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Zusammenfassung 

Bakteriell verursachte Pneumonien zählen zu den häufigsten Todesursachen weltweit. Das vermehrte 

Auftreten von resistenten Stämmen verdeutlicht die Notwendigkeit der Entwicklung neuer 

Behandlungsstrategien. Ionenkanäle spielen eine wichtige Rolle bei vielen Vorgängen in der Zelle. TRPM4 

gehört zu der Familie der TRP-Kanäle (transient receptor potential ion channels), die eine umfangreiche 

Familie von membranständigen Kationenkanälen bilden. TRPM4 wird durch Steigende Ca2+-

Konzentrationen in der Zelle aktiviert und ermöglicht durch den Transport der monovalenten Kationen Na+ 

und K+ die Depolarisation der Membran. TRPM4 ist für Ca2+ undurchlässig. 

Im Rahmen dieser Arbeit soll untersucht werden, ob TRPM4 bei einer bakteriellen Entzündung der Lunge 

die Entzündungsreaktion und Immunabwehr beeinflusst. Untersuchungen mit einem spezifischen TRPM4-

Inhibitor und bronchialen Epithelzelllinien, differenzierten primären Atemwegsepithelzellen und 

Makrophagen sollen zeigen, ob eine bakterielle Stimulation durch die Aktivität von TRPM4 beeinflusst wird.  

Es konnte gezeigt werden, dass im Rahmen einer bakteriellen Stimulation eine Vorinkubation mit dem 

TRPM4-Inhibhitor 9-Phenanthrol (9-Ph.) zu einer signifikant niedrigeren Abgabe von IL-6, TNF-α, CXCL2 

und S100A8 durch Atemwegsepithelzellen führt. Dieser Effekt war abhängig von der Konzentration des 

Inhibitors und konnte bei Konzentrationen von 1/4 bis 1/8 des IC50-Wertes nicht mehr nachgewiesen werden. 

Im Gegensatz dazu wurde die Transkription von IL-6, TNF-a und CXCL2 durch die Stimulation mit 

Pseudomonas aeruginosa (Ps.a.) induziert, durch die zusätzliche Vorbehandlung mit 9-Ph. aber nicht 

inhibiert. Die Transkription von S100A8 wurde durch die Vorbehandlung mit 9-Ph. gehemmt, was auf eine 

direkte Abhängigkeit von Ca2+ hindeutet. Die Inhibition der Zytokinabgabe konnte durch die Verwendung 

von TRPM4-spezifischer siRNA bestätigt werden. Mit Hilfe einer FACS-Analyse und ELISA konnte gezeigt 

werden, dass es durch die Verwendung von 9-Ph. zu einer Hemmung des Exports von IL-6 kommt. 

Außerdem war die Inhibition durch 9-Ph. nach der Stimulation mit TLR4-, TRL1/2- und TLR5-Liganden in 

Atemwegepithelzelllinien und primären Bronchialepithelzellen nachweisbar. 

Die antimikrobielle Aktivität von Atemwegsepithelzellen wird zu einem Teil durch die Expression von β-

Defensin-2 (hBD-2) vermittelt. Die Stimulation von humanen differenzierten, primären 

Bronchialepithelzellen mit lebendigen Ps.a. führte zu einer erhöhten Transkription und Abgabe von hBD-2, 

die mit einer erhöhten antimikrobiellen Aktivität korrelierte. Die Vorinkubation mit 9-Ph. führte zu einer 

verringerten Transkription und Abgabe von hBD-2, die mit einer erhöhten bakteriellen Besiedelung 

korrelierte. Das zeigt, dass die Aktivität von TRPM4 unmittelbaren Einfluss auf die Reaktion des 

angeborenen Immunsystems hat. 
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Die Stimulation von TRPM4-defizienten Mäusen mit hitzeinaktivierten Ps.A führte zu einer geringeren 

Entzündungsreaktion, als bei den jeweiligen Wildtyp Kontrolltieren. Dies konnte durch einen geringeren 

Einstrom von neutrophilen Granulozyten und einer niedrigeren Abgabe von IL-6, TNF-α, CXCL1 und 

CXCL2 in die broncho-alveolare Lavage gezeigt werden. Zusätzlich war die Expression von mBD-4, dem 

murinen homolog zu hBD-2, in der Lunge von TRPM4-defizienten Tieren nach der Stimulation mit Ps.a. 

signifikant niedriger, als bei den entsprechenden wildtyp-Tieren. Die Stimulation von primären 

differenzierten murinen Trachealepithelzellen mit hitzeinaktivierten Ps.a. führte zu einer erhöhten Abgabe 

von KC und MIP-2, wenn die Zellen zuvor mit 9-Ph. inkubiert wurden. Die Entzündungsreaktion bei TRPM-

4 defizienten Tieren nach der Stimulation mit LPS war höher als bei den vergleichbaren Wildtyp-Kontrollen.  

Die Versuche zeigen, dass die Aktivität von TRPM4 für die Regulation und die Abgabe verschiedener 

Mediatoren des angeborenen Immunsystems der Lungen wichtig ist. 
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Summary 

Bacterial pneumonia is among the leading causes of death worldwide. The emerging resistant strains require 

the development of new treatment strategies. Ion channels play a role in many signaling pathways of the cell. 

TRPM4 belongs to the family of TRP-channels (transient receptor potential ion channels), which are 

membrane bound ion channels expressed in a wide variety of cells. The activity of TRPM4 is induced by 

rising Ca2+ concentrations in the cytosol. The channel is permissive for Na+ and K+ ions, which lead to a 

depolarization of the cellular membrane. However, activated by Ca2+, TRPM4 is not permissive for Ca2+. 

The goal of this work is to investigate the influence of the activity of TRPM4 on the pulmonary innate 

immune response in the course of bacterial infection. After detecting the expression of TRPM4 in the human 

bronchial epithelial cell line NCI-H292, the cytotoxicity of the pharmacologic TRPM4 inhibitor 9-

Phenanthrol (9-Ph.) and bacterial stimulation with heat inactivated Pseudomonas aeruginosa (Ps.a.) was 

investigated. The stimulation with heat inactivated Ps.a. or 9-Ph. in the IC50-range had no cytotoxic effects 

on the cells for at least 18 hr. Most interestingly, the release of IL-6, TNF-α, CXCL2, and S100A8 was 

inhibited after the pre-treatment with 9-Ph. and stimulation with Ps.a.. This effect was dependent on the 

concentration of 9-Ph. and was not observed at concentrations of 1/4 - 1/8 of the IC50 value of 9-Ph. 

Furthermore, the inhibition was not detected on transcriptional level, except for S100A8, whose transcription 

was also inhibited by the pre-incubation with 9-Ph. These findings were confirmed by TRPM4-specific 

siRNA, which also resulted in significantly less concentrations of IL-6 after the stimulation with Ps.a.. This 

indicates that the function of TRPM4 was necessary for the export of inflammatory mediators. This was 

proved by FACS-Analysis and ELISA. The bronchial-epithelial cell line NCI-H292 and human primary 

airway epithelial cells were also stimulated with TLR1/2, TLR4, and TLR5-ligands. These experiments 

showed that the treatment with distinct TLR-ligands can also be influenced by the inhibition of TRPM4 and 

that the effects observed so far are not due to the inhibition of a certain TLR-signaling pathway.  

The antimicrobial activity of airway-epithelial cells is mostly mediated by the expression of antimicrobial 

peptides. The expression of the antimicrobial peptide hBD-2 (human beta-defensin-2) was highly induced in 

differentiated human primary airway epithelial cells after the stimulation with live Ps.a.. This correlated with 

increased concentrations of hBD-2 in the cell culture supernatant and increased antimicrobial activity of the 

cells. In contrast, the inhibition of TRPM4 significantly downregulated the expression of hBD2, the 

concentration in cell culture supernatant, and the antimicrobial activity of the cells. This indicates a direct 

connection of the activity of TRPM4 to the innate immune response of the lung. 

To investigate the influence of TRPM4 on the release of inflammatory cytokines in different cell types and 

species, monocyte derived macrophages from the bone marrow of mice and the human monocyte cell line 
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U937 were used. Again, the inhibition of TRPM4 resulted in a significantly decreased release of IL-6, TNF-

α, CXCL1, and CXCL2. These results were also confirmed with macrophages isolated from TRPM4-

deficient mice.  

To further explore these findings, the lungs of TRPM4-deficient mice were stimulated with heat inactivated 

Ps.a.. TRPM4-deficient mice showed less inflammation than the corresponding wildtype control animals. 

These findings are based upon less influx of neutrophilic granulocytes into the lung and lower concentrations 

of IL-6, TNF-a, CXCL1, and CXCL2 in the broncho-alveolar lavage (BALF) of the TRPM4-deficient 

animals. Furthermore, the expression of mBD-4, the murine homologue of the human beta-defensin-2, was 

significantly reduced in the TRPM4-deficient mice. The stimulation of differentiated primary murine 

tracheal epithelial cells with heat inactivated Ps.a. induced a higher release of KC and MIP-2 if TRPM4 was 

inhibited. Furthermore, the stimulation of TRPM4-deficient mice with LPS resulted in an increased 

inflammatory response from the TRPM4-knockout mice compared to the wildtype controls. These 

differences may result from the different stimulations or the reactivity of the different cell types and possible 

variations in the immune response of human and mouse cells. 

These results show that the function of TRPM4 is important for the regulation of inflammation and the innate 

immune response of the lung. 
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1. Introduction 

1.1 Innate immune response  

The mammalian immune system consists of two divisions that function in co-ordination; to provide 

resistance to infection, the innate immune system and the adaptive immune system. The first line of host 

defense is the innate immune response which is responsible for immediate detection and control of microbial 

invasion (Akira et al., 2006) (M. S. Lee & Kim, 2007) (Trinchieri & Sher, 2007). 

The innate immune system provides the first line of protection against pathogens prevalent in the 

environment. It is a non-specific system, lacks memory, and is not impaired by prior exposure to pathogens 

or harmful substances, as opposed to adaptive immune system (Guani-Guerra et al., 2010).  

Innate immune cells include white blood cell community such as circulating dendritic cells (DCs), natural 

killer cells (NK), neutrophils, monocytes, eosinophils and basophils, in addition to macrophages and mast 

cells that are tissue-residents. These cells manipulate opportunistic invasions by a diverse variety of 

microbial and parasitic pathogens, throughout discharging a plenty of chemokines and cytokines, which 

enables them to interact with other cells and thus orchestrate immune responses. Tumor necrosis factor 

(TNF), Interferon gamma (IFN-γ), interleukin IL-1β, IL-18, IL-10, IL-4, IL-6, IL-12, chemokine ligand 4 

(CCL4)/CCL5 (RANTES), and transforming growth factor beta (TGF-β) are also included in this series of 

soluble mediators secreted by various innate immune cells (Iwasaki & Medzhitov, 2010). 

Innate immune systems can identify pathogen-associated molecular pattern molecules (PAMPs) as the first 

defense against invading pathogens by means of germ line-encoded pattern recognition receptors (PRRs) in a 

non-specific but a rapid manner of detection acting as the first safeguard against invading pathogens 

(Janeway & Medzhitov, 2002). PAMPs are detected by a wide range of PRRs. Consequently, they enable 

the downstream intracellular signalling machinery prerequisite to mediate host defence (Gay et al., 2014), 

which results in the activation of antimicrobial responses required for pathogen eradication, such as 

antimicrobial peptides synthesis and secretion of different proinflammatory cytokines (Finlay & McFadden, 

2006). 

Endocytic PRRs primarily facilitate phagocytic ingestion and microorganism destruction, whereas the 

intracellular signaling mediated by PRRs, such as Toll like Receptors (TLRs), NOD-like receptors (NLRs) 

and Retinoic acid-inducible gene-I-like receptors (RLRs) promotes the synthesis and release of cytokines and 

chemokines, acting as immune regulators and play a vital role in coordinating, maintenance and harmony 

interaction between innate and adaptive immunity (Medzhitov, 2007) (Areschoug & Gordon, 2009). 

Inherent immune system cells cause precisely tuned balanced between host defence responses and host 

protection through mitigating collateral damage to it (Iwasaki & Medzhitov, 2015). 
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1.2 Inflammation & host defense 

Inflammation is a dynamic defense mechanism characterized by leukocyte migration from the vasculature 

into damaged tissues to destroy the injurious agents. Acute inflammation is a limited beneficial response 

particularly during infectious challenges, whereas chronic inflammation is a persistent phenomenon, which 

can develop to inflammatory diseases. One of the cornerstones of acute inflammation is that neutrophil is 

originally predominated in leukocyte infiltrate, but after 24 to 48 hour (hr.) the situation changed and the 

monocytic cells become prevalent (G. B. Ryan & Majno, 1977) (Doherty et al., 1988). Mononuclear cells 

such as macrophages and lymphocytes are histologically correlated with chronic inflammation (G. B. Ryan 

& Majno, 1977). 

Neutrophils are granulocytic polymorphonuclear leukocytes (PMNs) that are considered as a key ingredient 

in innate immune defense (Baggiolini & Dewald, 1985). Neutrophils are the first cells that aggregate in the 

tissues (G. B. Ryan & Majno, 1977) (Doherty et al., 1988).  

Because of their ability to synthesize oxygen metabolites and to release different enzymes, neutrophils are 

key cells in the protection of an organism against damage, especially infection. Nevertheless, these agents 

can also be toxic to normal surrounding tissues and possibly cause several inflammatory diseases. 

Subsequently neutrophil functions should be rapidly and adversely regulated. It is worth mentioning that this 

is accomplished by local death of aged PMN cells by apoptosis (Savill et al., 1989).  

The activation of PMN cells by bacterial phagocytosis or more broadly by the fragment crystallizable (Fc) 

mediated phagocytosis can induce up-regulation of apoptosis or so-called programmed cell death 

(Kobayashi et al., 2002). 

Death by apoptosis triggers the loss of biological functions of PMN cells, but prevents the release of 

intracellular toxic neutrophil material and further tissue injury (Whyte et al., 1993). 

Neutrophils from the inflammatory site are early depleted; while blood monocytes, on the other hand, 

accumulate and differentiate into inflammatory macrophages, performing its phagocytic activity and 

participating in killing of the harmful agents (G. B. Ryan & Majno, 1977) (Doherty et al., 1988).  

Contrary to neutrophils monocytes and macrophages do not die locally, but evacuate toward local lymph 

nodes after elapse of many days (Bellingan et al., 1996). Also, some requisite changes take place throughout 

this migration process such as monocytes differentiation into dendritic cells, acquiring costimulatory 

molecules such as cluster of differentiation 80 (CD80), cluster of differentiation 86 (CD86) and upregulating 

the expression of human leukocyte antigen (HLA) class II antigen on its surface that is needed for further 

maturation and activation (Randolph et al., 1998). 
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In addition to adhesion molecules, Leukocyte recruitment depends on the specificity of chemokines 

produced at the inflammatory site. The most important chemokines for the recruitment of PMN cells and 

monocytes are Interleukin 8 (IL-8) and monocyte chemotactic protein-1 (MCP-1) (Sallusto et al., 1999) 

(Yamashiro et al., 1999). 

After inflammatory cytokines activate neutrophils or other cells, IL-8 is typically produced early and 

sustained for 24 hr., giving privilege for more attracting and activating neutrophils locally (Sallusto et al., 

1999) (Yamashiro et al., 1999). Furthermore, sustained development of IL-8 could generate a higher 

chemokine concentration in vessels, acting as an obstacle in neutrophil adhesion to endothelium and also 

affecting the extravasation process (Gimbrone et al., 1989).  

MCP-1 development by macrophages is caused by phagocytosis of apoptotic neutrophils (McDonald et al., 

1999). Thus PMN-cell apoptosis not only participates in the removal of neutrophils, but it also facilitates a 

shift in chemokines contributing to monocyte recruitment. Generally, development of MCP-1 is postponed 

but maintained for many days. Its accumulation contributes to late recruitment of monocytes; but at the same 

time, it does not desensitize the cells (Sallusto et al., 1999) (Yamashiro et al., 1999). 

Interleukin 6 (IL-6) plays a slightly surprising role in this scenario, which was involved in in-vivo 

recruitment of leukocytes; due to the fact that the soluble IL-6 receptor complex can stimulate the secretion 

of MCP-1 and IL-8 from the endothelial cells, in addition to enhancing the adhesion molecules expression 

(Romano et al., 1997).  

Endothelium or other stromal cells may be stimulated by thrombin (proinflammatory agent) to produce IL-8 

and other chemo-attractants that favor early neutrophil recruitment at the inflammatory site. Activated PMN 

cells can release the soluble interleukin-6 receptor, which further interacts with locally generated IL-6. This 

will, in turn, lead to production of MCP-1, not IL-8 from endothelial cells, which give rise to reduction of 

neutrophil and to favor the recruitment of monocytes (Xing et al., 1998).  

IL-6 has a protective vital role in suppressing neutrophils and encouraging the recruitment of monocytes, 

contributing to inflammation recovery. Conversely, IL-6 can have a very harmful role in chronic 

inflammation through favoring mononuclear cell aggregation at the injury site. This occurred by the aid of 

continuous MCP-1 secretion, angio-proliferation and anti-apoptotic function on T cells (Atreya et al., 2000).  

The excessive aggregation and persistence of neutrophils cause an excessive inflammatory response which 

leads to serious damage of the lung as seen in cystic fibrosis (CF) patient (Doring, 1994) (Dunlevy et al., 

2012). The regulated development of Pseudomonas aeruginosa (Ps.a.) rhamnolipid controlled by quorum-

sensing promotes severe necrotic destruction of penetrating neutrophils, which describes why neutrophils 



 

 
4 

 

aren’t substantially engaged in Ps.a. removal from the CF lung (Jensen et al., 2007) (Alhede et al., 2009) 

(Van Gennip et al., 2009).  

Elastase is defined as a powerful serine protease which could be produced by various strains of Ps.a. and 

infiltrating neutrophils. It is demonstrated that it has numerous biological impacts that greatly contribute to 

progression of pulmonary disease in CF patient (Wretlind & Pavlovskis, 1983) (Tirouvanziam, 2006). 

Elastase shows an effective antimicrobial activity against a wide variety of gram-negative bacteria, but 

surprisingly, it has no effect on Ps.a. (Sonawane et al., 2006). Also subjected to elevated concentrations of 

neutrophil elastase (NE) up to 25 µM that is normal in CF lung, Ps.a. remains viable and morphologically 

unchanged (Berger, 1991). Neutrophils surrender to apoptosis and eventual phagocytotic clearance by 

macrophages after a short life span (Watt et al., 2005). Intriguingly, it was approved that IL-6 has been 

shown to induce apoptosis of PMN-cells (Afford et al., 1992). 

Cathepsins are cysteine proteases produced naturally by macrophages which are involved in extracellular 

matrix remodeling (Wolters & Chapman, 2000). In reaction to the elevated levels of apoptotic neutrophils 

within the lungs of CF patients, pulmonary macrophage influx occurs to eradicate these apoptotic cells, and 

this contributes to extend cathepsin secretion into the bronchoalveolar fluid (BALF) of the CF lung (Berger, 

1991) (Ulrich et al., 2010). High concentration of cathepsins present in the BALF gives it flexibility to 

degrade beta-defensins, which have a preserved core structure of three disulfide bridges. This made it liable 

to cathepsins proteolytic cleavage (Hoover et al., 2000). Particularly, cathepsins B, L and S were found to 

cleave human beta-defensin 2 (hBD-2) and human beta-defensin 3 (hBD-3) disulfide bonds, which caused 

their degradation and loss of antimicrobial activity (Taggart et al., 2003). In addition, most cathepsins have 

an optimal acid potential of hydrogen (pH) proteolytic feature, low pH in CF bronchoalveolar fluid promotes 

optimal enzymatic activity for cathepsin proteolytic activity which lose their properties and it’s proteolytic 

power at physiological or basic pH (Wolters & Chapman, 2000). Due to impaired bicarbonate transport 

through the pulmonary epithelium caused by the cystic fibrosis transmembrane conductance regulator 

(CFTR) mutation, the bronchoalveolar fluid of CF patients become acidic (Tate et al., 2002). In addition, the 

efficacy of hBD-2 is brought down due to the elevated Cl- present in the bronchoalveolar fluid that resulted 

from a defect in functional CFTR. The Decent explanation for this phenomenon correlated with lowering in 

the electrostatic contact between the cationic hBD-2 peptide and the resting membrane of invasive pathogen 

which has anionic properties (Bals et al., 1998). During the chronic pulmonary infection, overexpression of 

cathepsin can cause additional degradation of hBD-2, encouraging bacterial colonization and infection 

propagation (Taggart et al., 2003). 
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1.3 Airway epithelial cells and cellular host defense 

Airway epithelium is a physiological tissue barrier with two layers and two purposes. First, it owns a variety 

of mechanical and chemical defense factors such as mucus, antimicrobial agents, or beating cilia which 

shield the respiratory compartment of the lung from invading pathogens. Second, intact airway epithelium 

prevents inflammation initiation in response to microbes which are usually present in airway lumen by 

preventing interaction of bacteria with inflammatory subepithelial cells such as macrophages and DCs that 

are very sensitive to any kind of threat. Therefore, the main vital role of the airway epithelial barrier is to 

defend against pathogens without progression of inflammation. Moreover, epithelium cells are often 

equipped with autonomous program to protect their barrier integrity during any damage or attack caused by 

microbes (Shaykhiev, 2007) (Proud & Leigh, 2011). 

Epithelial cells not only prevent inflammation progression, but also play a vital role in inflammation 

management by producing anti-inflammatory molecules of many families, including cytokines such as (IL-

10, TGF-ß), soluble cytokine receptors/receptor antagonists, inhibitory arachidonic acid metabolites, 

protease inhibitors, and other immunosuppressive surface cell molecules (Janes et al., 2006) (K. S. Park et 

al., 2007).  Many of such molecules are triggered by T helper (Th2) and proinflammatory cytokines, which 

indicate that negative feedback pathways can be regulated to mitigate inflammatory signals (Janes et al., 

2006) (Levine et al., 1997). 

The unique component of respiratory epithelium, consisting of ciliary columnar cells, goblet cells, and clara 

cells, enables it to form a persistent and reasonably periodic lining of the airway and protects it against 

aeroallergens, toxins and pathogens that have been inhaled from the external environment (Pohunek, 2004). 

The respiratory epithelium provides a physical barrier between inner and outer milieu, and is essential for the 

protection of the interior part (Khalmuratova et al., 2017) (Lambrecht & Hammad, 2014). The core 

components of epithelial cells physical barrier, which enable it to adhere to neighbouring cell through cell-

cell junctions including tight junctions (TJs), adhering junctions (AJs), gap junctions, and desmosomes 

(Soyka et al., 2012) (Nomura et al., 2014) (N. Zhang et al., 2016). In addition, mucus is considered one of 

the arsenal weapons of epithelial cell that shield the epithelium from microbes, allergens and toxic 

compounds (Birchenough et al., 2015), and enable the inhaled foreign particles to be easily captured then 

decayed and destroyed by aiding of antimicrobial molecules such as defensins bactericidins, antiproteases 

and antioxidants. Finally, it is expelled via mucociliary movements (Ganesan et al., 2013) (Loxham et al., 

2014). 

It has been shown that airway epithelial cells primarily express toll like receptors from TLR2-TLR6 (Sha et 

al., 2004) (Homma et al., 2004). Bacterial components such as lipoprotein, peptidoglycan (PGN), and 
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lipoteichoic acid are detected by TLR2, that is mainly heterodimerized with TLR1 or TLR6. Viral double-

stranded RNA (dsRNA) and also a synthetic analog of dsRNA could be recognized by TLR3, while TLR4 

recognizes gram-negative bacterial lipopolysaccharide (LPS). Flagellin, a constituent of bacterial flagella, is 

detected by TLR5. Thus, these unique TLRs are strategically located on epithelial cells to enable microbes 

commonly encountered on the surface of the mucosa to be easily recognized (Kato & Schleimer, 2007). 

Airway epithelial cells usually are used to secrete a variety of molecules from different families which are 

involved in defense against bacterial, viral and fungal infections. Common antimicrobial products are 

naturally produced and presented by epithelial cells such as, LL-37, defensins, lactoferrin, collectins, 

lysozyme, pentraxins, serum amyloid A (SAA) and secretory leukocyte protease inhibitor (SLPI) that can 

bind and neutralize different types of infectious agent (Schleimer et al., 2007). 

In addition to mediating and triggering innate immune responses, airway epithelial cells also manage 

adaptive immune responses through interactions with DC, T cells and B cells, that are crucial in protection 

against airway inflammation and also viral and bacterial infection (Lukacs et al., 2001) (Phadke et al., 

2007). Adaptive immunity is influenced by local and infiltrating DC which play a critical role in responses to 

inhaled foreign antigens, Epithelial airway cells are also able to cause DC migration into the epithelium 

(Upham & Stick, 2006). 

1.4 Cytokine synthesis, release & exocytosis process 

Cytokines from innate immune cells are developed and released as vital responses to infection and 

inflammation in the body (Iwasaki & Medzhitov, 2010). Adequately, cytokine synthesis and release must 

be highly regulated, simultaneously and temporally synchronized. Thus, cascades of cytokines released by 

innate immune cells initially trigger inflammatory response or allergic reactions, and these reactions were 

guaranteed to be decayed in a time dependent manner (X. Hu & Ivashkiv, 2009). 

Cytokine secretion is a complex and tightly regulated process, and the intracellular pathways appropriate for 

release are also specific for each different type of cytokine and cell type dependent. In classical pathways, 

cytokines with signal peptides are incorporated into the endoplasmic reticulum (ER) for synthesis.  These are 

transported in vesicles to the Golgi complex for further processing. At trans-Golgi network (TGN), they were 

loaded into vesicles or carriers for constitutive delivery to the cell surface or other organelle. Additional 

modes of secretion are provided in specialized cell types by loading cytokines and other cargo into granules 

for storage, and released later according to cellular demand and the surrounding circumstances (Lacy & 

Stow, 2011). 

Interleukin 6 (IL-6) is considered one of the most popular examples of soluble cytokine, which is released 

within hrs. after LPS stimulation (Verboogen et al., 2017). LPS binds to TLR4 located in plasma 
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membranes of the immune cells and this binding prompts nuclear factor 'kappa-light-chain-enhancer' of 

activated B-cells (NF-kB) and other transcription factors activation, which in turn enhance IL-6 transcription 

and translation. Like many other cytokine, IL-6 traffics through the Golgi apparatus from the endoplasmic 

reticulum (ER) to the recycling endosome (RE) (Murray & Stow, 2014) (Manderson et al., 2007). RE are 

tubulovesicular organelles that control the transport of secretory vesicles toward the plasma membrane 

(Stanley & Lacy, 2010), which ultimately contributes to IL-6 release to the extracellular environment. 

 In addition, some trafficking proteins involved in the release of IL-6 and other cytokines are simultaneously 

upregulated (Stanley & Lacy, 2010).  Soluble N-ethylmelaimide-sensitive fusion protein attachment protein 

receptor (SNARE) proteins are detected to modulate IL-6 secretion, such as syntaxin-3 and vesicle-

associated membrane protein 3 (VAMP3), knockdown and overexpression of these SNAREs complexes 

minimize and increase the release of IL-6, respectively (Manderson et al., 2007) (Collins et al., 2015). 

Also, when dendritic cells are activated by LPS, it is noticed that there is an increased interaction of VAMP3 

with syntaxin-4 at the plasma membrane and this correlates with an increase in IL-6 secretion (Verboogen et 

al., 2017). 

Three synaptic α-SNAREs (Söllner et al., 1993), which include a VAMP called vesicle SNARE (v-

SNARE), is located on the membrane of secretory vesicles, while synaptosomal associated protein (SNAP-

23/SNAP-25), and syntaxin protein called target SNAREs (t-SNARE) are located on the plasma membrane. 

All of these three SNAREs are combined into a SNARE 4-helical protein complex in two adjacent 

membranes; in order to pull the membranes into close apposition. Thus, SNAREs assembly is believed to 

facilitate the membrane fusion (Sutton et al., 1998) (Fasshauer, 2003). In this way, the essential mechanism 

for exocytosis is thus thought to involve these three basic SNARE proteins (Weber et al., 1998). It is worth 

mentioning that calcium ion (Ca2+) at even low micromolar concentrations can trigger SNARE complex 

formation (K. Hu et al., 2002). 

In human airway and lung epithelial cells, specifically in the airway goblet cell, VAMP8 an essential 

component of v-SNARE proteins were implicated in the regulation of mucin granule exocytosis (Jones et 

al., 2012). Also, VAMP8 is associated with mucin granules purified from airway goblet cell-like Calu-3 cells 

(Kreda et al., 2010). 

SNARE and some other regulatory factors were also involved in the secretion of lung surfactant, which were 

synthesized in the endoplasmic reticulum in alveolar epithelial type II cells (Abonyo et al., 2004; Abonyo et 

al., 2003) (Gou et al., 2004). It was proved that t-SNARE proteins, syntaxin 2 and SNAP-23, are required in 

lung surfactant secretion (Abonyo et al., 2004). VAMP-2 as a part of v-SNARE may also be involved in the 

regulation of lung surfactant secretion (Wang et al., 2012). In other types of immune cell, in both vitro and 
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ex-vivo, eosinophil degranulation was mediated by VAMP-7, and this correlated with increasing in airway 

hyperresponsiveness (Willetts & Felix, 2018). 

Regulated exocytose is temporarily monitored by a large increase in the amount of intracellular calcium. 

Fusion of the intracellular vesicle with the opposite plasma membrane and the subsequent shooting of the 

vesicle contents outside the cell is mainly a Ca2+ process dependent (Zucker, 1999). 

Calmodulin (CaM) and protein kinase C (PKC) are the main proteins that help the trigger process of the Ca2+ 

induced exocytosis. Adenosine triphosphate (ATP) could modulate the exocytosis process as PKC demands 

ATP to increase secretion, while calmodulin boosts secretion in the absence of ATP, implying that 

phosphorylation is crucial in PKC mediated stimulation. However, it doesn’t have an effect on calmodulin 

stimulation. It is thus proposed that calmodulin and PKC increase exocytosis triggered by Ca2+ by directly 

modulating the exocytic machinery or cytoskeleton attached to the membrane (Bernstein, 2015).  

PKC is a serine/threonine kinase activated by calcium. It also could be activated through a diacylglycerol 

(DAG) signaling pathway. This make it a common research target for exocytosis control (Malenka et al., 

1999). PKC improves secretion in an ATP-dependent way in PC12 cells, supporting consecutive thoughts for 

phosphorylation requirement (Y. A. Chen et al., 1999). PKC activation contributes in decreasing calcium 

threshold required for secretion (Zhu et al., 2002). PKC minimize the quantal size of individual exocytotic 

events, increase kinetics (M. E. Graham et al., 2002) and accelerate the expansion of fusion pores (Scepek 

et al., 1998). 

In eukaryotic cells, CaM is the most prevalent calcium mediator, but its participation in membrane 

trafficking has not been proved. Some earlier studies reported that Ca2+ activated exocytosis was blocked by 

inhibitors of CaM (R. D. Burgoyne et al., 1982) (Verhage et al., 1995), anti-CaM antibodies (Kenigsberg 

& Trifaró, 1985), or CaM-binding inhibitory peptides (Birch et al., 1992). Ca2+/CaM has been documented 

to trigger the complete docking process and cause a late stage of vacuole fusion in yeast, indicating that 

Ca2+/CaM plays an important role in fundamental intracellular membrane fusion (Peters & Mayer, 1998). 

CaM is made up of two EF-hand domains proteins involved in controlling exocytosis. EF-hand domain 

proteins bind calcium via a short helix-loop-helix motif of 30 residues, where calcium binding to the loop 

results in a conformational change that shows its hydrophobic surface.  So, it could then bind easily to a 

target protein (Lewit-Bentley & Réty, 2000) (Robert D. Burgoyne & Clague, 2003). In both calcium-

dependent and independent manner, CaM can exert its effects. CaM has a well-established role in exocytosis, 

promoting a phosphorylation of synapsins by calcium/calmodulin-dependent protein kinase II (CaMKII) 

activation. However; calmodulin also binds to synaptotagmin, SNARE complex, Rab3, (Robert D. 

Burgoyne & Clague, 2003) and Munc13 (Junge et al., 2004). 
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CaMKII, a multifunctional Ca2+/CaM dependent kinase identified in synaptic vesicles, can serve as a 

potential target of CaM (Braun & Schulman, 1995). Following depolarization, calcium influx triggers CaM 

to activate CaMKII. Activation leads to an autophosphorylation mechanism that makes CaMKII able to work 

independently, rendering it constitutively active and capable of temporally and spatially exerting effects 

longer than the initial calcium signal itself (Hudmon & Schulman, 2002). 

