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A B S T R A C T

This thesis presents a theoretical analysis of the phase diagram of
ultracold bosons in a lattice and interacting with long-range interac-
tions. The theoretical model is an extended Bose-Hubbard model and
describes the dynamics of ultracold atoms in optical lattices realised
in present experimental platforms. We consider here two situations,
where either the long-range forces are global and emerge from the
coupling with a high-finesse cavity, or they decay with the interparti-
cle distance and can be due to Rydberg interactions or to the atoms
permanent dipoles. We determine the ground state in one and two
dimensions using mean-field treatments. In one dimension we comple-
ment our studies using numerical programs based on tensor networks.
We focus in particular on parameters for which the hopping induced
by the kinetic energy competes with the interaction-induced corre-
lated hopping between lattice sites. We analyse the superfluid phases
emerging from the competition of these two mechanisms, and identify
the parameters, where the two processes destructively interfere. For
power-law interactions this quantum interference leads to insulating
phases at relatively large kinetic energies, where one would otherwise
expect superfluidity. When correlated tunnelling is due to the global
potential of a resonator, the ground state is a self-organised topological
insulator.

Z U S A M M E N FA S S U N G

Diese Arbeit präsentiert eine theoretische Analyse des Phasendia-
gramms von ultrakalten Bosonen in einem Gitter, die langreichweitige
Wechselwirkungen erfahren. Das theoretische Modell ist ein erweiter-
tes Bose-Hubbard Modell und beschreibt die Dynamik von ultrakalten
Atomen in einem optischen Gitter, wie sie in heutigen Experimenten
realisiert werden kann. Wir betrachten hier zwei Situationen: Zum
einen sind die langreichweitigen Kräfte global und entstehen aus der
Kopplung mit einem Resonator. Zum anderen zerfällt das Wechsel-
wirkungspotential mit dem Abstand zwischen den Teilchen, wie es
zwischen Rydbergatomen oder Atomen mit einem permanenten Di-
polmoment auftritt. Wir bestimmen den Grundzustand in einer und
zwei Dimensionen durch Mean-Field Analysen. In einer Dimension
benutzen wir zudem ein auf Tensornetzwerken basierendes nume-
risches Programm. Wir betrachten insbesondere Parameter, für die
das durch die kinetische Energie induzierte Tunneln mit dem von der
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Wechselwirkung induzierten Tunneln konkurriert. Wir analysieren die
superfluiden Phasen, die sich aus dieser Kompetition ergeben, und
identifizieren die Parameter, bei denen die beiden Prozesse destruktiv
interferieren. Für die mit dem Abstand zerfallenden Wechselwirkun-
gen führt diese Quanteninterferenz zu Isolatoren in Parameterberei-
chen, in denen man sonst Superfluidität erwarten würde. Wenn das
Tunneln vom globalen Potential herrührt, ist der Grundzustand ein
selbstorganisierter topologischer Isolator.

iv



C O N T E N T S

introduction 1

1 ultracold neutral atoms in an optical lattice 3

1.1 Ultracold atoms 3

1.1.1 Bose-Einstein condensation in an atomic gas 4

1.1.2 Superfluidity 8

1.2 Ultracold atom in an optical lattice 9

1.2.1 Realization of an optical lattice 9

1.2.2 Eigenstates of a single atom in an optical lat-
tice 11

1.3 Superfluid to Mott insulator phase transition 13

1.3.1 Mapping on the Bose-Hubbard model 14

1.3.2 Ground state of the Bose-Hubbard model 16

1.3.3 Numerical methods 20

2 correlated tunnelling induced by the dipolar

interactions 25

2.1 Introduction 25

2.2 Extended Bose-Hubbard model including the dipolar
interactions 26

2.2.1 Interaction-induced tunnelling 29

2.2.2 Interaction-induced atomic limit: Quantum In-
terference 30

2.2.3 Mean-field considerations 32

2.3 1D ground-state phase diagram 34

2.3.1 Order parameter 35

2.3.2 Density ρ = 1 36

2.3.3 Density ρ = 2 44

2.4 Effect of correlated hopping in a quadratic,
two-dimensional lattice 52

2.4.1 2D extended Bose-Hubbard model 52

2.4.2 Extended mean-field approach 54

2.4.3 Phase transitions at fixed density 58

2.4.4 Phase transitions at fixed V/U 67

2.5 Conclusions 70

2.6 Appendices 72

3 correlated tunnelling induced by atom-photon

interactions 81

3.1 Introduction 81

3.2 Extended Bose-Hubbard model with cavity-mediated
interactions 82

3.3 Mean-field phase diagram of the extended Bose-Hubbard
model 86

v



vi contents

3.3.1 Grand-canonical Hamiltonian 86

3.3.2 Atomic limit 88

3.3.3 Mean-field analysis 90

3.3.4 Ground-state phase diagram 94

3.3.5 Conclusions 102

3.4 Cavity-mediated correlated tunnelling: Mean-field study 103

3.4.1 One-dimensional extended Bose-Hubbard Hamil-
tonian 103

3.4.2 Ground-state phase diagram 106

3.4.3 Conclusions 112

3.5 Self-organised topological insulator due to cavity-mediated
correlated tunnelling 114

3.5.1 Mean-field considerations 115

3.5.2 Connection to the SSH model 116

3.5.3 Topological insulator in cavity QED with bosons 120

3.5.4 Conclusions 127

3.6 Conclusions 128

3.7 Appendices 129

outlook 139

bibliography 143



A C R O N Y M S

bec : Bose-Einstein Condensate

bi : Bond Insulator

bsf : Bond Superfluid

bss : Bond Supersolid

cdw : Charge Density Wave

cgmf : Cluster Gutzwiller Mean-Field

dmrg : Density Matrix Renormalization Group

hi : Haldane Insulator

mi : Mott Insulator

mps : Matrix Product State

ps : Phase Separation

psf : Pair Superfluid

pss : Pair Supersolid

qmc : Quantum Monte Carlo

sf : Superfluid

sgmf : Site-decoupled Gutzwiller Mean-Field

ss : Supersolid

ssf : Staggered Superfluid

sss : Staggered Supersolid

svd : Singular Value Decomposition

vii





I N T R O D U C T I O N

The recent years have witnessed a rapid progress in the control of
the quantum dynamics of atomic and molecular gases [1–4]. These
remarkable advances open the fascinating possibility of shedding
new light on the quantum structure of matter and of its interactions
with the electromagnetic field [4–6]. One prominent example is the
observation of the quantum phase transition between superfluid and
Mott insulator in ultracold atomic gases confined by optical lattices
[7–9]. This quantum phase transition is predicted by the Bose-Hubbard
model [10, 11], that was first theoretically proposed in the condensed
matter community for electrons in superconducting systems [12] and
then extended to bosons [11]. The experimental observations confirm
the capability to simulate these dynamics and control them to the
extent to be able of tuning the parameters and explore the equilibrium
and the out-of-equilibrium phase diagram [4, 6].

New questions arise from the the experimental realization of novel
regimes [5, 13–15]. In the context of optical lattices, the study of
the dynamics of dipolar gases [13] or of atoms interacting via long-
range optomechanical forces [14, 15] requires one to extend the Bose-
Hubbard model by adding the long-range interactions [13–16]. Several
theoretical studies included the effect of long-range potentials by
means of terms describing interactions between the density at different
sites [13, 16–28]. These terms induce density modulations [13, 16–31]
and, for power-law interactions and unit density, lead to the onset of
topological phases, such as the Haldane insulator [32–35].

A careful derivation of the Bose-Hubbard model, however, shows
that the interactions give rise also to additional terms [36–42]. A promi-
nent one is correlated hopping, where the amplitude of the hopping
between neighbouring sites depends on the lattice density distribution
within the range of the interaction [36–42]. Previous studies including
correlated tunneling terms revealed exotic superfluid phases [36, 38,
39, 42]. Nevertheless until now the origin of those exotic phases is not
totally clarified and a limited insight on the effect of the interaction-
induced tunneling on the phase diagram is gained.

One relevant but unexplored aspect is the interplay between corre-
lated tunneling and the tunneling due to single-particle effects. Since
these mechanisms couple the same initial and final state, they can
interfere. This quantum interference is one of the central subject of
this thesis. We determine the phase diagram in the regime, where
the quantum interference between single-particle and correlated tun-
neling is relevant. By means of mean-field calculations and density
matrix renormalization group (DMRG) numerical simulations we iden-
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2 contents

tify and characterize the regime where this mechanism significantly
determine the ground state properties.

This thesis consist of three chapters. In the first chapter we summa-
rize the concepts and theoretical models, which set the basis for our
studies.

In the second chapter we investigate the phase diagram of the ex-
tended Bose-Hubbard model in the presence of dipolar interaction. We
set first the focus on the derivation, highlighting the regime where cor-
related tunneling is relevant. Using a density matrix renormalization
group (DMRG) approach we investigate the canonical phase diagram
for different densities and in one dimension. We then analyse the
ground-state phase diagram of a two-dimensional square lattice by
means of two complementary mean-field approaches.

In the third chapter we characterize the phase diagram of the ex-
tended Bose-Hubbard model when the interactions are global. This
system is realized in experiments with ultracold atoms in a cavity
[43, 44]. We determine the phase diagram in the regime of the experi-
ment [43] and then focus our studies to the situation where correlated
tunneling due to the global interaction becomes relevant. Our study
makes use of mean-field treatments as well as sophisticated density
matrix renormalization group (DMRG) simulations. The latter allows
us to reveal topological phases that are induced by quantum interfer-
ence between single-particle tunneling and the global hopping due to
the cavity.



1
U LT R A C O L D N E U T R A L AT O M S I N A N O P T I C A L
L AT T I C E

Ultracold bosonic atoms in an optical lattice undergo a dynamics that
is described by the Bose-Hubbard (BH) model. This model possesses a
phase transition from an insulating to the superfluid phase, which is
controlled by the interplay between contact interactions of the atoms
and their kinetic energy. The purpose of this thesis is to determine how
these phases are modified by the presence of long-range interactions.
This section provides the basic concepts for the rest of this thesis. We
will review the superfluid to Mott insulator phase transition of the
Bose-Hubbard model and discuss the methods typically applied to
determine the phase diagram.

1.1 ultracold atoms

The last 50 years witnessed a rapid development in the concepts and
techniques of laser cooling and trapping [1–3]. This progress opened
the way to realize and tailor quantum states of matter [4, 5, 45] to
the point of simulating complex quantum dynamics conjectured for
strongly-correlated, condensed matter systems [5]. One important
milestone along the progress is the realization of the Bose-Einstein
condensation (BEC) of atoms in traps [45–47]. BEC occurs when the
ground state of a non-interacting gas is macroscopically occupied at
a finite temperature T below a threshold Tc. In a gas of atoms with
mass m it is observed when the thermal de-Broglie wavelength λdB
becomes comparable with the interparticle distance n−1/31. In order to
figure out the requirement on the physical parameters, we introduce
the thermal de-Broglie wavelength λdB, which is defined as

λdB =

√
2πh̄2

mkBT
, (1.1)

where h̄ ist the Planck constant and kB the Boltzmann constant. Thus
condensation of the bosons can be reached for λdBn1/3 & 1 by either
decreasing the temperature T or increasing the density n. The parame-
ters necessary to observe BEC in an experiment are for instance given

1 Here one considers a homogeneous 3D system with a density of n.
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4 ultracold neutral atoms in an optical lattice

by T = 170 nK and n = 2.5× 1012 cm−3 [45]. The first observation of
BEC in an atomic gas was reported by Anderson et al. [45]. Under
certain conditions the quantum gas forming a condensate can possess
a frictionless flow [48]. In this case the quantum gas is in the so-called
superfluid [48].

This section provides a short introduction on BEC and superfluidity:
In Subsection 1.1.1 we will discuss a BEC of an ideal Bose gas. The
influence of weak contact interactions will be reported at the end
of Subsection 1.1.1. In the following Subsection 1.1.2 we will shortly
discuss the connection between BEC and superfluidity. This section is
based on the literature in Refs. [4, 6, 48–51].

1.1.1 Bose-Einstein condensation in an atomic gas

We consider N non-interacting particles with mass m in a box of
volume V = Ld in d-dimensional space. Their Hamiltonian takes the
form

Ĥ =
N

∑
j=1

Ĥj , (1.2)

where Ĥj =
p̂j
2m is the Hamiltonian of the particle j with j = 1, ..., N.

Here p̂j is the particle’s momentum operator in d-dimensional space
and is canonically-conjugated to the position operator r̂j fulfilling the
commutation relations[

x̂l,j, p̂k,j′
]
= ih̄δl,kδj,j′ with l, k = {1, .., d} and j, j′ ∈ {1, .., N} ,

where x̂l,j and p̂k,j′ are the entries of the d-dimensional vectors r̂j and
p̂j′ , respectively. Since

[
p̂l,j, Ĥj

]
= 0 for all l ≤ d and j ∈ {1, .., N} we

can choose the basis of common eigenstates of both operators: Thus
we consider the eigenstates of the momentum operator in position
space

ψp(r) =
1√
V

eip·r/h̄ (1.3)

at eigenvalue p. By imposing periodic boundary conditions2 the mo-
mentum takes values p = 2πh̄n/L, where n is a d-dimensional vector
with integer entries.

The many-body eigenstates Ψk of the N-particle Hamiltonian in
Eq. (1.2) are given by superpositions of the product over all particles
in a certain single-particle state, Eq. (1.3), and is here labeled by
k. Its form depends on the spin degree of freedom of the particles.
The many-body eigenstate of particles exhibiting a half integer spin
has to be anti-symmetric under permutation of the particles. In this

2 Here one requires on the eigenstates ψ(x, y, z) in 3D system the relation ψ(x, y, z) =
ψ(x + L, y, z) for the y-, x- and z-direction.
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case the particles are called fermions. Particles with integer spin are
called bosons. Their many-body wavefunction is symmetric under
permutation of the bosons. We will consider here particles with zero
spin and thus bosons.

The corresponding eigenenergies of the Hamiltonian, Eq. (1.2), take
the values

Ek = ∑
p

εpnp (1.4)

with

εp =
p2

2m
(1.5)

and np ∈ {0, .., N} the occupation number of the single-particle state
with momentum p. The ground state of the Hamiltonian in Eq. (1.2)
is given by

Ψk=0(r1, r2, ..., rN) =
N

∏
j=1

ψ0(rj) , (1.6)

where the single-particle state ψ0(rj) is the one in Eq. (1.3) with p =

(0, .., 0) for all particles.
We now consider a grand-canonical ensemble and denote by T

the temperature and by µ the chemical potential. Since we consider
particles with zero spin they fulfill the Bose-Einstein statistics. Within
the grand-canonical ensemble the average occupation numbers of each
single-particle state at energy εp follows the Bose-Einstein statistics
[48]

n̄(εp) =
ze−βεp

1− ze−βεp
. (1.7)

Here z =βµ is the fugacity and β = 1/kBT. We single out the average
occupation of the ground state

n̄(ε0) =
1

e−βµ − 1
, (1.8)

which we denote by N0. We note that the chemical potential shall
fulfill µ < 0 in order to ensure that n̄(εp) ≥ 0 for all p. The number of
particles in the excited states constitutes the thermal component and
it is the sum over the mean number of particles with energy εp > ε0:

Nex =
′

∑
p

n̄(εp) , (1.9)

where the sum runs over all different vectors p except for the one
of the ground state. The total number of bosons N is conveniently
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written as the sum of the number of bosons in the condensate and in
the thermal fraction:

N = N0 + Nex . (1.10)

Bose-Einstein condensation occurs when N0 is macroscopically occu-
pied [51]. We therefore analyze N0 = N − Nex. For a large volume V
we can take the continuum limit of Eq. (1.9)3 and write the thermal
fraction as an integral over the energies

Nex =
∫ ∞

0
ρ(ε)n̄(ε)dε , (1.11)

where n̄(ε) is the continuum limit of Eq. (1.7) and ρ(ε) denotes the
density of states [6]

ρ(ε) =

(
2π

h̄

)d

2mLdSd(2mε)(d−2)/2 , (1.12)

where Sd is the surface of the d-dimensional sphere4 .
An inspection of the properties of the integral in Eq. (1.11) as a

function of the temperature shows that for d = 3 and for T ≤ Tc [48]

Nex(T) = N
(

T
Tc

) 3
2

, (1.13)

when Tc is given by the expression [48]

Tc =
2πh̄2

mkB

(
N

Vg3/2(1)

)2/3

(1.14)

with g3/2(1) = 2.612. In this case the condensate fraction is given by
[48]

N0

N
= 1−

(
T
Tc

) 3
2

(1.15)

and thus the ground state is macroscopically occupied for T < Tc. Its
behaviour as a function of T in units of Tc is shown in Fig. 1.1. For
d ≤ 2, instead, Nex(T) is not bounded for any T 6= 0 [6].

3 The continuum limit is justified when the spacing between two neighboring energies
is much smaller then the thermal energy.

4 Note for d = 2 the zero has to be excluded in the integral (1.11)
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Figure 1.1: The condensate fraction N0/N as function of the temperature
T for a uniform ideal Bose gas in three dimension. Below a
critical temperature Tc, Eq. (1.14), the condensate occupation is
macroscopic.

Properties

In an ideal case, the state where the bosons condensate is the eigen-
state at p = (0, .., 0). In the following we inspect the properties of
the BEC in the limit T = 0, where N = N0 and the thermal fraction
vanishes. We now introduce some useful concepts by inspecting the
properties of the condensate. Since the condensate is an eigenstate
of the momentum, it has spatial coherence over the whole box. This
becomes visible by inspecting the one-body density matrix. In position
space the corresponding one-body density matrix reads [48]

ρ1(r, r′) =N0

∫
dr2...drN0 Ψ∗k=0(r, r2, ..., rN0)Ψk=0(r′, r2, ..., rN0)

(1.16)

=N0|ψ0(r′)|2 =
N0

V
, (1.17)

where we insert the many-body ground state (1.6). ρ1(r, r′) is thus
constant and independent from the distance s = |s| = |r − r′|. In
particular in the thermodynamic limit

lim
s→∞

ρ1(s)→
N0

V
= const. (1.18)

and the condensate thus exhibits off-diagonal long-range order [48].
We can extract the momentum distribution of Bose gas by taking the
Fourier transform of the one-body density matrix [48]

n(p) =
∫

ds eip·s/h̄ρ1(s) . (1.19)

Inserting the expression in Eq. (1.17) reveals a singular behaviour at
zero momentum [48] :

n(p) = N0δ(p) (1.20)
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This behaviour is revealed in an experiment by means of a time of
flight measurement [45–47], and was the smoking gun of BEC in
[45]. These properties survive for T < Tc with corrections due to the
thermal fraction.

Naturally interactions occur between the particles. Atoms typicallyAdding weak contact
interactions interact via Van-der-Waals interactions. Their potential range is typ-

ically much smaller than the de Broglie wavelength in Eq. (1.1) [48].
Therefore one can typically replaces the interaction potential by a
contact interaction potential [6, 48]

Uint(r) = gδ
(
r− r′

)
, (1.21)

where the prefactor reads [6, 48]

g =
4πh̄2as

m
(1.22)

and as is the so-called s-wave scattering length [6, 48].
A 3D and 2D homogeneous bose gas at low temperature possesses

off-diagonal long-range order even in the presence of weak contact
interactions5 [48]. The situation is different in 1D, where quantum
fluctuations become particularly important [50] and lead to the disap-
pearance of off-diagonal long-range order even at T = 0 [50]. In this
case at large distance the off-diagonal correlations fall off as a power
law and one denotes the state of matter a quasi-condensate [50].

In this thesis we will consider temperatures very close to T = 0, for
which the gas is either a BEC or a quasi-condensate.

1.1.2 Superfluidity

Fluids who exhibit a frictionless flow are dubbed by superfluids. Su-
perfluidity (SF) is exquisitely quantum mechanical and is characteristic
of bosons. In the literature BEC and SF are often used interchangeably,
yet they do not necessarily coincide. In order to define SF, we will use
Landau’s criterion [48].Landau’s criterion

We consider a uniform fluid flowing at zero temperature along a
capillary at a constant velocity v. Here we account for dissipative
processes only through the creation of elementary excitations. We
first consider a reference frame K moving with the fluid. Let E0 be
the energy of the fluid in the reference frame K. The appearance of a
single excitation with momentum p and energy ε(p) leads to the total
energy

E = E0 + ε(p) . (1.23)

Let us now consider the reference frame K′ moving with velocity −v
relative to K. Here the capillary is at rest. In this reference frame the

5 Meaning the interaction energy is a perturbation to the kinetic energy.
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energy E′ and the momentum P′ of the fluid are determined according
to the Galilean transform

E′ = E + p · v +
1
2

M|v|2 , P′ = p + Mv , (1.24)

where M is the total mass of the fluid. In Eq. (1.24) one can identify
ε(p) + p · v as the change of the energy due to the appearance of the
excitation with momentum p. Therefore ε(p) + p · v is the energy of
the elementary excitation when the capillary is at rest. An elementary
excitation will spontaneously appear, if the energy in K′ is decreased.
This leads to the condition

ε(p) + p · v < 0 , (1.25)

which requires velocities fulfilling |v| > ε(p)/|p|. For such velocities
the flow of the fluid is unstable and the kinetic energy will be con-
verted into heat. These considerations lead to the identification of the
critical velocity vc, below which the superfluid is stable [48]:

vc = minp
ε(p)
|p| . (1.26)

Here the minimum is taken over all values of p. Thus, for an absolute
value v of the velocity between the fluid and the capillary smaller then
a critical velocity vc there will be a persistent flow without friction.

For the ideal Bose gas without interaction the condition (1.25) is
never fulfilled, since ε(p) = p2/2m and vc = 0. Thus an ideal Bose
gas is never a superfluid. Weakly interacting bosons instead exhibit a
low energy spectrum with phonon like dispersion relation [48]. The
critical velocity is finite and is given by the sound velocity.

1.2 ultracold atom in an optical lattice

Neutral atoms can be confined in external potentials by means of
the mechanical effects of light [1–3]. One prominent example is the
optical lattice, which is realized by means of lasers creating a periodic
potential such as a standing wave [4, 52]. The resulting dynamics
simulate quantum solid state systems and allow one to shed light
on quantum phases of strongly correlated matter [5]. In this section
we review the description of a quantum particle in an optical lattice
[52–55], which is at the basis of the Bose-Hubbard model.

1.2.1 Realization of an optical lattice

An optical lattice is a periodic potential for neutral atoms. It is created
by spatially modulated electric field, which couples to an atomic
transition. Confinement results from the mechanical force due to the
spatial gradient of the potential in the electric dipole approximation.
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Thus in the following we will consider a system consisting of a
single atom coupling to a spatially modulated electric field. In one
dimension the electric field is a classical standing wave [52]

E(r) = E0~ε sin(kLx)
(

e−iωLt + c.c
)

, (1.27)

where E0 is the amplitude and ~ε the normalized polarization vector of
the electric field. The frequency ωL of the electric field is connected
with its wave number kL = |kL| via the dispersion relation ωL = ckL,
where c is the speed of light in vacuum.

The energy of the system consist of the energy of the free moving
particle Ĥat and the interaction energy between atom and field Ĥint:

Ĥ = Ĥat + Ĥint (1.28)

with [56, 57]

Ĥint = −d̂ · E(r̂) (1.29)

and d̂ is the electric dipole operator. We consider here the field to
be sufficiently weak, such that the internal degrees of freedom can
be reduced to the ground state |g〉 and the excited state |e〉 of the
optical dipole transition at frequency ωL. In this limit the Hamiltonian
describing the internal and external degrees of freedom of the atom is
given by

Ĥat = h̄ωaσ̂†σ̂ +
p̂2

2m
, (1.30)

where m is the mass of the atom and p̂ is the momentum of the center
of mass motion, canonical-conjugated to r̂. Here we introduced the
lowering operator σ̂ = |g〉 〈e| in the internal degrees of freedom and
its hermitian conjugate σ̂† = |e〉 〈g|. In the basis of the internal states
{|e〉 , |g〉} the electric dipole operator exhibits the form6

d̂ = degσ̂† + dgeσ̂ , (1.31)

where deg = d∗ge =
〈

g|d̂|e
〉

.
Inserting the expression of the dipolar operator, Eq. (1.31), and of

the electric field, Eq. (1.27), into the interaction Hamiltonian in Eq.
(1.29) leads within the rotating-wave approximation7 [56, 57] to the
form [56]

Ĥint = h̄Ω (x̂, t) σ̂† + h.c. (1.32)

with Ω(x̂, t) = Ω sin(kL x̂)e−iωLt. The parameter Ω =
E0|deg·~ε1|

h̄ has the
dimension of a frequency and is denoted by Rabi frequency [57]8.

6 Note that due to parity the diagonal elements of the electric dipole matrix are zero.
7 Here one neglects the fast rotating terms in the interaction Hamiltonian, which is

valid for sufficiently small coupling frequency Ω with respect to ωL + ωa.
8 The complex phase of the scalar product between dipole vector and polarisation is

picked to π.
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Trapping of atoms is typically realized in the regime where the time
scale on which the internal degrees of freedom evolve is much larger
then the time scale on which the external degrees of freedom evolve.
In perturbation theory the interaction induces an effective shift of the
internal ground state energy of the atom, which reads

δEg =
h̄Ω2

∆
sin2(kL x̂) , (1.33)

where the frequency ∆ = ωL −ωa is the detuning between the laser
frequency ωL and the atomic resonance frequency ωa. By assuming
that

〈
p̂2/2m

〉
� |∆| Eq. (1.33) gives rise to a position dependent

potential, which rewrites as [52]

Vlat = V0 sin2(kL x̂) with V0 =
h̄Ω2

∆
. (1.34)

This is the potential of the optical lattice. Its depth can be controlled
by the detuning ∆ and the Rabi frequency Ω within the limits of the
validity of the description. The sign of the potential is determined
by the sign of the detuning ∆. Therefore the minima of the potential
will be at the nodes of the laser standing wave, if ∆ > 0. For ∆ < 0
the atoms are confined by the regions where the intensity is maximal.
The periodicity of the lattice a = π/kL is controlled by the effective
wavenumber kL, which can be controlled by means of the geometry of
the setup. In the rest of the thesis the unit of the energy will be the
so-called recoil energy [52]

ER =
(h̄kL)

2

2m
. (1.35)

1.2.2 Eigenstates of a single atom in an optical lattice

In this section we analyze the eigenstate of a particle in the one-
dimensional optical lattice potential of Eq. (1.34). We assume a full
length of L with NL = L/a minima and periodic boundary condi-
tions, namely Vlat(x + L) = Vlat(x). The eigenstates ψ(x) solve the
Schrödinger equation9(

− h̄2

2m
d2

dx2 + Vlat(x)

)
ψ(x) = Eψ(x) , (1.36)

where E is the eigenenergy and

Vlat(x) = Vlat(x + a) . (1.37)

Due to the periodicity of the Hamiltonian the eigenfunctions are Bloch states

9 We consider here the eigenstates only in one-dimension, since the eigenstates in the
remaining directions are given by plane waves. The total wave function is then given
by product of the plane waves in y and z and the eigenstates studied here.
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Bloch functions [53, 54]:

ψn
q (x) = eiqxun,q(x) , (1.38)

where n denotes the band, q is the quasi-momentum, and the function
un,q(x) is periodic with periodicity a. We choose the Brillouin zone
q ∈ (−π/a, π/a]. Fig. 1.2 displays the eigenenergies En(q) of the Bloch
waves for different lattice depth as a function of q in the first Brillouin
zone. For V0 = 0 we have the solution of a free particle, which results
in folded parabolas to the first Brillouin zone. For V0 > 0 a gap opens
at the borders of the Brillouin zone (see Fig. 1.2 (b) and (c)). The
Bloch functions form a complete set of orthonormal functions of the
single particle Hilbert space. Furthermore they are delocalized over
the whole lattice, i.e.

|ψn
q (x)|2 = |ψn

q (x + ja)|2 (1.39)

for any integer value j = 1, ..., NL.

(a) (b)

q/kL
-1 -0.5 0 0.5 1

E
/
E

R

0

5

10

15

(c)

q/kL
-1 -0.5 0 0.5 1

E
/
E

R

0

5

10

15

Figure 1.2: Eigenenergies in units of the recoil energy ER as a function of the
quasi momentum q for the different potential depth (a) V0 = 0,
(b) V0 = 8ER and (c) V0 = 14ER. The integer number n labels the
band index. The number of lattice site is fixed to NL = 13. q is in
units of π/a.

In order to analyze the site occupancy, it is convenient to use Wan-
nier functions. These are the Fourier transform of the Bloch functionsWannier states

in Eq. (1.38) and are defined as [53–55]

wn(x− xj) =
1√
NL

∑
q∈(− π

a , π
a ]

e−iqxj ψn
q (x) , (1.40)
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where xj = ja label the minimas of the optical lattice potential and are
here enumerated by j ∈ {0, ...., NL − 1}. The Wannier functions form
an orthonormal basis in the Hilbert space of a single particle, fulfilling
the completeness relation [55]:

∞

∑
n=1

NL−1

∑
j=0

w∗n(x− xj)wn(x′ − xj) = δ(x− x′) (1.41)

and the orthonormal relation [55]∫ NLa

0
dx w∗n(x− xj)wn′(x− xj′) = δn,n′δj,j′ . (1.42)

In this thesis we will consider solely the Wannier functions of the low-
est band. In this case one can choose the Wannier functions to be real
and symmetric about xj [53]. Furthermore they fall of exponentially
with the distance from xj [53]. The last two properties are visible in the
two examples of the absolute value squared of the Wannier function
in the lowest band plotted in Fig. 1.3 for two different lattice depths of
V0 and for xj = 0.

Figure 1.3: |w0(x)|2 as a function of x over five lattice sites for two different
potential depths (a) V0 = 8ER and (b) V0 = 14ER with xj = 0. The
absolute value squared of the Wannier function is in units of 1/a
and the position in units of a.

1.3 superfluid to mott insulator phase transition

We now review the many-body dynamics of a quantum gas of bosons
in an optical lattice. When the atoms are in the tight-binding regime,
their dynamics can be mapped to the Bose-Hubbard model [10]. This
model has a quantum phase transition from a so-called Mott insulating
phase to a superfluid [11]. Experimentally the phase transition was
first measured by Greiner et al. [7] in 3D and later also by Stöferle et
al. [8] and Spielman et al. [9] in lower dimensions. In this section we
first report the mapping of the ultracold bose gas in the optical lattice
to the standard Bose-Hubbard model for a one-dimensional geometry.
We then discuss the resulting phases and phase transition. We finally
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report the methods used in this thesis to study the ground-state phase
diagram. The section serves as an introduction to the studies presented
in this thesis.

1.3.1 Mapping on the Bose-Hubbard model

We consider N ultracold bosons of mass m in an optical lattice of peri-
odicity a along x with NL = L/a lattice sites. Moreover, we consider a
tight harmonic potential in the y− z plane. The total trap potential is
then given by

Vtrap =
mω2

2
(
y2 + z2)+ V0 sin2(πx/a) , (1.43)

where we denote the harmonic trap frequency by ω and the optical
lattice depth by V0. We inspect the regime in which the interaction
potential Uint can be modeled as a contact interaction potential given
by the expression in Eq. (1.21) [6, 48]. The dynamics of the bosons are
determined by the second-quantized Hamiltonian:

Ĥ =
∫

d3rΨ̂(r)

[
− h̄2

2m
∇2 + Vtrap(r)

]
Ψ̂(r) (1.44)

+
1
2

∫
d3r

∫
d3r′Ψ̂†(r)Ψ̂†(r′)Uint Ψ̂(r′)Ψ̂(r) ,

where Ψ̂(r) and Ψ̂†(r) are the bosonic field operators. They fulfill the
bosonic commutation relation[

Ψ̂(r), Ψ̂†(r′)
]
= δ(r− r′) . (1.45)

When the mean interaction energies at a single site are much smaller
than the separation to the first excited band the model is effectively
one-dimensional. In this regime the bosons are in the ground state of
the transversal potential, which we denote here by the scalar function
φ0(y, z), and the field operator Ψ̂(r) takes the form [10]:

Ψ̂(r) =
NL

∑
j=1

φ0(y, z)ωj(x) âj (1.46)

Here the bosonic operator âj annihilates a particle at the j-th lattice site
in the lowest band and the scalar function w0(x− xj) = wj(x) is the
real-valued Wannier function for the lowest lattice band. The bosonic
operators âj, â†

j obey the bosonic commutation relation[
âj, â†

l

]
= δj,l and

[
â†

j , â†
l

]
=
[
âj, âl

]
= 0 , (1.47)

which follows from Eq. (1.45) and the completeness of the Wannier
function. Inserting Eq. (1.46) into Eq. (1.44) leads to the Hamiltonian

Ĥ = −∑
i,j

ti,j â†
i âj + ∑

i,j,k,l
Vi,j,k,l â†

i â†
j âk âl , (1.48)
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where the coefficients ti,j read

ti,j =
∫ +L/2

−L/2
dx wi(x)

(
h̄2

2m
∂2

∂x2 −V0 sin(πx/a)

)
wj(x) , (1.49)

the coefficients Vi,j,k,l are due to the interaction term and are defined
by the expressions

Vi,j,k,l =
1
2

∫ ∫
dr1dr2wi(x1)wj(x2)×

×Uint(r1 − r2)wk(x2)wl(x1)Φ0(y1, z1; y2, z2) , (1.50)

and Φ0(y1, z1; y2, z2) ≡ |φ0(y1, z1)|2|φ0(y2, z2)|2. For sufficiently deep
depths V0 one observes ti,i � ti,i+1. In the following we neglect all
the coupling terms beyond nearest neighbor and the nearest neighbor
interaction term. The Hamilton operator then reduces to the expression
[11]:

Ĥ(0)
BH = −t

NL−1

∑
j=1

(
â†

j âj+1 + H.c.
)
+ ε

NL

∑
j=1

n̂j +
U
2

NL

∑
j=1

n̂j
(
n̂j − 1

)
(1.51)

where n̂j = â†
j âj is the occupation operator acting on site j. Its expecta-

tion value counts the number of particles at site j. Hamiltonian (1.51) is
the Bose-Hubbard Hamiltonian [11]. The coefficients t = ti,i+1, ε = ti,i
and U = Vi,i,i,i are the tunnelling amplitude, single-particle energy and
the onsite interaction strength, respectively. The coefficient t and ε is
determined by the overlap integral including solely the single-particle
Hamiltonian. The coefficient U results from the expectation value of
the interaction (see Eq. 1.50). In the following we will shift the energy
zero-point such that we can set the onsite energy to zero.

