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ABSTRACT 

The impact of physical microenvironment on cells was recently reported to have major influence 

on multipotency, self-renewal, cells plasticity and cell fate determination. In this study, we used 

physical-based methods, physical constraint (PC) and controlled confinement (CC), to induce 

multipotency of HepaRG, a bipotent progenitor of liver cells. RRBS and mRNA sequencing were 

performed to investigate changes in DNA methylation and mRNA levels during reprogramming 

and PC-induced differentiation. The results showed that PC and CC yielded similar results during 

reprogramming, e.g. locus-specific methylation changes towards hypomethylation and activation 

of immunomodulation process were observed. Particularly, CC also facilitated cell differentiation 

via IL-17 signaling. PC-induced differentiation of multipotent-like cells to hepatocyte-like cells was 

also combined with hydrocortisone and DMSO. Global hypomethylation was observed during PC-

induced differentiation with the tendency towards a focal regain of methylation. In line with this, 

genes related to cytochrome P450 pathways were rebooted, suggesting that hepatic 

differentiation was partially induced. Furthermore, integrated analysis between differential 

methylation changes and chromatin states (ChromHMM) of differentiated HepaRG indicated that 

chromatin states were important in building the macromolecular structure that determine DNA 

methylation and gene expression during reprogramming and PC-induced differentiation of 

HepaRG. 
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ZUSAMMENFASSUNG 

Physische Mikroumgebung von Zellen hat einen großen Einfluss auf die Multipotenz, 

Selbsterneuerung, Zellplastizität und Bestimmung des Zellschicksals. In der vorliegenden Arbeit 

wurden die physikalisch basierten Methoden, „Physical Constraint“ (PC) und „Controlled 

Confinement“ (CC) verwendet, um die Multipotenz von HepaRG- Zellen, einem bipotenten 

Vorläufer von Leberzellen, zu induzieren. Die genomweite Analyse molekularer Signaturen (DNA-

Methylierung und Transkriptom) ergaben während der Reprogrammierung ähnliche Ergebnisse 

zwischen PC und CC, z.B. wurden lokus-spezifische Methylierungsänderungen in Richtung 

Hypomethylierung, sowie die Aktivierung des Immunmodulationsprozesses, beobachtet. 

Insbesondere CC förderte die Zelldifferenzierung mittels IL-17 Signaltransduktion. Die PC-

induzierte Differenzierung (PCi) multipotenter Zellen zu Hepatozyten-ähnlichen Zellen unter 

Zugabe von Hydrocortison und DMSO resultierte in globaler Hypomethylierung, mit der Tendenz 

zur erneuten Etablierung fokaler Methylierung. Parallel hierzu wurden Gene, die mit Cytochrom 

P450 Signalwegen verbunden sind, wieder aktiviert, was darauf hindeutet, dass die PCi-

Differenzierung teilweise erreicht wurde. Darüber hinaus zeigte die integrative Analyse von 

differentiellen Methylierungsänderungen und Chromatinzuständen (ChromHMM) differenzierter 

HepaRG die Wichtigkeit des Chromatinzustands beim Aufbau makromolekularer Strukturen, die 

die DNA-Methylierung und Genexpression während der Reprogrammierung und PCi-

Differenzierung dieser Zellen bestimmen. 
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Chapter 1 Introduction 

1.1. Epigenetics 

1.1.1. Epigenetic mechanisms 

Epigenetics is the study of the modifications of DNA without changing nucleotide sequences. 

Epigenetic states are stable and mitotically inherited leading to cellular identity maintenance 

during environmental changes (Meissner, 2010). Most of epigenetic mechanisms are reversible 

enzymatic modifications, including DNA methylation, histone, and non-histone modifications 

(Kouzarides, 2007; Weber and Schübeler, 2007). Besides, micro RNAs, non-coding transcribed 

RNAs, are included in the epigenetic mechanisms as RNA-based mechanisms as well (Mattick 

et al., 2009) (Figure 1.1). Epigenetic mechanisms are also fine-tuning tools to provide an alteration 

of phenotypes without changing genotypes. Many relevant biological processes are highly 

influenced by epigenetics such as embryogenesis, cell-differentiation, and cancer etc. (Herranz 

and Esteller, 2007; Reik, 2007; Ballestar and Esteller, 2008; Meissner, 2010). Defects in some 

parts of epigenetic mechanisms can cause malformation and lethality (Okano et al.,1999; 

Cortazar et al., 2011).  

