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Abstract

Growing evidence indicates that innate immune molecules regulate microglial activa-

tion in Alzheimer's disease (AD); however, their effects on amyloid pathology and

neurodegeneration remain inconclusive. Here, we conditionally deleted one allele of

myd88 gene specifically in microglia in APP/PS1-transgenic mice by 6 months and

analyzed AD-associated pathologies by 9 months. We observed that heterozygous

deletion of myd88 gene in microglia decreased cerebral amyloid β (Aβ) load and

improved cognitive function of AD mice, which was correlated with reduced

number of microglia in the brain and inhibited transcription of inflammatory genes,

for example, tnf-α and il-1β, in both brain tissues and individual microglia. To investi-

gate mechanisms underlying the pathological improvement, we observed that

haploinsufficiency of MyD88 increased microglial recruitment toward Aβ deposits,

which might facilitate Aβ clearance. Microglia with haploinsufficient expression of

MyD88 also increased vasculature in the brain of APP/PS1-transgenic mice, which

was associated with up-regulated transcription of osteopontin and insulin-like growth

factor genes in microglia. Moreover, MyD88-haploinsufficient microglia elevated pro-

tein levels of LRP1 in cerebral capillaries of APP/PS1-transgenic mice. Cell culture

experiments further showed that treatments with interleukin-1β decreased LRP1

expression in pericytes. In summary, haploinsufficiency of MyD88 in microglia at a

late disease stage attenuates pro-inflammatory activation and amyloid pathology,

prevents the impairment of microvasculature and perhaps also protects LRP1-medi-

ated Aβ clearance in the brain of APP/PS1-transgenic mice, all of which improves

neuronal function of AD mice.
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1 | INTRODUCTION

Alzheimer's disease (AD) is a progressive neurodegenerative disease

pathologically characterized by extracellular amyloid β (Aβ) deposits,

intracellular neurofibrillary tangles, and microglial activation (Heneka

et al., 2015). Genome-wide association studies correlated microglial

genes (i.e., TREM2, APOE, CD33, ABCA7, and PLCG2) with the occur-

rence of late-onset AD, which highlights an essential role of microglia in

AD pathogenesis (Lewcock et al., 2020). In AD mouse models, which

overexpress Alzheimer's amyloid precursor protein (APP) in neurons,

microglia are activated and recruited to Aβ deposits (Bolmont

et al., 2008; Meyer-Luehmann et al., 2008), and are more closely corre-

lated with the impairment of cognitive performance than Aβ deposition

(Focke et al., 2018). Elimination of microglia at a late disease stage with

noticeable Aβ already in the brain prevents the synaptic and neuronal

loss in APP-transgenic mice (Spangenberg et al., 2016). However, acti-

vated microglia also exert a protective effect on neurons in AD mice by

up-taking Aβ peptides (Michaud et al., 2013) and promoting degradation

of phosphorylated tau proteins in neurons (Qin et al., 2016).

Many studies through cross-breeding or bone marrow recon-

struction have shown that the innate immune signaling regulates

microglial activation in AD mice. Deficiency of CD14 (Reed-Geaghan,

Reed, Cramer, & Landreth, 2010), Toll-like receptor (TLR) 2 (S. Liu

et al., 2012), TLR4 (Song et al., 2011), myeloid differentiation factor

88 (MyD88) (Hao et al., 2011), interleukin receptor-associated kinase

4 (IRAK4) (Cameron et al., 2012), inhibitor of nuclear factor κ-B kinase

subunit β (IKKβ) (Y. Liu et al., 2014), or NLR family pyrin domain con-

taining 3 (NLRP3) (Heneka et al., 2013) attenuates the degree of

inflammation, shifts inflammatory activation from pro-inflammatory to

anti-inflammatory profiles, or both in the brain of APP-transgenic

mice. However, results on the effects of innate immunity on Aβ

pathology and neuronal degeneration in AD mice are often contradic-

tory. For example, deletion of MyD88 or its downstream signaling

molecule, IRAK4, and IKKβ, or disruption of the interaction between

TLR2 and MyD88, attenuates Aβ pathology and neuronal death in

APP-transgenic mice (Cameron et al., 2012; Hao et al., 2011; Lim

et al., 2011; Y. Liu et al., 2014; Rangasamy et al., 2018), whereas,

wild-type MyD88 was also reported to promote Aβ clearance and

protect neurons (Michaud, Richard, & Rivest, 2011, 2012). There was

one study even showing that overall deletion of MyD88 in AD mice

have no effects on neuroinflammation and Aβ deposition (Weitz,

Gate, Rezai-Zadeh, & Town, 2014). It is difficult to explain the appar-

ently conflicting results delivered from different animal models and

different experimental methods. However, in the investigation of

MyD88 and AD, it should be noted that: (a) MyD88 functions not only

in microglia, but also in other brain cells (e.g., neurons, astrocytes and

endothelial cells; Gosselin & Rivest, 2008; Hung et al., 2018; Shen

et al., 2016); and (b) overall deletion of MyD88 in AD mice alters

development of the brain and is potentially fatal (Michaud

et al., 2011; Schroeder et al., 2021). Thus, to clarify the pathogenic

role of MyD88 in AD, MyD88 expression should be manipulated spe-

cifically in microglia or other brain cells within a designed time win-

dow in AD animals.

Growing evidence suggests that vascular disorders contribute to

AD pathogenesis. AD patients often have vascular pathologies, which

are from large artery atherosclerosis, cerebral amyloid angiopathy

(CAA) to microvascular disease, and blood–brain–barrier (BBB) impair-

ment (Cortes-Canteli & Iadecola, 2020). We observed a reduction of

vasculature and blood flow in the hippocampus of APP- or tau-

transgenic AD mice (Decker et al., 2018). Pericytes wrapping around

endothelial cells are essential for the maintenance of normal structure

and function of cerebral blood circulation, which include BBB homeo-

stasis and angiogenesis (Sweeney, Ayyadurai, & Zlokovic, 2016). Peri-

cytes are injured in AD at an early disease stage (Montagne

et al., 2020; Nation et al., 2019). Deletion of pericytes increases per-

meability of BBB, decreases vasculature and blood flow, and exagger-

ates Aβ accumulation in the brain of APP-transgenic mice (Montagne

et al., 2018; Sagare et al., 2013). BBB is able to efficiently clean cere-

bral Aβ by transporting Aβ outside of brain (Roberts et al., 2014),

which is at least partially mediated by low-density lipoprotein

receptor-related protein 1 (LRP1) and ATP binding cassette subfamily

B member 1 (ABCB1) (Kuhnke et al., 2007; Shinohara, Tachibana,

Kanekiyo, & Bu, 2017). Interestingly, LRP1 also mediates Aβ internali-

zation by pericytes, thereby cleaning Aβ locally at BBB

(Ma et al., 2018). However, how microglia regulate microcirculation,

pericyte function, and BBB-mediated Aβ clearance in AD brain

remains unclear.

In this study, we knocked out one allele of myd88 gene specifi-

cally in microglia in APP/PS1-transgenic mice by 6 months and inves-

tigated amyloid pathology, neuroinflammation, and cerebral

vasculature by 9 months. We observed that haploinsufficiency of

MyD88 in microglia attenuated AD-associated pathologies and

protected neurons.

2 | MATERIALS AND METHODS

2.1 | Animal models and Cross-breeding

APP/PS1-double transgenic mice over-expressing human mutated

APP (KM670/671NL) and PS1 (L166P) under Thy-1 promoters

(Radde et al., 2006) were kindly provided by M. Jucker, Hertie Insti-

tute for Clinical Brain Research, Tübingen, Germany; myd88-floxed

mice (B6.129P2[SJL]-Myd88tm1Defr/J; MyD88fl/fl; Stock number:

008888; Hou, Reizis, & DeFranco, 2008) were imported from the

Jackson Laboratory, Bar Harbor, ME; and Cx3Cr1-CreERT2 mice that

express a fusion protein of Cre recombinase and an estrogen receptor

ligand binding domain under the control of endogenous cx3cr1 pro-

moter/enhancer elements (Goldmann et al., 2013) were kindly pro-

vided by M. Prinz, University of Freiburg, Germany.

APP/PS1-transgenic mice were cross-bred with MyD88fl/fl and

Cx3Cr1-Cre mice to obtain mice with the following genotypes: APPtg

or wtMyD88fl/wtCre+/− and APPtg or wtMyD88fl/wtCre−/−. In order to

minimize potential toxic effects of MyD88 deficiency on the

physiological function, we used heterozygous myd88-floxed mice

(MyD88fl/wt) in the whole study. To induce the recombination of
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myd88 gene, 6-month-old mice were injected (i.p.) with tamoxifen

(Sigma-Aldrich Chemie GmbH, Munich, Germany; 100 mg/kg) in corn

oil once a day over 5 days. The phenotype of APP/PS1-transgenic

mice with or without haploinsufficient expression of MyD88 in

microglia was compared between siblings. As a control experiment,

APP/PS1-transgenic and Cx3Cr1-Cre mice were mated with gpr43-

floxed mice (Tang et al., 2015) to obtain mice with APPtgGpr43fl/

flCre+/− and APPtgGpr43fl/flCre−/− of genotypes. Control mice were

treated completely the same as for MyD88-deficient mice. To identify

cells, which express Gpr43, Gpr43-RFP reporter mice overexpressing

monomeric red fluorescence protein (mRFP) under the control of

gpr43 promoter (Tang et al., 2015) were used. Both gpr43-floxed mice

and Gpr43-RFP reporter mice were kindly provided by S. Offermanns,

Max Planck Institute for Heart and Lung Research, Germany. All ani-

mal experiments were performed in accordance with relevant national

rules and authorized by Landesamt für Verbraucherschutz, Saarland,

Germany (permission numbers: 29/2016 and 14/2018).

2.2 | Morris water maze

The Morris water maze test, consisting of a 6-day training phase and a

1-day probe trial, was used to assess the cognitive function of

APP/PS1-transgenic mice and their wild-type littermates, as previ-

ously described (Qin et al., 2016; Schnöder et al., 2020). During train-

ing phase, latency time, distance, and velocity were recorded with

Ethovision video tracking equipment and software (Noldus Informa-

tion Technology, Wageningen, the Netherlands). During the probe

trial, the platform was removed and we measured the latency of first

visit to the location of original platform, the frequency of crossing in

that location, and the time spent in the platform area.

2.3 | Tissue collection and isolation of blood
vessels

Animals were euthanized at 9 months of age by inhalation of iso-

fluorane. Mice were then perfused with ice-cold PBS, and the brain

was removed and divided. The left hemisphere was immediately fixed

in 4% paraformaldehyde (Sigma-Aldrich Chemie GmbH) in PBS and

embedded in paraffin for immunohistochemistry. For one part of mice,

a 0.5-μm-thick sagittal piece of tissue was cut from the right hemi-

sphere. The cortex and hippocampus were carefully separated and

homogenized in TRIzol (Thermo Fisher Scientific, Darmstadt,

Germany) for RNA isolation. The remainder of the right hemisphere

was snap-frozen in liquid nitrogen and stored at −80�C until biochem-

ical analysis.

For the other part of mice, the cortex and hippocampus from right

hemisphere were carefully dissected and brain vessel fragments were

isolated according to the published protocol (Boulay, Saubamea,

Decleves, & Cohen-Salmon, 2015). Briefly, brain tissues were homog-

enized in HEPES-contained Hanks' balanced salt solution (HBSS) and

centrifuged at 4,400g in HEPES-HBSS buffer supplemented with

dextran from Leuconostoc spp. (molecular weight �70,000; Sigma-

Aldrich Chemie GmbH) to delete myelin. The vessel pellet was

re-suspended in HEPES-HBSS buffer supplemented with 1% bovine

serum albumin (Sigma-Aldrich Chemie GmbH) and filtered with 20 μm

-mesh. The blood vessel fragments were collected on the top of filter

and stored at −80�C for biochemical analysis.

2.4 | Histological analysis

Serial 30-μm-thick sagittal sections were cut from the paraffin-

embedded hemisphere. For each animal, four sections with an interval

of 10 layers between neighboring sections were examined. Human Aβ

was stained with rabbit anti-human Aβ antibody (clone D12B2; Cell

Signaling Technology Europe, Frankfurt am Main, Germany) and

microglia labeled with rabbit anti-ionized calcium-binding adapter mol-

ecule (Iba)-1 antibody (Wako Chemicals, Neuss, Germany), and visual-

ized with the VectaStain Elite ABC kit (Vector Laboratories,

Burlingame, USA) or fluorescence-conjugated second antibodies. In

the whole hippocampus, volumes of Aβ were estimated with the Cav-

alieri method, and Iba-1-positive cells were counted with Optical Frac-

tionator as described previously (Y. Liu et al., 2014) on a Zeiss

AxioImager.Z2 microscope (Carl Zeiss Microscopy GmbH, Göttingen,

Germany) equipped with a Stereo Investigator system (MBF Biosci-

ence, Williston, ND).

To evaluate the cerebral Aβ deposition, four serial brain sections

from each animal were labeled with methoxy-XO4 (Tocris Bioscience,

Wiesbaden-Nordenstadt, Germany) after deparaffinization. The whole

cortex and hippocampus were imaged with Microlucida (MBF Biosci-

ence) and merged. Fluorescence-labeled areas were measured using

the Image J software (https://imagej.nih.gov/ij/) with fixed thresholds

for all compared animals. The percentage of Aβ coverage in the brain

was calculated.

