
Software Development of Reconfigurable Real-

time Systems: From Specification to

Implementation

Dissertation

zur Erlangung des Grades des Doktors der

Ingenieurwissenschaften der

Naturwissenschaftlich-Technischen Fakultät der

Universität des Saarlandes

und der

Tunisia Polytechnic School, Carthage

University

von

Wafa Lakhdhar

Saarbrücken 2021

Tag des Kolloquiums: 12. Juli 2021

Dekan: Prof. Dr. Jörn Walter

Vorsitz: Prof. Dr. Kathrin Flaßkamp

Berichterstatter: Prof. Dr. Georg Frey

 Prof. Dr. Mohamed Khalgui

 Prof. Dr. Luis Gomez

Akademischer Beisitzer: Dr. Paul Motzki

ABSTRACT

Real-time systems run under real-time constraints that determine their reliability

and accuracy. Besides, real-time constraints reconfigurable real-time systems induce

additional constraints which are constraints for reconfiguration. This thesis deals with

reconfigurable real-time systems in mono-core and multi-core architectures. The devel-

opment of these systems faces various challenges particularly in terms of reconfigura-

tion capacity, real-time aspects, and resource constraints. In addition, the costs of those

systems development are strongly impacted by wrong design choices made in the early

stages of development. The focus in this thesis is on providing guidelines, methods,

and tools for the synthesis of feasible reconfigurable real-time systems in mono-core

and multi-core architectures. To address the given challenges, we propose in this work

a new strategy of 1) function assignment 2) placement and scheduling of tasks to exe-

cute real-time applications on mono-core and multi-core architectures, 3) optimization

step based on Mixed integer linear programming (MILP), and 4) a decision aiding so-

lution (i.e., guidance tool) that assists designers to implement a feasible multi-core re-

configurable real-time from specification level to implementation level. We apply and

simulate our contributions to a case study and compare the proposed results with related

works.

Keywords: Real-time system, Reconfiguration, Scheduling, Mono-Core, Multi-Core,

MILP.

i

KURZZUSAMMENFASSUNG

Echtzeitsysteme laufen unter harten Bedingungen an ihre Ausführungszeit. Die Einhal-

tung der Echtzeit-Bedingungen bestimmt die Zuverlässigkeit und Genauigkeit dieser

Systeme. Neben den Echtzeit-Bedingungen müssen rekonfigurierbare Echtzeitsysteme

zusätzliche Rekonfigurations-Bedingungen erfüllen. Diese Arbeit beschäftigt sich mit

rekonfigurierbaren Echtzeitsystemen in Mono- und Multicore-Architekturen. An die

Entwicklung dieser Systeme sind verschiedene Anforderungen gestellt. Insbesondere

muss die Rekonfigurierbarkeit beachtet werden. Dabei sind aber Echtzeit-Bedingungen

und Ressourcenbeschränkungen weiterhin zu beachten. Darüber hinaus werden die

Kosten für die Entwicklung dieser Systeme insbesondere durch falsche Designentschei-

dungen in den frühen Phasen der Entwicklung stark beeinträchtigt. Das Hauptziel in

dieser Arbeit liegt deshalb auf der Bereitstellung von Handlungsempfehlungen, Meth-

oden und Werkzeugen für die zielgerichtete Entwicklung von realisierbaren rekonfig-

urierbaren Echtzeitsystemen in Mono- und Multicore-Architekturen. Um diese Heraus-

forderungen zu adressieren wird eine neue Strategie vorgeschlagen, die 1) die Funktion-

sallokation, 2) die Platzierung und das Scheduling von Tasks, 3) einen Optimierungss-

chritt auf der Basis von Mixed Integer Linear Programming (MILP) und 4) eine entschei-

dungsunterstützende Lösung umfasst, die den Designern hilft, eine realisierbare rekon-

figurierbare Echtzeitlösung von der Spezifikationsebene bis zur Implementierungsebene

zu entwickeln. Die vorgeschlagene Methodik wird auf eine Fallstudie angewendet und

mit verwandten Arbeiten verglichen.

Schlüsselwörter: Echtzeitsystem, Rekonfiguration, Scheduling, Mono-Core, Multi-

Core, MILP.

ii

RESUME

Cette thèse traite des systèmes en temps réel reconfigurables dans une architecture

mono-coeur et multi-coeur. L’objectif principal de cette thèse est de fournir des direc-

tives, des méthodes et des outils pour la synthèse de systèmes temps réel reconfigurables

réalisables dans des architectures mono-coeur et multi-coeur. Le développement de ces

systèmes est confronté à divers défis, notamment en termes de capacité de reconfig-

uration, d’aspects temps réel et de contraintes de ressources. En outre, les coûts de

développement de ces systèmes sont fortement influencés par les mauvais choix de

conception faits dans les premières étapes du développement. Pour relever ces défis,

nous proposons dans ce travail une nouvelle stratégie de i) attribution de fonctions,

ii) placement et planification des tâches pour exécuter des applications en temps réel

sur des architectures mono-coeur et multi-coeur, iii) étape d’optimisation basée sur la

programmation linéaire (MILP), et iv) une solution d’aide à la décision qui aide les

concepteurs à mettre en œuvre un système temps réel multi-coeur reconfigurable du

niveau de spécification au niveau de la mise en œuvre. Nous appliquons et simulons

nos contributions à une étude de cas, et nous comparons les résultats proposés avec des

travaux connexes afin de montrer l’originalité de cette méthodologie.

Mots clés: Système temps réel, Reconfiguration, Ordonnancement, mono-core, multi-

core, MILP.

iii

I dedicate this work to My dear parents Abdel Malek and
Yamna, My two brothers Zouhair and Amin, My friends and
family, for their endless love, support and encouragement.

TABLE OF CONTENTS

ABSTRACT . i

KURZZUSAMMENFASSUNG . ii

RESUME . iii

LIST OF FIGURES . iv

LIST OF TABLES . vii

Acronyms . ix

Acronyms . ix

1 Introduction 1

1.1 Thesis Context . 1

1.2 Problematic . 2

1.3 Contributions . 3

1.4 Publication . 5

1.4.1 Journals (published): . 5

1.4.2 International Conferences (published) 5

1.4.3 Selected Paper (published) . 5

1.5 Thesis Outline . 5

2 State of the art 7

2.1 Reconfigurable Systems . 7

2.1.1 Definition . 7

2.1.2 Types of reconfiguration . 8

2.2 Real-time Systems . 9

2.2.1 Real-Time System Structure . 9

2.2.2 Real-time Development . 11

2.2.3 Real-time Verification . 18

2.2.4 Real-time Implementation . 24

i

2.3 Optimization Methods . 26

2.3.1 Mathematical Programming . 26

2.3.2 Genetic Algorithm . 27

2.3.3 Dynamic Programming . 27

2.4 Synthesis of Reconfigurable Real-time systems 28

2.4.1 Discussion (comparative table) 30

3 Implementation of Mono-core Reconfigurable Real-time systems 32

3.1 Motivation . 32

3.2 Formalization . 34

3.2.1 System Model . 34

3.2.2 Real-time Analysis . 35

3.2.3 Reconfiguration Time Model . 37

3.2.4 Energy consumption Model . 38

3.3 MO2R2S Approach . 39

3.3.1 Methodology description . 39

3.3.2 Initial Task Model Generation 39

3.3.3 Multi-objective Design and Optimization Step 41

3.3.4 Code Generation . 48

3.4 Formal Case Study . 49

3.4.1 Initial Task Model . 52

3.4.2 Formal Case Study Optimized Models 53

3.4.3 Formal Case Study POSIX Code 53

4 Guided Implementation of Multi-core Reconfigurable Real-time Sys-

tems 55

4.1 Motivation . 55

4.2 Formalization . 57

4.2.1 System Model . 57

4.2.2 Real-time Analysis . 59

4.2.3 Reconfiguration Time . 61

4.2.4 Energy Consumption Model . 62

4.3 Contribution Description . 63

ii

4.3.1 MO2R2S Global Overview . 63

4.3.2 Normal Mode . 64

4.3.3 Resizing Mode . 74

4.3.4 Degrading Mode . 75

4.4 Formal Case Study . 77

4.4.1 Normal Mode . 78

4.4.2 Resizing Mode . 80

4.4.3 Degrade Mode . 81

5 Case Study and Evaluation of Performance 83

5.1 MO2R2S Description . 83

5.2 Application . 86

5.2.1 Car Collision Avoidance System Mono-core Case Study 87

5.2.2 Autonomous Vehicles System Multi-core Case Study 92

5.3 Evaluation of Performance . 99

5.3.1 Evaluation Of MO2R2S on mono-core architecture 99

5.3.2 Evaluation Of MO2R2S on multi-core architecture 101

6 Conclusion 107

6.1 Context and Problems . 107

6.2 Contributions . 108

6.3 Perspectives . 109

REFERENCES . 109

Appendices

.1 General Objective Function . 124

.1.1 Common constraints . 125

.1.2 Response Time Optimization Model 126

.1.3 Energy consumption Optimization Model 128

.2 POSIX CODE . 129

iii

LIST OF FIGURES

1.1 Reconfigurable Real-tme Systems Synthesis Process. 3

2.1 A generic architecture of a real-time system. 10

2.2 Multicore Processor Architecture. 11

2.3 Real-time tasks characterization. 12

2.4 Periodic/Aperiodic/Sporadic Task Characteristics. 13

2.5 Two tasks sharing two variables. 14

2.6 Real-time Synchronous/Asynchronous Tasks. 14

2.7 Scheduler Model. 15

2.8 Global Scheduling. 17

2.9 Partitioned Scheduling. 17

2.10 Semi-partitioned Scheduling. 17

2.11 Real-time scheduling algorithms. 19

2.12 Priority inversion situation between two tasks. 21

3.1 Challenges of Reconfigurable Real-tie System Implementation under

Mono-core Architecture. 33

3.2 Reconfigurable Real-time system Model. 36

3.3 Reconfiguration scenario. 37

3.4 Approach description. 40

3.5 Running Example of an Initial task Model Generation. 41

3.6 Correspondence between system model and POSIX code. 49

3.7 Specification of Formal Case Study. 52

4.1 Thesis Challenges. 56

4.2 Type of Shared Resources. 58

4.3 Multi-core Reconfigurable Real-time system Model. 59

4.4 Description of the system. 60

4.5 Scheduling diagram. 60

iv

4.6 Reconfiguration Time Scenario. 62

4.7 The MO2R2S Process in the Synthesis of Reconfigurable Real-time Sys-

tems Flow. 63

4.8 MO2R2S methodology. 64

4.9 Normal Mode Process. 65

4.10 SW Architecture Generation. 66

4.11 Computation of Optimal Placement. 66

4.12 MO2R2S Solution Bases. 70

4.13 Correspondence between task model and POSIX code. 71

4.14 UML class diagram describing the Skeleton of POSIX Code. 74

4.15 Resizing Mode. 75

4.16 Degraded Mode. 76

4.17 Software and Hardware Models [68]. 78

5.1 Use Case of MO2R2S. 84

5.2 MO2R2S Class diagram. 84

5.3 MO2R2S SW Model Interface. 85

5.4 MO2R2S SW Architecture Interface. 86

5.5 HW Model Specification Interface. 86

5.6 Tool Computing optimal Placement Interface. 86

5.7 Tool Selection Solution Interface. 86

5.8 MO2R2S Placement Result Interface. 87

5.9 Local Optimization Interface. 87

5.10 MO2R2S Code Generation Interface. 87

5.11 CCAS Specification. 88

5.12 Autonomous vehicles scenarios [68]. 92

5.13 Comparison in terms of reconfiguration time between the proposed ap-

proach and the approach proposed in [86]. 99

5.14 Comparison in terms of context switching between the proposed ap-

proach and the approaches proposed in [86] and [21]. 100

5.15 Comparison in terms of code execution time between the proposed ap-

proach and the approach proposed in [52]. 100

5.16 Rate of Response Time With and Without Merging Technique. 101

v

5.17 Comparison in terms of energy consumption between our approach and

the approach proposed in [35]. 101

5.18 Evaluation of reconfiguration time. 102

5.19 Comparison in terms of blocking time between the proposed approach

and that in [56]. 102

5.20 Comparison in terms of processor utilization factor between the pro-

posed approach and that in [36]. 103

5.21 Comparison in terms of latency between the proposed approach and that

in [36]. 103

5.22 Comparison in terms of context switching (Cs) and preemption between

the proposed approach and that reported in [114]. 104

5.23 Comparison in terms of number of lines of code between the proposed

approach and the work reported in [76]. 104

5.24 Code execution Time before and after the application of the merge tech-

nique. 104

5.25 Graph of comparison between the axes covered by the current work

compared to the related ones. 105

6.1 MO2R2S Modes. 108

vi

LIST OF TABLES

2.1 Thesis Position vis-à-vis Exisiting Reconfiguration Types. 9

2.2 Comparison of real-time scheduling algorithms. 16

2.3 Comparison of Multi-core scheduling algorithms. 18

2.4 Some notations used in this subsection 22

2.5 Comparison of real-time programming languages. 25

2.6 Used Pthreads API. 26

2.7 Comparative Study of Optimization Methods. 28

2.8 Related work overview. 30

3.1 Example Of Initial Task Model . 42

3.2 Example: Resulting Task Model . 42

3.3 Models Parameters and Variables.Constants 43

3.4 Correspondence between the task model and POSIX specific language. . 51

3.5 Case Study Specification. 51

3.6 Tabular description of the initial task model of the Case Study 52

3.7 Obatined Optimized Task Model in term of Total response time. 53

3.8 Optimized Task Model in term of Energy Consumption. 53

4.1 First Model Parameters and Variables. 67

4.2 Second Model Parameters and Variables. 69

4.3 Correspondence between the task model and POSIX specific language. . 73

4.4 Degrading Model Variables and parameters 76

4.5 Software Model [68]. 78

4.6 Architecture Model [68]. 78

4.7 Partitioning task model [68]. 79

4.8 Partitioning task model [68]. 79

4.9 Architecture Model [68]. 80

4.10 Partitioning task model [68]. 80

vii

5.1 CCAS Specification. 89

5.2 Tabular description of the initial task model of the CCAS. 89

5.4 CCAS Optimized Task Model in term of Total response time. 90

5.5 CCAS Optimized Task Model in term of Energy Consumption. 91

5.6 Autonomous Vehicle SW Model . 93

5.7 Normal Mode: SW Model. 93

5.8 Normal mode: SW Architecture. 94

5.9 AV Solution Base: Optimal Placement [68]. 94

5.10 AV Solution Base: Optimal local Placement. 95

5.12 Resizing Mode: SW Model. 97

5.13 Resizing mode: SW Architecture. 97

5.14 Resizing Mode: Partitioning task model. 98

5.15 Degrading Mode: Partitioning task model. 98

1 Models Parameters and Variables.Constants 124

viii

Acronyms

WCET Worst Case Execution Time

WCRT Worst CaseResponse Time

QoS Quality of Service

RM Rate Monotonic

DM Deadline Monotonic

EDF Earliest Deadline First

LLF Least Laxity First

PIP Priority Inheritance Protocol

SRP Stack Resource Policy

PCP Priority Ceiling Protocol

FMLP Flexible Multiprocessor Locking Protocol

MPCP Multiprocessor Priority Ceiling Protocol

DoD Department of Defense

RT-Java Real-Time Java

POSIX Portable Operating System Interface,

MP Mathematical Programming

LP Linear Programming

MILP Mixed Integer Linear Programming

GA Genetic Algorithm

DP Dynamic Programming

DVFS Dynamic Voltage and Frequency Scaling

CCAS Car Collision Avoidance System

AV Autonomous Vehicles

ix

SW Software

HW Hardware

x

CHAPTER 1

Introduction

1.1 Thesis Context

Real-time systems are in widespread use in many sectors such as automotive electron-
ics, avionics, telecommunications, consumer electronics, etc [111]. A real-time system
is a computed environment that must respond to events timely, to ensure the correctness
of the system behavior [82]. In real-time systems, the computation results must be de-
livered within a time bound, called deadline. A real-time system is composed by a set
of tasks. Each real-time task has an associated deadline that must meet it. In order to
verify that no deadline misses occur, designers perform schedulability analysis [126],
[13] (.i.e, processor utilization test or response time analysis). These analysis use the
Worst Case Execution Time (WCET) [20] and take place in a very pessimistic case.

Real-time systems must constantly be adapted to their environment evolution and pro-
vide reconfiguration techniques according to user requirements [82]. A reconfiguration
is an operation allowing the system to transform its working process in order to adapt to
changes [118]. Based on this definition, a reconfigurable real-time system is considered
as a set of implementations where an implementation is the scenario executed by the
system in a particular time or under a particular condition. The synthesis of reconfig-
urable real-time systems is an ongoing research topic, however it is not a trivial task as
the predictability is needed to guarantee certain security and safety requirements [118].

Nowadays, almost all reconfigurable real-time systems become more and more com-
plex and they need additional computational power. Thus, the necessity of multi-core
technology [8]. The latter gives the same performance of a single faster processor at
lower power consumption (by lowering frequency and voltage [16]) through handling
more tasks in parallel [31]. The multi-core architectures offer an ideal platform for
complex real-time computations and provide an important boost in processing capacity
under relatively low power and price [117].

Even if multi-core technology may offer several benefits to reconfigurable real-time sys-

1

tems, these latter become much harder to implement due to the interferences between
tasks when accessing shared resources. Moreover, the energy and real-time constraints
become more and more difficult to satisfy owing to the high increasing demand for new
functionalities in current and future reconfigurable real-time systems. Therefore, many
researchers are moving toward proposing optimization approaches to provide a feasible
implementations of such systems while addressing the mentioned challenges (i.e., real-
time and reconfiguration constraints, energy, as well as the expansion of functionalities).

The multi-core real-time systems research community has developed a large number of
methodologies/tools such as [4], [87], and [71] by proposing approaches ensure an ef-
ficient synthesis. In fact, the implementation multi-core real-time systems under recon-
figuration constraints comprises three levels i) specification level in which the designer
specifies the functional and non-functional properties of a system, ii) design level in
which the designer models the functional requirements at higher abstraction level with
the aim to satisfy the non-functional ones note that the analysis may be performed at
this level to verify the non-functional requirements , and iii) implementation level in
which the design model is transformed into code. In the last level, programming real-
time system is generally considered the most difficult kind of programming. So that,
real-time languages have been designed to facilitate the coding task [25]. POSIX [55],
RT-Java [98], and Ada [89] are considered the most real-time languages being used for
programming real-time system [25]. Figure 1.1, sum up the process of the synthesis of
reconfigurable real-time systems which involves as we mentioned above three level: i)
specification level in which, the designer specifies its specification model [29] (function
set, core set (in the case of multi-core architecture), etc.), ii) design level [19], which
is composed of the main steps involved in the synthesis process (e.g., function to task
assignment, task to core partitioning in the case of multi-core architecture, scheduling,
optimizing, real-time and reconfiguration constraints, and guidance to help designer to
make good decisions.), and iii) implementation level [3] which deals with the final code
implementation.

1.2 Problematic

As outlined in the previous subsection, due to the complexity of modern real-time sys-
tems the computing requirement increases as a result those systems may be specified as
a large number of scenarios and time constrained functionalities, thus

• the implementation of these systems often consists of a huge number of imple-
mentations and tasks. Switching from an implementation to another generates an
important reconfiguration time,

2

Fig. 1.1 Reconfigurable Real-tme Systems Synthesis Process.

• an important time overhead may be induced due to the large number of tasks as a
result it may increase the response time as well as the energy consumption,

• many redundancies may be induced due to the large number of tasks and imple-
mentations which produces a complex system code,

• the system stability is affected by the moving time (i.e., the time spent to migrate
from a core to another when switching from one implementation to another [68]),
the more the latter increases, the more stability will be impaired,

• many conflicts may occur between dependent tasks which increase the blocking
time,

• carrying out certain design steps (i.e., how to assign functions to tasks or how to
partition or schedule tasks) is not a trivial task. Also, it is not easy to make a
decision in the case of non-feasible system. In fact, to look for a feasible solu-
tion, various decisions may be taken related to designer experience. This time-
consuming approach may extend development time and increase thereby the time
to market.

1.3 Contributions

The main research contributions of this thesis are as follows.

- A reconfigurable real-time models in both mono-core and multi-core architecture that
describe how a real-time component(function, implementation, task, thread, core, etc.),

3

supporting various aspects and hidden information, could strongly be designed and im-
plemented as well.

- In order to overcome the time overhead, reconfiguration time, response time and
energy increase as well as system code complexity, we propose an approach which
addresses initially the mono-core architecture (i.e., first contribution). It performs

• function to task assignment by proposing a technique to minimize the number of
tasks while preserving timing constraints and schedulability.

• energy-aware optimization solution, a minimized response time solution, while
reducing task number solution as a result, it allows to minimize the code com-
plexity, the redundancy between implementation set, the context switch, and the
preemption.

- The second contribution which is defined by a set of combinatorial optimization solu-
tions based on integer programming have been developed.

• For an efficient partitioning task to core, a Mixed Integer Linear Program is pro-
posed. It aims to compute a feasible partitioning while minimizing the blocking
time and /or the moving time [68] which enables to maximize the stability of the
system.

• After obtaining a feasible solution base, we execute a second local optimization
based on a mixed integer program in each core. Note that in this step the first
contribution is applied.

- A methodological guidance framework named MO2R2S (Multi-Objective Optimiza-
tion approach for Reconfigurable Systems) that assists designers to implement a fea-
sible mono-core/multi-core reconfigurable real-time system from specification level to
implementation level. It takes as inputs, at the specification level, the functions, the re-
configuration conditions, and the core set in the case of multi-core architecture. At the
design level, the proposed tool generates i) implementations from the reconfiguration
conditions, and ii) tasks and resources from the function sets and their dependencies.
Then, the tool tries to assign tasks to cores by executing the first optimization step. If it
founds at least one feasible solution, it applies the second optimization (.i.e, first con-
tribution) which aims to minimize either the energy consumption, the response time or
the number of tasks. Otherwise, it suggests to modify the hardware architecture by in-
creasing the number of cores or to generate a degraded solution where some soft tasks
may miss their deadlines. Finally, at the implementation level, it transforms the task
model into POSIX code using transformation rules.

4

- We apply and simulate the contribution to two case studies, and compare the proposed
results with related works in order to show the originality of this methodology.

1.4 Publication

The outcomes of this thesis are published in the hereafter list of publications:

1.4.1 Journals (published):

• Wafa Lakhdhar, Rania Mzid, Mohamed Khalgui, Georg Frey, Zhiwu Li, MengChu
Zhou: A guidance framework for synthesis of multi-core reconfigurable real-time

systems. Inf. Sci. 539: 327-346 (2020), Q1, IF= 5,91.

• Wafa Lakhdhar, Rania Mzid, Mohamed Khalgui, Zhiwu Li, Georg Frey, Ab-
dulrahman Al-Ahmari: Multiobjective Optimization Approach for a Portable De-

velopment of Reconfigurable Real-Time Systems: From Specification to Imple-

mentation. IEEE Trans. Syst. Man Cybern.Syst. 49(3): 623-637 (2018), Q1,
IF= 5.13.

1.4.2 International Conferences (published)

• Wafa Lakhdhar, Rania Mzid, Mohamed Khalgui, Georg Frey: A New Approach

for Optimal Implementation of Multi-core Reconfigurable Real-time Systems. ENASE
2018: 89-98, Class B

• Wafa Lakhdhar, Rania Mzid, Mohamed Khalgui, Nicolas Trèves: MILP-based

Approach for Optimal Implementation of Reconfigurable Real-time Systems. ICSOFT-
EA 2016: 330-335, Class B

1.4.3 Selected Paper (published)

• Wafa Lakhdhar, Rania Mzid, Mohamed Khalgui, Georg Frey: Portable Synthe-

sis of Multi-core Real-Time Systems with Reconfiguration Constraints. ENASE
(Selected Papers) 2018: 165-185.

• Wafa Lakhdhar, Rania Mzid, Mohamed Khalgui, Nicolas Trèves: A New Ap-

proach for Automatic Development of Reconfigurable Real-Time Systems. IC-
SOFT (Selected Papers) 2016: 22-44

1.5 Thesis Outline

In Chapter 1, we present the research context, the problems and the contributions of the
thesis. The outline and the publications are also introduced here.

5

In Chapter 2, we present the state of the art in several areas on which we work
throughout this thesis. We recall basic definitions and properties of reconfigurable sys-
tems and modeling formalisms. We present the current problems and challenges, high-
lighting the contributions of this thesis related to the state of the art in the development
and optimization of reconfigurable real-time systems in both mono-core architecture
and multi-core architecture.

Chapter 3 designs a MILP-based approach for the synthesis of reconfigurable real-
time in mono-core architecture by optimizing response time, task number and energy
consumption.

In Chapter 4, we address the problem of partitioning tasks into cores by minimiz-
ing either the stability of system or the blocking time. We propose a guided tool that
assists designers to implement a feasible multi-core reconfigurable real-time systems
from specification level to implementation level.

In Chapter 5, we present the visual tool that implements the proposed methodol-
ogy. Also, two case studies are elaborated. Simulations and different tests will also be
presented at the end of this chapter.

In Chapter 6, we show and discuss the results and present the conclusion of the
presented work. Future improvements that could enrich the work developed during this
dissertation are proposed.

6

CHAPTER 2

State of the art

Introduction

This chapter is devoted to review several generalities and related work required for
understanding this dissertation. Initially, some basic concepts concerning real-time sys-
tems are presented, e.g., reconfiguration, task models, sharing resources, scheduling
algorithms, schedulability analysis in both mono-core and multi-core architecture, and
real-time programming languages. Then, we discuss existing optimization methods in
the literature and their applications. The objective of this thesis is to enable the synthesis
of feasible reconfigurable real-time systems in both mono-core and multi-core architec-
ture. So that, Section 2.4 is devoted to give an overview about existing approaches
and methods in the literature that treat the problem of the synthesis. We conclude this
section by a comparative study.

2.1 Reconfigurable Systems

This section presents an overview of the basic concepts in reconfigurable systems. First,
it briefly introduces the principles of reconfiguration. Next, it presents the different
types of reconfiguration. Finally, it discusses a number of state of the art approaches
that are closely related to our work.

2.1.1 Definition

Computing systems are employed to assist humans by performing tasks that require an
interaction with the physical world. With the increasing complexity of these systems,
their continuous availability has become a critical requirement. Due to the various con-
ditions in which these systems have to operate, modification is unavoidable in them.
Thus, designers have to optimize the costs and risks of adapting these systems by re-
specting real-time constraints. Consequently, reconfiguration has been widely admitted
as an essential capability of many systems. In the literature, reconfiguration is defined
as the capacity to modify system behavior to adapt to a changing environment by i)
adding/removing hardware/software components, ii) modifying logic relations between

7

the components, or iii) updating particular system data [125]. This adaptation allows the
software system to move from a current version to a new one. Based on this definition,
we consider the reconfiguration as the transition from one implementation to another
under well-defined conditions called reconfiguration conditions. An implementation
is the scenario implemented by the system at particular time when the reconfiguration
condition is true.

2.1.2 Types of reconfiguration

As we mentioned above, the reconfiguration is attributed in a large range of systems
[58] [47]. The classification of reconfiguration arises from three questions: “what” can
be altered, “when” the alteration is triggered, and “how” the alteration is executed? In
response to i) “what” can be modified, the reconfiguration can affect the software level,
the hardware level, and both levels, ii) “when” the adaptation takes place, it is triggered
when a change is detected in either environment, system-itself, or combination of them
[18], and iii) “how” the configuration is performed, configurations can be either created
iii.1) dynamically at run-time in which, the reconfiguration may applied manually (.i.e.,
by user) or automatically (.i.e., by intelligent agents) [22], or iii.2) statically at the
design phase by pre-preparing all possible cases of implementation (.i.e., scenario).

In the literature, a huge amount of contributions aim to the modeling, design and de-
velopment of reconfigurable real-time systems. In fact there are various studies which
deal with software reconfigurations applied to real-time applications. In [126], the au-
thors propose an analysis and control process for reconfigurable manufacturing systems.
The work reported in [81] presents a general framework to manage the reconfigurability
of manufacturing systems. There are also other works in which reconfiguration affect
the hardware level such as [85][2]. In [85], the authors propose a scrubbing strategy
and a dynamic reconfiguration mechanism within an FPGA-based system-on-chip, to
be applied as reconfigurable processor for space applications. The work reported in
[2] presents a reconfiguration design approach of FPGA-based logic controller for elec-
tromechanical system. Many researchers from academia and industry adopt reconfigu-
ration in both software and hardware levels. The authors in [22] propose a framework
supporting the development of real-time systems that exploit hardware accelerators de-
veloped through FPGAs based on hardware and software reconfiguration process. In
[78], the authors propose a framework for smart grid modeling and simulation based on
multi-agent reconfigurable system. This thesis deals with software and hardware recon-
figuration. Despite the importance of the works dealing with both software and hard-
ware reconfiguration, they are not a general solution and cannot synthesize all systems
(.i.e., smart grid and FPGA-based systems). Concerning the third classification men-
tioned above (.i.e., dynamic and static reconfiguration), various studies have addressed

8

Table 2.1 Thesis Position vis-à-vis Exisiting Reconfiguration Types.

