
On Minimal Models and the
Termination of Flips for

Generalized Pairs

Dissertation

zur Erlangung des Grades des
Doktors der Naturwissenschaften

der Fakultät für Mathematik und Informatik
der Universität des Saarlandes

vorgelegt von

Nikolaos Tsakanikas

Saarbrücken, 2021





Tag des Kolloquiums: 10. September 2021

Dekan: Prof. Dr. Thomas Schuster

Prüfungsausschuss:

Vorsitzender: Prof. Dr. Moritz Weber
Berichterstatter: Prof. Dr. Vladimir Lazić
Berichterstatter: Prof. Dr. Andreas Höring
Berichterstatter: Prof. Dr. Paolo Cascini
Akademischer Mitarbeiter: Dr. Michael Hoff





To my family and friends,
who always believed in me.





Zusammenfassung

Das Ziel dieser Arbeit ist die Untersuchung zweier offener Probleme in der höher-
dimensionalen birationalen Geometrie, nämlich der Vermutung zur Existenz von mini-
malen Modellen und der Vermutung zur Terminierung von Flips. Wir arbeiten haupt-
sächlich mit verallgemeinerten Paaren und untersuchen demzufolge die entsprechenden
Versionen der oben genannten Vermutungen des Minimal-Modell-Programms in diesem
breiteren Rahmen. Der erste Teil der Dissertation widmet sich daher der Entwicklung
der grundlegenden Aspekte der Theorie der verallgemeinerten Paare.

Um die Vermutung zur Existenz von minimalen Modellen anzugehen, betrachten
wir zunächst bestimmte Zariski-Zerlegungen in höheren Dimensionen, die sogennanten
schwachen Zariski-Zerlegungen und NQC Nakayama-Zariski-Zerlegungen. Anschließend
beweisen wir, dass die Existenz von minimalen Modellen für log-kanonische verallge-
meinerte Paare aus der Existenz von minimalen Modellen für glatte Varietäten folgt,
und ferner, dass die Existenz von minimalen Modellen im Wesentlichen zur Existenz
dieser Zariski-Zerlegungen äquivalent ist.

Der letzte Teil dieser Arbeit befasst sich mit der Vermutung zur Terminierung von
Flips. Wir zeigen zuerst die Spezielle Terminierung für log-kanonische verallgemeinerte
Paare. Danach beweisen wir die Terminierung von Flips für log-kanonische verallgemei-
nerte Paare der Dimension 3 sowie für pseudo-effektive log-kanonische verallgemeinerte
Paare der Dimension 4.





Abstract

The aim of this thesis is the investigation of two open problems in higher-dimensional
birational geometry, namely the existence of minimal models conjecture and the ter-
mination of flips conjecture. We mainly work with generalized pairs and we therefore
study the corresponding versions of the aforementioned conjectures of the Minimal
Model Program in this wider context. Consequently, the first part of the thesis is
devoted to the development of the basic aspects of the theory of generalized pairs.

In order to deal with the existence of minimal models conjecture, we first study
particular Zariski decompositions in higher dimensions, the so-called weak Zariski de-
compositions and NQC Nakayama-Zariski decompositions. Subsequently, we prove
that the existence of minimal models for log canonical generalized pairs follows from
the existence of minimal models for smooth varieties, and we also demonstrate that the
existence of minimal models is essentially equivalent to the existence of those Zariski
decompositions.

The last part of this thesis focuses on the termination of flips conjecture. First,
we show the special termination for log canonical generalized pairs. Afterwards, we
establish the termination of flips for log canonical generalized pairs of dimension 3 as
well as for pseudo-effective log canonical generalized pairs of dimension 4.





Contents

Zusammenfassung i

Abstract iii

Introduction 1

Overview of the Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Notation and Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1 Preliminaries 9

1.1 Divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Auxiliary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Generalized Pairs and their Singularities 17

2.1 Definitions and Fundamental Properties . . . . . . . . . . . . . . . . . . 18

2.1.1 The Non-KLT Locus of a Generalized Pair . . . . . . . . . . . . 21

2.1.2 Computing and Comparing Discrepancies . . . . . . . . . . . . . 22

2.1.3 Basic Properties of DLT Generalized Pairs . . . . . . . . . . . . . 26

2.1.4 Modifications of a Generalized Pair . . . . . . . . . . . . . . . . . 30

2.2 Types of Models of a Generalized Pair . . . . . . . . . . . . . . . . . . . 32

2.2.1 Models in the Sense of Birkar-Shokurov . . . . . . . . . . . . . . 33

2.2.2 Models in the Usual Sense . . . . . . . . . . . . . . . . . . . . . . 37

2.2.3 Basic Properties of Minimal and Canonical Models . . . . . . . . 38

2.2.4 What are the Differences? . . . . . . . . . . . . . . . . . . . . . . 40

2.2.5 Existence of Mori Fiber Spaces . . . . . . . . . . . . . . . . . . . 41

2.3 The Minimal Model Program for Generalized Pairs . . . . . . . . . . . . 42

2.3.1 Divisorial Contractions and Flips . . . . . . . . . . . . . . . . . . 42

2.3.2 Running an MMP . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3.3 Two Key Applications . . . . . . . . . . . . . . . . . . . . . . . . 50

2.3.4 MMPs as Sequences of Flops . . . . . . . . . . . . . . . . . . . . 52

2.3.5 Lifting a Sequence of Ample Small Quasi-Flips . . . . . . . . . . 53



vi Contents

3 Zariski Decompositions 59
3.1 NQC Weak Zariski Decompositions . . . . . . . . . . . . . . . . . . . . . 59

3.1.1 Definition and Basic Properties . . . . . . . . . . . . . . . . . . . 60
3.1.2 On the Termination of MMPs with Scaling . . . . . . . . . . . . 63
3.1.3 On the Existence of NQC Weak Zariski Decompositions . . . . . 64

3.2 NQC Nakayama-Zariski Decompositions . . . . . . . . . . . . . . . . . . 70

4 On the Existence of Minimal Models for Log Canonical Generalized
Pairs 73
4.1 Minimal Models and NQC Weak Zariski Decompositions . . . . . . . . . 73

4.1.1 Corollaries in Dimensions 4 and 5 . . . . . . . . . . . . . . . . . 76
4.1.2 On the Termination of MMPs with Scaling - Revisited . . . . . . 77

4.2 Minimal Models and NQC Nakayama-Zariski Decompositions . . . . . . 78

5 Special Termination 79
5.1 What is Special Termination? . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 The Key Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3 Special Termination for Log Canonical Pairs . . . . . . . . . . . . . . . . 82
5.4 The Difficulty of an NQC DLT Generalized Pair Obtained by Adjunction 83
5.5 Special Termination for NQC Log Canonical Generalized Pairs . . . . . 86

6 On the Termination of Flips for Log Canonical Generalized Pairs 91
6.1 The Difficulty of an NQC Terminal Generalized Pair . . . . . . . . . . . 92
6.2 The Termination of Flips in Dimension 3 . . . . . . . . . . . . . . . . . 93
6.3 On the Termination of Flips for Pseudo-Effective NQC Log Canonical

Generalized Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Bibliography 107

Index 113



Introduction

Algebraic geometry studies comprehensively geometric objects that arise as solutions
of systems of polynomial equations in several variables, i.e., algebraic varieties. Its
ultimate goal is arguably the complete classification of these objects. More precisely,
the basic aim is to classify varieties up to birational equivalence, since many quantities
associated with a variety that capture its geometry are preserved when two varieties are
birationally equivalent, i.e., if they have isomorphic dense open subsets or, equivalently,
isomorphic function fields. Thus, the central idea towards this goal is to first search
for a “good” representative in each birational equivalence class, that is, for a variety
which has better geometric features in comparison to other members of the class, and
then to study thoroughly the good representatives of the class.

The Minimal Model Program, also known as Mori’s program and abbreviated as
MMP, lies at the core of the birational classification theory of (complex) algebraic
varieties. Indeed, one of its main objectives is to construct good representatives in
any fixed birational equivalence class, known as minimal models, by performing certain
well-understood birational operations, which are called divisorial contractions and flips.
The former contract subvarieties of codimension one, whereas the latter can be thought
of as surgery operations in higher codimension and first occur in dimension 3. In
short, the process is the following: given a projective variety X, one obtains via a
sequence of divisorial contractions and flips another projective variety Y , which is
birationally equivalent to X and which has better (global) geometric properties than X;
the resulting variety Y is regarded as a good representative of the birational equivalence
class of X. Hence, two fundamental problems in the MMP are, first, whether we can
always find some finite sequence of divisorial contractions and flips that ends with a
minimal model, as desired, and, second, whether every such sequence of maps is finite,
that is, whether the procedure in question always terminates.

The MMP in dimension 2 is nowadays considered classical, as it was established in
the early 20th century by the Italian school of algebraic geometry, and actually leads to
the birational classification of smooth projective surfaces. On the other hand, in order
to pursue the birational classification of higher-dimensional algebraic varieties, it turns
out that it does not suffice to deal only with varieties, but one actually needs to work
in a wider context instead, namely with pairs (X,B) consisting of a normal projective
variety X and a Weil Q-divisor B on X such that m(KX+B) is Cartier for some m ≥ 1,
where KX is the canonical divisor of X. Moreover, one is also forced to allow certain
“mild” singularities, e.g., Kawamata log terminal (klt) or log canonical singularities. In
this setting, the MMP in dimension 3 was successfully completed in the ’80s and ’90s
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with the contribution of many mathematicians, including Kawamata, Kollár, Miyaoka,
Mori, Reid and Shokurov. Additionally, the recent papers [BCHM10, CL12, CL13]
proved that the MMP works in arbitrary dimension for pairs of general type, that is,
for pairs (X,B) such that the global sections of OX

(
m(KX +B)

)
grow maximally for

sufficiently large and divisiblem ≥ 1. On the other hand, despite the fact that the MMP
has already experienced considerable progress in dimension 4, it remains widely open in
higher dimensions, at least in the non-general-type case. Finally, it is worth mentioning
that the MMP predicts that there are three “building blocks” in birational geometry,
namely, Fano, Calabi-Yau and canonically polarized varieties, whose canonical class is,
loosely speaking, negative, trivial and positive, respectively.

The purpose of this thesis is to address two central conjectures of the MMP, namely
the existence of minimal models conjecture and the termination of flips conjecture.
However, instead of working in the category of pairs that was mentioned above, we work
primarily in an even more general context and we consider generalized pairs, namely
couples of the form (X,B+M), where the divisorM has additional positivity properties;
for example, M is often a nef Q-divisor on X, but in general it is determined by some
nef Q-divisor that sits on some birational model of X. Accordingly, we investigate the
corresponding versions of the aforementioned conjectures in the context of generalized
pairs. The precise statements of those conjectures as well as the basic reasons why we
work with generalized pairs will be discussed below. Before we proceed, we highlight
that this thesis mainly comprizes our joint papers [LT19, LMT20, CT20] with Vladimir
Lazić, Joaqúın Moraga and Guodu Chen, but it also contains some new material, which
will be indicated in the text.

Generalized pairs were recently introduced by Birkar and Zhang in [BZ16], where
they studied the effectivity of Iitaka fibrations, although some special cases of this
concept had appeared earlier in works of Birkar [Bir12b] and Birkar and Hu [BH14].
They generalize the usual notion of pairs and the motivation for their definition stems
mainly from the so-called canonical bundle formula; roughly, generalized pairs model
the structure of the base of an lc-trivial fibration. Nevertheless, since their introduction,
generalized pairs have been implemented successfully in a wide variety of contexts, rang-
ing from the BAB conjecture [Bir16, Bir19] and Fujita’s spectrum conjecture [HL20a] to
the termination of flips conjecture [HM18, Mor18, LMT20, CT20] and the generalized
non-vanishing conjecture [Has20, HL20b, LP20a, LP20b]. It is therefore fair to say
that generalized pairs underlie many of the latest developments in birational geometry.
Besides, several recent papers, including [HL18, HM18, Mor18, LT19, CT20], indicate
that it is actually essential to understand their birational geometry, even if one is only
interested in problems involving varieties or pairs. For instance, the only proof that
exists to this day of the termination of flips for pseudo-effective log canonical pairs of
dimension 4 exploits crucially the machinery of generalized pairs.

Consequently, a significant part of this thesis is devoted to the development of
the basic aspects of the theory of generalized pairs, building on the previous works
[BZ16, HL18]. In the remainder of the thesis we deal with the following two open
problems of the MMP in the setting of generalized pairs.

Existence of Minimal Models Conjecture. Let (X,B + M) be a projective log
canonical generalized pair with data f : X ′ → X and M ′, where f ′ is a projective
birational morphism, M ′ is an R≥0-linear combination of nef Q-Cartier divisors on X ′

and M := f∗M
′. If KX + B +M is pseudo-effective, then (X,B +M) has a minimal

model.
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Termination of Flips Conjecture. Let (X,B + M) be a projective log canonical
generalized pair with data f : X ′ → X and M ′ as above. Then any sequence of flips
starting from (X,B +M) terminates.

Note that by taking M ′ = 0 (hence M = 0) and f = idX we recover the standard
versions of the above conjectures. Furthermore, generalized pairs as above, that is,
such that the nef R-divisor M ′ has this special form, are called NQC ; this acronym
stands for nef Q-Cartier combinations. The main reason why M ′ is required to be
NQC is that NQC generalized pairs behave better in proofs; this was first realized in
[BZ16, HL18].

Next, we present the main results of this thesis. However, for simplicity we do not
state them in their most general form (the same is also true for the formulation of
the above conjectures). We also illustrate in parallel the basic reasons why we work
primarily in the category of generalized pairs. Finally, to avoid confusion, we stress
that all varieties below are assumed to be projective.

First of all, as far as the existence of minimal models conjecture is concerned, our
main result is the following surprising reduction theorem.

Theorem. The existence of minimal models for smooth varieties of dimension n im-
plies the existence of minimal models for

(a) log canonical pairs of dimension n, and

(b) NQC log canonical generalized pairs of dimension n whose underlying variety is
Q-factorial klt.

Furthermore, assuming the existence of minimal models for smooth varieties of
dimension n − 1, we deduce the existence of minimal models for log canonical pairs
(X,B) such that KX +B is pseudo-effective, X is uniruled, i.e., it is covered by rational
curves, and dimX = n. Additionally, we obtain an analogous result for uniruled NQC
generalized pairs.

The theory of weak Zariski decompositions, initiated by Birkar in [Bir12b] and fur-
ther developed in [HL18, LT19], plays a fundamental role in the proof of the above
results. Roughly speaking, a generalized pair (X,B + M) admits a weak Zariski de-
composition if the pullback of (the R-Cartier divisor) KX +B +M to some resolution
of X can be expressed numerically as the sum of a nef and an effective divisor. In
this thesis we study the fundamental properties of NQC weak Zariski decompositions,
namely weak Zariski decompositions whose nef part is actually NQC. In particular, we
obtain the following result, which improves considerably on [HM18, Theorem 2].

Theorem. The existence of NQC weak Zariski decompositions for smooth varieties of
dimension n implies the existence of NQC weak Zariski decompositions for NQC log
canonical generalized pairs of dimension n.

For the proof of the above result we use crucially the theory of generalized pairs and
in particular the canonical bundle formula, which allows us to proceed by induction on
the dimension. Actually, this proof is an instance that demonstrates how powerful the
machinery of generalized pairs is. Besides, the methods developed for this proof have
been utilized by Lazić [Laz19] and Lazić and Meng [LM19], leading to considerable
progress towards two other central conjectures of the MMP, namely the non-vanishing
conjecture and the abundance conjecture.
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It is also worthwhile to mention that NQC weak Zariski decompositions appear
naturally and that their existence is closely related to the existence of minimal models.
Indeed, if a (generalized) pair has a minimal model, then it is quite easy to see that
it admits an NQC weak Zariski decomposition, hence conjecturally NQC weak Zariski
decompositions always exist. In addition, Birkar [Bir12b] proved that a log canonical
pair has a minimal model (albeit in a weaker sense than the usual one) if it admits an
NQC weak Zariski decomposition, assuming the termination of flips in lower dimen-
sions. Furthermore, Han and Li [HL18] showed that such an equivalence holds also in
the context of NQC generalized pairs under weaker assumptions in lower dimensions.
In this thesis, building on the papers [Bir12b, HL18], we refine the aforementioned
results, establishing the equivalence between the existence of minimal models and the
existence of NQC weak Zariski decompositions under mild assumptions in lower dimen-
sions, namely the existence of minimal models for smooth varieties. Besides, we also
discuss NQC Nakayama-Zariski decompositions and we obtain a similar and actually
unconditional equivalence, which generalizes a previous result of Birkar and Hu [BH14].

Now, we turn to the termination of flips conjecture. Our first step towards the
resolution of this problem is to deal with the so-called special termination, which,
roughly speaking, claims that in any sequence of flips with respect to a log canonical
pair the locus of curves contracted at a step avoids the locus of log canonical singularities
eventually. In this thesis we demonstrate that the termination of flips for klt pairs of
dimension at most n − 1 implies the special termination for log canonical pairs of
dimension n, and we also obtain an analogous statement concerning NQC generalized
pairs. Thus, we vastly generalize Fujino’s theorem on the special termination for dlt
pairs [Fuj07, Theorem 4.2.1]. Finally, we emphasize that our proof is the first complete
and rigorous proof of the special termination for log canonical pairs in the literature.

Next, by applying the special termination for NQC log canonical generalized pairs
and the ascending chain condition for log canonical thresholds [BZ16, Theorem 1.5], we
prove that the termination of flips for pseudo-effective NQC log canonical generalized
pairs which admit NQC weak Zariski decompositions follows from the termination of
flips in lower dimensions. We remark that this is an analog of Birkar’s termination
result [Bir07, Theorem 1.3] in the context of generalized pairs, and that it also extends
[HM18, Theorem 1] to the setting of R-divisors with a different approach.

Furthermore, we establish the following two special cases of the termination of flips
conjecture.

Theorem. The termination of flips conjecture holds for

(a) NQC log canonical generalized pairs of dimension 3, and

(b) pseudo-effective NQC log canonical generalized pairs of dimension 4.

For the proof of (a) we utilize several ideas from the earlier works [K+92, Kaw92, Sho96]
on the subject; in particular, the notion of difficulty plays a key role in our arguments.
To deduce (b), we combine (a) with our aforementioned inductive termination result,
using the fact that pseudo-effective NQC log canonical generalized pairs of dimension
4 admit NQC weak Zariski decompositions; note that this follows from our previous
results, since minimal models exist for terminal 4-folds by [KMM87, Theorem 5-1-15].

Last but not least, observe that the termination of flips for pseudo-effective log
canonical pairs of dimension 4 is a special case of (b) of the above theorem, cf. [Mor18].
As already mentioned above, currently there exists no proof of this statement that
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does not utilize the machinery of generalized pairs. This indicates that the category
of generalized pairs is the right setting in which one could tackle the termination of
flips conjecture. Besides, we anticipate that generalized pairs will play a central role in
future developments in birational geometry and the Minimal Model Program.

Overview of the Contents

The thesis is organized as follows.

In Chapter 1 we recall several basic definitions and we gather some general and
well-known results which do not fit elsewhere in the thesis, but which will be used in
the sequel. The primary purpose of this chapter is to render the thesis somewhat more
self-contained, but secondarily also to provide specific references for standard notions
in birational geometry.

In Chapter 2 we discuss exhaustively the basics of generalized pairs. We made a
serious effort to deliver an as complete picture of the theory of generalized pairs as
possible. On the one hand, as explained in the introduction, generalized pairs play
a fundamental role in the thesis, so this chapter should be regarded as its backbone.
On the other hand, the various definitions and results concerning generalized pairs
are currently scattered in several papers, including [BZ16, HL18, Bir19, Fil19, LT19,
CT20, Fil20, HL20b, HL20c, LMT20], and we thus regarded it as worthy to collect
and organize everything in a single chapter. There are, however, a few topics, such as
the canonical bundle formula or adjunction for generalized pairs, that are not treated
thoroughly in the thesis, yet we have provided appropriate references for such topics in
the text. Overall, Chapter 2 contains a plethora of information about generalized pairs
and could therefore serve as a general reference.

In Chapter 3 we study the basic properties of NQC weak Zariski decompositions
(in the relative setting) and NQC Nakayama-Zariski decompositions (in the absolute
setting). In particular, we prove that the existence of NQC weak Zariski decompositions
for smooth varieties implies the existence of NQC weak Zariski decompositions for NQC
log canonical generalized pairs.

In Chapter 4 we address the existence of minimal models conjecture using crucially
the theory of Zariski decompositions that was developed in Chapter 3. Among others,
we show that the existence of minimal models for smooth varieties implies the existence
of minimal models for NQC log canonical generalized pairs.

In Chapter 5 we discuss in detail the special termination for (NQC) log canonical
(generalized) pairs and we also present some immediate applications towards the termi-
nation of flips conjecture. In particular, we reduce the special termination for (NQC)
log canonical (generalized) pairs of dimension n to the termination of flips for (NQC)
klt (generalized) pairs of dimension at most n− 1.

In Chapter 6 we investigate the termination of flips conjecture using as one of
our basic tools the special termination for NQC log canonical generalized pairs that
we establish in Chapter 5. In particular, we verify this conjecture both for NQC log
canonical generalized pairs of dimension 3 and for pseudo-effective NQC log canonical
generalized pairs of dimension 4.

A more detailed description of the contents of each chapter is given at its beginning.
In particular, our sources for the material to be presented are always stated clearly
there. Moreover, in many cases even further details are provided at the beginning of
individual sections and subsections in order to guide the reader through the text.
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Notation and Conventions

We follow generally accepted notation and terminology, as in [Har77, KM98, Laz04].
Moreover, we denote by Z≥0 (resp. Q≥0, R≥0) the set of non-negative integers (resp.
rationals, reals) and we define analogously the sets Z≥1, R>0. Finally, we adopt the
following conventions:

• We work over the field C of complex numbers.

• A variety is an integral separated scheme of finite type over C.

• Given a variety X, by a point of X we mean a closed point x ∈ X. A point x ∈ X
is called general if it belongs to the complement of a proper algebraic subset of X,
and very general if it belongs to the complement of a countable union of proper
algebraic subsets of X. Furthermore, given a morphism f : X → Y of varieties
and a point y ∈ Y , the fiber f−1(y) of f over y is called general if y is a general
point of Y , and very general if y is a very general point of Y .

• By a divisor we understand a Weil divisor. Unless otherwise stated, we work with
R-divisors, i.e., with finite formal R-linear combinations D =

∑
diDi of distinct

prime divisors. Usually we also work with R-Cartier divisors, i.e., with finite
formal R-linear combinations of Cartier divisors.

• If F is a coherent sheaf on a variety X, then we denote by hi(X,F ) the dimension
of the i-th cohomology group H i(X,F ) of F , that is,

hi(X,F ) := dimCH
i(X,F ).

• A higher model of a normal variety X is a normal variety Y together with a
projective birational morphism f : Y → X.
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1

Preliminaries

In this chapter we collect the definitions of several basic notions that occur frequently
in the thesis and we establish some general results that will be used at certain points in
the next chapters of the thesis. In particular, we recall the various notions of positivity
of R-divisors in the relative setting, e.g., relative nefness, and the various types of
maps that one usually encounters in higher-dimensional birational geometry, e.g., small
contractions. The material covered below is taken from [KM98, Nak04, Cor07, HK10,
Kol13, Fuj17] and we refer to these works for further information.

1.1 Divisors

Given an R-divisor D =
∑
diDi, where the Di are distinct prime divisors, we set

D<1 :=
∑
i : di<1

diDi, D=1 :=
∑
i : di=1

Di, and bDc :=
∑
bdicDi,

where as usual for x ∈ R we denote by bxc the round-down of x, i.e., the greatest
integer ≤ x. In addition, given a set Γ ⊆ R, the notation D ∈ Γ (used in Section 6.2)
means that the coefficients di of D belong to the set Γ. In particular, we say that D is a
boundary R-divisor or simply a boundary if D ∈ [0, 1]. In this case we use the notation
D=1 and bDc interchangeably.

Definition 1.1. Let π : X → Z be a projective morphism of normal varieties. Two
R-divisors D1 and D2 on X are said to be R-linearly equivalent over Z, denoted by
D1 ∼R,Z D2, if there is an R-Cartier R-divisor B on Z such that D1 ∼R D2 + π∗B.

Definition 1.2. Let π : X → Z be a projective morphism of normal varieties and let
D be an R-divisor on X.

(a) The R-linear system associated with D over Z is defined as

|D/Z|R := {G ≥ 0 | G ∼R,Z D}.

(b) The stable base locus of D over Z is defined as

B(D/Z) :=
⋂

E∈|D/Z|R

SuppE.
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Definition 1.3. Let π : X → Z be a projective morphism of normal varieties. Two
R-Cartier R-divisors D1 and D2 on X are said to be numerically equivalent over Z,
denoted by D1 ≡Z D2, if D1 · C = D2 · C for any curve C contained in a fiber of π.

Let π : X → Z be a projective morphism of normal varieties. We denote by
N1(X/Z) the R-vector space of numerical equivalence classes over Z of R-Cartier R-
divisors on X, that is, N1(X/Z) := (Pic(X)/ ≡Z) ⊗Z R, where Pic(X) is the Picard
group of X. Note that N1(X/Z) is a finite-dimensional R-vector space, its dimension
is denoted by ρ(X/Z) and is called the relative Picard number of X over Z. Moreover,
N1(X/Z) is dual to the R-vector space N1(X/Z) generated by numerical equivalence
classes of integral curves on X which are mapped to points on Z by π, see [KM98,
Example 2.16] and [Fuj17, Section 2.2]. In particular, we have

ρ(X/Z) = dimRN
1(X/Z) = dimRN1(X/Z).

Finally, the Kleiman-Mori cone of π is denoted by NE(X/Z) and is defined as the
closed convex cone in N1(X/Z) generated by integral curves on X which are mapped
to points on Z by π.

Notions of Positivity in the Relative Setting

Definition 1.4. Let π : X → Z be a projective morphism of normal varieties. An
R-Cartier R-divisor D on X is called:

(a) ample over Z or π-ample if it is ample on every fiber of π,

(b) semi-ample over Z or π-semi-ample if there exists a morphism f : X → Y over Z
such that D ∼R,Z f

∗A, where A is a π-ample R-Cartier divisor on Y ,

(c) nef over Z or π-nef if it is nef on every fiber of π, i.e., D · C ≥ 0 for any curve
C ⊆ X such that π(C) is a point,

(d) big over Z or π-big if it is big on a very general fiber of π,

(e) pseudo-effective over Z or π-pseudo-effective if it is pseudo-effective on a very
general fiber of π.

Remark 1.5. Let π : X → Z be a projective morphism of normal varieties.

(1) An R-Cartier R-divisor A on X is ample over Z if and only if A =
∑
αiAi, where

αi ∈ R>0 and Ai is a π-ample Cartier divisor on X for every i.

(2) An R-Cartier R-divisor S on X is semi-ample over Z if and only if S =
∑
αiSi,

where αi ∈ R>0 and Si is a π-semi-ample Cartier divisor on X for every i.

(3) An R-Cartier R-divisor B on X is big over Z if and only if B ∼R,Z A + E, where
A is a π-ample divisor on X and E is an effective R-divisor on X.

(4) An R-Cartier R-divisor P on X is pseudo-effective over Z if and only if P + A is
big over Z for any π-ample divisor A on X.

Definition 1.6. Let π : X → Z be a projective morphism of normal varieties. An
R-Cartier R-divisor P on X is called NQC (over Z) if it is an R≥0-linear combination
of Q-Cartier divisors on X which are nef over Z. The acronym NQC stands for nef
Q-Cartier combinations.
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Definition 1.7. Let π : X → Z be a projective morphism of normal varieties.

(a) The movable cone of π is denoted by Mov(X/Z) and is defined as the closed convex
cone in N1(X/Z) generated by Cartier divisors M on X such that π∗OX(M) 6= 0
and the cokernel of the natural homomorphism π∗π∗OX(M)→ OX(M) has support
of codimension ≥ 2.

(b) An R-Cartier R-divisor M on X is called movable over Z or π-movable if the
numerical equivalence class over Z of M belongs to Mov(X/Z).

Example 1.8.

(1) Let X be a normal projective variety. Let M ≥ 0 be a Cartier divisor on X such
that codimX B(M) ≥ 2, i.e., there exists an integer m ≥ 1 such that the linear
system |mM | is fixed-part-free. Then M is a movable divisor on X.

(2) If D is a pseudo-effective R-divisor on a smooth projective variety X and if D =
Pσ(D)+Nσ(D) is the Nakayama-Zariski decomposition of D (see Section 3.2), then
Pσ(D) is movable.

The Canonical Class

Definition 1.9. Let X be a normal variety of dimension n. A canonical divisor on X
is a Weil divisor KX on X such that OXreg

(
KX |Xreg

) ∼= ωXreg :=
∧n Ω1

Xreg
, where Xreg

is the smooth locus of X.

Note that KX is well-defined up to linear equivalence, since codimX (X \Xreg) ≥ 2.
Nevertheless, it is often called the canonical divisor of X.

Iitaka Dimension

Let X be a normal projective variety and let D be an R-Cartier R-divisor on X.
We denote by κ(X,D) the Iitaka dimension of D. For the definition and the various
properties of the Iitaka dimension we refer to [Nak04, Chapter II, Section 3.b] and
[Fuj17, Section 2.5].

Numerical Dimension

Definition 1.10. Let X be a normal projective variety and let D be an R-Cartier
R-divisor on X. We define the numerical dimension ν(X,D) of D as follows:

(a) Assume that D is pseudo-effective.

• If A is a Cartier divisor on X and we have H0
(
X,OX

(
bmDc+A

))
6= 0 for

infinitely many m ∈ N, then we set

σ(D;A) := max

{
k ∈ N

∣∣∣∣ lim sup
m→∞

h0
(
X,OX

(
bmDc+A

))
mk

> 0

}
.

• If A is a Cartier divisor on X and we have H0
(
X,OX

(
bmDc+A

))
6= 0 only

for finitely many m ∈ N, then we set σ(D;A) := −∞.
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Now, we define

ν(X,D) := max
{
σ(D;A) | A is a Cartier divisor on X

}
.

(b) Assume that D is not pseudo-effective. Then we set ν(X,D) := −∞.

Note that ν(X,D) ≤ dimX. In addition, if D is pseudo-effective, then ν(X,D) ≥ 0,
see [Nak04, Remark V.2.6(5)]. For the various properties of the numerical dimension we
refer to [Kaw85, Nak04, Leh13, Fuj17, LP20a]. Finally, we remark that the numerical
dimension of D is often denoted by κσ(X,D) instead.

Exceptional Divisors

Definition 1.11. Let π : X → Z be a projective morphism of normal varieties. An
R-divisor E on X is called exceptional over Z or π-exceptional if

codimZ π
(

Supp(E)
)
≥ 2.

Note that if π : X → Z is a projective birational morphism of normal varieties, then
every π-exceptional prime divisor is contained in the exceptional locus Exc(π) of π.

Divisorial Valuations

Definition 1.12. Let X be a normal variety. A discrete valuation v of the function
field C(X) of X is called divisorial if there exist a higher model f : Y → X of X and a
prime divisor E on Y such that v = multE , i.e., v(ϕ) = multE(ϕ) is the order (of zeros
or poles) of a rational function ϕ ∈ C(X)∗ along E. The center of v on X is defined as
cX(v) := f(E) ⊆ X. If, moreover, codimX

(
cX(v)

)
≥ 2, then the divisorial valuation v

is called exceptional .

It is customary to abuse notation and identify a divisorial valuation v = multE
of C(X) with (a particular choice of a prime divisor) E and say instead that E is
a divisorial valuation over X with center cX(E) on X, see [KM98, Remark 2.23].
We will use exclusively this terminology in the thesis and we will often encounter
exceptional divisorial valuations E over X, i.e., divisorial valuations E over X such
that codimX

(
cX(E)

)
≥ 2.

Lastly, note that divisorial valuations can be reached by a finite sequence of blow-
ups (by repeatedly blowing-up their centers), see [KM98, Lemma 2.45].

1.2 Maps

Definition 1.13. Let X be a normal variety.

(a) A resolution of X is a higher model f : Y → X of X such that Y is smooth.

(b) A log resolution of (X,D), where D is a Weil divisor on X, is a resolution f : Y → X
of X such that the exceptional locus Exc(f) of f has pure codimension one and
Supp(f−1∗ D)∪Exc(f) is an SNC divisor , i.e., its irreducible components are smooth
and intersect transversally. The acronym SNC stands for simple normal crossings.
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Recall that the existence of log resolutions was established by Hironaka, see [Kol13,
Theorem 10.45(1)]. We will sometimes use implicitly a strengthening of Hironaka’s
theorem on the resolution of singularities due to Szabó [Sza94], namely, the existence
of a log resolution of (X,D) which is an isomorphism over the locus where X is smooth
and D is SNC, see [Kol13, Theorem 10.45(2)]. Furthermore, in Section 6.2 we will also
use the existence of the minimal resolution of a surface, see [Mat02, Theorem 4-6-2]
and [Kol13, Theorem 2.25].

Definition 1.14. Let X and Y be normal varieties.

(a) A projective surjective morphism f : X → Y with connected fibers is called a
fibration.

(b) A birational map ϕ : X 99K Y whose inverse ϕ−1 : Y 99K X does not contract any
divisors is called a birational contraction.

(c) Let ϕ : X 99K Y be a birational map. If both ϕ and ϕ−1 are birational contractions,
then ϕ is called a small map or an isomorphism in codimension one.

(d) Let D be an R-Cartier R-divisor on X, let ϕ : X 99K Y be a birational contraction,
and assume that ϕ∗D is R-Cartier. The map ϕ is called D-non-positive (resp.
D-negative) if there exists a resolution of indeterminacies of ϕ

W

X Y

p q

ϕ

such that W is smooth and

p∗D ∼R q
∗ (ϕ∗D) + E,

where E is an effective q-exceptional R-divisor (resp. E is an effective q-exceptional
R-divisor whose support contains the strict transform of every ϕ-exceptional prime
divisor).

Example 1.15. Let f : X → Y be a projective birational morphism of varieties, and
assume that Y is normal. It follows from [Har77, Corollary III.11.4] that f is a fibration.
Moreover, it holds that codimY Exc(f−1) ≥ 2, hence f is also a birational contraction,
see [Deb01, Paragraph 1.40].

1.3 Auxiliary Results

The next result is a version of the so-called Zariski’s main theorem. It will be used
several times (implicitly or explicitly) in the thesis.

Lemma 1.16. Let f : X → Y be a finite birational morphism of varieties, and assume
that Y is normal. Then f is an isomorphism.

Proof. By the proof of [Har77, Corollary III.11.4] we see that f∗OX = OY , that is,
the morphism of sheaves f ] : OY → f∗OX is an isomorphism. It follows now from
[Har77, Corollary III.11.3] that f has connected fibers, and since f is quasi-finite by
assumption, we infer that f is bijective. Moreover, f is closed by assumption. But
a continuous, bijective and closed map is a homeomorphism. Hence, the morphism
(f, f ]) of varieties is an isomorphism.
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Using the above lemma, we deduce readily the following well-known result in the
case of surfaces, which shows in particular that there are no flipping contractions in
dimension 2. We refer to Section 2.3 for more information.

Corollary 1.17. Let f : X → Y be a projective birational morphism between varieties
of dimension 2, and assume that Y is normal. If f is not an isomorphism, then

codimX Exc(f) = 1.

Proof. If codimX Exc(f) ≥ 2, then Exc(f) is a non-empty finite subset of X. Hence, f
is quasi-finite, since it contracts no curves, and as f is projective, it is actually finite.
But it follows then from Lemma 1.16 that f is an isomorphism, a contradiction.

The following two results are [LT19, Lemmas 2.2 and 2.3], respectively. They will
be used in the proof of Lemma 2.50.

Lemma 1.18. Let f : X → Y be a projective surjective morphism between normal
quasi-projective varieties. Then there exists an open subset U ⊆ Y with the following
property: if D is an R-Cartier R-divisor on X which is numerically trivial on a fiber
over some point of U , then D|f−1(U) ≡U 0.

Proof. Let π : W → X be a resolution of X and let U be an open subset of Y such that
f ◦π is smooth over U , see [Har77, Corollary III.10.7]. Let D be an R-Cartier R-divisor
on X such that D|f−1(s) ≡ 0 for some s ∈ U . Then (π∗D)|(f◦π)−1(s) ≡ 0. By [Nak04,
Lemma II.5.15(3)] we obtain π∗D|(f◦π)−1(U) ≡U 0 and consequently D|f−1(U) ≡U 0.

Lemma 1.19. Let f : X → Y be a fibration between normal quasi-projective varieties.
Let D be a Q-Cartier Q-divisor on X.

(i) If κ(F,D|F ) ≥ 0 for a very general fiber F of f , then there exists an effective
Q-divisor E on X such that D ∼Q,Y E.