Beside CaMKII observed for phosphorylation, it also might bind directly to many proteins apart from 

synapsin, which may correspond to its activity-dependent consequences. CaMKII can bind in vitro to Ca2+ 

sensory protein like synaptotagmin, VAMP and syntaxin, thus facilitate SNARE complex formation. And at 

calcium concentrations higher than 10-6M, it could facilitate binding only autophosphorylated CaMKII to the 

syntaxin binding domain. In chromaffin cells and in neurons, the microinjected CaMKII-binding domain of 

syntaxin specifically affected exocytosis process (Ohyama et al., 2002). 

In addition to presynaptic calcium-binding proteins such as synaptotagmin, munc13, RIM, piccolo, rabphilin 

and doc2 that influence the effectiveness of synaptic process through direct interaction with the machinery of 

the exocytotic protein, raising residual calcium levels can concurrently have useful impacts by means of a 

calcium-dependent regulation of presynaptic protein phosphorylation. CaMKII and PKC were 

experimentally involved as they represent major calcium-activated kinases. It has been found that both of 

them have the ability to phosphorylate a series of relevant exocytotic proteins, and consequently transduce 

activity-dependent modification to the release process (Barclay et al., 2005). 

1.5 Pseudomonas aeruginosa (Ps.a.) 

The genus Pseudomonas is a group of over 140 species of bacteria, all strictly aerobic Gram-negative rods, 

usually found in the environment, including sources of water. Ps.a. is the most common species which could 

cause problems in human health, where colonization estimates range from 3-5 percent among healthy people 

to 20 percent among hospitalized patients. Colonization, however, does not mean infection. In spite of these 

high rates of colonization and virulence potential; Ps.a. is believed to be responsible for less than 10 % of 

inpatient infections (Moore et al., 2016).  

Ps.a. is a widespread opportunistic gram-negative bacterium that can weaken the natural defenses of human 

beings and cause serious pulmonary disease especially in immunocompromised patients. It is one of the 

major pathogenic agents correlated with nosocomial infectious diseases. Ps.a. has a wide variety of virulence 

factors, such as a type III secretion (T3SS), various proteases, lipases, pyocyanin, phospholipases and 

rahmnolipids and other factors (Sadikot et al., 2005), which enable it to promote adhesion, capable of 

modulates or interact with pathways of host cells thus disrupt it and also could target the extracellular matrix.  

Ps.a. tends to make biofilms acting as safeguards to protect it from antibiotics and host immune system 

(Alhazmi, 2015).  
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Some specific strains of Ps.a. have the largest sequenced genome at 6.3 million base pairs (Stover et al., 

2000). This large genome of genetic machinery provides an extraordinary advantage that allows Ps.a. to 

undergo major genetic and phenotypic transformations easily, in response to several changes such as 

environmental changes giving it the flexible capacity for antibiotic resistance (Oliver et al., 2000).  

During the infectious process, Ps.a. arouses a potent inflammatory response. Exposure of the airway 

epithelium to Ps.a. triggers the robust neutrophil chemokines expressions such as IL-6 and IL-8, leading to 

neutrophil infiltration (Greene et al., 2005). Although the recruitment of leukocytes is useful for enhancing 

host defense, extreme neutrophil aggregation leads to life-threatening illnesses, like acute lung injury or 

evolvement of set of associated symptoms such as acute respiratory distress syndrome. Most mortality in 

immunocompromised patients, such as cystic fibrosis, can be due to the gradual deterioration in pulmonary 

function arising from Ps.a. chronic infections. Lung diseases caused by Ps.a. are considered as ones of the 

common causes of death in both immunocompromised individuals and infants (Alhazmi, 2015). Ps.a., once 

obtained, almost always colonizes the lungs of CF patients for life (Watt et al., 2005).  

Many pathogens have developed adaptive strategies to subvert the host innate immune system through 

escaping from PRR detection or deteriorating the downstream cell signalling pathway (Finlay & 

McFadden, 2006). In the CF lung, in response to changes in the lung environment, Ps.a. undergoes major 

genetic and phenotypic transformations. Over the span of chronic pulmonary infection, Ps.a. mutates to a 

mucoid, flagella-deficient phenotype (E. E. Smith et al., 2006) (Jelsbak et al., 2007). Ps.a. could take 

advantage of the PAMPs alteration as a technique to significantly impair and minimize the detection and 

signalling of the innate immune system, thereby preventing the eradication of infection (Cigana et al., 

2009). 

There is a correlation between Ps.a. virulence and hBD-2 production. The changes in the expression of the 

virulence factors of Ps.a. impair the expression of hBD-2 in the lung epithelium, which diminishes the lung's 

innate immune response (Cobb et al., 2004). 

Among most gram-negative bacteria, flagellum is a common structure that is derived from flagellin 

monomers that affords motility, facilitates adhesion, and is therefore a major bacterial virulence factor 

(Soutourina & Bertin, 2003). Flagellum is a bacterial ligand identified by a TLR 5 (Hayashi et al., 2001). 

Flagellum activation of TLR5 undergoes an inflammatory response that is correlated with hBD-2 up-

regulation in airway epithelial cells through a nuclear factor NF-kB dependent pathway (Z. Zhang et al., 

2005a). During the transition to the mucoid phenotype, the loss of flagella expression helps Ps.a. to evade the 

antimicrobial action of hBD-2 by reducing TLR5 stimulation, leading to potent pathogenesis of Ps.a. in the 

CF lung (Hayashi et al., 2001; Z. Zhang et al., 2005a). 
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1.6 Lipopolysaccharide (LPS)  

Lipopolysaccharide (LPS) is the key component of the gram negative bacterial outer membrane, also known 

as endotoxin. LPS is a double-edged sword; because it could be beneficial by stimulating the innate immune 

system of the host, and in the same time detrimental or destructive in a way that causes inflammation, diffuse 

intravascular coagulation, diverse organ failure, shock and sometimes death (Chaby, 2004). LPS could 

trigger acute inflammatory responses by inducing the secretion of a broad variety of inflammatory cytokines 

in different cell types (Ngkelo et al., 2012), particularly in macrophages and B cells (Stewart et al., 2006). 

Beside cytokines, LPS involves in adhesion molecules upregulation in endothelial cells, which further lead to 

apoptotic death activation (Chaby, 2004). 

LPS is considered as a strong proinflammatory PAMP found in the cell wall of gram-negative bacteria. LPS 

response initiated after its interaction with TLR4 in combination with the myeloid differentiation factor 2 

(MD-2) accessory molecules and soluble or membrane-bound protein CD14 (Beutler, 2002) (Borzęcka et 

al., 2013). The response is then transmitted through the IL-1 receptor signalling complex, which includes 

two important adaptor proteins, Myeloid differentiation primary response 88 (MyD88) and TNF receptor 

associated factor (TRAF6), as well as serine-threonine kinase defined as Interleukin-1 receptor-associated 

kinase (IRAK). Also, mitogen activated protein kinases (MAPKs) pathway could be involved in this 

signalling response, which  includes extracellular signal-regulated kinases 1/2 (ERK1/2), c-Jun N-terminal 

kinase (Jnk), and p38 kinase (p38) (Takeda et al., 2003) (O'Neill, 2002). This signal transduction pathway 

further manages the activation of various genes encode proinflammatory cytokines and co-stimulatory 

molecules (Hoffmann et al., 2002). 

LPS in large quantity may form a toxic sign to the cell; due to immune hyperactivation which leads to 

cellular and systemic deterioration. Sepsis progression requires initiation of a systemic inflammatory 

response whereas the host’s response to infection influences the sepsis development (Cohen, 2002; 

Nystrom, 1998). The rise in oxidative stress is a key feature found in the physiopathology of sepsis. Through 

reactive oxygen species (ROS) development, LPS and several cytokines increase the oxidative stress that 

promotes oxidative-mediated cellular injury (F. Simon & Fernandez, 2009). 

As pulmonary infection switches from the acute to chronic phase, the LPS cellular responsiveness declines 

while the LPS expression is not affected (Dalcin & Ulanova, 2013). 

TRPM4 plays a crucial role in controlling LPS-prompted endothelial cell death. It was proved that down-

regulation of TRPM4 substantially reduces LPS-prompted endothelial cell death and also increases 

endothelial cell viability (Becerra et al., 2011). 
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LPS is commonly known as potent monocytes/macrophages activator (Takashiba et al., 1999). LPS may 

also bring about a temporary Ca2+ ion elevation (Martin et al., 2006) (X. Liu et al., 2008),  by releasing 

from intracellular Ca2+ stores. Intracellular calcium movement triggered synaptic vesicles, which are proved 

to be associated with exocytosis (Kochubey et al., 2011). 

1.7 Toll like Receptors (TLRs) 

Toll-like receptors (TLRs) display a family of innate immune recognition receptors, that play a key role in 

detecting pathogens, activating innate immune responses and connecting innate and adaptive immunity 

(Barton & Medzhitov, 2002) (Takeda & Akira, 2001). TLRs are a family of membrane-resident PRRs; 

due to its ectodomain senses. It could easily detect the presence of PAMPs, triggering cellular responses that 

match the infection pattern (Gay et al., 2014). In humans, thirteen TLRs have been recognized as being able 

to react to lipids, proteins or nucleic acids. Except TLR3, all TLRs and IL-1R1 signal trigger activation of 

cytoplasmic TIR domain (Toll/Interleukin-1 Receptor) which in turn recruits the common adaptor molecule 

MyD88, leading to NF-kB activation and nuclear translocation. TLR3 and also TLR4 (beside MyD88 

pathway) could activate the TIR-domain-containing adapter-inducing interferon-β (TRIF) pathway that 

moderates antiviral responses through enhancing interferon regulatory factor 3 (IRF3) transcription factor 

and subsequent production of type I interferons (IFNs) (Kawai & Akira, 2010). 

TLRs activation by any types of agonists triggers the secretion of proinflammatory cytokines, chemokines, 

and IFNs, such as TNF- α and IFN-β, also IL-6, MCP-1, which play a vital role in recruitment of leucocyte 

to the infection site; in order to battle against invading pathogens (Kawai & Akira, 2010). 

TLR signalling caused by any part of bacterial component not only triggers classical immune responses 

through the traditional MAPK pathway, but also it could trigger a rapid elevation in cytosolic Ca2+ which in 

turn enhance ATP release, leading to stimulation of the immune cells in a different manner through autocrine 

and/or paracrine pathway. In fact, ATP production appears to be more important to the immune system, as 

TLR activation could enhance intracellular signalling only in immune cells. However; ATP can in short time 

deliver the warning signal easily to specific receptors of neighboring cells, in a way that is even faster, 

widespread and effective more than the cytokines production. Therefore, the release of ATP may be also 

considered as a form of regulatory feedback circle that may be essential to safeguard host against severe 

infection (Ren et al., 2014). 

Extracellular ATP encourages the macrophage-mediated phagocytosis and cytokine release; in order to clear 

invading bacteria by activating the P2 receptors (purinergic receptors P2X, P2Y, P2Z, P2U, and P2T). Thus, 

the concept for the upregulation of innate immune responses to bacterial infection by extracellular ATP 

releases is mediated by TLR activated calcium mobilization (Ren et al., 2014). 
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When airway epithelial cells are exposed to two different bacterial infections, in the second bacterial 

challenge, it was noticed that TLR responsiveness is diminished. This may be attributed to down regulation 

of IRAK1 signaling protein, which is associated with activation of NF-kB. (Wu et al., 2005). 

Phosphorylation of IRAK1 leads to activation of NF-kB and activator protein-1 (AP-1). These two 

transcription factors induce IL-8 and hBD-2 upregulation in epithelial airway cells (Wehkamp et al., 2004). 

These findings could provide a realistic rationale for the decreased hBD-2 expression levels of in CF patients 

at the chronic stage of lung infection (C. I. Chen et al., 2004). Moreover, in case of advanced chronic lung 

infection, the reduced expression of hBD-2 in the lung related to diminishment in TLR responsiveness gives 

advanced knowledge about why Ps.a. only colonizes in lung after Haemophilus influenzae and 

Staphylococcus aureus Infection. Also, in response to acute infection, a decreasing in TLR4 expression in 

the airway's epithelia was detected, this may contribute to a lower expression of hBD-2 and facilitate 

colonization of Ps.a. (MacRedmond et al., 2005). 

1.8 Antimicrobial peptide (AMPs) 

Antimicrobial peptides (AMPs) are cationic endogenous antibiotic proteins distributed in the epithelium cells 

which are considered as effectors form of the innate immune system, In a concentration dependent manner, 

AMPs exert antimicrobial activity, making their expression a crucial factor in host defense mechanism 

(Guani-Guerra et al., 2010). 

AMPs’s amphiphatic nature leads to their efficacy in coping with hydrophobic and anionic components of 

the bacterial membrane (Moskowitz et al., 2004). Among the main groups of human AMPs are 

cathelicidins, alpha-defensins, and beta-defensins (Pinheiro da Silva & Machado, 2012). 

Beta-defensins are considered as the border line between innate and adaptive immunity. Beta-defensins 

display chemotactic behavior toward mast cells, immature dendritic cells, neutrophils primed with TNF-α, 

and memory T cells expressing chemokine receptor (CCR6) (Boniotto et al., 2006). Beta-defensins have a 

unique antimicrobial activity. Among the different multiple kinds of defensive antimicrobial peptides, it has 

been detected that only hBD-2 and hBD-3 have been increasingly expressed after stimulation by the 

inflammatory cytokine. Regardless to other factors, all other defensive AMPs have been continuously 

expressed (Tsutsumi-Ishii & Nagaoka, 2002). 

However, while pro-inflammatory cytokines, like IL-6, TNF-α, IL-1β, IL-17, IFN-γ and IL-22, can stimulate 

the expression of hBD-2 and hBD-3, these antimicrobial peptides are still expressed in baseline quantities in 

unstimulated cells (Bals & Hiemstra, 2004) (Z. Zhang et al., 2005a). 
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Another distinctive difference between these two humoral stimulation-induced AMPs seems to be that hBD-

2 predominantly targets gram-negative bacteria, such as Ps.a. At the same time hBD-3 has substantial 

bacteriostatic activity against both gram-negative and gram-positive bacteria (Zasloff, 2002). 

HBD-2 is the first peptide antibiotic extracted from human epithelial cell, it is a monomeric protein with six 

residues of conserved cysteine that form three core disulfide bonds (Schibli et al., 2002). Like other 

defensins, hBD-2 is abundant present in the mammalian epithelium cells. HBD-2 mRNA is found out 

expressed in the epithelia of tonsil, trachea, bronchia and lung and thus exhibits a crucial role in combating 

pulmonary infection (Bals et al., 1998). The inducible characteristics of hBD-2 indicate that it plays a vital 

role in innate immune defense. The assumption that hBD-2 is committed to an energetic human host defense 

mechanism of respiratory epithelial is approved (Harder et al., 2000). 

The dynamic interaction happened between hBD-2 and invasive pathogen depends on an electrostatic 

amphipathic attraction between the bacterial phospholipid-bilayer groups that have been negatively charged 

and cationic anti-microbial peptide (Powers & Hancock, 2003) (Zasloff, 2002). After initial electrostatic 

attraction, hBD-2 exerts its antimicrobial effects by disrupting the membrane integrity of the invading 

bacteria through penetration into the phospholipid bilayer, which results in the collapse of the membrane 

potential and thus death of the invading pathogen (Corrales-Garcia et al., 2010).  

HBD-2 as a major inducible antimicrobial factor is coordinated as a response to both microbial infectious 

agents and inflammatory mediators. Clear example of this, hBD-2 is released either by direct interaction with 

the mucoid Ps.a. in airway epithelial cells or through primary cytokines produced endogenously. It may be 

also critical in lung infections produced by mucoid Ps.a. like those observed in CF patients (Harder et al., 

2000). 

In another aspect, mixed or co-pathogenic infection, such as rhinovirus and Ps.a. co-infection of airway 

epithelial cells results in synergistic hBD-2 expression opposed to either pathogen. The combination of virus 

and flagellin contribute in extending this synergistic effect. While this synergy was not shown by the 

flagella-deficient mutant Ps.a., the effects of Ps.a. have been mediated through flagellin interactions with 

TLR5.  in epithelial cells extracted from smokers with retained pulmonary function, and in patients with 

smoking-related mild to moderate chronic obstructive pulmonary disease (COPD), the observed response 

was dramatically attenuated (Arnason et al., 2017). 
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1.9 Transient receptor potential channel (TRP) & Transient receptor potential melastatin 4 

(TRPM4) Channel 

Transient receptor potential (TRP) proteins are a category of ion channels and were initially classified into 

three major subfamilies: TRPV "vanilloid", TRPM "melastatin" and TRPC "canonical" (Clapham, 2003) (C. 

Harteneck et al., 2000) (Montell et al., 2002). Recently, TRP channels based on their structure, have been 

subdivided into six main subfamilies: the TRPV (vanilloid), TRPM (melastatin), TRPA (ankyrin), TRPP 

(polycystin), TRPML (mucolipin), and TRPC (canonical) (Gees et al., 2010).  

 

 

 

 

 

 

 

 

 

 

A topological structure of sensory TRP channels has six membrane-spanning transmembrane domains. The 

assembly of the channels is likely to engage these domains together. The pore loop that permits ionic stream 

is located between the transmembrane 5 & 6 domains. The adversely negative charged residues buildups on 

this pore loop might be necessary to conjugate and penetrate the cations (Owsianik et al., 2006). Amino and 

carboxyl ends are situated in cytosol. In amino terminals, it contains several repeats of ankyrin. The 

transmembrane domains 4/5 linker is expected to be one of the main significant areas or locations for 

interacting with endogenous lipid regulators or lipophilic pharmacological agents. PIP2 could bind to some 

TRP channels' C-termini near the TRP domain (S. Yoo et al., 2014). 

The largest and most diverse subfamily of the TRP superfamily is the TRPM (transient receptor potential 

melastatin) family (Fleig & Penner, 2004). The TRPM subfamily comprises of eight individuals, from 

TRPM1 to TRPM8. On the basis of sequence homology, it can be classified into four groups as follows: 

TRPM1/3, TRPM2/8, TRPM4/5, and TRPM6/7. Ca2+ permeability in TRPM family varies from Ca2+ 

Fig. 1: Phylogenetic tree of the mammalian TRP channel superfamily.  

The TRP channel family is divided into six subfamilies, which are closely related but can be discriminated upon their 

tertiary structure into a TRPV, TRPM, TRPA, TRPP, TRPML, and TRPC branch (Gees et al., 2010). 
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impermeable as seen in TRPM4 and TRPM5 channels to extremely permeable to Ca2+ in other channels 

(Gees et al., 2010).  

Awareness of their physiological activity has quite recently started to emerge. These TRPM channels are 

widely expressed in various tissues, organs, and contribute to the signaling of cellular Ca2+ via encouraging 

Ca2+ passage into the cytosol responding to various physiological processes such as alteration in ion 

concentration, lipids and tiny molecules, which in turn act as intracellular second messengers. Thus, it 

facilitates Ca2+ influx through Ca2+ permeable channels such as (TRPM1, TRPM2, TRPM3, TRPM6/7, 

TRPM8) or by indirect influencing on other various channels such as modulating the membrane potential of 

voltage-gated Ca2+ channels. Several biological processes such as oxidative stress sensing, endothelial 

permeability regulation, cell death, magnesium homeostasis, myogenic reaction, and vascular tone control 

can be affected by variation in intracellular cellular Ca2+/Mg2+ ion concentration or a shift in the membrane 

potential and subsequent electrical activity of the cell (Felipe Simon et al., 2013) (McNulty & Fonfria, 

2005) (Earley et al., 2004).  

This TRPM family members have thus drawn more attention during the last decade, to the promising drugs 

for treating of various disease such as cardiovascular diseases (Abriel et al., 2012), type II diabetes 

(Vennekens et al., 2018), neurodegenerative disorders (Yuyang Sun et al., 2015), inflammation (Zierler et 

al., 2017), and inflammatory pain (Held et al., 2015). 

TRPM channels architecture remained undetected until late 2017, the structure was resolved using single-

particle cryo-electron microscopy, where several TRPM4 structures and one TRPM8 structure were revealed 

(Winkler et al., 2017) (Guo et al., 2017) (Autzen et al., 2018) (Yin et al., 2018). 

The TRPM channels classified among the largest individuals in the TRP superfamily as shown in (Fig.1), it 

includes cytosolic domain of almost between 732 and 1611 amino acids per subunit. They have a standard 

characteristic structure consisting of a cytoplasmic transmembrane domain (TMD) comprising of six 

transmembrane helices that connect both N and C-terminal together as illustrated in (Fig.2). At N-terminal 

there is a TRPM major homology region (MHR) domain. At C-terminal terminal, it has TRP helix, coiled-

coil domain, and a carboxyterminal domain (CTD) which varies from one individual to another (Huang et 

al., 2020).  
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TRPM4 is one of the eight individuals from the TRPM subfamily branched from TRP channels (Christian 

Harteneck, 2005) (Kraft & Harteneck, 2005). A crown-like tetrameric transmembrane core with a domain-

swapped architecture reflects the TRPM4 structural topology. As shown in (Fig.3), the tetrameric 

composition of TRPM4 is determined by N-terminal nucleotide-binding domain in NH2 terminal and C- 

terminal coiled coil domain in other COOH terminal. Six transmembrane helices (S1-S6) contain a 

distinctive selectivity filter as a loop shape lying between S5 and S6. These six helices connect both sides of 

cytoplasmic N- and C-termini. (Nilius et al., 2005a) (Clémençon et al., 2014) (Autzen et al., 2018). A 

lower gate is formed by a cluster of hydrophobic amino acids. Endogenous modulators that bind to the 

intracellular tails of TRPM4 will allosterically affect channel-gating. Additionally, several intracellular 

factors, which have binding sites on both terminal including Calmodulin (CaM), phosphatidylinositol 4,5-

bisphosphate (PIP2), PKC, ATP, etc., could modulate and closely regulate the ultimate TRPM4 Ca2+ 

sensitivity (Nilius et al., 2005b) (Nilius et al., 2006) (Vennekens & Nilius, 2007) (Guo et al., 2017). 

In various cell types, the key difference between TRPM4 and TRPM5 is dependent on its sensitivity to 

smaller concentration of intracellular Ca2+ which have the ability to boost activation. The HEK-293 cell 

study showed that the Ca2 + half-maximum current (EC50) concentration for TRPM4 activation (20.2 ± 4.0 

µM) was far higher than the EC50 of TRPM5 activation (0.70 ± 0.1 µM) (Ullrich et al., 2005). 

TRPM4 is expressed by about 90% of cells which also express TRPM5. In some cases, a desired dynamic 

coupling between both channel TRPM4 and TRPM5 is required to produce the appropriate cellular response. 

Even so, if this dynamic coupling occurs, the channels are able to operate independently via responding to 

higher stimulus concentrations. Coupling of TRPM4 and TRPM5 could encourage to evoke greater 

sensitivity to Ca2+ concentration. In other systems, TRP channels have been shown to complement 

functionally (Chubanov et al., 2004) (Lintschinger et al., 2000) (X.-Z. S. Xu et al., 1997). 

Fig. 2: Domain organization of TRPM family.  

Domain organization of a monomer of the human TRPM family; N-terminal homology region domain (MHR), 

the C-terminal domain (CTD) differs from one family member to another, modified after (Huang et al., 2020). 
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A critical phase in determining of TRP channels performance validity and functionality tends to translocate 

to the plasma membrane. Numerous members of the TRP family, such as TRP-3 (TRPC homologs) (X. Z. 

Xu & Sternberg, 2003), TRPC3 (Singh et al., 2004), TRPC5 (Bezzerides et al., 2004), TRPC6 (Cayouette 

et al., 2004) and TRPV1 (Morenilla-Palao et al., 2004) have been reported to translocate to the plasma 

membrane during exocytosis. Many cellular physiological processes such as fertilization, nociception and 

differentiation are implicated in recruitment of TRP channels to the plasma membrane (Singh et al., 2004) 

(Bezzerides et al., 2004) (Morenilla-Palao et al., 2004). Translocation and activation of TRPM4 were 

conditioned to increase in intracellular Ca2+ ion concentration, in contrast with other channels such as 

TRPC3 and TRPC6 in which an independent Ca2+ mechanism was proposed for their activation (Singh et 

al., 2004) (Cayouette et al., 2004).  

TRPM4 channels have three isoforms resulting from alternative splicing: (P. Launay et al., 2002) the full-

length TRPM4 (TRPM4b) (Fleig & Penner, 2004), TRPM4a isoform with 174 amino acid deletion at N-

terminal (Vennekens & Nilius, 2007), and TRPM4c isoform without 537 amino acids (Vennekens & 

Nilius, 2007) (J. C. Yoo et al., 2010) (C. H. Cho et al., 2014). However, in vivo, the specific functions of 

these splicing variants are still mysterious. 

TRPM4b channels form the basis of a modulatory mechanism that manages the amount of the Ca2+ inflow by 

boosting the membrane potential and thereby subsequent driving the Ca2+ inflow via other pathways 

permeable to Ca2+. The physiological effect of TRPM4b on Ca2+ signalling depends on the cellular sense in 

which it is expressed. Once intracellular Ca2+ increase, the voltage-dependent Ca2+ channels acting as a major 

activation for TRPM4b channel. Lacking of voltage-dependent Ca2+ channels in electrically non-excitable 

cells seems to minimize Ca2+ influx by the decrease in driving force for Ca2+ entry induced by depolarization. 

Fig. 3: Overall TRPM4 architecture 

A, 3D reconstruction of TRPM4 with specific colour for each subunit. B, Schematic depiction of the domain 

arrangement in a single subunit of TRPM4. C, Structure of a single cyan colored subunit in the same orientation as 

present in the diagram A, modified after (Guo et al., 2017). 
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TRPM4b in these types of the cells can function to regulate intracellular Ca2+ oscillations via oscillatory 

changes in membrane potential in coordination with K+ and Cl- channels (P. Launay et al., 2002). 

1.10 Ca2+ and TRPM4 Channel 

TRPM4 is broadly described as a non-selective Ca2+ activated cation channel that is mainly permeable to 

monovalent ions such as K+ and Na+ without obvious noticeable permeation to divalent cations such as Ca2+ 

ions (X. Z. Xu et al., 2001). 

In comparison to other members of the TRP family, an elevated concentration or intracellular accumulation 

of Ca2+ can cause TRPM4 activation (Nilius et al., 2003) (Nilius et al., 2005b) (Venkatachalam & 

Montell, 2007) (Vennekens et al., 2007). Furthermore, TRPM4 is feasible with the following ionic 

selectivity for monovalent cations: Na+>K+> Cs+> Li+ (Nilius et al., 2005a). TRPM4, however, demonstrates 

no Ca2+ permeability, it causes accumulation of intracellular Ca2+ leading to cell membrane depolarization, 

sustain Ca2+ overload could further contributes to cell damage or death (Song & Yuan, 2010) (C.-H. Cho et 

al., 2015). 

The changes in the concentration of intracellular Ca2+ are closely linked to a wide variety of physiological 

and pathological processes in significant tissue systems. For instance, proliferation and differentiation of 

epidermal cells in tissue culture are sharply affected by changes in Ca2+ concentration (Hennings & 

Holbrook, 1983), TRPM4 has been associated with various physiological functions, including cell 

membrane depolarization as a defense against Ca2+ overload. Regulation of Ca2+ oscillations could also drive 

cytokine synthesis in leukocyte such as T lymphocytes and mast cells.  Moreover, they have an impact on 

dendritic cell migration (Barbet et al., 2008) (Pierre Launay et al., 2004) (P. Launay et al., 2002) 

(Vennekens et al., 2007). It has been reported that, proliferation, cytokine secretion, phagocytosis, and 

apoptosis, are regulated by intracellular Ca2+ concentration (Lewis, 2001) (Dai et al., 2009). In macrophages 

and neutrophils Ca2+ mobilization through activated Ca2+ channels have been detected and appear to be a 

predominant factor for the activation of these phagocytic activity. Also tightly regulated Ca2+ mobilization 

and its control by TRPM4 are essential for the effective activation of monocytes and macrophages to combat 

acute infection (C. Lee et al., 2003) (Schorr et al., 1999) (Serafini et al., 2012). 

TRPM4 is implicated in the control of Ca2+ homeostasis (Abriel et al., 2012), by decreasing the driving 

force of Ca2+ influx via the activated Ca2+ channel. In fact, under physiological conditions, higher 

intracellular Ca2+ concentration drives TRPM4 channel opening, which permits massive Na+ ion influx and 

subsequent leading to membrane depolarization, thus reducing of an additional Ca2+ ions influx (Pierre 

Launay et al., 2004). TRPM4 could acts in conjunction with the activated Ca2+ channels in various types of 

immune cells including T cells, mast cells and DC's to manipulate intracellular Ca2+ concentration, and thus 

subsequent physiological reactions (Pierre Launay et al., 2004) (Barbet et al., 2008). 
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After TRPM4 is triggered by a rise in intracellular Ca2+ concentration, currents decay quickly occurred due to 

a rapid decrease in TRPM4 sensitivity to Ca2+ (P. Launay et al., 2002) (Nilius et al., 2004) (Nilius et al., 

2003).  

TRPM4 is rapidly desensitized to Ca2+, and TRPM4's Ca2+ sensitivity is controlled by several factors mainly 

binding at the C terminus, such as ATP, PIP2, PKC-dependent phosphorylation, and calmodulin. Cellular 

modulation and modification occur by these factors through interacting with distinctive residues located in 

the TRPM4 channel. Desensitization is noticed delayed when Mg-ATP is bound, the PKC phosphorylation 

of the channel, and the CaM is bound to the C-terminal region of TRPM4 channel (Nilius et al., 2005b). 

ATP plays a pivotal role in sustaining the Ca2+ sensitivity of the TRPM4 channels. ATP addition helps 

preserve TRPM4's Ca2+ sensitivity in the inside-out patches. TRPM4 could overcome the desensitization. 

This was noticed when the cytoplasmic membrane was treated with a Ca2+ free solution containing Mg-ATP. 

Intriguingly, all mutations that have altered putative ATP binding sites on TRPM4 have significantly 

accelerated Ca2+ channel desensitization. And at least a proportion of TRPM4's Ca2+ sensitivity is restored 

directly once ATP binding (Nilius et al., 2005b). 

ATP believed as the valuable key in differentiation between TRPM4 and TRPM5 channels, where TRPM4 

showed sensitivity toward internal ATP which could lead to block it, while TRPM5 does not display the 

same feature and couldn’t be blocked by internal ATP. This difference is possibly due to the presence of four 

ATP binding sites in the TRPM4 channel, while TRPM5 shows only one binding site which appears to be 

not easily accessible (Ullrich et al., 2005).  

PIP2 is a minor ingredient of the phospholipid cell membrane. It has been reported as the most significant 

regulator of TRPM4 channel. TRPM4 has two PIP2 binding sites at its C terminal, suggesting that the 

modification or depletion of these binding sites can affect the sensitivity of TRPM4 to both PIP2 and Ca2+, 

thus acting as a possible factor of its desensitization (Nilius et al., 2006) (Z. Zhang et al., 2005b).  

PIP2 is a substrate for a variety of significant signaling proteins. It acts as a substrate of phospholipase C 

(PLC) (Watschinger et al., 2008) (Hammond et al., 2006). PIP2 is a powerful TRPM4 enhancer which can 

lead to a desensitization impact on TRPM4 activity via Ca2+ activated PLC, which mediate PIP2 

decomposition in the plasma membrane (Nilius et al., 2006) (Z. Zhang et al., 2005b), thus turns TRPM4 

channel progressively to Ca2+ insensitivity, leading to a transition towards the state of negative potential 

(Nilius et al., 2006) (Nilius & Vennekens, 2006), Poly-L-lysine, which is a form of PIP2 scavenger, has 

been shown to cause sharp TRPM4 desensitization (Z. Zhang et al., 2005b). PIP2 is unable to activate 

TRPM4 on its own, but able to rectify desensitization through increasing TRPM4's sensitivity to Ca2+, and 
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limit TRPM4's voltage dependence (Nilius et al., 2006) (Z. Zhang et al., 2005b) (Vennekens & Nilius, 

2007). 

PKC-dependent phosphorylation modulates the Ca2+ sensitivity of TRPM4. The EC50 value for TRPM4 

activation by Ca2+ was reduced from 15 to 4 µM by the Phorbol 12-myristate 13-acetate (PMA), a PKC 

activator, which improves TRPM4 activity by increasing TRPM4's vulnerability to Ca2+. This effect was 

eliminated when one of the two C-terminal Ser residues (Ser1152 and Ser1145) required for PKC 

phosphorylation was mutated (Guinamard et al., 2004) (Nilius et al., 2005b).  

CaM binding to the TRPM4 C terminus enhances its activation at high physiological voltages. In contrast to 

Ca2+ activated K+ channels, it was demonstrated that Ca2+ binding is absolutely necessary for TRPM4 

activation. However; in the absence of Ca2+, TRPM4 fails to be activated even at extremely positive voltages 

(Nilius et al., 2005b). 