Works
What When How

SW Level HW level Environment System-itself Dynamic Static
[126],[81] - -
[85],[2] - -
[6],[120] - -

Our Thesis - - -

the dynamic reconfiguration such as [6][120]. The reconfiguration in these works aims
to actively adjust system behavior according to changed environment or user require-
ments and it is fault-tolerance. Mostly, the dynamic reconfiguration changes the current
configuration of a system not the system. However, works dealing with static reconfigu-
ration such as [17]and [9] aim to alter physical equipment or to integrate new techniques
in order to largely improve or modify the original system. In Table 2.1, we place this
thesis to the existing reconfiguration types. As seen in Table 2.1, this dissertation deals
with static software reconfiguration. In addition, it is interested to configuration that is
triggered when a change is detected in system-itself.

2.2 Real-time Systems

A real-time system is a computing system which must respond timely to events [75].
”Real-time systems are those systems in which the correctness of their execution de-
pends not only on the logical results of computation but also on the time at which the
results are produced“ [104]. This means that guaranteeing the response within the im-
posed timing constraints is the most important goal, when developing real-time systems.
According to their criticality real-time systems could be [2][115][116]:

• Soft: in which performance is degraded but not destroyed by failure to meet
response time constraints [59],

• Hard: in which consequences of missing a deadline can be catastrophic [95],

• Firm: in which a few missed deadlines will not lead to total failure, it may degrade
QoS (e.g, financial forecast systems) [90].

This thesis deals with firm real-time systems.

2.2.1 Real-Time System Structure

In this section we define the basic real-time terminology that is used in the thesis. Figure
2.1 illustrates the generic architecture of a real-time system. The real-time software gets

9

Fig. 2.1 A generic architecture of a real-time system.

information about the environment by the sensors and acts through actuators. A real-
time system is composed of a software architecture executing on a hardware platform.

2.2.1.1 Hardware Architecture

The hardware structure presents all the required material resources such as processors,
memories, networks, input/output cards, etc. Furthermore, the different types of archi-
tectures are related to the interaction between the hardware elements. There are three
categories of architecture [15]:

• Mono-processor architecture: all the tasks are executed by a unique processor,

• Multi-processor architecture: all the tasks are divided among different processors
sharing a central memory,

• Distributed architecture: all the tasks are distributed over different processors
communicating via networks without sharing memory.

Based on number of cores, processors (CPUs) are now split up in three types:

• Mono-core or single core CPU: consists of one core, it can currently only be
found on low-power solutions [113],

• Multi-core CPU: consists of two to eight cores which are embedded in the same
die [99]. It can execute multiple instructions (See Figure 2.2),

• Many-core CPU: consists of more than eight cores, it designed for a high degree
of parallel processing [113].

This dissertation deals with multi-core processors.

10

Fig. 2.2 Multicore Processor Architecture.

2.2.1.2 Software Architecture

The software structure consists of a real-time operating system and an application pro-
gram (see Figure 2.1). The real-time operating system links the application program
to the hardware structure. It is composed of [110] i) a real-time kernel which manages
the hardware resources access, and the scheduling features, and ii) a executive which
consists of a set of drivers modules and libraries facilitating the files management, the
communication management. The application program presents the software that runs
the system functionalities. It is defined by a set of tasks where each task ensures a
sequence of instructions in order to perform a specific treatments.

2.2.2 Real-time Development

The development of real-time systems involves a step of designing. In this level, it is
important to introduce the notion of task model as well as the real-time scheduling.
One of the basic term used in real-time system theory is that of a task. A task is an
abstraction of a piece of software that implements a basic functionality in a real time
system [103]. So that a real-time system is defined by a set of control software tasks.

2.2.2.1 Task Model

In order to analyze the feasibility of a real-time system, we need to construct a math-
ematical model describing the relevant aspects of the system. Let Sys be the real-time
system. Sys is defined by N task τi. The characterization of a periodic task τi may differ
from a scheduling model to another and according to the related nature [72], [97] [100].

11

Fig. 2.3 Real-time tasks characterization.

The most used parameters (See Figure 2.3) are: This latter shows a part of the main
properties, like:

• ri (activation or Release time): The date when the task τi may start implementing,

• si (Start time): The date when the task τi starts executing on the processor,

• Ci (execution time): The computing time of task τi. This parameter is considered
in the majority of work on the real-time scheduling as the worst case execution
time (WCET for worst-case execution time) [42] of a task on the processor. The
WCET is an upper bound of the execution time that the task can be completed
earlier. To be valid, the value of this parameter should not be too overstated and
should be never exceeded [43],

• Di (Deadline): The time devoted to task τi to finish its execution,

• Ti (Period): The execution frequency of task τi,

• Li (Laxity): It represents the remaining time before the occurrence of the start
date of execution or recovery at the latest [33]. When (Li = 0) is zero at a given
time, then, the corresponding task should be strictly performed at this time, unin-
terrupted otherwise.

2.2.2.2 Tasks Classification

Tasks are classified according to three axes.
Periodic/Aperiodic/Sporadic tasks
Depending on the way of task triggering, real-time tasks are classified as follow [119]:

• periodic tasks which are repeated indefinitely and their instances are separated by
a constant period (See Figure 2.4) [121],

• aperiodic tasks which respond to randomly arriving events. They must run at least
once and do not repeat necessarily indefinitely, the minimum separation between
two consecutive instances can be 0 (See Figure 2.4). In addition, its deadline is
expressed as either an average value or is expressed statistically [53],

12

Fig. 2.4 Periodic/Aperiodic/Sporadic Task Characteristics.

• sporadic tasks which present a special case of aperiodic tasks where a minimum
time period gi between two successive activations is fixed implies that once an
instance of a sporadic task occurs, the next instance cannot occur before gi time
units have elapsed (See Figure 2.4) [127].

Dependent/Independent tasks
In a typical real time systems, if tasks need to cooperate to complete their missions we
call them dependent tasks otherwise they are called independent tasks. Dependent tasks
interact in two ways including:

• Precedence dependency: i.e, if a task τi has a precedence dependency with τj it
means that ether the execution of τi precedes τj or the execution of τj precedes
τi.

• Sharing resource: shared resources are accessed by several tasks in a mutual
exclusive manner [103].

Note that a resource is any software structure that can be used by a task to advance its
execution [28]. Normally, a resource may be either i) a data structure, ii) a piece of
program, iii) a set of variables, or iv) a main memory area.
We consider in this thesis dependent tasks by sharing resources. A piece of task’s code
executed by shared resource is called a critical section as exhibited in Figure 2.5. As
shown in Figure 2.5, in order to access a resource R the task τ1 must first lock the
resource R and after using it, R is unlocked.

In multi-processor and multi-core architectures, resources are divides into two dis-
tinct types: local and global resources [68]. A local resource is only used by tasks of

13

Fig. 2.5 Two tasks sharing two variables.

Fig. 2.6 Real-time Synchronous/Asynchronous Tasks.

one application while a global resource is shared by tasks from multiple applications
[128]. In our case, as this thesis deals with multi-core systems a local resource in a core
ζi can be accessed just by local tasks to that core while the global resource is shared
among multiple tasks mapped to different cores.
Synchronous/asynchronous tasks
We distinguish two classes of task regarding to the offsets:

• Synchronous tasks: in which the first release of tasks (i.e., offsets) are defined,
and all of them are equals [107] ∀ i, j, ri = rj ,

• Asynchronous tasks: an hypothesis activation of tasks is counted [32]. As shown
in Figure 2.6, in synchronous case all tasks have the same release time ri, contrary
to the asynchronous case.

Hypothesis: In this dissertation, the considered real-time tasks are periodic,

dependent, and synchronous.

14

Fig. 2.7 Scheduler Model.

2.2.2.3 Real-time Scheduling

Scheduling is the act of choosing which task to allow execution and when to pre-
empt it [28]. We call scheduling algorithm the set of rules that determines the
order in which tasks are executed. The entity that ensures these scheduling poli-
cies is called a scheduler [106]. As shown in Figure 2.7, the scheduler dispatches
the tasks based on a scheduling policy. Many scheduling techniques exist and
each of which is performed for a specific task model or an environment in which
a real-time system operates. We list the most important categories in the follow-
ing. Note that we will present the classification based on the type of the target
architecture i.e., mono and multi-core architecture.
Mono-core Scheduling
We present in this part the different types of mono-core scheduling algorithms
found in the literature.

Depending on how the priorities are assigned, scheduling algorithms in real-time
systems can be classified as follows [39]:

• Fixed Priority: when each task is assigned a fixed priority that does not
change at runtime, both Rate Monotonic (RM) scheduling [72] and Dead-
line Monotonic (DM) [70] use this type of scheduling. In RM algorithm,
tasks priorities are assigned according to their periods, i.e., the smaller the
period, the higher the priority. DM algorithm is similar to RM but the prior-
ity depends on the task relative deadlines instead of periods, i.e., the smaller
the deadline, the higher the priority,

• Dynamic Priority: tasks priorities may be reviewed, if necessary over time.
Two well-known scheduling algorithms are Earliest-Deadline-First (EDF)
[72] and Least-Laxity First (LLF) [57]. In EDF algorithm, the task with
earlier deadline among all tasks will execute first. The priority of the task
is dynamic and can be changed during run-time depending on the deadline
of the task instant and other released tasks ready for execution [72]. LLF
algorithm is based on the laxity [14]. LLF elects the task whose the laxity is
lowest. In contrary to EDF, LLF is a job-level dynamic priority scheduling
algorithm (i.e., the priority of a job may vary with time).

15

Table 2.2 Comparison of real-time scheduling algorithms.

Algorithm/
Criteria

Rate
Monotonic

(RM)

Deadline
Monotonic

(DM)

Earliest Deadline
First

(EDF)

Least Laxity
First

(LLF)
Implementation

Complexity
Simple Simple Difficult Difficult

Processor
Utilization

Less
More than

RM
Full

Utilization
Full

Utilization
Priority

Assignment
Static Static Dynamic Dynamic

Scheduling Criteria
Task

Period
Relative
Deadline

Deadline Laxity

Preemption Preemptive Preemptive Preemptive Preemptive
Context switching More More Less Less

Predictability More More Less Less
Overhead Less Less More More

Moreover, depending on whether task instance can be preempted or not, schedul-
ing algorithms can be classified as follow:

• Preemptive: a task can be interrupted by some high priority task during the
execution at any time,

• Non-Preemptive: no interruption by other task is allowed

Table 2.2 presents a comparative study between the mentioned scheduling algo-
rithms that emphasis our choice for RM. Comparing to EDF, RM is characterized
by simpler implementation [27]. In addition, it is more predictable as tasks re-
sponse time are constant comparing to dynamic priority algorithms.
Multi-core Scheduling

After having discussed the mono-core scheduling algorithms, this subsection fo-
cusses on multi-core scheduling algorithms [100]. The latter may also be clas-
sified according to the allocation problem (.i.e., on which a core, a task should
be executed). This problem was formulated for first time by Liu in 1969 [72].
There are three approaches to multi-core scheduling: global, partitioned and
semi-partitioned [72].
Global scheduling
In this algorithm, tasks are dynamically allocated to cores and they can migrate
from a core to another [34]. Moreover, different instances of the same task can
execute on different cores. In the case of global scheduling, a single scheduler is
used thus, a single scheduling policy is applied to all the cores (See Figure 2.8).
Partitioned scheduling

It consists of applying on each core a scheduling policy which may be differ-
ent from others. Compared to the global scheduling, it is an off-line scheduling

16

Fig. 2.8 Global Scheduling.

Fig. 2.9 Partitioned Scheduling.

approach allowing each task to be statically assigned to only one core. In this
approach, tasks are not allowed to migrate from one core to another (See Figure
2.9).
Semi-partitioned scheduling

The semi-partitioned approach presents an improvement of the partitioning schedul-
ing allowing the controlled tasks migration. It is a hybrid between partitioned and
global scheduling [66]. Within this approach, only few tasks can be executed on
more than one core (See Figure 2.10). We adopt in this thesis the partitioned ap-
proach because it is easier to implement and to analyze by reducing the problem
of multi-core scheduling to a set of mono-core problems [30] and treats each core

Fig. 2.10 Semi-partitioned Scheduling.

17

Table 2.3 Comparison of Multi-core scheduling algorithms.

Algorithm/
Criteria

Global
Scheduling

(GS)

Partitioned
Scheduling

(PS)

Semi-Partitined
Scheduling

(SS)
Implementation

Complexity Difficult Simple Difficult

Migration More No migration Less

Preemption More Less
More as compared

to PS
Run-time
Overhead More Less

More as compared
to PS

independently. Thus, it allows to reduce task migration and consequently time
overheads as well. Table 2.3 presents a comparative study between the different
multi-core scheduling that highlights our choice for partitioned scheduling. In
the partitioning scheduling, the designer has to allocate the tasks on the different
cores before stating their execution. Allocation tasks on cores (Partitioning) is
considered as bin-packing problem which is known to be NP-hard problem [48].
Several heuristic algorithms have been developed to perform the distribution of
tasks on the different cores. The most widespread rules are [109]:

– First-fit: mapping task τi on the first core able to contain it, in the order of
their indexes,

– Best-fit: mapping task τi on the first core with the highest utilization factor
able to receive it

Those heuristics have been designed to reduce the number of cores for the task
partitioning problem. We propose in this thesis an heuristic that aims to optimize
the mapping of tasks into core in term of time overhead. Once the partitioning
step is done, the tasks will be scheduling using the classic algorithms which is
RM in our case.

The different classes of the real-time scheduling algorithms presented in this the-
sis are summarized in Figure 2.11. To sum up, in this thesis, we consider for
both architecture mono-core and multi-core a preemptive static-priority schedul-
ing algorithm which is RM. For the mapping of tasks into cores in multi-core
architecture, we adopt the partitioning scheduling.

2.2.3 Real-time Verification

Real-time verification has two aspects: functional and non-functional aspects. For
the first aspect, verification consists in checking if the system produces a correct

18

Fig. 2.11 Real-time scheduling algorithms.

result for each input data set [5]. Regarding the non-function aspect, the veri-
fication consists in ensuring that the system respects non-functional constraints
such as time constraints, memory consumption or power constraints [5]. The
verification techniques of non-functional aspect are divided into: i) static tech-
niques which are based on analysis methods and ii) dynamic techniques which
are based on simulation, test, and model checking [5]. Note that in this disser-
tation, we are interested in the verification of the non-functional aspect using
static analysis technique which is scheduling analysis. The scheduling analysis
determines for a given task model under certain scheduling algorithm, whether
all deadlines are met. This analysis is performed under some system hypothesis
(.e.g., worst system behavior that executes tasks with worst-case execution time)
[40]. Utilization-based scheduling test and Worst Case Response Time (WCRT)
[82] are among the most widely used schedulability tests. Note that in this thesis,
all the schedulability tests are applied under RM scheduling algorithm [38].

Based on task dependency, we distinguish schedulability analysis for [105] i)
independent tasks, and ii)dependent tasks.

2.2.3.1 Schedulability Analysis For Independent Tasks

Utilization-based Schedulability Test For Independent Tasks
This method consists in computing the time that the processor spends to execute
the tasks (.i.e., the CPU utilization factor denoted by U). In order to ensure the
system feasibility, the CPU utilization factor must be under a specific utilization

19

threshold. A real-time system composed of N tasks is schedulable if the total

utilization does not exceed N (2

1

N − 1) under RM scheduling algorithm [102]:

U =
∑

i∈{1...N}

Ci
Ti
≤ N (2

1

N − 1) (2.1)

Where U is given by the following equation:

U =
∑

i∈{1...N}

(
Ci
Ti

+
∑

j∈{1...i−1}

Cj
Tj

) (2.2)

WCRT analysis For Independent Tasks
This analysis produces a necessary and sufficient schedulability test. It consists
in computing the worst response time Ri of each task τi. It is given by [41]:

Ri = Ci + Ii (2.3)

Where Ii is the maximum interference of task τi by higher priority tasks [122].
The interference is build upon i) the number of times the task is interfered, and ii)
the execution time of the task interfering it [80]. The maximum interference Ii of
task τi by the the set of tasks with higher priority than τi (hp(i)) is given by the
formula [73]:

Ii =
∑
j∈hp(i)

dRi

Tj
e Cj (2.4)

The response time Ri can be calculated as [73]:

Ri = Ci +
∑

j=hp(i)

dRi

Tj
e Cj (2.5)

The schedule is feasible if: Ri ≤ Di [70].

2.2.3.2 Schedulability Analysis For Dependent Tasks

In order to perform a schedulability analysis of dependent tasks, the blocking
time has to be taken into account as sharing resources may cause a priority inver-
sion problem. The latter happens when a task with high priority can not access
to a shared resource which is using by another lower priority task. So the higher
priority task will be blocked until the lower priority one releases the shared re-
source. Figure 2.12 illustrates a priority inversion situation between two tasks τ1
and τ2 where τ1 has a higher priority than τ2. Task τ1 and τ2 shared a resource ϕ1.

20

Fig. 2.12 Priority inversion situation between two tasks.

As shown in Figure 2.12, task τ1 is blocked by τ2 which is lower priority than τ1.
Preventing higher priority tasks from executing, is needed in almost all meaning-
ful real-time systems [112]. So that, the access to the shared resource should be
arbitrated by a synchronization protocol. Many synchronization protocols have
been proposed to solve the priority inversion problem for i) mono-core real-time
system, such as such as the Priority Inheritance Protocol (PIP) [101], the Stack
Resource Policy (SRP) [12] and the Priority Ceiling Protocol (PCP) [94], and
ii) multi-core real-time system, such as Flexible Multiprocessor Locking Proto-
col (FMLP) [23] and Multiprocessor Priority Ceiling Protocol (MPCP) [92]. For
mono-core system, PCP is the used synchronization protocol in this thesis and for
the multi-core we use MPCP as they are suitable for RM scheduling algorithm.

Blocking time computation under PCP synchronization protocol
In order to compute the blocking time using PCP synchronization protocol, it is
necessary to introduce some notions. Let Use(ϕq) be the set of tasks sharing the
resource ϕq, Ck,ϕq be the WCET of task τk using the resource ϕq, and ςq be the
ceiling of resource ϕq which is the highest priority of all tasks that can use ϕq.
The blocking time Bi of task τi, when the PCP protocol is used, is given by

Bi = maxτi, τk∈Use(ϕq)Ck,ϕq (2.6)

with P (τk) < P (τi) ≤ ςq

Blocking time computation under MPCP synchronization protocol
The tasks scheduled on multi-core architectures would encounter distant blocking
other than local blocking due to the global resources. We present the various types
of blocking which must be taken into account in the computation of the blocking
time. Before giving the expression of the blocking time under MPCP, it was nec-
essary to introduce the following definitions which are explaining by Rajkumar

21

Table 2.4 Some notations used in this subsection

Symbole Defenition
nGi The Number of global critical sections of task τi

NLir
The number of tasks with priority lower than the
priority of τi executing on core ζr

{τ ′ir}
The set of tasks on core ζr (other thanτi’s core) with global
critical sections having higher priority than global
critical sections of tasks that can directly block τi.

NHirj

The number of global critical sections of task τj ∈ {τ ′ir}
having higher priority than a global critical section on core
ζr that can directly block τi.

{GRij} The set of global resources that will belocked by both
τi and τj .

NCij
The number of global critical sections of τj in
which it request a global resource in {GRij}.

Blocal
i

The longest local critical section among tasks with a priority
lower than τi executing on the same core as τi
which can block τi.

BLglobalij

The longest global critical section of task τi with a priority
lower than τj executing on a different core than τi’s
core in which τj requests a resource in {GRij}.

BHglobal
ij

The longest global critical section of task τj with a priority
higher than τi executing on a different core than
τi’s core. In this global critical section, τj
requests a resource in {GRij}.

B′globalij

The longest global critical section of τj ∈ {τ ′ir} having
higher priority than a global critical section on core ζr
that can directly block τi.

Blg
ij

The longest global critical section of a lower priority τj
on the τi’s host core.

[93]. We note that each global resource has a ceiling priority equal to the highest
priority among all tasks that can use this resource. Thus, the global resource can
only be blocked by an other global resource. A task that uses a global resource
is executed at the priority of that resource. In the case of local resources, MPCP
operates in the same way as PCP. Table 2.4 shows some important notations used
to compute the blocking time Bi of the task τi. The blocking time Bi is given by
the sum of the 5 terms presented below [93].

1. Bi,1: Local blocking time: it is computed as nGi B
local
i

2. Bi,2: Direct blocking time: when a task τi is blocked on a global resource
which is locked by a lower priority task executing on another core and it is
computed as nGi BL

global
ij .

3. Bi,3: Direct blocking time: when a task τi is blocked on a global resource
which is locked by a higher priority task executing on another core and it is

22

computed as
∑

Pi≤Pj NCij d
Ti
Tj
e BHglobal

ij where τj is not on τi’s core.

4. Bi,4: Indirect preemption delay: when the global resource of lower priority
tasks on core ζr (different from τi’s core) are preempted by higher priority
global resource of τj ∈ {τ ′ir} it is computed as

∑
τj ∈{τ ′ir}

NHirj d TiTj e B
′global
ij

where ζr 6= τi’s core.

5. Bi,5: Indirect preemption delay: when τi is blocked on global resources
and suspends a local task τk can execute and enter a global section which
can preempt τi when it executes in non-global resource sections. Bi,5 =∑

Pi≤Pk min(nGi + 1, nGi) Blg
i,k.

Bi = Bi,1 +Bi,2 +Bi,3 +Bi,4 +Bi,5 (2.7)

Utilization-based Schedulability Test For Dependent Tasks
In the case of blocking times the CPU utilization factor U becomes [45]:

U =
∑

i∈{1...N}

(
Ci +Bi

Ti
+

∑
j∈{1...i−1}

Cj
Tj

) (2.8)

WRCT Analysis For Dependent Tasks
Using the blocking times, the maximum response time of τi can be described by
the following recurrence equation [73]:

Ri = Ci +Bi +
∑

j=hp(i)

dRi

Tj
e Cj (2.9)

2.2.3.3 Energy Consumption Model

The energy consumption is of critical importance to real-time systems. Optimiz-
ing it may extend the battery life of the system. In this subsection, we introduce a
mathematical model presenting the energy consumption. This latter is denoted by
E, it consists of two parts [67]: (i) dynamic energy Ed due to the circuit switch-
ing activity in the system [69], and (ii) the static energy consumption Es of the
platform without the given application execution. As the dynamic energy Ed is
usually dominant and for simplicity reason, the energy model is built based on
Ed. Similarly for the multi-core system, the consumed energy in each core is
based on the dynamic energy which is given according to [69] by

E = Ed = αfV 2
ddθ (2.10)

where Vdd is the supply voltage, f is the number of clock cycles, i.e., the processor
frequency, θ is the execution period and α is a constant [69].

23

2.2.4 Real-time Implementation

First, it is necessary to give a basic definition of thread. A thread is defined as
a stream of instructions that can be scheduled to run as such by the operation
system [123]. At the implementation level, programming real-time application
is widely recognized as the hardest kind of programming [26]. Thus, real-time
languages have been intended to make coding task easier.

2.2.4.1 Real-time programming language

We review in this subsection some of the languages that are currently used in pro-
gramming real-time systems.
Ada
It is originally designed by the US Department of Defense (DoD) as a language
for huge safety critical systems such as Military systems [26]. Ada is useful
because of strong typing, run-time checking, parallel processing, exception han-
dling, and generics. Ada supports concurrent programming via tasks. It is more
powerful in large scale programs than in small ones. Ada is a Pascal-like lan-
guage but it contains additional features of modern programming languages.
RT-Java
Real-time Java is a modification of the standard Java language, it is used in imple-
menting soft, firm and even hard real-time systems, whereas the standard Java is
basically used for only soft real-time systems. Contrary to Ada, RT-Java supports
real-time threads which implement tasks. It aims to integrate into Java features
that are already present in Ada. But in RT-Java thread facility is more dynamic
and flexible comparing to Ada’s task. In addition, Ada’s tasking model is more
sophisticated than the Java/RTSJ thread facility [88].
POSIX
POSIX denotes Portable Operating System Interface, it is a set of standards spec-
ified by the IEEE Computer Society for maintaining compatibility between oper-
ating systems [26]. It deals with thread extensions. POSIX threads are generally
known as Pthreads.
Table 2.5 presents a comparative study between the aforementioned real-time pro-
gramming languages. We choose POSIX as a real-time language. The possibility
of compiling a code writing in C for almost every hardware platform, the resource
management functions, its simplicity, and its wide utilization constitute excellent
reasons for choosing this programming language.

24

Table 2.5 Comparison of real-time programming languages.

Language/
Criteria Ada RT-Java POSIX

Implementation
Complexity Difficult

Less as compared
to Ada Simple

Standardization Mostly No Yes
Flexibility Yes Yes Partial
Resource

Management Mostly Partial Yes

Popularity No Partial Yes
Portability Yes Yes No

Completness of
Implementation Partial Yes Yes

2.2.4.2 POSIX Threads Programming

We focus in this subsection on the link between POSIX threads (Pthread) on
Linux kernel and the aforementioned periodic task model. The standard POSIX
1003.1c provides three scheduling policies:

• SCHED_FIFO: It implements Fixed priority, preemptive, First-In First-out
scheduling,

• SCHED_RR: It implements Fixed priority, preemptive, round robin schedul-
ing,

• SCHED_OTHER: Not specified (but it often implements the default time-
sharing scheduler)

SCHED_FIFO and SCHED_RR can be used to implement RM scheduling policy.

Pthread Pthread is C-based language. It is implemented with the header “pthread.h”,
there are more than 100 Pthread procedures which can be classified into four
groups [26]:

• Thread management: which deal with threads creating, joining, etc. They
also may deal with methods that query or set thread attributes (.e.g.,scheduling
parameters, scheduling policy, etc.),

• Mutexes: which deal with synchronization using mutual exclusion "mu-
tex",

• Condition variables: that address communications between threads that
share a mutex.,

• Synchronization with locks and barriers.

We summarize in table 2.6 all the used Pthread primitives in this thesis.

25

Table 2.6 Used Pthreads API.

Primitive Definition
pthread_reate create a thread
pthread_oin join a thread

pthread_ttr_nit intialize pthread attributes
pthread_ttr_etschedpolicy define scheduling policy
pthread_ttr_etschedparam define scheduling parameters

pthread_mutex_ock/
pthread_mutex_nlock

use a mutex semaphore to protect/
unlock a critical section

2.3 Optimization Methods

In this section, we give an overview on the existing optimization methods that
could be used to optimize and solve the decision problems for feasible synthesis
of real-time systems.

2.3.1 Mathematical Programming

Mathematical Programming (MP) [54] is used to solve complex problems that
can be modeled as i) an objective function to be optimized (see 2.11), and ii) a set
of conditions or constraints (see 2.12)

Min (or Max) : f(X1, X2, . . . , Xn) (2.11)

f1(X1, X2, . . . , Xn) ≤ c1

f2(X1, X2, . . . , Xn) ≤ c2

...

fm(X1, X2, . . . , Xn) ≤ cm

(2.12)

Where {X1, X2, . . . , Xn} is the set of optimization variables that characterizes
the problem. {f1, f2, . . . fm} and {c1, c2, . . . cm} are respectively the constraint
functions and problem parameters that specify the objective.

2.3.1.1 Linear Programming

Linear Programming (LP) [54] is a Mathematical Programming MP where the
objective function and all constraints are linear. An LP can be solved by multiple
methods: i) algebraically such as the simplex method [108] and the interior point
method [10], or ii) graphically [96]. These methods can solve very big problems
with a huge number of variables and constraints. But the behavior of real-world

26

problems can only be approximated [54], since all variables must to have real
number and the constraints and the objective function have to be linear.

