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Abstract: Recently, we reported a case of an infant with neonatal severe under-mineralizing skeletal
dysplasia caused by mutations within both alleles of the TRPV6 gene. One mutation results in
an in frame stop codon (R510stop) that leads to a truncated, nonfunctional TRPV6 channel, and
the second in a point mutation (G660R) that, surprisingly, does not affect the Ca2+ permeability of
TRPV6. We mimicked the subunit composition of the unaffected heterozygous parent and child
by coexpressing the TRPV6 G660R and R510stop mutants and combinations with wild type TRPV6.
We show that both the G660R and R510stop mutant subunits are expressed and result in decreased
calcium uptake, which is the result of the reduced abundancy of functional TRPV6 channels within
the plasma membrane. We compared the proteomic profiles of a healthy placenta with that of the
diseased infant and detected, exclusively in the latter two proteases, HTRA1 and cathepsin G. Our
results implicate that the combination of the two mutant TRPV6 subunits, which are expressed in the
placenta of the diseased child, is responsible for the decreased calcium uptake, which could explain
the skeletal dysplasia. In addition, placental calcium deficiency also appears to be associated with an
increase in the expression of proteases.

Keywords: TRPV6; placenta; calcium transport; skeletal dysplasia; serine proteases; subunit assem-
bly; transient receptor potential

1. Introduction

TRPV6 is a Ca2+ selective ion channel which shows a very restricted expression pat-
tern. Human TRPV6 is expressed in a few glands, including acinar salivary and lacrimal
glands, in parts of the small intestine, and in the trophoblast layer of the placenta [1–3]. In
addition, TRPV6 is overexpressed in a number of malignancies, namely, prostate, mammary
ovarial and endometrial cancer [1,2,4–10]. In the human population, two TRPV6 alleles,
TRPV6a and TRPV6b, exist, leading to a coupled polymorphism with three distinct amino
acid exchanges detected in TRPV6a (R197V418T721) and TRPV6b (C197M418M721) [1,11,12].
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Whether this polymorphism has a functional consequence is not known. In recent pub-
lications, the effects of TRPV6 mutations altering the functionality of TRPV6 channels
in humans were published [13–17]. Dysfunction of TRPV6 channels leads to transient
neonatal hyperparathyroidism (HRPTTN) and is listed in the OMIM database (Online
Mendelian Inheritance in Man). We recently described the case of an infant who suffers
from neonatal severe under mineralizing skeletal dysplasia due to underlying severe tran-
sient hyperparathyroidism. Both the TRPV6 alleles of the infant showed mutations (13):
one mutation leads to an amino acid exchange of glycine 660 to arginine (G660R) at the
C-terminus of the TRPV6 protein, which is presumed to be localized intracellularly. The
second TRPV6 locus exhibits a mutation which leads to an in frame stop codon replacing
an arginine coding triplet by a stop codon, R510stop (stop mutant). The TRPV6 protein
contains six hydrophobic transmembrane domains, and the pore region of the channel is
located between the fifth and the sixth domain [18]. The R510stop mutation is placed in
the linker sequence between the fourth and the fifth transmembrane domain and results
in a truncated protein without a pore region and any detectable Ca2+ permeability. We
demonstrate that the mutations of the affected child lead to an inadequate channel assembly
and, as a consequence, to a reduced insertion of the maternal G660R-mutant in combination
with the truncated paternal TRPV6-R510stop mutant into the plasma membrane.

In addition, we show by mass spectrometry that two serine proteases were only
detectable in the placenta of the affected child. In addition, a protease is upregulated in a
TRPV6 expressing human trophoblast cell line cultured under a low Ca2+ condition.

2. Results
2.1. Functional Consequence of Mutations within TRPV6 Channel Subunits

An affected child who exhibits mutations within the TRPV6 gene was recently anal-
ysed using whole exome sequencing [13,14]. The child showed a pronounced dysplasia
of the skeleton and died after several months. One TRPV6 allele of the child contained a
mutation that leads to a G660R mutation in the very C-terminus of the coding sequence,
whereas the second allele contained an in frame stop codon, R510stop, which leads to a
truncated protein without the pore region of the TRPV6 channel. We focused on the TRPV6
mutations and cloned a number of TRPV6 constructs in the dicistronic pCAGGS-IRES-GFP
or IRES-RFP vectors, allowing the expression of TRPV6 independently from the fluorescent
proteins. First, we analysed the G660R mutation present in the affected child. We intro-
duced this mutation in the TRPV6 cDNA and expressed the construct in HEK293 cells,
measured Ca2+ uptake, and compared the result with wild type TRPV6 expressing cells
(Figure 1A,B). Surprisingly, the Ca2+ uptake is not significantly different compared to wild
type TRPV6 expressing cells (Figure 1B). The peak value of the two constructs was not
altered. TRPV6 channels consist of four identical subunits and, in the human placenta, both
TRPV6 loci are expressed [1,19–21]. Therefore, we mimicked the TRPV6 expression of the
nonaffected parents and the affected child by coexpressing wild type TRPV6 and the G660R
mutant (maternal genotype), as well as wild type TRPV6 and the R510stop mutant (paternal
genotype) and G660R and R510stop mutant which reflects the affected child (Figure 1D and
Supplementary Figure S1). It can be seen that the combination of the expressed mutant
TRPV6 variants strongly reduces the Ca2+ uptake of expressing cells. The peak value of the
combination present in the affected child is 48% of the maternal and 51% of the paternal
combination (Figure 1E). The experiment also shows that the reduced Ca2+ uptake is not an
effect of the amount of functional TRPV6 channels, otherwise, one would expect to also see
a reduced Ca2+ signal using the paternal combination (TRPV6 WT and R510stop mutant)
which is not the case. To test that in the coexpressing experiments, both variants were
synthesized and we expressed the combinations of constructs cloned in IRES-GFP vectors
and in IRES-RFP vectors. Next, we asked if the amount of TRPV6 mutant proteins might
be reduced in TRPV6 expressing cells as consequence of an unfolded protein response.
Therefore, we expressed all constructs alone or as combinations that reflect the parents and
the affected child. It can be seen on Western blots using two different TRPV6 specific anti-
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bodies that all constructs are present (Figure 1F). Thus, according to this experiment, there
is no evidence that unfolded protein response/degradation occurs in the overexpressing
cells. We also transfected the TRPV6 R510stop mutant alone and did not detect a higher
Ca2 uptake, as seen in cells expressing the empty vector, which shows that the mutation
completely abolishes the Ca2+ uptake of the mutated TRPV6 protein in expressing cells. It
should be mentioned that the construct of the stop mutant contained the full length TRPV6
cDNA in which the stop triplet was inserted. This experiment confirms the Western blot
experiment and shows that in HEK293 cells the in frame R510stop codon present in the
cDNA of TRPV6 is not translated and leads to a truncated protein, as expected (~53 kDA).
The experiment was performed to exclude that a read-through phenomenon occurs, as
described by Li and Zhang [22].
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Figure 1. TRPV6 activity is reduced in HEK293 cells expressing mutant TRPV6 subunits present in the affected child.
(A) TRPV6 constructs used for Ca2+ imaging and Western blots, TRPV6 WT (blue), TRPV6-G660R (red) and TRPV6 R510stop
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(green). Transmembrane domains (black bars), G660R mutation (*) and binding sites for TRPV6 specific antibodies 1271
and 429 are indicated. (B,C) Ca2+ imaging of TRPV6 WT (blue, n/N = 132/3) and TRPV6-G660R (red, n/N = 126/3) in
HEK293 cells and statistical analysis of the peak values. Circles indicate TRPV6 subunits. (D,E) Coexpression of TRPV6
WT-I-GFP and TRPV6-G660R-I-RFP, which reflects the maternal TRPV6-genotype (1, blue/red, n/N = 117/3), coexpression
of TRPV6 WT-I-RFP and TRPV6-R510stop mutant I-GFP, which reflects paternal genotype (2, blue/green, n/N = 72/3),
coexpression of TRPV6-G660R-I-RFP and TRPV6-R510stop mutant I-GFP, which reflects the child (3, red/green, n/N = 87/3),
vector control (4, white, n/N = 82/2) and statistical analysis of peak values. n/N = cells/experiments. Asterisks assign
significance differences (*** p < 0.001, ns = not significant). (F) Western blots of cells expressing TRPV6 constructs in HEK293
cells: lane1 TRPV6-R510stop mutant (green semicircle), lane2 TRPV6-G660R mutant (red circle), lane 3 TRPV6 WT (blue
circle), lane 4 coexpression of TRPV6-R510stop and G660R mutants, lane 5 coexpression of TRPV6 WT and G660R mutant,
lane 6 coexpression TRPV6 WT and TRPV6-R510stop mutant. All TRPV6 variants were expressed as I-GFP constructs.
Western blot was probed with antibody 429 (left) and antibody 1271 (right). GFP control below.

