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Simple Summary: Extracellular vesicles (EVs) play an important role in the communication of
cancer cells with their local microenvironment and distant organ systems, in order to promote
a supportive tumor microenvironment, as well as to prepare premetastatic niches. In this study,
we aimed to analyze if the EVs secreted by urological cancer cells are taken up by specific organ
systems, depending on their origin. After the intravenous injection of fluorescence-labeled EVs from
benign and malignant prostate, kidney, and bladder cells in immunodeficient mice, their organs
were harvested and analyzed for the presence of fluorescent EVs. We could show that (i) EVs are
taken up not entirely organ-specifically but in different amounts, depending on their origin; (ii) EVs
from malignant cells are taken up more efficiently than EVs from benign cells; and (iii) EVs are taken
up very fast. These observations hint to an organotropism in EV uptake, which needs to be further
investigated.

Abstract: Extracellular vesicles (EVs) secreted by cancer cells have been shown to take a pivotal part
in the process of local and systemic tumor progression by promoting the formation of a supportive
local tumor microenvironment and preparing premetastatic niches in distant organ systems. In
this study, we analyzed the organ-specific uptake of EVs secreted by urological cancer cells using
an innovative in-vivo approach. EVs from benign and malignant prostate, kidney, and bladder
cells were isolated using ultracentrifugation, fluorescence-labeled and injected intravenously in
immunodeficient mice. After 12 or 24 h, the animals were sacrificed, their organs were harvested
and analyzed for the presence of EVs by high-resolution fluorescence microscopy. Across all entities,
EVs were taken up fast (12 h > 24 h), and EVs from malignant cells were taken up more efficiently
than EVs from benign cells. Though not entirely organ-specific, EVs were incorporated in different
amounts, depending on the entity (prostate: lung > liver > brain; kidney: brain > lung > liver; bladder:
lung > liver > brain). EV uptake in other organs than lung, liver, brain, and spleen was not observed.
Our results suggest a role of EVs in the formation of premetastatic niches and an organotropism in
EV uptake, which have to be examined in more detail in further studies.

Keywords: prostate cancer; bladder cancer; kidney cancer; extracellular vesicles; organotropism;
organ-specific; premetastatic niche; intercellular communication

1. Introduction

The observation that malignant tumors preferentially metastasize into specific organ
systems is called organotropism—a phenomenon known for a very long time in cancer
biology but still incompletely understood at the molecular level. For example, prostate
cancer affects the bone and lymph nodes in more or less all cases of metastatic disease, renal
cell carcinoma most often metastasizes into the bone and brain, and urothelial carcinoma
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of the urinary bladder tends to spread to lymph nodes, bone, and lungs [1–3]. One
long-standing and famous explanation of organotropism in cancer is the seed-and-soil
hypothesis by the British surgeon and oncologist Stephen Paget [4]. He compared tumor
cells circulating in the bloodstream to seeds that need to find a fertile soil, i.e., a supportive
microenvironment in distant organ systems that allows them to extravasate, survive, and
establish new metastatic foci. In more recent studies, distinct gene expression patterns, the
distribution of surface receptors and molecules secreted into the circulation by primary
tumor cells could be identified as contributors to organotropic metastatic spread [5–8].

In the last years, several elegant studies have been performed, which identified
extracellular vesicles (EVs) secreted by primary tumor cells as further important players in
the process of organotropic metastasis [9–11]. They contribute to this process, for example,
by inducing vascular leakiness, inhibiting anti-tumor immune response, educating stromal
cells, or altering the extracellular matrix in the so-called premetastatic niches in metastatic
target organs [12].

EVs are nanometer-sized particles, delimited by a lipid bilayer that are released into
the extracellular space by virtually all human cells and regulate specific biological functions
after binding to and being incorporated by recipient cells [13]. They play an important role
in intercellular communication over short and long distances and are a prerequisite for
multicellular organisms. The specific function in physiological or pathological processes
EVs exploit in their recipient cell is mainly dependent on their surface molecules and
their cargo, which includes proteins, lipids, mRNA, non-coding RNA (such as microRNA
(miRNA) and long non-coding RNA (lncRNA)), and DNA [14]. In the last decade, great
efforts have been made to unravel the numerous molecular processes that are regulated
or induced by EVs in health and disease. For instance, a huge body of evidence could
show that EVs are deeply involved in many processes important for the development
and progression of malignant tumors, including the urogenital system [15]. Aside from
their pivotal role for many aspects of tumor biology, such as local progression, metastasis,
therapy resistance, and immune escape, EVs have also been shown to be a very promising
source of biomarkers in urological cancers [14,16].

In this study, we aimed to gather first evidence for the contribution of tumor-secreted
extracellular vesicles to organotropic metastasis in urological malignancies by investigating
the organ-specific uptake of systemically injected EVs secreted by benign and malignant
human prostate, bladder, and kidney cells in immunodeficient mice. Furthermore, we
aimed to identify the EV-uptaking cell types in distinct organs.