By using in-vitro binding assays, it was revealed that TRPM4 has five short CaM binding sites: two at the N 

terminus and three at C terminus. It was proved that TRPM4 CaM interaction is a Ca2+ dependent manner, In 

the presence of Ca2+, all CaM-binding fragments showed a much stronger association with CaM than in the 

absence of Ca2+, and only one region was detected which has the ability to bind to a measurable amount of 

CaM in the absence of Ca2+ ions. It is thought that CaM-binding sites tend to be preferentially participating in 

channel control. Since elimination of the C-terminal but not the N-terminal sites impacted TRPM4's Ca2+ 

sensitivity, in which the current amplitude was significantly decreased and rapid current decay was 

facilitated (Nilius et al., 2005b). 

The aim of this work is to investigate the contribution of the TRPM4 channel on the bacteria induced 

pulmonary host defence. To do this, bronchial epithelial cells, cell lines and monocyte derived macrophages 

were used to examine the inflammatory response and host defence after the inhibition of TRPM4 and 

additional bacterial stimulation. Additionally, the lungs of TRPM4-knockout mice were stimulated with heat 

inactivated bacteria to investigate the contribution of TRPM4 on the inflammatory response and the 

expression of host defence molecules.  

During the scope of this work, the following questions will be answered: 

1. Is TRPM4 expressed in airway epithelial cells and can its activity be inhibited without inducing 

cytotoxicity? 

2.  Is the activity or presence of TRPM4 necessary to induce the release of inflammatory cytokines 

after bacterial stimulation in vitro and in vivo? 

3. Is the innate immune defence compromised after the inhibition of TRPM4 in vitro and in vivo? 
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2. Material and Methods 

2.1 Material 

2.1.1 Devices 

Table (1): summarizes the devices uses in this study. 

1.  Analytical balance, KERN ABS-N / ABJ-NM, Analytical balance, KERN EMB 200-2 

2.  BD FACS Canto II 

3.  Biological Safety Cabinets, Thermo Scientific™ Safe 2020 Class II, Biological safety 

cabinets, MSC-Advantage™ Class II 

4.  Cellspin II, THARMAC 

5.  Centrifuge Heraeus Fresco 21, Centrifuge Allegra X-30R, BECKMAN COULTER, 

Centrifgue, Heraeus Megafuge 1.0RS, Thermo Scientific, Centrifuge Heraeus Labofuge 400, 

Kobe. 

6.  ChemiDocTM MP Imaging System 

7.  ELISA Plate Washer, Capp W-12 Wash, 12 channel 

8.  Epithelial Voltohmmeter, EVOM1, World-Precision-Instruments, Sarasota, FL, USA. 

9.  FLUOstar Omega –Microplate Reader, BMG Labtech 

10.  Freezer PHCbi TwinGuard MDF-DU502VX, -86°C,528L, Freezer, Thermo Scientific™ 

HERA ™ HFU T Series -86 ° C Ultra Low Freezers 

11.  Handheld Magnetic Separator Block for 96 Well Flat Bottom Plates, Merck Millipore 40-285 

12.  Heater & Stirrer, NeoLab, D-6010, Stirrer Neolab D-6011 

13.  Heating block, Biozym Scientific GmbH 

14.  HERAcell 240 CO2-Incubator Thermo Scientific   

15.  Homogenizer, ULTRA-TURRAX®, IKA 

16.  Incubation shaker, Thriller, PeQLab 

17.  Lonza-Amaxa Nucleofector I devices 

18.  Luminex MAGPIXTM 

19.  Magnetic stirrer - with heating plate, Heidolph MR 3000 

20.  Microscope Olympus BX51 + Camera Olympus DP72, Microscope Leica Microsystem CMS, 

Microscope Axiovert 25 Carl Zeiss Microscopy GmbH 

Structured Illumination Microscopy (SIM), Zeiss Elyra PS1 Zeiss, Oberkochen 

21.  Microwave, Exquisit 

22.  Multi-channel pipette, manifold dispenser, Eppendorf, Multichannel electronic pipette, 

EPPENDORF Research Pro/Plus, Multichannel electronic pipette, Thermo Scientific  

23.  NanoDrop 8000 Spectrophotometer, Thermo Scientific 

24.  Pipettes, Gilson™ PIPETMAN Neo  

25.  Pipetting aid, NeoLab 8-5010 

26.  Plate Shaker, Heidolph Titramax 101, Shaker, Heidolph Duomax 1030, Minishaker MS1, 

MS2 IKA®, Roller shaker, RST 

27.  Spectrometer Ultraspec 2100 Pro, biochrom 

28.  Structured Illumination Microscopy (SIM) Zeiss Elyra PS1 Zeiss, Oberkochen. 

29.  Thermal cycler CFX96 Touch™ BioRAD, C1000 Touch, Thermal cycler T100 TM BioRAD 
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30.  Ultrapure water purification systems, Barnstead™ GenPure 

31.  Vacuum filtration devices bottle-top filters, Type DS0320, Thermo Scientific 

32.  Vertical Autoclave, ZIRBUS Technology 

33.  Vortex, NeoLab, D-6012, Vortex, Genie 2, Scientific Industries, Vortex Janke & Kungel 

34.  Water bath WB6, VWR, Water bath GFL Typ 1003 Kobe      

Table 1: Used devices in this study. 

2.1.2 Commercial Kits, Reagents and Chemicals 

Table (2): summarizes the commercial kits that were used in this study 

No. Kits 

1.  Pierce™ BCA Protein Assay Kit, Number 23225. 

2.  RNA isolation (NucleoSpin® RNA, Machery-Nagel) REF. 740955. 

3.  Thermo Scientific RevertAid RT Kit #K1691. 

4.  SensiMix™ SYBR® & Fluorescein Kit, BioLine, Cat. QT615-05. 

5.  LDH-Cytotoxicity Assay Kit II (ab65393 Abcam Company). 

6.  Duo-Set ELISA kits (R&D Systems, Lille, France) Cat. DY406, DY410, DY452, DY453, 

DY206, DY210, DY208, DY4570, DY276. 

7.  Ingenio® Electroporation Kits for Amaxa® Nucleofector®, MIR 50111. 

8.  R&D System Human Premixed Multi-Analyte Kit; Cat. LXSAHM. 

9.  R&D System Mouse Premixed Multi-Analyte Kit; Cat.  LXSAMSM. 

Table 2: Used commercial kits in this study. 

Used reagents and chemicals were listed according to Table (3). 

Protocols Reagents and Chemicals 

Cells and Cell lines o Medium DMEM1x, GlutaMAX, Gibco  61965-026. 

o RPMI medium 1640 (1x) + Gluta MAXTM-1, Gibco  61870-010. 

o Medium DMEM/ F-12 (1:1), + L-Glutamin, Gibco  11320-074. 

o 1:1 DMEM/F12, Gibco 11320-074. 

o Airway Epithelial Cell Growth Medium Kit, PromoCell   C-21160  

o Primocin:Antimicrobial agent for primary cells, InvivoGen ant-pm1 

o Ultroser-G serum substitute, Pall Life Science, Cytogen, Greven, 

Germany, No. 15950-017. 

o RIPA Lysis buffer, Thermo Scientific ™ 89900 

o 25 mM Tris pH 7.4, 150 mM NaCl, 1% NP-40, 0.1% sodium dodecyl 

sulfate, 4% protease inhibitor. 

o PBS 1x, sterile, Dulbecco’s, without Ca/Mg++, PAA H15-002   

o Penicillin/Streptomycin (100x), PAA P11-010 

o Trypsin-EDTA-Solution (0,05% Trypsin/0,02% EDTA), 1x 

Invitrogen 25300-054  

o Fetal Bovine Serum (FBS), Gibco 10270-106  

o Trypan blue solution (0.5g / 100mL) in sodium chloride solution 

(0.9g / 100mL), sterile filtered. PH 7.4 storage at room temperature 

(RT) 

Human bronchial 

primary epithelial cell 

o DMEM/Hams F12 medium (Gibco, ThermoFisher Scientific, 

Waltham, MA, USA, Cat.11320033) 
o 0.1% Pronase-E (Sigma Aldrich, St. Louis, MI, USA, Cat. 9036-06-
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0) 
o 0.1% DNAse (Sigma Aldrich, St. Louis, MI, USA, Cat. 

10104159001) 
o 1% penicillin-streptomycin (Gibco, ThermoFisher Scientific, 

Waltham, MA, USA, Cat. 15140-122)  
o 1% Ultroser G (Pall Life Science, Cytogen, Greven, Germany, No. 

15950-017) 
o 1 µM A83-01 (TGF-β inhibitor, Tocris Bioscience, GB, Cat. No. 

2939)  
o 0.2 µM DMH-1 (BMP4 inhibitor, Tocris Bioscience, GB, Cat. No. 

4126)  
o 5 µM Y27632 (ROCK inhibitor, Tocris Bioscience, GB, Cat. No. 

1254) 
Tracheal primary 

epithelial cells from 

mice 

o Pronase E 20 mg/ml (Sigma-Aldrich) Cat. No. 10165921001 

Dissolved in Tris-HCl buffer (0.5 M; pH=7.5) at 37 °C. this solution 

made up prior to use, aliquoted and stored at- 20 °C. 

o DMEM/Hams F12 medium (Gibco, ThermoFisher Scientific, 

Waltham, MA, USA, Cat.11320033) 

o Airway epithelial cell culture medium (PromoCell) (Ready-to-

use) Cat. No.C-21060 

Bone-marrow-derived 

macrophages 

(BMDMs) from mice. 

o BD Pharm Lyse (BD Biosciences, Cat. No.555899) 

o Ficoll-Paque plus (GE Healthcare, Cat. 17144002) 

o GM-CSF& M-CSF (R&D Systems, Cat.415-ML-010& 416-ML-

010) 

o Medium DMEM1x, GlutaMAX (Gibco 61965-026)                     

o PBS 1x, sterile, Dulbecco’s, without Ca/Mg++ (SIGMA D8537)                            

o Penicillin/Streptomycin (100x)(Gibco 15140-122)                                               

o Trypsin-EDTA-Solution (0,05%) Trypsin/0,02% EDTA (Gibco 

25300-054) 

o Fatal Bovine Serum (FBS) (Gibco 10270-106)                 

o CD68 antibody  (Biolegend, Cat. 137007) 

o F4/80+ antibody(Biolegend, Cat. 123125)    

ELISA o PBS: 137 mM NaCl, 2.7 mM KCl, 8.1 mM Na2HPO4, 1.5 mM 

KH2PO4, pH 7.2-7.4, 0.2 µm filtered (R&D Systems, Cat. # DY006). 

o Wash Buffer: 0.05% Tween® 20 in PBS, pH 7.2-7.4 (R&D Systems, 

Cat. # WA126). 

o Reagent Diluent: 1% BSA in PBS, pH 7.2-7.4, 0.2 µm filtered (R&D 

Systems, Cat. # DY995). 

o Substrate Solution:   

 TMB Solution, Calbiochem, CL07 

 Solution1:1 mixture of Color Reagent A (H2O2) and Color Reagent 

B (Tetramethylbenzidine) (R&D Systems, Cat. # DY999). 

o Stop Solution: 2 N H2SO4 (R&D Systems, Cat. # DY994). 

FACS o BD FACS Flow sheath fluid (BD Biosciences, 342003) 

o BD FACS Clean solution (BD Biosciences, 340345) 

o BD FACS shutdown solution (BD Biosciences, 334224) 

o BD FACS™ lysing solution (BD Biosciences, 349202) 

o 25mM EDTA 

o BD CytofixTM fixation buffer (BD Biosciences, 554655) 

o BD Perm/wash™ buffer (BD Biosciences, 554723) 
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o Human TruStain FcX ™ (Fc receptor blocking solution) 

(Biolegend, 422301) 

o Human IL-6 PE-conjugated antibody (R&D Systems, Clone #1936, 

Cat. #IC206P)  

o Stain buffer with FBS (BD Biosciences, 554656) 

o CS&T Beads (BD Biosciences, 650622) 

o FacsDiva Software 

Western Blotting o 10x blotting buffer 

0,048 M Tris Base, 0,039 M Glycine, dissolved in 600 ml distilled 

water and adjust pH to 9.2, 0,0013 M SDS, Distilled water filled 

up to 1 L. 

o 1x blotting buffer (1 litre) 

100 ml 10x blotting buffer, 700 ml Aqueous distilled water, 200 

ml absolute Methanol.  

o 10X SDS-PAGE Running buffer 

0,25 M Tris Base, 1,92 M Glycin, 1% SDS, PH adjusted to 8.3 

with HCl. 

o 1X SDS-PAGE Running buffer (1 litre) 

100 ml of 10X SDS-PAGE Running buffer, 900 ml distillated 

water.  

o RIPA Lysis Buffer 

NaCl, 1% Triton X-100, 0.5% Sodium deoxycholate, 0.1% SDS, 

50 mM Tris, pH adjusted to 8.0 

o Dilution Buffer  

Phosphate Buffered Saline (PBS) or Tris Buffered Saline (TBS)  

o Washing Buffer 

5-10 mL of 10% Tween-20 were added to 1 Litre of Dilution 

Buffer to reach a final 0.05-0.1% Tween-20 concentration. 

o Blocking Buffer 

5% Milk powder in TBST or 5% FBS in TBST 

o Roti®-Load 1, Carl Roth Gmbh, K929. 

o cOmplete EDTA-free, Protease Inhibitor Cocktail Tablets, Roche, 

Cat. No. 11 873 580 001. 

o PhosSTOP, Phosphatase Inhibitor Cocktail Tablets, Roche, Ref. 04 

906 845 001 

o 4-12% Tris-Glycine gel & 10- 20 % Tris-Tricine gel, Anamed 

electophorese GmbH, TG 41212& TR 12012. 

o Nitrocellulose membrane or polyvinylidene difluoride membrane, 

Thermo Scientific™ 88018, 88518 

o SeeBlue® Plus2 Pre-Stained Protein Standard, Invitrogen™ 

LC5925. 

o Pierce™ ECL Western Blotting Substrate, Thermo Scientific™ 

32209. 

o Film cassette 

o Developing and Fixing reagents for processing autoradiographic 

film, ASN 110105. 

o Restore™ Western Blot Stripping Buffer, Thermo Scientific™ 

21059. 
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Immunofluorescence 

for adherent cells line  
o Coverslip/chamber slides 

Coverslip 1.5, thickness (0.17 mm) or chamber slides coated with poly-L-

lysine or collagen coating. 

o Solutions & Antibody: 

 10× PBS:    

NaCl 80g, KCl 2.0g, Na2HPO4 14.4 g, KH2PO4 2.4 g, Distilled Water 800 

mL, pH adjusted to 7.2-7.4 with HCl., adjust volume to 1 L with additional 

H2O and sterilize by autoclaving. 

 1xPBS 

100 ml of the 10xPBS were diluted in a total 1L volume of dd H2O. 

 Washing Buffer: 

1 X PBS (or) PBST: add 0.5 ml of Tween-20 in 1L 1xPBS and mix well. 

 Fixatives: 

4% Paraformaldehyde (PFA), pH 7.4 or 100% ice-cold methanol (or) Ice-

cold1:1methanol/Acetone 

 Blocking Buffer  

5-10% serum from host species of secondary antibody (blocking) (or) 1-3% 

BSA (stabilizer) in 1 x PBS (or) 1-3% BSA (stabilizer) in 1 x TBST 

 Permeabilization Buffer 

0.05-0.3% Triton X-100 (or 100 µM digitonin or 0.5% saponin) in PBS 

 Antibody Dilution Buffer    

1-2% BSA (for stabilizer and blocking) in 1 x TBST 

 Phalloidin-iFluor 488 Reagent, Abcam ab176753 

 ProLong® Gold Antifade Reagent with DAPI, Invitrogen™ 

P36941 

 ProLong™ Diamond Antifade Mountant with DAPI, 

Invitrogen™ P36966 

Experimental Mice 

infection 

o Dissecting tools, Cannula (green, diff. color according to needle size), 

Thread, 50 ml falcon tubes, 8 ml screw capped bottle, Eppendorf tubes, 

Needles and syringes, PBS, Flushing solution (PBS+EDTA 0,5mM), 

4% formaldehyde, 2-3% isoflurane, lidocaine solution, Bepanthen 

eye&nasal ointment, intubation platform with O-ring attached to 

Velcro strip, Teflon plunger syringe, cotton-wooden applicator, wire, 

catheter, heating pad, ketamine/xylazine anesthesia solution (5x for 10 

mice):  437,5 µl Rompun® (xylazine) + 1312,5 µl Ketamin + 250µl 

Nacl or water. 

Other chemicals and 

reagent used 

o TRPM4 inhibitor 9-Phenanthrol-CAS 484-17-3 – Calbiochem, Sigma 

Aldrich 

o TRPM4 antibody 9-Phenanthrol, TOCRIS 484-17-3 

o TRPM4 - Control Antigen, Alomone Labs ACC-044 

o DAPI, Roth 6335.1 

o LPS-B5 Ultrapure, Cat. # tlrl-pb5lps, Lot# B5P-41-01, InvivoGen 

o FLA-PA Ultrapure, Cat. # tlrl-pafla, Lot# FPA-40-02, InvivoGen 

o Pam3CSK4, Cat. # tlrl-pms, Lot# 5930-41-05, InvivoGen 

o Dimethylsulfoxid, ≥99,5 % (DMSO), Carl Roth 

o β-Mercaptoethanol, Sigma-Aldrich 

o cOmplete ULTRA Tablets, Mini, EDTA-free, EASYpack, Roche 

o Pierce™ Phosphatase Inhibitor Mini Tablets; Thermo Scientific™ 
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o Ethanol absolute, Sigma-Aldrich 

o Methanol, >99,9%, Fisher Scientific GmbH 

o Agarose, Sigma-Aldrich 

o Agar Powder, VWR 

o LB Agar, Carl Roth 

o LB Broth, Carl Roth 

o Pseudomonas Isolation Agar, Difco, 500g, BD Biosciences 

o Triton X-100, Roche 

o Diff Quick or Quick Giemsa stain, Medion Diagnostics.  

o Giemsa May-Grünwald, RAL Diagnostics. 

o TRIzol® Reagent, Life Technologies 

o Trypan Blue, Carl Roth 

o Tryptic Soy Broth, Fluka 

o Tryptone, Applichem 

o Tween 20, AppliChem 

Table 3: Reagents and chemicals used in this study. 

 

2.1.3 Consumables  

Lab consumables used in lab work were gathered in Table (4). 

1.  Beakers with spout, low form, measuring beakers, with handle, polypropylene, Measuring 

cylinder, borosilicate glass, class A, blue graduated 

2.  Pasteur pipettes, glass VWR 612-1701, Graduated pipettes & Serological pipettes 5 ml, 10 

ml, 25 ml sterile, CELLSTAR, greiner bio-one 

3.  Erlenmeyer flasks, narrow neck, wide neck, Laboratory flasks with blue screw caps, bottles, 

with screw cap and retrace code, Conical flasks, narrow neck, wide neck, Culture flasks, 

borosilicate glass, Wide-necked flasks, low-density polyethylene natural, high-density 

polyethylene brown, Tissue culture flasks, TC flask, sterile, 75 cm2 (250 ml), vented cap 

(red) Sarstedt 703230 

4.  Thermo Scientific™ Pierce™ 96-Well Plates, Product No. 15041 

96 well microplates (R&D Systems, Catalog # DY990). 

12-well transwell cell culture plates with a polyester membrane with 0,4 µm pore size 

(Corning Inc., Lowell, MA, USA)  

Axon Labortechnik, 25 x 96-well PCR plate with half frame, segmented 4 times, suitable for 

cutting Nr. 28242 

Microplate BRAND plates®, immunoGrade, size 96 wells, flat bottom, transparent 

5.  Microlitre syringes, for removable needles 

Hemocytometer counting chamber 

6.  Falcon Tubes 50 ml, sterile GBO 227261, Culture glass tubes, screw cap, Soda-lime glass, 

Storage cases for culture tubes 

7.  Standard reaction tubes, 3810 X,0.2 cm cuvettes (Ingenio® Cuvettes), Cryotubes, CryoPure 

cryovial 1.6 ml Sarstedt REF 72.380, Centrifuge tubes, PP, Polypropylene test tubes, 

Polystyrene test tubes BD Biosciences, High speed centrifuge tube, borosilicate glass 

8.  Reaction tube stand, PP, Safe-lock reaction tubes, PP, Tube racks 4-Way, PP, Wire Racks, 

epoxy-coated steel, Microtube Racks, 20-Well, 80-Well, 96-Well PP, Test tube racks, 

wire/nylon, Test tube racks, stainless steel, Floating cryovial and tubes racks 
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9.  Collapsible boxes, PP, Jars with screw cap, PE-HD, Transport and storage containers, PE-

HD, Nalgene Cryo 1°C Freezing Container 

10.  Spray bottles, wide neck, LaboPlast®, PE/PP, Aspirator Bottles, wide mouth, PE-HD, narrow 

neck, PE-HD, with stopcock 

11.  Laboratory trays LaboPlast®, PP, Laboratory spoon, stainless steel, Reagent spoons, double-

ended, 18/10 steel. 

12.  Spatulas, round grooved, 18/10 steel, Spoon spatulas, 18/10 steel, deep form, Measuring 

scoops, PP, Scoops, stainless steel, Square weighing boats, antistatic, PS 

13.  Forceps, 18/10 steel, Forceps, curved end, stainless steel, Cover glass forceps, stainless 18/10 

steel 

14.  Pipette tips, racked in TipBox, Pipette tips refill TipStack™, sterile, BIO-CERT®, Pipetman 

DIAMOND® tips – Towerpack™ 

15.  Pipettes, Pasteur, plastic, Manual repetitive pipette, Petri dishes, Bottle-top dispenser, 

Circular vinyl-coated Lab ring, Funnels, PP 

16.  Magnetic stirring bar, octagonal, PTFE, Magnetic Stirring Bar Retrievers, PTFE-coated 

17.  Needles and waste containers, Biohazard Disposal Bags, PP, red, Holder for waste sacks, 

Lab. trolleys, stainless steel, Pressure atomizer LaboPlast®, PE-HD, Dewar carrying flasks, 

cylindrical, for CO2 and LN2, Stopcocks LaboPlast®, Angled stopcocks, PE-HD 

18.  Filter discs, Filter paper, Absorbent disposable paper tissue, Quantitative filter paper, circles, 

Syringe filters, disposable, Chromatography paper/Ion exchange papers 

19.  Parafilm® M sealing film, Adhesive label tape Write-on™, writable, Autoclavable adhesive 

Tape, Cryogenic boxes, slip lid with adaptable height, PP, Plate sealers (R&D Systems, 

Catalog # DY992). 

20.  laboratory coats, Safety spectacles, Surgical face masks, Infrared Thermometers 

21.  Latex gloves "Select Blue", powder free, Latex medical examination gloves "Comfort", 

powder free, Latex medical examination gloves "Comfort", powder free, Disposable nitrile 

gloves, powder free, Cryogenic Gloves water proof 

22.  Lab Notebook, Lab markers, 1.0 mm point, Permanent markers, edding 404, 0.75mm, 

CD/DVD/BD markers, edding 8400, 0.5mm to 1mm, grease pen (Dako-pen) pencil, cover 

slip, Batteries Energizer, Label printer BMP™71, Labels for label printers BMP™71, Dual 

short period timer WB 388 TR 118 OS, Paper-cutting scissors, stainless steel. 

Table 4: Lab consumables used in this study. 
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2.1.4 Nucleic Acids 

2.1.4.1 Primers 

Primers specific for target genes were list in Table (5). 

Gene  Sequence (5'->3') 
Amplicon 
Size (bp) 

S100 A8 
F TTC TGT TTT TCA GGT GGG GC 

190 
R TCT GCA CCC TTT TTC CTG ATA TAC T 

TLR4 
F CAT CCC TGG GTG TGT TTC CA 

670 
R ACC ACA CTT ACA TGT AGC ACG  

TLR4-EXON 
F GAT AGC GAG CCA CGC ATT CA 

167 
R TTA GGA ACC ACC TCC ACG CAG  

TNF-α 
F TGA AAG CAT GAT CCG GGA CG 

287 
R CAG CTT GAG GGT TTG CTA CAA C 

CXCL2 
F TAA AAG GGG TTC GCC GTT CTC 

346 
R CCA TTC TTG AGT GTG GCT ATG AC 

IL-6 
F GAT GGC TGA AAA AGA TGG ATG C 

230 
R TGG TTG GGT CAG GGG TGG TT 

IL-1β 
F CAA CAG GCT GCT CTG GGA TT 

175 
R GTC CTG GAA GAA GCA CTT CAT  

IL-8 
F TCT GTG TGA AGG TGC AGT TTT G 

309 
R ATT TGC TTG AAG TTT CAC TGG CA 

TRPM4 
F CTG AAT GAC CGG CCT GAG TT 

267 
R AGA GCA GAT ACA TCT CGG CG 

TRPM5 
F GAC CAG AAG GTC GTC ACC TG 

321 
R TTC CCA GCC ATC TAA ACC ACC 

TRPV1 
F CAG TCC GGG AAA CAC TTC AGT TCT A 

490 
R CTG GGA CAG CAG CCT GG 

TRPV4 
F GAT TCA GGA AGC GCG GAT CTC  

478 
R GCG GCT GCT TCT CTA TGA TCT  

hBD2 
F ACC AGG GAC CAG GAC CTT TAT 

190 
R GCT CCA CTC TTA AGG CAG GT 

hBD1 
F GCC TCA GGT GGT AAC TTT CTC A 

180 
R GCG TCA TTT CTT CTG GTC ACT 

mBD1 
F ACA TCT GCC TGG TCC TGA GT 

138 
R CAG GAA GCC TGT GTA CCG TG 

mBD4 
F GAG CCA TAT GCT GGG GTC C 

144 
R ATG GAG GAG CAA ATT CTG GCA A 

House Keeping gene 

HPRT1 
F CCT GGC GTC GTG ATT AGT GA 

505 
R ATC CAA CAC TTC GTG GGG TC 

hGAPDH 
F GAT CAT CAG CAA TGC CTC CT 

97 
R TGT GGT CAT GAG TCC TTC CA 

hbAct 
F AAG ATC AAG ATC ATT GCT CCT CCT G 

428 
R TGT AAC AAC GCA TCT CAT ATT TGG AA 

mBact 
F AGA TCA AGA TCA TTG CTC CTC CTG AGC G 

176 
R AAA CGC AGC TCA GTA ACA GTC CGC  

Table 5: The used primers in this study. 
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2.1.4.2 Short hairpin RNA (shRNA) plasmid 

The gene expression of TRPM4 was inhibited by the use of pre-designed and validated shRNA Plasmids 

(Mission RNAi, Merck KGaA, Darmstadt, Germany). The constructs were designed and validated by the 

RNAi Consortium (TRC, Broad Institute). 

 

 

 

The following shRNA constructs were used listed in Table (6). 

Plasmid Abbreviation Function Sequence Target 
TRCN0000044923 siRNA1 TRPM4-

shRNA 

GCTGCTCTATTTCTGGGCTTT Exon 17 

TRCN0000437533 siRNA2 TRPM4-

shRNA 

GTTCGTGCGCTTGCTCATTTC Exon 11 

SHC016 ctr-siRNA non-target 

shRNA 

  

Table 6: The used shRNA in this study. 

 

Fig. 4: Plasmid map of pLKO.1-puro plasmid.  

The shape on top view shows the general structure of the shRNA-construct, that hybridizes to the 

shRNA-structure after transcription (bottom design). Image by Merck KGaA. 
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The specificity of the small interfering RNA (siRNA) sequences was selected to cover different exons of 

human TRPM4. To visualize their specificity, the RNA-sequences were pasted to the webpage “splice 

center, siRNA Check” at the National Cancer Institute, Genomics and Bioinformatics Group 

(http://projects.insilico.us/SpliceCenter/siRNACheck, (M. C. Ryan et al., 2008)). The sequence of siRNA 1 

hybridizes on exon 17, near the ion transporter domain (red rectangle in Fig.5), while siRNA2 is binding to 

the n-terminal part of exon 11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Schemata of the proposed binding sites of the selected siRNAs on the genomic DNA of 

human TRPM4.   

Image by Splice Center (M. C. Ryan et al., 2008). 
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2.1.5. Antibodies and peptides 

2.1.5.1 Primary antibody 

Primary antibodies are summarized in Table (7). 

Table 7: Primary antibody used in this study. 

 

 

2.1.5.3 Secondary antibody 

Secondary antibodies used were collected in Table (8). 

Table 8: Peptide and reagent used in this study. 

 

 

 

 

 

 No. Antibody  Company Article-No.  Mouse/Human  Sec. Antibody 

1.  PLC ß2 
Santa Cruz 

Biotechnology 
sc-515912 H M R Mouse 

2.  TRPM4 Alomone Labs ACC-044 H M R Rabbit  

3.  Actin / β-actin Cell signaling  4967L H M R Rabbit  

4.  Actin / β-actin Abcam ab8226 H M R Mouse  

5.  IL-6 R&D MAB206 Human/Primate Mouse  

6.  NF-κB p65 Cell signaling  8242S H M R Rabbit  

7.  p44/42 (ERK1/2) Cell signaling  4695S H M R Rabbit 

8.  Phospho-p44/42 (Erk1/2) Cell signaling  4370S H M R Rabbit 

9.  
Human IL-6 PE-conjugated 

Antibody 
R&D IC206P Human ------------ 

No. Secondary Antibody Company Article-No. Host Conjugated with 

1.  Anti-Mouse IgG R&D NL007 Donkey 
NorthernLights 557 

Fluorochrome 

2.  Anti-Mouse IgG N-Histofine 414131F Goat HRP 

3.  Anti-Rabbit IgG N-Histofine 414341F Goat HRP 

4.  Anti-Rabbit IgG 
Santa Cruz 

Biotechnology 
sc-362270 Bovine Alexa 555 Orange 

5.  Anti-Rabbit IgG Invitrogen A10523 Goat Cy5 Red 

6.  Anti-Mouse IgG Dako P0161 Rabbit HRP 

7.  Anti-Rabbit IgG Dako P0448 Goat HRP 
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2.1.6 9-phenanthrol TRPM4 inhibitor  

The 9-phenanthrol (9-Ph.) phenanthrene derivative is a recently reported TRPM4 channel inhibitor, 

subsequent experiments on other ion channels support its specificity toward TRPM4 channel (Guinamard et 

al., 2014).  

9-phenanthrol 's ultimate strength lies in its efficiency to discriminate between TRPM4 and TRPM5, which 

are otherwise closely similar (Ullrich et al., 2005) (Guinamard et al., 2011). The discovery of 9-Ph. 

provided a valuable opportunity to differentiate between them in native preparations; because these two ion 

channels hold ionic currents with quite similar characters. 

Primarily, 9-Ph. inhibitor was tested on the TRPM5 channel, the nearest TRPM4 family relevant, it was 

found that about 10-4 M concentration of 9-Ph. in HEK-293 cells did not influence a recombinant TRPM5 

current, this is a promising indication of its high selectivity for the TRPM4 channel (T. Grand et al., 2008). 

Furthermore, TRPM4 current inhibition by 9-Ph. modifies a wide range of physiological processes, and has a 

significant impact in many pathological conditions. 9-Ph. regulates smooth muscle contraction in the bladder 

and cerebral arteries, affects neuronal and cardiac spontaneous function, and decreases cell death caused by 

lipopolysaccharide. Imminent applications 9-Ph. could be a successful prospective application in term of 

cardioprotective effects against ischaemia-reperfusion injuries and in lowering ischaemic stroke injuries 

(Guinamard et al., 2014). 

Results obtained from patch recordings and inside-out configuration suggest that, due to 9-Ph. 

hydrophobicity, the molecule is capable of crossing the membrane of the molecule, it is more probably to 

interact with the channel on both sides, although the specific site of interaction within the channel is not 

recognized (T. Grand et al., 2008) (Seung Kyoon Woo et al., 2013). 

2.1.7 Software, statistics and data work 

The Microsoft office software package was used for texts and calculations.  