2.1.1. The G660R Mutation Can Be Rescued by Alanine

Next, we asked if the G660R mutant in combination with the R510stop mutant leads to
a decreased Ca2+ uptake as the result of the positively charged amino acid arginine. If so,
is it possible to obtain a rescuing effect by introducing an alanine residue instead (G660A
mutation)? We coexpressed the G660A mutant with the R510stop mutant and measured Ca2+

signals comparable to the combination of wild type/R510stop mutant, as present in the
father (Figure 2A). This result shows that the G660A mutation rescues the Ca2+ uptake. In
addition, we replaced the G660 residue with another positive charged amino acid, resulting
in a G660K mutation (lysine, Figure 2B). This mutation had a similar effect to the G660R
mutation, if coexpressed with the truncated R510stop mutant. In addition, replacement by
a negative charged amino acid, G660E, greatly reduced Ca2+ uptake (Figure 2C). We also
tried to rescue the G660R mutation by introducing several mutations within the interacting
sequence of the truncated R510stop mutation (Figure 2D described in detail below). The
data indicate that, at position 660 of the human TRPV6 sequence, positive as well as
negative charged amino acids affect the function of the channel when coexpressed with the
truncated TRPV6 R510stop mutant. Therefore, one would expect that a noncharged amino
acid at corresponding positions is strictly conserved within mammalian TRPV6 proteins
and this is, indeed, the case. Although the G660A mutant rescued Ca2+ uptake, within all
mammalian TRPV6 sequences the G660 residue is invariant (Figure 2E).
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Figure 2. A TRPV6-G660A mutation rescues the G660R mutation. (A) Calcium imaging of cells coexpressing TRPV6
WT-I-GFP and TRPV6-R510stop-I-RFP (1, blue/green, paternal, n/N = 95/3), TRPV6-R510stop mutant I-RFP and TRPV6-
G660A-I-GFP (2, red/grey, n/N = 97/3) and TRPV6-G660R I-GFP and TRPV6-R510stop mutant I-RFP (3, green/red, child,
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n/N = 91/3) n/N = cells/experiment. (B) Coexpression of TRPV6-R510stop mutant I-RFP and TRPV6-G660K-I-GFP (2,
pink/green, n/N = 106/3) compared with the parental combination (1, blue/green, n/N = 79/3) and the child (3, red/green,
n/N = 84/3). (C) Similar experiment as shown in (B), coexpression of TRPV6-R510stop mutant I-RFP and TRPV6 G660E-
I-GFP (2, light green/green n/N = 55/3), compared with the parental combination (1, blue/green n/N = 65/3) and the
child (3, red/green n/N = 44/3). (D) Coexpression of the TRPV6-G660R-I-RFP with several TRPV6-R510stop mutants cloned
in I-GFP vectors, which, in addition, contain a second mutation within the N-terminal located sequence QQKR83. This
sequence interacts with the C-terminal sequence in which the G660 residue is located. The following mutants were tested:
K82E (3, red/white, n/N = 50/3), K82ER83E (4, red/yellow, n/N = 44/3), Q80EQ81E (5, red/magenta, n/N = 65/3), and Q80E
(6, red/light blue, n/N = 45/3). The mutants were compared with the parental combination (1, blue/green, n/N = 52/3) and
the child (2, red/green, n/N = 47/2). Here, n/N = cells/experiments. Asterisks assign significance differences (** p < 0.01,
*** p < 0.001, ns = not significant). (E) Alignment of mammalian TRPV6 protein sequences from amino acid 643 to 681. G660

is strictly conserved (grey). H.s., Homo sapiens; O.c., Oryctolagus cuniculus; S.s., Sus scrofa; B.i., Bos indicus; E.a., Equus
asinus; S.b., Saimiri boliviensis; Z.c., Zalophus californianus; T.c., Tupaia chinensis; M.mo., Monodon Monoceros; D.o.,
Dipodomys ordii; I.t., Ictidomys tridecemlineatus. (F) Expression of artificial TRPV6 construct which contains amino acids
510 to 765 (1, n/N = 117/3) and coexpression with the same construct and the TRPV6-R510stop mutant (2, n/N = 70/3).

