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Abstract

Bacteria, as one of the three domains in the tree of life, play an important role in many

phenomena such as biocorrosion, pipe clogging and infections. Since treatment with

antibiotics or mechanical removal can be difficult, it is paramount to understand the

initial attachment to a substrate and the subsequent colony growth. To this end, this

thesis investigates first the adhesion process of Staphylococcus aureus by Monte Carlo

simulations and helps to reveal that the bacterium uses different binding mechanisms on

hydrophobic and hydrophilic substrates. On hydrophobic substrates, the bacterium’s

macromolecules bind freely. Subsequently, the bacteria show large cell-to-cell varia-

tion in adhesion forces but only small variations by repetitions with the same cell.

On hydrophilic substrates, the macromolecules need to overcome a potential barrier.

This leads to a comparable variability between repetitions with the same cell and the

cell-to-cell variance. As a second model system, I investigated the competitive range

expansion of microbial colonies with heterogeneous mechanical interactions by stochas-

tic simulations. This is, for instance, realised by a network of piliated bacteria such

as Neisseria gonorrhoeae. The simulations reveal that a heterogeneous susceptibility

to division generated pushing significantly affects the competition dynamics of growing

bacteria. Furthermore, homogeneous pushing leads to a small but standing variation of

a disadvantaged subpopulation inside the expanding colony.



Zusammenfassung

Bakterien spielen in vielen Lebensbereichen wie beispielsweise Biokorrosion, Verstop-

fung von Rohren oder Infektionen eine zentrale Rolle. Da sich ihre Entfernung mittels

Antibiotika oder mechanischer Methoden als schwierig erweisen kann, ist es wichtig die

initiale Adhäsion und das nachfolgende Wachstum grundlegend zu verstehen. Zuerst

wurde das Adhäsionsverhalten von Staphylococcus aureus auf hydrophilen und hy-

drophoben Oberflächen mittels Monte Carlo Simulationen untersucht. Es zeigt sich,

dass die Adhäsion durch Makromoleküle der Zellwand vermittelt wird, von denen

viele auf hydrophoben Oberflächen binden können. Dies resultiert in einer hohen

Variabilität der Adhäsionskräfte innerhalb der Population, während Wiederholungen

mit derselben Zelle ähnlich verlaufen. Auf hydrophilen Oberflächen selektiert jedoch

eine Potentialbarriere stochastisch die bindenden Makromoleküle. Dies führt zu einer

vergleichbaren Variabilität der Adhäsionskräfte zwischen Wiederholungen mit dersel-

ben Zelle und der Gesamtpopulation. Als zweites Modellsystem betrachtete ich das

kompetitivem Koloniewachstum von pilierten Neisseria gonorrhoeae Bakterien. Zur

Beschreibung dieser entwickelte ich ein minimales stochastisches Model von kompeti-

tivem Koloniewachstum mit heterogenen mechanischen Wechselwirkungen. Die Simu-

lationen zeigen, dass eine heterogene Suszeptibilität der Bakterien gegenüber Kräften,

welche durch Zellteilung generiert werden, das kompetitive Wachstum maßgeblich bee-

influssen.
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1 Introduction

Bacteria, as one of the three domains in the tree of life, play an important role in many

applications. While they are productively used in bioreactors and wastewater treatment

facilities they can clog pipes and increase biocorrosion [1, 2, 3, 4]. Furthermore, they can,

among a plethora of other illnesses, give rise to implant-related infections on catheters,

or joint prostheses or be the cause of sexually transmitted diseases such as gonorrhoea [5,

6, 7]. Since Staphylococcus aureus, as the main culprit for device-related infections, as

well as Neisseria gonorrhoeae, as the causative agent of gonorrhoea, can be resistant to

antibiotics, it is paramount to understand the initial steps of attachment to a substrate

and subsequent colony growth [6, 8]. In the native setting, the aspect of colony growth

and adhesion is imminently linked and certainly a better understanding of adhesion

benefits a greater understanding of colony growth. While investigating the interplay

of both is an interesting research direction this thesis investigates both aspects in two

distinct model systems.

In the first model system, bacterial adhesion of Staphylococcus aureus is studied on

abiotic surfaces, which while directly relevant for some applications, also provides a

controlled system to gain insight into general principles of microbial adhesion. To this

end, I develop and explore Monte Carlo simulations designed to mimic single-cell force

spectroscopy experiments. These developments have been performed in close collabo-

ration with the Jacobs group at Saarland University, which performed single-cell force

spectroscopy experiments of Staphylococcus aureus. The resulting model is designed to

provide a coarse-grained minimal description, which understands bacterial adhesion as

primarily mediated by thermally fluctuating cell wall macromolecules. While in this

approach deformations of the bacterium, typically associated with adhesion, are ne-

glected, it allows modelling of adhesion to flat, curved and even rough surfaces when

loading forces are negligible.

The second model system are microbial range expansion experiments on a homogeneous

substrate. While range expansion experiments help to directly study the infection dy-
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1 Introduction

namics on a flat model substrate it also provides, due to short generation times, a toy

model to investigate the link between pattern formation and evolutionary dynamics in

general. In particular, I focus on the role of division induced pushing forces and the role

of heterogeneous mechanical interactions. This is, for instance, realised by a network

of piliated bacteria such as Neisseria gonorrhoeae which have been experimentally in-

vestigated by Zöllner et al. [9]. While my work has been solely stochastic simulations,

they were designed to recreate those experiments.

The thesis is structured as follows: In chapters one and two I will introduce background

information from Physics and Biology. This includes terminology, fundamental mod-

els and general background information, which are needed to understand the systems

studied. Recent work, models, and the current understanding in the fields of bacterial

adhesion and microbial range expansion will be presented in chapters four and five re-

spectively. This will set my work, presented in chapters six and seven into the context

of the present scientific research. The final chapter will summarize the achievements,

draw conclusions from the presented work and will provide an outlook into possible

future research programs combining both threads of investigation.

2



2 Fundamentals from Physics

This chapter introduces terminology, and basic models needed to understand the work

developed in this thesis. Therefore, this chapter will serve as a brief reminder and

references for a more in-depth presentation will be given. I start by introducing the

classical models of colloidal science and contact mechanics. Then I introduce basic

notions of stochastic processes, as well as polymer and surface growth models.

2.1 DLVO theory

Derjaguin, Landau, Verwey and Overbeek developed a theory for predicting the stabil-

ity of the colloidal system nowadays named DLVO theory. It considers the repulsion of

overlapping electrostatic double-layer forces around individual colloids and attractive

van der Waals interactions.1 Models for electrostatic double-layer forces can be com-

plicated and in many instances not analytically solvable. I only present a simple model

which considers a diffusive double layer in the limit of low surface potentials. This

allows to formulate the concepts easily, while still providing qualitative explanations. If

DLVO theory is to be applied in a quantitative manner these simplifications need to be

dropped. The theory is nowadays applied outside the original scope and I will discuss

the application to bacterial adhesion in section 4.2.1.

To describe the electrostatic potential around a single colloidal particle inside an elec-

trolyte solution Poisson’s equation from Electrostatics is combined with the Boltzmann

1Note that van der Waals interactions between bodies composed of different materials can also be
repulsive. However, Hamaker [10] proved that the van der Waals interactions between identical
materials inside a liquid are attractive as long as the liquid has no preferred orientation.

3



2 Fundamentals from Physics

distribution for the charge density in an electrostatic potential (diffusive double layer).

The resulting equation is the Poisson Boltzmann equation

∆Φ = −e
ε

∑
i

zinie
− zieΦ
kBT [11].

Here Φ is the electrostatic potential, e the elementary charge, ε the absolute permittivity

of the solution, zi the valency and ni the bulk concentration of the ith ion species.

This non-linear equation can be linearized in the limit of zieΦ
kBT

� 1 (Debye-Hückel

approximation) to arrive at the Helmholtz equation

∆Φ = κ2Φ ,

where κ =
√

2e2I
εkBT

is the inverse Debye screening length and I = 1
2

∑
i niz

2
i the ionic

strength. Consequently, this equation can be solved analytically for various geometries.

An example is an infinite extended plane, where the potential decays ∝ e−κx and x is

the distance perpendicular to the surface [11].

According to van Oss [12], the van der Waals interaction consists of the interactions be-

tween permanent-dipoles (Keesom interaction), permanent-dipoles and induced-dipoles

(Debye interaction) and induced-dipole induced-dipole interactions (London interac-

tion, dispersion force). All those interaction energies decay according to r−6, where r is

the distance of both molecules. On macroscopic scales, however, Hamaker [10] derived

the van der Waals interaction energy between two macroscopic objects from a linear

superposition of the molecular interactions as

VvdW(r) ∝
∫
dV1

∫
dV2

ρ(~r1)ρ(~r2)

|~r1 − ~r2|6
.

This integral can be computed explicitly for various bodies, which results typically in

a much weaker decay of the interaction energy than r−6. For instance, the interaction

energy between two semi-infinite plates decays as r−2 and therefore van der Waals

interactions play a dominant role in colloidal science [12].

An important approximation for small separations, which can be performed for many

body-body interactions is the Derjaguin approximation. In this approximation, the

interaction energy is essentially approximated by the interaction energy between two

parallel plates [11]. I want to emphasize that treating molecular interactions via sim-

ple superposition to arrive at the macroscopic interactions is not rigours and Lifshitz’s

4



2.1 DLVO theory

created a more advanced theory, which uses the dielectric susceptibilities of the mate-

rials to compute the interactions [12]. The theory is, however, quite evolved and not

necessary for a qualitative understanding and therefore I will not introduce it.

The DLVO theory combines the van der Waals attraction of colloidal particles with

the repulsion from the overlap of the electrostatic double-layers. The balance between

this attractive and repulsive interaction determines the typical distance between two

colloids and therefore if the solution coagulates. As discussed earlier, the electrostatic

potential and interaction energies are known. However, to describe the full thermo-

dynamic behaviour also the entropy contributions need to be considered. This can be

included by considering the Gibbs free energy2. The Gibbs free energy G of an electro-

static double-layer in the Debye-Hückel approximation is equal to −1
2
σΦ [13]. In the

DLVO theory, the free energy of two double-layers is linearly combined with the van der

Waals attraction [14]. If steric repulsion is neglected, this results in the limit of small

separations in

G(x) = Ae−κx +
B

x2
.

This shows (see figure 2.1) that at small distances the van der Waals attraction dom-

inants, while at intermediate distances the electrostatic repulsion prevails. The re-

pulsion can be tuned via the width of the electrostatic double-layer by changing the

Debye screening length. Depending on this the free energy shows either only a primary

minimum at small separations, which is followed by a potential barrier or an additional

secondary minimum after the potential barrier. Inside the secondary minimum, the par-

ticles are only loosely attached and therefore if they can overcome the potential barrier

by thermal motion, the system drops into the primary minimum and coagulates.

2Since for most applications fixed pressure and not volume is the more realistic situation Gibbs free
energy and not Helmholtz free energy is used.

5



2 Fundamentals from Physics
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Figure 2.1: Gibbs free energy of pure electrostatic repulsion, van der Waals attraction and
the DLVO free energy for two different Debye screening lengths.

2.2 Contact mechanics

Contact mechanics studies the mechanical behaviour of two continuous bodies in con-

tact. General solutions for a plethora of axis-symmetric problems can be found in the

book of Popov et al. [15]. This section, however, focuses on a sphere in contact with an

infinite flat surface. I present the results for the Hertz model, which considers elastic

friction less contact. Afterwards I extend the presentation to the JKR and DMT models

which both address the role of adhesion forces in contact mechanics. I only sketch the

derivations and refer for more details to the book of Popov [16].

The classical Hertz model considers an elastic sphere of radius R, reduced Young’s

modulus E∗ = E
1−ν2 , where E is the Youngs modulus and ν the Poisson ratio, pressing

against a rigid flat surface.3,4 If the sphere of radius R would penetrate up to depth d

into the flat surface (see figure 2.2) the area inside the sphere below the surface needs

to deform.

3If both bodies are elastic then 1
E∗ =

1−ν2
1

E1
+

1−ν2
2

E2
where E1, E2 are the Youngs moduli and ν1, ν2

Poisson’s ratios.
4Analogously the surface can be considered to be perfectly rigid and the sphere to be elastic. Closer

to the applications in this thesis is the first situation.

6



2.2 Contact mechanics

R

d
ur

Figure 2.2: The geometry of the Hertz contact problem if a sphere of radius R would
penetrate up to depth d into the flat surface.

From classical elasticity theory, the deformation into the direction normal to the surface

is given by

u(x, y) =
1

πE∗

∫∫
p (x′, y′)√

(x− x′)2 + (y − y′)2
dx′dy′ ,

where p is the pressure distribution arising from a force normal to the surface. For a

known radial symmetric distribution the acting force is

F = 2π

∫ a

0

p(r)dr ,

where a determines the yet to be determined contact radius. Geometric considerations,

in the limit of small indentation (i.e. d� R), show that the surface has to be displaced

by

u = d− r2

2R
.

7



2 Fundamentals from Physics

This determines the pressure field under the condition that the elastic energy5 of the

system is minimal at contact radius a. Following this procedure, the contact radius is

computed to be aHertz =
√
R · d and the acting force is

FHertz =
4E∗

3R
a3

Hertz .

Therefore, the force increases monotonously with increasing contact radius and shows

without any external load a vanishing contact radius. This reflects the absence of any

adhesion between the sphere and the substratum and predicts at the same time that

no force is counteracting the separation of the sphere from the surface.

Derjaguin, Muller, and Toporov introduced the DMT model that incorporates adhesion.

In their model, the Hertzian deformation remains valid, but it considers van der Waals

forces acting outside the contact area. Therefore, the contact area remains the same as

in the Hertz model but the acting force is derived by Maugis [17] to be6

FDMT =
4E∗

3R
a3

DMT − 2πγR .

Accordingly, the force increases monotonously with increasing contact radius as in the

Hertz model, but for no external load, a finite contact radius of
(

3πγR2

2E∗

) 1
3

is obtained (see

figure 2.3). For contact radii smaller than this threshold the force becomes attractive

until the maximal force FDMT,A = −2γπR is reached. This maximal force is termed

adhesion force and needs to be counteracted to separate the sphere from the surface.

Johnson, Kendall and Roberts extended the Hertz model to incorporate adhesion in

a different way. The JKR model includes adhesion via a constant adhesive energy

contribution inside the contact area. Using this energy contribution the pressure field

is derived as before and the contact radius is determined by the equation

d =
a2

JKR

R
−
√

2γπ

E∗
aJKR ,

5π
∫ a
0
u(r)p(r)dr

6In the Maugis model, a step function for the acting force is used. Strictly speaking, the derived force is
not the adhesion force of the original DMT model and therefore sometimes denoted FDMT-M [18, 19]
.

8



2.2 Contact mechanics

where γ is the relative surface energy of sphere and surface. The acting force is derived

to be

FJKR =
4E∗

3R
a3

JKR −
√

8πγE∗a
3
2
JKR .

Accordingly, the JKR model possesses, like the DMT model, a non zero con-

tact radius for vanishing external load. For larger contact radii the force increase

monotonously while below this critical contact radius the force becomes attractive but

the strength varies non monotonously (see figure 2.3). The adhesion force obtained is

FJKR,A = −3
2
γπR. Notably the JKR model has two solutions for negative indentation

depths which indicates that the surface stays connected to the sphere, while the sphere

is moving away from the surface. The surface detaches from the sphere once the min-

imal distance is reached. This minimal distance separates both branches of the curve,

which depending on the starting indentation is chosen.

0 0.5 1 1.5 2 2.5 3

-2

-1

0

1

2

3

4

5

6

Hertz

JKR

DMT

-1 -0.5 0 0.5 1 1.5 2 2.5 3

-2

-1

0

1

2

3

4

5

6

Figure 2.3: Normalized contact forces depending on the normalized contact areas (left) or
indentation depths (right) of the Hertz, JKR and DMT model. The normalization is done
according to Maugis [17]. The minimal value of the contact force is termed adhesion force.
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2 Fundamentals from Physics

These models are two examples taken from the vast literature about the role of adhesion

in contact mechanics.7 However, it was shown by Tabor [20] and Maugis [17] that these

models are the limiting cases of a more general approach with a continuous transition

from JRK to DMT model characterized by the Tabor Parameter µ = 3

√
Rγ2

(E∗)2z3
0

. Here

z0 denotes the equilibrium distance between atoms. While for soft materials with large

surface energies and radii (µ � 1) the JKR theory is the better approximation, for

hard spheres with small radii and low surface energies (0 < µ � 1) the DMT theory

is [17].

2.3 Stochastic processes

Stochastic processes are a well-known approach to study and describe complex systems.

While from the point of view of classical physics systems are perfectly predictable,

the interactions of many parts in an often non-linear or even chaotic manner lead

to a practical limit of this predictability [21]. Systems on macroscopic scales follow

simple laws, like Boyle’s law of a gas in a piston, or ordinary differential equations,

e.g. population models like Lotka-Volterra. On mesoscopic scales, however, they are

subject to fluctuations [21, 22]. Therefore effective descriptions by a few variables are

chosen where the other degrees of freedom are effectively described as stochastic noise.

With this the systems are explicitly or implicitly replaced by an ensemble of systems

and a stochastic description is obtained [22]. The following introduction is based on the

presentations of Gardiner [21] and Van Kampen [22].

A stochastic process is a collection of random variables St with a possible continuous

set of indices t representing time.8 This variable is defined by the family of distribution

functions p(sn, tn, · · · , s0, t0)9 specifying the probability10 of (St0 , . . . , Stn) taking values

(s0, . . . , sn) at times (t0, . . . , tn) . Due to conditioning the distribution can be expressed

as

p(sn, tn, · · · , s0, t0) = p(sn, tn|sn−1, tn−1, . . . , s0, t0)p(sn−1, tn−1, · · · , s0, t0) , (2.1)

7For a review see for instance Ciavarella et al. [19].
8An equivalent view is that a stochastic process is a random variable that has functions as values.
9These finite-dimensional distributions, need to fulfil the Kolmogorov consistency conditions to define

a stochastic process [23].
10In the case of continuous variables, it is a probability density. For the sake of brevity, I only refer to

probabilities.
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2.3 Stochastic processes

where p(sn, tn|sn−1, tn−1, . . . , s0, t0) is the probability of Stn having the value sn if at

times (tn−1, . . . , t0) (St0 , . . . , Stn−1) had values (s0, . . . , sn−1). A fixed time ordering

t0 ≤ t1 ≤ · · · ≤ tn gives rise to interpreting the equation in terms of past events. The

probability is then decomposed into conditional probabilities depending only on the

past values and transitioning from the past into the current state. The most important

classes of processes, which use this approach are Markov and Semi-Markov processes,

where the transition probabilities only depend on the current state. They will be intro-

duced in the next subsection and provide the workhorse for many applications. Since

obtaining analytical expressions for the probability distributions is only possible in rare

cases additionally sampling techniques are required.

2.3.1 Markov processes

A Markov process is defined by the property that if a given system is in a particular

state, the transition into any other state only depends on the present state, i.e.

p(sn, tn|sn−1, tn−1, . . . , s0, t0) = p(sn, tn|sn−1, tn−1) ∀n .

Then equation 2.1 can be fully decomposed into all transition probabilities p(si, ti|sj, tj)
and the initial probability distribution p(s0, t0). This can be used to derive the

Chapman-Kolmogorov equation, a functional equation, relating all p(si, ti|sj, tj) to each

other [21]. This equation limits the set of possible transition probabilities if the process

is supposed to be Markovian. Often it is more convenient to derive a partial differential

equation relating the probability distributions. I only present the situation where the

system is characterised by a set of discrete variables in continuous time, i.e. continuous-

time Markov chains (CTMC).11

Often it is easier to specify the short time probabilities of transitioning, i.e. transitioning

rates, from state s to state s′ in an infinitesimal time interval

ω (s′|s, t) = lim
∆t→0

p(s′, t+ ∆t|s, t) .

11For a mixed set of variables see Gardiner [21] who denotes the resulting equation “differential
Chapman-Kolmogorov equation”.
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Using this definition the master equation

∂p (s, t|s′, t′)
∂t

=
∑
s′′

[ω (s|s′′, t) p (s′′, t|s′, t′)− ω (s′′|s, t) p (s, t|s′, t′)] (2.2)

p (s, t|s′, t) = δ (s− s′) (2.3)

can be derived from the Chapman-Kolmogorov equation [21] . The master equation

connects the conditional probability of being in sate s at time t when the system has

been in state s′ at t′ with the probabilities of transitioning from all the states s′′ into

s and leaving sate s to an arbitrary state s′′. Usually, a system is defined by imposing

transition rates and it can be proven that every solution of the master equation, with

reasonable rates, generates a set of probability densities, which satisfy the Chapman-

Kolmogorov equation [21].

From equation 2.2 also

∂p (s, t)

∂t
=
∑
s′′

[ω (s|s′′, t) p (s′′, t)− ω (s′′|s, t) p (s, t)] , (2.4)

which is an evolution equation for the single time probabilities, can be derived. Since

this equation only relates single time-probabilities it does not fully define a Markov

process. For this transition probabilities, i.e. two time-probabilities, need to be consid-

ered.

An important special case of Markov processes, which we only will consider in the

following, are homogeneous Markov processes, i.e. processes with time-independent

transition rates [21]. In this case, it is possible to study stationary processes, i.e. where

the single time probabilities12 are time-independent and ∂p(s,t)
∂t

= 0 ∀s is required. In the

case of an ergodic Markov chain13, it can be proven that all solutions tend independently

of the initial conditions to the stationary solution [22]. In this case a sufficient, but not

necessary, condition for stationarity can be identified from equation 2.4 as

ω (s|s′′) p (s′′) = ω (s′′|s) p (s) .

This condition is named detailed balance. It states that there are no microscopic flows

of probability between states and therefore models thermodynamic equilibrium. If a

12For the transition probabilities additional p(s, t|s′, t′) = p(s, t− t′|s′,0) is required [21].
13A Markov chain is ergodic if from any state every other state can in principle be reached.
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2.3 Stochastic processes

system with a defined Hamiltonian H is given, this condition is equivalent to the equi-

librium condition in statistical mechanics where a system is coupled to a heat bath

with thermal energy β14. The probability is then given by the well known Boltzmann

distribution

p (s) =
e−βH(s)

Z
,

where Z is the normalizing factor named partition function. Computing the partition

function analytically, however, is for most systems not feasible and sampling techniques

as introduced in section 2.3.2 are required.

At this stage it is worth emphasising that detailed balance is not a necessary condition

for stationarity and systems in non-equilibrium steady states (NESS), i.e. states with

a microscopic flow of probability, can be studied.

2.3.2 Sampling

Since obtaining analytical expressions for the probability distributions is only possi-

ble in rare cases sampling techniques are required. I briefly introduce how realisations

of Markov chains in continuous time can be produced via the stochastic simulation

algorithm (SSA). For this inverse transform sampling, which I introduce beforehand,

is required. Then I introduce the Metropolis-Hastings algorithm, which constructs a

Markov process to sample probability distributions, which are known up to the normali-

sation constant. This allows in particular to sample systems that are in thermodynamic

equilibrium.

14 1
β = kBT
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Inverse transform sampling

Let F (x) be a known cumulative probability function15, i.e. the probability that a

random variable assumes a value smaller or equal x. Further, let U be a random

variable uniformly distributed in [0,1). Then

X := F−1 (U)

is distributed according to F [24]. Here

F−1 (y) := min{x ∈ R|F (x) ≥ y}

denotes the generalized inverse function. This definition is necessary to cover discrete

and continuous situations at the same time. In the case of a continuous distribution,

this reduces to the usual inverse function.

As an example consider the sampling of exponential distributed random variables with

rate λ, i.e. the density is

ρ(t) = λe−λt .

The cumulative probability function is

F (x) =

∫ x

0

λe−λtdt = 1− e−λx

and its inverse

F−1 (x) = −1

λ
log (1− x) .

Therefore − 1
λ

log (1− U) would sample the desired random variable. Since 1 − U and

U are both uniformly distributed in [0,1) it is, however, simpler to use

X = −1

λ
log (U) .

15This defines, up to measure zero, the probability density or in the discrete case the probability of a
particular value.
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In the case of a purely discrete distribution, each event can be mapped to a non-negative

integer. The cumulative distribution then becomes

F (x) =

bxc∑
i=0

pi ,

where pi are the probabilities for the value i. The inverse is

F−1 (y) = x⇔
bxc−1∑
i=0

pi < y ≤
bxc∑
i=0

pi .

Therefore inverse transform sampling for a discrete distribution consists of sampling U

and finding the integer X such that

X−1∑
i=0

pi < U ≤
X∑
i=0

pi

holds. This algorithm is also called tower sampling [25].

Stochastic simulation algorithm

Sampling of CTMCs with time-independent rates in continuous time is based on the

fact that the transition probability densities, i.e. the probability densities of entering

state s at time t if the system entered into state s′ at time t0 are distributed according

to

ρ(s, t|s′, t0) = w(s|s′)e−w(s|s′)(t−t0) [26]. (2.5)

According to Gibson and Bruck [26], three methods are utilizing the insight that the

transition times to the next event are exponentially distributed:

1. First Reaction Method:

If there are n transitions at time t0 possible, this method generates transition times

T1, . . . Tn according to equation 2.5. Then the event of the smallest transition time

is executed and system time propagated.

15
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2. Direct Method:

The following observations are used. The minimum of all transition times is again

exponentially distributed i.e.

min(T1, . . . , Tn) ∼
(

n∑
i=1

w(si|s′)
)
e−(

∑n
i=1 w(si|s′))(t−t0) (2.6)

and the probability that the transition into si was the fastest is

psi =
w(si|s′)∑n
i=1w(si|s′)

.

The direct method utilises this and samples once the next reaction time according

to equation 2.6 and the corresponding event independently by inverse transform

sampling (tower sampling) as described before.

3. Next Reaction Method:

This method samples not the time until the next transition but the absolute time

for each event. This is equivalent to the first reaction method but allows to reuse

already sampled event times. The method keeps track of all the event times and

only samples new if the transition rates change. Reusing random numbers is in

principle dangerous but Gibson and Bruck [26] show that in the case of exponential

event times it is permissible.

The key issue in all presented algorithms is the efficient use and storage of already

sampled event and transition times. While the next reaction method requires to sort the

event times, the direct method requires constant updates of the probability distribution

specifying possible events. Since in large systems this can become problematic numerous

variants and approximation schemes are present in the literature [27].

Metropolis-Hastings algorithm

To sample from probability distributions, e.g. the Boltzmann distribution, where only

the relative probabilities and not the normalization constant are known the Metropolis-

Hastings algorithm can be used. The algorithm constructs a discrete-time Markov

process, which in the limit of many steps follows the desired distribution p(s). For this,

16
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the algorithm is constructed to fulfil detailed balance and each step consists of two

sub-steps [25]:

1. if the system is in state s′ propose a new state s with probability A (s|s′)

2. accept this proposed new state with probability min
(

1, p(s)A(s′|s)
p(s′)A(s|s′)

)
Since the acceptance probability only uses relative probabilities no normalisation con-

stant is needed. There are two important special cases of this algorithm [25]:

• Metropolis:

If the proposal distribution is symmetric i.e. A (s|s′) = A (s′|s) and if the prob-

ability is given by the Boltzmann distribution, this reduces to the acceptance

probability of the Metropolis-Algorithm min
(
1, e−β(H(s)−H(s′))

)
.

• Direct Sampling:

If the proposal distribution is chosen as A (s|s′) = p(s) ∀s′, then the acceptance

probability is always one. Note that this assumes the normalisation constant is

known. The lack of this knowledge is the reason to use the Metropolis-Hastings

algorithm in the first place.

Important to note is, that the Metropolis-Hastings algorithm generates a sequence of

states which only in the limit of many steps converges to the desired distribution. The

number of steps until convergence, whether it is independent of the initial condition,

and if the algorithm samples the whole state space sufficiently depends on the energy

landscape involved.16 Dealing with these issues is part of the art of Monte Carlo simu-

lations.

2.3.3 Semi-Markov processes

Let (Sn)n∈N a collection of states and (τn)n∈N the corresponding waiting times between

entering and leaving. The time entering a state is obtained by Tn =
∑n

i=1 τi and a

Semi-Markov process is defined as

Xt = Sn : Tn ≤ t < Tn+1

16Ergodicity, i.e. that a given algorithm samples all of the phase space independent of the initial
condition can be analysed for given proposal distributions, however, systems can still be practically
non-ergodic [25].
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i.e. since the event time Tn, the system is in state Sn and leaves it at time Tn+1 [28]. If

the waiting times between transitions are exponentially distributed a time-homogeneous

Markov process is obtained17. Therefore, Semi-Markov processes allow for non-

exponential waiting times between transitions. This is useful in modelling, e.g. the

division of a cell, where the time for cell division, immediately after a division is im-

possible. Sampling these models can be accomplished analogous to the next reaction

method of Markov chains (see section 2.3.2), i.e. sampling and storing absolute event

times for each event and executing the event with the closest time to the current time.

2.4 Polymer models

This section introduces some basic polymer models to set the worm-like chain (WLC)

model into context. A polymer is described as N interacting units, called monomers,

where the ith unit is connected to the (i − 1)th unit by the bond vector ~ri (see figure

2.4). I only present ideal chains, which neglect self-avoidance and correlations between

distant18 segments [29].

I will follow mostly the presentations of Rubinstein et al. [29] and Doi and Edwards

[30], while reordering and condensing the material to what is needed to obtaining a

basic understanding of polymer models, without being too detailed.

~ri

~R

Θi,i+1

Figure 2.4: Exemplary polymer chain with vector ~ri connecting the ith and (i + 1)th
monomer. Θi,i+1 is defined as the angle between two consecutive monomers and ~R is the
end-to-end vector.

17Note that Semi-Markov processes are also different from time inhomogeneous Markov processes,
where the transition rates depend on global time. In a Semi-Markov process, the probability of
leaving a state may depend on how long the system is in that particular state, while in Markov
processes it does not.

18The distance is measured along the contour length.
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The extension of the polymer can be characterized by the end-to-end vector which is

simply given by ~R =
∑N

i=1 ~ri. This is a stochastic quantity and can be characterized by

the first and second moment as

〈~R〉 =
N∑
i=1

〈~ri〉

〈~R2〉 =
N∑
i=1

N∑
j=1

〈~ri · ~rj〉 =
N∑
i=1

N∑
j=1

〈rirj cos Θij〉 .

Here, I introduced the bond length |~ri| = ri and the angle Θij between the monomers. I

assume, in the following, that the bond length between the monomers remains constant

i.e. ri = l ∀i and so the second moment can be expressed as

〈~R2〉 = l2NCN ,

where CN defines the Flory characteristic ratio CN := 1
N

∑N
i=1

∑N
j=1 〈cos Θij〉.

The simplest polymer model is the freely joined chain (FJC), where 〈~ri〉 = 0 and no

correlations between monomers, i.e., 〈cos Θij〉 = 1 − δij ∀i, j, are assumed. The first

two moments can be evaluated to be

〈~R〉 = 0

〈~R2〉 = l2N .

