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Kurzfassung 

In dieser Dissertation wird ein bestehendes Modell für einachsige Formgedächtnislegierungen (SMAs) 

modifiziert, um gleichzeitig zusätzliche Fähigkeiten und eine einfachere Formulierung zu erhalten; es wird dann 

als Plattform zur Entwicklung eines neuen Modells verwendet, das ein kombiniertes Axial- und Scherverhalten 

(2-D) aufweist.  

Eine detaillierte Untersuchung des 1-D-SMA-Modells von Müller, Achenbach und Seelecke (M-A-S) identifiziert 

und behandelt mehrere Merkmale, die eine Herausforderung für eine multiaxiale Theorie darstellen. Zu diesen 

Entwicklungen gehören eine neue Technik zur Vorhersage der Wahrscheinlichkeit einer Phasenumwandlung, eine 

neue Formulierung der freien Energie, die die Martensit-Varianten voneinander entkoppelt, und eine quantitative 

Untersuchung der Latentwärme-Vorhersagen. Bevor mit der 2-D-Entwicklung begonnen wird, wird die neue 

Formulierung ausgenutzt, um zwei neue 1-D-Fähigkeiten hinzuzufügen, nämlich die Zug-Druck-Asymmetrie und 

die temperaturabhängige Hysterese, die bisher nicht im M-A-S-Modell berücksichtigt wurden.  Diese beiden 

Merkmale werden zusammen mit einer Reihe anderer üblicher SMA-Effekte in einer Reihe von Simulationen 

demonstriert, die mit experimentellen Daten verglichen werden. 

Die Entwicklung des 2D-Modells konzentriert sich auf einen einzigen Satz experimenteller Daten, bei dem NiTi-

Drähte sowohl einer reinen Zug- als auch einer kombinierten Zug-Torsions-Belastung ausgesetzt wurden. Die 

Tests umfassten einen breiten Temperaturbereich und mehrere verschiedene nichtproportionale Belastungspfade. 

Die Experimente zeigten eine Reihe von charakteristischen Hystereseschleifen, und diese Theorie besagt, dass 

nur vier Martensitvarianten in zwei symmetrischen Paaren den gesamten Satz der beobachteten Reaktionen 

erklären können. Die Kinematik wird zunächst qualitativ begründet und dann werden die vier Varianten mit einer 

freien Energielandschaft auf einer normalen Dehnungs-Scher-Dehnungs-Domäne in Beziehung gesetzt. Das 2-D-

Modell wird unter Verwendung derselben thermodynamischen Prinzipien wie die 1-D-Version abgeleitet, mit 

Ausnahme der kinetischen Gleichungen, die neu formuliert werden mussten, um der Tatsache Rechnung zu 

tragen, dass transformierende Varianten mehrere mögliche Ziele haben. Die Variantenauswahl wird nun von der 

lokalen Stabilität der aktuellen Phase, den lokalen Stabilitäten der Zielphasen und der mit jedem möglichen Pfad 

verbundenen Energiedifferenz bestimmt. Die Simulationen der 2-D-Experimente zeigen vielversprechende 

Ergebnisse, ohne das 1-D-Verhalten des Modells zu beeinträchtigen.  Das Modell sagt das Zug-Torsionsverhalten 

über den gesamten Bereich der Temperatur/Axialspannungskombinationen genau voraus und erfasst auch die 

beiden Hauptmodi der axialen Reaktion. Die Größenordnungen der axialen Dehnungen sind in einigen Fällen 

ungenau, und dies bietet eine Gelegenheit für zukünftige Arbeiten, die hier vernachlässigten makroskopischen 

Feldeffekte zu untersuchen. 
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Abstract 

In this dissertation an existing model for uniaxial shape memory alloys (SMAs) is modified to simultaneously 

have additional capabilities and a simpler formulation; it is then used as a platform to develop a new model capable 

of combined axial and shear (2-D) behavior.  

A detailed examination of the 1-D SMA model by Müller, Achenbach, and Seelecke (M-A-S) identifies and 

addresses several features that present challenges to a multiaxial theory. These developments include a new 

technique to predict the probability of phase transformation, a new free energy formulation that decouples the 

martensite variants from one another, and a quantitative examination of the latent heat predictions. Before 

beginning the 2-D development, the new formulation is exploited to add two new 1-D capabilities, tension-

compression asymmetry and temperature-dependent hysteresis, that were not previously accommodated by the 

M-A-S model.  These two features, along with a number of other common SMA effects, are demonstrated in a 

series of simulations that are compared to experimental data. 

The 2-D model development is focused on a single set of experimental data where NiTi wires were subjected to 

pure tension as well as combined tension-torsion loading. The tests included a wide range of temperatures and 

several different non-proportional loading paths. The experiments revealed a series of distinctive hysteresis loops 

and this theory proposes that only four martensite variants, in two symmetric pairs, can explain the entire set of 

responses observed. The kinematics are first justified in a qualitative manner and then the four variants are related 

to a free energy landscape on a normal strain-shear strain domain. The 2-D model is derived using the same 

thermodynamic principles as the 1-D version except for the kinetic equations, which had to be reformulated to 

account for the fact that transforming variants have multiple possible destinations. The variant selection is now 

governed by the local stability of the current phase, the local stabilities of the destination phases, and the energy 

difference associated with each possible path. Simulations of the 2-D experiments show promising results without 

compromising the 1-D behavior of the model.  The model accurately predicts the tension-torsion behavior across 

the entire range of temperature/axial stress combinations and also captures the two major modes of axial response. 

The magnitudes of the axial strains are inaccurate in some cases and this presents an opportunity for future work 

to explore the macroscopic field effects that were neglected here. 
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1 Introduction 

1.1 Objective and Outline 

The starting point for this dissertation is a material model for the 1-D, elastocaloric behavior of shape 

memory alloys from Müller, Achenbach, and Seelecke (Müller and Wilmanski (1981), Achenbach and Müller 

(1985), Achenbach (1989), Müller and Seelecke (2001)). This dissertation examines the model’s underlying 

thermodynamics and kinetic theory and then contributes an updated version of the 1-D model that extends its 

capabilities as well as a new 2-D model that is applied to combined tension-shear loading. We begin with an 

overview of the document and then give a brief introduction to some common SMA modeling techniques.  

In Chapter 2 we shift the focus to the Müller, Achenbach, and Seelecke ( M-A-S) model. This begins with a 

discussion of its history as well as commentary on how it is different from and similar to other SMA modeling 

approaches. Next, we introduce the concept of a mesoscopic layer and its free energy as well as how they fit into 

the multiscale system. Equipped with only these concepts, before presenting the first equation, we show a series 

of figures that demonstrate how a multiwell free energy can produce several common SMA effects. The intuitive, 

visualizable nature of this model is one of its advantages among SMA theories that have a wide range of 

complexity and abstractness. The remainder of the chapter is devoted to the basic mathematical structure of the 

M-A-S model. This includes the Helmholtz free energy, Gibbs free energy, kinetics law, stress-strain equations, 

and energy balance equations.  

Chapter 3 is the first of two in-depth examinations and is dedicated to the kinetics law. The kinetics equations 

use a statistical description of the mesoscopic system to predict phase change at the macroscopic scale. In this 

way they are the main connection between the mesoscopic and macroscopic systems. They are based on the 

calculation of transformation probabilities, which are derived from the Boltzmann equation. The transformation 

probabilities have been calculated a number of different ways between various applications of the M-A-S model, 

but each form is still based on the same parent equation. Beginning with the Boltzmann equation, we derive 

several of the different expressions and discuss their applications, advantages, and disadvantages. Based on this 

assessment, we next offer a new transformation probability equation that combines the benefits of two previous 

forms. This version reduces the number of equations required to operate the 1-D model and is well-suited for 

extension to 2-D. This chapter concludes with section devoted to the transformation rate parameters. The kinetic 

equations describe phase change as a time-dependent process and, since SMA transformations occur very rapidly, 

care must be taken to strike the proper balance between rapid transformations and numerical issues.  

The second in-depth discussion concerns the model’s thermodynamics in Chapter 4. First, we address the 

issue of how stress, strain, and temperature at the mesoscopic scale and macroscopic scale are related.  This is an 

important groundwork to lay because many of the parameters used to define the mesoscopic free energy are 

obtained from macroscopic test data. After establishing this connection, we show the complete construction of the 

multiwell free energy from a simple set of experimentally obtained parameters. Next, we show how the free energy 

can be used to relate transformation stress to other thermodynamic properties such as chemical free energy, 

internal energy, entropy, and latent heat. Special attention is given to the irreversibility that is inherent in a 

multiwell free energy-system. Many SMA theories, that address the thermodynamics of phase change, assume 

reversibility when relating these quantities and this yields equations analogous to the Claussius-Clapeyron 

equation. We show that, due to the smoothness conditions on the M-A-S free energy, we can use the same 
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procedures to derive internal energy, entropy, and latent heat expressions that include irreversibility. To test these 

equations, we compare latent heat predictions to experimentally measure parameters as well as predictions using 

the traditional, reversible, equations. The chapter concludes with an additional exercise that relates the 

macroscopic stress-strain curve, the total entropy produced during the stress-strain cycle, and the latent heat 

difference between forward and reverse transformations.  

In Chapter 5, we use the thermodynamic insights from Chapter 4 and the updated kinetics model from 

Chapter 3 to develop a new version of the 1-D model. This model has two additional capabilities: tension-

compression asymmetry and temperature-dependent hysteresis. This is accomplished by reinterpreting the free 

energy such that each martensite variant can have a unique well and barrier 

. The curvatures of the energy barriers (which dictate the hysteretic behavior) are also allowed to be functions 

of temperature. These generalizations involve some algebraic restructuring, the use of a dual set of material 

parameters, and also re-derivation of the caloric quantities. This chapter also includes a series of simulations that 

show tension-compression symmetry, temperature-dependent hysteresis, and a variety of other SMA effects. In 

each case the model is compared to experimental data and the results are discussed. For readers interested in 

implementing the model, the chapter concludes with user’s guide including a list of parameters with descriptions 

and values along with a flowchart of required equations.  

In Chapter 6, we use the 1-D model as the basis to formulate a new multidimensional SMA model. This 

requires the introduction of four martensite variants, a 2-D free energy landscape, and the assertion that symmetry 

between the variant pairs enables uniaxial tension, pure shear, or coupled behavior. Using principles from the 

modified free energy in Chapter 5, we formulate a new free energy that operates in terms of critical free energies 

as opposed to critical stresses or strains. This approach is more general and naturally accommodates multiaxial 

coupling. The new free energy and transformation criteria also necessitate the development of a novel set of 

transformation probabilities that utilize the stability of current phase to initiate transformation and the stability of 

the destination phases to govern transformation paths (i.e. variant selection). An extensive set of tension-torsion 

experimental data (Sittner et al. (2009)) is used to develop the model and to test its performance in uniaxial tension 

tests, uniaxial actuation tests, and numerous combined tension-torsion tests.  

The dissertation concludes with a set of appendices containing supplemental material. This includes details 

overcoming numerical overflow issues for one of the transformation probability equations, step-by-step 

instructions to build the tension-compression asymmetric free energy, free energy plots for several different sets 

of experimental data, additional stress-strain calculations for the 2-D model, and a summary of tension-torsion 

simulations results from other SMA models.  

1.2 SMA Modeling Overview 

Shape memory alloys offer an enticing array of possibilities for engineering applications due to their unique 

properties, namely superelasticity and the shape memory effect. Over the last 60 years or so, this research field 

has grown steadily and the number of successful SMA-based devices in industry continues to increase. Despite 

this level of maturity as a technology, SMAs are still largely considered to be niche products and perceived (fairly 

or not) to be complex and difficult for design. This reputation is understandable, if not well-deserved, because the 

behavior we observe in laboratory specimens is the result of several different, interrelated mechanisms occurring 

simultaneously at multiple physical scales. The main way that researchers and engineers have navigated this 

challenging landscape is by restricting the scope of the experiments, theories, and devices to 1-D. The number of 
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SMA publications that focus on 1-D behavior vastly outweigh those considering two or more dimensions. Even 

under the narrowed scope of uniaxial behavior, SMAs are nonlinear, hysteretic, and thermo-mechanically coupled.  

The field of material models aiming to capture these effects is wide and includes a variety of approaches. In this 

section, rather than attempt to provide a comprehensive review of the SMA modeling, we categorize a handful of 

approaches that either contrast or have similarities to the M-A-S model. More general and comprehensive reviews 

can be found in Ziolkowski (2015), Barbarino et al. (2014), Lagoudas et al. (2006), Patoor et al. (2006), as well 

as Paiva and Savi (2006).  

1.2.1 Phenomenological (Macromechanical) Models 

One of the main distinguishing features between SMA material models is the physical meaning of the 

internal variables. They are mostly related to the presence of martensitic microstructures, but there is still room 

for wide variation from one interpretation to the next. A number of SMA theories describe martensite in a purely 

phenomenological manner, at a scale much larger than the crystal lattice (Boyd and Lagoudas (1996), Bo and 

Lagoudas (1999a,b), Lagoudas and Bo (1999), Bernardini and Pence (2002), Müller and Bruhns (2006), Zaki 

(2012), Morin et al. (2011), Zaki and Moumni (2007), Thamburaja (2010), Armattoe et al. (2014), Chemisky et 

al. (2011), Saleeb et al. (2011), Xiao (2014), Peultier et al. (2006), Zhou (2012), Auricchio and Sacco (1999), 

Masud et al. (1997), Auricchio et al. (1997), Auricchio and Lubliner (1997), Auricchio and Sacco (1997), Lubliner 

and Auricchio (1996), Arghavani et al. (2010), Auricchio et al. (2003), Auricchio and Sacco (2001), Bodaghi et 

al. (2013), Stebner and Brinson (2013), Christ and Reese (2009), Reese and Christ (2008), in addition to Helm 

and Haupt (2003)). These formulations assume effective transformation strains that represent a large number of 

arbitrarily oriented crystals expressing an arbitrary number of variants. Under this assumption, the transformation 

strain accumulates in any direction and is dictated by the state of stress via yield surfaces and flow rules. These 

models usually include a macroscopic free energy and adopt traditional continuum thermodynamics guidelines 

such as those set forth by Coleman and Noll (1963) and Coleman and Gurtin (1967). This framework dictates that 

the free energy must be convex and that all constitutive equations must be derived from partial derivatives of it. 

Moving forward, we will use the phrase traditional continuum thermodynamics to refer to this general approach. 

The plasticity framework is easily extended to multiple dimensions and additional internal variables are readily 

added to introduce secondary effects such as plastic strain and cyclic evolution. One drawback to this type of 

framework is that the free energies (and the other model quantities) lack a direct connection to phases; this means 

that SMA effects such as transformation reversal and hysteresis must be reintroduced through phase diagrams or 

other logical constructs.  

1.2.2 Micromechanical Models 

A contrasting approach to SMA modeling is motivated by micromechanics where internal variables 

represent specific crystallographic martensite variants (Patoor et al. (1989), Patoor et al. (1996), Entemeyer et al. 

(2000), Huang and Brinson (1998), Yu et al. (2012), Wang et al. (2007), Wang et al. (2008), and Richards et al. 

(2013)). Since each variant is based on a specific crystallographic configuration, it can be associated with a unique 

transformation strain tensor and phase fraction. The transformation strains are weighted by the phase fractions 

and superimposed to represent the total strain of a single SMA crystal. These formulations also typically follow 

continuum thermodynamics guidelines but in contrast to plasticity-type models, the partial derivatives yield stress-

strain relationships and driving forces for individual phases. Interaction energies are often included to motivate 

favorable combinations of variants (i.e. twinning) and temperature-dependent (chemical) energies promote 
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temperature-induced transformations. This type of model can represent complex 3-D single crystal behavior that 

can be traced to specific micromechanical effects. These models are also often extended to polycrystalline 

applications, but this is usually an averaging or field solution based on many instances the single-crystal 

formulation.  

1.2.3 Phase Field Models and Localization Effects 

Phase field models describe a spatial domain that is divided into regions, each occupied by a single 

martensite (James and Kinderlehrer (1989), Ball et al. (1992), Abeyaratne and Knowles (1988), Abeyaratne and 

Knowles (1989), Abeyaratne and Knowles (1990), Abeyaratne and Knowles (1991), Leo et al. (1993)). The 

boundaries between the phases are dynamic and phase change is represented the growing or shrinking of various 

zones. This type of model represents a new category because it often uses a multiwell free energy to motivate the 

system’s metastable nature. In free energy space, each well contains some amount of material and is separated 

from the other phases by energy barriers. When stress or temperature conditions push one phase out of its energy 

well (i.e. into an unstable configuration), transformation occurs via boundary motion. The collective response of 

the phase fields yields the SMA material behavior and maintains global equilibrium. If the representative phase 

field volume is assumed to be very small (micro or nanometer), then these models are well suited to predict effects 

like self-accommodation and variant selection. If the phase field domain is considered to be the entire macroscopic 

body, these models are capable of capturing transformation front motion of the Lüders band-type. A number of 

SMA traits are strongly related to macroscopic phase field effects and this continues to be an active area of 

research (Shaw and Kyriakides (1995), Shaw (2002), Shaw et al. (2008), Churchill et al. (2009a), Churchill et al. 

(2009b), Churchill et al. (2010), Dai and Wang (2010), Dhote et al. (2012), Dhote et al. (2013), Song et al. (2013)).  

1.2.4 Multidimensional Models 

Some devices, like stents and morphing structures (Rogers et al. (1999), Duerig et al, (2000), Migliavacca 

et al. (2002), Gong et al. (2003), Stoeckel et al. (2004), Kleinstreuer et al. (2008), Ballew and Seelecke (2009), 

Zaki (2012), Hartl and Lagoudas (2007), Barbarino et al. (2014)) utilize SMA behavior in multiple dimensions 

and push the material into multiple axes of stress and strain.  Despite the potential of multidimensional SMA 

devices, the design and modeling of such devices is challenging for a number of reasons including 1) there are 

numerous variants (24 for NiTi for example), 2) these variants form in alternating microscopic layers that interact 

with one another, 3) the alternating layers form mesoscopic plate groups that further interact with each other and 

surrounding material, and 4) these features can initiate at multiple locations within a macroscopic specimen which 

can grow, shrink, or travel. 

Most efforts target simple two-dimensional experiments such as biaxial tension/compression or combined 

tension and torsion (Bouvet et al. (2004), Arghavani et al. (2010), Saleeb et al. (2011), Sedlak et al. (2012), among 

others). Even in these simple systems the observed behavior can be complex and sometimes difficult to attribute 

to a specific martensitic effect. In 2009 a ESF S3T EUROCORES-sponsored program called Roundrobin SMA 

Modeling was completed with two main goals, 1) to publish a rich experimental data set for multidimensional 

SMA modelers to use and 2) to provide some modeling benchmarks for the field.  The experimental data set 

examined the thermomechanical behavior of NiTi wires under a wide array of multiaxial and non-proportional 

loading scenarios.  For modeling portion of the program several teams of researchers used their SMA models to 

simulate the experiments and then the results were published in a conference paper (Sittner et al (2009)).  In this 

dissertation we make use of the data from this program and refer to it frequently. For brevity, we will refer to the 
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Roundrobin SMA Modeling program as simply the RR program and the data as RR data. The modeling efforts 

stemming from this program demonstrated a number of different approaches, levels of completeness, and degrees 

of success.  

The model by Gibeau et al. (2009) uses stress-induced martensite as well as self-accommodated martensite 

internal variables. A macroscopic Helmholtz free energy contains terms related to internal energy, entropy, elastic 

energy, specific heat, and variant interaction. A Gibbs free energy is derived from the Helmholtz energy and it 

also has a phase dependent elastic modulus. This is an often-used technique to produce smooth, polycrystalline-

like stress-strain curves as opposed to the trilinear, single-crystal type. The free energies are used in the traditional 

continuum thermodynamics manner to define driving forces for elastic strain, thermal strain, transformation strain, 

entropy, as well as the proportions of stress-induced and self-accommodated martensite. A yield function is used 

to define the threshold for transformation while a Claussius-Duhem inequality (along with several logical 

conditions) are used to supply flow rules. A specific choice of stress-invariant parameters is used to also enable 

tension-compression asymmetry – this is similar to Drucker-Prager methods which are common concrete and soil 

modeling. This model has reasonable accuracy in most of the uniaxial simulations and showed only a small 

handful of tension-torsion cases where the agreement was poor. These results, as well as several other RR program 

publications, are included in appendix to this dissertation (Chapter 10.6).  

Rio et al. (2009) employs an elasto-hysteresis model where the total stress was composed of a hyperelastic 

component and an elastoplastic hysteresis component. The hyperelastic potential is based on strain invariants, 

relative volume variation, deviatoric deformation intensity, and an angle giving the direction of the deformation. 

The hysteresis is governed by an incremental model with discrete memory points. This approach is one of the 

more unique ones among the RR program participants (and SMA models in general) and showed promising 

correlation to the experimental data. This model showed excellent agreement in the uniaxial tension cases and 

also captured the torque-twist responses very well (see Chapter 10.6). The axial strain-twist curves were 

qualitatively similar to the experimental data, but the magnitudes were incorrect. This is also one of the main 

deficiencies of the model developed in this dissertation and will be discussed further in Chapter 6.  

Chemisky and colleagues (2009) present a model where the inelastic strain is an average of the strain 

stemming from martensite transformation and from the formation of twinned martensite. A Gibbs free energy is 

written containing chemical, elastic, thermal strain, inelastic, and mixing energy terms. A set of dissipation 

potentials and evolution rules govern the progression of the internal variables and phase diagram-like method is 

used to identify the material parameters. When compared to experimental data, the predictions made using this 

model were accurate in the uniaxial simulations and mixed in the combined tension-torsion cases. The model did 

capture the major modes of torque-twist and axial strain-twist, but the magnitudes were only correct at certain 

temperatures and in certain strain ranges (see Chapter 10.6).  

The Hartl et al. (2009) model assumes a total strain composed of an elastic component (with a stiffness that 

is phase fraction-dependent), a thermal component, a transformation component, and a plastic component. The 

formulation is of the plasticity-type, where the direction of the inelastic strain accumulation is governed by the 

stress deviator tensor (essentially the direction of maximum shear). The evolution equations use loading vs. 

unloading logic, a maximum achievable strain parameter that is stress dependent, as well as back-stress and 

transformation hardening terms. The start-stop criteria are based on driving forces which are also related to the 
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various terms from the evolution equations. This model was accurate in the RR uniaxial test cases but only showed 

results for a very limited set of multiaxial simulations (see Chapter 10.6).  

Sedlak et al. (2009, 2012) present a model with material anisotropy, an R-phase, martensite reorientation, 

along with multi-axial loading. The total strain is segregated into elastic and inelastic parts, where the inelastic 

strain is based on a transformation strain tensor and a martensite phase fraction. A Helmholtz free energy is 

introduced with a mechanical and chemical component as well as penalty-type energy terms that are added to 

enforce system constraints. These penalty terms limit the inelastic strain to the deviatoric components and keep 

the phase fractions between zero and one. Dissipation functions are introduced as alternatives to yield functions 

and these govern the onset of stress-induced transformations, temperature-induced transformations, as well as 

martensite reorientation. The reorientation term has a temperature-dependent component which allows 

temperature dependent hysteresis. A set of thermodynamic forces along with minimization routines for the 

dissipation functions play the role of flow rules and dictate the evolution of the inelastic strains. This model 

showed good agreement to the experimental data in both the uniaxial tests as well as the tension-torsion tests (see 

Chapter 10.6).  

The model by Bodaghi et al. (2013) uses self-accommodated martensite, oriented martensite, as well as 

preferred-direction martensite internal variables to describe the phase composition of the material. The strain is 

decomposed into elastic and inelastic components and the strain domain is made to be two dimensional, only 

considering a normal and a shear (torsional) component. A HFE function is written with elastic energy, internal 

energy, entropy, and transformation hardening terms. This is followed by a total dissipation inequality of the 

Claussius-Duhem type, which gets incorporated into evolution equations and optimization procedures. The 

Evolution equations and optimization conditions (Kuhn-Tucker-type) are derived from the free energy and 

dissipation expressions. These function like flow rules in traditional plasticity theory and then a set of limit 

functions are added that behave like yield surfaces. The results from this model were, like many other entries, 

accurate in the uniaxial cases but lacking in the tension-torsion simulations. The major modes of behavior were 

loosely represented, but the magnitudes and detailed shapes of the response curves were off in several cases (see 

Chapter 10.6).  

In Auricchio et al. (2009, 2014), three internal variables are used to represent SMA phases: austenite, single-

variant martensite, and multivariant martensite. A Helmholtz free energy is written as a function of total strain, 

temperature, phase fractions, and a transformation direction tensor. A chemical free energy is also written for each 

phase along with a set of interaction energies, which influence the behavior when multiple phases are present. 

Partial derivatives of the free energy are used to derive constitutive equations and thermodynamic forces. The 

driving force expressions also have logical terms based on Kuhn-Tucker conditions and the transformation 

direction is assumed to be the direction of the deviatoric stress vector. The driving forces, along with consistency 

parameters, limit functions, and optimization (Kuhn-Tucker) conditions, are used to derive a set of evolution 

equations for the internal variables. This model was accurate across the entire set of uniaxial cases including full 

and partial-loading tension tests and well as stress and strain-controlled thermal cycling tests. The tension-torsion 

cases exhibited mixed agreement to the experiments, but only a small sub-set of the data was shown (see Chapter 

10.6).  

In Chatziathanasiou et al. (2016), the authors present a plasticity type of model that considers forward 

transformation, reverse transformation, and reorientation. The transformation strain parameter represents the 
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average strain in a martensite representative volume element (RVE), where the strain direction can change 

(reorient) and the phase fraction can grow or shrink. A rate of change for each internal variable is derived from a 

Gibbs free energy and a set of yield surfaces is used to define the activation criteria. A Claussius-Duhem 

expression is written to add some additional constraints to the system and maximum transformation strain 

parameters are used to allow transformations to complete. This model was only compared to a small set of uniaxial 

cases and no multiaxial tests.  

2 SMA Model by Müller, Achenbach, and Seelecke 

At this point, nearly 30 years after its inception, the 1-D SMA model by Müller, Achenbach, and Seelecke 

(which we will call the M-A-S model) has numerous variations, adaptations, and extensions. In this chapter we 

aim to merely introduce the model and give an overview of its fundamental features and operation. This includes 

a brief history, some example applications, a description of its multiscale motivation, and the basic equations 

required to operate the model.  

The M-A-S model has overlap with both the micromechanical and phase field modeling techniques discussed 

in the previous chapter. The core model is derived from a nonconvex free energy, but the free energy represents 

a smaller (mesoscopic) scale than the rest of the model. This is a unique feature among SMA theories. The 

mesoscopic phase fields are not resolved but, instead, statistical physics techniques are used to motivate the 

macroscopic behavior. This type of model was originally motivated by the van der Waals gas equations (Müller 

(1979)) or Ginzburg-Landau theory for phase transformations (Falk (1980), Falk (1983)). The early works 

employed macroscopic potential energy landscapes, high levels of thermal activation, and various descriptions of 

the energy barriers. The discussions were mainly qualitative but showed the straightforward manner in which a 

multiwell potential can produce the signature stress plateaus and hysteresis exhibited by SMA material. The theory 

was furthered by Seelecke (2002) and Seelecke and Müller (2004) where a mesoscopic, temperature-dependent 

free energy was introduced. When applied to the low thermal activation case of an SMA solid, this model was 

able to accurately capture both stress and temperature-induced transformation as well as latent heat effects. Since 

then, the M-A-S model has been employed in a variety of SMA applications including: extension for 

polycrystallinity (Heintze and Seelecke (2008), Rizzello et al (2019)), thermal boundary condition effects (Furst 

et al. (2012), macroscopic field effects (Schmidt et al. (2016)), as well as simulations of an SMA cooling effects 

(Ullrich et al. (2014), Welsch et al. (2018)). Due to the generality of its thermal activation and mesoscopic free 

energy framework, the M-A-S model has also been adapted to represent other ferroic materials. Ferroelectric and 

magnetic SMA implementations of the M-A-S model can be found in Kim and Seelecke (2007), Krevet et al. 

(2008). Morrison et al. (2008a); Morrison et al. (2008b); Seelecke et al. (2005), Smith et al. (2003), and Smith et 

al. (2006). These formulations assign different physical meanings to the phases, but the use of nonconvex free 

energy and thermally activated kinetics are analogous to the original M-A-S model.  

The M-A-S model deviates from traditional continuum thermodynamics models in two main ways. The first 

difference is related to the practice of deriving all constitutive equations directly from the free energy. Figure 1a 

illustrates a set of model equations structured this way.  
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𝛹(𝜀, 𝑇, 𝑥1,2,…)

𝑀𝑎𝑐𝑟𝑜𝑠𝑐𝑜𝑝𝑖𝑐
𝑓𝑟𝑒𝑒 𝑒𝑛𝑒𝑟𝑔𝑦

→

{
 
 
 
 
 

 
 
 
 
 

  

𝜎(𝜀) =
𝜕𝛹

𝜕𝜀

𝑆𝑡𝑟𝑒𝑠𝑠, 𝑠𝑡𝑟𝑎𝑖𝑛

𝜂(𝑇) =
𝜕𝛹

𝜕𝑇

𝐸𝑛𝑡𝑟𝑜𝑝𝑦, 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

𝐹𝑖 =
𝜕𝛹

𝜕𝑥𝑖

𝐷𝑟𝑖𝑣𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒, 𝑝ℎ𝑎𝑠𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠

 

𝐾𝑖𝑛𝑒𝑡𝑖𝑐𝑠
𝑙𝑎𝑤

→ 𝑥𝑖 , 𝜀 = 𝑓(𝜀𝑖 , 𝑥𝑖) , 𝜎 = 𝑓(𝜀, 𝑥𝑖)

𝑀𝑎𝑐𝑟𝑜 𝑠𝑐𝑎𝑙𝑒: 𝑝ℎ𝑎𝑠𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠, 𝑠𝑡𝑟𝑎𝑖𝑛, 𝑎𝑛𝑑 𝑠𝑡𝑟𝑒𝑠𝑠

𝑔 = 𝑓(𝜀, 𝑇; 𝜎)

𝑀𝑒𝑠𝑜 𝑠𝑐𝑎𝑙𝑒: 𝑓𝑟𝑒𝑒 𝑒𝑛𝑒𝑟𝑔𝑦

 

a) Common continuum thermodynamics equation structure b) M-A-S model equation structure 

Figure 1: Comparison of SMA equation structures 

In the M-A-S framework, the free energy is addressed at a different scale than the constitutive equations and 

this is sketched in Figure 1b. The continuum thermodynamics rules are maintained at the mesoscopic scale, but a 

macroscopic free energy is simply not necessary. This allows the main stress and strain equations to take simple 

mixture rule forms and essentially leaves all the nonlinear effects to be governed by the kinetics law and 

mesoscopic system. The second deviation from the traditional continuum thermodynamics guidelines is the fact 

that that the M-A-S free energy is non-convex. Strict adherence to the arrangement in Figure 1a, with a non-

convex free energy, would yield regions of zero or negative stiffness. In a more general view of the system, 

however, the free energy zones where 
𝜕𝜓

𝜕𝜀
 yields a negative number do not represent the stiffness of any material. 

These regions signify dynamic stages where the system is not governed by equilibrium conditions. Imagine the 

force vs. deflection curve for a buckling column or even a light switch. A free energy with multiple wells simply 

reflects a system with more than one stable configuration (metastable). SMA materials are just one of many 

examples of metastability and, in the M-AS model, the dynamic event is a phase change. The convex zones are 

governed by stress-strain equilibrium and the concave zones are governed by phase equilibrium; the two act 

together to maintain overall equilibrium.  

Many of the models mentioned in Chapter 1 are arranged in similar manner to Figure 1a which means the 

free energies are macroscopic and convex. The consequence is that additional features like load-unload logic, 

phase diagrams, or additional potentials must be added to produce SMA effects such as forward and reverse 

transformation, stress and temperature-driven transformation, hysteresis, and latent heat. A multiwell free energy 

eliminates the need for logical constructions because it automatically contains the information necessary to yield 

SMA behavior. Segregating the free energy to the mesoscopic scale, as we will discuss in later chapters, is actually 

a convenient way to maintain thermodynamic consistency without neglecting its important multiwell nature.  

Apart from these two distinctions, the M-A-S model has many of the common elements found in SMA 

constitutive models. An energy well is associated with each phase and the location of the well minimum designates 

a specific deformation state for that phase. In this way, the well locations play the role of the transformation strain 

vectors that are assigned to each variant in micromechanics models. Energy barriers separate each well, but the 

barriers grow and shrink as stress and temperature conditions distort the energy landscape. When a barrier 

disappears, transformation occurs because material jumps between wells. In this way, the relative heights of the 

energy barriers supply the activation (start/stop) conditions for the transformation kinetics. Start-stop conditions 

take many forms but are one of the expected building blocks in any SMA modeling circle. SMA models (both 

micromechanics-based and phenomenological) often use phase diagrams to govern transformation conditions; the 
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multi-well free energy is an analogous technique. When viewed on the strain-temperature plane, the stable (low 

energy) and unstable (high energy) zones essentially create the regions of a phase diagram. The multi-well free 

energy also has several parallels to plasticity and optimization based SMA models. The stable energy wells are 

elastic regions and each well has a boundary with the surrounding unstable zones. This boundary acts much like 

a yield surface – when stress pushes a layer beyond the boundary, inelastic strain (transformation) occurs. The 

paths of the layers into another, more favorable, well are analogous to flow rules which dictate the direction of 

plasticity-type transformation strains. The free energy drives the system toward a minimal Gibbs free energy 

(global equilibrium) because layers always choose a lower energy well if it becomes available. This rule is 

essentially an optimization scheme seeking a minimum condition on a multi-well landscape.  

Now, after having some context for the M-A-S model’s philosophical place among SMA modeling 

strategies, we shift the focus to the model itself. We begin by introducing the martensite internal variables and 

how they are incorporated into the overall system.  

2.1 Multiscale Motivation 

The M-A-S model is motivated by physics and three different scales of observation which are labeled in 

Figure 2 as Micro, Meso, and Macro.  

 
Figure 2: Micro, meso, and macro scale sketch 

The model considers three phases: a parent austenite phase along with two martensite variants (+ and −). 

The phases are distinguished by lattice distortions at a 𝜇𝑚 scale of measurement, which we refer to as mesoscopic. 

The mesoscopic lattice distortions are assumed to be lattice invariant shears associated with habit plane-type 

martensite variants. These represent a higher level of organization than correspondence variants, which are shown 

at the microscopic scale and are not directly considered. After this point, we drop the correspondence vs. habit 
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plane distinction and refer to the mesoscopic habit plane variants as simply variants or phases. The variants in 

Figure 2 represent positive and negative shear deformations with respect to the same habit plane, which is 

illustrated by the line separating the austenite region from the martensite. The alternating pattern of ± variants 

represents self-accommodation, where martensite patches appear in such a way that the macroscopic material is 

not distorted. When more variants are considered, these self-accommodating patches have a variety of shapes and 

a good overview can be found in Ziolkowski (2015). The strips of material in Figure 2e (sometimes called lathes, 

plates, or layers) represent the fundamental material unit at the mesoscopic scale and we use the term layer. Each 

layer represents a small uniform zone of mesoscopic material that can exhibit one of the three phases. The 

arrangement of layers shown in the figure is for conceptual purposes only, however. The model does not require 

the knowledge or prediction of phase fields. Instead, we treat the mesoscopic system in a phenomenological 

manner and assume a large population of layers is governed by a multi-well free energy.  

The free energy in Figure 2d has one energy well for each phase and, in this sketch, each well has an equal 

number of layers. This distribution represents the state of the mesoscopic phase field to the right where the amount 

of material in each phase is roughly equal. It should be noted that it is typically not the case that the parent phase 

and all of the martensite variants are present in equal proportion. The occurrence of each phase depends on 

temperature and stress and this is reflected in the free energy. The multi-well landscape distorts as stress and 

temperature conditions change and this dictates which phase populations grow or shrink. The horizontal axis of 

the free energy (sometimes called the order parameter) represents the deformation associated with each phase. 

The mesoscopic deformation is projected onto the axis of a 1-D macroscopic body (Figure 2g) where the “–“ 

variant is associated with compressive strain and the “+” variant is associated with tensile strain.  

The off-axis components of the deformation are neglected in the traditional M-A-S model and it is therefore 

restricted to 1-D applications. This is appropriate for most SMA devices which involve thin, wire-like bodies that 

are restricted to uniaxial modes of deformation. There are situations where SMA components experience more 

complicated stress-strain states and two of these are addressed in later chapters; Chapter 5 deals with SMAs in 

bending and Chapter 6 addresses SMAs in combined tension and torsion. The first four chapters though, are 

dedicated to examination and development of the 1-D model in the context of uniaxial applications.  

The 1-D body in Figure 2g is thin and wire-like and has the scale of a typical tensile test specimen measured 

in 𝑚𝑚 or 𝑐𝑚. The main, macroscopic model describes the point-wise stress-strain-temperature behavior of its 

material. A point-wise material model does not consider field variations and this is an important distinction for 

SMA materials. Even in wire-like bodies, macroscopic field variations play a major role in their behavior. This 

aspect of the system is neglected here, however, to keep the focus on the fundamental material law. Field effects 

can be addressed by implementing the fundamental material law within a larger field solution (Furst et al. (2012)) 

or including additional gradient-based free energy terms (Welsch et al. (2018)). This modeling choice is discussed 

further in Chapter 5 and 6 where models are compared to several sets of experimental data.  

The red arrows in Figure 2f represent the mathematical flow of information in the model and show that, 

except for the free energy, all of the equations are macroscopic. Following the arrows in the counterclockwise 

direction, the macroscopic stress and temperature first influence the mesoscopic free energy. The free energy is 

used by the macroscopic system to calculate average strain for each phase and to drive the kinetic equations. The 

kinetic equations govern the phase fractions which are used, along with the phase strains, to calculate the total 

strain. This chain of equations relates the stress, strain, and temperature and the results is an SMA material model 
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that includes both stress and temperature-driven transformations, thermal and mechanical hysteresis, as well as 

thermomechanical coupling. The segregation of the multiwell free energy to the mesoscopic system allows a 

convenient way to keep the hysteretic and the caloric information that is inherently embedded in the landscape, 

yet avoid the complexities of defining stress-strain relationships in the negative slope regions. This topic is 

discussed in greater detail in Chapter 4.  

2.2 Visualization of the Multiscale Operation 

Here we leverage the visualizable nature of the multiwell free energy model. Before presenting the first 

equation, we can show how layers jumping between energy wells can produce most recognizable signature SMA 

effects.  

2.2.1 Superelastic Behavior 

Figure 3 illustrates how the macroscopic and mesoscopic systems act together to produce a typical quasi-

static superelastic response. At the center of the figure is a macroscopic stress-strain curve for a superelastic load-

unload cycle. At selected points during the cycle (states 1-6), snapshots of the mesoscopic system are also 

included.  

 
Figure 3: Multi-scale sketch showing super-elastic behavior 

State 1 represents the initial, zero stress state. The only stable phase is austenite and all of the layers are in 

that energy well. State 2 shows a point on the tensile loading branch prior to transformation. The GFE landscape 

is being tilted to the right due to the tensile stress and the layers shift to the right following the well minimum. 

This increases the average strain but does not cause transformation. State 3 illustrates the instant where the 

transformation from austenite to tensile martensite occurs. In a stress-controlled situation this transformation 

happens rapidly whereas, in a strain-controlled experiment, it progresses to accommodate the applied strain; in 

either case the transformation mechanism is the same. When the austenite energy well loses convexity, its layers 

transform by jumping into the martensite well. This population shift causes the large change in macroscopic strain 
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with no change in stress. At state 4, the transformation has been completed and additional stress has been applied. 

The layers now follow the martensite well minimum and the macroscopic behavior is once again linear. State 5 

represents an instant during unloading where the stress is lower than the stress required for forward transformation 

(state 3). In state 5 the austenite well has become stable once again and signifies a lower energy state, but 

transformation does not initiate because a barrier still remains between the wells. The stress must be reduced to a 

lower level (state 6) for the reverse transformation to initiate and this leaves a macroscopic hysteresis loop. The 

reverse transformation returns the macroscopic stress-strain path to the austenite branch and complete unloading 

returns both systems (meso and macro) to state 1.  

2.2.2 Shape Memory Behavior 

Figure 4 shows a macroscopic stress-strain-temperature path for a demonstration of shape memory behavior. 

The initial state (1) represents zero stress and a low temperature where there is no convex austenite well. In this 

situation, layers equally occupy the – and + wells (self-accommodation). In state 2 a tensile stress has been applied 

but not enough to initiate transformation, so the macroscopic behavior is linear. State 3 shows the instant that 

transformation into a single martensite variant has just completed. The increasing stress caused the martensite – 

well to lose convexity and its layers jumped to the much lower martensite + well. The macroscopic result is, once 

again, a large change in strain with no change in stress.  

 
Figure 4: Multi-scale sketch showing shape memory behavior 

Continued loading and unloading result in elastic behavior along the martensite branch because all layers 

remain in that phase. State 4 represents complete mechanical unloading. Unlike the superelastic case (Figure 6), 

there is no austenite well available so the layers remain trapped in the martensite + well. It should be noted that 

states 4 and 1 represent the same stress and temperature but, due to the difference in their mesoscopic populations, 
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state 4 shows a residual strain whereas state 1 does not. At state 5, stress free heat is being applied and the austenite 

well has reappeared. Even though the austenite well represents a lower energy, it is not until state 6, when the 

martensite well loses convexity, that the layers transform back to the central well. At the macroscopic scale, the 

result is a stress-free return to the original state (shape memory). The heating element is removed and the system 

is cooling when state 7 is shown. The austenite well will continue to become less convex as the temperature 

decreases till its convex space is zero. At this point the layers are free to populate the martensite wells and they 

do so equally returning us to the initial configuration (state 1).  

2.2.3 Actuation Behavior 

Figure 5 shows an actuation test-type of temperature-induced transformation cycle, where the specimen 

undergoes temperature cycles while under a constant tensile load. Here, the black line represents the stress-strain-

temperature path of the material and the green arrows show the sequence. There are also two sets of lines, one in 

blue and one in red, that indicate what the superelastic stress-strain path would be at a low and high temperature 

respectively.  

 
Figure 5: Multi-scale sketch showing actuation behavior 

The two sets of lines are also connected by lines that transition from blue to red – this shows the evolution 

of the transformation stresses over the range of temperatures. These are for reference only and help to visualize 

the meaning of each transition point in the actuation cycle. In state 1 the material is at a superelastic temperature 

and only the austenite well is stable. At state 2, an axial load has been applied, but the stress is below either the 

forward or reverse transformation stress at that temperature. The stress is held constant and the temperature is 

decreased between states 2 and 3. As the temperature decreases the forward transformation does as well and state 

3 shows the point where it is equal to the applied stress. The tensile martensite well becomes available and all of 

the layers transform, resulting in a large increase in strain with no change in stress. In state 4, the layers are once 
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again in mechanical equilibrium with the externally applied stress and remain at the same strain as the temperature 

decreases further, then increases again toward state 5. State 5 shows the moment just before another transformation 

initiates. The austenite well lowers at the temperature increases and the martensite layers have only a small barrier 

retaining them. The temperature increases a bit more and the reverse transformation stress becomes equal to the 

applies stress, the barrier disappears, and the layers jump back to the austenite well (state 6). The layers are once 

again in mechanical equilibrium and will rest unless the stress or temperature is changed. If the temperature cycles 

continue the actuation cycles will do the same as material perpetuates the sequence: 6, 3, 4, 5, 6, etc.  

2.2.4 Strain Rate Dependence 

Figure 6 shows a mechanical load-unload sequence with self -heating. Like Figure 5, the black likes and 

green arrows show the stress-strain-temperature path of the material while the blue, red, and grey lines are for 

reference.  

 
Figure 6: Multi-scale sketch showing transformation hardening and softening 

The blue set of lines traces a quasistatic load-unload path at a low (but still superelastic) temperature while 

the red lines represent a higher temperature. The four lines that connect the corner points of the blue and red 

hysteresis loops show the continuous evolution of the hysteresis loop between the low and high temperatures. The 

two hysteresis loops and the four connecting lines should be visualized as forming a 3D box-like shape. The initial 

state (1) shows a free energy under zero stress where only the austenite well is stable. At state 2, a tensile stress 

has been applied, but the stress is less than the forward transformation stress and the layers remain trapped. After 

state 2, the stress continues to be increased and forward transformation begins. The forward transformation path 

(which progresses through states 3 and 4) represents a large change in strain, but also increases in stress and 
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temperature. The latent heat from the forward transformation increases the temperature of the specimen and this 

means that the stress must be continually increased to keep the transformation going. The mesoscopic free energies 

in states 3 and 4 look similar in that they each show both austenite and martensite layers, but the martensite well 

in state 4 is lower than state 3 because the stress in higher. At a point just beyond state 4, the transformation 

completes and the heating stops. The specimen behaves linearly through further loading and unloading. State 5 

shows the point on the martensite unloading branch where the stress has almost reached the reverse transformation 

value; the austenite well is much lower but there is still a slight barrier locking the layers in the martensite phase. 

A small amount of additional unloading initiates the reverse transformation but, once again, the latent heat effects 

change the path; this time cooling the specimen. As the specimen cools, the stress must be continually lowered to 

progress the transformation as shown in states 6 and 7. The phase fractions change but, until the transformation is 

complete, there are layers in both the austenite and martensite wells. Once the martensite well is finally emptied, 

the self-cooling stops and the stress-strain-temperature path returns to the original branch and state 1.  

2.3 Helmholtz Free Energy 

The mesoscopic free energy governs the behavior of the layers that were shown in the previous series of 

figures jumping between energy wells and this dictates the hysteretic, nonlinear behavior of the material. The 

Helmholtz free energy is the foundation for the stress-strain laws, temperature-dependence, and caloric properties 

in the M-A-S model. The HFE is metastable, having two energy wells at high temperatures and three at low 

temperatures as shown in Figure 7.  

 
Figure 7: Helmholtz free energy over a range of temperatures 

The energy landscape is constructed from a chain of parabolas and this is highlighted in Figure 7(a), where 

the solid lines represent the stable (convex) parabolas for each phase and the dotted lines represent the unstable 

(concave) energy barrier parabolas. Mathematically, the HFE is defined by the piecewise function 𝜓 in Equation 

1.  

𝜓(𝜀, 𝑇) =

{
 
 
 
 

 
 
 
 

 

 𝜓−(𝜀) −∞ < 𝜀 ≤ 𝜀−𝑎(𝑇)

 𝜓−
𝐵(𝜀, 𝑇) 𝜀−𝑎(𝑇) < 𝜀 < 𝜀𝑎−(𝑇)

 𝜓𝑎(𝜀, 𝑇) 𝜀𝑎−(𝑇) ≤ 𝜀 ≤ 𝜀𝑎+(𝑇)

 𝜓+
𝐵(𝜀, 𝑇) 𝜀𝑎+(𝑇) < 𝜀 < 𝜀+𝑎(𝑇)

 𝜓+(𝜀) 𝜀+𝑎(𝑇) ≤ 𝜀 < ∞

𝑤ℎ𝑒𝑟𝑒

𝜓−(𝜀) =
𝐸𝑚
2
(𝜀 + 𝜀𝑅)

2

𝜓−
𝐵(𝜀, 𝑇) = 𝐴(𝑇)𝜀2 − 𝐵(𝑇)𝜀 + 𝐶(𝑇)

𝜓𝑎(𝜀, 𝑇) =
𝐸𝑎
2
𝜀2 + 𝛽(𝑇)

𝜓+
𝐵(𝜀, 𝑇) = 𝐴(𝑇)𝜀2 + 𝐵(𝑇)𝜀 + 𝐶(𝑇)

𝜓+(𝜀) =
𝐸𝑚
2
(𝜀 − 𝜀𝑅)

2

 (1) 
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Since we have a mesoscopic system and a macroscopic system, it is important to clarify first the meaning of 

the strain 𝜀, stress 𝜎, and temperature 𝑇 that define the HFE. At the macroscopic scale, 𝜎 and 𝜀 are the engineering 

strain and stress in the system and are given by Equations 26 and 27. In the context of a mesoscopic equation, 

they represent the average strain and stress for all layers in a given phase. Since we deal only with the average 

mesoscopic values, we are relieved from dealing with the complex, local variations that are known to exist in 

mesoscopic phase fields. The temperature 𝑇 is assumed to be experienced uniformly at all scales, but can also be 

considered an average parameter which neglects local variations.  

The other parameters in Equation 1 can be identified by their subscripts and/or superscripts, which follow 

the convention shown below.  

#− → 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 − 𝑝ℎ𝑎𝑠𝑒 𝑜𝑟 𝑒𝑛𝑒𝑟𝑔𝑦 𝑤𝑒𝑙𝑙

#𝑎 → 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑎 𝑝ℎ𝑎𝑠𝑒 𝑜𝑟 𝑒𝑛𝑒𝑟𝑔𝑦 𝑤𝑒𝑙𝑙

#+ → 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 + 𝑝ℎ𝑎𝑠𝑒 𝑜𝑟 𝑒𝑛𝑒𝑟𝑔𝑦 𝑤𝑒𝑙𝑙

#𝑖𝑗 → 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑝ℎ𝑎𝑠𝑒 𝑖 → 𝑗 ( 𝑛𝑜𝑡 𝑡𝑒𝑛𝑠𝑜𝑟 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 )

#𝑚 → 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑏𝑜𝑡ℎ 𝑏𝑜𝑡ℎ 𝑜𝑟 𝑒𝑖𝑡ℎ𝑒𝑟 𝑚𝑎𝑟𝑡𝑒𝑛𝑠𝑖𝑡𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑡

#−
𝐵 → 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑏𝑎𝑟𝑟𝑖𝑒𝑟 𝑜𝑛 𝑡ℎ𝑒 − 𝑠𝑖𝑑𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑎 𝑤𝑒𝑙𝑙

#+
𝐵 → 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑏𝑎𝑟𝑟𝑖𝑒𝑟 𝑜𝑛 𝑡ℎ𝑒 + 𝑠𝑖𝑑𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑎 𝑤𝑒𝑙𝑙

  𝑆𝑢𝑝𝑒𝑟 𝑜𝑟 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑝𝑡𝑠 𝑛𝑜𝑡 𝑠ℎ𝑜𝑤𝑛 ℎ𝑒𝑟𝑒 ℎ𝑎𝑣𝑒 𝑚𝑒𝑎𝑛𝑖𝑛𝑔 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑡𝑜 𝑡ℎ𝑒 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

 

Three of the parameters needed to build Equation 1 (𝐸𝑎, 𝐸𝑚, and 𝜀𝑅) are measured directly from tension test 

data. The remaining parameters (𝐴, 𝐵, 𝐶, and 𝛽) along with the domain boundaries for each function (𝜀−𝑎, 𝜀𝑎−, 

𝜀𝑎+, and 𝜀+𝑎) are derived from the transformation stress, which is also estimated from tension test data. The 

complete set of material parameters required to construct the HFE (i.e. characterize the SMA material) is given in 

Table 1.  

Parameter Definition 

𝐸𝑎 Elastic modulus while in the austenite phase 

𝐸𝑚 Elastic modulus while in the martensite phase 

𝜀𝑅 Residual strain (strain remaining after load-unload cycle while in the martensite temperature range) 

𝑇𝐻 The higher of the two test data temperatures 

𝑇𝐿 The lower of the two test data temperatures 

𝜎𝑎+
𝐻  Forward tensile transformation stress at 𝑇𝐻 

𝜎+𝑎
𝐻  Reverse tensile transformation stress at 𝑇𝐻 

𝜎𝑎+
𝐿  Forward tensile transformation stress at 𝑇𝐿 

𝜎Δ Hysteresis width (Difference between forward and reverse transformation stress at 𝑇𝐻) 

Table 1: Experimentally measured parameters required for the Helmholtz free 

energy 

Additional detail is given about how to measure the material parameters in Chapter 4 where we also detail 

the construction of the HFE. The cornerstone quantity for deriving the other parameters is the forward 

transformation stress, which is a function of temperature given by Equation 2.  

𝜎𝑎+(𝑇) = 𝑚𝑎𝑥 ( 𝜎𝑎+
𝐿 + (

𝜎𝑎+
𝐻 − 𝜎𝑎+

𝐿

𝑇𝐻 − 𝑇𝐿
) (𝑇 − 𝑇𝐿), 0) (2) 

Equation 2 describes the forward transformation stress as a linear function of temperature, which is 

acceptably accurate and consistent with other SMA models. It is important to note, however, that it is actually an 

approximation for a slightly more complex function that is derived directly from the free energy in Chapter 4. 
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Once the forward transformation stress is known from Equation 2, the reverse transformation stress can be 

determined using the hysteresis width parameter.  

𝜎+𝑎(𝑇) = 𝜎𝑎+(𝑇) − 𝜎Δ 𝑤ℎ𝑒𝑟𝑒 𝜎Δ =𝜎𝑎+
𝐻 − 𝜎+𝑎

𝐻  (3) 

Equation 3 is based on the assumption that the hysteresis width does not vary with temperature. This is true 

for most SMA materials but there are exceptions. This is discussed further in Chapter 5, where the model is 

extended to allow for temperature-dependent hysteresis. The forward and reverse transformation stresses allow 

definition of the critical strains 𝜀𝑖𝑗(𝑇), which designate the boundaries (inflection points) between the energy 

wells.  

𝜀𝑎+(𝑇) =
𝜎𝑎+(𝑇)

𝐸𝑎
, 𝜀+𝑎(𝑇) =

𝜎+𝑎(𝑇)

𝐸𝑚
+ 𝜀𝑅  (4,5) 

These expressions are based on Equations 16-18, which more generally relate the stress experienced by the 

material to the average strain of the layers in each phase. The traditional M-A-S model assumes tension-

compression symmetry, which means that the compressive stress-strain curve is identical to the tensile curve, 

except in the (−𝜎,−𝜀) quadrant. Symmetry of the HFE allows the compressive critical strains and stresses to be 

written in terms of their analogous values in tension.  