Regarding histone proteins and non-histone proteins, the modifications are set on a post-

translational level. Histone is a protein that structurally supports the wrapping of DNA to form 

more complex structure, known as chromatin, inside the cell nuclei (Figure 1.1). Several types of 

modifications such as acetylation, methylation, and ubiquitination etc. occur at N-terminal tails of 

histone core subunits, frequently on lysine residue or arginine residue of histones H3 and H4 

(Kouzarides, 2007). However, in non-histone proteins, the only modification found is lysine 

phosphorylation (Zhang and Pradhan, 2014).  
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Figure 1.1 Epigenetic mechanisms and genome organization (Puumala and Hoyme, 2015). This figure 
displays that DNA methylation and RNA interference are the epigenetic mechanisms found on DNA, 
regulating in transcriptional level. DNA can be packed with histone proteins forming the nucleosome, which 
is further folded to chromatin and chromosome, respectively. Histone modifications belong to the 
modifications that organize chromatin condensation and influence local transcription activity. 

DNA methylation is another enzymatic modification found mostly in CpG dinucleotides throughout 

the genome context (Lister et al., 2009; Jones, 2012). Methylation and demethylation of DNA are 

closely associated with open or closed chromatin (Tamaru, 2010). DNA methylation also 

influences the binding activity of numerous transcription factors to the DNA, and regulation of 

transcription process of the genes (Bell and Felsenfeld, 2000; Lister et al., 2009). 

MicroRNAs are small non-coding RNAs that regulate gene activity on the post-transcriptional 

level. This single strand RNA interacts with a messenger RNA of target genes and induces a 

degradation of those gene transcripts. Moreover, microRNA can act on the DNA level by 

hypermethylation of its host gene and its own promoters, which affects their transcription activity 

as well (Mattick et al., 2009; Augoff et al., 2012; Gulyaeva and Kushlinskiy, 2016). 
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1.1.2. Genome organization 

As eukaryotic genomes are complex in their structure, in general, the genome consists of a 

combination of DNA and histone proteins called “histone octamers” which is densely packed in 

the nucleus. Histone octamer is a protein that composes of two units of histones H2A, H2B, H3 

and H4 (Luger et al., 1997). This core protein is wrapped by 147 base pairs of double stranded 

DNA approximately to form a nucleosome, a basic packaging unit that is important for determining 

DNA accessibility (Luger et al., 1997; Richmond and Davey, 2003). Each nucleosome is 

separated from its neighbor nucleosome by 20-50 base pairs linker DNA (Routh et al., 2008).  The 

folding of nucleosomes can form a higher order as a chromatin unit, and further a chromosome 

(Bednar et al., 1998). Thus, the eukaryotic genomes take major advantage of folding their 

structure for preventing genetic codes from any harm, such as nucleases and restriction enzymes. 

DNA methylation and histone modifications are responsible for genome organization, as the 

chromatin states can be determined through the reversibility of modifications (Tamaru, 2010). 

Euchromatin, an active state of chromatin, is loose and accessible, and frequently present in 

gene-rich regions. Moreover, this active chromatin state is marked by acetylated histones H3 and 

H4. On the other hand, heterochromatin, a densely packed chromatin is found in gene-poor 

regions, as well as repetitive elements. Methylated DNA and trimethylation of H3K9 and H3K27 

can be found in heterochromatin regions (Fischle et al., 2003; Lehnertz et al., 2003; Gilbert et al., 

2004). However, during cell replication, epigenetic marks like DNA methylation and histone 

modifications are maintained and inherited to the daughter cells (Martin and Zhang, 2007). 