A simple model that correlates the position of the monomers is the freely rotating chain

(FRC), where the bond angle is fixed, i.e. ~ri · ri+1 = l2 cos Θ ∀i, j. Then

〈~ri · ~rj〉 = l2 〈cos Θij〉 = l2 cos|i−j|Θ

can be derived and the Flory characteristic ratio becomes

CN =
1 + cos Θ

1− cos Θ
+

2 cos Θ

N

1− cosN Θ

(1− cos Θ)2 .
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For N � 1 the second term is negligible and 〈~R2〉 ∝ N is obtained. As in this ideal chain

model, also other models display typically an exponential decay of their correlation over

a characteristic length scale LP , i.e.

〈cos Θij〉 ∝ e
− l
Lp
|i−j|

.

Lp is termed the persistence length and for those models 〈~R2〉 ∝ N is obtained gener-

ally.

An important property of every ideal chain is, that it can be mapped to a FJC model

by defining a new segment length b, the Kuhn-length, after which the monomers are

mostly uncorrelated. The second moment of this new chain, consisting of M Kuhn

segments of length b, simply is

〈~R2〉 = b2M ,

whereby matching moments and total length of the polymer M and b can be determined

from the properties of the original ideal chain as M = N
CN
, b = lCN .

The distribution of the end-to-end vector is generally unobtainable in a closed-form.

However, if the segments are independent the distribution is a product of the individual

bond vector distributions. If for instance the polymer is modelled as monomers con-

nected by Hookean springs inside a heat bath, the energy contribution of each spring

is quadratic in the relative distances of the monomers. Then utilising the bond vectors

as coordinates leads to an independent Gaussian distribution of the individual bond

vectors. This results in a Gaussian distributed (Gaussian chain) end-to-end vector.

Due to the central limit theorem, the distribution of large chains (N � 1) is in general

Gaussian and fully determined by the first and second moment.

2.4.1 Response to stretching

The response of a polymer to pulling can be derived by computing the free energy. For

a general polymer model this is quite involved and for most models not analytically
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solvable.19 Since for the FJC the energy is constant, a force ~F = f êz acting on the

end-to-end vector can easily be computed. The resulting Gibbs free energy20 is

G = −kBTM
(

ln 4π sinh

(
fb

kBT

)
− ln

fb

kBT

)
.

From the thermodynamic relation dG = −SdT − 〈~R〉 df it is easy to see that

〈~R〉 = −∂G
∂f

= bM

(
cosh

(
fb

kBT

)
− kBT

fb

)
.

For small forces, a Hookean response with stiffness 3kBT
Mb2

is obtained. Since this stiffness

is temperature dependent the model is also named entropic spring.

2.4.2 Worm-like chain model

A simple model, which includes the bending rigidity between monomers, is the Kratky-

Porod model. The Hamiltonian is given as

H = −κ
2

M∑
i=2

~ri−1 · ~ri
b2

,

where κ defines the bending rigidity. The worm-like chain (WLC) model is obtained in

the continuum limit b→ 0, Mb = L such that

HWLC =
κ

2

∫ L

0

(
∂t̂

∂s

)2

ds .

Here L is the contour length and t̂ the tangential vector along the contour of the poly-

mer. Therefore, the Hamiltonian describes the squared curvature integrated along the

polymers contour. Note that a linear term would treat positive and negative curvatures

differently, and therefore needs to vanish for isotropic bending. Hence, the WLC model

19Stretching at the end-to-end vector gives a linear contribution of each bond vector to the energy.
For models with quadratic contributions to the energy, like Gaussian chains, this additional term
can be easily treated by completing the square. For a general treatment see Doi and Edwards [30].

20Rubinstein et al. [29] give the helpful remark that analogous to the isothermal-isobaric ensemble
(constant T,p), here the force and not the extension is constant and that is why the Gibbs free
energy and not Helmholtz free energy is used. Note that in this analogy the signs of p and f do not
match.
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can also be understood as the approximation for an isotropic bending polymer up to

second order in the curvature.

For the second moment

〈~R2〉 =

∫ L

0

∫ L

0

〈t̂(s) · t̂(s′)〉 ds’ds =

∫ L

0

∫ L

0

e
− |s−s

′|
Lp ds’ds = 2LpL

(
1− Lp

L

(
1− e−

L
Lp

))
is obtained [29, 31] . The same result can be found in the continuum limit (l → 0,

Θ→ 0, Nl = L, l
Θ2 = Lp

2
) of the FRC model [29]. Two interesting limits are

〈~R2〉 =

L2 , L� Lp

2LLp , L� Lp

showing that for polymers, which are much longer than the persistence length the results

of the FJC with b = 2Lp is recovered and for contour lengths much shorter than the

persistence length rigid rod behaviour is retained. The result b = 2Lp is generally

obtained in the continuum limit of the FRC model and therefore generally used. From

the second moment, the relation of the persistence length to the bending rigidity can

be found to be Lp = κ
kBT

[32].

To obtain the full distribution for the shape of the polymer the partition function

Z(t̂, s|t̂0,0) needs to be computed. SinceH is a functional the integration in the partition

function runs over all possible tangential vectors, i.e. it is a path integral. This can be

formally solved but is quite evolved and details can be found in the book by Yamakawa

and Yoshizaki [31].

I am, however, primarily interested in the response of the polymer, when a force ~F acts

onto one end of the polymer. This can be incorporated into the Hamiltonian by adding

−
∫ L

0
~F · t̂ds. The resulting path integrals are hard to treat but a Schrödinger type

equation, with a fitting initial condition, can be derived for the partition function

∂sZ(t̂, s|t̂0,0) =

[
~F

kBT
· t̂+

kBT

2κ
∆t̂

]
Z(t̂, s|t̂0,0)

Z(t̂,0|t̂0,0) = δ(t̂− t̂0) [33].

22
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This can generally only be solved numerically, but Marko and Siggia [34] developed an

approximation for a force acting along a single axis, i.e. ~F = f êz. The approximated

force under stretch l = [~r(L)− ~r(0)] · êz is

f

(
l

L

)
=
kBT

2b

(
4
l

L
− 1 +

1(
1− l

L

)2

)
,

where b is the Kuhn length computed as b = 2LP = 2κ
kBT

.

2.5 Surface growth

Many phenomena like the interface of a fluid in a porous medium, flame fronts, grow-

ing bacterial colonies, the deposition of snowflakes or even atoms in molecular beam

epitaxy can be viewed and understood as growing surfaces [35]. While the application

to bacterial colony growth will be made explicit in chapter 5, this section provides a

brief introduction to the ideas and methods of this broad field of research. For a more

extensive introduction see the monographs of Barabási and Stanley [35], Krug [36] and

the review article of Halpin-Healy and Zhang [37].

This section presents how growing surfaces can be characterized by kinetic roughening.

How universal, i.e. independent of the particular model in question, the characterisa-

tions are and introduces the important Eden model.

2.5.1 Kinetic roughening

Consider as an example for growth a deposition process with a fixed system size L

as illustrated in figure 2.5a.21 The global interface width22, characterising the rough-

ness of the surface, is defined as the root mean square fluctuations of the height, i.e.

w(t) =

√
〈
(
h− h

)2〉 [38]. Here · denotes the spatial average over the entire system in

a single realisation and 〈·〉 the averaging over different realisations. This roughness, as

shown in figure 2.5b, typically grows as a power law, with growth exponent β, until a

21In cellular growth the building blocks are generated by the already existing surface via cell division
and do not enter from outside the system.

22One can also define a local interface width, where the average is performed over a window of size
l ≤ L. If the exponents are distinct from the exponents derived from the global width the process
is said to displays anomalous roughening [38].
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L

h

(a)

t

w

ws

∝ tβ

t× ∝ Lz

ws ∝ Lα

(b)

Figure 2.5: (a) Illustration of a possible surface growth model, with system size L and
surface height h. Inspired by a figure from Barabási and Stanley [35]. (b) Typical behaviour
of the surface roughness, characterized by the interface width w, displaying kinetic roughening
with a typical roughness after the crossover time t×.

crossover time t× ∝ Lz, with dynamic exponent z is reached. After this, the width has

saturated to ws ∝ Lα with roughness exponent α.

These observations23 can be summarized in the Family-Vicsek scaling relation

w(t) = Lαf( t
Lz

), where f is a scaling function

f(x) =

xβ , x� 1

const. , x� 1
.

The exponents are not independent of each other and from continuity at the crossover

time z = α
β

can be derived for all growth processes fulfilling the Family-Vicsek scaling.

These exponents are universal for certain growth processes and can be predicted from

stochastic continuum equations introduced in the next subsection. These neglect details

of particular growth models in question and allow the classification of growth processes

into different universality classes.

23In practice, this has to be confirmed by collapsing the data, under appropriate rescaling, for different
system sizes to a master curve.
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Universality classes and stochastic continuum equations

Stochastic continuum equations allow the description of growth processes in the hydro-

dynamic limit. According to Barabási and Stanley [35], the equations have the form

∂h(~x, t)

∂t
= G[h, ~x, t] + η(~x, t) ,

where ~x ∈ Rd is the spatial coordinate, G is a to be defined growth function and η is a

white noise term24 satisfying 〈η(x, t)〉 = 0, 〈η(x, t)η(x′, t′)〉 = 2Dδ(t− t′)δ(x− x′).

The function G can be construed by various symmetry principles nicely presented by

Barabási and Stanley [35]. The invariance under time, height and space translation

rules out explicit t, h, x dependences, such that G needs only be expanded in various

combinations of (∇nh) and (∇h)m. Further symmetries as, rotation, inversion of growth

direction and up/down symmetry rule out further combinations. Since this equation

represents a hydrodynamic limit, it can be shown from scaling arguments and dynamic

renormalisation analysis that acceleration terms and spatial derivatives of higher order

are negligible compared to lower ones [35].

The lowest order term that fulfils all requirements is ∇2h giving rise to the Edwards-

Wilkinson (EW) equation

∂h(~x, t)

∂t
= ν∇2h+ η(~x, t) .

From this equation, the exponents can be predicted via scaling or renormalisation and

are found to be α = 2−d
2

, β = 2−d
4

, z = 2 [35].

Barabási and Stanley [35] give a nice overview of further universality classes and their

critical exponents. The important Kardar-Parisi-Zhang (KPZ) universality class will

be introduced in the next section in detail. It is important to emphasise that not solely

the symmetry principles determine the universality class, but also the interaction range

and spatial-temporal correlations play a role. In particular, coloured or quenched noise,

i.e. where the time dependence of the noise is replaced by the dependence of the surface

height, can change the scaling exponents.

24Also coloured noise can be studied.

25



2 Fundamentals from Physics

KPZ equation

Since the Edwards-Wilkinson equation, presented in the previous section, is linear it

does not incorporate that the growth of a surface is typical along its local surface

normal. If the height grows proportional to the amplitude of the surface normal√
1 + (∇h)2 |∇h|�1≈ 1 + 1

2
(∇h)2, the (∇h)2 term needs to be considered to incorpo-

rate lateral growth [35, 39]. Adding this non-linear term to the EW equation leads to

the Kardar-Parisi-Zhang (KPZ) equation

∂h

∂t
= ν∇2h+

λ

2
(∇h)2 + η (~x, t) .

From this the scaling exponents for d = 1 can be computed as α = 1
2
, β = 1

3
, z = 3

2
,

but are for arbitrary dimensions unknown [35, 39].

The KPZ equation has connections to many fields of physics and mathematics like

stochastic heat equation, random matrix theory, totally asymmetric simple exclusion

process (TASEP) or directed polymers in random media [37, 39]. A nice recent intro-

duction to these connections and the KPZ equation as a whole is given by Takeuchi [39].

Of note is, that strictly speaking the equation as given here is mathematical not well

defined and the successful efforts for a rigorous definition have gained Hairer a Fields

Medal in recent years [40]. In one dimension even analytic expressions for the height

process can be found for various initial conditions [39, 40, 41, 42]. The solution, in the

limit t→∞, is

h = v∞t+ sgn(λ) (Γt)
1
3 χ ,

where v∞, Γ are non-universal constants and χ is a random variable. The distribution

of χ depends on growth geometry, i.e. flat or curved growth, and is given by the

Tacy-Widoms distribution known from random matrix theory [40, 43].25

These results are quite remarkable and many models like the polynuclear growth model

(PNG), the TASEP, which can be mapped to a growth model, belong to the KPZ

universality class. Most importantly for this thesis, the Eden model, introduced in the

next section, belongs to the KPZ universality class [39, 43, 44].

25For curved growth, this is the distribution for the largest eigenvalue of a random matrix from the
gaussian unitary ensemble (GUE), while for flat growth it is from the gaussian orthogonal ensemble
(GOE).
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2.5 Surface growth

2.5.2 Eden model

Consider an arbitrary lattice, where occupying sites are forming the surface. For the

following discussion the distinction between surface sites (occupied sites), periphery

sites (surface sites with at least one empty next neighbour site) and perimeter sites (all

empty sites which have at least one surface site as a next neighbour) are important.

There exist three Eden models26 named A, B and C in the literature [35, 36, 45]. To

easily distinguish all models I present how the next site, which will be added to the

surface, is chosen [36, 45]:

• A: chose a random perimeter site

• B: chose a random perimeter site proportional to the number of periphery sites

i.e. proportional to its connections to the surface

• C: chose a random periphery site, and then choose one random site from its empty

nearest neighbours

Unfortunately different publications define the B and C model in the opposite way

warranting caution while consulting the literature [44, 46]. Since in this thesis, I am

concerned with cellular growth the elements driving the surface growth are the occupied

sites, and therefore the Eden C model is the most appropriate.

The Eden models, in one dimension, grown from a line shows the growth exponent

β = 1
3

consistent with KPZ universality. However, clusters grown from a single site,

show radial growth and β = 1 for large grown clusters [46]. This deviation from the KPZ

exponent is due to the lattice anisotropy producing for large clusters a diamond shape

rather than a circle [46, 47]. If an off-lattice Eden Model is used the KPZ exponent is

retained [48, 49]. In radial growth, the surface height is measured as the radial extension

relative to a reference point. The choice of reference point, e.g. the origin or the centre

of mass of the periphery sites, changes the growth exponent. Ferreira Jr and Alves [49]

nicely demonstrated that the fluctuations of the centre of mass are non-negligible even

in the asymptotic limit and only the origin as a reference point leads to KPZ scaling.

Furthermore, Alves et al. [44] showed that the radial distribution function agrees with

the Tracy-Widom distribution, for the on- and off-lattice model. This provides further

evidence that the Eden model is indeed in the KPZ universality class.

26The original Eden model is B [45].
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3 Fundamentals from Biology

In this chapter, I introduce terminology and general background information from Bi-

ology, that is needed to evaluate the content of this thesis. This includes information

on the bacteria studied, basic information on biofilm formation and how bacterial ad-

hesion is related to it, as well as a short introduction to the terminology and concepts

of evolutionary population genetics.

3.1 Biofilm formation

Biofilms are not simply passive assemblages of cells that are attached to surfaces but are

structurally and dynamically complex biological systems [5]. They develop after cells

adhere to a surface, and then, depending on the bacterial strain, produce extracellular

polymeric substances (EPS) that provide a matrix for further adhesion [3, 7]. Biofilms

provide the main mode of living for many species and can be used in many engineering

processes such as bioreactors or wastewater treatment systems [3]. However, their pres-

ence in some applications reduces efficiency. On ship hulls, they increase hydrodynamic

friction, while in pipes they reduce flow rates of fluids and increase biocorrosion causing

a reduced efficiency of cooling water systems in the processing industry [1, 2, 4]. If bac-

teria enter the body they can form biofilms as well and give rise to various infections,

e.g. gum disease and device related infections on catheters or joint prostheses [5]. One

main source of device-related infections is Staphylococcus aureus (S. aureus), which will

be introduced in section 3.2.1 in more detail [7].

A nice overview of biofilm formation is given by Arciola et al. [7], which I briefly sum-

marize (see figure 3.1b): Biofilm formation starts after the initial attachment of single

bacteria or cellular aggregates to the surface, which at first can be reversible, but be-

comes irreversible, after excretion of EPS material [3]. This process termed adhesion

can occur on abiotic, like implants, or biotic, like epithelia, materials. The adhesion
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3 Fundamentals from Biology

typically takes place on preconditioned surfaces, i.e. they are covered by extracellular

matrix (ECM) proteins and immune protein components when submerged in physio-

logical fluids. The main ECM proteins bacteria bind to are collagens, fibronectins and

fibrinogen and the class of proteins binding to them will be introduced in section 3.2.1.

Since I study adhesion to abiotic, unconditioned surfaces the adhesion is unspecific and

I will not go into details of specific protein-ligand binding.

After the initial adhesion cellular aggregation is enhanced by EPS production. Among

the EPS molecules are exopolysaccharides, proteins, and extracellular DNA, wall tei-

choic and lipoteichoic acids forming the biofilm matrix [7]. The resulting microcolony

grows, excretes more EPS and remodels the existing matrix until a mature biofilm is

formed. This mature state, however, is not stationary and parts of the biofilm can

disperse, where bacteria return to a planktonic lifestyle and become a source for further

infections in the body.

In the mature stage, the biofilm is hard to treat by antibiotics. Three mechanisms

have been proposed to explain this increased resistance. First, the extracellular matrix

provides a barrier to biocidal agents and effectively dilutes them inside the biofilm.

Second, the physiological state of bacteria is heterogeneous inside the biofilm, i.e. some

regions of bacteria are dormant. Third, the presence of a small population of persister

cells, which are immune against the antibiotic itself [5].

Since treatment of mature biofilms is challenging, it is paramount to stop biofilm for-

mation in the early stages or inhibit/reduce initial bacterial adhesion altogether. To

this end, bacterial adhesion, which I will present in chapter 4, has to be understood in

detail.

3.2 Surface composition of bacteria

In this thesis, I will mention several experiments involving different microbial strains

like baker’s yeast Saccharomyces cerevisiae (S. cerevisiae), Bacillus subtilis (B. subtilis),

Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), Staphylococcus carnosus

(S. carnosus) and Neisseria gonorrhoeae (N. gonorrhoeae). Therefore, this section will

introduce the main structural features that are of interests to the experiments. These

are only the surface structures and while these structures are present in many species,

30



3.2 Surface composition of bacteria

(a) (b)

Figure 3.1: (a) Illustration of possible infections, e.g. gum disease, catheter and implant
contamination. Reprinted from Hall-Stoodley et al. [5] with permission from Springer Nature.
(b) Phases of biofilm formation reprinted from Arciola et al. [7] with permission from Springer
Nature.

I will focus for specifics on the gram-positive bacterium S. aureus and gram-negative

bacterium N. gonorrhoeae.

3.2.1 Staphylococcus aureus

The surface structure of S. aureus is a highly complex and dynamic structure depicted

in figure 3.2. It can be decomposed into three layers, which are as follows: Counting

from the inside to the outside of the cell, the first layer consists of a lipid membrane.

It contains freely moving proteins but also anchors polymers called lipoteichoic acids

(LTAs), which protrude into the third layer. The second layer consists primarily of a

highly cross-linked network of polymers termed peptidoglycan and is named the cell

wall. This network covalently anchors wall teichoic acids (WTAs) and cell wall an-

chored proteins (CWAs). Additionally, it loosely binds ionically “secretable expanded

repertoire adhesive molecules” (SERAMs). These acids and proteins extend into the

third layer named capsule, which is composed of capsular polysaccharides such as poly-

N-acetyl-D-glucosamine (PNAG).1

1The absence of a further lipid bilayer around the capsule classifies S. aureus as gram-positive.
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3 Fundamentals from Biology

Figure 3.2: Cell wall composition of S. aureus illustrating structures important for adhesion
to biomaterial. Reprinted from Arciola et al. [7] with permission from Springer Nature.
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3.2 Surface composition of bacteria

All these macromolecules contribute to the adhesion to abiotic and biotic material

by electrostatic, hydrophilic or hydrophobic interactions. CWAs constitute a broad

family and S. aureus expresses up to 24 different proteins depending on growth condi-

tions [8]. First, it was thought that the binding to host surfaces is mediated by a class

of CWAs termed “microbial surface components recognizing adhesive matrix molecules”

(MSCRAMMs), which are binding to ECM proteins like collagens, fibronectins and

fibrinogen. These CWA proteins, however, have additional functions to promote ad-

hesion [8]. MSCRAMMs show functional redundancy, such that several MSCRAMMs

bind to the same ECM protein and Foster et al. [8] proposed to classify them according

to motifs derived from structure-function analysis. In this definition MSCRAMMs be-

long to one of four groups defined by molecular structure and resulting ligand-binding

mechanism. Since this thesis is not concerned with specific binding to ECM proteins,

I will refrain from giving more details and refer to the article of Foster et al. [8] for a

nice overview. Important to note is, that for characterizing adhesion, it is not enough

to characterize the individual adhesion contributions of distinct classes of CWAs. For

instance, Staphylococcus Surfaces Protein G (SasG) can mask the binding of other

CWAs [50].

In chapter 4, I will review the literature on adhesion to abiotic surfaces showing that

adhesion can be understood in terms of the individual responses of macromolecules to

stretching. Therefore, I give a brief introduction to the mechanical response of CWAs,

in particular the G5-E repeat family, one of the four families defined by Foster et al.

[8]. The aforementioned SasG belongs to this class and consists of G5-E-domains with

individual folded lengths of 7 and 4.5 nm, respectively [51]. Several G5-E-domains

repeat to form a continuous rode-like structure of various possible lengths (see figure

3.3) [50, 52]. Gruszka et al. [51] analysed the mechanical response of various SasG

proteins to stretching. They found that the G5 and E subunits unfold, in the range of

tested pulling speeds (200−5000 nm
s

), independently of each other. The forces needed

to unfold the E and G5 domains depend linearly on the retraction velocities and are

0.25 nN and 0.42 nN at a retraction velocity of 800 nm
s

, respectively. By fitting a WLC

model, as introduced in section 2.4.2, with a persistence length of 0.4 nm to the force-

stretch curves, they obtained a length increase of 14 nm and 21 nm for the E and G5

domain after unfolding [51].
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a

b

c

Figure 3.3: (a) Various length combinations of G5-E domains give rise to (b) continuous
rode like structures of various sizes. (c) A WLC fit determined by persistence length of 0.4 nm
to a retraction experiment, shows the independent unfolding of individual E and G5 domains.
The figures are adapted from Gruszka et al. [51] under the CC BY 4.0 license.
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3.2.2 Neisseria gonorrhoeae

The surface structure of N. gonorrhoeae consists of two lipid bilayers, with peptidogly-

can in between.2 While I presented the surface structure of S. aureus in quite some

detail for N. gonorrhoeae, only the super molecular structure of type IV pili (T4P) is

in this thesis of importance.

Type IV pili are 5-8 nm thick, have several micrometres in length and span from the

inside to the outside of the cell (see figure 3.4). They withstand pulling forces greater

than 100 pN and possess persistence lengths of about 5 µm [53]. They can actively be

contracted and extended by polymerising and depolymerising subunits of the protein

pileE. This poly-/depolymerisation is independently catalysed by assembly (pilF) and

retraction (pilT) ATPases [53]. While this process is well-understood, I am only con-

cerned with the consequences on the bacterial colony level. For details on the molecular

mechanisms see Hospenthal et al. [54] and Craig et al. [53].

T4P structures meditate DNA uptake from the surrounding and enable surface mobility

of the bacterium termed “twitching mobility”. They establish liquid-like order in grow-

ing colonies and govern their fusion dynamics [55, 56]. Furthermore, they mediate cell

sorting in colonies with heterogeneous T4P interactions and determine the dynamics

in competitive growing colonies [9, 57]. How these structures influence the sorting of

strains with different piliation and the influence on competitive growth will be discussed

in detail in chapter 5.

To understand the colony dynamics, it is important to know that the pilE gene produc-

ing the polymeric subunit of the T4P machinery undergoes phase- and antigenic vari-

ation. While these terms are used vaguely, according to Van Der Woude and Bäumler

[58] phase variation refers in general to “a reversible switch between an ‘all-or-none’

(on/off) expressing phase”. This is distinguished from genetic noise by the existence of

a genetic or epigenetic mechanism, which allows this variability to be inheritable. Anti-

genic variation refers, according to Van Der Woude and Bäumler [58] to “the expression

of functionally conserved moieties within a clonal population that are antigenically” dis-

tinct. In the case of N. gonorrhoeae this is realised by silent pilS genes, which partially

recombine into the pilE locus. The expression of this locus, depending on the state,

leads to bacteria with normal, reduced, or no expressed T4P [9, 58].

2The second lipid bilayer classes N. gonorrhoeae gram-negative.
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Figure 3.4: Illustration of the super molecular T4P machinery. The detailed T4P composi-
tion depends on the species. Reprinted from Craig et al. [53] with permission from Springer
Nature.

3.3 Evolution and population genetics in well-mixed

conditions

This section will introduce terminology and concepts from population genetics, which

might not be too familiar to physicists. Population genetics studies how the frequency

of genes change inside a population. Genes in population models refer to a variable

that encodes a specific trait [59]. Different variants, termed alleles, can be present

in a population. I only consider asexual reproduction of haploid organisms, i.e. each

individual carries only one instance of each allele and passes this on to its offspring.

Furthermore, this section only considers well-mixed growth, present in e.g. growing

microbes in a liquid flask or a fixed spatial environment with high individual mobility.

In such environments, all individuals compete with each other and spatial structure is

not important. For the presentation, I mostly use the review articles of Blythe and

McKane [59] and Korolev et al. [60] while reorganizing and focusing the material to

set range expansion experiments, where the spatial structure is important into context.

Range expansion experiments, however, will be presented in chapter 5.

36



3.3 Evolution and population genetics in well-mixed conditions

3.3.1 Genetic drift

Consider a population with two alleles at its carrying capacity, i.e. the environment

cannot sustain a larger population. At a fixed rate one individual of the population

is chosen and replaced randomly by another allele. The choice and replacement occur

proportional to the frequency inside the population, i.e. no selection bias for any allele

is considered. This model is termed the Moran model and describes the fluctuations,

named genetic drift, of the allele frequency. A master equation as described in section

2.3.1 can be constructed [59, 60]:

Let N be the maximal sustained population and n the number of individuals with allele

one. Then the master equation reads

dp(n)

dt′
= p2→1|n−1p(n− 1) + p1→2|n+1p(n+ 1)−

(
p1→2|n + p2→1|n

)
p(n) ∀0 < n < N ,

where p(n) is the probability of having n individuals of allele one at time t′, and p2→1|n is

the probability of choosing an individual of allele two and replacing it with an individual

of allele one when n individuals of allele one are present. The other quantities are

analogously defined. Note that p1→2|n + p2→1|n 6= 1, since one can choose an allele of

type one and replace it with the same type. However, in the master equation only

the contributions which lead to a change in the allele frequency are considered. In the

Moran model, as described above, the transition probability is

p1→2|n =
n

N

N − n
N

,

where n
N

is the probability of choosing one individual with allele one when n individuals

have allele one, and N−n
N

is the probability of choosing one individual with allele two

to replace it. Obviously p1→2|n = p2→1|n and the master equation without boundaries is

given as

dp(n)

dt′
=
n− 1

N

N − (n− 1)

N
p(n− 1) +

n+ 1

N

N − (n+ 1)

N
p(n+ 1)− 2

n

N

N − n
N

p(n) ∀0 < n < N .

In this equation, the time t′ is measured in the typical time scale of the replacement

process. To compare to experiments it is, however, more useful to measure time t in

terms of the typical generation time τg of individual cells, i.e. t
τg

= t′

N
.
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In principle, this non-linear equation can be solved by a generating functional approach,

but more often the interest is in the large population limit where an expansion in 1
N

can be performed. In the limit of N � 1, the master equation can be approximated3

by a diffusion equation

∂p(f)

∂t
=

1

Nτg

∂2

∂f 2
f(1− f)p(f) , (3.1)

where the allele frequency f = n
N

is considered to be a continuous parameter.

The approximation neglects the terms O
(

1
N2

)
and needs to be completed with ab-

sorbing boundary conditions at f = 0, 1. To characterise the frequency distribu-

tion, typically the mean frequency F (t) = 〈f(t)〉 and the average heterozygosity

H(t) = 2 〈f(t)(1− f(t))〉 are considered. The governing equations can be derived from

equation 3.3.1 as

dF

dt
= 0

dH

dt
= − 2

Nτg
H .

These equations show that the mean frequency, consistent with the absence of selection,

does not change in time. The average heterozygosity H(t) = F0(1−F0)e
− 2t
Nτg , however,

decays exponentially fast to zero. This indicates fast extinction of one allele, while the

other gets fixed i.e. it spreads through the full population. Particularly this occurs even

if initially both alleles are present equally (F0 = 0.5).

3.3.2 Selection

Selective advantage can be incorporated in the Moran model by introducing weights

into the probability of replacing the alleles. Let, as before, n be the number of in-

dividuals with allele one. The probability for choosing an individual with allele one

for replacement remains n
N

but the probability for replacing it with allele two becomes
w2(N−n)

w1n+w2(N−n)
such that

p1→2|n =
n

N

w2(N − n)

w1n+ w2(N − n)
=

n

N

N − n
w1

w2
n+ (N − n)

.

3This is the well-known Kramers-Moyal expansion up to second order.
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Since this depends only on the fraction w1

w2
, w2 is set to one. Note that in the case of

w1 = 1 this reduces to the case without any selection. In the next step, the fitness

difference s is introduced as w1 = 1 + s. For s ≥ 0 allele one is advantageous while for

−1 ≤ s < 0 it is deleterious. This leads to a non-linearity in the transition probabilities.

To deal with this, the weak selection limit s � 1 and the diffusion approximation is

performed which results in

∂p

∂t
= − s

τg

∂

∂f
f(1− f)p+

1

Nτg

∂2

∂f 2
f(1− f)p , (3.2)

where terms O
(

1
N2

)
,O (s2) and O

(
s
N

)
have been neglected. Equations for the mean

frequency and average heterozygosity can be derived, but the equations do not close,

i.e. the equation for the average heterozygosity depends on the third moment and so

on. However, from equation 3.2 it is obvious that for sN � 1 the genetic drift can be

neglected, and the process becomes deterministic4. The mean frequency then satisfies

dF

dt
= sF (1− F ) .

Therefore the advantageous allele grows logistically, i.e. F (t) = F0

F0+(1−F0)e
− stτg

and

spreads through the population until it reaches fixation. This rapid growth is called

selective sweep [59]. If the allele is, however, introduced via mutations, its initial fre-

quency is small and genetic drift, which might lead to extinction, cannot be neglected.

It can be shown that the fixation probability of an allele with initial frequency f0 is

pfix =
1− e−

2Nsf0
τg

1− e−
2Ns
τg

.