2.3.1.2 Mixed-integer Linear Programming

An LP aims to optimize (maximizes/minimizes) a linear objective function sub-
ject to a set of constraints. Mixed integer programming has an additional con-
dition that at least one of the variables can only take on integer values. With
integer or binary variables we can provide a more detailed representation of real-
time systems than with LP. In Mixed-integer Linear Programming, solvers use a
combination of algorithms, such as branch-and-bound, cutting plane and heuris-
tics [63]. MILP solvers are able to solve large problems in term of number of
variables and constraints. The time for solving a MILP is hard to be estimated
as it depends on the specific structure (.i.e., formulation) of the problem, and its
complexity.

2.3.2 Genetic Algorithm

A genetic algorithm (GA) is a population based meta-heuristic inspired by bio-
logical evolution [77]. GA [84] consists on four steps which are then repeatedly
applied to the population until the last population meets a certain stopping crite-
ria:

1. Random creation of population of candidate solutions (.i.e., individuals) for
the optimization problem.

2. Based on the value of the objective function (fitness), we evaluate each can-
didate solution

3. Creation of new generation based on the selected candidate using crossover
and mutation mechanisms [84].

4. Evaluation of the new generation population.

Generally, GA is not convenient for finding the solutions to complex problems.

2.3.3 Dynamic Programming

Dynamic Programming (DP) is a technique for formulating problems in which
decisions are to made in stages (multistage) [74]. It is based on Bellman’s prin-
ciple of optimality which states that a sub-policy of an optimal policy for a given
problem must itself be an optimal policy of the sub-problem [44]. DP deals with

27

Table 2.7 Comparative Study of Optimization Methods.

Optimization
Method

Advantages Drawbacks

Linear programming
(LP)

– Scales to big problems
– Global optimum attainable

– Very limited expressions available
– Difficult to deal with complex
interactions

Mixed-integer linear
programming (MILP)

– Scalable for big problems
– Handles complex interactions
– Possibility of the evaluation of
solutions’ quality

– Bad worst-case complexity

Genetic algorithm
(GA)

- High freedom of expression
– Difficult to scales big problems
– Impossibility of the evaluation of
solutions’ quality

Dynamic programming
(DP)

– High freedom of expression
– Global optimum attainable

– Difficult to scale big problems
– Possiblity of suboptimal solution
due to discretization of continuous
variables.

problem including non-convex, non-continuous, non-differentiable and black-box
functions and it is able to find the global optimal solution of a problem [61]. Ta-
ble 2.7 summarizes the optimization methods with their advantages and disad-
vantages. This table emphasis our choice for MILP. In fact, MILP provides very
accurate models comparing with the other optimization methods.

2.4 Synthesis of Reconfigurable Real-time systems

This section presents a global picture of the related works to our approach for the
synthesis of reconfigurable real-time systems. Note that we mean by synthesis the

derivation of a system from its specification.

First, we present software function to task assignment works. Next, we cite
reconfiguration-aware approaches. Then, we introduce optimization-based ap-
proaches. Finally, we review works that deal with task partitioning (i.e., task to
core) problem. The goal of this discussion is not to introduce a detailed survey
of the related work, but to underline that each of the approaches is proposed with
limited subset of constraints. We present in Table 2.8, a set of requirements and
their gratification by the cited approaches.

Many approaches in the literature aim to design architectural models that need to
meet timing requirements, by transforming the functional specification to tasking
architecture. In the work related in [83], the authors, provide a framework for
real-time embedded system synthesis. Using Prelude language, designers write a
functional specification with this framework. Then, the latter generates real-time
tasks using one to one assignment strategy. The main drawback of this strategy is

28

the time overhead caused by the large number of produced task. In the literature,
different alternatives exist in order to solve the optimization problem related to
this assignment strategy. The work reported in [21] proposes a clustering tech-
nique that allows the assignment of more than one function to the same task.
Contrasting the clustering method proposed by [24], the clustering is restricted to
tasks with identical periods. Beside the clustering strategy, the authors of [24] de-
fine multi-criteria design exploration methods as it involves several performance
criteria to be optimized while performing scheduling analysis. However, this ap-
proach is intended only for a mono-core architecture. In addition, it does not deal
with both task/function dependency constraint and reconfiguration constraint.

Some research contributions have been dedicated to develop reconfigurable real-
time systems in various areas. The work reported in [4] presents a framework
for design and implementation of reconfigurable real-time systems by providing
techniques for runtime reconfiguration, and dynamic intercircuit communication
and synchronization for FPGAs. Providing guidance and support to the designer
is out of scope of this work. This problem is solving by the work reported in [91]
which proposes a guided platform to help application developer in the implemen-
tation of hardware-software solutions for reconfigurable systems(FPGA-based
system). The work aims to translate high-level functions into FPGA-accelerated
kernels by matching software functions to appropriate architectural templates.

Task partitioning problems are very common in multi-core real-time systems.
Mostly, they are proven to be special instances of the general bin-packing prob-
lem. Finding an optimal solution in polynomial time is not a trivial task so that,
many heuristics have been proposed in the literature in order to solve the alloca-
tion problem in an acceptable computational time.
For multi-core real-time systems without considering shared resources, several
solutions are proposed, e.g., [56]. The work reported in [56] proposes an heuris-
tic (HYDRA) for assigning security tasks into multi-core real-time systems. The
authors aim to insert security tasks into this schedule without changing it and
without breaking the system’s real time constraints. The work reported in [7]
differs from [56] by considering the impact of shared resources when perform-
ing task allocation. It presents an optimal MILP-based partitioning strategy for
fixed priority scheduling with shared resources. Several important works have
focused on energy-aware partitioning. In [1], the authors describe and evaluate
real-time task assignment heuristics for optimizing the global deadline success
ratio. This work aims to determine a partitioning that guarantees absence of both
energy starvation and deadline missing under EDF scheduling.

Metaheuristic algorithms (e.g., genetic algorithm) and Mathematical program-

29

Table 2.8 Related work overview.

Work
Task

Dependency Reconfiguration
Aware

Function
Assignment

Task~
Partitioning

Optimization
Aware

Guided
StrategyDependent Independent

[83] - - - -
[21] - - - -
[24] - - -
[4] - - - - -
[91] - - -
[56] - - - -
[7] - - - -
[1] - - - -
[87] - - -
[60] - - - -
[71] - - - - - -

Our Thesis -

ming (e.g., MILP, ILP, and dynamic programming) have increasingly become the
focus of attention in solving many issues of optimization in the design of real-
time systems. A genetic algorithm approach to minimize energy consumption
and schedule length in a multiprocessor system with two homogeneous proces-
sors with shared memory architecture is presented in [87]. This work proposed
an ontology-based agent to design system reconfigurations according to user re-
quirement. For MILP-based optimization approach, several works are proposed,
e.g., [60]. In this approach, the author focus on the problem of static schedul-
ing multiple periodic systems composed of both hard and soft periodic tasks in
multiprocessor systems for energy consumption minimization. A dynamic pro-
gramming (DP) has been employed [71] to develop an optimal real-time system
with real-time energy management. This work aims to find an optimal control
mode in term of energy consumption. The above described approaches ([87],
[60], and [71]) share a common real-time aspect: schedulability of the system in
the scope of optimization techniques. However, none of these approaches deals
function to task assignment problem, also they does not provide decision aiding
solutions.

2.4.1 Discussion (comparative table)

An overview of related work is presented in Table 2.8, summarizing the previ-
ous works and techniques covered in this work. None of these solutions simul-
taneously considers the real-time constraints, reconfiguration property, function
assignment, partitioning, optimization aware and guidance aspect. In this disser-
tation, we propose a guided strategy for modeling, designing, and implementing
feasible reconfigurable real-time systems in multi-core architecture with depen-
dent tasks using multi-objective optimization techniques.

30

Conclusion

In this chapter, we overviewed the approaches that have been used in the literature
to solve the problem of real-time systems synthesis, including scheduling, place-
ment, and optimization problem in mono-core and multi-core architecture. We
have presented the real-time systems, their different classes. We have introduced
the concept of real-time tasks and the related timing constraints. We have talked
about the schedubility analysis, energy consumption model, real-time program-
ming languages as well as the optimization methods. We have studied the solving
approaches and existing methods in the literature. Few researches have been suc-
cessfully done to solve some synthesis problems but still present some defects.
None of these solutions considers simultaneously the real-time constraints, re-
configuration property, partitioning and scheduling problem, and user guidance.
Thus, this work is motivated to deal with all of these constraints. More details on
our contributions will be given in the following chapters.

31

CHAPTER 3

Implementation of Mono-core Reconfigurable Real-time
systems

Introduction

The previous chapter dedicated to introducing basic concepts concerning recon-
figurable real-time systems in mono-core and multi-core architecture. It further
surveyed existing methodology in the literature for synthesis reconfigurable real-
time systems. In this chapter, we present an initial version of MO2R2S approach
which is a multi-objective optimization approach for the development of a re-
configurable real-time system with mono-core architecture. It is organized as
follows: in Section 3.1, we give the motivation of this work and summarize our
contributions. In Section 3.2, we propose the formalization and terminology used
to model the approach. The proposed methodology is well detailed in Section 3.3.
This chapter is closed by a proposal of a formal case study presented in Section
3.4. Note that this chapter has been published in the international journal IEEE
transactions on Systems, Man, and Cybernetics(t-SMC).

3.1 Motivation

Despite significant advances in the development of real-time systems, the synthe-
sis of such system from specification level to implementation is not a trivial task.
The main phase of the synthesis is called deployment which is done at the design
level and it concerns the

– software architecture exploration (i.e., assigning functions to tasks),

– scheduling of tasks. Besides, the challenges produced by real-time system,
reconfiguration induces additional difficulties such as having a huge num-
ber of implementations may induces a big number of redundancies between
them [64].

32

Fig. 3.1 Challenges of Reconfigurable Real-tie System Implementation under Mono-
core Architecture.

In addition, such system is generally specified by a large number of applicative
functions which may

– causes an important time overhead,

– causes many reconfigurations between the different implementations which
increases the reconfiguration time [64],

– increases response time,

– produces complex system code.

Moreover, as it is important for these systems that tasks meet their real-time con-
straints, the need increasingly oriented towards powerful processors, without for-
getting the importance of the trade-off between system performance and energy
efficiency for those battery-based systems. The problem we deal with in this
chapter can be summarized as shown in Figure 3.1

– function to task assignment for a given functional specification,

– task scheduling,

– multi-criteria optimization process,

– real-time constraints,

– reconfiguration constraint.

In order to overcome these limitations, we propose the MO2R2S approach which
addresses initially the mono-core architecture. This approach aims to:

33

• Reduce the number of tasks,

• Minimize reconfiguration time between implementation set,

• Minimize response time,

• Minimize energy consumption

• Guarantee the respect of deadlines after each reconfiguration scenario

• Optimize the system code,

3.2 Formalization

We introduce in this section a formal description of a reconfigurable real-time sys-
tem in mono-core architecture. It presents the formalization of common notions
used throughout this chapter i) system model, ii) real-time analysis i.e., blocking
time, CPU utilization and response time, iii) reconguration time model, and iv)
energy model proposed for mono-core real-time system to adequate models under
reconfiguration constraints.

3.2.1 System Model

In specification level, we present the reconfigurable real-time system as a set of

– p function denoted by ξF = {F1, . . . Fp}, each function is characterized by

* rFk the release time (.i.e., each function cannot begin executing before
rFk),

* TFk which is the activation period of function Fk,

* CFk which is an estimation of the worst case execution time (WCET)
of Fk,

* CnFk the computation time at normalized processor frequency,

* Cond under which the function must be executed,

* Type which can be normal when during its execution it does not de-
pend on other functions or critical when it is a critical section in other
functions,

* Fk which represents the set of functions having dependency on Fk,

– m conditions defining the execution modes of the considered system [64].

The function and condition sets present an entry point to the design level. In
this latter, we present the reconfigurable real-time system as a set of m imple-
mentations. Each implementation Πi is composed of i) Ni periodic tasks which

34

implement normal functions, and ii) Ri shared resources which implement the
critical functions. Note that a task can implement one or more normal functions.
In the case of just one normal function, the task is characterized by the same pa-
rameters of the implemented normal function. In the other case, the task must
implement harmonic normal function i.e., ∀i, j ∈ {1..p} two functions Fi and Fj
are harmonic if and only if TFi mod TFj = q, where q in an integer. If a τj in Πi

implements more than one normal function it would be characterized by

– its release time rij ,

– Tij which is equal to the smallest period of the implemented harmonic func-
tions,

– Cij the WCET of τj , which is equal to the sum of the WCETs of the normal
functions executed by this task in implementation Πi,

– Cnij the computation time at normalized processor frequency,

– the deadline Dij which we assume that is equal to its period Dij = Tij ,

– priority Pij which we assume that is inversely proportional to period Tij

according to the RM policy,

– Cϕqj the time required by task τj to access to shared resource ϕq such that
Cϕqj ≤ Cij ,

– Bij the blocking time,

– Eij presents the energy consumption.

Note that a task may belong to more than one implementation, so it may have
different values for its parameters. We denote by ξϕi the set of Ri resources
that can be shared between the tasks in implementation Πi ξϕi = {ϕ1, . . . , ϕRi}.
We denote by Sys a reconfigurable real-time system which is defined by Sys =

(ξimp, C) (See Figure 3.2), where:

• ξimp: presents m implementations that define the system where ξimp =

{Π1, . . .Πm}. Each implementation Πi is characterized by a Ni tasks and
Ri shared resources where Ni ≤ N (respectively Ri ≤ R),

• C represents the controller which manages the moving from one implemen-
tation to another under well defined reconfiguration conditions.

3.2.2 Real-time Analysis

The analysis results may compute three parameters: The blocking time, the pro-
cessor utilization and WCRT analysis.

35

Fig. 3.2 Reconfigurable Real-time system Model.

3.2.2.1 Blocking time

The MO2R2S approach is based on PCP for managing the access to shared re-
sources. We define ceiling ςq of resource ϕq as the highest priority of all tasks
that can use ϕq [64]. Thus, we define the blocking time Bij of the task τj in
implementation Πi is given by

Bij = maxτl∈χτi ,ϕq∈ξϕ{Cϕql} − 1 (3.1)

with pri(τl) < pri(τj) ≤ ςq. Namely the priority of τl is lower than τj .

3.2.2.2 CPU Utilization

In this thesis, we propose the computation of CPU utilization factor U as the sum
of the CPU utilization factor of each implementation Ui where i ∈ {1..m}. The
expression of U is given by

U =
∑

i ∈{1...m}

Ui (3.2)

Where Ui is defined by

Ui =
∑

j ∈ {1...Ni}

Cij +Bij

Tij
(3.3)

36

Fig. 3.3 Reconfiguration scenario.

3.2.2.3 WCRT analysis

As we mentioned in previous chapter, Worst Case Response Time (WCRT) anal-
ysis is one of the most widely used schedulability tests. We aim in this thesis to
optimized it. It is defined as the time spent between the start time of a task and
its finish time. We denote by Rij the response time of task τj in implementation
Πi. The proposed expression of Rij is given by [64]

R0
ij = 0, Rh

ij = Cij +Bij +
∑

l∈Hp(j)

d
Rh−1
ij

Til
eCil (3.4)

3.2.3 Reconfiguration Time Model

The reconfiguration scenario corresponds to either adding or removing tasks. We
introduce in this thesis the reconfiguration time <i related to Πi as the time spent
by the system to jump to Πi (i.e., required time for loading Πi) [65]. It is given
by [65]

Ti = A ∗ Tcost +B ∗ Tcost = (A+B) ∗ Tcost (3.5)

where A (resp, B) denotes the number of suspended tasks (i.e., deleted tasks)
(resp, activated tasks), Tcost is the time spent to suspend/activate a task. We aim
in this thesis to minimize the reconfiguration time. Figure 3.3 shows an example
of reconfiguration scenario which aims to compute<i in each implementation Πi.
The system is composed of two implementation Π1 and Π2, the first implementa-
tion Π1 is defined by Π1 = {τ1, τ2, τ3, τ4} to move to the second implementation
Π2 we need to suspend two tasks τ1 and τ2 and activate τ5. So the reconfiguration
time <2 related to Π2 is given by: 2 ∗ Tcost + 1 ∗ Tcost, so <2 = 3 ∗ Tcost. If we
assume that Tcost is equal to 5 ms, then <2=2 ∗ 5=10ms.

37

3.2.4 Energy consumption Model

Energy consumption is one of the most challenging issues in current real-time
systems. During tasks execution, the processor needs a significant amount of
energy due to the important amount of data to be calculated. In order to get
over this problem, we consider a real-time system with multi-core architecture
supporting the Dynamic Voltage and Scaling frequency DVFS [37] capabilities.
Real-time voltage and frequency scaling can potentially save energy, while they
meet real-time constraints [46]. Let’s fn and Vn be the normalized frequency and
the voltage of the system. Note that, the execution time of the task is extended
when the voltage is decreased to save the energy. The fact is that the proces-
sor frequency is roughly linearly proportional to the voltage supply [37]. Thus,
reducing voltage cuts down the energy dissipation. We can see that the task exe-
cution time is inversely proportional to the voltage [37]. In order to minimize the
energy consumption while respecting system performance and temporal require-
ments, the supply voltage should be scaled as low as possible. As we mentioned
in the previous chapter the energy consumption is given by

E = αfV 2
ddθ (3.6)

where Vdd is the supply voltage, f is the number of clock cycles, i.e., the pro-
cessor frequency, θ is the execution period and α is a constant. We assume that
α = 1. We suppose that each function Fk is described by two parameters: (i)
the function’s frequency fFk , and (ii) the function’s voltage VFk [64]. The en-
ergy consumption for the execution of function Fk that we denote by EFk is
computed as EFk = fFkV

2
Fk
CFk [64]. We introduce in this thesis the energy

consumption Eij of task τj in Πi as to the sum of the implemented functions
Eij =

∑
k∈{1...pj}EFk =

∑
k∈{1...pj} fFkV

2
Fk
CFk =

∑
j∈{1...Ni} fij V 2

ijCij where
(fij , Vij) are two parameters characterizing task τj in implementation Πi [64]. We
assume that fij =

∑
k∈{1...pj} fFk and Vij =

∑
k∈{1...pj} VFk . Thus the total energy

consumption of implementation Πi is given by [64]

Ei =
∑

j∈{0,Ni}

Eij =
∑

j∈{0,Ni}

fijV
2
ijCij (3.7)

Let’s ηj be the reduction factor of voltage when τj is executed, Vij = Vn
ηj

and fij =
fn
ηj

. So the WCET is equal to Cij = Cnijηj . Thus the total energy consumption of

38

implementation Πi according to [37] is given by

Ei =
∑

j∈{0,Ni}

fn ∗ V 2
n ∗ Cnij
η2j

= K
∑

j∈{0,n}

Cnij
η2j

(3.8)

where K = V 2
n fn.

3.3 MO2R2S Approach

In this section, first we present an overview of our design methodology. Then, we
detail the structure of the different modules involved in this work.

3.3.1 Methodology description

As shown in Figure 3.4, the entry point of our approach is the specification model
provided by the designer. This specification defines i) functions of the system,
their temporal parameters and dependencies between them, and ii) reconfigura-
tion conditions. Then, from this specification model, an initial task model is
proposed such a one to one assignment solution, i.e., each normal function (re-
spectively each critical function) is assigned to a single task (respectively to a
shared resource). Note that the feasibility concerns are not considered at this
level. Once the initial task model is defined, we come to the multi-objective de-
sign and optimization step based on MILP formulation which aims to produce a
feasible task model while optimizing task number and either energy consumption
or response time depending on the designer choice. When this step fails to find
a feasible solution then the timing parameters of the functions must be adapted.
Finally,a POSIX code is generated from the optimized task model.

3.3.2 Initial Task Model Generation

MO2R2S needs an initial solution to start the search procedure in the next step
(i.e., optimization step). In this step, the specification model is considered as
input. This step is performed by an heuristic (Algorithme 1) that generates:

• implementation set for different reconfiguration conditions,

• shared resource set such as for each critical function Fk, it generates a shared
resource ϕq,

• task set, for each normal function Fk it generates a task τj that has the same
parameters of Fk

39

Fig. 3.4 Approach description.

Algorithm 1: INITIAL TASK GENERATION [64]
Input:
- F : Functions set
- ReconfCnd : Reconfiguration condition set
Output:
- InitTask : Initial Task Model
- imp : Implementation set

1 Notations:
2 - Reconf_Cnd_Func: Correlation table between the reconfiguration conditions and the functions.
3 - ϕ : Resource set
4 /*** Resource’s number ***/
5 nbr_R← 0
6 k ← 0
7 /*** Generation Of Implementations ***/
8 for i← 0 to SizeOf(ReconfCnd) do
9 for j ← 0 to SizeOf(F) do

10 if (F [j] ∈ Reconf_Cnd_Func[i]) then
11 imp[i][k] = F [j]
12 k ++;

13 k ← 0

14 /*** Generation Of Shared resource ***/
15 i← 0
16 for j ← 0 to SizeOf(F) do
17 if F [j] is a critical function then
18 ϕ[nbr_R] = F [j]
19 if F [j] ∈ imp[i] then
20 ϕ[nbr_R] ∈ imp[i]
21 i++;
22 nbr_R++

23 /*** Generation Of Task Model ***/
24 for each implementation impi do
25 for eachfunctionFj do
26 /* We create a task and we initialize its parameters with function Fj parameters */
27 ReleaseT imeOf(InitTask[j]) = ReleaseT imeOf(F [j])
28 WcetOf(InitTask[j]) =WcetOf(F [j])
29 PeriodOf(InitTask[j]) = PeriodOf(F [j])
30 DeadlineOf(InitTask[j]) = DeadlineOf(InitTask[j])
31 NormalizeWCETOf(InitTask[j]) = NormalizeWCETOf(F [j])
32 imp[i][j] = InitTask[j]

33 return imp

40

Fig. 3.5 Running Example of an Initial task Model Generation.

Note that in this step the feasibility concerns are not inspected. The complex-
ity of this step is O(N2). For example a system Sys specified by a designer as
a set of six functions. Let us suppose that F1, F2, F4, and F6 are normal func-
tions and F3 and F5 are critical functions depicted in Figure 3.5. F1, F2, and
F3 are executed in condition Cnd1, while the rest are executed in reconfigura-
tion condition Cnd2. By executing, Algorithm 1 we obtain an initial task model
with two implementations Π1 and Π2 defined as follows: Π1 = {τ1, τ2, ϕ1} and
Π2 = {τ2, τ3, τ4, ϕ2}. Note that in this step, the number of tasks is equal to num-
ber of normal functions, no clustering technique is applied in this step. As the
next step (i.e., Multi-objective Design and Optimization Step) needs an initial so-
lution to start the search procedure, this initial model presents the input of this
step.

3.3.3 Multi-objective Design and Optimization Step

This step is performed by a MILP formulation to define a multi-criteria design
exploration as it involves several performance criteria to be optimized while per-
forming the scheduling. As we mentioned previously, this step aims to i) reduce
the number of tasks which leads to reduce the number of threads in implemen-
tation level thus optimize the code complexity, ii) reduce reconfiguration time
between implementation sets, iii) minimizing either the energy consumption or
response time. Since the third objective consists in optimizing one of two metrics
depending on the designer choice (i.e., energy consumption or response time)
two MILP formulations are provided. These latter share common points such

41

as i) the two objectives which are number of task and reconfiguration time min-
imization, and ii) temporal constraints. We combined the first objective which
aim to reduce the number of tasks with the second objective which attempts to
decrease the reconfiguration time between implementations, into just one objec-
tive by proposing to merge harmonic tasks while ensuring the respect of timing
properties. We remind that two tasks are harmonic if and only if they imple-
ment harmonic functions [64]. Thereby, if τj and τk are two harmonic tasks (i.e.,
Tij mod Trk = q) so the result of their merging produces τl with the following
temporal parameters: z ∈ {i, r}, ∀i, r ∈ {1 . . .m}

τj = (Czj, Tzj, Dzj) =


Czj =

{
Cij + Crk if i = l

Cij in Πi And Crk in Πr otherwise.

Tzj = min(Tij, Trk)

Dzj = min(Dij, Drk)

Note that the execution time of the merged task τj depends on the task that will
be executed. Let us consider an initial task model which is composed by two
implementations Π1 and Π2. Each implementation is characterized by a set of
task as shown in Table 3.1. We can notice that i) task τ1 is harmonic with τ2

in Π1 and τ3 in Π2, and ii) τ4 is harmonic with τ5 in Π2. By applying merging
technique for this particular example, we obtain a new SW architecture which is
presented in Table 3.2. By applying the merge technique τ1 absorbs τ2, and τ3,

Table 3.1 Example Of Initial Task
Model

Πi τj Tij Cij Dij

Π1
τ1 5 ms 2 ms 5 ms
τ2 10 ms 1 ms 10 ms

Π2

τ3 5 ms 1 ms 5 ms
τ4 21 ms 2 ms 21 ms
τ5 7 ms 1 ms 7 ms

Table 3.2 Example: Resulting
Task Model

Πi τj Tij Cij Dij

Π1 τ1 5 ms 3 ms 5 ms

Π2
τ1 5 ms 1 ms 5 ms
τ4 7 ms 3 ms 7 ms

and τ4 absorbs τ7. So obtain just two task τ1 and τ4, such as their WCETs depends
on which implementation they are executed.

3.3.3.1 Models Parameters and Variables

The two models parameters and variables are depicted in the following table 3.3

42

Table 3.3 Models Parameters and Variables.Constants

Constants
Concepts Defintion

Hmjk

A boolean variable used to mention if two tasks are harmonic.
Thus if the value of Hmsjkis equal to 1, then the corresponding tasks
τjand τkhave harmonic rates.

Cij Task’s WCET
Dij Tasks’ deadline
M Big constant
N Number of tasks

Variables
Concepts Defintion

Mgjk

A boolean variable used to mention whether two tasks τjand τk
are merged such that Mgjkis equal to 1 if task τj ∈ impi
and task τk ∈ imprare merged, the merge corresponds to the situation
in which τjabsorbs τk, to be deleted from the model

NewTask
The resulting task model after merging the different tasks
(i.e., optimized task model)

Cnewij The new task’s WCET
Dnewij The new task’s deadline
Tnewij The new task’s period

µijk
A binary variable where µijk = 1 when
τj is executed before τk

U CPU utilization factor
Bnewij \
Bij

The new blocking time \The old blocking time
(i.e., before merging technique)

Rij The reponse time of τj
yijk Number of possible interference of τk on τj .

xijk
Number of possible interference of τk on τj .

if µikj = 1
ηj Scaling factor of τj
ηmin ηmin = max (ηj), j = 1...N
Cnewnij The new normalized WCET of τj

43

3.3.3.2 General Objective Function

We define in expression (3.9) the shared objective function. It aims to maximize
the number of merges while minimizing the metric Metric which could be either
the total response time or the energy consumption.

Maximize
∑

i ∈ {1..m}

∑
j,k ∈ {0,Ni}

Mgjk − Metric (3.9)

In the following, we present first the common constraints (i.e., the constraints
related to merging situations and real-time constraints), then we define the con-
straints specific to each metric.

3.3.3.3 Common constraints

A we mentioned above, the two formulations share common constraints that we
define in this section.
Merging situation constraints.
In order to avoid the merge of non-harmonic tasks we define constraint (3.10)
[64]

∀j, k ∈ {1..Ni} Mgjk = 0 if (Hmjk = 0) (3.10)

If Hmjk = 0 this means that task τj and τk are not harmonic, therefore Mgjk

will be equal to zero and the two tasks could not be merged. Constraint (3.11) is
defined to avoid merging task which is already merged i.e., ∀ k ∈ {1..Ni}∑
j∈{1..Ni}

Mgjk ≤ 1, ∀ j, k, z ∈ {1..Ni}, k, z 6= j, Mgjk + Mgzj ≤ 1

(3.11)
This constraint ensures that the task τj can be absorbed by just one task τi. Con-
straint (3.12) is defined to create the new obtained model i.e.,

∀ j ∈ {1 . . . Ni}, NewTaskk = 1−
∑

j∈{1...Ni}

Mgjk (3.12)

We define a new boolean variable NewTaskj which presents the new task model
after merging. The two constraints 3.11 and 3.12 ensure that if Mgjk = 1 than
NewTaskk = 0 and NewTaskj=1, it means that the task τk is absorbed by τj .
Real-time constraints.
The constraints defined in this section are related to real-time requirements. First,
we define the model obtained after applying the merge technique. The new
WCET Cnewzl is given by

44

∀j ∈ {1..Ni}, ∀k ∈ {1..Nl},∀i, l ∈ {1 . . .m}

Cnewzl =

{
NewTaskj ∗ (Cij + Crk) if (r = k)

(NewTaskj ∗ Cij ∈ Πi, NewTaskk ∗ Crk ∈ Πr) otherwise
(3.13)

As we mentioned previously, if two harmonic task are in the same implementation
then the execution time of the Cnewzl resulting task will be equal to the sum of
the execution time of the merged task otherwise it will have different execution
time depending on implementation in which it is executed. The constraint 3.14
computes the new period Tnewzl which is equal to the minimum period between
the merged tasks.

