further processing. The Unfolding scene displays the possibilities of lightfields when a good
camera array is combined with the talent of professional visual effect artists for the creation
of future cinematic movies. Furthermore, we explore the benefits of 5D-lightfield video
for scenes with fast motion, using precisely controlled time delays between the shutters of
different cameras in the capturing array.

Zusammenfassung

Multi-Kamera-Aufnahmen enthalten wesentlich mehr Daten als konventionelles Video.
Auch wenn diese zusätzlichen Daten zahlreiche neue Effekte ermöglichen die bisher nur mit
künstlichen CGI-Effekten und viel Handarbeit machbar waren, kann ihre Größe die Hardware
und Netzwerke normaler Verbraucher schnell überlasten. In dieser Arbeit stellen wir die
Schritte vor die nötig sind um ein interaktives Multiview-System zu erstellen. Dies beinhaltet
alles von der Kamera über die Komprimierung und Übertragung des Materials, bis hin zur
Ansichtsinterpolation mit der perspektivische Änderungen auf dem Empfänger berechnet
werden können. Indem wir uns auf Endnutzer-Hardware beschränken und alle Schritte
darauf in Echtzeit ablaufen lassen, machen wir die Vorzüge von Multi-Kamera-Aufnahmen
für ein breiteres Publikum erfahrbar.

Mit der Konstruktion eines modularen Kamera-Arrays zeigen wir auf welche Eigenschaften
nötig sind um das Material mit hoher Qualität verarbeiten zu können. Dabei werden der
flexible aber stabile Rahmen, die Verwaltung der Speicher- und Rechner-Ressourcen, sowie
die Vorverabeitung besprochen. Die Unfolding-Szene zeigt Möglichkeiten von Lichtfeldern
für zukünftige Filmproduktionen auf, wenn gute Aufnahmen mit dem Talent von Experten
für visuelle Effekte kombiniert werden. Darüber hinaus diskutieren wir die Vorteile von
5D-Lichtfeldern mit präzise kontrollierter Verzögerung zwischen den Auslösern der Kameras
in Szenen mit sehr schnellen Bewegungen.

Abstract

Multi-camera footage contains much more data in comparison to that of conventional video.
While the additional data in the added views enables a number of new effects that previously
required a large amount of CGI magic and manual labor, it can easily overpower consumer
hardware and networks. Those effects can provide a more immersive viewing experience,
such as viewer-dependent perspective shifts, or give more artistic freedom to content creators
with focus adjustments and lens changes in post-processing or resolution upscaling for single
views. In this thesis, we explore the necessary steps to create an interactive multiview
streaming system, from the cameras via the compression and streaming of the material,
to the view interpolation to create immersive perspective shifts for viewers. Every part of
that pipeline contains novel ideas or approaches to make the step faster, more efficient, or
more flexible with respect to required hardware resources. By only using freely available
consumer hardware, and making sure all steps can run in real-time, in combination with
the others, the benefits of multi-camera video are made available to a wider public. The
major steps are the distribution of the complexity of an H.264/MVC-compliant encoder over
multiple simpler instances, the optimization of multiview video streaming over restricted
channels by using the view interpolator’s capability to reconstruct missing views, and a
novel quality metric based on PSNR, which is capable of judging the perceived quality of
interpolated views much better than the original PSNR. A GPU-based view interpolation
algorithm that does not rely on depth maps can be used to run the pipeline in real-time.

With the construction of a modular camera array for lightfield recording, we highlight the
most important properties of such an array to allow for good quality post-processing of the
recorded data. This includes a flexible yet sturdy frame, the management of computational
and storage resources, as well as the required steps to make the raw material ready for
further processing. The Unfolding scene displays the possibilities of lightfields when a good
camera array is combined with the talent of professional visual effect artists for the creation
of future cinematic movies. Furthermore, we explore the benefits of 5D-lightfield video
in scenes with fast motion, using precisely controlled time delays between the shutters of
different cameras in the capturing array.
In summary, we contributed to the scientific progress of every step in a multiview video

streaming pipeline. Even though not every part of this work received the same amount of
publicity as the camera array, which was featured in multiple popular and industry-specific
media as well as multiple scientific publications due to its features, flexibility, and the quality
of results, all of them received good reviews for their respective publications. Improvements
with a focus on speed increase the performance of the base algorithms at least ten-fold with
comparable if not improved quality. Others present novel ideas or improve the quality of
specific cases we encounter in our scenarios.

Acknowledgments

Even though this thesis is an original work of mine, it would not have been possible without
the support of many others. Special thanks go to my thesis supervisor Prof. Thorsten
Herfet who provided meaningful guidance whenever necessary, but also enough freedom to
follow my own path in my research. Only his trust in my technical abilities and planning
skills made the creation of the camera array and many other projects possible. I also value
his patience for my lengthy writing process, especially during this thesis, which took way
too long even for my taste.
Since every long-running project has good and bad times, I count myself lucky for the

support I got from everyone during my time at the Telecommunications Lab. This includes
my family with their never-ending emotional support, an open ear for all kinds of problems,
and their efforts to keep my motivation up in trying times. In the office, I could always rely
on my colleagues to be available for professional discussions or relaxed banter to clear my
head between work topics. Christopher Haccius, and Andreas Schmidt were amazing office
mates and always ready to bounce ideas off of. With Pablo Gil Pereira, Kelvin Chelli and
Harini Hariharan I shared memorable experiences in and out of the office, at conferences,
and elsewhere, which always helped to lighten the mood. Zakaria Keshta, your enthusiasm
to help with any kind of occurring problem are very much appreciated.
I could also not have done it without the students I had the pleasure to advise on their

way to the final theses. A big thank you goes to Alexander Blatt, Johannes Reuter, Pascal
Hennen, Kim Hao Josef Nguyen, and Pascal Straub for their efforts to implement my
sometimes seemingly crazy ideas and helping to make them a reality. I really enjoyed the
long discourses and debugging sessions we had and hope you can still benefit from our time
together. Frank Waßmuth with his special status as a student and colleague deserves a
separate mention for his great expertise in practical networking and the time we shared in
the university’s sports programs.
Outside the office, my network of close friends was always there in case distraction,

relaxation, or even technical discussions were needed. I am not going to refer to all of you
by name, but you know who you are.
Thanks to everyone who volunteered to read this thesis in its unfinished state. Even

though you caused me a couple of stressful days and sleepless nights, this thesis would not
have been the same without your suggestions and comments.
In case I forgot to mention anyone’s direct or indirect support, feel free to contact me

and I am sure we will find an appropriate compensation.

Contents

1. Preface 13
1.1. Research Questions . 13
1.2. Contributions . 15

2. 5D Lightfield Array 19
2.1. Fundamentals . 19

2.1.1. Camera Technology . 19
2.1.2. Camera Parameters . 21
2.1.3. Dimensionality of Image Data . 25
2.1.4. Multiview vs. Lightfields . 26
2.1.5. Network Boot / PXE . 28
2.1.6. GStreamer . 28

2.2. First Small Prototype Array . 29
2.2.1. Hardware . 29
2.2.2. Software . 31
2.2.3. Evaluation . 34
2.2.4. Considerations Learned from Small Array 36

2.3. Design Challenges . 44
2.3.1. Module Design . 45
2.3.2. Electronics . 49
2.3.3. Stand Design & Camera Mounts . 54
2.3.4. Central Controller Case . 59
2.3.5. Cabling . 63
2.3.6. Hardware Provisioning . 64
2.3.7. Storage Cluster . 66

2.4. Implementation Details . 71
2.4.1. Cluster Control . 71
2.4.2. Unit System . 72
2.4.3. Shutter Control . 74
2.4.4. Repeating Tasks . 76

2.5. Processing Pipeline . 82
2.6. Productions Using the Camera Array . 85

2.6.1. Lightfield Elements . 85
2.6.2. Unfolding . 87
2.6.3. HaToy . 88

2.7. Conclusion . 90
2.7.1. Future Work . 90

3. Array-Specific Demosaicing 93
3.1. Basics . 93
3.2. Concept . 95
3.3. Network Architecture . 96
3.4. Training Data . 98

7

Contents

3.5. Evaluation . 99
3.5.1. Open Issues . 101

4. Real-Time Multiview Coding 103
4.1. Background . 103

4.1.1. Standards Supporting Multiview Content 103
4.1.2. Frame Coding in H.264 and HEVC 104
4.1.3. Stream Structure in H.264 . 106

4.2. Concept . 107
4.3. Implementation . 107

4.3.1. Stream Multiplexer . 108
4.3.2. Towards Inter-View Predictions in Multiplexer 114
4.3.3. Real Inter-View Prediction with Distributed Coding 117

4.4. Evaluation . 118
4.4.1. Speed . 118
4.4.2. Encoding Efficiency . 119
4.4.3. Scalability . 121

4.5. Open Issues . 124

5. Optimized Streaming of Multiview Content 127
5.1. Concept . 127
5.2. Implementation . 130
5.3. Evaluation . 131

6. Quality Metrics for Interpolated Views 135
6.1. Background . 135
6.2. Concept . 139
6.3. Implementation . 140
6.4. Evaluation . 142

7. Real-Time View Interpolation 145
7.1. Background . 145

7.1.1. View Interpolation Algorithm Types 145
7.1.2. 3D Rendering with OpenGL . 146
7.1.3. Computation on GPUs . 148

7.2. Concept . 149
7.3. Analysis . 149
7.4. Improvements . 155

7.4.1. Shader-Based Rendering . 155
7.4.2. Parallel Execution Using GPGPU 160
7.4.3. Further Performance Improvements 164

7.5. Evaluation . 169
7.5.1. Rendering Performance . 170
7.5.2. Rendering Quality . 173
7.5.3. Relevance for New Projects . 174

8. Conclusion 177

Own publications 179

Bibliography 181

8

Contents

A. Schematics 195
A.1. Camera controller board . 196
A.2. Master controller board . 202

9

Contents

List of Figures

2.1. Differences between global and rolling shutter images 20
2.2. Rolling shutter effects on fast straight motion 21
2.3. Lens distortions in images . 23
2.4. Visualization of epipolar lines before and after rectification 24
2.5. Lens distortion correction modes . 25
2.6. Lightfield ray representation using two arbitrary planes proposed by Levoy [25]

and Gortler [26] . 26
2.7. Mounting options for the array . 30
2.8. Mounting mechanism for the cameras . 31
2.9. Demonstrator pipeline overview . 32
2.10. LED testing rig . 34
2.11. Some of the calibration patterns used for evaluation 42
2.12. Example of the fractal calibration pattern presented in [43] 42
2.13. Different behaviors of stereo calibration algorithms depending on the relative

camera position . 43
2.14. Typical result of our OpenCV-based camera calibration approach 45
2.15. Design process of the mounting plates in the camera modules 46
2.16. Cover panels for the module cases (side, top/bottom, front, back) 49
2.17. Power switching circuit for a single NUC . 51
2.18. PCB for module control version 1.1 . 53
2.19. Camera arrays with different mounting techniques 56
2.20. Renders of our camera stand during planning phase 57
2.21. Different versions of camera alignment helpers 58
2.22. Central controller PCB . 60
2.23. First controller case test . 60
2.24. Different screens available via the controller touchscreen 61
2.25. First version of the controller case with all devices 62
2.26. Major steps in the boot sequence of the camera units 65
2.27. Front and back views of the storage cluster case with all connections 69
2.28. Connections of major components in the camera array 70
2.29. State diagram of possible client states in the Argus control system. 72
2.30. Horizontal misalignment in the preview mosaic 77
2.31. Aperture deviations in the preview mosaic 78
2.32. Different methods for manual and automatic focus evaluation 79
2.33. Image quality after each of the processing steps. 83
2.34. Impressions from the different scenes included in the LF elements. 86
2.35. Camera views from the different recorded voices in the Unfolding scene. . . 87
2.36. HaToy scene for the demonstration of the usefulness of a precisely controlled

de-synchronized shutter timings . 89
2.37. CD drive seen by the center cameras in different sampling modes 89

3.1. Example of raw sensor data created from picture 19 of the Kodak Image
Suite [97]. 93

3.2. Example of common demosaicing artifacts 94
3.3. Frame from the Unfolding scene zoomed onto the strings of the cello with

visible discoloration artifacts. 95
3.4. Simplified example of our demosaicing concept for reconstructing the full

color in the center image . 96

10

List of Figures

3.5. General structure of DMCNN-VD . 97

3.6. Network to integrate information from neighbors into the demosaicing process. 98

3.7. Generation process of training samples. 100

3.8. Influence of missing neighbors onto the current version of our demosaicing
network . 102

4.1. AVC prediction scheme . 107

4.2. MVC prediction scheme . 108

4.3. H.264 supported feature cloud . 109

4.4. Abbreviated list of steps in a H.264 encoder/decoder pair 112

4.5. Structure of the multiplexer system . 112

4.6. Multiplexer demonstrator with five cameras at CeBIT 2017. 114

4.7. Multiplexer scheme with added inter-view prediction 115

4.8. Prediction errors after adding inter-view prediction. 116

4.9. Proposed structure for full inter-view injection 118

4.10. Quality results for the encoded Ballet sequence with interview support . . . 120

4.11. Quality results for the encoded Ballet sequence with different encoder versions.121

4.12. Frame sizes for the encoded Ballet sequence. 121

5.1. Proposed multiview streaming pipeline. 128

5.2. Characteristic curve for the tested view interpolation with polynomial regres-
sion for the Ballet scene [63]. 131

6.1. Noise and compression influence on PSNR score 136

6.2. Mapping between PSNR and MOS according to [143] and impairment de-
scriptions from [144]. 137

6.3. Influence of different error types to the PSNR score. 138

6.4. Effect of sub-pixel shifts on borders . 140

6.5. Examples for shift detection with random synthetic shifts. 141

6.6. Optical flow results for interpolation artifacts. 142

6.7. Excerpt from tested images (bottom) with reference (top). 143

7.1. OpenGL rendering pipeline . 147

7.2. Nearest camera calculation . 152

7.3. Depth estimation via plane sweeping . 152

7.4. Subdivision process of a single triangle with coordinate deviation in the end
result. 154

7.5. Implemented shader structure with assigned tasks. 157

7.6. Bilinear interpolation calculation example per channel. 165

7.7. Influence of different texture interpolation techniques in OpenCL. 165

7.8. Depth filtering results with and without the new filter. 167

7.9. Disparity results of LHRM [179]. 167

7.10. Influence of shader-based OpenGL on the computation time of different
algorithm steps. 170

7.11. Influence of OpenCL-based computations on the computation time of different
algorithm steps. 171

7.12. Influence of different parameters on the rendering time. 172

7.13. Examples of interpolated images with metric values. 173

11

Contents

List of Tables

2.1. Relative camera drift results . 35
2.2. Relative camera startup offset results . 35

4.1. Measured encoding times . 119
4.2. Average frame sizes in bytes for different views and transcoder versions. . . 119
4.3. Level limits for H.264 [31]. 123

5.1. Results of the optimization procedure . 132
5.2. Results of the optimization procedure for the Breakdance scene with the

characteristic function from the Ballet scene. 132
5.3. Results of the optimization procedure for a simulated better reconstruction

algorithm applied to the Ballet scene. 133

6.1. Metric results for the examples from Figure 6.5. 142

List of Algorithms

5.1. Optimization procedure for the streaming parameters for a known video
sequence and channel characteristics. 130

7.1. Major steps of Zhang’s algorithm [13]. 150

12

1. Preface

1.1. Research Questions

While lightfield and multiview video present numerous open research topics, in this disserta-
tion, we concentrate on the following questions:

Q1: Do multiview and lightfield capture have the potential to replace conven-
tional photographic capture techniques?
Conventional photographic capture techniques have been around at least since the beginning
of the 19th century. Since then, a lot of improvements have been made, including capturing
quality, speed, and fidelity. The biggest steps were the switches from grayscale to color
images and from film-based capture to digital image sensors. Each one was accompanied by
doubts about its usefulness and its quality compared to the existing technology. Multiview
and lightfield capture could be the next step in imaging technology, going from single- to
multi-perspective images. However, if it should have any future success in replacing current
capturing techniques, the industry with the highest demand for high-quality images must
be convinced.
At the moment, that sector is undoubtedly the professional movie industry, including

movie makers and broadcasters. One of the reasons they require the best possible quality is
the fact that the majority of their captured material is run through multiple post-processing
and compositing steps. For those, they often require accurate depth maps or other scene
information which can only be acquired when the camera position is known precisely.
To measure the position with the required precision, very expensive mounting rigs are
needed, in addition to the cost of the professional camera equipment. With a multiview or
lightfield approach, only the relative position between the cameras has to be known for the
measurements and this can be achieved cheaply and repeatedly with fixed mounting frames
holding the cameras. The optical systems of the cameras can also be cheaper because many
visual effects, which can only be achieved with special and expensive lenses in conventional
film making, can be added in a physically correct fashion during the post-processing of
lightfields. Missing sensor resolution can also be recovered using lightfield-based super-
resolution techniques. The combination of partially novel post-processing options and the
possibility of using cheaper off-the-shelf hardware make lightfield capturing systems a valid
contender for new studio installations or film productions.

Q2: How can lightfield technology be made available for professional produc-
tions?
Lightfield capturing equipment of a sufficiently high quality for professional productions is
not currently available commercially. Building an array from available off-the-shelf compo-
nents is not feasible without extensive knowledge of mechanical construction, electronics,
algorithms, computer systems, and networks. Even then, the resulting systems can be
unwieldy and hard to maintain and operate.

To show that this does not always need to be the case, and to test the viability of lightfields
in professional productions, we devised a way of constructing a modular and expandable

13

1. Preface

lightfield capturing system with all the required storage and computing power in a form
factor that makes the whole system transportable. To be able to control the independent
computers in the camera array, a cluster control system is deployed in order to keep track
of the different software states for camera nodes, storage nodes, and the central server. In
the rare case of hardware failures, an automated deployment system guarantees that the
array is back up and running within minutes of the defective hardware being replaced. The
secondary hardware layer responsible for controlling the camera shutters as well as the power
for the camera nodes is based on a custom design. It is capable of either synchronizing
the shutters of all cameras to capture 4D lightfield video or delaying the shutter of every
camera by an individual time offset to create 5D lightfields with dynamic subframing. This
prototype camera array has proven its effectiveness in multiple experimental productions
which resulted in impressive lightfield assets. They demonstrate the capabilities of the
array and the current state of available algorithms for pre- and post-processing of lightfield
material. The camera array shows that lightfield technology can be deployed in a way that
makes the required effort for professional productions feasible while keeping maintenance
requirements low. Additionally, it can be operated without in-depth knowledge of the inner
workings of every single component.

Q3: How can the data rate of lightfield video be handled effectively?
Lightfield video produces a vast amount of data because the amount of pixels contained
in every frame is equal to that of a conventional video frame multiplied by the number of
cameras in the array. In contrast to conventional video, a good compression technique for
lightfields is hard to define as the footage is rarely viewed in its raw form, and the different
available post-processing algorithms require various image features to work properly.
This problem is tackled by defining different usage scenarios for the captured footage

and appropriate compression schemes for each of them. To satisfy the high requirements of
professional film productions. a lossless compression scheme based on OpenEXR is deployed.
This enables space-efficient storage of the footage on the array-internal storage system while
maintaining the possibility to apply any post-processing algorithm, if needed. Since this
approach is not capable of achieving real-time performance on the array’s systems, the time
required for storage and processing must be included in the shooting plans. For the cases
in which real-time performance is required, but some image quality can be sacrificed, we
created the world’s first scalable compression scheme that creates video streams compatible
with the H.264/MVC standard for more than two views. These two very different approaches
show that a universal approach to lightfield compression might not be possible, however they
prove that lightfield compression is possible when the future use of the footage is known as
the amount of data required for lightfields can then be reduced to a manageable size.

Q4: How can the processing of lightfield footage be designed to be practically
applicable?
Lightfield footage usually needs to be processed so it can be consumed by a user. To
achieve the highest possible quality from the post-processing algorithms, it is important
to start from the best source material. One major factor for this is the demosaicing which
creates full-color images from the raw sensor data a camera captures. While there are many
different approaches for this task out there, nearly no one considers the special properties
a lightfield has compared to a single image. To show the potential benefits of this, we
devised a learning-based demosaicing approach that fills in the missing pixel information
from neighboring images in the array, instead of just the local neighborhood in the same
image. This approach ended up being significantly better than the current state-of-the-art
algorithm for single image demosaicing, even though it is limited to low-resolution footage.

14

1.2. Contributions

Another factor that keeps lightfields from being widely adopted is the fact that, due
to the vast amount of pixels in a lightfield, the data rate required for a video stream can
easily overwhelm an average consumer internet connection, even when the stream is already
compressed using existing standards. Luckily, similar to the demosaicing, lightfields and
multiview video offer additional parameters which can be tuned for an optimal streaming
performance over a bandwidth restricted channel. This includes skipping complete views
during encoding and reconstructing them using the remaining images. For this, an algorithm
that can predict the optimal quality of the sequence at the receiver and outputs the
parameter set for encoding was created. By taking into account the capabilities of the view
interpolation algorithm on the client device, as well as its available hardware resources, the
approach can even be deployed in heterogeneous environments. It proves the usefulness
of including view interpolation techniques in the video coding chain, especially for very
restricted channels.

During the research for the streaming optimization, it became apparent that the existing
image quality metrics were not well suited to judging the quality of interpolated views as
they pick up on minuscule errors stemming from slight miscalculations in the scene depth,
which are nearly imperceptible to a a human observer. This lead to the development of a
technique that eliminates the small shifts before the image quality is evaluated.
View interpolation algorithms are very resource-intensive and often require depth maps

or other scene geometry information in addition to the images to achieve good results. To
make them useful in a consumer environment, we devised an algorithm that runs almost
completely on a middle-class consumer GPU and achieves up to 50 frames per second on
footage with a resolution of 1800x1500, while only utilizing the intrinsic and extrinsic camera
parameters to process the input images. It produces the view of a virtual camera from an
arbitrary position in the area covered by the capturing cameras, with a quality comparable
to the state-of-the-art algorithms at the time.
Overall, we showed that several shortcomings of lightfield and multiview video can be

remedied today and even common consumer electronics possess enough computational power
for an interactive video streaming system based on multiview or lightfield video.

1.2. Contributions

The first scientific contribution of this work is the creation of a flexible and modular
5D-lightfield capturing array. For preliminary tests and as a proof-of-concept for existing
algorithms, we created a custom multiview video capturing rig with five cameras. Its
modular design and portability allowed us to demonstrate the capabilities of our streaming
and compression efforts on many occasions, and was part of the first complete multiview
video real-time streaming system without specialized hardware. It provided some challenges
concerning camera calibration and synchronization, due to the choice of cameras and the
camera mounting solution, but, after a thorough investigation, solutions were found and
implemented.

We benefited a lot from the insights gained from the five-camera multiview video capturing
system when it came to up-scaling to construct the world’s first 5D lightfield camera array.
While a system with 64 cameras poses new challenges, mainly around the resulting amount
of data and the required control, for some aspects such as camera calibration the solutions
from the smaller array can be transferred. This array was designed to enable scenes with
a different number of cameras, a variety of camera baselines, and layouts with a very
precise control of the individual camera shutters, including frequency and phase. The
challenges appearing during post-processing of the captured material have been solved using

15

1. Preface

a combination of internal developments and cooperations with other European universities.
The array’s effectiveness has been demonstrated with multiple capturing sessions for the
EU project SAUCE1.

The amount of raw data produced by such an array can quickly become a prohibitive
factor in consumer networks and systems. With HD resolutions, the sheer amount of
data that has to be transferred is simply too big for computers using common network
technologies. Moreover, compression techniques for this kind of data are either not fast
enough for real-time transport, rely on specialized hardware components for sender and
receiver, or do not support more than two views in one stream. In order to be able to
present and prove the possibilities for multiview content in streaming systems with consumer
hardware, we developed a scalable real-time compression system for a variable number of
views whose output is compatible with the H.264/MVC standard. It allows for real-time
encoding and decoding of multiview footage on consumer hardware, with a compression
performance comparable to the reference implementation of H.264/MVC. For a high number
of views, it requires a powerful machine, but being able to leverage existing hardware
encoding capabilities means that even low-end machines can handle more than two views.
This makes it unique within the ecosystem of other compression schemes for multiview
video.

With the availability of real-time compression for multiview video, it became evident that
this new video format enables new parameters for streaming optimization. The adaptation
options of single view video, for a given transmission channel and codec, are mostly limited to
quality parameters that control the quantization of image sections and the search for optimal
correspondences in other frames to minimize the amount of residual data. Multiview video
also has those options, as its compression schemes are often derived from single view ones,
but they also offer the possibility to not encode certain views at all and reconstruct them
from the remaining views on the receiver device, if required. This lead to the development of
a system capable of predicting the quality of all views after decoding and view reconstruction,
based on the available data rate on the channel, sparse information about the image content,
and some knowledge of the algorithm used to reconstruct non-encoded views. It shows the
benefits of skipping complete views during encoding and distributing the available data rate
over the remaining views to achieve a proven higher overall quality at the decoder.

The work on the streaming optimizer highlighted the fact that quality metrics, which
have been used to judge the quality of coding schemes and reconstruction techniques for
video, have severe problems with the quality of interpolated views. While the mean opinion
score for the interpolated images was quite high, as they showed only very few visible
artifacts, the resulting score was very low and did not represent the perceived quality well.
One option would have been to simply use a different metric, but since the quality of the
interpolated views was only a portion of the whole transmission pipeline whose quality
we wanted to measure, this was not possible. Combining different metrics using different
ranges for their results is nigh on impossible to do properly. This lead to the creation of
a technique to measure the errors, which are the main cause of the bad quality score, but
are nearly invisible to the viewer, and add them to the reference image before applying the
usual quality metrics. Those quality scores had a much better correlation with the perceived
quality, but were still able to be combined with older results.

The last contribution is the development of a fast multiview interpolation algorithm
that does not require depth maps as input. Even though the main development of this
algorithm happened during the author’s master’s thesis, it has been continuously updated
throughout the duration of this work. Updated features include better filtering processes,

1SAUCE - Horizon 2020 Grant Agreement ID 780470 - https://www.sauceproject.eu

16

https://www.sauceproject.eu

1.2. Contributions

along with several other steps to incorporate a temporal consistency mechanism into the
algorithm, making it even more time-efficient. When it was first developed, it was the
fastest algorithm of its kind which was able to achieve an image quality comparable to other
cutting edge approaches. Since then, new algorithms of a higher overall quality have been
published, but many of them have not yet come anywhere close to the speed of our algorithm.

Overall, there are contributions to every part of a multiview streaming pipeline for real-
time applications. Most contributions were either worldwide firsts or a significant jump in
speed with close to state-of-the-art quality. The final big camera array was also a notable
contribution to the lightfield community, as it enables the production of real-life lightfield
video samples for the verification of novel algorithms, and even for completely new research
areas like 5D lightfield video.

17

2. 5D Lightfield Array

One of the most important factors for the successful introduction of a new media format
into widespread use is the ease of capturing it. Even though handheld devices for lightfield
capture exist, for example, the Lytro Illum or the products from K-Lens1, some of them
lack the ability to capture video and all of them offer only a single view configuration. For
research and professional use cases, this is not sufficient. The choice of available multiview
and lightfield samples is still limited, especially for video material. Since the creation of
synthetic lightfield videos requires a significant amount of artistic talent, as well as a lot
of computing power, to come even close to a realistic appearance another option became
necessary. Therefore, we decided to create a camera array that could be used to capture
lightfield video footage of real scenes. Other camera arrays had previously been created,
such as the Stanford Multi-Camera Array [14] or the Lytro Immerge 2.0, but they were
either based on outdated hardware which could not produce samples with enough fidelity
for modern applications or their construction details were never made public. Additionally,
they are all no longer available and therefore cannot create new samples. In the following
sections, we describe the steps we took to arrive at the current version of our camera array
and the insights provided by the preliminary experiments.

2.1. Fundamentals

To give more context to the content of this chapter, some background information for the
discussed topics is provided here.

Camera parameters play an integral role in the correction of visual distortions in images,
due to imperfections in the optical systems as well as the projection of points between
cameras. Without sufficient precision in their calculation, the processing of all multi-camera
footage becomes far more complex and the quality of most existing algorithms drops
significantly.

The technology behind digital cameras is assumed to be mostly clear to everyone. However,
for certain special cases, details of the inner workings become increasingly important. This
includes fast movements compared to the exposure time and the possibility to synchronize
multiple cameras. Since this thesis includes chapters discussing multiview and lightfield
content, knowing the distinction between them can be beneficial. This includes our definition
of the dimensionality of visual media content. Backgrounds for some tools and frameworks
which are repeatedly employed in this work are given to provide some knowledge of their
capabilities and complexities.

2.1.1. Camera Technology

Most consumer devices with cameras, such as mobile phones and the majority of cameras
in general, use a rolling shutter to control the exposure of a digital image sensor to capture
photos or video. The name rolling shutter comes from analog cameras in which an opening
in a shutter wheel was literally ”rolled” through the light’s path to expose the film behind,

1https://www.k-lens.de

19

https://www.k-lens.de

2. 5D Lightfield Array

Figure 2.1.: Differences between global (left) and rolling shutter (right) in images of a
spinning airplane propeller.
Source: SmarterEveryDay - https://youtu.be/dNVtMmLlnoE?t=150

giving different portions of the film slightly offset exposure times. In digital cameras, where
exposure is often directly controlled by the image sensor itself, it means the start and end
times of light acquisition for each line of pixels on the sensor are slightly offset, creating
effects similar to those of a mechanical shutter. On the other hand, sensors with global
shutters expose the whole sensor at the exact same time, removing these effects.

In images from static scenes, there is no difference between the shutter types because
it does not matter when certain parts of the sensor are exposed. When there is only slow
movement in the scene, or the time it takes to activate the whole sensor is small compared
to the chosen exposure time, the effects are hardly visible. Only for low exposure times
and fast movements, especially rotations, does the difference between the shutter systems
become obvious. Figure 2.1 shows two images of the same propeller of a small aircraft in
flight. While the left image is shot with a global shutter and looks just like one would expect
an airplane propeller to look like, the image on the right shows heavy distortions. The
propeller blades do not even seem to be connected to the central hub and look more like
boomerangs than straight propeller blades. This effect is caused by a short exposure time
and the exposed area in the sensor moving comparably slow from the top to the bottom
while the propeller keeps rotating.

Fast horizontal movements lead to less distorted, but equally visible effects which most
people who have used a mobile phone to take pictures from a moving vehicle will recognize.
The highlighted pole in Figure 2.2 seems to be leaning to the left, even though in reality it
is perfectly perpendicular to the rail on top. That lean is created by the shutter moving
down while the pole continues to go right. For the pole on the left, the effect is less severe
because it is further away and, due to the perspective the image is taken from, it travels
a smaller distance while the image is being taken. This dependence on speed is also the
reason why the background of the image does not display any leaning effect.

Operating multiple devices in a synchronized fashion can be a substantial challenge, depend-
ing on the amount of deviation the specific use case allows for. In the range of hundreds of
milliseconds, a trained team of human operators can suffice. For single to tens of milliseconds,

20

https://youtu.be/dNVtMmLlnoE?t=150

2.1. Fundamentals

Figure 2.2.: Rolling shutter effects on fast straight motion. Even though it is perfectly
perpendicular to the top railing, it appears to be slanted. The background
shows no such effects.

triggering actions via a local network is precise enough, even when the devices are triggered
sequentially. Below that range, more specialized approaches are necessary. Even when the
internal clocks of the devices in question are synchronized via NTP [15] or PTP [16], and the
actions are started at a predefined time in the future, the precision of time synchronization
can become problematic [17]. In the microsecond range, even the scheduler in the operating
system can add too much jitter [18].
When such precision is required, dedicated hardware solutions become necessary. They

are used to either run all devices off of a single hardware clock or synchronize the clocks in
the devices at regular intervals. In both cases, the influence of manufacturing differences
of clock generators, which cause deviations from their nominal frequency, is nullified or
significantly reduced. Broadcasters and other institutions working with visual media, call
this approach GenLocking. Since it requires specialized circuitry to synchronize devices
at the hardware level, devices with the ability to be genlocked are only available at a
professional level and are quite expensive.

2.1.2. Camera Parameters

The camera parameters describe the position of a camera in space and the behavior of its
optical system. For all cases discussed in this thesis, those parameters are split into intrinsic
and extrinsic parameters.

Extrinsic parameters define the relative rotation and translation of a camera to a chosen
origin. Since the extrinsic parameters are usually calculated between two or more cameras,
the origin is often chosen as the position of one of these cameras. The translation vector T
and rotation matrix R for this special camera are then defined as

T =

00
0

 R =

1 0 0
0 1 0
0 0 1

 (2.1)

and the whole coordinate system is aligned with that camera. When observed from behind
the camera, the x-axis points to the right, the y-axis points up and the z-axis goes through
the center of the camera into the scene.

21

2. 5D Lightfield Array

For other cameras, the translation vector is filled with the relative X-, Y-, and Z-
components from the origin to the camera’s position. Their rotation matrices contain the
rotations around all three axes, combined into a single three-dimensional rotation matrix R,
as shown below:

R = Rz(γ) ·Ry(β) ·Rx(α) (2.2)

=

cos γ − sin γ 0
sin γ cos γ 0
0 0 1

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

1 0 0
0 cosα − sinα
0 sinα cosα

 (2.3)

=

cos γ cosβ cos γ sinβ sinα− sin γ cosα cos γ sinβ cosα+ sin γ sinα
sin γ cosβ sin γ sinβ sinα+ cos γ cosα sin γ sinβ cosα− cos γ sinα
− sinβ cosβ sinα cosβ cosα

 (2.4)

While the extrinsic parameters form an important basis for the projection of pixels in
an image into the 3D scene space, this coordinate projection is only accurate if the camera
is a perfect pinhole camera. For good images, a perfect pinhole camera would need a vast
amount of light in the scene or very long exposure times, due to the small opening (pinhole)
through which light comes into the camera and falls onto the film or sensor. This makes
them very inconvenient to use, but the resulting images are always in focus and have an
unlimited depth of field. In most cameras today, the opening is much bigger and a system
of lenses is added in front of the sensor to allow for dynamic focus, zoom, and aperture
settings. Since those lenses are never perfect, the images on the sensors include distortions
which cause certain scene points to appear in different positions in the image than where
the pinhole camera model would predict.

The commonly used approaches for projecting pixels in images to scene points and back
assume that the light transport in the cameras follows the pinhole model to simplify the
calculations. This means when cameras behave differently, their images must be corrected
first. To make those corrections possible, the introduced distortions have to be modeled
and parameterized. The intrinsic camera parameters are the collection of the required
parameters.

Weng et al. [19] describe a model which is very similar to modern calibration algorithms
and describes the functionality of all parameters very clearly. The distortion parameters
are coefficients for two different types of lens distortions, namely radial and tangential
distortions. Radial distortions are caused by imperfections in the lens’s shape. Their effects
can be seen in Figure 2.3a. Depending on whether straight lines are bowing inwards or
outwards, these effects are also known as pincushion or barrel distortions. The effects of
these distortions can be described mathematically as:

xdistorted = x · (1 + k1 · r2 + k2 · r4 + k3 · r6) (2.5)

ydistorted = y · (1 + k1 · r2 + k2 · r4 + k3 · r6) (2.6)

where x and y are the pixel positions without distortions as normalized coordinates with the
origin in the optical center of the image. k1, k2 and k3 are the radial distortion parameters
for the lens which was used while recording the image, and r2 = x2 + y2 is the square of the
distance from the image center.

Tangential distortions as in Figure 2.3b appear when the sensor is not completely parallel
to the lens in front of it. They bend straight lines from the optical center to the edges of
the image, depending on their angle from an axis of minimal distortion, with the maximum

22

2.1. Fundamentals

pincushion

barrel

(a) Radial distortions

m
ax
di
st
or
tio
n

m
ax
di
st
or
tio
n m

in
distortion

m
in
distortion

(b) Tangential distortions

Figure 2.3.: Lens distortion effects in images according to [19]. Continuous lines show the
optimal lines, dashed lines are examples of the effects of different distortion
classes.

on a perpendicular axis. The effect can be formulated as

xdistorted = x+ [2 · p1 · x · y + p2 · (r2 + 2 · x2)] (2.7)

ydistorted = y + [p1 · (r2 + 2 · y2) + 2 · p2 · x · y] (2.8)

with p1 and p2 as the tangential distortion parameters. The remaining parameters are the
same as for the radial distortions.

The combination of radial parameters is commonly stored as a single vector in the form
of D = [k1, k2, p1, p2, k3]. The original author of this model only introduced four parameters
for lens correction [20]. For compatibility reasons, k3 is kept separate from the other
parameters. For more complicated systems, for example fisheye lenses, many approaches
offer the possibility to add two more k parameters which then introduce higher orders of r
into Equations 2.5 and 2.6.

The remaining intrinsic parameters are the x- and y-components of the focal length and
the coordinates of the optical center, often called the principal point. The focal length
defines the distance between the virtual pinhole in a camera and the film/sensor or image
plane. With a higher focal length, distant objects appear closer, while a lower focal length
creates a wider field of view. This becomes especially important for the calculation of the
relative camera positions and when pixels are projected into the scene because it determines
how the size of an object changes in the image depending on its distance from the camera.
In most cases, the focal length is only defined by a single factor. The reason for having two
factors for the focal length in the intrinsic parameters instead of one is the fact that certain
lens problems or anamorphic lenses can make different focal lengths or opening angles in
the horizontal and vertical direction necessary. The principle point or optical center is used
to define possible deviations between the center of the lens and the center of the sensor in
the camera.

The process of determining the camera parameters is commonly known as camera cal-
ibration. While one can guess how to initialize all these parameters based on the chosen

23

2. 5D Lightfield Array

Figure 2.4.: Visualization of epipolar lines before and after rectification. In the dotted
unrectified frames the epipolar lines have various angles. In the rectified frames,
the epipolar lines are perfectly horizontal.

camera setup and perfect lenses, determining their precise values is more complicated. The
intrinsics are usually calculated first, as they only need the input from a single camera
and the calculation of the extrinsics is far easier when correct intrinsics are already known
however, approaches that combine the two into a single step exist [20].

Learning-based approaches, without the need for calibration pattern in the scene, have
been published in recent years. Regardless, to the best of our knowledge, none of those
consider all distortions and parameters which the older pattern-based approaches can mea-
sure. They either assume no distortions at all [21] or only two radial parameters without
tangential distortion or principal point offsets [22]. Apart from the choice or detection
of pattern features [23], the overall process for pattern-based calibration has not changed
significantly. A planar pattern with known features and precisely measured size is recorded
by the camera from various angles, distances, and positions. After detecting the key points
in them, their positions in the images and relative positions to each other are used to
create systems of equations that can be solved for the intrinsic parameters. Due to possible
outliers and insufficient precision when feature points are positioned between the pixels
of an image, most approaches make use of regression algorithms or add different refine-
ment steps like RANSAC [24] for the detected features to reach a high accuracy in the results.

Once the intrinsic parameters are known, the lens distortions can be removed by reverting
their effects to make sure straight lines in the scene also appear as straight lines in the image
and the optical center aligns with the center of the image. After these corrections, the footage
can be treated as if it was captured by a pinhole camera. With enough features visible in at
least two cameras (from patterns or features detectors), additional equations for the rotation
and translation between the cameras can be created and solved. By transforming the image
according to the extrinsics, the camera can be virtually rotated and shifted, such that the
images seem to be shot from their intended location on the camera grid, even though the
real position is slightly different.

Additionally, the data can be used to rectify the images. Rectification parallelizes the
epipolar lines in the captured images as shown in Figure 2.4. Epipolar lines are virtual
straight lines in images, on which a scene point travels when it changes its depth. In

24

2.1. Fundamentals

(a) uncorrected (b) correction with data loss (c) correction with borders

Figure 2.5.: Lens distortion correction modes. Without black areas some parts of the original
image are not visible anymore. Full data visibility requires some black areas.

non-rectified images, those lines can have any angle, depending on the camera’s rotation,
depicted by the dotted image borders and dark red lines. When the images are rectified,
they become horizontal. This makes tracking objects with varying depth far easier, as only
one dimension has to be searched. That property is very beneficial for many post-processing
algorithms for multiview content or lightfields, as it decreases the complexity of searches for
corresponding points between images.

The correction of images using 3D transformations and the inverse of lens distortions
change one important property of the images. They are in most cases no longer rectangular,
as seen in figure 2.5. If the size of the image is unimportant, it can be resized to contain the
new image’s shape and the empty portions of the new image are filled with a static color.
Using that approach, all information contained in the uncorrected image is still present,
but for every camera in a constellation, the resulting images may have a different size. In
case a constant image size takes precedence or black areas are prohibited, the focal length
and optical center can be adjusted in such a way that the new image only contains the
parts of an image that fits the biggest rectangle, with the correct aspect ratio, into the new
shape. Choosing the right balance between those two extreme points is important for every
application and the optimal value is different for every use case. To minimize the amount
of unused image space and discarded image data, additional constraints need to be added
to the calculation, such that the required amount of rotation and translation for proper
rectification is distributed over all images and kept as small as possible, instead of leaving a
reference image unchanged and only modifying others.

Further details about the complexities of calibrating a large camera array and the custom
solutions required for it are given in Section 2.2.4.6.

2.1.3. Dimensionality of Image Data

Given that we discuss multiple image and video formats in this thesis, this section is
necessary to give an overview of their definitions. These days, everyone should be aware of
how digital images are commonly represented, that is to say, as a uniform 2D grid of image
points or pixels, with a color associated with each one. Independent of the number of color
channels, they are considered to be 2D images due to their pixel structure.
A sequence of such images captured in uniform time intervals is known as video. Even

though a whole new dimension is added to the 2D images in the form of time, they only form
2.5D images in the context of this work, as the third dimension can not be fully controlled
and all pixels are simultaneously exposed.
Multiview, being considered the next evolution of graphical data, adds more images,

called views, to every time instance. Although the version with two views can be classified

25

2. 5D Lightfield Array

L(u, v, s, t)

u

v

s

t

.
.

Figure 2.6.: Lightfield ray representation using two arbitrary planes proposed by Levoy [25]
and Gortler [26]

as multiview footage, it is more commonly known as 3D. With such material, the images are
presented separately to the left and right eye of the viewer to create the illusion of depth.
This is the extent to which consumers usually come into contact with multiview content. In
research, the number of views can be arbitrary and without an upper limit. In this thesis,
this class of material is mostly called multiview, but the phrase ’3D’ may be used instead
when it is limited to two views.

Contrary to the nomenclature of conventional video, lightfields are often represented
as 4D data. Their basic units are not pixels, but light rays originating from the captured
scene and hitting the camera’s sensor. For every ray in the lightfield, the color it carries
from the scene to the sensor is stored. In further processing steps, the rays and their colors
are then interpreted as coarse samples of the plenoptic function [27] from the convex hull of
the scene.

To fully define the ray’s direction and position in space, Gortler et al. [26] and Levoy et al. [25]
use intersections of the rays with two arbitrary planes as shown in Figure 2.6. The required
two coordinate pairs (u, v) and (s, t) represent the 4 independent dimensions that make
lightfield images 4D material. A sequence of lightfields captured with fixed time intervals
between them is also called lightfield video.
Similar to the definition of 2D content, when all sensor pixels are exposed at the same

time, lightfield video is classified as 4.5D content. Only when the exposure can be changed
for certain parts of the lightfield independently from the others, it is considered to have
full 5 dimensions. Ideally, the exposure time and duration would be configurable for every
single pixel in the cameras, but today this is not feasible yet. For this work, it is deemed
sufficient to control these parameters per camera instead of per pixel. The benefits of 5D
over 4.5D lightfields are described in Section 2.6.3.

2.1.4. Multiview vs. Lightfields

In this thesis, topics concerning multiview and lightfield content are described. Discussions
at scientific conferences have proven on multiple occasions that the distinction between
those two content types is not trivial. Both can contain the footage of multiple cameras in
the form of still images or video. Similarly, the image resolution, camera baseline, and the
total number of views can vary.
It is clear that multiview, as well as lightfield content, exists on wide spectrums which

overlap in many areas. Multiview footage can have only two views, such as on 3D BluRay
disks [28], but also up to a hundred or more [29, 30] in arbitrary 1D, 2D, or 3D layouts.
The multiview extension for H.264 technically supports up to 1024 [31], but in practice
the usable number of views is far lower, as discussed in Section 4.4.3. HEVC/H.265 is
limited to a much more realistic 64 views [32]. Every view in multiview content has a

26

2.1. Fundamentals

resolution similar to that of conventional video from older 480x320 to FullHD and 4K
without a particular upper limit. The distance between the views can vary from a couple of
centimeters, up to nearly a meter. Depending on the camera’s distance from the scene, the
disparity between the cameras can be quite high, spanning several hundred pixels. This
disparity makes post-processing steps like view interpolation fairly complex, as a lot of
occlusions and disocclusions happen between camera pairs, which must be detected and
dealt with. When these problematic areas are treated properly, the range of movement for
such virtual cameras is quite large, as it spans most of the area covered by the capturing array.

Lightfields can be captured using multiple conventional cameras, plenoptic cameras, or a
single camera on a precisely controlled gantry. While the first case shares view and layout
characteristics with multiview content (apart from the fact that lightfields never only work
with one-dimensional layouts) the latter two cases can be quite different. Most plenoptic
cameras have a microlens array between the camera’s main lens and the sensor. It separates
the image into a high number of lenslets, each of which shows a portion of the scene from a
slightly different position and angle. In the Lytro Illum, with its high-resolution sensor with
40 Megapixels, each of the approximately 200,000 lenslets only covers a single-digit number
of pixels in vertical and horizontal direction. After separating the lenslets in the raw image,
their pixels can be used to construct sub-aperture images that behave like the output of
a camera array. The main differences are the comparably low resolution and the baseline
between these virtual cameras, which is only a few millimeters at most.
Lightfield gantries move a conventional camera precisely to predefined positions and

capture images from there. This technique can only capture lightfields from static scenes
but offers a significantly higher resolution for each sub-aperture. The distance between the
virtual cameras is highly variable but is usually chosen to be one centimeter at most.

Such a small distance between the virtual camera causes the overlap between the images
to be extremely high. Combined with the high resolutions, the density of the information
from all sub-aperture images is very high. This makes view interpolation much easier,
because nearly no occlusion effects are visible and it even allows for advanced proce-
dures such as refocusing [33] and super-resolution [34]. In contrast, the effects of the view
interpolation are far less impressive, as it often covers only a few centimeters in all directions.

Even after this comparison, a clear line between multiview and lightfields cannot be drawn.
Looking at the internal data representations, multiview treats the input images as frames
from different cameras, while lightfields treat the pixels in those images as light rays from
the scene. Besides that vast difference, most raw input data types can still be represented
as normal images which both approaches can interpret and use in their own way.
The only distinction between them can be found when looking at the characteristics of

the input material commonly used for the algorithms. Multiview content usually comes
with wider camera baselines, while lightfields only use material with much smaller baselines.
Since the resolution of the camera images can similarly vary in both cases, the sharpest
division is found in the information or ray density of the input material. Even though both
can use nearly the complete spectrum of inputs, the results of multiview algorithms lose
some of their impressiveness for information-dense content and become much slower due to
the fact that they put a lot of effort into the handling of occlusion effects and inpainting
techniques, even though they are not as necessary for such dense content. Lightfields expect
a high ray density and handle it properly, but, below a certain density, they run into the
same problem as early and simple multiview algorithms, which decreases the quality of their
results significantly.

Taking all of this into account, there seems to be no clear line separating input material

27

2. 5D Lightfield Array

between multiview or lightfields. Only one in the information/ray density above which
parts of multiview algorithms become ineffective/unnecessary and a second one below which
lightfield algorithms lose a lot of their result quality. As those lines heavily depend on the
feature set and capability of an algorithm, they are very blurry, but overall the information
density seems to be the only measure separating the two main use cases for such visual
content.

2.1.5. Network Boot / PXE

Network boot is a technique that allows a computer to boot from storage media that
are not directly connected to it but can be accessed via a network. Shortly after the
introduction of network protocols capable of configuring the network interface of newly
started computers, like BOOTP [35], a functional predecessor of DHCP, functions were
created which download boot data from a server into memory and execute it. As they were
implemented in the system’s BIOS, they were highly system-dependent and using them in
heterogeneous environments was complicated. With the publication of the specifications of
Intel’s Preboot Execution Environment (PXE) [36], an intermediate layer with a unified
API layer was introduced. It started as part of the network card’s firmware and is today
part of nearly all UEFI implementations. Even in the most recent versions, it relies on a
combination of DHCP and TFTP servers to work.

The systems loaded via PXE need to be prepared for that kind of booting procedure. It
is mostly a reduction in the size of the original installation medium, since the transfer via
TFTP is quite slow compared to HTTP or other protocols. Fortunately, because of the
popularity of network boot in data centers and environments with thin clients or diskless
machines, adapted versions of all major operating systems are made available by their
respective developers.
In this thesis, an open-source version of the preboot environment called iPXE is used.

It is compatible with the original PXE, but also offers additional features such as more
protocols for data access and scripting support. Since the original PXE resides in the UEFI
firmware of all connected computers, it is always started first and configured to load and
start the iPXE software via the network. The support for loading data from HTTP servers
is used to decrease the transfer times of the boot media because it is much faster than
TFTP. With the scripting capability, the reinstall checks and guided menus used during the
boot process are implemented. More details are given in Section 2.3.6.

2.1.6. GStreamer

GStreamer is an open-source multimedia framework that is heavily used throughout this
thesis. It is implemented in C with added support for objects via the GObject library.
While the base of the framework only provides basic templates for different kinds of plugins
and functions to load and chain them together, its main power comes from the vast number
of freely available plugins from third parties. They include data in- and outputs from local
hard drives, most network protocols, and hardware such as capture cards, cameras, or
monitors. A vast number of wrappers for well-known encoder and decoder libraries can
handle most existing file and container formats. For raw audio and video data, there exist
format converters and basic manipulation tools for overlays, cropping, and scaling. These
plugins are combined into pipelines which always start with input plugins and end in output
plugins. In between, the data streams can be split up, combined, and processed by plugins
an arbitrary number of times. The compatibility of consecutive plugins is specified by the
capabilities assigned to the connection points.

28

2.2. First Small Prototype Array

Data transferred between the plugins only carries a minimal overhead consisting of
timestamps to enable the synchronization of different data streams for encoding or playback
purposes. The data type and format can only be derived from the properties negotiated
between the output of the previous and the input of the current plugin. Since sometimes the
exact format can only be determined once the first data packets are processed in the pipeline
(for example when multimedia containers like MP4 or MKV are unpacked), the pipeline
starts initially functions as it should, because the possible inputs and outputs match, but
fails after the first data packet because it contains something unexpected. To handle such
cases properly, the pipeline has to be created and supervised in a wrapper program capable
of reacting to the current state of the pipeline and act accordingly. For such applications,
bindings for a multitude of languages exist, including C++, Python, Rust, Ruby, and C#.
In this thesis, the data fed into the pipelines was always tightly controlled, which meant in
most cases static pipelines would suffice. When interaction with the pipeline is required, it
is implemented in Python, as most of the surrounding software was also implemented in
Python.

Besides the pipelines, certain steps required the creation of plugins with new functional-
ities. This includes dynamic multiplexers and demultiplexers for the conversion between
H.264/AVC and MVC in Chapter 4, analysis plugins for cameras focus and exposure
in Section 2.4.4 and outputs for shared memory to interface with external software in
Section 2.2.

2.2. First Small Prototype Array

At first, we were looking for a camera setup that would allow us to show that our real-time
H.264/MVC encoder and decoder (presented in Chapter 4) worked properly. For this use
case, we devised a small camera array consisting of five cameras, each connected to a
computing node for pre-coding, a more powerful computer for the final processing and video
transmission, and a second computer as receiver and decoder.

2.2.1. Hardware

In order to be flexible with respect to the camera layout and the space the array is set up in,
it was decided to mount the cameras on a modular stand made out of aluminum extrusions.
We designed three versions, two made from different lengths of straight sections connected
by lockable angle connectors, and one consisting of a single longer straight section for very
space-constricted setups, as shown in Figure 2.7. Each of these versions can be mounted on
either short or long legs, depending on whether it is to be placed on a table or directly on
the ground.
The cameras can be placed freely on the aluminum extrusion using the setup shown in

Figure 2.8. First, spring-loaded slot nuts with an M6 thread are inserted at the desired
positions. Then a screw adapter from M6 to 3⁄8 inches is inserted in the slotted nut and a
ball-head camera mount is screwed onto the adapter. Lastly, the camera is fastened on the
camera mount.
This way of mounting the cameras allows for quick and easy changes of the camera

baseline and viewing direction, especially with the camera mount2 we chose, as it enables
us to change the horizontal rotation independently from the other axes. This makes the
camera arrangement very flexible and suitable for many use cases but still keeps it stable
between scenes. The drawback of this flexibility is the fact that only very few constraints

2https://www.novoflex.de/de/ball-serie/ball-19-p.html

29

https://www.novoflex.de/de/ball-serie/ball-19-p.html

2. 5D Lightfield Array

Figure 2.7.: Mounting options for the array with long and short legs and varying options
for horizontal placement

30

2.2. First Small Prototype Array

Figure 2.8.: Mounting mechanism for the cameras

can be used to support the extrinsic camera calibration that is necessary for most of the
advanced processing steps.

For the cameras, we chose the Logitech C920 HD Pro3 for its capability to capture raw
FullHD footage and its internal H.264 encoder. Each camera was then connected to a
NUC5i5RYH4 with a 256GB 2.5” SSD and 8GB of RAM, which was mounted in the back of
the aluminum stand using the provided wall mounts. For the transfer of the captured video
data, the NUCs were connected via a Gigabit switch with the sender node. This node offers
two 1GBit Ethernet ports, which we used to separate the network with the camera nodes
from the output or public side. On the inside, it featured an Intel Core i7 6th generation
processor with 16GB of RAM for the final steps of the MVC encoding process and the other
tools we required in the internal camera network to ensure that all equipment functioned
as it should (see Section 2.2.2). The receiver computer featured the same hardware as
the sender, the only necessary connection between sender and receiver being a standard
Ethernet connection with sufficient bandwidth for the stream transfer. In the following
section, we describe the software components that were required to make this real-time
H.264/MVC coding demonstrator work.

2.2.2. Software

For the handling of all video data, we used GStreamer5 pipelines in every device in the
system, each responsible for a certain task. Figure 2.9 gives an overview of all involved steps.
On the camera nodes, images coming from the camera are recorded and forwarded to the
precoding part of our MVC encoder implementation presented in Chapter 4. After encoding,

3https://www.logitech.com/de-de/product/hd-pro-webcam-c920
4https://ark.intel.com/content/www/us/en/ark/products/83255/intel-nuc-kit-nuc5i5ryh.html
5https://gstreamer.freedesktop.org

31

https://www.logitech.com/de-de/product/hd-pro-webcam-c920
https://ark.intel.com/content/www/us/en/ark/products/83255/intel-nuc-kit-nuc5i5ryh.html
https://gstreamer.freedesktop.org

2. 5D Lightfield Array

NUC 5
AVC encoder

NUC 4
AVC encoder

NUC 3
AVC encoder

NUC 2
AVC encoder

NUC 1
AVC encoder

USB

USB

USB

USB

USB

Demo-PC 1
MVC multiplexer

R
T
P

RT
P

RTP

RTP

R
T
P

Demo-PC 2
MVC demultiplexer / decoder

RTP

View interpolation
(optional)

Display

Figure 2.9.: Demonstrator pipeline overview

the resulting streams are transferred via RTP to the computer running the transcoder,
where they are combined into a single H.264/MVC compliant stream. The MVC data is
then transmitted to the receiver for decoding and/or further processing.

For all theses steps to work properly, the number of frames transmitted by every camera
node needs to be identical. Otherwise, delays appears in the transcoder which causes the
different views to go out of sync. The incoming frame rate from the camera can be configured,
but its final value is ultimately determined by the internal clocks of the camera. Differences
in the internal core clocks of the devices cause the frame rate of each camera to deviate
slightly from the desired value and images are captured in similar, but not precisely equal
time intervals. As multiview video material should be captured with perfectly synchronized
cameras to fulfill the assumptions made by the H.264/MVC standard, the clock deviation
in the cameras can lead to significant problems when one camera captures a frame more or
less than the others. The encoding pipeline also assumes that all cameras produce the same
amount of frames in a given time period so that the frame types in the precoded streams
align properly. For more details see Chapter 4. The analysis of the observed deviation is
discussed in Section 2.2.3. For scenes that contain movement, in addition to the frame rates
of the cameras, the point in time when the cameras start capturing needs to be synchronized.
If they are not, every camera starts the exposure of each frame at a slightly different point
in time thereby making moving objects appear in slightly different positions in every camera,
which in turn leads to problems with algorithms that try to determine the scene depth using
stereo matching or plane-sweeping approaches. A hardware solution would be preferable,
but the cameras we chose do not offer an input for clock or trigger synchronization, so this
was not possible.

To minimize these problems, we employed two techniques. First, the camera nodes
synchronize their internal clocks as precisely as possible using the PTP protocol [16]. The
clock reference is placed on the sender machine, as close as possible to the nodes. Once the
clocks are aligned, it is guaranteed that all frames from the cameras are tagged with the
correct timestamp in the GStreamer pipeline. Furthermore, it is possible to adapt the frame
rate produced by the camera using a plugin in the pipeline. By copying repeating frames
when the camera is late or dropping frames when the camera is too fast, the frame rates are
adjusted slightly. This way the time difference between the frames from the nodes is limited
to less than a frame duration as shown in Section 2.2.3. For simple applications without
fast movements in the scene, this delay is considered acceptable.

32

2.2. First Small Prototype Array

Second, to minimize the start delay between the cameras, and therefore the offset between
the frames, all commands to the camera nodes were sent using clusterssh6. This tool
offers a Linux command prompt whose inputs are forwarded to multiple machines using
previously established TCP connections, as fast as possible. Using that system, multiple
Linux machines can be controlled simultaneously with minimal delay. For our application,
we measured a delay of less than 5ms between the execution of a command on the first and
last node. This delay was deemed acceptable for this application and further efforts into
the improvement of these delays were postponed until they became necessary for the next
camera array. The influence of the unpredictable behavior of schedulers in non-real-time
operating systems is also neglected here since their influence is usually much smaller than
the jitter present on a local network.