2. Materials and Methods

Cell culture: The following cell lines were used in the experiments: HCV29 (normal
bladder urothelial cells), T24 (invasive urothelial carcinoma), BPH1 (benign prostate cell
line), VCaP (prostate cancer cell line), Hek-293 (benign kidney epithelial cell line), and 786-O
(clear cell renal cell carcinoma cell line). All cell lines were regularly tested for mycoplasma
infection and their identity was verified by STR profiling. All cells were cultured at
37 ◦C in a humidified environment with 5% CO2. HCV29, T24, and Hek-293 cells were
cultivated in DMEM medium (Thermo Fisher, Waltham, MA, USA), supplemented with
10% fetal bovine serum (FBS; Biochrom, Berlin, Germany). VCaP cells were cultivated
in phenol red free DMEM medium (Thermo Fisher, Waltham, MA, USA), supplemented
with 10% FBS. BPH1 cells were cultivated in RPMI medium (Thermo Fisher, Waltham, MA,
USA), supplemented with 20% FBS, 20 ng/mL testosterone (Selleckchem, Houston, TX,
USA), 5 µg/mL transferrin (Sigma-Aldrich, St. Louis, MO, USA), 5 ng/ml sodium selenite
(Sigma-Aldrich, St. Louis, MO, USA), and 5 µg/mL insulin (Sigma-Aldrich, St. Louis,
MO, USA). Additionally, 786-O cells were cultivated in a 1:1 mixture of DMEM and RPMI
medium, supplemented with 10% FBS.

EV isolation: EVs were isolated from the conditioned media of the above-mentioned cell
clines via ultracentrifugation. To generate conditioned medium, the cells were cultivated
in 300 cm2 flasks until a confluence of 40 to 50%. Then, the medium was removed, the
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cells were washed three times, and medium was supplemented with EV-depleted FBS,
instead of normal FBS. EV-depleted FBS was made by ultracentrifugation of normal FBS
(L-80 ultracentrifuge (Beckman Coulter, Brea, CA, USA); 200,000× g, 4 ◦C, 18 h), with
subsequent sterile filtration through a 0.22 µm filter (Merck Millipore, Burlington, MA,
USA). After 72 h of cultivation in this EV-depleted medium, the conditioned medium was
removed and underwent differential centrifugation to remove cellular fragments and larger
EV subpopulations, such as apoptotic bodies or microvesicles. To do so, the conditioned
medium was centrifuged at 2000× g for 20 min at 4 ◦C. After that, the supernatant was
centrifuged at 15,000× g for 30 min at 4 ◦C. The supernatant was then removed and used
for ultracentrifugation. Ultracentrifugation was performed using a Beckman Coulter L-80
ultracentrifuge with a type 70 Ti rotor (100,000× g, 90 min, 4 ◦C). After ultracentrifugation,
the EV-containing pellet was resuspended in phosphate-buffered saline or lysis buffer,
depending on the experiments EVs were used for.

EV characterization: EV characterization was performed by Western Blot analysis,
nanoparticle tracking analysis (NTA) and transmission electron microscopy, as previously
described [17]. Western Blot and NTA were performed for all cell lines, TEM was performed
exemplary for the cell lines 786-O and T24. The following antibodies were used for Western
Blot analysis: Alix (1:1000; Abcam, Cambridge, UK), Syntenin (1:1000; Abcam, Cambridge,
UK), CD9 (1:1000; Cell Signaling, Danvers, MA, USA), CD63 (1:1000; Santa Cruz, Dallas,
TA, USA), and CD81 (1:1000; Abcam, Cambridge, UK) as EV markers, as well as GM130
(1:1000; Santa Cruz, Dallas, TA, USA) as a cellular contamination marker; 5 µg protein
were loaded per lane and β-Actin (1:1000; Cell Signaling, Danvers, MA, USA) and GAPDH
(1:1000; Cell Signaling, Danvers, MA, USA) were used as loading control.

Fluorescence labeling of EVs: EVs isolated by ultracentrifugation were labeled with the
lipid-intercalating fluorescent dye PKH26 (red) using the PKH26 red cell linker kit (Sigma-
Aldrich, St. Louis, MO, USA), according to the manufacturer’s instructions. Briefly, EVs
were resuspended in 100 µL PBS after ultracentrifugation, and 500 µL Diluent C was added.
In another reaction tube, 500 µL Diluent C was mixed with 2 µL of PKH26 dye (1 mM). Then,
both solutions were pipetted together, mixed, and incubated on ice for 5 min. During this
incubation time, the solution was repeatedly, gently mixed. After the incubation time, the
staining reaction was stopped by the addition of 1ml EV-depleted FBS. To remove excessive
unbound dye, the fluorescence labeled EVs were again ultracentrifuged at 100,000× g for
90 min at 4 ◦C and resuspended in new PBS. These labeled EVs were stored at 4 ◦C and
used for intravenous injection in mice within 24 h.