Tnewzl = min(Tij, Trk) (3.14)

The new priority Pzl is defined by the maximum priority between merged tasks.

Pnewzl = max(Pij, Prk) (3.15)

The CPU utilization factor is an important term in scheduling analysis. In order
to ensure that the design model meets the timing constraints the constraint 3.17
must be verified

U = ≤
∑

i∈ {1...m}

∑
j∈ {1...Ni}

Ni(2
1
Ni − 1) (3.16)

Where U is defined by

U =
∑

i∈ {1...m}

Ui =
∑

i ∈ {1...m}

∑
j ∈ {1...Ni}

Cnewij + Bnewij

Tnewij
(3.17)

Where Bnewij presents the new blocking time which is defined by:

Bnewijs =

{
−Bij if

∑
jk∈ {1...Ni} Mgjk = 0

−max{Bij, Bik} otherwise
(3.18)

Where Bij in (3.19) represents the local blocking time of task τj in implementa-
tion Πi which is defined by ∀ τk ∈ Hpj, ∀ϕq ∈ ϕ

Bij = max{Cϕqk} − 1 (3.19)

45

3.3.3.4 Response Time Optimization Model

In order to optimize the response time besides the minimization of the number of
tasks, we define the following objective function

maximize
∑

i∈{1..m}

(
∑

j,k∈{0,Ni}

Mgjk −
∑

j∈{0,Ni}

Rij) (3.20)

Response time Rij of τij is given by

Rij = Cnewij + Bnewij +
∑

k∈Hp(j)

Iikj ∗ Cnewik (3.21)

where Iikj the number of interference of τik on τij during its response time.

Iikj = dRij

Tik
e (3.22)

Constraint 3.22 is non linear so in order to compute this constraint we start by
adding the following variables:

yijk =

{
Ni number of possible interference of τk on τj in Πi

0, otherwise
yijk is equal to 0 if there are no interference of τk on τj in Πi otherwise it is equal
to number of interference of τk on τj in Πi. The possible number of interference
is defined as function of the response time and period by the following constraint

0 ≤ yijk −
Rij

Tik
≤ 1 (3.23)

We define an additional variable xijk by

xijk =

{
Ni number of possible interference of τk on τj in Πi if µikj = 1

0, otherwise
xijk is defined in constraints 3.24 and 3.25 in terms of yijk and µijk by introducing
the big M formulation (i.e., M is a big constant [129]).

yijk − M(1 − µikj) ≤ xijk ≤ yijk (3.24)

0 ≤ xijk ≤ M ∗ µikj (3.25)

M is a constant larger than any other quantity involved in the constraint and it is
typically used to encode alternative constraints that depend on a binary variable
(the value of µikj makes one of the constraints trivially true). µikj is a binary
variable, µijk = 1 when τj is executed before τk it is equal to 0 otherwise. Finally,

46

the response time of task τj in Πi can be computed as

Rij = Cnewij + Bnewij +
∑

k∈{1..Ni}

xijk ∗ Cnewik (3.26)

To sum up the full model of the response time optimization is given by:

Maximize
∑

i∈{1..m}(
∑

j,k∈{0,Ni}Mgjk −
∑

j∈{0,Ni}Rij) (3.20)

∀j, k ∈ {1..Ni} Mgjk = 0 if (Hmjk = 0) (3.10)

Mgjk ≤ 1, z ∈ {1..Ni}, k, z 6= j, Mgjk + Mgzj ≤ 1 (3.11)

∀ j ∈ {1 . . . Ni}, NewTaskk = 1−
∑

j∈{1...Ni}Mgjk (3.12)

∀ i, r, z ∈ {1 . . .m}, j, k, l ∈ {1 . . . N}
if (r = k) then Cnewzl = NewTaskj ∗ (Cij + Crk) (3.13)

if (r <> k) then Cnewzl = (NewTaskj ∗ Cij in Πi, NewTaskk ∗ Crk in Πr) (3.13)

∀ i, r, z ∈ {1 . . .m}, j, k, l ∈ {1 . . . N} Tnewzl = min(Tij, Trk) (3.14)

∀ i, r, z ∈ {1 . . .m}, j, k, l ∈ {1 . . . N} Pnewzl = max(Pij, Prk) (3.15)

Bnewij = Bij if
∑

jk∈ {1...Ni} Mgjk = 0(3.18)

Bnewij = max{Bij, Bik} otherwise(3.18)

Bij = max{Cϕqk} − 1 (3.19)

∀ j ∈ {1 . . . Ni}, NewTaskk = 1−
∑

j∈{1...Ni}Mgjk (3.12)

0 ≤ yijk − Rij
Tik
≤ 1 (3.23)

yijk − M(1 − µikj) ≤ xijk ≤ yijk (3.24)

0 ≤ xijk ≤ Mµikj (3.25)

Rij = Cnewij + Bnewij +
∑

k∈{1..Ni} xijk ∗ Cnewik (3.26)

U ≤
∑

i∈ {1...m}
∑

j∈ {1...Ni}Ni(2
1
Ni − 1) (3.17)

3.3.3.5 Energy consumption Optimization Model

For optimizing the energy consumption, we define the following objective func-
tion

Maximize
∑

i∈{1..m}

(
∑

j,k∈{0,Ni}

Mgjk −
∑

j∈{0,Ni}

Eij) (3.27)

As we mentioned previously in Section 3.2.4 in Eq. 3.8 the expression of Eij is
given by

Eij = K
∑

j∈{0,Ni}

Cnewnij
η2j

(3.28)

We notice that this equation is fractional due to the fact that the WCET of the task
Cnewnij is proportional to the reduction factor ηj . Thus, we simplify this program
by maximizing the minimum of the reduction factor ηj . Hence, we introduce an

47

additional variable ηmin which is equal to the minimum of ηj . The constraint 3.29
establishes that

ηmin ≤ ηj (3.29)

The new normalized WCET Cnewnij is given by

Cnewnij =

{
NewTaskj ∗ (Cnij + Cnrk) if (r = k)

(NewTaskj ∗ Cnij , NewTaskk ∗ Cnrk) otherwise
(3.30)

In order to confirm that the obtained model meets the timing constraints the fol-
lowing constraint must be verified:

U =
∑

i ∈ {1...m}

∑
j ∈ {1...Ni}

Cnewnij ηj + Bnewij

Tnewij
≤

∑
i∈ {1...m}

∑
j∈ {1...Ni}

Ni(2
1
Ni − 1)

(3.31)
The full formulation of blocking time optimization is given by

Maximize
∑

i∈{1..m}(
∑

j,k∈{0,Ni}Mgjk) + ηmin (3.20)

∀j, k ∈ {1..Ni} Mgjk = 0 if (Hmsjk = 0) (3.10)

Mgjk ≤ 1, z ∈ {1..Ni}, k, z 6= j, Mgjk + Mgzj ≤ 1 (3.11)

∀ j ∈ {1 . . . Ni}, NewTaskk = 1−
∑

j∈{1...Ni}Mgjk (3.12)

∀ i, r, z ∈ {1 . . .m}, j, k, l ∈ {1 . . . N}
if (r = k) then Cnewnzl = NewTaskj ∗ (Cnij + Cnrk) (3.30)

if (r <> k) then Cnewnzl = (NewTaskj ∗ Cnij ∈ Πi

NewTaskk ∗ Cnrk in Πr) (3.30)

∀ i, r, z ∈ {1 . . .m}, j, k, l ∈ {1 . . . N} Tnewzl = min(Tij, Trk) (3.14)

∀ i, r, z ∈ {1 . . .m}, j, k, l ∈ {1 . . . N} Pnewzl = max(Pij, Prk) (3.15)

Bnewij = Bij if
∑

jk∈ {1...Ni} Mgjk = 0(3.18)

Bnewij = max{Bij, Bik} otherwise(3.18)

Bij = max{Cϕqk} − 1 (3.19)

ηmin ≤ ηj (3.29)

0 ≤ ηj (3.30)

U ≤
∑

i∈ {1...m}
∑

j∈ {1...Ni}Ni(2
1
Ni − 1) (3.31)

3.3.4 Code Generation

The obtained task model from the previous step will be an input for the code
generation step. The latter aims to generate the skeleton of the program which is
based on POSIX code. Algorithm 2 formalizes this generation step. First, it gen-
erates the includes of the POSIX code. Then, for each task we generate a thread

48

Fig. 3.6 Correspondence between system model and POSIX code.

(pthread in POSIX), and each function is implemented by a POSIX function. The
controller which has the role of switching from an implementation to another, is
implemented by the main function (i.e., int main (void)). The resources are im-
plemented by critical functions, and we use a semaphore for the synchronization
process. The complexity of this algorithm is O(N).

The transformation rules from the task model to POSIX code are depicted in
Table 4.3 and in Figure 3.6.

3.4 Formal Case Study

Our methodology will be applied to a case study where the system will be mod-
eled according to the above formalization. We consider a system Sys character-
ized in the specification level by two reconfiguration conditions and four func-
tions: three normal functions (F1, F2, F4) and one critical function (F3). As
shown in Figure 3.7 section A, the function F1, F2, and F3 are executed in the
condition Cond1, while F2, F3, and F4 in condition Cond2. Table 3.5 depicts
in details the specification model (i.e., function sets with its parameters). In the
following subsections, we apply the proposed approach to the considered case
study.

49

Algorithm 2: POSIX-CODE GENERATION
Input:
- Y: Mapping Matrix task to implementation
- X: Mapping Matrix of function to task
- F: List of function
- Cf: Function WCET vector
- m : Implementation number
- N: Task number
Output:
- PC: POSIX_Code

1 /*** Generation Of Includes ***/
2 Write("#include <stdio.h>")
3 Write("#include <stdlib.h>")
4 Write("#include <pthread.h>")
5 Write("#include <semaphore.h>")
6 /*** Creation of Semaphore Declaration ***/
7 for each Function F [k] do
8 if F [k].type = critical then
9 Write("Sem_t evt[k]") /*** Declaration of Function ***/

10 else
11 Write("void* F[k] (void* arg);")

12 /*** Generation of the Controller ***/
13 Write("int main (void);")
14 /*** Generation of the Threads Declaration ***/
15 for j = 0 to N do
16 Write("pthread_t tau[j];")

17 for i = 0 to m do
18 Write("if imp[i]") for j = 0 to N do
19 if Y [ij] = 1 then
20 for each Function F [k] do
21 if X[kj] = 1 then
22 /

23 *** if function k in task j ***/ Write ("pthread_Create(and tau[j], NULL, F[k], (void*) Cf[k]
;)")

24 Write ("pthread_join(tau[j], NULL);")

25 if (i== m) then
26 Write("else")
27 for j = 0 to N do
28 if Y [ij] = 1 then
29 for each Function F [k] do
30 if X[kj] = 1 then
31 Write ("pthread_Create(and tau[j], NULL, F[k], (void*) Cf[k] ;)")
32 Write ("pthread_join(tau[j], NULL);")
33)

34 /*** Function ***/
35 for each Function F [k] do
36 if F [k].type = normal then
37 Write("void* F[i] (void* arg)") for each Function F [z] do
38 if F[k] depends on F[z] then
39 Write("F[z];")
40 Write("sem_post (andevt[k]);")

41 Write("pthread_exit (NULL) ;") return PC

50

Table 3.4 Correspondence between the task model and POSIX specific language.

Task Model POSIX_Code

Task
pthreadt task_name;
pthread_create();
pthread_ join ();

Resource

Facility is provided by mutexes
and condition variables.
sem_t mutex;
/* used for mutual exclusive access
to waiting and busy*/
sem_t cond[];
/* used for condition synchronization*/
SEM_WAIT(andmutex);
/* lockmutex */
SEM_POST(andmutex);
/* release mutex */

Function void* Function_name (void* arg)
Implementation Functions set to be executed in each implementation

Controller

int main (void)
{pthread_t thread_name
if (Cndi){
pthread_create()
. . .
pthread_join()
. . .
return 0 }

Scheduling Policy

#defineSCHED_OTHER
/* implementation_defined scheduler
(RM)*/
int pthread_attr_setschedpolicy();
int pthread_attr_getschedpolicy();
/* set/get the contention scope attribute
for a thread attribute object */

Table 3.5 Case Study Specification.

Function TFk CnFk Type Fk Cond
F1 20 1 Normal F3 Cond1
F2 10 2 Normal F3 Cond1, Cond2
F3 15 1 Critical - Cond1, Cond2
F4 20 1 Normal F3 Cond2

51

Fig. 3.7 Specification of Formal Case Study.

Table 3.6 Tabular description of the initial task model of the Case Study

τj/ϕq Πi Tij Cij Function
ϕ1

Π1

15 1 F3

τ1 20 1 F1

τ2 10 2 F2

ϕ1

Π2

15 1 F3

τ2 10 2 F2

τ3 13 1 F4

3.4.1 Initial Task Model

This step has as input the specification model, it aims to generate an initial task
model by executing Algorithm 1. As shown in Figure 3.7 section B, each nor-
mal function is assigned to task and each critical function is mapped to a shared
resource. For each condition, an implementation is generated. As a result, we
obtain i) three tasks: τ1, τ2 , and τ3 implement respectively F1, F2, and F4, ii)
one shred resource ϕ1 implements F3, and iii) two implementation Pi1, and Pi2
which execute respectively the set {τ1, τ2, andϕ1} and {τ2, τ3 ϕ1}. Table 3.6
gives a tabular description of the initial task model describing the case study. As
shown in Table 3.6, each normal function is affected to a task and each critical
function is executed by a resource. Thus we obtain three tasks and one shared
resource.

52

Table 3.7 Obatined Optimized Task Model in term of Total response time.

τj/ϕq Πi Tij Cij Bij
Total
ROld

Total
RNew

ϕ1 Π1
20 1 -

4 3
τ1 10 3 0
ϕ

Π2

20 2 - - -
τ1 10 2 1

4 4
τ3 13 1 0

Table 3.8 Optimized Task Model in term of Energy Consumption.

τj/ϕq Πi Tij Cnij ηij Cnewij Eold Enew
ϕ1 Π1

15 1 - - - -
τ1 10 3 0.7 2.1 431.5 302.05
ϕ1

Π2

15 1 - - - -
τ1 10 2 0.7 1.4 430 301
τ3 13 1 0.7 0.7 250 175

3.4.2 Formal Case Study Optimized Models

The second step of MO2R2S approach consists in generating two optimized task
models by executing MILP formulations defined previously. Both proposed linear
programs produce the same merge matrix which is given as follow:

τ1 τ2 τ3

τ1 0 1 0

τ2 0 0 0

τ3 0 0 0

 (3.32)

The MILP formulations allow to merge τ1, τ2. The resulting task model is com-
posed of τ1, τ3, and ϕ1. The result of the first MILP formulation which aims to
reduce the total response time is shown in Table 3.7. Table 3.7 shows that the new
response time is less than the old one. For the second objective function which
aims to minimize energy consumption, the linear program generates the follow-
ing task model depicted in Table 5.5. We can see from Table 5.5 that this model
allows to reduce the energy consumption.

3.4.3 Formal Case Study POSIX Code

In order to implement the obtained task model in POSIX code, we apply Algo-
rithm 2. The skeleton of the code implementation of the considered case study is
represented by the following listing.

Listing 3.1: POSIX code.

53

1 # i n c l u d e < s t d i o . h>
2 # i n c l u d e < s t d l i b . h>
3 # i n c l u d e < p t h r e a d . h>
4 # i n c l u d e <semaphore . h>
5 sem_t e v t ; / / D e c l a r a t i o n o f t h e semaphore r e p r e s e n t i n g t h e s y n c h r o n i z a t i o n e v e n t
6 vo id * F1 (vo id * a r g) ; / / Normal f u n c t i o n
7 vo id * F2 (vo id * a r g) ; / / Normal f u n c t i o n
8 vo id * F3 (vo id * a r g) ; / / C r i t i c a l f u n c t i o n
9 vo id * F4 (vo id * a r g) ; / / Normal f u n c t i o n

10 i n t main (vo id) {
11 p t h r e a d _ t t a u _ 1 ;
12 p t h r e a d _ t t a u _ 2 ;
13 p t h r e a d _ t t a u _ 3 ;
14 p t h r e a d _ c r e a t e (andtau_1 , NULL, F1 , (vo id *) 1) ;
15 p t h r e a d _ c r e a t e (andtau_1 , NULL, F2 , (vo id *) 2) ;
16 p t h r e a d _ j o i n (tau_1 , NULL) ;
17 i f (cnd=cnd1) {
18 p t h r e a d _ c r e a t e (andtau_1 , NULL, F2 , (vo id *) 2) ;
19 p t h r e a d _ j o i n (tau_1 , NULL) ;
20 p t h r e a d _ c r e a t e (andtau_3 , NULL, F4 , (vo id *) 1) ;
21 p t h r e a d _ j o i n (tau_3 , NULL) ;
22 } r e t u r n 0 ; }
23
24 vo id * F2 (vo id * a r g) {
25 F3 (vo id) ; / / C r i t i c a l s e c t i o n
26 sem_pos t(ande v t) ;
27 p t h r e a d _ e x i t (NULL) ; } / * end of t h r e a d * /

The presented skeleton in listing 1 helps the developer to implement the full code
and detail the implementation of functions.

Conclusion

The initial version of MO2R2S approach offers a mechanism for reconfigurable
real-time system synthesis under real-time constraints. This version addresses
initially the mono-core architecture. The proposed approach allows to optimize
some metric such as task count, energy consumption and total response time
which conduct to reduce time overhead and code complexity as well. In the next
chapter, the proposed approach is generalized to support multi-core platforms.

54

CHAPTER 4

Guided Implementation of Multi-core Reconfigurable
Real-time Systems

Introduction

In this chapter, we generalize the MO2R2S approach to provide a guidance frame-
work to assist designer in the synthesis of a reconfigurable real-time system with
multi-core architecture. This version of MO2R2S approach is performed also by
mixed-integer linear programming. This chapter is organized as follow: in Sec-
tion 4.1, we give the motivation of this work and summarize its contributions.
Section 4.2 formalizes the contributions and Section 4.3 details the methodology.
In Section 5.2, we evaluate the proposed approach using a formal case study. The
content of this chapter have been published in the international journal Informa-
tion Sciences.

4.1 Motivation

Multi-core architectures are becoming more and more common in high perfor-
mance real-time applications. They introduce additional challenges such as find-
ing efficient solutions to the task allocation and scheduling problem especially
when taking into consideration shared resources. Many of the previous works
on task allocation in multi-core real-time systems ignored the effect of shared re-
sources. The latter can introduce a significant blocking time. In multi-core recon-
figurable real-time system, turning from an implementation to another produces
a huge moving time overhead, that may affects the total stability of a system [68].
In addition, such system is generally specified by a large number of applicative
functions which may cause as we mentioned in the previous chapter

– an important time overhead,

– many reconfigurations between the different implementations which increases
the reconfiguration time [64],

55

Fig. 4.1 Thesis Challenges.

– increase response time, and energy consumption,

– produce complex system code.

Furthermore, carrying out certain design steps, e.g., mapping functions to tasks,
partitioning / scheduling tasks, and decision making in the case of non-feasible
systems, is not a trivial task. The problem we deal with in this thesis can be
summarized as shown in Figure 4.1:

– function to task assignment for a given functional specification,

– task partitioning into cores,

– task scheduling,

– multi-criteria optimization process,

– real-time constraints,

– reconfiguration constraint,

– guidance strategy.

The considered problems in this work are widely explored in literature but none
of the proposed solutions simultaneously considers the real-time constraints, re-
configuration property, software architecture exploration, task partitioning, task
scheduling, optimization concept and user guidance [68]. To overcome these lim-
itations, the proposed approach aims to fulfill two main purposes:

– helping designers to deal with the multi-core real-time system design diffi-
culties, and guide them to

56

• creating, partitioning and scheduling tasks,

• processing with the design modification due to reconfiguration actions.

– providing a feasible optimized synthesis of multi-core real-time system in
term of

• blocking time or moving time during a partitioning phase which leads
to optimize the time overhead,

• task count which conduct to minimize the reconfiguration time,

• response time or energy consumption.

Thus, we propose a methodological guidance framework that assists designers
during the synthesis of multi-core real-time systems which leads to optimize de-
velopment time and reduce thereby the time to market. Note that this chapter
generalizes the defined approach in the previous chapter to multi-core architec-
ture. So comparing with the previous chapter i) it introduces the portioning issue
and how to obtain an optimized one, and ii) it proposes a guidance framework
that helps designer when feasibility problems appear.

4.2 Formalization

Reconfigurable real-time systems formalization introduced in the previous chap-
ter is generalized in this chapter to support multi-core architecture. We extend the
system model, real-time analysis (blocking time, CPU utilization, and response
time), reconfiguration time model, and energy model proposed in the previous
chapter to adequate models for the multi-core platforms.

4.2.1 System Model

In the specification level, the formalization consists of:

– hardware model which consists of M identical cores {ζ1, ζ2, . . . , ζM} that
share a common memory.

– software model which is composed of,

• p functions ξF = {F1, . . . , Fp},

• m conditions [64] defining the execution modes of the system.

As we mentioned in the previous chapter, each function is characterized by real-
time parameters (rFk , TFk , CFk , Cond, Type, Nature, QFk , Fk). Com-
pared with the function characteristics presented in the previous chapter, we add

57

Fig. 4.2 Type of Shared Resources.

Nature which defines the function type, i.e., hard or soft. , and QFk which de-
notes the quality factor which is the degradation rate of scheduling performance
(i.e., the percentage of instances of function Fk that do not meet their deadlines).
This factor for any hard function should be equal to zero, i.e., QFk =0.

The software model presents an entry point in task synthesis approach to provide
a software architecture. The latter is composed of i) m implementations gener-
ated from conditions, ii) task set, and iii) shared resources among tasks. Each
implementation Πi is composed of

– Ni activated tasks which execute a set of normal functions. Each task is
characterized by a tuple (rij, Tij, Cij, Dij, Pij, Cϕqj , Bij, Nature, Qij),

– Ri resources that can be shared among the tasks.

Note that we use a partitioning-based rate monotonic (RM) multi-core scheduling
[11], in which no migration is allowed. Thereby, tasks are assigned to a particular
core in which they have to be scheduled and executed. Concerning the shared
resources, there are two different types: local and global resources (See Figure
4.2). Local resources in core ζs can be accessed just by local tasks to that core.
Global resources are accessed by tasks assigned to different cores. We denote
by Sys a multi-core reconfigurable real-time system which is defined by Sys =

(ξimp, C) (See Figure 4.3), where:

• ξimp: presents m implementations that define the system where ξimp =

{Π1, . . .Πm}. Each implementation Πi is characterized by a M cores, Ni

tasks and Ri shared resources where Ni ≤ N (respectively Ri ≤ R),

• C represents the controller which manages, as depicted in Figure 4.3, the
moving from one implementation to another under well defined reconfigu-
ration conditions.

58

Fig. 4.3 Multi-core Reconfigurable Real-time system Model.

4.2.2 Real-time Analysis

The analysis results may compute three parameters: The blocking time, the pro-
cessor utilization and response time.

4.2.2.1 Blocking time

The MO2R2S approach in multi-core architecture is based on MPCP for manag-
ing the access to shared resources. For local resources, MPCP performs like PCP
[50]. Due to global shared resources, scheduled tasks would encounter distance
other than local blocking. According to [124], blocking time Bij consists of

– local blocking time Bij,1,

– direct blocking time Bij,2,

– indirect preemption delay Bij,3,

– local preemption delay Bij,4,

Bij =
4∑

k=1

Bij,k (4.1)

Note that a task may be blocked by tasks of lower or higher priorities. In contrast,
in mono-core architecture, only lower-priority jobs cause blocking. We represent
in Figure 4.4 and Figure 4.5 an example scenario of a trio-Core system with tasks
accessing local and global resources in which those kind of blockage occur.
Where i) L1 is a local resource shared by τ1 and τ3, ii) G1 is a global resource

59

Fig. 4.4 Description of the system.

Fig. 4.5 Scheduling diagram.

60

shared by τ1, τ5, and τ6, and iii) G2 is a global resource shared by τ3 and τ2. As
mentioned in Figure 4.5, τ1 is locally blocked by τ3 and directly blocked by τ5 in
ζ2. In addition τ3 is indirectly preempted by τ5 which leads to leads to the local
preemption of τ1.

4.2.2.2 CPU Utilization Factor

The processor utilization factor of core ζs in implementation Πi is denoted by Uis.
It is given by

Uis =
∑

j∈{1..Nis}

(Cij +Bij)

Tij
(4.2)

Where Nis is the number of tasks mapped to ζs in Πi. In order to ensure that the
design model meets the timing constraints the equation 4.3 must be verified

∀i ∈ {1..m}, s ∈ {1..M}, Uis ≤ Nis(2
1
Nis − 1) (4.3)

4.2.2.3 Response Time

As we mentioned previously, the response time is one of the most important met-
ric to be optimized in this thesis. We extend its expression by considering the
multi-core notion. Let’s Rijs be the response time of the task τj in core ζs in
implementation Πi, it is given by
∀i ∈ {1..m}, s ∈ {1..M}, j ∈ {1..Nis}

R0
ijs = 0, Rh

ijs = Cij +Bij +
∑

l∈Hp(j)

d
Rh−1
ijs

Til
eCil (4.4)

4.2.3 Reconfiguration Time

We extend the reconfiguration time<i formula in the previous chapter to consider
an additional time corresponding to the required time for a task’s moving between
cores. Thus, the reconfiguration time <i related to Πi becomes [68]

<i = (A+B) ∗ Tcost + C ∗ Tmove (4.5)

where A (resp, B) denotes the number of suspended tasks (resp, activated tasks),
Tcost is the time spent to suspend/activate a task, C is the number of migrated
tasks and Tmove is the time spent to migrate from a core to another (See Figure
4.6). We aim to reduce the total reconfiguration time <

61

Fig. 4.6 Reconfiguration Time Scenario.

< =
∑
1...m

<i (4.6)

Figure 4.6 shows an example of reconfiguration scenario which aims to compute
<. The system is composed of two implementation Π1 and Π2, the first imple-
mentation Π1 is defined by Π1 = {τ1, τ2, τ3, τ4, τ5, τ6, τ7} to move to the second
implementation Π2 we need to suspend τ7 and activate τ8. So the reconfigura-
tion time <2 related to Π2 is given by: 1 ∗ Tcost + 1 ∗ Tcost + 1 ∗ Tmove,
so <2 = 2 ∗ Tcost + 1 ∗ Tmove . If we assume that Tcost = 5ms and
Tmove = 10ms, then <2 = 2 ∗ 5 + 10 = 20 ms

4.2.4 Energy Consumption Model

In this chapter, the energy consumption model is adapted to the multi-core archi-
tecture by adding a definition of the energy consumption of each core ζs. Thus,
we define Eis in core ζs by

Eis = K
∑

j∈{0,Nis}

Cnij
η2j

(4.7)

where K = V 2
n fn, and Nis the number of task in implementation Πi in core ζs.

62

Fig. 4.7 The MO2R2S Process in the Synthesis of Reconfigurable Real-time Systems
Flow.

4.3 Contribution Description

We first present an overview of the extended version of MO2R2S approach. We
give then a detailed description of the different modules involved in this method-
ology.

4.3.1 MO2R2S Global Overview

In this section, we present an overview of our MO2R2S approach in multi-core
architecture. The basic flow for the synthesis of real-time systems under recon-
figuration constraints is illustrated in Figure 4.7. As shown in Figure 4.7, the
implementation of multi-core real-time systems under reconfiguration constraints
consists of three level i) specification level in the designer specifies the functional
and non-functional proprieties of a system from the requirement set, ii) design
level in which, the designer models the functional requirements, and iii) imple-
mentation level in which, the design model is transformed into code (POSIX in
our case). MO2R2S approach revolve around design and implementation lev-
els. As illustrated in Figure 4.8, the proposed framework provides three possible
modes (.i.e., scenarios):

– 1- Normal mode: it is executed, when no real-time feasibility problems ap-
pear. It proposes two solution bases (i.e., software architectures) by opti-
mizing in the first place the partitioning step then the local placement.

– 2- Resizing mode: the framework proceeds this mode when real-time fea-
sibility problems occur and the designer chooses to change the hardware
architecture by rising the number of cores to solve feasibility problems,

63

Fig. 4.8 MO2R2S methodology.