(ii) If D|F ∼Q 0 for a very general fiber F of f , then there exists a non-empty open
subset U ⊆ Y such that D|f−1(U) ∼Q,U 0.

Proof.
(i) We may assume that D is a Cartier divisor. By assumption there exists a subset
V ⊆ Y , which is the intersection of countably many dense open subsets of Y , such that
κ(Xy, D|Xy) ≥ 0 for the fiber Xy of f over every closed point y ∈ V .

Let Xη be the generic fiber of f and assume that h0
(
Xη,OXη(mD)

)
= 0 for all

m ∈ Z≥1. By [Har77, Theorem III.12.8] for each m ∈ Z≥1 there exists a non-empty
open subset Um ⊆ Y such that h0

(
Xy,OXy(mD)

)
= 0 for every point y ∈ Um. But

then for all m ∈ Z≥1 and all y ∈ V ∩
⋂∞
m=1 Um we have

h0
(
Xy,OXy(mD)

)
= 0,

a contradiction.
Therefore, there exists an effective divisor G on Xη such that D|Xη ∼Q G, and (i)

follows from [BCHM10, Lemma 3.2.1].

(ii) By (i) there exists an effective Q-divisor E on X such that D ∼Q,Y E. Then
E|F ∼Q 0 for a very general fiber F of f , hence E|F = 0, since F is projective.
Therefore, E cannot be dominant over Y , and we note that the set U := Y \ f(E) has
the desired properties.
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The last result of this section is [LMT20, Lemma 2.3]. It will be used in the proof
of Lemma 5.2.

Lemma 1.20. Let f : Y → X and g : X → Z be projective morphisms between normal
varieties, and assume that f is birational. Let D be an R-Cartier R-divisor on X.
Then

B(f∗D/Z) = f−1
(
B(D/Z)

)
.

Proof. By the definition of the relative stable base locus, to prove the lemma, it suffices
to show that f∗|D/Z|R = |f∗D/Z|R. It is clear that f∗|D/Z|R ⊆ |f∗D/Z|R. For the
converse inclusion, let G ∈ |f∗D/Z|R. We may write f∗f∗G = G + E, where E is
f -exceptional. There exists an R-Cartier R-divisor L on Z such that

G ∼R f
∗D + (g ◦ f)∗L = f∗(D + g∗L),

and thus
E ∼R f

∗(f∗G−D − g∗L).

Therefore E = 0 by the Negativity lemma [KM98, Lemma 3.39(1)], and consequently
f∗f∗G = G. Hence f∗|D/Z|R ⊇ |f∗D/Z|R. This completes the proof.
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2

Generalized Pairs and their Singularities

In this chapter we present the fundamentals of the theory of generalized pairs. In order
to give a glimpse of the topics that will be discussed below, we outline now the contents
of each section of this chapter.

In Section 2.1 we define generalized pairs and the various classes of their singularities
and we establish their basic properties. In particular, we investigate monotonicity
properties of discrepancies, we study dlt generalized pairs and we establish the existence
of certain useful modifications of generalized pairs, e.g., dlt blow-ups.

In Section 2.2 we define various types of models of generalized pairs, e.g., minimal
models and Mori fiber spaces, both in the usual sense and in the sense of Birkar-
Shokurov. In addition, we investigate how they are related to each other. Moreover,
we deal with the problem of the existence of Mori fiber spaces for non-pseudo-effective
generalized pairs.

In Section 2.3 we discuss thoroughly the Minimal Model Program (MMP) in the
setting of generalized pairs. In particular, we recall the definitions of divisorial contrac-
tions and flips for generalized pairs, we discuss briefly the problem of their existence,
we show how to run an MMP in this setting and, finally, we prove several results that
will be utilized in the next chapters of the thesis.

We assume that the reader is familiar with the definitions and basic results con-
cerning usual pairs and their singularities, and we refer to [KMM87, KM98, Mat02,
HK10, Kol13, Fuj17] for further details in the usual setting. In particular, our main
reference for the MMP in this setting is [KM98]. Additionally, the various results
from [KM98] that are extended below to the context of generalized pairs are always
mentioned explicitly for the convenience of the reader.

Furthermore, our main references for the material presented in this chapter are
[BZ16, Section 4], where several aspects of the theory of generalized pairs were originally
developed, [HL18, Sections 2 and 3], where dlt singularieties of generalized pairs were
treated in detail for the first time, and various parts of our papers [LT19, LMT20,
CT20], where several basic properties of generalized pairs were first supplemented,
building mainly on the previous two works.

Last but not least, although we work throughout the thesis with R-divisors, we have
cited several results from [KM98], which are stated and proved only for Q-divisors.
However, all of them hold also for R-divisors and the corresponding statements with
essentially identical proofs can be found in [Fuj17]. A typical example is the Negativity
lemma [KM98, Lemma 3.39]; its version for R-divisors is [Fuj17, Lemma 2.3.26].
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2.1 Definitions and Fundamental Properties

Definition 2.1. A generalized pair , abbreviated as g-pair, consists of

• a normal variety X, equipped with projective morphisms

X ′
f−→ X −→ Z,

where f is birational and X ′ is a normal variety,

• an effective R-divisor B on X, and

• an R-Cartier R-divisor M ′ on X ′ which is nef over Z,

such that KX +B +M is R-Cartier, where M := f∗M
′.

We usually refer to a g-pair as above by saying that (X,B+M) is a g-pair with data

X ′
f→ X → Z and M ′. However, we often denote such a g-pair simply by (X/Z,B+M),

but remember the whole g-pair structure. Moreover, the divisor B (resp. M ′) is called
the boundary part (resp. the nef part) of the g-pair.

Furthermore, we emphasize that the definition is flexible with respect to X ′ and M ′,
namely, if g : X ′′ → X ′ is a projective birational morphism from a normal variety X ′′,
then we may replace X ′ with X ′′ and M ′ with g∗M ′, see [Bir19, §2.13(1)]. Therefore,
the variety X ′ may always be chosen as a sufficiently high birational model of X; in
practice, f : X ′ → X will usually be a log resolution of (X,B).

Finally, we recall that a g-pair (X,B +M) with data X
idX−→ X → Z and M ′ = M

is called a polarized pair , see [BH14]. If, additionally, M ′ = M = 0, then (X/Z,B) is
a usual pair . In other words, a pair (X/Z,B) consists of a normal variety X, equipped
with a projective morphismX → Z, and an effective R-divisorB onX such thatKX+B
is R-Cartier; and a polarized pair (X/Z,B + P ) consists of a usual pair (X/Z,B) and
a nef R-Cartier R-divisor P on X.

Definition 2.2. A g-pair (X/Z,B +M) is called:

(a) effective over Z if there exists an effective R-Cartier R-divisor G on X such that
KX +B +M ≡Z G,

(b) pseudo-effective over Z if the divisor KX +B +M is pseudo-effective over Z, and
non-pseudo-effective over Z otherwise,

(c) NQC if its nef part M ′ is an NQC divisor on X ′, i.e., M ′ =
∑`

j=1 µjM
′
j , where

µj ∈ R≥0 and the M ′j are Q-Cartier divisors on X ′ which are nef over Z,

(d) log smooth if X is smooth, with data X
idX−→ X → Z and M ′ = M , and if B + M

has SNC support,

(e) uniruled if X is uniruled, i.e., X is covered by rational curves, see [Deb01, Section
4.1].

Definition 2.3. Let (X,B +M) be a g-pair with data X ′
f→ X → Z and M ′. Let E

be a divisorial valuation over X. We may assume that E is a prime divisor on X ′. We
may write

KX′ +B′ +M ′ ∼R f
∗(KX +B +M)
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for some R-divisor B′ on X ′. The discrepancy of E with respect to (X,B + M)1 is
defined as

a(E,X,B +M) := −multE B
′.

The next result generalizes [KM98, Lemma 2.27] to the context of g-pairs and
shows that discrepancies possess a monotonicity property. Its proof is straightforward
and therefore omitted.

Lemma 2.4. With the same notation as in Definition 2.3, if ∆ is an effective R-Cartier
R-divisor on X, then

a(E,X,B +M) = a(E,X,B + ∆ +M) + multE f
∗∆.

In particular,

a(E,X,B +M) ≥ a(E,X,B + ∆ +M)

and the strict inequality holds if and only if cX(E) ⊆ Supp ∆.

We define now the six classes of singularities that are most important for the MMP.

Definition 2.5. A g-pair (X/Z,B +M) is called:

(a) terminal if a(E,X,B +M) > 0 for any exceptional divisorial valuation E over X,

(b) canonical if a(E,X,B+M) ≥ 0 for any exceptional divisorial valuation E over X,

(c) klt if a(E,X,B +M) > −1 for any divisorial valuation E over X,

(d) lc if a(E,X,B +M) ≥ −1 for any divisorial valuation E over X,

(e) dlt2 if it is lc and if there exists a closed subset V ⊆ X such that

(1) (X \ V,B|X\V ) is a log smooth pair, and

(2) if a(E,X,B+M) = −1 for some divisorial valuation E over X, then cX(E) * V
and cX(E) \ V is an lc center of (X \ V,B|X\V ),

(f) plt if it is dlt and if bBc is the disjoint union of its irreducible components.

1In the literature one often encounters the notion of the log discrepancy of a divisorial valuation E
with respect to the g-pair (X,B + M), which is defined as a`(E,X,B + M) := 1 + a(E,X,B + M).
Throughout this thesis we use exclusively discrepancies.

2As insinuated in the introduction to this chapter, we have adopted the definition of dlt singularities
from [HL18]. Another definition of dlt singularities is given in [Bir19]. The difference between [HL18,
Definition 2.2] and the definition from [Bir19, §2.13(2)] is quite delicate. Specifically, according to the
second one, M is nef in a neighborhood of the generic point of every lc center of (X,B +M), whereas
according to the first one this need not be the case, that is, M |X\V is not necessarily nef. Therefore,
if a g-pair is dlt according to Birkar’s definition, then it is also dlt according to Han-Li’s definition;
indeed, the condition from Definition 2.5(e)(2) that “cX(E)\V is an lc center of (X \V,B|X\V )” follows
automatically from the nefness of M on X \ V , since it guarantees that

−1 = a(E,X,B +M) = a(E,X \ V,B|X\V +M |X\V ) = a(E,X \ V,B|X\V ).

However, a dlt g-pair according to Han-Li’s definition need not be dlt according to Birkar’s definition.



20 Chapter 2. Generalized Pairs and their Singularities

Recall that klt (resp. dlt, plt, lc) is the abbreviation of “Kawamata log terminal”
(resp. “divisorial log terminal”, “purely log terminal”, “log canonical”).

Note that the variety Z does not play any role in the definition of singularities of
g-pairs. Indeed, singularities are local in nature over X, see [KM98, Section 2.3] or
[Kol13, Section 2.1], so we may assume that X → Z is the identity map. This is why
Z is suppressed in the notation.

Furthermore, if (X,B) is a usual pair, then by taking M = 0 in Definition 2.5
we recover the various definitions of singularities of (X,B); in particular, as far as
dlt and plt singularities are concerned, see [KM98, Definition 2.37 and Proposition
5.51], respectively. If, additionally, (X,B + P ) is a polarized pair, then it follows
readily from Definition 2.3 that P does not contribute to the singularities of the pair
(see also Remark 2.7 below), that is, for any divisorial valuation E over X we have
a(E,X,B + P ) = a(E,X,B), and thus (X,B + P ) is klt (lc and so forth) if and only
if (X,B) is klt (lc and so forth). This fact will be used without explicit mention in the
thesis.

Finally, it is worth mentioning that there is no difference between klt (resp. lc)
polarized pairs and klt (resp. lc) generalized pairs in dimension two, but this is no
longer true in higher dimensions, see [HL20b, Lemma 2.4 and Remark 2.5].

Comment. If in Definition 2.1 we drop the assumption that the boundary part is
effective, then we obtain the notion of a generalized sub-pair (or g-sub-pair for short),
and accordingly the notions of usual sub-pairs and polarized sub-pairs. Moreover, we
may define the discrepancy of a divisorial valuation with respect to a g-sub-pair exactly
as in Definition 2.3. In particular, we obtain the notions of klt and lc g-sub-pairs as
in Definition 2.5. We note that all these notions occur frequently in proofs – many
definitions and results in this chapter could actually have been stated for g-sub-pairs
instead, as is done, for instance, in [KM98] – and a typical example, where all the
concepts under discussion occur and combine, is the following:

Let (X,B+M) be a klt (resp. lc) g-pair with data X ′
f→ X → Z and M ′. We may

assume that f is a log resolution of (X,B) and we may write

KX′ +B′ +M ′ ∼R f
∗(KX +B +M)

for some R-divisor B′ on X ′ with coefficients < 1 (resp. ≤ 1). Since (X ′, B′) is a
log smooth klt (resp. lc) sub-pair by [KM98, Corollary 2.31(3)], we conclude that
(X ′/Z,B′ +M ′) is a klt (resp. lc) polarized sub-pair.

Remark 2.6. Let (X,B + M) be a g-pair with data X ′
f→ X → Z and M ′. If f is a

log resolution of (X,B), then the g-pair (X,B + M) is klt (resp. lc) if and only if the
coefficients of B′ are < 1 (resp. ≤ 1).

Remark 2.7. Let (X,B+M) be a g-pair with data X ′
f→ X → Z and M ′. Note that

the divisor KX +B is R-Cartier if and only if the divisor M is R-Cartier. In this case,
(X,B) is a pair in the usual sense. Moreover, we may write KX′ + B̃ ∼R f

∗(KX +B)
and f∗M = M ′ + F , where F is an f -exceptional R-divisor. By the Negativity lemma
[KM98, Lemma 3.39(1)] we infer that F ≥ 0. Hence, KX′+B

′+M ′ ∼R f
∗(KX+B+M),

where B′ := B̃ + F and B′ ≥ B̃. Consequently, if E is a divisorial valuation over X,
then a(E,X,B +M) = a(E,X,B)−multE F , and thus

a(E,X,B +M) ≤ a(E,X,B).
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Hence, if the g-pair (X,B + M) is terminal (resp. canonical, klt, dlt, plt, lc) and
X is Q-factorial, then the underlying pair (X,B) is also terminal (resp. canonical, klt,
dlt, plt, lc).

In particular, if (X,B + M) is a Q-factorial terminal g-pair, then bBc = 0 and X
is smooth in codimension two by [KM98, Theorem 4.5 and Corollary 5.18].

Finally, recall that a normal variety V has rational singularities if there exists a
resolution ϕ : W → V of V such that Riϕ∗OW = 0 for all i > 0, see [KM98, Definition
5.8 and Theorem 5.10]. It follows from the above and from [KM98, Theorem 5.22]
that the underlying variety X of a Q-factorial dlt g-pair (X,B + M) has rational
singularities. For further information about rational singularities we refer to [KM98,
Section 5.1], [Kol13, Section 2.5] and [Fuj16].

Definition 2.8. Let (X,B +M) be an lc g-pair with data X ′
f→ X → Z and M ′. Let

P ′ be an R-divisor on X ′ which is nef over Z and let N be an effective R-divisor on X
such that P +N is R-Cartier, where P := f∗P

′. The lc threshold of P +N with respect
to (X,B +M) is defined as

sup
{
t ∈ R≥0 |

(
X, (B + tN) + (M + tP )

)
is lc

}
,

where the g-pair in the definition has boundary part B + tN and nef part M ′ + tP ′.

2.1.1 The Non-KLT Locus of a Generalized Pair

Definition 2.9. Let (X/Z,B +M) be an lc g-pair.

(a) A subvariety S of X is called an lc center of X if there exists a divisorial valuation
E over X such that a(E,X,B +M) = −1 and cX(E) = S.

(b) The union of all lc centers of X is denoted by Nklt(X,B + M) and is called the
non-klt locus of (X,B +M).

We refer to [Kol13, Chapter 4] for a thorough discussion about the non-klt locus of
a usual pair. We remark, though, that the lc centers of a log smooth pair (X,B) are the
strata of bBc =

∑
Di, i.e., the irreducible components of the various intersections

⋂
Di`

of its irreducible components Di, see [Kol13, Last Paragraph of Definition 4.15]. In
addition, we reproduce below [Fuj07, Proposition 3.9.2], which describes the lc centers
and adjunction for (higher-codimensional) lc centers of a dlt pair. All these results will
be used without explicit mention in the thesis.

Proposition 2.10. Let (X,B) be a dlt pair.

(i) Let bBc =
∑

i∈I Di be the decomposition of bBc into irreducible components.
Then S is an lc center of (X,B) with codimX S = k if and only if S is an
irreducible component of Di1 ∩ . . . ∩Dik for some {i1, . . . , ik} ⊆ I.

(ii) Let S be an lc center of (X,B). Then S is normal and we obtain a dlt pair
(S,BS) by adjunction, i.e., by the formula KS +BS = (KX +B)|S.

We gather below the basic properties of the non-klt locus of a g-pair, which will
play a significant role in Chapters 5 and 6. Moreover, we refer to [Sva19, Bir20, FS20]
for recent developments regarding the properties of the non-klt locus of a g-pair with
focus on the so-called connectedness principle, and to [KM98, Section 5.4] and [Kol13,
Section 4.4] for a relevant discussion in the context of usual pairs.
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Remark 2.11.

(1) If (X,B + M) is a Q-factorial dlt g-pair, then by definition and by Remark 2.7
the underlying pair (X,B) is also Q-factorial dlt and the lc centers of (X,B +M)
coincide with those of (X,B). In particular, by Proposition 2.10(i) we obtain

Nklt(X,B +M) = Nklt(X,B) = SuppbBc.

(2) If (X,B+M) is an lc g-pair and if h : (Y,∆ + Ξ)→ (X,B+M) is a dlt blow-up of
(X,B+M) (see Lemma 2.24(iii)), then by Lemma 2.13 and by (1) we deduce that

Nklt(X,B +M) = h
(

Nklt(Y,∆ + Ξ)
)

= h
(

Suppb∆c
)
.

In particular, the number of lc centers of an lc g-pair is finite.

2.1.2 Computing and Comparing Discrepancies

We prove below analogs of [KM98, Lemma 2.29, Lemma 2.30, Corollary 2.35(1) and
Proposition 2.36(2)], respectively, in the context of g-pairs. These results are taken
from [CT20, Section 2.1], except for Lemma 2.13, which has been included here for the
sake of completeness.

Lemma 2.12. Let (X,B + M) be an NQC g-pair with data X ′ → X → Z and M ′ =∑l
j=1 µjM

′
j, where B =

∑s
i=1 biBi and the Bi are distinct prime divisors, µj ≥ 0 and

the M ′j are Q-Cartier divisors which are nef over Z. Assume that X is Q-factorial
and smooth near a codimension k ≥ 2 closed subvariety V of X. Consider the blow-up
of X along V and let E be the irreducible component of the exceptional divisor that
dominates V . Then

a(E,X,B +M) = k − 1−
s∑
i=1

nibi −
l∑

j=1

mjµj

for some non-negative integers n1, . . . , ns,m1, . . . ,ml.

Proof. We may assume that E is a prime divisor on X ′. By assumption and by [KM98,
Lemma 2.29] we obtain a(E,X,B) = k − 1−

∑s
i=1 nibi for some non-negative integers

n1, . . . , ns; note that ni = multV Bi. Furthermore, by assumption and by Remark 2.7
we have multE(f∗M −M ′) =

∑l
j=1mjµj for some non-negative integers m1, . . . ,ml.

Since
a(E,X,B +M) = a(E,X,B)−multE(f∗M −M ′)

by Remark 2.7, we obtain the statement.

Lemma 2.13. Let (X,B + M) be a g-sub-pair with data X ′
f→ X → Z and M ′. Let

h : Y → X be a proper birational morphism from a normal variety Y and let (Y,∆+Ξ)

be a g-sub-pair with data X ′
g→ Y → Z and M ′ such that

KY + ∆ + Ξ ∼R h
∗(KX +B +M) and h∗∆ = B.

Then, for any divisorial valuation E over X, we have

a(E, Y,∆ + Ξ) = a(E,X,B +M).
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Proof. Let E be a divisorial valuation over X. By replacing X ′ with a higher model,
we may assume that E is a prime divisor on X ′ and that f = h ◦ g. We may write

KX′ +B′ +M ′ ∼R f
∗(KX +B +M) (2.1)

for some R-divisor B′ on X ′ such that f∗B
′ = B, and

KX′ + ∆′ +M ′ ∼R g
∗(KY + ∆ + Ξ) (2.2)

for some R-divisor ∆′ on X ′ such that g∗∆
′ = ∆. Set F := B′ −∆′ and observe that

multE F = a(E, Y,∆ + Ξ)− a(E,X,B +M).

Moreover, f∗F = f∗B
′ − f∗∆′ = B − h∗∆ = 0, so F is an f -exceptional divisor. We

claim that F = 0, which clearly yields the statement. Indeed, by the assumptions we
obtain

f∗(KX +B +M) ∼R g
∗(KY + ∆ + Ξ)

and it follows now from (2.1) and (2.2) that B′ ∼R ∆′, hence F ∼R 0. By the Negativity
lemma [KM98, Lemma 3.39(1)] we infer that F = 0. This completes the proof.

Lemma 2.14. Let
(
X, (B +N) + (M + P )

)
be a Q-factorial klt (resp. lc) g-pair with

data X ′
f→ X → Z and M ′ + P ′. Then the g-pair (X,B +M) is also klt (resp. lc).

Proof. We may assume that f is a log resolution of (X,B +N) and we may write

KX′ +B′ +M ′ ∼R f
∗(KX +B +M)

for some R-divisor B′ on X ′. We may also write

f∗P = P ′ + E1 and f∗N = f−1∗ N + E2,

where E1 is an effective f -exceptional R-divisor by the Negativity lemma [KM98,
Lemma 3.39(1)], as P ′ is f -nef, and E2 is an effective f -exceptional R-divisor, as N ≥ 0.
Therefore,

KX′ + (B′ + f−1∗ N + E1 + E2) + (M ′ + P ′) ∼R f
∗(KX + (B +N) + (M + P )

)
.

Since the g-pair
(
X, (B+N) + (M +P )

)
is klt (resp. lc), the coefficients of the divisor

B′+ f−1∗ N +E1 +E2 are < 1 (resp. ≤ 1). The statement follows from Remark 2.6.

Proposition 2.15. Let (X,B + M) be a klt g-pair with data X ′
f→ X → Z and

M ′. Then there exists a positive real number ε such that there are only finitely many
exceptional divisorial valuations E over X with discrepancy a(E,X,B +M) < ε.

Proof. We may assume that f is a log resolution of (X,B) such that if we write

KX′ +B′ +M ′ ∼R f
∗(KX +B +M)

for some R-divisor B′ = (B′)+ − (B′)− on X ′ with coefficients < 1, where the divisors
(B′)+ and (B′)− are effective and have no common components, then Supp(B′)+ is
smooth, cf. [KM98, Proposition 2.36(1)]. We write (B′)+ =

∑r
i=1 γiGi, where the Gi

are distinct prime divisors on X ′ and γi ∈ (0, 1) for every 1 ≤ i ≤ r, and we set
ε := 1 −max{γi | 1 ≤ i ≤ r} > 0. If F is an exceptional divisorial valuation over X ′,
then by Lemma 2.13 and by [KM98, Lemma 2.27 and Corollary 2.31(3)] we obtain

a(F,X,B +M) = a(F,X ′, B′ +M ′) = a(F,X ′, B′) ≥ a
(
F,X ′, (B′)+

)
≥ ε.

This yields the statement.
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Remark 2.16. If (X,B + M) is a terminal g-pair and if we write B =
∑s

i=1 biBi,
where bi ∈ [0, 1) and the Bi are distinct prime divisors on X, then we may take
ε := 1−max{bi | 1 ≤ i ≤ s} in Proposition 2.15, since the divisor (B′)+ in the previous
proof is precisely the strict transform of B on X ′. This observation will play a key role
in the proof of Lemma 6.2.

Monotonicity of Discrepancies

The following result is [LMT20, Lemma 2.9]. It allows us to compare discrepancies in
several different settings. Parts (i) and (iii) are analogs of [KM98, Proposition 3.51
and Lemma 3.38], respectively, in the context of g-pairs. Note that Lemmas 2.36, 2.44
and 2.45 constitute their main applications. Parts (ii) and (iv) will only be needed in
Chapter 5, when we will deal with a version of the so-called difficulty of g-pairs. The
following notation will be used in these two parts (and thus in Chapter 5 as well).

Notation 2.17. Let (X,B+M) be a dlt g-pair and let S be an lc center of (X,B+M).
We define a dlt g-pair (S,BS +MS) by adjunction, i.e., by the formula

KS +BS +MS = (KX +B +M)|S

as in [HL18, Proposition 2.8]. We note that S is normal by Proposition 2.23.

Lemma 2.18. Let (X,B + M) and (X ′, B′ + M ′) be g-pairs such that there exists a
diagram

W

X X ′

Y,

g g′

ϕ

f f ′

where Y and W are normal varieties, all morphisms are proper birational, KX′+B
′+M ′

is f ′-nef, and there exists a nef R-Cartier R-divisor MW on W with g∗MW = M and
g′∗MW = M ′.

(i) Assume that B′ = ϕ∗B+E, where E is the sum of all the ϕ−1-exceptional prime
divisors on X ′, and that

a(F,X,B +M) ≤ a(F,X ′, B′ +M ′)

for every ϕ-exceptional prime divisor F on X. Then for any divisorial valuation
F over X we have

a(F,X,B +M) ≤ a(F,X ′, B′ +M ′).

(ii) Under the assumptions of (i), assume additionally that (X,B + M) is dlt and
let S be an lc center of (X,B + M). Assume that ϕ is an isomorphism at the
generic point of S and define S′ as the strict transform of S on X ′. Then for any
divisorial valuation F over S we have

a(F, S,BS +MS) ≤ a(F, S′, B′S′ +M ′S′).
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(iii) Assume that −(KX + B + M) is f -nef and that f∗B ≥ f ′∗B
′. Then for any

divisorial valuation F over Y we have

a(F,X,B +M) ≤ a(F,X ′, B′ +M ′),

and the strict inequality holds if either

(a) −(KX +B +M) is f -ample and f is not an isomorphism above the generic
point of cY (F ), or

(b) KX′ +B′ +M ′ is f ′-ample and f ′ is not an isomorphism above the generic
point of cY (F ).

In particular, if (X,B + M) is lc and if either (a) or (b) holds, then cX′(F ) is
not an lc center of the g-pair (X ′, B′ +M ′).

(iv) Assume that −(KX +B +M) is f -nef, that f∗B = f ′∗B
′ and that (X,B +M) is

dlt. Let S be an lc center of (X,B + M). Assume that ϕ is an isomorphism at
the generic point of S and define S′ as the strict transform of S on X ′. Let T be
the normalization of f(S), so that we have the following diagram:

(S,BS +MS) (S′, B′S′ +M ′S′)

T

f |S

ϕ|S

f ′|S′

Then for any divisorial valuation F over T we have

a(F, S,BS +MS) ≤ a(F, S′, B′S′ +M ′S′),

and the strict inequality holds if either

(a) −(KX+B+M) is f -ample and f |S is not an isomorphism above the generic
point of cT (F ), or

(b) KX′+B
′+M ′ is f ′-ample and f ′|S′ is not an isomorphism above the generic

point of cT (F ).

In particular, if either (a) or (b) holds, then cS′(F ) is not an lc center of the
g-pair (S′, B′S′ +M ′S′).

Proof. The proofs of (i) and (iii) are similar to the proofs of [KM98, Proposition 3.51
and Lemma 3.38], respectively. Nevertheless, we provide the details for the benefit of
the reader.

By possibly replacing W with a higher model, we may assume that cW (F ) is a
divisor on W . Set h := f ◦ g = f ′ ◦ g′. Then

KW +MW ∼R g
∗(KX +B +M) +

∑
a(Fi, X,B +M)Fi

∼R (g′)∗(KX′ +B′ +M ′) +
∑

a(Fi, X
′, B′ +M ′)Fi.

Consider the R-Cartier R-divisor

H :=
∑(

a(Fi, X,B +M)− a(Fi, X
′, B′ +M ′)

)
Fi (2.3)

∼R (g′)∗(KX′ +B′ +M ′)− g∗(KX +B +M).
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Under the assumptions of (i) the divisor H is g-nef and g∗H ≤ 0, hence H ≤ 0 by the
Negativity lemma [KM98, Lemma 3.39(1)]. Under the assumptions of (iii) the divisor
H is h-nef and h∗H = f ′∗B

′ − f∗B ≤ 0, hence H ≤ 0 by the Negativity lemma [KM98,
Lemma 3.39(1)]. This yields (i) and the first part of (iii).

Now, assume that the case (a) of (iii) holds; we argue similarly if (b) holds. Since
f is not an isomorphism above the generic point η of cY (F ), we may find a curve
CX ⊆ f−1(η), and therefore a curve CZ ⊆ h−1(η) such that g(CZ) = CX . By the
assumptions and by (2.3) we obtain H · CZ > 0, and since −H ≥ 0, we deduce that
CZ ⊆ SuppH. Then [KM98, Lemma 3.39(2)] implies that h−1(η) ⊆ SuppH, and thus
F ⊆ SuppH. This yields the second statement of (iii).

For (ii) and (iv), by [KM98, Lemma 2.45] there is a sequence of blow-ups of S along
the centers of F such that the center of F becomes a divisor. By considering these
blow-ups as blow-ups of X and possibly blowing up further, we may assume that, on
W , the center cSW (F ) is a divisor, where SW is the strict transform of S on W , and

that there exist finitely many prime divisors F̂i on W such that F̂i|SW = cSW (F ) and

cT (F ) = cY
(
F̂i
)

for each such F̂i. Then (ii) follows by restricting (2.3) to SW ; indeed,
we know that H ≤ 0 and, taking [KM98, Remark 2.23] into account, we note that
SW * SuppH, since ϕ is an isomorphism at the generic point of S.

Now, to prove (iv)(a), we observe that f is not an isomorphism above the generic
point of each cY

(
F̂i
)
, so (iv)(a) follows from (iii) (see the proof of (ii) above). We

obtain (iv)(b) similarly, by first blowing up along the centers of F on S′ instead.

2.1.3 Basic Properties of DLT Generalized Pairs

We now turn our attention to dlt g-pairs. In particular, we generalize below [KM98,
Proposition 2.41, Proposition 5.51, Proposition 2.40, Proposition 2.43 and Corollary
5.52], respectively, to the setting of g-pairs.

Proposition 2.19. A dlt g-pair (X,B +M) is klt if and only if bBc = 0.

Proof. If (X,B + M) is klt, then it is clearly dlt with V = X in Definition 2.5(e).
Conversely, assume that bBc = 0. Let E be a divisorial valuation over X and let
V ⊆ X be the closed subset from Definition 2.5(e). If cX(E) ⊆ V , then we have
a(E,X,B +M) > −1 by definition. If cX(E) * V , then again a(E,X,B +M) > −1,
since we would otherwise have a(E,X,B + M) = −1, so cX(E) \ V would be an lc
center of (X \ V,B|X\V ) by the definition of dlt, and it would therefore hold that
cX(E) \ V ⊆ SuppbB|X\V c, which contradicts our assumption that bBc = 0. In
conclusion, (X,B +M) is klt.

Proposition 2.20. Let (X,B +M) be a dlt g-pair. The following are equivalent:

(i) (X,B +M) is plt,

(ii) for every exceptional divisorial valuation E over X we have a(E,X,B+M) > −1,

(iii) bBc is normal.

Proof.
(i) =⇒ (ii): Let E be an exceptional divisorial valuation over X and let V ⊆ X be
the closed subset from Definition 2.5(e). If cX(E) ⊆ V , then a(E,X,B + M) > −1
by the definition of dlt. If cX(E) * V , then again a(E,X,B + M) > −1; indeed, we
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would otherwise have a(E,X,B + M) = −1, so cX(E) \ V would be an lc center of
(X \ V,B|X\V ) by the definition of dlt, but then, since the irreducible components of
bBc do not meet by assumption, there would exist an irreducible component D of bBc
such that (D * V by the definition of dlt and) cX(F ) \ V = D \ V , which is absurd, as
codimX E ≥ 2. This proves (ii).

(ii) =⇒ (iii): We may repeat verbatim the arguments from [KM98, Proposition 5.51,
Proof of (1) =⇒ (2)] to deduce that bBc is normal.

(iii) =⇒ (i): Since bBc is normal, its irreducible components do not intersect, and
thus bBc is the disjoint union of its irreducible components. This shows (i).

Lemma 2.21. Let (X,B + M) be a g-pair with data X ′
f→ X → Z and M ′. The

following are equivalent:

(i) (X,B +M) is dlt,

(ii) (X,B +M) is lc and there exists a closed subset V ⊆ X such that

(1) (X \ V,B|X\V ) is a log smooth pair, and

(2) after possibly replacing X ′ with a higher model, f is a log resolution of (X,B)
such that f−1(V ) has pure codimension 1 and if a(F,X,B + M) = −1 for
some prime divisor F on X ′, then F * f−1(V ) (or equivalently, cX(F ) * V )
and cX(F ) \ V is an lc center of (X \ V,B|X\V ).

Proof. First of all, for any divisorial valuation E over X, it is easy to see that

cX′(E) * f−1(V ) ⇐⇒ cX(E) * V,

since cX(E) = f
(
cX′(E)

)
and since f is surjective. Due to the above equivalence it

is obvious that (i) implies (ii), so we prove below the converse implication. Clearly,
by assumption it remains to show that if a(E,X,B + M) = −1 for some divisorial
valuation E, then cX(E) * V and cX(E) \ V is an lc center of (X \ V,B|X\V ).

Let E be a divisorial valuation over X such that a(E,X,B + M) = −1. We may
write

KX′ +B′ +M ′ ∼R f
∗(KX +B +M)

for some R-divisor B′ on X ′ with coefficients ≤ 1. If ∆′ is an effective R-divisor on X ′

such that Supp(∆′) = f−1(V ), then every irreducible component of ∆′ has coefficient
< 1 in B′ by (ii)(2). Thus, we may find a sufficiently small ε > 0 such that every
irreducible component of B′+ ε∆′ has coefficient ≤ 1, and hence (X ′, B′+ ε∆′) is a log
smooth lc sub-pair by [KM98, Corollary 2.31(3)].

Furthermore, we observe that cX(E) * V , since otherwise it would hold that
cX′(E) ⊆ f−1(V ) = Supp(∆′), and thus by Lemma 2.13 and by [KM98, Lemma 2.27]
we would obtain

−1 = a(E,X,B +M) = a(E,X ′, B′ +M ′) = a(E,X ′, B′) > a(E,X ′, B′ + ε∆′) ≥ −1,

a contradiction.
Now, if bBc =

∑r
i=1 ∆i, then bB′c =

∑r
i=1 f

−1
∗ ∆i+

∑s
j=1 Fj =

∑r+s
k=1Gk, where the

Fj are f -exceptional prime divisors. For every k ∈ {1, . . . , r+s}, by (ii)(2) we infer that
Gk * f−1(V ) and that f(Gk) \V is an lc center of the log smooth pair (X \V,B|X\V ).
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Moreover, the above (valid by Lemma 2.13) equalities of discrepancies show that cX′(E)
is an lc center of the log smooth lc sub-pair (X ′, B′). It follows that there is a subset
K ⊆ {1, . . . , r+ s} such that cX′(E) is an irreducible component of

⋂
k∈K Gk, and that

for every k ∈ K there is a subset Jk ⊆ {1, . . . , r} such that f(Gk) \ V is an irreducible
component of

⋂
i∈Jk

(
∆i \ V

)
. Therefore, there is a subset I ⊆ {1, . . . , r} such that

cX(E) \ V is an irreducible component of
⋂
i∈I
(
∆i \ V

)
, and thus cX(E) \ V is an lc

center of (X \ V,B|X\V ). This concludes the proof.

Proposition 2.22. Let (X,B + M) be a dlt g-pair with data X ′
f→ X → Z and M ′.

Assume that X is quasi-projective and let H be an ample divisor on X.3 Let ∆ be
an effective Q-divisor (not necessarily Q-Cartier) such that B − ∆ ≥ 0. Then there
exist a positive rational number c and an effective Q-divisor D ≡ ∆ + cH such that
(X,B − ε∆ + εD +M) is dlt for every real number 0 < ε� 1.

Proof. Choose integers m,n ≥ 1 such that m∆ is a Z-divisor and the sheafO(m∆+nH)
is globally generated. Let D′ ∈ |m∆+nH| be a general member (that does not contain
any lc center of (X,B + M)) and set D := 1

mD
′. Since −m∆ + mD ∼ nH is Cartier,

the divisor −∆ +D is Q-Cartier, and therefore the divisor KX +B − ε∆ + εD+M is
R-Cartier for any ε ≥ 0.