For a single mutant f0 = 1
N

which leads in the limit N →∞ to

pfix =

1− e
−2s
τg ≈ 2 s

τg
, 0 < s

τg
� 1

0 , s ≤ 0
,

4Accoring to Gardiner [21] an equation of the form ∂p(f,t)
∂t = − ∂

∂fA[f, t]p(f, t) has the solution

p(f, t) = δ (f − F [f0, t]) where F = 〈f〉 and is determined by dF
dt = A[F, t].
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since for deriving the equation the weak selection limit is considered. Also, the meantime

for fixation can be computed as

〈Tfix〉 =
2τg lnN

s
[59].

Therefore, a single mutation spreads relatively fast through a homogeneous population

and genetic drift only plays a role for small populations.
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4 Bacterial adhesion

While there exists extensive literature about bacterial adhesion to abiotic and biotic

surfaces respectively, this thesis only concerns itself with adhesion to abiotic uncon-

ditioned surfaces. Therefore, this chapter, which got reworked in major parts into a

mini-review with the title Modelling bacterial adhesion to unconditioned abiotic

surfaces published in Frontiers in Mechanical Engineering, 2021, 7, 23 by Christian

Spengler, Erik Maikranz,1 Ludger Santen and Karin Jacobs [61], presents only the

work on abiotic surfaces.

First, I introduce the typical experimental set-ups namely flow chamber and single-

cell force spectroscopy (SCFS) experiments. Second, I present approaches that treat

the bacterium-substratum interaction in a continuous manner. These approaches orig-

inating in colloidal science are surface thermodynamics and (x)DLVO theory. These

models do not consider any deformations of the bacterium or surface and thus I present

approaches from contact mechanics which take the deformation of the bacterium into ac-

count. I will discuss what these approaches can and cannot describe and present exper-

imental studies and models which show the need for treating the bacterium-substratum

interaction in a non-continuous manner i.e. mediated by individual macromolecules.

Since my work presented in chapter 7 is based on one of those models I will present it

in some detail.

4.1 Experimental set-ups

Bacterial adhesion is predominately studied with two kinds of experimental set-ups. In

flow chamber experiments, bacteria are flushed into a chamber and after letting them

settle onto a surface, the bacteria which do not adhere are washed off. The set-up

allows to study many bacteria at the same time and allows to quantify how many

1The first authorship is shared by Christian Spengler and me.
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bacteria stick to a given material under controlled shear flow conditions tangential to

the surface. The flow conditions perpendicular to the surface are, however, uncontrolled

and no repetitions with individual cells can be performed.

To perform repeated more controlled sticking experiments with the same bacterium

single-cell force spectroscopy experiments are performed. In these experiments, indi-

vidual cells are glued to a cantilever and moved towards or away from the surface. The

deflection of the cantilever allows measuring the forces acting on the cell. The measure-

ments result in force separation curves, as shown schematically in figure 4.1. A typical

experimental approach and retraction cycle for S.aureus is as follows: The cantilever

starts approaching the surface until the bacterium comes into the interaction range of

the surface potential.2 This leads to a sudden force increase named the snap-in.3 The

cantilever continues moving towards the surface until a prescribed force, the force trig-

ger, is reached. After reaching this threshold the retraction starts, where the cantilever

is moved away from the surface. The minimum of the retraction curve is named ad-

hesion force and the last kink before measuring zero forces defines the rupture length,

where the cell loses its last connection to the surface. Notice that real experimental

curves do not need to follow the monotonous pattern shown here but can be highly

irregular. Furthermore, it is noteworthy that the approach and retraction curves do not

overlap and therefore display hysteresis.

SCFS allows studying the adhesion process natively by using a minimal force trig-

ger.4 Additionally possible deviations from a Hertzian contact can be investigated by

choosing a force trigger such that the bacterium is pressed onto the surface. This is

sometimes termed loading. Also, time-dependent strengthening of the adhesive con-

tact can be investigated by introducing a prescribed waiting time before starting the

retraction. I like to emphasize that the nature of the experiments allows to repeat the

approach/retraction curves with the same bacterium. This allows to investigate the role

of stochasticity in the adhesion process and in particular to distinguish its role from the

variability inside a diverse population.

2The macromolecular appendages on the outside of the cell wall come into the range of the surface
potential.

3The existence of a snap-in depends on the surface and bacteria used. For an explanation of the
snap-in see section 4.3.

4Since the movement of the cantilever pushes the bacterium through eventual energy barriers a floating
bacterium would experience, even SCFS experiments with minimal force triggers do not fully mimic
flow chamber experiments.
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separation

force

force trigger

rupture
length

snap-In
length

adhesion force

snap-In force

0

0

approach curve

retraction curve

Figure 4.1: Schematic SCFS approach and retraction curves. The approach curve displays
the typical snap-in behaviour, with corresponding separation and force which are named snap-
in length and snap-in force respectively. The retraction curves are distinct from the approach
curves (hysteresis). Its minimum is named adhesion force, while the last point of contact is
termed rupture length. Note that the approach and retraction curves at large separations are
both supposed to be zero.

By combining flow-chamber and SCFS experiments, the adhesion process can be studied

on a cell individual as well populational level in various environmental conditions and on

many substrates. For the comparison of individual studies and different experimental

set-ups, not only well-defined growth conditions but also the characterization of surfaces

is vital. These surfaces need not only be characterized by their roughness and surface

hydrophobicity but also the underlying bulk substrate can influence the adhesion via

van der Waals interactions and needs to be characterized [62].

4.2 Continuous interactions with the substratum

4.2.1 Approaches from colloidal science

The main goal of colloidal approaches is to predict if a given bacterium will stick to a

particular surface. Its attempted scope of applicability are flow chamber experiments

and therefore the theory does not attempt to describe a full approach retraction cycle of

SCFS. The problem is phrased in the language of thermodynamics, where the Gibbs free

energy is minimized in equilibrium. This renders the theory inherently reversible and

hence it can’t take eventual strengthening of adhesive bonds into account. An excellent
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review on thermodynamic and DLVO approaches has been conducted by Perni et al.

[3] which I want to summarize briefly:

The simplest approach is surface thermodynamics, where the Gibbs free energy is com-

puted as

G = A (γBS − γBL − γSL) .

Here A denotes the contact area and γBS, γBL, γSL are the interfacial energies between

bacterium-solid, bacterium-liquid and solid-liquid respectively. These energies can be

determined from contact angle measurements via the Young–Dupre equation. Since the

Gibbs free energy needs to be minimised in equilibrium, this model predicts adhesion

for γBS < γSL + γBL. According to Perni et al. [3], this approach only works in some

cases and is generally regarded as too simplistic.

A different approach to predict bacterial adhesion is DLVO theory, as introduced in

section 2.1, but applied to the bacterium-plane geometry. Because various publications

use different approximations for van der Waals and electrostatic double-layer forces

respectively, I refrain from formulating the Gibbs free energy explicitly but discuss the

situations which may occur in principle (see figure 4.2).
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Figure 4.2: Schematic possibilities for the Gibbs free energies. Note that the different
amplitudes were chosen to distinguish the curves easier and are not representative of the
interactions.

If both potentials are either repulsive or attractive the potential is monotonically de-

creasing or increasing. Therefore, the energy is minimized at a maximal distance or zero
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4.2 Continuous interactions with the substratum

distance from the surface.5 In the latter case, adhesion is achieved. If, however, one of

the interactions is repulsive and the other attractive the potential is non monotonic and

displays a minimum close to the surface. Depending on the potential also a secondary

minimum might be observed. As discussed for colloids in section 2.1 strong adhesion is

achieved inside the global minimum and weak adhesion is achieved inside the secondary

minimum. On experimental time scales the weak adhesion is visible as reversibility of

the adhesion process.

DLVO theory, however, neglects acid-base interactions and the presence of polymers on

the bacterium surface. These additional interactions have been considered in various

cases and the extension is termed xDLVO theory. Acid-base interactions are extremely

short-range i.e. they display an exponential decay [12]. Polymeric interactions, mod-

elling steric repulsion of polymer brushes close to interfaces, are incorporated by de

Gennes equation [63]. These extensions change quantitatively the interaction potential

but the qualitative picture remains the same.

Perni et al. [3] list studies where (x)DLVO theory has been successfully applied to

predict adhesion. However, he also list an equal amount of studies where this fails.

The explanation for failure has according to Perni et al. [3] been attributed due to

the neglection of shear forces and the underlying assumption of homogeneous bacterial

surface composition.

While, a picture of heterogeneous surface composition, not only on the population but

single-cell level becomes more evident, I want to emphasize that all colloidal models as-

sume continuous interactions of the entire bacterium with the surface. This description

neglects the stochasticity and the responses of individual macromolecules in the adhe-

sion process, which section 4.3 will show are essential for certain aspects of bacterial

adhesion.

As already mentioned (x)DLVO approaches have not been developed to describe the full

approach retraction cycle of SCFS experiments. However, if the derivative of the Gibbs

free energy is assumed to be the force experienced by the bacterium then, since the

derivative is unique, no hysteresis can be observed. Furthermore, the interaction forces

decay fast, such that the experimental observed snap-in on lengths of about 50-100 nm

cannot be explained by DLVO forces [64]. The xDLVO theory, however, introduces the

length of the polymer brush as an additional parameter and therefore could incorporate

a snap-in on the observed length scale.

5Note that exclusion due to Pauli exclusion is not considered here.
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4.2.2 Deformation and contact mechanics

Contact mechanics as described in chapter 2, considers the forces and deformations of

two bodies in direct contact. The Hertz, JKR and DMT models introduced in section

2.2, have been initially developed for understanding the stress distribution and adhesion

forces of non-biological particles in contact with a flat surface. The models assume ho-

mogeneity of the particles but nevertheless have been used to extract information about

the elastic moduli of bacteria [65, 66]. Bacteria, as described in chapter 1, however,

possess a non-homogeneous surface structure with cellular appendages, a cross-linked

peptidoglycan layer and a lipid bilayer. While there exist many models in the contact

mechanics which consider inhomogeneous particles they require numerical solutions and

therefore previously know parameters such as the Youngs modulus [67, 68].

Chen et al. [65] developed a simple model which incorporates inhomogeneity and only

assumes that the contact of the bacterium is formed by a cylinder whose volume does

not change under loading. Chen et al. [65] applied this model to SCFS experiments

with various bacterial strains6 and the extracted Young’s moduli are in the 8 to 50 kPa

range and therefore a hundred times smaller than what would be extracted from a Hertz

model. Furthermore, Chen et al. [69] applied this model to quantify the influence of

nanoscale deformations on the adhesion force. To this end, the authors compared the

adhesion forces of two wild type S. aureus strains on a glass surface with corresponding

mutant strains lacking penicillin-binding proteins [69]. The penicillin-binding proteins

play an important part in cross-linking the peptidoglycan and cells lacking these proteins

are expected to be more easily deformable. Chen et al. [69] used loading forces in the

1−9 nN range and obtained adhesion forces in the 0.5−6 nN regime. The corresponding

mutant strain showed for most loading forces an increased force accompanied by a

height reduction due to deformation of about 100−200 nm and therefore Chen et al.

[69] concluded that deformations influence the adhesion forces significantly. However,

for one strain and high loading, the wild type strain showed higher adhesion forces than

the mutant. Furthermore, by assuming that the short-range forces are proportional

to the contact area, Chen et al. [69] extracted the van der Waals component of the

adhesion force and found that it is three times larger for the more deformable strain.

Therefore including deformation forces via contact mechanics into the description of

bacterial adhesion seems necessary for loading forces of about 1nN.

6S. aureus, S. epidermis and S. salivarius
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The Hertz, JKR and DMT model do not intent to describe a full approach and retrac-

tion cycle. While it is possible to consider the full approach and retraction cycle and

solve the equations of contact mechanics for various interactions numerically Jasevičius

et al. [70] choose a different approach. Jasevičius et al. [70] used the deformations forces

of the DMT model when the bacterium is in contact with the substratum. To repro-

duce the snap-in van der Waals forces of a sphere-plane geometry (in the Derjaguin

approximation) are added. Since the DMT model considers van der Waals interactions

while in contact this is a straight forward extension. However, the snap-in force and

distance are fitted from experiments and not obtained from the constitute equations

of DLVO theory. Additional, the authors consider repulsive electrostatic double-layer

forces and steric repulsion forces of polymer brushes at the surface of the bacterium.

Phrased loosely, this model combines the Hertzian contact model, xDLVO theory and an

ad hoc snap-in mechanism. To recreate the adhesion hysteresis and energy dissipation

mechanism including plastic deformation is considered.7

Recently, this model has been extended to mimic flow chamber experiments and deter-

mined if a given bacterial strain will adhere to a given surface [72]. For this, the authors

included viscous drag and an initial velocity into the model. Thus they predict that

the bacterium S. aureus will stick to a glass surface. While this prediction is true, it

was necessary to provide the model with many parameters, including the experimental

adhesion force previously measured. Therefore, it remains elusive how this model can

predict the adhesion capabilities of a wide range of strains to varying surfaces. Up to

the point of publication, no such study was, to my knowledge, conducted. Furthermore,

because the model considers the bacterial population to be homogeneous and that the

adhesion process of an individual cell can be described by non-stochastic continuous

interactions, it has the same disadvantages as the colloidal approaches.

4.3 The need for non-continuous interactions

Sjollema et al. [73] monitored in a flow chamber via a camera the displacement of

several bacterial strains after they settled. The method, termed vibration spectroscopy

combined with SCFS experiments, showed that with increased adhesion force the move-

ment parallel to the surface decreased. These observations combined with an in silico

7To reproduce hysteresis energy dissipation or plastic deformation is sufficient. Note that this is
necessary because the DMT model is used. Models from contact mechanics can show hysteresis
without explicit dissipation or plastic deformation [18, 71].
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model leads Sjollema et al. [73] to conclude, that the bacterium binds to the surface via

multiple reversible binding tethers. These repeatedly detach and attach to the surface

without detaching all at the same time. This study was extended by van der Westen

et al. [74] via internal reflection microscopy, to determine if adhering bacteria also ex-

hibit variations perpendicular to the surface. For bacteria without cellular appendages,

van der Westen et al. [74] compared their results with predictions from DLVO theory

and found that the potential displays a primary and secondary minimum where the

potential barrier between both was considered to be too high to overcome by Brownian

motion. On hydrophobic substrates, the authors observed asymmetric fluctuations in-

side the secondary minimum, where the amplitudes are independent of ionic strength

but fitted to the width of the minimum.8 For cells with fibrils9 the bacteria showed

symmetric fluctuations with five times smaller vibrational amplitudes. These ampli-

tudes were independent from the hydrophobicity of the substrate and the tested ionic

strength of the solution. This leads van der Westen et al. [74] to distinguish between

“floating” and “tether-coupled” adhesion, where the first is dominated by the thermal

motion inside the secondary minimum predicted from DLVO theory, while in the latter

case the bacterium is bound to the surface by tethers.

A different set of studies showing the failure of (x)DLVO theory has been conducted by

Thewes et al. [64, 75]. First Thewes et al. [75] demonstrated that SCFS experiments

with the bacterium Staphylococcus carnosus (S. carnosus) display on hydrophobic sur-

faces force-distance curves which are characteristic for each bacterium. These curves are

independent of their adhesion history and retraction velocities probed (400−2400 nm
s

).

SCFS experiments, with a focus on the approach curves, have been extended to S. au-

reus on hydrophobic surfaces, which show that the initiation of bacterial contact starts

as far as 50 nm (sometimes even 100 nm) above the substratum [64]. As already ex-

plained at these distances DLVO forces between the bacterium and the substratum are

negligible and the snap-in is not explainable by DLVO theory.

Furthermore, Thewes et al. [64] investigated the approach-retraction cycle with varying

force trigger (see figure 4.3). The force trigger sets the separation to the surface before

the retraction starts such that a higher negative force trigger leads to closer separation to

the surface. With increased initial separation the shapes of the retraction curves change,

where for intermediate separations a bistable behaviour is observed. For low and high

initial separations two classes of reproducible force-distance curves are obtained. While

8On hydrophilic surfaces, adhesion was too small to determine amplitudes.
9cellular appendages
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Figure 4.3: Partitioned force-distance curves on hydrophobised Si waver with varying force
trigger (higher negative force trigger leads to lower separation to the surface). The red curves
are individual retraction curves with the same cell, while the the blue curves are individual
approach curves. The pulling regime is indicated by the green circle. The figure is reproduced
from Thewes et al. [64] with permission from The Royal Society of Chemistry.

the rupture lengths in both classes are identical the adhesion forces for lower initial

separations is larger. For intermediate initial separations, a force-distance curve of

either one or the other class is obtained. Note, that this bistable behaviour is not due

to the distinct behaviour of different cells, but since the same cell is used it reflects the

internal stochasticity of the adhesion process. Additionally, the curves with low initial

separation, display even though the retraction already started, an initial attraction to

the surface. This region in the retraction curves is termed “pulling regime” .

To explain these observations, Thewes et al. [64] build a stochastic model (see figure 4.4).

The bacterium is modelled as a hard sphere decorated with elastic springs modelling

the macromolecules. One end of the springs is fixed to the bacterium, while the other

end fluctuates thermally and interacts with the surface via an interaction potential. To

mimic SCFS experiments, this sphere is connected to a cantilever, modelled as a spring,

which moves toward/away from the surface. After each cantilever step, determined

from the step size of the experimental Piezo motor, a prescribed number of Monte

Carlo steps10, to incorporate the thermal fluctuations, are performed. After this, the

acting force, computed from the length of the connected springs and the deflection

of the cantilever, is computed. The separation d of the sphere to the surface is then

moved into the mechanical equilibrium position, computed from the restoring force of

the cantilever FC and the pulling force of the macromolecules FM . I formulate the forces

10Metropolis steps according to section 2.3.2.
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Figure 4.4: Model schematic of Thewes et al. [64]. Sphere of radius R decorated with
springs of length li. One end of the springs are connected at fixed height ∆di measured from
the bottom of the sphere. The other ends thermally fluctuate, have distance dzi to the surface
and interact with the potential. In each step of the cantilever, its height zc is changed and a
new equilibrium position d for the sphere computed. The figure is adapted from Thewes et al.
[64] with permission from The Royal Society of Chemistry.

acting at bacterium separation d, such that a generalisation to different force-stretch

relation is obvious:

FC = kc · (zc − d− 2 ·R− lc0)

FM =
∑
i

ki
(
d+ ∆di − dzi − li0

)
.

Here kc is the spring constant of the cantilever, lc0 its rest length, zc its distance to the

surface R the radius of the bacterium. The sum of the molecule forces runs over all

springs which are in the range of the interaction potential. The ki denote the spring

constants while li0 are the rest lengths. One end of the springs are connected at fixed

height ∆di measured from the bottom of the sphere. The other end thermally fluc-

tuates, has distance dzi above the surface and interacts with the potential. In other

words, the deflection of the cantilever is given by lc = zc−d−2 ·R, while the individual

macromolecules are stretched as li = d+ ∆di − dzi. Note that by separating the move-

ment of the cantilever from the thermal fluctuations, it is assumed that the relaxations
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due to mechanical stretching decay much faster than thermal fluctuations and therefore

the stretching of the macromolecules can be assumed to be quasi-static.11

This model connects the individual molecular binding of macromolecules with the

macroscopic extensions in a single model. It reproduces the experimentally observed

behaviour, i.e. the adhesion hysteresis, the snap-in and the bistable behaviour for the

retraction curves with varying force trigger. The model shows that the distribution of

spring constants is important for observing a snap-in, while the form of the interaction

potential was not [64].

A similar model was studied by Ostvar and Wood [76]. It considers individual macro-

molecules with heterogeneous mechanical responses in a plane-plane geometry, but no

thermal fluctuations nor a cantilever. This model reproduces the snap-in only if all

macromolecules have the same extension and therefore come into contact with the sur-

face at the same separation. Generally, a snap-in is not observed, which I attribute to

the absence of a cantilever that allows the cell to abruptly approach the surface and

hence leads to a cascade of interacting macromolecules. Furthermore, the model shows

hysteresis but its origin is distinct from the origin of the hysteresis in the model of

Thewes et al. [64]. While in the model of Ostvar and Wood [76] hysteresis is generated

by the force balance of individual macromolecules interacting with a Lennard-Jones

potential, which allows two stable solutions in the absence of thermal fluctuations, the

square potential in the work of Thewes et al. [64] does not. In the model of Thewes et al.

[64] the hysteresis is generated by the movement and flexibility of the cantilever. Nev-

ertheless, both models demonstrate that the adhesion process can be described as the

multi-scale interactions of heterogeneous macromolecules interacting with a surface.

Further investigations with SCFS have been performed by Spengler et al. [77, 78]. The

size of the interaction area, i.e. which area of the bacterium contributes to the adhesion

force for S. aureus and S. carnosus (see figure 4.5), has been determined [77]. Both

strains have approximately the same radius of the interaction area of about 150−300 nm

but S. aureus displays a three times larger adhesion than S. carnosus. Furthermore,

if one compares several cells of the same strain, no correlation between the adhesion

force and the interaction area is observed. Additionally, the study demonstrated a

slight increase of interaction area with an increased loading force but the response is

not Hertzian. An analysis comparing this to more sophisticated models of contact

mechanics is missing.

11To ensure this a hundredths of the actual cantilever step size is used.
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Figure 4.5: Adhesion energy (area under the retraction curve, black circles) and adhesion
force (grey stars) of S. aureus (left) and S. carnosus (right) versus the radius of the interaction
area squared. The reddish coloured rectangle displays the scale of S. carnosus cells. A force
trigger of 0.3 nN was used. The figure is reproduced from Spengler et al. [77] with permission
from The Royal Society of Chemistry.

The beforehand presented studies have been performed on smooth surfaces, however,

many surfaces are not smooth and the roughness may have a significant influence on

the adhesion. Indeed, Spengler et al. [78] demonstrated that even roughness on the

nanoscale leads to a decrease in adhesion force with increasing roughness. While in

classical adhesion models this is, at least for stiff spheres, attributed to a reduced contact

area, Spengler et al. [78] explain this observation with reduced accessible binding area for

macromolecules. Studies comparing the influence of roughness on stiff or elastic spheres

with or without polymeric appendages is, to my knowledge, lacking. While including

nano roughness into models which describe adhesion via individual macromolecules is

quite easy, incorporating it into theories that treat the substratum bacterium interaction

continuously seems quite challenging. Additionally, the study of Spengler et al. [78]

nicely corroborates that adhesion can be understood mostly as a passive process since

even though on rougher surfaces more cells died, the adhesion force was uncorrelated

to the cells state.

4.4 Conclusion

This chapter reviewed the traditional approaches to bacterial adhesion on unconditioned

abiotic surfaces. The literature demonstrates that traditional approaches from colloidal

science and contact mechanics can be used to model bacterial adhesion. However, since

they rely on continuous interactions of the entire bacterium with the substratum they
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cannot explain certain aspects of adhesion. Adhesion in the unloaded case is primarily

mediated by the interaction of macromolecules, decorating the cells surface. Therefore,

stochastic length fluctuation and the force response of individual macromolecules de-

termine the adhesion process. I continue this interpretation of the adhesion process

in chapter 7, where I show that an extension of the model proposed by Thewes et al.

[64] can describe the retraction curves of S. aureus on hydrophobic and hydrophilic

surfaces.
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5 Range expansion

Microbial range expansion refers to the growth of microbes into previously uncolonised

space. The main property distinguishing it from well-mixed growth, e.g. inside a liquid

medium, is the interaction with a substratum. This results in a reduced mobility of indi-

vidual cells such that each cell mostly competes with cells in its immediate surrounding.

This is experimentally realised by growing microbes from an initial inoculation zone on

hard surfaces such as agar plates. Since only individuals at the colony front divide

the effective population size of competing microbes is small and genetic drift plays a

pivotal role. Microbial range expansion has extensively been studied experimentally,

mathematically and with the help of simulations and this chapter can only provide a

brief introduction to this rich topic.

I will discuss the role of universality in colony growth and present the current under-

standing of genetic drift in spatial population genetics. A thorough understanding of

this effect is necessary to evaluate the role of selection presented afterwards. I outline

the role of selection advantages in reproduction statistics as well as the influence of me-

chanical interactions. Particular focus will be the experimental results for cell sorting

populations, which I model in my work presented in chapter 6.

5.1 Colony growth and universality

Mono species range expansion experiments on solid substrates such as agar plates show

divers macroscopic shapes. For the bacterium B. subtilis increased agar concentration

leads to a reduction of cell individual mobility and depending on the nutrient and agar

concentration various growth morphologies are observed (see figure 5.1). All phases can

be captured by a simple reaction-diffusion model, coupling two mobility states with a

nutrient field driving cell division [79, 80].
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Figure 5.1: Colony morphology diagram of B. subtilis, for various agar and nutrient concen-
trations. Increased agar concentration leads to reduced mobility, such that in zone A and B
the individual cells become immobile. The figure is reprinted from Matsushita et al. [79] with
permission from Elsevier.
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A low agar concentration leads to the dense branching morphology (DBM, phase E in

figure 5.1) or with more available nutrients to its more compact variant with a smooth

perimeter (phase D in figure 5.1). At intermediate agar concentrations, B. subtilis

switches between mobile and immobile states resulting in a ring morphology (phase C

in figure 5.1). At high agar concentration, no active movement is possible and either

diffusion-limited aggregation (DLA, dendrite like structures, phase A in figure 5.1) or

circular growth patterns with a rough perimeter are observed (phase B in figure 5.1).

This thesis is only concerned with immobile strains or conditions leading to immobility

and the colonies have morphologies reminiscent of phase B or D in figure 5.1, i.e. they

are disc-like with either a rough or smooth perimeter. Matsushita et al. [79] quantified

the roughness exponent to be 0.78(2) and 0.5(01) in the B and D phase respectively. The

exponent in phase D fits with KPZ predictions as introduced in section 2.5.1, while the

origin of the large exponent in phase B remains contentious. Vicsek et al. [81] obtained

similar roughness exponents for E. coli and B. subtilis (0.78(7) and 0.74(7)).

The large roughness exponent agrees with the exponent of the quenched KPZ class

(qKPZ) at the pinning transition. The qKPZ class is defined by lateral growth in a

heterogeneous medium, i.e. it has the same growth equation as the KPZ class but in-

stead of the time-dependent noise space-dependent noise and a constant driving force

are considered. The noise leads to locally pinned surfaces, which in the case of weak

driving force results in a globally pinned surface. If the driving force is strong enough,

the surface is not pinned and KPZ exponents are retained [35]. At the pinning transi-

tion, the roughness exponent α = 3
4

and the growth exponent β = 3
5

are obtained [82].

Therefore the large exponent might be attributed to substrate heterogeneities.

However, also the coupling of two fluctuating interfaces can cause larger roughness ex-

ponents [35, 83]. The second interface can be realised by coupling the cellular growth

to a nutrient field. Indeed, computer models incorporating limited growth due to nu-

trient depletion show without any substrate heterogeneity increased roughness expo-

nents [84, 85]. While Bonachela et al. [84] did find agreement with the qKPZ predic-

tions they did not find a regime that fits with KPZ values. The model of Santalla

and Ferreira [85], however, showed KPZ exponents in the limit of weak coupling to

nutrient depletion, while strong depletion agreement with qKPZ scaling was observed

on intermediate time scales. On large time scales, however, neither KPZ nor qKPZ

scaling could be obtained. Santalla et al. [86] revisited the growth of E. coli and B.

subtilis in the B phase and their extensive analysis found neither agreement with KPZ
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nor qKPZ scaling. The authors attribute the increased roughness to the aforementioned

coupling of cellular growth to nutrient consumption where depletion of nutrients leads

to a diffusion instability resulting in effective but non-universal scaling on the observed

time scales [86]. Therefore, neither E. coli nor B. subtilis show KPZ growth. However,

other cells such as HeLa and Vero cells show scaling consistent with KPZ universal-

ity [87, 88, 89]. Furthermore, Huergo et al. [90] found for Vero cells growing in a gelled

medium a transition from KPZ to qKPZ growth depending on the concentration of

polymers inside the medium.1

Farrell et al. [91] investigated in an individual based mechanical model the roughness

of a growing colony. The growth is coupled to a diffusion governed nutrient and the

bacteria are modelled as rods growing at a constant speed as long as the nutrient supply

is over a prescribed threshold. The growth occurs along the long axis of the bacterium

until a Gaussian distributed critical length is reached. Then the cells divide and their

orientation is perturbed to avoid growth along a straight line. The interaction of the

bacteria is governed by overdamped equations of motion, where cells are subject to

cell-substrate friction and repel each other according to forces from Hertzian contact

theory. This model leads after an initial transient to growth with constant speed and

the establishment of a growth zone with thickness h (see figure 5.2). The roughness

decreases monotonously with the thickness of the growth layer and depends as expected

on the system size. Farrell et al. [91], however, did not analyse the scaling behaviour and

therefore a comparison to the previously presented experiments cannot be conducted.

5.2 The role of genetic drift

The growth of a range expanding colony is determined by the competition dynamics

at the perimeter. If death inside the colony can be neglected this leads to a frozen

record of past competitions. This can be visualised by mixing different fluorescent

labelled, but otherwise identical microbial strains, and allows the qualitative and even

quantitative study of genetic drift. The main experimental set-ups used are circular or

line inoculations, where microbes are inoculated inside a circle or on a line respectively

(see figure 5.3).

The initially well-mixed population grows into well-separated domains with fluctuating

boundaries. Figure 5.3 shows this coarsening for non-motile E. coli and S. cerevisiae

1The exponents are α = 0.63(4), β = 0.75(5) consistent with qKPZ [90].
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a

b

c

d

Figure 5.2: Simulation of the mechanical model by Farrell et al. [91] for update rate (a)
k = 1.8, (b) k = 2.2, (c) k = 2.6. The bright green colour marks the growing layer. (d)
Roughness and thickness of the growth layer h for various system sizes L. The figures are
adapted from Farrell et al. [91] under the CC BY 4.0 license.

Figure 5.3: Range expansion of different fluorescent labelled but otherwise identical (a,c)
E. coli and (b,d) S. cerevisiae cells. Figure (a,b) show circular inoculations while (c,d) show
line inoculations. The figures are adapted from Hallatschek et al. [92] with permission of the
National Academy of Sciences, U.S.A, Copyright (2007).

59



5 Range expansion

strains. While S. cerevisiae shows more sectors, E. coli displays more pronounced

boundary fluctuations. As I will show in section 5.2.2, the sector statistic can be

directly related to the behaviour of boundary fluctuations in a quantitative manner. In

circular expansions, in addition to the fluctuations, the inflation of the colony needs

to be considered. Understanding the system from boundary dynamics only provides

insight into the effective macroscopic dynamic. It cannot be related to the classical

well-mixed growth models and therefore the family of stepping stone models, which

provides a stochastic continuum description closely related to the classical models will

be introduced as well.

5.2.1 Stepping stone model and continuum theory

Stepping stone models are the extension of well-mixed growth models introduced in

section 3.3 to spatial systems. They have a rich history and I only give a brief in-

troduction. For this, I mostly follow the presentation of Blythe and McKane [59] and

Korolev et al. [60]. To introduce spatial dependencies, the system is discretized into

demes of typical size a. Inside each deme, well-mixed growth with maximal population

N is considered. I focus on one-dimensional stepping stone models, where the demes are

arranged along a line. The growth of the colony is reflected in the time dimension of the

model and therefore the model is only applicable if the colony advances uniformly along

its perimeter. Especially possible effects due to surface roughness are not captured.