Animals: For the animal experiments, male (for prostate cell lines) or female (for
bladder and kidney cell lines), 6–8 weeks old Balbc/nude mice (CAnN.Cg-Foxn1nu/Crl;
Charles River Laboratories, Sulzfeld, Germany) were used. The mice were kept in isolated
ventilated cages under specific pathogen-free conditions in a temperature- and humidity-
controlled, 12 h dark/light environment at the animal care facility of the institute for clinical
and experimental surgery at Saarland University. The animals had free access to tap water
and standard pellet food. Their health status was monitored daily. All experiments were
approved by the local governmental animal care committee (No. 28/2014 and 30/2015)
and conducted in accordance with the German legislation on the protection of animals and
the National Institutes of Health guide for the care and use of laboratory animals.

EV injection: A total of 20 µg of fluorescence labeled EVs diluted in 200 µL PBS was
injected per mouse and cell line via the retrobulbar route; 12 or 24 h after injection, the mice
were sacrificed and various organs (kidney, adrenals, spleen, liver, lung, skeletal muscle,
brain, urinary bladder, and prostate (in male animals only) were harvested for microscopic
examination (n = 2 for each cell line and time point). These organs were immediately stored
in liquid nitrogen until further processing. Two animals per time point (12 and 24 h) were
injected with PBS only as negative control.

Histology and fluorescence microscopy: Cryonconserved organs were cut into 4 µm
thin slices using a Leica 3050 cryostat (Leica, Wetzlar, Germany) and transferred onto
SuperFrost Plus slides (Thermo Fisher, Waltham, MA, USA). Afterwards, the tissue slices
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were washed with PBS (3 × 5 min) and incubated for one hour at room temperature
with Alexa488-labeled Phalloidin (1:1000; Thermo Fisher, Waltham, MA, USA) to label the
cytoskeleton/microtubules of the cells and get a better impression of the tissue architecture.
Then, the slides were washed with PBS again (3 × 5 min) and mounted with DAPI-
containing Vectashield® antifade mounting medium (Vector Laboratories, Burlingame, CA,
USA). Within 24 h, the stained tissue slides were analyzed for the presence and quantity
of red-fluorescent EVs using a Carl Zeiss LSM780 laser scanning microscope (Carl Zeiss
GmbH, Jena, Germany). To quantify the number of EV-positive cells, cells with positive
EV signals per high power field (HPF) were counted using the Cell-Profiler software, in
five representative HPFs per slide. For each time point, cell line and organ, two slides were
stained and examined by fluorescence microscopy.

Immunostaining: To identify uptaking cell types, several immunofluorescence stainings
were performed using the above-mentioned tissue slides. The slides were washed three
times in PBS and unspecific protein binding sites were blocked by incubation with a
blocking solution (PBS with 3% bovine serum albumin (Serva Electrophoresis GmbH,
Heidelberg, Germany) and 0.3% Triton X-100 (Sigma-Aldrich, St. Louis, MO, USA)) for
one hour at room temperature. Thereafter, the slides were incubated with the following
primary antibodies at 4 ◦C overnight: CD31 (1:100; Abcam, Cambridge, UK), EpCAM
(1:100; Cell Signaling Technology, Danvers, MA, USA), F4/80-Alexa488 (1:100; Thermo
Fisher, Waltham, MA, USA), Vimentin-Alexa488 (1:200; Cell Signaling Technology, Danvers,
MA, USA), and Sodium-Potassium-ATPase-Alexa488 (1:50; Thermo Fisher, Waltham, MA,
USA). In cases when the primary antibody was not directly fluorescence labeled (CD31 and
EpCAM), this was followed by PBS washing and secondary antibody incubation for two
hours at room temperature (anti-rabbit Alexa488; 1:1000; Thermo Fisher, Waltham, MA,
USA). After washing in PBS, the slides were mounted with DAPI-containing Vectashield®

antifade mounting medium (Vector Laboratories, Burlingame, CA, USA) and analyzed
within 24 h using a Car Zeiss LSM780 laser scanning microscope (Carl Zeiss GmbH, Jena,
Germany).

Software/Statistics: For the analysis of microscopic images, the Cell Profiler (Broad
Institute), ImageJ (NIH) and Zen 2012 Lite (Carl Zeiss, Jena, Germany) softwares were
used. Quantitative data are presented as medians +/− standard deviations.

3. Results
3.1. EV Characterization

The morphology and size of the isolated EVs was analyzed by transmission electron
microscopy. In all cases, a considerably pure fraction of small EVs with a size range
between 50 and 150 nm was isolated. Transmission electron microscopy showed the typical
ring-like structures delimited by a lipid bilayer. Figure 1 shows representative TEM images
of EVs secreted by the clear-cell renal cell carcinoma cell line 786-O; TEM images from the
urothelial carcinoma cell line T24 are shown in Figure S1.



Cancers 2021, 13, 4937 5 of 17Cancers 2021, 13, x FOR PEER REVIEW 5 of 17 
 

 

 

Figure 1. Transmission electron microscopy images of extracellular vesicles isolated by ultracentrif-

ugation. Here, representative pictures from 786-O EVs are shown. 