Let V ⊆ X be the closed subset from Definition 2.5(e). Then m∆ is Cartier on
X \V , thus |m∆+nH| is base-point-free on X \Z. Since D′ is a general member of this
linear system, the divisor B+D has SNC support on X\V by [Laz04, Lemma 9.1.9], and
since Supp ∆ ⊆ SuppB by assumption, we conclude that

(
X \ V, (B − ε∆ + εD)|X\V

)
is log smooth for any ε ≥ 0.

Now, we will show that (X,B − ε∆ + εD + M) is lc for sufficiently small ε > 0.
Possibly replacing X ′ with a higher model, we may assume that f is a log resolution of
(X,B +D), and thus of (X,B − ε∆ + εD). Since (X,B +M) is lc, we may write

KX′ +B′ +M ′ ∼R f
∗(KX +B +M)

for some R-divisor B′ on X ′ with coefficients ≤ 1. Moreover, since −∆+D is Q-Cartier,
given ε > 0 we may add εf∗(−∆ +D) to both sides of the above relation to obtain

KX′ + Γ′ +M ′ ∼R f
∗(KX +B − ε∆ + εD +M),

where Γ′ := B′ + f∗(−ε∆ + εD). We write B =
∑
biBi and ∆ =

∑
δiBi, where

0 ≤ δi ≤ bi ≤ 1 by assumption. Let Ej be the f -exceptional prime divisors. Then

B′ =
∑

bif
−1
∗ Bi −

∑
a(Ej , X,B +M)Ej ,

where a(Ej , X,B +M) ≥ −1, and

εf∗(−∆ +D) =
∑

(−εδi)f−1∗ Bi + εf−1∗ D +
∑

εejEj , (2.4)

where ej ∈ R. Therefore,

Γ′ =
∑(

bi − εδi
)
f−1∗ Bi + εf−1∗ D +

∑(
εej − a(Ej , X,B +M)

)
Ej . (2.5)

3We refer to [Laz04, Proof of Theorem 4.1.10, Footnote 5] for the precise meaning of ampleness in
this setting.
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To prove the assertion, by Remark 2.6 it suffices to show that for sufficiently small ε > 0
all the coefficients of Γ′ are ≤ 1. Suppose that there exists a prime divisor G on X ′

such that multG Γ′ = −a(G,X,B− ε∆ + εD+M) > 1. By (2.5) and for 0 < ε� 1, we
deduce that G is an f -exceptional prime divisor G = Ej0 with a(Ej0 , X,B +M) = −1
and ej0 > 0. On the one hand, cX(Ej0) * V by the definition of dlt. On the other
hand, by (2.4) we infer that Ej0 ⊆ Supp f∗(−∆ +D) = f−1

(
Supp(∆ +D)

)
, and hence

cX(Ej0) = f(Ej0) ⊆ Supp ∆, since cX(Ej0) * SuppD by the choice of D. Hence,
setting U := X \ V and U ′ := f−1(U) to simplify the following formulas, we obtain

−1 = a(Ej0 , X,B +M) = a(Ej0 , U, (B +M)|U )

= a
(
Ej0 , U, (B − ε∆ + εD +M)|U

)
− εmultEj0

(
(f∗∆)|U ′

)
+ εmultEj0

(
(f∗D)|U ′

)
= a(Ej0 , X,B − ε∆ + εD +M)− εmultEj0

(
f∗∆|U ′

)
< −1,

which is a contradiction, and thus such a divisor G = Ej0 does not exist. By (2.5) we
conclude that (X,B − ε∆ + εD +M) is lc for any 0 < ε� 1.

According to Lemma 2.21, to prove the statement, it remains to show that, for any
prime divisor F on X ′ with a(F,X,B−ε∆+εD+M) = −1, we have that F * f−1(V )
and that cX(F )\V is an lc center of

(
X\V, (B−ε∆+εD)|X\V

)
. Fix such an F . By (2.5)

we infer that there are only two possibilities for F : either F = f−1∗ Bi for some i such
that bi = −a(F,X,B+M) = 1 and δi = 0 (that is, F is a component of f−1∗ bBc which
is not a component of f−1∗ ∆) or F = Ej for some j such that a(Ej , X,B + M) = −1
and ej = 0 (and thus F is not a component of f∗(−∆ +D) by (2.4)). Since in any case
it holds that a(F,X,B+M) = −1, it follows that F * f−1(V ), that cX(F ) \V is an lc
center of (X \ V,B|X\V ), and that cX(F ) * SuppD by the choice of D. Additionally,
we have that cX(F ) * Supp ∆; indeed, this is clear if F is not f -exceptional, whereas
if F is f -exceptional, then F * Supp

(
f∗(−∆ +D)

)
= f−1

(
Supp(∆ +D)

)
, and hence

cX(F ) = f(F ) * Supp(∆ +D) = Supp ∆ ∪ SuppD. By all the above, we deduce that

−1 = a(F,U,B|U )

= a
(
F,U, (B − ε∆ + εD)|U

)
− εmultF

(
(f∗∆)|U ′

)
+ εmultF

(
(f∗D)|U ′

)
= a

(
F,U, (B − ε∆ + εD)|U

)
,

where U = X \ V and U ′ = f−1(U), which implies that cX(F ) \ V is an lc center of(
X \ V, (B − ε∆ + εD)|X\V

)
, as desired. This finishes the proof.

Proposition 2.23. Let (X,B + M) be a dlt g-pair such that X is quasi-projective.
Then every irreducible component of bBc is normal.

Proof. Let S be an irreducible component of bBc. Write B =
∑r

i=1 biBi +
∑s

j=1Dj ,
where bi ∈ (0, 1) for every i ∈ {1, . . . , r} and, say, D1 := S. Pick b′i ∈ Q such that
0 < b′i ≤ bi for every i ∈ {1, . . . , r} and ∆ :=

∑r
i=1 b

′
iBi +

∑s
j=2Dj is a Q-divisor

satisfying 0 ≤ ∆ ≤ B. Observe also that b∆c = bBc−S. By Proposition 2.22 there exist
an effective Q-divisor Γ and a real number 0 < ε� 1 such that (X,B − ε∆ + εΓ +M)
is a dlt g-pair. Note also that bB− ε∆ + εΓc = S. Therefore, (X,B− ε∆ + εΓ +M) is
actually plt, and now it follows from Proposition 2.20 that S is normal. This concludes
the proof.

Finally, the author would like to thank Jingjun Han for showing him a proof of
the above result and for informing him that this result will be incorporated in a new
version of his joint paper [HL18] with Zhan Li.
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2.1.4 Modifications of a Generalized Pair

The following lemma establishes the existence of several useful modifications of a given
g-pair, namely, the existence of a Q-factorial terminal modification of a klt g-pair,
of a small Q-factorial modification of a klt g-pair, and, finally, of a Q-factorial dlt
modification of an lc g-pair; the latter will be used frequently in the thesis. We refer to
[Kol13, Section 1.4] for the corresponding results in the setting of usual pairs.

Part (i) of the lemma is [CT20, Lemma 2.10(i)] and we reproduce its proof below,
see also [Mor18, Proposition 1.47]. Part (ii) is [Mor18, Proposition 1.48]; however, we
give here a rather different proof, along the lines of [Bir09, Remark 2.3]. Part (iii) is
[HL18, Proposition 3.9], but we incorporate its proof for both the sake of completeness
and since it is similar to the previous ones.

Finally, we note that in order to prove the lemma we need to run certain MMPs
with scaling of an ample divisor in the context of g-pairs; we refer to Section 2.3 for the
details, but we also include all the relevant references below. We are forced to assume
that all varieties involved are quasi-projective, since the termination of these MMPs
relies on [BCHM10] and [Bir12a]. We also remark that the key result for the following
proofs is [HL18, Proposition 3.8], which generalizes [Bir12a, Theorems 3.4 and 3.5] to
the context of g-pairs.

Lemma 2.24. Let (X,B +M) be a g-pair with data X ′
f→ X → Z and M ′.

(i) If (X,B +M) is klt, then, after possibly replacing X ′ with a higher model, there

exists a Q-factorial terminal g-pair (Y,∆ + Ξ) with data X ′
g→ Y → Z and M ′,

and a projective birational morphism h : Y → X such that

KY + ∆ + Ξ ∼R h
∗(KX +B +M).

Moreover, each h-exceptional prime divisor E satisfies a(E,X,B+M) ∈ (−1, 0].
The g-pair (Y,∆ + Ξ) is called a Q-factorial terminalization of (X,B +M).

(ii) If (X,B +M) is klt, then, after possibly replacing X ′ with a higher model, there

exists a Q-factorial klt g-pair (Y,∆ + Ξ) with data X ′
g→ Y → Z and M ′, and a

small projective birational morphism h : Y → X such that

KY + ∆ + Ξ ∼R h
∗(KX +B +M),

where ∆ = h−1∗ B. The g-pair (Y,∆ + Ξ) is called a small Q-factorialization of
(X,B +M).

(iii) If (X,B + M) is lc, then, after possibly replacing X ′ with a higher model, there

exist a Q-factorial dlt g-pair (Y,∆ + Ξ) with data X ′
g→ Y → Z and M ′, and a

projective birational morphism h : Y → X such that

KY + ∆ + Ξ ∼R h
∗(KX +B +M)

and each h-exceptional prime divisor is an irreducible component of b∆c. The
g-pair (Y,∆ + Ξ) is called a dlt blow-up of (X,B +M).

Proof.
(i) By Proposition 2.15 we know that there are only finitely many exceptional divisorial
valuations E1, . . . , Ek over X with a(Ei, X,B + M) ∈ (−1, 0] for any 1 ≤ i ≤ k. We
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may assume that f : X ′ → X is a log resolution of (X,B) such that each Ei is a prime
divisor on X ′. Thus, we may write

KX′ +B′ +M ′ ∼R f
∗(KX +B +M) + F ′,

where B′ is an effective R-divisor with coefficients < 1 supported on f−1∗ B and the
f -exceptional prime divisors E1, . . . , Ek, and F ′ is an effective f -exceptional R-divisor
that has no common components with B′. In particular, (X ′, B′ +M ′) is a Q-factorial
klt g-pair such that KX′+B

′+M ′ ≡X F ′. Hence, by [HL18, Lemma 3.5 and Proposition
3.8] we may run a (KX′+B

′+M ′)-MMP with scaling of an ample divisor over X which
contracts only F ′ and terminates with a model h : Y → X such that KY + ∆ + Ξ ∼R
h∗(KX +B +M), where ∆ is the strict transform of B′ on Y and Ξ is a pushforward
of M ′. Furthermore, by construction the h-exceptional prime divisors are the strict
transforms of the Ei on Y . It follows now from Lemma 2.13 that the Q-factorial g-pair
(Y,∆ + Ξ) is actually terminal. This completes the proof of (i).

(ii) We may assume that f : X ′ → X is a log resolution of (X,B). Let E1, . . . , Ek be
the f -exceptional prime divisors on X ′. Since (X,B + M) is klt, we may pick ε ∈ R
such that

0 < ε < 1 + min
{
a(Ei, X,B +M) | 1 ≤ i ≤ k

}
.

Now, set

Γ′ := f−1∗ B + (1− ε)
k∑
i=1

Ei and F ′ :=

k∑
i=1

(
a(Ei, X,B +M) + 1− ε

)
Ei,

and observe that F ′ is an effective f -exceptional R-divisor whose support contains each
Ei due to the choice of ε. Then (X ′,Γ′ +M ′) is a Q-factorial klt g-pair such that

KX′ + Γ′ +M ′ ∼R f
∗(KX +B +M) + F ′,

and in particular, KX′+Γ′+M ′ ≡X F ′. Hence, by [HL18, Lemma 3.5 and Proposition
3.8] we may run a (KX′+Γ′+M ′)-MMP with scaling of an ample divisor over X which
contracts only F ′ and terminates with a model h : Y → X such that KY + ∆ + Ξ ∼R
h∗(KX + B + M), where ∆ is the strict transform of Γ′ on Y and Ξ is a pushforward
of M ′. By construction the g-pair (Y,∆ + Ξ) is Q-factorial klt and the map h is small.
This concludes the proof of (ii).

(iii) We may assume that f : X ′ → X is a log resolution of (X,B). Let E1, . . . , Ek be
the f -exceptional prime divisors and set B′ := f−1∗ B +

∑k
i=1Ei. Then we may write

KX′ +B′ +M ′ ∼R f
∗(KX +B +M) + F ′,

where F ′ is an effective f -exceptional R-divisor supported only on those Ei with dis-
crepancy a(Ei, X,B + M) > −1. Note that (X ′, B′ + M ′) is a Q-factorial dlt g-pair
such that KX′ + B′ + M ′ ≡X F ′. Hence, by [HL18, Remark 2.3, Lemma 3.5 and
Proposition 3.8] we may run a (KX′ +B′+M ′)-MMP with scaling of an ample divisor
over X which contracts only F ′ and terminates with a model h : Y → X such that
KY +∆+Ξ ∼R h

∗(KX +B+M), where ∆ is the strict transform of B′ on Y and Ξ is a
pushforward of M ′. Moreover, (Y,∆ + Ξ) is a Q-factorial dlt g-pair by [HL18, Lemma
3.7], and by construction the h-exceptional prime divisors are the strict transforms on
Y of those Ei with discrepancy a(Ei, X,B+M) = −1; clearly, such Ei are components
of b∆c. This finishes the proof of (iii).
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It is worthwhile to mention that Lemma 2.24(ii) also holds for dlt g-pairs. This was
first observed in [HM18, Lemma 1.25]. We give a detailed proof of this fact below for
the benefit of the reader.

Corollary 2.25. Let (X,B + M) be a dlt g-pair with data X ′
f→ X → Z and M ′.

Assume that X and Z are quasi-projective. Then, after possibly replacing X ′ with a
higher model, there exists a Q-factorial dlt g-pair (Y,∆ + Ξ) with data X ′

g→ Y → Z
and M ′, and a small projective birational morphism h : Y → X such that

KY + ∆ + Ξ ∼R h
∗(KX +B +M),

where ∆ = h−1∗ B. The g-pair (Y,∆ + Ξ) is called a small Q-factorialization of the dlt
g-pair (X,B +M).

Proof. By Propositions 2.19 and 2.22 we deduce that there exist an effective Q-divisor
D and a sufficiently small positive real number ε such that −bBc + D is Q-Cartier
and (X,B − εbBc + εD + M) is a klt g-pair. By Lemma 2.24(ii) we may consider a
small Q-factorialization h : (Y,Γ+Ξ)→ (X,B−εbBc+εD+M) of the aforementioned
g-pair, where Γ := h−1∗ (B − εbBc+ εD). Set ∆ := h−1∗ B and observe that

KY + ∆ + Ξ ∼R h
∗(KX +B +M).

We will show now that (Y,∆ + Ξ) is a dlt g-pair. First, it follows from Lemma 2.13
that (Y,∆ + Ξ) is lc. Now, let V ⊆ X be the closed subset from Definition 2.5(e). Set
U := X \ V and W := Y \ h−1(U). Since U is Q-factorial and since the restriction
h|h−1(U) : h−1(U)→ U is also small, by [Fuj17, Lemma 2.1.4] we conclude that the map

h|h−1(U) is in fact an isomorphism. Therefore,
(
Y \W,∆|Y \W

)
is a log smooth pair.

In addition, for every divisorial valuation F over Y with a(F, Y,∆ + Ξ) = −1 we have
that cY (F ) *W and cY (F )\W is an lc center of

(
Y \W,∆|Y \W

)
. Indeed, as far as the

first assertion of the two is concerned, if cY (F ) ⊆ W , then cX(F ) ⊆ V , so by Lemma
2.13 and by the definition of dlt we would obtain

−1 = a(F, Y,∆ + Ξ) = a(F,X,B +M) > −1,

a contradiction. The second assertion above is derived similarly, using the facts that
cX(F ) * V and a(F,X,B +M) = −1. This concludes the proof.

2.2 Types of Models of a Generalized Pair

In this section we recall the definitions of various types of models of a g-pair, e.g.,
minimal models and Mori fiber spaces, both in the usual sense and in the sense of
Birkar-Shokurov.4 We also compare these notions and discuss their differences in great
detail. In addition, we investigate how unique minimal and canonical models of g-
pairs are and we actually obtain results analogous to the ones concerning minimal
and canonical models of usual pairs. Finally, we demonstrate in Subsection 2.2.5 that
the problem of the existence of Mori fiber spaces for non-pseudo-effective lc g-pairs
has essentially already been resolved. On the other hand, we remark that the dual

4Minimal models in the usual sense (resp. in the sense of Birkar-Shokurov) are often called log
terminal models (resp. log minimal models) in the literature.
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problem of the existence of minimal models for pseudo-effective lc g-pairs remains open
in general, and we will be primarily concerned with it in Chapter 4.

Below we follow rather closely the presentation in [Bir12a, Section 2] and [Bir12b,
Section 2]. However, as in [KM98, Kol13], we adopt the following convention: we drop
the frequently used prefix “log” when referring to minimal and canonical models or even
to the MMP; in other words, instead of “log canonical models” or “log Minimal Model
Program (LMMP)”, we will simply talk about “canonical models” and the “Minimal
Model Program (MMP)”, since it is highly unlikely that this will cause any confusion.

2.2.1 Models in the Sense of Birkar-Shokurov

Definition 2.26. Let (X,B + M) be a g-pair with data X ′
f→ X → Z and M ′. Let

(Y/Z,BY + MY ) be a g-pair together with a birational map ϕ : X 99K Y over Z and
assume that X ′ is a sufficiently high birational model of X so that the induced map
g : X ′ 99K Y is a morphism.

X ′

X Y

Z

f g

ϕ

The g-pair (Y,BY + MY ) is called a birational model in the sense of Birkar-Shokurov
of (X,B +M) over Z if

• BY = ϕ∗B + E, where E is the sum of the ϕ−1-exceptional prime divisors, and

• MY = g∗M
′.

If, moreover,

• KY +BY +MY is nef over Z, and

• a(F,X,B +M) ≤ a(F, Y,BY +MY ) for any ϕ-exceptional prime divisor F ,

then (Y,BY +MY ) is called a weak canonical model in the sense of Birkar-Shokurov of
(X,B +M) over Z.

Assume now that (X,B+M) is lc. A weak canonical model in the sense of Birkar-
Shokurov ϕ : (X,B +M) 99K (Y,BY +MY ) of (X,B +M) over Z is called a minimal
model in the sense of Birkar-Shokurov of (X,B +M) over Z if

• (Y,BY +MY ) is Q-factorial dlt, and

• the above inequality on discrepancies is strict, i.e., for any ϕ-exceptional prime
divisor F on X we have

a(F,X,B +M) < a(F, Y,BY +MY ).

If, additionally, KY + BY + MY is semi-ample over Z, then (Y,BY + MY ) is called a
good minimal model in the sense of Birkar-Shokurov of (X,B +M) over Z.
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Definition 2.27. Let (X/Z,B +M) be an lc g-pair. A birational model in the sense
of Birkar-Shokurov ϕ : (X,B +M) 99K (Y,BY +MY ) of (X,B +M) over Z is called a
Mori fiber space in the sense of Birkar-Shokurov of (X,B +M) over Z if

• (Y,BY +MY ) is Q-factorial dlt,

• there exists a (KY + BY + MY )-negative extremal contraction Y → T over Z
with dimY > dimT , and

• for any divisorial valuation F over X we have

a(F,X,B +M) ≤ a(F, Y,BY +MY ),

and the strict inequality holds if cX(F ) is a ϕ-exceptional prime divisor.

Comment. If in Definition 2.26 (resp. Definition 2.27) we drop the assumption that
(Y,BY + MY ) is dlt, then we obtain the notion of a (good) minimal model in the
sense of Birkar-Hashizume (resp. Mori fiber space in the sense of Birkar-Hashizume),
see [Has18a, Definition 2.2]. We stress, however, that the difference between these
definitions is intrinsically not important; the justification in the setting of g-pairs will
be provided in the next two paragraphs, see also [Has18a, Remark 2.4]. For this reason,
we will not distinguish between (good) minimal models (resp. Mori fiber spaces) in the
sense of Birkar-Shokurov and (good) minimal models (resp. Mori fiber spaces) in the
sense of Birkar-Hashizume.

As far as minimal models are concerned, a (good) minimal model in the sense of
Birkar-Shokurov is obviously a (good) minimal model in the sense of Birkar-Hashizume;
and, conversely, any dlt blow-up of a (good) minimal model in the sense of Birkar-
Hashizume is a (good) minimal model in the sense of Birkar-Shokurov.

As far as Mori fiber spaces are concerned, a Mori fiber space in the sense of Birkar-
Shokurov is obviously a Mori fiber space in the sense of Birkar-Hashizume. Conversely,
if an lc g-pair has a Mori fiber space in the sense of Birkar-Hashizume, then it has a
Mori fiber space in the sense of Birkar-Shokurov by Theorem 2.40(iii).

Log Smooth Models

Log smooth models of lc pairs have been exploited effectively in [Bir10a, Bir12b, BH14]
in order to construct minimal models in the sense of Birkar-Shokurov of lc pairs. Here,
an analogous concept in the context of g-pairs is introduced, which will be used in
Section 4.2 for similar purposes. Note that the following definition has already appeared
implicitly in the proof of [HL18, Theorem 5.4].

Definition 2.28. Let (X,B + M) be an lc g-pair with data X ′
f→ X → Z and

M ′. We may assume that f is a sufficiently high log resolution of (X,B) so that
Exc(f) ∪ Supp(f−1∗ B) ∪ SuppM ′ is an SNC divisor. Set Bls := f−1∗ B + E, where E is
the sum of the f -exceptional prime divisors on X ′. Then the log smooth polarized pair
(X ′/Z,Bls +M ′) is called a log smooth model of (X/Z,B +M).

Note that if M ′ = 0 in the above definition, then we recover the notion of a log
smooth model of an lc pair given, for instance, in [Bir10a, Construction 2.3], see also
[Bir12a, Definition 2.3] and [Bir12b, Definition 2.2].
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Notation 2.29. Let (X/Z,B + M) be an lc g-pair. From now on we will denote a
log smooth model of (X/Z,B + M) by (W/Z,BW + MW ). It should be understood

then that the g-pair (X,B + M) comes with data W
f→ X → Z and MW and that

BW := f−1∗ B + E, where E is the sum of the f -exceptional prime divisors.

Remark 2.30. If (W/Z,BW+MW ) is a log smooth model of an lc g-pair (X/Z,B+M),
then we may write

KW +BW +MW ∼R f
∗(KX +B +M) + F,

where F is an effective f -exceptional R-divisor supported on the f -exceptional prime
divisors D with a(D,X,B +M) > −1.

Constructing Minimal Models in the Sense of Birkar-Shokurov

The following lemma indicates how log smooth models are usually used in practice and
plays a key role in the proofs of Proposition 2.33, Theorem 3.11(i) and Theorem 4.18.

Lemma 2.31. Let (X/Z,B +M) be an lc g-pair. Let (W,BW +MW ) be a log smooth
model of (X,B+M) and let (Y,BY +MY ) be a minimal model in the sense of Birkar-
Shokurov of (W,BW + MW ) over Z. Then (Y,BY + MY ) is also a minimal model in
the sense of Birkar-Shokurov of (X,B +M) over Z.

Proof. Consider the following diagram:

W Y

X

f

ϕ

ψ :=ϕ◦f−1

It follows by the assumptions that BY = ψ−1∗ B+EY , where EY is the sum of the ψ−1-
exceptional prime divisors, and that there is a higher model f ′ : W ′ → W of W such
that the induced map g : W ′ →W is a morphism and g∗

(
(f ′)∗MW

)
= MY . Therefore,

ψ : (X,B+M) 99K (Y,BY +MY ) is a birational model in the sense of Birkar-Shokurov
of (X,B+M) over Z such that (Y,BY +MY ) is Q-factorial dlt and KY +BY +MY is
nef over Z by the assumptions. Moreover, if F is a ψ-exceptional prime divisor, then
f−1∗ F is a ϕ-exceptional prime divisor, and thus we have

a(F,X,B +M) = a(F,W,BW +MW ) < a(F, Y,BY +MY ).

This finishes the proof.

We remark, however, that the corresponding statement for Mori fiber spaces is not
true in general, since the required condition on discrepancies might not be satisfied
(by f -exceptional prime divisors). On the other hand, the following observation, which
is easily derived by invoking Lemma 2.13, is very useful when one tries to construct
minimal models (or Mori fiber spaces) in the sense of Birkar-Shokurov of lc g-pairs. For
such an application, see Theorem 2.40(iii). Incidentally, further results in this direction
are [HX13, Lemma 2.10] and [Has19, Lemma 2.15], just to name a few.
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Remark 2.32. Let (X/Z,B+M) be an lc g-pair and let h : (T,BT+MT )→ (X,B+M)
be a dlt blow-up of (X,B +M). If (Y,BY +MY ) is a minimal model (resp. Mori fiber
space) in the sense of Birkar-Shokurov of (T,BT + MT ) over Z, then (Y,BY + MY )
is also a minimal model (resp. Mori fiber space) in the sense of Birkar-Shokurov of
(X,B +M) over Z.

To the best of our knowledge, the following result has not appeared elsewhere
in the literature. It generalizes [Bir12a, Corollary 3.7] to the context of g-pairs and
complements Lemma 2.39(ii). It tells us that in order to construct minimal models in
the sense of Birkar-Shokurov it suffices to construct weak canonical models in the sense
of Birkar-Shokurov.

Proposition 2.33. Let (X,B + M) be an lc g-pair with data X ′
f→ X → Z and M ′.

Assume that X and Z are quasi-projective. If (X,B +M) has a weak canonical model
in the sense of Birkar-Shokurov over Z, then (X,B +M) has a minimal model in the
sense of Birkar-Shokurov over Z.

Proof. Let ψ : (X,B+M) 99K (Y ′, BY ′ +MY ′) be a weak canonical model in the sense
of Birkar-Shokurov of (X,B +M) over Z. Let f : (W,BW +MW )→ (X,B +M) be a
sufficiently high log smooth model of (X,B+M) so that the induced map g : W 99K Y ′

is actually a morphism.

W

X Y ′

f
g

ψ

We may write

KW +BW +MW ∼R f
∗(KX +B +M) + F, (2.6)

where F is an effective f -exceptional R-divisor, see Remark 2.30, and

f∗(KX +B +M) ∼R g
∗(KY ′ +BY ′ +MY ′) +G, (2.7)

where G :=
∑(

a(D,Y ′, BY ′ + MY ′) − a(D,X,B + M)
)
D is an effective R-divisor by

Lemma 2.18(i). We claim that G is g-exceptional. Indeed, if there were an irreducible
component D of G that were not g-exceptional, then D should be f -exceptional, since
otherwise we would have a(D,X,B+M) = a(D,Y ′, BY ′+MY ′), and thus D could not
be an irreducible component of G. But then g(D) would be a ψ−1-exceptional prime
divisor, so by the definition of weak canonical models in the sense of Birkar-Shokurov
we would have a(D,Y ′, BY ′ + MY ′) = −1. Since G is effective, we should also have
a(D,X,B+M) = −1, which shows again that D could not be an irreducible component
of G and contradicts our assumption. This proves our assertion.

By (2.6) and (2.7) we obtain

KW +BW +MW ≡Y ′ F +G.

We will show that F + G ≥ 0 is g-exceptional. Since G is g-exceptional, it suffices to
prove that F is g-exceptional. By Remark 2.30 we know that the irreducible components
of F are f -exceptional prime divisors D on W with a(D,X,B+M) > −1. If there were
an irreducible component D of F that were not g-exceptional, then (as above) g(D)
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would be a ψ−1-exceptional prime divisor and we would have a(D,Y ′, BY ′+MY ′) = −1,
but this contradicts the fact that G is effective.

Now, by [HL18, Remark 2.3, Lemma 3.5 and Proposition 3.8] we may run some
(KW + BW + MW )-MMP with scaling of an ample divisor over Y ′ which contracts
only F + G and terminates with a model h : Y → Y ′ such that KY + BY + MY ∼R
h∗(KY ′ + BY ′ + MY ′), where BY is the strict transform of BW on Y and MY is a
pushforward of MW .

W Y

X Y ′

f
g

ζ

h

ψ

In particular, (Y,BY + MY ) is a Q-factorial dlt g-pair by [HL18, Lemma 3.7], and
KY +BY +MY is nef over Z. Hence, (Y,BY +MY ) is a minimal model of (W,BW +MW )
over Z, and it follows now from Lemma 2.31 that (Y,BY +MY ) is a minimal model in
the sense of Birkar-Shokurov of (X,B +M) over Z.

2.2.2 Models in the Usual Sense

Definition 2.34. Let (X/Z,B +M) be a g-pair.

(a) A birational model in the sense of Birkar-Shokurov ϕ : (X,B+M) 99K (Y,BY +MY )
of (X,B +M) over Z such that the map ϕ : X 99K Y is a birational contraction is
called birational model of (X,B +M) over Z.

(b) A weak canonical model in the sense of Birkar-Shokurov ϕ : (X,B+M) 99K (Y,BY +
MY ) of (X,B+M) over Z such that the map ϕ : X 99K Y is a birational contraction
is called a weak canonical model of (X,B +M) over Z.

(c) A weak canonical model ϕ : (X,B + M) 99K (Y,BY + MY ) of (X,B + M) over Z
is called a minimal model of (X,B +M) over Z if

• Y is not necessarily Q-factorial if X is not Q-factorial, but Y is (required to
be) Q-factorial if X is Q-factorial, and

• a(F,X,B +M) < a(F, Y,BY +MY ) for any ϕ-exceptional prime divisor F .

If, additionally, KY +BY +MY is semi-ample over Z, then (Y,BY +MY ) is called
a good minimal model of (X,B +M) over Z.

(d) A weak canonical model ϕ : (X,B + M) 99K (Y,BY + MY ) of (X,B + M) over Z
is called a canonical model of (X,B +M) over Z if, additionally, KY +BY +MY

is ample over Z.

Note that the definitions of (good) minimal and canonical models given above differ
slightly from the ones appearing in our papers [LT19, Section 2], [LMT20, Section 2]
and [CT20, Section 2] in the sense that no assumptions are made on the singularities
of the g-pairs involved. The precise relation between the singularities of a g-pair and
those of a weak canonical model of that g-pair will be investigated below in Proposition
2.36. In addition, the relations between minimal and canonical models as well as the
question of their uniqueness will also be studied in the next subsection.
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Definition 2.35. Let (X/Z,B +M) be a g-pair. A birational model

ϕ : (X,B +M) 99K (Y,BY +MY )

of (X,B +M) over Z is called a Mori fiber space of (X,B +M) over Z if

• Y is not necessarily Q-factorial if X is not Q-factorial, but Y is (required to be)
Q-factorial if X is Q-factorial,

• there exists a (KY + BY + MY )-negative extremal contraction Y → T over Z
with dimY > dimT , and

• for any divisorial valuation F over X we have

a(F,X,B +M) ≤ a(F, Y,BY +MY ),

and the strict inequality holds if cX(F ) is a ϕ-exceptional prime divisor.

2.2.3 Basic Properties of Minimal and Canonical Models

We generalize [KM98, Proposition 3.51 and Theorem 3.52] and [Fuj17, Lemma 4.8.4],
respectively, to the setting of g-pairs.

Proposition 2.36. Let (X/Z,B + M) be a g-pair and let (Xw, Bw + Mw) be a weak
canonical model (in the sense of Birkar-Shokurov) of (X,B+M) over Z. Then for any
divisorial valuation F over X we have

a(F,X,B +M) ≤ a(F,Xw, Bw +Mw).

In particular, if (X,B +M) is klt (resp. lc), then (Xw, Bw +Mw) is also klt (resp.
lc).

Proof. The first part of the statement is essentially a reformulation of Lemma 2.18(i),
while the second part of the statement is an immediate consequence of the first one.

The next two results correspond to [CT20, Lemma 2.12] and [LMT20, Lemma 2.13],
respectively, and concern the uniqueness of minimal and canonical models of a given
g-pair as well as the relation between them.

Proposition 2.37. Let (X/Z,B +M) be an lc g-pair and let

ϕi : (X,B +M) 99K (Xm
i , B

m
i +Mm

i ), i ∈ {1, 2},

be two minimal models of (X,B+M) over Z. Then the map ϕ2 ◦ϕ−11 : Xm
1 99K Xm

2 is
an isomorphism in codimension one.

Proof. The proof is analogous to the proof of [KM98, Theorem 3.52(2)]. Nevertheless,
we provide the details for the benefit of the reader.

Let g : T → X be a sufficiently high model so that the induced maps hi : T → Xm
i

are actually morphisms and there exists an R-Cartier R-divisor MT on T which is nef
over Z and satisfies (hi)∗MT = Mm

i , where i ∈ {1, 2}. We obtain the following diagram:
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Xm
1

T X

Xm
2

g

h1

h2

ϕ1

ϕ2

Set Ei := g∗(KX + B + M) − h∗i (KXm
i

+ Bm
i + Mm

i ), i ∈ {1, 2}. By Lemma 2.18(i)
and by the definition of a minimal model, Ei is an effective hi-exceptional R-divisor
and SuppEi contains the strict transforms of all the ϕi-exceptional prime divisors.
Subtracting the two formulas, we obtain

h∗1(KXm
1

+Bm
1 +Mm

1 )− h∗2(KXm
2

+Bm
2 +Mm

2 ) = E2 − E1.

Since (h1)∗(E2 − E1) ≥ 0 and −(E2 − E1) is h1-nef, by the Negativity lemma [KM98,
Lemma 3.39(1)] we obtain E2 −E1 ≥ 0. Similarly, E1 −E2 ≥ 0. Thus, E1 = E2, so ϕ1

and ϕ2 have the same exceptional divisors, whence the statement.

Proposition 2.38. Let (X/Z,B + M) be an lc g-pair. Let (Xm, Bm + Mm) be a
minimal model of (X,B + M) over Z and let (Xc, Bc + M c) be a canonical model of
(X,B +M) over Z. Then there exists a birational morphism α : Xm → Xc such that

KXm +Bm +Mm ∼R α
∗(KXc +Bc +M c).

In particular, KXm +Bm +Mm is semi-ample over Z and there exists a unique, up to
isomorphism, canonical model of (X,B +M) over Z.

Proof. The proof is analogous to the proof of [Fuj17, Lemma 4.8.4]. Nevertheless, we
provide the details for the benefit of the reader.

Let W be a common resolution of X, Xm and Xc, together with morphisms
p : W → X, q : W → Xm and r : W → Xc.

W

X Xm Xc

p
q r

We may write
p∗(KX +B +M) ∼R q

∗(KXm +Bm +Mm) + F

and
p∗(KX +B +M) ∼R r

∗(KXc +Bc +M c) +G,

where F is effective and q-exceptional and G is effective and r-exceptional, see Lemma
2.18(i). Therefore,

q∗(KXm +Bm +Mm) + F ∼R r
∗(KXc +Bc +M c) +G.

Note that q∗(G−F ) ≥ 0 and −(G−F ) is q-nef, and that r∗(F −G) ≥ 0 and −(F −G)
is r-nef. It follows from the Negativity lemma [KM98, Lemma 3.39(1)] that F = G,
and thus

q∗(KXm +Bm +Mm) ∼R r
∗(KXc +Bc +M c). (2.8)
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Let C be a curve on W which is contracted by q. Then

0 = q∗(KXm +Bm +Mm) · C = r∗(KXc +Bc +M c) · C
= (KXc +Bc +M c) · r∗C,

hence C is also contracted by r, since KXc + Bc + M c is ample over Z. Thus, by the
Rigidity lemma [Deb01, Lemma 1.15] there exists a birational morphism α : Xm → Xc

such that r = α ◦ q, and the first statement follows from (2.8).
Assume now that there exists another canonical model (Y,BY +MY ) of (X,B+M).

Then, analogously as above, there exists a birational morphism β : Xc → Y such that

KXc +Bc +M c ∼R β
∗(KY +BY +MY ).

Since KXc +Bc+M c is ample over Z, the map β must be finite, hence an isomorphism
by Lemma 1.16.

2.2.4 What are the Differences?

Consider an lc g-pair (X,B+M). Observe that the differences between minimal models
(resp. Mori fiber spaces) in the usual sense and in the sense of Birkar-Shokurov of
(X,B + M) lie in the type of the map ϕ to the model (Y,BY + MY ) – whether it
is a birational contraction or not – and the kind of the singularities of the model
(Y,BY +MY ) – whether they are dlt and/or Q-factorial or not; note that they are at
least lc by Proposition 2.36 (resp. by definition). Actually, we can say more about the
map ϕ, and hence about the differences between the notions in question.

To begin with, let ϕ : (X,B+M) 99K (Y,BY +MY ) be a minimal model (resp. Mori
fiber space) in the sense of Birkar-Shokurov of (X,B +M) over Z. Since ϕ : X 99K Y
may not be a birational contraction, its inverse ϕ−1 : Y 99K X is in general allowed to
contract some divisors. However, these divisors are actually very special, namely they
determine lc centers of (X,B + M). Indeed, if D is a ϕ−1-exceptional prime divisor,
then D is an irreducible component of BY with coefficient one by definition, and it
follows from Proposition 2.36 (resp. by definition) that

−1 ≤ a(D,X,B +M) ≤ a(D,Y,BY +MY ) = −1,

and hence a(D,X,B +M) = −1; in other words, cX(D) is an lc center of (X,B +M).
In conclusion, ϕ is only allowed to extract lc centers of (X,B +M).

