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Abstract: Peptide natural products displaying a wide range of biological activities have become
important drug candidates over the years. Microorganisms have been a powerful source of such
bioactive peptides, and Streptomyces have yielded many novel natural products thus far. In an effort to
uncover such new, meaningful compounds, the metabolome of Streptomyces acidiscabies was analyzed
thoroughly. Three new compounds, scabimycins A–C (1–3), were discovered, and their chemical
structures were elucidated by NMR spectroscopy. The relative and absolute configurations were
determined using ROESY NMR experiments and advanced Marfey’s method.
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1. Introduction

The identification of valuable agents is currently more urgent than ever. The rising
drug resistance among disease-causing pathogens is only one reason to drive natural
product research forward [1]. Agents for treating cancer, bacterial and viral infections or
even neurodegenerative diseases require a source of biologically active compounds, which
can lead to new treatment options [2–4]. In recent years a subgroup called antimicrobial
peptides (AMPs) became a new focus of researchers worldwide due to the often observed
enhanced activity against resistant pathogens and the potentially lower risk of resistance
development [5]. AMPs are small peptides that consist of 2–15 amino acids (short AMPs)
up to 150 amino acids and were found throughout most species (mammalians, insects,
amphibians, microorganisms) [6–8]. Their differences from conventional antibiotics in
terms of pharmacodynamics and their unspecific mode of action, which usually results
in slower resistance development, make them a potential alternative treatment option. It
was indeed shown over the years that several AMPs or combinations of AMPs/antibiotics
can effectively treat multi-drug resistant infections and were thus further developed for
clinical trials [9–11]. Of course, meanwhile, cases of resistance development are also
observed with AMPs, although mechanistically different from antibiotics, which gives
hope to have them as back-up when other treatments fail [12]. Through thorough studying
of pharmacodynamics or dose-response relationships of AMPs, rapid development of AMP
resistant strains can be avoided, which should be of major interest when studying new
drug candidates. Yu et al. (2018) and Rodríguez-Rojas (2021) et al. were able to confirm
that AMPs have a much steeper pharmacodynamic curve, meaning a higher killing rate
in a shorter time frame, and, on the other hand, a rapid increase in concentration while
administering AMPs avoids the upcoming of non-inherited resistance caused by tolerant
or persistent subpopulations [13,14].

Many AMPs have been isolated from bacteria, e.g., the very first described tyrocidins
or gramicidins isolated from Bacillus brevis [15] or the well-established nisins [16], and the
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detection of many more is ongoing. In bacteria, peptides are either ribosomally synthesized
and post-translationally modified (RiPPs) or synthesized by large multi-functional enzymes
called nonribosomal peptide synthetases (NRPSs) [17,18]. These enzymatic machineries
incorporate not only the 20 proteinogenic amino acids, but also many non conventionl
amino acids, which causes a huge diversity within peptide structures. Up to 500 different
non-proteinogenic amino acid building blocks have been identified so far, including the
so-called α,β-dehydroamino acids (dhAAs) [19]. These dhAAs bear a double bond between
the α- and the β-carbon of an amino acid and have been often found to be crucial for the
activity of a peptide. The physico-chemical properties of dhAAs influence the overall
peptide conformation and usually cause the structure to be more rigid, which in turn
can have an impact on interaction with targets and thus on the potent activity of certain
compounds [20]. Moreover, due to their α,β-double bond, these particular amino acids are
more prone to chemical reactions, such as E/Z isomerization, hydrogenation or Michael
addition, which is also often the reason why this amino acid contributes significantly to the
bioactivity of some compounds [21–23].

Herein, we report the isolation and identification of three new peptide compounds
that were found in Streptomyces acidiscabies (Lu19992) while screening novel actinomycetes
strains. Structural elucidation performed using 1D and 2D NMR spectroscopy revealed
that these three compounds are linear peptides consisting of acetyl or lactyl starting
units and 4–6 amino acids, including proline, alanine, leucine, allo-isoleucine and the
α,β-dehydroamino acid dehydrobutyrine (dhb). The relative configurations of the dhb
moieties were determined using ROESY NMR experiments. Furthermore, the absolute
configuration of amino acids was assigned by applying the advanced Marfey’s method.
Referring to their origin, those compounds were named scabimycins A–C (1–3).