In this thesis we study the system in the canonical and in the grand-
canonical ensemble. In the canonical ensemble we determine the
ground state of Hamiltonian in Eq. (1.51) at fixed density ρ = N/NL.
In the grand-canonical ensemble we determine the ground state of

ĤGC
BH = Ĥ(0)

BH − µ
NL

∑
j=1

n̂j , (1.52)

where the density is given by

ρ =
1

NL

NL

∑
j=1

〈
n̂j
〉

(1.53)

and is controlled by µ.
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1.3.2 Ground state of the Bose-Hubbard model

1.3.2.1 Mott-Insulator phase

We consider the limit t/U → 0 of the Bose-Hubbard Hamiltonian in
Eq. (1.52). In this limit and for a chemical potential in the region

n− 1 <
µ

U
< n (1.54)

the ground state of the Hamiltonian in Eq. (1.52) can be approximated
as

|Ψ〉 =
NL⊗
j=1

(
â†

j

)n

√
n!
|0〉 (1.55)

with |0〉 the vacuum state and n ∈N, which is the occupation per site
and coincides in this case with the density ρ. Here the first two excited
states are an extra particle or a hole in one site of the lattice. These
states are described by

|Ψ〉p =
1√

n + 1

NL

∑
j=1

â†
j |Ψ〉 (1.56)

for the extra particle and

|Ψ〉h =
1√
n

NL

∑
j=1

âj |Ψ〉 (1.57)

for the hole. The energy needed to create a particle on a single site in
the lattice is given by

∆+(n) ≡ 〈Ψ|p ĤGC
BH |Ψ〉p − 〈Ψ| ĤGC

BH |Ψ〉 (1.58)

and the energy to create a hole on a single site in the lattice by

∆−(n) ≡ 〈Ψ|h ĤGC
BH |Ψ〉h − 〈Ψ| ĤGC

BH |Ψ〉 . (1.59)

When the chemical potential fulfills (1.54) those energies are positive
and finite, i.e. ∆−, ∆+ > 0. Thus the ground state is insulating and
incompressible. These are the defining properties of the Mott insulator
(MI) phase [50].

In the following we will identify further characteristics of the MI
phase by evaluating several observables with respect to the state in Eq.
(1.55), which is the state corresponding to the MI phase in the limit
t/U → 0. For this purpose we introduce the charge gap [32, 58]

∆c(n) = ∆+(n) + ∆−(n) , (1.60)
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which gives the energy required to create a particle-hole pair. A further
useful quantity is the neutral gap [58]

∆n(n) = Eext(n)− E(n) , (1.61)

which is the energy difference between the first excited state, Eext(n),
and the ground state, E(n). Both charge and neutral gaps are finite
for values of µ/U in the interval ]n− 1, n[ for any density n. The
compressibility is defined here as [59]

κ =
∂ρ

∂µ
(1.62)

with the average density ρ in Eq. (1.53). Thus for µ/U values fulfilling
the inequality (1.54) the ground state is incompressible with κ =

0. Moreover, the state in Eq. (1.55) exhibits a zero variance of the
occupation on a site j

∆nj =
〈

n̂2
j

〉
−
〈
n̂j
〉2 (1.63)

over the whole lattice. The off-diagonal correlations in discrete space
are determined by the quantity

C(r) =
〈

â†
j âj+r

〉
. (1.64)

When the expectation value is taken over the state in Eq. (1.55), then
one can observe C(r) = 0 for r 6= 0 and thus the state in Eq. (1.55)
has no off-diagonal long range order. It is useful to directly study the
Fourier transform of (1.64), since this quantity can by revealed by a
time of flight measurement in an experiment [7]. This is given by

M1(q) =
1

N2
L

NL−1

∑
i,j=1

e−iq(i−j)
〈

â†
i âj

〉
. (1.65)

In the considered limit this quantity vanishes for all values of q in
the thermodynamic limit signaling the lack of off-diagonal long-range
order. Note that away from the limit t/U → 0 but still within the MI
phase the correlation function in Eq. (1.64) decays exponentially for
large distances r [50].

1.3.2.2 Superfluid

Let us now study the limit t� U. For this purpose we first consider
the canonical ensemble. For t/U → ∞ the ground state of the Bose-
Hubbard Hamiltonian, Eq. (1.51), is given by

|ΨN〉 =
1√
N!

(
1√
NL

NL

∑
j=1

â†
j

)N

|0〉 . (1.66)



18 ultracold neutral atoms in an optical lattice

The many-body state (1.66) is the one of an ideal BEC, where all
N atoms are in the q = 0 Bloch state of the lowest band [4]. In the
thermodynamic limit where the particle number N and the number
of lattice sites NL go to infinity, while the density is kept constant, the
ground state is described by the coherent state [4]

e(
√

Nâ†
q=0) |0〉 =

NL⊗
i=1

[
e
√

N
NL

â†
i |0〉i

]
. (1.67)

In this state the probability distribution for the number of atoms at
site i is given by a Poissonian distribution [4] and thus the variance
of the occupation on a site ∆ni, Eq. (1.63), is finite. In this limit the
momentum distribution shows the behaviour M1(q) ∝ Nδ(q) similar
to Eq. (1.20), thus signaling off-diagonal long-range order (see Subsec.
1.1.1).

For finite but small values of U/t the low energy excitations are
collective modes with linear dispersion [50, 51] and thus according to
Landau’s criterion the gas is superfluid. Here the charge gap and the
neutral gap vanish [51, 58], resulting in a finite compressibility within
the grand-canonical ensemble.

In one dimension the asymptotic behaviour of the off-diagonal
correlations, Eq. (1.64), show a power-law decay [50, 60]:

C(r) ∝ r−K/2 (1.68)

with the Luttinger parameter K < 1/2 [50, 60]. This behaviour of
the off-diagonal correlations leads to a finite value of the distribution
in Eq. (1.65) at q = 0 for finite systems and approaches zero in the
thermodynamic limit.

1.3.2.3 Grand-canonical Phase diagram

Fig. 1.4, taken from Ref. [60], shows the ground-state phase diagram
of the one-dimensional Bose-Hubbard Hamiltonian, Eq. (1.52), in the
grand-canonical ensemble. The phase diagram is presented in the (µ-
t)-plane, where the coefficients are in units of the on-site interaction
U. The black lines were calculated by means of a perturbation theory
approach [60, 61]. The upper line indicates the line with particle
energy ∆+ = 0 and the lower line corresponds to the line where the
energy to create a hole goes to zero. Thus the lines correspond to the
transition line from MI to SF. The region enclosed by these lines is
the MI phase with the commensurate density ρ = 1. The difference in
energy between the lower line and the upper line corresponds to the
charge gap, i.e. Eq. (1.60), which shrinks for increasing ratio between
the tunnelling rate and the on-site energy. It approaches zero for a
commensurate density ρ = 1 at the tip of the insulating lobe, where the
ground state goes from MI to SF [60]. This transition is driven by phase
fluctuations and belongs to the (d + 1)-dimensional XY universality
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class [50]. For incommensurate densities ρ the ground state is always
SF. Changing the density from commensurate to incommensurate the
MI-SF transition is driven by density fluctuations [60]. Note that in
the one-dimensional case the transition discussed before is properly a
crossover.

Figure 1.4: The phase diagram of the one-dimensional Bose-Hubbard model
at zero temperature in the grand-canonical ensemble. The transi-
tion lines between the Mott insulating phase and the superfluid
are here shown as a function of the chemical potential µ and
the tunnelling rate t in units of the onsite energy. The solid lines
show the result of a 12th order strong coupling expansions, the
boxes show Quantum Monte Carlo data and the circles show
the Density Matrix Renormalization Group (DMRG) results. The
phase diagram is taken from Ref. [60] with the permission of the
American Physical Society and of their authors.

The dots and squares in the phase diagram in Fig. 1.4 were cal-
culated numerically. Among others the authors in Ref. [60] used a
Density Matrix Renormalization Group (DMRG) [62, 63] approach
(dots) and a Quantum Monte Carlo approach [64, 65] (squares) to
calculated the off diagonal correlations given by Eq. (1.64). Here they
identified the critical tunnelling by means of an extrapolated value of
the decay exponent K in Eq. (1.68) from its finite size values. Thus the
authors were able to identify the region of K < 1/2, i.e. the superfluid
region, in the thermodynamic limit.



20 ultracold neutral atoms in an optical lattice

1.3.3 Numerical methods

In this subsection we shortly discuss the numerical methods used in
this thesis to calculate the ground-state phase diagram. This subsection
is based on the literature in Refs. [6, 63, 66].

1.3.3.1 Density Matrix Renormalization Group method

One numerical method employed in this thesis is the Density Matrix
Renormalization Group (DMRG) ground state algorithm. The under-
lying idea of the Density Matrix Renormalization Group (DMRG)
methods is to truncate the Hilbert space in a reliably and controllable
way, such that we can describe the system almost exactly in the trun-
cated Hilbert space [6, 63]. For an one-dimensional system of bosons
in an optical lattice the Hamiltonian is given by the Bose-Hubbard
Hamiltonian Ĥ(0)

BH in Eq. (1.51). An eigenstate |Ψ〉 of Ĥ(0)
BH can be de-

composed into the Basis
{
|n1, ..., nNL〉 |nj ∈N with j = 1, ..., NL

}
and

reads

|Ψ〉 =
∞

∑
n1=0

...
∞

∑
nNL=0

Cn1,n2,...,nNL
|n1, ..., nNL〉 . (1.69)

The normalization of the state requires ∑∞
n1=0 ... ∑∞

nNL=0 |Cn1,n,2,...,nNL
|2 =

1. It was shown that the coefficients in (1.69) can by written in terms
of a product of matrices Γn1 , ..., ΓnNL [6, 63], meaning

Cn1,n2,...,nNL
=

β1

∑
α1=1

...
βNL−1

∑
αNL−1=1

Γn1
α1

sα1 Γn2
α1,α2

sα2 Γn3
α2,α3

...sαNL−1 Γ
nNL
αNL−1 .

(1.70)

Here a singular value decomposition (SVD) [63] for every partition
of the lattice was performed. In Eq. (1.70) the sαk are the singular
values belonging to those singular value decompositions, in which the
system was partitioned between the site k and k + 1 of the lattice. The
singular values are connected to the eigenvalues s2

αk
of the reduced

density matrices ρk = Trk |Ψ〉 〈Ψ|, where the trace over the subsystem
is taken from site 1 to site k. Note that this decomposition requires an
upper bound nmax for the number of particles per site, i.e. nmax ≥ nj
for all j ∈ {1, ..., NL}. The upper bounds in Eq. (1.70) β1,... βNL−1

are following directly from the singular value decomposition. Those
bounds are called bond dimensions. A state |Ψ〉 in Eq. (1.69) with its
coefficients in the form of (1.70) is called a Matrix Product State (MPS)
[6, 63].

The idea of the DMRG approach is to reduce the Hilbert space by
reducing the dimension of the matrices Γn1 , ..., ΓnNL in the MPS state
(see Eq. (1.70)). This can be done by setting a certain number of the
smallest singular values to zero. Fortunately for translational invariant
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one-dimensional systems with short-range interactions the singular
values fall off exponentially fast, namely sα ∼ e−α [6]. Thus one can
discard large numbers of singular values in the decomposition (1.70)
and the overlap between the exact and truncated state remains close
to one.

In this thesis we are interested in finding the ground state of the
Bose-Hubbard Hamiltonian Ĥ(0)

BH in Eq. (1.51). For this purpose we
search for the MPS |Ψ〉 that minimizes the energy

E =
〈Ψ| Ĥ(0)

BH |Ψ〉
〈Ψ|Ψ〉 . (1.71)

Thereby one minimizes E with respect to a single matrix in the MPS
(1.70) and keeps the rest of them fixed. After this, one minimizes the
energy with respect to the matrix elements on the next lattice site
and so on. One performs those steps several times across the lattice

until the energy is converged, where
〈

Ĥ(0)2
BH

〉
−
(〈

Ĥ(0)
BH

〉)2
is smaller

then εgoal
10. In each step the minimization problem can be reduced

to an eigenvalue problem. In order to restore the MPS form of the
state after each diagonalization step, one needs to perform a singular
value decomposition. In this singular value decomposition step the
bond dimension of the MPS can be adjusted. Here one sets a upper
limit ε for the singular value discarded. In general the maximal bond
dimension βmax possible is fixed in the MPS during the algorithm.

As mentioned earlier the success of the approach depends on the
behaviour of the singular values of the system. It was shown that in
two-dimensional systems the singular values decay slowly, such that
the DMRG approach is inefficient [63]. In this thesis we will apply
DMRG to analyze one-dimensional ground-state phase diagrams.

For further details on the DMRG method and MPS, we refer the
interested reader to Refs. [63] and [67].

1.3.3.2 Mean-field approaches

The mean-field ansatz discards correlations between sites of the lattice.
Since those correlations are particularly important in one-dimensional
systems, it turns out that mean-field fails in 1D [50]. Nevertheless the
approach becomes more reliable for increasing dimensionality [6]. In
this thesis we will use mean-field to analyze the lattice dynamics in
2D. We consider here a 2D lattice with K = NL × NL sites, where we
label the lattice sites by the vector i = (i1, i2) with integer entries. The
2D Bose-Hubbard Hamiltonian in the grand-canonical ensemble is
given by

Ĥ2D,G
BH = Ĥ2D

BH − µ ∑
i

n̂i (1.72)

10 One performs several sweeps across the lattice starting from site one going to site NL
and then going backwards again. Starting for NL to site 1.
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with

Ĥ2D
BH = −t ∑

〈j,i〉
â†

i âj +
U
2 ∑

i
n̂i (n̂i − 1) , (1.73)

where 〈j, i〉 stands for the sum over nearest neighbors.
The underlying approximation of the local mean-field (LMF) ap-

proach is given by the decoupling of the hopping term by neglecting
second-order fluctuations of bosonic annihilation and creation opera-
tor:

(
â†

i −
〈

â†
i
〉) (

âj −
〈

âj
〉)
' 0. We define here the expectation value

of the field operator at site i as

φi = 〈âi〉 . (1.74)

The 2D extension of Hamiltonian (1.51) reduces then to the local
mean-field Hamiltonian

ĤMF
BH = ∑

i
ĥMF

i , (1.75)

where the single-site Hamiltonian is written as

ĥMF
i =

U
2

n̂i (n̂i − 1)− µn̂i − tηi

(
â†

i −
φ∗i
2

)
+ h.c. (1.76)

and ηi = ∑〈i,j〉 φj is the mean-field on site i.
With Eq. (1.76) we reduced the problem to a single site problem.

Correspondingly the many-body wavefunction is now approximated
by the product state

|Ψ〉 =
NL×NL⊗

i

|ψ〉i . (1.77)

Rewriting it in the truncated local Fock basis {|n〉 , n≤nmax} leads to

|Ψ〉 =
NL×NL⊗

i

nmax

∑
n=0

ci
n |n〉i . (1.78)

One requires for the coefficients ci
n to fulfill ∑nmax

n=0 |ci
n|2 = 1. For a

homogeneous system we can consider the expectation value in Eq.
(1.74) to be site independent, φi ≡ φ. The expectation value φ, Eq.
(1.74), is the mean-field superfluid order parameter [6, 68]. Indeed
writing the off-diagonal correlations (1.64) in terms of the expectation
value φ, one can identify the proportionality

C(r) ∼ |φ|2 . (1.79)

For φ 6= 0 the quantum state posses off-diagonal long range order. The
value φ = 0 is characteristic of the MI phase.

In order to find the ground state within the mean-field ansatz
one initializes the SF order parameter φ. By diagonalizing the single
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particle Hamiltonian Eq. (1.76) one gets the ground state of the form
(1.78). With this updated state one can then calculated the SF order
parameter φ, Eq. (1.74), and gets an updated local Hamiltonian (see
Eq. (1.76)), which is the starting point of the next loop. The loop is
repeated until the order parameter converges.

An equivalent approach to the local mean-field is the so-called
Gutzwiller mean-field approach [69–71]. Here one considers also the
ansatz in Eq. (1.78) for the many-body wavefunction. The ground state
is then determined by finding the state that minimizes the expectation
value

〈
Ψ|Ĥ2D,G

BH |Ψ
〉

. In detail one searches for the coefficient ci
n mini-

mizing the mean-field energy. The SF order parameter is here given
by11

φi =
nmax

∑
n=0

√
n + 1ci∗

n ci
n+1 . (1.80)

Cluster Gutzwiller
mean-field theory
(CGMF)

The Cluster Gutzwiller mean-field theory (CGMF) [72] is an exten-
sion to the Gutzwiller mean-field theory introduced before. Within
this approach the system of K = NL × NL lattice sites is partitioned
into W clusters of sizes M × N. Here one takes care that W =

(NL × NL)/(M × N) is an element of the natural numbers N. The
local mean-field approximation is now only applied at the terms con-
necting two clusters. Therefore the CGMF Bose-Hubbard Hamiltonian
is written as a sum of the cluster Hamiltonians [66]:

ĤCGMF
BH =

W

∑
C=1

ĤC (1.81)

with

ĤC = ∑
i∈δC

ĥMF
i + Ĥ2D,G

BH,C , (1.82)

where C is the cluster index and δC is the set of the lattice sites
at the boundary of the cluster C. The cluster Hamiltonian ĤC is
partitioned into Ĥ2D,G

BH,C, which is the Bose-Hubbard Hamiltonian in
Eq. (1.72) defined solely within the cluster C, and into the mean-field
Hamiltonian in Eq. (1.75), which describes the mean-field coupling
between the clusters. The ground state of the CGMF Bose-Hubbard
Hamiltonian, Eq. (1.81), is given by the product of the cluster ground
states [66]

|ΨCGMF〉 =
W⊗

C=1

|Φ〉C . (1.83)

To calculate the ground state |Φ〉C of the cluster Hamiltonian, Eq.(1.82),
one initializes the order parameters φi at the cluster boundaries. The

11 Similar to before the order parameter can here be site independent for a homogeneous
system.
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cluster Hamiltonian ĤC, Eq. (1.82), is then diagonalized. Using the
resulting ground state the values of the order parameters are then up-
dated. This procedure is repeated until the order parameters converge.

With the Cluster Gutzwiller mean-field one accounts for a certain
correlations between the lattice sites, but it can not capture long-range
correlations across the whole lattice.



2
C O R R E L AT E D T U N N E L L I N G I N D U C E D B Y T H E
D I P O L A R I N T E R A C T I O N S

We theoretically study the effect of power-law interactions on the
phases of the extended Bose-Hubbard model. We particularly focus on
the interference between correlated tunnelling, due to the power-law
interactions, with the single-particle hopping. This model describes
the experimental setup [73]. In the second section we introduce the ex-
tended Bose-Hubbard model in 1D, including the correlated tunnelling.
In the follow up section we discuss the corresponding ground-state
phase diagrams. The effect of the dimensionality will be considered
in the third section by studying the corresponding two-dimensional
system.

This chapter contains results, text and figures taken from:

• "Superfluid phases induced by dipolar interactions",
Rebecca Kraus, Krzysztof Biedroń, Jakub Zakrzewski, and Gio-
vanna Morigi,
Physical Review B 101, 174505 (2020)

• "Staggered superfluid phases of dipolar bosons in two-dimensional
square lattices",
Kuldeep Suthar, Rebecca Kraus, Hrushikesh Sable, Dilip Angom,
Giovanna Morigi, and Jakub Zakrzewski,
Physical Review B 102, 214503 (2020)

2.1 introduction

Recent experimental observations of quantum phases of ultracold
dipolar gases [74–76] and their confinement in optical lattices [13, 73,
77–81] pave the way towards the characterization of strongly correlated
quantum matter. These systems are theoretically described by the so-
called extended Bose-Hubbard model [13, 16–22]. Here the effect of
power-law interactions is usually included by means of a density-
density interaction between neighboring sites [13, 16–22]. The density-
density interaction leads to a density modulation within the lattice [13,
16–22]. In one dimension, moreover, it is responsible for the appearance
of a topological non-trivial phase the so-called Haldane insulator [32,
33, 35, 58, 82, 83]. Due to the anisotropy of the dipolar potential

25
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its contribution to the onsite interaction can lead to instabilities [21,
40, 84, 85]. Ab initio derivations of the Bose-Hubbard model show
that interactions are also responsible for the appearance of correlated
hopping terms [86].

Until now there is a limited knowledge on the effect of this interaction-
induced tunnelling on the ground state properties of a dipolar gas
in an optical lattice. Results obtained from exact diagonalization of
a chain of few bosons indicated the appearance of exotic superfluid
and charge-density wave phases [38]. Density matrix renormalization
group (DMRG) studies of the extended grand-canonical Bose-Hubbard
model predicted superfluid order with spatially modulated phase
whose periodicity can be either commensurate or incommensurate
with the lattice periodicity, depending on the lattice depth [39]. These
studies point out that the interplay between the various quantities is
by no means trivial. They call for a systematic study.

In this chapter we study the effect of the correlated tunnelling on
the ground state of the extended Bose-Hubbard model. In Section 2.2
we first introduce the extended Bose-Hubbard model including the
density dependent tunnelling and make preliminary considerations. In
Section 2.3 we report the corresponding ground-state phase diagram
for a one-dimensional lattice using DMRG. The two-dimensional ex-
tended Bose-Hubbard model and its corresponding mean-field phase
diagrams at zero temperature are presented in Section 2.4 .

2.2 extended bose-hubbard model including the dipolar

interactions

We consider ultracold dipolar bosons of mass m in an anisotropic trap
which is elongated along the x axis. The dipolar bosons are polarized
by an external field perpendicular to the trap axis and interact via the
dipolar and the van-der Waals (s-wave) interactions. The dynamics is
governed by the second-quantized Hamiltonian for the bosonic field
Ψ̂(r) [40]:

Ĥ =
∫

d3rΨ̂†(r)

[
− h̄2

2m
∇2 + Vtrap(r)

]
Ψ̂(r)

+
1
2

∫
d3r

∫
d3r′Ψ̂†(r)Ψ̂†(r′)Uint(r− r′)Ψ̂(r′)Ψ̂(r) , (2.1)

where the field operators Ψ̂(r) and Ψ̂†(r) obey the commutation rela-
tion [

Ψ̂(r), Ψ̂(r′)†
]
= δ(3)

(
r− r′

)
. (2.2)
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The function Vtrap denotes the trap potential, which is the sum of a
tight harmonic potential in the y-z plane, and an optical lattice of
periodicity a along the x axis,

Vtrap =
mω2

2
(
y2 + z2)+ V0 sin2(πx/a) . (2.3)

Here, ω is a harmonic trap frequency and V0 denotes the amplitude of
the optical lattice. The interaction potential is the sum of the contact
and of the power-law interactions,

Uint(r) = Ug(r) + Uα(r) . (2.4)

Specifically, Ug(r) = gδ(3)(r) is the contact potential with g = 4πh̄2as/m
and as the s-wave scattering length. The power-law interactions, Uα(r),
scale with the inter particle distance r as Uα(r) ∝ 1/rα. In this work
we consider dipoles polarized by an external field along the z axis. In
this case Uα(r) ≡ Ud(r), where

Ud(r) =
Cdd

4π

1− 3 cos2(θ)

r3 , (2.5)

and θ is the angle between the dipole and r. The dipole-dipole inter-
action is anisotropic in space since the force depends on the dipoles
orientation. The coefficient Cdd scales the strength of the dipole-dipole
interactions: for magnetic dipoles with moment µm, the coefficient is
Cdd = µ0µ2

m; for electric dipoles with moment µe it reads as Cdd = µ2
e ε0,

where µ0 and ε0 are the magnetic and the electric permeability, re-
spectively. In the rest of this chapter, in place of Cdd we will use the
rescaled, dimensionless quantity d, that is defined as [39, 87]

d =
mCdd

2π3h̄2a
. (2.6)

Following the approach shown in Subsec. 1.3.1 we can map the system
onto an extended Bose Hubbard model.

The resulting extended Bose Hubbard Hamiltonian is then given by

ĤEBH = Ĥ(0)
BH + Ĥα . (2.7)

Here we decompose the extended Bose-Hubbard Hamiltonian into the
sum of the Hamiltonian Ĥ(0)

BH, describing the onsite interactions and
tunnelling term, and of the Hamiltonian Ĥα, which includes the other
terms such as next nearest neighbor and beyond.

The Hamiltonian Ĥ(0)
BH has the same form as the one in Eq. (1.51).

Here in contrast to Subsec. 1.3.1 the onsite interaction coefficient U
includes also the local contribution of the power-law interactions
(for details see Appendix 2.6). Depending on the trap geometry, this
contribution can lead to vanishing or negative values of the onsite
interactions, which may cause a collapse of the system [38, 40, 84, 85,
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88]. In this work we will restrict ourselves to geometries for which the
coefficient U is positive, thus the onsite interactions are repulsive and
the gas is stable.

The Bose-Hubbard Hamiltonian Ĥ(0)
BH is obtained (i) by truncating

the hopping processes to the nearest neighbors and (ii) by solely taking
the local contribution of the interactions. Deep in the tight-binding
regime the first approximation is justified. On the contrary, for large
values of the onsite potentials and/or in the presence of power-law
interactions one shall consistently include the coupling between `-
th next neighbors. These terms are contained in the Hamiltonian Ĥα,
which we write as the sum of the terms coupling `-th nearest neighbor:

Ĥα =
NL

∑
`=1

Ĥ(`)
α ,

and whose detailed form is given below for ` = 1, 2.
In this work we truncate the sum over ` and analyze the phase

diagrams of the Hamiltonian for two cases. First we consider the
ground state of the Bose-Hubbard Hamiltonian, where we truncate
the power-law interactions to the nearest-neighbors:

Ĥ(1)
BH = Ĥ(0)

BH + Ĥ(1)
α . (2.8)

We then compare the corresponding phase diagrams with the ones
obtained by keeping also the coupling to the next-nearest neighbors:

Ĥ(2)
BH = Ĥ(1)

BH + ĤNNN + Ĥ(2)
α . (2.9)

Here, ĤNNN describes the next-nearest neighbor hopping terms due
to the kinetic energy and to the trapping potential, which we include
for consistency (see Appendix 2.6).

In the rest of this subsection we discuss the detailed form of Ĥ(1)
α

and of Ĥ(2)
α . The Hamiltonian Ĥ(1)

α reads [38, 41, 42, 89]

Ĥ(1)
α =V

NL−1

∑
j=1

n̂jn̂j+1 − T
NL−1

∑
j=1

[
â†

j
(
n̂j + n̂j+1

)
âj+1 + H.c.

]
+

P
2

NL−1

∑
j=1

(
â†

j+1 â†
j+1 âj âj + H.c.

)
, (2.10)

where n̂j = â†
j âj counts the number of particles at site j and the an-

hiliation operator âj (creation operator â†
j ) fulfill the commutation

relations given in Eq. (1.47). The term scaled by the positive amplitude
V describes a repulsive density-density interaction. This term tends
to inhibit the occupation of neighboring sites and promotes density
modulations. In the following we denote V by blockade coefficient.
The other two terms describe tunnelling effects induced by the interac-
tions. In detail, coefficient T scales a hopping term which nonlinearly
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depends on the occupation number of neighboring sites. We will de-
note this term by "density-assisted tunnelling". The term scaled by P
describes pair hopping between nearest-neighbors and we will refer
to it as "pair-hopping term".

The form of the higher-order coupling terms is similar to the one of
Ĥ(1)

α . We report here the coupling to next-nearest neighbors:

Ĥ(2)
α =VNNN

L−2

∑
j=1

n̂jn̂j+2 +
L−2

∑
j=1

(
T̂(2)

j + P̂(2)
j

)
. (2.11)

Here VNNN scales the term describing the repulsive next-nearest neigh-
bor density-density interaction and is positive. The corresponding
interaction-induced tunnelling and pair hopping terms are now col-
lected in operators T̂(2)

j and P̂(2)
j , respectively, and take the form:

T̂(2)
j = −TNNN â†

j
(
n̂j + n̂j+2

)
âj+2 − T1

NNN â†
j+1n̂j âj+2

− T2
NNN â†

j n̂j+2 âj+1 − T3
NNN â†

j n̂j+1 âj+2 + H.c. , (2.12)

P̂(2)
j =

P1
NNN
2

â†
j+1 â†

j+2 âj âj +
P2

NNN
2

â†
j+2 â†

j âj+1 âj+1

+
P3

NNN
2

â†
j+2 â†

j+2 âj+1 âj + H.c. . (2.13)

The specific form of the coefficients VNNN, T`
NNN, P`

NNN is given in the
Appendix 2.6.

We remark that correlated hopping terms have been also discussed
for atoms solely interacting via s-wave scattering but in the limit of
large ratios U/t [89, 90]. In this case, for repulsive interactions the
coefficients are all positive and the density-dependent tunnelling leads
to a reduction of the incompressible region [90]. In the next subsection
we identify a parameter regime where there is a sign change of the
interaction-induced hopping coefficients as a function of d.

2.2.1 Interaction-induced tunnelling

By changing the quantum species, and thus changing d, one modifies
the relative weight between s-wave and dipolar interactions. The first
one typically dominates at short-range distances, while the dipolar
interactions are expected to determine the non-local terms. We now
consider a trap geometry where s-wave scattering is negative and the
onsite contribution of the dipolar interactions stabilizes the gas, mak-
ing the onsite interactions repulsive, U > 0. In this regime, we identify
the parameter regime where the correlated tunnelling coefficients
become negative.

Figure 2.1 (a) and (b) display the contour plots of the density-assisted
tunnelling coefficient T and of the pair tunnelling coefficient P as a
function of U and V, keeping t fixed. For later convenience we label
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the axis by V/U and t/U. In Fig. 2.1(a), moreover, we explicitly show
lines at constant dipolar interaction d. We observe that the value of
T becomes comparable with V at large dipolar interaction strengths
and for small ratios t/U. Therefore, when t/U → 0, one still has
significant hopping due to the interactions. We note, moreover, that
the pair tunnelling coefficients remain very small across the phase
diagram. We will keep these terms in our simulations, and anticipate
that they play a negligible role in determining the phases of the ground
state for deep lattices.

(a) (b)

Figure 2.1: Contour plot in the V/U − t/U-plane of the (a) density-assisted
tunnelling coefficient T and (b) the pair tunnelling coefficient P
for the nearest-neighbor coupling and in units of the tunnelling
rate t. The black dashed lines show the values of V and U at some
constant dipolar interaction strengths d. The other parameters are
discussed in the text.

Let us here specify the parameters we used for evaluating these
coefficients and which we will use in the rest of this section and the
following section, unless otherwise stated. The depth of the optical
lattice in the axial direction is kept fixed to the value V0 = 8ER,
where ER is the recoil energy. The transverse trap frequency is ω =√

2Vharπ2/a2m, where we choose Vhar = 50ER. The tunnelling rate
t between nearest-neighbor and the tunnelling rate between next-
nearest neighbor tNNN are constant, and for the given lattice depth
tNNN = 0.0123 t.

2.2.2 Interaction-induced atomic limit: Quantum Interference

We now analyze the behaviour of the interaction-induced tunnelling
coefficients as a function of t/U and at a given ratio V/U. Figure 2.2
(a) displays the density-assisted tunnelling coefficient T and the pair
hopping coefficient P in units of t. The coefficients T and P are negative
over the considered parameter range. In particular, P is one order of
magnitude smaller than the density dependent tunnelling coefficient
T, while T is of the same order of magnitude as the tunnelling rate.
Therefore, single-particle tunnelling and correlated tunnelling have
opposite sign and can mutually cancel. Correlated (density-assisted)
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tunnelling, in particular, is dominant for t/U → 0, while single-
particle hopping is dominant at large ratios t/U. There is a parameter
range at finite ratios t/U, thus, where this destructive interference
leads to an effective atomic limit. Fig. 2.2(b) displays the values of the
scattering length and of the dipolar interaction strength corresponding
to the curves in Fig. 2.2(a). The ratio t/U for which one finds the
interaction-induced atomic limit is indicated by the vertical black line
in Fig. 2.2(a) for density ρ = 2. Here, T = t/3.

(a) (b)

Figure 2.2: (a) Density-assisted tunnelling coefficient T (blue) and pair-
hopping coefficient P (green) as a function of t/U for V/U = 0.5.
Panel (b) displays the corresponding values of the dimensionless
dipolar interaction strength d (blue) and of the s-wave scattering
length as in units of a (green). The ratio V/U is increased by
changing both d and the scattering length as. Note that here we
choose negative scattering lengths, so that the s-wave potential
partially cancels out with the local repulsive component of the
dipolar interactions. The other parameters are given in the text.
The vertical black line in panel (a) indicates the value of t/U for
which linear tunnelling and density-assisted tunnelling between
nearest-neighbor sites mutually cancel for ρ = 2.