2.1.2. Functional TRPV6 Channels Cannot Be Formed When the Subunits Are Expressed as
Two Independent Parts

The TRPV6 stop mutant is characterized by the in frame stop codon which replaces
R510; thus, the stop mutant corresponds to amino acid 1-509 of the TRPV6 protein. We
made a TRPV6 construct in which amino acids 1-509 are not present but R510 was replaced
by an artificial methionine, resulting in M510. This construct contains the amino acids
M510-to I765, which represent the complete C-terminus, including the pore region of the
TRPV6 protein. We coexpressed the latter construct with the R510stop mutant to test if
cells can form functional TRPV6 channels (Figure 2F). We compared the coexpression with
the single expression of TRPV6 M510-I765 but could not find significant differences. This
indicates that functional TRPV6 channels cannot be formed from the R510stop mutant in
combination with the TRPV6 M510-I765 construct. Next, we analysed the position of the
particular G660 residue within the structure of the TRPV6 channel [18]. G660 is located at
the boundary surface of the TRPV6 subunits in a large distance to the pore of the TRPV6
channel. The location implicates an influence of subunit assembly rather than parameters
influencing the functionality of the pore directly. We suggest, from the TRPV6 structure,
that the G660 that is located within the C-terminus of TRPV6 interacts with the N-terminal
sequence of the adjacent TRPV6 subunit.

2.1.3. The G660R Mutation Cannot Be Rescued by Mutations in the N-Terminus of the
Interacting Subunit

We identified amino acid residues within the N-terminus of TRPV6, to be considered
as interaction partners of the G660 using the structural data published by Saotome and
coworkers [18]. We identified, as a possible interacting sequence, a QQKR83 motif within
the N-terminus of TRPV6, with K82 being at a distance of about 10.43Å to G660. We cloned
a number of constructs, introducing one or two negatively charged amino acids in the
C-terminus of the QQKR83 motif in the R510stop mutant, and coexpressed these constructs
with the G660R mutant to see if a negative charged mutation in the truncated R510stop
mutant can rescue the effect of the G660R mutation. We analysed four mutations within
the QQKR83 sequence, namely, the mutations K82R, K82ER83E, Q80EQ81E and Q80E, which
were cloned into the truncated R510stop mutant, and coexpressed these constructs with
G660R mutant and tested if these can rescue the G660R mutation present in the full length
protein. The expressed combinations of the four mutated truncated constructs showed a
decreased Ca2+ signal and did not rescue the G660R mutation (Figure 2D, Supplementary
Figure S1c).
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2.1.4. The TRPV6-R510stop Subunit Interacts with the Full Length TRPV6 Subunit

The previous experiment requires the assumption that the truncated stop mutant
can still interact with the G660R mutant. This assumption is supported by the finding
that the N-terminal ankyrin repeats which are important for the multimerization of the
TRPV6 channel, are also present in the truncated mutant [23]. In addition, we performed
a coimmunoprecipitation experiment, which shows that the truncated TRPV6 present in
the child can interact with the full length TRPV6 protein (Figure 3A,B). We fused GFP to
TRPV6 resulting in TRPV6-R510-GFP and TRPV6-GFP. As shown earlier by Hirnet and
coworkers, the TRPV6 protein occurs as glycosylated and non-glycosylated protein [24].
The glycosylation site is located in between transmembrane S1 and S2, and is present in
the full length TRPV6 as well as in the truncated TRPV6-R510-GFP variant. The TRPV6
protein was fished with the TRPV6 specific antibody 429, which binds to the C-terminus
of TRPV6, and the co-immunoprecipitate (COIP) was analysed on a Western blot with a
GFP antibody. Both proteins, TRPV6-R510-GFP and TRPV6-GFP, as well as glycosylated
forms, were detected by COIP, which shows that both proteins interact. Another COIP
experiment using TRPV6-G660R-RFP and TRPV6-R510-GFP fusion proteins also shows that
the mutant variants present in the affected child can interact (Figure 3C,D). The interaction
of both fusion protein was also confirmed by mass spectrometry (Figure 3E).

2.1.5. The Amount of the Full Length TRPV6 Channel in the Plasma Membrane Is Reduced

Next, we asked if we can also detect the different TRPV6 subunits in the plasma
membrane. We performed a biotinylation experiment, which shows that a small amount of
the truncated TRPV6-R510stop variant is detectable in the plasma membrane of expressing
cells (Supplementary Figure S2A). Furthermore, we expressed the combinations of TRPV6
WT and TRPV6-R510stop, as well as the combination of TRPV6-G660R and TRPV6-R510stop,
and performed another biotinylation experiment. Although TRPV6 WT, as well as TRPV6-
G660R, were present in the plasma membrane, it is clearly visible that the amount of the
TRPV6-G660R in the plasma membrane is greatly reduced (Supplementary Figure S2B).

2.1.6. The G660K Mutation Cannot Be Rescued by Mutating W85 of the Interacting Subunit

In the experiment shown in Figure 2D, we identified the N-terminal sequence of
TRPV6, which is in close proximity to G660. Next, we emulated the effect of the G660R
mutation in the affected child. The introduction of the R660 residue may lead to a slight
shift in the interacting TRPV6 subunit and place the R660 residue next to a tryptophan
residue, W85, of the interacting subunit. To test if an exchange of W85 to alanine (W85A),
arginine (W85R) or glutamate (W85E) can rescue the G660R mutation, we also coexpressed
the latter three mutant constructs as truncated R510stop variants with the G660R mutation
(Figure 4A,B). The three mutations, W85A, W85R and W85E, did not rescue the G660R
mutation. The data indicate that the G660, which is strictly conserved among all mammalian
TRPV6 proteins, is important for correct channel function when coexpressed with the
TRPV6 R510stop mutant. In addition, we compared the paternal TRPV6 combination
(TRPV6 and R510stop variant) with the combination of the child in the permanent presence
of Ca2+ ions and measured the basic cytosolic Ca2+. It can be seen that the cytosolic Ca2+

level is significantly lower in cells mimicking the affected child (Figure 4C).
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were cotransfected in HEK293 cells and immunoprecipitated with a C-terminal TRPV6 specific antibody 429 (directed 
against aa 753-765 of TRPV6). (B) Western blot of the input and eluate from co-immunoprecipitaion (COIP) with a GFP 
antibody. (C) TRPV6-G660R fused to mRFP (TRPV6-G660R-RFP) and TRPV6-R510 fused to GFP (TRPV6-R510-GFP) were 
cotransfected in HEK293 cells. TRPV6-G660R-RFP was immunoprecipitated with TRPV6 antibody 429. (D) Detection of 
fused RFP and GFP tagged TRPV6-G660R and TRPV6-R510 proteins in cell lysates from single transfections and in the 
eluate obtained after cotransfection/co-immunoprecipitation (COIP). (E) Mass spectrometrical identification of TRPV6-
G660R-RFP and TRPV6-R510-GFP proteins in the eluate of the COIP (as presented in (C,D)). Location of tryptic peptides 
identified by MS/MS fragmentation; TRPV6 (blue), RFP (red) and GFP (green). 