Furthermore, Western Blot analyses of all cell lines and their EVs and Nanoparticle 

Tracking Analyses of all EVs were performed (Figure 2A,B). In all cases, EV markers were 

strongly enriched in the EV fractions, compared to the cellular fractions, but with cell line 

specific patterns. The cellular contamination marker GM130 was expressed in the cellular 

fractions but absent in the EV fractions (Figure 2A). Nanoparticle Tracking Analyses 

showed small EVs in the expected size range with main peaks between 50 and 200 nm 

(Figure 2B). Of interest, while the mean particle size was around 150 nm and 200nm for 5 

of 6 cell lines, BPH1 EVs had a median particle size of only 91 nm (Table S1). Furthermore, 

malignant cell lines tended to have more peaks >100 nm than the benign cell lines. 

 

Figure 1. Transmission electron microscopy images of extracellular vesicles isolated by ultracentrifu-
gation. Here, representative pictures from 786-O EVs are shown.

Furthermore, Western Blot analyses of all cell lines and their EVs and Nanoparticle
Tracking Analyses of all EVs were performed (Figure 2A,B). In all cases, EV markers were
strongly enriched in the EV fractions, compared to the cellular fractions, but with cell
line specific patterns. The cellular contamination marker GM130 was expressed in the
cellular fractions but absent in the EV fractions (Figure 2A). Nanoparticle Tracking Analyses
showed small EVs in the expected size range with main peaks between 50 and 200 nm
(Figure 2B). Of interest, while the mean particle size was around 150 nm and 200nm for 5
of 6 cell lines, BPH1 EVs had a median particle size of only 91 nm (Table S1). Furthermore,
malignant cell lines tended to have more peaks >100 nm than the benign cell lines.
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786-O 168.8 +/- 3.7 4.94e+11 +/- 2.58e+10 1:100

HEK 166.3 +/- 4.1 2.56e+11 +/- 2.04e+10 1:100

T24 184.2 +/- 19.2 2.31e+11 +/- 5.26e+10 1:100

HCV29 156.9 +/- 0.6 1.55e+11 +/- 1.78e+10 1:100
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B

Figure 2. Western Blot (A) and Nanoparticle Tracking (B) analyses of all included cell lines and their
extracellular vesicles. Whole-cell lysates are shown in lane 1 to 6, lysates from EVs are shown in lanes
7 to 12. Each lane was loaded with 20 µg of total protein. GM130 served as cellular contamination
markers, Alix, CD9, CD63, CD81, and Syntenin as EV markers, GAPDH and β Actin as loading
controls. B Size distribution of EVs from 786-O, Hek-293, T24, HCV29, VCaP, and BPH-1 cells as
determined by Nanoparticle tracking analysis. The mean (black line) +/− 1 standard error of the
mean (red areas) are shown. The original blots can be found at Figure S22.

3.2. Organ-Specific Uptake of EVs

EV-uptake was detected in the brain, liver, lungs, and spleen to different amounts in all
cases, depending on the time point after injection and the cell line of origin. Representative
fluorescence microscopy images of uptaking organs with 786-O EVs are shown in Figure 3.
Representative images for the other five cell lines are shown in Figures S2–S6. In contrast,
no EV uptake could be observed in the kidneys, the adrenals, the urinary bladder, and
the prostate (Figure 4). One exception was the benign urothelial cell line HCV-29, in
which single EV-positive cells were seen 12 and 24 h after injection in the kidneys and
adrenals (Figure 5). In the control mice, in which only PBS was injected, no signs of red
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autofluorescence could be detected. Morphological/microanatomical changes in H&E
stained fresh-frozen sections of the retrieved organs were not seen upon EV uptake.
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Figure 3. EV-positive organs after intravenous injection of fluorescence labeled EVs. Representative
images of the brain, liver, lung, and spleen (rows 1–4) 12 and 24 h after intravenous EV injection
(columns 1 and 2, respectively) or after PBS injection (control; column 3) are shown. Here, slides
from animals who had 786-O EVs injected are shown as an example. The cytoskeleton of the cells is
marked in green (Phalloidin-Alexa488) and their nuclei are marked in blue (DAPI). EVs appear in
red (PKH26). Note that in the image of the brain at 24 h, EVs show as yellow dots, which is probably
caused by an intense green signal from Alexa488 at the same location as the red EV signals resulting
in a superposed yellow signal. This was probably due to a methodological issue in this individual
experiment. Resolution 1000-fold; scale bar = 10 µm.
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Figure 4. EV-negative organs after intravenous injection of fluorescence labeled EVs. Representative
images of the kidney (a), the adrenal (b), the urinary bladder (c) and the prostate (d) 12 h after
intravenous EV injection (from VCaP cells) are shown. The cytoskeleton of the cells is marked in
green (Phalloidin-Alexa488) and their nuclei are marked in blue (DAPI). EVs would appear in red
(PKH26). Resolution 200-fold; scale bar = 50 µm.
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Figure 5. Uptake of HCV-29 EVs in kidneys and adrenals. Representative images of the kidney
(a) and the adrenal (b) 12 h after i.v. injection of PKH26-labeled HCV-29 EVs. The cytoskeleton of
the cells is marked in green (Phalloidin-Alexa488) and their nuclei are marked in blue (DAPI). EVs
appear in red (PKH26). Resolution 200-fold; scale bar = 50 µm.
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While in the brain, liver, and spleen EVs showed as typical dot-like, distinct signals;
they often appeared as lines along the alveolar surface in the lungs, especially 24 h after
injection (Figure 3 row 3). Of note, across all entities, there were more EV positive cells 12 h
after injection, compared to 24 h after injection, and EVs from tumor cell lines were taken
up more efficiently than EVs from benign cell lines (Figures 6–8).

