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Summary 

 

Summary 

Primary neural stem cells (NSCs) from postnatal mice are a valuable, economical, ethically acceptable 

and sensitive in vitro model for screening environmental pollutants and plant molecules with 

neuromodulating properties.   

An in vitro assay system based upon NSCs from the subventricular zone of postnatal mice was 

established to screen the neurotoxicities of pollutants occur in treated and untreated water samples 

collected from a local area of Baden-Wuerttemberg, Germany. The assay was successfully employed 

to explore the neurotoxic impact of Glyphosate at concentrations presumed to be safe in potable water. 

The same assay was also used to assess the neurogenerative and neuroprotective properties of 

Troxerutin flavonoid. 

The NSCs model uncovered the deleterious effects of waterborne pollutants on the basic neurogenesis 

processes and the toxic potential of the Glyphosate molecule on neural cell differentiation, migration 

and cytoprotective genes. The model also revealed the neurogenerative activities of Troxerutin and its 

role in neuroprotection against the amyloid-ß42 induced inhibition of neuronal cell differentiation.  

The NSCs based bioassay should be included in the existing battery of bioassays available for 

screening waterborne pollutants. The present study may be helpful for regulatory authorities to revise 

the permissible levels of pesticides in drinking water. The study established a new screening method 

for a flavonoid with neurogenerative properties.      
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Zusammenfassung 

Zusammenfassung  

Primäre neurale Stammzellen (NSCs) aus postnatalen Mäusen sind ein wertvolles, kostengünstiges, 

ethisch akzeptables und empfindliches invitro Screening-Modell für Umweltschadstoffe und 

Pflanzenmoleküle mit neuromodulierenden Eigenschaften.   

Ein auf diese NSCs basierterin vitro Assay, wurde etabliert, um die Neurotoxizität von Schadstoffen 

zu screenen, die in unbehandelten und behandelten Wasserproben aus einem lokalen Gebiet in Baden-

Württemberg, Deutschland, enthalten sind. Dabei wurden die neurotoxischen Auswirkungen des 

Pestizids Glyphosat bei Konzentrationen untersucht, die in tragbarem Wasser als sicher gelten. Der 

gleiche Assay wurde auch verwendet, um die neurogenerativen und neuroprotektiven Eigenschaften 

vom Troxerutin-Flavonoid zu bewerten. 

Die schädlichen Auswirkungen von wassergebundenen Schadstoffen auf die grundlegenden Prozesse 

der Neurogenese, das toxische Potenzial des Glyphosat-Moleküls sowie die neurogenerativen und 

neuroprotektiven Eigenschaften von Troxerutin gegen die Amyloid-ß42-induzierte Hemmung der 

Differenzierung neuronaler Zellen wurden mit diesem NSC Assay gezeigt.  

Der auf NSCs basierende Bioassay sollte in die bestehende Batterie von Bioassays aufgenommen 

werden, die für das Screening von wassergebundenen Schadstoffen zur Verfügung stehen. Die Studie 

kann darüber hinaus für Regulierungsbehörden hilfreich sein, um die zulässigen Pestizidwerte im 

Trinkwasser zu überarbeiten. Im Rahmen der vorliegenden Studie wurde somit eine neue Screening-

Methode für das Troxerutin Flavonoid mit neurogenerativen Eigenschaften etabliert. 
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Introduction 

1. Introduction 

The developing nervous system of mammals is immensely sensitive towards chemical stimuli due to 

the poorly developed enzyme systems and an immature blood-brain barrier [1, 2]. Any intrusion in the 

basic neurogenesis by an exogenous noxious substance inimically alters the physiology of the nervous 

system [3, 4]. Exposure to noxious chemical entities results in permanent mental defects at the later 

stages of the life of an organism [5]. Most of these noxious chemical entities are environmental 

pollutants. Human exposure to such pollutants occurs mainly through food and drinking water. Several 

of these environmental toxicants deposit in tissues, traverse the placenta and are secreted in the milk of 

feeding mothers, thus posing the risk of toxicity to mothers and their feeding neonates [6-8]. 

Numerous reports in the literature have delineated the interrelation between exposure to environmental 

pollutants and neurodegenerative diseases in neonates [4, 9]. Parkinson’s disease (PD), dementia, 

behavioural disorders, loss of cognitive functions and Alzheimer’s disease (AD) are neurological 

disorders associated with exposure to environmental neurotoxicants [10, 11]. In contrast, small 

molecules of edible plants such as flavonoids favourably modulate neurogenesis and hence have 

earned the interest of researchers who are in the quest to find natural remedies for treating 

neurodegenerative disorders [12-16].       

1.1. Environmental toxicants and neurotoxicities 

Neat and clean drinking water is vital for healthy human life. Water for human consumption is 

obtained both from ground and surface water reservoirs. Excessive anthropogenic activities, such as 

industrialization, intensive agricultural activities, animal farming and effluents from the wastewater 

treatment plants (WWTPs) are the most prominent factors contributing towards the contamination of 

water reservoirs. Synthetic inorganic substances, heavy metals, hydrocarbons, fungicides, detergents,  

pharmaceuticals and pesticides represent the major water pollutants [17-21]. 
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1.1.1 Metal-based contaminants  

Metals ions and their compounds are frequently reported as water pollutants. The ability to cross the 

placental barrier, blood-brain barrier and subsequent secretion into breast milk indicates the potential 

of metals to cause developmental neurotoxicity [22-28]. The metal ions exert neurotoxic effects by 

forming complexes with neurotransmitters,  hormones, enzymes and other important macromolecules 

of the nervous system [29]. There is a great diversity in the mechanisms of neurotoxicity induced by 

metals contaminants. Cadmium, for instance, causes neurotoxicity by lipid peroxidation in the brain 

resulting in the decreased proliferation of NSCs and activation of the apoptosis pathway in the 

subventricular zone (SVZ) [28, 30]. Mercury induces memory defects, behavioural abnormalities and 

locomotive dysfunctioning in rodents by modulating the cholinergic receptors of the cells of the brain 

[31]. In cultured cells, exposure to mercuric compounds inhibits the neurite outgrowth and activates 

the pro-inflammatory markers [32]. Aluminium has been shown to reduce the proliferation, 

differentiation and migration of NSCs by exerting oxidative stress (OS) [33, 34]. Additionally, 

aluminium also increases the aggregation of amyloid-ß (Aß), thus increasing the risk of AD [23]. 

1.1.2. Nitrogenous and organic pollutants  

Phthalates and bisphenol-A are organic neurotoxicants. Higher levels of phthalates have been reported 

in municipality and surface water of some European countries,  including Germany and France [35, 

36]. Exposure to phthalates can increase the risk of autism in children since phthalates have been 

shown to inhibit neurite growth in neurons [37]. Bisphenol-A reduces the proliferation, neuronal 

differentiation of cultured NSCs, and prevents cell migration in rodent’s brain [38-42]. The higher 

concentrations of nitrogenous pollutants in groundwater reservoirs results from excessive decaying of 

plants, intense utilization of fertilizers, animal-manure for agricultural purpose, and industrial 

activities. 
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It is generally assumed that drinking water obtained from shallow wells of fewer than 30.4 meters 

depth provides a high risk of nitrogenous contaminants [43]. The increased concentrations of 

nitrogenous substances in treated water from the WWTPs, including those of some developed 

European countries, indicate the incapability of water clarification techniques in these countries [44]. 

Exposure of pregnant mothers to high nitrogenous contents through potable water has been found to 

induce neural tube defects in the embryos and anencephaly in newborns [45]. Nitrogenous substances 

adversely affect neural differentiation [46, 47].  

1.1.3. Pesticides 

Excessive and unjustifiable exploitation of pesticides to improve the production of crops has resulted 

in the contamination of water bodies of several countries across the globe. Contamination of water 

reservoirs by pesticides is common in agricultural countries [48]. Human exposure to pesticides occurs 

both directly and indirectly. Direct or occupational exposure occurs when pesticides are sprayed by 

agricultural workers for their intended purpose. Indirect exposure occurs through contaminated 

drinking water. Exposure to the lower levels of pesticides for a longer period could result in serious 

neurological disorders. The developing brain is particularly vulnerable to the neurotoxic effects of 

pesticides, especially organophosphates. Common neurological disorders associated with exposure to 

organophosphate pesticides include mood disturbances, impaired cognitive functions, psychomotor 

dysfunctioning, behavioural disorders, sensory disorders and defects in autonomic nervous system 

[49]. The prime reason for such higher concentrations of pesticides in freshwater bodies is the 

inefficient regulatory control in developing countries [50]. Even, developed European countries cannot 

claim to be free of this risk. A relatively high concentrations of pesticides in major water bodies is also 

linked to the effluents released from WWTPs into lakes and river systems [51]. With the growing 

population and reduced degree of precipitation, authorities in many developed countries are 

considering treated water from WWTPs as an alternative source of water for human consumption [52]. 
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Both the treated and untreated water must be thoroughly evaluated before making them available for 

human consumption since higher levels of pollutants including pesticides, are reported in the treated 

water of many European countries [51, 53]. 

Basic physicochemical characterization of pollutants in water samples, as per current 

recommendations of environment protection authorities, is insufficient to assure the safety of the water 

[54]. Such analysis becomes more meaningful when physicochemical evaluations are combined with a 

complex battery of bioassays providing information about the cytotoxicity of waterborne pollutants 

[55]. Furthermore, the proposed bioassay battery must include several bioassays since water samples 

contain a cocktail of various groups of toxicants, including heavy metals, nitrogenous substances and 

pesticides. Each class of toxicants follows different biological targets and has diverse mechanisms of 

toxicities [56]. It is, therefore, necessary to include neurotoxicity assays in the bioassays battery for 

evaluating toxicants in water samples. 

1.1.4.    Glyphosate and neurotoxicities          

A plethora of studies divulges the strong link between exposure to pesticides and neurological 

disorders in humans [4, 9]. These reports have encouraged researchers to unveil the neurotoxic 

potential of widely employed pesticides [2]. Glyphosate is an extensively exploited pesticides 

worldwide to revamp the productivity of genetically manipulated crops [57]. Glyphosate, chemically a 

glycine analogue, shows its herbicidal action by hindering the biosynthesis of amino acids in the 

weeds through the Shikimate pathway, a metabolic pathway distinct to fungi, protozoa, plants and 

bacteria but missing in mammals. Due to the lack of the metabolic target in mammals, acute toxicity of 

glyphosate with normal usage in agriculture is rare [58-60]. Nonetheless, several studies have reported 

the multiple systemic toxicities of glyphosate and glyphosate-based herbicides in humans.  These 

toxicities have been associated with exposure to higher concentrations of glyphosate herbicides [58, 

61-65]. 

 



5 
 

Introduction 

Glyphosate can cross the placental barrier and is also secreted into breast milk. These facts reflect the 

potential of glyphosate to cause developmental toxicities [66]. 

Besides general systemic toxicities, glyphosate-based herbicides also induce neurotoxicities including 

AD, PD, multiple sclerosis, meningitis, and loss of consciousness in adult humans. Autism, attention 

defects, behaviour disorders and seizures have been reported in neonates whose mothers were gotten 

exposure of glyphosate herbicides during pregnancy [64, 65, 67-72]. In addition, researchers have also 

reported anxiety and depression-like disorders in rodents after exposure to glyphosate [73]. 

Glyphosate and glyphosate formulations have been reported to induce neurotoxicities in cultured cells 

derived from the mammalian nervous system, through diverse mechanisms. Glyphosate induces 

apoptosis in differentiated PC12 cells by up-regulating apoptosis marker BAX and down-regulating 

the anti-apoptotic protein Bcl2 [74, 75]. Neurotoxicity of glyphosate in the SH-SY5Y human 

neuroblastoma cell line has been associated with the activation of inflammatory markers TNF-α and 

IL6 [76]. Exposure of developing embryo of a mouse to glyphosate herbicide results in 

neurodevelopment abnormalities such as reduced neuronal differentiation and synaptogenesis in the 

neocortex due to the disruption in the regulation of genes related to Wnt/ß-Catenin/Notch signalling 

pathways [77].  

During the peripartum period, glyphosate and its herbicide reduce neuronal plasticity of mothers in 

rodents [78]. Glyphosate herbicide has been shown to induce Ca2+ influx, glutamate excitotoxicity and 

OS in the hippocampus of rats [79, 80]. An aberrant electrical signalling pattern has been reported in 

the neocortex of rat pups after exposure to glyphosate [81]. The researchers have also reported the 

disruption in the enzymatic profile of neural cells upon long term exposure to glyphosate [69, 82]. 

Glyphosate concentration a few folds higher than the maximum contamination level in drinking water 

disrupted the blood-brain barrier without affecting the neuronal cell morphology [82]. 
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Higher concentrations of glyphosate inhibit the neurite growth of differentiated neurons from the 

hippocampus of rat embryos by modulating the CaMKII activities and the expression of Wnt5a [3]. 

Demyelination of differentiated neurons from dorsal root ganglia of mouse embryo after exposure to 

glyphosate has also been confirmed by researchers [83]. Glyphosate herbicides induce anxiety, 

depression and locomotive abnormalities in rats by reducing the expression of dopaminergic and 

serotoninergic neurons in the brain [73]. The decrease in sensitivity of dopaminergic receptor D1 in 

the brain of rats has been observed after exposure to glyphosate [84]. Prolonged exposure to 

glyphosate herbicide for a week or more has resulted in anomalous neurotransmission in the midbrain, 

striatum and hypothalamus regions of the brain of rats [85]. Researchers have postulated that 

glyphosate could reduce neural cell migration because of its inhibitory effects on thyroid activity [69]. 

Moreover, the decrease in the expression of the astrocytic marker in the brain of rats after acute 

exposure to glyphosate has also been reported  [80]. 

The chemical structure of glyphosate is represented in Figure 1. Being a glycine analogue, glyphosate 

gets substituted at specific domains in important neural proteins and causes misfolding and aberrant 

configuration. Such substitutions may lead to neurodegenerative disorders such as AD, PD and 

amyotrophic lateral sclerosis in mammals. One of such substitutions of glyphosate is reported in the 

Aß peptide. Within the Aß peptide molecule, the substitution by glyphosate molecule results in 

interference in the activity of γ-secretase to strip off residues 41 and 42, leaving behind the soluble 

neurotoxic oligomeric Aß-42 which triggers AD [86].  

 

 

 

 

 

Figure 1.The chemical structure of glyphosate 
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Glyphosate-associated neurotoxicities reported by most researchers are generally associated with very 

high concentrations of glyphosate or glyphosate herbicide preparations [3, 78-80, 83]. These levels of 

glyphosate are more relevant to occupational exposure rather than normal exposure. Regulatory 

authorities have prescribed the environment permissible concentrations (EPC) of glyphosate in potable 

water. European Commission for Environment permitted 0.1 µgL
-1

 of glyphosate as a Maximum 

Allowable Concentration (MAC) in drinking water [87]. Similarly, the USA Environmental Protection 

Agency (USEPA) has permitted 700 µgL
-1

of glyphosate as the Maximum Contamination Level 

(MCL) in drinking water [88]. 

It has been assumed that exposure to EPC of glyphosate is considered safe and rarely cause toxicity in 

mammals. Few reports have divulged the toxic effects of glyphosate at concentrations comparable to 

and few folds higher than the EPC of glyphosate in drinking water. Glyphosate at a concentration of 1 

µgL
-1

, for instance, significantly reduces the testosterone level in rats [89]. Exposure to glyphosate at 

a concentration of 1000 µgL
-1

 induces cytotoxicity in testicular Sertoli cells, reduces motility of 

human sperms, disrupts progesterone in the human-derived cell line [89-91]. Although few, but such 

studies have highlighted an alarming situation regarding the so-called EPC of glyphosate. Hence, these 

reports provide a solid foundation and compelling reasons for further evaluation of the neurotoxic 

impact of glyphosate at EPC. A relevant, sensitive neural cell model is a prerequisite to explore this 

fact.  

1.2. Amyloid-ß and neurotoxicity  

Amyloid-ß(Aß) is a class of bioactive peptides that consists of 28-43 amino acids. It is produced by 

enzymatic hydrolysis of transmembrane proteins amyloid precursor peptide (APP). Aß is produced by 

neurons and astrocytes. It usually exists as a soluble monomer that is secreted in the extracellular 

spaces from where it is cleared by cerebrospinal fluid (CSF) and the vascular system.  
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Aß plays very useful roles in the nervous system, such as antimicrobial action, tumour suppression, 

repairing of the blood-brain barrier, repairing of brain tissues, regulation of synaptic functions and 

neuronal protection when produced in low concentrations. Exposure of the nervous system to 

environmental toxicants triggers the production of Aß, but the triggering response diminishes upon 

recovery. The CSF of a normal person contains several isoforms of Aß but the Aß40 and Aß42 are 

relatively in abundance. The imbalance between the production and clearance of Aß leads to the 

deposition of Aß peptides in the extracellular spaces where soluble monomers bind together to form 

oligomers or Aß plaques. The oligomeric and plaque forms of Aß are difficult to be digested and 

cleared by the enzymes of the nervous system, so such forms of Aß ultimately leads to neurotoxicity 

upon accumulation [92, 93]. The oligomeric Aß triggers a chain of pathological events in the nervous 

system such as activation of inflammatory pathways, OS, dysregulation of Ca2+ metabolism, 

hyperphosphorylation of the cytoskeleton protein tau, mitochondrial damage and inhibition of cell 

survival.  

The pathological features of Aß neurotoxicity include neuritic plaque formation, neurofibrillary tangle 

formation, deformation of neurites and astrocytes, loss of synapsis and neuronal death. These 

pathologies, altogether are the hallmark of a neurodegenerative disorder such as AD. It is worth 

mentioning that Aß42 is more prone to aggregation and fibril formation than Aß40 [94, 95]. There are 

two possible mechanisms which may result in excessive production and the aggregation of Aß. The 

first mechanism involves the mutation in APP and peptide processing proteins Presenilin-1 and 2 

whilst the second mechanism involves the triggering of Aß aggregation by exogenous substances such 

as heavy metals and pesticides [96, 97].  

Pesticides directly interact with the oxidation chain of mitochondria of brain cells and increase the 

intracellular concentration of ROS, which in turn shifts the α-helix peptide structure to ß-sheet 

resulting in the aggregation of Aß a prominent feature of AD [98].  
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The presence of an oligomeric form of Aß42, albeit at a very low concentration in the lateral 

ventricular part of the brain is sufficient to severely impair the learning and memory of the rodents. 

Researchers have postulated that Aß42 binds with cholinergic receptors in the hippocampus, cerebral 

cortex and forebrain of the brain of mammals and decreases the release of cholinergic 

neurotransmitters, which ultimately results in the impairment of memory [99]. Aß42-plaque deposition 

in the hippocampus induces cognitive defects of a Tg-mice expressing human APP, PS1 and PS2 

genes [100]. In another study, researchers have delineated that the monomeric Aß inhibits apoptosis in 

the differentiated neuroblastoma cell line. On the other hand, the oligomeric form favours apoptosis by 

facilitating BCL2-BCN1 apoptosis complex formation [101].  

Both oligomeric and protofibrils of Aß42 are capable of disrupting membrane integrity of 

differentiated neurons from human neuroblastoma cell line SH-SY5Y by inducing lipid peroxidation. 

Additionally, Aß42 also dysregulates the Ca2+ homeostasis and membrane depolarization [102]. The 

oligomeric Aß42 suppresses the differentiation and proliferation of the cultured NSCs by triggering 

the senescence pathway in NSPCs [103]. Interestingly, some researchers have reported that oligomeric 

Aß42 neither inhibits the neuronal differentiation of NSCs nor does induce apoptosis. Instead, the 

lower doses of Aß42 provide neurogenerative and neuroprotective effects. These findings contradicted 

the general hypothesis that Aß inhibits neurogenesis in the brain [104]. But a plethora of studies has 

repeatedly demonstrated deleterious effects of Aß42 deposition on neurogenerative processes. For 

instance, a study shows that four-day exposure of cultured neurons from the hippocampus to Aß42 has 

resulted in a strong reduction of synapse formation, neurite growth and arborization. These 

morphological changes under the influence of  Aß42 are very similar to those reported in AD patients 

[105].  
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1.3. Flavonoids and neurogenerative properties    

Natural molecules such as flavonoids modulate the fate of NSCs favourably. Several researchers have 

reported the augmenting impact of flavonoids on neural cell proliferation, differentiation, migration, 

neurite growth and mechanisms of neuroprotection [13, 16, 106-110].  

Vegetables and fruit including apples, blueberries, blackberries, strawberries, white onions, red onions, 

sweet peppers, tomatoes, oranges, grapes, wines and have been studied extensively for their flavonoid 

contents [108].   

 

Figure 2. Diagram is summarizing the neuroprotective and neurogenerative properties of flavonoids.  

↑: increase; ↓: decrease; α: alpha; ß: beta. The figure has been as adapted and redrawn from [13, 109, 

112-118]. 
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Neurogenerative and neuroprotective activities of flavonoids have been reported extensively in the 

literature [111]. Figure 2 summarizes the neuroprotective and neurogenerative properties of 

flavonoids. The poor aqueous solubility is a major shortcoming of many flavonoids. Which normally 

diminishes uptake of flavonoids by tissues of an organism. 

1.4. Troxerutin and neurogenerative activities  

Troxerutin (TRX),  3',4',7-tris[O-(2-hydroxyethyl)]rutin is a water-soluble derivate of the bioflavonoid 

rutin and is found abundantly in tea, coffee, vegetables and fruit. The chemical structure of TRX is 

represented in Figure 3. Literature has reported the cytoprotective activities of TRX for the liver and 

kidney and has also demonstrated the antidepressant, memory augmentation, anxiolytic and anti-

neuroinflammatory properties of TRX in animal models [12]. Numerous studies have reported the 

cytoprotective and neuroprotective effects of TRX in rodents [99, 119-129].  

 

Figure 3. Chemical structure of TRX. The figure has been adopted and redrawn from  [12]. 
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The neurogenerative and neuroprotective activities of TRX have been summarized in Table 1. 

Table 1. Summary of neuroprotective and neurogenerative properties of TRX 

Neuromodulating potentials Biological activities Ref. 

Improves Aß(1-42) induced defects of 

memory in rats 

 Ameliorates the performance of 

cholinergic system 

[99, 

119] 

Improves cognitive functions, memory defects 

in diabetic rats. 

 ↓OS, ↓Endoplasmic reticulum 

stress 

 Restores glucose cholesterol and 

fatty acid levels 

[120] 

Improves learning performance in diabetic rats  ↓OS,  

 ↑Expression of glutamate-cysteine 

ligase catalyst in the hippocampus 

[121] 

Improves cognitive functions in rat  Activates Nrf2/ARE pathways in 

hippocampus  

[122, 

123] 

Neutralizes domoic acid-induced memory 

defects in a mouse 

 ↓OS 

 ↓Neuroinflammation 

[124] 

Improves behavioral performance in D-

galactose treated mice  

 ↓OS 

 Anti-cholinesterase activity 

 Activates NGF/TrKA pathway in 

hippocampus 

[125, 

126] 

Shows anxiolytic effects in rats  Anti-inflammatory 

 ↑Expression of neurotrophic factors 

 Balance in serum glucose level 

[127, 

128] 

Augments sensory motor functions in mice  ↓Stroke volume 

 ↓Cerebral edema 

[129] 
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Concerning impacts of TRX In cell culture, TRX has been found to ameliorate UVB induced cell 

migration inhibition in a HaCa T keratinocyte cell line [130]. A combination of TRX and cerebral-

protein hydrolysate has been shown to induce cell migration in cultured human umbilical vein 

endothelial cell culture [131]. Most of the studies on neurogenerative properties of TRX are effect-

based studies which have been conducted by exploiting in vivo models without a description of the 

individual process of neurogenesis. It will be worthwhile to screen the biological activities of TRX on 

the individual process of neurogenesis through a primary NSCs model. The information from the 

proposed NSCs assay will be highly valuable to optimize TRX as a future therapeutic candidate to 

deal with neurodegenerative disorders in humans. 

1.5. Limitations of in vivo assays for screening toxicants and drug molecules  

With the progress in research and drug development processes, the use of animals as a research tool 

has been increasing worldwide. Mouse, rats, hamsters, guinea pigs, dogs, chicken, fish and frogs are 

the most extensively employed models for screening newly developed drug molecules and toxicants. 

Millions of animals are sacrificed worldwide annually for research purpose, alone.  In animal-based 

procedures, either a whole animal or its specific viscera are utilized. Upon completion of the 

experiment, the animal itself dies or is euthanized. Pain, distress and death experienced by an animal 

during the experiment is a matter of serious concern among animal welfare organizations [132]. Other 

limitations in using intact animals as experimental models are high total experimental cost, long 

duration of experiments, laborious work and need for a skilful person in animal handling [73, 133, 

134]. 

These concerns have forced the regulatory authorities to opt for the 3 R concept “reduce, refine and 

replace” and to partially or entirely replace animal-based studies with robust in vitro cell culture 

techniques for screening of drug molecules and toxic chemicals [132, 135, 136].  
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In vitro screening techniques are either based upon microbial cells or cells isolated from the skin, liver, 

kidney and nervous system of animals which can be further propagated and maintained in a growth 

medium for months to years. Cell-based in vitro screening techniques drastically reduce the total 

number of animals exploited during a study [132]. 

1.6. NSCs for screening toxicants and pharmacologically active compounds 

The nervous system is, to some extent, able to respond to injurious or toxic stimuli by the recruitment 

of a special kind of multipotent cells termed as NSCs [137]. The ability of NSCs to proliferate and 

differentiate into neurons, glia and oligodendrocytes enables them to repair the injury throughout the 

nervous system and to eliminate the toxic stimuli [138]. NSCs exist both in the developing and adult 

nervous system of mammals [139]. During earlier development of the brain, neuroepithelial cells 

(NECs) derived from the primary ectoderm fold-in to give rise to the neuroplate and finally the neural 

tube. NECs in neural tube undergo such a transition that their basal side is oriented outward, 

contacting the outer surface of the brain and the apical surface is oriented inward to form the 

ventricular zone. Within the ventricular zone of the brain, NECs are converted into multipotent radial 

glial cells, which later become NSCs (Figure 4) [140, 141]. 

The subventricular zone (SVZ), hippocampus, and the entire length of the gut are niches of NSCs 

[139, 142]. Within the nervous system, the symmetric cell division of NSCs results in cell proliferation 

while asymmetric cell division produces functional cells of the nervous system. NSCs undergo 

extensive proliferation in SVZ. During postnatal life, the size of SVZ gradually increases and reaches 

its maximum size limit at the end of the first week of the life of an organism and then decreases 

gradually with ageing. During adult life, NSCs mainly pool into the SVZ [140, 141, 143].   
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Figure 4. Panel A: The evolutionary stages in the development of the mouse brain. Panel B: The 

location of SVZ in the mouse brain. The figure has been adapted and redrawn from [144, 145]. 

The NSCs are more sensitive than the other fully developed cells of the body. NSCs are generally 

quiescent in the absence of exogenous chemical stimuli. These are the external stimuli trigger the 

changes in proliferation, migration and differentiation events of NSCs. Some of these exogenous 

chemical substances, including environmental pollutants, exert deleterious effects on the fate of NSCs. 

On the other hand, chemical substances such as plant flavonoids, provide augmenting effects on NSCs. 

NSCs from the developing nervous system are even more sensitive to external stimuli than their adult 

counterpart. Due to their higher sensitivity, NSCs provide a physiologically relevant, robust and easily 

quantifiable response at very low concentrations of the chemical entities [146-148]. 

 

 



16 
 

Introduction 

The self-renewal property and multipotency are the unique properties of NSCs which differentiate 

them from the other cells of the nervous system. The response of NSCs to an external stimulus varies 

with the age and specific niche of the donor animal. Collectively these properties make NSCs an 

adaptable screening tool for both environmental toxicants and small plant molecules of 

pharmacological significance [149-151]. Easy extraction and handling and swift in vitro multiplication 

provide NSCs of SVZ an edge over NSCs from other niches [152, 153]. 

1.7. In vitro screening assays based upon NSCs  

Earlier cell-based in vitro screening assays employed either genetically modified cells or cells 

originated from human and animal cancers. These cells, however, display less physiological relevancy. 

In comparison, primary NSCs have strong physiological relevance and have been shown to provide a 

broad spectrum of chemical effects on the nervous system with detailed molecular mechanisms [146, 

148]. The in vitro assay based upon NSCs is considered a valuable, sensitive, robust and economical 

screening tool to replace traditional in vivo assays for screening neurotoxicities of water-borne 

pollutants at subtle concentrations. These in vitro assays have also proven their effectiveness in the 

discovery and optimization of new drug candidates for treating neurological disorders. In NSCs-based 

in vitro assay, the impact of a chemical compound or toxicant is evaluated on proliferation, viability, 

migration, differentiation and neurite growth of the cultured cells.  [146, 148, 154-159]. The schematic 

illustration of NSCs based in vitro assay followed in the present study is depicted in Figure 5. 
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Figure 5.  A layout and schematic illustration of the NSCs-based in vitro followed in the present 

study. NSCs were extracted from SVZ of the postnatal mice. 
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2. Aims of the thesis   

Primary NSCs from the brain of the postnatal mouse offers a valuable, cost-effective and robust 

screening model for environmental toxicants. This NSCs-based in vitro model can also be employed to 

evaluate the neurogenerative potentials of small molecules obtained from various plants. The high 

sensitivity of NSCs enables them to respond to the neurotoxic potential of subtle levels of 

neurotoxicants. The main focus of the present thesis is to establish and utilize a robust, cost-effective 

and sensitive in vitro assay system based upon NSCs derived from the SVZ of the postnatal mice to 

screen the neurotoxicity of waterborne environmental toxicants and to explore the neurogenerative 

properties of the TRX flavonoid.     