I consider the case of two strains and label the occupation of each deme by the rela-

tive frequency of an arbitrary reference strain. Between neighbouring demes, strains

migrate proportionally to their local frequency with migration rate m. While for well-

mixed growth inside each deme many different microscopy models such as Moran model

presented in section 3.3.1 can be considered. They reduce in the continuum limit as per-

formed in section 3.3.1 to the same model. This continuum limit introduces a genetic

diffusion constant Dg = 2a
τgN

, where τg is the generation time. Analogously, a diffu-

sion approximation for the migration dynamics introduces a spatial diffusion constant

Ds = ma2

2τg
. The resulting equation

∂p

∂t
=
Dg

2

∂2

∂f 2
f(1− f)p−Ds

∂2

∂x2

∂

∂f
fp ,
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combines local genetic diffusion of the allele frequency with a spatial diffusive spread

through the system.2

As introduced in section 3.3 the composition of the population can be characterised by

the average frequency F and heterozygosity H, which are defined as

F (t, x) = 〈f(t, x)〉
H(t, x1, x2) = 〈f(t, x1)(1− f(t, x2)) + f(t, x2)(1− f(t, x1))〉 .

While F characterizes the population composition at position x, H is the probability

of finding the reference strain at position x1 while at the same time finding the other

strain at position x2. The equations of motion for these quantities can be derived as

∂F

∂t
= Ds

∂2F

∂x2

∂H

∂t
= Ds

(
∂2

∂x2
1

+
∂2

∂x2
2

)
H −DgHδ(x1 − x2) . (5.1)

The average frequency fulfils the diffusion equation, while the equation for the average

heterozygosity combines diffusion with coalescence of domains. For spatially well-mixed

initial conditions i.e. F = F0, H0 = 2F0(1−F0), F remains constant, while H depends

due to translation symmetry only on the relative distance x = x1−x2. Solving equation

5.1 for an infinite system leads to

H = H0 −Dg

∫ t

0

dt′e
− x2

8Ds(t−t′)
H(t′,0)√

8πDs(t− t′)

H(t,0) = H0 erfc

(√
D2
gt

8Ds

)
e
D2
gt

8Ds ,

where erfc is the complementary error function.

For t ≥ 8Ds
D2
g

=: πTfix

H(t,0) ≈ H0

√
Tfix

t

2Written as a stochastic Ito-Differential equation the coupling of spatial and frequency derivative
is removed. In this form, the equation is known as the stochastic Fisher-Kolmogorov-Petrovsky-
Piscounov (SFKPP) equation.
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5 Range expansion

and therefore the heterozygosity decays locally algebraically to zero. This indicates

local fixation of a single allele with fixation time Tfix ∼ N2. This is different from the

non-spatial case, where the fixation occurs exponentially fast with a fixation time linear

in N (see section 3.3).

For large separations, i.e. x � 2
√

2Dst, H always approaches H0. The change from

zero to H0 can be quantified by the average domain size l, for t ≥ πTfix. Korolev et al.

[60] show that it is given by

l(t) =
4Ds

Dg

1

H(t,0)
=

√
2πDst

H0

,

which predicts unlimited3 diffusive growth of the domains independent of the genetic

diffusion constant.

To compare the system of finite extend L to the non-spatial case it is practical to

consider the spatial average of the heterozygosity i.e. HL = 1
L

∫ L
0
H(t, x)dx . This

encodes the probability to sample two different alleles in the entire population. For

t � L2

Ds
, i.e. the time scale a domain boundary would need to spread through the full

system, it can be shown that HL follows the same dynamics as a well-mixed system

with rescaled diffusion constant Dg
L

. For πTfix ≤ t ≤ L2

Ds
, however,

HL = H0 −
Dg

L

∫ t

0

H(t′,0)dt′ ≈ H0

(
1− 4

√
4Dst√
πL

)
is obtained and therefore the total fraction of one allele performs a subdiffusive random

walk4 in frequency space and the influence of genetic drift reduces over time.

Radial expansions

Radial expansion of the colony can be treated by the one-dimensional stepping stone

model if the growth dynamics remain quasi one dimensional i.e. the growth layer needs

to be much smaller than the circumference. The spatial coordinate is then parameter-

ized by the arc length x = ϕr where (r, ϕ) are the usual polar coordinates. The spatial

distances inflate due to the radial growth of the colony. For this typically linear growth

3Strictly speaking the solution is only valid for an infinite system.
4Note that the variance of the total fraction simply is H0−HL

2 .
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from an inoculation zone of radius r0, i.e. r(t) = r0 + v‖t is considered. The equation

for the average heterozygosity is

∂H

∂t
=

2Ds

r2

∂2H

∂ϕ2
− Dg

r
H(t,0)δ (ϕ) , (5.2)

which can be solved analytically but its solution is unwieldy. Important to note is, that

H(t,0) decays on time scales larger than
v‖
r0

to zero according to t−1 and not t−
1
2 as in the

case without inflation. This indicates faster local fixation due to inflation. Additional

H(t, ϕ) does not widen indefinitely but approaches for t→∞ a non-trivial limit shape.

This can be understood from equation 5.2 by observing that on time scales larger than
r0
v‖

domain boundary fusion stops. The angular domain size can be computed as

l(t) =
4Ds

Dgr

1

H(t,0)
,

in which for a long time the inflation of r and the linear decay of H(t,0) cancel to give

the finite result

l (∞) =
1

H0

(
v‖
Dg

+

√
r0v‖

2πDs

)−1

.

From this also the average number of domains 〈N〉 = 2π
l(t)

can be computed, which

predicts the survival of a finite number of sectors in circular range expansions determined

by the interplay of genetic drift and spatial mobility.

While comparing the predicted heterozygosity to fluorescence spectroscopy measure-

ments remains challenging, Korolev et al. [93] observed qualitatively agreement. Also,

the observed number of sectors agreed with the predictions and in particular, the bound-

aries followed a diffusive motion.

5.2.2 Sector statistics from boundary dynamics

Treating the boundaries of two neutral strains as a pure diffusion process is a simple but

powerful approach. The problem of computing sector statistics is then reformulated as

diffusion-limited annihilation, where heuristically the number of sectors is expected to
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decay inversely proportional to the area covered by a single boundary i.e. the root of

the mean square displacement (MSD)

N ∝ 1√
MSD (t)

.

The typical time for fixation 〈Tfix〉 is given by the spread of a single boundary over the

full system size. If a system of size L and an MSD (t) ∝ t2γ with wandering exponent

γ is assumed

〈Tfix〉 ∝ L
1
γ

is expected. Therefore, the fixation time decreases with an increasing wandering expo-

nent.

For a detailed analysis in the diffusive case γ = 1
2
, I follow the presentation of Hal-

latschek and Nelson [94]. The relative distance of two boundaries is denoted by Z.

This allows to study line inoculations (Z = X) and radial inoculations (Z = ϕ
r
) at the

same time, where the relative motion is either measured by the distance lateral to the

expansion X or by the angular distance ϕ. Furthermore, as a time-like variable t either

the surface height h or the radial extension r of the colony is used. If the individual

boundaries are diffusions with time-dependent diffusion constant5 D(t) = limt0→t
〈Z2〉

4(t−t0)

the relative motion satisfies the diffusion equation6

∂p

∂t
= 2D(t)

∂2p

∂z2

with absorbing boundary condition p(0, t|z0, t0) = 0. In the case of an infinite system

the solution is7

p(z, t|z0, t0) =
1√
2πσ

e−
(z−z0)2

2σ2

(
1− e−

2z0z

σ2

)
(5.3)

with σ2 = 4
∫ t
t0
dt′D(t′). In the case of the infinite allele model, where every cell is

considered to be a different strain, the sector size distribution is given by the probability

that two domains do not collide given that they start almost at the same position. This

5The time-dependent diffusion constant is necessary to describe inflation in radial inoculations.
6The factor two originates in the relative motion of two boundaries.
7For a finite system, a second boundary condition needs to be introduced. Solving this equation is

possible but the resulting equations are much more unwieldy.
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is obtained by a small ε expansion of solution 5.3, where z = z0 + ε. Normalizing the

result over the half-open interval leads to

p (z, t|x0) =
z

σ2
e−

z2

2σ2 .

The average sector size, therefore, is 〈Z〉 =
√

π
2
σ, which remarkably is π

2
larger than

what is expected from individual non annihilating random walks. This can be under-

stood by considering that the distribution describes the size of surviving sectors and

therefore boundaries that stay apart contribute more to the statistics. The average

number of sectors 〈N〉 for a system with only two alleles with initial heterozygosity H0

and system size L is 〈N〉 = LH0

〈Z〉 . For well-mixed initial conditions H0 = 1
2

and line

inoculations D(t) = D which results in

〈N〉 =
L

2
√

2πD (t− t0)

t→∞−→ 0 .

This confirms the eventual fixation of a single allele on a time scale ∝ L2

D
as already

obtained by the scaling analysis. For circular inoculations D(t) = D
t2

and therefore

〈N〉 =
π√

2πD
(

1
t0
− 1

t

) t→∞−→
√
πt0
2D

.

This shows the survival of different alleles. Note, that since equation 5.3 is only valid

for an infinitive system the sector statistics are only an approximation. Furthermore,

the analysis only considered the interactions of two domain boundaries which is an

approximation by itself. For an analysis of several interacting sectors see for instance [95,

96, 97].

Boundaries in experiments

Korolev et al. [93] analysed the domain boundaries of non-motile E. coli bacteria in

radial range expansions and found chiral behaviour, i.e. they turn always counter-

clockwise. Chirality depends on the temperature E. coli are grown in [98]. Jauffred

et al. [99] investigated the origin of chirality and demonstrated that neither the direction

of cell wall synthesis nor the rod shape is sufficient to produce chiral colonies. The
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authors rather found that chirality is mediated by substrate interactions which can be

masked by bacterial surface structures, such that removing them increases chirality.

Chirality can be included in the diffusion scheme by adding a growth v⊥ speed perpen-

dicular to the perimeter of the expanding colony. In the radial case, the resulting drift

decreases with radial distance and results for the mean and variance in

〈ϕ〉 = ϕ (ri) +
v⊥
v‖

ln

(
r

r0

)
Var (ϕ) =

2Ds

v‖

(
1

r0

− 1

r

)
.

Korolev et al. [93] confirmed that the mean and variances predicted fits the extracted

boundaries. This drift of single boundaries, however, is cancelled in the relative move-

ment of two boundaries and therefore does not influences the sector statistics.

Furthermore, Hallatschek et al. [92] analysed the boundaries of the same E. coli strain

and found that they display superdiffusive wall wandering with wandering exponent

γ = 0.65(5) [92]. This does not agree with the radial diffusions observed by Korolev

et al. [93]. This discrepancy may be the result of methodical differences in evaluating

the MSD of single boundaries or due to slight changes in the growth conditions. So

whether or under what conditions E. coli display superdiffusive wall wandering remains

elusive.

Eventual superdiffusivity is explained, as argued by Hallatschek et al. [92], by the

coupling of the boundary dynamics to the roughness of the colony growth which occurs

along the local surface normal. A local tilt of the surface normal, which the boundary

follows leads to an increased displacement from the average growth direction. Scaling

arguments lead to a wandering exponent γ = 1 + β α−1
α

with growth and roughness

exponents β and α. This predicts γ = 2
3

for KPZ growth, which has been confirmed

by simulations of Eden clusters as presented in the next section. Furthermore, this

exponent is compatible with experimental observations of Hallatschek et al. [92]. Note,

that for the exponents of E. coli presented in section 5.1 rather γ = 0.56 would be

obtained. This does neither agree with the exponent of Hallatschek et al. [92] nor

Korolev et al. [93]. However, in these experiments a different E. coli strain and growth

conditions were used.
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Boundary dynamics of Eden clusters

The boundary dynamics of two competing Eden clusters with identical growth rates has

been studied by Ali and Grosskinsky [100]. The authors studied line inoculations on a

cubic lattice with periodic boundary conditions lateral to the growth direction. Since

the surface grows continuously the line geometry allows the use of the surface height

h as a time variable for the boundary position X. They found that the distribution is

consistent with a Gaussian distribution, with moments

〈Xh〉 = 0

〈X2
h〉 ∝ h

4
3 .

The exponent 4
3

indicates superdiffusive wall wandering, which results from growth

along the local surface normal, as discussed earlier. These observations are consistent

with several continuous Gaussian processes, such as e.g. time changed Brownian mo-

tion, scaled Brownian motion and fractional Brownian motion. By using time changed

Brownian motion, as the mathematically simplest model, understanding sector statis-

tics from boundary dynamics reduces to the statistics of diffusion-limited annihilation

as presented in the previous section. The correct scaling behaviour of the number of

sectors, as well as the fixation time, has been confirmed by collapsing the simulated

data to a master curve [100].

In biological systems, however, cells cannot divide immediately after a previous division.

This can be incorporated by introducing a lag time 1− δ between divisions such that a

simple idealized division distribution is given by the lag exponential distribution i.e.

ρ(t) =

0 , t ≤ 1− δ
1
δ
e−

t−1+δ
δ , t ≥ 1− δ .

The distribution is constructed such that the mean is one and the standard devia-

tion is δ. For δ = 1 the usual memoryless exponential distribution is retained, while

δ < 1 introduces a memory effect. This setting has been studied by Ali et al. [101],

who obtained KPZ scaling exponents8 for the surface growth and boundaries dynam-

ics agreeing mostly with the memoryless case. The prefactor of the boundary MSD,

8Essentially the correlations from divisions are only short-range and therefore do not change the
scaling behaviour.
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depends monotonously on delta, such that a smaller delta9 leads to smaller boundary

fluctuations and more surviving sectors.

I like to emphasize that the wandering exponent 4
3

is only obtained for flat initial condi-

tion i.e. starting from a compact line. Indeed, Derrida and Dickman [102] investigated

the competitive growth of Eden clusters from a wedge initial condition for various open-

ing angles and only found 4
3

in the case of flat initial conditions. However, only a few

angles were explored while Chu et al. [103] studied systematically the dependency of the

wandering exponent on the initial angle. The authors found a continuous dependence,

where 4
3

is only obtained for opening angles close to a flat initial condition. After an

initial transient, the wedge initial conditions lead to a closing of the initial gap and then

the wandering exponent 4
3

is recovered.

Mapping linear to radial inoculations

Let Xh be the boundary process in the flat expansion and Yr in the radial case. This

section presents literature, which shows that by rescaling the radial process such that

distances are not measured according to the arc length but their angular distance both

processes can be related via

Xh(r)
dist.
=

r0

r
Yr r ≥ r0 . (5.4)

The equal sign indicates equality of the probability law.10 Hence, the single time point

quantities of the stochastic process can be mapped to each other and radial inocula-

tions can be understood from linear inoculations. In the case of Brownian motion,

time changed Brownian motion and α-stable Lévy flights even all time correlations are

mapped exactly [104, 105].

9more regular divisions
10Note that depending on the publication X and Y are differently defined [100, 104, 105].
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For the mathematically simplest model consistent with the simulation from competing

Eden clusters, i.e. the time changed Brownian motion, the mapping between flat and

radial expansion can be derived analytically [100, 105]:

h(r) =

(
γ

∫ r

r0

(r0

s

)2

(s− r0)γ−1ds

) 1
γ
r→∞−→ r0


1 , γ = 1[
γπ(1−γ)
sin(γπ)

] 1
γ

, 1 ≤ γ < 2

∞ , γ ≥ 2

where 〈X2
h〉 ∝ hγ is assumed. Therefore the process r0

r
Yr has a finite MSD for all

non-ballistic motions, i.e. γ < 2, and since the boundary grows linearly due to radial

inflation fixation is typically not reached.

An analogous mapping can be found heuristically for all processes satisfying

dXh ∝ (dh)
γ
2 (γ > 0) ,

where I introduce the factor 1
2

to obtain for Brownian motion the wandering exponent

γ = 1 [104, 105]. For those processes

h(r) =

∫ r

r0

(r0

s

) 2
γ

ds
r→∞−→ r0


γ

2−γ , γ < 2

∞ , γ ≥ 2

is obtained and therefore also in these cases, r0
r
Yr has a finite MSD for all non-ballistic

motions. The mapping is confirmed numerically for Brownian motion, Lévy flights

and fractional Brownian motion. These results can be extended to all geometries with

time-dependent domain size and exact derivations exist for Brownian motions and Lévy

flights [105]. For fractional Brownian motion, a different mapping can be derived ana-

lytically, which has numerical similar results. Note that for fractional Brownian motion

both mappings only preserve one point quantities i.e. correlations at different surface

heights are not mapped correctly.

5.2.3 Conclusion

In comparison to non-spatial models which predict exponential fast coalescence into a

single surviving domain, the stepping stone model predicts local demixing into monoal-

lelic domains on an algebraic time scale. As a consequence genetic drift can only act on
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the diffusing domain boundaries decreasing in strength as the population expands. The

genetic diversity depends on the wandering exponent of domain boundaries and while

diffusive wandering is observed in some experiments also superdiffusive wandering is

observed in others [92, 93].

Colonies expanding from line inoculations display in the long time limit only one surviv-

ing allele, while for radial inoculations the inflation of the colony leads to the survival

of a finite number of sectors. This increased genetic diversity on long time scales is re-

markable, but I want to emphasize that also the formation of monoallelic domains and

their increased survival in line inoculations is significant. Since this leads to a transient

increase in genetic diversity it can be relevant in fast-changing environments.

While I presented range expansion experiments for a co-inoculation of strains often the

second strain arises dynamically via mutations. This can be included in the presented

stepping stone model and compared to well-mixed growth a higher mutant frequency is

predicted. These predictions have been experimentally confirmed by Fusco et al. [106]

using genetic sequencing for growing E. coli strains. The mutants occur either as sectors

competing with the wild-type strain or stay behind the growth front and form bubbles.

By considering the boundaries as random walks the authors’ related successfully the

boundary movement to the mutant frequency distribution. This illustrates the useful-

ness of the presented approaches which allow to set the effects of selection advantages

into proper context and allows to better interpret the results of the following section.

To summarize, the previous investigations showed that in the case of neutral competition

spatial models lead, compared to non-spatial models, to an increased genetic diversity in

expanding populations. This is named allele surfing and can be understood heuristically

from the observation that offspring of individuals which are born at the front tend to

stay at the front of an expanding colony. Therefore this offspring has more access to

nutrients and colonisable space than the offspring from individuals in the bulk. Hence,

individuals at the front tend to be more successful in reproducing.

5.3 Selection

While in non-spatial systems only the growth rate determines the selective advantage,

in spatial systems nutrient supply, microbe-substrate friction and access to colonisable

space provide constraints for competing microbes. This section presents experiments,
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computer simulations and mathematical models elucidating the influence of these var-

ious factors on the selection dynamics. In particular, the focus will be on a small

number of mutants competing with an existing wild type population. Since deleterious

mutations, i.e. mutations that have a less selective advantage than the wild type, are

connected to antibiotic resistance they are of particular importance [107].

5.3.1 Stepping stone model and continuum theory

The one-dimensional stepping stone models presented in section 5.2.1 can incorporate

a selective advantage s due to faster reproduction quite easily. To this end, well-mixed

growth with selection, as presented in section 3.3.2, is considered in each deme. Per-

forming, as in the absence of selection (see section 5.2.1), the diffusion approximation for

each deme and the continuum limit for the migration dynamics results in the equation

∂p

∂t
= − s

τg

∂

∂f
f (1− f) p+

Dg

2

∂2

∂f 2
f(1− f)p−Ds

∂2

∂x2

∂

∂f
fp .

Furthermore, the moment equations for the average frequency and heterozygosity can

be derived but the set of equations does not close. Nevertheless, the model can be

analysed in two limiting cases as argued by Korolev et al. [60]: It is known from the

non-spatial model the advantageous strain takes over the population at a time scale

∝ τg
s

and from the discussion of the pure genetic drift it is known that correlations

occur at a time scale of
D2
g

Ds
. Therefore, in the strong selection limit s

τg
� D2

g

Ds
the same

behaviour as in well-mixed growth is expected, while in the weak selection limit s
τg
� D2

g

Ds

deviations are expected. For further analysis, Korolev et al. [60] consider two distinct

initial conditions:

First consider the system initially separated into two domains i.e. f(0, x) = 1− Θ(x).

Then it can be shown that the more fit strain invades the domain of the less fit strain

in form of a wave with speed vs = 2
√
sDs in the strong selection limit and vw = 2sDs

Dg
in

the weak selection limit [60, 108]. The second initial condition is an initially well-mixed

system. Now the selective sweep, in the weak selection limit, consists of two stages.

In the first stage domains, controlled by genetic drift, are established as described in

section 5.2.1. After the domains are established the fitter strain spreads as in the

initially separated case with the weak wave speed into the other domain.
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The selective sweep occurs, as in the non-spatial case, exponential fast but the time scale

is ∝
( τg
s

)2 D2
g

Ds
rather than

( τg
s

)
[60]. And since the weak selection limit was considered

selection is slower in range expansions.

Remarkably the question of the fixation probability, i.e. what is the probability that a

given strain takes over the initial population has been solved analytically by Doering

et al. [109]. For this, the duality between the one-dimensional stepping stone model and

the birth-coagulation reaction-diffusion process A 
 A + A is exploited. The fixation

probability is

pfix = 1− e−
2s

Dgτg

∫
f(0,x)dx

,

which does not depend on Ds but only in the limit s
Dg
� 1 reduces to the well-mixed

result [60, 109].

Note that since the model assumes constant front movement of all strains the predictions

from the one-dimensional stepping stone model in the presence of selection should be

treated with caution. In colonies, the growth advantage leads to local speed up of the

growth velocity resulting in a non-uniform front motion visible by bulging of fronts

that contain the faster-growing strain. However, to my knowledge, no quantitative

comparison to experiments has been conducted.

5.3.2 Sector shape from boundary dynamics

Growing an initial small amount of an advantageous/deleterious strain inside a back-

ground population allows the easy study of selectional advantage in range expansion

experiments. If the initial small population is advantageous it forms, as shown schemat-

ically in figure 5.4, sectors with fluctuating boundaries. First I introduce the local speed

model which neglects fluctuations. Afterwards, the influence of genetic drift is analysed

and finally the predictions compared to experiments.
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a b

Figure 5.4: Illustration of the local speed model for a line or b circular inoculations. The
growth speed of the strains are v1 and v2 respectively. Note the different definitions of the
opening angle Φ depending on the geometry. The figures are adapted from Korolev et al. [110]
with permission from IOP Publishing, Ltd.

Local speed model or equal time argument

This section presents a simple geometric model which predicts the sector shape of

competing microbial stains. This is approach is known in the literature as the equal

time argument or more recently as the local speed model [110, 111, 112].

Consider a colony growing from flat initial conditions as depicted in figure 5.4. The

advantageous strain grows with velocity v1 while the background strain grows with

velocity v2. The idealized resulting sector shape is an isosceles triangle with an opening

angle Φ. The selective advantage is defined as s = v1

v2
− 1. The equal time argument

states that in the amount of time the less fit strain grows along the surface normal the

advantageous strain grows the longer distance along the sector boundary. Therefore

the sector boundary length L and the growth length of the colony L⊥ are related by

L = v1

v2
L⊥ and the relation to the opening angle is (see figure 5.4a)

tan

(
Φ

2

)
=

√(
v1

v2

)2

− 1 =
√
s (2 + s) .

The same reasoning can be applied for circular inoculations in the infinitesimal time

interval (see figure 5.4 b). This results in a differential equation which has according to

Korolev et al. [110] the solution

Φ = ±
√
s (2 + s) log

(
r

r0

)
.
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Here the initial colony radius is r0 and the sign depends on the clockwise or anticlockwise

turning direction of the boundaries. Note that in radial inoculations Φ is only half the

full opening angle.

Including genetic drift

The influence of genetic drift was studied by Hallatschek and Nelson [94] by adding

fluctuations to the motion of the sector boundaries. Since selection is considered a bias

parameter m⊥ is introduced such that the relative boundary motion is described as a

diffusive random walker with drift, i.e.

∂p

∂t
= 2D

∂2p

∂x2
− 2m⊥

∂p

∂x
, (5.5)

where p = p(x, t|x0, t0) is the probability distribution of having boundary separation

x at time t when having separation x0 at t0. Note that t is a time-like variable i.e.

the colonies height or radius.11 Therefore the mean separation of the sector boundaries

grows linearly in time i.e. 2m⊥t, whereby the standard deviation only grows diffusively.

Therefore in the asymptotic limit, the bias parameter can be related to the opening

angle as introduced for line inoculations in the previous section via m⊥ = tan
(

Φ
2

)
.

For an advantageous sector (m⊥ > 0) the fixation probability can be computed from

equation 5.5 to be

pfix =
1− e−m⊥x0

D

1− e−m⊥LD
.

This result is under suitable identifications of parameters identical to the fixation prob-

ability of the non-spatial model but an analysis of the time dependence shows that the

fixation time in the spatial model scales as L
D

while in the non-spatial case it scaled

with lnL. Furthermore, the equation predicts that in opposition to the deterministic

case only a sector of size x0 � D
m⊥

certainly won’t be extinct.

11Note that in the publication of Hallatschek and Nelson [94] the second moment is introduced as 2Dt,
which is inconsistent with their definitions in the backward equation. If 2Dt is introduced as the
variance the publication remains consistent.

74



5.3 Selection

For a deleterious sector (m⊥ < 0) the sector will be eventually trapped and the average

sector size can be computed to be

〈A〉 =

∫ ∞
t0

dr

∫ ∞
0

dx x p(x, t|x0, t0) =
x2

0

4|m⊥|
+
Dx0

2m2
⊥

,

where the first term reflects the deterministic expectation predicted from the local

speed model, i.e. its the area of an isosceles triangle with width x0 and height x0

2|m⊥|
.

Corrections to this deterministic expectation only play a dominant role for small sectors

i.e. x0 � 2D
|m⊥|

.

Experiments

The predictions of the local speed model have been tested by Korolev et al. [110]

with competition experiments of S. cerevisiae strains. First, the assumption of fixed

growth speed was tested and only after an initial transient a constant growth speed

was established. The authors attribute the transient to nutrient depletion and drying

out of the agar gel. Subsequently, the sector shape was analysed for line and radial

inoculations respectively and the asymptotic shape agrees with the predictions.

The equal time argument can also be applied to a deleterious strain but the extinc-

tion dynamics show a two phase behaviour [111]. First, the sector size decreases at

a constant rate agreeing with the predictions of the local speed model but the sector

boundaries don’t collide leading to prolonged extinction times (see figure 5.5 a). This

behaviour could be recreated by a two species KPZ equation and the authors, there-

fore, attribute the prolonged extinction times to surface tension avoiding infinity at the

extinction point. Simulation of an individual based mechanical model, incorporating

surface tension by nutrient-dependent growth rates and pushing due to cell division

could also recreate the prolonged survival of sectors. While the authors claim this is

due to the effective surface tension an Eden model did not reproduce the dynamics.

Since the Eden model belongs to the KPZ universality class and KPZ growth contains

surface tension this seems contradictory. However, the KPZ equation describes the

Eden model only in the hydrodynamic limit, but here the finite sizes of the particles

lead to avoidance of infinite surface tensions at coalescing boundaries. However, the

experiments show that even non-dividing cells are transported 10 cell diameters in half
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a b

d

c

Figure 5.5: (a) Mutant (yellow) competing with wild type S. cerevisiae with relative fitness
s = −0.06. yc is defined as the colony height where both clone boundaries have a distance of
230 µm. (b) Distance between boundaries of clone sector of experiments (blue line with the
grey area as standard deviation from 9 experiments), fitted interface model (black) and local
speed model (red). (c) Fitted opening angles for wide and narrow growth layer for large (red)
and small (blue) angles respectively. (d) Temperature depended range expansion illustrating
evolutionary rescue in changing environments. The figures (a), (b) are adapted from Kayser
et al. [111] with the permission from Springer Nature. The figures (c), (d) are adapted from
Giometto et al. [112] by permission from Giometto.

a generation by division induced pushing of cells. This transport is not realized in a

simple Eden model and likely the reason for the prolonged survival.

As Kayser et al. [111], Giometto et al. [112] also studied the competition of two S.

cerevisiae and confirm the prolonged survival of the deleterious strain. Additionally,

Giometto et al. [112] analysed the sector growth of an advantageous strain and found

that it grows slower than the predictions from the local speed model. The authors

introduce a hydrodynamic continuum model which treats the colony as a quasi-two-

dimensional fluid at a constant density that is driven by a nutrient field ~g. This couples

the growth velocity ~v (∇ · ~v = ~g) via the Navier-Stokes equation to the pressure field

∇p = −γ~v. Combining all assumptions leads to a Poisson equation with Dirichlet

boundary condition at the perimeter which can easily be solved. A growth layer is

implemented by specifying ~g as constant up to distance δ away from the perimeter

and otherwise setting it to zero. Competing strains are then implemented by a simple
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two-species extension of the equations including the exclusion of both strains. In the

limit δ → 0 the local speed model is retained. This model recreates the thin filaments

and the slowed-down sector growth for narrow and wide growth layers respectively (see

figure 5.5 c). Interestingly the model predicts faster sector growth for smaller growth

layers which was also confirmed by experiments.

Both experiments demonstrate that collective division induced pushing forces signif-

icantly change the competition dynamics for sectors. For disadvantageous strains,

this leads to sustained survival which can lead to evolutionary rescue in chang-

ing environments and promote the accumulation of deleterious mutations (see figure

5.5 d) [111, 112]. Since antibiotic resistance is typically acquired at a cost in growth

speed this has interesting applications. Additionally, the overtake of advantageous mu-

tants is slowed down leading to increased diversity inside expanding populations.

5.3.3 The fate of mutants

Since in range expansions genetic drift is increased, compared to well-mixed growth,

selection is weaker. However, populations in well-mixed growth grow exponentially fast

while range expansions from radial inoculations grow only proportional to the popu-

lation at the colonies perimeter. Therefore, if the final population sizes are identical,

selection has much more time to act in range expansions. This prompts the ques-

tion if expansion promotes adaptation compared to well-mixed growth when the final

population sizes are identical.

To this end, Gralka et al. [98] compared the final mutant frequency of a co-inoculation

of mutant and wild type S. cerevisiae strain in range expansion experiments to growth

in liquid flasks (see figure 5.6). They observed in range expansions an increased mutant

frequency which rose with an increase in the selective advantage (see figure 5.6). While

I only show the qualitative features the authors also quantified this by counting the

number of sectors and computing their area. The qualitative features are mostly repro-

duced by an Eden-growth model. However, the area per sector increases only linearly

in the Eden model while the experiments show a more rapid increase. This can be

attributed to the absence of collective pushing as discussed in section 5.3.2.