3.2.1. Prostate Cell Lines

Prostate EVs were detected in the lung, liver, brain, and spleen after intravenous
injection (in descending amount; Figure 6). EVs from the prostate cancer cell line VCaP were
taken up in significantly higher amounts than EVs from the benign prostate hyperplasia
cell line BPH1 in all organs except the spleen (after 12 and 24 h; p < 0.01 for liver and
lung after 12 and 24 h, p < 0.05 in the brain after 12 h) and the brain (after 24 h). For all
organs and cell lines, there were more EV signals 12 h after injection, compared to 24 h
after injection.
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Figure 6. Uptake of fluorescence labeled VCaP and BPH1 EVs after intravenous injection. The
number of EV-positive cells per high power field (HPF) is given for each organ and each time point.
Columns for VCaP EVs are depicted in blue, those for BPH1 EVs in green. Medians +/− standard
deviations are given. For each column, ten randomly chosen HPFs from two mice (five per mouse)
were analyzed. Significances were calculated using a 2way ANOVA test with Bonferroni correction.
* p < 0.05, ** p < 0.01, ns = not significant.

3.2.2. Kidney Cell Lines

EVs from the renal cell carcinoma cell line 786-0 and from the benign kindey epithelial
cell line Hek293 could be detected in the brain, lung, liver, and spleen after intravenous
injection. The majority of EVs were seen in the brain and lung, followed by the spleen and
the liver (Figure 7). As for the prostate cell lines, signals were stronger after 12 than after
24 h (p < 0.01 for brain, liver, and lung after 12 h and 24 h). EVs from the tumor cell line
were taken up more efficiently than EVs from the benign cell line.
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Figure 7. Uptake of fluorescence labeled 786-O and Hek293 EVs after intravenous injection. The
number of EV-positive cells per high power field (HPF) is given for each organ and each time point.
Columns for 786-O EVs are depicted in blue, those for Hek293 EVs in green. Medians +/− standard
deviations are given. For each column, ten randomly chosen HPFs from two mice (5 per mouse)
were analyzed. Significances were calculated using a 2way ANOVA test with Bonferroni correction.
** p < 0.01, ns = not significant.

3.2.3. Bladder Cell Lines

For the bladder cell lines T24 (invasive urothelial carcinoma) and HCV-29 (benign
urothelial cells), the strongest EVs signals appeared in the lung, followed by the liver, brain
and spleen (about same amount of EV-positive cells; Figure 8). Again, EV signals from
the tumor cell line were stronger than those from the benign cell line, especially in lung,
liver, and brain (p < 0.01 after 12 h and 24 h), and more EVs were detectable after 12 h
than after 24 h. One exception is the uptake of EVs in the brain after 24 h, were there were
significantly more signals for HCV29 EVs than for T24 EVs. In contrast to all other cell
lines, HCV-29 EVs were found in the kidneys and adrenals at very low numbers (Figure 5).

3.3. Uptaking Cell Types

We aimed to further elucidate which cell types were responsible for EV uptake and
where in these organs the EVs were located. Therefore, we performed immunofluorescence
staining with antibodies specifically identifying distinct cell types (EpCAM: epithelial cells;
Vimentin: fibroblasts; F4/80: macrophages; CD31: endothelial cells) or subcellular struc-
tures (Na-K-ATPase: cell membrane) and investigated the colocalization of their signals
with those of fluorescence labeled EVs. In the lung, colocalization of EVs with epithelial
cells and macrophages could be observed (Figure 9a,b). Of note, besides the superposed
yellow signals, there were still many red EV signals representing non-colocalized EVs.
Furthermore, EVs were found in close proximity to large bronchioli and vessels but seemed
not to be taken up by them, as there were no yellow signals indicating colocalization
(Figure S7). In the liver, EVs were found colocalized with macrophages (Figure 9c). In
contrast, a colocalization of EVs with epithelial cells, fibroblasts or endothelial cells was
not observed (Figure S8). For the brain, no colocalization with any of the analyzed cell
types could be detected. However, as in the lung, EVs seemed to be localized in close
proximity to larger vessels (Figure S9). The complete images off all colocalization studies
can be found in Figures S10–S21.
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Figure 8. Uptake of fluorescence labeled T24 and HCV-29 EVs after intravenous injection. The
number of EV-positive cells per high power field (HPF) is given for each organ and each time point.
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were analyzed. Significances were calculated using a 2way ANOVA test with Bonferroni correction.
** p < 0.01, ns = not significant.
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Figure 9. Analysis of EV-uptaking cell types in the lung (a,b) and the liver (c). Representative
fluorescence images of the lung (a,b) and the liver (c) 12 h after i.v. injection of PKH26-labeled VCaP
EVs with simultaneous staining of the epithelial cell marker EpCAM (a) and the macrophage marker
F4-80 (b,c). EpCAM and F4-80 are labeled green with the use of specific antibodies, EVs appear
in red, cell nuclei in blue. Yellow signals indicate a colocalization of EVs with the stained marker.
Resolution 1000-fold; scale bar = 10 µm.