2. Results

Isolation and Structural Elucidation of Scabimycins A–C
With the primary goal to discover yet unknown compounds in complex bacterial

extracts and subsequent structural identification and confirmation of their novelty, we
screened several actinomycetes strains from our library. By comparing exact masses and
UV spectra of produced metabolites with the natural product database “Dictionary of
Natural Products” (DNP) [24], we evaluated the novelty of each produced compound. In
the course of this, the strain Streptomyces acidiscabies Lu19992 caught our attention due
to the presence of three unknown metabolites (Figure 1). For further characterization of
these compounds, we aimed to isolate them and perform structural elucidation. Therefore,
S. acidiscabies was cultivated in 10 L DNPM medium (production medium consisting of
dextrin, bacto soytone, yeast extract and MOPS (4-morpholinepropanesulfonic acid)). The
three new compounds 1–3 were isolated by extracting the culture broth with butanol, and
subsequently purified using flash chromatography, size-exclusion chromatography and as
last step semi-preparative HPLC.

Scabimycin A (1) was isolated as a light-yellow solid with UV absorbance at 219 nm and
a molecular ion peak at m/z 621.3229 [M + H]+ determined by high-resolution electrospray
ionization mass spectrometry (HRESIMS) (Figure S1). The molecular formula C29H44N6O9,
determined from the exact mass, indicates 11 degrees of unsaturation. The 1H NMR spectra
acquired in DMSO-d6 revealed the presence of five protons attached to nitrogen (δH 9.75,
9.20, 9.06, 7.66, 7.63), eight methine protons (among them, one secondary alcohol and three
as part of double bonds; δH 6.47, 6.17, 5.52, 4.36, 4.33, 4.18, 3.98, 1.83), four methylenes (δH
3.60–3.40, 1.84–1.72, 2.14–1.77, 1.46–1.06) and seven methyl groups (δH 1.70, 2 × 1.64, 1.30,
1.19, 0.88, 0.83). Analysis of HSQC and HMBC spectra (no 13C spectra were acquired) addi-
tionally revealed ten quaternary carbons (seven carbonyls and three double bond carbons).
The presence of several NH groups and carbonyls and the typical proton/carbon chemical
shifts of amino acid α-CH groups (δH/C 4.18/58.5, 4.36/48.1, 4.33/55.9) suggest a peptide-like
structure consisting of at least three natural amino acids, proline, alanine and isoleucine
(Table S1 and Figures S4–S10). The cross peak of methine proton at δH 6.17 and methyl group
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at δH 1.70 in COSY spectrum and their HMBC correlations to the quaternary carbons C-10
(δC 130.7) and C-13 (δC 163.5) indicate an α,β-unsaturated amino acid, called dehydrobutyrine
(Dhb), of which two additional units were recognized in the NMR spectra. Dehydrobu-
tyrine can be present in the Z or E configuration; however, it is often found as the Z isomer.
ROESY correlations indicate the expected Z-configuration for all three dhbs (Figure 2 and
Figure S6). Further ROESY cross peaks between 3-NH/H-6 and rather weak signals between
the 3-NH/H-5 and 3-NH/H-7 groups of isoleucine (Figure S6) lead to the conclusion that
the allo-version of isoleucine is supposedly present. Finally, a lactyl moiety (Lac) could be
recognized by its characteristic chemical shifts (δC 174.5, δH 3.98/δC 66.9, δH 1.19/δC 20.6).
Careful interpretation of the HMBC correlations led to the peptide sequence Lac-allo-Ile-Dhb-
Dhb-Ala-Dhb-Pro-OH (Figure 2).

Figure 1. LC-MS chromatogram (RT 1–11 min out of overall 20 min analysis) of butanol extract
of S. acidiscabies Lu19992 cultivated in DNPM medium. The peaks representing newly identified
compounds are marked: (1) Scabimycin A, (2) Scabimycin B, (3) Scabimycin C.