Furthermore, the authors analysed the influence of selective advantage for various

strains and growth conditions (see figure 5.7 b, d, f). They computed the surfing

probability, i.e. which fraction of mutants at the perimeter of the inoculation zone form
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Figure 5.6: (a) Co-inoculation of S. cerevisiae strains with different selective advantages
lead to more mutants in range expansion experiments ((c)-(e)) compared to growth in liquid
flasks ((f)-(h)). The figure is adapted from Gralka et al. [98] with permission from WILEY.

surviving sectors. This quantity increases monotonously with an increased selective

advantage for all analysed strains and growth conditions (see figure 5.7 g). The order of

magnitude varies greatly between strains and growth conditions. The authors attribute

this to the enormous difference in the genetic drift in neutral range expansions (see

figure 5.7 a, c, d) which correlates with the number of surviving sectors when selective

advantage is present (see figure 5.7 h).

The dynamical creation of mutants during range expansions has also been investigated

by Gralka and Hallatschek [113] for an E. coli strain. The final mutant frequency

displays rather similar behaviour to the results presented here. However, a detailed

comparison is missing. More interestingly the authors also changed the underlying

surface roughness, which changed the absolute growth speed of the competing strains

but not their relative speeds. The rough surfaces had a roughness, defined as the

standard deviation of the surface height, of 10 µm.12 On the rough surface the mutant

frequency stayed rather flat for even big selective advantages. These results could be

recreated by an Eden model with quenched surfaces sites, i.e. sites chosen at the start of

the simulation that are obstacles. These results nicely illustrate that in range expansion

experiments, not just the position relative to the colony, i.e. bulk or perimeter, but also

the position relative to the heterogeneities in the environment are important.

12This is approximately the tenfold radius of and individual E. coli bacterium.
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Figure 5.7: Competitive range expansion experiments with initial fraction Pi of mutants.
(a),(c),(d) Neutral and (b),(d),(e) selective range expansion experiments with selective
advantage s = 0.15. The selective advantage is defined as the relative growth rate in liq-
uid culture. (g) Surfing probability as the fraction of surviving sectors per mutants at the
perimeter of the inoculation zone for various selective advantages s. (h) Number of surviving
sectors per initial mutant correlates with the values in neutral expansions. Scale bars 2 mm.
The figure is reprinted from Gralka et al. [98] with permission from WILEY.

5.3.4 Selection advantage: mechanical properties

Reduced substrate adhesion increases the growth speed of E. coli colonies and leads,

in competitive growth of a more and a less adhesive strain, to the out competition of

the less mobile strain [114]. Colony growth can also be enhanced by the secretion of

EPS (see figure 5.8 a), which leads to an increase in osmotic pressure. This enhances

nutrient uptake and swelling of the colony [115]. The osmotic pressure was controlled

by the agar concentration. Since this changes the stiffness the colony was grown on top

of a semi-permeable membrane reducing the influence of the agars stiffness. However,

EPS production also leads to stripe formation (see figure 5.8 a), which has been linked

to a mechanical instability mediated by the interplay of nutrient consumption, EPS

production and biofilm substratum friction [116]. Since EPS production can enhance

the friction of the colony with the membrane the aforementioned growth advantage is

even more noteworthy.

Furthermore, Yan et al. [115] investigated if non EPS producing cells could benefit from

the EPS production of other cells in a co-inoculation. Interestingly, they observed cell

sorting where the non EPS producing cells are pushed to the perimeter of the colony

and subsequently get displaced by the bulk while staying at the front (see figure 5.8 b).
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Figure 5.8: (a) Range expansion of high and non EPS producing Rg−M ∆vpsL strains.
Different osmotic pressures are realized by variable agar concentration. Scale bar 0.5 cm.
(b) Mixture of EPS producing and non producing strain. Scale bar 0.3 cm. The figures are
adapted from Yan et al. [115] under the CC BY 4.0 license.

The authors hypothesize that this sorting is mediated by local swelling of the colony,

which transports the cells towards the colonies perimeter. This affects mostly non EPS

producers since EPS producing cells are more likely to be connected to EPS which

they produced. The connection to the EPS likely reduces the strain’s susceptibility to

pushing forces generated by cell divisions and local swelling.

Systematic simulation studies on the influence of mechanical interactions in competitive

range expansion are scares. However, at the end of section 5.1 presented model of Farrell

et al. [91] is such a study. Farrell et al. [91] demonstrate that only mutations occurring

at the perimeter of the growing colony have a reasonably high chance of surfing. This

surfing probability is influenced by the roughness of the surface. More specifically the

local roughness, as the roughness computed over a window of finite size instead of

the full system size, provides a collapse of the surfing probability for different system

sizes. The local roughness is influenced by growth and mechanical factors such as the
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thickness of the growth layer and friction anisotropy. While it is obvious that also the

local roughness should be influenced by cellular alignment and varying aspect ratios,

the authors did not quantify this. Friction anisotropy, however, is quantified and only

in the isotropic case a clear decrease of the surfing probability with increased roughness

is observed. Experimentally the decay of the surfing probability with increasing local

roughness is confirmed for E. coli, while for S. cerevisiae this is not observed. Farrell

et al. [91] attribute this failure to the minimal changes in roughness in the tested

experimental conditions.

Cell sorting

As introduced in section 3.2.2 N. gonorrhoeae, possess extracellular polymers named

type IV pili which undergo phase and antigenic variation. If populations with different

levels of piliation are grown in liquid flasks the colonies display distinct patterns shown

in figure 5.9 a-d [57]. These patterns are consistent with the “differential adhesion hy-

pothesis” (DAH), which treats adhesion analogous to the mixture of liquids [117]. The

predicted patterns are determined by the difference in the surface free energy of the

involved phases and are intermixing, self-isolating, spreading complete or incomplete

(a-d in figure 5.9). This hypothesis has been critiqued by Harris [118]: He argues that

treating adhesion as a thermodynamically reversible process that minimizes the contact

area between different phases is too simplistic. This approach neither considers even-

tually strengthening of adhesive bonds, nor the possibility of heterogeneous distributed

adhesion capabilities, such that a minimization of the contact area would not necessarily

minimize the free energy. He puts forward the “differential strength of adhesion hypoth-

esis” (DSAH), treating the adhesion as an active process where cell sorting is caused by

the rupture of the weakest bonds. Oldewurtel et al. [57] quantified the rupture forces

of the involved strains and confirmed that they fit with the observed patterns. Since

the patterns fail to be realised if the active retraction of pili is inhibited by deleting the

pilT gene, Oldewurtel et al. [57] concluded that this indicates the validity of the DSAH

rather than the DAH. I like to point out that by deleting the pilT gene the mobility of

the cells is greatly reduced. This mobility, however, is also a key ingredient in the DAH

and therefore without determining the remaining mobility the conclusion of Oldewurtel

et al. [57] seems premature.
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E

Figure 5.9: Pattern formation in a liquid flask of N. gonorrhoea bacteria with different
levels of piliation (A-D). Depending on the pilus density and post-translational modifications
(A) intermixing, (B) self-isolating, (C) complete and (D) incomplete spreading is observed.
Patterns consistent with predictions from DAH and DSAH as determined from rupture forces.
(E) Range expansion of N. gonorrhoea bacteria with identical levels of piliation after 48 h.
Scale bar: 500 µm. The figures (A)-(D) are adapted from Oldewurtel et al. [57] while the
figure (E) is adapted from Zöllner et al. [9]. All figures are adapted under the CC BY 4.0
license.
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Zöllner et al. [9] investigated the influence of piliation on range expansion by co-

inoculating different fluorescent labelled, but otherwise identical piliated, N. gonor-

rhoeae bacteria (see figure 5.9 e). After 48 hours they observed inside the inoculation

zone a random mixture of both strains, while the primary outgrowth forms many small

sectors. After ≈ 150 µm the number of sectors is greatly reduced and the sector bound-

aries appear rather straight. While it is not clear how the initial densities in this

experiments are related to the densities used to create figure 5.3, the sudden strong

reduction of sectors seems to distinguish both experiments. Indeed an analysis of the

outgrowth by immunofluorescence and morphology inspection revealed that the sectors

consist of unpiliated clones, which arise naturally from phase and antigenic variation [9].

Note that in opposition to the claim of the publication, morphology inspection is ac-

cording to their citation only able to distinguish between piliated and under piliated

but not non-piliated morphology [119]. Therefore, the experiments do not rule out

that the mutants are under piliated, which will be important for my work presented in

chapter 6.

The study furthermore investigated the role of cell sorting on colony growth by co-

inoculating a piliated and non-piliated strain (see figure 5.10) in various initial ratios

rin. As discussed the non-piliated strain gets sorted to the perimeter of the colony, while

additionally Zöllner et al. [9] demonstrated that the non-piliated strain gets displaced by

piliated cells during cell division but stay at the front. Analogous to genetic surfing, the

authors refer to this transport as surfing. The sorting and transport results in a clear

outcompetition of the piliated strain by the non-piliated strain for identical growth rates.

Tuning the strain-specific growth rate, by their distinct sensitivity to the antibiotic

concentration, showed remarkably that the non-piliated strain could outcompete the

piliated strain even with twice as large mean division times.

Sometimes, red sectors with rather moderate opening angles were observed inside the

non-piliated outgrowth (see figure 5.10). These are formed by non or under piliated mu-

tants. The dominance of the outgrowth by the unpiliated slow-growing strain is even

retained for a colony that initially consists of a hundred times more piliated cells. How-

ever, the frequency of non-piliated mutants grows with the initial population of piliated

cells, and the mutants become able to compete with the non-piliated outgrowth.

In order to study the interplay of two sorting strains, Dong and Klumpp [120] introduced

an Eden-like growth model incorporating cell division and swapping of cells with each

other as well as the surrounding medium (see figure 5.11). Events are executed according
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Figure 5.10: Range expansion of N. gonorrhoea bacteria with no piliation (green) and
piliation (red) after 68-70 h. Scale bar: 500 µm. rin initial fraction of piliated to non-piliated
cells. rt fraction of mean division time of non-piliated to piliated cells. The figure is adapted
from Zöllner et al. [9] under the CC BY 4.0 license.
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to the stochastic simulation algorithm introduced in section 2.3.2 and swap attempts are

accepted according to the Metropolis algorithm. The energy of the system is computed

via simple pair-pair interaction energies of both bacterial strains and the surrounding

medium. Due to the swapping mechanism, the radius of a colony consisting of a single

strain shows two distinct growth speeds. In the strong adhesion case, swapping with

empty sites is suppressed and the radius grows linearly with the growth rate, while in the

weak adhesion limit the radius grows diffusively. In the case of two non-dividing strains,

the model confirms the predictions of the DAH if the particle number is conserved but

not if cell division is included.

In the case of dividing cells, the system is initialised as a compact circle, where the less-

adhesive cells take up a small wedge (see figure 5.11d). If division rates are identical the

less-adhesive cells always engulfed the more-adhesive cells. The interior shows either

mixed or fully phase-separated morphology depending on the adhesion energy. Dong

and Klumpp [120] argue that engulfment of the more adhesive cells will be typical as

long as the effective growth of the less adhesive strain is greater. Because of the two

distinct growth regimes, this is expected as long as 4
√
Dustrong >

√
uweak, where u

are the mean division times and D the diffusion constant.13 The argument predicts

engulfment for twice as low division times as long as D > 1
2
. It neglects the effects

of inflation on a growing colony and presumes diffusive-like spread of the less-adhesive

strain which in the experiments of Zöllner et al. [9] is not observed.

Furthermore, the initial condition confines the fast-growing cells into a sector, which

provides the less-adhesive strain with an advantage. This confinement does not re-

flect the experimental condition of Zöllner et al. [9]. Dong and Klumpp [120] already

suspected that the experimentally observed pushing of cells plays a vital role in the

competition dynamics. This presumption will be confirmed by my work presented in

chapter 6, which designs a stochastic model analysing the influence of pushing on the

competition dynamics.

13The publication states the inequality without 4D which is dimensionally inconsistent. Reworking
their argument with the previous definition of growth speed leads to the stated equation. The
dimension of the diffusion constant is distance2 per mean division time of the strong interacting
strain.
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(d) Range expansion with identical growth rates
 starting from a wedge initial condition

Figure 5.11: Model and simulation results for a range expanding cell sorting population.
(a) Cell division occurs only to empty nearest neighbour sites. (b,c) Possible swap attempt of
cell i and j. The neighbouring cells which contribute to the energy calculation are marked in
a circle and square respectively. Note, that the swapping considers nearest and next-nearest
neighbours (Moore neighbourhood) and swaps to empty sites can occur. The figures and
captions are adapted from Dong and Klumpp [120] with permission from The Royal Society
of Chemistry.

5.4 Conclusion

This chapter presented the influence of selective advantages on expanding populations

by experiments and simulations. It demonstrated the strong effects of genetic drift

and the enormous extent to which it is understood. The role of reproduction statistics

of individual microbes as a selection advantage has been explored extensively. Me-

chanical properties, while remaining mainly unexplored, show a strong influence on the

structure of growing populations. In particular pushing of microbes due to division

generated forces or osmotic pressure differences greatly affected the colony growth. The

introduction of competing cell sorting strains provided a new model system that allows

investigating the influence of mechanical interactions on the competition dynamics.

Remarkably, even if the strong interacting strain divided twice as fast it could not out-

perform the weaker interacting strain. My work, presented in chapter 6, constructs and

analyses a minimal stochastic model, which provides a framework for understanding

the influence of division induced pushing as a selection advantage.
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expansion with heterogenous

mechanical interactions

In section 5.3.4, I presented competitive range expansion experiments of two N. gonor-

rhoea strains, with different mechanical interactions and tunable reproduction statistics.

These experiments show that in neutral competitions (equal mean division times) the

weak interacting strain outcompetes the strong interacting strain. This distinguishes

this model system from other well studied microbial model systems where in the neutral

case no outcompetition is observed. Even more remarkable the outcompetition is still

observed when the strong interacting strain divides twice as fast. While the different

mechanical interactions induce cell sorting of the weaker interacting strain toward the

perimeter it is unclear if this mechanism is sufficient to explain the experimentally ob-

served patterns. As a second mechanism, the heterogeneous interactions could facilitate

distinct susceptibilities to division induced pushing of cells. To discern the influence of

these distinct mechanisms, this chapter constructs and analyses a minimal stochastic

growth model which allows investigating the influence of cell sorting and heterogeneous

pushing on competitive growth. I will cover radial inoculations as in the range expan-

sion experiments of two N. gonorrhoea strains as well as sector formation from line

inoculations.

This chapter is based on the article Theoretical modelling of competitive micro-

bial range expansion with heterogeneous mechanical interactions published

in Physical Biology, 2021, 18, 016008 by Erik Maikranz and Ludger Santen [121].

Section 6.3.3 has not been published and investigates if division induced pushing can

lead to filamentous sector growth and corresponding prolonged survival as observed by

Kayser et al. [111].
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6.1 Model

I model range expansion as Eden-like growth on a two-dimensional hexagonal lattice in

continuous time. I consider three cell types with different interactions (corresponding

to the degree of piliation) and mean division times. The waiting time between divisions

is Weibull distributed with scale parameter λ and form parameter k (Weib(λ, k)), i.e.

(t ≥ 0)

ρ(t) =
k

λ

(
t

λ

)k−1

e−( tλ)
k

. (6.1)

The Weibull distribution reduces to the exponential distribution for k = 1, which is often

used to model cell division times. The exponential distribution, however, implies that

the most probable division time is instantly after the last division. This is biologically

not reasonable. The distribution of waiting times between divisions for real cells shows

that the minimal time between divisions is comparable to the mean division time [122].

Therefore I will compare the results for an exponential distribution to a regularized

distribution with k = 2 (see figure 6.1).
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Figure 6.1: Probability density function of the Weibull distribution with scale parameter
λ = 1 and shape parameter k. The figure and caption is reprinted from Maikranz and Santen
[121].
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The moments of the Weibull distribution are

〈T n〉 = λnΓ
(

1 +
n

k

)
, (6.2)

where Γ is the Gamma function. Hence, the relative moments of two independent

Weibull distributed random variables T1, T2 (Weib(λ1, k), Weib(λ2, k)) are (λ1/λ2)n.

As a consequence, I can fix in competitive growth either the relative mean values or

scale parameters as long the distribution for all strains uses the same form parameter.

In the following simulations, the strong interacting strain (SI-strain, red) has many pili

and divides with scale parameter λr, while the weakly interacting strain (WI-strain,

green) has no pili and divides with different scale parameter λg. Through most of

section 6.2, this will be the only strains considered but in section 6.2.2 also a mutant

strain (M-strain, yellow) as the progeny of a SI-cell will be introduced. The mutant

arises during division and inherits the division statistics of the SI-cell but it loses some

of its pili. This leads to a weakening of the mechanical interactions in comparison to

the SI-strain. In these experiments of Zöllner et al. [9], the SI-strain was constructed to

show only a weak dependence on the antibiotic concentration while the mean division

time of the WI-strain was varied. Accordingly, the scale parameter of the SI-strain sets

the reference time scale i.e. λg = rd · λr and in accordance with the experiments, I

choose λr = 1 h.

Besides cell divisions also swapping of SI-cells with M- and WI-cells with rate 1/µs is

considered whereby µs = rs·λr. All events (divisions and swaps) are selected analogously

to the next reaction method of the stochastic simulation algorithm (SSA) presented in

section 2.3.2.

6.1.1 Swapping

As presented in section 5.3.4 different levels of piliation lead to cell sorting. I implement

this by swapping SI-cells with M- and WI-cells with rate 1/µs (swapping of WI- and

M-cells is not considered). However, swapping is only allowed if a swap increases the

number of neighbouring SI-cells (see figure 6.2 b). Note that this swapping mechanism

introduces a subtle asymmetry between SI- and WI-cells at the perimeter of the colony.

Since only the number of SI-strain SI-strain interactions are optimized the WI-cells

will be most likely sorted to the perimeter with more empty neighbour sites. This
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asymmetry is also observed in the experiments presented in section 5.3.4, where the

WI-strain is always sorted towards the colonies perimeter.

6.1.2 Cell division

The model considers two cases of cell division: In the first case the dividing cell has

at least a single empty neighbour site (see figure 6.2 a), while in the second case the

neighbour sites are fully occupied (see figure 6.2 d).

In the first case cell division from site I to one of the empty sites J is selected with

relative weight

wdI→J :=
∑
j

sj
∑

i∈<I,J>

ISi=Pj +
∑

i∈<I,J>

ISi=E .

Here
∑

<I,J> denotes the sum over common neighbour sites of site I and J. Further-

more, IS=Pj and IS=E indicate if a cell of type j is occupying the site or if it is empty.

The stickiness of a given cell type is controlled by the sj which give additional weight

to a neighbour site (see figure 6.2 c).

In the second case, a cell division occurs if the translation of at most P cells leads to a

valid configuration, i.e. the last particle of the chain occupies a previously empty site.

The strain-specific interaction strengths are reflected by their susceptibility to pushing.

While WI-cells can in principle always be pushed I will consider for SI- and M-cells

various possibilities. It turns out that to recreate the experimental patterns SI-cells will

not be pushable while M-cells can only be pushed to an empty site.

The construction of the push chain occurs in steps such that in each step1 a cell is

translated onto an occupied site or empty next neighbour site (see figure 6.2 d). Note

that each pair of sites has three common next neighbour sites. Hence after a translation

to a new site, there are only three neighbour sites previously not considered for a

translation. To illustrate this consider the first translation where, out of the pushable

neighbours of the dividing cell (0th step cell), one random cell is chosen. This chosen

cell has six neighbour sites from which only three are not also next neighbours of the

dividing cell (0th step). Therefore, I choose the next position only among the accessible

1Besides the 0th layer which is defined as the dividing cell.
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(empty or pushable) three new sites. This is continued such that in the nth step a

cell can only be translated onto a site that has been previously not considered for a

translation. From this set of accessible sites (empty or pushable) a random site is chosen

and the chain continued. The construction of the chain ends if an empty site is found

or the maximal chain length P is reached. If the chain cannot be continued because

there are no pushable cells or the maximal length is reached the construction goes back

to the previous step and chooses randomly a different accessible site to continue the

chain. This method guarantees that an empty site is always found if it is within range

of the maximal amount of pushes P .

In both cases of cell division, the newly placed cell can mutate with probability pm into

a different cell type. In the present model, I consider only the mutation of a SI-cell into

a M-cell.

6.1.3 Initialisation and reference parameters

If not otherwise mentioned the simulations are initialized with 500 cells of the SI-

and WI-strain. The cells are randomly distributed in a circular patch at fixed density

ρ0 = 0.1. The reference parameters are collected in table 6.1.

Table 6.1: Reference parameters and symbols. The table is reprinted from Maikranz and
Santen [121].

initial number of SI-cells 500
initial number of WI-cells 500
initial density ρ0 0.1
scale parameter of SI-strain 1 h
mean swap time relative to scale parameter of SI-strain rs 0.1
stickiness of M- and WI-strain sg, sy 1
stickiness of SI-strain sr 1
mutation probability (in division) of SI- to M-strain pm 0

mean division time of WI-strain relative to mean division time of SI-strain rd
maximal amount of cells that can be pushed by the WI-strain P
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division swaps
(a) particle dynamics

1

2

3 1
×
×

(b) swapping

1 + s1

2s1

1 + s2

(c) division to empty site (d) division to occupied site

SI-strain

WI-strain
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Figure 6.2: The green cells represent the slow growing weakly interacting strain (WI-strain),
while the red cells represent the strong interacting fast growing strain (SI-strain). The yellow
cells (M-strain) are the progeny of the red cells which are weaker interacting but are growing as
fast as the SI-strain. (a) All cell types produce offspring of the same type by cell division but
red cells can also produce yellow mutants as offspring. Due to different cell-cell interactions
red cells can swap places with yellow and green cells. (b) Example of configuration-dependent
swap possibilities. The double headed arrow indicates pairs of cells that could swap, whereby
the red crosses rule out swaps in which the red particle would have less red neighbours than
before the swap. The digit inside the cells denotes the number of surrounding red particles.
(c) Example of configuration-dependent division weights for a division to an empty site. (d)
Cell division to occupied sites is possible by pushing neighbouring cells. While in this example
the red cells cannot be pushed, the red cell is able to push the green cells and create one of
the push paths indicated by the arrows. The paths resulting in a division are marked by
continuous black arrows and non-viable paths by dotted arrows. Note, that I construct the
final path by following a path until it fails to find an empty side. In particular branching is
only considered when the current path fails. In this example the algorithm would either find
two empty sites (upper path) or three empty sites (lower path). The figure and caption is
reprinted from Maikranz and Santen [121].
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6.2 Effects of division induced pushing in competitive

radial range expansion

First, I study the competition between the WI- and SI-strain. Both strains are allowed

to be pushed and neither strain is mutating. Therefore, the strong interactions of the

SI-strain are only considered by swapping with the WI-strain (see section 6.1.1). The

typical colony compositions after 60 h of growth time are shown in figure 6.3 a and are

quantified by the mean fraction of WI-cells at radial distance R (MFR) to the origin

inside the inoculation zone (see figure 6.3 b).

Competition of cells with equal mean division times (rd = 1):

If neither strain has a divisional advantage a compact random mixture of both strains

inside the inoculation zone after 60 h of growth time is observed. The MFR of 0.5

inside the inoculation zone confirms that the inoculation zone is equally filled with both

strains. Out of the inoculation zone, the strains grow as monoallelic sectors reminiscent

of neutral range expansions presented in section 5.2.1. The MFR, however, shows a

monotonic increasing dominance of the WI-strain. This is different from the situation

without swapping, where a constant mean fraction of 0.5 is predicted from symmetry

considerations as well as from the stepping stone model introduced in section 5.2.1. I

attribute this increasing dominance to the asymmetry of the swapping mechanism as

already discussed in section 6.1.1. The swapping leads to a systematic reduction of the

number of neighbouring empty sites for the SI-strain resulting in a starting advantage for

the WI-strain. Furthermore, the swapping stabilises the monoallelic interfaces leading

to a slow increase of the MFR. If the cells can push, the initial advantage of the WI-

strain is amplified and additionally, the sector interfaces can be overcome. This leads

to increasing dominance of the WI-strain with increasing P , but particularly for small

values of P long-living SI-strain sectors are observed.

The regularisation (k = 2) of division times has two effects: First, it results in smaller

radial extensions of the colony. Since the mean division time is
√
π/2 times smaller than

for k = 1 bigger radial extension would be expected (see equation 6.2). However, the

growth of the colony is determined by the competition for vacant sizes by many cells at

the same time. This minimal time can be computed (see appendix equation A.4) for the

Weibull distribution and is significantly shorter for an exponential distribution (k = 1)

than for k = 2. Second, the MFR for k = 2 is larger than for k = 1. This indicates
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6 Modelling competitive range expansion with heterogenous mechanical interactions

Figure 6.3: Range expansion simulation of weakly interacting slow growing (WI, green)
and fast growing strong interacting (SI, red) strains with relative mean division times rd
and maximal allowed pushes P . Here, both strains can be pushed equally and swapping is
considered. (a) Typical phases for shape parameter k = 2 where for k = 1 I observe similar
results. For P = 2 and rd = 1 sectors still grow to the perimeter of the colony but die out
for P = 3. (b) Mean fraction of WI-cells up to radial distance R, after 60 h of growth time.
The dotted line indicates the initial radius of the inoculation zone. (c) Mean fraction of the
maximal radial distances of the WI-strain. Values close to one indicate survival. Values for
rd = 1 would be greater one and are not shown. The figure and caption is reprinted from
Maikranz and Santen [121].

faster annihilation of outgrowing sectors with varying P . Indeed, the SI-sectors get

annihilated for P = 2, while for k = 1 the sectors still reach the colony frontier and get

extinct for P = 3.

Impact of divisional advantage (rd = 2):

In the case of a substantial divisional advantage (rd = 2) the SI-strain dominates the
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6.2 Effects of division induced pushing in competitive radial range expansion

colony for all values of P . Quantitatively, this is represented in an MFR below 0.5 inside

the inoculation zone, while outside the inoculation it decreases monotonically to zero.

Note that this dominance is naively expected but it does deviate from the experimental

results presented in section 5.3.4 where the WI-strain dominated. Therefore swapping

is not sufficient to recreate the observed patterns but nevertheless, some interesting

results are obtained for P 6= 0:

While for P = 0 the WI-strain becomes completely extinct, for P 6= 0 the expanding

population of SI-cells transports a small population of WI-cells (see figure 6.3 a). This

results in a sustained standing variation of strains inside the expanding population

and is not predicted by continuum theories. The MFR, due to the stochastic radial

position and small population size, is not a good quantity to characterise survival.

Therefore, I calculate for every colony the maximal radial distances of all WI- and

SI-cells respectively and use their fraction to characterize survival. Values close to

one indicate the existence of WI-cells at the current perimeter of the growing colony

and hence sustained transport. In figure 6.3 c the mean values of this fraction at

different times are shown for rd = 2. The aforementioned transport indicates survival

and increases with an increasing P . Furthermore, the regularisation of the division

distribution enhances the observed survival.

6.2.1 Effects of mechanical heterogeneity

Mechanical heterogeneity in this section is realized by different pushing susceptibilities

of SI- and WI-cells. In the case of P = 0 this is the same scenario as in the previous

section, but for P 6= 0 only the WI-strain can be pushed. As in section 6.2, the typical

phases of the colony are shown in figure 6.4 a and are quantified by the mean fraction

of WI-cells at radial distance R (MFR) to the origin inside the inoculation zone (see

figure 6.4 b).

If I consider no divisional advantage for any strain (rd = 1), the behaviour inside the

inoculation zone is equivalent to the homogeneous case. Outside the inoculation zone,

the MFR increases much faster and reaches one already for R & 57. The regularisation

(k dependence) and an increasing amount of pushes have for P 6= 0 only a minor effect

on the MFR.

Now I turn to the situation, where the heterogeneous susceptibility to pushing can com-

pensate for slower divisions. I focus as in the previous section on rd = 2: As previously
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6 Modelling competitive range expansion with heterogenous mechanical interactions

Figure 6.4: Range expansion simulation of weakly interacting slow growing (WI, green)
and fast growing strong interacting (SI, red) strains with relative mean division times rd and
maximal allowed pushes P . Here, only the WI-strain can be pushed. (a) Typical phases of
the range expansion for shape parameter k = 2. We observe similar results for k = 1. (b)
Mean fraction of WI-cells up to radial distance R, after 60 h of growth time. The dotted line
indicates the initial radius of the inoculation zone. The figure and caption is reprinted from
Maikranz and Santen [121].

mentioned for P = 0 a strong dominance of the SI-strain is observed. For P = 1 the

pushing supports the outgrowth of the WI-strain which results in a comparable or even

higher MFR than the SI-strain below R . 100. The higher MFR is observed for k = 2,

which shows, as already discussed in section 6.2, that the regularization supports the

outgrowth of the disadvantaged WI-strain. For R > 100, however, the sectors of the

SI-strain dominate the population and the MFR drops fast almost to zero. For P ≥ 2

the WI-strain dominates the colony growth in almost the same manner as it would

possess no divisional disadvantage.

The results demonstrate that larger passive mobility, which I introduced by selective

pushing, can beat an extreme divisional disadvantage. This was observed in the ex-

periments introduced in section 5.3.4, and already studied with the help of simulations

by Dong and Klumpp [120]. While this work considered swapping cells to energetically

favourable positions and diffusion of cells to empty sites the authors did not consider

pushing. Furthermore, Dong and Klumpp [120] already observed outcompetition de-

spite divisional disadvantage but I like to emphasize that this strongly depends on the

initial conditions. In particular, in their setup, the fast-growing cells were contained in

a single compact sector and not randomly placed inside a circular inoculation zone as in

the experiments. This discrepancy, especially together with the previous section where

no dominance of the slow-growing strain could be observed highlights the importance

of selective pushing.
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Figure 6.5: Mean fraction of WI-cells up to radial distance R, after 60 h of growth time. The
dotted line indicates the initial radius of the inoculation zone. Here, only the WI-strain can
be pushed and cells were not able so swap. The figure and caption is reprinted from Maikranz
and Santen [121].

Next, I investigated the questions if selective pushing is sufficient for the dominance of

the slower-growing strain or if swapping is needed as well. To this end I repeated the

simulations without swapping (see figure 6.5): First, I consider the neutral case rd = 1.

For P = 0 both strains have identical properties and the MFR is ≈ 0.5, as expected.

Note that this result shows that the dominance of the WI-strain observed for the same

parameters but with activated swapping is caused by the asymmetry of the swapping

rule. For P > 0 comparable patterns to the case with swapping are obtained and the

MFR reaches one shortly after the inoculation zone. As in the case with swapping, also

only a weak dependence on the parameters k and P is observed.

In the second scenario, I consider rd = 2. The case P = 1 nicely demonstrates the

strong influence of the waiting time distribution. While in the exponential case (k = 1)

the MFR decreases, it increases linearly for k = 2. For P ≥ 2 the dominance of the

slow-growing strain outside the inoculation zone is obtained. This demonstrates that

the mechanical heterogeneity of the pushing is sufficient for the outcompetition and

swapping is indeed not needed.