A factor for most multiview processing steps is the knowledge of relative camera posi-
tions. There are different ways of determining the required camera matrices, but for this
setup, we decided to use a pattern-based approach. Such approaches require the capture
of multiple pictures of a well-known pattern by all cameras. The biggest issue is that
most algorithms in libraries like OpenCV only support stereo cameras. We solved this
issue by applying the algorithm to camera pairs that always contain the same reference
camera. The results from that approach already required small changes to the calibration
algorithms, since they usually try to minimize the unusable image area after rectification
by minimizing the rotation and translation of each camera, while still getting the desired
corrections. Applied to our case, this means we acquire four results for the extrinsics of the
reference camera and the results for the other cameras only work with the respective result
for the reference. To remedy that problem, the translation and rotation from the reference
camera are added to the other camera in the pair. Therefore, the reference camera stays
static and all results are compatible with each other. Even though more information is lost
in the outer cameras when the images are rectified, it is acceptable when the mechanical
alignment of the cameras is done carefully. Due to the flexibility of the cameras we chose,
the aluminum frame itself, and the tripod mount underneath, aligning them properly is
not an easy task and takes a considerable amount of time and effort to get good results.
It is also important to note that the accuracy of the calibration decreased with a growing
distance from the reference camera. With the center camera of the array as the reference,
the results could still be good enough to be used with the view interpolation presented in
Chapter 7, however, multiple calibration runs were required to achieve this.

The intrinsic parameters must be calculated separately because their result influences
the calculation and results of the extrinsics. While most libraries calculate them together
to save some steps and complete the camera calibration by default, they can often be
performed independently. Their result is then used as an additional input parameter for
the calculation of the extrinsic parameters and is not changed. This is acceptable in stereo
setups, however, for setups involving more cameras, the problem described in the paragraph
above occurs, resulting in multiple results for the intrinsics for one camera. Technically, this
should not be the case because the properties that determine the intrinsics, such as the
lens system and the exact sensor placement in the cameras, do not change and therefore
the result should always be the same. Due to the number of parameters that have to be
determined and the inaccuracies that occur when trying to find the reference features in
the pixel grid of the images, there are often multiple sets of results that solve the given
problem. For the intrinsics, the positions of the patterns in the frames also play a big role

6https://github.com/duncs/clusterssh

33

https://github.com/duncs/clusterssh

2. 5D Lightfield Array

Figure 2.10.: LED testing rig

because the lens distortions are less pronounced in the center of the frame and have more
influence near the borders. Therefore, the patterns should be visible in every part of the
image at least once. At the same time, no area should be preferred since this causes the
optimization to have a bias towards this area which usually leads to worse results overall.
Especially for multi-camera setups in which the cameras do not look at the same point in
space, the distribution of the patterns in the views of all cameras is hard to keep free of
bias. To make the process easier, the calibration samples for the intrinsics are captured
separately for each camera so that the overlap between the views can be ignored. Following
these guidelines, it is possible to achieve fairly consistent results. However, the results still
have to be crosschecked by hand, to avoid incorrect results caused by outliers in the feature
detection or pattern coverage.

2.2.3. Evaluation

Since this array was mostly intended as a demonstrator for the distributed coding software
and as a precursor of a bigger array, the evaluation of its capabilities was of utmost
importance.

The first aspect we evaluated was the offset and drift between the different cameras. As
part of Frank Waßmuth’s work [37], an LED testing rig was built to measure those two
important values. It consists of five LEDs embedded in a thin piece of wood, controlled by a
microcontroller in the back. By displaying a known pattern on the LEDs and filming them
with all cameras at once, the values we want to measure can be determined by analyzing
what the cameras see. The pattern to display on these LEDs was determined by the
capabilities of the cameras filming them. They have a maximum frame rate of 30 frames
per second, which means there is one sample every 33ms. To detect smaller differences in
the frame rate, long observations are necessary so that the errors add up and reach the
observable range. The LED pattern was set to switch on an LED for two frame durations
(66 ms) at the start of every second. After 33ms (or one frame), the next LED displays
the same pattern, until the last LED is reached. A shorter time between the LED signal is
theoretically beneficial but was not useful due to the relatively high exposure time of the
cameras. That fact made the determination of the exact switch-on time much harder. Since
the measurement duration was not an issue, we opted for the longer intervals.

34

2.2. First Small Prototype Array

Sample
Rel. drift of camera [frames/hour]

2 3 4 5
1 -0.7 -0.4 -0.4 -0.5
2 -0.7 -0.4 -0.4 -0.5
3 -0.6 -0.4 -0.4 -0.5
4 -0.5 -0.3 -0.3 -0.4
5 -0.5 -0.3 -0.3 -0.3
6 -0.6 -0.4 -0.4 -0.4
7 -0.6 -0.4 -0.5 -0.6
8 -0.6 -0.4 -0.4 -0.5
9 -0.6 -0.4 -0.5 -0.6

10 -0.5 -0.3 -0.4 -0.5

Average: -0.59 -0.37 -0.40 -0.48
Variance: 0.0054 0.0023 0.0044 0.0084

Table 2.1.: Relative camera drift results

Sample
Start offset [frames@30fps]
2 3 4 5

1 0 0 -1 0
2 0 0 -1 0
3 0 0 0 0
4 0 1 0 1
5 -1 -1 -1 -1
6 0 0 0 0
7 0 0 0 0
8 0 0 0 0
9 0 0 0 0

10 -1 -1 0 0

Average: -0.2 -0.1 -0.3 0
Variance: 0.1778 0.3222 0.2333 0.2222

Table 2.2.: Relative camera startup offset results

All measurements were performed for 10 hours over night. In the morning, the recorded
frames were analyzed using a MATLAB script that determined in which frames the LEDs
switch from off to on and for how long they stay off and on. Starting offsets were removed
before the calculation, such that they would not influence the drift measurements. Comparing
the results of all cameras gave the outcome shown in Table 2.1. On average the drift between
the cameras was measured at 0.48 frames per hour or one frame per 2.08 hours. For long
capturing sessions, a software-based equalization of the frame rate can help to restrict the
overall difference to one frame duration. As long as no fast movements are captured, this
means that the system is also usable for long sessions.

The starting offset can only be determined with integer frame duration precision. To
get the correct value, the position of the first completely visible pattern in the stream is
compared in all the cameras. Even when the cameras switch on shortly after the pattern is
complete, there is only a minuscule difference in the result, since even the highest drift we
measured only changes the result by less than 0.2ms. As we can see in Table 2.2, in most

35

2. 5D Lightfield Array

tests the offset is less than one frame and even in the worst cases the offset never reaches
two frames.
Overall, we can see that the system can be used to capture or stream short multiview

sequences without fast movements, which would require a more precise frame timing. We
verified this by demoing the array together with the distributed encoding system at the
CeBIT 2017 at Saarland University’s booth. It performed well for hours without problems
on multiple days.

2.2.4. Considerations Learned from Small Array

Soon after the completion of the first small array, it became apparent that while the array was
well suited for its intended task, it was not of much use in an extended context. Specifically
the emerging lightfield research required more cameras with better frame synchronization
and the possibility for a two-dimensional arrangement of the cameras. To satisfy the needs
of new research in lightfield capture, the shutter release should not only be precise but also
directly controllable, ideally independently for every camera. This section explains how the
decision for array parameters and construction techniques were chosen.

2.2.4.1. Size

The first and most important decision was regarding the size of the new array, both with
respect to the number of cameras and the physical dimensions or the volume that the
cameras are supposed to be able to cover. While the first array was only intended to capture
the torso of a person sitting at a desk, the aims of our research became more ambitious. We
sought to capture a complete normal-sized human at a distance of two to four meters and
to cover any two by two meter scenes at approximately the same distance. The plan also
considered the difference between lightfield and multiview captures, which mostly differ in
the range of camera baselines, in regard to the captured footage. The extremes are lightfield
captures, for which the cameras need to have the least distance possible between them,
and multiview footage, for which it can be beneficial to increase the distance between the
cameras to cover a bigger area. Depending on the size of the scene, the cameras may even
be positioned on an arc around the scene and be angled towards the center. To reach an
acceptable camera density for the lightfield footage and to be able to have symmetric layouts
with uniform distribution, the final choice was to make the number of cameras the square of
an integer.
Due to budgetary and manageability considerations, it was decided to use 64 cameras.

This number allows for 8x8, 16x4, or many more layouts, and even with a small distance
of about 8 centimeters between the camera centers they still cover an area of 56 by 56
centimeters with an 8x8 layout.

2.2.4.2. Modular Design

While modularity was not a significant concern with the small array, with the much more
substantial dimensions and the higher number of devices in the new array, it became very
important. The main concern was that without a modular design, the whole system becomes
too cumbersome to move and manage. Since the setup proved itself in the small array,
every camera would be connected to a Small Form Factor (SFF)-computer which is used
for both processing and caching of the recorded images. In order to be able to do this,
these computers must be within the maximum length of the cable connecting them with
the camera, independent of the camera layout. Large modules with many cameras can

36

2.2. First Small Prototype Array

be problematic when the cameras are spread out further because there are hard limits on
the distance certain high bandwidth cables can have. The most common connection for
cameras with the form factor that we were looking for is GigE Vision, based on Gigabit
Ethernet and USB3 Vision based on USB 3.0. While Ethernet cables can be longer than
50 meters and still carry the required gigabit data rate, USB3 cables are more restrictive.
Even though the USB3.0 standard [38] does not specify a maximum length for the cables,
the maximum achievable distance using only cables is at about 5 meters. While this seems
to make the Ethernet connection the obvious solution, the USB connection adds far less
overhead to each module as it does not require additional switches between the cameras
and the computers and no extra power connection.
The final decision was to group the cameras, the directly connected computers, and the

required hardware into batches of 16. These four, more or less autarkic modules, with
minimal connections to a central aggregation point, can be positioned in such a way that
the cable length of either option discussed above, is sufficient for all intended camera setups.

2.2.4.3. Choice of Cameras

From the small array, we have learned that camera synchronization is very important and
software solutions have a limited reach. For higher precision, genlocking the cameras or
a dedicated shutter release input becomes unavoidable, meaning that the camera must
have one of these features. To get the smallest camera baseline, the physical size of the
camera needs to be as small as possible. Fortunately, most industrial cameras with inputs
for synchronization have a standardized size of 29x29 millimeters and vary only in length.
Given that the inputs are located in the back of the cameras, the minimal distance between
the cameras is mostly defined by the size of the camera mount used and the lens in front
of the camera. When it comes to other camera features, to make proper use of the frame
synchronization and shutter control from our wishlist, the sensor in the cameras needs to
have a global shutter. Rolling shutters would wash out the benefits of the exact frame
timing with the time difference between the top and the bottom of the frame. While having
all features mentioned above, the cameras should offer a resolution high enough so the
resulting ray density can compete with other existing capturing solutions. The resolution of
every camera should also fall into the medium to high category according to the today’s
production standards. Additionally, the frame rate should be at least 30 frames per second,
so medium motion can be captured properly.

Since the industrial cameras come without a lens, it was also necessary to establish the
requirements for those. Starting from the size properties defined previously and given the
fact that lightfield capture requires a significant portion of overlap between the cameras to
be able to recover the ray direction properly, a field of view of approximately 45 degrees was
determined to be optimal. Of course, the lenses must be rated for the selected capturing
resolution and sensor size. Automatic focus and aperture adjustments are available but
increase the cost of the lenses by a factor of at least five compared to equivalent lenses with
manual focus and aperture. Given the aforementioned coverage goals and the expected
sensor size between 2/3” and 1”, a fixed focal length of 12.5mm was the optimal value for
the lens. It results in an effective opening angle of 48 degrees in horizontal and 31 degrees
in vertical direction when all sensor pixels are used. While lenses with variable focal lengths
are available, they are usually bigger which increases the minimal distance between the
cameras, and their higher cost is prohibitive in our given budget.

Following the considerations above, the Sony IMX249 sensor was chosen for the cameras.
It features a resolution of 1920x1200 with a frame rate of 41 frames per second (even though

37

2. 5D Lightfield Array

the manufacturer’s datasheet only claims 30 frames per second). It delivers up to 12 bits
of accuracy per pixel and a diagonal of 13.4mm which corresponds to a type 1/1.2 sensor.
The pixel size of 5.86µm squared is quite high when compared to other sensors with similar
resolutions, which makes the sensor quite efficient in darker environments or when low
exposure times are used. A fitting lens with a focal length of 12.5mm, capable of covering
a 1” sensor with pixels of at least 5.0µm needed to be found. After going through the
lengthy ordering process for large orders of public entities in Germany, the decision fell on
the combination of a FLIR BFLY-U3-23S6C-C7 with a Kowa LM12HC lenses8 which fulfills
all requirements mentioned above.

2.2.4.4. Supporting Hardware

The small array presented in Chapter 2.2 showed that the combination of a camera with a
SFF-computer is a very capable and flexible design. For that reason, it was decided to retain
it but adapt the computer to the new cameras. The sensor we have chosen can produce up
to 176MB/s when raw sensor data is captured. This amount cannot be transferred by the
usual 1GBit network connection that the SFF-computers have, at least not in real-time.
While there are USB3.0 Ethernet adapters with 2.5Gbit/s available, using these would add
an additional set of connectors that cannot be fixed with screws into the system and would
therefore add a new layer of potential problems whenever the system is moved. Hence, we
opted for a bigger cache in the computers, in the form of a bigger SSD, which is fast enough
to be used as intermediate storage of the captured material. The newer SFF-computers can
use NVMe M.2 SSDs which usually offer write speeds that are 5 to 10 times higher than
the expected data rate from the cameras. A size of about 256GB was quite cost-efficient
and with the data rate of 176MB/s, it offers enough room to cache about 20 minutes of
footage with some room to spare for the operating system and the required tools. Since the
array is not supposed to capture feature-length movies in a single go, this was deemed to be
sufficient.
The amount of RAM in the computers of the small array was sufficient for all purposes.

Therefore, the new units were also provided with 8GB of RAM. Since RAM prices were
quite high when the parts were ordered, this was also a financial decision. For the rare cases
when more RAM is needed, the systems can use the SSD for swapping temporarily. Due to
the speed of the SSDs, this is possible without too much loss of performance.
For the CPUs, it is hard to gauge what will be required exactly, since the processing

algorithms and other tasks can change in the future. Only the critical part of the capturing
process was therefore taken into account when an appropriate CPU was chosen. During
an active capture, the most critical part is that the frames from the cameras are stored on
the SSD as fast as possible, or at least before the next frame is taken. Since the data is
stored in PGM format, which is mostly raw data, not much computation power is needed
for conversion, so one core is sufficient for that task. The system is still required to be
responsive enough so that the capture session can be configured or stopped and the current
state of the computer and the attached camera can be monitored. Ideally, the system should
also be able to perform a fast and simple debayering on the captured frames, encode them
as a video stream, and send this to a central controller, so a preview from all cameras is
possible and quick visual checks of the camera performance and alignment can be performed.
Depending on the video codec used for the stream and the hardware encoding capabilities of
the CPU, this may need up to two cores when the full resolution of the camera is used. The
final choice fell on a quad-core CPU with hardware support for H.264 encoding. More cores

7https://www.flir.com/products/blackfly-usb3/?model=BFLY-U3-23S6C-C
8https://www.kowa-lenses.com/en/lm12hc-5mp-industrial-lens-c-mount

38

https://www.flir.com/products/blackfly-usb3/?model=BFLY-U3-23S6C-C
https://www.kowa-lenses.com/en/lm12hc-5mp-industrial-lens-c-mount

2.2. First Small Prototype Array

and therefore more processing power would be preferred, but since the essential functionality
is covered, the additional costs can not be justified with the potential gain in the future,
especially since all post-processing tasks do not have to happen in real-time.

The network responsible for distributing the data between all components of the camera
array is also a very important factor. Connecting all computers with full speed to a central
storage or control system would be possible, but not necessary as it is not possible to
transmit the complete camera footage in real-time in any case, as previously mentioned.
Further processing steps that require data transfers to and from the persistent storage, do
not take the same time for every file, and so the transfers do not happen concurrently, and
not all computers need the bandwidth at the same time. Constructing the central storage in
such a way that the data can not only be received at full speed from all cameras but also be
stored with the same speed would be very costly and not feasible as long as the effects of the
bottleneck are not too serious. For each module with 16 cameras, a switch with 24 Gigabit
ports and two 10GBit uplink ports were chosen. At first, the uplink ports were not intended
to be used, and five aggregated Gigabit Ethernet lines were planned as the connection to
the central switch. This way, the bandwidth of the uplinks of all camera modules combined
would be equal to the bandwidth of the central server at 20GBit/s. When all camera units
transfer data at the same time, they should be able to use approximately a third of their
maximum network bandwidth.

One important goal for the camera array was the precise control of the shutter timings for
each camera, ideally with individual control for each camera. Choosing the right camera
which offers an input for the appropriate signal is only a part of the solution as the signal
for the cameras needs to come from a reliable source. Generating a master signal for the
frame triggers and transferring it to the individual cameras is rather trivial since even a
length difference in the communication lines of one meter should only result in a delay
of about 5ns assuming a propagation speed of electrical signals in copper cables of about
200, 000km/s. This delay is still far from the time between the different frames which we
set in steps of ten microseconds each. Therefore, this possible difference is not noticeable in
the end result and we do not need to compensate for different cable lengths.

Since we want to be able to trigger sets of cameras at different time instances but still
with the same frequency as the master signal, there needs to be a way to delay the signal
by a configurable amount. Ideally, this delay should be configurable via software remotely.
Dedicated hardware ICs for delaying signals exist, but most of them are either configured
via hardware (changing the resistance or capacitor value between two pins) or only offer a
maximum delay in the range of microseconds. While programmable capacitors and resistors
exist, using them in addition to the delay ICs means a large footprint for the required
electronics in every module that hold all devices required for 16 cameras. Finding the right
combination between delay ICs and programmable components can be difficult, especially
with respect to the step size with which the delay can be configured and possible repairs
in the future. In addition, micro-controllers are still needed to program the delay ICs or
the connected components. This led to the evaluation of software-based delays with MCUs
with integrated hardware timers. Those integrated peripherals can provide delays with very
high precision as long as they are used appropriately. Preliminary tests have shown that
a precision of less than one microsecond can be achieved with very common and cheap
MCUs. With these results, it was decided to forego the all-hardware solution in the favor of
a MCU-based one. Using a microcontroller with enough GPIO pins, it would be possible to
use only one controller per module, which means the overall footprint on the PCB can be
fairly compact.

39

2. 5D Lightfield Array

2.2.4.5. Software

In the small array, we used software tools based on SSH to distribute the commands to the
camera nodes. While this was good enough for five units, it does not scale well for more,
since it opens a window for every connection. They would clutter up a desktop of any size
and as they are the only way of getting feedback from the executed commands, it would
be very inconvenient to check 64 windows to find out whether a command was successful
or not. Systems for controlling multiple computers from a central point like SaltStack9 or
Ansible10 usually do not have a built-in status overview for the managed machines. Such
tasks have to be performed by an additional monitoring system.
For our array, we need fine-grained control over the commands being executed and real-

time status information from the nodes. Simultaneous transmissions to all nodes, so they
execute the commands at the exact same time, are optional, because it is only important
for the control of the start of a capturing session. Since the shutter will be controlled by an
external system independent from the nodes, it is sufficient that they are ready when the
first frame is triggered. Even with a delay of 15ms between every message, which is fairly
long in networking and computing terms, the 64 commands for all nodes are sent in less than
a second. We decided to create a custom control system using an asynchronous message
bus to deliver the messages. That way the processing time of a command is irrelevant, and
commands can be emitted as quickly as possible. Depending on the exact message bus used,
they might even be broadcast and therefore, be sent at the exact same time. The system
should react to user interaction by sending the appropriate commands and also maintain a
representation of the internal state of the nodes. Ideally, the commands and the information
queries should be accessible via a REST-API, so the whole system can be controlled and
monitored via a web interface.

How the system state is managed has to be changed for the large array as well. Maintaining
a consistent software state over all the units manually is not feasible for the number of
computers we are planning to deploy in the system. This is something also commonly found
in data centers where a lot of systems require a similar software state to be able to provide
large-scale services [39]. Due to this need, multiple systems to solve this problem already
exist, and as they are deployed in very heterogeneous environments, they are designed to be
quite flexible. Two open-source systems of this kind were already mentioned before, namely
SaltStack and Ansible. Both offer the possibility to manage installed system packages,
running and stopping services, and distributing necessary configuration files from a central
control point.

2.2.4.6. Calibration

In the small array, it was already apparent that the flexibility of the camera placement in
combination with the required precision for the camera calibration poses a big challenge for
the calibration algorithms and processes. In the beginning, it was planned to have as much
flexibility as possible with respect to the location and orientation of the cameras in the
frame of the array (i.e., five degrees of freedom). The frame which holds the cameras should
keep them on a plane that fixes the z-coordinate, but the x- and y-directions have to be free
to allow for layouts with different camera densities and distributions. The mounting heads
between the cameras and the frame offer about 180 degrees of rotation around all three axes
without steps. Because OpenCV does not allow to only fix a single dimension (only all or
none can be fixed), we can only give a hint to the algorithm that the z-direction should be

9https://www.saltstack.com
10https://www.ansible.com

40

https://www.saltstack.com
https://www.ansible.com

2.2. First Small Prototype Array

the same for all cameras, but in the end, it will still be estimated and the fixed dimension
can only serve as a sanity check for the end result. For the intrinsics, the focal length
and the principal point must be determined, both with x- and y-components. The lens
distortion is modeled with up to six factors per camera. In total, 6 extrinsic and up to 10
intrinsic parameters have to be calculated from the images of the calibration patterns. For 64
cameras, 1024 parameters need to be correct, in order to make proper use of the results of a
capture session. Since all negative effects of propagating the results between cameras in the
array that were discussed in Section 2.2.2 only increase with more cameras, the first aspect
that was investigated is the precision of the point detection from the calibration patterns.
For all tests, we used generated patterns with high resolution or from vector graphics and
had them professionally printed in sizes up to the A0 format, depending on the requirements
of each pattern and the test parameters. To minimize deviations from the assumptions
that all points in the calibration patterns are on a perfect plane, the printed versions were
glued to thick foam boards or similar stiff planar materials before use, as shown in Figure 2.11.

The first approach to improving the calibration results was to improve the accuracy of the
point detection in the calibration pattern, whose features were used for the input to the
algorithm. Using an asymmetric circular pattern instead of a checkerboard lead to slightly
better consistency and precision in the feature detection, but the overall performance was
not improved much. Since the minor improvement hinted at a better sub-pixel accuracy
for the detection of circles compared to lines and corners, we investigated another circular
pattern [40] which includes smaller white inner circles in the center of the black circles like
in the OpenCV pattern. With our camera, we achieved another small improvement, about
as big as mentioned in the paper, but it was not enough to justify the added complexity of
running the reference code together with the otherwise fully integrated OpenCV pipeline.
Testing patterns of different sizes (see Figure 2.11) with the idea that bigger patterns contain
more information about distortion effects in a single image and the bigger features should
be easier to detect with sub-pixel accuracy. On the other hand, smaller patterns are easier
to position such that they are completely visible in multiple cameras and with less area bias
towards the center of a camera view.

The biggest problem of the larger patterns, or patterns of any size close to a camera, is the
fact that all features or the complete patterns need to be visible for the detection to become
valid, occasionally even with a clean white border around it. One solution to that problem
is a pattern that drops the requirement to detect the full pattern to be valid. OpenCV
offers patterns that consist of only ArUco markers [41] or ArUco markers in the white
spaces of a normal checkerboard pattern. With these cleverly generated and distributed
markers, it is possible to deduce the visible portion of the pattern and its orientation in
space. Therefore, the visible portions of partially occluded patterns can be included in the
calibration process for more accuracy. Unfortunately, neither the OpenCV-based nor a
second version in MATLAB using AprilTags [42] did improve the calibration results. The
quality of the end result still varied greatly without a discernible pattern and no clear
indication of which property of the input material caused the variations.
In an attempt to combine the qualities of partial pattern detection and to extract the

most information out of the available camera resolution, a fractal pattern with multiple
levels of smaller patterns included in the larger pattern [43] was tested. Figure 2.12 shows a
good example of the pattern. The further we zoom into the pattern, the more quadratic
features appear, which can be used to refine the results. The first level also includes some
additional data that can be used to identify the position of each square in the complete
pattern. Even though the results in the paper looked promising, the camera we decided
to use, did not offer enough resolution to detect anything but the highest level of features

41

2. 5D Lightfield Array

Figure 2.11.: Some of the calibration patterns used for evaluation

Figure 2.12.: Example of the fractal calibration pattern presented in [43]

when an A0-sized pattern was more than a few centimeters away from the camera plane. At
such a small distance from the array, the overlap between the cones of vision of neighboring
cameras is small, so there is only a small number of usable features for the calibration. If
the pattern is moved further away, the benefit of having the fractal pattern is lost as finer
features can no longer be detected reliably.

A second issue for the calibration was the task of using stereo calibration algorithms
to calibrate a multi-camera array with a two-dimensional layout. The result of the cali-
bration is always a set of parameters, which causes the epipolar lines in both images to
be at least parallel, if not collinear when used for rectification of the images. While this
is a desirable property in our rectified images for easier processing, the final result heavily
depends on the assumptions an algorithm makes about the spatial relation of the input
images. Several available algorithms assume that a stereo pair of cameras is always in
a left-right configuration. This forces epipolar lines to be horizontal in the end results
independent of whether this makes sense or not. In our case, this type of algorithm is
not practical to use. As seen in Figure 2.13, in the case of a top-bottom camera pair,
the algorithm introduces a 90-degree rotation in the extrinsics so that the epipolar lines

42

2.2. First Small Prototype Array

(left-right) (top-bottom) (diagonal)

Figure 2.13.: Different behaviors of stereo calibration algorithms depending on the relative
camera position

become horizontal instead of vertical. This rotation can be easily fixed, by adding an inverse
rotation to the estimated rotation matrix. The principal point is harder to correct because
the algorithms mainly focus on one dimension to align the epipolar lines. Calculating the
exact correction is fairly complex without further calculations based on the input images.

Some algorithms do not need those fixes, as they can handle both left-right and top-
bottom pairs by automatically determining whether the epipolar lines should be horizontal
or vertical. Providing them with a hint about the correct alignment is only possible via
preset values of the intrinsics. A separate parameter is not available in any of the algorithms
we tested. Results for diagonal neighbors are almost always rotated because in those cases
neither horizontal nor vertical epipolar lines can be determined properly, as they would be
outside the respective other image.

To circumvent those diagonal calculations, we tested different variations of calibrating a
horizontal and a vertical line of cameras centered around the chosen reference. From there,
those newly calibrated cameras serve as secondary references for the other cameras, so all
calibrations only happen within a row or column of cameras. The results are then related to
the original reference by combining the extrinsics from the cameras calibrated against the
secondary reference with the extrinsics from the secondary reference. After that calculation,
every camera has extrinsic parameters relative to the center camera. Since every camera
can be related to a calibrated camera in the same row and another in the same column,
we can obtain two results for each camera that should be identical. Additionally, we know
each camera’s supposed position in the camera grid from which we can infer at least some
of the expected values in the results. With this knowledge, outliers in the results can be
easily identified, the respective camera recalibrated against another reference, or the whole
calibration process repeated.

While checking the performed calibration tests, it became evident that the most com-
mon error we encountered was a deviation of the camera’s position in the z-direction (away
from the plane on which all cameras sit) while the x- and y-directions were nearly perfect.
From the published results of colleagues from earlier projects, we knew that the precision
achieved could already be favorably compared to other calibration efforts of multi-camera
setups, even ones that use additional data in the form of captured depth data for a more
accurate pattern detection and location [44]. The array used by these colleagues was a

43

2. 5D Lightfield Array

one-dimensional layout of cameras that could be moved vertically using industrial-grade
linear actuators with sub-millimeter precision for capturing static scenes as lightfields. They
report a deviation from their camera mount (a straight metal rail without articulation) in
z-direction of up to six centimeters in both directions with an average deviation from the
line of over three centimeters. Our results showed deviations in the same direction with
slightly lower but similarly formed amplitudes.

Zaharescu et al. [45] report similar errors in their publication with one-dimensional or
arced camera arrangements and a one-dimensional calibration target with multiple reflective
dots. The visible errors in their visualization of the calibration results are similar to those
found in our results. They managed to improve their accuracy using an approach with
iterative refinement [46], which comes very close to the ground truth. Unfortunately, it was
not possible to accurately recreate the results of any type of approach which used reflective
or other light-based markers [47] in the setup. The results we did manage to achieve were
always significantly worse than the results of the other papers and the quality was far from
that achieved in previous tests.

Our evaluation has shown that the performance of the calibration is on par with other
approaches capable of dealing with the challenges of calibrating more than a stereo pair
of cameras in a two-dimensional layout. There is no default solution that works in every
case with the same precision, but well-performing approaches are often tailored to the array
and its environment. A recent thesis [48] from Tampere University, a university with a
strong background in view synthesis and holographic imagery, comes to a similar conclusion.
With careful manual checks of the calibration results and good discipline during the capture
of the calibration image, a good result looks similar to the visualization in Figure 2.14
which shows the result of one of our later calibration runs. While there are still some
small deviations from the uniform grid, especially on the right side, most cameras are fairly
close to their intended position and the deviation in z-direction is small compared to the
distance between neighboring cameras. The final decision concerning the calibration was
to keep the last iteration of the pattern-based approach in OpenCV, at least for the first
few capturing sessions. Only then can we properly evaluate whether the current level of
precision is sufficient for the algorithms the captured images are going to be used with.

2.3. Design Challenges

When implementing the planned array, we established an additional set of properties further
to those defined in Section 2.2.4:

Mobility

The entire array must fit through normal doors, as well as elevators, with only minimal
disassembly, and be mobile enough to capture scenes in any location with sufficient space
and power.

Setup and Teardown

Time taken for setup and teardown should be minimal, with the number of removed parts
being kept to a minimum. Components installed within other components should be
sufficiently stable so as not to require extra transport security.

44

2.3. Design Challenges

Figure 2.14.: Typical result of our OpenCV-based camera calibration approach. The actual
structure is presented well in most cases, but on the right side the calculated
position deviates from the intended one.

Independence from external infrastructure

For sufficient flexibility in the choice of capture locations, the complete system should only
require minimal support infrastructure, in addition to sufficient power and stable ground.

Web-based control

All functions and components should be controllable through a simple web interface or a
direct control mechanism somewhere in the system. Those interfaces should also provide
information about the current state of the system.

The influence of these guidelines can be seen in all components of the array. If only
one component violates them, setup, capture, and maintenance become more cumbersome
than necessary.

2.3.1. Module Design

The modules are the boxes that contain the computers, which the cameras are connected to,
as well as all supporting hardware. The devices must be mounted securely enough within
the boxes to endure transport and continuous operation, while maintaining sufficient space
between them for suitable cable routing and ventilation.

Using the known sizes of each component, first sketches and then a wooden prototype of
a mounting plate for the devices in a module was created as part of the work by Johannes
Reuter [49]. The overall placement of the devices stayed the same nearly from the beginning.
In Figure 2.15, the components in each module and the different versions of the mounting
plate are shown.

The NUCs, as the components which consume the most power and produce the most
heat, are situated on the top left of the mounting plate. In that location, their hot exhaust

45

2. 5D Lightfield Array

(a) First sketch (b) Wooden prototype (c) Final CAD model

Figure 2.15.: Design process of the mounting plates in the camera modules. After a paper
and cardboard mockup a wooden prototype was evaluated before the final
design was created and machined.

air does not interfere with the other electronics in the module. A second reason is that this
design minimizes the smallest average distance from the computers to the planned cable
outlet hole in the side panel of the module. This arrangement allows greater flexibility when
setting up the array, since the length of the connected cables that can be used outside of the
module is maximized. The 16 units are arranged in a 4x4 slightly rectangular pattern and
are clipped onto their included wall-mounting brackets for easy maintenance. Their vertical
distance is smaller than the average horizontal distance because the NUCs do not have any
connections or indicators on the sides, only openings to draw in cool air. Therefore, we
planned only enough space between them so that the airflow is not restricted and that one
unit can be lifted from its wall-mounted adapter without having to remove the devices above
it. To manage the exhaust air and all cables, all of which come out of the back of the NUCs,
two vertical corridors between the first and second, as well as the third and fourth columns,
are created. The holes in those corridors are used to lead the wires to the underside of the
board, where they are collected and routed to their destinations. Each hole is responsible
for all cables from two NUCs. Their size and location are chosen in such a way that they
can bend smoothly downwards towards the opposite round edge of the hole. Airflow in that
area is supported by fans on the top and the bottom of the boxes surrounding and holding
the mounting plates, which draw in cool air from below the module and expel it through
the top.

In the bottom left of the mounting plate, a 19” rack-mountable Ethernet switch is in-
stalled. Due to a lack of depth for a normal horizontal installation, we rotated its mounting
brackets by 90 degrees so that the switch’s main body is parallel to the mounting plate,
with the Ethernet ports pointing upwards. In the final design, a slot above the switches’
Ethernet ports allows the cables to run to the back of the mounting plate where they are
routed to the NUCs in the top left. Our only requirements for the switch were to provide
enough Gigabit ports for the NUCs of one module, some additional ports for the uplink
to the central server, and enough management capabilities to combine multiple ports into
a single trunk to increase the speed of the uplink. Using the Link Aggregation Control
Protocol (LACP), defined in the 802.3ad and 802.1AX IEEE standards [50, 51], to configure
the aggregated links, means all links behave as if they had the same MAC address and the
number of bonded links can vary. In the case of a broken cable, the total bandwidth is

46

2.3. Design Challenges

simply reduced until it can be replaced without packet loss. The decision of which packet
goes to which link is based on a configurable set of parameters, but by default, it uses source
and destination MAC or IP addresses [52, 53]. Therefore, a 1:1 connection cannot fully use
the total link speed, but since we are planning to communicate between many computers
and a single server this is not a problem. Single connections are also not affected because
the bottleneck in those cases is the connection speed of the NUCs which is equal to the
throughput of the single links at most. The first iteration of the plan assumed five ports for
the uplink, such that the combined uplink speed of all four modules is equal to the Ethernet
speed of the central server.

Luckily, this can be fulfilled by nearly any enterprise-grade switch with at least 24 ports.
After comparing the capabilities and prices of available switches, we ordered a set of five
’HP Aruba 2530 24G 2SFP+ (J9856A)’. In the modules, they have enough ports to collect
the connections from the NUCs and the uplink. The last switch is mounted next to the
central server to collect the connections from all uplinks and relay the data via its two
SFP+ ports to the server for storage and processing. This way, the complete network runs
on uniform hardware, which makes the configuration more convenient as components from
different manufacturers still have differences in their configurations and exact capabilities
despite the many existing standards around Ethernet networks.

On the right side of the board, a microcontroller board and a big power supply unit
are located. The microcontroller has two major functions which will be described in detail
in Section 2.3.2. For this section, it is sufficient to know that it should be close to the power
supply and the cable outlet for the cameras. While the cables between the cameras and the
microcontroller are connected directly to the PCB with the controller on it, for the power
lines, some external hardware needs to be controlled. The slot above the controller board
leads the cables from the board towards the same outlet the USB cables from the NUCs go
to. Below the controller, the connections from the power supply go through the slot and
come back up between the NUCs.

The power supply posed its own challenges. Powering the NUCs with their included
power supplies and a power strip for distribution, as it was done for the small array, was
not an option due to the number of required power outlets per module. Instead, we looked
into an option that allows us to power all NUCs with a single power supply. We based
the total required power on the power bricks that came with the devices. Each of them is
rated for 65 Watts at 19 Volts [54]. This means for every module we require a total power
of 16 · 65W = 1040W . Industrial power supplies with such specifications exist, but they
are often quite expensive, come in uncommon form factors, and require special connectors
which are hard to get. In addition, the controller board would also need additional power
regulation hardware since modern microcontrollers and most ICs cannot handle such a high
voltage.

Fortunately, the NUCs do not need 19 Volts but can run on any voltage between 12 and
19V according to their data sheet [55]. This flexibility opens up several new possibilities, es-
pecially considering that 12V is most commonly used to run power-hungry devices in desktop
computers, workstations, and servers. Since they have to comply with consumer electronics
regulations, they are highly efficient, quiet, safe, and have well-known sizes. However, they
still are available with output powers well above 1000 Watts, which nowadays usually refers
to the power of the 12V rails alone. In addition to the power we require from the 12V rail,
power supplies following the ATX standard [56] also offer 5V and 3.3V outputs which are also
needed for our microcontroller circuit. The ATX standard also regulates the pinout and the
form of the connectors, which are used to deliver the different voltages to the devices inside a

47

2. 5D Lightfield Array

computer. With the rise of modular power supplies, which allow disconnecting unused cables
from the power supply itself, manufacturers started to use many different connectors and
pinouts in between the power supply and the regulated connectors. As we are technically
misusing at least parts of the power supply, it does not always make sense to use the included
cables when we connect to a connector that is not considered in the ATX standard, like
the barrel plug in the NUCs. It was finally decided that a KOLINK Continuum 1200W
would be the most appropriate solution. It was cheaper than many other power supplies in
the same power range at the time and the manufacturer chose uniform connectors in the
back of the unit for the connections to the single 12V rail. These eight outlets happened to
be the same as standardized 12V EPS sockets. The wide availability of these connectors
made it possible to make custom cables for the NUCs and use each socket to power two
NUCs for optimal load distribution over the connectors. Mounting the PSU on the plate re-
quired the design and manufacture of a bracket/holder so that it could be installed vertically.

Once the components and their layout were fixed, the overall size of the mounting plate
came out to be very close to 1x1 meters. With this size and the known weight of all the
components, a suitable material had to be found. Construction wood, as was used for the
prototype would not have been able to hold the small machine screws with threads and
would have required nuts and washers on the opposite side. Since the current plan involved
having the components on one side and the cables mostly running along the other with fixed
guides for cable management, nuts and washers would have interfered with the components
on the opposite side of the plate. Another material we evaluated was aluminum DiBond
plates, a composite of a thicker plastic sheet sandwiched between two thin aluminum plates.
We verified it can hold screws in cut threads reasonably well and in our tests, it provided
enough stability for our application. After finding a local machine shop able to manufacture
the plates, including all the required threads, we were advised that the DiBond plates would
be too flexible at the size we needed, even when supported on all sides. Thicker and sturdier
versions were available but would have increased the weight of each module significantly.
Following this recommendation, we chose to use 3mm thick aluminum instead. To protect
the cables from the hard edges on the planned through-holes and slots, they are covered by
custom-made flexible inserts.

To ensure that the mounting plates fell within the previously defined design requirements, a
case was designed to protect the plates and its components. For their high flexibility and
our previous experience from the small array, aluminum extrusions were chosen. The base
design is a box with one meter in width and height and 28cm in depth surrounding the
mounting plate tightly. Behind the plate, 8cm remain for cable routing and management,
thus leaving nearly 20cm of space in front of the plate for all devices and the cooling airflow.
Due to the high mounting position of the NUCs, this box would have been quite top-heavy,
which is the main reason why we combined two mirrored modules into a single box. The
increased depth made the whole construction much more stable. For maintenance and
debugging purposes, the backside is connected by hinges and removable connectors in the
front. That way, it can be opened up in the front comfortably while the strain on the cable
coming out of the outlets in the back is kept to a minimum.

To cover and protect the contents inside the frame, the outside is covered by customized
white DiBond plates whose designs are shown in Figure 2.16. The top and bottom plate
feature holes to mount the inlet and outlet fans. The back is completely closed, while the
large side panels have a slot through which the cables going to the cameras leave the case.
The front panel is the most complex, as it features the socket for mains power input, a panel
for the network uplink, and a connector for the communication between the microcontrollers.

48

2.3. Design Challenges

Figure 2.16.: Cover panels for the module cases (side, top/bottom, front, back)

In addition to these connectors, it has multiple LEDs to show the current status of the
module, a mechanical switch to control the ATX power supply, and a push-button for fan
testing.

With this construction, one of these boxes containing two modules becomes too heavy for
easy handling. One mounting plate alone weighs around 8 kilograms, every NUC weighs
about 0.6kg, the power supply, and the switch both weigh about 2.5kg. The aluminum
profiles contribute 1.5kg per meter [57] and the outside panels about 3.8kg per square
meter [58]. So even without any of the steel screws, frame connectors, and cables that are
other non-removable components of the boxes, the total weight of each box already sums
up to

23.68m · 1.5kg
m

+ 4m2 · 3.8 kg

m2
+ 16 · 0.6kg + 4 · 2.5kg + 2 · 8kg (2.9)

= 35.52kg + 15.2kg + 9.6kg + 10kg + 16kg (2.10)

= 86.32kg (2.11)

To keep the whole system movable, legs with a length of 40cm are added underneath each
side of the box. With two heavy-duty wheels on the front legs and a single wheel on each
leg in the back, the whole box can be moved by a single person if necessary. The total width
of the box of 80cm guarantees that the box with two modules can fit through the majority
of normal doors. The second wheel per leg on the front was added because, when the box
is opened up in front, the whole box tended to bend with only one contact point with the
ground outside the main box’s structure.

2.3.2. Electronics

The electronics boards in the top right of the mounting plates have two main functions,
controlling the shutter signals to the cameras and the power to the NUCs. A secondary
function is to monitor the temperature inside the module case and control the built-in fans
accordingly.

First, we defined the required inputs and outputs the board needs to have to fulfill those
tasks. To supply power to the board’s electronics, we use the 24 pin ATX connector from

49

2. 5D Lightfield Array

the power supply in the module. Not only does it provide every important voltage for the
circuit, namely 3.3, 5, and 12 Volts, but it also has pins that can switch the power supply
on and off as well as provide information about its current state.

The shutter release of the cameras can either be triggered by software via the available API,
using an internal oscillator or via an external signal through an optoisolated input pin in
the GPIO connector in the back, according to the technical reference [59]. Because it has
the highest precision and the least steps that need to be controlled in order to achieve it,
the external control via GPIO was chosen. Even though only two pins from the GPIO are
needed to make this function work, the whole connector is populated in case the other pins
are still needed later. Therefore, a total of six pins have to be connected to the electronics
board for every camera. The search for compact connector blocks with at least six pins
per port and 8 or 16 ports in one block lead to modular blocks with sockets for RJ45
connectors as found in switches or other network equipment. With the rectangular shape of
the connector, the blocks are fairly compact and the cables are still easy to connect and
disconnect. Further benefits are the optional LEDs next to each port that can be freely
used and the widespread use of these connectors, which means we can simply buy network
cables in appropriate lengths with enough shielding, replace the connector on one side with
a plug that fits the GPIO port of the camera, and have a proper connection between board
and camera.

2.3.2.1. Power Control

Controlling the power to the NUCs requires some careful planning because the external
power supply can provide up to 100A on the 12V rail to which all NUCs are connected.
The main reason for having the functionality to switch the power on and off through the
microcontroller is to be able to switch off or power cycle a NUC without needing physical
contact when the module boxes are closed shut. Switching the power supply off while using
the standby power for the microcontroller would have been an option, but would always
have affected all NUCs in the module. Since this function is mostly intended for when a
single NUC behaves in an unintended way, and with the NUCs being normal computers
in which sudden power losses can lead to filesystem corruptions, this idea was dismissed.
Instead, we decided to switch the power using MOSFETs with a very low internal resistance
and integrate them into each power cable, so only a small wire for switching the MOSFET
needs to be connected to the control board. The MOSFETs could also have been placed
on the control board but designing connectors and copper paths that can handle 12V at
5A maximum is a challenge on its own. Because the NUCs have a lot of different ground
connections in addition to the one in the power cable, such as the shielding in the network
cable or the metal case on a big metal plate with connections to similarly grounded devices, it
is important to switch the 12V wire in the power cable and not the ground cable. Otherwise,
the power can flow back to the power supply through any other device on the mounting
plate and the computer keeps running even though the MOSFET is switched off. For our
circuit in Figure 2.17 we chose a p-channel MOSFET soldered into the positive power wire.
A pull-up resistor between gate and source keeps the MOSFET switched off by default.
Using an n-channel MOSFET on the control board, the gate can be pulled to ground to
switch the cable MOSFET on and activate the power to a single NUC. The additional
n-channel MOSFET is required because the control chip can not handle the 12V on its
input pins.

50

2.3. Design Challenges

2k

100k

12V

PWRIn
NUC

Figure 2.17.: Power switching circuit for a single NUC. The PWRIn pin is actively pulled
up and down by the GPIO controller. GND is shared between all devices in
the module

The wires leading from the MOSFET gates to the control board are gathered using a
simple flat cable that can be connected to a 2x8 pin connector. As this is a fairly compact
connector with a trivial through-hole footprint, it can be placed nearly everywhere on the
board.

2.3.2.2. Fan Control

Connectors were required for the fans and temperature probes. To make the cooling of the
modules affordable and quiet, we decided to use PWM-controlled PC case fans. They only
need a standardized Molex KK 254 series connector and run on 12V. Although each case
has four fans, only two connectors are required on the board, as the chip we planned to
use is able to control two fans independently. Since the two fans on the top and bottom of
the case are relatively close together, compared to their respective distance from the closest
fan to the control board, we connect them using a Y-cable and then only have one cable
from each pair going back to the board. While this means only the feedback from one of
the fans in the pair can be measured, this is a very common way of wiring this kind of fan
in computers and therefore acceptable.

The temperature probe inside the case is a simple NPN-transistor whose state the fan
controller uses to determine the temperature. Again a simple 3-pin connector suffices and
needs only to be close to the controller chip. For LEDs as well as the switches and buttons
on the front of the case, a 2x8 pin header with a proper socket is sufficient for a good
connection that can be quickly connected and disconnected.

2.3.2.3. Shutter Control

The last important set of pins connecting to something off the control board are the ones
that are used for connecting the control board itself to a central device for monitoring and
control. One option would have been to use the integrated Ethernet port on the development
board of the chosen microcontroller and connect it to the switch with the NUCs. However,

51

2. 5D Lightfield Array

due to the hardware resources required for establishing and maintaining TCP connections
and the inherently unreliable timings on the network, we continued to search for a different
option.
For the master signal of the camera shutters, a dedicated line from the master to each

module is the fastest and easiest solution. Most other ICs on the board are configured
via the I2C protocol. Since the maximum distance between two devices on the bus is
determined by the capacitance of the communication lines between them [60], in crowded
environments the maximum achievable length is often limited to a couple of centimeters.
But with the help of I2C buffers on both ends of a transmission line, the range can be
reliably extended to multiple meters with high baud rates [61]. With such buffers, the
devices on all control boards can be controlled directly from a singular I2C master in a
central unit. The microcontroller can be programmed in such a way that it acts like an
I2C slave device with much lower memory requirements than a full network stack. For this
approach, only two pins are needed for the I2C bus, one pin for the master shutter signal,
and a ground pin to equalize the potentials between the different circuits. A standard DB9
connector offers enough pins, shielding, and the option to secure the connector with screws
for more stability. Since the control board does not have a side that is directly aligned with
any side of the module case, a flat cable must bridge the distance to the front. Again a
simple 2x5 pin header is sufficient to make proper use of the whole DB9 connector on the
front of the case.
While the buffers fulfill their duties reliably in most situations, we experienced some

slight interference on the bus, despite the shielding when high power conduits were running
close to the connection cables. If those situations become more common, the buffers can be
replaced by I2C transceivers which use differential pairs, such as the PCA9615 [62], for data
transmissions that would be much more resilient against interference of this kind.

2.3.2.4. Board Layout

Figure 2.18 depicts the first fully working version of the resulting board. For easier
understanding, the functional areas discussed above have been highlighted and marked.
The camera connection portion includes the big connector block on top and supporting

components duplicated for every single port. Each one has a transistor to boost the voltage
of the trigger signal from the microcontroller to the camera and a protection resistor before
one of the LEDs in the socket, to make the shutter pulses visible. The second LED is
connected to a pin that provides 3.3V from the camera which is used to indicate proper
connection and initialization of the camera. One pin is connected to a currently unused
output pin of the camera in case it is needed in the future. The two remaining headers
can be used to supply the camera with 12V power from the board, a feature that is not
necessary as long as the cameras get enough power from their USB port, and to connect
optional hardware to the camera’s 3.3V supply.

The power control section consists of a 16-bit GPIO extender chip with an I2C connection.
Each of these 16 pins is responsible for a single NUC. Every output pin has a LED and a
current limiting resistor for visual feedback of each output’s status. The transistors are
responsible for activating the power cables by pulling the gate pin of the transistor in the
power cable from 12V to ground. The connection to the cables and their transistors happens
via the pin header and a flat cable on the right. Additional ground pins are not needed
because both the control circuit and the cables are powered by the same power supply.

The fan area’s main component is the I2C-programmable fan controller chip surrounded
by a set of pull-up resistors, Zener-diodes for over-voltage protection, and the connectors for
the two fan pairs and the temperature probe. A small inverter is connected to a set of status

52

2.3. Design Challenges

Figure 2.18.: PCB for module control version 1.1

53

2. 5D Lightfield Array

pins from the controller to make the internal status easier to display via front panel LEDs.
The microcontroller section also contains the I2C buffer for the connection with the master

board. The development board of the microcontroller is mounted upside down, simply
connected using its pin headers. The software we are running on the microcontroller is
mostly responsible for delaying the master trigger signal before relaying it to the connected
cameras. How we ensure high precision for the configured delay is described in more detail
in Section 2.4.3. Underneath sits the buffer chip with its pull-up resistors and a denoising
capacitor. The top left connector takes the two I2C pins, the line for the master shutter, and
a yet unused pin for arbitrary connections between the central controller and the camera
control boards. The remaining pins are used for potential equalization between the grounds
of the connected devices.
In the remaining areas, three major parts can be identified. On the bottom sits a dip-

switch which determines the lower 3 bits of the I2C addresses of all devices on the board.
The outputs are connected to the available address pins of every device on the board which
talks to the I2C bus. Next to it, a push button to reset the microcontroller is located. On
the top-right, we have the big 24 pin ATX power connector, a big capacitor for voltage
stabilization, and the connector for the LEDs and switches on the front panel with a set of
transistors and current limiting resistors.
Further details about the whole circuit are provided in the form of schematics in Ap-

pendix A.1.

The only change that was implemented after the schematics and the boards were cre-
ated, is an increase in voltage for the shutter signals to the cameras. Using small upgrade
boards which changed the voltage on the transistors from 5V to 12V, a complete remanufac-
ture of the boards could be avoided. This change was necessary because most of the cameras
we ordered, in contrast to their datasheets and technical references, did not trigger reliably
with voltage levels of 3.3V. The exact required voltage for triggering varied from camera to
camera and increased with a rising internal temperature. After a lengthy investigation from
our side, this problem could be traced back to the manufacturer and faulty or insufficient
optocouplers at the input pin. Since the manufacturer only agreed to repair or replace a
small set of our cameras, we were forced to increase the voltage of our trigger signal to a
safe level, so all cameras could be triggered within their operating temperature range.

2.3.3. Stand Design & Camera Mounts

The purpose of the camera stand is to hold the cameras and fix their relative position while
allowing for a variety of camera layouts to be set up. Because there are not many institutions
building camera arrays for multiview or lightfield capturing, there are no standardized
methods or best practices for mounting the cameras.
Looking at early arrays in the literature, Zitnick et al. [63] at Microsoft Research used

sections of square aluminum tubing mounted on normal tripods (see Figure 2.19a). All
connections were made using drilled holes in predetermined positions and screws through
the square tubes. The cameras themselves are mounted on camera ball mounts, allowing for
limited rotation around all three axes. The overall stability of the system mainly depends on
the stability of the tripods and ball mounts. Changing the relative position of the cameras
would require drilling more holes or a full rebuild of the frame. Another disadvantage is
the fact that the array only forms a one-dimensional arc. Adding another dimension is not
trivial and would require a significant amount of support material.
Wilburn [14] uses a different approach for the mount of the famous Stanford lightfield

array as shown in Figure 2.19b. He uses standing frames made from extruded aluminum

54

2.3. Design Challenges

profiles. The cameras are mounted directly on horizontal struts using a small adapter made
from acrylic. On these struts, the cameras can be moved freely in the groove of the profile
to adjust their horizontal distance. Moving the struts in a frame closer together or spacing
them out further allows for variations in the vertical distance. For dense layouts, a single
frame is sufficient, but the cameras can be spread over multiple frames in case more area
has to be covered or a non-planar arrangement is needed.

Newer designs such as the one from the Fraunhofer IIS [64] in Figure 2.19c or Google in
Figure 2.19d are far less flexible. Their cameras are held on customized mounting plates or
mounting brackets in a precisely defined position without any room for movement or rotation.
While those fixed positions are easier to calibrate, as there are fewer free parameters, ev-
ery time another layout is needed, the mounting plates or bracket holders have to be remade.

Our design was inspired by the Stanford design, as the newer examples had not been
published when the majority of our design process happened. A modular frame design made
from aluminum profiles is the base for our camera mount. Some renders of the intermediate
stages during the planning phase are shown in Figure 2.20. On a height-adjustable portion
with two horizontal bars, up to two camera frames, with a size of one by one meter, can
be installed. To guarantee the full range of vertical movement, the vertical part is only
supported towards the center and the rear of the frame. The frames are hanging off the
horizontal bars for easy installation and reconfiguration but can be fixed in place with
screwed connectors. Horizontal bars on the camera frames allow for a step-free adjustment
of the camera’s vertical distance. The cameras themselves sit on 90-degree angle pieces on
the end of short extensions, with an options ball head for adjustability. The extensions are
screwed into movable fixings in the horizontal bars, so moving them adjusts the camera
distance in the x-direction. In their back, they have a mounting plate which guarantees
they always form a right angle with the horizontal bar they sit on. These bars offset the
cameras to the front of the frame and their length is used for proper cable management to
minimize the cable movements directly at the cameras when the frame is manipulated or
moved. The weight they shift from the center of the frame is counteracted by the weight of
the cables going to the back and does not significantly influence the balance of the whole
system. To increase mobility, lockable heavy-duty wheels are installed in the corners of
the base rectangle. Similar to the module boxes, the shortest side of the stand’s base was
limited to 80cm for easy door traversal.
For the whole system, two stands with two camera frames for each were ordered. Com-

pact layouts can fit into a single frame on either the top or bottom position on a frame.
Uniform layouts that spread over multiple frames must take the thickness of the frame
into account for both horizontal and vertical baselines. For multiview captures with larger
camera baselines, the stands can be connected without a gap, which gives an area of
two by two meters in total. Another configuration is shown in the bottom image of Fig-
ure 2.20. With lockable hinges between the camera frames, the frames can be aligned
into a single row between the stand and even form an approximated arc. For additional
stability of the 4x1 setup, an optional leg to support the frames in the center was added later.

Due to inconsistencies in the positioning of the planned screw holes in the aluminum
profiles, the backplates of the holding arms have a gap of up to two millimeters to the strut
they are supposed to touch. This means they allow for a rotation in the camera arms of up
to ten degrees from the right angle they are supposed to hold. As an intermediate solution,
a brace was designed to hold the arms at the correct angle while fixing their screws. It was
sturdy but flexible enough to hold the arm and the back strut firmly but could be removed
once the screws were tightened. A second brace was made to hold the cameras straight

55

2. 5D Lightfield Array

(a) Array by Zitnick et al. [63]

(b) Stanford array by Wilburn [14]

(c) Array by Ziegler et al. [64]

(d) Array by Broxton et al. [65]

Figure 2.19.: Camera arrays with different mounting techniques

56

2.3. Design Challenges

Figure 2.20.: Renders of our camera stand during planning phase

57

2. 5D Lightfield Array

(a) Camera aligners first version (b) Camera aligners final version

Figure 2.21.: Different versions of camera alignment helpers

on top of the angle piece until they are screwed in place. It was slotted into the camera
arm, held the front angle in the correct position while the extensions on top align with the
sides of the camera and point it into the scene, directly in line with the camera arm. The
designs in Figure 2.21a were manufactured using an FDM 3D printer in PLA and worked
fine in our lab tests. Only after the first shoot under professional film production settings
(details in Section 2.6.1), did it become obvious that the braces were not strong enough
to hold the arms during the final tightening of the mounting screws and allowed for a few
degrees of deviation from their optimal position around the y-axis. Manual fine-adjustment
was required for both the camera arms and cameras on the angle pieces. Since this had
to be done for each of the 64 cameras, ideally before every shoot or when the array was
moved, and could only be done accurately for one camera at a time, the required time effort
warranted a redesign of the adjustment helper pieces.

Making the walls of the braces thicker or manufacturing them from a harder material
was not an option, as they had to stay removable so as not to interfere with neighboring
cameras and cables in compact layouts. To eliminate the possible rotation of the camera at
the end of the camera holder, the right-angle bracket was replaced with a custom part. At
the bottom of Figure 2.21b, the result of the design process is shown. It inevitably resembles
the angle piece somewhat, as it must hold the camera in the same position. Rotations
around the length of the camera arm are eliminated by the back section which completely
envelops the aluminum extrusion and prevents any rotation. The screw that previously held
the angle bracket now prevents the new part from moving off the strut. The cutout on the

58

2.3. Design Challenges

top has the same dimensions as the tripod mount on the bottom of the cameras. With an
exact fit and a camera screw on the bottom, this holder fixes the rotation of the cameras
around all three axes with no room for deviations. This does not allow for the use of the
ball mounts underneath the cameras, however, our shoots prioritized precision and compact
layouts. In any case, the holder could be replaced with the original angle piece should the
ball mounts be required.
The alignment of the arms themselves was made easier by simple distance plates. They

have to be remade for every new layout but due to their simplicity, the design and manufacture
can be completed within minutes. For reconfiguration of the cameras, the first column is
aligned by hand using a spirit level and a precise tape measure. The remaining columns
are fixed relative to the first, with two spacer plates in the front and the back of the arm,
maintaining the relative distance and zero rotation. Even if the arm in the first column
has a rotational error, it remains the same in the whole row which makes it easier to
detect, estimate its parameters and ultimately remove. Both new pieces made the setup
and fine-adjustment of the mechanical components much faster and more precise.

2.3.4. Central Controller Case

Up to this point, the focus has been on the cameras and the modules rather than the central
control unit to which they are connected. Its role is to coordinate the devices in the system,
configure them, monitor their status, and provide an interface for an operator to access the
system’s functions. To accomplish this, two things are necessary. First, a way to collect
all the cables from the modules for data aggregation and distribution. Second, a central
server with sufficient network bandwidth to receive the data from all camera units, enough
processing power to handle the incoming data, into a live preview for example, and hard
drives long-term storage of the captured scenes.

An enterprise-grade switch with 24 ports can handle the uplinks from the modules (five
Gigabit connections per module, 20 connections total). With two SFP+ ports capable of 10
GBit each, it can deliver the complete input data at full speed to the central server.
For the connections to the camera control boards and their microcontrollers, a different

solution is needed. Since we have to deal with only partially standardized communication
with specialized hardware over these connections, custom hardware is needed. Following a
similar design process like the one for the camera controller board, the PCB in Figure 2.22
was created. The module connections on the bottom feature the same I2C buffer chip as
the camera boards, to maximize the possible cable length between them. LEDs and buttons
are handled by the front panel section. To control the temperature in the enclosure for
all central server hardware, adaptive temperature control is implemented to activate the
fans when necessary. The big connector on the left side leads to a 10-inch capacitive touch
panel which can be used to control and monitor the most important features of the central
controller. Additionally, its functions can be used via a simple REST interface accessible via
the Ethernet port on the microcontroller development board. Here, the use of a full TCP
stack was chosen since it is the easiest way to connect it to a full-size computer and because
this device does not have any functions with hard timing dependencies, apart from the
generation of the master shutter signal. By using a hardware timer in the microcontroller
to generate the pulses and an internal interrupt signal to delegate them to a GPIO pin, this
eliminates the dependency on free CPU cycles for a clean and jitter-free signal.
Further details can be found in the schematics of the board in Appendix A.2. Details

about the programming on the microcontroller are given in Section 2.4.