The absolute configuration of scabimycin A was determined using advanced Marfey’s
method [25,26]. The compound was hydrolysed and derivatized with D- and L-FDLA and
subsequently subjected to LC-HRMS measurements. After careful analysis of retention
times and comparison with standards, allo-isoleucine, alanine and proline were found
to have a L-configuration (Table 1, Figure S19). Under the chosen HPLC conditions of
Marfey´s method, the L- and D-forms of isoleucine and allo-isoleucine are not clearly
distinguishable. Therefore, in addition to the ROESY measurement, we examined the
acidic Marfey hydrolysis product by means of 1H NMR and compared the spectrum with
those of pure L-isoleucine and L-allo-isoleucine (Figures S21 and S22). Comparison of the
relevant α-protons led without any doubt to the detection of L-allo isoleucine.

Table 1. Retention times of amino acids in scabimycins A and B after derivatization with D-FDLA
and L-FDLA.

Scabimycin A Scabimycin B

allo-Ile Ala Pro allo-Ile Leu
D-FDLA 23.2 min 20.1 min 19.8 min 23.2 min 23.3 min
L-FDLA 20.7 min 18.4 min 18.6 min 20.7 min 20.9 min
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Figure 2. (a) Chemical structures of small peptide NPs scabimycins A (1), B (2) and C (3) isolated from S. acidiscabies
(Lu19992); (b) Exemplary for scabimycin A: Key HMBC correlations that were used to assess the peptidic structure and
through-space correlations measured by ROESY experiment (Rotational Nuclear Overhauser Effect Spectroscopy) that led
to the Z-configuration of all dhbs in scabimycins.

Scabimycin B (2) was isolated as a pale-yellow solid with UV absorbance at 220 nm
and a molecular ion peak with m/z 536.3069 [M + H]+ determined by HRESIMS (Figure S2).
The molecular formula C26H41N5O7, determined from the exact mass, indicates 9 degrees
of unsaturation. Again, allo-isoleucine could be detected in the 1D and 2D NMR spectra
of scabimycin B. However, the Lac moiety was exchanged for an acetyl moiety, which
was concluded from the HMBC correlation of H-1 (δH 1.88/δC 22.0) to C-2 (δC 170.8) and
the N-HMBC correlation of H-1 to 2-NH (δN 125.0). It was found that the number and
type of amino acids in scabimycin B were slightly different from those found in the amino
acid sequence of scabimycin A (Table S1 and Figures S11–S14). Alanine was missing;
therefore, isoleucine was followed by three dhbs instead of two; this result is supported by
the respective HMBC correlations from 16-NH (dhb-3) to C-16 of the second dhb. Proline
was replaced by a terminal leucine, which could be identified by its characteristic shifts.
The HMBC correlation from 20-NH to carbonyl C-20 indicates a connection to the third
dhb (Figure 2). It was assumed that all the double bonds in dhb were in a Z configuration.
The absolute configuration was determined using advanced Marfey’s method as described
for scabimycin A. Both amino acids, the allo-isoleucine and leucine present in scabimycin B,
were found to have an L-configuration (Table 1, Figure S20).

Scabimycin C (3) was isolated as a yellow, oily compound with a molecular ion peak
at m/z 423.2227 [M + H]+ determined by HRESIMS (Figure S3); however, a fragment at
m/z 322.1755 [M + H]+ predominated. Comparison of the NMR data with the previously
identified scabimycin B indicated strong similarities. Only the signals of the C-terminal
leucine were missing from the spectrum of scabimycin C; this observation is consistent
with the identified mass. Thus, 3 is the leucine-truncated version of 2 (Figure 2). The
predominant mass of 322 da in the mass spectrum is identical to a fragment lacking a
dhb. It is assumed that the relative and absolute stereochemistry is the same as those of
scabimycin A and B.

In conclusion, all three new scabimycin natural products contain the allo-version of
isoleucine and in total three units of the non-proteinogenic amino acid dhb. However,
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in scabimycin B and C, allo-Ile and all three dhbs are connected in series whereas in
scabimycin A, the series is interrupted through insertion of alanine between the second
and the third dhb. Furthermore, in scabimycin A, proline is inserted as the last amino acid
in the sequence, whereas scabimycin B ends with leucine. Scabimycin C does not contain
any amino acid other than allo-Ile or dhb. Another peculiarity is that scabimycin A has the
different starting unit lactyl instead of the acetyl unit found in scabimycin derivatives B
and C. The differences in the amino acid sequence suggest a flexible extender unit choice of
employed enzymes during biosynthesis. To explain the differences in the amount and order
of amino acids and also the choice of the different starting units, it would be necessary to
take a closer look at the underlying biosynthetic machinery of these compounds.