– 3- Degrading mode: same as the resizing mode it is executed when no feasi-
ble solution is found by the framework and the user chooses to degrade the
quality of soft tasks (i.e., by increasing the percentage of instances of task
τj that do not meet their deadlines). If no solution exists, the designer has to
manually adjust software model parameters.

We explain the three modes in more detail in the following sections.

4.3.2 Normal Mode

As shown in Figure 4.9, this scenario consists of four basic steps:

– generation of software architecture (SW architecture),

– computation of optimal placements in term of blocking time and system
stability,

– local optimization is performed locally in each processor and aims to opti-
mize task number as well as the response time and energy consumption,

– generation of code from the selected solution.

4.3.2.1 SW Architecture Generation

The first step aims to generate an initial software architecture from the SW model
which consists of functions and reconfiguration conditions (See Figure 4.10).

64

Fig. 4.9 Normal Mode Process.

This step is performed by the algorithm defined in the previous Chapter. As
shown in Figure 4.10, it enables to generate:

– the implementation set for each reconfiguration condition,

– the task set from each normal function,

– the shared resource from each critical function.

As the next step (i.e., computation of optimal placement) needs an initial solution
to start the search procedure, the SW architecture presents the input of this step.
Note that in this step the feasibility concerns are not inspected. In addition, the
number of tasks is equal to number of functions, no clustering technique is applied
in this step.

4.3.2.2 Computation of Optimal Placement

Once the the initial software architecture is generated, we come to the partitioning
step which has as input the software architecture and the hardware model spec-
ified by the designer (see Figure 4.8n and Figure 4.9). This step aims to assign
tasks into cores while optimizing the blocking time and the system stability by
reducing the moving time in order to generate the first solution base (See Figure
4.11). Note that the proposed approach is extensible to add other metrics. This
step is implemented by two mixed integer linear programming (MILP) formula-
tions and it is performed by CPLEX solver [79]. Thus, it is necessary to describe
the problem using i) decision variables which present the set of design choices
under the designer control, ii) constants or parameters which are the input of the
MILP model, iii) constraints which define the feasibility region, and the domain

65

Fig. 4.10 SW Architecture Generation.

Fig. 4.11 Computation of Optimal Placement.

of the allowed values for the decision variables, iv) and an objective function
which represents the optimization goal.
MILP Formulation for Blocking Time Optimization

We aim to map task to cores while minimizing blocking time, to do so we try to
place tasks with shared resources in the same core. In other words, we aim to
reduce the number of global resource which leads to minimize to total blocking
time as well.
All model parameters and variables are depicted in the following table 4.1: Min-
imizing the number of global resource means maximizing the number of local
resources. Thus, we define a binary variable %il such as

66

Table 4.1 First Model Parameters and Variables.

Constants
Concepts Definition

N Number of task
m Number of implementation
M Number of core
R Number of shared resource

Xijl
A boolean variable used to mention whether

τj in Πi uses resource ϕl
Cij Task’s WCET
Dij Task’s Deadline

Variables
Concepts Definition

νil
Number of tasks that use the resource

ϕl

Uril
Processor utilization factor of tasks that share

resource ϕl

%il

Boolean variable used to mention if the set of tasks
that share resource ϕl can be executed

on the same core
Ns Number of tasks in core ζs

Yijs
Boolean variable used to mention whether

τj is executed in Πi in core ζs

67

%il =

{
1 if tasks that shared ϕl could be in the same core,

0 otherwise.
The objective

function 4.8 aims to maximize the sum of %il.

maximize
∑

i∈{0..m}

∑
l∈{0..Ri}

%il (4.8)

Constraints 4.9 and 4.10 compute %il, ∀l ∈ {1..Ri} in implementation Πi

if(
∑

j∈1..Ni

(Xijl ∗ Cij)/Dij)− Uril <= 0 then %il = 1; (4.9)

if(
∑

j∈1..Ni

(Xijl ∗ Cij)/Dij)− Uril > 0 then %il = 0; (4.10)

The both equations above ensure that tasks with shared resource could be in the
same core only if the feasibility constraint is respected. The expression of pro-
cessor utilization factor Uril of tasks that share resource ϕl in implementation Πi

is given by
∀l ∈ {1..Ri} in implementation Πi

Uril = νil ∗ (2(1/νil) − 1); (4.11)

Where νil presents the number of tasks that use the resource ϕl in implementation
Πi. The expression of νil is given by

νil =
∑

j∈1..Ni

Xijl; (4.12)

Where Xijl the boolean variable is defined by

Xijl =

{
1 if tasks τj inΠi used ϕl,

0 otherwise.
Constraint 4.13 ensures to assign tasks

with shared resource ϕl to the same cores ζs ∀i ∈ {1..m}, s ∈ {1..M} ∀l ∈
{1..Ri} ∀j ∈ {1..Ni},

if(Xijl ∗ %il == 1), then Yijs = 1; (4.13)

As we mentioned previously, due to global resource, tasks would encounter dis-
tance other than local blocking. Thus, mapping tasks with shared resource to
same core allows to minimize (simultaneously maximize) the global shared re-
source (simultaneously maximize local shared resource) thus minimize the block-
ing time as well.

In order to ensure that every task must be assigned to a single core, we define the

68

Table 4.2 Second Model Parameters and Variables.

Constants
N Number of Tasks
m Number of implementation
M Number of core
Cij Task’s WCET
Dij Task’s Deadline

Variables
Concepts Definition

Ns Number of tasks in core ζs

Yijs
Boolean variable used to mention whether

τj is executed in Πi in core ζs

constraint 4.14 ∑
s∈1..M

Yijs <= 1; (4.14)

Ensuring the feasibility of the system is an important constraint thus, we define
constraint 4.15 to respect the feasibility constraint, ∀s ∈ {1..M} ∀i ∈ {1..m},∑

j∈1..N

Yijs ∗ Cij/Dij <= Ns ∗ (2(1/Ns) − 1); (4.15)

Where Ns the number of tasks in core ζs is given by constraint 4.16, ∀s ∈
{1..M} ∀i ∈ {1..m},

Ns =
∑

j∈1..Ni

Yijs; (4.16)

MILP Formulation for System Stability Optimization
In order to optimize the stability of the system, we aim to minimize the moving
time (i.e., the time spent to migrate from a core to another when switching from
one implementation to another) which leads also to reduce the reconfiguration
time (See Subsection 4.2.3). Table 4.2 depicts the model parameters and vari-
ables: In order to minimize the moving time of task from a core to another when
switching from one implementation to another, we try by the following formula-
tion to assign tasks to the same core for all implementation. Equation 4.17 defines
the objective function: ∀ i ∈ {1..m}, j ∈ {1..Ni},

minimize
∑

j∈{0..Ni}

∑
s∈{0..M}

Yijs (4.17)

In order to ensure that the task τj is assigned to just one core ζs when moving
from one implementation to another, we define the following constraint 4.18:

69

Fig. 4.12 MO2R2S Solution Bases.

∀i ∈ {1..m− 1},∀j ∈ {1..Ni}, ∀s ∈ {1..M},

Yijs − Yi+1,j,s = 0; (4.18)

Constraint 4.19 assures that every task τj in implementation Πi should be exe-
cuted in the same core ζs

∀i ∈ {1..m}, j ∈ {1..Ni},
∑

s∈{1..M}

Yijs <= 1; (4.19)

Constraint 4.20 is defined to ensure the feasibility of the system
∀i ∈ {1..m}, s ∈ {1..M},∑

j∈{1..Ni}

(Cij/Dij)Yijs <= Ns(2
(1/Ns) − 1); (4.20)

4.3.2.3 Local Optimization

Once we have at least one solution from the previous step, we apply a second
optimization technique in each local placement (i.e., core) to generate a second
solution base. As shown in Figure 4.12, the second solution base is composed
at most of four solutions such as for each placement obtained from the previous
step we try to generate two solutions. This local optimization step aims to min-
imize the number of task while optimizing either i) response time, or ii) energy
consumption. As we mention in the Subsection 4.3.1, this step is performed by

70

Fig. 4.13 Correspondence between task model and POSIX code.

the mono-core based approach defined in the previous chapter. The generalized
version of MO2R2S for multi-core architecture offers the designers the ability
to choose one solution from the solution base by affording them the characteris-
tics of each one. The MILP formulation of the local optimization is presented in
Appendix A.

4.3.2.4 Code Generation

Once the optimized model is generated, we generate the corresponding skele-
ton of POSIX code. The code generation process is provided by Algorithm 3.
First, it generates the includes of the POSIX code. Then it generates for each
i) function a POSIX function, ii) task a thread (pthread), iii) resource a critical
function, and we use a semaphore for the synchronization process. The con-
troller is presented by a main function that manages the switching of implemen-
tations following well defined conditions (i.e., user requirements). We extend the
initial version of this step (i.e., in mono-core architecture) by adding a function
stick_this_thread_to_core() that ensures the mapping of tasks to cores. The trans-
formation rules from the task model to POSIX code are depicted in Table 4.3 and
Figure 4.13. Figure 4.14 describes the POSIX code structure in a UML class dia-
gram where the system is represented by a UML class called System. This class is
composed of implementations’ set (class Implementation) and a controller (class
Controller) which executes the Implementation class. The System class defines
an IsScheduled attribute to specify the used scheduling policy which is RM in
this thesis. The Implementation class is composed of cores’ set (class core). The

71

Algorithm 3: POSIX-CODE GENERATION
Input:
- Y: Mapping Matrix of tasks to implementations and cores
- X: Mapping Matrix of function to task
- F: List of function
- Cf: Function WCET vector
- m : Implementation number
- M: Core number
- N: Task number
Output:
- PC: POSIX_Code

1 /*** Generation Of Includes ***/
2 Write("#include <stdio.h>")
3 Write("#include <stdlib.h>")
4 Write("#include <pthread.h>")
5 Write("#include <semaphore.h>")
6 /*** Creation of Semaphore Declaration ***/
7 for each Function F [k] do
8 if F [k].type = critical then
9 Write("Sem_t evt[k]") /*** Declaration of Function ***/

10 else
11 Write("void* F[k] (void* arg);")

12 /*** Generation of the Controller ***/
13 Write("int main (void);")
14 /*** Generation of the Threads Declaration ***/
15 for j = 0 to N do
16 Write("pthread_t tau[j];")

17 for i = 0 to m do
18 Write("if imp[i]") for s = 0 to M do
19 for j = 0 to N do
20 if Y [ijs] = 1 then
21 /*** if task j in implemntation i and core s ***/ for each Function F [k] do
22 if X[kj] = 1 then
23 /

24 *** if function k is assigned ti task j ***/ Write ("pthread_Create(and tau[j], NULL, F[k],
(void*) Cf[k] ;)")

25 Write ("pthread_join(tau[j], NULL);")
26 Write ("stick_this_thread_to_core(s) ; // assign thread j to core s")

27 if (i== m) then
28 Write("else")
29 for s = 0 to M do
30 for j = 0 to N do
31 if Y [ijs] = 1 then
32 for each Function F [k] do
33 if X[kj] = 1 then
34 Write ("pthread_Create(and tau[j], NULL, F[k], (void*) Cf[k] ;)")
35 Write ("pthread_join(tau[j], NULL);")
36 Write ("stick_this_thread_to_core(s) ; // assign thread j to core s")

37 /*** Function ***/
38 for each Function F [k] do
39 if F [k].type = normal then
40 Write("void* F[i] (void* arg)") for each Function F [z] do
41 if F[k] depends on F[z] then
42 Write("F[z];")
43 Write("sem_post (_evt[k]);")

44 /*** Mapping task core function ***/
45 Write("int stick_this_threadto_core(intcore_id){”)
46 Write("int num_cores = sysconf(_SC_NPROCESSORS ONLN);")
47 Write("if (core_id < 0 ‖‖ core_id >= num_cores)")
48 Write("return EINVAL;")
49 Write("cpu_set_t cpuset;")
50 Write("CPU_ZERO(andcpuset);")
51 Write("CPU_SET(core_id , andcpuset);")
52 Write("pthread_t current_thread = pthread_self();")
53 Write("return pthread_setaffinity_np (current_thread, sizeof(cpu_set_t) , andcpuset);}")
54 Write("pthread_exit (NULL) ;") return PC 72

Table 4.3 Correspondence between the task model and POSIX specific language.

Task Model POSIX_Code

Task
pthreadt~ task_name;
pthread_create();
pthread_ join ();

Resource

Facility is provided by mutexes
and condition variables.
sem_t mutex;
/* used for mutual exclusive access
to waiting and busy*/
sem_t cond[];
/* used for condition synchronization*/
SEM_WAIT(andmutex);
/* lockmutex */
SEM_POST(andmutex);
/* release mutex */

Function void* Function_name (void* arg)
Implementation Functions set to be executed in each implementation

Controller

int main (void)
{pthread_t thread_name
if (Cndi){
pthread_create()
. . .
pthread_join()
. . .
return 0 }

Scheduling Policy

#defineSCHED_OTHER
/* implementation_defined scheduler
(RM)*/
int pthread_attr_setschedpolicy();
int pthread_attr_getschedpolicy();
/* set/get the contention scope attribute
for a thread attribute object */

Core stick_his_hread_o_ore (core_d) ;

73

Fig. 4.14 UML class diagram describing the Skeleton of POSIX Code.

core class defines an Execute Thread method to execute the Thread class. The
Thread executes one or more Function classes. It could share the Resource class
which implements the CriticalFunction class. The resource class is characterized
by Mechanism and Protocol Access attributes.

4.3.3 Resizing Mode

In case where the framework could not find any feasible solution for the initial
architecture and the designer chooses to resize the HW architecture (See Figure
4.8), the tool increases the number of cores until it finds the minimal number that
ensures the feasibility of the system by implementing Algorithm 4. In this algo-

Algorithm 4: Resizing HW model
Input:
- SW architecture
- Core_Number
Output:
New HW Model

1 while First_Fit (SW architecture) == false do
2 Core_Number++;

3 return New HW Model

rithm we apply the first fit algorithm to find a feasible partitioning with minimal
number of cores. Note that in this step we just look for a feasible placement not
optimal one. As shown in Figure 4.15 the tool executes again the normal mode
steps.

74

Fig. 4.15 Resizing Mode.

4.3.4 Degrading Mode

Whenever the partitioning step could not find any feasible solution and the de-
signer chooses to degrade the performance of the system, the framework executes
the degrading mode. In this mode, some soft tasks may miss their deadlines. In
order to quantify the degradation, we define the metric Qij which is the degrada-
tion rate of scheduling performance (i.e., the percentage of instances of task τj
that do not meet their deadlines). This factor for any hard task should be equal to
zero, i.e., Qij =0. As shown in Figure 4.16, degrading mode is defined by three
steps:

– Computation of degraded placement,

– Optimization of the given placement and generation of the solution base,

– Generation of POSIX code,

The first step which is computation of degrades placement is performed by MILP
formulation. Note that if the solver could not find any feasible solution the de-
signer has to adjust manually the SW model parameters The objective function
is given by equation 4.21 which aims to minimize the degradation rate Qij while
partitioning and scheduling task sets.

minimize
∑

i∈{1..m}

∑
j∈{1..Ni}

Qij (4.21)

The following Table 4.4 defines all model parameters and variables: Constraint
4.22 assures the mapping of tasks to the cores by respecting feasibility constraint.

75

Fig. 4.16 Degraded Mode.

Table 4.4 Degrading Model Variables and parameters

Constants
Concepts Definition

N Number of tasks
m Number of implementations
M Number of cores
Cij Task’s WCET
Dij Task’s Deadline

Natureij
A boolean variable used to mention

if task τj is hard or soft
Variables

Concepts Definition
Ns Number of tasks in core ζs

Yijs
Boolean variable used to mention whether

τj is executed in Πi in core ζs
Qij Quality factor

76

∀ s ∈ {1..M}, ∀ i ∈ {1..m},

∑
j∈{1..Ni}

(
Cij
Dij

) ∗Qij ∗ Yijs <= Ns(2
1
Ns − 1); (4.22)

We define constraint 4.23 to make sure that every task is assigned to just one core
in an implementation Πi ∑

i∈{1..m}

∑
j∈{1..Ni}, s∈{1..M}

Yijs == 1 (4.23)

∀ i ∈ {1..m}, j ∈ {1..Ni}, 0 ≤ Qij ≤ 1; (4.24)

Constraint 4.24 ensures that the quality factor Qij must be between 0 and 1. In
order not to affect the performance of hard tasks and to guarantee that all its
instances have to meet their deadlines, constraints 4.25 and 4.26 are defined to do
so.

∀ i ∈ {1..m}, j ∈ {1..Ni}, ifNatureij = 1thenQij = 0; (4.25)

∀ i ∈ {1..m}, j ∈ {1..N}, ifNatureij = 0thenQij ≤ 1; (4.26)

Where Natureij as we defined previously in Section 3.1 defines the task type
whether it is hard (Natureij = 0) or soft (Natureij = 1). After executing this
step, the framework move to the third and fourth steps of normal mode defined in
subsections 4.3.2.3 and 4.3.2.4.

4.4 Formal Case Study

Given an example of multi-core reconfigurable real-time system denoted by Sys.
Its hardware model consists of 2 identical cores αζ = {ζ1, ζ2}. The software
model of Sys consists of 10 functions αF = {F1, F2, F3, F4, F5, F6, F7, F8, F9, F10}.
Let us suppose that the dependency between function is as following: F1 = ,
F2 = {F1, F3}, (i.e., F2 is a software resource shared between F1 and F3) F3 = ,
F4 = , F5 = {F4, F6}, F6 = , F7 = , F8 = {F7, F9, F10}, F9 = , and
F10 = . So Nf = {F1, F3, F4, F6, F7, F9, F10} is the set of normal functions and
Cf = {F2, F5, F8} is the set of critical functions in Sys. Let us assume that the
number of condition is 2. In condition 1 the system executes {F1, F3, F4, F7, F9},
and in condition 2 Sys runs {F3, F4, F6, F9, F10} as shown in Figure 4.17. We
apply the proposed approach to the considered case study.

77

Fig. 4.17 Software and Hardware Models [68].

4.4.1 Normal Mode

4.4.1.1 Initial SW Architecture Generation

By applying the first step of MO2R2S which aims to generate an initial SW ar-
chitecture from the software model. The software model is given in Table 4.5
[68] Each normal function of Sys is affected to a task, and each critical function

Table 4.5 Software Model [68].

Function TFk CFk Type Fk

F1 30 14 Soft -
F2 35 4 - {F1, F3}
F3 50 15 Hard -
F4 40 15 Hard -
F5 55 2 - {F4, F6}
F6 60 20 Soft -
F7 60 20 Hard -
F8 105 5 - {F7, F9, F10}
F9 120 20 Hard -
F10 150 20 Soft -

Table 4.6 Architecture Model [68].

Πi τi Tij Cij ϕi Fi

Π1

τ1 30 14 ϕ1 = F2 F1

τ2 50 15 ϕ1 = F2 F3

τ3 50 15 ϕ2 = F5 F4

τ5 60 20 ϕ3 = F8 F7

τ6 120 20 ϕ3 = F8 F9

Π2

τ2 50 15 ϕ1 = F2 F3

τ3 50 15 ϕ2 = F5 F4

τ4 60 20 ϕ2 = F5 F6

τ6 120 20 ϕ3 = F8 F9

τ7 150 20 ϕ3 = F8 F10

is executed by a resource. As we have two conditions so we obtain two imple-
mentations. The resulting architecture model is presented in Table 4.6.

4.4.1.2 Optimal Placement Computation

The placement computation step aims to partition and schedule tasks into the
considered hardware model while minimizing the global blocking and the system

78

Table 4.7 Partitioning task model [68].

Πi ζs τj

Π1

ζ1
τ1
τ2

ζ2

τ3
τ5
τ6

Π2

ζ1

τ2
τ6
τ7

ζ2
τ3
τ4

Table 4.8 Partitioning task model [68].

Πi ζs τj

Π1

ζ1
τ1
τ2

ζ2

τ3
τ5
τ6

Π2

ζ1
τ2
τ4

ζ2

τ3
τ6
τ7

stability (i.e., moving time). The main input matrix of the MILP formulation is
the “task to resource mapping” matrix Xjl. This matrix is defined as follow:

Xjl =



ϕ1 ϕ2 ϕ3

τ1 1 0 0

τ2 1 0 0

τ3 0 1 0

τ4 0 1 0

τ5 0 0 1

τ6 0 0 1

τ7 0 0 1


By applying the linear program for blocking time optimization, we obtain the
following partitioning presented in Table 4.7. Let us compute task partitioning
while optimizing Sys stability this time. The solver tries to find a feasible solu-
tion while optimizing the moving time of tasks from one core to another when
Sys is switched from one implementation to another. The generated output Yijs
is presented by the Table 4.10. We notice that the two linear programs give a

79

different placement result.

4.4.1.3 Local Optimization

By applying the local optimization proposed in our previous work to the obtained
solution base which is composed of two solutions (i.e., Solution 1 with blocking
time optimization, and Solution 2 with moving time optimization), we may ob-
tain up to four solutions depending on the feasibility issue. For reasons of space
availability, we do not report all the four solutions but only one solution. Let us
apply the response time optimization to Solution 1 (presented in Section 4.4.1.2).
For implementation Π1 the solver merges task τ5 and τ6 in core ζ2. For the second
implementation (i.e., Π2) tasks τ2 and τ7 are merged in core ζ1. By comparing the
optimized response time (231ms) to the one obtained before applying this step
(277ms), it is clear that we have obtained better results [68].

4.4.1.4 Code Generation

From the obtained task model in the Section 4.4.1.3, we generate a POSIX code
which is described in the Appendix B.

4.4.2 Resizing Mode

Let us take the same running example presented in the normal scenario by chang-
ing values of the system model parameters as presented in Table 4.9 . The solver

Table 4.9 Architecture Model [68].

Πi τi Tij Cij ϕi Fi

Π1

τ1 30 25 ϕ1 = F2 F1

τ2 50 40 ϕ1 = F2 F3

τ3 50 40 ϕ2 = F5 F4

τ5 60 55 ϕ3 = F8 F7

τ6 120 105 ϕ3 = F8 F9

Π2

τ2 50 40 ϕ1 = F2 F3

τ3 50 40 ϕ2 = F5 F4

τ4 60 50 ϕ2 = F5 F6

τ6 120 105 ϕ3 = F8 F9

τ7 150 140 ϕ3 = F8 F10

Table 4.10 Partitioning task model
[68].

Πi ζs τj

Π1

ζ1
τ1
τ2

ζ2
τ3
τ5

ζ3 τ6

Π2

ζ1
τ2
τ3

ζ2
τ4
τ6

ζ3 τ7

couldn’t find any feasible solution, so that we assume that the designer chooses
to resize the hardware model. By executing Algorithm 4 the solver computes the
number of cores that ensures the feasibility of the system. For this running ex-
ample the minimum number of cores is three for the two implementations. The

80

possible partitioning given by the solver is described by Table 4.10. Then the tool
executes again the normal mode steps with the new hardware model [68].

4.4.3 Degrade Mode

By considering the same running example presented in the previous subsection
4.4.2, and considering that the second step couldn’t find any feasible solution but
here the designer chooses to degrade Sys quality [68]. The solver is trying to find
a feasible partitioning with a minimum value of the degradation factor Q. The
obtained solution is [68]:
Π1 = {ζ1 = {τ1, τ2}, ; ζ2 = {τ3, τ5, τ6}} and Π2 = {ζ1 = {τ2, τ3}, ; ζ2 =

{τ4, τ6, τ7}}. Concerning the quality factor matrix is as follows:

Qij =



Π1 Π2

τ1 0.086 0

τ2 0 0

τ3 0 0

τ4 0 0.454

τ5 0.852 0

τ6 0 0

τ7 0 0.454


We note that in implementation Π1, 8.6% of instances of task τ1 and 85% of
instances of task τ5 will not meet their deadlines and in Π2, 45.4% of instances of
task τ4 and task τ7 will also miss their deadlines.

Conclusion

In this chapter, we extend the initial version of MO2R2S approach to provide a
guidance framework for the generation of POSIX code for reconfigurable real-
time system under multi-core architecture. The framework generate initially a
software architecture from an input software model. Then, it ensure the assign-
ment of tasks to cores while meeting timing properties and optimizing blocking
and moving time to provide a solution base. In this step three scenarios are pos-
sible:

– Normal mode is executed when the framework finds at least one solution,
then the obtained solution base would be an input for a second optimization
step that minimizes the number of tasks in each given placement, response
time, and energy consumption. Finally, the tool generates POSIX code.

81

– Resizing mode is executed whenever the tool could not find any solution
and the user chooses to change the HW architecture, then the tool increases
the number of cores until it finds the minimal number that ensures a feasible
placement. Finally, it executes the normal mode.

– Degrading mode it is executed when the tool could not find any feasible
placement and the designer chooses to downgrade the performance of the
system by degrading the quality of soft tasks (i.e., by increasing the per-
centage of instances of soft task that do not meet their deadlines).

Note that this framework is extensible to add other metrics. In Future, we extend
this approach to deal with scheduling/ partitioning sporadic and aperiodic tasks.
It also will be tested with large size instances for more pertinence and reliability.

82

CHAPTER 5

Case Study and Evaluation of Performance

Introduction

This chapter presents a detailed description of the developed MO2R2S tool. More-
over, the proposed methodology is illustrated by two case studies in both archi-
tecture mono-core and multi-core to show the applicability of it. Simulations and
different tests will also be presented at the end of this chapter in order to evaluate
the performance of our proposed solutions.

5.1 MO2R2S Description

We exhibit in this subsection MO2R2S framework which is implemented in JAVA.
Its main goal is to implement our proposed methodology described above which
aims to a feasible synthesis of reconfigurable real-time systems under multi-core
architecture from the specification model to POSIX code. It represents a passage
from the theoretical studies to the real implementation of the proposed solutions.
The developed tool is platform-independent and is an open source. As depicted
in Figure 5.1, the designer can:

– Generate task sets from the SW model,

– Generate resource sets from the SW model,

– Generate implementation stes from the condition sets

– Perform partitioning tasks to cores

– Optimize the partitioning

– Generate controller code from the obtained HW model and the obtained
optimized SW architecture.

Figure 5.2 presents tool class diagram. The classes are detailed in the following.

83

Fig. 5.1 Use Case of MO2R2S.

Fig. 5.2 MO2R2S Class diagram.

84

– Main Window: is the main class. It is the first view of the tool. In which the
user specify the SW model. It can call SW Archi generator class using the
methods: launch,

– SW Archi Generator: it is responsible of generating the SW architecture.

– TaskToCore Partitioner: this class performs the optimized partitioning step
by calling the solver to find a feasible solution,

– HW Arch Modifiter: This class is executed whenever the solver could not
find any feasible solution and the user chooses to resize the HW architecture,

– Performance Degrader: It is called when the solver could not find any fea-
sible solution and the user chooses to downgrade the performance of the
system,

– LocalOptimizer: It is responsible to the second optimization step,

– CodeGenrator: It performs the code generation step.

The following Figures demonstrate the different parts of the user interface: The

Fig. 5.3 MO2R2S SW Model Interface.

SW model parameters would be specified by the designer through the interface
as presented in Figure 5.3. Then an initial SW architecture is generated as show
in Figure 5.4. Through the interface presented in Figure 5.5, the design defines
the HW model by specifying the number of cores. Then the solver is called to
find at least one optimal placement through the interface in Figure 5.6. The user
selects one of the obtained solution base via the interface shown in Figure 5.7. An
example of selected solution is exposed in Figure 5.8. Then, the solver is called
again for the second optimization step(See Figure 5.9). Finally, the code is gener-
ated through the interface shown in Figure 5.10. For more details concerning the
framework please visit our website https://project-lisi-lab.wixsite.com/mo2r2s),
we exposed all the scenarios.

85

Fig. 5.4 MO2R2S SW Architecture Interface.

Fig. 5.5 HW Model Specification Interface.

Fig. 5.6 Tool Computing optimal Placement Interface.

Fig. 5.7 Tool Selection Solution Interface.

5.2 Application

The proposed approach allows designers to design and implement multi-core as
well as mono-core reconfigurable real-time systems through its graphical user

86

Fig. 5.8 MO2R2S Placement Result Interface.

Fig. 5.9 Local Optimization Interface.

Fig. 5.10 MO2R2S Code Generation Interface.

interfaces. We illustrate the feasibility of our methodology as well as the gains
offered from it by two case studies: “Car Collision Avoidance System” for mono-
core architecture and “Autonomous Vehicles” for multi-core and architecture.