59

2. 5D Lightfield Array

Figure 2.22.: Central controller PCB

Figure 2.23 shows the controller in its 19” enclosure working for the first time with a
single module connected. The LEDs over the module connections indicate successful con-
nections to the corresponding modules I2C bus. Above the left-most module connector is a
3.5mm audio socket which is used as an input for a button that triggers manual shutter
signals. The LED next to it activates in sync with the generated shutter signal for visual
confirmation. Its function can be configured in three different modes: Single, Burst, and
Toggle. Based on this, the push of the shutter trigger button either generates a single pulse,
a configurable number of pulses with a set delay between them, or continuous pulses with a
set frequency until the button is pressed again. Next in the line are status indicators for
over-temperature faults, stuck or broken fans, and the internal power supply.

On the left, a touch screen displays an overview of the current system’s state. In addition

Figure 2.23.: First controller case test

60

2.3. Design Challenges

Figure 2.24.: Different screens available via the controller touchscreen

to the network status, including important IP addresses, it shows all active device addresses
on the I2C bus and the current settings of the shutter generator. Underneath, for each
active module, the following information is shown: status of the power supply in the module,
measured temperatures in the module case, and the control chip itself, rpm speeds of the
two monitored fans with the current PWM setting, the individual power status of the NUCs
in the module, as well as the configured delays for each camera. With the buttons at the
bottom, different views can be chosen which focus on a single aspect of the module and
offer extended control options.

Extending the master controller for additional modules would only require a new front
plate with more connections and the corresponding bus buffers on the internal board. Only
in the case that more than 8 modules are used with this controller do more substantial
changes need to be made, as then the three address lines would not be sufficient to assign
distinct addresses to all devices.

2.3.4.1. Server Hardware

Server hardware comes in many sizes and countless configurations. In order to have enough
resources for live processing of some of the data, it needs to have at least one logical core and
4GB of RAM per camera. The total amount of 256GB of RAM was not a problem as server
mainboards and processors usually support 1 to 2TB maximum. The only option which
provided enough cores with sufficient speed at the time the server was built was that of using
two CPUs on the same board. Even though CPUs with enough cores were available, their
clock speeds were rather limited, due to the maximum amount of heat a single processor chip
can dissipate, apart from being more expensive than two smaller processors. For network
connectivity, a network card with two SFP+ ports for the internal network and a single
Gigabit port for connecting the system to the rest of the world are necessary. The dual SFP+
cards are readily available since data centers already use speeds of 40 Gbit and beyond for
internal communication and the Gigabit port is a standard feature on most mainboards.
For storage, two mirrored SATA SSDs were chosen for the operating system and five 12TB
hard drives in RAID5 mode for the camera data. After formatting, this results in 44TB
available storage with the capability to withstand one failing hard drive. Considering that
one full-length capture of about 20 minutes would result in 64 · 200GB = 12.5TB of raw

61

2. 5D Lightfield Array

Figure 2.25.: First version of the controller case with all devices

data and storing the color version in raw format adds an additional 37.5TB, this is clearly
insufficient for long-term use. This fact, in combination with the insufficient write speeds
observed during the first production with the array (see Section 2.6.1), which never exceeded
30-40MB/s after the hard drive cache in the server’s RAM was filled, led to the addition
of the network-attached storage described in Section 2.3.7. For experiments using the
view interpolation technique in Section 7, the option for a full-size GPU was included in
the requirements of the server, which made a higher enclosure and a bigger power supply
necessary.

The final specifications for the server are as follows: two Intel Xeon E5-2697v411 CPUs
with 36 logical cores each which share 256GB of RAM, an Intel X520-DA2 network card,
and a RAID controller based on the 9261-8i chipset. It is housed in a 4HU server case
high enough to fit a GPU in the PCIe slots and with enough space for the five hard drives.
The custom software we wrote so the server can fulfill its required functions is described in
Section 2.4.

2.3.4.2. Mobile Controller Case

In order to keep the stack of devices around the controller as mobile as the rest of the array,
they are mounted in a custom flight case with built-in 19” rack rails. In Figure 2.25, the
front of the completed case is shown. From top to bottom, there are power switches for all

11https://ark.intel.com/content/www/us/en/ark/products/91755/intel-xeon-processor-e5-2697-

v4-45m-cache-2-30-ghz.html

62

https://ark.intel.com/content/www/us/en/ark/products/91755/intel-xeon-processor-e5-2697-v4-45m-cache-2-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/91755/intel-xeon-processor-e5-2697-v4-45m-cache-2-30-ghz.html

2.3. Design Challenges

devices in the case, the master control box, a small storage drawer for short cables, and
other smaller peripherals during transport, a keystone patch panel with the modules for
the camera module uplinks (1-20), a USB3 connection to connect peripheral devices to the
server, a DisplayPort connected to the server, one Ethernet port to connect the whole system
to the Internet and a USB port connected to the microcontroller in the master control box
for reprogramming. The last component is the main central server. The switch is mounted
in the back, opposite the power distribution unit on top. During normal operation, only
the front of the case needs to be open because the only external connection required, apart
from the ones coming in through the front, is the power for the case which enters through
the side of the case.

2.3.5. Cabling

In total, the whole camera array contains over a kilometer of cables. Since they have many
different purposes, lengths, and connectors, in addition to the fact that some of them are
not used for their original purpose, careful planning was necessary. Additionally, they can
carry a significant amount of current in some areas, making them a potential fire hazard if
not chosen correctly.

The power cables which connect the power supply to the NUCs carry the most current in
the whole system. With the original power supply rated at 65W [54] and us using only
12 instead of the default 19 Volts, the cables have to carry a total of 64W/12V = 5.42A.
The responsible DIN VDE standard requires a minimal wire diameter of 0.75mm2, which
is enough for 6A continuously [66]. One end has to have a male barrel connector with a
5.5mm outer and 2.5mm inner diameter to connect to the NUCs. The other end has to
plug into the power supply, for which we use a custom mini fit jr. connector from Molex,
as discussed in Section 2.3.2. According to their specification, each pin is rated for up
to 6A when used with a cable between 18AWG and 20AWG [67], which happens to be
precisely the equivalent of a 0.75mm2 European wire (between 18AWG and 19AWG to be
exact). Knowing the components can work together while operating within their intended
parameters, the cables were manufactured from barrel connectors with 2m of attached cable,
Molex connector housings, and the matching crimp terminals after the cable was shortened
to the required length. The transistor circuit for the individual power switching capability
was added to the finished cable once it was complete.

The cameras need two cables each: a USB cable for power, data, and configuration and
a generic one for the GPIO pins including the shutter control. For the USB we chose a
high-quality USB 3.0 A to micro B cable with a length of 5 meters and screws to be able to
lock it in place on the camera’s backside. As discussed earlier, 5m is the maximum usable
length without intermittent data losses, meaning that the cable must pass directly from the
NUCs to the camera, taking into consideration the approximate 1 meter of length within
the module before it extends beyond the case. Considering the possible stand configurations
from Section 2.3.3 and assuming the modules are always located around the center of the
whole setup, the remaining four meters are more than sufficient to reach every camera in
the layout. In most cases, there is still enough cable left for proper cable management.
The second cable only carries the shutter signal to the camera and optionally some low

voltage, low current power. Its connectors on both ends have been decided by the cameras
we chose and our electronics designs. We made the cables based on readily available 5 meter
long Ethernet cables. Since crossover cables have become less and less popular in the last
decades and patch cables became the standard, we can assume that the connectors on both

63

2. 5D Lightfield Array

sides have the same pinout. In order to wire the GPIO connector correctly, the only thing
we need to determine is whether the cables follow the TIA-568A or TIA-568B standard [68]
because this determines the order of the colored wire pairs in the RJ45 connector. Luckily,
even when the seller does not specify this explicitly, finding the order requires just a multi-
meter or sometimes even only a good eye, depending on the transparency of the connectors.
Once the order of the pairs is known, soldering the GPIO connector to one end of the cable
becomes trivial. The two unused wires are snipped off on the camera’s side. Since those
cables follow roughly the same path as the USB cables, they lose roughly the same amount
of length inside the modules. Again this is not a problem, and even if it were to become one,
these cables could be easily replaced with longer versions, because they only carry signals
with very low frequencies compared to the USB.

To keep the signal between the microcontrollers in the camera modules and master controller
as clean as possible, a shielded Ethernet cable was chosen for this purpose. Internal tests
have shown that those cables work reliably up to 7.5 meters and become unreliable at 10
meters. To have some safety margin in extra noisy environments we chose a length of 5
meters between the camera modules and the master controller.

For the manual shutter trigger, which only connects a push button to the master con-
troller, we chose a simple audio cable with high flexibility and damage resistance. An
additional layer of protective electrical shielding reliably prevents erroneous impulses from
being introduced, even when the cable runs close to heavy noise sources. With a length of
10 meters, it allows an operator to control the shutter comfortably even when standing in
front of the array, away from the controller.

All remaining cables are used for their intended purpose and were simply bought off
the shelf. The only modification we performed was on the power cables for the power
supply and the switch in the module cases. They were changed into a y-configuration and
connected to the power input socket of the module. That construction reduced the number
of power cables required per module to one, which makes them more convenient to use
without resorting to huge power strips. We also chose a power inlet that takes cables with a
standard IEC-60320 C13 connector with a dedicated fuse and on/off switch for added safety
and controllability.

2.3.6. Hardware Provisioning

The NUCs that control the cameras and gather the data from them are normal consumer-
grade computer systems. Therefore, they require the installation and configuration of an
operating system before they can do anything. In case of hardware failure or when new
major releases of the operating system are required, this has to be repeated. Doing this
by hand for all 64 devices, using the default installation methods, requires a significant
investment of time and effort, in addition to physical access to devices without which the in-
stallation medium can not be connected to the computers and the setup can not be controlled.

To get around this, we deployed a PXE environment based on iPXE12 in the array’s
network. A TFTP server [69] provides the files and the DHCP server provides further
details to clients. Both services are running on the central array server and are provided to
all clients on the network. All NUCs in the network are configured to perform a network
boot by default. They download the iPXE executable from the server, together with a

12https://ipxe.org

64

https://ipxe.org

2.3. Design Challenges

Switched off

DHCP request

Start iPXE

Retrieve and run
iPXE Boot script

Unit flagged for
installation?

Boot local system Apply Salt Highstate Running

Retrieve and start
Ubuntu installer

Install Ubuntu Linux

Install Salt Minion

no

yes reboot

re
b
o
ot sh

u
td
ow

n

Figure 2.26.: Major steps in the boot sequence of the camera units

configuration file that provides a menu with different installation options. Without user
interaction, it boots whatever is installed on the system drive. When a keyboard and
monitor are connected to the computer, it allows us to start and guide the setup of our
operating system of choice. For the NUCs, this is Ubuntu Server 18.04, for other machines in
the system, it is CentOS 8. This setup removes the need for connecting a physical medium
to the computers when they need to be re-installed.

The process of the OS setup is still a lengthy operation, as it involves unavoidable waiting
times between steps and the transfer of the peripherals between the computers. Considering
the fact that the setup of all NUCs should be identical apart from the hostname or some
other identifying property, it can be automated further. An auto-install script provided by
the TFTP server can accomplish that but using the script alone leads to completely identical
installs including the hostname. To get around this problem, we generate a hostname string
based on the MAC address of the device at the beginning of the PXE script and give it
to the Ubuntu setup, using a kernel parameter that takes precedence during the setup.
That step allows us to fully automate the setup for our purposes once it has been started.
Triggering the setup still requires physical inputs for the devices because changing the
default option in the startup PXE script would cause any rebooting machine to completely
reinstall its system. We prevented that by adding one new function to the PXE script. After
it generated the hostname for the machine, it requests a second script with the hostname in
its path from the central server. By default, this request fails and it falls back to starting
the menu described above. If we want to trigger a reinstall, we make the server return a
minimal script that forces the PXE into the automated setup process. Since the hostname,
given in the URL of the request, uniquely identifies one device, we can directly target a
single device which we wish to reinstall with this approach.

Figure 2.26 shows all components of the boot sequence and how they work together.
The overall setup process installs a headless system with the minimal set of packages
and configuration files required to allow the unit to connect to the cluster control system

65

2. 5D Lightfield Array

described in Section 2.4.1, which takes over once the setup is complete and takes care of the
remaining required packages and configurations.

Since we use a network installer for the setup, nearly all system packages have to be
downloaded from one of the official servers. In particular, when multiple machines are
running the installation at the same time, the Internet connection speed quickly becomes a
bottleneck. Additionally, the router of the system risks being blocked from certain package
mirrors, because it requests the same data up to 64 times in short succession. The solution
for this issue is to install a Ubuntu repository proxy on the central server. We modify the
auto-setup script so that it accesses the proxy, instead of the external mirrors. This way, the
packages required for installations or updates are only downloaded once and then distributed
from the server’s cache. With the reduced load on the Internet connection and the ability
to make full use of the multi-Gigabit connections in the local network, the installs become
much faster and their speed is nearly independent of the number of computers involved.
The short installation time from reboot to full functionality, of 10-15 minutes, makes full
reinstallation the tool of choice to fix situations in which the behavior of a single computer
deviates from the rest after cable connection issues have been ruled out.

2.3.7. Storage Cluster

After the first production with the array, it became clear that the storage in the central
server was insufficient for bigger productions in both capacity and speed. The transfer
of the data from the camera units to the central server starts very fast until the RAM
available for filesystem caching is filled. Beyond that, the speed is limited by the RAID
controller’s capability to store the mass of relatively small files on the available hard drives.
Since the number of drives is low compared to the number of parallel instances trying
to transfer data and hard drives handle random accesses relatively slowly, due to their
internal moving parts, the transfer of a 15-minute sequence took multiple hours to complete.
Even when known beforehand, such enforced downtimes are unacceptable for any production.

This lead to the search for a better storage solution. While being fast enough to quickly
transfer the data, the data needs to be safe even when small hardware failures occur and
since the system is still a research device, it should be easily extendable when the need
arises. In addition, it has to be as mobile and transportable as the rest of the system. The
following options were considered:

Cloud Storage

Rented cloud storage is now more available than ever. It can be scaled up and down
dynamically to nearly unlimited sizes but the exact physical location of the data can only
be determined up the continent or country in which the data center is located. The provider
also has to be trusted in regard to data security, as the customers do not have any direct
control over data replication or access control checks. The major drawbacks in our case
are the monthly costs that can accumulate very quickly when multiple tens of Terabytes
have to be rented and accessed regularly and the Internet connection speeds that would be
required. The current storage in the server stores between 200 and 400 MBit per second in
its slow phase after the cache is filled. Common Internet connections in Germany, apart
from the ones in large corporate and university networks, do not even offer upload speeds in
the same order of magnitude [70]. Even though there are no initial costs for this option, the
drawbacks outweigh the great flexibility of this solution.

66

2.3. Design Challenges

Single Large Storage Server

One big storage server with many hard drives in the system can distribute the load much
more evenly. A big RAID controller or special filesystems like ZFS can add redundancy
to the data for protection [71]. Server cases with 60 or more hot-swappable bays for 3.5”
hard drives are available from many manufacturers with a multitude of options for CPUs,
RAM, and network connectivity. Full control over the data failure protection on a filesystem
or hard drive level with very high achievable network speeds and a great choice of access
modes make this solution a strong contender in our case. The main negative points are
the existing limitations when the storage needs to be extended. With RAID controllers
and ZFS, the chosen operating mode determines the granularity of how the capacity of the
storage can be increased. Usually, such systems are configured with all bays occupied and
if the capacity needs to change, either all hard drives or the whole system is replaced and
configured again. Therefore, there is often no benefit of adding single new drives or using
new drives with different capacities than the ones already in the system, either because the
single drive can not be added into the active pool of drives or a bigger replacement drive is
limited by the smallest drive in the system. Only a complete exchange or adding a bigger
number of drives effectively increases the capacity. Decreasing the capacity to change the
ratio between protected and unprotected space or changing replication parameters requires
a full backup and recreation of the affected storage sections. All these facts require very
careful planning of system settings, that can not be changed later without a full reinstall,
which also leads to complete data loss. Creating a full backup for up to 200TB of data
would require a significant amount of time and monetary effort.

Local Storage Cluster

Storage clusters are the conglomeration of multiple smaller storage servers to form a single
entity. They fall into the area of software-defined storage. The rough hardware requirements
are similar to those of the big storage server, only distributed over multiple machines with
fewer hard drives. Only RAID controllers are not required because redundancy, recovery,
distribution, and all other data-related operations are handled by the supervising software.
Hard drives are used to store the basic data blocks and new drives can be added dynamically,
but only work efficiently if similar amounts of storage are added to a sufficient number
of failure domains, depending on the configured replication. There are different systems
with different feature sets available and a small number of these were evaluated for use
in the future camera array. LizardFS13 offers a virtual filesystem that spans all drives in
the cluster, with dynamic redundancy rules that can be applied and changed on the folder
level. Because of problems we had with the data recovery in case of hardware failures at
the time of evaluation, we favored a different system. Tests using CEPH [72] showed more
promise. Based on the Reliable Autonomic Distributed Object Store (RADOS), it offers
three different modes to access the data. Data objects can be used directly, with a unique
name and arbitrary sizes and contents. Those data objects can be accessed and modified
using the RADOS library available for most Linux-based systems. CEPH also supports
RBDs or RADOS block devices which are virtual hard drives that can be accessed remotely,
integrated into a system- and then used like any other hard drive. Last is the CephFS,
a filesystem that can be accessed by multiple clients at once and behaves like a network
shared folder. Its redundancy and other settings are configured on a pool level, where a
pool is a virtual data area which, by default, spans all available storage in the cluster and
contains either raw objects, RBDs, or data for a CephFS. The performance and reliability

13https://lizardfs.com

67

https://lizardfs.com

2. 5D Lightfield Array

of the system can not be proven, but its support from major industry players in the form of
the CEPH foundation14 and the fact that important research institutions with very high
capacity and speed requirements like the CERN in Switzerland use it for an increasing
number of parts of their storage infrastructure [73], speaks for itself.

Following the CEPH hardware recommendations, we acquired four servers with 16 logical
cores, 64GB of RAM, and 240GB M.2 SSD for the operating system. Each server has 12
slots for 3.5” hard drives, two 10GBit SFP+ ports, and two Gigabit Ethernet ports. In
total, we distributed 32 datacenter grade hard drives from two different manufacturers with
12TB each over the 4 servers. Each server runs a CEPH monitor, a CEPH manager, and a
CEPH OSD for every installed drive. For stability and higher data security, an additional
CEPH monitor is running on the central array server.

For best performance and the least amount of overhead, we decided to store our data
directly as objects. It is an excellent match for our data structure, using one file per frame
and camera. The name of all objects consists of three major parts. First, an arbitrary string
that identifies the scene they belong to. The second and third part depends on the type
of object. For frame data, it is a three-digit camera id and a five-digit continuous frame
number. Calibration data for rectification has the keyword ”calib” and the corresponding
camera id. The color correction profiles have the keyword color instead.

Important data whose recreation requires a lot of time and effort, such as the raw data
from the cameras, is stored in a replicated data pool so the data is always stored on at least
two servers at all times. Other data created by processing the raw data, is stored without
replication because, in case of data loss, it can be easily recreated with only very small
human interaction, and replicating it would cost precious storage space. To optimize the
transfer speeds after a capture session, a non-replicated cache pool is added to the pool for
raw data. During normal operation, it is always kept empty to guarantee that the current
version of the raw data is always in the replicated storage pool. Only when large transfers
from the camera units are made is the cache pool allowed to fill briefly, and then to be
drained immediately after the camera units have transferred all their data. The reasoning
behind this is that in the unlikely event of a hardware failure between the time the data
is captured and when it is completely replicated, the scene data either still exists in the
camera units cache or can be reshot because the array and the required props and actors
are still on set.

To use most of the speed of the storage cluster over the network, we upgraded the majority
of the camera arrays network to 10GBit links. Each member of the cluster has one 10Gbit
link to the camera array local network and one 10GBit link to a private network only for the
storage devices. CEPH recommends such a setup to separate the data transfers from and to
clients from the traffic created by internal replication, verification, or other maintenance
tasks in the cluster. The whole cluster connects to the rest of the arrays network with two
aggregated links. To accommodate the additional high-speed links in the controller box, the
switch there had to be replaced with a model having more 10Gbit ports. The upgrade also
affected the modules, whose five Gigabit uplinks were replaced with a single fiber 10GBit
connection. The useful bandwidth for every NUC in the modules is only increased when
not all of them are active at the same time, as the speed of the existing bottlenecks to the
central server and the storage cluster are still limited to 20GBit/s in total.

The servers can produce a significant amount of noise due to their fans, depending on
their current workload. For capturing sessions with audio recording, in which the array
should be as quiet as possible, it might be necessary to place the storage cluster far away

14https://ceph.io/foundation

68

https://ceph.io/foundation

2.3. Design Challenges

Figure 2.27.: Front and back views of the storage cluster case with all connections

from the rest of the array. Over relatively cheap OM3 optical multi-mode fibers, a 10GBit
connection remains stable for up to 300 meters [74]. For the noise reduction effect to work,
we do not need to make use of the maximum possible distance, but 100 meters of OM3 fiber
are reserved for such cases.

For mobility reasons, all devices utilized in the storage cluster’s operation are built into
a flight case as shown in Figure 2.27. With additional fans for better cooling, the storage
can be safely operated in most environments. Overall, it merely requires a single power
connection to start working and an uplink to the camera array for the data to be accessed
or modified.

The evaluation of the storage cluster delivered the expected results. With a total raw
capacity of 349TB, we have approximately 233TB of usable storage when the raw and
processed data has the same size. This approximation is slightly conservative because the
processed data in the non-replicated pool will always be bigger than the raw data, since these
frames have three color channels instead of one. Even when compressed, they still need more
space than the raw sensor data in the raw pool. Therefore, the usable capacity is slightly
higher in reality. By installing the RADOS library on the camera units, they can access the
cluster directly without having to go through the central server first. With this configuration,
we can now write data so fast into the persistent storage that the network uplink of the
storage cluster becomes the bottleneck. This means we can write about 2GB per second
into storage, but how fast it can go beyond that point has not been tested. Overall, the time
required to copy captured data from the caches to the storage is now about three times as
long as the capture time. This is still quite far away from real-time, which is not achievable
in any case as explained in Section 2.2.4, but it is far more manageable than the situation
described before. In case it ever needs to be faster in the future, another server can be
added into the case or more drives can be added to the existing servers. Additionally, more
links can be added to the connection to the rest of the system, but because the switch in the
storage cluster is nearly full, everything beyond a small improvement requires a bigger switch.

69

2. 5D Lightfield Array

Array module

Camera node
256GB SSD

16x

Array module

Camera node
256GB SSD

16x

Array module

Camera node
256GB SSD

16x

Array module

Camera node
256GB SSD

16x

CEPH storage cluster

Storage node
8 x 12TB HDD

4x

Hardware and shutter
controller

Central control server
5x12TB HDD in RAID5

20TB cloud storage

Central switch

100 MBit

20 GBit

20 GBit

1 GBit

10 GBit

10 GBit

10 GBit

10 GBit

Figure 2.28.: Connections of major components in the camera array. Dashed lines represent
GPIO and I2C connection. Uninterrupted lines represent Ethernet connections.

Figure 2.28 gives an overview of how the major components are connected. The only part
that has not been introduced yet is the cloud storage in the bottom right. To share the data
with project partners or other interested parties, direct access to the cluster is not the ideal
solution. The main problem would have been the connection from the outside to the cluster.
In the university network that would have been possible, but whenever the array is moved
for a production and is connected to a different network, there is a downtime for everyone.
Explaining the internal data structure and the numbering system for the cameras, which
is based on their position in the modules and differs from the one used in most lightfield
examples, would have added even more complexity. The projected effort to carry this out
would have been too taxing in comparison to the benefits gained.

Instead of a direct share, we followed a different route. By financing a small extension to
the Nextcloud15 instance hosted by the computer science department of Saarland University,
we reserved a share of 20TB for our purposes. Its location at the university guarantees
a high availability and connection speed. To reduce the need for additional explanation,
we only provided the data in a format compatible with the popular lightfield toolbox by
Dansereau et al. [75, 76], whose way of counting cameras and representing data became the
default for most new algorithms and is well known by the researchers working with lightfields.
Since the procedure is very similar for every scene, the process of creating the archives
with the frames in the correct order is handled by scripts as described in Section 2.4.4.
Reordering hundreds of thousands of frames by hand every time something changes in any
step of the processing pipeline (see Section 2.5) and project partners needing access to the
new data, would simply not be feasible.

15https://nextcloud.com

70

https://nextcloud.com

2.4. Implementation Details

2.4. Implementation Details

So far, this chapter has mostly covered the hardware of the camera array and its connections.
Since a total of 69 computers need to be managed and controlled for normal operation,
the required processes have to be fully automated or at least be supported by automated
systems. To achieve this goal, a combination of already available and custom-made software
was needed. The controlling instance for most of these systems is situated on the central
server to keep the configuration in one place. In the following sections, the responsibilities
of each system are explained.

2.4.1. Cluster Control

The cluster control software keeps the software and configuration on the systems up-to-date.
For this, we use the Salt system16. Its communication is encrypted and it comes with
functions to configure nearly any aspect of common Linux-based systems. All functions
check the current system state before executing. When a change is not needed, it is not
executed unless it is forced. In case a function is required that can not be performed using
the onboard tools, new functions can be added in the form of modules written in Python.
Specific clients or groups of clients can be targeted via their hostname or properties called
grains which represent system properties like the network or system configuration.

With this system in place, maintenance tasks like updating packages or rebooting certain
units boil down to simple short console commands. Overall, it simplifies many tasks in the
day-to-day work with the array, including setting up freshly installed components.

Once the automated OS installation from Section 2.3.6 has finished, the computers connect
to the master instance. They first receive the so-called high state from it, which defines the
base commands to be executed whenever a client connects to the master. For us, this means
the internal SSH server is activated and configured so that the central server can make
connections without a password in case manual connections are necessary in the future.
After that, a PTP service that synchronizes the internal clock to the central server is started.
Keeping the clocks synchronized is important for the functionality of the storage cluster
and delayed tasks on the camera units.

From there, the path deviates depending on whether the computer is part of the storage
cluster or part of the camera modules. The camera units add additional package repositories,
install the necessary drivers to be able to use the cameras, as well as the packages and
services for our unit control system. Members of the storage cluster only configure a set of
CentOS internals to work with the rest of the array and install the packages for the CEPH
operation with the required configuration files and certificates.

Custom modules we implemented for the array include deployment of OSDs on unused
hard drives on the storage nodes, upgrading the firmware of the cameras, and many tasks
for transferring and processing the camera data on the camera units, most of which will
be discussed in Section 2.4.4. To identify problems with the drivers or the connection of
the cameras, we implemented additional grains which identify the current status of all
connected cameras using the manufacturer’s API, giving the camera model, serial number,
and firmware version. To ensure proper functionality for the preview during capturing,
another grain reports the accessible hardware encoding and decoding capabilities of the
system.

Salt’s file transfer function was used in the first stages of array development, to transfer

16https://github.com/saltstack/salt

71

https://github.com/saltstack/salt

2. 5D Lightfield Array

Connectingstart

IdleRecord
Extrinsic
calibration

Intrinsic
calibration

ϵ / REGISTER

CALIBRATE
{”type”:”extrinsic”}

STOP

CALIBRATE
{”type”:”intrinsic”} STOP

RECORD

STOP

RESET

RESETRESET

RESET

Figure 2.29.: State diagram of possible client states in the Argus control system.

the frame data from the caches to the server. It was fast enough to saturate the storage
system in the central server, during the fast phase which mostly went into the filesystem
cache and was limited by the network connection, and the slower phase which overwhelmed
the hard drive raid, as discussed in the beginning of Section 2.3.7. The main reason why its
use for that function was discontinued later, is that a transfer to the storage cluster would
always have involved a now unnecessary intermediate step on the central server.

2.4.2. Unit System

While the computers are set up and kept up-to-date using the salt system, parameters
concerning recording sessions can change many times between reboots. To make those
changes possible without restarting running processes and to keep the system as responsive
as possible, another system was needed.

Named after the many-eyed giant from Greek mythology, we created the Argus controller,
partly in the form of the thesis by Frank Waßmuth [37]. Based on Twisted17, an event-driven
networking framework, and Msgpack18, it is written in pure Python and is precisely tailored
to our requirements. With continuous sequence numbers in every message, it allows for
reliable asynchronous communication between the clients and the server.

For the different operation modes of the array, representative states exist in Argus.
In Figure 2.29, the states are shown with their possible transitions. All units start in
the Connecting state, in which they only try to register with the server. Once registered,
they switch to the idle state, in which they wait for further commands. From there, they

17https://twistedmatrix.com
18https://msgpack.org

72

https://twistedmatrix.com
https://msgpack.org

2.4. Implementation Details

transition to the task-specific states which all relate to some operation using the camera.
When a Stop command is issued, they perform calculations on the data they acquired, undo
all changes made to the settings of the camera when the state was entered, and send the
results back to the server before going back to the Idle state. All states also listen to a
reset command, which forces them to go back to the connection state. It is used in case the
communication with the server stopped working and the units are in different states after it
has been restarted.

The Record state is most commonly used and most versatile. It starts a GStreamer
pipeline that sends the output from the cameras as an H.264 stream via RTP to a chosen
host and port, which usually is the central server. By default, the cameras are set to capture
color images with a resolution of 1920x1200 using the internal oscillator for the shutter.
This is ideal for quick previews, setting up the focus and aperture, and aligning the cameras
on the stand. As the quality of the internal debayering process in the cameras was deemed
unsuitable for professional production, a mode that captured the raw sensor data and only
debayered them for a color preview was added. For actual capture, the frames from the
camera are duplicated before encoding them for the preview and then saved as PGM or
PPM files, depending on whether they contain color or not, and then stored on the internal
SSD with an increasing sequence number. That format, which minimizes the overhead
required before writing them to the disk, was chosen as it is fast enough to handle the data
in real-time without caching. All these parameters, including the ones regulating the shutter
input, are processed and handled by a custom GStreamer plugin that forms a wrapper
around the camera manufacturer’s Spinnaker SDK19.

After the first couple of internal shoots, the recording state was extended by two conve-
nience functions to make the setup faster and easier. The details about those overlays are
part of Section 2.4.4.

When the Stop command is issued while recording, the GStreamer pipeline is torn down
and the camera parameters, especially the ones regarding the trigger configuration, are
reset. In the case that this is not done, the cameras can remain in a state which does not
allow the pipeline to restart in the future. When it happens, the only way to restore normal
function is to power cycle the camera by disconnecting the USB cable or removing power
from the computer to which it is connected.

The calibration states behave the same while being active. Both capture color frames
at full resolution using a configurable trigger. Apart from being transmitted for preview, just
like for recording, the images are run through a custom GStreamer plugin which detects a
chosen calibration pattern in them. The detected patterns are counted and their coordinates
are collected. When either the requested number of patterns is found or the stop command
is issued, the behavior of the states diverges.

The intrinsic calibration state takes all collected samples, runs them through the intrinsic
camera calibration function in OpenCV, and returns the final coefficients to the server.
There, they are collected and stored for future use.

Since extrinsic calibration can only be performed with the data from multiple cameras,
the extrinsic state sends the detected points directly to the server without processing them.
Once the data from all cameras is received, the server checks whether all cameras have a
valid result from a previous intrinsic calibration. Only when this is the case does it create
sets of matching points between a central camera and each remaining camera to use them in
the OpenCV stereo calibration function. The results are then stored for future operations.

19https://www.flir.com/products/spinnaker-sdk

73

https://www.flir.com/products/spinnaker-sdk

2. 5D Lightfield Array

While the recording state is used in most array operations, the usefulness of the cali-
bration states in their current version has diminished over time, mainly due to the problems
discussed in Section 2.2.4. Since the more recent solutions for calibration vastly differ from
the ones presented here, (see Section 2.5) and they were rapidly changing for quite some
time, putting them into a format that could be run on the server inside the system was not
possible yet and is left for future work.

The system controlling the camera state before, during, and after recording, is a Python
service without a human accessible interface. For easy usage of the whole system, a REST
API was added to the unit control system and a simple web page was created to interface
with the API. Apart from the functions for state transitions, it includes functions to set and
get the internal parameters of a single or all camera currently active in the system. That
way, the cameras units can be monitored and controlled with any device featuring a decently
modern web browser. To extend the control to the whole system, interface functions for the
controller box were added. That way it is not necessary for users of the web interface to
consider whether a function is controlled by Argus or the control box.

2.4.3. Shutter Control

The shutter delay for each camera and the power to the NUCs are controlled by a single
microcontroller with only one core inside the master control case. Its software is based on
FreeRTOS20, which separates the different parts of the software into tasks with different
priorities. For the master unit, this includes interfacing with the touchscreen, handling its
Ethernet interface, including the simple REST API, gathering information from all I2C
devices on the bus, and generating the master shutter signal.

Since even UI libraries with a very small footprint were too much of a burden on the
available memory in the CPU, we designed a custom library that heavily depends on the
display controller’s capabilities for drawing geometric forms and text. With the help of the
display’s capability to only update parts of the screen, a fairly fluid user experience could
be achieved with multiple data updates per second. Whenever an input on the touchscreen
is detected, the coordinates are tested against all buttons on the screen and if they are
inside a button, the corresponding function is executed. By generating text on buttons and
labels using functions during rendering, the amount of memory reserved for caching texts
was minimized at the expense of more CPU cycles, because the strings need to be created
and formatted more often. Using that approach, the only things we need to store for a UI
element are two 16bit coordinates for its position, two 16bit values for width and size, three
bytes for its main color, and two optional function pointers. One is called to create the
text visible on the element, the other is executed when the element is clicked or activated.
Complex status screens still put a heavy burden on the available memory which means all
other operations have to limit their memory consumption to the absolute minimum for the
whole system to work properly.

Because the display uses OLED technology which tends to show burn-in effects when
static contents are displayed for longer periods of time [77], a kind of screen saver was
implemented. After a set idle time, the display contents are replaced with a grid of buttons
filled with random colors which change every few seconds. The ever-changing display
color effectively prevents the burn-in effect on the whole display. A click on any button
stops the screensaver and shows the screen which was active when the screensaver was started.

20https://www.freertos.org

74

https://www.freertos.org

2.4. Implementation Details

To supply the screen with information, it has to be gathered from the distributed de-
vices. By polling all available addresses on the bus, the list of currently active devices is
kept up-to-date. After detection, several registers are read to find out whether the device
has been connected already since it was last turned on and if it is newly started, it is set up
for normal operation. The information from status registers in the devices is read and stored
in regular intervals, to be shown on the display. When the content of the device registers
needs to be modified, this happens between the polls. In most cases, there is no special
order for the communication since, after the initial setup, all regular communication is only
reading values, and write operations are not time-critical, so there is no problem when the
new device status is not represented in the controller’s data until after the next read period.
While being powered on, all devices on the bus remember their current state without regular
updates and continue operating based on their current parameters. Therefore, they do
not require re-initialization when the connection to the master becomes unstable or breaks
completely. Once the connection is reestablished, data updates continue as if nothing had
happened.

To trigger changes in the configuration of client devices at any moment other than their
initialization, a simple REST API was implemented on the microcontroller. For this to work,
it requests an IP address via DHCP and, once obtained, starts to listen for requests. To keep
it simple and resource-friendly, it only supports two types of commands. It can either report
the status of devices on the bus as seen by the master or request to change it. The exchange
format between the server and controller are simple JSON objects with the least amount of
decoration possible. Overall we keep the size of requests and answers below one kilobyte
to be able to store the complete message in a buffer without wasting too much memory
that could be used for other tasks. With that size, we are able to check the correctness
of every message and return appropriate responses in case of missing parameters, for example.

The last important function of the master controller is the generation of the master shutter
signal. While it only creates a sequence of short pulses, the time between them has to be
exactly the same to avoid jitter in the frame rate of the captured video. Using a repeating
hardware timer in the CPU in combination with an internal interrupt, the generated signal
is absolutely precise with only very rare occasions where the signal is one CPU cycle late.
With a clock speed of 120MHz, the deviation is measured in single-digit nanoseconds. Since
our cameras can only reach 40 frames per second and the delay between the frames is never
lower than 25ms, the jitter is negligible.

Using the REST API the delay between impulses can be set with microsecond precision
to match the desired frame rate exactly. Even frame rates that result in periodic rational
numbers for the delay, for example, 30 frames per second, can be represented with sufficient
accuracy.

In the modules, the microcontrollers are configured as I2C slave devices. They receive
the desired delays from the master for each camera. With these delays, they calculate a
set of bitmasks that define when a camera shutter should be triggered after the master
signal is received. For any step that contains a state change on the output ports, the mask
with the new state is stored together with the step number in which the change occurs.
When a shutter signal is received from the master, the client starts a hardware timer which
creates an interrupt every 10µs. The interrupt handler increments a step counter and checks
whether the next change is due. If that is the case, the outputs are changed by writing the
new bitmasks directly into the CPU registers responsible for the output pins and updates

75

2. 5D Lightfield Array

the pointer to the next change. Otherwise, it does nothing and waits for the next interrupt.
When the last shutter pulse is over, the hardware timer is stopped.

Since a CPU register in the microcontroller is only responsible for eight pins, setting
the output pins directly via the CPU registers minimizes the difference between the first
and second set of pins. Restarting the hardware timer for every instance of the master
shutter signal reduces the influence of clock differences in each microcontroller by limiting
the time in which the processors run unsynchronized to one frame duration maximum.
Comparing the impulses from all modules after a relatively long frame duration of one-tenth
of a second, using an oscilloscope with a sufficient time resolution, reveals that the time
difference between the rising edges of the impulses is at most 10ns. This is roughly one
tick of the CPU’s 120MHz core clock and the result of a slight deviation in the exact clock
frequency of the different microcontrollers. In a system using 10-microsecond steps to set
delays of multiple milliseconds, this deviation is acceptable and never led to problems, even
when fast timings and high precision were required, for example in the HaToy scene (see
Section 2.6.3).

To ensure that this precision is guaranteed, the microcontrollers disable the I2C buffers in
their modules after they detect a master shutter pulse and the hardware timer was activated.
Only when they do not receive a shutter signal for one full second, they reactivate the
buffer and reconnect to the I2C bus of the system. When the I2C bus is disconnected, the
microcontroller can use all its clock cycles to generate a precisely timed signal, and interrupts
with higher priorities from the internal hardware, are minimized. The bus recovery feature
in the buffer ICs ensures that all devices in the disconnected modules continue to work
normally, even when the connection is disabled during an active data transfer. Should it
be that the clock signal from the I2C master is missing for too long, the buffer generates
a sequence of clock pulses followed by a stop bit so all devices on the bus can end their
ongoing transmissions correctly.

With all these optimizations for low memory consumption and load management on the
microcontroller cores, the overall system is very stable and worked very reliably during all
capture sessions. When more modules are added to the system, a microcontroller with more
RAM would be necessary to store the status data of the new hardware. The footprint does
not need to be compatible, as the master board has to be remade to accommodate the
additional connections.

2.4.4. Repeating Tasks

During the operation of the array, there are several tasks that have to be performed at
least once per shoot. Some have to be done manually while others can be at least partially
automated.

2.4.4.1. Camera Mounting and Alignment

Firstly, it is necessary to create the camera layout by mounting the cameras on the frame.
The correct vertical alignment is the simplest part because it is based on the horizontal
bars in the frame, which are fixed on both sides. Careful measurement leads to near-perfect
distance and parallelism to the ground. The horizontal distance is more complicated.
Since they are only fixed using a single screw on the opposite end of the cameras, the
final application of torque to the screw can cause a slight rotation in the camera arm
and therefore, change the horizontal distance between neighboring cameras. Initially, this
movement was supposed to be prevented by a plate at the end of the arm, but as described

76

2.4. Implementation Details

(a) Misaligned cameras in the preview (b) Preview of a correctly aligned array

Figure 2.30.: Horizontal misalignment in the preview mosaic. When a straight vertical
feature does not line up within the columns of cameras, the positioning of the
cameras has to be adjusted.

in Section 2.3.3, this was made impossible by manufacturing inaccuracies. Even with the
final version of alignment helpers, a slight rotation can not be prevented. The only way of
detecting those is by checking the output of all cameras at once. By placing a long, thin,
and straight vertical feature into the scene, any deviation on the form or rotation becomes
visible as an offset between the cameras in a column of the array. Using a mosaic view,
containing the preview streams from all cameras following the same layout as in the array,
makes this check fast and convenient. With gentle force, the misaligned cameras can be
brought to their correct location. In Figure 2.30 such a preview before and after correction
of the error in horizontal rotation is seen.

The main complexity of this task lies in the creation of the combined preview. The central
server was planned with enough computational resources for such a task. With the help
of a shell script, a custom GStreamer pipeline is created. First, the preview streams from
all cameras are extracted from their respective RTP streams and decoded. Then they are
scaled to match the size of one tile in the mosaic, mirrored horizontally, given a thin border,
and marked with their camera id. Those images are then composited into a single FullHD
stream. For the last step, two versions exist. One that shows the composited image on
the screen of the server, and a second version that reencodes the mosaic and sends it to a
chosen computer on the local network. Depending on the complexity of the scene and the
surrounding setup, either one of them is more practical to use.

The horizontal mirroring helps with coordination when the display is placed behind the
array with the operator in front of it. In the flipped image, the operator’s left and right
are the same in the preview images, and the preview behaves more like a mirror. The
added border and the camera id help to separate the views visually and to identify a certain
camera when other adjustments are needed.

77

2. 5D Lightfield Array

Figure 2.31.: Aperture deviations in the preview mosaic. Lower aperture number lead to a
brighter image. Deviations in the other direction makes them darker.

2.4.4.2. Camera Lens Settings

Once the cameras are aligned, the parameters for their lenses have to be set. The aperture
and the focus are set by rotating two rings on the lens and fixed using set screws. As there
are no perceptible steps in the mechanism of the rings beside the end stops on either side
and with only the markings on the lens’s body as orientation for the operator, the settings
can easily deviate from camera to camera.

The optimal setting for the aperture is mostly defined by the scene’s extend in depth
direction and therefore, the allowed depth of field as well as the combination of the available
amount of lighting and the possible exposure time for each frame. Since the aperture setting
directly affects the amount of light hitting the sensor in the camera, it’s setting always
influences the brightness of the whole image. As shown in Figure 2.31, those errors can
be easily seen and recognized in the preview mosaic as a difference in brightness. Once
identified, the apertures setting can be easily corrected. That can also be done by multiple
people in parallel as long as they can see the preview screen and do not block too many
cameras.

Related to the effects caused by the aperture is the influence of the exposure time. The
maximum exposure time is fixed, based on movements in the scene, the allowed amount of
motion blur, and the frame rate. The lower bound is only defined by the capabilities of the
cameras. As it directly influences the amount of light collected by the sensor for one frame, it
can be used to adjust the brightness of the image together with the aperture and the lighting
in the scene. It can be often hard to detect over- or underexposed pixels in the frames by
merely looking at them, especially with reflective surfaces that look different in different
cameras. These areas lose some information because they cannot represent the scene’s
appearance properly and the missing details can not be recovered during postprocessing.
For these reasons, they should be avoided at all costs.

To make their detection easier, a custom GStreamer plugin was created and added as an
option into the preview pipeline. It can be configured with a lower and an upper bound for
the allowed brightness values. When a certain number of channels contain values outside
those bounds, they are replaced with an animated striped pattern in obvious colors to

78

2.4. Implementation Details

(a) Siemens star for focus evaluation,
generated with the code from [78].

(b) Markers for automatic focus evaluation.

Figure 2.32.: Different methods for manual and automatic focus evaluation

indicate danger for over- and underexposure respectively. Since these patterns are usually
surrounded by very bright or very dark areas, close to the set bound, the marked areas are
clearly visible, even in the previews. With that plugin, the danger of extreme color values in
the recordings is significantly reduced because problems and critical areas become very visible
during the setup phase in which changes to the scene to remove their causes are still possible.

The focus setting of the lens is more complicated. Firstly, the focus does not affect
the whole image equally. Depending on the aperture setting and the scene geometry, only
parts or even nothing at all can be out of focus when the setting is wrong. Additionally, the
precise correct focus can only be determined by watching the camera feed on a pixel level.
Even tiny amounts of blur caused by the focus setting can make the recorded data useless
for further processing. Due to the required precision, it is not possible to use the preview
mosaic while setting the focus. For easier determination of the current status of the focus,
we used a high-quality printout of a Siemens star (see Figure 2.32a), whose converging lines
in the center never touch. At some level, every printer or camera trying to reproduce the
pattern will show aliasing patterns near the center. The area influenced by these aliasing
artifacts becomes smaller when the number of accurately represented points in that area
increases. When the area is out of focus, even slightly, neighboring points start to bleed
into each other and the aliased area grows.
With such a pattern in the scene, where the center of the focal plane is supposed to be,

the quality of the focus setting of a camera can be objectively determined by measuring the
size of the aliased area in the pattern. By varying the focus around the current setpoint
and watching the behavior of the pattern, it can be verified whether the setting is optimal
or not. To do this properly, we still require a full-size view from the camera being set up,
which means only one person can focus one camera at a time. Even for an experienced
operator, it takes a significant amount of time to configure all 64 cameras correctly.
To make this process faster and parallelizable, we devised an approach to measure the

focus quality automatically. By trying to detect markers of different sizes in the desired
focus plane, from bigger ones (detectable from far away with only a decent focus setting)
to smaller ones (requiring a very precise focus and sometimes even a small distance from
the camera), the focus quality is gauged by the smallest pattern a camera can still identify

79

2. 5D Lightfield Array

correctly. With the patterns from Figure 2.32b placed next to the Siemens star in the scene,
we can combine both approaches. An optional custom GStreamer plugin in the preview
pipeline detects the patterns, and depending on how many are found, indicates the quality
of the focus in the pattern’s region by overlaying a bar over the top of the frame. A longer
bar means a better focus. Because the resolution of the cameras is limited and also due to
the deliberately small size of some patterns, certain patterns can never be seen correctly.
To still give a meaningful indication of the best focus, the plugin determines the maximum
for the bar dynamically. A moderately quick sweep over the focus range of the lenses sets
the maximum for the current setup and allows to dial in the best focus afterward. Due to
the highly visible indicator on the top of the preview images, this can also be done using
the preview mosaic and by multiple people at once.

After several productions, we found that the precision of the result from the marker-based
approach is very close to that of the manual process. Only in very rare cases did it need to
be adjusted, and those cases could be accredited to problematic lighting conditions with
overexposures in the patterns.

2.4.4.3. Bulk Data Transfer

After a scene was captured, the frames reside in the SSDs of the camera units. Before
transferring them to permanent storage, the operator has to make sure that the expected
number of frames has been captured by every camera. Differences in the number of
captured frames are not common and if they occur, they are a clear sign of heterogeneous
configurations or hardware failures. Such sequences can be stored, but their use is limited
because the number of available cameras changes over time. Repeating the capture is usually
the better solution.
These tests are performed as part of the script responsible for transferring the data to

the storage cluster. First, it checks whether the expected number of camera units is active.
Second, the number of images in the cache of each unit is compared. When the numbers
are equal, every camera unit starts a set number of threads doing the following: listing all
captured frames, distributing them between the threads, generating a unique object id for
every frame, and finally sending them to the storage cluster.

The data is not removed from the caches, in case the transfer is aborted at any point due
to an unexpected hardware failure. In such cases, the transfer could simply be repeated
later, as the cached data stays valid until it is overwritten or deleted.

At this stage after recording, only the raw sensor data is in storage. In order to fully
process it into usable images, as shown in Section 2.5, a set of images from the capture
session has to be processed even though no exact correction data is available yet. Otherwise,
it is not possible to provide the algorithms that calculate those correction parameters with
appropriate input data.
The operator has to choose the frame to be extracted for calibration. The extraction

script first generates the object IDs to be downloaded from storage. Due to their uniqueness
and predictability, they can be created using the internal scene name, camera IDs, and
frame number. Before writing the frames to a folder, the original camera id is converted
from our internal, hardware-based, column-first system to the more common row-first order.
Once the data is downloaded, a custom program is applied to them which adds minimal
metadata to the raw sensor data and stores it as a digital negative (DNG) file. That file is
used as input for the dcraw [79] which offers a variety of demosaicing algorithms to recover
full-color images from the raw sensor data. For exchangeability reasons and to save disk
space, the resulting color image is run through a minimal wrapper of the OpenEXR [80]

80

2.4. Implementation Details

library to create losslessly compressed EXR files with the full-color frames.
Based on these frames, the algorithms in Section 2.5 calculate the ideal transformations,

both for the image’s geometry and colors. The results are saved in their original format
in the redundant storage next to the frames of the scene they were calculated for. It is
important to note that the order of the camera IDs has to be converted back, to make them
consistent with the one used for the raw data frames.

With the parameters for geometric and color correction, all frames can be processed
into their production-ready version with equalized colors and perfect camera alignment.
While the main steps are described in Section 2.5, the preparations for these steps often
require more effort than anticipated. Due to the constant evolution of the tools in use, we
chose not to install or activate them permanently on the camera units.
Before every processing round, the required tools and their configuration files are down-

loaded into a temporary folder. If required, environmental variables are set temporarily
during the execution of the processing pipeline. With such a temporary setup, we do not
have to worry about uninstalling older tools when they are not needed anymore. After a
reboot of the computers, the temporary folder and any remnants are no longer present,
which also minimizes version conflicts and keeps the environment clean. We are aware that
those features can also be achieved by running the processing steps in a sandboxed container,
but creating a customized container for every iteration of every tool in the processing chain
would have been unreasonable.

Each camera unit chooses the ID of a camera whose frames it is going to process. Usually,
this is based on its position in the array and equal to the id used while uploading the data
from the cache. Then each camera unit downloads the color and geometric calibration data
for the camera and scene it is about to process. After that, it creates a list of all frames
available in storage for these parameters. Depending on how many cores the steps in the
pipeline can use on average, each camera unit starts multiple threads to process more than
one frame in parallel. Each thread takes a frame’s name from the global list, downloads it
from the storage cluster, runs it through every step of the processing pipeline, and uploads
the result to the pool of processed data in the cluster. The final result is also stored as a
preview JPEG with half the resolution, next to the high-quality data. In case a previous
version already exists in the cluster, it is overwritten, as it is assumed that a newer version
is always of higher quality and therefore, preferred.

The material captured by the array created some interest in the research community
and our partners from the SAUCE project. Making the data manageable was therefore
very important. As presented in Section 2.3.7, we reserved 20TB of storage in an existing
cloud storage setup on campus which we could use without restrictions. Since we were
able to manage the data via internal SSH access, uploading the material as single frames
would have been possible, but the workload of downloading hundreds of thousands of files
using the web interface would have lessened the usefulness of the data. Creating a single
file containing all the data as the other extreme would mean that any interested party
would need to download more than one hundred gigabytes of data, which then needs to be
extracted from the archive first. The optimal solution lies somewhere in between. Splitting
the data into archives with multiple frames from all cameras with a size between 10 and
20GB was found to be the best solution for us. To allow for previews of the material, we also
provide archives containing the preview JPEGs instead of the full resolution HDR images
in OpenEXR format.

The automation of the archive creation was justified by the fact that it had to be repeated
every time changes in the pipeline resulted in better results. The script downloads the data

81

2. 5D Lightfield Array

for every archive into a temporary ramdisk on the central server and compresses them into
an appropriately named zip file on its hard drive. Using a ramdisk for the intermediate
storage was justified by the RAID’s inability to handle the large number of small files
quickly enough, as discussed in Section 2.3.7. Once the archive is completed, the frames are
deleted and the contents of the next archive are downloaded. This process continues until
a frame number is reached that is above a configurable upper limit or until none of the
cameras provided any data. Later, the process was streamlined such that the data for the
next archive could already be downloaded while the previous archive is still being compressed.

The uniqueness of the camera array requires a significant quantity of custom software
to function properly. Distributing new versions of tools and plugins as source code to be
compiled on the machines they are needed on is quite inefficient due to the high number of
devices in the system. To get around this, a chain of continuous integration pipelines sur-
rounding our version control system is employed. In the beginning, a Docker container with
all required packages and non-standard components used in the camera arrays environment
is created and stored locally. That container is used to compile the code of different projects
into versions that can be executed on the camera units. For distribution, the results are
wrapped into valid Debian packages21 and uploaded to a locally hosted repository. From
there, all devices in the camera arrays network can simply update their tools using their
internal package manager orchestrated by the cluster control system. Using such a system,
we also create installable packages from third-party libraries which only come as versions
with install scripts, such as the drivers and tools from the camera manufacturer.

2.5. Processing Pipeline

The processing pipeline is one of the most important parts of the array because it contains
all steps to provide high-quality color frames from raw sensor data and is used to correct
slight errors in the camera configuration and layout, to provide frames from a horizontally
and vertically aligned array with an equal color response from every camera.

The major complexity of this process lies in the calculation of the parameters for the
processing steps. For these calculations to succeed, they must always take the state of the
complete array into account and be aware of multiple constraints.

After our own approaches for geometric calibration did not yield results of sufficient
quality to satisfy the requirements given by the SAUCE project partners, we restarted our
search for better published calibration approaches. While the search did not provide many
promising candidates, our project SAUCE partner from Brno University, namely Marek
Šolony, modified one of his algorithms to work with our array. The as of yet unpublished
algorithm he provided uses bundle adjustment in combination with his own SLAM frame-
work [81] based on the work by Xu et al. [82] to solve our calibration optimization problem
much more efficiently and precisely. The close contact with the creator of the algorithm
allowed for multiple iterations of the algorithm to be tested and improved in a short amount
of time. Several constraints, including the ideal array layout, the rectification in column
and row direction as well as the minimization of data loss due to the required geometric
transformations, were added or emphasized. Assumptions about the scene and its relation
to the array, such as the main background being parallel to the camera plane, were relaxed
to support more complex arrangements. In contrast to our marker-based approaches, it

21https://ubuntu.com/server/docs/package-management

82

https://ubuntu.com/server/docs/package-management

2.5. Processing Pipeline

(a) Raw sensor data (b) Recovered colors

(c) Corrected colors (d) Rectified frames

Figure 2.33.: Image quality after each of the processing steps.

employs different feature detection algorithms like SURF [83] and SIFT [84] to generate its
calibration points.

Due to its dependence on a fairly modern CUDA-capable GPU and its UI, it is not yet
integrated into the automatic workflows on the arrays server, but needs to be executed
manually on a different machine. This means for each scene the chosen calibration frames
must be transferred to the second computer and processed there. Only then can the final
calibration parameters be transferred back and uploaded to the storage cluster.

Color calibration or equalization is required for two reasons. Due to slight manufacturing
variations, no two camera sensors ever have the exact same color response, and the same
applies to the transmission behavior of lenses. Choosing cameras and lenses based on their
binning was not possible due to our budget constraints, therefore making it necessary to do
our best with the hardware in our possession. The second reason was a software error in the
interface that sets up the internal operating parameters for the cameras, which existed until
after the second major recording session. This oversight caused only half of the available
white balance parameters to be controllable, making it possible that some cameras had a
difference in the white balance based on the first automatic setup after the startup of the
camera. For color analysis and correction, we ensured that a MacBeth color pattern [85]
was visible to all cameras, at least in some frames of the scene.

Our first attempts at color correction using linear regression for each channel to match
the colors of the captured color patterns with their intended values produced a slight
improvement but were not sufficient for final production. With the help from Mairéad
Grogan at Trinity College Dublin, we were able to use her color transfer algorithm [86] to
equalize the colors between all cameras. While the color alignment worked correctly out of

83

2. 5D Lightfield Array

the box, the part which automatically detects patches of colors in all cameras that should
be equal lacked some robustness and caused wrong final results. The algorithm requires
representative color values from a MacBeth chart for each camera in addition to sample
frames to be corrected. Detecting the pattern and selecting the colors within them, can be
mostly automated, but still requires some manual supervision and correction to be accurate.
For that reason, the process is currently not fully automated and has to be performed
manually. The resulting 3D cube lookup tables [87] contain 32 entries in each direction of
the color cube for a total of 32768 key points. This precision leads to significantly better
results than our approach. After calculating the correction values, the lookup tables are
stored with the frames in the storage cluster.

As soon as the correction parameters for color and geometry are uploaded to the stor-
age cluster, all frames can be processed. The progression of a single array frame going
through the processing pipeline is depicted in Figure 2.33.

Starting with the grayscale raw sensor data in Figure 2.33a, the first operation is to
recover full-color images using demosaicing. This has to be done first, because most image
operations can destroy the Bayer pattern, thereby making a clean color reconstruction
impossible. The current compromise between quality, computation time, and practicability is
the dcraw tool, which implements the Adaptive Homogeneity-Directed (AHD) algorithm [88].
While not perfect, it prevents many errors that occur when the camera-internal process or
simpler algorithms are used. In its results in Figure 2.33a, the problem with the difference
in white balance becomes immediately visible. Most images look normal but in the center
and on the right border, there are a few cameras that show a clear blue tint. Those
deviations are fixed by the color correction step afterward. Because the cube files can be
considered to be a professional format, most common image manipulation tools are not
able to handle it properly. The only working, non-commercial solution we could find is a
wrapper of OpenColorIO22 in the OpenImageIO23 toolbox. As OpenColorIO is intended
to be a tool with system-wide influence (e.g., to correct the color representation on the
connected monitors) it requires a fairly complex configuration file and environment variables
to work. For this, the system is prepared by the cluster control system. After the setup, the
application of the lookup table boils down to a single call to OpenImageIO. Figure 2.33c
displays the uniform colors after correction. The images also appear to be far more vibrant
than before. That change happens because the colors in the images are not just aligned to
each other but also to the intended values of the color chart.

Subsequently, the geometry of the images is corrected. Due to of slight differences in the
camera’s mechanical alignment from their optimal position, objects can have a horizontal
offset within a single column and vertical offsets in a row. The geometric correction must
virtually move the cameras back onto a perfect grid. The extrinsic camera parameters
determined earlier solve this problem, together with any relative rotation and distortions
caused by the camera’s lens, in a single operation. While the changes of this step are hard
to spot in Figure 2.33d, most algorithms that use the images as their input benefit from
them.