The first part of the thesis comprises the development and application of an in vitro assay system to 

screen the neurotoxicity of a complex assortment of pollutants present in both treated and untreated 

water samples collected from a WWTP and water supply facility near Weschnitz River in the German 

state of Baden-Wuerttemberg. The study supports the notion that NSCs-based in vitro assay may 

provide a robust, inexpensive and sensitive bio-tool to evaluate the quality of water samples.         

The second objective of the thesis includes the application of the NSCs in vitro assay system to screen 

the neurotoxicity of the environment permissible non-toxic concentrations of glyphosate in potable 

water on the basic neurogenesis processes. The study supports the presumption that NSCs from the 

SVZ of the developing brain of the mouse may possess high sensitivity to uncover the neurotoxic 

potential of glyphosate at concentrations presumed to be safe in potable water.        

The third objective of the thesis comprises the application of the NSCs in vitro assay system to explore 

the neurogenerative potential of TRX flavonoids. Additionally, the assay was also employed to 

explore the neuroprotective potential of TRX against the Aß42-induced neurotoxicity. The findings of 

this part of study may provide a basis for future research to elucidate the detailed molecular 

mechanisms governing the neuroaugmenting effects of TRX.      
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3. Results 
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Neural Stem Cell-based In vitro Bioassay for the Assessment of Neurotoxic Potential of Water 

Samples 
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a b s t r a c t 

Intensive agriculture activities, industrialization and growing numbers of wastewater treat- 

ment plants along river banks collectively contribute to the elevated levels of neurotoxic 

pollutants in natural water reservoirs across Europe. We established an in vitro bioassay 

based upon neural stem cells isolated from the subventricular zone of the postnatal mouse 

to evaluate the neurotoxic potential of raw wastewater, treated sewage effluent, ground- 

water and drinking water. The toxic potential of water samples was evaluated employing 

viability, proliferation, differentiation and migration assays. We found that raw wastewater 

could reduce the viability and proliferation of neural stem cells, and decreased the neuronal 

and astrocyte differentiation, neuronal neurite growth, astrocyte growth and cell migration. 

Treated sewage water also showed inhibitory effects on cell proliferation and migration. 

Our results indicated that relatively high concentrations of nitrogenous substances, pesti- 

cides, mercuric compounds, bisphenol-A, and phthalates, along with some other pollutants 

in raw wastewater and treated sewage water, might be the reason for the neuroinhibitory 

effects of these water samples. Our model successfully predicted the neurotoxicity of water 

samples collected from different sources and also revealed that the incomplete removal of 

contaminants from wastewater can be problematic for the developing nervous system. The 

presented data also provides strong evidence that more effective treatments should be used 

to minimize the contamination of water before release into major water bodies which may 

be considered as water reservoirs for human usage in the future. 
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Introduction 

The freshwater ecosystem is a highly valuable asset for 
human beings. Freshwater resources such as lakes and 

rivers have become polluted by a large variety of chemi- 
cal substances predominantly derived from anthropogenic 
activities. These pollutants include complex synthetic in- 
organic substances, heavy metals and organic substances 
such as pesticides, insecticides, household cleaning agents 
( Héritier et al., 2017 ; Trintinaglia et al., 2015 ) and pharma- 
ceuticals ( Miege et al., 2009 ). With a rapidly growing world 

population, the available freshwater resources have become 
scarce, so water administrative authorities are forced to man- 
age alternative sources of water for drinking ( Jia et al., 2015 ). 
Treated wastewater is now increasingly considered as a part 
of the common water supply ( Jaeger et al., 2015 ). Wastewater 
treatment plants are generally based upon conventional acti- 
vated sludge and membrane bioreactor treatment techniques, 
which are inefficient in completely removing contaminants 
from wastewater ( Celiz et al., 2009 ). The presence of hundreds 
of pharmaceuticals residues has been reported in effluents of 
wastewater treatment plants of various European and Ameri- 
can countries ( Miege et al., 2009 ). 

Drinking water quality in Germany is coordinated through 

both local and international regulations, such as the Federal 
water act, Agenda 21 of UN (chapter-18), EU water framework 
directive 2000/60/EC (WRRL) and drinking water ordinances. 
Overall, the water supply in Germany is satisfactory. Anthro- 
pogenic factors and the decrease in summer precipitation due 
to climate change, however, suggest that the current water 
supply in Germany will reach its limits in the long term. In Ger- 
many, therefore, there is a need to utilize additional sources of 
water, such as the recycling of wastewater from sewage treat- 
ment plants. New advanced wastewater treatment technolo- 
gies may assist in producing high-quality water that can even 

be employed for drinking purposes ( Schmid and Bogner, 2018 ). 
The presence of high levels of pharmaceuticals and pesti- 
cides in water obtained from wastewater treatment plants 
in Germany reflects their inefficiency in completely remov- 
ing water contaminants ( Münze et al., 2017 ; Ternes, 1998 ). The 
Weschnitz River, which is one of the four tributaries to the 
Rhine River, is known to receive a huge volume of treated wa- 
ter from several wastewater plants in the area. High concen- 
trations of pesticides have been reported in the water of the 
Weschnitz River, which is linked to sewage treatment plant ef- 
fluents. Pesticide concentrations increase during the summer 
season because of intense agriculture activities. The Rhine 
River, in turn, has several catchment points for obtaining wa- 
ter for drinking purposes after further filtration ( Quednow and 

Püttmann, 2007 ; Storck et al., 2015 ). To assess the quality of 
treated water as well as the efficacy of wastewater treatment 
plants, it is necessary to analyze both influents and effluents 
( Jaeger et al., 2015 ). 

Most of the environmental monitoring programs rely 
on the physicochemical characterization of water samples 
( Niss et al., 2018 ), which becomes more powerful when 

combined with biological testing since the latter provides 
deep insight into the real toxic threat of water pollutants 
( Žegura et al., 2009 ). A single kind of bioassay is insufficient 
to explore all kinds of toxicities associated with a complex 

mixture of water contaminants, so common practice em- 
ploys multiple bioassays for evaluating multiple types of tox- 
icities ( Jaeger et al., 2015 ). High total cost and ethical con- 
cerns voiced by animal welfare organizations have forced reg- 
ulatory authorities to replace the traditional whole-animal- 
based toxicity assay systems with in vitro cytotoxicity testing 
( Burden et al., 2016 ). Major advantages of in vitro cell culture 
approaches include high efficacy, high reproducibility, high 

sensitivity, easy handling ( Bianchi et al., 2015 ), and the ability 
to explore the molecular mechanism of toxicity ( Poteser, 2017 ). 

During the development of the nervous system, cell prolif- 
eration, migration, differentiation, synaptogenesis and myeli- 
nation are processes that are highly sensitive to chemical ex- 
posure ( Costa et al., 2008 ; Coullery et al., 2016 ). In vitro bioas- 
say systems established for evaluation of the neurotoxicity 
of chemicals and water samples include zebrafish embryos, 
brain slices, synaptic systems, sensory systems, stem cells, 
primary cell models and cell lines ( Hendricks and Pool, 2012 ; 
Legradi et al., 2018 ). Primary neural stem cells (NSCs) are ba- 
sic building blocks of the nervous system. Their ease of iso- 
lation from the nervous system, ability to grow in an in vitro 
culture, self-renewal properties, differentiation into multiple 
lineages such as neurons and glial cells and capability of mi- 
grating from one location to another make NSCs a useful re- 
search tool ( Bergström and Forsberg-Nilsson, 2012 ) for screen- 
ing environmental toxicants ( Tamm et al., 2006 ). The subven- 
tricular zone (SVZ) harbors the NSCs and represents the main 

site ( Bollmann et al., 2014 ) of primary and secondary neuro- 
genesis ( Inta et al., 2008 ; Saha et al., 2012 ; Wang, 2015 ). Rapid 

proliferation and much easier handling make NSCs of SVZ a 
useful model for screening substances with neuromodulating 
properties ( Liu et al., 2009 ). 

We established an in vitro neurotoxicity bioassay based 

upon NSCs from SVZ of postnatal mice, to screen the neu- 
rotoxic potential of water samples on basic neurogenesis 
processes (viability, proliferation, differentiation and migra- 
tion). Water samples were collected from a wastewater treat- 
ment plant and a drinking water distribution facility near the 
Weschnitz River located at two towns of the German state 
Baden-Wuerttemberg. Findings of this study will be highly 
valuable for environmental protection agencies and regula- 
tory authorities to establish new standards for wastewater 
treatment plants to improve water quality. 

1. Materials and methods 

1.1. Water sampling 

Water samples were collected from a wastewater treatment 
plant and drinking water distribution facilities near the 
Weschnitz River located in two towns of the German state 
Baden-Wuerttemberg. All samples were collected only once 
and on the same day. Sampling was performed according 
to the guidelines of DIN 38402–30:1998–07 (pre-treatment, 
homogenization and division of heterogeneous water sam- 
ples) and following sampling standards: DIN 38402–11:2009–
02 and DIN 38402–13:2016–09 for raw, treated and groundwa- 
ter ( Beuth, 2009 , 2016 ). The sample of raw wastewater was 
collected from the inlet shaft before the primary clarifier, 
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while the sample of treated sewage water was collected from 

the drainage shaft after the secondary clarifier of a sewage 
treatment plant, Abwasserverband Bergstraße (AVB), Altau, 
Weinheim, Germany. The samples of groundwater and drink- 
ing water were collected from drinking water distribution fa- 
cilities, Wasserzweckverband Badische Bergstraße, Wasserw- 
erk, Hemsbach, Germany. The sampling cup was thoroughly 
washed first with 20% citric acid (NeolabMigge GmbH Hei- 
delberg, Germany) and subsequently with distilled water be- 
fore sampling. After sample collection, samples were trans- 
ported in Duran glass transportation vessels which were 
tightly sealed. Samples were homogenized for 72 hr and then 

stored at 2–5 °C until used for further analysis. Each sample 
volume was adjusted to 1 L. AVB is the biggest wastewater 
treatment plant in the area and receives the total sewage of 
seven communities in its vicinity. The AVB treats an annual 
wastewater volume of 12,000,000 to 18,500,000 m 

3 /year de- 
pending on rain events and groundwater levels in the associ- 
ated area. The plant processes between 20,000 and 130,000 m 

3 

of wastewater each day depending upon the amount of precip- 
itation ( MWM, 2014 ). AVB plant treats wastewater by the fol- 
lowing multiple steps: primary sedimentation, denitrification, 
nitrification, bio-P and sim-P. 

1.2. Chemical analysis of water samples 

Water samples were homogenized before chemical analysis. 
pH, electrical conductivity and O 2 concentration were mea- 
sured using a multiparameter device (SensION156, Hach com- 
pany, USA). Ammonium nitrogen and nitrate nitrogen were 
analyzed by Dr HACH-Lang Cuvette Kit systems with LCK304 
and LCK339 kits using a VIS-spectrophotometer (D3000, Hach 

company, USA) following DIN photometry protocols (DIN ISO 

15923-1:2014–07, EN ISO 6978: 2004 (DEV D11). 
Pesticides N,N -Diethyl- meta -toluamide (DEET), mecoprop 

and terbutryn in water samples were characterized by LC- 
MS/MS (liquid chromatography) and dieldrin was character- 
ized by GC–MS/MS (gas chromatography). All chromatographic 
analyses were carried out by an analytical laboratory (Lim- 
bach Analytics GmbH, District Court: HRB. Mannheim, Ger- 
many) with analysis reference number 17–10360 date Jul. 
13, 2017. For LC-MS/MS analysis of DEET, mecoprop and ter- 
butryn pesticides, the chromatographic separation was car- 
ried out by using a SunShell C18 CoreShell column (2.6 μm, 
2.1 i.d. × 50 mm) through a Shimadzu Nexera2-HPLC system 

(Shimadzu, Japan) under a gradient program. Eluent A was 
composed of 0.1% formic acid in water and Eluent B of (0.5% 

formic acid and 20 mmol/L ammonium formate in methanol). 
The analytes were quantified by an ABSciex Triple Quad 5500- 
MS mass spectrometer (AB Sciex corporation, USA). For GC–
MS/MS analysis, the chromatographic separation was carried 

out by GC column DB-35MS UI (30 m × 0.18 mm × 0.18 μm 

film) through an Agilent 7890 GC system and analytes were 
quantified by an Agilent 7010C Triple Quad mass spectrome- 
ter (Agilent, USA). Hydrogen gas was used as the mobile phase. 

1.3. Animals 

Wild-type Balb/c mice of both sexes of age 3–5 days were uti- 
lized. Animal preparations were conducted according to the 

guidelines of the local ethical committee and according to an- 
imal protection law in Rhineland-Palatinate, Germany. 

1.4. Extraction and culture of neural stem cells from the 
subventricular zone of the postnatal mice 

The isolation and culture of NSCs from mice SVZ for our exper- 
iments was done according to the protocol published in the lit- 
erature ( Bender et al., 2017 ). Three animals were used for each 

experiment. Immediately after decapitation, mice brains were 
removed and stored in ice-chilled MEM-medium (Life Tech- 
nology, Eugene, USA) with 1% penicillin/streptomycin (Ther- 
moFisher, Waltham, MA, USA). SVZ were dissected from both 

hemispheres under an inverted microscope (SZX7, Olympus, 
Japan) and transferred to 1 mL of HyQtase enzyme solution 

(HyClone-GE, USA) followed by incubation for 20 min at 37 °C. 
Brain tissues were triturated gently using 23 gauges and 27 
gage needles 3–4 times each. HyQtase was immediately re- 
moved by centrifugation of cell suspension at 100 ×g for 5 min. 
The cell pellet was then seeded in T25 culture containing 
5 mL of the proliferation medium (DMEM/F12 GlutaMax TM , 
Life Technology, USA), 2% B-27 without vitamin A, 1% peni- 
cillin/streptomycin, ß-mercaptoethanol (Gibco, Paisley, UK), 
10 ng/mL EGF and 20 ng/mL FGF (Immunotool, Germany) with 

the initial cell number of 500,000 to expand the cells for fur- 
ther experiments. Neurospheres generally appear within 3–4 
days. To achieve maximum yield and cell numbers, the cul- 
ture was incubated for 5 days. About half of the medium was 
changed every 3 days. Before starting each individual exper- 
iment, the numbers of cells were counted using the Trypan 

Blue method. Viability, proliferation, differentiation and mi- 
gration assays were carried out by reconstituting water sam- 
ples into lyophilized DMEM-F12 medium. For proliferation and 

viability assays, reconstituted samples were supplemented by 
the proliferation culture as mentioned above. For differenti- 
ation and migration assays, growth factors were omitted and 

the B-27 without Vitamin A was replaced by B-27 with Vitamin 

A (Gibco, UK). All experiments were performed in 5 replicates 
( n = 5 ). 

1.5. Preparation of water samples for bioassay 

A very important aspect of treating the cell-based assay with 

the water samples involves the adequate utilization of the wa- 
ter samples for medium preparation. We achieved a double- 
concentrated DMEM-F12 culture medium through lyophiliza- 
tion, which could be appropriately diluted with the water sam- 
ples to be tested. The desired reconstituted medium com- 
prising the original concentration of the ingredients of the 
cell culture medium was obtained with a twofold dilution of 
the lyophilized medium with water samples. Thus, the com- 
plete cytotoxic profile of water contaminants was achieved 

( Niss et al., 2018 ). Each water sample was initially filtered 

with a coarse filter followed by centrifugation (Centrifuge5–
804, Eppendorf, Germany) at 20,000 r/min for 10 min to re- 
move small visible particles. For each water sample includ- 
ing control, 10 mL of DMEM F-12 medium was lyophilized by 
freeze-drying with an Alpha 1–2 L Duplus (Fisher Bioblock Sci- 
entific, France) in a 50-mL falcon tube for about 15 hr. to re- 
duce its volume to half. The lyophilized DMEM F-12 was re- 
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constituted with each of the water samples so that the final 
volume of water sample in DMEM medium constituted 50% 

of the total volume. A control sample was prepared by re- 
constituting with double-distilled water. Other reconstituted 

wastewater samples were named Con for control, RWW for 
wastewater, TSW for treated sewage water, GW for ground wa- 
ter and DW for drinking water. Immediately after reconstitu- 
tion of lyophilized DMEM medium with water samples, the pH 

of all the samples was adjusted to 7.4. Samples were filtered 

through a membrane filter (0.22 μm) inside the sterile bench 

to remove microbial contamination. 

1.6. Calcein and propidium iodide live-dead assay 

A Calcein/Propidium iodide live-dead assay was performed 

to evaluate the effect of water samples on the viability of 
NSCs. Calcein-AM (3100MP, Life Technology, USA) is a non- 
fluorescent compound which is readily taken up by live cells 
and enzymatically converted into a green fluorescent marker. 
Propidium iodide (Sigma-Aldrich, Germany) provides red fluo- 
rescence and serves as a marker for dead cells. Around 25,000 
NSCs were expanded in reconstituted water samples sup- 
plemented by growth factor rmFGF (20 ng/mL) and rmEGF 
(10 ng/mL) into a 24-well plate for a period of 24 hr. At the end 

of the incubation period, neurospheres were formed, which 

were collected and dissociated enzymatically and mechani- 
cally into a single-cell suspension, followed by washing the 
cells three times with PBS. The cells were subsequently in- 
cubated with live and dead assay reagent containing calcein 

3 μmol/L and propidium iodide 2.5 μmol/L at 37 °C for 15 min. 
At least five independent microscopic fields were taken with 

the 20 × lens of a fluorescent microscope (Olympus CKX41SF, 
Olympus Corporation, Japan) for each water sample in each 

replicate. Green cells were counted as live cells while red cells 
were counted as dead cells. 

1.7. NSC proliferation assay 

Effects of water samples on NSC proliferation were deter- 
mined through the neurosphere clonogenic assay. A neuro- 
sphere clonogenic assay is especially useful in those cases 
where the effect on proliferation is robust. The neurosphere 
number count indicates the self-renewal property of NSCs, 
and the neurosphere diameter indicates cell proliferation 

within the neurosphere architecture ( He et al., 2013 ). Clono- 
genic parameters, such as the number and diameter of neu- 
rospheres, are measured periodically as defined by previous 
researchers ( Xiong et al., 2011 ). Around 1000 cells were seeded 

in 200 μL of each water sample reconstituted in DMEM F-12 
proliferation medium into each well of a 96-well plate. The 
plate was incubated at 37 °C for a total of 7 days. The medium 

was changed every 3 days. For clonogenic assays, the num- 
bers and mean diameters of neurospheres for each treatment 
condition were counted on days 3, 5 and 7 of the culture. On 

each specific time point, the whole well of a 96-well plate 
was scanned by using the 4 × objective of a microscope with 

phase-contrast mode. Neurosphere parameters were recorded 

by CELL-SENS version 1.17. 

1.8. Differentiation assay 

In vitro differentiation was performed for 7 days to quantify 
the neurons and astrocytes generated from NSCs ( Zhang et al., 
2015 ). NSCs were first expanded in standard DMEM F-12 pro- 
liferation medium for 5–6 days as described above. Neuro- 
spheres were dissociated into a single cell suspension fol- 
lowed by seeding 20,000 cells on a 12 mm glass coverslip 

coated with extracellular matrix (ECM) for 1 hr. After cell ad- 
herence, cells were exposed to reconstituted water samples 
for the following 7 days. At the end of the incubation pe- 
riod, cells were fixed in a solution of 4% paraformaldehyde at 
room temperature for 20 min followed by washing with PBS 
three times. The fixed cultures were processed further for im- 
munostaining. 

1.9. Migration assay 

NSCs were first proliferated in standard DMEM F-12 prolif- 
eration medium supplemented with growth factors, for 5–6 
days. Then 15–20 neurospheres were allowed to attach at the 
surface of a 12 mm glass coverslip coated with Poly- D -lysine 
(10 μg/mL) and incubated in a 24 well plate for 1hr. placed in 

an incubator at 37 °C. Attached neurospheres were exposed to 
reconstituted water samples for the next 24 hr. Phase-contrast 
photographs of each well were taken by a microscope using a 
4 × objective. Measurements were performed according to the 
protocol described by previous researchers ( Baumann et al., 
2014 ). Briefly, four radii of each differentiated neurosphere 
were calculated by measuring the distance travelled by mi- 
grated cells at a right angle to the edge of a neurosphere core 
from all four directions ( Fig. 5 ) . At least 15 neurospheres were 
included for each replicate per each condition. 

1.10. Immunostaining 

Differentiated fixed cell cultures were immunostained for 
the neuronal and astrocyte markers. Staining was per- 
formed by following a published protocol with slight changes 
( Bernas et al., 2017 ). Immediately after differentiation, cells 
were fixed with 4% paraformaldehyde solution (Sigma- 
Aldrich, Germany) for 30 min. Cell permeability was enhanced 

by incubating cells with a solution of Triton 100 × (0.3%) for 
10 min at room temperature followed by washing with PBS- 
tween once and with PBS twice. Cell surfaces were blocked 

by incubating them with 10% Normal donkey serum (Merck, 
Germany) for 1 hr at room temperature. Cultures were sub- 
sequently incubated at room temperature for 1 hr. with the 
following primary antibody solutions in PBS with 5% block- 
ing agent: (mouse-anti ß-tubulin III, 1:500) (MAB1637, Merck, 
Germany) and (rabbit anti-GFAP, 1:500) (Z0334, Dako, Den- 
mark). The cultures were subsequently washed thrice with 

PBS. Cultures were then further incubated with Alexafluor 488 
& Alexafluor 594 conjugated donkey antibodies (Life technol- 
ogy, USA) for 1 hr, and finally washed thrice with PBS. Fi- 
nally, the nuclei of cells in culture were counterstained by 
DAPI (1:500) (Sigma-Aldrich, Germany) for 10 min then finally 
washed with PBS. The fluorescent mounting medium was 
used to fix coverslips on glass sides ( Ostenfeld and Svend- 
sen, 2004 ). 
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Table 1 – General quality parameters of water samples. 

Parameter RWW TSW GW DW Safety limit 

Color pH Black gray 7.8 Colorless 6.2 Colorless 6.7 Colorless 7.2 Colorless 6.5–8.5 
Conductivity 
(μS/cm) 

261 716 822 1013 2500 

O 2 concentration 
(mg/L) 

0.78 6.74 2.86 5.13 5.0 

NH 4 
+ (mg/L) 124.6 0.688 0.409 0.004 0,5 

NO 3 
− (mg/L) 1.13 8.600 0.111 0.145 50 

RWW: raw wastewater; TSW: treated sewage water; GW: groundwater; DW: drinking water; N/A: not available. 
Safety limit for drinking water ( Organization, 2017 ). 

Table 2 – Pesticide traces in water samples. 

Pesticide RWW TSW GW DW Safety limit 

Dieldrin (μg/L) < 0.01 < 0.01 < 0.01 Undetectable 0.03 
Diethyltoluamid (μg/L) 0.75 0.13 < 0.01 Undetectable 0.10 
Mecoprop (μg/L) 0.03 0.14 < 0.01 Undetectable 0.10 
Terbutryn (μg/L) 0.18 0.19 0.02 Undetectable 0.03 

Safety limit for drinking water ( Directive, 2006 ; Organization, 2017 ) . 

1.11. Statistical analysis 

Data were analyzed statistically using descriptive statistics 
and the Kruskal Wallis test with the post hoc Dunn’s test. Data 
were accepted as statistically significant under a probability 
range of 5%. 

2. Results 

2.1. Physicochemical characterization of water samples 

Table 1 Represents the general quality parameters of the wa- 
ter samples. Both RWW and TSW contained higher concen- 
trations of ammonium-and nitrate-nitrogen when compared 

to the GW and DW, while electrical conductivity values were 
lower in the case of RWW and TSW. The quantitative analy- 
sis of the pesticides revealed that dieldrin was present under 
the safe limit in all water samples. DEET and terbutryn were 
not detected, whilst mecoprop was found within the safe limit 
in DW. The concentrations of both DEET and terbutryn were 
found to be elevated in RWW and TSW. All four pesticides were 
detected in GW, but none of them was above the safe limit, 
see Table 2 . Chromatograms of dieldrin, DEET, terbutryn and 

mecoprop pesticides are given in Appendix A Figs. S1-S12. 

2.2. NSC-based bioassay 

We initially performed baseline studies to perceive if the 
lyophilization and subsequent reconstitution of DMEM/F-12 
medium with water samples adversely affect the medium 

quality. In baseline studies we performed viability, prolifer- 
ation, and differentiation assays for normal DMEM/F-12 and 

lyophilized DMEM/F-12 reconstituted with double-distilled 

water. Our baseline study showed insignificant difference 

between normal DMEM/F-12 and reconstituted DME/F-12 in 

terms of viability, proliferation, differentiation and migration 

of NSC culture ( Appendix A Figs. S13-S14 ). 

2.2.1. Viability and proliferation assay 
The Calcein-AM/PI live-dead assay is widely used to deter- 
mine the toxic effects of chemical compounds in mammalian 

cells, and a previous researcher employed this assay to deter- 
mine the effects of tap water contaminants on the viability 
of water flea, a bio-indicator for water toxicity ( Teplova et al., 
2010 ). We performed Calcein-AM/propidium iodide live-dead 

assays to evaluate the acute toxicity of the water samples on 

NSCs when exposed for 24 hr. The results demonstrated that 
RWW significantly reduced the percentage of living cells when 

compared to the Con ( Fig. 1 a) . The neurosphere clonogenic as- 
say was performed to evaluate the effect of water samples on 

NSC proliferation. RWW significantly reduced the count and 

mean diameter of neurospheres ( Fig. 1 b, c and Fig. 2 ) when 

compared to the Con and all other treatment conditions at 
all observation time points. A significant difference between 

RWW and TSW was, however, only observed on day 3. We 
also observed a significant difference between the number 
and mean diameter of TSW vs. Con and TSW vs. GW only on 

day 7. 

2.2.2. Differentiation assay 
We carried out a differentiation assay to evaluate the effect 
of water samples on the multipotency of NSCs. Differenti- 
ated cells were identified by immunostaining of ß-tubulin 

III as a neuronal marker, and GFAP as an astrocyte marker. 
In the differentiation experiment, the reason for focusing 
only on differentiated neurons and astrocytes was their piv- 
otal role in the development and functions of a nervous 
system and high vulnerability to toxic insult. Additionally, 
the neuronal/astrocyte co-culture system is a proven in vitro 
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Fig. 1 – Calcein/Propidium iodide viability and clonogenic 
proliferation assay of NSCS upon treatment with water 
samples. For viability, NSCs were exposed to water 
treatments and control for 24 hr in a 96-well plate. (a) 
Represents the percentage of viable cells (stained with 

Calcein-AM) which were calculated from the total cell count 
obtained through phase-contrast pictures. Proliferation 

assay was performed on 96-well plate for 7 days. The 
whole well was scanned by a phase-contrast microscope 
using a 4 × objective. (b) Represents the mean neurosphere 
number for each treatment condition at different 
observation time points. (c) Represents the mean diameter. 
Con: control; RWW: raw wastewater; TSW: treated sewage 
water; GW: groundwater and DW: drinking water. Data are 
mean ± SEM of 5 independent experiments ( n = 5) . 
∗p ≤ 0.05, ∗∗p < 0.01 and 

∗∗∗p < 0.001 . 

model and has been used extensively in toxicology stud- 
ies ( Anderl et al., 2009 ; De Simone et al., 2017 ; Deng and 

Poretz, 2003 ; Jiang et al., 2015 ) . Percentages of differentiated 

cells and neurite outgrowth and the percentage of each glass 
coverslip area covered by differentiated cells were calculated 

using CELL-SENS and image J software. RWW significantly re- 
duced the percentage of neurons and astrocytes and signif- 
icantly increased the percentage of double-negatives (cells 
non-reactive to both neuronal and astrocyte markers) when 

compared to the Con and other water treatments ( Fig. 3 a) . 
The strongest difference in the percentage of neurons was 
observed between RWW and DW (37%), whilst the percent- 
age of astrocytes differed significantly between RWW and GW 

(26%). Similar trends with respect to the percentage of area 
covered by differentiated neurons and astrocytes cells in each 

microscopic field were observed for RWW and all other wa- 
ter treatments ( Fig. 3 b) . RWW strongly inhibited the earlier 
neurite growth and hence gave rise to the highest percent- 
age of neuriteless neurons (67% of total neurons) when com- 
pared to all other water treatments. Concerning the percent- 
age of neuriteless neurons, the highest difference of around 

95% was calculated between RWW vs. Con and RWW vs. DW 

( Fig. 3 c) . The morphological features of differentiated neurons 
and astrocytes under different water treatments are shown in 

the Fig. 4 . Neurons were well-grown with extended neurites 
and multiple branches when exposed to Con, GW, and DW. In 

contrast, the cells exposed to RWW were observed to be de- 
tached at the end of observation period, and the ones that 
survived demonstrated highly depressed growth, with inter- 
mingled deformed neurites without a well-developed branch- 
ing pattern. Similarly, cells exposed to TSW also demonstrated 

depressed neuronal growth, with less dense neurites when 

compared to other water treatments. A leaf-like morphology 
of astrocytes was observed for all samples except RWW, which 

demonstrated depressed growth with elongated thread-like 
morphology 

2.2.3. Migration assay 
The neurosphere migration assay is a very strong and rele- 
vant tool for screening the effect of environmental pollutants 
on neural cell migration in developmental neurotoxicity stud- 
ies. The assay effectively mimics the in vivo cell migration pro- 
cess ( Fritsche et al., 2011 ). The neurosphere migration assay 
was performed to measure cell migration under the influence 
of water samples for 24 hr, and calculations were done us- 
ing CELL-SENS software. RWW significantly reduced the mean 

migration distance travelled by the differentiated cells when 

compared to the Con, GW and DW. A significant difference 
concerning the mean distance travelled by differentiated cells 
was also calculated between Con and TSW. The strongest dif- 
ference was calculated between Con vs. RWW (34%) and RWW 

vs. DW 33% ( Fig. 5 ). 