5.2.1 Car Collision Avoidance System Mono-core Case Study

The considered case study is Car Collision Avoidance System denoted (CCAS)
[51]. It has as role to detect obstacles in front of the car to which it is mounted. In

87

Fig. 5.11 CCAS Specification.

order to show the applicability of our framework, we consider a simplified version
of CCAS by omitting several features of it. We consider just two operational
modes:

– Default mode: represents a traditional use of CCAS,

– Economic mode: represents a restrictive use of CCAS with safety require-
ments.

Figure 5.11 depicts the specification model of CCAS (i.e., each mode with its
functions) As shown in Figure 5.11 the default mode is composed of five func-
tions: four normal functions and one critical function:

– F1 (ReadImage): reads images from the input to the system from a radar,

– F2 (Discrete Cosine Transformation : DCT): moves the representation of
the image from the spatial domain into the frequency domain,

– F3 (Quantization): selectively discards data in the frequency domain to com-
press the image,

– F4 (InverseDCT): moves the image back into the spatial domain,

– F5 (Display): displays the images for monitoring.

The economic mode is composed of six normal functions and one critical func-
tion. As shown in Figure 5.11, we added in this mode just two normal functions
F ′2 to compress the image and F ′4 to decompress it. Table 5.1 depicts in details
the specification model (i.e., modes, function sets with their parameters).

5.2.1.1 CCAS Initial Task Model

By applying the first step of MO2R2S which aims to generate an initial task model
from the specification model (Table 5.1). Table 5.2 gives a tabular description of

88

Table 5.1 CCAS Specification.

Function Cond TFk CnFk Type Fk

F1

Default

20 1 Critical -
F2 10 2 Normal F1

F3 15 1 Normal F1

F4 20 1 Normal F1

F5 20 2 Normal F1

F1

Economic

20 1 Critical -
F2 10 2 Noraml F1

F ′2 15 2 Normal F1

F3 15 1 Normal F1

F4 20 1 Normal F1

F ′4 30 2 Normal F1

F5 20 2 Normal F1

Table 5.2 Tabular description of the initial task model of the CCAS.

τj/ϕq Πi TFk CnFk Function
ϕ1

Π1

20 1 F1

τ1 10 2 F2

τ2 15 1 F3

τ3 20 1 F4

τ4 20 2 F5

ϕ2

Π2

20 1 F1

τ5 10 2 F2

τ6 15 2 F ′2
τ7 15 1 F3

τ8 20 1 F4

τ9 30 2 F ′4
τ10 20 2 F5

89

the initial task model describing the CCAS. As shown in Table 5.2, each normal
function is affected to a task and each critical function is executed by a resource.
Thus we obtain ten tasks and two shared resources. This model shows two pos-
sible implementations of the CCAS which refer respectively to the two execution
modes already specified.

5.2.1.2 CCAS Optimized Models

As we consider a mono-core architecture so we dont need to do the partition-
ing, we apply directly the local optimization step which consists in generating
two optimized task models by executing MILP formulations defined previously.
Both proposed linear programs produce the same merge matrix which is given as
follow:

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10
τ1 1 0 1 1 1 0 0 1 0 1
τ2 0 1 0 0 0 1 1 0 0 0
τ3 0 0 0 0 0 0 0 0 0 0
τ4 0 0 0 0 0 0 0 0 0 0
τ5 0 0 0 0 0 0 0 0 0 0
τ6 0 0 0 0 0 0 0 0 0 0
τ7 0 0 0 0 0 0 0 0 0 0
τ8 0 0 0 0 0 0 0 0 0 0
τ9 0 0 0 0 0 0 0 0 1 0
τ10 0 0 0 0 0 0 0 0 0 0

The MILP formulations allow to merge i) τ1, τ3, τ4, τ5, τ8, and τ10, and ii) τ2, τ6,
and τ7. We note that tasks τ9 is not merged with τ2, τ6, and τ7 even their period are
harmonic because due to feasibility concerns (i.e., if the solver decide to merge
them, the resulting task will not meet its deadline).

The result of the first MILP formulation which aims to reduce the total response
time is shown in Table 5.4. For the second objective function which aims to

Table 5.4 CCAS Optimized Task Model in term of Total response time.

τj/ϕq Πi Tij Cij Bij
Total
ROld

Total
RNew

ϕ1

Π1

20 1 - - -
τ1 10 5 1

15 12
τ2 15 1 0
ϕ2

Π2

20 1 - - -
τ1 10 5 1

33 25τ2 15 3 1
τ9 30 2 0

minimize energy consumption, the linear program generates the following task
model depicted in Table 5.5. We can see from Table 5.5 that this model allows to
reduce the energy consumption of CCAS.

90

Table 5.5 CCAS Optimized Task Model in term of Energy Consumption.

τj/ϕq Πi Tij Cnij ηij Cnewij Eold Enew
ϕ1

Π1

20 1 - - - -
τ ′1 10 5 0.8 4 562.5 450
τ ′2 15 1 0.8 0.8 112.5 90
ϕ2

Π2

20 1 - - - -
τ ′1 10 5 0.8 4 562.5 450
τ ′2 15 3 0.8 2.4 337.5 270
τ9 30 2 1 2 225 225

5.2.1.3 CCAS POSIX Code

In order to implement the obtained task model in POSIX code, we apply the algo-
rithm of POSIX-code generation presented in the previous chapter. The skeleton
of the code implementation of CCAS is represented by the following listing 1.

Listing 5.1: CCAS POSIX code.
1 # i n c l u d e < s t d i o . h>
2 # i n c l u d e < s t d l i b . h>
3 # i n c l u d e < p t h r e a d . h>
4 # i n c l u d e <semaphore . h>
5 sem_t e v t ; / / D e c l a r a t i o n o f t h e semaphore r e p r e s e n t i n g t h e s y n c h r o n i z a t i o n e v e n t
6 vo id * F1 (vo id * a r g) ; / / C r i t i c a l f u n c t i o n
7 vo id * F2 (vo id * a r g) ; / / Normal f u n c t i o n
8 vo id * F3 (vo id * a r g) ; / / Normal f u n c t i o n
9 vo id * F4 (vo id * a r g) ; / / Normal f u n c t i o n

10 vo id * F5 (vo id * a r g) ; / / Normal f u n c t i o n
11 vo id * F_prime_2 (vo id * a r g) ; / / Normal f u n c t i o n
12 vo id * F_prime_4 (vo id * a r g) ; / / Normal f u n c t i o n
13
14 i n t main (vo id) {
15 p t h r e a d _ t t a u _ 1 ;
16 p t h r e a d _ t t a u _ 2 ;
17 p t h r e a d _ t t a u _ 9 ;
18 / / D e f a u l t Mode
19 p t h r e a d _ c r e a t e (andtau_1 , NULL, F2 , (vo id *) 2) ;
20 p t h r e a d _ c r e a t e (andtau_1 , NULL, F4 , (vo id *) 1) ;
21 p t h r e a d _ c r e a t e (andtau_1 , NULL, F5 , (vo id *) 2) ;
22 p t h r e a d _ j o i n (tau_1 , NULL) ;
23 p t h r e a d _ c r e a t e (andtau_2 , NULL, F3 , (vo id *) 1) ;
24 p t h r e a d _ j o i n (tau_2 , NULL) ;
25 / / S ec u r e Mode
26 i f (cnd=" Economic ") {
27 p t h r e a d _ c r e a t e (andtau_1 , NULL, F2 , (vo id *) 2) ;
28 p t h r e a d _ c r e a t e (andtau_1 , NULL, F4 , (vo id *) 1) ;
29 p t h r e a d _ c r e a t e (andtau_1 , NULL, F5 , (vo id *) 2) ;
30 p t h r e a d _ j o i n (tau_1 , NULL) ;
31 p t h r e a d _ c r e a t e (andtau_2 , NULL, F_prime_2 , (vo id *) 2) ;
32 p t h r e a d _ c r e a t e (andtau_2 , NULL, F3 , (vo id *) 1) ;
33 p t h r e a d _ j o i n (tau_2 , NULL) ;
34 p t h r e a d _ c r e a t e (andtau_9 , NULL, F_prime_4 , (vo id *) 2) ;
35 p t h r e a d _ j o i n (tau_9 , NULL) ;
36 } r e t u r n 0 ; }
37
38 vo id * F2 (vo id * a r g) {
39 F1 (vo id) ; / / C r i t i c a l s e t i o n
40 sem_pos t(ande v t) ;
41 p t h r e a d _ e x i t (NULL) ; / * end of t h r e a d * / }

The presented skeleton in listing 1 helps the developer to implement the full code
and details the implementation of functions.

91

Fig. 5.12 Autonomous vehicles scenarios [68].

5.2.2 Autonomous Vehicles System Multi-core Case Study

We provide a case study of Autonomous Vehicles (AV) [62] based in multi-core
architecture with reconfiguration requirements. AV system is composed of sev-
eral scenarios. In order to show the applicability of the proposed framework, we
consider a simplified version of this case study by omitting many scenarios and
functionalities. We investigate just two scenarios [68]: (See Figure 5.12)

– Road blockage: in which a car can reach a full stop just in time to avoid
collision with a blocking obstacle,

– Static obstacle avoidance: in which a car slightly nudges to the left, and
decreases the speed slightly to avoid collision.

Each scenario is defined by nine functions depicted in Table 5.6:

We did not mention the function parameters in details in Table 5.6. In order to
illustrate the implementation of AV system in the different modes(i.e., normal,
resizing, and degrading mode), we have to consider different values of the SW
model.

5.2.2.1 AV in Normal Mode

The considered SW model is depicted in Table 5.11. We assume that the AV
system is mapped to a preemptive execution platform composed of one processor
containing two cores ζ1 and ζ2.
Initial SW Architecture
The SW model presented in Table 5.11 is the input of SW architecture generation
step. For each scenario, the framework generates an implementation, and we as-
sign each normal function to a task and each critical function to a resource. Thus,

92

Autonomous Vehicle SW Model

Condition
Function

Name Nature Fk

Road
Blockage

F1: BehaviorFn Hard F2

F2: MissionPlannerFn - -
F3: PositionSensorFn - -
F4: RoadMotionPlanFn Hard F3

F5: PrePlannerFunction Hard F3

F6: RoadBlockDetect Hard F2

F7: MassiveFlowSensor - -
F8: BaseFuelMass Soft F7

F9: ControllerFuel Soft F7

Static Obstacle
Avoidance

F1:BehaviorFn Hard F2

F2: MissionPlannerFn - -
F3: PositionSensorFn - -
F4: RoadMotionPlanFn Hard F3

F5: PrePlannerFunction Hard F3

F10: ObstacleDetector Hard F7

F7: MassiveFlowSensor - -
F8: BaseFuelMass Soft F7

F9: ControllerFuel Soft F7

Normal Mode: SW Model.

Condition
Function

Name CFk TFk Nature Fk

Road
Blockage

F1 30 100 Hard F2

F2 10 100 - -
F3 20 100 - -
F4 30 200 Hard F3

F5 40 300 Hard F3

F6 30 300 Hard F2

F7 20 300 - -
F8 100 400 Soft F7

F9 90 400 Soft F7

Static Obstacle
Avoidance

F1 30 100 Hard F2

F2 10 100 - -
F3 20 100 - -
F4 30 200 Hard F3

F5 40 300 Hard F3

F10 40 300 Hard F7

F7 20 300 - -
F8 100 400 Soft F7

F9 90 400 Soft F7

93

the obtained SW architecture consists of two implementation Π1 and Pi2 which
are composed of six tasks and three shared resources (See Table 5.8). Each task

Table 5.8 Normal mode: SW Architecture.

Pii τj Cij Tij Type Cϕqj

Pi1

τ1 30 100 Hard 10
τ2 30 200 Hard 20
τ3 50 300 Hard 20
τ4 50 300 Hard 10
τ5 100 400 Soft 20
τ6 90 400 Soft 20

Pi2

τ7 30 100 Hard 10
τ8 30 200 Hard 20
τ9 50 300 Hard 20
τ10 50 300 Hard 20
τ11 100 400 Soft 20
τ12 90 400 Soft 20

inherits the real time parameters of the implemented function. It may also use a
set of software resources.
AV Placement Computation Step
This step consist in partitioning/ scheduling tasks into multi-core architecture. It
takes as inputs the SW architecture and the HW model which is defined by two
core. The partitioning step aims to ensure the mapping of tasks into cores while
minimizing either blocking time or moving time. The output of this step is de-
picted in Table 5.9. We note that for this case study the framework provides a
solution base containing two solutions. Table 5.9 shows that the two obtained

Table 5.9 AV Solution Base: Optimal Placement [68].

Solution 1:
Blocking Time Optimization

Solution 2:
Moving Time Optimization

Πi ζs τj
Bij

(ms)
<i

(ms)
Rij

(ms)
Eij

(Joules) Πi ζs τj
Bij

(ms)
<i

(ms)
Rij

(ms)
Eij

(Joules)

Π1

ζ1

τ1 9

3

39 9.47

Π1

ζ1
τ1 9

2

39 9.47
τ2 19 69 11.69 τ3 38 69 11.69
τ3 19 81 6.06

ζ2

τ2 19 81 6.06
τ4 0 65 6.5 τ4 18 65 6.5

ζ2
τ5 19 118 6.4 τ5 19 118 6.4
τ6 0 99 6.35 τ6 0 99 6.35

Π2

ζ1

τ7 9

3

39 9.47

Π2

ζ1
τ7 9

2

39 9.47
τ8 19 69 11.69 τ9 38 69 11.69
τ10 0 84 6.06

ζ2

τ8 19 84 6.06

ζ2

τ9 19 81 6.5 τ10 19 81 6.5
τ11 19 118 6.4 τ11 19 118 6.4
τ12 0 99 6.35 τ12 0 99 6.35

solutions (i.e., Solution 1 and Solution 2) give different placement depending on

94

optimizing metric (i.e., blocking time or moving time). It is clear that the total
blocking time in Solution 1 is less than Solution 2 but concerning the reconfigu-
ration time in Solution 1 is greater than Solution 2. That proves the efficiency of
the proposed framework and gives to designers the flexibility to explore multiple
solutions while ensuring the feasibility of the system.
AV Local Optimization
The obtained solution from the previous step is considered as an input for this
step (i.e., second level of optimization). For each obtained placement, we ap-
ply the optimization step proposed in the initial version of MO2R2S in each core
which addresses the mono-core architecture (See Chapter 3) in order to get a sec-
ond solution base. We obtained four solutions, we do not present all of them but
only the result of applying this methodology to Solution 1 to obtain two solutions
where each solution aims to optimize either the response time or the energy con-
sumption. Table 5.10 provides the resulting solution base. It is clear from Tables

Table 5.10 AV Solution Base: Optimal local Placement.

Solution 1.1
Opt Response Time

Solution 1.2
Opt Energy

Πi ζs τj Rnew Πi ζs τj Enew

Π1
ζ1

τ1 90
Π1

ζ1
τ1 19.76

τ3 125 τ2 11.4
ζ2 τ5 180 ζ2 τ5 12.03

Π2

ζ1
τ1 90

Π2

ζ1
τ ′1 19.76

τ10 65 τ10 5.01

ζ2
τ3 62

ζ2
τ3 5.3

τ5 190 τ5 12.03

5.10 and 5.9 that i) the energy consumption is optimized by an average of 8.7%,
and the response time by 10.9%, and ii) the tasks count is reduced from 12 to 4.
The obtained merge matrix is given as follow:
The MILP formulations allow to merge i) τ1, τ2, τ7, and τ8, ii) τ3, τ4, and τ9, and

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10 τ11 τ12
τ1 1 1 0 0 0 0 1 1 0 0 0 0
τ2 0 0 0 0 0 0 0 0 0 0 0 0
τ3 0 0 1 1 0 0 0 0 1 0 0 0
τ4 0 0 0 0 0 0 0 0 0 0 0 0
τ5 0 0 0 0 1 1 0 0 0 0 1 1
τ6 0 0 0 0 0 0 0 0 0 0 0 0
τ7 0 0 0 0 0 0 0 0 0 0 0 0
τ8 0 0 0 0 0 0 0 0 0 0 0 0
τ9 0 0 0 0 0 0 0 0 0 0 0 0
τ10 0 0 0 0 0 0 0 0 0 1 0 0
τ11 0 0 0 0 0 0 0 0 0 0 0 0
τ12 0 0 0 0 1 1 0 0 0 0 0 0

iii) τ5, τ6, τ11, and τ12.
AV POSIX Code
Depending on requirements, users have to select one model from the solution base
to generate the POSIX code. We suppose that the designer chooses to implement

95

the solution 1.2 (i.e., Opt Energy). The skeleton of the code implementation of
AV is represented by the following listing 1:

Listing 5.2: POSIX code for AV.
1 # i n c l u d e < p t h r e a d . h>
2 vo id * F1 (vo id * a r g) ; / / Normal f u n c t i o n
3 vo id * F2 (vo id * a r g) ; / / C r i t i c a l f u n c t i o n
4 vo id * F3 (vo id * a r g) ; / / C r i t i c a l f u n c t i o n
5 vo id * F4 (vo id * a r g) ; / / Normal f u n c t i o n
6 vo id * F5 (vo id * a r g) ; / / Normal f u n c t i o n
7 vo id * F6 (vo id * a r g) ; / / Normal f u n c t i o n
8 vo id * F7 (vo id * a r g) ; / / C r i t i c a l f u n c t i o n
9 vo id * F8 (vo id * a r g) ; / / Normal f u n c t i o n

10 vo id * F9 (vo id * a r g) ; / / Normal f u n c t i o n
11 vo id * F10 (vo id * a r g) ; / / Normal f u n c t i o n
12
13 / * ******** C o n t r o l l e r POSIX code ******** * /
14 i n t main (vo id) {
15 p t h r e a d _ t t a u _ 1 ;
16 p t h r e a d _ t t a u _ 3 ;
17 p t h r e a d _ t t a u _ 5 ;
18 p t h r e a d _ t t a u_ 10 ;
19
20 / / I m p l e m e n t a t i o n 1
21 p t h r e a d _ c r e a t e (andtau_1 , NULL, F1 , (vo id *) 100) ;
22 p t h r e a d _ c r e a t e (andtau_1 , NULL, F4 , (vo id *) 200) ;
23
24 p t h r e a d _ c r e a t e (andtau_3 , NULL, F5 , (vo id *) 300) ;
25 p t h r e a d _ c r e a t e (andtau_3 , NULL, F6 , (vo id *) 300) ;
26
27 p t h r e a d _ c r e a t e (andtau_5 , NULL, F8 , (vo id *) 400) ;
28 p t h r e a d _ c r e a t e (andtau_5 , NULL, F9 , (vo id *) 400) ;
29
30 p t h r e a d _ j o i n (tau_1 , NULL) ;
31 s t i c k _ t h i s _ t h r e a d _ t o _ c o r e (1) ;
32 p t h r e a d _ j o i n (tau_3 , NULL) ;
33 s t i c k _ t h i s _ t h r e a d _ t o _ c o r e (1) ;
34 p t h r e a d _ j o i n (tau_5 , NULL) ;
35 s t i c k _ t h i s _ t h r e a d _ t o _ c o r e (1) ;
36
37 e l s e i f (cnd=" cnd2 ") { / / I m p l e m e n t a t i o n 2
38 p t h r e a d _ c r e a t e (andtau_1 , NULL, F1 , (vo id *) 100) ;
39 p t h r e a d _ c r e a t e (andtau_1 , NULL, F4 , (vo id *) 200) ;
40
41 p t h r e a d _ c r e a t e (andtau_3 , NULL, F5 , (vo id *) 300) ;
42
43 p t h r e a d _ c r e a t e (andtau_10 , NULL, F10 , (vo id *) 300) ;
44
45 p t h r e a d _ c r e a t e (andtau_5 , NULL, F8 , (vo id *) 400) ;
46 p t h r e a d _ c r e a t e (andtau_5 , NULL, F9 , (vo id *) 400) ;
47
48 p t h r e a d _ j o i n (tau_1 , NULL) ;
49 s t i c k _ t h i s _ t h r e a d _ t o _ c o r e (2) ;
50 p t h r e a d _ j o i n (tau_3 , NULL) ;
51 s t i c k _ t h i s _ t h r e a d _ t o _ c o r e (2) ;
52 p t h r e a d _ j o i n (tau_10 , NULL) ;
53 s t i c k _ t h i s _ t h r e a d _ t o _ c o r e (2) ;
54 p t h r e a d _ j o i n (tau_5 , NULL) ;
55 s t i c k _ t h i s _ t h r e a d _ t o _ c o r e (2) ; }
56 }
57 r e t u r n 0 ; }
58
59 vo id * F1 (vo id * a r g) { / / }
60
61 i n t s t i c k _ t h i s _ t h r e a d _ t o _ c o r e (i n t c o r e _ i d) {
62 i n t num_cores = s y s c o n f (_SC_NPROCESSORS_ONLN) ;
63 i f (c o r e _ i d < 0 | | c o r e _ i d >= num_cores) r e t u r n EINVAL ; c p u _ s e t _ t c p u s e t ;
64 CPU_ZERO(andc p u s e t) ; CPU_SET (c o r e _ i d , andc p u s e t) ; p t h r e a d _ t c u r r e n t _ t h r e a d = p t h r e a d _ s e l f () ;
65 r e t u r n p t h r e a d _ s e t a f f i n i t y _ n p (c u r r e n t _ t h r e a d , s i z e o f (c p u _ s e t _ t) , andc p u s e t) ; }

96

5.2.2.2 AV in Resizing Mode

In order to execute this mode,the SW model values need to be adjusted in a way
that the placement computations step could not find any feasible solution (See
Table 5.12).
AV SW Architecture Generation

Table 5.12 Resizing Mode: SW Model.

Condition
Function

Name CFk TFk Nature mathcalFk

Road
Blockage

F1 14 30 Soft F2

F2 4 35 - -
F3 15 50 Hard F2

F4 15 40 Hard F5

F5 2 55 - -
F7 20 60 Soft F8

F8 5 105 - -
F9 20 120 Hard F8

Static Obstacle
Avoidance

F2 4 35 - -
F3 15 50 Hard F2

F4 15 40 Hard F5

F5 2 55 - -
F6 20 60 Soft F5

F8 5 105 - -
F9 20 120 Hard F8

F10 20 150 Soft F8

The SW architecture generation step produce the following model presented in
Table 5.13
AV Partitioning Step

Table 5.13 Resizing mode: SW Architecture.

Pii τj C_{j} Tij Cϕqj

Pi1

τ1 25 30 4
τ2 40 50 4
τ3 40 50 2
τ5 55 60 5
τ7 105 120 5

Pi2

τ2 40 50 4
τ3 40 50 2
τ4 50 60 2
τ7 105 120 5
τ8 140 150 5

The placement computation step could not find any feasible solution, so we as-
sume that the user chooses to resize the HW architecture. By executing Algorithm

97

4 the solver tries to find the minimum number of core that ensures the AV system
feasibility. In this case, the minimum number of cores is three. This partitioning
is giving by Table 5.14. Note that the used partitioning algorithm is the firs fit, so

Table 5.14 Resizing Mode: Partitioning task model.

Πi ζs τj

Π1

ζ1
τ1
τ2

ζ2
τ3
τ5

ζ3 τ6

Π2

ζ1
τ2
τ3

ζ2
τ4
τ6

ζ3 τ7

we only consider the AV system feasibility in the partitioning not the optimiza-
tion. After this step, the framework executes again the normal mode steps with
new HW model.

5.2.2.3 AV in Degrading Mode

In this mode we consider the same SW model presented in Table 5.12. Thus the
SW architecture generation step produces the same SW architecture generated
in resizing mode which is depicted in Table 5.13. The computation of optimal
placement could not find any feasible solution, so we assume that the designer
chooses to degrade the AV system performance. The framework tried to find a
feasible partitioning with a minimum value of the degradation factor Q. Table
5.15 depicted the obtained solution. We note that in implementation Π1, 8.6% of

Table 5.15 Degrading Mode: Partitioning task model.

Πi ζs τj Qij

Π1

ζ1
τ1 0.086
τ2 0

ζ2

τ3 0
τ5 0.852
τ6 0

Π2

ζ1
τ2 0
τ3 0

ζ2

τ4 0.454
τ6 0
τ7 0.454

98

instances of task τ1 and 85% of instances of task τ5 will not meet their deadlines
and in Π2, 45.4% of instances of task τ4 and task τ7 will also miss their deadlines.
After this step, the framework executes the third and fourth steps of normal mode.

5.3 Evaluation of Performance

In order to expose the contribution of this work, we evaluate the performance of
MO2R2S framework by generating a random multi-core reconfigurable real-time
systems with a random function set, core set, and condition set.

5.3.1 Evaluation Of MO2R2S on mono-core architecture

We compare the proposed approach with mono-core based approach. The number
of task has been varied between 5 and 100. The evaluation of the reconfiguration

5 10 20 30 40 50 100

0

10

20

30

40

1

8
10

18

10

32

41

1

6 5 4
6

28 27

Number of tasks

R
ec

on
fig

ur
at

io
n

tim
e(

m
s)

[86]
MO2R2S approach

Fig. 5.13 Comparison in terms of reconfiguration time between the proposed approach
and the approach proposed in [86].

time of the proposed approach compared with work reported in [86] is shown
in Figure 5.13. In fact, it is remarkable through this comparison that we obtain
better results in term of reconfiguration time. The gain is more important when
increasing the number of tasks, it is about 14 ms for 100 tasks. This is due to the
tasks merging technique. Figure 5.14 depicts the comparison of context switch-
ing of the proposed approach with the related works reported in [86] and [21]. It
is clear that the work reported in [21] and MO2R2S approach give always a better
context switching than that reported in [86]. This is due to the minimization of
task count used in [21] and the MO2R2S approach. Also the comparison shows
that our proposed approach is more efficient than the work reported in [21] since
our the latter merges only tasks having the same periods unlike our approach

99

4 11 20 30 40

5

10

15

20

25

30

13 12

21

25

28

6

9

21

24

20

6

10

21

25
23

Number of tasks

C
on

te
xt

sw
itc

h(
m

s)

[86].
MO2R2S approach.

[21]

Fig. 5.14 Comparison in terms of context switching between the proposed approach and
the approaches proposed in [86] and [21].

which merges also harmonic tasks. In a random generated system with a num-
ber of tasks that varies between 5 and 40, the gain in MO2R2S approach ranges
from 0 ms to 8 ms depending on the reconfiguration scenario. In Figure 5.15, we
compare the execution time of the POSIX code generated following the proposed
approach with the work reported in [52] that deals with reconfigurable systems.
This computation is based on the fact of implementing the task model obtained in
[52] in POSIX code and computing its execution time. The evaluation shows that

6 10 15 20

10

20

30

40

15.7

27.2

37.5

43.7

12.8

19.4

29.6
31.5

Number of tasks

E
xe

cu
tio

n
tim

e(
m

s)

[52]
MO2R2S approach.

Fig. 5.15 Comparison in terms of code execution time between the proposed approach
and the approach proposed in [52].

MO2R2S approach has always a better execution time than that reported in the
related work. The gain is about 12 ms which is due to the merging technique that
allowing the reduction of the tasks number thus the number of thread is reduced.

100

Figure 5.16 shows the variation of response time with and without merging tech-

5 10 15 20
0

20

40

60

80

100

30

53

88

100

12
18 20

28

Number of tasks

To
ta

lR
es

po
ns

e
Ti

m
e(

m
s)

Without Merging
MO2R2S approach.

Fig. 5.16 Rate of Response Time With and Without Merging Technique.

nique. It is clear that this technique offer a gain goes to 72ms by increasing
the number of tasks. Figure 5.17 shows a comparison of energy consumption of

5 10 15 20

0

20

40

60

80

100

9.47 11.69

33.06

90

8.18 10.58

20.74

32.4

Number of tasks

To
ta

lC
on

su
m

pt
io

n
E

ne
rg

y(
W

) [35]
MO2R2S approach.

Fig. 5.17 Comparison in terms of energy consumption between our approach and the
approach proposed in [35].

MO2R2S approach with the obtained one in the work reported in [35]. Despite,
we use the same technique of optimization, we have obtained better results. This
is due to the additional used technique i.e., merging technique. This approach
permits to gain up in energy to 57.6W.