𝜀𝑎−(𝑇) = −𝜀𝑎+(𝑇) , 𝜀−𝑎(𝑇) = −𝜀+𝑎(𝑇) (6,7) 

𝜎𝑎−(𝑇) = −𝜎𝑎+(𝑇) , 𝜎−𝑎(𝑇) = −𝜎+𝑎(𝑇) (8,9) 

This assumption is irrelevant for tension-only applications and it is appropriate for 1-D applications where 

twinning needs to be captured, but there are situations where asymmetry is observed. This addressed in Chapter 

5 where the model is extended to include tension-compression asymmetry (in addition to temperature-dependent 

hysteresis.  

The chemical free energy (𝛽) and the energy barrier coefficients (𝐴, 𝐵, and 𝐶) can be expressed in terms of 

either the transformation stresses or strains but using a combination of the two yields more concise equations.  

𝐴(𝑇) =
𝜎Δ

2(𝜀𝑎+(𝑇) − 𝜀+𝑎(𝑇))
 𝐵(𝑇) =

𝜎+𝑎(𝑇)𝜀𝑎+(𝑇) − 𝜎𝑎+(𝑇)𝜀+𝑎(𝑇)

𝜀𝑎+(𝑇) − 𝜀+𝑎(𝑇)
 (10,11) 

𝐶(𝑇) = 𝛽(𝑇) +
𝜀𝑎+(𝑇)𝐵(𝑇)

2
 𝛽(𝑇) = −

𝜎𝑎+(𝑇)𝜀+𝑎(𝑇) + 𝜎+𝑎(𝑇)(𝜀𝑅 − 𝜀𝑎+(𝑇))

2
 (12,13) 

Equations 10-13 are derived from free energy continuity assumptions in Chapter 4. Equation 13 is the final 

supporting expression required to build the HFE (i.e. fully define Equation 10). The HFE governs the stress-strain 

behavior and caloric properties of the material, but the Gibbs free energy motivates the kinetic (i.e. phase change) 

behavior.  

2.4 Gibbs Free Energy 

The GFE is defined by Legendre transformation of the HFE; 𝑔 ≡ 𝜓 − 𝜎𝜀. The critical strains 𝜀𝑖𝑗 also 

separate the individual GFE functions and the complete expression is given by Equation 14.  
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𝑔(𝜀, 𝑇; 𝜎) =

{
 
 
 
 

 
 
 
 

 

 𝑔−(𝜀, 𝑇; 𝜎) −∞ < 𝜀 ≤ 𝜀−𝑎(𝑇)

 𝑔−
𝐵(𝜀, 𝑇; 𝜎) 𝜀−𝑎(𝑇) < 𝜀 < 𝜀𝑎−(𝑇)

 𝑔𝑎(𝜀, 𝑇; 𝜎) 𝜀𝑎−(𝑇) ≤ 𝜀 ≤ 𝜀𝑎+(𝑇)

 𝑔+
𝐵(𝜀, 𝑇; 𝜎) 𝜀𝑎+(𝑇) < 𝜀 < 𝜀+𝑎(𝑇)

 𝑔+(𝜀, 𝑇; 𝜎) 𝜀+𝑎(𝑇) ≤ 𝜀 < ∞

𝑤ℎ𝑒𝑟𝑒

𝑔−(𝜀, 𝑇; 𝜎) = 𝜓−(𝜀) − 𝜎𝜀

𝑔−
𝐵(𝜀, 𝑇; 𝜎) = 𝜓−

𝐵(𝜀, 𝑇) − 𝜎𝜀

𝑔𝑎(𝜀, 𝑇; 𝜎) = 𝜓𝑎(𝜀, 𝑇) − 𝜎𝜀

𝑔+
𝐵(𝜀, 𝑇; 𝜎) = 𝜓+

𝐵(𝜀, 𝑇) − 𝜎𝜀

𝑔+(𝜀, 𝑇; 𝜎) = 𝜓+(𝜀) − 𝜎𝜀

 (14) 

In Equation 14 we use the notation 𝑔(𝜀, 𝑇; 𝜎) for GFE. This implies that strain and temperature establish the 

HFE and the stress, separated by a semicolon, is distinguished as an additional parameter that distorts the 

landscape into the GFE. Under equilibrium assumptions, GFE is often written as a function of temperature and 

stress alone because strain and stress are explicitly related. This is also true for the current model, when we refer 

to a specific location on the energy landscape. But, to define the full landscape, both stress and strain are 

independently required. Figure 8 shows how the GFE landscape is distorted by various combinations of stress and 

temperature (recall the warping free energies in Figures 3-6).  

 
Figure 8: Gibbs free energy at various temperatures and stresses 

Resolution of the full GFE landscape is not required for model operation. Instead, the GFE function only 

needs to be evaluated at selected locations which are shown in Figure 9.  

 
Figure 9: Locations on the GFE-strain landscape 

The free energies 𝐺𝑖𝑗 are found by evaluating Equation 14 at the critical strains 𝜀𝑖𝑗 (given by Equations 4-

5).  

𝐺𝑖𝑗(𝜎, 𝑇) = 𝑔𝑖(𝜀𝑖𝑗(𝑇), 𝑇; 𝜎) (15) 
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  The extremum strains 𝜀𝑖 are given by Equations 16-18; these represent both the average strain for all of the 

layers in each phase 𝑖 and algebraic minimum of each parabola 𝑔𝑖. Moving forward, we refer to these as the 

average strains or the phase strains.  

𝜀−(𝜎) =
𝜎

𝐸𝑚
− 𝜀𝑅 , 𝜀𝑎(𝜎) =

𝜎

𝐸𝑎
, 𝜀+(𝜎) =

𝜎

𝐸𝑚
+ 𝜀𝑅 (16,17,18) 

The statistical mechanics basis for these expressions are detailed further in Chapter 3. The minimum energy 

within each phase (𝐺𝑖) is then determined by evaluating Equation 14 at each strain 𝜀𝑖.  

𝐺−(𝜎, 𝑇) = 𝑔−(𝑚𝑖𝑛(𝜀−(𝜎), 𝜀−𝑎(𝑇)), 𝑇; 𝜎) (19) 

𝐺𝑎(𝜎, 𝑇) = 𝑔𝑎(𝜀
∗, 𝑇; 𝜎) 𝑤ℎ𝑒𝑟𝑒 𝜀∗ = 𝑚𝑎𝑥 (𝜀𝑎−(𝑇),𝑚𝑖𝑛(𝜀𝑎(𝜎), 𝜀𝑎+(𝑇))) (20) 

𝐺+(𝜎, 𝑇) = 𝑔+(𝑚𝑎𝑥(𝜀+𝑎(𝑇), 𝜀+(𝜎)), 𝑇; 𝜎) (21) 

The 𝑚𝑖𝑛 and 𝑚𝑎𝑥 conditions in Equations 19-21 stem from the piecewise nature of the GFE. The 

algebraically determined minimum or maximum of a given energy well may fall outside of the admissible strain 

range for that well. The conditional nature of these expressions restricts the strains to the proper ranges.  

The energy barrier peaks are found by maximizing barrier functions (𝑔∓
𝐵) within their respective domains. 

The extremum strains 𝜀−
𝐵 and 𝜀+

𝐵 are given by Equations 22-23.  

𝜕𝑔−
𝐵(𝜀, 𝜎)

𝜕𝜀
= 0 →

𝑠𝑜𝑙𝑣𝑒
𝑓𝑜𝑟 𝜀

→ 𝜀−
𝐵(𝜎, 𝑇) = 𝑚𝑎𝑥 (𝜀−𝑎(𝑇),𝑚𝑖𝑛 (

𝜎 + 𝐵(𝑇)

2𝐴(𝑇)
, 𝜀𝑎−(𝑇))) (22) 

𝜕𝑔+
𝐵(𝜀, 𝜎)

𝜕𝜀
= 0 →

𝑠𝑜𝑙𝑣𝑒
𝑓𝑜𝑟 𝜀

→ 𝜀+
𝐵(𝜎, 𝑇) = 𝑚𝑎𝑥 (𝜀𝑎+(𝑇),𝑚𝑖𝑛 (

𝜎 − 𝐵(𝑇)

2𝐴(𝑇)
, 𝜀+𝑎(𝑇))) (23) 

This allows the maximum energy associated with each barrier to be evaluated via the main GFE function 

(Equation 14).  

𝐺−
𝐵(𝜎, 𝑇) = 𝑔(𝜀−

𝐵(𝜎, 𝑇), 𝑇; 𝜎) , 𝐺+
𝐵(𝜎, 𝑇) = 𝑔(𝜀+

𝐵(𝜎, 𝑇), 𝑇; 𝜎) (24,25) 

Once again, 𝑚𝑖𝑛 and 𝑚𝑎𝑥 conditions are necessary to maintain the admissible strain ranges for each GFE 

function. Now we shift the focus to the main, macroscopic model.  

2.5 Macroscopic Model 

The macroscopic model assumes a continuum mixture of phases with no consideration of phase fields, habit 

plane orientations, or phase boundaries. The mesoscopic system contains a large population of layers governed 

by the Helmholtz and Gibbs free energies but, at the macroscopic scale, it is sufficient to only know the fraction 

of material that is in each phase.  

 
Figure 10: Groups of layers in each phase and phase fractions 
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The phase fractions, along with the average strain in each phase, are used to define total macroscopic strain 

in Equation 26.  

𝜀 = 𝜀−𝑥− + 𝜀𝑎𝑥𝑎 + 𝜀+𝑥+ 𝑤ℎ𝑒𝑟𝑒 (26) 

𝜀 → 𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑐𝑟𝑜𝑠𝑐𝑜𝑝𝑖𝑐 𝑠𝑡𝑟𝑎𝑖𝑛

𝜀𝑖
 

→
 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑡𝑟𝑎𝑖𝑛 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒
𝑙𝑎𝑦𝑒𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑖 𝑝ℎ𝑎𝑠𝑒

𝑥𝑖
 

→
 

𝑃ℎ𝑎𝑠𝑒 (𝑣𝑜𝑙𝑢𝑚𝑒) 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑙𝑎𝑦𝑒𝑟𝑠
𝑖𝑛 𝑡ℎ𝑒 𝑖 𝑝ℎ𝑎𝑠𝑒

𝑖
 

→
 

∈ −, 𝑎, + (𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑚𝑎𝑟𝑡𝑒𝑛𝑠𝑖𝑡𝑒

, 𝑎𝑢𝑠𝑡𝑒𝑛𝑖𝑡𝑒, 𝑡𝑒𝑛𝑠𝑖𝑙𝑒 𝑚𝑎𝑟𝑡𝑒𝑛𝑠𝑖𝑡𝑒)

 

The average strains are calculated using Equations 16-18, which are functions stress. Equation 26 can also 

be used to write an expression relating stress, total strain, and the phase fractions by substituting 16-18 for the 

corresponding 𝜀𝑖 and then solving for stress.  

𝜀 = (
𝜎

𝐸𝑚
− 𝜀𝑅) 𝑥− + (

𝜎

𝐸𝑎
) 𝑥𝑎 + (

𝜎

𝐸𝑚
+ 𝜀𝑅) 𝑥+ → 

𝑠𝑜𝑙𝑣𝑒
𝑓𝑜𝑟 𝜎

 → 𝜎(𝜀) =
𝜀 + 𝜀𝑅(𝑥− − 𝑥+)
𝑥−
𝐸𝑚

+
𝑥𝑎
𝐸𝑎
+
𝑥+
𝐸𝑚

 (27) 

Equation 27 is the main stress-strain equation for the model and is not derived from a free energy potential. 

The complexities of the free energy and the thermodynamic requirements are handled at the mesoscopic scale and 

this allows a simple rule of mixtures-type constitutive equation for the main model.  

The phase fractions are governed by a kinetics law, which is given by Equations 28-30. This set of ordinary 

differential equations (ODE’s) dictates the time rates of change of the phase fractions.  

�̇�− = 𝑥𝑎 𝑝𝑎− − 𝑥− 𝑝−𝑎 �̇�+ = 𝑥𝑎 𝑝𝑎+ − 𝑥+ 𝑝+𝑎 𝑥𝑎 = 1 − 𝑥− − 𝑥+ (28,29,30) 

The 𝑝𝑖𝑗 parameters are based on thermal activation theory and the probability that a mesoscopic layer will 

transform from phase 𝑖 to phase 𝑗. We refer to these as the transformation probabilities and they are calculated 

using Equation 31, which is based on the height of the GFE barriers.  

𝑝𝑖𝑗 =
1

𝜏
𝑒
−
1
𝛾
𝛥𝐺𝑖𝑗

𝑤ℎ𝑒𝑟𝑒 𝛾 =
𝐾𝐵𝑇

𝑣
𝑎𝑛𝑑

𝛥𝐺−𝑎 = 𝐺−
𝐵(𝜎, 𝑇) − 𝐺−(𝜎, 𝑇)

𝛥𝐺𝑎− = 𝐺−
𝐵(𝜎, 𝑇) − 𝐺𝑎(𝜎, 𝑇)

𝛥𝐺𝑎+ = 𝐺+
𝐵(𝜎, 𝑇) − 𝐺𝑎(𝜎, 𝑇)

𝛥𝐺+𝑎 = 𝐺+
𝐵(𝜎, 𝑇) − 𝐺+(𝜎, 𝑇)

 (31) 

The energy values at the well minima and the tops of the barriers are given by Equations 19-21, 24, and 25. 

In the kinetic ODE’s, the product 𝑥𝑖 ∙ 𝑝𝑖𝑗  yields the rate at which each transformation occurs. 𝐾𝐵 is the Boltzmann 

constant and the parameters 𝜏 and 𝑣 have physical interpretations from thermal activation theory (which is detailed 

in Chapter 3). For model usage, they are constants chosen to ensure that the transformation rates are ≈ 

instantaneous compared to the mechanical strain rates. Equation 31 can take several different forms, each offering 

benefits in certain scenarios. These different versions and their relationship to the original theory are the focus of 

Chapter 3, where a new formulation is also presented.  

The thermomechanical coupling observed in an SMA material is attributed to two factors: the temperature-

dependence of the critical transformation stress and the latent heat generated/absorbed during phase 

transformation. An energy balance equation must be added to the set of kinetic ODE’s to fully account for thermal 

effects. Equation 32 considers heat loss to the environment due to convection and heat generated or absorbed 

during phase transformation.  

�̇� =
1

𝜌𝑐
(�̇�+ℎ+ + �̇�−ℎ− − 𝛼ℎ𝑐(𝑇 − 𝑇0)) 𝑤ℎ𝑒𝑟𝑒 (32) 
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�̇� → 𝑇𝑖𝑚𝑒 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

𝜌 → 𝐷𝑒𝑛𝑠𝑖𝑡𝑦

𝑐 → 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 ℎ𝑒𝑎𝑡

𝛼 → 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑣𝑜𝑙𝑢𝑚𝑒

        𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑎 → + 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

 

ℎ𝑐 → 𝐶𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑣𝑒 ℎ𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡

 𝑇0 → 𝐴𝑚𝑏𝑖𝑒𝑛𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

ℎ− → 𝐿𝑎𝑡𝑒𝑛𝑡 ℎ𝑒𝑎𝑡 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑣𝑜𝑙𝑢𝑚𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑎

        𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑎 → − 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

ℎ+ → 𝐿𝑎𝑡𝑒𝑛𝑡 ℎ𝑒𝑎𝑡 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑣𝑜𝑙𝑢𝑚𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑎

        𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑎 → + 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛

 

The latent heats are determined directly from the mesoscopic free energy, using Equation 33.  

ℎ±(𝜎) =
𝜎2

2
𝐸𝛥 ± 𝜎𝜀𝑅 + 𝑢𝑅 𝑤ℎ𝑒𝑟𝑒 𝐸𝛥 =

1

𝐸𝑚
−
1

𝐸𝑎
 (33) 

The latent heat coefficients are functions of stress and mechanical material parameters which means that 

caloric measurements, such as those obtain from differential scanning calorimetry (DSC), are not required. This 

feature is explored in more detail in Chapter 4. The parameters 𝛼 and ℎ𝑐 reflect details of system geometry (thin, 

wire-like bodies) and environment and are not specifically related to the material model. There are no temperature 

gradient (conduction) terms since development in this work is restricted uniform field problems.  

The equations given in this section are sufficient to operate the basic M-A-S SMA model, which underpins 

the work in this dissertation. In the next two chapters, we take a closer look at the underlying theory and also 

begin to present new developments for the model. The two chapters are essentially broken up by which free energy 

quantity they focus on – the Gibbs free energy or the Helmholtz free energy. To understand which free energy 

influences which part of the model, it is helpful to think of operating the model as answering three questions: 

1)
𝐻𝑜𝑤 𝑚𝑢𝑐ℎ 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙
𝑖𝑠 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑝ℎ𝑎𝑠𝑒?

→
𝐾𝑖𝑛𝑒𝑡𝑖𝑐𝑠 𝑚𝑜𝑑𝑒𝑙
(𝐺𝑖𝑏𝑏𝑠 𝑓𝑟𝑒𝑒 𝑒𝑛𝑒𝑟𝑔𝑦)

→
𝑃ℎ𝑎𝑠𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 𝑑𝑟𝑖𝑣𝑒𝑛 𝑏𝑦
𝑠𝑡𝑟𝑒𝑠𝑠 𝑎𝑛𝑑 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

2)
𝑊ℎ𝑎𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑡𝑟𝑎𝑖𝑛 𝑜𝑓
𝑡ℎ𝑒 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑝ℎ𝑎𝑠𝑒?

→
𝐶𝑜𝑛𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑣𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠
(𝐻𝑒𝑙𝑚ℎ𝑜𝑙𝑡𝑧 𝑓𝑟𝑒𝑒 𝑒𝑛𝑒𝑟𝑔𝑦)

→
𝑃ℎ𝑎𝑠𝑒 𝑠𝑡𝑟𝑎𝑖𝑛𝑠 𝑎𝑟𝑒 𝑑𝑟𝑖𝑣𝑒𝑛 𝑏𝑦
𝑠𝑡𝑟𝑒𝑠𝑠 𝑎𝑛𝑑 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

3)
𝐻𝑜𝑤 𝑖𝑠 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
𝑐𝑜𝑢𝑝𝑙𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑠?

→

𝐶𝑎𝑙𝑜𝑟𝑖𝑐 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠
𝑎𝑛𝑑 𝑠𝑡𝑟𝑒𝑠𝑠 − 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒
(𝐻𝑒𝑙𝑚ℎ𝑜𝑙𝑡𝑧 𝑓𝑟𝑒𝑒 𝑒𝑛𝑒𝑟𝑔𝑦)

→

𝐿𝑎𝑡𝑒𝑛𝑡 ℎ𝑒𝑎𝑡𝑠 𝑎𝑟𝑒 𝑑𝑖𝑐𝑡𝑎𝑡𝑒𝑑 𝑏𝑦

𝑡ℎ𝑒 𝐻𝐹𝐸′𝑠 𝑚𝑢𝑙𝑡𝑖𝑤𝑒𝑙𝑙 𝑛𝑎𝑡𝑢𝑟𝑒
𝑎𝑛𝑑 𝑎𝑟𝑒 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑒𝑑 𝑏𝑦 𝑠𝑡𝑟𝑒𝑠𝑠

 

The next chapter is dedicated to question 1 as it explores the kinetics equations in several different forms 

leading to the development of a new version. This is followed by the Thermodynamics chapter which deals with 

questions 2 and 3, namely the stress-strain relationships and the thermal behavior.  

3 Kinetics 

The transformation probability equations are the main drivers for the kinetics model because they provide 

the start/stop conditions for phase transformation. In this chapter we review the way several versions of these 

equations were derived and this exercise leads us to a new version (published in Ballew and Seelecke (2019)). We 

begin with an introduction to the Boltzmann equation and thermal activation theory, then use these concepts to 

derive the most general form of the kinetics model. This formulation is applicable to a wide variety of thermal 

activation levels (i.e. gases, liquids, or solids) but is mathematically complex. Next, we show how the following 

different forms of the kinetics equations have been derived from the general form and applied to the M-A-S model: 

• The General model   → Uses low thermal activation to simply the original equations 

• The Energy Barrier model  → Low thermal activation limit to remove the probability integrals 

• The Driving Force approximation → Uses the driving force to approximate the energy barriers 

• The Inflection Point model  → New formulation requiring fewer parameters and expressions 
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  We conclude the chapter by briefly discussing mesoscopic inhomogeneity and presenting a detailed 

examination of the thermal activation parameters. Inhomogeneity, or polycrystallinity, is a commonly observed 

SMA effect and is accounted for in the M-A-S model through the kinetics equations. While not a primary focus 

point for this dissertation, it had to be included in order to model some of the validation experiments in Chapter 

5. The thermal activation parameters are effectively transformation rate scaling variables; necessary to ensure that 

the transformation strain rates far exceed the strain rates encountered in macroscopic system. Different kinetics 

models show different types of sensitivity to the thermal activation parameters, so we present two different 

examples showing how to identify correct settings.  

3.1 Introduction to Thermal Activation 

Thermal activity refers to random atomic fluctuations that have kinetic energy proportional to temperature. 

The effect of these fluctuations depends on the phase and free energy characteristics of the material. In a solid 

material the atoms fluctuate with low energy compared to their inter-atomic attraction and are therefore locked 

into a fixed lattice arrangement. In a gas, the fluctuations easily overcome the attraction to neighboring material 

which leads to their amorphous consistency. When the opportunity for phase change, diffusion, chemical reaction, 

etc. is available, thermal activity can be related to their onset and progression. These fluctuations can be thought 

of as the sampling of alternate energy states in the vicinity of a current one. When a group of atoms is near the 

threshold between states, say two phases, a fraction of them will sample configurations beyond the threshold and 

thus change phase. In this type of process, both the amplitude of fluctuation and the height of the energy barrier 

affect the rate of transformation.  

Typically, the number of atoms (or fraction of material) in a certain state is only quantified in a statistical 

sense. The Boltzmann equation relates the probability of finding material in a certain energy state to total number 

of possible energy states. For a continuous distribution of available energies, Equation 34 gives the probability 𝑓 

of finding material within an infinitesimal range of energy 𝑈 + 𝑑𝑈.  

𝑓 =
𝑒−

𝑈+𝑑𝑈
𝐾𝑇

∫ 𝑒−
𝑈
𝐾𝑇𝑑𝑈

∞

−∞

𝑤ℎ𝑒𝑟𝑒

𝑈 → 𝐸𝑛𝑒𝑟𝑔𝑦 (𝑡ℎ𝑒𝑟𝑚𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛)

𝐾 → 𝑇ℎ𝑒 𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛 𝑐𝑜𝑛𝑡𝑎𝑛𝑡

𝑇 → 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

 (34) 

The integral in the denominator represents the total energy of all possible states and the Boltzmann constant 

universally relates the entropy of a system to the total number of possible thermodynamic states. This equation 

can be used to predict the kinetics behavior of a process by examining the probability of finding particles at a 

threshold between states.   This results in a rate equation similar to the Arrhenius equation used in chemical 

reaction and diffusion modeling. In the current model we use Gibbs free energy (GFE) to describe the landscape 

of thermodynamic states and in a 1-D stress-strain system. We begin here with several illustrations to introduce 

the essential concepts.  

3.1.1 Single Phase Material 

The upper row of plots in Figure 11 shows GFE (𝑔) and the lower row shows probability density (𝑓), both 

plotted against strain. The green dots in each GFE well represent particles that undergo fluctuations in strain and 

energy. Each 𝑓 curve shows that particles are more likely to be found at lower energies.  
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Figure 11: Gibbs free energy and probability distribution in a thermally active 

single-phase material 

Figure 11(a) shows the system under zero stress, 11(b) represents a tensile stress, and 11(c) a compressive 

stress. The dashed lines are to visualize the influence of stress which is responsible for the right (b) or left (c) tilt 

in the GFE. Since the particles always cluster at the minimum energy, the mean strain (〈𝜀〉) shifts to the right (b) 

or left (c) as the GFE distorts. For a given GFE function 𝑔(𝜀, 𝑇; 𝜎), the probability density can be written using 

the Boltzmann Equation.  

𝑓 =
𝑒
−
1
𝛾
𝑔(𝜀,𝑇;𝜎)

∫ 𝑒
−
1
𝛾
𝑔(𝜀,𝑇;𝜎)

𝑑𝜀
∞

−∞

𝑤ℎ𝑒𝑟𝑒 𝛾 =
𝐾𝑇

𝑣
𝑎𝑛𝑑

𝜎 → 𝑆𝑡𝑟𝑒𝑠𝑠

𝑣 → 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑣𝑜𝑙𝑢𝑚𝑒
 (35) 

It should also be noted that 𝑔, in Equation 35, is independently a function of both stress and strain. This is 

due to the fact that a given value of stress is not explicitly related to a single value of strain (as seen in Figure 11). 

The notation (𝜀, 𝑇; 𝜎) implies that 𝜀 and 𝑇 specify a Helmholtz free energy value, but 𝜎 is an additional parameter 

that distorts the landscape and yields the GFE.  

The width of each bell curve represents the level of thermal activity because large fluctuations (high thermal 

activity) would correspond to a large standard deviation in particle locations. Low thermal activation would be 

signified by small fluctuations and therefore a narrow distribution of particles. This property is dictated by the 

parameter 𝛾 which is derived from 𝑣, 𝐾, and 𝑇. The activation volume 𝑣 sets the representative length scale of 

the system and this is necessary because the fluctuations are measured as strain. Imagine a representative volume 

of material containing only a few atoms; in this case the length scale would be small and the fluctuations would 

correspond to large strains. On the other hand, if the volume of material considered is much larger, the atomic 

fluctuations are very small compared to the length and would represent near-zero strains. In Figure 12, we show 

the zero-stress state from Figure 11 with three different levels of thermal activity.  
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Figure 12: Gibbs free energy and probability density for different levels of thermal 

activation 

All three plots in Figure 12 show the same GFE landscape and the same number of particles. The upper-

most system has very high thermal activity shown by large fluctuations of the particles and a very wide Bell curve. 

In 12(b) the thermal activity is lower therefore the amplitude of the fluctuations has been reduced. 12(c) illustrates 

the limiting case where thermal activation is zero. In this case, all of the particles are concentrated at the energy 

well minimum and the probability density now has a Dirac delta shape. This represents a solid material where the 

atomic fluctuations are negligibly small and can be neglected. The probability density function given by Equation 

35 is general and all three cases can be described by varying the parameter 𝛾.  

3.1.2 Multi-Phase Material 

We now extend the concepts shown in Figure 11 to a system with multiple stable states and the opportunity 

for a process (switching between phases) to take place. Figure 13 shows a stress-strain system with two convex 

energy wells connected by a concave energy barrier.  

 
Figure 13: Gibbs free energy and phase change probability for a thermally active 

material 

In 13a, the system is under zero stress and each of the energy wells represents an equally stable phase. Each 

phase contains its own population of particles that fluctuate about the corresponding local GFE minimum. This is 

reflected in the probability distribution plots where the peaks coincide with the 𝑔 minima. Because they gravitate 

to the lowest energy state, any particles that fluctuate beyond the energy barrier will jump into the neighboring 

well (change phase). The phase change, however, is only seen in Figure 13(b) where the system is under a tensile 

stress. The GFE landscape has been tilted to the right and phase B represents a lower energy state. The strain 

associated with the barrier peak (𝜀𝑐𝑟) has shifted to the left and this has decreased the convex range of strain 

associated with the A phase. Now, in phase A, the critical strain is much closer to the energy minimum and some 

fraction of the particles reach the threshold for transformation to phase B. The truncated probability densities 
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represent the fact that particles found beyond the barrier exit phase 𝑖 and cannot be represented by 𝑓𝑖. The rates of 

transformation from 𝐴 → 𝐵 and 𝐵 → 𝐴 can be represented by evaluating the Boltzmann equation 𝑓𝐴 and 𝑓𝐵, 

respectively, at the barrier strain.  

𝑟𝑎𝑡𝑒𝐴𝐵 =
1

𝜏
𝑓𝐴(𝜀𝑐𝑟) =

1

𝜏

𝑒
−
1
𝛾
𝑔(𝜀𝑐𝑟,𝑇;𝜎)

∫ 𝑒
−
1
𝛾
𝑔(𝜀,𝑇;𝜎)

𝑑𝜀
𝜀𝑐𝑟
−∞

, 𝑟𝑎𝑡𝑒𝐵𝐴 =
1

𝜏
𝑓𝐵(𝜀𝑐𝑟) =

1

𝜏

𝑒
−
1
𝛾
𝑔(𝜀𝑐𝑟,𝑇;𝜎)

∫ 𝑒
−
1
𝛾
𝑔(𝜀,𝑇;𝜎)

𝑑𝜀
𝜀𝑐𝑟
−∞

 (36,37) 

In Equations 36 and 37, the terms 𝑓𝑖(𝜀𝑐𝑟) represent the probability that a particle will have sufficient energy 

to exit phase 𝑖. 𝜏 is a sampling frequency which, mathematically, is a proportionality constant between 𝑟𝑎𝑡𝑒𝑖𝑗  and 

the probability 𝑓𝑖(𝜀𝑐𝑟). In Figure 13, the particles transform from 𝐴 → 𝐵 because 𝑓𝐴(𝜀𝑐𝑟) is now non-zero. On the 

other hand, the 𝐵 → 𝐴 transformation does not occur because the probability 𝑓𝐵(𝜀𝑐𝑟) is extremely low.  

Because of the effect shown in Figure 12, the transformation rate equations (36 and 37) can represent 

drastically different behaviors at different levels of thermal activation. In Figure 14 we show the same two-phase 

system as Figure 13 but with three different sets of probability density plots. The fluctuating particles are not 

shown here because the three different values of 𝛾 represent three different populations that could exist on the 

same GFE. The distribution of the particles is implied by the probability distributions as they were in Figures 11 

and 12.  

 
Figure 14: Transformation probability for different levels of stress and thermal 

activation 

Each column in Figure 14 corresponds to the same GFE under a different level of tensile stress. The three 

rows of probability density plots reflect different levels of thermal activity. The basic mechanism in Equations 36 

and 37 is that transformation begins when the non-zero part of the Bell curve collides with the critical strain and 

this is illustrated by Figure 14. In the 𝛾1 and 𝛾2 cases, the Bell curves have reached critical strain in frame (b) 

which means the transformations have begun. In the lowest thermal activation case (𝛾3) however, the Bell curve 

has not yet reached the critical strain so the transformation has not initiated. In frame (c), all three Bell curves 

have reached the critical strain and all three cases represent active phase change. This is an important effect and 

allows this type of equation to reflect transformations in either high (gases) or low (solids) thermal activation 

materials. In the next section we begin to specify this framework to a solid SMA material with a description of 

the length scales considered as well as the physics and mathematical elements associated with each.  
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3.2 General Kinetics Model 

The transformation kinetics equations (28-30) describe the rate of change of the phase fractions at the 

macroscopic scale. At the mesoscopic scale, transformation involves individual layers jumping from well to well, 

but the model does not require or track the behavior of any individual layer. Instead, we use the mesoscopic free 

energy and thermal activation theory to measure the probability that each possible transformation will occur. We 

begin by extending the two-well example from Figures 13 and 14 to the 1-D SMA system in Figure 15.  

 
Figure 15: Probability distributions for a SMA stress-strain system 

Each of the three energy wells 𝑔−, 𝑔𝑎, and 𝑔+ can have a population of randomly fluctuating layers that 

reflect each of the three phases −, 𝑎, and +. The lower set of plots shows a series of probability densities that 

correspond to each energy well and three different levels of thermal activation. Each function 𝑓𝑖 represents the 

probability of finding a layer, within phase 𝑖, at a given strain and energy. According to the Boltzmann equation 

(in an analogous manner to Equation 35) the probability densities are given by Equations 38-40.  
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−
1
𝛾
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−
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−∞
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𝑑𝜀
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𝐵
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𝐵

𝑓+ =
𝑒
−
1
𝛾
𝑔(𝜀,𝑇;𝜎)

∫ 𝑒
−
1
𝛾
𝑔(𝜀,𝑇;𝜎)

𝑑𝜀
∞

𝜀+
𝐵

 (38-40) 

The thermal activation parameter 𝛾 is defined in the same manner as in Equation 35 such that large and small 

values represent high and low thermal activation respectively. Equations 38-40 predict the probability of finding 

layers at a given strain but do not specifically predict transformation. In order to predict each rate of 

transformation, we examine the probability of finding a layer at each critical strain.  

𝑝𝑎−(𝜎) =
1

𝜏
𝑓𝑎(𝜀−

𝐵(𝜎, 𝑇), 𝜎) 𝑝𝑎+(𝜎) =
1

𝜏
𝑓𝑎(𝜀+

𝐵(𝜎, 𝑇), 𝜎) (41,42) 

𝑝−𝑎(𝜎) =
1

𝜏
𝑓−(𝜀−

𝐵(𝜎, 𝑇), 𝜎) 𝑝+𝑎(𝜎) =
1

𝜏
𝑓−(𝜀+

𝐵(𝜎, 𝑇), 𝜎) (43,44) 

Equations 41 and 42 represent the rate of transformation from the 𝑎 well into the – and + wells respectively 

whereas equations 43 and 44 represent the rate of transformation from the – and  + wells into the 𝑎 well. We do 

not consider transformation directly from the – well to the + well or vice versa. In the low temperature case where 

austenite is not stable, layers jump in one side then instantly out the other side of the 𝑎 well. This constitutes 

martensite-to martensite transformation (sometimes called martensite reorientation). The parameter 1 𝜏⁄  is another 

thermal activation parameter that, at the mesoscopic scale, represents the number of fluctuations per unit time. In 

this sense, the product of fluctuation rate and the probability that the motion will overcome the barrier yields the 

rate of layers actually jumping out of the well. At the macroscopic model scale, the parameter 𝜏 is a scaling 

parameter to assure that transformations occur rapidly compared to bulk material strain rates. The transformation 
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rates in Equations 41-44 rise and fall as the mesoscopic GFE distorts due to changes in stress and temperature. 

The rising and falling transformation rates then drive the kinetic equations, which are responsible for the 

macroscopic SMA behavior of the model.  

Because the level of thermal activation affects the transformation probabilities (recall Figure 14), it also 

affects the macroscopic stress-strain behavior. We begin with the case of high thermal activation. Figure 16 shows 

the GFE, probability density, and stress-strain curve for an SMA material at three stages of tensile loading.  

 
Figure 16: Transformation behavior for high thermal activation material, loading 

In Figure 16(a), the tensile stress has caused the GFE to tilt to the right which lowers the martensite + well 

and raises the martensite – well. The austenite layers follow the energy well minimum which has shifted to the 

right of the zero-strain axis. The macroscopic stress-strain curve, which reflects the average strain of the layers, 

shows a tensile strain in response to the tensile stress. In Figure 16(b), the tensile stress has increased and the 

austenite well minimum has shifted further to the right. Also, the martensite + well is lower and the energy barrier 

peak has moved closer to the austenite well minimum. Now, even though the well minimum has not reached the 

critical strain, some of the fluctuating layers jump into the lower martensite + well. At the macroscopic scale, the 

onset of transformation results in a slight nonlinearity in the stress-strain curve even though the stress has not 

reached 𝜎𝑎+. In Figure 16(c), the stress has reached the critical transformation value where the austenite well 

minimum and the barrier peak collide with one another. At this point, the highest probability corresponds to 

transformation and layers shift to the martensite + well at a much higher rate. The macroscopic result is a large 

change in the strain with very little change in stress (a stress plateau). Due to the wide distribution in layers 

however, the stress must be increased well beyond 𝜎𝑎+ to complete the transformation; this is implied by the 

dotted line tracing the path onto the fully martensite branch.  

Figure 17 shows three stages (from right to left) during the unloading of the same system after fully 

transforming to the martensite + phase.  
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Figure 17: Transformation behavior for high thermal activation material, unloading 

17(a) represents a state where the system has been unloaded to a stress value lower than the forward 

transformation stress 𝜎𝑎+. The layers are still trapped in the martensite well because the barrier strain is still 

beyond even the highest fluctuations. In 17(b) the stress is much closer to the reverse transformation stress 𝜎+𝑎 

and the critical strain is now much closer to the martensite well minimum. Some of the fluctuating layers are able 

to jump the barrier causing a nonlinearity in the macroscopic unloading curve. In 17(c) the critical stress has been 

reached and the probability is now high that layers will jump back into the austenite well. The macroscopic result 

is a rapid transformation back toward the linear austenite branch.  

It should be noted here that the barrier strain reaches the austenite well at one stress level (Figure 16(c)) 

while it reaches the martensite well at a different stress level (Figure 17(c)). This is due to the curvature of the 

energy barriers and serves an important purpose in the model. It is by this mechanism that the macroscopic 

hysteretic behavior observed in SMA materials is embedded in the mesoscopic free energy function. This 

eliminates the need for load-unload logic or phase diagrams to produce a hysteretic response.  

One additional distinction should be made here concerning the shape of the stress-strain curves shown in 

Figures 16 and 17. The smooth transitions into and out of the stress plateaus are not to be mistaken for a 

polycrystalline SMA response. The rounded nature of the superelastic stress-strain path is due to premature 

initiation and delayed completion of transformations. This is a rate dependent effect, even in the absence of latent 

heat effects, and represents inappropriate usage of the model. If the applied strain rate were varied the shape of 

the stress-strain path would be significantly different and this phenomenon is examined later in a set of 

simulations. A polycrystalline material has a smooth stress-strain curve due to field inhomogeneity, even at 

quasistatic strain rates – this effect is added later in the chapter.  
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Now we reproduce the previous two Figures in the low thermal activation limit case, i.e. for a solid SMA 

material. Figure 18 is analogous to Figure 16 and shows the loading branch of a superelastic SMA material. 

 

Figure 18: Transformation behavior for low thermal activation material, loading 

In Figure 18(a), a tensile stress has been applied resulting in a GFE that is tilted to the right. The martensite 

+ well is lower, the barrier strain has moved to the left, and the austenite well minimum has moved to the right. 

In 18(b), the stress has been increased to a value that is very close to the critical forward transformation stress 𝜎𝑎+ 

but no layers jump the barrier. They are tightly clustered at the well minimum and the macroscopic response 

remains linear up to a stress value equal to 𝜎𝑎+. In 18c the stress has reached 𝜎𝑎+ and all of the layers suddenly 

jump to the neighboring well. The macroscopic stress-strain curve reflects this by a sudden and complete shift to 

the martensite branch (a perfectly flat stress plateau), which is representative of a single crystal SMA. The 

fundamental mechanism here is that transformation occurs when the well minimum coincides with a critical strain. 

The construction of the HFE ensures that this will happen at the critical stresses.  

Figure 19 illustrates a sequence (right to left) of unloading steps after the system has reached a stress well 

level beyond that shown in Figure 18(c).  
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Figure 19: Transformation behavior for low thermal activation material, unloading 

In Figure 19(a) the stress has been reduced to a value below that of the forward transformation stress 𝜎𝑎+. 

For the layers in martensite well, a barrier still exists and they are unable to find the austenite well. In 19(b) the 

stress is lower but still slightly higher than the reverse transformation stress 𝜎+𝑎. A small barrier remains, no 

layers transform, and macroscopic unloading path remains linear. The reverse transformation is shown in 19(c) 

where the stress equals 𝜎+𝑎. Like the loading case, all of the layers simultaneously jump to the austenite well as 

soon as the critical strain reaches the martensite well minimum. The macroscopic consequence is another sudden, 

flat stress plateau leading back to the linear austenite branch.  

Figures 16-19 illustrate how the general kinetics model can represent gradual or sudden transformations 

depending on thermal activation parameters. Since solid SMA materials represent low thermal activation and 

sudden transformations, we can introduce an alternate criterion for the onset of transformation. Figure 20 shows 

another pairing of a GFE and probability distribution for a low thermal activation material but now, three strain 

locations are marked in red.  

 
Figure 20: Equivalent transformation thresholds for low thermal activation material 

Figures 20(a) and (b) show that, as the stress increases, the three red lines move closer to one another. In 

20(c) we see that, at the instant when the critical stress is reached, the three lines coincide. This means that, for 

low thermal activation materials, the inflection points and barrier peaks collide with the well minimum at the same 

instant. Because of this, we can use the either the barrier peaks or the inflection points to signify the transformation 

thresholds. If we choose to use the inflection point criteria, Figure 15 is redrawn as Figure 21 and now there are 

four critical strains instead of three.  
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Figure 21: Gibbs free energy and low thermal activation probability distributions 

Because this interpretation is restricted to low thermal activation materials, we the limiting case where the 

Bell shrink to Dirac delta functions. The inflection points now signify the limits of where we expect to find layers, 

so the probability density functions are adjusted accordingly.  
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𝜀+𝑎

 (45-47) 

Equations 45-47 are appealing because they eliminate the piecewise evaluaton of the integrals as well as the 

need to define the barrier functions 𝑔−
𝐵 and 𝑔+

𝐵. The transformation probabilities are obtained by evaluating the 

probability densities at each critical strain, so these expressions are updated to have the form of Equations 48-51.  

𝑝𝑎−(𝜎) =
1

𝜏
𝑓𝑎(𝜀𝑎−(𝜎, 𝑇), 𝜎) 𝑝𝑎+(𝜎) =

1

𝜏
𝑓𝑎(𝜀𝑎+(𝜎, 𝑇), 𝜎)

𝑝−𝑎(𝜎) =
1

𝜏
𝑓−(𝜀−𝑎(𝜎, 𝑇), 𝜎) 𝑝+𝑎(𝜎) =

1

𝜏
𝑓−(𝜀+𝑎(𝜎, 𝑇), 𝜎)

 (48-51) 

This version of the transformation probability eqautions have been sucessfully used in several SMA 

publications (Seelecke (2002), Seelecke and Müller (2004) , Smith et al. (2006), Heintze and Seelecke (2008), 

Ballew and Seelecke (2009), Furst et al. (2012)) and is also included in a comparison of kinetics models later this 

chapter. We refer to this formulation as the General kinetics model (even though it is a restricted case for 

Equations 41-44) because it still includes the probability integrals. This feature gives the General model unique 

rate insensitivity properties, and this is examined later in this chapter.  

Despite these simplifications gained by using the inflection points as the transformation thresholds, equations 

45-47 (and therefore Equations 48-51) still require special attention for use in a numerical simulation. Their 

evaluation requires several steps of algebraic manipulation, the use of special functions like 𝑒𝑟𝑓(𝑧) and 𝑒𝑟𝑓𝑥(𝑧), 

as well as multiple logical constructs to prevent numerical overflow errors. Details on their evaluation and 

associated numerical issues are included in Chapter 10.1. In the next section we examine a newer technique to 

calculate the transformation probabilities that is also based on the low thermal activation assumption but offers a 

simpler set of equations.  

3.3 Energy Barrier Kinetics Model 

The Energy Barrier model begins back at Equations 41-44, where the barrier peaks are used for the 

transformation thresholds. If we take the mathematical limit of the probability expressions as the thermal 

activation parameter 𝛾 approaches zero, we restrict the model to low thermal activation materials but also obtain 

a much simpler expression. Since this model is intended for SMA solids, we accept this limitation and replace the 
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probability distributions 𝑓𝑖 with their low thermal activation limit expressions. This is illustrated in Figure 22 

where we show the transformation rate 𝑝𝑎+ in the general form (left) and the low thermal activation limit (right).  

 
Figure 22: Low thermal activation limit of the transformation probability using the 

barrier height as the threshold 

When the Bell curve shrinks to zero width, the integral becomes a pointwise evaluation of the integrand. The 

result is an exponential expression based on the energy difference between the well minimum and the barrier 

maximum. The other three transformation probabilities are derived in the same manner yielding a set of four 

expressions based on relative energy.  

𝑝𝑖𝑗(𝜎, 𝑇) =
1

𝜏
𝑒
−
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𝛾
𝛥𝐺𝑖𝑗(𝜎, 𝑇)

𝑤ℎ𝑒𝑟𝑒

{
 
 

 
 

  

𝛥𝐺−𝑎 = 𝐺−
𝐵(𝜎, 𝑇) − 𝐺−(𝜎, 𝑇)

𝛥𝐺𝑎− = 𝐺−
𝐵(𝜎, 𝑇) − 𝐺𝑎(𝜎, 𝑇)

𝛥𝐺𝑎+ = 𝐺+
𝐵(𝜎, 𝑇) − 𝐺𝑎(𝜎, 𝑇)

𝛥𝐺+𝑎 = 𝐺+
𝐵(𝜎, 𝑇) − 𝐺+(𝜎, 𝑇)

 (31 Repeated here) 

The above expression, the Energy Barrier formulation, was given in Chapter 2. It represents the basic 

concept (the 𝛥𝐺) underpinning more recent applications of the M-A-S theory (Welsch et al. (2018)). When this 

formulation is used, the model yields the same results as the General model but is much simpler and bypasses the 

numerical overflow issues (discussed in Chapter 10.1). Despite these benefits, evaluation of Equation 31 depends 

on fully defined energy barrier functions and these are not always available.  

3.4 Driving Force Approximation 

The Energy Barrier formulation was successful on a 2D free energy, where the barrier energies where found 

at saddle points between bowl-shaped wells, but it proved to be insufficient when the model was extended to 

additional dimensions (9) in Kim and Seelecke (2007). To overcome this, a technique was developed where the 

barrier energies were approximated in terms of the driving forces. Driving force is the energy difference between 

two energy well minima. It represents the impetus for layers to move from one well to the other but, alone, does 

not consider what type of barrier may be resisting the transformation. The driving force from phase 𝑖 → 𝑗 is simply 

the minimum energy in phase 𝑖 minus the minimum energy in phase 𝑗.  

𝐹𝑖𝑗(𝜎, 𝑇) = 𝐺𝑖(𝜎, 𝑇) − 𝐺𝑗(𝜎, 𝑇) 𝑤ℎ𝑒𝑟𝑒 𝑖𝑗 ∈ −𝑎, 𝑎−, 𝑎+,+𝑎 (52) 

If we examine a plot of Δ𝐺 (from Equation 31) vs. driving force, we find that a quadratic, piecewise function 

(Equation 53)  can be used to accurately approximate Δ𝐺.  
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𝛥𝐺𝑖𝑗(𝐹𝑖𝑗) ≈
|

|
 

−𝐹𝑖𝑗 𝑓𝑜𝑟 𝐹𝑖𝑗 < −𝐹𝑖𝑗
𝐶

1

4
𝐹𝑖𝑗
𝐶 (1 −

𝐹𝑖𝑗

𝐹𝑖𝑗
𝐶)

2

𝑓𝑜𝑟 −𝐹𝑖𝑗
𝐶 ≥ 𝐹𝑖𝑗 ≥ 𝐹𝑖𝑗

𝐶

0 𝑓𝑜𝑟 𝐹𝑖𝑗
𝐶 < 𝐹𝑖𝑗

𝑤ℎ𝑒𝑟𝑒 𝑖𝑗 ∈ −𝑎, 𝑎−, 𝑎+,+𝑎 (53) 

The parameter 𝐹𝑖𝑗
𝐶  represents the driving force (Equation 53) evaluated at each transformation (critical) 

stress; these are called the critical driving forces.  

𝐹𝑖𝑗
𝐶(𝑇) = 𝐹𝑖𝑗(𝜎𝑖𝑗(𝑇), 𝑇) 𝑤ℎ𝑒𝑟𝑒 𝑖𝑗 ∈ −𝑎, 𝑎−, 𝑎+,+𝑎 (54) 

Figure 23 shows a GFE landscape under three different levels of stress where both the energy barrier height 

and the driving force are labeled.  

 
Figure 23: The driving force approximation of the energy barrier heights 

Using Equation 53 to approximate the energy barrier heights in Equation 31 is referred to as the Driving 

Force technique. Even though it was developed in a ferroelectric context, the Driving Force model showed 

promise as a candidate for extension to of the ferroelastic model to multiple dimensions. It approximates the 

energy barriers and this is important for multi-dimensional energy landscapes, but has a drawback in the case of 

temperature-dependent hysteresis. For some combinations of material parameters and temperature-dependent 

hysteresis, the quadratic Δ𝐺(𝐹) function yields incorrect values which means it is limited to constant hysteresis 

cases. In the next section, we introduce a new version of the transformation probability expression that overcomes 

this limitation, offers several other advantages, and is steppingstone toward the 2-D model in Chapter 6.  

3.5 Inflection Point Kinetics Model 

Here, we combine the assumptions that were used to write two previous formulations to further refine the 

transformation probably calculations. Figure 24 shows transformation probability 𝑝𝑎+ with general form 

(Equations 48-51) on the left and the low thermal activation limit on the right. Now, the inflection point is used 

to define the critical strain, not the energy barrier peak.  
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Figure 24: Low thermal activation limit of the transformation probability using the 

inflection point as the threshold 

Again, the integral reduces to an exponential expression based on relative energy, but now the relative energy 

is measured from the well minimum to the edge of the convex well (i.e. the inflection point). To calculate the 

transformation rates in this manner we use Equation 55.  

𝑝𝑖𝑗(𝜎, 𝑇) =
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𝜏
𝑒
−
1
𝛾
𝛥𝐺𝑖𝑗(𝜎, 𝑇)

𝑤ℎ𝑒𝑟𝑒
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𝛥𝐺−𝑎 = 𝐺−𝑎(𝜎, 𝑇) − 𝐺−(𝜎, 𝑇)

𝛥𝐺𝑎− = 𝐺𝑎−(𝜎, 𝑇) − 𝐺𝑎(𝜎, 𝑇)

𝛥𝐺𝑎+ = 𝐺𝑎+(𝜎, 𝑇) − 𝐺𝑎(𝜎, 𝑇)

𝛥𝐺+𝑎 = 𝐺+𝑎(𝜎, 𝑇) − 𝐺+(𝜎, 𝑇)

 (55) 

Now, both energy values evaluated for each 𝑝𝑖𝑗  lie on the same energy function 𝑔𝑖 and formulation of the 

barrier energy functions (𝑔−
𝐵 and 𝑔+

𝐵) is no longer required. This reduces the total number of equations required 

to operate the model and does not affect the model behavior as long as the low thermal activation assumption 

applies (i.e. the model is being applied to SMA solids). This form of the kinetics model relies on the fact that the 

minimum energy 𝐺𝑖 and inflection point energy 𝐺𝑖𝑗 coincide when critical stress 𝜎𝑖𝑗 is reached. Figure 25 

illustrates this for a superelastic tensile load-unload cycle.  

 
Figure 25: Inflection point Δ𝐺 during a forward and reverse superelastic 

transformation 
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As the initially austenite system is loaded in Figure 25(a-c), the energy difference between the well minimum 

and its right-most inflection point shrinks. When the critical stress is reached in 25(c), the well minimum and the 

inflection point become coincident and the 𝛥𝐺 value reaches zero. This causes the 𝑎 layers to immediately jump 

into the martensite + well. Noting that the lower row reads from right to left, we see that the system is being 

unloaded in 25(d) and (e) but the layers remain trapped in the martensite well. It is not until the reverse critical 

stress is reached in 25(f) that the layers can return to the central austenite well. Using this transformation 

mechanism, the hysteretic single crystal behavior in Figure 19 is reproduced here.  

Figure 26 shows the same transformation mechanism during a temperature-induced transformation cycle.  

 
Figure 26: Inflection point Δ𝐺 leading to a temperature induced transformation 

The upper row (from left to right) shows that, as the central 𝑎 well descends, the −𝑎 and the +𝑎 barriers 

diminish to zero and this activates the switch from twinned martensite to austenite. The reverse transformation is 

shown in the lower row (from right to left) where the system is cooled and the 𝑎 well climbs to the point of losing 

convexity. When both Δ𝐺’s are equal to zero the layers to find the two martensite wells in equal proportions (i.e. 

twinning). In the previous two figures, only selected 𝛥𝐺′𝑠 were shown. In model operation, all four values 

(𝛥𝐺𝑖𝑗∈−𝑎,𝑎−,𝑎+,+𝑎) are continually tracked and all four transformation probabilities (𝑝𝑖𝑗∈−𝑎,𝑎−,𝑎+,+𝑎) are 

continually calculated. The consequence is that the transformation rates rise and fall allowing the model to capture 

hysteretic and history behavior of a single crystal SMA material.  

Figure 27 illustrates why this formulation, in the case of low thermal activation, is equivalent to the energy 

barrier-based version.  
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Figure 27: Gibbs free energy landscape showing that the energy barrier G (blue) 

and that the inflection point G (red) reach zero simultaneously 

The concept for the inflection point Δ𝐺 model was motivated by the needs of a multidimensional formulation 

(Chapter 6) but it is also very useful in 1-D applications. This technique is used in Chapter 5, where the 1-D model 

is extended to accommodate temperature-dependent hysteresis and tension-compression asymmetry.  

3.6 Mesoscopic Inhomogeneity 

The M-A-S model fundamentally represents a single-crystal SMA material, where the transformations occur 

at a single stress or temperature value. The single crystal-type of response is really an ideal, limiting case of how 

actual SMA specimens behave. Depending on the amount of texture in a specimen’s microstructure and its loading 

history, the transformations can also occur gradually over and range of stress or temperature. This is commonly 

called polycrystalline or inhomogeneous behavior. There are a number of ways to add polycrystalline behavior to 

a single-crystal-based SMA model, but it can be conveniently added to the M-A-S model via the kinetics 

equations. Essentially, the transformation stress parameter is made to be a function of the phase fractions in 

addition to temperature (this is detailed in Heintz and Seelecke (2008) and further refined in Rizzello et al. (2019)). 

Physically, this reflects the fact that some mesoscopic layers will transform more easily than others and this the 

transformation threshold changes as the phase fractions evolve. While this is not a primary focus of this 

dissertation, inhomogeneity effects were necessary to model some of the experiments used to validate the model 

in Chapter 5. For this reason, we add an empirical adaptation of the technique from Heintz and Seelecke (2008) 

to the kinetics model here.  

The effects of mesoscopic inhomogeneity are added by introducing the concept of a representative lattice 

element which adds a phase fraction-dependent term to the transformation stresses.  