Furthermore, if (X,B + M) is plt, then ϕ is necessarily a birational contraction,
since otherwise there would exist a ϕ−1-exceptional prime divisor D, and then by the
previous paragraph and by Proposition 2.20 we would obtain

−1 < a(D,X,B +M) = a(D,Y,BY +MY ) = −1,

a contradiction. Additionally, we claim that for any exceptional divisorial valuation E
over Y we have a(E, Y,BY +MY ) > −1. Indeed, if E is exceptional over X, then

−1 < a(E,X,B +M) ≤ a(E, Y,BY +MY )

by Propositions 2.20 and 2.36, while if cX(E) is a ϕ-exceptional prime divisor, then

−1 ≤ a(E,X,B +M) < a(E, Y,BY +MY )



Section 2.2. Types of Models of a Generalized Pair 41

by definition. Hence, (Y,BY + MY ) is also plt by Proposition 2.20. (This is clearly
also true if (Y,BY + MY ) were instead a minimal model (resp. Mori fiber space) of
(X,B + M) over Z.) To summarize, minimal models (resp. Mori fiber spaces) in the
usual sense and in the sense of Birkar-Shokurov coincide (modulo Q-factoriality) in the
plt case.

Having already discussed the differences between minimal models in the usual sense
and minimal models in the sense of Birkar-Shokurov and having also discovered that
they essentially coincide in the plt case, it is reasonable to wonder whether they actually
coincide in more general contexts. The purpose of the next result is to shed light on
this question.

Lemma 2.39. Assuming that all varieties below are quasi-projective, the following
statements hold.

(i) If (X/Z,B) is an lc pair, then it has a minimal model over Z if and only if it has
a minimal model in the sense of Birkar-Shokurov over Z.

(ii) If (X/Z,B + M) is an NQC lc g-pair such that (X, 0) is Q-factorial klt, then it
has a minimal model over Z if and only if it has a minimal model in the sense of
Birkar-Shokurov over Z.

Proof. This is [LT19, Lemma 2.9] and we reproduce its proof for the convenience of the
reader.

(i) If (Y,BY ) is a minimal model of (X,B) over Z, then a dlt blow-up of (Y,BY ) is a
minimal model in the sense of Birkar-Shokurov of (X,B) over Z. The converse follows
immediately from [HH19, Theorem 1.7].

(ii) If (Y,BY + MY ) is a minimal model of (X,B + M) over Z, then a dlt blow-up
of (Y,BY + MY ) is a minimal model in the sense of Birkar-Shokurov of (X,B + M)
over Z. We emphasize that the assumption “(X, 0) is Q-factorial klt” does not play
any role in this implication. The converse follows by repeating verbatim the proof of
[HL18, Theorem 1.7], except that our assumption replaces [HL18, Theorem 5.4] in that
proof.

Comment. If in Lemma 2.39(ii) we drop the assumption that (X, 0) is Q-factorial klt
and ask for the exact analog of Lemma 2.39(i) in the context of g-pairs, then the answer
turns out to be much more complicated. Of course, one direction is easy, namely, if
(Y,BY + MY ) is a minimal model of (X,B + M) over Z, then any dlt blow-up of
(Y,BY +MY ) is a minimal model in the sense of Birkar-Shokurov of (X,B +M) over
Z, as already mentioned above. However, regarding the converse, which is indisputably
the most important implication of the two, currently we can at least give the following
conditional answer: assuming the termination of flips for g-pairs in lower dimensions,
if (X,B + M) has a minimal model in the sense of Birkar-Shokurov over Z, then
(X,B +M) has a minimal model over Z by Proposition 3.9 and by Theorem 6.14.

2.2.5 Existence of Mori Fiber Spaces

We conclude this section with a theorem that establishes the existence of Mori fiber
spaces for non-pseudo-effective g-pairs essentially in full generality.
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Theorem 2.40. Assuming that all varieties below are quasi-projective, the following
statements hold.

(i) If (X/Z,B) is a non-pseudo-effective lc pair, then it has a Mori fiber space over
Z.

(ii) If (X/Z,B + M) is a non-pseudo-effective NQC lc g-pair such that (X, 0) is Q-
factorial klt, then it has a Mori fiber space over Z.

(iii) If (X/Z,B+M) is a non-pseudo-effective NQC lc g-pair, then it has a Mori fiber
space in the sense of Birkar-Shokurov over Z.

Proof.

(i) Follows immediately from [HH19, Theorem 1.7].

(ii) Follows immediately from [BZ16, Lemma 4.4(1)].

(iii) Let h : (T,BT + MT ) → (X,B + M) be a dlt blow-up of (X,B + M). By (ii),
(T,BT + MT ) has a Mori fiber space (Y,BY + MY ) over Z, and it follows now from
Remark 2.32 that (Y,BY +MY ) is a Mori fiber space in the sense of Birkar-Shokurov
of (X,B +M) over Z.

Lastly, we comment on the above theorem. First, as far as (i) is concerned, the klt
case was originally established by [BCHM10, Corollary 1.3.3], while the dlt case follows
from [Bir12a, Theorem 4.1(ii)], which also relies on [BCHM10]. Second, the argument
for the proof of (ii) is actually contained in the first lines of the proof of Lemma 2.51.
Third, regarding (iii), we stress that our main goal is, of course, to deduce the existence
of Mori fiber spaces in the usual sense (not just in the sense of Birkar-Shokurov) for
non-pseudo-effective NQC lc g-pairs, but no analog of [HH19, Theorem 1.7] in the
setting of g-pairs is currently available.

2.3 The Minimal Model Program for Generalized Pairs

In this section we discuss thoroughly the MMP in the setting of g-pairs. Specifically, we
recall the definitions of divisorial contractions and flips for g-pairs and we prove analogs
of [KM98, Proposition 3.36(1), Proposition 3.37(1), Corollary 3.42, Corollary 3.43 and
Corollary 3.44] in this general setting. Furthermore, we explain exhaustively when and
how one can run an MMP (with scaling of an ample divisor) in the context of g-pairs.
Note that such MMPs have already been used in previous subsections of the thesis
and we provide here the missing details. Additionally, we reproduce several results
from our papers, namely [LT19, Lemma 2.17, Corollary 2.18, Lemma 2.19, Lemma
2.20 and Lemma 2.23], [LMT20, Lemma 3.1 and Lemma 3.2] and [CT20, Lemma 2.15],
which concern or whose proofs involve the MMP with scaling of an ample divisor for g-
pairs. In this regard, the current section complements and significantly expands [BZ16,
Section 4] and [HL18, Section 3.1]. Its contents will be of fundamental importance for
the remainder of the thesis.

2.3.1 Divisorial Contractions and Flips

We begin with the definition of a divisorial contraction and then continue with the
definition of a flip in the context of g-pairs.
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Definition 2.41. Let (X/Z,B + M) be a g-pair. A projective birational morphism
π : X →W over Z to a normal variety W such that

• codimX Exc(π) = 1,

• the relative Picard number is ρ(X/W ) = 1, and

• −(KX +B +M) is ample over W ,

is called a divisorial contraction over Z.

Definition 2.42. A diagram

(X,B +M) (X+, B+ +M+)

W
θ

π

θ+

over Z, where

• (X/Z,B +M) and (X+/Z,B+ +M+) are g-pairs and W is a normal variety,

• θ and θ+ are projective birational morphisms and π is a birational map,

• θ∗B ≥ θ+∗ B+,

• M and M+ are pushforwards of the same nef R-divisor on a common higher
model of X and X+,

• −(KX +B +M) is nef over W and KX+ +B+ +M+ is nef over W ,

is called a quasi-flip over Z.

If, moreover,

• π is an isomorphism in codimension one,

• π∗B = B+ (or, equivalently, θ∗B = θ+∗ B
+),

• −(KX +B +M) is ample over W and KX+ +B+ +M+ is ample over W ,

then the given diagram is called an ample small quasi-flip over Z.

If, in addition to the above,

• θ and θ+ are isomorphisms in codimension one, and

• the relative Picard numbers are ρ(X/W ) = ρ(X+/W ) = 1,

then the above diagram is called a (KX +B +M)-flip over Z. In this case the map θ
(resp. θ+) is called the flipping contraction over Z (resp. the flipped contraction over Z)
and the set Exc(θ) (resp. Exc(θ+)) is called the flipping locus (resp. the flipped locus).

The definition of quasi-flips given above is [HM18, Definition 1.8], while the one of
ample small quasi-flips is taken from our paper [LMT20], cf. [HM18, Definition 1.9].
The latter will play a significant role in Chapter 5, where we will deal with the special
termination for NQC lc g-pairs, though some results regarding ample small quasi-flips
will be discussed in Subsection 2.3.5.
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Remark 2.43.

(1) If

(X,B +M) (X+, B+ +M+)

W
θ

π

θ+

is an ample small quasi-flip (over Z), then (X+, B+ +M+) is the canonical model
of (X,B +M) over W by definition.

In conclusion, according to Lemma 2.38, an ample small quasi-flip, hence a flip, is
unique if it exists.

(2) Flips for klt pairs exist by [BCHM10, Corollary 1.4.1], whereas flips for lc pairs exist
by [Bir12a, Corollary 1.2] or [HX13, Corollary 1.8], see also [Fuj17, Corollaries
4.8.12 and 4.8.14]. On the other hand, the existence of flips for g-pairs is still
unknown in full generality, but it can nonetheless be derived under some rather
mild conditions, see Subsection 2.3.2 for the details.

Now, we investigate the behavior of discrepancies under a divisorial contraction or
a flip.

Lemma 2.44. Let (X/Z,B+M) be a g-pair and let π : (X,B+M)→ (W,BW +MW )
be a divisorial contraction over Z5. Then for any divisorial valuation F over X we
have

a(F,X,B +M) ≤ a(F,W,BW +MW ),

and the strict inequality holds if and only if cX(F ) is contained in Exc(π). Moreover,
the following hold:

(i) If (X,B +M) is terminal (resp. canonical) and E ∧ B = 0, where E is the sum
of the π-exceptional prime divisors, then (W,BW + MW ) is also terminal (resp.
canonical).

(ii) If (X,B +M) is klt (resp. plt, dlt, lc), then (W,BW +MW ) is also klt (resp. plt,
dlt, lc).

Proof. The first part of the statement follows immediately from Lemma 2.18(iii) and
yields the second part of the statement in case (X,B+M) is terminal, canonical, klt or
lc. In particular, regarding (i), the condition E ∧B = 0 means that the divisors E and
B have no common components, so if F is an exceptional divisorial valuation over W
which is not exceptional over X, then cX(F ) is an irreducible component of E and we
therefore have 0 = a(F,X,B+M) < a(F,W,BW +MW ). Finally, if (X,B+M) is dlt,
then (W,BW +MW ) is also dlt by [HL18, Lemma 3.7], and if, additionally, (X,B+M)
is plt, then (W,BW +MW ) is also plt by Proposition 2.20.

5We refer to Subsection 2.3.2 for the precise definition of the g-pair structure on W . Here, we have
implicitly assumed that KW +BW +MW is R-Cartier, since this is actually the only condition required
in order for the statement of the lemma to make sense, and, of course, that the map π exists. As we
will see below, both of these assumptions are satisfied when (X,B +M) is lc and (X, 0) is Q-factorial
klt.



Section 2.3. The MMP for Generalized Pairs 45

Lemma 2.45. Let (X/Z,B +M) be a g-pair and let

(X,B +M) (X+, B+ +M+)

W
θ

π

θ+

be a (KX +B +M)-flip over Z. Then for any divisorial valuation F over X we have

a(F,X,B +M) ≤ a(F,X+, B+ +M+),

and the strict inequality holds if and only if either cX(F ) is contained in the flipping
locus Exc(θ) or cX+(F ) is contained in the flipped locus Exc(θ+).

In particular, if (X,B + M) is terminal (resp. canonical, klt, plt, dlt, lc), then
(X+, B+ +M+) is also terminal (resp. canonical, klt, plt, dlt, lc).

Proof. The first part of the statement follows immediately from Lemma 2.18(iii) and
yields the remaining assertions in case (X,B + M) is terminal, canonical, klt or lc.
If (X,B + M) is dlt, then (X+, B+ + M+) is also dlt by [HL18, Lemma 3.7], and if,
additionally, (X,B+M) is plt, then (X+, B++M+) is also plt by Proposition 2.20.

Remark 2.46. There is an obvious analog of Lemma 2.45 for ample small quasi-flips,
which is also obtained using Lemma 2.18(iii). This observation will be used without
explicit mention in Subsection 2.3.5.

We conclude this subsection by recalling [Bir07, Definition 2.3]. This definition will
only be needed in Chapter 6, where we will be concerned with the termination of flips
conjecture.

Definition 2.47. Let X → Z be a projective morphism of normal varieties and let D
be an R-Cartier R-divisor on X. A D-flip over Z is a diagram

X X+

W

Z

θ θ+

where

• X+ and W are normal varieties, which are projective over Z,

• θ and θ+ are projective birational morphisms with

codimX Exc(θ) ≥ 2 and codimX+ Exc(θ+) ≥ 2,

that is, θ and θ+ are isomorphisms in codimension one,

• the relative Picard number is ρ(X/W ) = 1,

• −D is ample over W , and the strict transform D+ of D on X+ is R-Cartier and
ample over W .

In particular, if (X/Z,B) is a usual pair, then we recover the notion of a (KX +B)-
flip over Z by taking D = KX +B in the above definition.
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2.3.2 Running an MMP

Let (X,B+M) be a g-pair with data X ′
f→ X → Z and M ′. Assume that (X,B+M)

is lc and that (X, 0) is klt – note that the following discussion remains valid if we
assume instead that (X,B + M) is klt due to [HL18, Lemma 3.5]. Assume also that
KX + B + M is not nef over Z and consider a (KX + B + M)-negative extremal ray
R over Z. By [HL18, Lemma 3.5] there is a boundary R-divisor ∆ on X such that
(X,∆) is klt and R is also a (KX + ∆)-negative extremal ray over Z. It follows from
[KM98, Theorem 3.25(3)] that R can be contracted and we denote by θ : X → W the
associated contraction over Z. We consider now the following two cases.

Case I: Assume that θ : X → W is a divisorial contraction. Setting BW := θ∗B and
MW := (θ ◦ f)∗M

′, we may induce on W the structure of a g-pair (W,BW +MW ) with

data X ′
θ◦f−→ W → Z and M ′, provided that KW + BW + MW is R-Cartier. Under

this condition, (W,BW + MW ) is lc by Lemma 2.44(ii) and (W, 0) is klt by [KM98,
Corollary 3.43(1) and Corollary 2.35(1)]. We obtain the following diagram over Z:

(X,B +M) (W,BW +MW )

W
θ

θ

idW

Note that if X is Q-factorial, then W is also Q-factorial by [KM98, Corollary 3.18],
hence W can be endowed with the aforementioned g-pair structure. Additionally, the
exceptional locus Exc(θ) of θ is an irreducible divisor on X by [KMM87, Proposition
5-1-6], and a uniruled variety by [KMM87, Proposition 5-1-8]. Furthermore, by [Fuj17,
Proposition 4.8.18] we have ρ(W/Z) = ρ(X/Z) − 1. Lastly, we remark that these
properties of Exc(θ) need not hold without the assumption that X is Q-factorial.

Case II: Assume that θ : X →W is a flipping contraction. Then the (KX + ∆)-flip of
θ exists by [BCHM10, Corollary 1.4.1]; we denote by θ+ : X+ →W the corresponding
flipped contraction and by π the induced map (θ+)−1 ◦ θ : X 99K X+, which is an
isomorphism in codimension one. We remark in passing that

dim Exc(θ) + dim Exc(θ+) ≥ dimX − 1

by [KMM87, Lemma 5-1-17] and by [HK10, Remark 5.20]. We may also assume that
X ′ is a sufficiently high birational model of X so that the induced map g : X ′ 99K X+

is a morphism. Setting B+ := π∗B and M+ := g∗M
′, we may induce on X+ the

structure of a g-pair (X+, B+ +M+) with data X ′
g→ X+ → Z and M ′, provided that

KX+ +B+ +M+ is R-Cartier. Under this condition, (X+, B+ +M+) is lc by Lemma
2.45 and (X+, 0) is klt by [KM98, Corollary 3.42 and Corollary 2.35(1)]. Thus, we
obtain the following diagram over Z:

X ′

(X,B +M) (X+, B+ +M+)

W

f g

θ

π

θ+
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which is clearly a (KX +B +M)-flip over Z.
Note that if X is Q-factorial, then X+ is also Q-factorial by [KM98, Proposition

3.37(1)], hence X+ can be endowed with the aforementioned g-pair structure. Further-
more, by [Fuj17, Proposition 4.8.20] we have ρ(X+/Z) = ρ(X/Z).

In conclusion, divisorial contractions and flips exist for lc g-pairs whose underlying
variety is Q-factorial klt. However, without these extra assumptions on the underlying
variety of a given lc g-pair, the existence of flips (or actually even an analog of [Fuj17,
Theorem 4.5.2]) is currently an open problem in birational geometry.

Taking the above into account, we infer that we may always run an MMP (with
scaling of an ample divisor) over Z for any lc g-pair (X/Z,B + M) such that (X, 0)
is Q-factorial klt, and in particular for any Q-factorial dlt g-pair (X/Z,B + M), see
Remark 2.7. We elaborate on this below. We also stress that (as part of the definition
of the MMP) the nef part of every g-pair occuring in a given MMP is the same.

MMP for Generalized Pairs

Let (X,B+M) be a g-pair with data X ′
f→ X → Z and M ′. Assume that (X,B+M)

is lc and that (X, 0) is Q-factorial klt. Then we may run a (KX +B +M)-MMP over
Z as follows (but we do not know whether it terminates). If KX + B + M is nef over
Z, then we stop. Otherwise, there exists a (KX + B + M)-negative extremal ray R
over Z, which can be contracted, and we denote by θ : X →W the associated extremal
contraction over Z. We distinguish now three cases. First, if θ is a Mori fiber space,
then we stop. Second, if θ is a divisorial contraction, then W admits a g-pair structure
(W,BW +MW ) with data X ′ →W → Z and M ′, and (W,BW +MW ) satisfies the same
conditions as (X,B + M), so we may now continue the process with (W,BW + MW ).
Third, if θ is a flipping contraction, then its flip π : X 99K X+ exists, the variety X+

admits a g-pair structure (X+, B+ + M+) with data X ′ → X+ → Z and M ′, and
(X+, B+ +M+) satisfies the same conditions as (X,B +M), so we may now continue
the process with (X+, B+ +M+). Therefore, by repeating this procedure, we obtain a
(KX +B +M)-MMP over Z. This MMP was first outlined in [HL18, Section 3.1].

Comment. If (X/Z,B +M) is an lc g-pair of dimension 2, then any (KX +B +M)-
MMP over Z terminates. Indeed, by Corollary 1.17 there are no flipping contractions
in dimension 2, hence any (KX + B + M)-MMP over Z consists only of divisorial
contractions and we know that at each step the relative Picard number over Z drops
by one. This yields the assertion.

It is worth mentioning that the additional assumption “(X, 0) is Q-factorial klt”,
which is currently indispensable in order to run MMPs in the setting of g-pairs, is
reduntant in this case due to [HL20b, Lemma 2.4].

Last but not least, the above fact, together with [KMM87, Theorem 5-1-15], Corol-
lary 3.10 and Theorem 3.17, allow us to derive from Theorem 6.14 a new proof of
the termination of flips (hence of any MMP) for pseudo-effective NQC lc g-pairs of
dimension 3, cf. Theorem 6.10.

MMP with Scaling for Generalized Pairs

Let (X,B+M) be a g-pair with data X ′
f→ X → Z and M ′. Assume that (X,B+M)

is lc and that (X, 0) is Q-factorial klt. Then we may run a (KX + B + M)-MMP
with scaling of an ample divisor over Z as follows (but we do not know whether it
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terminates). Let A be an effective general ample over Z R-Cartier R-divisor on X such
that (X,B +A+M) is lc (see Lemma 2.4 and Remark 2.11(2)) and KX +B +M +A
is nef over Z. Set

λ := inf
{
t ∈ R≥0 | KX +B +M + tA is nef over Z

}
.

If λ = 0 (or, equivalently, KX + B + M is nef over Z), then we stop. Otherwise,
λ ∈ (0, 1], and we may choose 0 < ε � 1 such that 0 < λ(1− ε) < λ and 0 < λε � 1.
By [HL18, Lemma 3.5] there exists a boundary ∆ on X such that (X,∆) is klt and
∆ ∼R,Z B +M + λ(1− ε)A. Therefore,

KX + ∆ ∼R,Z KX +B +M + λ(1− ε)A

is not nef over Z, while

KX + ∆ + λεA ∼R,Z KX +B +M + λA

is nef over Z. In addition, (X,∆ + λεA) is klt and clearly

λε = inf
{
s ∈ R≥0 | KX + ∆ + sA is nef over Z

}
.

By [Bir10a, Lemma 3.1] there exists an extremal ray R over Z such that

(KX + ∆) ·R < 0 and (KX + ∆ + λεA) ·R = 0.

In particular, A ·R > 06 and therefore

(KX +B +M) ·R < 0 and (KX +B +M + λA) ·R = 0.

By [KM98, Theorem 3.25(3)], R can be contracted and we denote by θ : X → W the
associated extremal contraction over Z. Now, we distinguish three cases.

1) If θ is a Mori fiber space, then we stop.

2) If θ is a divisorial contraction, then W admits a g-pair structure (W,BW + MW )
with data X ′ →W → Z and M ′, (W,BW +MW ) is lc and (W, 0) is Q-factorial klt.
Additionally, KW + BW + MW + λAW is nef over Z by [KM98, Theorem 3.25(3)]
and (W,BW +AW +MW ) is lc by Lemma 2.18(iii), where AW is the strict transform
of A on W . Hence, we may now repeat the process with (W,BW + MW ) and AW
in place of (X,B +M) and A, respectively.

3) If θ is a flipping contraction, then its flip π : X 99K X+ exists, the variety X+

admits a g-pair structure (X+, B+ + M+) with data X ′ → X+ → Z and M ′,
(X+, B+ + M+) is lc and (X+, 0) is Q-factorial klt. Additionally (and as above),
(X+, B+ + A+ + M+) is lc and KX+ + B+ + M+ + λA+ is nef over Z, where A+

is the strict transform of A on X+. Hence, we may now repeat the process with
(X+, B+ +M+) and A+ in place of (X,B +M) and A, respectively.

Therefore, by continuing in the same fashion, we obtain a (KX + B + M)-MMP with
scaling of A over Z. This MMP was originally defined in [BZ16, Section 4].

6We emphasize that it is not necessary to invoke the ampleness of A over Z in order to show that
A ·R > 0. This observation is vital for the repetition of the procedure in question, since the ampleness
of A over Z is not preserved along the MMP.
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Comment. Let (X/Z,B + M) be an NQC g-pair with data X ′
f→ X → Z and M ′.

Assume that (X,B + M) is lc and that (X, 0) is Q-factorial klt. Let P ′ be an NQC
divisor on X ′, let N be an effective R-divisor on X, set P := f∗P

′ and assume that(
X, (B+N)+(M+P )

)
is lc and that KX +B+N+M+P is nef over Z. According to

[HL18, Section 3.4], we may run a (KX +B+M)-MMP with scaling of N +P over Z,
which Han and Li call MMP with scaling of an NQC divisor and whose termination is
also not known. This MMP is actually the proper analog of [Bir12a, Definition 2.4] in
the setting of g-pairs and includes the MMP with scaling of an ample divisor discussed
above as a special case. We will not reproduce here its construction.

Remark 2.48. Let (X1/Z,B1 + M1) be an lc g-pair such that (X1, 0) is Q-factorial
klt. Run a (KX1 +B1 +M1)-MMP with scaling of an ample divisor A1 over Z. Denote
by (Xi/Z,Bi + Mi) the g-pairs occuring in this MMP and by Ai the strict transform
of A1 on Xi. For each i ≥ 1 let

λi := inf{t ∈ R≥0 | KXi +Bi +Mi + tAi is nef over Z}

be the nef threshold of Ai with respect to (Xi, Bi +Mi). By construction the sequence
{λi}∞i=1 is non-increasing. In fact, we have 1 ≥ λi ≥ λi+1 ≥ 0 for all i ≥ 1.

Additionally, it is worthwhile to mention that if

λ := lim
i→∞

λi > 0,

then the (KX1 +B1 +M1)-MMP with scaling of A1 over Z terminates, see the second
paragraph of the proof of Lemma 2.49 for the details.

In general, the termination of an MMP with scaling of an ample divisor is still an
open problem. However, several cases have already been settled. In the setting of usual
pairs, sufficient conditions for its termination are provided by [BCHM10, Corollary
1.4.2], [Bir12a, Theorem 4.1] (see also [Has19, Theorem 2.11]), [Hu17, Theorem 1.5],
[HH19, Theorem 1.7] and Theorem 4.15. Analogous termination results in the context
of g-pairs are [BZ16, Lemma 4.4], [HL18, Theorem 4.1] and Theorem 4.16 (see also
Subsection 3.1.2 for the results that led to Theorems 4.15 and 4.16).

Finally, note that the termination of an MMP with scaling of an ample divisor for
a g-pair usually relies on [BCHM10, Corollary 1.4.2]. This is actually the main reason
why we have to impose quasi-projectivity assumptions when running such MMPs if we
want to deduce their termination.

Convention. From this point forward we assume that all varieties considered are
normal and quasi-projective and that a variety X over a variety Z is projective over Z.

The next result generalizes [Dru11, Théorème 3.3] to the context of g-pairs as well as
to the relative setting. Its proof is analogous to the proof of [Fuj11c, Theorem 2.3] and
has already appeared implicitly in the proof of [HL18, Proposition 3.8]. Nevertheless,
we provide all the details for the benefit of the reader.

Lemma 2.49. Let (X/Z,B+M) be an lc g-pair such that (X, 0) is Q-factorial klt and
KX +B+M is pseudo-effective over Z. Assume that we have a (KX +B+M)-MMP
with scaling of an ample divisor A over Z. Then, on some variety Xi in this MMP, the
strict transform of KX +B+M becomes movable over Z. In particular, the restriction
of this strict transform to a very general fiber of the induced morphism Xi → Z is
movable.
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Proof. Let (Xi/Z,Bi+Mi) be the g-pairs occuring in the MMP, where (X1, B1+M1) :=
(X,B +M), let Ai be the strict transform of A on Xi, and set

λi := inf{t ∈ R≥0 | KXi +Bi +Mi + tAi is nef over Z}, i ≥ 1

and λ := limi→∞ λi. We distinguish two cases.
Assume first that λ > 0. Then the given MMP is also a (KX +B+M + λ

2A)-MMP.
Thus, by [HL18, Lemma 3.5] there exists a boundary ∆ on X such that KX + ∆ ∼R,Z
KX +B+M + λ

2A, the pair (X,∆) is klt and ∆ is big over Z. By [BCHM10, Corollary
1.4.2], the (KX + ∆)-MMP with scaling of A over Z terminates, and therefore the
original MMP terminates.

Assume now that λ = 0. Then we may assume that the MMP does not terminate
(since otherwise the assertion is clear), and that the strict transform of KX + B + M
never becomes movable over Z. We may also assume that the MMP consists only of
flips. For each i ≥ 1, let Hi be a divisor on Xi which is ample over Z and such that,
if Hi,X is the strict transform of Hi on X, then limi→∞[Hi,X ] = 0 in N1(X/Z). Since
KXi + Bi + Mi + λiAi + Hi is ample over Z for every i ≥ 1, the strict transform
KX +B+M+λiA+Hi,X is movable over Z for every i ≥ 1, and therefore KX +B+M
is also movable over Z, a contradiction.

Finally, the last assertion of the lemma follows readily from the first one.

2.3.3 Two Key Applications

We prove below a criterion for a g-pair to be relatively effective. This result plays a
fundamental role in the proofs of Theorems 3.13 and 3.14.

Lemma 2.50. Let (X,B+M) be a Q-factorial dlt g-pair such that X is quasi-projective
and let f : X → Y be a projective surjective morphism to a normal quasi-projective
variety Y . Assume that

ν
(
F, (KX +B +M)|F

)
= 0 and h1(F,OF ) = 0

for a very general fiber F of f . Then KX +B +M is effective over Y .

Proof. We run a (KX + B + M)-MMP with scaling of an ample divisor over Y . By
Lemma 2.49, after finitely many steps of this MMP we obtain a (KX +B+M)-negative
birational contraction θ : X 99K X ′ such that (KX′ + B′ + M ′)|F ′ is movable, where
B′ := θ∗B, M ′ is a pushforward of M and F ′ is a very general fiber of the induced
morphism f ′ : X ′ → Y . Additionally, since ν

(
F, (KX +B +M)|F

)
= 0 by assumption,

it follows from [LP20a, Section 2.2] that ν
(
F ′, (KX′ + B′ + M ′)|F ′

)
= 0, and hence

(KX′ +B′ +M ′)|F ′ ≡ 0 by [Nak04, Propositions III.1.14(1) and V.2.7(8)].
By Lemma 1.18 there exists an open subset U ⊆ Y such that

(KX′ +B′ +M ′)|U ′ ≡U 0,

where U ′ = (f ′)−1(U). Note that the natural projection DivR(U ′) → N1(U ′/U) is
defined over Q, so there exist Q-divisors D1, . . . , Dm on U ′ such that Di ≡U 0 for each
i ∈ {1, . . . ,m} and real numbers r1, . . . , rm such that

(KX′ +B′ +M ′)|U ′ =

m∑
i=1

riDi. (2.9)
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Since X ′ is a klt variety, so is F ′, hence F ′ has rational singularities, see Remark
2.7. Since h1(F,OF ) = 0 by assumption, we deduce by [Har77, Exercise III.8.1] that
h1(F ′,OF ′) = 0. Therefore, Di|F ′ ∼Q 0 for every i ∈ {1, . . . ,m}, and, after possibly
shrinking U , by Lemma 1.19 we have Di ∼Q,U 0. But then by (2.9) we obtain

(KX′ +B′ +M ′)|U ′ ∼R,U 0.

It follows now from [BCHM10, Lemma 3.2.1] that KX′ + B′ + M ′ is effective over Y ,
and therefore so is KX +B +M .

The following result also plays a crucial role in the proof of Theorem 3.14. It is a
special case of [HL20b, Lemma 4.3] and builds on [DHP13, Proposition 8.7], [Gon15,
Lemma 3.1] and [DL15, Theorem 3.3]. Nevertheless, we provide a detailed proof below.

Lemma 2.51. Let (X,B +M) be an NQC Q-factorial dlt g-pair of dimension n with
data T → X → Z and L. Assume that the divisor KX + B + M is pseudo-effective
over Z and that for each ε > 0 the divisor KX +B + (1− ε)M is not pseudo-effective
over Z. Then there exist a birational contraction ϕ : X 99K X ′ over Z and a fibration
f : X ′ → Y over Z such that:

(i) (X ′, B′ + M ′) is an NQC Q-factorial lc g-pair, where B′ := ϕ∗B and M ′ is the
pushforward of L,

(ii) KX′ +B′ +M ′ ∼R,Y 0,

(iii) ϕ is a
(
KX + B + (1 − ε)M

)
-MMP over Z for some 0 < ε � 1 and f is the

corresponding Mori fiber space.

Proof. Fix a general ample over Z divisor A ≥ 0 on X. Consider a decreasing sequence
{εi}∞i=1 of positive real numbers such that limi→∞ εi = 0. For each i ≥ 1 let

yi = inf
{
t ∈ R≥0 | KX +B + (1− εi)M + tA is pseudo-effective over Z

}
be the pseudo-effective threshold of A with respect to

(
X,B+ (1− εi)M

)
. Observe that

yi > 0 for all i ≥ 1.
Fix i ≥ 1. We may run a

(
KX + B + (1 − εi)M

)
-MMP with scaling of A over Z.

Note that this MMP is also a (KX + B + (1 − εi)M + νA)-MMP for some (actually
any) 0 < ν < yi. By [HL18, Lemma 3.5] there exists a boundary divisor ∆ such that
KX+B+(1−εi)M+νA ∼R,Z KX+∆ and the pair (X,∆) is klt. Therefore, this MMP
is clearly also a (KX+∆)-MMP with scaling of A over Z, which terminates with a Mori
fiber space gi : Xi → Yi over Z by [BCHM10, Corollary 1.3.3]. Let fi : X 99K Xi be the
resulting birational contraction over Z. Denote by Bi the strict transform of B on Xi

and by Mi the pushforward of L on Xi. Since KX+B+M is pseudo-effective over Z and
fi is a birational contraction, it follows that KXi +Bi +Mi is pseudo-effective over Z,
hence there exist effective R-divisors Ej on Xi such that limj→∞[Ej ] = [KXi +Bi+Mi]
in N1(Xi/Z). Let C be a curve on Xi which does not belong to

⋃
SuppEj and is

contracted by gi. Then (
KXi +Bi + (1− εi)Mi

)
· C < 0

by the definition of the MMP, and

(KXi +Bi +Mi) · C ≥ 0
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by the choice of C. Therefore, there exists ηi ∈ (1− εi, 1] such that

(KXi +Bi + ηiMi) · C = 0,

and since all contracted curves are numerically proportional, we obtain

KXi +Bi + ηiMi ≡Yi 0.

In particular, if Fi is a very general fiber of gi and if BFi := Bi|Fi and MFi := Mi|Fi ,
then we have

KFi +BFi + ηiMFi ≡ 0.

Now, for every i ≥ 1, set

τi = sup
{
t ∈ R≥0 | (Xi, Bi + tMi) is lc

}
and note that 1 − εi ≤ τi, since (Xi, Bi + (1 − εi)Mi) is an lc g-pair. If (Xi, Bi + Mi)
is not lc for infinitely many i, then after passing to a subsequence we can assume that
τi < 1 for all i ≥ 1, and since 1− εi ≤ τi and limi→∞(1− εi) = 1, we can also assume
that the sequence {τi}∞i=1 of lc thresholds is strictly increasing, but this contradicts the
ascending chain condition for lc thresholds [BZ16, Theorem 1.5]. Therefore, the g-pairs
(Xi, Bi + Mi) are lc for i � 0, and thus by Lemma 2.14 the g-pairs (Xi, Bi + ηiMi)
are lc for i � 0. In particular, the g-pairs (Fi, BFi + ηiMFi) are lc for i � 0. Since
KFi + BFi + ηiMFi ≡ 0, it follows from the global ascending chain condition [BZ16,
Theorem 1.6] that the sequence {ηi}∞i=1 is eventually constant, hence ηi = 1 for i� 0,
since 1− εi < ηi ≤ 1 and limi→∞(1− εi) = 1.

Consequently, we choose ϕ to be any of the fi for i� 0, we setX ′ := Xi and Y := Yi,
and we also take f to be the corresponding Mori fiber space gi. This completes the
proof.

2.3.4 MMPs as Sequences of Flops

The following two results exploit the boundedness of the length of extremal rays. The
first one is a special case of [Bir11, Proposition 3.2(5)]. The second one is an analog of
the first one in the context of g-pairs. We remark that similar statements (for g-pairs)
have also been observed in [HM18] and [HL18, Section 3.3]. Lastly, we refer to [Kaw91,
Theorem 1], [Fuj17, Section 4.6] and [HL18, Section 3.2] for further details regarding
the length of extremal rays.

Lemma 2.52. Let (X/Z,B) be an lc pair such that KX +B is nef over Z. Then there
exists ε0 > 0 such that for every ε ∈ (0, ε0) any

(
KX + (1 − ε)B

)
-MMP over Z is

(KX +B)-trivial.

Proof. According to [Fuj11a, Remark 18.8] the arguments in [Bir11, Section 3] work
also for lc pairs. Hence, the lemma follows from [Bir11, Proposition 3.2(5)].

Lemma 2.53. Let (X/Z,B +M) be an NQC lc g-pair such that (X, 0) is Q-factorial
klt and KX + B + M is nef over Z. Then there exists ε0 > 0 such that for every
ε ∈ (0, ε0) any

(
KX +B + (1− ε)M

)
-MMP with scaling of an ample divisor over Z is

(KX +B +M)-trivial.
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Proof. By [HL18, Proposition 3.16] there exist Q-divisors B1, . . . , Bm and M1, . . . ,Mm

such that each g-pair (X/Z,Bi + Mi) is lc with KX + Bi + Mi nef over Z, and there
exist positive real numbers α1, . . . , αm such that

∑
αi = 1 and

KX +B +M =
m∑
i=1

αi(KX +Bi +Mi). (2.10)

Fix a positive integer r such that r(KX + Bi +Mi) is Cartier for each i ∈ {1, . . . ,m}.
Consider the set

S =
{∑

αini > 0 | ni ∈ N, 1 ≤ i ≤ m
}
.

