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Abstract

Polymer chains weave with each other to form a porous structure. The pore
space between the chains can be occupied by various fluids, which include
the moisture in the atmosphere. The absorbed moisture effects the chain
mobility, the crystallinity and in turn the mechanical properties of the poly-
mer. Therefore, it is important to understand and model the effect of the
moisture on polymers. In the current work a material model is developed
that can describe the effect of moisture on the mechanical deformation of
polyamide. Additionally, the effect of mechanical loading on moisture trans-
port is also modelled. A novel method based on the Darcy’s law that couples
the liquid pressure with the moisture transport is introduced. The model is
developed with the theory of mixture and is evaluated for thermodynamic
consistency. A linear viscoelastic model is coupled with a non-linear mois-
ture transport model. The flux in the moisture transport model is given by
the gradient of the chemical potential, which contains a diffusion term and
a pressure dependent term. Model parameters are identified for polyamide 6
and are validated with the help of various experimental results. Thus, a
thermodynamically consistent and experimentally validated material model
is presented.





Zusammenfassung

Polymerketten verweben sich miteinander und bilden eine poröse Struktur.
Im Porenraum können sich verschiedene Flüssigkeit ansammeln, zu denen
auch die Luftfeuchtigkeit gehört. Die Feuchtigkeit wirkt sich auf die Ketten-
mobilität, die Kristallinität und damit auf die mechanischen Eigenschaften
des Polymers aus. Daher ist es wichtig, die Auswirkungen der Feuchtigkeit
auf das Polymer zu verstehen und zu modellieren. In der vorliegenden Arbeit
wird ein Materialmodell entwickelt, das die Wirkung von Feuchtigkeit auf die
mechanische Deformation von Polyamid beschreiben kann. Darüber hinaus
wird auch die Auswirkung der mechanischen Belastung auf den Feuchte-
transport modelliert. Es wird eine neue Methode auf Grundlage des Darcy-
Gesetzes eingeführt, die den Druck der Feuchtigkeit mit dem Feuchtigkeit-
stransport koppelt. Das Modell wird mit Hilfe der Mischungstheorie entwick-
elt und auf thermodynamische Konsistenz geprüft. Ein lineares viskoelastis-
ches Modell wird mit einem nichtlinearen Feuchtetransportmodell gekoppelt.
Der Fluss im Feuchtetransportmodell ist durch den Gradienten des chemis-
chen Potentials gegeben, das einen Diffusionsterm und einen druckabhängi-
gen Term enthält. Die Modellparameter werden für Polyamid 6 unter Berück-
sichtigung der Feuchtigkeit identifiziert und mit Hilfe verschiedener experi-
menteller Ergebnisse validiert. So wird ein thermodynamisch konsistentes
und experimentell validiertes Materialmodell dargestellt.
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1

Polymers and Moisture

Polymers are omnipresent materials that are used in small electronic com-
ponents to large parts in the construction industry. Light weight, low cost,
formability, strength to weight ratio, and various other factors have con-
tributed to a continuous increase in its use throughout the years. In the
last 50 years the consumption of polymers have increased from 5 million
tonnes to 100 million tonnes per year [136]. They have enough stiffness to
be used as structural elements but can also be given complex shapes such as
for an intake pipe in automobiles [94], or as wearable electronic sensors [69]
in biomechanics. Their inertness to chemicals or lubricants makes them even
more suitable for industrial applications. However the molecular structure
of polymers allows them to absorb fluids from their surroundings. They are
made up of long molecular chains that are woven with each other to form a
porous skeleton. The free volume between the molecular chains can be occu-
pied either by gas or by liquids. Depending on the polymer the effect of the
free volume occupant can lead to different material behaviour. One of the
most abundant fluid which can be absorbed by polymers is the humidity in
the atmosphere. Certain polymers such as polyethylene, polypropylene and
polystyrene remain unaffected by the presence of moisture in its surround-
ing. Even after 16000 hours of exposure to moisture at a high temperature
of 80 °C, the mechanical behaviour of polyethylene and polypropylene was

– 1 –



2 1. Polymers and Moisture

very slightly effected [85]. Other polymers such as polyamide, polyurethane,
polycarbonate, etc. are more hygroscopic in nature and can absorb upto
10 % of moisture by its weight. X-ray diffraction patterns have shown a dif-
ferent lattice spacing between the molecular chains in moist polyamide when
compared to the dry one [20]. The amide groups in polyamide are specifically
more susceptible to the absorption of moisture as there are various locations
where the water molecule can form hydrogen bonds with the polymer chains
[118]. The presence of water molecules changes the mobility of these chains
which lead to a change in the mechanical behaviour.
With increasing demands for weight reduction, shape optimisation, along
with the exponential increase of production, the study of the effects of en-
vironmental factors on polymers, specially polyamide, has gained more and
more importance over the years. Polyamide components find their use in
automotive applications such as in fuel injection systems, air intake systems,
engine covers, etc., where there is a continuous change in the environmental
conditions. Polyamide based fastening insulating plates absorbed up to 2.8 %
of moisture by weight when used by Spanish railway in a real world appli-
cation [24]. The effect of moisture on such components is not only critical
for the lifetime of the component but also for safety. The influence of the
local moisture distribution on certain areas of the components is also critical.
The use of adhesives to join parts in an assembly is effected by the moisture
content at the point of contact of the adhesive with the substrate. The ap-
plication of load on such components can further cause moisture transport,
which can lead to change of the local moisture content. Therefore for design-
ing such components, the effect of moisture as well as the moisture transport
within the component should be well understood.

1.1 Research Objectives

This thesis aims to develop a material model that can describe the effect of
moisture on the mechanical behaviour of polymers, as well as describe the
moisture transport within it. A thermodynamically consistent, fully coupled
material model, that is validated through experimental results can be used
to simulate the behaviour of polymers in presence of moisture. To develop
the material model, the physical problem must be first transformed to the
mathematical form. The two main phenomena of mechanical deformation
and moisture transport must be defined by a set of equations and coupled to
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each other. To solve these equations computationally, they must be trans-
formed into a numerical form and implemented in a programme. With the
help of the predictions made by the implemented simulation model the de-
sign of polymer components can be optimised.
The behaviour of a material is physically determined by its components such
as its molecules, or grains, or crystals. On the microscopic scale, the polymer
chains and their interaction with the water molecules define the material be-
haviour (Figure 1.1). However on the macroscopic scale, the porous skeleton
of the polymer and the moisture form a multi-material system which can
be handled with a multiphase model. The system can be described either

oMicroscale

Polymer chains
Water molecules

Macroscale

Porous structure

X x

χ

Force

Figure 1.1: The physical process of moisture transport within polymer chains
is modelled on a macroscopic scale with the porous polymer structure being
filled with moisture. Experimental results are used to develop the material
model.

by solving the cut sections between the boundaries of the different materials
or by assigning a weighting factor on the continuum, defining the presence
of the different components [19]. The second method allows a more feasi-
ble outlook to modelling and has established itself under the term theory of
mixtures [147, 149] and the theory of porous media [14–18]. In the theory of
mixtures, the density of each constituent acts as the weighing factor, whereas
in the theory of porous material, along with the densities, volume fractions
are assigned to each constituent.
In the current work a multiphase model based on theory of mixtures is used
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to model the interaction between polymer and moisture with a focus on
polyamides, specially polyamide 6 (PA6).

1.2 Structure of the Thesis

The development of the model and its application are explained in the follow-
ing 7 chapters. A literature review on the current state of research is provided
in chapter 2. The representative system to describe the model and its equa-
tions are derived in chapter 3. The basics of continuum mechanics are used
as a basis to derive the equations. In chapter 4 the equations are tested
for thermodynamic consistency and the constitutive equations are derived to
make the equations more specific to polyamide. The numerical form of the
defined differential equations is discussed along with the model’s implemen-
tation in the open source library of deal.II [5, 7] in chapter 5. The methods
used to obtain the parameters of the model are discussed in chapter 6. The
determined parameters are used to produce simulation results that are com-
pared with experimental results to validate the model and are represented
in chapter 7. The effect of these parameters are explicitly discussed with
numerical examples. Finally the results and further research possibilities are
discussed in chapter 8. A final summary of the entire model, the results
and the implications of these results are discussed in the last chapter.
The work was conducted as a part of a research project funded by the Ger-
man Research Foundation (DFG) under the project number DI-430/29-1.
The research consortium was formed with three institutes, namely LKT1 at
TU Dortmund, Fraunhofer IzfP2 in Saarbrücken, and the Chair of Applied
Mechanics at Saarland University. The experimental support for the work
was provided by the project partners at Fraunhofer IzfP and TU Dortmund,
and the numerical research work that is presented in this thesis was developed
at the Chair of Applied Mechanics.

1Lehrstuhl für Kunststofftechnologie - Institute for Plastic Technology
2Institut für Zerstörungsfreie Prüfverfahren - Intitute for Non-Destructive Testing



2

Literature Review

The effect of environmental factors on porous materials has been a re-
search topic for decades. From the early research on materials such as
cotton cellulose [115] in the early part of the 20th century, to the interest
in the behaviour of wood [9, 10, 27], effects such as change in Young’s
modulus [34] and shrinkage [26] have been studied extensively. The use
of polymer membranes as protective coatings in paints, or as packaging
material for edible items as well as for biomedical devices stimulated the
interest in understanding the moisture transport in polymer membranes
[76, 100, 113, 135]. The focus on saving energy by weight reduction led to
the use of epoxy as adhesives in the aircraft industry and its characterisation
in presence of moisture and temperature [102, 103]. Due to the application
as adhesive, the main focus of the research was on the fracture toughness
[104, 163, 165]. Other polymers such as polyester [28], polystyrene [79], poly
methyl methacrylate (PMMA) [166], polyamide [118, 119, 138, 140, 162]
were investigated more holistically for static and dynamic mechanical
properties as well as the moisture transport kinetics. Even after being
the research focus for so many years, the complex process of moisture
transport within a polymer still remains to be explained completely within
a theoretical framework.

– 5 –



6 2. Literature Review

2.1 Physical Processes

Moisture transport is a three step process (Figure 2.1) starting from a) the
absorption of molecules at the surface of the polymer followed by b) the
diffusion of molecules through the polymer and finally c) the desorption
of some molecules due to changing environmental conditions [39]. Initially
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Figure 2.1: The different stages of moisture transport in a polymer.
a) Adsorption on the surface b) Transport in the polymer c) Desorption
in the atmosphere.

the water molecules from the environment stick to the surface of the
polymers depending on the water activity in the environment. The activity
is calculated using the ratio of the fugacity1 of the moisture in the current
environment to that in pure state [168]. The adsorption by rigid surfaces at
different activities can be fitted by the Flory-Huggins-Guggenheim theory,
where a parameter γ is multiplied to the volume fraction of moisture
in atmosphere to determine the activity [59, 74, 80]. At lower moisture
concentration the parameter γ can be based on Langmuir adsorption
isotherm [25]. At higher concentrations, the water molecules on the surface
of a polymer form a bridge for further water molecules to get adsorbed. This
is known as clustering and is more prominent at higher humidity levels. At
lower humidity levels the probability to form contact with polymer is higher
which separates the water molecules from each other and prevents clustering
[139, 141]. The crystallinity of the polymer has little effect on the surface
adsorption or on clustering [139]. However, the kinetics of transport within
the polymer are dependent on various factors that include the crystalline

1Fugacity is the effective partial pressure of a real gas that can satisfy the ideal gas
equation.
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structure, the temperature, and mechanical loading among others. The
transport of moisture molecules is assumed to be through the free volume
available between the polymeric chains [29, 154, 155]. However it was
theorised by Puffr et al. that the amide groups in polyamide are suitable for
hydrogen bond formation and therefore provide additional mechanisms for
the transport of moisture [118]. Hydrogen bond formation as well as moving
through the free volume leads to higher spacing between the polymer chains
which was experimentally observed as larger lattice spacing in crystalline
PA6 by Boukal et al. [20]. This results in higher chain mobility and thus a
reduction of the glass transition temperature of the polymers [61, 78, 120].
There is a transformation from a glassy state to a more rubbery state, which
is commonly referred to as plasticisation. The increased chain mobility also
increases the chances of chain folding causing re-crystallisation after longer
time in contact with water [121]. Rubbery polymeric films show a linear
relationship between the weight of absorbed moisture and the square root of
time in contact with water, whereas in glassy films the weight of moisture
is linear to the time and not its square root [156]. The former is known as
the classical Fickian diffusion and the latter is known as case II diffusion, a
termed coined by Alfrey et al. [2]. In a more generic way this can be known
as non-Fickian diffusion. The case II diffusion is characterised by the sharp
water front that moves inside the polymer with time, whereas the Fickian
diffusion results in a gradient of moisture concentration from the surface to
the other end.
The transformation from a glassy to a rubbery state and molecular rear-
rangement effect the mechanical properties. A glassy polymer is a lot stiffer
as compared to a rubbery polymer [20, 23, 66, 67, 107]. At the same time
the fracture toughness increases and the material shows much larger strains
before crack initiation [1, 8, 143]. Apart from the changes in the mechanical
parameters, the presence of moisture results in swelling of the polymer
[108, 160, 161]. The water molecules interact with the polymer chain and
push them apart which results in the volumetric expansion of polymers [78].
With the change in the amount of moisture available (for example due to
change in humidity) the material properties and the amount of swelling
changes. After drying up of the polymers, the effects due to moisture are
also reversed. However, a longer contact with moisture can also result in
chain scission and irreversible damage [68].
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2.2 Modelling

The modelling of these physical processes have branched out broadly in two
research areas. One being the modelling of the moisture transport within the
polymer and the other being the coupled modelling of moisture transport and
mechanical deformations. Analogous to heat transfer, moisture transport has
been modelled on the gradient of the concentration, which was presented in
the seminal work from Adolf Fick [56]. Crank provided the analytical solution
to the Fick’s model for various boundary conditions [35]. Fick’s model relies
on a single diffusion coefficient (D) which over the years has been modified
to fit to the various factors effecting the diffusion process. For example a
history dependent diffusion coefficient was used by Crank and Park to adjust
for the non-Fickian behaviour in polymers [113]. This sparked the use of free
volume theory and the diffusion coefficient was represented as a function of
the volume of the void available in a polymer. Cohen and Turnbull calculated
the diffusion coefficient with the help of an exponential relationship with the
free volume (vf ) which was activated only when a critical free volume (v∗)
was attained [29].

D = D(exp (−γv∗/vf )) (2.1)

Further extension to free volume theory was proposed by Vrentas and Duda,
where weight fractions of solvent and polymer, activation energy, glass tran-
sition temperatures, and various other factors were added to the diffusion
coefficient equations [152, 153]. At the same time, the theory was extended
by Paul with the help of a "jump back factor" that could utilise the free vol-
ume created by jumping of the polymer molecules to another location due
to the presence of a solvent [114]. Recently the theory by Vrentas and Duda
was used by Arhant et al. [4] to model the moisture transport in PA6 for
temperatures above the glass transition temperature. Below the glass tran-
sition temperature they modelled the diffusion equation with the Arrhenius
law, which is also done by various other authors [135, 137]. Joannes et al.
modelled the activation energy in the Arrhenius relation as a function of the
concentration in order to fit the diffusion coefficients found experimentally
[82]. Other authors have coupled the volumetric change in polymer due to
mechanical loading to the diffusion coefficient to take into account the effect
of loading on moisture transport [6, 90].
Apart from the diffusion coefficient in the Fick’s model, the gradient of con-
centration has been modified to the gradient of chemical potential (κ) [64].
The chemical potential is defined as the change in free energy caused due
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to a change in the number of particles of the solvent (moisture) at constant
temperature and pressure [116]. In an ideal solution the chemical potential
can be given as a function of the solvent’s activity (a)