𝜎𝑎±
𝑒𝑓𝑓(𝑇, 𝑥±) = 𝜎𝑎±(𝑇) ± 𝜎𝑣

±(𝑥±) 𝜎±𝑎
𝑒𝑓𝑓(𝑇, 𝑥±) = 𝜎±𝑎(𝑇) ± 𝜎𝑣

±(𝑥±) (56,57) 

𝑤ℎ𝑒𝑟𝑒 𝜎𝑣
±(𝑥) = 𝜎𝑙

± (𝑥 −
1

2
) +

{
 

 

 

−𝜎𝑏
±(1 − 2𝑥)𝑒𝑏

±
𝑖𝑓 𝑥 <

1

2

+𝜎𝑐
±(2𝑥 − 1)𝑒𝑐

±
𝑖𝑓 𝑥 ≥

1

2

 

The parameter 𝜎𝑖𝑗
𝑒𝑓𝑓

 represents the transformation threshold of the most favorable layer. To implement this 

option in the model, the transformation stress  𝜎𝑖𝑗(𝑇) is replaced by the effective transformation stress 𝜎𝑖𝑗
𝑒𝑓𝑓(𝑇, 𝑥) 

in all equations used to calculate the Δ𝐺 values. In Chapter 5 the Model Implementation section, where we give a 

user’s guide style summary of the essential model equations, the formulation assumes that the inhomogeneity 

option is active. It should also be noted that the inhomogeneity equations (56 and 57) do not need to be 

situationally added to or removed from the model. If the parameters 𝜎𝑙
±, 𝜎𝑏

±, and 𝑒𝑏
± are set equal to zero, the 

single crystal model is recovered. The exponential expression in Equations 56 and 57 is a phenomenologically 
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adapted formulation that produces similar results to the more rigorous forms. Figure 28 shows 𝜎𝑎+
𝑒𝑓𝑓

 and 𝜎𝑎+ vs. 

the martensite + phase fraction.  

 
Figure 28: Representative layer transformation stress 

Low values 𝑥+ correspond to low values of 𝜎𝑎+
𝑒𝑓𝑓

 and this represents the small fraction of layers that, due to 

local stress fields, transform at macroscopic stresses far below the average value 𝜎𝑎+. The opposite is true at high 

values of 𝑥+; when the transformation is nearly complete, the last few layers require stress much greater than 𝜎𝑎+ 

to overcome their barriers due to local stress fields.   We present several simulations using the polycrystalline 

version of the new model in the following section.  

3.7 Comparison of Kinetics Models 

A single crystal SMA, under isothermal conditions, is expected to have a stress-strain response such as those 

shown in Figures 3 and 4. Examples of this would be extremely slow strain rates, a low ambient temperature, a 

thin wire, etc. In this situation, the characteristic shape of the stress-strain path is independent of strain rate because 

the underlying microstructures transform very rapidly. From a modeling perspective, when latent heats are not 

considered, the same results should be obtained for any applied strain rate. The M-A-S model, using any of the 

kinetics formulations, achieves this goal but only if proper values are chosen for thermal activation parameters (𝜏 

and 𝛾). For this reason, it is important to understand that the general kinetics model and the Δ𝐺 kinetics models 

have somewhat different relationships with (sensitivities to) 𝜏 and 𝛾. In this section we show the behavior of each 

model and discuss the underlying mechanisms as each converges to the proper rate independent response.  

Figure 29 shows the rate of transformation (phase 𝑖 → 𝑗) vs. stress for the general kinetics model. This figure 

applies to any of the transformation rates 𝑝𝑖𝑗∈−𝑎,𝑎−,𝑎+,+𝑎 and shows that the rate increases in the vicinity of the 

critical stress 𝜎𝑖𝑗 for any level of thermal activation.  
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Figure 29: Rate of transformation vs. stress for the general kinetics model 

We see that 𝑝𝑖𝑗  has a smooth ramp characteristic with a final slope that depends on 𝛾. The early onset of 

transformation from Figures 16(a) and 17(a) can be explained here as the higher thermal activation curves begin 

to rise earlier with respect to the critical stress. Another important feature of the general form is that the rate of 

transformation continues to rise after the critical stress has been exceeded. This mechanism encourages strain rate 

independence in the macroscopic response because the transformation rates can increase to arbitrarily high levels. 

Figure 29 also shows how the level of thermal activation affects this feature. The high thermal activation cases 

start transforming earlier but accelerate at a lower rate and the opposite is true for low thermal activation. When 

𝛾 is small, the rate of transformation remains at zero till the stress has nearly reached the critical stress then climbs 

immediately to a huge value. This rapid rate of change in phase fractions allows the model to yield the same stress 

response for any rate of applied strain – i.e. rate-independent behavior. The sampling rate 1 𝜏⁄  also affects the rate 

of transformation 𝑝𝑖𝑗  but plays a minor role for the general kinetics model. This term is a linear scale factor for 

the rate of transformation but does not change the overal characteristic of the curves in Figure 29.  

Sampling rate 𝜏 is more critical for the Δ𝐺 kinetics model, where the ramping nature of the transformation 

rate is no longer present. In contrast to the ramping curves in Figure 29, the Δ𝐺 model has a step-like characteristic 

and this is due to its exponential form. The rate of transformation jumps to a maximum when the stress exceeds 

the critical stress and remains locked there as shown in Figure 30.  

 
Figure 30: Rate of transformation vs. stress for the Δ𝐺 kinetics model 

Figure 30 shows the rate of transformation vs. stress in two situations. The left-most plot (a) shows the 

sensitivity to the thermal activation parameter 𝛾 while the sampling time 𝜏 is held constant. The plot on the right 

(b) represents a constant value of 𝛾 while 𝜏 is varied. In Equations 31 and 55, the Δ𝐺 term becomes locked at zero 
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when the critical stress has been exceeded therefore the transformation rate freezes at a value of 
1

𝜏
𝑒0. The result 

is that the 𝜏 parameter alone sets the maximum rate of transformation and this is shown in Figure 30(b). The 𝛾 

parameter, on the other hand, dictates the suddenness of the transformation, i.e. the sharpness of the step in Figure 

30(a).  

The simplest way to find the proper values for the thermal activation parameters is to run a series of 

simulations of a load-unload cycle at different strain rates. When two significantly different strain rates produce 

indistinguishable stress-strain plots (again, latent heat effects are turned off), then isothermal rate independence 

has been achieved. Higher values of 𝜏 and lower values of 𝛾 lead to better performance (i.e. lower sensitivity to 

strain rate), but they cannot be set arbitrarily high and low repsectively. Very low/high values of 𝜏/𝛾 result in very 

rapid transformations. This is desireable but is limited by the numerical integration scheme’s ability to handle stiff 

equations. Fortunately, a single value for each parameter can ensure rate independene over several decades of 

strain rate without causing numerical issues. Next, we show example sensitivity studies demonstrating how to 

establish thermal activation parameters for both the general model and a Δ𝐺-type of model.  

Figure 31 shows results from 45 simulations of a strain-controlled load-unload cycle using the general model. 

Each row of plots in Figure 31 represents a value of 𝛾, each column designates a strain rate 𝜀̇, and each individual 

plot (a-i) contains five curves corresponding to the five values of 𝜏.  
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Figure 31: General kinetics model with various thermal activation parameters and 

strain rates 

The series of curves shows competition between the effects from Figure 29 and the applied strain rate. The 

rounded shape of the curves as they enter the stress plateaus in Figure 31(a-f) is due to the premature initiation of 

transformation associated with high levels of thermal activation. The smooth exits from the stress plateaus, which 

are most promenant for large values of 𝜏, are the result of insufficient transformation rate. The large 𝜏 reduces the 

rate of change of the phase fraction 𝑥+ and this causes stress to increase during transformation. The stress rise 

during forward transformation is due to a back-log of layers trying to get out of the austenite phase and the reverse 

effect is also seen during unloading.  

The hysteresis in the responses stems from a combination of two different phenomena  – free energy barriers 

and strain rate effects. In the cases representing high thermal activation 31(a-c), the hysteresis is due completely 

to strain rate effects. The large thermal fluctations make the system unaware of the energy barriers and this results 

in a Maxwell-like stress-strain response for the lower values of 𝜏. For larger values of 𝜏, the rates of transformation 

are lower and the strain-rate induced hysteresis appears. A stress plateau only forms when the rate of 

transformation exceeds the rate of applied strain. Scaling the rate of transformation up or down by 1 𝜏⁄  either 

decreases or increases the amount of time required for a plateau to form. This delay in plateau formation appears 



41 

 

in the stress-strain response as a hysteresis loop. Because it is a rate effect, the variation in hystresis width differs 

for different strain rates (compare 31(a) to (b) and (c)).  

In Figure 31(d-f) we see two effects due to the reduced thermal activation. The first is the appearance of a 

hysteresis loop at even the lowest strain rate (d). The layers now sense the barriers enough to distinguish between 

forward and reverse thresholds. The second effect is a reduced sensitivity to 𝜏 and this is most apparent when 

comparing (c) and (f). In (c), the 𝜏 = 1 ∙ 10−2 case yielded a path that was highly distorted due to untransformed 

layers. In (f), for the same value of 𝜏, the response is much more consistent with the other curves. The lower value 

of 𝛾 allows the transformation rate to increase more rapidly, thereby compensating for the slowing influence of 

large 𝜏’s.  

31(g-i) represents appropriate choices of thermal activation parameters as well as a correctly shaped and 

rate-independent response. When low thermal activation parameters are assigned, the premature transformation 

no longer occurs. The system precisely obeys the forward and reverse transformation stress thresholds resulting 

in a consistent hysteretic response. Furthermore, in all 15 cases (31(g-i)), no strain rate-induced hysteresis is 

encountered. For low levels of thermal activation, the transformation ramps immediately to a rate that is essentially 

instantaneous compared to the applied strain rate. Mathematically, this eliminates the widening hysteresis 

observed in 31(a-f) because no back-log of untransformed materials appears. This is also physically representative 

of the isothermal rate independent behavior of actual SMA tensile specimens. At critical stress or temperature, 

the change in microstructures occurs at a rate that is essentially instantaneous when compared to rate of bulk 

deformation.  

Next we focus on the 𝛥𝐺 model. As shown in Figure 30, this form shares some features of its general 

counterpart but also has some key differences. In Figure 32 we see another set of 45 simulations that are identical 

to those in Figure 31 except we use the 𝛥𝐺 form of the kinetics model (Equation 55) and a different set of values 

for 𝜏.  
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Figure 32: Δ𝐺 kinetics model with various thermal activation parameters and strain 

rates 

The most apparent trend in Figure 32 is the variation in hysteresis width as the value of 𝛾 changes. This 

effect is shared with the general model and stems from the premature onset of transformation when thermal 

activation is unrealistically high (a-f). For the low thermal activation cases (32(g-i)) the transformations initiate 

precisely when the threshold stress is reached.  

The responses in Figure 32 are also affected by the applied strain rate but in a different manner than the 

curves in Figure 31. Recalling Figure 30, the Δ𝐺 kinetics models are associated with transformation rates that 

climb to a max value then freeze there. The inability to accelerate the transformation makes these models much 

more sensitive to the parameter 𝜏. For this reason, a much lower set of 𝜏 values had to be used for the simulations 

in Figure 32 to show convergence. The sensitivity to 𝜏 is most visible for the cases with the largest value (𝜏 = 1 ∙

10−2) where both strain rate hysteresis (32(c)) and incomplete transformation (32(c, f, and i)) result. When the 

maximum transformation rate is fixed, the applied strain rate dictates a minimum threshold for the successful 

transformation. In a sense, the Δ𝐺 model has a pass-fail type of relationship with 𝜏. If 𝜏 is low enough, the rate of 

transformation is high and the model creates well-formed stress plateaus. On the other hand, if 𝜏 is too large, the 

transformation lags and stress plateaus are unable to form. In fact, there is only a small range of 𝜏 where a poorly 

formed plateau can be created (one example is shown by 𝜏 = 1 ∙ 10−2). Any larger values result in a stress-strain 
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curve that does not even resemble an SMA response and were not included in the study. The proper selection of 

𝜏 requires that the rate of transformation exceed any strain rate to be encountered in the system. Analytically, the 

value can be assumed to be near-zero resulting in an approximately infinite rate of transformation but in a 

numerical simulation a finite value must be assigned. If the maximum strain rate 𝜀�̇�𝑎𝑥 is known, an expression 

for the maximum value of 𝜏 can be written (Equation 58) based on the amount of strain associated with a full 

forward transformation.  

𝜏𝑚𝑎𝑥 =
𝜀�̇�𝑎𝑥

𝜀𝑅 +
𝜎𝑎+(𝑇)
𝐸𝑚

− 𝜀𝑎+(𝑇)
 

(58) 

A value that is one or two orders of magnitude lower than 𝜏𝑚𝑎𝑥  typically yields an accurate and rate-

independent response without encountering overly stiff kinetic equations and numerical integration issues.  

We conclude this section with a set of simulations comparing the two types of Δ𝐺 model (the general model 

is also included for reference). Figure 33 shows six sets of simulations of a full tension-compression cycle at a 

superelastic temperature. The three columns represent different combinations of thermal activation parameters 

and the two rows represent two different strain rates.  

 
Figure 33: comparison of three forms of the kinetics model 

Cases 33(a) and (d) represent high levels of thermal activation along with low attempt frequency. 33(a) 

shows that all three models yield different stress-strain paths because the transformations occur at different stress 

levels. 33(d) shows that the deviation is exacerbated when the applied strain rate increases, due to the large value 

of 𝜏. The rate of transformation, especially in the two Δ𝐺 models, depends on the attempt frequency 𝜏 and a value 

too large results in artificial and incorrect strain rate dependence. Cases 33(b) and (e) show both lower thermal 

activation and higher attempt frequency. The deviation in transformation stress is reduced and the strain rate 

sensitivity has essentially been removed. The right-most column (c and f) shows a converged set of 𝛾 and 𝜏 values 
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where, at either strain rate, all three models exhibit indistinguishable responses. This means that, if care is taken 

to choose appropriate values for thermal activation parameters, any of the kinetics models presented in this chapter 

can be used and the same SMA behavior will be produced. The reasons to choose one vs. the other are based ease 

of implementation and opportunity to include additional effects as is done Chapters 5 and 6.  

After a detailed examination of the kinetic theory, this chapter equipped us with a new set of transformation 

probability equations. The target for a closer look is the model’s thermodynamic framework, which encompasses 

the free energy, caloric properties, and irreversibility.  

4 Thermodynamics 

In this chapter we show how the Helmholtz free energy is constructed and this naturally exposes how other 

thermodynamic quantities (such as internal energy, entropy, latent heat, etc. ) are woven into the model. We begin 

by establishing the relationships between stress, strain, and free energy at both the mesoscopic and macroscopic 

scales. This is an important concept because SMA models constitute a variety of multiscale arrangements. Next, 

we show how to measure the essential material constants from experimental data – this is a straightforward process 

after establishing the relationship between the scales. The stress-strain relationships and material constants provide 

the tools to construct the free energy and we walk through this process, discussing the underlying physics and 

assumptions along the way. The end result is the Helmholtz free energy equation that was given in Chapter 2.  

The equations that support the free energy show us that the transformation stress is one of the main building 

blocks. The next section is devoted to the transformation stress equation where we show that it can be derived 

directly from the free energy. This exercise also reveals several other caloric properties of the material, which are 

then used to derive the latent heat coefficients. The latent heat expressions contain information related to 

irreversibility and this is unique among SMA theories. As such, we examine the latent heat formulation in more 

detail by relating it to other SMA theories as well as comparing predictions to experimental data.  

We conclude the chapter by examining the irreversibility from the perspective of the stress-strain curve. 

SMA modelers sometimes write Clausius-Duhem-like inequalities as a platform to add entropy production terms 

such as dissipation potentials to the system. The M-A-S model does not contain any explicit entropy-production 

terms because the irreversibility is inherently contained in the multiwell free energy. We demonstrate this by 

showing that the entropy derived from a macroscopic stress-strain cycle can be written in terms of the free energy-

derived latent heats.  

4.1 Relating Stress, Strain, and Free Energy 

The mesoscopic Helmholtz free energy is constructed from macroscopic tension test data. Before discussing 

the connection between stress-strain behavior at the two scales, we consider the mesoscopic layers in a given 

phase. The differential internal energy 𝑑𝑢𝑖 for phase 𝑖 is given by In Equation 59.  

𝑑𝑢𝑖 = 𝑇𝑑𝑠𝑖 + 𝜎𝑑𝜀𝑖  (59) 

All of the quantities represent the average, or most probable, value for all of the layers in phase 𝑖. No 

subscript is assigned to temperature or stress because these quantities are, on average, equal for all phases. We 

subtract 𝑑(𝑇𝑠𝑖) from both sides and recognize that 𝑑(𝑇𝑠𝑖) = 𝑠𝑖𝑑𝑇 + 𝑇𝑑𝑠𝑖 which allows us to cancel two terms.  

𝑑𝑢𝑖 − 𝑑(𝑇𝑠𝑖) = 𝑇𝑑𝑠𝑖 + 𝜎𝑑𝜀𝑖 − 𝑑(𝑇𝑠𝑖) (60) 
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𝑑(𝑢𝑖 − 𝑇𝑠𝑖) = 𝑇𝑑𝑠𝑖 + 𝜎𝑑𝜀𝑖 − 𝑠𝑖𝑑𝑇 − 𝑇𝑑𝑠𝑖  (61) 

The Helmholtz free energy is defined as 𝜓 = 𝑢 − 𝑇𝑠 so we substitute 𝜓 to write a differential form of the 

Helmholtz free energy for phase 𝑖.  

𝑑𝜓𝑖 = 𝜎𝑑𝜀𝑖 − 𝑠𝑖𝑑𝑇 𝑦𝑖𝑒𝑙𝑑𝑠
𝜕𝜓𝑖
𝜕𝜀𝑖

|
𝑇=𝑐𝑜𝑛𝑠𝑡

= 𝜎 𝑎𝑛𝑑
𝜕𝜓𝑖
𝜕𝑇

|
𝜀=𝑐𝑜𝑛𝑠𝑡

= −𝑠𝑖  (62,63) 

Equation 62 relates the stress and strain to the free energy at the mesoscopic scale, but the test data used to 

build the free energy is macroscopic. Next, we need to relate the mesoscopic stress-strain behavior to a 

macroscopic test specimen. This is accomplished by recalling Equation 26, which defines the macroscopic strain 

as the weighted average of the strains in each phase (𝜀𝑖). This means that, when all of the mesoscopic layers are 

in the same phase, the macroscopic strain is equal to the mesoscopic strain.  

𝐴𝑙𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑎𝑦𝑒𝑟𝑠 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑚𝑎𝑟𝑡𝑒𝑛𝑠𝑖𝑡𝑒 − 𝑝ℎ𝑎𝑠𝑒 → 𝑥− = 1, 𝑥𝑎 = 𝑥+ = 0 → 𝜀 = 𝜀−

𝐴𝑙𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑎𝑦𝑒𝑟𝑠 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑎𝑢𝑠𝑡𝑒𝑛𝑖𝑡𝑒 𝑝ℎ𝑎𝑠𝑒 → 𝑥− = 0, 𝑥𝑎 = 1, 𝑥+ = 0 → 𝜀 = 𝜀𝑎

𝐴𝑙𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑎𝑦𝑒𝑟𝑠 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑚𝑎𝑟𝑡𝑒𝑛𝑠𝑖𝑡𝑒 + 𝑝ℎ𝑎𝑠𝑒 → 𝑥− = 𝑥𝑎 = 0, 𝑥+ = 1 → 𝜀 = 𝜀+

 

Figure 34 shows the stress-strain response for a typical (single-crystal-like) SMA material along with the 

corresponding mesoscopic Helmholtz free energy. This illustration shows that the three linear branches of the 

stress-strain curve represent regions where the material exhibits only one phase, i.e. where the mesoscopic and 

macroscopic strains are equivalent.  

 
Figure 34: Mesoscopic HFE and macroscopic stress-strain behavior 

The black segments on the macroscopic stress-strain plot correspond to regions when the material is in a 

single phase and the red segments represent phase change. The black stress-strain segments have arrows on both 

ends because the specimen can be loaded or unloaded on these branches and the response will remain linear 

because the phase fractions will not change. The red stress-strain segments have arrows on only one side because 

they are one-way branches, either forward transformation (𝑎 → ±) or reverse transformation (±→ 𝑎). Each linear 

stress-strain branch corresponds to a convex energy well and they are related by the Equation 62. No stress-strain 

relationship is required for the red segments. When phase change is underway, the layers in each well are at 
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thermal and mechanical equilibrium (i.e. temperature and stress remain constant) and the kinetics equations drive 

the phase fractions toward phase equilibrium.  

The main take-away from Figure 34 is that we can use standard techniques (i.e. 𝜕𝜓
𝜕𝜀
=𝜎) to relate macroscopic 

stress-strain data to the mesoscopic free energy function, as long as we restrict ourselves to the linear branches. 

Fortunately, all of the material parameters required to build the free energy are measured from the linear, single-

phase, branches of the curve. Figure 35 shows tensile test data for NiTi specimens from Chang et al. (2006), 

material parameter measurements, and the corresponding free energies in a similar manner to Figure 34.  

 
Figure 35: Tension test data at two temperatures and corresponding HFE’s 

Figure 35 shows two tensile test data sets, each at a different temperature (𝑇𝐿  and 𝑇𝐻). The material 

parameters measured in the figure are the same ones given in Table 1 (Chapter 2) and represent the essential 

variables required to build the mesoscopic free energy. Now we have the essential tools to show the complete 

construction of the Helmholtz free energy function (Equation 1).  

4.2 Construction of the Helmholtz Free Energy 

The construction of the free energy begins with the concept of a metastable, i.e. multiwell landscape. We 

use a chain of parabolas as shown in Figure 36(a) but this is not the only method. Another commonly cited 

multiwell free energy, the Landau-Ginzburg formulation by Falk (1980 and 1983), is shown in 36(b).  

 
Figure 36: Sketch of a Landau-Ginzburg and the current model’s free energy  

Using a train of parabolas is convenient for a number of reasons. First, they produce linear stress-strain 

responses within each phase which is expected in a single crystal material. Furthermore, the stresses and strains 

associated with the inflection points, and therefore the transformations, can be defined as explicit functions of 
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temperature; this is a common assumption in SMA theory. Lastly, each of the phases has a distinct energy function 

with a simple, recognizable form.  

To build the piecewise free energy in 36(a), we start with three convex energy wells and assume that each is 

composed of a strain-dependent (mechanical) part and a temperature-dependent (chemical) part as sketched in  

Figure 37.  

 
Figure 37: Mechanical and chemical free energies for each phase 

The three free energies are given by Equations 64-66.  

�̂�−(𝜀, 𝑇) = 𝜙−(𝜀) + 𝛽−(𝑇) �̂�𝑎(𝜀, 𝑇) = 𝜙𝑎(𝜀) + 𝛽𝑎(𝑇) �̂�+(𝜀, 𝑇) = 𝜙+(𝜀) + 𝛽+(𝑇) 

(64) (65) (66) 

We assume the entire HFE landscape, which will include all three functions �̂�𝑖, is symmetric about the zero-

strain axis. This means that the resulting SMA model will exhibit tension-compression symmetry and this is 

expected in a 1-D single crystal model, were the two variants represent symmetric twins. The tension-compression 

asymmetry observed in some SMA experiments is understood to be the result of more complex local stress states 

and variant combinations. This effect is addressed in Chapter 5, where the model is extended to account for 

tension-compression asymmetry.  

The only difference between the two martensite energy functions is the sign of their strain offsets (one is 

offset to the compressive side and one to the tensile side). Considering that the chemical free energies of the two 

martensite wells are equal we use a common parameter “𝑚”, which signifies unspecified martensite.  

𝛽−(𝑇) = 𝛽+(𝑇) = 𝛽𝑚(𝑇) (67) 

The energies shown in Figure 37 represent true, absolute energies and this requires definition of a zero-

energy state. Knowledge of the zero energy is not necessary, so we choose to use a relative form of the HFE. The 

relative energy 𝜓 is defined by subtracting the martensite chemical free energy (CFE) from the total energy �̂� for 

each phase.  

𝜓−(𝜀) = �̂�−(𝜀, 𝑇) − 𝛽𝑚(𝑇) = 𝜙−(𝜀) (68) 

𝜓𝑎 = �̂�𝑎(𝜀, 𝑇) − 𝛽𝑚(𝑇) = 𝜙𝑎(𝜀) + 𝛽(𝑇) 𝑤ℎ𝑒𝑟𝑒 𝛽(𝑇) = 𝛽𝑎(𝑇) − 𝛽𝑚(𝑇) (69) 

𝜓+(𝜀) = �̂�+(𝜀, 𝑇) − 𝛽𝑚(𝑇) = 𝜙+(𝜀) (70) 
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Now, only the austenite energy retains a chemical free energy term and we adopt the parameter 𝛽 with no 

subscript. Figure 38 shows the relative free energies where the martensite wells are fixed and the austenite well 

moves up or down with temperature.  

 
Figure 38: Relative Helmholtz free energies at various temperatures 

From this point forward, we only consider the relative energies drop the designation relative. The strains 

associated with the minimum martensite energies are designated by −𝜀𝑅 and 𝜀𝑅. 𝜀𝑅 is the magnitude of the residual 

strain and can be obtained directly from a stress strain curve as shown in Figure 35. Now, considering each energy 

well’s vertical and horizontal offset, the parabolas can be given the following forms.  

𝜓−(𝜀) = 𝐴𝑚(𝜀 + 𝜀𝑅)
2 𝜓𝑎(𝜀) = 𝐴𝑎𝜀

2 + 𝛽(𝑇) 𝜓+(𝜀) = 𝐴𝑚(𝜀 − 𝜀𝑅)
2 

(71) (72) (73) 

From Figure 35, we also know that each of the functions 𝜓𝑖  is associated with a linear elastic branch of the 

stress-strain curve where the elastic modulus can be measured. Equation 62 relates the elastic modulus to the free 

energy functions and this allow us to define the 𝐴𝑚 and 𝐴𝑎.  

𝜕2𝜓𝑎
𝜕𝜀2

=  𝐸𝑎 → 𝐴𝑎 =
𝐸𝑎
2

 (74) 

𝜕2𝜓+
𝜕𝜀2

= 𝐸𝑚 → 𝐴𝑚 =
𝐸𝑚
2

 (75) 

The three free energies are now written as follows.  

𝜓−(𝜀) =
𝐸𝑚
2
(𝜀 + 𝜀𝑅)

2 𝜓𝑎(𝜀) =
𝐸𝑎
2
𝜀2 + 𝛽(𝑇) 𝜓+(𝜀) =

𝐸𝑚
2
(𝜀 − 𝜀𝑅)

2 

(76) (77) (78) 

Despite the fact that the chemical free energy has yet to be defined, Equations 71-73 can be used (via Equation 

62) to define general stress-strain relationships for the layers in each phase.  

𝜕𝜓−
𝜕𝜀−

= 𝜎 = 𝐸𝑚(𝜀− + 𝜀𝑅) → 𝜀−(𝜎) =
𝜎

𝐸𝑚
− 𝜀𝑅 (16 Repeated here)  

𝜕𝜓𝑎
𝜕𝜀𝑎

= 𝜎 = 𝐸𝑎𝜀𝑎 → 𝜀𝑎(𝜎) =
𝜎

𝐸𝑎
 (17 Repeated here)   

𝜕𝜓+
𝜕𝜀+

= 𝜎 = 𝐸𝑚(𝜀+ − 𝜀𝑅) → 𝜀+(𝜎) =
𝜎

𝐸𝑚
+ 𝜀𝑅 (18 Repeated here)   
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Equations 16-18 were initially presented in Chapter 2 and represent a unique stress-strain relationship for 

each phase – they relate the average stress to the average strain for the layers in each particular energy well. At 

this point we only have one unknown parameter, the chemical free energy 𝛽(𝑇), but we still have to connect the 

energy wells. We do this by introducing concave energy barriers 𝜓−
𝐵 and 𝜓+

𝐵 as shown in Figure 39.  

 
Figure 39: Piece-wise construction of Helmholtz free energy 

Figure 39(a) shows the geometric arrangement of the five individual parabolas but they form the piecewise 

continuous landscape in 39(b). The five parabolas are connected at four strain locations and these are the critical 

strains, which were given by Equations 4-5. The energy barriers are also parabolic and are written as follows, 

where 𝐴, 𝐵, and 𝐶 are added to 𝛽 in the list of coefficients that need to be determined.  

𝜓−
𝐵(𝜀, 𝑇) = 𝐴(𝑇)𝜀2 − 𝐵(𝑇)𝜀 + 𝐶(𝑇) (79) 

𝜓+
𝐵(𝜀, 𝑇) = 𝐴(𝑇)𝜀2 + 𝐵(𝑇)𝜀 + 𝐶(𝑇) (80) 

The fundamental principle in defining the energy barriers is a requirement that the HFE landscape be C1 

continuous at all temperatures. This allows a set of four equations relating 𝐴, 𝐵, 𝐶, and 𝛽 to be written in terms 

of 𝜀𝑖𝑗(𝑇) (which are functions of the transformation stresses 𝜎𝑖𝑗(𝑇)). Figure 40 shows the energy barrier 𝜓+
𝐵 

smoothly connecting the 𝜓𝑎 well to the 𝜓+ well at three different temperatures.  

 
Figure 40: Strain locations for C1 continuity conditions on the HFE 

The continuity conditions at the critical strain locations yield the following four equations.  

𝜓𝑎(𝜀𝑎+(𝑇)) = 𝜓+
𝐵(𝜀𝑎+(𝑇), 𝑇) 𝜓+

𝐵(𝜀+𝑎(𝑇), 𝑇) = 𝜓+(𝜀+𝑎(𝑇), 𝑇) (81,82) 

𝜕𝜓𝑎
𝜕𝜀

(𝜀𝑎+(𝑇)) =
𝜕𝜓+

𝐵

𝜕𝜀
(𝜀𝑎+(𝑇), 𝑇) 

𝜕𝜓+
𝐵

𝜕𝜀
(𝜀+𝑎(𝑇), 𝑇) =

𝜕𝜓+
𝜕𝜀

(𝜀+𝑎(𝑇), 𝑇) 83,84 

Simultaneous solution of Equations 81-84 and some algebraic manipulation yield four independent equations 

which are all functions of temperature.  
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𝐴(𝑇) =
𝜎Δ

2(𝜀𝑎+(𝑇) − 𝜀+𝑎(𝑇))
 𝐵(𝑇) =

𝜎+𝑎(𝑇)𝜀𝑎+(𝑇) − 𝜎𝑎+(𝑇)𝜀+𝑎(𝑇)

𝜀𝑎+(𝑇) − 𝜀+𝑎(𝑇)
 

(10-13) 

Repeated here 

𝐶(𝑇) = 𝛽(𝑇) +
𝜀𝑎+(𝑇)𝐵(𝑇)

2
 𝛽(𝑇) = −

𝜎𝑎+(𝑇)𝜀+𝑎(𝑇) + 𝜎+𝑎(𝑇)(𝜀𝑅 − 𝜀𝑎+(𝑇))

2
 

It should be noted that Equations 10-13 contain the parameters 𝜎𝛥, 𝜎+𝑎, and 𝜀𝑖𝑗 even though they are all 

derived from the forward transformation stress  𝜎𝑎+(𝑇). These quantities can be written completely in terms of  

𝜎𝑎+, but the forms given here yield the most concise expressions. Equations 10-13 also represent the final 

expressions required to define the Helmholtz free energy (Equation 1). Because the transformation stress 𝜎𝑎+(𝑇) 

plays such an important role in the free enery, it deserves some further exploration. The linear 𝜎𝑎+(𝑇) (Equation 

2) is common in SMA modeling but, in the next section, we derive it directly from the free energy instead of 

assuming its form.  

4.3 Temperature Dependence 

In this section, we use the mesoscopic Helmholtz free energy function to derive a relationship between the 

transformation stress and temperature. This exercise reveals some valuable information about how the 

transformation stress, which is can easily be thought of as a purely mechanical parameter, is closely related to the 

caloric properties of the material. We begin by with a useful diagram relating several mesoscopic thermodynamic 

potentials in Figure 41.  

 
Figure 41: Mesoscopic thermodynamic potentials 

This sketch shows and relationships between the thermodynamic potentials for material in phase 𝑖 where: 

𝑢𝑖
𝑅 is an internal energy constant, 𝑠𝑖

𝑅 is an entropy constant, 𝑐𝑖 is the specific heat, and 𝑇𝑅 is a reference temperature 

for the specific heat coefficient. We also show that Helmholtz free energy can be segregated into internal energy 

and entropy parts or strain-dependent and temperature-dependent parts. The temperature-dependent component, 

often called the chemical free energy, is given by Equation 85.  

𝛽𝑖(𝑇) = 𝑢𝑖
𝑅 + 𝑐𝑖(𝑇 − 𝑇𝑅) − 𝑇𝑐𝑖𝑙𝑛 (

𝑇

𝑇𝑅
) − 𝑇𝑠𝑖

𝑅 (85) 

This equation represents an absolute energy quantity whereas the 𝛽(𝑇) in the previous section (Equation 12) 

was defined as a relative energy between the austenite and martensite phases. To relate these two equations, we 
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must write a relative form of Equation 85. First, based on the symmetry of the HFE we regard the internal energy 

and entropy constants of the two martensite phases as equivalent and use the subscript 𝑚 in place of – or +.  

𝑢−
𝑅 = 𝑢+

𝑅 = 𝑢𝑚
𝑅 𝑠−

𝑅 = 𝑠+
𝑅 = 𝑠𝑚

𝑅  (86,87) 

We also follow the convention used for 𝛽 and define relative quantities for internal energy and entropy 

constants with no phase specification.  

𝑢𝑎
𝑅 − 𝑢𝑚

𝑅 = 𝑢𝑅 𝑠𝑎
𝑅 − 𝑠𝑚

𝑅 = 𝑠𝑅 (88,89) 

The 𝑅 superscript is maintained to designate that these quantities are reference constants to distinguish them 

from their total counter parts 𝑢 and 𝑠. Finally, we assume that the specific heats are equal for all three phases 

(𝑐− = 𝑐𝑎 = 𝑐+) and arrive at a linear relationship between 𝛽(𝑇) and temperature.  

𝛽(𝑇) = 𝛽𝑎(𝑇) − 𝛽𝑚(𝑇) = 𝑢
𝑅 − 𝑠𝑅𝑇 (90) 

To relate the 𝛽(𝑇) from Equation 12 to Equation 90, we first rewrite Equation 12 completely in terms of the 

forward transformation stress 𝜎+𝑎(𝑇).  

𝛽(𝑇) = −
𝜎𝑎+(𝑇)𝜀+𝑎(𝑇) + 𝜎+𝑎(𝑇)(𝜀𝑅 − 𝜀𝑎+(𝑇))

2
→ 𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝜀𝑖𝑗(𝑇) = 𝑓(𝜎𝑖𝑗(𝑇)) 

𝛽(𝑇) = −
1

2
(𝜎𝑎+(𝑇) (

𝜎+𝑎(𝑇)

𝐸𝑚
+ 𝜀𝑅) + 𝜎+𝑎(𝑇) (𝜀𝑅 −

𝜎𝑎+(𝑇)

𝐸𝑎
)) → 𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝜎+𝑎(𝑇) = 𝑓(𝜎𝑎+(𝑇)) 

𝛽(𝑇) =
1

2
(
1

𝐸𝑎
−
1

𝐸𝑚
) 𝜎𝑎+(𝑇)

2 +
𝜎Δ
2
(
1

𝐸𝑚
−
1

𝐸𝑎
) 𝜎𝑎+(𝑇) − 𝜀𝑅𝜎𝑎+(𝑇) +

𝜎Δ𝜀𝑅
2

 (91) 

Equation 91 is quadratic in the space of transformation stress 𝜎𝑎+ and we rewrite it using temporary 

coefficients 𝐶0, 𝐶1, and 𝐶2 to aid in the clarity as well as brevity of expressions.  

𝛽(𝜎𝑎+(𝑇)) = 𝐶2𝜎𝑎+(𝑇)
2 + 𝐶1𝜎𝑎+(𝑇) + 𝐶0 𝑤ℎ𝑒𝑟𝑒 (92) 

𝐶0 =
𝜎Δ𝜀𝑅
2

𝐶1 =
𝜎Δ
2
(
1

𝐸𝑚
−
1

𝐸𝑎
) − 𝜀𝑅 𝐶2 =

1

2
(
1

𝐸𝑎
−
1

𝐸𝑚
) = −

𝐸𝛥
2

  

The parameter 𝐸𝛥 represents the difference in stiffness between the phases, appears throughout the chemical 

free energy-related (i.e. caloric) expressions, and is given by Equation 93.  

𝐸𝛥 =
1

𝐸𝑚
−
1

𝐸𝑎
 (93) 

Now we have two separate expressions for 𝛽(𝑇) (Equations 90 and 92) along with three unknown quantities: 

𝑢𝑅, 𝑠𝑅, and 𝜎𝑎+(𝑇). To proceed, we refer back to the experimental data (Figure 35) and recall that we know the 

transformation stress at two temperatures (𝑇𝐿  and 𝑇𝐻) regardless of the form 𝜎𝑎+(𝑇) ends up taking.  

𝜎𝑎+(𝑇𝐿) = 𝜎𝑎+
𝐿 𝜎𝑎+(𝑇𝐻) = 𝜎𝑎+

𝐻  (94,95) 

This means we can define the chemical free energy 𝛽(𝑇) at those two temperatures as well.  

𝛽𝐿 = 𝛽(𝜎𝑎+(𝑇𝐿)) → 𝛽𝐿 = 𝐶2𝜎𝑎+
𝐿 2

+ 𝐶1𝜎𝑎+
𝐿 + 𝐶0 (96) 

𝛽𝐻 = 𝛽(𝜎𝑎+(𝑇𝐻)) → 𝛽𝐻 = 𝐶2𝜎𝑎+
𝐻 2

+ 𝐶1𝜎𝑎+
𝐻 + 𝐶0 (97) 

Now, we can write two instances of Equation 90, one at each temperature, and this gives us two expressions 

for the internal energy constant 𝑢𝑅.  
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𝛽𝐿 = 𝑢
𝑅 − 𝑠𝑅𝑇𝐿 → 𝑢𝑅 = 𝛽𝐿 + 𝑠

𝑅𝑇𝐿 (98) 

𝛽𝐻 = 𝑢
𝑅 − 𝑠𝑅𝑇𝐻 → 𝑢𝑅 = 𝛽𝐻 + 𝑠

𝑅𝑇𝐻 (99) 

Since 𝑢𝑅 is a constant, we can equate the right-hand sides of Equations 98 and 99 and solve for the internal 

energy constant 𝑠𝑅.  

𝛽𝐿 + 𝑠
𝑅𝑇𝐿 = 𝛽𝐻 + 𝑠

𝑅𝑇𝐻 → 𝑠𝑅𝑇𝐻 − 𝑠
𝑅𝑇𝐿 = 𝛽𝐿 − 𝛽𝐻 → 𝑠𝑅 =

𝛽𝐿 − 𝛽𝐻
𝑇𝐻 − 𝑇𝐿

= −
𝑑𝛽

𝑑𝑇
 (100) 

Equation 100 implies that the entropy constant is the rate of change of the chemical free energy with respect 

to temperature and this is expected from Equation 62 (
𝜕𝜓

𝜕𝑇
= −𝑠). Knowing 𝑠𝑅, we can return to either Equation 

98 or 99 to solve for  𝑢𝑅. With the internal energy and entropy constants defined we can now solve for the 

transformation stress by substituting Equation 90 for 𝛽(𝑇) in Equation 92, moving all terms to the right-hand side, 

and using the quadratic formula.  

𝛽(𝑇) = 𝑢𝑅 − 𝑠𝑅𝑇 = 𝐶2𝜎𝑎+(𝑇)
2 + 𝐶1𝜎𝑎+(𝑇) + 𝐶0 → 0 = 𝐶2𝜎𝑎+(𝑇)

2 + 𝐶1𝜎𝑎+(𝑇) + 𝐶0 − 𝑢
𝑅 + 𝑠𝑅𝑇 

𝜎𝑎+(𝑇) =
−𝐶1 ± √𝐶1

2 − 4𝐶2(𝐶0 − 𝑢
𝑅 + 𝑠𝑅𝑇)

2𝐶2
 

(101) 

The forward transformation stress always positive or zero therefore the solution with a positive square root 

term, which yields negative values, is disregarded. The negative square root term and a minimum condition give 

us an expression for the forward transformation stress as function of temperature.  

𝜎𝑎+(𝑇) = 𝑚𝑎𝑥

(

 
−𝐶1 −√𝐶1

2 − 4𝐶2(𝐶0 − 𝑢
𝑅 + 𝑠𝑅𝑇)

2𝐶2
, 0

)

  (102) 

If equation 102 is examined graphically it can be seen that the quadratic nature of the transformation stress 

is only observed across a temperature domain that is very large (0-3,000K) compared to the typical operating 

ranges of SMA tests and devices (200-400K). To show this, we again use the experimental tension test data from 

Chang et al. (2006). Figure 42(a) shows both the quadratic and linear form of the transformation stress plotted 

across a large range of temperatures. Figure 42(b), however, shows the same curves over a temperature scale that 

represents the typical operating range of SMA devices.  

 
Figure 42: Quadratic and linear transformation stress plots 

Figure 42(c) shows the actual transformation stresses measured from the experiments and we can see that 

the variation is very linear. Even though the quadratic function produces values that are nearly linear and yields 

indistinguishable model results, we use the simpler form given by Equation 2 for model operation.  
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𝜎𝑎+(𝑇) = 𝑚𝑎𝑥 (𝜎𝑎+
𝐿 + (

𝜎𝑎+
𝐻 − 𝜎𝑎+

𝐿

𝑇𝐻 − 𝑇𝐿
) (𝑇 − 𝑇𝐿) ,0 ) (2 Repeated here) 

In addition to highlighting additional relationships between the transformation stress and the free energy, 

this exercise also yields expressions for the internal energy and entropy constants. These are important quantities 

that will be used later in chapter to derive the latent heat parameters. Before proceeding to the latent heats and 

further manipulating the caloric parameters, a subtle but important note should be made about the decision to use 

the linear transformation stress vs the quadratic one.  

4.3.1 Consequences of Using the Linear vs. the Quadratic Transformation Stress 

When considered purely from the perspective of predicting the transformation stress, Equations 2 and 102 

are interchangeable. But the choice to use the linear vs. quadratic expression has a few additional consequences 

related to the caloric properties and the smoothness of the free energy.  

First, we recall that the expression relating the transformation stress to the chemical free energy is derived 

from the HFE continuity conditions (Equations 81-84). Furthermore, the HFE barrier functions connect smoothly 

to the energy well functions at the critical strains, which are functions of the transformation stress. If the quadratic 

expression for 𝜎𝑎+(𝑇) is used, it must be maintained for all of expressions used to build the HFE. This includes 

the calculation of 𝜎+𝑎(𝑇) (Equation 3), 𝜀𝑎+(𝑇) and 𝜀+𝑎(𝑇) (Equations 4-5), 𝐴(𝑇), 𝐵(𝑇), and 𝐶(𝑇) (Equations 10-

12), as well as 𝛽(𝑇) (Equation 13). This will allow the free energy parabolas to connect smoothly as intended and 

the chemical free energy 𝛽(𝑇) will remain linear with temperature as assumed in Equation 90.  

If the linear version 𝜎𝑎+(𝑇) used, it must also be consistently be used throughout the set of HFE functions. 

The shapes of the energy barriers will change slightly, but the continuity conditions will hold and the five 

parabolas will still connect smoothly. This choice, however, forces us to relax the assumption that 𝛽(𝑇) is linear 

with temperature. When 𝜎+𝑎(𝑇) becomes linear, 𝛽(𝑇) becomes quadratic. Fortunately, we find ourselves in the 

same situation that was shown in Figure 42. The difference between the linear and quadratic 𝛽’s are only 

significant over a very large range of temperatures and it is reasonable to say that, when the linear transformation 

stress is used, that Equation 90 simply becomes an approximate relationship.  

𝛽(𝑇) ≈ 𝑢𝑅 − 𝑠𝑅𝑇 ← 𝑊ℎ𝑒𝑛 𝑡ℎ𝑒 𝑙𝑖𝑛𝑒𝑎𝑟 𝜎𝑎+(𝑇) 𝑖𝑠 𝑢𝑠𝑒𝑑 (103) 

It should finally be noted, additionally, that the expressions for the internal energy and entropy constants 

(Equations 98, 99, and 100) are correct, regardless of which transformation stress equation is used. This is because 

they are derived from the two temperatures where the experimental transformation stresses are measured and 

treated as material constants. At these two temperatures, the linear and quadratic expressions intersect (as shown 

in Figure 42(b)) and the derived parameters are equivalent. These distinctions play a minor role in the overall 

model behavior, but it is important to maintain consistency between the equation sets because they are used further 

in the next section where we derive the latent expressions.  

4.4 Caloric Properties 

In this section we continue to manipulate the HFE and caloric parameters to derive the latent heat 

coefficients. This is a useful exercise for several reasons. The most salient benefit is that the only experimental 

data required to do this is the set of stress-strain curves that were used to build the free energy. Stress-strain data 

is typically more readily available than DSC data. This derivation is also insightful because it shows a unique 

feature of the M-A-S model, namely the way irreversibility is included in the latent heats. To highlight this, we 
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first neglect irreversibility and derive the latent heats in a form that is found in several other SMA models. Then, 

we include the irreversibility terms and repeat the derivation to arrive at a different expression. We conclude the 

section by testing the accuracy of the theory with comparisons to experimental measurements.  

4.4.1 Reversible Case 

The latent heat derivation begins with an expression for the relative minimum GFE between the austenite 

phase and either martensite phase.  

𝐹 = 𝐺𝑎 − 𝐺+ (104) 

We refer to 𝐹 as the driving force and it represents the impetus for layers to jump into a lower energy well. 

𝐺𝑎 and 𝐺± are were shown in Figure 9 and given by Equations 19-21. Substituting Equations 16-18 for 𝜀𝑖(𝜎) and 

some rearranging, Equation 104 yields the following expression for the driving force.  

𝐹 =
𝜎2

2
𝐸𝛥 + 𝜎𝜀𝑅 + 𝛽(𝑇) (105) 

In this example, we assume an SMA material that is reversible (𝜎𝛥 = 0) and where the elastic moduli are 

equal for all phases (𝐸𝑚 = 𝐸𝑎 → 𝐸𝛥 = 0). Under these circumstances, the driving force (Equation 105) is written 

as follows.  

𝐹 = 𝜎𝜀𝑅 + 𝛽(𝑇) (106) 

Substituting Equation 90 for 𝛽(𝑇) yields an expression in terms of stress, transformation strain, internal 

energy constant and the entropy constant.  

𝐹 = 𝜎𝜀𝑅 + 𝑢
𝑅 − 𝑠𝑅𝑇 (107) 

We can also write Equation 104 in terms of relative enthalpy, entropy, and temperature by assuming that 

each 𝐺 has the form �̂� = ℎ̂ − 𝑠�̂�.  

𝐹 = 𝐺𝑎 − 𝐺+ = ℎ̂𝑎 − ℎ̂+ − (�̂�𝑎 − �̂�+)𝑇 (108) 

We recognize the entropy constant from Equation 89 and define relative enthalpy (ℎ+) in a similar manner.  

𝐹 = ℎ+(𝜎) − 𝑠
𝑅𝑇 𝑤ℎ𝑒𝑟𝑒 ℎ+(𝜎) = ℎ̂𝑎 − ℎ̂+ (109) 

Now, we substitute for driving force 𝐹 from Equation 107 and solve for enthalpy.  

𝜎𝜀𝑅 + 𝑢
𝑅 − 𝑠𝑅𝑇 = ℎ+(𝜎) − 𝑠

𝑅𝑇 → ℎ+(𝜎) = 𝜎𝜀𝑅 + 𝑢
𝑅  (110) 

Equation 109 is a function of stress, residual strain (which is equal to transformation strain in the simplified 

case), and the relative internal energy constant. This expression has a stress-dependent component as well as a 

chemical component and is similar to the expressions found in Ortin et al. (1992), Wollants et al. (1993), and 

Shaw (2000). Continuing, we see that several other several other parameters have simpler forms in the reversible 

case. The chemical free energy expression (Equation 92) is also simplified as follows.  

𝛽(𝑇) = 𝐶2𝜎𝑎+(𝑇)
2 + 𝐶1𝜎𝑎+(𝑇) + 𝐶0 →

𝐶0 =
𝜎Δ𝜀𝑅
2

= 0 𝐶2 =
𝐸Δ
2
= 0

𝐶1 =
𝜎Δ
2
(
1

𝐸𝑚
−
1

𝐸𝑎
) − 𝜀𝑅 = −𝜀𝑅

→ 𝛽(𝑇) = −𝜀𝑅𝜎𝑎+(𝑇) (111) 

The internal energy and entropy can be written as shown here.  
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𝑠𝑅 =
𝛽𝐿 − 𝛽𝐻
𝑇𝐻 − 𝑇𝐿

=
−𝜀𝑅𝜎𝑎+

𝐿 + 𝜀𝑅𝜎𝑎+
𝐻

𝑇𝐻 − 𝑇𝐿
= −

𝑑𝜎𝑎+
𝑑𝑇

𝜀𝑅 , 𝑢𝑅 = 𝛽(𝑇) + 𝑠𝑅𝑇 = 𝑠𝑅𝑇 − 𝜀𝑅𝜎𝑎+(𝑇) (112,113) 

Returning to Equation 109, we can substitute for 𝑠𝑅 and express the driving force using Equation 114.  

𝐹 = ℎ+(𝜎) − 𝑇
𝑑𝜎𝑎+
𝑑𝑇

𝜀𝑅  (114) 

Equations 109 and 114 give the driving force as a linear function of temperature where the enthalpy 

represents a stress-dependent vertical axis-intercept. A plot of diving force vs. temperature, as shown in Figure 

43, illustrates the interrelationships between each of the parameters in Equations 106, 107 and 114.  

 
Figure 43: Driving force vs. temperature showing latent heat and CFE components 

Because of Equation, 114, we can project 𝐹 back to the zero-temperature axis to examine latent heat. 

Comparing the driving force curves at zero and nonzero stress distinguishes the stress free (chemical) latent heat 

from the stress-dependent (mechanical) component. We see that the chemical component of the latent heat is the 

internal energy constant, which is also the zero-temperature intercept of the chemical free energy. We also see 

that the zero-stress driving force line reaches zero at temperature 𝑇𝑎𝑚, which corresponds to a stress-free 𝑎 → + 

transformation (𝜎𝑎+(𝑇𝑎𝑚) = 0). This stems from a feature that is unique to the reversible case, where zero driving 

force is synchronized with the transformation stress (at any temperature above 𝑇𝑎𝑚).  This can be shown 

mathematically by substituting Equation 111 for 𝛽 in Equation 106.  

𝐹 = 𝜎𝜀𝑅 + 𝛽(𝑇) = 𝜎𝜀𝑅 − 𝜀𝑅𝜎𝑎+(𝑇) → 𝐹 = 𝜀𝑅(𝜎 − 𝜎𝑎+(𝑇)) (115) 

From Equation 115 we see that the driving force is equal to zero when the stress is equal to the transformation 

stress. This effect can also be observed in GFE as shown by Figure 44.  

 
Figure 44: GFE vs. temperature (a) and stress (b) showing zero driving force with no 

energy barriers (reversible) 
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In Figure 44(a) we see the GFE of a reversible SMA under zero stress and at three different temperatures, 

including the martensite start temperature 𝑇𝑎𝑚. When the temperature reaches 𝑇𝑎𝑚, the transformation stresses 

(𝜎𝑖𝑗) and the driving forces between the phases (𝐹𝑖𝑗) are zero. Figure 44(b) shows a constant temperature and three 

different levels of stress. Once again, when the stress is equal to transformation stress 𝜎𝑎+ (which is equal to 𝜎+𝑎), 

the driving forces between the two phases are zero. In both a and b, the zero-driving force configuration represents 

a situation where there is no distinction between the phases. Layers in 44(a) would have equal probabilities of 

being in all three phases and in 44(b) they would equally distribute between austenite and tensile martensite. Both 

figures reflect the Maxwell definition of reversibility, that a small change in environment could reverse the 

direction of transformation.  

If we specify Equation 114 to the conditions where the stress is equal to the transformation stress, it can be 

rearranged to take the form of the Clausius-Clapeyron equation.  

𝐹 = 0 → ℎ+(𝜎𝑎+(𝑇)) = 𝑇
𝑑𝜎𝑎+
𝑑𝑇

𝜀𝑅 (116) 

This equation offers a convenient connection between caloric (ℎ+) and mechanical (
𝑑𝜎𝑎+

𝑑𝑇
, 𝜀𝑅) material 

parameters but is limited to the current, simplified, case where 𝜎Δ and 𝐸Δ = 0. Actual SMA materials are not 

reversible and usually do not have phases with equal stiffnesses.  

4.4.2 General Case 

Now, we repeat the same procedure for the general case where the irreversibility (𝜎𝛥) and the difference in 

stiffness between the phases (𝐸𝛥) are maintained. Beginning with Equation 105, we substitute Equation 90 which 

expresses 𝛽 as a function of the relative internal energy and entropy constants.  

𝐹 =
𝜎2

2
𝐸Δ + 𝜎𝜀𝑅 + 𝑢

𝑅 − 𝑠𝑅𝑇 (117) 

Now, we substitute the right-hand side of Equation 109 for the driving force to get an expression for enthalpy 

that now includes an additional term.  

ℎ+(𝜎) − 𝑇𝑠
𝑅 = 𝐹𝑎+ =

𝜎2

2
𝐸Δ + 𝜎𝜀𝑅 + 𝑢

𝑅 − 𝑇𝑠𝑅 → ℎ+(𝜎) =
𝜎2

2
𝐸Δ + 𝜎𝜀𝑅 + 𝑢

𝑅 (118) 

Equation 118 calculates the martensite + latent heat coefficient that is used in the macroscopic energy 

balance (Equation 32). This expression includes additional irreversibility terms that the simplified form (Equation 

110) does not (note that 𝑢𝑅, given by Equations 98 or 99, also contains additional terms). The expression for the 

martensite – latent heat coefficient is derived in a similar manner and is given by Equation 119.  