3. Discussion 

Several ecological studies identified industrial discharges and 

inefficiency in wastewater treatment techniques as two main 

sources for high concentrations of cytotoxic and neurotoxic 
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Fig. 2 – Growing sizes of neurosphere on days 3, 5 and 7 of incubation with water samples. NSCs were cultured in a 96-well 
plate. On day 3 of incubation, neurospheres were not completely rounded. On days 5 and 7, neurospheres acquired rounded 

shape. Pictures were taken with a phase-contrast microscope using a 20 × objective. 

pollutants present both in wastewater and treated wastew- 
ater ( Fricke et al., 2015 ; Fritsche et al., 2018 ; Gerhardt, 2019 ; 
Héritier et al., 2017 ; Karlsson et al., 2020 ; Le et al., 2017 ; 
Miege et al., 2009 ; Poteser, 2017 ; Trintinaglia et al., 2015 ). NSC 

is an attractive and robust cell-based in vitro model to investi- 
gate the neurotoxicity of toxic substances. An in vitro assay 
based upon NSC was successfully employed to explore the 
neurotoxicity of tap water samples (with nickel pollutant) on 

neuroproliferation and neuronal differentiation ( Zhou et al., 

2019 ). In the present study, we developed an in vitro assay 
employing NSCs isolated from SVZ of postnatal Balb/c mice 
to assess the neurotoxicity of wastewater, effluent from the 
wastewater treatment plant, groundwater and drinking water. 
We selected lyophilized DMEN/F-12 medium reconstituted by 
double-distilled water as a control for the rest of our assays. 
Our baseline study showed that the lyophilization and recon- 
stitution processes did not adversely affect the DEME/F-12 me- 
dia quality for NSC culture. 
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Fig. 3 – NSC differentiation after 7 days of incubation with 

water samples. Percentage of neurons and astrocytes was 
calculated from total DAPI + ve nuclei count. Area of 12 mm 

glass coverslip covered by differentiated cells was 
calculated from 4 × 4 mosaic pictures taken with 4 ×
objective of a fluorescent microscope. (a) Represents the 
percentage of neurons, astrocytes and the cell which were 
non-immunoreactive for both neuronal and astrocyte cell 
markers. (b) Represents the percentage of area covered by 

differentiated cells on each coverslip. (c) Indicates the 
percentage of neuriteless neurons (NLN) calculated from 

the total neuronal count. Values are mean ± SEM of 5 
independent replicates ( n = 5). ∗p ≤ 0.05, ∗∗p < 0.01 and 

∗∗∗p < 0.001 . 

3.1. Physicochemical characterization of water samples 

Our results demonstrated that the levels of nitrogenous con- 
taminants and pesticides were below the safe limit in GW 

and DW. RWW and TSW contained relatively higher concen- 
trations of ammonium compounds, nitrates, pesticides DEET, 
terbutryn and mecoprop. Wastewater treatment plants work- 
ing in some EU countries are unable to completely remove pol- 
lutants from raw wastewater. A study conducted in Spain re- 
ported that effluents of three different wastewater treatment 
plants contained higher concentrations of pesticides as com- 
pared to the untreated raw wastewater. The presence of rel- 
atively higher concentrations of pollutants in the effluents of 
wastewater treatment plants was due to the release of pol- 
lutants from the plants themselves ( Köck-Schulmeyer et al., 
2013 ). The presence of high nitrate contents in water is a prod- 
uct of highly decayed plant contents, usage of animal ma- 
nure and leakage of septic tank effluents, and excessive use 
of fertilizers ( Huang et al., 2018 ; Manassaram et al., 2005 ). 
High ammonium levels in wastewater ( Seruga et al., 2019 ) and 

wastewater treatment plant effluents have been recently re- 
ported ( Huang et al., 2018 ). An excessive amount of nitroge- 
nous contaminants in treated wastewater reflects the inef- 
ficiency of the wastewater treatment process ( Santos et al., 
2008 ). Periconceptional exposure of human mothers to a high 

concentration of nitrate through drinking water resulted in 

neural tube defects in the fetus and anencephaly in newborns 
( Croen et al., 2001 ) and neural tube defects in zebrafish embryo 
by disrupting estrogen receptors ( Jannat et al., 2014 ). 

In Germany, a high concentration of DEET was reported in 

water samples collected from different sources. The Danube 
river in German territory, for instance, which receives a huge 
amount of water from widely dispersed wastewater treatment 
plants in the area ( Loos et al., 2017 ), was reported to contain a 
high concentration of DEET in untreated wastewater and ef- 
fluents of wastewater treatment plants ( Launay et al., 2013 ), in 

surface water and wastewater influents ( Aronson et al., 2012 ). 
DEET is an environmental toxicant whose toxic concentration 

has been detected in marine water near nuclear power plants. 
DEET is considered toxic and neurotoxic ( Abou-Donia et al., 
1996 ; de Assis Martini et al., 2017 ). Terbutryn is a commonly 
employed herbicide and an environmental toxicant, with high 

concentrations detected in drinking water and processed food 

in several countries ( Villarini et al., 2000 ). A high concentration 

of terbutryn was reported in surface water of the Llobregat 
River near Catalonia, Spain ( Rubirola et al., 2019 ). In another 
study conducted in Germany, toxic levels of terbutryn were not 
only detected in untreated raw water but also in effluents of 
wastewater treatment plants ( Le et al., 2017 ). A European study 
revealed the presence of DEET and terbutryn at high concen- 
trations in most of the effluents tested ( Loos et al., 2013 ). In 

Sweden and Denmark, high concentrations of mecoprop pes- 
ticide were detected both in untreated water and wastewater 
treatment plant effluents ( Bollmann et al., 2014 ). Mecoprop 

was also detected in stream water in the German country- 
side. However, the concentration of mecoprop was below the 
safe limit ( Schulte-Oehlmann et al., 2011 ). A high concentra- 
tion of mecoprop was reported in groundwater collected from 

Weaver and Gowy catchments in the UK. The concentration 
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detected was higher than EU drinking water quality standards 
( Idowu et al., 2014 ). The presence of dieldrin in wastewater 
treatment plant effluents ( Kenny et al., 2017 ), marine surface 
water and in potable water was also reported by researchers 
( Díaz-Barriga Arceo et al., 2015 ; Kenny et al., 2017 ). 

3.2. Effects on viability 

Only RWW significantly reduced the percentage of viable cells 
when compared to the Con. A study conducted in Slove- 
nia reported on the cytotoxicity of untreated wastewater and 

wastewater treatment plant effluents in different dilutions to- 
ward a human hepatoma cell line ( Žegura et al., 2009 ). Se- 
vere neurotoxicity in fish upon exposure to diluted effluent 
from a wastewater treatment plant was reported in Noksan 

(South–Korean) due to high concentrations of pesticides and 

industrial compounds that were not removed effectively by 
the wastewater treatment plant ( Park et al., 2009 ). The pos- 
sible reason for the inhibitory effects of RWW on NSC via- 
bility is the complex combination of pollutants derived from 

anthropogenic activities whose release was not controlled. 
Polycyclic aromatic hydrocarbons ( Tang et al., 2003 ), phtha- 
lates ( Lim et al., 2009 ), methyl mercury ( Farina et al., 2011 ) 
and pesticides ( Lin et al., 2018 ) are notorious for their neu- 
rotoxicity. High concentrations of polycyclic aromatic hydro- 
carbons were reported in the Neckar River in Southern Ger- 
many ( Vincze et al., 2015 ). Moreover, elevated levels of phtha- 
late in municipal wastewater ( Fromme et al., 2002 ), methyl 
mercury in different lakes and rivers ( Euractive, 2018 ) and pes- 
ticides such as atrazine, terbuthylazine, metazachlor in differ- 
ent water beds in Germany ( Karlsson et al., 2020 ) were also 
observed. A high concentration of ammonium compounds in 

RWW may contribute to neurotoxicity since an excess of am- 
monium compounds induces cytotoxicity in murine myeloma 
cells ( Martinelle and Häggstr öm, 1993 ). The literatur e also r e- 
ported the neurotoxicity of DEET ( Swale et al., 2014 ) and cy- 
totoxicity of terbutryn ( Villarini et al., 2000 ). The role of these 
pesticides in the neurotoxicity of RWW is not clearly under- 
stood, since the levels employed in published studies were 
several times higher than those detected in our RWW and 

TSW samples. Poor neural cell viability in children due to 
neurocytoxicity induced by environmental pollutants during 
the early stage of life results in neurodevelopmental disor- 
ders such as defective locomotive functions, weak memory 
( Tseng et al., 2013 ) and poor IQ scores ( Gorini et al., 2014 ). 
Our results indicated that wastewater treatment plants suffi- 
ciently reduced the toxic potential of pollutants in the studied 

water samples. 

3.3. Effect on cell proliferation 

Counting the number and diameter of neurospheres at spe- 
cific time intervals provides an estimation of NSC proliferation 

capability ( Lu and Wong, 2005 ). Our results demonstrated that 
both RWW and TSW inhibited NSC proliferation. RWW inhib- 
ited proliferation at all observation time points, whilst TSW 

inhibited proliferation only at later stages of incubation when 

compared to the Con and GW. Our findings are consistent with 

a published study showing that both the raw wastewater in- 
fluent and treated effluents significantly reduced the prolifer- 

ation of a human embryonic kidney cell line by altering the ex- 
pression of cell cycle regulatory proteins, due to the presence 
of multiple contaminants in the water samples ( Ren et al., 
2017 ). Untreated sewage effluent contained pharmaceutical 
contaminants including atenolol, caffeine, hypnotics and an- 
tihypertensive drugs, and was reported to strongly inhibit cell 
proliferation in the brain of Prochilodus lineatus ( Pérez et al., 
2018 ). The decreased NSC proliferation with RWW and TSW 

could be attributed to the presence of one or more environ- 
mental pollutants with potential cell proliferation inhibition 

properties. Inhibitory effects of organic mercury compounds 
( Bose et al., 2012 ), bisphenol-A ( Tiwari et al., 2015 ), the pes- 
ticide DEET ( Parihar et al., 2013 ), and nitrates ( Solari et al., 
2009 ) on the proliferation of NSCs and effects of pharmaceu- 
tical contaminants on fish brain cells ( Pérez et al., 2018 ) at 
ultra-low doses were reported by researchers. Moreover, the 
literature reveals that a high amount of methyl mercury has 
been found in a large number of lakes and surface water 
deposits across Europe, including Germany ( Euractive, 2018 ). 
DEET pesticide was found in elevated concentrations in the 
Danube river ( Loos et al., 2017 ),treated and untreated wastew- 
ater ( Launay et al., 2013 ) and in surface water ( Aronson et al., 
2012 ). A very high concentration of bisphenol-A was also ob- 
served both in treated and untreated wastewater in different 
cities of Germany ( Fromme et al., 2002 ). Decreased prolifera- 
tion of NSCs in the brain is linked to poor memory, learning 
dysfunction ( Parihar et al., 2013 ) and schizophrenia at early 
ages in children ( Reif et al., 2006 ). Future studies need to con- 
duct dose-response assays for pure DEET and nitrates since 
both pollutants were found in high concentrations in RWW 

and TSW, especially when these pollutants pose inhibitory ef- 
fects on NSC proliferation. Furthermore, our findings demon- 
strated that wastewater treatment plants did not remove the 
pollutants completely, resulting in the inhibitory effects of 
TSW on cell proliferation. 

3.4. Effect on differentiation 

RWW significantly decreased the percentage of neurons, as- 
trocytes, neuronal growth area, and astrocyte growth area, and 

increased the percentage of neuriteless neurons when com- 
pared to the control. Although no significant difference was 
observed between Con vs.TSW, yet TSW depressed the neurite 
growth and elongated the astrocytes when compared to Con, 
GW, and DW ( Fig. 3 ) . TSW also exhibited neutralizing effects 
since areas covered by differentiated neurons and astrocytes 
were significantly higher than those with RWW treatment. 
Many environmental pollutants frequently detected in treated 

and untreated water bodies of European countries were stud- 
ied for their effect on neuronal and astrocytes differentiation 

of NSCs. Ammonium compounds ( Braissant et al., 2002 ), ni- 
trates ( Solari et al., 2009 ), methyl mercury ( Tamm et al., 2006 ), 
and bisphenol-A ( Fujiwara et al., 2018 ; Tiwari et al., 2015 ) were 
reported to have inhibitory effects on neuronal differentiation, 
whilst artificial sweeteners ( Cong et al., 2013 ), the pesticide 
DEET ( Christen et al., 2017 ), Dieldrin ( Richardson et al., 2006 ) 
and phthalates ( You et al., 2018 ) were reported to exhibit in- 
hibitory effects on neurite growth. Pizzurro et al. (2014) in their 
study reported the inhibitory effects of diazinon pesticide on 

astrocyte differentiation and development. The inhibitory ef- 
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Fig. 4 – NSC differentiation on ECM-coated glass coverslip after 7 days of incubation. Green cells are ß-tubulin III + ve (ß-tub) 
neurons with fibrous neurites. Red cells with leaf-like morphology are GFAP + ve astrocytes. RWW strongly inhibited neurite 
outgrowth and branching and also caused neurite deformations. Astrocytes under RWW have elongated morphology unlike 
with other treatments, which have leaf-like morphology. TSW treatment showed less dense neurite growth as compared to 

Con, GW, and DW. Pictures were taken with 40 × objective. . 

fects of these pollutants on neuronal and glial differentia- 
tion were evaluated at very low dose levels. Studies reported 

the presence of organic mercury compounds ( Euractive, 2018 ; 
Fricke et al., 2015 ), bisphenol-A ( Gerhardt, 2019 ), artifi- 
cial sweeteners ( Scheurer et al., 2009 ), the pesticide DEET 

( Loos et al., 2017 ) and phthalates ( Fromme et al., 2002 ) at high 

levels both in untreated raw water and treated water sam- 
ples collected from different locations in Germany. We specu- 

late that besides other contaminants in RWW, DEET also con- 
tributed to the inhibitory effects on neurodifferentiation. Poor 
neurite growth is implicated in autism ( Gilbert and Man, 2017 ), 
and poor astrocyte development is linked to mood disorders 
( Koyama, 2015 ) in human beings. In future studies, it is very 
important to investigate the neuro-inhibitory effects of DEET 

and dieldrin at concentrations we detected in RWW and TSW. 
Dieldrin was found at very low concentration, yet its synergis- 
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Fig. 5 – Neurosphere migration assay for determination of the effect of water samples on cell migration. Migration assay was 
performed in a 24-well plate. Phase-contrast pictures of neurospheres were taken 24 hr after incubation with 10 × objective 
of a phase-contrast microscope. The yellow dotted line in images encircles the area occupied by migrated cells and the red 

dotted line encloses the neurosphere core. White arrows in the method image indicate the distance travelled by migrating 
cells away from the edge of the neurosphere core. Bar graph represents the mean distance travelled by migrating cells in 

four directions for each treatment condition. Values are presented as mean ± SEM of 5 independent replicates 
( n = 5). ∗p ≤ 0.05, ∗∗p < 0.01 and 

∗∗∗p < 0.001, ∗∗∗∗p < 0.0001 . 

tic effects with other complex mixture of pollutants must not 
be ignored, since chemical interaction between environmen- 
tal pollutants can result in an increase or decrease in the toxi- 
city of an individual compound ( Krishnan and Brodeur, 1994 ). 

One such type of interaction was reported in the litera- 
ture in which dieldrin synergistically interacted with H 2 O 2 

to cause severe toxicity in rat thymocytes ( Chimeddorj et al., 
2013 ). 
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3.5. Effect on cell migration 

Cell migration is an important subset of the neurogenesis 
process. In the event of brain trauma or injury, SVZ is the 
first area where NSC stem cell proliferation and migration 

take place to repair the injured tissues ( Galindo et al., 2018 ). 
Both RWW and TSW inhibited cell migration when compared 

to Con and DW. Many environmental toxicants, such as or- 
ganic mercury compounds, steroidal drugs, the environmen- 
tal toxicant bisphenol-A and pesticides, inhibit the migration 

of cells in the nervous system ( Fahrion et al., 2012 ; Ishido and 

Suzuki, 2010a , 2010b ). The occurrence of these environmen- 
tal toxicants was reported both in wastewater and wastew- 
ater treatment plant effluents of different countries of the 
world ( Gbondo-Tugbawa et al., 2010 ; Mohapatra et al., 2011 ; 
Pauwels et al., 2008 ), including Germany ( Aronson et al., 2012 ; 
Euractive, 2018 ; Gerhardt, 2019 ). Although we could not find 

any published study to directly support our findings, we as- 
sume that the inhibitory effects of RWW and TSW on cell mi- 
gration might be due to the presence of many environmental 
toxicants in our samples that were not completely removed by 
the water treatment plant. A decrease in neural cell migration 

increases the risk of epilepsy in human beings ( Stouffer et al., 
2016 ). 

Although neurotoxicity of DEET and mecoprop in hu- 
man beings ( Petrucci and Sardini, 2000 ; Wiles et al., 2014 ), 
and teratogenic effects of terbutryn in an animal model 
( Meulenbelt et al., 1988 ; Velisek et al., 2012 ) at very low dose 
levels were reported in the literature, data regarding the neu- 
rotoxic concentrations of these pesticides in living body fluids 
is lacking. Prospective researchers are suggested to conduct 
biotransformation studies parallel to dose-response toxicity 
studies of DEET, terbutryn and mecoprop pesticides. 

4. Conclusions 

Our results demonstrated that groundwater and drinking wa- 
ter presented no sign of inhibitory effects on any of the neu- 
rogenerative processes (viability, proliferation, differentiation 

and migration) in an in vitro neurotoxicity assay based upon 

NSCs from SVZ of postnatal mice. Raw wastewater inhib- 
ited all neurogenesis processes, while treated sewage water 
showed inhibitory effects only on proliferation and migration. 
Through this study, we confirmed that an in vitro NSC-based 

assay provides a highly sensitive and robust system for neu- 
rotoxicity screening of diluted water samples from different 
sources with different levels of contamination. The assay also 
unveiled the tendency of treated sewage water to inhibit the 
differentiation of NSCs. Finally, it can be concluded that NSC- 
based in vitro assays offer a very good platform for screen- 
ing water pollutants with neurotoxic potential, and should be 
considered as an integral part of other bioassays for evaluating 
the quality of water samples containing a mixture of chemi- 
cal pollutants with different modes of action before these wa- 
ter samples are released into the environment or considered 

for human consumption. These findings also reflect the inef- 
ficiency of wastewater treatment plants in the studied area in 

completely removing the toxic pollutants and direct the atten- 

tion of water management authorities to review their proto- 
cols regarding wastewater treatment practices. 
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a b s t r a c t

The developing nervous system is highly vulnerable to environmental toxicants especially pesticides.
Glyphosate pesticide induces neurotoxicity both in humans and rodents, but so far only when exposed to
higher concentrations. A few studies, however, have also reported the risk of general toxicity of glyph-
osate at concentrations comparable to allowable limits set up by environmental protection authorities.
In vitro data regarding glyphosate neurotoxicity at concentrations comparable to maximum permissible
concentrations in drinking water is lacking. In the present study, we established an in vitro assay based
upon neural stem cells (NSCs) from the subventricular zone of the postnatal mouse to decipher the
effects of two maximum permissible concentrations of glyphosate in drinking water on the basic neu-
rogenesis processes. Our results demonstrated that maximum permissible concentrations of glyphosate
recognized by environmental protection authorities significantly reduced the cell migration and differ-
entiation of NSCs as demonstrated by the downregulation of the expression levels of the neuronal
ß-tubulin III and the astrocytic S100B genes. The expression of the cytoprotective gene CYP1A1 was
downregulated whilst the expression of oxidative stresses indicator gene SOD1 was upregulated. The
concentration comparable to non-toxic human plasma concentration significantly induced cytotoxicity
and activated Ca2þ signalling in the differentiated culture. Our findings demonstrated that the permis-
sible concentrations of glyphosate in drinking water recognized by environmental protection authorities
are capable of inducing neurotoxicity in the developing nervous system.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

The nervous system develops with a very complex pattern of

tightly regulated events including apoptosis, proliferation, differ-
entiation of NSCs into neurons and astrocytes as well as cell
migration, gliogenesis, synaptogenesis, and myelination. These
events take place in a very precise and controlled fashion to ensure
appropriate and undisturbed development. Any perturbation in
these processes by a chemical entity adversely affects the physi-
ology of the nervous system (Coullery et al., 2016; Tohyama, 2016).
The developing nervous systems (fetus and infantile) are highly
sensitive towards chemicals such as pesticides because of the
poorly developed blood-brain barrier and enzyme systems (Costa
et al., 2008; Pamies et al., 2018). Several studies have reported
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the association between early-life exposure to pesticides and
neurological disorders in children (Parr�on et al., 2011; Tohyama,
2016) and raised serious concerns to explore the possible neuro-
toxic effect of commonly employed pesticides (Pamies et al., 2018).
Glyphosate is a herbicide which is widely exploited to improve the
growth and productivity of genetically modified crops (Jasper et al.,
2012). Chemically glyphosate is N-[Phosphonomethyl]glycine, a
glycine analogue which exerts its herbicide actions by blocking the
synthesis of essential aromatic amino acids through the Shikimate
pathway, a pathway unique to plants, protozoa, bacteria, and fungi
but lacking in mammalians and human beings. Thus glyphosate is
generally considered as a safe pesticide and unlikely to cause acute
toxicity in animals and human beings in normal doses (Song et al.,
2012; Sribanditmongkol et al., 2012; Szepanowski et al., 2019). The
European Commission for environment setup a Drinking Water
Directive which considered 0.1 mg/L of glyphosate as a maximum
allowable concentration (MAC) in drinking water (Dolan et al.,
2013) while the United State Environment Protection Agency
(USEPA) defined 700 mg/L of glyphosate as a maximum contami-
nation level (MCL) (Larsen et al., 2012). Both MAC and MCL repre-
sent the maximum permissible concentrations in drinking water
and are considered as non-observable adverse effect levels of
glyphosate. Kinetic studies conducted in a rat model revealed that
glyphosate achieved peak plasma concentration of 4500 mg/L
within 5.16 h upon administration of a single oral dose of 400 mg/
kg and followed the two-compartment model with an elimination
half-life of 14.38 h (Anad�on et al., 2009). Glyphosate is capable of
crossing the blood-brain barrier and accumulates in the striatum,
hypothalamus, andmidbrain as reported in the ratmodel (Martínez
et al., 2018). Glyphosate can also cross the placental barrier, being
secreted in the urine and breast milk of the human beings
(Honeycutt and Rowlands, 2014) indicating its potential for devel-
opmental toxicity. A strong link between glyphosate exposure and
multiple health impairments (Clair et al., 2012; Gallegos et al.,
2020; Ren et al., 2018; Sribanditmongkol et al., 2012; Tang et al.,
2020) including mental disorders have also been reported in the
literature (Bradberry et al., 2004). Several clinical studies have
affirmed the association between the exposure to glyphosate for-
mulations and the nervous system disorders in human beings
(Barbosa et al., 2001), including Parkinson’s (Caballero et al., 2018),
meningitis (Sato et al., 2011) and loss of consciousness in adults
(Zouaoui et al., 2013) while autism (von Ehrenstein et al., 2019),
attention deficit and attention deficit hyperactivity disorders have
been reported in children whose parents were exposed to glyph-
osate (Solomon et al., 2007). Additionally, glyphosate formulations
induced behavioural disorders (Gallegos et al., 2016) and anxiety
along with depression-like symptoms in rodents (Ait Bali et al.,
2017). In all of these studies humans and rodents were exposed
to glyphosate formulations rather than pure glyphosate and
therefore the contribution of formulation additives in the neuro-
toxicity must not be overlooked (Neto da Silva et al., 2020).

A variety of mechanisms are involved in glyphosate induced
neurotoxicities. Glyphosate and its formulation, for instance, tend
to reduce neural cell migration due to their hypothyroid activity
(Beecham and Seneff, 2016), disrupt neuronal plasticity (Dechartres
et al., 2019), induce glutamate excitotoxicity, induce oxidative
stress, decrease the expression of astrocyte marker (Cattani et al.,
2017), increase the Ca2þ influx in hippocampus tissues of rodents
(Cattani et al., 2014), reduce differentiation of neurons and syn-
aptogenesis in the neocortex area by modulating the expression of
regulatory genes controlling Wnt/B-catenin/Notch Pathway (Ji
et al., 2018), and reduce the expression of 5HT-cells in the baso-
lateral amygdala and medial prefrontal cortex (Ait Bali et al., 2017)
of rodents. Glyphosate associated apoptosis in differentiated

PC12 cell lines (Gui et al., 2012) and inhibitory effects on neurite
development and growth (Coullery et al., 2016) at higher concen-
trations have also been reported in the literature. Glyphosate
decreased the levels of 5-HT, dopamine, and nor-adrenaline in
striatum, hypothalamus, and mid-brain regions of the rat brain
when exposed for 6 days at doses several times higher than the
NOAEL dose determined in preliminary experiments of that study
(Martínez et al., 2018). Glyphosate induced oxidative stress and
upregulated the proinflammatory genes IL6 and TNFa in human
neuroblastoma SH-SY5Y cell line at 5 mM concentration (Martínez
et al., 2020). Unfortunately, all of these studies were performed
employing extremely high concentrations (i.e. several hundred to
thousands times) of glyphosate rather than exploiting concentra-
tions defined by environmental protection authorities of different
countries and were more relevant to occupational exposure than
the normal exposure, i.e. through nutrition.

Developmental neurotoxicity (DNT) is defined as the neurotoxic
effects produced by a noxious substance in an organism during
embryonic or postnatal life (Coecke et al., 2007; Giordano and
Costa, 2012). The Organization of Economic Co-operation and
Development (OECD) set developmental neurotoxicity guidelines
TG426 for animal-based in vivo testing conducted during preg-
nancy and lactation. These testing systems are based upon func-
tional endpoints such as memory, learning, auditory startle, motor
activity, and brain morphometry (Tohyama, 2016). Among animal
models, the mouse model is highly attractive for predicting human
toxicities of the environmental toxicants because of a range of
similarities between mice and human beings concerning genome
sequence, metabolic pathways (Harper, 2010) and mechanism of
neurodegenerative disorders such as Parkinson’s and Alzheimer’s
(Blesa and Przedborski, 2014; Harper, 2010). Additionally, mice are
easy to maintain, have shorter generation time and a high rate of
reproduction. Mouse embryos help to predict developmental hu-
man neurotoxicity associated with food or environmental pollut-
ants (Hafezparast et al., 2002; Uhl and Warner, 2015). Despite all
these advantages, traditional animal-based in vivo cytotoxicity as-
says are associated with several limitations including low sensi-
tivity, laborious work (Ait Bali et al., 2017; Wang et al., 2007),
lengthy processes, high experimental costs (Coady et al., 2017) and
animal ethical concerns, pushing the regulatory authorities to
replace animal-based studies with robust cell-based in vitro assays
for screening toxicities of chemicals including pesticides (Jang et al.,
2014). Both the REACH regulations in European Union countries
and Lautenberg amendment to toxic substances control act TSCA in
the USA recommended the implementation of alternative testing
methods, such as computational toxicology and bioinformatics,
high-throughput screening methods or in vitro studies (Hartung
and Sabbioni, 2011; Lilienblum et al., 2008).

Neural stem cells (NSCs) are a unique bio-tool to understand
brain physiology and allow in vitro screening of compounds for
neuromodulating properties. NSCs based assay bridges a gap be-
tween the preclinical data and the clinical practices (Wang, 2015).
NSCs occur both in developing and adult mammalian and human
brain. The subventricular zone (SVZ), the dentate gyrus of the
hippocampus (Guo et al., 2012), and the entire length of the gut
(Grundmann et al., 2016; Rauch et al., 2006; Sch€afer et al., 2003) are
the major niches of NSCs.

SVZ represents the largest pool of NSCs (Inta et al., 2008) and is
the main site of neurogenesis (Inta et al., 2008; Saha et al., 2012;
Wang, 2015). Multipotency, self-renewal properties (Shoemaker
and Kornblum, 2016), variable response to an external stimulus
with the age of the donor animal, and the specific region of
extraction (Bixby et al., 2002; Urb�an and Guillemot, 2014) make
NSCs a versatile in vitro screening model. Easy isolation and
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handling, and a fast in vitro growth rate provides NSCs from the SVZ
an edge over their counterpart (Liu et al., 2009).