5.3.2 Evaluation Of MO2R2S on multi-core architecture

In the following evaluations, the number of function has been varied between 4
and 20 under duo-core architecture. In this approach, we aim to improve the sys-

101

tem stability so that the reconfiguration time is also would be optimized. Figure
5.18 shows an evaluation of the reconfiguration time in the proposed approach
compared with the work [49]. It was clear that this work allows obtaining a lower
reconfiguration time. This is due to minimization of the moving time. The main

5
10

20

40
0

20

Nbr of implementations Nbr of tasks

R
ec

on
fig

ur
at

io
n

tim
e

[49]
MO2R2S

Fig. 5.18 Evaluation of reconfiguration time.

objective in this approach is ensuring a feasible partitioning while optimizing the
blocking time. Figure 5.19 depicts the comparison of the obtained blocking time
in this approach with the related work reported in [56]. We note that the per-
formance of the proposed approach has always a smaller blocking time than that
reported in the related work this is due to minimization technique of global re-
source count among cores. The optimization of the blocking time leads to the op-

6 10 15 20

50

100

150

200

250

107

160
170

265

61

150
165

215

Number of task

B
lo

ck
in

g
tim

e
(m

s)

[56]
MO2R2S

Fig. 5.19 Comparison in terms of blocking time between the proposed approach and
that in [56].

timization of both process utilization (Figure 5.20) and the latency (Figure 5.21).

102

6 10 15 20

80

100

120

140

160

180

200

100
112

160

196

90

110.8

150

195

Number of task

C
PU

U
til

iz
at

io
n

%

[36]
MO2R2S

Fig. 5.20 Comparison in terms of processor utilization factor between the proposed
approach and that in [36].

Figure 5.20 depicts the impact of our approach on processor utilization. The com-
parison shows the efficiency of the proposed approach comparing with the work
reported in [36]. We evaluate latency in Fig. 5.21. By comparing this metric in

6 10 15 20

200

400

600

800

1,000

277

415

655

940

231

405

650

890

Number of task

Ti
m

e(
m

s)

[36]
MO2R2S

Fig. 5.21 Comparison in terms of latency between the proposed approach and that in
[36].

this work with that in [36], the efficiency of the proposed approach is confirmed.
We evaluate in the flowing figure 5.22 both context switching (Cs) and preemp-
tion in this work compared with the approach in [114] by generating a set of 4
to 30 tasks on 2 to 6 cores. It is clear that our approach is more efficient in term
of context switching and preemption comparing with that obtained in the related
work [114]. We evaluate in the flowing graphs both the number of line (Figure
5.23) and the code execution time (Figure 5.24). Figure 5.23 shows the evolution

103

10 Tasks
2 Cores

20 Tasks
4 Cores

30 Tasks
6 Cores

1,000

2,000

3,000

4,000

Ti
m

e(
m

s)

Cs of [114]
Current Cs

Preemption of [114]
Current Preemption

Fig. 5.22 Comparison in terms of context switching (Cs) and preemption between the
proposed approach and that reported in [114].

6 10 15 20

200

250

300

350

240

280

310

343

202

250

293

329

Number of task

N
um

be
ro

fl
in

es
of

co
de

[76]
MO2R2S

Fig. 5.23 Comparison in terms of number of lines of code between the proposed ap-
proach and the work reported in [76].

of code size, i.e., the number of lines in code, of the proposed approach and that
of [76]. From it we can see that the proposed approach increases slowly in term
of code size with the problem size compared with the work in [76]. We evaluate

6 10 15 20

10

15

20

25

30

12.8

19.4

29.6
31.5

10.1
12.6

25.9

28.6

Number of task

E
xe

cu
tio

n
tim

e(
m

s)

Without Merging
With

Fig. 5.24 Code execution Time before and after the application of the merge technique.

104

in Figure 5.24 the code execution time of the proposed approach by comparing
it with the obtained one without using merging technique and in mono-core ar-
chitecture. We can see a significant improvement in term of the code execution
time which is due to the adopted multi-core architecture. The proposed solution
covered a multitude axes that are assured through the framework MO2R2S. In the
related works, each one does not deal with all of axes covered by our work. In
Figure 5.25, it is obvious that the current work is the only one among the related
ones to treat all of the seven modules.

Blocking
Time

StabilityEnergy
Con-

sumption

Response
Time

Partitioning

Real-time
aspect

Reconfiguration-
aware

10%20%30%40%50%60%70%80%90%100%

MO2R2S approach
[56]
[91]

Fig. 5.25 Graph of comparison between the axes covered by the current work compared
to the related ones.

Conclusion

In this chapter, we have experimented the proposed methodology where we have
implemented the tool-chain environment. The developed tool perform the task
generation, partitioning, scheduling, optimization, code generation under real-
time and reconfiguration constraints. In the second part of this chapter, we present
two real-time case studies, CCAS in mono-core architecture and AV system in

105

multi-core architecture having reconfiguration scenarios. The comparison stud-
ies confirm the performance of the proposed framework compared with related
works. The performance of this solution is also seen through the gain in terms of:

– reconfiguration time by 68.2%,

– blocking time by 17.45%,

– processor utilization factor by 2.22%,

– latency by 6.25%,

– code execution time by 19.46%,

– context switching by 26.35%

– preemption by 19.21%.

Note that this framework is extensible to add other metrics. In Future, we extend
this approach to deal with scheduling/ partitioning sporadic and aperiodic tasks.
It also will be tested with large size instances for more pertinence and reliability.

106

CHAPTER 6

Conclusion

This final chapter presents a summary of our work and restates the research con-
tributions. The issues for the future work are also identified.

6.1 Context and Problems

Reconfigurble real-time systems are frequently specified by a huge number of
functions. Such functions are mostly interacting with each other. Thus, designers
are expected to provide the appropriate association of these functions to the real-
time tasks that will implement these functions. In addition, the communication
of dependent tasks must be carefully managed in order to preserve the efficiency
of the system. Designers of reconfigurable real-time systems in multi-core archi-
tecture have to tackle these issues:

– software architecture exploration (i.e., assigning functions to tasks),

– task partitioning (i.e., mapping task to core) , and scheduling of tasks,

– code generation.

Comparing to mono-core based approach , multi-core architecture induces an ad-
ditional challenges in term of how to find a feasible partitioning when taking into
consideration shared resources. The latter can introduce a significant blocking
time. Moreover reconfiguration causes additional difficulties such as turning from
an implementation to another produces a huge moving time overhead, that may
affects the total stability of a system [68]. In addition, such system is generally
specified by a large number of applicative functions which may cause

– an important time overhead,

– many reconfigurations between the different implementations which increases
the reconfiguration time [64],

– increase response time, and energy consumption,

107

Fig. 6.1 MO2R2S Modes.

– produce complex system code.

Furthermore, when carrying out certain design steps designers have to make good
decisions which is not an easy task. The considered problems in this work are
widely explored in literature but none of the proposed solutions simultaneously
considers the real-time constraints, reconfiguration property, software architec-
ture exploration, task partitioning, task scheduling, optimization concept and user
guidance [68].

6.2 Contributions

This thesis presents a guidance framework for the generation of POSIX code for
Reconfigurable real-time systems, through a development process. In order to
help designer to make good decisions, the proposed framework provides three
possible modes (.i.e., scenarios) based on feasibility constraint (See Figure 6.1).

– 1- Normal mode: it is executed, when no real-time feasibility problems
appear.

– 2- Resizing mode: the framework proceeds this mode when real-time fea-
sibility problems occur and the designer chooses to change the hardware
architecture to solve feasibility problems,

– 3- Degrading mode: same as the resizing mode it is executed when no feasi-
ble solution is found by the framework and the user chooses to degrade the

108

system performance.

In the first step of the synthesis process, a software architecture is generated from
the software model. Then, tasks are assigned to cores while meeting timing prop-
erties and minimizing blocking time and moving time. The output of this step is a
solution base. Here the proposed approach provides three scenarios either: i) the
framework finds at least one solution, so it executes the normal mode in which
the obtained solution base would be the input for the second optimization step
that optimize the number of tasks in each placement, energy consumption and
response time. Finally, the tool generates POSIX code, ii) the framework cannot
find any solution and designers choose to resize an HW architecture, then the tool
increases the number of cores until it finds the minimal number that ensures a
feasible placement. Then it executes the normal mode, iii) The tool cannot find
any feasible solution and the user accepts degradation, then the framework tries to
find a feasible placement with degraded system performance. Finally, it executes
the third and fourth steps of the normal mode to generate POSIX code. The pro-
posed methodology is explained via an experimental study to verify its viability
by comparing the obtained results with the related work.

6.3 Perspectives

The developed work is open on many perspectives which we quote below.

– The extension of the proposed models under distributed architectures seems
to be the most immediate future work.

– In this dissertation, tasks are periodic. The extension of our proposed model
for stochastic, aperiodic and sporadic tasks scheduling is a necessity. This
makes the proposed solutions more complete and reliable.

– We aim to consider energy harvesting constraints to achieve energy auton-
omy and to improve a system’s lifetime

– We intend to address security issues in the synthesis process.

– Application of formal verification techniques to the proposed approach,

– We aim to introduce the artificial intelligence AI for the reconfigurable real-
time system synthesis.

109

REFERENCES

[1] Nadine Abdallah, Audrey Queudet, and Maryline Chetto. Task parti-
tioning strategies for multicore real-time energy harvesting systems. In
2014 IEEE 17th International Symposium on Object/Component/Service-

Oriented Real-Time Distributed Computing, pages 125–132. IEEE, 2014.

[2] Hedi Abdelkrim, Slim Ben Othman, and Slim Ben Saoud. Fpga implemen-
tation of self-reconfigurable fuzzy logic controller. In 2018 International

Conference on Advanced Systems and Electric Technologies (IC_ASET),
pages 151–156. IEEE, 2018.

[3] Omid Abrishambaf, Pedro Faria, Luis Gomes, João Spínola, Zita Vale, and
Juan M Corchado. Implementation of a real-time microgrid simulation
platform based on centralized and distributed management. Energies, 10
(6):806, 2017.

[4] Adewale Akinlawon Adetomi. Dynamic reconfiguration frameworks for
high-performance reliable real-time reconfigurable computing. 2019.

[5] Manzoor Ahmad, Nicolas Belloir, and Jean-Michel Bruel. Modeling and
verification of functional and non-functional requirements of ambient self-
adaptive systems. Journal of Systems and Software, 107:50–70, 2015.

[6] Asma Ben Ahmed, Olfa Mosbahi, Mohamed Khalgui, and Zhiwu Li. To-
ward a new methodology for an efficient test of reconfigurable hardware
systems. IEEE Transactions on Automation Science and Engineering, 15
(4):1864–1882, 2018.

[7] Zaid Al-Bayati, Youcheng Sun, Haibo Zeng, Marco Di Natale, Qi Zhu,
and Brett H Meyer. Partitioning and selection of data consistency mech-
anisms for multicore real-time systems. ACM Transactions on Embedded

Computing Systems (TECS), 18(4):1–28, 2019.

[8] James H Anderson, John M Calandrino, and UmaMaheswari C Devi. Real-
time scheduling on multicore platforms. In 12th IEEE Real-Time and Em-

110

bedded Technology and Applications Symposium (RTAS’06), pages 179–
190. IEEE, 2006.

[9] Christo Angelov, Krzysztof Sierszecki, and Nicolae Marian. Design
models for reusable and reconfigurable state machines. In International

Conference on Embedded and Ubiquitous Computing, pages 152–163.
Springer, 2005.

[10] Andreas Antoniou and Wu-Sheng Lu. Linear programming part ii:
Interior-point methods. Practical Optimization: Algorithms and Engineer-

ing Applications, pages 373–406, 2007.

[11] Philip Axer, Rolf Ernst, Heiko Falk, Alain Girault, Daniel Grund, Nan
Guan, Bengt Jonsson, Peter Marwedel, Jan Reineke, Christine Rochange,
et al. Building timing predictable embedded systems. ACM Transactions

on Embedded Computing Systems (TECS), 13(4):82, 2014.

[12] Theodore P. Baker. Stack-based scheduling of realtime processes. Real-

Time Systems, 3(1):67–99, 1991.

[13] Sanjoy Baruah, Marko Bertogna, and Giorgio Buttazzo. Multiprocessor

scheduling for real-time systems. Springer, 2015.

[14] Sanjoy K Baruah, Neil K Cohen, C Greg Plaxton, and Donald A Varvel.
Proportionate progress: A notion of fairness in resource allocation. Algo-

rithmica, 15(6):600–625, 1996.

[15] Pablo Basanta-Val and Marisol García-Valls. A distributed real-time java-
centric architecture for industrial systems. IEEE Transactions on Industrial

Informatics, 10(1):27–34, 2013.

[16] Diana Bautista, Julio Sahuquillo, Houcine Hassan, Salvador Petit, and José
Duato. A simple power-aware scheduling for multicore systems when run-
ning real-time applications. In 2008 IEEE International Symposium on

Parallel and Distributed Processing, pages 1–7. IEEE, 2008.

[17] Ikbel Belaid, Fabrice Muller, and Maher Benjemaa. Optimal static
scheduling of real-time dependent tasks on reconfigurable hardware de-
vices. In 2011 International Conference on Communications, Computing

and Control Applications (CCCA), pages 1–6. IEEE, 2011.

[18] Kirstie L Bellman, Christian Gruhl, Chris Landauer, and Sven Tomforde.
Self-improving system integration-on a definition and characteristics of the

111

challenge. In 2019 IEEE 4th International Workshops on Foundations and

Applications of Self* Systems (FAS* W), pages 1–3. IEEE, 2019.

[19] Muhammad Herwindra Berlian, Tegar Esa Rindang Sahputra, Buyung
Jofi Wahana Ardi, Luhung Wahya Dzatmika, Adnan Rachmat Anom Be-
sari, Rahardhita Widyatra Sudibyo, and Sritrusta Sukaridhoto. Design and
implementation of smart environment monitoring and analytics in real-
time system framework based on internet of underwater things and big
data. In 2016 International Electronics Symposium (IES), pages 403–408.
IEEE, 2016.

[20] Guillem Bernat, Antoine Colin, and Stefan M Petters. Wcet analysis of
probabilistic hard real-time systems. In 23rd IEEE Real-Time Systems

Symposium, 2002. RTSS 2002., pages 279–288. IEEE, 2002.

[21] Antoine Bertout, Julien Forget, and Richard Olejnik. Minimizing a real-
time task set through task clustering. In Proc. International Conference on

Real-Time Networks and Systems 22nd, pages 23–31. ACM, 2014.

[22] Alessandro Biondi, Alessio Balsini, Marco Pagani, Enrico Rossi, Mauro
Marinoni, and Giorgio Buttazzo. A framework for supporting real-time
applications on dynamic reconfigurable fpgas. In 2016 IEEE Real-Time

Systems Symposium (RTSS), pages 1–12. IEEE, 2016.

[23] Aaron Block, Hennadiy Leontyev, Bjorn B Brandenburg, and James H
Anderson. A flexible real-time locking protocol for multiprocessors. In
13th IEEE international conference on embedded and real-time computing

systems and applications (RTCSA 2007), pages 47–56. IEEE, 2007.

[24] Rahma Bouaziz, Laurent Lemarchand, Frank Singhoff, Bechir Zalila, and
Mohamed Jmaiel. Multi-objective design exploration approach for raven-
scar real-time systems. Real-Time Systems, 54(2):424–483, 2018.

[25] A. Burns and A. Wellings. Real-Time Systems and Programming Lan-

guages: Ada, Real-Time Java and C/Real-Time POSIX. Addison-Wesley
Educational Publishers Inc, USA, 4nd edition, 2009.

[26] Alan Burns and Andrew J Wellings. Real-time systems and programming

languages: Ada 95, real-time Java, and real-time POSIX. Pearson Educa-
tion, 2001.

[27] Giorgio C Buttazzo. Rate monotonic vs. edf: judgment day. Real-Time

Systems, 29(1):5–26, 2005.

112

[28] Giorgio C Buttazzo. Hard real-time computing systems: predictable

scheduling algorithms and applications, volume 24. Springer Science and
Business Media, 2011.

[29] Thomas Carle, Dumitru Potop-Butucaru, Yves Sorel, and David Lesens.
From dataflow specification to multiprocessor partitioned time-triggered
real-time implementation. Leibniz Transactions on Embedded Systems,
2015.

[30] John Carpenter, Shelby Funk, Philip Holman, Anand Srinivasan, James H
Anderson, and Sanjoy K Baruah. A categorization of real-time multipro-
cessor scheduling problems and algorithms., 2004.

[31] Che-Wei Chang, Jian-Jia Chen, Tei-Wei Kuo, and Heiko Falk. Real-time
task scheduling on island-based multi-core platforms. IEEE Transactions

on Parallel and Distributed Systems, 26(2):538–550, 2015.

[32] T. Chapeaux, P. Rodriguez, L. George, and J. Goossens. The space of fea-
sible execution times for asynchronous periodic task systems using defini-
tive idle times. In 2013 III Brazilian Symposium on Computing Systems

Engineering, pages 95–100, Dec 2013. doi: 10.1109/SBESC.2013.11.

[33] Guangyi Chen and Wenfang Xie. On a laxity-based real-time scheduling
policy for fixed-priority tasks and its non-utilization bound. In Interna-

tional Conference on Information Science and Technology, pages 7–10.
IEEE, 2011.

[34] Jinchao Chen, Chenglie Du, Fei Xie, and Bin Lin. Scheduling non-
preemptive tasks with strict periods in multi-core real-time systems. Jour-

nal of Systems Architecture, 90:72–84, 2018.

[35] Hamza Chniter, Fethi Jarray, and Mohamed Khalgui. Combinatorial Ap-
proaches for Low-power and Real-time Adaptive Reconfigurable Embed-
ded Systems. In Proc. Pervasive and Embedded Computing and Commu-

nication Systems 4th, pages 151–157, 2014.

[36] Hamza Chniter, Yuting Li, Mohamed Khalgui, Anis Koubaa, Zhiwu Li,
and Fethi Jarray. Multi-agent adaptive architecture for flexible distributed
real-time systems. IEEE Access, 6:23152–23171, 2018.

[37] Hamza Chniter, Olfa Mosbahi, Mohamed Khalgui, Mengchu Zhou, and
Zhiwu Li. Improved multi-core real-time task scheduling of reconfigurable
systems with energy constraints. IEEE Access, 2020.

113

[38] Robert I Davis and Alan Burns. A survey of hard real-time scheduling
for multiprocessor systems. ACM computing surveys (CSUR), 43(4):1–44,
2011.

[39] Robert I Davis, Liliana Cucu-Grosjean, Marko Bertogna, and Alan Burns.
A review of priority assignment in real-time systems. Journal of systems

architecture, 65:64–82, 2016.

[40] David Decotigny. Une infrastructure de simulation modulaire pour

l’évaluation de performances de systèmes temps-réel. PhD thesis, Uni-
versité Rennes 1, 2003.

[41] Christian Dietrich, Peter Wägemann, Peter Ulbrich, and Daniel Lohmann.
Syswcet: Whole-system response-time analysis for fixed-priority real-
time systems (outstanding paper). In 2017 IEEE Real-Time and Embed-

ded Technology and Applications Symposium (RTAS), pages 37–48. IEEE,
2017.

[42] Jakob Engblom, Andreas Ermedahl, Mikael Sjödin, Jan Gustafsson, and
Hans Hansson. Worst-case execution-time analysis for embedded real-time
systems. International Journal on Software Tools for Technology Transfer,
4(4):437–455, 2003.

[43] Andreas Ermedahl. A modular tool architecture for worst-case execution

time analysis. PhD thesis, Acta Universitatis Upsaliensis, 2003.

[44] Leslie R Foulds. Optimization techniques: an introduction. Springer Sci-
ence and Business Media, 2012.

[45] Yong Fu, Nicholas Kottenstette, Yingming Chen, Chenyang Lu, Xeno-
fon D Koutsoukos, and Hongan Wang. Feedback thermal control for real-
time systems. In 2010 16th IEEE Real-Time and Embedded Technology

and Applications Symposium, pages 111–120. IEEE, 2010.

[46] Kenji Funaoka, Akira Takeda, Shinpei Kato, and Nobuyuki Yamasaki. Dy-
namic voltage and frequency scaling for optimal real-time scheduling on
multiprocessors. In 2008 International Symposium on Industrial Embed-

ded Systems, pages 27–33. IEEE, 2008.

[47] Aymen Gammoudi, Adel Benzina, Mohamed Khalgui, and Daniel Chil-
let. Energy-efficient scheduling of real-time tasks in reconfigurable homo-
geneous multicore platforms. IEEE Transactions on Systems, Man, and

Cybernetics: Systems, 50(12):5092–5105, 2018.

114

[48] Michael R Garey and David S Johnson. Computers and intractability,
volume 174. freeman San Francisco, 1979.

[49] M. Gasmi, O. Mosbahi, M. Khalgui, L. Gomes, and Z. Li. Performance
optimization of reconfigurable real-time wireless sensor networks. IEEE

Transactions on Systems, Man, and Cybernetics: Systems, pages 1–15,
2018. ISSN 2168-2216. doi: 10.1109/TSMC.2018.2824900.

[50] Maroua Gasmi, Olfa Mosbahi, Mohamed Khalgui, Luis Gomes, and
Zhiwu Li. R-node: New pipelined approach for an effective reconfigurable
wireless sensor node. IEEE Transactions on Systems, Man, and Cybernet-

ics: Systems, 48(6):892–905, 2018.

[51] Stefan K Gehrig and Fridtjof J Stein. Collision avoidance for vehicle-
following systems. IEEE transactions on intelligent transportation sys-

tems, 8(2):233–244, 2007.

[52] Hamza Gharsellaoui, Mohamed Khalgui, Olfa Mosbahi, and Samir Ben
Ahmed. New Optimal Solutions For Real-time Reconfigurable Periodic
Asynchronous OS Tasks with Minimizations of Response Times. Embed-

ded Computing Systems: Applications, Optimization, and Advanced De-

sign: Applications, Optimization, and Advanced Design, page 236, 2013.

[53] Aicha Goubaa, Mohamed Khalgui, Zhiwu Li, Georg Frey, and MengChu
Zhou. Scheduling periodic and aperiodic tasks with time, energy harvest-
ing and precedence constraints on multi-core systems. Information Sci-

ences, 2020.

[54] Monique Guignard-Spielberg and Kurt Spielberg. Integer programming:

State of the art and recent advances, volume 139. Springer, 2005.

[55] Michael González Harbour. Real-time posix: an overview. In VVConex 93

International Conference, Moscu. Citeseer, 1993.

[56] Monowar Hasan, Sibin Mohan, Rodolfo Pellizzoni, and Rakesh B Bobba.
A design-space exploration for allocating security tasks in multicore real-
time systems. In 2018 Design, Automation and Test in Europe Conference

and Exhibition (DATE), pages 225–230. IEEE, 2018.

[57] Jens Hildebrandt, Frank Golatowski, and Dirk Timmermann. Schedul-
ing coprocessor for enhanced least-laxity-first scheduling in hard real-time
systems. In Proceedings of 11th Euromicro Conference on Real-Time Sys-

tems. Euromicro RTS’99, pages 208–215. IEEE, 1999.

115

[58] Wiem Housseyni, Olfa Mosbahi, Mohamed Khalgui, Zhiwu Li, Li Yin,
and Maryline Chetto. Multiagent architecture for distributed adaptive
scheduling of reconfigurable real-time tasks with energy harvesting con-
straints. IEEE Access, 6:2068–2084, 2017.

[59] Connor Imes, David HK Kim, Martina Maggio, and Henry Hoffmann.
Poet: a portable approach to minimizing energy under soft real-time con-
straints. In 21st IEEE Real-Time and Embedded Technology and Applica-

tions Symposium, pages 75–86. IEEE, 2015.

[60] Xiaowen Jiang, Kai Huang, Xiaomeng Zhang, Rongjie Yan, Ke Wang,
Dongliang Xiong, and Xiaolang Yan. Energy-efficient scheduling of peri-
odic applications on safety-critical time-triggered multiprocessor systems.
Electronics, 7(6):98, 2018.

[61] Yu Jiang and Zhong-Ping Jiang. Robust adaptive dynamic programming.
John Wiley and Sons, 2017.

[62] Shinpei Kato, Eijiro Takeuchi, Yoshio Ishiguro, Yoshiki Ninomiya,
Kazuya Takeda, and Tsuyoshi Hamada. An open approach to autonomous
vehicles. IEEE Micro, 35(6):60–68, 2015.

[63] Padmanaban Kesavan and Paul I Barton. Generalized branch-and-cut
framework for mixed-integer nonlinear optimization problems. Comput-

ers and Chemical Engineering, 24(2-7):1361–1366, 2000.

[64] W. Lakhdhar, R. Mzid, M. Khalgui, Z. Li, G. Frey, and A. Al-Ahmari.
Multiobjective optimization approach for a portable development of recon-
figurable real-time systems: From specification to implementation. IEEE

Transactions on Systems, Man, and Cybernetics: Systems, pages 1–15,
2018. ISSN 2168-2216. doi: 10.1109/TSMC.2017.2781460.

[65] Wafa Lakhdhar, Rania Mzid, Mohamed Khalgui, and Nicolas Trèves.
MILP-based Approach for Optimal Implementation of Reconfigurable
Real-time systems. In Proc. International Joint Conference on Software

Technologies (ICSOFT 2016) - Volume 1: ICSOFT-EA, Lisbon, Portugal,

July 24 - 26, 11th, pages 330–335, 2016.

[66] Wafa Lakhdhar, Rania Mzid, Mohamed Khalgui, and Georg Frey. A new
approach for optimal implementation of multi-core reconfigurable real-
time systems. In ENASE, pages 89–98, 2018.

116

[67] Wafa Lakhdhar, Rania Mzid, Mohamed Khalgui, Zhiwu Li, Georg Frey,
and Abdulrahman Al-Ahmari. Multiobjective optimization approach for a
portable development of reconfigurable real-time systems: From specifi-
cation to implementation. IEEE Transactions on Systems, Man, and Cy-

bernetics: Systems, 49(3):623–637, 2018.

[68] Wafa Lakhdhar, Rania Mzid, Mohamed Khalgui, Georg Frey, Zhiwu Li,
and MengChu Zhou. A guidance framework for synthesis of multi-core re-
configurable real-time systems. Information Sciences, 539:327–346, 2020.

[69] Hongtao Lei, Rui Wang, Tao Zhang, Yajie Liu, and Yabing Zha. A multi-
objective co-evolutionary algorithm for energy-efficient scheduling on a
green data center. Computers and Operations Research, 75:103–117,
2016.

[70] Joseph Y-T Leung and Jennifer Whitehead. On the complexity of fixed-
priority scheduling of periodic, real-time tasks. Performance evaluation, 2
(4):237–250, 1982.

[71] Chang Liu, Yujie Wang, Li Wang, and Zonghai Chen. Load-adaptive
real-time energy management strategy for battery/ultracapacitor hybrid en-
ergy storage system using dynamic programming optimization. Journal of

Power Sources, 438:227024, 2019.

[72] Chung Laung Liu and James W Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment. Journal of the ACM

(JACM), 20(1):46–61, 1973.

[73] Yue Lu, Thomas Nolte, Iain Bate, and Liliana Cucu-Grosjean. A statistical
response-time analysis of real-time embedded systems. In 2012 IEEE 33rd

Real-Time Systems Symposium, pages 351–362. IEEE, 2012.

[74] Rein Luus. Iterative dynamic programming. CRC Press, 2019.

[75] James C Lyke, Christos G Christodoulou, G Alonzo Vera, and Arthur H
Edwards. An introduction to reconfigurable systems. Proceedings of the

IEEE, 103(3):291–317, 2015.

[76] Y. Ma, T. Chantem, R. P. Dick, and X. S. Hu. Improving system-level
lifetime reliability of multicore soft real-time systems. IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, 25(6):1895–1905, June
2017. ISSN 1063-8210. doi: 10.1109/TVLSI.2017.2669144.

117

[77] Kim F Man, Kit Sang Tang, and Sam Kwong. Genetic algorithms for con-

trol and signal processing. Springer Science and Business Media, 2012.

[78] Syrine Ben Meskina, Narjes Doggaz, Mohamed Khalgui, and Zhiwu Li.
Reconfiguration-based methodology for improving recovery performance
of faults in smart grids. Information Sciences, 454:73–95, 2018.

[79] Microsoft. Samples for Solver Foundation. https://msdn.

microsoft.com/en-us/library/ff524501(v=vs.93)

.aspx, 2017. [Online; accessed 27-July-2020].

[80] Arezou Mohammadi and Selim G Akl. Scheduling algorithms for real-time
systems. School of Computing Queens University, Tech. Rep, 2005.

[81] Alessia Napoleone, Alessandro Pozzetti, and Marco Macchi. A framework
to manage reconfigurability in manufacturing. International Journal of

Production Research, 56(11):3815–3837, 2018.

[82] Christine Niyizamwiyitira and Lars Lundberg. A utilization-based schedu-
lability test of real-time systems running on a multiprocessor virtual ma-
chine. The Computer Journal, 62(6):884–904, 2019.