Results are expressed as mean ±SEM. Statistical significance was analyzed using the T test, then "Unpaired t 

test" or One-way ANOVA, then One-Way Analysis of Variance and posttest "Tukey's Multiple Comparison 

Test" according to the number of groups to be analyzed. Statistical analysis and diagrams were created with 

GraphPad Prism 8 software (La Jolla, CA, USA) and statistically evaluated. A p-value p < 0.0332, p < 

0,0021, p < 0,0002, p < 0,0001 was considered significant. 
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2.2 Methods 

2.2.1 Molecular biological and microbiological methods 

2.2.1.1 Preparation of lysate from cell culture for protein extraction 

The treated cell culture plates were put on ice, supernatant media was aspirated, then the cells were twice 

washed with ice-cold PBS, PBS aspirated, and then 300 µl of ice-cold radioimmunoprecipitation assay buffer 

(RIPA) lysis buffer was applied to each well within 6 well plates, protease and phosphatase inhibitor tablets 

were added to prepared lysis buffer, also 1mM (1.7 milligrams) of serine protease inhibitor 

Phenylmethylsulfonyl fluoride (PMSF) (serine hydrolase inactivator) could be added, which was widely used 

for lysate preparation. Constant shaking was maintained for 30 minutes (min.) up to 1 hour (hr.) at 4°C to 

detach the adherent cells. By using a plastic cell scraper, the cells were scraped off and gently moved to a 

pre-cooled microcentrifuge tube, then centrifuged for 30 min. at 14,000 xG or maximum speed for 10 min. at 

4°C. The tubes were carefully removed from the centrifuge and put on ice. The supernatant was transferred 

to a fresh tube kept on ice, while the pellet was discarded. For longer preservation, supernatant tubes were 

stored at -80°C for the future usage. 

2.2.1.2 Protein concentration measurement  

The BCA protein is a bicinchoninic acid (BCA) dependent technique for sensitive and optimized 

colorimetric detection and total protein quantification. This approach uses a special reagent containing 

bicinchoninic acid to detect cuprous cation (Cu+1) after reduction of Cu+2 to Cu+1 by protein in an alkaline 

medium (biuret reaction). The purple-colored reaction product is obtained by the chelation of two BCA 

molecules with one cuprous ion. this water-soluble complex at 562 nm give a linear relationship with 

increasing protein concentrations over a large working range between (20-2000µg/mL). 

It is reported that the macromolecular protein structure, peptide bonds number, and the existence of four 

unique amino acids (tyrosine, tryptophan, cystine, and cysteine) are necessary for BCA color evolution. 

Studies of the two, triple and quaternary peptides indicate that the intensity of color formation results from 

more than just the sum of the individual functional groups producing color. Protein concentrations are 

therefore usually calculated and monitored with regards to common protein standers, such as bovine serum 

albumin (BSA). Serial dilution of known protein concentration was prepared, that is processed together with 

unknown one. Then the concentration is easily calculated based on the standard curve. 
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2.2.1.2.1 Preparation of diluted albumin (BSA) standards 

The components of one albumin standard (BSA) ampule was diluted in multiple dry and clean vials to 

prepare a set of protein standards (standard curve) as shown in table (9), where RIPA buffer is used as a 

diluent and blank for measurement correction. 

Preparation of diluted protein standards were made according to the Table (9). 

 

 

 

 

 

Table 9: diluted albumin (BSA) standards used in this study. 

2.2.1.2.2 Preparation of the BCA working reagent (WR) 

Working reagent was obtained by dissolving 50 parts of BCA Reagent A with 1 part of BCA Reagent B 

(50:1, Reagent A:B), thereafter 25 µl of each standard or unknown sample was pipetted in replicate or 

triplicate into a microplate well, then 200µl of the WR (200:25 = 1:8) was applied to each well and the plate 

mixed gently for 30 second (s) on a plate shaker. The plate was subsequently sealed and incubated at 37°C 

for 30 min., then cooled to room temperature (RT). The absorbance was assessed at or around 562 nm on the 

plate reader, corrected by a blank. The mean blank standard 562 nm absorbance measurement is subtracted 

from all other standard or unknown sample. The standard curve was used to determine the concentration of 

protein in each unknown sample which was designed by plotting the average BSA standard blank-corrected 

measurement compared to its concentration in µg/mL. Eventually samples were diluted with Lysis buffer or 

PBS without inhibitor to obtain protein concentration adjusted to 10-20 µg per 20 µl. 

2.2.1.3 RNA isolation 

For cultured cell line cells, lysis were performed according to the used protocol by adding 350 µl lysis buffer 

RA1 and 3.5 µl ß-mercaptoethanol (ß-ME) to the well plate and robustly vortexed for about 30 min. in cold 

room. Filtration was done to lessen viscosity and clear the lysate through nucleospin violet ring filter which 

was placed in a collection tube (2 mL), then the mixture was applied to it, and centrifuged at 11,000 xG for 1 

min. The nucleospin filter was discarded and 350 µl ethanol (70%) was applied to the homogenized lysate 

and mixed by pipetting up and down 5 times, or flow-through alternatively transferred into a new 1.5 mL 

centrifuge tube, 350 µl ethanol (70%) was added and mixed by vortexing (2x5) s. Lysate was pipetted 2-3 

times up and down and loaded to the light blue ring nucleospin RNA column in collection tube. 

Centrifugation carried out at 11,000 xG for 30 s, then the column transferred to fresh collection tube (2 mL). 
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Then 350 µl MDB (Membrane Desalting Buffer) were added which work on salt removal for further 

efficient rDNase digestion then centrifugation occurred at 11,000 xG for 1 min. to dry the membrane, 95 µl 

DNase (used for DNA digestion) reaction mixture was applied directly to the center of the column's silica 

membrane and incubated for 15 min. at RT. Washing carried out on 3 steps as follows: in 1st step 200 µl of 

washing buffer RAW2 (which will inactivate the rDNase) were loaded to the nucleospin RNA column and 

centrifuged at 11,000 xG for 30 s. Then the column transferred to 2 ml a new collection tube. On 2nd wash, 

600 µl washing buffer RA3 were loaded to the nucleospin RNA column and centrifuged at 11,000 xG for 30 

s. Flow-through was discarded and the column returned back to the collection tube. On 3rd wash, 250 µl 

washing buffer RA3 were loaded to the nucleospin RNA column and centrifuged at 11,000 xG for 2 min.  

For completely drying the membrane, the column then transferred to a nuclease-free collection tube. RNA is 

eluted into 60 µl RNase-free H2O and centrifuged for 1 min. at 11,000 xG. The elution can be made in 40 µl 

if higher RNA concentration is needed. 

2.2.1.3.1 RNA concentration measurement 

Concentration of RNA were assessed using Nano-drop device, 1µl of the samples dispensed onto the lower 

measurement pedestal ensuring the samples are laid in the lower pedestal. Then the obtained result exported 

to excel file and the final concentration adjusted to 1µg/10µl. 

2.2.1.3.2 cDNA synthesis  

The following reagents were applied to a sterile, nuclease-free tube on ice in this specified order: total RNA 

5µg, random hexamer primer 1µg, water, nuclease-free 6µl, thus the total volume was 12µl. 

The vial was centrifuged and incubated at 65 °C for 5 min. cooled on ice, spun down and returned back on 

ice. Then the following ingredient were added consecutively: 5X Reaction Buffer 4µg, RiboLock RNase 

Inhibitor (20 U/µl) 1µg, 10 mM dNTP Mix 2µl, RevertAid Reverse Transcriptase (RT) (200 U/µl) 1µl, thus 

the final volume was 20µl. Contents mixed carefully, centrifuged and incubated in thermal cycler for 60 min. 

at 42 °C. The reaction was then stopped through heating at 70 °C for 5 min. Finally, 180µl of nuclease free 

water added to each sample and stored at -80 °C for further usage. 

Some control reactions are often required to validate the effects of cDNA synthesis like positive and negative 

control, also to test RNA sample for genomic DNA contamination, reverse transcriptase minus (RT-) 

negative control is essential in real-time polymerase chain reaction (RT-PCR) or quantitative polymerase 

chain reaction (qPCR), which includes every reagent for the reverse transcription reaction, except for the RT-

enzyme. To evaluate the reagent contamination, no template negative control (NTC) is required, which 

includes every reagent for the reverse transcription reaction except RNA template. 
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2.2.1.4 Real-time polymerase chain reaction (RT-PCR) or quantitative polymerase chain 

reaction (qPCR) 

The most sensitive and accurate tool for detecting and quantifying nucleic acids (DNA, cDNA, & RNA) 

levels is real-time or quantitative PCR. It is based on fluorescence detection and quantification in real time 

emitted from a reporter molecule. This detection was reported at each amplification cycle through the 

accumulation of the PCR product, thus allowing the PCR reaction to be tracked during the early & 

exponential phase, where the first significant growing in the PCR product is associated with the original 

target template amount. 

The SensiMixTM SYBR®& Fluorescein Kit is a high-performance product laid out for outstanding specificity 

and sensitivity on real-time PCR with optional use of a passive fluorescein reference signal. It is inactivated 

and has no polymerase activity during the initialization of the reaction, which avoids non-specific 

amplifications, including the formation of primary dimers.  

SensiMixTM SYBR®& Fluorescein Kit is supplied as a 2x master mix including; SYBR Green I dye, dNTPs, 

stabilizers and enhancers. SYBR I could not bind to single-strand DNA. But it has the ability to bind with 

double-strand DNA. Upon binding to double-strand DNA it emits very brightly fluorescence. The SYBR I 

signal strength correlates with the amplified DNA and thus the initial sample input quantities. 

The following components are added in semi-skirted 96-well PCR plate in the following order, 25 µl of 2x 

SensiMix™ SYBR®& Fluorescein, 0.5 µl 25 µM forward primer, 0.5 µl 25 µM reverse primer, H2O up to 45 

µl, and 5 µl cDNA template, thus the final volume was 50 µl. Then PCR programme is adjusted and run 

according to the protocol as illustrated in table (10), then the result was exported and analyzed for gene 

expression using ΔΔCt quantification. 

Table (10): PCR designed thermal cycler programme. 

 

 

 

 

Table 10: The used thermal cycler conditions in PCR. 

 

 

Cycles  Temperature  Time  Notes  

1  95 °C  10 min  Polymerase activation  
40  95 °C  

55-60 °C  
72 °C  

15 s  
25 s  
25 s  

Temp. depends on the Tm of 
primers  
Acquire at end of step  
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2.2.1.5 LDH cytotoxicity assay  
Lactate dehydrogenase (LDH) is a stable enzyme that is present in all forms of cells and upon damage to the 

plasma membrane, it is easily released into the cell culture medium. Hence, LDH is the most commonly used 

marker in the assessment of cytotoxicity. 

To make sure of reagent effectivity and also ensure and validate the result, some controls should be included 

such as positive control which could be utilized to verify whether all reagents are properly working in 

response to active LDH enzyme by adding 5 µl of LDH solution in triplicate cultured well. Background 

control, in which 100 µl of culture medium without cells were added in triplicates per each well, for 

normalization, the obtained value from background control has to be subtracted from all other outcome. Low 

control was achieved by adding 100 µl of cells in triplicate wells, while for high control, 10 µl cell lysis 

solution were added to 100 µl of cells in triplicates well and mixed well. 

The desired tissue cultured cells were collected from 75 cm2 (250 ml), vented cap culture flask, washed twice 

with sterile PBS, and then seeded into a 96-well plate of 100 µl cells in triplicate approximately 

corresponding to 2-10x104 cells. Well plates were left in an incubator (5 % CO2, 90 % humidity, 37°C) 

overnight for full attachment. Then tested substances were added in a different concentration to each well 

and mixed well. Well plates were incubated in an incubator (5 % CO2, 90 % humidity, 37°C) for different 

time point 3, 6, 18 hr. At the end of the incubation, the plate was gently shaken to ensure that LDH in the 

culture medium is distributed uniformly and centrifuged at 600 xG for 10 min. to precipitate the cells. 10 µl 

from each transparent medium solution was transferred to new 96-well plate. Then LDH reaction mix was 

prepared by mixing WST substrate mix with LDH assay buffer. 100 µl of fresh prepared LDH reaction mix 

was applied to each well, thoroughly mixed and incubated for about 30 min. at RT, the reaction stopped by 

adding 10 µl stop solution to each well, mixed and readed using a plat reader fitted with a 450 nm (440-490 

nm) filter assessed absorption for all controls and samples. The reference wavelength was adjusted at 650 

nm. Finally, the equation shown below were used for data analysis: 

Cytotoxicity (%) = (Test Sample – Low Control) / (High Control – Low Control) X 100 

2.2.1.6 Microbiological methods- preparing of heat inactivated Pseudomonas aeruginosa 
Pseudomonas aeruginosa (Ps.a.) stored in glycerol in -80°C was thawed and streaked onto previous prepared 

agar plates in a biosafety cabinet and incubated at 37°C for 24 hr. For additional confirmation step, another 

streak is done on cetrimide agar that is used for the selective isolation of Pseudomonas aeruginosa, cetrimide 

is considered as selective agent that inhibits a wide variety of microbial flora. It also enhances the production 

of pyocyanin and fluorescein pigment, which display a distinctive blue-green and yellow-green color. Then 

the two isolated colonies were picked up from agar plate and placed into 100 mL of sterilized Luria-Bertani 

(LB) medium and incubated in rotatory shaking position for 18 hr. at 37°C. Next day, after centrifugation at 

maximum speed, supernatant was discarded to obtain the pellets which were re-suspended in PBS, and 

bacterial suspension concentration were measured using spectrophotometer at optical density (O.D.) 600 nm 
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wavelength. Then the suspension was reconstituted and measured again till reach 1.0 O.D. value which 

approximately corresponded to 2.04×108 colony-forming unit (CFU)/ml (D. J. Kim et al., 2012). then 

suspension was aliquoted in 500 µl Eppendorf tubes. Heat inactivation was carried out using heating block at 

75°C for 30 min. and finally stored in -80°C for longer preservation.   

2.2.2 Cell culture methods 

2.2.2.1 Cell lines and cell culture 

In general, deep freeze cell lines were thawed and grown in 75 cm2 (250 ml) tissue culture flasks with 25 ml 

appropriate medium containing 10% FBS+1% streptomycin& penicillin antibiotic till reached 80% confluent 

growth. Then media removed, cell lines washed twice with PBS, detached using Trypsin/EDTA, and cell 

number were counted using hemocytometer counting chamber. After that the cell lines were seeded in 12 

well plates at a density of 4 x105 per well or 6 well plates at a density of 10 x105 per well, then incubated 

overnight to settle down and fully attachment in a cell culture incubator at 37°C, 5 % CO2, and 95% 

humidity, after that cell lines were starved for at least 6 hr. in a suitable media containing 1% FBS, the cell 

lines were now ready for treatment. 

The experiment was divided into 4 sets, 4 wells per each group, one group untreated cells as a control group, 

2nd group treated with 20 µM TRPM4 inhibitor, 3rd group treated with 100 µl heat inactivated Ps.a., 4th group 

pre-treated with 20 µM TRPM4 inhibitor for 3 or 6 hr. prior to heat inactivated Ps.a. treatment. Cells were 

incubated in a cell culture incubator at 37°C, 5 % CO2, and 95% humidity for 18 hr. Then the supernatant 

was collected for measuring different inflammatory cytokines and chemokines using ELISA or LUMINEX, 

the cells were trypsinized, collected, transferred to Eppendorf tubes and stored at -80°C for further protein 

expression measurement and messenger RNA (mRNA) activity detection using suitable picked primers and 

real-time PCR procedure. 

In a separate set of experiments to be used for western blot, cells were treated for maximum 4 hr. to detect 

the phosphorylation or nuclear translocation of different protein involved in inflammatory signaling pathway. 

After treatment, media removed, cells washed with PBS in 4°C, RIPA Lysis buffer containing two tablets 

(anti-proteases and anti-phosphorous) were added to the cells. Plates were put on plate shaker at 4°C for 30 

min. up to 1 hr. Then the cells were collected with cell scraper and transferred to Eppendorf tubes. 

Centrifugation carried out for 30 min. at 14,000 xG or maximum speed for 10 min. then supernatant 

discarded and cells stored at -80°C for further usage. 

Protein concentration were measured using Pierce™ BCA Protein Assay Kit. Concentration of each 

unknown samples is determined based on the standard curve of a series of dilutions of known prepared 

protein concentration as described before, and adjusted to 10-20 µg per 20 µl. SDS-PAGE and western 

blotting were carried out according to later described protocols.  
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2.2.2.1.1 NCI-H292 & U937 cell line 

NCI-H292 is human cell line derived from a 32-year-old female lymph node metastasis of pulmonary 

mucoepidermoid carcinoma. It derived during studies of enzyme deficiencies in squamous cell cancers. In 

tissue culture, the cells maintain their mucoepidermoid features as recognized by their ultrastructure and 

expression of multiple squamous differentiation markers (Banks-Schlegel et al., 1985) (Carney et al., 

1985). 

U937 cell lines were derived from of a 37-year-old caucasian male patient with diffuse histiocytic 

lymphoma. It was used to study the behavioral characteristics and differential propagation of monocytes 

because it is one of few cell lines which has the ability for continuous display of monocytic features. In 

response to a variety of soluble stimuli, U937 cell lines mature and differentiate acquiring the morphological 

and characteristic features of mature macrophages (Sundström & Nilsson, 1976). 

NCI-H292 epithelial cell lines and U937 macrophage cell lines were obtained and grown in 75 cm2 tissue 

culture flasks with RPMI medium 1640(1x) + GlutaMAXTM containing 10% FBS + 1% 

streptomycin/penicillin antibiotic till reached 80% confluent of growth. Cell lines were seeded in 12 well 

plates at a density of 4 x105 per well, then incubated overnight in a cell culture incubator at 37°C, 5 % CO2, 

and 95% humidity, after that cell lines were starved for at least 6 hr. in RPMI medium 1640(1x) + 

GlutaMAXTM containing 1% FBS, the cell lines were now ready for treatment. 

2.2.2.2 Isolation and culture of human bronchial primary epithelial cell  

Human primary bronchial epithelial cells were isolated from small airways obtained during surgical lung 

resections. The samples were collected freshly after obtaining the patients informed consent. After surgery 

and evaluation by a pathologist only healthy tissue samples were selected for the isolation of cells. The cells 

were isolated by enzymatic digestion of small airways as described by (Bals et al., 2004). Briefly, small 

airways were separated from connective tissue by mechanical dissection. The small airways were incubated 

over night at 4°C in DMEM/Hams F12 medium (Gibco, ThermoFisher Scientific, Waltham, MA, USA), 

including 0.1% Pronase-E (Sigma Aldrich, St. Louis, MI, USA) and 0.1% DNAse (Sigma Aldrich, St. Louis, 

MI, USA). On the next day the cells were separated from the surrounding tissue by mechanical detachment, 

after centrifugation the cells were re-suspended in complete growth medium for adherent growth. Complete 

growth medium consists of airway epithelial cell growth medium, containing growth factor supplements 

(both Promocell, Heidelberg, Germany), 1% penicillin-streptomycin (Gibco, ThermoFisher Scientific, 

Waltham, MA, USA), 1 µM A83-01 (TGF-b inhibitor, Tocris Bioscience, GB), 0.2 µM DMH-1 (BMP4 

inhibitor, Tocris Bioscience, GB), and 5 µM Y27632 (ROCK inhibitor, Tocris Bioscience, GB). Cells were 

cultured in a cell culture incubator at 37°C, 5 % CO2, and 95% humidity. After 3 to 4 days, floating cells 

were discarded and the medium changed thereafter every two days until reached confluent growth. After that 

media removed and cells washed with PBS, trypsinized, counted and transferred to 12-well plates with a 
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DMEM/Hams F12 medium contain 1% Ultroser G, serum substitute for animal cell culture, (Pall Life 

Science, Cytogen, Greven, Germany). The cells were now ready for treatment with different reagent and 

bacteria. 

2.2.2.3 Isolation and culture of tracheal primary epithelial cells from mice  

On first day, Germ-free mice (specific pathogen-free (SPF)) were killed by cervical dislocation or gassing 

with isoflurane. Tracheae were cleaned from surrounded muscles and organs (thyroid, esophagus, etc.), 

dissected, cuted between the larynx and bifurcation, and mounted on scissor tip. The rests of surrounding 

tissues were removed with tweezers and the tracheae were cuted lengthwise. Tracheae were washed in sterile 

phosphate buffered saline (PBS) and put into ice-cold Ham’s F12 (penicillin+ streptomycin+ nystatin) 

medium. From this point, all further steps were carried out under sterile bank.  Every 2 tracheae were put in 5 

ml Ham’s F12 medium (penicillin+ streptomycin+ nystatin) containing 1.5 mg/ml of pronase E and 

incubated for 18 hr. at 4 °C. This enzyme tends to hydrolyze peptide bonds on the carboxyl side of aspartic 

or glutamic acid. 

On second day, the digestion stopped by adding 10 % fetal calf serum (FCS). The tubes containing cell 

mixtures were gently inverted 12 times to disassociate the epithelial cells from tracheae. The medium was 

transferred into a new sterile 50 ml tube.  The tracheae were washed with the same volume of Ham's F12, 

(penicillin+ streptomycin+ nystatin) supplied with 10 % FCS, inverted again 12 times and combined with the 

first part of cell suspension. Tracheae were washed one more time with 1.7 ml Ham's F12 (penicillin+ 

streptomycin+ nystatin) supplied with 10 % FCS, tubes also were inverted 12 times and finally tracheae were 

discarded. The cell suspension of washed trachea was combined together and centrifuged 5 min. at 400 xG. 

Supernatant were removed and the cell pellet were re-suspended in 400 µl of Ham's F12 (penicillin+ 

streptomycin+ nystatin) containing 0.5 mg/ml DNase (The DNase degrade the DNA released during the cell 

lysis) and 10 mg/ml BSA. the mixture was incubated on ice for 5 min. and centrifuged at 400 xG for 5 min., 

supernatant removed, the cell pellets were resuspended in 5 ml of airway epithelial cell culture medium 

(PromoCell) containing 10 % of FCS, the cell suspension transferred into a petri dish and incubated for 3 hr. 

at 37°C & 5 % CO2. The non-epithelial cells will adhere to the dish surface more rapidly. The supernatant 

contained epithelial cells was removed carefully and centrifuged for 5 min. at 400 xG. Then fresh medium 

was added to the pellet, cell counted. The cells were now ready to be applied for airway-liquid interface 

(ALI) culture system and subsequent reagent and bacterial treatment. 
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2.2.2.4 Air Liquid interface culture of human bronchial & mice tracheal epithelial cells 

Differentiated epithelial-like structures were obtained by cultivation of primary airway epithelial cells at an 

air-liquid-interface. Cells from a cell culture flask at a passage number (n<10) were trypsinized and 

transferred to 12-well plates equipped with transwell cell culture inserts (Corning Inc., Lowell, MA, USA) 

with a polyester membrane with 0,4 µm pore size. The cells were seeded at a density of 2x105 cells/well in 

complete airway epithelial cell growth medium. After reaching confluency, the medium in the upper 

compartment was removed. The medium in the lower compartment was exchanged to differentiation 

medium, which consists of 1:1 DMEM/F12 (Gibco, ThermoFisher Scientific, Waltham, MA, USA) 

supplemented with 2 % Ultroser-G serum substitute (Pall Life Science, Cytogen, Greven, Germany). The 

medium was exchanged every two day. Cell differentiation in this cell culture model correlates with the 

development of an increased electrical resistance across the cells. To evaluate cellular differentiation, the 

trans-epithelial resistance (TER) was measured after every medium exchange with an epithelial 

voltohmmeter (EVOM1, World-Precision-Instruments, Sarasota, FL, USA). Primary bronchial epithelial 

cells are considered to be differentiated after reaching a TER of more than 1000 Ohm/cm2. 

2.2.2.5 Air Liquid interface tissue culture infection with live Pseudomonas aeruginosa 

Two or three colonies of sub-cultured Ps.a. are incubated in the 20-25 ml of liquid broth overnight at 37°C, 2 

or 3 ml were taken from overnight culture & transferred to 20 ml fresh liquid broth. Mixed well, the optical 

density was measured using spectrophotometer and the dilution was adjusted to 0.3 O.D., when needed few 

drops of overnight culture added to reach the desired concentration. The suspension was incubated for 1-2 hr. 

at 37 °C, for growth stimulation & enhancement, and the O.D. was re-measured at regular time interval till 

reach the 1 O.D. concentration; then was diluted using sterile PBS to 1:10 000 dilution or 1:100 (2X), thus 

the bacterial suspension are ready for treatment. The confluent air liquid interphase tissue culture cell line 

was treated from apical side with 15 µl per each well (equal to 104 CFU/ml), and incubated for 6 hr. at 37°C. 

The cells were flushed apically using 85 µl PBS, the bacterial flushing suspension solution was collected and 

loaded to small Eppendorf tubes, then was cultured on agar plate for counting (serial dilution 1:10 or 1:100 

fold was made till 1:100 000 dilution & cultured on two agar plates). Down compartment filtrate can be used 

also for measuring different inflammatory cytokines using ELISA technique. 

2.2.2.6 Isolation and differentiation of bone-marrow-derived macrophages (BMDMs). 

Wild type (WT) mice, 6-8-week-old were used to collect bone marrow cells by separating and flushing tibias 

and femurs with DMEM, GlutaMAXTM containing 10 % heat-inactivated FBS, 50 U/ml penicillin, and 50 

mg/ml streptomycin. Flushing solution was transferred to 15 ml falcon tube, and then centrifuged at 1500 

rpm for 5 min. The supernatant was discarded and the pellets were dissolved in 3 ml DMEM media. BD 

Pharm Lyse was used as an optional choice to dissolve red blood cells. 2 ml of fresh media was added to 3 

ml pellets and mixed by pipetting up and down 2-3 times and loaded drop by drop to the wall of falcon tube 
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containing 3 ml Ficoll-Paque, then centrifuged at room temperature for 30 min. It is necessary to avoid 

vigorous movement and refrained from centrifugation brake usage. The upper layer was removed till 

reaching mononuclear cells buffy ring layer. mononuclear cells were loaded to new falcon tube, re-

suspended in 5 ml DMEM containing 10 % heat-inactivated FBS, 50 U/ml penicillin, 50 mg/ml 

streptomycin, beside 20 ng/ml GM-CSF and 20 ng/ml M-CSF (special growth factor for propagation and 

differentiation of monocytes). Then the cell was counted, seeded into 5 ml small plastic flask at a density 

relative to 27x106 cells and incubated in a humidified environment containing 5 % CO2 at 37 ºC overnight. 

On next day, firmly adherent cells were discarded and non-or weakly-adherent cells were recovered, 

transferred to 15 ml falcon tube, centrifuged, the supernatant was discarded and the pellets were re-

suspended in 75ml culture flask containing fresh media and then allowed to culture under the same 

conditions to give it a chance for propagation and differentiation. After 2 days, the culture medium was 

changed and adherent BMDMs were gently washed with cold PBS. After 5 days of seeding, cells were 

harvested by limited time exposure to trypsin-EDTA. The 75ml culture flask was then scratched using cell 

scraper in one direction and the cells were collected, washed; Consequently, the cells were ready to be used 

for further experiment. The percentage of the monocyte cell surface marker CD68+ and F4/80+ was examined 

using FACS (fluorescence-activated cell sorting) to investigate the purity of the cells. 

2.2.2.7 Transfection using shRNA 

NCI-H292 cell line were passaged 24 hr. before electroporation process in 50 ml tissue culture flasks with 

RPMI medium 1640 (1x) + GlutaMAXTM containing 10% FBS + 1% streptomycin & penicillin antibiotic till 

reaching 80% confluent growth at the time of electroporation. Starvation carried out overnight with RPMI 

medium 1640 (1x) + GlutaMAXTM containing 1% FBS. Then the cell is now ready for treatment. Ingenio® 

electroporation solution, Trypsin-EDTA and growth medium were warmed to room temperature. Cell lines 

were harvested and counted, in addition the cell density was adjusted to 5x106 cells/ml. Cell volume 

equivalent to desired density were pipetted in clean tubes, and centrifuged at 300 xG for 5 min. Supernatant 

was aspirated, then the obtained cells were resuspended in 100 µl of Ingenio® electroporation solution to 

form Ingenio® cell mixture. 2 µl of TRPM4-siRNA plasmid & control siRNA plasmid as listed in (table 6) 

was added to Ingenio® cell mixture, and mixed gently but thoroughly to avoid air bubbles formation. 

Ingenio® cell mixture containing nucleic acid were applied to 0.2 cm cuvettes, thus the cells were ready for 

electroporation. The electroporation program setting was adjusted to T-020 programme with 80% efficiency 

and 70% resultant viable cells. 100 µl from electroporated cells were seeded into 2ml culture medium per 

each well of 12 well plate, and were incubated in a cell culture incubator at 37°C, 5 % CO2, and 95% 

humidity for about 48-72 hr. A culture medium was changed after 24 hr. The cells were divided into 4 

groups for treatment as follows: the 1st group is untreated TRPM4-siRNA plasmid electroporated cells, 2nd 

group is heat inactivated Ps.a. treated TRPM4-siRNA plasmid electroporated cells, 3rd group is untreated 
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control siRNA plasmid electroporated cells and the 4th group is the heat inactivated Ps.a. treated control 

siRNA plasmid electroporated cells. The cells then were incubated for 18 hr. The supernatant was collected 

for measuring different inflammatory cytokines and chemokines using ELISA or LUMINEX. The cells were 

trypsinized, collected, transferred to Eppendorf tubes and stored at -80°C for further handle. 

2.2.3 Immunobiological methods 

2.2.3.1 The enzyme-linked immunosorbent assay (ELISA)  

Sandwich ELISAs commonly used to measure natural and recombinant different types of interleukin. It has 

high specificity, involves two antibodies that detects different epitopes on the same antigen. Two antibodies 

include; one capture and one detection, identify the same antigen, thereby forming a complex like 

"sandwich" structure. 

The capture antibody is adsorbed onto the ELISA plate against its specific antigen. after washing and 

blocking the immobilized capture antibody, sample containing antigen is applied to the microplate. A 

detection antibody with a linked conjugated enzyme was added, which will bind to another region of the 

antigen present in the sample. If the detection antibody is not conjugated, another enzyme conjugated 

antibody is utilized to reveal the detection antibody. After washing, substratum for the enzyme is applied and 

followed by a short time incubation to give chance for color development, then the reaction was stopped by 

adding stop solution. The signal will usually be measured using a plate reader. 

Methods 

Capture Antibody was diluted in PBS to reach the desired working concentration. 100 µl of diluted capture 

antibody were instantly applied to each well of 96-well microplate. At RT, the sealed plate was incubated 

overnight. The plate was aspirated and washed three times with the washing buffer via filling each well with 

400 µl washing buffer using a multiple dispenser. For good performance and accurate results, complete 

removal of liquid at every step is necessary. After the last washing step, any remaining washing buffer has 

been totally removed by aspirating and subsequent blotting the inverted plate against clean paper towels, 

then blocking carried out by applying 300 µl of reagent diluent to each well and was incubated for a 

minimum of 1 hr. at RT. Washing and aspiration were repeated as happened before. The plates are now 

ready for the sample addition. 100 µl of samples or standards were applied per each well. It could be used 

directly or diluted in reagent diluent to a desired concentration. Plate was covered with the adhesive strip and 

incubated at RT for 2 hrs. or preferably an overnight incubation at 4°C. Washing and aspiration were 

repeated as done in the previous steps, then 100 µl of the detection antibody diluted in reagent diluent was 

loaded to each well, then plate was covered with adhesive strip and incubated at RT for 2 hrs. Washing and 

aspiration were repeated as done in the previous steps. 100 µl of streptavidin-HRP working dilution was 

applied per each well. The plate was then sealed and incubated away from direct light exposure at RT for 20 
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min. washing & aspiration was repeated as done in the previous steps, 100 µl of substrate solution was 

applied and incubated away from direct light at room temperature for 20 min. or until the color converted to 

dim to avoid precipitation or crystal formation, 50 µl of stop solution was applied, the plate sealed and gently 

shaked for 30 s to ensure full mixing. Using a microplate reader was adjusted to 450 nm and a secondary 540 

nm or 570 nm, the optical density of each well was immediately measured.  The readings at 540 nm or 570 

nm were subtracted from the 450 nm result. this subtraction will correct any optical imperfections or 

deviations occurred during plate reading. 

2.2.3.2 Luminex assay 

Luminex Assays can be utilized to evaluate and quantify any chosen biomarkers levels in a single sample. 

Analyte-specific antibodies are pre-coated onto magnetic color-coded fluorophores microparticles at a 

specific ratio of each unique microparticle. Standards, samples and microparticles are loaded into wells and 

thus immobilized antibodies could easily bind to the analytes of interest. A biotinylated antibody cocktail 

unique to the relevant analytes was applied to each well, then streptavidin-phycoerythrin conjugate (Strep-

PE) is applied to each well and thus binds to the biotinylated antibody after that microparticles were 

resuspended in a suitable buffer and reading was carried out using the Luminex® MAGPIX analyzer. The 

superparamagnetic microparticles were kept in a monolayer due to the action of the magnet. These 

microparticles were illuminated by two spectrally distinctive light emitting diodes (LEDs). Micro particle 

zone or region was defined via one laser or LED that excites the dyes within each microparticle, and the 

second laser or LED excites the PE to quantify the number of analytes bound to the microparticle. A charge 

coupled device (CCD) camera equipped a set of filters to detect the sample in each well and was able to 

distinguish different excitation levels. Another way of detection is through using a photomultiplier tube 

(PMT) and an avalanche photodiode. All fluorescence emissions from each microparticle are then analyzed 

to distinguish emission levels. 