Several in vitro NSCs assays for DNT have been used to investi-
gate the effects of chemicals including pesticides on proliferation,
migration, differentiation, neurite growth, viability, neurotrans-
mission, and mRNA gene expression of neural cell lineages (Coecke
et al., 2007; Lein et al., 2007; Salama et al., 2015). Furthermore,
these approaches increase the speed and reliability of neurotoxic
screening of chemicals (Lein et al., 2007). A successful DNT in vitro
method should includemore than one endpoints which correspond
with human neurodevelopment process. These methods should be
capable of quantifying the extent of changes in each specific
endpoint with the changing concentrations of the test compound
(Crofton et al., 2011). The majority of neurotoxicity studies of
glyphosate were conducted at concentrations several thousand
times higher than those permissible for drinking water, while a few
studies reported glyphosate induced toxicities in the liver, kidney
(Mesnage et al., 2015), and the Sertoli cells of rat (Clair et al., 2012)
at concentrations closer to MCL. What happens when maximum
permissible concentrations of glyphosate in drinking water (MAC
and MCL) for neurotoxicity studies are applied is mainly unknown.
So in the present study, we established an in vitro neurotoxicity
assay system based upon NSCs from SVZ of the postnatal mouse to
assess the effects of permissible concentrations of glyphosate in
drinking water on the viability, proliferation, differentiation,
migration and gene expression of NSCs for a maximum of seven
days. Additionally, 7000 mg/L of glyphosate which represents the
concentration comparable to non-toxic human plasma (Aris and
Leblanc, 2011; Kwiatkowska et al., 2016) was also evaluated for
its effects on NSCs viability.

2. Materials and methods

2.1. Test compound

In the given study the effects of glyphosate [N-(Phosphono-
methyl)glycine, �100%] compound with Mol. Wt. 169.07 (1071-83-
6, Sigma-Aldrich, Taufkirchen, Germany) were evaluated on
viability, proliferation, differentiation and migration of NSCs from
SVZ of the postnatal mouse.

2.2. Animals

Male Balb/c wild-type mice at the age of 3 days were employed
in the present study to obtain NSCs. For each biological replicate,
tissues were obtained from a set of 3 animals and a total of 24
animals were exploited in this study. Animals were kept in the
pathogen-free environment with a standard constant temperature
(23 ± 2 �C) and under 12 h light and 12 h dark cycle. Animals were
sacrificed via decapitation by an authorized person without
employing anaesthesia. The animal handling and sacrifice were
performed following the guidelines and recommendations of ani-
mal protection legislation in Rhineland-Palatinate, Germany. Since
experiments were not performed directly on living animals and
NSCs were isolated from the sacrificed animals, no special approval
was required for this study. Animal sacrificewas, however, reported
to the local ethics committee on animal experiments at the Uni-
versity of Applied Sciences Kaiserslautern, Germany.

2.3. Extraction and culture of neural stem cells from the
subventricular zone of the postnatal mice

The extraction and culture of NSCs from the SVZ of the postnatal
mice were performed following the protocols described in the
literature (Bender et al., 2017). Tissues from three mice were

employed for each experiment. Instantly after decapitation, the
mouse brain was removed and immediately stored in the chilled
MEM-medium (Life Technology, Eugene, OR. USA) supplemented
with 1% streptomycin/penicillin (Applichem, Darmstadt, Germany).
The SVZ was dissected from both hemispheres exploiting a ste-
reomicroscope and then transferred in 1 mL of accutase enzyme
(HyClone-GE, Utah, USA) and incubated for 20min at 37 �C. The SVZ
tissues were triturated gently with 23 and 27 gauge needles 4 times
each. The enzymewas removed by centrifugation of cell suspension
for 5 min at 100� g. The cell pellet was resuspended in 5 mL of the
proliferation medium [DMEM/F12-glutamax, (Life technology,
Eugene, USA), b-mercaptoethanol, 2% B-27 without vitamin A
(Gibco, Paisley, UK), 1% Penicillin/streptomycin, EGF 10 ng/mL and
FGF 20 ng/mL (Immunotool, Friesoythe, Germany)] with initial
NSCs seeding number adjusted at 500,000. Neurospheres appeared
within 3 days. NSC’s culture was further continued for 5 days to
obtain the required cell number. About one half of the mediumwas
replaced by fresh proliferation medium every 3 days. Cell number
was precisely counted by the trypan blue method before each
experiment.

2.4. Viability and cytotoxicity assays

The effects of glyphosate on NSCs viability were determined by a
live-dead assay using Calcein-AM and Propidium iodide. The live-
dead assay was performed for proliferation culture incubated in a
24-well plate with glyphosate for 24 h. The assay was performed as
described in the literature (Sadeh et al., 2016). Cytotoxicity was
assessed by WST-1 cytotoxicity assay following kit methods. The
detail of the Live-dead assay and WST-1 assay have been given in
the supplementary materials.

2.5. Calcium imaging

The effects of glyphosate on Ca2þ signal changes were evaluated
in an adherent neuron/astrocyte co-culture differentiated from
NSCs. Around 50,000 NSCs were attached to a 15 mm glass cover-
slips pre-coated with PDL and incubated in a colorless differentia-
tion medium (composition closely resembled with proliferation
medium except growth factors were omitted and B-27 with
Vitamin Awas used) into eachwell of a 6well plate for 48 hwithout
glyphosate. Changes in Ca2þ homeostasis were recorded after acute
exposure to glyphosate for 2 min. The details of the method have
been provided in the supplementary materials.

2.6. Proliferation assay

Effects of 0.1 mg/L and 700 mg/L of glyphosate on NSCs prolifer-
ationwere explored through clonogenic assay and immunostaining
of proliferation markers BrdU/Ki67. The clonogenic assay was per-
formed for seven days in 96-well plates and the readouts such as
neurosphere number and diameter were recorded on 3rd, 5th, and
7th day of the incubation. For BrdU/Ki67 proliferation assay, cells
were initially proliferated in 24 well plates for seven days followed
by fixation of cell culture and immunostaining for BrdU and Ki67
proliferation markers. The details of proliferation methods are
provided in the supplementary material.

2.7. In vitro differentiation assay

NSCs were differentiated for a period of 7 days to evaluate the
impact of 0.1 mg/L and 700 mg/L of glyphosate upon neuronal and
glial cells differentiation (Zhang et al., 2015). Cells were allowed to
attach on to 12 mm glass coverslips coated with ECM-gel (E1270,
Sigma-Aldrich, Taufkirchen, Germany) in a 24-well plate containing
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differentiation medium with and without glyphosate. After incu-
bation, cells were fixed and immunostained for ß-tubulin III
(Mouse-anti b-tubulin III, MAB1637, Merk, Darmstadt, Germany) as
a neuronal marker and GFAP (Rabbit anti-GFAP, Z0334, Dako,
Glostrup, Denmark) as an astrocytic marker. The method has been
described in detail in the supplementary materials.

2.8. Immunostaining

Fixed cultures were immunostained for neuronal, astrocytic,
and cell proliferation markers by following a protocol previously
reported (Bernas et al., 2017). The details of the immunostaining
method have been provided in the supplementary materials.

2.9. Neurosphere migration assay

Neurosphere migration assay was performed to evaluate the
effect of 0.1 mg/L and 700 mg/L of glyphosate on cell migration for
24 h. The assay was performed by following a previously reported
procedure (Masood et al., 2021).

2.10. RT-PCR experiments

RT-PCR experiments were performed for NSCs differentiated
with and without exposure to 0.1 mg/L and 700 mg/L concentrations
of glyphosate. Around 500,000 cells were differentiated into each
well of a 6 well plate coated with ECM gel for 7 days. The con-
centration of RNA was determined by NanoDrop™ spectropho-
tometer (Thermo fischer Scientifics, USA) whilst the purity was
assessed by following the instructions reported in the literature
(Wilfinger et al., 1997). The starting concentration of RNA extracted
from the cell culture was 303e356 ng/mL and the final concentra-
tion of RNA for cDNA synthesis in RT-PCR reaction was adjusted at
100 ng/mL in 20 mL of the reaction mixture. Extraction of RNA,
reverse transcription and final qPCR analysis were performed as
described in the supplementary materials. Genes which were
amplified as a part of this study were provided in Table 1.

2.11. Statistical analysis

Data were analyzed statistically using descriptive statistics and
non-parametric Kruskell-Wallis test with post hoc Dunn’s test. For
two treatments experiments, Mann Whitney equation was
employed. Differences between values were considered statistically
significant with a probability value of *p < 0.05.

3. Results

3.1. Effect of glyphosate on NSCs viability and cytotoxicity

The results of the live-dead assay revealed non-significant ef-
fects of 0.1 mg/L and 700 mg/L concentrations of glyphosate on the
viability of NSCs after 24 h of incubation (Fig. 1A). However, non-
toxic human plasma concentration i.e. 7000 mg/L and the
36,000 mg/L of glyphosate (a toxic concentration reported in the

previous literature) significantly reduced the viability of NSCs
(Fig. 1B). Since higher concentrations of glyphosate significantly
reduced cell viability, WST-1 cytotoxicity was only performed for
higher concentrations. Both higher concentrations of glyphosate
significantly enhanced the cytotoxicity (Fig. 1C) upon 24 h of in-
cubation when compared to the vehicle control.

3.2. Glyphosate enhanced the Ca2þ uptake

It has been reported in the literature that glyphosate herbicide
alters Ca2þ homeostasis in the brain tissues of rodents upon acute
exposure (Cattani et al., 2014, 2017). To investigate the impact of
glyphosate on Ca2þ signalling in the differentiated culture of NSCs
from SVZ of the postnatal mouse calcium imaging experiments
were performed. Our preliminary experiments revealed that 0.1 mg/
L and 700 mg/L did not exhibit noteworthy response (data not
presented) so we exploited a rather higher concentration of
7000 mg/L and a reported toxic concentration of 36,000 mg/L
(Cattani et al., 2014). Our results demonstrated that upon acute
exposure for 2 min, 7000 mg/L of glyphosate activated the Ca2þ

signalling (excitation ratio at 340/380 nm) by 16% (Fig. 1D) whilst
36,000 mg/L of glyphosate activated Ca2þ signalling by 32% when
compared to the C1 buffer control (Fig. 1E).

3.3. Effect of glyphosate on NSCs proliferation

Glyphosate interrupts the normal proliferation of cells by acting
as an analogue of the amino acid glycine, a non-essential amino
acid essentially required by proliferating cells. Effects of glyphosate
on cultured cells preliminary depend upon the concentration of
glyphosate and the type of target cells (Ji et al., 2018; Li et al., 2013;
Thongprakaisang et al., 2013). We evaluated the effect of 0.1 mg/L
and 700 mg/L of glyphosate on NSCs proliferation. The clonogenic
assay did not reveal any significant difference between control and
two concentrations of glyphosate concerning neurosphere number
and mean diameter (Supplementary materials Fig. S1A and B) at all
observation time points. We further confirmed our results by BrdU/
Ki67 double staining experiment and found non-significant effects
on the total percentage of BrdU þ ve cells, Ki67þve cells, and the
ratio BrdU/Ki67 (Supplementary material Fig. S1C).

3.4. Effect of glyphosate on the differentiation of NSCs

Glyphosate and glyphosate formulations modulate functions of
the blood-brain barrier, neurons (Martinez and Al-Ahmad, 2019),
alter neurite growth (Coullery et al., 2016), and growth of astrocytes
(Cattani et al., 2014; Ramírez-Duarte et al., 2008). We performed
differentiation experiments for 7 days to explore whether 0.1 mg/L
and 700 mg/L concentrations of glyphosate affect neuronal/astro-
cyte differentiation and their morphological features. Although the
effect of both tested concentrations of glyphosate on the percent-
age of differentiated neurons was non-significant, yet both con-
centrations i.e. 0.1 mg/L and 700 mg/L significantly reduced the
percentage of astrocytes. Interestingly, 0.1 mg/L of glyphosate
exhibited a 20% reduction in the percentage of astrocytes when

Table 1
Primer sets of neural cell lineages and cytoprotection genes used in qRT-PCR.

Genes Gene reference Forward primer Reverse primer

ß-tubulin III NM_023,279 CGAGACCTACTGCATCGACA CATTGAGCTGACCAGGGAAT
S100B NM_009115.3 GCTGACCACCATGCCCCTGTAG CTGGCCATTCCCCTCCTCTGTC
CYP1A1 31981814 CTCTTCCCTGGATGCCTTCAA GGATGTGGCCCTTCTCAAATG
SOD1 NM_011434.2 CCAGTGCAGGACCTCATTTT CACCTTTGCCCAAGTCATCT
GAPDH NM_008084 GACCCCTTCATTGACCTCAACTACAT TGATGGCATGGACTGTGGTCATGA
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Fig. 1. Glyphosate reduced viability, induced acute cytotoxicity, and Ca2þ influx in NSCs culture. [A-B] Represent the viability in terms of percentage of NSCs following 24 h exposure
to maximum permissible and higher concentrations of glyphosate. The percentage of viable cells was calculated from the total cell count in the phase-contrast pictures. [C]
Represents the WST-1 cytotoxicity. The lower spectrometric absorbence values of glyphosate treatments at 490 nm as compared to control reflect poor viability due to general
cytotoxicity. Con þ ve (Control þ ve was 0.2% Triton x 100). [D-E] Represent the increase in fluorescent excitation ratio in differentiated NSCs after acute exposure to 7000 mg/L and
36,000 mg/L of glyphosate respectively. Experiments were performed as five independent replicates (n ¼ 5) with 3 technical replicates for each treatment condition. 0.1 mg/L: MAC;
700 mg/L: MCL; Con: vehicle control. Data are mean ± SD. *p < 0.05.
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compared to the control whilst 700 mg/L presented only a 15%
reduction (Fig. 2). Although the effect on total and mean neurite
length was non-significant (Fig. 3B), 700 mg/L of glyphosate
significantly increased the percentage of non-neurite neurons
(Fig. 3A). Surprisingly, only 0.1 mg/L of glyphosate significantly
reduced the astrocyte soma area (Fig. 4).

3.5. Glyphosate reduced cell migration

In a recent study, it was postulated that glyphosate may affect
themigration of the cells of the nervous system due to its inhibitory
effects on thyroid-stimulating hormone, a hormone which regu-
lates the cell migration process (Beecham and Seneff, 2016). The
neurosphere migration assay is a useful in vitro bio-tool that
effectively reveals the neural cell migration process. Results of our
neurosphere migration assay demonstrated that 700 mg/L of
glyphosate significantly reduced the cell migration in NSCs culture
upon 24 h of incubation (Fig. 5).

3.6. RT-PCR analysis

Real-time RT-PCR was performed to comprehend the effects of
0.1 mg/L and 700 mg/L of glyphosate on the expression of neural cell
lineage-specific genes i.e. ß-tubulin III, S100b (Wang and Bordey,
2008) as well as those which play important roles in neuro-
protection and respond to toxic stimuli i.e. CYP1A1 and SOD1
(Milani et al., 2011;W�ojtowicz et al., 2019) in differentiated cultures
incubated for 7 days. Our results demonstrated that exposure of
differentiating NSCs to 700 mg/L of glyphosate significantly reduced
the expression of ß-tubulin III mRNA (67.7% of the control) whilst
exposure to 0.1 mg/L of glyphosate significantly reduced the
expression of S100B (63% of the control) (Fig. 6A). Concerning the
CYP1A1 gene, 0.1 mg/L of glyphosate significantly reduced the
expression (71% of the control). The 700 mg/L of glyphosate strongly
increased the SOD1 mRNA expression by 190% as compared to
control (Fig. 6B).

4. Discussions

The WHO recognized glyphosate as one of the safest pesticides
which is unlikely to cause acute toxicity in normal utilisation with
an oral LD50 value in rodents being several thousand times higher
than MAC and MCL, the maximum permissible concentrations in
drinking water recommended by Environmental Protection au-
thorities of EU and USA (Dolan et al., 2013; Larsen et al., 2012; Song
et al., 2012). Neurotoxicity of glyphosate has been reported in hu-
man beings (Ait Bali et al., 2017; Shaw, 2017; Zheng et al., 2018),
rodents (Cattani et al., 2014, 2017; Gallegos et al., 2016; Hern�andez-
Plata et al., 2015; Joaquim et al., 2014; Roy et al., 2016) and NSCs
cultures (Coullery et al., 2016). Most of the published neurotoxicity
studies were performed in vivo in rodent models exploiting
glyphosate formulations at doses several thousand times higher
than permissible concentrations in drinking water. Only a few
studies reported glyphosate-induced toxicities in the liver, kidney
(Mesnage et al., 2015), and Sertoli cells (Clair et al., 2012) at doses
closer to MCL. These reports inspired us to employ an in vitro NSCs
model from the developing brain of the mouse to explore whether
concentrations generally considered as permissible in drinking
water by regulatory authorities lead to neurotoxic effects or if they
open “toxic”windows, minor molecular changes, which can end up
in severe damages when several microenvironmental factors, each
harmless, act synergistically. The exploitation of cells from the
mouse for predicting human neurotoxicity of xenobiotics including
pesticides has been justified because of the greater similarities

between mice and human beings concerning genome sequences,
metabolic pathways (Harper, 2010), mechanism of neurological
disorders such as Alzheimer’ and Parkinson’s (Blesa and
Przedborski, 2014). Additionally, the susceptibility of a mouse to
environment toxicants is comparable to that of the human beings
(Hafezparast et al., 2002). NSCs from the SVZ of the postnatal mice
have been utilized by researchers to unveil the effects of potentially
toxic compounds, such as pesticide and enzyme inhibitors on NSCs
proliferation and differentiation into neurons and astrocytes
(Bender et al., 2017; Park and K, 2018). In the present study, we
established an in vitro model based on NSCs from SVZ of the
postnatal mouse to screen the neurotoxic effects of MAC (0.1 mg/L)
and MCL (700 mg/L) of glyphosate. Our results demonstrated the
significant inhibitory effects of permissible concentrations of
glyphosate on NSCs differentiation and migration with modulation
in the expression levels of cell lineage-specific and cytoprotective
genes. Additionally, significant neurotoxicity in NSCs culture was
also observed at a concentration comparable to non-toxic human
plasma glyphosate concentration.

4.1. Glyphosate reduced the viability and induced cytotoxicity in the
cultured NSCs

Our result demonstrated that glyphosate concentrations several
times higher than MAC and MCL reduced the NSCs viability and
induced cytotoxicity after 24 h of incubation. Our findings were
consistent with the previous studies which reported that glypho-
sate concentrations several thousand times higher than so-called
permissible concentrations for drinking water reduced the
viability of neural stem cells from rat embryonic hippocampus
(Coullery et al., 2016) and induced cytotoxicity at dosages equiva-
lent to 36,000 mg/L of glyphosate (Cattani et al., 2014, 2017), in
human buccal epithelial cells (Koller et al., 2012), in rat testes
Sertoli cells (Cavalli et al., 2013), and in SH-SY5Y neuroblastoma cell
line (Martínez et al., 2020). Interestingly, our data not only
confirmed the cytotoxicity at the concentration of 36,000 mg/L but
also at the non-toxic human plasma concentration (7000 mg/L) in
NSCs cultures. The toxicity of so-called non-toxic human plasma
concentration (Aris and Leblanc, 2011; Kwiatkowska et al., 2016)
was probably observed due to the relatively longer glyphosate
acute exposure time in our approach and also the intrinsically
higher sensitivity of mouse culture towards glyphosate than those
of rat and cell lines employed by researchers in their studies
(Cattani et al., 2014, 2017; Cavalli et al., 2013; Martínez et al., 2020;
Popova et al., 2017). Reduced survival of the cells of the nervous
system due to environmental toxicants exposition in early devel-
opment results in neurological disorders such as week memory,
defective locomotive performance (Gorini et al., 2014), and poor IQ
scores in children (Tseng et al., 2014).

4.2. Glyphosate disrupted Ca2þ homeostasis upon acute exposure

Concerning effects on Ca2þ signal activation, we found that not
only higher concentration of glyphosate (36,000 mg/L) but also
7000 mg/L of glyphosate, a concentration comparable to non-toxic
for human (Aris and Leblanc, 2011; Kwiatkowska et al., 2016),
stimulated the Ca2þ signalling in the differentiated culture of NSCs
from the mouse SVZ upon acute exposure. Our findings are in
accordance with those reported in previous studies that acute
exposure of hippocampus cells from postnatal rat to glyphosate
formulation resulted in increased Ca2þup take. Activation of NMDA
receptors, voltage-dependent Ca2þ channels and activation of
CaMKII played a key role in Ca2þ influx (Cattani et al., 2014, 2017).
Enhanced Ca2þ influx was also reported in Sertoli cells of rat testis
after acute exposure to 7200 mg/L and 36,000 mg/L of glyphosate.
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Fig. 2. Effects of glyphosate on neuronal and astrocytic differentiation of NSCs after 7 days of incubation. Green cells are b-tubulin III þ ve neurons and red cells are GFAP þ ve
astrocytes. Percentages of neurons and astrocytes represented in the graph were calculated from the total DAPI nuclei count. Neurons were well developed with healthy neurites in
all conditions. Astrocytes were mostly having leaf-like morphology. Pictures were taken with a 40 x lens of a fluorescent microscope. The experiment was performed as 5 inde-
pendent replicates with 3 technical replicates for each treatment condition. Data are mean ± SD. Scale bars: 50 mm *p < 0.05. (For interpretation of the references to color in this
figure legend, the reader is referred to the Web version of this article.)
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Activation of phosphatidylinositol 3 kinase, protein kinase c,
mitogen-activated protein kinase p38 MAPK, and ERK played a key
role in Ca2þ influx in Sertoli cells (Cavalli et al., 2013). Intriguingly,

in our study Ca2þ signalling activationwas observed not only at the
reported neurotoxic concentration 36,000 mg/L (Cattani et al., 2014)
but also at the lower concentration of glyphosate i.e.7000 mg/L,

Fig. 3. Glyphosate effects on neurite outgrowth of differentiated neurons. NSCs were differentiated for 7 days. [A] Represents the percentage of non-neurite neurons which was
calculated from the total neuronal count in each microscopic field. [B] Represents the neurite length which was measured from at least 100 neurons for each condition in each
replicate. Neurite length was measured using Cell-SENS software. NNN: non-neurite neurons; TN: total number of neurons; TNL: total neurite length. m NL; mean neurite length. The
assay was performed as five independent experiments (n ¼ 5) with 3 technical replicates for each treatment condition. Data are mean ± SD. *p < 0.05.

Fig. 4. Effects of glyphosate on astrocyte soma area after 7 days of differentiation. Differentiated astrocytes were stained for GFAP. Most of the astrocytes showed a leaf-like
morphology under all treatment conditions. Around 100 cells were included in the measurement from each condition in each replicate. Measurements were performed using
CELL-SENS software. Representative pictures were taken with a 40� objective of a fluorescent microscope. The assay was performed as five independent experiments (n ¼ 5)with 3
technical replicates for each treatment condition. Data are mean ± SD. Scale bars: 50 mm *P < 0.05.
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being much closer to the concentration which induced Ca2þ influx
in cells other than those of the nervous system (Cavalli et al., 2013).
These findings affirm the high sensitivity of our model towards the
neurotoxic effects of glyphosate. Interestingly, associations be-
tween Ca2þ signalling activation and cytotoxicity was also observed

regarding two glyphosate concentrations employed. The increased
Ca2þ influx is related to the increase in the generation of intracel-
lular reactive oxygen species and excessive release of glutamate
which ultimately leads to cell death as reported in the literature
(Cattani et al., 2014). Moreover, disruption in Ca2þ homeostasis

Fig. 5. Glyphosate reduced cell migration after 24 h of incubation. Untreated neurospheres were attached on to PDL coated glass coverslips and differentiated in differentiation
medium into each well of a 24-well plate with and without glyphosate for 24 h. Pictures of neurospheres were captured with a phase-contrast microscope for each condition. The
bar graph represents the mean distance travelled by cells from the edge of a neurosphere core to the widest destination in all four directions. Representative Images were takenwith
a 10� objective of a phase-contrast microscope. The outer yellow circles in the phase-contrast images indicate the area covered by the migrated cells and the inner red circles
enclose the neurosphere core. The core of neurosphere consists of a mixed population of undifferentiated, partially differentiated and dead NSCs. The assay was performed as five
independent experiments (n ¼ 5)with 3 technical replicates for each treatment condition. Data are mean ± SD. *p < 0.05. Scale bar is 200 mm. (For interpretation of the references to
color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 6. qRT-PCR of genes expression in differentiated NSCs exposed to glyphosate for 7 days. qRT-PCR was used to determine mRNA expression of cell lineage-specific genes and
those involved in the cellular response to the toxic stimuli. [A] Represents the relative gene expression of neuronal and astrocyte lineages specific genes. [B] Represents the relative
gene expression of metabolic marker CYP1A1 and oxidative stress indicator SOD1. Data were normalized to the reference gene GAPDH and represented in bar graphs as mean ± SD.
The qRT-PCR experiment was performed as a triplicate. *p < 0.05.
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leads to disarray in cellular metabolism implicated in determining
cell fate (Ham et al., 2020). Since none of the permissible concen-
trations of glyphosate inhibited the viability of NSCs or activated
Ca2þ influx, we performed proliferation, differentiation, migration
assays and gene expression analysis for MAC and MCL concentra-
tions of glyphosate in the subsequent experiments.

4.3. Effect of glyphosate on NSCs proliferation

Neither MAC nor MCL concentrations of glyphosate presented
any modulating effect on NSCs proliferation. The impact of glyph-
osate on cell proliferation are versatile depending upon the dose
and target cells employed. For instance, pico and micromolar con-
centration of glyphosate increased the proliferation in human
breast cancer cell line T47D (Thongprakaisang et al., 2013) whilst
50 mM concentration of glyphosate inhibited proliferation of hu-
man ovarian and prostate cancer lines. Glyphosate concentration
higher than 100 mM inhibited the proliferation of normal human
immortal ovarian and prostate cell lines (Li et al., 2013). Another
study reported that 0.6e18 mM of glyphosate increased the prolif-
eration of human embryonic kidney cells (HEK293) by upregulating
transcription factors, JUN, MYC, FOS, and ERG1. Interestingly, higher
or lower concentrations of glyphosate did not affect the HEK293
proliferation (Jeon et al., 2020). Although the MCL of glyphosate
used in our study lies within this concentration range (0.6e18 mM),
yet MCL did not modulate the proliferation of NSCs. The discrep-
ancy in our results and the published report (Jeon et al., 2020) was
most probably due to the different type of target cells exploited in
our study since glyphosate response varies significantly according
to the target cells (Thongprakaisang et al., 2013). To the best of our
knowledge, only a few researchers determined the effect of pure
glyphosate on the proliferation of cell culture. Although these re-
searchers employed cell lines instead of primary neural cell culture
and used glyphosate concentrations several hundred times higher
than themaximum concentrationwe employed in our proliferation
experiment, still they did not report any effect on the cell prolif-
eration (Culbreth et al., 2012; Harrill et al., 2018). Since there is no
study to compare our results concerning the effect of glyphosate on
the proliferation of the primary NSCs, we reported the effect of
environmentally recognized permissible concentration of glypho-
sate on the proliferation of NSCs from the mammalian brain for the
first time to establish the preliminary ground for future in-depth
investigations.

4.4. Glyphosate affected the differentiation of NSCs

The nervous system contains different types of cells i.e. neurons,
glial, microglial, and endothelial cells. Each of the given cell types
maintains a specific role. These cells are highly sensitive towards
chemical insults. Exposure to noxious substances during the cell
differentiation phase results in serious consequences in the future
life of an organism. Pesticides are known to disrupt neuronal and
astrocytes differentiation (Bal-Price and Hogberg, 2011). Immuno-
staining of a differentiated culture of NSCs is an appropriate and
very useful technique to identifymultiple lineages of the cells of the
nervous system (Abranches et al., 2006). b-tubulin III is a general
neuronal marker, GFAP and S100b are astrocyte markers which
have been successfully employed by researchers for unveiling
neurotoxicities of pesticides in differentiated NSCs (Park and K,
2018; Seth et al., 2017). Our results demonstrated that both
permissible concentrations of glyphosate did not affect the
neuronal percentage and neurite length. Interestingly, MCL of
glyphosate showed a tendency to increase the percentage of non-
neurite-neurons when compared to the control, indicating the
inhibitory effects of glyphosate on neurite outgrowth. Several

pesticides inhibit neurite outgrowth indirectly by inhibiting the
synthesis of fibronectin from astrocytes as observed in hippocam-
pus cultures. Fibronectin is an important extracellular matrix pro-
tein which promotes neurite outgrowth (Pizzurro et al., 2014).
Glyphosate decreased the neurite growth and maturation in the
cultured hippocampus neurons of a rat by decreasing the expres-
sion of Wnt5a level and downregulating CaMKII (Coullery et al.,
2016). It is worthful to mention that in our study the concentra-
tion of glyphosate was several thousand times lower than the one
reported in the literature, confirming the notion that NSCs culture
from mouse SVZ is highly sensitive towards glyphosate neurotox-
icity as compared to the hippocampus culture from rat (Coullery
et al., 2016). Although both the MAC and MCL of glyphosate
decreased the percentage of astrocytes in differentiated culture, a
relatively increased response was observed for MAC of glyphosate
as compared to MCL. Additionally, MAC of glyphosate significantly
reduced the astrocytes’ soma area. Inhibitory effects of glyphosate
formulation on expression levels of astrocytes of hippocampus
cultures from rat pups have been previously reported (Cattani et al.,
2014, 2017). Contrary to our findings, glyphosate herbicide
formulation was reported to increase the astrocyte proliferation
with concomitant loss of neurons in the telencephalon of the fish’s
brain (Ramírez-Duarte et al., 2008). The discrepancy in the pub-
lished reports concerning the expression of astrocytes could be
related to the different animal models exploited and different
concentrations of glyphosate employed since glyphosate response
significantly varies with the doses and target organisms and cells
(Thongprakaisang et al., 2013). The intranasal administration of
glyphosate in mice for four weeks, for instance, increased the
percentage of astrocytes in the anterior olfactory but showed no
effect on astrocytes in the hippocampus, substantia nigra, striatum,
or prefrontal cortex (Gallegos et al., 2020). The decrease in astrocyte
soma area after exposure to MAC of glyphosate could be related to
the interaction of this low concentration of glyphosate to the mo-
lecular pathway governing the energy metabolism of the astrocyte.
This notion is supported by a study which reported that low
micromolar concentration of glyphosate-herbicide reduced the cell
growth and proliferation of astrocytic cell line C6 by disrupting the
energy metabolism (Neto da Silva et al., 2020). However, in this
published study, the researchers exploited glyphosate formulation
rather than pure glyphosate and a cell line rather than primary cell
culture. So detailed molecular studies, therefore, are needed to
unveil the inhibitory mechanism of MAC of glyphosate on astro-
cytes differentiated from our NSCs culture. Poor neurite outgrowth
results in autism (Gilbert and Man, 2017), and abnormal astrocytic
development is implicated in mood disorder in children (Koyama,
2015).