4. Discussion

In this study, we investigated the organ-specific uptake of extracellular vesicles (EVs)
from benign and malignant prostate, bladder, and kidney cells after fluorescence labeling
and intravenous injection in immunodeficient mice. We observed that the EVs from all cell
lines were taken up in the brain, liver, lungs, and spleen in different amounts. This reflects
clinical metastatic patterns of prostate, bladder, and kidney cancer to some extent but not
in all points. For example, liver and lung metastases are a common finding in bladder and
kidney cancer patients; however, they are rarely observed in men affected with metastatic
prostate cancer. The metastatic potential of the three used malignant cell lines is known to
some degree from xenograft studies: orthotopic VCaP xenografts were shown to produce
lymph node, lung, and bone metastases [18,19]. Additionally, 786-O cells give rise to bone
and lung metastases when injected intravenously [20,21]. The urothelial carcinoma cell line
T24 shows locally-invasive growth when implanted into the bladder wall [22], under the
renal capsule [23] or subcutaneously [24,25]. However, the development of metastases was
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not reported in these studies. When injected into the tail vein, T24 cells produced multiple
lung or bone metastases [26,27]. Accordingly, there is some overlap when comparing the
metastatic pattern of these cell lines in xenograft models to the uptake pattern of EVs
observed in our study, especially with regard to the lungs. However, clearer results, with
more specific metastatic patterns, may be observed when cell lines with metastatic spread
into one specific organ system are used, such as the ones used in the pioneering work from
Hoshino et al. [9]. Unfortunately, such prostate, kidney, or bladder cancer cell lines with
specific metastatic patterns are not available to date. However, they may be established
in the future by the generation of new cell lines from, for example, lung metastases from
786-O cells and their repeated injection in mice, from which lung metastases are harvested
again for a new cell line and so on.

Across all cell lines and organs, EVs from malignant cell lines were taken up more
efficiently than EVs from benign cell lines, and the number of EV positive cells in target
organs was higher 12 h after intravenous injection than 24 h after intravenous injection.
This corresponds well with data from the literature, which showed that cancer-associated
EVs are taken up very efficiently by recipient cells, and their intracellular turnover is very
fast [13,28,29]. However, information on the exact intracellular fate of endocytosed EVs and
their content, as well as the time dimension of these processes, is still very limited [28,30,31].
Of note, one exception from the above-mentioned rule is the observation that after 24 EVs
from the benign urothelial cell line, HCV29 were taken up more efficiently than EVs from
the urothelial carcinoma cell line T24. In our opinion, this might be due to a methodological
issue. However, the experiment would have to be repeated to confirm this.

Of interest, EVs were not taken up by their organs of origin, i.e., VCaP EVs were not
taken up in the prostate, 786-O EVs were not taken up in the kidneys, and T24 EVs were not
taken up in the bladder. One might assume that EVs circulating in the bloodstream should
have a higher affinity towards the tissue type from which they were secreted. Analogously
to that—coming back to Paget´s seed and soil hypothesis—it could be hypothesized that
circulating tumor cells are preferentially taken up by their tissue of origin, as this might
provide the best soil for the seed to grow out. However, in fact, metastases in the same
organs of the primary tumor are only very rarely observed. While urothelial carcinoma of
the urinary bladder and prostate cancer are often multifocal, this can be regarded as a result
of field cancerization with the development of independent tumors, rather than intra-organ
metastases [32,33]. Hence, the above-described observation of lacking EV uptake in the
prostate, urinary bladder, and kidneys were not surprising for us.

Why were EVs taken up to different amounts in the examined organs, depending on
the cell line of origin? Several factors might influence the specific uptake of EVs by recipient
cells, which might play a more or less important role in the individual physiological or
pathological condition looked at. One explanation is the different distribution of surface
molecules on the membrane of extracellular vesicles, which are involved in receptor-
mediated uptake. Here, for example, integrins could be shown to be involved [9,12], as
were cytokines [34], CD47 [35], and surface glycans [36]. Apart from that, the size of the
EVs, the vascularization and microenvironment of the target organ, and the order in which
the single organs are passed by the injected EVs are other possible factors influencing their
uptake [29]. However, in our study, we saw no huge differences in particle size, except
from the cell line BPH1, whose EVs were only half as large as the ones from the other five
cell lines.