Methods 

As stated in the protocol, all reagents, standards, and samples were prepared according to used protocol. 50 

µl of standard or sample were applied to each well, then 50 µl of the microparticle cocktail were loaded to 

microplate. The plate is then tightly sealed with a foil sealer, incubated in a horizontal orbital microplate 

shaker and placed at 800 ± 50 revolutions per minute (rpm) for 2 hr. at RT. Washing is achieved by applying 

the magnet to the microplate bottom, allowing to stand for 1 min. before liquid removal, filling each well 

with a 100 µl wash buffer and again allowing to stand for 1 min. before liquid removal. Washing is 

preferably done on three times. For favorable performance and good results, complete removal of liquid is 

mandatory but without plate blotting which may cause loss of microparticles. Thereafter, 50 µl of diluted 

biotin-antibody cocktail was applied to each well, then the plate was tightly sealed with a foil plate sealer and 



 

 
46 

 

incubated on a shaker adjusted at 800 ± 50 rpm for 1 hr. at RT. After washing away any unbound substances, 

another wash was carried out to make sure of any unbound biotinylated antibody elimination, then 50 µl of 

diluted Strept-PE was applied to each well. The plate was also tightly sealed with a foil plate sealer and 

incubated on a shaker adjusted at 800 ± 50 rpm for 30 min. at RT. Final washes were performed to remove 

any unbound Strep-PE, then 100 µl of washing buffer was loaded to each well for microparticles re-

suspension and incubated for 2 min. on the shaker set at 800 ± 50 rpm. It is preferable to do microparticles 

re-suspension directly before reading step. Reading is conducted by using a Luminex® analyzer within 90 

min.  

2.2.3.3 Fluorescence-activated cell sorting (FACS) 

Cytometry is a technology through which cells pass through a light beam in a fluid stream that 

simultaneously calculates and analyzes several physical properties of single particles using an optical-to-

electronic coupling system that tracks how the cell or particle emits fluorescence and scatters incident laser 

light. These properties include the relative size of a particle, granularity or internal complexity, and relative 

intensity of fluorescence.  

Three major structures are composed of a flow cytometer: fluidics, optics, and electronics. The fluidic 

system conveys particles into a laser beam stream for interrogation. The optics device consists of lasers for 

particles illumination and optical filters to guide the emitted light signals to a convenient detector. The light 

signals were transformed into electronic signals via the electronic system, that subsequently the computer 

can easily interpret it. Some devices are equipped with a sorting feature, in which the electronic system has 

the ability to initiate sorting decisions via charge and deflect the desired or needed particles.  

In the flow cytometer, the sample core is the section of the fluid stream where particles are positioned, 

gathered and passed through the laser beam. When particles pass through the laser intercept, they scatter 

laser light and trigger fluorescence of any fluorescent molecules present on the particle. Through properly 

positioned lenses, the scattered and fluorescent light is captured by a mixture of splitters and filters arranged 

in a specific configuration and directed to the proper detectors, which create electronic signals that are 

proportional to the optical signals hitting them. Adequate analysis occurred to any particle has size ranged 

from 0.2–150 micrometers. However, segregation is necessary for solid tissue cell before initiating analysis. 

Complete data are collected about each event or particle. Each event’s features or characteristics are 

dependent on its light scattering and fluorescent properties which could provide information about 

subpopulations within the sample. All these gathered data were saved and processed on the server.  
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Methods 

Cell line collection 

In vitro, after cell line were cultured and treated as previously explained in 6 well plated, the culture medium 

was aspirated and the cells were rinsed twice with stain buffer with PBS. Cell was detached using 25mM 

ethylenediaminetetraacetic acid (EDTA) (1:20 fold from stock solution 0.5 M EDTA) and gently pipetted up 

and down to disperse the cells. The cells were collected and filtrated through membrane filter 40 µm mash. 

The cells were counted and about one million cells transferred to each flow test tube. These cells were then 

centrifuged at 250 xG for 10 min. at RT. All next procedures throughout staining and storage should be 

performed at 4°C on ice and the cells were protected from direct light exposure. 

Fixation 

The supernatant was aspirated and the cells were thoroughly re-suspended in 1ml of cold fixation BD cytofix 

buffer, incubated for 20 min. at RT, then centrifuged at 250 xG for 10 min. at RT, and washed twice with 

stain buffer with PBS, centrifuged again at 250 xG for 10 min at RT. Cells could be stored in stain buffer at 

4°C up to 72 hr. Repetitive centrifugation and aspiration processes may loosen the cells, so special care 

should be taken when aspirating wash buffer from the tube by not aspirating all buffer, about 100-150 µl of 

buffer left in the tube to avoid cell loose for all subsequent washing steps. 

Permeabilization 

Cells in stain buffer were centrifuged at 250 xG for 10 min. at RT, and stain buffer was aspirated. The cells 

were re-suspended in 1x BD Per/wash buffer and incubated for 15 min. at RT, then centrifuged at 250 xG for 

10 min. at RT and supernatant was aspirated. 

Blocking 

5 µl of human TruStain FcX was added per million cells in 100 µl staining buffer, mixed and incubated for 

10 min. at RT. It is not necessary to wash the cells after blocking step. This FcX blocking step is beneficial 

to avoid false positive or negative result; due to Fc receptor mediated Ig Fc binding.  

Preparing of untreated and unstained control 

50 µl of stain buffer was added to unstained control cell (cells without staining), and also to untreated cell 

(cell without treatment) which will be used as a reference control in flow cytometric analysis. 

Antibody addition 

10 µl of human IL-6 PE-conjugated antibody were added to all tubes except for unstained control, incubated 

for 30 min. at RT, then centrifuged at 250 xG for 10 min. at RT and supernatant was aspirated. Cells were re-

suspended in 200 µl stain buffer, kept on ice away from light prior to FACS analysis.  

Flow cytometric analysis 

The CS&T beads were prepared for device performance check by pipetting 350 µl of FACS flow solution in 

a tube, and one drop of the CS&T beads was added and gently vortexed at about 1000 RPM before being 

loaded on sample injection tube (SIT). After finishing CS&T beads calibration, the system was connected to 

facsDiva software, where new folder could be created for a new experiment. The desired parameter 
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(fluorochromes) was chosen to be measured in the “Cytometer” window and the non-required items were 

deleted to save disk space. Dot plots, histograms and contour plots were created by using the buttons at the 

top of the “Worksheet” window. “Statistics view” and “Population hierarchy” can be created by right-

clicking on a dot plot. Sample and control tube were vortexed then applied to the sample injection tube (SIT) 

one by one. Then “acquisition dashboard” was used for acquiring and recording data. Before recording 

samples “acquire data” button was clicked, and either after 2 or 3 s or as soon as the first dots appear in the 

dot plot, “record data” was clicked. The voltage of the forward scatter (FSC) and side scatter (SSC) was 

adjusted while acquiring samples and before recording started and the selected value were kept the same 

during all further measurement. The “threshold” was defined in the “cytometer” window. Different gate-

buttons in the “worksheet” toolbar were used to define populations and subpopulations in the dot plots. 

Interval gates are the only ones that can be used in histograms. Afterwards the cytometer performance report 

could be viewed, stored and exported. 

2.2.3.4 Western Blotting 

Western blotting is a technology that enables researchers to identify modifications of specific concerned 

protein, such as phosphorylation, concentration changes, conformational changes, insertion or the 

elimination of minor chemical changes and alteration in interaction with other proteins. 

In this technique, proteins are initially separated from the rest of the cell's components via chemical and/or 

physical methods; in order to disrupt the cell's plasma membrane and release its proteins component. 

Chemical-based lysis employs a variety of detergents to allow proteins easily accessible. Weak detergents, 

for example, are used within the cell to extract water-soluble proteins without disrupting intracellular 

membrane compartments. While strong detergents could solubilize the proteins present in all membranes. 

The properly regulated cellular environment is disrupted by cell lysis. This happens by providing certain 

cellular enzymes unrestricted access to their targets, this may result in undesired protein modifications, 

unfolding, and/or degradation. So, lysis is carried out at a low temperature in the presence of enzymatic 

inhibitors to avoid any presumably proteins alteration. 

After lysis step, all cellular contents are spun in a microcentrifuge. This yields an aqueous supernatant 

containing solubilized proteins, as well as a pellet containing membranes, organelles, nucleic acids, and any 

remaining insoluble proteins. Supernatant is separated from the pellet, which is now referred to as protein 

lysate that used for western blotting.  

A "whole cell lysate" is the most common form of protein lysate, since it includes all of the proteins found 

inside the cell. Nuclear and cytoplasmic lysates considered also as a two other usually prepared forms of 

lysates, that are often used to monitor and quantify protein localization to these two compartments. A third 
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mostly used lysate type is called immunoprecipitated or (IP), in which proteins that may interfere with a 

protein of interest are identified and recognized. In this manner, the researcher isolates not only the protein of 

interest but also other proteins which it interacts physically with it by using specific primary antibody, 

followed by secondary beads conjugated antibody; in order to precipitate the protein-antibody complex out 

of the lysate solution. 

Western blotting consists of two main phases: In the first phase, proteins are loaded onto a gel and separated 

from one another using an electrical current during "polyacrylamide gel electrophoresis" or PAGE. In the 

second phase, the separated proteins are transferred onto a membrane and the protein of interest is detected 

using a labelled specific antibody and visualized using photographic or other imaging techniques. 

Methods 

Sample preparation for electrophoresis 

During sample preparation, a Roti®-Load1 buffer were used, which is a special gel loading buffer for protein 

gel electrophoresis. This buffer system already contains denaturing and reducing reagents which are 

engineered to protect protein from degradation and to stabilize peptide bonds responsive.  Furthermore, it 

contains a dye and glycerol as density increasing reagent. Roti®-Load1 buffer was added to the sample (one-

third of sample volume) for example: 60 µl sample + 20 µl Roti®-Load1 (4x-concentrated) and mixed well 

by pipetting. Then the samples were heated for 3-5 min. at 80-95 °C. to unfold protein. Roti®-Load1 prevents 

degradation of proteins while heating, then samples were centrifuged in high speed pulse, after that it 

become ready to be loaded onto the gel. 

Polyacrylamide gel electrophoresis or PAGE 

The gel-cassette was taken out from gel-pouch and rinsed with distilled water, the well was marked with a 

marker. The tape strip was removed from the lower portion of the cassette. Gel-cassette then fixed in 

electrophoresis cell with side clips, wells side should be positioned towards up and stripped tap side towards 

outside. Then the running buffer were added to upper compartment to check for fluid leakage. After that the 

comb removed with in a quick and vertical manner. Using a pasteur-pipette, the wells were flushed by gently 

filled up wells completely with washed running-buffer, it is necessary to avoid air-bubbles during flushing 

process. Samples were loaded (20-25 µl) per each well & 5-7 µl of SeeBlue®Plus2 (pre-stained protein 

standard protein marker) was applied. samples were added to the bottom of each well, it is recommended to 

avoid swirls during sample adding. Then running-buffer filled electrophoresis cell, on both sides of cathode 

and node, then cell closed and cables connected to the power supply. The running program adjusted on two 

steps: the first step for 15 min. at 80 Volt (for stacking gel) and the second one for 120 min. at 100 Volt (for 

running gel). The time and voltage may require optimization: depending on types of used gel as illustrated in 

table (11) and also relying on our observation, time could be increased to 130 min. for more protein 

separation, after runtime was elapsed, instrument was switched off, power cables were disconnected and the 



 

 
50 

 

cassette was carefully taken out. A gel-knife used to open the cassette, and strong spatula utilized to crack in-

between the front and posterior cassette plate. then the cassette positioned horizontally on the table and front 

plate removed. The lower portion of the gel and also comb-wells were cut using gel-knife, then carefully take 

one edge of the gel with spatula and shake the plate slightly to free the gel from the cassette. 

Table (11): shows the voltage and time required for different gels. 

Gel Type Voltage (V) Current (mA) Duration (min.) 

Tris-Glycine, SDS 125 60 90 

Tris-Tricine, SDS 125 100 70-90 

Table 11: Gels and conditions used in this study.  

Immunoblotting (Transfer the protein from the gel to the membrane)  

Protein band on the gel should be transferred to nitrocellulose membrane (NC) or polyvinylidene fluoride 

membrane (PVDF). Prior to blotting the membrane, it is preferable to be placed in methanol for 5 min. for its 

activation and rinsed with transfer buffer before usage. A sandwich blotting was carried out in a stacking 

manner from negative to positive current. The set were arranged in the following order; black sponge-2x 

filter pad-Gel-NC membrane-2x filter pad-black sponge, then all of them were pressed together by a support 

grid, the black side of the support grid's was positioned downward. The sandwiched gel is positioned 

vertically in a transfer tank between stainless steel/platinum wire electrodes. Transfer apparatus was filled 

with 1x blotting buffer and ice freezer block was added to counteract the heating released from generated 

current or the whole apparatus were placed in a cold room during blotting process. Protein transferred is 

carried out at 20 Watt (60-80 V under 300 mA) for 1 hr. The membrane was then removed carefully and 

blocked using 5% milk powder in tris-buffered saline with 0.1% tween® 20 detergent (TBST) or 5% FBS in 

TBST for 1 hr. at RT or 4°C overnight, then the membrane was washed 3 times with TBST for 5 min. for 

each wash. 

Antibody staining 

Primary antibody was added in 50 ml falcon tube containing (5 ml blocking buffer + 2.5 or 5 µl primary 

antibody according to its working concentration) and incubated for 2-3 hr. in RT or 4°C overnight in shaking 

or rotating position, then the membrane was washed 3 times with TBST for 5 min. for each wash. 

Horseradish peroxidase (HRP)-conjugated secondary antibody was added in 50 ml falcon tube containing (5 

ml blocking buffer + 2.5 or 5 µl primary antibody according to its working concentration) and incubated for 

1 hr. at RT in rotating position, then the membrane was washed 3 times with TBST for 5 min. for each wash. 

Visualization 

The substrate working solution (Pierce™ ECL Western Blotting Substrate) is an extraordinarily sensitive 

nonradioactive, it enables the detection of picogram amounts of antigen through boosting luminol-dependent 

chemiluminescent substrate for disclosure of HRP on immunoblots using photographic or other imaging 
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methods. For best results, working solution was prepared immediately before use; which remains stable for 1 

hr. at RT. 

The substrate was prepared by mixing equal parts of detection reagents 1 and 2 (1ml+1ml). Blotted 

membrane was incubated with working solution for 5 min. at RT. After incubation, the membrane taken out, 

the excess liquid was dried up using an absorbent tissue and then placed in a plastic sheet protector or clear 

plastic wrap. After that any bubbles formed between the blot and the membrane protector was carefully 

pressed out. Sheet protected membrane with the protein side facing up were placed in a film cassette and 

fixed with adhesive tape, then all lights were switched off, excluding those necessary for X-ray film viewing 

(e.g., a red safelight). X-ray film was carefully placed on top of the membrane. To achieve the optimal 

desired outcomes, the exposure time was verified to different time point. The emission of light is quite 

intense within the first 5-30 min. after incubation of the substrate. The emission of light persists for several 

hours, but gradually declines with time. As time passes, longer exposure duration could be crucial to obtain a 

valuable result. Film was created with adequate developing and fixative solution, and was finally rinsed with 

water. The film was then scanned and saved as an image. If the signal is too intense, the exposure time was 

reduced or the blot was stripped and re-probed with reduced concentrations of antibodies. 

Stripping 

Blotted membrane can be preserved at 4°C in PBS or tris-HCl buffered saline (TBS) before the stripping 

process be continued. The membrane was washed with stripping buffer (Restore Western Blot Stripping 

Buffer, Thermo Scientific) 2 times for 15 min. then washed with PBS 2 times for 10 min. and with TBST 2 

times for 5 min. sequentially. Then to make sure of complete removal of the immunodetection reagents some 

test is required, such as HRP label removal test (i.e., secondary antibody removal), in which the membrane 

was incubated with new working solution and exposed to film. The successful HRP conjugate removal from 

the antigen or primary antibody correlated with no signal detection after a 5 min. exposure. Another test for 

complete removal of the primary antibody is carried out, in which the membrane was incubated with the 

HRP-labelled secondary antibody, then washed by washing buffer and incubated in new substrate working 

solution and exposed to film. If there is no signal detected, thus the primary antibody has been successfully 

removed from the antigen, if the signal is still detected special manipulation is required for fully stripping 

such as longer stripping incubation time and an elevated temperature which should be optimized to ensure 

complete removal of antibodies, but with simultaneous protection and reduction of antigen damage that 

should be taken into consideration. Then the membrane was blocked using 5% milk powder in TBST or 5% 

FBS in TBST for 1 hr. at RT. or 4°C overnight. The membrane was now ready for another immunoblotting. 
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2.2.3.5 Immunofluorescence for adherent cells line  

Coverslip preparation and coating: 

Coverslip was sterilized by washing in ethanol or exposing to ultraviolet (UV) in a biological safety cabinet 

for at least 60 min., then coated by 50-100 µg/ml poly-lysine for about 1hr. at RT, washed 3 times by H2O, 

dried completely overnight in the cell culture hood, and for full sterilization it is recommended to be exposed 

to UV light for at least 4 hrs. 

Fixation: 

The culture medium of pre-cultured cell line was aspirated and the cells were rinsed twice with PBS. The 

cells were then fixed on coverslip with 2-4% paraformaldehyde (PFA) for 10-20 min. at RT or with -20 °C 

ice-cold methanol or ice cold 1:1 methanol/ acetone for 1 to 10 min., then washed by PBS 3 times for 5 min. 

to each wash. 

Permeabilization: 

It is important to permeabilize the cells to help the antibodies to get access to intracellular located target 

epitopes inside the cells. After PBS aspiration, 0.05-0.25% triton X-100 (or 100 µM digitonin or 0.5% 

saponin) dissolved in PBS were applied to the samples and incubated for 10-15 min. at RT. then washed 3 

times by PBS for 5 min. to each wash.  

In other instances, permeabilization step is not necessary, for example, if the sample has been previously 

fixed with methanol or acetone, also, if the epitopes of primary antibodies located in the extracellular region 

of proteins. In permeabilization step triton X-100 seems to be the famous detergent enhancing the 

penetration of the antibody. However; the cell membrane can be broken or dissociated; so, it is not ideal to 

use it in case of membrane-associated protein staining. So digitonin or saponin could be used an alternative 

choice in such case.  

Blocking: 

PBS was aspirated and the cells were incubated with blocking buffer (1-3% BSA in PBS) for 30-60 min. at 

RT. 

Primary antibody staining: 

Blocking buffer was aspirated; the cells were incubated with the primary antibody in a recommended 

working dilution with dilution buffer for 1-4 hr. at RT, or overnight at 4°C. Coverslips were kept in a humid 

chamber to protect samples from drying out. After that the cells were washed 3 times by PBS for 5 min. to 

each wash. 

Secondary antibody staining: 

Washing buffer was aspirated; and the cells then were incubated with the secondary antibody in a 

recommended working dilution with dilution buffer for 30-60 min. at RT. Coverslips were kept in a humid 

chamber to protect samples from drying out. After that the cells were washed 3 times by PBS for 5 min. to 

each wash. 
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Counterstain staining: 

The cells were incubated with Phalloidin for staining actin filaments (also known as F-actin) for about 30-60 

min. then the cells were washed by PBS 3 times for 5 min. to each wash. 

Mounting and DAPI Counterstaining: 

Washing buffer was aspirated and excess liquid was dried up using fiber free paper or paper towel. The 

coverslips were mounted upside down on slides with a small drop of proLong®gold antifade reagent with 

DAPI. It is important to avoid bubbles formation beneath coverslips, then nail polish were used to seal it 

with the slide. Then the slides were left to dry for about 3 hr., or overnight incubation stored in a covered box 

to keep it away from light at 4°C. At that moment, slides were ready to be examined under microscope. 

Checked under structured illumination microscopy (SIM) 

The SIM used was a Zeiss Elyra PS1 Zeiss, Oberkochen. Cells were imaged using a 63x Plan-Apochromat 

with laser excitation at 488, 561, and 635 nm for each corresponding fluorophore, then higher resolution 

images were obtained by processing the images without background using Zen software (Zen 2012; Carl 

Zeiss).  
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2.2.4 Animal experiments  

2.2.4.1 Mice housing & maintenance 

Mouse experiments were approved by the Landesamt für Soziales, Gesundheit und Verbraucherschutz of the 

State of Saarland in accordance with the national guidelines for animal treatment (17/2016). The TRPM4-

knockout mice, the corresponding wildtype and heterogenous littermates were kindly provided by the group 

of Prof. Trese Leinders-Zufalls (School of Medicine, Department of Physiology). The animals were kept 

under standard conditions with a 12/12 hours dark/light cycle and an access to food, water ad libitum. The 

mice carry a global TRPM4-knockout, that was generated by cre-lox recombination technology and that 

resulted in the deletion of the exon 15 and 16 of the TRPM4 gene (Vennekens et al., 2007). The mice were 

generated on a 129/SvJ background and crossed back on a C57Bl/6N strain for more than 10 generations. 

2.2.4.2 Bacterial suspension preparation 

For Ps.a. suspension solution preparation, single bacterial colony aseptically picked up from previously 

prepared cultured plates and transferred to 5 ml LB culture medium, incubated on shaker at 37°C for 18 hr., 

then centrifuged at 12,000 xG for 30 s, supernatant discarded and pellet re-suspended in 1ml PBS, bacterial 

stock suspension diluted 1:10 in PBS and measured using spectrophotometry device at O.D. 600 to 

determine concentration, finally diluted in PBS to desired concentration. 

2.2.4.3 Mice anesthesia, treatment and euthanasia 

Techniques mainly used to induce respiratory infection include; intranasal distillation, bronchoscopy 

intubation and evaporation methods. we aimed to use intubation-mediated intratracheal (IMIT) technique as 

a bacterial suspension delivery technique, due to it ascertain reaching to lower respiratory tract and minimize 

the incidence of digestive system delivery. This technique ascertains over 98% of reagent delivery 

effectiveness into the lungs with an outstanding distribution throughout the lung. IMIT therefore provides a 

novel approach to the study of lower respiratory tract disease and therapeutic delivery into the lung directly 

(Lawrenz et al., 2014). 

Mice were anesthetized using 40 µl of previously prepared ketamine/xylazine anesthesia, or by placing them 

into closed chamber saturated with 2-3% isoflurane. After onset of sedation symptoms, 10 µl of 2% of local 

anesthetic lidocaine solution were applied to the throat, and allowed 5 min. before intubation to reach full 

effectivity. 

One mouse picked up and fixed on intubation platform from his incisors using O-ring attached to Velcro 

strip. Using Teflon plunger syringe, 150 µl of air were draw up prior to 50 µl of prepared bacterial 

suspension, air helps to distribute suspension throughout the lung. 

The tongue was retracted with a rolling motion by aiding of cotton-wooden applicator, with one hand, 

otoscope fit with an intubation specula used to visualize the glottis and keep tongue retracted, with another 

hand, mice was intubated using wire passed through the catheter, which goes inside mouse trachea till 10 

mm in depth, then otoscope and wire were removed. 
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Catheter was fixed with nondominant hand, and syringe containing suspension was inserted carefully inside 

catheter using other hand. Then solution- air dispensed in one motion, and removed directly after injection. 

Mice eyes were moisture with Bepanthen eye & nasal ointment to protect conjunctiva and cornea from 

injuries and dryness, the mice were kept on heating pad till wake up, then returned back to cage for full 

recovery. For euthanize, mice were subjected to CO2 asphyxia or injected intra-peritoneally with a suitable 

dose (200 µl) of anesthesia solution after 18hr. post-inoculation; the mice were then left a little enough time 

until anesthesia effect work.  

2.2.4.4 Mice dissection 

After euthanized mouse lay down, it fixed on dissection tray and chest and abdomen were sprayed with 70% 

alcohol. The incision in the skin was made with fine scissors about a couple of millimeters above the orifice. 

The incision must have proceeded from this opening up to the chin on the middle ventral side. Two lateral 

incisions extended toward the forelimbs and hindlimbs extremities, then the skin was detached from the 

underlying muscular layer and fixed to the sides, abdominal muscles must be lifted and incised up to the base 

of the thorax, then to transversal incisions were made. At this level to complete the abdominal cavity 

opening, muscular folding was pinned on the sides. The blood sample was carefully drawn from the heart, it 

is important to avoid making lung puncture. The needle was removed before spilling the blood in Eppendorf 

tubes; to avoid red blood cells (RBCs) destruction. Then the cannula was inserted down in trachea and 1 ml 

of flushing PBS solution was injected and withdrawn for 3 times to obtain bronchoalveolar lavage (BALF), 

transferred to Eppendorf tubes and placed on ice. In another instance, whole lung needed to be excised by 

tying thread around the trachea and then pulling it carefully out, which subsequently hanged to be inflated 

and preserved with 4% paraformaldehyde. It is important to be taken into consideration that 3 times lung 

flushing, may cause vary or destroy lung internal structure. In this case; it no longer makes sense to take the 

lung out for further histopathological examination. 

2.2.4.5 Sample processing 

2.2.4.5.1 Bronchoalveolar lavage (BALF) 

After returning to the lab., BALF Eppendorf tubes were centrifuged at 300 xG for 10 min. at 4°C, 

supernatant transferred to new Eppendorf tubes and placed in -80°C freezer for longer preservation. It could 

be used for ELISA, Luminex, culture on agar plates to detect bacterial count. Re-suspension of cell pellets in 

1 ml PBS make it ready for cytospin; in which 50 µl of cell suspension was added to 150 µl PBS (1:4 

dilution), transferred to the funnel part of cyto-funnel apparatus which connected with slide in closure caps 

and was centrifuged at 600 xG for 6 min.  After that slides were directly fixed using -20° C cold methanol 

for 10 min. for further staining. Diff Quick or Quick Giemsa stain is usually used for BALF staining. In Diff 

Quick staining, fixation carried out using fast green or blue in methanol for 10 min., then the slides were 

immersed 5 min. in solution 1 (Eosin G in phosphate buffer) to stain cytoplasm with red color, then 1 min. in 
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solution 2 (Thiazine dye in phosphate buffer) to stain nucleus with blue color, which was followed by water 

rinse and drying. In Quick Stain Giemsa, air dried film was placed in undiluted giemsa stain for 1-2 min., 

and placed in deionized water for 2-4 min. depending upon desired color preference, then slides were rinsed 

in deionized water, and left in the air to dry. 

2.2.4.5.2 Blood 

Blood samples in Eppendorf tubes were centrifuged at 2500 xG for 10 min. to obtain plasma for further 

investigation and quantification of different inflammatory cytokine. leukocytes cell counting in counting 

chamber is possible by adding 10 µl in 20-fold 5% diluted acetic acid for RBCs precipitation. Blood smear 

was made using one drop (about 15-20 µl) on the slide edge and spread it along the slide using a wider 

second slide for further staining. Fixation carried out using cold methanol for 10 min. Slides could be placed 

in rack, covered with methanol and be left to dry for later usage. Then the slides were stained with Giemsa 

May-Grünwald. Initially, slides were placed in May-Grünwald-Eosin stain for 5 min., then placed in working 

phosphate buffer pH 7.2, for 1.5 min., after that transferred into 1:20 fold diluted Giemsa solution for 15-20 

min. with deionized water or buffered water at pH 7.2, then the slides were immersed in working phosphate 

buffer two times and rinsed carefully using deionized water. Finally slides let to air dry, after totally drying 

xylol aqueous mounting medium was applied for long-term storage and preservation. Before mounting 

medium added, a quick check could be done to look at color degree, if the stain is too dark, the slides in rack 

could be immersed several times in glass container with 500 µl to 1 ml of 35% HCL/EtOH (1:1) in 200 ml 

water, till reach to the desired degree or left in the solution for a long time to remove the stain completely 

and then staining process repeated again. 

2.2.4.5.3 Lung tissue 

The right lung is divided into four lobes and the left lung is made of only one large lobe. Left lung can be 

used in 1-2 ml TRIzol Reagent which is a perfect, fully prepared reagent for high-quality isolation of total 

RNA from a wide variety of biological samples for further RT-PCR reaction. Right lung could be 

homogenized in 1 ml PBS, centrifuged, and the obtained supernatant could be used for ELISA, Luminex, 

and culture on agar plates. 
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3. Results 

3.1 Bronchial epithelial cells express TRPM4 

The main goal of this work is to explore the contribution of TRPM4 to the innate immune response of the 

lung. To confirm that lung epithelial cells express TRPM4, specific primers were designed and tested 

alongside TRPM5, TRPV1, and TRPV4. TRPM4 belongs to the TRPM-family of ion channels; and TRPM5 

is functionally and structurally a close relative to TRPM4. TRPV1 and TRPV4 had been detected in lung 

epithelial cells by other research labs beforehand. NCI-H292 cells were cultured and RNA was isolated as 

described in the Material and Methods section. After cDNA-synthesis intron-crossing specific primers for 

TRPM4, TRPM5, TRPV1, and TRPV4 were used in separate reactions and normalized to HPRT1 

expression. 

 

Fig. 6: Expression of different ion channels in NCI-H292 cell line.  

Specific primers for TRPM4, TRPM5, TRPV1, and TRPV4 were used to detect the expression of the corresponding 

genes. The expression was normalized to HPRT1 as the housekeeping gene. N=3, values are depicted as mean +/- SEM. 

The expression of TRPM4 was approximately 1,25-fold of the housekeeping gene, while TRPV1 and 

TRPV4 were expressed at similar strength as HPRT1 (Fig.6). While the expression of TRPM5 was very 

weak (Fig.6). TRPM5 has been shown to be expressed in brush cells only (Kaske et al., 2007). Since NCI-

H292 don’t share properties with brush cells, a low expression level of TRPM5 was expected. 

To confirm the expression of TRPM4 in NCI-H292 cells, the cells were grown on chamber slides and used 

for immunofluorescent microscopy. A blocking peptide specific for TRPM4 was used to test for specificity. 

The cells were fixed and permeabilized as described in the Material & Methods section and incubated with 

an TRPM4 specific antibody. The blocking peptide was pre-incubated together with the antibody before 



 

 
58 

 

applied to the cells. After incubation with DAPI-containing mounting medium and curing, the specimen was 

visualized by SIM (structure illumination microscopy). 

 

Fig. 7: Immunofluorescence localization of TRPM4 in NCI-H292 cell line.  

(A) The overlay of the TRPM4 signal (red channel, Cy5 Red), filamentous actin (green channel, Phalloidin-iFluor 488), 

and nuclear DNA (blue channel, DAPI) revealed a cytoplasmic localization of TRPM4. (B) The TRPM4-blocking 

peptide blunted the detection of TRPM4 almost completely. 

Out of the 13 sections that were obtained by SIM, similar sections were chosen for the analysis of TRPM4-

localization. Fig.7A shows that TRPM4 is distributed throughout the cytoplasm and nucleoplasm. The pre-

incubation with the blocking peptide resulted in an almost complete quenching of the TRPM4 signal (Fig.7 

B). The detection of TRPM4 by qRT-PCR and immunofluorescence in NCI-H292 bronchial epithelial cells 

was successfully determined. 

3.2 TRPM4 inhibition and stimulation with heat inactivated bacteria does not induce 

cytotoxicity 

Bacteria and their components are prominent danger signals that lead to the activation of the innate immune 

response. During this work the contribution of TRPM4 signaling after bacterial stimulation on the innate 

immune response was investigated. Therefore, a specific inhibitor for TRPM4 was used before the 

stimulation of airway epithelial cells with heat inactivated Ps.a., which represents a typical pathogen in cystic 

fibrosis. To exclude possible cytotoxic effects of the treatment, NCI-H292 cells were incubated with 

increasing concentrations of the TRPM4-specific inhibitor 9-Phenantrol (9-Ph.) and heat inactivated Ps.a. 

Previous studies have shown a high specificity of 9-Ph. for TRPM4 based on ion current measurements. The 

half maximal inhibitory concentration for 9-Ph. has been shown to be IC50=20µM  (T. Grand et al., 2008). 

  A B 
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The authors detected no inhibition of the structurally related TRPM5 or the CFTR channel at 1 mM or 0,25 

mM respectively. Based on this study, concentrations ranging from 2,5 µM – 40 µM were used in the 

following experiments. To test for cytotoxic effects the release of the enzyme LDH was quantified, which is 

rapidly released from apoptotic cells. 