κ = κo +Rθln a, (2.2)

where R is the ideal gas constant and θ is the temperature. The activity
is equivalent to the concentration, which in turn leads to Fick’s equation.
However for the moisture transport in polymers, various authors have
used different chemical potentials to describe the flow. Wilmers et al.
calculated the chemical potential as the derivative of the Helmholtz free
energy with respect to the concentration [161]. The free energy in turn
was calculated using the Flory-Huggins mixture energy [58, 80]. A similar
approach was followed by Neff et al. where the pressure of the liquid was
added to the derivative of the Helmholtz free energy [108]. Both models
were developed for the reference state of the continuum. Sar et al. defined
the chemical potential as a function of the volumetric compression as well
as the concentration [127]. The potential was based on the work of Derrien
et al. who derived a linear relationship of the chemical potential with the
hygroscopic pressure and the swelling parameter [40, 41]. The chemical
potential as the derivative of the Helmholtz free energy can be derived from
the evaluation of the entropy inequality, if the vapour borne energy and
entropy are added to the energy balance and the entropy inequality of the
system [158].
Coupling the moisture transport to the mechanical properties requires
modelling the material with an appropriate mechanical model. The three
main classification of polymers - thermoplastics, cross-linked or thermosets,
and elastomers show different material behaviour and hence can be modelled
in different ways. Elastomers are rubbery polymers that can be stretched
easily and hence show hyperelasticity. Such materials can be modelled
either with a micromechanical approach based on the chain network theory
proposed by Treloar [144–146] or by the phenomenological approach taken
by Mooney [101]. Other phenomenological models developed by Rivlin et al.
[124, 125], Ogden [112], Gent [63], and Yeoh [164] are also popular to model
hyperelasticity [46, 83, 128, 133]. Crosslinked polymers and thermoplastics
exhibit strain rate dependency together with their elasticity, which are given
by viscoelastic models. Along with the elastic part these models have a
history part [77]. The history part is a rate dependent functional which
was initially modelled by Coleman and Noll [31, 32]. The functional was
continuous and decaying till it reached the value of zero. Thermomechanical
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viscoelasticity was handled with the help of internal state variables by
Coleman and Gurtin [30]. This led to the modelling of linear viscoelasticity
with an internal variable that follows an evolution equation [55, 57, 73, 150].
The rheological concepts of Maxwell model and Kevin model were used
to represent the viscoelastic behaviour with the dashpot representing the
fading history functional. The evolution of the internal variable can depend
on the stress [86, 96] or on the deformation of the system [122, 123]. The
deformation based internal variable is the inelastic deformation that can by
either decomposed additively for small deformations [86] or multiplicatively
[99, 122] for finite deformation. The evolution equation of inelastic strain for
small deformation was also shown to be thermodynamically consistent for a
coupled model [84]. The entropy evaluation for such a system can be set up
by using the concept of superimposed continua. The free energy function is
split into an equilibrium part and non-equilibrium part that is dependent
on the inelastic strain [122].
The foundation for the coupled systems was set in rational thermodynamics
given by Truesdell [147, 148]. The theory, which is also known as the
mixture theory was further extended by Truedell & Toupin [149], Müller
[105], Bowen [22], and Dunwoody [49]. Moisture transport in polymers
has been tackled by mixture theory by various authors by formulating
the balance equations and performing an entropy evaluation to derive the
equations describing the system. Weitsman used it for viscoelastic materials
[159], whereas Govindjee and Simo applied it for case II diffusion [70]. The
case II diffusion was also treated by Wilmers et al. using a similar approach
[161]. The effect of swelling was set up in mixture theory using a hydrostatic
pressure of the entire mixture by Neff et al. [108] and Villani et al. [151].
With the help of a schematic diagram Engelhard [54] described the energy
of the the mixture for quasi-static process based on the approach given by
Kestin [89] where work is done by the pressure of the fluid when it flows
in the polymer. Johlitz et al. handled the problem of chemical ageing in
polymers by including the chemical reaction in the framework of mixture
theory [84]. They used the Liu-Müller entropy evaluation approach to add
all the balance equations to the entropy inequality [97, 105]. The mixture
theory takes a phenomenological approach to define a multiphase system
and the superposition of the two continua is averaged over the occupied
volume. Hence, the effect of microstructure is missed. The theory however
has been extended with the concept of volume fractions resulting in the
theory of porous media [21]. An overview on the history of not only on the
theory of porous media, but also on mechanics and thermodynamics can
be found in the work of de Boer and Ehlers [38, 52]. The theory of porous
media has been successfully applied to various porous structures for dynamic
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loads [45], for rotatory degrees of freedom in porous structures [42, 43] as
well as for elastomers [91]. On the one hand the theory of porous media
and theory of mixtures lay the foundations for a coupled model, on the
other hand various authors use already established constitutive equations to
couple the mechanical and transport model with the parameters occurring
in these equations [6, 46, 66, 67, 72, 83, 95, 134]. In the usual approach the
parameters of the mechanical model and the moisture transport are made
dependent on each other to couple the already established models.
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3

Theoretical Framework for the Model

A material model is derived from the principle laws of physics such as the
theory of continuum mechanics and laws of thermodynamics. In this chapter
the relevant parts of continuum mechanics have been explained serving as a
foundation for the developed material model.
As the name suggests continuum mechanics is the principle of mechanics
applied on a continuous distribution of matter. Each point in the continuum
represents a material point having physical properties that contribute to
the properties of the bulk material. The motion of each of these material
points can be defined independent of the motion of the other points. Hence,
kinematic relations have to be defined to describe the deformation of the
continuum. Although the material points can move independently from each
other, there are certain rules that constraint these movements. These rules
are the balance laws which are axioms based on the conservation of physical
quantities such as the mass and the energy. The balance laws compliment
the kinematic relations to formulate the equations for the material model.
In order to model the behaviour of polyamide in presence of moisture, two
different materials and hence two different continua need to be considered.
It is assumed that both the continua are superimposed on each other. This
forms the basis for the mixture theory [22, 105, 148, 149]. Each constituent
of the mixture can be handled separately within the framework of continuum

– 13 –
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mechanics, given that the influence of the constituent on each other is also
considered. α = 1 . . . N different components can be superimposed on each
other to model any mixture. However, the theory is applied here for a two
constituent mixture, namely the solid polyamide denoted by the subscript
α = s and the liquid moisture denoted by the subscript α = l (Figure 3.1).

3.1 Kinematics of a Mixture

An arbitrary volume element dVs of the undeformed polyamide solid is first
observed at t = to. The material point Xs in this volume element is at the
position Xs with respect to (w.r.t) the coordinate system at point O (Figure
3.1). At the same time, a volume element dVl for the moisture is considered
with the material point Xl at the position X l. This configuration is referred
to as the reference configuration. At time t > to, the points Xα with α = s, l
follow their own unique trajectories χα(Xα, t) and overlap each other at the
position

x = χα(Xα, t) (3.1)

in the deformed and mixed state with a volume dv. This configuration is
referred to as the current configuration and a point in space is occupied si-
multaneously by polyamide as well as moisture forming the so called mixture.
The motion of each material point is unique and hence can be inverted to
get

Xα = χ−1
α (x, t). (3.2)

Even when each material point follows a unique path, its motion is effected
by the material points in its neighbourhood. Hence, a material line dXα

connecting a material point Xα to another material point Yα in its immediate
neighbourhood is introduced in the reference configuration. A tensor Fα is
employed to depict the transformation of the material line from the reference
to the current configuration by

dx = Fα · dXα, (3.3)

where dx is the material line in the current configuration. For an infinites-
imally small material line the tensor Fα is the deformation gradient of the
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Figure 3.1: A representation of the mixture theory with two constituents.

constituent α, given by

Fα =
∂χα(Xα, t)

∂Xα
=

∂x

∂Xα
= Grad αx. (3.4)

The operator ’Grad α’ denotes the gradient w.r.t the reference configuration
for the constituent α. The displacement of the point Xα is given by

uα = x − Xα. (3.5)

Substituting equation (3.5) in equation (3.4) the deformation gradient is
obtained in terms of the displacement as,

Fα = Grad αx = I + Grad αuα (3.6)

or
F−1 = I − grad uα, (3.7)

where similar to Grad α, the operator ’grad ’ is the gradient in the current
configuration1. The deformation of the material line is given by the difference

1Similarly the operator Div α denotes the divergence w.r.t the reference configuration
and div the divergence w.r.t the current configuration.



16 3. Theoretical Framework for the Model

of the squared lengths in the reference and the current configuration by

dx2 − dX2
α = 2 dXα · Eα · dXα. (3.8)

Here Eα is the Green-Lagrange strain tensor given by

Eα =
1

2

(

FT
α · Fα − I

)

. (3.9)

Using the relation (3.6) the strain tensor

Eα =
1

2

(

Grad αuα + Grad T
αuα + Grad αuα · Grad T

αuα

)

(3.10)

is obtained in terms of displacement. Similarly for the current configuration
the Euler-Alamansi strain tensor Aα is defined as

Aα =
1

2

(

grad uα + gradT uα + grad uα · gradT uα

)

. (3.11)

For small deformations, the value for the displacement gradient is of the order
10−3 to 10−2 and so the quadratic term in the gradient of displacement can
be neglected, which leads to the strain tensor

εα =
1

2

(

grad uα + gradT uα

)

. (3.12)

The operator ’Grad α’ is equivalent to the operator ’grad ’ for small deforma-
tions as the reference and the current configuration are similar to each other.
The velocity of the material point Xα can be calculated from the time deriva-
tive of the trajectory χα(Xα, t) as

v̄α(Xα, t) =
dχα(Xα, t)

dt
. (3.13)

This represents the Lagrangian time derivative or material time derivative as
the velocity is measured for a specific material point that was at the position
Xα in the reference configuration at time t = to. The velocity can also be
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expressed in terms of the current configuration by

vα(x, t) =
dχα(χ−1

α (x, t), t)

dt
. (3.14)

Such a representation is known as the Eulerian derivative or spatial time
derivative, as the velocity of the material point Xα is calculated at a fixed
location x in space at time t > to. This location can be occupied by any
material point at different times, therefore for the material point Xα, the
position x is a function of time. The acceleration of the material point Xα

is given in Lagrangian form as

āα(Xα, t) =
dv̄α(Xα, t)

dt
(3.15)

and in the Eulerian form as

aα(x, t) =
dvα(x, t)

dt

∣

∣

∣

∣

∣

Xα=constant

. (3.16)

As for the material point Xα the position vector x changes with time, the
total derivative in equation (3.16) can be calculated by taking partial deriva-
tives in time and space as

aα(x, t) = (vα)′

α =
∂vα

∂t
+ grad vα · vα. (3.17)

The symbol (vα)′

α represents the material time derivative of the velocity vα

w.r.t the movement of the constituent α. The first term on the right hand
side of the equation (3.17) describes the change in the velocity at a fixed
point x and is known as the local term. The second term is known as the
convective term, which describes the change in velocity due to the motion
of the observer with the material point. In a similar way the change of
any physical quantity ϕ within the mixture is given by the material time
derivative

(ϕ)′

α =
∂ϕ

∂t
+ gradϕ · vα. (3.18)

A material derivative can be calculated for an observer moving with any
constituent in the mixture. Hence the subscript α in the symbol (ϕ)′

α denotes
the velocity vα with which the material derivative is calculated.
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A gradient of the velocity in its Eulerian representation

∂vα

∂Xα
=

d

dt

∂χα(χ−1
α (x, t), t)

∂Xα
= (Fα)′

α, (3.19)

represents the rate of change of deformation gradient. With the help of the
chain rule of differentiation this can be written as

∂vα

∂Xα

= (Fα)′

α =
∂vα

∂x
· ∂x

∂Xα

= Lα · Fα. (3.20)

Here the tensor Lα represents the spatial velocity gradient tensor, given by

Lα = grad vα = (Fα)′

α · F−1
α . (3.21)

The velocity gradient tensor can be further split into a symmetric part and
a skew symmetric part

Lα = Dα + Wα, (3.22)

where

Dα =
1

2
(Lα + LT

α) (3.23)

denotes the strain rate tensor and

Wα =
1

2
(Lα − LT

α) (3.24)

denotes the spin tensor [77]. For small deformations, the strain rate tensor
is equivalent to the engineering strain rate tensor given by the material time
derivative (εα)′

α.
Along with the individual constituents kinematic quantities for the mixture
can also be defined. The velocities of the individual constituents can be
averaged over the mixture with

v =
∑

α

ραvα

ρα
. (3.25)

to get the barycentric velocity that describes the overall motion of the mix-
ture. The difference of the velocity of the individual constituent and the
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barycentric velocity gives the diffusion velocity

dα = v − vα. (3.26)

In case of the two constituent mixture of polyamide and moisture, it is useful
to describe the motion of the constituent relative to each other. This can be
measured with the seepage velocity

w = vl − vs. (3.27)

These relations define the motion and the deformation of the mixture and
its constituents. However, in order to evaluate these quantities the balance
equations need to be formulated.

3.2 Balance Equations

A general balance equation for the mass specific physical quantity is formu-
lated for the mixture. The partial density of the constituents with a mass
of dmα in the mixture of volume dv is given by

ρα =
dmα

dv
, (3.28)

which can be added up to get the density of the mixture

ρ =
∑

α

ρα. (3.29)

For any mass specific physical quantity ρϕ of the mixture inside the body
B with the boundary ∂B, the change with time is due to a flux φ over the
boundary, the supply β from inside the body and the production of the
quantity ϕ̂ within the boundaries. Hence

d

dt

∫

B

ρϕ dv =
∫

∂B

φ · n da+
∫

B

β dv +
∫

B

ϕ̂ dv (3.30)
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represents the balance equation for ϕ in its integral form. This equation is
stated for a scalar ϕ, but follows the same pattern for any tensor ϕ. Using
the Reynold’s transport theorem and the divergence theorem, the equation
can be reduced to its local form [44, 45]

˙(ρϕ) + ρϕ div ẋ = div φ + β + ϕ̂. (3.31)

where the symbol �̇ represents the material derivative for an observer moving
with the barycentric velocity. Similarly for the individual constituents of the
mixture

(ραϕα)′

α + ραϕα div vα = div φα + βα + ϕ̂α. (3.32)

is obtained.
The mixture of polyamide and moisture is dominated by polyamide because
of its high mass content. A maximum of 10 % of the mass is contributed by
the moisture. Moreover, the solid structure of polyamide provides a boundary
for the mixture. Therefore to represent the mixture accurately, the motion
is studied w.r.t the polyamide body and the moisture is assumed to flow in
the open system of the polyamide body. With this consideration the general
balance equation for the polyamide

(ρsϕs)
′

s + ρsϕs div vs = div φs + βs + ϕ̂s, (3.33)

remains the same as equation (3.32), however for the moisture (α = l) the
left hand side should be written in terms of the vs and w using the relation
(3.27) as

(ρlϕl)
′

l + ρlϕl div vl =
∂(ρlϕl)

∂t
+ grad (ρlϕl) · vl + ρlϕl div vl

= (ρlϕl)
′

s + ρlϕl div vs + div (ρlϕlw).
(3.34)

So a general equation for the moisture

(ρlϕl)
′

s + ρlϕl div vs + div (ρlϕlw) = div φl + βl + ϕ̂l (3.35)

has an extra term div (ρlϕlw) when compared to the equation (3.33) which
represents the flow of the moisture over the surface of the polyamide body.
These two master balance equations are used to formulate the balance equa-
tions for the different physical quantities.
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3.2.1 Mass Balance

The mass balance is a result of the axiom that the mass of a closed sys-
tem remains constant. The mixture is defined by the open boundary of the
polyamide over which moisture flow can occur. Hence the mass balance for
polyamide (α = s) is given by

(ρs)
′

s + ρs div vs = ρ̂s = 0, (3.36)

and for moisture (α = l)

(ρl)
′

l + ρl div vl = ρ̂l = 0, (3.37)

which can be rewritten with the help of the seepage velocity defined in equa-
tion (3.27) as

(ρl)
′

s + ρl div vs + div (j) = ρ̂l = 0. (3.38)

The flow of the moisture into the polyamide is described by the flux term

j = ρlw. (3.39)

The mass exchange terms ρ̂s and ρ̂l for the two constituents define the mass
generation for the individual constituents that results from the reaction be-
tween the moisture and polyamide. However, only physical changes are stud-
ied here and the chemical changes are neglected. Thus the mass exchange
terms are taken to be zero (ρ̂α = 0). The balance equation for the entire
mixture is a result of the direct sum of the two constituents which leads to

(ρ)′

s + ρ div vs + div (j) = 0. (3.40)

3.2.2 Momentum Balance

The momentum balance equation serves as one of the central balance equa-
tion for the coupled model. According to Newton’s law of motion the change
of momentum is a result of the forces acting on the body. In the mixture it
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is assumed that an external force t (Figure 3.1) acts on the boundary of the
body, which is used to define the Cauchy stress tensor as

t = Tα · n, (3.41)

for the constituent α. Thus the local form of the momentum balance equation
for the solid is given by

(ρsvs)
′

s + ρsvs div vs = div Ts + ρsbs + T̂s (3.42)

and for the liquid as

(ρlvl)
′

l + ρlvl div vl = div Tl + ρlbl + T̂l. (3.43)

Here bs and bl are the mass specific body force densities and T̂s and T̂l are
the changes in momentum caused due to the interaction between the two
constituents. However for the moisture the material derivative is taken in
terms of the polyamide velocity. Thus using relation (3.35)

(ρlvl)
′

s + ρlvl div vs + div (j ⊗ vl) = div Tl + ρlbl + T̂l (3.44)

is obtained. By using the chain rule of differentiation and the mass balances
(3.36) and (3.38), the left hand side of the equations for both the constituents
can be reduced to

ρs(vs)
′

s = div Ts + ρsbs + T̂s (3.45)

and
ρl(vl)

′

s = div Tl + ρlbl + T̂l − grad vl · j. (3.46)

Using the seepage velocity (3.27), the equation (3.46) is transformed to

ρl(vs)
′

s + ρl(w)′

s = div Tl + ρlbl + T̂l − (grad vs + grad w) · j. (3.47)

The momentum of the mixture is given by the total mass density of the
mixture multiplied with the velocity of the solid vs. To obtain the momentum
balance for the mixture the equations (3.45) and (3.47) are added to get

ρ(vs)
′

s + ρl(w)′

s = div (Ts + Tl) + ρb − (grad vs + grad w) · j (3.48)
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which can be rearranged to

ρ(vs)
′

s = div (Ts + Tl) + ρb − div (j ⊗ vs) − div (j ⊗ w) − ρl(w)′

s

+ (div j) (vs + w) .
(3.49)

The body forces are added to get ρb = ρsbs + ρlbl and the interaction forces
add up to cancel each other out as T̂s = −T̂l according to Newton’s third
law of motion. Due to the effect of the moisture flowing relative to the
mixture defined by the solid body, the balance equation has more terms
than the usual momentum balance equation. The terms div (j ⊗ w) and
div (j ⊗ vs) have been interpreted as a part of the stress tensor in mixture
theory [19, 22]. These terms are analogous to the stresses introduced in
the kinetic gas theory due to the mixing of gases. Although the diffusion
velocity instead of the seepage velocity has been used in these definitions
of the stress tensor in mixture theory. The moisture mass flow relative
to the mixture is given by div j, hence the term (div j) (vs + w) can be
interpreted as the change in momentum due to the change in the mass
ratio of solid and moisture, and the term ρl(w)′

s represent the momentum
change due to the relative acceleration between the moisture and the solid.
Therefore the interaction between the constituents generates a deviation
from a conventional momentum balance equation.