To detect the deposition of Aβ at blood vessels, brain sections were

co-stained with human Aβ antibody (clone D12B2) and biotin-labeled

Griffonia Simplicifolia Lectin I isolectin B4 (Catalog number: B-1205; Vec-

tor Laboratories, Burlingame, CA), and Alexa488-conjugated anti-rabbit

IgG and Cy3-conjugated streptavidin, respectively (Thermo Fisher Scien-

tific). To identify Gpr43-expressing cells, brain sections from

Gpr43-reporter mice were co-stained with rabbit anti-RFP antibody

(Catalog number: 600-401-379; Rockland Immunochemicals, Limerick,

PA) and mouse anti-Tmem119 antibody (clone: 195H4; Synaptic Sys-

tems GmbH, Göttingen, Germany), which were followed by incubation

with Alexa488 or Cy3-conjugated second antibodies (Thermo Fisher

Scientific).

The relationship between microglia and Aβ deposits was investi-

gated as we did in a previous study (Hao et al., 2011). Serial brain sec-

tions were stained with Iba-1 antibody (Wako Chemicals) and

Alexa546-conjugated anti-rabbit IgG (Thermo Fisher Scientific), and

then co-stained with methoxy-XO4 (Bio-Techne GmbH). Under Zeiss

microscopy with 40× objective, Aβ deposits were imaged with green

fluorescence filter. Thereafter, Z-stack serial scanning from −10 to

+10 μm was performed under both green and orange fluorescence
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filters. From each section, more than 10 randomly chosen areas were

analyzed. The total number (>200) of Iba-1-positive cells co-localizing

with Aβ deposits were counted. The area of Aβ was measured with

Image J and used for the adjudgment of microglial cell number.

To quantify vasculature in the brain, our established protocol was

used (Decker et al., 2018; Quan et al., 2020). Four serial paraffin-

embedded sections per mouse with 300 μm of distance in between

were deparaffinized, heated at 80�C in citrate buffer (10 mM, pH = 6)

for 1 hr and digested with Digest-All 3 (Pepsin) (Thermo Fisher Scien-

tific) for 20 min. Thereafter, brain sections were stained with rabbit

anti-collagen IV polyclonal antibody (Catalog number: ab6586; Abcam,

Cambridge, UK) and Alexa488-conjugated goat anti-rabbit IgG (Thermo

Fisher Scientific). After being mounted, the whole hippocampus was

imaged with Microlucida (MBF Bioscience). The length, branching

points, and density of collagen type IV staining-positive blood vessels

were analyzed with a free software, AngioTool (http://angiotool.nci.nih.

gov; Zudaire, Gambardella, Kurcz, & Vermeren, 2011). The mean diame-

ter of blood vessels was calculated by dividing total area of blood ves-

sels with the total length of vessels. The parameters of analysis for all

compared samples were kept constant. The length and branching points

were adjusted with brain area of interest.

2.5 | Western blot analysis

Frozen mouse brains were homogenized on ice in 5× radio-

immunoprecipitation assay buffer (RIPA buffer; 50 mM Tris [pH 8.0],

150 mM NaCl, 0.1% SDS, 0.5% sodiumdeoxy-cholate, 1% NP-40, and

5 mM EDTA) supplemented with protease inhibitor cocktail (Sigma-

Aldrich Chemie GmbH), followed by centrifugation at 16,000g for 30 min

at 4�C to collect the supernatants. Isolated blood vessels were directly

lysed in 2 × SDS-PAGE sample loading buffer containing 4% SDS and

sonicated before loading. The protein levels of synaptic proteins:

Munc18-1 protein mammalian homolog (Munc18-1), synaptosome-

associated protein 25 (SNAP-25), postsynaptic density protein 95 (PSD-

95) and synaptophysin were detected with rabbit polyclonal antibodies

(Catalog numbers: 13414, 3926, and 2507, respectively; Cell Signaling

Technology) and mouse monoclonal antibody (clone SY38; Abcam). In

the same sample, β-actin was detected as a loading control using rabbit

monoclonal antibody (clone: 13E5; Cell Signaling Technology). For the

detection of proteins in cerebral capillaries, rabbit monoclonal antibodies

against platelet-derived growth factor receptor β (PDGFRβ), CD13/APN,

ABCB1, and vinculin (clone: 28E1, D6V1W, E1Y7S, and E1E9V respec-

tively; Cell Signaling Technology) and rabbit polyclonal antibodies against

LRP1 and α-tubulin (Catalog numbers: 64099 and 2144, respectively;

Cell Signaling Technology), tight junction protein 1 (TJP1; Catalog num-

bers: NBP1-85047; Novus Biologicals, Wiesbaden-Nordenstadt, Ger-

many), Claudin-5 (Thermo Fisher Scientific) and aquaporin 4 (AQP4;

Proteintech Europe, Manchester, United Kingdom) were used. Western

blots were visualized via the ECL method (PerkinElmer LAS GmbH,

Rodgau, Germany). Densitometric analysis of bands was performed with

the Image J software. For each sample, the protein level was calculated

as a ratio of target protein/β-actin, α-tubulin or vinculin.

For detection of Aβ oligomers, the proteins in the brain homoge-

nate or in the isolated blood vessels were separated by 10–20%

precasted Tris-Tricine gels (Anamed Elektrophorese GmbH, Groß-

Bieberau/Rodau, Germany). For Western blot, anti-human Aβ mouse

monoclonal antibody (clone W0-2; Merck Chemicals GmbH, Darm-

stadt, Germany), anti-β-actin, or anti-α-tubulin antibodies (Cell Signal-

ing Technology) were used.

2.6 | β- and γ-secretase activity assays

Membrane components were purified from the brain homogenate of

9-month-old APP/PS1-transgenic mice with and without heterozy-

gous deletion of myd88 gene and β- and γ-secretase activity were

measured by incubating the crude membrane fraction with secretase-

specific FRET substrates according to our established methods (Hao

et al., 2011; Xie et al., 2013).

2.7 | Positive selection of CD11b-positive
microglia in the adult mouse brain

To determine the gene expression in microglia, CD11b-positive cells were

isolated from the entire cerebrum of 9-month-old APP/PS1-transgenic

mice with our established protocol (Y. Liu et al., 2014). A single-cell sus-

pension was prepared with Neural Tissue Dissociation Kit (papain-based)

(Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany) and selected

with MicroBeads-conjugated CD11b antibody (Miltenyi Biotec). Lysis

buffer was immediately added to CD11b-positive cells for isolation of total

RNA with RNeasy Plus Mini Kit (Qiagen, Hilden, Germany).

2.8 | Quantitative PCR for analysis of gene
transcripts

Total RNA was isolated from mouse brains or selected CD11b-

positive cells and reverse-transcribed. Gene transcripts were quanti-

fied with our established protocol (Y. Liu et al., 2014) using Taqman

gene expression assays of mouse tumor necrosis factor (tnf-α), interleu-

kin-1β (il-1β), inducible nitric oxide synthase (inos), chemokine (C–C

motif) ligand 2 (ccl-2), il-10, chitinase-like 3 (chi3l3), mannose receptor C

type 1 (mrc1), insulin-like growth factor (igf)-1, triggering receptor

expressed on myeloid cells 2 (trem2), apoe, CX3C chemokine receptor 1

(cx3cr1), purinergic receptor P2Y12 (p2ry12), C-type lectin domain family

7 member A (clec7a), lipoproteinlipase (lpl), transforming growth factor β

receptor 1 (tgfbr1), integrin α X (itgax), neprilysin, insulin-degrading

enzyme (ide), and glyceraldehyde 3-phosphate dehydrogenase (gapdh)

(Thermo Fisher Scientific). The transcription of osteopontin (opn), vas-

cular endothelial growth factor (vegf ), and peptidyl-prolyl cis-trans isom-

erase A (ppia) genes in CD11b-positive cells was evaluated using the

SYBR green binding technique with the following pairs of primers:

opn, 50-CAGCCATGAGTCAAGTCAGC-30 and 50-TGTGGCTGT

GAAACTTGTGG-30; vegf, 50-CCCTTCGTCCTCTCCTTACC-30 and
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50-AGGAAGGGTAAGCCACTCAC-30; and ppia, 50-AGCATACAGGT

CCTGGCATCTTGT-30 and 50-CAAAGACCACATGCTTGCCATCCA-30.

The primer sequences for detecting the transcripts of various recep-

tors of free fatty acids were listed in the legend of Figure S1.

2.9 | Pericyte culture and treatments

Human primary brain vascular pericytes (HBPC) were immortalized by

infecting cells with tsSV40T lentiviral particles (Umehara et al., 2018).

The selected immortalized HBPC clone 37 (hereafter referred to as

HBPC/ci37) was used for our study. HBPC/ci37 cells were cultured at

33�C with 5% CO2/95% air in pericyte medium (Catalog: # 1201;

Sciencell Research Laboratories, Carlsbad, CA) containing 2% (v/v)

fetal bovine serum, 1% (w/v) pericyte growth factors, and penicillin–

streptomycin. Culture flasks and plates were treated with Collagen

Coating Solution (Catalog: # 125-50; Sigma-Aldrich). HBPC/ci37 cells

were used at 40–60 passages in this study.

To investigate the effects of inflammatory activation on expression

of LRP1, PDGFRβ, and CD13, pericytes were cultured in 12-well plate at

5.0 × 105 cells/well. Before experiments, the culture medium was rep-

laced with serum-free pericyte medium and cells were cultured at 37�C

for 3 days to facilitate the cell differentiation (Umehara et al., 2018).

Thereafter, pericytes were treated with recombinant human IL-1β

(Catalog: # 201-LB; R&D Systems, Wiesbaden-Nordenstadt, Germany)

at 0, 5, 10 and 50 ng/ml for 24 hr, or for 8 days with and without with-

drawal of IL-1β for the last 3 days. At the end of experiments, cultured

cells were lysed in RIPA buffer supplemented with protease inhibitor

cocktail. Protein levels of LRP1, PDGFRβ, and CD13 were detected with

quantitative Western blot as described in Section 2.5.

2.10 | Statistical analysis

Data were presented as mean ± SEM. For multiple comparisons, we

used one-way or two-way ANOVA followed by Bonferroni, Tukey, or

Dunnett T3 post hoc test (dependent on the result of Levene's test to

determine the equality of variances). Two independent-samples Stu-

dents t-test was used to compare means for two groups of cases. All

statistical analyses were performed with GraphPad Prism 8 version

8.0.2. for Windows (GraphPad Software, San Diego, CA). Statistical

significance was set at p <.05.

3 | RESULTS

3.1 | Haploinsufficient expression of MyD88 in
microglia protects neurons and improves cognitive
function of APP/PS1-transgenic mice

To investigate effects of microglial MyD88 on AD pathogenesis, we mated

APP/PS1-transgenicmicewithMyD88fl/fl mice andCx3Cr1-CreERT2mice.

Littermate mice with APPtgMyd88fl/wtCre+/− and APPtgMyd88fl/wtCre−/−

of genotypes were injected with tamoxifen at 6 months of age. Tamoxifen-

induced gene recombination should delete one allele of myd88 gene in

>93%microglia but not in other brain cells (Goldmann et al., 2013). Tamoxi-

fen injection also knocks out loxP site-flanked myd88 gene in peripheral

Cx3Cr1-positive myeloid cells; however, normal MyD88-expressing mye-

loid cells produced from the bone marrow should replace these

MyD88-deficient cellswithin 1month (Goldmann et al., 2013). By detecting

myd88 gene transcripts in CD11b-positive brain cells from 9-month-old

APPtgMyd88fl/wtCre+/− (MyD88het) and APPtgMyd88fl/wtCre−/−

(MyD88wt) mice, we observed that the transcriptional level of myd88 in

microglia of MyD88het mice was only 11.4% of that in MyD88wt mice

(myd88/gapdh: 0.178 ± 0.054 [wt] and 0.020 ± 0.004 [het]; t test, p = .044;

n = 3 per group), which was in accordance with a previous observation that

heterozygous knockout ofmyd88 gene reducedmyd88 transcripts by 66%

in the whole brain of APP-transgenic mice (Michaud et al., 2011). As a con-

trol, transcriptional levels ofmyd88 (myd88/gapdh) in CD11b-positive blood

cells were 0.100 ± 0.023 and 0.123 ± 0.025, in MyD88het and MyD88wt

mice, respectively (t test, p = .518; n = 4 per group), which indicated that

peripheral myeloid cells had been replenished by bone marrow-produced

cells expressingMyD88 at a normal level.

We used the Morris water maze test to examine cognitive function

of mice. During the acquisition phase, 9-month-old non-APP-transgenic

(APPwt) littermate mice with or without haploinsufficiency of microglial

MyD88 (APPwtMyd88fl/wtCre+/− and APPwtMyd88fl/wtCre−/−) showed

no significant differences in either swimming time or swimming distance

before climbing onto the escape platform (Figure 1a,b; two-way

ANOVA, p >.05). Compared to APPwtMyd88fl/wtCre−/− littermates,

9-month-old APPtgMyd88fl/wtCre−/− mice with normal MyD88 expres-

sion spent significantly more time (Figure 1a; two-way ANOVA, p <.05)

and traveled longer distances (Figure 1b; two-way ANOVA, p <.05) to

reach the escape platform. Interestingly, APPtgMyd88fl/wtCre+/− mice

with the heterozygous deletion of microglial MyD88 performed signifi-

cantly better than their APPtgMyd88fl/wtCre−/− littermates in searching

and finding the platform after 3 days of training (Figure 1a,b; two-way

ANOVA, p <.05). The swimming velocity did not differ between

MyD88-deficient and wild-type APP-transgenic mice or for the same

mice on different training dates (data not shown).

Twenty-four hours after the end of training phase, the escape plat-

form was removed and a 5-min probe trial was performed to test the

memory of mice. Compared to APPwtMyd88fl/wtCre−/− littermates,

APPtgMyd88fl/wtCre−/− mice crossed the region where the platform had

been located with significantly less frequency, and remained for a signifi-

cantly longer time in their first visit to the original platform region during

the total 5-min probe trial (Figure 1c,d; one-way ANOVA followed by

post-hoc test, p <.05). Interestingly, when compared to APPtgMyd88fl/

wtCre−/− mice, APPtgMyd88fl/wtCre+/− mice were able to cross the

region more frequently and reach the original platform region in less

time (Figure 1c,d; one-way ANOVA followed by post-hoc test, p <.05).