In order to find a systematic way to identify the regime of the
interaction-induced atomic limit, we consider the one-particle hopping
terms of Hamiltonian H(1)

BH in Eq. (2.10) and collect them in the operator
T̂eff, which reads as [90]:

T̂eff =
L−1

∑
j=1

â†
j
[
−t− T(n̂j + n̂j+1)

]
âj+1 + H.c. . (2.14)

The expectation value of this term on a homogeneous distribution at
average density 〈n̂i〉 = ρ scales as

〈T̂eff〉 ' LRe{〈â†
j âj+1〉}[−t− T(2ρ− 1)] . (2.15)

This expression shows that, for non-vanishing off-diagonal correla-
tions, then 〈T̂eff〉 can vanish when

−t− T(2ρ− 1) = 0 .

Solutions with t 6= 0 exist for densities ρ 6= 1/2. In particular, for
0 < ρ < 1/2, destructive interference occurs for T > t > 0. In this
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case, 〈T̂eff〉 = 0 for T/t = 1/(1− 2ρ). In the other regime, for ρ > 1/2,
the interaction-induced atomic limit requires T < 0 and is found for

|T|
t

=
1

2ρ− 1
. (2.16)

Relation (2.16) can be fulfilled at relatively small dipolar strength
when the density is sufficiently high. In order to explore the effects
of this interference on the ground state properties, in our numerical
studies we focus on the phases of a dipolar gas with the commensurate
densities ρ = 1 and ρ = 2.

2.2.3 Mean-field considerations

In this subsection we use a mean-field ansatz and an approximated
model in order to infer some features of the following phase diagrams.

2.2.3.1 Atomic limit

We analyze the ground state in the limit in which all hopping terms are
set to zero. For convenience we consider the simplified Hamiltonian

Hat =
U
2 ∑

j
n̂j(n̂j − 1) + V ∑

j
∑
r>0

1
rα

n̂jn̂j+r , (2.17)

where α is the power law exponent, α > 1, and V scales the interaction
in the limit in which the Wannier functions are approximated by
Dirac-delta function.

For α → ∞ the interaction reduces to nearest-neighbors and the
ground state results from the interplay between the onsite interaction,
which tends to minimize the onsite occupation, and the repulsive in-
teraction between neighoring sites, which favours the onset of density
waves with double lattice periodicity. In the following we will discuss
the atomic limit for a specific density of ρ = 2. We denote by MI[2] the
Mott-insulator state with two particle per site and by CDW[n1, n2] the
charge-density wave state where neighboring sites are occupied by a
repeating sequence of n1 and n2 particles per site. For ρ = 2 these are
CDW[3, 1] and CDW[4, 0]. The MI[2] is stable when V ≤ V(1)

c , where:

V(1)
c =

U
2

1
ζ(α)

(
1− 1

2α−1

) , (2.18)

and ζ(α) is the Riemann’s zeta function. For α → ∞ we recover the
value V(1)

c = U/2. For α finite the boundary is shifted to larger values
of V: the power-law tails tend to stabilize the MI[2] state.

For α > 1 the three phases, MI[2], CDW[3, 1] and CDW[4, 0], are
degenerate at V = V(1)

c . In the interval V(1)
c < V < V(2)

c the ground



2.2 extended bose-hubbard model including the dipolar . . . 33

state is the CDW[4,0]. The upper bound V(2)
c is given by the expression

V(2)
c =

2U
ζ(α)

2α/8(
1− (2/3)α /6

) , (2.19)

which separates the phase CDW[4,0] from the CDW[6, 0, 0] with tri-
atomic Wigner-Seitz cell. For repulsive dipolar interactions, when
α = 3, then this bound takes the value V(2)

c ' 2U. In general, V(2)
c

monotonously increases with α and reaches V(2)
c → ∞ for α→ ∞. For

finite α one finds for V > V(2)
c further transition points to structures

with increasing Wigner-Seitz cells, until all particles are localized at
one lattice site in the limit V/U → ∞.

2.2.3.2 Staggered superfluidity: mean-field analysis

For nearest-neighour interactions and ρ > 1/2, correlated tunnelling
dominates the hopping events for T < 0 and t < |T|(2ρ − 1). In
this regime, in the absence of interactions the state with minimum
energy has momentum q = π (here in units of 1/a). Following these
considerations, we now assume a site-dependent superfluid order
parameter, which we define as [91]〈

âj
〉
= φeiθj , (2.20)

and use it to calculate the mean-field energy of the nearest-neighbor
hopping term:

Hhop =2[−t + |T|(2ρ− 1)]
L−1

∑
j=1

φ2 cos(θj − θj+1)

+
P
2

L−1

∑
j=1

φ4 cos(2(θj − θj+1)) , (2.21)

where P < 0 for the parameters of this chapter. Discrete translational
invariance gives θj = −jθ, such that θj − θj+1 = θ is a constant phase
increment from site to site [91]. This ansatz shows that the energy is
minimal for θ = π in the regime where density-assisted tunnelling
dominates. The SF order parameter has thus a Fourier component at
q = π. The alternating sign of the local superfluid parameter leads to
the denomination "staggered superfluidity" (SSF) [91].

We now consider the power-law behaviour of the interactions, and
thus the coupling to the other neighbors. For this purpose we write
the single-particle hopping terms due to the single-particle tunnelling
and to the density-assisted tunnelling in the compact form

Ĥ′hop = ∑
j

∑
r>0

(
−tr − T′r [n̂1, . . . , n̂L]

)
â†

j âj+r + H.c. , (2.22)
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where T′r [n1, . . . , nL] is a generic function of the density distribution
and scales with 1/rα, and tr is the hopping term due to the single-
particle energy, such that t1 = t and t2 = tNNN. For the uniform density
distribution ρ we make the simplifying assumptions 〈T′r〉 ∼ −T′[ρ]/rα.
Using Eq. (2.20) we obtain the expression:

H′hop ∼2φ2
L−1

∑
j=1

∑
r>0

(
−tr +

T′[ρ]
rα

)
cos(θj − θj+r) . (2.23)

This is the relation that the site-dependent phase θj shall fulfill in order
to achieve the interaction-induced atomic limit. For a shallow lattice
and in the regime where interactions are dominant superfluid phases
can have Fourier components that are incommensurate with the lattice
periodicity [39]. For sufficiently deep lattices, which is the case we
consider in this chapter, the sum can be truncated at the next-nearest
neighbors. Then an approximated root of the equation H′hop = 0 is
found by imposing −t + T′ [ρ] = 0, where now

T′[ρ] = |T|(2ρ− 1)− |T2
NNN|ρ . (2.24)

One consequence is that the coupling beyond nearest-neighbors shifts
the interaction-induced atomic limit to smaller values of the ratio t/U.
The interval where −t + T′[ρ] > 0 is now expected to be smaller than
for nearest-neighbor coupling. Here, the superfluid phase is to good
approximation the staggered superfluid with θj = −jπ.

2.3 1d ground-state phase diagram

In this section we numerically determine the properties of the ground
state of the extended Bose-Hubbard Hamiltonian as a function of the
strength of the dipolar interactions. We choose the commensurate
densities ρ = 1 and ρ = 2. We calculate the ground state when the
coupling is first truncated to the nearest-neighbor. For ρ = 2 also the
next-nearest neighbors are included.

Our results are obtained by means of a DMRG numerical program
[63], which is based on the ITensor C++ library for implementing ten-
sor network calculations [67]. The simulations are run for N particles
in a lattice with NL sites with open boundary conditions, for different
lattice sites and for different initial states. The interested readers are
referred to Appendix 2.6 for details on the implementation. Unless
mentioned otherwise, the system parameters are given in Subsec. 2.2.1.

We first review the observables, by means of which we characterize
the phases. We then report the phase diagram of the extended Bose-
Hubbard Hamiltonian with nearest-neighbor coupling, Eq. (2.8), for
the density ρ = 1. In Subsec. 2.3.3 we discuss the ground-state phase
diagram for a density of two. Here we first take into account solely
nearest-neighbor coupling, Eq. (2.8), and later include next-nearest-
neighbor couplings, Eq. (2.9).
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2.3.1 Order parameter

In this work we consider a system of atoms with a finite particle
numbers at vanishing temperature. We determine the phases by means
of the following observables, whose expectation values are taken over
the ground state.

We analyze the behaviour of local density fluctuations by means of
the local variance ∆nj [40]:

∆nj = 〈n̂2
j 〉 − 〈n̂j〉2 . (2.25)

This quantity is connected to the local compressibility [92]. A sufficient
condition for a phase to be incompressible is that ∆nj vanishes at all
sites j.

The superfluid phase is signalled by the non-vanishing value of
single particle correlations 〈â†

i âj〉 across the lattice. In particular, we
analyze the Fourier transform of the off-diagonal single particle corre-
lations

M1(q) =
1

N2
L

NL−1

∑
i,j=1

eiq(i−j)Re
〈

â†
i âj

〉
. (2.26)

The phase is a superfluid when M1(q) 6= 0 and the maximum Fourier
component is q = qmax with qmax = 0. When the maximum of M1(q) is
at qmax = π the phase is a staggered superfluid (SSF) [42]. Furthermore
we calculate the charge gap ∆c, Eq. (1.60), and the neutral gap ∆n, Eq.
(1.61). The gaps vanish in the thermodynamic limit in the superfluid
phases and are finite in the insulating phases [32, 33, 35, 58] .

Diagonal long-range order is revealed by a peak of the static struc-
ture form factor S(q) at the corresponding Fourier component, where

S(q) =
1

N2
L

NL−1

∑
i,j=1

〈
n̂in̂j

〉
e−iq(j−i) . (2.27)

A single peak of S(q) at q = 2π/j signals a periodic structure with
periodicity ja. We denote this phase by charge-density wave CDWj
if it is insulating. If instead the phase is superfluid, it is denoted
by lattice supersolid phase SSj. We distinguish between two kinds
of lattice supersolid phases, depending on the Fourier spectrum of
the single-particle off-diagonal correlations. The phase is SSj when
qmax = 0. If the peak is instead at qmax = π, then the phase is a
staggered supersolid SSSj [42].

Additionally, pair tunnelling terms are expected to favour the onset
of what has been denoted by pair superfluidity (PSF)[38, 39, 42, 91, 93,
94]. For the parameter regime of our study we do not find PSF, but for
completeness we report the observables we use in order to come to
our conclusions. PSF is signalled by a non-vanishing expectation value
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of the pair-correlation function. In this work we analyze the Fourier
transform of the pair correlations

〈
â†

i â†
i âj âj

〉
, which we define as [95]:

M2(q) =
1

N2
L

NL−1

∑
i,j=1

eiq(i−j)Re
〈

â†
i â†

i âj âj

〉
. (2.28)

In the pair superfluid (PSF) and in the pair supersolid (PSS) phases
the Fourier components of M2(q), Eq. (2.28), are larger than the corre-
sponding Fourier components of M1(q), Eq. (1.65) [95].

The MI phase is characterized by vanishing off-diagonal correlations,
finite gaps and S(q 6= 0) = 0. We verify the existence of the Haldane
insulator by calculating the expectation value of the modified string-
order parameter [58, 96]

OS = lim
r→∞
〈δn̂ie(iθ ∑i+r

k=i δn̂k)δn̂i+r〉 (2.29)

with δn̂i = n̂i − ρ. For unit density we take θ = π and for density
ρ = 2 we choose θ = π/2 [96]. The HI is then characterized by a finite
value of the string-order parameter, a vanishing static structure form
factor at q 6= 0, Eq. (2.27), and finite gaps. In our analysis we will
evaluate the string order parameter at r = NL/2, where we neglect
the outer NL/4 sites to account for boundary effects similar to Ref. [32,
58].

Finally, we analyze the entanglement entropy for a partition of the
chain into two equally long subsystems A and B:

SvN = −Tr{ρ̂B ln ρ̂B} , (2.30)

where ρ̂B = TrA{|φ0〉〈φ0|} and |φ0〉 is the ground state. We refer
the readers to Appendix 2.6 for further details on the numerical
implementations (including how we treat the boundary effects). Table
2.1 summarizes the expectation values that characterize the phases
here discussed.

2.3.2 Density ρ = 1

We first analyze the ground-state phase diagrams for unit density.
Fig. 2.3 shows the contour plot of the relevant observables for (a) SF
phase, (b) the SSF phase, (c) incompressible phases and (d) the phases
with diagonal long-range orders in the V − t plane.

In Fig. 2.3 we identify a superfluid region for sufficiently large single
particle tunnelling t and V/U . 1. Moreover, a MI-CDW transition
occurs around V/U = 0.5 for small tunnelling rates t. In Fig. 2.3(b)
the Fourier component of the single particle off-diagonal correlations
at q = π is zero over the whole phase diagram. Therefore no SSF
phases are present for the here considered parameters. This behaviour
is expected, since the destructive quantum interference region, i.e.
white dashed line, lies close to the atomic limit.
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Phase M1(q) M2(q) S(q) OS ∆c ∆n

Eq. (2.26) Eq. (2.28) Eq. (2.27) Eq. (2.32) Eq. (1.60) Eq. (1.61)

Mott-Insulator
MI

0 0 qmax = 0 0 6= 0 6= 0

Density Wave
CDWj

0 0 qmax = 2π/j 6= 0 6= 0 6= 0

Haldane-In.
HI

0 0 qmax = 0 6= 0 6= 0 6= 0

Superfluid SF qmax = 0 M2(q) <
M1(q)

qmax = 0 0 0 0

Staggered Su-
perfluid SSF

qmax = π M2(q) <
M1(q)

qmax = 0 0 0 0

Supersolid SSj qmax = 0 M2(q) <
M1(q)

qmax = 2π/j 0 0 0

Staggered Su-
persolid SSSj

qmax = π M2(q) <
M1(q)

qmax = 2π/j 0 0 0

Pair Super-
fluid PSF

M1(q) <
M2(q)

qmax = 0 qmax = 0 0 0 0

Pair Super-
solid PSSj

M1(q) <
M2(q)

qmax = 0 qmax = 2π/j 0 0 0

Table 2.1: Table of the phases, of their acronyms, and of the corresponding
values of the observables. The subscript j of the Density Wave and
of the Supersolid phases refer to the component q = 2π/j of the
structure form factor which is different from zero, correspond-
ingly the density modulation has periodicity ja. qmax indicates the
Fourier component at which the spectra of M1, M2, S(q) may have
a maximum.
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Figure 2.3: Contour plot of the relevant observables in the V/U-t/U plane
for the Bose-Hubbard model of Eq. (2.10) and density ρ = 1. Panel
(a) and (b) signal SSF and SF through the Fourier components
q = 0 and q = π, respectively, of the single particle off-diagonal
correlations M1(q). Panel (c) reports the maximum value of the
local variance ∆nj across the lattice, Eq. (2.25), and panel (d)
the structure form factor S(q = π) (2.27), signaling the onset
of a density modulation. The number of lattice sites is fixed to
NL = 60 and the number of particles is given by N = 60. The
white dashed line indicates the interaction-induced atomic limit.

For ρ = 1 it was shown that a topological non-trivial phase, the
Haldane insulator, is present for zero correlated tunnelling [32–35, 58].
In the following subsubsection we study how the topological phase is
affected by the correlated tunnelling.

2.3.2.1 Haldane Insulator

The transition between the MI and CDW phase can be captured by the
local order parameter, so called density wave order parameter [32, 34]

ODW = lim
r→∞

(−1)r 〈δn̂iδn̂i+r〉 (2.31)

with δn̂i = n̂i − ρ. Here local refers to the fact that ODW is the expecta-
tion value of two single-site operators. It is zero in the MI, whereas it
is finite in the CDW. Previous studies of the extended Bose-Hubbard
at unit density revealed the appearance of a peculiar insulating phase
in between the MI and CDW insulator in the U −V plane [32–35]. It
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turns out that this phase can not be revealed by any local order param-
eter and falls into the category of the so called topological non-trivial
insulators [97, 98]. Topological non-trivial insulators can possess edge
states, which are robust against a certain class of perturbations [97, 98].
The topological-nontrivial insulator of the extended one-dimensional
Bose-Hubbard model is called the Haldane insulator (HI) [32–35, 58]
and is characterized by a non-local order in its particle-hole defects.
This becomes clear by analyzing the lattice occupations in the HI state.
One example is illustrated in Fig. 2.4(a). Here the plus refers to an ex-
tra particle on the site and the minus to a hole while the zeros are the
sites with unit occupation. The HI exhibit particle-hole pairs, which
can be extended over several sites r with r < NL. Thus one calls those
pairs unbounded. Moreover those particle-hole pairs show an order.
This can be seen by neglecting in a given configuration all sites with an
occupation ρ (zeros). As a result, the order of the particle hole defects
is the one characteristic of a CDW state. In contrast to the CDW state
the order in the HI is hidden, i.e. the HI phase can only be revealed by
neglecting the sites with average occupancy. Therefore the HI phase
can not be signaled by the order parameter in Eq. (2.31). Nevertheless
it can be captured by the non-local string order parameter [32–35, 58]

OS = lim
r→∞
〈δn̂ie(iπ ∑i+r

k=i δn̂k)δn̂i+r〉 , (2.32)

where non-local here refers to the operator measuring the site occu-
pations in between any pair of sites i and i + r (see Eq. (2.29)). The
string order parameter is different from zero when ODW 6= 0. In the
parameter region where ODW = 0 but OS 6= 0 the phase is HI. In the
MI instead, where the defects are local, extended over a few sites, and
not ordered (see Fig. 2.4(b)), ODW = OS = 0.

Figure 2.4: Illustration of configurations of the defects in (a) the Haldane
Insulator and (b) in the Mott insulator ground states. The plus
denotes an extra particle and the minus to a hole. The zeros stands
for an occupations given by the average density ρ = 1.

The Haldane insulator was extensively characterized in numerical
studies of the one-dimensional extended Bose-Hubbard model with
repulsive density-density interaction [32–35, 58, 82, 83]. This is a
limit of our model in Eq. (2.8) obtained after setting T = P = 0. The
resulting phase diagram is depicted in Fig. 2.5 and taken from Ref. [33].
For small U and V the ground state is in the SF phase. By increasing
the on-site interaction U the system enters the insulating phases. For
small V the nearest neighbor interaction can be neglected and the
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insulating phase is MI: Here the string order parameter (2.32) and
the structure form factor (2.27) at q = π vanish. Increasing the ratio
between the nearest-neighbor interaction and single particle tunnelling
V/t leads to a finite string order parameter signaling the transition to
the HI phase. For large V/t the system ends up in the CDW phase,
which is signaled by a finite value of the structure form factor at q = π.
The black squares are calculated by means of DMRG [32].

Figure 2.5: Phase diagram of Hamiltonian Ĥ(1)
BH, Eq. (2.8), for T = P = 0 in

the (U, V)-plane for a density of ρ = 1. The open squares are the
results of Ref. [32] using DMRG. All other symbols are the results
obtained by means of a QMC calculations in Ref. [33]. The QMC
confirms the DMRG results in Ref. [32] within the error bars. The
QMC simulations also identified a phase separation region for
small U and large V that was not reported in [32]. The dashed
line indicates the function U = 4V/3. This figure is taken from
Ref. [33] with the permission of the American Physical Society
and of their authors.

For large V/t but small U/t the ground state of the canonical
ensemble consists of a mixture of two or more phases [33]. This
feature is characteristic of a phase separation [33] and can be revealed
by looking for instance at the behaviour of the occupation and its
variance across the lattice. In the grand-canonical ensemble it can
be identified by analyzing the density as a function of the chemical
potential: If the density shows a jump, such that the phase at unit
density is unstable, the ground state will possess a phase separation
[33]. The phase diagram in Fig. 2.5 was calculated in the canonical
ensemble by means of the DMRG ground state algorithm and in
the grand-canonical ensemble1 by a QMC simulation [33]. The phase

1 Here one chooses the right chemical potential to achieve a density of one across the
phase diagram.
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boundaries identified with both approaches are in good agreement
with each other (see Fig. 2.5) . Effect of correlated

tunnelling on the
Haldane insulator

We now analyze the effect of the correlated tunnelling on the phase
transition MI-HI and HI-CDW. This question is also of experimental
relevance, since correlated tunnelling is naturally present in experi-
ments of ultracold dipolar gases like in Ref. [73]. For this purpose
we determine the phase diagram for unit density in the U −V plane
for finite correlated tunnelling T. The values of the density depen-
dent tunnelling T are calculated as discussed in Subsec. 2.2.1 and its
behaviour across the phase diagram is depicted in Fig. 2.6.

Figure 2.6: Contour plot in the V/t−U/t-plane of the density-assisted tun-
nelling coefficient T in Eq. (2.10) for the nearest-neighbor coupling
and in units of the tunnelling rate t. The black (white) dashed lines
show the values of V and U at some constant dipolar interaction
strengths d. The other parameters are discussed in Subsec. 2.2.1.

Here, one observes an increase in the absolute value of the correlated
tunnelling with V/t. Since the pair tunnelling coefficient is several
orders of magnitude smaller then the density assisted tunnelling
P� T, we discard the pair tunnelling contribution in the following.

Like in Refs. [33, 39] we identify the phase transitions by means of
the extrapolated behaviour for NL → ∞ of the charge gap (1.60), the
neutral gap (1.61), the string order parameter (2.32) and the density
wave order parameter (2.31). Therefore we proceed as in Ref. [33]
and first calculate the order parameters for lattices of size NL =

32, 48, 64, 100. The extrapolation of the order parameters for an infinite
system is then done according to

O (NL) = O(NL → ∞) + const./NL , (2.33)
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where O(NL) stands for a given observable as a function of NL. By
means of the values of O(NL → ∞) we identify the phase boundaries
according to Table 2.1. In this procedure we neglect the outer NL/4
sites at both sides of the lattice in order to get rid of boundary effects
and evaluate the string, Eq. (2.32), and density wave order parameter,
Eq. (2.31), for r = NL/2 [32, 33]. The resulting phase diagram for ρ = 1
in the U −V plane is drawn in Fig. 2.7.

Figure 2.7: Phase diagram of Hamiltonian Ĥ(1)
BH, Eq. (2.8), for ρ = 1 in the U−

V plane (a) in units of the single-particle tunneling rate t including
the correlated tunnelling T and (b) in units of the effective mean-
field tunnelling rate teff = t− |T| (see Eq. (2.15)). The boundaries
were identified by extrapolating the order parameter for NL → ∞,
where we use NL = 32, 48, 64, 100. The ground state is calculated
by means of a DMRG method. Note that the error in the transition
lines is given by the grid steps chosen for the parameters U/t
and V/t.

The Phase diagram in Fig. 2.7(a) is qualitatively similar to the phase
diagram in Fig. 2.5. We observe, however, two main differences: First
the size of the HI region in between the MI and CDW is reduced.
Second the size of the phase separation region is increased. The reduc-
tion of the HI region can be explained by a decrease of the effective
mean-field tunnelling rate teff = t− |T| (see Eq. (2.15)). This is visible
in Fig. 2.7(b), where the phase diagram is plotted as a function of
U and V both in units of the effective mean-field tunnelling rate teff.
Within the error bars, the rescaled phase diagram agrees well with the
phase boundaries depicted in Fig. 2.5 for P = T = 0, apart for the PS
region.

In order to determine the PS region in the canonical ensemble, we
analyze here the occupation ni = 〈n̂i〉 as a function of the site index
i and its variance ∆ni across the lattice, Eq. (2.25), for NL = 100 (see
Fig. 2.8). Comparing Fig. 2.7(b) with Fig. 2.5 we observe that the
size of the PS region seems to increase. We therefore compare the
occupation distribution and its variance over the lattice for T = 0 and
T 6= 0. The results are shown in Fig . 2.8 (a)-(d). Here we started the
algorithm with the same initial state and parameters within the PS
region. In Fig. 2.8(a) and (c) we observe that the PS region consist of
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alternating SF and SS clusters (see also Ref. [33]). Interestingly for a
finite T in Fig. 2.8(b) the cluster at constant density has significantly
smaller size and the occupation is around 1/2 over several lattice sites.
We note that at ρ = 1/2 the mean-field correlated tunnelling term
vanishes. We observe in this region a reduced local variance of the
occupation, see Fig. 2.8(d), in comparison to the SF region for T = 0,
see Fig. 2.8(c). In the rest of the lattice sites the occupation and its
variance show the properties of a CDW and SS phase. In order to
determine whether the occupation in Fig. 2.8(b) is the one of the actual
ground state, we intend to run the DMRG simulations for different
initial states, like we did for determining the phase diagram of Fig. 2.7.
This analysis is going to be performed in the near future and is not
reported in this thesis.

Figure 2.8: Occupation (a),(b) and its variance (c),(d), Eq. (2.25), as a function
of the lattice site index i for U = 0.5t and V = 4t. In panel (a)
and (c) the correlated tunnelling is set to zero, i.e. T = 0, and in
panel (b) and (d) the value of T is finite. We initialized the DMRG
algorithm with a MI state. The density is given by ρ = 1 and the
number of lattice sites are fixed to NL = 100.

Fig. 2.9(a) displays the difference between the string order parameter
and the density wave order parameter ∆ = Os −ODW as a function
of V/U and t/U for a finite correlated tunnelling T. By inspecting
Fig. 2.9(a) one can identify a small region, where the density wave or-
der parameter is zero, yet the string order parameter is finite signaling
the HI. Fig. 2.9(b) displays the entanglement entropy. While for the
insulating phases, MI and CDW, the entanglement entropy is zero, it
is finite in the SF and in the HI phase. The latter behaviour is due to
non-local correlations between defects.
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Figure 2.9: Contour plot of (a) the difference between the string order param-
eter and the density wave order parameter ∆ = Os −ODW and of
(b) the von Neumann entropy for the ground state of Eq. (2.8) as
a function of the ratio V/U and of the ratio t/U for NL = 60 with
T 6= 0. The string order parameter, Eq. (2.32), and density wave
order parameter, Eq. (2.31), are evaluated for r = NL/2, where
we discard the outer NL/4 lattice sites at both boundaries. The
phases are labeled according to the classification of Table 2.1. in
order to calculate the von Neumann entropy we choose the size
of the subsystem to be LB = 30 sites. The rest of the parameters
are the same as in Fig. 2.3.

The influence of the next-nearest neighbor terms together with the
correlated tunnelling on the HI phase was studied before for a fixed
ratio V/U and U/t in Ref. [39]. The results for a fixed U/t reveals a
shrinking of the HI region for sufficiently large dipole-dipole interac-
tion strength, which is consistent with our observation in Fig. 2.7(a).
Moreover, the authors of Ref. [39] observe a shift of the SF-HI transi-
tion to smaller values of U/t for a fixed ratio V/U, which can be also
identified in Fig. 2.7.

2.3.3 Density ρ = 2

Our considerations in Subsec. 2.2.3 predict a shift of the destructive
interference region to larger values of t/U for larger densities. Thus we
expect a larger impact of the correlated tunnelling on the ground state
properties for larger densities. Therefore we study in this Subsection
the ground-state phase diagrams for ρ = 2.

2.3.3.1 Nearest-Neighbor interactions

In this subsubsection the properties of the ground state of the extended
Bose-Hubbard Hamiltonian H(1)

BH, Eq. (2.8), are studied for a finite chain
at a fixed density ρ = 2. We report the phase diagrams as a function
of the blockade coefficient between nearest-neighbor, V/U, and of the
tunnelling rate t/U. For computational reasons we will identify the
insulating phases, i.e. CDW, MI and HI, in the following by means of
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the Fourier transform of the off-diagonal correlations M1(q), Eq. (2.26),
and not by the charge and neutral gap. Figures 2.10(a)-(d) display
the contour plots of the relevant observables for (a) the SF phase, (b)
the SSF phase, (c) the incompressible phase and (d) the phases with
diagonal long range orders.

We first identify the MI-SF phase transition at V → 0: the transition
point (t/U)c is in qualitative agreement with the literature [99], the
discrepancy is attributed to the finite size of the chain. At finite and
nonvanishing ratios V/U the insulating phase moves to larger values
of t/U. It is localized about the white dashed line, which indicates the
atomic limit due to quantum interference (see Sec. 2.2.3). By inspecting
Figs. 2.10 (a) and (b) it is evident that this phase divides the diagram
into two disconnected SF phases: According to our classification, on
the left the phase is a staggered SF (SSF), on the right it is a SF. It is
remarkable that also at t/U → 0 the phase is superfluid. According
to our preliminary considerations, this superfluid phase is due to the
correlated hopping of the dipolar interactions.

Inspecting the single-particle off-diagonal correlations, panel (a),
and the structure form factor, panel (d), we further observe a transition
about the line V = U/2. The properties at this transition depend on
t/U. We recall that at this value and in the atomic limit we expect a
first-order transition from a MI to a CDW[4,0] [29]. This is consistent
with our numerical results along the values of the interaction-induced
atomic limit. When hopping is dominated by the kinetic energy (on
the right of the interaction-induced atomic limit) the phase is expected
to undergo a continuous transition from SF to SS (not included in
our phase diagram). When instead hopping is due to interactions we
observe a continuous transition from SSF to staggered SS (SSS).

In the following we discuss some of those behaviours in detail. Superfluidity

In one dimension there is no long-range off-diagonal order, and
superfluidity is signalled by the power-law decay of the single-particle
correlation function with the distance [49]. In the SSF phase this
behaviour is modulated by an oscillation with (dimensionless) wave
number q = π, so that the correlation function changes sign every
time the distance is increased by one lattice site. This oscillation is
visible in Fig. 2.11(a), which reports the off-diagonal correlation in
the parameter regime of the SSF phase. Fig. 2.11(b) provides evidence
of the power-law decay of the envelope. We note that this behaviour
was also reported in Refs. [38, 39], and was there denoted by "pair
superfluidity". We consider here more appropriate to denote this
phase by "staggered SF", since it is due to the dominant contribution
of the density-assisted tunnelling term in establishing off-diagonal
correlations. Interestingly, the oscillation is already captured by a
mean-field model, cf. Sec. 2.2.3. In general, the analysis of the Fourier
transform of M1(q) across the diagram shows that in the superfluid
phase the Fourier components different from zero are solely at q = 0
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Figure 2.10: Contour plot of the relevant observables in the V/U − t/U
plane for the ground state of the Bose-Hubbard model of Eq.
(2.8) for ρ = 2. (a) and (b) signal SF and SSF through the Fourier
components q = 0 and q = π, respectively, of the single particle
off-diagonal correlations M1(q). (c) reports the maximum value
of the local variance ∆nj across the lattice, Eq. (2.25), and (d)
the component at momentum π of the structure form factor,
signaling the onset of a density modulation. The number of
lattice sites is fixed to NL = 60 and the number of particles is
given by N = 120. The white dashed line in (a)-(c) indicates the
interaction-induced atomic limit. The vertical dotted lines in (d)
indicate the parameters of the sweeps in Fig. 2.13. See Appendix
2.6 for further details.

and q = π. This is visible, for instance, in Figs. 2.12 (a) and (d). We
now analyze the onset and the features of the SF phase along two
specific transition lines: along the axis V/U for t/U = 0.02 and along
the axis t/U for V = U/2.

We first consider V = U/2. Fig. 2.12(a) displays the Fourier spec-
trum of the single particle correlation function, M1(q), as a function
of t/U: The non-vanishing Fourier components are at q = 0 (at large
t/U) and at q = π (at small t/U). These two Fourier components are
reported in panel (b): they are different from zero on the right and on
the left, respectively, of the interaction-induced atomic limit. When
moving towards the atomic limit they decrease until they vanish. The
entanglement entropy (c) vanishes for an interval of values centered
about the transition point.
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Figure 2.11: (a) Single particle off-diagonal correlation
〈

â†
` â`+r

〉
for a particle

at the center of the chain and as a function of the distance
r (in units of the lattice constant a). Here, V/U = 0.529 and
t/U = 0.042, corresponding to a point in the SSF phase. The
chain has NL = 120 sites and N = 240 particles, the site close
to the center is ` = 50. (b) Same as (a) but in logarithmic scale.
Here the absolute value of the correlation function is reported
and the power-law decay is evident.

The behaviour of superfluidity for small ratios t/U is determined
by the correlated hopping. Fig. 2.12(d) displays M1(q) as a function of
V/U and small ratio t/U. In panel (e) we report the Fourier compo-
nents at q = 0 and q = π. The phase is insulating for a small interval
about V = 0, after which the Fourier component at q = π rapidly
grows and reaches a maximum about V = U/2. At the same value the
entanglement entropy, (f) displays a maximum. After this maximum,
the Fourier component at q = π drops to smaller values, while the
q = 0 component starts to grow from zero to a small but finite value
(the numerics converge very slowly at these points and we cannot
provide more detailed sampling). The Fourier component at q = π

is always larger than M1(0), therefore according to our definition the
SF phase is staggered. We have analyzed the scaling of the peak at
V = U/2 with the system size: by means of a fit we extract that the
peak height at the asymptotics is finite and tends to the finite value
M1(π)→ 0.47 (see Appendix 2.6 for further details).