3.2.3 Energy Balance

The first law of thermodynamics states that the energy of a system must
remain constant. In the mixture, the mass specific internal energy (eα) of
the two constituents (α = s, l) and their kinetic energy due to their velocity
vα changes over time due to the heat flow over the boundary (qα), heat
production due to radiation (ραrα) and the mechanical power generated by
the force acting on the boundary of the body (t·vα) along with the mechanical
power produced by the body forces (ρsbs · vs). Apart from this there is an
energy exchange between the constituents given by êα. Hence the local form
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of the energy balance for the polyamide using (3.33) can be written as

(

ρses +
1

2
ρsvs · vs

)′

s
+
(

ρses +
1

2
ρsvs · vs

)

div vs =div (Ts · vs − qs)

+ ρsrs + ρsbs · vs + ês.

(3.50)

Using the mass balance equation (3.36) and momentum balance equation
(3.45) for polyamide, the energy balance can be reduced to

(ρses)
′

s + ρsesdiv vs + vs · T̂s = Ts : Ds + ρsrs − div qs + ês. (3.51)

For the moisture

(

ρlel +
1

2
ρlvl · vl

)′

s
+div

(

ρlelw +
(

1

2
ρlvl · vl

)

w

)

+
(

ρlel +
1

2
ρlvl · vl

)

div vs

= div (Tl · vl − ql) + ρlrl + ρlbl · vl + êl

(3.52)

the local form of the energy balance is obtained in a way similar to equa-
tion (3.35), where the flow related terms are also presented. The mass (3.38)
and the momentum balance (3.44) equations can be substituted to obtain

(ρlel)
′

s + (T̂l − grad vl · j) · vl − 1

2
vl · vl div (j) +

1

2
vl · vl div (j)

+ ρlel div vs = Tl : Dl + ρlrl − div ql − 1

2
grad (vl · vl)j − div (jel) + êl,

(3.53)

where div
((

1

2
ρlvl · vl

)

w

)

has been expanded using the divergence theo-

rem. Further expansion of the term grad (vl · vl) results in

(ρlel)
′

s + ρleldiv vs = Tl : Dl + ρlrl − div ql + êl − vl · T̂l − div (elj). (3.54)

The left hand side of both the equations (3.51) and (3.54) can be expanded
using the product rule of differentiation, and the mass balance equations can
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be substituted to get

ρs(es)
′

s = Ts : Ds + ρsrs − div qs − vs · T̂s + ês (3.55)

and

ρl(el)
′

s = Tl : Dl + ρlrl − div ql − vl · T̂l + êl + eldiv j − div (elj). (3.56)

The last two terms for the moisture energy balance can be added to obtain

ρl(el)
′

s = Tl : Dl + ρlrl − div ql − vl · T̂l + êl − j · grad el (3.57)

To get the energy balance of the mixture the equation (3.51) and equa-
tion (3.54) are added

(ρe)′

s + ρe div vs = Ts : Ds + Tl : Dl+ρsrs + ρlrl − div (qs + ql)

−T̂l · (vl − vs) − div (elj),
(3.58)

where the energy exchange terms add up to zero ês+êl = 0 and ρe = ρses+ρlel

represents a weighted average of energy of the constituents. After reducing
the left hand side

ρ(e)′

s = Ts : Ds+Tl : Dl +ρsrs+ρlrl −div (qs+ql)−T̂l ·w−div (elj)+e div j

(3.59)
is obtained. It should be noted that e doesn’t refer to the specific internal
energy of the mixture, rather the weighted average of the two constituents.
The relative motion between the constituents contributes to the energy flux,
energy production as well as the specific internal energy of the mixture.
The definition of these quantities based on the diffusion velocities of the
constituents are discussed in [19, 22, 149]. Here the effect of the relative
motion is represented by the last three terms of in the energy equation (3.59).
The term div (elj) represents the flux of the energy brought in to the mixture
due to the motion of moisture relative to the solid structure. The term e div j

represents the change in the weighted average energy e =
1

ρ
(ρses + ρlel) due

to the flow of moisture relative to the solid constituent.
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3.2.4 Entropy Balance

The entropy density ηα of the constituents (α = s, l) is balanced with the
entropy change due to heat flux and the heat production, and the entropy
production η̂α. The process of moisture uptake is a fairly slow process, be-
cause of which it can be assumed that there is enough time for the constituent
to exchange their heat and come to an equilibrium temperature of θ. For
polyamide (α = s) the general balance equation (3.33) is used to get

(ρsηs)
′

s + ρsηsdiv vs = −div
(

qs

θ

)

+
ρsrs

θ
+ η̂s. (3.60)

However as the liquid constituent is flowing in an open system, as per the
argumentation done in the general balance equation (3.35),

(ρlηl)
′

s + ρlηldiv vs + div (jηl) = −div
(

ql

θ

)

+
ρlrl

θ
+ η̂l. (3.61)

is obtained. The heat fluxes qs, ql and the radiation terms ρsrs, ρlrl nor-
malised by the temperature θ represent the flux term and the supply term
in the master balance equations respectively. These assumptions define the
constitutive relations for the flux and supply term for the individual con-
stituents beforehand, as it is usually done in classical thermodynamics. On
the application of product rule of differentiation and using the mass balance
equation

ρs(ηs)
′

s = −div
(

qs

θ

)

+
ρsrs

θ
+ η̂s, (3.62)

and
ρl(ηl)

′

s = −div
(

ql

θ

)

+
ρlrl

θ
+ η̂l − j · grad ηl (3.63)

is obtained.
Equations (3.62) and (3.63) give the entropy balance for the individual con-
stituents, but the entropy balance for the mixture is not defined. In the
literature, different forms of entropy inequality for a mixture have been dis-
cussed. For example, Bowen and Wiese [22] formulate the entropy inequality
with a specific flux term for the mixture. Based on the kinetic gas theory, the
flux term contains the sum of the individual heat fluxes and the entropy of
each component multiplied to the relative velocity between them. However
in another formulation, Müller [105] does not define the entropy flux of the
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mixture a priori. The flux is rather defined depending on the type of the
mixture with a constitutive relation. De Boer and Ehlers [19] show that the
sum of entropy of individual components results in the same entropy flux
as postulated by Bowen if the material time derivative for each component
is taken with the barycentric velocity. This was also in agreement with the
constitutive equations given by Müller.
In a similar way, the entropy inequality of the mixture is not formulated,
rather the individual entropy inequalities are added. To satisfy the sec-
ond law of thermodynamics, the entropy production of the entire mixture
η̂ = η̂s + η̂l ≥ 0 should be non negative.
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4

Material Model

In the previous chapter the general balance equations for the two constituents
and the mixture were setup. The general equations need to be formulated
for PA6 and moisture to develop the material model. The mechanical de-
formation and the moisture transport are the two phenomena that must be
described by the material model. Therefore the mass transport equation for
the moisture (3.38) and the momentum balance equation for the mixture
(3.49) are the two main equations that need to be solved. The mass balance
equation for the moisture

(ρl)
′

s + ρldiv vs + div (j) = 0

can be solved if the velocity vs and the moisture flux j are known. The
velocity vs is obtained by solving the momentum balance equation of the
mixture (3.49). However, the moisture flux j is handled as a constitutive
quantity that depends on the process variables.
To solve the momentum balance equation certain assumptions are made. The
model is developed here for quasi-static cases and hence the dynamic forces
as well as the inertia terms appearing in the momentum balance equations
can be neglected. Moreover, the forces acting on these components for any

– 29 –



30 4. Material Model

application are also much higher than the gravitational forces acting on them
because of which the sum of body forces, ρb = 0 can be assumed. This leads
to the reduced quasi-static momentum balance equation

div (Ts + Tl) = 0. (4.1)

To solve the equation the quantities Ts and Tl should be known. They
are treated as constitutive quantities in the model. Thus, along with the
moisture mass flux the balance equations for the material model are solved
using the constitutive quantities

R = {Ts,Tl, j}. (4.2)

As PA6 is used in components such as gears, intake manifolds, etc., where
the deformations occurring during operations are constrained to a very small
range, the model developed here is also restricted to small deformations. The
strain is given by the symmetric part of the displacement gradient tensor
(equation 3.12) and the symmetric part of the velocity gradient Ds is given
by the rate of change of the strain (εs)

′

s. The model is also restricted to
handling isothermal cases and the effects of temperature changes are not
modelled.
With the given assumptions, relations between the constitutive quantities
and the process variables have to be defined. These relations are known as
the constitutive equations or response functions. They are specific to the
material being described. An evaluation of the entropy inequality of the
mixture provides the conditions that must be applied to these constitutive
equations so that the second law of thermodynamics is always fulfilled.

4.1 Entropy Evaluation

There are various methods for entropy evaluation but the two most com-
monly used are the Coleman-Noll [111] and the Liu-Müller method [97, 105].
In the Liu-Müller method all the balance equations are added to the en-
tropy inequality with the help of Lagrange multipliers for the evaluation.
These Lagrange multipliers are determined for the evaluation which makes
the method extensive but also very complex. In the Coleman-Noll method
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the free energy of the system is introduced using the Legendre transforma-
tion in the energy balance equation. Entropy evaluation is conducted with
the introduced free energy. However, other balance equations and the de-
pendency of the constitutive quantities arising from these equations are not
included in the evaluation.
The evaluation is conducted here with the help of a combination of the
Coleman-Noll and the Liu-Müller method. The energy balance is incorpo-
rated in the entropy inequality using the Legendre transformation. Addi-
tionally the mass and the momentum balance are added using Lagrange
multipliers. It has been seen in literature that for isothermal conditions the
Lagrange multiplier for the energy balance equation turns out to be 1/θ and
performs nothing but a Legendre transformation of energy balance as done
in Coleman-Noll method [48, 83]. Thus, the free energy

ψα = eα − θηα (4.3)

is substituted into the entropy inequality of PA6 (3.62)

ρs
(es)

′

s − (ψs)
′

s

θ
+ div

(

qs

θ

)

− ρsrs

θ
= η̂s (4.4)

and into the entropy inequality of the moisture (3.63)

ρl
(el)

′

s − (ψl)
′

s

θ
+ div

(

ql

θ

)

− ρlrl

θ
+ j · grad

(

el − ψl

θ

)

= η̂l. (4.5)

Substituting the energy balance (3.55) in (4.4) for PA6

− ρs(ψs)
′

s + Ts : Ds − vs · T̂s + ês = η̂s, (4.6)

and the energy balance (3.56) for the moisture in (4.5)

− ρl(ψl)
′

s + Tl : Dl − vl · T̂l − j · gradψl + êl = η̂l, (4.7)

the free energy forms of the equations are obtained. The entropy production
of the entire mixture should be non-negative to satisfy the second law of
thermodynamics. Thus η̂s + η̂l ≥ 0 and the addition of relation (4.6) and
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(4.7) leads to

− ρs(ψs)
′

s − ρl(ψl)
′

s + Ts : Ds + Tl : Dl − w · T̂l − j · gradψl ≥ 0, (4.8)

which is the Clausius-Planck inequality for the mixture. The variables T̂l and
j appear in the entropy inequality, which has dependencies on the momentum
balance and the mass balance equations for the moisture. Therefore both
these balance equations are added to the inequality with the help of Lagrange
multipliers to obtain,

−ρs(ψs)
′

s − ρl(ψl)
′

s + Ts : (Ds)
′

s + Tl : Dl − w · T̂l − j · gradψl

+ Λ1((ρl)
′

s + w · grad ρl + ρldiv vl)

+ Λ2 · (div Tl + T̂l) ≥ 0.

(4.9)

As the model is being developed for quasi-static case, the momentum balance
for moisture doesn’t contain the inertial terms. The free energies of the solid
and the liquid constituents are the potentials that are dependent on the
process variables as well. Therefore, along with the stresses and the flux, the
free energies are also included in the list of constitutive quantities

R = {ψs, ψl,Ts,Tl, j}. (4.10)

A set of process variables needs to be chosen to describe these constitutive
quantities. The material behaviour and the conditions imposed on the ma-
terial model are exploited to determine the set of process variables.
Like many other polymers, PA6 exhibits viscoelastic behaviour. The defor-
mation of a viscoelastic solid can be described by Fs = Fse · Fsi, where the
deformation gradient is split multiplicatively in an elastic part (Fse) and an
inelastic viscous part (Fsi). The inelastic part of deformation changes with
time and models the characteristic rate dependency of a viscoelastic material
[123]. For small deformations, the strain is given by the engineering strain
tensor εs defined in (3.12), which can be split additively into an elastic part
and an inelastic part

εs = εe + εi. (4.11)

Both the elastic and the inelastic strains are the process variables defining
the deformation of a viscoelastic solid [83]. The density of the solid ρs can be
calculated with the help of the volumetric changes given by det(εs). There-
fore after the inclusion of the strain tensors, it is not necessary to include
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the density of the solid in the list of process variables. The gradient of the
density grad ρs is however the process variables that defines the dependency
of the compressibility of the solid on higher order gradients. Hence, it is
included in the list of process variables. It has been shown in literature that
the deformation of compressible fluids can be defined by the density and the
gradient of density [19, 51]. Hence ρl and grad ρl are also taken in the set of
process variables. Apart from this, the viscous part of the fluid deformation
is given by the strain rate tensor Dl [50, 53] and is also taken as a process
variable. The flux j describing the moisture transport is handled as a con-
stitutive quantity, therefore the seepage velocity w is not a process variable
for this model. Thus, the complete set of process variable is given by

S = {εs, εi,Dl, ρl, grad ρs, grad ρl}. (4.12)

The principle of equipresence dictates that all the independent variables of
the system depend on all of the process variables. Hence the free energies

ψs,l = ψs,l (S) (4.13)

are also dependent on the process variables and the corresponding time
derivative can be calculated by

(ψs,l)
′

s =
∂ψs,l

∂S (S)′

s (4.14)

using the chain rule of differentiation. Similarly other constitutive quanti-
ties are also expressed as a function of the process variable and the condi-
tions these functions should fulfil can be derived by substituting the equation
(4.14) in the entropy inequality (4.9). After substitution and rearranging the
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inequality

(εs)
′

s :

[

−ρs
∂ψs

∂εs
− ρl

∂ψl

∂εs
+ Ts

]

+ (Dl)
′

s

[

−ρs
∂ψs

∂Dl
− ρl

∂ψl

∂Dl

]

+ (ρl)
′

s

[

−ρs
∂ψs

∂ρl

− ρl
∂ψl

∂ρl

+ Λ1

]

+ (grad ρs)
′

s ·
[

−ρs
∂ψs

∂grad ρs

− ρl
∂ψl

∂grad ρs

]

+ (grad ρl)
′

s ·
[

−ρs
∂ψs

∂grad ρl
− ρl

∂ψl

∂grad ρl

]

+ D ≥ 0

(4.15)

is obtained with the residual inequality

D =(εi)
′

s :

[

−ρs
∂ψs

∂εi
− ρl

∂ψl

∂εi

]

− T̂l · (w − Λ2) + Dl : (−plI + ρlΛ1I)

− Λ2 · grad pl − j · gradψl + Λ1w · grad ρl.

(4.16)

The friction between the moisture and the solid is much higher in comparison
to the frictional effects in the moisture itself. In other words, the effect of
friction in the moisture flow exhibits itself as the interaction force T̂l = −T̂s

[50, 53]. Therefore the stress in moisture can be assumed to be hydrostatic
and is represented as Tl = −plI in equation (4.16), where pl is the moisture
pore pressure. Moreover, div vl = Dl : I is also used to simplify the inequal-
ity. The inequality (4.15) consists of two parts. The terms linear with the
derivative of the process variables given in equation (4.15) and the remain-
ing terms which form the residual inequality in equation (4.16), respectively.
The process variables are the only coordinates that define a process in space
and time, however it can have multiple ways of reaching these coordinates.
In other words, for a defined process, the time derivatives of these process
variables can take any value. Therefore, in the entropy inequality the terms
linear with the time derivatives of the process variables can vary arbitrarily
and can violate the inequality. Therefore these terms should be set to zero,
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which results in these necessary but not sufficient conditions

−ρs
∂ψs

∂grad ρs
− ρl

∂ψl

∂grad ρs
= 0, (4.17)

−ρs
∂ψs

∂grad ρl
− ρl

∂ψl

∂grad ρl
= 0, (4.18)

−ρs
∂ψs

∂Dl
− ρl

∂ψl

∂Dl
= 0, (4.19)

Λ1 = ρs
∂ψs

∂ρl
+ ρl

∂ψl

∂ρl
, and (4.20)

Ts = ρs
∂ψs

∂εs
+ ρl

∂ψl

∂εs
(4.21)

for the fulfilment of the entropy inequality. The equation (4.17) and (4.18)
restrict the dependency of the free energy on the gradient of the density for
the two free energies. The free energy of the moisture does not depend on
the gradient of the solid density. According to equation (4.17) this leads to

∂ψl

∂grad ρs
=

∂ψs

∂grad ρs
= 0. (4.22)

Similarly according to equation (4.18), ψs and ψl are independent of grad ρl.
The free energy of the solid is independent of the viscous behaviour of the
liquid, which according to (4.19) leads to

∂ψs

∂Dl
=
∂ψl

∂Dl
= 0 (4.23)

The equation (4.20) gives the relation for the first Lagrange multiplier Λ1.
The stress in the solid is given by the relation (4.21). The free energy of the
moisture ψl describes the flow of the moisture and its dependency on εs is
not necessary, resulting in

Ts = ρs
∂ψs

∂εs
. (4.24)

On the microscopic level, when a viscoelastic material is loaded then the
molecular chains are stretched. At the same time they are entangled with
each other because of which the potential of the system increases and non-
equilibrium state is reached [11, 13]. With time the molecular chains slide
and find their stable positions and a state of equilibrium is attained. Thus,
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the material model consists of a non-equilibrium state which changes with
time and an equilibrium state which is constant with time for a given strain
value. To this end, the free energy of the solid

ψs = ψseq + ψsneq (4.25)

is split into an equilibrium and a non-equilibrium part. A substitution of the
split free energy in equation (4.21) results in