ℎ−(𝜎) − 𝑇𝑠
𝑅 = 𝐹𝑎− =

𝜎2

2
𝐸Δ − 𝜎𝜀𝑅 + 𝑢

𝑅 − 𝑇𝑠𝑅 → ℎ−(𝜎) =
𝜎2

2
𝐸Δ − 𝜎𝜀𝑅 + 𝑢

𝑅  (119) 

Equations 118 and 119 were shown in Chapter 2 (bundled together in Equation 33) – these expressions were 

originally introduced in Seelecke and Müller (2004). Here, they have been derived in a different manner in order 

to show their consistency with other SMA models (in the simplified case) and for closer examination of the full, 

irreversible, form. For comparison, we now write and expression that is analogous to Equation 114 for the driving 

force.  

𝐹 = ℎ+(𝜎) − 𝑇
𝑑𝜎𝑎+
𝑑𝑇

𝜀𝑅 − 𝑇 (
𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝜎𝛥

±

𝑎𝑛𝑑 𝐸𝛥
± 𝑡𝑒𝑟𝑚𝑠

) (120) 
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Only the first three terms are shown for Equation 120 because the full expression is lengthy and not useful 

apart from the current exercise. Here, we use this expression and coefficients obtained from Chang et al. (2006) 

to produce a plot similar to Figure 43, showing the driving force vs. temperature.  

 
Figure 45: Driving force vs. temperature plot for both the simplified and general case 

Figure 45 shows two sets of curves, one including and one excluding the 𝜎𝛥 and 𝐸𝛥 coefficients. For the sets 

that excluded 𝜎𝛥 and 𝐸𝛥, we simply averaged the forward and reverse transformations stresses to get a single value 

and did the same for the two elastic modulus values. This allows us to compare the simplified case to the 

irreversible case where everything else is equal. The plot shows that the irreversibility terms influence both the 

driving force and the latent heat. The stress-free cases show that roughly 20% of the relative internal energy 𝑢±
𝑅  

(and therefore the CFE) is due to the irreversibility and stiffness-difference parameters. The difference is less 

pronounced, but the stress-dependent component of the latent heat also increases in the general case due to the 

additional term in Equation 118. The additional terms in Equation 112 (the relative entropy constant) are illustrated 

by the differences in slope between the simplified and general cases. Another import difference between the 

simplified and general cases is the meaning of zero-driving force. The general case considers energy barriers 

which means that a driving force of zero no longer represents conditions for transformation as illustrated by Figure 

46.  

 
Figure 46: GFE vs. temperature (a) and stress (b) showing zero driving force with 

energy barriers (irreversible) 

In Figure 46(a), the temperature decreases to the point where the driving forces between the phases are all 

equal to zero but, due to the presence of energy barriers, layers in any of the wells would remain trapped there. 

The decrease in temperature would have to be continued to eliminate the barriers and allow transformation.  46(b) 

shows a series of stress states at the same temperature. The highest stress yields zero driving force between 
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austenite and tensile martensite but, once again, transformation does not occur and the stress would have to be 

pushed beyond the Maxwell stress to free layers from their local energy wells.  

If we continue the procedure from the simplified case, we can still use Equation 120 and the 𝐹 = 0 condition 

to isolate the latent heat in an expression motivated by the Clausius-Clapeyron equation. The zero-driving force 

state (the Maxwell stress) is now described by quadratic function of temperature derived from Equation 117, but 

can be reasonably approximated as the average of the forward and reverse transformation stresses. This allows us 

to eliminate 𝐹 from the expression, but we see that the additional terms are still present and the traditionally simple 

form of the Clausius-Clapeyron equation is not recovered.  

ℎ+(𝑎𝑣𝑔(𝜎𝑎+(𝑇), 𝜎+𝑎(𝑇))) = 𝑇
𝑑𝜎𝑎+
𝑑𝑇

𝜀𝑅 + 𝑇 (
𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝜎𝛥
𝑎𝑛𝑑 𝐸𝛥 𝑡𝑒𝑟𝑚𝑠

) (121) 

For the model operation, Equation 118 is better choice to calculate the latent heat coefficients because it 

applies to any stress state and does not require calculation of the zero-driving force stress.  

4.4.3 Comparison to Experimental Data 

SMA modelers who are considering thermomechanical coupling often rely on DSC measurements to assign 

values to latent heat parameters. Several expressions in this section can be used to define latent coefficients from 

mechanically measured parameters. This is appealing because they could be used in cases where calorimetric 

measurements are not available. To evaluate the accuracy of these calculations, we show a small sample of latent 

heat values obtained from DSC measurements in Table 2 (top row) along with predictions using Equation 118 

(second row). We also include values calculated from the simplified case (Equation 116) in the third row for 

comparison purposes.  

 
Table 2: Latent heat calculations vs. DSC measurements 

The three data sets were chosen because they included tension test data at multiple temperatures along with 

the DSC measurements, but several details should be discussed before comparing results. The Chang et al. 2006 

data set reflects NiTi and the Schmidt et al. 2015 values correspond to NiTiCuV, which is an SMA material 

studied for use in elastocaloric cooling devices (Schmidt et al. (2015a), Schmidt et al. (2015b), Schmidt et al. 

(2016a), Schmidt et al. (2016b), Schmidt et al. (2016c)). It should also be pointed out that the 𝑎 → 𝑚 

transformation in Chang at al. 2006 was signified by a two-stage process indicating an intermediate R-phase; the 

first step released 5 𝐽
𝑔
 and the second step 6 𝐽

𝑔
. The current model regards the transformation from austenite to 

martensite as a single-step processes. The thermodynamic calculations compare quantities before and after 

complete transformation and are not affected by the presence of intermediate configurations. In this light, the 

latent heat value of 11. 0 𝐽
𝑔
 shown in the table is the sum of the two measured values – i.e. the total latent heat 

released between the initial and final states. Two data sets are shown under Schmidt et al. 2015 because the 
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material was tested in its as-received condition (untrained) and the again after being subjected to 100 tension 

cycles (trained) to stabilize the behavior. The NiTi material in Chang et al. 2006 was only tested in its untrained 

state. The experimental measurement row contains two values per experiment because different values were 

measured for 𝑎 → 𝑚 and 𝑚 → 𝑎 transformations. We speculate that these differences may be due to multi-variant 

effects that would only be observed in stress-free transformations. In the second and third row, only a single value 

is shown for each experiment because neither formula yields different latent heats for stress-free forward and 

reverse transformations. We regard each set of experimental values as a range where we expect the corresponding 

calculation to fall. The Clausius-Clapeyron calculation in the third row has a temperature parameter and one might 

be tempted to use this to predict two different stress-free values, one at  𝑇𝑎+ and one at 𝑇+𝑎. This would be 

inconsistent with the reversibility assumptions that were used to derive the equation, so we use the average of the 

two temperatures in each calculation.  

Comparing the values in the table, the first observation is that all three ℎ+(𝜎 = 0) values are reasonable – 

within 22% of the average of the two experimental values (one is within 3%). In the Chang et al. 2006 case, both 

the ℎ+ and the Clausius-Clapeyron calculation yield values that fall between the two experimental measurements 

and thus no argument can be made that one is better than the other. In both of the Schmidt et al. 2015 cases 

however, the ℎ+ value is notably closer to the experimental results. One possible explanation is that the NiTiCuV 

and NiTi have similar stiffnesses and transformation stresses, but NiTiCuV has a smaller transformation strain (2. 

5%). In the case where the transformation strain value is lower, the  𝜎𝛥 and 𝐸𝛥 terms in the second row have a 

larger influence and cause a greater deviation from the third-row calculations. In all three cases, the latent heat 

properties calculated from stress-strain data could reasonably be used if DSC data were not available.  

4.5 Entropy Production 

A number of SMA models write a Clausius-Planck (or Clausius-Duhem) inequality as a platform to isolate 

and add entropy production terms (dissipation potentials) to the system free energy. The entropy producing terms 

are typically those associated with inelastic deformations, which include most of the noteworthy SMA effects. 

The current model is based on a mesoscopic free energy that does not contain any explicit entropy-production 

terms. In this section we show that entropy production can be calculated from the current model’s stress-strain 

equation in a manner that is consistent with the Clausius-Planck equation as well as other model quantities.  

The sketch in Figure 47 represents a thermodynamic process where a superelastic SMA wire is loaded and 

unloaded in a strain-controlled manner. The strain is applied at a rate that is constant and sufficiently slow such 

that any heat is released /absorbed to/from the environment with no change in temperature.  

 
Figure 47: Superelastic isothermal SMA load-unload process 

We examine the entropy production in terms of the Clausius-Planck equation which is a form of the Clausius-

Duhem equation accounting for the fact that heat always flows from hot to cold (Holzapfel (2000)). For a 

macroscopic material point in a 1-D solid, the rate of entropy production per unit volume is given by Equation 

122.  
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𝐷𝑖𝑛𝑡(𝑡) = 𝜎𝜀̇ − Ψ̇ − 𝑠�̇� ≥ 0 𝑤ℎ𝑒𝑟𝑒 (122) 

𝐷𝑖𝑛𝑡(𝑡) → 𝑅𝑎𝑡𝑒 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑑𝑖𝑠𝑠𝑝𝑎𝑡𝑖𝑜𝑛

  (𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛)

𝜎𝜀̇ → 𝑆𝑡𝑟𝑒𝑠𝑠 𝑝𝑜𝑤𝑒𝑟

 

�̇� → 𝑅𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝐻𝑒𝑙𝑚ℎ𝑜𝑙𝑡𝑧

  𝑓𝑟𝑒𝑒 𝑒𝑛𝑒𝑟𝑔𝑦

𝑠�̇� → 𝑅𝑎𝑡𝑒 𝑜𝑓 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑑𝑢𝑒

  𝑡𝑜 ℎ𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

 

To find the total entropy production (𝐷𝑖𝑛𝑡
𝑇𝑜𝑡) for the process shown in Figure 47 we integrate from time 𝑡1 to 

time 𝑡7. Note that the 𝑠�̇� term has been dropped because the process is isothermal.  

𝐷𝑖𝑛𝑡
𝑇𝑜𝑡 = ∫ 𝐷𝑖𝑛𝑡 𝑑𝑡

𝑡7

𝑡1

=∑𝐷𝑖𝑛𝑡
𝑛,𝑛+1

1..6

𝑛

=∑∫ (𝜎𝜀̇ − Ψ̇) 𝑑𝑡
𝑡𝑛+1

𝑡𝑛

1..6

𝑛

 (123) 

The uppercase Ψ represents the macroscopic HFE per unit volume and this is calculated in a similar manner 

to the macroscopic strain, as a weighted average of the mesoscopic energy densities.  

Ψ(𝜎, 𝑇, 𝑥𝑖) = ∑ 𝜓i(𝜀i(𝜎), 𝑇)𝑥i
𝑖∈−,𝑎,+

 (124) 

Ψ → 𝑀𝑎𝑐𝑟𝑜𝑠𝑐𝑜𝑝𝑖𝑐 𝐻𝐹𝐸 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑣𝑜𝑙𝑢𝑚𝑒

𝜓𝑖 → 𝑀𝑒𝑠𝑜𝑠𝑐𝑜𝑝𝑖𝑐 𝐻𝐹𝐸 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑣𝑜𝑙𝑢𝑚𝑒

  𝑓𝑜𝑟 𝑝ℎ𝑎𝑠𝑒 𝑖

 

𝜀𝑖(𝜎) → 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑡𝑟𝑎𝑖𝑛 𝑓𝑜𝑟 𝑝ℎ𝑎𝑠𝑒 𝑖

  (𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑡𝑟𝑒𝑠𝑠 𝜎)

𝑥𝑖 → 𝑀𝑎𝑐𝑟𝑜𝑠𝑐𝑜𝑝𝑖𝑐 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙

   𝑖𝑛 𝑝ℎ𝑎𝑠𝑒 𝑖 (𝑝ℎ𝑎𝑠𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠)

 

We rewrite Equation 124 by inserting Equations 16-18 for 𝜀𝑖(𝜎) and Equation 1 for 𝜓𝑖(𝜀, 𝑇). Collecting 

terms and simplifying we arrive at an expression for the total HFE in terms of stress, temperature, and phase 

fractions.  

Ψ(𝜎, 𝑇, 𝑥𝑖) =
𝜎2

2
(
𝑥−
𝐸𝑚

+
𝑥𝑎
𝐸𝑎
+
𝑥+
𝐸𝑚
) + 𝛽(𝑇)𝑥𝑎 (125) 

The time derivative of the 𝛹 is expanded as follows and selected terms that will be used in the evaluation of 

Equation 123 are expanded (according to Equation 125) for reference.  

Ψ̇ =
𝜕Ψ

𝜕𝜎
�̇� +

𝜕Ψ

𝜕𝑇
�̇� +

𝜕Ψ

𝜕𝑥−
�̇�− +

𝜕Ψ

𝜕𝑥𝑎
�̇�𝑎 +

𝜕Ψ

𝜕𝑥+
�̇�+ 𝑤ℎ𝑒𝑟𝑒 (126) 

𝜕Ψ

𝜕𝜎
= 𝜎 (

𝑥−
𝐸𝑚

+
𝑥𝑎
𝐸𝑎
+
𝑥+
𝐸𝑚
) ,

𝜕Ψ

𝜕𝑥𝑎
=
𝜎2

2𝐸𝑎
+ 𝛽(𝑇) ,

𝜕Ψ

𝜕𝑥+
=

𝜎2

2𝐸𝑚
, �̇� = �̇�− = 0 

Note that this loading cycle is assumed to be isothermal and only involves tensile loading therefore 

temperature 𝑇 and the compressive martensite phase fraction 𝑥− never change. The time derivative of the 

macroscopic strain is given by Equation 127 where the mesoscopic strains are regarded as functions of stress 

according to Equations 16-18. Once again, selected terms that will be used in the evaluation of Equation 123 are 

also included for reference.  

𝜀̇ = 𝜀−̇(𝜎)𝑥− + 𝜀�̇�(𝜎)𝑥𝑎 + 𝜀+̇(𝜎)𝑥+ + 𝜀−(𝜎)�̇�− + 𝜀𝑎(𝜎)�̇�𝑎 + 𝜀+(𝜎)�̇�+ 𝑤ℎ𝑒𝑟𝑒 (127) 

𝜀𝑎(𝜎) =
𝜎

𝐸𝑎
, 𝜀+(𝜎) =

𝜎

𝐸𝑚
+ 𝜀𝑅 , 𝑥− = 0 , 𝜀�̇�(𝜎) =

�̇�

𝐸𝑎
, 𝜀+̇(𝜎) =

�̇�

𝐸𝑚
, �̇�− = 0 

Having established Equations 124, 125, 126, and 127 for reference, we turn our attention to solving Equation 

123 for 𝐷𝑖𝑛𝑡
𝑇𝑜𝑡 . We begin with the first segment of time, 𝑡1 → 𝑡2. Since this loading occurs at a superelastic 

temperature, we know that the austenite phase fraction (𝑥𝑎) is equal to one through the entire step. Based on this, 

we use Equations 127 and 126 to define 𝜀̇ and Ψ̇ during time segment 1.  
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𝜀̇ = 𝜀�̇�(𝜎)𝑥𝑎 =
�̇�

𝐸𝑎
, Ψ̇ =

𝜕Ψ

𝜕𝜎
�̇� = 𝜎 (

𝑥𝑎
𝐸𝑎
) �̇� = 𝜎

�̇�

𝐸𝑎
 

Substituting these into the first integral from Equation 123, we that the entropy production for the first 

loading branch is equal to zero. This is expected because, prior to transformation, the material behaves in a linear 

elastic manner.  

𝐷𝑖𝑛𝑡
1,2 = ∫ 𝐷𝑖𝑛𝑡 𝑑𝑡

𝑡2

𝑡1

= ∫ (𝜎𝜀̇ − Ψ̇) 𝑑𝑡
𝑡2

𝑡1

= ∫ (𝜎
�̇�

𝐸𝑎
− 𝜎

�̇�

𝐸𝑎
)  𝑑𝑡

𝑡2

𝑡1

= 0 (128) 

We forgo the solutions of Equation 123 over the other elastic steps in Figure 47 and accept the following as 

true.  

𝑡1 → 𝑡2 { 
𝐿𝑖𝑛𝑒𝑎𝑟 𝑒𝑙𝑎𝑠𝑡𝑖𝑐 , 𝑥𝑎 = 1

𝑁𝑜 𝑝ℎ𝑎𝑠𝑒 𝑐ℎ𝑎𝑛𝑔𝑒
 } →  𝐷𝑖𝑛𝑡 = 0

𝑡2 → 𝑡3 { 
𝜎 = 𝜎𝑎+ , 𝑥𝑎 = 1 → 0

𝑥+ = 0 → 1
 } →  𝐷𝑖𝑛𝑡 ≠ 0

𝑡3 → 𝑡4 { 
𝐿𝑖𝑛𝑒𝑎𝑟 𝑒𝑙𝑎𝑠𝑡𝑖𝑐 , 𝑥+ = 1

𝑁𝑜 𝑝ℎ𝑎𝑠𝑒 𝑐ℎ𝑎𝑛𝑔𝑒
 } →  𝐷𝑖𝑛𝑡 = 0

 

𝑡4 → 𝑡5 { 
𝐿𝑖𝑛𝑒𝑎𝑟 𝑒𝑙𝑎𝑠𝑡𝑖𝑐 , 𝑥+ = 1

𝑁𝑜 𝑝ℎ𝑎𝑠𝑒 𝑐ℎ𝑎𝑛𝑔𝑒
 } →  𝐷𝑖𝑛𝑡 = 0

𝑡5 → 𝑡6 { 
𝜎 = 𝜎+𝑎 , 𝑥𝑎 = 0 → 1

𝑥+ = 1 → 0
 } →  𝐷𝑖𝑛𝑡 ≠ 0

𝑡6 → 𝑡7 { 
𝐿𝑖𝑛𝑒𝑎𝑟 𝑒𝑙𝑎𝑠𝑡𝑖𝑐 , 𝑥𝑎 = 1

𝑁𝑜 𝑝ℎ𝑎𝑠𝑒 𝑐ℎ𝑎𝑛𝑔𝑒
 } →  𝐷𝑖𝑛𝑡 = 0

 

Equation 123 now has only two non-zero terms which correspond to steps 𝑡2 → 𝑡3 and 𝑡5 → 𝑡6. We also 

know that the stress is constant during both of these steps so we can rewrite the expression as shown here.  

𝐷𝑖𝑛𝑡
𝑇𝑜𝑡 = 𝐷𝑖𝑛𝑡

2,3 + 𝐷𝑖𝑛𝑡
5,6 = ∫ (𝜎𝑎+𝜀̇ − Ψ̇) 𝑑𝑡

𝑡3

𝑡2

+∫ (𝜎+𝑎𝜀̇ − Ψ̇) 𝑑𝑡
𝑡6

𝑡5

 (129) 

We begin with the first term, 𝐷𝑖𝑛𝑡
23 . The time derivative of 𝜀 is written according to Equation 127 where the 

value of stress is equal to 𝜎𝑎+.  

𝜀̇ = 𝜀𝑎(𝜎)�̇�𝑎 + 𝜀+(𝜎)�̇�+ =
𝜎𝑎+
𝐸𝑎

�̇�𝑎 +
𝜎𝑎+
𝐸𝑚

�̇�+ + 𝜀𝑅�̇�+ (130) 

We know that the macroscopic strain is applied at a constant rate and that stress is constant during this step. 

The phase fractions evolve at a constant rate during this step to keep the right-hand side of Equation 130 equal to 

the left. We also know that 𝑥𝑎 progresses from 1 → 0 and that 𝑥+ progresses from 0→ 1 so we can write 

expressions for their rates of change.  

�̇�𝑎 =
−1

Δ𝑡23
, �̇�+ =

1

Δ𝑡23
 (131,132) 

Δ𝑡23 represents the amount of time between 𝑡2 and 𝑡3. We insert Equations 131 and 132 into Equation 130, 

simplify, and arrive at a new expression for 𝜀̇.  

𝜀̇ =
1

Δ𝑡23
(𝜀𝑅 + 𝜎𝑎+ (

1

𝐸𝑚
−
1

𝐸𝑎
)) (133) 

We now focus on the Ψ̇ term in the expression for 𝐷𝑖𝑛𝑡
23  (Equation 129). We expand Ψ̇ according to Equation 

126, recall that stress is equal to 𝜎𝑎+, and make use of the expressions for �̇�𝑎 and �̇�+ (Equations 131 and 132).  

Ψ̇ =
𝜕Ψ

𝜕𝑥𝑎
(
−1

Δ𝑡23
) +

𝜕Ψ

𝜕𝑥+
(
1

Δ𝑡23
) =

1

Δ𝑡23
(−

𝜎2

2𝐸𝑎
− 𝛽(𝑇) +

𝜎2

2𝐸𝑚
) (134) 

Equations 133 and 134 complete the definition of the integrand in 𝐷𝑖𝑛𝑡
23  (Equation 129) and we see that none 

of the quantities vary in time. We solve the integral, substitute the expressions for 𝜀̇ and Ψ̇, and simplify to arrive 

at a final expression for the total entropy produced during step 𝑡2 → 𝑡3.  
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𝐷𝑖𝑛𝑡
2,3 = ∫ (𝜎𝑎+𝜀̇ − Ψ̇) 𝑑𝑡

𝑡3

𝑡2

= (𝜎𝑎+𝜀̇ − Ψ̇)𝛥𝑡23  =
𝜎𝑎+

2

2
(
1

𝐸𝑚
−
1

𝐸𝑎
) + 𝜎𝑎+𝜀𝑅 + 𝛽(𝑇) (135) 

We now turn our attention to the 𝐷𝑖𝑛𝑡
5,6

 term in Equation 129. During step 5 → 6 we know the value of stress 

and the rates of change of the phase fractions.  

𝜎 = 𝜎+𝑎 , �̇�𝑎 =
1

Δ𝑡56
, �̇�+ =

−1

Δ𝑡56
 

We use these three values and follow a similar procedure to the calculation of  𝐷𝑖𝑛𝑡
2,3

 (Equations 130-135) to 

obtain the entropy production term 𝐷𝑖𝑛𝑡
5,6

.  

𝐷𝑖𝑛𝑡
56 = −

𝜎+𝑎
2

2
(
1

𝐸𝑚
−
1

𝐸𝑎
) − 𝜎+𝑎𝜀𝑅 − 𝛽(𝑇) (136) 

Now we substitute 𝐷𝑖𝑛𝑡
2,3

 (Equation 135) and 𝐷𝑖𝑛𝑡
56  (Equation 136) into Equation 129 to get the total entropy 

production for the load-unload cycle shown in Figure 47.  

𝐷𝑖𝑛𝑡
𝑇𝑜𝑡 = 𝐷𝑖𝑛𝑡

23 + 𝐷𝑖𝑛𝑡
56 = =

𝜎𝑎+
2 − 𝜎+𝑎

2

2
(
1

𝐸𝑚
−
1

𝐸𝑎
) + 𝜎𝑎+𝜀𝑅 − 𝜎+𝑎𝜀𝑅  =

𝜎𝑎+
2 − 𝜎+𝑎

2

2
(
1

𝐸𝑚
−
1

𝐸𝑎
) + 𝜎𝛥𝜀𝑅 (137) 

Examination of Equation 137 shows that the entropy production is a function of the difference between the 

forward and reverse transformation stresses, the disparity between the elastic moduli of the two phases, and the 

residual strain. These properties are dictated by the shape of the multiwell HFE landscape and, in this sense, the 

entropy production is inherently contained in the HFE and does not have to be specified as a separate potential.  

The entropy production calculated here, from the Clausius-Planck equation (122), is often called internal 

dissipation. The system sketched in Figure 47, however, does not consider any effects such as friction, damping, 

or viscoelasticity which are often regarded as dissipative in the sense that strain energy is converted (lost) to heat. 

The nonzero entropy in Equation 137 indicates that different amounts of energy were stored by the wire during 

loading than were released during unloading. This difference in energy is visually apparent by the presence of a 

hysteresis loop and should also be equal to its area. We turn to the latent heat calculations to account for this 

exchange between strain energy and heat.  

Recalling Equation 118, we know that the latent heat associated with phase transformation is dependent on 

stress in addition to the internal energy difference between the phases. This requires that, because the forward and 

reverse transformations occur at different levels of stress, different amounts of heat be exchanged during loading 

and unloading. Here we show that the entropy production calculated in Equation 137 can also be calculated as the 

difference between latent heats during forward and reverse transformation. The latent heat released during a 

forward transformation is found by evaluating Equation 118 with 𝜎 = 𝜎𝑎+ and the heat absorbed during reverse 

transformation uses the same equation with 𝜎 = 𝜎+𝑎. The difference between these two quantities (recalling that 

𝜎𝑎+ − 𝜎+𝑎 = 𝜎𝛥) simplifies to the same expression as Equation 137, the entropy production.  

ℎ𝛥 = ℎ+(𝜎𝑎+) − ℎ+(𝜎+𝑎) = =
𝜎𝑎+

2 − 𝜎+𝑎
2

2
(
1

𝐸𝑚
−
1

𝐸𝑎
) + 𝜎𝛥𝜀𝑅 = 𝐷𝑖𝑛𝑡

𝑇𝑜𝑡  (138) 

This calculation for ℎ𝛥 indicates that more heat is released during loading than is absorbed during unloading. 

It is expected that this value be equal to the dissipation calculated by the Clausius-Planck equation, which 

represents the strain energy lost during each cycle. Often times, the entropy production is calculated simply as the 

area inside the hysteresis loop. We also include this exercise and show that it produces the same result as Equation 
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137 and 138. Figure 48 shows the calculation of the hysteresis area from a stress-strain curve using parameters in 

Figure 48.  

 
Figure 48: Geometric calculation of hysteresis area 

After substituting the expressions for strain locations 𝜀1−4, we see that the area simplifies to the expected 

form that is equivalent to Equations 137 and 138.  

𝐴𝑟𝑒𝑎 =
𝜎Δ
2
((

1

𝐸𝑚
−
1

𝐸𝑎
) (𝜎𝑎+ + 𝜎+𝑎) + 2𝜀𝑅) =

𝜎𝑎+
2 − 𝜎+𝑎

2

2
(
1

𝐸𝑚
−
1

𝐸𝑎
) + 𝜎Δ𝜀𝑅 = 𝐷𝑖𝑛𝑡

𝑇𝑜𝑡 = ℎ𝛥 

It should be reiterated here that the Helmholtz free energy is the basis for all three of these quantities yet 

contains no explicit information about entropy, hysteresis, or latent heat. This highlights one of the advantages of 

a multiwell free energy; the energy barriers between the wells inherently contain the necessary system information 

for all of these effects. Now, after in-depth examinations of the kinetic theory and the underlying free energy, we 

begin to undertake reformulations of the model to extend its capabilities.  

5 New 1-D Model with Extended Capabilities 

In this chapter we present a new version of the 1-D model that can have tension-compression symmetry and 

temperature-dependent hysteresis. This is accomplished by reinterpreting the free energy such that each martensite 

variant can have a unique well and barrier. The curvatures of the energy barriers (which dictate the hysteretic 

behavior) are also allowed to be functions of temperature. These generalizations involve some algebraic 

restructuring, the use of a dual set of material parameters, and also re-derivation of the caloric quantities. The 

general structure of the new model remains similar to the original (Chapter 2). Some of the equations will be 

repeated here, but this is only to have a complete description of the new model in one chapter – the discussion 

will be focused what its different.  

The larger goal of updating the free energy is to enable the addition of more variants in Chapter 6, but 

tension-compression asymmetry is a convenient 1D application for this concept. Experimental observations often 

show stress-strain curves for the same SMA material that are notably different in a tension test vs. a compression 

test. The tensile responses tend to have lower transformation stress magnitudes, flatter stress plateaus, and larger 

transformation strains compared to compressive test results. Electron microscopy and neutron diffraction 

observations of tension and compression test specimens have shown differences in martensite plate and dislocation 

formation as well as different variant compositions (Liu et al. (1998), Sittner et al. (2004)). At a larger scale, 

thermal imaging techniques demonstrate that localization and transformation front motion are not observed in 

compression-dominated material (Reedlunn et al. (2014)). Many SMA applications such as actuators and vibration 

isolators employ only tension; in which case a tension-only or tension-compression symmetric model is sufficient. 
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In some devices however, the SMA members behave in bending and distinguishing between the tensile and 

compressive responses could aid in modeling and design. In the Simulations section, we compare the results of a 

simulation to experimental data from Reedlunn et al., 2014 where NiTi tubes were tested in both tension and 

compression. We also use this data as the basis for several plots and diagrams in the Mesoscopic Free Energy 

section to show the shape of the energy landscape in the in the more general asymmetric case.  

During the reformulation of the free energy and subsequent rederivation of the caloric properties, we also 

allow the hysteresis width parameter to be temperature-dependent and this is based on experimental observations. 

Once in the superelastic range, most SMA materials exhibit stress and temperature hysteresis loops with relatively 

constant widths. In some cases, however, stress hysteresis widths are observed that vary with temperature and 

temperature hysteresis widths are observed that vary with stress. Several publications report experiments showing 

stress-dependence in the temperature hysteresis width (Xiao (2014), Nascimento et al. (2009), Hamilton et al. 

(2004), Ortin et al. (1992)). In 2009, Sittner and a group of researchers reported an extensive set of experiments 

on NiTi wires under various combinations of tension and torsion. This set of experiments is the basis for the 2-D 

Model later on, but also contains very distinct examples of stress hysteresis loops that vary with temperature. This 

was also observed for TiNiCuCo specimens in Welsch et al. (2018) where the M-A-S model was used to simulate 

the experiments. In this case, a temperature-dependent hysteresis was included but in a manner that was limited 

to superelastic temperatures and a constant latent heat coefficient. In this chapter, we treat the temperature-

dependent hysteresis in a more thorough manner where the formulation is valid through the entire temperature 

range.  

To include both of these effects, tension-compression asymmetry and temperature-dependent hysteresis, we 

first rebuild the free energy.  

5.1 Helmholtz Free Energy 

The traditional M-A-S model begins with a set of three free energy parabolas where it is assumed that the 

two martensite wells have equal chemical free energies, strain offsets, and curvatures. Since the martensite 

chemical free energies are equal, they are set as the reference zero-energy and the austenite free energy is rewritten 

as a relative quantity. This is shown in Figure 49a, where the central austenite wells moves up and down with 

temperature.  

  

(a) Energy well parabolas, Traditional M-A-S model (b) Energy well parabolas, Updated model 

Figure 49: Free energy parabolas for showing different reference zero-energies 

The updated model must accommodate asymmetry between the martensite wells and this leads us to reverse 

which well is considered to be the reference zero. In Figure 49b, the austenite well is vertically fixed and the two 

martensite wells move up and down with temperature. We see also that the two wells assume different heights at 
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the same temperature (color), they do not have the same strain, and they have different curvatures. This represents 

the case of a tension-compression asymmetric material. The Helmholtz free energy corresponding to the new 

model and Figure 49b is given by Equation 139.  

𝜓(𝜀, 𝑇) =

{
 
 
 
 

 
 
 
 

 

 𝜓−(𝜀, 𝑇) −∞ < 𝜀 ≤ 𝜀−𝑎(𝑇)

 𝜓−
𝐵(𝜀, 𝑇) 𝜀−𝑎(𝑇) < 𝜀 < 𝜀𝑎−(𝑇)

 𝜓𝑎(𝜀) 𝜀𝑎−(𝑇) ≤ 𝜀 ≤ 𝜀𝑎+(𝑇)

 𝜓+
𝐵(𝜀, 𝑇) 𝜀𝑎+(𝑇) < 𝜀 < 𝜀+𝑎(𝑇)

 𝜓+(𝜀, 𝑇) 𝜀+𝑎(𝑇) ≤ 𝜀 < ∞

𝑤ℎ𝑒𝑟𝑒

𝜓±(𝜀, 𝑇) =
𝐸±
2
(𝜀 − 𝜀𝑅

±)
2
+ 𝛽±(𝑇)

𝜓±
𝐵(𝜀, 𝑇) = 𝐴±(𝑇)𝜀2 + 𝐵±(𝑇)𝜀 + 𝐶±(𝑇)

𝜓𝑎(𝜀) =
𝐸𝑎
2
𝜀2

 (139) 

It should first be noted that the energy barriers are not shown in Figure 49 and that the energy barrier terms 

in Equation 139 are shown in a lighter color. One of the key features of the updated model is that it uses the 

Inflection Point kinetics model from Chapter 3, which means that the energy barriers never have to be defined. 

They are included for the same of completeness, and are shown in several upcoming figures, but their expressions 

are reserved for Appendix 10.2. Continuing, there are three main differences between Equation 139 and the 

original expression (Equation 1). First, the chemical free energy terms (the 𝛽’s) now belong to the martensite 

functions because the austenite chemical free energy is now the reference zero. The second difference is that the 

martensite and energy barrier coefficients now make a distinction between + and −. Previously, they either used 

an 𝑚 subscript for nondescript martensite or no subscript at all. The last difference is that the two martensite free 

energies as well as the energy barrier equations have the exact same form. Because the coefficients are now 

associated with either positive or negative side of the free energy, they can carry signs that are consistent with the 

quantities they represent. For example, the compressive residual strain parameter (𝜀𝑅
−) will have a negative value 

because it reflects a compressive strain. This allows both of the mechanical energy terms in the martensite 

functions to have the 𝐸
2
(𝜀 − 𝜀𝑅)

2 form.  

An example of the full free energy (using experimental data from Reedlunn et al. (2014)) is shown in Figure 

50.  

 
Figure 50: (a) HFE vs. strain at five temperatures, (b) HFE vs. strain and temperature 

Figure 50a shows how the curves, even with the asymmetry, still converge to form a two-well landscape at 

low temperatures. Figure 50b shows the same information on a continuous strain-temperature domain – we can 

see that the entire landscape is still smooth, despite the varying curvatures in the wells. We have to make a few 

assumptions to ensure that this happens, and these will be discussed next as we outline the material parameter 

identification.  



66 

 

5.1.1 Material Parameters 

The process for defining the material parameters is similar to that in Chapter 4 but there are now two sets of 

parameters (tensile and compressive) as well as a few additional relationships that must be established. Previously, 

two stress-strain experiments were required, one at a high temperature (𝑇𝐻) and one at a slightly lower temperature 

(𝑇𝐿). Now, a third set of test data is required; a compressive stress-strain curve. This data can be at either 𝑇𝐿  or 𝑇𝐻   

but, for this chapter, we assume it is at 𝑇𝐻 . Figure 51 shows an idealized set of stress-strain curves at temperature 

𝑇𝐻 , the measured parameters, and the corresponding Helmholtz free energy.  

 
Figure 51: Tension stress-strain curves, compression stress-strain curves, measured 

parameters, and the free energy at temperature 𝑇𝐻 

We see how the asymmetry in the stress-strain curves is translated to asymmetry in the free energy. From 

this data set, which is at temperature 𝑇𝐻 , the following parameters are measured: 

𝐸𝑖 → 𝐸𝑙𝑎𝑠𝑡𝑖𝑐 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑝ℎ𝑎𝑠𝑒 𝑖 ∈ −, 𝑎, +

𝜀𝑅
± → 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛 𝑓𝑜𝑟 𝑡ℎ𝑒 + 𝑎𝑛𝑑 − 𝑝ℎ𝑎𝑠𝑒𝑠

𝜎𝑎+
𝐻 → 𝜎𝑎+ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑎𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑇𝐻

𝜎+𝑎
𝐻 → 𝜎+𝑎 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑎𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑇𝐻

𝜎𝑎−
𝐻 → 𝜎𝑎− 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑎𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑇𝐻

𝜎−𝑎
𝐻 → 𝜎−𝑎 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑎𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑇𝐻

 

Tensile tests and compression tests will usually have different setups for metallic materials and will, 

therefore, be two distinct sets of data. Experiments show us, however, that the linear austenite branches in tension 

and compression tests have similar slopes and this is expected from elasticity theory when no buckling is present. 

This means that the tension and compression data can be assembled into a single effective stress-strain data set if 

they are taken at the same temperature. An example of this is shown in Figure 53 using the data from Reedlunn 

et al. (2014).  
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𝐸− = 80 𝐺𝑃𝑎

𝐸𝑎 = 60 𝐺𝑃𝑎

𝐸+ = 30 𝐺𝑃𝑎

𝜀𝑅
− = −0. 0305

𝜀𝑅
+ = 0. 0540

𝜎𝑎+
𝐻 = 420 𝑀𝑃𝑎

𝜎+𝑎
𝐻 = 195 𝑀𝑃𝑎

𝜎𝑎−
𝐻 = −675 𝑀𝑃𝑎

𝜎−𝑎
𝐻 = −375 𝑀𝑃𝑎

 

Figure 52: Example parameter measurements using tension and compression data 

from Reedlunn et al. (2014) 

The nonlinearity in the tensile loading branch, just prior to forward transformation, is due to the presence of 

an intermediate R phase, which is not considered in this model. The second test is conducted at temperature 𝑇𝐿 , 

which is slightly lower than 𝑇𝐻 . This data set only needs to include tensile curves and only the transformation 

stresses need to be measured.  

 
Figure 53: Tension stress-strain curves, compression stress-strain curves, measured 

parameters, and the free energy at temperature 𝑇𝐿 

𝜎𝑎+
𝐿 → 𝜎𝑎+ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑎𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑇𝐿

𝜎+𝑎
𝐿 → 𝜎+𝑎 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑎𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑇𝐿

  

We should point out here that if you know (or can estimate) the temperature-rates of change of the 

transformation stresses (
𝑑𝜎𝑎+

𝑑𝑇
 and 

𝑑𝜎+𝑎

𝑑𝑇
), the low temperature test can be neglected. The material constants 𝜎𝑎+

𝐿  and 
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𝜎+𝑎
𝐿  can instead be derived at some chosen 𝑇𝐿  using the 𝑇𝐻  values along with the 

𝑑𝜎

𝑑𝑇
 values. This is what was done 

with the Reedlunn et al. (2014) data because the experimental data was only given at one temperature.  

The 11 parameters listed above represent the complete set of material constants needed to operate the model 

for a given SMA material – whether it has tension-compression asymmetry or not and whether it has temperature-

dependent hysteresis or not. In cases where tension-compression asymmetry is not required, the following 

assignments can be made.  

𝐸− = 𝐸+ 𝜀𝑅
− = −𝜀𝑅

− 𝜎𝑎−
𝐻 = −𝜎𝑎+

𝐻 𝜎−𝑎
𝐻 = −𝜎+𝑎

𝐻  

In cases where the hysteresis width is assumed to constant, the reverse transformation stress equations (149 

and 150) can be replaced with expressions based on the forward values.  

𝜎+𝑎(𝑇) = 𝜎𝑎+(𝑇) − 𝜎𝛥
+(𝑇𝐻) 𝜎−𝑎(𝑇) = 𝜎𝑎−(𝑇) + 𝜎𝛥

−(𝑇𝐻) 

The material parameters defined here are considered to be constants and are next used to define the 

transformation stress-temperature relationships.  

5.1.2 Transformation Stress 

First, we focus on the tensile side of the free energy and use 𝜎𝑎+
𝐻 , 𝜎𝑎+

𝐿 , 𝜎+𝑎
𝐻  and 𝜎+𝑎

𝐿  to define the Clausius-

Clapeyron-like parameters, 
𝑑𝜎𝑎+

𝑑𝑇
 and 

𝑑𝜎+𝑎

𝑑𝑇
, which represent linear rates of change with respect to temperature.  

𝑑𝜎𝑎+
𝑑𝑇

=
𝜎𝑎+
𝐻 − 𝜎𝑎+

𝐿

𝑇𝐻 − 𝑇𝐿
,

𝑑𝜎+𝑎
𝑑𝑇

=
𝜎+𝑎
𝐻 − 𝜎+𝑎

𝐿

𝑇𝐻 − 𝑇𝐿
 (140) 

The two quantities are defined independently to allow temperature-dependent hysteresis. These two 

parameters can be used to approximate the two tensile transformation stresses as linear functions of temperature.  

𝜎𝑎+(𝑇) = 𝜎+𝑎
𝐻 +

𝑑𝜎+𝑎
𝑑𝑇

(𝑇 − 𝑇𝐻) , 𝜎+𝑎(𝑇) = 𝜎𝑎+
𝐻 +

𝑑𝜎𝑎+
𝑑𝑇

(𝑇 − 𝑇𝐻) (141,142) 

Next, we use Equation 140 to extrapolate the temperature where the tensile forward transformation stress 

(𝜎𝑎+(𝑇)) reaches zero. We call this critical temperature 𝑇𝑎+ or the martensite start temperature because martensite 

will form at this temperature under stress-free conditions (this effect is shown in Figure 4).  

𝜎𝑎+(𝑇𝑎+) = 0 → 𝑇𝑎+ = 𝑇𝐻 −
𝜎𝑎+
𝐻

𝑑𝜎𝑎+
𝑑𝑇

 (143) 

We assume all martensite variants have the same start temperature and thus we can also define the critical 

temperature for the compressive variant from 𝑇𝑎+.  

𝑇𝑎− = 𝑇𝑎+ = 𝑇𝑎𝑚 (144) 

Physically, this reflects the fact that the austenite well becomes unstable at a certain temperature and, at that 

point, all of the martensite wells become available. Since the two parameters are equal, we use a common symbol 

𝑇𝑎𝑚 where the 𝑚 represents martensite without specifying a variant. Figure 54 shows the HFE and stress-strain 

curve at temperature 𝑇𝑎𝑚.  
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Figure 54: Mesoscopic HFE and macroscopic stress-strain response at the martensite 

start temperature 

Here, the HFE has assumed a two-well configuration and the transformations constitute martensite to 

martensite phase changes, which result in a single tension-compression hysteresis loop. The low temperature 

configuration also makes the martensite wells easier to see (because they have become convex). The CFE’s of the 

two martensite wells (𝛽− and 𝛽+) are labeled here but not in Figure 51 for this reason. Since all martensite variants 

become available under zero stress and at temperature 𝑇𝑎𝑚, we can write 𝜎𝑎−(𝑇𝑎𝑚) = 0 and this allows us to the 

define the compressive forward transformation stress, 𝜎𝑎−, as a function of temperature.  

𝜎𝑎−(𝑇) = 𝜎𝑎−
𝐻 +

𝑑𝜎𝑎−
𝑑𝑇

(𝑇 − 𝑇𝐻) 𝑤ℎ𝑒𝑟𝑒
𝑑𝜎𝑎−
𝑑𝑇

=
𝜎𝑎−
𝐻 − 0

𝑇𝐻 − 𝑇𝑎𝑚
≈
𝜎𝑎−
𝐻 − 𝜎𝑎−

𝐿

𝑇𝐻 − 𝑇𝐿
 (145) 

Equation 145 shows two different expressions for 
𝑑𝜎𝑎−

𝑑𝑇
. It is a mathematical requirement of the model that 

both the tensile and compressive forward transformation stresses must reach zero at the same temperature, 𝑇𝑎𝑚. 

Because of this, the first expression supersedes the second one. It is expected that both determinations of 
𝑑𝜎𝑎−

𝑑𝑇
 

yield similar values. The reverse transformation stresses can have different values at 𝑇𝑎𝑚 thus the expression for 

𝜎−𝑎(𝑇) is written directly from the experimental parameters.  

𝜎−𝑎(𝑇) = 𝜎−𝑎
𝐻 +

𝑑𝜎−𝑎
𝑑𝑇

(𝑇 − 𝑇𝐻) 𝑤ℎ𝑒𝑟𝑒
𝑑𝜎−𝑎
𝑑𝑇

=
𝜎−𝑎
𝐻 − 𝜎−𝑎

𝐿

𝑇𝐻 − 𝑇𝐿
 (146) 

The temperature 𝑇𝑎𝑚 is the lowest temperature considered by the model. At temperatures lower than 𝑇𝑎𝑚, 

the free energy remains locked in the same the single hysteresis loop configuration shown in Figure 54. This is 

enforced by adding the minimum temperature condition to the transformation stress equations (147-150). This 

prevents the forward transformation stresses from becoming negative (which would be physically meaningless) 

and also causes the reverse transformation stresses to halt at 𝑇𝑎𝑚. This reflects experimental observations where 

SMA stress-strain responses begin to stagnate as it reaches the single hysteresis-loop configuration (Chang et al., 

2006, Sittner et al., 2009). A second limiting condition must be placed on the two reverse transformation stresses 

to address cases where the hysteresis width is temperature dependent. We assume the hysteresis width can vary 

linearly with temperature, but do not allow either reverse transformation stress to reach a larger magnitude than 
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the corresponding forward value. This would invert the hysteresis loop and yield negative entropy production, 

violating the second law of thermodynamics. We address this by placing upper limits on the two reverse 

transformation stresses. It should be noted that, for the two temperature-dependent hysteresis data sets examined 

in this chapter (Sittner et al. (2009), Welsch et al. (2017)), this limit was not necessary. The temperatures where 

the forward and reverse transformation stresses would have intersected one another were much higher than the 

temperatures considered. The four transformation stress expressions are given in their final conditional forms by 

Equations 147-150.  

𝜎𝑎+(𝑇) = 𝜎𝑎+
𝐻 +

𝑑𝜎𝑎+
𝑑𝑇

(𝑇∗ − 𝑇𝐻) 𝜎+𝑎(𝑇) = 𝑚𝑖𝑛 (𝜎+𝑎
𝐻 +

𝑑𝜎+𝑎
𝑑𝑇

(𝑇∗ − 𝑇𝐻), 𝜎𝑎+(𝑇) )

𝜎𝑎−(𝑇) = 𝜎𝑎−
𝐻 +

𝑑𝜎𝑎−
𝑑𝑇

(𝑇∗ − 𝑇𝐻) 𝜎−𝑎(𝑇) = 𝑚𝑎𝑥 (𝜎𝑎−(𝑇), 𝜎−𝑎
𝐻 +

𝑑𝜎−𝑎
𝑑𝑇

(𝑇∗ − 𝑇𝐻) )

 
(147,148  

 

(149,150) 

𝑤ℎ𝑒𝑟𝑒 𝑇∗ = 𝑚𝑎𝑥(𝑇, 𝑇𝑎𝑚) 

Next, we discuss thermal hysteresis. Two transformation temperatures are typically associated with SMA 

materials. The martensite start temperature (𝑇𝑚) is given by Equation 144 and is based on the motion that the 

transformation stresses reach zero at that temperature.   We can also define the temperatures at which the 

martensite wells become unstable and austenite begins to form under stress-free conditions by identifying the 

points at which 𝜎+𝑎(𝑇) and 𝜎−𝑎(𝑇) equal zero.  

0 = 𝜎±𝑎(𝑇±𝑎) → 𝑇±𝑎 = 𝑇𝐿 −
𝜎𝑎±
𝐿 + 𝜎𝛥

±

𝑑𝜎±𝑎
𝑑𝑇

 (151) 

This temperature is often called the austenite start temperature, but we maintain two different parameters 

because it is possible to construct a TC-asymmetric HFE where the tensile and compressive martensite wells 

become unstable at different temperatures. The complete set of transformation stress equations allows us to also 

define the critical transformation strains. There are defined in a similar manner to the previous model (Equations 

4 and 5), but now all four are written independently.  

𝜀𝑎±(𝑇) =
𝜎𝑎±(𝑇)

𝐸𝑎
, 𝜀±𝑎(𝑇) =

𝜎±𝑎(𝑇)

𝐸±
+ 𝜀𝑅

± (152,153) 

Now, having established the relationship between the transformation stresses and temperature, we proceed 

to the chemical free energies.  

 

5.1.3 Chemical Free Energy 

The only remaining parameters required to build the Helmholtz free energy wells are the martensite chemical 

free energies (𝛽− and 𝛽±). We begin by defining a few intermediate parameters. 𝜎Δ
+ and 𝜎Δ

−, given by Equations 

154, represent the hysteresis widths for the tensile and compressive curves respectively. These equations further 

characterize the material and help to shorten other, downstream expressions.  

𝜎𝛥
±(𝑇) = 𝑚𝑎𝑥 (𝜎𝛥

±(𝑇𝐻) +
𝑑𝜎𝛥

±

𝑑𝑇
(𝑇 − 𝑇𝐻), 0) 𝑤ℎ𝑒𝑟𝑒

{
 
 

 
 

 

𝑑𝜎𝛥
±

𝑑𝑇
=
𝜎𝛥
±(𝑇𝐻) − 𝜎𝛥

±(𝑇𝐿)

𝑇𝐻 − 𝑇𝐿

𝜎𝛥
±(𝑇𝐻) = 𝜎𝑎±

𝐻 − 𝜎±𝑎
𝐻

𝜎𝛥
±(𝑇𝐿) = 𝜎𝑎±

𝐿 − 𝜎±𝑎
𝐿

 (154) 
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Equation 154 yields the same values as subtracting the reverse transformation stresses from the 

corresponding forward values  (Equations 149 147-150), but the linearly varying hysteresis width is convenient 

and sometimes necessary as a stand-alone parameter. We also must now define two different parameters to reflect 

the stiffness disparities between austenite and the two martensites.  

𝐸𝛥
± =

1

𝐸±
−
1

𝐸𝑎
 (155) 

The chemical free energies are now given by Equation 156, which has a similar derivation to the original 

version (Equation 92).  

𝛽± (𝜎𝑎±(𝑇)) = 𝐶2
±𝜎𝑎±(𝑇)

2 + 𝐶1
±(𝑇)𝜎𝑎±(𝑇) + 𝐶0

±(𝑇) 𝑤ℎ𝑒𝑟𝑒

𝐶0
±(𝑇) = −

𝜎𝛥
±(𝑇)𝜀𝑅

±

2

𝐶1
±(𝑇) = 𝜀𝑅

± −
𝜎𝛥
±(𝑇)𝐸𝛥

±

2

𝐶2
± =

𝐸𝛥
±

2

 (156) 

The only differences between Equation 156 and Equation 92 are that there are two sets of parameters (+ and 

−) and that the 𝜎Δ‘s  are temperatrue-dependent.  Equation 156 allows the chemical free energies to be defined as 

functions of forward transformation stresses, which are defined for all temperatures. This means that the 

Helmholtz free energy is defined sufficiently to operate the model and now we proceed to the Gibbs free energy.  

5.2 Gibbs Free Energy 

The Gibbs free energy is defined in same manner as the traditional model, from the Helmholtz free energy. 

This means the GFE is also asymmetric, but it functions in the same way – stress distorts the landscape which 

causes certain phases to switch between stable and unstable.  

𝑔(𝜀, 𝑇; 𝜎) =

{
 
 
 
 

 
 
 
 

 

 𝑔−(𝜀, 𝑇; 𝜎) −∞ < 𝜀 ≤ 𝜀−𝑎(𝑇)

 𝑔−
𝐵(𝜀, 𝑇; 𝜎) 𝜀−𝑎(𝑇) < 𝜀 < 𝜀𝑎−(𝑇)

 𝑔𝑎(𝜀; 𝜎) 𝜀𝑎−(𝑇) ≤ 𝜀 ≤ 𝜀𝑎+(𝑇)

 𝑔+
𝐵(𝜀, 𝑇; 𝜎) 𝜀𝑎+(𝑇) < 𝜀 < 𝜀+𝑎(𝑇)

 𝑔+(𝜀, 𝑇; 𝜎) 𝜀+𝑎(𝑇) ≤ 𝜀 < ∞

,

𝑔±(𝜀, 𝑇; 𝜎) =
𝐸±
2
(𝜀 − 𝜀𝑅

±)
2
+ 𝛽±(𝑇) − 𝜎𝜀

𝑔±
𝐵(𝜀, 𝑇; 𝜎) = 𝐴±(𝑇)𝜀2 + 𝐵±(𝑇)𝜀 + 𝐶±(𝑇) − 𝜎𝜀

𝑔𝑎(𝜀; 𝜎) =
𝐸𝑎
2
𝜀2 − 𝜎𝜀

 (157) 

Once again, the energy barrier expressions are grey because they are not actually required to operate the 

model.  Like the previous model, the Gibbs free energy is only evaluated at specified locations but now there are 

fewer – only 7. Furthermore, all of the locations are in the convex energy wells as shown in Figure 55.  

 
Figure 55: Locations on the GFE-strain landscape 
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This figure is similar to Figure 9 except that the landscape is asymmetric and the barrier energies are not 

shown (because they are not needed). The expressions to find the free energies 𝐺𝑖𝑗 are identical to those in the 

previous formulation, which were given by Equation 15, except now the critical strains (𝜀𝑖𝑗) are found using 

Equations 152 and 153.  

𝐺𝑖𝑗(𝜎, 𝑇) = 𝑔𝑖(𝜀𝑖𝑗(𝑇), 𝑇; 𝜎) (15) Repeated here 

Because the residual strains now carry the proper sign, the extremum strains 𝜀𝑖 also have a slightly different 

form from the original model (Equations 16-18).  

𝜀±(𝜎) =
𝜎

𝐸𝑚
± + 𝜀𝑅

± , 𝜀𝑎(𝜎) =
𝜎

𝐸𝑎
 (158, 159) 

And, finally, the minimum energy within each phase (𝐺𝑖) is calculated in the same manner as the traditional 

model – the expressions (19, 20, 21) are repeated here for clarity and completeness.  

𝐺−(𝜎, 𝑇) = 𝑔−(𝑚𝑖𝑛(𝜀−(𝜎), 𝜀−𝑎(𝑇)), 𝑇; 𝜎) (19) 

𝐺𝑎(𝜎, 𝑇) = 𝑔𝑎(𝜀
∗, 𝑇; 𝜎) 𝑤ℎ𝑒𝑟𝑒 𝜀∗ = 𝑚𝑎𝑥 (𝜀𝑎−(𝑇),𝑚𝑖𝑛(𝜀𝑎(𝜎), 𝜀𝑎+(𝑇))) (20) 

𝐺+(𝜎, 𝑇) = 𝑔+(𝑚𝑎𝑥(𝜀+𝑎(𝑇), 𝜀+(𝜎)), 𝑇; 𝜎) (21) 

At this point, the only mesoscopic parameters remaining to operate the model are the latent heat coefficients. 

Next, we calculate them using the chemical free energies.  