Scabimycin A–C were tested on antimicrobial and antifungal activity. No activity was
observed against Gram-positive Bacillus subtilis or Gram-negative Pseudomonas putida and
E. coli strains. We also tested the ability of the newly purified compounds to inhibit 3CL
protease (SARS-CoV-2). However, none of the scabimycins inhibited the protease activity.

3. Discussion

It is more important than ever to find new natural products to expand the libraries
for the development of useful medicines. While screening new actinobacteria strains, a
streptomyces strain named Streptomyces acidiscabies Lu19992 attracted our attention due to
extensive production of three putatively unknown metabolites. These compounds were iso-
lated and characterized via NMR spectroscopy resulting in three novel short linear peptides
that harbor the rather unusual amino acid dhb. This amino acid arises from dehydration of
threonine, which occurs either through action of a dehydratase enzyme or via the elimi-
nation of phosphorylated residues [27]. Dhbs are often found in ribosomally synthesized
and post-translationally modified peptides (RiPPs), e.g., in thiopeptides such as cycloth-
iazomycin [28] or in depsipeptides such as tumescenamides [29], but also in peptides
synthesized by NRPS, e.g., in albopeptin or in the recently discovered malpinins [30,31].
The genome of S. acidiscabies harbors several NRPS and RiPPs biosynthetic gene clus-
ters, which became apparent after genome analysis using the antiSMASH online tool [32].
Detailed analysis of these clusters did not give a clear hint if any of them could be responsi-
ble for the production of scabimycin compounds. It would be necessary to perform gene
deletion or heterologous expression experiments to identify the correct biosynthetic gene
cluster and also to unveil the reasons for the choice of different starting units (lactyl/acetyl)
during biosynthesis and the different amino acid sequence of scabimycin A contrary to B
and C. Scabimycins were not found to possess antibacterial activity against representative
Gram-positive or Gram-negative bacteria tested in our laboratory. To certainly exclude
antibacterial activity of these compounds, a wider range of pathogenic bacteria needs to be
tested. For example the recently discovered tripeptide albopeptin, which contain also the
amino acid dhb, was found to be active against the clinical isolate of vancomycin-resistant
Enterococcus faecium K60–39 [30].

Additionally, new compounds should be tested more thoroughly, considering that
different conditions while testing antimicrobial activity have a major impact on susceptibil-
ity of tested bacteria. As it was nicely summarized in a review by Mercer et al. (2020), if
certain AMPs do not perform well under “standard” laboratory test conditions developed
for antibiotics, it does not mean that there is not potential activity. It has been proven that
AMPs show a lack or attenuation of antimicrobial activity when tested using conditions
for conventional antibiotic assays. Various factors can influence antimicrobial activity of
AMPs under in vitro testing, e.g., pH, temperature, buffer, nutrient concentrations, charge
effects, and growth phase to name a few. Thus, to test the real activity of new drug candi-
dates, standard procedures for antimicrobial susceptibility testing need to be adjusted [33].
For example, it was confirmed that pH regulation within bacterial population can vary
significantly due to the presence of persister or viable but non-culturable cells and thus
the response to antibiotic treatments [34,35]. Considering new insights into behavior of
bacterial subcultures will have an impact on how activity testing can be improved.
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The vast application possibilities of short peptides were just recently extensively re-
viewed by Apostolopoulos et al. (2021) [36]. Referring to this overview, scabimycins could
be used alternatively in many different areas. Short peptides are used, for example, in gene
delivery systems as alternative targeting moiety that lowers the risk of immunogenicity
or as cell penetrating peptides [37,38]. It is also worth noting that (short) peptides have a
high impact in the development of vaccines used for the treatment of various infections
and cancer [39,40]. Furthermore, peptides are currently also developed to treat neurode-
generative diseases [41]. Considering this wide range of pharmaceutical applications,
it becomes clear that peptides will play an important role in the future development of
valuable therapeutics. Thus, to ensure that we have a basis to work on, it is important to
continue identifying more interesting peptides with various length and types of incorpo-
rated amino acids. Bacteria are prolific sources of important peptide molecules, and the
continuous screening of interesting new strains can hopefully help to broaden the supply
of useful peptides. Herein, we showed that screening of a new streptomyces strain led to
the discovery of three new short peptides with an unusual amino acid sequence that can
be added to the pool of basic structures for the development of future medicines.