Tseq = ρs
∂ψseq

∂εs

Tsneq = ρs
∂ψsneq

∂εs

,

(4.26)

where the stress tensor is split into an equilibrium part Tseq and a non-
equilibrium part Tsneq as

Ts = Tseq + Tsneq. (4.27)

This gives the usual form of the stress tensor for a viscoelastic body.
The first term in the residual inequality D is linear with the derivative of
the inelastic strain. This derivative is kept in residual inequality as it is not
arbitrary but is rather dependent on the material’s viscosity. The derivative
is determined by the process itself according to the viscosity of the mixture.
The time evolution of this internal variable has to be defined in such way
that

(εi)
′

s :

[

−ρs
∂ψs

∂εi

− ρl
∂ψl

∂εi

]

≥ 0 (4.28)

is satisfied. The non-equilibrium part of the free energy is a function of the
inelastic strain εi, whereas the equilibrium part is a function of the strain εs.
Therefore the derivative of the free energy w.r.t the inelastic strain leads to

(εi)
′

s :

[

−ρs
∂ψsneq

∂εi

]

≥ 0. (4.29)

The moisture mass flux j is the constitutive quantity that describes the
flow of moisture in the mixture. The momentum balance equation for the
moisture is not solved explicitly to get the quantity j hence, the interaction
force T̂l can take arbitrary values as long as j is uniquely defined. Thus, the
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second term in the residual inequality T̂l · (w − Λ2) should disappear. This
gives the value of the second Lagrange multiplier

Λ2 = w. (4.30)

The third term Dl : (−plI + ρlΛ1I) is linear in terms of the process variable
Dl. The inequality shouldn’t be harmed for any deformation velocity of
moisture. Therefore with

pl = ρlΛ1 (4.31)

the term becomes zero and using (4.20) the typical definition for pressure of
moisture

pl =

(

ρlρs
∂ψs

∂ρl

+ ρ2
l

∂ψl

∂ρl

)

(4.32)

is obtained. The remaining residual inequality becomes

D = −j · gradψl − w · grad pl +
pl

ρl
w · grad ρl ≥ 0. (4.33)

By using the chain rule of differentiation for grad

(

1

ρl

)

, the expression can

be reduced to

− j · grad

(

ψl +
pl

ρl

)

. (4.34)

The expression

κl = ψl +
pl

ρl
(4.35)

is a commonly used potential to describe the diffusion of fluids [22, 49, 92, 149]
and is known as the chemical potential. With this substitution the inequality
(4.34) finally reduces to

− j · grad κl ≥ 0 (4.36)

which can be satisfied by selecting the mass flux as

j = −Kgradκl, (4.37)

making the residual inequality a quadratic term which is always non-negative
for all K ≥ 0. The parameter K has similar characteristics as the diffusion
coefficient. For an anisotropic process the parameter K can also be inter-
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preted as a second order positive-definite tensor.
Following the entropy evaluation the following definitions are obtained for
the Lagrange multipliers

• Λ1 = ρs
∂ψs

∂ρl
+ ρl

∂ψl

∂ρl

• Λ2 = w

which gives the following constitutive quantities

• Tseq = ρs
∂ψs

∂εs

• Tsneq = ρs
∂ψsneq

∂εs

• Tl = −plI = −
(

ρlρs
∂ψs

∂ρl

+ ρ2
l

∂ψl

∂ρl

)

I

• j = −Kgradκl.

The selection of the free energy and the chemical potential gives the rela-
tion between the constitutive quantities and the process variables. The free
energy ψs of the PA6 describes the mechanical deformation process. Their
dependencies on the process variables are given by

ψseq = ψseq(εs)

ψsneq = ψsneq(εs, εi).
(4.38)

The chemical potential of the moisture κl describes the moisture uptake
process

κl = κl(ρl). (4.39)

which is dependent on the amount of moisture present in the mixture. Thus
the process variables can be split between the free energies and the poten-
tial. With the split of the process variables, these quantities can be defined
in a phenomenological way with the help of experiments. To this end, experi-
ments on PA6 were conducted by the project partner at LKT, TU Dortmund.
The experiments and the resulting definitions of the free energy and the po-
tential is discussed in the following sections.
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Figure 4.1: Relaxation experiment for dry PA6 specimens conducted at TU
Dortmund [134]. Geometry of the sample is shown on right.

4.2 Mechanical Behaviour - Viscoelasticity

PA6 shows viscoelastic behaviour as can be seen from the relaxation exper-
iment (Figure 4.1). A tensile test specimen with a geometry given in the
dissertation of Becker [12] with a length of 80 mm was subjected to a dis-
placement based loading of 1 mm at 1 mm/min and then held at constant
displacement for up to 300 s for the relaxation experiments on completely
dry specimens. The viscoelastic behaviour of PA6 can be described by a
rheological model, consisting of springs and dashpots (Figure 4.2) where the
spring deformation represent the elastic part and the dashpot represent the
time dependent inelastic part of the deformation. The split in the free energy
into equilibrium and the non-equilibrium part is represented in the rheolog-
ical model by the use of the equilibrium spring element and the parallelly
connected non-equilibrium Maxwell elements. On loading, the equilibrium
spring element is stretched with the strain εs. The jth Maxwell element
contains a dashpot which gets stretched with the inelastic strain ε

j
i and a

spring element that gets stretched by the elastic strain εj
e. Thus the equi-

librium part of the free energy is given by the equilibrium spring and the
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sneq

Figure 4.2: The rheological model to represent the viscoelastic behaviour.

non-equilibrium part is given by

ψsneq =
N
∑

j=1

ψj
sneq(ε

j
e) (4.40)

as the sum of the free energies of the individual Maxwell elements. Here
εj

e = εs −ε
j
i results from the additive split of the strain according to equation

(4.11). Motivated from this rheological model, the free energy for PA6 can
be calculated with the help of the strain energy produced in the equilibrium
and in the non-equilibrium springs

ρsψseq =

(

µ εs : εs +
λ

2
tr(εs)

2

)

,

ρsψ
j
sneq =

(

µj(εs − ε
j
i ) : (εs − ε

j
i ) +

λj

2
tr(εs − ε

j
i )

2

) (4.41)

in a standard way as given by the generalised Hooke’s model. The strain
energy representation is appropriate for small deformation. The technical
parts made of PA6 do not undergo large deformations during their opera-
tion. The plastic deformations that are a characteristic of thermoplastics
are therefore not considered. Here the parameters λ, µ and λj, µj represent
the Lamé parameters for the equilibrium spring and the jth Maxwell element
respectively. The parameter λ is related to the volumetric deformation and
the parameter µ to the shear deformation. Substituting the value of the free
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energy in relation (4.26)

Tseq = ρs
∂ψseq

∂εs
= 2µεs + λtr(εs)I

Tsneq = ρs

N
∑

j=1

∂ψsneq

∂εs
=

N
∑

j=0

(

2µj(εs − ε
j
i ) + λjtr(εs − ε

j
i )I
)

(4.42)

the constitutive equation for the stress in PA6 is obtained. The total stress
is given by the equation (4.27). Along with the constitutive relation for the
stress, the evolution equation for the inelastic strain can also be derived.
According to entropy evaluation the relation (4.29)

− ρs
∂ψneq

∂εi
· (εi)

′

s ≥ 0

should be satisfied. The non-equilibrium part of the Helmholtz free energy
is transformed from the Lamé parameter form to the Hooke’s law form using
the equation

ρsψ
j
neq = Ej : (ε − ε

j
i )

2 (4.43)

where Ej is the stiffness matrix for the spring element. For obtaining the
evolution of the inelastic strain which is independent of the direction for PA6,
the stiffness Ej can be reduced to a scalar value Ej . The inequality (4.29)
can be satisfied if the evolution equation is defined as a linear function of
(εs − ε

j
i ) as

(

ε
j
i

)′

s
= 2

ηj

Ej

(εs − ε
j
i ). (4.44)

where ηj is the viscosity of the dashpot element. This makes the inequality
term

− ρs

∂ψj
neq

∂ε
j
i

·
(

ε
j
i

)′

s
= 2ηj

(

ε − ε
j
i

)2
(4.45)

which is always positive for all η ≥ 0. Another familiar way of representing
the equation (4.44) is,

(

ε
j
i

)′

s
=

(ε − ε
j
i )

τ j/2
(4.46)

where τ j = Ej/ηj is the relaxation time for the dashpot.
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4.3 Moisture Transport

The moisture uptake in any polymer is generally defined by the the ratio of
the absorbed moisture mass to the polymer’s dry mass. Thus with

c =
ρl

ρs
, (4.47)

the concentration is introduced to describe the moisture transport behaviour
of PA6. The mass balance equation (3.38) with the substitution of concen-
tration c transforms to

ρs(c)
′

s + div j = 0, (4.48)

where the mass balance of the PA6 (equation (3.36)) has also been used.
Thus, the moisture transport in the mixture is determined by the mass flux
j which is given by the equation (4.37) as the gradient of the chemical po-
tential κ. Thus a suitable chemical potential needs to be chosen to describe
the moisture transport behaviour. The most common method of modelling
the moisture transport is using the Fick’s diffusion model. In the following
sections a discussion on the Fick’s model and its variations to model the
moisture transport in PA6 using experimental results is presented.

4.3.1 Fick’s Model

The Fick’s law is one of the most well known forms of the diffusion equation
that is used to model moisture transport. Analogous to the heat conduction
equation, Fick’s law states that the rate of change of concentration is given
by the divergence of the flux and the flux is dependent on the gradient of the
concentration [56]. Hence by the selection of the chemical potential as

κl = K1c (4.49)

the moisture transport of the material is given by

ρs(c)
′

s = div (KK1 grad c). (4.50)
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Figure 4.3: Experimental results from gravimetric experiments for PA6 spec-
imens submerged in water and stored in 50 % r.H. condition. Experiments
were conducted at LKT, TU Dortmund [134]

The product KK1 is the diffusion coefficient, describing the speed of diffu-
sion. It must be non-negative to satisfy the entropy inequality (4.36). For a
mixture with a constant density ρs, the equation (4.50) can be transformed
to

(c)′

s = div

(

KK1

ρs
grad c

)

= div (D grad c), (4.51)

with D as the diffusion coefficient. Thus for an unloaded polymer specimen or
for an incompressible solid the equation (4.51) models the moisture transport
and is similar to the Fick’s diffusion equation. The Fick’s diffusion equation
in one dimension can be expressed by

(c)′

s = D
∂2c

∂x2
, (4.52)

which can be shown to be satisfied by

c = At−1/2 exp(−x2/4Dt). (4.53)
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where A is a constant [35]. This analytical solution for a semi-infinite body
with a concentration co at the boundary and zero at all other points can be
transformed to

c = co erfc
x

2
√
Dt

(4.54)

where erfc is the complementary error function. An integration over the
body suggests that the total concentration is proportional to the square root
of time. This is also reflected in the mass uptake of PA6 in gravimetric
experiments conducted at LKT, TU Dortmund (Figure 4.3). PA6 specimens
of the size 45 mm × 45 mm × 2 mm were submerged in water, kept under
50 % r.H. condition, and kept in 0 % r.H. condition, each at 23 ◦C. The
samples were taken out from their respective environments to record their
weights at regular time intervals and then subjected back to the original
conditions, for the gravimetric experiment. The experimental results show
a linear dependence on the square root of time and therefore indicate to a
Fickian diffusion.

4.3.2 Non-Linear Fick’s Model

The diffusion coefficient introduced in equation (4.51) defines the speed of
moisture uptake. The only condition that is imposed on the coefficient is

D ≥ 0. (4.55)

However, a constant coefficient may not be sufficient to model the moisture
uptake in PA6. As more and more water molecules are absorbed, they bind
themselves to the polymer chains and increase their mobility [118]. As a
result, there is more space available for the moisture uptake and the speed
of diffusion increases. A comparison of the numerical solution of the Fick’s
diffusion model to the experiment is presented in the Figure 4.4. At higher
concentrations the numerical solution shows a deviation from the experimen-
tal result. While the numerical solution continues at the same diffusion speed,
the experiment reaches the saturation much faster than the numerical predic-
tion. This phenomenon can be modelled with the help of a non-linear Fick’s
model where the diffusion coefficient is itself a function of the concentration

D = D(c) (4.56)
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Figure 4.4: A comparison of the moisture mass uptake in the experiment and
the numerical solution to the Fick’s diffusion model.

which leads to
(c)′

s = div (D(c) grad c), (4.57)

a modification of the Fick’s model (4.51). For such a non-linear model, the
diffusion coefficient is famously given by the Arrhenius equation [82, 117, 137]

D(c) = Do exp
(−Ea

Rθ
c
)

(4.58)

by an exponential relationship. Here Ea gives the activation energy, θ is
the absolute temperature, and R is the ideal gas constant. The expression
suggests that the change of the diffusion coefficient with the concentration
largely depends on the value of the activation energy Ea. Hence for a low
value of Ea or for small concentration value of c, the exponential relation can
be approximated by a linear equation

D(c) = Do +Dc c, (4.59)

where Do andDc are constants. In this way the increased diffusion speed with
increasing concentration can be modelled with a non-linear Fick’s model.
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4.3.3 Langmuir Model

In the Fick’s model it is assumed that the water molecules that are ab-
sorbed are allowed to move freely throughout the specimen. However, these
molecules can form hydrogen bonds with the amide groups of the polymer
chains, which can restrict their movement. Thus, there is a possibility that
the absorbed moisture is either free and can move across the specimen or it
is bound to the polymer chains and it is immobile. The concentration term
c is therefore split

c = cf + cb. (4.60)

into the free (cf ) and the bound (cb) concentration. Since the moisture
transport can only be done by the free water molecules, the equation (4.51)
can be written as

(c)′

s = div (Dgrad (c− cb)) . (4.61)

To solve this equation the interaction between the free molecules and the
bound molecules needs to be defined. The Langmuir adsorption model has
served as the basis to model this interaction [25, 65],

(cb)
′

s = γ(c− cb) + βcb = γc+ (β − γ)cb, (4.62)

where γ gives the rate of transformation of free water to bound water and β
gives the rate at which the bound water becomes free water. The combina-
tion of the equation (4.61) and the equation (4.62) is known as the Langmuir
model [25] which apart from the moisture transport can also identify the
ratio of the free and bound concentration.
At saturation the Langmuir model predicts that a portion of the saturation
concentration is bound. As a result to return to a dry state, the bound
water molecules should transform to free water molecules in the specimen.
Therefore, the time required for the desorption from saturation to a com-
pletely dry state is longer than the time required to reach saturation from
a dry state (Figure 4.5). An experiment was conducted at LKT to compare
the absorption and desorption speed of PA6. A dry specimen was kept in a
water bath at 70 °C and a saturated specimen was subjected to hot air flow
at 70 °C for desorption. The absorption is observed till 80 % saturation, but
the desorption starts from 100 % saturation. Therefore the speed of diffusion
and the speed of desorption are compared by plotting the desorption curve
on an upside down axis (Figure 4.6). The speed of moisture transport in both
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processes is found to be the same, indicating that the percentage of bound
molecules is either very low or all the moisture molecules are free to move.
Hence, the Langmuir model is not considered further to model the moisture
transport in PA6 and the non-linear Fick’s model is applied.
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Figure 4.5: A comparison of the numerical solution for absorption and des-
orption with the Fick’s model and the Langmuir model. Even though the
time required to reach saturation is the same, the Langmuir model predicts
longer time for desorption.
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Figure 4.6: A comparison of the absorption and the desorption process in
PA6. Experiments conducted at LKT, TU Dortmund.
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4.4 Coupling Methodology

The two aspects of the material model, the mechanical deformations and
the moisture transport are developed separately from each other. However,
both these aspects are dependent and effect each other. Thus for modelling
the coupled behaviour, experiments coupling the moisture transport and me-
chanical loading were used.