5.3 Caloric Properties 

The caloric properties are defined using the same basic procedure as the traditional model in Chapter 4, 

which begins with the assumed linear variation of the chemical free energy with temperature. This is expressed 

by Equation 160, where the tensile and compressive variant now have independent sets of internal energy and 

entropy constants.  

�̂�𝑎(𝑇) − �̂�±(𝑇) = −𝛽±(𝑇) = 𝑢±
𝑅 − 𝑠±

𝑅𝑇 𝑤ℎ𝑒𝑟𝑒
𝑢±
𝑅 = �̂�𝑎

𝑅 − �̂�±
𝑅

𝑠±
𝑅 = �̂�𝑎

𝑅 − �̂�±
𝑅

 (160) 

The subtraction order in Equation 160 is maintained from the previous formulation (Equation 90) even 

though intuition says to subtract the value of  the reference zero energy from the other values. The only 

consequence, however, to reversing the order is that some parameters will switch sign. We use the 

𝑎𝑢𝑠𝑡𝑒𝑛𝑖𝑡𝑒 𝑚𝑖𝑛𝑢𝑠 𝑚𝑎𝑟𝑡𝑒𝑛𝑖𝑠𝑡𝑒 order in Equation 160 because it yields latent heat coefficients with signs that are 

consistent with the energy balance e (i.e. forward transformation corresponds to positive heat generation and vice 

versa). Now, as discussed in the Chapter 2, we choose to make a compromise by using the linear transformation 

stress equations (Equations 147-150). This decision means that that the chemical free energy is now only 

approximately linear so Equation 160 should be re-written as Equation 161.  

𝛽±(𝑇) ≅ 𝑠±
𝑅𝑇 − 𝑢±

𝑅  (161) 

However, the previous examination also tells us that Equation 160 is still correct at the two experimental 

temperatures 𝑇𝐿  and  𝑇𝐻  because the linear and quadratic transformation stresses intersect. This means we can 

write the following four expressions without concern about linear vs. quadratic transformation stress.  
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𝛽−(𝑇𝐿) = 𝛽−
𝐿 = 𝑠−

𝑅𝑇𝐿 − 𝑢−
𝑅

𝛽−(𝑇𝐻) = 𝛽−
𝐻 = 𝑠−

𝑅𝑇𝐻 − 𝑢−
𝑅

 
𝛽+(𝑇𝐿) = 𝛽+

𝐿 = 𝑠+
𝑅𝑇𝐿 − 𝑢+

𝑅

𝛽+(𝑇𝐻) = 𝛽+
𝐻 = 𝑠+

𝑅𝑇𝐻 − 𝑢+
𝑅

 

(162,163) (164,165) 

We can also use Equation 156, and the experimentally measured transformation stresses, to computer the 

values of the chemical free energies at temperatures 𝑇𝐿  and  𝑇𝐻 .  

𝛽−
𝐿 = 𝐶2

−𝜎𝑎−
𝐿 2

+ 𝐶1
−(𝑇𝐿)𝜎𝑎−

𝐿 + 𝐶0
−(𝑇𝐿)

𝛽−
𝐻 = 𝐶2

−𝜎𝑎−
𝐻 2

+ 𝐶1
−(𝑇𝐻)𝜎𝑎−

𝐻 + 𝐶0
−(𝑇𝐻)

 
𝛽+
𝐿 = 𝐶2

+𝜎𝑎+
𝐿 2

+ 𝐶1
+(𝑇𝐿)𝜎𝑎+

𝐿 + 𝐶0
+(𝑇𝐿)

𝛽+
𝐻 = 𝐶2

+𝜎𝑎+
𝐻 2

+ 𝐶1
+(𝑇𝐻)𝜎𝑎+

𝐻 + 𝐶0
+(𝑇𝐻)

 

(166,167) (168,169) 

Since, the four values of 𝛽 and now known, we can use Equations 162-165 to calculate the two entropy 

constants.  

𝛽−
𝐿 = 𝑠−

𝑅𝑇𝐿 − 𝑢−
𝑅 𝛽−

𝐻 = 𝑠−
𝑅𝑇𝐻 − 𝑢−

𝑅

↓

𝑠−
𝑅 =

𝛽−
𝐻 − 𝛽−

𝐿

𝑇𝐻 − 𝑇𝐿
=
𝑑𝛽−
𝑑𝑇

 

𝛽+
𝐿 = 𝑠+

𝑅𝑇𝐿 − 𝑢+
𝑅 𝛽+

𝐻 = 𝑠+
𝑅𝑇𝐻 − 𝑢+

𝑅

↓

𝑠+
𝑅 =

𝛽+
𝐻 − 𝛽+

𝐿

𝑇𝐻 − 𝑇𝐿
=
𝑑𝛽+
𝑑𝑇

 

(170) (171) 

Now, we can use the entropy constants and Equations 162-165 to define the internal energy constants at 

either temperature 𝑇𝐿  or  𝑇𝐻 , we choose  𝑇𝐻 .  

the following four expressions without concern about linear vs. quadratic transformation stress.  

𝑢−
𝑅 = 𝑠−

𝑅𝑇𝐻 − 𝛽−
𝐻  𝑢+

𝑅 = 𝑠+
𝑅𝑇𝐻 − 𝛽+

𝐻  

(172) (173) 

Using the same procedure as in Chapter 4, we can write the enthalpy for each martensite phase in terms of 

stress, material constants, internal energy constants, and entropy constants.  

ℎ−(𝜎) =
𝜎2

2
𝐸𝛥
− + 𝜎𝜀𝑅

− + 𝑢−
𝑅 ℎ+(𝜎) =

𝜎2

2
𝐸𝛥
+ + 𝜎𝜀𝑅

+ + 𝑢+
𝑅 

(174) (175) 

Equations 174 and 175 complete the set of parameters that are derived from the mesoscopic free energies 

and we now proceed to the macroscopic model.  

5.4 Macroscopic Model Equations 

In order to allow tension-compression asymmetry and hysteresis widths that do not have constant width, the 

mesoscopic free energy had to be updated. Now that the mesoscopic updates are complete, the macroscopic model 

does not need significant changes. In fact, the only differences in the macro-scale equations are due to the 

notational differences and the fact that the residual strains now carry proper signs. The total strain is assumed to 

be a weighted average of the strains experienced by each phase and we use the same Equation as the original 

model (26).  

𝜀 = 𝜀−𝑥− + 𝜀𝑎𝑥𝑎 + 𝜀+𝑥+ (26) 
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The average strains within each phase are now calculated using Equations 158 and 159, which were given 

in this chapter’s Gibbs free energy discussion. Once again, we can use Equations 158 and 159 to rearrange the 

total strain and get an expression for the macroscopic stress.  

𝜀 = (
𝜎

𝐸𝑚
− + 𝜀𝑅

−) 𝑥− + (
𝜎

𝐸𝑎
) 𝑥𝑎 + (

𝜎

𝐸𝑚
+ + 𝜀𝑅

+) 𝑥+ → 𝜎(𝜀) =
𝜀 − 𝜀𝑅

−𝑥− − 𝜀𝑅
+𝑥+

𝑥−
𝐸𝑚
− +

𝑥𝑎
𝐸𝑎
+
𝑥+
𝐸𝑚
+

 (176) 

The phase fractions are governed by the same set of kinetic ODE’s (Equations 28-30).  

�̇�− = 𝑥𝑎 𝑝𝑎− − 𝑥− 𝑝−𝑎 �̇�+ = 𝑥𝑎 𝑝𝑎+ − 𝑥+ 𝑝+𝑎 𝑥𝑎 = 1 − 𝑥− − 𝑥+ (28,29,30) 

The transformation probabilities are computed using the Inflection Point technique (Equation 55) that was 

derived in Chapter 3, where the Δ𝐺 represents the difference between the minimum energy and the neighboring 

inflection point energy.  

𝑝𝑖𝑗(𝜎, 𝑇) =
1

𝜏
𝑒
−
1
𝛾
𝛥𝐺𝑖𝑗(𝜎, 𝑇)

𝑤ℎ𝑒𝑟𝑒

{
 
 

 
 

 

𝛥𝐺−𝑎 = 𝐺−𝑎(𝜎, 𝑇) − 𝐺−(𝜎, 𝑇)

𝛥𝐺𝑎− = 𝐺𝑎−(𝜎, 𝑇) − 𝐺𝑎(𝜎, 𝑇)

𝛥𝐺𝑎+ = 𝐺𝑎+(𝜎, 𝑇) − 𝐺𝑎(𝜎, 𝑇)

𝛥𝐺+𝑎 = 𝐺+𝑎(𝜎, 𝑇) − 𝐺+(𝜎, 𝑇)

 (55) 

The thermal activation parameters, 𝜏 and 𝛾, have the same meaning and should be handled in the same 

manner as described in Chapter 3. The 𝐺𝑖 and 𝐺𝑖𝑗 parameters are discussed in the Gibbs free energy discussion 

from this chapter, but they use the same expressions as the original model (15 and 19-21). The final macroscopic 

equation is the energy balance and this has the same form as the original version (32) except that the latent heats 

are now calculated using Equations 174 and 175.  

�̇� =
1

𝜌𝑐
(�̇�+ℎ+ + �̇�−ℎ− − 𝛼ℎ𝑐(𝑇 − 𝑇0)) (32) 

The energy balance is added to the set of kinetic ODE’s given by Equations 28-30 and adds 

thermomechanical coupling to the model. This enable effects such as transformation hardening, where the 

transforamation plateaus become inclined when the material is loaded quickly. We demonstrate this effect in the 

next section, along with several others, where the new model’s performance is showcased and compared to 

experimental data.  

5.5 Simulations 

Here we have chosen a variety of experimental data sets that show different types of SMA behavior. For 

each set, we compare the model’s prediction to the measured result and discuss the correlation.  

5.5.1 Quasi-Static Uniaxial Tension Tests 

A series of experiments on single crystal NiTi wires was presented by Chang and coworkers in 2006. The 

work includes a set of quasi-static strain-controlled tension tests over a range of temperatures as well as a set at 

room temperature using various strain rates. We first use data from the quasi-static tests to obtain material 

properties and to validate the basic isothermal performance of the current model. Figure 56 shows experimental 

data (black lines) at two selected temperatures a set of straight segments (red) fit by visual inspection to obtain 

the material parameters.  
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Figure 56: Material parameters obtained from experimental data in Chang et al. 

(2006) 

Figure (57) shows the complete set of quasi-static tension tests from Chang et al. (2006) in black along with 

simulation results in red. 

 
Figure 57: Simulation vs. experiment, quasi-static cases from Chang et al. (2006) 

The model and the experimental data agree well for the temperatures -30C through +50C (Figure 56(c-k)). 

At -50 and -40C, the model assumes the microstructure is entirely made up of twinned martensite and that the 

transformation shown represents detwinning. The experimental responses for these two specimens reflect a 

smooth entry into the stress plateau, which is not seen at the other temperatures. This indicates the presence of a 

more complex set of microstructures that are not captured by the model. At the temperatures greater than +40C 

(Figure 56(k-m)), the experiments show that the stress-strain curve does not return to the original austenite branch 

after unloading. This is due to permanent plastic slip that occurs simultaneously to transformation at very high 

temperatures. Reflecting the plastic response of the material is outside the scope of the current model, which is 

intended for the design of SMA actuators (Seelecke, 2002) and thermal devices (Ullrich et al., 2014) where high-

cycle usage is expected. Figure 57 shows that, at typical SMA operating temperatures, the current model 

accurately reflects both the pseudoplastic and superelastic responses.  

5.5.2 Uniaxial Tension Tests at Various Strain rates 

Chang and coworkers (2006) also conducted seven experiments with a similar setup to those shown in Figure 

56, except the srain rate was varied. In these experiments, the ambient temperature was between 20 and 22 C, the 
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wire diameter was 0. 762 mm, and the gauge length was 33. 3 mm. The specimens were extended at a fixed rate 

of strian, paused, then unloaded at the same rate. The pause allowed the wire to return to room temperature so that 

both the loading and unloading curves represent the same initial temperature. The stress-strain results from each 

experiment are shown here in Figure 58.  

 
Figure 58: Tension test experiments at various strain rates from Chang et al. (2006) 

The current model was used to simulate the cases shown in Figure 58(a-d). The three highest strain rate tests 

induced large amounts of residual strain and are not considered. The model does reasonably predict the 

transformation hardnening at strain rates beyond 10−2, but the comparison to the experimental data in Figure 

58(e-g) is misleading without consideration of plastic effects.  

It should also be pointed out here that the plots in Figure 58 show engineering stress and engineering strain, 

both of which reflect an averaged response over the entire guage length. However, it is well known that even 

single crystal SMA wires exhibit inhomogeneous behavior. This was one of the focus points of the original paper 

where it was shown that transformations began in localized zones and then traveled along the length of the wire. 

The strains, strian rates, temperatures, and stresses were higher in the nucleation regions than in other portions of 

the wire. These localization effects must be considered when viewing the average stress-strain response of the 

specimens, where the curves reflect some combination of active zones and inactive zones.  

The simulation cases each represent a single material point (or a uniform wire of arbitrary length) with no 

consideration of localization effects. The goal is to examine the fundamental material behavior comapred to the 

experimental stress-strain results. The thermal environment, on a per unit length basis, was approximated by using 

an ambient temperature of 21 C and using the same wire diameter (0. 762 mm) to calculate the surface area per 

unit volume in the energy balance equation (32). A convection coefficient of 90 𝑊 𝑚2𝐾⁄  was measured for the 

experimental environment but a reduced value of 30 𝑊 𝑚2𝐾⁄  was used in the simulations. Since the local 

transformation zones (which are much hotter) provide most of the nonlinearity in the experimental curves, the 

thermal environment in the simulations had to be scaled for quantitative comparison. This adjustment increased 
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the temperature of the simulated wires bringing them closer to the temperatures in the active zones of the 

experimental specimens. The wire temperatues in the simulations were still lower than the peak temperatures 

reported in the experiments, but more closely represent the average reponses. The results of the simulations along 

with the experimental data are shown in Figure 59.  

 
Figure 59: Model predictions compared to experimental data 

The sensitivity of the model to the strain rate, in the scaled thermal environment, agrees very well with the 

experiments. Both the experimental data and the simulation results show a competition between convective heat 

transfer and latent heat generation/absorption. In Figures 59(a) and (b), the applied strain rates are low and 

therefore the latent heat effects are minimal. Any heat generated during forward transformation or absorbed during 

reverse transformation is quickly accounted for by the surrounding air. The temperature remains relatively 

constant in these cases and stress plateaus remain relatively flat. In Figures 59(c) and (d), the latent heating that 

occurs during forward transformation exceeds the cooling capacity of the surrounding environment so the 

temperature of the wire increases. This causes the transformation stress to increase along with the temperature 

which leads to the formation of a slope in the transformation branch of the stress-strain curve. As the strain rate 

increases (compare Figure 59(c) to (d)), more heat is generated and the slope becomes steeper.  

 Recalling that the tests (and simulations) were allowed to cool back to room temperature prior to unloading, 

the same behavior occurs in unloading except the roles are reversed. The latent heating is now negative and cools 

the wire while the environment supplies heat attempting to keep the wire at ambient temperature. At the slow 

strain rates, the environment is able to supply heat quickly enough and the wire temperature remains constant. At 

the higher strain rates, the wires cool and cause the plateau stress to decrease during reverse transformation.  

5.5.3 Single Crystal Behavior - Stress-Strain and Actuation Responses 

Figure 60 shows a set of superelastic tension tests on a single crystal SMA (CuZnAl) from Fu et al. (1993).  
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Figure 60: Superelastic tension of single-crystal SMA, simulations compared to test 

data from Fu et al. (1993) 

The test data shows very flat stress plateaus and roughly constant hysteresis width. The model agrees well 

with the experimental data with most observable inconsistency being the 19C case, where the simulation slightly 

under-predicts the transformation strain. The general shape of the 19 𝐶 martensite branch also differs from the 

other two temperatures and we assume this to be an experimental anomaly. Also, the transitions into and out of 

the transformation plateaus are slightly rounded whereas the simulation curves have sharp corners. The 

simulations here represent the limiting case of a perfect single crystal, which is an engineering idealization of the 

type of response in Figure 60. The polycrystalline option in could be used to capture the curvature, but the results 

are well captured without it. Figure 61 shows a second set of actuation experiments from the same paper (Fu et 

al. (1993)) on the same CuZnAl material.  

 
Figure 61: Thermal actuation of single-crystal SMA, simulations compared to test 

data from Fu et al. (1993) 

The tension tests from Figure 60 were used to define the free energy and model parameters, then the same 

settings were used to simulate the actuations tests shown here. The experimental curves have, once again, 

somewhat rounded transitions as well as temperature plateaus that are not perfectly flat whereas the simulations 

show perfect rectangle hysteresis loops. The overall response is well represented but the disagreement is most 

pronounced in the 109 MPa case. There is also some disagreement between the high-temperature strain predictions 

that should be addressed. At high temperatures, the material is in the austenite phase and the strain is expected to 

scale linearly with applied stress, as is observed in the simulation data. The experimental strains, however, do not 

appear to follow this trend – the final strains values are relatively stagnant. This implies that some offset may have 

been present in the experimental data that was not accounted for in the simulations.  

5.5.4 Relaxation Test 

To verify the proper setting of the thermal activation parameters in the context of the new model, we show 

an alternate scenario to test and validate rate-independence. Here, we use a quasistatic relaxation test to examine 

the time-domain behavior of the kinetic equations. Figure 62a shows a quasi-static tension test on CuZnAl that 
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contains a sequence of pauses (Müller and Seelecke (2001)). The two zoomed in boxes show very slight 

discontinuities, but the macroscopic curve is sufficiently flat to regard the response as relaxation-free.  

 

 

 

Figure 62: (a) Experimental data from Seelecke and Müller, 2001 (b-c) Simulations 

with properly chosen kinetic parameters 

62b and c show the same experimental data along with the results of a simulation where the pauses were 

also included in the applied strain sequence. The simulations match the overall response well and, like the 

experiment, do not show any relaxation (reduction in stress) during the pauses. This indicates that the kinetic 

model is operating correctly and that the thermal activation parameters have been properly set. To give some 

additional insight into the effect of the thermal activation, Figure 63d and e show a second simulation where 

overly large values of 𝜏 and 𝛾 were used.  

 
Figure 63: Relaxation simulations with improperly chosen kinetic parameters 

On one hand, the choice of parameters seems to improve the agreement by adding smooth transitions 

between the linear branches and the stress plateaus (63d). The pause points however, show the artificial rate effects 

associated with this choice. The transformation progresses too slowly and, when the loading is paused, the backlog 

of untransformed layers catches up and this causes the stress to relax back toward the Maxwell line. A reversible, 

Maxwell-type, curve is the quasistatic limit of the high thermal activation case because the fluctuating layers are 

not sensitive to the energy barriers. Each time the applied strain restarts, some of the slowly transforming layers 

fall behind and the artificial hysteresis loop reforms. If the pauses were not included in Figure  63d, the stress-
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strain agreement would falsely appear to be an improvement over the response in 62b. To prevent incorrect choices 

for 𝜏 and 𝛾, the model should be tested in a relaxation case like the one shown here or by verifying that the model 

yields the same stress-strain curves under different strain rates.  

5.5.5 Polycrystallinity 

Next, we examine several different cases of polycrystalline SMAs. Figure 64 shows a set of simulations 

compared to the results from a tension experiment on a polycrystalline NiTiCuV specimen from Schmidt et al. 

(2016b).  

 
Figure 64: Simulations using various values of polycrystallinity parameters 

64a-c all show the same experimental curve but each shows a simulation with different inhomogeneity 

parameters (from Equation 56). 64a shows the single crystal case, where the parameters 𝜎𝑙, 𝜎𝑏, and 𝜎𝑐 are equal 

to zero. 64b shows the linear polycrystallinity case, where only the linear coefficient 𝜎𝑙 has been assigned. In 64c, 

the exponential terms are activated to better capture the curve in the early and late stages of transformation. All 

three simulation cases give reasonable qualitative agreement and show that the mesoscopic inhomogeneity option 

allows a wide range of response characteristics.  

Next we examine several more experiments from the same work that also involve latent heat effects. The 

experimental curve from Figure 64 was the quasistatic case from a set of tension tests that involved seven different 

strain rates. The entire set of stress-strain responses is shown in Figure 65.  

 
Figure 65: Tension test data at various strain rates from Schmidt et al. (2016b) 

The 𝜀̇ = 5 ∙ 10−5 curve was used to define the base material properties and the first set of transformation 

stresses. The transformation stresses must be defined at two temperatures and, in this publication, a second set of 

stress-strain curves was not given. The authors did list a value for the parameter 
𝜕𝜎𝑎+

𝜕𝑇
 which, along with the 

assumption of constant hysteresis width and tension-compression symmetry, allowed us to fully define the 

material. The published convection coefficient and the actual wire dimensions were used to populate the energy 

balance parameters, but field effects were neglected. Figure 66 shows the results from point-wise simulations 

intended to represent the average specimen response.  



81 

 

 
Figure 66: Simulations of tension tests from Schmidt et al. 2016b 

The simulations show the same overall characteristics, but they under-predict the peak stress.  Despite this 

shortcoming, several important aspects of the curves are well represented. The two highest strain rates stagnate in 

both data sets because the increasing strain rates lead to shorter heating events, which eventually become unable 

to further increase the temperature of the wire. The simulation cases also show a stress drop during the pause 

between loading and unloading, which is observed in the experiments. This decline in stress is due to 

untransformed austenite, which gets the opportunity to make the jump to martensite as the specimen cools and the 

critical stress decreases. Because the models under-predict the maximum stress, the decrease stress is also less 

than the observed value. To better compare the model results to the experiments, Figure 67 shows the highest 

strain rate curves from the Figures 65 and 66.  

 
Figure 67: Simulation to experiment comparison for the highest strain rate 

(𝜀 = 1 ∙ 10−1̇ ) case in Schmidt et al., 2016b 

The simulation agrees well with the test data during the central portion of the forward transformation, but 

underpredicts the stress in the early and late stages. At the end of the forward transformation, the experimental 

curve continues to steepen while the simulation response is nearly linear. The experimental curve also experiences 

are greater decrease in stress during the pause between loading and unloading. The two curves maintain this offset 

throughout the entire unloading. Apart from the ≈20 MPa offset, the simulation matches the overall characteristic 

of the experimental unloading curve. We assume that much of the disagreement is an artifact of the more complex, 

spatially varying, thermal response of the ribbon. As the multiple transformation sites grow, their nonlinear 

influence on the specimen response becomes more dominant. The simulations, which neglect macroscopic field 

effects, do not capture this. The goal here is to examine the fundamental (non-spatial) self-heating behavior of the 

model using the new kinetics and inhomogeneity equations. Figures 66 and 67 show that the model is (a) operating 

as expected and (b) can predict behavior that is at least qualitatively correct without consideration of macroscopic 

field effects.  
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5.5.6 Tension-Compression Asymmetry 

In Reedlunn et al. (2014), the authors examined the tension, compression, and bending behavior of set of 

NiTi tubes. The use of tube specimens and special fixturing allowed clear observation of the compressive 

response, which exhibited significant asymmetry compared to the tensile behavior. Measurement of strain fields 

in the specimens revealed that localization effects were present in tension but not in compression. This disparity 

lead to flat, single crystal-like, stress plateaus in tension while the hysteresis loop in compression exhibited the 

rounded and sloped shape typically associated with a textured SMA. Figure 68 shows experimental data from a 

quasistatic pair of tension and compression tests at room temperature along with simulation results.  

 
Figure 68: Simulation of tension and compression tests from Reedlunn et al. 2014 

The first observation is that the model captures the both the single crystal-like tensile response and the 

polycrystalline-like compressive response in the same simulation. The tensile loading branch shows slight 

nonlinearity due to the presence of an intermediate phase that is not considered by the model, but the deviation is 

minor. The model also predicts a sudden, sharp transition into the reverse tensile stress plateau whereas the 

experimental curve has a slight curvature. We chose to neglect this effect in the simulations by setting the tensile 

local inhomogeneity parameters equal to zero. In tension tests such as this one, even though localization motivates 

the characteristic shape of the curve, the single crystal version of the model represents the behavior well. For the 

compressive response to be captured, both the linear and the exponential inhomogeneity terms had to be employed.  

5.5.7 Temperature Dependent Hysteresis 

The new formulation of the HFE also allows for temperature-dependent hysteresis width. To demonstrate 

this effect, we use the tension tests from the Roundrobin SMA Modeling program (Sittner et al. (2009)). NiTi wires 

were extended, partially unloaded, fully extended, then unloaded at quasistatic rates (i.e. isothermal) and these 

results are shown in Figure 69.  

 
Figure 69: Simulation of tension tests from Sittner et al. (2009) 

Apart from the local irregularities in each curve, both the partial and full hysteresis loops are well represented 

by the model. Comparing Figures 69a to 69e shows that the hysteresis width decreased by more than half. In some 

cases, a widening hysteresis loop can be explained by transitioning into a martensite to martensite loop, but this 
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normally occurs after the reverse transformation stress crosses the zero-stress line. The curves here are clearly 

superelastic so martensite to martensite transitions is not the explanation. All of the experimental stress-strain 

curves exhibit stress spikes at the beginning of transformation, which stem from macroscopic localization effects. 

It may also be the case that the variation in the hysteresis width is related to macroscopic effects like nucleation, 

but this is only speculation. Nucleation was neglected in the simulations, but the temperature dependent hysteresis 

in Figure 69 is too drastic to ignore. The reformulated free energy allows this effect to be captured without any 

other changes to the model.  

5.5.8 Martensite Reorientation 

The inner loops in Figure 69 represent partial transformations at superelastic temperatures. A similar 

phenomenon is observed when the model is cycled at a low temperature (below 𝑇𝑎𝑚), except the layers now 

distribute themselves between the two martensite wells. An example of this is shown in Figure 70, using the same 

model parameters as were used in Figure 69.  

  

Figure 70: Martensite reorientation demonstrated in a low temperature tension-

compression cycle 

This behavior is a two-variant example of martensite reorientation, where an SMA material changes phase 

fractions without expressing (passing through) the parent austenite phase. Here, the layers jump back and forth 

between the two martensite energy wells shown in Figure 71 which causes the macroscopic response to assume 

the single hysteresis loop configuration. The inner loops are generated from a similar effect as in the superelastic 

case; the partially transformed material behaves linearly it reaches the reverse stress plateau.  

5.6 Implementation Guide for the Updated 1-D Model 

This chapter included several re-derivations and the manipulation of a few equations for the purposes of 

developing the updated model. Because of this, the final set of essential equations one would need to operate the 

model may not be completely clear. To address this, we include this chapter to summarize the essential parameters 

and equations needed to implement the model. Additionally, since several different SMA materials and 

experimental data sets were used in the Simulations section, we include multiple values in the material parameter 

table – one for each data set.  

5.6.1 Material Parameters 

Table 3 provides a summary of the material parameter symbols and is a companion to Table 4, which gives 

values on the following page.  

Parameter Definition 

𝐸𝑎 Elastic modulus of the austenite phase 

𝐸+, 𝐸− Elastic modulus of the martensite phases (+ → tension, − → compression) 

𝜀𝑅
+ Residual strain for the martensite + phase (tension) 
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𝜀𝑅
− Residual strain for the martensite – phase (compression) 

𝑇𝐻 The higher of the two test data temperatures 

𝑇𝐿 The lower of the two test data temperatures 

𝜎𝑎+
𝐻  Forward tensile transformation stress at 𝑇𝐻 

𝜎+𝑎
𝐻  Reverse tensile transformation stress at 𝑇𝐻 

𝜎𝑎−
𝐻  Forward compressive transformation stress at 𝑇𝐻 

𝜎−𝑎
𝐻  Reverse compressive transformation stress at 𝑇𝐻 

𝜎𝑎+
𝐿  Forward tensile transformation stress at 𝑇𝐿 

𝜎+𝑎
𝐿  Reverse tensile transformation stress at 𝑇𝐿 

𝜎𝑏
+, 𝜎𝑏

− Sets the plateau stress variation as you enter and exit the austenite branch (+ → tension, − → compression) 

𝜎𝑐
+, 𝜎𝑐

− Sets the plateau stress variation as you enter and exit the austenite branches (+ → tension, − → compression) 

𝑒𝑏
+, 𝑒𝑏

− Sets the 𝜎 − 𝜀 curvature as you enter and exit the austenite branch (+ → tension, − → compression) 

𝑒𝑐
+, 𝑒𝑐

− Sets the 𝜎 − 𝜀 curvature as you enter and exit the austenite branch (+ → tension, − → compression) 

𝜎𝑙
+, 𝜎𝑙

− Sets slope of the stress plateau at the mid-transformation point (+ → tension, − → compression) 

𝑣 Activation volume, Thermal activation constant to ensure transformations occur rapidly 

𝜏 Attempt frequency, Thermal activation constant to ensure transformations occur rapidly 

𝐾 Boltzmann constant 

ℎ𝑐 Convective heat transfer coefficient 

𝑐 Specific heat 

𝜌 Density 

𝛼 Surface area per unit volume 

Table 3: Summary of material parameter definitions 

5.6.2 Material Parameter Values 

Several sets of simulations were presented in this paper, each corresponding to different experimental data 

sets. Table 4 shows a summary of the material parameter values used for each case. The table also included authors 

of the paper from which the data was extracted, the material used, as well as the figure numbers where the data 

and simulations are shown. Material parameters that have different tension and compression values are listed in 

the same row. If the same value was used for both (symmetry), only one value is listed; for tension-compression 

asymmetry cases, two values are shown. Also, some cases have thermal parameters listed as “-“ and this indicates 

that the energy balance was not included in the simulations.  
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Table 4: Material parameter values used for all simulation cases that were compared 

to experimental data 

5.6.3 Equations 

Figure 72 is a flowchart of the equations required to implement the model. Since the main paper contains 

several derivations with intermediate equations, this table collects all of the essential equations in their final, ready 

to be coded, form. Execution of the model requires numerical integration of the kinetic ODE’s and the figure here 

represents a single, strain-controlled, solution step. The Inputs box contains the known initial conditions and the 

equations sets 1-11 are the functions required to fully define (and numerically solve) the ODE’s. The Outputs box 

contains the updated parameters after the solution/time step. The supporting expressions (sets 1-11) are also 

evaluated once more after solution to get updated values for parameters like stress or latent heat.  

Source 
Fu et al. 
(1993) 

Müller and 
Seelecke (2001) 

Schmidt et al. 
(2016b) 

Reedlunn et 
al. (2014) 

Sittner et al. 
(2009) 

 

Material CuZnAl CuZnAl NiTiCuV NiTi NiTi  

Figure 
Number 

60, 61 62, 63 64, 65, 67 68 69  

Parameter Value Value Value Value Value Units 

𝐸𝑎 12 8 60 60 60 𝐺𝑃𝑎 

𝐸+, 𝐸− 8 8 20 30, 80 30, 30 𝐺𝑃𝑎 

𝜀𝑅
+ 6.6 6.5 2.4 5.4 5.4 % 

𝜀𝑅
− –𝜀𝑅

+ –𝜀𝑅
+ –𝜀𝑅

+ –3.05 –𝜀𝑅
+ % 

𝑇𝐻 65 30 30 22 60 𝐶 

𝑇𝐿 19 20 20 12 –30 𝐶 

𝜎𝑎+
𝐻  163 94.3 445 420 650 𝑀𝑃𝑎 

𝜎+𝑎
𝐻  143 76.3 365 195 465 𝑀𝑃𝑎 

𝜎𝑎−
𝐻  –𝜎𝑎+

𝐻  –𝜎𝑎+
𝐻  –𝜎𝑎+

𝐻  –675 –𝜎𝑎+
𝐻  𝑀𝑃𝑎 

𝜎−𝑎
𝐻  –𝜎+𝑎

𝐻  –𝜎+𝑎
𝐻  –𝜎+𝑎

𝐻  –375.5 –𝜎+𝑎
𝐻  𝑀𝑃𝑎 

𝜎𝑎+
𝐿  65 72.62 375 360 185 𝑀𝑃𝑎 

𝜎+𝑎
𝐿  45 54.62 295 130 –175 𝑀𝑃𝑎 

𝜎𝑏
+, 𝜎𝑏

− 0 0 178, 0 0, 50 0 𝑀𝑃𝑎 

𝜎𝑐
+, 𝜎𝑐

− 0 0 178, 0 0, 300 0 𝑀𝑃𝑎 

𝑒𝑏
+, 𝑒𝑏

− 1 1 10, 0 12, 12 1 𝑈𝑛𝑖𝑡𝑙𝑒𝑠𝑠 

𝑒𝑐
+, 𝑒𝑐

− 1 1 10, 0 12, 6 1 𝑈𝑛𝑖𝑡𝑙𝑒𝑠𝑠 

𝜎𝑙
+, 𝜎𝑙

− 0 00 0 0, 75 0 𝑀𝑃𝑎 

𝑣 1.0 ∙ 10−21 1.0 ∙ 10−21 1.0 ∙ 10−21 1.0 ∙ 10−21 1.0 ∙ 10−21 𝑚3 

𝜏 0.001 0.001 0.001 0.001 0.001 1 𝑠⁄  

𝐾 1.38 ∙ 10−23 1.38 ∙ 10−23 1.38 ∙ 10−23 1.38 ∙ 10−23 1.38 ∙ 10−23 𝐽 𝑘𝑔⁄  

ℎ𝑐 - - 15.0 - - 𝑊 𝑚2 ∙ 𝐾⁄  

𝑐 - - 450 - - 𝐽 𝑘𝑔 ∙ 𝐾⁄  

𝜌 - - 7,340 - - 𝑘𝑔 𝑚3⁄  

𝛼 - - 3,867 - - 𝑚2 𝑚3⁄  
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Figure 72: Flow chart of essential equations for model implementation 

6 2-D Model 

6.1 Chapter Overview 

In this chapter, we extend the model to a multiaxial case where the SMA material experiences both normal 

and shear transformations. To accomplish this, we construct a free energy on a 2-D, normal strain-shear strain 

domain. This allows the identification of four mesoscopic martensite variants and a model that can be applied to 

any combination of axial and shear loading. The chapter begins with a summary of the experimental data that 

motivates the formulation and is also used later to test/validate the model. We introduce the model by first 
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proposing a mesoscopic arrangement of four martensitic variants that could result in the macroscopic deformations 

observed in the experiments. Identification of specific mesoscopic phases allows us to construct mesoscopic 

Helmholtz and Gibbs free energies. In this section we also define material parameters, latent heat properties, as 

well as the transformation criteria which are new and unique to the 2-D model. After construction of the 2-D free 

energy, we use it to derive the macroscopic stress-strain equations and the kinetics law. The kinetics law is based 

on the 1-D version presented in the Kinetics chapter but has been newly formulated to accommodate the multiple 

transformations paths possible in a 2-D free energy landscape. We conclude the chapter by showing simulations 

of a variety of experiments and discussing the model’s performance.  

6.2 Experimental Motivation 

The RR experimental and modeling program was discussed in the introduction section, but mainly from the 

perspective of modeling approaches. The central piece of this effort was an extensive set of experiments that 

examined NiTi wire specimens under numerous temperature, tensile stress, and shear stress conditions. We will 

use the results of these experiments to develop and test the 2-D model so we begin with a summary of the data.  

6.2.1 Roundrobin SMA Experiments 

The RR data set is broken into three major sets, with different subdivisions in each. Table 5 shows a list of 

the experiments within each group along with identification numbers (left column) that are assigned here for 

concise reference back to a particular test or group.  

Data Set ID Description of the experiment 

Set 1 Uniaxial tension tests, Includes 5 sets of experiments 

Set 1. 1 Wire training prior to the tension tests, 100 load-unload cycles 

Set 1. 2 Tension tests with a full load-unload cycle, At 7 temperatures 

Set 1. 3 Tension tests with a partial load-unload cycle, At 7 temperatures 

Set 1. 4 Cooling-heating cycles under constant stress, 7 stress values 

Set 1. 5 Cooling-heating cycles at a fixed strain, 6 locations on the 𝜎 − 𝜀 curve 

Set 2 Combined tension and torsion tests 

Set 2. 1 Axial stress = 70 MPa 

Set 2. 1. 1 Wire training prior to the tension-torsion test, Torsion cycles at 50 C 

Set 2. 1. 2 Austenite reset – One heating cycle after training 

Set 2. 1. 3 Tension-torsion tests, Temperatures from -30 C to 50 C 

Set 2. 2 Axial stress = 132 MPa 

Set 2. 2. 1 Wire training prior to the tension-torsion test, Torsion cycles at 50 C 

Set 2. 2. 2 Austenite reset – One heating cycle after training 

Set 2. 2. 3 Tension-torsion tests, Temperatures from -15 C to 50 C 

Set 2. 3 Axial stress = 194 MPa 

Set 2. 3. 1 Wire training prior to the tension-torsion test, Torsion cycles at 50 C 

Set 2. 3. 2 Austenite reset – One heating cycle after training 

Set 2. 3. 3 Tension-torsion tests, Temperatures from -10 C to 50 C 

Set 2. 4 Axial stress = 255 MPa 

Set 2. 4. 1 Wire training prior to the tension-torsion test, Torsion cycles at 50 C 

Set 2. 4. 2 Austenite reset – One heating cycle after training 

Set 2. 4. 3 Tension-torsion tests, Temperatures from 5 C to 50 C 

Set 2. 5 Axial stress = 317 MPa 
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Set 2. 5. 1 Wire training prior to the tension-torsion test, Torsion cycles at 50 C 

Set 2. 5. 2 Austenite reset – One heating cycle after training 

Set 2. 5. 3 Tension-torsion tests, Temperatures from 20 C to 50 C 

Set 2. 6 Axial stress = 379 MPa 

Set 2. 6. 1 Wire training prior to the tension-torsion test, Torsion cycles at 50 C 

Set 2. 6. 2 Austenite reset – One heating cycle after training 

Set 2. 6. 3 Tension-torsion tests, Temperatures from 20 C to 50 C 

Set 3 Constant torque tests 

Set 3. # Axial stress = 70, 132, 194, 255, 317 MPa for # = 1, 2, 3, 4, 5 respectively 

Set 3. #. 1 Wire training prior to the test 

Set 3. #. 2 Temperature cycles under constant axial stress and torque 

Table 5: List of experiments from the Roundrobin SMA Modeling program Sittner et 

al. (2009) 

The third data set, the Constant torque tests, is listed here for completeness but is not specifically addressed 

or included in the model testing. The behavior observed in Set 3 is within the capabilities of the model but does 

not require any features that are not well displayed by modeling Set 2 (the tension-torsion tests). Therefore, only 

the uniaxial tension tests (Set 1) and tension-torsion tests (Set 2) will b used to develop and test the 2-D model.  

Uniaxial Tension Tests 

The first set of uniaxial tension tests (Set 2. 1) were conducted as follows: 

1) The wire was trained with 100 tension cycles at 22 C 

2) The specimen was heated or cooled uniformly to a set test temperature 

3) The specimen was loaded and unloaded through a full, strain-controlled, tension cycle at a 

quasistatic rate 

Figure 73 shows individual plots for each specimen.  

 
Figure 73: RR data set 1. 2: Uniaxial tension tests from the RR data set 

It is important to note that these curves show signs of macroscopic localization effects, implying that grip 

effects influenced their shape along with the basic material response. The first of these observations is that, either 

during forward or reverse transformation, the responses have small stress peaks (spikes) as they enter or exit 

transformation. These appear when a small zone (or set of zones) begins to transform first and causes a small 
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change in the load cell reading before the transformation begins to propagate along the wire. The second 

localization effect is the flatness of the stress plateaus. Since these wires were trained prior to the tests, the curves 

are not expected to have the perfectly flat plateaus associated with virgin, single crystal specimens. However, 

some of the curves (73e and f for example) have very flat transformation zones. In a trained specimen, flat stress 

plateaus can also be caused by grip effects. The transformation begins at the ends of the wire and the overall 

stress-strain response reflects the transformation traveling along the wire as much as the fundamental material 

behavior.  

The next set of uniaxial tests was similar to the first except it included a partial unload cycle. The tests were 

conducted in the following sequence: 

1) Wire training – 100 tension cycles at 22 C 

2) Allow the specimen to uniformly reach the test temperature 

3) Load to ≈4% strain, which is near the middle of the forward transformation plateau 

4) Unload enough to reach (or nearly reach) the reverse plateau 

5) Reload beyond the point of complete transformation (≈8% strain) 

6) Unload to zero load (not necessarily zero strain)The specimen was loaded and unloaded through a 

full, strain-controlled, tension cycle at a quasistatic rate 

This data is shown in Figure 74.  

 
Figure 74: RR data set 1. 3: Uniaxial tension tests with partial load-unload cycles, 

Individual plots 

Note here that the responses have very similar stress localization effects when compared to the specimens 

that did not have a partial cycle (Figure 73). It is not specifically stated in the documentation from the RR program 

(Sittner et al., 2009) that the same specimens from data set 1. 2 were then used for the 1. 3 experiments, but the 

similarities in the curves imply that this is the case.  

Uniaxial Thermal Cycling Tests 

In the next set of tests, the wire was tested in actuation mode under various constant axial stresses. The 

uniaxial thermal cycling tests were conducted as follows: 

1) Wire training – 100 tension cycles at 22 C 

2) Apply axial stress (hanging mass on the wire) 

3) Heat specimen to a uniform highly austenitic temperature (70 or 100 C) 

4) Cycle the temperature between ≈ -20 and 45 C (Heating/cooling rate ≈ 0. 1 𝑑𝑒𝑔 𝑠⁄ ) 
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The results from these experiments is shown in in Figure 75. The most outstanding observation is that there 

is a distinct stress threshold (between 300 and 400 MPa) below which actuation does not occur. This implies that, 

even at very low temperatures, there is an energy barrier keeping material in the austenite phase. Physically, this 

is likely due to mesoscopic inhomogeneity. Local stress and strain fields keep the austenite stable and the external 

load somewhere between 300 and 400 MPa is required to overcome them.  

 
Figure 75: RR data set 1. 4: Cooling-heating cycles under constant axial stress, 

Individual specimen plots 

The inhomogeneity effects are also seen in Figure 75 in the rounded shape of the curves as they enter and 

exit transformation in 75d-g. At the lower temperatures, there are bumps in the curves where the temperature 

increases. Phase transformation may account for some small part of this behavior, but it is mostly the linear 

thermal expansion of the wire.  

Next, in experimental data set 1. 5, wires were extended to a specified strain and held there while undergoing 

thermal cycles.  

1) Wire training – 100 tension cycles at 22 C 

2) Heat specimen to a uniform 22 C (which is a superelastic temperature) 

3) Extend the wire to a specified strain then hold (the fixed strain could be on the load or unload 

branch) 

4) Cycle the temperature between ≈ 22 and 100 C (Heating/cooling rate ≈ 0. 15 𝑑𝑒𝑔 𝑠⁄ ) 

In Figure 76 we see that three of the specimens were stopped on the forward transformation plateau and 

three were stopped on the reverse plateau but, in all cases, the overall response to the temperature cycles is the 

same. Each specimen exerts a load on the grip that is proportional to the increasing temperature and the result is 

the stress spike shown in each of the stress-strain curves. When each specimen in stopped, some of the material 

is suspended in a martensite configuration due to a combination of stress and local energy barriers. When the 

temperature is increased, the stress required to maintain this metastable martensite state also increases. At the 

point where the externally applied stress is no longer sufficient, the martensite layers return to austenite which 

causes a large increase in stress. When the temperature is lowered back to the original temperature, the metastable 

martensite state once again becomes available and the layers return to it because it minimizes the stress (and GFE) 

in the wire.  
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Figure 76: RR data set 1. 5: Cooling-heating cycles at a fixed strain, Individual 

specimen plots 

Both sets of plots (a-c and d-f) show that the return to the unloading curves is irregular. This is consistent 

with the unloading branches from the constant-temperature tension tests (Figures 73 and 74) and is assumed to be 

caused by localization effects in the wire. This completes the uniaxial tests and the next data set begins the 

multiaxial loading portion of the RR program.  

Tension-Torsion Tests 

Data set 2 represents a series of experiments where wires were loaded with a constant axial force and then 

subjected to twisting cycles. Six different axial stresses were examined and, for each one, the wire was twisted at 

several different temperatures. The test procedure for each set of tension-torsion test was as follows: 

1) Apply axial load: Hang a weight from the wire to impose a constant axial stress while leaving the 

wire free to extend or contract 

2) Training: Train the wire for 50 full twist cycles at 50 C 

3) Austenite reset: Heat the wire to 100 C then cool it to the specified temperature to remove residual 

martensite 

4) Cycling: Apply full twist cycles at the specified temperature while recording torque and axial 

strain 

The first three data sets, which represent axial stresses of 70, 132, and 194 MPa, are summarized in Figure 

77.  
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a) Set 2. 1: Axial stress = 70 Mpa 

 
b) Set 2. 2: Axial stress = 132 Mpa 

 
c) Set 2. 3: Axial stress = 194 Mpa 

 
d) Set 2. 1: Axial stress = 70 Mpa 

 
e) Set 2. 2: Axial stress = 132 Mpa 

 
f) Set 2. 3: Axial stress = 194 Mpa 

 
g) Set 2. 1: Axial stress = 70 Mpa 

 
h) Set 2. 2: Axial stress = 132 Mpa 

 
i) Set 2. 3: Axial stress = 194 Mpa 

Figure 77: Tension-torsion experiments, Axial stresses 70, 132, and 194 Mpa 

Due to the number of temperatures examined some of the curves from in Figure 77 have normally colored 

lines and some are nearly transparent. The goal of displaying the data this way is to convey the general trends 

while also maintaining clarity. The colors range from red at the higher temperature to blue at lower ones. No color 

legend is included though because the temperatures for each curve are marked on the lower left axis. The upper 

row (77a-c) shows torque-twist curves at various temperatures and the curves have the smooth shapes associated 

with uniaxial polycrystalline or highly trained specimens. The shape of the curves here, however, is mainly due 

to the radial strain variation in the wire cross section. Each radial segment of the wire experiences a different 

amount of strain at a given twist angle, therefore the global torque plateaus begin and end gradually. It is also 

expected that the wire training itself and global lcoalization effects could also be playing a role in the shape of the 

curves but it is difficult to completely parse the individual effects from the published data. Each set of curves in 

77a-c follows the expected progress of an SMA material where the high temperature mode is characterized by 

two distinct hysteresis loops that are separated by a linear austenite branch. As the temperature is lowered, the 

hysteresis loops more toward the origin and eventually merge into a single loop that is centered about the origin. 

This signifies the transition from high-temperature austenite to martensite (𝑎 ↔ 𝑚) transformations to low-

temperature martensite to martensite (𝑚 ↔ 𝑚) transformations. The effect of the axial stress become apparent 

when the temperatures where mode transitions occur are examined. At -10 C, the 70 Mpa curve (77a) still has two 
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distinct hysteresis loops, though they are beginning to merge. In the 194 Mpa set of tests however, -10 C 

corresponds to a single 𝑚 ↔ 𝑚 hysteresis loop. This implies that the axial stress acts to increase the temperature 

where the mode shift occurs.  

The axial strain-twist-temperature plots in 77d-f also show two distinct modes, one at high temperatures and 

one at low temperatures. At high temperatures each twist of the wire, whether positive or negative, results in an 

axial elongation of the wire. The magnitudes of the axial strain remain relatively constant as the temperatures 

decrease till the 𝑚 ↔ 𝑚 transition occurs. The 𝑚 ↔ 𝑚 transformations cause a large jump in the axial strain and 

the shape of the loops inverts – the axial strain at low temperatures is now maximal at zero twist. The characteristic 

shapes of the high and low temperature curves is similar for the three levels of axial stress, but the magnitudes of 

the axial strains increases with axial stress. At high temperatures the maximum axial strain is approximately 1% 

at 70 MPa (77a) and 2% at 194 MPa. Both 1% and 2% axial strain are much greater than could be expected from 

elastic deformation (194 MPa divided by the elastic modulus in the austenite phase yields 0. 03% strian). This 

implies that the effects of the axial strain are transformation-related. The increase in axial strian is more drastic at 

low temperatures. The maximum low-temperature axial strain at 70 Mpa is about 3% and almost 6% at 194 Mpa.  

The high-temperature, low-temperature modes can also be seen in the axial strain-time-temperature plots in 

77g-i. These curves more clearly illustrate the racheting behavior that occurs at temperatures in the transition 

zone. At 194 Mpa (77i), both the -5 C and 0 C curves begin their oscillations at lower axial strians, similar to the 

high temperature curves. But, after a few cycles, they work their way up to the higher level of the low temperature 

mode. This implies the presence of microscopic or mesoscopic phase field evolution. The initial, temperature-

induced, phase fields and local stress fields can change with cyclice loading as dislocations form, grow, shrink, 

or move. Global and macroscopic field effects (often bundled with the term localization) tend to appear in  the 

first cycle so they are likely not responsible for the racheting observed here.  

The second set of experiments, at 255, 317, and 379 MPa, are shown in Figure 78.  



94 

 

 
a) Set 2. 4: Axial stress = 255 Mpa 

 
b) Set 2. 5: Axial stress = 317 Mpa 

 
c) Set 2. 6: Axial stress = 379 Mpa 

 
d) Set 2. 4: Axial stress = 255 Mpa 

 

 
e) Set 2. 5: Axial stress = 317 Mpa 

 

 
f) Set 2. 6: Axial stress = 379 Mpa 

 
g) Set 2. 4: Axial stress = 255 Mpa 

 
h) Set 2. 5: Axial stress = 317 Mpa 

 
i) Set 2. 6: Axial stress = 379 Mpa 

Figure 78: Tension-torsion experiments, Axial stresses 255, 317, and 379 Mpa 

The same trends continue at the three higher levels of stress. The transition temperature continues to increase 

with axial stress; the transitions begin at 40 C in the 379 Mpa data set. This is a 60 C difference from the 70 Mpa 

experiments. The mode shapes in the torque-twist-temperature curves are similar but the magnitude of the axial 

strain continues to increase as well. The maximum axial strain in the high temperature, 379 Mpa cycles is over 

4% and it reaches as high as 8% at low temperatures. It is also noteworthy that the minimum strain during the 

high-temperature cycles, increases with axial stress. From the appearance of the torque-twist curves at high 

temperatures, the material is passing through the austenite phase as the twist passes through the torque-twist origin. 

The austenite phase, however, is associated with linear elastic behavior and therefore the axial strain at zero twist 

should reflect the linear axial response of the wire. This is roughly true for the lower levels of axial stress (Figure 

77) but the zero-twist axial strain is between 0. 5 and 2% for the higher axial stress data sets. This implies that 

some additional, residual, strain has been imposed on the austenite configuration.  

Summary of Critical Transformation Stresses 

The data published from the RR tension-torsion experiments was in the form of torque and twist. To develop 

the theoretical model, which operates in the stress-strain-temperature domain, it was necessary to estimate an 
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effective shear stress to associate with each torque plateau. Due to the nonlinear stress-strain behavior in SMA 

materials, the standard torque-shear stress relations were not applicable. The conversion from torque into an 

effective shear stress is discused further with Figure 98. Figure 79 shows five sets of forward transformation 

stresses, one for each of the tension-torsion data sets (excluding the 379 Mpa set).  

 
Figure 79: Forward transformation stresses from the tension-torsion experiments 

Since focus of this plot is the critical stress for 𝑎 → 𝑚 transformation, the stress values that correspond to 

low-temperature (𝑚 ↔ 𝑚) transformations have been made semi-transparent. Figure 79 shows that the critical 

stresses are approximately linear with temperature, which is consistent with typical tensile tests on SMA materials. 

The figure also shows a trend that is not easily observed in the torque-twist plots – the critical shear stresses 

decrease with increasing axial stress. The physical explanation for this is easily described in terms of energy 

barriers and wells. Each axial stress represents a force attempting to pull layers out of the austenite well. As this 

constant force increases, the amount of torque required to pull the layers out of the energy well is lower. It should 

also be noted, however, that the two lowest values of axial stress (70 and 132 MPA) have almost overlapping 

transformation stress curves. This implies that the relationship between critical shear stress and axial stress is 

limited to axial stresses above some threshold between 132 and 194 MPa.  

Figure 80 shows the effective shear stresses associated with the reverse (𝑎 ← 𝑚) transformations; once again, 

the transformations that are considered to be 𝑚 ↔ 𝑚 are semi-transparent.  

 
Figure 80: Reverse transformation stresses from the tension-torsion experiments 

The set of curves in Figure 80 are roughly linear and the curves get lower as the axial stress increases. The 

vertical spread between the curves is more drastic than in Figure 79 which means the axial stress has a greater 

effect on the reverse transformation threshold. The 70 and 132 MPa curves are also similar here, but they begin 
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to deviate at lower temperatures. It is important to note that the slopes of the curves in Figure 80 are notably 

different than the slopes of the curves in 79. This indicates temperature-dependent hysteresis behavior, which was 

added to the 1-D model in Chapter 5. In both the tensile tests and the tension-torison tests, the hysteresis loops get 

narrower as the temperature increases.  

The transformation stresses in the uniaxial tension tests were calculated in a more straightforward manner, 

as the engineering stresses (which means no consideration of wire diameter changes). These are summarized in 

Figure 81, where the difference in slopes is also apparent.  

 
Figure 81: Uniaxial transformation stresses across a range of temperatures 

The stress values in Figure 81 are significantly higher than those in Figures 79 and 80. This can mostly be 

attributed to the difference between normal stiffness (Young’s modulus) and shear stiffness (shear modulus). On 

a free energy landscape, the stiffness equates to the energy well curvature and a lower-curvature well requires less 

stress to pull layers out. For this reason, it is expected that a lower amount of stress is required to initiate a shear 

transformation.  

6.3 Introduction to the 2-D Model 

The 2-D model is aimed at an SMA wire that can experience axial strain or can be twisted (shear strain) and 

shown in Figure 82b.  