In the last step of the pipeline, the frames are converted from their uncompressed PPM
format to OpenEXR with lossless compression. To have full control over the available
parameters and to make sure an appropriate amount of bits per pixels are used, a custom
program making use of the OpenEXR library was created for that task. Since this step does
not change the images, its result is not included in Figure 2.33. This format, which can be

22https://opencolorio.org
23https://github.com/OpenImageIO/oiio

84

https://opencolorio.org
https://github.com/OpenImageIO/oiio

2.6. Productions Using the Camera Array

used in nearly all tools dealing with high-quality images, is then uploaded to the storage for
processed frames.

2.6. Productions Using the Camera Array

A novel capture device like the 5D-capable lightfield array discussed here is only worth
something if it is actually used. In this section, we present the major productions for which
the array was used, beyond the smaller internal shoots for testing, refining of processing
steps, and algorithm tests.

2.6.1. Lightfield Elements

The Lightfield elements shoot was the first professionally executed shoot and simultaneously
the first use of the array outside the lab. It took place on the premises of the Filmakademie
Baden-Württemberg in one of their studios. The main goal was to create several move
cycles, usable for background crowds, scenes with volumetric effects, and objects usable as
background props in larger scenes. Figure 2.34 shows exemplary views of a selected camera
for the captured sequences. The first two were intended to gauge the usefulness of lightfield
footage for the creation of generated crowds in CGI when the amount of perspective shift is
limited. It has the potential to make the production of such scenes with many extras much
cheaper and faster to produce if short movement cycles recorded as lightfields can replace
manually animated CGI models in background crowds or moving decorations. The third
and fourth sequences explore a similar aspect for objects with a very complex structure or
motion, such as plants and volumetric effects like smoke. The last sequence depicts the
performance of a local fire dancer at night in near darkness. This was mostly an internal
test to see how scenes with a high dynamic range need be set up and managed.

The complete material from that shoot is publicly available through the website of the EU-
funded SAUCE project which these evaluations were a part of (https://www.sauceproject.
eu/Downloads). This dataset also includes all calibration images captured in between the
scenes.

The feedback for the captured material was mixed and highlighted a number of short-
comings the system still had at the time. Setting it up and preparing it for transport
took a long time, even with multiple people working on it at the same time, mainly due
to the complex storage system for the cables connecting the modules to the cameras. For
subsequent shoots, this process was streamlined significantly.
The shoot also demonstrated that the state of the geometric calibration procedure at

the time was not sufficient for the use cases the material was intended for. This is also the
main reason why the material was never properly rectified. With increased efforts and focus
on the calibration, this problem was partially resolved until the next shoot but the best
solutions were only available much later. The green screen background in some and the
dark background in other scenes do not give the calibration algorithm enough features to
use and forced a redesign of our calibration material.
A hardware problem in the RAM of one of the camera units means some sequences do

lack the footage from one camera after a certain number of frames. The exact source of
that problem was pinpointed later and also caused more strict checks to be enforced in the
recording procedure. This has also lead to the addition of the storage cluster (Section 2.3.7)
to the array because the transfer times from the cache to permanent storage quickly started
to become unacceptable within a busy day of production.

85

https://www.sauceproject.eu/Downloads
https://www.sauceproject.eu/Downloads

2. 5D Lightfield Array

(a) Move cycle for static crowds (b) Walk sequence for background crowds

(c) Moving plant for scene decoration (d) Smoke clouds with targeted lighting

(e) Performance of a fire dancer at night

Figure 2.34.: Impressions from the different scenes included in the LF elements.

86

2.6. Productions Using the Camera Array

Figure 2.35.: Camera views from the different recorded voices in the Unfolding scene.

Last, the overexposed areas in the smoke and fire dancer sequences inspired the creation
of the exposure overlay plugin, because the brightness ranges were tested before the final
recording and looked fine in the preview.

The improper calibration, together with the fact that most tools for lightfield process-
ing in professional toolchains were just reaching the prototype stage, meant that their
potential for professional production could not be evaluated then, and that aspect was left
open until later.

2.6.2. Unfolding

The Unfolding shoot was the key experimental production in which to emphasize the
capabilities and possibilities of lightfields for professional post-production in the SAUCE
project. The shoot was planned by the Filmakademie Baden-Württemberg, directed by the
Director of Photography Matthias Bolliger24 and starred the cellist Isabel Gehweiler25 in
the leading role. The shoot took place on the premises of the Saarländischer Rundfunk, a
major local television and radio broadcaster, in one of their studios with the support of a
full team of light and sound engineers.

For the shoot, the cellist composed a musical composition piece with four parts. She
played every part separately while being filmed from different locations and angles. In
post-production, the different instances of the cellist were to be combined in a single scene,
showing off several effects made much simpler and more efficient by using lightfields instead
of conventional single-camera footage. Figure 2.35 presents one camera’s views of the
different parts of the song we recorded.

24https://www.matthias-bolliger.de
25https://www.isabelgehweiler.com

87

https://www.matthias-bolliger.de
https://www.isabelgehweiler.com

2. 5D Lightfield Array

The two versions of the end result show focus effects nearly unachievable with conventional
means such as a focus plane following the moving bow in the hand of the cellist. Other
features include the seamless combination of light field material with computer-generated
objects and effects. Both versions are available on YouTube26 27 for normal monitors and
in an adapted version for the LookingGlass28 holographic display29.
The production, the capturing process, and the camera array were featured in multiple

industry-specific articles [89, 90, 91, 92] showing the importance of and interest in our work
by the film-making industry. In addition to these publications, it triggered the interest of
multiple German TV programs which covered the functions of the array and its possibilities
on national TV.

2.6.3. HaToy

HaToy was an internal production to demonstrate the benefits of having an array with a
tightly controlled timing plane for the shutter release. The scene consisted of a collection of
toys and devices with very different moving patterns and speeds. In Figure 2.36 we can see
the different components. The two trains drive with medium speed on their tracks while
the mobile above rotates very slowly with 4 to 5 rotations per minute On the right side, the
spinning top rotates at a rate of approximately 1000 to 1200 rounds per minute. The CD
drive on the left is regulated at a speed of 2400 rounds per minute. With a capturing frame
rate of 40 frames per second, this is equal to exactly one full revolution per frame.
To reduce the amount of motion blur in the images, the exposure time is set extremely

low to 350µs. Therefore, the scene had to be illuminated by the equivalent of over 5000
Watts of Halogen spotlights.

In total, we captured a sequence of traditional 4D lightfields and several versions of 5D
lightfields in which we tested multiple ways to distribute different shutter timings over the
array in so-called subframes. For each version, 4, 8, 16, or 64 different delays were equally
distributed over the camera layout, such that ideally any square subset of the array with
an appropriate number of cameras includes information from all subframes. While in most
parts of the scene, these delays do not make a difference, the benefits of the sub-framing
become obvious when looking at the CD drive.

In Figure 2.37a, we can see that the cameras show exactly the portion of the CD rotating
in the drive. Since its speed is synchronized with the frame rate of the cameras, the following
frames show no rotational change. When reconstructing the complete texture or the exact
movement of the CD is the goal for this lightfield, the uniform sampling would not allow
this. Even, if we assume that the rotation is in sync with the shutter, the direction of the
rotation, the other half of the CD, and whether the CD rotates once or multiple times
between frames, cannot be determined.
By separating the lightfield frame into 4 subframes whose shutters are distributed over

one frame duration, the situation changes. Figure 2.37b shows the output of the same four
cameras with the CD in four different stages of rotation. When the delay for each camera
is known, one can easily determine the rotation direction by tracking the CD’s texture
between the subframes. In addition, every part of the CD is visible in two subframes, which
makes reconstructing the complete texture from a single frame possible.

26Unfolding - https://www.youtube.com/watch?v=UnsmKQjO4ro
27Unfolding 2.0 - https://www.youtube.com/watch?v=OlHnDOuf2BA
28https://lookingglassfactory.com
29Unfolding 2.0 Looking Glass Edition - https://www.sauceproject.eu/Downloads

88

https://www.youtube.com/watch?v=UnsmKQjO4ro
https://www.youtube.com/watch?v=OlHnDOuf2BA
https://lookingglassfactory.com
https://www.sauceproject.eu/Downloads

2.6. Productions Using the Camera Array

Figure 2.36.: HaToy scene for the demonstration of the usefulness of a precisely controlled
de-synchronized shutter timings. Fine-detailed rotating mobile on top, slow
moving trains below. Rotating CD drive synchronized with the camera’s frame
rate and an active spinning top.

(a) uniform sampling

(b) 4 subframes

Figure 2.37.: CD drive seen by the center cameras in different sampling modes. With
uniform sampling, only a portion of the CD is visible. Subframes show a
different section in each camera, allowing for a full reconstruction of the CD’s
texture.

89

2. 5D Lightfield Array

Obviously, sub-framing reduces the number of cameras per subframe and therefore, the
number of rays per time instance. For the moving parts of the scene, this trade-off between
time resolution and the number of rays has to be optimized on a per scene basis. In static
portions of the scene, the sub-framing can be mostly ignored, because the delay in the
shutter does not change the content of the image there.

Optimizing this and exploiting the additional information gained by subframes is still an
open research question. The FiDALiS project aims to solve this but at the time of writing,
is still working on integrating sub-framing into the mathematical theory upon which all
lightfield algorithms are based.

Most approaches for lightfield compression consider only fully synced cameras since the
current state of mathematical description does not support known time offsets between
cameras. One of the first approaches to take known time shifts between the camera shutter
into account for compression was presented by Hariharan et al. [93] in 2020.

2.7. Conclusion

Even though there were a few problems surrounding the camera mounts and calibration
process in the beginning, overall the build of the 5D lightfield array was a full success. With
its capability to have different configurable delays for every single camera, it is currently
unique in the world. Of course, it is clear that uniqueness is not necessarily an indicator of
quality, but as part of the SAUCE project, we managed to produce some very convincing
results proving the array’s capability to create standard 4D lightfield images and videos.
The use of external algorithms from experts in their respective field improved our own

attempts at color and geometric calibration by a huge margin and now permits us to make
nearly all recordings into useful lightfield material. Some material produced by the array
and the array itself has been featured in a significant number of industry-specific magazines
and even in national television programs. The capabilities have also been confirmed by
peer-reviewed academic publications and talks [7, 8, 9, 10, 11, 94].

While we have shown that the array is also capable of capturing 5D lightfields with up to
64 subframes, whether it is precise enough remains an open question. A lack of support for
subframes in the mathematical theory currently prevents a proper evaluation of this feature.
However, merely by looking at the material we produced, it becomes clear that there are
benefits to having this time-controlled shutter plane.

Since lightfields are currently a hot research topic with open questions and improvement
potential in many areas and 5D lightfield theory still is in its infancy, it would be accurate
to say that the array will continue to be used, even if only to verify that algorithms and
approaches work with real-life examples.

2.7.1. Future Work

With a stable frame, working calibration, and sufficiently good post-processing algorithms,
the array is able to fulfill its basic functions. However, there remain several open issues
which are yet to be resolved.

First and foremost, there are some usability issues for anyone without in-depth knowl-
edge of the internal structure of the array’s systems. Currently, to access all functions and
properties of the hardware and cameras, two separate interfaces are required. Both are
web-based and hosted on the server. The first was mainly created for testing and debugging

90

2.7. Conclusion

in the early days of development, while the second was built later with more comfort features
in mind. They already share most of the functionality, but not all. Certain low-level settings
can only be made by the old UI while setting others is far more comfortable in the new UI.
The newer UI also gives more detailed status information about the camera units and the
rest of the system.

For better usability, all functions only available in the prototype UI should be added to the
new one. It should also be considered to make some scripts accessible via the web UI, which
currently have to be called via the console on the central server. With such functionality,
the interface can be used to guide a user through the whole process of capturing a scene,
from switching on the modules over camera alignment and lighting setup to processing the
final frames.

The calculation of the correction parameters for color and geometry must be calculated on
computers that are not included in the array’s system. That dependency makes version
control and software management much harder and violates the independence property of
the array. By porting the algorithms into a form that can be executed on the central array
server, that can be solved. Ideally, the manual required steps would be somehow forwarded
to the web UI, such that all steps in the recording process can be done using a single interface.

The currently used demosaicing is based on a fairly outdated approach. It produces
acceptable results but better algorithms are already available. Even though ultimately we
would like to use our array-specific solution (see Chapter 3), it may take a while until it
becomes universally usable. In the meantime, algorithms like ARI [95] or DMCNN-VD [96]
could be used, provided their results can be replicated. The main difficulty in this en-
deavor is the fact that ARI was only made available as MATLAB code and the authors
of DMCNN-VD did not provide the datasets used for training or the final weights of their
trained network.

91

3. Array-Specific Demosaicing

Demosaicing or debayering is important for any image capturing system because it converts
the monochrome output of a CCD or CMOS sensor into the colorful images we expect from
a digital camera. Cameras with separate sensors for all color channels are very expensive
and much larger than commonly used devices because they require an intricate system
of prisms to split the colors into red, green, and blue and project them on three distinct
sensors. On the other hand, single-sensor cameras use a color filter array (CFA), also called
Bayer filters, in front of their sensor, which only allows a single base color to pass on to
each pixel.

Figure 3.1 shows a simulated example of how the resulting data looks. The original color
data is taken from a high-quality scan of an image captured on traditional film and provided
in the Kodak Image Suite [97]. Removing the color information, following the pattern of
the CFA, leaves only the data which would be captured by a single sensor camera. In
Figure 3.1a, some colors can already be guessed by looking at the pattern in the pixels in
some areas. When the pixels are assigned to the color channels they belong to, the image
becomes clearer but it has a bias towards green. This bias appears because common CFAs
include two green pixels for every single red and green pixel. The filters are built in such
a way because the human visual system is more sensitive towards green than towards the
other colors.

3.1. Basics

Demosaicing is the process of filling the gaps in the color information to get full-color
images. While downsampling the image in such a way that every new pixel contains some
information from all three channels, the reduction in image resolution and detail is not
acceptable in most cases. Interpolation of the color data between the given data points

(a) Raw data (b) CFA colored data (c) Demosaiced data

Figure 3.1.: Example of raw sensor data created from picture 19 of the Kodak Image
Suite [97].

93

3. Array-Specific Demosaicing

(a) original image (b) demosaiced image

Figure 3.2.: Example of common demosaicing artifacts on picture 19 of the Kodak Image
Suite [97]. Orange and blue discoloration and checkerboard-like patterns in the
same regions.

maintains the original resolution but can lead to several types of artifacts, two of which are
visible in Figure 3.2. The first error consists of areas of color (often light blue and orange),
where there should be none. Those occur in image areas with high-frequency patterns,
where edges in the texture are positioned in the CFA pattern such that the red and blue
contents in neighboring pixels are overestimated. The second class of common errors is
the zipper effect which places pixels from straight edges into alternating rows or columns,
transforming straight lines into sequences of pixels on alternating sides of the real line.

Better and more complex algorithms reduce the amount of errors from demosaicing [98,
99, 100] but none of them are perfect. Most new algorithms rely on machine learning to
improve the color reconstruction, either by creating a dictionary in which they search for
the perfect solution for the current image section or use large convolutional networks to
determine the missing colors based on their neighboring pixels and information learned
during training.

The size of the input for convolutional networks must remain the same for all runs of the
network. Since raw images can come from a variety of cameras and therefore, a plethora
of resolutions, a solution is needed. Training the networks for all possible image sizes is
impossible. Setting the networks up for the largest input images and padding or scaling
smaller images to fit that size grows the networks to sizes impossible to manage. The
problem is solved by splitting images to demosaic into small tiles, usually around 50x50
pixels in size, which are fed into the networks one after the other, and later the results are
concatenated to form an image of the original size.

The demosaicing quality of the captured frames in the array has to be as high as possible
at all times. Otherwise, the algorithms working with the material can run into problems
when the data of the images is unpredictably changed by artifacts caused by the demosaicing
algorithm.

Figure 3.3 shows some of the remaining errors in a frame from the Unfolding scene

94

3.2. Concept

Figure 3.3.: Frame from the Unfolding scene zoomed onto the strings of the cello with visible
discoloration artifacts.

(presented in Section 2.6.2) after being demosaiced using the AHD algorithm [88]. The fine
details of the cello strings shine in all colors of the rainbow instead of silver. Some green
areas are expected when the green screen in the background is reflected in the shiny silver
strings, however, all other colors should not be present.
Since every demosaicing algorithm working on a single image literally has to guess the

missing color values, they will always create artifacts in cases where small details of specific
colors fall in between two samples of a color on the sensor. By learning how to predict those
small features from other images using machine learning, those situations can be reduced,
although they will never be completely removed as the correct data values depend on the
specific sensor and the captured scene. Since two images will never be exactly the same due
to camera noise or minuscule movements of the camera or objects in the scene, finding an
exact counterpart in the learned data is near impossible and therefore they still produce
slight color deviations, even though these deviations are not as visible.

3.2. Concept

In the work of Alexander Blatt [101], we explored a novel solution that can reduce the
amount of estimated data in multi-camera systems. It aims to exploit the overlap between
different cameras to fill the missing color data in one camera from the data in neighboring
cameras. To make it work, the correspondences for the current pixel have to be found in
neighboring images, as shown in Figure 3.4. Once located, it depends on which area of the
color filter it is in and whether the data is useful for filling in the data in the current image
or not. In this simplified example, the chosen point in the center image only has data for
the blue channel. With the matches from the top and left neighbor, the missing data for
the red and green channels can be filled. In a practical application, the additional data

95

3. Array-Specific Demosaicing

R G R

G B G

R G R

Center

R G R

G B G

R G R

Right

G R G

B G B

G R G

Left

B G B

G R G

B G B

Top

G B G

R G R

G B G

Bottom

Figure 3.4.: Simplified example of our demosaicing concept for reconstructing the full color
in the center image. The magnified parts of the camera views show for which
color channel each channel pixel has data in the top left corner.

from the bottom and right samples could be used to reduce camera noise or other natural
degradation effects. However, in this simple example, they are ignored because the data
they offer is already present.

At first glance, the problem to solve seems to be quite similar to what we do for the view
interpolation in Chapter 7. However, it is rather more complex, mostly due to where it is
positioned in the overall lightfield pipeline and the quality and state of the material that
comes with it. The view interpolation sits right at the end of the pipeline, which means
it receives color-corrected and rectified full-color frames as inputs. This situation allows
assumptions about the geometric relation of the images to be made and it can rely on the
color response of all cameras to be the same. On the other hand, demosaicing has none of
these benefits. As the first step after capturing, it has to cope with incomplete uncorrected
color data and unknown translations, rotations, and lens distortions. While color calibration
results could be applied to the partial color information, any geometric correction for the
rectification distorts the color filter patterns on the pixel level. When the color information
is smeared over multiple pixels or moved, it becomes much harder to relate a certain pixel
to a color channel. Therefore, we try to avoid geometric corrections before the demosaicing.
Wronski et al. [102] show that such an approach can work, by combining multiple raw
images from a mobile phone into one image with a higher resolution.

The high complexity of the problem and its similarities with depth estimation, for which
several good deep learning-based approaches exist [103, 104], led to our decision to create
an approach based on deep learning. The following sections describe how the approach was
designed, trained, and evaluated.

3.3. Network Architecture

The architecture of a neural network is, apart from the choice of the training dataset, the
most important factor for its performance. As there are near infinitely many different

96

3.3. Network Architecture

Figure 3.5.: General structure of DMCNN-VD [96] featuring 20 batches of convolutional
layers and a parallel traditional biliniear interpolation step.

network designs and not all of them are capable of achieving a set goal, it makes sense
to draw inspiration from architectures that have already proven themselves for similar or
closely related problems.

After analyzing different state-of-the-art demosaicing algorithms, it was decided to use
DMCNN-VD [96] as the basis for our work. Figure 3.5 shows its general structure. It
consists of 20 batches of layers, each with one convolutional, one batch normalization, and
one SELU [105] activation layer. In the end, the result of the trained network is added to
the output of a traditional bilinear interpolation. As a result, the network only has to learn
the errors a linear interpolation creates and correct those instead of performing the complete
demosaicing procedure. It processes image patches of 33x33 pixels and delivers the best
results compared to other state-of-the-art algorithms. To demosaic images with a higher res-
olution, images are cut into 33x33 pixel tiles, which are then processed and recombined later.

Since we can not rely on getting all missing information from the neighboring cameras (for
example when the correspondences fall onto the same color channel or near the edges of
the camera setup) we decided to keep the original DMCNN-VD network as part of the new
architecture so it can serve as a fallback in case no useful data can be found in the other
images. The design in Figure 3.6 was chosen, as it delivered the best results in preliminary
tests.

Comparing that split network approach with an aggregated one with similar complexity
to the three separate paths combined yields measurably better results for the split networks.
Additionally, by separating the color channels of the outer images and processing each one
using its own network, we try to emphasize that we are less interested in pseudo-demosaiced
data from the outer images and want to prioritize original information. In those color-specific
networks, we use 30 convolutional layers with 135 3x3 kernels, batch normalization, and
SELU activation. Those parameters allow the network to draw in information for a certain
pixel from an area spanning about a third of the image’s width to the left and right and half
the image in both vertical directions. With that range, it should be able to find matches for
a pixel in most cases. Only when the object it belongs to is very close to the camera array,
and therefore its disparity between cameras is very high, does it not work.

While the structure of the DMCNN-VD section of our network is very close to the original,
the size of the input images is increased to 96x54, which is exactly the twentieth part of a
FullHD resolution. The main reasoning for that is a property of our approach that currently

97

3. Array-Specific Demosaicing

Bilinear
interpolation
(DMCNN-VD)

Learning
layers

(DMCNN-VD)

Network for
outer images

ADD

(a) Overall network

RGB SPLIT

30 layer
CNN

30 layer
CNN

30 layer
CNN

CONCATENATE

(b) Outer image network

Figure 3.6.: Network to integrate information from neighbors into the demosaicing process.

prevents it from being used on image tiles and requires full inputs as images. That problem
is discussed in more detail in Section 3.5.1.

The TensorFlow [106] implementation with nearly 14 million trainable parameters in the
four trainable parts of the network, is not particularly large when compared to bigger ResNet
versions [107] or AlexNet [108], which both have over 60 million parameters. Nevertheless, it
is already big enough to create problems during training. Not only does it require a careful
choice of parameter initialization and learning rate, but also large amounts of memory
during training. Compared to the original DMCNN-VD, our network takes about 42 times
more input parameters and has to output over four times as many output values. For
the AlexNet, the relation is slightly different; while it takes roughly 25% more inputs, our
network outputs 15 times more data points. That means the data and the trainable weights
are reduced towards the output. Their leaner internal structure allows it to be trained on
two GPUs with 3GB of memory each when the layers are properly distributed between
them. In our experiments, we ran into problems with training our network on GPUs with
16GB even with very small batch sizes of one or two because the layers have a constant size
and the amount of data that needs to be kept in memory until the back-propagation step
adds up quickly. Training it on a CPU-based server with more memory was not feasible as
it extended the required training time to weeks or months instead of days on the GPU.

3.4. Training Data

Using captured lightfield footage as training data would have been ideal but is not possible
due to one main reason: even though the available samples increased with the growing
interest of the research community, they are all captured using single-sensor cameras. That
fact disqualifies them as training data, since they already include demosaicing artifacts of
various magnitudes, depending on the algorithm that was used. Rendered lightfields exist
and do not require demosaicing, but even realistic scenes often do not have the same amount
of challenging high-frequency textures as real images.

98

3.5. Evaluation

For our experiments, we chose a slightly different approach to generate enough training
samples. In a first preparatory step, we created a collection of traditional demosaicing
test datasets from scanned film or tri-sensor cameras. Then we devised a geometrically
simple scene consisting of two planes, two instances of a monkey head in Blender1, and nine
cameras in an arrangement similar to that of our own camera array.

To generate samples with sufficient diversity in color and depth structure, we automated
the steps seen in Figure 3.7. For every sample, random translations and rotations are added
to every object in the base scene. The translations of the scene objects are chosen such that
they often change their order in front of the background, so the occlusions are very varied.
The part of the applied texture that is seen by the camera can also be changed depending
on which side of an object is facing the camera. In order to make the samples more realistic,
every camera is rotated between -2 and 2 degrees around all axes to simulate alignment
deviations as they often occur in real camera arrays. For every object, a random image from
the demosaicing test image collection is assigned as texture before rendering, to increase
the amount of high-frequency features in the final image. The final render is performed in
the resolution our network accepts as input for all nine cameras.

One sample for the training of the network then consists of the nine rendered images,
whose color information is artificially reduced to simulate the presence of a color filter,
similar to a real camera as input. The label for that input data is the original center image.
For our training, we created a total of 20 thousand of these samples, of which one thousand
samples were used as test samples, one thousand for validation, and the remaining ones for
training.

3.5. Evaluation

To evaluate the performance of our approach, we used the samples from the test partition
of our dataset. For comparison, we also trained a pure DMCNN-VD version on our dataset.
This was necessary because of two reasons: we wanted it to work with images of the same
size as our algorithm, but primarily due to the fact that the authors of that approach did
not publish a trained model for direct comparison.

For our final quality values, the test set was processed by our network as well as the
DMCNN-VD implementation and their CPSNR2 scores were measured against their re-
spective label. In those measurements, the DMCNN-VD scored at 35.42dB while our best
approach reached 37.87dB. More details about the other variants and their performance
can be found in [101].

DMCNN-VD claims a value of 41.05dB in their paper [96] therefore it was necessary
to investigate where this discrepancy in the results was coming from, as testing our approach
against an inferior version of the state-of-the-art algorithm would be worthless. Since the
trained network for DMCNN-VD is not publicly available, we compared the performance of
ARI [95] on our dataset, as it is available as a MATLAB implementation and its performance
values are mentioned in the DMCNN-VD paper. According to the paper’s results, ARI
achieves 39.00dB. Applied to our dataset, its performance drops to 33.91dB. We concluded
that our dataset must be more complicated than the one they were previously tested on
since both algorithms performed worse by a comparable value.

1https://www.blender.org
2Averaged value of the PSNR score from all color channels

99

https://www.blender.org

3. Array-Specific Demosaicing

(a) Base scene (b) Scene with added random movements

(c) Scene as seen from all cameras (d) Scene with random textures

(e) Final image

Figure 3.7.: Generation process of training samples.

100

3.5. Evaluation

This finding legitimizes our result, such that we can conclude that the additional infor-
mation from the neighboring images in a camera array improves the results on average by
2.45dB. The main drawback of the current version is the problem that it can only process
images with a resolution of 96x54, which is hardly enough to be used on real captured
footage.

3.5.1. Open Issues

With an input resolution of 96x54, the network can not be used for any practical application.
Scaling the resolution up to the default resolution of the array would theoretically be possible
but would require additional changes. With the 20 layers of 3x3 kernels in the outer image
network, matches in the images can only be found 20 pixels away in every direction from
the original location. For small resolutions, this is a significant portion of the image, but at
a resolution of 1920x1200, it is too small to catch most instances of a scene point in the
other images. To increase the detection range, more layers can be added to the network or
bigger kernels can be used. Both possibilities significantly increase the amount of memory
required for training, in addition to the factor introduced by the higher resolution.

Just with the resolution adjustment, the amount of input and output data is increased by
a factor of 400. With more layers and bigger kernels, that factor could easily reach three
or more orders of magnitude. Since we already used a significant portion of our available
GPU memory during the training for the current parameters, this becomes simply unfeasible.

Tiling the input images would solve the issue but for array material, it is much more
complicated. For every tile from the image, the matching tiles in the neighboring images
have to be found. Since their locations depend heavily on the depth values in the center
tile, this is not straightforward. Training a new network that can determine the position of
matches for a certain pixel in the other images would be possible, proven by learning-based
stereo depth estimators like the one by Yao et al. [109]. As the image tiles we are looking
for are bigger than a single pixel and can contain parts of multiple objects with different
distances from the camera, occlusion effects may require a variable amount of additional
tiles from the neighbors to find the matches for pixels in the foreground, background, and
all depths in between.
The variable amount of outputs of such a network and the variable number of inputs of

the following network currently cannot be handled by our architecture. Assuming a fixed
amount of candidates and padding the data in cases with less data is an option but still
requires a more complex network. Preliminary tests in [101], for how the current version
behaves on the borders of the camera array, show that there exists a heavy bias for certain
neighbors. In Figure 3.8, the different effects of missing neighbors become very apparent.
While on the left edge of the array only very minor errors appear in the results of the
network, on the top edge the results are completely unusable. With more kernels and more
training samples with missing neighbors, the issues on the edges could be resolved. However,
those issues are still present in the network and the effort required for the addition of more
choices per direction becomes harder and harder to determine.

The most pressing issues of our approach can very likely be solved with more hardware
resources or more efficient architectures, but for now, a practically usable solution is out of
reach. Since we have proven the effectiveness of our network architecture, when it comes to
increasing the demosaicing quality with the information from other cameras in an array,
we are confident it will still be relevant when more potent hardware or new deep learning
methods become available.

101

3. Array-Specific Demosaicing

(a) Sample without the top row of neighbors. (b) Reference image with all neighbors available.

(c) Sample without the left column of neighbors.

Figure 3.8.: Influence of missing neighbors onto the current version of our demosaicing
network. Missing top neighbors lead to massive errors, left neighbors seem to
have only minimal influence on the final result.

102

4. Real-Time Multiview Coding

Multiview and lightfield video have one major difference in comparison to conventional
video with regard to the raw output. While conventional video only consists of the output
of a single camera, the new formats always contain the footage from multiple cameras.
With multiple cameras, the overall data rate of those videos is equal to that of a single
camera multiplied by the number of cameras used to capture the scene. Depending on
the respective pixel format, the resulting data rates can quickly overwhelm a consumer’s
Internet connection or even the processing capabilities of professional production equipment.
Fortunately, there is a lot of similar content in the images of different cameras, which could
be exploited for efficient compression. There are even additions for well-known and widely
used video compression standards like H.264/MVC [31] or H.265 [32] for the support of
multi-camera footage and emerging new formats, specially designed for this kind of footage
such as JPEG Pleno [110]. Most of these standards are only implemented in their respective
reference implementations. For real-time applications with multiview video, none of these
implementations are usable, as their complexity is quite high and compressing a frame takes
significantly longer than a usual frame duration.

In this chapter, we present a scalable solution for real-time compression of multiview
footage based on the H.264/MVC standard. It exploits the similarities between H.264/AVC
and H.264/MVC to accelerate the compression. We show that in practical examples, it can
reach real-time performance and can be used for interactive systems with multiple cameras.

4.1. Background

The content of this chapter describes fine details about the inner workings of video codecs
with multiview support. In this section, further information is given to help understand
the complexities of this work and underline its importance based on the available real-time
encoders and decoders.

4.1.1. Standards Supporting Multiview Content

When most of the work for this chapter was done, not many video codecs with multiview
support existed. The most mature was H.264 with its Annex H adding support for multiple
views in one stream, while maintaining backward compatibility, such that a decoder with
no multiview support can at least decode the base view. All data only used for multiview
content is added in the form of data sections which an unaware decoder can safely skip,
such that a single ”normal” view remains. The main approach to exploit the similarities
between different views for a more efficient encoding is to apply the same prediction scheme,
already present in the time domain for a single view, to the different views at the same time
instance. Figures 4.1 and 4.2 in Section 4.2 visualize this idea.

At the time, implementations in hard- and software capable of encoding and decoding
multiview video existed, but all of them were limited to a maximum of two views. The main
reason for this limitation is the use of H.264/MVC on BluRay discs with 3D content, which

103

4. Real-Time Multiview Coding

does not require more views. Beyond that, only the reference implementation is available
but is far from being able to achieve real-time performance [111] (see Section 4.4.1).

In recent years, there have been efforts to implement certain parts of a full H.264/MVC
encoder on FPGAs, but not a whole encoder or decoder [112]. The memory requirements,
which increase linearly with the number of views, and the quadratically increased complexity
for the parameter search, are the most likely reasons for this, as video encoders are already
quite complex applications to implement in pure hardware, even for single view versions.

The successor to H.264, H.265/HEVC already has multiview support in the base stan-
dard. It mainly follows the same principles as H.264 when it comes to extending the format
to carry multiple views at once. Even though it can improve the encoding efficiency by up
to 70% compared to H.264/MVC [113], apart from the reference implementation, nothing
is available yet. For the 3D version, a small number of scientific efforts to create faster
encoders can be found, but they do not state any absolute numbers about their speed [114].
The main reason why for this work H.264/MVC was preferred over H.265, was the miss-
ing widespread availability of hardware encoders and decoders in consumer hardware at
the time, as they were planned to be an important building block of the work in Section 4.3.1.

Recently, due to the enormous popularity of lightfields in the research community, new
standards for the coding of immersive multiview content have emerged.

JPEG Pleno [110, 115] is the effort of the Joint Photographic Experts Group to provide
an efficient means to encode material with multiple views captured by camera arrays or
plenoptic cameras. It requires high-quality disparity maps for the encoding and uses those
in combination with a few fully encoded views in key locations, to reconstruct the com-
plete lightfield. Calculating such disparity maps with sufficient quality within a reasonable
time frame and still making the whole encoding process real-time capable, is impossible.
Additionally, JPEG Pleno was never intended to be used with video footage. That fact
disqualified it for use in this chapter.

MPEG-I [116] is intended to encode multiview video to provide interactive immersive
experiences. It requires a depth for every view and frame in the stream to quickly and
accurately determine corresponding areas. By choosing ”base views” with the most cor-
respondences with neighboring views, the amount of data added by the other views is
minimized. The remaining data is arranged together with the base views into atlases of
rectangular image sections, for both the color data and depth information. After encoding,
the depth and color atlases for every frame in the sequence using normal HEVC, some
metadata is added for reconstruction and the MPEG-I stream is complete. For decoding,
the information from the atlases is projected to the desired view location, which recreates
the view at that location. As of now, only the reference implementation of a depth map
generator is available. Due to its dependence on depth maps and it being in the very early
planning phase at the time most of the work for this chapter was done, it was not considered
as a basis for this work.

4.1.2. Frame Coding in H.264 and HEVC

H.264 and its successor HEVC both follow the same principle for encoding video data.
Every image is represented as a set of slices which represent connected sections of the image.
There are three types of slices, I-slices, P-slices, and B-slices. The type determines how the
image data in the slice can be predicted later.
Data contained in the slices is split up further into smaller elements. H.264 calls them

104

4.1. Background

macroblocks (MBs), in HEVC they are named Coding Tree Units (CTUs). While H.264
uses a fixed size for the macroblocks of 16x16, the equivalent of HEVC allows different
sizes between 16x16 and 64x64 pixels. In both cases, the image sections can be subdivided
multiple times if it improves the encoding performance.
In general, the data in a macroblock is predicted by a so-called motion vector that

points to a very similar image section in the same or other already decoded frames. The
information from that image section is then used as a basis for the prediction. The difference
between this base data and the original data is stored as residual data and added during
the decoding process. Assuming that the motion vector and the residual data are fairly
similar for neighboring blocks, their base values are predicted from the neighbors and only
the difference is stored.

When the desired size for a macroblock is reached, the prediction mode is determined
based on the slice type. I-slices only allow for Intra prediction. In that mode, the encoder
can only use previously encoded macroblocks from the same image to represent the data.
Those blocks only contain the residual and no motion vectors. They do not store the full
residual but again only the difference, which is added to a base derived from the neighboring
blocks. A special type of I-slices is the IDR-slice, which stands for Instantaneous Decoding
Reset. At the start of such a slice/frame, all previously decoded pictures still in the decoders
buffer are deleted and the internal states of the decoder are reset to the start configuration.
All following operations referencing frames before an IDR-slice produce undefined results.

P-slices can also use intra-coded blocks, but use it only as a fall-back in extreme cases.
Normally, they use inter-coding for block prediction. By referencing a previously decoded
frame, the coding becomes more efficient, because there is a high chance that the object a
macroblock belongs to has only moved slightly since the last frame and therefore, a nearly
identical copy of the data should be available there. In addition to the residual data, a
P-type macroblock has a motion vector pointing to the best match in the other image,
relative to its current location, and an index referencing the image it wants to use. That
index points to an entry in a sorted list of available references, which is generated for every
slice and used for all macroblocks within it but it can be modified for a single block, if
necessary. In such a case, arbitrary indices can be added, removed, or modified in the list.
There is no maximum number of allowed operations, such that nearly all modifications one
can think of are possible.
A special property of predicted blocks is the ability to skip them. Skipped blocks only

contain a very short header and a skip flag. All other data is derived from the previous
blocks without modification or initialized as zero.

B-slices are the most efficiently encoded slice type. Their macroblocks can be I-type,
P-type, or B-type. The B-type is very similar to the P-type, the main difference being a
second list of reference images in reverse order of the first, as well as a second reference
and motion vector. The two sections of the two images to which the references point, are
combined with an optional weight before the residual is added. For special prediction cases
in B-slices, the final result depends on a field called the co-located picture. In all cases
discussed here, it points to the first entry in the second reference list.

If the data in slices would be stored simply as raw bits, the encoding would not be
very efficient. Most fields in the standard are defined such that the most common values
map to zero and the amount of entropy in the final data is minimized overall. The standard
defines two methods for encoding the bits further. Context Adaptive Variable Length

105

4. Real-Time Multiview Coding

Coding (CAVLC) is the simplest approach, which assigns bit sequences to values based on
their probability of appearing in the stream, with a clear focus on values between -1 and 1.

The second approach is on average 10-20% more efficient. The Context Adaptive Binary
Arithmetic Coding (CABAC) uses a large set of context objects holding the coder’s state
for more efficient encoding. By choosing the correct context based on the current state and
data field being read or written, it can adapt to the characteristics of the expected data
and increase its efficiency.

Which of the features described above are actually used for the coding of a video is
determined by the encoder, but the choice can be limited by the selected profile and level.
The defined profiles and levels determine feature sets and the overall performance a decoder
has to have in order to be able to decode a video without interruptions. In Section 4.3.1.1
the most important profiles and their supported features are discussed. Details about the
available profiles and their influence on the scalability of the presented approach are given
in Section 4.4.3.

4.1.3. Stream Structure in H.264

In an H.264 stream, all data is contained in Network Abstraction Layer (NAL) units. Every
H.264 encoded video contains at least a Sequence Parameter Set (SPS), a Picture Parameter
Set (PPS), and one slice. The SPS holds important parameters for the whole video. It
includes the profile and level required to decode the video and the size of the encoded frames.
In the PPS, an SPS is referenced and the length of the reference lists for P- and B-slices are
defined together with several quantization and quality parameters. With those two NAL
units, the decoder can start to recreate images from slices.

The chain of slices following the initial parameter sets can contain an infinite number
of I-, P- and B-slices in a nearly arbitrary order. It is not completely free because IDR
slices can destroy the prediction mechanism of following P- and B-slices, as described in
the previous section. Usually, a certain pattern of different slices is repeated over and over,
separated by IDR slices in key locations. Such a group of slices is known as a GOP or
Group Of Pictures. Different GOPs do not interact with each other because the decoder
might be reset between them. This fact becomes important when multiple independently
encoded streams are combined, as in Section 4.3.1.

In addition to the minimal required NALs, many more are defined in the H.264 standard.
The most important ones for this chapter are the Supplemental Enhancement Information
(SEI), which can hold arbitrary and optional data not necessary for decoding in most cases,
the subset sequence parameter set (SSPS), and the prefix NAL unit. The SSPS contains
a complete SPS but adds information required for the handling of multiple views within
one stream. Prefix NAL units are closely related to SSPSs because they hold the required
multiview information for the base view of the stream, which has to use SPSs. Access Unit
Delimiters (AUD) help to identify the start and end of GOPs but are only mandatory for
dedicated devices such as BluRay players. Video Usability Information (VUI) contains
non-essential information about the encoded video, such as aspect ratio, overscan, and color
formats.

For HEVC, the names for the NAL units have changed, but apart from small differences,
the same principles apply.

106

4.2. Concept

I

1

B

2

B

3

P

4

B

5

B

6

P

7

B

8

B

9

I

10

Time

Figure 4.1.: Example for an AVC prediction scheme. Arrows point to image which uses the
source as a reference for their prediction.

4.2. Concept

Looking at the compression schemes of H.264/AVC in Figure 4.1 and H.264/MVC in
Figure 4.2, it becomes obvious that there exist many similarities. Even though the MVC
follows a two-dimensional pattern instead of a one-dimensional one, the prediction pattern
of the single views stays the same. The inter-view prediction can be seen as a tacked-on
feature, which it technically is since the multiview feature set was defined in the Annex H
of the H.264 standard. The inter-view prediction is defined nearly identically to the inter-
frame prediction with only minimal changes to prerequisites and limitations to be able
to differentiate between the two prediction modes. This similarity, combined with the
fact that the main complexity of H.264/MVC encoding stems from the number of images
that have to be kept in memory and need to be analyzed to achieve the best encoding,
lead to the idea to distribute the overall complexity to multiple computational units and
also leverage the availability of H.264 hardware encoding features in modern CPUs. The
possible improvements in encoding efficiency by replacing I-frames of non-base views with
P- or B-frames and inter-view prediction have already been discussed and optimized by
Merkle et al. [117]. Therefore, our efforts were mainly focused on an approach for faster
encoding and not the search for the perfect prediction pattern.

The details of the steps we have taken to distribute the complexities and MVC encoding
to achieve much faster encoding times are explained in Section 4.3. The main idea is to
treat the frames from every view independently at first, encoding them as H.264/AVC with
the same parameters and, after gathering them in a central location, combine them into
a single stream with different levels of inter-view prediction and minimal changes to the
encoded data.

4.3. Implementation

The implementation of these ideas seems simple at first glance, but requires a significant
amount of analysis of the internal structure of H.264 streams and their extensions. There
were multiple implementations of the intended changes to the encoding process, each focusing
on a certain feature in the list of changes and building upon the earlier stages whenever
possible. Most of the implementation work in this chapter was part of Josef Nguyen’s
work [118, 119]. The stream multiplexer without proper inter-view prediction is described
in Section 4.3.1. Improved versions are presented in Sections 4.3.2 and 4.3.3.

107

4. Real-Time Multiview Coding

I0 B3 B2 B3 B1 B3 B2 B3 I0

B0 B3 B2 B3 B1 B3 B2 B3 B0

P0 B3 B2 B3 B1 B3 B2 B3 P0

Time

V
iew

inter-frame
prediction

inter-view
prediction

FB
F: frame type
B: temporal level

Figure 4.2.: Example of a MVC prediction scheme. Arrows point to image which uses the
source as a reference for their prediction.

4.3.1. Stream Multiplexer

The basis for all approaches is the assumption that pre-coded H.264/AVC streams are
compatible with H.264/MVC or can be made compatible with minimal changes and without
re-encoding of the contained footage. The proof-of-concept implementation starts with an
analysis of the different feature sets available in the different profiles of H.264 and their
stream structure. In the following sections, we discuss non-obvious problems that occur
with this approach and show how they can be remedied.

4.3.1.1. Encoder Features

To combine multiple H.264/AVC streams into a single H.264/MVC stream, the first issue to
be fixed is the feature set used by the encoders. This is important because the multiview
profiles do not support all features the single view profiles offer, as shown in Figure 4.3.
In order to have the largest common feature set between the single view profile and the
multiview profile, it was decided to choose the High Profile and the Multiview High Profile.
Those profiles give a good selection of features for efficient coding and only few incompatible
features. The main features which cannot be used are Field coding and the closely connected
MBAFF (MacroBlock-Adaptive Frame-Field) coding. Both of these features are only required
for the efficient coding of interlaced video, a format whose use has been gradually diminishing
in recent years, in favor of progressive video with higher spatial resolution because of the
higher perceived quality [120, 121]. Nowadays, these features are mostly used in bandwidth-
limited cases in which the frame rate has absolute priority over the resolution. As video
conferencing and comparable applications usually only contain slower movements than
sports broadcasts, the loss of interlaced coding support is not a problem. Without the need
for interlaced coding, the pre-coded views are compatible based on the feature set but the
structures of the streams are not the same.

4.3.1.2. Stream Structure

Looking at the structures for both types of streams, it is clear that one stream, namely
the base view, remains unchanged while the others have to carry additional information.

108

4.3. Implementation

High

Constrained
Baseline

I and P slicesMC prediction

CAVLC encoding

In-loop deblocking

Intra prediction

CABAC encoding

B slices

8x8 spatial
prediction

Weighted prediction

Monochrome format

Scaling matrices

8x8 transform Field coding

MBAFF coding

Multiview
High

Compatible with both Multiview High
 and Stereo High profiles

Inter-view prediction
(2 views)

Stereo
High

Inter-view prediction
(N views)

Figure 4.3.: H.264 supported feature cloud including Constrained Baseline, High, Stereo
High and Multiview High profiles according to the current standard [31].

The Sequence Parameter Sets (SPSs) of the other views are replaced by a Subset Sequence
Parameter Set (SSPS) which consists of an SPSs and some additional information to identify
which other views are required to decode it. The required additional data in the SSPS can
be easily deduced from the order and number of input streams of the multiplexer:

Number of views The number of views is equal to the number of input streams.

View order The order of views is not important as long as no inter-view prediction is used,
but for later use cases we define the order of views as the order of inputs to the
multiplexer.

View dependencies The dependencies are left empty for now, as there is not going to be
any inter-view prediction and therefore, no dependencies between the views.

Operation points The operation points reference levels to define the required decoding
capabilities to decode a view. It also includes the requirements of its dependencies.
Since there are no dependencies here, we define them as the level from the input
stream.

Display options For the display options, the default values are used since this functionality
is not used in this scenario.

As the parameter set IDs are identical in every input stream, it is not possible to differentiate
between when left unaltered. For this reason, a counter for every type of parameter is used
to adapt the parameter set ID when first encountered. Subsequently, the process of mapping
from an input stream and original ID to a new ID is saved, ensuring that other references
in the stream can later be adapted to the new IDs.

Since all input streams are encoded by similar encoders and equal parameters, it is very
likely that at least some of the SPSs and therefore, the SSPSs contain identical content,
meaning that any repetition would be an unnecessary waste of data rate. The multiplexer

109

4. Real-Time Multiview Coding

compares every new SPS with those it has already encountered. When an SPS with identical
parameters is found, it is discarded and only ID mapping is stored.
What follows the sequence parameter set in the input streams is a number of picture

parameter sets. Most AVC encoders create multiple sets for every stream, even when only
one of them is used. As it is hard to find out which parameter sets are really used in
the stream that follows without analyzing every single NALU in it, only incoming sets
with different contents are incorporated in the final stream. In order to do this, a similar
approach to that of the SPSs is applied where the minimal set of unique parameters sets is
determined, new IDs are assigned and the mapping from old to new IDs is stored and used
for the rest of the stream.

For both the SPSs and the PPSs, the content of the parameter sets is left mostly unchanged
but the ID is adapted as described above. Even though it is not important for the decoding
with an H.264/MVC compatible decoder, we create a SEI unit that includes the mappings
of the parameter sets and embed it into the head of the stream. Since there is no type of
SEI message that directly corresponds with this data, we use the unregistered message type
which allows for arbitrary content in the message. We use this feature to be able to reverse
the multiplexing process, as the demultiplexing of the streams can be used to parallelize the
decoding process at the receiver. Other SEIs created by the original encoders are dropped
because they often are unregistered messages as well and they are not necessary for the
decoding process. Leaving them in would require a restructuring of their internal data, so
they can be clearly differentiated from the messages the multiplexer creates.

The next difference that must be addressed is the MVC extension for the NAL unit header.
It is used in slices and mainly defines the view a slice belongs to, how important it is in the
stream, and lastly for which kinds of references it can be used. Since this information is
also needed for the base view, but it cannot use the header extension to maintain backward
compatibility with non-multiview aware decoders, a prefix NAL unit, which contains the
additional information, is added before every slice. The content of the fields is set as follows:

IDR flag Since an IDR frame causes all decoder buffers to be cleared, only the IDR frame
from the base view is kept. For the IDR frames of the other views, this flag has
to be set to false. Only then is it guaranteed that the buffers from lower views are
maintained and the following frames can be decoded correctly.

Priority The priority is assigned based on how they are referenced later. I-slices get the
highest priority of 0 as they are most likely to be referenced later. Other slice types
used as references by other frames are assigned priority 1. All slices belonging to
non-referenced frames get the lowest priority 2.

View ID The view ID defines the position of the view in the input order of the multiplexer.

Temporal ID Temporal IDs are only required in combination with operation points from
the SSPSs which are not used in this scenario. Therefore, the values are assigned as
follows: I-slices and P-slices get the temporal ID 0. Referenced B-slices get the ID 1
and non-references B-slices get the ID 2.

Anchor pic flag The anchor frames denote borders for the prediction process. That is why
all the I-slices which have not been designated as belonging to IDR frames are set as
anchor pictures.

Inter-view flag No inter-view prediction is used in this scenario therefore, this flag is set to
false for every frame.

110

4.3. Implementation

Any non-essential NALUs, such as Video Usability Information (VUI), Access Unit
Delimiter (AUD), and other Supplemental Enhancement Information (SEI) are removed
from the input streams. The main reason being the fact that the application context of the
stream is known and does not need the additional data for the compatibility with BluRay
players or other special devices. Some types of NALUs, especially VUIs, can even crash the
H.264/MVC reference implementation as soon as it encounters them in the stream because
it does not ignore them as it is supposed to, according to the standard.

4.3.1.3. Software Structure

Implementing the required stream modifications as described in the previous section requires
partial decoding of the stream. As H.264/AVC defines different data coding schemes which
are used to encode different parts of the NAL units, even reaching the required data can
be quite complex. In addition, determining the differences between the stream structure
defined in the standard and the structure a commonly available encoder actually creates,
was crucial for the creation of a working prototype.

To achieve this, two versions of the multiplexer were created: a partial encoder and
decoder pair, written from scratch in C++, which sticks very closely to the definitions in the
standard and focuses on readability and comparability with the standards definitions while
being easy to modify and adapt to the needs of the multiplexer. It also skips most parts of
the standard which interpret the encoded parameters, especially those that create images
from the raw data, as these are not important for this implementation. It decodes the
stream to such an extent that the data structures mentioned in the standard are accessible
and modifiable, but only evaluates them as far as it is required to get to this point. To
recreate the stream from the decoded data, the encoding is also implemented starting from
the stage where the decoding ended. An overview of the implemented features is shown in
Figure 4.4. The resulting implementation was used for stream analysis and to determine all
required changes to achieve the intended result. Since it was created for readability and
comparability with the standard, it was quite slow and was not able to achieve real-time
performance in any realistic scenario. To show that the solution was able to transcode live
material with sufficient speed, a more optimized solution was required.
The first impulse of using a fully optimized encoder like x264 as the basis for the

implementation, to get the best possible speed, was never fully executed. The main reason
for this being that the encoder side (the byte stream writer) in particular is very closely
intertwined with the parameter prediction, and the input it requires is quite hard to create
without starting the encoding at the very beginning. Another drawback was the missing
MVC awareness of the encoder, which would have meant that adding all required extensions
in a fully optimized fashion was required before it would be of any use. Since the software
was still a work in progress at this point, with an unknown number of changes still being
required as the feature set of the multiplexer was extended, this was not feasible. With this
inherent inflexibility and the problems with isolating the byte stream coding from the rest
of the encoder, this option lost a lot of its viability.
As a compromise between speed and usability, the byte stream encoding and decoding

portion of the JMVC reference software was extracted and restructured to be usable as
an independent library that can be easily combined with the multiplexer. Such a library
makes the logic for changing the stream independent from the basic reading and writing of
the byte stream. If the need arises for a more potent byte stream handler, it can be easily
replaced with a new version without touching the multiplexer’s algorithms.

The overall structure of a complete system based on this multiplexer is shown in Figure 4.5.
The first step is the pre-coding of the camera footage in the camera nodes. It is very important

111

4. Real-Time Multiview Coding

H.264 Bytestream Bytestream reader

NAL unit extraction

CAVLC/CABAC decoding

SPS/PPS/AUD decoding

Slice data decoding

Macroblock data decoding

Macroblock data prediction

Intra/Inter block prediction

Residual prediction

Transform coeff decoding

Deblocking

Image pixel data

Bytestream writer

NAL unit multiplexer

CAVLC/CABAC encoding

SPS/PPS/AUD encoding

Slice encoding

Macroblock encoding

Residual prediction

Transform coeff calculation

Macroblock subdivision

Image pixel data

Figure 4.4.: Abbreviated list of steps in a H.264 encoder/decoder pair. Steps with a red
border are implemented in the experimental transcoder.

H.264/AVC
precoder

H.264/AVC
precoder

H.264/AVC
precoder

H.264/AVC
precoder

H.264/AVC
precoder

H.264/MVC
multiplexer

H
.2
64
/A
V
C

H.2
64/

AV
C

H.264/AVC

H.264/AVC

H
.264/AV

C

H.264/MVC
demultiplexer

H.264/MVC

H.264/AVC
decoder

H.264/AVC
decoder

H.264/AVC
decoder

H.264/AVC
decoder

H.264/AVC
decoder

H
.264/AV

C

H.264/AVC

H.264/AVC

H.
26
4/
AV

CH
.2
64
/A
V
C

Figure 4.5.: Structure of the multiplexer system. After the individual precode as normal
AVC streams, the multiplexer combines them in a single stream. At the receiver
the process can be reversed.

112

4.3. Implementation

that all nodes use the same parameters for the encoders as deviating GOP sizes can lead to
severe decoding artifacts due to how IDR frames are used in MVC. Many parameters of the
encoder are only there to make the AVC encoder only use features that also exist in the
MVC profiles and to disable certain automatic parameter calculations so that the frame
structure is identical for every node, even though the images in the streams differ slightly.

Below, the options and parameters for the GStreamer plugin which handles the pre-coding
in the camera nodes is given:

x264enc byte-stream=true option-string="bframes=0:min-keyint=16:

keyint=16:no-scenecut=true:force-cfr:no-mbtree: sync-lookahead=0:

rc-lookahead=0"

First, ”byte-stream=true” forces the resulting byte stream into the format specified in
the H.264 standard. ”bframes=0”, ”force-cfr”, ”no-mbtree”, ”sync-lookahead=0” and ”rc-
lookahead=0” reduce the overall time required for encoding by minimizing the number of
frames being sent out of order and therefore, the overall transmission delay. This is done by
disabling B-frames altogether. ”min-keyint=16”, ”keyint=16” and ”no-scenecut=true” set
the minimum and maximum length for GOP sizes in the stream and disable the detection
of scene cuts which would trigger the start of a new GOP out of sequence.

The pre-coded streams are then sent to the multiplexer via RTP to a predefined port.
On the sender machine, they are fed into the multiplexer which ingests their contents until
all input streams reach a valid state. A valid state means that at least one SPS and one
PPS have been read. As soon as this is the case, the multiplexer analyses their content and
creates the multiview correspondences as well as the mapping as described in Section 4.3.1.2.
The mapping and the new parameter sets are then written to the output byte stream, which
concludes the multiplexer initialization. During normal operation, the data from an input is
read until a slice unit is found. Its header is adjusted to match the new parameter set IDs,
the new profile, and level values. If it belongs to the base view, the required additional NAL
units are created before they are written to the output. This procedure is then repeated for
all other inputs in a round-robin fashion until the first input ends.

The output stream is sent to the receiver machine using an arbitrary transmission method.
On the receiver, there are two options to decode the stream. If a sufficiently fast decoder
with H.264/MVC support is available, the stream can simply be fed into it and be decoded
as the standard intends. If no such decoder can be used, a demultiplexer can be used
to recover the single view streams which can then make use of widely available hardware
decoding support. To do this, the previously described process is reversed, the original
IDs of parameter sets are restored and the fields added by the multiplexer are removed.
After the reversal process, it is guaranteed that all streams have only the required number
of parameter sets and only valid fields according to the H.264/AVC standard, which can
be used by nearly any common video decoder. With the hardware decoding support of
modern CPUs and GPUs, it is possible to decode multiple H.264/AVC streams in parallel.
Independent of which approach was used for the decoding of the streams, the contained
frames from all cameras can now be used or processed further.

The viability of this approach was demonstrated at CeBIT 2017 (Figure 4.6), a prominent
German tech expo, and acknowledged by the research community [5]. For that event,
the functionality of the multiplexer was implemented as a GStreamer plugin, including
multiplexing and demultiplexing with automatic parameter detection, so that there was
no need for configuration files. Using five cameras capturing 1080p video at 25 frames per
second, the system created a multiview stream from the live footage, streamed it over a
small local network, and decoded it again to show a mosaic with the views from all five

113

4. Real-Time Multiview Coding

Figure 4.6.: Multiplexer demonstrator with five cameras at CeBIT 2017.

cameras. The system performed nearly perfectly for multiple hours at a time, with a total
system delay of less than one second.

Since this approach only multiplexes multiple H.264/AVC views, the encoding performance
does not reach the level that can be achieved with the reference implementation. This
is easily explainable since it does not make use of the inter-view prediction, which is the
main new feature of H.264/MVC. Making use of this feature and improving the encoding
efficiency was the focus of the following extended implementations.

4.3.2. Towards Inter-View Predictions in Multiplexer

In the presented approach for a scalable encoder, the first encoding steps and the final stream
construction do not necessarily have to be performed on the same device. Therefore, the
different stages might not have access to every part of the input material. For the traditional
approach, such access is absolutely necessary to achieve the best encoding performance,
since it requires a thorough analysis of the whole range of inputs. Since an optimal solution
is not possible, even for highly optimized encoders without significant delays, we focus first
on implementing a non-optimal solution that still performs significantly better than the
version from the previous section.

One major source of bitrate in the previous solution is the I-frames in views two and
higher. In H.264, the I-frames are usually more than three times larger than P-frames,
which in turn are about twice the size of B-frames [122]. For five views, this means the
equivalent of 20 B-frames is wasted in every GOP simply by having an I-frame for every
view in the beginning. Considering that in interactive applications quite short GOPs of
length 8 or 16 are used, depending on the frame rate and delay requirements, there is a lot
of potential gain in replacing the I-frames.

114

4.3. Implementation

I P B

P B

P B

...

...

...

...
I P B

P

B

P B

P B

...

...

...

...

I

I

I I I...

I P ... B

AVC Encoder

AVC Decoder

Transcoder

N

Figure 4.7.: Multiplexer scheme with added inter-view prediction. I-frames are copied from
the input and encoded separately with a GOP length equal to the number of
views. Their encoded versions are reintroduced into the stream in the transcoder.

In order to implement this approach, steps to introduce a kind of inter-view prediction
are added in the multiplexer. By looking at how the inter-view prediction is defined in
H.264/MVC, it can be seen that it functions like the inter-frame prediction, but accesses
different views as references.
An overview of the whole encoder is given in Figure 4.7. The main idea here was to

extract the I-frames from the incoming streams and decode them. This is possible because
I-frames only use intra-frame prediction which makes them independent from the rest of the
stream they belong to. Once they are decoded, a slightly modified conventional H.264/AVC
encoder is configured to produce a stream with a GOP size equal to the number of input
views. We elaborate on the required modifications to the encoder later in this section. The
decoded frames are then fed into the encoder to produce a re-encoded version of the I-frames.
The transcoder then takes this sequence and adds it to the output stream, in place of the
I-frames. This process drastically increases the encoding efficiency, but lowers the overall
quality slightly because the other frames of the views have been encoded with the original
I-frames as reference. Since the re-encoded views are slightly different from the I-frames that
were in their place before, the macroblocks which referred to the I-frames now produce a
slightly different result than before. These errors propagate through the whole sequence, but
even though they are usually too small to be noticeable, they can still be measured. While
this idea seems to be trivial at first glance, issues become apparent upon closer inspection.