Together, these results suggest that the outcompetition observed in the experiments of

Zöllner et al. [9] can be attributed to the heterogeneous transduction of division induced

pushing forces, and not to cell sorting of WI-cells to the perimeter of the inoculation

zone. While it is unclear if the transduction of pushing forces is related to pili retraction

it is known that blocking active pili retraction inhibits cell-sorting [57, 123]. Hence,
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6 Modelling competitive range expansion with heterogenous mechanical interactions

repeating the experiments with pilT knockout mutants would be a first step in testing

this hypothesis.

6.2.2 Radial range expansion with mutants

Now that I could recreate the experimentally observed patterns of Zöllner et al. [9]

by considering selective pushing of only WI-cells I investigated the influence of natu-

rally occurring SI-cell mutants. To this end, I consider a finite mutation probability

pm = 0.001 of SI- to M-cells and a configuration of pushes where the WI-strain outcom-

petes the strong interacting strain. Comparing to the previous sections shows that no

pushing of the SI-strain and P = 2 for the WI-strain is sufficient. Furthermore, Zöllner

et al. [9] characterized the properties of the M-strain such that the division statistics

remain unchanged from the parent strain but they lose their pili. This suggests that

M- and WI-cells possess the same mechanical properties i.e. they should be pushed

equally. Simulations with these properties show (see figure 6.6 right column) that the

resulting opening angles are much larger than the experimentally observed angles. If

the M-cells retain the identical properties of the SI-strain (no push) they get trapped

as their parent strain (see figure 6.6 left column). Only if I considered an intermediate

amount of pushes (single push) for the mutant strain I obtained M-strain sectors with

opening angles comparable to the experimental results.

This indicates that the mutants in the experiments are rather underpiliated and not

unpiliated as claimed by Zöllner et al. [9].

6.3 The fate of mutants

The previous section demonstrates that differential passive mobility induced by cell

division induced pushing is an important factor in colony growth. I now investigate more

in-depth how differential pushing influences the development of a small subpopulation

of cells, which are embedded in a larger population. To only investigate the influence

of pushing swapping will not be considered. Furthermore, I start the simulations from

an initial line where the smaller population (M-/SI-cell) is placed as a compact region

inside a background of WI-cells. I use periodic boundary conditions perpendicular to

the direction of growth (x-direction x ∈ [0,499]) and a half-open system in y-direction
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6.3 The fate of mutants

Figure 6.6: Example configurations of mutating SI-cells competing with WI-cells after 50,
60 and 70 hours of growth time. We consider Weibull distributed divison times with k = 2,
rd = 2 amd P = 2 for the WI-strain. The mutation probability is given by pm = 10−3.
Configurations are shown for different pushing capabilities of the M-strain (PM = 0,1,2 from
left to right). The figure and caption is reprinted from Maikranz and Santen [121].

(y ∈ [0,∞)).2 The SI-strain (red) cannot be pushed, while a single M-strain (yellow) can

be pushed according to min (1, P ). As I have presented in section 5.3.2 such experiments

typically lead to growing sectors which can be quantified by their opening angle. To

this end, the first subsection will detail how the opening angle is computed and the

subsequent subsection will present the results.

2The coordinates are hexagonal. The conversion to Cartesian coordinates is presented in section 6.3.1.
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6 Modelling competitive range expansion with heterogenous mechanical interactions

6.3.1 Computation of sector angles

To compute the opening angles of a sector first the left and right endpoint of the

sectors (see figure 6.7) need to be determined. For this, I convert from hexagonal grid

coordinates (x′, y′) to cartesian coordinates by

x = x′ +
y′

2

y =

√
3

2
y′.

To compute the interface height y, I count the number of WI-cells per layer. Subse-

quently, y is determined as the first layer where the mean and slope change significantly

(see figure 6.7b). This can be conveniently performed by the MATLAB function ‘find-

echangepts’. The corresponding x values are then obtained by finding the left and right

closest points to the origin in layer y.

From the coordinates (xi, y) of the left and right endpoint the corresponding left and

right angles αl, αr are computed via αi = arctan y
|xi| . The full opening angle α is

obtained by α := 180◦ − (αl + αr).

6.3.2 Advantageous mutants

The small population, here 10 cells, is placed as a compact region inside a background

of WI-cells. Consider first the mechanical homogeneous case, i.e. every strain can be

pushed equally. This is shown in figure 6.8 a for P = 0 and rd = 2. In this situation,

always compact sectors are observed which I quantified by their opening angles α. These

angles are mostly determined by the divisional advantage rd, while P and k have only a

small influence (see figure 6.8 b). Although the influence of P is much weaker than the

influence of the divisional advantage, still a systematic difference between P = 0 and

P ≥ 1 can be observed: Since pushing facilitates the occupation of space it increases

the opening angle if it has any influence at all.

For heterogeneous pushing, I consider two different scenarios: First, the competition of

a small population of the M-strain with the WI-strain. The WI-strain can be pushed

according to P while the M-strains pushing capabilities are given by min (1, P ). There-

fore, only the cases P ≥ 2 constitute new scenarios. For P = 2 and rd ≤ 1.6 the sector
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6.3 The fate of mutants

Figure 6.7: (a) Opening angle α quantifies the growth advantage of two competing strains.
To find α , we compute the angles αl, αr via the slope of the lines connecting the origin to
the endpoints. (b) For computing the y coordinate of the endpoints, we compute the number
of WI-cells in layer y and find the first layer where the mean and slope change significantly.
The figure and caption is reprinted from Maikranz and Santen [121].

annihilates and only for rd ≥ 1.8 do I observe stable sector formation (see figure 6.8 b).

For already P = 3 and up to rd = 2 the WI-strain background dominates leading to

either annihilation or only non increasing opening angles (see figure 6.8 a right column).

Note, that the sectors remained monoallelic for all parameters irrespective of outcome

(growth or annihilation). In the second scenario, the WI- strain competes with SI-cells

which cannot be pushed. For up to rd = 2 and P ≥ 2 the sectors generally annihilate.

In the case of P = 1, however, the sectors grow in a dendrite-like shape and survive

at least 70 h of growth time. The absence of a monoallelic sector complicates the in-

terpretation of the opening angle which is much smaller than for the compact sectors.

To quantify the divisional advantage needed to establish surviving domains for P = 2 I

varied rd in the range of three to five (see figure 6.8 a middle column). The simulations

show only sector formation for rd ≥ 4. Interestingly, these sectors are not monoallelic

but rather show a mixture of SI- and WI-cells despite the dominance of SI-strain. This

high persistence of WI-cells inside the expanding SI-strain domain is reminiscent of the

transport of WI-cells in radial range expansions (see section 6.2). It is caused by the

transport of WI-cells towards the colonies surface and demonstrates that heterogeneous
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6 Modelling competitive range expansion with heterogenous mechanical interactions

Figure 6.8: Range expansion simulation with 70 h of growth time of a small population
inside a bigger population of WI-cells starting from a line inoculation. The simulation uses
periodic boundary conditions perpendicular to the growth directions and none of the strains
are able to swap. The WI-strain (green) can be pushed according to P , while the M-strain
(yellow) can just be pushed according to min(1, P ) and the SI-strain (red) cannot be pushed
at all. rd is the relative division time of the WI-strain with respect to the small initial sub-
population. I quantify the sector growth by the opening angle α. (a) Illustration of sector
dynamics for shape parameter k = 2. (b) Opening angle α quantifies the relative fitness of
the strains. Angles of domains which die out are plotted as zero. The figure and caption is
reprinted from Maikranz and Santen [121].

mechanical interactions can establish a standing variation of strains inside the growing

sector which is not observed for homogeneous mechanical interactions.

6.3.3 Deleterious mutants and enhanced survival

The small population, here 50 yellow cells, is placed as a compact region inside a

background of WI-cells. To investigate if the observed prolonged survival presented in
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6.3 The fate of mutants

section 5.3.2 could be induced by division driving pushing, I only consider the mechan-

ical homogeneous case, i.e. both strains can be pushed equally. Note that these results

have not been published. I consider rd = 0.95, i.e. the slower growing strain (yellow) is

embedded in a background of faster growing cells (green cells). As depicted in figure 6.9

the sectors for P = 0 form an isosceles triangle compatible with the predictions of the

local speed model presented in section 5.3.2. Division induced pushing (P 6= 0), how-

ever, leads to longer survival and the creation of filamentous sector growth. I quantity

this as Kayser et al. [111] (see figure 5.5 b) by the sector width at height y after 100

h of simulated time. At this time all the dynamics in the colonies bulk have ceased

and I obtain well-defined values. Since the sectors are not compact I define the sector

width as the maximal distance of two yellow cells at height y. Figure 6.9, indeed, shows

for P = 0 an almost constant sector shrinkage, while for P 6= 0 slowed down extinc-

tion is observed. This slowed down extinction is enhanced by an increased amount of

pushing.

y

P = 0

P = 1

P = 2

P = 3

a b
k = 2

k = 1

Figure 6.9: Range expansion simulation with 100 h of growth time of a small population
inside a bigger population of WI-cells starting from a line inoculation. The simulation uses
periodic boundary conditions perpendicular to the growth directions and none of the strains
is able to swap. Note that the yellow cells are not M-cells and are pushed identically to the
green cells according to P . rd = 0.95 is the relative division time of the green train with
respect to the small initial sub-population, i.e. the small sub-population grows more slowly.
I quantify the sector survival by the width of the sector. (a) Illustration of sector dynamics
for shape parameter k = 2. Only the figure segment showing the small initial sub-population
are shown. (b) Width of the sector at height y for non-exponential waiting times (k = 2) and
exponential division times (k = 1).

The constant shrinkage and sustained survival can be observed for exponential (k = 1)

and non-exponential division times (k = 2), whereby the regularisation leads at fixed

P to an always comparably prolonged survival.
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6 Modelling competitive range expansion with heterogenous mechanical interactions

To summarize, I demonstrated that to observe filamentous growth and corresponding

prolonged survival of deleterious mutants inside an expanding colony, division induced

pushing is sufficient. In particular, surface tension, a concept ill-defined on the length

scale of discrete cells, is in opposition to the claim of Kayser et al. [111] not necessary.

6.4 Conclusion

My work established a coarse-grained stochastic growth model that focuses on the role of

division induced pushing in range expanding populations. Particularly, I focused on the

role of strain-dependent mechanical and growth specific properties in the competitive

growth of several strains starting from line inoculations as well as circular inoculations.

All results demonstrate the importance of passive mobility induced by division generated

pushing forces in expanding populations. This shows the shortcomings of the often-

used growth rate specific fitness definition in mechanical heterogeneous populations

and therefore has interesting implications for the growth of microbial colonies but also

for the field of evolutionary population genetics as a whole. In particular, I showed:

In circular inoculations for divisional neutral competitions between cell-sorting strains,

a subtle detail in the swapping mechanism leads to a broken symmetry between WI-

and SI-cells at the perimeter of the colony. This asymmetry leads to the sorting of the

WI-cells to the perimeter resulting in a starting advantage for colonising empty space.

Subsequently, the WI-cells dominate the outgrowth of the colony. Furthermore, the

regularization of division times, i.e. non-exponential distribution, reduces the growth

speed of the entire colony and enhances the impact of different mean division times.

Since individual cell divisions occur faster, this is remarkable. In particular, it highlights

that range expansions need to be understood as a competition about colonizable space.

In opposition to the experimental result for N. gonorrhoea, the dominance of the WI-

strain could be overcome by a strong divisional advantage of the SI-strain. But even in

this case, the division induced pushing leads to a standing variation of slower dividing

cells inside the outgrowth as a noteworthy result. These standing variations of strains

can lead to the evolutionary rescue in changing environments, and as argued by Kayser

et al. [111], promotes the accumulation of deleterious mutations inside a growing colony.

This contributes to the development of antibiotic resistance which usually comes at a

cost in growth speed.
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The dominance of the WI-strain in the presence of strong divisional disadvantage could

be reproduced by introducing strain-specific susceptibilities to division induced pushing.

With these, the experimentally observed patterns could be recreated even in the ab-

sence of an explicit cell sorting mechanism. Note that already Dong and Klumpp [120]

constructed a model that could reproduce the dominance of the slower-growing strain.

However, they used a special initial condition where the faster-growing cells a starting

from a compact sector inside a larger domain of slower-growing cells. My results suggest

that for the initial conditions fitting to experiments their model will fail to recreate the

dominance of the slower-growing strain. In addition, I studied the dynamical creation

of SI-cell mutants and found that the experimentally observed patterns can only be

recreated with a susceptibility to pushes that lies between the SI- and WI-cells. This

leads to the conclusion that the mutants are not unpiliated as claimed by Zöllner et al.

[9] but rather underpiliated.

Furthermore, I investigate the role of pushing on the development of an initially small

compact domain in line inoculations. The competition of SI- and WI-cells leads either to

the extinction of the advantageous sector or to dendrite like structures. By contrast, the

competition of M- and WI-cells or cells with equal pushing susceptibilities always leads

to essentially compact sectors. For the competition of a deleterious sector with equal

pushing susceptibilities, the division induced pushing leads to deviations from the local

speed model. In particular, I recreate the filamentous sector growth and corresponding

prolonged survival observed by Kayser et al. [111].
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7 Modelling single-cell force

spectroscopy experiments

This chapter presents single-cell force spectroscopy (SCFS) experiments of S. aureus

to hydrophobic and hydrophilic abiotic unconditioned surfaces. First, the results on

flat surfaces are presented in section 7.1. This section is based on the article Differ-

ent binding mechanisms of Staphylococcus aureus to hydrophobic and hy-

drophilic surfaces published in Nanoscale, 2020, 12, 19267-19275 by Erik Maikranz,

Christian Spengler, Nicolas Thewes, Alexander Thewes, Friederike Nolle, Philipp Jung,

Markus Bischoff, Ludger Santen and Karin Jacobs [124]. Note that the first authorship

is shared with Christian Spengler and that section 7.1.4 provides additional material

not yet published.

The second set of experiments investigated the heterogeneous distribution of adhesion

capabilities of S. aureus. To this end, SCFS experiments were performed on sinu-

soidal surfaces and the model correspondingly extended. Some first model extensions

and results are based on the article The adhesion capability of S. aureus cells

is heterogeneously distributed over the cell envelope published as a preprint

in bioRxiv, 2021 by Christian Spengler, Bernhard A. Glatz, Erik Maikranz, Markus

Bischoff, Michael Andreas Klatt, Ludger Santen, Andreas Fery and Karin Jacobs [125].

The results and model extension presented in section 7.2 are however much more ex-

haustive than the already published material.

7.1 SCFS on flat surfaces

The experiments for flat surfaces, presented in section 7.1.1, have been performed by

several members of the Jacobs group at Saarland University. However, Christian Spen-
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gler and I analysed the obtained force-distance curves. The various results will set my

main work of modelling SCFS experiments, presented in section 7.1.2 and afterwards,

into context.

7.1.1 Experimental data

The experimentally obtained retraction curves on hydrophobic and hydrophilic surfaces1

are fundamentally different (see figure 7.1). While on hydrophobic surfaces cup-shaped

retraction curves are obtained the curves on hydrophilic surfaces show several peaks

which display non-linear force stretch behaviour. Non-linear force stretch curves are

commonly observed in single-molecule force spectroscopy experiments for various pro-

teins as introduced in section 3.2.1. They are often described by the worm-like chain

model from polymer physics and therefore I will refer to them as ‘WLC-like peaks’.

In the experiments presented here most likely, several macromolecules are stretched at

the same time. These WLC-like peaks can also be observed on hydrophobic surfaces

at separations close to the rupture length (see in particular the inset of figure 7.1 a).

This, in addition to the reasons presented in chapter 4, suggests that the adhesion

process on both surfaces is to be understood as a stochastic tethering of individual

macromolecules.

The following section presents an in-depth analysis of the adhesion characteristics on

both hydrophilic and hydrophobic surfaces. In total 64 cells on hydrophobic surfaces and

71 cells on hydrophilic surfaces have been analysed. The experiments can be performed

with or without a surface delay time, i.e. time spent above the surface before retraction

starts. Note that a nominal surface delay time of 0 s amounts to a ‘real’ contact time

below 0.5 s [75, 126]. While on hydrophobic surfaces reliable force-distance curves could

be obtained without delay time, on hydrophilic surfaces 19 cells were probed without

surface delay time and display no significant adhesion. Since an increased surface delay

time can increase the adhesion additionally 52 cells were probed with a surface delay

time of 5 s [127]. For curves with surface delay time, the approach speed was set to

100 nm/s, while without any surface delay time it was set to 800 nm/s. For all cells 30

repeated full approach and retraction cycles are performed and analysed:

As described in section 4.1 approach and retraction curves are characterized by the

snap-in force (maximum attractive force), snap-in separation (separation at which the

1The investigated hydrophobic surface has a water contact angle of 5(2)◦, while the hydrophilic
substrate has an advancing contact angle of 111(1)◦ and a receding angle of 107(2)◦.
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Figure 7.1: Force-separation curves of two repeated SCFS experiments with one specific
bacterium (per surface) on a hydrophobic (a) and a hydrophilic surface (b). The figure and
caption is reprinted from Maikranz et al. [124] with permission from The Royal Society of
Chemistry.

sudden attraction starts), adhesion force (maximum force needed to detach an individual

cell from the surface) and rupture length (separation at which bacterium and surface

lose contact). While the computation of forces is obvious the snap-in separation and

rupture length are, due to noise, more difficult to obtain (observe the baseline noise

in figure 7.1 b). Therefore, I define the snap-in separation and rupture length as the

largest separation where the root mean square of the signal changed the first time2

significantly from the background noise. This computation is conveniently performed

via the Matlab function ‘findchangepts’.

To characterize the stochasticity of the adhesion process all quantities were extracted

for every repetition of each cell. Subsequently, mean values and standard deviations are

computed for every cell. Additionally, a mean curve was constructed for every cell: To

this end, I interpolated along a given grid of separation values and subsequently calcu-

late for each grid point the corresponding mean and standard deviation. The resulting

mean curves are plotted with a shaded area representing the standard deviation. Note

that the positive forces indicated by parts of the shaded area are only an artefact of the

symmetrical display of the standard deviation and the values are, besides the baseline

noise, never positive. Furthermore, the entire population was characterized by comput-

ing histograms of the mentioned quantities as well as a mean curve from all cells and

2Both approach and retraction curves are analysed starting from large separations where besides
baseline noise no force is observed.
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their repetitions. The adhesion forces for repeated measurements with the same cell on

hydrophobic surfaces are strongly correlated. Therefore, the errors in the histogram are

only divided by the square root of the number of cells.

Approach Curves

All approach curves were analysed as described in section 7.1.1. While the snap-in

is rarely observed on hydrophilic surfaces on hydrophobic surfaces nearly all approach

curves display it. Therefore, only the curves that feature a reliable snap-in are pooled

and the populations’ properties calculated (see figure 7.2). As can be already suspected

from the different incidences of the snap-in, rather strong differences between curves on

hydrophilic and hydrophobic surfaces are observed: On hydrophobic surfaces, the snap-

in separation is 51.9(4) nm and hence around four times larger than on hydrophilic

surfaces (13.5(4) nm). Even more strikingly the mean snap-in force on hydrophobic

surfaces is almost one order of magnitude stronger compared to hydrophilic surfaces

(4.2(1) nN vs. 0.06(1) nN).

a b

dc

Figure 7.2: (a,c,d) Probability density histograms of snap-in separation and snap-in force
of each tested cell on hydrophilic (blue) and hydrophobic (red) surfaces (where histograms
overlap, a mixed colour is displayed). (b) Corresponding mean approach curve (shaded area
is standard deviation) calculated from all tested cells calculated as described in section 7.1.1.
The figure and caption is reprinted from Maikranz et al. [124] with permission from The Royal
Society of Chemistry.

As explained in section 4.3 the snap-in is mediated by the fast subsequent binding of

macromolecules and therefore these observations already hint towards different interac-
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tion mechanisms of S. aureus on hydrophobic and hydrophilic surfaces. This perception

will be corroborated in the successive sections which analyse the retraction curves.

Adhesion to hydrophilic surfaces

As already mentioned in section 7.1.1, force-distance curves on hydrophilic surfaces

show without surface delay time no significant adhesion. Therefore, as a first step, I

compare the mean retraction curves for 0 s (purple) and 5 s (blue) surface delay time

(see figure 7.3 a coloured lines). Both curves show qualitatively similar behaviour: First,

the force decreases as the separation increases until it reaches a minimum from which it

relaxes back to zero if the separation is increased further. By increasing the delay time

the standard deviation increases markedly, the minimum is wider and reached at larger

separations. Furthermore, the relaxation to zero starts at much higher separations. I

quantify these observations by the adhesion force and rupture length as described in

section 7.1.1 (see figure 7.3 b and c). Note that the mean values in the adhesion force

histograms do not agree with the corresponding values of the mean curve. This is the

case because the positions of the minima are varying. Hence the adhesion force of the

mean curve is smaller than the mean of the adhesion forces of individual bacteria.

The rupture lengths vary in both delay times from several tens of nm to a few hundred

nm, where for the longer surface delay time larger rupture lengths are observed more

frequently. Most notable the adhesion forces a rather different: While for 0 s surface

delay time the adhesion forces are mostly close to 0 pN for 5 s delay time the maximum

occurrence is at about 700 pN. Furthermore, the maximal observed forces for 0 s are

hundreds of pN while for 5 s delay time values up to several nN are observed.

Since without any delay time adhesion is weak if observed at all, in the following I will

focus on retraction curves with 5 s delay time. To characterize the stochasticity of the

adhesion process of individual bacteria I computed the mean retractions curves for some

cells and mean rupture length and adhesion force for all cells (see figure 7.4). Every

cell shows a distinct mean curve but their standard deviation overlap. The reason for

this high variance can be seen in the inset. It shows two successively recorded force-

separation curves of the same cell. While both curves show WLC-like peaks, they are

obviously very distinct. This high variability of individual cells is also reflected in the

mean adhesion forces and rupture lengths: While rupture lengths vary around 150 nm
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a

b c

Figure 7.3: (a) Mean SCFS retraction curves (calculated as described in section 7.1.1) with
surface delay times of 0 s (purple, 19 cells) and 5 s (blue, 52 cells) on hydrophilic surface
(shaded area is standard deviation). (b,c) Rupture length and adhesion force probability
density histograms extracted from single SCFS retraction curves with to (a) corresponding
colours. The figure and caption is reprinted from Maikranz et al. [124] with permission from
The Royal Society of Chemistry.

and possess huge error bars of more than 100 nm (see figure 7.4 c), the adhesion forces

vary from 0.1 to 1.7 nN with error bars (depicting the standard deviation) between 0.5

and 1 nN (see figure 7.4 b). Therefore, the variance of repetitions with the same cells

is as large as the variations from cell-to-cell.

The shape of the retraction curves and the magnitude of the adhesion forces, as well

as the rupture lengths, will be discussed in the next section where they can be directly

compared to the results on hydrophobic surfaces.

Adhesion to hydrophobic surfaces

As already mentioned the force-distance curves on hydrophobic surfaces show for 0 s

surface delay time a significant amount of adhesion. Therefore, no additional surface

delay time will be considered. Analogously to the data on hydrophilic surfaces the

mean retraction curves of several single cells are depicted in figure 7.5 a. Every cell
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a b

c

Figure 7.4: (a) Mean SCFS retraction curves(calculated as described in section 7.1.1) of
7 exemplary individual bacteria on the hydrophilic surface for a surface delay time of 5 s
(shaded area is standard deviation). The inset depicts two exemplary force-distance curves
of cell no. 23, whose mean curve is shown in blue in the main diagram. (b,c) Mean adhesion
forces and rupture lengths extracted from single SCFS retraction curves of 52 cells (error bars
are standard deviation). The figure and caption is reprinted from Maikranz et al. [124] with
permission from The Royal Society of Chemistry.

shows a ‘cup-shaped’ retraction curve with a very small standard deviation and a well-

defined minimum. This is explicitly shown in the inset for two consecutive curves which

display almost identical shapes. Subsequently, also the mean adhesion forces are highly

cell-specific while the rupture lengths vary between repetitions (see figure 7.5 b, c).

The magnitude and variability of the rupture lengths are similar to the behaviour on

hydrophilic surfaces while the mean adhesion forces range from 5 to 70 nN with most

error bars in the order of a few nN.

To compare the adhesion properties of a typical population of bacteria I compare the

mean retraction curves and relevant histograms of all cells measured (see figure 7.6):

Remarkably the mean retraction curves look, besides their completely different force

scales, rather similar. Note that the larger extent of the standard deviation on hy-

drophilic surfaces is just an optic effect of the strongly different force scales. The mean

adhesion force is about a factor 25 (1.1(0) nN vs 28(2) nN) larger on hydrophobic sur-

faces than on hydrophilic surfaces. Furthermore, the adhesion forces on hydrophilic

surfaces range from hundreds of pN up to several nN (see figure 7.6 c, d) while on

hydrophobic surfaces, they are several tens of nN.

The rupture lengths, as already mentioned before, differ much less than the adhesion

forces: While on hydrophobic surfaces the rupture length histogram is clearly shifted
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a b

c

Figure 7.5: (a) Mean SCFS retraction curves (calculated as described in section 7.1.1) of 7
exemplary bacteria on the hydrophobic surface for 0 s surface delay time (shaded area is stan-
dard deviation). The inset depicts two exemplary force-distance curves of cell no. 29, whose
mean curve is shown in red in the main diagram. (b,c) Mean adhesion forces and rupture
lengths extracted from single SCFS retraction curves of 64 cells (error bars are standard de-
viation). Note the different scales in this figure and Figure 7.4 for the adhesion forces, but
identical scale for the rupture lengths. The figure and caption is reprinted from Maikranz
et al. [124] with permission from The Royal Society of Chemistry.

to larger lengths, the mean value differs only by a factor of approximately 1.5 (from

160(2) nm on hydrophilic surfaces to 242(2) nm on hydrophobic surfaces). Especially

the large rupture lengths with values greater than 400 nm are notable on abiotic sur-

faces where cell wall macromolecules can just tether non-specifically to the surface. In

single-molecule force spectroscopy experiments with proteins typically 0.36 nm length

contribution per amino acid is considered [128, 129]. The measured rupture lengths are

therefore comparable to the fully unfolded length of different S. aureus surface proteins,

like Serine-aspartate repeat-containing protein C (SdrC, 360 nm [129]), clumping fac-

tor A (ClfA, 285 nm [130]), and S. aureus surface protein G (SasG, 505 nm [50]). Forces

needed to unfold proteins are typically in the range of 0.1–0.4 nN [51, 131, 132], but

are structure and pulling speed specific. As already discussed in section 3.2.1 unfold-

ing forces for the S. aureus proteins SasG are 0.25 nN and 0.42 nN for the E and G5

domains respectively [51]. These values might even depend on the Zn2+ concentration

[133]. Note that since some proteins detach before fully unfolding the rupture length

does not necessarily correspond to the fully unfolded length. While for instance Cna

or SdrC do not unfold fully before detaching [129, 134], ClfA has a folded length of 25

nm and unfolds fully to a length of 285 nm before detaching [130]. Furthermore, as

introduced in section 3.2.1 the rupture lengths might also result from tethering of other
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a

c

b

d

Figure 7.6: (a,c,d) Probability density histograms of rupture lengths and adhesion force
of each tested cell on hydrophilic (blue) and hydrophobic (red) surfaces (where histograms
overlap, a mixed colour is displayed). (b) Corresponding mean retraction curve (shaded area
is standard deviation and very small) calculated from all tested cells calculated as described
in paragraph 4.3. Note the different scales of the y-axes. The figure and caption is reprinted
from Maikranz et al. [124] with permission from The Royal Society of Chemistry.

cell surface macromolecules such as extracellular polysaccharides, like poly-N -acetyl-D-

glucosamine (PNAG), or glycolipids (teichoic acids).

7.1.2 Model

To investigate the origin of the different adhesion behaviour of S. aureus on hydrophilic

and hydrophobic surfaces I extended the model of Thewes et al. [64], presented in chap-

ter 4. The model by Thewes considers the bacterium as a hard-sphere decorated with

thermally fluctuating macromolecules. To mimic SCFS experiments this bacterium is

connected to a moving cantilever modelled as a Hookean spring. The interaction of the

molecules with the surface is given by a simple square well potential of potential depth

V and interaction range r. In between every cantilever step, the forces of the deflected

cantilever and bound molecules are balanced. The shape of the retraction curves on

hydrophilic surfaces indicated the necessity of a non-linear force stretch relation. And

while in principle several polymer models could be used in single-molecule force spec-

troscopy the WLC model as presented in section 2.4.2 is the most prevalently used.

Therefore I consider the WLC model as a force-stretch relation in the usual approxima-

tion of Marko and Siggia [34] and account for the compression of the macromolecules

by introducing the rest length l0. Below this length, the macromolecules behave as
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Figure 7.7: (a) Energy of the macromolecule with length L, Kuhn length B, and stretch
l. At l = L + l0 the energy diverges and should be infinite but numerically the function
continuous as indicated in red. This sudden non-physical drop of energy needs to treated
explicitly in the simulations. (b) Model schematic depicting the adhesion as mediated by
thermally fluctuating macromolecules binding to a surface with binding energy H + V if the
potential barrier of H can be overcome.

Hookean springs. For simplicity, I use the radius of gyration as the rest length such

that l0 =
√

L·B
6

where L is the contour length and B the Kuhn length of a polymer.

By continuity, this results at length l in the energy E and corresponding force f (see

figure 7.7a):

E(l) = kBT
L

2B

(
l − l0
L

)2

2 + 1

1− l−l0
L

, l0 ≤ l

3 , 0 ≤ l ≤ l0

(7.1)

f(l) = −kBT
2B


4 l−l0

L
− 1 + 1

(1− l−l0
L )

2 , l0 ≤ l

6 l−l0
L

, 0 ≤ l ≤ l0 .
(7.2)

Since the force model is non-linear, the equilibrium position of the bacterium needs

to be calculated numerically, by bisection. This energy function has been briefly ex-

plored within the model of Thewes et al. [64] which shows the expected non-linear

behaviour [135]. However, the divergence at l = l0 + L requires careful treatment in

the simulations since numerical errors can lead to non-physical larger lengths (see figure

7.7a red line).

A key change to the model of Thewes et al. [64] is the introduction of a potential

barrier. In particular, I do not allow the binding of macromolecules to the surface by

being merely in the proximity of the surface. Here once the macromolecule is in the
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interaction range of the surface, it overcomes a potential barrier with probability e−H

before it binds. Once the molecule is bound, its energy decreases by the potential depth

V but can also spontaneously detach with probability e−(V+H) (see figure 7.7b).3

The effects of this potential barrier will be discussed in detail in the result section. Most

notable it introduces another source of stochasticity into the simulations. To mimic the

unknown distribution of macromolecules on the bacterium’s surface a fixed number of

molecules are uniformly distributed4 over the surface of the sphere. However, for a

better numerical performance only a lower section of the sphere, having a chance of

interacting with the surface, will be decorated. The parameters of the macromolecules

will be sampled from distributions as presented in the following section.