We observed differences in neither parameter analyzed in the probe

trial between APPwtMyd88fl/wtCre+/− and APPwtMyd88fl/wtCre−/− litter-

mate mice (Figure 1c,d; one-way ANOVA, p >.05).

In our previous study, we have observed that overexpression

of APP/PS1 decreases protein levels of synaptic proteins
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(Schnöder et al., 2020). We further used Western blot analysis to

quantify the levels of four synaptic structure proteins: Munc18-1, syn-

aptophysin, SNAP-25, and PSD-95 in the brain homogenate of

9-month-old APPtg littermate mice with different expression of MyD88.

As shown in Figure 1e–g, protein levels of synaptophysin, and SNAP-25

in APPtgMyd88fl/wtCre+/− mice were significantly higher than levels of

these proteins derived from APPtgMyd88fl/wtCre−/− littermate mice

(t test, p <.05). Haploinsufficient expression of MyD88 in microglia

tended to increase the protein level of PSD-95 in the brain as compared

with MyD88-wildtype AD mice (Figure 1i; t test, p = .096).

3.2 | Haploinsufficient expression of MyD88 in
microglia reduces Aβ load in the brain parenchyma and
blood vessels of APP/PS1-transgenic mice

After observing that heterozygous deletion of MyD88 in microglia

attenuated cognitive deficits of APPtg mice but not of APPwt litter-

mates, we analyzed the effects of microglial MyD88 on Aβ load in the

APPtg mice, as Aβ is the key molecule leading to neurodegeneration in

AD (Mucke & Selkoe, 2012). We stained brain sections from

APPtgMyd88fl/wtCre+/− and APPtgMyd88fl/wtCre−/− mice with

methoxy-XO4, which specifically recognizes β-sheet secondary struc-

ture of Aβ. We observed that haploinsufficiency of microglial MyD88

significantly reduced the area of methoxy-XO4 staining-positive Aβ

plaques in both hippocampus and cortex of APP/PS1-transgenic mice

(Figure 2a,b; t test, p <.05). We then used standard immunohistological

and stereological Cavalierimethods to evaluate Aβ volume, adjusted rel-

ative to the volume of analyzed tissues, in the hippocampus of

9-month-old APPtgMyd88fl/wtCre+/− and APPtgMyd88fl/wtCre−/− mice.

The volume of 7.67% ± 0.71% of APPtgMyD88fl/wtCre+/− mice was sig-

nificantly lower than that of APPtgMyD88fl/wtCre−/− mice (10.83% ±

0.56%; Figure 2c,d; t test, p <.05).

To measure the amount of oligomeric Aβ in brain tissues, quanti-

tative Western blot was performed as we did in previous studies

(Schnöder et al., 2016, 2020). We observed that the protein level of

dimeric but not monomeric Aβ in 9-month-old APPtgMyD88fl/wtCre+/

− mice was significantly lower than that in APPtgMyD88fl/wtCre−/− lit-

termates (Figure 2e,f; t test, p <.05). Dimer has been considered as a

toxic species of Aβ aggregates (Shankar et al., 2008).

Aβ is deposited not only in the brain parenchyma, but also at

blood vessels (Stakos et al., 2020). Blood circulation contributes to Aβ

clearance (Roberts et al., 2014). APP/PS1-transgenic mice used in our

study were not a typical animal model for amyloid angiopathy; how-

ever, we observed an impairment of vasculature in their brain (Decker

et al., 2018). Thus, we examined the potential localization of Aβ at

blood vessels. We did observe that Aβ deposited in and around cere-

bral blood vessels of APP/PS1-transgenic mice (Figure 2h). To quan-

tify the blood vessels-associated Aβ, we isolated capillaries from the

brain homogenate and detected Aβ in the tissue lysate. Interestingly,

the protein level of dimeric Aβ in APPtgMyD88fl/wtCre+/− mice was

also significantly lower than that in APPtgMyD88fl/wtCre−/− littermate

mice (Figure 2i,j; t test, p <.05). As a negative experimental control,

F IGURE 1 Haploinsufficiency of microglial MyD88 improves
cognitive function and attenuates AD-associated loss of synaptic proteins
in APP/PS1-transgenic mice. During the training phase of the water maze
test, 9-month-old APP-transgenic mice (APPtg) spent more time and
traveled longer distances to reach the escape platform than did their non-
APP-transgenic littermates (APPwt). Compared to mice with normal
expression of MyD88 (wt), heterozygous deletion of MyD88 in microglia
(het) significantly reduced the traveling time and distance of APPtg mice
but not of APPwt mice (a,b; two-way ANOVA followed by Bonferroni
post hoc test; n ≥5 per group). In the probe trial, APPtg mice crossed the
region where the platform was previously located with significantly less
frequency during the total 5-min experiment, and spent significantly
longer time in the first visit to the platform region; heterozygous deletion
of MyD88 in microglia recovered these APP expression-induced
cognitive impairments (c,d; one-way ANOVA followed by Bonferroni post
hoc test). Western blotting was used to detect the amount of synaptic
structure proteins, Munc18-1, SNAP25, synaptophysin, and PSD-95 in
the brain homogenate of 9-month-old APPtg mice (e–i).
Haploinsufficiency of microglial MyD88 was associated with higher
protein levels of synaptophysin and SNAP25 (t test; n ≥5 per group)
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oligomeric Aβ species could not be detected in capillaries isolated

from non-APP transgenic mice (Figure 2i).

In APPtgMyd88fl/wtCre+/− mice, one allele of cx3cr1 gene is replaced

by the insertion of Cre-encoding sequence (Yona et al., 2013). To investi-

gate the potential effects of heterozygous knockout of cx3cr1 gene in

APPtgMyd88fl/wtCre+/− mice, we created APP/PS1-transgenic control

mice with APPtgGpr43fl/flCre+/− and APPtgGpr43fl/flCre−/− of genotypes,

in which gpr43, instead of myd88 gene was loxP site-flanked. By

detecting gpr43 gene transcripts in CD11b-positive brain cells and

staining RFP in the brain tissue of Gpr43-reporter mice, we observed that

F IGURE 2 Haploinsufficiency of
microglial MyD88 reduces cerebral Aβ load in
APP/PS1-transgenic mice. Six-month-old
APPtgMyD88fl/wtCre+/− (MyD88 het) and
APPtgMyD88fl/wtCre−/− (MyD88 wt) were
injected with tamoxifen and analyzed by
9 months of age for Aβ load in the brain. Brain
sections were first stained with methoxy-XO4
and imaged with Microlucida (a). The area of

Aβ plaques were quantified and adjusted by
the area of analyzed brain tissue (b). Brain
sections were further stained with human
Aβ-specific antibodies (c) and the volume of
immune reactive Aβ deposits in hippocampus
were estimated with stereological Cavalieri
method and adjusted by the volume of
analyzed tissues (d). Heterozygous deletion of
microglial MyD88 significantly decreases Aβ
deposits in the brain (b,d; t test; n ≥9 per each
group). The brains derived from 9-month-old
microglial MyD88-het and wt APP-transgenic
mice were also homogenized in RIPA buffer
for Western blot analysis of soluble Aβ
(monomeric and dimeric) (e). To demonstrate
the relationship between blood vessels and
Aβ, brain sections were co-stained Aβ
antibodies and isolectin B4. Some Aβ deposits
are located in and around the vessels (h;
marked with arrow heads). Thereafter, micro
blood vessels were isolated from 9-month-old
MyD88-het and wt APP-transgenic mice and
homogenized in RIPA buffer for Western blot
analysis of monomeric and dimeric Aβ.
Haploinsufficiency of MyD88 significantly
reduces dimeric Aβ in the whole brain
homogenate and isolated cerebral blood
vessels of APP-transgenic mice (f,g,j,k; t test;
n ≥6 per each group) [Color figure can be
viewed at wileyonlinelibrary.com]
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there was no expression (or expression at a very low level) of Gpr43 in

microglia (see Figure S1a,b), which corroborated a previous observation

(Erny et al., 2015). As Gpr43 was absent in microglia of both

APPtgGpr43fl/flCre+/− and APPtgGpr43fl/flCre−/− mice, the phenotypical

difference between these two groups of mice was caused by

haploinsufficiency of Cx3Cr1. Surprisingly, with immunohistochemical

methods, we did not detect changes of cerebral Aβ deposits in

APPtgGpr43fl/flCre+/− mice compared with APPtgGpr43fl/flCre−/− litter-

mate mice (see Figure S1c,d; t test, p >.05).

3.3 | Haploinsufficient expression of MyD88 in
microglia inhibits pro-inflammatory activation in APP/
PS1-transgenic mouse brain

Microglial inflammatory activation contributes to neuronal degeneration

(Heneka et al., 2015). We observed that the number of Iba-1-

immunoreactive cells (representing microglia) in the hippocampus was sig-

nificantly fewer in 9-month-old microglial MyD88-haploinsufficient

APP/PS1-transgenic mice than in MyD88-wild-type APP/PS1-transgenic

littermates (APPtgMyd88fl/wtCre+/− mice, 1.64 ± 0.16 × 104 cells/mm3

vs. APPtgMyd88fl/wtCre−/− mice, 2.60 ± 0.29 × 104 cells/mm3; t test,

p <.05; Figure 3a,b). Haploinsufficiency of MyD88 in microglia did not

change the number of Iba-1-positive cells in 9-month-old non-APP trans-

genic mice (Figure 3b; t test, p >.05).

We further measured transcripts of M1-inflammatory genes (tnf-

α, il-1β, inos, and ccl-2) and M2-inflammatory genes (il-10, chi3l3, and

mrc1) in brains of 9-month-old APPtgMyd88fl/wtCre+/− and

APPtgMyd88fl/wtCre−/− mice. As shown in Figure 3c,d,

haploinsufficient expression of MyD88 in microglia significantly

reduced cerebral tnf-a and il-1β transcripts in APP-transgenic mice

compared to MyD88-wildtype AD littermate mice (t test, p <.05).

However, the transcription of other genes tested was not changed by

MyD88 deficiency in microglia (Figure 3e–i).

F IGURE 3 Haploinsufficiency of microglial MyD88 inhibits inflammatory activation in the brain of APP-transgenic mice. Six-month-old
APPtgMyD88fl/wtCre+/− (MyD88 het) and APPtgMyD88fl/wtCre−/− (MyD88 wt) mice were injected with tamoxifen and analyzed at 9 months of age for
neuroinflammation. Microglia were stained with fluorescence-conjugated Iba-1 antibodies (a) and counted with the stereological probe, Optical
Fractionator. Haploinsufficiency of MyD88 reduced Iba-1-positive cells in 9-month-old APP-transgenic (APPtg) mice, but not in 9-month-old APP-wild-
type (APPwt) mice (b; one-way ANOVA followed by Bonferroni post hoc test; n ≥6 per group for APPtg mice and = 3 per group for APPwt mice). The

inflammatory activation in brain was further analyzed with real-time PCR to detect transcripts of both pro- and anti-inflammatory genes (c–i). Transcription
of pro-inflammatory genes, tnf-α and il-1β, was reduced by heterozygous deletion of MyD88 in 9-old APPtg mice (c and d; t test; n ≥9 per group) [Color
figure can be viewed at wileyonlinelibrary.com]
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In additional experiments, we also detected transcripts of inflamma-

tory genes (tnf-α, il-1β, ccl-2, and il-10) in the brains of 9-month-old

APPtgGpr43fl/flCre+/− and APPtgGpr43fl/flCre−/− mice, which were

injected with tamoxifen by 6 months of age. As shown in Figure S1e–h,

heterozygous deletion of cx3cr1 gene did not change the inflammatory

gene transcription in APPtgGpr43fl/flCre+/− mice as compared with

Cx3Cr1-wild-type APPtgGpr43fl/flCre−/− mice (t test, p >.05).