 
Figure 82: Helmholtz free energy domains for a wire-like specimen (a) 1-D 

interpretation, (b) 2-D, axial-torsion, interpretation 

The main model is a macroscopic constitutive (point-wise) model for the wire material, meaning that it 

represents the stress-strain-temperature behavior of the macroscopic wire but does not consider field variations 

along the wire or through the cross section. It is well established that macroscopic field effects (such as 

transformation localization and front motion) play a significant role in the overall behavior of SMA specimens 
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and it is likely that they contribute to many of the effects observed in the RR experiments. This chapter focuses 

on the core constitutive model which neglects field effects as well as the influence of neighboring material. 

Incorporating this model into a full 3-D field solution is left as an opportunity for future work.  

In order to account for the linear variation in shear strain through the cross section, we evaluate multiple 

independent instances of model at multiple “points” through the radius and then integrate their individual 

responses to get the global wire response. This is shown in Figure 112 and discussed further in the Macroscopic 

Model section. The use of multiple instances of the macroscopic model and combining their results at a higher 

level introduces another scale to the system. We use the term “Global” to distinguish the collective response of 

the integration points from the response of a single macroscopic point. The following list summarizes the four 

different scales that motivate the model and play a role in its application.  

Global → This scale represents the entire wire and is assumed from the collective response of each integration 
point. Each integration point is an independent instance of the macroscopic model experiencing a 
different amount of shear strain and stress.  

Macroscopic → This is the scale of the main material model which represents the stress-strain-temperature behavior of 
the SMA material. The scale is macroscopic compared to the underlying SMA effects, but this is the 
point-wise, continuum material law for the global wire body.  

Mesoscopic → This represents the scale of the austenite and martensite phase fields (arrangements of layers) and is 
much smaller than the macroscopic scale. The multiwell free energy that describes the hysteretic and 
temperature-dependent SMA behavior is formulated at this scale.  

Microscopic → This is the scale of the atomic lattice and martensite correspondence variants. It takes many alternating 
layers of correspondence variants to form a single habit plane variant, which is the fundamental material 
element at the mesoscopic scale. This scale is not directly addressed by the model but motivates the 
physics and is included for completeness.  

Now we focus on the mesoscopic scale to identify the martensitic variants and propose how they can 

collectively produce the macroscopic effects observed in the RR experiments.  

6.4 Mesoscopic phase field motivation 

We postulate that all of the macroscopic effects observed in the RR tension-torsion (as well as the tension) 

experiments can be explained and modeled using a 2-D, multiwell HFE and four variants of martensite. We begin 

with the concept of a lattice invariant shear, which is a simple shear on a habit plane that is oriented at some angle 

as sketched in Figure 83. From the perspective of the X-Y system, the lattice invariant shear results in a 

combination of axial (X) and shear (XY) strain, where the magnitude of each depends on the habit plane angle.  

 
Figure 83: Lattice invariant (simple) shear strain in the habit plane system vs. 

multidimensional shear strain in the specimen system 
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In actual SMA materials, the habit plane variants form simultaneously in clusters that have numerous 

orientations and configurations. These clusters, often called plate groups, usually form in symmetric regions of 

layered patterns as shown in Figure 84.  

 
Figure 84: Sketches of observed self-accommodating patches of habit plane variants 

(a) spear-like plates from Ziolkowski (2015), (b) parallel plates from Ziolkowski 

(2015), (c) triangle pattern found in  Ziolkowski (2015), Otsuka and Ren (2005), and 

Gao et al. (2000). (d) Diamond pattern from Patoor et al. (2006) 

We do not need to resolve the specific shape, number, or orientation of plate groups. The wells in the 

mesoscopic free energy only need to represent the average states of strain associated with a dominant set of 

variants. Here, with a set of idealized sketches, we show how the two pairs of habit plane variants assumed by the 

model can result in any combination of +/- axial deformation and +/- twist in a wire-like body.  

Continuing with the idea of habit plane groups forming at various orientations, Figure 85 shows the four 

variants proposed in the current model arranged in two hypothetical plate groups.  

 
Figure 85: Lattice deformation for each plate group and variant distribution 

Each strip of sheared rectangles is referred to as a layer can be though of as a representative volume (or 

material) element (RVE) at the mesoscopic scale, though no individual layer is ever resolved. A layer can assume 

the parent austenite phase or one of the four martensite variants. Each martensite variant in Figure 85 is signified 

by its habit plane angle and whether it is shearing to the left or right; they are also colored to help with the 

distinciton. 85a shows a plate group with a positive habit plane angle and three stages of defromation. At the far 
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left, the mesoscopic patch is in a self-accommodated configuration where the alternating layers are in roughly 

equal proportions. The average strain for the entire patch is zero; this effect is also called twinning. The in the 

center and far right states, the population of layers is becoming increasingly biased in favor of variant 2. As a 

result, the overall shape of the patch elongates and shears upward. With respect to the corrdinate system shown, 

this represents a positive axial strain 𝜀 and a negative shear 𝛾. 85b shows a similar plate group except the habit 

plane is now negative. The far left configuration is fully twinned and signifies zero total strain. The two images 

to the right illustrate the phase field unfolding such that variant 3 diminishes and variant 1 dominates. The resulting 

deformation here is a positive axial strain and a positive shear. In 85c we return the plate group from 85a, 

beginning in the same twinned state. Now, the phase fraction of variant 4 grows at the expense of variant 2. The 

the entire patch now undergoes a negative axial (compressive) strain and a positive shear. Similarly, 85d begins 

with same plate group as 85b and shows the mesoscopic patch when variant 3 becomes prevalent. Both the axial 

strain is and shear are now negative. The variant numbers 1-4 are used throughout this chapter and as indices in 

the model formulation. The details about each variant are summarized here in Table 6.  

Variant 

ID 

Habit Plane 

Angle 

Habit Plane Shear 

Direction 

Resulting Normal 

Strain 𝜀 
Resulting Shear 

Strain 𝛾 

Graphical 

Symbol 

1 −𝜃 Left +𝜀𝑅 +𝛾𝑅  

2 +𝜃 Left +𝜀𝑅 −𝛾𝑅  

3 −𝜃 Right −𝜀𝑅 −𝛾𝑅  

4 +𝜃 Right −𝜀𝑅 +𝛾𝑅  

Table 6: Summary of martensitic variants  

Figure 85 shows each variant in free-standing, 2-D patch of mesoscopic material. We extend this to a 3-D 

wire by breaking the wire into radial slices (tubes) where each tube is dominated by one axial component of 

normal strain and shear in the axial-tangential plane. Figure 86 shows the mesoscopic material patches from Figure 

85 mapped onto a radial slice of a wire-like body.  

 
Figure 86: Proposed combinations of habit plane variants occurring in the tension-

torsion specimens 
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The global, wire body that can undergo twist or axial deformation is shown in 86a. A macroscopic material 

element is illustrated in b where the state of deformation can be described by the strains 𝜀 and 𝛾. Any combination 

of mesoscopic variants can exist with a single macroscopic element and 86c, d, and e show a few different potential 

mesoscopic arrangements. The macroscopic model samples the mesoscopic free energy to assess the most 

probable distribution of variants. Any number of arrangements like those shown in Figures 85 and 86 could 

produce a given set of phase fractions, so the specific mesoscopic arrangement (phase field) in the does not need 

to be resolved. It is important, however, that each variant is associated with a specific deformation and that the 

two plate groups yield the same components of strain but with opposite signs. This must be the case for the set of 

four variants to produce all of the transformation modes observed in the RR experiments (uniaxial tension and 

combined tension-torsion). The symmetry of the two groups also allows pure shear behavior, though this mode 

was not present in the RR data set. Figure 87 shows the wire in pure tension and how the two plate groups unfold 

in such a way that uniaxial tension is observed at the macroscopic scale.  

 
Figure 87: Mesoscopic variants 1 and 2 resulting in axial-only deformation at the 

macroscopic scale 

The presence of both plate groups allows the shear components of the deformation to cancel resulting in 

uniaxial tension at the macroscopic (and therefore global wire) scale. Figure 88 shows an alternate configuration 

where the wire is being twisted with no axial deformation.  

 
Figure 88: Mesoscopic variants 1 and 4 resulting in shear-only deformation at the 

macroscopic scale 

Once again, the plate groups break their internal symmetry but unfold such that the axial strains negate one 

another. Figures 87 and 88 represent the two extremes where the plate groups have prefectly opposing responses 

in one strain axis. Under multiaxial loading, the symmetry is broken the the resulting macroscopic behavior is a 
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combination of normal and shear strain. Next, we introduce a mesoscopic HFE landscape that reflects the four 

variants from Figures 85-88.  

6.5 Mesoscopic Free Energy 

From a thermodynamics perspective, the strain state associated with each variant represents a stable well on 

a multiwell free energy. We assume that a large population of mesoscopic layers is governed by a single free 

energy landscape and that different numbers of layers can occupy each phase. The 2-D HFE is shown in Figure 

89 at a temperature where all four martensite phases and the parent austenite phase are stable.  

 
Figure 89: Helmholtz free energy landscape in a normal strain, shear strain domain 

Each martensite variant occupies a quadrant in the normal strain – shear strain domain while the parent 

austenite well rests at the zero-strain origin. Each well is offset from the origin in both strain axes; these offsets 

represent the stress-free (residual) strains as in the 1-D model. These strains are identified in the same way as the 

1-D model, by projecting the superelastic martensite branch to the zero-strain axis (or from actuation experiments). 

The material parameters are discussed in more detail later in this chapter.  

The macroscopic strain is determined from the weighted average of the mesoscopic layers in each phase. As 

the system stress and temperature change, layers jump from one well to the other which give rise to stress-driven 

and temperature-driven transformations. Figure 90 shows the eight possible transformation paths.  

 
Figure 90: Possible transformation paths (a) Forward → austenite to martensite, (b) 

Reverse → martensite to austenite, (c) Martensite to martensite 

The four paths in 90a are austenite-to-martensite transformation and we call these “forward” transformations 

for brevity. The reverse paths are shown in 90b and the four possible martensite-to-martensite paths are shown in 

c. The martensite-to-martensite transformations represent a behavior often called martensite reorientation. It 



102 

 

should be noted that there is no path across the austenite well. Layers sometimes jump into the austenite well and 

quickly jump out to the opposite side, but the jump across the austenite well is not necessary for the model to 

represent the desire behavior.  

Figure 91 shows the free energy landscape at three different temperatures and with a series of balls resting 

in the wells. The balls are a graphical representation of how the layers are distributed between the phases. Within 

each well, the balls are assigned slight random offsets from the well minimum; this allows us to see multiple balls 

and maintain the idea of a population of layers. In an actual SMA solid, the thermal activation would be very low 

and the balls in a given well would appear indistinguishably at the minimum.  

 

(a) Temperature 𝑇1 (b) Temperature 𝑇2 > 𝑇1 (c) Temperature 𝑇3 > 𝑇2 

Figure 91: Helmholtz free energy landscape showing a temperature-induced 

transformation 

Figure 91a shows a temperature below 𝑇𝑎 (the austenite start temperature) where the austenite phase is 

completely unstable. The cooling took place in a stress-free environment and the layers distributed themselves 

equally between the four martensite wells. In this situation, no macroscopic strain would appear as is commonly 

observed in stress-free cooling of SMA specimens. In 91b, the temperature has increased to a value above 𝑇𝑎 but 

still below 𝑇𝑚 (the martensite start temperature). The austenite well has reformed (become convex) but not layers 

jump into it because of the energy barriers separating it from the martensite wells.  

Figure 92 shows a stress-induced transformation due to uniaxial tensile loading; this free energy 

configuration corresponds to the case in Figure 87.  

 

a) Zero stress b) Tensile stress c) Tensile transformation stress 

Figure 92: Macroscopic tensile transformation and underlying mesoscopic Gibbs 

free energy behavior 

The free energy shown here is the GFE because it is distorted by the external stress. The system begins (92a) 

at an intermediate temperature where the material is fully austenitic. In 92b, a tensile stress has been applied and 

the two wells on the tensile side of the landscape become lower and their convex regions grow – this signifies that 

tese phases are becoming more favorable. The austenite well, on the other hand, is becoming less favorable as it 
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is shallower and has a smaller strain footprint. The layers are still trapped there however because a small energy 

barrier still remains in the path to the two, much lower, martensite wells. The stress-strain curve floating above 

the free energy shows that the macroscopic response is still on the linear austenite branch but is very close to the 

transformation plateau. In 92c, the stress (and therefore the GFE) has just reached the critical state where the 

barriers are eliminated and the layeres are free to jump into the more favorable phases. The results is a large 

increase in tensile strain with no change in stress which is shown on the stress-strian curve. Since there is no shear 

stress, the two tensile wells are equally desirable and the layers fill them equally. The mesoscopic shear strain 

symmetry is maintained and therefore no macroscopic shear strain is observed.  

Figure 93 shows the GFE under pure shear loading (which corresponds to Figure 88).  

 

(a) Zero stress (b) Pure shear stress (c) Pure shear transformation stress 

Figure 93: Macroscopic shear transformation and underlying mesoscopic Gibbs free 

energy behavior 

At zero stress (93a) the system is identical to the uniaxial tension case (92a); all of the layers are in the 

central austenite well and average strain is zero. In 93b, a positive shear stress has been appplied and the two 

energy wells on the +𝛾 side of the landscape have become wider and deeper. The stress-strain plot shows that the 

macroscopic response is still on the linear branch, but that it is close to the transformation threshold. This is 

indicated on the GFE by the fact that the austenite well has become smaller and the barrier keeping the layers in 

it is shrinking. The GFE has reached the critical value in 93c, due to shear loading, and the layers jump equally 

into the two + shear wells. The average axial strain remains zero because of the symmetric transformation but the 

average shear strain increases suddenly with no change in stress.  

Next, in Figure 94, we show an example of combined loading that is similar to the RR tension-torsion 

experiments.  
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Figure 94: Macroscopic multiaxial loading and underlying mesoscopic Gibbs free 

energy behavior 

The system begins in a fully austenite state (94a) and then a tensile stress is applied in b. The tensile stress 

is not sufficient to cause transformation but tilts the GFE in the +𝜀 direction. In 94c, the tensile stress is maintained 

and an additional shear stress is applied. The shear stress is also not large enough to cause any layers to jump 

wells but this stage shows an important coupling effect. The two wells on the +𝛾 side of the landscape are no 

longer symmetric about the +𝜀 axis. The sustained tensile stress causes the +𝜀,+𝛾 well to be the more favorable 

of the two +𝛾 wells. Now, in 94d, the shear loading continues to the point of transformation and we see that the 

symmetry is broken and more wells jump into the  +𝜀,+𝛾 well than the  −𝜀,+𝛾 well. The consequence of this is 

illustrated in 94l, which shows a macroscopic plot of the axial strain vs. shear strain. We see that the path from 

state c to state d signifies a large jump in both shear and axial strian, eve though the axial stress is constant. The 

presence of the sustained tensile stress breaks the symmetry between the two +𝛾 phases and introduces axial-

shear coupling.  

In 94e, the shear stress unloading as begun; the two wells are not quite as deep, but no additional 

transformations initiate. Since no transformations occur, the macroscopic stress-strain response between d and e 

is linear along the 𝜏 − 𝛾 unloading branch (k). The 𝜀 − 𝛾 plot (l) shows a small reduction in shear strian with no 

change in tensile strain. 94f signifies the reverse transformation where all of the layers return to the parent austenite 

well. There is a large decrease in shear strain (seen in k and l) and the axial strain associated with the 

transformation also disappears (l). The axial strain in f is the same as it was in states b and c; the linear-elastic 

strain associated with the external axial stress. In 94g, the shear unloading continues past zero stress to become a 

reverse loading. Both of the −𝛾 wells have become more convex but the constant axial stress makes the  +𝜀,−𝛾 

well the wider and deeper of the two. The critical free energy has been reached in h and the layers transform in 

the −𝛾 direction. Because of the bias toward the tensile side, more of the layers choose the  +𝜀,−𝛾 well and the 

result is, once again, a transformation that is associated with both axial and shear transformations. The unloading 

proceeds in a similar manner and the paths are shown in k and l. The resulting 𝜏 − 𝛾 plot has rotated symmety 

about the 𝜏 axis and the 𝜀 − 𝛾 plot is mirror symmetric about the 𝜀 axis. An important obervation here is that the 
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characteristic shape of the 𝜀 − 𝛾 response is similar to the experimentally observed loops in the high-temperature 

tension-torsion tests shown in Figures 77-78.  

6.5.1 Helmholtz Free Energy 

In Chapter 5, we presented a version of the 1-D kinetics equations where only the convex free energy wells 

needed to be defined (Eqn. 55). In this section, we take a similar approach to present a 2-D model where only the 

convex energy wells are required. If we neglect the barriers connecting the wells in Figure 94a, we can describe 

the free energy with five individual, parabolic surfaces like those sketched in Figure 95.  

 
Figure 95: Helmholtz free energy landscape with only the convex wells resolved, At 

an intermediate temperature where all five phases are stable 

It should be noted that the dimensions, locations, and curvatures in Figure 95 have been exaggerated to 

discuss important features of the HFE functions. Each of the HFE wells is written as a separate function 𝜓𝑖  but 

they all have same mathematical form, given by Equation 177.  

𝜓𝑖(𝜀𝑖 , 𝛾𝑖 , 𝑇) =
𝐸𝑖
2
(𝜀𝑖 − 𝜀𝑖

𝑅)
2
+
𝑌𝑖
2
(𝛾𝑖 − 𝛾𝑖

𝑅)
2
+𝑀𝑖(𝜀𝑖 − 𝜀𝑖

𝑅)(𝛾𝑖 − 𝛾𝑖
𝑅) + 𝛽𝑖(𝑇) (177) 

𝑤ℎ𝑒𝑟𝑒 

𝑖 → 𝑉𝑎𝑟𝑖𝑎𝑛𝑡 𝑖𝑛𝑑𝑒𝑥 (𝑖 ∈ 1 − 5) 

𝜀𝑖 → 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑜𝑟𝑚𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛 𝑜𝑓 𝑝ℎ𝑎𝑠𝑒 𝑖

𝑌𝑖 → 𝑆ℎ𝑒𝑎𝑟 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 𝑜𝑓 𝑝ℎ𝑎𝑠𝑒 𝑖

𝛾𝑖
𝑅 → 𝑆ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑎𝑖𝑛 𝑜𝑓𝑓𝑠𝑒𝑡 𝑓𝑜𝑟 𝑤𝑒𝑙𝑙 𝜓𝑖
𝛽𝑖 → 𝐶ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑓𝑟𝑒𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑝ℎ𝑎𝑠𝑒 𝑖

𝐸𝑖 → 𝐸𝑙𝑎𝑠𝑡𝑖𝑐 𝑚𝑜𝑑𝑢𝑙𝑢𝑠 𝑜𝑓 𝑝ℎ𝑎𝑠𝑒 𝑖

𝜀𝑖
𝑅 → 𝑁𝑜𝑟𝑚𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛 𝑜𝑓𝑓𝑠𝑒𝑡 𝑓𝑜𝑟 𝑤𝑒𝑙𝑙 𝜓𝑖
𝛾𝑖 → 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑎𝑖𝑛 𝑜𝑓 𝑝ℎ𝑎𝑠𝑒 𝑖

𝑀𝑖 → 𝑁𝑜𝑟𝑚𝑎𝑙 − 𝑠ℎ𝑒𝑎𝑟 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

 

For each variant 𝑖, 𝜓 expresses the HFE for all strains where that phase is stable. Each HFE function Figure 

95 has an oblong shape, due to the difference in stiffness between the tensile and shear deformation. It should also 

be noted that the oval shapes of the four martensite wells (𝜓1 −𝜓4) are rotated, each about an axis parallel to the 

𝜓 axis and extending from the well minimum. This is the effect of the coupling parameter 𝑀𝑖. Like the 1-D model 

from Chapter 4, the austenite well always rests at zero chemical free energy as it does in Figure 95. The marteniste 

wells, however, translate up or down with temperature according to their chemical free energy 𝛽𝑖(𝑇). At lower 

temperatures, the martensite wells become lower and more stable compred to the central austenite well and the 

inverse is true at high temperatures.  

Figure 95 also illusrates several material property assumptions that are specific to the tension-shear system 

under examination. The first assumption is the martensite wells are mirror symmetric with respect to each strain 

axis. This means that the normal and shear stain offsets have equal magnitudes.  

𝜀1
𝑅 = +𝜀𝑅 𝜀2

𝑅 = +𝜀𝑅

𝜀2
𝑅 = −𝜀𝑅 𝜀4

𝑅 = −𝜀𝑅
𝑤ℎ𝑒𝑟𝑒 𝜀𝑅 →

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑛𝑜𝑟𝑚𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟,
𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑙𝑦 𝑓𝑟𝑜𝑚 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑑𝑎𝑡𝑎
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𝛾1
𝑅 = +𝛾𝑅 𝛾2

𝑅 = −𝛾𝑅

𝛾3
𝑅 = −𝛾𝑅 𝛾4

𝑅 = +𝛾𝑅
𝑤ℎ𝑒𝑟𝑒 𝛾𝑅 →

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑎𝑖𝑛 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟,
𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑙𝑦 𝑓𝑟𝑜𝑚 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑑𝑎𝑡𝑎

 

Each martensite well is in Figure 95 is rotated about the 𝜓 axis and this represnts the effect of the coupling 

parameter 𝑀. In the figure, we have assumed each well is rotated by the same amount, which means 𝑀 has the 

same magniude for each variant.  

𝑀1 = 𝑀 𝑀2 = −𝑀

𝑀3 = 𝑀 𝑀𝑣 = −𝑀
𝑤ℎ𝑒𝑟𝑒 𝑀 →

𝑁𝑜𝑟𝑚𝑎𝑙 − 𝑠ℎ𝑒𝑎𝑟 𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟,
𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝑢𝑠𝑖𝑛𝑔 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑑𝑎𝑡𝑎

 

This parameter governs axial shear coupling within each energy well, which is the elastic behavior region. 

In theory, such a parameter could account for the type of behavior seen in bottom of Figure 77, where the torsional 

cycles cause axial oscillations. Linear axial-shear coupling could also be the cause for the slopes in the axial strain-

twist plots in the center row of the same figure (77). These observations are the motivation behind initially 

including this term. In model operation, however, the system response is only sightly affected by 𝑀. Of course, a 

very large value can cause very different outcomes but these differences to not change the results in a way that 

makes it more accurate. We find that the axial-shear coupling in the model is dominated the presence of axial 

stress and shear stress in the Gibbs free energy and that linear coupling in the HFE takes a back seat. In this light, 

we drop the linear coupling term for the remainder of the main dissertation. Removing 𝑀 significantly simplifies 

several model equations. To preserve a record of the full theory, we have included the model equations that 

maintain the coupling term in Appendix 10.5.  

Now we return to Equation 177 final term, which is the chemical free energy. There are four relative chemical 

free energy parameters, one for each martensite variant, but we assume here that they are all equal. It should be 

noted that this assumption is an idealization and is only reasonable because the system we address is dominated 

by two very similar martensite variants.  

𝛽1(𝑇) = 𝛽2(𝑇) = 𝛽3(𝑇) = 𝛽4(𝑇) = 𝛽(𝑇) 𝑤ℎ𝑒𝑟𝑒 𝛽(𝑇) → 𝑀𝑎𝑟𝑡𝑒𝑛𝑠𝑖𝑡𝑒 𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑓𝑟𝑒𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 

The CFE 𝛽(𝑇) is determined from experimental data at two different temperatures but is derived in the 

context of the GFE, which will be defined in the next section. Now, returning to the HFE equation (177), 𝜓𝑖  

describes the free energy at any location (combination of 𝜀 and 𝛾) within the convex energy wells and producing 

surfaces like those shown in Figures 95. For model operation, however, we assume that the layers in each phase 

exhbit the same low thermal activation behavior discussed in the Kinetics section. This means that the layers all 

cluster at the well minimum and that the average strains can be determined from the state of stress and the HFE.  

𝜎(𝜀𝑖) =
𝜕𝜓𝑖
𝜕𝜀𝑖

→ 𝜎(𝜀𝑖) = 𝐸𝑖(𝜀𝑖 − 𝜀𝑖
𝑅) → 𝜀𝑖(𝜎) =

𝜎

𝐸𝑖
+ 𝜀𝑖

𝑅  (178) 

𝜏(𝛾𝑖) =
𝜕𝜓𝑖
𝜕𝛾𝑖

→ 𝜏(𝛾𝑖) = 𝑌𝑖(𝛾𝑖 − 𝛾𝑖
𝑅) → 𝛾𝑖(𝜏) =

𝜏

𝑌𝑖
+ 𝛾𝑖

𝑅  (179) 

In Equations 178 and 179, 𝜎 and 𝜏 are the nominal mesoscopic stresses (normal and shear, respectively), 

which are assumed to be equal to the macroscopic stresses. This why no distinction is made between the 

mesoscopic and macroscopic stress parameters. These constitutive equations neglect the spatial variations in stress 

as well as strain that are known to exist at the mesoscopic scale in actual SMA materials. The justification behind 

this assumption is that the free energy is used to describe the average (most probable) behavior of the mesoscopic 

system without actually resolving its configuration. In cases where the mesoscopic texture is too significant to be 
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neglected, the effects can be introduced via the kinetics equations thus maintaining the simple form of the stress-

strain relationships - This was introduced in the context of the 1-D model in section.  

6.5.2 Gibbs Free Energy 

The HFE (Equation 177) dictates the stress-strain relationships within each phase, but it is the GFE that 

governs the kinetics behavior. The GFE is a Legendre transformation of the HFE and is given by Equation 180.  

𝑔𝑖(𝜀, 𝛾, 𝑇; 𝜎, 𝜏) = 𝜓𝑖(𝜀𝑖 , 𝛾𝑖 , 𝑇) − 𝜎𝜀𝑖 − 𝜏𝛾𝑖  (180) 

Inserting Equation 177 for 𝜓𝑖  (with no coupling term) gives the following expression (181) of Gibbs free 

energy as a function of strain, stress, and temperature.  

𝑔𝑖(𝜀, 𝛾, 𝑇; 𝜎, 𝜏) =
𝐸𝑖
2
(𝜀𝑖 − 𝜀𝑖

𝑅)
2
+
𝑌𝑖
2
(𝛾𝑖 − 𝛾𝑖

𝑅)
2
+ 𝛽𝑖(𝑇) − 𝜎𝜀𝑖 − 𝜏𝛾𝑖  (181) 

As was done in the 1-D model, we use a semicolon between 𝜀, 𝛾, 𝑇 and 𝜎, 𝜏 in the function to denote that the 

strains and temperature set the HFE and that the stresses transform it into the GFE. Equation 181 can be evaluated 

at any combination of strains within the stable domain for phase 𝑖 and thus produces a set of surfaces similar to 

the convex regions in Figures 89-94. Since we assume that the layers (on average) reside at the local energy 

minimum, we can use Equation 181 to define a minimum GFE for each phase by substituting Equations 178 into 

179 for 𝜀𝑖 and  𝛾𝑖 respectively. The minimum GFE for each phase, denoted with an upper case 𝐺𝑖, is a function of 

stress and temperature, given by Equation 182.  

𝐺𝑖(𝜎, 𝜏, 𝑇) =
𝐸𝑖
2
(𝜀𝑖(𝜎) − 𝜀𝑖

𝑅)
2
+
𝑌𝑖
2
(𝛾𝑖(𝜏) − 𝛾𝑖

𝑅)
2
++𝛽𝑖(𝑇) − 𝜎𝜀𝑖(𝜎) − 𝜏𝛾𝑖(𝜏) (182) 

If substitute Equations 178 and 179, the minimum GFE expression can be rearranged and written as shown 

here.  

𝐺𝑖(𝜎, 𝜏, 𝑇) = −
𝜎2

2𝐸𝑖
−
𝜏2

2𝑌𝑖
+ 𝛽(𝑇) − 𝜎𝜀𝑖

𝑅 − 𝜏𝛾𝑖
𝑅  (183) 

Next, we discuss the experimentally measured material parameters (𝐸𝑎, 𝑌𝑎, 𝐸𝑚, 𝑌𝑚, 𝜀𝑅, 𝛾𝑅) along with the 

chemical free energy 𝛽(𝑇).  

6.5.3 Material Parameters 

In this section, we discuss the proper sequence and procedure for establishing the material parameters. 

Because the experimental data has different combinations of tension and shear behavior, a few considerations 

need to be made. The material parameters are defined in the following order: 

1) Define the tensile elastic modulus values and strain offset → From uniaxial tension test data 

and linear stress-strain 

equations 

2) Define the shear modulus values and strain offset  → From tension-torsion test data 

and linear torque-twist 

equations 

3) Define the tensile transformation stresses   → From uniaxial tension test data 

and linear stress-strain 

equations 

4) Define the shear transformation stresses   → From tension-torsion test data, 

linear torque-twist equations, 

and a nonlinear adjustment 

factor 

5) Define the chemical free energies    → Calculated from the 
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transformation stress 

parameters 

6) Define the latent heats     → Calculated from the 

transformation stresses and 

chemical free energies 

7) Define the critical free energies    → Calculated from the 

transformation stresses 

Steps 1-2: Elastic/Shear Moduli and Strain Offsets 

The first set of material parameters measured are the elastic moduli and the strain offsets (residual strains). 

The tensile properties are measured from one of the tensile test experiments as shown in Figure 96a.  

 

𝐸𝑎 = 60 𝑀𝑝𝑎 𝐸𝑚 = 30 𝑀𝑝𝑎 𝜀𝑅 = 5. 4 % 𝑌𝑎 = 17 𝑀𝑝𝑎 𝑌𝑚 = 15 𝑀𝑝𝑎 𝛾𝑅 = 6. 5 % 

Figure 96: Material parameter measurements from experimental data 

Even though a meaningful reduction in cross section occurs in the transformation zone of SMA tensile 

specimens, the engineering stress and strain are used. Also, transformations localizations (which are expected to 

be present because of the appearance of small stress spikes) are ignored in this model and thus the plots and the 

model represent the average specimen response. The shear modulus parameters (96b) are measured in a similar 

manner using one of the tension-torsion tests. We used the 70 MPa axial stress case here, but any of the axial 

stress data sets could be used.  

Step 3: Tensile Transformation Stresses 

The tensile transformations stresses are obtained the same way as in the 1-D model, by measuring the stress 

plateaus at a two temperatures.  
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𝜎𝑓𝑤𝑑
𝐻 = 665 𝑀𝑃𝑎 𝜎𝑟𝑒𝑣

𝐻 = 475 𝑀𝑃𝑎 𝜎𝑓𝑤𝑑
𝐿 = 350 𝑀𝑃𝑎 𝜎𝑟𝑒𝑣

𝐿 = 25 𝑀𝑃𝑎 

Figure 97: Transformation stress measurements from uniaxial tension experimental 

data 

Note here that we ignore the irregularities at the beginnings and ends of the transformation plateaus. These 

are the results of localization effects, which are significant in these experiment but are not included in the current 

formulation. The torque was zero during this set of experiments, so the analogous shear parameters are set equal 

to zero (𝜏𝑓𝑤𝑑
𝐻 = 𝜏𝑟𝑒𝑣

𝐻 = 𝜏𝑓𝑤𝑑
𝐿 = 𝜏𝑟𝑒𝑣

𝐿 = 0).  

Step 4: Shear Transformation Stresses 

We take a moment here to discuss an important aspect of the torsional test data, the conversion from torque-

twist (which was reported by Sittner et al.) to stress and strain. The traditional linear torque-twist/stress-strain 

equations for a cylindrical shaft would normally be used for an experiment on a wire, but they are limited to linear 

materials. The standard linear equation, 

𝜏 =
𝑇𝑜𝑟𝑞𝑢𝑒∙𝑅𝑎𝑑𝑖𝑢𝑠

𝑃𝑜𝑙𝑎𝑟 𝑚𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝑖𝑛𝑒𝑟𝑡𝑖𝑎
→ 𝑂𝑛𝑙𝑦 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑤ℎ𝑒𝑛 𝜏 = 𝑙𝑖𝑛𝑒𝑎𝑟 𝑓(𝛾), 

can be used to define the shear modulus values and strain offsets as shown in Figure 96b because the only 

parameters measured are measured from linear branches. It is important to note that the nonlinear nature of the 

stress-strain curve must be taken into account to assess the transformation shear stresses.  

 

Figure 98: Plateau torque vs. torque representing the onset of transformation 

The plateau torque, shown in 98a, is easy to identify but the shear stress associated with this torque (98d) 

are not what is predicted by the standard linear calculation (98d). We overcome this by simulating the experiment 

and establishing a reduction factor for the shear stress that is obtained with the linear equation. We begin with a 

single tension-torsion test and measure the forward plateau torque, shown in Figure 98a. Then we convert that 

torque into shear stress using the standard equation. Next, we simulate that test and use several different 
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transformation stresses, starting with the one calculated from the lieanr equation and then subsequently lower 

values. The simulation with the best fit to the data allows us to infer a stress reduction factor (𝐹𝜏) that can be 

applied to other curves. An example of this is shown in Figure 99.  

 
Figure 99: Determination of the stress reduction factor from a set of simulations 

𝜏𝐿𝑖𝑛𝑒𝑎𝑟  is the value of shear stress calculated from the mid-plateau torque and 𝜏𝐸𝑓𝑓  is the transformation 

stress used in the model. The plots show that 𝜏𝐿𝑖𝑛𝑒𝑎𝑟  must be scaled by 0. 8 to get the proper macroscopic result. 

This procedure only has to be done once. Now, we can simply measure the plateau torque from any of the tension-

torsion curves and estimate the transformation shear stress from the following equation.  

𝜏𝐸𝑓𝑓 = 𝐹𝜏 ∙
𝑇𝑜𝑟𝑞𝑢𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑙𝑎𝑡𝑒𝑎𝑢 ∙ 𝑅𝑎𝑑𝑖𝑢𝑠

𝑃𝑜𝑙𝑎𝑟 𝑚𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝑖𝑛𝑒𝑟𝑡𝑖𝑎
 (184) 

Now, measuring the transformation shear stresses from the torque-twist experiments is straightforward. The 

plateau torques are measured, the linear equation is used to calculate a shear stress, then that stress is multiplied 

by 𝐹𝜏.  

 

𝜏𝑓𝑤𝑑
𝐻 = 435 𝑀𝑝𝑎 𝜏𝑟𝑒𝑣

𝐻 = 365 𝑀𝑝𝑎 𝜏𝑓𝑤𝑑
𝐿 = 200 𝑀𝑃𝑎 𝜏𝑟𝑒𝑣

𝐿 = 35 𝑀𝑝𝑎 

Figure 100: Transformation stress measurement from tension-torsion experimental 

data 



111 

 

It should be noted that the torque-twist data shown in Figure 100 was from the 70 𝑀𝑃𝑎 axial stress data set. 

The additional axial stress is also included in the material property by setting 𝜎𝑓𝑤𝑑
𝐻 = 𝜎𝑓𝑤𝑑

𝐿 = 𝜎𝑟𝑒𝑣
𝐻 = 𝜎𝑟𝑒𝑣

𝐿 =

70 𝑀𝑃𝑎.  

These assignments conflict with those from Figure 96. This means that we choose either set to populate the 

model, not both. The normal-shear coupling in the model is generated by the GFE and not from a collection of 

normal and shear experiments. This means that the model requires only a few material properties but, in the case 

of the RR data, we have to choose one data set from many to use for the material properties. This is discussed 

further in the simulation section.  

Step 5: Chemical Free Energies 

In the 1-D model, the chemical free energy was derived from continuity conditions that assumed for the 

energy wells and the barriers. In the 2-D model, we have taken specific steps to neglect the energy barriers and 

this means we need a new approach to derive the chemical free energy parameters. Here, in the 2-D model, were 

estimate the chemical free energy 𝛽(𝑇) by examining the examining zero-driving force configurations. To begin, 

we show a set of 1-D GFE wells under zero stress (Figure 101a) and under a tensile stress in 101b.  

 
Figure 101: 1-D Gibbs free energy showing (a) martensite chemical free energy and 

(b) a zero-driving force configuration 

The tensile stress Figure 101b is precisely that needed to creaste a zero driving force configuration, i.e. the 

austenite and tensile martensite wells have the same minimum GFE. To make sure of this, we assume that the 

zero-driving force configuration occurs at some stress near the average of the experimentally measured forward 

and reverse transformation stresses. Since we have assumed that the CFE is equal for all four martensite variants, 

we can focus on one variant and write Equation 185.  

𝐺5(𝜎𝑎𝑣𝑔, 𝜏𝑎𝑣𝑔, 𝑇) ≈ 𝐺1(𝜎𝑎𝑣𝑔, 𝜏𝑎𝑣𝑔, 𝑇) → 𝑍𝑒𝑟𝑜 𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒 𝑎𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑇 (185) 

𝑤ℎ𝑒𝑟𝑒 𝜎𝑎𝑣𝑔 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝜎𝑓𝑤𝑑 , 𝜎𝑟𝑒𝑣) 𝜏𝑎𝑣𝑔 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝜏𝑓𝑤𝑑 , 𝜏𝑟𝑒𝑣)

 𝜎𝑓𝑤𝑑 , 𝜏𝑓𝑤𝑑 → { 

𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑠
𝑐𝑎𝑢𝑠𝑖𝑛𝑔 𝑓𝑜𝑟𝑤𝑎𝑟𝑑
𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑎𝑡
𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑇

𝜎𝑟𝑒𝑣, 𝜏𝑟𝑒𝑣 → { 

𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑡𝑟𝑒𝑠𝑠𝑒𝑠
𝑐𝑎𝑢𝑠𝑖𝑛𝑔 𝑟𝑒𝑣𝑒𝑟𝑠𝑒
𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑎𝑡
𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑇

 

Equation 182 is used to define 𝐺5 and 𝐺1 but that expression depends on 𝛽(𝑇) which is yet to be defined. 

Recalling that the CFE is a relative quantity and is measured with respect to the austenite phase (i. e 𝛽5 = 0), we 

see that 𝛽1, at temperature 𝑇, is the only unknown in Equation 185. Rearranging the expression to solve for 𝛽 at 

two temperatures is sufficient to derive a linear expression for the CFE vs. temperature.  

𝐺5(𝜎𝑎𝑣𝑔
𝐿 , 𝜏𝑎𝑣𝑔

𝐿 , 𝑇𝐿) = 𝐺1(𝜎𝑎𝑣𝑔
𝐿 , 𝜏𝑎𝑣𝑔

𝐿 , 𝑇𝐿) → 𝑆𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝛽(𝑇𝐿) → 𝛽𝐿 = 𝛽(𝜎𝑎𝑣𝑔
𝐿 , 𝜏𝑎𝑣𝑔

𝐿 , 𝑇𝐿)

𝐺5(𝜎𝑎𝑣𝑔
𝐻 , 𝜏𝑎𝑣𝑔

𝐻 , 𝑇𝐻) = 𝐺1(𝜎𝑎𝑣𝑔
𝐻 , 𝜏𝑎𝑣𝑔

𝐻 , 𝑇𝐻) → 𝑆𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝛽(𝑇𝐻) → 𝛽𝐻 = 𝛽(𝜎𝑎𝑣𝑔
𝐻 , 𝜏𝑎𝑣𝑔

𝐻 , 𝑇𝐻)
 (186) 

We use the two values of 𝛽 to derive a linear expression, Equation 187, for 𝛽(𝑇).  
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𝛽(𝑇) = 𝛽𝐿 +
𝑑𝛽

𝑑𝑇
(𝑇 − 𝑇𝐿) ,

𝑑𝛽

𝑑𝑇
=
𝛽𝐻 − 𝛽𝐿
𝑇𝐻 − 𝑇𝐿

 (187) 

The RR data set has multiple set of tensile and tension-torsion experiments from which 𝛽(𝑇) could be 

derived. The tension tests show forward and reverse transformations at temperatures from -25𝐶 to +60𝐶. In this 

set of experiments the layers are expected to distribute symmetrically in shear. The tension-torsion tests gives us 

forward and reverse shear transformations at various temperatures as well as varying amounts of constant tensile 

stress. Because we assume a single energy landscape and set of variants causes both the tensile and shear behavior, 

we should be able to use either set to calculate the chemical free energy 𝛽. Figure 102 shows two sets of 𝛽(𝑇) 

values, one calculated using the uniaxial tension test data and one using combined tension-torsion (70 MPa axial 

stress) data.  

 
Figure 102: Comparison of chemical free energies calculated from tension-torsion 

and uniaxial tension data 

The two curves do have almost identical slopes, which implies that the entropy differences are equal for the 

two types of transformation. The vertical difference between the curves could be attributed to several factors. It 

is only speculation that all of the martensite variants have the same chemical free energy functions. It is possible 

that, between the pure tension and tension-torsion test, the sets of variants activated have different chemical free 

energies. This would yield different curves as shown in Figure 102. It should also be pointed out that different 

inhomoegeities could be present in the tension and tension-torsion specimens. This could also manifest in different 

apparent transformation stresses, which would alter the data used to drive the 𝛽 function. For the purposes of 

opperating the model, we assume that these two curves are similar enough. The choice of which data is used to 

define the chemical free energy is dictated by which data is used to populate the eight transformation stress 

parameters (𝜎𝑓𝑤𝑑
𝐿 , 𝜎𝑟𝑒𝑣

𝐿 ,…, 𝜏𝑓𝑤𝑑
𝐻 , 𝜏𝑟𝑒𝑣

𝐻 ).  

Step 6: Latent heats 

The identification of an expression for the CFE vs. temperature allows us to define several additional caloric 

properties. We begin by parsing the CFE into an internal energy constant terms and an entropy constant-

temperature term.  

𝛽𝑖(𝑇) = 𝑢𝑖
𝑅 − 𝑠𝑖

𝑅𝑇 𝑤ℎ𝑒𝑟𝑒

𝑢𝑖
𝑅 →

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑚𝑎𝑟𝑡𝑒𝑛𝑠𝑖𝑡𝑒 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,

𝑢𝑖
𝑅 = �̂�𝑖

𝑅 − �̂�𝑎
𝑅

𝑠𝑖
𝑅 →

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑚𝑎𝑟𝑡𝑒𝑛𝑠𝑖𝑡𝑒 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,

𝑠𝑖
𝑅 = �̂�𝑖

𝑅 − �̂�𝑎
𝑅

 (188) 
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Constants 𝑢𝑖
𝑅 and 𝑠𝑖

𝑅 in Equation 188 are relative quantities, measured with respect to the austenite phase. 

The  ‘̂s in the right-most set of equations indicated absolute values and the constants are defined this way to be 

consistent with the CFE, which is a relative energy. Since Equation 187 also expresses the CFE as a function of 

temperature, we can use its slope term define the entropy costant.  

𝑠𝑖
𝑅 = −

𝑑𝛽𝑖
𝑑𝑇

𝑤ℎ𝑒𝑟𝑒
𝑑𝛽𝑖
𝑑𝑇

→ 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝑓𝑟𝑜𝑚 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠 − 𝑠𝑡𝑟𝑎𝑖𝑛 𝑑𝑎𝑡𝑎 (189) 

Now, the only unknown in Equation 188 is the internal energy constant 𝑢𝑖
𝑅 and we can find this be evaluating 

the expression at 𝑇 = 0.  

𝑢𝑖
𝑅 = 𝛽𝑖(𝑇 = 0) (190) 

Next, we can use the relationship 𝑔 = ℎ − 𝑇𝑠 (another way to express Gibbs free energy) to extract enthalpy 

ℎ from Equations 182 for 𝐺 and Equation 188 (for 𝛽). We begin by writing an expression for the driving force 

from austenite to martensite variant 𝑖.  

𝐹𝑎→𝑖 = 𝐺𝑎(𝜎, 𝜏, 𝑇) − 𝐺𝑖(𝜎, 𝜏, 𝑇) = �̂�𝑎(𝜎, 𝜏, 𝑇) − �̂�𝑖(𝜎, 𝜏, 𝑇) (191) 

Equation 191 is written in two equivalent statements, one with the relative GFE’s and once with absolute 

GFE’s. Now, we express the absolute GFE’s in terms of enthalpy, entropy constant, and temperature.  

𝐹𝑎→𝑖 = �̂�𝑎(𝜎, 𝜏, 𝑇) − �̂�𝑖(𝜎, 𝜏, 𝑇) = (ℎ̂𝑎 − 𝑇�̂�𝑎
𝑅) − (ℎ̂𝑖 − 𝑇�̂�𝑖

𝑅) (192) 

We rearrange the right-hand side of Equation 192 to have a relative enthalpy that is constistent with other 

free energy quantities (ℎ𝑖 = ℎ̂𝑖 − ℎ̂𝑎).  

𝐹𝑎→𝑖 = (ℎ̂𝑎 − 𝑇�̂�𝑎
𝑅) − (ℎ̂𝑖 − 𝑇�̂�𝑖

𝑅) = (ℎ̂𝑎 − ℎ̂𝑖) − 𝑇�̂�𝑎
𝑅 + 𝑇�̂�𝑖

𝑅 = −ℎ𝑖 + (�̂�𝑖
𝑅 − �̂�𝑎

𝑅)𝑇 = −ℎ𝑖 + 𝑠𝑖
𝑅𝑇 (193) 

Now we can write an expression for enthalpy in terms of the driving force or directly in terms of the GFE’s.  

ℎ𝑖 = 𝑠𝑖
𝑅𝑇 − 𝐹𝑎→𝑖 = 𝑠𝑖

𝑅𝑇 + 𝐺𝑖(𝜎, 𝜏, 𝑇) − 𝐺𝑎(𝜎, 𝜏, 𝑇) (194) 

Equation 194 independently gives the enthalpy for each martensite variant 𝑖 (recall that 𝑎 = 𝑁 + 1 and 𝑁 is 

the number of martensite variants). For the system examined here (the RR data set), we have assumed four 

martensite variants so 𝑖 = 1 − 4 and 𝑎 = 5. We have also assumed that the caloric properties are equal for all of 

the martensites. In this situation, we can drop the indices on ℎ, 𝑢𝑅, and 𝑠𝑅 as was done for 𝛽.  

Step 7: Critical Free Energies 

The transformation criteria for this model is based on a critical Gibbs free energy, which is analogous to the 

1-D inflection point-based model in Chapter 3. The critical free energies are determined from a single set of 

experimentally measured stresses and temperatures but can then be used to predict transformation in a more 

general manner.  

𝐶𝑜𝑚𝑏𝑛𝑒𝑑 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 
𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 𝑎𝑡
𝑡𝑤𝑜 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡
𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑠

→
𝑇𝐻, 𝜎𝑓𝑤𝑑

𝐻 , 𝜎𝑟𝑒𝑣
𝐻 , 𝜏𝑓𝑤𝑑

𝐻 , 𝜏𝑟𝑒𝑣
𝐻

𝑇𝐻, 𝜎𝑓𝑤𝑑
𝐻 , 𝜎𝑟𝑒𝑣

𝐻 , 𝜏𝑓𝑤𝑑
𝐻 , 𝜏𝑟𝑒𝑣

𝐻
→

𝐶𝑜𝑛𝑣𝑒𝑟𝑡 𝑡𝑜
𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝐺𝐹𝐸 𝑣𝑠.
𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

𝐺𝑓𝑤𝑑
𝑐 (𝑇), 𝐺𝑟𝑒𝑣

𝑐 (𝑇)

→

𝑈𝑠𝑒 𝑡𝑜 𝑝𝑟𝑒𝑑𝑖𝑐𝑡
𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠
𝑓𝑜𝑟 𝑎𝑟𝑏𝑖𝑡𝑟𝑟𝑦 𝑠𝑡𝑟𝑒𝑠𝑠
𝑎𝑛𝑑 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠

 

To capture hysteretic effects, we distinguish between forward and reverse transformations by defining one 

critical energy for each. 𝐺𝑓𝑤𝑑
𝑐  and 𝐺𝑟𝑒𝑣

𝑐  are temperature dependent parameters representing forward and reverse 

transformation conditions respectively. It is important to note that 𝐺𝑓𝑤𝑑
𝑐  and 𝐺𝑟𝑒𝑣

𝑐  are not specific to any particular 

variant, component of stress, or whether the transformation is stress-induced vs. temperature-induced. Once 
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established, the two temperature-dependent parameters are used to predict all of the behaviors shown in Figures 

73-77. For the set of experimental values chosen, we begin by defining four independent transformation stress vs. 

temperature functions.  

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑎𝑙
𝑑𝑎𝑡𝑎

→
𝑇𝐻, 𝜏𝑓𝑤𝑑

𝐻 ,

𝑇𝐿, 𝜏𝑓𝑤𝑑
𝐿 →

𝑑𝜏𝑓𝑤𝑑

𝑑𝑇
=
𝜏𝑓𝑤𝑑
𝐻 − 𝜏𝑓𝑤𝑑

𝐿

𝑇𝐻 − 𝑇𝐿
→ 𝜏𝑓𝑤𝑑(𝑇) = 𝜏𝑓𝑤𝑑

𝐿 +
𝑑𝜏𝑓𝑤𝑑

𝑑𝑇
∙ (𝑇 − 𝑇𝐿) (195) 

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑎𝑙
𝑑𝑎𝑡𝑎

→
𝑇𝐻, 𝜎𝑓𝑤𝑑

𝐻 ,

𝑇𝐿, 𝜎𝑓𝑤𝑑
𝐿 →

𝑑𝜎𝑓𝑤𝑑

𝑑𝑇
=
𝜎𝑓𝑤𝑑
𝐻 − 𝜎𝑓𝑤𝑑

𝐿

𝑇𝐻 − 𝑇𝐿
→ 𝜎𝑓𝑤𝑑(𝑇) = 𝜎𝑓𝑤𝑑

𝐿 +
𝑑𝜎𝑓𝑤𝑑

𝑑𝑇
∙ (𝑇 − 𝑇𝐿) (196) 

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑎𝑙
𝑑𝑎𝑡𝑎

→
𝑇𝐻, 𝜎𝑟𝑒𝑣

𝐻

𝑇𝐿, 𝜎𝑟𝑒𝑣
𝐿 →

𝑑𝜎𝑟𝑒𝑣
𝑑𝑇

=
𝜎𝑟𝑒𝑣
𝐻 − 𝜎𝑟𝑒𝑣

𝐿

𝑇𝐻 − 𝑇𝐿
→ 𝜎𝑟𝑒𝑣(𝑇) = 𝜎𝑟𝑒𝑣

𝐿 +
𝑑𝜎𝑟𝑒𝑣
𝑑𝑇

∙ (𝑇 − 𝑇𝐿) (197) 

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑎𝑙
𝑑𝑎𝑡𝑎

→
𝑇𝐻, 𝜏𝑟𝑒𝑣

𝐻 ,

𝑇𝐿, 𝜏𝑟𝑒𝑣
𝐿 →

𝑑𝜏𝑟𝑒𝑣
𝑑𝑇

=
𝜏𝑟𝑒𝑣
𝐻 − 𝜏𝑟𝑒𝑣

𝐿

𝑇𝐻 − 𝑇𝐿
→ 𝜏𝑟𝑒𝑣(𝑇) = 𝜏𝑟𝑒𝑣

𝐿 +
𝑑𝜏𝑟𝑒𝑣
𝑑𝑇

∙ (𝑇 − 𝑇𝐿) (198) 

It is important to note that Equations 195-198 are not directly used as the transformation criteria. The normal 

stress equations do not include the influence of shear stress and the shear stress equations do not account for the 

influence of normal stress. To account for the coupling expeerienced during combined loading, we use the 

expression to derive the critical Gibbs free energies in Equations 199 and 200.  

𝐺𝑓𝑤𝑑
𝑐 (𝑇) = 𝐺5(𝜎𝑓𝑤𝑑(𝑇), 𝜏𝑓𝑤𝑑(𝑇), 𝑇) (199) 

𝐺𝑟𝑒𝑣
𝑐 (𝑇) = 𝐺1(𝜎𝑟𝑒𝑣(𝑇), 𝜏𝑟𝑒𝑣(𝑇), 𝑇) (200) 

Equation 199 assumes that the layers in the austenite phase will transform at the same, critical, value of 

Gibbes free energy regardless of the temperature or normal/shear stress ratio. Equation is 200 is similar, except it 

ddresses the layers in the martensite + + well and uses the reverse transformation stress. We assume that it apples 

to all of the martensite variants and that, if the layers in any martensite energy well exceed the critical Gibbs free 

energy, they will exit that phase.  

Now, we have a transformation criteria that is independent of stress and therefore is applicable to any type 

of loading (i.e. uniaxial, proportional, nonproportional). It is derived from a specific set of transformation stresses, 

but the use of critical free energy generalizes it to any situation. Figure 103 shows a set of critical free energy 

values calculated from the 70 MPa axial stress, combined tension-torsion test data.  

 
Figure 103: Critical Gibbs free energies 
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We can see that both critical free energy functions are nonlinear due to the quadratic nature of the GFE 

function (Equation 182). This nonlinearity is important because it is common in 1-D SMA applications to assume 

a linear transformation stress function. We make a similar assumption with Equations 195-198, where we use 

stress values at two temperatures to define a set of linear relationships (one for normal stress and one for shear). 

We then convert the linear transformation stress into critical free energies. The four stress values used for input 

reflect one specific loading, but the critical free energies serve as transformation thresholds that apply to other 

combination of stress and temperature. In this way, the critical free energy criterion more general than a stress-

based one.  