4. Materials and Methods
4.1. Cultivation, Metabolite Extraction and Dereplication

The S. acidiscabies strain was precultivated in a 100 mL flask filled with 10 mL of TSB
(tryptic soy broth 30 g/L) at 28 ◦C and 180 rpm on a rotary shaker for 24 h. For the main
culture, 50 mL of DNPM medium (dextrin 40 g/L, bacto soytone 7.5 g/L, yeast extract 5 g/L
and MOPS (4-morpholinepropanesulfonic acid) 21 g/L, pH 6.8) was inoculated in a 500 mL
flask with 1 mL of preculture and cultivated for 5 days at 28 ◦C and 180 rpm on a rotary shaker.
After cultivation, the biomass and culture liquid were extracted separately with a mixture
of acetone/methanol (1:1) and butanol, respectively. The solvent was evaporated until the
residue was dry, and then the residue was dissolved in 300 µL MeOH. High-resolution LC-MS
data were collected on a Dionex Ultimate 3000 UHPLC system (Thermo Fisher Scientific,
Waltham, MA, USA) with stationary phase Acquity UPLC BEH C18, 100 mm × 2.1 mm,
1.7 µm column (Waters Corporation, Milford, MA, USA) using a linear gradient from 5 % [B]
(acetonitrile + 0.1 % formic acid) against [A] (ddH2O + 0.1 % formic acid) to 95 % [B] and
coupled to a PDA detector operating at 200–600 nm. The coupled LTQ Orbitrap mass spec-
trometer (Thermo Fisher Scientific, Waltham, MA, USA) was operated at m/z 200–2000. Data
were analyzed with Thermo Xcalibur Version 3.0.63 software. Dereplication was performed
by comparing the exact masses with the Dictionary of Natural Products database version 10.0
(CRC Press, Boca Raton, FL, USA).

4.2. Isolation, Purification and Structure Elucidation

For isolation and purification of the targeted compounds, S. acidiscabies was cultivated
in 10 L of DNPM (100 × 500 mL flasks with 100 mL medium) as described above. After
cultivation, the culture liquid was separated from the biomass and extracted twice with
butanol. The solvent was removed under reduced pressure, and the residue was dissolved
in methanol and centrifuged. The pellet was discarded, and the supernatant was dried,
resulting in 16 g of raw material. The crude extract was dissolved in 20 mL methanol and
fractionated by flash chromatography (Isolera™ One, Biotage, Uppsala, Sweden) using a
Chromabond® Flash RS 330 C18 ec 360 g column (Macherey-Nagel, Düren, Germany). Two
runs (10 mL of extract for each) were performed using Milli-Q® (MQ) (Merck Millipore,
Burlington, MA, USA) -H2O [A] and methanol [B] as eluents. A linear gradient from
30–80% [B] over 5 column volumes (CV) was applied. Fractions were tested on LC-MS,
a Dionex Ultimate 3000 UPLC system using Acquity BEH C18, 50 × 2.1 mm, 1.7 µm dp
column (Waters Corporation, Milford, MA, USA) and mobile phase: ddH2O + 0.1% formic
acid [A]/acetonitrile + 0.1% formic acid [B], 5–95% [B] over 9 min, at flow rate 0.6 mL/min,
coupled to amaZON SL speed mass spectrometer (Bruker, Billerica, MA, USA) with ESI
source and mass range m/z 200–2000. Fractions containing the targeted compounds were
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pooled and further purified with size exclusion chromatography using Sephadex® LH 20
(Sigma Aldrich, Germany) as the stationary phase (50 cm column, filled with a 300 mL
volume of Sephadex in methanol) and methanol as the eluent. Fractions were collected
every 15 min with a speed of 1–2 drops per second. Every third fraction was analyzed
by LC-MS (Bruker amaZon speed, see above). The fractions containing scabimycins were
further purified by semipreparative high-performance liquid chromatography (HPLC)
using the following equipment: Agilent 1100 and 1260 Series HPLC (Agilent Technologies,
Santa Clara, CA, USA) equipped with a Nucleodur C18 HTEC column (250 × 4.6 mm,
5 µm, Macherey-Nagel, Düren, Germany) and a DAD detector operating at 200–600 nm. A
linear gradient used solvent [A] MQ-H2O + 0.1% formic acid against solvent [B] acetonitrile
+ 0.1 % formic acid starting from 35% [B] and increasing to 45% [B] over 20 min with a flow
rate of 4.5 mL/min at 45 ◦C.