3.4 | Haploinsufficient expression of MyD88
suppresses pro-inflammatory activation in microglia
but enhances microglial responses to Aβ in APP/PS1-
transgenic mice

Recently, disease-associated microglia (DAM) phenotype was defined

after comparing microglial transcriptome between APP/PS1-transgenic

F IGURE 4 Haploinsufficiency of MyD88 inhibits pro-inflammatory activation in microglia and enhances microglial responses to Aβ deposits in the
brain of APP-transgenic mice. Microglia were selected with magnetic beads-conjugated CD11b antibodies from 9-month-old tamoxifen-injected
APPtgMyD88fl/wtCre+/− (MyD88 het) and APPtgMyD88fl/wtCre−/− (MyD88 wt) mice. Transcription of signature genes associated with
neurodegenerative diseases were detected with real-time PCR. MyD88 deficiency significantly decreases transcripts of tnf-α, il-1β, chi3l3, and cx3cr1
genes (a,b,e,i; t test; n ≥5 per group). Iba-1 was also co-stained with methoxy-XO4, which recognizes aggregated Aβ (o). Haploinsufficiency of MyD88
significantly increases recruitment of microglia toward Aβ deposits (p; t test; n ≥ 6 per each group) [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 5 Haploinsufficiency of microglial MyD88 increases cerebral vasculature of APP/PS1-transgenic mice. The brains of 9-month-old
tamoxifen-injected APPtgMyD88fl/wtCre+/− (MyD88 het) and APPtgMyD88fl/wtCre−/− (MyD88 wt) mice were stained for collagen type IV. The
blood vessels in the hippocampus were thresholded and skeletonized. The skeleton representation of vasculature is shown in red and branching
points of blood vessels are in blue (a) The total length, density and branching points of blood vessels were calculated and adjusted by area of
analysis (b–d; t test, n ≥11 per group). The mean diameter of blood vessels was calculated by dividing area of total blood vessels with total length
of vessels (e). In order to analyze the relationship between vasculature and microglia, brain sections were co-stained with isolectin B4 (in red) and
Iba-1 antibodies (in green) (f). Haploinsufficiency of MyD88 in microglia significantly increased the distribution of microglia around blood vessels
(g; one-way ANOVA followed by Bonferroni post hoc test; n = 6 per group for APP-transgenic [tg] mice and = 3 per group for APP-wildtype [wt]

mice). Moreover, CD11b-positive brain cells were quantified for the transcription of pro-angiogenic genes. The transcription of opn and igf-1
genes, but not of vegf gene was significantly up-regulated by MyD88 deficiency (h,i; t test, n ≥5 per group). In order to evaluate the integrity of
BBB, isolated brain capillaries were detected for TJP1, Claudin-5, and AQP4 with quantitative Western blot (k). Haploinsufficiency of MyD88 in
microglia did not significantly change the expression levels of all proteins tested (l–n; t test, p >.05, n ≥8 per group) [Color figure can be viewed at
wileyonlinelibrary.com]
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F IGURE 6 Haploinsufficiency of microglial MyD88 increases LRP1 in cerebral micro-vessels of APP/PS1-transgenic mice and IL-1β treatment
decreases LRP1 in cultured pericytes. Micro blood vessels were isolated from the brains of 9-month-old APPtgMyD88fl/wtCre+/− (MyD88 het) and
APPtgMyD88fl/wtCre−/− (MyD88 wt) mice, which were injected with tamoxifen 3 months ago. Protein levels of LRP1, ABCB1, PDGFRβ, and CD13 were
determined with quantitative Western blot (a–e). Haploinsufficiency of MyD88 in microglia significantly elevates LRP1 protein level but not for other
proteins tested, compared with MyD88-wildtype APP/PS1-transgenic mice (b; t test, n ≥6 per group). Immortalized pericytes from human cerebral
capillaries were cultured and treated with IL-1β at various concentrations for 24 hr (f–i) or for 8 days with and without withdrawal of IL-1β during the
last 3 days (j–m). At the end of experiments, cell lysates were prepared from IL-1β-treated pericytes and detected for LRP1, PDGFRβ, and CD13 with
quantitative Western blot. One-way ANOVA comparing levels of each tested protein at different concentrations of IL-1β shows that: (1) IL-1β
treatments significantly decreases LRP1, but increases PDGFRβ and CD13 in a concentration-dependent manner after a 24-hr treatment (g–i; p values
are shown in the figure); (2) IL-1β treatments significantly decreases LRP1 in a concentration-dependent manner after a 8-day treatment (k; p <.001);

and (3) IL-1β treatments does not significantly changes protein levels of PDGFRβ and CD13 after a 8-day treatment (l,m). Two-way ANOVA comparing
protein levels of LRP1, PDGFRβ, or CD13 with and without withdrawal of IL-1β in the last 3 days of experiments shows that withdraw of IL-1β recovers
expression of LRP1 (k; p = .004), but not for PDGFRβ and CD13 (l,m). t test was used to analyze the difference of protein levels in cells treated with IL-
1β at 50 ng/ml shows that withdrawal of IL-1β significantly recovers expression of LRP1, PDGFRβ, and CD13 (k–m; **: p <.01). n = 3 or 4 per group
[Color figure can be viewed at wileyonlinelibrary.com]
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and wild-type mice. This signature is characterized by an induction of

pro-inflammatory genes (including il-1β, ccl2, and itgax), and a suppres-

sion of homeostatic genes (e.g., cx3cr1, p2ry12, tmem119, tgfbr1, sall1,

and csf1r). APOE and TREM2 are two signaling proteins essential for

DAM development (Keren-Shaul et al., 2017; Krasemann et al., 2017).

We quantified the transcription of several DAM signature genes to

characterize the effects of MyD88 on microglial activation. We

observed that haploinsufficiency of MyD88 significantly decreased tran-

scripts of pro-inflammatory genes, tnf-α and il-1β (Figure 4a,b; t test,

p <.05), and also reduced the transcription of anti-inflammatory gene

chi3l3 (Figure 4e; t test, p <.05) and homeostatic gene cx3cr1 (Figure 4i;

t test, p <.05), as compared with MyD88-wildtype microglia.

In order to investigate the relationship between microglia and Aβ

deposits, we co-stained brain sections of 9-month-old AD mice with

Iba-1-specific antibodies and methoxy-XO4. There were significantly

more microglia surrounding Aβ deposits in APPtgMyd88fl/wtCre+/−

mice (6.21 ± 0.47 × 102 cells/mm2) than in APPtgMyd88fl/wtCre−/−

mice (2.68 ± 0.24 × 102 cells/mm2; Figure 4o,p; t test, p <.001), which

agrees with our previous observation in MyD88-deficient bone mar-

row chimeric APP-transgenic mice (Hao et al., 2011).

3.5 | Haploinsufficient expression of MyD88 in
microglia increases cerebral vasculature in APP/PS1-
transgenic mice

We observed that cerebral microvasculature is reduced in

APP/PS1-transgenic mice (Decker et al., 2018). In this study, we asked

whether haploinsufficiency of microglial MyD88 changed the vascula-

ture in AD mouse brain. We stained brains of 9-month-old

APPtgMyd88fl/wtCre+/− and APPtgMyd88fl/wtCre−/− mice with collagen

type IV-specific antibodies, skeletonized and quantified the immunore-

active blood vessels (Figure 5a). As shown in Figure 5b–d, MyD88 defi-

ciency in microglia significantly increased the total length, vessel density

and branching points of micro-blood vessels (t test, p <.05), but did not

change the mean diameter of blood vessels (Figure 5e; t test, p >.05).

As resident microglia serve pro-angiogenic effects in the brain

(Brandenburg et al., 2016; Jiang et al., 2020; Mastorakos et al., 2021),

we co-stained Iba-1 and isolectin B4 on brain sections of 9-month-old

APPtgMyd88fl/wtCre+/− and APPtgMyd88fl/wtCre−/− mice and counted

microglia with and without contact with blood vessels in CA1 area of

the hippocampus (Figure 5f). We observed that haploinsufficiency of

MyD88 significantly increased the distribution of microglia to blood

vessels (Figure 5g; one-way ANOVA followed by post-hoc test,

p <.05). Furthermore, we quantified gene transcription of pro-

angiogenic genes in CD11b-positive brain cells. As shown in

Figure 5h–j, MyD88 deficiency significantly up-regulated the tran-

scription of opn and igf-1 genes (t test, p <.05).

To evaluate the integrity of BBB in AD mice, we quantified TJP1,

Claudin-5 and AQP4 in blood vessels isolated from 9-month-old

APPtgMyd88fl/wtCre+/− and APPtgMyd88fl/wtCre−/− mice. As shown in

Figure 5k–n, haploinsufficiency of MyD88 in microglia did not signifi-

cantly alter the protein levels of all proteins tested (t test, p >.05).

3.6 | Haploinsufficient expression of MyD88 in
microglia increases LRP1 in cerebral capillaries of
APP/PS1-transgenic mice

LRP1 mediates Aβ efflux and local clearance by pericytes at BBB (Ma

et al., 2018; Shinohara et al., 2017). We isolated micro-vessels from

brains of 9-month-old APPtgMyd88fl/wtCre+/− and APPtgMyd88fl/

wtCre−/− mice and observed that haploinsufficiency of MyD88 in

microglia significantly increased protein levels of LRP1, but not ABCB1

in APP/PS1-transgenic mice, as compared with MyD88-wildtype AD

mice (Figure 6a–c; t test, p <.05). The protein levels of pericyte markers,

PDGFRβ, and CD13, were not changed by microglial deficiency of

MyD88 (Figure 6d,e; t test, p >.05). In isolated blood vessels from non-

APP-transgenic control mice (APPwtMyd88fl/wtCre+/− and

APPwtMyd88fl/wtCre−/−), haploinsufficiency of MyD88 in microglia did

not alter the protein levels of all molecules examined (data not shown).

To examine the effects of inflammatory activation on LRP1

expression, we treated cultured pericytes with recombinant IL-1β

either for 24 hr or for 8 days. As shown in Figure 6f,g,j,k, both short-

and long-term treatments of IL-1β significantly decreased the protein

levels of LRP1 in a dose-dependent manner (one-way ANOVA,

p <.05). In the 8-day treatment experiment, withdrawal of IL-1β for

the last 3 days restored expression of LRP1 in cultured pericytes

(Figure 6j,k; two-way ANOVA, p <.05). The short-term treatment of

IL-1β markedly increased expression of PDGFRβ and CD13, which

corroborates our recent finding (Quan et al., 2020) (Figure 6f,h,i; one-

way ANOVA, p <.05). The long-term treatment of IL-1β only at a high

concentration (e.g., 50 ng/ml) tended to decrease the expression of

PDGFRβ and CD13; however, it was not statistically significant

(shown in Figure 6l,m with solid lines; one-way ANOVA, p >.05). The

withdrawal of IL-1β recovered the expression of PDGFRβ and CD13

in cultured pericytes after treatment of IL-1β at 50 ng/ml (Figure 6l,m;

t test comparing cells with and without treatment of IL-1β at

50 ng/ml, p <.05).

3.7 | Haploinsufficient expression of MyD88 in
microglia decreases β- and γ-secretase activity but
does not affect neprilysin and ide gene transcription in
the brain of APP/PS1-transgenic mice

Cerebral Aβ level is determined by Aβ generation and clearance. We

continued to ask whether MyD88-deficient microglia regulated Aβ

production. Using our established protocols (Hao et al., 2011; Xie

et al., 2013), we detected the activity of β- and γ-secretases in brains

of 9-month-old APPtgMyd88fl/wtCre+/− and APPtgMyd88fl/wtCre−/−

mice. Interestingly, the activity of both enzymes was significantly

lower in the brain of APPtgMyd88fl/wtCre+/− mice than in MyD88-wil-

dtype APPtgMyd88fl/wtCre−/− littermates (Figure 7a,b; two-way

ANOVA, p <.05).

To further investigate the clearance of Aβ, we quantified gene

transcripts of Aβ-degrading enzymes, neprilysin, and ide (Leissring

et al., 2003). There were no changes in the transcription of neprilysin
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and ide genes in both brain tissues and microglia from 9-month-old

APPtgMyd88fl/wtCre+/− mice compared with APPtgMyd88fl/wtCre−/−

mice (Figure 7c–f; t test, p >.05), suggesting that haploinsufficiency of

MyD88 in microglia does not affect Aβ catabolism.

4 | DISCUSSION

Microglial activation has been extensively investigated in AD brain

(Heneka et al., 2015), but microglial effects on Aβ pathology and neu-

ronal degeneration remain inconclusive. In this study, we deleted one

allele of myd88 gene specifically in microglia in APP/PS1-transgenic

mice by 6 months. Notably, by 9 months of age these animals showed

attenuation both in the total number of microglia and in the transcrip-

tion levels of pro-inflammatory genes (e.g., tnf-α and il-1β) within the

whole brain and individual microglia, correlating with decreased Aβ

load and improved cognitive function. Interestingly,

MyD88-haploinsufficient microglia might prevent APP/PS1

overexpression-induced changes of cerebral vasculature and LRP1

expression at BBB.

The regulating effects of innate immune signaling on the role of

microglia in AD pathogenesis are highly heterogenous. For example,

TREM2 is essential for microglial response to Aβ in the brain (Ulland

et al., 2017). One group reported that TREM2 deficiency in APP-

transgenic mice increases hippocampal Aβ burden and accelerates

neuron loss (Y. Wang et al., 2015), while another group showed that

TREM2 deletion reduces cerebral Aβ accumulation (Jay et al., 2015).

Subsequent work suggested that TREM2 may have a protective effect

at the early disease stage through phagocytic clearance of Aβ, but dis-

play a pathogenic effect at the later disease stage by triggering neuro-

toxic inflammatory responses (Jay et al., 2017; Parhizkar et al., 2019).

In our studies, we reduced MyD88 expression in microglia or in bone

marrow cells of APP-transgenic mice after noticeable Aβ had already

developed in the brain, which decreases cerebral Aβ load and protects

neurons (Hao et al., 2011). In the experiments by other groups,

MyD88 expression was manipulated in APP-transgenic mice before

the birth (by cross-breeding) or at 2 months of age (by bone marrow

reconstruction) before Aβ deposits appeared in the brain. With such

an experimental setting, MyD88-deficient microglia promote Aβ accu-

mulation in the brain and accelerate spatial memory deficits (Michaud

et al., 2011, 2012). Thus, the pathogenic role of innate immune mole-

cules in microglia is shaped by the evolving cellular environment and

should be analyzed dynamically during AD progression.