4.5. Glyphosate reduced cell migration

After mitosis, proliferating neural stem cells, progenitor cells,
glial and differentiated neuronal cells tend to migrate from the
neurogenic niches to their final destinations in the brain. Any ab-
normality in the cell migration process ultimately leads to serious
brain development disorders in future life. Common neurological
disorders associated with the cell migration defects include het-
erotopias, schizophrenia, epilepsy, and lissencephaly (Baumann
et al., 2014). Several studies have reported the correlation be-
tween the deficiency of thyroid-stimulating hormone (TSH) and the
neuronal cell migration disorders in rat and human offspring
whose mothers were exposed to TSH inhibitors during pregnancy.
Glyphosate can chelate manganese ions (Mn) leading to serum
manganese deficiency which affects pituitary manganese-
dependent Protein phosphatase-1 (PP1) enzyme function and ul-
timately leads to the strong reduction of TSH in serum (Beecham
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and Seneff, 2016). In our study, MCL glyphosate significantly
inhibited cell migration. Although we did not find any published
in vitro study in which inhibitory effects of glyphosate were eval-
uated on cell migration yet there is a plethora of published studies
reporting inhibitory effects of pesticides including herbicides on
neural cell migration. The herbicide Oxadiazone, for instance,
inhibited the migration of neuronal striatal cells in cultured pri-
mary neuronal precursor cells of the human striatal primordium at
non-cytotoxic concentration. The inhibitory effects of Oxadiazone
were mediated through overexpression of acylphosphatase
(ACYP2), a marker associated with apoptosis, cell differentiation,
and ion transportation and which is overly expressed on fibroblasts
from Alzheimer’s patient (Degl’Innocenti et al., 2019). An assay
based on rat embryonic mesencephalic neural stem cells revealed
the inhibitory effects of the pesticide Rotenone on cell migration in
a dose-dependent manner (Ishido and Suzuki, 2010). Inhibition of
neuroblast cell migration from SVZ in C57B1/6 mice in response to
prenatal exposure to the herbicide Glufosinate ammonium at a
dose several times less than the ones defined by Environmental
protection authorities has also been reported. These effects were
correlated with the impact of Glufosinate on the cytoskeleton
(Herzine et al., 2016).

4.6. Glyphosate modulated gene expression

Although immunostaining is an ideal technique for quantitative
analysis of different phenotypes of the cells of the nervous system,
it only reveals the proteins which are expressed within the cells.
Gene expression at the mRNA level is a very useful tool to identify
early and subtle effects of neurotoxins on various kinds of differ-
entiated cells of the nervous system with detailed mechanisms
(Abranches et al., 2006; Hogberg et al., 2010). ß-tubulin III repre-
sents the only tubulin protein of this class which is neuronal spe-
cific (Betancourt et al., 2006) expressed in differentiated neurons
and axons (Kim et al., 2016) and plays an important role in their
development (Martínez et al., 2020). OnlyMCL of glyphosate down-
regulated the ß-tubulin III expression in our study. Our findings are
in agreement with published literature which stated the down-
regulation of ß-tubulin III gene expression in cultured neuroblas-
toma SH-SY5Y cells after glyphosate exposure (Martínez et al.,
2020). S100B is a protein which occurs in the nucleus and cyto-
plasm of a wide variety of cells. S100B is located on chromosome
21q22.3. Within the nervous system, S100b is expressed by mature
astrocytes and the ones which enclose the blood vessels. The basic
role of S100B in the developing nervous system involves the coor-
dination of neurite and axonal growth, augmentation of the as-
trocytes proliferation, and neuronal protection (Wang and Bordey,
2008). Reduced expression of astrocyte marker S100B upon
developmental exposure of rat pups to glyphosate-based herbicide
has already been reported in the literature (Cattani et al., 2014,
2017) which is in agreement with our finding. Here we found that
already MAC reduced the expression of S100B mRNA. Down-
regulation of S100B expression resulted in brain development
problems during the postnatal period in rodents (Ohtaki et al.,
2007). Cytochrome 450 (CYP) is a family of enzymes implicated
in the detoxification of exogenous substances and the biosynthesis
of important metabolites. Disruption in the expression of the CYP
enzyme family by inhibitors not only increases the vulnerability of
organisms to environmental toxicants but also inhibits the syn-
thesis of various amino acids (Samsel and Seneff, 2013). Among
other members, CYP1A1 is the only enzyme expressed in extra-
hepatic tissues (Liu et al., 2013). CYP1A1 is mainly expressed in
BBB and also in other brain tissues of both humans and rodents
(Ghosh et al., 2016). Tight regulation of CYP 1A1 is a prerequisite for

normal physiological functions of the body since overexpression of
CYP1A1 results in the production of toxic metabolites. Pro-
inflammatory cytokines TNF-a, IL-6, and IL1b down-regulate
CYP1A1 in hepatocytes in mice (Santes-Palacios et al., 2016).
Glyphosate has been reported to inhibit the CYP enzyme family.
Glyphosate, for instance, has been reported to down-regulate the
mRNA expression of aromatase enzyme CYP19A1 in human
placental cell line on short term exposure to a concentration less
than the ones found in agricultural workers (Richard et al., 2005).
Deregulation in mRNA expression of CYP1A1 disrupts the defence
process in the mouse brain neocortical cells and increases the
susceptibility towards the environmental toxicants (W�ojtowicz
et al., 2019). Glyphosate and its roundup formulation reduced the
CYP enzyme activity and reduced the mRNA expression of CYP19 in
human placental JEG3 cell line when employed at non-toxic con-
centrations (Richard et al., 2005). In another study, roundup
formulation of glyphosate down-regulated the mRNA expression of
CYP1A2 and CYP1A4 in liver tissues of the chicken embryo (Fathi
et al., 2020). Inhibitory effects of glyphosate herbicide formula-
tions on CYP1A1 in rodents and fish (Cai et al., 2020) and decreased
mRNA expression of CYP1A1 gene in TM3 cell lines due to glyph-
osate exposure (Xia et al., 2020) have been reported in the literature
which is in agreement with our study since MAC of glyphosate
down-regulated the expression of CYP1A1 gene.

Reactive oxygen species (ROS) such as superoxide radicals and
H2O2 in low concentrations serve as signalling molecules and
mediate the processes of cell proliferation, migration, and differ-
entiation (Wang et al., 2018). Overproduction of ROS occurs when
cells are exposed to environmental toxicants. An excessive amount
of ROS exerts destructive effects on the important macromolecules
of cells such as DNA, proteins and lipids (H�eritier et al., 2017).
Oxidative stress mildly upregulates the expression of superoxide
dismutase enzymes gene and as a consequence, these enzymes
interact with toxic superoxide radicals and convert them into
relatively less toxic substances, such as oxygen and H2O2. In
mammalians, there are three isotypes of SOD i.e. SOD1, SOD2, and
SOD3. SOD1 is the most abundant enzyme which exists in almost
every mammalian cell (Wang et al., 2018). The SOD1 gene is located
on chromosome 21 of human beings. The SOD1 gene encodes for
the superoxide dismutase enzyme whose basic role involves the
detoxification of highly toxic superoxide species and converting
them into relatively less toxic hydrogen peroxide ions (Est�acio et al.,
2015; Milani et al., 2011; Rosen et al., 1993; Sea et al., 2015). In our
study, MCL of glyphosate enhanced the expression of SOD1which is
in agreement with the published studies which reported the up-
regulation of SOD genes in liver tissues of the turtle after
glyphosate-based herbicide exposure for 96 h (H�eritier et al., 2017)
and overexpression of SOD1 gene in hepatic tissues of the rat on
long term exposure (Tang et al., 2017). The increased expression of
SOD1 reflects the first signs of oxidative stress imposed by
glyphosate.

A few studies also reported mild to moderate neurotoxicity in
humans along with the concentration of glyphosate detected in the
body fluids. The magnitude of these concentrations of glyphosate
detected in the body fluids of the human was several hundred to
thousands of times higher than MAC and MCL of glyphosate. The
accidental intake of glyphosate herbicide by human beings, for
instance, resulted in severe meningitis. The concentration of
glyphosate detected in CSF was 122.5 mg/mL and the patient pre-
sented with a high level of the pro-inflammatory marker in CSF
(Sato et al., 2011). Mild CNS symptoms along with CVS and respi-
ratory disturbances were reported in suicidal cases with 61,000 mg/
L as a mean serum concentration of glyphosate (Zouaoui et al.,
2013). Furthermore, in vitro cell-based studies revealed that

M.I. Masood, M. Naseem, S.A. Warda et al. Environmental Pollution 270 (2021) 116179

11



glyphosate at concentration 10 times higher than MCL exhibited a
mild inhibitory effect on the viability of cultured human kidney cell
lines 293, placenta JEG3 cells, and Umbilical cord vein HUVE cell
line (Benachour and S�eralini, 2009) while 1000 mg/L of glyphosate
significantly reduced the viability of Sertoli cells of rat (Clair et al.,
2012). To the best of our knowledge, the present study is the first
one to report in vitro neurotoxicity induced by very low concen-
trations of pure glyphosate which are permissible in drinking water
by the regulatory authorities. These reports reflect the high sensi-
tivity of our developmental neurotoxicity in vitro models.

5. Conclusions

The present in vitro study based upon SVZ of the postnatal
mouse revealed that which types of neural cell and at what stage of
the neurodevelopment process were affected by very low concen-
trations of pure glyphosate. Furthermore, we observed the neuro-
toxic effects of glyphosate at concentrations recognized by
environment regulatory authorities as permissible concentrations
in drinking water. Our study also revealed that gene expression
endpoints may serve as very useful readouts for investigating the
neurotoxicity of glyphosate. Combining immunostaining with gene
expression endpoints in in vitro testing provides a highly valuable
approach to speed up the neurotoxicity screening process for reg-
ulatory purposes leading to the restricted consumption and tight
control on newborn exposure to glyphosate with developmental
neurotoxicity. Moreover, a concentration that was only a few folds
higher thanMCL significantly exhibited cytotoxicity and Ca2þ signal
activation in the differentiated NSCs cell. Our findings signify the
need to review the safety standards established by environmental
protection agencies concerning safe glyphosate concentrations in
drinking water. Future studies, however, are required to unveil the
detailed molecular mechanisms of neurotoxicity induced by
maximum permissible concentrations of glyphosate in NSCs of the
developing nervous system. It is also worthful for prospective re-
searchers to include NSCs from a human embryo in the screening
program.
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Abstract

Troxerutin (TRX) is a water-soluble flavonoid which occurs commonly in the edible plants.

Recent studies state that TRX improves the functionality of the nervous system and neutral-

izes Amyloid-ß induced neuronal toxicity. In this study, an in vitro assay based upon Neural

stem cell (NSCs) isolated from the subventricular zone of the postnatal balb/c mice was

established to explore the impact of TRX on individual neurogenesis processes in general

and neuroprotective effect against ß-amyloid 1–42 (Aß42) induced inhibition in differentia-

tion in particular. NSCs were identified exploiting immunostaining of the NSCs markers.

Neurosphere clonogenic assay and BrdU/Ki67 immunostaining were employed to unravel

the impact of TRX on proliferation. Differentiation experiments were carried out for a time

span lasting from 48 h to 7 days utilizing ß-tubulin III and GFAP as neuronal and astrocyte

marker respectively. Protective effects of TRX on Aß42 induced depression of NSCs differ-

entiation were determined after 48 h of application. A neurosphere migration assay was car-

ried out for 24 h in the presence and absence of TRX. Interestingly, TRX enhanced neuronal

differentiation of NSCs in a dose-dependent manner after 48 h and 7 days of incubation and

significantly enhanced neurite growth. A higher concentration of TRX also neutralized the

inhibitory effects of Aß42 on neurite outgrowth and length after 48 h of incubation. TRX sig-

nificantly stimulated cell migration. Overall, TRX not only promoted NSCs differentiation and

migration but also neutralized the inhibitory effects of Aß42 on NSCs. TRX, therefore, offers

an interesting lead structure from the perspective of drug design especially to promote neu-

rogenesis in neurological disorders i.e. Alzheimer’s disease.
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Introduction

Neural stem cell (NSC) is a structural and functional unit of the nervous system [1] which

deals with the traumatic events or neuronal losses with ageing. Being multipotent (capable of

differentiating into glial cells, oligodendrocytes and neurons) in nature and having self-

renewal properties [2], NSCs recapitulate the nervous system development processes such as

proliferation, differentiation, migration, synaptogenesis and myelination [3, 4]. NSCs occur

both in developing and adult nervous system of all mammalians including human [5]. Within

the brain, NSCs are located mainly in the Subventricular zone (SVZ) and the dentate gyrus [6].

NSCs response to the external stimuli varies with the age of the donor [7], site in the nervous

system and due to the diversity in their local environment [8, 9]. The SVZ presents the major

niche of NSCs where primary and secondary neurogenesis occurs primarily [10–12].

The biggest hurdle in curing neurodegenerative disorders involves the irreversible damage

to the neuronal cells which could no longer be replaced or repaired. High self-renewal poten-

tial, multipotency and multidirectional fate are a few rather unique characteristic features asso-

ciated with NSCs which highlight the significance of these cells to serve as a promising tool to

decipher the biochemical mechanisms underlying neurodegenerative disorders [13]. Screening

small molecules which induce desired types of neurons from NSCs is highly valuable not only

for regenerative medicine but also for the development of new drug candidates [14]. Interest-

ingly, plant-based molecules, especially flavonoids, modulate the fate of NSCs favourably as

confirmed by several in vitro culture systems. Enhanced proliferation of NSCs from multiple

niches was observed when exposed to epimedium flavonoids [15], icariin [16, 17] and morin

hydrate [18] whilst baicalin [19, 20], apigenin [21] and quercetin have proven their efficacy in

inducing neuronal differentiation of NSCs [22]. Quercetin-3-o-glucuronide was reported to

promote the cell migration of NSCs of mouse hippocampus [23]. It is important to note, how-

ever, that the bioavailability of flavonoids is generally low due to its inherent physicochemical

properties.

Troxerutin (TRX) (3’,4’,7-tris[O-(2-hydroxyethyl)]rutin) is a water-soluble derivative of the

bioflavonoid rutin extracted from the Japanese pagoda tree, which is also found abundantly in

tea, coffee, vegetables and fruits. TRX exhibits several biological activities and cytoprotective

effects against apoptosis, mitotic and necrotic cell death of liver, kidney and brain. TRX is also

considered as an interesting drug candidate for multiple neurological disorders since it dem-

onstrates antidepressant activity (because of its anti-inflammatory action), augments memory

in animal models and provides anxiolytic actions (by reducing serum cortisol level) [24] and

ameliorated the impairments of spatial learning and memory in a rat Alzheimer’s model [25].

Moreover, TRX alleviates UV-B induced apoptosis, cell growth arrest, migration restriction,

proliferation inhibition and DNA damaged in cultured HaCaT human immortal keratinocytes

[26]. Intriguingly, TRX was reported to exhibit neuroprotective effects against the cholesterol-

induced oxidative stress through its antioxidant properties and by enhancing phosphor inosi-

tide3 kinase/Akt activation in mouse hippocampus models. TRX exerts a neuroprotective role

under endoplasmic reticulum induced stress by inhibiting the activities of caspase-3 and cas-

pase-12. Overall, TRX is an excellent candidate which could be exploited to improve neuronal

survival i.e. in Alzheimer’s disease [27, 28].

Amyloid-ß (Aß) is a brain peptide with the size of approximately 4kDa derived from the

amyloid precursor protein (APP) by enzymatic cleavage. Aß42 is the most hydrophobic form

of Aß which is more fibrillogenic and forms the plaques in the brain [29]. Polymerization of

monomeric Aß into soluble oligomer and insoluble fibril mass triggers Alzheimer’s disease

[30]. Predominantly, Aß deposition occurs in the hippocampus region of the brain which ulti-

mately leads to the neuronal death due to oxidative stress. The production and aggregation of
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Aß protein increase with aging [31]. Literature reveals that Aß42 inhibits proliferation and dif-

ferentiation of NSCs from mouse hippocampus [32]. Flavonoids have proven their efficacy in

improving synaptic functions against the Aß42 induced neurotoxicity [33]. TRX is capable of

restoring memory loss and learning incapability induced by Aß42 in a rat model. These effects

of TRX were associated with antioxidative action, anti-inflammatory effects and the capability

to up-regulate cholinergic receptors in the animal brain [25]. Since neuroprotective and neu-

roaugmentation properties of TRX have already been reported in the literature, it would be

interesting to decipher the effect of TRX on neurogenesis processes. So the aim of the present

study is to establish an in vitro NSCs model from SVZ of the postnatal mice to investigate the

effects of TRX on proliferation, migration and differentiation of NSCs and its neuroprotective

effects against oligomeric Aß42 on the differentiation of NSCs.

Materials and methods

Animal dissection and cell culture

In the present study, NSCs were isolated from SVZ of postnatal Balb/c wild-type mice of 3–5

days old. Animals were housed under specific pathogen-free conditions on a 12 h light/12h

dark cycle according to German regulations in the animal house facilities of the medical faculty

Homburg, next to the Zweibrücken Campus. Animals were transported in warmed boxes and

killed immediately after arrival by decapitation. Around three animals were employed used for

each set of experiment. The total number of animals used for this study was 21. An authorized

and well-trained researcher sacrificed the animals by decapitation without anaesthesia. Animal

preparations in this study were carried out in strict accordance with the recommendation in

the Guide for the care and use of laboratory animals according to animal protection law in

Rhineland-Palatinate State, Germany. Since no experiment was directly performed on the liv-

ing animals and only tissues were taken from the dead animals, no separate approval was nec-

essary and the animal killing only has to be reported to the local Committee on the Ethics of

Animal Experiments, University of Applied Sciences Kaiserslautern. NSCs were isolated and

subsequently cultured according to the procedure reported in the literature with few necessary

modifications [34]. Immediately after decapitation, mice brains were collected and stored in

ice-chilled MEM-medium (Life technology, Eugene, USA) containing1% penicillin/strepto-

mycin (Thermofischer, Waltham, USA). Under an inverted microscope (Olympus, Tokyo,

Japan) SVZ was separated from both hemispheres followed by mechanical and enzymatic

digestion with HyQtase enzymes (HyClone-GE, Utah, USA) and dissociated into single-cell

suspensions. Approximately 100,000 cells were seeded in a proliferation medium DMEM/F12

(Life technology, Eugene, USA)containing 2% B-27 without antioxidants (Gibco, Paisley UK),

1% Penicillin/streptomycin, ß-mercaptoethanol, EGF 10 ng/mL and FGF 20 ng/mL (Immuno-

tool, Friesoythe, Germany) in a T25 culture flask (Greiner, Frickenhausen, Germany). After 6

days NSCs proliferated to generate neurospheres. About half of the medium was replaced

every alternative day. Before starting every individual experiment, neurospheres were dissoci-

ated and cell numbers were counted employing trypan blue (Gibco, Paisley, UK). All experi-

ments were performed in five replicates (n = 5).

Proliferation assay

The neurosphere clonogenic assay is a simple but robust assay which provides information

about the effect of compounds on NSCs proliferation. Neurosphere’s diameter and number

were two readouts recorded at different time points of incubation [35]. Neurosphere diameter

indicates NSCs multiplication within a neurosphere whilst neurosphere number is an indica-

tor of self-renewal properties of NSCs [32]. At least 1000 cells were seeded in 200 μL of
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proliferation medium into each well of a 96-well plate and medium was change on every alter-

native day. The cells were exposed to different concentrations of TRX (Y000497, Sigma-

Aldrich, Taufkirchen, Germany) (25 μM, 50 μM and 100 μM). Neurosphere diameter and

number were recorded on 3rd, 5th and 7th day of the culture. The effect of TRX was further con-

firmed by BrdU/Ki67 double staining. The ratio of BrdU-negative to the Ki67positivecells pro-

vides an accurate estimation of the amount of proliferating cells [36, 37]. NSCs cells were

proliferated in proliferation medium supplemented by growth factors with and without TRX

for 7 days. 4 h before the completion of incubation, proliferating cells were exposed to 10 μM

BrdU (Sigma-Aldrich, Taufkirchen, Germany) followed by dissociation of neurospheres into a

single-cell suspension. Around 20,000 cells were seeded on each of a 12 mm glass coverslips

coated with PDL (Sigma-Aldrich, Taufkirchen, Germany) for 2 h. Cells were fixed with 4%

Paraformaldehyde at 25˚C for 20 min. BrdU/Ki67double staining was then performed as

described in the immunostaining section. To confirm the stem cell nature of NSCs, NSCs after

7 days of proliferation were dissociated into a single cell suspension and seeded on ECM gel

(Sigma-Aldrich, Taufkirchen, Germany) coated glass coverslips followed by fixation and

stained for basic stem cell marker Nestin and a secondary NSCs marker GFAP. For calculating

cell percentages, 30 microscopic fields at a magnification of 200 x were included in the

observation.

Differentiation assay

Effect of TRX on the differentiation of NSCs into neuronal and astrocyte cells was determined

through a differentiation assay performed for 7 days and 48 h by exploiting all three test con-

centrations of TRX. Approximately 20,000 cells were attached on each of 12 mm glass cover-

slips coated with ECM gel. Cells were differentiated in the DMEM F12 medium comprising of

a similar composition as employed for cell proliferation but excluding growth factors. NSCs in

the differentiation medium were exposed to TRX for a given period followed by cell fixation

and immunostaining for neuronal and astrocyte markers. Percentages of neurons and astro-

cytes were calculated and morphological parameters such as total neurite length, mean neurite

length, %age of non-neurite neurons and soma area of astrocytes were quantified. For calculat-

ing cell percentages, 30 microscopic fields with a 20 x objective were captured and included in

the observation. For morphological analysis, 100 cells were included in the analysis for each

condition in each replicate. Morphological measurements were carried out for 7 days as well

as for 48 h of incubation. Additionally, concentration produced optimum effect was used for

counter toxicity testing against Amyloid-ß42 aggreSure AS72216 (AnaSpec EGT Group, Cali-

fornia, USA) induced toxicity.

Immunostaining

Adhered cells were fixed by exposure to 4% paraformaldehyde for 20 min at room tempera-

ture. After two times washing with PBS, cells were stored at 4˚C until staining. Staining was

performed following a recently published protocol [38]. Briefly, fixed cells were incubated with

Triton 100 x 0.3% for 10 min at room temperature to enhance permeability followed by wash-

ing with PBS-tween one time and PBS 2 times. Non-specific binding was blocked with 10%

normal donkey serum (Merck, Darmstadt, Germany) for 1 h at room temperature. Cultures

were then incubated with primary antibodies mouse-anti-ß tubulin-IIIMAB1637 (1:500;

Merck, Darmstadt, Germany), Nestin MAP353 (1:300; Merck, Darmstadt, Germany), rabbit

anti-GFAP Z0334 (1:500, DakoGlostrup, Denmark), rat anti-BrdU (1:250; AbDserotec,

Kidlington, UK) and rabbit-anti Ki67 (1:250; Abcam Cambridge, UK) at room temperature

for 1hfollowed by washing 3 times with PBS. The samples were visualized using Alexafluor 488
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(1:1000) and Alexafluor 594 (1:1000) conjugated donkey antibodies (Life Technology, Eugene

USA) for another one hour and finally washing 3 times with PBS. DAPI was used for nuclear

staining and incubated at room temperature for 10 min followed by final washing in PBS.

Fluorescence supporting mounting medium was used to fix coverslips on glass slides. For

BrdU, predenaturation of nucleic acid was achieved with 2N HCl prior to blocking and the

acid was neutralized by borate buffer 0.1 M with pH 8.5 [39]. The rest of the steps were identi-

cal to those used previously.

Neurosphere migration assay

NSCs were proliferated in proliferation medium supplemented by growth factor for 5–6 days

in the absence of TRX. Around 12–15 neurospheres were allowed to attach on each of the 12

mm glass coverslips coated with PDL (Sigma-Aldrich, Taufkirchen, Germany) then incubated

and differentiated in a differentiation medium excluding growth factor for a period of 24 hat

37˚C with 5% CO2. The incubation was performed with and without TRX At the end of incu-

bation, phase-contrast pictures were capture with a 4 x objective. Cell migration was evaluated

by calculating the mean distance travelled by migrating cells away from the edge of the neuro-

sphere in four directions measured at a right angle to the edge of the neurosphere core to the

furthest migrated cells [40].

Statistics

All results were presented as mean ± SEM which were calculated by exploiting descriptive sta-

tistics and non-parametric Kruskal-Wallis test with post hoc Dunn’s test. Mann-Whitney pair

wise test was employed in the case of two treatments.

Results

Identification of NSCs in vitro and the effects of TRX

We rated the stemness of NSCs culture using general stem cell markers Nestin and glial fibril-

lary acidic protein (GFAP), a reactive glial and astrocyte marker [41]. After 7 days of prolifera-

tion with and without TRX treatments, cells were fixed and immunostained. Our results

indicated that each cell from every treatment condition was immunoreactive to a general

NSCs marker Nestin. However, we also found a fraction of cells co-expressing Nestin and sec-

ondary NSCs marker GFAP in every treatment condition including control. TRX at 100 μM

concentration significantly reduced the percentage of cells only expressing single Nestin

marker when compared to all other treatments (Control vs 100 μM: p = 0.046., 25 μM vs

100 μM: p = 0.0018., 50 μM vs 100 μM: p = 0.0043) but increased the percentage of cells co-

expressing Nestin and GFAP when compared with 25 μM (p = 0.0013) and 50 μM (p = 0.0043)

concentrations (Figs 1 and 2D). Difference between Control and two lower concentrations of

TRX was statistically non-significant concerning all calculated cell percentages.

TRX effects on proliferation

We performed proliferation assay as previously reported that flavonoids enhance the prolifera-

tion of NSCs in an in vitro cultures [15, 16]. The results of clonogenic assay revealed that in the

absence of growth factors, NSCs failed to proliferate and died on the 7th day in all tested con-

centrations except in Control+ve supplemented with growth factors where cells rapidly prolif-

erated to form neurospheres at all observation time points (Fig 3). To investigate the

augmenting effects of TRX on NSCs proliferation in the presence of growth factors, a set of a

clonogenic assay where proliferation medium supplemented with growth factors for all
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treatment conditions was performed. The results clearly indicated that none of the tested TRX

concentrations exhibited significant effect on NSCs proliferation parameters (neurosphere

number and neurosphere mean diameter) during all observation points when compared to the

Control (Fig 2A and 2B). The results of the study were further confirmed with more sensitive

proliferation assay BrdU/Ki67 immunostaining. After seven days of proliferation, the effect of

all tested concentrations of TRX on percentage of BrdU cells, Ki67 cells the ratio of BrdU/Ki67

were non-significant when compared to the Control (Fig 2C). Overall, the results demonstrate

that TRX did not promote cell proliferation during any of the observation time points in the

presence and absence of mitogenic growth factors.

TRX enhanced neurite growth in neurons differentiated from NSCs

Being multipotent in nature, NSCs give rise to neurons, oligodendrocytes and glial cells on dif-

ferentiation. NSCs differentiation mainly depends upon the environmental signals [42]. Plant

Fig 1. Immunostaining of NSCs for stem cell markers after seven days of proliferation. Green and red represent

Nestin+ve and GFAP+ve cells, respectively. Yellow to orange cells in the merge images represent NSCs co-expressing

both Nestin and GFAP. The highest concentration of TRX (100 μM) exhibited more GFAP and more doubled stained

cells when compared to all other treatments. Pictures were captured with a 40 x objective of a fluorescent microscope.

TRX; Troxerutin. Scale bar measures 50 μm.

https://doi.org/10.1371/journal.pone.0237025.g001
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flavonoids are known to induce NSCs differentiation by interacting with genes regulating cell

fate [20, 43–46]. In addition to neuronal differentiation, flavonoids also improve the neurite

growth of differentiated neuronal cells [19]. Single-cell suspension of NSCs was differentiated

for 7 days and 48 h in the presence and absence of TRX in 25 μM, 50 μM and 100 μM concen-

trations. Short term incubation was performed to evaluate the effect of TRX on early neuronal

and astrocytes differentiation and also on their morphological characteristics. TRX increased

the neuronal expression and decreased the GFAP astrocyte cells expression in a dose-depen-

dent manner both on 7 days and 48 h of incubation. It is, however, important to mention that

the results are statistically non-significant. Nevertheless, TRX in high concentration (i.e.
100 μM) exhibited a 15.9% increase in neuronal expression and an 11% decrease in astrocyte

cells expression when compared to the vehicle Control. A similar trend was observed on 48 h

incubation where the higher concentration increased neuronal expression by 19% with mini-

mum effects on astrocyte expression (Fig 4A and 4B). TRX significantly decreased the percent-

age of non-neurite neurons (i.e. 2.2 folds compared to Control (p = 0.0027)) on 7th day at

100 μM (Figs 4C and 5). In the case of 48 h incubation, both 50 μM and 100 μM of TRX signifi-

cantly reduced the percentage of non-neurite neurons i.e. 1.7 fold (p = 0.05) and 2.5 fold

(p = 0.0053), respectively when compared to the Control. Additionally, 6–12% cells were dou-

ble-stained for both neuronal and astrocyte markers during 48 h incubation (Figs 4D and 6).