Parameters

Since I investigate unspecific binding the binding energy can be estimated to be in

the low tenth of kBT . The Kuhn lengths of proteins are typically in the range of

0.1−1 nm [132, 136, 137]. And while also teichoic acids or capsular polycarbonate may

contribute to the adhesion the literature did not provide any values. Therefore, I will

sample the Kuhn length from a uniform distribution with corresponding maximal and

minimal values. As already mentioned in section 7.1.1, estimating the relevant contour

lengths is more difficult: First of all, it is not clear which proteins are expressed in the

SSA113 strain investigated here. Second, the proteins have folded and unfolded length.

Forces to unfold proteins are typically 0.1−0.4 nN [51, 131, 132], but are structure and

pulling speed specific and might even depend on the concentration of ions in the solution

as for SasG [133]. Furthermore, the proteins might detach before unfolding as Cna or

SdrC [129, 134] or just partially unfold as SasG which forms fibrils of 53 nm length

with several domains that, depending on the loading rate, can unfold independently

to give a fully unfolded length of 505 nm [50, 51, 52]. Third, the proteins are initially

anchored at the height of the membrane, but it is not clear if proteins stay or change

their height within the membrane due to the synthesis of new peptidoglycan. Fourth,

capsular polycarbonates and teichoic acids contribute to adhesion for which I was not

3The detaching probability is chosen such that the detailed balance is fulfilled.
4Uniformly in the sense of a probability distribution not equidistant.
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able to find any information on contour lengths. Therefore, I sample the contour length

L from a Weibull distribution for form-parameter k and scale parameters λ, i.e.

ρ (L) =
k

λ

(
L

λ

)k−1

e−(Lλ )
k

.

The model parameters used in the following, if not stated differently, are given in

table 7.1. An overview of the simulation steps is provided in the appendix as pseudo

code (see appendix B). Furthermore, to avoid artefacts from the instantaneous cantilever

steps, I subdivided each experimental cantilever step into a hundred sub-steps inside

the simulation.

Table 7.1: Reference Parameters and Symbols. The table is reprinted from Maikranz et al.
[124] with permission from The Royal Society of Chemistry.

number of macromolecules N 5000
minimum macromolecule Kuhn-length 0.2 nm
maximum macromolecule Kuhn-length 1 nm
scale parameter for macromolecule length 125 nm
form parameter for macromolecule length 1.5 nm
radius of bacterium 500 nm
decorate area height (from bottom of bacterium) 50 nm
Spring constant of the cantilever 0.6 nN/nm
kBT 4.1 pN nm
interaction range of surface potential r 2 nm
change of macromolecule length ∆l 1 nm

macromolecule stretch l [nm]
macromolecule Kuhn length B [nm]
macromolecule contour length L [nm]

macromolecule rest length l0 =
√

L·B
6

[nm]

potential barrier H [kBT ]
potential depth V [kBT ]

7.1.3 Monte Carlo simulations

Since the measured S. aureus cells have been grown under the same conditions all re-

sults should be reproducible by only varying the potential depth and surface height. At

first, I show that the experimental mean curves and the waiting-time dependence on

both surfaces can be reproduced (see figure 7.8). The simulated mean curves (magenta
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line) display the correct force scale and rupture lengths. And while also the waiting-

time dependence on hydrophilic surfaces can be reproduced the standard variation on

hydrophobic surfaces as well as on hydrophilic surfaces with 5 s surface delay time is

much lower than in the experiments. This lack of populational heterogeneity, especially

on hydrophobic surfaces is a result of several model assumptions: Every cell is decorated

with a large identical number of macromolecules which all use the same simple force

stretch relation and binding energy. In particular, it is reasonable to assume that the

behaviour of polycarbonates and teichoic acids deviates from proteins that can unfold.

However, implementing these specific responses and binding energy requires experimen-

tal characterisation of the force stretch relation of said macromolecules. To my knowl-

edge, this characterisation is still lacking. Further, I distributed the macromolecules

uniformly over the entire surface of the bacterium but since in SCFS experiments only

a particular section of a bacterium will come into contact with the surface any heteroge-

neous distribution of adhesion capabilities will increase the populational heterogeneity.

For instance Serine-aspartate repeat-containing protein G (SdrG) on S. epidermis and

Collagen adhesin (Cna) protein on S. aureus form nanodomains on the bacteria’s sur-

face [128, 134]. The heterogeneous distribution of adhesion capabilities will be further

studied in section 7.2.

Figure 7.8: Comparison of the simulated mean retraction curves (pink) that match the
experimental results (blue, purple, red). We used 17 kBT (0 kBT ) for the potential barrier
and 50 kBT (20 kBT ) binding energy for hydrophilic (hydrophobic) surfaces. Note the different
scales of the right panel in comparison with the others and the remarkably small standard
deviation. The figure and caption is reprinted from Maikranz et al. [124] with permission from
The Royal Society of Chemistry.

Next, I investigated the stochasticity of repeated SCFS experiments with the same

bacterium depending on the potential depth V and barrier height H (see figure 7.9).
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For low potential barriers and sufficiently large potential depths, all repetitions with the

same cell (blue, red, green line) show quasi deterministic cup-shaped retraction curves as

in the experiments on hydrophobic surfaces. The adhesion force as is expected increases

with larger potential depths. For larger potential barriers the repetitions with the same

cell vary significantly. Furthermore, the curves display ‘WLC-like peaks’ matching the

behaviour observed on hydrophilic surfaces. As already discussed in the experimental

results this indicates the tethering of a few macromolecules.

Figure 7.9: Simulation results: Single (coloured) and mean retraction curves (black) for
different potential depths V and potential barriers H and fixed bacteria. Surface delay time
is 5 s. The figure and caption is reprinted from Maikranz et al. [124] with permission from
The Royal Society of Chemistry.

To substantiate this intuition I counted the number of macromolecules that are attached

to the surface (see figure 7.10). Indeed for both surface delay times, the number of at-

tached macromolecules is mostly influenced by the barrier height, while the influence of

the potential depth levels of once a sufficiently large depth is reached. Furthermore, for

low barriers, thousands of molecules tether to the surface while for larger barriers this

reduces to only tenths of molecules. The influence of additional surface delay time de-

pendence strongly on the size of the potential barrier. While for small potential barriers

the number of attached molecules does not increase markedly with additional surface

delay time, for large barriers the amount increases substantially. This is reflected in

the corresponding adhesion curves (see figure 7.11), which show for increased barrier

heights only a substantially increased adhesion force when a surface delay time is con-

sidered. Note that for no potential barrier still a small surface delay time dependence

is observed.
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Figure 7.10: Ensemble mean of the number of attached macromolecules for different po-
tential depths V and barriers H, extracted from the first 10 retractions of 20 simulated cells.
Shaded area is standard deviation. While blue solid lines indicate 5 s of surface delay time,
purple dashed lines indicate 0 s. The figure and caption is reprinted from Maikranz et al. [124]
with permission from The Royal Society of Chemistry.

In summary, the simulations show that the cell individual stochasticity within repe-

titions, the shape of the retraction curves (cup-shaped or WLC-like) and the surface

delay time dependence can be explained by the presence of a potential barrier. This

barrier selects on hydrophilic surfaces only a few macromolecules which leads to the

large variability of consecutive curves and a significant surface delay time dependence.

On the other hand, on hydrophobic surfaces many molecules can bind leading to al-

most identical retraction curves. The next section will substantiate that this behaviour

is independent of the contour length parameter variation.

Contour length dependence

In this section, additional simulations investigating the influence of the unknown length

distribution is presented. To this end, I vary the scale parameter of the Weibull distri-

bution and analyse the mean retraction curves as well as the mean number of attached

macromolecules (see figure 7.12, 7.13). Note that the scale parameter not only influences

the mean but also the variance of the distribution.

While the initial part of the retraction curve shows no significant change, the adhesion

force reaches with increasing scale parameter larger values. Furthermore, the separation
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Figure 7.11: Mean retraction curves for different potential depths V and barriers H, ex-
tracted from the first 10 retractions of 20 simulated cells. Shaded area is standard deviation.
While blue solid lines indicate 5 s of surface delay time, purple dashed lines indicate 0 s. The
figure and caption is reprinted from Maikranz et al. [124] with permission from The Royal
Society of Chemistry.

at which the adhesion force is measured, as well as the rupture lengths, shift to larger

separations. The number of attached macromolecules (see figure 7.13) increases with

larger scale parameter and more macromolecules stay attached to larger separations.

Both behaviours are observed for a broad range of potential depths and all tested barrier

heights. At large barrier heights, however, the standard variation increases substantially

leading to the overlapping of the mean forces and number of attached molecules.

The behaviour is explained as follows: Since the interaction with the surface is only

short-range more macromolecules come into the interaction range when more of them

are longer. Correspondingly more will tether initial to the surface and since they are also

longer obviously stay longer attached to the surface. This also explains the increased

adhesion force and its’ shift to larger separations. If more macromolecules with larger

contour length bind naively also a change in the initial part of the retraction curve

would be expected. This is, as already mentioned, not observed. Since the molecules

utilize the WLC-like force-stretch relation they contribute to the measured force only

when they are significantly stretched relative to their contour lengths. This lack of large

forces at small stretches is the reason why the initial part of the retraction curves shows

no sensitivity to the changing scale parameter although more macromolecules bind to

the surface.
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Figure 7.12: Mean retraction curves for different potential depths V and barriers H, ex-
tracted from the first 10 retractions of 20 simulated cells with surface delay time of 5 s. Shaded
area is standard deviation. Different colors correspond to scale parameters as indicated in the
first panel. The figure and caption is reprinted from Maikranz et al. [124] with permission
from The Royal Society of Chemistry.

7.1.4 Retraction curves for an infinitely stiff cantilever

In the case of a rigid cantilever, the retraction curves can be described by a set of

master equations. Because it is rigid the separation s of the bacterium to the surface

can be used as a time-like variable. Then the master equation for the probability p of

an individual macromolecule being attached at separation s is

dp

ds
= −w[E(s)]p .

Here E is the energy of the macromolecule at separation s and it is assumed that

once the macromolecule detaches it never attaches back to the surface. The solution

p(s) = e−
∫ s
0 w[E(s′)]ds′ , is for the Kramers’ rate5

w[E(s)] = ω0e
E(s)−E(s−δ)

kBT
−V

a highly non-linear function but the integral can be computed numerically to obtain

p(s). The results for a macromolecule with E(s) given by equation 7.1 and ω0 = 1, δ
L

=

0.02, L = 100 nm, B = 20 nm are shown in figure 7.14a.

5In the unbound state the molecule can be initially significantly stretched. This stretch is controlled
by the parameter δ.

123



7 Modelling single-cell force spectroscopy experiments

Figure 7.13: Ensemble mean of the number of attached macromolecules for different poten-
tial depths V and barriers H, extracted from the first 10 retractions of 20 simulated cells with
surface delay time of 5 s. The shaded area is standard deviation. Different colors correspond
to scale parameters as indicated in the first panel. The figure and caption is reprinted from
Maikranz et al. [124] with permission from The Royal Society of Chemistry.

An increasing potential depth has two effects on the probability of being attached: First,

the stretch at which the macromolecule is likely no longer attached shifts for larger

potential depths to larger values. This shift, however, is non-linear and an ever more

increasing potential depth is required to increase this probability significantly. Second,

the shape changes to a step-function predicting the quasi deterministic attachment

for sufficiently deep potentials. Both behaviours can be attributed to the non-linear

divergence of the force-stretch relation at the contour length.

This approach can be generalized to N initially attached molecules. If fi is the acting

force of molecule i the entire force acting on the bacterium is f(s) :=
∑N

i=1 fi(s)1Xi=1,

where 1Xi=1 indicates if the molecule is still attached. The average retraction curve

becomes

F (s) = 〈f(s)〉 =
N∑
i=1

fi(s)pi(s)

which can be computed once the probabilities of being still attached i.e. the pi(s) are

known.

To mimic the Monte Carlo simulations I sampled the properties of the molecules from

the same distribution as described in section 7.1.2. To mimic the curvature of the
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Figure 7.14: (a) Probability of being attached (left axis), and corresponding force (right
axis) at stretch s for ω0 = 1, δ

L = 0.02, L = 100 nm, B = 20 nm, and various potential depths
V . As energy equation 7.1 is used. (b) Numerical solution for the average retraction curve
F (s) for N initially attached macromolecules. The properties of the molecules are sampled
from the same distributions as in the Monte Carlo simulations.

bacterium I sampled an initial stretch uniformly in the interval [0,50] nm. The result-

ing average retraction curves (see figure 7.14b) show with increasing potential depth

an increase in adhesion force, as well as a transition from WLC-like peaks (N=5) to

cup-shaped retraction curves (N=5000). This behaviour is the same as in the Monte

Carlo simulations substantiating the result that on hydrophobic surfaces indeed many

macromolecules bind while on hydrophilic surfaces only a few. However, in opposition

to the Monte Carlo simulations, the force-distance curves have a non zero force for zero

distance to the surface. This is due to the distribution of prescribed initial stretches.

7.1.5 Conclusion

I analysed the adhesion characteristics on hydrophilic and hydrophobic surfaces for a

large number of single S. aureus SA113 cells. These characteristics could be, besides the

large populational heterogeneity of adhesion forces on hydrophobic surfaces, quantita-

tively reproduced by Monte Carlo simulations. These simulations mimic the adhesion

process in SCFS experiments and allow the interpretation of the experimentally ob-

served force-distance curves. The simulations utilized reasonable parameters for the

properties of the macromolecules, as well as the magnitude of the surface potential.

The model reproduces the distinct retraction curve shapes, adhesion force scales and

stochasticities on hydrophobic as well as hydrophilic surfaces. In particular, the in-
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vestigations show that the different cell individual stochasticity on hydrophobic and

hydrophilic abiotic surfaces can be reproduced by the introduction of a potential bar-

rier. On hydrophobic surfaces many macromolecules bind weakly while on hydrophilic

surfaces few macromolecules get selected by the potential barrier and tether strongly to

the surface. This leads on hydrophobic surfaces to a small variation between repetition

with the same cell, while the barrier on hydrophilic surfaces leads to variations between

the repetitions which are as large as the cell-to-cell variation.

These results are corroborated by a set of master equations describing the mean re-

traction curves in the limit of an infinitely stiff cantilever. These show that the quasi

deterministic retraction curves are caused by the divergence of the force-stretch rela-

tion. Therefore, the stochasticity in the repetitions needs to be produced by a stochastic

initial attachment to the surface. This is realised by a potential barrier stochastically

selecting the binding molecules. The origin of this barrier is unclear but it is reasonable

to assume a relation to possible conformational changes of the macromolecules and the

disruption of the hydrogen bond network close to the surface. It depends on the struc-

ture of the water network and the atomic structure of the involved macromolecules.

Hence, this question is not approachable by effective models but could be investigated

by molecular dynamics simulations.

The work presented here was limited to the bacterium S. aureus SA113, however the

same observations hold for S. aureus JE2 and N313 [124]. Furthermore, I expect the re-

sults to be valid for all gram-positive bacteria where, due to the peptidoglycan layer, the

involved macromolecules cannot freely diffuse inside the lipid membrane. These results

are a first step towards reducing the binding of bacteria to surfaces. Note, however, that

depending on the application preconditioning of the surface by biological material can

enable specific binding of macromolecules. In those situations, the presented analysis

may not be applicable.

7.2 SCFS on sinusiodal surfaces

To investigate the distribution of adhesion capabilities of S. aureus Christian Spengler

designed and performed SCFS experiments on abiotic hydrophobic sinusoidal surfaces

(see figure 7.15 a). Depending on the position of the bacterium relative to the surface

different parts of the bacterium can interact with the surface. The bacterium is then

moved parallel to the periodicity of the surface and force-distance curves for every
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point along the surface are recorded.6 From these, the adhesion force is extracted and

mapped to the position relative to the periodicity of the surface. Afterwards, the curves

are averaged pointwise to obtain the adhesion profiles displayed in figure 7.15 b. The

resulting profiles show several features: Cells 1−13 show the maximum adhesion force in

the minimum of the surface. Outside of the surface minimum the adhesion force drops

significantly by about 30−60 %. The profiles show either a ‘bathtub-like shape’ (cells

1−8) or peaked adhesion capabilities (cells 9−14). Furthermore, even ‘bathtub-like’

profiles show a reflection asymmetry with respect to the origin (i.e. F (x) 6= F (−x)).

Hence, the adhesion capabilities are clearly heterogeneously distributed over the cell

envelope.

Figure 7.15: (a) Sketch that illustrates how the position in one period along the surface
probes different parts of the bacterium’s surface. (b) Adhesion profiles, i.e. adhesion forces
averaged over several periods of the wrinkled surface relative to the topographical maximum
of the surface periods. The shaded area depicts the standard error of the mean. The figure
and caption is reprinted from Spengler et al. [125].

6The distance in the force-distance plots is measured perpendicular to a flat reference surface.
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7 Modelling single-cell force spectroscopy experiments

To further analyse the adhesion profiles I constructed a mean profile from all cells which

show, besides the peaks in the surfaces minima, no peaked adhesion capabilities i.e. cells

1−8 in figure 7.15.

Figure 7.16: Mean curve of cells 1-8, with standard deviation as shaded area. The fit was
performed via a constrained non-linear optimization of squared residuals as implemented
by MATLAB’s ‘lsqnonlin’ function. The constrains for fit parameters have been set to
|A1| ≤ 100, |A2| ≤ 100, |A3| ≤ 10, 0 ≤ A4 ≤ 10 and this results for a broad range of ini-
tial conditions in A1 = 8.1, A2 = 1.3, A3 = -6.4, A4 = 2.8. For this particular fit the initial
values (A1, A2, A3, A4) = (0,0,0,1) have been used.

A phenomenological fit function for a homogeneous distribution of adhesion capabilities

is

F (x) = A1 +
A2

1 + A3 |x|A4
,

where F is by construction symmetric around the origin. A1 and A2 can be di-

rectly related to the functions values at the origin and boundaries respectively, i.e.

F (0) = A1 + A2, limx→±∞ F (x) = A1. A4 and A3 characterize the range of the flat

adhesion profile and the sharp increase at the boundaries. From these the length scale

l = 1
A4
√
|A3|

over which the profile is flat, i.e. F (x)
|x|�l≈ F (0) can be identified. As

figure 7.16 shows, this function fits the experimental obtained profile reasonable well

(for the fit details see the caption of figure 7.16). The parameters for the length scale
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are A3 = -6.4 and A4 = 2.8 which leads to l = 0.52. Hence, this length scale is larger

than the domain of definition and not useful in characterizing the profile.

This reference curve allows characterizing the adhesion peaks of cells 9-13. In particular,

the excess adhesion force, i.e. the force larger than the force expected from a non-peaked

profile and the widths of the peaks can be computed. To this end a baseline aF (x) + b

is linearly fitted to the adhesion profiles of cells 9−14.7. To weaken the influence of the

boundaries I only fit over the range |x| < 0.49 (neglecting the outmost points). Since

the presence of the peaks distorts the baseline the fit is performed in two iterations:

In the first iteration, the fit considers the entire domain (see figure 7.17 a green lines)

and subsequently the difference of the profile and the fit is computed (see figure 7.17 b

green lines). I refer to this difference as the residual-profile. The zeros closest to the

peak’s maximum in the residual-profile defines the domain excluded in the second fit

iteration (see figure 7.17 b green dashed lines). Hence in the second iteration, the peak

is excluded, which allows a more accurate fit of the baseline (see figure 7.17 a red lines).

From the residual-profile in the second fit iteration (see figure 7.17 b red lines) the

characteristics of the peak are computed.

The excess adhesion is obtained as the peaks maximum in the residual-profile and the

half width of the peak as the distance of the peaks maximum to its nearest zero.8 The

characteristics of the peaks are shown in figure 7.18, from which no correlation between

the excess adhesion force and the peaks half width can be inferred. However, correlating

the excess adhesion force and the half width to properties of adhesive patches on the

bacterium’s surface is not trivial. In particular, it is unclear how the size of an adhesive

patch corresponds to a given half width. Furthermore, to properly interpret the excess

adhesion force the homogeneous adhesion profiles need to be understood.

To this end, I extended the previously presented model to take curvature effects of the

bacterium and the surface into account. Furthermore, Michael Klatt and I derived a

computational inexpensive ‘geometric model’ that neglects the mechanical properties

of the macromolecules. This model only considers the varying interacting area of the

bacterium along the surface and allows to separate this influence from the impact of

the curvature on the forces exerted by the macromolecules.

7a, b are the fit parameters
8The half width is used because the residual-profile in the second iteration does not necessarily

produces two zeros characterizing the peak.
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a

b

Figure 7.17: (a) Adhesion profiles of cells 9−13 (blue) with fit range (|x| < 0.49) indicated
by the black dashed lines. Green shows the first iteration of the fit over the full domain,
while for the second iteration, i.e. the red fit, the domain of the peak was excluded. (b) The
residual-profiles, i.e. the difference of the fits to the adhesion profiles. The dashed green lines
indicate, the zeros of the first fit, and defines the domain excluded for the second fit.

7.2.1 Geometric model

In the geometric model a bacterium is decorated with N rods of fixed length l pointing

into the normal direction of their position on the bacterium’s surface. Each rod has

an adhesive weight wi, i = 1, . . . , N . For each position x along the sinusoidal surface,

the sphere is positioned above the surface, such that only a single point touches the

surface. This is termed the tangential contact. The relative adhesion force F (x) is then

computed via

F (x) =

∑
j wj∑N
i=1wi

,

where the j-summation runs over all rods that intersect with the surface. This model

only provides relative adhesion strengths and in essence computes the adhesion strength

by the bacterium’s surface area can interact with the surface. In particular, cooperative

effects due to simultaneous stretching of macromolecules are not considered.
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Figure 7.18: Characteristics of the peak extracted from figure 7.16 b as the excess adhesion
force (maximum of the residual-profile) and the half width (distance of the maximum to
closest zero of the residual-profile). The residual-profile is defined as the difference between
the adhesion profile and the fitted baseline.

Tangential contact

Every point on the bacterium’s surface is parametrised by

~B = R

cosϕ sin Θ

sinϕ sin Θ

cos Θ + 1

+

x0
s

 ,

where (R,Θ, ϕ) are the usual spherical coordinates, x is the relative position along

the surface and s the distance from the minimum of the surface to the bottom of the

bacterium (see figure 7.19). In order to bring the bacterium at position x in tangential

contact I need to compute s∗ such that the bacterium barley touches the surface (see

figure 7.19). More precisely the bacterium is placed into tangential contact. In formulas,

s∗ is the maximal distance such that

h(R cosϕ sin Θ + x,R sinϕ sin Θ) = R (cos Θ + 1) + s∗ ∀ϕ,Θ

holds. This can be reformulated into a maximisation problem with solution (see ap-

pendix C)

s∗ = max{h(x), h(x±R sin Θ)−R (cos Θ + 1)} ,
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where Θ needs to be determined to solve ± cot Θ h′(x±R sin Θ) + 1 = 0.

s∗ + R

surface
x

z

Figure 7.19: Tangential contact for various positions along the sinusoidal surface. s∗ is
the minimal distance of the bacterium’s bottom to the minimum of the surface, such that
the sphere is in tangential contact. Note that the bacteria and surface dimensions are scaled
according to the experimental setting and therefore for better visibility s∗+R, i.e. the height
of the bacterium’s centre is plotted.

7.2.2 Monte Carlo model extension

To interpret the experimentally obtained adhesion forces on sinusoidal surfaces I ex-

tended the previously presented model to curved surfaces. The macromolecule is placed

on the bacterium’s surface at position ~r relative to the bacterium’s centre (see figure

7.20 a). The molecule has length l and orientation P̂ . At the beginning of the simu-

lation, P̂ points along the local surface normal defined by ~r. The length fluctuations

of the molecule occur along P̂ . Furthermore, both ends of the molecule relative to the

global coordinate system are denoted by ~r1 and ~r2 as indicated in figure 7.20 a. Thereby

the end connected to the bacterium is denoted by ~r1 while the freely moving end is ~r2.

A macromolecule can bind to the surface if the shortest distance of ~r2 to the surface is

smaller than the interaction range.9 How this shortest distance is computed is described

in the next section. However, once the molecule is bound to the surface its length and

orientation can change by moving the bacterium (see figure 7.20 b). This stretch leads

to a force acting along P̂ such that the cantilever only measures its z-projection i.e.

F (l)P̂ · êz, where F (l) denotes the magnitude of the force at stretch l. Note, that this

stretching changes the orientation of the molecule.

Additionally, I consider two kinds of interactions with the surface. The first kind is

identical to the previous model, i.e. the energy of a bound molecule decreases by the

9The presence of a potential barrier is possible.
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Figure 7.20: Illustration of the extended model elements on a sinusoidal surface. (a) The
macromolecules are oriented along their local surface normal given by their position ~r relative
to the centre of the bacterium. Their length l and orientation P̂ are determined by their
position ~r1 on the bacterium and the free moving end ~r2. If ~r2 is in the interaction range
of the surface it can bind and be stretched. (b) If the bacterium is moved from s 7→ s′

perpendicular to the surface the molecules which are bound to the surface are stretched to
length l′ and change their orientation to P̂ ′. The binding strength to the surface is determined
by the angle γ between the local surface normal and the orientation P̂ ′ of the macromolecule.
Furthermore, the force of the molecule acts along P̂ ′ such that the cantilever only measures
its z-projection. Note that while the bacteria and surface dimensions are scaled according to
the experimental setting the spring and cantilever are not.

potential depth V . In the second kind of interaction, the potential depth depends on

the angle between the orientation of the molecule and the local surface normal. In

particular, I consider for a molecule with orientation P̂ that binds at position x the

potential

V (x) = V cos γ = −V n̂(x) · P̂

where n̂(x) denotes the surface normal at position x (see figure 7.20 b).10 The surface

normal can be obtained from the surface height h as

n̂(x) =
1√

1 + h′(x)2

−h
′(x)

0

1

 ,

where I assumed that the h remains constant along the y-direction.

10Note the minus sign for the orientation P̂ such that both vectors are properly aligned.
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To compute all changes in configurations it is convenient to choose the usual spherical

coordinates (R,Θ, ϕ) to determine ~r. Furthermore, to be able to include in the future

fluctuations of the orientation easily, it is convenient to specify the orientation P̂ with

respect to the bacterium’s surface normal i.e. ~r. Therefore, to convert from the coor-

dinates with respect to the local surface normal to the global coordinate system11, I

introduced the matrix

R =

cosϕ cos Θ − sinϕ cosϕ sin Θ

sinϕ cos Θ cosϕ sinϕ sin Θ

− sin Θ 0 cos Θ

 .

Using this matrix, the position of both ends of the macromolecule are given by

~r1 = ~r + (R + s)êz + xêx

~r2 = ~r1 + lRP̂ ,

where x denotes the position along the surface and s is the distance from the lowest

point of the surface to the bottom of the bacterium. From these equations all changes

in positions, and lengths can be computed:

First, I consider thermal length fluctuations of each macromolecule along their respec-

tive normal i.e. l 7→ l′, ~r2 7→ ~r′2 = ~r1 + l′RP̂ . Second, if the cantilever is moved from

s 7→ s′, ~r1 7→ ~r′1 = ~r+ (R+ s′)êz +xêx = ~r1 + (s′ − s) êz. If the molecule is not attached

(l, P̂ fix) ~r2 7→ ~r′2 = ~r′1 + lRP̂ . However, if the molecule is attached the molecule is

stretched (~r2 fix) i.e. l 7→ l′, P̂ 7→ P̂ ′. I now determine l′, P̂ ′ from ~r2 = ~r′2 which leads

to

l′P̂ ′ = lP̂ +R−1 (s− s′) êz = lP̂ + (s− s′)

− sin Θ

0

cos Θ


⇒ l′ =

√
l2 + (s− s′)2 (R−1êz)2 + 2l (s− s′) P̂ ·R−1êz

=

√
l2 + (s− s′)2 + 2l (s− s′) (cos ΘPz − sin ΘPx) .

More conveniently the macromolecule dynamics are summarized as follows:

11To rotate the global z-axis onto the surface normal, first rotate the amount Θ around the y-axis and
then the amount ϕ around the new z-axis. Hence, R = Rz (ϕ)Ry (Θ) where Rz, Ry are the usual
rotation matrices around the z- and y-axes respectively.
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7.2 SCFS on sinusiodal surfaces

• length fluctuations: l 7→ l′, ~r2 7→ ~r′2 = ~r1 + l′RP̂

• cantilever movement: s 7→ s′, ~r1 7→ ~r′1 = ~r1 + (s′ − s) êz

– molecule is attached:

l 7→ l′ =

√
l2 + (s− s′)2 + 2l (s− s′) (cos ΘPz − sin ΘPx)

P̂ 7→ P̂ ′ =
l

l′
P̂ +

s− s′
l′

− sin Θ

0

cos Θ



– molecule is not attached: ~r2 7→ ~r′2 = ~r2 + (s′ − s) êz

Since the bacterium interacts with a curved surface the potential interaction area and

therefore the number of involved macromolecules increases substantially. To increase

computation time I parallelised computations and removed macromolecules, which most

likely will not come into contact with the surface. For this, the bacterium is placed for

every position along the surface into tangential contact (as in the geometrical model).

Afterwards, the closest distance of each macromolecule to the surface is computed and

if this distance is smaller than 70 nm the molecule is removed.12

Minimal distance to surface

Finding for a given position (xp, yp, zp) above the surface the point (x, y, z) on the surface

which minimizes the distance between them is a minimization problem with condition

z = h(x, y). I obtain (see appendix D)

x = xp + (zp − h(x, y)) ∂xh(x, y)

y = yp + (zp − h(x, y)) ∂yh(x, y)

z = h(x, y)

12Since the molecules have a fluctuating length, I consider the position on the bacterium, i.e. ~r1 as the
position of the molecules. Note that the mean length of the molecules in the unbound state is given

by the rest length
√

L·B
6 and not the contour length L. Therefore, even though some molecules

have contour lengths that are the size of the threshold, their actual length is significantly smaller.
However, if the rest length is differently defined this threshold should be adjusted.
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as implicit equations in (x, y) which can be solved numerically by bisection. The corre-

sponding shortest distance is

d = |zp − h(x, y)|
√
h2
x(x, y) + h2

y(x, y) + 1 .

7.2.3 Simulations

As a first step, I generated a bacterium where the properties of the molecules are

sampled from the same distribution as for flat surfaces. For this fixed bacterium, the

adhesion profile is simulated for both interaction potentials (see figure 7.21). Both

models, i.e. with and without angle-dependent substratum interactions, approximately

recreate the correct force scale. The shape of the adhesion profiles, however, differs

from the experimentally obtained profile in several ways. First, the maximal adhesion

force is not obtained in the minimum of the surface but rather slightly next to it. This

is, as I will demonstrate later, an effect of the spatial distribution and the properties

of macromolecules of the particular bacterium considered. Second, I observe that the

adhesion force with angular interactions is, compared to the model without angular

interactions, always smaller. This is expected since the angular interaction decreases

the binding energy for most molecules and positions along the surface. Third, the

‘bathtub-like’ shape is only recovered for the model with angular interactions. This will

become more evident in the subsequent discussion. However, the size of the plateau,

i.e. the domain over which it is constant, is much shorter than in the experiments.