Figure 103 is useful to gain a sense of the magnitude and relative values of the critical energies, but not for 

understanding their physical meaning. A better way to visualize the critical free energies is to plot them on the 

GFE landscape. At a given temperature, 𝐺𝑓𝑤𝑑
𝑐  and 𝐺𝑟𝑒𝑣

𝑐  are constants and there exists a set of stresses that yield 

𝐺𝑓𝑤𝑑
𝑐  as well as a set of stresses that yield 𝐺𝑟𝑒𝑣

𝑐 . These sets of stresses can be converted to strains (by solving 

Equation 182 via the quadratic equation) and visualized as paths on the free energy landscape. These paths 

designate the stability boundaries for each phase as shown in Figure 104a. The redlines mark the critical free 

energies at the current temperature (which happens to be superelastic here) and the hash marks indicate which 

side of the boundary is the stable side. Note that the hash marks are only shown for the austenite and martensite 

variant 1; this is only for visual clarity. The stable/unstable domains for the other martensite variants are symmetric 

about the two strain axes.  
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Figure 104: Critical free energies as stability boundaries in a temperature-driven 

transformation 

There are a few additional features in the figure that illustrate the effects of the critical energy boundaries 

and their influence on the system. Each of the four plots contains five points; one in the center and one in each 

strain quadrant. These represent the location of the GFE well minimum for each phase, which also designates the 

average strain for each phase. The point in the center represents austenite and other four points represent the 

martensite variants; the variant numbers are shown for each strain quadrant. In Figures 104a and b, arrows extend 

from the martensite variants toward the austenite well and, in Figure 104d, they go the opposite way. The arrows 

indicate the transformation probabilities for each configuration. The probabilites are numerically calculated in the 

following section because they are a feature of the macroscopic kinetics model, but they are motivated by the 

mesoscopic states shown here. In Figure 104 (as well as Figures 105, 106, 107, 108, and 109), they are to be 

interpretted as markers of high vs. low probability for a given transformation. The presence of an arrow indicates 

a high probability for that transformation; the absense of an arrow signifies that a transformation is unlikely. The 

arrows do not necessarily mean transformation is happening, only that the probability for that transformation to 

occur is high. For example: the likelihood may be high that transformation 𝑥 → 𝑦 happens but, if well 𝑥 is empty, 

then nothing happens. Returning to Figure 104a, we see that all the four martensite variants have a high probability 

of jumping to the austenite well. This is because, at the temperature shown, the equilibrium locations of the 

martenste phase are outside of their stable GFE domains. When a given phase leaves its stable zone, the probability 

that layers will exit that phase becomes high.  
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We have established that there are stable and unstable GFE zones for each phase and that layers exit any 

phase when it crosses into an unstable zone. But, this begs the question “Which well(s) do the layers jump into?”. 

Notice that, in Figure 104a (and b), there are no arrows from the martensite wells to the other martensites. When 

a phase becomes unstable, the subset of possible transformation paths that become active is dictated by the driving 

forces. We assume that exiting layers will travel simultaneously to all of the other phases that have a lower GFE 

(a positive driving force). Furthermore, we assume that the fraction of layers that travel to each phase is 

proportional to the relative driving forces. For example: Phase 𝑤 becomes unstable and there are three other 

phases, 𝑥, 𝑦, and 𝑧. The driving force to phase 𝑥 is negative so the 𝑤 → 𝑥 transformation does not activate. The 

driving force to phases 𝑦 and 𝑧 are positive but phase 𝑧 has a much lower GFE. Both transformations 𝑤 → 𝑦 and 

𝑤 → 𝑧 will activate, but the number of layers jumping into to the 𝑧 well will be much higher than the number of 

layers jumping into the 𝑦 well.  

The driving forces are shown in Figure 104 by the two secondary plots to the left and the bottom of the main 

plot. The 𝑔, 𝜀 plot shows the GFE for the layers in each phase as if you were standing to the left of the main plot 

and looking down the 𝛾 axis. Martensites 1 and 4 are hidden by 2 and 3 because they have the same GFE values 

and 3-D perspective is not used in these plots. The 𝑔, 𝛾 plot shows a view as if you were standing at the negatve 

end of the 𝜀 axis looking in the +𝜀 direction. In this view, the martensite 3 and 4 phases are in the forefront. The 

GFE plots show that, in Figures 104a-c, the GFE’s of the martensites are higher than the austenite (i.e. the 1→5, 

2→5, 3→5, and 4→5 driving forces are positive). Figure 104d shows that the arrows have switched directions 

because the austenite→martensite driving forces have become positive and the martensite→ austenite driving 

forces negative.  

The collective behavior of the critical free energies, the well locations, and the driving forces in Figure 104 

shows how the model produces a stress-free, temperature-driven transformation. Beginning in a superelastic state 

(104a), the martensite phases are unstable and any layers finding themselves there will instantly jump into the 

austenite phase. In 104b, the temperature has been decreased and the martensite stability boundary has moved 

inward and is not closer to the well mimina locations. Also, the stable domain of the austenite phase has become 

smaller which indicates that a lower amount of stress would be required to cause an austenite → martensite 

transformation. The temperature has been reduced further in 104c and the arrows has disappeared. The martensite 

wells are now just inside their stable zones so the probability of martensite → austenite transformation is low. The 

stable zone for the austenite phase has become very small, but still finite. This represents a temperature in the 

hysteresis zone, between the austenite and martensite start temperatures. Finally, in Figure 104d, the temperature 

has been lowered below the martensite start temperature, where the austenite phase becomes unstable. The stable 

austenite zone disappears and, because the 𝑎 → 𝑚 driving forces are positive, the 5 → 𝑖 ∈ 1,2,3,4 transformation 

arrows appear.  

Figure 105 illustrates a tensile, forward, transformation at a superelastic temperature. In 105a, the system is 

under uniaxial tensile stress which causes all of the phases to shift position updward (in the +𝜀 direction). The 

stress is not sifficient to push the austenite out of its stable zone nor is it sufficient to push the tensile martensite 

variants (1 and 2) into their respective stable zones. The transformation probabilites reflect this state because no 

arrows extend from the austenite phase and all four martensite → austenite arrows are still present. Comparing 

105a to 104a, which shows a similar temperature, we see another important feature. There are no 𝑚 → 𝑚 

transformation arrows in Figure 104a and this is because, under zero stress, all of the 𝑚 → 𝑚 driving forces were 
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equal to zero. Now, in 105a, the tensile stress has cause a positive driving force to appear between the 3,4 wells 

and the 1,2 wells. Because of this, two transformation arrows extend from each of the two compressive 𝑚 variants. 

This implies that any layers that happened to be in the 3 well would jump proportionally into the 𝑎 and 2 wells 

and that any layers that happened to be in the 4 well would jump proportionally into the 𝑎 and 1 wells. The two 

𝑚 → 𝑎 transformation arrows are longer than the two 𝑚 → 𝑚 arrows because the driving force, at this 

temperature, into the central well is higher than between the 𝑚 wells. This indicates that, if layers were to 

transform out of the 3 and 4 wells, a greater fraction of them would find the 𝑎 well. In this case the 3 and 4 wells 

are empty so the arrows only indicate local transformation probabilities, not active transformations.  

 
Figure 105: Mesoscopic system and resulting macroscopic stress-strain response, 

Forward transformation under uniaxial tension 

In Figure 105b, the tensile stress has been increased to the point that the 𝑎 phase has been pushed beyond 

the stability boundary created by its critical free energy. Once it crosses the boundary, transformation arrows 

appear leading to the 1 and 2 wells because they are lower (i.e. the 5 → 1 and 5 → 2 driving forces are positive). 

The two tensile 𝑚 phases have also been pushed into their stable regions which means that the layers coming from 

the 𝑎 well will have a stable destination. The combination of unstable austenite and layers jumping into stable 𝑚 

wells results in a tensile-forward transformation. Since there is no shear stress, the two 𝑎 → 𝑚 transformation 

arrows have exactly the same length and this is to illustrate that the two transformations (5 → 1 and 5 → 2) occur 

symmetrcally. One half of the layers end up in each of the two tensile 𝑚 phases. This type of symmetry is how 

the model can represent uniaxial tension-compression as well as pure shear behavior. Normal-shear coupling does 

not appear unless multiaxial loading breaks the symmetry of the phase fractions. 105c shows further tensile 

loading after the transformations in b have been completed. Each phase is pushed further in the +𝜀 direction but 

the transformation arrows do not change. Further increases in stress will not change the stability status for any of 

the phases and this yields the linear martensite branch on the 𝜎 − 𝜀 curve.  

Figure 106 illustrates three stages during the unloading of the same system from 105. In 106a, the tensile 

stress has been decreased to a value that is lower than the critical forward threshold. The 𝑎 phase has crossed the 

critical free energy boundary and returned to its stable zone. The 5 → 1 and 5 → 2 arrows have disappeared 

because the probability of these two transformations has dropped to ≈zero. The difference is subtle, but the GFE 

of the 𝑎 phase is also lower than that of the two tensile 𝑚 phases. This means that a positive driving force exists 
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that pulls layers from the 1 and 2 wells into the 5 well. Despite the stable 𝑎 phase and the positive driving forces, 

there are no 1 → 5 or 2 → 5 transformation arrows in 106a. This is explained by the fact that the two tensile 𝑚 

phases are still in their respective stable zones (they have not yet been pulled back across their critical free energy 

boundaries). Each phase has its own stability boundary that changes with stress as well as temperature and this 

allows hysteresis to be captured. The stress that pushed the 𝑎 phase over its boundary is higher than the stress that 

would allow the two 𝑚 phases to slide back over their boundaries. The result is a hysteresis loop in the 𝜎 − 𝜀 

response, which is not completed till Figure 106b.  

 
Figure 106: Mesoscopic system and resulting macroscopic stress-strain response, 

Reverse transformation under uniaxial tension 

The stress in Figure 106b is precisely the value where the 𝑚 phases hit the critical free energy boundary. 

Now, the two requirements for 1 → 5 and 2 → 5 transformation have been met: (1) the source phase is unstable 

and (2) the driving force to the destination phase is positive. All of the layers that were equally distributed between 

the tensile 𝑚 wells instantly jump into the 𝑎 well and the 𝜎 − 𝜀 curve returns to the linear austenite branch. 106c 

shows continued unloading toward zero stress. The unchanged transformation arrows indicate that the stability 

status does not change for any of the phases and no new transformations activate; the 𝜎 − 𝜀 behavior is linear at 

any stress below the reverse threshold (from 106b).  

It is also worth noting that, in both Figures 105 and 106, the arrows extending from the 3 and 4 phases persist 

relatively unchanged. In all six configurations, these phases remain in their unstable zones and the driving forces 

toward the other three phases remain positive. The arrows indicate that the probability of layers transforming out 

of these wells is very high, but this ony applies to layers actually in phases 3 or 4. Layers never enter the 

compressive 𝑚 wells therefore the high probabilities never activate any transformations.  

Figure 107 shows a forward (𝑎 → 𝑚) transformation in torsion (+ shear). The 𝑎 phase in 107a is once again 

beging pushed toward its critical free energy boundry, but now to the right. Since the shear stress is below the that 

required for forward transformation, there are no arrows extending from the 𝑎 phase. The stress is also below the 

reverse transformation stress, which is the stress where the two +shear 𝑚 phases become stable. Because of this, 

the 1 and 4 phases are unstable and transformation arrows extend toward the 𝑎 energy well.  



120 

 

 
Figure 107: Mesoscopic system and resulting macroscopic stress-strain response, 

Forward transformation in torsion 

The critical shear stress is reached in Figure 107b which is the point where the 𝑎 phase goes unstable. All of 

the layers immediately jump out of the 𝑎 well and distribute themselves among all of the other phases where 

positive driving forces (𝑎 → #) exist. In this case, only the 𝑎 → 1 and 𝑎 → 4 driving forces are positive so only 

these two transformations activate. Since there is no tensile or compressive stress, the symmetry about the 𝜀 axis 

is maintained. The driving forces into the two +shear phases are exactly equal, the layers jump into them 

symmetrically, and no macroscopic normal strain is observable while the system undergoes a large change in 

shear strain. In 107c, the transformation is complete the system moves along the linear martensite branch of the 

𝜏 − 𝛾 curve.  

Figure 108 represents the unloading process for system in 107. In 108a the shear stress is being lowered and 

the macroscopic 𝜏 − 𝛾 curve follows the martensite branch. The transformation probabilities look essentially the 

same as in 107c because the shear stress is still above both the reverse and forward thresholds.  

 
Figure 108: Mesoscopic system and resulting macroscopic stress-strain response, 

Reverse transformation in torsion 

The 𝑎 → 1 and 𝑎 → 4 transformation arrows have disappeared in 108b because the 𝑎 well has reentered its 

stable region. This coincides with the macroscopic 𝜏 becoming lower than the forward plateau. The system is in 



121 

 

the hysteretic range, between the forward and reverse stresses, which is why no transformation arrows extend 

from the two +shear 𝑚 phases either. Both the 1 and 4 phases are still in their respective stable strain domains 

and layers will remain trapped there till the reverse transformation stress is reached in 108c. Now the two +shear 

phases simultaneously cross their critical free energy boundaries and the transformation arrows leading into the 𝑎 

well appear. The signifies the reverse transformation seen in the macroscopic 𝜏 → 𝛾 curve.  

Figures 105-108 illustrate examples of pure tensile and pure shear transformations, where the variants remain 

symmetric. Next, we examine an example of non-proportional loading where both shear and axial responses 

activate and interact with one another. Figure 109a shows a system, at a superelastic temperature, after a tensile 

stress has been applied. The tensile stress shifts all of the phases in the +𝜀 direction, but is not sufficient to activate 

any transformations (all of the layers remain in the 𝑎 phase). The two macroscopic stress-strain plots show that a 

linear normal strain is present but there is no shear strain. No layers are affected by it, but we also see that the 

𝑚 ↔ 𝑚 transformation arrows have become asymmetric about the 𝛾 axis. The tensile stress has created a driving 

force between the −𝜀 and +𝜀 sets of variants causing the 3 → 2 and 4 → 1 arrows to appear. In 109b, the tensile 

stress is held fixed and a small shear stress has also been introduced. The shear stress is not quite enough to 

activate transformation, but close. The 𝑎 phase has moved diagonally toward its elliptical stability boundary and 

is near the edge; this is also shown by the 𝜏 − 𝛾 plot where the shear stress is near the forward plateau. We see 

that the 1 phase has entered stable territory and, therefore, transformation arrows out of that well are inactive. 

Viewing the 𝜀 − 𝜎 plot alone would imply that tensile martensite is still unstable, because the stress is below the 

reverse plateau. But it is now the combination of normal and shear stress that dictate the stability. We see also that 

a 2 → 1 transformation arrow has appears; this is due to the shear stress creating a driving force between the two 

wells. The fact that non of the phases are hidden in the 𝜀 − 𝑔 and 𝛾 − 𝑔 lots indicates that, under this multiaxial 

loading, none of the 𝑚 phases have the sam GFE. This means that transformations will now occur asymmetrically 

when activated.  

109c shows the instant where transformation occurs. The 𝑎 phase has been pushed out of the stable zone and 

its transformation arrows indicate that layers flow into both of the +shear 𝑚 phases. The relative lengths of the 

two arrows (5 → 1 and 5 → 4) idicate that one of the two available wells is much lower than the other. In model 

operation, the rate of layers moving to the 1 well will far exceed the rate going into the 4 well due to driving force 

disparity. The two stress-strain plots show several important multiaxial effects. Now, the actual path of the system 

(denoted by the movement of the point) does not follow the black stress-strain paths. The black lines, which 

mapped the path of the point in Figures 105-108, represent the expected uniaxial responses. In the 𝜏 − 𝛾 plot, we 

see that the stress plateau forms at a lower stress value than in the pure shear. This is an effect of the tensile stress, 

which lowers the shear stress required to activate transformation. Figure 79 shows that this effect is very distinct 

in the RR experimental data; at each increasing level of tensile stress, the forward shear stresses become lower. In 

the model, this effect is captured by the elliptical stability boundary around the 𝑎 well. The vector sum of the 

normal and shear strains dictate the status of the transformations (on or off). In the 𝜎 − 𝜀 plot, we see a normal 

strain plateau but at a stress far below even the reverse transformation stress. Physically, this reflects that fact that 

each 𝑚 variant is offset in both the 𝜀 and 𝛾 axes. Even if a transformation is activated by shear stress, any 

asymmetry in the tensile stress will cause a normal transformation strain appear also. This can be seen in the RR 

experimental data (Figure 77 for example) where each torsional transformation loop also causes an axial 

transformation loop.  The axial strains experinced in the tension-torsion experiments had smaller magnitudes than 



122 

 

a uniaxial tensile transformation. This is implied in 109c because the axial strain, in the 𝜎 − 𝜀 plot, stops short of 

the martensite branch.   The explanation for this lies in the imbalanced transformation probabilities coming out of 

the 𝑎 well. An axial transformation strain appears because the layers do not transform symmetrically but, because 

some of the layers go to the 1 well and some go to the  4 well, the average macroscopic transformation strain is 

reduced.  

At the end of the loading in 109c, most of the layers are in the 1 phase with just a few in the 4 phase. The 

axial stress is maintained, but the shear unloading begins in 109d. As the shear stress is reduced, the layers move 

to the left toward their equilibrium locations. Because of the tensile stress-induced upward shift, the 4 phase 

crosses its stability boundary before the 1 well as shown by the transformation probability arrows extending from 

it. In this configuration, the driving force into the 𝑎 phase is greater, so most of the layers will undergo a 4 → 𝑎 

jump. This results in a small reduction in 𝛾 as well as 𝜀, but not enough to signify a stress plateau due to the small 

fraction of layers. The shear stress if lowered to the point where the 1 phases loses stability in 109e. Here, the 

layers in the 1 phase only have one choice for their transformation path (1 → 𝑎) because the 𝑎 well is the only 

lower well. The 𝑎 phase now contains all of the layers and the stress-strain responses return to the linear austenite 

brach with almost no change in stress (reverse plateaus).  
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Figure 109: Mesoscopic system and resulting macroscopic stress-strain response, 

Combined tension and torsional transformations 

In Figure 109f the shear unloading has continued past zero and the system is now under -shear stress. The 

GFE plot is mirror symmetric about the 𝛾 axis when compared to 109c because the magnitudes of shear stress are 

the same. The 𝜏 − 𝛾 plot is now shows in the thrid quadrant but it is important to note that the 𝜎 − 𝜀 plot is the 

same as in 109c. Desipte the reversal in shear loading, the positive tensile stress has remained fixed. This causes 

the layers to prefer the 𝑎 → 2 path over 𝑎 → 3 and results in a net positive tensile strain.  

Figures 104-109 illustrate the concept of how the critical free energy boundaries dictate transformations, 

whether induced by temperature, normal stress, or shear stress. We can evaluate the theory using the 

transformation stresses and temperatures from the RR experimental data (Figures 79-81) and the critical free 

energies shown in Figure 103. For a given experiment, we know the temperature and the combination of stresses 

that caused transformation. We also have calculated the GFE’s for each experimental temperature. For the tension-

torsion tests, we consider the applied tensile stress (either 70, 132, 255, 317, or 379 𝑀𝑃𝑎) and the critical GFE to 

be known constants, then solve Equation 182 for the shear stress. Since the GFE is equal to the critical value, then 

the shear stress should be the transformation stress and we can compare these values to the experimental values. 

Figure 110 shows the experimental transformation shear stresses (a) along with the calculated values (b).  
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Figure 110: Shear stresses causing forward transformations stresses under combined 

tension-torsion loading (a) experimental (b) theoretical 

The first observation that should be made in Figure 110 is that the theory captures both of the salient trends 

in the experimental data. 1) At each level of axial stress, the theoretical transformation decreases linearly with 

temperature and all of the lines have the same slope. The experimental measurements have a modest curvature 

but can reasonably be described as linear. The slopes are similar with the most notable exception being the 379 

𝑀𝑃𝑎 curve, which deviates from the other curves in both slope and separation. At this level of axial stress, the 

notion of a forward transformation (𝑎 → 𝑚) is beginning to lose meaning because the axial stress alone is 

approaching a level of stress that makes the austenite phase unstable. 2) The second trend that is captured by 110b 

is that, for each increasing value of axial stress, the entire transformation stress-temperature curve shifts 

downward. Physically, this indicates that the shear stress required to pull layers out of the 𝑎 energy well gets lower 

as more axial stress is present. The downward shift is slightly more drastic in the experimental data and, once 

again, the theory does not capture the more pronounced deviation in 379 𝑀𝑃𝑎 curve.  

It should also be pointed out that data points representing 𝑚 → 𝑚 transformations were excluded from Figure 

110. The occurrence of 𝑎 → 𝑚 vs. 𝑚 → 𝑚 behavior is addressed at the kinetics model level by including the 

effects of the driving forces. The comparison here is restricted to experimental data points where only one type of 

transformation (𝑎 → 𝑚) is clearly active. Figure 111 is similar to 110 except it shows the reverse transformation 

shear stresses.  

 
Figure 111: Shear stresses causing reverse transformations stresses under combined 

tension-torsion loading (a) experimental (b) theoretical 
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The reverse transformation stresses exhibit the same trends as their forward counterparts, but the influence 

of axial stress much more pronounced. At 50 𝐶, for example, the maximum deviation in forward transformation 

stress (Figure 110a) is ≈100 𝑀𝑃𝑎 whereas the deviation in Figure 111a (at 50 𝐶) is  ≈180 𝑀𝑃𝑎. The 

experimentally measured data sets have a slight curvature, but the sign of the curvature is reversed compared to 

the forward measurements. In both cases, however, the curvature is small and neglected by the model. We 

maintain the assumption that, if one component of stress is held constant, the other component that is required for 

transformation will vary linearly with temperature. The curves in Figure 110 have the same general characteristic 

shape, with the exception of the 379 𝑀𝑃𝑎 curve. In Figure 111a, by contrast, the curves show a prominent change 

in shape as the axial stress is increased. The 70 and 312 𝑀𝑃𝑎 curves are essentially linear, then the curves become 

more curved and downward sloping as the axial stress continues to increase. The theoretical predictions (111b), 

at a qualititative level, capture most of the trends in the experimental measurements. Higher values of axial stress 

mean that lower values of shear stress are required to cause transformation. There is a very slight nonlinearity in 

the separation between the theoretical curves, but it fails to capture the clustering of the experimental curves at 

low axial stress nor the large deviation between the high axial stress curves. The theoretical curves all have the 

same slope, which means they also do not capture the increase in curvature exhibited by the experimental 

measurements.  

It is important to note that each theoretical data point in Figures 110b and 111b relflects a single shear stress 

value calculated from a critical GFE and axial stress. The experimental data, on the other hand, represents a wire 

with nonuniform stress, strian, and phase fraction fields. We speculate that the curvature in the theoretical curves 

is due to macroscopic inhomogeneity in the specimens. For example, if the local transformation regions in the 

wire had different sizes from one test to the next, this would add nonlinearity to the measurements because they 

only reflect the overall wire response. Some field effects (like radial strain variation) are captured by the 

employing multiple instances of the macroscopic model, but  others also neglected (like axial localization) and 

left for future work.  

6.6 Macroscopic Model 

The macroscopic model represents the stress-strain-temperature-phase behavior of a single material point in 

a tensile-test specimen-sized body. The distinction of a single point implies that no spatial variations are 

considered for any of the fields. This means that the influence of surrounding material, field gradients, field 

motion, field shape, etc. are neglected in this formulation. These effects play a significant role the macroscopic 

behavior of SMA specimens, as was discussed in Section 5, but the goal of this section is to lay the foundation for 

the core constitutive model.  

Point-wise material models are not limited to describing uniform specimens, however. Describing field 

effects using a point-wise material model simply requires multiple instances of the model to be associated with 

different spatial regions in the specimen. We employ this approach to account for the shear strain gradient that is 

known to exist in a wire under torsion. Each simulation used to test and evaluate the model, consisted of a series 

of material points that were spread radially through the cross-section as shown in Figure 112b.  
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Figure 112: Wire cross-section evaluation points and calculation of total wire 

response  

The goal of this set up is to capture the smooth transitions into and out of transformation observed in the 

experiments. These curves have shapes like those typically associated with polycrystalline SMAs and 

polycrystallinity may be a contributing factor, but it is not the only one. In a torsion experiment, the strain 

experienced is nonuniform through the cross-section. This means that different radial locations will begin and 

complete transformations at different levels of stress, which will also give the stress-strain curves smooth, rounded 

shapes. For example, the simulations that generated the curves in Figure 99 were executed with 20 material points 

and no polycrystalline effects. The shape of the simulated stress-strain curves agrees well with the experimental 

data. This implies that it is possible for a single crystal model to capture the basic response from the RR tension-

torsion tests. On the other hand, the torsion specimens were trained prior to testing. The typically causes 

specimens, even ones that begin yielding single crystal-type curves, to assume polycrystalline characteristics. It 

is likely that a combination of polycrystalline effects and macroscopic field variations were active the tension-

torsion experiments and this is discussed further as the model is compared to the experiments.  

Figure 112a illustrates a linear distribution of shear strain with radius and, which is the traditional assumption 

in linear torque-twist equations. We make the same assumption here, but also acknowledge that the strain field in 

an SMA wire cross-section may be more complex. It is conceivable that, as the outer potion of the wire begins to 

transform, the inner portion does not and a nonlinear shear strian distribution forms. This could be investigated 

by implementing the model is a more general simulation (such as a 3-D finite element code), but this is outside 

the scope of the current study. Figure 112c and d show the input and output data from the material points in b. We 

assign a constant axial stress and a radially-varying shear strain (as well as a constant temperature) to each material 

point. The model is executed independently for each point and the output is a series of axial strian and shear stress 

pairs. The wire axial strian is assumed to be the average of the each point-wise axial strain. The shear stress is 

assumed to vary linearly between the points and then integrated to obtain the total torque (112d). Now, having 

introduced how the point-wise model was used to simulate the experiments, we focus on the evaluation of a single 

material point, i.e. the main macroscopic model.  

6.6.1 Stress-Strain Relationship 

At the macroscopic scale, each material point has a normal strain 𝜀 and a shear strain 𝛾 and these are 

computed as the sum of the mesoscopic strains, weighted by the phase fractions.  
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𝜀 =∑𝑥𝑖 ∙ 𝜀𝑖(𝜎)

𝑖

, 𝛾 =∑𝑥𝑖 ∙ 𝛾𝑖(𝜏)

𝑖

 (201, 202) 

The normal strain represents the length-wise deformation in a thin, wire-like body and the shear strain is 

associated with wire twisting (see Figure 82). The normal and shear stresses (𝜎 and 𝜏 respectively) are the 

macroscopic work conjugates to the strian measures; engineering strains and stresses are assumed here. 𝜀𝑖 and 𝛾𝑖 

are the mesoscopic strains for each  variant 𝑖 and these are calculated using Equations 178 into 179. These 

quantities are mesoscopic but can be used in the macroscopic equations here because strain is a per-unit length 

quantitiy. As discussed in the Mesoscopic Free Energy section, when the macroscopic stresses 𝜎 and 𝜏 are fed to 

the mesoscopic strain equations they take the meaning of the nominal stresses in the mesoscopic system. The 

phase fractions, 𝑥𝑖, dictate the amount of material in each phase and are detailed later in this section.  

Equations 201 and 202 represent the main stress-strain relationships for the model. If we expand the 

mesoscopic strains and rearrange terms, we can express each component of stress as a function of the strains and 

phase fractions. Using Equation 178, we can rewrite Equation 201 and then solve for normal stress.  

𝜀 =∑𝑥𝑖 ∙ (
𝜎

𝐸𝑖
+ 𝜀𝑖

𝑅)

𝑖

→
𝑆𝑜𝑙𝑣𝑒
𝑓𝑜𝑟 𝜎

→ 𝜎(𝜀, 𝑥𝑖) =
𝜀 −∑ 𝑥𝑖𝜀𝑖

𝑅
𝑖

∑
𝑥𝑖
𝐸𝑖𝑖

𝑖 ∈ 𝑖 − 5 (203) 

Similarly, we use Equation 179 and Equation 202 to solve for shear stress.  

𝛾 =∑𝑥𝑖 ∙ (
𝜏

𝑌𝑖
+ 𝛾𝑖

𝑅)

𝑖

→
𝑆𝑜𝑙𝑣𝑒
𝑓𝑜𝑟 𝜏

→ 𝜏(𝛾, 𝑥𝑖) =
𝛾 −∑ 𝑥𝑖𝛾𝑖

𝑅
𝑖

∑
𝑥𝑖
𝑌𝑖𝑖

𝑖 ∈ 𝑖 − 5 (204) 

All of the parameters required to evaluate Equations 201 and 202 (or 203 and 204) have been defined except 

for the phase fractions 𝑥𝑖. The phase fractions are macroscopic quantities and are governed by the model’s kinetics 

law.  

6.6.2 Kinetics Equations 

The phase fractions are macroscopic quantities that represent the amount of material in each phase. Their 

values are governed by a set of kinetic ODE’s given by Equations 205 and 206.  

�̇�𝑖 =∑ 𝑥𝑗𝑝𝑗𝑖
𝑗

− 𝑥𝑖∑ 𝑝𝑖𝑗
𝑗

𝑤ℎ𝑒𝑟𝑒 𝑖 ∈ 1 − 4 𝑎𝑛𝑑 𝑗 ∈ 1 − 5  (205) 

𝑥5 = 1 −∑ 𝑥𝑗
𝑗

𝑤ℎ𝑒𝑟𝑒 𝑗 ∈ 1 − 4 (206) 

Each martensite variant 𝑖 has a governing equation where the first term represents layers transforming into 

that phase (𝑗 → 𝑖 transformations) and the second terms represents layers exiting it (𝑖 → 𝑗 transformations). Since 

the phase fractions always sum to one, we do not need a differential equation for the austenite phase fraction 

which is given by Equation 206. The parameters 𝑝𝑖𝑗  represent the rate of transformation from phase 𝑖 to phase 𝑗 

and are derived from the GFE. These are often referred to as transformation probabilities because of their geneses 

in statistical mechanics but, in the 2-D formulation presented here, they are relative free energy-based quantities. 

The term transformation probability is still an apt description, however, because of the multiscale nature of the 

model. The macroscopic equations bypass many of the complexities in the mesoscopic system by sampling the 

free energy, then operating only on what the mesoscopic system is most likely to do. The transformation 

probabilities are given by Equation 207.  
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𝑝𝑖𝑗 = 𝑝𝑚𝑎𝑥 ∙ 𝐹𝑖𝑗 ∙ 𝛥𝐺𝑗 ∙ 𝑒
−𝛼𝛥𝐺𝑖 𝑤ℎ𝑒𝑟𝑒

𝑓𝑜𝑟 𝑖 = 1, 𝑗 ∈ 2,4,5
𝑓𝑜𝑟 𝑖 = 2, 𝑗 ∈ 1,3,5
𝑓𝑜𝑟 𝑖 = 3, 𝑗 ∈ 2,4,5
𝑓𝑜𝑟 𝑖 = 4, 𝑗 ∈ 1,3,5
𝑓𝑜𝑟 𝑖 = 5, 𝑗 ∈ 1 − 4

→ 𝑝 =

[
 
 
 
 

 

− 𝑝12 − 𝑝14 𝑝15
𝑝21 − 𝑝13 − 𝑝25
− 𝑝32 − 𝑝34 𝑝35
𝑝41 − 𝑝43 − 𝑝45
𝑝51 𝑝52 𝑝53 𝑝54 −

 

]
 
 
 
 

 (207) 

The transformation probabilities 𝑝𝑖𝑗 act like the start/stop conditions for the various transformations 𝑖 → 𝑗. 

Each term contributes to activating or deactivating the various transformations as shown here in Figure 113.  

 
Figure 113: Diagram of terms in the transformation probability expression 

The right-hand expression included with Equation 207 shows a single matrix quantity 𝑝. The matrix form is 

mainly used as a concise way to show the sequence of indices for transformation-related quantities like 𝑝. The 𝑖 

index represents the beginning phase as well as the row number, the 𝑗 index represents the destination phase along 

with the column, and the “−“’s indicate transformations that are not allowed. The parameter 𝐹𝑖𝑗 is the driving 

force between energy wells 𝑖 and 𝑗 which is determined from the GFE’s as shown here by Equation 208.  

𝐹𝑖𝑗 = 𝑚𝑎𝑥(𝐺𝑖 − 𝐺𝑗 , 0) 𝑤ℎ𝑒𝑟𝑒 𝑖 ∈ 1 − 5 , 𝑗 ∈ 1 − 5 (208) 

The driving force parameter is only used for the active terms in 𝑝, but all 25 values can be easily calculated 

and the notation is simpler without the selective sequence of indices. The values for 𝐺𝑖 𝑜𝑟 𝑗 are given by Equation 

182 from the Mesoscopic Free Energy section. The parameter 𝑝𝑚𝑎𝑥  is the maximum possible rate of change in 

phase fraction. In the 1-D model this term was written as 1 𝜏⁄ , where 𝜏 was related to the attempt frequency of the 

layers in a given phase. This term has its origin in statistical mechanics but, for a solid material, acts simply as a 

transformation rate tuning parameter. The rates of transformation must be finite for the ODE’s to be numerically 

integrated, but they must also be very high compared to the macroscopic strain rates in order to prevent artificial 

damping and artificial widening of the hysteresis loops. These effects were examined in detail in the context of 

the 1-D model. For the 2-D model we adopt the parameter 𝑝𝑚𝑎𝑥 because 𝜏 is reserved for shear stress. The 

parameter 𝛼 is also derived from statistical considerations and took the form of 1 𝛾⁄  or 𝐾 ∙ 𝑇 𝑣⁄  in various versions 

of the 1-D model. Once again, for a solid material, the need to individually include the Boltzmann constant (𝐾), 

temperature (𝑇), and activation volume (𝑣) is eliminated and the entire term acts like a ramp rate for the 

transformations. When the GFE conditions dictate that a given transformation should become active, 𝛼 controls 

how rapidly the rate of transformation jumps from zero to 𝑝𝑚𝑎𝑥 . For the 2-D model, we have switched to the 

𝑝𝑖𝑗 = 𝑝𝑚𝑎𝑥 ∙ 𝐹𝑖𝑗 ∙ 𝛥𝐺𝑗 ∙ 𝑒
−𝛼𝛥𝐺𝑖  

Rate of change from 

phase 𝑖 → 𝑗 

Rate scaling 

parameter 

Driving force from 

phase 𝑖 toward 

phase 𝑗 

Stability of the destination phase, 

𝑃ℎ𝑎𝑠𝑒 𝑗 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒 → 0 

𝑃ℎ𝑎𝑠𝑒 𝑗 𝑠𝑡𝑎𝑏𝑙𝑒 →  
𝐿𝑎𝑟𝑔𝑒
𝑣𝑎𝑙𝑢𝑒

 

Stability of the source phase, 

𝑃ℎ𝑎𝑠𝑒 𝑖 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒 →
𝐿𝑎𝑟𝑔𝑒
𝑣𝑎𝑙𝑢𝑒

 

𝑃ℎ𝑎𝑠𝑒 𝑖 𝑠𝑡𝑎𝑏𝑙𝑒 →  0 

𝑝𝑖𝑗  

Zero 

Maximum 

𝑃ℎ𝑎𝑠𝑒 𝑖 𝑠𝑡𝑎𝑏𝑙𝑒 

𝑃ℎ𝑎𝑠𝑒 𝑗 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒 

𝑃ℎ𝑎𝑠𝑒 𝑖 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒 

𝑃ℎ𝑎𝑠𝑒 𝑗 𝑠𝑡𝑎𝑏𝑙𝑒 
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parameter 𝛼 because 𝛾 is used for shear strain and there is no need to individually resolve 𝐾, 𝑇, and 𝑣 in this 

context. 𝛥𝐺, like 𝐹, is calculated from the GFE but it reflects the relative energy between the layers in a given 

energy well and the critical GFE value. Because the austenite and martensite phases have in inverted stability vs. 

temperature relationships (i.e. 𝑎 is stable at high temperatures while 𝑚 is stable at low temperatures), their 𝛥𝐺 

expressions are different. For the austenite phase, 𝛥𝐺 is given by Equation 209.  

𝛥𝐺𝑖∈1−4 = 𝑚𝑎𝑥(𝐺𝑟𝑒𝑣
𝑐 − 𝐺𝑖 , 0) → { 

> 0 → 𝐿𝑎𝑦𝑒𝑟𝑠 𝑤𝑖𝑙𝑙 𝑟𝑒𝑚𝑎𝑖𝑛 𝑖𝑛 𝑤𝑒𝑙𝑙 𝑖
≅ 0 → 𝐿𝑎𝑦𝑒𝑟𝑠 𝑤𝑖𝑙𝑙 𝑒𝑥𝑖𝑡 𝑤𝑒𝑙𝑙 𝑖

𝛥𝐺5 = 𝑚𝑎𝑥(𝐺5 − 𝐺𝑓𝑤𝑑
𝑐 , 0) → { 

> 0 → 𝐿𝑎𝑦𝑒𝑟𝑠 𝑤𝑖𝑙𝑙 𝑟𝑒𝑚𝑎𝑖𝑛 𝑎𝑢𝑠𝑡𝑒𝑛𝑖𝑡𝑒
≅ 0 → 𝐿𝑎𝑦𝑒𝑟𝑠 𝑤𝑖𝑙𝑙 𝑒𝑥𝑖𝑡 𝑡ℎ𝑒 𝑎𝑢𝑠𝑡𝑒𝑛𝑖𝑡𝑒 𝑤𝑒𝑙𝑙

 (209) 

The 𝐺 values are already available because they were calculated during the calculation of 𝐹. The critical free 

energies, 𝐺𝑓𝑤𝑑
𝑐  and 𝐺𝑟𝑒𝑣

𝑐 , were given by Equations 199 and 200. Equation 209 complets the calculations required 

to build the system of kinetics equations, but a handful of additional relationships must be defined to operate the 

macroscopic model. Next, we show how to use the mesoscopic stress-strain equations to relate macroscopic stress 

and strain quantities under several different scenarios.  

This completes the presentation of the model equations and the following section is devoted to simulations 

of the RR experiments and discussion of the model’s performance.  

6.7 Simulations 

In this section we demonstrate the model’s performance by the RR tension tests and the combined tension-

torsion tests.  

6.7.1 Uniaxial Tension Cases 

The tests shown in Figure 96 were used to populate the material parameters and the values are summarized 

here in Table 7.  

Parameter Value  Parameter Value 

𝐸𝑎 60 ( 𝐺𝑃𝑎 )  𝐺𝑎 17 ( 𝐺𝑃𝑎 ) 

𝐸𝑚 30 ( 𝐺𝑃𝑎 )  𝐺𝑚 15 ( 𝐺𝑃𝑎 ) 

𝜀𝑅 5. 4 ( % )  𝛾𝑅 6. 5 ( % ) 

𝑇𝐻 60 ( 𝐶 )  𝑇𝐿 0 ( 𝐶 ) 

𝜎𝑓𝑤𝑑
𝐻  665 ( 𝑀𝑃𝑎 )  𝜎𝑓𝑤𝑑

𝐿  350 ( 𝑀𝑃𝑎 ) 

𝜎𝑟𝑒𝑣
𝐻  475 ( 𝑀𝑃𝑎 )  𝜎𝑟𝑒𝑣

𝐿  25 ( 𝑀𝑃𝑎 ) 

𝜏𝑓𝑤𝑑
𝐻  0 ( 𝑀𝑃𝑎 )  𝜏𝑓𝑤𝑑

𝐿  0 ( 𝑀𝑃𝑎 ) 

𝜏𝑟𝑒𝑣
𝐻  0 ( 𝑀𝑃𝑎 )  𝜏𝑟𝑒𝑣

𝐿  0 ( 𝑀𝑃𝑎 ) 

𝑀 0 ( 𝐺𝑃𝑎 )    

Table 7: Material parameters used for the uniaxial tension and thermal cycling 

simulations 

Figure 114 shows the full-cycle tension experiments (─) plotted with the simulation results (─).  
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Figure 114: Uniaxial tension tests with a full cycle 

The overall agreement is good and the effects of interest, the pseudoplastic → superelastic transition and 

shrinking hysteresis, are well-captured. The test data curves contain some irregularities due to global localization 

effects and these effects are not included in the current model. These are most prominent in the 60 C case (g). The 

experimental transformation strain also begins to decrease at the highest two temperatures (f and g). This is an 

unexpected result and may be related to the narrower hysteresis loop, but this is speculation only. This effect is 

not expected and is not part of the intended model behavior.  

The next set of tests was similar to those shown in Figure 114, except there was a partial unloading near the 

mid-transformation point. The simulation results are plotted along with the test data in Figure 115.  

 
Figure 115: Axial tension tests with a partial unload cycle 

The first observation to be made is that the model captures the partial unloading behavior accurately. The 

slopes of the partial unload and reload loops in the simulations are slightly steeper than the test data. We assume 

that this is related to the presence of an R-phase, which is not included in the model. We also speculate that the 

R-phase is why the initial loading branches in the experiments below 40 C (a-e) are slightly nonlinear and have 

slopes that deviate from the simulations. The second interesting observation is that the curve irregularities (i.e. the 
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stress spikes at the beginning of the transformation plateaus) are almost identical to those in Figure 114. The 

macroscopic localization events that cause these irregularities often initiate at the grip-ends of the specimen and, 

as indicated by the tests here, are repeatable events over at least a few cycles.  

The next set of simulations where of the actuation tests, where the specimens were temperature cycled under 

different amount of static, axial load. The results are shown in Figure 116.  

 
Figure 116: Temperature cycles under constant axial load 

The experimental data in Figure 116a, b, and c show almost no actuation; this happens for two reasons: 1) 

the minimum temperature in the cycles was approximately -15 C. This is, by our calculations, well above the 

martensite start temperature (almost -70 C) where the transformation would occur at essentially zero stress. 2) 

Local stress fields can also be present which can trap austenite layers, thus requiring higher stresses or lower 

temperatures to spur actuation. We see that the actuation begins at 400 MPa (d) because temperature cycles are 

sufficient to push the forward transformation stress below this value. The simulations are off by one temperature 

increment and show actuation beginning at 300 MPa. Once the actuation starts, the model agrees well with the 

test data. The magnitudes of the maximum strain are roughly equal for all stress values and this is because the 

layers are transforming to the same set of variants (energy well) each time. The experimental curves are rounded 

as the strain approaches the maximum value whereas the simulations have sharp corners. This is due to the single 

crystal nature of the model, which is a limiting case idealization. Even though the specimens are single crystal-

type specimens, mesoscopic field effects are still present to some degree which make the responses smoother. 

Global localization effects could also be playing a role in the shapes of the curves.  

Figure 117 show simulations of the fixed-strain temperature cycling tests. In 117a-c, the loading was paused 

during the forward transformation then the temperature cycle was applied where as in d-f the loading was pasued 

during the reverse stress plateau. This can be thought of as a type of actuation test where the specimens are not 

allowed to contract. Instead of producing changes in strain during thermal cycles, changes in stress are observed.  



132 

 

 
Figure 117: One temperature cycle at a fixed, applied displacement 

The simulations here agree with the experiments for all cases. The experimental curves have irregular curves 

during unloading, which happened after the temperature cycling. The simulation curves are smooth with sharp 

corners. When the specimen is heated, the stress-strain curve is perfectly vertical. The simulations capture this 

and they also, for the most part, capture the proper height. When the specimen is cooled, the stress-strain response 

travels down the vertical segment till it reaches the top hysteresis loop, then it assumes a slope somewhere between 

the austenite and martensite slopes. The simulations also capture this effect.  

Figures 114-117 show that the model is capable of uniaxial tension behavior including a number of effects, 

pseudoplasticity, superelasticity, temperature-dependent hysteresis, and the shape memory effect (actuation). 

Next we proceed to the combined tension-torsion experiments where we demomnstrate the model’s multaxial 

capabilities and limitations.  

6.7.2 Combined Tension-Torsion Cases 

The same formulation of the model and the same set of parameters were used to simulation the tension-

torsion and the uniaxial tension experiments. The model converts a set of transformation stress input into a critical 

free energy criterion that can then be applied to any combination of stresses and temperature. It should be noted 

however, that different values were assigned to the transformation stress parameters for the tension-torsion 

simulations. Figure 102 shows the chemical free energy calculated once using the tension data for the inputs and 

once using the shear data as inputs. The two curves are similar but there is also a nontrivial separation between 

them. This means there is some type of imperfection in the process of measuring the shear stresses or some 

limitation in the theory. Ideally, either type of transformation stress could be used to derive the same free energy. 

The same situation is true for the critical free energy, which governs transformation in the model. The values are 

again similar enough that either could be used, but have enough of a difference that the model’s agreement would 

be affected in one set of simulations. We choose to focus on the overall behavior of the model and it’s capture of 

the various experimental effects. Using a second set of input parameters here allows us to accentuate where the 

model agrees with the data and also where it falls short. It should also be noted that this set of parameter values 

was used across all six of the different tension-torsion data sets. The 70-MPa-axial stress set of tension-torsion 

tests was used to populate the transformation stress parameters, as shown in Figure ##. The values are summarized 

here in Table 8.  
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Parameter Value  Parameter Value 

𝐸𝑎 60 ( 𝐺𝑃𝑎 )  𝐺𝑎 17 ( 𝐺𝑃𝑎 ) 

𝐸𝑚 30 ( 𝐺𝑃𝑎 )  𝐺𝑚 15 ( 𝐺𝑃𝑎 ) 

𝜀𝑅 5. 4 ( % )  𝛾𝑅 6. 5 ( % ) 

𝑇𝐻 60 ( 𝐶 )  𝑇𝐿 0 ( 𝐶 ) 

𝜎𝑓𝑤𝑑
𝐻  70 ( 𝑀𝑃𝑎 )  𝜎𝑓𝑤𝑑

𝐿  70 ( 𝑀𝑃𝑎 ) 

𝜎𝑟𝑒𝑣
𝐻  70 ( 𝑀𝑃𝑎 )  𝜎𝑟𝑒𝑣

𝐿  70 ( 𝑀𝑃𝑎 ) 

𝜏𝑓𝑤𝑑
𝐻  435 ( 𝑀𝑃𝑎 )  𝜏𝑓𝑤𝑑

𝐿  200 ( 𝑀𝑃𝑎 ) 

𝜏𝑟𝑒𝑣
𝐻  365 ( 𝑀𝑃𝑎 )  𝜏𝑟𝑒𝑣

𝐿  35 ( 𝑀𝑃𝑎 ) 

𝑀 2 ( 𝐺𝑃𝑎 )    

Table 8: Material parameters used for the uniaxial tension and thermal cycling 

simulations 

Figure 118 shows three temperatures from the 70 MPa axial stress set of tension-torsion simulations 

overlayed with the experimental data. We see on the left (a) that the model matches the torque-twist behavior well 

across the temperature range, which includes a transition from superelastic to pseudoplastic.  

a)  b)  

Figure 118: Selected tension-torsion tests, Axial stress = 70 MPa, Experiment 

(black) vs. simulation (red) 

The plot on the right (b) shows the axial strain vs. twist angle at the same temperatures and we see that the 

model agreement here is poor. The model drastically overpredicts the axial strain and does not capture the large 

jump in strain between the two lower temperatures. Apart from the magnitude, the simulations do capture the both 

modes; the high temperature V-shape curves and the low-temperature mode where the axial strain is roughly 

constant. Even at only 70 MPa of axial stress, the two tensile wells dominate as the GFE landscape tilts back and 

forth in the shear direction. For the model to predict a small amount of axial strain, each shear transformation 

would need to cause a more balanced distribution between the tensile and compressive wells. Instead, all of the 

layers that become free from the austenite well choose the well on the tension side. This imbalance causes the 

macroscopic axial strain to be larger than that measured in the experiment.  

The next set of tension-compression tests was under a 132 MPa axial stress. This set of simulations is shown 

in Figure 119. The torque-twist plots once again agree well with the experimental data (a) and the axial strain does 

not. Figures 110 and 111 show that the transformation shear stresses are very similar in the 70 MPa and 132 MPa 

data sets, so similar agreement to the previous plot is expected. The axial strain-twist plots in (b), however, are 

different from the 70 MPa set. The experimental axial strains have increased slightly at the higher temperatures 
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and increased by almost 2% at the lowest temperature (-25 C). Here, in the low-temperature case, the simulation 

matches the experimental curve reasonably well.  

a)  b)  

Figure 119: Selected tension-torsion tests, Axial stress = 132 MPa, Experiment 

(black) vs. simulation (red) 

The simulation starts in the austenite phase where the axial strain is very low, then transitions to the 

martensite-to-martensite mode after the first twist cycle. The test specimen takes approximately two twist cycles 

to transition to the low-tempertaure mode. The model can switch modes as shown in the Figure but the type of 

ratcheting effect seen here, where it takes a few cycles to gradually transition is not included in the current theory. 

Another relevant observation is in the axial strain at zero-twist. In the high temperature cases, the zero-twist axial 

strain should be equal to the axial stress divided by the elastic modulus of the austenite phase. The same is true 

for the low temperature cases as well, for the axial strain before the twisting starts (because residual martensite 

was removed via heating before each test). For the high-temperature curve in Figure 119b, the experimental  zero-

twist axial strain agrees with the model which predicts the linear elastic value but this is not the case for the other 

two sets of curves. In the intermdiate and low-temperature curves, the zero-twist axial strain increases as the 

temperature gets lower. At lower levels of axial stress (70, 132, and 194 Mpa), this is an artifact of the 

polycrystalline-type of behavior under thermal cycling that was observed in Figure 116. Despite the fact that the 

specimens were heated between tests to remove residual martensite, the applied axial stress of 132 MPa in 119 

results in a small but noticable amount of axial strain before the twist cycles ever begin. This effect is outside the 

scope of the current model, but it causes only a minor disagreement between the curves and is not one of the main 

mechanisms of interest in the tension-torsion tests.  

Figure 120 shows the 194 MPa axial stress set of simulations where we see the same trends continue, but we 

can also see the axial stress begin to play more of a role.  
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a)  b)  

Figure 120: Selected tension-torsion tests, Axial stress = 194 MPa, Experiment 

(black) vs. simulation (red) 

The first observation to be made is the temperature associated with the single hysteresis-loop curve in 120a, 

which is at -10 C. Recalling Figure 77a, the -10 C curve in the 70 MPa set of tension-torsion tests still has two 

somewhat distinct hysteresis loops. This means the the axial stress-alone has caused the -10 C response to shift 

from the double hysteresis-loop type to to the single-loop type. The simulation captures this effect naturally. The 

transformation stress and temperature inputs were based on the 70 MPa axial stress data set and did not have any 

information from the other axial stress responses. The 70 MPa parameters were used to generate the critical GFE 

functions and those functions sucessfully account for the coupling between axial stress, transformation torque, 

and temperature.  

The axial strain, showin in 120b, shows the same relationship between the simulation and experiment data 

as the previous cases. The model continues to predict simular values for the axial strain while the test specimens 

show axial strains that are higher for each axial stress. The model does, however, capture some of the axial strain 

effects. Comparing the high-tempeature curves in 120b to the intermediate-temperature curves, we see that the 

high-temperature curves have thinner legs in their “V” shapes whereas the intermediate-temperature legs are 

thicker. The simulation V’s have thicker legs in general, but the capture the effect of widening with lower 

temperature. Also, like the previous case, the model agrees better with the test data at the lowest temperature. This 

is especially true at the maximum and minimum twist points. The experimental data has a slight inverted “V” 

shape which the model does not have. The right side of the simulation does, however, show a small hysteresis 

loop like the experiment does. There is no loop on the negative twist side only because the simulation was stopped 

after a single twist cycle.  

We see also that the experimental zero-twist axial strain is much higher than predicted by the simulation. 

This is due to an unintended training effect that occurred over the course of the experiments.  Each set of tests 

began with the highest temperature specimen and worked its way toward the lowest temperature. The specimens 

were heated between tests which should have removed any residual martensite and this means that the zero-twist 

axial strain strain should always be equal to the linear elastic prediction. This is what the model shows but not the 

experiments. The deviation in the zero-twist axial strain due to multiple phenomena: (1) polycrystalline effects 

which were discussed with Figure 119 and (2) ratcheting effects. In SMA materials, ratcheting refers to the 

cyclical accumulation of residual strain and stems from microscopic effects like dislocation slipping in the high 

strain-energy regions near phase boundaries (Kang (2013), Yu et al. (2014)). In the RR tension-torsion 
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experiments, especially at higher axial stress values, all three active phases exhibit ratcheting. Over the course of 

the experiments, the stress-strain origin of the austenite phase drifts due to cyclic loading and this causes an axial 

offset even under zero-twist and high temperature. The effect is not present, or noticable, at the two lower values 

of axial stress but it begins to play a role at 194 MPa. We also speculate that the deviation between the simualtion 

and the experiments at the minimum and maximum twist points is due to the two martensite wells accummulating 

additional residual strain.  

Ratching effects are not currently included in the model. The offsets in the experimental curves are easy to 

see so it is not difficult to ignore them when comparing to the model’s behavior, but this also presents an 

interesting opportunity for future work. The residual strains are currently material constants in the model and it 

would be a simple procedure to formualte them as exponential functions operating on some cycle-like measure. 

This type of technique is widely used in rubber modeling (the Mullins effect) and material damage modeling.  

Figure 121 shows the next value of axial stress, 255 MPa. We see the the torque-twist curves (a) continue to 

have good agreement, that the single hysteresis loop now appears at +5 C, and that the experimental axial strains 

continue to increase. In 121a we see that the simulations continue, in general, to match the experiments in 

transformation torques across the temperature ranges tested. The single hysteresis loop is now occurring at a 

temperature that is 35 C higher than the initial data set from Figure 118 and the model captures it. In both the 

experimental and simulation curves at 5 C, we see an austenite-to-martensite plateau on the first cycle then a 

transition into the single loop configuration. The simulation over-predicts the torque for this initial transformation 

but matches the average transformation torque for the subsequent cycles.  

a)  b)  

Figure 121: Selected tension-torsion tests, Axial stress = 255 MPa, Experiment 

(black) vs. simulation (red) 

The low-temperature experimental curve in 121a also shows another trend that has been developing as the 

axial stress increases – the slanted, smooth shape of the hysteresis loop. The simulations exhibit a flat box-like 

hysteresis loop with rounded transitions into and out of the plateaus. This is also what the experimental response 

looked like in the 70 MPa axial stress case (Figure 118), but not here. The experimental, low-temperature 

hysteresis loop now has the shape of a very highly textured (polycrystalline) SMA material. The model does not 

capture this mode and we can only speculate about its physical explanation. We cannot assume that the material 

has become more polycrystalline because of observations in later tests. After austenite resetting, the higher-

temperature response continues to have the same flat torque plateaus as the previous tests (see Figure 122). If the 
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specimen were becoming more polycrystalline as the testing progressed, the shape of both the low and high-

temperature curves would change. In the experiments, only the low-temperature curves do. This change in low-

temperature curve shape could be due to macroscopic field effects, but this would have to be a special case that 

only appeared at low temperatures and high levels of axial stress. It is possible that the elastic coupling term (𝑀 

from the HFE function) becomes more pronounced at low temperatures. This would explain why the high-

temperature axial strain-twist plots (121b) are flat in the martensite branches, yet the low temperature curves show 

almost a 1% deviation. A higher amount of coupling could also conceivably result in a more gradual 

transformation between the two martensite wells as is observed in the experiments. Currently, the model assumes 

the coupling term 𝑀 is a constant but this would be a simple modification to the theory and is recommended for 

future examination.  