Figure 3. (A) TRPV6 fused to GFP (TRPV6-GFP) and TRPV6-R510 fused to GFP (TRPV6-R510-GFP, stop codon removed)
were cotransfected in HEK293 cells and immunoprecipitated with a C-terminal TRPV6 specific antibody 429 (directed
against aa 753-765 of TRPV6). (B) Western blot of the input and eluate from co-immunoprecipitaion (COIP) with a GFP
antibody. (C) TRPV6-G660R fused to mRFP (TRPV6-G660R-RFP) and TRPV6-R510 fused to GFP (TRPV6-R510-GFP) were
cotransfected in HEK293 cells. TRPV6-G660R-RFP was immunoprecipitated with TRPV6 antibody 429. (D) Detection of
fused RFP and GFP tagged TRPV6-G660R and TRPV6-R510 proteins in cell lysates from single transfections and in the eluate
obtained after cotransfection/co-immunoprecipitation (COIP). (E) Mass spectrometrical identification of TRPV6-G660R-RFP
and TRPV6-R510-GFP proteins in the eluate of the COIP (as presented in (C,D)). Location of tryptic peptides identified by
MS/MS fragmentation; TRPV6 (blue), RFP (red) and GFP (green).
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Figure 4. (A,B) Coexpression of TRPV6-G660R-I-RFP with several TRPV6-R510stop mutants which, in addition, contain 
W85 mutations. The tryptophan W85 was mutated to W85R (3, red/magenta, n/N = 47/3), W85A (4, red/light blue, n/N = 
92/3), W85E (3 shown in B, red/white, n/N = 98/3) and compared with the TRPV6 combination present in the father (1, 
blue/green, n/n/N/N = 61/3, 55/3) and the child (2, red/green, n/n/N/N = 60/3, 120/3), respectively. (C) Expression of the 
TRPV6 combination of parental (1, blue/green, n/N = 48/3) and child (Red/green, n/N = 73/3) after loading FURA-2AM and 
incubation of the cells in the permanent presence of 2.5 mM Ca2+. n/N = cells/experiments. Asterisks assign significance 
differences (* p < 0.05, ** p <0.01, *** p < 0.001, ns = not significant). 

2.2. Comparative Proteome Analysis of Tissue Sections Obtained from a Healthy Placenta and 
the Placenta of the Affected Child 
2.2.1. HTRA1 and Cathepsin G Are Upregulated in the Placenta of the Affected Child 

Since the malfunction of the mutated TRPV6 protein changes Ca2+ homeostasis in the 
placenta and leads to hyperparathyroidism, we analysed whether the dysfunction of the 
channel alters the protein expression profile in the placenta of the affected child. There-
fore, we analysed sections of paraformaldehyde embedded placenta tissue from the sick 
and from a healthy child (with no skeletal dysplasia and hyperparathyroidism). After sep-
aration by gel electrophoresis, we analysed the extracted proteins using label free nano 
LC mass spectrometry. Three independent analyses were performed from each placenta. 
Using this approach, a total of 740 individual proteins were identified in both placentas 
(Figure 5A–C), 649 in the placenta of the child and 600 in the control placenta. As we 
showed previously, TRPV6 is mainly expressed in human syncytiotrophoblasts [1,25]. We 

Figure 4. (A,B) Coexpression of TRPV6-G660R-I-RFP with several TRPV6-R510stop mutants which, in addition, contain
W85 mutations. The tryptophan W85 was mutated to W85R (3, red/magenta, n/N = 47/3), W85A (4, red/light blue,
n/N = 92/3), W85E (3 shown in B, red/white, n/N = 98/3) and compared with the TRPV6 combination present in the father
(1, blue/green, n/n/N/N = 61/3, 55/3) and the child (2, red/green, n/n/N/N = 60/3, 120/3), respectively. (C) Expression
of the TRPV6 combination of parental (1, blue/green, n/N = 48/3) and child (Red/green, n/N = 73/3) after loading
FURA-2AM and incubation of the cells in the permanent presence of 2.5 mM Ca2+. n/N = cells/experiments. Asterisks
assign significance differences (* p < 0.05, ** p <0.01, *** p < 0.001, ns = not significant).

2.2. Comparative Proteome Analysis of Tissue Sections Obtained from a Healthy Placenta and
the Placenta of the Affected Child
2.2.1. HTRA1 and Cathepsin G Are Upregulated in the Placenta of the Affected Child

Since the malfunction of the mutated TRPV6 protein changes Ca2+ homeostasis in
the placenta and leads to hyperparathyroidism, we analysed whether the dysfunction
of the channel alters the protein expression profile in the placenta of the affected child.
Therefore, we analysed sections of paraformaldehyde embedded placenta tissue from
the sick and from a healthy child (with no skeletal dysplasia and hyperparathyroidism).
After separation by gel electrophoresis, we analysed the extracted proteins using label
free nano LC mass spectrometry. Three independent analyses were performed from each
placenta. Using this approach, a total of 740 individual proteins were identified in both
placentas (Figure 5A–C), 649 in the placenta of the child and 600 in the control placenta. As
we showed previously, TRPV6 is mainly expressed in human syncytiotrophoblasts [1,25].
We used placental alkaline phosphatase (Swissprot: P05187 (PPB1_HUMAN) as a fetal
syncytiotrophoblasts marker to evaluate the share of fetal syncytiotrophblast cells present
in the tissue sections in both groups [26]. Combining the datasets for both categories
(healthy vs. sick placenta), the mean amount of alkaline phosphatase was not different,
which indicates that the content of syncytiotrophoblasts in both groups was similar. Next,
we performed a label free semiquantitative analysis by counting the total number of peptide
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spectra belonging to the individual proteins of three datasets from both categories. Doing
this, 15 proteins were exclusively or significantly more abundant in the affected placenta,
while four proteins were downregulated compared to the healthy placenta (Figure 5A,B).
Two proteases, high-temperature requirement A serine peptidase 1 (HTRA1) and cathepsin
G, were only identified in the affected placenta. In a previous work, we analysed murine
placenta trophoblasts from Trpv6-/- and wild type mouse, and also found HTRA1 protease
being upregulated in the TRPV6 deficient placenta [27].
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tissue sections of a healthy placenta and the placenta of the affected child (n = 3 samples/genotype). Fifteen proteins
are upregulated and four proteins downregulated in the placenta of the affected child. Up- and downregulated proteins
were identified based on at least 1.3-fold changes in the total spectrum counts, with p-values < 0.05 using unpaired two-
tailed Student’s t-test. Cathepsin G (CATG) and serine protease HTRA1 (green) are only detectable in the affected child.
(B) Heatmap of Z-scores calculated from the total peptide spectra counts of proteins (UniProt Identifier), which were more
abundant in the child (green triangles and squares shown in (A)). (C) Heatmap of identified proteins on the basis of total
spectrum count values (shown as Z-scores) from three independent mass spectrometry samples prepared from placentas
from healthy control and affected child (n = 3). In total, 740 proteins were identified by a least two unique peptides/protein
of the healthy placenta and the placenta of the affected child.