Fixing Encoder Predictions

When the new frame sequence is transplanted back into the sequence, at first the references
are all wrong because they point to other frames of the same view, instead of to the same
frame in other views as intended. To correct this, reference list modification commands are
added to the header of every slice of the transplanted sequence, to modify the reference

115

4. Real-Time Multiview Coding

Figure 4.8.: Prediction errors after adding inter-view prediction.

list a decoder would create in such a way that it contains the correct frames in the right
positions. Post-modification, it seems that the output is initially functioning as is should,
however, there are some frames in the stream which present clusters of macroblocks showing
severe errors (See Figure 4.8), even though the input streams can be decoded correctly.
It is evident that those blocks reference the correct image but the motion vector is off by
a rather large amount. Further investigation reveals that this only happens in B-frames,
P-frames are never affected. The reason for this can be found in Section H.8.4 in the H.264
standard [31]:

For the invocation of the MVC inter prediction and inter-view prediction process
as specified in this clause, the inter-view reference components and interview
only reference components that are included in the reference picture lists are
considered as not being marked as ”used for short-term reference” or ”used for
long-term reference”.

Since the affected frames reference the newly encoded inter-view predicted frames, which
are marked as inter-view and therefore neither as short-term nor long-term reference frames,
this clause affects all B-frames in the replaced sequence. The different frame marking causes
a decision in the motion vector derivation of skipped macroblocks in B-frames to go in the
wrong direction and creates the artifacts visible in the output. Even though some short-term
solutions (such as not using B-frames at all or disabling skipped macroblocks for B-frames
in the encoder) were considered and implemented, they massively reduced the maximum
achievable encoding performance of our encoding system as B-frames are more efficient than
any other frame type and skipped macroblocks are the main reason for it.

The problem is caused by the spatial direct luma motion vector prediction mode applied
to skipped macroblocks. Section 8.4.1.2.2 of the H.264 standard lists a set of conditions
that have to be fulfilled to set the colZeroFlag to 1. This flag later determines whether the
starting point of the motion vector is set to 0, or whether it is derived from the neighboring
macroblock’s motion vectors. The first condition is that the first image in the second

116

4.3. Implementation

reference list is marked as a short-term reference. As discussed before, this can never be the
case for our replaced frames but is possible in the encoder and this creates the discrepancy
visible in the decoded frames. To fix this, the critical part of the encoder, which is used for
the re-encoding, is identified and modified in such a way that it makes the same decision
as the decoder which is going to process the final stream. It is a simple fix since it only
involves a single decision, but fixes the problem for the replaced frames.
After this modification, the new inter-view predicted frames are decoded correctly, but

there are still errors in non-modified frames, which reference the new frames. These errors
are not caused by a discrepancy between AVC and MVC decoding, but by the fact that
the re-encoded frames are not I-frames anymore and there are differences in the motion
vector derivation when the co-located macroblock is intra-coded or not. In I-frames, all
macroblocks are intra-coded, while in all other types there is an option for intra-coding,
which is only used in rare cases. Modifying the encoder to use the correct macroblock
prediction in critical places requires major work in the encoder as well as a very thorough
analysis of all macroblocks in all frames of all views. The high complexity involved makes
such an approach unfeasible for real-time applications. An easier solution with only a small
impact on the encoding efficiency is to slightly adapt the GOP structure. As P-frames are
not affected by the problem because they do not have a second reference list, they are used
as anchor frames in the center of the GOP. Then the encoder is modified such that the
frames which are going to be replaced are never in the position of the co-located frame.
This is achieved with a simple modification of the second reference list of the slices in the
encoder. For a GOP size of 8, the decoding order might be IPBbbBbb (the small b denotes
B-frames which only reference other B-frames). Therefore, most frames are still B-frames
which keeps the prediction efficient. With this change, all the errors disappear and the
decoding is successful.
This implementation of the distributed encoder introduces a first version of inter-view

prediction in the final output stream. The inter-view prediction is added to the stream during
multiplexing and the implementation is based on the multiplexer presented in Section 4.3.1.
Due to its implementation, there is a small decrease in overall quality but a significant
increase in encoding efficiency. The complexity of the required operations is low enough to
keep it feasible for interactive applications without specialized hardware.

4.3.3. Real Inter-View Prediction with Distributed Coding

In this section, a different approach to fast inter-view prediction is presented. While the
previous attempt added inter-view prediction during multiplexing, it came with a slight
drop in quality. To prevent this, the way to add the inter-view prediction is modified in such
a way that transplanting the inter-view coded frames does not change the prediction in each
view. Figure 4.9 gives an overview of the new structure. As a first step, the first frames of
the GOPs from every view are collected and encoded. The encoded frames are distributed
to the respective encoders for the rest of the frames and injected into the encoder state, so
the following frames reference the correct encoded frame. The following frames are encoded
normally and the resulting video streams are multiplexed with the method presented in
Section 4.3.1. The inter-frame prediction is turned into inter-view prediction as described
in Section 4.3.2. Those steps result in an H.264/MVC compatible video stream with real
inter-view prediction.

Due to the complexities involved in extracting the encoded frames and the associated buffer
from one encoder and injecting it into another, this version was never fully implemented. It
requires an encoder-specific data dumper that extracts the frame from the decoded picture
buffer, along with all associated frame data like frame type and saved information about

117

4. Real-Time Multiview Coding

..
.

1

1

..
.

1

1

2

2

..
.

2

2

. . .

. . .

. . .

. . .

N

N

..
.

N

N

AVC Encoder

AVC Encoder

..
.

AVC Encoder

AVC Encoder

MVC
transcoder

AVC
encoder

1 2 N-1 N

N

N-1

2

1

cameras raw frames view encoders

inter-view coder encoded frames

H.264/MVC

Inject as first frame

Figure 4.9.: Proposed structure for full inter-view injection. Future I-frames are intercepted
and coded separately. Their encoded versions are injected into the view encoders
as a virtual first frame, then they work normally.

the macroblocks. In the view pre-coders the frame data must be injected by replacing the
respective data from the first frame with the data from the inter-view encoder, before the
following frames are processed. If this is done correctly, the need for the second fix described
in Section 4.3.2 becomes obsolete because all frames reference the correct data.

The major drawback of this approach is the requirement to transfer raw uncompressed
frames from one encoder to another. On the other hand, there is no need to re-encode any
frame which negates the quality drop from the earlier attempt. That procedure also removes
the need for the mandatory P-frame in the GOP, which increases the encoding performance.

4.4. Evaluation

In the previous section, multiple approaches for the design of a distributed or hierarchical
real-time encoder for multiview content were presented. In this section, the performance of
these approaches is evaluated with respect to their speed, encoding performance and quality,
and scalability.

4.4.1. Speed

It is important to note that, even though some more optimized solutions exist, especially for
the multiplexing version, all measurements were taken using an implementation based on
modified versions of the JM and JMVC reference software for better comparability. Every
measurement was taken by applying the corresponding implementation to five views of
the Ballet sequence [63], each with 100 frames and a resolution of 1024x768. The main
advantage of our approach is the significant difference in the time that is required to create
a standard-compliant H.264/MVC stream from a set of input views. Table 4.1 shows the
result of the performance evaluation. It becomes immediately evident that the reference
implementation of the H.264/MVC standard is by far the slowest solution, even though the

118

4.4. Evaluation

Encoding [s] Transcoding [s] Total [s]
JMVC 27793 0 27793
1. Transcoder (no IV) 521 281 802
2. Transcoder (P only) 368 534 902
3. Transcoder 521 567 1088

Table 4.1.: Measured encoding times. The first transcoder is the multiplexer without any
inter-view coding. The second transcoder has inter-view coding, but only uses I-
and P-frames. The third transcoder is the final prototype with full frame-type
and inter-view coding support.

View0 View1 View2 View3 View4 Frame0
JMVC 447.52 431.68 457.47 415.82 433.64 799.67
1.Transcoder (no IV) +9% +10% +9% +12% +8% +6%
2.Transcoder (P only) +28% +30% +29% +32% +28% -16%
3.Transcoder +7% +4% +8% +5% +5% -16%

Table 4.2.: Average frame sizes in bytes for different views and transcoder versions.

presented solutions are based on the same code base. Even the slowest transcoder version
only requires 3.2% of the JMVC’s time.
The significantly lower encoding time for the transcoder version, which does not use

B-frames, stems from the fact that encoding P-frames is less complex than encoding B-frames
because they have fewer references and therefore, it is not necessary for the encoder to
consider so many neighbors for the prediction of the macroblocks. It is also interesting to
see that the modified encoder in the last version requires the same amount of time as the
encoder in the first version, despite the change introduced in Section 4.3.2. The transcoding
time increases with every new iteration of the transcoder, the largest step being between the
first and the second version. That can be explained by the addition of the re-encoding step
in the second version. Decoding the frames is quite fast since only I-frames are decoded and
they are the least complex to decode. Encoding involves all frame types which makes it
more complex. Another portion of the transcoding time goes into the recalculation of the
reference list of the new inter-view predicted frames, as explained earlier.
Overall, due to the fact that the sequence to encode is only 10 seconds long and has a

frame rate of 10 frames per second, the results do not look very impressive and are still
far off the real-time target. For the transcoder without inter-view interpolation, we have
shown in [4] that switching to a more efficient implementation for the computationally
expensive parts allows the approach to reach real-time speeds with performance to spare on
hardware that is considered quite outdated by now. Since the transcoding was only slightly
optimized and still used the code from JMVC to read and write the byte stream, there is
even more potential for future improvements. Overall, it is very feasible that all presented
approaches reach real-time performance when implemented using a more optimized platform
for a moderate number of views. For a high number of views, new bottlenecks emerge, as
discussed in Section 4.4.3.

4.4.2. Encoding Efficiency

Speed is the main focus in our approach, but it is worthless if the compression is not efficient.
Table 4.2 compares the average frame sizes of the JMVC output to that of our transcoders.

119

4. Real-Time Multiview Coding

0 20 40 60 80 100
Frame number

43

44

45

46

47

P
S

N
R

 [d
B

]

Transcoder
JMVC

(a) PSNR scores

0 20 40 60 80 100
Frame number

0.960

0.965

0.970

0.975

0.980

0.985

0.990

S
S

IM

Transcoder
JMVC

(b) SSIM scores

Figure 4.10.: Quality results for the encoded Ballet sequence [63] with interview support

It shows that the frame sizes with the latest transcoder are only 4 to 8% bigger than those
created by JMVC, even though our transcoder is forced to add a P-frame in the center
of the GOP (see Section 4.3.2). The bigger size of the P-frames becomes obvious in the
results for the second transcoder, whose frames are between 28 and 32 percent bigger than
those of the reference implementation. The main reason for the lack of notable difference
is the more efficient encoding of the first frames in the GOPs. The JM encoder encodes
the frames in a way that they are up to 16 percent smaller in the byte stream. As the first
frames in a GOP always have the best quality in the GOP, they are always bigger than the
other frames, which makes their size difference even more significant.

The first transcoder with inter-view coding, which we introduced in Section 4.3.2, does
not influence the size of the stream a lot. A comparison with the pure multiplexer using the
exact same settings, only reduced the frame sizes by 40 bits on average.

Figure 4.10 shows the quality comparison of JMVC and the last transcoder for one
of the views, which is the last in the prediction chain. Their frames are therefore most
affected by the prediction errors, which we introduced by the re-encoding of the frames
at the beginning of the GOPs. The quality loss we expected from the re-encoding of the
GOP start frames and the prediction change becomes evident here. The transcoded stream
has a PSNR value approximately one dB lower than the JMVC stream and an SSIM value
which is approximately 0.05 lower. Considering the large speedup and the improvement in
compression efficiency, such a drop in quality is acceptable. The result of the re-encoding
itself can also be seen here, as the quality of the first frame in the GOP which usually has
the highest quality, drops below the one of the center P-frame we introduced. In SSIM, it
is even more evident where the first frame is just slightly better than the frames with the
most prediction instances. This discrepancy can be explained by the blocky characteristic
of encoding artifacts introduced by all MPEG video codecs, as they change the structure of
the image and this is picked up by the SSIM.

When comparing the different transcoders with each other in Figure 4.11, the version
without inter-view prediction and the version with B-frames show a similar structure, which
is simply shifted. This similarity in the graphs can be traced back again to the similar
GOP structure and the added re-encoding step. The transcoder limited to P-frames shows
a different pattern. The first frame has the highest quality (at least when measured with
PSNR) and then the quality continually drops for the rest of the GOP because every new
frame is predicted using the previous one. The low-quality value at the beginning of the
GOP is again an effect of the slight block artifacts added by the re-encoding.

Looking at a comparison of the frame sizes in Figure 4.12, the re-encoded frames are

120

4.4. Evaluation

0 20 40 60 80 100
Frame number

43

44

45

46

47

48

P
S

N
R

 [d
B

]

Transcoder
Transcoder P
Transcoder w/o IV

(a) PSNR scores

0 20 40 60 80 100
Frame number

0.960

0.965

0.970

0.975

0.980

0.985

0.990

S
S

IM

Transcoder
Transcoder P
Transcoder w/o IV

(b) SSIM scores

Figure 4.11.: Quality results for the encoded Ballet sequence with different encoder versions.

0 10 20 30 40 50 60 70 80 90 100
Frame number

200

300

400

500

600

700

800

F
ra

m
e

si
ze

 [k
bi

t]

Transcoder
JMVC

(a) B-frames vs. JMVC

0 10 20 30 40 50 60 70 80 90 100
Frame number

200

300

400

500

600

700

800

900

F
ra

m
e

si
ze

 [k
bi

t]

Transcoder
Transcoder P
Transcoder w/o IV

(b) Encoder comparison

Figure 4.12.: Frame sizes for the encoded Ballet sequence.

about 30 percent smaller than their equivalent from the JMVC stream. The main reason is
the loss of details in the second encoding step, which makes the frames easier to compress.
The P-frames are approximately 50% bigger than their equivalent B-frames, as expected.
The difference gives the appearance of the GOP from the transcoder being shifted by half
a GOP size, but this is not the case. The size of the B-frames from the transcoder varies
much more than those from the JVMC. This only shows that different encoders distribute
the bits differently over the frames of a GOP. JM gives more bits to frames higher in the
prediction hierarchy, while JMVC attempts to maintain a more static number of bits per
frame.

A comparison between the different transcoders again confirms what we have seen before.
The re-encoded frames are bigger than the original ones, while the other frames maintain
their size after the transcoding. The P-frame-only version displays a higher average bitrate
per frame, but also less variance, similar to the behavior in the quality.

4.4.3. Scalability

Given that the motivation behind the procedures presented in this chapter was the lack of
available implementations of H.264/MVC for more than two views, it is essential to note how
well the new approach scales with regard to the number of views to encode. The sequence
used for evaluation only has a resolution of 1024x768. At this point in time, this resolution
is considered very low, since commonly consumed videos currently shift slowly from FullHD
to 4K resolutions and 8K is already on the horizon. Even though multiview codecs do not
see a lot of use nowadays, this can change quickly, with the rise of lightfields. So here we

121

4. Real-Time Multiview Coding

discuss what the limits are for the number of views, either defined by the standard or the
capability to keep up with real-time speeds.

Table 4.3 is an extract of Table A-1 from the H.264 standard [31]. It defines the number
of macroblocks per second a decoder must be able to process, so it can decode the video
stream at the speed it is intended to be viewed. Additionally, it defines the memory a
decoder requires (in macroblocks), so it can decode the stream. Inversely, those limits must
be considered by the encoder to make sure a decoder capable of the respective level can
process it.
To make the distributed encoder work properly with the camera array presented in

Chapter 2, we have to check how many views with a resolution of 1920x1200 at 40 frames
per second the encoder can handle. First, the number of macroblocks in one frame has to
be calculated as ⌈

1920

16

⌉
·
⌈
1200

16

⌉
= 120 · 75 = 9000 (4.1)

This already forces us to use at least level 5 (see Table 4.3), since it is the first one that
supports the required number of macroblocks per frame. As the current state of the
implementation is still based in parts on JMVC, we are limited by its highest supported
level, which is 5.1. The maximum number of views from our camera array that can be
decoded in real-time with a level 5.1 capable H.264 decoder is⌊

983040macroblocks
s

9000macroblocks
frame · 40 frames

s

⌋
= ⌊2.73⌋ = 2 (4.2)

The effort for two views seems impractical, since the MVC coding becomes more efficient
with more views.

In case real-time decoding is not crucial, or a faster decoder is available, another value in
the table becomes the limiting factor, namely the maximum decoded picture buffer size. In
Section H.10.2.1 of the H.264 standard, the maximum size of the decoded picture buffer is
given as:

max dpb size = min(dpb size(MaxDpsMbs), dpb size(NumV iews)) (4.3)

where

dpb size(MaxDpsMbs) =
2 ·MaxDpbMbs

PicWidthInMbs · FrameHeightInMbs
(4.4)

dpb size(NumV iews) = max(1, ⌈log2(NumV iews)⌉) · 16 (4.5)

Calculating those with the values from the camera array and level 5.1 gives:

dpb size(MaxDpsMbs) =
2 · 184320
120 · 75

= 40.96 (4.6)

Since this value is independent of the number of views and the result of Equation 4.5 surpasses
it for three views and more, Equation 4.3 is only defined by the result of Equation 4.6.
Therefore, the maximum amount of pictures that can be in the decoded picture buffer at the
same time is 40. Considering a common three-stage multiview prediction scheme with GOP
size 8, the two previous frames of all views and the one currently being decoded have to be
held in the buffer. This means the maximum frames in the buffer are 2 ·NumV iews+ 1.
Figure 4.2 in Section 4.2 might be helpful to understand this. In case the decoding order
diverges from the display order and the decoded frame can not be displayed immediately, it

122

4.4. Evaluation

Level
number

Max
macroblock
processing

rate
(MB/s)

Max
frame size
(MBs)

Max
decoded
picture

buffer size
(MBs)

1 1 485 99 396
1b 1 485 99 396
1.1 3 000 396 900
1.2 6 000 396 2 376
1.3 11 880 396 2 376
2 11 880 396 2 376
2.1 19 800 792 4 752
2.2 20 250 1 620 8 100
3 40 500 1 620 8 100
3.1 108 000 3 600 18 000
3.2 216 000 5 120 20 480
4 245 760 8 192 32 768
4.1 245 760 8 192 32 768
4.2 522 240 8 704 34 816
5 589 824 22 080 110 400
5.1 983 040 36 864 184 320
5.2 2 073 600 36 864 184 320
6 4 177 920 139 264 696 320
6.1 8 355 840 139 264 696 320
6.2 16 711 680 139 264 696 320

Table 4.3.: Level limits for H.264 [31].

has to be stored until it is displayed. That increases the number of frames in the buffer to at
most 3 ·NumV iews+ 1. Solving the equation for the number of views gives the maximum
number of views that can be included in the stream without violating the limits of the
chosen level:

NumV iews =

⌊
dpb− 1

3

⌋
=

⌊
40− 1

3

⌋
= 13 (4.7)

Consequently, to transmit the 64 views of the camera array, at least 5 streams are required.
Depending on the application that uses the streams, a line-wise or column-wise grouping
with 8 views each might be more efficient. For two-dimensional usage, a 3x3 or 3x4 subset
can also be used, but in those cases, the views can not be distributed evenly over the streams.
A different application-specific camera layout could solve the issue. A higher level, such
as 6.2 which does not have encoder or decoder support at the moment, would increase the
possible number of views to 51. While this is still not enough to include all cameras in the
stream at once, it gives more possible options for view distribution.
Another limit to consider is the speed of the re-encoding step or the first encoding

step required in Section 4.3.3. Since those are only handling one frame in time direction,
independent of the number of frames in view direction, all their operations have to be
performed within one frame duration to maintain real-time performance. For a frame rate of
40 frames per second and 64 views, the time budget for each frame is 1

40·64s = 390µs or the
equivalent of 2560 frames per second at 1920x1200 resolution. Such a value is currently not

123

4. Real-Time Multiview Coding

achievable by any CPU with the most optimized encoders or even the fastest GPUs available.
Depending on the delay requirements of the final application, the timing requirements can
be relaxed, if we assume that the encoders for every view are also running faster than
real-time. In this case, the transcoder may take longer than one frame duration and as
long as it finishes within a fraction of the GOP duration, the view precoders can still catch
up. Hence, one GOP can still be processed in one GOP duration. This approach makes
the limit more feasible, especially for longer GOPs, but still requires very powerful CPUs
or GPUs. Only combining this relaxed timing requirement with a lower number of views,
brings real-time performance into the reach of affordable hardware.

4.5. Open Issues

Even though our approach produces standard-compliant streams and real-time performance
has been demonstrated at least for some of the implementations, there is still a number of
issues that need to be addressed in the future if the system presented here is to be used in
production environments:

Optimized implementation

The biggest hindrance to better performance is the fact that all approaches are mostly based
on unoptimized reference implementations of the respective standards. The simplicity of
these implementations was quite useful for getting a grip on what needed to be changed
to make them work and ease the implementation of those changes. Now that the changes
are known, adding them to a more optimized encoder or decoder respectively would give
much better performance with respect to speed. Since the changes we propose are rather
simple, this could be done quickly if an optimized encoder/decoder pair with full multiview
support was available. However, with the current state of available decoders, in addition
to our modifications, the whole functionality required for MVC, needs to be added as well.
Adding the functions to a highly optimized system while making sure the additions are as
optimized as their environment would be a very lengthy process.

Porting to newer standards

The approaches presented in this chapter are based on an extension to the original H.264
standard. Even though it has been updated until recently, it is foreseeable that most systems
will move on to newer standards such as HEVC (H.265) or AV1 [123]. They promise a better
encoding performance than H.264, namely requiring about half the bitrate for the same
quality. While AV1 does not support multiple views in one stream yet, HEVC includes this
functionality in the base standard. Since the overall structure of how the prediction works
has not changed much when compared with H.264, porting the presented approaches to
HEVC may make it more efficient and give it better chances of being adopted in the future.

Optimize inter-view coding

All presented approaches are currently limited to using the first frame in the GOP for
inter-view prediction. While this gives the biggest gain because the largest frames are
replaced, using additional inter-view predicted frames in a GOP can increase the overall
performance. Due to the structure of our approach, the position of these frames can not be
determined dynamically. So to make the optimal choice for additional inter-view frames,
a detailed analysis of the data rate distribution over the frames in the GOP, is required.

124

4.5. Open Issues

Additionally, more inter-view frames add harder limits to the speed requirements of each
component, as they are required for certain prediction steps.

125

5. Optimized Streaming of Multiview
Content

Even though multiview content can be compressed quite efficiently and even in real-time
under certain conditions, as shown in Chapter 4, the required data rate can still be much
higher than that of single view content. This increase in data rate makes it still prohibitive
for live-streaming scenarios when the available bandwidth to the clients is limited. Unlike
other approaches which only aim to have a single view at the receiver to show and only want
to switch between the views within the stream [124], our goal is to deliver all views to the
client to enable further processing such as view interpolation or depth estimation. Therefore,
a solution that can switch quickly between views but only transmits one at a time does not
work here and we must rely on a video codec with multiview support. These codecs are not
supported by most common video players and encoder suites, which means they often only
exist as slow reference implementations without automatic data rate or quality adjustments.
Single view streaming codecs can only lower the required data rate for the transmission of a
video by degrading the video quality, either by reducing the temporal or spatial resolution,
so there is less content to be transmitted, or by increasing the quantization of the image
contents so every image is represented by less data. Which one of these parameters takes
precedence over the others heavily depends on the content and the viewing scenario [125].
While content with a lot of fast movements such as sports footage needs to retain a high
frame rate, otherwise the footage will look choppy, such material can cope with less overall
image detail because small details can not be perceived in fast-moving parts of the images.
On the other hand, slower-moving footage needs the fine details while the lower frame rate
might be missed by the viewer.
In this chapter, we explore how to optimize a video stream containing multiple views

under the assumption that all views must be present at the receiver at the same time,
that the available bandwidth on the channel is limited but known, and some kind of view
interpolation algorithm is available for view reconstruction.

5.1. Concept

Multiview footage opens up a new dimension of parameters for data rate optimization. In
combination with a real-time view interpolation algorithm, such as the one described in
Chapter 7, complete views can be dropped from the transmission and the saved bandwidth
can be redistributed over the remaining views. On the receiver, the missing views can be
reconstructed by using a view interpolation algorithm if necessary. In case the quality or
speed of the available view interpolation algorithms is insufficient, falling back to equally
distributing the data rate between the views and transmitting them all is always an option.
Figure 5.1 gives an overview of the steps included in such a streaming pipeline.

Choosing the optimal parameters is already complex for common encoders [126], so adding
new parameters adds even more complexity. Since every step in the pipeline has its own
set of parameters and output requirements, each one has to be set up to maximize the

127

5. Optimized Streaming of Multiview Content

View 1

View 2

View 3

..
.

View N-2

View N-1

View N

MVC encoder

Stream
optimizer

Sender Receiver MVC decoder

View reconstructor

View 1

View 2

View 3

..
.

View N-2

View N-1

View N
view properties

channel parameters
views to
encode

. . .

Figure 5.1.: Proposed multiview streaming pipeline.

respective output quality while fulfilling the requirements of the next step. In order to be
able to predict the optimal parameters for every step, the influence of the parameters on the
quality at the end of the pipeline has to be determined. To be able to efficiently combine the
quality gains and losses in each step, this influence has to be measured using a single metric,
since the scales and measurements of different metrics are almost always incompatible [127].
The step with the most complex analysis of quality vs. data rate is the video encoding
step at the beginning of the pipeline. Fortunately, this work has already been done for the
common video encoders [128] during their development and shortly after, but only with
respect to the PSNR. While the choice of PSNR as their metric is very common for video
and image decoders which try to keep as much image information as possible, it is not
ideal for view interpolation applications as shown in Chapter 6. For the other steps, the
evaluation of the influence of a change in the used data rate on the quality of the final result
needs to be done by us. Once the influence is known for all steps, the final quality can be
predicted for a given available data rate and a set of parameters for the intermediate steps.
From there, it becomes an optimization problem to find the parameters which maximize the
quality of the final images.

View interpolation results often fail to score high PSNR values even for images that look
good to human observers. Even though we created and published a novel quality metric
that tries to solve this issue while staying mostly compatible with PSNR (See Chapter 6), it
was decided to mostly use SSIM [129], because it is far more well known and better accepted
in the research community.

Starting at the end of the pipeline, the average quality Q of the views received on a
client device can be defined as

Q =
QE ·m+QR · (n−m)

n
(5.1)

where QE is the quality of an encoded view in the stream, m is the number of encoded views
and n is the number of views expected at the receiver. QR denotes the expected quality
of a reconstructed view. Since the view interpolation algorithms used for reconstruction
only have the encoded views available as input, it is safe to assume that the quality of their
output is never higher than the quality of the encoded views and strongly influenced by it.
QR in Formula 5.1 can be substituted with c ·QE where c is an arbitrary term describing a
characteristic function which describes the view interpolation algorithms ability to recreate

128

5.1. Concept

the missing views from the input material, resulting in

Q =
QE ·m+ c ·QE · (n−m)

n
. (5.2)

In Pascal Straub’s thesis [130], we found that the most influential parameter for this
function is the ratio of pixels in the view to be reconstructed, which are also visible in the
remaining encoded views. Following Zhang et al. [13], who used that coverage to optimize
the distribution of the movable cameras in their camera array for maximum image quality,
we used the same definition from Mavrinac et al. [131]. They define the covered points in
multi-camera systems C, as the points that are included in four sets: CV is the set of fully
or partially visible points, CR denotes the points covered by a sufficient number of pixels,
CF includes all points in focus and CD contains visible points based on the direction of the
camera relative to the scene.

C = CV ∩ CR ∩ CF ∩ CD (5.3)

Based on the image data and common assumptions about camera arrays, it is possible to
simplify the function. Since we are only interested in scene points with the size of a pixel and
camera arrays usually consist of similar cameras which are positioned roughly at the same
distance from the scene, all important points in the scene should have sufficient resolution
coverage, therefore, CR contains all scene points and can be ignored. The same holds true
for the CF as the focus is highly dependent on the camera’s distance to the scene, the focus
setting of the lens, and the chosen aperture. If those are chosen well, the whole scene should
be in focus for all cameras and CF does not influence the outcome of the formula anymore.
As a result, without those two sets, the content of the covered points is only based on the
direction of the camera CD and obstructions in the scene which dictate the visibility of
point CV . This coverage can be measured by determining whether the points in a single
image have correspondences in color and depth in the neighboring images, similar to what
the plane-sweeping approach does in Section 7.3.
While the relative positions and rotations of the cameras are static during a scene, the

visibility can vary greatly depending on how the objects in the scene move. An analysis
of the coverage for every single frame is possible, but it is not feasible for longer scenes or
large material libraries. Additionally, the parameters of a transmission stream should not
be changed after every single frame, and even if it would be done, the encoding would be
highly inefficient, because the prediction structures in the codec can not be used properly
(compare with Chapter 4). To allow for a high efficiency in the encoder, uniform parameters
for a whole sequence are required. By choosing a fitting characteristic function for the
relationship between the coverage and the expected quality of reconstruction, it becomes
possible to determine the views with the best quality in case of a reconstruction based
on the coverage from the remaining views. Since no reconstruction algorithm can avoid
artifacts in every possible case, there will always be certain cases and scene setups where it
behaves sub-optimally. Considering that the characteristic curve is probably determined
for a favorable setup and content, we can assume the approximation of QR using the
characteristic polynomial c in c ·QE is merely an upper bound. To get a more precise value
for the actual quality, more parameters have to be added to the characteristic function, such
as the relative angle and the overall distance to the virtual view.

Under the assumption that neither the number of available views at the end of the pipeline
nor the resolution of these images can change, we can determine the minimal quantization
parameter (QP) for the encoder to make all encoded views fit into the limited data rate

129

5. Optimized Streaming of Multiview Content

Input: views
Input: available data rate on channel
Input: characteristic function for view interpolation

Determine QP for pure encoding
Calculate quality of pure encoding
new config = Config for pure encoding
repeat

best config = new config

Calculate coverage for all remaining views
Choose view with best coverage for removal

Determine QP for remaining views
Calculate quality of encoding
Calculate quality of reconstructed views

new config = Config with reconstruction

until Quality(new config) ≤ Quality(best config)

Output: best config

Algorithm 5.1: Optimization procedure for the streaming parameters for a known
video sequence and channel characteristics.

on the channel. From these parameters, we can get a base value for the received quality
when all views are encoded and none are reconstructed. By determining the views with
the highest coverage and therefore the highest expected quality after reconstruction, we
choose the views to drop from the transmission. Then we recalculate the possible QP for
the remaining views and their respective quality. Based on that, the characteristic function
gives the quality for the reconstructed view and with Equation 5.2 we get the overall average
view quality. Due to the potentially lower QP for the encoded views, their higher quality
can compensate for the quality drop caused by the reconstruction and the average quality
can become higher than before.

If the quality is higher, we again remove the views with the highest coverage and repeat
the calculations. We do this until the quality value is lower than the one before, meaning
that the reachable peak quality has been found as well as the required parameters to achieve
it. The whole procedure is summarized in Algorithm 5.1.

5.2. Implementation

To evaluate the concept, we created a simple view interpolation algorithm based on Zhang’s
algorithm [13]. We call it simple because it is only intended to be used with material that
provides depth maps for all views and it can only recreate views in positions of existing
cameras. With good depth maps, it is still capable of producing good results without too
much complexity for depth estimation.

Determining the characteristic curve for this algorithm was the next step. For analy-

130

5.3. Evaluation

0,85 0,87 0,89 0,91 0,93 0,95 0,97 0,99
0,5

0,55

0,6

0,65

0,7

0,75

0,8

0,85

0,9

0,95

1

SSIM

co
ve
ra
ge

Figure 5.2.: Characteristic curve for the tested view interpolation with polynomial regression
for the Ballet scene [63].

sis, we used the Ballet scene [63], removed different cameras and measured the coverage of a
chosen view as well as the achieved quality compared to an encoded version of that view for
every frame in the sequence, and averaged the results. The points with the coverage on one
axis and the quality on the other axis are plotted in Figure 5.2. The dotted line represents
a polynomial regression of degree three for the given data. Even though it is a good fit, it is
neither optimal nor sufficient for large spread use, as discussed in Section 5.3, but serves as
a good example for the following steps.

For the calculation of the optimal QP for a given number of views, we assume that the
average data rate required of an additional view is a fixed fraction of the data rate required
for the base view. This assumption simplifies the data rate estimation of the H.264/MVC
stream down to that of a single view H.264/AVC stream and a well-chosen multiplication
factor. As many heavily optimized encoders are available for that kind of stream, the
optimal solution can even be found by a greedy search for a reasonable range of values for
QP. Using that approach, we overestimate the real data rate consistently by 10-15% for QP
values between 20 and 40, which are the most interesting for our scenario. Since it is fairly
consistent, it can be easily compensated for with an additional scaling factor.

Combining that way of finding the best possible QP with the quality assessment formula
from Section 5.1, finalizes our basic reference implementation of the concept. Table 5.1 lists
the results for a set of scenarios in which the Ballet scene must be transmitted using varied
data rate limits. From the SSIM values of the final quality, we can see that for low data
rates up to 1Mbit/s there are slight improvements in average quality when a number of
views are reconstructed at the receiver instead of being transmitted. For the higher data
rates, the algorithm chooses to transmit all views, because quality drop from reconstructed
views compared to encoded ones with a lower QP would be too high.

5.3. Evaluation

After the first experiments showed that dropping views from a multiview sequence and
reconstructing them can be beneficial for the overall stream quality, further evaluations were

131

5. Optimized Streaming of Multiview Content

dtarget[kbits/s] d[kbits/s] m QP Q QE

500 468 5 36 0.920 0.910
800 767 6 33 0.929 0.928
1000 990 7 32 0.934 0.933
2000 1998 8 27 0.946 0.946
5000 4276 8 22 0.952 0.952

Table 5.1.: Results of the optimization procedure listing the target data rate dtarget, the
used data rate d, the number of encoded views m, the QP used for encoding,
the achieved average quality after optimization Q and the quality achieved by
complete encoding QE .

dtarget[kbits/s] d[kbits/s] m QP Q QE

500 478 4 36 0.895 0.883
800 784 6 35 0.902 0.898
1000 979 6 33 0.907 0.905
2000 1869 8 30 0.921 0.921

Table 5.2.: Results of the optimization procedure for the Breakdance scene with the charac-
teristic function from the Ballet scene.

done. In the previous section, we only tested the process using the same scene which we
also used to determine the characteristic function of the interpolation algorithm. Validating
it against different scenes is necessary to determine whether one set of parameters can be
applied to multiple scenes or whether it has to be recalculated for every input.

Table 5.2 shows the experimental results when the characteristic function determined for
the Ballet Sequence is applied to the Breakdance sequence with more dynamic movement.
The results for the same data rates as in Table 5.1 are different, even though the same
algorithm and the same parameters are applied, indicating the different coverage has a
significant influence on the overall outcome of the optimization. That it works nearly
as expected comes as little surprise, as the two scenes are closely related, use the same
camera setup and the scene composition is fairly similar, apart from the different speeds
and amounts of motion.
We were aware that this type of verification only has limited value, but at the time the

search for further viable test scenes yielded no results. Most examples only consisted of a
single frame, unsuitable for proper video encoding. Others only had very low-resolution
images, far below the Ballet scenes 1024x768, or only two or three views. Those did not
require low-quality encoding even for very restricted channels or did not offer any meaningful
choice for the views to reconstruct. The few remaining candidates, such as the sequences
from the MPEG-FTV project from Nagoya university1, did not provide any or enough depth
data for our test algorithm to work properly. The scarcity of available samples was one of
the major reasons for the construction of our own camera array from Chapter 2 to be able
to create our own test sequences.

Until now all tests only show slight improvements in data rate ranges far below anything
that would be deemed suitable for transmitting eight views containing 6.3 Megapixels per
frame. Simulating a better view interpolation algorithm by adjusting the characteristic

1https://www.fujii.nuee.nagoya-u.ac.jp/multiview-data

132

https://www.fujii.nuee.nagoya-u.ac.jp/multiview-data

5.3. Evaluation

dtarget[kbits/s] d[kbits/s] m QP Q QE

5000 4743 6 20 0.953 0.952
8000 7268 7 19 0.954 0.953
10000 9668 6 17 0.956 0.955

Table 5.3.: Results of the optimization procedure for a simulated better reconstruction
algorithm applied to the Ballet scene.

function to report slightly higher values, we achieved the results in Table 5.3. It shows that
with an improved view interpolation, the proposed pipeline can provide quality improvements
beyond 10 Mbit/s which is far more reasonable for the amount of data to be transmitted.

The characteristic function we have chosen is too simple for more general approaches. It
only considers the coverage of the views, which already integrates the relative angle and
camera baseline to a certain degree due to the way it is calculated, but does not integrate
other parameters such as the overall complexity of the scene or the amount of visible
movement. Since calculating the function for every transmitted scene can become very
expensive, depending on how many input parameters are used for the function and how
many scenes it has to be done for, we propose the following in case of a wide-spread use:
the scenes should be sorted into categories for a set of different complexity classes from
slow-moving near-planar scenes to fast-moving scenes with a long distance between the
closest and the farthest objects in the scene. For each category, a representative scene is
chosen for which the characteristic function is calculated. When a scene is transmitted,
its similarity to the available categories is determined. Then either the function from the
closest category is used or an interpolated version between the closest categories is created,
depending on the sparsity of the chosen categories. With this approach, a function close
to the actual behavior can be used in each transmission, without having to do a complete
recalculation for each scene. The quality of that prediction can be controlled by the size of
the category set and how its members are chosen.

While this work proves that there are benefits to having a view interpolation step in
the transmission pipeline for multiview video and provided the foundation for a well-
accepted publication [6], its overall impact is rather small until now. The combination of
view interpolation [132, 133] and compression using existing video codecs [134, 135] has
already been attempted and published multiple times [136, 137], but the research community
for multiview video transmission was never huge and its main interest moved to algorithms
for lightfields since then.
In our opinion, a likely reason why this approach became more popular in lightfields

than in multiview video is based on the fact that the camera baselines in lightfields are
commonly far smaller than those of multiview video. This camera layout automatically
leads to a higher coverage between views and therefore, a higher base reconstruction quality,
which makes the approach usable for a wider range of data rates. Additionally, lightfield
processing often requires a large amount of computational power, in which an added view
interpolation step does not play a significant role. The higher number of views and the
additional amount of data to transfer also makes efficient transmission schemes more relevant
than for multi-video which could still be transferred with already available approaches over
common network connections (as shown in Chapter 4).

133

6. Quality Metrics for Interpolated Views

Whenever the quality of an image needs to be measured, an appropriate metric is required.
Even though there is a plethora of metrics available for many different applications and
image types [138, 139, 140], sometimes it is necessary to use a specific metric for a case
in which it behaves sub-optimally. An example for such an application is described in
Chapter 5, in which results from earlier studies were combined with new findings to predict
the output quality of a novel multiview streaming pipeline. Specifically, existing video
encoders have to be coupled with novel view interpolation techniques, and their combined
performance has to be predicted to choose a set of optimal encoding parameters. Most
media encoder/decoder combinations measure the quality of the reconstructed data using
PSNR. The resulting value tells them how accurate the original data is being reconstructed
from the encoded data stream. While those measurements help to quantify the overall loss
of precision in the data, it does not necessarily represent the perceived quality as judged by a
human observer [141]. That is especially true for certain image generation or reconstruction
methods, as shown in Section 6.1. If the observed quality is more important than the data
accuracy, different metrics have to be used, but combining the results from different metrics
into a single coherent result is often impossible due to different scales and units in the
results. Therefore, it is necessary to use a single metric throughout the whole system, which
means the results are not representing the real quality for certain steps.

In this chapter, we describe an application-specific way to adapt existing quality metrics
to remedy this discrepancy. By analyzing the causes for the low scores for one application,
we compensate for them so that the results of the metric are closer to the Mean Opinion
Score(MOS) while maintaining its other characteristics. Sections 6.2 and 6.3 describe how
we achieve this feat without modifying the original metric itself and the implementation in
our particular case.

6.1. Background

In this chapter, the advantages and disadvantages of quality metrics are discussed. They are
often compared to those of PSNR or Peak Signal to Noise Ratio, which is a common metric
for all situations that need to measure the precision of a transmission or reconstruction of
data. Here, PSNR is only discussed in the context of images and video. For an image with
a single channel, it is defined as

PSNR = 10 · log10
(
MAX2

MSE

)
dB (6.1)

= 20 · log10
(

MAX√
MSE

)
dB (6.2)

where MAX is the maximum value a pixel can represent and

MSE =
1

x · y
·
x−1∑
i=0

y−1∑
j=0

[I(i, j)−N(i, j)]
2

(6.3)

135

6. Quality Metrics for Interpolated Views

(a) Reference image
(no distortion)

(b) Salt&Pepper noise 3%
(29.03dB)

(c) Gaussian noise Variance=10
(26.56dB)

(d) JPEG quality=10
(26.78dB)

(e) JPEG quality=40
(31.24dB)

(f) JPEG quality=80
(35.75dB)

Figure 6.1.: Noise and compression influence on PSNR score for a photograph with 640x480
pixels.

with x and y as the resolution of the tested image in x- and y-direction, I as the reference
image and N as the noisy or processed image to test. I(i, j) stands for the pixel value of
image I at the position x, y. N(i, j) is the equivalent for the tested image.
For color images, which usually consist of three distinct color channels, there are two

options for applying PSNR to them. The first and more common one is to apply the
metric to a grayscale version of the image or just the Y-channel in case the image is in the
YUV format. Since the quality of the color components is usually higher than that of the
gray/brightness component, only analyzing the Y-channel gives a good lower bound of the
overall quality. The second option is to combine the measurements as follows:

PSNRCOMB =
PSNR1 + PSNR2 + PSNR3

3
(6.4)

Because this formula weighs all channels equally, it is only used for image in the RGB or
CIE color space.

Due to its simplicity, it can be calculated very quickly but does not always match
the mean opinion score closely [142, 127]. In Figure 6.1, a set of images with different noise
types and levels of JPEG compression are shown with their respective PSNR scores. There,
the disparity between the scores and the perceived quality starts to become evident. Even
though the images in Figures 6.1d and 6.1e have nearly the same difference in measured
quality as in Figures 6.1e and 6.1f, the change is far more visible for the first pair than
for the second. With the Mean Square Error (MSE) as the main component, the result of
PSNR is only based on a direct pixel comparison, and whether those differences are visible
or not is not considered. The mapping given in Table 6.2 between PSNR and MOS can be
used to somewhat determine how the results of PSNR can be interpreted.

136

6.1. Background

PSNR [dB] MOS Impairment

> 37 5 (Excellent) Imperceptible
31 - 37 4 (Good) Perceptible (not annoying)
25 - 31 3 (Fair) Slightly annoying
20 - 25 2 (Poor) Annoying
< 20 1 (Bad) Very annoying

Figure 6.2.: Mapping between PSNR and MOS according to [143] and impairment descrip-
tions from [144].

The errors introduced into images by reconstructing them with view interpolation algo-
rithms look different to common noise patterns or the artifacts from block-based compression
algorithms. Noise errors mostly play a role when natural camera noise existing in the input
data is reduced by averaging the color data from more than one image before using it for
reconstruction. Due to its inherent randomness, the noise in the reference image can never
be reconstructed properly and therefore, lowers the measured quality.

For reconstruction, information of other images is combined based on some form of scene
geometry, often depth or disparity, by projecting it into the scene space and back to the
camera in question. Errors in depth estimation or even just quantization steps can move
image sections away from their intended position. Image portions with the same depth move
in a similar fashion, but the direction and distance of the movement can change depending
on the value of the error. Since this type of error involves large sections of an image, even
small shifts of less than a pixel can have a severe influence on the PSNR score. The example
in Figure 6.3c is shifted by just one pixel to the right. Such a shift is nearly invisible to a
human observer, especially in high-resolution images, as long as the images are not directly
shown after each other in the same position. Nevertheless, the quality score assigned by the
PSNR is mediocre at best.
A second common problem comes from the camera parameters used in the projections.

An offset in the principal point can move the whole image, similar to the depth errors,
but moves the whole image equally. When the field of view is off by even a small fraction,
the projected image can be too small or too big for the image area of the virtual camera.
Smaller images result in easily visible borders of empty image space. On the other hand,
the effects of larger images are nearly invisible. The slight zoom effect grows from the focal
point towards the edges. Again, the impact of these effects on the PSNR score is significant,
proven by Figure 6.3d.
If the reconstruction algorithm uses data from multiple images to reconstruct a certain

portion of the image, it is very important to weigh the different parts properly. Errors in
the sum of the weighting factors can cause the result to become slightly brighter or darker.
Since the precision for the calculation of the weighting factors is commonly more than high
enough to keep the error below one step in the available color values, the calculation of the
weighting factors usually does not cause measurable errors. Much more probable is a color
or brightness mismatch between the different views in the input data. When such errors
appear, the whole image might be too bright or too dark compared to its reference. The
minimal, nearly undetectable brightness changes in Figures 6.3a and 6.3b give a feeling of
how severe the influence is on the final quality score.

The last class of errors commonly appearing in reconstructed images are ”obvious” image
artifacts. Those appear when the coordinate projection goes completely wrong in at least
one of the input images due to failed depth estimation or other causes. In the final image,

137

6. Quality Metrics for Interpolated Views

(a) Slight increase in brightness
(28.17dB)

(b) Slight decrease in brightness
(28.14dB)

(c) Shift by one pixel horizontally
(23.30dB)

(d) Zoom shifting one pixel over the
image border (28.82dB)

Figure 6.3.: Influence of different error types to the PSNR score.

138

6.2. Concept

these are visible as sections of colors appearing in places where they should not be and are
often clearly separated from the surrounding areas by distinct borders. Since they do not
occupy large portions of the image in general, their influence on the quality score depends
heavily on their size and content. Unlike the error types discussed before, these errors can
be considered to be preventable as they can often be traced back to errors in depth or
camera calibration.

6.2. Concept

In addition to a better match of the resulting score with the MOS, the main requirement
for this new metric is its compatibility with the traditional PSNR. To achieve this, the
new metric needs to return values in the same range and on the same scale as PSNR. Our
solution is to use an existing implementation of the metric and adapt it, in such a way that
it ignores the existing but invisible errors while judging everything else as before. As shown
in Section 6.1, the inner workings of PSNR are rather simple and therefore, do not offer
many possibilities for adaptation without changing it completely. Due to the low complexity
of the metric and the high amount of details in the tested images, we identified the input
side of the metric as the obvious place for our changes.
As a full reference metric, PSNR requires two input images: one image to test and a

reference image to test against. Since we assume the tested image has a high perceived
quality, we know there is a high similarity between the two images and the tested image
only contains the different error types the view interpolation produced. It is obvious in
Figure 6.3 that the different kinds of errors the view interpolation typically causes have
different effects on the PSNR score and those results do not necessarily correlate with their
influence on the perceived quality. The image artifacts are a type of error that can be traced
back to wrong texture assignment or false depth values. Artifacts in mostly untextured
areas have nearly no impact on the end result, whereas the same errors in textured areas
have an impact roughly proportional to their size and the perceived quality. Their influence
should still be represented in the result of the new metric.

Zoom and shift errors are much less visible than the artifacts but degrade the measured
quality even more. They are usually caused by very small deviations from the correct values
for the field of view or depth. Even though it can be difficult for a human observer to
detect them, the fact that they often cover large areas of the image means they degrade the
measured quality a lot.
Sub-pixel shifts smear the information of a single pixel over adjacent ones. Detecting

the direction and distance of a shift based on a single line can be quite hard. Figure 6.4
shows only a subset of possible shifts that create the given result from the original data.
Determining the correct one is impossible without taking information from the surrounding
area.

Now that the error types with the biggest impact on PSNR, but the smallest deviation
in the underlying data, are identified, the remaining open question is how to make the
applied quality metric ignore those errors. Removing them from the image to test, is a
very complex task since the different error types can overlap, and deciding what effect
comes from which error type is nearly impossible. Adding the error of a certain type to
the reference is far simpler because in this case, we can clearly define the region and the
error type beforehand so there is no guesswork while manipulating the image. Therefore,
detecting those parameters in the tested image becomes the hardest task. Since shift and
zoom effects both move pixels within a region, either by a nearly constant amount or by a

139

6. Quality Metrics for Interpolated Views

(a) original line (b) line after half-pixel shift

Figure 6.4.: Effect of sub-pixel shifts on borders. The exact shift can not be easily defined
without taking a larger neighborhood into account.

continuously increasing value towards the edges of the image, they differ clearly from the
other image artifacts that copy image contents from neighboring regions and often show
clear edges around the affected region. How we implemented the detection and distinction
of these errors is described in Section 6.3.

When the parameters of the errors are determined, we apply them to the reference image
to create a new reference. As this new reference now includes the errors which we do
not want to influence the measured quality, and they are the same as in the tested image,
the errors are now effectively ignored by the image metric. This way the whole approach
becomes fairly flexible with respect to problematic error types and even the metric to be
used. The influence of the error types needs to be re-evaluated for different metrics but the
main approach stays the same. In this thesis, we mainly focus on PSNR.

6.3. Implementation

The shifted regions and zoom effects can all ultimately be reduced to a set of connected pixels
which are moved in the same direction compared to the original. To make the approach
work, we need to know exactly which pixels contain the errors and how far in which direction
they moved. In Section 6.1 we found that these shifts do not necessarily happen in full
pixel steps, in most cases it is between two integer values and often even less than a single
pixel. One approach to detect those continuous and minute shifts between images is optical
flow [145]. Algorithms to calculate the optical flow between images are readily available
due to their numerous uses in motion detection [146, 147], object separation [148, 149], and
robotics [150]. Optical flow algorithms are grouped into two categories, namely sparse and
dense algorithms. Since we need shift information for every pixel in the image, the only
choice for our approach are the dense algorithms.

After evaluating multiple algorithms, we decided to use the “Dual TV L1” [151, 152]
algorithm. When used with appropriate parameters, its results show clear object borders,
comparably uniform movements within an object, and sufficient precision for our purposes.
The parameters that work well for our application are τ = 0.2, λ = 0.2, θ = 0.2, ϵ = 0.006,
using 5 scales, 5 warps and 500 iterations. In Figure 6.5, we show the performance of the
shift detection on a number of scenes often used in view synthesis experiments. For testing,

140

6.3. Implementation

(a) Reference images (b) Shift regions (c) Detected shifts

Figure 6.5.: Examples for shift detection with random synthetic shifts.

every color in the hand-drawn masks was assigned a random shift in x- and y-direction
between −2 and 2. Additionally, a random zoom such that a maximum of two pixels were
cut from the image around the borders could also be added, but for better visibility of the
shifted regions, the zoom effect was disabled in the examples presented here. The pixels
in the reference image are then shifted according to the mask, to create a warped image.
Using the optical flow algorithm to find the differences between the warped image and the
reference, results in the detected shifts in the right-most column.

When it comes to errors, which we do not want to include in the new reference, the results
from the optical flow algorithm are nearly perfect for our application. The center image of
Figure 6.6 contains a number of typical artifacts that we often see in the results of our view
interpolation algorithm. They look like parts of a leaf floating between the actual leaves
and they also get their texture from the neighboring regions. In the image on the right, we
can see that the first two artifacts are clearly depicted in the calculated flow map. From
the third artifact, only small portions are visible in the flow map, while the remaining area
shows values in the range of the surrounding area. Since all flow values for the artifacts
greatly differ from their neighbors in amplitude as well as direction, they can be easily
detected. For our implementation, we chose a simple threshold for the detection and set
the shift in the affected regions to zero when creating the new references. Since the regions
covered by the artifacts are already far off compared to the reference, it was decided that
setting their shift to zero instead of a value similar to the surrounding area does not make a
difference in the end result big enough to warrant the increased effort for proper inpainting.

Even though the detection is not perfect and sometimes the regions do not match up
exactly with the mask and show some variations in shift amplitude, using it to create our

141

6. Quality Metrics for Interpolated Views

(a) Reference (b) Interpolated view (c) Artifacts in flow

Figure 6.6.: Optical flow results for interpolation artifacts.

Scene name
PSNR [dB] MSE SSIM
old new old new old new

Teddy 36.916 51.226 13.331 0.4942 0.9537 0.9983
Cones 32.315 46.872 38.462 1.3468 0.9214 0.9968

Breakdance 38.198 51.303 9.923 0.4854 0.9443 0.9977

Table 6.1.: Metric results for the examples from Figure 6.5.

new references still produces expected results, namely a higher but not perfect quality score
representing the perceived quality more closely. Precise values can be found in Table 6.1.

In the end, a small executable was created that gets the image to test and the original
reference image as inputs and returns a new reference that contains the changes discussed
above. It is programmed in C++ and is mostly based on OpenCV, which allows it to be
compiled quickly on many operating systems. Applying the presented approach to any
image-based full reference quality measurement is straightforward. First, the image to test
and the reference are processed through the executable and the new reference is saved.
Second, the original unchanged quality metric is used to measure the quality between the
image to test and the new reference. The overall approach can be applied to a wide variety
of metrics if needed, but the creation of the new reference has to be adapted to the new
metric, as it is currently only optimized for PSNR.

6.4. Evaluation

For the evaluation of the approach, we compared a number of interpolated views with high
perceived quality. Figure 6.7 shows a couple of real interpolated images from the set we
tested. Apart from some fine details, such as the wooden sticks and a small number of cone
tips in the Cones scene and small deviations on the grid pattern in the background of the
Teddy scene, the reconstruction has nearly no visible errors. Overall, it performs similarly to
the synthetic tests we performed during the development of the new measurement approach,
but the margin of improvement is smaller. This difference can be explained by the other
subtle differences which appear in real interpolated views, such as camera noise. In the
synthetic tests, the noise pattern was exactly the same and was only shifted with the added
errors. Since the error was then corrected almost perfectly when using the new reference,
the result showed a very high quality. In real applications, the camera noise in the reference

142

6.4. Evaluation

(a) Cones reconstruction
Old: 29.65dB - New: 36.51dB

(b) Teddy reconstruction
Old: 32.96dB - New: 38.16dB

Figure 6.7.: Excerpt from tested images (bottom) with reference (top).

143

6. Quality Metrics for Interpolated Views

image of a reconstructed view is unknown and, depending on how the view synthesis works,
we either get the noise pattern of a single neighboring camera or a combination of the
noise patterns from all considered neighbors. In the first case, the pattern can be anything
between identical and completely opposite, and therefore its influence on the final quality
value can differ greatly. In the second case, the combination of pixels from multiple images
means it is likely that the noise is averaged out. Even though the reconstructed views might
actually be closer to the reality of the scene because there is less noise overall, the quality is
still lowered because the noise still exists in the reference image and the metric expects it to
be in the tested image as well.

The research community seemed to agree and a paper presenting the metric was pub-
lished [2] with favorable reviews. The audience at the conference agreed on the importance
of having comparable metrics when combining different quality-changing steps and welcomed
our new approach to the problem. But this was the end of the general interest of the research
community as according to the discussions after the presentations, the major players in
the field are focusing their efforts on creating a universal subjective metric, ideally as
a non-reference metric. Since then, many metrics trying to achieve this goal have been
published [153, 154], but they always cover a very small portion of image-based media
E.g., portraits, nature photography, or HDR images of inside architecture, and do not work
very well on images of other types. This development does not make our approach more
meaningful, but it serves its purpose and in its niche, it has not been replaced by universal
metrics yet.

144

7. Real-Time View Interpolation

Multiview video needs to be processed before viewing, in order to experience the benefits
this new format can provide. One of these benefits is the ability to change the viewpoint
of a video interactively, for example, to adjust it to a person’s position in relation to the
screen for a more immersive experience or to introduce interactivity in a pure broadcasting
scenario. For any interactive application, real-time performance is mandatory for every
step from the sender or broadcaster to the screen at the client. Throughout this work,
real-time performance is defined as the fact that the data of one frame can be processed
within the time interval, i.e., before the data for the next frame arrives. At the time of
writing, many existing image-based rendering (IBR) algorithms that claim to be fast or
interactive are only capable of reaching single-digit frame rates [155, 156], which is too slow,
if we assume a nominal frame rate of 25 frames per second. Faster algorithms often follow a
depth image-based rendering (DIBR) approach, which requires exact depth maps in addition
to the color images from the capturing cameras [63, 157, 158]. Unfortunately, high-quality
depth maps are not always available. Especially when live events are streamed and there
is no time to compute a depth map, DIBR based approaches are not viable. Even though
a lot of effort has gone into the development of devices that can capture scene geometry
information together with the color information, they all have certain drawbacks such as low
resolution, high amount of noise, or limited range [159, 160]. Improvement of such depth
maps of lower quality is possible but still a very complex task [161, 162, 163]. Since we were
looking for a view-interpolation algorithm that could be used in highly interactive scenarios
such as video conferencing, we restricted our input data to the color images captured by
the cameras as well as intrinsic and extrinsic calibration data for every input camera.

7.1. Background

This section explains important concepts for the understanding of the rest of this chapter.
Understanding the different types of view interpolation approaches helps to put the focus of
the algorithm presented here into context.
Since not everyone is familiar with the different ways of how GPUs can be utilized for

different tasks, we provide a quick overview of 3D rendering with OpenGL and general-
purpose computing.

7.1.1. View Interpolation Algorithm Types

In the following sections, the development of an image-based rendering approach for view
interpolation is discussed. That class of algorithms only uses color images from a camera
or other sources in combination with some calibration or metadata to create novel views.
Since the geometric projection between different views and the scene requires some kind
of scene geometry information, the algorithm has to recover or estimate it from the input
images first. As shown in Section 7.5.1, the depth estimation takes the majority of the time
budget allotted for each frame for most interactive applications. For image post-processing
or other steps that can improve image quality, not a lot of time remains.

145

7. Real-Time View Interpolation

Depth Image Based Rendering (DIBR) algorithms solve this issue by adding depth or
disparity maps as a mandatory input. For recorded content, the generation of depth maps
can then take an arbitrary amount of time, which leads in general to a higher quality. In
addition to the better scene geometry information, there is much time left over to implement
steps for even better results.
On the other hand, with live content, they have to deal with the noisy output of depth

sensors and their offset from the location of the color images. That is why those algorithms
usually prefer recorded content with a lot of time for preparation.