TRX reduced the percentage of double-stained cells in a dose-dependent manner and a

Fig 2. TRX effect on neural stem cell markers and proliferation of NSCs. TRX effect on proliferation was

determined through neurosphere clonogenic and by BrdU/Ki67 double staining. A: Represents neurosphere number.

B: Represents neurosphere mean diameter. C: represents the percentage of S-phase marker BrdU, Ki67 and the ratio of

both markers. Percentage of BrdU+ve and Ki67 +ve cells were calculated from the total DAPI nuclei count. D:

Represents the percentage of NSCs which were exclusively Nestin+ve and the fraction of NSCs co-expressing Nestin

and GFAP. Every cell from each treatment condition was immunoreactive to general NSCs Nestin. Percentages of

Nestin+ve and GFAP+ve cells were calculated from the total DAPI stained nuclei count. The experiments were

performed as five replicates (n = 5). Con; Vehicle control. Data were calculated as the mean ± SEM.�p<0.05,�� p<0.01.

https://doi.org/10.1371/journal.pone.0237025.g002
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significant difference was observed for control vs 50 μM (p = 0.044) and Control vs 100 μM

(p = 0.01) concentrations.

Total neurite length and mean neurite length per neuron were calculated as morphological

parameters for neurons, while the cell body area was calculated for GFAP+ astrocytes. Mor-

phological analysis was performed after 7 days employing an in vitro differentiation culture for

all tested concentrations of TRX. The results revealed that TRX increased the total and mean

neurite length in a dose-dependent manner after 7 days of incubation. Concerning total neur-

ite length, a significant difference was observed between Control vs 50 μM (p = 0.014) and

Control vs 100 μM (p = 0.0009) TRX stimulation (Figs 7A and 8). Neurite arborisation was

assessed by calculating arborisation index as reported in the literature [47]. None of the tested

concentrations of TRX affected the arborisation index after 7 days of differentiation. However,

Fig 3. Neurosphere clonogenic assay for NSCs proliferation. The medium of Control+ve was supplemented with

EGF and FGF growth factors. Growth factors were completely omitted from the Control-ve and all TRX treatments.

Cells proliferated rapidly in positive control and formed neurospheres whose size increased with the increase in the

incubation period. Cells in all other treatment conditions failed to proliferate and completely died on 7th day of

observation. Pictures were captured with a 10 x objective of a phase-contrast microscope.

https://doi.org/10.1371/journal.pone.0237025.g003
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TRX significantly enhanced the number of neurite branching tips when compared to the Con-

trol (Fig 9) at both 50 μM (p = 0.017) and 100 μM (p = 0.002) concentrations. TRX increased

the astrocyte soma area at 25 μM (p = 0.05) when compared to the Control and all other con-

centrations of TRX after 7 days of incubation (Figs 7C and 8). Morphological parameters of

neurons and astrocytes for short term incubation of 48 h were only determined for high con-

centration of 100 μM because of optimum effects of this higher concentration on NSCs differ-

entiation upon longer incubation. Interestingly TRX significantly increased total and mean

neurite length and decreased the astrocyte’s soma area at 100 μM when compared to the con-

trol (p = 0.05) (Figs 7B–7D and 10). Moreover, a non-significant difference concerning NSCs

viability was also observed between the Control and 100 μM TRX Fig S A in S1 File).

Neuroprotective effect of TRX against Aß42induced depression in NSCs

differentiation

Oligomeric form of Aß42 is implicated in Alzheimer’s disease, a leading neurological disorder

characterized by progressive loss of memory and cognitive functions [48, 49]. Oligomeric

Aß42 decreases the neuronal and astrocytes differentiation of NSCs culture [32] whilst natural

products, such as flavonoids including TRX, have proven their efficacy against the Aß42

Fig 4. TRX effect on NSCs differentiation after 7 days and 48 h of incubation. ß-tubulin-III was employed as a

neuronal marker and GFAP was exploited as an astrocyte marker. A: Represents the percentage of neurons and

astrocytes after 7 days of differentiation exposed to different concentrations of TRX. B: represents the percentage of

cells after 48 h of incubation. C: Represents the decrease in the percentage of non-neurite neurons; (NNN) with

increasing concentration of TRX after 7 days. D: Represents the decrease in the percentage of non-neurite neurons and

the double positive cells (Co-expressing ß-tubulin III and GFAP) with increasing concentrations of TRX after 48 h.

NNN percentage was calculated from the total neuronal count. Only after 48 h of incubation time, cells

immunoreactive to both neuronal and astrocyte markers (double+ve) could be detected. Data are presented as

mean ± SEM. �p<0.05, �� p<0.01.

https://doi.org/10.1371/journal.pone.0237025.g004
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induced neurotoxicity both in in vitro and in vivo models [25, 49–51]. In this set of experiment,

an in vitro model based upon NSCs isolated from SVZ of the developing mouse was estab-

lished to unveil the neutralizing effect of TRX against the oligomeric Aß42 induced inhibition

in the differentiation of NSCs and neurite growth. A concentration of 100 μM of TRX was

selected as an optimal concentration to evaluate its neuroprotective effects against Aß42

induced inhibition in neuronal differentiation. Aß42 was employed in 10 μM concentration

since this concentration has been reported to exhibit strong inhibitory effects on the neuronal

differentiation [32] and the neurite growth in the differentiated neurons [52]. Moreover, the

literature reveals that lower concentrations of Aß42 exhibit neurogenerative effects rather than

neurotoxicity through a compensatory mechanism of brain repair [32, 53]. Finally, WST-1

cytotoxicity assay was performed to investigate the impact of Aß42 on the cell viability in dif-

ferentiated culture for 48 h and a non-significant difference between the Control and the Aß42

(10 μM) was observed (Fig S B in S1 File). Aß42 significantly reduced the amount of neurons

when compared to the Control (p = 0.034) and the Aß42+TRX combination (P = 0.009) after

48 h incubation (Fig 11A). The amount of non-neurite neurons significantly increased as com-

pared to the Control (p = 0.003) and the combination Aß42+TRX (p = 0.016) in the remaining

neurons. Aß42 treatment significantly increased the amount of cells co-expressing the neuro-

nal and astrocytes markers when compared to the Control (p = 0.005) and Aß42+TRX combi-

nation (P = 0.036) (Figs 11B and 12). Aß42 reduced the total neurite length and mean neurite

length of each neuron when compared with combination Aß42+TRX treatment (p = 0.004)

(Figs 11C and 13) and also reduced total neurite length by 27% and mean neurite length by

19% when compared with the Control. Concerning the astrocyte soma area, both Aß42

(p = 0.008) and combination Aß42+TRX (p = 0.007) significantly reduced the soma area when

compared to the Control (Figs 11D and 13). However, a non-significant difference was

observed between Aß42 and Aß+TRX for this parameter.

Fig 5. Effects of TRX on NNN after 7 days of differentiation. NSCs were differentiated for 7 days in the presence of

TRX. Cells were fixed and immunostained for ß-tubulin III neuronal markers. Green cells represent neurons whilst

blue rounded bodies indicate nuclei stained by nuclear dye DAPI. Control condition presented more neurons without

neuritis (NNN) than the TRX as indicated by white arrows in the top left and top right images. Fluorescent images

were captured with a 40 x objective of a microscope with scale bar measures 50 μm.

https://doi.org/10.1371/journal.pone.0237025.g005
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TRX stimulates cell migration in NSCs culture

Stimulatory effects of TRX on cell migration have already been reported for different kinds of

cells [26, 54]. TRX induces cell migration of human umbilical vein endothelial cells in combi-

nation with cerebroprotein hydrolysate [54]. To evaluate whether TRX influences migration in

NSCs culture, neurosphere migration assays were performed. TRX significantly enhanced the

cell migration at 50 μM (p = 0.012) and 100 μM (p = 0.006), while 25 μM of TRX did not

exhibit any significant increase after 24 h incubation (Fig 14).

Discussion

The self-renewal capacity and the differentiation into multiple cell types of the nervous system

are characteristic features which make NSCs a very useful bio-tool for the screening of mole-

cules which exert supporting effects on neural cell proliferation [15, 16, 55], differentiation

[19, 20, 22], migration [23] and synaptogenesis [45]. Flavonoids serve as effective agents which

provide antioxidative protection and neuroprotection. TRX is a derivate of rutin which serves

as neuroprotective and neurogenerative agent [25, 28, 33, 56]. Additionally, TRX proved its

effectiveness in avoiding Aß42 induced memory defects in a mouse model [27]. In the present

study, an in vitro NSC based assay from SVZ of the postnatal mouse was established to evaluate

Fig 6. Effects of TRX on NNN after 48 h of differentiation. NSCs were differentiated for 48 h in the presence of

TRX. Cells were fixed and immunostained for ß-tubulin III neuronal markers and GFAP astrocyte marker. Green cells

represent neurons, red cells indicate astrocytes and blue rounded bodies present nuclei stained by nuclear dye DAPI.

Control condition exhibited more neurons without neuritis (NNN) than TRX as indicated by white arrows in the top

left image and more cells co-stained for neuronal and astrocyte (yellow cells) indicated by a white arrow in the bottom

left images. Fluorescent images were captured with a 40 x objective of a microscope with scale bar 50 μm.

https://doi.org/10.1371/journal.pone.0237025.g006
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the effect of TRX on basic neurogenesis processes and to quantify neuroprotective effects in

Aß42 challenges, where neuronal differentiation and neurite outgrowth are compromised.

Routinely, NSCs are identified in an in vitro culture by the immunostaining of NSCs/ neu-

ral progenitor cells (NPCs) markers namely DCX, Atoh1, SOX2, Nestin and GFAP. DCX is a

marker for NPCs and not pure NSCs. Atoh1 is the marker for NSCs of the Cochlar nucleus.

SOX2 is the marker of NSCs in the developing brain during early embryonic phase. Nestin is

the widely employed marker for both NSCs and NPCs in the developing and adult nervous

system [57–59]. Nestin is an intermediate filamentous protein widely expressed by NSCs from

the mammalian nervous system [15]. There exists a class of NSCs which co-express nestin and

the reactive glial cell marker GFAP. So both Nestin and GFAP are considered as NSCs markers

[60]. NSCs which co-express Nestin and GFAP comprise of radial glial cells which present

neural stem cell properties [61, 62]. These cells predominantly exist in the SVZ of both devel-

oping and adult brain and are capable of differentiation into neurons, oligodendrocytes and

astrocytes in vitro [63, 64]. In this study, both nestin and GFAP immunostainings were per-

formed to identify NSCs isolated from SVZ culture proliferated for 7 days in the presence of

different concentrations of TRX. The immunostaining results indicated that cells treated with

TRX (100 μM) presented a tendency to increase the percentage of cells co-expressing both

stem cell markers Nestin and GFAP when compared to all other treatments. It is already

reported in the literature that around 30% of the total NSCs isolated from mammalian brain

stained for stem cell marker nestin, also co-stained for astrocyte marker GFAP [41]. These

Fig 7. Effects of TRX on morphological parameters of neurons and astrocytes differentiated from NSCs after 7

days and 48 h of incubation. Approximately100 cells were employed for morphological analysis in each replicate for

each condition. A: Represents TN and μN after 7 days. B: represents TN and μN after 48 h. C: Represents the astrocytes

soma area after 7 days. D: represents astrocytes soma area after 48 h of incubation. The study was performed in 5

replicates (n = 5). Data are presented as mean ± SEM. �p<0.05, ��p<0.01, ���p<0.001. TN; total neurite length, μN;

mean neurite length.

https://doi.org/10.1371/journal.pone.0237025.g007
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doubled stained NSCs give rise to neurons and glial cells at the time of birth and give rise to

adult NSCs in the SVZ thus allowing a continuous supply of NSCs for regenerative processes

throughout the life [65]. Additionally GFAP expressing NSCs from SVZ quickly turn into

functional neurons in response to brain injury [66]. Another similar property of NSCs is their

ability to facilitate neuronal cell migration [67]. Taken together, our immunostaining results

suggested that all cells cultured from mouse SVZ were NSCs as they expressed stem cell mark-

ers in proliferation culture and then differentiated into neurons and astrocytes on subsequent

differentiation experiments.

The proliferation of NSCs in an in vitro culture condition can only be maintained when

cells are supported by essential growth factors. Among these, brain-derived neurotrophic

Fig 8. Effect of TRX on neurite growth of neurons and soma area of astrocyte after 7 days of incubation. NSCs

were differentiated on ECM coated glass coverslips fixed and then stained for a neuronal marker (ß-tubulin-III) and

astrocyte marker (GFAP). Green cells represent are neurons. Neurons under TRX treatments exhibited elongated

neurites with more branching points when compared to control. Red cells indicate astrocytes. Most of the astrocytes

cells presented leaf-like morphology. Astrocytes treated with TRX in less than 25 μM concentration demonstrated

expended soma area when compared with all other treatment conditions. Cells presented a smooth surface with no

deformation. All measurements were performed exploiting Cell SENE software. Pictures were captured with 40 x

objective of a fluorescent microscope with scale bar 50 μm.

https://doi.org/10.1371/journal.pone.0237025.g008
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factors (BDNF), fibroblast growth factor (FGF) [68] and epidermal growth factor (EGF) are

very important [69]. In the absence of growth factors, such as EGF and FGF, NSCs failed to

proliferate and died within a few days of culture. The literature reveals that various natural fla-

vonoids facilitate the maintenance of the in vitro proliferation of NSCs independent of the

Fig 9. Effect of TRX on neurite arborisation after 7 days of differentiation. Neurite arborisation measurements

were carried out for NSCs culture differentiated for 7 days with different concentrations of TRX. Around 100 neurons

were included in the observation for each condition in each replicate. A: Represents the effects of TRX on neurite

attachment point; AP and neurite ending points; EP. AP is an indicator of primary neurite number and EP is an

indicator of neurite branching. B: Represents the neurite arborisation index which is described as the ratio of EP to

that of AP. Data are presented as mean ± SEM. �p�0.05.

https://doi.org/10.1371/journal.pone.0237025.g009

Fig 10. Effect of TRX on neurite growth of neurons and soma area of astrocyte after 48 h of incubation. NSCs

differentiated on ECM coated glass coverslip for 48 h of incubation. Cells were immunostained for a neuronal marker

(ß-tubulin III) and an astrocyte marker (GFAP). Green cells represent neurons. Neurons treated with TRX present

elongated neurites with more branching points when compared to control. Red cells represent astrocyte cells stained

for GFAP. Astrocytes presented both leaf-like and star-like morphology but leaf-like morphology was dominant over

star shaped cells. Astrocyte cells treated with The Control exhibited larger soma area when compared to cell treated

with 100 μM of TRX. Cells presented a smooth surface with no deformation. All measurements were performed

exploiting Cell-SENE software. Pictures were captured with a 40 x objective with 50 μm scale bar.

https://doi.org/10.1371/journal.pone.0237025.g010
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growth factors. Epimedium flavonoids, for instance, promote the proliferation of cultured

NSCs from postnatal rat hippocampus [15]. Icariin has been reported to promote the prolifera-

tion of NSCs by up-regulating cell cycle gene D1 and protein p21 [16]. Results of our clono-

genic and BrdU/KI67 immunostaining assays clearly indicated that none of the tested TRX

concentrations exhibited stimulatory or inhibitory effects on the proliferation of NSCs irre-

spective of the presence or absence of essential neurotrophic factors. Previous studies reported

a stimulatory effect of TRX on cell proliferation other than NSCs. 10 μM concentration of

TRX, for instance, alleviated UV induced arrest in the proliferation of cultured human kerati-

nocytes cell lines (HaCaT) by upregulating miRNA -181a-5p [26]. Moreover, TRX in combi-

nation with cerebroprotein lysate enhanced the proliferation of human umbilical vein

endothelial cells HUVECs [54].

Being multipotent in nature, NSCs give rise to functional cells of the nervous system on dif-

ferentiation in response to environmental stimuli [15]. In this study NSCs were differentiated

in the presence of different concentrations of TRX for 48 h and for a relatively long period of 7

days. Purpose of short term differentiation was to evaluate the effect of TRX on early neuronal

differentiation and neurite outgrowth. One week differentiation of NSCs provided neurons

with well-developed neurite and branching pattern. Higher concentrations of TRX stimulated

the neurite outgrowth and decreased the percentage of non-neurite neurons when compared

to the vehicle control during both incubation periods. Effect of TRX on neurite arborisation

Fig 11. Neuroprotective effects of TRX flavonoid against Aß42 induced depression of differentiation after 48 h of

differentiation on ECM coated glass coverslips. A: Represents the percentage of cells differentiated from NSCs. B:

represents the percentage of non neurite neurons differentiated from total neurons and the percentage of cells double

+ve for both neuronal marker ß-tubulin III and astrocyte marker (GFAP). C and D represent the effects on neurite

outgrowth per neuron and astrocyte soma area, respectively. The data were conceived exploiting Cell SENE software.

Percentage of differentiated neurons and astrocytes were calculated from the total DAPI nuclei count. At least 100 cells

were included in observation for morphological analysis for each condition in each replicate. Data are presented as

mean ± SEM. Experiments were performed as 5 replicates (n = 5).�p<0.05, ��p<0.01, ���p<0.001.

https://doi.org/10.1371/journal.pone.0237025.g011

PLOS ONE Troxerutin increases neurogenesis: An in-vitro model

PLOS ONE | https://doi.org/10.1371/journal.pone.0237025 August 14, 2020 15 / 24

https://doi.org/10.1371/journal.pone.0237025.g011
https://doi.org/10.1371/journal.pone.0237025


index was non-significant at lower concentration but the higher concentrations of 50 μM and

100 μM significantly enhanced the number of neurite branching tips. Although there are no

data available to represent the effect of TRX on the differentiation of NSCs, several studies

describe the neurogenerative effects of flavonoids. Baicalin, for instance, enhanced the neuro-

nal fate of cultured NSCs isolated from rat hippocampus [46] and also enhanced the neurite

outgrowth by upregulating phosphorylation of Erk1/2 [19]. Baicalin also stimulated the neuro-

nal differentiation and inhibited glial differentiation of rat embryonic NSCs by modulating the

function of transcription factor stat3 and basic helix-loop-helix gene family [20]. Quercetin is

another flavonoid which enhanced neurogenesis and synaptogenesis by stimulating brain-

derived neurotrophic factors and phosphorylating cyclic AMP response binding protein

(pCRBP) [22]. In another study quercetin enhanced neurite outgrowth and affected the per-

centage of neuronal cells by upregulating Gap-43 and cAMP in a cultured N1E115 cell line

[44]. Prenylated flavonoid ENDF1 enhanced the axonal length and branching density in the

cultured neurons from the dorsal ganglion by upregulating the expression of microtubule

binding-protein gene DCX and maintaining the Ca2+ haemostasis in neurons [70]. Oral

administration of flavonoids rich dried root extracts of Chinese herb Scutellaria baicalensis
Georgi stimulated the axonal growth against experimentally induced spinal injury in a rat

model by upregulating the expression of NF-H expression in neurons [71]. Isoquercitrin

Fig 12. Neuroprotective effect of TRX against Aß42 induced inhibition in the amount of neurons and astrocytes

after 48 h of differentiation. Green cells present ß-tubulin III neurons which were found denser in control and Aß42

+TRX. Red cells represent GFAP astrocytes which were observed in both leaf-like and star-like morphology. Astrocytes

were relatively denser in Control as compared to other treatment conditions. Pictures were captured with a 40 x

objective of a fluorescent microscope. Scale bar is 50 μm.

https://doi.org/10.1371/journal.pone.0237025.g012
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flavonoids promoted the axonal elongation in of the cultured NG108-15 cells by reducing the

activity of RhoA kinase [45]. A high concentration of TRX also decreased the percentage of

double positive cells (immunoreactive to both neuronal and astrocyte markers) which was

only observed during 48 h of incubation. The occurrence of cells co-expressing neuronal

markers ß-tubulin III and glial markers GFAP in SVZ of the developing brain is supported by

the previously reported literature. These cells are neural progenitors and on long term differ-

entiation, give rise to either neurons or glial cells [72, 73]. In this study, 100μM TRX presented

a tendency to reduce the percentage of ß-tubulin/GFAP double-positive cells and, at the same

time, increased the percentage of neurons.

TRX in high concentration (100 μM) significantly reduced astrocyte soma area as compared

to control and two other lower concentrations. The literature reveals that TRX exhibits a miti-

gating effect in Parkinson’s 6-OHDA rat model not only via antioxidation activity but also

through inhibition of astroglial GFAP expression partially by modulating the function of

PI3K/ERβsignalling pathway [56]. In another study, baicalin inhibited astrocyte differentiation

of rat embryonic NSCs by interacting with basic helix-loop-helix genes and transcription fac-

tor stat3 [20]. Reduced oxidative stress stimulates the neuronal differentiation of NSCs [74].

TRX exhibits antioxidant activities by interacting with reactive oxygen species [75]. Since TRX

exerts neuroprotective and neurogenerative effects through its anti-oxidative actions in the

brain tissues of rat [54], it was assumed that anti-oxidation activity might also be associated

with enhanced neuronal differentiation and neurite growth. Detailed anti-oxidation and

molecular studies are required to prove this assumption.

Aß42 decreased the percentage of neurons, decreased the neurite outgrowth and neurite

length after 48 h of incubation. Literature reveals that Aß42 decreased the percentage of

Fig 13. Neuroprotective effect of TRX against Aß42 induced neurite growth inhibition after 48 h incubation.

Green cells represent ß-tubulin III neurons. Neurons treated with TRX+Aß42 exhibited elongated neurites with more

branching when compared with control. Red cells represent GFAP astrocyte which under control condition exhibited

larger soma area when compared with Aß and combination TRX+Aß42 treatment. Cells demonstrated a smooth

surface with no deformation. All measurements were performed by employing Cell SENE software. Pictures were

captured with a 40 x objective with 50 μm scale bar.

https://doi.org/10.1371/journal.pone.0237025.g013
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neurons differentiated from the cultured mouse NSCs isolated from the hippocampus [32].

Another in vitro study reported that Aß42, on short term incubation, significantly inhibited

the axonal growth and synapsis formation in cultured cortical and hippocampus cells. These

inhibitory effects of Aß42 are similar to those defined in transgenic mouse and Alzheimer

pathology [76]. Moreover, short term exposure to Aß42 inhbits neurite growth of cultured

PC12 cells due to an oxidative stress and mitochondrial dysfunction as described by research-

ers [52]. TRX, in high concentration (i.e.100 μM), neutralized the inhibitory effects of Aß42

(10 μM) on neuronal differentiation, neurite outgrowth, neurite extension after 48 h incuba-

tion. TRX protects hippocampus neurons from the neurotoxic effects of Aß42 by ameliorating

antioxidant enzymes and attenuating elevated acetylcholinesterase enzyme levels. Additionally

TRX also reduced the apoptosis on chronic treatment of 14 days [33]. Apigenin is an aglycone

flavone which improves the memory defect induced by Aß25-35 in mouse by several mecha-

nisms including antioxidant actions, reduction of acetylcholinesterase activity and modulatio-

nof phosphor-CREB, BNDF and TrkB [77]. Quercetin has been reported to exhibita protective

effect against Aß42 induced lipid peroxidation in cultured hippocampus cell culture from

postnatal rat [78].

Countertoxicity effects of a flavonoid against Aß 42 depend upon the ability of a flavonoid

to prevent the fibrillization of the later [49]. Two major structural requirements for the anti-

fibrilization effect of a flavonoid molecule involve the number of aromatic rings and the

Fig 14. TRX enhances the migration of differentiated cells from NSCs cultured for 24 h. NSCs were proliferated to

develop neurospheres which were adhered to PDL coated glass coverslips and incubated in differentiation

mediumwith and without the presence of TRX for 24 h. The central dark area encircled by The red dotted ring is the

neurospheres core consists of the heterogeneous population of cells. Results representmean distance travelled by cells

from the core in all four directions (Graph). The migrated cells are enclosed in yellow dotted ring. For each condition,

10-15neurospheres were included in the observation. The study was performed in 5 replicates (n = 5). Pictures were

captured with 10 x objective of a phase-contrast microscope. Data are presented as the mean ± SEM.

https://doi.org/10.1371/journal.pone.0237025.g014
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number of hydroxyl groups present in the molecule. Aromatic rings bind with the hydropho-

bic amino acid residues through covalent bonds and hydroxyl groups of a flavonoid interact

with hydrophilic amino acid residues of the peptide backbone of Aß 42 leading to the disaggre-

gation effects or prevention of fibrillization. The number of these functional groups are, there-

fore, directly proportional to the antifibrils activity against Aß 42. Gallocatechin gallate and

theaflavin exhibited 100% efficacy in preventing fibrils formation of Aß 42 in an extracellular

chemical reaction since these molecules provide a higher number of aromatic rings and

hydroxyl groups in their structures as compared to other compounds tested (Phan 2019). A

number of these aromatic rings and reactive hydroxyl groups in TRX molecule [79] is compa-

rable to that of theaflavin [80], rutin [81] and more than that of gallocatechin gallate [82] so it

was assumed that the neutralizing activity of TRX against Aß 42 induced inhibition in neuro-

nal differentiation and neurite growth in our experiments might be due to the disaggregating

or antifibrillization effects of TRX. Future detailed studies are needed to prove if TRX prevents

fibrillization of Aß42 in a reaction mixture.

The findings of this study indicated that TRX can stimulate cell migration in NSCs culture

in the absence of any stress. Ma et al., reported in their study that TRX in combination with

cerebroprotein hydrolysate, induced cell migration of human umbilical vein endothelial cells

[54]. In another study, TRX induced HaCa cells migration by ameliorating UV induced migra-

tion restriction [26]. Stimulatory effects of TRX on the migration of cell lines are mediated

through modulation of regulatory gene miR-181a-5p and transcription factor integrin ß3

mRNA [26, 54]. Quercetin has been reported to induce murine NSCs migration under differ-

entiation conditions with concomitant up-regulation of CXCR4 gene in an in vitro experiment

[23]. CXCR4 is a receptor protein for chemokine SDF1. CXCR4/SDF1 signalling pathway

which is implicated in the development of various tissues including the nervous system. One

of the major roles of SDF1/CXCR4 involves the regulation of neuronal cell migration of vari-

ous kinds in cortex and cerebellum areas of the brain. Knock out of either CXCR4 or SDF1

genes in mouse resulted in severe defects in granular cell migration [83].

Conclusions

The present study revealed that TRX not only promoted the neuronal differentiation of cul-

tured NSCs of the postnatal mouse but also stimulated neurite outgrowth and neurite exten-

sion as well as cell migration in the absence of any inhibitory stimuli. Moreover, TRX also

neutralized the inhibitory effects of Aß42 oligomer on neuronal differentiation and neurite

outgrowth. These findings provide clues about the role of TRX in neurogenesis and curing

Aß42 dependent neurological disorders. TRX, in stark contrast to unmodified rutin and other

flavonoids, is easily water soluble, which makes this unique molecule a suitable candidate for

oral applications. Indeed, detailed investigations are required to explore molecular pathways

governing stimulatory effects of TRX in neurite growth, cell migration and neuroprotective

actions against neurotoxic peptides implicated in neurodegenerative disorders.
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Funding acquisition: Karl Herbert Schäfer.
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4. Discussion 

The in vitro assay based upon NSCs offers a versatile, sensitive, robust, cost effective and  

physiologically relevant screening platform for diverse materials having neuromodulating potential 

including environmental toxicants  and compounds of pharmacological significance [3,141, 153]. The 

NSCs from the developing SVZ provide several advantages over their adult equivalents such as,    

easy availability, isolation, culture, rapid growth rate and very high sensitivity to chemical stimuli 

[148]. Within the scope of the present thesis, an in vitro assay system based upon the NSCs from the 

SVZ of postnatal mouse has been established to explore the inhibitory effects of neurotoxicants occur 

in water samples (raw wastewater: RWW, treated sewage water: TSW, groundwater: GW and drinking 

water: DW) and very low concentrations of glyphosate pesticide molecule.  

The same assay has also found its utility to demonstrate the neurogenerative and neuroprotective 

properties of pharmacologically active flavonoid TRX. The NSCs based in vitro assay has been able to 

confirm the presumption regarding potential inhibitory effects of both treated and untreated water 

samples on the basic neurogenic processes. The findings of the present study have confirmed the high 

sensitivity of NSCs model to reveal the inhibitory impacts of extremely low concentrations of 

glyphosate on neural cell differentiation and migration. The model has been successfully employed to 

reveal the genes involved in regulating neural cell lineages and cytoprotective responses. In addition, 

the model has also been able to demonstrate the neurogenerative and neuroprotective properties of 

TRX flavonoid. The major findings of these investigations will now be discussed in detail.  