 

Fig. 8: LDH release from NCI-H292 cell line  

LDH release from NCI-H292 cells after 9-Ph. treatment and stimulation with heat inactivated Ps.a. 18 hr., after 

stimulation the release of LDH in cell-free cell culture supernatant was determined. High-control – cell lysate, 

Pos.control (positive-control) – LDH enzyme contained in the test kit, Low-control – fresh cell culture medium. Ps.a. - 

heat inactivated P.aeruginosa PAOI, 9-Ph. – 9-Phenantrol. Experiment was repeated twice (N=4). Data was shown as 

mean +/- SEM. 

Compared to the positive controls, the treatment with 9-Ph. and the combination with Ps.a. induced a release 

of LDH that was merely above the values of fresh cell culture medium. Therefore, the treatment with 9-Ph. 

and Ps.a. was considered to be not toxic for 18 hr. (Fig.8). These findings proved that there is no increase in 

LDH-release after 18 hr. of treatment with the combination of 9-Ph. and Ps.a., which is a prerequisite for 

further investigations of the inhibition of TRPM4 in combination with Ps.a. stimulation on the activation of 

the innate immune response of airway epithelial cells. 
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3.3 The inhibition of TRPM4 decreases the release of pro-inflammatory mediators from NCI-

H292 cells after bacterial stimulation 

The release of pro-inflammatory mediators is an important hallmark in the course of the initiation of the 

innate immune response. On the one hand; they attract other immune cells to the site of infection but on the 

other hand it also acts directly on the pathogens. An exaggerated inflammation is known to have severe side 

effects on tissue integrity. To investigate the influence of TRPM4 signaling during the initiation of the innate 

immune response, NCI-H292 cells were incubated for 6 hr. with 9-Ph. and stimulated with heat inactivated 

Ps.a. for an additional 6 hr. The concentration of 9-Ph. was adjusted to the published IC50 value at 20 µM. 

The concentrations of IL-6, TNF-α, CXCL-2 (MIP-2α), and S100A8 were determined by ELISA in cell free 

supernatant. 

Fig. 9: The concentration of different pro-inflammatory mediators in cell culture supernatant of NCI-

H292 cells after 6 hr. treatment. 

Pro-inflammatory mediators were quantified with ELISA assay after 6 hr. pre-incubation with 9-Ph. and additional 6 hr. 

incubation with Ps.a.. IL-6, Interleukin 6; TNF-α, tumor necrosis factor alpha; CXCL2, C-X-C motif ligand 

2, macrophage inflammatory protein 2-alpha (MIP2-α); S100A8, S100 calcium-binding protein A8. Experiments were 

carried out in duplicates, N =3; one-way ANOVA with Tukey’s multiple comparison post-hoc test, * p < 0.0332, ** p < 

0,0021, *** p < 0,0002, **** p < 0,0001. Data are shown as mean ± SEM. 
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There was a significantly increased concentration of IL-6, TNF-α, CXCL2, and S100A8 after stimulation 

with heat inactivated Ps.a. compared to the untreated controls (Fig.9 A-D). In contrast, the sequential 

treatment with 9-Ph. and Ps.a. reduced the amount of pro-inflammatory mediators in the cell culture 

supernatant almost to that of the untreated controls. The treatment with 9-Ph. alone did not induce an 

increased cytokine release. To confirm that these findings were present after longer incubation times, the 

cells were incubated for 18 hr. with heat inactivated Ps.a. after 6 hr. pre-incubation with 9-Ph. Additionally, 

lower gradual concentrations of 9-Ph. were used to test, if the inhibitory effect of 9-Ph. is dose dependent. 

 

Fig. 10: The concentration of different pro-inflammatory mediators in cell culture supernatant of NCI-

H292 cells after 18 hr. treatment.  

NCI-H292 cells were incubated for 6 hr. with the designated concentrations of 9-Ph. and stimulated with heat 

inactivated Ps.a. for 18 hr. The concentration of the different analytes was determined by a multiplex Luminex assay. 

TNF-α, CXCL2, and S100A8 showed a strong inhibition of cytokine release with 10 µM and 20 µM 9-Ph. (B-D) while 

the release of IL-6 was completely inhibited in a range of 2,5 – 10 µM 9-Ph. (A). Experiments were carried out in 

duplicates, N =3; one-way ANOVA with Tukey’s multiple comparison post-hoc test, * p < 0.0332, ** p < 0,0021, *** p 

< 0,0002, **** p < 0,0001. Data was shown as mean ± SEM. 
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As already observed after 6 hr. of incubation with Ps.a. (Fig.9), the release of all investigated analytes 

increased strongly 18 hr. after stimulation with Ps.a. (Fig.10). Since a strong inhibition of IL-6 secretion was 

observed after 6 hr. of incubation with 9-Ph. and additional Ps.a. treatment (Fig.9 A), lower gradual 

concentrations of the inhibitor were used to test whether a dose dependent inhibitory effect could be 

observed. While the inhibitor alone induced no increased concentration of inflammatory mediators in the cell 

culture supernatant, the pre-incubation with 10 µM and 20 µM 9-Ph. resulted in a strong inhibition of 

cytokine release in the case of TNF-α, CXCL2, and S100A8 (Fig.10 B-D). The release of IL-6 was strongly 

inhibited in a range of 2,5-10 µM 9-Ph. (Fig.10 A), while the Ps.a.-induced release of TNF-α, CXCL2, and 

S100A8 was not influenced by 2,5 – 5 µM 9-Ph. 

Taken together; these results showed that the inhibition of TRPM4 by 9-Ph. inhibited the release of several 

pro-inflammatory cytokines after stimulation with heat inactivated Ps.a. Furthermore, the effect is dose 

dependent for the concentration of the inhibitor. 

3.4 TRPM4 inhibition does not influence the transcription of selected inflammatory mediators 

after stimulation with Ps.a. 

The pre-incubation of NCI-H292 cells with 9-Ph. resulted in a highly reduced release of IL-6, TNF-α, 

CXCL2, and S100A8 after stimulation with heat inactivated Ps.a. TRPM4 represents a Ca2+-activated cation 

channel which plays a role in smooth muscle contraction, neuronal activity, and insulin secretion. The 

inhibition of such a channel may therefore, depending on the cell type, with several cellular processes. To 

find out if the transcription of the previously investigated analytes is influenced by 9-Ph., the expression of 

the corresponding genes was investigated after 6 hr. pre-incubation with 9-Ph. and 6 hr. stimulation with heat 

inactivated Ps.a. Intron crossing primers were used whenever possible. 

The expression of IL-6, TNF-α, CXCL2 was significantly increased after 6 hr. stimulation with Ps.a. (Fig.11 

A, B, D). The pre-incubation with 9-Ph. didn’t reduce the Ps.a. induced expression. Surprisingly, in the case 

of TNF-α the expression was even increased after pre-incubation with 9-Ph. and subsequent treatment with 

Ps.a. (Fig.11 B). S100A8 is the only cytokine investigated here, that is directly dependent on the complex 

formation with Ca2+. After stimulation with heat inactivated Ps.a. its expression is mildly but significantly 

induced and inhibited by a pre-incubation with 9-Ph. (Fig.11 C). The pre-incubation with 9-Ph. alone had no 

influence on the expression of IL-6, TNF-α, S100A8, and CXCL2 (Fig.11 A-D). 
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Fig. 11: Gene expression of different pro-inflammatory mediators in NCI-H292 cells 

Gene expression in NCI-H292 after pre-incubation with 9-Ph. and stimulation with heat inactivated Ps.a. The 

expression of IL-6 (A) and TNF-α (B) is strongly induced after stimulation with Ps.a.. The pre-incubation with 9-Ph. 

did not decrease the expression, in case TNF-α increased more than 5 folds (B). The expression of CXCL2 in only 

mildly induced by Ps.a. and was not inhibited by additional pre-incubation with 9-Ph. (D). In contrast to other 

investigated genes, the expression of S100A8 was significantly inhibited after pre-incubation with 9-Ph. (C). 

Experiments were carried out in duplicates, N =3; one-way ANOVA with Tukey’s multiple comparison post-hoc test, * 

p < 0.0332, ** p < 0,0021, *** p < 0,0002, **** p < 0,0001. Data are shown as mean ± SEM. 

This data shows that the pre-incubation with 9-Ph. and subsequent stimulation with heat inactivated Ps.a. 

leads to up-regulation of transcription of IL-6, TNF-α, and CXCL2. The expression of S100A8, as the only 

directly Ca2+ dependent mediator in our analysis, is inhibited after the pre-incubation with 9-Ph. and 

subsequent Ps.a. thus correlates with the reduced release of this mediator in the cell-culture supernatant. 
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3.5 TRPM4-specific shRNA inhibits the release of IL-6 from NCI-H292 cells 

After showing that the TRPM4-inhibitor 9-Ph. inhibits the release of several pro-inflammatory mediators 

from NCI-H292 cells, it is important to prove that other modes of inhibition lead to the similar results. While 

9-Ph. inhibits the ion conducting properties of TRPM4, shRNA will lead to a degradation of mRNA and a 

reduced protein concentration of TRPM4.  

Validated TRPM4-specific shRNA was used and electroporated together with a non-target control shRNA. 

24 hr. after electroporation the cells were stimulated with heat-inactivated Ps.a. and analyzed 18 hr. later. 

Fig. 12: IL-6 level in the cell culture supernatant of NCI-H292 cells treated with TRPM4-specific 

shRNA and non-target shRNA (ctr.shRNA) 

The treatment with Ps.a. induced an increased release of IL-6, which was significantly lower in cells with TRPM4-

specific shRNA than those treated with non-target shRNA. N =3; one-way ANOVA with Tukey’s multiple comparison 

post-hoc test, * p < 0.0332, ** p < 0,0021, *** p < 0,0002, **** p < 0,0001. Data are shown as mean ± SEM. 

The transfection of shRNAs induced no significant increased IL-6 concentrations in the cell culture 

supernatant of unstimulated cells. The release of IL-6 increased significantly after the treatment with Ps.a. 

and was significantly lower from samples treated with TRPM4-specific shRNA compared to non-target 

shRNA (Fig.12). 

These results show, that by inhibiting the ion-conducting properties with 9-Ph. and the protein synthesis by 

shRNA both lead to a reduced release of pro-inflammatory mediators from bronchial epithelial cells. 
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3.6 The inhibition of TRPM4 does not influence its expression or the expression of TLR4 

As the inhibition of TRPM4 by 9-Ph. or specific shRNA induced a lower release of different pro-

inflammatory mediators from Ps.a. stimulated cells, it may be, that this effect due to changing or altering of 

the TRPM4 expression itself or inhibition of expression of other receptors, that recognize bacterial 

components.  

To verify, if the expression of TRPM4 or TLR4 is influenced by the treatment with 9-Ph., NCI-H292 cells 

were pre-incubated with 9-Ph. for 6 hr. and stimulated with heat inactivated Ps.a. The expression of TRPM4 

and TLR4 was analyzed by qRT-PCR after normalization to the housekeeping gene HPRT1. 

 

Fig. 13: The expression of TRPM4 and TLR4 in NCI-H292 cells 

TRPM4 (A) and TLR4 (B) after the pre-treatment with 9-Ph. and stimulation with Ps.a. N =3; one-way ANOVA with 

Tukey’s multiple comparison post-hoc test, * p < 0.0332, ** p < 0,0021, *** p < 0,0002, **** p < 0,0001. Data are 

shown as mean ± SEM. 

Although the expression of TRPM4 slightly decreased after the stimulation with Ps.a., the expression was 

not influenced by the pre-treatment with 9-Ph. or the additional incubation with Ps.a. (Fig.13 A). The 

expression of TLR4, the prototypical receptor for gram-negative bacterial LPS, is significantly induced after 

the stimulation with heat inactivated Ps.a. The inhibition of TRPM4 had no additional effect compared to 

untreated or Ps.a. stimulated cells (Fig.13 B). 

These results indicate, that the inhibition of TRPM4 has no influence on the expression of the channels itself 

or the expression of the prototypical receptor for gram-negative bacteria, TLR4.  
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3.7 The inhibition of TRPM4 attenuates the export of IL-6 from the cytoplasm after bacterial 

stimulation 

The translocation of proteins from the cytoplasm is a highly regulated process that involves different routes 

of transport and signaling pathways through various cellular compartments. Since the TRPM4-inhibitor 9-

Ph. inhibited the release of various inflammatory mediators into the cell culture supernatant but not their 

transcription, it would now be interesting to show, if those peptides would accumulate in the cytoplasm of 

the cells. 

Fig. 14: IL-6 concentration in cell culture supernatant and cell lysate of NCI-H292 cells 

IL-6 concentration analyzed in cell culture supernatant and cell lysate of NCI-H292 cells after stimulation with heat 

inactivated Ps.a. and pre-incubation with 9-Ph. N =3; one-way ANOVA with Tukey’s multiple comparison post-hoc 

test, * p < 0.0332, ** p < 0,0021, *** p < 0,0002, **** p < 0,0001. Data are shown as mean ± SEM. 

To investigate, if the analyte accumulated more inside the cells after 9-Ph. pre-treatment and stimulation with 

Ps.a., the cell lysate and cell culture supernatant was analyzed separately in an ELISA. Therefore, the cells 

were pre-treated with 20 µM of 9-Ph. for 6 hr. and stimulated with heat inactivated Ps.a. for additional 18 hr. 

The supernatant was removed carefully and centrifuged to remove cell-remains. The cells in the tissue 

culture plate were washed twice with PBS and resuspended in lysis buffer RIPA after the last washing step. 

Cell lysis was fortified by vigorous pipetting and vortexing. Cell fragments were removed by centrifugation. 

The cell lysate and supernatant were analyzed by ELISA. 
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The concentration of IL-6 in the cell culture supernatant increased as expected significantly after the 

stimulation with Ps.a. (Fig.14). As already observed before, the pre-incubation with 9-Ph. resulted in a 

significantly lower concentration in the supernatant compared to the stimulation with Ps.a. alone. In contrast, 

the concentration in the cell lysate highly increased after the pre-incubation with 9-Ph. and subsequent 

stimulation with Ps.a. (Fig.14) compared to the stimulation with heat inactivated bacteria only. This 

indicates, that IL-6 accumulates in the cell, when the TRPM4 channel is inhibited by 9-Ph. 

  

Fig. 15: FACS analysis of IL-6 release in NCI-H292 cells  

FACS analysis of IL-6 release in NCI-H292 cells after stimulation with Ps.a. and pre-incubation with 20 µM 9-Ph. 

Gating strategy for single cells with no treatment (A-C). (D) After the stimulation with Ps.a. the number of IL-6 positive 

cells increased slightly, while the pre-treatment with 9-Ph. induced a low number of IL-6 positive cells (E). The highest 

number of IL-6 positive cells was detected after pre-treatment with 9-Ph. and stimulation with heat inactivated Ps.a. (F). 

Graphical evaluation of the FACS-results (G). N = 3; one-way ANOVA with Tukey’s multiple comparison post-hoc 

test, * p < 0.0332, ** p < 0,0021, *** p < 0,0002, **** p < 0,0001. Data are shown as mean ± SEM. 

A B C 

D 

F G 

E 



 

 
68 

 

To confirm these results, the cells were analyzed by FACS in a separate experiment using an IL-6-specific 

antibody. The cells were grown in 12-well plates like in the previous experiments. To increase the cell 

number, 12 wells were used for each experimental condition and each 4 wells combined in one FACS-

analysis (n=3). After the experiment, the cells were detached by ice-cold 0,1 M EDTA in PBS and a cell 

scraper. The cells were gated based on their size and granularity. The number if IL-6 positive cells in the 

untreated group was very low and increased after the treatment with heat inactivated Ps.a. (Fig.15 C-D). The 

treatment with 9-Ph. didn’t increase the number of IL-6 positive cells (Fig.15 E), while the combination of 

pre-treatment with 9-Ph. and Ps.a. stimulation resulted in a significantly increased number of IL-6 positive 

cells compared to the other groups (Fig.15 F-G). 

These results confirm the hypothesis that the inhibition of TRPM4 by 9-Ph. leads to an accumulation of IL-6 

inside the cells and probably also TNF-α, and CXCL2. 

3.8 The inhibition of cytokine release by 9-Ph. is not dependent on a distinct TLR pathway 

The recognition of microbial components by airway epithelial cells is accomplished by a set of TLR, that in 

turn activate downstream signaling events like cytokine synthesis or the release of antimicrobial peptides. 

Heat inactivated Ps.a. contains a mixture of different TLR-ligands like LPS (TLR4), bacterial DNA (TLR9) 

or flagellin (TLR5), which all activate distinct TLR-receptors. 

To investigate whether primary human bronchial epithelial cells (pHBEs) respond to the inhibition of 

TRPM4 as seen in the cell line NCI-H292, they were pre-treated with 9-Ph. and stimulated 6 hr. later with 

heat inactivated Ps.a. PHBE shows high responsive of IL-6 release compared to NCI-H292, while the pre-

treatment with 9-Ph. led to a decreased release of IL-6 compared to bacterial stimulation alone in both types 

of cells (Fig.16 A-C). The stimulation with LPS and flagellin induced a release of IL-6, while the pre-

treatment with 9-Ph. was able to reduce the concentration in cell culture supernatant (Fig.16 B). Although 

pHBEs were not responsive to Pam3CSK4 (Pam3CysSerLys4, tri-acetylated lipopeptide), a synthetic 

TLR2/TLR1 ligand, NCI-H292 responded with IL-6 release, that was significantly reduced after pre-

incubation with 9-Ph. (Fig.16 C).  
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Fig. 16: The release of IL-6 from pHBE & NCI-H292 cells 

(A) The release of IL-6 is inhibited by 9-Ph. in primary bronchial epithelial cells (pHBE) after the pre-incubation with 

9-Ph. and stimulation with heat inactivated Ps.a. 9-Ph. equally inhibited the Il-6 release after stimulation with LPS and 

flagellin from pHBEs (B). In NCI-H292 cells 9-Ph. inhibited IL-6 release after stimulation with LPS and Pam3CSK 

(C). Experiments were carried out in duplicates, N = 3; one-way ANOVA with Tukey’s multiple comparison post-hoc 

test, * p < 0.0332, ** p < 0,0021, *** p < 0,0002, **** p < 0,0001. Data are shown as mean ± SEM. 

These results indicated that the decreased release of cytokine after the inhibition of TRPM4 in bronchial 

epithelial cells is not restricted to a distinct TLR-signaling pathway, but a general mechanism of airway cell 

biology. These results also indicated that the response of pHBE in terms of IL-6 release toward flagellin 

differs from NCI-H292 cell line, which doesn’t give any flagellin responsiveness.  
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3.9 The increased co-localization of IL-6 with filamentous β-Actin after TRPM4 inhibition 

correlates with the increased cellular retardation  

After showing that the decreased IL-6 release after bacterial stimulation and inhibition of TRPM4 is not a 

feature of a distinct TLR-pathway and present in both cell lines and primary cells, a more experimental 

approach to visualize the IL-6 release was tried. The goal was to quantify the IL-6 specific 

immunofluorescent staining in high resolution structure illumination microscopy with the staining for a 

“house-keeping” protein like β-actin. NCI-H292 cells were grown in chamber-slides at low density and 

stimulated as described for the previous experiments.  

 

Fig. 17: Structure illumination microscopy of NCI-H292 cells  

without treatment (A), after the stimulation with Ps.a. (B), the treatment with 9-Ph. (C), and the pre-treatment with 9-

Ph. and following stimulation with Ps.a. (D). The cells were stained with a primary antibody against IL-6 (yellow), 

filamentous β-actin (Phalloidin-F488, green), and nuclear staining (DAPI, blue).  
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The co-localization of a protein, expressed independently of the treatment, should correlate with the 

intracellular concentration of the protein which is changed by the treatment. There are mainly two methods 

available for confocal-laser scanning microscopy to calculate co-localization. The Pearson’s correlation 

coefficient (PCC) and the Manders’ colocalization coefficient (MCC). In this work; MCC was used due to its 

straight forward workflow and intuitive measure of co-localization.  

All images were taken with the same exposure settings and the number of optical planes. The analysis was 

performed on the same optical slice for all images. 

Fig. 18: Co-localization analysis of IL-6 and β-actin in NCI-H292 cells 

Co-localization analysis of IL-6 and filamentous β-actin in images of NCI-H292 cells after different treatments. While 

untreated and TRPM4-inhibitor (9-Ph.) treated cells showed a co-ocalization of about 20%, the treatment with Ps.a. 

induced an increased co-localization to 30-40%. The highest co-localization was calculated for the cells treated with 9-

Ph. and stimulated with Ps.a., N = 10; one-way ANOVA with Tukey’s multiple comparison post-hoc test, * p < 0.0332, 

** p < 0,0021, *** p < 0,0002, **** p < 0,0001. Data was shown as mean ± SEM. 

MCC has to be displayed for both directions, i.e. the co-localization of IL-6 with β-actin (M1), and the co-

localization of β-actin with IL-6 (M2). The MCC calculated for untreated and 9-Ph. treated cells was 

calculated to be around 20%. This increased to about 30-40% in Ps.a. treated samples and raised to about 

60% in cells that were pre-treated with 9-Ph. and stimulated with Ps.a. (Fig.18). 

The results of the MCC correlate with the previous findings obtained by ELISA and FACS analysis. 
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3.10 The inhibition of TRPM4 interferes with the activation of major transcription factors 

The activation of transcription factors is an indispensable step in the regulation of gene transcription and 

expression. The activation occurs mostly by the specific phosphorylation of one or more serine or threonine 

residues, that may lead to dimerization or structural changes that modify the DNA-binding of the 

transcription factor-complex. In the case of Nf-kB, the majority of un-phosphorylated complex will stay in 

the cytoplasm, while the phosphorylation of serine residues on the p65-sbunit will lead to a pre-dominant 

localization in the nucleus and promote binding to the respective p65-DNA binding site; to enable 

transcription of the target genes. A lot of the steps that lead to the activation of transcription factor, require 

divalent cations like Ca2+; and therefore will depend, at least in part, on the distributions of ions in the 

cytoplasm. This process has already been shown to be influenced by TRPM4. 

To investigate the activation of the Nf-kB transcription factor, NCI-H292 cells were pre-incubated for 6 hr. 

with 9-Ph. and stimulated with Ps.a. for 20 min. The amount of the p65-subunit was investigated by western 

blot in the cytoplasm and nuclear extracts (Fig.19 A). While p65 was nearly not detectable in the cytoplasm 

of untreated cells (control cytoplasmic extract), there was already certain amount of p65 detectable in the 

nuclear extract (control nuclear extract). The treatment with 9-Ph. induced a slight increase in the amount of 

cytoplasmic p65, that was slightly decreased when the cells were additionally treated with Ps.a. compared to 

cell treated with Ps.a. alone (Fig.19 A). As expected, the stimulation with Ps.a. induced high translocation of 

p65 to the nuclear space, as seen in the samples from the nuclear extract. This amount was reduced by the 

treatment with 9-Ph. and also in Ps.a. stimulation after pre-treated with 9-Ph. (Fig.19 A). The signal intensity 

of the nuclear extract from samples treated with 9-Ph. was comparable with nuclear extracts from untreated 

cells. 

These results showed that the treatment with 9-Ph. inhibits the nuclear translocation of the p65-subunit of 

NF-kB. This implictes that the activation of the canonical NF-kB pathway is inhibited by the treatment with 

9-Ph. This could have an impact on the transcription of NF-kB-dependent genes.  

The MAPK1 is mostly activated by growth factors or mitogenic stimuli and leads to the phosphorylation 

dependent activation of ERK1/2 complex. 

The pre-treatment of NCI-H292 cells with 9-Ph. leads to an increased phosphorylation of ERK1/2, which 

was not influenced by the subsequent stimulation with Ps.a. (Fig.19 B). The treatment with Ps.a. alone 

induced a phosphorylation of ERK1/2 that was comparable to untreated cells. This result showed that the 

treatment with 9-Ph. induces the transcriptional activation of MAPK1 dependent genes. 

Many signaling pathways in the cell require Ca2+ as a co-factor. Through the inhibition of TRPM4 the influx 

of Na+ from the extracellular space is impaired, which may also indirectly change the concentration of Ca2+ 

inside the cell. The formation of inositol 1,4,5-trisphophate (IP3) and DAG from PIP2 is catalyzed by the 

enzyme PLC-β2. 
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The stimulation of NCI-H292 cells with Ps.a. leads to an increased protein detection of PLC-β2 compared to 

untreated cells (Fig.19 B). The pre-treatment with 9-Ph. didn’t increase the amount of PLC-β2, which also 

stayed at a comparable level after the subsequent stimulation with Ps.a. 

This result showed that the inhibition of TRPM4 by 9-Ph. leads to a decreased expression of PLC-β2 even 

after subsequent stimulation with Ps.a., which may have an impact on the synthesis of IP3 and subsequent 

internal Ca2+ ions release. 

Fig. 19: Activation and localization analysis of the transcription factors in NCI-H292 cells  

Analysis of the activation and localization of transcription factors in NCI-H292 cells after the pre-incubation with 9-Ph. 

and the stimulation with Ps.a.. Cytosolic and nuclear extracts were prepared after the separation and lysis of the nucleus 

from the cytoplasm. (A) The localization of the p65 subunit of Nf-kB in NCI-H292 cells after the pre-incubation with 9-

Ph. for 6 hr. and the treatment with Ps.a. for 20 min. in the cytoplasm and nuclear extract is shown. Equal loading was 

accomplished by normalizing to the total protein content. (B) The detection of Phospholipase-C-β2, phosphor-Erk1/2, 

total Erk1/2 and β-actin in cell lysate of NCI-H292 cells after the pre-incubation with 9-Ph. for 6 hr. and the subsequent 

treatment with Ps.a. for 20 and 40 min. Experiments were carried out in duplicates. 
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3.11 TRPM4 inhibition leads to decreased eradication of Ps.a. and β-defensin-2 production 

from human bronchial epithelial cells 

Chronic infections of the lung with Ps.a. are an important driver for cystic fibrosis pathology and 

exacerbations of COPD. Bronchial epithelial cells actively contribute to innate immune response by the 

expression of anti-microbial peptides like β-defensin-1, β-defensin-2, and cathelicidin.  

The experiment was carried out with pHBEs, cultured at air-liquid interface, and differentiated until a trans-

epithelial resistance of more than 1000 Ω/cm2. The cells were pre-treated with 9-Ph. in the lower 

compartment (basolateral) and infected with 1x103 CFU live Ps.a. from upper compartment for 6 hr. The 

treatment with 9-Ph. didn’t influence the expression of hBD-1 compared to untreated control, while Ps.a. 

treatment induce a lower hBD-1 expression but did not reach significance level (Fig.20 A). Since hBD-1 is 

known to be a constantly expressed b-defensin, it was expected not to be induced by Ps.a. infection. More 

interestingly, the expression of hBD-2 was highly significantly induced by the infection with Ps.a. and 

repressed to baseline by pre-incubation with 9-Ph. (Fig.20 B). The decreased expression of hBD-2 correlated 

with lower concentration of the peptide in cell culture supernatant (Fig.20 C) and an increased survival of 

Ps.a. after pre-treatment with 9-Ph. (Fig.20 D). The influence of TRPM4-inhibition on the release hBD-2 and 

the survival of Ps.a. correlated with the duration of the pre-treatment with 9-Ph. A co-treatment of the cells at 

the same time point with 9-Ph. and Ps.a. reduced the release of hBD-2 into the cell culture supernatant, but 

had nearly no effect on the antimicrobial activity of the cells. On the other hand, 3 hr. and 18 hr. 9-Ph. pre-

treatment showed the highest efficiency in reducing the release of hDB-2 which correlates with suppression 

of antimicrobial activity of the cells after 6 hr. incubation with live Ps.a. 

These results show a functional correlation of TRPM4 inhibition and the antimicrobial activity of 

differentiated pHBEs. 
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Fig. 20: hBD-1 & hBD-2 secretion and expression in pHBEs 

The treatment of pHBEs with 9-Ph. modulates the expression and release of hBD-2 after the stimulation with live Ps.a. 

While (A) the expression of hBD-1 was not affected by the treatment with 9-Ph. or live Ps.a., the expression of hBD-2 

(B) was highly significantly induced after bacterial stimulation. The additional pre-treatment with 9-Ph. resulted in an 

inhibition of the hBD-2 expression. The reduced expression of hBD-2 in response to bacterial infection and TRPM4-

inhibition correlates with (C) decreased release of hBD-2 into the cell culture supernatant, and (D) an increased survival 

of Ps.a. Additionally, the pre-treatment with 9-Ph. shows a time dependent influence on the concentration of hBD-2 (C) 

and the survival of Ps.a.(D). Experiments were carried out in duplicates, N = 3; one-way ANOVA with Tukey’s 

multiple comparison post-hoc test, * p < 0.0332, ** p < 0,0021, *** p < 0,0002, **** p < 0,0001. Data are shown as 

mean ± SEM. 
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3.12 The inhibition of TRPM4 leads to reduced release of IL-6 from human and murine 

macrophages 

During this work it has been shown that the inhibition of TRPM4 led to a reduced release of pro-

inflammatory mediators from human bronchial epithelial cell lines (Fig.9, 10) and human primary cells 

(Fig.16). Since the mouse is the most important organisms for pre-clinical models of different diseases, it 

was important to know, whether the same effects would also be true for this species. This would also prove 

whether it is a general property or a specific one for human TRPM4. Furthermore, the innate immune 

response is driven by the recognition of pathogens by epithelial cells and immune cells like macrophages.  

To investigate whether the inhibition of TRPM4 leads to a reduced release of IL-6 from macrophages, 

human U937 cells and murine BMDM were pre-incubated with 9-Ph. and stimulated with heat inactivated 

Ps.a.  

Fig. 21: IL-6 secretion from U937 cells and BMDM 

Human U937 cells and murine BMDM were pre-incubate with 9-Ph. and stimulated with Ps.a. IL-6 was measured in 

cell-free supernatant. Experiments were carried out in duplicates, N = 4; one-way ANOVA with Tukey’s multiple 

comparison post-hoc test, * p < 0.0332, ** p < 0,0021, *** p < 0,0002, **** p < 0,0001. Data are shown as mean ± 

SEM. 

Human and murine macrophages responded after the stimulation with heat inactivated Ps.a. with a highly 

significant release of IL-6 (Fig.21). The pre-treatment with 9-Ph. significantly reduced the release of IL-6 

into the cell culture supernatant. The inhibitor without the bacterial stimulation had no effect on the 

concentration of IL-6 in the cell culture medium. 
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These results show that U937 is as human macrophage like cells, and mouse BMDM responds in a similar 

way as the human epithelial cells investigated so far. 

Next, the release of inflammatory mediators was compared between BMDMs from TRPM-knockout animals 

and cells, that were isolated from wildtype littermates and subsequent treated with 9-Ph. This was important 

to verify that the BMDMs isolated from the genetically modified animals show the same phenotype as cells, 

isolated from wildtype animals and treated with a pharmacological inhibitor. 

Fig. 22: Pro-inflammatory mediators secretion from BMDMs of wildtype and TRPM4-konckout mice 

The release of pro-inflammatory mediators is inhibited from BMDMs of TRPM4-konckout mice (ko) and wildtype 

BMDM treated with 9-Ph. The release of IL-6 (A), TNF-a (B), CXCL1 (C), and CXCL2 (D) was significantly reduced 

from BMDMs derived from TRPM4-Knockout and wildtype mice (wt) treated with 9-Ph. prior to Ps.a. stimulation 

compared to wt cells stimulated with Ps.a., N = 4; one-way ANOVA with Tukey’s multiple comparison post-hoc test, * 

p < 0.0332, ** p < 0,0021, *** p < 0,0002, **** p < 0,0001. Data are shown as mean ± SEM. 
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The obtained results confirmed the previous findings (Fig.21 B), that the pre-treatment of BMDM from wild 

type mice with 9-Ph. for 6 hr. and the subsequent stimulation with Ps.a. for 18 hr., significantly reduced the 

concentration for IL-6, TNF-a, CXCL1, and CXCL2 in cell culture supernatant, compared to specimen that 

received no pre-treatment (Fig.22). The response from BMDMs isolated from genetically modified animals 

was comparable to the pre-treatment with 9-Ph. which means that the pharmacological TRPM4-inhibitor had 

the same effect as the deletion of the ion-conduction domains in the genetically modified mice (TRPM4-

knockout). 

These results show that 9-Ph. and the deletion of the ion-conducting domains in TRPM4 led to a reduced 

cytokine response after bacterial stimulation in macrophage like cells in mice. 

3.13 TRPM4 channel participate in inflammatory cytokine induction in isolated mice tracheal 

epithelial cell after heat inactivated Ps.a. Infection. 

Bronchial epithelial cells are an important component of the innate immune response; because they actively 

contribute to antimicrobial defense and chemotaxis of leukocytes. It was shown that human bronchial 

epithelial cells release less pro-inflammatory cytokines and anti-microbial peptide hBD2 after the inhibition 

of TRPM4 in response to the bacterial stimulation.  