The approaches discussed above share one common property: all the complexity of creating
the desired views is situated purely on the client. Client devices with sufficient computa-
tion power can quickly become too expensive for widespread deployment. Since creating
individual views has a complexity that scales linearly with the number of views to create,
it is not well suited for systems catering to multiple clients. To make cloud-based view
interpolation possible in a broadcasting setting, Collet et al. [164] propose an intermediate
representation. From the input images, they create textured 3D meshes for the scene
objects and the background. Depending on the number of input views and the resolution
of the final mesh, such 3D representations can significantly reduce the amount of data to
be transmitted. Additionally, from these meshes, it is far easier for the clients to recreate
the desired perspectives as they combine color and depth data. The only drawback is the
vast amount of computational resources required to achieve fast computation times even for
low-resolution meshes.

7.1.2. 3D Rendering with OpenGL

OpenGL is a framework for the rendering of 3D content which is available for most operating
systems and GPUs [165]. Most of its operations directly interact with the GPU and the
data residing in its memory.

In general, everything rendered in OpenGL consists of a collection of vertices in 3D space
which are connected to form primitives. Those primitives can be points, lines, triangles, or
quads that form the surfaces visible in the scene later. Since triangles are the most common
type of primitive, we use them as a generalization for all primitives in the remainder of this
chapter.
3D scenes can be created by adding single triangles to them until a scene is complete.

Creating them one by one is quite inefficient as the data for every triangle is transferred to
the GPU in a separate operation and requires some synchronization time between the CPU
and GPU every single time. Collecting the data for all triangles in a single data structure
and transferring that in a single operation is much quicker, especially in scenes with a high
number of triangles.

The real power of OpenGL comes from the flexibility added by its shader pipeline,
which is shown in Figure 7.1. All vertices in a scene are processed through its stages which
can perform calculations on the vertex data and even add or remove primitives before the
scene is rendered. How many parameters a vertex can carry through the pipeline depends
mostly on the capabilities of the hardware whose shader units are used.
The first processing stage after the initialization of the data is the Vertex Shader. It

receives a single vertex and all its assigned parameters as input, can perform any operations
on the data, and has to return exactly one vertex, but can assign arbitrary data to it. The
most common things done in this stage are the projection of the vertex’s position into its

146

7.1. Background

Vertex Specification

Vertex Shader

Tesselation

Geometry Shader

Vertex Post-Processing

Primitive Assembly

Rasterization

Fragment Shader

Per-Sample Operations

Figure 7.1.: OpenGL rendering pipeline. Orange stages have a fixed functionality, blue ones
can be programmed. Only stages with a dashed outline are optional.

final screen location and the preparation of data for the later shader stages.

The Tesselation phase is the newest addition to the pipeline and completely optional.
It consists of three substages that subdivide a surface into smaller pieces with their own
parameters. A Tesselation control shader sets the amount of tesselation to be done, the
primitive generator creates the new intermediate vertices based on the results of the controller,
and the evaluation shader computes the attributes of those new vertices based on the state
of the original ones.

In the geometry shader, one primitive goes in and an arbitrary number of primitives
comes out. The type of primitive can be different but needs to be fixed for each instance of
the shader. Duplicating primitives for layered rendering or just separating parameters from
each other are its main use case, but in theory, it can be used to replace the tesselation
stage to some degree. A specialty of this stage is its possibility to be run multiple times
during one pipeline iteration. This feature allows multiple different parallel calculations on
the same primitive.

Vertex processing prepares the data for the later stages, which transform the geometric
data into screen pixels. The vertex data is converted to a list of primitives, the ones outside
the set viewing range are discarded and the remaining ones are transformed according to
the current view setup. The following primitive assembly sorts the primitives again for
later and is capable of discarding primitives whose surface faces away from the camera, also
known as face culling.

Rasterization describes the process of creating fragments from the primitives. A fragment
is a portion of the primitive that coarsely correlates with the area that covers a pixel in the
final image. The parameters a fragment receives, are interpolated from the vertices defining
the original primitive, based on the fragment’s location within it.

147

7. Real-Time View Interpolation

For each fragment, the fragment shader is executed. Its task is to transform the parameters
a fragment inherited from the vertices into color and depth data. How many operations are
used to achieve this and what they do exactly can be freely defined by the user.

In the last stage, it is decided which fragment is going to be visible in the final image
with occlusion tests based on the depth and the transparency of each fragment. If it is
configured correctly, this step can perform antialiasing to reduce staircase patterns at the
edges of objects.

This architecture with its programmable stages provides many possibilities for the im-
plementation of quite complex processes. When the vertex parameters are provided at least
partially from the frameworks described in the following section, even more possibilities
become available.

7.1.3. Computation on GPUs

When algorithms for servers or PCs are discussed, most people assume the only component
in these machines capable of performing arbitrary computation is the CPU. Applications
that can be parallelized or vectorized well, are also suited to be executed on GPUs. There
they can make use of the many thousands of cores usually reserved for rendering 3D graphics.

Since the introduction of the OpenGL Shading Language in OpenGL 2.0, researchers
have been using GPUs to perform complex computations [166], calling it General-Purpose
Computation on Graphics Processing Units (GPGPU). By putting input data into images
used as textures, processing them through the shaders of the GPU, and analyzing the
resulting display output to get the results back, arbitrary computations could be performed.
The resources of the device could sometimes not be used efficiently because the function of
the shaders was fixed, could only be changed slightly, and the number of units for every
shader type was determined by the hardware. In 2007, with the introduction of the NVIDIA
GeForce 8000 and the Radeon HD 2000 families of graphics cards, this changed significantly
with so-called unified shaders. Those processing units can be freely configured to fulfill
any arbitrary function. With them, the speed of calculations could be increased, because
they could be more freely programmed. Additionally, all shaders could be used for data
processing since they are not locked into a certain stage of the shader pipeline anymore.

Shortly after the unified shaders came to the market, programming frameworks dedi-
cated to data processing on GPUs were created. The most famous ones being CUDA [167]
and OpenCL [168]. CUDA was only made for NVIDIA GPUs while OpenCL aimed to offer
a unified interface for devices from all manufacturers. In both frameworks, programs are
written in a dialect of C with special functions for vector and matrix operations. They
differ mostly in their available functions for data transfer and memory management. Both
frameworks got rid of the necessity to input and output data via textures but maintain the
option to do so, for example to use the calculation result for rendering. They introduce
the possibility to arrange the data in N-dimensional arrays instead, which can be written
and read independently from rendering operations. When used properly, they achieve
comparable performance on the same hardware [169]. Even though CUDA became more
popular in recent years, OpenCL was the framework of choice in this chapter due to its
versatility with respect to usable hardware.

148

7.2. Concept

7.2. Concept

An increase in speed of a view interpolation algorithm usually comes with a lower quality or
a restriction of possible inputs. Grau et al. [170] and Hilton et al. [171] achieve good quality
and speed by limiting the input material to footage from stadium cameras capturing football
matches and similar sports events. In those cases, the non-static parts of the image (players
and balls) are usually filmed in front of the green grass which simplifies the separation of
foreground and background. Since we were more focused on interactive scenarios, such as
video conferences which do not guarantee any known structure in the background, such an
approach was not an option.
The algorithm published by Zhang et al. [13] did not make any assumptions about the

contents of the scene and offered a configurable trade-off between image detail and speed.
This trade-off was possible because the algorithm was based on a plane-sweeping approach
and uses an adaptive 2.5D mesh to reconstruct the novel views. For reasonable image
qualities, their implementation only achieved between 5 and 10 frames per second on very
low-resolution input material. Further, their implementation only used a single core of the
CPU for the calculations and an old version of OpenGL1 for rendering. Thus, there exists
a lot of potential for speed increase simply by making use of the full capabilities of the
available hardware at the time. Especially due to the availability of multi-core CPUs in
consumer PCs and the emergence of unified shaders [172], even common consumer devices
have a lot of computational power, most of which was not used by the original algorithm.

7.3. Analysis

The first step towards an optimized version of an existing algorithm is always the thorough
analysis of its structure. Algorithm 7.1 shows the major steps the program performs during
runtime. The first two steps can have a big influence on the performance of all following steps,
both in quality and speed, as they determine how all other steps operate, but optimizing
them does not make a big difference as they are only executed once at the beginning of the
program. Their way of influencing the following steps, can not be changed by optimization.
Resetting the framebuffer between frame calculations is important, but does not offer a
lot of optimization potential since it is a simple step in every graphics framework which
is already highly optimized. It could be argued that, in certain cases, this step would be
unnecessary as the framebuffer is overwritten completely in every step and therefore, would
not need to be reset, but its runtime compared to the rest of the algorithm is minuscule
and it is considered good practice to invalidate the previous buffer contents before starting
to work on the next frame [173], so it is left in.

Step 1: Create initial mesh

The creation of the initial mesh is the first step that can be slightly optimized. Since all
vertices of the basic first mesh are always in the same position, which only depends on
the configuration parameters, it could be created once and then always be reused for all
frames. The vertices are uniformly distributed over the frame for the virtual view, with a
configurable horizontal and vertical distance D between them. To save time for computation
and memory allocation later on, in this step the vertices for all possible subdivision levels
are allocated and associated with their positions. This precomputation of the vertices
is possible because we start with a uniform grid and subdivide triangles by halving the

1https://www.opengl.org

149

https://www.opengl.org

7. Real-Time View Interpolation

Read configuration file
Calculate parameters for rendering
while output window exists do

Reset framebuffer
Create initial mesh (Step 1)
Load input images (Step 2)
foreach vertex in the mesh do

Find closest views (Step 3)
end
foreach vertex in the mesh do

Estimate depth (Step 4)
Calculate rendering weights (Step 5)

end
while Mesh is too coarse do

foreach Triangle do
if vertices have different depth then

Subdivide triangle (Step 6)
foreach new vertex do

Estimate depth (Step 4)
Calculate rendering weights (Step 5)

end

else
Keep triangle unchanged

end

end

end
Complete mesh (Step 7)
foreach Triangle do

Render to frame buffer (Step 8)
end

end
Algorithm 7.1: Major steps of Zhang’s algorithm [13].

150

7.3. Analysis

distance between the vertices in the corners of the triangle resulting in up to four smaller
triangles occupying the space of the old triangle. The details of this process are explained
in Step 6. Due to the simplicity of the calculations in this step, the gain is not very big
compared to a good parallel implementation on multiple CPU cores or directly on the
GPU. Furthermore, keeping the initialization step static for the whole scope of a program
execution also limits the possibilities for modifications to the overall flow of the program
with respect to features that require an initialization based on the result of previous frames.
Due to of these limitations and the small expected gain, we opted to forgo the reuse of
a single result and maintain the recalculation per frame, but use proper parallelization
techniques to speed up the calculations. The loading step of the input images can not be
optimized a lot either.

Step 2: Load input images

In the original algorithm, the pixel data is already copied efficiently from an input buffer
where the images are decompressed to the memory area where the following calculations
are happening. Apart from employing some kind of lossless compression to the image data
in order to reduce the amount of data that has to be copied, there is no optimization potential.

The next steps have the most potential to make the software faster. All of these steps
have to be performed either per vertex or per triangle in the mesh. Depending on the
configuration parameters and the input resolution of the images, each of the steps has to be
performed thousands to millions of times per frame. Since the original implementation only
performs these calculations in serial using a single CPU core, the performance gain here
could be enormous.

Step 3: Find closest views

First, the set of nearest cameras are determined for every vertex. This is done by calculating
the distances from every input camera’s center of projection to the light ray from the
center of the virtual camera through the considered vertex. As shown in Figure 7.2, this
approximation is a good estimate for the closeness of the cameras to the virtual camera
when the cameras are roughly positioned on a plane and look in a similar direction. The
results of all cameras are sorted in ascending order and the num interp closest cameras
are saved for future use. num interp is a configurable parameter in the configuration file
which ranges between 1 and 4. Since the calculations for one vertex, required to find the
closest cameras, are completely independent of the results of other vertices, all vertices
can be processed in parallel and at the same time, at least in theory. In practice, this
might not be possible because the number of vertices can become quite large, especially
for high-resolution input images and a fine grid. Based on the parameters, the number of
vertices can become higher than the number of available computational units in a CPU or
GPU. Therefore, efficient queuing is required to get the most out of the parallel execution.
Nevertheless, a significant speedup can the expected as there is no need for barriers in the
execution due to the independence of the vertices in this step.

Step 4: Estimate depth

Once the views to consider for every vertex are determined, the depth estimation step begins.
Following an adapted version of the plane-sweep algorithm [174], a set of depth planes is
placed in the scene space. The position of these planes is configured by three configuration

151

7. Real-Time View Interpolation

C1

C2

C3

C4

C5

d1

d2

d3

d4

d5

Cv

Figure 7.2.: Nearest camera calculation. Distance of cameras is calculated as the distance
to a ray through the center of the virtual camera.

CVC1 C2

D6

D5

D4

D3

D2

D1

D0

Figure 7.3.: Depth estimation via plane sweeping. A point is tested with depths from all
depth planes. The depth with the highest similarity in neighboring images is
chosen as the correct value.

152

7.3. Analysis

parameters; min depth, max depth and num depth. The algorithm uniformly distributes
num depth planes between min depth and max depth inclusive, parallel to the image plane
of the virtual view. Figure 7.3 illustrates the process of estimating the depth values for the
virtual view. First, a vertex is projected from the virtual camera into the scene. This gives
a vector of indeterminate length. One after the other, every length corresponding to a depth
plane is considered to be the correct one. The scene point at the matching depth is then
projected onto the image plane of every image in the closest set determined in the previous
step and an image patch surrounding the intersection is extracted. Next, the extracted
patches are compared and a similarity value is computed. The base implementation offers two
different comparison functions: a sum-of-squared distances (SSD) function (Equation 7.1)
and a mean-removed correlation-based (MRC) function (Equation 7.2).

DSSD =
∑
i∈N

∑
P∈W

(Ii,P − IP)
2

CP
(7.1)

DMRC =
∑
i∈N

∑
j∈N,j>i

∑
P∈W (Ii,P − Ii) · (Ij,P − Ij)√[∑

P∈W (Ii,P − Ii)2
]
·
[∑

P∈W (Ij,P − Ij)2
] (7.2)

N is the set of nearest or closest images, W is the window or patch of extracted pixels and
P is the position of a certain pixel within the window. Ii,P denotes the pixel value of image
i at position P , whereas IP is the average pixel value at position P of all images in N . Ii is
the average value of all pixels in the window W extracted from image i.

Since the optimal choice depends on the type and quality of the input material, which of
these functions is used is determined by another configuration parameter. For noise-free
synthetic content, the SSD produces good results, but for noisy camera-captured material,
the MRC fairs much better. The biggest drawback of the MRC is its higher complexity
which is evident when comparing both formulas. This step is then repeated for every depth
plane in the scene. Once the similarity value for all depth planes is known, they are sorted
and the depth plane with the highest similarity is chosen as the correct one and saved in
the current vertex.

Step 5: Calculate rendering weights

The rendering weights in each vertex determine the contributions of every image in the set
of closest images to the final rendering result for that vertex. They are calculated using
two factors. The first one is the inverse camera distance from Step 2. The second one is
a factor which is 1 when the result of the projection from the scene point lies within the
respective image. Near the edges of the image, when parts of the image patch, which has to
be extracted, fall outside the image, the factor decreases, representing the number of valid
pixels. When the image patch lies completely outside the image, the factor is zero. This
means the weight of an image whose information becomes less reliable towards its edges
is lower. The weight for each image is the product of these two factors. In a final step,
the weights are normalized so they add up to 1. This is important since the images are
combined later on using alpha blending, which would lead to deviations in brightness if the
sum of the weights is higher or lower than one.

Again, the calculations in this step do not require any information from the current step,
but only need results from earlier steps. This makes it easy to parallelize this step, but the
gain is not significant, due to the simplicity of the performed computations.

153

7. Real-Time View Interpolation

v0

v1

v2

v3

v0

v1

v2

v3

v′0

v′1

v′2
SUBDIVISION

Figure 7.4.: Subdivision process of a single triangle with coordinate deviation in the end
result.

Step 6: Subdivide triangles

This step is triggered when a discrepancy between the estimated depth values of the vertices
in a triangle is detected. Such a discrepancy means that, under the assumptions that the
estimation returned the correct depth value, at least one side of the triangle crosses a border
between two objects with different depths. It is first checked how often the triangle has
already been subdivided. In case the configured limit has not been reached, the subdivision
is performed. To get a better approximation of the edge, that the triangle crosses, a new
vertex is introduced in the middle of every edge of the triangle, as shown in Figure 7.4. The
original triangle is replaced by four smaller triangles that occupy the same area. Next, it is
checked whether the new vertices have already been processed or not. This test is necessary
when a certain vertex already belongs to the subdivided version of a neighboring triangle
that has been processed earlier. If a vertex is completely new, it is processed as follows: i)
their nearest cameras are determined following the process described in step 3, ii) the depth
of the vertex is estimated like in step 4, and iii) the rendering weights are determined as
described in step 5.

Once all new vertices and triangles are processed, it is determined whether any triangles
in the mesh have been subdivided in the current step. If that is the case, the step is
repeated until the mesh does not change anymore, which either means no triangle has a
depth difference in its vertices anymore, or the subdivision limit has been reached.
The optimization of this step is critical for the success of the whole process. The

distribution over multiple CPU threads should not pose a significant challenge, as long as
the access to the newly created vertices is controlled properly to prevent race conditions and
redundant calculations of data. The efficient use of GPUs for the calculations of this step is
more complex. The step involves many if/else instructions, which lead to code branching
and immense performance losses on GPUs due to the simpler architecture of their cores
compared to CPUs and their way to handle code branching [175]. A restructuring of this
step is required to make each substep more uniform and to reduce the number of decisions
at runtime as much as possible.

Step 7: Complete mesh

The last step of the mesh construction is the mesh completion. In this particular case, it
means finding triangles of all subdivision levels which have neighbors of a higher subdivision
level. One example of such a triangle would be the right triangle in Figure 7.4. While
the edge between v1 and v2 has been split into two edges with v′0 in the center for the left
triangle, the right triangle still relies on the direct edge between v1 and v2. In a perfect

154

7.4. Improvements

world, this would not matter since v′0 is supposed to lie exactly on that edge and the
behavior, therefore, does not change. In reality, it is a bit different. Due to rounding errors
and the limited number of decimal digits in the definition of the position of v′0, it might not
lie directly on the edge and a gap between the neighboring triangles might appear, which
can lead to cracks or other rendering artifacts, depending on which side of the edge the
new vertex falls. To remedy this problem, the current step was introduced. It redefines the
space occupied by the problematic triangles using smaller triangles making use of the newly
created vertices. When all three sides have new, unused vertices, the result is similar to
that of the subdivision step. It is still kept separated as it is much simpler with respect
to the required complexity. The main reason is that the process is only executed once
and all vertices used in this step have already been processed before and no further depth
estimation or similar calculation is necessary.

Considering the optimization potential, we encounter the same problems we have already
seen in the previous step, namely a lot of code branching due to the high number of tests
and decisions to find and process the problematic triangles. In comparison with the previous
step, those problems are not as critical since the step is only performed once for every frame.

Step 8: Render to frame buffer

In this step, the data which was calculated in the earlier steps is used to render the virtual
view from the position of the virtual camera. The original implementation uses the software
rendering of OpenGL to do this. For every image that has been used in the previous
steps, every triangle which has the current image in its list of nearest cameras is rendered
separately. All vertices of the triangle are projected onto the current image and the resulting
coordinates are then used for standard texture mapping. To combine all used textures, the
triangles are rendered with an alpha value equal to the rendering weight. Once all triangles
have been rendered for every input image, the virtual view is complete.
Since every triangle is sent to the GPU and rendered individually, the whole process is

not very fast and the repeated small data transfers between the CPU and the GPU add a
significant overhead to the whole process. Making use of batch transfers to get the data
to the GPU would be much faster but requires a reorganization of the rendering step to
have all required data available at the same time in the correct order. With the use of
custom shader programs in the rendering pipeline, it would even be possible to move some
calculations, especially the ones responsible for the final projections, to the GPU which is
very efficient when it comes to vector and matrix calculations.

7.4. Improvements

During the thorough analysis of the base algorithm in the previous section, potential for
performance improvements in multiple parts has been identified. A subset of the implemented
changes was described in [1]. The major improvements are explained in detail in this section
and their influence with respect to the overall rendering time is analyzed in the next section.

7.4.1. Shader-Based Rendering

While the software rendering technique in the original implementation is quite flexible when
it comes to which data is used for which triangle or vertex, it is also quite slow since every
triangle that is rendered has to be processed individually. Modern rendering techniques
rely on batched data transfers and programmable shaders for fast rendering with individual

155

7. Real-Time View Interpolation

settings for the triangles [165]. Since the use of shaders for computations has only become
viable with the introduction of the unified shader architecture in GPU at the end of 2006,
and therefore, two years after the publication of [13], with the GeForce 8 series GPUs the
base implementation of our algorithm does not consider the requirements for their use in
its structure. For this reason, the reorganization of the rendering data and the transfer
of certain parts of per-triangle calculations from the CPU to appropriate shaders of the
OpenGL rendering pipeline are the main topics discussed in this section.

7.4.1.1. Data Pre-Computation

As mentioned before, one major difference between software rendering and shader-based
rendering is when the required data has to be ready. In software rendering, missing pieces
of data can be calculated just before the single triangle is sent to the GPU. To use shaders
most efficiently, all data for a batch of triangles needs to be ready before rendering starts.
While this seems not to be an issue when looking at the description of the original

algorithm in Section 7.3, rendering artifacts appear in certain parts of the resulting image
when just the data that has been computed before the rendering step is being used. The
main reason being the projected coordinates from the depth estimation step. If the vertices
of a triangle use different sets of nearest images, there is a problem during rendering. In
a triangle with the vertices A and C with the closest cameras {1, 3, 4, 5} and B which is
closest to {2, 3, 5, 6}, the projection coordinates are only calculated for the images in the
set of closest images. Since OpenGL interpolates the projection coordinates and the color
values for every pixel inside a triangle from the vertices in the corners, in the problematic
triangle, there are either missing coordinates for some textures or the system is trying to
interpolate between two different textures, depending on how it treats a texture mismatch in
the pipeline. To fix the occurring errors, the coordinates have to be known for the combined
set of images D = A ∪B ∪ C = {1, 2, 3, 4, 5, 6}.
Ideally, we would determine the combined set of all images occurring in the triangles

which use a given vertex and calculate the projections for every image in the set. As
there is no internal mapping from vertices to triangles and the subdivision step can change
the number of triangles per vertex dynamically, this is not an easy task. In addition to
those factors, there is technically no upper limit of how many triangles a vertex can belong
to, and with high-quality settings, we are dealing with a huge number of triangles and
vertices. Even with an efficient algorithm to determine the accurate set for every vertex,
it is still faster to calculate the projection coordinates for all input images once the depth
has been estimated and transfer all of the coordinates to the GPU. This procedure aids the
performance with GPU computation as there are fewer checks and therefore, fewer code
branches required. Instead, the projections must be calculated a fixed number of times,
which is easily parallelizable. For a scenario with 16 input images, in which the projection
coordinates are stored using a 32 bit float value, the memory required for the projection
coordinates of every one million vertices is

MEMP = 1000000 · 16 · 2 · 4bytes = 128000000bytes ≈ 122MB (7.3)

While this might seem like a lot, modern GPUs usually feature multiple gigabytes of graphics
memory, so this is not a limiting factor. Additionally, one million vertices is a value that
is only encountered when very high-quality settings are applied to high-resolution input
images. Even if we reserve the highest rendering modes for GPUs near the upper end of
the performance spectrum, we do not consider this a problem since these devices also have
enough computing power to perform the calculations required for one frame fast enough for
a good overall experience.

156

7.4. Improvements

Vertex Shader

• project vertex
positions to
screen positions

Geometry Shader

• split triangles

• assign projection
coordinates

Fragment Shader

• recombine triangles

• combine input tex-
tures

Figure 7.5.: Implemented shader structure with assigned tasks.

7.4.1.2. Shader Structure

In Section 7.1.2 it is shown that a model OpenGL rendering pipeline contains many different
shader stages and only some of which are freely programmable. These programmable stages
can perform arbitrary calculations but are limited with respect to what they receive as input
and what they can output. Figure 7.5 shows the simple structure we have chosen to adopt
for this implementation. The vertex shader only projects the vertex positions to screen
coordinates and passes through all other input parameters. This minimal functionality
is necessary because there is no default implementation of vertex shaders and they are
mandatory for every rendering pipeline.
The geometry shader with the capabilities to create new vertices and triangles is the

first step that is used to make the rendering of the triangles, which may have up to three
sets of textures that should be used for rendering. As explained in Section 7.4.1.1, the
projection coordinates for all input textures are available and only need to be properly used
in accordance with the nearest image sets and the vertex coordinates. Here, the properties of
the geometry shader come into play. It takes a triangle as input and has access to all vertices
the triangle consists of as well as their respective parameters. Internally, it is invoked three
times for every triangle. Each invocation creates copies of the original vertices with the
same coordinates and the nearest image set of only one of the vertices. It then also reads
the projection coordinates of the respective nearest image set and forwards them to the
next shader stage. After this step, there are three times as many triangles as before, but it
is guaranteed that all the vertices in a triangle access the same textures and all have the
correct projection coordinates.

The fragment shader is called for every fragment which contributes to the value of a pixel
to the final image, receives interpolated coordinates from the corner vertices, and has to
return a color value for the fragment in the final image. For this implementation, it extracts
the color value from every image in the given nearest image set, multiplies them with their
respective rendering weights, and adds them up. As a final step, the alpha value of the
resulting color is multiplied by 1/3. It recombines the three triangles that share the same
position which were created in the geometry shader. With these steps, the problem with
the different texture sets of the vertices in a triangle is solved and the shaders produce the
intended result.

Shader Parameter Transfer

Now that we have determined the parameters we need for a correct shader-based rendering,
there is another hard limitation we have to work around in order to make the approach
as flexible as possible. To render a vertex, the following data has to be provided to the
shader pipeline: one position, one vertex index, N image IDs, N weights and I projection
coordinates. N is the number of considered nearest neighbors and I the number of input

157

7. Real-Time View Interpolation

images. For footage from a camera array with 16 cameras and 4 images used for interpolation,
this equals

Params = 1 + 1 + 2 ·N + I = 1 + 1 + 2 · 4 + 16 = 26 (7.4)

parameters for every vertex. Parameters with multiple dimensions such as the position or
the projection coordinates, count as a single one because they are defined as vectors with
the required number of dimensions.

Since OpenGL restricts the number of parameters per vertex, the amount of images that
can be used with this approach is limited. The exact limit is defined by the GPU and
is given by the OpenGL context property GL MAX VERTEX ATTRIBS. Even the most
recent consumer GPUs only allow a maximum of 16 parameters. Only professional grade
GPUs and several AMD GPUs offer up to 29 parameters [176]. This upper bound severely
limits the number of images we can use. As this approach is supposed to work with our 64
camera array, a solution is needed.

The most flexible solution we found is the use of a buffer texture. A buffer texture can
be used to access big chunks of memory from the shader pipeline. In the shaders, it looks
like a large one-dimensional array and can be accessed as such. The location of the data
for a specific vertex can be derived from the vertex ID, which enumerates all vertices to be
rendered. Every entry in the texture can be one of the basic data types in OpenGL as well
as vectors with up to four entries of the basic types. Even though the vectors are supposed
to represent the color channels R,G,B and A, they can be freely accessed and interpreted.
Therefore, they can be used for all kinds of data as long as they can be represented by the
basic data types or their vectors.

While the size of these textures buffers is only limited by the size of the buffer they get
their data from, and therefore the size of memory on the GPU, the highest index that can
be accessed by the shaders is defined in GL MAX TEXTURE BUFFER SIZE. Luckily, all
modern dedicated GPUs support values of at least 130 million, many AMD GPUs even
reach into the billions and support the maximum value of a 32-bit integer, so this limit is
not a problem [176]. In case we come close to the limit, using multiple buffer textures and
splitting the data between them is possible. This measure reduces the parameters for the
example values above to

Params = 1 + 1 + 2 ·N = 10 (7.5)

That amount is unproblematic for most GPUs and is only dependent on the number of
images considered for interpolation.

Another source of rendering errors was identified as the number of textures used for
rendering. Since every vertex needs to be able to access every input image for the final
rendering step, reducing the number of images on the GPU is not an option. The main
reason for the problem is the limited number of texture sampling units that are allowed to
be used at once. To remain flexible with respect to the number of input images for a scene,
an array texture is used. Its structure is similar to that of mipmapped textures but instead
of increasingly smaller representations in the third dimension, they contain different images
of the same size. With such an array texture, all input images can be grouped together and
can then be handled by a single texture sampling unit. There are again hardware limits for
the maximum number of different images in a single array texture but most GPUs support
2048 images, which is far more than what is needed for the footage we plan to use with this
view interpolation software.

158

7.4. Improvements

Dynamic Memory Allocation

The shader software for the rendering of the interpolated views contains several parameters
that can change depending on the specific configuration used for a certain software execution.
Most of these parameters also influence the number of input and output parameters of the
different shader stages as well as how much memory is required for intermediate results or
how often certain loops have to be executed. While unknown loop iterations only influence
how well the code can be optimized by the compiler, varying amounts of required memory
are more problematic as code on GPUs can not allocate memory dynamically, when more is
required. Always allocating the highest amount of memory that is ever going to be needed,
would limit the choice of GPUs to run this algorithm on, since not all can support the
highest settings. With the maximum allocation approach, GPUs that can not handle the
highest settings can not run any settings at all. Since the range of quality and speed settings
in this algorithm can span a vast parameter range and it is supposed to adapt to different
performance levels of the hardware it is running on, this is not acceptable.

Our solution for the problem is mainly enabled by the fact that shader programs can
be compiled during runtime. This feature exists because usually it is not known on which
hardware a piece of software is going to be running, and it might even change between runs.
Since shaders and other GPU code are highly hardware-specific, the only solution to make
them compatible with a wide range of hardware is to compile and ship the GPU-specific
code for every available platform or to compile the code during runtime for the one hardware
configuration, which is currently present. While the first approach is faster when the software
is executed, since it is enough to merely load everything from storage, it does not support
hardware if it has not been considered during the compilation step, especially if it has been
released after the software. The second approach can be used with any compatible hardware
independent of its release date or availability to the developer. Technically, the compiled
code can be stored and reused without recompilation, but then it requires checks in every
software execution to know whether any parameters that influence the compilation process
have changed and a re-compilation is required. As described above, we plan to change
parameters rather often using the configuration of the software. Since the kernels have
to be recompiled for each parameter change and therefore, there is not a lot to gain from
saving the shader software, we decided to compile the shaders in every run. The compilation
process only takes a couple of seconds for very complex programs, which is acceptable at
the beginning of the software execution.

The parameters that influence the amount of required memory are represented by place-
holders in the GPU code. Before compilation, the placeholders are replaced with the current
value of a parameter or a calculated value. Since the size of arrays, the number of loop
executions, and other parameter-dependent values are not variables but literals, they are
hard-coded into the program. With fewer variables in the code and the size of all arrays
fixed, the automatic optimization in the compiler can work more efficiently and dynamic
memory allocation is not required anymore.

This approach is applicable to every piece of code that does not have access to dynamic
memory allocation but can be compiled during runtime. In the context of this thesis, this
means any piece of code executed by a GPU. This procedure is important because it allows
the transfer of even more complex computations from the CPU to a GPU with general
computation capabilities.

159

7. Real-Time View Interpolation

7.4.2. Parallel Execution Using GPGPU

The analysis of the base algorithm in Section 7.3 shows that there is a lot of potential for
speed increase using parallel execution. Due to the high number of elements that have to
be processed and the independence of the different steps in the algorithm, the use of GPUs
instead of multiple CPU cores was considered. Modern GPUs offer the possibility to use
their processing units, which usually handle the conversion of 3D data to pixels on a screen,
for arbitrary computations that do not have to result in something on screen necessarily.
With GPUs being clocked far slower than CPUs at only slightly over 1.5GHz, they are
about two times slower than most modern desktop CPUs. Their main benefit is the higher
number of cores. While modern consumer or workstation CPUs can feature 32 or more
logical cores, GPUs have over 10000 cores on the upper end of the performance spectrum.

To perform computations on a GPU, there were two major frameworks available. Arguably,
the most common one was and is CUDA by Nvidia2, but using it limits the algorithm to
GPUs of this manufacturer. Due to the lab’s affiliation with the Intel Visual Computing
Institute (IVCI) at the time, it was important to keep the algorithm compatible with their
devices. Therefore, we chose OpenCL3 to execute the code on the GPU. That framework is
supported by nearly all GPU and CPU manufacturers with varying levels of support and
can achieve the same performance as CUDA when given a fair comparison [169].

7.4.2.1. Preparation

In order to make the transition from CPU to GPU more manageable, the original algorithm
was split into four main parts. Its functionality with respect to the steps is described in
Section 7.3.

Scene Loader Reads and processes the configuration file for a scene. Furthermore, it loads
and decodes the input images from the source given in the configuration. The raw
image data and all important parameters are placed in a location where they can be
accessed by the next step.

Depth estimator Uses the data provided by the loader to estimate the depth for the virtual
view. Consisting of the creation of the initial mesh, coarse depth estimation, mesh
refinement, and mesh finishing. The resulting depth information is stored in the form
of a depth map for the next step to use.

View processor Combines the input images with the recovered depth information into a
complete virtual view. To maintain independence from the previous part, the mesh
is recreated from the depth data. Following that, the vertices are projected to the
respective input images and the images are blended together to create the final virtual
view, which is stored in a texture for further use.

Renderer This part is responsible for outputting the final image. To keep the full function-
ality of the original version, it also handles the window in which the image is displayed
and the interactive inputs to control the position of the virtual view.

The separation of functionality allows the replacement of parts without disturbing the
functionality of the rest of the program.

To allow for a flexible exchange of the program parts, they are implemented as dynamic
libraries with a simple interface for initialization, processing, and cleanup. The main program

2https://developer.nvidia.com/cuda-zone
3https://www.khronos.org/opencl

160

https://developer.nvidia.com/cuda-zone
https://www.khronos.org/opencl

7.4. Improvements

searches for the libraries with the original functionality by default, but with command-line
parameters, the use of different libraries can be forced.
The data between the different parts is exchanged using a memory structure, whose

address is shared between all program parts. It contains the configuration parameters,
camera calibration data for the input cameras, the current camera position and direction as
well as the OpenCL context used by the program and pointers to the intermediate frames
containing the main shared data between the steps. Every frame is accompanied by a
position flag which indicates whether the frame resides in RAM or GPU memory. With
those flags, the individual libraries know where the previous step placed the frame and
can copy it to their preferred location, if necessary. Therefore, the choice of libraries can
influence the overall performance of the program negatively if the frame data is copied from
RAM to GPU memory multiple times during the processing of a frame, but it guarantees
the interoperability between different libraries, independently from the device they mainly
rely on for their computations.

7.4.2.2. Porting Code to OpenCL

OpenCL kernels use OpenCL C as their programming language. It is a dialect of C99 with
some features, such as dynamic memory allocation missing, but extended by data types for
vectors and matrices as well as keywords for memory placement. Given that the original
implementation of the algorithm to be ported is a pure C program, the conversion is quite
straightforward. The original implementation does not rely on any external libraries for its
computation, so converting it to valid OpenCL C requires only small changes.
The main changes that are required for a first runnable version involve the prevention

techniques for dynamic memory allocation, as described in Section 7.4.1.2. Applying them
to every piece of code that is supposed to be run on the GPU eliminates any arrays of
variable size and replaces it with a fixed one. Furthermore, pieces of code whose execution
purely depends on the value of a configuration parameter can be optimized away when they
are not needed. Since the if-clauses controlling the execution of these code areas only contain
checks on literals after the replacement of the placeholders, the compiler can automatically
remove them. The reduction of possible code branches is the first step towards an optimized
GPU version of the code.
Another mandatory change to the code is the definition of the memory locations for

inputs and outputs of the kernels. OpenCL differentiates five locations for data on the GPU:

Host memory Represents the memory or RAM of the machine the OpenCL devices reside
in. When OpenCL is used in combination with a dedicated GPU, this portion of
memory is the slowest by a fairly large margin. The first reason for this is the fact
that the memory itself is slower than that of GPUs, the second reason is that every
data transfer requires some synchronization between the host and the GPU.

Global memory Describes the dedicated graphics memory on the GPU. Its size is given by
the memory size in the GPU’s datasheet. It is the slowest of all accessible memory
areas on the GPU and its speed can vary greatly depending on the type of memory
used on the GPU. Compared to the RAM of the host system, its bandwidth is still
several times faster. Modern GPUs with HBM2 can reach up to 1TB/s of data
throughput while DDR4 RAM in a quad-channel configuration can only deliver about
80GB/s.

161

7. Real-Time View Interpolation

Constant memory Is part of the global memory and therefore, shares its speed and size
properties. The main difference is that, from a kernel perspective, it can only be read
and its content is constant.

Local memory Is a section of internal on-chip memory that can only be used by a set of
work units, a so-called work-group. The size of this memory is quite small, but it is
much faster due to its proximity to the work units on the chip. The minimum size of
this memory is at least 16KB, as given in the OpenCL standard, but the exact size is
GPU-specific.

Private memory Is memory that can only be accessed by a single work unit. There are no
guarantees for its size by the OpenCL standard and its whole implementation is up to
the manufacturers.

Looking at these choices, it would seem that local memory is the best choice for the
position of parameters and intermediate results due to its speed. Two important factors that
make its explicit use more complicated, are the persistence of local memory between kernel
calls which cannot be guaranteed. Even with predictable persistence, calling the kernel with
a different number of work items can move items to a different workgroup which means they
cannot access their previous intermediate results anymore. Although global memory is con-
siderably slower, it is the only practical choice for our algorithm. With its comparably large
size, global accessibility, and defined persistence, it offers the biggest flexibility of all memory
spaces. Since the exact memory area required for the calculations of a certain vertex or
triangle can vary greatly, as shown in the algorithm analysis above, global memory becomes
the only choice because calculating the optimal data to fit into local or private memory
would be too complex for real-time performance. The compiler or the OpenCL runtime envi-
ronment are still able to use local and private memory as a cache when data is accessed often.

It is important to ensure that the alignment of all the variables is identical, particu-
larly for debugging, but also for all data which is transferred between the RAM in the GPU
in the form of structs4. The requirements for the placement of variables are usually stricter
on GPUs than in RAM. For example, while in standard C/C++ variables only need to be
aligned at byte boundaries, in OpenCL C the start of the variables must start at an address
divisible by powers of two. The exact value varies between data types. If the alignment is
not properly checked, the structs in the RAM have a different size to what the code assumes
on the GPU. Depending on the data in the struct, it is also possible that these data fields
in the struct have the same alignment, but there are added bytes at the end of the struct
itself to align the struct with the next. Both cases lead to problems since the OpenCL code
interprets the wrong memory areas as the content of its parameters.
To check whether the alignment is correct, a duplicate of the struct is defined in the

host code, in which all primitive data types like int or float are replaced by their OpenCL
equivalent cl int or cl float. Those special types adhere to the alignment rules required on
the GPU. Even though it is deactivated by default, most common compilers have a warning
that activates when padding bytes are added to structs to align their contents or the struct
itself. Those warnings, in combination with the CL data types, help to order the contents
in a struct more efficiently and to make sure that the structs can be transferred from RAM
to the GPU properly.

4Combination of multiple simple data types into a single structure.

162

7.4. Improvements

The last important conversion step is to handle parts of the algorithm that have to be
run a variable number of times for every frame using the OpenCL kernels whose number
of iterations have to be defined before they are executed. For the subdivision and mesh
completion steps, this is especially important. The iterations of those steps are heavily
dependent on the contents of the input images and are, therefore, hard to predict. Always
setting the largest possible number of iterations and then only working on the valid items is
a possible solution, but due to the large number of work items that can be set in the kernels
and the rather low number of required work items, especially in the later subdivision steps,
this approach would be a very slow and inefficient solution.
The optimal solution would be to run the first iteration of these steps and, if required,

have a kernel start the kernel for the next step or stop the execution. Unfortunately, neither
CUDA nor OpenCL offer this functionality. In both frameworks, every kernel execution has
to be queued from the host code. Having a kernel that can adjust the required number of
iterations or steps of other kernels is not possible.
In order for the host to determine the next step, it needs to know what the outcome of

the last step is. Ideally, this can be done without a thorough analysis of the data created on
the GPU. Our solution to this problem is a simple counter containing the number of newly
created triangles in the previous step. This counter is updated by the work items using
atomic functions at the end of their kernels. Only the value of this counter is downloaded
into RAM after the kernel execution is finished and, based on that value, either another
subdivision step is triggered or the finalization of the mesh is started.
Due to the fact that the host program must wait for a kernel to finish and must also

download a piece of memory from the GPU before a new kernel can be started, a significant
amount of idle time is added to the overall rendering process. Combined with the heavy code
branching in the respective kernels, this mandatory synchronization makes the subdivision
and mesh finishing into the least efficient parts of the algorithm. On certain platforms, it
is even faster to use an initial mesh that is finer than the highest subdivision level and
deactivate subdivision completely, instead of using a coarser start mesh with two or three
subdivision steps.
While we did not find an optimal solution for this problem, the recreation of these

two steps on the GPU gave a lot of insight into the differences between the hardware
architectures of CPUs and GPUs. Long tasks with many memory accesses and repeated
calculations can be handled very efficiently on the GPU when the number of iterations
in a loop is known before the execution starts and the processed items can be processed
independently. On the other hand, even fairly simple instructions can become very inefficient
on a GPU platform when many decisions leading to code branching have to be made per
item. The cases in which the exact number of kernel executions is not known also add
to the inefficiency because waiting for a kernel to finish, analyzing data from the GPU,
and then queuing the next kernel, is far slower than using the internal dependency mecha-
nisms for kernels in the queue and let the GPU decide when a queued kernel can be executed.

This observation concludes the basic transfer of the base algorithm from the CPU to
the GPU. We have shown the major steps required to move as much of the functionality
of the algorithm from the CPU to a GPU to make use of its highly parallel execution
capabilities. The general methods for removing the need for dynamic memory allocation
can be applied to many different algorithms which want to make use of GPU parallelism.
Even if not all parts could be ported to the GPU with the highest efficiency, the resulting
increase in speed is still significant, as shown in Section 7.5. Of course, our development and
improvement of the algorithm did not stop there. In the following section, modifications for
more quality and speed are introduced.

163

7. Real-Time View Interpolation

7.4.3. Further Performance Improvements

While porting the base algorithm to make use of GPUs took a significant amount of time,
we did not stop there. The original algorithm did not use any special techniques with
respect to image sampling or filtering. GPUs offer filtering options for image sampling
operations, implemented in hardware, which have nearly no influence on the speed of the
operation. Since the coordinate projection onto the input images often results in non-integer
coordinates, which can benefit from filtered image sampling, we estimated that the benefits
of attempting this would potentially be worthwhile.

7.4.3.1. Fast Linear Texture Filtering

Bi-linear interpolation for image sampling is not new. It has been around since the 1980s
and in most situations where visual quality is required, it has already been replaced by
anisotropic or even more sophisticated interpolation schemes. However, for our purposes
the quality improvement we achieve with bilinear interpolation over the nearest-neighbor
interpolation is sufficient. To gauge the performance and quality impact, the bilinear filter
was implemented for the CPU as well as for the GPU. Both initial implementations handle
the filtering in code because the hardware support for that filter was not available in the
hardware we used at the time.

While nearest-neighbor sampling consumes only two rounding operations to get the closest
coordinates and one sampling operation to get the final color values, bilinear interpolation
is more expensive. First, the pixel coordinates surrounding the sampling point have to
be calculated, which takes two rounding operations per coordinate dimension and two
additions/subtractions depending on the implementation. Second, all four neighbors have
to be sampled and the color values have to be combined. This calculation requires six
floating-point multiplications to get the final value, for each color channel.

For a two-dimensional image with 3 color channels, nearest neighbor filtering requires
a total of two rounding and one sampling operation. Bilinear filtering needs 4 rounding
operations and 2 additions or subtractions to get the neighboring coordinates, in addition
to 4 sampling operations, a total of 18 floating-point multiplications and 9 additions to
retrieve all colors of a pixel, as depicted in Figure 7.6. While this does not seem like a lot,
considering the speed of modern CPUs, it is important to remember that pixel sampling
with filtering is one of the most used functions in the algorithm. For every vertex, whose
depth needs to be estimated, an area around the projection coordinate has to be extracted
pixel by pixel from every image in the closest neighbors set. This operation is then repeated
for every depth plane. In a fairly normal scenario with 4 considered cameras, 20 depth
planes, and a window size of 7x7, the estimation adds up to 7 · 7 · 20 · 4 = 3920 sampling
operations per vertex.

Using the filter functionality of the hardware samplers on a GPU mitigates this difference
because their implementations are highly optimized and their access to the texture data is
very efficient. Figure 7.7 shows the impact filtering can have on the quality of the estimated
depth values. The image shows a tree standing next to a hill whose slope is in the bottom
right portion of the frame. While the left image shows periodic errors in the depth, the
right image has a much smoother transition from foreground to background in the same
area. This improvement can also be observed in the canopy of the tree and its stem. The
noisy artifacts next to the tree, are only reduced slightly by this step. The disappearance of
the steps in the depth map reduces the amount of subdivisions triggered at those locations
and consequently lowers the overall complexity of the depth estimation. These periodic
errors only appear when the camera layout of the array, the distance from the cameras,

164

7.4. Improvements

A B

C D

E

F

G

Sample at (5.467, 8.572)

Sample A at (5, 8)
Sample B at (6, 8)
Sample C at (5, 9)
Sample D at (6, 9)

E = (0.533 ·A) + (0.467 ·B)
F = (0.533 · C) + (0.467 ·D)

G = (0.428 · E) + (0.572 · F)

Figure 7.6.: Bilinear interpolation calculation example per channel.

(a) nearest-neighbor interpolation (b) bilinear interpolation

Figure 7.7.: Influence of different texture interpolation techniques in OpenCL.

and the properties of the texture line up correctly. Their removal without a big impact on
the overall performance is important within the context of the overall improvement of the
algorithm.

7.4.3.2. Depth Filtering

The filtering of the texture during the sampling operations only has a small impact on the
overall performance of the algorithm. The filtering of the depth estimate itself has greater
benefits. Figure 7.8a shows the recovered depth map of the well-known Teddy scene from
the Middlebury stereo dataset [177]. All over the image, but especially in areas where the
depth should be fairly continuous or flat, artifacts reminiscent of salt-and-pepper noise can
be found. Those artifacts stem from the fact that the depth estimation often defaults to
the highest or lowest possible depth value when the analysis of the image similarity at the
tested depth planes is not conclusive. While most of them are invisible in the final view, as
they often coincide with uniformly textured areas in the scene, they have a big influence on
the subdivision steps. As they create artificial edges where none should exist, they trigger
unnecessary subdivisions and the estimation steps that come with them.

To remove salt-and-pepper noise without blurring edges and other structures in an image,
median filters have been the go-to method for a long time. Since it is a non-linear filter,
and apart from some recent implementations requires sorting [178], it is fairly expensive

165

7. Real-Time View Interpolation

to implement, especially on GPUs. Therefore, the filter can only be applied to a small
neighborhood of vertices or the cost of the filter outweighs its benefits.
After evaluating multiple possible filter sizes and application variants, we settled on the

following: a 5x5 median filter is applied only to the coarsest mesh after the first round of
depth estimation. The other estimation rounds are left untouched. The influence of this
step on the depth map can be seen in Figure 7.8b. The reduction of the overall noise is
immediately visible. While the extreme values in the noisy areas are suppressed, the edges
are mostly maintained. In regions where the noise comes close to or mixes with the edges,
spiky artifacts from the edges are visible but their extent is much smaller than the errors in
the original version. Overall, the estimated depth is much more uniform than before.
In the final views based on the depth maps (Figures 7.8c and 7.8d), the differences

are much more subtle. The red circles in the left image highlight two areas where small
errors disappear because of the applied filter. Even though the visual impact is fairly
small, the overall computation time spent on the depth estimation is reduced by up to 50%.
The reduction in false edges means fewer subdivisions are triggered in the later steps and
therefore, fewer computations are performed overall. The exact speedup depends on the
scene content, the current camera position, and the configured scene parameters, but 20-30%
are very common and values of over 40% can often be observed in complicated scenes.
The reduction in complexity offered by the introduction of the filtering step is a very

important step towards a consistent real-time performance of the complete view interpolation
process. Since the depth estimation step takes up most of the available time budget, as
shown in Section 7.5.1, the impact of this filtering step in this view interpolation system is
only second to the transition from CPU to GPU.

7.4.3.3. Temporal Consistency

The improvements in the previous sections changed the overall concept of the original
algorithm only slightly and simply add or change single steps. This section is different
as it adds a dependency on earlier frames to reduce the rendering time and the flickering
between consecutive frames. Up to now, the calculations for every frame were completely
independent of earlier or later results. For rapidly changing scenes or camera positions, it
can be beneficial when consecutive frames do not share a lot of content, since searching for
matches between the frames takes some time and might not yield useful results.
Considering scenes with smooth camera movements and no scene changes, it can be

useful to take the results from earlier frames into account to reduce the overall number of
required computations per frame. The introduction of temporal consistency into the view
interpolation process can be used to achieve that.
Temporal consistency generally describes the fact that objects in the real world do

maintain certain properties within a reasonable amount of time. In the context of this
chapter, it means that static objects in one frame are still in the same location in the
next frame, and moving objects only change their position slightly between frames. When
optimally used, the depth values of static objects can be reused without any recomputation
of data or loss of quality in the final image. Even the data of moving objects could be reused
if the movement is tracked and extrapolated to the current frame. While this procedure
seems straightforward, the tricky part is how to identify and track the static and dynamic
parts of the scene without using all the time that can be gained by partially reusing the
older depth values.

Different methods and implementations for adding temporal consistency into the existing
algorithm have been evaluated in the preparatory work for [49]. Drawing inspiration from
Kauff et al. [180] and Riechert et al. [179] from the Fraunhofer HHI, steps to exploit the

166

7.4. Improvements

(a) depth without filter (b) depth with median filter

(c) result without filter (d) result with median filter

Figure 7.8.: Depth filtering results with and without the new filter.

(a) left image (b) ground truth (c) estimated disparity

Figure 7.9.: Disparity results of LHRM [179].

167

7. Real-Time View Interpolation

temporal consistency, were added to the system. Their HRM (Hybrid Recursive Matching)
and LHRM (Line-wise Hybrid Recursive Matching) algorithms provide impressive quality
in the estimated depth representations, as shown by the example in Figure 7.9. The
computations can be performed in a reasonable time and they scale well with the number
of used CPU cores. A direct transfer of the presented algorithms from the papers was
not possible, as they do not fully disclose some information about the metrics used in the
iterative part of their algorithm and their overall structure is different from the one we
have. Even though the structure of the HRM and LHRM algorithms is mostly incompatible
with our algorithm, the integration of samples from earlier frames into its computations for
temporal stability and complexity reduction can be used with our existing code. By adding
disparity values from neighboring pixels and previous frames into the pool of considered
values, enough knowledge is propagated to ensure spatial and temporal stability in the final
disparity maps.
Even though our algorithm was already temporally stable because of how the results of

the parallel computations on the GPU are ordered, testing whether previous results are
still valid and skipping the further computations can reduce the overall complexity if the
initial test is not too expensive. A first implementation stored the depth as well as the
image patches used during the computation for consistency checks. Since the checks using
the previous image content were too specific and finding an actually consistent point was
only possible when neither the input frames nor the virtual camera position changed, it
was quickly dismissed. The revised version only stores the depth value and the similarity
score from the previous frame. Before the regular plane-sweeping part in the algorithm,
the current vertex is projected onto the neighboring images using the saved depth and
the similarity score for the new frames and camera position is calculated. If it is equal to
or higher than the saved value from the earlier frame, the rest of the depth estimation is
skipped for this vertex. In case that the similarity score is lower than before, the depth
estimation is performed normally but the depth plane corresponding to the stored depth
value is skipped because its similarity score was already calculated in the testing step. This
approach can still produce sub-optimal results when the saved similarity score is low. In
these situations, it is possible that a comparably poor depth value is propagated through
multiple frames even though a better one would exist. Such bad estimation results can be
easily matched and other depth values are therefore not tested. This procedure reduces the
achievable quality compared to the unmodified algorithm, but its impact can be dampened
by the introduction of a threshold that the similarity score has to surpass for the associated
depth to be considered in future frames. Overall, this limits the false positives for the
temporal consistency to high-quality matches, which have a far less negative impact on the
final quality than the low similarity matches because of the better match between the areas
surrounding the projected coordinates.

While these temporal false positives reduce the quality of the end result but improve the
speed of the calculations, false negatives have no impact on the quality but decrease the
performance gain. The main source of false negatives in the samples we tested is the natural
camera noise, which adds a different amount of white noise to every frame. Since this noise
is different in every camera and is included in the calculation of the similarity scores, it can
increase or decrease the similarity value between frames, even in completely static areas
of the scene. An improved score means the vertex is correctly assumed to be temporally
consistent but makes it more likely that the score will decrease in the next frame. The
decreasing scores are problematic, since a lower score triggers a reevaluation of all depth
planes, even though the scene has not changed, and therefore, lowers the efficiency of the
depth estimation. The introduction of a second threshold, which allows a worse similarity
score to be accepted as ”good enough” to be temporally consistent, solved this problem.

168

7.5. Evaluation

This threshold has to be tuned to the noise present in the scene, so it is high enough to
cover the effects of the noise but still low enough that actual changes are still detected as
changes.

The performance gains of this step were only evaluated in comparison to the CPU-based
version but since the steps in the algorithm are the same and the depth estimation takes
the majority of computation time in both implementations, the impact of the improvement
is comparable. The most notable time changes are achieved in static scenes without camera
movement. Depending on the configured parameters of the depth estimation, up to 82%
reduction in rendering time per frame can be achieved, even though a reduction of approxi-
mately 50% is more realistic. This improvement can be considered a good result but this
special test scenario is fairly unrealistic with respect to any practical use case.

Looking at a static scene with a moving virtual camera or having a scene with movement
between the frames is much closer to reality. As movements in either the scene or the camera
cause the vertices in the depth mesh to lose temporal consistency, the expected increase in
speed is lower than in the static cases. With small steps between the frames, the chance for
a vertex to fall onto the same depth plane is higher than for bigger steps. This relation is
being reflected in our measurements as the gains drop to about 20% in these cases. With
higher threshold values for considering worse similarity values as still temporally consistent,
that value can be increased but only at the cost of artifacts in the depth map which trail
moving objects in the scene.

When it comes to the impact the temporal consistency step has on the visual quality, it
was found to be insignificant. Compared to the original unmodified algorithm, there was no
measurable difference for the completely static scenes, neither in the PSNR nor the SSIM
scores. When the static scene is combined with camera movement, the quality even goes
up slightly due to a small smoothing effect the temporal consistency checks have onto the
depth map in those cases.

For the tested dynamic scenes, there was no good ground truth available to test against,
and removing frames from the input material to use as ground truth was not feasible because
small errors in the camera calibration data led to visibly worse results compared to the
unmodified input. Since the PSNR metric does not reflect the perceived quality very well
anyways, as shown in Section 6, the quality of the view interpolation for the dynamic scenes
was compared by multiple observers. They all judged it to be at least of similar quality,
in some cases even better. The main reason for higher quality is the problematic areas in
which the similarity score is hardly conclusive. In those, the temporal consistency removes
some random flickering when the depth would switch between different depth planes in the
original implementation.

Even though this improvement is not integrated into the high-speed GPU-based version
of the algorithm, it still shows some of the potential that the algorithm has for future use
cases and projects.

7.5. Evaluation

Most changes we made to the base algorithm were focused on lowering the amount of time
needed for the computation of each frame. In this section, the impact of these changes
with respect to the overall speed as well as the quality is measured. It shows that the
improvements increase the processing speed so far that frames can be rendered much faster,
even when more high-resolution input images are processed with more demanding settings.

169

7. Real-Time View Interpolation

CPU without shaders CPU with shaders
0

50

100

150

200

250

300

89 ms

2 ms
Render to screen

Finish mesh

Recover depth

Create initial mesh

Load textures

C
o

m
p

u
ta

tio
n

 ti
m

e
 [m

s]

Figure 7.10.: Influence of shader-based OpenGL on the computation time of different algo-
rithm steps.

7.5.1. Rendering Performance

For the algorithm this portion of the thesis is based on, the authors state a performance of
4-10 frames per second with an image resolution of 320x240 [13]. Even on current CPUs,
at the time of writing, the performance was not significantly better. Nevertheless, the
influence of every improvement was measured against the original algorithm on the same
hardware platform. The measurements were taken on a machine with a 3rd generation Core
i5 processor with an AMD Radeon 7970 as the main GPU. The default configuration for
all following measurements are as follows: 9 input views with a resolution of 900x750, 10
depth planes, 10 pixels initial vertex distance, 2 levels of subdivision, and a window size for
similarity tests of 5 pixels.

The first major change was the step from pure software-based OpenGL to shader-based
OpenGL. Figure 7.10 shows how the time used for the different parts of the algorithm
changes when the shaders are used. Since the shaders only influence the last step of the
algorithm, the execution times of the other parts are unaffected. It is clearly visible that
the shaders, in combination with the batch execution for all the triangles, are far more
efficient than the old approach which renders triangles one after the other. The overhead
produced by the original rendering step where the data for every vertex was transferred to
the GPU individually, takes up most of the rendering time. Therefore, the capabilities of
a modern GPU can not be used efficiently. One indicator for this is the fact that modern
well-known GPU benchmarks, like 3DMark, render up to 14 million triangles per frame
with up to 60 frames per second and more [181], while the view interpolation algorithm
discussed here only needs to render approximately two million triangles, even with a FullHD
input, a dense initial grid and one subdivision for every triangle. Additionally, it must be
considered that the shader complexity in the benchmark is more complex with reflections
and other lighting effects than the ones we use here. Therefore, it can be assumed that the

170

7.5. Evaluation

CPU with shaders OpenCL on GPU
0

50

100

150

200

187 ms

11 ms

Render to screen

Finish mesh

Recover depth

Create initial mesh

Load textures

C
o

m
p

u
ta

tio
n

 ti
m

e
 [m

s]

Figure 7.11.: Influence of OpenCL-based computations on the computation time of different
algorithm steps.

efficient rendering of triangles with associated shaders is much faster than what we see in
the original implementation. The reduction in time needed for the rendering supports this
assumption.
The remaining time in the rendering step mostly consists of the time required to trans-

fer the data for the shaders from RAM to GPU memory in the correct order. This fact
becomes apparent in Figure 7.11 where the render time completely disappears from the
graph because the data is already present on the GPU and the rendering itself takes less
than 0.5ms and could not be measured anymore since the time resolution was limited to
1ms. Looking at the total computation times in Figure 7.10, the use of modern OpenGL
rendering techniques alone reduces the total computation time by nearly 30% in this test
scenario. In configurations with simple scene geometry but more triangles, the influence
can be even more pronounced.