NMR spectra were acquired in deuterated dimethyl sulfoxide (DMSO-d6) at 298 K
on a Bruker Avance III 700 or 500 MHz spectrometer, both equipped with a 5 mm TXI
cryoprobe. The NMR shifts were relative to the position of the residual solvent signal of
DMSO-d6 at δ 2.50 1H, or to the solvent itself at δ 39.5 (DMSO-d6) for 13C measurements.
NMR data were analysed using Topspin, version 3.5 pl7 (Bruker, Billerica, MA, USA) and
Spectrus Processor 2018.2.3 (ACD/Labs, Canada).

Scabimycin A (1). Lac-L-allo-Ile-Dhb-Dhb-L-Ala-Dhb-L-Pro-OH. Yellow oil; 5.0 mg;
[α]20

D − 34.4 (c 0.9 mg/mL, MeOH); UV (MeOH) λmax 219 nm; δH (700 MHz, DMSO-d6):
9.75 (s, NH-9), 9.20 (s, NH-20), 9.06 (s, NH-13), 7.66 (d, NH-3), 7.63 (d, NH-17), 6.47
(q, H-15), 6.17 (q, H-11), 5.52 (q, H-22), 4.36 (t, H-18), 4.33 (t, H-4), 4.18 (t, H-28), 3.98
(q, H-2), 3.60–3.40 (m, 2xH-25), 2.14–1.77 (m, 2xH-27), 1.84–1.72 (m, 2xH-26), 1.83 (m, H-5),
1.70 (d, 3xH-12), 2 × 1.64 (d, 3xH-16/3xH-23), 1.46–1.06 (m, 2xH-7), 1.30 (m, 3xH-19), 0.89
(t, 3xH-6), 0.84 (t, H-8); δC (700 MHz, DMSO-d6): 174.5 (C-3), 173.2 (C-29), 2 × 170.9 (C-9,
C-20), 165.3 (C-24), 163.6 (C-17), 163.5 (C-13), 131.4 (C-21), 130.7 (C-10), 129.9 (C-14), 129.1
(C-15), 124.8 (C-11), 120.2 (C-22), 66.9 (C-2), 58.5 (C-28), 55.9 (C-4), 48.5 (C-25), 48.1 (C-18),
36.8 (C-5), 28.8 (C-27), 24.8 (C-26), 23.9 (C-7), 20.6 (C-1), 17.0 (C-19), 15.2 (C-6), 2 × 12.4
(C-16, C-12), 11.8 (C-23), 10.9 (C-8); HRESIMS m/z 621.3229 [M + H]+ (calc. for C29H44N6O9 )
(meas. 621.3209 [M + H]+, calc. 621.3247 [M + H]+).

Scabimycin B (2). Ac-L-allo-Ile-Dhb-Dhb-Dhb-L-Leu-OH. Yellow oil; 1.8 mg; [α]20
D − 44.2