Then clearly there exists β > 0 such that s > β for all s ∈ S. Set

ε0 :=
β

β + 2r dimX

and fix any 0 < ε < ε0.
We run a

(
KX +B + (1− ε)M

)
-MMP with scaling of an ample divisor over Z. It

suffices to show that this MMP is (KX +Bi +Mi)-trivial at the first step for each i ∈
{1, . . . ,m}, since then the strict transform ofKX+Bi+Mi stays nef and r(KX+Bi+Mi)
stays Cartier along the MMP due to [KM98, Theorem 3.25(4)].

Let R be a
(
KX+B+(1−ε)M

)
-negative extremal ray over Z. Since by assumption

we have (KX +B +M) ·R ≥ 0, we infer

(KX +B) ·R < 0 and M ·R > 0.

By the boundedness of the length of extremal rays [HL18, Proposition 3.13] we may
find a curve C on X whose class belongs to R such that

− 2 dimX ≤ (KX +B) · C < 0 (2.11)

and
− 2 dimX ≤

(
KX +B + (1− ε)M

)
· C < 0. (2.12)

From (2.11) and (2.12) we obtain (1− ε)M · C ≤ 2 dimX. Therefore

0 < M · C ≤ 2 dimX

1− ε
.

This implies

(KX +B +M) · C =
(
KX +B + (1− ε)M

)
· C + εM · C <

2ε dimX

1− ε
<
β

r
.

If (KX +B+M) ·C > 0, then r(KX +B+M) ·C ∈ S by (2.10), a contradiction to the
choice of β. Hence (KX+B+M)·C = 0, and by (2.10) we obtain (KX+Bi+Mi)·C = 0.
This finishes the proof.

2.3.5 Lifting a Sequence of Ample Small Quasi-Flips

The next result is a slight generalization of [CT20, Lemma 2.15] and constitutes one of
the main ingredients for the proof of Theorem 6.9. It allows us to pass from a sequence
of (ample small quasi-)flips for klt g-pairs to a sequence of flips for terminal g-pairs
under certain conditions (which, actually, may not be possible to achieve in general,
but can at least be achieved with serious effort in the setting of Theorem 6.9).
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Lemma 2.54. Let (X1/Z,B1+M1) be a klt g-pair. Consider a sequence of ample small
quasi-flips over Z:

(X1, B1 +M1) (X2, B2 +M2) (X3, B3 +M3) · · ·

Z1 Z2

π1 π2 π3

Assume that for each i ≥ 1 there exists a Q-factorial terminalization (Y ′i ,∆
′
i + N ′i) of

(Xi, Bi + Mi) such that each Y ′i+1 is isomorphic in codimension one to Y ′i and each
∆′i+1 is the strict transform of ∆′i. Then there exists a diagram

(Y1,∆1 +N1) (Y2,∆2 +N2) (Y3,∆3 +N3) · · ·

(X1, B1 +M1) (X2, B2 +M2) (X3, B3 +M3) · · ·

Z1 Z2

h1

ρ1

h2

ρ2

h3

ρ3

π1 π2 π3

where, for each i ≥ 1, the map ρi is a sequence of (KYi + ∆i + Ni)-flips over Zi and
the map hi is a Q-factorial terminalization of (Xi, Bi +Mi).

In particular, the sequence on top of the above diagram is a sequence of flips for a
Q-factorial terminal g-pair (Y1,∆1 +N1).

Proof. Fix i ≥ 1. Since (Xi+1, Bi+1+Mi+1) is the canonical model of (Xi, Bi+Mi) over
Zi by Remark 2.43, by assumption and by construction of a Q-factorial terminalization
we deduce that (Y ′i+1,∆

′
i+1 +N ′i+1) is a minimal model of (Y ′i ,∆

′
i +N ′i) over Zi.

Set (Y1,∆1+N1) := (Y ′1 ,∆
′
1+N ′1) and denote by h1 : (Y1,∆1+N1)→ (X1, B1+M1)

the corresponding morphism. By [BZ16, Lemma 4.4(2)] there exists a (KY1 +∆1+N1)-
MMP with scaling of an ample divisor over Z1 which terminates with a minimal model
(Y2,∆2 +N2) of (Y1,∆1 +N1) over Z1. Since (X2, B2 +M2) is the canonical model of
(Y1,∆1+N1) over Z1, by Proposition 2.38 there exists a projective birational morphism
h2 : Y2 → X2 such that KY2 + ∆2 + N2 ∼R h∗2(KX2 + B2 + M2). Since (Y ′2 ,∆

′
2 + N ′2)

is a minimal model of (Y1,∆1 +N1) over Z1, by Proposition 2.37 we deduce that this
MMP with scaling over Z1 consists only of flips, and therefore h2 : (Y2,∆2 + N2) →
(X2, B2 + M2) is a Q-factorial terminalization of (X2, B2 + M2). By continuing this
process analogously, we obtain the required diagram.

With a similar argument and by invoking Lemma 2.24(ii) instead of Lemma 2.24(i)
we obtain the following result, which will not be used elsewhere in the thesis, but is
included here for the sake of completeness nonetheless. Note that the corresponding
statement for usual pairs appears, for instance, in Step 1 of the proof of [Bir10b,
Theorem 1.2] and its proof uses [Bir09, Remark 2.3]. Lastly, observe that (in contrast
to the other results of this subsection) we consider a sequence of flips instead of a
sequence of ample small quasi-flips over Z. The reason why we do so will become clear
from the proof of this result.
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Lemma 2.55. Let (X1/Z,B1 +M1) be a klt g-pair. Consider a sequence of flips over
Z:

(X1, B1 +M1) (X2, B2 +M2) (X3, B3 +M3) · · ·

Z1 Z2

θ1

π1

θ+1
θ2

π2

θ+2

π3

Then there exists a diagram

(Y1,∆1 +N1) (Y2,∆2 +N2) (Y3,∆3 +N3) · · ·

(X1, B1 +M1) (X2, B2 +M2) (X3, B3 +M3) · · ·

Z1 Z2

h1

ρ1

h2

ρ2

h3

ρ3

θ1

π1

θ+1
θ2

π2

θ+2

π3

where, for each i ≥ 1, the map ρi : Yi 99K Yi+1 is a sequence of (KYi + ∆i + Ni)-flips
over Zi and the map hi is a small Q-factorialization of the g-pair (Xi, Bi +Mi).

In particular, the sequence on top of the above diagram is a sequence of flips for a
Q-factorial klt g-pair (Y1,∆1 +N1).

Proof. Let h1 : (Y1,∆1 + N1) → (X1, B1 + M1) be a small Q-factorialization of the
g-pair (X1, B1 + M1), see Lemma 2.24(ii). By [BZ16, Lemma 4.4(2)] there exists a
(KY1 + ∆1 + N1)-MMP with scaling of an ample divisor over Z1 which terminates
with a minimal model (Y2,∆2 + N2) of (Y1,∆1 + N1) over Z1. We claim that this
MMP consists only of flips. Indeed, if a divisorial contraction with exceptional prime
divisor E appears at some step of this MMP, then the strict transform of E on Y1
must be a (θ1 ◦h1)-exceptional divisor, which is absurd, since both θ1 and h1 are small
contractions. Now, since (X2, B2 +M2) is the canonical model of (Y1,∆1 +Ξ1) over Z1,
by Proposition 2.38 there exists a projective birational morphism h2 : Y2 → X2 such that
KY2+∆2+Ξ2 ∼R h

∗
2(KX2+B2+M2). Note that h2 is a small contraction. Consequently,

the g-pair (Y2,∆2 +M2) is a small Q-factorialization of the g-pair (X2, B2 +M2). By
continuing this process analogously, we obtain the required diagram.

The following result allows us to pass from a sequence of (small ample quasi-)flips
for lc pairs to a sequence of flips for dlt pairs.

Lemma 2.56. Let (X1/Z,B1) be an lc pair. Consider a sequence of ample small
quasi-flips over Z:

(X1, B1) (X2, B2) (X3, B3) · · ·

Z1 Z2

θ1

π1

θ+1
θ2

π2

θ+2

π3

Then there exists a diagram
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(Y1,∆1) (Y2,∆2) (Y3,∆3) · · ·

(X1, B1) (X2, B2) (X3, B3) · · ·

Z1 Z2

h1

ρ1

h2

ρ2

h3

ρ3

θ1

π1

θ+1
θ2

π2

θ+2

π3

where, for each i ≥ 1, the map ρi : Yi 99K Yi+1 is a (KYi + ∆i)-MMP over Zi and the
map hi is a dlt blow-up of the pair (Xi, Bi).

In particular, the sequence on top of the above diagram is an MMP for a Q-factorial
dlt pair (Y1,∆1).

Proof. Let h1 : (Y1,∆1) → (X1, B1) be a dlt blow-up of (X1, B1). It follows from
Remark 2.43(1) that the pair (X1, B1) has a minimal model in the sense of Birkar-
Shokurov over Z1, hence (Y1,∆1) has a minimal model in the sense of Birkar-Shokurov
over Z1 by [Has19, Lemma 2.15]. Therefore, by [Bir12a, Theorem 1.9(ii),(iii)] there
exists a (KY1 + ∆1)-MMP with scaling of an ample divisor over Z1 which terminates
with a minimal model (Y2,∆2) of (Y1,∆1) over Z1. Since (X2, B2) is the canonical
model of (Y1,∆1) over Z1, by Proposition 2.38 there exists a morphism h2 : Y2 → X2

such that KY2 +∆2 ∼R h
∗
2(KX2 +B2). In particular, the pair (Y2,∆2) is a dlt blow-up of

(X2, B2). By continuing this process analogously, we obtain the required diagram.

Finally, we derive the analog of Lemma 2.56 in the context of g-pairs. For its
proof we need some notions and results from Chapters 3 and 4, but, despite that, we
incorporate this result here in order to render this subsection complete. Hence, we
emphasize that Lemma 2.57 will be applied only in Chapters 5 and 6.

Lemma 2.57. Assume the existence of minimal models for smooth varieties of dimen-
sion n− 1.

Let (X1/Z,B1 +M1) be an NQC lc g-pair of dimension n. Consider a sequence of
ample small quasi-flips over Z:

(X1, B1 +M1) (X2, B2 +M2) (X3, B3 +M3) · · ·

Z1 Z2

θ1

π1

θ+1
θ2

π2

θ+2

π3

Then there exists a diagram

(Y1,∆1 +N1) (Y2,∆2 +N2) (Y3,∆3 +N3) · · ·

(X1, B1 +M1) (X2, B2 +M2) (X3, B3 +M3) · · ·

Z1 Z2

h1

ρ1

h2

ρ2

h3

ρ3

θ1

π1

θ+1
θ2

π2

θ+2

π3
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where, for each i ≥ 1, the map ρi : Yi 99K Yi+1 is a (KYi + ∆i +Ni)-MMP over Zi and
the map hi is a dlt blow-up of the g-pair (Xi, Bi +Mi).

In particular, the sequence on top of the above diagram is an MMP for an NQC
Q-factorial dlt g-pair (Y1,∆1 +N1).

Proof. Let h1 : (Y1,∆1 + N1) → (X1, B1 + M1) be a dlt blow-up of (X1, B1 + M1).
It follows from Remark 2.43(1) that the g-pair (X2, B2 + M2) is a minimal model
of (X1, B1 + M1) over Z1. Hence, (X1, B1 + M1) admits an NQC weak Zariski de-
composition over Z1 by Corollary 3.10, and it follows now from Remark 3.6 that
(Y1,∆1 + N1) admits an NQC weak Zariski decomposition over Z1. Therefore, by
Theorem 4.16(ii) there exists a (KY1 + ∆1 +N1)-MMP with scaling of an ample divisor
over Z1 which terminates with a minimal model (Y2,∆2 +N2) of (Y1,∆1 +N1) over Z1.
Since (X2, B2+M2) is the canonical model of (Y1,∆1+N1) over Z1, by Proposition 2.38
there exists a morphism h2 : Y2 → X2 such that KY2 +∆2 +N2 ∼R h

∗
2(KX2 +B2 +M2).

In particular, the g-pair (Y2,∆2 +N2) is a dlt blow-up of the g-pair (X2, B2 +M2). By
continuing this process analogously, we obtain the required diagram.
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3

Zariski Decompositions

This chapter is devoted to the study of two distinct types of Zariski decompositions,
which can be regarded as higher-dimensional analogs of the classical Zariski decom-
position on surfaces [Laz04, Theorem 2.3.19]. More precisely, in Section 3.1 we deal
with NQC weak Zariski decompositions, which play a fundamental role in the thesis and
emerge repeatedly in the sequel, while in Section 3.2 we discuss NQC Nakayama-Zariski
decompositions. We establish the basic properties of these decompositions and we are
especially concerned with the problem of their existence, linking it to the existence of
minimal models.

The contents of Section 3.1 are mainly taken from our joint paper [LT19] with
Vladimir Lazić (specifically, we reproduce everything from [LT19, Sections 2 and 3]
that is related to NQC weak Zariski decompositions), while the contents of Section 3.2
are new and the results appearing there parallel those of Subsection 3.1.1.

Applications of the theory of higher-dimensional Zariski decompositions developed
in this chapter towards the existence of minimal models conjecture will be presented
in the next chapter of the thesis. Furthermore, for an overview of the various types
of Zariski decompositions that have appeared in the literature, including the classical
Zariski decomposition of an effective divisor on smooth projective surface, we refer to
[KMM87, Section 7.3], [Pro03], [Laz04, Section 2.3.E], [Bir12b, Section 1] and [BH14].

Throughout this chapter, unless otherwise stated, we assume that varieties are
normal and quasi-projective and that a variety X over a variety Z is projective over Z.

3.1 NQC Weak Zariski Decompositions

Weak Zariski decompositions were introduced by Birkar [Bir12b], who showed that
there is a basic relation between the existence of such decompositions and the existence
of minimal models. Specifically, assuming the termination of flips in lower dimensions,
an lc pair has a minimal model in the sense of Birkar-Shokurov if and only if it ad-
mits a weak Zariski decomposition, see [Bir12b, Theorem 1.5]. The NQC condition in
the definition of weak Zariski decompositions was added later by Han and Li [HL18],
who proved that for NQC Q-factorial dlt g-pairs the existence of NQC weak Zariski
decompositions in dimension ≤ n is equivalent to the existence of minimal models in
dimension ≤ n, see [HL18, Theorem 1.5].

In this section we recall the definition of NQC weak Zariski decompositions and
we study their fundamental properties. Our investigation culminates in Theorem 3.17,
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which constitutes one of the main results of the thesis and which improves considerably
on [HM18, Theorem 2]. It shows that the existence of NQC weak Zariski decompositions
for NQC lc g-pairs follows from the existence of NQC weak Zariski decompositions for
smooth varieties, rendering thus these two statements equivalent.

Last but not least, with the aid of Theorem 3.17 we will give in Chapter 4 the state-
of-the-art statements concerning the relation between the existence of minimal models
and the existence of NQC weak Zariski decompositions, which refine the aforementioned
results of Birkar [Bir12b] and Han and Li [HL18].

3.1.1 Definition and Basic Properties

Definition 3.1. Let π : X → Z be a projective morphism of normal varieties and let
D be an R-Cartier R-divisor on X. An NQC weak Zariski decomposition of D over Z
consists of a projective birational morphism f : W → X from a normal variety W and
a numerical equivalence f∗D ≡Z P + N , where P is an NQC divisor (over Z) on W
and N is an effective R-Cartier R-divisor on W .

Note that if D admits an NQC weak Zariski decomposition over Z, then D is neces-
sarily pseudo-effective over Z. On the other hand, it has been shown that there exists
a pseudo-effective divisor that does not admit an NQC weak Zariski decomposition, see
[Les14, Theorem 1.1].

Remark 3.2. With the same notation as in Definition 3.1, assume that D has an
NQC weak Zariski decomposition over Z and consider a projective surjective morphism
g : Y → X from a normal variety Y . Then g∗D has an NQC weak Zariski decomposition
over Z. Indeed, by considering a resolution of indeterminacies (p, q) : T → Y ×W of
f−1 ◦ g : Y 99KW such that T is normal, we have

p∗g∗D = q∗f∗D ≡Z q∗P + q∗N,

which proves the assertion.
If, additionally, g is birational, then the converse is also clear, namely, if g∗D has

an NQC weak Zariski decomposition over Z, then D has an NQC weak Zariski decom-
position over Z.

Remark 3.3. With the same notation as in Definition 3.1, assume that D has an NQC
weak Zariski decomposition over Z and let M be an R-Cartier R-divisor on X which
is the pushforward of an NQC divisor on some higher model of X. Then D + M has
an NQC weak Zariski decomposition over Z. Indeed, we may assume that M = f∗M

′,
where M ′ is an NQC divisor on W , and then by the Negativity lemma [KM98, Lemma
3.39(1)] we have f∗M = M ′ + E, where E is an effective f -exceptional R-Cartier
R-divisor on W . Hence,

f∗(D +M) ≡Z (P +M ′) + (N + E),

which proves the assertion.

Lemma 3.4. Let f : X 99K Y be a birational contraction between Q-factorial varieties
which are projective over Z. Let D be an R-divisor on X such that the map f is D-
non-positive. Then D has an NQC weak Zariski decomposition over Z if and only if
f∗D has an NQC weak Zariski decomposition over Z.
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Proof. Set G = f∗D. Since f is D-non-positive, if (p, q) : W → X × Y is a resolution
of indeterminacies of f , then there exists an effective q-exceptional R-Cartier R-divisor
E on W such that p∗D ≡Z q∗G+ E. By Remark 3.2 we may replace X with W , and
hence we may assume that f is a morphism and

D ≡Z f∗G+ E. (3.1)

Now, assume that D has an NQC weak Zariski decomposition over Z. Then there
exists a projective birational morphism π : T → X from a normal variety T such that
π∗D ≡Z P + N , where P is an NQC divisor on T and N is an effective R-Cartier
R-divisor on T . If we set g := f ◦π, then G ≡Z g∗P + g∗N by (3.1). By the Negativity
lemma [KM98, Lemma 3.39(1)] we have g∗g∗P = P+F for some effective g-exceptional
R-Cartier R-divisor F on T , and thus

g∗G ≡Z g∗g∗P + g∗g∗N = P + (F + g∗g∗N),

which shows that G has an NQC weak Zariski decomposition over Z.

Conversely, if G has an NQC weak Zariski decomposition over Z, then we conclude
by arguing as in Remark 3.2 and by taking (3.1) into account.

Definition 3.5. Let (X/Z,B+M) be an NQC g-pair. We say that (X,B+M) admits
an NQC weak Zariski decomposition over Z if the divisor KX +B+M admits an NQC
weak Zariski decomposition over Z.

Remark 3.6. Let (X/Z,B + M) be an NQC lc g-pair. It follows from Remark 3.2
that (X,B+M) admits an NQC weak Zariski decomposition over Z if and only if any
dlt blow-up of (X,B +M) admits an NQC weak Zariski decomposition over Z.

The next observation appears also in Step 1 of the proof of [HL18, Theorem 5.4]
and generalizes (the second part of) [Bir12b, Remark 2.4(i)] to the setting of g-pairs
(see Lemma 2.31 for the generalization of the first part of that Remark). Nevertheless,
we provide here the details for the convenience of the reader.

Remark 3.7. Let (X/Z,B + M) be an NQC lc g-pair with data X ′
f→ X → Z and

M ′. Assume that (X,B + M) admits an NQC weak Zariski decomposition over Z.
By replacing X ′ with a higher model, we may assume that f is a sufficiently high log
resolution of (X,B) and that

f∗(KX +B +M) ≡Z P +N,

where P is an NQC divisor on X ′ and N is an effective R-Cartier R-divisor on X ′, see
Remark 3.2. If B′ := f−1∗ B+E, where E is the sum of the f -exceptional prime divisors
on X ′, then (X ′, B′ +M ′) is a log smooth model of (X,B +M) and we may write

KX′ +B′ +M ′ ∼R f
∗(KX +B +M) + F,

where F is an effective f -exceptional R-Cartier R-divisor on X ′. Consequently,

KX′ +B′ +M ′ ≡Z P + (N + F )

is an NQC weak Zariski decomposition of (X ′, B′ +M ′) over Z.
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The next lemma plays a key role in the proof of Theorem 3.17 and it will also be
used repeatedly in Section 4.1. We remark that its proof is based on the idea of the
proof of [Has18b, Lemma 3.2].

Lemma 3.8. Let n, k ∈ Z≥1 with n ≥ k. Assume that every pseudo-effective smooth
pair (X/Z, 0) of dimension n admits an NQC weak Zariski decomposition over Z. Then
every pseudo-effective smooth pair (Y/Z, 0) of dimension k admits an NQC weak Zariski
decomposition over Z.

Proof. Let (Y/Z, 0) be a k-dimensional pair as in the statement of the lemma. Set
X := Y ×A, where A is any (n−k)-dimensional abelian variety, and let p : X → Y and
q : X → A be the projection maps. Then KX ∼ p∗KY ; in particular, KX is pseudo-
effective. By assumption there exists a projective birational morphism f : W → X from
a normal variety W and a numerical equivalence

f∗KX ≡Z P +N, (3.2)

where P is an NQC divisor on W and N is an effective R-Cartier R-divisor on W . Now,
let F be a very general fiber of q, observe that F ' Y , and set FW := f−1(F ). By
restricting (3.2) to FW we obtain(

f |FW
)∗
KF ≡Z P |FW +N |FW ,

which is an NQC weak Zariski decomposition of (Y, 0) over Z.

A basic result concerning the existence of NQC weak Zariski decompositions for
NQC lc g-pairs is [HL18, Proposition 5.1]. We reproduce here this result and we also
provide its proof for the sake of completeness.

Proposition 3.9. Let (X/Z,B+M) be an NQC lc g-pair. If (X,B+M) has a minimal
model in the sense of Birkar-Shokurov over Z, then it admits an NQC weak Zariski
decomposition over Z.

Proof. Let ϕ : (X,B+M) 99K (Y,BY +MY ) be a minimal model in the sense of Birkar-
Shokurov of (X,B +M) over Z. By [HL18, Proposition 3.16] there exist positive real
numbers µ1, . . . , µm and Q-Cartier Q-divisors P1, . . . , Pm on Y which are nef over Z
such that

KY +BY +MY =
m∑
i=1

µiPi. (3.3)

Let (p, q) : W → X × Y be a resolution of indeterminacies of ϕ. By Lemma 2.18(i) we
may write

p∗(KX +B +M) ∼R q
∗(KY +BY +MY ) + E, (3.4)

where E is an effective q-exceptional R-Cartier R-divisor on W . Hence, by (3.3) and
(3.4) we obtain

p∗(KX +B +M) ≡Z
m∑
i=1

µiq
∗Pi + E,

which is an NQC weak Zariski decomposition of (X,B +M) over Z.

Corollary 3.10. Let (X/Z,B+M) be an NQC lc g-pair. If (X,B+M) has a minimal
model over Z, then it admits an NQC weak Zariski decomposition over Z.
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Proof. If (Y,BY +MY ) is a minimal model of (X,B+M) over Z, then any dlt blow-up
of (Y,BY + MY ) is a minimal model in the sense of Birkar-Shokurov of (X,B + M)
over Z, and now we conclude by Proposition 3.9. Alternatively, we repeat verbatim
the proof of Proposition 3.9, but this time we invoke [HL20b, Proposition 2.6] instead
of [HL18, Proposition 3.16]; note that the former is a refinement of the latter.

3.1.2 On the Termination of MMPs with Scaling

The following result is a slightly reformulated version of [HL18, Theorem 1.7]. Hence,
we only give a sketch of its proof, referring to [HL18] and [Bir12b, Proof of Theorem
1.5, (1) =⇒ (4)] for the details.

Theorem 3.11. Assume the existence of NQC weak Zariski decompositions for NQC
Q-factorial dlt g-pairs of dimension at most n− 1.

Let (X/Z,B+M) be an NQC lc g-pair of dimension n which admits an NQC weak
Zariski decomposition over Z. Then the following statements hold.

(i) The g-pair (X,B+M) has a minimal model in the sense of Birkar-Shokurov over
Z.

(ii) If, additionally, (X, 0) is Q-factorial klt, then any (KX + B + M)-MMP with
scaling of an ample divisor over Z terminates. In particular, (X,B + M) has a
minimal model over Z.

Proof.

(i) Follows immediately from (ii) and Lemma 2.31.

(ii) By the proof of [HL18, Theorem 1.7], to prove (ii) it suffices to show that (X,B+M)
has a minimal model in the sense of Birkar-Shokurov over Z.

Let S be the set of all NQC lc g-pairs of dimension n whose underlying variety is
Q-factorial klt and which admit an NQC weak Zariski decomposition over Z but do
not have a minimal model in the sense of Birkar-Shokurov over Z. If S = ∅, then we
are done. Otherwise, to each element (Y/Z,∆Y +MY ) ∈ S with an NQC weak Zariski
decomposition g∗Y (KY + ∆Y + MY ) ≡Z PY + NY , where gY : Y ′ → Y is a birational
model, we can associate an invariant θ(Y/Z,∆Y + MY , NY ) as in [HL18, Definition
5.2]. Next, as in Step 1 of the proof of [HL18, Theorem 5.4], we may assume that we
chose an element (Y/Z,∆Y + MY ) ∈ S which is an NQC log smooth g-pair with an
NQC weak Zariski decomposition KY + ∆Y + MY ≡Z PY + NY that minimizes this
invariant in the set S. If θ(Y/Z,∆Y +MY , NY ) = 0, then a contradiction follows from
Step 2 of the proof of [HL18, Theorem 5.4], while if θ(Y/Z,∆Y +MY , NY ) > 0, then a
contradiction follows from Step 3 of the proof of [HL18, Theorem 5.4].

Theorem 3.12. Assume the existence of NQC weak Zariski decompositions for NQC
Q-factorial dlt g-pairs of dimension at most n− 1.

Let (X/Z,B) be an lc pair of dimension n. If (X,B) admits an NQC weak Zariski
decomposition over Z, then there exists a (KX + B)-MMP with scaling of an ample
divisor over Z which terminates. In particular, (X,B) has a minimal model over Z.

Proof. By [HH19, Theorem 1.7] it suffices to show that (X,B) has a minimal model in
the sense of Birkar-Shokurov over Z (see also the Comment in Subsection 2.2.1). We
conclude by Theorem 3.11(i).
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3.1.3 On the Existence of NQC Weak Zariski Decompositions

First, we prove two technical results, Theorems 3.13 and 3.14, which show that, modulo
suitable assumptions in lower dimensions, we may infer the existence of NQC weak
Zariski decompositions in specific cases. Their proofs are similar and follow the same
strategy as that of [HM18, Theorem 2]. Next, we use these results in order to deduce
Theorem 3.17, the main result of this chapter, as well as two complementary results,
Corollaries 3.18 and 3.19. The latter two concern the existence of NQC weak Zariski
decompositions for a certain class of pairs.

Theorem 3.13. Assume the existence of NQC weak Zariski decompositions for NQC
lc g-pairs of dimension at most n− 1.

Let (X/Z,∆) be a pseudo-effective Q-factorial dlt pair of dimension n such that for
each ε > 0 the divisor KX + (1 − ε)∆ is not pseudo-effective over Z. Then (X,∆)
admits an NQC weak Zariski decomposition over Z.

Proof. We proceed in four steps.

Step 1: In this step we show that we may assume the following:

Assumption 1. There exists a fibration ξ : X → Y over Z to a normal quasi-
projective variety Y such that dimY < dimX and such that:

(a1) ν
(
F, (KX + ∆)|F

)
= 0 and h1(F,OF ) = 0 for a very general fiber F of ξ,

(b1) KX + (1− ε)∆ is not ξ-pseudo-effective for any ε > 0.

To this end, pick a decreasing sequence {εi}∞i=1 of positive real numbers such that
limi→∞ εi = 0. By [Gon15, Lemma 3.1]1 applied to the divisors ∆i := (1− εi)∆, there
exists a birational contraction ϕ : X 99K S over Z and a fibration f : S → Y over Z
such that, if we set ∆S := ϕ∗∆, then:

(a) (S,∆S) is a Q-factorial lc pair,

(b) Y is a normal quasi-projective variety with dimY < dimX,

(c) KS + ∆S ≡Y 0,

(d) ϕ is a
(
KX + (1 − εi)∆

)
-MMP for some i � 0 and f is the corresponding Mori

fiber space.

Let (p, q) : W → X × S be a resolution of indeterminacies of ϕ such that W is
smooth. We may write

KW + ∆W ∼R p
∗(KX + ∆) + E, (3.5)

where the divisors ∆W and E are effective and have no common components. By
passing to a higher model we may assume that the pair (W,∆W ) is log smooth.

W

X S

Y

p q

ϕ

f

1This lemma works in the relative setting.
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Let F be a very general fiber of f and set FW = q−1(F ) ⊆ W , ∆F := ∆S |F and
∆FW := ∆W |FW . Then the divisors KF + ∆F and KFW + ∆FW are pseudo-effective
and we have (q|FW )∗(KFW + ∆FW ) = KF + ∆F , see (3.5). By [DL15, Lemma 3.1] and
by (c), we obtain

ν(FW ,KFW + ∆FW ) ≤ ν(F,KF + ∆F ) = 0,

hence ν(FW ,KFW +∆FW ) = 0, see [Nak04, Remark V.2.6(5) and Proposition V.2.7(6)].

Moreover, for every ε > 0, the divisor KFW + (1 − ε)∆FW is not pseudo-effective,
since otherwise the divisor KF + (1 − ε)∆F = (qFW )∗

(
KFW + (1 − ε)∆FW

)
would be

pseudo-effective for some ε > 0, a contradiction to (c) and (d).

Furthermore, since S is a klt variety by (d), so is F , hence F has rational singu-
larities. Additionally, h1(F,OF ) = 0 by (d) and by the Kodaira vanishing theorem. It
follows that h1(FW ,OFW ) = 0.

If KW + ∆W has an NQC weak Zariski decomposition over Z, then KX + ∆ has an
NQC weak Zariski decomposition over Z by (3.5) and by Lemma 3.4.

Therefore, by replacing (X,∆) with (W,∆W ) and by setting ξ := f ◦ q, we achieve
Assumption 1.

Step 2: If dimY = 0 (and thus necessarily dimZ = 0), then KX+∆ ≡ Nσ(KX+∆)
by [Nak04, Proposition V.2.7(8)]. Hence, KX + ∆ has an NQC weak Zariski decompo-
sition, and we are done.

Step 3: Assume from now on that dimY > 0. In this step we show that we may
assume the following:

Assumption 2. There exists a fibration g : X → T to a normal quasi-projective
variety T such that:

(a2) 0 < dimT < dimX,

(b2) KX + ∆ ≡T 0,

(c2) the numerical equivalence over T coincides with the R-linear equivalence over T .

However, instead of the pair (X,∆) being Q-factorial dlt, we may only assume that it
is an lc pair such that (X, 0) is Q-factorial klt.

To this end, by Assumption 1 (a1) and by Lemma 2.50 the divisor KX + ∆ is
effective over Y . Hence, by assumptions of the theorem and by Theorem 3.11, we may
run a (KX+∆)-MMP with scaling of an ample divisor over Y which terminates, and we
obtain a birational contraction θ : X 99K X ′ over Y . Set ∆′ := θ∗∆ and let ξ′ : X ′ → Y
be the induced morphism.

By Lemma 2.52 there exists δ > 0 such that, if we run a
(
KX′ + (1 − δ)∆′

)
-

MMP with scaling of an ample divisor over Y , then this MMP is (KX′ + ∆′)-trivial.
Note that KX′ + (1 − δ)∆′ is not ξ′-pseudo-effective: indeed, by possibly choosing δ
smaller, we may assume that the map θ is

(
KX + (1 − δ)∆

)
-negative, and the claim

follows since KX + (1 − δ)∆ is not ξ-pseudo-effective by (b1). Therefore, this relative(
KX′ + (1 − δ)∆′

)
-MMP terminates with a Mori fiber space f ′′ : X ′′ → Y ′′ over Y by

[BCHM10, Corollary 1.3.3]. Let θ′ : X ′ 99K X ′′ denote that MMP and set ∆′′ := θ′∗∆
′.
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X X ′ X ′′

Y ′′

Y

ξ

θ θ′

ξ′

f ′′

Then the variety X ′′ is Q-factorial, the pair (X ′′,∆′′) is lc by construction and by
Lemma 2.18(iii), the pair (X ′′, 0) is klt since the pair (X ′′, (1 − δ)∆′′) is dlt, and by
Lemma 2.52 we have

KX′′ + ∆′′ ≡Y ′′ 0.

Furthermore, the numerical equivalence over Y ′′ coincides with the R-linear equivalence
over Y ′′, since f ′′ is an extremal contraction, see [KM98, Theorem 3.25(4)].

If KX′′ + ∆′′ has an NQC weak Zariski decomposition over Z, then KX + ∆ has an
NQC weak Zariski decomposition over Z by Lemma 3.4.

Therefore, by replacing (X,∆) with (X ′′,∆′′) and by setting T := Y ′′ and g := f ′′,
we achieve Assumption 2.

Step 4: By [Bir11, Proposition 3.2(3)] there exist Q-divisors ∆1, . . . ,∆m such that
each pair (X,∆i) is lc with KX + ∆i nef over T , and there exist positive real numbers
r1, . . . , rm such that

∑
ri = 1 and

KX + ∆ =
m∑
i=1

ri(KX + ∆i). (3.6)

Then KX + ∆i ≡T 0 for all i ∈ {1, . . . ,m} by (b2) and by (3.6), so KX + ∆i ∼Q,T 0
for all i ∈ {1, . . . ,m} by (c2). Hence, by [FG14, Theorem 3.6] for each i ∈ {1, . . . ,m}
there exists an lc g-pair (T/Z,Bi + Mi) on T such that the Bi and Mi are Q-divisors
and

KX + ∆i ∼Q g
∗(KT +Bi +Mi). (3.7)

By (3.6) and (3.7) we obtain

KX + ∆ = g∗(KT +BT +MT ), (3.8)

where BT :=
∑
riBi and MT :=

∑
riMi. By construction, the resulting g-pair

(T/Z,BT + MT ) is NQC lc, and KT + BT + MT is pseudo-effective over Z by (3.8).
Hence, by assumptions of the theorem and by (a2), the g-pair (T/Z,BT +MT ) has an
NQC weak Zariski decomposition over Z, which induces an NQC weak Zariski decom-
position over Z for (X/Z,∆) due to (3.8) and Remark 3.2, as desired.

Theorem 3.14. Assume the existence of NQC weak Zariski decompositions for NQC
lc g-pairs of dimension at most n− 1.

Let (X/Z,∆ + M) be an NQC Q-factorial dlt g-pair of dimension n with data
V → X → Z and L. Assume that the divisor KX + ∆ +M is pseudo-effective over Z
and that for each ε > 0 the divisor KX + ∆ + (1− ε)M is not pseudo-effective over Z.
Then (X,∆ +M) admits an NQC weak Zariski decomposition over Z.

Proof. By Lemma 2.51 there exist a birational contraction ϕ : X 99K S over Z and a
fibration f : S → Y over Z such that:
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(a) (S,∆S + MS) is an NQC Q-factorial lc g-pair, where ∆S := ϕ∗∆ and MS is a
pushforward of L,

(b) Y is a normal quasi-projective variety with dimY < dimX,

(c) KS + ∆S +MS ∼R,Y 0,

(d) ϕ is a
(
KX + ∆ + (1− ζ)M

)
-MMP for some 0 < ζ � 1 and f is the corresponding

Mori fiber space.

As in Step 1 of the proof of Theorem 3.13, by replacing X with a higher model we may
assume the following:

Assumption 1. There exists a fibration ξ : X → Y over Z to a normal quasi-
projective variety Y such that dimY < dimX and such that:

(a1) ν
(
F, (KX + ∆ +M)|F

)
= 0 and h1(F,OF ) = 0 for a very general fiber F of ξ,

(b1) KX + ∆ + (1− ε)M is not ξ-pseudo-effective for any ε > 0.

If dimY = 0 (and thus necessarily dimZ = 0), then KX +∆+M has an NQC weak
Zariski decomposition as in Step 2 of the proof of Theorem 3.13, and we are done.

Assume from now on that dimY > 0. Note that (X,∆ + M) is also a g-pair over
Y . It follows from (a1) and from Lemma 2.50 that the divisor KX + ∆ +M is effective
over Y . Hence, by assumptions of the theorem and by Theorem 3.11, we may run a
(KX + ∆ + M)-MMP with scaling of an ample divisor over Y which terminates. We
obtain a birational contraction θ : X 99K X ′ over Y and a g-pair (X ′,∆′ +M ′), where
∆′ := θ∗∆ and M ′ is a pushforward of L, and we denote by ξ′ : X ′ → Y the induced
morphism.