4.4.1 Coupling Mechanical Model to Moisture Transport

As PA6 exhibits a viscoelastic behaviour, there is an equilibrium and a non-
equilibrium part of the mechanical response which gets effected with the
change in the moisture content. Therefore the free energy dependency on
the process variables (4.13)

ψseq = ψseq(εs, c)

ψj
sneq = ψj

sneq(ε
j
i , c)

(4.63)

is extended with the help of the concentration value. To understand the
influence of the moisture, relaxation experiments (as explained in section
4.2) on a dry and a completely saturated specimen are studied. Tensile test
specimens (cf. [12]) that were milled out of an injection moulding plate were
either kept in dry conditions or completely submerged in water till saturation.
They were loaded at 1 mm/min resulting in a strain rate of 0.0125 /min and
stretched to 1 mm or 1.25 % strain at room temperature. The constant strain
was maintained for 300 s and the force was recorded (Figure 4.7). Apart
from the obvious reduction in stiffness of the specimens due to saturation,
the reduction in relaxation time is also evident from the experimental results.
The dry specimen continues to relax even after the 300 s of relaxation and
does not reach the equilibrium state till the end of the experiment. However,
the relaxation experiment conducted on the completely saturated experiment
shows minimal change in the force after 300 s of relaxation and appears
to have reached the equilibrium position. The presence of water molecules
between the polymer chains has been shown to increase the chain mobility
[106]. The increased mobility of the polymer chains can explain the faster
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rearrangement of the chains to a new equilibrium position for a saturated
specimen. To model this dependency, a function g(c) is multiplied to the
free energy so that the stress is given by (from equation (4.27) and (4.42))

Ts = g(c)



2µεs + λtr(εs)I +
N
∑

j=0

(

2µj(εs − ε
j
i ) + λjtr(εs − ε

j
i )I
)



 . (4.64)

The stress varying with the function g(c) can be imagined to be a result
of the variation of the Lamé parameters as g(c) · µ = µ(c). The Lamé
parameters for any moisture content are modelled by interpolating the value
of the Lamé parameters between the completely dry and completely saturated
specimen (indicated by the superscript wet) to the required moisture content.
A function f(c) is used to interpolate the Lamé parameters

λj(c) = f(c) · λdry
j + (1 − f(c))λsaturated

j

µj(c) = f(c) · µwet
j + (1 − f(c))µwet

j

(4.65)

for any moisture content c. The interpolating function f(c)
should be a monotonous function and should satisfy the condition
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Figure 4.7: Relaxation experiments on completely dry and completely satu-
rated specimens conducted at LKT, TU Dortmund [134].
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f(zero concentration) = 1 and f(saturation concentration) = 0. Thus with
the change of the concentration, the values of the Lamé parameters varies.
The Lamé parameters of the equilibrium spring are also calculated in the
same way. Along with the stress, the evolution of the inelastic strain also
changes to (from equation (4.46))

(

ε
j
i

)′

s
=

(ε − εi)

g(c) τ j/2
. (4.66)

The multiplication of the function g(c) in the evolution equation can model
the change in the relaxation time with the increasing moisture content. How-
ever, in the implementation of the model, the relaxation time of each Maxwell
element is assumed to be of discrete constant values and the variation of the
relaxation time is handled by numerically manipulating the effectiveness of
each of the Maxwell elements. The discrete values of the relaxation times for
each of the Maxwell elements are arranged in a geometric progression with
a ratio of 10, starting from 500 s, therefore τ1 = 500 s, τ2 = 50 s, τ3 = 5 s
and τ4 = 0.5 s. As the relaxation time for the dry specimen is more than
300 s, the j = 4th Maxwell element with relaxation time τ4 = 0.5 s doesn’t
contribute significantly to model the dry PA6. Similarly the j = 1st Maxwell
element with relaxation time τ1 = 500 s is not required to model the relax-
ation of the fully saturated specimen. Thus, the Lamé parameters for these
Maxwell elements are a priori fixed to a value of zero in the model. Due
to zero stiffnesses at the extreme ends of the concentration values j = 4th

Maxwell element is inactive for dry specimen and j = 1st element is inactive
for a saturated specimen. The interpolation of the value of Lamé parame-
ters using (4.65) shifts the relaxation spectrum from the Maxwell elements
j = 1, 2, 3 to Maxwell elements j = 2, 3, 4 with increasing moisture content.
This simulates the reduction in relaxation time with the increasing moisture
content (Figure 4.8).
Apart from the change in the stiffness and the reduction in the relaxation
times moisture uptake also induces swelling in the specimen. The absorbed
water molecules occupy the space between the polymer chains, pushing them
apart [20]. The swelling can be modelled by introducing a concentration de-
pendent strain

εsw = αcI (4.67)

which models the volumetric deformation due to the swelling similar to ther-
mal expansion. The parameter α establishes a linear relationship between
the volumetric strain and the moisture content. The swelling strain is su-
perimposed on the mechanical strain caused by the displacement of the PA6
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Figure 4.8: The effectiveness of each Maxwell element is numerically manip-
ulated with the help of fixing the stiffness for the two extreme values to zero.

structure
εef = εs − εsw (4.68)

to give the effective strain εef . The equilibrium as well as the non-equilibrium
part of the stresses are influenced by the swelling.

4.4.2 Coupling Moisture Transport to Mechanical Loading

The moisture transport in the mixture is a result of the moisture mass flux
which is given by the chemical potential of the available moisture defined in
equation (4.49). However, the ability of the PA6 structure to allow the mois-
ture transport needs to be considered. Therefore the effect of the loading on
the PA6 structure needs must be included in the moisture transport equa-
tion. To this end the dependency of the chemical potential on the process
variables (4.39) is extended to the pressure of the fluid

κl = κl(c, pl). (4.69)

From a physical point of view the moisture transport takes place through
the free volume between the polymer chains. Hence, the loading can effect
the moisture transport if the free volume between the chains is altered. The
volumetric strain for an incompressible polymer is zero and therefore any
change in the free volume is not permissible. PA6 is however a compressible
polymer. An effect of loading on the moisture transport is therefore possible
for PA6. Its density varies with the volumetric strain

εvol = tr(εs)/3 (4.70)
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from the undeformed density ρso to

ρs = ρso(1 + εvol)
−1 (4.71)

which can be approximated to

ρs = ρso(1 − εvol) (4.72)

for small deformations. The compression or expansion of the available free
volume creates a pressure on the absorbed moisture. As the loading and in
turn the liquid pressure is not always homogenous throughout the specimen,
a gradient in the pressure can cause the transport of the moisture. Thus, the
chemical potential given in (4.49) can be extended (similar to [127, 151])

κl = D(c)c+Kpl (4.73)

to give the moisture mass flux as

j = − (D(c)grad c+Kgrad pl) (4.74)

resulting in the moisture transport equation

ρs(c)
′

s = div (D(c) grad (c) +Kgrad pl). (4.75)

In this way the volumetric change of PA6 is incorporated in the moisture
transport equation which couples it to the mechanical deformation. On a
molecular level the PA6 structure is assumed to be a porous medium where
the change in the pore volume induces a pressure in the pore liquid. The flow
in a porous medium is driven by the gradient of this pressure as modelled
by the Darcy’s law [37]. The moisture flux thus consists of the diffusive part
given by D(c) grad (c) and the pressure gradient similar to the Darcy’s law
given by Kgrad pl, where K is a coefficient similar to the permeability. The
pressure pl is induced by the change in the volumetric space between the
molecular chains of the polymer. A compression of the polymer will increase
the pressure and a stretching will lead to a decrease in pressure. Therefore,
the pressure is taken as a linear function of the density of the solid as

pl = βρs, (4.76)
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where β is a constant. A special condition is imposed on β so that when
there is no pore fluid available then the pressure should be zero. Hence if the
moisture content is zero, then β = 0. For any other concentration value β
is a constant. The linear relationship is taken for simplicity and is based on
the ideal gas equation.
Thus, the constitutive quantities for the fully coupled material model have
been defined in a phenomenological manner. The quasi-static momentum
balance equation given by equation (4.1) and the moisture transport equa-
tion given by (4.75) need to be solved for solving the material model. The
constitutive equation for the stress in solid is dependent on the gradient of
the displacement. However the moisture transport equation contains the
gradient of pressure which itself is a function of the gradient of the displace-
ment. Thus to solve the material model higher order gradients need to be
calculated. The solving strategy for calculating these higher order gradients
and in turn the non-linear material model is discussed in the next chapter.
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5

Numerical Implementation

A combination of the quasi-static momentum balance of the mixture (4.1),
the mass balance for moisture describing the moisture transport in the mix-
ture (4.48), and the pressure equation (4.76)

div (Ts + plI) = 0

ρs(c)
′

s = −div j

pl = βρs

(5.1)

represent the set of partial differential equations that need to be solved nu-
merically for the coupled model. The constitutive relation for the stress in
PA6 is given by

Ts = 2µ(c)εef + λ(c)tr(εef)I +
N
∑

j=0

(

2µj(c)(εef − ε
j
i ) + λj(c)tr(εef − ε

j
i )I
)

,

(5.2)

– 55 –
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where the Lamé parameters are interpolated according to equation (4.65).
The constitutive relation for the flux is given by equation (4.74)

j = − (D(c)grad c +Kgrad pl) .

The set of equations in (5.1) needs to be solved for the solution variables of
displacement u, the concentration c, and the liquid pressure pl. The pres-
sure equation (4.76), although being a constitutive relation is handled as a
separate equation in the system of equation. The pressure of the liquid is a
function of the volumetric strain according to equation (4.72). As strain is
itself a function of the gradient of u, the term grad pl in the mass balance
equation (4.48) requires the calculation of higher order gradients of the dis-
placement field. Hence to tackle these higher order gradients pl is handled
as a separate solution variable.
The set of equations (5.1) is defined in space and time dimensions. To solve
such partial differential equations, the method of lines [71, 131, 132] has es-
tablished itself as a useful method. The equations are discretised in space
with the help of the finite element method (FEM) [167], which results in
algebraic form of equations. Along with the mass transport equation which
represents an ordinary differential equation in time, the set of equations be-
comes a so called differential-algebraic-equation (DAE) system. The DAE
is discretised in space with FEM and in time using the Taylor series. The
difference in the discretisation in space and time is that for a spatial problem
the value at the ends of the discretisation grid is generally known making it
a boundary value problem. However in a time discretisation grid the value
at the beginning is known, making it an initial value problem (Figure 5.1).
This is a direct result of the uni-directionality of time.

5.1 Finite Element Method

In the domain of infinite spatial points defined by the geometry of the mix-
ture, the solution variables u, c, and pl should satisfy the equation set (5.1) at
each point. A usual approach to a numerical solution is to introduce discrete
points over the geometry and solve the boundary value problem on these dis-
crete points. However the solution should be continuous and differentiable
over the entire domain. By solving for discrete points, the continuity of the
solution becomes difficult to attain.



5.1. Finite Element Method 57

replacemen

time

space

BC 1 BC 2

t

t+ 1
∆t

Initial
Nodes

Shape Functions

Element Ek

Figure 5.1: Solving strategy with method of lines for a 1D boundary value
problem in space and an initial value problem in time (BC defines boundary
conditions).

In FEM the differential equation is transformed to its weak form. The weak
form is an integral form of the differential equation which reduces the dif-
ferentiability requirements for the solution field. The method is based on
variational methods such as the Rayleigh-Ritz, Galerkin and least squares
method where a weighted integral is constructed [81, 167].

To construct the weak form for the given set of differential equations, a
set of variational functions are multiplied to the equations given in (5.1) and
integrated over the domain to obtain

∫

B

(δu · div (Ts(u) + plI)) dv = 0, (5.3)
∫

B

δc
(

ρs(c)
′

s + div j(c, pl)
)

dv = 0, (5.4)
∫

B

δpl (pl − βρs(u)) dv = 0. (5.5)

Here Ts(u) represents the constitutive relation for the stress as a function of
the solution variable u. Similarly the dependencies of j(c, pl) and ρs(u) on
the solution variables are also mentioned. The variational functions δu, δc,
and δpl are also known as the test functions. Along with this, the solution
variables

u =
N
∑

i=0

ϕu
i ui, c =

N
∑

i=0

ϕc
ici, pl =

N
∑

i=0

ϕp
i pi (5.6)

are approximated as a linear combination of a set of N polynomials ϕu
i ,

ϕc
i , and ϕp

i , where ui, ci, and pi are the unknown coefficients at each dis-
cretisation point i = 0, .., N in the domain B. These discretisation points
are known as the nodes and the linear combination represent the approxi-
mate numerical solution obtained from the discretised domain. Following the
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Galerkin method [60] the test functions are also interpolated with the same
polynomials as

δu =
N
∑

j=0

ϕu
j δuj, δc =

N
∑

j=0

ϕc
jδcj , δpl =

N
∑

j=0

ϕp
jδpj. (5.7)

The coefficients δuj, δcj , and δpj represent the arbitrary variations at the
nodes. The substitution of these interpolations in the equations (5.3), (5.4),
and (5.5) and applying partial integration rule leads to

N
∑

i=0

N
∑

j=0

[

∫

B

(

−grad ϕu
j : (Ts(ϕ

u
i ui) + (ϕp

i pi)I)
)

dv

+
∫

∂B

(

ϕu
j · t + ϕu

j · (plI · n)
)

da
]

= 0,

(5.8)

N
∑

i=0

N
∑

j=0

[

∫

B

(

ϕc
jρs(ϕ

c
ici)

′

s − gradϕc
j·j((ϕc

ici), (ϕ
p
i pi))

)

dv

+
∫

∂B

ϕc
j(j · n)da

]

= 0,

(5.9)

and
N
∑

i=0

N
∑

j=0

∫

B

(ϕp
j) (ϕp

i pi − βρs(ϕ
u
i ui)) dv = 0. (5.10)

The variable t = T · n represents the traction acting on the boundary of
the mixture whose surface is given by the direction of the normal n. It is
worth noting that the equation (5.10) hasn’t been partially integrated as
it represents an algebraic constraint and can be solved without the partial
integration.
To construct the polynomials ϕu

i , ϕc
i , and ϕp

i for any geometry, the domain
is divided into NE elements (E) and the already established interpolation
functions that are known as shape functions are used [81]. They have the
characteristic that they are equal to one at the node for which they are
defined and zero at all the other nodes in the domain, i.e. ϕu,c,p

j (xi) = δij ,
where δij is the Kronecker delta and xi is the location of the node i. Due
to this property of shape functions, the unknown coefficients ui, ci, and pi

give the solution at the node i. According to the given Dirichlet boundary
conditions, these coefficients take a fixed value for the nodes at the Dirichlet
boundary (∂BD) of the specimen. At the Neumann boundary (∂BN ) the
traction t, or the flux of moisture j · n is given as the boundary condition.
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The Neumann boundary condition for pressure is also captured by t, as a
pressure acting on the surface is nothing but a force. Hence the integral term
over the boundary ∂B (∂BD ∪ ∂BN ) defines the applied boundary condition
and the rest of the equations

NE
∑

k=0

N
∑

i=0

N
∑

j=0

[

∫

Ek

(

grad ϕu
j : (Ts + plI)

)

dvE =
∫

∂BNE

(

ϕu
j · t

)

daE

]

, (5.11)

NE
∑

k=0

N
∑

i=0

N
∑

j=0

[

∫

Ek

(

ϕc
jρs(c)

′

s − gradϕc
j · j

)

dvE = −
∫

∂BNE

ϕc
j(j · n)daE

]

, (5.12)

NE
∑

k=0

N
∑

i=0

N
∑

j=0

∫

Ek

(ϕp
j ) (ϕp

i pi − βρs) dvE = 0. (5.13)

gives the FEM form for the partial differential equations. The dependency
of Ts, j, and pl on the solution variables is not explicitly mentioned here
for the sake of clarity. The integration in an element is numerically achieved
with a weighted sum over the integration points. As an example for equation
(5.11), the numerical integration gives

NE
∑

k=0

N
∑

i=0

N
∑

j=0

nq
∑

q=0

[(

grad ϕu
j (xq) : (Ts(xq) + pl(xq)I)

)

wq =
(

ϕu
j (xq) · t

)

wq

]

k
.

(5.14)
where q denotes the integration points at the location xq and the weights for
the integration in all spatial directions are given by wq. The total number
of integration points nq varies according to the different integration schemes.
The location and the weights for the integration can also be chosen according
to the type of integration scheme used. The Gaussian quadrature rule has
established itself as one of the most common integration schemes in FEM
[62, 167]. The application of the Gaussian quadrature rule requires that
the domain of integration is transformed to a [−1, 1] domain in all spatial
directions. Therefore the element is mapped from the spatial coordinates x

to the isoparametric coordinates ξ , E(x) → E(ξ) and the Jacobian for the
transformation is given by

Jq =
∂x

∂ξ
. (5.15)
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Thus the integration with the Gaussian quadrature gives,

∑

k,i,j,q

[ (

grad ϕu
j (ξq) : (Ts(ξq) + pl(ξq)I)

)

det(Jv
q) wq

]

=
∑

k,i,j,q

[(

ϕu
j (ξq) · t

)

det(Ja
q) wq

]

.

(5.16)

The Jacobi determinant detJv
q corresponds to the mapping of a volume (3D)

and detJa
q corresponds to the mapping of an area (2D). Similarly the equa-

tions (5.12) and (5.13) can be integrated using the Gaussian integration
scheme. However the time derivative in the equation (5.12) needs to be
discretised before solving these set of equations.

5.2 Time Integration Methods

Apart from solving the differential equations spatially for each point in space,
they have to be solved temporally. Similar to the space domain, the time
domain also needs to be discretised in order to solve the spatially discretised
equations numerically.
The time discretisation can be done by finite difference methods. The
time domain is divided in time steps, and the solutions and their deriva-
tives are calculated at each time step. The concentration c is discretised
in t = 1, 2, · · ·N equidistant points with the time step between the points
equalling ∆t (Figure 5.1). With the Taylor series the concentration at point
t+ 1 given as ct+1 can be calculated from the concentration ct at the time t
by the equation1

ct+1 = ct + ∆t(c)′

s +
∆t2

2
(c)′′

s + · · · (5.17)

1The concentration ct+1 =
N
∑

i=0

ϕ
c
i ci,t+1 corresponds to the spatially discretised form of

concentration. The shape functions ϕ
c
i remain constant with time and therefore the time

discretisation corresponds to the coefficients ci. For clarity the spatial discretisation is not
explicitly mentioned in the equations.
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This can be rearranged to

(c)′

s =
ct+1 − ct

∆t
+ O(∆t) (5.18)

where O(∆t) represents the order of the error term. Multiplying the density
ρs and substituting equation (4.48) in equation (5.17) the Taylor series with
the help of moisture flux can be represented as

ρsct+1 = ρsct − ∆t div jt + O(∆t2). (5.19)

Here the flux term jt is calculated at the time step t, which makes it an
explicit Euler time integration scheme [75]. There is also the possibility of
calculating the flux term at the time point t + 1, making it a numerically
stable, but also more expensive implicit Euler scheme [75]. A common way to
increase the stability and the accuracy of the explicit method is to calculate
the Taylor series expansion for a fractional increment in ∆t by θ∆t, for
0 ≤ θ ≤ 1. For any θ, the Taylor series with starting point at t can be
written as

ρsc(t+θ∆t) = ρsct − θ∆t div jt + (θ)2O(∆t2) (5.20)

or from the starting point t+ 1

ρsc(t+1)−(1−θ∆t) = ρsct+1 + (1 − θ)∆t div jt+1 + (1 − θ)2O(∆t2). (5.21)

On subtraction of equation (5.20) from equation (5.21), the time integration
scheme

ρsct+1 = ρsct − ∆t (θ div jt + (1 − θ) div jt+1) + (1 − 2θ)O(∆t2) (5.22)

is obtained. For any value of 0 < θ < 1, the error term of (1 − 2θ)O(∆t2)
reduces and for θ = 0.5 it is equal to zero. The time integration with θ = 0.5
is known as the Crank-Nicolson method [36]. In the discretised moisture
transport equation

ρs

(

ct+1 − ct

∆t

)

= − (θ div jt + (1 − θ) div jt+1) + O(∆t2) (5.23)

the error is of the order O(∆t2) with the Crank-Nicolson method and is
therefore used to implement the model.
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In a similar way the evolution equation of the inelastic strain (equation
(4.46)) is solved using the Crank-Nicolson method. However, it is solved in a
staggered manner. The coupled equations given in the equation set (5.1) are
solved first with a timestep of ∆t and then the evolution equation is solved
with the same timestep of ∆t. This is done to avoid extending the finite ele-
ment space to four primary variables and to avoid the numerical complexities
involved with it. Therefore, the inelastic strain ε

j
i of the Maxwell element j

is treated numerically as a material parameter that evolves with time.