(c 2.65 mg/mL, MeOH); UV (MeOH) λmax 220 nm; δH (700 MHz, DMSO-d6): 9.63
(s, NH-8), 9.00 (s, NH-12), 8.67 (s, NH-16), 8.42 (s, NH-2), 7.42 (d, NH-20), 6.49 (q, H-18), 6.43
(q, H-10), 6.32 (q, H-14), 4.18 (m, H-21), 4.06 (m, H-3), 1.88 (s, 3xH-1), 1.77 (m, 3xH-4), 1.69
(d, 3xH-11), 1.68 (d, 3xH-15), 1.62 (m, 3xH-23), 1.61 (d, 3xH-19), 1.60–1.48 (m, 2xH-22);
1.55–1.19 (m, 2xH-6), 0.92 (d, H-5), 0.86 (t, H-7), 0.84 (d, 3xH-24), 0.81 (d, 3xH-25); δC (700
MHz, DMSO-d6): 173.6 (C-26), 171.3 (C-8), 170.8 (C-2), 163.7 (C-12), 163.0 (C-20), 162.6
(C-16), 130.3 (C-13), 2 × 129.8 (C-17/C-9), 129.4 (C-18), 128.3 (C-10), 127.5 (C-14), 58.2 (C-3),
50.5 (C-21), 39.8 (C-22); 34.8 (C-4), 24.5 (C-6), 23.7 (C-23), 22.6 (C-24), 22.0 (C-1), 20.9 (C-25),
15.1 (C-5), 3 × 12.6 (C-11/C-15/C-19), 10.7 (C-7); HRESIMS m/z 536.3069 [M + H]+ (calc.
for C26H41N5O7) (meas. 536.3068 [M + H]+, calc. 536.3084 [M + H]+).

Scabimycin C (3). Ac-L-allo-Ile-Dhb-Dhb-Dhb-OH. Yellow oil; 2.0 mg; [α]20
D − 60.7

(c 1.45 mg/mL, MeOH); UV (MeOH) 220 nm; δH (700 MHz, DMSO-d6): 9.61 (s, 8-NH), 8.78
(s, 12-NH), 8.44 (s, 16-NH), 8.23 (d, 2-NH), 6.49 (m, H-14), 6.48 (m, H-18), 6.36
(q, H-10), 4.06 (t, H-3), 1.86 (s, 3xH-1), 1.73 (m, H-4), 1.69 (d, 3xH-11), 2 × 1.63 (d, 3xH-
15/3xH-19), 1.52–1.18 (m, 2xH-6), 0.91 (d, H-5), 0.85 (t, 3xH-7); δC (700 MHz, DMSO-d6): 171.7
(C-8), 170.4 (C-2), 163.2 (C-12), 2 × 162.4 (C-20/C-16), 130.7 (C-9), 2 × 130.1 (C-18/C-14),
2 × 129.2 (C-13/C-17), 127.6 (C-10), 58.4 (C-3), 35.5 (C-4), 25.1 (C-6), 22.0 (C-1), 15.4 (C-5),
2 × 13.8 (C-15/C-19), 13.1 (C-11), 11.1 (C-7); HRESIMS m/z 423.2227 [M + H]+ (calc. for
C26H41N5O7) (meas. 423.2227 [M + H]+, calc. 423.2243 [M + H]+).

For determination of absolute configuration using advanced Marfey’s method, sam-
ples 1 (200 µg) and 2 (250 µg) were treated with 100 µL of a 6 M HCl solution and heated at
110 ◦C for 45 min. Subsequently, the solvent was removed completely under a nitrogen
stream at the same temperature within 20 min. The residues were dissolved in 110 µL H2O,
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and 50 µL was transferred into two new tubes for each sample. To each tube, 20 µL of 1 M
NaHCO3 was added to reach pH 9. For derivatization, the samples were treated with 20 µL
of 1% Marfey’s reagent (D-FDLA and L-FDLA, respectively) in acetone. Similarly, 20 µL of
1 M NaHCO3 and 20 µL of a 1% solution of L-FDLA were added to 50 µL of an aqueous
solution (50 mmol) of each present amino acid (D/L-proline, D/L-alanine, D/L-leucine,
L-isoleucine). All samples were then incubated for 1.5 h at 40 ◦C and 700 rpm. To stop
the reaction, 10 µL of 2 M HCl solution was added. Afterwards, 300 µL acetonitrile was
added, and the samples were subjected to LC-HRMS measurements. Samples were run
on an Acquity BEH C18, 100 × 2.1 mm, 1.7 µm dp column (Waters Corporation, Milford,
MA, USA) using eluent [A] ddH2O + 0.1% formic acid and [B] acetonitrile + 0.1% formic
acid. The following gradient was applied: 5–10% [B] (0–2 min), 10–25% [B] (2–15 min),
25–50% [B] (15–22 min), 50–95% [B] (22–24 min), 95 -95% [B] (24–26 min), and 95–5% [B]
(26–27 min). The column oven temperature was set to 45 ◦C, and a mass range from m/z
100–1000 was acquired.