Regarding the investigation of uptaking cell types, we could identify macrophages
in the liver and macrophages, as well as epithelial cells in the lung, to be colocalized
with fluorescence labeled EVs. However, only a small fraction of EVs were taken up
by the examined cell types, as indicated by many distinct, red EV signals representing
non-colocalized EVs, alongside the yellow signals representing colocalization. In studies
with other tumor entities, the uptake of EVs by resident macrophages in the liver, termed
Kupffer cells, was also observed [9,11]. Furthermore, the uptake of EVs by epithelial cells
in the lung was also seen in a study on melanoma EVs by Liu et al. [37]. In the brain, we
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were not able to clearly identify a specific cell type responsible for the uptake of circulating
cancer EVs. Studies from other tumor entities suggest that here, EVs might be primarily
taken up by endothelial [38–40] or microglial [40,41] cells. In their recipient cells, EVs can
exert their tumorigenic biological function via multiple ways. EV uptake in endothelial
cells can induce vascular leakiness, in order to enable the subsequent extravasation of
circulating tumor cells [9,10,39]. Natural killer cells or T cells can be inhibited in their
anti-tumor immune response by cancer-secreted EVs [42,43]. Furthermore, fibroblasts and
other mesenchymal cells in distant organs modulate the extracellular matrix and produce
molecules, fostering the development of metastases upon the uptake of cancer-secreted
EVs [9,11,44,45]. However, an analysis of the molecular pathways, by which EVs from
urological cancer cells exert their tumor-promoting function, is beyond the scope of this
manuscript and will be the focus of future studies.

Strengths of our study include the parallel use of benign and malignant cell lines
from three tumor entities, which has never been performed before (to our knowledge).
Moreover, we analyzed different time points after EV injection (12 and 24 h) to get an
impression of the time frame of EV uptake and turnover in distant organs/premetastatic
niches. Additionally, we analyzed a high number of organs for potential EV uptake and
used high-resolution laser scanning microscopy for the examination of harvested organs
after intravenous EV injection.

However, our study is not without limitations. We injected fluorescence labeled EVs
intravenously via the retroorbital venous plexus. It cannot be excluded that the site of EV
injection has a significant impact on the pattern of their uptake in different organs. For
example, the observation of EV uptake in the brain in all cell lines in our study might
also be due to the fact that this was the first organ EVs traversed after their injection.
To analyze such a dependence of EV uptake on the site of injection, one would have to
systemically compare different injection sites—for example, retroorbital, tail vein, and
intracardiac—in the same experimental setting. As the bone is a frequent site of metastasis
in bladder, kidney, and most of all prostate cancer, it would have been desirable to also
analyze EV uptake in the bone. Unfortunately, this was technically not possible in our
study, as we performed immediate, fresh-frozen sections of the harvested organs 12 and
24 h after intravenous EV injection. To include the bone in these experiments, one would
have to first demineralize the bone for a longer time, which would probably disturb the
results of fluorescence microscopy. Of note, it was already shown by several groups that
primary tumor-secreted EVs might play an important role in the development of bone
metastases [10,46–48]. Hence, we aim to include the bone in future studies on the role
of EVs in organotropic metastasis, with the use of modified experimental protocols, as
proposed by other groups. The same is true for lymph nodes, which are also a frequent
site of metastases, especially in prostate and bladder cancer. Hence, it would have been
of great interest to include the lymph nodes in our study, as potential target organs for
intravenously injected EVs. However, due to their very small size, it was unfortunately not
possible to process them by frozen section for further analysis. Finally, we examined, in
detail, the organ-specific uptake of intravenously injected EVs from different urological
cell lines but did not analyze what molecular processes these EVs induce in their target
organs and whether their uptake leads to the formation of premetastatic niches and a
stimulation of metastatic spread. While the first point will require elaborate molecular
studies, the latter one could be elegantly addressed in our orthotopic xenograft models of
renal cell carcinoma and prostate cancer [18,49] (by simultaneous or sequential injection of
cancer cell-derived EVs and cancer cells themselves (either intravenously or orthotopic))
and will be a major focus of our future studies. Therefore, we also used immunodeficient
mice in our experiments. However, we cannot exclude that the organ-specific uptake of
intravenously injected EVs would be different in immunocompetent (for example, when
using a syngeneic mouse model of urological cancers).

Regardless of the above-mentioned limitations, our study provides the first hints
towards a role of cancer-associated EVs in organotropic metastasis in urological malignan-
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cies, which will be further elucidated future studies. In addition, a better understanding
of the role of EVs in metastasis could pave the way for novel EV-associated therapeutic
strategies [50–52].