We note that across the phase diagram we do not observe pair
superfluidity: In fact, the expectation value of observable M2 is always
smaller than the one of M1 at the corresponding q value (see Appendix
2.6 for details). Moreover, we do not find spatial modulation in the
pair correlations. We believe that this is because the pair tunnelling
coefficient P is negative over the considered parameter range. Diagonal long-range

orderLet us now discuss the onset of diagonal long-range order. This
is here signalled by the non-vanishing component at q = π of the
structure form factor. Fig. 2.13(a) displays its behaviour as a function
of V/U for three different values of t/U. The parameters of these
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Figure 2.12: Fourier transform of the single particle off-diagonal correlations
M1(q) (2.26) as a function of q and in (a) of t/U for V/U = 0.5
and in (b) of V/U for t/U = 0.02 with ρ = 2. (b) and (e) show
the behaviour of the Fourier components at q = 0 (red) and
q = π (blue) as a function of q, where in (b) V/U = 0.5 and in
(e) t/U = 0.02. Here, we discard the onsite contribution of the
sum in Eq. (2.26). (c) and (f) display the corresponding values
of the entanglement entropy. Different symbols correspond to
different system sizes NL (NL = 60, 90, 120, see legenda), keeping
N = 2NL. (a) and (d) are reported for NL = 60. The peak of the
entanglement entropy in (f) for a fixed t/U = 0.02 is located
in the SSF region visible in Fig. 2.11(c) at V/U = 0.5. The
behaviour of the entanglement entropy suggests a continuous
phase transition at this point.

sweeps are indicated by the vertical lines in Fig. 2.10(d). The data of
(i) correspond to the sweep across the transition from SSF to SSS and
show a continuous, even though rapid, growth of the structure form
factor. This rapid growth occurs in the same parameter interval where
the superfluid Fourier component at q = 0 increases from zero to a
finite value.
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Sweep (ii) is taken across the transition MI-CDW[4,0]. It shows a
discontinuity at V/U = 0.5, indicating a first-order phase transition.
This agrees with prediction in Subsec. 2.2.3. Sweep (iii) moves across
the SF to the CDW[4,0] phase. The behaviour suggests a discontinuous,
first-order transition. We also expect a continuous transition SF to SS
at V = U/2 but for slightly larger ratios t/U, that are not included in
this phase diagram.

Figure 2.13: Panel (a) shows the component at q = π of the structure form
factor, Eq. (2.27), signaling the onset of density modulations. The
data are taken at the sweeps (i), (ii), (iii) of Fig. 2.10(d). Here,
t/U = 0.02 at (i), t/U = 0.157 at (ii), and t/U = 0.25 at (iii).
Panel (b) shows the contour plot of the von Neumann entropy
for the ground state of Eq. (2.8) as a function of the ratio V/U
and of the ratio t/U. The phases are labeled according to the
classification of Table 2.1. The parameters are the same as in
Fig. 2.10, the size of the subsystem is LB = 30 sites. The density
is fixed to two, i.e. ρ = 2.

Fig. 2.13(b) displays the contour plot of the entanglement entropy.
The region with non-vanishing values are the ones we identified before
as superfluid phases. We observe in particular the maximum at the
transition from SSF to SSS at t/U ' 0 and V ' U/2. We label the
phases in the diagram according to our classification in Table 2.1.

2.3.3.2 Next-nearest-neighbor interactions

We now analyze the ground state of the extended Bose-Hubbard
Hamiltonian by including the next-nearest-neighbors interactions. The
Hamiltonian is given in Eq. (2.9). The properties of the relevant ob-
servables are shown in Fig. 2.14. They share some similarities with the
nearest-neighbor model, (compare with Fig. 2.10). For instance, also
in this case we observe an insulating phase at the interaction-induced
atomic limit, which separates staggered superfluidity from "normal"
superfluidity. However, now the SF phases occur in larger parameter
regions and the insulating phase shrinks. Moreover, the transition to
the diagonal long-range order is located about V ∼ 0.5U, even though
it is shifted to a slightly larger value than for the nearest-neighbor case.
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A striking difference is the appearance of a third phase at V ∼ 2U,
which is signalled by a peak of the structure form factor at q = 2π/3 .

Figure 2.14: Contour plot of relevant observables in the V/U − t/U plane
for the ground state of the Bose-Hubbard model of Eq. (2.9),
which includes next-nearest neighbor interactions. (a) and (b)
signal SF and SSF through the Fourier components q = 0 and
q = π, respectively, of the single particle off-diagonal correla-
tions M1(q). (c) reports the maximum value of the local variance
∆nj across the lattice, Eq. (2.25), and panel (d) the component
at momentum π(red) and 2π/3 (yellow) of the structure form
factor, signalling the onset of a density modulation with the
corresponding periodicity. The number of lattice sites is fixed
to NL = 60 and the number of particles is given by N = 120.
The white dashed line in (a)-(c) indicates the interaction-induced
atomic limit. The vertical dotted lines in (d) indicate the parame-
ters of the sweeps in Fig. 2.16. We fixed the density to ρ = 2. See
Appendix 2.6 for further details.

In the superfluid phase the spectrum of the single-particle off-
diagonal correlations have non-vanishing Fourier component at q = 0
and at q = π. Figure 2.15(a) displays these Fourier components as a
function of t/U for V = U/2. The behaviour is similar to the nearest-
neighbor case, Fig. 2.12(a). Now, however, the insulating phase occurs
on a substantially smaller interval of t/U values. We attribute this
effect to the next-nearest-neighbor terms of the interaction-induced
tunnelling. In fact, from Eq. (2.24) we can see that these terms tend to
increase the effective hopping coefficient.
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The behaviour of the Fourier components for t � U is shown in
Fig. 2.15(b) as a function of V/U. For V/U . 2 it is similar to the
nearest-neighbor model. Also in this case it exhibits the features of a
continuous transition. The maximum of the π component, however, is
shifted to larger values (compare to Fig. 2.12), which is consistent with
our preliminary considerations. Moreover, for V/U to the right of the
maximum, the slope with which both Fourier components at q = 0
and q = π increase is larger than for the nearest-neighbor interaction.
At V ∼ 2U both components undergo an abrupt transition to a very
small, non-vanishing value. At this point, the structure acquires a
periodic density modulation at wave number q = 2π/3, as visible
from Fig. 2.16. The transition is thus discontinuous. The new phases
exhibits a finite value of the maximum value of the local variance ∆nj,
Eq. (2.25), across the lattice. However, in the corresponding region the
entanglement entropy, Fig. 2.16, takes small values. Its nature shall be
clarified by a future analysis for larger system sizes.

Figure 2.15: Fourier components of the single particle off-diagonal correla-
tions M1(q) (2.26) discarding the onsite contribution at q = 0
(red) and q = π (blue) as a function of (a) t/U for V/U = 0.5
and of (b) V/U for t/U = 0.02. Different symbols correspond to
different system sizes NL (NL = 60, 90, 120, see legenda), keep-
ing N = 2NL and ρ = 2. The discontinuity at V/U ' 2 is
associated with the appearance of density modulations with
quasi-momentum q = 2π/3, see also Fig. 2.16.

The entanglement entropy (2.70) in Fig. 2.16(b) in the V − t plane
is finite in the superfluid phases and close to zero in the insulating
phases.
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Figure 2.16: Panel (a) shows the component at q = π (red) and q = 2π/3
(blue) of the structure form factor, Eq. (2.27), signalling the
onset of density modulations for ρ = 2. The data are taken at
the sweeps (i), (ii), (iii) of Fig. 2.10(d). Here, t/U = 0.02 at (i),
t/U = 0.157 at (ii), and t/U = 0.25 at (iii). Panel (b) shows the
contour plot of the von Neumann entropy as a function of the
ratio V/U and of the ratio t/U for the ground state of Eq. (2.9).
The phases are labeled according to the classification of Table
2.1. The parameters are the same as in Fig. 2.10, the size of the
subsystem is LB = 30 sites.

2.4 effect of correlated hopping in a quadratic ,
two-dimensional lattice

Previous studies on ultracold dipolar bosons in a two-dimensional
lattices included density-density interaction terms to the 2D Bose-
Hubbard Hamiltonian (1.72) in order to account for the dipole-dipole
interaction [20, 100–102]. Those density-density interaction terms stabi-
lize different order phases in the 2D plane [20, 30, 100–105]. The aim of
this section is to study the influence of the density assisted tunnelling
on the ground state of a gas of ultracold dipolar atoms loaded in a
two-dimensional square lattice. We will focus on the regime where the
correlated and single particle tunnelling can destructively interfere.

2.4.1 2D extended Bose-Hubbard model

We consider a gas of ultracold bosons which are confined in two
dimensions in a square optical lattice in the x − y plane with L =

Lx × Ly sites and periodic boundary conditions.. The motion in the
direction orthogonal to the plane is assumed to be frozen out. The
bosons interact via the contact potential and the dipolar interactions.
The dipoles are polarized perpendicularly with respect to the plane of
the lattice, thus they interact repulsively and isotropically in the plane.

We denote by âp,q and â†
p,q the operators annihilating and creating

a particle at site i = {p, q} with commutation relations [âp,q, â†
p′,q′ ] =

δp,p′δq,q′ . Here p (q) is the lattice site index along the x (y) direc-
tion. Let n̂p,q = â†

p,q âp,q denote the corresponding number operator.
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We consider here a grand-canonical ensemble. Following the pro-
cedure as for the one-dimensional case (see Sec. 2.2) the resulting
two-dimensional extended Bose-Hubbard model (eBHM) is described
by the Hamiltonian Ĥ2D

EBH which we separate into the contribution of
onsite, nearest-neighbour and next-nearest neighbour interactions:

Ĥ2D
EBH = Ĥ2D

BH + Ĥ(1) + Ĥ(2). (2.34)

Here, Ĥ2D
BH is the standard Bose Hubbard model of Eq. (1.73).

The nearest neighbor (NN) contributions to the Hamiltonian are
given by

Ĥ(1) = V ∑
p,q

n̂p,q
(
n̂p+1,q + n̂p,q+1

)
−T ∑

p,q

[
â†

p+1,q
(
n̂p,q + n̂p+1,q

)
âp,q

+â†
p,q+1

(
n̂p,q + n̂p,q+1

)
âp,q + H.c.

]
+

P
2 ∑

p,q

(
â†2

p+1,q + â†2
p,q+1

)
â2

p,q + H.c. . (2.35)

Here we label the coefficients using the same convention as in the
one-dimensional case: V is the density-density interaction between
neighbouring sites, T is the amplitude scaling density-dependent
tunnelling, and P is the pair tunnelling coefficient. The Hamiltonian
of Eq. (2.35) is the two-dimensional extension of Eq. (2.10).

The Hamiltonian corresponding to the NNN coupling is specific to
a 2D square lattice and couples sites along the diagonals of the lattice.
Explicitly:

Ĥ(2) =Vdiag ∑
p,q

n̂p,q
(
n̂p+1,q+1 + n̂p−1,q+1

+ n̂p+1,q−1 + n̂p−1,q−1
)

− Tdiag ∑
p,q

[
â†

p+1,q+1
(
n̂p,q + n̂p+1,q+1

)
âp,q

+ â†
p−1,q+1

(
n̂p,q + n̂p−1,q+1

)
âp,q + H.c.

]
. (2.36)

The coefficients scale the corresponding terms as in Eq. (2.35). The
subscript “diag" indicates that we accounted for the lattice geometry
in evaluating the interactions between NNN.

Similar to the one-dimensional case the coefficient are calculated by
taking into account the algebraic scaling of the dipolar interactions
and the lattice geometry. In determining the phase diagram we tune
the strength of the contact interaction and of the dipole interactions,
see Subsubsec. 2.2.1, keeping in mind that now the functions in the
overlap integrals are two-dimensional Wannier functions in the x− y
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plane. The details on the calculation of the coefficients are reported in
Appendix 2.6.

We note that the strength of the coefficients of Hamiltonian (2.35)
and (2.36) follow |V| > |T| � |P| and |Vdiag| > |Tdiag|. In our isotropic
lattice geometry the overlap integral giving P is orders of magnitude
smaller than V or T and is much smaller than the coefficients appear-
ing in Ĥ(2). We have checked explicitly that taking the term scaling
with P into account does not modify our results. For that reason, from
now on we omit the term proportional to P in (2.35) - this justifies
also that the corresponding term is also missing in (2.36) from the
very beginning. For completeness, we remark that the pair tunnelling
coefficient can be enhanced by modifying the confinement in the z
direction [38].

The parameters used in our calculations are varied by changing
the dipole interaction strength and the s-wave scattering length (see
Subsubsec. 2.2.1). In particular we will focus on the parameter regime
where T < 0, namely, where we expect to observe destructive interfer-
ence between correlated tunnelling and the single-particle hopping.

2.4.2 Extended mean-field approach

In order to determine the ground-state phase diagram of the 2D ex-
tended Bose-Hubbard model we consider a grand-canonical ensemble
and apply the site-decoupled Gutzwiller mean-field (SGMF) and the
cluster Gutzwiller mean-field (CGMF) introduced in 1.3.3.2. Due to the
density dependent tunnelling these approaches have to be modified
as we discuss in the following.

2.4.2.1 Site-decoupled Gutzwiller mean-field approach (SGMF)

The SGMF allows one to reduce the model to a single site by neglecting
second order fluctuations of the bosonic annihilation and creation op-
erators. Within this treatment the expectation value of the annihilation
operator is the order parameter of the superfluid phase (see Subsubsec.
1.3.3.2). In the presence of correlated tunnelling the SGMF has to be
modified by including additional order parameters connected with
the correlated hopping [42]. In this treatment the correlated tunnelling
is decoupled as follows

â†
p,q
(
n̂p,q + n̂p′,q′

)
âp′,q′ ≈

〈
â†

p,qn̂p,q

〉
âp′,q′ +

〈
âp′,q′

〉
â†

p,qn̂p,q

+
〈
n̂p′,q′ âp′,q′

〉
â†

p,q +
〈

â†
p,q

〉
n̂p′,q′ âp′,q′ ,

(2.37)
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where the expectation value is taken over the 2D Gutzwiller mean-field
wave function of Eq. (1.78). One introduces here the "density-assisted
correlation order parameter", which reads

ηp,q = 〈Ψ|n̂p,q âp,q|Ψ〉 = ∑
n

√
n(n− 1) c(p,q)

n−1

∗
c(p,q)

n , (2.38)

where the state |Ψ〉 is given in Eq. (1.78). Moreover, one writes the
density-density interactions as

n̂p.qn̂p′,q′ = np,qn̂p′,q′ + np′,q′ n̂p,q − np′,q′np,q . (2.39)

Here np,q is the expectation value of the occupation operator at the
(p, q)th site:

np,q = 〈Ψ|n̂p,q|Ψ〉 = ∑
n

n|c(p,q)
n |2 (2.40)

and is connected with the average density ρ by the relation

ρ = ∑
p,q

np,q/L

where L = Lx × Ly is the system size. According to this procedure,
the mean-field Hamiltonian of the system may be written as a sum
of single-site Hamiltonians ĤMF

EBH = ∑p,q ĥp,q. For NN interactions the
individual summands ĥp,q read

ĥp,q =ĥMF
p,q + Vn̄p,q

(
n̂p,q −

np,q

2

)
+ T

(
â†

p,qn̂p,qφ̄p,q + n̂p,q âp,qφ̄∗p,q + â†
p,qη̄p,q + âp,qη̄∗p,q

)
− T

(
η̄p,qφ∗p,q + φ̄p,qη∗p,q

)
, (2.41)

where ĥMF
p,q is the single-site Hamiltonian in Eq. (1.76) and the rest is

due to the dipolar interaction. Here we have introduced the average
mean-field [42]

x̄p,q = xp,q+1 + xp,q−1 + xp+1,q + xp−1,q , (2.42)

where x can be φ, η or n in Eq. (2.41).
The mean-field Hamiltonian corresponding to higher order (NNN)

terms is found by applying the same procedure.
We solve the single-site model by using the standard mean-field

algorithm explained in Subsubsec. (1.3.3.2) . Here we initialize the
Gutzwiller coefficients by 1/

√
nmax on each-site and evaluate the cor-

responding initial order parameters. Then, we diagonalize the local
Hamiltonians sequentially and redefine the order parameters using
the ground states found from these diagonalizations. After each diago-
nalization the order parameters φ, and η are updated. This procedure
is repeated until the convergence criteria of the order parameter is
satisfied. For the present work, we consider the iteration converged
when the value of φ changes less then 10−12 for two consecutive steps.
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2.4.2.2 Cluster Gutzwiller mean-field (CGMF)

The disadvantage of the SGMF theory is that the inter-site coupling is
incorporated solely through the mean-fields x̄p,q. This accounts for the
poor resolution of inter-site correlations. This problem can be partially
overcome by the application of the so-called Cluster Gutzwiller mean-
field (CGMF) method, see Subsubsec. 1.3.3.2. The CGMF-Hamiltonian
consists of the Hamiltonian of the cluster, while the coupling between
clusters is treated in mean-field:

ĤCGMF
EBH =

W

∑
C=1

[
∑

i∈δC
ĥi + Ĥ2D,G

EBH,C

]
(2.43)

with W the number of clusters in the lattice. The terms ĥi are the
local mean-field Hamiltonians of (2.41) accounting for the mean-field
coupling with the other clusters. The sum goes over δC, which is the
set of all lattice sites at the boundary of the cluster. The Hamiltonian
within the cluster is given by

Ĥ2D,G
EBH,C = Ĥ2D

EBH,C − µ ∑
i

n̂i , (2.44)

where the first part is the Hamiltonian given in Eq. (2.34) restricted to
the cluster C and µ is the chemical potential. Here the sum is restricted
to the sites in the cluster C.

We initialize the CGMF state, Eq. (1.83), similar to the GW state
in the SGMF. We then diagonalize the cluster Hamiltonians, and
update the values of the order parameters based on the ground states
obtained during the diagonalization. The convergence criteria are the
one discussed for the SGMF.

2.4.2.3 Mean field order parameter

The classification of various quantum phases in 2D can be obtained
by inspecting the behaviour of the two-dimensional extension of the
Fourier transform of the off-diagonal correlations

M1(k) =
1
L2 ∑

j,j′
eik·(j−j’)

〈
â†

j âj′
〉

(2.45)

and of the structure form factor

S(k) =
1
L2 ∑

j,j′
eik·(j−j′)

〈
n̂jn̂j′

〉
(2.46)

as a function of the dimensionless quasi-momentum k = (kx, ky) and
with j = (jx, jy). The expectation values in Eq. (2.45) and (2.46) are
taken over |Ψ〉, Eq. (1.78), in the SGMF approach and over |ΨCGMF〉, Eq.
(1.82), in the CGMF. In SGMF the observables, Eq. (2.45) and Eq. (2.46),
can be cast in terms of the mean-field superfluid order parameter, Eq.
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(1.74), and the density on a specific site by just replacing the operators
with their expectation values:

M1(k) =
1
L2 ∑

j,j′
eik·(j−j’)φjφj′ , (2.47)

S(k) =
1
L2 ∑

j,j′
eik·(j−j′)njnj′ . (2.48)

In the CGMF theory, the correlated wave function |ΨCGMF〉, Eq. (1.82),
prevents the replacement of the operators by their expectation value.
The classification of various quantum phases can be obtained using
the behaviour of M1, Eq. (2.45), and structure form factor, Eq. (2.46),
at zero and finite k.

In contrast to the one-dimensional case the NN Hamiltonian give
rise to spatially periodic structures with 2× 2 cells [20, 100]. Those
checkerboard density modulations can be characterized by their sub-
lattice distributions n = (ne, no), where e = (p, q) labels an even site
with p + q = even and o = (p′, q′) an odd site with p′ + q′ = odd.
Similarly, correlated tunnelling gives rise to a periodic modulation of
the off-diagonal correlations, Eq. (1.64), (see Sec. 2.3). Within mean-
field one can identify those modulations in the SF mean-field order
parameter φ = (φe, φo) [42]. The onset of these structures is also sig-
naled by the finite values of S and M1, respectively, at the wave vector
k = (π, π). Depending on the ratio between M1(0, 0) and M1(π, π)

the phase is either a staggered or a normal superfluid.
The inclusion of NNN terms break this symmetry. In general, it

is known that the NNN repulsion tends to stabilize striped order
of the supersolid phase [30, 101, 103–105]. The coexistence of NN
and NNN stabilizes various solid orders, for V > 2Vdiag(V < 2Vdiag),
checkerboard (striped) solid ordered state is formed [30, 102, 105].
Here, in order to distinguish between various orders of solid, super-
solid and staggered phases, we determine the Fourier transform of
the single-particle correlations M1(k) and structure factor S(k) at
k = (π, π), (0, π) and (π, 0). A finite value of those observables at
(π, π) reflects checkerboard order whereas a finite value at (0, π) or
(π, 0) shows striped order. Thus a finite value of M1(k) and S(k) at
k = (π, π), (0, π) and (π, 0) is the characteristic property of a quarter-
filled ordered superfluid phase [103, 104]. Depending on the ratio
between M1(0, 0) and M1(π, π) the quarter-filled order superfluid
phase is either a staggered or a normal superfluid. In this thesis we
will find quarter-filled ordered staggered SS phases, which we will
label by the acronym QF-SSS.

In the SGMF approach it is also convenient to look at the density-
assisted correlation order parameter, which comes naturally out of the
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Phase n =
(ne, no)

M1(k)
(2.45)

S(k)
(2.27)

φ =
(φe, φo)

φavg
(2.49)

ηavg
(2.50)

Mott-Insulator MI (n, n) 0 kmax =
(0, 0)

(0, 0) 0 0

Density Wave CDW (n, n′) 0 kmax =
(π, π)

(0, 0) 0 0

Superfluid SF (n, n) kmax =
(0, 0)

kmax =
(0, 0)

(φ, φ) > ηavg ≤ φavg

Staggered Superfluid
SSF

(n, n) kmax =
(π, π)

kmax =
(0, 0)

(φ,−φ) < ηavg ≥ φavg

Supersolid SS (n, n′) kmax =
(0, 0)

kmax =
(π, π)

(φ, φ′) > ηavg ≤ φavg

Staggered Supersolid
SSS

(n, n′) kmax =
(π, π)

kmax =
(π, π)

(φ,−φ′) < ηavg ≥ φavg

Table 2.2: Classification of phases: Sublattice values of the occupation n =
(ne, no), FT of the off-diagonal correlations, structure form factor,
mean-field SF order parameter, its average and the average density-
correlated order parameter. When single-particle correlations and
structure form factor do not vanish, we report the value k = kmax
at which their absolute value is maximum. Here e refers to an even
site and o labels an odd site. The entries of the orderparameter φ
and n are given by Eq. (1.74) and Eq. (2.40) respectively. The occu-
pation n and n′ are different. The same holds for the expectation
values φ and φ′.

algorithm. The staggered superfluid phase can here be captured by
the average density-correlated order parameter [42]

ηavg = ∑
p,q
|ηp,q|/L . (2.49)

For convenience we also use in the following the average SF order
parameter

φavg = ∑
p,q
|φp,q|/L . (2.50)

Here, we consider the absolute values of φ’s and η’s since for staggered
phases their distributions over the lattice sites alternate in sign and
thus their average without absolute value would become zero. The
properties of the quantum phases in terms of the correlation and order
parameters is summarized in Table 2.2.

2.4.3 Phase transitions at fixed density

We numerically determine the ground states of the system in the grand-
canonical ensemble and at fixed density. For this purpose we first
obtain the distributions of the chemical potential µ corresponding to a
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constant average density. The model parameters are obtained using
Wannier function formalism as described in Appendix 2.6, where
changes of T and V are induced by changing the interaction strength.
Below we choose to plot V instead of the interaction strength. We
remind the reader that finite values of V implies also finite values of
T.

The phases are identified by analyzing the behaviour of correlations
and order parameters introduced in the previous Subsubsec. 2.4.2.3.
We first discuss the role of NN interaction and density-dependent
tunnelling. We then investigate the role of NNN terms in determining
the ground state properties. Note that below we label the coordination
number by the parameter z. In our lattice geometry z = 4.

2.4.3.1 Phase diagram for nearest-neighbor interactions
Density ρ = 1

We now discuss the phase diagram at density ρ = 1. We first recall that
the properties of the ground state are very well studied in the absence
of density-dependent tunnelling (for T = 0). In this limit the inclusion
of NN density-density interaction to BHM leads to additional quantum
phases which we shortly review in the following [13, 18, 32, 106]. For
large V bosons occupy every alternate lattice site forming CDW phase,
an insulating phase which spontaneously breaks sublattice symmetry.
When the NN interaction V is comparable to the on-site repulsion, the
system breaks both U(1) gauge symmetry and translational invariance
to form a SS phase. The SS phase of eBHM is found to be stable in
wide range of interaction strengths [20, 85, 107, 108]. For unit filling the
stability of SS of soft-core bosons has been demonstrated in Refs. [109,
110]. When 4V � U, the system exhibits MI-SF phase transition
as t increases. At stronger NN interactions 4V ≈ U, the MI phase
becomes unstable and CDW phase replaces the MI phase [22, 107, 110,
111]. The dependence of the hopping parameter t on various phase
transitions for fixed densities has been discussed [112]. We report the
corresponding phase diagram with T = 0 in the Appendix 2.6.

The effect of correlated hopping in determining the phases is now
visible in Fig. 2.17, which displays the correlation M1 at (0, 0) and
(π, π), the average SF order parameter, and the structure form factor
S(π, π). These quantities are reported in the t − V plane and have
been obtained using the SGMF approach. The properties of M1 and
S(π, π) allow us to identify the phases. At V/U 6 0.25, as t increases,
M1(0, 0) remains nonzero whereas it vanishes at (π, π). In addition,
S(π, π) is zero in this region. The region where both M1(0, 0) and
S(π, π) vanishes is MI, whereas the region with finite M1(0, 0) is SF. At
lower V we recover the MI-SF transition of BHM [10, 11]. The critical
hopping strength of MI-SF transition tc increases for 0 6 4V 6 U with
finite T. This shift is due to the finite value of correlated hopping,
which interferes destructively with single-particle tunnelling.
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Figure 2.17: Observables for the ground-state of the 2D eBHM at ρ = 1 for
the mean-field Hamiltonian, Eq. (2.41), truncated at NN. Here
the ground state was calculated by means of the SGMF approach.
(a) and (b) show the Fourier transform of the off-diagonal single-
particle correlation M1 at (kx, ky) = (0, 0) and (kx, ky) = (π, π),
respectively. (c) displays the average SF order parameter, Eq.
(2.50). The structure factor S at (kx, ky) = (π, π) is shown in (d).
We consider 12× 12 system with periodic boundary conditions
and nmax = 8.
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At V/U ' 0.25 we observe the onset of periodic density modula-
tions, which are signalled by the finite value of S(π, π). The CDW
phase corresponds to the large region with vanishing off-diagonal
order, M1(k) = 0. This region is centered about the line of perfect
interference |T| = t, Eq. (2.16). There is a direct MI-CDW transition
for a finite range of values t/U at V/U ' 0.25, which is characterized
by a fast increase of S(π, π) from zero to the maximum value. In the
presence of SF this increase is gradual and characterised by the ap-
pearance of a finite value of M1(π, π). We identify this region with the
SS phase since |M1(π, π)| < |M1(0, 0)|, see Table 2.2. The boundary
tc/U of the transition CDW-SS increases with V. We have checked that
tc/U is shifted to larger values with respect to the phase boundary
one obtains by setting T = 0, see Appendix 2.6. The resulting domain
of the CDW phase is larger. We attribute this effect to the destructive
interference between single-particle and correlated hopping.

At larger values V ≈ 2U and for vanishing t/U we observe the
appearance of finite off-diagonal long-range order with |M1(π, π)| >
|M1(0, 0)|, which we identify with a staggered supersolid (SSS). This
phase is due to correlated hopping, which becomes dominant at large
ratios V/U.

These behaviours can be understood on the basis of mean-field
considerations: correlated hopping favours staggered SF for t/U → 0.
The size of this region increases as V (and thus the strength of the
dipolar interactions) increases. At large ratios t/U, instead, the kinetic
energy dominates and the phase is SF. The two contributions interfere
destructively in an intermediate region, where the phase is insulating.
Diagonal long-range order is found for V/U > 0.25. We observe
that the size of the SSS region at V/U > 0.25 is now significantly
smaller. Comparing the two-dimensional mean-field results in Fig. 2.17

with the one-dimensional DMRG results in Fig. 2.3, we observe a
stabilization of the SSF phase in the two-dimensional study. Density ρ = 2

Figure 2.18 displays the phase diagrams of the relevant quantities
in t − V plane for the average density ρ = 2. Similarly to the unit
filling case, for V/U < 0.25 the phase is either MI or SF. The phase
boundary tc separating the two phases depends on the strength of
the dipolar interactions due to the interference between correlated
hopping and single-particle hopping. For V/U & 0.25 the structure
form factor S(π, π) is different from zero and signals the onset of
density modulations. As compared to quantum phases at unit filling
[Fig. 2.17], the size of the region of insulating CDW phase is reduced
whereas the size of the SSS parameter region is significantly larger. A
striking difference with respect to the phase diagram at unit filling is
the appearance of SSF at V/U ∼ 0.25 and t/U → 0.

The behaviour reported in Fig. 2.18 qualitatively agrees with the
phase diagram in one dimension and using DMRG, shown in Fig. 2.10.
However, it is worth noting that the parameter regime of SSF is shifted
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Figure 2.18: Observables for the ground-state of the 2D eBHM at ρ = 2 for
the mean-field Hamiltonian, Eq. (2.41), truncated at NN. Here
the ground state was calculated by means of the SGMF approach.
(a) and (b) show the Fourier transform of the off-diagonal single-
particle correlation M1 at (kx, ky) = (0, 0) and (kx, ky) = (π, π),
respectively. (c) displays the average SF order parameter, Eq.
(2.50). The structure factor S at (kx, ky) = (π, π) is shown in
(d). As for ρ = 1, we consider 12 × 12 system with periodic
boundary conditions and nmax = 8.
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to lower V values as compared to 1D. This is due to the larger coor-
dination number of square lattices and for d-dimensional lattices the
staggered superfluidity exist at and around 2dV ≈ U, where 2d = z
is the lattice coordination number. As in the one-dimensional case,
Fig. 2.10, the finite value of T is responsible for the appearance of
SSF at V/U ∼ 1/z and t/U → 0. The size of the SSF phase is now
significantly smaller. In order to perform a systematic comparison
with the one-dimensional case, we now consider a small, fixed value
t/U and analyse the phases as a function of V/U. Figure 2.19 displays
the behaviour of M1(π, π) as a function of V/U for (a) t/U = 0.002,
(b) t/U = 0.02, (c) t/U = 0.23, and (d) t/U = 0.35. For t/U = 0.002
the phase is first MI. In the atomic limit, at V/U = 0.25 MI and sev-
eral CDW phases are degenerate. Here, the phase becomes SSF due
to the prevailing role of correlated hopping and is signalled by the
peak of M1(π, π) at V/U ∼ 0.25. This peak was also observed in one
dimension around V/U ∼ 0.5 (see Fig. 2.12). At higher V the value of
M1(π, π) increases again with V, together with the finite value of the
structure form factor we identify this phase as SSS. At t/U = 0.02, the
phases SSF and SSS are separated by a CDW phase. At higher t in (c),
the single-particle hopping dominates over the correlated tunnelling.
Here, the system is driven first from SF to SS and then to SSS with
an intermediate insulating CDW phase. The width of CDW phase
in between the SS and SSS phases increases and the region of SSS
phase reduces with t. This is evident from the behaviour of M1(π, π)

at t/U = 0.35 shown in Fig. 2.19(d).
In order to examine the effects of quantum fluctuations within

our mean-field ansatz, we use the CGMF method and compute the
M1(π, π) with a 2× 2 cluster. The resulting behaviour is reported by
the dashed red line in Fig. 2.19. At t/U = 0.002 the domain of the
SSF phase, signalled by the peak in the M1(π, π), is the same as in
the SGMF method, while the SSF-SSS transition becomes sharper. For
t/U = 0.02, Fig. 2.19(b), the critical value of V/U for the CDW-SSS
transition shows a small increase as compared to SGMF transition.
When t/U is increased to t/U = 0.23, Fig. 2.19(c), we observe a shift
in the peak of M1(π, π), signalling the SS phase, to higher values of
V/U. In detail, the peak occurs at V/U = 0.3 with SGMF, this shifts
to V/U = 0.36 with the 2× 2 cluster. We note that the shift between
the boundary SF-SS predicted by CGMF and the one predicted by
SGMF is consistent with the findings reported in [110, 113] for the
SF-SS transition.

2.4.3.2 Phase diagram for next nearest-neighbor

We now include the NNN terms in our mean-field treatment. We first
recall that the quantum phases of eBHM due to competition between
NN and NNN repulsion at various fillings have been studied before
in the absence of the density-dependent tunnelling [104, 114, 115]. We
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Figure 2.19: Off-diagonal single-particle correlation M1(π, π) as a function
of V/U. The blue lines report the behaviour corresponding to
Fig. 2.18(b) for hopping strengths t/U = 0.002, 0.02, 0.23, 0.35.
The values of t/U is reported in the figures. The dashed red
line is obtained using 2× 2 cluster in CGMF theory. Here, we
consider the maximum occupancy per lattice site nmax = 8:
this choice of nmax is sufficient to obtain converging results for
densities considered. The density is fixed to ρ = 2.
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Figure 2.20: Observables for the ground-state of the 2D eBHM at ρ = 1
for the mean-field Hamiltonian, Eq. (2.41), truncated at NNN,
and calculated by means of the SGMF approach. (a), (b) and (c)
show the Fourier transform of the off-diagonal single-particle
correlation M1 at (kx, ky) = (0, 0), (0, π), and (kx, ky) = (π, π),
respectively. At V/U & 1.5, the finite values of M1 both at (0, π)
and (π, π) signals the quarter-filled ordered phase. The phase is
QF-SSS because |M1(0, 0)| < |M1(0, π)|, |M1(π, π)|. (d) displays
the average SF order parameter.

now include density-dependent tunnelling and analyse the ground
state of the model Hamiltonian in Eq. (2.41) when the NNN terms of
density-density repulsion and of correlated tunnelling are included.

We first discuss the phase diagram at density ρ = 1. Figure 2.20

displays the Fourier transform of the single-particle correlations for
different values of k and the average SF order parameter. Some quali-
tative features are similar to the NN case, compare with Fig. 2.17. A
striking difference from the NN case is the decrease of the size of the
insulating CDW phase. Moreover, correlated hopping here gives rise
to a QF-SSS phase.