4.1.  Impact of treated and untreated polluted water on the fate of NSCs.   

The natural water reservoirs available for human consumption are being depleted worldwide majorly 

due to the rapid growth of human population and gradual decrease in precipitation. The water 

management authorities of several countries including European ones, are now considering the 

recycling of high-quality water from wastewater to make it suitable for human consumption [52].  
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Unfortunately, WWTPs operating in various countries have been found inefficient in completely 

removing or reducing water-borne pollutants to safe levels [160]. Water produced by WWTPs along 

with water clarification facilities, must be subjected to the series of analyses before treated water is 

available for human consumption.[56]. These analyses should include both the physicochemical 

characterization and biological testing of water [54, 55]. In vitro bioassays currently available for 

evaluating the quality of water are based upon cells derived from mammals and cancer cell lines. Since 

water samples contain a heterogeneous mixture of pollutants with diverse mechanisms of toxicity, it is 

therefore recommended to employ multiple biological assays by utilizing multiple cell types derived 

from different physiological systems of an organism [56]. Several researchers have evaluated the 

quality of water samples collected from different sources by employing non-neural cells derived from 

animals. Such assays could only provide information about the general and genotoxicity of water-

borne pollutants  [55, 56, 161-163]. The data concerning neurotoxicity of the water-borne pollutants is 

still lacking, perhaps due to the lack of a suitable model. Primary NSCs are the building block of the 

nervous system respond quickly to the exogenous stimuli in highly sensitive manner. Therefore, these 

are considered as a useful bio-tool to reveal neurotoxicity associated with pollutants present in water 

samples collected from different sources [164]. 

In the present work, NSCs based in vitro assay was employed to explore the toxic impact of water-

borne pollutants on the viability, proliferation, differentiation and migration of neural cells. Both 

treated and untreated water samples were tested in the given study [165]. 

4.1.1.  Impact on the viability of NSCs 

The Live-dead in vitro assay demonstrated the significant reduction in the viability of NSCs upon 

exposure to RWW for 24 h. The TSW, GW and DW exhibited insignificant impact on the viability of 

NSCs. The inhibitory effect of RWW on cell viability was probably due to the presence of a blend of 

environmental pollutants at relatively higher concentrations.  
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The presence of high concentrations of environmental pollutants in raw water bodies has been reported 

in various European countries, including Germany [36, 166, 167]. The findings of this study positively 

indicate that treatment of wastewater by a WWTP has been found efficient in reducing the 

concentration of pollutants in TSW to the levels which did not show direct effects on the viability of 

NSCs. The results also indicate that GW and DW collected from the water distribution facility near the 

Weschnitz River located at the German state Baden-Wuerttemberg display no direct risk of acute 

cytotoxicity in the cells of nervous system. The findings of viability assay did not show the signs of 

acute neural cytotoxicity of TSW. Poor viability of neural cells during early childhood as a result of 

exposure to environmental pollutants have been correlated with locomotive abnormalities, memory 

defects and cognitive dysfunctions [168, 169].  

4.1.2. Impact on proliferation and differentiation of NSCs 

The neurosphere clonogenic assay demonstrated that RWW significantly inhibits the proliferation of 

NSCs during each of the observation time points. In comparison, TSW exhibited the inhibitory effect 

only on day 7 of incubation. Water pollutants including pharmaceuticals (antihypertensive drugs, 

atenolol, caffeine), nitrates, organic mercury, bisphenol-A and pesticide such as N,N-Diethyl-meta-

toluamide (DEET) are strong inhibitors of neural cell proliferation even at very low concentrations 

[38,47, 170-172]. The inhibition of the proliferation of NSCs by TSW on day 7 of incubation reflects 

that WWTP has not been able to completely eliminate the neural cell proliferation inhibitors. Findings 

of this study are in agreement with the published studies which affirmed the occurrence of relatively 

high concentrations of NSCs-proliferation inhibitors both in raw water and treated sewage water 

collected from different cities of European countries including Germany [35, 173, 174]. Reduced 

proliferation of NSCs during early age of life enhances the risk of Schizophrenia [175]. 

The NSCs differentiation assay is an important assay in assessment of the toxic impact of 

environmental pollutants on the functional cells of the nervous system.  
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In differentiation assay, the NSCs are differentiated into neurons and astrocytes with and without the 

presence of pollutants. The impact of pollutants is recorded by calculating the percentages of 

differentiated cells and measuring the growth of neurites and soma as final outcomes. Neurons are the 

basic functional cells of the nervous system. The astrocytes are second most important cells of the 

nervous system which are also called as supporting cells of the nervous system. Both of these cell 

types display high sensitivity to the chemical stimuli including, environmental pollutants [176, 177]. 

Results of the differentiation assay demonstrated that after a week of differentiation, RWW could 

reduce the percentage of neurons and astrocytes differentiated from NSCs. A strong inhibition in the 

growth of neurites and soma of astrocytes has also been observed after an exposure to RWW. All other 

tested water samples including TSW exhibited non-significant impacts on the differentiation 

parameters when compared to the control.  

Environmental pollutants such as nitrogenous waste  methyl mercury, bisphenol-A have been reported 

to reduce the neuronal differentiation of NSCs [39, 46, 47, 171, 178]. Artificial sweeteners pesticides 

DEET, dieldrin and phthalates reduce the neurite growth of neurons [179-182]. Moreover, another 

potential pollutant diazinon (insecticide) inhibits the growth and development of astrocytes. The 

presence of high concentrations of such pollutants have been reported both in natural water reservoirs 

and treated sewage water in European countries including Germany [35, 166, 183-185]. Consequently, 

depressed neurite growth could result in autism in children [37]. Similarly, mood disorders are 

associated with poor astrocyte development [186]. The findings of the differentiation assay indicate 

that treatment by WWTP was successful in removing or reducing the concentrations of environmental 

pollutants which could disrupt the neuronal and astrocytes differentiation of NSCs since TSW reveals 

comparable impact to that of control.   

4.1.3. Impact on cell migration 

During any injury either physical or induced by environmental toxicants, SVZ is the major niche in the 

brain of mammals which provides spontaneous response by activating the proliferation of NSCs and  
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their subsequent migration towards the injured area in order to start the repairing process [187]. 

Neurosphere migration assay offers a valuable tool to quantify the changes in cell migration process as 

a result of exposure to environmental toxicants [156]. Migration assay demonstrated a significant 

reduction in cell migration after an exposure to both the RWW and TSW. Impact of RWW on neural 

cell migration was stronger than TSW. Steroidal drugs, pesticides, bisphenol-A and organic mercury 

have been known to inhibit neural cell migration [40-42]. Presence of such neurotoxic pollutants 

above the safety limit has been reported both in wastewater and the treated wastewater of several 

countries across the globe including  Germany [166, 183, 188-191]. Poor neural cell migration during 

the early age of childhood escalates the risk of epilepsy in later stages of human life [192].  

Taken together, the findings of this study reflect that NSCs might be a simple but useful 

model for roughly ranking the neurotoxicity of water samples. Such water samples can be 

classified on basis of levels of pollutants and their source of origin. The study also indicates that 

WWTP operating in the German state of Baden-Wuerttemberg is not fully successful in eliminating or 

reducing the concentrations of pollutants which have toxic impact on the neural cell proliferation and 

migration processes. On the basis current findings, it can be argued that the TSW may not be suitable 

for human consumption if used without additional treatments. The study has also indicated that GW 

and DW collected from the water distribution facility near the Weschnitz River in the German state of 

Baden-Wuerttemberg demonstrated no risk of toxicity in the assays performed on NSCs. WWTPs in 

various countries, including European countries, operate on the basis of traditional membrane 

bioreactor treatment and activated sludge [160].Such water treatment techniques are capable 

of removing biodegradable organic macropollutants, microorganisms and large suspended 

particles. The efficacy of WWTPs to remove micropollutants such as pharmaceuticals, 

pesticides and nanosized particulate materials has been shown to be poor [162]. In the present 

study the neuroinhibitory impactof of TSW might stem from such inefficacy.  
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4.2. Impact of subtle concentrations of glyphosate on the fate of NSCs   

The NSCs from the developing brains of mammals are more sensitive to the exogenous stimuli than 

those of adult brains. Due to high sensitivity, these cells provide prominent, robust and easily 

quantifiable responses to the subtle concentrations of environmental toxicants [146-148]. Keeping in 

view these inspiring qualities of NSCs from the developing brain, an in vitro assay based upon NSCs 

from the SVZ of the postnatal mouse was exploited to evaluate the impact of EPC of glyphosate in 

potable water i.e. MAC and MCL on the basic processes of neurogenesis. In addition, modifications in 

gene expression of neural cell lineages and cytoprotective responses have also been evaluated. In 

parallel, 7000 µgL
-1

 of glyphosate has been evaluated for its acute toxicity on NSCs culture [193]. 

Researchers have reported the concentrations of glyphosate equivalent to 7000 µgL
-1

 in the plasma of 

human subjects who have been without toxicity [194, 195]. 

4.2.1. Impact of glyphosate on the viability of NSCs 

The findings of live-dead assay indicate the non-significant impact of both, MAC and MCL of 

glyphosate, on the viability of NSCs after an exposure of 24 h. Interestingly, 7000 µgL
-1

 of glyphosate 

has been previously reported by researchers as a concentration in human plasma without toxicity [194, 

195]. However, this concentration has significantly decreased the viability of NSCs due to the 

induction of cytotoxicity in the present study. The reduced viability of NSCs induced by7000 µgL
-1

 of 

glyphosate, indicates the high sensitivity of the NSCs model to this concentration of glyphosate. In 

contrast to previously published studies that have reported the cytotoxicities of glyphosate in the cells 

of the nervous system at 100s of folds higher concentrations. The current study is reporting cytoxicity 

at much lower concentration [3, 76, 79, 80].  
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In an attempt to elucidate the potential role of Ca
2+ homeostasis behind cytotoxicity, the 7000 µgL

-1 

and higher concentration of glyphosate induced Ca
2+ influx in NSCs culture upon acute exposure 

which has not been observed after exposure to MAC and MCL of glyphosate during preliminary 

experiments. These findings are in agreement with the previous reports showing the induction of Ca
2+

 

influx in the Sertoli cells at a concentration comparable to 7000 µgL
-1

of glyphosate
 
[196]. Sensitivity 

to the changes in Ca
2+ 

 homeostasis in the present study indicates the higher sensitivity of the 

employed NSCs model, since previous models have reported the sensitivity at 36000 µgL
-1

 of 

glyphosate or higher
 

[79]. The increase in Ca
2+

 influx is related to the excessive intracellular 

production of ROS and increase in the release of glutamate which collectively leads to the death of 

cells [80]. Alternatively, disturbance in Ca
2+

 homeostasis may result in the disturbance of metabolic 

pathways implicated in cell fate determination [197]. Poor survival of neural cells due to exposure to 

environmental toxicants causes poor memory and defects in cognitive functions in children [169, 198]. 

Since MAC and MCL represent the important concentrations of glyphosate from the perspective of 

public safety and it initially presented no acute cytotoxic response, therefore, these have been 

evaluated for further neural effects, if any.  

4.2.2. Impact of glyphosate on proliferation and differentiation of NSCs 

Being analogue to the amino acid glycine, glyphosate obstructs the normal proliferation pathways of 

the cells [77, 199]. Results of the present study demonstrated that the impact of MAC and MCL of 

glyphosate on the proliferation of NSCs is comparable to that of control. In the previous studies, it has 

been reported that the impacts of glyphosate on cell proliferation vary according to the nature of target 

cells and the concentrations of glyphosate employed [200]. In their study, Li and co-workers 

demonstrated the inhibition of the proliferation of prostate and ovarian cancer cell lines at higher 

concentrations of glyphosate.  
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Conversely, stimulatory effects have been observed when the concentrations are reduced to one half 

[199]. In another study, glyphosate has been found to enhance the proliferation of human kidney 

HEK293 cells when utilized at concentrations ranging from 0.6-18 µM. Interestingly, concentrations 

outside this range did not affect cell proliferation [201]. Although MCL of glyphosate employed in the 

present study fell within the range of 0.6-18 µM, yet, MCL has not been able to alter the proliferation 

of NSCs. The divergence between the present study and the published reports could be attributed to 

the difference in types of cells utilized since glyphosate response varies with the type of target cells 

[200, 201].  

No published data has been found regarding the effects of very low concentrations of glyphosate on 

the proliferation of NSCs to compare directly to the present study. Uniquely, the present study is novel 

and may provide a solid basis for in-depth investigation in future using the NSCs model optimized in 

the present study. Such investigations may be more meaningful if these could include molecular 

studies to explore the impact of EPC of glyphosate (MAC and MCL) on the expression of genes 

responsible for regulating the proliferation of NSCs.  

During differentiation from NSCs, neurons and astrocytes are highly vulnerable to the impact of 

exogenous stimuli, including pesticides [159]. Immunostaining of differentiated cultured NSCs is a 

simple and useful way to quantify the alterations in differentiated cells induced by pesticides. In 

routine practices, ß-tubulin III is utilized as a general neuronal marker and GFAP as an astrocytic 

marker [202-204]. In the present study, the differentiation assay demonstrated that MCL of glyphosate 

tends to depress the neurite outgrowth whilst MAC significantly reduces the percentage of astrocytes 

and their growth. Glyphosate has been found to reduce the neurite outgrowth in the cultured 

hippocampus neurons by reducing the expression of Wnt5a protein and down-regulating CaMKII. It is 

noteworthy to mention that the concentrations of glyphosate employed in the published study were 

several 1000s fold higher (2-4 mgL
-1

) than MAC and MCL employed in the present study [3].  
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These findings confirm the notion once again that the NSCs from SVZ of the postnatal mouse are 

highly sensitive towards glyphosate neurotoxicity compared to the experimental models exploited by 

other researchers.  

Concerning the impact of glyphosate on astrocytes, Cattani and co-workers have reported the 

inhibitory effects in a rat model. On the contrary, some other researchers reported the stimulatory 

effects of glyphosate on the proliferation and growth of astrocytes in the telencephalon area of the 

brain of fish [79, 80, 205]. The discrepancy among the published reports regarding astrocyte growth 

and development might be attributed to the variation in the models and concentrations of glyphosate 

employed since glyphosate response varies significantly with concentrations and animal models 

exploited [200]. Reduced astrocyte development under the influence of the MAC of glyphosate in the 

present study is probably related to the interaction between the lower concentration of glyphosate and 

the molecular pathways regulating the energy metabolism in astrocytes. This notion is supported by a 

published study which has demonstrated a decrease in proliferation and development of astrocytes 

upon exposure to lower micromolar concentrations of glyphosate [206]. Poor neurite growth results in 

autism whilst poor astrocytes development has been implicated in mood disorders in children [37, 

186].  

4.2.3. Impact of glyphosate on the migration of neural cells 

After completion of proliferation NSCs along with progenitor cells, differentiated neurons and 

astrocytes tend to migrate from a neurogenic niche to their final destination in the nervous system. The 

process of cell migration is highly sensitive to foreign stimuli since any perturbation by a noxious 

substance significantly increases the risk of epilepsy, heterotopias and schizophrenia in humans [207]. 

Researchers have established a link between thyroid-stimulating hormone (TSH) deficiency and 

defects in neural cell migration in mammals after developmental exposure to glyphosate herbicide 

[208].  
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The MCL of glyphosate in the present study significantly reduced cell migration. Although there is no 

published study to directly support these findings, but sufficient studies are available to support the 

notion that herbicides inhibit or reduce the migration of neural cell. The Oxadiazon, for instance, 

reduces the neuronal cell migration in the primary culture of the striatal cella at a non-toxic 

concentration by over-expressing acylphosphatase implicated in ion transport, apoptosis and cell 

differentiation [209].  

Another herbicide glufosinate inhibits the cell migration from the SVZ of the mouse at concentrations 

several folds lower than the concentration considered safe by environment regulatory authorities [210]. 

Prospective researchers are encouraged to investigate further the possible link between the inhibition 

of TSH and reduction in neural cell migration at EPC of glyphosate as employed in the present study. 

4.2.4. Impact of glyphosate on gene expression 

Researchers have proposed that the determination of changes in the expression of genes (genes 

involved in the key neurogenesis processes) under the influence of chemical entities provides a 

sensitive and valuable tool for screening the potential neuromodulators. Such analysis is capable of 

unveiling the neurotoxicity of very low concentrations of toxicants which could not be explored 

through the traditional immunostaining assays, otherwise [202, 211].  ß-tubulin III is a protein marker 

expressed in the soma and axons of the general population of neurons. It is a widely used neuronal 

marker employed in developmental studies and plays an important role in neuronal development. ß-

tubulin III has also been implicated in the neurite outgrowth processes [76, 212].  

The results of the present study demonstrated that exposure to glyphosate at MCL downregulated the 

expression of ß-tubulin III. These findings are in agreement with those of Martinez and co-workers 

who have reported the decrease in expression of ß-tubulin III in SH-SY5Y cell culture upon exposure 

to glyphosate [76].  S100B is a mature astrocytic marker which regulates the proliferation and growth 

of astrocytes, coordinates axonal and neurite growth and plays a neuroprotective role [213].  
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In the present study, the MAC of glyphosate downregulated the expression of S100B in differentiated 

NSCs culture which is consistent with a published study that has reported the decrease in expression of 

S100B in rat pups after developmental exposure to glyphosate herbicide [79, 80]. The downregulation 

of the S100B in the neural cells during the postnatal period may lead to defects in brain development 

during future life [214]. The findings of the present study indicate that the determination of gene 

expression of neuronal and astrocytic markers is a valuable endpoint to discriminate between 

neurotoxicity and glialtoxicity and should be included in the in vitro bioassay battery employed for the 

evaluation of developmental neurotoxicity in future.     

Enzymes of the Cytochrome 450 (CYP) family are involved in the generation of essential metabolites 

and detoxification of xenobiotics. The dysregulation in the expression of CYP genes results in an 

enhanced vulnerability of an organism to pollutants and the depletion of important bio-molecules [69]. 

CYP1A1 is the only member of the CYP family that is expressed in the brain of both humans and 

rodents [215, 216]. Researchers have reported that glyphosate and its herbicide formulations inhibit 

the expression of CYP family of enzymes in mammals [69].  

In the present study, the MAC of glyphosate significantly downregulated the expression of CYP1A1 in 

differentiated NSCs and this outcome is in agreement with published studies which state that 

glyphosate herbicide exerts an inhibitory effect on the expression of CYP1A1 in non-neural tissues of 

rodents, fish, cow and in TM3 cell line [217-220]. The inhibitory impacts of glyphosate on the 

expression of CYP1A1in neural tissues have not been reported previously. Uniquely, the present study 

is the first study which has demonstrated the inhibitory impacts of glyphosate on the expression of 

CYP1A1 gene in cultured NSCs isolated from the brain of developing mouse.        

Another cytoprotective response deals with OS. Excessive production of ROS takes place when a cell 

is exposed to environmental pollutants. These ROS exert a deleterious impact on macromolecules of 

cells [19].  
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In general, cells respond to the overproduction of ROS by up-regulating superoxide dismutase (SOD) 

to neutralize OS [221]. SOD exists in three isoforms. The most important isoform, SOD1, interacts 

with superoxide radicals and converts them into less toxic H2O2 [222-225]. The MCL of glyphosate 

significantly up-regulated the expression of SOD1 which is consistent with the published study which 

has reported the up-regulation of SOD1 in hepatic tissues of rat after exposure to glyohosate [226].  

The increase in the expression of SOD1 in the differentiated culture of NSCs after exposure to MCL of 

glyphosate indicates the possible risk of OS for the cells of the nervous system at EPC of glyphosate.  

Taken together, findings of the present study indicate that NSCs from the SVZ of the developing 

mouse are highly sensitive to the toxic potentials of subtle concentrations of glyphosate. The observed 

changes in the expression of neuronal ß-tubulin III, astrocytic S100ß and the cytoprotective responses 

(CYP1A1 and SOD1) markers in the differentiated culture of NSCs upon exposure to EPC of 

glyphosate proposed that quantification of gene expression could be a potential readout for the 

determination of developmental neurotoxicity of the subtle concentrations of glyphosate. 

 4.3. Impact of TRX flavonoid on the fate of NSCs  

Plants have been considered as a potential source of natural molecules with attractive biological 

activities to treat a variety of ailments for mankind [227]. Amongst plant-based molecules, flavonoids 

have specifically earned the interest of neuroscientists for a couple of decades due to their 

neurogenerative and neuroprotective properties against neurological disorders [13, 16, 107, 110, 111]. 

TRX is a water-soluble flavonoid that has already proven its neurogenerative and neuroprotective 

activities against several neurological disorders in rodents  [12, 99, 122, 123, 127, 129, 130]. Most of 

the studies concerning TRX, however, are effect-based in vivo studies lacking a precise mechanism of 

action.  
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Discussion 

It is worthful to uncover the augmenting effects of TRX on the basic processes of neurogenesis. Such 

information could be highly valuable to optimize the TRX as a lead compound in dealing with 

neurodegenerative disorders in future. To screen plant-based molecules such as TRX, NSCs based in 

vitro assay pose an ideal choice due to its ability to recapitulate processes involved in neurogenesis [3, 

149, 154, 228]. 

In this part of the thesis, NSCs in vitro assay was exploited to explore the augmenting effects of  TRX 

on the major neurogenesis processes and its neuroprotective properties against the inhibitory impacts 

of oligomeric Aß42 on neural cell differentiation [229].  

4.3.1. Neurogenerative effects of TRX flavonoid 

The NSCs are best recognized by employing the general NSCs marker Nestin along with GFAP which 

has been used as a secondary marker. Around 30% of mammalian NSCs are double-stained for Nestin 

and GFAP [16, 230, 231]. The doubly stained NSCs respond quickly to the injury of the brain by 

differentiating into neurons and supporting cells [232]. Additionally, doubly stained NSCs also 

facilitate neuronal cell migration [233]. Results of the present study demonstrated that the higher 

concentration of TRX employed in the present study significantly increased the percentage of doubly 

stained NSCs and therefore exhibited strong activating effects in producing quick response to the 

injury of the brain. 

The proliferation of NSCs relies on multiple growth factors [147, 234]. Flavonoids have been shown 

to stimulate the proliferation of NSCs by up-regulation of genes and proteins involved in the cell cycle 

[16, 112]. Researchers have demonstrated the stimulatory effects of TRX on the proliferation of non-

neural cells [131]. Intriguingly, TRX did not exhibit modulating impact on the proliferation of NSCs 

in the present study. In differentiation experiments, however, TRX has been found to stimulate the 

branching tips and length of neurites in differentiated neurons from NSCs. Various studies in the 

literature have also revealed the augmenting effects of flavonoids on the differentiation and growth of 

neuronal cells.  
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Baicalin flavonoid, for instance, enhances the ratio of neurons differentiated from NSCs and their 

neurite outgrowth by up-regulating the phosphorylation of the Erk1/2 pathway [106]. Quercetin 

improves neurite outgrowth by up-regulating Gap43 and cAMP in a cultured neuronal cell line [235]. 

The Phenylated flavonoid ENDF1 enhances the neurite branching density by up-regulating the 

expression of the DCX gene associated with microtubule-binding protein [14]. 

The stimulatory impacts of TRX on neurite outgrowth and extension were most probably associated 

with the antioxidant activity of TRX since reduced OS has been shown consistently to enhance 

neuronal differentiation of NSCs [236]. 

The results of the neurosphere migration assay demonstrated that TRX significantly increased the 

cellular migration of the differentiated culture of NSCs. The flavonoids such as quercetin induce 

neural cell migration in a mouse by increasing the expression of the Chemokine SDF1 receptor gene 

[13]. Several studies have reported the inducing impacts of TRX on the migration of umbilical vein 

endothelial cells when employed in combination with hydrolysates of cerebroprotein [131]. 

Researchers have reported that TRX induces migration of cell lines by modulating regulatory genes of 

transcription factors [130, 131]. The present study is the first in vitro study which has demonstrated 

the augmenting impact of TRX on neurite growth and neural cell migration.  

On the other hand, the study demonstrated that TRX has not been unable to exert stimulatory impact 

on the proliferation of neural cells and no concerning published reports have been found. It makes the 

present study the first to report the impact of TRX on neural cell proliferation which has been found to 

be non-significant. The exact molecular mechanism of stimulatory actions of TRX on neurite growth 

and neural cell migration needs to be determined in future studies.   
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4.3.2. Neuroprotective effects of TRX flavonoid against Aß42 

In another set of differentiation experiments, TRX has been found to neutralize the inhibitory effects 

of Aß42 on neuronal differentiation, neurite outgrowth and neurite extension. Oligomeric Aß42 is 

implicated in neurological disorders such as AD [237, 238]. Aß42 exhibits its neurotoxicity by 

reducing the differentiation of neurons, synaptogenesis and neurite outgrowth principally by inducing 

OS [103, 105, 239]. Several in vivo studies have reported the neuroprotective activities of TRX against 

Aß42 induced memory loss, learning defects and locomotive abnormalities in animal models. 

Researchers have reported that TRX neutralizes Aß42-induced neurotoxicity by ameliorating 

dysregulated processes including OS, neuroinflammation, synaptic deformation, elevated 

acetylcholine esterase level and disrupted action potential [99, 119, 240]. Researchers have also 

reported the anti-apoptotic action as one of the mechanisms of neuroprotective activity of TRX against 

the Aß42-induced toxicity [119, 120, 241, 242].  

In the present assay, the neuroprotective property of TRX against the Aß42-induced toxicity was 

probably associated with the anti-oxidant activity of TRX as many other flavonoids evaluated against 

the neurotoxicity of Aß42 display anti-oxidant as a principal mechanism of neuroprotection [119, 120, 

241]. The neurotoxicity of Aß42 is mainly associated with oligomeric and fibrillar forms of Aß42. 

Many flavonoids possess the natural ability to prevent the transformation of a non-toxic monomeric 

form of Aß42 to a toxic fibrilar or oligomeric form [243]. Two structural features of a flavonoid 

molecule prerequisite for its ant-fibrillization activity against Aß42 are the presence of i) aromatic 

rings ii) hydroxyl groups in the molecules of flavonoid. The aromatic ring of a flavonoid interacts with 

hydrophobic amino acid residues whilst the hydroxyl group of a flavonoid interacts with the 

hydrophilic amino acid residue of Aß42. Such chemical interactions result in the disaggregation or the 

prevention of fibrllization of Aß42 [243]. The TRX possesses all the structural features prerequisite for 

prevention of fibrilization of Aß42 so it is can be assumed that TRX  prevents oligomerirzation of 

Aß42 (see Figure 3).  
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This assumption is supported by the findings of Wang and co-workers which have demonstrated that a 

flavonoid, rutin, attenuates the toxicity of Aß in neuroblastoma cells by preventing the oligomerization 

of Aß [244]. The TRX has a great structural similarity to that of rutin [245]. Further studies are 

required to explore whether TRX is capable of preventing oligomerization of Aß42 through chemical 

interactions.  
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5. Conclusions 

The present study involves the development of cost-effective and physiologically relevant in vitro 

assay system based upon the primary NSCs derived from the SVZ of the developing brain of the 

mouse. The NSCs-based model provided a robust, sensitive and economical bio-tool to differentiate 

neurotoxic impacts of a complex assortment of pollutants found in treated and untreated water samples 

of various origins. The highly sensitive nature of the assay was able to reveal the neurotoxic impacts 

of subtle concentrations of glyphosate, an environmental pollutant. The utility of the assay was further 

reflected by its potential to assess the neurogenerative potential of flavonoid Troxerutin.  

The in vitro assay has revealed that GW and DW samples collected from a water facility located at 

Hemsbach town in the German state of Baden-Wuerttemberg present no threat to the basic neurogenic 

processes. The absence of neurotoxicity in the present study confirms the suitability of GW and DW 

for human consumption. The RWW adversely affected all of the studied processes of neurogenesis 

reinforcing its toxic impacts on animals. In the same manner, TSW has also not been found safe since 

it adversely affected the proliferation and migration of neural cells. The findings of this part of the 

study indicate the incapability of WWTP operating in the study area to completely eliminate or reduce 

the levels of neurotoxicants which could adversely impact the processes of proliferation and migration 

of neural cells. The study suggests that TSW is not fit for human consumption unless it is subjected to 

additional extensive purification processes and treatments. The detected neurotoxic responses indicate 

that NSCs-in vitro may be a very useful screening tool for the assessment of the quality of water 

sampled from different sources having different levels of contaminants.  

Glyphosate is the most extensively employed pesticide and is included in the list of leading 

environmental pollutants. It is assumed to be non-toxic at or below EPC (MAC and MCL) in potable 

water as per recommendations of environment regulatory authorities. Conversely, the assay based on 

the NSCs model in the present study highlighted the neurotoxic potential of glyphosate at presumably 

safe EPC ranges.  
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Conclusion 

While establishing neurotoxic potentials, these were the gene expression experiments which 

conclusively indicated that EPC of glyphosate are capable of inducing oxidative stress and increasing 

the susceptibility of neural cells to toxic compounds. It can be safely concluded that gene-expression 

experiments as a part of in vitro assay system are vital to uncover the neurotoxicities associated with 

sublethal or non-toxic concentrations of glyphosate or other neurotoxicants. Moreover, the subtle 

concentration of glyphosate has been found to induce acute toxicity and activate Ca
2+ 

signalling in the 

cultured NSCs. Prospective researchers need to verify the findings and conduct detailed molecular 

studies to uncover molecular pathways involved in the neurotoxic effects of EPC of glyphosate present 

in potable water. If confirmed, such findings should encourage the regulatory authorities to review the 

safety standards concerning EPC of glyphosate in potable water.  