The murine tracheal epithelial cells were isolated by enzymatic digestion and cultured in 12-well plates. The 

inflammatory response was compared between wildtype and knockout mice.  

Fig. 23: The cytokine release from murine tracheal epithelial cells 

The cytokine response from murine tracheal epithelial cells after stimulation with Ps.a. (A) The release of KC and (B) 

MIP-2 (CXCL2) was quantified by ELISA in cell free cell culture supernatant 18 hr. after stimulation. The experiment 

was performed in duplicate. wt – wildtype mice, ko – TRPM4-knockout. N = 4; one-way ANOVA with Tukey’s 

multiple comparison post-hoc test, * p < 0.0332, ** p < 0,0021, *** p < 0,0002, **** p < 0,0001. Data are shown as 

mean ± SEM. 
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After the stimulation; the released cells significantly increased amounts of KC and CXCL2 (MIP-2) (Fig.23). 

The detection of IL-6 after stimulation with heat inactivated Ps.a. was not possible. In contrast to the human 

bronchial epithelial cells and cell lines, the release of pro-inflammatory cytokines was significantly higher 

from cells of TRPM4-knockout mice than from cell of their wildtype littermates. This was somehow 

surprising; because the inhibition of cytokine release was confirmed by different methods in human cells. 

This result also differs from the data obtained from murine BMDM. 

3.14 Reduced inflammation and antimicrobial response in TRPM4-knockout mice after the 

stimulation with Ps.a. 

The innate immune response in the lung is triggered by different cell types. The epithelial cells come into 

contact primarily with inhaled bacteria, thereafter the macrophages (interstitial and alveolar) are stimulated 

by bacteria and chemokines released from epithelial cells. It is a complex and regulated procedure. After 

obtaining contradictory results from TRPM4-knockout tracheal epithelial cells from mice and human, it was 

interesting to know how the inflammatory response in TRPM4-knockout mice would develop after the 

stimulation with heat inactivated Ps.a. 

Fig. 24: Leukocyte counts from the BALF of TRPM4-knockout (ko) and corresponding littermate 

controls (wt, het) treated with heat inactivated Ps.a. 

The counts of all leukocytes were compared between the groups (A). After May-Grünwald staining the leukocytes were 

quantified based upon their morphology (B). wt – wildtype mice, ko – TRPM4-knockout mice, het – TRPM4-

heterozuygous mice. N = 5; one-way ANOVA with Tukey’s multiple comparison post-hoc test, * p < 0.0332, ** p < 

0,0021, *** p < 0,0002, **** p < 0,0001. Data are shown as mean ± SEM. 
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For the experiment, the mice were selected to be 8-10 weeks of age and from the same breeding. Only male 

mice were used for the experiments; because other groups have been found that the expression of TRPM4 is 

regulated by the female estrus cycle (Eckstein et al., 2020). The mice were stimulated by tracheal intubation 

with 40 µl of heat inactivated Ps.a. solution. 

18 hr. after the stimulation, the BALF was collected, blood was taken by cardiac puncture and the lung was 

resected. The treatment with Ps.a. induced a significant increase in the number of leukocytes in the BALF, 

which was lightly reduced and was less significant in the TRPM4-knockout mice (Fig.24 A). Based on their 

morphology, the cells in the BALF were mainly neutrophilic granulocytes. The number of neutrophils was 

significantly lower in the TRPM4-ko mice, compared to Ps.a. treated wildtype and heterozygous animals 

(Fig.24 B). 

Fig. 25: Inflammatory cytokines in the BALF of mice treated with heat inactivated Ps.a. 

The concentration of IL-6 (A), TNF-α (B), CXCL1 (C), and CXCL2 (D) was quantified in cell BALF with a multiplex 

Luminex immunoassay. wt – wildtype mice, ko – TRPM4-knockout mice, het – TRPM4-heterozuygous mice. N = 5; 

one-way ANOVA with Tukey’s multiple comparison post-hoc test, * p < 0.0332, ** p < 0,0021, *** p < 0,0002, **** p 

< 0,0001. Data are shown as mean ± SEM. 
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The reduced number of neutrophils in the BALF of TRPM4-knockout mice after stimulation with heat 

inactivated Ps.a. correlated with significantly lower concentrations of IL-6, TNF-α, CXCL1 (KC), and 

CXCL2 (MIP-2) in the knockout and heterozygous mice (Fig.25 A-D). 

Although the stimulation of isolated tracheal epithelial cells from TRPM4-knockout animals with Ps.a. 

induced a higher cytokine response than that from their wild type littermate controls (Fig.23), this effect 

seemed to be superseded by the response of macrophages and other immune cells like neutrophils. despite 

not shown in alveolar macrophages, the release of inflammatory cytokines from BMDMs of TRPM4-

knockout mice was lower compared to stimulated wild type controls (Fig.22). 

Fig. 26: leukocytes number in the blood from mice treated with heat inactivated Ps.a. 

The number of leukocytes in EDTA-stabilized blood from mice after the stimulation with heat inactivated Ps.a., The 

total number of leukocytes (A) and the number of different leukocyte populations, quantified from blood smears (B). wt 

– wildtype mice, ko – TRPM4-knockout mice, het – TRPM4-heterozuygous mice. N = 5; one-way ANOVA with 

Tukey’s multiple comparison post-hoc test, * p < 0.0332, ** p < 0,0021, *** p < 0,0002, **** p < 0,0001. Data are 

shown as mean ± SEM. 

 

The number of leukocytes in blood was only slightly reduced after the stimulation with Ps.a. (Fig.26 A). This 

was mostly due to a reduced number of lymphocytes in the blood of TRPM4-knockout mice after Ps.a. 

stimulation (Fig.26 B). However, the differences observed reached no significance. In contrast the number of 

neutrophils in the BALF was significantly reduced in TRPM4-knockout mice after Ps.a. stimulation (Fig.24 

B). 
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3.15 Reduced expression of mouse beta defensin (mBD) in the lungs of TRPM4-knockout mice 

after the stimulation with Ps.a. 

Antimicrobial peptides are an important effector of the innate immune response. They are released from 

epithelial cells and leukocytes after the stimulation with TLR-ligands, like bacterial components. As already 

shown, the inhibition of TRPM4 in primary human bronchial epithelial cells, resulted in a decreased 

expression and release of hBD-2, that correlated with an increased survival of Ps.a. (Fig.20). The functional 

murine homologue to hBD-1 is murine β-defensin-1 (mBD-1) and for hBD-2 is murine β-defensin-4 (mBD-

4). To quantify the expression of both peptides after the stimulation with Ps.a., the lung tissue was 

homogenized in TRIZOL and used for the isolation of RNA. After cDNA-synthesis, the samples were used 

for the analysis of gene expression for the antimicrobial peptides mBD-1, and mBD-4 by semiquantitative 

real-time-PCR. The expression of mBD1 and mBD4 in lung homogenate significantly increased after the 

stimulation with Ps.a. (Fig.27). The expression of mBD1 didn’t change significantly in the TRPM4-knockout 

animals, while the expression of mBD4 was highly significantly reduced in the knockout mice (Fig.27).  

These data showed that the knockout of TRPM4 results in a lower inflammatory response and less 

expression of antimicrobial peptides after the stimulation with heat inactivated Ps.a. in mice. 

Fig. 27: mBD-1 & mBD-4 expression in mice after treated with heat inactivated Ps.a. 

The expression of murine beta-defensin 1 (mBD-1) (A) and murine beta-defensin 4 (mBD4-) (B) in homogenized lung 

tissue of mice after the stimulation with heat inactivated Ps.a.. The gene-expression was normalized to the expression of 

β-actin. N = 5; one-way ANOVA with Tukey’s multiple comparison post-hoc test, * p < 0.0332, ** p < 0,0021, *** p < 

0,0002, **** p < 0,0001. Data are shown as mean ± SEM. 
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3.16 The stimulation of TRPM4-knockout mice with LPS leads to an increased inflammatory 

response 

The recognition of bacteria by cells of the innate immune system is mostly accomplished by toll-like 

receptors, specific for a distinct set of ligands. It has already been shown that bronchial epithelial cells 

express and respond to TLR-stimulation by different microbial ligands (Mayer et al., 2007). The previous 

results in this work also showed that human bronchial epithelial cells respond to different TLR-ligands and 

that the inhibition of TRPM4 led to a reduced release of IL-6 (Fig.16). To test, if the LPS-stimulation of 

TRPM4-knockout mice would also lead to a decreased inflammatory response, littermates were stimulated 

with 1 µg LPS for 18 hr. 

Fig. 28: leukocytes number in BALF of TRPM4-knockout mice (ko) and the corresponding wild type 

littermates (wt) treated with with LPS. 

The stimulation of TRPM4-knockout mice (ko) and the corresponding wild type littermates (wt) with 1 µg LPS. The 

number of leukocytes in BALF was counted (A) and differentiated based on their morphology after staining (B). N = 4; 

one-way ANOVA with Turkey's multiple comparison post-hoc test, * p < 0.0332, ** p < 0,0021, *** p < 0,0002, **** 

p < 0,0001. Data was shown as mean ± SEM. 

In contrast to the animals that were stimulated with heat inactivated bacteria, after the stimulation with LPS a 

higher number of leukocytes was present in the BALF of TRPM4-knockout mice compared to their 

littermate wildtype mice (Fig.28 A). This was mostly induced by a significantly higher influx of neutrophilic 

granulocytes in the TRPM4-knockout mice (Fig.28 B). Accordingly, the concentration of inflammatory 

cytokines in the BALF was significantly higher in the TRPM4-knockout mice. The stimulation with LPS 

induced a significant increase in the treated mice compared to the untreated controls. The cytokines were 
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quantified in cell free BALF supernatant with a multiplex Luminex-based immunoassay. The amount of IL-

6, TNF-α, CXCL1, and CXCL2 (Fig.29) was significantly higher in the LPS-treated TRPM4-knockout mice 

compared to the treated wildtype mice. 

Fig. 29: Cytokines concentration in BALF of TRPM4-knockout (ko) and control mice (wt) treated with 

LPS. 

The concentration of IL-6 (A), TNF-α (B), CXCL1 (C), and CXCL2 (D) in cell-free BALF of TRPM4-knockout (ko) 

and control mice (wt), 18 hr. after LPS stimulation. The cytokines were quantified with the help of a multiplex 

Luminex-based immunoassay. N = 4; one-way ANOVA with Tukey’s multiple comparison post-hoc test, * p < 0.0332, 

** p < 0,0021, *** p < 0,0002, **** p < 0,0001. Data are shown as mean ± SEM.  

The analysis of the number of leukocytes in the blood of LPS-treated mice showed that numbers of 

leukocytes and the number of the different leukocyte-populations did not change between stimulated 

TRPM4-knockout and wild type mice (Fig.30). which support the hypothesis, that the stimulation with LPS 

led to a strictly pulmonary inflammation. 
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Fig. 30: leukocytes number in blood of TRPM4-knockout (ko) and wild type littermates (wt) treated 

with LPS. 

The number of leukocytes in the blood of LPS-stimulated TRPM4-knockout (ko) and wild type littermates (wt) (A) was 

counted. The number of different leukocyte populations in the blood was differentiated based on their size and 

morphology (B). N = 4; one-way ANOVA with Tukey’s multiple comparison post-hoc test, * p < 0.0332, ** p < 

0,0021, *** p < 0,0002, **** p < 0,0001. Data are shown as mean ± SEM. 

 

The number of neutrophilic granulocytes slightly increased in the LPS-treated TRPM4-ko animals but did 

not reach significance level.  

This data shows that during a stimulus with TLR4-ligands, the inflammatory response in the 

TRPM4-knockout mice is higher than in the corresponding wild type control animals. This is in contrast to 

the results obtained after the stimulation with heat inactivated Ps.a. (Fig.24, 25), but in line with the response 

of isolated tracheal epithelial cells (Fig.23). Up to now it is not completely clear why the response is 

completely different after the stimulation with a mixture of TLR-ligands that are already present in the 

preparation of heat inactivated Ps.a., and the stimulation with a purified TLR4-ligand. This will be the 

subject of future investigations and will also be elaborated in the discussion of this work. 
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Discussion 

The main findings of this study were as follows: 

1. TRPM4 is expressed in airway epithelial cells. 

2. The inhibition of TRPM4 leads to a decreased release of inflammatory mediators from bronchial 

epithelial cells and macrophage like cells, but it does not influence the expression of TRPM4 or 

TLR4. 

3. TRPM4 is necessary for the secretion of a number of cytokines, while the related transcription is not 

inhibited. 

4. In vivo, the inhibition of TRPM4 leads to a reduced expression of antimicrobial peptides, and 

reduces release and subsequent host defense in vitro.  

5. TRPM4 knockout mice develop a reduced inflammatory reaction in response to the stimulation with 

Ps.a.. In contrast, the stimulation with LPS leads to an increased inflammatory response of TRPM4 

knockout mice. 

During this project we could show that the non-selective monovalent cation channel TRPM4 is an important 

regulator of the inflammatory response after the stimulation with Ps.a. or bacterial components like LPS, 

flagellin or nucleotide-mimics (Pam3CSK, Poly-IC) in airway epithelial cells and monocyte derived 

macrophages.  

The inhibition of the TRPM4 channel by the 9-Phenantrol specific inhibitor or siRNA highly significantly 

reduced the export of typical immune mediators like IL-6, TNF-a, CXCL2, and S100A8. These findings 

were confirmed in primary human bronchial epithelial cells, epithelial cell line, macrophage cell line and 

murine monocyte derived macrophages. The reduced cytokine concentrations in the supernatant after the 

treatment of the cells with the TRPM4-inhibitor and additional bacterial stimulation did not correlate with 

the decreasing in corresponding transcription. The anti-microbial peptide hBD2 and the alarmin S100A8 

were the only mediators during this project that were inhibited on transcriptional level after the inhibition of 

TRPM4 and bacterial stimulation. This behavior could be related to their dependency on divalent cations.  

In vivo, the inflammatory response of TRPM4 knockout mice was reduced compared to the corresponding 

wild type littermates after the pulmonary stimulation with heat inactivated Ps.a. In contrast, the stimulation 

with LPS induced a higher inflammatory reaction in the TRPM4 knockout animals than in their wildtype 

littermates. This finding may be related to the differential recognition of heat killed bacteria and LPS, 

however it needs to be further investigated.  
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Most of the previous studies have been performed on TRPM4 channel in different types of tissues, while 

fewer studies have focused on TRPM4 channel in the epithelial cell, and rarely on airway epithelial cell, that 

is why TRPM4 channel was chosen for our current study. 

TRPM4 and TRPM5 are two closely related cation channels that are expressed in a wide variety of the tissue. 

TRPM4 is usually highly expressed in the heart, pancreas, and placenta, while TRPM5 expression is located 

predominantly in the intestine, pancreas and taste buds, and can also be found in the stomach, lung, testis, 

and brain (Fonfria et al., 2006). 

TRPM4 channels are engaged in a wide variety of physiological processes such as T-cell activation (Pierre 

Launay et al., 2004), allergic reactions, myogenic vasoconstriction (Crnich et al., 2010) and neurotoxicity 

(Schattling et al., 2012). Furthermore TRPM4 plays a role in smooth muscle contraction (A. C. Smith et 

al., 2013), insulin secretion by pancreatic beta cells (Cheng et al., 2007), cardiac action potentials (Hof et 

al., 2013; Simard et al., 2013), immune system responses (Barbet et al., 2008; Vennekens et al., 2007) and 

cerebral artery constriction (Earley, 2013). In addition, the channel is involved in pathologies, such as 

cardiac hypertrophy (Guinamard et al., 2006), human cardiac-genetic diseases (Kruse et al., 2009; H. Liu 

et al., 2013), autoimmune encephalomyelitis, human multiple tissue sclerosis (Schattling et al., 2012), and 

ischaemia-reperfusion injuries in heart or brain (Loh et al., 2014; Simard et al., 2012). So, understanding 

the regulatory function of the TRPM4 channels on the plasma membrane may open a therapeutic window for 

interference with diseases associated with TRPM4 channel. 

Throughout this work, it has been shown that the TRPM4 channel is expressed in the bronchial epithelial cell 

line NCI-H292. This finding was proved by structured illumination microscopy (SIM), which shows that 

TRPM4 channels are localized to the nucleoplasm and plasma membrane of the bronchial epithelial cell line 

NCI-H292 (Fig.7 A).  

The release of cytokines is an important step during the activation of cells in the course of a bacterial 

infection (Kube et al., 2001; Malhotra et al., 2019). Chemokines and cytokines released from epithelial 

cells attract immune cells or directly interact with the bacteria. Since calcium plays a central role in many 

processes of the cell, we speculated that an interference of this pathway would lead to a different response of 

the cells.  

We could show that the inhibition of TRPM4 by 9-Phenantrol (9-Ph.) reduced the release of different 

inflammatory mediators and cytokines in the NCI-H292 cell line. The treatment of the cells with the inhibitor 

or with heat inactivated Ps.a. had no impact on the release of LDH (Fig.8). During this initial toxicity testing, 

concentrations of 10 – 40 µM were used, which correspond to 0.5 times to 2 times the reported IC50 value of 

20 µM (T Grand et al., 2008). The stimulation of the cells with heat inactivated Ps.a. after the pre-
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incubation with 9-Ph. blunted the release of IL-6, TNF-α, MIP2-α, and S100A8 nearly completely. This was 

clearly observed when 9-Ph. was used at a concentration that corresponded to its reported IC50 value of 20 

µM (Fig.9). This effect was concentration dependent; because at concentrations equal to 1/4th the IC50 value 

(= 5µM) the release of the above-mentioned mediators went back to concentrations similar to those, 

observed in samples without 9-Ph. (Fig.10). The inhibition of TRPM4 by 9-Ph. was mostly affected the 

release, while the transcription of IL-6, TNF-α, and MIP2-α was not influenced. Surprisingly, the 

transcription of S100A8 and hBD-2 were inhibited by 9-Ph. in cells, that were subsequently stimulated with 

heat inactivated or live Ps.a. (Fig.11 C, Fig.20 B). Since TRPM4 is activated by changes in the membrane 

potential of the cell, PIP2, and an increase of the concentration of Ca2+, these findings implicate that the 

expression of S100A8 and hBD-2 depends on one of these factors, while the expression of IL-6, TNF-α, and 

MIP2-α is not affected by Ca2+, PIP2 or changes in membrane potential. 

We choose 9-phenanthrol as a specific TRPM4 inhibitor. Although there are many other compounds, 

including MPB-104, quinidine, quinine, flufenamic acid, and intracellular spermine that have the ability to 

inhibit TRPM4 channel, nevertheless their use has been limited; due to their weak selectivity toward TRPM4 

channel among other ion channels (Simard et al., 2013). 9-Ph. has been described as a selective inhibitor for 

TRPM4 channel, with an IC50 of 1 µM in endothelial cells and an IC50 of 20 µM in HEK293 transfected cells 

(Guinamard et al., 2014). 

Additionally it was shown that 9-Ph. inhibits the chloride channel TMEM16A (transmembrane protein 16A), 

which is mainly found in smooth muscle cells (Burris et al., 2015). Since the IC50 of 9-Ph. for TMEM16A is 

12 µM in arterial myocytes, it is most likely that after the use of 9-Ph. in an animal model, artery smooth 

muscle contraction may be impaired before the TRPM4 channel is inhibited. In vivo usage of 9-phenanthrol 

remains controversial and a source of anxiety, due to its toxicity effect as a member of polycyclic aromatic 

hydrocarbons. 

The specificity of 9-Ph. has initially been described in TRPM4-transfected HEK-293 cells (T Grand et al., 

2008). The author could show no inhibitory activity of 9-Ph. at 10-4 M on the closely related TRPM5 

channel. Others also showed no inhibition of TRPC3 or TRPC6 at 3 x 10-5 M in HEK-293 cells (Gonzales et 

al., 2010). They also confirmed the IC50 value of the endogenous TRPM4 in isolated cerebral artery 

myocytes, which was comparable to the value obtained for the HEK-293 transfected TRPM4 channel in 

previous publication. Therefore, it is very likely that the influence on the release of cytokines and host 

defense molecules in airway epithelial cells is due to the lack of activity of TRPM4. 

To confirm the results obtained after the inhibition of TRPM4 with 9-Ph., NCI-H292 cells were transfected 

with a plasmid that expresses TRPM4-specific shRNA, driven by a U6 promoter. The shRNA was obtained 

from a commercial supplier and had been validated by the RNAi-consortium at the Broad-Insitute (MIT, 
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Havard, Cambridge, MA, USA). The shRNA selectively binds to exon 11 (shRNA2) and exon 17 (shRNA1), 

which are in close proximity of the ion-transducing domain, spanning exon 17-19 (Fig.5). The control in this 

experiment was a non-target shRNA-plasmid from the same supplier in the same vector-backbone. The use 

of the TRPM4-specific shRNA inhibited the release of IL-6 in a similar way as already observed in 

experiment, where the pharmacologic inhibition of TRPM4 was used. This shows that the presence and 

function of TRPM4 are necessary for an appropriate release of IL-6 in the course of a bacterial stimulation. 

Bronchial epithelial cells respond to bacteria through different pathways. They express a distinct set of 

TLRs, that form hetero- or homodimers and bind a specific class of bacterial ligands (Thorley et al., 2011).  

Heat inactivated bacteria consist of a mixture of different TLR-ligands, like lipopeptides, flagella, bacterial 

DNA, and cytoplasmic components. To evaluate, if the reduced release of cytokines is associated with the 

activation of a distinct TLR-stimulation, the cells were stimulated with either LPS, flagellin, or Pam3CSK. It 

is also important to evaluate if the activity of TRPM4 is necessary for the release of cytokines from primary 

cells. Heat inactivated Ps.a., LPS, and flagellin induced the release of IL-6 from primary human bronchial 

epithelial cells. LPS and Pam3CSK also induced the release of IL-6 from NCI-H292 cells. In all of those 

conditions, the activity of TRPM4 was necessary for the release of IL-6 into the cell culture supernatant, 

because the pre-incubation with 9-Ph. significantly inhibited the Ps.a. induced release of IL-6 (Fig.16). 

One possible explanation of the reduced cytokine release after TRPM4 inhibition and bacterial stimulation 

could be a reduced expression of a TLR or a reduced expression of TRPM4. TLR4 is one of the most 

prominent TLRs, specific for bacterial LPS and required for an antimicrobial response of airway epithelial 

cells (MacRedmond et al., 2005). Ps.a. is able to activate airway epithelial cells either by flagellin via TLR5 

(Z. Zhang et al., 2005a) or through its lipid core of LPS (Hajjar et al., 2002).  

The expression of TLR4 or TRPM4 was not inhibited by 9-Ph., conversely heat inactivated Ps.a. 

significantly induced the expression of TLR4 (Fig.13) in NCI-H292 cells. Although it may be possible that 

the expression of other TLRs like TLR5 could be influenced by the inhibition of TRPM4, the main focus of 

this work is the interplay between bacterial stimulation, the activity of TRPM4, and the resulting host 

response. 

These findings, together with the finding that the gene expression of IL-6, MIP2-α, and TNF-α was not 

inhibited by reduced TRPM4 activity, led to the hypothesis that the function of TRPM4 is necessary for 

export of these mediators out of the cell. To validate this finding, the concentration of IL-6 was examined in 

cell lysate and supernatant. After the inhibition of TRPM4 and the stimulation with heat inactivated Ps.a., the 

supernatant of the cells was collected separately from the cell lysate and analyzed by ELISA. Our result 

revealed that after bacterial stimulation, the concentration of IL-6 in cells with functional TRPM4 showed 
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equilibrium between the concentration found in supernatant and cell lysate. In contrast, the inhibition of 

TRPM4 prior to bacterial stimulation induced a significantly higher concentration of IL-6 inside the cell, 

compared to the supernatant (Fig.14), although the expression of IL-6 was not influenced by the inhibition of 

TRPM4 (Fig.11 A). To confirm this finding, cells were again treated with 9-Ph. and stimulated with heat 

inactivated Ps.a.. The detection of intracellular IL-6 was performed by FACS analysis using a phycoerythrin 

coupled IL-6-specific antibody.  

The results show that while in the untreated group only 1.4 % of the cells were stained positive for IL-6, this 

value raised to more than 23% in the Ps.a. stimulated cells. In contrast, the inhibition of TRPM4 and the 

additional stimulation with Ps.a. resulted in nearly 95% positive staining for IL-6 (Fig.15). 

These results confirmed that the function of TRPM4 is necessary for a successful export of IL-6, TNF-α, and 

MIP2-α after a bacterial stimulation. Since it has been shown by other publications that the inhibition of 

TRPM4 results in an accumulation of Ca2+ in the cytosol, and a change in the membrane potential (T Grand 

et al., 2008; P. Launay et al., 2002), it is highly possible that the Ca2+ concentration and thereby the charge 

of the cell plays an important role in the export of cytokines from non-excitable cells. 

A more experimental approach consisted in the quantification of immunofluorescence images obtained by 

SIM. This is usually not a straight-forward approach, since the normalization is most likely difficult. 

Mander’s coefficient is used to determine the colocalization of two different proteins of interest. Here, the 

colocalization of IL-6 with β-Actin was used, with the assumption that the staining for β-Actin was not 

influenced by the experimental conditions. β-Actin is also frequently used for normalization in the analysis 

of western blots or qRT-PCRs. The results show that the colocalization increased after the stimulation with 

Ps.a. compared to the untreated cells. These values increased even more in the samples, that had been treated 

with the TRPM4 inhibitor prior to Ps.a. stimulation (Fig.17). These results correlate with the previous 

analysis and confirm that the export of IL-6 requires the function of TRPM4. 

The export of cytokines is a highly regulated process and has been investigated in more detail in macrophage 

cell lines (RAW264.7) (Manderson et al., 2007) and dendritic cells (Verboogen et al., 2018). They showed 

that IL-6 and TNF-α accumulate within 1 hr. after LPS-stimulation in the perinuclear Golgi complex and are 

transported further through the trans-Golgi network to recycling endosomes; suggesting that the Golgi could 

serve as a bottleneck restricting the secretion of the newly synthesized IL-6. In the recycling endosome, IL-6 

and TNF-α localize to separate regions. IL-6 is transported directly to the cell surface while TNF-α is 

exported through phagocytic cups (Manderson et al., 2007).  

Since airway epithelial cells are less actively secreting cells compared to macrophages, these mechanisms 

may not take place to the same extent. Nevertheless, the finding of this thesis indicates that the traffic of 
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vesicles from the endoplasmic reticulum to the trans-Golgi network towards the recycling endosome may be 

dependent on the activity of TRPM4, since the release of IL-6 and TNF-α is reduced after the inhibition of 

TRPM4. 

The influence of TRPM4 on the regulation of secretion has been investigated in more detail for insulin. It has 

been shown that the expression of a dominant negative form of TRPM4 significantly reduced the secretion of 

insulin from rat pancreatic β-cells (Cheng et al., 2007). It was also shown by another group that 9-Ph. 

inhibits the glucose or the glucagon-like-peptide-1 (GLP-1) induced insulin secretion from isolated rat 

pancreatic islets in a dose dependent manner (Ma et al., 2017). Another publication showed that the 

mechanism of glucose-stimulated insulin secretion from pancreatic islets is driven by the activation of PLC 

by GLP-1. The activity of PLC, in turn, leads to the synthesis of DAG and IP3. This pathway is dependent on 

the Ca2+ mobilization from intracellular Ca2+ stores. The Ca2+ mobilization is mainly mediated by TRPM4 

and TRPM5. Accordingly they could show that the GLP-1 mediated insulin secretion was severely impaired 

in TRPM4 and TRPM5 knockout mice (Shigeto et al., 2015). 

Protein synthesis involves a fine regulated network of transcription factors and upstream activating kinase-

pathways. The transcription factor complex Nf-kB is one of the most prominent ones, which is also involved 

in downstream signaling events of TLR-signaling and host-response. The signalling generated by LPS 

activates many post-translational modifications in the Nf-kB p65 subunit (Nf-kB p65) prior to nuclear 

translocation (Vallabhapurapu & Karin, 2009). Nf-kB p65 phosphorylation is correlated with nuclear 

translocation in mice (Zhong et al., 1997) and consequently with transcriptional transactivation (Yang et al., 

2003).  

The stimulation of NCI-H292 cells with heat inactivated Ps.a. induced the translocation of Nf-kB to the 

nucleus. The treatment with 9-Ph. alone induced the activation of Nf-kB, that was comparable to untreated 

controls. Surprisingly the translocation of Nf-kB was not increased in cells that were treated with 9-Ph. 6 hr. 

prior to Ps.a. stimulation (Fig.19 A). This indicates that the function of TRPM4 is necessary for the 

activation of Nf-kB in airway epithelial cells. For hBD-2 it is known that for an efficient transcription all Nf-

kB binding sites on the promoter need to be occupied (Kao et al., 2008; Tsutsumi-Ishii & Nagaoka, 2002). 

Additionally, we observed that the expression of PLC-β2 was downregulated after the inhibition of TRPM4. 

The amount of PLC-β2 detected by western blotting was higher in cells that were stimulated with heat 

inactivated Ps.a.. In contrast, the concentration was lower in cells that had been treated with 9-Ph. prior to 

bacterial stimulation (Fig.19 B). This is mostly due to an increased concentration of Ca2+ inside the cells, 

which has also been shown for dendritic cells of TRPM4-knockout mice after the stimulation with 

Escherichia coli (Barbet et al., 2008). The decreased expression of PLC-β2 after the inhibition of TRPM4 
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also indicates that the inhibition of TRPM4 leads to a change in the intracellular Ca2+ concentration in NCI-

H292 airway epithelial cells. 

Members of the PLC-family are important for the signaling of G-protein coupled chemokine receptors 

(reviewed by (Hubbard & Hepler, 2006)). The stimulation with Ps.a. led to an upregulation of PLC-β2, 

which is known to induce the synthesis of IP3, which in turn binds to the endoplasmic reticulum receptors 

and induces intracellular Ca2+ release. It was also shown that the reduced PLC-β2 expression in the TRPM4-

knockout cells correlated with a decreased CCL21-mediated chemotaxis of mature dendritic cells (Barbet et 

al., 2008). 

The activation of the MAPK p38, Erk1/2, and Jnk by LPS in the airway epithelial cell line Beas2B has been 

already shown (Guillot et al., 2004). However, after the stimulation with heat inactivated Ps.a. in NCI-H292, 

only a slightly increased phosphorylation of Erk1/2 was detected (Fig.19 B). The inhibition of TRPM4 

induced an increased phosphorylation, that was not further increased by the additional stimulation with Ps.a.. 

This indicates that the activity of TRPM4 independently of Ps.a. stimulation leads to an increased activation 

of Erk1/2. 

A direct involvement of TRPM4 in Nf-kB mediated transcriptional initiation has not been published so far; 

however, it could provide an explanation for the finding of this work that the expression of hBD-2 was 

highly suppressed after the inhibition of TRPM4. The expression of antimicrobial peptides after bacterial 

stimulation is a first and immediate response of bronchial epithelial cells. Our result showed that the 

expression of hBD-2 was highly induced after the stimulation with heat inactivated Ps.a. and it correlated 

with increased antibiotic activity and extracellular concentration of hBD-2. In contrast, the pre-incubation 

with 9-Ph. decreased the antimicrobial activity in a time dependent manner which correlates with a decreased 

expression and extracellular concentration of hBD-2. In contrast to IL-6. TNF-α, and MIP2-α, the inhibition 

of TRPM4 had a direct influence on the transcription of hBD-2, which resulted in an impaired anti-microbial 

defense of the cells. The time dependent reduction of gene expression indicates that the transcriptional 

activation of hBD-2 involves factors influenced by Ca2+. It has been shown that the inhibition of TRPM4 

leads to an increased concentration of Ca2+ in the cell (Rixecker et al., 2016). This mechanism seems to be 

specific for hBD-2, since the transcription of hBD-1 was not influenced by the activity of TRPM4. Another 

important aspect of this result is that cellular stimulation whether by live bacteria, heat inactivated bacteria or 

bacterial components is dependent on TRPM4-activity. 

Macrophages play an important role in the innate immune defense of the lung. They are involved in the 

phagocytosis and the direct antimicrobial response. Alveolar macrophages represent population of 

specialized tissue resident macrophages that persist in the lung and act as a sentinel cell population to act 

immediately upon the contact with microbes or small particles. Alveolar macrophages belong to a group of 
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tissue resident macrophages that develop before the hematopoietic system develops and colonize fetal tissue; 

to differentiate into specialized, tissue resident and self-renewing macrophage populations (Takahashi et al., 

1989). Upon a bacterial stimulation, additional blood derived monocytes will be attracted and support the 

host defense reaction. Additionally, blood derived monocytes may give rise to different lung macrophage 

populations, like interstitial, alveolar, pulmonary intravascular, and intermediate state macrophages (Evren 

et al., 2020). Many publications have used cell lines, bone marrow derived or alveolar macrophages 

interchangeably; to investigate the immune response after stimulation with LPS or bacteria with comparable 

results (Rayees et al., 2019; Woods et al., 2020). Also different results between primary cells and cell lines 

have been reported after the stimulation with bacteria (Andreu et al., 2017).  