These features become more enhanced as the density is increased.
Figure 2.21 shows M1 for different values of k and the average SF
order parameter for density ρ = 2. With respect to the NN case (cif.
Fig. 2.18) we observe that the SSS phase now disappears above a
critical value V/U ∼ 1.5 and becomes QF-SSS. The size of the QF-SSS
phase is significantly larger than for unit filling. In particular, the
phase boundary of CDW to QF-SSS transition weakly depends on t/U.
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Figure 2.21: The Fourier transform of the single-particle correlations M1 for
ρ = 2 with NNN at (a) (kx, ky) = (0, 0), (b) (kx, ky) = (0, π)
and (c) (kx, ky) = (π, π). Unlike at unit filling, here for lower
values of NN interaction a CDW-SSS transition occurs and at
V/U & 1.5, the system enters into QF-SSS phase. The QF-SSS
phase region is characterized by a finite value of M1(0, π) (see
(b)) and of M1(π, π) > M1(0, 0) (see (c)). The presence of the
SSF phase at around V/U ∼ 0.25 exhibits the robustness of this
phase in presence of NNN density-density interaction. (d) shows
the average SF order parameter in the vicinity of the SSF phase.
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Figure 2.22: The average SF, Eq. (2.50), and density-correlated order parame-
ter, Eq. (2.49), as a function of V/U for ρ = 2 with NNN terms
of the eBHM, Eq. (2.36). (a) has been calculated for t/U = 0.02
and (b) for t/U = 0.3. Here, the solid blue (dashed red) line is
ηavg (φavg).

These behaviours qualitatively agree with the one-dimensional phase
diagram in Fig. 2.14. Important differences are that the SSF phase
results to be smaller. Moreover, in the one-dimensional case we could
not uniquely identify the nature of the phase, which is here QF-SSS.

Figure 2.22 displays the average SF order parameter, φavg, and the
average density-correlated order parameter ηavg, Eq. (2.49), as a func-
tion of V/U and fixed values of t/U. We first consider the value
t/U = 0.02, panel (a). Here, at V = 0 the phase is MI. As V is in-
creased, the transitions MI-SSF-SSS take place at V/U ∼ 0.25 and
is here signalled by a sharp increase and a local maximum of both
parameters. Finally, at the transition SSS to QF-SSS ηavg increases
whereas φavg decreases. At t/U = 0.3, the system shows SF-SS-CDW-
SSS transition as V/U is increased. The corresponding trends of ηavg

and φavg are visible in Fig. 2.22(b).

2.4.4 Phase transitions at fixed V/U

We now discuss the ground-state phase diagrams in t− µ plane and
for fixed values of V/U. For these values the NN repulsion energy
becomes comparable to the on-site interaction energy and the insu-
lating phases are CDW [111]. At 4V = U, in particular, the MI phase
with n0 boson per site becomes degenerate with the CDW with oc-
cupancies (2n0, 0). Moreover, the CDW phases with (n0 + 1, n0) and
with (2n0 + 1, 0) are degenerate [111]. We vary µ from 0 up to 4U
in order to include the density ρ = 2. In the t− µ plane the line of
destructive interference, Eq. (2.16), moves to higher t values as µ is
increased, since the density ρ = ρ(µ) increases monotonically with µ.
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Figure 2.23: The off-diagonal single-particle correlations M1(0, 0) and
M1(π, π) as a function of µ/U and t/U for V/U = 0.25 (up-
per panels) and V/U = 2 (lower panels). The left panels show
the contour plot of M1(0, 0), the right panels of M1(π, π). The
diagram has been calculated using the SGMF method and trun-
cating the interactions to the NN terms.

2.4.4.1 Results using SGMF

Figure 2.23 displays the phase correlation functions M1(0, 0) and
M1(π, π) for V/U = 0.25 (upper panels) and V/U = 2 (lower panels)
calculated with SGMF. The phase diagram is separated into two re-
gions by the sequence of insulating CDW lobes, which are localized
along the values of ρ and t fulfilling Eq. (2.16). On the left side, where
correlated hopping dominates, the phase is SSS. The size of this region
increases with V, and thus with the value of |T|. The SSF phase is ob-
served only for V/U = 0.25 and at sufficiently high values of µ, here
at µ > 3, where ρ ≈ 2. Here, a direct SSF-CDW transition is observed
in a small parameter region at µ ≈ 3.2. On the right side single-particle
hopping is responsible for the emergence of the SS phases. At higher t,
the system enters into the SF phase. At V/U = 2 we observe the SS-SF
phase boundary, which varies linearly as a function of t. This feature
is consistent with the findings of quantum Monte Carlo studies of 2D
eBHM [110].
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Figure 2.24: Ground state phase diagram of Eq. (2.34) with NN interactions
and density-dependent tunnelling. The solid and dashed lines
are phase boundaries obtained using the SGMF and CGMF meth-
ods, respectively, for simulating Eq. (2.34). The CGMF method
uses 2× 2 clusters. The CDW phases are indicated by their sub-
lattice occupancies (na, nb). The insets zoom into regions of the
phase diagram where CGMF predicts an increase of the size of
the SSF phase (a) and a decrease of the size of the SSS phase (b)
with respect to the SGMF predictions.

2.4.4.2 Comparison between SGMF and CGMF

We explore the effects of quantum fluctuations and the intersite cor-
relations on the quantum phase transitions by means of the CGMF
method using 2× 2 cluster. We restrict here to the NN case. Figure
2.24 shows the ground-state phase diagram of our model in the t− µ

plane for V/U = 0.25 and V/U = 2. To illustrate the differences,
the boundaries between various phase transitions computed with the
SGMF and CGMF methods are shown. For V/U = 0.25, Fig. 2.24(a),
the CGMF method predicts smaller domains of the (n0, 0) CDW lobes.
For instance, the phase boundary separating the CDW (1, 0) from
the SS phase is at tc/U ≈ 0.093 for SGMF, and it is decreased to
tc/U ≈ 0.089 with the CGMF. A similar trend of the phase boundary
tc/U for the CDW-SS transition was reported in [113] for V/U = 0.2.
It is to be noted that the size of the SSF phase increases with the CGMF
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method. This is visible in the inset of Fig. 2.24(a). At µ/U = 3.8, the
SSF phase persists upto t/U ≈ 0.023 using SGMF, and with CGMF
this is modified to t/U ≈ 0.03. Our computations show that CGMF
predicts an increase of the size of the SSF phase while the SSS-CDW
phase boundary remains unaffected. This results in a reduction of
the SSS phase domain. Thus, the quantum fluctuations captured by
the CGMF tend to correct the SGMF predictions by increasing the
size of the uniform density phases like the SSF and the SF, while the
domains of the structured density phases like the CDW, SSS and SS
are tendentially decreased. As with the V/U = 0.25 case, the CGMF
results show a decrease in the domain of the SS phase in the phase
diagram with V/U = 2, from the inset in Fig. 2.24(b). On the contrary,
the domain of the CDW phase remains unaffected.

2.5 conclusions

In this work we have characterized the extended Bose-Hubbard model
of dipolar bosons in an one-dimensional and two-dimensional square
lattice. The one-dimensional model was studied by means of DMRG
program in the canonical ensemble. For the two-dimensional case we
studied the ground state in the grand-canonical ensemble using two
kind of mean-field approaches. For all cases we considered a parameter
regime, where tunnelling induced by interactions can interfere with
the hopping due to the kinetic energy. We have found that significant
effects of interaction-induced hopping are particularly important for
sufficiently large densities.

Quantum interference between correlated and single-particle tun-
nelling qualitatively modifies the phase diagram. One important result
is that it gives rise to an effective "interaction-induced atomic limit".
This interaction-induced atomic limit is responsible for the appearance
of an insulating phase for finite values of the kinetic energy, where
one otherwise expects superfluidity. Another important consequence
of correlated tunnelling is that at vanishing kinetic energy the dipolar
interaction establishes superfluidity with a site-oscillating phase called
staggered superfluidity.

While the staggered superfluid is present for ρ = 1 in the two-
dimensional case for large dipolar interaction strength, it was not
observed in the one-dimensional system. We note that we expect these
behaviours become visible at larger values of the dipolar interactions,
for which one shall consider the contribution of higher bands, as
done for instance in Ref. [116–118]. Moreover, in the one-dimensional
case with ρ = 1 we could identify the HI phase between the MI and
CDW phase. A comparison with previous studies without correlated
tunnelling [32, 33] reveals a shrinking of the HI region, which confirms
the observations in Ref. [39]. On the other hand we observe an increase
of a PS region.
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For ρ = 2 the staggered superfluidity is separated from a staggered
supersolidity by a continuous transition at V ' U/z, where z is the
coordination number. We also have compared the phase diagrams
when the terms of the power-law interactions of the Bose-Hubbard
model are truncated to (i) the first nearest neighbors and then to (ii)
the next-nearest neighbors both. Qualitative differences with respect to
the nearest neighbor study are visible at sufficiently large interaction
strengths, where the next-nearest neighbor terms start to compete with
the other terms. In particular, for next-nearest neighbor interactions,
at larger dipolar strengths we have found discontinuous transitions to
structures with larger Wigner-Seitz cells. Those properties remain the
same in a two-dimensional square lattice with ρ = 2.

The interference between single-particle and correlated hopping is
a consequence of the behaviour of the Bose-Hubbard coefficients as a
function of the dipole moment. This interference cuts the phase dia-
gram into two topologically different superfluid phases for sufficiently
high densities. In an experiment with given atomic species one would
sweep along the line at fixed dipole moment. Then our results indicate
that, by tuning the ratio t/U one would observe either transitions from
insulating to SSF phases or to "normal" SF. Therefore, species with
different dipole moments are characterized by either SSF or "normal"
SF phases. Moreover, our results indicate that special values of the
dipole moment d can exist, for which the gas remains always in the
interaction induced atomic limit, independently of t.

Future studies will analyze the effect of correlated tunnelling on
the phases at incommensurate densities [119] as well as at fractional
densities, where it might significantly affect the physics of Fibonacci
anyon excitations [120].



72 correlated tunnelling induced by the dipolar interactions

2.6 appendices

Coefficients of the extended Bose-Hubbard Hamiltonian

In this appendix we shortly review the calculation of the Bose-Hubbard
coefficients for the one-dimensional and two-dimensional case.

One-dimensional case

The extended Bose-Hubbard model we consider is obtained by insert-
ing Eq. (1.46) into the Hamiltonian of Eq. (2.1):

Ĥ = −∑
i,j

ti,j â†
i âj + ∑

i,j,k,l
Vi,j,k,l â†

i â†
j âk âl . (2.51)

The tunneling coefficients are given by the integrals

ti,j =
∫ L/2

−L/2
dx wi(x)

(
h̄2

2m
∂2

∂x2 −V0 sin(πx/a)

)
wj(x) , (2.52)

where wj(x) is the real-valued Wannier function. We define t = ti,i+1

and tNNN = ti,i+2 and discard higher order terms. The interaction
coefficients are defined by the expressions

Vi,j,k,l =
1
2

∫ L/2

−L/2

∫ L/2

−L/2
dr1dr2wi(x1)wj(x2)×

×Uint(r1 − r2)wk(x2)wl(x1)Φ0(y1, z1; y2, z2) , (2.53)

where Uint(r) = Ug(r) + Uα(r) and Φ0 ≡ |φ0(y1, z1)|2|φ0(y2, z2)|2, see
Subsubsec. 3.3.3. The coefficients we use in Subsubsec. 3.3.3 are con-
nected to the integral expression in Eq. (2.53) as follows:
The onsite interaction present is given by U = 2Vi,i,i,i. The coefficients
of the extended nearest neighbor Bose-Hubbard Hamiltonian, Eq. (2.8),
have the form

V = 2 (Vi,i+1,i+1,i + Vi,i+1,i,i+1) , (2.54)

T = − (Vi,i,i+1,i + Vi,i,i,i+1) , (2.55)

P = 2Vi,i,i+1,i+1 . (2.56)

These coefficients include the overlap integrals of Wannier functions of
nearest neighboring sites. The expression of the next-nearest neighbor
interaction coefficients in Eq. (2.9) are:

VNNN = 2 (Vi,i+2,i,i+2 + Vi,i+2,i+2,i) , (2.57)

T1
NNN = −2 · (Vi+2,i,i+1,i + Vi+2,i,i,i+1) , (2.58)

T2
NNN = −2 · (Vi+2,i,i+2,i+1 + Vi+2,i+1,i,i+2) , (2.59)

T3
NNN = −2 · (Vi+2,i+1,i+1,i + Vi+2,i+1,i,i+1) , (2.60)

TNNN = − (Vi,i,i+2,i + Vi,i,i,i+2) , (2.61)

P1
NNN = 2

(
Vj+2,j+1,j,j + Vj+1,j+2,j,j

)
, (2.62)

P2
NNN = 2

(
Vj+2,j,j+1,j+1 + Vj,j+2,j+1,j+1

)
, (2.63)

P3
NNN = 2

(
Vj+2,j+2,j+1,j + Vj+2,j+2,j,j+1

)
. (2.64)
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We determine the Hamiltonian parameters as follows. We first decom-
pose the coefficient Vi,j,k,l as

Vi,j,k,l = Vα
i,j,k,l + Vg

i,j,k,l ,

where the contribution of the contact interaction to the overall coeffi-
cient is given by

Vg
i,j,k,l =

g
2

∫ L/2

−L/2
dxwi(x)wl(x)wj(x)wk(x) . (2.65)

The coefficients due to the power law interactions are then calculated
by means of the convolution method [121]:

Vα
i,j,k,l =

1
2

∫ L/2

−L/2

∫ L/2

−L/2
dxdywi(x)wl(x)Φ(y)

×F−1
k

[
Ṽα

2D(k)Fk
[
wj(x′)wk(x′)Φ(y′)

]]
, (2.66)

where Fk is the Fourier transform from position to momentum space.
Here Φ(y) = 1√

πσ
e−y2/σ2

is the probability density of the ground state

of the harmonic trap along the y-direction, the width is σ =
√

h̄/mω

and it is the same for the y- and the z-direction. In Eq. (2.66) the
expression Ṽα

2D(k) is the effective interaction in momentum space and
reads as [40]

Ṽ2D(ky, kx) =
Cdd

2σ

[
2
3

√
2
π
− qσ erfc

(
σq√

2

)]
, (2.67)

where q2 = k2
x + k2

y. The expression in Eq. (2.67) is the effective 2D in-
teraction in momentum space, where we integrate out the z-coordinate.
For further details see Ref. [40]. We calculate numerically the integral
in Eq. (2.65) and (2.66) as a function of d and as. In our calculations
the lattice and trap parameters are kept constant and take the values
V0 = 8ER and σ/a = 1/π 4

√
50.

Two-dimensional case

We present here the integral expression of the coefficients in the two-
dimensional Bose-Hubbard Hamiltonian in Eq. (2.35) and Eq. (2.36). In
contrast to the one-dimensional case the coefficients here consist of the
overlap integral of the Wannier function in y- and x- direction. Along
the z direction we expand the field operator in a gaussian function
φ0(z). The two-dimensional extension of the single-particle tunnelling
coefficient is given by the overlap integral [10]

tij = −
∫

dr wi(r)

[
− h̄2

2m

(
∂2

∂x2 +
∂2

∂y2

)
+ Vlatt(r)

]
wj(r), (2.68)

where wi(r) is a product of standard (real) Wannier functions at
i ≡ {p, q} and Vlatt is the two-dimensional lattice potential. Note that
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due to separability of Vlatt the coefficients tij are non-zero only along x
or along the y directions. Therefore, “diagonal” tunnellings such as e.g.
i ≡ {p, q} and j ≡ {p + 1, q± 1} are strictly vanishing. We define t =
ti,i+1 with i + 1 = {p, q± 1} and t = ti,i+2 with j + 2 = {p± 1, q± 1}.

The situation is different for the interaction terms. In contrast to the
one-dimensional case, the integration goes over the two-dimensional
plane. We denote the interactions by the potential Uint(r) = Ug(r) +
Udip(r). The corresponding interaction coefficients in the site basis
read

Vijst =
1
2

∫
dr dr′wi(r)wj(r′)Uint(r− r′)ws(r′)wt(r)Φ0(z1; z2), (2.69)

with Φ0(z1; z2) ≡ |φ0(z1)|2|φ0(z2)|2. We define here the coefficients
as V(j) = 2(Vi,i+j,i+j,i + Vi,i+j,i,i+j), T(j) = −(Vi,i,i+j,i + Vi,i,i,i+j) and
P = 2Vi,i,i+1,i+1. For the nearest neighbor contribution j = 1 the lattice
sites connected are i = {p, q} and i + 1 = {p, q± 1}. Thus the nearest
neighbor coefficients read V = V(1) and T = T(1). The diagonal sites
with respect to site i are labeled as i + 2 = {p ± 1, q ± 1} and the
diagonal coefficients are given by Vdiag = V(2) and Tdiag = T(2).

Supplementary details on the ground-state phase diagram

In this appendix we provide supplementary details on the ground-
state phase diagram of the one-dimensional and the two-dimensional
Bose-Hubbard model.

One-dimensional case

Here we provide additional details on the results of Subsubsec. 2.3.3.1.
We checked the presence of a pair superfluid phase over the whole
parameter range by looking at the Fourier transform of the pair cor-
relations M2(q) given by Eq. (2.28). We found non-vanishing Fourier
components of M2(q) only at q = 0, π. Moreover, when M2(q) has non-
vanishing components, then we always find that M2(q = 0) > M2(q =

π). Figure 2.25 displays the contour plot of the Fourier transform at
q = 0 in the V/U − t/U parameter plane for (a) the nearest-neighbor
and (b) the next-nearest neighbor case. We note that the contour plot
of the Fourier transform at q = π is finite if M2(q = 0) and S(q = π)

are both finite.
The behaviour of observable M2(q = 0) across the phase diagram

follows the behaviour of the Fourier transform of the single parti-
cle correlations, see Fig. 2.10 and 2.14. Nevertheless, where they are
finite, the Fourier components M2(q) are always smaller than the cor-
responding Fourier components of the single particle correlations. We
conclude that there is no PSF in the parameter regime we considered.

In Subsubsec. 2.3.3.1 we observe the presence of a staggered super-
fluid phase around V/U ∼ 0.5 and for small t/U. Here we check the
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Figure 2.25: Contour plot of the pair condensate density M2(q = 0) (2.28) as
a function of the nearest neighbor interaction strength V and the
tunnelling rate t both in units of the on-site interaction strength
U for the (a) nearest-neighbor and (b) next-nearest-neighbor
model. The number of particles is fixed to N = 120 and the
number of lattice sites is given by NL = 60.

presence of this phase in the thermodynamic limit. Therefore Fig. 2.26

shows in panel (a) the von Neuman entropy (2.70) and in panel (b)
the Fourier transform of the single particle correlations M1(q), see Eq.
(2.26), at q = π as a function of one over the number of lattice sites
1/NL for a fixed t/U = 0.04 and V/U = 0.5. By inspecting Fig. 2.26

we can identify a convergence of the observables with increasing
system size. By fitting the curve in Fig. 2.26(b) with an exponential
function and taking the limit for NL going to infinity we get a limit
of M1(π)(NL → ∞) = 0.47 . We conclude that the staggered super-
fluid phase around V/U ≈ 0.5 and for small t/U is present in the
thermodynamic limit.

We verify the existence of the Haldane insulator for density of
ρ = 2 by calculating the expectation value of the modified string-order
parameter in Eq. (2.29). Fig. 2.27 displays the contour plot of the string
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(a)

(b)

Figure 2.26: (a) The von Neuman entropy (2.70) and (b) the Fourier transform
of the single particle correlations M1(q) (2.26) at q = π at a
tunnelling rate of t/U = 0.04 and a nearest neighbor interaction
strength of V/U = 0.5 as a function of one over the number
of lattice sites NL. The blue curve in (b) shows the exponential
function F(NL) = 0.45 exp(−0.01(NL + 18.64)) + 0.47.

order parameter given by Eq. (2.29) with θ = π/2. By comparing the
string order parameter in Fig. 2.27 with the structure form factor in
Fig. 2.10(d) we cannot identify any region, where the string order
parameter is finite and the structure form factor vanishes. Thus we
do not find any Haldane insulator for a a density ρ = 2 and the here
considered parameters.

Two-dimensional case

We discuss here the ground-state phase diagram of the model consid-
ered in the absence of the density dependent tunnellings (T is put to
zero by force). In Fig. 2.28, the single-particle correlations at (0, 0) and
(π, π) are shown for the average densities ρ = 1 and ρ = 2. We first
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Figure 2.27: Contour plot of the string order parameter, Eq. (2.32), for the
ground state of Eq. (2.8), as a function of the ratio V/U and t/U.
The parameters are the same as in Fig. 2.10.

discuss the quantum phase transitions at ρ = 1. The M1(0, 0) which is
a measure of ODLRO has a finite value for compressible SF and SS
phases whereas it remains zero for insulating MI and CDW phases.
At low NN interaction zV/U � 1, there is MI-SF transition where
the critical hopping tc is independent on V. When NN interaction is
comparable or overcomes to the onsite interaction zV/U > 1, the tran-
sition between density modulated quantum phases CDW-SS occurs.
The tc of CDW-SS transition increases as a function of V [112]. The
finite value of M1(π, π) for SS phase clearly demarcates it from SF
and CDW phases, as evident from Fig. 2.28(b). At t/U = 0.05, the
MI-CDW transition of ρ = 1 as a function of V is consistent to the
previous quantum Monte Carlo study [109]. At ρ = 2, the qualitative
features of various phase transitions remain similar to ρ = 1 case,
however quantitatively the critical hopping varies.

Details on the numerical implementation

One-dimensional case

Our results are obtained with a DMRG numerical program, where
we make use of the ITensor C++ library for implementing tensor
network calculations [67]. In our simulations we use a maximum
bond dimension of β = 600. The cutoff ε is set to ε = 10−12, which
determines the number of singular values discarded after each singular
value decomposition (SVD) step. The energy error goal is set to εgoal =

10−16 and the maximum number of particles per site is fixed to nmax =

10. We also add a boundary term Ĥad = [2ρ] (Vn1 + VNNNn2) in order
to lift the degeneracy in the CDWj phases and the Haldane phase.
To improve the convergence we run the simulation for four different
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Figure 2.28: Single-particle correlation with NNN interaction and density-
dependent tunnelling of dipolar bosons. The correlation for
ρ = 1 are shown at (a) (kx, ky) = (0, 0) and (b) (kx, ky) = (π, π),
and for ρ = 2 these are shown at (c) (kx, ky) = (0, 0) and (d)
(kx, ky) = (π, π)
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initial states: the CDWj states |Φ〉init = ⊗k |j · ρ〉k ⊗l |0〉l with k ∈
{A = j ·m|m ∈N} and l ∈ N\A, the MI state |Φ〉init = ⊗L

k=1 |ρ〉k
and a random initial state. The random state is a superposition of
Fock states |Φ〉init = 1√

niter
∑niter

k (⊗i |ni〉)k, where ni ∈ N is chosen

randomly out of the interval [0, nmax] with the constrain ∑L
i=1 ni = ρ.

We choose the number of superimposed Fock state to be niter = 100.
At the end of the simulation we identify the ground state with the
state at lowest energy. In order to eliminate the boundary effects we
determine the expectation values over the ground state by reducing
the chain length by nsit on each edge in order to eliminate boundary
effects. We choose nsit = 10.

In order to calculate the von Neuman entropy introduced in Subsec.
2.3.1 we split the system into subsystem A and B. We then perform at
the bond of these two subsystems A and B a singular value decom-
position (SVD) of the final ground state coefficients. We determine
the von Neuman entropy using the singular values sα given by the
eigenvalues of the diagonal S-matrix of the SVD [63, 67]

SvN = −∑
α

s2
α ln

(
s2

α

)
. (2.70)

Here we choose the length of the subsystem A to be half of the length
of the system.





3
C O R R E L AT E D T U N N E L L I N G I N D U C E D B Y
AT O M - P H O T O N I N T E R A C T I O N S

In this chapter we theoretically investigate the influence of a global
interaction on the phase diagram of the Bose-Hubbard model. We theo-
retically analyze the emergence of long-range order and of topological
phases for different geometries and dimensions. These dynamics can
be realized with ultracold bosonic atoms in optical lattices and coupled
to a single-mode cavity.

The following sections of this chapter contain results, text and
figures from:

• "Mean-field phase diagram of the extended Bose-Hubbard model
of many-body cavity quantum electrodynamics",
Lukas Himbert, Cecilia Cormick, Rebecca Kraus, Shraddha Sharma,
and Giovanna Morigi
Physical Review A 99, 043633 (2019)

• "Self-organized topological insulator due to cavity-mediated cor-
related tunneling",
Titas Chanda, Rebecca Kraus, Giovanna Morigi, and Jakub Za-
krzewski
arXiv:2011.01687 (2020)

3.1 introduction

The experimental realization of the coupling between ultracold atomic
gases and the electromagnetic field of a high finesse cavity has opened
the possibility of studying novel dynamics of strongly-correlated ultra-
cold matter [14, 15]. A particularly interesting regime is realized when
the atom-cavity coupling is dispersive [14, 15]. In this case photon
scattering is associated with conservative optomechanical long-range
forces [31, 37, 122]. In a single-mode cavity these forces are global [31,
37, 122]. The combination of optical lattices and optomechanical forces
permits one to study the extended Bose-Hubbard model with global
interactions [23, 26, 28, 31, 36]. This dynamics has been experimentally
realized in Ref. [43, 44]. The purpose of this chapter is to provide a
theoretical characterization of the extended Bose-Hubbard model with
global interactions. Our analysis uses the parameters of the experiment

81
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at ETH [43, 44] and considers one-dimensional and two-dimensional
geometries.

This chapter is organized as follows. In Sec. 3.2 we introduce the
two-dimensional long-range Bose-Hubbard Hamiltonian. In Sec. 3.3
we present the local mean-field study for a special geometry, where
the global potential takes the form of a modulated density-density
interaction. In Sec. 3.4 we then analyze the general situation, where
the global potential gives rise to both density-density and correlated
tunneling effects and study their interplay in determining the phase
diagram. Sec. 3.5 is devoted to the special case, where the global poten-
tial gives solely rise to global correlated tunneling. In one dimension
we report the appearance of a topological non-trivial phase, which is
reminiscent of the Su-Schrieffer-Heeger model [123]. The conclusions
are drawn in Sec. 3.6.

3.2 extended bose-hubbard model with cavity-mediated

interactions

We consider N ultracold bosonic atoms with mass m in a two dimen-
sional optical lattice in the x− y plane given by

Vlat(x, y) = V0
(
sin2(kLx) + sin2(kLy)

)
.

We will refer in the following to this potential as the static optical
lattice. The optical lattice has K = NL × NL sites and we label each site
by the index i = (i1, i2), where i1 (i2) labels the site index along the x
(y) direction. In the x-y plane the bosons are confined by a harmonic
trap. Thus in total the bosons experience the potential Vtrap(r) =

Vlat(x, y) + mω2

2 z2, where ω is the frequency of the trap along the z
direction.

The bosons interact via s-wave scattering and thus feel the contact
interaction potential given in Eq. (1.21). Furthermore they are strongly
coupled to a cavity standing-wave mode. The mode has the spatial
function h(x) = cos(kx + φ) and wave vector k = kex. The atoms are
transversally driven by a laser and scatter photons into the cavity mode.
The spatial mode function of the laser mode transversally pumping
the atoms is here given by f (y) = cos(ky). The system dissipates
photons through the cavity mirrors, and we denote by κ the linewidth
of the cavity [43]. A sketch of the setup is depicted in Fig. 3.1.

In this thesis the dynamics is studied in the parameter regime in
which one can eliminate the atoms’ internal degrees of freedom and
scattering processes can be considered elastic [31, 37, 122]. This leads to
a shift of the resonance frequency of the cavity mode and to a coherent
pump whose strength depends on the atomic positions within the
mode [31, 37]. We will analyze the quantum phases of the atoms in
the limit in which the cavity field follows adiabatically the atomic
motion and the cavity field can be eliminated from the equations of
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Figure 3.1: The atoms (black dots) are confined by a two-dimensional optical
lattice (the intensity is given by red spots) and dispersively inter-
act with a standing-wave mode of the cavity (blue). The atoms
are pumped transversally with a laser field with a Rabi-frequency
Ω. The field at the cavity output is emitted with rate κ.

the bosonic variables [31, 37, 122]. This can be achieved by a time
scale separation of the atomic and cavity degrees of freedom [31, 37,
122], for which the dynamics of the external degrees of freedom of the
atoms are determined by the effective Hamiltonian [31, 37, 122]

ĤCavity = Ĥ + ĤL + ĤLR . (3.1)

Here Ĥ consists of the kinetic energy, the potential of the optical
lattice and contact interaction between the atoms, see Eq. (1.44). The
Hamiltonian ĤL describes the potential associated with the laser field
and is given by [31]

ĤL = VL

∫
d3rΨ̂†(r) f (y)2Ψ̂(r) , (3.2)

where VL can be tuned by varying the pumping laser parameters. The
field operators obey the bosonic commutation relation of Eq. (2.2).
The effect of the atom-cavity coupling is described by the effective
long-range (LR) Hamiltonian [31, 37]

ĤLR =
U1

K

(∫
d3rΨ̂†(r)h(x) f (y)Ψ̂(r)

)2

, (3.3)

where the dispersive shift is neglected. The coefficient U1 gives the
strength of the long-range interactions. It can be either positive of neg-
ative, its sign is experimentally controlled by the sign of the detuning
between the cavity and laser frequency ∆c.

We take the effective cavity potential to be a small perturbation
with respect to the static optical lattice potential and expand the field
operator in the Wannier basis of the lowest band of the static optical
lattice. Within the single band approximation we discard the overlap
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integral contributions beyond nearest neighbor. One then gets the
extended Bose-Hubbard Hamiltonian with global interactions [31, 36,
37]

ĤBH
Cavity = Ĥ2D

BH + ĤBH
L + ĤBH

LR . (3.4)

Here the first term is the standard Bose-Hubbard Hamiltonian of
Eq. (1.73). The second term is due to the pumping laser along the y
direction and is given by [31]

ĤBH
L = VL ∑

j
ε
(j)
L n̂j , (3.5)

with

ε
(j)
L =

∫ aNL

0
dy wj2(y)

2 cos(ky)2 . (3.6)

Here the nearest neighbor contribution can be neglected [31] and the
operator n̂j = â†

j âj counts the number of atoms per site j. The operator
âj (â†

j ) annihilates (creates) a boson at site j in the lowest lattice band

fulfilling the commutation relations
[

âi, â†
j

]
= δi1,j1 δi2,j2 .

The third part is the extension due to the atom-cavity coupling and
takes the form [36, 37]

ĤBH
LR =

U1

K
(
D̂2 +

(
D̂B̂ + B̂D̂

)
+ B̂2) , (3.7)

where

B̂ = ∑
〈j,i〉

yα
j,i â

†
j âi (3.8)

is a tunneling term with site dependent amplitude and

D̂ = ∑
j

zα
j n̂j (3.9)

is an average density with site-dependent amplitude. Here ∑〈i,j〉 is
restricted to the pairs of nearest neighbor sites i and j. The coefficients
yα

j,i and zα
j in Eq. (3.8) and (3.9) are the overlap integrals over the

spatial mode function h(x), f (y) and the Wannier function Wj(x, y) =
wj1(x)wj2(y) in the lowest band of the static optical lattice [31, 36, 37]:

zα
j =

∫ aNL

0
dx
∫ aNL

0
dy Wj(x, y)2 cos(αkLx + φ) cos(αkLy)

yα
j,j+1 =

∫ aNL

0
dx
∫ aNL

0
dy Wj(x, y)Wj+1(x, y)×

× cos(αkLx + φ) cos(αkLy) , (3.10)

where we used that h(x) = cos(kx + φ), f (y) = cos(ky) and j + 1 ∈
{(j1, j2 ± 1), (j1 ± 1, j2)}. The parameter φ is here the phase shift be-
tween the static optical lattice potential and the cavity mode standing
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wave and determines the value of the overlap integrals. The period-
icity of the mode function h(x) and f (y) depends on the absolute
value of the wavevector of the cavity mode k = |k|, whereas the un-
derlying periodicity of the static optical lattice is given by a = π/kL

with kL = |kL|. The ratio α = k/kL between these two wavenumbers
determines the value of the overlap integrals in Eq. (3.10). Details on
the calculation of the two-dimensional extension can be taken from
Ref. [31].

In this thesis we focus on the ratio α = 1, which is also the situation
experimentally realized in [43]. In this case the integrals can be written
as zα=1

j = (−1)jz2D and yα=1
j,j+1 = (−1)jy2D with

z2D =
∫ aNL

0
dx
∫ aNL

0
dy w1(x)2w1(y)2 cos(kLx + φ) cos(kLy)

y2D =
∫ aNL

0
dx
∫ aNL

0
dy w1(x)w2(x)w1(y)2 cos(kLx + φ) cos(kLy)

(3.11)

and (−1)j ≡ (−1)j1+j2 . In the rest of this chapter we denote a site
(j1, j2) by even (odd) when j1 + j2 is an even (odd) number. In this
case the long-range part of the Bose-Hubbard Hamiltonian in Eq. (3.4)
takes the form

ĤBH,2D
LR =

U1

K
(
z2

2DD̂2
2D + z2Dy2D

(
D̂2D B̂2D + B̂2DD̂2D

)
+ y2

2D B̂2
2D
)

.

(3.12)

We here extracted the overlap integrals in Eq. (3.11) out of the operators
(3.9) and (3.8), which leads to

D̂2D = ∑
j
(−1)jn̂j (3.13)

and

B̂2D = ∑
〈j,i〉

(−1)j â†
j âi . (3.14)

Note that the expectation value of the operator (3.13) can signal an
imbalance of the occupation on the even and odd sites in the state,
while the expectation value of (3.14) can signal a staggered behaviour
of the off-diagonal correlations.