5.3 Solving a Coupled Problem

The constitutive quantities Ts, j, and pl are dependent on more than one
solution variable in a non-linear manner. The equations in (5.1) are coupled
with each other. To solve such a non-linear system, the Newton-Raphson
method is used. The method calculates the root of a function with the help
of the roots of its tangent. For a scalar function f(x) depending on a single
variable x, its Taylor series expansion results in

f(x) = f(xo) +
df(x)

dx
∆x+ · · · . (5.24)

The function is expanded from a start point xo. To find the roots f(x) = 0
is substituted and after rearranging the equation

df(x)

dx
∆x = −f(xo) (5.25)

is obtained. By solving for ∆x an increment from xo in the direction of the
root of the function f(x) is obtained. The next starting point x1 = xo + ∆x
is obtained for the next iteration of the equation (5.25). The process is
iterated till the root of the function is obtained. For the equations in (5.1)
the residuals

Resmech =
∑

k,i,j,q

[ (

grad ϕu
j : (Ts + pl)

)

gv
q − (ϕu

j · t)ga
q

]

= 0 (5.26)
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Resc =
∑

k,i,j,q

[

ϕc
jρs

(

ct+1 − ct

∆t

)

gv
q

−
(

(θ) gradϕc
j · jt + (1 − θ) gradϕc

j · jt+1

)

gv
q

+
(

ϕc
j(j

t · n)
)

ga
q

]

= 0

(5.27)

Resp =
∑

k,i,j,q

[

ϕp
j(pl − βρs)g

v
q

]

= 0 (5.28)

represent the functions for which the roots are to be determined with the
Newton-Raphson method. The variable gv

q and ga
q represent the product of

the Jacobi determinant det(Jv
q) and det(Ja

q) with the quadrature weights wq

respectively. For a single node i the residual Resi
mech is calculated for all the

three spatial directions (or for two directions in a 2D model) as it is calculated
for displacement field (ϕu

i ui). However, the residuals Resi
c and Resi

p contain
only one entry for the scalar values of (ϕc

ici) and (ϕp
i pi) respectively. With

the starting points of uio, cio and pio

∂Resi
mech(uio, ci, pi)

∂uj
∆ui = −Resi

mech(uio, ci, pi)

∂Resi
mech(ui, cio, pi)

∂cj
∆ci = −Resi

mech(u, ci, pi)

∂Resi
mech(ui, ci, pio)

∂pj
∆pl = −Resi

mech(ui, ci, pio)

(5.29)

the Newton form for solving Resi
mech for the node i is obtained. The deriva-

tive on the left hand side is taken with respect to the coefficients uj repre-
senting the jth node of the element. As an example, the derivative of the
engineering strain εi

s appearing in the constitutive equation for Ti
s w.r.t uj

is calculated analytically by

∂εi
s

∂uj

=
1

2

∂
(

grad (ϕu
i ui) + grad T (ϕu

i ui)
)

∂uj

=
grad ϕu

i + grad T ϕu
i

2

∂ui

∂uj
=

grad ϕu
j + grad T ϕu

j

2
.

(5.30)
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The coefficients ui are independent of the spatial dependencies, hence the
grad operator acts only on the shape functions. Similarly other derivatives
can be calculated analytical. This gives the derivative of the residual Resi

mech

for the node i w.r.t to the node j. By going over all the nodes the stiffness
sub-matrix Kuu is obtained. By including all the residuals, the stiffness
matrix

K
ij =







Kuu Kuc Kup

Kuc Kcc Kcp

Kpu Kpc Kpp
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(5.31)

is obtained. By setting up the right hand side by the vector of the residuals
at node i

Ri =







−Resi
mech(uio, cio, pio)

−Resi
c(uio, cio, pio)

−Resi
p(uio, cio, pio)





 (5.32)

the increment in the solution vector

∆si =







∆ui

∆ci

∆pi





 (5.33)

is obtained by solving
N
∑

i,j=0

K
ij∆si =

N
∑

i=0

Ri. (5.34)

With each iteration of the Newton method the new starting value is deter-
mined by







ui1

ci1

pi1





 =







uio

cio

pio





+







∆ui

∆ci

∆pi





 . (5.35)

The iterations continue till a termination criteria is met. As the roots of the
residual are to be found out, the norm of the residual should be less than a
tolerance value close to zero.



5.4. Implementation in deal.II 65

5.4 Implementation in deal.II

The weak numerical formulation of the model given in equations (5.26),
(5.27), and (5.28) ) needs shape functions, a mapping of the elements to
a geometry and integration schemes. The open source library deal.II [5, 7]
with the pre-implemented FE functions is used for this purpose. The library
is available in the programming language of C++ and implemented in an ob-
ject oriented manner. Hence, the various structures and functions such as
the one defining the shape function are implemented as classes that can be
inherited by any programme and used without the need to access the source
code. These classes are equipped with functions, that can be called upon to
perform the usual operations required for solving a partial differential equa-
tion with FEM.
The programme for the developed material model is thus implemented in
C++ in an object oriented manner with the main problem class nesting other
classes such as the viscoelasticity class for the material model and the post
processing class to output the solved data. This makes the different sections
of the programme modular and easy to understand. The classes are accessed
through the functions defined, so a level of abstraction is obtained. For a
change in the geometry, parameters, boundary conditions, etc. the code of
these classes do not require editing. However, for the same geometry and the
boundary conditions, the viscoelasticity class can be changed to simulate a
different material model. The programme is partly based on the structure
laid by Goldschmidt [65] and Scherff [129] in the programme LPMPP (LTM
parallel Multiphysics Programme).

5.4.1 Structure of the Programme

The programme starts with the main() function as is usual with a C++

programme. An object of the class LPMPP () is constructed and the run()

function, which is the only public function of the class is called upon to start
the simulation. The other functions that are included in the class LPMPP
() are related to setting up the system of equations and are explained below
in detail.

Constructor-LPMPP(): The constructor initialises the object of this
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class. The various members of the class such as the FESystem is ini-
tialised with the number and the type of shape functions used for the
degree of freedoms of the problem, the quadrature formula QGauss is
initialised with the order of the integration to be used, and the various
inherited classes such as the ViscoElasticity, OutputResults, and
Sovler are initialised.

make_grid(): This section is used to define the geometry of the
system and then divide it into smaller rectangular domains to
mesh it. The geometry is generated with the help of functions
such as subdivided_hyper_rectangle, that are included in the
GridGenerator library of deal.II. Further the geometry is stored in the
triangulation class which allows accessing the individual cells and
faces of the geometry and modify the mesh for the problem at hand.
The boundary of the geometry is also defined in this function using
boundaryIDs that are assigned to the nodes that lie on the boundary.

setup_system(): The function is used to connect the shape func-
tion initialised in the constructor to the geometry defined in the
make_grid() function with the help of the dof_handler library. The
size of the system_matrix that represents the left hand side of the
system of equation, the length of the solution vector, and the length of
the right hand side of the system of equation system_rhs are defined
in this function. The arrangement of the degrees of freedom in the
system of equations can also be changed within this function using the
dof_handler library.

setup_PH(): This function initialises the data set given by the struct

PointHistory and attaches it to each of the quadrature points in the
cells of the mesh. The data set PointHistory consists of various vari-
ables such as the moisture dependent stiffness parameters and the in-
elastic strains.

calculate_material_properties(): The Lamé parameters based on
the concentration values at the current time are calculated in this func-
tion. It calls upon the interpolation function defined in (6.7) and stores
the current value of the stiffness in PointHistory.

assemble_rhs(): As the name suggests the function sets up the
right hand side of the system of equations. The function loops
over all the cells of the geometry, over all the quadrature points of
the cells, and over the degrees of freedom attached to the current
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cell. According to equations (5.26), (5.27), and (5.28) the residu-
als are calculated with the value of the displacement, the concentra-
tion, and the pressure. The functions such as get_function_values

and get_function_gradients are used to interpolate the solution
vectors and the gradient of the solution vector at the quadrature
points. The shape function and their gradients are accessed with
the fe_values class along with an extractor to specify which par-
ticular degree of freedom is to be accessed. For example, ϕi

u(xq) =
fe_values[displacements].value(i,q_point) and grad ϕi

u(xq) =
fe_values[displacements].gradient(i,q_point) gives the shape
function and its gradient for the displacement at node i and at the
quadrature point xq.

assemble_system(): This function calculates the system matrix or
the left hand side of the system of equation. According to the equation
(5.31) the system matrix consists of the derivative of the residuals w.r.t
the solution variables. The function loops over all the cells, quadrature
points and twice over the degree of freedoms to populate the matrix.
The derivatives are calculated analytically and the different parts of
the derivatives are stored in different variables such as dResc_dResp to
store the derivative ∂Resi

c/∂pj . The matrix is filled with the index i

and j where the index i represents the degree of freedom for the residual
and j represents the degree of freedom for the derivation variable. The
shape functions that are multiplied to the residuals are active only for
the solution variable for which they were extracted. This ensures the
correct position of the entries in the matrix automatically.

setup_boundary() and update_boundary(): These two functions set
the boundary value for the solution vector (u, c, p) as well as the delta
solution vector (∆u,∆c,∆p) that is used for the Newton step for solv-
ing the equation (5.34).

set_traction() and set_flux(): These two functions provide the
possibility to add Neumann boundary conditions to the set of equa-
tions.

newton() After setting up the system of equations and after applying
the boundary conditions, the newton() function is called to iterate
through the steps to find the numerical solution to the problem. The
function calls the solver class to solve the system of equations in each
step and updates the solution variables after each step.
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The class LPMPP () inherits the class ViscoElasticity and the class
OutputResults for their specific functions. The ViscoElasticity class al-
lows setting up the number of Maxwell elements given to be used for the
rheological model and their relaxation times with the help of the member
function setup(). Apart from that, the time integration for the evolution
of the inelastic strain (4.46) is solved by the function do_timestep() of the
same class. The class OutputResults is responsible to generate the graph-
ical model of the geometry and plot the solution variables on the mesh of
the geometry. Various post processing variables such as the stresses are also
calculated in this class. It is also responsible to output data files such as a
text file containing the stress-strain diagram for a set of loading steps.
A schematic representation of the programme structure is shown in Figure
5.2 a). The flow of the programme is shown in the flowchart 5.2 b). The
flowchart also shows how the different classes interact with each other. The
subscripts at each step of the flowchart refer to the functions that are called
to accomplish the step. The application of boundary values for concentration
and for mechanical loads are handled separately to achieve moisture trans-
port without load. The application of mechanical loads without moisture
transport is physically not possible. However it can be achieved by setting
the moisture transport parameters to zero in the apply_load() function.

5.4.2 Numerical Stability

The coupled system of equations are susceptible to numerical instabilities
such as the ill-conditioning of the stiffness matrix K

ij , or the oscillation in
the moisture concentration. Certain methods have been introduced to ensure
the stability for the required range of parameters.

Introduction of Relative Concentration

The concentration c in the set of equations varies from the value of zero to
the maximum saturation concentration of 0.1, whereas the other terms in
the matrix such as the stress lie in the range of 103 MPa. This difference in
the range of the different solution variables lead to an ill conditioned system
matrix and hence, numerical instability. Therefore a relative concentration
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Figure 5.2: A flowchart for the entire programme
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Figure 5.3: The fluctuation of the numerical result for the diffusion equation
in space.

term is introduced
cr =

c

csat
(5.36)

which improves the conditioning of the matrix as the range for cr is 0≤ cr ≤1.
The stress has not been normalised as the maximum stress or the Lamé pa-
rameters are not fixed and change according to the concentration value. The
additional advantage of using relative concentration is the easy interpolation
of the Lamé parameters from being fully active at the concentration value of
one and being fully deactivated at the value of zero.

Handling the Moisture Transport Equation

The diffusion equation (4.51) for moisture transport is sensitive to the mesh
size in space as well as the size of the time step. For the explicit time
integration for a finite difference scheme the stability condition is given by

D
∆t

∆x2
≤ 1

2
, (5.37)

which is popularly known as the CFL-condition [33]. Therefore in the equa-
tion (5.22) the θ is chosen as 0.5, to avoid the conditional stability achieved
by the explicit time integration. However, the application of a boundary
condition, results in fluctuations in space with each time step (Figure 5.3).
The immediate decrease from the boundary value to the value of zero concen-
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tration inside the domain leads to numerical errors. The start value for the
concentration is zero every where other than the boundary. The solution at
the nodes on the boundary are assigned the given boundary condition values.
This leads to an over correction of the first node after the boundary to satisfy
the system of equation. With each time step this fluctuation is passed to the
next node. One way to overcome this fluctuation is to start with a large
time step, so that all nodes are forced to react and the fluctuation is jumped
over. However, there is a loss in the information during the initial stages of
diffusion. A stabilisation of the fluctuation is possible with the methods such
as Petrov-Galerkin FEM [157]. For the Galerkin FEM, more and more nodes
can be introduced near the boundary, so that the fluctuation can be shifted
to the different nodes and the net error reduces. This can be done with the
help of finer meshing near the boundary as well as increasing the polynomial
degree of the shape function. Both the methods have been implemented and
it was seen that a combination of finer mesh at the boundary and quadratic
shape function gives the best results.
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6

Model Parameters

The developed model has parameters that characterise and quantify the ma-
terial behaviour. These include the Lamé parameters (λ, λj and µ, µj) of the
dry and fully saturated specimen, and the swelling coefficient (α) for the me-
chanical model and the diffusion coefficient (D(c)) and the Darcy coefficient
(K) for the moisture transport model. These parameters are determined from
the experimental results that were made available from the project partner
at LKT,TU Dortmund.
For γ set of parameters the simulation results S(γ) obtained from the model
are compared with the experimental results X and the function

F (γ) = ‖S(γ) − X‖ (6.1)

is minimised with an optimisation algorithm w.r.t γ. The vectors S(γ) and
X represent the vector at different loading steps and the operator ‖�‖ gives
the L2−norm of the difference as a scalar value. Different algorithms are
used to reduce the scalar value F (γ) for the mechanical and the moisture
transport parameters, which are detailed in the following sections.

– 73 –
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6.1 Mechanical Model

The mechanical part of the model that describes the viscoelastic behaviour
consists of the Lamé parameters of the equilibrium as well as the Maxwell
elements

γ = {λ, µ, λj, µj} (6.2)

for j = 1 . . . 4. A total number of n = 10 parameters in the set γ have to
be determined. The relaxation time for all the Maxwell elements have been
adjusted to the experimental window depending on the loading rate and
duration of observation. The relaxation times are therefore not considered
in the list of parameters. Further reduction in the number of parameters is
possible as the parameter µ and λ are related to each other with the Poisson’s
ratio (ν) by

λ =
2νµ

1 − 2ν
. (6.3)

The Poisson’s ratio remained constant for the duration of loading at different
levels of saturation (Figure 6.1). Thus, after the experimental determination
of the Poisson’s ratio with the help of digital image correlation, the number
of parameters in the set γ was halved to n = 5 and only the set of {µ, µj}
was determined through the optimisation algorithm and the set of {λ, λj}
was calculated with the equation (6.3). It should be however noticed that the
Poisson’s ratio may change for longer durations of loading such as in creep
tests [142].
The parameters have to be determined for completely dry and completely sat-
urated specimens. Relaxation experiments on completely dry and completely
saturated PA6 test specimens (Figure 4.7) were used for the determination
of the parameters. The geometry and the conditions for the experiments
have been presented in chapter 4. The distribution of the moisture for a
completely saturated specimen is homogeneous, hence a single set of Lamé
parameters can define the stiffness of the saturated specimen. In order to
reduce the effect of environment on the specimen, the relaxation tests were
conducted for a short duration of 300 s. The short relaxation time ensured a
homogenous distribution of moisture over the geometry, however equilibrium
state was not achieved. This makes the identification an ill-posed inverse
problem. Hence to find the parameters, a regularisation method is used,
namely the Tikhonov regularisation [87, 110, 130]. The regularisation is a
standard method used for noisy data, however in this case it is applied for a
shorter than required data set. In this method the minimisation function is
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Figure 6.1: Lateral engineering strain whose sign has been inverted plotted
against the longitudinal engineering strain for different levels of saturations.

defined as

F (γ) =
1

2
‖S(γ) − X‖2 + β ‖γ‖2 (6.4)

where β > 0 is the Tikhonov parameter. This results in a better condition
number of the matrix defining the inverse problem [47, 134].
The function F (γ) is minimised with the help of the Nelder-Mead simplex
algorithm [88, 93, 109] in the MATLAB ® software. The algorithm starts with
a set of initial parameters γi with i = 1 . . . n + 1 where n is the number of
parameters in the parameter set γ. This set of γ i defines the region where
the parameter set γ can lie. The algorithm optimises the region and con-
tracts it with each iterative step and finally converges to a single parameter
set γs, where the function F (γs) is minimum (Figure 6.2). Thus a starting
parameter set has to be selected, which could be chosen randomly. Although
more realistic values of the parameters can save time for the optimisation.
Different starting parameter sets were chosen to test the sensitivity of the
optimisation algorithm on the starting region. However with a Tikhonov
parameter value of β = 0.75, the algorithm converged to the same results
with different start values. For lower values of β the parameters were more
sensitive to the start values and for higher values of β, a good fit cannot
be obtained. This value of β was further confirmed with the help of the
Multistart tool of MATLAB ® where a grid of start-points is laid out to start
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Parameter 1Parameter 1

Parameter 2Parameter 2
γ1γ1γ1

γ2

γ3

γsγs

Iterations

Figure 6.2: Representative illustration of a Nelder-Mead simplex algorithm
for a two parameter model. The algorithm starts with the region defined by
γ1, γ2, and γ3 and with each iteration the region converges to the minimum
point of γs

Table 6.1: The Lamé parameters for the viscoelastic model.