MyD88, as a common signaling adaptor for most TLRs and IL-1

receptor, plays an essential role in the innate immune response

(O'Neill, Golenbock, & Bowie, 2013). It is not surprising that the het-

erozygous deletion of myd88 gene inhibits the inflammatory activa-

tion of microglia in APP/PS1-transgenic mice. MyD88 deficiency

F IGURE 7 Haploinsufficiency of MyD88 in microglia decreases β- and γ-secretase activity, but does not affect the transcription of neprilysin
and ide genes in the brain of APP/PS1-transgenic mice. The brains of 9-month-old tamoxifen-injected APPtgMyD88fl/wtCre+/− (MyD88 het) and
APPtgMyD88fl/wtCre−/− (MyD88 wt) mice were used to prepare membrane components and RNA isolation. β- and γ-secretase activity was
measured by incubating membrane components with fluorogenic β- and γ-secretase substrates, respectively (a,b, two-way ANOVA comparing
MyD88 wt and het mice; n = 4 per group). The transcripts of neprilysin and ide genes in the brain tissue (c,e) and isolated microglia (d,f) were
measured with real-time PCR, which showed that transcription of neprilysin and ide genes was not changed by the haploinsufficiency of MyD88
in microglia (t test; n ≥5 per group)
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might reduce the generation of new microglia, as we previously

observed that deletion of IKKβ, a signaling molecule downstream to

MyD88, decreases proliferating microglia in APP-transgenic mice

(Y. Liu et al., 2014). It is unlikely that MyD88 deficiency induces

microglial cell death in APP/PS1-transgenic mice, as blocking MyD88

signaling inhibits TLR4 activation-induced microglial apoptosis (Jung

et al., 2005), while TLR4 is a receptor mediating microglial response to

Aβ challenge (Walter et al., 2007). Interestingly, we observed that

MyD88 deficiency promotes clustering of microglia around Aβ

deposits as we observed in MyD88-deficient bone marrow chimeric

AD mice (Hao et al., 2011). As deficiency of MyD88, IKK2, or TLR2

increases Aβ internalization by cultured microglia or macrophages

(Hao et al., 2011; S. Liu et al., 2012; Y. Liu et al., 2014), the

haploinsufficiency of MyD88 perhaps enhances microglial clearance

of Aβ in AD brain. The relationship between microglial clustering and

Aβ reduction in APP-transgenic mice has been described in many

studies. For example, deficiency of TREM2 blocks microglial recruit-

ment to Aβ, which is correlated with cerebral Aβ accumulation

(Y. Wang et al., 2015). Administration of TREM2 agonist antibodies

increases Aβ-associated microglia, which decreases Aβ in the brain

(Fassler, Rappaport, Cuno, & George, 2021; Price et al., 2020;

S. Wang et al., 2020). However, the molecular mechanisms, which

mediate the migration of microglia toward Aβ and the following Aβ

internalization, remain unclear.

The haploinsufficiency of MyD88 strongly decreases the tran-

scription of cx3cr1, chi3l3, tnf-α, and il-1β genes in microglia of our

APP/PS1-transgenic mice. Cx3Cr1 expression is up-regulated in the

brain of AD patients or animal models (Gonzalez-Prieto et al., 2021).

Deficiency of Cx3Cr1 decreases cerebral Aβ in various APP-transgenic

mice (Hickman, Allison, Coleman, Kingery-Gallagher, & El

Khoury, 2019; Lee et al., 2010; Z. Liu, Condello, Schain, Harb, &

Grutzendler, 2010). Homozygous knockout of cx3cr1 gene was also

observed to increase Aβ deposits-associated microglia and microglial

phagocytosis of Aβ (Z. Liu et al., 2010). However, it should be noted that

the reduction of cx3cr1 transcription in our APPtgMyd88fl/wtCre+/− mice

might be caused by the replacement of endogenous cx3cr1 gene by Cre-

encoding sequence (Yona et al., 2013). To address the question whether

Cx3Cr1 haploinsufficiency in APPtgMyd88fl/wtCre+/− mice affects amy-

loidosis, we created APPtgGpr43fl/flCre+/− and APPtgGpr43fl/flCre−/−

mice, in which gpr43 instead of myd88 gene was loxP site-flanked. As

Gpr43 is not expressed in microglia in both APPtgGpr43fl/flCre+/− and

APPtgGpr43fl/flCre−/− mice (Erny et al., 2015), any changes in

APPtgGpr43fl/flCre+/− mice relative to APPtgGpr43fl/flCre−/− littermates

should be due to the haploinsufficiency of Cx3Cr1. Our experiments rev-

ealed that the haploinsufficiency of Cx3Cr1 alters neither Aβ deposition

nor transcription of inflammatory genes (e.g., tnf-α, il-1β, ccl-2, and il-10)

in the brain of our APP/PS1-transgenic mice. Thus, the pathological

improvement in APPtgMyd88fl/wtCre+/− mice is a result from the

haploinsufficiency of MyD88 instead of Cx3Cr1 deficiency in microglia.

Chi3l3 is a known marker for alternative activation of microglia

and macrophages. Its transcription is also elevated in APP-transgenic

mouse brain (Colton et al., 2006). However, the pathogenic function

of microglial Chi3l3 in AD mice is indeed unknown. Our serial studies

revealed that neuroinflammation and Aβ level are often simulta-

neously attenuated in the brain of APP-transgenic mice (Hao

et al., 2011; S. Liu et al., 2012; Y. Liu et al., 2014). As pro-inflammatory

activation inhibits phagocytosis of cultured microglia (Koenigsknecht-

Talboo & Landreth, 2005), inhibition of proinflammatory activation in

microglia might help Aβ clearance in AD brain. However, systemic

injection of TLR4 or TLR9 agonist induces both pro- and anti-

inflammatory activation and decreases Aβ in the brain of AD mice

(Michaud et al., 2013; Scholtzova et al., 2014). Thus, how inflamma-

tory activation regulates Aβ clearance in the brain is still an unan-

swered question.

There is growing evidence showing that microvascular circulation

is damaged in AD brain; for example, capillary density and cerebral

blood flow decrease, while BBB permeability increases (Watanabe

et al., 2020). Our previous study showed that the blood flow goes

down in correlation with a reduced vasculature in the hippocampus of

APP-transgenic mice (Decker et al., 2018). Aβ-activated perivascular

macrophages injure the neurovascular coupling through producing

reactive oxygen species (Park et al., 2017). However, microglia were

observed to serve pro-angiogenic effects in brains with glioma, ische-

mia, or direct vascular injury (Brandenburg et al., 2016; Jiang

et al., 2020; Mastorakos et al., 2021). Transcription of opn, vegf and

igf1 genes in microglia is associated with angiogenesis (Jiang

et al., 2020). Our study showed that haploinsufficiency of MyD88 in

microglia increases cerebral vasculature, and distribution of microglia

around blood vessels. MyD88 deficiency also up-regulates the tran-

scription of opn and igf-1 genes in microglia. As OPN enhances VEGF

expression in endothelial cells (Dai et al., 2009) and IGF-1 drives the

tissue repairment, including angiogenesis, in the brain (Vannella &

Wynn, 2017), MyD88-haploinsufficient microglia might prevent vas-

cular impairment in AD brain. However, a postmortem tissue study

showed a higher density of capillaries in the brain of AD patients

(Fernandez-Klett et al., 2020). Tg4510 tau-transgenic mice display

increased capillaries, but with atypical and spiraling morphologies, and

reduced luminal diameter of blood vessels (Bennett et al., 2018). Thus,

more studies, especially functional analysis of the effects of microglia

on the microvascular circulation in AD, are required.

BBB breakdown is an early biomarker of AD (Nation et al., 2019).

APOE4 variant was recently linked to the loss of BBB integrity before

the cognitive deficit (Montagne et al., 2020). The cerebrovascular

leakage of �100 nm nanoparticles was observed in APP-transgenic

mice (Tanifum, Starosolski, Fowler, Jankowsky, & Annapragada, 2014).

However, the effects of microglia on BBB integrity in AD brain remain

unclear. In a mouse model of systemic lupus erythematosus, microglial

activation around blood vessels protects BBB at the initial phase by

expressing tight-junction protein Claudin-5, and impairs BBB by

phagocytosing astrocytic end-feet after the inflammation is sustained

(Haruwaka et al., 2019). In our study, we did not observe altered pro-

tein levels of TJP1, Claudin-5, and AQP-4 in microglial

MyD88-haploinsufficient AD mice, although we were not able to

exclude small damages in BBB integrity.

LRP1 contributes to Aβ clearance at BBB through mediating Aβ

efflux and pericyte internalization of Aβ (Ma et al., 2018; Shinohara
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et al., 2017). Deletion of LRP1 in endothelial cells accumulate Aβ in

APP-transgenic mouse brain (Storck et al., 2016). LRP1 expression

decreases in brain capillaries with aging and in AD (Shibata et al., 2000).

Pro-inflammatory cytokines, such as IL-1β, IL-6, and TNF-α, down-

regulate LRP1 in cultured microvascular endothelial cells (Hsu,

Rodriguez-Ortiz, Zumkehr, & Kitazawa, 2021). Our experiments showed

that LRP1 expression is decreased by IL-1β treatments in cultured peri-

cytes. In APP/PS1-transgenic mice, MyD88-haploinsufficient microglia

elevates LRP1 protein level in cerebral capillaries, which might be due to

the inflammatory inhibition. It was supported by another observation

that inflammatory activation in the brain by systemic administration of

lipopolysaccharide decreases Aβ efflux at BBB (Erickson, Hansen, &

Banks, 2012). PDGFRβ and CD13 are two receptors on pericytes and

essential for the survival and integration of pericytes in blood vessels

(Lindahl, Johansson, Leveen, & Betsholtz, 1997; Rangel et al., 2007). The

expression of PDGFRβ and CD13 appeared to be resistant to inflamma-

tory regulation, as haploinsufficiency of MyD88 did not change their

protein levels in AD mice. Their expression in cultured pericytes was not

altered, either, by IL-1β at the concentrations sufficient for the down-

regulation of LRP1 expression. There was a recent study showing that

the density of pericytes is reserved during AD pathogenesis (Fernandez-

Klett et al., 2020).

Aβ is produced after serial digestions of APP by β-(BACE1) and

γ-secretases (Haass, Kaether, Thinakaran, & Sisodia, 2012). The

expression of BACE1 in neurons is up-regulated by inflammatory acti-

vation (He et al., 2007; Sastre et al., 2006). Our studies showed that

p38α-MAPK deficiency promotes BACE1 degradation in neurons

(Schnöder et al., 2016). Recently, inflammatory cytokines, such as

interferon-γ and α, were shown to induce the expression of

interferon-induced transmembrane protein 3 in neurons and astro-

cytes, which binds to γ-secretase and increases its activity (Hur

et al., 2020). Thus, haploinsufficient expression of MyD88 in microglia

in our APP/PS1-transgenic mice decreases neuroinflammation, and

inhibits β- and γ-secretase activity in the brain, which might serve as

another mechanism decreasing Aβ level in AD mice.

In summary, haploinsufficient expression of MyD88 in microglia

at a late disease stage slows down the cognitive decline of

APP/PS1-transgenic mice. MyD88 deficiency inhibits pro-

inflammatory activation of microglia, but enhances microglial response

to Aβ, which subsequently attenuates Aβ load in the brain.

Haploinsufficiency of MyD88 might enhance pro-angiogenic effects

of microglia, and prevent the loss of LRP1-mediated Aβ clearance at

BBB in AD. However, the effects of microglia on the structure and

function of micro-vessels in AD are far from being understood. To

answer these questions will be a focus of our following studies.

ACKNOWLEDGMENTS

The authors thank Dr. M. Jucker (Hertie Institute for Clinical Brain

Research, Tübingen) for providing APP/PS1-transgenic mice,

Dr. M. Prinz (Department of Neuropathology, University of Freiburg,

Freiburg) for Cx3Cr1-CreERT2 mice, and S. Offermanns (Max Planck

Institute for Heart and Lung Research) for gpr43-floxed mice and

Gpr43-RFP reporter mice. The authors appreciate Elisabeth Gluding

and Isabel Euler for their excellent technical assistance. This work was

supported by “SNOWBALL,” an EU Joint Programme for Neurode-

generative Disease (JPND; 01ED1617B; to Yang Liu and Klaus

Fassbender); Alzheimer Forschung Initiative e.V. (#18009; to Yang

Liu) and Medical Faculty of Universität des Saarlandes through

HOMFOR2016 (to Yang Liu). Qinghua Luo holds a scholarship from

China Scholarship Council (CSC; 201906820011). Open Access

funding enabled and organized by Projekt DEAL.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest with the

contents of this article.

AUTHOR CONTRIBUTIONS

Yang Liu: conceptualized and designed the study, acquired funding,

conducted experiments, acquired and analyzed data, and wrote the

manuscript. Wenqiang Quan, Qinghua Luo, Wenlin Hao, and Inge

Tomic: conducted experiments, acquired data, and analyzed data.

Tomomi Furihata: provided pericyte cell line. Walter Schulz-Schäffer:

provided technical support. Michael D. Menger: offered animal facility

and supervised the study. Klaus Fassbender: acquired funding and

supervised the study. All authors contributed to the article and

approved the submitted version.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the

corresponding author upon reasonable request.

ORCID

Klaus Fassbender https://orcid.org/0000-0003-3596-868X

Yang Liu https://orcid.org/0000-0002-7614-4233

REFERENCES

Bennett, R. E., Robbins, A. B., Hu, M., Cao, X., Betensky, R. A., Clark, T., …
Hyman, B. T. (2018). Tau induces blood vessel abnormalities and

angiogenesis-related gene expression in P301L transgenic mice and

human Alzheimer's disease. Proceedings of the National Academy of Sci-

ences of the United States of America, 115(6), E1289–E1298. https://
doi.org/10.1073/pnas.1710329115

Bolmont, T., Haiss, F., Eicke, D., Radde, R., Mathis, C. A., Klunk, W. E., …
Calhoun, M. E. (2008). Dynamics of the microglial/amyloid interaction

indicate a role in plaque maintenance. The Journal of Neuroscience, 28

(16), 4283–4292. https://doi.org/10.1523/JNEUROSCI.4814-07.

2008

Boulay, A. C., Saubamea, B., Decleves, X., & Cohen-Salmon, M. (2015).