In the course of this project, the inhibition of TRPM4 had similar effects on macrophages of human and 

mouse origin. The inhibition of TRPM4 with 9-Ph. in the human macrophage-like cell line U937 and in 

murine BMDM led to a highly significantly decreased extracellular concentration of IL-6 after the 

stimulation with heat inactivated Ps.a. (Fig.21). This indicates that the involvement of TRPM4 in the export 

of cytokines is not restricted to human cells. To further investigate the role of TRPM4 in the innate immune 

response, TRPM4-knockout mice were used to isolate cells and to investigate the function to TRPM4 in a 

pneumonia model. 

Knockout animals have been very useful in other studies to investigate the function of different signaling 

pathways in vivo. TRPM4-knockout mice have been generated by different groups, either by excising exon 

3-6 (Barbet et al., 2008) or exon 15-16 that includes the first transmembrane spanning domain (Vennekens 

et al., 2007). During this work mice with deleted exons 15-16 were used.  

It has been shown that TRPM4 decreases the anaphylactic response and IgE-dependent mast cell activation 

(Vennekens et al., 2007), and that TRPM4 is necessary for the migration of dendritic cells (Barbet et al., 

2008). Additionally, it has been shown in vivo that the TRPM4 channel is necessary for the function of 

macrophages and monocytes, and is beneficial for the survival in a murine sepsis model (Serafini et al., 

2012). 

To confirm the previous results obtained by the 9-Ph. TRPM4 inhibitor, macrophages from TRPM4-

knockout mice were isolated from the bone marrow and differentiated in the presence of M-CSF to generate 

macrophage like cells. Depending on our finding, we could assume that the function and presence of TRPM4 

were necessary; to induce the release of IL-6. In this experiment, the cells that were treated with the 

pharmacologic TRPM4 inhibitor 9-Ph. or isolated from TRPM4-knockout mice released lower 

concentrations of IL-6, TNF-α, CXCL-1, and CXCL-2 in the cell culture supernatant in response to bacterial 

infection compared to cells that were isolated from wildtype mice (Fig.22). These results are consistent with 
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the findings that TRPM4 is needed to initiate an inflammatory response in human airway epithelial cells and 

monocyte derived macrophages cell lines (Fig.16, Fig.21). 

Next, a pneumonia model with heat inactivated Ps.a. was used to investigate the contribution of TRPM4 on 

the inflammatory response in TRPM4-knockout mice, where the samples were obtained and analyzed 18 hr. 

after stimulation. In concordance with the previous in vitro experiments, the stimulated knockout animals 

displayed a reduced inflammatory response compared to the wildtype littermates. The stimulation with heat 

inactivated Ps.a. induced an influx of leukocytes into the lung, which predominantly contained neutrophilic 

granulocytes, where the number of cells was significantly lower in TRPM4-knockout mice compared to 

wildtype and heterozygous animals (Fig.24). The decreased cellular influx correlated with significantly 

lower concentration of IL-6, TNF-α, CXCL1, and CXCL2 in the BALF of TRPM4-knockout mice. Although 

the number of cells was not significantly decreased in the heterozygous animals, the concentration of 

inflammatory markers was significantly lower than in the wildtype mice and comparable to the knockout 

animals. This indicates that the influx of leukocytes was not affected but their activation may have been 

impaired, this assumption needs to be proven by further investigation. Additionally, the expression of the 

antimicrobial peptides mBD1 and mBD4 was significantly induced after the stimulation with heat inactivated 

Ps.a. in wildtype mice (Fig.27). In line with the results from the experiment with differentiated primary 

human airway epithelial cells, the expression of mBD4 is significantly reduced in the TRPM4-knokcout 

animals, where the defensin mBD4 is the murine homologue to the human defensin hBD2. 

In contrast to our previous findings, the pulmonary stimulation of mice with LPS induced the influx of a 

higher number of leukocytes in the lung of knockout littermates compared to wild type mice. The leukocytes 

isolated from the BALF were predominantly neutrophilic granulocytes (Fig.28). Their number was also 

significantly higher after LPS stimulation in the TRPM4 knockout mice than in the wildtype-littermates and 

correlates with increased concentrations of IL-6, TNF-α, MIP1, and MIP2 in the BALF (Fig.29). 

In line with these results, tracheal epithelial cells that were isolated from TRPM4-knockout mice and 

differentiated at the air-liquid interface, produced significantly higher concentrations of KC and CXCL-2 

than their corresponding wildtype controls after the stimulation with heat inactivated Ps.a. (Fig.23). The 

release of IL-6 was not detectable in cells from wildtype or TRPM4-knockout mice. This is in contrast to the 

previous results obtained from human primary cells and cell lines that showed reduced secretion of IL-6, 

TNF-a, MIP1, and other host defense molecules after inhibition of TRPM4 and additional stimulation with 

TLR-ligands or heat inactivated Ps.a. (Fig.9, Fig.16). 

The findings; that the inflammatory response after the stimulation with heat inactivated Ps.a. is lower in the 

absence of TRPM4, is in contrast to the results from the work that investigated the function of macrophages 

and monocytes in a murine sepsis model (Serafini et al., 2012). In their sepsis model the inflammatory 
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response is significantly increased, and the survival rate decreased in the absence of TRPM4. This may be a 

result of the disease model that they used. It’s also possible that the reactivity of intestinal macrophages 

differs from pulmonary macrophages. While the intestine gets in contact with microbes more frequently, the 

lung is far more less colonized by microbes and may therefore display a different sensitivity towards 

microbial stimulation. 

In contrast to the stimulation with Ps.a., these results indicate that LPS might trigger a different response in 

mouse cells. Additionally, LPS used in this experiment was isolated from Escherichia coli, which is different 

in structure than LPS isolated from Ps.a.. A recent publication showed similar results obtained from TRPM5-

knokcout mice (Sakaguchi et al., 2020). They could show that in the absence of TRPM5 the severity of an 

LPS induced inflammation in a sepsis model is significantly higher than inflammation in the corresponding 

wildtype animals. Since TRPM4 and TRPM5 are two closely related channels with similar properties, their 

results are also important for the current experiment. While pure LPS mainly activates TLR4-signaling 

pathways, heat inactivated Ps.a. stimulates a much wider spectrum of TLR-pathways. This may lead to 

different effects in respect to the calcium concentration and overall charge of the cells.  

Actually, different cellular response toward LPS could be attributed to many factors such as types of airway 

epithelial cells, cell culture conditions and heterogeneous cell calcium responses (Paradiso et al., 1999). 

However the LPS used in other research did not generate a lethal effect on 16HBE14o cells and the structure 

of LPS could influence various cellular responses, LPS lipid A of Ps.a. shows less toxicity than Escherichia 

coli lipid A attributable to its penta-acylated form (Pier, 2007). It was demonstrated that A hexa-acylated 

lipid A is related to a stronger inflammatory response (Ernst et al., 2003). In addition, the O-antigen length 

of the LPS also acts as a virulence determining factor (Cryz et al., 1984). 

Another main reason for LPS unresponsiveness is attributable to lack of TLR4 (Kumar et al., 2006) (Ueta 

et al., 2004). On the one hand some researchers postulate that respiratory epithelial cells express a complex 

of LPS receptors comprising TLR4 and MD-2. Furthermore, production of proinflammatory mediator in 

respond to LPS is mediated by intracellular TLR4 (Guillot et al., 2004). On the other hand others claim that 

human corneal epithelial cells react to TLR2, TLR3, and TLR5 ligands in vitro, but do not respond to LPS 

(Y. Sun & Pearlman, 2009) (Ueta et al., 2004) (Visintin et al., 2006). While other research shows that 

TLR4 is not present on the surface of intestinal epithelial cells, they demonstrate that it is distributed 

intracellularly on Golgi apparatus, where in respond to internalized LPS, TLR4 co-localization could be 

affected. This is, in turn, contrary to monocytes which could express TLR4 on its surface membrane (Hornef 

et al., 2002).  

In accordance with the absence of TLR4 expression on the cell surface of the pulmonary epithelial cells, it 

has been observed that there is no effect on LPS activation after addition of the TLR4 blocking antibody in 
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the extracellular medium, where the assessment based on the measurement of IL-8 secretion. By comparison, 

the TLR4 blocking antibody decreased the activation of LPS-induced U-937 macrophage cell lines by 68 %. 

Intracellular compartmentalization of TLR4 may play a vital role in preventing inopportune activation of 

pulmonary epithelial cells, which is suggested to be due to frequent exposure to air containing trace amounts 

of LPS and as a consequence a chronic inflammatory state (Guillot et al., 2004). Therefore, TLR4 signalling 

can only be activated when exposed to a massive quantity of considerable or bacteria-related LPS as happens 

in infectious diseases (Schulz et al., 2002) (Simpson et al., 1999). 

MD-2 & CD14, as a co-stimulatory accessory molecule, plays a vital role in LPS responsiveness. TLR4 in 

conjunction with its accessory molecules facilitates the identification of even very low picomolar 

concentration of LPS (Gioannini et al., 2004). In mice, neither TLR4 deficient nor MD-2 deficient mice, 

couldn’t show LPS responsiveness. So, it is concluded that TLR4/MD-2 complexes are crucial for LPS 

response (Hoshino et al., 1999) (Shimazu et al., 1999) (Nagai et al., 2002). It has been proved that MD-2 is 

not expressed in human corneal epithelial cells and that exogenous MD-2 or transfection with plasmid-

expressing MD-2 confers LPS responsiveness (Y. Sun & Pearlman, 2009) (Visintin et al., 2006). In 

agreement with the latter observations, it has been showed that TLR4 is substantially expressed on the 

surface of human corneal epithelial cells, while MD-2 is not detected at either RNA or protein level (Roy et 

al., 2011). Nevertheless, LPS responsiveness was detected in the presence of MD-2 surface receptor in 

primary human corneal epithelial (HCE) cells and HCE cell lines. In line with our assumption that the 

cellular response towards Ps.a. is different from LPS, it was found that IFN-γ which is usually produced 

during Ps.a. corneal infection, could induces MD-2 expression and LPS responsiveness in HCE cell lines by 

JAK-2-dependent STAT1 activation and direct binding to the MD-2 promoter results in activation of 

transcriptional factor, MD-2 gene expression and subsequent surface expression. These data were confirmed 

by external trails, which prove that IFN-γ was able to induce MD-2 mRNA, MD-2 cell surface expression, 

and LPS responsiveness in primary HCE cells and HCE cell lines (Roy et al., 2011).  

Although many researchers postulate that TLR4 activation depends on combination between LPS and CD14 

to form monomeric endotoxin, the CD14/LPS complexes are then transferred to MD-2. This binding 

contributes to homodimerization of the TLR4/MD-2 complex, resulting in TLR4 downstream signalling 

activation (Shimazu et al., 1999) (Viriyakosol et al., 2001) (Visintin et al., 2001) (Ohto et al., 2007) (H. 

M. Kim et al., 2007). Others claim that CD14 protein staining couldn't be identified in lung epithelial 

specimens and also in the pulmonary epithelial cell line A549 (Guillot et al., 2004) Therefore, the debate 

that exists regarding the expression and function of CD14 in LPS-induced lung epithelial activation is 

currently not dispelled. Several authors indicated that these cells are CD14 negative (Hedlund et al., 2001) 

(Pugin et al., 1993), While others have shown both CD14 mRNA and cell surface protein could be 
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expressed in human epithelial airway cells (G. Diamond et al., 2000) (Schulz et al., 2002) (Becker et al., 

2000). These differences could be explained by the different stimulation or differentiation conditions used 

for epithelial cells throughout these different studies. In reality, these contradictory findings need further 

investigations to be approved. 

LPS concentration is one of the major factors affecting cellular response. Relatively elevated levels of LPS 

(0.1-1 µg/ml) were required for inflammatory cytokines production by epithelial cells, such as IL-8 and IL-6. 

Compared to phagocytic cells where it was found to be induced by a lower concentration ranging from 1 to 

10 ng/ml LPS (Guha & Mackman, 2001) (Zarember & Godowski, 2002) (F. X. Zhang et al., 1999). 

Therefore, in the pulmonary epithelium, initiation and coupling to downstream signalling events tend to be 

less successful than those in myeloid cells (Guillot et al., 2004). 

On the other hand, heat inactivated Ps.a. contains a mixture of different TLR-activating components. LPS is 

the specific ligand for TLR4. Ps.a., and more general, pathogenic bacteria produce virulence factors that are 

beneficial for the survival of the bacteria, however they are mostly detrimental to the infected host. In the 

case of Ps.a., these factors are composed of T3SS, various proteases, lipases, pyocyanin, phospholipases and 

rahmnolipids and other factors (Sadikot et al., 2005). They induce cell damage directly or by binding to 

different TLR-receptors or other danger-associated molecule receptors like RAGE (receptor for advanced 

glycation end products) (Lutterloh et al., 2007; Ramsgaard et al., 2011). 

It is also likely that part of the different inflammatory responses in TRPM4-knockout mouse cells and human 

cells originate from the different development of the immune system between mouse and humans during 

evolution. One good example for this diverging evolution is the different stimulation of LPS from Neisseria 

meningitis LpxL1 by the TLR4/MD2 complex in human and mouse dendritic cells (Steeghs et al., 2008). In 

contrast to the wild type strain, the LpxL1 strain contains a mutated Lipid-A, that is penta-acetylated in 

contrast to the wild type hexa-acetylated form. While mouse dendritic cells are activated by the mutated and 

the wild type LPS, human dendritic cells are only activated by the wild type form of LPS from Neisseria 

meningitis. Furthermore, the authors of this study could show that this was mostly due to a different 

recognition of LPS by the human TLR4 and that MD2 had less impact on the TLR-4 dependent signaling. 

Lipid-A of bacterial LPS is the major endotoxicity inducing part (Galanos et al., 1985). The biological 

activity of LPS can be further modified either by phosphorylation, length alteration or composition 

modification of the fatty acyl part of Lipid-A (Takada & Kotani, 1989). 

It has also been shown that after the stimulation with LPS, mouse and human macrophages activate different 

downstream signaling cascades (J. Sun et al., 2016). They showed that the stimulation of mouse 

macrophages with LPS mostly activates IRAK4 and IRAK2 while the pro-inflammatory signaling of human 

macrophages was dependent on IRAK1. 
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Another explanation could be that heat inactivated Ps.a. contains molecules that modulate the activity of 

other signaling pathways, which may lead to the opposing outcomes when compared with LPS stimulation. It 

has been shown that rhamnolipids from Ps.a. are able to suppress the absorption of Na+ in epithelial cells (A. 

Graham et al., 1993). Flagellin has been shown to inhibit Na+ absorption in murine tracheal epithelium 

(Kunzelmann et al., 2006) and promote the chloride secretion in Calu-3 (human airway epithelial cell-line) 

(Illek et al., 2008). 

In vivo, the airway epithelium is capable of chloride secretion and sodium absorption. Surprisingly, LPS 

extracted from different bacteria has different action on the cell in regulating epithelial ion transport. For 

example, LPS from Ps.a. has been documented to alter the ion transport function in mammalian alveolar 

epithelial cells via inhibition of the sodium absorption through the epithelial Na+ channel (ENaC) (Boncoeur 

et al., 2010). In comparison, in guinea pig tracheal epithelium, Salmonella enterica LPS induced sodium 

absorption by enhancing the expression of Na+/K+ ATPase (Dodrill et al., 2011). While in human airway 

epithelial cells Escherichia coli LPS reported to increase the expression of chloride channel (Hauber et al., 

2007). 

Many studies have already shown the involvement of TRPM4 in different physiological processes, which 

may be important in diseases. Since TRPM4 is necessary for the glucose induced secretion of insulin from 

pancreatic beta-cells (Cheng et al., 2007), the development of drugs that would specifically promote the 

activity of TRPM4 in the absence of glucose would mitigate the insulin deficiency in diabetic patients.  

Many studies show an involvement of TRPM4 in cardiovascular and endothelial functions. It has been 

shown that TRPM4 is needed for pharmacologically induced endothelial cell contraction. Furthermore, the 

authors of that study already suggested TRPM4 a valuable target in the treatment of overactive bladder (A. 

C. Smith et al., 2013). TRPM4 plays a role in the vasoconstriction and influencing the contractibility of rat 

artery cerebral smooth muscle cells, which are important for the regulation of the cerebral blood flow 

(Earley et al., 2004). In addition, the phorbol 12-myristate 13-acetate (PMA) induced constriction of rat 

isolated cerebral arteries was significantly reduced after the inhibition of TRPM4 with siRNA or 9-Ph. 

(Crnich et al., 2010).  

TRPM4 considered as a key regulator in coordination with Na+/Ca2+exchanger 2 (NCX2) for the release of 

both types of mucin MUC2 and MUC5AC. In differentiated normal human bronchial epithelial (NHBE) 

cells and tracheal cells obtained from cystic fibrosis patients, it was demonstrated that blocking of TRPM4 or 

NCX channel in these cells leads to abolishment of MUC5AC mucin secretion. Also knocking down the 

particular TRPM and NCX isoform has a greater impact on the mucin MUC2 and MUC5AC secretion from 

colonic epithelial cells and bronchial epithelial cells respectively (Cantero-Recasens et al., 2019). 
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T-cells are part of the adaptive immune system. It has been shown the knockout of TRPM4 in the human 

T-cell-line Jurkat leads to an increased Ca2+ influx that resulted in significantly higher IL-2 secretion after 

the T-cell receptor stimulation with phytohemagglutinin (PHA) (reagent for in vitro stimulation of human 

and mouse leukocytes) (Pierre Launay et al., 2004). These results highlight that the involvement of TRPM4 

in the immune response depends on the cell type and the stimulus. 

It has also been shown that TRPM4 may mitigate the axonal and neuronal degeneration in autoimmune 

encephalomyelitis (EAE) (Schattling et al., 2012). They showed that the neurons from TRPM4-knockout 

mice were protected against excitotoxic stress and energy deficiency, which play a role in neuronal 

degeneration in EAE.  

Human TRPM4 gene mutations and their concomitant dysfunction have been associated with several 

diseases. It was documented that TRPM4 expression was highly increased following hypoxia/ischemic 

stroke in vascular endothelium, and also following spinal cord injury in endothelial cells of capillary vessels 

(Gerzanich et al., 2009) (Loh et al., 2014). 

The participation of TRPM4 mutations in diseases is still not fully understood. One study identified a 

missense mutation of TRPM4 in a South African cohort that is associated with progressive familial heart 

block type I (PFHBI) syndrome (Kruse et al., 2009). This mutation leads to a constitutive SUMOylation of 

the TRPM4 channel, which causes elevated TRPM4 channel densities due to impaired endocytosis. The 

increased presence of TRPM4 on the cell surface blunted the conduction of cardiac action potentials that is 

responsible for the development of PFHBI. Three different heterozygous missense mutations in TRPM4 

were found in one Lebanese and 2 French families also caused a cardiac conduction block (Hui Liu et al., 

2010). These mutations were identified as gain of function mutations that lead to an increased TRPM4-

mediated current density. 

The participation of TRPM4 in the innate immune response opens up new possibilities in the treatment of 

chronic inflammatory diseases like cystic fibrosis or COPD. One the one hand, reducing the inflammatory 

reaction would decrease the inflammation associated tissue damage. On the other hand, the insufficient 

chemotaxis of professional immune cells and the decreased antimicrobial defense would possibly lead to 

increased damage through colonizing bacteria. 

Finally, it is worth mentioning that TRPM4 could interact with another protein that affects its behavioural 

and physiological function; in order to achieve protein-protein interactions post-translational modification 

are required such as phosphorylation, SUMOylation, and glycosylation (C.-H. Cho et al., 2015). All of these 

changes need to be further investigated in response to different types of infection and also their influence on 

subsequent cellular response. So far, there is no enough research in this area. 
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One of the main proteins interacting with TRPM4 is 14-3-3γ trafficking chaperone, which acts as a label for 

TRPM4 channel, that upon interaction, it could drive it to the membrane (C. H. Cho et al., 2014). It was also 

found out that Ser88 is essential for 14-3-3γ binding at the N-terminus of TRPM4b that regulates forward 

trafficking to plasma membrane. It is probable, in a phosphorylation-dependent manner, these findings were 

approved by TRPM4b-S88A mutant form, which were unable to reach the plasma membrane (C.-H. Cho et 

al., 2015). 

Phosphorylation plays a pivotal role in TRPM4 regulation, where Ca2+/CAM binding sites have been 

reported at the TRPM4 C-terminus. It was proved that Ca2+ sensitivity of TRPM4 channel was influenced by 

PKC-mediated phosphorylation at Ser1145 and Ser1152 binding sites (Nilius et al., 2005b). 

SUMOylation is a post-translational modification which modulates protein function by binding the target 

protein to a member of SUMO (small ubiquitin-like modifier) protein family (Luo et al., 2013). 

SUMOylation has been seen in patients with progressive cardiac bundle branch disease, in which missense 

mutation brought forth to cytoplasmic N-terminal (Glu7Lys) of TRPM4 channel, that contributes to defect in 

endocytosis process resulting in increased plasma membrane channel levels (Kruse et al., 2009). 

Moreover, TRPM4 has been shown to be affected by glycosylation (Seung Kyoon Woo et al., 2013) (Syam 

et al., 2014). N-glycosylation is necessary for proper growth, maturation and appropriate delivery of ion 

channels to the plasma membrane (Baycin-Hizal et al., 2014). 

Interestingly, it has been shown that TRPM4 associates with various types of other ion channel subunits (J. 

Y. Park et al., 2008) (S. K. Woo et al., 2013), such as SUR-1 (Sulfonylurea receptors) or TRPC3. SUR-1-

TRPM4 heteromerization leads to a change in biophysical properties of TRPM4 which showed double 

affinity to calmodulin and double sensitivity to intracellular calcium (S. K. Woo et al., 2013). Also, TRPM4 

heteromerization with TRPC3 (Ca2+ activated, Ca2+ permeable TRP family member) leads to suppression of 

TRPC3 channel (Lichtenegger & Groschner, 2014). 

In conclusion, this work shows that the activity of TRPM4 is necessary to initiate an inflammatory host 

response reaction after the stimulation with heat inactivated Ps.a. in vitro and in vivo. In the absence of 

TRPM4, cytokines and other host defence molecules are not efficiently exported from the cells. It was shown 

with differentiated pHBEs that this leads to a decreased host defence; due to an insufficient synthesis and 

export of the antimicrobial peptide hBD2. The results obtained from mouse cells and in vivo are not 

conclusive so far and need further investigation. 
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Outlook 

 

 

TRPM4 is a Ca2+ dependent channel and the higher internal Ca2+ ion concentration leads to its activation. 

There are many factors that affect Ca2+ ion concentration and thus lead to the subsequent TRPM4 activation. 

In excitable cells, TRPM4 regulates Ca2+ influx by causing membrane depolarization that leads to activation 

of different form of voltage dependent Ca2+ channel (VDCC) and causing more Ca2+ ion influx. In non-

excitable cells, Ca2+ could access the cells through a variant TRP or L type Ca2+ channel. Once intracellular 

Ca2+ increased, many signalling pathways could be subsequently activated inside the cell as shown in 

(Fig.31).  

Ca2+ could activate PLC, which in turn cleaves PIP2, to IP3 and DAG. IP3 once released, it attaches with 

IP3R receptor on ER membrane leading to increase of intercellular Ca2+ release from ER. DAG which 

remains in the plasma membrane due to its hydrophobic properties, can activate and facilitate translocation 

of PKC from cytosol to plasma membrane, which plays a pivotal role in activation of TRPM4 channel 

through its phosphorylation at different N-terminal sites (Nilius et al., 2005b) (Cerda et al., 2015) (Crnich 

Fig. 31: Overview of intracellular Ca2+ dependent signalling pathway.  
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et al., 2010) (C. H. Cho et al., 2014). In the airway epithelial cell, the involvement of PLC in producing 

calcium release has been established (Boncoeur et al., 2010). Furthermore In epithelial cell, integrins that 

are reported to be activated during cell adhesion could mediate PLC activation (Gilcrease, 2007). 

Ca2+ could activate AC (adenylyl cyclase) membrane enzyme, which catalyses the conversion of ATP to 

3',5'-cyclic AMP (cAMP) and pyrophosphate group. Protein kinase A (PKA) is also known as a cAMP-

dependent protein kinase, whose activity is dependent on cellular levels of cAMP. It also plays an important 

role in the exocytosis process and in regulating and trafficking of CFTR. In the airway epithelium, beside 

intracellular Ca2+ concentration, CFTR channel is activated by cAMP. Chloride current evoked by calcium 

agonists in human bronchial epithelial cells is mediated by CFTR through a mechanism involving calcium 

activation of AC1 and cAMP/PKA signalling pathway (Namkung et al., 2010). Intracellular Ca2+ 

modulation can boost cAMP production by means of various calcium-sensitive AC isoforms (Willoughby & 

Cooper, 2007). LPS could induce intracellular Ca2+ ion increase, which enhances the chloride secretion 

through CFTR in human bronchial epithelial cells (Buyck et al., 2013). Also, in the human airway epithelial 

cells, Ps.a. was identified to trigger a store-operated cAMP signalling in which the content of calcium stores 

is correlated with cAMP signalling and CFTR activation (Schwarzer et al., 2010). Lack of CFTR decreases 

the Cl- secretion leading to an air way dehydration, a decreased muco-ciliary clearance, and an excessive 

mucus production. 

In pancreatic β-cells, Ca2+ could enhance TRPM4 translocation from vesicular pool to plasma membrane 

through Ca2+ dependent exocytosis process. Overexpression of TRPM4 in plasma membrane enhances the 

cellular depolarization that drives the activation of voltage-dependent Ca2+ channel and thus the insulin 

secretion (Cheng et al., 2007). 

LPS has long been established to induce a dramatic rise in the cytosolic Ca2+ (Letari et al., 1991) by 

releasing it from Ca2+ stores rather than extracellular Ca2+ influx (X. Liu et al., 2008). However, it still 

remains a controversial identity of the ion channel that involved in Ca2+ signalling route. In contrast, Ca2+ ion 

could promote the endocytosis of LPS bounded to TLR4 in macrophage (Schappe et al., 2018), which 

triggers the association of TLR4 to TRIF and its co-adaptor TRIF-related adaptor molecule (TRAM), leading 

to activation of nuclear translocation of transcription factor IRF3 pathway, which induces IF type1 α & β 

gene expression (Kagan et al., 2008). Thus, TLR4 endocytosis could modulate cellular response through 

additional activation of IRF3 beside NF-kB, which could be also activated through both TRIF and MyD88 

pathway. Crucial evidence has been given for the intracellular localization of TLR4 in pulmonary epithelial 

cells (Guillot et al., 2004). 
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A sustained increase in Ca2+ ions influx caused by sulfonylureas, led to enhancing synthesis of reactive 

oxygen species (ROS) which drives the cell to accelerate apoptosis (Efanova et al., 1998) (Iwakura et al., 

2000) (Tsubouchi et al., 2005). Increasing intracellular ROS could be capable of activating TRPM4, which 

led to acceleration of the cell death process (Felipe Simon et al., 2010). LPS binding to TLR4 Launch 

signalling cascade leads to the stimulation of both dependent and independent MyD88 pathways (Dauphinee 

& Karsan, 2006). In a MyD88-dependent pathway, LPS-TLR4 could trigger the intracellular ROS 

formation mediated by NADPH oxidase (Nox4) and Cyclooxygenase (COX-2) membrane enzyme. ROS acts 

as an intermediate factor in p38 MAPK and NF-κB pathway activation which leads to the lectin-like 

oxidized low density lipoprotein receptor (LOX-1) expression in endothelial cell. The enhanced LOX-1 

expression promotes oxidized low-density lipoprotein (ox-LDL) endocytosis, which plays a vital role in 

atherosclerosis initiation and propagation. And it also acts as an adhesion molecular to engage in endothelial 

monocytes interaction, which is regarded as one of the initial event in early stage of atherosclerosis (Zhao et 

al., 2014). ROS formed via Nox4 or as a response to different PAMPs or DAMPs could also induce 

assembly of NLR family pyrin domain containing 3 (NLRP3) inflammasome through oligomerization with 

Ca2+ ion (Crane et al., 2014) (Rajanbabu et al., 2015). 

In general, TLR could recognize many types of PAMPs or DAMPs, leading to activation NF-κB mediated 

signalling. Then NF-Kβ translocates to the nucleus to promote the transcription of pro-inflammatory gene 

such as IL-1β, IL-6, IL-18, TNF-α (Bauernfeind et al., 2009). TLR signaling pathway, it activates not only 

classic immune response such as MAPK pathway involved in inflammation response, but also regulates the 

innate immunity through increasing extracellular ATP release via Ca2+ mobilization dependent exocytosis 

process. 

In macrophage, extracellular ATP plays a protective role during the bacterial infection, where it could bind 

to all purinergic P2X and most of P2Y receptors such as (P2Y1, P2Y2, P2Y4, and P2Y11 receptors). Upon 

binding, receptors transduce intracellular signaling through the activation of ERK pathway and drive AP-1 

nuclear translocation and subsequent CCL-2 and IL-1β cytokine production, which enhance bacterial 

phagocytosis (Ren et al., 2014). Upon stimulation P2Y also could activate PLC enzyme, which in turn 

hydrolyses PIP2 to IP3 and DAG (von Kügelgen & Wetter, 2000). 

TLR signaling pathway could also regulate the transcription of inflammasome component, which includes 

inactive NLRP3, proIL-1β, and proIL-18 (Bauernfeind et al., 2009). NLRP3 inflammasome could be 

activated by k+ efflux and intracellular Ca2+ ion influx from ER (Ketelut-Carneiro et al., 2015) (Schmid-

Burgk et al., 2015). This complex, in turn; catalyses the conversion of procaspase-1 into caspase-1 which 

takes part in the mature IL-1β and IL-18 production and secretion. In a second pathway, called non-canonical 
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inflammasome pathway, caspase 11 could detect cytosolic LPS, lead to inflammasome formation, and trigger 

pyroptosis (inflammation related cell death) (C. E. Diamond et al., 2015). 

TRPM4 acts as a key regulator in coordination with Na+/Ca2+exchanger 2 (NCX2) for the release of both 

types of mucin MUC2 and MUC5AC from many human epithelial cell lines. Upon activation, 

TRPM4/TRPM5 permeates the intracellular sodium ion increase into the cytoplasm, thus enhances NCX to 

act a reverse mode leading to sustain increase in Ca2+ ion concentration, which in cooperation with 

synaptotagmin 2 (calcium sensor protein) could facilitate the fusion of mucin granules into the plasma 

membrane (Cantero-Recasens et al., 2019). 

TRPM4 was found to associate with different types of membrane receptors or other ion channel such as 

TRPC3 (Ca activated, Ca permeable TRP family member) or SUR-1 (Sulfonylurea receptors). TRPM4 

heteromerization with TRPC3 lead to suppress TRPC3 channel (Lichtenegger & Groschner, 2014).  

Increasing intracellular Ca2+ activates TRPM4 co-association with Sur-1, which is tied directly to the 

membrane depolarization, generating negative feedback that forbids additional entry of Ca2+. Co-assembly 

with Sur1 leads to alteration of biophysical properties of TRPM4 which showed double affinity to 

calmodulin and double sensitivity to intracellular Ca2+ concentration, thus enhancing the function of TRPM4 

as a negative Ca2+ entry regulator (S. K. Woo et al., 2013). Sur1-TRPM4 heteromerization resulted in 

activation of calcineurin (CN) and the activated T cell nuclear factor (NFAT), lead to dependent Nos2/NOS2 

expression (not shown in Fig.31). Glibenclamide blockage to Sur1-TRPM4 led to massive intracellular Ca2+ 

entry, which in turn preferentially activates CaMKII, then inhibits CN/NFAT and decreases Nos2/NOS2 

expression (Kurland et al., 2016). 

Increasing intracellular Ca2+ concentration governed by KATP channels could macerate the autophagy 

process, which is related to neurodegenerative diseases (Hambrock et al., 2006), where autophagy protects 

proximal tubular epithelial cells (PTECs) from injury and apoptosis (Dong et al., 2015) (Y. Xu et al., 2016). 

Autophagy dysfunction or impairment induced by high glucose (X. Q. Zhang et al., 2017) or sulfonylureas 

(R. Zhang et al., 2018)  plays a vital role in PTEC apoptosis. 

Intracellular Ca2+ also involved in CAM activation, which plays an important role in exocytosis process 

(Bernstein, 2015). Also, Intracellular calcium mobilization and intracellular calcium that activated synaptic 

vesicles have been documented to be involved in exocytosis (Kochubey et al., 2011). 
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