By Lemma 2.53 there exists δ > 0 such that, if we run a
(
KX′+∆′+(1−δ)M ′

)
-MMP

with scaling of an ample divisor A over Y , then this MMP is (KX′ + ∆′ +M ′)-trivial.
Note that KX′ + ∆′ + (1 − δ)M ′ is not ξ′-pseudo-effective by (b1) as in Step 3 of the
proof of Theorem 3.13. Therefore, this relative

(
KX′+∆′+(1−δ)M ′

)
-MMP terminates

with a Mori fiber space f ′′ : X ′′ → Y ′′ over Y as in the proof of Lemma 2.51. We obtain
a birational contraction θ′ : X ′ 99K X ′′ and a g-pair (X ′′,∆′′ +M ′′), where ∆′′ := θ′∗∆

′

and M ′′ is a pushforward of L.
Then the variety X ′′ is Q-factorial, the NQC g-pair (X ′′,∆′′ + M ′′) is lc, the pair

(X ′′, 0) is klt by Remark 2.7 since the g-pair (X ′′,∆′′+(1−δ)M ′′) is dlt, and by Lemma
2.53 we have

KX′′ + ∆′′ +M ′′ ≡Y ′′ 0. (3.9)

Furthermore, the numerical equivalence over Y ′′ coincides with the R-linear equivalence
over Y ′′, since f ′′ is an extremal contraction, see [KM98, Theorem 3.25(4)]. Moreover,
the divisor M ′′ is ample over Y ′′ by (3.9) and since −(KX′′ + ∆′′ + (1 − δ)M ′′) is
f ′′-ample.

Then, as in Step 3 of the proof of Theorem 3.13, we may replace (X,∆ +M) with
(X ′′,∆′′ +M ′′) and set T := Y ′′, and thus we may assume the following:

Assumption 2. There exists a fibration g : X → T to a normal quasi-projective
variety T/Z such that:

(a2) 0 < dimT < dimX,
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(b2) KX + ∆ +M ≡T 0,

(c2) the numerical equivalence over T coincides with the R-linear equivalence over T ,

(d2) ρ(X/T ) = 1,

(e2) M is ample over T .

However, instead of the g-pair (X,∆ +M) being Q-factorial dlt, we may only assume
that it is an NQC lc g-pair such that (X, 0) is Q-factorial klt.

The g-pair (X/Z,∆ + M) is NQC lc and such that (X, 0) is Q-factorial klt and
KX + ∆ + M is nef over T . Since NE(X/T ) is extremal in NE(X/Z) according to
[Deb01, p. 12] (see also [KMM87, Lemma 4-2-2]), by applying [HL18, Proposition
3.16] to the collection of extremal rays of NE(X/Z) corresponding to NE(X/T ), we
deduce that there exist Q-divisors ∆1, . . . ,∆m and M1, . . . ,Mm such that each g-pair
(X/Z,∆i+Mi) is lc with KX+∆i+Mi nef over T , and there exist positive real numbers
r1, . . . , rm such that

∑
ri = 1 and

KX + ∆ +M =

m∑
i=1

ri(KX + ∆i +Mi). (3.10)

Then KX + ∆i + Mi ≡T 0 for all i ∈ {1, . . . ,m} by (b2) and by (3.10), and thus
KX + ∆i +Mi ∼Q,T 0 for all i ∈ {1, . . . ,m} by (c2). Hence, by [Fil19, Theorem 6]2 for
each i ∈ {1, . . . ,m} there exists an lc g-pair (T/Z,Bi +Ni) on T such that the Bi and
Ni are Q-divisors and

KX + ∆i +Mi ∼Q g
∗(KT +Bi +Ni). (3.11)

By (3.10) and (3.11) we obtain

KX + ∆ +M = g∗(KT +BT +NT ), (3.12)

where BT :=
∑
riBi and NT :=

∑
riNi. By construction, the g-pair (T/Z,BT +NT ) is

NQC lc, and KT +BT +NT is pseudo-effective over Z by (3.12). Hence, by assumptions
of the theorem and by (a2), the g-pair (T/Z,BT + NT ) admits an NQC weak Zariski
decomposition over Z, which induces an NQC weak Zariski decomposition over Z for
(X/Z,∆ +M) due to (3.12) and Remark 3.2, as desired.

Remark 3.15. The canonical bundle formula from [Fil19] that was implemented above
has been recently extended to NQC g-pairs by Han and Liu [HL20c]. In particular,
[HL20c, Theorem 1.2] can be invoked in order to shorten significantly the last paragraph
of the previous proof.

For further information around the canonical bundle formula, which obviously plays
a crucial role in the proof of both Theorem 3.13 and Theorem 3.14, we refer to [FG12,
FG14, FL19, HL20c] and the relevant references therein. A gentle introduction to this
topic is [FL20].

Corollary 3.16. Assume that lc pairs of dimension at most n admit NQC weak Zariski
decompositions. Then NQC lc g-pairs of dimension n admit NQC weak Zariski decom-
positions.

2This is a generalisation of [Fil20, Theorem 1.4] to the context of projective morphisms of quasi-
projective g-pairs with rational boundary parts and rational nef parts.
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Proof. The proof is by induction on the dimension n. We may therefore assume that
NQC lc g-pairs of dimension at most n− 1 have NQC weak Zariski decompositions.

Let (X/Z,B +M) be a pseudo-effective NQC lc g-pair of dimension n. By passing
to a dlt blow-up and by Remark 3.6 we may assume that it is a pseudo-effective NQC
Q-factorial dlt g-pair. Set

τ := inf
{
t ∈ R≥0 | KX +B + tM is pseudo-effective over Z

}
.

We distinguish two cases.

Assume first that τ = 0. By Remark 2.7 the pseudo-effective pair (X,B) is lc,
hence it has an NQC weak Zariski decomposition over Z by assumption, and therefore
so does the g-pair (X,B +M) by Remark 3.3.

Assume now that 0 < τ ≤ 1. By Theorem 3.14 the g-pair (X,B+τM) has an NQC
weak Zariski decomposition over Z, and therefore so does the g-pair (X,B + M) by
Remark 3.3.

We are now ready to state and prove the main result of this chapter.

Theorem 3.17. The existence of NQC weak Zariski decompositions for smooth va-
rieties of dimension n implies the existence of NQC weak Zariski decompositions for
NQC lc g-pairs of dimension n.

Proof. By assumption and by Lemma 3.8 we may assume the existence of NQC weak
Zariski decompositions for smooth varieties of dimension at most n. By induction on
the dimension we may assume the existence of NQC weak Zariski decompositions for
NQC lc g-pairs of dimension at most n− 1. Thus, by Corollary 3.16 it suffices to show
the existence of NQC weak Zariski decompositions for lc pairs of dimension n.

Let (X/Z,B) be a pseudo-effective lc pair of dimension n. By passing to a dlt blow-
up and by Remark 3.6 we may assume that (X,B) is Q-factorial dlt. Next, by passing
to a log resolution and by Lemma 3.4 we may assume that (X,B) is log smooth. Set

τ := inf{t ∈ R≥0 | KX + tB is pseudo-effective over Z}.

We distinguish two cases.

Assume first that τ = 0. Then the pseudo-effective smooth pair (X, 0) has an
NQC weak Zariski decomposition over Z by assumption, and therefore so does the pair
(X,B).

Assume now that 0 < τ ≤ 1. It follows from Theorem 3.13 that the pair (X, τB) has
an NQC weak Zariski decomposition over Z, and therefore so does the pair (X,B).

Using Theorems 3.13 and 3.14 we may also deduce the existence of NQC weak
Zariski decompositions for pairs and g-pairs such that a general fiber of the structure
morphism is covered by rational curves. Note that these results are not stated in [LT19],
but they appear implicitly in the proofs of [LT19, Theorems C and 4.3].

Corollary 3.18. Assume the existence of NQC weak Zariski decompositions for NQC
lc g-pairs of dimension at most n− 1.

Let (X/Z,B) be a pseudo-effective lc pair of dimension n such that a general fiber
of the morphism X → Z is uniruled. Then (X,B) admits an NQC weak Zariski
decomposition over Z.
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Proof. As in the second paragraph of the proof of Theorem 3.17 we may assume that
the pair (X,B) is log smooth. Then KX is not pseudo-effective over Z by assumption
and by [BDPP13, Corollary 0.3]. Set

τ := inf
{
t ∈ R≥0 | KX + tB is pseudo-effective over Z

}
and observe that 0 < τ ≤ 1. It follows from Theorem 3.13 that the pair (X, τB) has an
NQC weak Zariski decomposition over Z, and therefore so does the pair (X,B).

Corollary 3.19. Assume the existence of NQC weak Zariski decompositions for NQC
lc g-pairs of dimension at most n− 1.

Let (X/Z,B +M) be a pseudo-effective NQC lc g-pair of dimension n such that a
general fiber of the morphism X → Z is uniruled. Then (X,B + M) admits an NQC
weak Zariski decomposition over Z.

Proof. As in the proof of Corollary 3.18, we may assume that the g-pair (X,B+M) is
log smooth and that KX is not pseudo-effective over Z. Set

τ := inf
{
t ∈ R≥0 | KX + t(B +M) is pseudo-effective over Z

}
and observe that 0 < τ ≤ 1. We distinguish two cases.

Assume first that KX +τB is pseudo-effective over Z. Then it follows from Remark
2.7 and Corollary 3.18 that the pair (X, τB) has an NQC weak Zariski decomposition
over Z, and therefore so does the g-pair (X,B +M) by Remark 3.3.

Assume now that KX + τB is not pseudo-effective over Z. Set

µ := inf
{
t ∈ R≥0 | KX + τB + tM is pseudo-effective over Z

}
and observe that 0 < µ ≤ τ . It follows from Lemma 2.14 and from Theorem 3.14 that
the g-pair (X, τB+µM) has an NQC weak Zariski decomposition over Z, and therefore
so does the g-pair (X,B +M) by Remark 3.3.

3.2 NQC Nakayama-Zariski Decompositions

Nakayama [Nak04] defined a decomposition

D = Pσ(D) +Nσ(D)

for any pseudo-effective R-divisor D on a smooth projective variety X, where Pσ(D) is
movable by [Nak04, Lemma III.1.8 and Proposition III.1.14(1)] and Nσ(D) is effective
by construction. This decomposition is called the Nakayama-Zariski decomposition of
D. The divisors Pσ(D) and Nσ(D) are called the positive part and the negative part ,
respectively, of the Nakayama-Zariski decomposition of D.

Birkar and Hu [BH14, Section 4] extended the above decomposition to the singular
setting as follows: If D is a pseudo-effective R-Cartier R-divisor on a normal projective
variety X, then we consider a resolution f : W → X of X and we set

Pσ(D) := f∗Pσ(f∗D).

Note that the definition of Pσ(D) does not depend on the choice of the resolution by
[Nak04, Theorem III.5.16].
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For various properties of the Nakayama-Zariski decomposition we refer to [Nak04,
Chapter III], [Dru11], [LP20a, Section 2.2], and in particular to [BH14, Lemma 4.1],
which will be used repeatedly below and in Section 4.2.

In this section, imitating [HL18, Definition 2.13], we introduce NQC Nakayama-
Zariski decompositions, adding essentially the NQC condition to the corresponding
definition of Birkar and Hu from [BH14, Section 4]. We emphasize that we work here
exclusively in the absolute setting, that is, we assume that Z = SpecC. Additionally,
all the results appearing below are completely analogous to the ones in Subsection 3.1.1
and their proofs are similar as well.

Definition 3.20. Let X be a normal projective variety and let D be a pseudo-effective
R-Cartier R-divisor on X. We say that D admits an NQC Nakayama-Zariski decom-
position if there exists a resolution f : W → X such that Pσ(f∗D) is NQC.

Remark 3.21. With the same notation as in Definition 3.20, assume that D has an
NQC Nakayama-Zariski decomposition and let g : Y → X be a surjective morphism
from a normal projective variety Y . Then g∗D has an NQC Nakayama-Zariski decom-
position. Indeed, by considering a resolution of indeterminacies (p, q) : T → Y ×W of
f−1 ◦ g : Y 99KW such that T is smooth, we have

Pσ
(
p∗g∗D

)
= Pσ

(
q∗f∗D

)
= q∗Pσ

(
f∗D

)
due to [Nak04, Corollary III.5.17], which proves the assertion.

If, additionally, g is birational, then the converse is also clear, namely, if g∗D has
an NQC Nakayama-Zariski decomposition, then D has an NQC Nakayama-Zariski de-
composition.

Lemma 3.22. Let f : X 99K Y be a birational contraction between normal projective
varieties. Let D be an R-Cartier R-divisor on X such that the map f is D-non-
positive. Then D has an NQC Nakayama-Zariski decomposition if and only if f∗D an
NQC Nakayama-Zariski decomposition.

Proof. Set G = f∗D. Since f is D-non-positive, if (p, q) : W → X ×Y is a resolution of
indeterminacies of f such that W is smooth, then there exists an effective q-exceptional
R-divisor E on W such that p∗D ∼R q

∗G+E. By Remark 3.21 we may replace X with
W and thus we may assume that f is a morphism and

D ∼R f
∗G+ E. (3.13)

Assume that D has an NQC Nakayama-Zariski decomposition. Then there exists
a resolution g : V → X such that Pσ(g∗D) is NQC. By [BH14, Lemma 4.1(2)] and by
(3.13) we obtain

Pσ(g∗D) = Pσ(g∗f∗G+ g∗E) = Pσ
(
(f ◦ g)∗G

)
,

which shows that G has an NQC Nakayama-Zariski decomposition.
Conversely, if G has an NQC Nakayama-Zariski decomposition, then we conclude

by arguing as in Remark 3.21 and by taking (3.13) into account.

Definition 3.23. Let (X,B+M) be an NQC g-pair. We say that (X,B+M) admits
an NQC Nakayama-Zariski decomposition if the divisor KX + B + M has an NQC
Nakayama-Zariski decomposition.
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Remark 3.24. Let (X,B + M) be an NQC lc g-pair. It follows from Remark 3.21
that (X,B + M) admits an NQC Nakayama-Zariski decomposition if and only if any
dlt blow-up of (X,B +M) admits an NQC Nakayama-Zariski decomposition.

Remark 3.25. Let (X,B+M) be an NQC lc g-pair. Assume that (X,B+M) admits
an NQC Nakayama-Zariski decomposition. We may take a sufficiently high log smooth
model f : (W,BW +MW )→ (X,B +M) of (X,B +M) (see Notation 2.29) such that
Pσ
(
f∗(KX +B+M)

)
is NQC, see the proof of Remark 3.21. By Remark 2.30 we may

write
KW +BW +MW ∼R f

∗(KX +B +M) + F,

where F is an effective f -exceptional R-divisor on W . It follows now from [BH14,
Lemma 4.1(2)] that

Pσ(KW +BW +MW ) = Pσ
(
f∗(KX +B +M)

)
,

which implies that (W,BW +MW ) admits an NQC Nakayama-Zariski decomposition.

Proposition 3.26. Let (X,B +M) be an NQC lc g-pair. If (X,B +M) has a mini-
mal model in the sense of Birkar-Shokurov, then it admits an NQC Nakayama-Zariski
decomposition.

Proof. Let ϕ : (X,B+M) 99K (Y,BY +MY ) be a minimal model in the sense of Birkar-
Shokurov of (X,B +M). Consider a resolution of indeterminacies (p, q) : W → X × Y
of ϕ such that W is smooth. By Lemma 2.18(i) we may write

p∗(KX +B +M) ∼R q
∗(KY +BY +MY ) + E,

where E is an effective q-exceptional R-divisor on W . Moreover, by [HL18, Proposition
3.16] we infer that KY +BY +MY is NQC. Hence, by [BH14, Lemma 4.1(2)] we obtain

Pσ
(
p∗(KX +B +M)

)
= Pσ

(
q∗(KY +BY +MY )

)
= q∗(KY +BY +MY ),

which proves the assertion.

Corollary 3.27. Let (X,B +M) be an NQC lc g-pair. If (X,B +M) has a minimal
model, then it admits an NQC Nakayama-Zariski decomposition.

Proof. The proof is identical to the proof of Corollary 3.10, replacing Proposition 3.9
with Proposition 3.26.
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On the Existence of Minimal Models for
Log Canonical Generalized Pairs

The aim of this chapter is to address the following conjecture of the MMP.

Existence of Minimal Models Conjecture. Let (X/Z,B+M) be a pseudo-effective
NQC lc g-pair. Then (X,B +M) has a minimal model over Z.

For a (non-exhaustive but) fairly complete overview of the currently known results
regarding the existence of minimal models conjecture for usual pairs we refer to the
introduction of the papers [Bir10a, Lai11, GL13, Has18a]. In particular, we remark that
the papers [BCHM10, CL12, CL13] establish the existence of (good) minimal models
for klt pairs of general type and of arbitrary dimension.

In this chapter we obtain the following results. First, we reduce the above conjecture
to the problem of the existence of minimal models for smooth varieties. We also show
that the existence of minimal models is essentially equivalent to the existence of NQC
weak Zariski decompositions and, in the absolute setting, to the existence of NQC
Nakayama-Zariski decompositions, building on previous works of Birkar [Bir12b], Birkar
and Hu [BH14], and Han and Li [HL18]. Additionally, we prove that minimal models
exist for a certain class of g-pairs under mild assumptions in lower dimensions. Finally,
we present some immediate corollaries of our results in dimensions 4 and 5.

The contents of Section 4.1 are taken from our joint paper [LT19] with Vladimir
Lazić. Specifically, we reproduce everything from [LT19, Sections 1 and 4] that is related
to the existence of minimal models, but we also include some results that were only
hinted in [LT19]. In Section 4.2 we generalize [BH14, Theorem 1.1] to the context of
g-pairs using the theory of NQC Nakayama-Zariski decompositions that we developed
in Section 3.2. To the best of our knowledge, the main result of this section, namely
Theorem 4.18, is new and has not appeared elsewhere in the literature.

Throughout this chapter we assume that varieties are normal and quasi-projective
and that a variety X over a variety Z is projective over Z.

4.1 Minimal Models and
NQC Weak Zariski Decompositions

The first result in this section is similar to Lemma 3.8, but concerns minimal models
instead of weak Zariski decompositions. It will not be used elsewhere in the thesis.
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Lemma 4.1. Let n, k ∈ Z≥1 with n ≥ k. Assume that every pseudo-effective smooth
pair (X/Z, 0) of dimension n has a minimal model over Z. Then every pseudo-effective
smooth pair (Y/Z, 0) of dimension k has a minimal model over Z.

Proof. Let (Y/Z, 0) be a k-dimensional pair as in the statement of the lemma. By
assumption and by Corollary 3.10 every pseudo-effective smooth pair (X/Z, 0) of di-
mension n admits an NQC weak Zariski decomposition over Z. By Lemma 3.8 and
by Theorem 3.17 every NQC lc g-pair over Z of dimension at most n admits an NQC
weak Zariski decomposition over Z. In particular, (Y, 0) admits an NQC weak Zariski
decomposition over Z, and hence it has a minimal model over Z by Theorem 3.12.

From this point forward our presentation follows a specific pattern, namely we first
prove a statement for usual pairs and then we deduce its analog for g-pairs. We begin
with one of the main theorems of the thesis, followed by its generalization to the setting
of g-pairs.

Theorem 4.2. The existence of minimal models for smooth varieties of dimension n
implies the existence of minimal models for lc pairs of dimension n.

Proof. Let (X/Z,B) be a pseudo-effective lc pair of dimension n. By assumption,
Lemma 3.8 and Corollary 3.10, we may assume the existence of NQC weak Zariski
decompositions for smooth varieties of dimension at most n. Thus, by Theorem 3.17
we may assume the existence of NQC weak Zariski decompositions for NQC lc g-
pairs of dimension at most n − 1, and that the pair (X,B) has an NQC weak Zariski
decomposition over Z. We conclude by Theorem 3.12.

Theorem 4.3. Assume the existence of minimal models for smooth varieties of dimen-
sion n.

Let (X/Z,B + M) be a pseudo-effective NQC lc g-pair of dimension n such that
(X, 0) is Q-factorial klt. Then (X,B +M) has a minimal model over Z.

Proof. The proof is identical to the proof of Theorem 4.2, replacing Theorem 3.12 with
Theorem 3.11(ii).

Remark 4.4. If in Theorem 4.3 we drop the assumption that (X, 0) is Q-factorial klt,
then by Theorem 3.11(i) we infer that the NQC lc g-pair (X,B + M) has a minimal
model in the sense of Birkar-Shokurov over Z.

The next result improves both the assumptions in lower dimensions and the con-
clusions of [Bir11, Corollary 1.7] and [Bir12b, Theorem 1.5]. Its analog in the context
of g-pairs, which is discussed afterwards, refines [HL18, Theorem 1.5] in a similar way.

Theorem 4.5. Assume the existence of minimal models for smooth varieties of dimen-
sion n− 1.

Let (X/Z,B) be an lc pair of dimension n. Then the following are equivalent:

(i) (X,B) admits an NQC weak Zariski decomposition over Z,

(ii) (X,B) has a minimal model over Z.

Proof. Note that (i) follows from (ii) by Corollary 3.10 (observe that the assumptions
in lower dimensions are reduntant for this implication). Conversely, assume that (X,B)
has an NQC weak Zariski decomposition over Z. As in the proof of Theorem 4.2 we
may assume the existence of NQC weak Zariski decompositions for NQC lc g-pairs of
dimension at most n− 1. We conclude by Theorem 3.12.
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Theorem 4.6. Assume the existence of minimal models for smooth varieties of dimen-
sion n− 1.

Let (X/Z,B+M) be an NQC lc g-pair of dimension n such that (X, 0) is Q-factorial
klt. Then the following are equivalent:

(i) (X,B +M) admits an NQC weak Zariski decomposition over Z,

(ii) (X,B +M) has a minimal model over Z.

Proof. The proof is identical to the proof of Theorem 4.5, replacing Theorem 3.12 with
Theorem 3.11(ii).

Remark 4.7. If in Theorem 4.6 we drop the assumption that (X, 0) is Q-factorial
klt, then by Proposition 3.9 and by Theorem 3.11(i) we infer that the NQC lc g-pair
(X,B +M) has a minimal model in the sense of Birkar-Shokurov over Z if and only if
it admits an NQC weak Zariski decomposition over Z.

Now, it is worth mentioning that Theorem 4.5 leads to a refinement of [Bir12b,
Corollary 1.6], while by invoking Theorem 4.6 we also generalize [Bir12b, Corollary 1.6]
to the context of g-pairs accordingly.

Corollary 4.8. Assume the existence of minimal models for smooth varieties of di-
mension n− 1.

Let (X/Z,B1) and (X/Z,B2) be lc pairs of dimension n such that B1 ≤ B2. If
(X,B1) has a minimal model over Z, then (X,B2) also has a minimal model over Z.

Proof. By Corollary 3.10 the pair (X,B1) admits an NQC weak Zariski decomposition
over Z. Since B1 ≤ B2, we may write B2 = B1 +G for some effective divisor G on X,
hence the pair (X,B2) also admits an NQC weak Zariski decomposition over Z. We
conclude by Theorem 4.5.

Corollary 4.9. Assume the existence of minimal models for smooth varieties of di-
mension n− 1.

Let (X/Z,B1 + M1) and (X/Z,B2 + M2) be NQC lc g-pairs of dimension n such
that (X, 0) is Q-factorial klt, B1 ≤ B2 and M2 −M1 is the pushforward of an NQC
divisor on some higher model of X. If (X,B1 +M1) has a minimal model over Z, then
(X,B2 +M2) also has a minimal model over Z.

Proof. If the given g-pairs come with data X ′1 → X → Z and M ′1, and X ′2 → X → Z
and M ′2, respectively, then, by possibly passing to a sufficiently high birational model
f : X ′ → X, by the assumptions we know that there exists an NQC divisor Q′ on X ′

such that

Q := f∗Q
′ = M2 −M1, (4.1)

and also that we have

f∗(KX +B1 +M1) ≡Z P +N, (4.2)

where P is an NQC divisor on X ′ and N is an effective R-Cartier R-divisor on X ′.
Now, by the Negativity lemma [KM98, Lemma 3.39(1)] we obtain

f∗Q = Q′ + E, (4.3)
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where E is an effective f -exceptional R-Cartier R-divisor on X ′. In addition, since
B1 ≤ B2, we may write

B2 = B1 +G, (4.4)

where G is an effective R-divisor on X. Consequently, by (4.1), (4.2), (4.3) and (4.4)
we obtain

f∗(KX +B2 +M2) ≡Z (P +Q′) + (N + f∗G+ E),

which is an NQC weak Zariski decomposition of (X,B2 +M2) over Z. We conclude by
Theorem 4.6.

Theorem 4.10. Assume the existence of minimal models for smooth varieties of di-
mension n− 1.

Let (X/Z,B) be a pseudo-effective lc pair of dimension n such that a general fiber
of the morphism X → Z is uniruled. Then (X,B) has a minimal model over Z.

Proof. As in the proof of Theorem 4.2 we may assume the existence of NQC weak
Zariski decompositions for NQC lc g-pairs of dimension at most n − 1. Hence, by
Corollary 3.18 we infer that (X,B) admits an NQC weak Zariski decomposition over
Z. We conclude by Theorem 4.5.

Theorem 4.11. Assume the existence of minimal models for smooth varieties of di-
mension n− 1.

Let (X/Z,B + M) be a pseudo-effective NQC lc g-pair of dimension n such that
(X, 0) is Q-factorial klt and a general fiber of the morphism X → Z is uniruled. Then
(X,B +M) has a minimal model over Z.

Proof. The proof is identical to the proof of Theorem 4.10, replacing Corollary 3.18
with Corollary 3.19 and Theorem 4.5 with Theorem 4.6.

Remark 4.12. If in Theorem 4.11 we drop the assumption that (X, 0) is Q-factorial
klt, then by Theorem 3.11(i) we infer that the NQC lc g-pair (X,B+M) has a minimal
model in the sense of Birkar-Shokurov over Z.

4.1.1 Corollaries in Dimensions 4 and 5

Recall that the existence of minimal models for terminal 4-folds follows from [KMM87,
Theorem 5-1-15]. Consequently, we derive immediately the following two corollaries in
dimensions 4 and 5 from the previous results. As above, the first one concerns usual
pairs, while the second one concerns g-pairs. Afterwards, we also comment on these
two corollaries.

Corollary 4.13. Let (X/Z,B) be a pseudo-effective lc pair.

(i) If dimX = 4, then (X,B) has a minimal model over Z.

(ii) If dimX = 5, then (X,B) has a minimal model over Z if and only if it admits
an NQC weak Zariski decomposition over Z. In particular, if KX +B is effective
over Z, then (X,B) has a minimal model over Z.

(iii) If dimX = 5 and a general fiber of the morphism X → Z is uniruled, then (X,B)
has a minimal model over Z.
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Proof. Due to [KMM87, Theorem 5-1-15], (i) follows from Theorem 4.2, (ii) follows
from Theorem 4.5, and (iii) follows from Theorem 4.10.

Corollary 4.14. Let (X/Z,B+M) be a pseudo-effective NQC lc g-pair such that (X, 0)
is Q-factorial klt.

(i) If dimX = 4, then (X,B +M) has a minimal model over Z.

(ii) If dimX = 5, then (X,B+M) has a minimal model over Z if and only if it admits
an NQC weak Zariski decomposition over Z. In particular, if KX + B + M is
effective over Z, then (X,B +M) has a minimal model over Z.

(iii) If dimX = 5 and a general fiber of the morphism X → Z is uniruled, then
(X,B +M) has a minimal model over Z.

Proof. Due to [KMM87, Theorem 5-1-15], (i) follows from Theorem 4.3, (ii) follows
from Theorem 4.6, and (iii) follows from Theorem 4.11.

As far as Corollary 4.13 is concerned, (i) was first proved in [Sho09] and another
proof was given later in [Bir12b], while (ii) was established in [Bir10a]; however, we
stress that, unlike the results in these references, we deduce the existence of minimal
models in the usual sense. Finally, (iii) was originally obtained in [LT19].

Furthermore, Corollary 4.14 was also obtained in [LT19], but it was simply not
stated there. Note that if we drop the assumption that (X, 0) is Q-factorial klt, then,
as mentioned above, we shall replace everywhere the phrase “(X,B+M) has a minimal
model over Z” with the phrase “(X,B+M) has a minimal model in the sense of Birkar-
Shokurov over Z”.

4.1.2 On the Termination of MMPs with Scaling - Revisited

Theorem 4.15. Assume the existence of minimal models for smooth varieties of di-
mension n− 1.

Let (X/Z,B) be an lc pair of dimension n. If (X,B) admits an NQC weak Zariski
decomposition over Z, then there exists a (KX + B)-MMP with scaling of an ample
divisor over Z which terminates. In particular, (X,B) has a minimal model over Z.

Proof. As in the proof of Theorem 4.2 we may assume the existence of NQC weak
Zariski decompositions for NQC lc g-pairs of dimension at most n− 1. We conclude by
Theorem 3.12.

Theorem 4.16. Assume the existence of minimal models for smooth varieties of di-
mension n− 1.

Let (X/Z,B+M) be an NQC lc g-pair of dimension n which admits an NQC weak
Zariski decomposition over Z. Then the following statements hold.

(i) The g-pair (X,B+M) has a minimal model in the sense of Birkar-Shokurov over
Z.

(ii) If, additionally, (X, 0) is Q-factorial klt, then any (KX + B + M)-MMP with
scaling of an ample divisor over Z terminates. In particular, (X,B + M) has a
minimal model over Z.

Proof. The proof is identical to the proof of Theorem 4.15, replacing Theorem 3.12
with Theorem 3.11.
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4.2 Minimal Models and
NQC Nakayama-Zariski Decompositions

Lemma 4.17. Let (X,B +M) be a log smooth g-pair such that M is NQC and

KX +B +M = P +N,

where P := Pσ(KX +B +M) is NQC and N := Nσ(KX +B +M). Then (X,B +M)
has a minimal model.

Proof. Note that (X,B +M +αP ) is a Q-factorial dlt polarized pair for any α ∈ R≥0.
Hence, if we choose a sufficiently large α, then by [HL18, Lemma 3.18] we may run
a (KX + B + M + αP )-MMP with scaling of an ample divisor which is P -trivial.
In particular, the nefness of P is preserved along the MMP due to [KM98, Theorem
3.25(4)] and the MMP is also a (KX +B +M)-MMP. In addition, by Lemma 2.49 we
reach a model Y on which KY + BY +MY + αPY is a movable R-divisor. We denote
by ϕ : X 99K Y the induced map and by NY the strict transform of N on Y .

Since

Nσ

(
KX +B +M + αP + αN

)
= Nσ

(
(1 + α)(P +N)

)
= Nσ

(
(1 + α)(KX +B +M)

)
= (1 + α)N,

it follows from [BH14, Lemma 4.1(4)] and from the above equalities that

Pσ
(
KX +B +M + αP

)
= Pσ

(
(1 + α)(P +N)− αN

)
= Pσ

(
(1 + α)(P +N)

)
= (1 + α)P.

Furthermore, by [BH14, Lemma 4.1(5)] and by the above equalities we obtain

Pσ
(
KY +BY +MY + αPY

)
= ϕ∗Pσ

(
KX +B +M + αP

)
= (1 + α)PY ,

whereas [Nak04, Proposition III.1.14(1)] yields

Pσ
(
KY +BY +MY + αPY

)
= KY +BY +MY + αPY

= (1 + α)PY +NY ,

since KY + BY + MY + αPY is movable. Consequently, NY = 0. It follows now from
the above equalities that KY + BY + MY = PY is nef. Hence, the MMP terminates
and the resulting g-pair (Y,BY +MY ) is a minimal model of (X,B +M).

Theorem 4.18. Let (X,B+M) be an NQC lc g-pair. If (X,B+M) admits an NQC
Nakayama-Zariski decomposition, then (X,B + M) has a minimal model in the sense
of Birkar-Shokurov.

Proof. The statement follows immediately by combining Lemma 2.31, Remark 3.25 and
Lemma 4.17.
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Special Termination

Special termination is a termination statement with a strong geometric flavor. Roughly
speaking, it predicts the following: given a sequence of flips with respect to an lc pair,
after finitely many steps the flipping locus avoids the non-klt locus. Even though
this statement was originally conceived by Shokurov [Sho92, Sho03, Sho04], the first
complete proof of special termination was given by Fujino [Fuj07] for dlt pairs, while
the most general statement for lc pairs was missing from the literature until recently;
we refer to [Fuj07, Section 4.2] and [Fuj11b, Section 5.2] for a relevant discussion.

The purpose of this chapter is to provide this missing statement. More precisely, we
establish the special termination for lc pairs and we also prove its analog for NQC lc g-
pairs. These results were obtained in our joint paper [LMT20] with Vladimir Lazić and
Joaqúın Moraga, thus the material presented below is taken primarily from [LMT20].

Although not immediately apparent, special termination plays a central role towards
the termination of flips conjecture (see Chapter 6). Indeed, one of the main applications
of special termination for dlt (g-)pairs is the reduction of the termination of flips for lc
(g-)pairs to the termination of flips for klt (g-)pairs. Furthermore, special termination
has also been utilized sometimes in order to deduce the termination of specific MMPs,
see [Bir10a, Bir11, Bir12a, Bir12b] for such instances. Finally, it is worthwhile to
mention that special termination for lc pairs was invoked by Birkar [Bir07] in order to
prove the termination of flips for effective lc pairs. In the next and final chapter of
the thesis we will deduce an analog of Birkar’s aforementioned result in the context of
g-pairs with the aid of special termination for NQC lc g-pairs.

Throughout this chapter, unless otherwise stated, we assume that varieties are
normal and quasi-projective and that a variety X over a variety Z is projective over Z.
We also assume the existence of flips for NQC lc g-pairs, cf. Remark 2.43(2).

5.1 What is Special Termination?

Let

(X1, B1 +M1) (X2, B2 +M2) (X3, B3 +M3) · · ·

Z1 Z2

θ1

π1

θ+1
θ2

π2

θ+2

π3

be a sequence of flips over Z starting from an lc g-pair (X1/Z,B1 + M1). Special
termination of the given sequence of flips means that after finitely many steps the
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flipping locus Exc(θi) does not intersect the non-klt locus of the g-pair (Xi/Z,Bi+Mi),
i.e., there exists N ∈ Z≥1 such that

Exc(θi) ∩Nklt(Xi, Bi +Mi) = ∅ for all i ≥ N.

In particular, if (X1, B1 +M1) is a Q-factorial dlt g-pair, then it follows from Remark
2.11(1) that special termination of the given sequence of flips means that eventually
the flipping locus Exc(θi) avoids SuppbBic.

Furthermore, the phrase special termination with scaling (of an ample divisor) refers
to sequences of flips with scaling (of an ample divisor) and its meaning is apparent from
the above.

Last but not least, we prove below an immediate consequence of special termination,
namely, if the flipping locus Exc(θi) does not intersect the non-klt locus of (Xi, Bi+Mi)
for all i � 0, then the flipped locus Exc(θ+i ) does not intersect the non-klt locus of
(Xi+1, Bi+1 +Mi+1) for all i� 0 as well.

Lemma 5.1. Let

(X1, B1 +M1) (X2, B2 +M2) (X3, B3 +M3) · · ·

Z1 Z2

θ1

π1

θ+1
θ2

π2

θ+2

π3

be a sequence of flips over Z starting from an lc g-pair (X1/Z,B1 +M1). If there exists
N ∈ Z≥1 such that

Exc(θi) ∩Nklt(Xi, Bi +Mi) = ∅ for all i ≥ N,

then also
Exc(θ+i ) ∩Nklt(Xi+1, Bi+1 +Mi+1) = ∅ for all i ≥ N.

Proof. Fix i ≥ N and let Si+1 be an lc center of (Xi+1, Bi+1 +Mi+1). Then there is a
divisorial valuation E over X with cXi+1(E) = Si+1 and a(E,Xi+1, Bi+1+Mi+1) = −1.
Note first that Si+1 * Exc(θ+i ), since otherwise by Lemma 2.45 we would have

−1 ≤ a(E,Xi, Bi +Mi) < a(E,Xi+1, Bi+1 +Mi+1) = −1,

which is impossible. Hence, πi : Xi 99K Xi+1 is an isomorphism at the generic point of
Si+1. Moreover, if Si+1 ∩ Exc(θ+i ) 6= ∅, then it follows from assumption and Lemma
2.45 that the lc center Si := cXi(E) of Xi does not intersect Exc(θi). Thus, Si ⊆
XirExc(θi), which implies that Si+1 ⊆ Xi+1rExc(θ+i ), a contradiction. Consequently,
Si+1 ∩ Exc(θ+i ) = ∅. This finishes the proof.