2.2.2. The HTRA4 Protease Is Upregulated in BeWo Cells in the Presence of Low Ca2+

Next, we tested if TRPV6 is expressed in a cell line, BeWo, which serves as model
for throphoblast cells. After immunoprecipitation, we unambiguously identified several
tryptic TRPV6 peptides, covering 15% of the human TRPV6 sequence (SwissProt: Q9H1D0)
by mass spectrometry and Western blot (Figure 6A and Supplementary Figure S3C). With
the confirmation that TRPV6 is expressed in these human cells, we cultured BeWo cells in
the presence of high (0.65 mM) or low Ca2+ (0.35 mM), and analysed the protein expression
again by mass spectrometry. By this approach, 2337 proteins were detected for both
conditions: 2154 proteins were identified in lysates obtained after cultured in low Ca2+

and 1890 proteins were identified under high Ca2+ conditions. Interestingly, one serine
protease, HTRA4, was detected to be five times more abundant in BeWo cells cultured using
low Ca2+ (Figure 6A–D). Taken together, our Ca imaging experiments and the proteome
analysis show that a disturbed assembly of the TRPV6 subunits in the placenta of the sick
child leads to a massive reduction in the Ca2+ influx and, presumably, to a reduced Ca2+

content in trophoblasts, which, in turn, triggers a higher expression of serine proteases.
The data may explain the phenotype of the observed child. The results raise the question
of if TRPV6 is involved in the syncytialisation of the placenta. BeWo cells were treated
with forskolin which induces syncytialisation and we analysed TRPV6 expression by
Western blot (Supplementary Figure S3). As an indicator for syncytialisation, we used
a zonula occludens (ZO-1) specific antibody. TRPV6 was immunoprecipitated from the
BeWo cells and detected using two different TRPV6 specific antibodies. The experiment
indicates that TRPV6 expression is very similar in forskolin treated and untreated BeWo
cells. On the other hand, we compared murine TRPV6 deficient trophoblasts with wild type
trophoblasts and found that the percentage of cells that showed a distinct ZO-1 staining at
the cell membrane is very low ( Supplementary Figure S4), meaning that the trophoblast
cells are fully syncytialised independent of the Trpv6 genotype. The result implies that, at
least in the murine trophoblasts, TRPV6 is not involved in the syncytialisation.
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of the abundance of peptide spectra detected in BeWo cells in the presence of high or low Ca2+. Up- and downregulated 
proteins were identified based on at least 2-fold changes in the total peptide spectra abundance detected in three inde-
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peptides identified by mass spectrometry after immunoprecipitation from BeWo cells (red) with TRPV6 ab 429. (B) BeWo
cells were cultured in the presence of 0.65 mM (high) or 0.35 mM Ca2+ (low). Cells were fixed and stained with eosin/azur,
scale bar: 200 µm. (C) Total protein identifications in BeWo cells cultured in the presence of high or low Ca2+. (D) Vulcano
blot shows semi quantitative analysis of differentially detected proteins identified in BeWo cell lysates. Proteome analysis
of the abundance of peptide spectra detected in BeWo cells in the presence of high or low Ca2+. Up- and downregulated
proteins were identified based on at least 2-fold changes in the total peptide spectra abundance detected in three independent
experiments with a p-value < 0.01, calculated using the unpaired two-tailed Student’s t test. Serine protease HTRA4 is more
abundant in BeWo lysates cultured in 0.35 mM Ca2+.

3. Discussion

The human TRPV6 protein is expressed in a few tissues, e.g., pancreatic acini and
the trophoblast layer of the placenta. Several recent studies describe new born children
who suffer from hyperparathyroidism with undermineralized bones [13–17]. However,
the underlying cause of the disease seems to be the TRPV6 gene. Most of the identified
TRPV6 mutations when cloned and overexpressed affect the function of the channel.
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Thus, typically, the Ca2+ influx via TRPV6 channels is greatly reduced. Interestingly, the
parents of the described children were healthy at their time of birth, which indicates that
one dysfunctional TRPV6 allele does not lead to a dramatic undermineralization of the
skeleton.

3.1. The TRPV6 Mutations of the Affected Child Lead to a Decreased Surface Expression of
Functional Channels

We examined the role of two TRPV6 mutations in an affected child [13], in which one
TRPV6 allele contains a premature stop codon, R510stop, whereas the other allele contains,
at position 660, a G to R (G660R) substitution. Surprisingly, the overexpressed G660R mu-
tation behaves very similarly to the wild type TRPV6 channel, whereas, as expected, the
truncated TRPV6 with the premature stop codon, R510stop, exhibits no detectable Ca2+

conductance. Coexpression studies that mimic the parental TRPV6 combinations, thus,
wild type plus G660R or wild type combined with the truncated R510stop TRPV6, also
did not reveal significantly reduced Ca2+ activity. Only the combination of the truncated
R510stop TRPV6 with the G660R mutation showed a greatly reduced Ca2+ activity. The
interpretation of the experimental data leads to the following model (Figure 7A–E): The
maternal combination, TRPV6 WT allele and G660R mutation, does have a minor effect
on the function of the channel. In addition, the paternal combination of the truncated
R510stop mutation and a WT allele does not lead to reduced TRPV6 activity. Only the
combination of the G660R and R510stop mutation shows a reduced Ca2+ uptake, most likely
due to a disturbed subunit assembly and reduced surface expression. Interestingly, the
particular glycine residue, G660, is conserved among all mammalian TRP-proteins, which
emphasizes its indispensable importance for the correct function of the subunits. However,
this becomes evident when the mutation was coexpressed together with the truncated
TRPV6 R510stop mutant. The next related TRP protein, TRPV5, contains a glycine residue
corresponding to the G660 of the human TRPV6 sequence, which is conserved in mam-
malian TRPV5 proteins. In addition, the interacting sequence within the N-terminus of
TRPV6 is also conserved in TRPV5 proteins. We suggest that the G660 residue is critical for
the interaction of N and C-termini of TRPV6 subunits. A mutation of this residue disturbs
subunit assembly/membrane trafficking, and cannot be rescued by the tested mutations
using the truncated TRPV6 R510stop constructs. The data provide the molecular basis of
why these mutations lead to a pronounced undermineralization and, as a consequence, to
the dysplasia of the skeleton of the affected child [13]. A recent publication shows that a
small percentage of patients with nonalcohol dependent pancreatitis contain mutations
that affect the TRPV6 gene [28]. All of the patients who were examined contained only one
defective TRPV6 allele, which, when overexpressed, showed reduced Ca2+ activity [16].
In addition, mutations were found that lead to a dysfunctional channel, in which the
closing/inactivation behaviour of the TRPV6 channel is affected. These combinations
are thought to be potentially toxic as the result of Ca2+ overload. Suzuki and coworkers
published a patient who contained the combination of a TRPV6 with reduced Ca2+ and one
with an enhanced Ca2+ conductance [15]. This combination also leads to a reduced mineral-
isation of the skeleton in this patient. In addition, the overexpression of TRPV6 transcripts
seems to be critical. Thus, overexpression of TRPV6 transcripts is associated with sev-
eral malignancies, which include cancer derived from prostate and breast. The present
work shows that the G660R mutation, which does not alter the function of the channel
when expressed as homomultimer, is critical for the mineralization of the bones when
coexpressed in combination with the R510stop mutation. We suggest that these mutations
affect the assembly of the subunits and lead to the reduced surface expression of functional
TRPV6 channels. It can be seen in Supplementary Figure S2 that, in the plasma membrane
fraction of the paternal combination, the amount of TRPV6 WT is higher compared to the
combination which reflects the affected child. Thus, the amount of TRPV6-G660R seems
to be greatly decreased. On the other hand, in both cotransfections (paternal and child),
occurs an additional protein that is detectable with the N-terminal ab 1271 but not with the
C-terminal ab 429. We speculate that this protein is a C-terminal breakdown product of
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the TRPV6 channel. Most notably, the amount of the breakdown product is higher in the
plasma membrane fraction of the affected child. The data are conclusive that the occurrence
of a lower amount of TRPV6 channels results in the decreased calcium uptake of expressing
cells, and may explain the undermineralization of the skeleton of the affected child.
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3.2. Loss of TRPV6 Function Is Associated with the Upregulation of Placental Proteases