The assay developed in the present study using the NSCs has also been found to be successful in 

screening natural compounds with neurogenerative properties. Through this assay, flavonoid TRX has 

been shown to possess a neuroaugmenting impact on the basic neurogenic processes. In parallel, the 

TRX could successfully reverse the inhibitory impacts of oligomeric Aß42 on neuronal differentiation 

and neurite growth. In conclusion, TRX is a powerful neuroprotective flavonoid exerting a positive 

impact on the basic neurogenic processes and reversing the deleterious impacts induced by amyloid 

deposition. Theoretically, such model should be capable of evaluating similar molecules for their 

neuroprotective properties.  

The findings of the present study imply that TRX is a useful pharmacological lead compound. To 

move forward, these findings necessitate the implementation of detailed molecular studies to explore 

the molecular pathways governing neurogenerative/neuroprotective properties of TRX. To elucidate 

further details, prospective researchers may choose to evaluate the possible role of TRX in the 

disaggregation of the toxic oligomeric form of Aß42 into non-toxic monomeric form. Such studies 

may lead to optimization of the TRX as a potential therapeutic candidate for treating 

neurodegenerative disorders.  
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Supporting method 

Characterization of pesticides impurities in water samples by LC/GC-MS/MS 

Pesticides diethyltoluamide (DEET), mecoprop and terbutryn in water samples were 

characterized by LC-MS/MS (liquid chromatography) and dieldrin was characterized by a 

GC-MS/MS (gas chromatography). Water samples were sent to an analytical firm “Limbach 

Analytics GmbH, Mannheim laboratory, Edwin Reis Strasse.6-10, 68229, Mannheim, 

Company headquarters. Mannheim District court: HRB 720967, Managing director, Dr 

Gerold Appelt, Dr Jürgen Grochowski” with analysis reference number: 17-10360 date 

13.07.2017. The complete analysis and interpretation of the data were done by the firm. For 

LC-MS/MS analysis, the chromatographic separation was carried out by using SunShell C18 

CoreShell (2.6 µm, 2.1 i.d. x 50 mm) column through the Shimadzu Nexera2-HPLC system 

(Shimadzu, Japan) under gradient program. Eluent A was composed of 0.1% formic acid in 

water and Eluent B of (0.5% formic acid and 20mmol/L ammonium format in methanol).The 

analytes were quantified by ABSciex Triple Quad 5500-MS mass spectrometer (AB Sciex 

corporation, USA). For GC-MS/MS analysis, the chromatographic separation was carried out 

by GC column DB-35MS UI (30 m × 0.18 mm × 0.18 µm film) through the Agilent 7890 GC 

system and analytes were quantified by Agilent 7010C Triple Quad mass spectrometer 

(Agilent, USA). Hydrogen gas was used as a mobile phase. Standard solutions of dieldrin, 

DEET and terbutryn contained 100ng/L of the each pesticide while standard solution of 

mecoprop contained 50 ng/L.  
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Fig. S1 Ion chromatogram of pesticide dieldrin in RWW. Signal intensity was measured as cps (count per second) along y-axis against the time in 

min along the x-axis. RWW: raw wastewater. 



 

 

Fig. S2 Ion chromatogram of pesticide dieldrin in TSW. Signal intensity was measured as cps (count per second) along y-axis against the time in 

min along the x-axis. TSW: treated sewage water. 



 

 

Fig. S3 Ion chromatogram of pesticide dieldrin in GW. Signal intensity was measured as cps (count per second) along y-axis against the time in min 

along the x-axis. GW: groundwater.  



 

 

Fig. S4 Ion chromatogram of pesticide DEET in RWW. Signal intensity was measured as cps (count per second) along y-axis against the time in 

min along the x-axis.  

 

 

 

 

 



 

 

Fig. S5 Ion chromatogram of pesticide DEET in TSW. Signal intensity was measured as cps (count per second) along y-axis against the time in min 

along the x-axis.  

 

 

 

 

 



 

 

Fig. S6 Ion chromatogram of pesticide DEET in GW. Signal intensity was measured as cps (count per second) along y-axis against the time in min 

along the x-axis.  

 

 

 

 



 

 

Fig. S7 Ion chromatogram of pesticide Mecoprop in RWW. Signal intensity was measured as cps (count per second) along y-axis against the time in 

min along the x-axis.  



 

 

Fig. S8 Ion chromatogram of pesticide Mecoprop in TSW. Signal intensity was measured as cps (count per second) along y-axis against the time in 

min along the x-axis.  



 

 

Fig. S9 Ion chromatogram of pesticide Mecoprop in GW. Signal intensity was measured as cps (count per second) along y-axis against the time in 

min along the x-axis.  



 

 

Fig. S10 Ion chromatogram of pesticide terbutryn in RWW. Signal intensity was measured as cps (count per second) along y-axis against the time in 

min along the x-axis.  

 

 

 

 

 



 

 

Fig. S11 Ion chromatogram of pesticide terbutryn in TSW. Signal intensity was measured as cps (count per second) along y-axis against the time in 

min along the x-axis.  

 

 

 

 



 

 

Fig. S12 Ion chromatogram of pesticide terbutryn in GW. Signal intensity was measured as cps (count per second) along y-axis against the time in 

min along the x-axis.  

 

 



 

 

Fig. S13 Viability and proliferation assays for evaluating the effect of media processing 

parameters on neural stem cells. CON: normal control included the neural stem cell culture in 

normal DMEM-F.12 medium. CON.RE: reconstituted control included the neural stem cell 

culture in lyophilized DMEM-F.12 medium reconstituted with double distilled water (Normal 

control for water samples experiments). Neurosphere clonogenic proliferation assay was 

performed in a 96 well-plate. (a) Represents the mean neurosphere number for each condition. 

(b) Represents the neurosphere diameter for each condition. Viability was determined through 

Calcein/ Propidium Iodide Live and dead assay performed in 24-well plate. (c) Represents the 

percentage of Calcein stained live cells. Percentage viability was calculated from the total cell 

count in phase-contrast pictures. Experiments were performed in 5 independent replicates 

(n=5) with 3 technical replicates for each experimental condition. 

 



 

 

Fig. S14 Differentiation and migration assays for evaluating the effect of media processing 

parameters on neural stem cells. Differentiation experiments were carried out by seeding 

neural stem cells on ECM coated 12 mm glass coverslips in 24 well plates. ß-tubulin-III was 

used as a neuronal marker and GFAP was used as an astrocyte marker. Total of 20 

microscopic fields was captured with a 20x lens of a fluorescent microscope in each technical 

replicate for each condition. (a) Represents the percentage of both neurons and astrocytes 

from total nuclei count stained with DAPI. (b) Represents the % of the area of a glass 

coverslip covered by differentiated neurons and astrocytes. A whole glass coverslip was 

scanned by a fluorescent microscope and then the area was calculated by using Image J. (c) 

Represents the mean distance travelled by migrating cells from a neurosphere core. Phase-

contrast pictures of neurospheres attached on glass coverslips were taken with a phase-

contrast microscope and the migration distance was calculated by using CELL-SENE 

software. For differentiation and migration assays, 5 independent experiments (n=5) were 

performed with 3 technical replicates for each condition.          
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Supplementary materials 

Supportive Methods 

Test compound 

In the given study the effects of glyphosate [N-(Phosphonomethyl)glycine, ≤100%] 

compound with Mol. Wt. 169.07 (CAS# 1071-83-6, Sigma-Aldrich, Taufkirchen, Germany) 

were evaluated on the viability, proliferation, differentiation, and migration of NSCs from 

SVZ of the postnatal mouse. Glyphosate was dissolved in double-distilled water and vortexes 

thoroughly until completely dissolved. A stock solution of (7000 µg/L x 100). Working 

solutions were made from the stock solution by diluting in double-distilled water. Working 

solutions were filtered through a membrane filter under a sterile bench before use. The final 

volume of the glyphosate solution into the cell culture medium was 1% of the total volume. 

The control well contained sterile double-distilled water with volume 1% of the total volume 

of cell culture medium. 

Viability and cytotoxicity assays  

For the live-dead assay, approximately 10000 NSCs were seeded in proliferation medium 

with and without glyphosate test concentrations into each well of a 24-well plate for 24 h. 

Cells were washed with PBS and then incubated with the Live-dead reagent (containing 3µM 

Calcein-AM and 2.5µM propidium iodide in PBS) for 15 min at 37°C in dark. Approximately 

pictures of 10 microscopic fields were captured for both green and red fluorescence as well as 

for phase-contrast modes by a fluorescent microscope CKX41SF (Olympus Corporation, 

Tokyo, Japan) using 20 x objective for each condition in each replicate. Calcein-AM is a cell-

permeant dye preferably taken up by living cells. Intracellularly, Calcein-AM is converted 

into a green fluorescent molecule thus indicating living cells. Propidium iodide enters the 

dead cells through the damaged membrane and is intercalated into the nucleus and gives red 

fluorescence (Sadeh et al., 2016). We employed WST-1 cytotoxicity tests only for those 

concentrations of glyphosate which produced significant effects on the viability of NSCs in 

the live-dead assay. Around 40000 cells were seeded into each well of a transparent flat-

bottom 96-well plate and were kept in a proliferation medium for 24 h. Then cell culture was 

exposed to glyphosate for a further 24 h. WST-1 cytotoxicity assay was performed according 

to Kit instructions WST-1 (05015944001, Roche Diagnostics, Mannheim, Germany). The 

photometric analysis for WST-1 assay was performed by fluorescent multi-plate reader 

GENios (TECAN, Austria). 



Calcium imaging 

Experimental conditions for determination of changes in Ca2+ signal due to glyphosate 

exposure were set up by following the approach described by researchers in their study with 

necessary modification (Bufe et al., 2015; Bufe et al., 2012). Differentiation medium was 

removed after 48 h of incubation and cells were gently washed with C1 buffer (2.5 mM 

glucose,130 mM NaCl, 5 mM KCl, 10 mM HEPES, and 2 mM CaCl2, pH 7.2). Cells were 

loaded with 2 µM Fluor-4AM (F14201, Life Technology, Eugene, USA) in C1 buffer and 

incubated for 45 min at room temperature followed by washing twice with C1 buffer. The 

glass coverslip was then transferred to a small plastic Petri dish equipped with a glass-bottom 

containing 2 mL of C1 buffer. Ca2+ dependent fluorescent changes were recorded by Carl 

Zeiss cell observer SD confocal microscope using 20 x objectives on green fluorescence mode 

by using AxioVision 4.8 Sp2 software (Carl Zeiss Micro-imaging GmbH, Jena, Germany). 

Cells were initially exposed to C1 buffer as vehicle control for 2 min then further 2 min for 

glyphosate and finally 2 min for 30 µM ATP +ve control. Ca2+ response was defined as an 

increase in excitation ratio at 340/380 nm that was 4 times higher than baseline noise (Bufe et 

al., 2015; Bufe et al., 2012). At least 100 cells were included in the observation for each 

condition in each replicate. 

Proliferation assay 

Neurosphere clonogenic assay was performed by following the approaches described by 

researchers in their studies. Neurosphere number and diameter were two readouts of the 

clonogenic assay (Baumann et al., 2014; Fritsche et al., 2018). Diameter implies the 

proliferation of NSCs within the neurosphere architecture and number indicates the self-

renewal property of NSCs (He et al., 2013). Clonogenic assay was performed by seeding 1000 

NSCs in 200µL of proliferation medium into each well of a 96-well plate with and without 

glyphosate. One half of the medium was replaced by a fresh proliferation medium on every 

3rd day. The whole well of a 96-well plate was scanned with a 4 x lens of a microscope 

(CKX41SF, Olympus Corporation, Tokyo, Japan) using phase-contrast mode at each 

observation time point (i.e. on 3rd, 5th, and 7th day of the incubation) (Xiong et al., 2011), the 

neurosphere number was counted and neurosphere diameters were measured by a Cell-SENS 

software. Glyphosate effect on NSCs proliferation was further confirmed by a more sensitive 

assay based upon immunostaining for proliferation markers BrdU and Ki67. Ki67 is the 

nuclear protein marker expressed during every phase of the cell cycle except the resting 

phase. BrdU is expressed exclusively during the S-phase of the cell cycle. Calculating a ratio 



of BrdU to the Ki67 positive cells gives an accurate estimation of actually proliferating cells 

(Tanaka et al., 2011). In our experiment, BrdU/Ki67 proliferation was performed in the same 

way as reported by researchers in their study (Masood et al., 2020). 

In vitro differentiation assay 

Around 20000 cells were allowed to adhere at the surface of each of 12 mm glass coverslips 

coated with ECM (E1270, Sigma-Aldrich, Taufkirchen, Germany) for 1h. The culture was 

differentiated in a differentiation medium with and without 0.1 µg/L and 700 µg/L of 

glyphosate in a 24-well plate. On completion of differentiation, cells were fixed with 4% 

paraformaldehyde and then stained for neuronal and astrocytes markers. The percentage of 

neurons and astrocytes was calculated. Total neurite length and mean neurite length were 

measured as neuronal morphological parameters while the soma area was recorded as a 

morphological readout of astrocytes. For each condition of each replicate, 30 microscopic 

fields with 200 x magnifications were taken with a fluorescent microscope (CKX41SF, 

Olympus, Tokyo, Japan). Quantification of morphological parameters of differentiated 

neurons and astrocytes was done using Cell-Sens software. Neurite outgrowth was quantified 

by calculating the percentage of non-neurite neurons from the total neuronal count. While 

total, and mean neurite length of neurons and the soma area were measured in fluorescent 

images by using the tracing tool of Cell-SENS software (Olympus, Tokyo, Japan). Around 

100 cells were included in morphological observations for each treatment condition in each 

technical replicate.   

Immunostaining 

Fixed cultures were immunostained for the neuronal, astrocytes, and cell proliferation markers 

as previously reported (Bernas et al., 2017). Briefly, cells were exposed to 0.3% solution of 

triton x 100 for 10 min at 25°C to improve cell permeability followed by washing once with 

PBS-tween and twice with PBS. The culture was incubated with Normal donkey serum (S30, 

Merck, Darmstadt, Germany) 10% for 1 h to mask nonspecific binding of antibodies at 25°C 

followed by incubation for 1h with primary antibodies reconstituted in 5% blocking agent.  

Rat anti-BrdU (OBT0030G, AbDSerotec, Kidlington, UK), Rabbit anti-Ki67 (ab16667, 

Abcam, Cambridge, UK) were primary antibodies used as proliferation markers. Mouse-anti 

ß-tubulin III (MAB1637, Merk, Darmstadt, Germany) was a neuronal marker and Rabbit anti-

GFAP (Z0334, Dako, Glostrup, Denmark) was the astrocytic marker used in our study. The 

culture was washed thrice with PBS and exposed to Alexafluor 594 and Alexafluor 488 



conjugated secondary antibodies (Life Technology, Eugene, OR. USA) for 1 h at 25°C 

followed by washing thrice with PBS. The cell nuclei were counterstained by incubating the 

culture with DAPI (Sigma-Aldrich, Taufkirchen, Germany) for 10 min followed by final 

washing three times in PBS. Glass coverslips with stained culture were fixed on a glass slide 

by a fluorescent mounting medium. For BrdU staining, the predenaturation of nucleic acid 

was done by incubating the fixed proliferated cells on glass coverslips with 2N HCl solution 

for 15 min at 37°C. Acid was neutralized by 0.1 M Na-borate buffer of pH 8.5 followed by 

washing twice with PBS (Ostenfeld and Svendsen, 2004). The rest of the procedures were 

similar to those of other antibody stainings. 

RT-PCR Experiments 

RT-PCR experiments were performed for NSCs differentiated with and without exposure to 

0.1 µg/L and 700 µg/L concentrations of glyphosate. Around 500000 cells were differentiated 

into each well of a 6 well plate coated with ECM gel for 7 days. Cells were then detached 

enzymatically and total RNA from the differentiation culture was extracted by TRIzol® 

(Thermofischer, Waltham, USA) following manufacturer instructions. Total RNA was 

quantified by Nanodrop spectrometer (Thermo Fisher Scientific, Wilmington, DE, USA) and 

then stocked at -80°C until used for PCR. Reverse transcription to complementary DND 

(cDNA) was done with 100 ng of RNA with a final volume of 20 µL by using a reverse 

transcription kit BioScript and following Kit method (Bioline London, UK). Initially priming 

premix (RNA, random hexamer, dNTP, and DEPC-treated water) was heated at 70°C for 5 

min followed by cooling in ice. In the second step, reaction premix (Reverse transcriptase, 

RT-buffer, RNAse inhibitor, and DEPC-water) was mixed with priming premix, and the 

reaction was performed as (10 min 20°C, 60min 40°C and 10 min 70°C). Real-time PCR was 

performed using the SensiMixTMSYBR®Low ROX Kit (Bioline London, UK) using 

QuantStudio™ 5 System272530370 (Waltham, USA). The following reaction condition was 

set on the instrument to amplify target mRNA in the differentiated NSCs culture: “95°C for 3 

min, 40 cycles of 95°C for 30 s, 60°C for 30 s and 72°C for 30 s. After 40 cycles, the 

dissociation curve was generated for the determination of the melting point of the amplified 

cDNA and to authenticate the production of a single gene product (Tahir et al., 2019). Gene 

expression data were normalized to the reference gene GAPDH. Relative gene expression of 

all target genes was calculated using equation (2-∆∆CT) described by researchers (Hegewald et 

al., 2011; Soleimani et al., 2011). 

 



Supportive results 

 

 

 

Fig. S1. Glyphosate effects on NSCs proliferation. Neurosphere clonogenic assay and 

BrdU/Ki67 immunostaining were performed to evaluate the effect of Environment 

permissible concentrations of glyphosate on the proliferation of NSCs in a 96-well plate. [A] 

Represents the neurosphere number. [B] Represents the mean diameter of neurospheres. 

Neurosphere number and diameter were measured by Cell-SENS software. [C] Represents the 

percentage of BrdU +ve and Ki67 +ve cells which were calculated from the total DAPI 

stained nuclei count. The assay was performed as five independent experiments (n=5) with 3 

technical replicates for each treatment condition. 0.1 µg/L: MAC; 700 µg/L: MCL; Con; 

Vehicle control. Data are mean ± SD. 
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Supplementary material  

Calcein/Propidium iodide Live-dead assay 

Calcein/propidium live-dead assay was performed to evaluate if test concentrations of 

troxerutin flavonoid show cytotoxicity in NSCs culture. Around 10000 NSCs were 

proliferated in DMEM /F-12 differentiation medium into each well of a 96 well plate 

precoated With ECM gel for 48 h with and without exposure to 25 µM, 50 µM and 100 µM 

concentrations of troxerutin. The live-dead assay was performed in the same way as described 

by the researchers in their protocol (1). The live-dead reagent contains Calcein-AM 

(C3100MP, Life Technology, Eugene, USA) as a marker for viable cells and propidium iodide 

(P1304MP, Thermofischer, Waltham, USA). Calcein is a colourless compound and easily permitted 

through the cell membrane of viable cells. With in the living cell, calcein is converted into a 

fluorescent marker and gives green fluorescence. Propidium iodide enters only enter through the 

broken cell membrane of dead cells and is intercalated into the nucleic acid and gives red fluorescence. 

At least five images of independent microscopic fields were capture for each of phase contrast, green 

and red fluorescent modes by a 20 x objective of a fluorescent microscope (Olympus Corporation, 

Tokyo, Japan) for each condition in each replicate. Percentage of calcein +ve viable cells was obtained 

from the total cell count in the phase-contrast images. The experiment was performed as five 

replicates.  

WST-1 cytotoxicity assay  

Cytotoxicity of 10µM Aß42 was assessed through WST-1 cytotoxicity assay. Around 40000 

NSCs were differentiated into each well of a 96-well plate pre-coated with PDL for 48 h in 

the presence of Aß42. Control was the vehicle used for making Aß42 working solution. WST-

1 assay was performed by following the Kit method (WST-1, Roche, Mannheim, Germany). 



Photometric absorbance was measured using a GENios fluorescent multi-plate reader 

(TECAN, Austria).    

Supporting results and figure. 

We found a non-significant difference between the control and all the tested concentrations of 

troxerutin concerning the viable percentage of NSCs after 7 days exposure (Fig SA). WST-1 

assay revealed that 10µM Aß42 insignificantly affected the viability of neurons/astrocytes co-

culture differentiated for 48 h (Fig SB).     

 

 

Fig S. Live-dead and WST-1 cytotoxicity assays. Calcein/propidium iodide live-dead assay 

was performed for three test concentrations of TRX. NSCs were exposed to TRX for 48 h 

followed by staining with Calcein AM as a live cell marker and propidium iodide as a dead 

cell marker. A: Represents the percentage of viable cells which was calculated from the total 

cell count. WST-1 was performed for differentiated culture of NSCs for 48 h exposed to 

10µM Aß42. Test was performed in a 96 well plate. B: Represents the spectrophotometer 

absorbance values. Con; Control, TRX; troxerutin. Data are presented as mean±SEM. 

Experiments were performed as 5 replicates (n=5).  

 



Moreover, a non-significant difference concerning NSCs viability was also observed 

betweenthe Control and 100µM TRX. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary raw data 

Values in each table are from 5 independent experiments and are the values behind the bar graph. 

Fig 2. TRX effect on neural stem cell markers and proliferation of NSCs.  

Fig.2(A) Neurosphere Number 

        3rd day 5th day 7th day 

Con 25µM 50µM 100µM Con 25µM 50µM 100µM Con 25µM 50µM 100µM 

59 60 69 62 160 135 149 142 114 116 115 104 

88 112 98 96 148 157 162 146 142 146 141 136 

62 64 71 64 136 142 134 121 106 111 117 116 

77 70 86 83 119 121 140 137 113 108 109 97 

75 83 78 85 139 130 135 129 108 102 119 123 

 

 

Fig.2(B) Neurosphere Diameter 

        3rd day 5th day 7th day 

Con 25µM 50µM 100µM Con 25µM 50µM 100µM Con 25µM 50µM 100µM 

34 35 36 35 55 56 54 56 90 87 85 104 

38 37 36 37 57 57 58 61 87 88 84 89 

35 35 34 35 65 62 64 63 93 89 84 88 

36 35 35 36 66 66 62 64 89 87 90 88 

35 36 35 35 64 64 64 66 93 88 85 85 

 

 



 

Fig.2(C) 

         BrdU Ki67 BrdU/Ki67 

Con 25µM 50µM 100µM Con 25µM 50µM 100µM Con 25µM 50µM 100µM 

52 49,7 50 53 66 68 72 70 67 66 65 67 

54 52 52,8 54 69 74,8 76 77 69 69 68 67,7 

55,2 54,8 57,6 54 74 75 76 77 70,7 69 69 68 

55,6 56 59 56 77 78,9 77 80 74,8 69 70 69 

56,7 56 60 57,8 78 80 85 84 81 71 75 70 

 

Fig.2(D) 

      Nestin Nestin.GFAP 

Con 25µM 50µM 100µM Con 25µM 50µM 100µM 

68,8 72 72 64 31 27 27 36 

71 74 70 62 28,9 25 31 38 

68 71 69 65 32 28 32 43 

68 68 67 53 32 32 29 47 

65 68 71 56 34 31 29 44 

 

 

 

 



Fig 4. TRX effect on NSCs differentiation after 7 days and 48 h of incubation. 

Fig 4(A) 

       Neurons Astrocytes 

Con 25µM 50µM 100µM Con 25µM 50µM 100µM 

41,6 47 45 52 51 46,8 47,8 45 

46,5 51,9 52 54 41 37 36 36,9 

60,8 64 62,9 67 28 25,9 27 25 

48,9 52,8 53 55 40,7 38 37 35 

56,9 61 63 68 24 22 23 23 

 

Fig (B) 

        Neurons Astrocytes 

Con 25µM 50µM 100µM Con 25µM 50µM 100µM 

56 59 61,7 65 30 27 29 25 

36 47 50 51,2 41 33,6 38 40 

43,6 48 48 49 36 32 36,6 27 

52,9 53 59 62,8 27 30 26 32 

56,9 56 56 64 25 26,5 28 26 

 

 

 

 

 

 

 

 

 

 

 

 

   



Fig.4(C) 

NNN/TN x 100 

Con 25µM 50µM 100µM 

4,1 2,7 2,7 2,2 

3,3 2,6 2,3 2,7 

3,2 2,4 3,1 1 

4,7 2,9 3,6 2 

9,2 6,7 6,1 2,8 

 

Fig.4(D) 

       NNN Double +ve 

Con 25µM 50µM 100µM Con 25µM 50µM 100µM 

10 6,1 4,5 3 11,4 7,1 5,6 4,53 

10,8 7,1 8 4 9,8 12,9 11,7 4 

6,2 3,6 3,8 3 10 9,7 8,4 5,9 

5,5 2,9 2,9 3 14 9,5 9,5 9,1 

5,7 3,4 2,99 1,84 13 9,9 8,98 7,9 

 

 

 

 



Fig 7. Effects of TRX on morphological parameters of neurons and astrocytes differentiated from NSCs after 7 days and 48 h of 

incubation.  

Fig 7 (A) 

        
Fig 7 (C) 

   TN µN 

 

Astrocyte  area 

Con 25µM 50µM 100µM Con 25µM 50µM 100µM 

 
Con 25µM 50µM 100µM 

82 106 106 120 28 38 37 40 

 

1870 2434 2255 2195 

79 130 133 160 28 41 45 47 

 

2700 3002 2715 1946 

101 149 157 158 36 46 48 48 

 

2747 3041 2835 1884 

116 155 150 194 38 49 50 56 

 

2361 2754 2780 1952 

96 140 176 167 32 44 45 48 

 

1996 2836 2719 1912 

             Fig 7 (B) 

    
Fig 7 (D) 

       TN µN 

 

Astrocyte area 

      Con 100µM Con 100µM 

 

Con 100µM 

      53,44 63,33 22,44 26,8 

 

1143 1042 

      48,84 64,5 21,6 27,4 

 

1165 905 

      47,6 66,6 21,8 31,5 

 

1467 778 

      52,9 67,6 24 30,8 

 

1645 1055 

      49,5 60,5 21,4 27,7 

 

1601 985 

       

 

 

 



 

Fig 9. Effect of TRX on neurite arborisation after 7 days of differentiation. 

     

Fig 9 (A) 

        

Fig 9 

(B) 

   AP EP 

 

Arborization 

Con 25µM 50µM 100µM Con 25µM 50µM 100µM 

 

Con 25µM 50µM 100µM 

2,3 2,38 2,45 2,53 2,82 2,9 2,99 3 

 

1,22 1,21 1,22 1,18 

2,45 2,91 2,59 2,98 2,96 3,32 3,19 3,47 

 

1,2 1,14 1,23 1,16 

2,35 2,4 2,46 2,29 2,87 3,26 3,37 3,27 

 

1,22 1,36 1,37 1,43 

2,34 2,37 2,38 2,47 3 3,18 3,45 3,52 

 

1,28 1,34 1,45 1,42 

2,92 2,87 2,47 2,66 2,92 3,35 3,42 3,65 

 

1 1,16 1,38 1,37 

 

 

 

 

 

 

 



Fig 11. Neuroprotective effects of TRX flavonoid against Aß42 induced depression of differentiation after 48 h of differentiation on ECM coated glass coverslips. 

Fig 11(A) 

     

Fig 11(C) 

       Neurons Astrocytes 

 

TN µN 
   Con Aß(10µM) Aß+TRX Con Aß(10µM) Aß+TRX 

 

Con Aß(10µM) Aß+TRX Con Aß(10µM) Aß+TRX 
   47,9 40 60 40 33,8 37,8 

 

58,49 46,49 60,15 24,58 19,84 27,23 

   46 41,7 52 38 35 34 

 

54,84 43,39 65,78 22,94 19,03 27,29 
   45,9 38,8 50 37 24 29 

 

55,25 44,21 66,45 22,27 20,29 28,05 
   52,9 47 48,5 29 28 25 

 

55,62 41,35 63,13 23,19 18,98 26,16 

   51 48,8 51 36 30 34 

 

56,05 43,86 63,8775 23,245 19,535 27,1825 

   

                Fig 11(B) 

     

Fig 11(D) 

       NNN Double ]ve 

 

Astrocyte area 

      Con Aß(10µM) Aß+TRX Con Aß(10µM) Aß+TRX 

 

Con Aß(10µM) Aß+TRX 

      14,6 29 14,2 4,9 6,4 6,6 

 

1076 922 946 

      12,3 41 14,7 4,9 8,3 6,5 

 

1110 978 856 

      13 25 14,4 4,2 6,5 5 

 

1182 969 977 

      10 36 18,6 3 5,4 4,6 

 

1375 911 967 

      14,9 31,5 12 2,16 6,2 5,6 

 

1185,75 945 936,5 

       

 

 

 



Fig 14. TRX enhances the migration of differentiated cells from NSCs cultured for 24 h. 

         Distance travelled by cells  
     Con 25µM 50µM 100µM 

     
132 129 143 151 

     126 133 148 172 
     

124 124 154 143 
     145 131 151 161 
     

110 133 154 145 
      

Fig S. Live-dead and WST-1 cytotoxicity assays. 
   

 

Fig S(A) 

    

Fig 

S(B) 

 

 
Viability (%) 

 

Absorbence  

 
Con 25µM 50µM 100µM 

 

Con Aß42 

 
89 93 95 91 

 

0,3533 0,3678 

 
86 89 89 89 

 

0,6026 0,515 

 
93 93 90 91 

 

0,4907 0,3474 

 
94 88 88 88 

 

0,5695 0,499 

 
89 92 89 86 

 

0,347 0,2876 
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