The next round of improvements included the switch from pure CPU computation
to General Purpose Computation on Graphics Processing Unit (GPGPU) to make use of the
fact that most computations in the algorithm are performed per vertex and are independent
of each other. The difference in runtime is immediately visible in Figure 7.11. While the
time used for the estimation of the depth map drops from 187ms to 11ms, the time it takes
to load to input images or textures nearly doubles. The main reason for the increase in
loading times is the fact that, in addition to loading the images from the disk and decoding
the images, a transfer from the RAM to the GPU is required. Fortunately, this is balanced
out by the lesser time taken by all other steps before and after the depth estimation. In
these simpler steps of the algorithm, the faster memory throughput, combined with the
highly parallel computation power of the GPU together reduce the time required for these
steps to under 1ms and in some cases even under 0.5ms, which makes them disappear from
the graph. In total, the use of a medium-tier GPU reduces the amount of time required for
the complete render of a single frame by a factor of 8 for the default parameters chosen here.

171

7. Real-Time View Interpolation

24681012141618202224262830
10

100

1000

10000

OpenCL on GPU CPU without shaders

initial vertex distance [px]

re
n

d
e

ri
n

g
 ti

m
e

 [m
s]

(a) initial vertex distance

450x375 900x750 1800x1500 3600x3000
10

100

1000

10000

OpenCL on GPU CPU without shaders

image resolution

re
n

d
e

ri
n

g
 ti

m
e

 [m
s]

(b) image resolution

2 4 8 16 32 64
10

100

1000

10000

OpenCL on GPU CPU without shaders

number of depth planes

re
n

d
e

ri
n

g
 ti

m
e

 [m
s]

(c) number of depth planes

1 3 5 7 9 11 13 15 17 19
10

100

1000

10000

OpenCL on GPU CPU without shaders

length of one side of the testing window [px]

re
n

d
e

ri
n

g
 ti

m
e

 [m
s]

(d) window size

0 1 2 3 4
10

100

1000

10000

OpenCL on GPU CPU without shaders

number of subdivision levels

re
n

d
e

ri
n

g
 ti

m
e

 [m
s]

(e) levels of subdivision

Figure 7.12.: Influence of different parameters on the rendering time.

It is important to note that this factor is not the best one that can be achieved since the
different configuration parameters have a different impact on the runtime. However, it gives
a good indication of the improvement we achieved. The graphs in Figure 7.12 show how the
rendering time changes when one configuration parameter is modified. They show a similar
shape for the CPU and the GPU-based computations, even though they are approximately
an order of magnitude apart from each other. For the initial vertex distance where this is
not the case in the beginning, the number of vertices in the frames is not high enough to
use all hardware resources of the GPU with full efficiency. This is also visible in the nearly
horizontal line of the GPU times in the left half of the graph, as the GPU copes with the
increased number of vertices by utilizing resources that have been idle before. Once all of
the computational units are in use, the times increase as expected.

All these graphs only show the change for one parameter. When a configuration is adapted
for a given scene, most likely more than one parameter needs to be changed to achieve

172

7.5. Evaluation

(a) Teddy original
(Reference)

(b) Teddy interpolation
(PSNR: 32.76dB SSIM: 0.90)

(c) Cones original
(Reference)

(d) Cones interpolation
(PSNR: 27.22dB SSIM: 0.84)

Figure 7.13.: Examples of interpolated images with metric values.

the best results. In those cases, it is important to know that the parameters are combined
multiplicatively. When one parameter increases the number of vertices in the mesh and
a second increases the number of steps that need to be taken per vertex, their influence
does not just add up, it has to be multiplied together. With a clever combination of these
parameters, even higher gains can be achieved on the GPU but they are not necessarily
realistic, since the requirements for an optimal result are different from scene to scene and
not all can achieve the same improvements.

7.5.2. Rendering Quality

As we have shown, the execution speed of our view interpolation algorithm has been greatly
increased in comparison to the original baseline implementation. However, as with any
other media application, speed is worth nothing without good quality. As we can see from
the images in Figure 7.13, the visual quality of the interpolated frames is so high that
nearly no differences to the reference can be seen. Very small shifts of image regions due to

173

7. Real-Time View Interpolation

slight inaccuracies in the depth reconstruction are not directly visible but influence common
quality metrics significantly. Those shifts can be caused by a wrong depth chosen by the
estimation, especially in regions with repeating patterns of matching frequencies, or simply
the depth plane not matching the exact depth of an object perfectly due to the discrete way
the space is sampled in the depth direction. The error in depth causes small shifts, which
are less than a pixel away from the correct location most of the time, given an appropriately
high number of depth planes is tested and the one closest to the real depth is chosen as
the correct one. Nevertheless, the measured PSNR values are fairly low and go higher than
the lower 30s in very rare cases. How to cope with this behavior in situations where more
appropriate PSNR scores are required is investigated in detail in Chapter 6. On the other
hand, the SSIM results are better and closer to the visual impression with values from 0.84
to 0.97. As it compares image structures and not just single pixels, the sub-pixel shifts do
not cause such a significant decrease in the metric’s final value.
Those quality results are slightly better than what the original implementation could

achieve.The main reason for this is the newly introduced filtering step, which helps to reduce
the number of wrong depth values in areas where the similarity scores are inconclusive due
to occlusions or camera noise. In those regions, the depth map is now smoothed between
edges, which is mostly correct in textureless areas or a better result than the extreme values
which occurred there in the original implementation.

In summary, the changes made to the original algorithm do not significantly change the
maximum achievable image quality. Considering this was not the goal of this thesis, that
is not surprising. Even then, algorithms achieving better image qualities existed but they
either relied on a much longer time budget, the existence of detailed depth maps in addition
to the input frames, or hard assumptions about the scene contents [182]. With respect
to other IBR algorithms of the time, the quality is comparable to the upper end of the
spectrum [183, 184], especially considering the small time budget we have set for each frame.

7.5.3. Relevance for New Projects

Given the age of the original algorithm and the implementation discussed here, it is easy
to question its value for this thesis. Since we published the last paper about this topic,
there have been many developments. Faster algorithms for view interpolation from multiple
cameras have been developed [185, 186, 187], neural nets have become even better at
calculating depth maps [188, 189] but most importantly, interpreting multiview material as
the views from distinct cameras has become slightly outdated. Instead, they are treated
as sub-apertures of a lightfield and are often used as real-world samples for new, more
efficient lightfield representations and rendering algorithms. Notable examples for this are
the DeepView algorithm by Flynn et al. [190] and the follow-up work from Broxton et
al. [191].

Even though the approaches they are describing in their publications look completely
different from what we have done, their goal to create new dynamic views in the area covered
by the cameras is essentially the same as ours. Additionally, there are clear parallels between
their approaches and ours. The multiplane images in [190] represent different depths or
distances from the cameras, similar to our depth planes. For their representation, they
assign pixels from the cameras to these planes, where overlaying the contents of the input
images result in sharp images. Therefore, the plane represents the correct depth for this
portion of the image. The general approach up to this point is nearly identical, the main
difference being that they use a sophisticated neural net to determine the correct depth and
to choose the appropriate pixels to assign to each plane, whereas we use fairly simple image
metrics for determining the depth and only indirectly assign pixels via the coordinates in the

174

7.5. Evaluation

virtual view. In [191], their process is refined by moving from flat to spherical surfaces and
add a dictionary-based compression, which allows for real-time streaming of the compressed
content and interactive viewpoint choice within modern browsers. While their results look
impressive, even with very challenging scenes, and their way of creating novel views from
the processed material is fast and accessible, it would not be possible to use them in the
scenario we tried to tackle in this thesis. The main reason being that the processing of the
input material takes very long compared to our time budget, namely about 50 seconds per
frame with 4 cameras on a high-end professional GPU for DeepView and over 24 CPU hours
per frame for the layered mesh representation. Nevertheless, their continued interest in the
problem we set out to solve, and the fact that they are still relying on a related set of tools,
albeit more advanced in the way they apply them, makes this work still somewhat relevant
today. In particular, under the aspect that our approach allowed the usage of live material
for the view interpolation without any preprocessing apart from the camera calibration.

175

8. Conclusion

This thesis tackles many topics related to multi-camera footage, from the capture of multiview
video and 5D lightfields using a custom-built, modular camera array, via the compression
and transmission of multiview video to real-time view interpolation on GPUs.
The main focus of this work lies in the camera array. We describe the reasoning behind

construction details and the different steps the array went through before it reached its final
state. By discussing the major productions performed using the array, we show that it can
capture lightfield video with sufficient quality for use in professional production and that
there are benefits to having a controllable fifth dimension in lightfields.

To increase the quality of the captured footage further, we presented our work-in-progress
deep learning approach for better demosaicing of camera array footage. Even though
it can only process footage with very low resolutions, it shows clear improvements over
state-of-the-art single image algorithms.
With the amount of data lightfields and multiview video contain in their raw form,

networks quickly become the bottleneck in interactive applications. Since most available
encoding solutions are either very hardware-intensive or incredibly slow, we present our
own approach. Based on the H.264/MVC standard, we created a solution that cleverly
distributes the complexity over multiple devices to achieve significant increases in speed with
only minimal losses in quality. At the time, and to the best of our knowledge, up to this
day, it is the fastest encoding system for more than two views in one stream. In addition,
there is still potential for further speed increase since many steps in our implementation are
not particularly optimized compared to available single-stream encoders.
In order to unlock the immersive properties of the transmitted multiview material, we

developed a view interpolation algorithm capable of performing view interpolation in real-
time. By leveraging the computational power of modern GPUs, it is able to achieve more
than 25 frames per second with resolutions higher than FullHD. The obtained quality is at
least up to par with other fast algorithms which do not rely on depth maps as input.
Combining the view interpolation with the multiview encoder lead to a novel approach

to the optimization of multiview streaming. We have shown that removing views from the
stream, redistributing the available data rate, and reconstructing the missing frames after
decoding using view interpolation can lead to a higher overall quality compared to all views
sharing the available data rate.
To make reliable predictions about the quality of images after their transmission and

reconstruction, we presented an approach that helps to align PSNR scores with the mean
opinion score when used with images created by view interpolation. After analyzing the
effects of typical errors caused by view interpolation, the least visible errors with the highest
impact on the score are transferred from the tested image to the reference, and therefore,
effectively made invisible to the applied metric. This approach maintains most characteristics
of the original metric, such that its results can still be combined with measurements of the
original metric.

While most of our approaches were a clear improvement over the state-of-the-art in at least
one aspect at the time of their publication, they were not perfect. As part of ongoing
research, there will always be cases in which they behave sub-optimally. With the continuous

177

8. Conclusion

development of new hardware, new features, and novel ways for software acceleration, it is
never possible to support everything, and execution times could always be lower somehow.
Since the other points we identified for improvement are highly dependent on the contribu-
tion in question, they are discussed in the respective chapters.

Overall, we contributed to the scientific progress of every step in a multiview video streaming
pipeline. By restricting us to the use of consumer hardware in most topics, we presented
ways in which complex media can be made accessible for consumers without special devices.
Even though all results have been published at international conferences, not all have had
the same impact on the research community. In particular, the interest in multiview-specific
algorithms has decreased due to the current popularity of lightfields. While the format of the
input material is very similar, the interpretation of the data is very different. Nevertheless,
parts of the ideas presented in our approaches can be found in state-of-the-art lightfield
processing and compression algorithms.
On the other hand, the lightfield array and the material created with it were featured

at multiple international conferences as well as public and industry-specific media. With
the help of multiple renowned visual effects companies, we showed that lightfields can be
used in professional video editing suites, even though their support is still in its infancy.
This experiment proves that lightfields work well with computer-generated content and has
the potential to revolutionize the film industry when lightfield cameras and editing tools
become more easily available.

178

Own publications

[1] Tobias Lange, Goran Petrovic, and Thorsten Herfet. “Real-time virtual view rendering
for video communication systems using OpenCL”. In: 2014 IEEE International
Symposium on Broadband Multimedia Systems and Broadcasting. IEEE. 2014, pp. 1–
5. doi: 10.1109/bmsb.2014.6873485.

[2] Tobias Lange and Thorsten Herfet. “Compensation for sub-pixel image shifts in
interpolated images when using common quality measures”. In: 2015 9th Interna-
tional Workshop on Video Processing and Quality Metrics for Consumer Electronics
(VPQM). 2015. eprint: https://www.nt.uni-saarland.de/wp-content/uploads/
2019/05/2015_VPQM_Lange.pdf.

[3] Andreas Schmidt, Tobias Lange, and Thorsten Herfet. “Low-latency multimedia
streaming using Open Networking Environments”. In: 2016 2nd IEEE International
Conference on Computer and Communications (ICCC). IEEE. 2016, pp. 2094–2098.
doi: 10.1109/compcomm.2016.7925069.

[4] Tobias Lange and Thorsten Herfet. “A complete multi-view video streaming system”.
In: 2017 IEEE 7th International Conference on Consumer Electronics-Berlin (ICCE-
Berlin). IEEE. 2017, pp. 19–21. doi: 10.1109/icce-berlin.2017.8210578.

[5] Tobias Lange and Thorsten Herfet. “A distributed real-time multi-view video encoder
on consumer hardware”. In: 2017 IEEE International Symposium on Broadband
Multimedia Systems and Broadcasting (BMSB). IEEE. 2017, pp. 1–3. doi: 10.1109/
bmsb.2017.7986173.

[6] Tobias Lange and Thorsten Herfet. “Towards an optimized multiview streaming sys-
tem with view interpolation”. In: 2017 IEEE International Conference on Consumer
Electronics (ICCE). IEEE. 2017, pp. 61–63. doi: 10.1109/icce.2017.7889230.

[7] Harini Priyadarshini Hariharan, Tobias Lange, and Thorsten Herfet. “Low complexity
light field compression based on pseudo-temporal circular sequencing”. In: 2017
IEEE International Symposium on Broadband Multimedia Systems and Broadcasting
(BMSB). IEEE. 2017, pp. 1–5. doi: 10.1109/bmsb.2017.7986144.

[8] Thorsten Herfet, Tobias Lange, and Harini Priyadarshini Hariharan. “Enabling
Multiview-and Light Field-Video for Veridical Visual Experiences”. In: 2018 IEEE
4th International Conference on Computer and Communications (ICCC). IEEE.
2018, pp. 1705–1709. doi: 10.1109/compcomm.2018.8780991.

[9] Thorsten Herfet, Tobias Lange, and Kelvin Chelli. “5D Light Field Video Capture”.
In: Proceedings of the 16th ACM SIGGRAPH European Conference on Visual Media
Production. 2019. eprint: https://www.cvmp-conference.org/files/2019/short/
33.pdf.

[10] Jonas Trottnow, Simon Spielmann, Tobias Lange, et al. “The Potential of Light
Fields in Media Productions”. In: SIGGRAPH Asia 2019 Technical Briefs. 2019,
pp. 71–74. doi: 10.1145/3355088.3365158.

179

https://doi.org/10.1109/bmsb.2014.6873485
https://www.nt.uni-saarland.de/wp-content/uploads/2019/05/2015_VPQM_Lange.pdf
https://www.nt.uni-saarland.de/wp-content/uploads/2019/05/2015_VPQM_Lange.pdf
https://doi.org/10.1109/compcomm.2016.7925069
https://doi.org/10.1109/icce-berlin.2017.8210578
https://doi.org/10.1109/bmsb.2017.7986173
https://doi.org/10.1109/bmsb.2017.7986173
https://doi.org/10.1109/icce.2017.7889230
https://doi.org/10.1109/bmsb.2017.7986144
https://doi.org/10.1109/compcomm.2018.8780991
https://www.cvmp-conference.org/files/2019/short/33.pdf
https://www.cvmp-conference.org/files/2019/short/33.pdf
https://doi.org/10.1145/3355088.3365158

Own publications

[11] Kelvin Chelli, Tobias Lange, Thorsten Herfet, et al. “A Versatile 5D Light Field
Capturing Array”. In: NEM Summit 2020. NEM. 2020. eprint: https://nem-
initiative.org/wp- content/uploads/2020/07/4- 4- nem2020_kc_tl_th_

camready.pdf?x98588.

[12] Thorsten Herfet, Kelvin Chelli, Tobias Lange, et al. “Fristograms: Revealing and
Exploiting Light Field Internals”. In: (July 22, 2021). arXiv: 2107.10563 [eess.IV].

180

https://nem-initiative.org/wp-content/uploads/2020/07/4-4-nem2020_kc_tl_th_camready.pdf?x98588
https://nem-initiative.org/wp-content/uploads/2020/07/4-4-nem2020_kc_tl_th_camready.pdf?x98588
https://nem-initiative.org/wp-content/uploads/2020/07/4-4-nem2020_kc_tl_th_camready.pdf?x98588
https://arxiv.org/abs/2107.10563

Bibliography

[13] Cha Zhang and Tsuhan Chen. “A self-reconfigurable camera array”. In: ACM
SIGGRAPH 2004 Sketches. 2004, p. 151. doi: 10.1145/1186223.1186412.

[14] Bennett Wilburn, Neel Joshi, Vaibhav Vaish, et al. “High performance imaging using
large camera arrays”. In: ACM SIGGRAPH 2005 Papers. 2005, pp. 765–776. doi:
10.1145/1186822.1073259.

[15] IETF. Network Time Protocol (Version 3) Specification, Implementation and Analysis.
RFC 1305. Mar. 1992. doi: 10.17487/RFC1305. url: https://rfc-editor.org/
rfc/rfc1305.txt.

[16] IEEE. “Standard for a Precision Clock Synchronization Protocol for Networked
Measurement and Control Systems”. In: IEEE 1588-2008 (July 2008). url: https:
//standards.ieee.org/standard/1588-2008.html (visited on 08/18/2021).

[17] Teodor Neagoe, Valentin Cristea, and Logica Banica. “NTP versus PTP in Com-
puter Networks Clock Synchronization”. In: 2006 IEEE International Symposium on
Industrial Electronics. IEEE, July 2006. doi: 10.1109/isie.2006.295613.

[18] Arthur Toussaint, Mohammed Hawari, and Thomas Heide Clausen. “Chasing Linux
Jitter Sources for Uncompressed Video”. In: 14th International Conference on Network
and Service Management (CNSM). 2018 14th International Conference on Network
and Service Management (CNSM). IEEE. Rome, Italy, Nov. 2018. url: https:
//hal-polytechnique.archives-ouvertes.fr/hal-02263380.

[19] J. Weng, P. Cohen, and M. Herniou. “Camera calibration with distortion models
and accuracy evaluation”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 14.10 (1992), pp. 965–980. doi: 10.1109/34.159901.

[20] Z. Zhang. “A flexible new technique for camera calibration”. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 22.11 (2000), pp. 1330–1334. doi:
10.1109/34.888718.

[21] Yannick Hold-Geoffroy, Kalyan Sunkavalli, Jonathan Eisenmann, et al. “A Perceptual
Measure for Deep Single Image Camera Calibration”. In: 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition. IEEE, June 2018. doi: 10.1109/cvpr.
2018.00250.

[22] Manuel Lopez, Roger Mari, Pau Gargallo, et al. “Deep Single Image Camera Cal-
ibration With Radial Distortion”. In: 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, June 2019. doi: 10.1109/cvpr.
2019.01209.

[23] Zhen Liu, Qun Wu, Suining Wu, et al. “Flexible and accurate camera calibration
using grid spherical images”. In: Optics Express 25.13 (June 2017), p. 15269. doi:
10.1364/oe.25.015269.

[24] Martin A. Fischler and Robert C. Bolles. “Random sample consensus”. In: Commu-
nications of the ACM 24.6 (June 1981), pp. 381–395. doi: 10.1145/358669.358692.

181

https://doi.org/10.1145/1186223.1186412
https://doi.org/10.1145/1186822.1073259
https://doi.org/10.17487/RFC1305
https://rfc-editor.org/rfc/rfc1305.txt
https://rfc-editor.org/rfc/rfc1305.txt
https://standards.ieee.org/standard/1588-2008.html
https://standards.ieee.org/standard/1588-2008.html
https://doi.org/10.1109/isie.2006.295613
https://hal-polytechnique.archives-ouvertes.fr/hal-02263380
https://hal-polytechnique.archives-ouvertes.fr/hal-02263380
https://doi.org/10.1109/34.159901
https://doi.org/10.1109/34.888718
https://doi.org/10.1109/cvpr.2018.00250
https://doi.org/10.1109/cvpr.2018.00250
https://doi.org/10.1109/cvpr.2019.01209
https://doi.org/10.1109/cvpr.2019.01209
https://doi.org/10.1364/oe.25.015269
https://doi.org/10.1145/358669.358692

Bibliography

[25] Marc Levoy and Pat Hanrahan. “Light field rendering”. In: Proceedings of the 23rd
annual conference on Computer graphics and interactive techniques - SIGGRAPH
’96. ACM Press, 1996. doi: 10.1145/237170.237199.

[26] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, et al. “The lumigraph”. In:
Proceedings of the 23rd annual conference on Computer graphics and interactive
techniques - SIGGRAPH ’96. ACM Press, 1996. doi: 10.1145/237170.237200.

[27] Michael Landy and J. Anthony Movshon. “The Plenoptic Function and the Elements
of Early Vision”. In: Computational Models of Visual Processing. MIT Press, 1991,
pp. 3–20.

[28] Michael Zink. “Blu-ray 3D™”. In: SMPTE International Conference on Stereoscopic
3D for Media and Entertainment. SMPTE. 2010, pp. 1–8. doi: https://doi.org/
10.5594/M001412.

[29] Masayuki Tanimoto, Toshiaki Fujii, and Norishige Fukushima. “1D Parallel Test
Sequences for MPEG-FTV Status: For discussion Source: Nagoya University”. In:
(Apr. 2008). url: http://www.fujii.nuee.nagoya-u.ac.jp/multiview-data/
mpeg2/mpegCamPara/m15378.doc.

[30] Masayuki Tanimoto. “FTV (free-viewpoint television)”. In: APSIPA Transactions on
Signal and Information Processing 1 (2012). doi: 10.1016/j.image.2012.02.016.

[31] ITU. H.264 - Advanced video coding for generic audiovisual services. 06/19. Interna-
tional Telecommunications Union. June 2019. url: https://www.itu.int/rec/T-
REC-H.264-201906-I/en.

[32] ITU. H.265 - High efficiency video coding. 11/19. International Telecommunications
Union. Nov. 2019. url: https://www.itu.int/rec/T-REC-H.265-201911-I/en.

[33] Sakila S. Jayaweera, Chamira U. S. Edussooriya, Chamith Wijenayake, et al. “Multi-
Volumetric Refocusing of Light Fields”. In: IEEE Signal Processing Letters 28 (2021),
pp. 31–35. doi: 10.1109/lsp.2020.3043990.

[34] Sven Wanner and Bastian Goldluecke. “Spatial and Angular Variational Super-
Resolution of 4D Light Fields”. In: Computer Vision – ECCV 2012. Springer Berlin
Heidelberg, 2012, pp. 608–621. doi: 10.1007/978-3-642-33715-4_44.

[35] IETF. Bootstrap Protocol. RFC 951. Sept. 1985. doi: 10.17487/RFC0951. url:
https://rfc-editor.org/rfc/rfc951.txt.

[36] Mike Henry, Eric Dittert, Vish Viswanathan, et al. Intel Preboot Execution Environ-
ment. Internet-Draft draft-henry-remote-boot-protocol-00. Work in Progress. Internet
Engineering Task Force, July 1999. 16 pp. url: https://datatracker.ietf.org/
doc/html/draft-henry-remote-boot-protocol-00.

[37] Frank Waßmuth. “Adaptive Control Infrastructure for Scalabale Multi-View Camera
Arrays”. Master’s Thesis. Saarland University, Feb. 2018.

[38] Hewlett-Packard Company, Intel Corporation, Microsoft Corporation, et al. Universal
Serial Bus 3.0 Specification. Whitepaper. USB-IF, Nov. 2008.

[39] James O Benson, John J Prevost, and Paul Rad. “Survey of automated software
deployment for computational and engineering research”. In: 2016 Annual IEEE
Systems Conference (SysCon). IEEE. 2016, pp. 1–6. doi: 10.1109/syscon.2016.
7490666.

182

https://doi.org/10.1145/237170.237199
https://doi.org/10.1145/237170.237200
https://doi.org/https://doi.org/10.5594/M001412
https://doi.org/https://doi.org/10.5594/M001412
http://www.fujii.nuee.nagoya-u.ac.jp/multiview-data/mpeg2/mpegCamPara/m15378.doc
http://www.fujii.nuee.nagoya-u.ac.jp/multiview-data/mpeg2/mpegCamPara/m15378.doc
https://doi.org/10.1016/j.image.2012.02.016
https://www.itu.int/rec/T-REC-H.264-201906-I/en
https://www.itu.int/rec/T-REC-H.264-201906-I/en
https://www.itu.int/rec/T-REC-H.265-201911-I/en
https://doi.org/10.1109/lsp.2020.3043990
https://doi.org/10.1007/978-3-642-33715-4_44
https://doi.org/10.17487/RFC0951
https://rfc-editor.org/rfc/rfc951.txt
https://datatracker.ietf.org/doc/html/draft-henry-remote-boot-protocol-00
https://datatracker.ietf.org/doc/html/draft-henry-remote-boot-protocol-00
https://doi.org/10.1109/syscon.2016.7490666
https://doi.org/10.1109/syscon.2016.7490666

[40] Ankur Datta, Jun-Sik Kim, and Takeo Kanade. “Accurate camera calibration using
iterative refinement of control points”. In: 2009 IEEE 12th International Conference
on Computer Vision Workshops, ICCV Workshops (2009), pp. 1201–1208. doi:
10.1109/iccvw.2009.5457474.

[41] S. Garrido-Jurado, R. Muñoz-Salinas, F.J. Madrid-Cuevas, et al. “Automatic genera-
tion and detection of highly reliable fiducial markers under occlusion”. In: Pattern
Recognition 47.6 (2014), pp. 2280–2292. issn: 0031-3203. doi: 10.1016/j.patcog.
2014.01.005. url: https://www.sciencedirect.com/science/article/pii/
S0031320314000235.

[42] Edwin Olson. “AprilTag: A robust and flexible visual fiducial system”. In: 2011 IEEE
International Conference on Robotics and Automation. IEEE. 2011, pp. 3400–3407.
doi: 10.1109/icra.2011.5979561.

[43] Hendrik Schilling, Maximilian Diebold, Marcel Gutsche, et al. “A fractal calibration
pattern for improved camera calibration”. In: Forum Bildverarbeitung 2016. 2016. doi:
10.5445/KSP/1000059899. url: https://doi.org/10.5445/KSP/1000059899.

[44] Sandro Esquivel, Yuan Gao, Tim Michels, et al. Synchronized Data Capture and
Calibration of a Large-Field-of-View Moving Multi-Camera Light Field Rig. Talk
at 3DTV-CON 2016, Workshop on Light Field Capture and Processing. July 2016.
eprint: https://www.informatik.uni-kiel.de/~sae/docs/3DTV16-Workshop-
Esquivel.pdf.

[45] Andrei Zaharescu, Radu Horaud, Rémi Ronfard, et al. “Multiple Camera Calibration
using Robust Perspective Factorization”. In: 3D Data Processing, Visualization and
Transmission. Ed. by IEEE. Chapel Hill, United States, 2006, pp. 504–511. doi:
10.1109/3dpvt.2006.100. url: https://hal.inria.fr/inria-00545155.

[46] Andrei Zaharescu and Radu Horaud. “Robust factorization methods using a gaus-
sian/uniform mixture model”. In: International Journal of Computer Vision 81.3
(2009), pp. 240–258. eprint: https://arxiv.org/abs/2012.08243.

[47] Tomáš Svoboda. “Quick guide to multi-camera self-calibration”. In: ETH, Swiss
Federal Institute of Technology, Zurich, Tech. Rep. BiWi-TR-263, http://www. vision.
ee. ethz. ch/svoboda/SelfCal (2003). eprint: https://cmp.felk.cvut.cz/~svoboda/
SelfCal/Publ/selfcal.pdf.

[48] Peter Todorov. “Multi-camera calibration”. Bachelor’s Thesis. Tampere University,
May 2019. eprint: https://trepo.tuni.fi//handle/123456789/27414.

[49] Johannes Reuter. “Adding temporal consistency to an existing view interpolation
algorithm”. Master’s Thesis. Saarland University, July 2019.

[50] Howard Frazier–Broadcom, Schelto Van Doorn–Intel, Robert Hays-Intel, et al. “IEEE
802.3 ad Link Aggregation (LAG)”. In: (2007).

[51] Jessy Rouye Stephen Haddock. “IEEE 802.1AX-2020 – Link Aggregation”. In: (2020).

[52] Huawei. What Is LACP? How Does LACP Work? url: https://support.huawei.
com/enterprise/en/doc/EDOC1100086560#EN-US_TOPIC_0169439602 (visited on
08/18/2021).

[53] HP Enterprises. Trunk load balancing using port layers. url: https://techhub.hpe.
com/eginfolib/networking/docs/switches/WB/15-18/5998-8162_wb_2920_

mcg/content/ch04s11.html (visited on 08/18/2021).

183

https://doi.org/10.1109/iccvw.2009.5457474
https://doi.org/10.1016/j.patcog.2014.01.005
https://doi.org/10.1016/j.patcog.2014.01.005
https://www.sciencedirect.com/science/article/pii/S0031320314000235
https://www.sciencedirect.com/science/article/pii/S0031320314000235
https://doi.org/10.1109/icra.2011.5979561
https://doi.org/10.5445/KSP/1000059899
https://doi.org/10.5445/KSP/1000059899
https://www.informatik.uni-kiel.de/~sae/docs/3DTV16-Workshop-Esquivel.pdf
https://www.informatik.uni-kiel.de/~sae/docs/3DTV16-Workshop-Esquivel.pdf
https://doi.org/10.1109/3dpvt.2006.100
https://hal.inria.fr/inria-00545155
https://arxiv.org/abs/2012.08243
https://cmp.felk.cvut.cz/~svoboda/SelfCal/Publ/selfcal.pdf
https://cmp.felk.cvut.cz/~svoboda/SelfCal/Publ/selfcal.pdf
https://trepo.tuni.fi//handle/123456789/27414
https://support.huawei.com/enterprise/en/doc/EDOC1100086560#EN-US_TOPIC_0169439602
https://support.huawei.com/enterprise/en/doc/EDOC1100086560#EN-US_TOPIC_0169439602
https://techhub.hpe.com/eginfolib/networking/docs/switches/WB/15-18/5998-8162_wb_2920_mcg/content/ch04s11.html
https://techhub.hpe.com/eginfolib/networking/docs/switches/WB/15-18/5998-8162_wb_2920_mcg/content/ch04s11.html
https://techhub.hpe.com/eginfolib/networking/docs/switches/WB/15-18/5998-8162_wb_2920_mcg/content/ch04s11.html

Bibliography

[54] Intel Corporation. Power Adapter and Power Cord Specifications for Intel® NUC
Products. url: https://www.intel.com/content/www/us/en/support/articles/
000007053 (visited on 08/18/2021).

[55] Intel Corporation. Intel® NUC Kit NUC6i5SYK. url: https://ark.intel.com/
content/www/us/en/ark/products/89188/intel-nuc-kit-nuc6i5syk.html

(visited on 08/18/2021).

[56] Intel Corporation. ATX Multi Rail Desktop Power Supply Design Guide. June
2020. url: https://cdrdv2.intel.com/v1/dl/getContent/336521 (visited on
08/18/2021).

[57] Bosch Rexroth AG. Einführung Strebenprofile. url: https://www.boschrexroth.
com/ics/cat/content/assets/Online/do/Strut_profiles_MGE_14_DE_2019-

07_20191202_155700.pdf (visited on 08/18/2021).

[58] 3A Composites GmbH. DIBOND product information. Jan. 2020. url: https://
media.3acomposites.com/pdf/dibond/EN_DIBOND_ProductGuide_01-2020.pdf

(visited on 08/18/2021).

[59] FLIR Systems, Inc. Blackfly USB3 Technical Reference. Aug. 30, 2018. url: https://
flir.app.boxcn.net/s/jw17hga6i36z7cfifd6l0rw3jma9ow9g/file/418588576484

(visited on 08/18/2021).

[60] NXP Semiconductors. UM10204 - I2C-bus specification and user manual. Apr. 4,
2014. url: https://www.nxp.com/docs/en/user-guide/UM10204.pdf (visited on
08/18/2021).

[61] Linear Technology Corporation. LTC4307 - Low Offset Hot Swappable 2-Wire Bus
Buffer with Stuck Bus Recovery. 2018. url: https://www.analog.com/media/en/
technical-documentation/data-sheets/4307f.pdf (visited on 08/18/2021).

[62] NXP Semiconductors. PCA9615 - 2-channel multipoint Fast-mode Plus differential
I2C-bus buffer with hot-swap logic. May 10, 2016. url: https://www.nxp.com/
docs/en/data-sheet/PCA9615.pdf (visited on 08/18/2021).

[63] C Lawrence Zitnick, Sing Bing Kang, Matthew Uyttendaele, et al. “High-quality
video view interpolation using a layered representation”. In: ACM Transactions on
Graphics (TOG). Vol. 23. 2004, pp. 600–608. doi: 10.1145/1186562.1015766.

[64] Matthias Ziegler, Joachim Keinert, Nina Holzer, et al. “Immersive virtual reality for
live-action video using camera arrays”. In: IBC Conference, Amsterdam, Netherlands.
2017, pp. 1–8.

[65] Michael Broxton, Jay Busch, Jason Dourgarian, et al. “A low cost multi-camera
array for panoramic light field video capture”. In: SIGGRAPH Asia 2019 Posters.
2019, pp. 1–2. doi: 10.1145/3355056.3364593.

[66] VDE. DIN VDE 0298-4 - Verwendung von Kabeln und isolierten Leitungen für
Starkstromanlagen. Norm. June 2013. url: https://www.vde-verlag.de/normen/
0298016/din-vde-0298-4-vde-0298-4-2013-06.html.

[67] LLC MOLEX. MINI-FIT JR. product specification. Nov. 12, 2020. url: https:
//www.molex.com/pdm_docs/ps/PS-5556-001-001.pdf (visited on 08/18/2021).

[68] TIA. TIA-568 - Commercial Building Telecommunications Cabling Standards. stan-
dard. Dec. 2015.

[69] K Sollins. The TFTP protocol (revision 2). Tech. rep. STD 33, RFC 1350, MIT, 1992.

184

https://www.intel.com/content/www/us/en/support/articles/000007053
https://www.intel.com/content/www/us/en/support/articles/000007053
https://ark.intel.com/content/www/us/en/ark/products/89188/intel-nuc-kit-nuc6i5syk.html
https://ark.intel.com/content/www/us/en/ark/products/89188/intel-nuc-kit-nuc6i5syk.html
https://cdrdv2.intel.com/v1/dl/getContent/336521
https://www.boschrexroth.com/ics/cat/content/assets/Online/do/Strut_profiles_MGE_14_DE_2019-07_20191202_155700.pdf
https://www.boschrexroth.com/ics/cat/content/assets/Online/do/Strut_profiles_MGE_14_DE_2019-07_20191202_155700.pdf
https://www.boschrexroth.com/ics/cat/content/assets/Online/do/Strut_profiles_MGE_14_DE_2019-07_20191202_155700.pdf
https://media.3acomposites.com/pdf/dibond/EN_DIBOND_ProductGuide_01-2020.pdf
https://media.3acomposites.com/pdf/dibond/EN_DIBOND_ProductGuide_01-2020.pdf
https://flir.app.boxcn.net/s/jw17hga6i36z7cfifd6l0rw3jma9ow9g/file/418588576484
https://flir.app.boxcn.net/s/jw17hga6i36z7cfifd6l0rw3jma9ow9g/file/418588576484
https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/4307f.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/4307f.pdf
https://www.nxp.com/docs/en/data-sheet/PCA9615.pdf
https://www.nxp.com/docs/en/data-sheet/PCA9615.pdf
https://doi.org/10.1145/1186562.1015766
https://doi.org/10.1145/3355056.3364593
https://www.vde-verlag.de/normen/0298016/din-vde-0298-4-vde-0298-4-2013-06.html
https://www.vde-verlag.de/normen/0298016/din-vde-0298-4-vde-0298-4-2013-06.html
https://www.molex.com/pdm_docs/ps/PS-5556-001-001.pdf
https://www.molex.com/pdm_docs/ps/PS-5556-001-001.pdf

[70] nPerf SAS. Barometer von festen Internet-Verbindungen in Deutschland. July 17,
2019. url: https://media.nperf.com/files/publications/DE/2019- 07-
17 _ Barometer - festen - internet - verbindungen - 2019 - S1 . pdf (visited on
08/18/2021).

[71] Yupu Zhang, Abhishek Rajimwale, Andrea C Arpaci-Dusseau, et al. “End-to-end
Data Integrity for File Systems: A ZFS Case Study.” In: FAST. 2010, pp. 29–42.
eprint: https://www.usenix.org/legacy/event/fast10/tech/full_papers/
fast10proceedings.pdf#page=37.

[72] Sage A Weil, Scott A Brandt, Ethan L Miller, et al. “Ceph: A scalable, high-
performance distributed file system”. In: Proceedings of the 7th symposium on
Operating systems design and implementation. 2006, pp. 307–320. eprint: https:
//www3.nd.edu/~dthain/courses/cse40771/spring2007/psnowber-ceph.pdf.

[73] Hervé Rousseau, Belinda Chan Kwok Cheong, Cristian Contescu, et al. “Providing
large-scale disk storage at CERN”. In: EPJ Web of Conferences. Vol. 214. EDP
Sciences. 2019, p. 04033. doi: 10.1051/epjconf/201921404033.

[74] Emulex Inc. / Broadcom Inc. Cabling Guide for 10GbE Network Adapters. 2012.
url: https://docs.broadcom.com/doc/12356169 (visited on 08/18/2021).

[75] Donald G Dansereau, Oscar Pizarro, and Stefan B Williams. “Decoding, Calibration
and Rectification for Lenselet-Based Plenoptic Cameras”. In: Proceedings of the 2013
IEEE Conference on Computer Vision and Pattern Recognition. 2013, pp. 1027–1034.
doi: 10.1109/cvpr.2013.137.

[76] Donald G Dansereau, Oscar Pizarro, and Stefan B Williams. “Linear Volumetric
Focus for Light Field Cameras.” In: ACM Trans. Graph. 34.2 (2015), pp. 15–1. doi:
10.1145/2665074.

[77] Antti Laäaäperi, Ilkka Hyytiäinen, Terhi Mustonen, et al. “OLED Lifetime Issues in
Mobile Phone Industry”. In: SID Symposium Digest of Technical Papers. Vol. 38. 1.
Wiley Online Library. 2007, pp. 1183–1187.

[78] Hans Strasburger. Siemens star (128 spokes) & Matlab code. 2018. url: https:
//commons.wikimedia.org/wiki/File:Siemens_star_(128_spokes)_%26_

Matlab_code.svg (visited on 08/18/2021).

[79] Dave Coffin. DCRAW: Decoding raw digital photos in linux. 2008. url: http://www.
dechifro.org/dcraw (visited on 08/18/2021).

[80] Florian Kainz, Rod Bogart, and Piotr Stanczyk. “Technical introduction to OpenEXR”.
In: Industrial light and magic (2009), p. 21. eprint: https://www.openexr.com/
documentation/TechnicalIntroduction.pdf.

[81] Viorela Ila, Lukas Polok, Marek Solony, et al. “SLAM++-A highly efficient and
temporally scalable incremental SLAM framework”. In: The International Journal
of Robotics Research 36.2 (2017), pp. 210–230. doi: 10.1177/0278364917691110.

[82] Yichao Xu, Kazuki Maeno, Hajime Nagahara, et al. “Camera array calibration for
light field acquisition”. In: Frontiers of Computer Science 9.5 (2015), pp. 691–702.
doi: 10.1007/s11704-015-4237-4.

[83] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. “Surf: Speeded up robust features”.
In: European conference on computer vision. Springer. 2006, pp. 404–417. doi:
10.1007/11744023_32.

185

https://media.nperf.com/files/publications/DE/2019-07-17_Barometer-festen-internet-verbindungen-2019-S1.pdf
https://media.nperf.com/files/publications/DE/2019-07-17_Barometer-festen-internet-verbindungen-2019-S1.pdf
https://www.usenix.org/legacy/event/fast10/tech/full_papers/fast10proceedings.pdf#page=37
https://www.usenix.org/legacy/event/fast10/tech/full_papers/fast10proceedings.pdf#page=37
https://www3.nd.edu/~dthain/courses/cse40771/spring2007/psnowber-ceph.pdf
https://www3.nd.edu/~dthain/courses/cse40771/spring2007/psnowber-ceph.pdf
https://doi.org/10.1051/epjconf/201921404033
https://docs.broadcom.com/doc/12356169
https://doi.org/10.1109/cvpr.2013.137
https://doi.org/10.1145/2665074
https://commons.wikimedia.org/wiki/File:Siemens_star_(128_spokes)_%26_Matlab_code.svg
https://commons.wikimedia.org/wiki/File:Siemens_star_(128_spokes)_%26_Matlab_code.svg
https://commons.wikimedia.org/wiki/File:Siemens_star_(128_spokes)_%26_Matlab_code.svg
http://www.dechifro.org/dcraw
http://www.dechifro.org/dcraw
https://www.openexr.com/documentation/TechnicalIntroduction.pdf
https://www.openexr.com/documentation/TechnicalIntroduction.pdf
https://doi.org/10.1177/0278364917691110
https://doi.org/10.1007/s11704-015-4237-4
https://doi.org/10.1007/11744023_32

Bibliography

[84] David G Lowe. “Distinctive image features from scale-invariant keypoints”. In:
International journal of computer vision 60.2 (2004), pp. 91–110. doi: 10.1023/b:
visi.0000029664.99615.94.

[85] Danny Pascale. “RGB coordinates of the Macbeth ColorChecker”. In: The BabelColor
Company 6 (2006). eprint: https://www.babelcolor.com/index_htm_files/RGB%
20Coordinates%20of%20the%20Macbeth%20ColorChecker.pdf.

[86] Mairead Grogan and Aljosa Smolic. “L2 based Colour Correction for Light Field
Arrays”. In: Proceedings of the 16th ACM SIGGRAPH European Conference on
Visual Media Production. 2019. doi: https://v-sense.scss.tcd.ie/wp-content/
uploads/2019/12/CVMP2019_mairead2.pdf.

[87] Adobe Systems Incorporated. Cube LUT Specification Version 1.0. 2013. url: https:
//wwwimages2.adobe.com/content/dam/acom/en/products/speedgrade/cc/

pdfs/cube-lut-specification-1.0.pdf (visited on 08/18/2021).

[88] Keigo Hirakawa and Thomas W Parks. “Adaptive homogeneity-directed demosaicing
algorithm”. In: Ieee transactions on image processing 14.3 (2005), pp. 360–369. doi:
10.1109/tip.2004.838691.

[89] Paul Hellard. “The SAUCE”. In: VFX Science (Apr. 2019). url: https://vfxscience.
com/2019/04/22/the-sauce.

[90] Ian Failes. “Light Fields and the Future of VFX”. In: VFXVoice - Tech & Tools Fall
2019 (2019), pp. 24–28. url: https://www.vfxvoice.com/light-fields-and-
the-future-of-vfx.

[91] Dan Ring. “Quest for Reality - A primer on Light Field technology”. In: CGW
02.2020 (Sept. 2020), pp. 63–64. url: http://digital.copcomm.com/i/1277231-
edition-2-2020/63?.

[92] Matthias Bolliger. “Bewegtbild 5.0”. In: Film & TV KAMERA (Oct. 2019), pp. 38–
41.

[93] Harini Priyadarshini Hariharan and Thorsten Herfet. “Optimal Predictive Coding of
5D Light Fields”. In: 2020 IEEE International Symposium on Broadband Multimedia
Systems and Broadcasting (BMSB). IEEE. 2020, pp. 1–3. doi: 10.1109/bmsb49480.
2020.9379917.

[94] David Bařina, Tomáš Chlubna, Marek Šolony, et al. “Evaluation of 4D Light Field
Compression Methods”. In: International Conference in Central Europe on Computer
Graphics, Visualization and Computer Vision (WSCG), Part I. Union Agency: Union
Agency, May 2019. Chap. 159971, pp. 55–61. doi: 10.24132/CSRN.2019.2901.1.7.

[95] Yusuke Monno, Daisuke Kiku, Masayuki Tanaka, et al. “Adaptive residual interpola-
tion for color image demosaicking”. In: 2015 IEEE International Conference on Image
Processing (ICIP). IEEE. 2015, pp. 3861–3865. doi: 10.1109/icip.2015.7351528.

[96] Nai-Sheng Syu, Yu-Sheng Chen, and Yung-Yu Chuang. “Learning deep convolutional
networks for demosaicing”. In: arXiv preprint arXiv:1802.03769 (2018). eprint:
https://arxiv.org/abs/1802.03769.

[97] Kodak. Kodak Lossless True Color Image Suite - PhotoCD PCD0992. url: http:
//r0k.us/graphics/kodak (visited on 08/18/2021).

[98] Edward Chang, Shiufun Cheung, and Davis Y Pan. “Color filter array recovery
using a threshold-based variable number of gradients”. In: Sensors, Cameras, and
Applications for Digital Photography. Vol. 3650. International Society for Optics and
Photonics. 1999, pp. 36–43.

186

https://doi.org/10.1023/b:visi.0000029664.99615.94
https://doi.org/10.1023/b:visi.0000029664.99615.94
https://www.babelcolor.com/index_htm_files/RGB%20Coordinates%20of%20the%20Macbeth%20ColorChecker.pdf
https://www.babelcolor.com/index_htm_files/RGB%20Coordinates%20of%20the%20Macbeth%20ColorChecker.pdf
https://doi.org/https://v-sense.scss.tcd.ie/wp-content/uploads/2019/12/CVMP2019_mairead2.pdf
https://doi.org/https://v-sense.scss.tcd.ie/wp-content/uploads/2019/12/CVMP2019_mairead2.pdf
https://wwwimages2.adobe.com/content/dam/acom/en/products/speedgrade/cc/pdfs/cube-lut-specification-1.0.pdf
https://wwwimages2.adobe.com/content/dam/acom/en/products/speedgrade/cc/pdfs/cube-lut-specification-1.0.pdf
https://wwwimages2.adobe.com/content/dam/acom/en/products/speedgrade/cc/pdfs/cube-lut-specification-1.0.pdf
https://doi.org/10.1109/tip.2004.838691
https://vfxscience.com/2019/04/22/the-sauce
https://vfxscience.com/2019/04/22/the-sauce
https://www.vfxvoice.com/light-fields-and-the-future-of-vfx
https://www.vfxvoice.com/light-fields-and-the-future-of-vfx
http://digital.copcomm.com/i/1277231-edition-2-2020/63?
http://digital.copcomm.com/i/1277231-edition-2-2020/63?
https://doi.org/10.1109/bmsb49480.2020.9379917
https://doi.org/10.1109/bmsb49480.2020.9379917
https://doi.org/10.24132/CSRN.2019.2901.1.7
https://doi.org/10.1109/icip.2015.7351528
https://arxiv.org/abs/1802.03769
http://r0k.us/graphics/kodak
http://r0k.us/graphics/kodak

[99] Chuan-kai Lin. Pixel grouping for color filter array demosaicing. 2003.

[100] Joan Duran and Antoni Buades. “A demosaicking algorithm with adaptive inter-
channel correlation”. In: Image Processing On Line 5 (2015), pp. 311–327. doi:
10.5201/ipol.2015.145.

[101] Alexander Blatt. “Extending Deep Convolutional Demosaicing to Camera Arrays”.
Master’s Thesis. Saarland University, Dec. 2019.

[102] Bartlomiej Wronski, Ignacio Garcia-Dorado, Manfred Ernst, et al. “Handheld multi-
frame super-resolution”. In: ACM Transactions on Graphics 38.4 (July 2019), pp. 1–
18. doi: 10.1145/3306346.3323024.

[103] Clement Godard, Oisin Mac Aodha, Michael Firman, et al. “Digging Into Self-
Supervised Monocular Depth Estimation”. In: 2019 IEEE/CVF International Con-
ference on Computer Vision (ICCV). IEEE, Oct. 2019. doi: 10.1109/iccv.2019.
00393.

[104] Zhenyu Zhang, Stéphane Lathuilière, Andrea Pilzer, et al. “Online Adaptation
through Meta-Learning for Stereo Depth Estimation”. In: (Apr. 17, 2019). arXiv:
1904.08462 [cs.CV].

[105] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, et al. “Self-Normalizing
Neural Networks”. In: Advances in Neural Information Processing Systems 30 (NIPS
2017) (June 8, 2017). arXiv: https://arxiv.org/abs/1706.02515 [cs.LG].

[106] Martin Abadi, Paul Barham, Jianmin Chen, et al. “Tensorflow: A system for large-
scale machine learning”. In: 12th USENIX symposium on operating systems design
and implementation (OSDI 16). 2016, pp. 265–283. eprint: https://www.usenix.
org/conference/osdi16/technical-sessions/presentation/abadi.

[107] Kaiming He, Xiangyu Zhang, Shaoqing Ren, et al. “Deep Residual Learning for Image
Recognition”. In: (Dec. 10, 2015). doi: 10.1109/cvpr.2016.90. arXiv: 1512.03385
[cs.CV].

[108] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification with
deep convolutional neural networks”. In: Advances in neural information processing
systems 25 (2012), pp. 1097–1105. doi: 10.1145/3065386.

[109] Yao Yao, Zixin Luo, Shiwei Li, et al. “MVSNet: Depth Inference for Unstructured
Multi-view Stereo”. In: Computer Vision - ECCV 2018. Springer International
Publishing, 2018, pp. 785–801. doi: 10.1007/978-3-030-01237-3_47.

[110] Touradj Ebrahimi, Siegfried Foessel, Fernando Pereira, et al. “JPEG Pleno: Toward
an Efficient Representation of Visual Reality”. In: IEEE MultiMedia 23.4 (Oct. 2016),
pp. 14–20. doi: 10.1109/mmul.2016.64.

[111] Péter Tamás Kovács, Zsolt Nagy, Attila Barsi, et al. “Overview of the applicability of
H.264/MVC for real-time light-field applications”. In: 2014 3DTV-Conference: The
True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON). IEEE.
2014, pp. 1–4. doi: 10.1109/3dtv.2014.6874744.

[112] NA Bahran, W El-Shafai, A Zekry, et al. “An FPGA design and implementation of
EPZS motion estimation algorithm for 3D H. 264/MVC standard”. In: Multimedia
Tools and Applications 78.16 (2019), pp. 22351–22396. doi: 10.1007/s11042-019-
7562-z.

187

https://doi.org/10.5201/ipol.2015.145
https://doi.org/10.1145/3306346.3323024
https://doi.org/10.1109/iccv.2019.00393
https://doi.org/10.1109/iccv.2019.00393
https://arxiv.org/abs/1904.08462
https://arxiv.org/abs/https://arxiv.org/abs/1706.02515
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://doi.org/10.1109/cvpr.2016.90
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://doi.org/10.1145/3065386
https://doi.org/10.1007/978-3-030-01237-3_47
https://doi.org/10.1109/mmul.2016.64
https://doi.org/10.1109/3dtv.2014.6874744
https://doi.org/10.1007/s11042-019-7562-z
https://doi.org/10.1007/s11042-019-7562-z

Bibliography

[113] Seif Allah El Mesloul Nasri, Abdul Hamid Sadka, Noureddine Doghmane, et al.
“Multiview Video Coding: A Comparative Study Between MVC and MV-HEVC”. In:
Recent Trends in Computer Applications. Springer International Publishing, 2018,
pp. 99–112. doi: 10.1007/978-3-319-89914-5_7.

[114] Qiuwen Zhang, Zhifeng Zhang, Bin Jiang, et al. “Fast 3D-HEVC encoder algorithm
for multiview video plus depth coding”. In: Optik 127.20 (Oct. 2016), pp. 8864–8873.
doi: 10.1016/j.ijleo.2016.06.091.

[115] Pekka Astola, Luis A da Silva Cruz, Eduardo AB da Silva, et al. “JPEG Pleno:
Standardizing a coding framework and tools for plenoptic imaging modalities”. In:
ITU Journal: ICT Discoveries (2020). eprint: http://urn.fi/URN:NBN:fi:tuni-
202101211570.

[116] Jill M. Boyce, Renaud Dore, Adrian Dziembowski, et al. “MPEG Immersive Video
Coding Standard”. In: Proceedings of the IEEE (2021), pp. 1–16. doi: 10.1109/
jproc.2021.3062590.

[117] P. Merkle, A. Smolic, K. Muller, et al. “Efficient Prediction Structures for Multiview
Video Coding”. In: IEEE Transactions on Circuits and Systems for Video Technology
17.11 (Nov. 2007), pp. 1461–1473. doi: 10.1109/tcsvt.2007.903665.

[118] Kim Hao Josef Nguyen. “A fast H.264/MVC transcoder”. Bachelor’s Thesis. Saarland
University, June 2016.

[119] Kim Hao Josef Nguyen. “A hierarchical H.264/MVC encoder with full inter-view
support”. Master’s Thesis. Saarland University, Nov. 2018.

[120] Christian Keimel, Arne Redl, and Klaus Diepold. “Comparison of HDTV formats in
a consumer environment”. In: Image Quality and System Performance VIII. Ed. by
Susan P. Farnand and Frans Gaykema. SPIE, Jan. 2011. doi: 10.1117/12.876781.

[121] Joshan Meenowa, David S. Hands, Rhea Young, et al. “Subjective assessment of
HDTV content: comparison of quality across HDTV formats”. In: Human Vision and
Electronic Imaging XV. Ed. by Bernice E. Rogowitz and Thrasyvoulos N. Pappas.
SPIE, Feb. 2010. doi: 10.1117/12.838809.

[122] Jeroen Doggen and Filip Van der Schueren. “Design and simulation of a H.264
AVC video streaming model”. In: 2008 European Conference on the Use of Modern
Information and Communication Technologies. 2008.

[123] Yue Chen, Debargha Murherjee, Jingning Han, et al. “An overview of core coding
tools in the AV1 video codec”. In: 2018 Picture Coding Symposium (PCS). IEEE.
2018, pp. 41–45. doi: 10.1109/pcs.2018.8456249.

[124] Niklas Carlsson, Derek Eager, Vengatanathan Krishnamoorthi, et al. “Optimized
adaptive streaming of multi-video stream bundles”. In: IEEE transactions on multi-
media 19.7 (2017), pp. 1637–1653. doi: 10.1109/tmm.2017.2673412.

[125] Mylène C. Q. Farias and Sanjit K. Mitra. “Perceptual contributions of blocky, blurry,
noisy, and ringing synthetic artifacts to overall annoyance”. In: Journal of Electronic
Imaging 21.4 (Nov. 2012), p. 043013. doi: 10.1117/1.jei.21.4.043013.

[126] Xin Zhao, Jun Sun, Siwei Ma, et al. “Novel statistical modeling, analysis and
implementation of rate-distortion estimation for H. 264/AVC coders”. In: IEEE
Transactions on Circuits and Systems for Video Technology 20.5 (2010), pp. 647–660.
doi: 10.1109/tcsvt.2010.2045803.

188

https://doi.org/10.1007/978-3-319-89914-5_7
https://doi.org/10.1016/j.ijleo.2016.06.091
http://urn.fi/URN:NBN:fi:tuni-202101211570
http://urn.fi/URN:NBN:fi:tuni-202101211570
https://doi.org/10.1109/jproc.2021.3062590
https://doi.org/10.1109/jproc.2021.3062590
https://doi.org/10.1109/tcsvt.2007.903665
https://doi.org/10.1117/12.876781
https://doi.org/10.1117/12.838809
https://doi.org/10.1109/pcs.2018.8456249
https://doi.org/10.1109/tmm.2017.2673412
https://doi.org/10.1117/1.jei.21.4.043013
https://doi.org/10.1109/tcsvt.2010.2045803

[127] Alexander Tanchenko. “Visual-PSNR measure of image quality”. In: Journal of
Visual Communication and Image Representation 25.5 (2014), pp. 874–878. doi:
10.1016/j.jvcir.2014.01.008.

[128] Piotr Romaniak, Lucjan Janowski, Mikolaj Leszczuk, et al. “Perceptual quality
assessment for H.264/AVC compression”. In: 2012 IEEE Consumer Communications
and Networking Conference (CCNC). IEEE, Jan. 2012. doi: 10.1109/ccnc.2012.
6181021.

[129] Zhou Wang, Alan C Bovik, Hamid R Sheikh, et al. “Image quality assessment: from
error visibility to structural similarity”. In: IEEE transactions on image processing
13.4 (2004), pp. 600–612. doi: 10.1109/tip.2003.819861.

[130] Pascal Straub. “Optimized dynamic multi-view video streaming using view interpo-
lation”. Master’s Thesis. Saarland University, Feb. 2016.

[131] Aaron Mavrinac, Jose L Alarcon Herrera, and Xiang Chen. “A fuzzy model for
coverage evaluation of cameras and multi-camera networks”. In: Proceedings of the
Fourth ACM/IEEE International Conference on Distributed Smart Cameras. 2010,
pp. 95–102. doi: 10.1145/1865987.1866003.

[132] Mikael Le Pendu, Christine Guillemot, and Aljosa Smolic. “A fourier disparity layer
representation for light fields”. In: IEEE Transactions on Image Processing 28.11
(2019), pp. 5740–5753. doi: 10.1109/tip.2019.2922099.

[133] David C Schedl, Clemens Birklbauer, and Oliver Bimber. “Optimized sampling for
view interpolation in light fields using local dictionaries”. In: Computer Vision and
Image Understanding 168 (2018), pp. 93–103. doi: 10.1016/j.cviu.2017.06.009.

[134] Harini Priyadarshini Hariharan and Thorsten Herfet. “On The Implication Of Light
Field Compression On Post-Processing Algorithms”. In: 2019 IEEE International
Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). IEEE.
2019, pp. 1–4. doi: 10.1109/bmsb47279.2019.8971923.

[135] Caroline Conti, Paulo Nunes, and Luis Ducla Soares. “HEVC-based light field image
coding with bi-predicted self-similarity compensation”. In: 2016 IEEE International
Conference on Multimedia & Expo Workshops (ICMEW). IEEE. 2016, pp. 1–4. doi:
10.1109/icmew.2016.7574667.

[136] Fatma Hawary, Christine Guillemot, Dominique Thoreau, et al. “Scalable light field
compression scheme using sparse reconstruction and restoration”. In: 2017 IEEE
International Conference on Image Processing (ICIP). IEEE. 2017, pp. 3250–3254.
doi: 10.1109/icip.2017.8296883.