5. Conclusions

In our mouse model, cancer-associated EVs were taken up not entirely organ-specifically,
but in different amounts, depending on the cell line of origin. EVs from tumor cells were
taken up more efficiently than EVs from benign cells and there was a clear time dependency,
with more EV signals detected 12 than 24 h after injection. These results suggest that EVs
are at least one of many factors involved in the process of organotropic metastasis. In
future studies, the functional role of cancer-associated EVs and the underlying molecular
mechanisms will be unraveled in more detail, in order to gain a better understanding of
the processes of organotropic metastasis and discover new therapeutic approaches.
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of EVs with blood vessels in the brain, Figure S10: Microscopic images of EVs in the lung with
parallel staining of fibroblasts, Figure S11: Microscopic images of EVs in the lung with parallel
staining of the cell membranes, Figure S12: Microscopic images of EVs in the lung with parallel
staining of epithelial cells, Figure S13: Microscopic images of EVs in the lung with parallel staining of
macrophages, Figure S14: Microscopic images of EVs in the lung with parallel staining of endothe-
lial cells, Figure S15: Microscopic images of EVs in the liver with parallel staining of fibroblasts,
Figure S16: Microscopic images of EVs in the liver with parallel staining of the cell membranes,
Figure S17: Microscopic images of EVs in the liver with parallel staining of macrophages, Figure S18:
Microscopic images of EVs in the liver with parallel staining of endothelial cells, Figure S19: Micro-
scopic images of EVs in the brain with parallel staining of fibroblasts, Figure S20: Microscopic images
of EVs in the brain with parallel staining of the cell membranes, Figure S21: Microscopic images of
EVs in the brain with parallel staining of endothelial cells, Figure S22: Original blots.

Author Contributions: Conceptualization, J.L. and K.J.; methodology, J.L., D.H., A.K. and P.Z.;
experiments, A.K., P.Z. and J.L.; writing—original draft preparation, J.L.; writing—review and
editing, K.J., M.S. (Matthias Saar) and M.S. (Michael Stöckle); supervision, K.J.; project administration,
J.L.; funding acquisition, J.L. and K.J. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Südwestdeutsche Gesellschaft für Urologie (SWDGU;
Forschungsförderung 2018).

Institutional Review Board Statement: All experiments were approved by the local governmental
animal care committee (No. 28/2014 and 30/2015) and conducted in accordance with the German
legislation on the protection of animals and the National Institutes of Health guide for the care and
use of laboratory animals.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in this article (and
supplementary material).

Acknowledgments: We thank Helga Angeli, Maria Link, and Michelle Ip for excellent technical
assistance. Furthermore, we would like to thank Elmar Krause (Saarland University, Institute for
Physiology) for his support with laser scanning microscopy.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/cancers13194937/s1
https://www.mdpi.com/article/10.3390/cancers13194937/s1


Cancers 2021, 13, 4937 15 of 17

References
1. Bianchi, M.; Sun, M.; Jeldres, C.; Shariat, S.F.; Trinh, Q.-D.; Briganti, A.; Tian, Z.; Schmitges, J.; Graefen, M.; Perrotte, P.;

et al. Distribution of metastatic sites in renal cell carcinoma: A population-based analysis. Ann. Oncol. 2011, 23,
973–980. [CrossRef] [PubMed]

2. Gandaglia, G.; Abdollah, F.; Schiffmann, J.; Trudeau, V.; Shariat, S.F.; Kim, S.P.; Perrotte, P.; Montorsi, F.; Briganti, A.;
Trinh, Q.-D.; et al. Distribution of metastatic sites in patients with prostate cancer: A population-based analysis. Prostate 2013, 74,
210–216. [CrossRef]

3. Bianchi, M.; Roghmann, F.; Becker, A.; Sukumar, S.; Briganti, A.; Menon, M.; Karakiewicz, P.I.; Sun, M.; Noldus, J.; Trinh, Q.-D.
Age-stratified distribution of metastatic sites in bladder cancer: A population-based analysis. Can. Urol. Assoc. J. 2014, 8,
148–158. [CrossRef]

4. Paget, S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 1989, 8, 98–101.
5. Weilbaecher, K.N.; Guise, T.A.; McCauley, L.K. Cancer to bone: A fatal attraction. Nat. Rev. Cancer 2011, 11, 411–425. [CrossRef]
6. Müller, A.; Homey, B.; Soto, H.; Ge, N.; Catron, D.; Buchanan, M.E.; McClanahan, T.; Murphy, E.R.; Yuan, W.; Wagner, S.; et al.

Involvement of chemokine receptors in breast cancer metastasis. Nature 2001, 410, 50–56. [CrossRef]
7. Zhou, W.; Fong, M.Y.; Min, Y.; Somlo, G.; Liu, L.; Palomares, M.R.; Yu, Y.; Chow, A.; O’Connor, S.T.F.; Chin, A.R.; et al.

Cancer-Secreted miR-105 Destroys Vascular Endothelial Barriers to Promote Metastasis. Cancer Cell 2014, 25, 501–515. [CrossRef]
8. Cox, T.R.; Rumney, R.; Schoof, E.M.; Perryman, L.; Høye, A.; Agrawal, A.; Bird, D.; Ab.Latif, N.B.; Forrest, H.; Evans, H.R.;

et al. The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase. Nature 2015, 522,
106–110. [CrossRef] [PubMed]

9. Hoshino, A.; Costa-Silva, B.; Shen, T.-L.; Rodrigues, G.; Hashimoto, A.; Mark, M.T.; Molina, H.; Kohsaka, S.; Di Giannatale, A.;
Ceder, S.; et al. Tumour exosome integrins determine organotropic metastasis. Nature 2015, 527, 329–335. [CrossRef]
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