Note that for α = 1 the Hamiltonian in Eq. (3.5) leads solely to a shift
of the onsite energy in the standard Bose-Hubbard Hamiltonian in
Eq. (1.73) and thus we can include it into the standard Bose-Hubbard
Hamiltonian.

In this thesis we will analyze the interplay between D̂2D and B̂2D

in determining the phase diagram. We will tune their relative weight,
which here corresponds to vary the parameter φ.
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3.3 mean-field phase diagram of the extended bose-hubbard

model

Setting the phase shift φ between static lattice potential and cavity
mode equal to zero, the long-range interaction term (3.12) in the ex-
tended Bose-Hubbard Hamiltonian in Eq. (3.4) reduces to a modulated
density-density interaction. In this regime the experimentally mea-
sured phase diagram [43, 44] reports the existence of MI, SF, CDW
and SS.

Several theoretical works reproduced the salient features of the
phase diagram using the extended Bose-Hubbard Hamiltonian in this
limit. Most works use different implementations of the mean-field
treatment [23–27], nevertheless their predictions do not agree across
the whole phase diagram. Moreover, some predictions [23–27] exhibit
several discrepancies with state-of-the-art two-dimensional quantum
Monte Carlo (QMC) study [28]. It has been further argued that the
mean-field predictions for this kind of Bose-Hubbard model shall be
the same as the one of Bose-Hubbard with nearest-neighbour (and
thus also repulsive dipolar) coupling [23, 26].

In this section we provide an extensive mean-field analysis of the
two-dimensional extended Bose-Hubbard model with global density-
density interactions. For this analysis we consider a grand-canonical
ensemble. We determine the ground-state phase diagram using a
mean-field approach. We take particular care of the convergence cri-
terion of the numerical results and compare them with analytical
results. We then discuss our results comparing them in detail with the
analytical predictions and with previous theoretical studies for the
cavity Bose-Hubbard model and for repulsively interacting dipolar
gases in two dimensions.

We here first review the two-dimensional extended Bose-Hubbard
Hamiltonian for the geometry we are considering. We then discuss
the exact result for the eigenstates and eigenspectrum in the so-called
atomic limit, where the kinetic energy is set to zero. This limit is
relevant for the followed mean-field study, where we determine the
ground state for finite values of the hopping term.

3.3.1 Grand-canonical Hamiltonian

We consider the system introduced in the previous Sec. 3.2 depicted
in Fig. 3.1 with α = 1 and φ = 0. The resulting two-dimensional
extended Bose-Hubbard Hamiltonian ĤBH

Cavity consist of the standard
Bose-Hubbard Hamiltonian (1.73) and the long-range Bose-Hubbard
Hamiltonian in Eq. (3.12) setting y2D = 0. For later convenience we
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decompose the Hamiltonian ĤBH
Cavity = Ĥt + V̂0 into the kinetic energy

Ĥt and interaction energy V̂0. They individually read [23, 26, 31]

Ĥt = −t ∑
〈ij〉

â†
i âj, (3.15)

V̂0 =
U0

2 ∑
i

n̂i(n̂i − 1) +
U1

K
z2

2DD̂2
2D , (3.16)

where the operator D̂2D is the one in Eq. (3.13) and z2D is the two-
dimensional overlap integral given in Eq. (3.11). The kinetic energy
in Eq. (3.15) is scaled by the hopping coefficient t, which is positive
and uniform across the lattice, and ∑〈ij〉 is restricted to the pairs of
nearest neighbor sites i and j. The potential energy in Eq. (3.16) is
diagonal on the eigenstates of operator n̂i = â†

i âi and consists of the
onsite repulsion, which is scaled by the strength U0 > 0, and of the
infinite-range interactions with strength U1. For later convenience we
here introduce the operator

Φ̂ = D̂2D/K (3.17)

and redefine the infinite-range interaction strength as

U∞ = −z2
2DU1 . (3.18)

The expectation value of Φ̂ is maximum when the atoms form a
checkerboard pattern.

In the rest of this section we will study the phase diagram of a
grand-canonical ensemble at zero temperature. For this purpose we
analyze the ground state of the grand-canonical Hamiltonian, defined
as

ĤGC = Ĥt + V̂0 − µ ∑
j

n̂j . (3.19)

Here, µ is the chemical potential which controls the mean occupation
number ρ,

ρ =
1
K ∑

j
〈n̂j〉 , (3.20)

and the expectation value is taken over the grand-canonical ensemble.
In the following we also use the parameter θ, which is proportional to
the expectation value of operator Φ̂ according to the relation:

θ = 2
∣∣〈Φ̂〉∣∣ , (3.21)

where the proportionality factor 2 is introduced for later convenience.
The value of θ measures the population imbalance between even and
odd sites, thus when it is non-vanishing the atomic density is spatially
modulated. In particular, it is proportional to the value of the structure
form factor at the wave number of the cavity field [26].
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3.3.2 Atomic limit

We now consider the limit t = 0. In this case the energy eigenstates
are the Fock states |n(1,1), . . . , n(L,L)〉, with |ni〉 Fock state at site i. It is
convenient to decompose the Fock number nj of each site j as the sum

nj = ρ + (−1)j θ

2
+ δj , (3.22)

where δj ensures that nj is a natural number. This condition, together
with Eqs. (3.20) and (3.21), lead to the relations

∑
j

δj = 0 , (3.23)

∑
j
(−1)jδj = 0 . (3.24)

Using these relations and Eq. (3.22) one can verify that, whenever
ρ± θ/2 is an integer number, the configuration with minimal energy
has δj = 0. In fact, using Eq. (3.22) one can cast the energy of the state
|n(1,1), . . . , n(L,L)〉 into the form

E(ρ, θ, {δj}) = E0(ρ, θ) +
U0

2 ∑
j

δ2
j , (3.25)

where E0(ρ, θ) is the energy of the configuration when δj vanishes at
all sites,

E0(ρ, θ) = K
[

U0

2
ρ(ρ− 1) +

(
U0

2
−U∞

)
θ2

4
− µρ

]
, (3.26)

and is visibly extensive. This expression is correct when |θ| ≤ 2ρ.
The ground state is found by the configuration which minimizes the
energy E0(ρ, θ). Therefore the ground-state properties are determined
by two independent parameters, which we choose here to be U∞ and µ

in units of U0. More generally, the states at energy E0 are characterised
by two-site translational symmetry along both directions of the lattice,
such that the sites with the same parity are equally populated. Hence,
we can denote the ground state by the ket {n, m} where n (m) is the
Fock number for the even (odd) sites, or vice versa.

In the following we review the ground-state properties in the ther-
modynamic limit K → ∞ by analysing Eq. (3.26). They can be dis-
played by means of a phase diagram in the U∞ − µ space shown in
Fig. 3.2, see also Ref. [23–25]. We first notice that in the limit U∞ = 0
the phase is MI with commensurate density ρ = n in the interval
µ ∈ [U0(n− 1), U0n], while for µ < 0 the density is ρ = 0. At µ = U0n
there is an infinite degeneracy of SF phases with density continuously
varying from n to n + 1. For increasing value of U∞, but U∞ < U0/2,
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Figure 3.2: Ground-state phase diagram of the extended Bose-Hubbard
model with repulsive cavity-mediated long-range interaction and
repulsive onsite interaction U0 > 0 in the atomic limit (t = 0), as
a function of the chemical potential µ and the long-range inter-
action coefficient U∞ (both in units of U0). The lines denote the
boundaries between the incompressible phases, which are found
assuming an elementary 2× 2 cell (indicated by the inset squares)
for the CDW phase. The grey region contains CDW phases with
increasingly large density. The boundaries are given by Eq. (3.27)
for 0 < U∞ < U0/2. For U0/2 < U∞ < U0 the lines correspond to
Eq. (3.28). For U∞ > U0, the model based on the grand-canonical
ensemble becomes invalid.

the MI phase with commensurate density n is the ground state for
values of the chemical potential such that

U0(n− 1) +
U∞

2
< µ < U0n− U∞

2
. (3.27)

At the upper (lower) boundary there is an abrupt jump from the MI to
a CDW phase with fractional density n+ 1/2 (n− 1/2) and population
imbalance |θ| = 1. In this CDW the occupation of two adjacent sites
is {n, n + 1} ({n, n− 1}), or vice versa, the CDW ground state being
doubly degenerate. These boundaries are the lines depicted in Fig. 3.2.
At U∞ = U0/2 there is a discontinuity: For U∞ > U0/2 the ground
state at density ρ is a CDW with the largest population imbalance
|θ| = 2ρ (where 2ρ is an integer) in the interval

(U0 −U∞)(θ − 1)− U∞

2
< µ < (U0 −U∞)θ −

U∞

2
, (3.28)

while at µ = 2(U0 −U∞)ρ − U∞
2 there is an infinite manifold of SF

states with density varying from ρ to ρ + 1/2. The corresponding
phases and boundaries are shown in Fig. 3.2, they all converge to the
same point at U∞ = U0. For U∞ ≥ U0 the onsite energy is attractive,
the energy is not bound from below and the grand-canonical ensemble
becomes unstable.

This analysis reproduces the results of Ref. [23–25] for t = 0. In
what follows we will study the phase diagram for finite tunneling
rates by means of the mean-field analysis.
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3.3.3 Mean-field analysis

In this subsection we review the mean-field model which is at the basis
of our numerical calculations and the definition of the observables
that identify the phases. We then use the path-integral formalism to
analytically determine the transition from incompressible to SF phase.

3.3.3.1 Mean-field treatment

We here apply the local mean-field approach introduced in Subsub-
sec. 1.3.3.2, where the expectation value of the annihilation operator âi
at site i

ϕi = 〈âi〉 (3.29)

is used as a "local superfluid order parameter". To remind the reader
the mean-field approximation consists of neglecting terms in second-
order in the fluctuations δâi of the annihilation operator about ϕi, with
δâi = âi − ϕi. With this approximation the Hamiltonian term (3.15)
can be cast into the sum of local Hamiltonians Ĥmf

t = ∑i Ĥ(i)
t with

Ĥ(i)
t = −t

(
â†

i ηi + âiη
∗
i − Re{ϕ∗i ηi}

)
, (3.30)

and where ηi = ∑〈j〉i ϕj is the sum of local SF order parameters of
the neighbors of site i. Without loss of generality in the numerical
calculations we assume that these parameters are real.

In order to write the total Hamiltonian in terms of local operators,
we perform a second approximation by writing the cavity potential
in the mean-field form: Φ̂2 ≈ θΦ̂− θ2/4, thus we discard fluctuations
of Φ̂ to second order. With this approximation we can now write
the grand-canonical Hamiltonian, Eq. (3.19), in its mean-field form
HGC:mf = ∑i Ĥ(i)

mf, namely, as the sum of local-site Hamiltonians Ĥ(i)
mf

that read

Ĥ(i)
mf = Ĥ(i)

t +
U0

2
ni(ni − 1)− (−1)iU∞θni + U∞

θ2

4
− µni . (3.31)

In the following we assume two-site symmetry, as in Ref. [23]. Using
this assumption all even and all odd sites possess the energy Ĥ(e)

mf

and Ĥ(o)
mf , respectively, such that ĤGC:mf = K(Ĥ(e)

mf + Ĥ(o)
mf )/2. It is now

convenient to introduce the annihilation and creation operators âe and
â†

e (âo and â†
o) for a particle in an even (odd) site, and the corresponding

number operator n̂e = â†
e âe (n̂o = â†

o âo). The even (odd) sites have SF
order parameter ϕe (ϕo) and the population imbalance operator reads
Φ̂ = (n̂e − n̂o)/2. With these definitions we write

Hs∈{e,o} =− ztϕs̄(âs + â†
s − ϕs) +

U0

2
n̂s(n̂s − 1)

− µn̂s − σsU∞θn̂s + U∞θ2/4 ,
(3.32)
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where we have used that ϕ̄s = zϕs̄, with z the coordination number
(here equal to 4) and ϕē = ϕo (ϕō = ϕe). Moreover, we have introduced
the symbol σe = +1, σo = −1. Hamiltonian (3.32) is at the basis of the
numerical results presented in the next section.

3.3.3.2 Transition from incompressible to compressible phases

We now determine the critical tunneling rate which separates com-
pressible from incompressible phases. For this purpose we start from
Hamiltonian (3.19) and consider an elaborate form of mean-field treat-
ment following Refs. [11, 68, 124]. We consider the partition function
[11, 125]:

Z = Tr
{

e−βĤ0 Tτe−
∫ β

0 dτĤI(τ)
}

(3.33)

where β is the inverse temperature, τ is the imaginary time, Tτ is
the imaginary-time ordering operator, Ĥ0 = V̂0 − µ ∑i n̂i is the grand-
canonical Hamiltonian without the kinetic energy, and we take h̄ = 1
to simplify the notation. Moreover,

ĤI(τ) = eτĤ0 Ĥte−τĤ0 , (3.34)

where Ĥt is the tunneling Hamiltonian, Eq. (3.15). We can also write

Equation (3.33) as Z = Z0

〈
Tτe−

∫ β
0 dτĤ1(τ)

〉
0

[11], where Z0 the parti-

tion function for the model corresponding to Ĥ0 and the expectation
value evaluated for the thermal state of the same model at inverse
temperature β. Equivalently, one can cast the expression in terms of
coherent-state path integrals [68, 124, 126]:

Z =
∫
DαjDα∗j e−

∫ β
0 dτL(τ) (3.35)

where

L = ∑
j

α∗j
dαj

dτ
+ H({α∗j , αj}) . (3.36)

where H is assumed to be written in normal form and the path
integral is over variables satisfying periodic boundary conditions.
The two formalisms can be related by noting that for an operator
A[{â†

j (τj), âj′(τj′)}] [126]:

〈Tτ A[{â†
j (τj), âj′(τj′)}]〉0 = (3.37)

1
Z0

∫
DαjDα∗j e−

∫ β
0 dτL(τ)A[{α∗j′(τj′), αj(τj)}] , (3.38)

where the imaginary time dependence of the operators is defined in
the same way as in Eq. (3.34).
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We define a new basis of Fourier-transformed variables αq, α∗q , with
q = (q1, q2):

αq =
1√
K

∑
j

αj exp[2πi(j1q1 + j2q2)/
√

K] (3.39)

with L =
√

K. We then write

L = L0 − t ∑
q

wqα∗q αq , (3.40)

where wq = 2(cos (2πq1/
√

K) + cos(2πq2/
√

K)) are the eigenvalues
of the vicinity matrix, and where L0 is the Lagrangian without the tun-
neling terms. By means of the Hubbard-Stratonovich transformation
we obtain

et
∫

dτ ∑q wqα∗q αq =
∫
DψqDψ∗q e−

∫
dτL2+Lc , (3.41)

where all normalization factors are now included in the definition of
the functional integral, and

L2 = t ∑
q

ψ∗q ψq , (3.42)

Lc = −t ∑
q

√
wq(α

∗
q ψq + ψ∗q αq) . (3.43)

The prefactors here are chosen so that ψq are dimensionless. In partic-
ular, the auxiliary variables ψq, ψ∗q are related to the Fourier transform
of the expectation values ϕi by the equation 〈ψq〉 = √wq ϕq.

We now integrate Eq. (3.35) over the variables αj, α∗j and obtain

Z = Z0

∫
DψqDψ∗q e−Seff , (3.44)

where we have introduced the effective action Seff. The effective action
is non-local in time and is given by the expression

Seff = − ln
( 1

Z0

∫
DαjDα∗j e−

∫ β
0 dτL0+Lc

)
+
∫ β

0
dτL2

= − ln
(
〈e−

∫ β
0 dτLc〉0

)
+
∫ β

0
dτL2 . (3.45)

In order to find the transition points, it is sufficient to consider Seff up
to second order in the auxiliary fields. One recovers the expression
[124]:

S(2)
eff = −1

2

〈( ∫ β

0
dτLc

)2〉
0
+
∫ β

0
dτL2 , (3.46)

Owing to the phase invariance of the model, Eq. (3.46) reduces to the
form:

S(2)
eff =

∫ β

0
dτL2 − t2 ∑

q,q′

√
wqwq′

∫ β

0
dτ
∫ τ

0
dτ′[

ψ∗q (τ)ψq′(τ
′)〈âq(τ)â†

q′(τ
′)〉0 + ψq(τ)ψ

∗
q′(τ

′)〈â†
q(τ)âq′(τ

′)〉0
]

,

(3.47)
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where the Fourier-transformed operators âq of the site operators âj are
defined in analogous form as Eq. (3.39).

The time correlators of the model with no hopping can be calculated
easily in the site basis. For the case T → 0 (i.e. β→ ∞) they are found
to be:

〈â†
j (τ)âj′(τ − τ0)〉0 = δjj′nje

−tE−j , (3.48)

〈âj(τ)â†
j′(τ − τ0)〉0 = δjj′(nj + 1)e−tE+

j , (3.49)

where the values of nj and 〈Φ〉 are the ones that correspond to the
ground state for t = 0, see Subsec. 3.3.2. The energy E±j is the energy
variation resulting from the addition or subtraction of a particle at site
j,

E−j = µ−U0(nj − 1) + 2U∞〈Φ〉(−1)j , (3.50)

E+
j = −µ + U0nj − 2U∞〈Φ〉(−1)j , (3.51)

where we neglected a term of order 1/K (note that E−j is defined for
nj > 0).

In the ground state, nj and E±j only depend on the parity of the site,
so one can cast the correlators of Eqs. (3.48) and (3.49) in the form:

〈â†
j (τ)âj(τ − τ0)〉0 = C−s∈{e,o}(τ0) , (3.52)

〈âj(τ)â†
j (τ − τ0)〉0 = C+

s∈{e,o}(τ0) , (3.53)

where the subindices correspond to j being even or odd. This can be
used to calculate the Fourier-transformed correlators:

〈â†
q(τ)âq′(τ − τ0)〉0 = C−e (τ0)

δqq′ + δqq̄′

2
+ C−o (τ0)

δqq′ − δqq̄′

2
, (3.54)

〈âq(τ)â†
q′(τ − τ0)〉0 = C+

e (τ0)
δqq′ + δqq̄′

2
+ C+

o (τ0)
δqq′ − δqq̄′

2
. (3.55)

Here, we introduced the notation:

q̄ = (q̄1, q̄2) = (q1 +
√

K/2, q2 +
√

K/2) , (3.56)

and the sum of quasimomenta is taken to be mod
√

K. Thus, the
presence of an even-odd asymmetry leads to non-vanishing correlators
between momenta corresponding to q, q̄. Note that for temperatures
T > 0 this structure is maintained, only the form of the single-site
correlators is changed. The correlators in Fourier basis can then be
replaced in expression (3.47), and the sum can be made more compact
by noting that wq̄ = −wq. We now make the standard assumption that
the transition can be found by considering time-independent auxiliary
fields ψq, ψ∗q , so that they can be taken out of the integrals. We obtain:

S(2)
eff = ∑

q
ψ∗q ψq

{
tβ− t2wq

2

∫ β

0
dτ
∫ τ

0
dτ0 [C−e (τ0) + C−o (τ0) + C+

e (τ0) + C+
o (τ0)]

}

+ i ∑
q

ψ∗q̄ ψq
t2wq

2

∫ β

0
dτ
∫ τ

0
dτ0 [C−e (τ0)− C−o (τ0) + C+

e (τ0)− C+
o (τ0)] . (3.57)
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For the case T ' 0, after performing the time integrals one gets:

S(2)
eff ' tβ ∑

q

{
ψ∗q ψq

[
1− twq

2

( ne

E−e
+

no

E−o
+

ne + 1
E+

e
+

no + 1
E+

o

)]
+iψ∗q̄ ψq

twq

2

( ne

E−e
− no

E−o
+

ne + 1
E+

e
− no + 1

E+
o

)}
. (3.58)

Thus, for each pair of modes q, q̄, the effective action to second order
has eigenvalues corresponding to a matrix of the form:

Mq = I− twq

2
(`1σz + i`2σx) , (3.59)

with `1, `2 the (q-independent) coefficients in Eq. (3.58). The smallest

of each pair of eigenvalues reads 1− t|wq|
√
`2

1 − `2
2/2. Hence, since

the largest value of |wq| is equal to 4, the smallest eigenvalue of all

pairs of modes in 2 dimensions is then 1− 2t
√
`2

1 − `2
2. The transition

point is found when this eigenvalue vanishes. After replacing the
coefficients `1, `2 one finds:

t−1
c = 4

√(
ne

E−e
+

ne + 1
E+

e

)(
no

E−o
+

no + 1
E+

o

)
. (3.60)

This result coincides with the one reported in Refs. [23–25].

3.3.4 Ground-state phase diagram

In this subsection we determine the ground-state phase diagram using
the mean-field model, Eq. (3.32). By rescaling the energy with U0,
the ground state is fully characterized by three parameters: µ, which
controls the density, U∞, which scales the cavity interactions, and
the tunneling t. The numerical analysis is performed by identifying
self-consistently the ground state using a fixed-point iteration detailed
in Appendix 3.7. By these means we identify four possible phases: (i)
SF when ϕs 6= 0 and θ = 0; (ii) lattice supersolid (SS) when ϕs 6= 0 and
θ 6= 0; (iii) MI when ϕs = 0 and θ = 0; and finally (iv) CDW, when
ϕs = 0 and θ 6= 0 [26]. We further note that in the SS phase the two SF
order parameters ϕe and ϕo take different non-vanishing values.

3.3.4.1 Ground-state phase diagram for varying density

Figure 3.3 shows the ground-state phase diagram as a function of
U∞, µ, t, the different colors identify a different phase, the SF phase
is the corresponding empty space. In the plane at U∞ = 0 we recover
the mean-field phase diagram of the two-dimensional Bose-Hubbard
model [11, 127]. For 0 < U∞/U0 < 0.5 the MI lobes shrink along the µ

axis and are sandwiched by CDW phases, which become increasingly
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Figure 3.3: Ground-state phase diagram as a function of U∞, µ, t (in units of
U0) obtained by numerically determining the phases using the
mean-field model of Eq. (3.32). The MI phase is grey, the CDW is
yellow, the SS is red, the rest of the phase diagram is SF. Note that
the tunneling rate is rescaled by the coordination number z (here
z = 4). In the numerical procedure the cut-off of the occupation at
each site is at nmax = 31, the precision is ε = 10−8 and 275 initial
guesses were taken (see Appendix 3.7).
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visible. Here, the CDW phases are characterized by minimal popula-
tion imbalance θ = 1, corresponding to ne = n and no = n + 1 where
n is integer, or vice versa. The red regions at the tip of each CDW lobe
is SS, the parameter region where the SS phase is different from zero
increases with U∞.

Inspecting Fig. 3.3 we observe that the MI phases vanish at U∞ =

0.5U0 also for finite tunneling. Moreover, there is a discontinuity at
U∞ = 0.5U0: the CDW phases with population {n, n + 1} completely
disappear and are replaced by CDW phases with maximal population
imbalance {0, 2n + 1}. This result is in agreement with our analysis
in the atomic limit, Subsec. 3.3.2. Moreover, at U∞ = 0.5U0 and at
finite tunneling rate one observes a discontinuous transition from SF
to CDW. For U∞ > 0.5U0 the CDW phases are separated from the SF
phase by lattice SS phases, which almost completely surround the tip
of CDW regions.

We now consider the values U∞ = 0.3U0 and U∞ = 0.6U0 and show
the behaviour of SF order parameter and θ, respectively, in Fig. 3.4.
We first discuss the case U∞ = 0.3U0, namely, when the strength of
the long-range interaction is below the threshold value U∞ = U0/2.
In this case, the MI phases are stable. The transition between MI-SF
and CDW-SS are characterized by a continuous change of the SF order
parameter. However, there is no direct transition between the MI and
SS phases. Our numerical results, moreover, predict a direct transition
between CDW and MI at t > 0. The population imbalance changes
discontinuously across the CDW-MI transition boundary. In particular,
in the vicinity of the transitions between each two insulating lobes, we
find a range of parameters where they are metastable: The transition
line here corresponds to the parameters where the two states have
the same energy. This prediction agrees with the ones of Refs. [23, 25,
128] and with the results for hard-core bosons in Ref. [129]. A direct
CDW-MI transition is also predicted by a mean-field treatment in a
canonical ensemble [27].

We remark that a direct CDW-MI transition, a direct CDW-SF tran-
sition, and SS phases at the tip of the CDW lobes have also been
found in mean-field studies based on cluster analysis [26]. A further
quantitative comparison with the phase diagram reported there is not
possible. In fact, the effective strength of the long-range interaction
term is not constant across the phase diagram of Ref. [26], since this
depends on the overlap integral between the cavity standing wave and
the Wannier functions. There, the Wannier functions are calculated
by changing the depth of the confining optical lattice, after which the
integrals giving t, U0, and U∞ are determined.

We now discuss the phase diagrams in Fig. 3.4 for U∞ = 0.6U0.
Comparison with the left panels show that now the CDW lobes have
moved towards smaller chemical potentials, their width (with respect
to the chemical potential) has decreased and the critical tunneling rate
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Figure 3.4: Cuts of the ground-state phase diagram of Fig. 3.3 for U∞ = 0.3U0
(left column) and U∞ = 0.6U0 (right column). Upper panels:
contour plots of the SF order parameter ϕ =

√
|ϕe ϕo|; Lower

panels: contour plots of the population imbalance |θ|. The white
dashed lines show the phase boundaries predicted by Eq. (3.60).

has increased. The form of this phase diagram qualitatively agrees
with the one reported in [23, 25]. For both values U∞ = 0.3U0 and
U∞ = 0.6U0 we observe discrepancies between the numerics and
the analytical lines, which reproduce the phase boundaries predicted
by Eq. (3.60). These discrepancies are visible at the direct transition
CDW-SF, as well as at the transition between CDW and SS with dif-
ferent values of the population imbalance. At these phase boundaries
the population imbalance varies discontinuously. We attribute these
discrepancies to the approximations at the basis of the analytical treat-
ment leading to Eq. (3.60). The treatment, in fact, does not include
the coupling between the order parameters for superfluidity and for
the population imbalance, and cannot hence appropriately describe
transitions where the population imbalance undergoes a jump. We
discuss in the next subsection the nature of these transitions.

Finally, we observe that at fixed chemical potential and at fixed
values of U∞ above U0/2 the CDW phase has constant population
imbalance. This contrasts with the prediction of Ref. [24], where a
transition between CDW phases with maximal population imbalance
as a function of the tunneling rate was reported. Figure 3.5 shows
the occupations ρe and ρo of the even and odd sites, respectively, as
well as the corresponding SF order parameters as a function of the
tunneling rate for the same parameters as in Fig. 6 of Ref. [24]. We find
that in the incompressible phase the population imbalance is constant
and equal to |θ| = 5. We note that our self-consistent analysis at t = 0
gives that the CDW with occupations {0, 4} is metastable with energy
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Figure 3.5: Local density ρi and SF order parameter ϕi as function of the
tunneling zt/U0 with z = 4. The order parameters are obtained by
self-consistently diagonalizing the Hamiltonians (3.32) according
to the procedure detailed in Appendix 3.7. The parameters are
µ = U0 and U∞ = 0.7U0. The occupation at each site is cut off
above nmax = 31, the precision is ε = 10−7 and 275 initial guesses
were taken.

−1.8U0, while the CDW with occupations {0, 5} is the ground state
with energy −1.85U0. Since the mean-field energy does not depend on
the tunneling rate in the incompressible phase, then the {0, 5} CDW
is the ground state for all values of t where it is stable. We conclude
that a transition like that reported in reference [24] is not consistent
within the static mean-field assumption.

Before concluding this subsubsection, we briefly compare the phase
diagrams in Fig. 3.4 for U∞ = 0.3U0 with the ones for dipolar gases,
interacting repulsively in two dimensions. Here, mean-field treatments
and quantum Monte Carlo calculations report the same phases as
for all-to-all coupling, however the ground-state phase diagrams are
qualitatively different. An important difference is that for dipolar gases
there is no direct transition CDW-MI [20, 107, 110, 111, 130].

3.3.4.2 Ground state for fixed densities

We now discuss the phase diagram as a function of t/U0 and U∞/U0

at fixed density ρ. Within our grand-canonical model this implies to
find the values of the chemical potential µ, at given t̃ = zt/U0 and
Ũ∞ = U∞/U0, which satisfy the equation

ρ(µ/U0, t̃, Ũ∞) = constant. (3.61)

Since the compressibility shall fulfill ∂ρ/∂µ ≥ 0, we can use a bisection
algorithm to efficiently find the chemical potential which corresponds
to a fixed density. The details are reported in Appendix 3.7. This
procedure did not provide a solution for all values of parameters t/U0

and U∞/U0 because the compressibility ∂ρ/∂µ is not continuous over
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the full range of µ values: we find jumps in the density as a function
of the chemical potential, as we discuss in what follows.

Figure 3.6 shows the phase diagram for ρ = 1/2, 1, 3/2, and 2.
For ρ = 1/2 there is no MI phase. Nevertheless, for U∞ > 0, we
observe parameter regions where the ground state is in the CDW
phase, corresponding to the occupation {0, 1} between neighboring
sites. For U∞ . 0.1U0 CDW and SF are separated by a first order phase
transition. This phase boundary is characterized by a discontinuity
of the population imbalance, the transition line is at a value of the
tunneling rate which scales seemingly linearly with U∞/U0 and ends
at a tricritical point. After this point the SS phase separates the CDW
from the SF phase and the order parameters vary continuously at
the transition lines separating SF-SS and SS-CDW. The area enclosed
by the dotted lines in the diagram is the parameter region where we
could not find any data point, namely, where there is no value of the
chemical potential corresponding to ρ = 1/2. We denote this region by
Phase Separation (PS), after observing that simulations for these values
in a canonical ensemble using QMC reported negative compressibility
[130] and have been linked to a phase separation between the SF and
SS phases [28].

We first notice that this phase diagram coincides with the one
reported in Ref. [23], apart from the fact that the authors seem to
always find a SS phase separating the CDW and the SF phases, and
thus they report neither a direct SF-CDW transition nor a PS region.
In particular, all transitions they find for ρ = 1/2 are of second order.
This difference, and especially the absence of the PS region, might be
attributed to different methods for determining the ground state at a
fixed density in a grand-canonical ensemble. The authors of Ref. [23]
first identify the states at the target density for given t, U∞, and then
search for the lowest-energy state in this set [23, 131]. We remark
that the states identified by the treatment used in Ref. [23] do not
minimize the energy of the grand-canonical ensemble at the given set
of values. In our work, instead, we first determine the states at the
lowest energy as a function of µ for given t, U∞. In this set of states we
then search for the one corresponding to the target density by solving
Eq. (3.61). The PS region corresponds to the parameters for which the
target density cannot be found. Details of our analysis are reported
in Appendix 3.7. It is difficult, though, to figure out what the PS shall
describe if one considers the corresponding canonical realization. The
global-range interactions, in fact, break the usual paradigm of PS for
a short-range interacting (additive [132]) system, where one expects
spatial coexistence of regions which are either SS at a given density or
CDW at the other stable density: Due to the global range potential the
interaction energy between the local phases makes them unstable.

Remarkably, the plot for ρ = 1/2 reproduces qualitatively the cor-
responding diagram obtained with QMC in Ref. [28]. In particular,
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Figure 3.6: Ground state phase diagram as in Fig. 3.3 in the U∞/U0 − t/U0
plane and for fixed density. The subplots correspond to (from
left to right) upper panel: ρ = 1/2, ρ = 1, lower panel: ρ = 3/2,
ρ = 2. See text for details. Dashed (solid) lines at the phase
boundaries indicate discontinuous (continuous) variation of the
order parameters Dotted lines show the boundary of the PS
regions. In the numerical implementation, the cutoff to the site
occupation is set at nmax = 31 and we took 175 initial guesses. The
accuracy in the determination of the mean-field order parameters
is ε = 10−6, the precision in the determination of the density
is ερ = 10−4. Details regarding the phase diagram at densities
ρ = 0.5 and ρ = 1 are given in Appendix 3.7.

the authors claim to find a direct transition CDW-SF at smaller values
of t/U0 (larger values of U0/t), however they cannot determine its
nature due to the fact that the QMC simulations are not conclusive in
this parameter regime. The salient difference with our result is that
the authors do not report stable SS phases for ρ = 1/2. This does
not exclude, in our view, that a stable SS phase could exist in a small
parameter region close to the tricritical point, which might have not
been included in the data sampling.

The phase diagrams for ρ = 1 and ρ = 2 have a similar structure.
For both cases the phases are MI, SF, SS, and CDW with maximal
population imbalance. The MI-SF and the SS-CDW transitions are con-
tinuous. The MI-CDW, instead, is a discontinuous transition. Moreover,
for both densities ρ = 1, 2 there is a direct, discontinuous transition
CDW-SF at U∞ ∼ 0.5U0 which ends at a tricritical point. As U∞/U0 is
further increased, this transition line splits into two phase boundaries:
the SS-CDW and the SF-SS. The SF-SS transition is continuous except
for a small region close to the tricritical point. This region corresponds
to the parameter regime for which we find no solution of the equation
ρ(µ/U0, t̃, Ũ∞) = 1. In the case of ρ = 2, instead, the SF-SS transition
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is discontinuous close to the tricritical point. On the other hand, the
SS-CDW is a continuous transition until a critical value U∞(t, ρ), after
which we find a PS region.

The diagram for ρ = 1 in Fig. 3.6 is in full agreement with the
one reported in Ref. [23], within the parameter intervals considered.
Moreover, it also agrees qualitatively with the phase diagram evaluated
using QMC [28], apart for two salient features: The authors do not
report a PS and the transition line SS-SF is continuous along the
whole branch of their phase diagram. We note that the phase diagram
at ρ = 1 in Fig. 3.6 is similar to the one of Ref. [27], obtained by
minimizing the mean-field free energy of a canonical ensemble in a
constrained Hilbert space. According to the free energy landscape of
Ref. [27], the MI-CDW transition is characterized by a large parameter
region where the two phases are metastable.