Maxwell element j Equilibrium 1 2 3 4
Relaxation time τj [s] - 500 50 5 0.5

Lamé (µ) - Dry [MPa] 739.85 155.27 0.28 0.48 0
Lamé (λ) - Dry [MPa] 1901.93 399.2 0.72 1.23 0
Lamé (µ) - Wet [MPa] 105.35 0 67.1 173.7 139.65
Lamé (λ) - Wet [MPa] 270.83 0 172.4 446.6 359.03

the iterative algorithm. The results of the parameter identification are listed
in Table 6.1 and the simulation results with the identified parameters are
compared to the experimental results in Figure 6.3.
To test the effectiveness of the Tikhonov regularisation for the determina-
tion of the Lamé parameters for equilibrium element, the experimental results
were further shortened to 200 s of relaxation time (Figure 6.4). The shorter
experimental data set converged to a parameter within 2.5 % of the parame-
ters from the full data set, thus assuring the robustness of the optimisation.
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Figure 6.3: The relaxation curve with the identified parameters compared
with the experimental result for the dry and saturated specimens.
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Figure 6.4: The relaxation curve with half of the relaxation data, gives the
parameter of the equilibrium spring to be 719.65 MPa as compared to 739.85
MPa with the full data set.
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6.2 Moisture Transport Model

For an unloaded specimen the moisture transport is given by the non-linear
Fick’s model (equation 4.57), which has the parameters

γ = {Do, Dc} (6.5)

as the diffusion coefficient is given by the linear function D(cr) = Do +
Dccr. To determine these parameters, the gravimetric experiments on PA6
specimens submerged in water (section 4.3.1) were considered. The change
in weight was converted to the change in moisture concentration X from the
gravimetric experiments. The optimisation function was defined by

F (γ) =

∥

∥

∥

∥

∥

S(γ) − X

M

∥

∥

∥

∥

∥

, (6.6)

so the relative difference between the simulation result S(γ) and the exper-
imental result X can be built w.r.t to the mean M = (S + X)/2 of the
simulation and the experimental result. The Nelder-Mead simplex algorithm
is used to identify the parameters which are given in Table 6.2.

6.3 Coupling Parameters

The set of parameters that define the coupling between the mechanical and
the moisture transport model is much more difficult to determine. The in-
formation for the mechanical behaviour and the moisture uptake behaviour
should be recorded simultaneously in the experiments to determine these pa-
rameters. Hence different sets of experiments are used to find the coupling

Table 6.2: Diffusion coefficients for an unloaded specimen.

Diffusion Coefficient Do Dc

Value at 23 ◦C [mm2/s] 5 × 10−7 1 × 10−7
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Figure 6.5: The simulation result with the identified parameters compared
with the gravimetric experiment result.

parameters.

6.3.1 Interpolation Function

The parameters that link the mechanical model to the moisture transport
model is the interpolation function f(c) in the equation (4.65). This func-
tion is modelled on the variation of the glass transition temperature with the
changing moisture content. The structural rearrangement of the polymer
chains due to the presence of moisture causes a transition from a structured
crystalline state to a more amorphous state. A measurement of the glass
transition temperature for varying moisture content confirms this structural
transformation [78, 126]. Since the stiffness of a material is largely depen-
dent on its molecular structure, the change of the Lamé parameters with
the moisture content is modelled on the change of the glass transition tem-
perature (Tg). Using the differential scanning calorimetry (DSC), the glass
transition temperature for different concentration was measured by Sambale
et al. [126]. The results show a steep decrease in the Tg with a small amount
of moisture, however as the concentration increases the decrease of Tg starts
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Figure 6.6: A measurement of the glass transition temperature at different
moisture contents. Experiments conducted at LKT, TU Dortmund [126].

to flatten out (Figure 6.6). The trend of the decreasing Tg is normalised to a
range of [0, 1] to model the interpolation function f(cr) using the normalised
concentration value cr. An exponential function

f(cr) = exp(−5cr) (6.7)

can fit the experimental results and satisfies the conditions f(0) = 1 to give
the Lamé parameters for a completely dry specimen and f(1) = 0 to give the
Lamé parameters for a completely saturated specimen.

6.3.2 Swelling Parameter

The swelling parameter α in the equation (4.67) is determined by measuring
the change of the thickness of the specimen in the gravimetric experiments
(section 4.3.1). The outer thickness of the specimen was measured simulta-
neously with the weight during the experiments. The effective swelling strain
can be analytically measured by the thickness change ratio given by 1−d/do,
where d is the current thickness and do is the original thickness. With the
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Figure 6.7: The interpolation function with the help of the normalised Tg
plot.

help of a linear fit on the experimental results, the parameter for swelling can
be found to be α = 0.017 (Figure 6.8). The thickness had been measured
with a vernier calliper and the effect of the local moisture distribution had
not been considered. The experimental data do not provide any information
about the location of swelling. Therefore, the parameter determined can only
give an indication of the amount of swelling caused by the absorbed moisture.

6.3.3 Coupled Moisture Transport

The equation (4.75) gives the coupled moisture transport equation, that in-
cludes the diffusive flux as well as the flux due to the pressure gradient. The
two fluxes are independent from each other, therefore the diffusion coefficient
D(cr) listed in Table 6.2 is valid for the coupled case also. The pressure equa-
tion (4.76) is assumed to be similar to the ideal gas equation and β = Rθ
is assumed, where R is the ideal gas constant, and θ is the temperature of
298 K. 3-point-bending tests were considered to determine the parameter K
which corresponds to the speed of the moisture transport for a given pres-
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Figure 6.8: The change in the outer thickness of the specimen measured in
the gravimetric experiment.

sure gradient. Specimens of the size 40 mm × 4 mm × 2 mm were stored in
water till 50 % saturation was attained. With the inhomogeneous moisture
distribution, the specimens were placed on supports that were 30 mm apart
from each other and a deflection of 2 mm was applied on the surface of the
specimen exactly in between the two support points. The deflection was ap-
plied on the 4 mm wide surface, therefore the moisture distribution gradient
along the 2 mm edge is more dominant (Figure 6.9).
The experiment was simulated with a two dimensional model without the

use of contact formulation (Figure 6.10). The supports were simulated by
constraining the displacements and the deflection was applied by a Dirichlet
boundary condition for displacement u on the upper surface of the model.
The numerical value of the maximum strain shows very little deviation from
the analytical value calculated from Euler-Bernoulli beam theory (Figure
6.10), suggesting that the numerical model for the bending experiment is
reliable.
The deflection was applied at the rate of 1 mm/min, therefore for a deflec-
tion of 2 mm only 120 s was needed and the effect of drying out can be
neglected. The bending force versus deflection curve obtained from the ex-
periment for the 50 % saturated specimen was compared with the simulation
result to determine the parameter K, which couples the moisture transport
to the pressure gradient. The parameter was determined with a hit and trial
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Figure 6.9: A graphical representation of the 3-point-bending experiment
conducted on a 5 % saturated specimen.
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Figure 6.10: 3-point-bending simulation model. The model constraints the
nodes near the support instead of using contact formulation (Top). The
analytical value of the maximum axial strain matches that of the simulation
model (Bottom).

method as the noise in the experiment was quite high. The parameters are
summarised in Table 6.3. It should be noted that the left hand side of the
equation (4.75) is dependent on the density ρs. Hence the parameters that
are mentioned in the Table 6.3 are density specific.
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Figure 6.11: Experiment versus simulation for the bending force to determine
the parameter K.

Table 6.3: The parameters for the coupled moisture transport model.

Do Dc K β = Rθ ρso

[mm2/s · g/mm3] [mm2/s · g/mm3] [mm4/Ns · g/mm3] [Nmm/g] [g/mm3]

5×10−13 1×10−13 1×10−8 1×105 1.13×10−6

6.4 Quality of the Parameters

The parameters identified for the individual aspects of the model as well as
for the coupled model are not a general set of variables that is valid for all
load cases. The limitations for these parameters are discussed in the following
sections.
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6.4.1 Lamé Parameters

The mechanical stiffnesses for the dry and saturated PA6 given in Table
6.1 are determined with the 300 s relaxation data. The parameters for the
equilibrium spring match the stiffness that is generally found in data sheets
for PA6, but the parameters for the Maxwell elements are dependent on the
relaxation time assigned to each of the elements. The relaxation times of each
element is dependent on the length of the relaxation data that is available.
Therefore for a longer relaxation data set, other set of parameters can be fit
with the given model.

6.4.2 Diffusion Coefficients

The parameters for the uncoupled moisture absorption model include the
independent part Do and the concentration dependent part Dc and a com-
bination of the these two parameters determine the moisture transport be-
haviour. The parameters are determined from the integral moisture con-
centration. Two different combinations of Do and Dc can lead to the same
integral moisture concentration. However, the internal moisture distribution
will be different for the different combinations. With the information about
the internal moisture distribution from experiments, these set of parame-
ters can be validated. Such a validation is presented in the next chapter.
The diffusion coefficients are valid however only for the room temperature
conditions of 298 K.

6.4.3 Coupling Parameters

The parameters for the coupled model are determined from indirect mea-
surements. The degradation of the mechanical stiffnesses with moisture is
modelled on the change of the glass transition temperature with the change
in the moisture concentration. A better way to determine the parameter can
be through measuring the relaxation behaviour for various homogeneous sat-
uration conditions, for example at 10 %, 20 %, 30 % saturation and so on till
fully saturated. The experimental setup for such experiments is however very
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difficult to realise. Achieving a homogeneous moisture distribution is time
consuming, but maintaining the homogenous distribution during the entire
duration of relaxation is even more challenging. The swelling parameter is
determined on the change of the global integral thickness. The effect of the
local moisture distribution is therefore not reflected in the parameter. The
effect of loading on moisture distribution is determined with the help of the
force required in a three point bending test. The actual moisture distribution
is not available from the experimental result and the model prediction for
the moisture distribution cannot be validated. However, other distribution
conditions and other loading speeds have been tested to test the quality of
these parameters in the next chapter.



7

Results

The developed model and the identified parameters are first validated with
different experimental results. The effect of the various parameters and the
effect of the modelling ansatz is discussed with the help of numerical examples
in the subsequent sections.

7.1 Validation of the Parameters

7.1.1 Tensile Tests

The mechanical parameters for the homogeneous distribution of moisture
within the specimen is validated through tensile tests. The geometry for
the tensile test is the same as the geometry used for relaxation experiments
(section 4.2).
The experimental data and the simulation curve are plotted together in
Figure 7.1 a) for the strain rate of 0.0125 /min and in Figure 7.1 b) for

– 87 –
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a) Strain rate: 0.0125 /min
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Figure 7.1: The tensile test on dry and saturated specimen for a strain rate
of a) 0.0125 /min (0.1 mm/min displacement rate) and b) 0.00125 /min
(1 mm/min displacement rate).

0.00125 /min strain rate.
The simulation is conducted with a constant distribution of moisture and
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it is assumed that no moisture transport is taking place for dry as well as
saturated specimen. As the experiments are conducted at considerably high
strain rates, the duration is not long enough for the moisture redistribu-
tion to effect the mechanical properties Although, for the slower strain rate
the simulation is underestimating the experiment values slightly suggesting
the drying up of the experimental specimen. The difference however is not
significant and the parameters determined from the relaxation experiments
compare well with the experimental data. The simulation results fit the
experimental data till a strain of 2 %. Thus, the geometrically linear vis-
coelastic mechanical model is appropriate only up to a strain of 2 %.

7.1.2 Gravimetric Experiment

A separate set of gravimetric experiments was conducted by the
project partner Fraunhofer IzfP, Saarbrücken. A specimen of the size
80 mm × 4 mm × 2 mm was kept in water till saturation. The non-
linear Fick’s diffusion model was used for the simulation (equation 4.57).
The parameters listed in Table 6.2 are used for the simulation. The results
are compared in Figure 7.2, and show a good fit with each other.
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Figure 7.2: A comparison of the simulation results obtained from the non-
linear diffusion model and the experimental results for gravimetric experi-
ments at Fraunhofer IZFP.
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7.1.3 Computer Tomography

The local moisture distribution inside the specimens that were tested in the
gravimetric experiments in section 7.1.2 were determined by scanning them
using computer tomography (CT). Polyamide specimens were kept in water
till 50 % saturation. In the black and white CT scans (Figure 7.3), the con-
trast of the image was used to determine the moisture distribution. Pure
water was seen as white (Figure 7.3 c)), whereas dry PA6 showed up as a
darker shade of grey (Figure 7.3 a)) in the scans. The 50 % saturated spec-
imen (Figure 7.3 b)) showed varying contrasts throughout its cross section.
Using the difference in the contrast at the boundary of the specimen and
the inner core of the specimen, the moisture distribution along the cross sec-
tion could de determined. However the resolution in the contrast scale was
not high enough to accurately determine the concentration in the immediate
proximity of the boundary of the specimens. The uncertain zone has been
marked in blue colour in the Figure 7.3.
Considering that the experimental results are error prone, the simulation re-

a� ���

b� �� % sa��

c�

Figure 7.3: CT scan of completely dry, 50 % saturated and pure water on
the left. Distribution within the 50 % saturated specimen compared with
simulation result on the right. The information on the edge of the specimen
which is marked in blue is lost due to too low contrast resolution.
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sults match them in a good manner (Figure 7.3). The model predicts the
correct moisture distribution for the majority of the cross section. The gra-
dient of the concentration is same from the boundary until the core of the
specimen. The core seems to show a more constant moisture distribution
in comparison to the simulation result. Two reasons can be attributed to
this effect. The first being the crystallinity of the specimen. The simulation
model assumes that a completely dry PA6 specimen has a constant degree of
crystallinity throughout the cross section. This may not be the case in ex-
periments, as the degree of crystallinity depends on the rate of cooling after
extrusion of the specimen, which is different on the outside and at the core.
The second reason is the infinite effect of the diffusion equation in the simu-
lation model. The diffusion equation assumes that the presence of moisture
at the boundary of a specimen of infinite length can cause moisture transport
throughout the length of the specimen. In reality this might not be the case
as there might be other molecular forces that are more predominant than
the gradient of the concentration. Therefore the presence of concentration
on one end of the specimen should not effect the moisture transport beyond
a certain distance. A common method for achieving this is the second sound
[3], in which the diffusion happens in a wave like propagation. To model
such a transport, hyperbolic equations which include the second derivative
of concentration with respect to time, are used. As an example the equation

τ(cr)
′′

s + (cr)
′

s − div (Dgrad cr) = 0 (7.1)

is investigated [98]. Here τ represents the relaxation time, or the time before
which the gradient of concentration causes a moisture transport. For a value
of D = 1 × 10−7 mm2/s and τ = 1 × 106 s, the concentration distribution
in the specimen is given in Figure 7.4. For a 50 % saturated specimen the
distribution shows that the core of the specimen is at zero concentration.
More moisture is present at the boundary and a change in the gradient can
also be seen. However, this is also noticeable in the integral moisture uptake
curve (Figure 7.5). The moisture content does not increase linearly with the
square root of time, rather a lag is seen and the moisture uptake is slow in
the beginning due to the relaxation time. This lag is not to be seen in the
experimental results (Figure 6.5). Therefore, the second sound model is not
considered for the moisture transport.
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Figure 7.4: Moisture distribution inside a specimen with the second sound
model.
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Figure 7.5: Integral moisture content with the help of second sound model.
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7.1.4 3-Point-Bending

To validate the parameters for the fully coupled model, 3-point-bending
experiments (section 6.3.3) are carried out at a different deflection rate of
0.1 mm/min as compared to the 1 mm/min deflection rate used for parame-
ter identification. The simulation result is compared with the experimental
results in Figure 7.6. The slower strain rate allows much more time for the
moisture transport and the effect is also visible in the simulation results. In
Figure 7.7 the moisture distribution across the cross section of the specimen
can be seen. The moisture distribution is plotted along the green line going
across the beam in Figure 7.7. The undeformed specimen has a symmetrical
moisture distribution at 50 % saturation. As the deflection is applied, there
is a volumetric expansion that happens at the bottom fibres (at 0 mm in
Figure 7.7) of the bending beam and a volumetric compression on the top
fibres (at 2 mm in Figure 7.7). This develops a pressure gradient that drives
the moisture from the top to the bottom. The slower rate of deflection allows
more time for the pressure gradient to cause moisture transport. The rela-
tive moisture concentration increases to more than one due to redistribution
caused by loading. This can be interpreted as an over saturation when com-
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Figure 7.6: Comparison of simulation and experiment for 3-point-bending at
0.1 mm/min deflection rate.