In addition, we show that the loss of TRPV6 is associated with changes in the expres-
sion level of a few proteases. We compared the protein profiles of a healthy placenta with
the placenta of the affected child and found that two proteases, HTRA1 and cathepsin G,
were only detectable in the placenta of the affected child. A link between cathepsin G and
Ca2+ transport has been reported by Peterson and coworkers [29]. The authors show that,
in cultures of endothelial/epithelial cells, cathepsin G affects the formation of intercellular
gaps and thereby increases the permeability for Ca2+ ions. The underlying mechanism is
not known but the expression of cathepsin G in the placenta of the sick child may act as
a compensation mechanism to increase the Ca2+ uptake/transfer to the foetus, which is
reduced as a consequence of the mutations in the TRPV6 channel.

Additionally, the serine protease HTRA1was exclusively detected in the placenta of
the affected child. HTRA1 was also more abundant in murine Trpv6-deficient placenta
trophoblasts [27]. In line with this observation, murine Trpv6 deficient placenta contains a
higher activity of HTRA1, which leads to enhanced degradation of extracellular matrix pro-
teins, such as fibronectin. This also applies to the human trophoblast derived cell line BeWo,
in which TRPV6 is endogenously expressed. In the presence of low Ca2+ in the medium,
which mimics the loss of TRPV6 channels, BeWo cells overexpress the protease HTRA4,
which is closely related to the HTRA1 protease. The HTRA1 protease is preferentially
expressed in human placenta during the third trimester, is localized in syncytiotrophoblasts
and cytotrophoblast intracellularly and is also detectable extracellularly [30]. Both pro-
teases, HTRA1 and HTRA4, are elevated in the placenta of preeclampsia patients [31]. In
this study, the overexpression of HTRA1 and HTRA4 in the human trophoblast cell line
HTR-8 reduces cell migration and, under hypoxic cell culture conditions, HTRA1 and
HTRA4 expression increases. In line with results reported for HTR-8 cells, we detected
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a 5-fold increase in HTRA4 expression in the presence of low Ca2+ concentration in the
medium, which obviously induces a comparable stress in BeWo cells.

In addition, in pancreatic acini, which also express TRPV6, there is a link between
protease activity and dysfunctional TRPV6 channels. A subpopulation of patients with
chronic pancreatitis shows mutations in one TRPV6 allele [28]. The same study also shows
that Trpv6 knock in mice, which express non Ca2+ permeable channels, are more sensitive
to treatment with cerulein. After cerulein treatment, the serum level of a few pancreatic
enzymes, namely, amylase and lipase, are accelerated in this mouse model. A link between
the onset of pancreatitis and the intracellular Ca2+ concentration of rodent acinus cells was
observed earlier [32]. Taken together, we demonstrate that the mutations in the TRPV6
gene of the affected child lead to reduced Ca2+ uptake in heterologous expression system,
which may explain the skeletal dysplasia observed in the new born. In addition, the Ca2+

deficiency seems to be connected to enhanced expression of proteases in the placenta of the
affected child.

4. Materials and Methods
4.1. Cloning

Mutations were introduced using Fusion polymerase (NEB, Ipswich, MA, USA) and a
plasmid which contains the TRPV6 cDNA cloned in pCDNA3. Mutations in the C-terminal
part replacing G660 were subcloned as BstEII and MfeI fragments in TRPV6-pCAGGS-IRES-
eGFP and TRPV6-pCAGGS-IRES-mRFP. To generate an in frame stop codon replacing R510,
we used a similar strategy. We subcloned mutations within the QQKR8 3as well as the W85
present in the N-terminus of TRPV6 as PshAI-BestEII fragments in the appropriate vectors.

4.2. Immunoprecipitation of TRPV6 from Transfected HEK293 and BeWo Cells

BeWo cells were grown to 90% confluence in cell culture dishes (282cm2 each) and
harvested using 10 mL PBS and a cell scraper, cells were sedimented (1400× g, 5 min) and
washed with PBS. The cell pellet was resuspended in 1 mL RIPA buffer (150 mM NaCl,
50 mM Tris HCl, pH 8.0, 5 mM EDTA, 1% Nonidet P40, 0.1% SDS, 0.5% Na-deoxycholate,
pH 7.4), supplemented with proteinase inhibitors (Roche, Mannheim, Germany). Cell
solution was sheared ten times (27G gauge needle) on ice and then incubated for 30 min
at 4 ◦C on a shaker. After centrifugation at 100,000× g at 4 ◦C for 45 min, the supernatant
containing the solubilized proteins was incubated for 16 h at 4 ◦C in the presence of 10 µg
anti-TRPV6 antibody 429 (directed against the c-terminus) coupled to 50µL of Dynabeads™
Protein G (Invitrogen, Schwerte, Germany). The beads were collected using a magnetic
rack, washed three times with 1 mL RIPA buffer and were eluted with 50 µL denaturing
sample buffer (final concentration: 60 mM Tris HCl, pH 6.8, 4% SDS, 10% glycerol including
0.72 M beta-mercaptoethanol). The elution was incubated for 20 min at 60 ◦C and analysed
by mass spectrometry. To co-immunoprecipitate TRPV6 from HEK293 cells two dishes
were cotransfected with WT TRPV6 and truncated TRPV6 (R510stop mutant) GFP fusion
constructs.