Purification of mouse brain vessels. Journal of Visualized Experiments,

105, e53208. https://doi.org/10.3791/53208

Brandenburg, S., Muller, A., Turkowski, K., Radev, Y. T., Rot, S., Schmidt, C.,

… Vajkoczy, P. (2016). Resident microglia rather than peripheral mac-

rophages promote vascularization in brain tumors and are source of

alternative pro-angiogenic factors. Acta Neuropathologica, 131(3),

365–378. https://doi.org/10.1007/s00401-015-1529-6
Cameron, B., Tse, W., Lamb, R., Li, X., Lamb, B. T., & Landreth, G. E. (2012).

Loss of interleukin receptor-associated kinase 4 signaling suppresses

amyloid pathology and alters microglial phenotype in a mouse model

of Alzheimer's disease. The Journal of Neuroscience, 32(43), 15112–
15123. https://doi.org/10.1523/JNEUROSCI.1729-12.2012

QUAN ET AL. 2001

https://orcid.org/0000-0003-3596-868X
https://orcid.org/0000-0003-3596-868X
https://orcid.org/0000-0002-7614-4233
https://orcid.org/0000-0002-7614-4233
https://doi.org/10.1073/pnas.1710329115
https://doi.org/10.1073/pnas.1710329115
https://doi.org/10.1523/JNEUROSCI.4814-07.2008
https://doi.org/10.1523/JNEUROSCI.4814-07.2008
https://doi.org/10.3791/53208
https://doi.org/10.1007/s00401-015-1529-6
https://doi.org/10.1523/JNEUROSCI.1729-12.2012


Colton, C. A., Mott, R. T., Sharpe, H., Xu, Q., Van Nostrand, W. E., &

Vitek, M. P. (2006). Expression profiles for macrophage alternative

activation genes in AD and in mouse models of AD. Journal of Neu-

roinflammation, 3, 27. https://doi.org/10.1186/1742-2094-3-27

Cortes-Canteli, M., & Iadecola, C. (2020). Alzheimer's disease and vascular

aging: JACC focus seminar. Journal of the American College of Cardiol-

ogy, 75(8), 942–951. https://doi.org/10.1016/j.jacc.2019.10.062
Dai, J., Peng, L., Fan, K., Wang, H., Wei, R., Ji, G., … Guo, Y. (2009).

Osteopontin induces angiogenesis through activation of PI3K/AKT

and ERK1/2 in endothelial cells. Oncogene, 28(38), 3412–3422.
https://doi.org/10.1038/onc.2009.189

Decker, Y., Muller, A., Nemeth, E., Schulz-Schaeffer, W. J., Fatar, M.,

Menger, M. D., … Fassbender, K. (2018). Analysis of the vasculature by

immunohistochemistry in paraffin-embedded brains. Brain Structure &

Function, 223(2), 1001–1015. https://doi.org/10.1007/s00429-017-

1595-8

Erickson, M. A., Hansen, K., & Banks, W. A. (2012). Inflammation-induced

dysfunction of the low-density lipoprotein receptor-related protein-1

at the blood-brain barrier: Protection by the antioxidant N-ace-

tylcysteine. Brain, Behavior, and Immunity, 26(7), 1085–1094. https://
doi.org/10.1016/j.bbi.2012.07.003

Erny, D., Hrabe de Angelis, A. L., Jaitin, D., Wieghofer, P., Staszewski, O.,

David, E., … Prinz, M. (2015). Host microbiota constantly control matu-

ration and function of microglia in the CNS. Nature Neuroscience, 18

(7), 965–977. https://doi.org/10.1038/nn.4030
Fassler, M., Rappaport, M. S., Cuno, C. B., & George, J. (2021). Engagement

of TREM2 by a novel monoclonal antibody induces activation of

microglia and improves cognitive function in Alzheimer's disease

models. Journal of Neuroinflammation, 18(1), 19. https://doi.org/10.

1186/s12974-020-01980-5

Fernandez-Klett, F., Brandt, L., Fernandez-Zapata, C., Abuelnor, B.,

Middeldorp, J., Sluijs, J. A., … Priller, J. (2020). Denser brain capillary

network with preserved pericytes in Alzheimer's disease. Brain Pathol-

ogy, 30(6), 1071–1086. https://doi.org/10.1111/bpa.12897
Focke, C., Blume, T., Zott, B., Shi, Y., Deussing, M., Peters, F., …

Brendel, M. (2018). Early and longitudinal microglial activation but not

amyloid accumulation predict cognitive outcome in PS2APP mice.

Journal of Nuclear Medicine, 60, 548–554. https://doi.org/10.2967/
jnumed.118.217703

Goldmann, T., Wieghofer, P., Muller, P. F., Wolf, Y., Varol, D., Yona, S., …
Prinz, M. (2013). A new type of microglia gene targeting shows TAK1

to be pivotal in CNS autoimmune inflammation. Nature Neuroscience,

16(11), 1618–1626. https://doi.org/10.1038/nn.3531
Gonzalez-Prieto, M., Gutierrez, I. L., Garcia-Bueno, B., Caso, J. R.,

Leza, J. C., Ortega-Hernandez, A., … Madrigal, J. L. M. (2021). Micro-

glial CX3CR1 production increases in Alzheimer's disease and is regu-

lated by noradrenaline. Glia, 69(1), 73–90. https://doi.org/10.1002/
glia.23885

Gosselin, D., & Rivest, S. (2008). MyD88 signaling in brain endothelial cells

is essential for the neuronal activity and glucocorticoid release during

systemic inflammation. Molecular Psychiatry, 13(5), 480–497. https://
doi.org/10.1038/sj.mp.4002122

Haass, C., Kaether, C., Thinakaran, G., & Sisodia, S. (2012). Trafficking and

proteolytic processing of APP. Cold Spring Harbor Perspectives in Medi-

cine, 2(5), a006270. https://doi.org/10.1101/cshperspect.a006270

Hao, W., Liu, Y., Liu, S., Walter, S., Grimm, M. O., Kiliaan, A. J., …
Fassbender, K. (2011). Myeloid differentiation factor 88-deficient

bone marrow cells improve Alzheimer's disease-related symptoms and

pathology. Brain, 134(Pt 1), 278–292. https://doi.org/10.1093/brain/
awq325

Haruwaka, K., Ikegami, A., Tachibana, Y., Ohno, N., Konishi, H.,

Hashimoto, A., … Wake, H. (2019). Dual microglia effects on blood

brain barrier permeability induced by systemic inflammation. Nature

Communications, 10(1), 5816. https://doi.org/10.1038/s41467-019-

13812-z

He, P., Zhong, Z., Lindholm, K., Berning, L., Lee, W., Lemere, C., … Shen, Y.

(2007). Deletion of tumor necrosis factor death receptor inhibits amy-

loid beta generation and prevents learning and memory deficits in

Alzheimer's mice. The Journal of Cell Biology, 178(5), 829–841. https://
doi.org/10.1083/jcb.200705042

Heneka, M. T., Carson, M. J., El Khoury, J., Landreth, G. E., Brosseron, F.,

Feinstein, D. L., … Kummer, M. P. (2015). Neuroinflammation in

Alzheimer's disease. Lancet Neurology, 14(4), 388–405. https://doi.

org/10.1016/S1474-4422(15)70016-5

Heneka, M. T., Kummer, M. P., Stutz, A., Delekate, A., Schwartz, S., Vieira-

Saecker, A., … Golenbock, D. T. (2013). NLRP3 is activated in

Alzheimer's disease and contributes to pathology in APP/PS1 mice.

Nature, 493(7434), 674–678. https://doi.org/10.1038/nature11729
Hickman, S. E., Allison, E. K., Coleman, U., Kingery-Gallagher, N. D., & El

Khoury, J. (2019). Heterozygous CX3CR1 deficiency in microglia

restores neuronal beta-amyloid clearance pathways and slows pro-

gression of Alzheimer's like-disease in PS1-APP mice. Frontiers in

Immunology, 10, 2780. https://doi.org/10.3389/fimmu.2019.02780

Hou, B., Reizis, B., & DeFranco, A. L. (2008). Toll-like receptors activate

innate and adaptive immunity by using dendritic cell-intrinsic and

-extrinsic mechanisms. Immunity, 29(2), 272–282. https://doi.org/10.
1016/j.immuni.2008.05.016

Hsu, H. W., Rodriguez-Ortiz, C. J., Zumkehr, J., & Kitazawa, M. (2021).

Inflammatory cytokine IL-1beta downregulates endothelial LRP1 via

MicroRNA-mediated gene silencing. Neuroscience, 453, 69–80.
https://doi.org/10.1016/j.neuroscience.2020.11.021

Hung, Y. F., Chen, C. Y., Shih, Y. C., Liu, H. Y., Huang, C. M., & Hsueh, Y. P.

(2018). Endosomal TLR3, TLR7, and TLR8 control neuronal morphol-

ogy through different transcriptional programs. The Journal of Cell Biol-

ogy, 217(8), 2727–2742. https://doi.org/10.1083/jcb.201712113
Hur, J. Y., Frost, G. R., Wu, X., Crump, C., Pan, S. J., Wong, E., … Li, Y. M.

(2020). The innate immunity protein IFITM3 modulates gamma-

secretase in Alzheimer's disease. Nature, 586(7831), 735–740. https://
doi.org/10.1038/s41586-020-2681-2

Jay, T. R., Hirsch, A. M., Broihier, M. L., Miller, C. M., Neilson, L. E.,

Ransohoff, R. M., … Landreth, G. E. (2017). Disease progression-

dependent effects of TREM2 deficiency in a mouse model of

Alzheimer's disease. The Journal of Neuroscience, 37(3), 637–647.
https://doi.org/10.1523/JNEUROSCI.2110-16.2016

Jay, T. R., Miller, C. M., Cheng, P. J., Graham, L. C., Bemiller, S.,

Broihier, M. L., … Lamb, B. T. (2015). TREM2 deficiency eliminates

TREM2+ inflammatory macrophages and ameliorates pathology in

Alzheimer's disease mouse models. The Journal of Experimental Medi-

cine, 212(3), 287–295. https://doi.org/10.1084/jem.20142322

Jiang, L., Mu, H., Xu, F., Xie, D., Su, W., Xu, J., … Hu, X. (2020). Trans-

criptomic and functional studies reveal undermined chemotactic and

angiostimulatory properties of aged microglia during stroke recovery.

Journal of Cerebral Blood Flow & Metabolism, 40(1_suppl), S81–S97.
https://doi.org/10.1177/0271678X20902542

Jung, D. Y., Lee, H., Jung, B. Y., Ock, J., Lee, M. S., Lee, W. H., & Suk, K.

(2005). TLR4, but not TLR2, signals autoregulatory apoptosis of cul-

tured microglia: A critical role of IFN-beta as a decision maker. Journal

of Immunology, 174(10), 6467–6476. https://doi.org/10.4049/

jimmunol.174.10.6467

Keren-Shaul, H., Spinrad, A., Weiner, A., Matcovitch-Natan, O., Dvir-

Szternfeld, R., Ulland, T. K., … Amit, I. (2017). A unique microglia type

associated with restricting development of Alzheimer's disease. Cell,

169(7), 1276–1290 e1217. https://doi.org/10.1016/j.cell.2017.

05.018

Koenigsknecht-Talboo, J., & Landreth, G. E. (2005). Microglial phagocytosis

induced by fibrillar beta-amyloid and IgGs are differentially regulated by

proinflammatory cytokines. The Journal of Neuroscience, 25(36), 8240–
8249. https://doi.org/10.1523/JNEUROSCI.1808-05.2005

Krasemann, S., Madore, C., Cialic, R., Baufeld, C., Calcagno, N., El

Fatimy, R., … Butovsky, O. (2017). The TREM2-APOE pathway drives

2002 QUAN ET AL.

https://doi.org/10.1186/1742-2094-3-27
https://doi.org/10.1016/j.jacc.2019.10.062
https://doi.org/10.1038/onc.2009.189
https://doi.org/10.1007/s00429-017-1595-8
https://doi.org/10.1007/s00429-017-1595-8
https://doi.org/10.1016/j.bbi.2012.07.003
https://doi.org/10.1016/j.bbi.2012.07.003
https://doi.org/10.1038/nn.4030
https://doi.org/10.1186/s12974-020-01980-5
https://doi.org/10.1186/s12974-020-01980-5
https://doi.org/10.1111/bpa.12897
https://doi.org/10.2967/jnumed.118.217703
https://doi.org/10.2967/jnumed.118.217703
https://doi.org/10.1038/nn.3531
https://doi.org/10.1002/glia.23885
https://doi.org/10.1002/glia.23885
https://doi.org/10.1038/sj.mp.4002122
https://doi.org/10.1038/sj.mp.4002122
https://doi.org/10.1101/cshperspect.a006270
https://doi.org/10.1093/brain/awq325
https://doi.org/10.1093/brain/awq325
https://doi.org/10.1038/s41467-019-13812-z
https://doi.org/10.1038/s41467-019-13812-z
https://doi.org/10.1083/jcb.200705042
https://doi.org/10.1083/jcb.200705042
https://doi.org/10.1016/S1474-4422(15)70016-5
https://doi.org/10.1016/S1474-4422(15)70016-5
https://doi.org/10.1038/nature11729
https://doi.org/10.3389/fimmu.2019.02780
https://doi.org/10.1016/j.immuni.2008.05.016
https://doi.org/10.1016/j.immuni.2008.05.016
https://doi.org/10.1016/j.neuroscience.2020.11.021
https://doi.org/10.1083/jcb.201712113
https://doi.org/10.1038/s41586-020-2681-2
https://doi.org/10.1038/s41586-020-2681-2
https://doi.org/10.1523/JNEUROSCI.2110-16.2016
https://doi.org/10.1084/jem.20142322
https://doi.org/10.1177/0271678X20902542
https://doi.org/10.4049/jimmunol.174.10.6467
https://doi.org/10.4049/jimmunol.174.10.6467
https://doi.org/10.1016/j.cell.2017.05.018
https://doi.org/10.1016/j.cell.2017.05.018
https://doi.org/10.1523/JNEUROSCI.1808-05.2005


the transcriptional phenotype of dysfunctional microglia in neurode-

generative diseases. Immunity, 47(3), 566–581 e569. https://doi.org/

10.1016/j.immuni.2017.08.008

Kuhnke, D., Jedlitschky, G., Grube, M., Krohn, M., Jucker, M., Mosyagin, I.,

… Vogelgesang, S. (2007). MDR1-P-glycoprotein (ABCB1) mediates

transport of Alzheimer's amyloid-beta peptides—Implications for the

mechanisms of Abeta clearance at the blood-brain barrier. Brain

Pathology, 17(4), 347–353. https://doi.org/10.1111/j.1750-3639.