[83] Claire Pagetti, Julien Forget, Frédéric Boniol, Mikel Cordovilla, and David
Lesens. Multi-task implementation of multi-periodic synchronous pro-
grams. Discrete event dynamic systems, 21(3):307–338, 2011.

[84] CG Papanicolaou and IC Papantoniou. Optimum design of textile-
reinforced concrete as integrated formwork in slabs. In Textile Fibre Com-

posites in Civil Engineering, pages 245–274. Elsevier, 2016.

[85] Arturo Pérez, Leonardo Suriano, Andrés Otero, and Eduardo de la Torre.
Dynamic reconfiguration under rtems for fault mitigation and functional
adaptation in sram-based sopcs for space systems. In 2017 NASA/ESA

Conference on Adaptive Hardware and Systems (AHS), pages 40–47.
IEEE, 2017.

[86] Franck Petitdemange, Isabelle Borne, and Jérémy Buisson. Modeling sys-
tem of systems configurations. In 2018 13th Annual Conference on System

of Systems Engineering (SoSE), pages 392–399. IEEE, 2018.

[87] Anju S Pillai, Kaumudi Singh, Vijayalakshmi Saravanan, Alagan Anpala-
gan, Isaac Woungang, and Leonard Barolli. A genetic algorithm-based
method for optimizing the energy consumption and performance of multi-
processor systems. Soft Computing, 22(10):3271–3285, 2018.

118

https://msdn.microsoft.com/en-us/library/ff524501(v=vs.93).aspx
https://msdn.microsoft.com/en-us/library/ff524501(v=vs.93).aspx
https://msdn.microsoft.com/en-us/library/ff524501(v=vs.93).aspx

[88] Luis Miguel Pinho and Francisco Vasques. To ada or not to ada: Ada ing
vs. java ing in real-time systems. ACM SIGAda Ada Letters, 19(4):37–43,
1999.

[89] Luís Miguel Pinho, Brad Moore, Stephen Michell, and S Tucker Taft.
Real-time fine-grained parallelism in ada. ACM SIGAda Ada Letters, 35
(1):46–58, 2015.

[90] Audrey Queudet-Marchand and Maryline Chetto. Quality of service
scheduling in the firm real-time systems. Real-Time Systems, Architecture,

Scheduling, and Application, page 191, 2012.

[91] Marco Rabozzi. Caos: Cad as an adaptive open-platform service for high
performance reconfigurable systems. In Special Topics in Information

Technology, pages 103–115. Springer, Cham, 2020.

[92] Ragunathan Rajkumar. Real-time synchronization protocols for shared
memory multiprocessors. In Proceedings., 10th International Conference

on Distributed Computing Systems, pages 116–123. IEEE, 1990.

[93] Ragunathan Rajkumar. Synchronization in real-time systems: a priority

inheritance approach, volume 151. Springer Science and Business Media,
2012.

[94] Ragunathan Rajkumar, Lui Sha, and John P Lehoczky. Real-time synchro-
nization protocols for multiprocessors. In Proceedings. Real-Time Systems

Symposium, pages 259–260, 1988.

[95] MV Ganeswara Rao, P Rajesh Kumar, and A Mallikarjuna Prasad. Im-
plementation of real time image processing system with fpga and dsp. In
2016 International Conference on Microelectronics, Computing and Com-

munications (MicroCom), pages 1–4. IEEE, 2016.

[96] James Edmund Reeb, Scott A Leavengood, et al. Using the graphical
method to solve linear programs. 1998.

[97] Jan Reineke. Challenges for timing analysis of multi-core architectures.
In Workshop on Foundational and Practical Aspects of Resource Analysis,
2017.

[98] Tobias Ritzau. Real-time reference counting in RT-Java. Citeseer, 1999.

[99] Sudipta Roy, Sanjay Nag, Indra Kanta Maitra, and Samir K Bandyopad-
hyay. International journal of advanced research in computer science and
software engineering. International Journal, 3(6), 2013.

119

[100] Abusayeed Saifullah, Jing Li, Kunal Agrawal, Chenyang Lu, and Christo-
pher Gill. Multi-core real-time scheduling for generalized parallel task
models. Real-Time Systems, 49(4):404–435, 2013.

[101] Lui Sha, John P Lehoczky, and Ragunathan Rajkumar. Task scheduling in
distributed real-time systems. In IECON’87: Automated Design and Man-

ufacturing, volume 857, pages 909–917. International Society for Optics
and Photonics, 1987.

[102] Lui Sha, Tarek Abdelzaher, Anton Cervin, Theodore Baker, Alan Burns,
Giorgio Buttazzo, Marco Caccamo, John Lehoczky, Aloysius K Mok, et al.
Real time scheduling theory: A historical perspective. Real-time systems,
28(2-3):101–155, 2004.

[103] Tom Sheppard. Real-time embedded systems fundamentals. 2011.

[104] John A. Stankovic. Misconceptions about real-time computing: A serious
problem for next-generation systems. Computer, 21(10):10–19, 1988.

[105] John A Stankovic, Marco Spuri, Krithi Ramamritham, and Giorgio C But-
tazzo. Deadline scheduling for real-time systems: EDF and related algo-

rithms, volume 460. Springer Science and Business Media, 2012.

[106] Georgios L Stavrinides and Helen D Karatza. Scheduling real-time parallel
applications in saas clouds in the presence of transient software failures. In
2016 International Symposium on Performance Evaluation of Computer

and Telecommunication Systems (SPECTS), pages 1–8. IEEE, 2016.

[107] Neeraj Suri, Michelle M Hugue, and Chris J Walter. Synchronization is-
sues in real-time systems. Proceedings of the IEEE, 82(1):41–54, 1994.

[108] Michael J Todd. An implementation of the simplex method for linear pro-
gramming problems with variable upper bounds. Mathematical Program-

ming, 23(1):34–49, 1982.

[109] Hai Nam Tran, Frank Singhoff, Stéphane Rubini, and Jalil Boukhobza.
Instruction cache in hard real-time systems: modeling and integration in
scheduling analysis tools with aadl. In 2014 12th IEEE International Con-

ference on Embedded and Ubiquitous Computing, pages 104–111. IEEE,
2014.

[110] Ahmet Kursad Turker, Adem Golec, Adnan Aktepe, Suleyman Ersoz,
Mumtaz Ipek, and Gultekin Cagil. A real-time system design using data
mining for estimation of delayed orders an application. 2020.

120

[111] Osman S Unsal and Israel Koren. System-level power-aware design tech-
niques in real-time systems. Proceedings of the IEEE, 91(7):1055–1069,
2003.

[112] MMHP van den Heuvel, Reinder J Bril, Johan J Lukkien, Moris Behnam,
and Thomas Nolte. Uniform interfaces for resource-sharing components in
hierarchically scheduled real-time systems. In Real-time systems. InTech,
2016.

[113] Vanessa Vargas, Pablo Ramos, Jean-Francois Méhaut, and Raoul Velazco.
Nmr-mpar: A fault-tolerance approach for multi-core and many-core pro-
cessors. Applied Sciences, 8(3):465, 2018.

[114] A. Vulgarakis, R. Shooja, A. Monot, J. Carlson, and M. Behnam. Task syn-
thesis for control applications on multicore platforms. In Proc. 2014 11th

International Conference on Information Technology: New Generations,
pages 229–234, April 2014. doi: 10.1109/ITNG.2014.61.

[115] Weixun Wang, Prabhat Mishra, and Sanjay Ranka. Dynamic Reconfigura-

tion in Real-Time Systems:). 2013.

[116] Wenqiang Wang, Jing Yan, Ningyi Xu, Yu Wang, and Feng-Hsiung Hsu.
Real-time high-quality stereo vision system in fpga. IEEE Transactions on

Circuits and Systems for Video Technology, 25(10):1696–1708, 2015.

[117] X. Wang, I. Khemaissia, M. Khalgui, Z. Li, O. Mosbahi, and M. Zhou. Dy-
namic low-power reconfiguration of real-time systems with periodic and
probabilistic tasks. IEEE Transactions on Automation Science and Engi-

neering, 12(1):258–271, Jan 2015. ISSN 1545-5955. doi: 10.1109/TASE.
2014.2309479.

[118] X. Wang, Z. Li, and W. M. Wonham. Dynamic multiple-period recon-
figuration of real-time scheduling based on timed des supervisory control.
IEEE Transactions on Industrial Informatics, 12(1):101–111, Feb 2016.
ISSN 1551-3203. doi: 10.1109/TII.2015.2500161.

[119] Xi Wang, Imen Khemaissia, Mohamed Khalgui, ZhiWu Li, Olfa Mosbahi,
and MengChu Zhou. Dynamic low-power reconfiguration of real-time sys-
tems with periodic and probabilistic tasks. IEEE Transactions on Automa-

tion Science and Engineering, 12(1):258–271, 2014.

[120] Xi Wang, ZhiWu Li, and WM Wonham. Dynamic multiple-period recon-
figuration of real-time scheduling based on timed des supervisory control.
IEEE Transactions on Industrial Informatics, 12(1):101–111, 2015.

121

[121] Xi Wang, Zhiwu Li, and Walter Murray Wonham. Optimal priority-free
conditionally-preemptive real-time scheduling of periodic tasks based on
des supervisory control. IEEE Transactions on Systems, Man, and Cyber-

netics: Systems, 47(7):1082–1098, 2016.

[122] Jack Whitham, Neil C Audsley, and Robert I Davis. Explicit reservation of
cache memory in a predictable, preemptive multitasking real-time system.
ACM Transactions on Embedded Computing Systems (TECS), 13(4s):1–
25, 2014.

[123] Niklaus Wirth. Tasks versus threads: An alternative multiprocessing
paradigm. Software-Concepts and Tools, 17(1):6–12, 1996.

[124] G. Yao, H. Yun, Z. P. Wu, R. Pellizzoni, M. Caccamo, and L. Sha. Schedu-
lability analysis for memory bandwidth regulated multicore real-time sys-
tems. IEEE Transactions on Computers, 65(2):601–614, Feb 2016. ISSN
0018-9340. doi: 10.1109/TC.2015.2425874.

[125] Jiafeng Zhang, Mohamed Khalgui, Zhiwu Li, Georg Frey, Olfa Mosbahi,
and Hela Ben Salah. Reconfigurable coordination of distributed discrete
event control systems. IEEE Transactions on Control Systems Technology,
23(1):323–330, 2014.

[126] Jiafeng Zhang, Georg Frey, Abdulrahman Al-Ahmari, Ting Qu, Naiqi Wu,
and Zhiwu Li. Analysis and control of dynamic reconfiguration processes
of manufacturing systems. IEEE Access, 6:28028–28040, 2017.

[127] Yi-wen Zhang, Cheng Wang, and Jin Liu. Energy aware fixed priority
scheduling for real time sporadic task with task synchronization. Journal

of Systems Architecture, 83:12–22, 2018.

[128] Wei Zhao. Challenges in design and implementation of middlewares for
real-time systems: Guest editors introduction. In Challenges in Design

and Implementation of Middlewares for Real-Time Systems, pages 1–2.
Springer, 2001.

[129] Yecheng Zhao and Haibo Zeng. An efficient schedulability analysis for
optimizing systems with adaptive mixed-criticality scheduling. Real-Time

Systems, 53(4):467–525, 2017.

122

Appendices

123

The two models parameters and variables are depicted in the following table 1

Table 1 Models Parameters and Variables.Constants

Constants
Concepts Defintion

Hmsjk

A boolean variable used to mention if two tasks are harmonic. Thus if the value of
Hmsjk is equal to 1, then the corresponding tasks τj and τk

have harmonic rates in core ζs
Cij Task’s WCET
Dij Tasks’ deadline
M Big constant
N Number of tasks

Variables
Concepts Defintion

Mgsjk

A boolean variable used to mention whether two tasks τj
and τk in core ζsare merged such that Mgsjk

is equal to 1 if task τj ∈ impi and task τk ∈ impr
are merged, the merge corresponds to the situation in which τj absorbs

τk, to be deleted from the model

NewTask
The resulting task model after merging the different tasks

(i.e., optimized task model)
Cnewij The new task’s WCET
Dnewij The new task’s deadline
Tnewij The new task’s period

µijk
A binary variable where µijk = 1 when τj is executed

before τk
U CPU utilization factor

Bnewij \
Bij

The new blocking time \
The old blocking time (i.e., before merging techinque)

Rij The reponse time of τj
yijk Number of possible interference of τk on τj .

xijk
Number of possible interference of τk on τj .

if µikj = 1

ηj Scaling factor of τj
ηmin ηmin = max (ηj), j = 1...N
Cnewnij The new normalized WCET of τj

.1 General Objective Function

We define in expression (.1) the shared objective function. It aims to maximize
the number of merges while minimizing the metric Metric which could be either
the total response time or the energy consumption.

∀ s ∈ {1..M}Maximize
∑

i ∈ {1..m}

∑
j,k ∈ {0,Ni}

Mgsjk − Metric (.1)

124

In the following, we present first the common constraints (i.e., the constraints
related to merging situations and real-time constraints), then we define the con-
straints specific to each metric.

.1.1 Common constraints

A we mentioned above, the two formulations share common constraints that we
define in this section.
Merging situation constraints.
In order to avoid the merge of non-harmonic tasks we define constraint (.2) [64]
∀ s ∈ {1..M}

∀j, k ∈ {1..Ni} Mgsjk = 0 if (Hmsjk = 0) (.2)

If Hmsjk = 0 this means that task τj and τk are not harmonic, therefore Mgsjk

will be equal to zero and the two tasks could not be merged. Constraint (.3) is
defined to avoid merging task which is already merged i.e., ∀ s ∈ {1..M},
∀ k ∈ {1..Ni}∑
j∈{1..Ni}

Mgsjk ≤ 1, ∀ j, k, z ∈ {1..Ni}, k, z 6= j, Mgsjk + Mgszj ≤ 1

(.3)
This constraint ensure that the task τj can be absorbed by just one task τi. Con-
straint (.4) is defined to create the new obtained model i.e., ∀ s ∈ {1 . . .M}

∀ j ∈ {1 . . . Ni}, NewTaskk = 1−
∑

j∈{1...Ni}

Mgsjk (.4)

We define a new boolean variable NewTaskj which presents the new task model
after merging. The two constraints .3 and .4 ensure that if Mgsjk = 1 than
NewTaskk = 0 and NewTaskj=1, it means that the task τk is absorbed by τj .
Real-time constraints.
The constraints defined in this section are related to real-time requirements. First,
we define the model obtained after applying the merge technique. The new
WCET Cnewzl is given by
∀j ∈ {1..Ni}, ∀k ∈ {1..Nl}, ∀i, l ∈ {1 . . .m}

Cnewzl =

{
NewTaskj ∗ (Cij + Crk) if (r = k)

(NewTaskj ∗ Cij ∈ Πi, NewTaskk ∗ Crk ∈ Πr) otherwise
(.5)

125

As we mentioned previously, if two harmonic task are in the same implementation
then the execution time of the Cnewzl resulting task will be equal to the sum of the
execution time of the merged task otherwise it will have different execution time
depending on implementation in which it is executed. The constraint .6 computes
the new period Tnewzl which is equal to the minimum period between the merged
tasks.

Tnewzl = min(Tij, Trk) (.6)

The new priority Pzl is defined by the maximum priority between merged tasks.

Pnewzl = max(Pij, Prk) (.7)

The CPU utilization factor is an important term in scheduling analysis. In order
to ensure that the design model meets the timing constraints the constraint .9 must
be verified

U = ≤
∑

i∈ {1...m}

∑
j∈ {1...Ni}

Ni(2
1
Ni − 1) (.8)

Where U is defied by

U =
∑

i∈ {1...m}

Ui =
∑

i ∈ {1...m}

∑
j ∈ {1...Ni}

Cnewij + Bnewij

Tnewij
(.9)

WhereBnewij presents the new blocking time which is defined by: ∀ s ∈ {1...M}

Bnewijs =

{
−Bijs if

∑
jk∈ {1...Ni} Mgsjk = 0

−max{Bijs, Biks} otherwise
(.10)

Where Bijs in (.11) represents the local blocking time of task τj in implementa-
tion Πi in core ζs which is defined by ∀ τk ∈ Hpj, ∀ϕq ∈ ϕ

Bijs = max{Cϕqk} − 1 (.11)

.1.2 Response Time Optimization Model

If the designer chooses to optimize the response time besides the minimization of
the number of tasks, the objective function becomes

∀ s ∈ {1...M} maximize
∑

i∈{1..m}

(
∑

j,k∈{0,Ni}

Mgsjk −
∑

j∈{0,Ni}

Rij) (.12)

126

Response time Rij of τij is given by

Rij = Cnewij + Bnewij +
∑

k∈Hp(j)

Iikj ∗ Cnewik (.13)

where Iikj the number of interference of τik on τij during its response time.

Iikj = dRij

Tik
e (.14)

Constraint .14 is non linear so in order to compute this constraint we start by
adding the following variables:

yijk =

{
Ni number of possible interference of τk on τj in Πi

0, otherwise
yijk is equal to 0 if there are no interference of τk on τj in Πi otherwise it is equal
to number of interference of τk on τj in Πi. The possible number of interference
is defined as function of the response time and period by the following constraint

0 ≤ yijk −
Rij

Tik
≤ 1 (.15)

We define an additional variable xijk by

xijk =

{
Ni number of possible interference of τk on τj in Πi if µikj = 1

0, otherwise
xijk is defined in constraints .16 and .17 in terms of yijk and µijk by introducing
the big M formulation (i.e., M is a big constant [129]).

yijk − M(1 − µikj) ≤ xijk ≤ yijk (.16)

0 ≤ xijk ≤ M ∗ µikj (.17)

M is a constant larger than any other quantity involved in the constraint and it is
typically used to encode alternative constraints that depend on a binary variable
(the value of µikj makes one of the constraints trivially true). µikj is a binary
variable, µijk = 1 when τj is executed before τk it is equal to 0 otherwise. Finally,
the response time of task τj in Πi can be computed as

Rij = Cnewij + Bnewij +
∑

k∈{1..Ni}

xijk ∗ Cnewik (.18)

To sum up the full model of the response time optimization is given by:

127



Maximize
∑

i∈{1..m}(
∑

j,k∈{0,Ni}Mgsjk −
∑

j∈{0,Ni}Rij) (.12)

∀j, k ∈ {1..Ni} Mgsjk = 0 if (Hmsjk = 0) (.2)

Mgsjk ≤ 1, z ∈ {1..Ni}, k, z 6= j, Mgsjk + Mgszj ≤ 1 (.3)

∀ j ∈ {1 . . . Ni}, NewTaskk = 1−
∑

j∈{1...Ni}Mgsjk (.4)

∀ i, r, z ∈ {1 . . .m}, j, k, l ∈ {1 . . . N}
if (r = k) then Cnewzl = NewTaskj ∗ (Cij + Crk) (.5)

if (r <> k) then Cnewzl = (NewTaskj ∗ Cij in Πi, NewTaskk ∗ Crk in Πr) (.5)

∀ i, r, z ∈ {1 . . .m}, j, k, l ∈ {1 . . . N} Tnewzl = min(Tij, Trk) (.6)

∀ i, r, z ∈ {1 . . .m}, j, k, l ∈ {1 . . . N} Pnewzl = max(Pij, Prk) (.7)

Bnewij = Bij if
∑

jk∈ {1...Ni} Mgsjk = 0(.10)

Bnewij = max{Bij, Bik} otherwise(.10)

Bij = max{Cϕqk} − 1 (.11)

∀ j ∈ {1 . . . Ni}, NewTaskk = 1−
∑

j∈{1...Ni}Mgsjk (.4)

0 ≤ yijk − Rij
Tik
≤ 1 (.15)

yijk − M(1 − µikj) ≤ xijk ≤ yijk (.16)

0 ≤ xijk ≤ Mµikj (.17)

Rij = Cnewij + Bnewij +
∑

k∈{1..Ni} xijk ∗ Cnewik (.18)

U ≤
∑

i∈ {1...m}
∑

j∈ {1...Ni}Ni(2
1
Ni − 1) (.9)

.1.3 Energy consumption Optimization Model

If the designer chooses to optimize the energy consumption, the objective func-
tion is expressed by

∀ s ∈ {1...M}Maximize
∑

i∈{1..m}

(
∑

j,k∈{0,Ni}

Mgsjk −
∑

j∈{0,Ni}

Eij) (.19)

As we mentioned previously in Section 3.2.4 in Eq. 4.7 the expression of Eij is
given by

Eij = K
∑

j∈{0,Ni}

Cnewnij
η2j

(.20)

We notice that this equation is fractional due to the fact that the WCET of the task
Cnewnij is proportional to the reduction factor ηj . Thus, we simplify this program
by maximizing the minimum of the reduction factor ηj . Hence, we introduce an
additional variable ηmin which is equal to the minimum of ηj . The constraint .21
establishes that

ηmin ≤ ηj (.21)

128

The new normalized WCET Cnewnij is given by

Cnewnij =

{
NewTaskj ∗ (Cnij + Cnrk) if (r = k)

(NewTaskj ∗ Cnij , NewTaskk ∗ Cnrk) otherwise
(.22)

In order to confirm that the obtained model meets the timing constraints the fol-
lowing constraint must be verified:

U =
∑

i ∈ {1...m}

∑
j ∈ {1...Ni}

Cnewnij ηj + Bnewij

Tnewij
≤

∑
i∈ {1...m}

∑
j∈ {1...Ni}

Ni(2
1
Ni − 1)

(.23)
The full formulation of blocking time optimization is given by

Maximize
∑

i∈{1..m}(
∑

j,k∈{0,Ni}Mgsjk) + ηmin (.12)

∀j, k ∈ {1..Ni} Mgsjk = 0 if (Hmsjk = 0) (.2)

Mgsjk ≤ 1, z ∈ {1..Ni}, k, z 6= j, Mgsjk + Mgszj ≤ 1 (.3)

∀ j ∈ {1 . . . Ni}, NewTaskk = 1−
∑

j∈{1...Ni}Mgsjk (.4)

∀ i, r, z ∈ {1 . . .m}, j, k, l ∈ {1 . . . N}
if (r = k) then Cnewnzl = NewTaskj ∗ (Cnij + Cnrk) (.22)

if (r <> k) then Cnewnzl = (NewTaskj ∗ Cnij ∈ Πi

NewTaskk ∗ Cnrk in Πr) (.22)

∀ i, r, z ∈ {1 . . .m}, j, k, l ∈ {1 . . . N} Tnewzl = min(Tij, Trk) (.6)

∀ i, r, z ∈ {1 . . .m}, j, k, l ∈ {1 . . . N} Pnewzl = max(Pij, Prk) (.7)

Bnewij = Bij if
∑

jk∈ {1...Ni} Mgsjk = 0(.10)

Bnewij = max{Bij, Bik} otherwise(.10)

Bij = max{Cϕqk} − 1 (.11)

ηmin ≤ ηj (.21)

0 ≤ ηj (.22)

U ≤
∑

i∈ {1...m}
∑

j∈ {1...Ni}Ni(2
1
Ni − 1) (.23)

.2 POSIX CODE

Listing 1: POSIX code for the running example.
1 # i n c l u d e < p t h r e a d . h>
2 vo id * F1 (vo id * a r g) ;
3 vo id * F3 (vo id * a r g) ;
4 vo id * F4 (vo id * a r g) ;
5 vo id * F5 (vo id * a r g) ;
6 vo id * F6 (vo id * a r g) ;
7 vo id * F7 (vo id * a r g) ;
8 vo id * F8 (vo id * a r g) ;
9 vo id * F9 (vo id * a r g) ;

10 vo id * F10 (vo id * a r g) ;
11

129

12 / * ******** C o n t r o l l e r POSIX code ******** * /
13 i n t main (vo id) { p t h r e a d _ t t a u _ 1 ; p t h r e a d _ t t a u _ 2 ; p t h r e a d _ t t a u _ 3 ; p t h r e a d _ t t a u _ 4 ; p t h r e a d _ t t a u _ 5 ;

p t h r e a d _ t t a u _ 6 ; p t h r e a d _ t t a u _ 7 ;
14 i f (cnd=" Cnd1 ") { \ \ i m p l e m e n t a t i o n 1
15 p t h r e a d _ c r e a t e (andtau_1 , NULL, F1 , (vo id *) 30) ; / / C r a a t i o n o f t a u _ 1 t h r e a d
16 p t h r e a d _ c r e a t e (andtau_2 , NULL, F3 , (vo id *) 35) ; / / C r a a t i o n o f t a u _ 2 t h r e a d
17 p t h r e a d _ c r e a t e (andtau_5 , NULL, F7 , (vo id *) 60) ; / / C r a a t i o n o f t a u _ 5 t h r e a d . . .
18 s t i c k _ t h i s _ t h r e a d _ t o _ c o r e (1) ; / / a s s i g n t h r e a d 1 t o c o r e 1 / /
19 p t h r e a d _ j o i n (tau_1 , NULL) ;
20 s t i c k _ t h i s _ t h r e a d _ t o _ c o r e (1) ;
21 p t h r e a d _ j o i n (tau_2 , NULL) ;
22 s t i c k _ t h i s _ t h r e a d _ t o _ c o r e (2) ;
23 p t h r e a d _ j o i n (tau_3 , NULL) ; . . . }
24 e l s e { / / I m p l e m e n t a t i o n 2
25 p t h r e a d _ c r e a t e (andtau_2 , NULL, F3 , (vo id *) 35) ; / / C r a a t i o n o f t a u _ 2 t h r e a d
26 p t h r e a d _ c r e a t e (andtau_6 , NULL, F9 , (vo id *) 120) ; / / C r a a t i o n o f t a u _ 6 t h r e a d . . . }
27 r e t u r n 0 ; } . . .
28 vo id * F1 (vo id * a r g) { / / / }
29 / / c o r e _ i d = 0 , 1 , . . . n−1, where n i s t h e sys tem ’ s number o f c o r e s
30 i n t s t i c k _ t h i s _ t h r e a d _ t o _ c o r e (i n t c o r e _ i d) {
31 i n t num_cores = s y s c o n f (_SC_NPROCESSORS_ONLN) ;
32 i f (c o r e _ i d < 0 | | c o r e _ i d >= num_cores) r e t u r n EINVAL ; c p u _ s e t _ t c p u s e t ;
33 CPU_ZERO(andc p u s e t) ; CPU_SET (c o r e _ i d , andc p u s e t) ; p t h r e a d _ t c u r r e n t _ t h r e a d = p t h r e a d _ s e l f () ;
34 r e t u r n p t h r e a d _ s e t a f f i n i t y _ n p (c u r r e n t _ t h r e a d , s i z e o f (c p u _ s e t _ t) , andc p u s e t) ; }

130

	Introduction
	Thesis Context
	Problematic
	Contributions
	Publication
	Journals (published):
	International Conferences (published)
	Selected Paper (published)

	Thesis Outline

	State of the art
	Reconfigurable Systems
	Definition
	Types of reconfiguration

	Real-time Systems
	Real-Time System Structure
	Real-time Development
	Real-time Verification
	Real-time Implementation

	Optimization Methods
	Mathematical Programming
	Genetic Algorithm
	Dynamic Programming

	Synthesis of Reconfigurable Real-time systems
	Discussion (comparative table)

	Implementation of Mono-core Reconfigurable Real-time systems
	Motivation
	Formalization
	System Model
	Real-time Analysis
	Reconfiguration Time Model
	Energy consumption Model

	MO2R2S Approach
	Methodology description
	Initial Task Model Generation
	Multi-objective Design and Optimization Step
	Code Generation

	Formal Case Study
	Initial Task Model
	Formal Case Study Optimized Models
	Formal Case Study POSIX Code

	Guided Implementation of Multi-core Reconfigurable Real-time Systems
	Motivation
	Formalization
	System Model
	Real-time Analysis
	Reconfiguration Time
	Energy Consumption Model

	Contribution Description
	MO2R2S Global Overview
	Normal Mode
	Resizing Mode
	Degrading Mode

	Formal Case Study
	Normal Mode
	Resizing Mode
	Degrade Mode

	Case Study & Evaluation of Performance
	MO2R2S Description
	Application
	Car Collision Avoidance System Mono-core Case Study
	Autonomous Vehicles System Multi-core Case Study

	Evaluation of Performance
	Evaluation Of MO2R2S on mono-core architecture
	Evaluation Of MO2R2S on multi-core architecture

	Conclusion
	Context and Problems
	Contributions
	Perspectives
	 REFERENCES
	General Objective Function
	Common constraints
	Response Time Optimization Model
	Energy consumption Optimization Model

	POSIX CODE