The phase diagram at ρ = 3/2 in Fig. 3.6 exhibits a CDW phase
with {1, 2}, separated by a discontinuous transition to the CDW phase
with {3, 0} at U∞ = U0/2. The CDW {1, 2} emerges at infinitesimally
small tunneling parameters, it has a first-order transition to a SF until
a finite value U∞ < U0/2. This CDW{1, 2}-SF phase boundary ends at
a tricritical point, after which SF and CDW are separated by a SS phase.
The transition SF-SS is continuous in the whole parameter range. On
the other hand, SS-CDW{3, 0} transition, becomes discontinuous for
a small interval of values about U∞ ∼ 0.5U0. Within the SS phase,
moreover, there is a discontinuous transition at U∞ = U0/2 where
the population imbalance undergoes a jump from |θ| ≈ 1 to |θ| ≈ 3.
This jump was reported also in Ref. [23]. Instead, QMC studies found
it to be a crossover [28]. Moreover the direct transition between SF
and CDW {1, 2} seems to not have been found by static mean-field
calculations in Ref. [23]. QMC simulations [28] here reported this direct
transition, however they could not determine its order. Finally, we
notice a region for strong long-range interaction and large tunneling
where no solution exists and which was not reported by static mean-
field calculations [23].

We note that the phase diagram for ρ = 1/2 is similar to that of
the extended Bose-Hubbard model with repulsive nearest neighbor
interaction: For nearest-neighbor interactions and small tunneling
rates Quantum Monte Carlo simulations report no stable SS phase
but a direct transition CDW-SF [30, 109, 130], which is found to be of
first order [30, 130]. Furthermore in the intermediate tunneling regime
a SF-SS and SS-CDW transition is observed [110, 112]. For ρ = 1, in
the extended Bose-Hubbard model with repulsive nearest neighbor
interaction and small tunneling rates there is a MI-CDW transition
[109, 112], while the author of ref. [112] finds a SF-CDW transition for
an intermediate tunneling rate zt = 0.3U0, and SF-SS and SS-CDW
transitions for a very large tunneling rate zt = U0. However, no PS at
ρ = 1 and ρ = 1/2 is reported in Refs. [110, 112].
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3.3.5 Conclusions

We have performed a mean-field analysis of the phase diagram of the
extended Bose-Hubbard model, where the bosons have a repulsive
contact interaction and experience an infinitely long-range two-body
potential. The systematic comparison between the phase diagram ob-
tained for the cavity Bose-Hubbard model and the one for repulsively
interacting dipolar gases in two dimensions shows clear differences
already within the mean-field treatment, such as for instance the di-
rect first-order transition CDW-MI at a critical value of the chemical
potential, that is absent for the dipolar case. The ground- state phase
diagram we calculate mostly agrees with the static mean-field diagram
of Ref. [23]. There are two important differences: differing from Ref.
[23], for the density ρ = 1/2 and ρ = 3/2 we predict a direct transition
between Superfluid (SF) and Charge-Density Wave (CDW), which is
first order for the densities we considered. Moreover, in the region
where the authors of Ref. [23] predict stable lattice supersolid (SS)
phases, we find also regions where instead there is a Phase Separation
(PS). We attribute these discrepancies to different methods for deter-
mining the ground state at fixed density from the grand-canonical
ensemble calculations. We note that the PS regions correspond to a
first order transition in our mean-field description: At sufficiently
large strength of the all-connected potential the second-order tran-
sition SS-CDW turns into first order. This seems to be a common
feature of phase transitions emerging from the competition between a
short-range and a strong long-range potential [122, 133].

The stability of the SS phase has been extensively analysed by
means of Quantum Monte Carlo methods for a canonical and a grand-
canonical ensemble in Ref. [28]. Our diagrams and the diagrams of
Ref. [23] at fixed densities, extracted from grand-canonical ensemble
calculations, are in remarkable qualitative agreement with the QMC
diagrams in the interval of parameters where the QMC diagram have
been determined. The discrepancies regard the stability of the SS
regions at fixed densities. These discrepancies could be due to the
fact that the QMC collected data did not sample the regions where
these differences are found (as one could conjecture by taking the
parameters reported in Ref. [28] for which the stability of the SS
phase was analysed and mapping them into our phase diagram). Most
probably, the discrepancy arises from the fact that our static mean-
field approach cannot appropriately take into account the interplay
between strong long-range interactions and quantum fluctuations.

Future work shall focus on the phase separation parameter region
in the presence of spatial inhomogeneities, such as when the atoms
are also confined by a shallow a harmonic trap. Previous studies
showed, in fact, that the interplay between the trap inhomogeneity



3.4 cavity-mediated correlated tunnelling : mean-field study 103

and cavity-mediated long-range interaction can give rise to new phases
[134].

3.4 cavity-mediated correlated tunnelling : mean-field

study

In the previous section we neglected the hopping terms due to the
cavity-induced potential. This assumption is justified for a certain
geometries, where the maxima of the cavity field intensity coincide
with the minima of the optical lattice. This dynamics is different when
the opposite situation is realized, namely the minima of the optical
lattice are at the nodes of the cavity standing wave field. This situation
is described in our model by setting the phase shift between the
lattice and the cavity mode to φ = π/2 in Eq. (3.12). The effect in the
extended Bose-Hubbard model is a global correlated tunnelling term.
The corresponding one-dimensional model was first studied in [36]
for small chains and by exact diagonalization. Here we determine the
ground state for infinite long chains using mean-field. In doing so we
take the dependence of the coefficients from the setup parameters of
Ref. [43, 44, 135] into account.

This section is structured as follows: We first introduce the one-
dimensional extended Bose-Hubbard Hamiltonian. We then discuss
the dependence of its coefficient on the phase φ between lattice and
cavity mode. We apply a Gutzwiller mean-field ansatz and present
the corresponding ground-state phase diagrams in the U1-t plane for
different values of φ. We then compare our results with the predic-
tions of Ref. [36], where the phases of small chains were numerically
analyzed.

3.4.1 One-dimensional extended Bose-Hubbard Hamiltonian

In the rest of this thesis we consider the system of Sec. 3.2 and assume
that the atomic motion along the y axis is frozen out. This can be
achieved by taking the static optical lattice height along the y direction
sufficiently high. The corresponding one-dimensional extended Bose-
Hubbard Hamiltonian is then given by [36, 37]

Ĥ1D,BH
Cavity = Ĥ(0)

BH + Ĥ1D,BH
LR . (3.62)

It consists of the standard Bose-Hubbard Hamiltonian in Eq. (1.51) and
the long-range part resulting from the atom-cavity coupling, which is
given in 1D by [36, 37]

Ĥ1D,BH
LR =

U1

NL

(
z2D̂2 + zy

(
D̂B̂ + B̂D̂

)
+ y2B̂2) . (3.63)
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The one-dimensional imbalance operator can now be written as

D̂ =
NL

∑
j=1

(−1)jn̂j , (3.64)

where j indicates the lattice site along the chain, while the one-
dimensional tunnelling operator has the form

B̂ =
NL−1

∑
j=1

(−1)j
(

â†
j âj+1 + h.c.

)
. (3.65)

The z and y coefficients in Eq. (3.63) are the one-dimensional overlap
integrals along the x-axis of the cavity mode function h(x) = cos(kx +

φ) and the Wannier function wj(x):

z =
∫ aNL

0
dx wj(x)2 cos(kLx + φ)

y =
∫ aNL

0
dx wj(x)wj+1(x) cos(kLx + φ) . (3.66)

In the following we will discuss the dependence of the overlap inte-
grals in Eq. (3.66) as a function of the parameter φ, i.e. the phase shift
between static optical lattice and the cavity mode standing wave.

3.4.1.1 Bose-Hubbard coefficients

The dependence of the overlap integrals z, y on φ is shown in Fig. 3.7
for different values of φ. One observes that the y overlap integral
is larger than z for the phase shift φ = π/2, while for φ = 0 the z
coefficient is dominating. Moreover for φ = π/4 y decreases with
increasing lattice depth V0, while z is almost independent of the lattice
depth V0.

3.4.1.2 Observables

In the following we introduce the observables we use in order to
reveal the different phases of Eq. (3.62). The off-diagonal long-range
order can be signaled by the Fourier transform of the single-particle
correlations, i.e. the single-particle structure factor

M1(k) =
1

N2
L

∑
i,j

eik(i−j)
〈

â†
i âj

〉
, (3.67)

which can be experimentally revealed by means of time-of-flight mea-
surements [7]. For a finite value of M1(k) at k = 0 in the thermody-
namic limit the state is superfluid (SF), whereas for M1(k) going to
zero for all k in the thermodynamic limit the state is in a Mott insula-
tor (MI). As elaborated in the previous subsection the density-density
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Figure 3.7: The coefficients z (blue) and y (orange) (see Eq. (3.11)) as a func-
tion of the lattice depth V0/ER for φ = 0, φ = π/4, and φ = π/2.
For φ = 0 and φ = π/2 one of the overlap integrals is smaller
than 10−3 and thus not visible.

interaction leads to density modulated phases. In 1D it is signaled by
the order parameter

OD =
1

NL

∣∣〈D̂
〉∣∣ , (3.68)

which is essentially the expectation value of the operator D̂ of Eq.
(3.64). A state showing a finite value of M1(k) at k = 0 and OD 6= 0
is called supersolid (SS), which has conducting character like the
superfluid. For M1(k) = 0 for all k in the thermodynamic limit the
state is in the insulating charge density wave (CDW).

The global correlated tunnelling in Eq. (3.62) leads to states consist-
ing out of dimers along the lattice [36]. In the literature a state of this
form is called dimerised or bond ordered state [36, 136, 137]. Here
the bond order can be revealed by a finite expectation value of the B̂
operator in Eq. (3.65). Thus we define the bond order parameter as

OB = − 〈B̂〉 /(2NL) . (3.69)

A state showing OB 6= 0 and M1(k) = 0 for all k is called bond
insulator (BI). The BI shares similarities with the valence bond solid
(VBS) of a spin chain [137]. Instead, a state with OB 6= 0 and maxima
of M1(k) at k = ±π/2 is in a bond superfluid (BSF). The BSF phase is
similar to the resonating-valence-bond state (RVB), which is a gapless
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Phase Acronyms OD OB M1(k)

Mott-Insulator MI = 0 = 0 = 0 ∀k

Density Wave CDW 6= 0 = 0 = 0 ∀k

Bond Insulator BI = 0 6= 0 = 0 ∀k

Superfluid SF = 0 = 0 kmax = 0

Supersolid SS 6= 0 = 0 kmax = 0

Bond Super-
fluid

BSF = 0 6= 0 kmax = ±π/2

Bond Super-
solid

BSS 6= 0 6= 0 kmax = ±π/2

Table 3.1: Table of the phases, of their acronyms, and of the corresponding
values of the order parameters.

state with dimerised structure [138]. A superfluid showing both OD 6=
0 and OB 6= 0 is here denoted by bond supersolid (BSS).

The order parameter OD, Eq. (3.68), and OB, Eq. (3.68), can be
revealed by the light at the cavity output [43, 139].

In Table 3.1 we summarize the phases and their corresponding order
parameters.

3.4.2 Ground-state phase diagram

In this subsection we make use of the Gutzwiller mean-field ansatz
introduced in Eq. (1.78) to find the ground state in the canonical
ensemble and in 1D. Note that mean-field approaches do not capture
the quantum correlations over the whole lattice, which are particularly
important in 1D [6, 50]. Therefore we expect the mean-field approach
to fail in certain parameter regions. Nevertheless the Gutzwiller mean-
field approach can still provide insight on the impact of the interaction
induced correlated tunnelling on the ground state properties. Below,
we calculate the phase diagrams as a function of the single-particle
tunnelling rate and the long-range interaction strength. We provide
data for three different values of φ leading to different terms in the
extended Bose-Hubbard Hamiltonian (3.62). We then compare our
results with the ones for small system sizes reported in Ref. [36].

3.4.2.1 Extended Gutzwiller mean-field approach

We use the Gutzwiller ansatz |Ψ〉 given in Eq. (1.78) to evaluate the
energy expectation value EMF =

〈
Ψ|Ĥ1D,BH

Cavity |Ψ
〉

with Ĥ1D,BH
Cavity in Eq.
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(3.62). We hereby truncate the local Hilbertspace by demanding the
local states |ψ〉j to have the form [52]

|ψ〉j = c(nj − 1)j |nj − 1〉j + c(nj + 1)j |nj + 1〉j + c(n)j |nj〉j .

(3.70)

The coefficient are chosen to be [52]

c(nj − 1)j = cos(θj) sin(χj)eiφj

c(nj)j = cos(χj)

c(nj + 1)j = sin(θj) sin(χj)eiφj

with χj, θj ∈ [0, π/2], φj ∈ [0, 2π] and nj ∈ N. This form ensures
the normalization of the Gutzwiller wave function. Note that this
ansatz does not capture the BI phase. Using these approximations and
considerations the mean-field energy takes the form

EMF =− t
NL−1

∑
j=1

TMF
j +

U
2

NL

∑
j=1

UMF
j +

U1

N
(

D2
MF + 2BMFDMF + B2

MF
)

.

The first term is the mean-field single-particle tunnelling term

TMF
j =2 sin(χj) sin(χj+1) cos(χj) cos(χj+1)×

×
(

F cos(∆+,j) + G cos(∆−,j)
)

with

F = cos(θj) sin(θj+1)
√

nj

√
nj+1 + 1

+ cos(θj+1) sin(θj)
√

nj + 1
√

nj+1

and

G = cos(θj) cos(θj+1)
√

njnj+1

+ sin(θj) sin(θj+1)
√
(nj + 1)(nj+1 + 1) .

We will argue that the variables

∆+,j = φj + φj+1

and
∆−,j = φj − φj+1

are actually the mean-field order parameters for dimerised states. The
onsite interaction in mean-field is given by

UMF
j = mMF

j − nMF
j .

Here the expectation value of the occupation operator per site has the
form

nMF
j = nj − sin(χj)

2 cos(2θj)
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and the expectation value of the occupation operator squared is

mMF
j = n2

j + 2nj(1− 2 cos(θj)
2) sin(χj)

2 + sin(χj)
2 .

The cavity induced terms now read

BMF =
NL

∑
j=1

yα
j TMF

j (3.71)

and

DMF =
NL

∑
j=1

zα
j nMF

j . (3.72)

Here the coefficients yα
j and zα

j are the overlap integrals in Eq. (3.10).
By fixing the value of α to unity and assuming two-site translational
invariance we obtain the mean-field energy per site

Eα=1
MF /NL = − t

2

(
TMF

e + TMF
o

)
+

U
4

(
UMF

e + UMF
o

)
+

U1

N2
L

(
z2D2

MF + 2zyBMFDMF + y2B2
MF
)

(3.73)

with TMF
j = TMF

e (UMF
j = UMF

e ) for j even and TMF
j = TMF

o (UMF
j =

UMF
o ) for j odd. The cavity induced mean fields transform to

BMF =
NL

2

(
TMF

e − TMF
o

)
(3.74)

and

DMF =
NL

2

(
nMF

e − nMF
o

)
. (3.75)

Since we consider a canonical ensemble, we fix the density over the
whole phase diagram. Thus,

ρ =
1
2
(ne + no)−

1
2

sin(χe)
2 cos(2θe)−

1
2

sin(χo)
2 cos(2θo)=const.

(3.76)

3.4.2.2 Mean field order parameter

In order to find the ground state we numerically determine the values
of the set (χj, nj, ∆+

j , ∆−j , θj), that minimize the mean-field energy in
Eq. (3.73) with the constrain of keeping the density fixed to a certain
value ρ. The set (χj, nj, ∆+

j , ∆−j , θj) defines the form of the Gutzwiller
ground state and thus its properties. In the following we will discuss
the mean-field order parameters used to identify the different ground
state phases along the phase diagram.

For χj = 0 the Gutzwiller wave function |Ψ〉 (1.78) reduces to the
state in Eq. (1.55), where nj = ρ for the even as well as for the odd
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sites. Thus for χj = 0 and nj = ρ we associate the MI phase to the
state minimizing the mean-field energy EMF in Eq. (3.73). If the energy
is minimized for a χj 6= 0, we consider the corresponding state to
be SF. In fact the Gutzwiller mean-field state for a finite χj shows
fluctuations in the occupation number and thus the expectation value
of the annihilation operator âj, hence the SF order parameter of mean-
field is finite.

Depending on the value of ∆+
j and ∆−j the nearest neighbor off-

diagonal correlations of the Gutzwiller state will be different. For
instance, for ∆+

j = ∆−j = 0 we get
〈

â†
j âj+1

〉
> 0, whereas for ∆+

j =

∆−j = π we get
〈

â†
j âj+1

〉
< 0. This state is a staggered superfluid (SSF)

(see also Fig. 2.11). For ne 6= no the mean occupation nMF
e on the even

sites will be different to the occupation on the odd sites nMF
o . This is

also signaled by a finite value of the density-wave order parameter
defined in Eq. (3.21), which is used in the local mean-field analysis to
identify the density modulated phases.

If the ground state has a finite χj on the even and odd sites and
ne 6= no, then the phase is SS. For χj = 0, the state with ne 6= no is a
CDW.

In the Gutzwiller mean-field approach the bond order parameter
in Eq. (3.69) takes the form OMF

B = −BMF/2NL with BMF in Eq. (3.74).
It possesses a finite value for ∆+

e = ∆−e = 0 and ∆+
o = ∆−o = π (or

∆+
e = ∆−e = π and ∆+

o = ∆−o = 0). Thus we associate the ground
states with ∆+

e = ∆−e = 0 and ∆+
o = ∆−o = π (or ∆+

e = ∆−e = π and
∆+

o = ∆−o = 0) to a bond ordered phase. A superfluid phase, i.e. state
with χj 6= 0, showing a finite value of the bond order parameter OMF

B
will be called BSF.

We note that within our approach we can not detect the bond
insulator. This could be revealed by extending our formalism and use
the CGMF, see 1.3.3.2.

The expected phases and the corresponding values of the order
parameters are summarized in Table 3.2.

3.4.2.3 Phase diagrams for different densities

We now discuss the phase diagram for two different densities ρ =

1/2 and ρ = 1. The coefficients of the long-range Bose-Hubbard
Hamiltonian in Eq. (3.4) are calculated numerically by evaluating the
overlap integrals using the Wannier function of the lowest band in the
static optical lattice. Thereby we choose the same axial trap parameter
as for the extended Bose-Hubbard model in Subsec. 2.2.1. Moreover
we fix the lattice depth to V0 = 4ER, while φ will be different in the
following phase diagrams. In particular we consider three different
phase shifts φ = 0, φ = π/4 and φ = π/2: For φ = 0 the value of the
overlap integrals are given by z = 0.8279 and y ∼ 10−17. Therefore
due to the machine precision y = 0. Choosing φ = π/2 one gets
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Phase χj nj ∆+
e ∆−e ∆+

o ∆−o

Mott-Insulator
(MI)

= 0 ρ − − − −

Density Wave
(CDW)

= 0 ne 6= no − − − −

Superfluid
(SF)

6= 0 ρ = 0 = 0 = 0 = 0

Supersolid
(SS)

6= 0 ne 6= no = 0 = 0 = 0 = 0

Bond Super-
fluid (BSF)

6= 0 ρ = 0
(= π)

= 0
(= π)

= π

(= 0)
= π
(= 0)

Bond Super-
solid (BSS)

6= 0 ne 6= no = 0
(= π)

= 0
(= π)

= π

(= 0)
= π
(= 0)

Table 3.2: Table of the phases, of their acronyms, and of the corresponding
values of the mean-field order parameters.

z = 0, within the precision of the machine, and y = −0.0658. Here
we only consider the interaction induced tunnelling and discard the
density-density interaction. Setting φ = π/4 the overlap integrals are
given by z = 0.5854 and y = −0.0465 and we expect to observe an
interplay between density-density potential and correlated tunnelling.

Note that we fix the lattice depth and thus we tune the ratio between
the single-particle tunnelling rate and the onsite interaction strength
by changing the s-wave scattering length.Unit density

Fig. 3.8 shows the phase diagrams as a function of long-range
interaction strength and the single-particle tunnelling rate in units of U
for a unit density and different values of φ. For φ = 0 the ground-state
phase diagram is depicted in Fig. 3.8(a). Here we observe insulating
phases for small t/U. The transition between the MI and CDW phase
occurs at z2U1/U = −1/2, that agrees with the analytic result in the
atomic limit (see Subsec. 3.3.3). By increasing the tunnelling rate, a
direct phase transition between MI and SF will take place. For negative
values of the long-range interaction strength we observe a transition
from a CDW phase via a SS phase to a SF phase.

Fig. 3.8(b) shows the phase diagram for φ = π/2, where z ≈ 0. Here
we observe a BSF phase at negative U1.

In Fig. 3.8(c) the value of φ is set to π/4, and all terms in the
long-range Hamiltonian in Eq. (3.62) are relevant. For negative long-
range interaction strength the ground state exhibit an imbalance in
the occupations of neighboring sites as well as bond order in the
off-diagonal correlations. Here we observe a transition from a BSS via
a SS to a SF phase. For U1 > 0 the cavity field is zero and the ground
state is determined by the standard Bose-Hubbard model, where the
ratio t/U controls the transition from MI to SF.Density one half
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Figure 3.8: Phase diagrams of the Hamiltonian, (3.62), as a function of the
cavity interaction strength U1 in units of U/z2 or U/y2 and the
tunnelling rate t in units of U. In (a) φ = 0, (b) φ = π/2 and (c)
φ = π/4. The lattice depth is fixed to V0 = 4ER. The phases are
labeled according to the Table 3.2. We consider here a canonical
ensemble with density of ρ = 1.

For half integer density the situation is different. First of all in
the absence of the cavity the phase is always SF. This is the case for
U1 > 0 in Fig. 3.9. The salient differences between different choices of
φ became visible for U1 < 0, when the cavity field terms favour the
formation of patterns.

Figure 3.9: Phase diagrams of the Hamiltonian, (3.62), as a function of the
cavity interaction strength U1 in units of U/z2 or U/y2 and the
tunnelling rate t in units of U. We set the phase shift to φ = 0
(a), φ = π/2 (b) and φ = π/4 (c). The lattice depth is fixed to
V0 = 4ER. The phases are labeled according to the Table 3.2. We
consider here a canonical ensemble with density of ρ = 1/2.

In Fig. 3.9(b) for φ = π/2 a BSF to SF phase transition can be
observed as a function of t/U. In Fig. 3.9(c) for φ = π/4 we identify a
small CDW region separating the MI from the BSS phase. For larger
negative values of y2U1/U a direct BSS-SS phase transition is occurs.

A comparison with the grand-canonical 2D phase diagram of Eq.
(3.19) for φ = 0 (see Sec. 3.3) reveals a good agreement between the
canonical phase diagram, Fig. 3.8 and 3.9, and the grand-canonical
2D phase diagram, Fig. 3.6, for ρ = 1/2 and ρ = 1. Nevertheless the
local mean-field predicts a phase separation region for large values
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of U1 and large tunnelling rates t. This phase separation can not be
captured with our Gutzwiller mean-field analysis, since we consider a
canonical ensemble and assume two site translation invariance.

For ρ = 1 and φ = 0, Fig. 3.8(a), a similar phase diagram was
reported in Ref. [36]. In contrast to our study the authors in Ref. [36]
identified the phase transition at z2U1/U ≈ 1 in the atomic limit.
Moreover at half filling the authors in Ref. [36] reported insulating
phases for positive U1, while in our case these regions are solely
superfluid. The authors of Ref. [36] identified a BI region with an
imbalance in the occupation in a large parameter range of y2U1/U.
We believe this is incorrect and due to the fact that the authors take the
average of the nearest-neighbor off-diagonal correlations as SF order
parameter. This property is not a sufficient signature for identifying
an insulator: In fact this observable vanishes in the BSF phase. In the
BSF phase, however the nearest-neighbor off-diagonal correlations do
not vanish. Actually here one gets

〈
â†

j âj+1

〉
> 0 and

〈
â†

j′ âj′+1

〉
< 0

for j even (odd) and j′ odd (even). By means of M1(k), Eq. (3.67), we
can capture these correlations and unveil that the phase is BSF.

In Ref. [36] a transition from CDW to a so-called SF dimer (SFD)
phase was reported. This phase is characterized by a finite value of
the average nearest-neighbor off-diagonal correlations and a finite
bond order parameter. It might be that the presence of a SFD in the
ground-state phase diagram is due to the small system sizes chosen
in Ref. [36]. We note that the SFD is an excited state in our Gutzwiller
mean-field analysis.

Note that the bond ordered phases are also present in other systems
like for instance in a zig-zag optical lattice in presence of a density-
dependent gauge field [140], in a spin-1/2 dipolar fermi gas in a lattice
potential [141] and in a honeycomb lattice with anisotropic tunnelling
[136]. In contrast to those models here the bond order is self-induced
due to the cavity-atom coupling [36].

3.4.3 Conclusions

Including the cavity induced correlated tunnelling leads to phases
possessing bond order analogous to valence bond solids in spin sys-
tems [137]. The bond order emerges due to the interference between
the single-particle tunnelling and the cavity induced correlated hop-
ping. We performed a Gutzwiller mean-field study and compared the
results to an exact diagonalization study for small system sizes on
the same model [36]. Within this comparison we identified discrep-
ancies, which we conjecture to appear due to two main points: First
the authors in Ref. [36] identified a phase in the ground-state phase
diagram, which does not occur as a ground state in our Gutzwiller
mean-field approach. A reason for this discrepancy might be the dif-
ferent system sizes considered in both approaches. Moreover, our
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mean-field ansatz can not capture phases such as the bond insulator
phase. In the next section we use a density matrix renormalization
group (DMRG) approach in order to clarify the nature of the phases
beyond mean-field.
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3.5 self-organised topological insulator due to cavity-
mediated correlated tunnelling

Manifestation of topology in physics [142, 143] created a revolution
which is continuing for almost four decades. With the discovery of
topological materials, condensed matter physics has gained a new
terrain where quantum phases of matter are no longer controlled by
local order parameters as in paradigmatic Landau theory of phase
transitions but rather by the conservation of certain global symmetries
[98]. These new phases of matter, so called symmetry-protected topo-
logical (SPT) phases, display edge and surface states depending on
the dimensionality that can be robust against perturbations, making
them interesting candidates for quantum computing [144].

To date, a detailed understanding of noninteracting topological ma-
terials has been obtained through a successful classification based on
fundamental symmetry classes, the so-called "ten-fold way" [97, 145,
146]. On the other hand, interactions are almost unavoidable in many-
body systems. It is therefore a central issue to understand whether SPT
phases can survive the inter-particle interactions, or perhaps whether
interactions themselves might stabilize SPT phases and even give rise
to novel topological properties [147–154]. These questions are at the
center of an active and growing area of research [155, 156]. Recent
works have argued that the range of interactions plays a crucial role
on the existence of SPT phases. Specifically, in frustrated antiferro-
magnetic spin-1 chain with power-law decaying 1/rα interactions,
topological phases are expected to survive at any positive value of α

[157]. This behaviour shares similarities with the topological properties
of noninteracting Kitaev p-wave superconductors [158] that are robust
against long-range tunnelling and pairing couplings [159–162]. It was
found that for infinite-range interactions the one-dimensional Kitaev
chain can exhibit edge modes for appropriate boundary conditions
[163]. On the other hand, in spin chains and Hubbard models, the
infinite-range interactions suppress the onset of hidden order at the
basis of the Haldane topological insulator [164, 165].

In the following we study the phases of the all-connected Bose-
Hubbard model of Eq. (3.62) for a phase shift φ = π/2 using a Density
Matrix Renormalization Group (DMRG) approach. We report a novel
mechanism where nontrivial topology emerges from the quantum
interference between infinite-range interactions and single-particle
dynamics. We identify the conditions under which this coupling spon-
taneously breaks the discrete lattice translational symmetry and leads
to the emergence of non-trivial edge states at half-filling. The topology
we report shares analogies with the recent studies of symmetry break-
ing topological insulators [152–154, 166]. Nevertheless, differing from
previous realizations, here the interference between quantum fluctua-
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tions and global interactions is essential for the onset of the topological
phase and can not be captured by our mean-field approach.

In this section we first review the one-dimensional extended Bose-
Hubbard Hamiltonian (3.62) in the limit φ = π/2 and discuss its
corresponding mean-field Bose-Hubbard model. The mean-field model
is reminiscent of the so-called Su-Schrieffer-Heeger (SSH) model [123,
167], which we will introduce in the second subsection. In the last
subsection we then study the ground-state phase diagram for a density
of one half using DMRG. In particular we inspect the topological non-
trivial phase induced by the atom-cavity coupling.

3.5.1 Mean-field considerations

We consider a specific limit of the extended Bose-Hubbard Hamil-
tonian in Eq. (3.62), where we set φ = π/2 in the overlap integrals
(3.66). For this value of φ the overlap integral z in Eq. (3.66) is zero (see
Fig. 3.7) and the only remaining part in the long-range Hamiltonian
(3.63) is the one scaling with y2. Thus the extended Bose-Hubbard
Hamiltonian in Eq. (3.62) reduces to

Ĥ1DBH
Cavity(φ = π/2) =− t

NL−1

∑
j=1

(
â†

j âj+1 + h.c.
)
+

U
2

NL

∑
j=1

n̂j
(
n̂j − 1

)
+

U1

NL
y2B̂2 . (3.77)

Here t is the single-particle tunnelling rate, which scales the kinetic
energy of the system. The positive coefficient U scales the interaction
energy due to the s-wave scattering among the atoms. The last part is
due to the cavity-mediated interaction.

In order to study the interplay between the interaction induced and
the single-particle tunnelling we combine those tunnelling terms into
an effective tunnelling

T̂e f f = −
NL−1

∑
j=1

(
t− U1y2

NL
(−1)jB̂

)(
â†

j âj+1 + h.c.
)

. (3.78)

To gain further insight we separate the operator B̂ into its mean-field
BMF and its quantum fluctuations δB̂, i.e. B̂ = BMF + δB̂. Inserting the
operator into the effective tunnelling and neglecting its fluctuations of
second order, one gets

T̂ MF
e f f '−

NL−1

∑
j=1

(
t− 2U1y2

NL
(−1)jBMF

)(
â†

j âj+1 + h.c.
)

− U1y2

NL
B2

MF . (3.79)
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For BMF 6= 0 the last term leads to an energy shift and we can hence
neglect this term in the following discussion. This leads to

T̂ MF
e f f ' −te

′
∑

j

(
â†

j âj+1 + h.c.
)
− to

′
∑

j

(
â†

j âj+1 + h.c.
)

, (3.80)

where the first sum runs over all the even sites in the lattice, i.e.
j = 2i with i ∈ N, and the second sum over all the odd sites in the
lattice, i.e. j = 2i + 1 with i ∈N. While for the dipolar case the mean-
field effective tunnelling rate is the same on every site, the staggered
behaviour of the hopping term B̂ leads to different tunnelling rates in
the even and odd bonds, namely

te = t− 2U1y2

NL
BMF and to = t +

2U1y2

NL
BMF . (3.81)

For BMF 6= 0, hence the lattice alternates te and to tunnelling rates, as
illustrated in Fig. 3.10. We call the bond strong if it connects two sites
with the larger tunnelling rate. For instance in the case of BMF > 0
the larger tunnelling rate is given by to and the strong bond is o− e.
The weak bond connects two sites with the smaller tunnelling rate.
For BMF > 0 the weak bonds are e− o.

We can identify the single-particle tunnelling rate for which either
te or to vanishes. Setting te = 0 we find

t =
2U1y2

NL
BMF , (3.82)

whereas to = 0 for

t = −2U1y2

NL
BMF . (3.83)

Whether te or to vanishes depends on the sign of BMF. In the following
we denote the parameter region where one of the bonds vanishes
by the "destructive interference region". Note that this destructive
interference condition can only be fulfilled for one kind of bond,
which contrasts with the situation found for dipolar gases in Sec. 2.2.

The effective mean-field tunnelling in Eq. (3.80) is similar to the so-
called Su-Schrieffer-Heeger (SSH) model [123, 167] of non-interacting
fermions coupling to phonons in a chain, which we shortly review in
the following.

3.5.2 Connection to the SSH model

In order to clarify analogies between our model and the SSH model,
we will here introduce the SSH model following the reviews in Refs.
[123, 167–169].SSH-Model

The SSH model considers Ne electrons hopping with a rate t on
a chain with periodicity a. The chain is generated by N ions of
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Figure 3.10: Sketch of the effective tunnelling rates connecting sites along
the chain. te labels the hopping e − o, to the hopping o − e.
Interference with cavity-mediated tunnelling leads to a breaking
of the translation symmetry. Here the odd sites are indicated by
blue dots, whereas the even sites are colored in green. (a) and
(b) are characterized by different signs of the mean-field BMF.

mass M. One neglects here any interaction between the particles
and the spin degrees of freedom of the electrons. In the tight-binding
limit the chain’s second-quantized Hamiltonian can be mapped on
a Hubbard Hamiltonian with fermionic annihilation operators ĉn

and creation operators ĉ†
n. They obey the anti commutation relation{

ĉn′ , ĉ†
n
}
= δn,n′ ,

{
ĉ†

n′ , ĉ†
n
}
= {ĉn′ , ĉn} = 0 . If one considers also the

ions vibrations about their equilibrium position, one shall include the
coupling of the electrons to the phonons of the chain. The resulting ef-
fective Hubbard Hamiltonian describing the dynamics of the electrons
in the chain is known as the Su-Schrieffer-Heeger (SSH) Hamiltonian
[123, 167]:

ĤSSH = −
N

∑
n=1

[t + (−1)n2βu]
(

ĉ†
n ĉn+1 + h.c.