2007.00075.x

Lee, S., Varvel, N. H., Konerth, M. E., Xu, G., Cardona, A. E.,

Ransohoff, R. M., & Lamb, B. T. (2010). CX3CR1 deficiency alters

microglial activation and reduces beta-amyloid deposition in two

Alzheimer's disease mouse models. The American Journal of Pathology,

177(5), 2549–2562. https://doi.org/10.2353/ajpath.2010.100265
Leissring, M. A., Farris, W., Chang, A. Y., Walsh, D. M., Wu, X., Sun, X., …

Selkoe, D. J. (2003). Enhanced proteolysis of beta-amyloid in APP

transgenic mice prevents plaque formation, secondary pathology, and

premature death. Neuron, 40(6), 1087–1093. https://doi.org/10.1016/
s0896-6273(03)00787-6

Lewcock, J. W., Schlepckow, K., Di Paolo, G., Tahirovic, S.,

Monroe, K. M., & Haass, C. (2020). Emerging microglia biology defines

novel therapeutic approaches for Alzheimer's disease. Neuron, 108,

801–821. https://doi.org/10.1016/j.neuron.2020.09.029
Lim, J. E., Kou, J., Song, M., Pattanayak, A., Jin, J., Lalonde, R., & Fukuchi, K.

(2011). MyD88 deficiency ameliorates beta-amyloidosis in an animal

model of Alzheimer's disease. The American Journal of Pathology, 179(3),

1095–1103. https://doi.org/10.1016/j.ajpath.2011.05.045
Lindahl, P., Johansson, B. R., Leveen, P., & Betsholtz, C. (1997). Pericyte

loss and microaneurysm formation in PDGF-B-deficient mice. Science,

277(5323), 242–245. https://doi.org/10.1126/science.277.5323.242
Liu, S., Liu, Y., Hao, W., Wolf, L., Kiliaan, A. J., Penke, B., … Fassbender, K.

(2012). TLR2 is a primary receptor for Alzheimer's amyloid beta pep-

tide to trigger neuroinflammatory activation. Journal of Immunology,

188(3), 1098–1107. https://doi.org/10.4049/jimmunol.1101121

Liu, Y., Liu, X., Hao, W., Decker, Y., Schomburg, R., Fulop, L., …
Fassbender, K. (2014). IKKbeta deficiency in myeloid cells ameliorates

Alzheimer's disease-related symptoms and pathology. The Journal of

Neuroscience, 34(39), 12982–12999. https://doi.org/10.1523/

JNEUROSCI.1348-14.2014

Liu, Z., Condello, C., Schain, A., Harb, R., & Grutzendler, J. (2010). CX3CR1

in microglia regulates brain amyloid deposition through selective

protofibrillar amyloid-beta phagocytosis. The Journal of Neuroscience,

30(50), 17091–17101. https://doi.org/10.1523/JNEUROSCI.4403-

10.2010

Ma, Q., Zhao, Z., Sagare, A. P., Wu, Y., Wang, M., Owens, N. C., …
Zlokovic, B. V. (2018). Blood-brain barrier-associated pericytes inter-

nalize and clear aggregated amyloid-beta42 by LRP1-dependent apoli-

poprotein E isoform-specific mechanism. Molecular Neurodegeneration,

13(1), 57. https://doi.org/10.1186/s13024-018-0286-0

Mastorakos, P., Mihelson, N., Luby, M., Burks, S. R., Johnson, K.,

Hsia, A. W., … McGavern, D. B. (2021). Temporally distinct myeloid cell

responses mediate damage and repair after cerebrovascular injury.

Nature Neuroscience, 24(2), 245–258. https://doi.org/10.1038/

s41593-020-00773-6

Meyer-Luehmann, M., Spires-Jones, T. L., Prada, C., Garcia-Alloza, M., de

Calignon, A., Rozkalne, A., … Hyman, B. T. (2008). Rapid appearance

and local toxicity of amyloid-beta plaques in a mouse model of

Alzheimer's disease. Nature, 451(7179), 720–724. https://doi.org/10.
1038/nature06616

Michaud, J. P., Halle, M., Lampron, A., Theriault, P., Prefontaine, P.,

Filali, M., … Rivest, S. (2013). Toll-like receptor 4 stimulation with the

detoxified ligand monophosphoryl lipid A improves Alzheimer's

disease-related pathology. Proceedings of the National Academy of Sci-

ences of the United States of America, 110(5), 1941–1946. https://doi.
org/10.1073/pnas.1215165110

Michaud, J. P., Richard, K. L., & Rivest, S. (2011). MyD88-adaptor protein

acts as a preventive mechanism for memory deficits in a mouse model

of Alzheimer's disease. Molecular Neurodegeneration, 6(1), 5. https://

doi.org/10.1186/1750-1326-6-5

Michaud, J. P., Richard, K. L., & Rivest, S. (2012). Hematopoietic

MyD88-adaptor protein acts as a natural defense mechanism for cog-

nitive deficits in Alzheimer's disease. Stem Cell Reviews and Reports, 8

(3), 898–904. https://doi.org/10.1007/s12015-012-9356-9
Montagne, A., Nation, D. A., Sagare, A. P., Barisano, G., Sweeney, M. D.,

Chakhoyan, A., … Zlokovic, B. V. (2020). APOE4 leads to blood-brain

barrier dysfunction predicting cognitive decline. Nature, 581(7806),

71–76. https://doi.org/10.1038/s41586-020-2247-3
Montagne, A., Nikolakopoulou, A. M., Zhao, Z., Sagare, A. P., Si, G.,

Lazic, D., … Zlokovic, B. V. (2018). Pericyte degeneration causes white

matter dysfunction in the mouse central nervous system. Nature Medi-

cine, 24(3), 326–337. https://doi.org/10.1038/nm.4482

Mucke, L., & Selkoe, D. J. (2012). Neurotoxicity of amyloid beta-protein:

Synaptic and network dysfunction. Cold Spring Harbor Perspectives in

Medicine, 2(7), a006338. https://doi.org/10.1101/cshperspect.

a006338

Nation, D. A., Sweeney, M. D., Montagne, A., Sagare, A. P.,

D'Orazio, L. M., Pachicano, M., … Zlokovic, B. V. (2019). Blood-brain

barrier breakdown is an early biomarker of human cognitive dys-

function. Nature Medicine, 25(2), 270–276. https://doi.org/10.1038/
s41591-018-0297-y

O'Neill, L. A., Golenbock, D., & Bowie, A. G. (2013). The history of toll-like

receptors—Redefining innate immunity. Nature Reviews. Immunology,

13(6), 453–460. https://doi.org/10.1038/nri3446
Parhizkar, S., Arzberger, T., Brendel, M., Kleinberger, G., Deussing, M.,

Focke, C., … Haass, C. (2019). Loss of TREM2 function increases amy-

loid seeding but reduces plaque-associated ApoE. Nature Neuroscience,

22, 191–204. https://doi.org/10.1038/s41593-018-0296-9
Park, L., Uekawa, K., Garcia-Bonilla, L., Koizumi, K., Murphy, M., Pistik, R.,

… Iadecola, C. (2017). Brain perivascular macrophages initiate the neu-

rovascular dysfunction of Alzheimer Abeta peptides. Circulation

Research, 121(3), 258–269. https://doi.org/10.1161/CIRCRESAHA.

117.311054

Price, B. R., Sudduth, T. L., Weekman, E. M., Johnson, S., Hawthorne, D.,

Woolums, A., & Wilcock, D. M. (2020). Therapeutic Trem2 activation

ameliorates amyloid-beta deposition and improves cognition in the

5XFAD model of amyloid deposition. Journal of Neuroinflammation, 17

(1), 238. https://doi.org/10.1186/s12974-020-01915-0

Qin, Y., Liu, Y., Hao, W., Decker, Y., Tomic, I., Menger, M. D., …
Fassbender, K. (2016). Stimulation of TLR4 attenuates Alzheimer's

disease-related symptoms and pathology in tau-transgenic mice. Jour-

nal of Immunology, 197(8), 3281–3292. https://doi.org/10.4049/

jimmunol.1600873

Quan, W., Luo, Q., Tang, Q., Furihata, T., Li, D., Fassbender, K., & Liu, Y.

(2020). NLRP3 is involved in the maintenance of cerebral pericytes.

Frontiers in Cellular Neuroscience, 14(276), 1–12. https://doi.org/10.
3389/fncel.2020.00276

Radde, R., Bolmont, T., Kaeser, S. A., Coomaraswamy, J., Lindau, D.,

Stoltze, L., … Jucker, M. (2006). Abeta42-driven cerebral amyloidosis

in transgenic mice reveals early and robust pathology. EMBO Reports,

7(9), 940–946. https://doi.org/10.1038/sj.embor.7400784

Rangasamy, S. B., Jana, M., Roy, A., Corbett, G. T., Kundu, M., Chandra, S.,

… Pahan, K. (2018). Selective disruption of TLR2-MyD88 interaction

inhibits inflammation and attenuates Alzheimer's pathology. The Jour-

nal of Clinical Investigation, 128(10), 4297–4312. https://doi.org/10.
1172/JCI96209

Rangel, R., Sun, Y., Guzman-Rojas, L., Ozawa, M. G., Sun, J., Giordano, R. J.,

… Pasqualini, R. (2007). Impaired angiogenesis in aminopeptidase N-

null mice. Proceedings of the National Academy of Sciences of the United

States of America, 104(11), 4588–4593. https://doi.org/10.1073/pnas.
0611653104

QUAN ET AL. 2003

https://doi.org/10.1016/j.immuni.2017.08.008
https://doi.org/10.1016/j.immuni.2017.08.008
https://doi.org/10.1111/j.1750-3639.2007.00075.x
https://doi.org/10.1111/j.1750-3639.2007.00075.x
https://doi.org/10.2353/ajpath.2010.100265
https://doi.org/10.1016/s0896-6273(03)00787-6
https://doi.org/10.1016/s0896-6273(03)00787-6
https://doi.org/10.1016/j.neuron.2020.09.029
https://doi.org/10.1016/j.ajpath.2011.05.045
https://doi.org/10.1126/science.277.5323.242
https://doi.org/10.4049/jimmunol.1101121
https://doi.org/10.1523/JNEUROSCI.1348-14.2014
https://doi.org/10.1523/JNEUROSCI.1348-14.2014
https://doi.org/10.1523/JNEUROSCI.4403-10.2010
https://doi.org/10.1523/JNEUROSCI.4403-10.2010
https://doi.org/10.1186/s13024-018-0286-0
https://doi.org/10.1038/s41593-020-00773-6
https://doi.org/10.1038/s41593-020-00773-6
https://doi.org/10.1038/nature06616
https://doi.org/10.1038/nature06616
https://doi.org/10.1073/pnas.1215165110
https://doi.org/10.1073/pnas.1215165110
https://doi.org/10.1186/1750-1326-6-5
https://doi.org/10.1186/1750-1326-6-5
https://doi.org/10.1007/s12015-012-9356-9
https://doi.org/10.1038/s41586-020-2247-3
https://doi.org/10.1038/nm.4482
https://doi.org/10.1101/cshperspect.a006338
https://doi.org/10.1101/cshperspect.a006338
https://doi.org/10.1038/s41591-018-0297-y
https://doi.org/10.1038/s41591-018-0297-y
https://doi.org/10.1038/nri3446
https://doi.org/10.1038/s41593-018-0296-9
https://doi.org/10.1161/CIRCRESAHA.117.311054
https://doi.org/10.1161/CIRCRESAHA.117.311054
https://doi.org/10.1186/s12974-020-01915-0
https://doi.org/10.4049/jimmunol.1600873
https://doi.org/10.4049/jimmunol.1600873
https://doi.org/10.3389/fncel.2020.00276
https://doi.org/10.3389/fncel.2020.00276
https://doi.org/10.1038/sj.embor.7400784
https://doi.org/10.1172/JCI96209
https://doi.org/10.1172/JCI96209
https://doi.org/10.1073/pnas.0611653104
https://doi.org/10.1073/pnas.0611653104


Reed-Geaghan, E. G., Reed, Q. W., Cramer, P. E., & Landreth, G. E. (2010).

Deletion of CD14 attenuates Alzheimer's disease pathology by

influencing the brain's inflammatory milieu. The Journal of Neurosci-

ence, 30(46), 15369–15373. https://doi.org/10.1523/JNEUROSCI.