[137] Xiaoran Jiang, Mikael Le Pendu, and Christine Guillemot. “Light field compression
using depth image based view synthesis”. In: 2017 IEEE International Conference
on Multimedia & Expo Workshops (ICMEW). IEEE. 2017, pp. 19–24. doi: 10.1109/
icmew.2017.8026313.

[138] Weisi Lin and C.-C. Jay Kuo. “Perceptual visual quality metrics: A survey”. In: Jour-
nal of Visual Communication and Image Representation 22.4 (May 2011), pp. 297–
312. doi: 10.1016/j.jvcir.2011.01.005.

[139] Emin Zerman, Giuseppe Valenzise, and Frederic Dufaux. “An extensive performance
evaluation of full-reference HDR image quality metrics”. In: Quality and User Expe-
rience 2.1 (Apr. 2017). doi: 10.1007/s41233-017-0007-4.

189

https://doi.org/10.1016/j.jvcir.2014.01.008
https://doi.org/10.1109/ccnc.2012.6181021
https://doi.org/10.1109/ccnc.2012.6181021
https://doi.org/10.1109/tip.2003.819861
https://doi.org/10.1145/1865987.1866003
https://doi.org/10.1109/tip.2019.2922099
https://doi.org/10.1016/j.cviu.2017.06.009
https://doi.org/10.1109/bmsb47279.2019.8971923
https://doi.org/10.1109/icmew.2016.7574667
https://doi.org/10.1109/icip.2017.8296883
https://doi.org/10.1109/icmew.2017.8026313
https://doi.org/10.1109/icmew.2017.8026313
https://doi.org/10.1016/j.jvcir.2011.01.005
https://doi.org/10.1007/s41233-017-0007-4

Bibliography

[140] Vamsi Kiran Adhikarla, Marek Vinkler, Denis Sumin, et al. “Towards a quality
metric for dense light fields”. In: The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017 (Apr. 25, 2017). doi: 10.1109/CVPR.2017.396.
arXiv: 1704.07576 [cs.CV].

[141] Quan Huynh-Thu and Mohammed Ghanbari. “Scope of validity of PSNR in im-
age/video quality assessment”. In: Electronics letters 44.13 (2008), pp. 800–801. doi:
10.1049/el:20080522.

[142] Olivia Nemethova, Michal Ries, Markus Rupp, et al. “Quality Assessment for H.264
Coded Low-rate and Low-resolution Video Sequences”. In: Jan. 2004, pp. 508–512.
eprint: https://publik.tuwien.ac.at/files/pub-et_8787.pdf.

[143] Jirka Klaue, Berthold Rathke, and Adam Wolisz. “EvalVid – A Framework for
Video Transmission and Quality Evaluation”. In: Computer Performance Evaluation.
Modelling Techniques and Tools. Springer Berlin Heidelberg, 2003, pp. 255–272. doi:
10.1007/978-3-540-45232-4_16.

[144] ITU. BT.500 - Methodologies for the subjective assessment of the quality of television
images. 10/19. International Telecommunications Union. Oct. 2019.

[145] James J Gibson. The perception of the visual world. Houghton Mifflin, 1950. doi:
10.2307/1419017.

[146] Sandeep Singh Sengar and Susanta Mukhopadhyay. “Motion detection using block
based bi-directional optical flow method”. In: Journal of Visual Communication and
Image Representation 49 (2017), pp. 89–103. doi: 10.1016/j.jvcir.2017.08.007.

[147] Amir Akramin Shafie, Fadhlan Hafiz, MH Ali, et al. “Motion detection techniques
using optical flow”. In: World Academy of Science, Engineering and Technology 56
(2009), pp. 559–561. doi: 10.5281/zenodo.1071466.

[148] Jens Klappstein, Tobi Vaudrey, Clemens Rabe, et al. “Moving object segmentation
using optical flow and depth information”. In: Pacific-Rim Symposium on Image and
Video Technology. Springer. 2009, pp. 611–623. doi: 10.1007/978-3-540-92957-
4_53.

[149] Yi-Hsuan Tsai, Ming-Hsuan Yang, and Michael J Black. “Video segmentation via
object flow”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016, pp. 3899–3908. doi: 10.1109/cvpr.2016.423.

[150] Xiaojing Song, Lakmal D Seneviratne, and Kaspar Althoefer. “A Kalman filter-
integrated optical flow method for velocity sensing of mobile robots”. In: IEEE/ASME
Transactions on Mechatronics 16.3 (2010), pp. 551–563. doi: 10.1109/tmech.2010.
2046421.

[151] Javier Sánchez Pérez, Enric Meinhardt-Llopis, and Gabriele Facciolo. “TV-L1 optical
flow estimation”. In: Image Processing On Line 2013 (2013), pp. 137–150. doi:
10.5201/ipol.2013.26.

[152] Christopher Zach, Thomas Pock, and Horst Bischof. “A duality based approach for
realtime tv-l 1 optical flow”. In: Joint pattern recognition symposium. Springer. 2007,
pp. 214–223. doi: 10.1007/978-3-540-74936-3_22.

[153] Manish Narwaria, Matthieu Perreira Da Silva, and Patrick Le Callet. “HDR-VQM: An
objective quality measure for high dynamic range video”. In: Signal Processing: Image
Communication 35 (July 2015), pp. 46–60. doi: 10.1016/j.image.2015.04.009.

190

https://doi.org/10.1109/CVPR.2017.396
https://arxiv.org/abs/1704.07576
https://doi.org/10.1049/el:20080522
https://publik.tuwien.ac.at/files/pub-et_8787.pdf
https://doi.org/10.1007/978-3-540-45232-4_16
https://doi.org/10.2307/1419017
https://doi.org/10.1016/j.jvcir.2017.08.007
https://doi.org/10.5281/zenodo.1071466
https://doi.org/10.1007/978-3-540-92957-4_53
https://doi.org/10.1007/978-3-540-92957-4_53
https://doi.org/10.1109/cvpr.2016.423
https://doi.org/10.1109/tmech.2010.2046421
https://doi.org/10.1109/tmech.2010.2046421
https://doi.org/10.5201/ipol.2013.26
https://doi.org/10.1007/978-3-540-74936-3_22
https://doi.org/10.1016/j.image.2015.04.009

[154] Louis Kerofsky, Rahul Vanam, and Yuriy Reznik. “Adapting objective video quality
metrics to ambient lighting”. In: 2015 Seventh International Workshop on Quality
of Multimedia Experience (QoMEX). IEEE, May 2015. doi: 10.1109/qomex.2015.
7148135.

[155] Benjamin Meyer, Christian Lipski, Björn Scholz, et al. “Real-time free-viewpoint
navigation from compressed multi-video recordings”. In: Proc. 3D Data Processing,
Visualization and Transmission (3DPVT),(May 31, 2010) (2010), pp. 1–6. eprint:
https://graphics.tu-bs.de/upload/publications/meyer2010realtime.pdf.

[156] Tatsuro Mori, Keita Takahashi, and Toshiaki Fujii. “Real-Time Free-Viewpoint Image
Synthesis System Using Time Varying Projection”. In: ITE Transactions on Media
Technology and Applications 2.4 (2014), pp. 370–377. doi: 10.3169/mta.2.370.

[157] Karsten Mueller, Aljoscha Smolic, Kristina Dix, et al. “View synthesis for advanced
3D video systems”. In: EURASIP Journal on image and video processing 2008 (2009),
pp. 1–11. eprint: https://link.springer.com/content/pdf/10.1155/2008/
438148.pdf.

[158] Patrick Ndjiki-Nya, Martin Koppel, Dimitar Doshkov, et al. “Depth image-based
rendering with advanced texture synthesis for 3-D video”. In: IEEE Transactions on
Multimedia 13.3 (2011), pp. 453–465. doi: 10.1109/tmm.2011.2128862.

[159] Jaesik Park, Hyeongwoo Kim, Yu-Wing Tai, et al. “High quality depth map upsam-
pling for 3D-TOF cameras”. In: 2011 International Conference on Computer Vision.
IEEE, Nov. 2011. doi: 10.1109/iccv.2011.6126423.

[160] Ying He, Bin Liang, Yu Zou, et al. “Depth Errors Analysis and Correction for Time-of-
Flight (ToF) Cameras”. In: Sensors 17.1 (Jan. 2017), p. 92. doi: 10.3390/s17010092.

[161] Krishna Rao Vijayanagar, Maziar Loghman, and Joohee Kim. “Refinement of depth
maps generated by low-cost depth sensors”. In: 2012 International SoC Design
Conference (ISOCC). IEEE, Nov. 2012. doi: 10.1109/isocc.2012.6407114.

[162] Shi Yan, Chenglei Wu, Lizhen Wang, et al. “DDRNet: Depth Map Denoising and
Refinement for Consumer Depth Cameras Using Cascaded CNNs”. In: Computer
Vision – ECCV 2018. Springer International Publishing, 2018, pp. 155–171. doi:
10.1007/978-3-030-01249-6_10.

[163] Dawid Mieloch and Adam Grzelka. “Segmentation-based Method of Increasing The
Depth Maps Temporal Consistency”. In: International Journal of Electronics and
Telecommunications. Polish Academy of Sciences Committee of Electronics and
Telecommunications, 2018. doi: 10.24425/123521.

[164] Alvaro Collet, Ming Chuang, Pat Sweeney, et al. “High-quality streamable free-
viewpoint video”. In: ACM Transactions on Graphics 34.4 (July 2015), pp. 1–13.
doi: 10.1145/2766945.

[165] Joey de Vries. Learn OpenGL. Kendall & Welling, June 17, 2020. 522 pp. isbn:
9090332561. url: https://www.ebook.de/de/product/39272964/joey_de_
vries_learn_opengl.html.

[166] Mark Harris. “GPGPU: General-purpose computation on GPUs”. In: SIGGRAPH
2005 GPGPU COURSE (2005), pp. 1–51. url: http://download.nvidia.com/
developer/presentations/2005/GDC/OpenGL_Day/OpenGL_GPGPU.pdf.

191

https://doi.org/10.1109/qomex.2015.7148135
https://doi.org/10.1109/qomex.2015.7148135
https://graphics.tu-bs.de/upload/publications/meyer2010realtime.pdf
https://doi.org/10.3169/mta.2.370
https://link.springer.com/content/pdf/10.1155/2008/438148.pdf
https://link.springer.com/content/pdf/10.1155/2008/438148.pdf
https://doi.org/10.1109/tmm.2011.2128862
https://doi.org/10.1109/iccv.2011.6126423
https://doi.org/10.3390/s17010092
https://doi.org/10.1109/isocc.2012.6407114
https://doi.org/10.1007/978-3-030-01249-6_10
https://doi.org/10.24425/123521
https://doi.org/10.1145/2766945
https://www.ebook.de/de/product/39272964/joey_de_vries_learn_opengl.html
https://www.ebook.de/de/product/39272964/joey_de_vries_learn_opengl.html
http://download.nvidia.com/developer/presentations/2005/GDC/OpenGL_Day/OpenGL_GPGPU.pdf
http://download.nvidia.com/developer/presentations/2005/GDC/OpenGL_Day/OpenGL_GPGPU.pdf

Bibliography

[167] John Cheng, Max Grossman, and Ty McKercher. Professional CUDA C Programming.
John Wiley & Sons Inc, Oct. 7, 2014. 528 pp. isbn: 1118739329. url: https://www.
ebook.de/de/product/22064208/john_cheng_max_grossman_ty_mckercher_

professional_cuda_c_programming.html.

[168] Benedict Gaster. Heterogeneous computing with OpenCL. Amsterdam Boston: Else-
vier/Morgan Kaufmann, 2013. isbn: 0128016493.

[169] Jianbin Fang, Ana Lucia Varbanescu, and Henk Sips. “A comprehensive performance
comparison of CUDA and OpenCL”. In: 2011 International Conference on Parallel
Processing. IEEE. 2011, pp. 216–225. doi: 10.1109/icpp.2011.45.

[170] Oliver Grau, Graham A Thomas, A Hilton, et al. “A robust free-viewpoint video
system for sport scenes”. In: 2007 3DTV conference. IEEE. 2007, pp. 1–4. doi:
10.1109/3dtv.2007.4379384.

[171] Adrian Hilton, Jean-Yves Guillemaut, Joe Kilner, et al. “Free-viewpoint video for
TV sport production”. In: Image and Geometry Processing for 3-D Cinematography.
Springer, 2010, pp. 77–106. doi: 10.1007/978-3-642-12392-4_4.

[172] Victor Moya, Carlos Gonzalez, Jordi Roca, et al. “Shader performance analysis on a
modern GPU architecture”. In: 38th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO’05). IEEE. 2005, 10–pp. doi: https://doi.org/10.
1109/MICRO.2005.30.

[173] Randima Fernando. “GPU Gems: Programming Techniques, Tips and Tricks for Real-
Time Graphics”. In: Pearson Higher Education, 2004. Chap. 28. isbn: 0321228324.

[174] M. I. Shamos and D. Hoey. “Geometric intersection problems”. In: 17th Annual
Symposium on Foundations of Computer Science (sfcs 1976). 1976, pp. 208–215. doi:
10.1109/sfcs.1976.16.

[175] Tianyi David Han and Tarek Abdelrahman. “Reducing branch divergence in GPU
programs”. In: Jan. 2011, p. 3. doi: 10.1145/1964179.1964184.

[176] Sascha Willems. OpenGL hardware database. url: https://opengl.gpuinfo.org/
listcapabilities.php (visited on 08/18/2021).

[177] Daniel Scharstein and Richard Szeliski. “High-accuracy stereo depth maps using
structured light”. In: 2003 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 2003. Proceedings. Vol. 1. IEEE. 2003, pp. I–I. doi: 10.
1109/CVPR.2003.1211354.

[178] Weiping Yang, Zhilong Zhang, Xinping Lu, et al. “A novel fast median filter algorithm
without sorting”. In: Real-Time Image and Video Processing 2016. Vol. 9897. Interna-
tional Society for Optics and Photonics. 2016, 98970A. doi: 10.1117/12.2219847.

[179] Christian Riechert, Frederik Zilly, Marcus Müller, et al. “Real-time disparity es-
timation using line-wise hybrid recursive matching and cross-bilateral median up-
sampling”. In: Proceedings of the 21st International Conference on Pattern Recogni-
tion (ICPR2012). IEEE. 2012, pp. 3168–3171. eprint: https://projet.liris.cnrs.
fr/imagine/pub/proceedings/ICPR-2012/media/files/0914.pdf.

[180] Peter Kauff, Nicole Brandenburg, Michael Karl, et al. “Fast hybrid block-and pixel-
recursive disparity analysis for real-time applications in immersive tele-conference
scenarios”. In: University of West Bohemia, 2001. eprint: http://wscg.zcu.cz/
wscg2001/Papers_2001/R132.pdf.

192

https://www.ebook.de/de/product/22064208/john_cheng_max_grossman_ty_mckercher_professional_cuda_c_programming.html
https://www.ebook.de/de/product/22064208/john_cheng_max_grossman_ty_mckercher_professional_cuda_c_programming.html
https://www.ebook.de/de/product/22064208/john_cheng_max_grossman_ty_mckercher_professional_cuda_c_programming.html
https://doi.org/10.1109/icpp.2011.45
https://doi.org/10.1109/3dtv.2007.4379384
https://doi.org/10.1007/978-3-642-12392-4_4
https://doi.org/https://doi.org/10.1109/MICRO.2005.30
https://doi.org/https://doi.org/10.1109/MICRO.2005.30
https://doi.org/10.1109/sfcs.1976.16
https://doi.org/10.1145/1964179.1964184
https://opengl.gpuinfo.org/listcapabilities.php
https://opengl.gpuinfo.org/listcapabilities.php
https://doi.org/10.1109/CVPR.2003.1211354
https://doi.org/10.1109/CVPR.2003.1211354
https://doi.org/10.1117/12.2219847
https://projet.liris.cnrs.fr/imagine/pub/proceedings/ICPR-2012/media/files/0914.pdf
https://projet.liris.cnrs.fr/imagine/pub/proceedings/ICPR-2012/media/files/0914.pdf
http://wscg.zcu.cz/wscg2001/Papers_2001/R132.pdf
http://wscg.zcu.cz/wscg2001/Papers_2001/R132.pdf

[181] UL benchmarks. 3DMark Technical Guide. url: https://s3.amazonaws.com/
download - aws . futuremark . com / 3dmark - technical - guide . pdf (visited on
08/18/2021).

[182] Aljoscha Smolic, Karsten Muller, Kristina Dix, et al. “Intermediate view interpolation
based on multiview video plus depth for advanced 3D video systems”. In: 2008
15th IEEE International Conference on Image Processing. IEEE, Oct. 2008. doi:
10.1109/icip.2008.4712288.

[183] Sergey Smirnov, Mihail Georgiev, and Atanas Gotchev. “Comparison of cost aggrega-
tion techniques for free-viewpoint image interpolation based on plane sweeping”. In:
Ninth International Workshop on Video Processing and Quality Metrics for Consumer
Electronics. 2015. eprint: https://researchportal.tuni.fi/en/publications/
comparison-of-cost-aggregation-techniques-for-free-viewpoint-imag.

[184] Sergi Pujades, Frederic Devernay, and Bastian Goldluecke. “Bayesian View Synthesis
and Image-Based Rendering Principles”. In: 2014 IEEE Conference on Computer
Vision and Pattern Recognition. IEEE, June 2014. doi: 10.1109/cvpr.2014.499.

[185] A. Khatiullin, M. Erofeev, and D. Vatolin. “FAST OCCLUSION FILLING METHOD
FOR MULTIVIEW VIDEO GENERATION”. In: 2018 - 3DTV-Conference: The
True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON). IEEE,
June 2018. doi: 10.1109/3dtv.2018.8478562.

[186] Jun Chen, Ryosuke Watanabe, Keisuke Nonaka, et al. “Fast Free-viewpoint Video
Synthesis Algorithm for Sports Scenes”. In: 2019 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). IEEE, Nov. 2019. doi: 10.1109/
iros40897.2019.8967584.

[187] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, et al. “Neural Sparse Voxel Fields”. In:
(July 22, 2020). arXiv: 2007.11571 [cs.CV].

[188] Nikolai Smolyanskiy, Alexey Kamenev, and Stan Birchfield. “On the Importance of
Stereo for Accurate Depth Estimation: An Efficient Semi-Supervised Deep Neural
Network Approach”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops. June 2018. doi: 10.1109/cvprw.2018.
00147.

[189] Hamid Laga, Laurent Valentin Jospin, F. Boussaid, et al. “A Survey on Deep Learning
Techniques for Stereo-based Depth Estimation”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence (2020), pp. 1–1. doi: 10.1109/tpami.2020.
3032602.

[190] John Flynn, Michael Broxton, Paul Debevec, et al. “Deepview: View synthesis with
learned gradient descent”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2019, pp. 2367–2376. doi: 10.1109/cvpr.2019.
00247.

[191] Michael Broxton, John Flynn, Ryan Overbeck, et al. “Immersive light field video
with a layered mesh representation”. In: ACM Transactions on Graphics (TOG) 39.4
(2020), pp. 86–1. doi: 10.1145/3386569.3392485.

193

https://s3.amazonaws.com/download-aws.futuremark.com/3dmark-technical-guide.pdf
https://s3.amazonaws.com/download-aws.futuremark.com/3dmark-technical-guide.pdf
https://doi.org/10.1109/icip.2008.4712288
https://researchportal.tuni.fi/en/publications/comparison-of-cost-aggregation-techniques-for-free-viewpoint-imag
https://researchportal.tuni.fi/en/publications/comparison-of-cost-aggregation-techniques-for-free-viewpoint-imag
https://doi.org/10.1109/cvpr.2014.499
https://doi.org/10.1109/3dtv.2018.8478562
https://doi.org/10.1109/iros40897.2019.8967584
https://doi.org/10.1109/iros40897.2019.8967584
https://arxiv.org/abs/2007.11571
https://doi.org/10.1109/cvprw.2018.00147
https://doi.org/10.1109/cvprw.2018.00147
https://doi.org/10.1109/tpami.2020.3032602
https://doi.org/10.1109/tpami.2020.3032602
https://doi.org/10.1109/cvpr.2019.00247
https://doi.org/10.1109/cvpr.2019.00247
https://doi.org/10.1145/3386569.3392485

A. Schematics

This part of the thesis provides the schematics for the custom PCBs currently in use in
the camera array. The first page for each board provides an overview of the system with
the connections between the major building blocks. On the remaining pages the details
for those blocks are given. Each sheet’s name is equivalent to the description of the block
whose components it contains.

195

A. Schematics

A.1. Camera controller board
1

2
3

4
5

6

1
2

3
4

5
6

ABCD

ABCD

D
ate: 2017-06-14

K
iC

ad E
.D

.A
. eeschem

a (5.1.0)-1
R

ev: 1
S

ize: A
4

Id: 1/6

T
itle: C

am
era-C

o
n

tro
ller-B

o
ard

F
ile: C

am
era-C

ontroller-B
oard.sch

S
heet: /

N
T

 L
eh

rstu
h

l

C
P

U

C
P

U
.sch

I2C
_E

nable
P

W
R

_O
K

S
H

U
T

T
E

R
_IN

S
H

U
T

T
E

R
_O

U
T

7

S
H

U
T

T
E

R
_O

U
T

13

S
H

U
T

T
E

R
_O

U
T

6

S
H

U
T

T
E

R
_O

U
T

12

S
H

U
T

T
E

R
_O

U
T

5

S
H

U
T

T
E

R
_O

U
T

11

S
H

U
T

T
E

R
_O

U
T

4
S

H
U

T
T

E
R

_O
U

T
3

S
H

U
T

T
E

R
_O

U
T

10

S
H

U
T

T
E

R
_O

U
T

2
S

H
U

T
T

E
R

_O
U

T
1

S
H

U
T

T
E

R
_O

U
T

9

S
H

U
T

T
E

R
_O

U
T

0

S
H

U
T

T
E

R
_O

U
T

8

S
H

U
T

T
E

R
_O

U
T

15
S

H
U

T
T

E
R

_O
U

T
14

S
D

A
S

C
L

A
0

A
2

A
1

P
ow

er C
ontrol

pow
er_control.sch

S
C

L
S

D
A

A
0

A
1

A
2

Interface2M
aster

Interface2M
aster.sch

S
D

A
S

C
L

I2C
_E

N

S
H

U
T

T
E

R
_IN

I2C
_R

D
Y

_LE
D

Interface2C
am

era

Interface2C
am

era.sch

S
H

U
T

T
E

R
1

S
H

U
T

T
E

R
3

S
H

U
T

T
E

R
5

S
H

U
T

T
E

R
7

S
H

U
T

T
E

R
9

S
H

U
T

T
E

R
11

S
H

U
T

T
E

R
13

S
H

U
T

T
E

R
15

S
H

U
T

T
E

R
0

S
H

U
T

T
E

R
2

S
H

U
T

T
E

R
4

S
H

U
T

T
E

R
6

S
H

U
T

T
E

R
8

S
H

U
T

T
E

R
10

S
H

U
T

T
E

R
12

S
H

U
T

T
E

R
14

123
4 5 6

S
W

102

S
W

_A
D

D
R

+
3.3V

1
2

3
4

5
6

7
8

9
1020

1121

1222

1323

1424

15
16

17
18

19

J101ATX_24Pin

G
N

D

+
5V

+
12V

GND

F
anC

ontrol

F
anC

ontrol.sch

S
D

A
S

C
L

A
0

A
1

A
2

F
A

N
_F

A
U

LT
T

E
M

P
_A

LE
R

T

F
A

N
_T

E
S

T

R
102

21k

J105
T

E
S

T
_S

C
L

J106
T

E
S

T
_S

D
A

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

J102FRNT_PANEL

+5V

R
101

21k

R
103

10k

R
104

10k

R
105

21k

R
106

21k

G
N

D STANDBY_PWR_LED

S
T

A
N

D
B

Y
_P

W
R

_LE
D

G
N

D

M
A

IN
_P

W
R

_LE
D

M
A

IN
_P

W
R

_LE
D

GND

F
A

N
_F

A
U

LT
_LE

D
T

E
M

P
_A

LE
R

T
_LE

D

F
A

N
_F

A
U

LT
_LE

D

T
E

M
P

_A
LE

R
T

_LE
D

I2C_EN_LED

I2C
_R

E
A

D
Y

_LE
D

I2C
_R

E
A

D
Y

_LE
D

G
N

D

I2C
_E

N
_LE

D

+
3.3V

J103
T

E
S

T
_G

N
D

JP101

Jumper_NO_Small

R108
10k

R109
10k

R110
10k

GND

S1

G
2

D3Q105
2N7000

S
1

G2

D
3

Q
101

2N
7000

S
1

G2

D
3

Q
104

2N
7000

S
1

G2

D
3

Q
103

2N
7000

S
1

G2

D
3

Q
102

2N
7000

S
1

G2

D
3

Q
106

2N
7000

1
6

U
101A

74LV
C

2G
04

3
4

U
101B

74LV
C

2G
04

+5V

VCC

C
101

460uF

JP102

Jumper_NO_Small +
5V

+
12V

G
N

D C
1

470uF

196

A.1. Camera controller board

1
2

3
4

5
6

1
2

3
4

5
6

A B C D

A B C D

D
at

e:

K
iC

ad
 E

.D
.A

.
ee

sc
he

m
a

(5
.1

.0
)-

1
R

ev
:

S
iz

e:
 A

4
Id

: 2
/6

T
it

le
:

F
ile

: C
P

U
.s

ch
S

he
et

: /
C

P
U

/

G
N

D
G

N
D

+5V

I2
C

_E
na

bl
e

P
W

R
_O

K

S
H

U
T

T
E

R
_I

N

P
T

D
0

P
T

C
4

P
T

E
26

R
20

1
10

k

1
2

3
4

5
6

7
8

9
10

11
12

J2
02

C
O

N
N

_A
U

X
2

A
D

C
0_

D
P

1

A
D

C
0_

D
M

1

A
D

C
1_

D
P

1

A
D

C
1_

D
M

1

D
A

C
0_

O
U

T

A
D

C
1_

S
E

18

A
D

C
1_

D
M

0

A
D

C
1_

D
P

0

A
D

C
0_

D
M

0

A
D

C
0_

D
P

0

A
R

E
F

G
N

D

S
H

U
T

T
E

R
_O

U
T

7

S
H

U
T

T
E

R
_O

U
T

13

S
H

U
T

T
E

R
_O

U
T

6

S
H

U
T

T
E

R
_O

U
T

12

S
H

U
T

T
E

R
_O

U
T

5

S
H

U
T

T
E

R
_O

U
T

11

S
H

U
T

T
E

R
_O

U
T

4

S
H

U
T

T
E

R
_O

U
T

3

S
H

U
T

T
E

R
_O

U
T

10

S
H

U
T

T
E

R
_O

U
T

2

S
H

U
T

T
E

R
_O

U
T

1

S
H

U
T

T
E

R
_O

U
T

9

S
H

U
T

T
E

R
_O

U
T

0

S
H

U
T

T
E

R
_O

U
T

8

S
H

U
T

T
E

R
_O

U
T

15

S
H

U
T

T
E

R
_O

U
T

14

P
T

B
10

P
T

B
11

P
T

B
20

P
T

C
11

P
T

C
10

S
D

A

S
C

L

A
0

A
2

A
1

1
2

3
4

5
6

7
8

9
10

11
12

J2
01

C
O

N
N

_A
U

X
1

+3.3V

+3.3V

S
W

20
1

S
W

_P
us

h

P
T

B
18

1_
1

P
T

E
26

2_
1

N
C

3_
1

A
D

C
0_

D
P

1
4_

1

P
T

C
16

1_
2

P
T

A
0

2_
2

N
C

3_
2

P
T

B
2

4_
2

P
T

B
19

1_
3

G
N

D
2_

3

N
C

3_
3

A
D

C
0_

D
M

1
4_

3

P
T

C
17

1_
4

P
T

C
4

2_
4

P
3V

3
3_

4

P
T

B
3

4_
4

P
T

C
1

1_
5

A
D

C
0_

D
P

0
2_

5

N
C

3_
5

A
D

C
1_

D
P

1
4_

5

P
T

B
9

1_
6

P
T

D
0

2_
6

R
E

S
E

T
3_

6

P
T

B
10

4_
6

P
T

C
8

1_
7

A
D

C
0_

D
M

0
2_

7

N
C

3_
7

A
D

C
1_

D
M

1
4_

7

P
T

A
1

1_
8

P
T

D
2

2_
8

P
3V

3
3_

8

P
T

B
11

4_
8

P
T

C
9

1_
9

N
C

2_
9

N
C

3_
9

P
T

B
20

4_
9

P
T

B
23

1_
10

P
T

D
3

2_
10

P
5V

_U
S

B
3_

10

P
T

C
11

4_
10

P
T

E
24

2_
20

P
T

C
0

1_
11

A
D

C
1_

D
P

0
2_

11

N
C

3_
11

D
A

C
0_

O
U

T
4_

11

P
T

A
2

1_
12

P
T

D
1

2_
12

G
N

D
3_

12

P
T

C
10

4_
12

P
T

C
7

1_
13

A
D

C
1_

D
M

0
2_

13

N
C

3_
13

P
T

C
2

1_
14

G
N

D
2_

14

G
N

D
3_

14

P
T

C
5

1_
15

N
C

2_
15

N
C

3_
15

P
T

C
3

1_
16

A
R

E
F

2_
16

P
5-

9V
_V

IN
3_

16

A
D

C
1_

S
E

18
2_

17
P

T
E

25
2_

18
N

C
2_

19

C
P

U
20

1

F
R

D
M

-K
64

F
_n

e

A
D

C
0_

D
P

1
A

D
C

0_
D

M
1

A
D

C
1_

D
P

1
P

T
B

10
A

D
C

1_
D

M
1

P
T

B
11

P
T

B
20

P
T

C
11

D
A

C
0_

O
U

T
P

T
C

10

A
D

C
1_

S
E

18
A

R
E

F
A

D
C

1_
D

M
0

A
D

C
1_

D
P

0
A

D
C

0_
D

M
0

P
T

D
0

A
D

C
0_

D
P

0
P

T
C

4
P

T
E

26

M
K

20
1

M
ou

nt
in

g_
H

ol
e_

P
A

D
M

K
20

2
M

ou
nt

in
g_

H
ol

e_
P

A
D

M
K

20
3

M
ou

nt
in

g_
H

ol
e_

P
A

D
M

K
20

4
M

ou
nt

in
g_

H
ol

e_
P

A
D

G
N

D

197

A. Schematics

1
2

3
4

5
6

1
2

3
4

5
6

ABCD

ABCD

D
ate:

K
iC

ad E
.D

.A
. eeschem

a (5.1.0)-1
R

ev:
S

ize: A
4

Id: 3/6

T
itle:

F
ile: pow

er_control.sch
S

heet: /P
ow

er C
ontrol/

G
P

B
0

1

G
P

B
1

2

G
P

B
2

3

G
P

B
3

4

G
P

B
4

5

G
P

B
5

6

G
P

B
6

7

G
P

B
7

8

VCC 9GND10

IN
T

A
20

G
P

A
0

21

S
C

L
12

G
P

A
1

22

S
D

A
13

G
P

A
2

23

G
P

A
3

24

A
0

15
G

P
A

4
25

A
1

16
G

P
A

5
26

A
2

17
G

P
A

6
27

R
E

S
E

T
18

G
P

A
7

28

IN
T

B
19

U
301

M
C

P
23017

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

J301CONN_PWR_EN

P
W

R
_E

N
_0

P
W

R
_E

N
_1

P
W

R
_E

N
_2

P
W

R
_E

N
_3

P
W

R
_E

N
_4

P
W

R
_E

N
_5

P
W

R
_E

N
_6

P
W

R
_E

N
_7

P
W

R
_E

N
_8

P
W

R
_E

N
_9

P
W

R
_E

N
_10

P
W

R
_E

N
_11

P
W

R
_E

N
_12

P
W

R
_E

N
_13

P
W

R
_E

N
_14

P
W

R
_E

N
_15

1 2
D316

NUC16

1 2
D315

NUC15

1 2
D314

NUC14

1 2
D313

NUC13

1 2
D312

NUC12

1 2
D311

NUC11

1 2
D310

NUC10

1 2
D309

NUC9

1 2
D308

NUC8

1 2
D307

NUC7

1 2
D306

NUC6

1 2
D305

NUC5

1 2
D304

NUC4

1 2
D303

NUC3

1 2
D302

NUC2

1 2
D301

NUC1 R301
2k

R302
2k

R303
2k

R304
2k

R305
2k

R306
2k

R307
2k

R308
2k

R309
2k

R310
2k

R311
2k

R312
2k

R313
2k

R314
2k

R315
2k

R316
2k

G
N

D

S
C

L
S

D
A

A
0

A
1

A
2

+
3.3V

G
N

D

P
W

R
_E

N
_0

P
W

R
_E

N
_1

P
W

R
_E

N
_2

P
W

R
_E

N
_3

P
W

R
_E

N
_4

P
W

R
_E

N
_5

P
W

R
_E

N
_6

P
W

R
_E

N
_7

GND

PWR_EN_8

PWR_EN_9

PWR_EN_10

PWR_EN_11

PWR_EN_12

PWR_EN_13

PWR_EN_14

PWR_EN_15

R317
10k

S1

G
2

D3

Q316
2N7000

S1

G
2

D3

Q315
2N7000

S1

G
2

D3

Q314
2N7000

S1

G
2

D3

Q313
2N7000

S1

G
2

D3

Q312
2N7000

S1

G
2

D3

Q311
2N7000

S1

G
2

D3

Q310
2N7000

S1

G
2

D3

Q309
2N7000

S
1

G2

D
3

Q
301

2N
7000

S
1

G2

D
3

Q
302

2N
7000

S
1

G2

D
3

Q
303

2N
7000

S
1

G2

D
3

Q
304

2N
7000

S
1

G2

D
3

Q
305

2N
7000

S
1

G2

D
3

Q
306

2N
7000

S
1

G2

D
3

Q
307

2N
7000

S
1

G2

D
3

Q
308

2N
7000

198

A.1. Camera controller board

1
2

3
4

5
6

1
2

3
4

5
6

A B C D

A B C D

D
at

e:

K
iC

ad
 E

.D
.A

.
ee

sc
he

m
a

(5
.1

.0
)-

1
R

ev
:

S
iz

e:
 A

4
Id

: 4
/6

T
it

le
:

F
ile

: I
nt

er
fa

ce
2M

as
te

r.
sc

h
S

he
et

: /
In

te
rf

ac
e2

M
as

te
r/

E
N

1

S
C

LO
U

T
2

S
C

LI
N

3

G
N

D
4

R
E

A
D

Y
5

S
D

A
IN

6

S
D

A
O

U
T

7

V
C

C
8

IC401
LTC4307

G
N

D

+
3.

3V

1
2

3
4

5
6

7
8

9
10

J4
02

M
A

S
T

E
R

_I
N

G
N

D

S
D

A
S

C
L

I2
C

_E
N

R401
10k

R403
10k

S
H

U
T

T
E

R
_I

N

1

J401

M
A

S
T

E
R

_P
IN

R404
10k

I2
C

_R
D

Y
_L

E
D

C401

0.1uF

199

A. Schematics

1
2

3
4

5
6

7
8

1
2

3
4

5
6

7
8

ABCDEF

ABCDEF

D
ate:

K
iC

ad E
.D

.A
. eeschem

a (5.1.0)-1
R

ev:
S

ize: A
3

Id: 5/6

T
itle:

F
ile: Interface2C

am
era.sch

S
heet: /Interface2C

am
era/

A1A1 B1 B1

C1C1 D1 D1

E1E1 F1 F1

G1G1 H1 H1

I1I1 J1 J1

K1K1 L1 L1

M1M1 N1 N1

O1O1 P1 P1

A2A2 B2 B2

C2C2 D2 D2

E2E2 F2 F2

G2G2 H2 H2

I2I2 J2 J2

K2K2 L2 L2

M2M2 N2 N2

O2O2 P2 P2

A3A3 B3 B3

C3C3 D3 D3

E3E3 F3 F3

G3G3 H3 H3

I3I3 J3 J3

K3K3 L3 L3

M3M3 N3 N3

O3O3 P3 P3

A4A4 B4 B4

C4C4 D4 D4

E4E4 F4 F4

G4G4 H4 H4

I4I4 J4 J4

K4K4 L4 L4

M4M4 N4 N4

O4O4 P4 P4

A5A5 B5 B5

C5C5 D5 D5

E5E5 F5 F5

G5G5 H5 H5

I5I5 J5 J5

K5K5 L5 L5

M5M5 N5 N5

O5O5 P5 P5

A6A6 B6 B6

C6C6 D6 D6

E6E6 F6 F6

G6G6 H6 H6

I6I6 J6 J6

K6K6 L6 L6

M6M6 N6 N6

O6O6 P6 P6

A7A7 B7 B7

C7C7 D7 D7

E7E7 F7 F7

G7G7 H7 H7

I7I7 J7 J7

K7K7 L7 L7

M7M7 N7 N7

O7O7 P7 P7

A8A8 B8 B8

C8C8 D8 D8

E8E8 F8 F8

G8G8 H8 H8

I8I8 J8 J8

K8K8 L8 L8

M8M8 N8 N8

O8O8 P8 P8

A9A9 B9 B9

C9C9 D9 D9

E9E9 F9 F9

G9G9 H9 H9

I9I9 J9 J9

K9K9 L9 L9

M9M9 N9 N9

O9O9 P9 P9

A10A10 B10 B10

C10C10 D10 D10

E10E10 F10 F10

G10G10 H10 H10

I10I10 J10 J10

K10K10 L10 L10

M10M10 N10 N10

O10O10 P10 P10

A11A11 B11 B11

C11C11 D11 D11

E11E11 F11 F11

G11G11 H11 H11

I11I11 J11 J11

K11K11 L11 L11

M11M11 N11 N11

O11O11 P11 P11

A12A12 B12 B12

C12C12 D12 D12

E12E12 F12 F12

G12G12 H12 H12

I12I12 J12 J12

K12K12 L12 L12

M12M12 N12 N12

O12O12 P12 P12

G
N

D
G

N
D

R
J501

R
J45_2x8_2LE

D
S

G
N

D

JP501

JP503 +
3.3V

+
12V

R503
68

1
J501

CAM2

SHUTTER1

R501
56

G
N

D

JP505

JP507 +
3.3V

+
12V

R507
68

1
J503

CAM4

SHUTTER3

R505
56

G
N

D

JP509

JP511 +
3.3V

+
12V

R511
68

1
J505

CAM6

SHUTTER5

R509
56

G
N

D

JP513

JP515 +
3.3V

+
12V

R515
68

1
J507

CAM8

SHUTTER7

R513
56

G
N

D

JP517

JP519 +
3.3V

+
12V

R519
68

1
J509

CAM10

SHUTTER9

R517
56

G
N

D

JP521

JP523 +
3.3V

+
12V

R523
68

1
J511

CAM12

SHUTTER11

R521
56

G
N

D

JP525

JP527 +
3.3V

+
12V

R527
68

1
J513

CAM14

SHUTTER13

R525
56

G
N

D

JP529

JP531 +
3.3V

+
12V

R531
68

1
J515

CAM16

SHUTTER15

R529
56

G
N

D

JP502

JP504+
3.3V

+
12V

R504
68

1

J502

CAM1

SHUTTER0

R502
56

G
N

D

JP506

JP508+
3.3V

+
12V

R508
68

1

J504

CAM3

SHUTTER2

R506
56

G
N

D

JP510

JP512+
3.3V

+
12V

R512
68

1

J506

CAM5

SHUTTER4

R510
56

G
N

D

JP514

JP516+
3.3V

+
12V

R516
68

1

J508
CAM7

SHUTTER6

R514
56

G
N

D

JP518

JP520+
3.3V

+
12V

R520
68

1

J510

CAM9

SHUTTER8

R518
56

G
N

D

JP522

JP524+
3.3V

+
12V

R524
68

1

J512

CAM11

SHUTTER10

R522
56

G
N

D

JP526

JP528+
3.3V

+
12V

R528
68

1

J514

CAM13

SHUTTER12

R526
56

G
N

D

JP530

JP532+
3.3V

+
12V

R532
68

1

J516

CAM15

SHUTTER14

R530
56

GND

S
1

G2

D
3

Q
501

2N
7000

R533
270

GND

S
1

G2

D
3

Q
503

2N
7000

R535
270

S
1

G2

D
3

Q
505

2N
7000

R537
270

S
1

G2

D
3

Q
507

2N
7000

R539
270

S
1

G2

D
3

Q
509

2N
7000

R541
270

S
1

G2

D
3

Q
511

2N
7000

R543
270

S
1

G2

D
3

Q
513

2N
7000

R545
270

S
1

G2

D
3

Q
515

2N
7000

R547
270

GND

S
1

G2

D
3

Q
502

2N
7000

R534
270

S
1

G2

D
3

Q
504

2N
7000

R536
270

S
1

G2

D
3

Q
506

2N
7000

R538
270

S
1

G2

D
3

Q
508

2N
7000

R540
270

S
1

G2

D
3

Q
510

2N
7000

R542
270

S
1

G2

D
3

Q
512

2N
7000

R544
270

S
1

G2

D
3

Q
514

2N
7000

R546
270

R548
270S

1

G2

D
3

Q
516

2N
7000

+12V +12V

200

A.1. Camera controller board

1
2

3
4

5
6

1
2

3
4

5
6

A B C D

A B C D

D
at

e:

K
iC

ad
 E

.D
.A

.
ee

sc
he

m
a

(5
.1

.0
)-

1
R

ev
:

S
iz

e:
 A

4
Id

: 6
/6

T
it

le
:

F
ile

: F
an

C
on

tr
ol

.s
ch

S
he

et
: /

F
an

C
on

tr
ol

/

D
X

P
1

D
X

N
2

A0 3

A1 4

A2 5

P
W

M
6

T
A

C
H

1
7

GND 8

T
A

C
H

2
9

N
C

10

S
H

D
N

11
F

F
/F

S
12

A
LE

R
T

13

S
D

A
14

S
C

L
15

VDD16

U
60

1

M
A

X
31

76
0

+
3.

3V

-
1

+
2

T
ac

ho 3

P
W

M
4

M
60

1

F
an

1

-
1

+
2

T
ac

ho 3

P
W

M
4

M
60

2

F
an

2

GND

+12V

G
N

D

S
D

A
S

C
L

A0
A1
A2

R604
10k

R603
10k

R602
10k

R601
10k

R605
10k

R606
10k

1 2 3

J6
03

TEMP_PROBE

G
N

D

1

J604

S
H

U
T

D
O

W
N

FAN_FAULT
TEMP_ALERT

F
A

N
_T

E
S

T

C
60

1

22
00

pF

D601

Z3V6

D602

Z3V6

D603

Z3V6

R
60

7
10

R
60

8
10

R
60

9
10

C
60

2

0.
1u

F

201

A. Schematics

A.2. Master controller board
1

2
3

4
5

6

1
2

3
4

5
6

ABCD

ABCD

D
ate:

K
iC

ad E
.D

.A
. kicad (5.1.0)-1

R
ev:

S
ize: A

4
Id: 1/5

T
itle:

F
ile: m

aster-controller-board.sch
S

heet: /

C
P

U

cpu.sch

S
C

L
S

D
A

S
P

I_C
LK

S
P

I_M
IS

O
S

P
I_M

O
S

I
S

P
I_C

S

S
H

U
T

T
E

R
_O

U
TD
IS

P
_R

E
S

E
T

T
S

_IN
T

T
S

_W
A

K
E

T
S

_R
E

S
E

T

M
O

D
U

LE
_O

K
1

M
O

D
U

LE
_O

K
2

M
O

D
U

LE
_O

K
3

M
O

D
U

LE
_O

K
4

M
A

N
_S

H
U

T
T

E
R

F
an C

ontrol

fan_control.sch

S
D

A
S

C
L

T
E

M
P

_A
LE

R
T

F
A

N
_F

A
U

LT
F

A
N

_T
E

S
T

D
isplay Interface

disp_interface.sch

M
IS

O
M

O
S

I
S

P
I_C

LK

D
IS

P
_R

E
S

E
T

T
P

_W
A

K
E

T
P

_IN
T

S
D

A
S

C
L

D
IS

P
_C

S
T

P
_R

E
S

E
T

S
1

G2

D
3

Q
108

2N
7000

G
N

D

3
4

U
101B

74LV
C

2G
04

1
6

U
101A

74LV
C

2G
04

T
E

M
P

_A
LE

R
T

_LE
D

S
1

G2

D
3

Q
107

2N
7000

F
A

N
_F

A
U

LT
_LE

D

F
A

N
_T

E
S

T
_S

W
T

C
H

1
2

3
4

5
6

7
8

9
1020

11
12

13
14

15
16

17
18

19

J101FRNT_PANEL

+
5V

R
102

21k

R
103

21k

R
107

10k

R
108

10k

G
N

D

R
104

21k

R
105

21k

R
106

21k

R
101

21k

T
E

M
P

_A
LE

R
T

_LE
D

F
A

N
_F

A
U

LT
_LE

D

S
1

G2

D
3

Q
106

2N
7000

S
1

G2

D
3

Q
105

2N
7000

S
1

G2

D
3

Q
103

2N
7000

S
1

G2

D
3

Q
102

2N
7000

G
N

D

MOD1_RDY_LED

MOD2_RDY_LED

MOD3_RDY_LED

MOD4_RDY_LED

M
O

D
1_R

D
Y

_LE
D

M
O

D
2_R

D
Y

_LE
D

M
O

D
3_R

D
Y

_LE
D

M
O

D
4_R

D
Y

_LE
D

S1

G
2

D3Q104
2N7000

+
5V

F
A

N
_T

E
S

T
_S

W
T

C
H

S
C

L
S

D
A

S
C

L

S
C

L

S
C

L

S
D

A

S
D

A

S
D

A

M
A

N
_S

H
U

T
T

E
R

_S
W

T
C

H

S
H

U
T

T
E

R
_LE

D

S1
G
2

D3

Q101
2N7000

SHUTTER_LED

S
C

LK
M

IS
O

M
O

S
I

S
C

LK

M
IS

O
M

O
S

I

S
lave Interface

slave_interface.sch

S
D

A

S
H

U
T

T
E

R
_O

U
T

S
C

L

G
N

D
+

5V
+

12V

C
S

SHUTTER_OUT

S
H

U
T

T
E

R
_O

U
T

C
S

D
IS

P
_R

E
S

E
T

T
S

_IN
T

T
S

_W
A

K
E

T
S

_R
E

S
E

T

D
IS

P
_R

E
S

E
T

T
S

_IN
T

T
S

_W
A

K
E

T
S

_R
E

S
E

T

M
A

N
_S

H
U

T
T

E
R

_S
W

T
C

H

1
2
3

J104

C
O

N
N

_I2C
D

B
G

G
N

D

SDA
SCL

1
2
3
4
5

J103

C
O

N
N

_S
P

ID
G

B

G
N

D

SCLK
MISO
MOSI
CS

1
2

3
4

5
6

7
8

J102

C
O

N
N

_P
W

R
A

U
X

GND

+5V +3.3V

+
5V

V
C

C

1

2

3

J105

P
W

R
_C

O
N

N

R109
10k

+
3.3V

C102

C

C101

C

202

A.2. Master controller board

1
2

3
4

5
6

1
2

3
4

5
6

A B C D

A B C D

D
at

e:

K
iC

ad
 E

.D
.A

.
ki

ca
d

(5
.1

.0
)-

1
R

ev
:

S
iz

e:
 A

4
Id

: 2
/5

T
it

le
:

F
ile

: c
pu

.s
ch

S
he

et
: /

C
P

U
/

P
T

B
18

1_
1

P
T

E
26

2_
1

N
C

3_
1

A
D

C
0_

D
P

1
4_

1

P
T

C
16

1_
2

P
T

A
0

2_
2

N
C

3_
2

P
T

B
2

4_
2

P
T

B
19

1_
3

G
N

D
2_

3

N
C

3_
3

A
D

C
0_

D
M

1
4_

3

P
T

C
17

1_
4

P
T

C
4

2_
4

P
3V

3
3_

4

P
T

B
3

4_
4

P
T

C
1

1_
5

A
D

C
0_

D
P

0
2_

5

N
C

3_
5

A
D

C
1_

D
P

1
4_

5

P
T

B
9

1_
6

P
T

D
0

2_
6

R
E

S
E

T
3_

6

P
T

B
10

4_
6

P
T

C
8

1_
7

A
D

C
0_

D
M

0
2_

7

N
C

3_
7

A
D

C
1_

D
M

1
4_

7

P
T

A
1

1_
8

P
T

D
2

2_
8

P
3V

3
3_

8

P
T

B
11

4_
8

P
T

C
9

1_
9

N
C

2_
9

N
C

3_
9

P
T

B
20

4_
9

P
T

B
23

1_
10

P
T

D
3

2_
10

P
5V

_U
S

B
3_

10

P
T

C
11

4_
10

P
T

E
24

2_
20

P
T

C
0

1_
11

A
D

C
1_

D
P

0
2_

11

N
C

3_
11

D
A

C
0_

O
U

T
4_

11

P
T

A
2

1_
12

P
T

D
1

2_
12

G
N

D
3_

12

P
T

C
10

4_
12

P
T

C
7

1_
13

A
D

C
1_

D
M

0
2_

13

N
C

3_
13

P
T

C
2

1_
14

G
N

D
2_

14

G
N

D
3_

14

P
T

C
5

1_
15

N
C

2_
15

N
C

3_
15

P
T

C
3

1_
16

A
R

E
F

2_
16

P
5-

9V
_V

IN
3_

16

A
D

C
1_

S
E

18
2_

17
P

T
E

25
2_

18
N

C
2_

19

C
P

U
20

1

F
R

D
M

-K
64

F
_n

e

S
C

L

S
D

A

+5VGND

+3.3V

R
20

1
10

k

S
W

20
1

S
W

_P
us

h

M
K

20
1

M
ou

nt
in

g_
H

ol
e_

P
A

D
M

K
20

2
M

ou
nt

in
g_

H
ol

e_
P

A
D

M
K

20
3

M
ou

nt
in

g_
H

ol
e_

P
A

D
M

K
20

4
M

ou
nt

in
g_

H
ol

e_
P

A
D

G
N

D

GND

S
P

I_
C

LK

S
P

I_
M

IS
O

S
P

I_
M

O
S

I

S
P

I_
C

S

S
H

U
T

T
E

R
_O

U
T

1
2

JP
20

1

Ju
m

pe
r

D
IS

P
_R

E
S

E
T

T
S

_I
N

T
T

S
_W

A
K

E
T

S
_R

E
S

E
T

M
O

D
U

LE
_O

K
1

M
O

D
U

LE
_O

K
2

M
O

D
U

LE
_O

K
3

M
O

D
U

LE
_O

K
4

M
A

N
_S

H
U

T
T

E
R

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

J2
02 CONN_EXTRA1

P
T

B
2

P
T

B
3

P
T

B
10

P
T

B
11

P
T

B
20

P
T

C
11

P
T

C
10

P
T

B
2

P
T

B
3

P
T

B
10

P
T

B
11

P
T

B
20

P
T

C
11

P
T

C
10

1
2

3
4

5
6

7
8

9
10

11
12

J2
01 CONN_EXTRA2

A
D

C
1_

S
E

18
A

R
E

F

A
D

C
1_

D
M

0

A
D

C
1_

D
P

0

A
D

C
0_

D
M

0

A
D

C
0_

D
P

0

A
D

C
1_

S
E

18
A

R
E

F
A

D
C

1_
D

M
0

A
D

C
1_

D
P

0
A

D
C

0_
D

M
0

A
D

C
0_

D
P

0

G
N

D

1
2

JP
20

2

Ju
m

pe
r

1
2

JP
20

3

Ju
m

pe
r

1
2

JP
20

4

Ju
m

pe
r

1
2

JP
20

5

Ju
m

pe
r

1
2

JP
20

6

Ju
m

pe
r

1
2

JP
20

7

Ju
m

pe
r

1
2

JP
20

8

Ju
m

pe
r

1
2

JP
20

9

Ju
m

pe
r

1
2

JP
21

0

Ju
m

pe
r

1
2

JP
21

6

Ju
m

pe
r

1
2

JP
21

5

Ju
m

pe
r

1
2

JP
21

4

Ju
m

pe
r

1
2

JP
21

3

Ju
m

pe
r

1
2

JP
21

2

Ju
m

pe
r

1
2

JP
21

1

Ju
m

pe
r

203

A. Schematics

1
2

3
4

5
6

1
2

3
4

5
6

ABCD

ABCD

D
ate:

K
iC

ad E
.D

.A
. kicad (5.1.0)-1

R
ev:

S
ize: A

4
Id: 3/5

T
itle:

F
ile: fan_control.sch

S
heet: /F

an C
ontrol/

D
X

P
1

D
X

N
2

A03

A14

A25

P
W

M
6

T
A

C
H

1
7

GND8

T
A

C
H

2
9

N
C

10

S
H

D
N

11
F

F
/F

S
12

A
LE

R
T

13

S
D

A
14

S
C

L
15

VDD 16

U
301

M
A

X
31760

G
N

D

+12V

S
D

A
S

C
L

+
3.3V

-
1

+
2

T
acho

3

P
W

M
4

M
301

F
an

-
1

+
2

T
acho

3

P
W

M
4

M
302

F
an

GND

R
310
10

R
311
10

R
312
10

D301

D3V6

D302

D3V6

D303

D3V6

R307
10k

R308
10k

R309
10k

C
302

0.1uF

1 2 3

J302

TEMP_PROBE

C
301

2200pF

R303
10k

R302
10k

R301
10k

T
E

M
P

_A
LE

R
T

F
A

N
_F

A
U

LT

FAN_TEST

1

J301

SHUTDOWN

R304
10k

R305
10k

R306
10k

204

A.2. Master controller board

1
2

3
4

5
6

1
2

3
4

5
6

A B C D

A B C D

D
at

e:

K
iC

ad
 E

.D
.A

.
ki

ca
d

(5
.1

.0
)-

1
R

ev
:

S
iz

e:
 A

4
Id

: 4
/5

T
it

le
:

F
ile

: d
is

p_
in

te
rf

ac
e.

sc
h

S
he

et
: /

D
is

pl
ay

 In
te

rf
ac

e/

1
2

3
4

5
6

7
8

9
10 20 30 40

11 21 31

12 22 32

13 23 33

14 24 34

15 25 35

16 26 36

17 27 37

18 28 38

19 29 39

J4
01 DISP_CONN

+
5V

G
N

D

M
IS

O
M

O
S

I
S

P
I_

C
LK

D
IS

P
_R

E
S

E
T

T
P

_W
A

K
E

T
P

_I
N

T
S

D
A

S
C

L

D
IS

P
_C

S

T
P

_R
E

S
E

T

1
2

J402

D
IS

P
_E

X
T

R
A

205

A. Schematics

1
2

3
4

5
6

1
2

3
4

5
6

ABCD

ABCD

D
ate:

K
iC

ad E
.D

.A
. kicad (5.1.0)-1

R
ev:

S
ize: A

4
Id: 5/5

T
itle:

F
ile: slave_interface.sch

S
heet: /S

lave Interface/

E
N

1

S
C

LO
U

T
2

S
C

LIN
3

G
N

D
4

R
E

A
D

Y
5

S
D

A
IN

6

S
D

A
O

U
T

7

V
C

C
8

IC502
LTC4307

R503
10k

+
3.3V

R507
10k

1
2

3
4

5
6

7
8

9
10

J502

M
O

D
1_O

U
T

G
N

D

R504
10k

R508
10k

SDA

GND

E
N

1

S
C

LO
U

T
2

S
C

LIN
3

G
N

D
4

R
E

A
D

Y
5

S
D

A
IN

6

S
D

A
O

U
T

7

V
C

C
8

IC503
LTC4307

R509
10k

+
3.3V

R511
10k

1
2

3
4

5
6

7
8

9
10

J505

M
O

D
2_O

U
T

G
N

D

R510
10k

R512
10k

SHUTTER_OUT

SCL

GND

E
N

1

S
C

LO
U

T
2

S
C

LIN
3

G
N

D
4

R
E

A
D

Y
5

S
D

A
IN

6

S
D

A
O

U
T

7

V
C

C
8

IC504
LTC4307

R513
10k

+
3.3V

R515
10k

1
2

3
4

5
6

7
8

9
10

J507

M
O

D
3_O

U
T

G
N

D

R514
10k

R516
10k

GND

E
N

1

S
C

LO
U

T
2

S
C

LIN
3

G
N

D
4

R
E

A
D

Y
5

S
D

A
IN

6

S
D

A
O

U
T

7

V
C

C
8

IC501
LTC4307

R501
10k

+
3.3V

R505
10k

1
2

3
4

5
6

7
8

9
10

J501

M
O

D
4_O

U
T

G
N

D

R502
10k

R506
10k

GND

1
2

J504

M
O

D
1_E

X
T

R
A

1
2

J506

M
O

D
2_E

X
T

R
A

1
2

J508

M
O

D
3_E

X
T

R
A

1
2

J503

M
O

D
4_E

X
T

R
A

C501

0.1uF

C502

0.1uF

C503

0.1uF

C504

0.1uF

206

	Preface
	Research Questions
	Contributions

	5D Lightfield Array
	Fundamentals
	Camera Technology
	Camera Parameters
	Dimensionality of Image Data
	Multiview vs. Lightfields
	Network Boot / PXE
	GStreamer

	First Small Prototype Array
	Hardware
	Software
	Evaluation
	Considerations Learned from Small Array

	Design Challenges
	Module Design
	Electronics
	Stand Design & Camera Mounts
	Central Controller Case
	Cabling
	Hardware Provisioning
	Storage Cluster

	Implementation Details
	Cluster Control
	Unit System
	Shutter Control
	Repeating Tasks

	Processing Pipeline
	Productions Using the Camera Array
	Lightfield Elements
	Unfolding
	HaToy

	Conclusion
	Future Work

	Array-Specific Demosaicing
	Basics
	Concept
	Network Architecture
	Training Data
	Evaluation
	Open Issues

	Real-Time Multiview Coding
	Background
	Standards Supporting Multiview Content
	Frame Coding in H.264 and HEVC
	Stream Structure in H.264

	Concept
	Implementation
	Stream Multiplexer
	Towards Inter-View Predictions in Multiplexer
	Real Inter-View Prediction with Distributed Coding

	Evaluation
	Speed
	Encoding Efficiency
	Scalability

	Open Issues

	Optimized Streaming of Multiview Content
	Concept
	Implementation
	Evaluation

	Quality Metrics for Interpolated Views
	Background
	Concept
	Implementation
	Evaluation

	Real-Time View Interpolation
	Background
	View Interpolation Algorithm Types
	3D Rendering with OpenGL
	Computation on GPUs

	Concept
	Analysis
	Improvements
	Shader-Based Rendering
	Parallel Execution Using GPGPU
	Further Performance Improvements

	Evaluation
	Rendering Performance
	Rendering Quality
	Relevance for New Projects

	Conclusion
	Own publications
	Bibliography
	Schematics
	Camera controller board
	Master controller board