The stop mutant was fused to GFP to discriminate this protein from IgGs on the
Western blot. Harvested cells were solved in 1.5 mL lysis buffer (TBS including 1% digitonin
and protease inhibitors). After 10× shearing, the cells were incubated for 1 h at 4 ◦C on
a shaker device and centrifuged at 100,000× g for 45 min at 4 ◦C. The cell lysate was
incubated for 2 h at 4 ◦C with antibody 429 coupled to magnetic protein A/G beads
(ThermoFisher, Karlsruhe, Germany). Antibody 429 is directed against the C-terminus of
TRPV6 and binds only WT TRPV6 but not the R510stop mutant. The beads were washed
3 times using 1ml of 0.1% digitonin buffer including protease inhibitors, denatured in 60 µL
sample buffer, subjected to SDS-PAGE electrophoresis following Western blot procedure as
described below. The Western blot was incubated with the GFP antibody.
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4.3. Surface Biotinylation and Western Blot

The method has already been described (Fecher-Trost et al., 2013). A 75cm2 flask with
confluent COS cells was transfected with the appropriate constructs and cultured for 24 h,
washed twice with ice-cold phosphate buffered saline (137 mM NaCl, 2.7 mM KCl, 10 mM
Na2HPO4, 2 mM KH2PO4) containing 1 mM MgCl2 and 0.5 mM CaCl2 (PBSB, pH, 8.0),
and incubated in the presence of NHS-LC-biotin freshly diluted in PBSB at 0.5 mg/mL
for 30 min at 4 ◦C. The reaction was stopped by washing twice with PBSB containing
0.1% (w/v) bovine serum albumin and once with PBS, pH 7.4. Cells were harvested from
the flasks by shaking in PBS supplemented with 2 mM EDTA. The cells were centrifuged
at 1000× g at 4 ◦C for 5 min and resuspended in ice cold lysis buffer (PBS containing
1% Triton X-100, 1 mm EDTA, and a mixture of protease inhibitors). Cell lysates were
rotated at 4 ◦C for 30 min to solubilize proteins; after centrifugation at 1000× g and 4 ◦C
for 5 min, the amount of protein was determined using BCA (ThermoFisher, Waltham,
MA, USA), and the protein solution (~1 mg) was added to 100 µL of avidin–agarose beads
pre-equilibrated in lysis buffer and incubated at 4 ◦C for 2 h. The biotin–avidin–agarose
complexes were washed 4 times with lysis buffer supplemented with 0.25 mM NaCl.
Biotinylated proteins were eluted in 100 µL of 2-times denaturing electrophoresis sample
buffer and incubated at 60 ◦C for 30 min before SDS-polyacrylamide gel electrophoresis
(SDS-PAGE) on 8% Bolt gels, (Invitrogen, Carlsbad, CA, USA) in a Bolt buffer system. Cell
lysate input corresponds to protein samples taken before adding avidin–agarose beads. The
proteins were electrophoretically separated, blotted, and probed with TRPV6 N-terminal
ab 1271 and C-terminal ab 429, respectively. The endoplasmic reticulum protein calnexin
was used as a control.

4.4. Antibodies

The following in house generated anti-TRPV6 antibodies were used: Polyclonal
antibody 1271 and 429 directed against N- and C-terminus of human TRPV6 [24,25],
respectively and monoclonal YFP/GFP antibody [25]. All antibodies were affinity purified
before use. Commercial ZO1 antibody was from Invitrogen.

4.5. Calcium Imaging

Intracellular live cell Ca2+-imaging experiments were performed using a Polychrome
V and CCD camera (TILL Imago)-based imaging system from TILL Photonics (Martinsried,
Germany) with a Zeiss Axiovert S100 fluorescence microscope equipped with a Zeiss
Fluar 20×/0.75 objective. Data acquisition was accomplished with the imaging Live
Acquisition software (TILL Photonics). Data were analysed using the Offline analysis
software (TILL Photonics). Cells were incubated in media supplemented with 4 µm Ca2+-
sensitive fluorescent dye Fura-2-AM (Molecular probes, Eugene, USA) for 30 min in the
dark at room temperature and washed 4 times with nominally Ca2+ free external solution
(140 mM NaCl, 5 mM KCl, 1 mM MgCl2, 10 mM HEPES, 10 mM glucose, adjusted to pH
7.2 with NaOH) to remove excess Fura-2-AM. The Fura-2-AM loaded cells, growing on
2.5 cm glass coverslips, were transferred to a bath chamber containing nominally Ca2+ free
solution, and Fura-2 fluorescence emission was monitored at >510 nm after excitation at
340 and 380 nm for 30 ms each at a rate of 1 Hz for 600 s. Cells were marked, and the
ratio of the background-corrected Fura-2 fluorescence at 340 and 380 nm (F340/F380) were
plotted versus time. After reaching a stable F340/F380 base line, 2.5 mM CaCl2 was added
to the bath solution, and cytosolic Ca2+-signals were measured.

4.6. Cell Culture and Transfection of HEK293 Cells

HEK293 cells were grown in culture dishes (3 cm diameter) with poly l-lysine-coated
glass coverslips (diameter 2.5 cm) until 80% confluence and then transiently transfected
with 2.5 µg of appropriate cDNA constructs in 5 mL of Lipofectamin 3000 (ThermoFisher,
Karlsruhe, Germany). For Fura-2-AM measurements, cells were transfected with TRPV6
constructs cloned in pcAGGS-IRES-GFP or IRES-mRFP vectors. Cotransfection was carried
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out with a combination of the appropriate constructs cloned in vectors with green and red
fluorescent proteins (1.25 µg each). Coverslips with transfected cells were used for Ca2+

imaging experiments 24 h after transfection.

4.7. Modelling G660R Mutation

We used the RCSB PDB [33] software and the rat TRPV6 structure (PDB ID: 5IWK) to
identify amino acids in close proximity to the glycine residue, which corresponds to G660
in the human TRPV6 sequence [18]. It was concluded that the C-terminal part of wild type
TRPV6 interacts with the amino acid sequence QQKR83 present within the N-terminus of
the interacting TRPV6 subunit. In addition, we analysed the TRPV6 structure in which the
R660 mutation was modelled. The R660 residue comes in close proximity to the tryptophan
residue W85 present in the N-terminus of the interacting subunit.

4.8. Protein Extraction from Paraformaldehyde/Formalin Fixed Placenta Tissue Sections

For protein extraction, two to three unstained slides of 4% formalin fixed placenta tissue
(3µm) were scraped from glass microscope slices with a scalpel and resuspended in 80 µL
protein extraction buffer (60 mM Tris, pH 6.8, 1.2 M glycerol, 0.78 M β-mercaptoethanol,
70 mM SDS, 10 mM arginine). Samples were consecutively incubated for 15 min on ice,
20 min at 100 ◦C and for 1 h at 80 ◦C. Protein extracts were centrifuged for 15 min at
14,000× g (4 ◦C) and the supernatant was transferred to a fresh vial. 60 µL per sample was
loaded on a 4–12% BoltTM gel (ThermoFisher, Waltham, MA, USA) and electrophoresed.
The gel was fixed and stained with a colloidal Coomassie, 16 gel bands/lane were isolated
and digested using trypsin as described before [25].