Supplementary Materials: The following are available online: Table S1: NMR spectroscopic data of
Scabimycins A-C (1–3) in DMSO-d6, Figure S1: MS spectra of scabimycin A, showing the exact mass
m/z 621.3228 [M + H]+, Figure S2: MS spectra of scabimycin B, showing the exact mass m/z 536.3067
[M + H]+, Figure S3: MS spectra of scabimycin C, showing the exact mass without dehydrobutyrine
(as explained in the main text, this mass predominates) m/z 322.1753 [M + H]+, Figure S4: 1H NMR
spectrum of scabimycin A (DMSO-d6, 700 MHz), Figure S5: 1H-1H-Cosy spectrum of scabimycin A
(DMSO-d6, 700 MHz), Figure S6: ROESY spectrum of scabimycin A (DMSO-d6, 700 MHz), Figure S7:
HSQC spectrum of scabimycin A (DMSO-d6, 700 MHz), Figure S8: HMBC spectrum of scabimycin A
(DMSO-d6, 700 MHz), Figure S9: 15N-HSQC spectrum of scabimycin A (DMSO-d6, 700 MHz), Figure
S10: 15N-HMBC spectrum of scabimycin A (DMSO-d6, 700 MHz), Figure S11: 1H NMR spectrum of
scabimycin B (DMSO-d6, 700 MHz), Figure S12: 1H-1H-Cosy spectrum of scabimycin B (DMSO-d6,
700 MHz), Figure S13: HSQC spectrum of scabimycin B (DMSO-d6, 700 MHz), Figure S14: HMBC
spectrum of scabimycin B (DMSO-d6, 700 MHz), Figure S15: 1H NMR spectrum of scabimycin C
(DMSO-d6, 700 MHz), Figure S16: 1H-1H-Cosy spectrum of scabimycin C (DMSO-d6, 700 MHz),
Figure S17: HSQC spectrum of scabimycin B (DMSO-d6, 700 MHz), Figure S18: HMBC spectrum
of scabimycin C (DMSO-d6, 700 MHz), Figure S19: Section of LC-HRMS chromatogram (retention
time 17 to 28 min) of hydrolysed scabimycin A derivatized with D-FDLA and L-FDLA showing
single amino acids D/L-alanine (1/2), D/L-proline (3/4) and isoleucine (5) and leucine (1/3). To
compare the amino acids present in our probe, pure D/L-amino acids derivatized with L-FDLA
(D/L-alanine (1*/2*), D/L-proline (3*/4*) and L-isoleucine (5*)) are shown below. Comparison with
the standard amino acids and the later elution of the D-FDLA-derivatized amino acids lead us to the
assumption that in all cases, the amino acids possess an L-configuration. It needs to be mentioned
that from this test, it is not possible to decide whether L-allo-isoleucine or L-isolelucine is present.
The intense peak at RT 19.5 coincides with the mass of the underivatized FDLA, Figure S20: Section of
LC-HRMS chromatogram (retention time 17 to 28 min) of hydrolysed scabimycin B derivatized with
D-FDLA and L-FDLA showing single amino acids isoleucine (2) and leucine (1/3). To compare the
amino acids present in our probe, pure D/L-amino acids derivatized with L-FDLA (D-leucine (1*),
L-leucine (3*) and L-isoleucine (2*)) are shown below. Comparison with the standard amino acids
and the later elution of the D-FDLA-derivatized amino acids led us to the assumption that in both
cases, the amino acids have an L-configuration. It needs to be mentioned that from this test, it is not
possible to decide whether L-allo-isoleucine or L-isolelucine is present. The intense peak at RT 19.5
coincides with the mass of the underivatized FLDA, Figure S21: Determination of allo-isoleucine in
scabimycin A. Scabimycin A, allo-L-Ile and L-Ile were treated with HCl at 110 ◦C. 1H-NMR were
acquired in DMSO-d6 and compared. The chemical shifts of the α-protons of scabimycin A and
allo-L-Ile coincide, while the α-proton of L-Ile is shifted upfield, Figure S22: HSQC spectrum of
scabimycin A after treatment with HCl; this spectrum supports the findings for allo-isoleucine. The
13C chemical shift of the α-carbon was found to be approximately 55 ppm, as expected for isoleucine.
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