Since the geometric effects of the models should be more pronounced at shorter con-

tour lengths, I repeated the simulations with shorter molecules. To better analyse the

influence of stretching at different positions along the surface all molecules possess, in

the following simulations, the identical contour length of 45 nm and a Kuhn length

of 0.4 nm (see figure 7.22). The resulting adhesion forces are, compared to the sim-

ulations where the molecule properties are drawn from a distribution, substantially

increased. This is caused by the synchronous stretching of many macromolecules at

the same time. Additionally, the maximal force is now obtained in the minimum of

the surface. The most important observation, however, is emphasised by switching to

adhesion profiles normalized by the maximal observed force (see figure 7.22 b). This

shows that a ‘bathtub-like’ shape is observed for angular interactions but not without

them. However, also for much shorter molecules the drop in adhesion force, as well as

the extent of the plateau, is smaller than in the experiments.
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Figure 7.21: Adhesion profile along the surface averaged over five repetitions for a single
bacterium. The molecules have properties as for the flat surfaces, i.e. the scale parameter for
contour length distribution is λ = 125.

By comparing both models to the result of the geometric model, additional insight can

be obtained. This shows that if the profile would be determined by only the accessible

surface area (geometric model) along the surface a ‘bowl-like’ shape is expected. This

predicted profile is smooth and, except near the maximum of the surface, always overes-

timates the adhesion force relative to the thermally fluctuating molecules. In particular,

it does not show a plateau as is observable for angular interactions. To include angular

interactions into the geometric model, I divided the relative adhesion force in the ge-

ometric model by
√

1 + h′(x)2, i.e. the normalisation constant of the surface normal.

Here x denotes the position of the contact point along the surface. This modification

introduces a plateau close to the maximum of the surfaces, but it underestimates the

extent of the plateau and overestimates the adhesion outside of the plateau. Hence for

both kinds of interaction potentials, the stretching of the macromolecules gives, except

close to the surfaces maximum, a non-trivial contribution.

To gain more knowledge about the origin of the adhesion profile, I tracked the configura-

tions of the molecules. This allows establishing which part of the bacterium contributes

to the adhesion force and how the molecules are stretched at different positions along

the surface. To more easily understand the subsequent figures, I want to emphasize that

the polar angle of the contact point changes along the surface (see figure 7.23). This

angle defines the centre of a surface patch that in the geometric model is able to interact
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a

b

Figure 7.22: Adhesion profile along the surface with (a) absolute adhesion force and (b)
adhesion force normalized by the maximal force. In the modified geometric model the relative
adhesion force of the geometric model is divided by

√
1 + h′(x)2. All molecules have a contour

length of 45 nm and a Kuhn length of 0.4 nm.
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surface

Θ

Figure 7.23: Polar angle of the contact point as depicted in the inset. The angle is computed
as described in section 7.2.1.

with the surface. Since the polar angle is not injective on the domain [−50%,0%] the

same contact point is reached twice when moving from the minimum of the surface to

its maximum. However as presented in figure 7.22 b, the size of the interacting area

is distinct in both instances. Interestingly, the minimum of the polar angle is assumed

approximately at the start of the plateau observed in the experimentally obtained ad-

hesion profiles.

I use the bacterial surface normal at the contact point to define the z-axis of a local

coordinate system. I define the coordinate system in the same manner as the local

coordinate system defined for individual macromolecules in section 7.2.2. Hence, I

can convert with R−1 = RT all global coordinates to the local system.13 The such

constructed local coordinate system allows defining an azimuthal and polar angle for

all points on the bacterium. And since the geodesic distance on a sphere is given by a

great circle the polar angle defines the geodesic distance14 to the contact point.

Until now I presented only the resulting adhesion profiles, and not how different parts

of the bacterium contribute to them. In accordance with the previous results, the

bacterial surface area contributing to the adhesion force is, for the thermally fluctuating

molecules, always smaller than in the geometric model (compare purple to other colours

in figure 7.24). Figure 7.24 shows that in the plots the contributing areas are elliptical

around the contact point. These are, however not ellipses in real space. Since this

polar plot uses polar and azimuthal angles on a sphere it describes a curved patch.

13In section 7.2.2, I converted with R from the local coordinate system to the global system.
14In units of the bacterial radius.
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Nevertheless, a smaller area in the polar plot indicates a smaller bacterial surface area.

The reduced area can be attributed to two effects. First, the effective length of the

fluctuating macromolecules is much smaller than the interaction radius considered in

the geometric model. Second, the geometric model considers the interacting molecules

at the point of contact, while the adhesion force for thermally fluctuating molecules

is obtained at a certain distance to the surface. And since some molecules detached

during retraction, not all initially bound molecules contribute to the adhesion force.

This is particularly well highlighted by comparing both interaction potentials (compare

figure 7.24 a and b). For angular interactions, the area contributing to the force is not

simply connected, but close to the contact point, the molecules are mostly detached.

This is caused by the effectively smaller potential depth experienced by most of the

molecules, which leads to earlier detachment. Interestingly, as can be observed by

the relative stretch l−l0
L

, the molecules are stretched symmetrically around the contact

point. Increasing the geodesic distance (radial coordinate in figure 7.24) the molecules

are stretched more until they are detached (white space in figure 7.24). Furthermore, all

molecules are mostly aligned along the global z-axis such that the force experienced by

the molecules is mostly measured by the cantilever (geometric factor in figure 7.24))

As I already mentioned the size of the interacting area changes along the surface. How-

ever, figure 7.24 shows also that the ellipses major axes turn when moving along the

surface. Since the local coordinate system turns along the surface caution is warranted

in the interpretation. However, the first and last columns, as well as the second and

third have approximately the same contact point. Hence, comparing for these the ori-

entation of the ellipses is straightforward. This shows, that in the minimum of the

surfaces mostly the molecules pointing along the periodicity of the surface contribute

to the attachment. When the bacterium moves out of the minimum of the surface the

patch turns. Now the molecules pointing along the trench contribute to the adhesion

force. Hence, incorporating a bending rigidity into the model of the macromolecules

would enhance the detachment when the bacterium is moved from the minimum of the

surface towards the maximum. This effect, while not be explored in the limits of this

thesis, seems to be the most promising candidate in widening the plateau of constant

adhesion and hence recreating the experimentally observed profiles.
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Figure 7.24: Molecule properties contributing to the adhesion force for the model including
(a) angular interactions and (b) no angular interactions. The coordinate system changes
along the x-coordinate, such that the z-axis matches the surface normal of the contact point.
The required turning angle is depicted in figure 7.23. The radial coordinate is the polar angle
while the angular coordinate is the azimuthal angle in the new coordinate system. Therefore,
the radial coordinate depicts the geodesic distance to the contact point, whereby the lines
of constant angle are 100 nm apart. Purple depicts the molecules which contributed to the
force according to the geometric model. Molecules are only plotted when they contribute
to the adhesion force, i.e. 〈force〉 6= 0. The geometric factor is Pz with respect to the
global coordinate system and measures how much of the force experienced by the molecules is
transmitted onto the cantilever. All molecules have a contour length of 45 nm, a Kuhn length
of 0.4 nm and the data is averaged over five retractions.
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Figure 7.25: Illustration of the patches positions in figure 7.26. The radii of the patch are
up to scale and match the colours in figure 7.26. Note that in the simulations ϕ = 0 aligns
with movement parallel to the surfaces periodicity.

Peaked adhesion capabilities

To get the first idea of how a single patch of increased adhesion capabilities would in-

fluence the adhesion profiles, I used the modified geometric model and placed a patch

systematically on the bacterium’s surface. I vary (Θ, ϕ) in the usual spherical coordi-

nates. Since the patch needs to be able to interact with the surface, I only considered

Θ ≥ π
2
, and because of the reflection symmetry of the surface, I only consider 0 ≤ ϕ ≤ π

2
.

For a better illustration of where the patches have been positioned see figure 7.25. Inside

the patch, the adhesion is increased ten-fold.

The resulting adhesion profiles can be seen in figure 7.26. If the patch is placed in the

x-y plane of the bacterium, the standard ‘bathtub-like’ adhesion profiles are obtained

for all considered radii. If the patch is facing along the x-axis (ϕ = 0) and is lowered

(increasing Θ), parts of the patch come left of the surfaces maximum into contact. This

leads to asymmetric adhesion profiles where the maximal amount of adhesion is not at

the minimum of the surface. As the patch approaches the bottom of the bacterium,
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Figure 7.26: Adhesion profiles in the modified geometric model with a single patch of radius
R and ten-fold increased adhesiveness positioned at position (Θ, ϕ). Note that in the modified
geometric model the adhesion force of the geometric model is used and divided by

√
1 + h′(x)2.

The bacterial radius is 500 nm.

smaller radii are sufficient to obtain asymmetric adhesion profiles. However, since the

adhesion is always increased over a wide domain, the profiles are never reminiscent

of the experimentally obtained adhesion profiles. If the patch is placed directly at

the bottom of the bacterium symmetric profiles are obtained where, depending on the

patches radius, increased adhesion at the maximum of the surface is observed. When

the patch is not at the bottom of the bacterium and turned such that it does not align

with the x-axis, the asymmetry of the profiles is less pronounced. If the patch is turned

such that it points along the y-axis, symmetric adhesion profiles are obtained for all

considered radii.

7.2.4 Conclusion

The SCFS experiments reveal that the adhesion capabilities of S. aureus are heteroge-

neously distributed over the cell envelope. In particular, a reflection asymmetry around

the maximum of the surface and locally increased adhesion is observed. If this is due to
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7 Modelling single-cell force spectroscopy experiments

an increased number of molecules or their specific properties remains unknown. How-

ever, already adhesion profiles which, besides the increased adhesion in the minimum of

the surface, show no locally increased adhesion display ‘bathtub-like’ adhesion profiles.

This is, compared to the predictions of a model considering the accessible bacterial sur-

face area, remarkable in two ways: First, immediately next to the surfaces minima the

adhesion force decreases much faster. Secondly, near the maximum of the surface, the

adhesion force decreases much less. This leads to a plateau of constant adhesion forces

over a large domain of the surface. Monte Carlo simulations, considering the different

stretches of macromolecules depending on their position relative to the surface, could

not reproduce both behaviours. Only a heterogeneous interaction potential inversely

proportional to the local surface normal could reproduce the plateau of adhesion forces

next to the maximum of the surface. However, the extent of the plateau is much smaller

than in the experimentally obtained profiles.

By tracking in the simulations which molecules contribute to the adhesion force, I

could identify a possible missing detail. In the minimum of the surface, the molecules

contributing to the adhesion force point mostly along with the periodicity of the surface.

While outside of the minimum the contributing molecules are pointing along the trench.

Hence, considering a lateral bending rigidity of the molecules could facilitate varying

detachment along the surface and might result in an extended plateau. The simulations,

however, also neglect other possible effects. For instance, deformations of the PDMS

substratum, as well as the bacterium are not considered. While the deformation of

the substratum during compression can be included by the usual deformation theory,

the high local forces during retraction might require a coupling of the macromolecules

stretch to the substratum deformation. The necessity for this can be evaluated by

measuring adhesion profiles on substrates that are less deformable than PDMS. Another

neglected factor could be the possible distinct behaviours of wall teichoic acids, capsular

polysaccharides and proteins. Proteins, which can unfold in several domains, might

unfold differently depending on the angle relative to the surface. The potential influence

of unfolding is hard to estimate and possibly even depends on the synchronous or

asynchronous unfolding of other proteins. Nevertheless, this could be investigated by

repeating the experiments with mutants lacking cell-wall anchored proteins.
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8 Summary & Conclusion

I investigated in this thesis two aspects of microbial dynamics, i.e. range expansion

and bacterial adhesion on abiotic surfaces. The characterization of the adhesion pro-

cess has been performed in a combined approach of simulations and SCFS experiments.

I modelled the adhesion process, performed the simulations and analysed the exper-

imentally obtained force-distance curves recorded by several members of the Jacobs

group at Saarland University. In particular, I investigated the adhesion process of the

bacterium S. aureus to abiotic surfaces. The results demonstrate, that S. aureus uses

two different binding mechanisms on hydrophobic and hydrophilic surfaces [124]. The

retraction curves on hydrophilic and hydrophobic surfaces show several distinct be-

haviours: First, the curves on hydrophilic surfaces show several small peaks of similar

magnitude, while on hydrophilic surfaces the curves are cup-shaped with only a single

major peak. Second, the typical maximal forces on hydrophilic surfaces are hundreds

of pN up to several nN while on hydrophobic surfaces, they are several tens of nN. And

third, on hydrophobic surfaces, the experiments show a large variability of adhesion

forces in the bacterial population but only a low variability between repetitions with

the same cell. Bacteria on hydrophilic surfaces, however, show a comparable variability

between repetitions with the same cell and the entire population. I analysed the origin

of this behaviour by extending a previously developed model that mimics SCFS exper-

iments by Monte Carlo simulations. In these simulations, the bacterium is treated as

a rigid sphere decorated by fluctuating macromolecules that, once bound to the sub-

strate, mediate the acting forces. I added a WLC like force-stretch relation to mimic

the characteristic curves known from single-molecule force spectroscopy of polymers and

introduced a potential barrier that stochastically selects the binding macromolecules.

By varying the binding strength of the molecules and the potential barrier height the

correct force scales, distinct curve shapes and distinct stochastic behaviours on both

kinds of surfaces are obtained. Furthermore, I substantiated the necessity of this poten-

tial barrier by a simple set of master equations. These demonstrate that the stochastic

response of the macromolecules to stretching is negligible. This is caused by the diver-
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gence of force-stretch relation due to the finite extension of the macromolecules. While

the model could capture the stochasticity and force-response of single cells very well, it

could not reproduce the vast differences in adhesion forces different bacteria display on

hydrophobic surfaces. I attributed this to the simple universal force-stretch relation of

all the involved macromolecules and that they are distributed homogeneously over the

cell envelope.

By performing the SCFS experiments on shifting positions on a sinusoidal surface, the

adhesion force of varying parts of the bacterial surface area can be probed. Hence, this

set of experiments allows characterizing the distribution of adhesion capabilities over

the cell envelope. To better understand the resulting adhesion profiles, I extended the

model of thermally fluctuating molecules to curved surfaces. Additionally, I consider a

simple geometric model of the accessible bacterial surface area along the surface. This

allows evaluating the distinct influences of accessible area and variable stretching along

the surface. Experimentally observed are, with respect to the surfaces maximum asym-

metric adhesion profiles and peaks on varying positions along the surface. Therefore the

adhesion capabilities are heterogeneously distributed over the cell envelope. This ex-

plains to some extent the lack of vast differences in adhesion forces on flat surfaces, but

also has interesting implications for the adhesion process in flow chambers. Since the

bacteria are embedded in a liquid environment the most adhesive part might reorient

towards the surface such that the adhesion capabilities are increased. This should be

observable in increased adhesion forces and including this additional degree of freedom

into the model is an interesting direction for future research. Apart from the asymme-

try and peaks, the adhesion profiles show further interesting behaviour. They display,

relative to the predictions from the accessible bacterial surface area, two remarkable

features. First, when moving out of the minimum of the surface, the adhesion force de-

creases much faster. Second, this steep decrease is followed by a wide plateau of constant

adhesion where geometric considerations predict a constant decrease. While the adhe-

sion profiles of the thermally fluctuating molecules are more rugged, the overall shape

and relative magnitude agree with the accessible surface area. Hence variable stretch-

ing alone does not explain the observed plateau. However, including angle-dependent

interactions of the macromolecules with the surface could reproduce the plateau. But

the extent of the plateau is much narrower than in the experimentally obtained profiles.

By tracking which molecules contribute to the adhesion force, I could identify a promis-

ing effect not included in the present models. I observed that in the minimum of the

surface, the molecules contributing to the adhesion force point mostly along with the

periodicity of the surface. While outside of the minimum the molecules contributing
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to the adhesion force are pointing along the trench. Hence, introducing a lateral bend-

ing rigidity of the molecules could facilitate varying detachment along the surface and

might result in an extended plateau. If this also leads to the fast decrease of adhesion

force remain to be explored in the future. Other not explored possibilities are distinct

force-stretch behaviours of wall teichoic acids, capsular polysaccharides and proteins,

as well as the deformability of the bacterium and substratum. The influence of these

factors could be investigated with more rigid substrates and mutants lacking cell-wall

anchored proteins.

The second topic I investigated are microbial range expansion experiments with het-

erogeneous mechanical interactions. Range expansions are toy systems to understand

the invasion dynamics of microbes and due to their low generation time provide also

a suitable framework to study the evolution of expanding populations. My work was

inspired by the experiments of Zöllner et al. [9] with N. gonorrhoea bacteria. The wild-

type strain of these bacteria possess pili where naturally arising mutants show different

levels of piliation. A mixture of piliated and non-piliated bacteria sort, in liquid flasks,

on time scales where cell division is negligible, such that the piliated strain lies entirely

in the inside of the spherical colony. In range expansion experiments the non-piliated

strain outcompetes the piliated strain even if it divides twice as slow. This distinguishes

this model system from many other microbial range expansion experiments. The origin

of this outcompetition has been attributed to the aforementioned cell sorting, but in the

simulations only compact wedge initial conditions i.e. the fast-growing strong piliated

strain is contained in a small sector, have been used [120]. These conditions don’t mimic

the experiments where both strains are inoculated into a circular domain. In particular,

in the experiments, the initial density is rather small and the spatial distribution of both

strains is well-mixed. My work demonstrates that in those initial conditions cell-sorting

is not sufficient to reproduce the experimentally observed patterns. To investigate the

interplay of these different strains I implemented an extension of the classical Eden

model including cell division induced pushing and swapping of cells. The simulations

reveal, as already mentioned, that for reproducing the experimentally observed pat-

terns a pure swapping mechanics is not sufficient [124]. Rather strong interactions of

the piliated bacteria with each other, as well as the substrate, are leading to heteroge-

neous pushing susceptibilities that reproduce the patterns even in the absence of any

swapping. Furthermore, the model showed that homogeneous pushing leads to a small

but standing variation of a disadvantaged subpopulation inside the expanding colony.

This survival is enhanced when instead of the often used exponential distribution of the

division times a more biological peaked distribution is considered. Enhanced survival of
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disadvantaged mutants is highly important for the development of antibiotic resistance

and in changing growth conditions these mutants can even dominate the population.

This sustained survival has been described before by concepts from continuum theories

like surface tension and pressure differences inside growing microbial colonies [111, 112].

On the length scale of individual microbes, however, pressure fields and in particular

surface tension are not well-defined concepts. The application of my model shows that

the enhanced survival can be entirely understood on a cell individual level by the divi-

sion induced pushing of cells. In my model, however, the pushing is achieved by an ad

hoc translation of cells over the grid. Therefore, extending the model to an off-lattice

version, where pushing forces are generated by the cells is an interesting direction for

future research. Furthermore, since heterogeneities of the cells influence the colony

growth also mechanical heterogeneities of the environment should strongly influence

the growth dynamics. This could be investigated for instance in hydrogels which allow

for the creation of controlled heterogeneous environments.

Combining both threads of investigation, i.e. studying how adhesion influences colony

growth, is a promising research direction. While in this thesis adhesion of S. aureus

was investigated, it is also known for E. coli that the adhesion capabilities are het-

erogeneously distributed over the cell enveloped [138]. Furthermore, this heterogeneity

determines the transition from two-dimensional to three-dimensional growth and fur-

ther analysis could provide some insights into colony formation and therefore bacterial

infections [139]. Therefore characterizing the adhesion capabilities of other bacteria,

like N. gonorrhoea, is a prime task. In particular, the pili distribution would be in-

teresting to obtain. Since for the rod-shaped bacterium Pseudomonas aeruginosa, the

distinct pili expression levels, have been shown to determine the colony spread in two

dimensions and the transition from two-dimensional to three-dimensional growth [140].

This is in particular, interesting since these transitions can be understood by the theory

of active nematics and topological defects arising in them. And while N. gonorrhoea

is a round bacterium a heterogeneous pili distribution would make them effectively ne-

matic. Moreover, N. gonorrhoea often occurs as a diplococcus, i.e. in pairs. Thus, even

if the pili density is homogeneous nematic effects could be relevant. In this regard, the

theory of active nematic could be extended to investigate the influence of nematic cells

that can split into two non-nematic cells. This is in particular interesting in the view

of N. gonorrhoea mutants, which display reduced pili expression. Those mutants might

preferentially transition from two-dimensional to three-dimensional growth, adding a

literal additional dimension to the study of mutants and antibiotic resistance inside

expanding microbial populations.
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Appendix





A Characteristics of the Weibull distribution

The Weibull distribution (Weib(λ, k)) is defined by the probability density function

(t ≥ 0)

ρ(t) =
k

λ

(
t

λ

)k−1

e−( tλ)
k

,

where λ is termed the scale parameter and k the form parameter (see figure A1).

This distribution reduces to the exponential distribution for k = 1.
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Figure A1: Probability density function of the Weibull distribution with scale parameter
λ = 1 and shape parameter k. The figure and caption is reprinted from Maikranz and Santen
[121].

The cumulative distribution function F and moments 〈T n〉 can be derived by integration

to be

F (t) = 1− e−( tλ)
k

〈T n〉 = λnΓ
(

1 +
n

k

)
,

where Γ is the Gamma function.



A Characteristics of the Weibull distribution

A.1 Minimum of Weibull distributed random variables

Let T1 and T2 be two independent Weibull distributed random variables (Weib(λ1, k),Weib(λ2, k)).

Then min(T1, T2) is distributed according to

P [min(T1, T2) ≤ t] = 1− P [min(T1, T2) > t] = 1− P [T1 > t, T2 > t] = 1− P [T1 > t]P [T2 > t]

= 1− (1− F1(t)) (1− F2(t)) ,

where I used in the second last step the independence of the random variables and

in the last step the definition of the cumulative distribution F . Using F for Weibull

distributed random variables I obtain

P [min(T1, T2) ≤ t] = 1− e−
(
t
λ1

)k
e
−
(
t
λ2

)k
= 1− e−( tλ)

k

,

where λ = 1/ k

√
1
λk1

+ 1
λk2

. This demonstrates that the minimum of two Weibull dis-

tributed random variables with identical form parameter is again Weibull distributed

with the same form parameter k but new scale parameter λ. The probability of T1

being the smaller random variable is

P [T1 ≤ T2] =

∫ ∞
0

ρT1 (1− FT2) dt (A.1)

u= t
λ1=

∫ ∞
0

kuk−1e
−uk

(
1+
(
λ1
λ2

)k)
du (A.2)

=
1

1 +
(
λ1

λ2

)k . (A.3)

Note that for λ1 = λ2 the k dependence is removed.

Lets consider now the minimum of l independent random variables which are Weibull

distributed with identical scale parameter λ and form parameter k i.e. min(T1, . . . , Tl).

It is obvious from the previous discussion that this variable is again Weibull distributed

with form parameter k but scale parameter λ
k√
l
. Therefore, its mean value is

〈min(T1, . . . , Tl)〉 =
λ
k
√
l
Γ

(
1 +

1

k

)
. (A.4)

For the exponential distribution (k = 1) this simplifies to the well known result

〈min(T1, . . . , Tl)〉k=1 = λ
l
.



A.1 Minimum of Weibull distributed random variables

Now, lets compare the mean value of min(T1, . . . , Tl) for k = 2 to k = 1 (see figure

A2). Noting that Γ
(

3
2

)
=
√
π

2
leads to the observation that the mean value for k = 2 is

smaller for l = 1 but larger for l ≥ 2.
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Figure A2: Relative value of the mean of l independent Weibull distributed random variables
with form parameter k to form parameter k = 1.



B Pseudo code for SCFS simulations

B Pseudo code for SCFS simulations

Reprinted from the supplemental material of Maikranz et al. [124]:

Algorithm 1 SCFS-Simulation

1: procedure Initialization

2: procedure Approach
3: while force trigger not reached & step possible do
4: cantileverHeight← cantileverHeight− stepSize
5: procedure MainUpdates

6: if wantToMeausure then
7: procedure take measurement

8: end
9: end

10: procedure Waiting
11: for given number of iterations do
12: procedure MainUpdates

13: end

14: procedure Retraction
15: while inital cantilverHeight is not reached do
16: cantileverHeight← cantileverHeight + stepSize
17: procedure MainUpdates

18: if wantToMeausure then
19: procedure take measurement

20: end
21: end



1: procedure MainUpdates
2: for 200 iterations do
3: for number of macromolecules do
4: chose a random macromolecule & propose a random change in the stretch
l 7→ l + U∆l where U is uniformly distributed in [−1,1]

5: if proposed length and distance to surface > 0 then
6: accept l according to Metropolis algorithm

7: end
8: if macromolecule in range of surface potential then
9: if macromolecule is attached then

10: bind with probability e−H

11: else
12: unbind with probability e−(H+V )

13: end
14: else
15: unbind
16: end
17: end
18: update bacterium position by force balance of cantilever and all bound

macromolecules via bisection and threshold 10−4 nm
19: end

C Tangential contact

Every point on the bacterium is defined by

~r = R

cosϕ sin Θ

sinϕ sin Θ

cos Θ + 1

+

x0
s

 ,

where (R,Θ, ϕ) are the usual spherical coordinates x the relative position along the

surface and s the distance from the minimum of the surface to the bottom of the

bacterium. In order to bring the bacterium from above the surface into tangential

contact I need to compute the maximal distance s such that

s = h(rx, ry)−R (cos Θ + 1) + ∀ϕ,Θ .

Therefore, I define f := h(rx, ry) − R (cos Θ + 1) and compute the maximum value of

f in terms of Θ, ϕ. If h is a constant this problem is obviously solved for Θ = π and



C Tangential contact

arbitrary ϕ. Therefore, in the following I assume a non constant h and additionally

∂2h = 0. Thus I will write ∂1h = h′. The necessary conditions for the extrema are:

∂f

∂Θ
= R (cosϕ cos Θ h′ + sin Θ)

!
= 0 (C.1)

∂f

∂ϕ
= −R sin Θ sinϕ h′

!
= 0 (C.2)

Since h is non constant I obtain from equation C.2

1. sin Θ = 0⇒ Θ = 0, π

2. sinϕ = 0⇒ ϕ = 0, π

Plugging these into equation C.1 gives:

1. sin Θ = 0

⇒ cosϕ h′(x) = 0

from this follows

a) h′(x) 6= 0: cosϕ = 0

b) h′(x) = 0: no condition for ϕ

2. sinϕ = 0

⇒ ± cos Θ h′(x±R sin Θ) + sin Θ = 0

One can distinguish:

a) sin Θ = 0

⇒ h′(x) = 0

This is the same situation as 1b. Note that therefore sinϕ = 0 is not a

restricting condition.

b) sin Θ 6= 0

± cot Θ h′(x±R sin Θ) + 1 = 0



Putting all together I distinguish the following cases:

1. Θ = 0, π

• h′ (x) 6= 0: ϕ = π
2
, 3π

2

• h′ (x) = 0: no condition for ϕ

2. ± cot Θ h′(x±R sin Θ) + 1 = 0, ϕ = 0, π

Now I show that classifying the extrema by the Hessian is not straightforward:

∂2f

∂Θ2
= R

(
R cos2 ϕ cos2 Θ h′′ + cos Θ− cosϕ sin Θh′

)
∂2f

∂ϕ2
= −R sin Θ

(
cosϕh′ −R sin Θ sin2 ϕ h′′

)
∂2f

∂Θ∂ϕ
= −R sinϕ (cos Θh′ +R cosϕ cos Θ sin Θ h′′)

So the Hessian

H =

(
∂2f
∂Θ2

∂2f
∂Θ∂ϕ

∂2f
∂Θ∂ϕ

∂2f
∂ϕ2

)

is

1. Θ = 0, π

H =

(
R2 cos2 ϕ h′′ ±R ∓R sinϕh′(x)

∓R sinϕh′(x) 0

)

And therefore detH = − (R sinϕh′(x))2. Ergo

• h′ (x) 6= 0: ϕ = π
2
, 3π

2
, detH < 0, Hxx = ±R, and therefore a saddle point.

• h′ (x) = 0: no condition for ϕ, detH = 0 and therefore inconclusive.

2. ± cot Θ h′(x±R sin Θ) + 1 = 0, ϕ = 0, π

H =

(
R (R cos2 Θh′′(x±R sin Θ) + cos Θ∓ sin Θh′(x±R sin Θ)) 0

0 ∓R sin Θh′(x±R sin Θ)

)

=

(
R
(
R cos2 Θh′′(x±R sin Θ) + cos Θ +R sin2 Θ

cos Θ

)
0

0 R sin2 Θ
cos Θ

)



C Tangential contact

and detH is quite complicated. Since Hϕϕ = R sin2 Θ
cos Θ

and we know from geometry

that the constricting theta should be π
2
≤ Θ ≤ π, there exists only a maximum if

HΘΘ < 0.

Since the direct classification of the extrema is difficult the best method is to compute

f for all (Θ, ϕ) which extremize f and subsequently obtain the largest value. Therefore,

the bacterium is placed in tangential contact for

s = max{h(x)− 2R, h(x), h(x±R sin Θ)−R (cos Θ + 1)}
= max{h(x), h(x±R sin Θ)−R (cos Θ + 1)} ,

where Θ needs to be determined from ± cot Θ h′(x±R sin Θ) + 1 = 0.



D Minimal distance to surface

To find for a given position above the surface (xp, yp, zp) the point on the surface with

the shortest distance between them, I minimize in principle the euclidean distance d of

(xp, yp, zp) and an arbitrary surface point (x, y, z) under the condition that z = h(x, y).

For calculations, it’s however easier to minimize directly E = d2. This is possible

because the square root is strictly monotonous. The squared euclidean distance with

Lagrange multiplier λ is

E = (x− xp)2 + (y − yp)2 + (z − zp)2 + λ (z − h(x, y)) .

Taking the derivatives leads to

∂E

∂x
= 2 (x− xp)− λhx !

= 0⇒ x =
λ

2
hx + xp

∂E

∂y
= 2 (y − yp)− λhy !

= 0⇒ y =
λ

2
hy + yp

∂E

∂z
= 2 (z − zp) + λ

!
= 0⇒ λ = 2 (zp − z)

∂E

∂λ
= z − h(x, y)

!
= 0⇒ z = h(x, y)

from which

x = xp + (zp − h(x, y))hx(x, y)

y = yp + (zp − h(x, y))hy(x, y)

z = h(x, y)

is obtained. These are implicit equations in (x, y). The corresponding shortest distance

is

d =
√
E(x, y, z) = |zp − h(x, y)|

√
h2
x(x, y) + h2

y(x, y) + 1 .
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