94 7. Results

pared to a pure diffusion model. As there is a volumetric expansion at the
bottom fibres of the beam, there is more free volume between the polymer
chains. This results in more moisture absorption. Therefore a value of cr > 1
is observed in this region. At the top fibres there is less free volume available
and the moisture is squeezed out in the atmosphere. Since the simulation
is carried out in the domain of the beam and any moisture transport out-
side the beam is not considered, the relative concentration can go below the
value of zero in the numerical solution in this region. This creates a suction
effect on the moisture distribution. However, for the purpose of calculating
the material parameters (equation 4.65), and for calculating the total aver-
age concentration, the value of cr < 0 is treated as cr = 0. The integral
concentration in the specimen calculated by

Global cr =

∫

crdv
∫

dv

remains constant for the entire duration of the deflection (Figure 7.8). This
shows that the moisture content doesn’t change and only a redistribution of
the moisture takes place.
The effect of this moisture redistribution on the mechanical properties can

be better understood through a comparison with the one way coupled model.
In the one way coupling, the mechanical properties get affected by the local
moisture content. The bending of the beam however causes no redistribution
of the moisture within the specimen. The quasi-static momentum balance
equation given in (4.1) is coupled with the non-linear Fick’s diffusion model
given by (4.57) in the one way coupled model. The bending force required for
2 mm deflection in the bending test is less for the one way coupled model as
compared to the fully coupled model (Figure 7.9). The moisture distribution
across the cross section remains the same throughout loading for the one way
coupled model. The unsymmetrical moisture redistribution as predicted by
the fully coupled model not only changes the mechanical properties but also
the neutral axis for bending. For low deflection values, the force predicted
from both the models are the same and match the experimental results. With
further deflection the effect of the redistribution becomes more prominent
and there is a deviation between the results from both the models. This
deviation is stronger for the slower deflection rate of 0.1 mm/min (Figure
7.9 b)), as there is more time for the redistribution in the fully coupled
model. The simulation results based on the fully coupled model are closer to
the experimental results, which suggests that mechanical loading effects the
moisture transport.
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Figure 7.7: The moisture distribution along the width of the bending speci-
men for the deflection rates of 0.1 mm/min and 1 mm/min.
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Figure 7.9: The moisture distribution in a fully coupled model results in a
stiffer beam for both deflection rates of a) 1 mm/min and b) 0.1 mm/min.
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7.2 Numerical Examples

A validation of the parameters with the help of experimental results has been
presented till now. In this section the model is further investigated with
numerical examples to understand the effect of the individual parameters.

7.2.1 Independent Fluxes in Moisture Transport Model

As seen in the previous section for the 3-point-bending test, the one way
coupled model with only the diffusive part of the moisture transport, results
in a different moisture distribution than the fully coupled model (Figure 7.7).
The two fluxes causing the moisture transport in the fully coupled model
have different effects on the moisture transport. The diffusive part is always
driving the moisture transport, trying to reach an equilibrium position with a
homogeneous moisture distribution within the specimen. This is illustrated
with the help of holding a 50 % saturated beam in the 3-point-bending
simulation at 1 mm deflection for two hours. The result shows that the
inhomogeneity caused by the 1 mm bending is bought to an equilibrium
position by the diffusive flux with time (Figure 7.10). The pressure gradient
is a second flux in addition to the diffusive part and is only active when a
mechanical loading is applied on the specimen. As a numerical experiment
the bending beam is saturated till 50 % saturation, once with the parameter
K = 1 × 10−8 and once with the value K = 0 to investigate the effect
of the pressure gradient part (Kgrad pl) on moisture transport. All sides
of the beam were applied the boundary condition of 100 % saturation of
cr = 1. No mechanical load was applied on the specimen during the moisture
uptake. The results in Figure 7.11 show that when no loading is applied then
the moisture uptake behaviour is replicable and there is no influence of the
pressure gradient. When a load is applied then the effect of the pressure
gradient can be seen in Figure 7.7. In the fully coupled model, the speed of
moisture transport is increased by the pressure gradient, but it is not driven
to an equilibrium position, rather it is driven according to the available free
volume. Thus the two fluxes show independent and different effects on the
moisture transport. The speed of the moisture transport from the diffusive
part is however slower than that from the pressure gradient.
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Figure 7.10: The moisture distribution in the middle of the specimen (along
the green line in Figure 7.7) immediately after 1 mm deflection and after
2 hours with constant 1 mm deflection.
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Figure 7.11: Global relative concentration versus square root of time with
and without the pressure gradient part in moisture transport model.
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7.2.2 3-Point-Bending at Faster Rates

Bending at two deflection rates of 10 mm/min and 100 mm/min are sim-
ulated and compared with the one way coupled model (Figure 7.13). The
bending beam was saturated till 50 % saturation and deflected till 2 mm.
At faster rates there is no time for moisture redistribution (Figure 7.12).
Therefore, the one way coupled model results in same forces as the fully
coupled model (Figure 7.13). For the short duration of loading, the mois-
ture transport due to loading is negligible which confirms that the moisture
redistribution at slower rates of 0.1 mm/min and 1 mm/min (Figure 7.9),
is due to the pressure gradient term in the moisture transport model. The
difference in the forces in the 10 mm/min and the 100 mm/min curve is
as expected from the viscoelastic model (Figure 7.13). At higher deflection
rates, the Maxwell elements with low relaxation times do not get time to
relax and hence contribute to the stiffness of the material.

7.2.3 3-Point-Bending at Different Saturation

The bending experiments as well as the simulations have been carried out
for 50 % saturated specimens till now. To test the effect of different con-
centration, dry and fully saturated specimens are simulated with 1 mm/min
and 0.1 mm/min deflection rate and are compared with the experimental
results (Figure 7.14). The simulation can reproduce the experimental results
in a good manner. Further bending simulations are run at 10 % saturation,
25 % saturation, and at 75 % saturation. The results for the different bend-
ing simulations are compared with each other at 1 mm/min deflection rate
(7.15). The increasing moisture concentration results in decreasing effective
bending stiffness. The change in effective stiffness is much higher from 10 %
saturation to 25 % saturation, however the change in stiffness from 50 %
to 75 % is less. This is because of the unsymmetrical exponential function
defined in equation (6.7) that couples the Lamé parameters to the moisture
content (Figure 6.7). With a slight increase in moisture from the dry con-
dition, the Lamé parameters changes significantly. However with increasing
moisture content, the extent of change reduces.
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Figure 7.12: Moisture concentration profile in the middle of the specimen
(see green line in Figure 7.7).
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Figure 7.14: The bending force versus deflection curve for dry and saturated
specimens at a) 1 mm/min and b) 0.1 mm/min.
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Figure 7.15: Comparison of the bending force at different saturation levels.

7.2.4 Tensile Load at Different Moisture Distribution

A square sample of size 10 mm × 10 mm was saturated to 10 % and 50 %
saturation by applying the Dirichlet boundary conditions for concentration
on the two vertical faces (Figure 7.16). After reaching the required satu-
ration condition, Neumann boundary condition of zero flux was applied to
allow moisture distribution within the sample. From an inhomogeneous dis-
tribution the sample attains a homogeneous moisture distribution with time.
In order to reduce the simulation time, the diffusion coefficient was scaled up
105 times to accelerate the diffusion process till homogeneity. As discussed
in section 7.2.1, if no loading is applied then their is no effect of the gradient
of pressure. Therefore, the value for K was not scaled up. A displacement
based load was applied at 1 mm/min at the horizontal face in Figure 7.16 a))
to simulate a tensile test. The tensile loading was applied for three different
stages of moisture distribution (Step:0, Step:40, and Step:160). During the
tensile load application, the diffusion coefficient was again scaled down to
the original values given in Table 6.3. For two different saturation levels,
the distribution of the moisture had opposite effects on the effective stiffness
(Figure 7.17). On the one hand, for the 50 % saturated specimen as the
homogeneity of the moisture distribution increases, the stiffness of the speci-
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Figure 7.16: a) Geometry and boundary condition for the tensile test at 10 %
and 50 % saturation. At step zero the moisture is at the boundary, at step
160 the moisture diffuses inside for a more homogeneous distribution. b)
Moisture distribution in the middle of the specimens.
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men decreases and the stress value for the same strain reduces. On the other
hand, for the 10 % saturated specimen as homogeneity increases, an increase
in stiffness is observed (Figure 7.17). At the rate of 1 mm/min (0.1 /min)
the basic elasticity and the slow Maxwell elements are the main contributors
to the stiffness, which decreases with increasing moisture content. With the
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Figure 7.17: Stress versus strain curve for the tensile test at different satu-
ration and moisture distribution levels.
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increasing homogeneity, the moisture content at the boundaries decreases
and increases in the inside of the specimen. For the 50 % specimen the
change in the Lamé parameters due to the change in moisture content at the
boundaries is comparable to the change in the inside of the specimen and
hence the effective stiffness decreases with increasing homogeneity. However,
for 10 % saturation, the decrease in the moisture content at the boundary is
more drastic than the increase of the moisture content in the middle of the
specimen. This is a result of the unsymmetrical nature of the interpolation
function for the Lamé parameters defined in equation (6.7). A small change
in concentration at lower saturation level has a higher effect in comparison
to the same change at higher saturation levels. Similar trends were also seen
for Dynamic Mechanical Analysis (DMA) tests in experimental results pub-
lished in [134]. This shows that the local moisture content plays an important
role in the overall stiffness of the specimen. It is contrary to the general ac-
cepted practice in industrial applications, that more time in contact with
moisture means less stiffness. The moisture distribution, direction of loading
and rate of loading have different effects on the overall effective stiffness of
the specimen.

7.2.5 Changing Environmental Conditions

The local moisture content influences the effective stiffness of the specimen,
and the local moisture content is dependent on the environmental conditions
around the specimen. To investigate the effect of changing environmental
conditions, the square geometry introduced in the previous section is sub-
jected to relaxation tests. A dry specimen is subjected to held at a constant
displacement in the tensile direction and then a saturation condition is ap-
plied on all its boundary. Similarly a saturated specimen is held at constant
strain, while a zero saturation condition is applied on all its boundaries. As
the time under constant strain increases the specimen absorbs moisture or
dries up. This results in a change in the effective stiffness and the response
during relaxation varies. It can be seen in Figure 7.18 that the dry specimen
relaxes much more slowly in comparison to when it is stored in water. The
moisture on the boundary of the specimen diffuses inside the specimen, and
with the change in the moisture content the effective relaxation time reduces
(Figure 4.8). The reduction in relaxation times lead to faster relaxation and
a much lower equilibrium stress value than the dry specimen. An opposite
trend can be seen for the saturated specimen stored in dry conditions. With
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Figure 7.18: Relaxation curves for the square specimen at different boundary
conditions.

the decrease in moisture content the relaxation time increases, as well as the
effective stiffness increases. Therefore the stress increases with time and does
not reach an equilibrium. Once again the diffusion coefficient has been scaled
up by 105 times to reduce the time required for moisture diffusion. Therefore
the time scale for the change in moisture content is shortened. However,
the qualitative effect of changing moisture content on the stresses will be
similar on a longer time scale. A similar trend was observed in experiments
conducted at TU Dortmund. A cylindrical PA6 sample was kept under re-
laxation in varying environmental conditions (Figure 7.19). This shows that
the effect of moisture on polymers is different from the curing of polymers.
The stresses do not increase with the curing of a polymer during a relaxation
test, whereas here an increase in the stresses is observed.
The moisture absorption and desorption during the relaxation is under the
application of load. As the specimen is stretched in tensile direction, the
volumetric expansion inside the specimen allows for uptake of more moisture
content. Thus the rate at which the dry specimen absorbs moisture is higher
than the rate at which the saturated specimen dries up again. This can
be seen in Figure 7.20, where the dry specimen reaches saturation in 300 s,
however the saturated specimen is dries up to around 18 % saturation in
the same time. Thus a preloaded specimen has different moisture absorption
properties as an unloaded specimen. With the change of the concentration
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Figure 7.19: Experimental results for relaxation of saturated specimens
stored in dry conditions conducted at TU Dortmund.
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there is a change in the swelling of the specimen also. For the saturated
specimen, as it dries out, the swelling reduces. This leads to an increase
in the stress as the reaction force to maintain a fixed strain increases. To
illustrate this effect, the relaxation for the saturated specimen stored in dry
condition is simulated with zero swelling coefficient in Figure 7.21. The effect
of swelling is an addition to the change in Lamé parameters of the specimen
due to the changing concentration. In industrial applications, the changing
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Figure 7.21: The effect of swelling is visible when the relaxation curve is
compared with a curve without swelling.

relaxation spectrum due to the change in environmental conditions can cause
different load response for the same loading rate and different energy losses
in a loading and unloading cycle.
The numerical examples show that the mechanical response of a polyamide
is dependent not only on the integral moisture content but also on the local
moisture distribution. The local moisture distribution is further dependent
on the loading of the specimen, which can be simulated with the help of the
pressure dependent flux. Thus, the fully coupled model can be used as a tool
to predict the change in the mechanical behaviour due to moisture transport
in addition to the change in moisture uptake behaviour due to loading for
PA6.
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Conclusion and

Further Research Possibilities

8.1 Conclusion

A material model that describes the effect of moisture on polymer, specially
on polyamide, along with the moisture transport has been developed in this
work. The various effects such as change in material stiffness, shifting of the
relaxation spectrum, and swelling have been modelled. A novel method is
introduced to model the effect of mechanical loading on the moisture trans-
port. The chemical potential describing the moisture transport is extended
with the fluid pressure inside the polymer to couple moisture transport to
mechanical loading. The developed material model is implemented numeri-
cally with FEM and simulation results have been used to provide an insight
in to the material behaviour.
The material model finds its framework in the mixture theory and is devel-
oped on a macroscopic level. The different kinematic relationships and the
balance equations for the two phases of polymer and moisture are developed

– 109 –
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with the help of continuum mechanics. The developed relationships are then
tested for thermodynamic consistency, which leads to certain conditions that
should be imposed on the constitutive relationships for the material model.
These constitutive relationships are developed based on the experimental re-
sults that were made available by the project partners. Different variations
of the constitutive relations are considered and finally the most suitable and
numerically reasonable approach is taken. These relations are coupled to
each other to model the effect of both the components of the mixture on
each other. Coupling of the relations was achieved in a phenomenological
way with experimental results. The Lamé parameters of the mechanical
model are coupled with the moisture concentration, whereas the gradient of
liquid pressure in the moisture transport model is coupled with the volumet-
ric change in the polymer. Thus a fully coupled model was developed, with
thermodynamic consistency, and with the ability to reproduce experimental
result.
The two aspects of the model, the mechanical and the moisture transport
model, define the two main differential equations, that are solved numeri-
cally in a monolithic manner using FEM. The geometrically linear viscoelas-
tic material model solves for the displacement field and the non-linear Fick’s
diffusion model along with the Darcy type component solves for the moisture
content. The liquid pressure in the moisture is calculated with the help of
a linear relationship with the material density. Thus, the gradient of pres-
sure in the moisture transport model results in higher order derivatives of
the displacement field. To satisfy the C0 continuity condition on the shape
functions and in turn on the solution field, a third equation is introduced
to calculate the liquid pressure. Thus, three equations are coupled to each
other and are solved numerically. The implementation is done in the C++

library of deal.II.
The developed model is compared with the experiments to identify the pa-
rameters for the model. To identify the parameters for the equilibrium condi-
tion from relaxation experiments, the Tikhonov regularisation was applied.
For other parameters, optimising algorithms such as Nelder-Mead method
was employed. The identified parameters are then validated with the help
of other experiments. The results show that the local moisture distribution
is effected directly by the loading applied on the specimen. It is usual in
literature to couple the effect of loading with the diffusion coefficient, but
the moisture transport caused by the loading of the specimen is much faster
than diffusion. The experimental results match with the numerical results
from the developed material model, confirming that the effect of loading is
much more immediate on the moisture transport. It was further shown that
the moisture distribution has an influence on the mechanical response of the
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material. It is a widespread assumption in industry that the longer a poly-
mer is in contact with moisture, the more is the degradation in its effective
stiffness. The numerical example however show that the loading rate, the
saturation condition, the distribution of moisture, and the type of loading,
all effect the effective stiffness.

8.2 Further Research Ideas

The material model has been developed with certain assumptions and is valid
only for those conditions. Further research can be conducted by moving away
from these assumptions. The current framework can be utilised and extended
for this purpose. Instead of small deformations, large deformations can be
modelled with the help of an appropriate non-linear viscoelastic model. The
effects of temperature change on the mechanical as well as the moisture trans-
port can be included in the model. The numerical framework that has been
discussed in the current work can be utilised to add the thermal conductivity
equation to the set of equations and couple it with the rest of the equations.
However, further experiments with the variation of temperature would have
to be conducted to understand the nature of the coupling. A homogeneous
structure of polyamide was assumed in the developed material model. The
effects of the crystalline and amorphous phases have not been considered.
Different regions in a polymer can have different degree of crystallinity. This
can have an effect on the moisture transport within the material. Different
structural arrangement of the polymer chains will lead to diverse effects in
presence of moisture. The effect of the degree of crystallinity would have to
be modelled on a meso-scale, hence a multi-scale approach would be required
to include the crystallinity in the material model.
The moisture transport model can be extended by including the process of
adsorption on the surface of the specimen. The chemical potential can be
extended to include the effects of various environmental conditions around
the polymer. Experiments were conducted on polyurethane specimens which
were kept in water under varying environmental conditions. High temper-
ature of 90 °C, high pressure of 5 Bar and a combination of both these
conditions were applied in the chamber where the samples were stored in
water. The results are shown in Figure 8.1. The results show that the rate
of moisture absorption and the saturation levels vary with the different con-
ditions. With high pressure and temperature the rate of absorption is the
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Figure 8.1: The mass absorption behaviour of polyurethane under different
environmental conditions.

fastest. For the condition of high pressure the absorption is the slowest. A
correlation between the available water molecules and the adsorption rate
can be established with such experiments. The energy of the available water
molecule also contributes to the adsorption rate. These correlations can be
included in the chemical potential describing the moisture flow and a more
universal moisture transport model can be developed for the different envi-
ronmental conditions.
Thus, the material model can be extended for further research work in vari-
ous interesting areas. The theoretical framework of the mixture theory that
has been set up in the current work can be adapted for further extensions.
The numerical implementation of the model can be utilised as a foundation
upon which these ideas could be implemented.
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