The agreement between the torque-twist curves (121a), while still reasonable, is not as good as in the lower 

axial stress cases. Comparison of the previous simulations (as well as examination of Figures 77 and 78) shows 

that the hysteresis width at a given temperature also increases with axial stress. The model captures this effect 

nicely, especially considering that no axial stress-dependence was programmed a priori into the transformation 

shear stress functions. The model however, as shown here, slightly exaggerates the widening of the hysteresis 

loop at the highest temperatures. This could be improved with minor modifications to the transformation stress 

material parameters, but the values used were chosen to give the best overall agreement to the large set of curves.  

Figure 121b shows the axial strain-twist plots where the experimental curves continue to drift upward. The 

disagreement in zero-twist axial strain is now very noticeable at both the intermediate and low temperatures. If 

we neglect the zero-twist strain offset and visually shift the experimental curves downward, we see that the model 

still over-predicts the higher-temperature axial strains and reasonably matches the low-temperature value. Figure 

122 shows the final set of tension-torsion simulations which represent an axial stress of 317 MPa. The 379 MPa 

set of tests was excluded because this level of axial stress is close to the thermal actuation limit stress observed in 

Figure 75 and this introduces ambiguity between thermal and mechanically-motivated transformations.  

a)  b)  

Figure 122: Selected tension-torsion tests, Axial stress = 317 MPa, Experiment 

(black) vs. simulation (red) 

The axial stress-related trends continue here, and this set of simulations has similar agreement to the previous 

two data sets. The single-hysteresis loop now appears at 20 C and the hysteresis loop is very slanted and smooth. 

The width of the hysteresis loop predicted by the simulation is also narrow compared to the experiment. This is 
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due to an effect that occurs in the model when the austenite and martensite CFE’s are similar. Through a certain 

range of temperatures, the relative CFE is near zero and the transformation is dominated by the stress. At high 

levels of axial stress, the hysteresis between the martensite wells is diminished because the wells are being pulled 

upward (as in Figure 105) where the critical GFE boundaries are closer together. The low-temperature hysteresis 

loops in the experiments are narrow, so it seems the model is predicting the correct effect; just doing so a little too 

aggressively. It should also be noted that this effect could also be related to the effects that cause the slanted and 

smooth hysteresis loops in the test data. In 122b, we remain in the same situation. If we shift the curves downward 

to “eliminate” the ratcheting effect, the model over-predicts the high and intermediate -temperature axial strains 

and matches the low-temperature curve. This concludes the simulations and the presentation of the 2-D model. 

We end the chapter with a recap of the model’s successes, shortcommings, and opportunities for future 

development.  

6.8 Chapter Review and Discussion 

In this chapter we have presented an extension of the 1-D M-A-S model into multiple dimensions. The 

formulation was specified to represent an axial strain-shear strain (2-D) case, based on the RR experimental data 

set.  The RR tests included uniaxial tension tests, uniaxial actuation tests, combined tension-torsion tests, and 

thermal cycles under combined loading. The tension tests showed typical single-crystal SMA behavior with the 

exception of having a hysteresis loop that became narrower with increasing temperature. The tension-torsion tests 

examined the torsional behavior wires across a wide range of temperatures and six different values of axial stress.  

The torque-twist responses exhibited high (double hysteresis loop) and low-temperature (single hysteresis loop) 

modes that were similar in characteristic to uniaxial tests. The torque-twist curves, however, had smooth 

transitions into and out of the transformation plateaus due to cross-sectional stress variation. The axial stress 

played a similar role to temperature in the torque-twist behavior in that it affected the amount of torque required 

for transformation which in-turn dictated whether the response was of the double-hysteresis loop type or the 

single-loop type. There were also two distinct modes in the axial strain-twist plots. At high temperatures the curves 

had a “V” shape where the axial strain was minimal at zero-twist. At low temperatures the curves assumed a much 

flatter shape (less oscillation in axial strain) and the V was inverted, where the maximum axial strain occurred at 

zero-twist. This behavior was consistent across all of the axial stresses, but the magnitudes of the axial strain 

increased as the axial stress did.  

The 2-D model developed in this chapter is formulated by extending concepts from the 1-D model onto a 2-

D, mesoscopic, multiwell free energy domain. We assume two sets of two martensite variants that are offset from 

one another on the normal strain and shear strain axes. Physically, this implies two sets of habit plane variant 

groups forming on opposing habit planes. Any transformation results in a combination of normal and shear strain 

for each variant, but the symmetric nature of the free energy means that either normal strain or shear strain can be 

canceled out if the right combination of variants form. Another benefit of using a single, multiwell, free energy to 

describe all of the variants is that the natural distortion of the free energy (from stress and temperature) provides 

the interaction effects between the normal and shear components. The use of a multiwell free energy and variant 

symmetry gives us a mechanism to produce the complex tension-torsion-temperature coupling that is: 

• Simple (only four variants) 

• Visualizable (balls jumping between wells) 

• Can be traced directly back to physical effects (lattice invariant shears) 
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 The kinetics model, which relates the mesoscopic free energy to macroscopic stress-strain-temperature 

behavior, was also reformulated to accommodate the 2-D model. The new kinetics equations were built such that 

the energy barriers between the wells, which are prohibitively complex in multiple dimensions, did not have to be 

defined or even approximated. This was based on a the 1-D Inflection Point model but extended to a 2-D energy 

landscape where the inflection points become curves. Each energy well has a critical boundary where it shifts 

from convex to concave (i.e. where it becomes unstable and layers will exit). We constructed these lines by 

assuming that each signifies a constant value Gibbs free energy, which we call the critical free energy. The critical 

free energy is temperature dependent parameter, which is calculated from a set of experimentally measured 

transformation stresses and temperatures. There is one critical energy to exit the austenite well and another to exit 

any of the martensite wells. In the 1-D model, each Δ𝐺 value was associated with a specific transformation, but 

this is not the case in the 2-D model. Each phase now has a single Δ𝐺 value that simply signifies whether that 

phase is stable (layers will remain) or unstable (layers will exit). Two additional terms had to be added to the 

kinetics equations to dictate where the layers go when they exit a well. 1) A driving force term was added which 

encourages layers to favor lower energy wells. 2) We also included a second Δ𝐺 term to represent he destination 

well. This term ensures that layers will not flow to an unstable well, even if the driving force (i.e. stress) pushes 

them in that direction.  

To test the model in uniaxial tension, we evaluated a single instance of the model and assumed zero shear 

strain at all times. For the combined loading tests, we assumed a linear strain profile through the cross section of 

the wire and evaluated the stress at 12 radially distributed points. The stress from each point was used to calculate 

the total torque and the average was used for the total wire axial strain. The model showed excellent agreement in 

the uniaxial cases and mixed, but promising, results for the tension-torsion simulations. The main effects from the 

experiments and that we were attempting to capture are listed here along with an evaluation of the success.  

Success? Effect Comment 

 Superelastic behavior Uniaxial tension, shear, and combined loading 

 Pseudoplastic behavior Uniaxial tension, shear, and combined loading 

 Temperature-dependent hysteresis Uniaxial tension, shear, and combined loading 

 Thermal actuation Uniaxial tension 

 Axial stress lowers the transformation torque Both forward and reverse transformations 

 Axial stress widens the hysteresis width in torsion Effect is slightly exaggerated but reasonable 

 
Distinct high and low-temperature modes of axial 
strain during torsion cycles  

Model shows both modes and transitions at the proper the 
stress-temperature combinations 

 
Smooth/slanted shape of the low-temperature 
torsional hysteresis loops 

The cause of this is not clear and model does not reflect it 

 Magnitude of axial strain during torsion cycles 
The model over-predicts the high-temperature axial strains for 
all axial stress cases 

 
Axial strain during torsion cycles increases with 
axial stress 

The model has this capability, but the parameters assigned and 
conditions imposed do not produce it 

The good agreement in the uniaxial cases is to be expected because the 1-D model showed similar accuracy. 

This repetition of results is significant because it confirms that the 2-D model can function in a uniaxial mode 

without any loss in performance. The first three items in the list, it should be noted, apply to uniaxial tension as 

well as shear and combined loading. Both the tension test stress-strain curves and the torque-twist curves from 

the combined loading tests showed all three effects (superelasticity, pseudoplasticity, and temperature-dependent 

hysteresis). The model captured these effects accurately in both scenarios. Similar curves are also generated for a 

pure shear (zero axial stress) case, but this case was not presented because it was not part of the experimental data 
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set. The next effect in the list, thermal actuation, was also only simulated in uniaxial tension. The model agreed 

vert well with the experiment except that the threshold stress, where actuation begins, was slightly over-predicted. 

The constant torque tests would have been a platform to test the model in thermal actuation under combined 

loading, but this was not necessary. The critical free energy is the modeling feature that causes both temperature-

dependent transformation stress and thermal actuation. The fact that the transformation torques decreased with 

temperature to eventually form a single hysteresis loop means that the thermal actuation mechanism is functioning 

in shear and combined loading.  

The next two items in the list involve the effects of axial stress on the transformation shear stress; these are 

the main demonstrations of coupling between the stress components. As the axial stress increases, the forward 

and reverse transformation torque decrease. The torque plateaus in the simulations match the experimental curves 

reasonably well for all values of axial stress. This is a natural consequence of using a free energy-based 

transformation criterion; the axial stress pulls the phases closer to the stability boundaries which means that less 

shear stress (torque) is required for transformation to occur. The axial stress also causes the torsional hysteresis 

width to increase in both the tests and the simulations. The free energy distortion affects the forward and reverse 

stability boundaries differently and therefore the difference in transformation stress changes with the axial-shear 

stress ratio. The next item refers to the fact that the low-temperature hysteresis loop exhibited a notable change in 

shape as the axial stress increased. This effect was not captured by the model and, without the addition of some 

type of inhomogeneity or global field effects, the model has no mechanism to represent this behavior. The physical 

cause for this is not clear from the test data, but the next logical step would be to implement the current model in 

a full 3-D field solution and examine if stress, strain, or phase fields in the wire could be the culprit.  

The final two effects involve the axial strain in the wire as the torsion cycles are imposed. The axial strain 

vs. twist plots showed an intriguing set of behaviors that, to the author’s knowledge, had not previously been 

demonstrated in ferroelastic SMA experiments. It should be noted, however, that some aspects of the axial strain-

twist responses were similar to those observed in ferroelectric materials (Kim and Seelecke (2007)) and this fact 

motivated the initial concept for the model developed in this chapter. In the end, the model was able to reproduce 

the two major modes that were observed in the experiments but failed to capture the magnitudes of the axial strain. 

The model is capable of producing the two axial strain-twist modes over the full range of strains observed in the 

tests, but the this would require a high level of symmetry to be maintained in the combined loading cases. Instead, 

the axial stresses cause the layer population to be highly biased toward the tensile side of the free energy. This 

means that the model predicts roughly the same values of axial transformation strain for all axial stress cases 

whereas the experimental values increase almost linearly. Inhomogeneity effects, which were not included in the 

2-D model, could possibly improve the behavior in this case but it is not likely that they would completely resolve 

the disparity. It more likely that global field effects are again at play and this also promotes the notion of 3-D field 

implementation of the current model for future work.  

We conclude this dissertation with a set of appendices including assorted material from the previous 

chapters. This is material that was not required to accomplish the fundamental goals of each chapter but provides 

important background information or convenient references.  
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10 Appendices 

10.1 Evaluation of the General Kinetics Model Probability Expressions 

This section is devoted to the evaluation of the transformation probability expressions given by Equations 

48-51. Analytically and graphically the expressions are straightforward but for numerical evaluation, such as in 

Matlab or Fortran, several considerations must be made and we discuss those here.  

For a given stress and temperature, the probability densities 𝑓−, 𝑓𝑎, and 𝑓+ are given by Equations 45-47. To 

evaluate these quantities we begin by substituting the Gibbs free energy expressions 𝑔−, 𝑔𝑎, and 𝑔+ from Equation 

14. After some algebraic manipulation, the exponents can be separated into three terms, where only the first 

depends on strain ε.  

𝑒
−
1
𝛾
𝑔−(𝜀, 𝜎, 𝑇)

= 𝑒
−
𝐸𝑚
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𝜎
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2

𝑒
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(210) 

𝑒
−
1
𝛾
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−
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𝛾
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Recall here that, at a given instant in time, the entire range of strain within 𝑔𝑖 is possible for the current stress 

state there for 𝜎 and 𝜀 are independent variables. When expressions 210-212 are inserted in to Equations -47, the 

last two terms can be removed from the integrals and canceled with the like terms in the numerator.  
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(213) (214) (215) 

For conciseness we collapse the exponential terms into 𝑍𝑖(𝜀, 𝜎) expressions and rewrite the probability 

equations.  
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 (218) 

At a given stress and temperature, Equations 216-218 can be integrated to calculate the probability of finding 

a layer over a range of strain. In model operation, we evaluate 𝑓𝑖 at finite values of 𝜀 and consider it to represent 

the probability over a very small range of strain 𝑑𝜀.  

Integrals such as those in Equations 216-218 are typically replaced with error (𝑒𝑟𝑓) and complimentary error 

(𝑒𝑟𝑓𝑐) function expressions, which are acceptably accurate approximations available in most computer codes.  
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Making use of these expressions we rewrite Equations 216-218 to take the form of Equations 219-221.  

𝑓−(𝜀, 𝜎, 𝑇) =
𝑒−𝑍−(𝜀, 𝜎)
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2
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 (221) 

The transformation probabilities are based on evaluation of the probability expressions at the inflection 

points. Substituting Equations 219-221 into Equations 48-51 we have the following.  
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1

𝜏
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2
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 (223) 
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 (224) 

𝑝+𝑎(𝜎, 𝑇) =
1

𝜏
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 (225) 

At times, the probability densities 𝑓𝑖 used to construct the 𝑝𝑖𝑗  expressions are evaluated far away from the 

mean strain which results in an ≈ 0

0
 calculation. Furthermore, at low temperatures, the austenite well becomes 

completely unstable which causes the probability of layers exiting the well to become infinite (∝ 1

0
). Both of these 

effects are representative of the underlying physics and they encourage rate-independence of the kinetic equations 

(in the absence of self-heating) however, they must be addressed for the purposes of numerical implementation. 

We begin with an illustration in Figure 123 and discussion of the case where the austenite well becomes unstable.  
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Figure 123: GFE, probability density, and transformation rate under decreasing 

temperature 

Figure 123 shows that, as the convex austenite well shrinks, the left and right boundaries of the probability 

density function 𝑓𝑎 simultaneously move toward 𝜀 = 0. The black-outlined 𝑓 regions in Figure 123(a-e) represent 

the domain of integration for the denominators in both Equation 223 and 224. Mathematically, the result is that 

transformation rates 𝑝𝑎− and 𝑝𝑎+ approach infinity as the width of the austenite well (and thus the value 

denominator integral) approaches zero. Physically this represents temperature-induced martensite formation and 

the temperature where it occurs, shown here as 𝑇5, is often called the martensite start temperature.  

The infinite-rate effect shown in Figure 123 is consistent with the physics of the system because the austenite 

well is no longer stable, therefore any layers will exit instantaneously. For numerical implementation, however, 

the 𝑝𝑎− = 𝑝𝑎+ =
1
𝜏⁄ (1 0⁄ ) result shown in Figure 123e is not allowed. We bypass this by imposing a lower limit 

on the strains 𝜀𝑎− and 𝜀𝑎+ during the evaluation of Equations 223 and 224. The limiting strain value (1E − 10 

used here) is chosen to achieve transformation rates  𝑝𝑎− and 𝑝𝑎+ that are finite but sufficiently high to yield 

transformation behavior that is much faster than any strain rates encountered in the simulation. The final, 

numerical evaluation-ready, set of transformation rate equations is given at the end of this section after discussion 

of the p ≈ 0 0⁄  cases.  

We now turn our attention to stress conditions where the second numerical limitation must be addressed. In 

cases of extremely large positive or negative stress magnitudes, each of the four transformation rate equations 

(222-225) encounters a situation where the probability term approaches  0 0⁄ . A graphical example is shown here 

in Figure 124 for the austenite to martensite + transformation rate 𝑝𝑎+.  
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Figure 124: GFE, probability density, and transformation rate under increasing 

tensile stress 

Again, the solid black portion of the 𝑓 vs. 𝜀 curves represents the area included in the integral which is in 

the denominator of Equation 223. The numerator can be visualized in the Figure as the value of 𝑓 at the point 

where it intersects the red dashed line; note that the probability density is truncated at this location. In Figure 

124(a), the value of the numerator is approximately zero and the denominator integral includes most of the non-

zero 𝑓 curve and is approximately equal to 1. This results in a transformation rate 𝑝𝑎+ that is nearly zero as shown 

in 124(f). In Figure 124(b and c), the stress level increases and the 𝑓 curve moves to the right following the 

austenite well minimum. The critical strain (red dashed line) remains fixed which causes the value of the 

numerator to increase as the truncation point climbs the 𝑓 curve. The integrated portion of the 𝑓 curve (the 

denominator) simultaneously diminishes and the cumulative effect is a transformation rate 𝑝𝑎+ that increases. The 

stress continues to increase in Figure 124(d and e) which causes the 𝑓 curve to move past the critical strain and 

thus the numerator falls back toward zero. The transformation rate, however, continues to rise (124(f)) because 

the integral that constitutes the denominator also races toward zero and does so at a greater pace. A Bernoulli-

L’Hopital substitution in Equation 223 reveals a finite limit as the fraction approaches 0 0⁄  and this is shown in 

Figure 124(f) where the rate reaches a linear ramp trajectory beyond 5th stress state. This mechanism encourages 

rapid stress-induced transformations in model operation which it is consistent with observed physical behavior – 

i.e. rate independence in the absence of self-heating or cooling. Below, we discuss the stress conditions and give 

the final expressions for each of the 4 transformation rate equations including limit substitution expressions and 

logic.  

For the rate of transformation 𝑝−𝑎, large positive values of stress result in 𝑝−𝑎 →
0
0⁄ . A limit expression 

derived from the derivatives of the numerator and denominator is substituted at 𝑍∗ = −5. 5 yielding the final 

expression for 𝑝−𝑎 that was used for the simulations in this paper.  
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⁄

 (226) 

The limit substitution point Z∗ was chosen to reflect a large stress value in order to allow a smooth transition 

from the main expression to the limit expression but prior to encountering numerical overflow errors. A 64-bit 

Dell Precision M6600 with an Intel® Core ™ i7-2720QM CPU and Intel Fortran compiler edition 11. 1 was used 

for these simulations and the proceeding limit substitution points (denoted by 𝑍∗, 𝑍∗∗, or  𝜀∗) were chosen in a 

similar manner.  

The rate of transformation 𝑝+𝑎 has a similar structure except a limit expression was substituted at 𝑍∗ = 26. 3 

which corresponds to the case of large negative values of stress.  

𝑝+𝑎(𝜎, 𝑇) =
1

𝜏
|

|
 

 𝑖𝑓 𝑍 < 𝑍∗
𝑒−𝑍

2 

𝑠
√𝜋
2
𝑒𝑟𝑓𝑐(𝑍)

 𝑖𝑓 𝑍∗ ≤ 𝑍
2𝑍

𝑠

𝑤ℎ𝑒𝑟𝑒

{
 
 

 
 

 

𝑍 =
1

𝑠
(𝜀+𝑎(𝑇) − 𝜀𝑅 −

𝜎

𝐸𝑚
)

𝑠 = √
2𝛾

𝐸𝑚
⁄

 (227) 

The rates of transformation out of the central austenite well (𝑝𝑎− and 𝑝𝑎+) each have three overflow 

substitutions representing the cases of large + −⁄  stress values and low temperatures. The numerical overflow 

switch points for both expressions are 𝑍∗ = −80. 0, 𝑍∗∗ = 26. 0, and 𝜀∗ = 1 ∙ 10−10.  

𝑝𝑎− =
1

𝜏

|

|

|

 

𝑖𝑓 𝑍1 < 𝑍
∗ 0

𝑖𝑓 𝑍∗ ≤ 𝑍1 ≤ 𝑍∗∗

     |  
𝑒−𝑍1

2 

𝑠
√𝜋
2
(𝑒𝑟𝑓𝑐(𝑍1) − 𝑒𝑟𝑓𝑐(𝑍2))

𝑖𝑓 𝑍∗∗ < 𝑍1
2𝑍1
𝑠

𝑤ℎ𝑒𝑟𝑒

{
 
 
 

 
 
 

  

𝑍1 =
1

𝑠
(−𝑚𝑎𝑥(𝜀𝑎+(𝑇), 𝜀

∗) −
𝜎

𝐸𝑎
)

𝑍2 =
1

𝑠
(𝑚𝑎𝑥(𝜀𝑎+(𝑇), 𝜀

∗) −
𝜎

𝐸𝑎
)

𝑠 = √
2𝛾

𝐸𝑎
⁄

 (228) 

𝑝𝑎+ =
1

𝜏

|

|

|

 

𝑖𝑓 𝑍2 < 𝑍∗ −
2𝑍2
𝑠𝑎

𝑖𝑓 𝑍∗ ≤ 𝑍2 ≤ 𝑍
∗∗

     |  
𝑒−𝑍2

2 

𝑠
√𝜋
2
(𝑒𝑟𝑓𝑐(𝑍1) − 𝑒𝑟𝑓𝑐(𝑍2))

𝑖𝑓 𝑍∗∗ < 𝑍2 0

𝑤ℎ𝑒𝑟𝑒

{
 
 
 

 
 
 

  

𝑍1 =
1

𝑠
(−𝑚𝑎𝑥(𝜀𝑎+(𝑇), 𝜀

∗) −
𝜎

𝐸𝑎
)

𝑍2 =
1

𝑠
(𝑚𝑎𝑥(𝜀𝑎+(𝑇), 𝜀

∗) −
𝜎

𝐸𝑎
)

𝑠 = √
2𝛾

𝐸𝑎
⁄

 (229) 

Expressions 226, 227, 228, and 229 allow the evaluation of the transformation rate Equations and therefore 

the kinetics equations for all values of stress and temperature.  

10.2 Energy Barriers for the Asymmetric Free Energy 

In Chapter 5, only the essential components of the free energy function were included. The energy barriers 

in the new 1-D model are not necessary to operate the model and were therefore not fully defined. Several free 

energy plots, however, do show the full landscape. For completeness and to show how to define the continuous 

free energy plots, we have included the expressions to define the energy barrier coefficients here. The two energy 
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barriers were given in Equation 139 and are repeated here, where six coefficients 𝐴±, 𝐵±, and 𝐶± were left 

undefined.  

𝜓∓
𝐵(𝜀, 𝑇) = 𝐴∓(𝑇)𝜀2 + 𝐵∓(𝑇)𝜀 + 𝐶∓(𝑇) (230) 

The coefficients are determined in the same manner as in Chapter 2, except it is done twice – once for the 

𝜓+
𝐵 coefficients and once for the 𝜓−

𝐵 set. The continuity conditions imposed on each set of parabolas gives us the 

following two sets of four equations.  

Compression Tension 

𝜓𝑎|𝜀𝑎−(𝑇) = 𝜓−
𝐵|𝜀𝑎−(𝑇) 𝜓−

𝐵|𝜀−𝑎(𝑇) = 𝜓−|𝜀−𝑎(𝑇)

𝜕𝜓𝑎
𝜕𝜀

|
𝜀𝑎−(𝑇)

=
𝜕𝜓−

𝐵

𝜕𝜀
|
𝜀𝑎−(𝑇)

𝜕𝜓−
𝐵

𝜕𝜀
|
𝜀−𝑎(𝑇)

=
𝜕𝜓−
𝜕𝜀

|
𝜀−𝑎(𝑇)

 

𝜓𝑎|𝜀𝑎+(𝑇) = 𝜓+
𝐵|𝜀𝑎+(𝑇) 𝜓+

𝐵|𝜀+𝑎(𝑇) = 𝜓+|𝜀+𝑎(𝑇)

𝜕𝜓𝑎
𝜕𝜀

|
𝜀𝑎+(𝑇)

=
𝜕𝜓+

𝐵

𝜕𝜀
|
𝜀𝑎+(𝑇)

𝜕𝜓+
𝐵

𝜕𝜀
|
𝜀+𝑎(𝑇)

=
𝜕𝜓+
𝜕𝜀

|
𝜀+𝑎(𝑇)

 

(231,232,233,234) (235,236,237,238) 

Simultaneous solution of Equations 231-234 allows us to solve for 𝐴−, 𝐵−, 𝐶− and 𝛽− while simultaneous 

solution of 235-238 yields 𝐴+, 𝐵+, 𝐶+ and 𝛽+. The solutions for the 𝛽’s were given by Equation 156; the solutions 

for the other three pairs of parameters are given here.  

Compression Tension 

𝐴−(𝑇) =
𝜎Δ
−(𝑇)

2(𝜀𝑎−(𝑇) − 𝜀−𝑎(𝑇))
 𝐴+(𝑇) =

𝜎Δ
+(𝑇)

2(𝜀𝑎+(𝑇) − 𝜀+𝑎(𝑇))
 

𝐵−(𝑇) =
𝜎−𝑎(𝑇)𝜀𝑎−(𝑇) − 𝜎𝑎−(𝑇)𝜀−𝑎(𝑇)

𝜀𝑎−(𝑇) − 𝜀−𝑎(𝑇)
 𝐵+(𝑇) =

𝜎+𝑎(𝑇)𝜀𝑎+(𝑇) − 𝜎𝑎+(𝑇)𝜀+𝑎(𝑇)

𝜀𝑎+(𝑇) − 𝜀+𝑎(𝑇)
 

𝐶−(𝑇) = (
𝐸𝑎
2
− 𝐴−(𝑇)) 𝜀𝑎−(𝑇)

2 − 𝐵−(𝑇)𝜀𝑎−(𝑇) 𝐶+(𝑇) = (
𝐸𝑎
2
− 𝐴+(𝑇)) 𝜀𝑎+(𝑇)

2 − 𝐵+(𝑇)𝜀𝑎+(𝑇) 

(239,240,241) (242,243,244) 

Some of the expressions have different forms than their analogous coefficients from the symmetric version 

(Equations 10-13). This is due to the 𝛽 terms being in different locations prior to the algebraic manipulation. It 

should also be noted that the expressions above assume that the linear transformation stress expression is being 

used, so Equations 141, 142, 145, and 146 should be used for the 𝜎𝑖𝑗(𝑇) parameters and Equations 152 and 153 

should be used for the 𝜀𝑖𝑗(𝑇)‘s.  

10.3 Free Energy Landscape Plots 

Six different experimental data sets were used in the Simulations section to demonstrate the model’s behavior 

and their material parameters were given in Table 3. In the Mesoscopic Free Energy section, free energy plots 

were only shown as needed to visualize the features being discussed – in most cases the tension-compression 

asymmetric data from Reedlunn et al. (2014) was used. Here, in Figure 125, we show the HFE landscape using 

the material parameters from each of the six experimental data sets for visual comparison. Each plot shows the 

same five temperatures and has axes scaled to the same ranges (both energy and strain).  
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Figure 125: Helmholtz free energy plots for SMA materials from six different 

experimental data sets 

10.4 Additional Calculations for the 2-D Model 

10.4.1 Calculating Stress from a Critical Free Energy 

Each of the critical free energy curves shown in Figures 104-109 represents a set of strain combinations 

{𝜀}, {𝛾}. Since each strain is a function of stress (178 and 179) we are really finding a series of normal stress, shear 

stress pairs that result in the critical free energy and we write this condition using Equation 183.  

𝑔𝑐 = −
𝜎2

2𝐸𝑖
−
𝜏2

2𝑌𝑖
+ 𝛽(𝑇) − 𝜎𝜀𝑖

𝑅 − 𝜏𝛾𝑖
𝑅  (245) 

The easiest way to generate the critical free energy curves is to treat either normal stress or shear stress as 

an independent parameter and then solve for the other. It should be noted that the choice for the independent stress 

value has to be within the operating range of the model – i.e. the stress and temperature ranges where material 

properties are scoped. In the case where the normal stress is an input parameter, we can write a quadratic 

expression for the shear stress.  

𝜏(𝜎, 𝑔𝑐) =
−𝐵 ± √𝐵2 − 4 ∙ 𝐴 ∙ 𝐶

2𝐴
→ 𝐴 = −

1

2𝑌𝑖
𝐵 = −𝛾𝑖

𝑅 𝐶 = −
𝜎2

2𝐸𝑖
+ 𝛽(𝑇) − 𝜎𝜀𝑖

𝑅 − 𝑔𝑐 (246) 

Or, in the case where the shear stress is an input parameter, we can write a quadratic expression for the 

normal stress.  

𝜎(𝜏, 𝑔𝑐) =
−𝐵 ± √𝐵2 − 4 ∙ 𝐴 ∙ 𝐶

2𝐴
→ 𝐴 = −

1

2𝐸𝑖
𝐵 = −𝜀𝑖

𝑅 𝐶 = −
𝜏2

2𝑌𝑖
+ 𝛽(𝑇) − 𝜏𝛾𝑖

𝑅 − 𝑔𝑐 (247) 

Equations 246 and 247 are not necessary to operate the model because but they are useful for visualizing the 

free energy boundaries and they were used to generate the 𝜎 = 132 − 379 𝑀𝑃𝑎 curves in Figures 103 and 110.  

10.5 2-D Model Equations with the Coupling Parameter 

The normal-shear coupling parameter 𝑀, that was briefly discussed in Chapter 6, was neglected in the main 

dissertation simply because it proved not to play a significant role. The model developed, however, was presented 

as a first step in extending the 1-D M-A-S model to multiple dimensions and was limited in several ways, such as 

neglecting macroscopic field effects as well as the simplified manner of discretizing the radial wire domain. We 

acknowledge that a more complete material-level theory may be called for in a future work where these macro-
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scale inhomogeneities are better addressed. In this light, we have included the free energy-related model equations 

in this section with the 𝑀 term included to provide a complete record of the theory.  

10.5.1 Stress and Strain Equations 

The expressions for average strain within a given phase, originally Equations 178 and 179, are now written 

as follows.  

𝜀𝑖(𝜎, 𝜏) =
𝜎𝑌𝑖 − 𝜏𝑀𝑖

𝐸𝑖𝑌𝑖 −𝑀𝑖
2 + 𝜀𝑖

𝑅 = 𝜎 (
𝑌𝑖

𝐸𝑖𝑌𝑖 −𝑀𝑖
2) − 𝜏 (

𝑀𝑖

𝐸𝑖𝑌𝑖 −𝑀𝑖
2) + 𝜀𝑖

𝑅   

𝜀𝑖(𝜎, 𝜏) = 𝜎
𝑌𝑖
𝑋
− 𝜏

𝑀𝑖

𝑋
+ 𝜀𝑖

𝑅 𝑤ℎ𝑒𝑟𝑒 𝑋 = 𝐸𝑖𝑌𝑖 −𝑀𝑖
2 (248) 

𝛾𝑖(𝜎, 𝜏) =
𝜏

𝑌𝑖
(1 +

𝑀𝑖
2

𝐸𝑖𝑌𝑖 −𝑀𝑖
2) − (

𝜎𝑀𝑖

𝐸𝑖𝑌𝑖 −𝑀𝑖
2) + 𝛾𝑖

𝑅 = 𝜏 (
1

𝑌𝑖
+
𝑀𝑖

2

𝑌𝑖𝑋
) − 𝜎

𝑀𝑖

𝑋
+ 𝛾𝑖

𝑅  (249) 

To write stress as a function of strian and phase fractions, originally Equations 203 and 204, we now write 

the following expressions.  

𝜀 =∑𝑥𝑖 ∙ 𝜀𝑖(𝜎, 𝜏)

𝑖

=∑𝑥𝑖 ∙ 𝜎
𝑌𝑖
𝑋

𝑖

−∑𝑥𝑖 ∙ 𝜏
𝑀𝑖

𝑋
𝑖

+∑𝑥𝑖 ∙ 𝜀𝑖
𝑅

𝑖

  

𝜎(𝜀, 𝜏, 𝑥𝑖) =

𝜀 −∑ 𝑥𝑖𝜀𝑖
𝑅

𝑖
+∑

𝑥𝑖𝜏𝑀𝑖

𝑋𝑖

∑
𝑥𝑖𝑌𝑖
𝑋𝑖

, 𝑖 ∈ 𝑖 − 5 (250) 

𝛾 =∑𝑥𝑖 ∙ 𝛾𝑖(𝜎, 𝜏)

𝑖

=∑𝑥𝑖𝜏 (
1

𝑌𝑖
+
𝑀𝑖

2

𝑌𝑖𝑋
)

𝑖

−∑𝑥𝑖𝜎
𝑀𝑖

𝑋
𝑖

+∑𝑥𝑖𝛾𝑖
𝑅

𝑖

  

𝜏(𝛾, 𝜎, 𝑥𝑖) =

𝛾 −∑ 𝑥𝑖𝛾𝑖
𝑅

𝑖
+∑

𝑥𝑖𝜎𝑀𝑖

𝑋𝑖

∑ 𝑥𝑖 (
1
𝑌𝑖
+
𝑀𝑖

2

𝑌𝑖𝑋
)

𝑖

, 𝑖 ∈ 𝑖 − 5
 (251) 

10.5.2 Calculating Stress from Total Strain and Phase Fractions 

During model operation, the order of evaluation of the macroscopic stress and strain equations depends on 

which parameters are known and which need to be calculated. For example, to simulate the RR tension-torsion 

tests, the axial stress 𝜎 and the shear strain 𝛾 are known leaving the axial strain 𝜀 and shear stress 𝜏 to be calculated. 

For the RR tension tests, on the other hand, both of the strains are known inputs and the stresses need to be found. 

In the latter case, we must solve Equations 203 and 204 to obtain expressions for stress as a function of strains 

and phase fractions. We begin with Equations 203 and 204 by collecting terms and introducing temporary place 

holder parameters 𝐵 and 𝐶.  

𝜎 =

𝜀 −∑ 𝑥𝑖𝜀𝑖
𝑅

𝑖
+∑

𝑥𝑖𝜏𝑀𝑖

𝑋𝑖

∑
𝑥𝑖𝑌𝑖
𝑋𝑖

=

𝜀 −∑ 𝑥𝑖𝜀𝑖
𝑅

𝑖
+∑

𝑥𝑖𝜏𝑀𝑖

𝑋𝑖

𝐵
=
𝜀

𝐵
−
∑ 𝑥𝑖𝜀𝑖

𝑅
𝑖

𝐵
+
𝜏𝐴

𝐵
 (252) 

𝜏 =

𝛾 −∑ 𝑥𝑖𝛾𝑖
𝑅

𝑖
+∑

𝑥𝑖𝜎𝑀𝑖

𝑋𝑖

∑ 𝑥𝑖 (
1
𝑌𝑖
+
𝑀𝑖

2

𝑌𝑖𝑋
)

𝑖

=

𝛾 −∑ 𝑥𝑖𝛾𝑖
𝑅

𝑖
+∑

𝑥𝑖𝜎𝑀𝑖

𝑋𝑖

𝐶
=
𝛾

𝐶
−
∑ 𝑥𝑖𝛾𝑖

𝑅
𝑖

𝐶
+
𝜎𝐴

𝐶
 

(253) 

Now, substituting Equation 253 into Equation 252 we add one more place holder 𝐴 and write an expression 

for normal stress as a function of strain and phase fractions.  
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𝜎 =
𝜀

𝐵
−
∑ 𝑥𝑖𝜀𝑖

𝑅
𝑖

𝐵
+ (

𝛾

𝐶
−
∑ 𝑥𝑖𝛾𝑖

𝑅
𝑖

𝐶
+
𝜎𝐴

𝐶
)
𝐴

𝐵
=
𝜀

𝐵
−
∑ 𝑥𝑖𝜀𝑖

𝑅
𝑖

𝐵
+
𝛾𝐴

𝐵𝐶
−
∑ 𝑥𝑖𝛾𝑖

𝑅
𝑖

𝐴

𝐵𝐶
+
𝜎𝐴2

𝐵𝐶
 

𝜎 −
𝜎𝐴2

𝐵𝐶
=

1

𝐵𝐶
(𝐶𝜀 − 𝐶∑𝑥𝑖𝜀𝑖

𝑅

𝑖

+ 𝐴𝛾 − 𝐴∑𝑥𝑖𝛾𝑖
𝑅

𝑖

) → 𝜎𝐵𝐶 − 𝜎𝐴2 = 𝐶𝜀 − 𝐶∑𝑥𝑖𝜀𝑖
𝑅

𝑖

+ 𝐴𝛾 − 𝐴∑𝑥𝑖𝛾𝑖
𝑅

𝑖

 

𝜎 =
𝐶(𝜀 −∑ 𝑥𝑖𝜀𝑖

𝑅
𝑖

) + 𝐴(𝛾 −∑ 𝑥𝑖𝛾𝑖
𝑅

𝑖
)

𝐵𝐶 − 𝐴2
𝑤ℎ𝑒𝑟𝑒

𝐴 =∑
𝑥𝑖𝑀𝑖

𝑋
𝑖

𝐶 =∑𝑥𝑖 (
1

𝑌𝑖
+
𝑀𝑖

2

𝑌𝑖𝑋
)

𝑖

𝐵 =∑
𝑥𝑖𝑌𝑖
𝑋

𝑖

𝑋 = 𝐸𝑖𝑌𝑖 −𝑀𝑖
2

 (254) 

After solving for normal stress 𝜎 via Equation 254, Equation 253 can then be evaluated for shear stress 𝜏.  

10.5.3 Calculating Stress from a Critical Free Energy 

When the 𝑀 parameter is kept, the process of find stress pairs that follow the constant critical free energy 

lines is more complex. We begin with the GFE expression that maintains the coupling term.  

𝑔𝑐 =
𝐸𝑖
2
(𝜀𝑖(𝜎, 𝜏) − 𝜀𝑖

𝑅)
2
+
𝑌𝑖
2
(𝛾𝑖(𝜎, 𝜏) − 𝛾𝑖

𝑅)
2

 + 𝑀𝑖(𝜀𝑖(𝜎, 𝜏) − 𝜀𝑖
𝑅)(𝛾𝑖(𝜎, 𝜏) − 𝛾𝑖

𝑅) + 𝛽𝑖(𝑇) − 𝜎𝜀𝑖(𝜎, 𝜏) − 𝜏𝛾𝑖(𝜎, 𝜏)

 (255) 

Now, we substitute Equations 248 and 249 and then rearrange into a quadratic function of 𝜎.  

𝑔𝑐 =
𝐸𝑖
2
(𝜎
𝑌𝑖
𝑋
− 𝜏

𝑀𝑖

𝑋
)
2

+
𝑌𝑖
2
(𝜏 (

1

𝑌𝑖
+
𝑀𝑖

2

𝑌𝑖𝑋
) − 𝜎

𝑀𝑖

𝑋
)

2

+𝑀𝑖 (𝜎
𝑌𝑖
𝑋
− 𝜏

𝑀𝑖

𝑋
)(𝜏 (

1

𝑌𝑖
+
𝑀𝑖

2

𝑌𝑖𝑋
) − 𝜎

𝑀𝑖

𝑋
) + 𝛽𝑖(𝑇)

 −𝜎 (𝜎
𝑌𝑖
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Now, Equation 256 can be separated into the proper terms to use the quadratic equation to solve for 𝜏 in 

Equation 257.  
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If a shear stress 𝜏 is assumed, the corresponding normal stress 𝜎 can be obtained in a similar manner.  
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10.6 Summary of SMA Roundrobin Model Results 

The 2-D models from several groups or researchers were discussed in the Introduction section. In most cases 

these models were tested using the RR experimental data and we include a brief summary and discussion of their 

results here. It should be pointed out that the plots shown here were taken directly from the published papers, not 

from reproducing their models or simulations.  

The model described in Gibeau et al. (2009) was also included in the RR program and uses stress-induced 

martensite as well as self-accommodated martensite internal variables. A macroscopic Helmholtz free energy 

contains internal energy, entropy, elastic energy, specific heat, and interaction terms. A Gibbs free energy is 

derived from the Helmholtz energy and it also has a phase dependent elastic modulus. The free energies are used, 

via partial derivatives, to define driving forces for elastic strain, thermal strain, transformation strain, entropy, as 

well as proportions of stress-induced and self-accommodated martensite. A yield function is used to define the 

threshold for transformation while a Claussius-Duhem inequality along with several logical conditions (such as 

loading vs. unloading and forward vs. reverse) are used to supply flow rules. A specific choice of stress-invariant 

parameters is used to also enable tension-compression asymmetry, similarly to Drucker-Prager methods which 

are common concrete and soil modeling.  

This model represented the uniaxial RR tests reasonably (Figures 126 and 127), though the martensite branch 

under-predicts the strain at some temperatures (20 and 40 C).  

 
Figure 126: Tension test simulations from Gibeau et al. (2009) compared to 

experiments from the RR program, Pseudoplastic temperatures 

The progression of the transformation stresses and the shape of the hysteresis loop also seem irregular 

between 10 C and 60 C (Figure 127).  

 
Figure 127: Tension test simulations from Gibeau et al. (2009) compared to RR 

experiments, Superelastic temperatures 

The actuation behavior is well captured (Figure 128) although the lower-stress experiments, where a no-

actuation threshold was observed, were not included in the simulations.  

 
Figure 128: Tensile actuation test simulations from Gibeau et al. (2009) compared to 

RR experiments, Superelastic temperatures 
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For the tension-torsion tests, the model failed to capture the smooth shape of the curves and underpredicted 

the transformation strains in the low-temperature cases (Figure 129).  

 
Figure 129: Tension-torsion test simulations from Gibeau et al. (2009) compared to 

RR experiments, Several temperatures and a low level of axial stress 

Only a single axial strain was presented for the tension-torsion simulations so no assessment could be made 

about the model’s handling of the coupling between the axial stress and the tension-torsion response.  

Rio et al. (2009) presented an elasto-hysteresis model where the total stress was composed of a hyperelastic 

component and an elastoplastic hysteresis component. The hyperelastic potential is based on strain invariants, 

relative volume variation, deviatoric deformation intensity, and an angle giving the direction of the deformation. 

The hysteresis is governed by an incremental model with discrete memory points. This model was able to 

accurately match the RR experiments in most cases and, in the cases where it did not match well, the overall 

characteristics of the responses were still correct. In the uniaxial tension tests the model shows a transition from 

pseudoplastic to superelastic, accurate partial unloading loops, as well as shrinking hysteresis (Figure 130).  

 
Figure 130: Tensile test simulations from Rio et al. (2009) compared to RR 

experiments, Superelastic temperatures with a partial unloading loop 

In the actuation tests, the minimum axial stress required to produce actuation was slightly off but only by 

one 100 MPa increment (Figure 131).  
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Figure 131: Tensile actuation test simulations from Rio et al. (2009) compared to RR 

experiments, At several values of axial stress 

In the fixed-strain thermal cycle simulations, the stress-strain response is accurately predicted but the model 

produces stress vs. temperature curves that under-predict the stress (Figure 132).  

 
Figure 132: Fixed strain temperature cycle simulations from Rio et al. (2009) 

compared to RR experiments 

The simulations of the tension-torsion tests (Figures 133, 134, and 135)demonstrated that the model captured 

both the high-temperature and low-temperature modes, as well as the transition between the two.  
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Figure 133: Tension-torsion simulations from Rio et al. (2009) compared to RR 

experiments, 70 MPa axial stress data set 

 
Figure 134: Tension-torsion simulations from Rio et al. (2009) compared to RR 

experiments, 194 MPa axial stress data set 

 
Figure 135: Tension-torsion simulations from Rio et al. (2009) compared to RR 

experiments, 317 MPa axial stress data set 

The axial responses also exhibited low and high-temperature modes, but the magnitudes were off. The 

experimental data shows a gradual increase in axial strain as the tensile stress increases. The axial strain in the 

simulations is relatively insensitive to the external axial load.  
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Chemisky and colleagues (Chemisky et al., 2009) present results from a model where the inelastic strain is 

an average of that from martensite transformation and twinned martensite. A Gibbs free energy is written 

containing chemical, elastic, thermal strain, inelastic, and mixing energy terms. A set of dissipation potentials and 

evolution rules govern the progression of the internal variables and phase diagram-like method is used to identify 

the material parameters. The model is implemented in a 3-D FEA simulation (Abaqus via UMAT) and it captures 

the uniaxial tension tests as well as the thermal cycle tests reasonably well (Figures 136, 137, and 138).  

 
Figure 136: Tension test simulations with partial unloading loops from Chemisky et 

al. (2009) compared to RR experiments 

 
Figure 137: Actuation test simulations from Chemisky et al. (2009) compared to RR 

experiments 
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Figure 138: Fixed-strain temperature cycle simulations from Chemisky et al. (2009) 

compared to RR experiments 

In combined tension and torsion, the model represents the two modes of deformation (high and low 

temperature), but the magnitudes are inaccurate in some of the cases and the characteristic shapes of the curves 

do not match (Figures 139, 140, and 141).  

 
Figure 139: Tension-torsion test simulations from Chemisky et al. (2009) compared 

to RR experiments, Sampling of temperature and axial stress cases 
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Figure 140: Tension-torsion test simulations from Chemisky et al. (2009) compared 

to RR experiments, Sampling of temperature and axial stress cases 

 
Figure 141: Tension-torsion test simulations from Chemisky et al. (2009) compared 

to RR experiments, Sampling of temperature and axial stress cases 

This model assumes a total strain composed of an elastic component (with a stiffness that is phase fraction-

dependent), a thermal component, a transformation component, and a plastic component. The formulation is of 

the plasticity-type, where the inelastic strains accumulate in the direction of a deviator stress invariant. The 

evolution equations use loading vs. unloading logic, a maximum achievable strain parameter that is stress 

dependent, as well as back stress and transformation hardening terms. The start-stop criteria are based on driving 

forces which are also related to the various terms from the evolution equations.  

The model’s agreement with the uniaxial tension tests (Figure 142) is qualitatively good but the 

transformation hardening is exaggerated in the tension tests; this is especially true in the low-temperature (pseudo-

plastic) case.  
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Figure 142: Tension test simulations from Hartl et al. (2009) compared to RR 

experiments 

The actuation tests, Figure 143, show better agreement in the characteristic shape of the curves, but the 

forward actuation temperatures are under-predicted and the authors do not show if the model predicts the low-

stress no-actuation cases.  

 
Figure 143: Actuation test simulations from Hartl et al. (2009) compared to RR 

experiments 

The constant-strain thermal cycle simulations show good agreement with the experiments within the 

limitations of the model’s representation of the hysteresis loop (Figure 144).  
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Figure 144: Fixed-strain temperature cycle simulations from Hartl et al. (2009) 

compared to RR experiments 

The authors show results from a few tension-torsion test simulations (Figure 145), but they only include the 

torque vs. twist plots. The agreement is reasonable, but the axial response is not included, therefore no evaluation 

can be made about the axial-twist coupling in the model.  
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Figure 145: Tension-torsion test simulations from Hartl et al. (2009) compared to RR 

experiments 

An earlier model was described in Frost and Sedlak (2009), which was published as part of the RR program, 

but no simulations were included in that work. The 2012 paper presents a more mature model with material 

anisotropy, an R phase, martensite reorientation, along with multi-axial loading. The total strain is segregated into 

elastic and inelastic parts, where the inelastic strain is based on a transformation strain tensor and a martensite 

phase fraction. A HFE is introduced with a mechanical and chemical component; penalty-type energy terms are 

added to enforce strain constraints, such as limiting the inelastic strain to deviatoric components and keep the 

phase fractions between zero and one. Dissipation functions are introduced as alternatives to yield functions to 

govern the onset of stress and temperature-induced transformations as well as martensite reorientation. The 

reorientation term has a temperature-dependent component which allows temperature dependent hysteresis. A set 

of thermodynamic forces along with minimization routines for the dissipation functions play the role of flow rules 

and dictate the evolution of the inelastic strains.  

Simulations are presented for a small sampling of the RR experimental data. The model shows good 

agreement for the uniaxial tension (Figure 146) and actuation (Figure 147) experiments; especially in capturing 

the non-actuation response that was observed at stresses below 400 MPa.  
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Figure 146: Tension test simulations from Sedlak et al. (2012) compared to RR 

experiments 

 
Figure 147: Actuation test simulations from Sedlak et al. (2012) compared to RR 

experiments 

For the tension-torsion tests (Figures 148-151), the agreement between the model and the experiments 

appears to be good, though only two of six axial stresses are shown. In Figure 148 we see that the model captures 

both modes of torque-twist response (single-loop and double loop), the transition between them.  

 
Figure 148: Tension-torsion test simulations from Sedlak et al. (2012) compared to 

RR experiments, Torque-twist plots 

The two modes of axial strain vs. twist are also captured, as is the ratcheting into the low temperature mode 

(Figure 149).  

 
Figure 149: Tension-torsion test simulations from Sedlak et al. (2012) compared to 

RR experiments, Axial strain-twist plots 

At a higher value of axial stress, the shape of the low-temperature hysteresis loop changes to a thin, sloped 

configuration. The model captures this effect accurately (Figure 150).  
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Figure 150: Tension-torsion test simulations from Sedlak et al. (2012) compared to 

RR experiments, Torque-twist plots at various axial stress values 

Also, the increase in axial strain that occurs with increasing the axial stress is reflected remarkably well by 

the model (Figure 151).  

 
Figure 151: Tension-torsion simulations from Sedlak et al. (2012) compared to 

experiments from the RR program, Axial strain-twist plots at various axial stress 

values 

This model is proposed in the context of the RR program’s combined loading and uses self-accommodated 

martensite, oriented martensite, as well as preferred-direction martensite internal variables to describe the phase 

composition of the material. The strain is decomposed into elastic and inelastic components and the strain domain 

is made to be two dimensional, only considering a normal and a shear (torsional) component. A HFE function is 

written with elastic energy, internal energy, entropy, and transformation hardening terms followed by a total 

dissipation inequality of the Claussius-Duhem type. Evolution equations are derived from the free energy and 

dissipation expressions (acting similar to flow rules) and then optimization conditions (Kuhn-Tucker) as well as 

limit functions are added (behaving like yield surfaces).  

Simulations of the tension and actuation tests show good correlation (Figure 152).  
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Figure 152: Uniaxial tension and actuation test simulations from Bodaghi et al. 

(2013) compared to experiments from the RR program 

For the tension-torsion cases (Figure 153), the model … 

 
Figure 153: Tension-torsion test simulations from Bodaghi et al. (2013) compared to 

experiments from the RR program 

A version of this model was described in Auricchio et al. (2009), which was as a conference paper for the 

RR program, but no simulation results were reported in the initial paper. In 2014, the work is continued on a model 

suitable for the type of behavior observed in the RR experimental program. In this model, three internal variables 

are used to represent SMA phases: austenite, single-variant martensite, and multivariant martensite. A HFE is 
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written as a function of total strain, temperature, phase fractions, and a transformation direction tensor. A chemical 

free energy is also written for each phase along with a set of interaction energies, which influence the behavior 

when multiple phases are present. Partial derivatives of the HFE are used to derive constitutive equations and 

thermodynamic forces. The driving force also have logical terms based on Kuhn-Tucker conditions and the 

transformation direction is assumed to be the direction of the deviatoric stress vector. Each driving force, along a 

consistency parameter and limit function, is used to derive an evolution equation which also include logical and 

optimization (Kuhn-Tucker) conditions. Next, some physical assumptions are discussed which simplify the model 

and some solution techniques are discussed.  

As set of simulations shows good agreement with the RR uniaxial tension tests; Figure 154 shows several 

cases with a partial unloading loop.  

 
Figure 154: Uniaxial tension test simulations from Auricchio et al. (2014) compared 

to experiments from the RR program 

The model captures the actuation response at the higher levels of axial stress (Figure 155, right) but appears 

to not capture the stress threshold where actuation does not occur (Figure 155, left).  

 
Figure 155: Actuation tension test simulations from Auricchio et al. (2014) 

compared to experiments from the RR program 
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The model also reasonably matches the stress-strain and stress-temperature response for the fixed-strain 

thermal cycle experiments (Figure 156).  

 
Figure 156: Fixed-strain thermal cycle test simulations from Auricchio et al. (2014) 

compared to experiments from the RR program 

Only a small sampling of the tension-torsion experiments was included in the paper. For the cases shown, 

the agreement between the model and the test data is promising but imperfect (Figure 157).  



177 

 

 
Figure 157: Tension-torsion test simulations from Auricchio et al. (2014) compared 

to experiments from the RR program 

The torque-twist plots at lower levels of axial stress (70 MPa and 194 MPa) show good agreement, though 

the twist is slightly over-predicted. In the 379 MPa torque-twist plot, the model follows the experimental data in 

a general way, but the curve never forms the single hysteresis loop. The axial strain-twist plots show a similar 

characteristic shape to the test data and show that the axial strain increases with axial stress (though it is under-

predicted for the 379 MPa case).  

In Chatziathanasiou et al. (2016), the authors present a plasticity type of model that considers forward 

transformation, reverse transformation, and reorientation. The transformation strain parameter represents the 

average strain in a martensite RVE, where the strain direction can change (reorient) and the phase fraction can 

grow or shrink. A rate of change for each internal variable is derived from a GFE and a set of yield surfaces is 

used to define the activation criteria. A Claussius-Duhem expression is written to add some additional constraints 

to the system and maximum transformation strain parameters are used to allow transformations to complete.  

Simulations of a small sample of the RR tension experiments are presented showing that the model captures 

superelasticity, pseudoplasticity, as well as a transition between the two in Figure 158.  
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Figure 158: Uniaxial tension test simulations from Chatziathanasiou et al. (2016) 

compared to experiments from the RR program 

The second cycle in 158c has a different characteristic shape than the first cycle. The experimental data does 

not include a second cycle so no evaluation can be made on the model’s accuracy in this context. It is worth noting, 

however, that the characteristic shape of the second cycle is qualitatively similar to the second cycles in the low 

temperature tension-torsion experiments from the RR program (Figures 77 and 78).  
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