5.2 The Key Result

Lemma 5.2. Let f : Y → X be a projective birational morphism between normal vari-
eties. Assume that we have a diagram

Y W

X

Z

f

µ

θ
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where θ is birational and µ is an isomorphism in codimension one. Let DX be an R-
Cartier R-divisor on X, set DY := f∗DX and DW := µ∗DY , and assume that DW is
R-Cartier. Let VX ⊆ X and VY ⊆ Y be closed subsets such that f(VY ) = VX . Assume
that:

(i) µ is DY -non-positive,

(ii) DW is semi-ample over Z,

(iii) VY is contained in the locus in Y where the map µ is an isomorphism, and

(iv) Exc(θ) is covered by curves γ which are contracted by θ and satisfy DX · γ < 0.

Then Exc(θ) ∩ VX = ∅.

Proof. Arguing by contradiction, assume that there exists x ∈ Exc(θ) ∩ VX and set
F := f−1(x). We first claim that

F ⊆ B(DY /Z). (5.1)

To this end, by (iv) we may find a curve γ ⊆ Exc(θ) passing through x, contracted by
θ and such that DX · γ < 0. But then for each H ∈ |DX/Z|R we have H · γ < 0, and
thus x ∈ γ ⊆ SuppH. This implies that x ∈ B(DX/Z), and by Lemma 1.20 we infer
that

F ⊆ f−1
(
B(DX/Z)

)
= B(DY /Z),

as desired.

Now, since f(VY ) = VX , we have F ∩ VY 6= ∅, and by (5.1) we obtain

VY ∩B(DY /Z) 6= ∅. (5.2)

Define VW := µ(VY ) and note that VW is well-defined by (iii). We claim that

VW ∩B(DW /Z) 6= ∅,

which would then contradict (ii) and finish the proof.

To this end, by (iii) there exists a resolution of indeterminacies (p, q) : T → Y ×W
of the map µ such that p and q are isomorphisms over some neighbourhoods of VY and
VW , respectively.

T

Y W

p q

µ

Then by (i) there exists an effective q-exceptional R-divisor ET on T such that

p∗DY ∼R q
∗DW + ET .

Fix GW ∈ |DW /Z|R, note that q∗GW +ET ∼R p
∗(DY +(θ ◦f)∗QZ

)
for some R-Cartier

R-divisor QZ on Z and set

GY := p∗(q
∗GW + ET ) ∈ |DY /Z|R.
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It follows from the Negativity lemma [KM98, Lemma 3.39(1)] (as in the proof of Lemma
1.20) that

p∗GY = q∗GW + ET .

Since VY ∩ SuppGY 6= ∅ by (5.2), we obtain

∅ 6= p−1(VY ) ∩ Supp(p∗GY ) = p−1(VY ) ∩ Supp(q∗GW + ET ),

and hence p−1(VY ) ∩ q−1(SuppGW ) 6= ∅, as p−1(VY ) does not intersect SuppET by
construction. Thus, as VW = q

(
p−1(VY )

)
, we have

VW ∩ SuppGW 6= ∅,

and the claim follows.

5.3 Special Termination for Log Canonical Pairs

In this section we reduce the special termination for lc pairs of dimension n to the
termination of flips for klt pairs of dimension at most n− 1. But first, for the sake of
completeness of the presentation, we gather below all the known results concerning the
special termination for dlt pairs:

(1) [Fuj07, Theorem 4.2.1]: The termination of flips for Q-factorial dlt pairs of di-
mension at most n − 1 implies the special termination for Q-factorial dlt pairs of
dimension n.

(2) [Fuj11b, Theorem 29] (see also [Bir10a, Lemma 3.6], [Bir11, Proof of Corollary 1.7],
[Bir12a, Remark 2.10]): The termination of flips with scaling (of an ample divisor)
for Q-factorial dlt pairs of dimension at most n− 1 implies the special termination
with scaling (of an ample divisor) for Q-factorial dlt pairs of dimension n.

Now, we state one of the most notable applications of (1), which was also mentioned
in the introduction, but we omit its proof and refer to [Fuj17, Lemmas 4.3.8 and 4.9.3]
for the details. However, in Section 5.5 we will give a detailed proof of its analog in the
setting of g-pairs and we stress that these proofs are essentially identical to each other.

Lemma 5.3. The termination of flips for Q-factorial klt pairs of dimension at most n
implies the termination of flips for lc pairs of dimension n.

Finally, as announced above, we generalize (1) to lc pairs.

Theorem 5.4. Assume the termination of flips for Q-factorial klt pairs of dimension
at most n− 1.

Let (X1/Z,B1) be an lc pair of dimension n. Consider a sequence of flips over Z:

(X1, B1) (X2, B2) (X3, B3) · · ·

Z1 Z2

θ1

π1

θ+1
θ2

π2

θ+2

π3

Then there exists N ∈ Z≥1 such that

Exc(θi) ∩Nklt(Xi, Bi) = ∅ for all i ≥ N.
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Proof. By Lemma 2.56 there exists a diagram

(Y1,∆1) (Y2,∆2) (Y3,∆3) · · ·

(X1, B1) (X2, B2) (X3, B3) · · ·

Z1 Z2

h1

ρ1

h2

ρ2

h3

ρ3

θ1

π1

θ+1
θ2

π2

θ+2

π3

where (Y1,∆1) is a Q-factorial dlt pair and the sequence of rational maps ρi is a
composition of steps of a (KY1 + ∆1)-MMP. By relabelling, we may assume that this
MMP is a sequence of flips. Moreover, by Lemma 5.3 we may assume the termination
of flips for Q-factorial dlt pairs of dimension at most n−1, so by [Fuj07, Theorem 4.2.1]
we may also assume that the flipping locus avoids the non-klt locus at each step in this
MMP. We conclude by applying Lemma 5.2 for X = X1, Y = Y1, DX = KX1 + B1,
DY = KY1 + ∆1, VX = Nklt(X1, B1) and VY = Nklt(Y1,∆1), taking Remark 2.11(2)
into account.

Our goal in the remainder of this chapter is to generalize Theorem 5.4 to the context
of g-pairs. But before we start pursuing this goal, we also remark that Han and Li have
obtained a version of (2) for g-pairs, which concerns the MMP with scaling of an
NQC divisor, see [HL18, Theorem 4.5]. Furthermore, we highlight that from this point
forward we will often invoke adjunction for dlt g-pairs; in other words, if (X,B + M)
is a dlt g-pair and if S is an lc center of (X,B + M), then we will define a dlt g-pair
(S,BS +MS) by the formula KS +BS +MS = (KX +B +M)|S , see Notation 2.17.

5.4 The Difficulty of an NQC DLT Generalized Pair
Obtained by Adjunction

The difficulty is a quantity associated with a pair, which counts divisorial valuations
with certain discrepancies. It is typically used in termination arguments, usually as
follows: one first shows that it decreases after a flip and one can thus conclude the
termination of flips, provided, for instance, that the difficulty is a non-negative integer.

The first version of the difficulty was introduced by Shokurov [Sho85] in order to
prove the termination of flips for terminal 3-folds. Since then several variants of the
difficulty have appeared in the literature [KMM87, Kol89, Mat91, Kaw92, K+92, Fuj04,
Fuj05, AHK07, Mor18, CT20] and have been employed for similar purposes, as the main
idea to tackle the termination of flips conjecture has remained the same ever since. In
particular, a version of the difficulty in the setting of g-pairs will be introduced in
Section 6.1 and will be used in order to establish the termination of flips for terminal
g-pairs of dimension 3.

Moreover, other variants of the difficulty have been introduced in [K+92, Fuj07,
HL18] in order to address the special termination. Here, we recall Han and Li’s defi-
nition of the difficulty of a dlt g-pair obtained from another dlt g-pair by adjunction
[HL18]. Afterwards, we prove some basic properties of the difficulty that play a crucial
role in the proof of Theorem 5.9 which concerns the special termination for dlt g-pairs.
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Definition 5.5. Let (X,B + M) be an NQC dlt g-pair with data X ′ → X → Z and
M ′. We may write B =

∑k
i=1 biBi with distinct prime divisors Bi and bi ∈ (0, 1],

and M ′ =
∑l

j=1 µjM
′
j with M ′j Cartier divisors on X ′ which are nef over Z and µj ∈

(0,+∞). Set b = {b1, . . . , bk}, µ = {µ1, . . . , µl} and

S(b, µ) =

{
1− 1

m
+

k∑
i=1

ribi
m

+
l∑

j=1

sjµj
m
≤ 1

∣∣∣ m ∈ Z≥1, ri, sj ∈ Z≥0
}
.

Let S be an lc center of (X,B + M) and define a dlt g-pair (S,BS + MS) by adjunc-
tion. Note that the coefficients of BS belong to the set S(b, µ) by the proof of [BZ16,
Proposition 4.9]. For each α ∈ S(b, µ), set

d<−α(S,BS +MS) = #
{
E | a(E,S,BS +MS) < −α, cS(E) * SuppbBSc

}
and

d≤−α(S,BS +MS) = #
{
E | a(E,S,BS +MS) ≤ −α, cS(E) * SuppbBSc

}
.

The difficulty of the g-pair (S,BS +MS) is defined as

db,µ(S,BS +MS) =
∑

α∈S(b,µ)

(
d<−α(S,BS +MS) + d≤−α(S,BS +MS)

)
.

Lemma 5.6. With the same notation as in Definition 5.5, the following statements
hold:

(i) There exists γ ∈ (0, 1) such that a(E,S,BS + MS) ≥ −γ for each divisorial
valuation E over S such that cS(E) * SuppbBSc.

(ii) The set S(b, µ) ∩ [0, γ] is finite.

(iii) We have

0 ≤ db,µ(S,BS +MS) < +∞.

Proof. Let S′
σ→ S → Z and M ′S be the data of the dlt g-pair (S,BS +MS). Consider

the set U := S \ SuppbBSc and let U ′ := σ−1(U). Then we obtain the klt g-pair

(U,BS |U +MS |U ) with data U ′ → U
id→ U and M ′S |U ′ . Define B′S by the equation

KS′ +B′S +M ′S ∼R σ
∗(KS +BS +MS).

Then for each divisorial valuation E over S such that cS(E) * SuppbBSc we have

a(E,S,BS +MS) = a(E,U,BS |U +MS |U )

= a(E,U ′, B′S |U ′ +M ′S |U ′) = a(E,U ′, B′S |U ′),

hence

d<−α(S,BS +MS) = #
{
E | a(E,U ′, B′S |U ′) < −α

}
(5.3)

and

d≤−α(S,BS +MS) = #
{
E | a(E,U ′, B′S |U ′) ≤ −α

}
. (5.4)



Section 5.4. The Difficulty of an NQC DLT G-Pair Obtained by Adjunction 85

Since by Remark 2.7 the pair (U ′, B′S |U ′) is klt, by (5.3) and (5.4) there exists γ ∈ (0, 1)
such that (i) holds, and in particular:

d<−α(S,BS +MS) = d≤−α(S,BS +MS) = 0 if α > γ.

On the other hand, observe that d<−α(S,BS + MS) and d≤−α(S,BS + MS) are finite
for any α ∈ S(b, µ) by (5.3) and (5.4) and by [KM98, Proposition 2.36(2)]. Since the
set S(b, µ) ∩ [0, γ] is finite by [K+92, Lemma 7.4.4], (ii) and (iii) follow.

Proposition 5.7. Assume the notation of Definition 5.5. Consider a (KX +B+M)-
flip over Z:

(X,B +M) (X+, B+ +M+)

W
θ

π

θ+

Assume that π is an isomorphism at the generic point of S and define S+ as the strict
transform of S on X+. Moreover, assume that π|S is an isomorphism along SuppbBSc.
Then the following statements hold.

(i) We have
db,µ(S,BS +MS) ≥ db,µ(S+, BS+ +MS+).

(ii) If there exists a divisorial valuation E over S such that cS(E) is a divisor but
cS+(E) is not a divisor, then there exists α0 ∈ S(b, µ) \ {1} such that

d≤−α0(S,BS +MS) > d≤−α0(S+, BS+ +MS+).

(iii) If there exists a divisorial valuation E over S such that cS(E) is not a divisor but
cS+(E) is a divisor, then there exists α0 ∈ S(b, µ) \ {1} such that

d<−α0(S,BS +MS) > d<−α0(S+, BS+ +MS+).

(iv) If π|S is not an isomorphism in codimension one, then

db,µ(S,BS +MS) > db,µ(S+, BS+ +MS+).

Proof.
(i) Follows immediately from Lemma 2.18(ii).

(ii) First, observe that cS(E) 6⊆ SuppbBSc and cS+(E) 6⊆ SuppbBS+c, since π|S is an
isomorphism along SuppbBSc. Recall also that the coefficients of BS (and BS+) belong
to the set S(b, µ). Thus, there exists α0 ∈ S(b, µ) \ {1} such that, by Lemma 2.18(iv),

−α0 = a(E,S,BS +MS) < a(E,S+, BS+ +MS+),

and (ii) follows.

(iii) As in (ii), it holds again that cS(E) 6⊆ SuppbBSc and cS+(E) 6⊆ SuppbBS+c. Then
there exists α0 ∈ S(b, µ) \ {1} such that, by Lemma 2.18(iv),

a(E,S,BS +MS) < a(E,S+, BS+ +MS+) = −α0,

and (iii) follows.

(iv) Follows immediately from (i), (ii) and (iii).
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5.5 Special Termination for
NQC Log Canonical Generalized Pairs

In this section we reduce the special termination for NQC lc g-pairs of dimension n to
the termination of flips for NQC klt g-pairs of dimension at most n− 1. We begin with
the following lemma.

Lemma 5.8. Let

(X1, B1 +M1) (X2, B2 +M2) (X3, B3 +M3) · · ·

Z1 Z2

θ1

π1

θ+1
θ2

π2

θ+2

π3

be a sequence of flips over Z starting from an lc g-pair (X1/Z,B1 + M1). Then there
exists N ∈ Z≥1 such that for each i ≥ N the flipping locus Exc(θi) does not contain
any lc center of (Xi, Bi +Mi).

Proof. By Remark 2.11(2) the number of lc centers of any lc g-pair is finite. Moreover,
by Lemma 2.18(iii), at the i-th step of the given sequence of flips, every lc center
of (Xi+1, Bi+1 + Mi+1) is also an lc center of (Xi, Bi + Mi), and if an lc center of
(Xi, Bi +Mi) is contained in the flipping locus Exc(θi), then the number of lc centers
of (Xi+1, Bi+1 +Mi+1) is smaller than the number of lc centers of (Xi, Bi +Mi).

Now, for every i ≥ 1 we denote by νi the number of lc centers of (Xi, Bi +Mi). It
follows by the above that {νi}∞i=1 is a non-increasing sequence of non-negative integers
with ν1 < +∞ and such that νi > νi+1 whenever an lc center of (Xi, Bi + Mi) is
contained in Exc(θi). Hence, {νi}∞i=1 must eventually stabilize. This yields the state-
ment.

Now, we generalize [Fuj07, Theorem 4.2.1] to the context of g-pairs, following closely
the proofs of [Fuj07, Theorem 4.2.1] and [HL18, Theorem 4.5].

Theorem 5.9. Assume the termination of flips for NQC Q-factorial dlt g-pairs of
dimension at most n− 1.

Let (X1/Z,B1 +M1) be an NQC Q-factorial dlt g-pair of dimension n. Consider a
sequence of flips over Z:

(X1, B1 +M1) (X2, B2 +M2) (X3, B3 +M3) · · ·

Z1 Z2

θ1

π1

θ+1
θ2

π2

θ+2

π3

Then there exists N ∈ Z≥1 such that

Exc(θi) ∩Nklt(Xi, Bi +Mi) = ∅ for all i ≥ N.

Proof. We prove by induction on d the following claim, which implies the theorem.

Claim 5.10. For each non-negative integer d there exists a positive integer Nd such
that Exc(θi) is disjoint from each lc center of dimension at most d for all i ≥ Nd.
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To this end, by Lemma 5.8 there exists a positive integer N0 such that the set
Exc(θi) does not contain any lc center of (Xi, Bi +Mi) for i ≥ N0. This proves Claim
5.10 for d = 0. Moreover, by relabelling, we may assume that N0 = 1, and therefore
for each i ≥ 1 the map πi : Xi 99K Xi+1 is an isomorphism at the generic point of each
lc center of (Xi, Bi +Mi).

Let d be a positive integer. By induction and by relabelling, we may assume that
each map πi is an isomorphism along every lc center of dimension at most d− 1.

Now, we consider an lc center S1 of (X1, B1 + M1) of dimension d. We obtain
a sequence of birational maps πi|Si : Si 99K Si+1, where Si is the strict transform of
S1 on Xi. Note that every lc center of the NQC dlt g-pair (Si, BSi + MSi) is an lc
center of (Xi, Bi +Mi), and hence, by induction, each map πi is an isomorphism along
SuppbBSic. Then by Proposition 5.7 and since the difficulty takes values in N, after
relabelling the indices we may assume that Si and Si+1 are isomorphic in codimension
one for every i ≥ 1.

Moreover, by relabelling, we may assume that (πi|Si)∗BSi = BSi+1 for every i ≥ 1.
Indeed, this is equivalent to having

a(E,Si, BSi +MSi) = a(E,Si+1, BSi+1 +MSi+1) (5.5)

for each component of BSi and BSi+1 , and we verify these equalities below. To this
end, fix an irreducible component E of BS1 . Observe that the strict transform of E
on Si is a divisor on Si, denoted again by E (abusing notation). Since each map πi is
an isomorphism along SuppbBSic, if E ⊆ SuppbBS1c, then E ⊆ SuppbBSic and clearly
E satisfies (5.5). For the same reason, if E * SuppbBS1c, then E * SuppbBSic, and
we also note that the coefficient of E in BSi is −a(E,Si, BSi +MSi) ∈ S(b, µ) ∩ [0, 1).
It follows from Lemma 2.18(ii) that

{
−a(E,Si, BSi + MSi)

}∞
i=1

is a non-increasing
sequence of elements of the set S(b, µ), which is bounded below by 0 and bounded
above by γ1, where the constant γ1 ∈ (0, 1) occurs from Lemma 5.6(i). By Lemma
5.6(ii) we infer that this sequence must eventually stabilize; in other words, there exists
NE ∈ Z≥1 such that E satisfies (5.5) for every i ≥ NE . (However, note that E may no
longer be a component of BSi for i ≥ NE , that is, we may have a(E,Si, BSi +MSi) = 0
for every i ≥ NE .) In conclusion, after relabelling the indices we may assume that (5.5)
holds; this concludes the proof of our assertion that (πi|Si)∗BSi = BSi+1 .

For every i ≥ 1 denote by Ti the normalization of θi(Si). By Lemma 2.57 there
exists a diagram

(W1,∆1 +N1) (W2,∆2 +N2) (W3,∆3 +N3) · · ·

(S1, BS1 +MS1) (S2, BS2 +MS2) (S3, BS3 +MS3) · · ·

T1 T2

h1

ρ1

h2

ρ2

h3

ρ3

θ1|S1

π1|S1

θ+1 |S1 θ2|S2

π2|S2

θ+2 |S2

where the sequence of rational maps ρi yields an MMP for the NQC Q-factorial dlt
g-pair (W1,∆1 + N1) and the g-pairs (Wi,∆i + Ni) are dlt blow-ups of the g-pairs
(Si, BSi + MSi). By the assumptions of the theorem, this (KW1 + ∆1 + N1)-MMP
terminates, so after relabelling, we may assume that

(Wi,∆i +Ni) = (Wi+1,∆i+1 +Ni+1) for all i ≥ 1.



88 Chapter 5. Special Termination

Since −(KWi + ∆i + Ni) is nef over Ti and KWi+1 + ∆i+1 + Ni+1 is nef over Ti by
construction, we deduce that KWi + ∆i + Ni is numerically trivial over Ti for each
i ≥ 1. In particular, KSi +BSi +MSi and KSi+1 +BSi+1 +MSi+1 are numerically trivial
over Ti for each i ≥ 1. Thus, θi|Si and θ+i |Si+1 contract no curves. Indeed, if there were
a curve Ci ⊆ Si which were contracted by θi|Si , then we would have

0 = (KSi +BSi +MSi) · Ci = (KXi +Bi +Mi)|Si · Ci = (KXi +Bi +Mi) · Ci < 0,

which is a contradiction; we argue similarly for θ+i |Si+1 . Hence, the maps θi|Si and
θ+i |Si+1 are quasi-finite, and since they are both projective, they are actually finite, and
it follows now from Lemma 1.16 that θi|Si and θ+i |Si+1 are isomorphisms. Consequently,
all maps πi|Si are isomorphisms. This finishes the inductive proof of Claim 5.10, hence
the proof of the theorem.

Next, we obtain the analog of Lemma 5.3 in the setting of g-pairs.

Lemma 5.11. The termination of flips for NQC Q-factorial klt g-pairs of dimension
at most n implies the termination of flips for NQC lc g-pairs of dimension n.

Proof. By induction we may assume the termination of flips for NQC Q-factorial dlt
g-pairs of dimension at most n− 1.

Let

(X1, B1 +M1) (X2, B2 +M2) (X3, B3 +M3) · · ·

Z1 Z2

θ1

π1

θ+1
θ2

π2

θ+2

π3

be a sequence of flips over Z starting from an NQC lc g-pair (X1/Z,B1 + M1) of
dimension n. By Lemma 2.57 there exists a diagram

(Y1,∆1 +N1) (Y2,∆2 +N2) (Y3,∆3 +N3) · · ·

(X1, B1 +M1) (X2, B2 +M2) (X3, B3 +M3) · · ·

Z1 Z2

h1

ρ1

h2

ρ2

h3

ρ3

θ1

π1

θ+1
θ2

π2

θ+2

π3

where the sequence of rational maps ρi is a composition of steps in an MMP for an
NQC Q-factorial dlt g-pair (Y1,∆1 + N1). To prove the statement, it suffices to show
that this MMP terminates. By relabelling, we may assume that this MMP consists only
of flips. By Theorem 5.9 and by relabelling again, we may also assume that at each
step the flipping locus avoids the non-klt locus. Consequently, this sequence of flips is
also a sequence of flips for the NQC Q-factorial klt g-pair

(
Y1, (∆1 − b∆1c) +N1

)
, and

this sequence terminates by assumption. This concludes the proof.

Finally, we prove the analog of Theorem 5.4 in the context of g-pairs.

Theorem 5.12. Assume the termination of flips for NQC Q-factorial klt g-pairs of
dimension at most n− 1.

Let (X1/Z,B1 +M1) be an NQC lc g-pair of dimension n. Consider a sequence of
flips over Z:
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(X1, B1 +M1) (X2, B2 +M2) (X3, B3 +M3) · · ·

Z1 Z2

θ1

π1

θ+1
θ2

π2

θ+2

π3

Then there exists N ∈ Z≥1 such that

Exc(θi) ∩Nklt(Xi, Bi +Mi) = ∅ for all i ≥ N.

Proof. The proof is identical to the proof of Theorem 5.4, replacing Lemma 5.3 with
Lemma 5.11, Lemma 2.56 with Lemma 2.57, and [Fuj07, Theorem 4.2.1] with Theorem
5.9.



90 Chapter 5. Special Termination



6

On the Termination of Flips for Log
Canonical Generalized Pairs

The purpose of this chapter is to address one of the main open problems in the MMP,
the termination of flips conjecture, in the context of g-pairs.

Termination of Flips Conjecture. Let (X/Z,B + M) be an NQC lc g-pair. Then
any sequence of flips over Z starting from (X,B +M) terminates.

For an overview of all the currently known results regarding the termination of flips
conjecture we refer to the introduction of our paper [CT20]. In particular, we recall here
that Kawamata [Kaw92] and Shokurov [Sho85, Sho96] established the termination of
flips for lc pairs of dimension 3; Kawamata, Matsuda and Matsuki [KMM87] proved the
case of terminal 4-folds; Fujino [Fuj04, Fuj05] settled the case of 4-dimensional canonical
pairs with rational coefficients; Alexeev, Hacon and Kawamata [AHK07] verified the
termination of flips conjecture for klt pairs (X,B) such that dimX = 4 and −(KX +B)
is effective, while Birkar [Bir10b] treated the case of 4-dimensional klt pairs with rational
coefficients and Iitaka dimension at least 2. It is worthwhile to mention here that these
papers constitute the main body of work towards the termination of flips conjecture
until recently and also that the central idea in all of them is to introduce an appropriate
difficulty and to study its behavior under flips in order to conclude.

In this chapter we confirm the termination of flips conjecture in dimension 3, uti-
lizing several ideas from [K+92, Kaw92, Sho96] and exploiting a suitable version of the
difficulty for g-pairs, as well as for pseudo-effective g-pairs in dimension 4, following
Birkar’s strategy from [Bir07], which differs remarkably from the classical approach.
Along the way we obtain an analog of Birkar’s inductive termination result [Bir07,
Theorem 1.3] in the context of g-pairs by invoking the special termination for NQC lc
g-pairs (see Theorem 5.12) and the ascending chain condition for lc thresholds [BZ16,
Theorem 1.5]. In particular, our result extends [HM18, Theorem 1] to the setting of
R-divisors, following a different approach.

The contents of this chapter are taken exclusively from our joint paper [CT20] with
Guodu Chen. However, our presentation here is slightly different from the original one.
Specifically, even though we use log discrepancies in [CT20] – which is in general quite
common in recent works in birational geometry – we have reformulated here everything
in terms of discrepancies instead in order to be consistent with the terminology used
in all previous chapters of the thesis.
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Throughout this chapter we assume that varieties are normal and quasi-projective
and that a variety X over a variety Z is projective over Z. We also assume the
existence of flips for NQC lc g-pairs and we recall that flips exist for NQC lc g-pairs
whose underlying variety is Q-factorial klt, see Remark 2.43(2).

6.1 The Difficulty of an NQC Terminal Generalized Pair

For a brief and general discussion about the concept of the difficulty of a (g-)pair we
refer to Section 5.4. Here, we recall a version of the difficulty, which was introduced in
[CT20] and which generalizes [KM98, Definition 6.20] to the setting of NQC g-pairs,
and we demonstrate subsequently that it is finite and non-increasing under flips. In
the next section we will use the difficulty crucially in order to deduce the termination
of flips for NQC Q-factorial terminal g-pairs of dimension 3.

Definition 6.1. Let (X,B +M) be an NQC terminal g-pair with data X ′
f→ X → Z

and M ′ =
∑l

j=1 µjM
′
j , where B =

∑s
i=1 biBi, bi ∈ [0, 1) and the Bi are distinct

prime divisors, µj ≥ 0 and the M ′j are Q-Cartier divisors which are nef over Z. Set
b := max{b1, . . . , bs} (b := 0 if B = 0), consider the set

Sb :=

{ s∑
i=1

nibi +

l∑
j=1

mjµj ≥ b
∣∣∣ ni,mj ∈ Z≥0

}
(S0 = {0} if B = M = 0), and for every ξ ∈ Sb, set

dξ(X,B +M) := #
{
E | E is an exceptional divisorial valuation

over X with a(E,X,B +M) < 1− ξ
}
.

The difficulty of the given g-pair (X,B +M) is defined as

d(X,B +M) :=
∑
ξ∈Sb

dξ(X,B +M).

Lemma 6.2. Assume the notation of Definition 6.1. Then

0 ≤ d(X,B +M) < +∞.

Moreover, if

(X,B +M) (X+, B+ +M+)

W
θ

π

θ+

is a (KX +B +M)-flip over Z, then

d(X,B +M) ≥ d(X+, B+ +M+).

Proof. The difficulty is obviously non-negative, and it follows from Lemma 2.45 that
it is non-increasing under a flip, so we deal with its finiteness below. For every ξ ∈
Sb ∩ [1,+∞) we clearly have dξ(X,B + M) = 0. On the other hand, there are only
finitely many ξ ∈ Sb ∩ [0, 1) and for each such ξ it holds that dξ(X,B +M) < +∞ by
Proposition 2.15; indeed, every such ξ necessarily satisfies 1− ξ ≤ 1− b and we invoke
Remark 2.16 to conclude. Hence, d(X,B +M) < +∞.
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6.2 The Termination of Flips in Dimension 3

In this section we prove the termination of flips conjecture in dimension 3 (see Theorem
6.10). We proceed as follows. First, we prove the termination of flips for 3-dimensional
NQC Q-factorial terminal g-pairs (see Theorem 6.3) by invoking Lemma 6.2. Second,
we prove the termination of flips for 3-dimensional NQC Q-factorial klt g-pairs (see
Theorem 6.9). In order to do so, we obtain analogs of [Sho96, Proposition 4.4 and
Lemma 4.4.1] in the context of g-pairs (see Propositions 6.6 and 6.8), which enable us
to apply Lemma 2.54 and thus reduce Theorem 6.9 to Theorem 6.3. Third, we deduce
Theorem 6.10 as an immediate consequence of Lemma 5.11 and Theorem 6.9.

Theorem 6.3. Let (X1/Z,B1 + M1) be a 3-dimensional NQC Q-factorial terminal
g-pair. Then any sequence of flips over Z starting from (X1, B1 +M1) terminates.

Proof. Let

(X1, B1 +M1) (X2, B2 +M2) (X3, B3 +M3) · · ·

Z1 Z2

θ1

π1

θ+1
θ2

π2

θ+2

π3

be a sequence of flips over Z starting from the g-pair (X1, B1 +M1) which comes with

data X ′1
f1−→ X1 → Z and M ′1 =

∑l
j=1 µjM

′
1,j , where µj ≥ 0 and the M ′1,j are Q-Cartier

divisors which are nef over Z. Note that each g-pair (Xi, Bi +Mi) in this sequence of

flips is terminal by Lemma 2.45 and comes with data X ′1
fi−→ Xi → Z and M ′1. We will

prove the statement by induction on the number of components of B1.
First, consider the case when B1 = 0. Since Xi+1 is terminal, it is smooth at the

generic point of every flipped curve. If Ci+1 is a flipped curve with the generic point
ηi+1 ∈ Xi+1 and if Ei+1 is the prime divisor obtained by blowing up Xi+1 at ηi+1, then
by Lemmas 2.12 and 2.45 we have

a(Ei+1, Xi,Mi) < a(Ei+1, Xi+1,Mi+1) = 1−
∑

mjµj

some non-negative integers mj , and therefore d(Xi,Mi) > d(Xi+1,Mi+1). Conse-
quently, if the given sequence of flips did not terminate, then we would obtain a strictly
decreasing sequence {d(Xi,Mi)}+∞i=1 of non-negative integers with d(X1,M1) < +∞,
which is impossible. Hence the given sequence of flips over Z terminates.

Now, assume that the statement holds when the number of components of B1

is ≤ s − 1, and suppose that the number of components of B1 is s ≥ 1. Write
B1 =

∑s
k=1 bkB1,k, where bk ∈ (0, 1) and the B1,k are distinct prime divisors. Set

b := max{b1, . . . , bs}, let D1 :=
∑

k:bk=b
B1,k, and denote by Bi,k (resp. Di) the strict

transforms of B1,k (resp. D1) on Xi for any i, k.

Claim 6.4. After finitely many flips, no flipping curve and no flipped curve is contained
in the strict transforms Di of D1.

Grant the above claim for a moment and relabel the given sequence of flips so that no
flipping curve is contained in the strict transforms of D1. Fix i ≥ 1. Then Di · C ≥ 0
for all flipping curves C ⊆ Xi, and thus the (KXi + Bi + Mi)-flip over Z is also a(
KXi+(Bi−bDi)+Mi

)
-flip over Z. Consequently, the given sequence of (KXi+Bi+Mi)-

flips over Z is also a sequence of
(
KXi +(Bi−bDi)+Mi

)
-flips over Z, where Bi−bDi =∑

k:bk<b
bkBi,k, and hence it terminates by induction. It remains to prove Claim 6.4.
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Proof of Claim 6.4. We first show that eventually no flipped curve is contained in the
strict transformsDi ofD1. Note that whenever a flipped curve Ci+1 ⊆ Xi+1 is contained
in SuppDi+1, then it holds that

d(Xi, Bi +Mi) > d(Xi+1, Bi+1 +Mi+1).

Indeed, using notation and arguing as in the second paragraph of the proof, we have

a(Ei+1, Xi, Bi +Mi) < a(Ei+1, Xi+1, Bi+1 +Mi+1)

= 1−
∑

nkbk −
∑

mjµj

for some non-negative integers nk = multCi+1 Bi+1,k and mj such that

ξ :=
∑
k

nkbk +
∑
j

mjµj ≥
∑
k:bk=b

nkbk ≥
∑
k:bk=b

b ≥ b,

which yields the assertion. Since d(X1, B1 + M1) < +∞ and since the difficulty takes
values in N, this situation can occur only finitely many times in the given sequence
of flips over Z. In other words, after finitely many flips, no flipped curve is contained
in the strict transforms Di of D1; by relabelling the given sequence of flips, we may
assume that this holds for all i ≥ 1.

We prove now that eventually no flipping curve is contained in the strict transforms
Di of D1. To this end, fix i ≥ 1 and consider the corresponding step

(Xi, Bi +Mi) (Xi+1, Bi+1 +Mi+1)

Zi
θi

πi

θ+i

of the given sequence of flips over Z. We will construct below the following diagram:

Dν
i Dν

i+1

Di Di+1

(θi(Di))
ν =

(
θ+i (Di+1)

)ν

θi(Di) = θ+i (Di+1)

νi

ϕi

gi=ψ−1
i+1 ◦ ϕi

νi+1

ψi+1

θi|Di θ+i |Di+1

Let νi : D
ν
i → Di be the normalization of Di and let ϕi : D

ν
i → (θi(Di))

ν be the
morphism between the normalizations induced by νi ◦ θi|Di . Since Di+1 contains no
flipped curves, the restriction θ+i |Di+1 : Di+1 → θ+i (Di+1) of the flipped contraction θ+i
to Di+1 is an isomorphism away from finitely many points, so it is a finite birational
morphism, and thus νi+1 ◦ θ+i |Di+1 induces an isomorphism ψi+1 : Dν

i+1 →
(
θ+i (Di+1)

)ν
between the normalizations by Lemma 1.16. Observe now that θi(Di) = θ+i (Di+1),
since πi is an isomorphism in codimension one. Hence, we obtain a projective birational



Section 6.2. The Termination of Flips in Dimension 3 95

morphism gi := ψ−1i+1◦ϕi : Dν
i → Dν

i+1, which, by construction, can only contract curves
γ ⊆ Dν

i whose image νi(γ) ⊆ Di is a flipping curve contained in SuppDi.
Consider the minimal resolution q1 : Dµ

1 → Dν
1 of Dν

1 and for each i ≥ 1 the induced
map ζi := gi−1 ◦ · · · ◦ g1 ◦ q1 : Dµ

1 → Dν
i , which is in particular a resolution of Dν

i .
By [AHK07, Lemma 1.6(2)] we obtain a non-increasing sequence {ρi}+∞i=1 of positive
integers, where

ρi := ρ
(
Dµ

1 /Z
)
−#{exceptional prime divisors of ζi}, i ≥ 1.

Since ρ1 < +∞, the sequence {ρi}+∞i=1 must eventually stabilize. By construction of the
maps gi, this implies that eventually Di contains no flipping curves. In other words,
after finitely many flips no flipping curve is contained in the strict transforms of D1, as
claimed.

This completes the proof.

The author and Guodu Chen would like to thank Jingjun Han for showing them the
following result. We provide a detailed proof for the benefit of the reader. Note also
that we use crucially [Mat02, Theorem 1-4-8] together with [KMM87, Lemma 4-2-2].

Lemma 6.5. Let X be a normal quasi-projective variety of dimension 3 and let S be a
prime divisor on X such that KX +S is Q-Cartier. If there exists a fibration h : S → T
to a variety T with dimT ≤ 1, then there exists a curve C ⊆ S which is contracted by
h and such that (KX + S) · C ≥ −3.

Proof. Let ν : Sν → S be the normalization of S and let f : S′ → Sν be the minimal
resolution of Sν . We may run a KS′-MMP over T which terminates either with a good
minimal model S′′ of S′ over T and associated Iitaka fibration S′′ → Z ′′ over T or with
a Mori fiber space S′′ → Z ′′ over T ; we denote by g : S′ → S′′ the induced morphism
over T . Note that in the first case S′′ is covered by curves C ′′ which are contracted
over T and satisfy KS′′ · C ′′ = 0, while in the second case S′′ is covered by curves C ′′

which are contracted over T and satisfy −3 ≤ KS′′ · C ′′ < 0. Overall, we obtain the
following diagram:

S′ S′′

Sν Z ′′

S

T

f

g

ν

h

Furthermore, by adjunction there exists an effective Q-divisor DiffSν (0) on Sν

such that ν∗(KX + S) ∼Q KSν + DiffSν (0) (see [Kol13, Section 4.1]). Consider the
divisor f∗

(
KSν + DiffSν (0)

)
, where the pullback is taken in the sense of Mumford

(see [Mat02, Remark 4-6-3(i)]). Since this pullback is linear and respects effectivity
(see [Mum61, Section II(b)]), we have f∗

(
KSν + DiffSν (0)

)
≥ f∗(KSν ). Moreover,

by [Mat02, Theorem 4-6-2] we deduce that f∗(KSν ) ≥ KS′ . Therefore, the divisor
E := f∗

(
KSν + DiffSν (0)

)
−KS′ is effective.
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Now, pick a point s′ ∈ S′\
(

SuppE∪Exc(ν◦f)∪Exc(g)
)

and note that S, S′ and S′′

are isomorphic to each other near s′. By the above we may find a curve C ′′ ⊆ S′′ passing
through s′′ := g(s′) which is contracted over T and satisfies KS′′ ·C ′′ ≥ −3. Therefore,
there exists a curve C ′ ⊆ S′ passing through s′ such that g(C ′) = C ′′ and whose image
C := (ν ◦ f)(C ′) is a curve on S which is contracted by h, since s′ /∈ Exc(ν ◦ f) and C ′′

is contracted over T . By construction and by the projection formula we obtain

(KX + S) · C = (KX + S) · (ν ◦ f)∗C
′ = (ν ◦ f)∗(KX + S) · C ′

= (KS′ + E) · C ′ ≥ KS′ · C ′.