)
+ 2NKu2 (3.84)

Here, β is the phonon-electron coupling strength and u the dis-
placement of the ions from the equilibrium position, according to
xn+1 = a (1 + (−1)nu), where xn is the position of the n-te ion. The
energy cost for the deformation of the chain is proportional to K, the
elastic constant.

The electron-phonon coupling favours a value of u 6= 0 , the so-
called Peierls’ distortion. Due to the Peierls’ distortion the first Bril-
louin zone of the quasi-momentum k is now reduced to −π/2a < k ≤
π/2a. The SSH Hamiltonian in its diagonal form is given by [123, 167]

ĤSSH = ∑
k∈BZ

Ek (n̂k,+ − n̂k,−) (3.85)

The zero point energy is here set to zero. The corresponding quasi-
particle energy reads [123, 167]

Ek =
(
ε2

k + ∆2
k
)1/2

(3.86)

with ∆k = 4βu sin(ka) and εk = 2t cos(ka). The operator n̂k,− counts
the number of particles in the lowest (valence) band with a quasi-
momentum k, while the operator n̂k,+ counts the number of particles
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Figure 3.11: Quasiparticle energy Ek, Eq. (3.86), in units of the hopping rate
t as function of the quasi-momentum k for different values of
2βu. Panel (a) shows the spectrum for a displacement u = 0.
For a finite u a gap at ka = ±π/2 opens, which can be seen
for instance for 2uβ = 1/2 shown in panel (b). For 2uβ = 1 the
spectrum shows a flat valence (+) and conduction (−) band (see
panel (c)). In panel (d) the spectrum is reversed in comparison
to (b) and the minimum of the valence band (−) is at ka = ±/2,
while the minimum of of the conduction band (+) is at k = 0.

in the upper (conduction) band. The eigenmodes are given by the
set of Bloch waves |ψ+,k〉 for the conduction band and |ψ−,k〉 for the
valence band (see Subsec. 1.2.2). The ground state of the SSH model
for half-filling, i.e. Ne/N = 1/2, is the state, in which all eigenmodes
of the valence band are occupied.

Figure 3.11 displays Ek as a function of k for different values of 2uβ.
For u = 0 the spectrum is gapless and the ground state for any filling
behaves like a conductor. For a finite βu one observes an opening of
the gap at ka = ±π/2, as visible in Fig. 3.11(b). In this case for half-
filling the ground state of this model is an insulator. For 2uβ = 1 we
observe a flat valence (+) and conduction (−) band (see Fig. 3.11(c)).
In Fig. 3.11(d) 2uβ = 3/2 and the spectrum is reversed in comparison
to Fig. 3.11(b): the minimum of the valence band (−) is at ka = ±π/2,
whereas the minimum of the conduction band (+) is at k = 0. The
energy gap closes at ka = ±π/2 for u = 0. Note that the spectrum
does not depend on the sign of u.
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We can now write the SSH-Hamiltonian as

ĤSSH =w ∑
n

(
ĉ†

n ĉn+1 + h.c.
)
+ v ∑

n′

(
ĉ†

n′ ĉn′+1 + h.c.
)

, (3.87)

where the first sum runs over all the ions labeled with an even number
n and the second sum runs over all odd numbers and

w = −t− 2βu and v = −t + 2βu . (3.88)

We choose the effective tunnelling rates to be positive. In the following
we consider open boundaries. In the two cases w < v and w > v the
insulating ground states will be topologically distinct. In particular
for w < v one gets a conventional insulator, whereas for w > v
the SSH model shows a so-called symmetry protected topological
(SPT) phase [98, 169]. The defining property of a SPT state is that
the ground state at zero-temperature can not be transformed into a
conventional insulating state upon deformations of the system that do
not close the excitation gap or violate the symmetry [169]. Let us now
inspect the SPT phase in the case of the SSH model for half-filling. The
fermionic SSH model shows two kind of symmetries: particle number
conservation and chiral symmetry. The latter leads to the fact that
the SSH model falls into a certain class of free fermionic theories [97,
145, 146, 170]. The band structure of this class is characterized by a Z

topological index. This index is the so-called Zak phase [168, 171, 172] Zak phase

γ = i
∫ 2π

0
dk 〈u−(k)|∂k|u−(k)〉 , (3.89)

where |u−(k)〉 = exp(−ikx) |ψ−(k)〉 1. For a general band structure
this Zak phase can take arbitrary values, while here it exhibits quan-
tized values in units of π due to the symmetry of the SSH model [172]
. In particular for the case w < v the Zak phase is zero, whereas w > v
the Zak phase gives γ = −π [172]. Therefore in the case of a non-zero
Zak phase the ground state for half-filling will be in a SPT phase. Edges states

In this case the SSH model possesses a two-fold ground state degen-
eracy in a chain with open boundaries and an even number of ions.
This degeneracy is due to the presence of edge states at the boundaries
of the chain [169]. We can understand this by inspecting the ground
state for half-filling for v = 0 and w > 0 [169]

|Ψ〉l,l′ =
(

ĉ†
1

)l (
ĉ†

N

)l′ N−1⊗
n=2

(
ĉ†

n + ĉ†
n+1√

2

)
|0〉 (3.90)

where l, l′ ∈ {0, 1} with l 6= l′ indicates the two degenerate ground
states and the product runs over all n = 2j with j ∈N. The operators
ĉ†

1 and ĉ†
N create an electron in the zero-energy edge modes [169]. These

edge states are robust to any perturbation respecting the symmetry of
the SSH model [169]. Bosonic extension

1 Here one considers the system in the continuum limit.
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We observe a similar structure of the fermionic SSH model and the
mean-field long-range Bose-Hubbard model in Eq. (3.80) by labeling
te = w and to = v. Nevertheless the situation is different for bosons,
since the lack of the Pauli exclusion principle does not force the parti-
cles to fill the whole valence band for half-filling and zero temperature.
The bosons would thus condense into the zero momentum state. In
the hard core limit, instead, one can indeed map the bosonic analogue
of the SSH model to the fermionic SSH model [172]. Nevertheless for
a smaller onsite interaction the inter-particle interactions have already
an effect on the edge states of the SPT phase [172]. Since inter-particle
interactions are naturally present, it is thus important to better un-
derstand their role on the appearance of the SPT phase. In particular
we are here interested in a global range interaction present in our
model: Is the SPT phase still present in our model? What kind of role
plays here the long-range interaction? For this purpose, we preformed
DMRG simulations to study the ground-state phase diagram, which
we will present in the following subsection.

3.5.3 Topological insulator in cavity QED with bosons

In this subsection we will consider the extended Bose-Hubbard Hamil-
tonian in Eq. (3.77). In particular we are here interested in the appear-
ance of a topological non-trivial insulator in presence of the cavity
mediated long-range interaction including the full quantum fluctua-
tions. We therefore use in the following the DMRG method to deter-
mine the ground-state phase diagram for half-filling. For details on
the implementation see Appendix 3.7. As discussed in the previous
subsection the mean-field effective tunnelling in Eq. (3.79) of the ex-
tended Bose-Hubbard Hamiltonian in Eq. (3.77) is reminiscent of the
phonon-electron coupling of the SSH model [123]. Differing from the
ionic lattice of the SSH model, the bosons couple to a single oscillator
– the cavity mode. Here, we expect a topological non-trivial phase in a
regime, where the cavity field is finite and thus the lattice translational
symmetry is spontaneously broken.

3.5.3.1 Phase diagram at half-filling

In the following, we consider the system at half-filling, i.e. density
ρ = 1/2. The phase diagram is determined as a function of t/U and
U1/U. We characterize off-diagonal long-range order by the Fourier
transform of the single-particle correlations, i.e. the single-particle
structure factor given in Eq. (3.67). The coupling with the cavity
induces off-diagonal long-range order, that is signaled by the bond-
wave order parameter in Eq. (3.69). We also consider the density-wave
order parameter in Eq. (3.68), which signals the onset of density-wave
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Phases max M1(k) kmax ODW OB OS OP

Superfluid
(SF)

6= 0 = 0 = 0 = 0 = 0 = 0

Bond Super-
fluid (BSF)

6= 0 ±π/2 = 0 6= 0 = 0 = 0

Density-
wave (DW)

= 0 – 6= 0 = 0 6= 0 6= 0

Bond insula-
tor (BI)

= 0 – = 0 6= 0 6= 0 = 0

= 0 6= 0

Table 3.3: Table of the phases, of their acronyms, and of the corresponding
values of order parameters.

order. Moreover, we analyze the behaviour of the string and parity
order parameter

OS(i, j) = 〈δn̂ieiπ ∑
j
k=i δn̂k δn̂j〉 ,

OP(i, j) = 〈eiπ ∑
j
k=i δn̂k〉 . (3.91)

These order parameters depend nonlocally on onsite fluctuations δn̂j =

n̂j − ρ from the mean density ρ. The phases and the corresponding
observables are summarized in Table 3.3.

We first remark that, for U1 = 0, hence in the absence of global
interactions, the phase is Superfluid (SF). We also expect that for
U1 > 0 the quantum phase of Hamiltonian, Eq. (3.77), is SF, since
the formation of a finite cavity field costs energy. Instead, we expect
that correlated hopping becomes relevant for U1 < 0. We have seen
in the previous Sec. 3.4 that at a sufficient large values of |U1| the
mean-field approach predicts the formation of a bond superfluid (BSF)
accompanied by a finite value of bond-wave order parameter OB (see
Fig. 3.9). We point out that mean-field predicts that the ground state
exhibits off-diagonal long-range order for any value of U1 (see Fig.
(3.9)(b)). In this section we want to study the quantum phases by
going beyond mean-field. Thus we now discuss the quantum phase
obtained from DMRG calculations. The phase diagram is reported as
a function of the ratio t/U and U1/U. We sweep U1 from positive
to negative values. We note that in a cavity the sign of U1 is tuned
by means of the sign of the detuning ∆c. The effective strength, in
particular, shall be here scaled by the parameter y2, depending on
the particle localization. Here, y is constant across the diagram, since
we keep in fact the optical lattice depth constant and tune the ratio
t/U by changing the onsite repulsion U. Figure 3.12 displays the
DMRG results for (a) the maximum value of |M1(k)| (1.65), (b) the
bond-wave order parameter (3.69), (c) the string order parameter (2.32)
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Figure 3.12: Phase diagrams of Hamiltonian in (3.77) in the (t/U, U1/U)-
plane determined by means of DMRG. Different panels show
the behaviour of the order parameters indicated in the plots. We
observe the appearance of an insulating phase for t/U . 0.2
between standard Superfluid (SF) and bond Superfluid (BSF)
phases which disappears at larger tunnelling values. The blue
dashed lines indicate the borders between the regions where
the maximum of M1(k) evaluated over the ground state crosses
a threshold value which we set at 0.03 to compensate finite-
size effects. The bottom right panel shows the shape of M1(k)
for fixed t = 0.05U. Sharp peaks appear at k = 0 for SF and
k = ±π/2 for BSF in contrast to broad peaks of lower amplitude
for BI. Note that the effective strength of the correlated hopping
in (3.77) scales with y2U1. Here, NL = 60 and y = −0.0658.
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Figure 3.13: Left panel: Bond-wave order parameter predicted by mean-field
Gutzwiller approach, OMF

B , in the (t/U, U1/U)-plane. The right
panel shows the difference OB −OMF

B , where OB has been de-
termined using DMRG. The blue dashed line indicates the bor-
ders between the regions same as in Fig. 3.12. The mean-field
Gutzwiller approach agrees with DMRG in SF and BSF regimes,
but misses the appearance of BI phase.

for i = 10 and j = 49, and (d) the dependence of M1(k) on the
wave number k for different values of U1/U. For U1 < 0 the ground
state supports the creation of the cavity field, which is signaled by
the finite value of the bond-wave order parameter. At sufficiently
large values of |U1/U| and t/U the transition is discontinuous, and it
separates the SF from the BSF phase, where the effective tunnelling
amplitudes 〈â†

i âi+1 + H.c.〉 attain a staggered pattern characterized
by a finite value of bond-wave order parameter OB. The long range
coherence of the BSF phase is manifested by narrow peaks of M1(k)
centered at k = ±π/2 (see Fig. 3.12). Remarkably, we observe a
reentrant insulating phase separating the SF and the BSF. The insulator
is signaled by vanishing off-diagonal long-range order and therefore
by a value of the structure factor M1(k) close to zero for a finite lattice.
It is characterized by the non-zero (zero) values of the string order
parameter and by vanishing (non-vanishing) parity order parameter
depending on the boundary sites of these non-local parameters (see
the next subsubsection for details). We denote this phase as a Bond
Insulator (BI). This phase is separated from the SF by a continuous
phase transition. The transition BI-BSF seems also continuous.

We note that the bond insulator phase is entirely absent in the
mean-field approach of the previous section. Figure 3.13 displays the
bond-wave order OMF

B predicted by mean-field (left panel) and the
deviation of it from the DMRG result (right panel). While the exact
borders between various phases quantitatively differ, the existence of
both regular and bond Superfluid phases is visible in the mean-field
approach. We further note that studies of the ground state of (3.77),
based on exact diagonalization for small system sizes, did not report
the existence of the BI phase [36]. In the following subsubsection, we
characterize the topology associated with the BI phase and argue that
it is stable in the thermodynamic limit.
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Figure 3.14: Site-dependent properties of the topological and trivial ground
states of the BI phase. Left panels: Effective tunnelling ampli-
tudes 〈b̂†

i b̂i+1 + H.c.〉 as a function of the bonds (i, i + 1). Orange
(teal) bars denote the even (odd) bond. Right panels: Density
〈n̂i〉 as a function of the lattice site. The dashed line is a guide for
the eye. Observe the characteristic alternate weak/strong pattern
in the bonds with weak bonds occurring at the edges for topolog-
ical states that reveal topological particle-hole edge excitations.
Here, we set U1/U = −10, t/U = 0.05, and y = −0.0658 (see
Methods) to obtain the states using DMRG algorithm.

3.5.3.2 Emergent topology associated with the BI phase

By means of excited-state DMRG, we reveal that the BI phase has triply
degenerate ground state (quasi-degenerate for finite NL) separated
by a finite gap from the other excited states. The site distribution is
visualized in Fig. 3.14 which shows that the absolute ground state has
a uniform mean half-filling, while the other two states possess edge
excitations, namely, fractional particle-hole excitations with respect
to the mean half-filling (bottom two rows of Fig. 3.14). Such edge
excitations are characterized by the bond-wave order parameter with
opposite sign than the trivial phase. They suggest that the BI phase
is a symmetry protected topological (SPT) phase. Similar topological
edge states have been reported e.g., for noninteracting system [173]
or in superlattice BH model [172], where the superlattice induces a
tunnelling structure resembling that of the SSH model [123]. In our
case, instead, the effective tunnellings are spontaneously generated
by the creation of a cavity field that breaks discrete Z2 translational
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symmetry of the system. However, bond centered inversion symmetry
still remains intact – it protects this SPT phase.

On a further inspection, it is found that the string order OS and
parity order OP can be non-zero (zero) depending on the location
of the two separated sites that sit at the boundaries of the non-local
operators (sites i and j in Eqs. (2.32) and (3.91)). We illustrate it in
Fig. 3.15(a). We find that OS 6= 0 and OP = 0, as reported in Fig. 3.12,
when the non-local operators start at the second site of a strong bond
(i.e., the bond with larger tunnelling element) and end at the first site
of a weak bond (the bond with smaller tunnelling element) further
away. These are unusual properties when compared to, say, topological
Haldane phases of extended BH models at unit filling [32, 165].

To check whether we are indeed dealing with topological states, we
calculate the entanglement spectrum of the system. For this purpose
we partition the chain into a right (R) and left (L) subsystem as
|ψ〉GS = ∑n λn |ψ〉L ⊗ |ψ〉R where λn are the corresponding Schmidt
coefficients for the specific bipartition. The entanglement spectrum is
then defined as the set of all the Schmidt coefficients in logarithmic
scale εn = − log λn and is degenerate for phases with topological
properties in one dimension [174]. We find that εn are degenerate
near the chain center when the bipartition is drawn across a strong
bond, while it is non-degenerate at the weak bonds. In Fig. 3.15(b), we
display the entanglement spectrum for trivial and topological ground
states of the BI phase for NL = 60, when εn are measured across the
bipartition at the chain’s center. The entanglement spectrum, together
with the density pattern and the behaviour of string and parity order
parameters, provide convincing proof of the topological character of
the BI phase. Furthermore, to show that the BI phase is stable in the
thermodynamic limit, we consider the entanglement gap, ∆ε = ε1− ε0,
for different system sizes. Fig. 3.15(c) presents the variation of ∆ε

across BSF-BI-SF phases for fixed t/U = 0.05 – confirming the stability
of SPT BI phase in the thermodynamic limit.

In order to reveal the bulk-edge correspondence, we determine the
many-body Berry phase [175] and show that it is Z2-quantized in the
BI phase. We first note that, because of the strong interactions, the
winding number or the Zak phase [171, 173] is not a good topological
indicator in our case. Therefore, we follow the original proposition of
Hatsugai [176] and determine the local many-body Berry phase, which
is a topological invariant playing the role of the local “order parameter”
for an interacting case [176]. For this purpose, we introduce a local
twist t → teiθn in the Hamiltonian (3.77), such that the system still
remains gapped in the BI phase. Then the many-body Berry phase is
defined as

γ(K) = Arg
K−1

∏
n=0
〈ψθn+1 |ψθn〉 , (3.92)
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Figure 3.15: (a) Illustration of the BI ground-state properties. The ellipsoids
with thick black lines indicate the dimerized strong bonds with
larger effective tunnelling amplitudes, while thin lines indicate
the weak alternate bonds with smaller effective tunnelling am-
plitudes. The string order OS becomes non-zero (with OP = 0)
only when it is measured across blue to orange sites in the fig-
ure. In all other cases it vanishes, OS = 0 and OP 6= 0. The
entanglement spectrum is found to be degenerate in the bulk of
the chain when it is measured across the strong bonds, while it
is non-degenerate in weak bonds. (b) Entanglement spectrum
εn computed at the middle of the chain of NL = 60 for the
trivial and topological states. For trivial state the spectrum is
non-degenerate, while it is doubly degenerate for topological
states. (c) Entanglement gap (∆ε = ε1 − ε0) as a function of U1
and for fixed t/U = 0.05 across BSF-BI-SF phases. Different
curves refer to different system sizes. (d) Local Berry phases
γ(K) (3.92), measured across every bonds for trivial (left) and
topological (right) states. Here, we consider NL = 40 and K = 20.
In (b)-(d) other system parameters are the same in Fig. 3.14.
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where ψθn ’s are the ground states with θ0, θ1, ..., θK = θ0 on a loop in
[0, 2π]. Here, we consider the local Berry phase corresponding to a
bond by giving the local twist in tunnelling strength t→ teiθn only on
that particular bond, and take K = 20. The local Berry phases γ(K)’s
are displayed in Fig. 3.15(d) for the system size NL = 40. Similar to
the entanglement spectrum, we find γ(K) = π for the strong bonds,
while γ(K) = 0 on the weak bonds.

3.5.4 Conclusions

The BI phase of this model is a reentrant phase. It separates the SF
phase from the BSF phase, where correlated tunnelling is dominant.
We have provided numerical evidence that the emerging topology
is essentially characterized by the interplay between quantum fluc-
tuations and correlated tunnelling. Interactions are here, therefore,
essential for the onset of topology. Their global nature is at the basis
of the spontaneous symmetry breaking that accompanies the onset of
this phase and which induces an asymmetry between bonds. In this
respect, it is reminiscent of the Peierls’ instability of fermions in res-
onators [166], where the topology is associated with the spontaneous
breaking of Z2 symmetry. Differing from that case, where photon scat-
tering gives rise to a self-organized superlattice trapping the atoms,
in our model photon scattering interferes with quantum fluctuations.
Like in [166], gap and edge states can be measured in the emitted light
using pump-probe spectroscopy. The single-particle structure factor
may be directly accessible by the time-of-flight momenta distributions
[7] enabling the detection of insulator-superfluid phase transition. The
two combined measurements of the cavity output and of the structure
factor shall provide a clear distinction between the BI, SF and BSF
phases.

We observe that the global long-range interaction of this model
inhibits the formation of solitons. To conclude, in the last section we
have presented a new paradigm of topological states formation via
interference between single-particle dynamics and interaction induced
hopping.
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3.6 conclusions

In this chapter we have performed an extensive analysis of the ground-
state phase diagram of the Bose-Hubbard model with global inter-
action. This model describes the dynamics of existing experimental
setups coupling photons and ultracold atoms in optical lattice [43,
44]. We have analyzed the model for different geometries, leading to
different processes induced by the cavity mediated interaction. The
cavity mediated processes lead to density modulated, bond ordered
and topological non-trivial phases. Latter are due to a quantum in-
terference between the tunnelling originating from the kinetic energy
and the cavity induced tunnelling.
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3.7 appendices

Supplementary material of the one-dimensional DMRG study

In Sec. 3.5 we have focused on an immediate vicinity of φ = π/2. This
corresponds to the atoms being trapped at the nodes of the cavity
mode, where z vanishes. However, as φ starts to deviate from π/2 the
y term rapidly decreases and z term becomes significant (see Fig. 3.16).
Note that the quadratic form of Ĥ1D,BH

LR , Eq. (3.63), is responsible for

Figure 3.16: The variations of y and z as φ deviates from π/2. We consider
V0 = 4ER.

the long-range character of the couplings. Squaring D̂ leads then to
all-to-all density-density interactions, responsible for a spontaneous
formation of density wave phase for sufficient U1 [23]. For the case
considered in the last subsection, z ≈ 0 and B̂2 term leads to the all-to-
all long-range correlated tunnellings alternating in sign. In Fig. 3.17,
we plot the order parameters and the phase diagram in the vicinity
of φ = π/2 for t/U = 0.05. As φ starts to deviate from π/2, y starts
to diminish and z becomes increasingly larger (see right panel of
Fig. 3.16). As a result, BI phase is replaced by a more standard density
wave (DW) phase [23], when φ becomes sufficiently different from
π/2. In the DW phase ODW as well as OS and OP are both non-zero,
while the structure factor vanishes.

Details on the numerical implementation

This appendix provides insights on the numerical implementation of
extended Bose-Hubbard model. We here report details on the Density
matrix renormalization group algorithm and describe the local mean-
field algorithm.
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Figure 3.17: Phase diagrams in the (φ, U1/U)-plane for t/U = 0.05 for Ns =
60. The BI phase disappears when φ deviates from π/2 and
density wave phase appears. Here, we choose V0 to be 4ER so
that the values of y and z matches that of Fig. 3.16 (right panel).
Blue dashed lines are guide to the eyes to differentiate different
phases.
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Density matrix renormalization group

We use standard matrix product states (MPS) [63] based density matrix
renormalization group (DMRG) [62] method to find the ground state
and low-lying excited states of the system with open boundary condi-
tion, where we employ the global U(1) symmetry corresponding to
the conservation of the total number of particles. For that purpose, we
use ITensor C++ library (https://itensor.org) where the MPO for
the all connected long-range Hamiltonian can be constructed exactly
[177, 178] using AutoMPO class. The maximum number bosons (n0)
per site has been truncated to 6, which is justified as we only consider
average density to be ρ = 1/2.

We consider random entangled states, |ψini〉 = 1√
50 ∑49

i=0 |ψrand
i 〉,

where |ψrand
i 〉 are random product states with density ρ = 1/2, as our

initial states for DMRG algorithm. The maximum bond dimension of
MPS during standard two-site DMRG sweeps has been restricted to
χmax = 200. We verify the convergence of the DMRG algorithm by
checking the deviations in energy in successive DMRG sweeps. When
the energy deviation falls below 10−12, we conclude that the resulting
MPS is the ground state of the system.

To obtain low-lying excited states, we first shift the Hamiltonian by
a suitable weight factor multiplied with the projector on the previously
found state. To be precise, for finding the nth excited state |ψn〉, we
search for the ground state of the shifted Hamiltonian,

Ĥ′ = Ĥ + W
n−1

∑
m=0
|ψm〉 〈ψm| , (3.93)

where W should be guessed to be sufficiently larger than En − E0.

Local mean-field

In this Appendix, we describe the algorithm used to find the self-
consistent ground state of the local mean-field Hamiltonians (3.32).
We measure all physical parameters of the Hamiltonian in units of the
onsite interaction, µ̃ = µ/U0, Ũ∞ = U∞/U0, t̃ = zt/U0 and obtain the
Hamiltonians

H̃e = −t̃ϕo(a + a† − ϕe) +
1
2

n(n− 1)− Ũ∞θn +
Ũ∞

4
θ2 − µ̃n,

(3.94)

H̃o = −t̃ϕe(a + a† − ϕo) +
1
2

n(n− 1) + Ũ∞θn +
Ũ∞

4
θ2 − µ̃n,

(3.95)

with the same eigenenergies and -states as the Hamiltonians (3.32).
We fix the parameters of the Hamiltonian t̃, Ũ∞ and µ̃. The mean-field
order parameters ϕe, ϕo and θ are now the free variables. The problem
is formulated as follows. We first introduce the function

f (ϕe, ϕo, θ) = (〈a〉e, 〈a〉o, 〈n〉e − 〈n〉o), (3.96)

https://itensor.org
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where 〈·〉s denotes the single-site expectation value with respect to the
ground state of the Hamiltonian Hs(ϕe, ϕo, θ), for s ∈ {e, o}. Further,
we define F to be the set of fixed points of f ,

F = {(ϕe, ϕo, θ) : f (ϕe, ϕo, θ) = (ϕe, ϕo, θ)} . (3.97)

The goal is to find the self-consistent order parameters which minimize
the energy per site,

(ϕe, ϕo, θ) = argmin
(ϕe,ϕo,θ)∈F

{
1
2
(〈He〉e + 〈Ho〉o)

}
. (3.98)

The basic idea of the algorithm is that of fixed point iteration: Apply
f repeatedly to some random (ϕe, ϕo, θ), until applying it again does
not significantly change the input [26, 31].

We measure the distance between mean-field order parameters by
the infinity-norm and relax the criterion for (ϕe, ϕo, θ) to be a fixed-
point to∥∥(ϕe, ϕo, θ)− (ϕ′e, ϕ′o, θ′)

∥∥
∞ = max(|ϕe − ϕ′e|, |ϕo − ϕ′o|, |θ − θ′|) < ε, (3.99)

where (ϕ′e, ϕ′o, θ′) = f (ϕe, ϕo, θ), and ε is some predefined tolerance,
e. g. ε = 10−6.

This naïve algorithm has the following problems, however: First,
if the algorithm converges to some point, there is no guarantee that
this point minimizes the energy per site. Second, the algorithm is not
guaranteed to converge. Third, the algorithm sometimes converges
sublinearly, and thus extremely slowly.

We approach the first problem by taking a sufficient large number of
initial guesses.We always deterministically take the following 75 initial
guesses: (ϕe, ϕo, θ) ∈ ∪{n∈0,...,24}{(0, 0, n), (0.001, 0.002, n), (0.1, 0.2, n)}.
Additionally, we use the Mersenne Twister and Ranlux48 algorithms
to pseudorandomly sample initial guesses from the Cauchy(0, 1) dis-
tribution. We find that 50 random initial values are sufficient to find
the minimal energy and verify this by taking more initial guesses and
verifying that the energy does not decrease significantly.

The problem that the algorithm sometimes does not converge mani-
fests in the way of cycles of the form that f (ϕe, ϕo, θ) ≈ (−ϕe,−ϕo,−θ)

and f (−ϕe,−ϕo,−θ) ≈ (ϕe, ϕo, θ). We detect this by comparing not
only the mean-field order parameters, but also their absolute values. If
the difference of the absolute values is smaller than ε/10 for 1000 con-
secutive iterations, we re-run the algorithm with the absolute values of
the final order parameters (ϕ′e, ϕ′o, θ′) as an initial guess. To ensure that
we still find the minimal energy, we compare the energies of the result
of the initial run (ϕ′e, ϕ′o, θ′), with that of the second run, (ϕ′′e , ϕ′′o , θ′′).
For this comparison, we do not consider the eigenvalues of the two
Hamiltonians, but the expectation value of the updated Hamiltonian
with respect to the ground state of the Hamiltonian before the update.
If the energy of the second run is smaller, we accept this solution,
otherwise we reject it.
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Figure 3.18: Convergence of the numerical mean-field iterative algorithm as
a function of the number of iterations (or applications of f , as
given in equation (3.96). In both cases, the occupation is cut off
above nmax = 31, Ũ∞ = 0.26, µ̃ = 0.6, and the initial guess is
(ϕe, ϕo, θ) = (0.5, 0.6, 0.1). On the left, t̃ = 0.14 and the conver-
gence is linear. On the right, t̃ = 0.15 and the convergence is
sublinear. Both points are close to the MI-SF phase boundary.
The markers show the order parameters and the maximum dif-
ference δ of the order parameters from one iteration to the next.
The black lines are obtained by linear regression of an exponen-
tial function (left) and a power function (right) to the maximum
order parameter. The calculations took around 6 CPU-days on a
Intel Core i7-2600 CPU at a clock rate of ∼ 3.6 GHz.

Finally, we note that the algorithm converges to the set tolerance
within a few hundred or thousand iterations (i. e. applications of f )
in a large region of the phase diagram. In this case, the algorithm
converges linearly. However, in some cases it converges sublinearly
and extremely slowly. Figure 3.18 shows a comparison of two cases,
for two points in the phase diagram which are close to each other, and
identical initial guesses.

The algorithm converges that slow only at relatively few points in
the phase diagram. We have verified that the number of iterations
does not strongly influence the value of the resulting mean-field order
parameters, by comparing the results after 104 and 106 iterations.

For finding the ground state of the Hamiltonians (3.95), we trun-
cate the Hilbert space of each site taking the cutoff nmax = 31, leav-
ing us with two tridiagonal real symmetric 32× 32 matrices (in the
Fock basis), which we diagonalize numerically. We identify the cut-
off nmax = 31 by performing calculations also for nmax = 23 and
nmax = 63 and verifying that the results do not differ significantly.

Supersolidity and phase separation for fixed densities

In this appendix, we report details of the calculations for determining
the phase diagram for constant densities of Fig. 3.6.
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Figure 3.19: Density ρ as a function of the chemical potential µ for U∞/U0 =
0.87, zt/U0 = 0.66. The vertical bar marks a jump in the ρ(µ)
curve.

We obtain the order parameters for fixed densities by adjusting the
chemical potential such that the ground state has the target density.
More precisely, we perform a bisection algorithm starting at µ = −U0

which gives a density lower than the target density and µ = 3U0

which gives a density higher than the target density. In every step, the
ground state for the midpoint of the µ interval is calculated following
the procedure detailed in Appendix 3.7, its density is computed, and
the interval is halved such that at the lower (upper) point of the
interval, the density is smaller (larger) than the target density. We
repeat this up to twenty times until either the target density is reached
or we conclude that a solution is not possible. When the density is not
attained with the required precision, which we set to ερ = 10−4, we
name the corresponding point of the phase diagram phase separation,
following Ref. [28]. Otherwise, we determine the phase from the values
of the order parameters θ and ϕ.

For a density of ρ = 0.5, we find both a SS region and a region
of phase separation, unlike Refs. [23, 28]. Fig. 3.19 shows the ρ(µ)

curve for a PS point. Fig. 3.20 shows the ρ(µ) curve for a different
point, where the density ρ(µ ≈ −0.132) = 0.5. The same figure shows
the superfluid order parameter and the even-odd imbalance; for the
parameters where ρ(µ) = 0.5, the ground state is SS.

In Fig. 3.21, we show the ρ(µ) curve for a PS point for density ρ = 1,
which was not reported so far [23, 28]. As shown in fig. 3.6, we also
find a PS region for ρ = 1.5, which was not reported so far [23, 28].

In Fig. 3.22, we show the order parameters along cuts of the phase
diagram in figure 3.6, specifically the density ρ = 0.5. We show similar
plots for the density ρ = 1 in figure 3.23. We used plots similar to the
ones shown in Figs. 3.22 and 3.23 to determine all phase boundaries
of Fig. 3.6.
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Figure 3.20: (c) Density ρ as a function of the chemical potential µ for
U∞/U0 = 0.45, zt/U0 = 0.35. The horizontal bar marks the
density ρ = 0.5. (a) Superfluid order paramater ϕ(µ) for the
same parameters. (b) Even-odd imbalance |θ(µ)| for the same
parameters. The vertical bar marks ρ(µ) = 0.5.
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curve.
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phase diagram 3.6 with a constant density of ρ = 0.5. The vertical
dashed lines show the phase transition points. The phases are
indicated by the labels above the plots.
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O U T L O O K

In this thesis we theoretically investigated the ground-state phase dia-
grams of extended Bose-Hubbard models in the presence of long-range
interactions. In particular we studied the influence of long-range corre-
lated tunnelling on the quantum phase diagram. We hereby identified
and examined a parameter regime, where single-particle tunnelling
and correlated tunnelling interfere. In this regime we showed that
this quantum interference can dramatically change the ground state
properties, leading either to peculiar superfluid phases in the limit,
where otherwise the phase would be incompressible, or to incompress-
ible phases, where instead one would expect superfluidity. For global
interactions, moreover, we found that this interference gives rise to
non-trivial topological phases reminiscent of the ones of the celebrated
SSH-model.

Our theoretical investigation on the extended Bose-Hubbard mod-
els are important for present or future experiments simulating the
extended Bose-Hubbard models [43, 73].

Since the dynamics we reported do depend on interfering paths,
the expected phases will depend on the geometry of the lattice. We
expect different dynamics and topologies for instance in triangular
geometries, such as the one considered in Ref. [40]. We also envisage
novel dynamics emerging from the interplay of correlated tunnellings
generated from different interactions.
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