2637-10.2010

Roberts, K. F., Elbert, D. L., Kasten, T. P., Patterson, B. W.,

Sigurdson, W. C., Connors, R. E., … Bateman, R. J. (2014). Amyloid-

beta efflux from the central nervous system into the plasma. Annals of

Neurology, 76(6), 837–844. https://doi.org/10.1002/ana.24270
Sagare, A. P., Bell, R. D., Zhao, Z., Ma, Q., Winkler, E. A., Ramanathan, A., &

Zlokovic, B. V. (2013). Pericyte loss influences Alzheimer-like neu-

rodegeneration in mice. Nature Communications, 4, 2932. https://doi.

org/10.1038/ncomms3932

Sastre, M., Dewachter, I., Rossner, S., Bogdanovic, N., Rosen, E.,

Borghgraef, P., … Heneka, M. T. (2006). Nonsteroidal anti-

inflammatory drugs repress beta-secretase gene promoter activity by

the activation of PPARgamma. Proceedings of the National Academy of

Sciences of the United States of America, 103(2), 443–448. https://doi.
org/10.1073/pnas.0503839103

Schnöder, L., Gasparoni, G., Nordstrom, K., Schottek, A., Tomic, I.,

Christmann, A., … Liu, Y. (2020). Neuronal deficiency of p38alpha-

MAPK ameliorates symptoms and pathology of APP or tau-transgenic

Alzheimer's mouse models. The FASEB Journal, 34, 9628–9649.
https://doi.org/10.1096/fj.201902731RR

Schnöder, L., Hao, W., Qin, Y., Liu, S., Tomic, I., Liu, X., … Liu, Y. (2016).

Deficiency of neuronal p38alpha MAPK attenuates amyloid pathology

in Alzheimer disease mouse and cell models through facilitating lyso-

somal degradation of BACE1. The Journal of Biological Chemistry, 291

(5), 2067–2079. https://doi.org/10.1074/jbc.M115.695916

Scholtzova, H., Chianchiano, P., Pan, J., Sun, Y., Goñi, F., Mehta, P. D., &

Wisniewski, T. (2014). Amyloid β and tau Alzheimer's disease related

pathology is reduced by toll-like receptor 9 stimulation. Acta Neu-

ropathologica Communications, 2(1), 101. https://doi.org/10.1186/

s40478-014-0101-2

Schroeder, P., Rivalan, M., Zaqout, S., Kruger, C., Schuler, J., Long, M., …
Lehnardt, S. (2021). Abnormal brain structure and behavior in

MyD88-deficient mice. Brain, Behavior, and Immunity, 91, 181–193.
https://doi.org/10.1016/j.bbi.2020.09.024

Shankar, G. M., Li, S., Mehta, T. H., Garcia-Munoz, A., Shepardson, N. E.,

Smith, I., … Selkoe, D. J. (2008). Amyloid-beta protein dimers isolated

directly from Alzheimer's brains impair synaptic plasticity and memory.

Nature Medicine, 14(8), 837–842. https://doi.org/10.1038/nm1782

Shen, Y., Qin, H., Chen, J., Mou, L., He, Y., Yan, Y., … Zhou, Y. D. (2016).

Postnatal activation of TLR4 in astrocytes promotes excitatory syn-

aptogenesis in hippocampal neurons. The Journal of Cell Biology, 215

(5), 719–734. https://doi.org/10.1083/jcb.201605046
Shibata, M., Yamada, S., Kumar, S. R., Calero, M., Bading, J., Frangione, B.,

… Zlokovic, B. V. (2000). Clearance of Alzheimer's amyloid-ss(1-40)

peptide from brain by LDL receptor-related protein-1 at the blood-

brain barrier. The Journal of Clinical Investigation, 106(12), 1489–1499.
https://doi.org/10.1172/JCI10498

Shinohara, M., Tachibana, M., Kanekiyo, T., & Bu, G. (2017). Role of LRP1

in the pathogenesis of Alzheimer's disease: Evidence from clinical and

preclinical studies. Journal of Lipid Research, 58(7), 1267–1281.
https://doi.org/10.1194/jlr.R075796

Song, M., Jin, J., Lim, J. E., Kou, J., Pattanayak, A., Rehman, J. A., …
Fukuchi, K. (2011). TLR4 mutation reduces microglial activation,

increases Abeta deposits and exacerbates cognitive deficits in a mouse

model of Alzheimer's disease. Journal of Neuroinflammation, 8, 92.

https://doi.org/10.1186/1742-2094-8-92

Spangenberg, E. E., Lee, R. J., Najafi, A. R., Rice, R. A., Elmore, M. R.,

Blurton-Jones, M., … Green, K. N. (2016). Eliminating microglia in

Alzheimer's mice prevents neuronal loss without modulating amyloid-

beta pathology. Brain, 139(Pt 4), 1265–1281. https://doi.org/10.

1093/brain/aww016

Stakos, D. A., Stamatelopoulos, K., Bampatsias, D., Sachse, M., Zormpas, E.,

Vlachogiannis, N. I., … Stellos, K. (2020). The Alzheimer's disease

amyloid-Beta hypothesis in cardiovascular aging and disease: JACC

focus seminar. Journal of the American College of Cardiology, 75(8),

952–967. https://doi.org/10.1016/j.jacc.2019.12.033
Storck, S. E., Meister, S., Nahrath, J., Meissner, J. N., Schubert, N., Di

Spiezio, A., … Pietrzik, C. U. (2016). Endothelial LRP1 transports

amyloid-beta(1-42) across the blood-brain barrier. The Journal of

Clinical Investigation, 126(1), 123–136. https://doi.org/10.1172/

JCI81108

Sweeney, M. D., Ayyadurai, S., & Zlokovic, B. V. (2016). Pericytes of the

neurovascular unit: Key functions and signaling pathways. Nature Neu-

roscience, 19(6), 771–783. https://doi.org/10.1038/nn.4288
Tang, C., Ahmed, K., Gille, A., Lu, S., Grone, H. J., Tunaru, S., &

Offermanns, S. (2015). Loss of FFA2 and FFA3 increases insulin secre-

tion and improves glucose tolerance in type 2 diabetes. Nature Medi-

cine, 21(2), 173–177. https://doi.org/10.1038/nm.3779

Tanifum, E. A., Starosolski, Z. A., Fowler, S. W., Jankowsky, J. L., &

Annapragada, A. V. (2014). Cerebral vascular leak in a mouse model

of amyloid neuropathology. Journal of Cerebral Blood Flow and

Metabolism, 34(10), 1646–1654. https://doi.org/10.1038/jcbfm.

2014.125

Ulland, T. K., Song, W. M., Huang, S. C., Ulrich, J. D., Sergushichev, A.,

Beatty, W. L., … Colonna, M. (2017). TREM2 maintains microglial met-

abolic fitness in Alzheimer's disease. Cell, 170(4), 649–663 e613.

https://doi.org/10.1016/j.cell.2017.07.023

Umehara, K., Sun, Y., Hiura, S., Hamada, K., Itoh, M., Kitamura, K., …
Furihata, T. (2018). A new conditionally immortalized human fetal

brain pericyte cell line: Establishment and functional characterization

as a promising tool for human brain pericyte studies. Molecular Neuro-

biology, 55(7), 5993–6006. https://doi.org/10.1007/s12035-017-

0815-9

Vannella, K. M., & Wynn, T. A. (2017). Mechanisms of organ injury and

repair by macrophages. Annual Review of Physiology, 79, 593–617.
https://doi.org/10.1146/annurev-physiol-022516-034356

Walter, S., Letiembre, M., Liu, Y., Heine, H., Penke, B., Hao, W., …
Fassbender, K. (2007). Role of the toll-like receptor 4 in neu-

roinflammation in Alzheimer's disease. Cellular Physiology and Biochem-

istry, 20(6), 947–956. https://doi.org/10.1159/000110455
Wang, S., Mustafa, M., Yuede, C. M., Salazar, S. V., Kong, P., Long, H., …

Colonna, M. (2020). Anti-human TREM2 induces microglia prolifera-

tion and reduces pathology in an Alzheimer's disease model. The Jour-

nal of Experimental Medicine, 217(9), e20200785. https://doi.org/10.

1084/jem.20200785

Wang, Y., Cella, M., Mallinson, K., Ulrich, J. D., Young, K. L.,

Robinette, M. L., … Colonna, M. (2015). TREM2 lipid sensing sustains

the microglial response in an Alzheimer's disease model. Cell, 160(6),

1061–1071. https://doi.org/10.1016/j.cell.2015.01.049
Watanabe, C., Imaizumi, T., Kawai, H., Suda, K., Honma, Y., Ichihashi, M., …

Mizutani, K. I. (2020). Aging of the vascular system and neural dis-

eases. Frontiers in Aging Neuroscience, 12, 557384. https://doi.org/10.

3389/fnagi.2020.557384

Weitz, T. M., Gate, D., Rezai-Zadeh, K., & Town, T. (2014). MyD88 is dis-

pensable for cerebral amyloidosis and neuroinflammation in APP/PS1

transgenic mice. The American Journal of Pathology, 184(11), 2855–
2861. https://doi.org/10.1016/j.ajpath.2014.07.004

Xie, K., Liu, Y., Hao, W., Walter, S., Penke, B., Hartmann, T., …
Fassbender, K. (2013). Tenascin-C deficiency ameliorates

Alzheimer's disease-related pathology in mice. Neurobiology of Aging,

34(10), 2389–2398. https://doi.org/10.1016/j.neurobiolaging.2013.
04.013

Yona, S., Kim, K. W., Wolf, Y., Mildner, A., Varol, D., Breker, M., … Jung, S.

(2013). Fate mapping reveals origins and dynamics of monocytes and

tissue macrophages under homeostasis. Immunity, 38(1), 79–91.
https://doi.org/10.1016/j.immuni.2012.12.001

2004 QUAN ET AL.

https://doi.org/10.1523/JNEUROSCI.2637-10.2010
https://doi.org/10.1523/JNEUROSCI.2637-10.2010
https://doi.org/10.1002/ana.24270
https://doi.org/10.1038/ncomms3932
https://doi.org/10.1038/ncomms3932
https://doi.org/10.1073/pnas.0503839103
https://doi.org/10.1073/pnas.0503839103
https://doi.org/10.1096/fj.201902731RR
https://doi.org/10.1074/jbc.M115.695916
https://doi.org/10.1186/s40478-014-0101-2
https://doi.org/10.1186/s40478-014-0101-2
https://doi.org/10.1016/j.bbi.2020.09.024
https://doi.org/10.1038/nm1782
https://doi.org/10.1083/jcb.201605046
https://doi.org/10.1172/JCI10498
https://doi.org/10.1194/jlr.R075796
https://doi.org/10.1186/1742-2094-8-92
https://doi.org/10.1093/brain/aww016
https://doi.org/10.1093/brain/aww016
https://doi.org/10.1016/j.jacc.2019.12.033
https://doi.org/10.1172/JCI81108
https://doi.org/10.1172/JCI81108
https://doi.org/10.1038/nn.4288
https://doi.org/10.1038/nm.3779
https://doi.org/10.1038/jcbfm.2014.125
https://doi.org/10.1038/jcbfm.2014.125
https://doi.org/10.1016/j.cell.2017.07.023
https://doi.org/10.1007/s12035-017-0815-9
https://doi.org/10.1007/s12035-017-0815-9
https://doi.org/10.1146/annurev-physiol-022516-034356
https://doi.org/10.1159/000110455
https://doi.org/10.1084/jem.20200785
https://doi.org/10.1084/jem.20200785
https://doi.org/10.1016/j.cell.2015.01.049
https://doi.org/10.3389/fnagi.2020.557384
https://doi.org/10.3389/fnagi.2020.557384
https://doi.org/10.1016/j.ajpath.2014.07.004
https://doi.org/10.1016/j.neurobiolaging.2013.04.013
https://doi.org/10.1016/j.neurobiolaging.2013.04.013
https://doi.org/10.1016/j.immuni.2012.12.001


Zudaire, E., Gambardella, L., Kurcz, C., & Vermeren, S. (2011). A computa-

tional tool for quantitative analysis of vascular networks. PLoS One, 6

(11), e27385. https://doi.org/10.1371/journal.pone.0027385

SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of this article.

How to cite this article: Quan W, Luo Q, Hao W, et al.

Haploinsufficiency of microglial MyD88 ameliorates

Alzheimer's pathology and vascular disorders in APP/PS1-

transgenic mice. Glia. 2021;69:1987–2005. https://doi.org/

10.1002/glia.24007

QUAN ET AL. 2005

https://doi.org/10.1371/journal.pone.0027385
https://doi.org/10.1002/glia.24007
https://doi.org/10.1002/glia.24007

	Haploinsufficiency of microglial MyD88 ameliorates Alzheimer's pathology and vascular disorders in APP/PS1-transgenic mice
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  Animal models and Cross-breeding
	2.2  Morris water maze
	2.3  Tissue collection and isolation of blood vessels
	2.4  Histological analysis
	2.5  Western blot analysis
	2.6  β- and γ-secretase activity assays
	2.7  Positive selection of CD11b-positive microglia in the adult mouse brain
	2.8  Quantitative PCR for analysis of gene transcripts
	2.9  Pericyte culture and treatments
	2.10  Statistical analysis

	3  RESULTS
	3.1  Haploinsufficient expression of MyD88 in microglia protects neurons and improves cognitive function of APP/PS1-transge...
	3.2  Haploinsufficient expression of MyD88 in microglia reduces Aβ load in the brain parenchyma and blood vessels of APP/PS...
	3.3  Haploinsufficient expression of MyD88 in microglia inhibits pro-inflammatory activation in APP/PS1-transgenic mouse brain
	3.4  Haploinsufficient expression of MyD88 suppresses pro-inflammatory activation in microglia but enhances microglial resp...
	3.5  Haploinsufficient expression of MyD88 in microglia increases cerebral vasculature in APP/PS1-transgenic mice
	3.6  Haploinsufficient expression of MyD88 in microglia increases LRP1 in cerebral capillaries of APP/PS1-transgenic mice
	3.7  Haploinsufficient expression of MyD88 in microglia decreases β- and γ-secretase activity but does not affect neprilysi...

	4  DISCUSSION
	ACKNOWLEDGMENTS
	  CONFLICT OF INTEREST
	  AUTHOR CONTRIBUTIONS
	  DATA AVAILABILITY STATEMENT

	REFERENCES