Additionally, by [Mat02, Definition-Proposition 1-1-1(v) and Theorem 1-1-6] we may
write KS′ ∼ g∗KS′′ + F , where F is an effective g-exceptional divisor. Note that
C ′ * SuppF , since s′ /∈ Exc(g). Thus, by construction and by the projection formula
we obtain

KS′ · C ′ = (g∗KS′′ + F ) · C ′ ≥ g∗KS′′ · C ′ = KS′′ · C ′′ ≥ −3.

In conclusion, the curve C has the desired properties.

Proposition 6.6. Let N be a non-negative integer and let ε be a positive real num-
ber. Then there exists a positive integer I depending only on N , ε and satisfying the
following.

Assume that (X,B + M) is a 3-dimensional Q-factorial klt g-pair with data X ′ →
X → Z and M ′ such that

(i) there are exactly N exceptional divisorial valuations E over X with discrepancy
a(E,X,B +M) ≤ 0, and

(ii) for any exceptional divisorial valuation E over X with a(E,X,B + M) > 0 it
holds that a(E,X,B +M) ≥ ε.

Then ID is Cartier for any Weil divisor D on X.

Proof. We will prove the statement by induction on N .
Assume first that N = 0 and let (X,B +M) be a Q-factorial terminal g-pair such

that a(E,X,B + M) ≥ ε for any exceptional divisorial valuation E over X. Then
(X, 0) is terminal. Let p be the index of X, i.e., p is the smallest positive integer such
that pKX is Cartier, and let D be a Weil divisor on X. By [Kaw88, Corollary 5.2],
pD is Cartier. Since there is nothing to prove if p = 1, we assume that p > 1. By
[Sho92, Appendix by Y. Kawamata, Theorem] we may find an exceptional divisorial
valuation E over X such that a(E,X, 0) = 1

p , and by assumption we infer that p ≤ 1
ε .

We conclude that I := b1εc! has the required property.
Assume now that the statement holds for all integers k with 0 ≤ k ≤ N − 1

and let (X,B + M) be a Q-factorial klt g-pair such that there are exactly N ≥ 1
exceptional divisorial valuations E over X with a(E,X,B + M) ≤ 0, and for any
exceptional divisorial valuation E over X with a(E,X,B + M) > 0 we actually have
a(E,X,B + M) ≥ ε. Let D be a Weil divisor on X. To prove the statement, we
distinguish two cases.

Case I: There exists an exceptional divisorial valuation E over X with discrepancy
a := a(E,X,B +M) ∈ (−1, 0).
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By [BZ16, Lemmas 4.5 and 4.6] there exist a Q-factorial klt g-pair (Y,∆ + Ξ) with

data X ′
g→ Y → Z and M ′ and an extremal contraction h : Y → X with exceptional

prime divisor E such that

KY + ∆ + Ξ ∼R h
∗(KX +B +M). (6.1)

Note that ∆ = BY − aE, where BY is the strict transform of B on Y . Additionally,
possibly replacing X ′ with a higher model, we may assume that f = h ◦ g and that g is
a log resolution of (Y,∆). Also, we denote by E′ the strict transform of E on X ′ and
we note that E′ is an f -exceptional prime divisor. Next, we may write

h∗D ∼Q DY + qE for some q ∈ Q≥0, (6.2)

where DY is the strict transform of D on Y , and

h∗M ∼R Ξ + rE for some r ∈ R≥0. (6.3)

Indeed, by Remark 2.7 and since f = h ◦ g, we know that f∗M ∼R M
′+Ef , where Ef

is an effective f -exceptional R-divisor which can be expressed as Ef =
∑
qkE

′
k + rE′,

where qk, r ∈ R≥0 and the E′k are g-exceptional prime divisors, so we obtain (6.3) simply
pushing this relation down to Y by g. Now, by applying the inductive hypothesis to
the g-pair (Y,∆ + Ξ), we deduce that there exists a positive integer I ′1 depending only
on N , ε and such that I ′1DY and I ′1E are Cartier.

Claim 6.7. There exists a positive integer I1 depending on N , ε and such that I1 ∈ I ′1Z
and qI1 ∈ I ′1Z.

Grant this for the time being. Then h∗(I1D) ∼Q I1DY + (qI1)E is Cartier, and thus
I1D itself is Cartier by [KM98, Theorem 3.25(4)]. Hence, I1 has the required property.
It remains to prove Claim 6.7 in order to complete the proof in this case.

Proof of Claim 6.7. First, we show that 1 + a ≥ ε. Indeed, we may write

KX′ +B′ +M ′ ∼R f
∗(KX +B +M)

for some R-divisor B′ on X ′. Note that multE′ B
′ = −a, where E′ is the strict transform

of the h-exceptional prime divisor E on X ′. If φ : W → X ′ is the blow-up of X ′ along a
general curve γ on E′ and if EW is the irreducible component of the exceptional divisor
of φ which dominates γ, then by [KM98, Lemma 2.29] and by construction we obtain

a(EW , X,B +M) = a(EW , X
′, B′ +M ′) = a(EW , X

′, B′) = 1− (−a) = 1 + a.

Since a(EW , X,B +M) = 1 + a > 0, we infer that 1 + a ≥ ε.
Furthermore, by Lemma 6.5 there exists a curve C ⊆ E which is contracted by h

and such that (KY + E) · C ≥ −3. Note also that E · C < 0, see the proof of [KM98,
Proposition 2.5]. Moreover, (6.2) and (6.3) yield

q = −DY · C
E · C

and Ξ · C = −rE · C ≥ 0.

Recall now that KY +BY −aE+Ξ ∼R h
∗(KX +B+M), see (6.1). Since C * SuppBY ,

we have (KY +BY + E + Ξ) · C ≥ −3, and since 1 + a ≥ ε > 0, we obtain

−E · C =
−(KY +BY + E + Ξ) · C

1 + a
≤ 3

ε
.
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Since

q =
DY · C
−E · C

=
I ′1(DY · C)

−I ′1(E · C)
,

where I ′1(DY ·C) and −I ′1(E ·C) are integers, and since ε ≤ 1+a < 1, it follows readily

that the integer I1 := b3I
′
1
ε c! satisfies the required properties.

Case II: Each one of the N exceptional divisorial valuations E1, . . . , EN over X
(with non-positive discrepancy) has discrepancy a(Ej , X,B+M) = 0, where 1 ≤ j ≤ N .

Recall that for any exceptional divisorial valuation E over X with positive dis-
crepancy with respect to (X,B + M) it holds that a(E,X,B + M) ≥ ε. Consider
an effective ample over Z R-divisor H on X with sufficiently small coefficients which
contains the center on X of every valuation Ej so that a

(
Ej , X, (B + H) + M

)
< 0

for every 1 ≤ j ≤ N and any other exceptional divisorial valuation E over X has
a
(
E,X, (B + H) + M

)
≥ ε

2 , see Lemma 2.4. Moreover, by [BZ16, Remark 4.2(2)] the
g-pair

(
X, (B + H) + M

)
is klt. We may now repeat verbatim the proof from Case I,

working with the g-pair
(
X, (B +H) +M

)
instead, and derive thus an integer I2 with

the desired properties.

Finally, note that the integer I2 obtained in Case II is possibly different from the
integer I1 obtained in Case I. Then the integer I := I1 · I2 satisfies the conclusion of
the statement. This concludes the proof.

Proposition 6.8. Let N be a non-negative integer, let ε be a positive real number
and let Γ be a finite set of non-negative real numbers. Then there exists a finite set
D ⊆ [−1, 0] depending only on N , ε, Γ and satisfying the following.

Assume that (X,B + M) is a 3-dimensional NQC Q-factorial klt g-pair with data
X ′ → X → Z and M ′ =

∑
µjM

′
j such that

(i) B ∈ Γ,

(ii) µj ∈ Γ and M ′j is a Cartier divisor which is nef over Z for any j,

(iii) there are exactly N exceptional divisorial valuations E over X with discrepancy
a(E,X,B +M) ≤ 0, and

(iv) for any exceptional divisorial valuation E over X with a(E,X,B + M) > 0 it
holds that a(E,X,B +M) ≥ ε.

Then for any divisorial valuation F over X with a(F,X,B + M) ≤ 0 it holds that
a(F,X,B +M) ∈ D.

Proof. Let (X,B + M) be a g-pair satisfying all the assumptions of the proposition.
By Proposition 6.6 there exists a positive integer I0 depending only on N , ε such that
I0D is Cartier for any Weil divisor D on X. Furthermore, by [Che20, Theorem 1.4]
there exist a finite set Γ1 of positive real numbers and a finite set Γ2 of non-negative
rational numbers which depend only on Γ and such that

KX +B +M =
∑

αi(KX +Bi +M i),

for some αi ∈ Γ1 with
∑
αi = 1, some Bi ∈ Γ2 and some (M i)′ =

∑
j µijM

′
j with

M i = f∗(M
i)′ and µij ∈ Γ2 for any i, j. Therefore, we may find a positive integer I
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such that IΓ2 ⊆ I0Z; in particular, I(KX +Bi +M i) is Cartier for any i. Since for any
divisorial valuation F over X we now have

a(F,X,B +M) =
∑

αi a(F,X,Bi +M i),

we conclude that there exists a subset D of the finite set{
−1

I

∑
αini

∣∣∣ αi ∈ Γ1, ni ∈ Z≥0
}
∩ [−1, 0]

with the desired properties.

Theorem 6.9. Let (X1/Z,B1 + M1) be a 3-dimensional NQC Q-factorial klt g-pair.
Then any sequence of flips over Z starting from (X1, B1 +M1) terminates.

Proof. Let

(X1, B1 +M1) (X2, B2 +M2) (X3, B3 +M3) · · ·

Z1 Z2

π1 π2 π3

be a sequence of flips over Z starting from (X1, B1 + M1). For every i ≥ 1 consider
a Q-factorial terminalization h′i : (Y ′i ,∆

′
i + Ξ′i) → (Xi, Bi + Mi) of (Xi, Bi + Mi), see

Lemma 2.24(i). To show that this sequence of flips terminates we proceed in three
steps.

Step 1: By Proposition 2.15 there exists a positive real number ε0 such that there
are ν0 ∈ N exceptional divisorial valuations E over X1 with a(E,X1, B1 +M1) < ε0; in
particular, N0 of them, where 0 ≤ N0 ≤ ν0, have discrepancy a(E,X1, B1 + M1) ≤ 0.
It follows from Lemma 2.45 that for every i ≥ 1 there are at most ν0 exceptional
divisorial valuations E over Xi with a(E,Xi, Bi + Mi) < ε0, and at most N0 of them
with a(E,Xi, Bi + Mi) ≤ 0. In particular, there exist a positive integer k and a non-
negative integer N ≤ N0 such that for every i ≥ k there are exactly N exceptional
divisorial valuations E1, . . . , EN over Xi with discrepancy a(Ej , Xi, Bi + Mi) ≤ 0 for
every 1 ≤ j ≤ N , and thus at most ν0 − N exceptional divisorial valuations E over
Xi with a(E,Xi, Bi + Mi) ∈ (0, ε0); note that k is chosen as the smallest positive
integer with this property. In particular, there are exactly ν, where 0 ≤ ν ≤ ν0 − N ,
exceptional divisorial valuations F1, . . . , Fν over Xk with a(Fs, Xk, Bk + Mk) ∈ (0, ε0)
for every 1 ≤ s ≤ ν. Set

ε := min
{
a(F1, Xk, Bk +Mk), . . . , a(Fν , Xk, Bk +Mk), ε0

}
and note that ε = ε0 if and only if ν = 0. By Lemma 2.45 we infer that for every i ≥ k
and for every exceptional divisorial valuation E over Xi with a(E,Xi, Bi + Mi) > 0
it actually holds that a(E,Xi, Bi + Mi) ≥ ε. By relabelling the indices of the given
sequence of flips, we may assume that k = 1.

Step 2: By Step 1 and by construction of a Q-factorial terminalization, each
h′i : Y

′
i → Xi extracts the exceptional divisorial valuations E1, . . . , EN and each ∆′i

is given by

∆′i = (h′i)
−1
∗ Bi +

N∑
j=1

(
− a(Ej , Xi, Bi +Mi)

)
Ej . (6.4)
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Hence, each Y ′i+1 is isomorphic in codimension one to Y ′i . Additionally, we claim that
after finitely many flips πi : Xi 99K Xi+1, each ∆′i+1 is the strict transform of ∆′i.
Indeed, by Step 1 we may apply Proposition 6.8 and deduce that there exists a finite
set V ⊆ [−1, 0] such that for every i ≥ 1 and for every 1 ≤ j ≤ N it holds that
a(Ej , Xi, Bi + Mi) ∈ V. Thus, by Lemma 2.45, for every 1 ≤ j ≤ N we obtain a
non-decreasing sequence {a(Ej , Xi, Bi +Mi)}+∞i=1 of elements of the finite set V, which
must therefore eventually stabilize. Hence, there exists a positive integer r such that
a(Ej , Xr, Br + Mr) = a(Ej , Xi, Bi + Mi) for every i ≥ r and for every 1 ≤ j ≤ N .
Consequently, as asserted, ∆′i+1 is the strict transform of ∆′i for every i ≥ r, see (6.4).
By relabelling the indices of the given sequence of flips, we may assume that r = 1.

Step 3: By Step 2 we may apply Lemma 2.54 and obtain thus a diagram

(Y1,∆1 + Ξ1) (Y2,∆2 + Ξ2) (Y3,∆3 + Ξ3) · · ·

(X1, B1 +M1) (X2, B2 +M2) (X3, B3 +M3) · · ·

Z1 Z2

h1

ρ1

h2

ρ2

h3

ρ3

π1 π2 π3

where the top row yields a sequence of flips over Z starting from the NQC Q-factorial
terminal g-pair (Y1,∆1 + Ξ1). By Theorem 6.3 the sequence Yi 99K Yi+1 of flips over
Z terminates, and thus the sequence Xi 99K Xi+1 of flips over Z terminates. This
concludes the proof.

Theorem 6.10. Let (X/Z,B + M) be a 3-dimensional NQC lc g-pair. Then any
sequence of flips over Z starting from (X,B +M) terminates.

Proof. Follows immediately from Lemma 5.11 and Theorem 6.9.

6.3 On the Termination of Flips for Pseudo-Effective
NQC Log Canonical Generalized Pairs

In this section we prove two of the main results of the thesis. First, we obtain an analog
of Birkar’s inductive termination result [Bir07, Theorem 1.3] in the setting of g-pairs
(see Theorem 6.14). We note that Birkar’s theorem regards effective pairs, whereas our
result concerns pseudo-effective g-pairs admitting NQC weak Zariski decompositions,
and we stress that the existence of NQC weak Zariski decompositions is a weaker
condition than the numerical non-vanishing (see also [Has18b, Theorem 1.4]). Second,
we verify the termination of flips conjecture for pseudo-effective NQC lc g-pairs of
dimension 4 (see Theorem 6.15). Note that the proof of the former occupies almost the
whole section, while the proof of the latter is given at the very end and it is actually
an immediate corollary of Theorems 6.10 and 6.14.

The phrase special termination for NQC lc g-pairs of dimension n encountered in
the sequel means that special termination (as explained in Section 5.1) applies to any
sequence of flips starting from any NQC lc g-pair of dimension n. Below we will also
use frequently the definition of a flip with respect to an arbitrary R-Cartier divisor,
see Definition 2.47. Last but not least, before we turn our attention to the proofs of
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the aforementioned results, we make the following comments about Theorems 6.14 and
6.15 and we also outline our strategy for the proof of the former.

Note that the termination of flips for pseudo-effective lc pairs of dimension 4 with
real coefficients is a special case of Theorem 6.15. The rational coefficients case of the
aforementioned statement was announced previously by Moraga [Mor18] in the second
version of his preprint, following a radically different approach from ours. After we
posted our joint preprint [CT20] with Guodu Chen on the arXiv, Moraga informed us
that in the third version of his preprint [Mor18] he has also obtained Theorem 6.15
independently, using methods similar to ours. Besides, it is worthwhile to mention
that, presently, there is no proof of the aforementioned statement that does not utilize
the theory of g-pairs.

Note that Theorem 6.14 extends [HM18, Theorem 1] to the setting of R-divisors,
and, combined with Theorem 3.17, yields a different proof of [LT19, Corollary G],
which does not depend on [HM18]. Moreover, to establish Theorem 6.14, we proceed
as follows. First, we prove an analog of [Bir07, Lemma 3.2] in the context of g-pairs
(see Theorem 6.12). We emphasize that the ascending chain condition for lc thresholds
[BZ16, Theorem 1.5], which plays a fundamental role in the proofs of Theorem 6.12,
[Mor18, Theorem 1] and [HM18, Theorem 1], is invoked here without passing to some
open subset of the varieties involved (as is the case in [Bir07]). Second, we obtain
Theorem 6.14 essentially as an easy consequence of Theorems 5.12 and 6.12, using the
intermediate Corollary 6.13 as a bridge in order to highlight the significance of special
termination in our proof.

After this rather lengthy introduction, we now concentrate on the proof of Theorem
6.14. We begin with a somewhat technical result that plays a fundamental role in the
proof of Theorem 6.12.

Lemma 6.11. Let (X,B +M) be an lc g-pair with data X ′
f→ X → Z and M ′. Let

(X,B +M) (X+, B+ +M+)

W
θ

π

θ+

be a flip over Z such that the flipping locus Exc(θ) does not intersect the non-klt locus of
(X,B+M), that is, Exc(θ)∩Nklt(X,B+M) = ∅. Let h : (Y,∆ + Ξ)→ (X,B+M) be

a dlt blow-up of (X,B+M), where the g-pair (Y,∆+Ξ) comes with data X ′
g→ Y → Z

and M ′; we may assume that X ′ is a sufficiently high model so that f = h ◦ g. Run a
(KY + ∆ + Ξ)-MMP with scaling of an ample divisor over W and let

(Yi,∆i + Ξi) (Yi+1,∆i+1 + Ξi+1)

Wi

θi

πi

θ+i

be its intermediate steps, where (Y1,∆1 + Ξ1) := (Y,∆ + Ξ). Then:

(i) This (KY + ∆ + Ξ)-MMP over W consists only of flips, at each step the flipping
locus avoids the non-klt locus of (Yi,∆i + Ξi), that is, Exc(θi) ∩ Suppb∆ic = ∅
for every i ≥ 1, and thus the sequence of (KY + ∆ + Ξ)-flips over W is also a
sequence of

(
KY + ∆<1 + Ξ

)
-flips over W , where

(
Y,∆<1 + Ξ

)
is a Q-factorial

klt g-pair.
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(ii) Assume now that there exist an R-divisor P ′ on X ′ which is nef over Z and an
effective R-divisor N on X such that P + N is R-Cartier, −(P + N) is ample
over W and h∗(P + N) = Q + Λ + F , where P := f∗P

′, Q := g∗P
′, Λ ≥ 0 and

SuppF ⊆ Suppb∆c. Then the sequence of (KY + ∆ + Ξ)-flips over W is also a
sequence of (Q+ Λ)-flips over W .

Proof. The following diagram describes the (KY + ∆ + Ξ)-MMP with scaling over W :

(Y1,∆1 + Ξ1) (Y2,∆2 + Ξ2) · · ·

W1 W2

(X,B +M) (X+, B+ +M+)

W

h

θ1

π1

θ+1
θ2

π2

θ+2

θ

π

θ+

and we remark that πi = θi, Yi+1 = Wi and θ+i = IdWi whenever θi is a divisorial
contraction.

(i) First, we show that

Exc(θi) ∩ Suppb∆ic = ∅ for every i ≥ 1. (6.5)

To this end, set U := X \Exc(θ), V1 := h−1(U), T = θ(U), and note that T is an open
subset of W . Since π|U : U → π(U) is an isomorphism, (KX + B + M)|U is trivially
semi-ample over T , and thus (KY1 + ∆1 + Ξ1)|V1 = (h|V1)∗

(
(KX + B + M)|U

)
is also

semi-ample over T . Therefore, V1 ∩ Exc(θ1) = ∅, so V1 is contained in the locus where
π1 is an isomorphism, and we may thus consider its isomorphic image V2 := π1(V1)
and infer that (KY2 + ∆2 + Ξ2)|V2 is semi-ample over T , hence V2 ∩ Exc(θ2) = ∅. By
proceeding analogously, if we set Vi := πi−1(Vi−1), then we obtain that

Vi ∩ Exc(θi) = ∅ for all i ≥ 1. (6.6)

We can now readily derive (6.5) from (6.6) as follows. We first note that

V1 ⊇ Nklt(Y1,∆1 + Ξ1) = Suppb∆1c,

since Nklt(X,B + M) ⊆ U by assumption, and subsequently, by construction and by
the above relation, we deduce inductively that

Vi ⊇ Nklt(Yi,∆i + Ξi) = Suppb∆ic for all i ≥ 2.

Consequently, we obtain (6.5) by combining the above two relations with (6.6).
Next, to prove that the (KY1 + ∆1 + Ξ1)-MMP with scaling over W consists only of

flips, we argue by contradiction. If a divisorial contraction θi : Yi →Wi with exceptional
prime divisor Ei := Exc(θi) appears at the i-th step of this MMP (we may assume that
i is the smallest such index), then by (6.5) we have Ei ∩ Suppb∆ic = ∅, so the strict
transform E1 of Ei on Y1 cannot be a component of b∆1c. On the other hand, E1 must
be contracted over W , and since θ is a small map, E1 is an h-exceptional prime divisor,
and thus a component of b∆1c by construction of a dlt blow-up, a contradiction.
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Finally, if we denote by Ri the (KYi + ∆i + Ξi)-negative extremal ray contracted at
the i-th step of the given sequence of flips, then (6.5) implies(

KYi + ∆<1
i + ∆=1

i + Ξi
)
·Ri =

(
KYi + ∆<1

i + Ξi
)
·Ri,

whence the last assertion of (i).

(ii) For every i ≥ 1 we denote by Qi, Λi and Fi the strict transforms on Yi of Q1 := Q,
Λ1 := Λ and F1 := F , respectively. Since −(P + N) is ample over W and since
ρ(X/W ) = 1, we have KX +B +M ≡W α(P +N) for some α > 0, and thus

KY + ∆ + Ξ = h∗(KX +B +M) ≡W αh∗(P +N) = α(Q+ Λ + F ).

Therefore,
KYi + ∆i + Ξi ≡W α(Qi + Λi + Fi) for every i ≥ 1. (6.7)

Moreover, by assumption and by (i) we infer that

SuppFi ⊆ Suppb∆ic for every i ≥ 1. (6.8)

Hence, if Ci ⊆ Yi is a flipping curve at the i-th step of the sequence of (KY1 +∆1 +Ξ1)-
flips over W , then by (6.5), (6.7) and (6.8) we obtain

(Qi + Λi) · Ci = (Qi + Λi + Fi) · Ci =
1

α
(KYi + ∆i + Ξi) · Ci < 0.

In other words, (Qi + Λi) ·Ri < 0 for every i ≥ 1, as desired.

Theorem 6.12. Assume the existence of minimal models for smooth varieties of di-
mension n− 1 and the special termination for NQC lc g-pairs of dimension n.

Let

(X1, B1 +M1) (X2, B2 +M2) (X3, B3 +M3) · · ·

Z1 Z2

θ1

π1

θ+1
θ2

π2

θ+2

π3

be a sequence of flips over Z starting from an NQC lc g-pair (X1, B1+M1) of dimension
n, where each g-pair (Xi, Bi + Mi) in the above sequence of flips comes with data

X ′1
fi−→ Xi → Z and M ′1. Assume that there exist an NQC divisor P ′1 on X ′1 and an

effective R-divisor N1 on X1 such that P1 +N1 is R-Cartier and −(Pi +Ni) is ample
over Zi for every i ≥ 1, where Pi := (fi)∗P

′
1 and Ni is the strict transform of N1 on

Xi. Then the given sequence of flips over Z terminates.

Proof. Assume that the given sequence of flips over Z does not terminate. We derive
a contradiction by violating the ascending chain condition for lc thresholds [BZ16,
Theorem 1.5].

Step 1: Let t1 ≥ 0 be the lc threshold of P1 + N1 with respect to (X1, B1 + M1).
For each i ≥ 1, since −(Pi + Ni) is ample over Zi and since ρ(Xi/Zi) = 1, we have
KXi + Bi + Mi ≡Zi αi(Pi + Ni) for some αi > 0. Therefore, the given sequence of
(KX1 +B1 +M1)-flips over Z is also a sequence of

(
KX1 + (B1 + t1N1) + (M1 + t1P1)

)
-

flips over Z. By the special termination there exists an integer ` ≥ 1 such that

Exc(θi) ∩Nklt
(
Xi, (Bi + t1Ni) + (Mi + t1Pi)

)
= ∅ for every i ≥ `. (6.9)
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By relabelling the given sequence of flips, we may assume that ` = 1.

Step 2: Consider a dlt blow-up

h1 : (Y1,∆1 + Ξ1)→
(
X1, (B1 + t1N1) + (M1 + t1P1)

)
of the NQC lc g-pair

(
X1, (B1 + t1N1) + (M1 + t1P1)

)
such that f1 = h1 ◦ g1, where

the g-pair (Y1,∆1 + Ξ1) comes with data X ′1
g1−→ Y1 → Z and Ξ′1 := M ′1 + t1P

′
1. Set

L1 := (g1)∗M
′
1 and Q1 := (g1)∗P

′
1 and note that

Ξ1 = (g1)∗Ξ
′
1 = L1 + t1Q1, (h1)∗L1 = M1 and (h1)∗Q1 = P1.

By Lemma 2.57 there exists some (KY1 + ∆1 + Ξ1)-MMP with scaling of an ample
divisor over Z1 which terminates with a dlt blow-up

h2 : (Y2,∆2 + Ξ2)→
(
X2, (B2 + t1N2) + (M2 + t1P2)

)
of the NQC lc g-pair

(
X2, (B2 + t1N2) + (M2 + t1P2)

)
such that f2 = h2 ◦ g2, where

the g-pair (Y2,∆2 + Ξ2) comes with data X ′1
g2−→ Y2 → Z and Ξ′1. As above, set

L2 := (g2)∗M
′
1 and Q2 := (g2)∗P

′
1 and note that

Ξ2 = (g2)∗Ξ
′
1 = L2 + t1Q2, (h2)∗L2 = M2 and (h2)∗Q2 = P2.

Thus, we obtain the following diagram:

X ′1

(Y1,∆1 + Ξ1) (Y2,∆2 + Ξ2)

(
X1, (B1 + t1N1) + (M1 + t1P1)

) (
X2, (B2 + t1N2) + (M2 + t1P2)

)
Z1

g1 g2

h1 h2

θ1

π1

θ+1

By Step 1 and by Lemma 6.11(i) this (KY1 + ∆1 + Ξ1)-MMP with scaling over Z1

consists only of flips and it is also a sequence of (KY1 + ∆<1
1 + Ξ1)-flips over Z1, where

the g-pair (Y1,∆
<1
1 + Ξ1) is Q-factorial klt. Additionally, we will demonstrate below

that Lemma 6.11(ii) may also be applied in this setting.

To this end, we first write trivially ∆1 = ∆<1
1 + ∆=1

1 . More precisely, if E denotes
the sum of the h1-exceptional prime divisors, then by construction of a dlt blow-up (see
Lemma 2.24(iii)) we have

∆1 = (h1)
−1
∗
(
(B1 + t1N1)

<1
)

+ (h1)
−1
∗
(
(B1 + t1N1)

=1
)

+ E. (6.10)

We define now three effective R-divisors Γ1, ∆′1 and ∆′′1 on Y1 such that Supp Γ1 ⊆
Supp ∆=1

1 and

∆<1
1 = ∆′1 + t1∆

′′
1 and (h1)

−1
∗ N1 = Γ1 + ∆′′1 (6.11)
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We write B1 =
∑
βkGk and N1 =

∑
νkGk, where βk ∈ [0, 1] and νk ∈ [0,+∞), so that

B1 + t1N1 =
∑

(βk + t1νk)Gk, where βk + t1νk ∈ [0, 1] by construction. We set

∆′1 :=
∑

k:βk+t1νk<1

βk(h1)
−1
∗ Gk so that Supp

(
(h1)∗∆

′
1

)
⊆ SuppB1,

∆′′1 :=
∑

k:βk+t1νk<1

νk(h1)
−1
∗ Gk so that Supp

(
(h1)∗∆

′′
1

)
⊆ SuppN1,

Γ1 :=
∑

k:βk+t1νk=1

νk(h1)
−1
∗ Gk so that Supp

(
(h1)∗Γ1

)
⊆ SuppN1.

Using (6.10), it is easy to see that (6.11) holds, and we also observe that

Supp Γ1 ⊆ Supp
(

(h1)
−1
∗
(
(B1 + t1N1)

=1
))
⊆ Supp ∆=1

1 .

Since f1 = h1 ◦ g1, P1 = (f1)∗P
′
1 and Q1 = (g1)∗P

′
1, by (6.10) and (6.11) we may write

(h1)
∗(P1 +N1) = Q1 + (h1)

−1
∗ N1 + F1 = Q1 + ∆′′1 +

(
Γ1 + F1

)
,

where F1 is an h1-exceptional R-divisor and Supp
(
Γ1 + F1

)
⊆ Supp ∆=1

1 by construc-
tion. Therefore, we may apply Lemma 6.11(ii), as claimed. We infer that the sequence
of (KY1 + ∆1 + Ξ1)-flips over Z1 is also a sequence of (Q1 + ∆′′1)-flips over Z1.

Note that, due to (6.9), we may repeat the above procedure for every NQC lc g-pair(
Xi, (Bi + t1Ni) + (Mi + t1Pi)

)
of the sequence Xi 99K Xi+1 of flips over Z in order

to produce a diagram as above (case i = 1), starting every time (case i ≥ 2) with the
dlt blow-up hi : (Yi,∆i + Ξi)→

(
Xi, (Bi + t1Ni) + (Mi + t1Pi)

)
that was obtained from

the previous repetition of the procedure, where each g-pair (Yi,∆i + Ξi) comes with

data X ′1
gi−→ Yi → Z and Ξ′1 = M ′1 + t1P

′
1. Specifically, each such repetition produces a

sequence of (KYi + ∆i + Ξi)-flips over Zi, which is also a sequence of (KYi + ∆<1
i + Ξi)-

flips over Zi starting from the NQC Q-factorial klt g-pair (Yi,∆
<1
i + Ξi), as well as a

sequence of (Qi+∆′′i )-flips over Zi, where (as in the case i = 1 we have) ∆<1
i = ∆′i+t1∆

′′
i

and Ξi = Li + t1Qi with Li = (gi)∗M
′
1 and Qi = (gi)∗P

′
1. Moreover, note that each

repetition of the procedure in question is clearly compatible with the previous one.

Since we may consider every flip over Zi as a flip over Z, we obtain a sequence of(
KY1 +∆<1

1 +Ξ1 = KY1 +(∆′1+t1∆
′′
1)+(L1+t1Q1)

)
-flips over Z starting from the NQC

Q-factorial klt g-pair (Y1,∆
<1
1 + Ξ1) =

(
Y1, (∆

′
1 + t1∆

′′
1) + (L1 + t1Q1)

)
, which is also a

sequence of (Q1 + ∆′′1)-flips over Z. This sequence of flips does not terminate, since by
construction it is also a sequence of (KY1 + ∆1 + Ξ1)-flips over Z and if it terminated,
then the given sequence of (KX1 + B1 + M1)-flips over Z would also terminate, but
this contradicts our initial assumption. Moreover, it follows from Lemma 2.14 that
(Y1,∆

′
1 + L1) is an NQC Q-factorial klt g-pair.

Step 3: Let t2 be the lc threshold of Q1 +∆′′1 with respect to (Y1,∆
′
1 +L1). By the

previous paragraph we deduce that t2 > t1 and that the sequence of (KY1+(∆′1+t1∆
′′
1)+

(L1 + t1Q1))-flips over Z is also a sequence of (KY1 + (∆′1 + t2∆
′′
1) + (L1 + t2Q1))-flips

over Z with respect to the NQC Q-factorial lc g-pair
(
Y1, (∆

′
1 + t2∆

′′
1) + (L1 + t2Q1)

)
.

We may now apply the special termination as in Step 1 and continue as in Step 2.

Step 4: By repeating Steps 2 and 3, we obtain a strictly increasing sequence {ti}∞i=1

of lc thresholds. However, this contradicts [BZ16, Theorem 1.5].
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Corollary 6.13. Assume the existence of minimal models for smooth varieties of di-
mension n− 1 and the special termination for NQC lc g-pairs of dimension n.

Let (X1, B1 +M1) be an NQC lc g-pair of dimension n with data X ′1
f1−→ X1 → Z

and M ′1. If (X1, B1 + M1) admits an NQC weak Zariski decomposition over Z, then
any sequence of flips over Z starting from (X1, B1 +M1) terminates.

Proof. Let

(X1, B1 +M1) (X2, B2 +M2) (X3, B3 +M3) · · ·

Z1 Z2

π1 π2 π3

be a sequence of flips over Z starting from the g-pair (X1, B1 +M1). By Lemma 2.57
we obtain a diagram

(Y1,∆1 + Ξ1) (Y2,∆2 + Ξ2) (Y3,∆3 + Ξ3) · · ·

(X1, B1 +M1) (X2, B2 +M2) (X3, B3 +M3) · · ·

Z1 Z2

h1

ρ1

h2

ρ2

h3

ρ3

π1 π2 π3

where each map hi : (Yi,∆i+ Ξi)→ (Xi, Bi+Mi) is a dlt blow-up of the NQC lc g-pair
(Xi, Bi + Mi) and the top row yields a (KY1 + ∆1 + Ξ1)-MMP over Z for the NQC

Q-factorial dlt g-pair (Y1,∆1 + Ξ1) with data X ′1
g1−→ Y1 → Z and M ′1.

To prove the statement, it suffices to show that this (KY1 + ∆1 + Ξ1)-MMP ter-
minates. By relabelling, we may assume that it consists only of flips. Moreover, since
(X,B+M) admits an NQC weak Zariski decomposition over Z, by replacing X ′1 with a
higher model we may assume that f1 = h1◦g1 and that (g1)

∗(KY1+∆1+Ξ1) ≡Z P ′1+N ′1,
where P ′1 is an NQC divisor on X ′1 and N ′1 is an effective R-Cartier R-divisor on X ′1,
see Remark 3.2. Set P1 := (g1)∗P

′
1 and N1 := (g1)∗N

′
1 and observe that P1 + N1 is

R-Cartier and satisfies KY1 + ∆1 + Ξ1 ≡Z P1 +N1. We conclude by Theorem 6.12.

Theorem 6.14. Assume the termination of flips for NQC Q-factorial klt g-pairs of
dimension at most n− 1.

Let (X/Z,B+M) be a pseudo-effective NQC lc g-pair of dimension n. If (X,B+M)
admits an NQC weak Zariski decomposition over Z, then any sequence of flips over Z
starting from (X,B +M) terminates.

Proof. Follows immediately from Theorem 5.12 and Corollary 6.13.

Theorem 6.15. Let (X/Z,B+M) be a 4-dimensional NQC lc g-pair. If KX +B+M
is pseudo-effective over Z, then any sequence of flips over Z starting from (X,B +M)
terminates.

Proof. By Theorem 6.10 we know that any sequence of flips over Z starting from any
NQC lc g-pair of dimension 3 terminates. Moreover, by [KMM87, Theorem 5-1-15],
Corollary 3.10 and Theorem 3.17, we infer that the given g-pair (X/Z,B +M) admits
an NQC weak Zariski decomposition over Z. We conclude by Theorem 6.14.
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[Lai11] C.-J. Lai, Varieties fibered by good minimal models, Math. Ann. 350 (2011),
no. 3, 533–547.

[Laz04] R. Lazarsfeld, Positivity in algebraic geometry. I, II, Ergebnisse der Math-
ematik und ihrer Grenzgebiete., vol. 48, 49, Springer-Verlag, Berlin, 2004.
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