4.9. BeWo Cell Culture

Human BeWo cells (ATCC® CCL¬98™) were cultured in 3.5 cm diameter cell culture
dishes (Corning, Tewksbury, USA), with culture medium (F-12 Nut Mix with 2 mM gluta-
max (ThermoFisher, Karlsruhe, Germany), 10% FKS (Corning, Tewksbury, MA, USA) and
1% penicillin/streptomycin (Sigma-Aldrich-Merck, Darmstadt, Germany). The cells grew
in the presence of 5% CO2 at 37 ◦C. Cells were trypsinized, seeded in fresh cell culture dishes
and cells grew until 40% of confluency was reached. The medium was changed after 24 h to
medium containing 0.65 mM Ca2+ or to medium containing 0.35 mM Ca2+ including EDTA.
Calcium concentration was determined using a Dri-Chem NX500i System (FujiFilm, Japan).
The amount of EDTA was calculated using the WEBMAXCSTANDARD7/3/2009 soft-
ware (https://somapp.ucdmc.ucdavis.edu/pharmacology/bers/maxchelator/webmaxc/
webmaxcS.htm retrieved on 31 March 2021). Cells were cultured for additional 48h in either
0.65 mM Ca2+ or 0.35 mM Ca2+ medium, washed 3 times with PBS and removed from the
dish with a cell scraper (Corning, Tewksbury, MA, USA) and resuspended in denaturing
sample buffer. To prepare a sample for one mass spectrometry experiment, two cell culture
dishes of the same medium condition were pooled. To induce syncytialisation of BeWo cells
200,000 cells were cultured in a flask (Falcon, 75 cm2) and medium was supplemented with
0.3% DMSO or 20 µM forskolin/0,3% DMSO for 48 h. Cells were stained with azur/eosin
or with a ZO1-antibody.

4.10. Preparation of BeWo Cell Lysates for Proteome Analysis

20 µL of BeWo cell lysates grown in 0.65 mM Ca2+ or 0.35 mM Ca2+ medium were sep-
arated on a NuPAGE® 4–12% gradient gels (ThermoFisher, Karlsruhe, Germany). Proteins
were fixed in the presence of 40% ethanol and 10% acetic acid and visualized with colloidal
Coomassie stain (20% (v/v) methanol, 10% (v/v) phosphoric acid, 10% (w/v) ammonium
sulfate, and 0.12% (w/v) Coomassie G-250). Fourteen gel pieces were cut/sampled and
trypsin digested as described [25].

https://somapp.ucdmc.ucdavis.edu/pharmacology/bers/maxchelator/webmaxc/webmaxcS.htm
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4.11. Primary Mouse Trophoblast Cell Culture

Trophoblasts from WT and Trpv6-/- placentae were isolated at E13.5 as previously
described by Winter et al., 2020 [27]. 200,000 cells were seeded in a 3.5 cm dish on four
uncoated glass coverslips (Orsatec, 1.2 cm) and incubated with 2 mL medium (DEMEM,
Gibco®, 10% FCS, 100 U/mL penicillin, 100 µg/mL streptomycin) at 37 ◦C and 5% CO2.
After 24 h the medium was changed and cells were cultured for additional 4 days followed
by ZO1-antibody staining.

4.12. Zona Occludens 1 (ZO-1) Antibody Staining of Trophoblast and BeWo Cells

Coverslips with BeWo or mouse trophoblast cells were removed and washed with
PBS. Fixation and permeabilization was performed by incubating the cells with methanol
(−20 ◦C) on ice for 20 min. Cells were washed 4 times with PBS and blocking buffer (3%
BSA, 1% normal goat serum and 0.1% Triton X100 in PBS) was added for 1 h at RT. After
washing 4 times with PBS, cells were incubated over night at 4 ◦C in a buffer (1% BSA in
PBS) containing a ZO-1 specific primary antibody (1:1000, Invitrogen). Cells were washed
with PBS 4 times and incubated with an Alexa-fluor 488 anti-rabbit antibody (Invitrogen)
and DAPI (2 µg/mL) in PBS. Cells were washed with PBS 4 times and mounted using
Immu-MountTM (ThermoSCIENTIFIC). Stained BeWo cells were analyzed by using an
Imager.M2 microscope (Zeiss) obtaining a Axiocam MRm (Zeiss). Trophoblast cells were
analyzed using a Slightscanner (Axio Scan.Z1, Zeiss). The whole set of pictures was
processed with the software Imaris (Oxford Instruments) and the number of nuclei were
detected automatically. ZO-1 positive cells were counted manually and the percentage of
ZO-1 positive cells was calculated.

4.13. Mass Spectrometric Measurement (Nano-LC–MS/MS)

Six µL of tryptic digested peptides derived from each gel piece (BeWo cell lysate,
IPs from BeWo cells or human placenta lysates) were analysed by nano LC–ESI–MS/MS
analysis using the set up (Ultimate 3000 RSLC nano system equipped with an Ultimate3000
RS autosampler coupled to an LTQ Orbitrap Velos Pro, (ThermoFisher, Dreieich, Germany)).
Peptides were trapped on a C18 trap column (75 µm × 2 cm, Acclaim PepMap100C18,
3 µm, Dionex) and separated on a reversed phase column (nano viper Acclaim PepMap
capillary column, C18; 2 µm; 75 µm × 50 cm, Dionex) at a flow rate of 200 nL/min with
buffers A (water and 0.1% formic acid) and B (90% acetonitrile and 0.1% formic acid)
using a 94 min gradient (BeWo cell lysates) or 120 min gradient (human placenta lysates).
The effluent of the chromatography was sprayed into the mass spectrometer through a
coated emitter (PicoTipEmitter, 30 µm, New Objective, Woburn, MA, USA) and ionized
at 2.2 kV. MS spectra were acquired in a data dependent mode. For the collision induced
dissociation (CID) MS/MS top10 method, full scan MS spectra (m/z 300–1700) were
acquired in the Orbitrap analyser using a target value of 106. Peptide ions with charge
states >2 were fragmented in the high-pressure linear ion trap by low-energy CID with
normalized collision energy of 35%.

4.14. Raw Mass Spectrometrical Data Analysis

The fragmented tryptic peptides were identified using the MASCOT algorithm and
TF Proteome Discoverer 1.4 software (ThermoFisher, Waltham, MA, USA). Peptides were
matched to tandem mass spectra by Mascot version 2.4.0 by searching of a SwissProt
database (version2018_03, number of protein sequences, taxonomy human: 20,387). Data
were analysed as described by Winter and co-workers [27].

Supplementary Materials: All data are available online at https://www.mdpi.com/article/10.339
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