1.1.3. DNA methylation and demethylation processes in mammals 

DNA methylation is a repressive epigenetic mark playing crucial roles in several biological 

processes. For instance, the regulation of monoallelic gene expression such as x-inactivation and 

imprinted genes, the silencing of transposable elements, embryogenesis and differentiation, and 

development and maintenance of cancer states are controlled by DNA methylation (Yoder et al., 
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1997; Bell and Felsenfeld, 2000; Hellman and Chess, 2007; Herranz and Esteller, 2007; Laurent 

et al., 2010). Generally, the methylation of DNA sequences can be found throughout the genome, 

predominantly at CpG dinucleotides (Holliday and Pugh, 1975). Although DNA methylation of 

CpGs is established widespread, non-CpG methylation (CA, CT, or CC) is also recognized as it 

is important for development of embryonic stem cells and brain development (Ramsahoye et al., 

2000; Lister et al., 2009; Dyachenko et al., 2010; Jang et al., 2017). 

Methylation patterns differ among genomic regions. CpG-rich promoters in CpG islands are 

mainly unmethylated since they regulate the expression of downstream regions, while the other 

regions show partially methylation (Lister et al., 2009; Jones, 2012).  Because of the variable 

methylation levels in specific compartments of the genome, the pattern of established methylation 

leads to specification of tissue differentiation (Song et al.,2005; Lister et al., 2009; Laurent et al., 

2010). 

To methylate DNA, the methyl group of s-adenosylmethionine (SAM) is transferred to the 5th 

carbon of cytosine (C) in palindromic CpG sequences by DNA methyltransferases (DNMTs). 

Thus, the cytosine base becomes 5-methylcytosine (5mC) (Kohli and Zhang, 2013) (Figure 1.2) 
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Figure 1.2 Enzymatic reactions leading to DNA methylation and demethylation (Kohli and Zhang, 2013). a) 
showing a circle diagram of cytosine and other derivatives in methylation and demethylation processes, 
while b) showing details and co-factors corresponding to each step of the circle diagram. 

As described above, the establishment and maintenance of DNA methylation in the genome are 

regulated by active enzymes of the DNA methyltransferase family (DNMTs) coordinated with 

other co-factors. There are two groups of DNMTs related to this process. First, DNMT1 is an 

enzyme that functions predominantly in maintenance of DNA methylation patterns of the daughter 

strand after DNA replication. Working together with UHRF1, DNMT1 preferentially adds a methyl 

group to hemimethylated CpGs (Hermann et al., 2004; Bostick et al., 2007). The other enzymes 

of this family are DNMT3A and DNMT3B, which function in the de novo methylation process and 

collaborat with their co-factor, DNMT3L, in the establishment of parental DNA methylation in germ 

line cells.(Okano et al., 1999; Ooi et al., 2007). However, establishment and maintenance 

functions can be compensated partially by DNMT1 and DNMT3A/B, respectively (Fatemi et al., 

2002; Chen et al., 2003).  

To remove the methylation from DNA, there are two processes of demethylation in cells, passive 

and active demethylation. The passive demethylation occurs during DNA replication, while the 

active demethylation is linked to the activities of enzymes from the Ten-Eleven Translocation 
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(TET; TET1, TET2 and TET3) family and to the DNA repair pathway (Wu and Zhang, 2010; 

Kagiwada et al., 2013). For active demethylation, TETs oxidize methylated cytosine (5mC) to 5-

hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxycytosine (5caC), which can 

be detected and removed by enzymes from the base-excision repair (BER) pathway (Kohli and 

Zhang, 2013; Wu and Zhang, 2014) (Figure 1.2). On the other hand, in In vitro experiments, 

demethylation can be induced via the addition of demethylating agents such as 5-Azacytidine (5-

Aza), 2’-deoxy-5-Azacytidine (DAC) and other derivatives. Previously, 5-Aza was frequently used 

in cancer therapy as it can result in activation of tumor suppressor genes. 5-Aza can be 

phosphorylated to 5-AzaCTP, which was used for the incorporation into newly synthesized DNA 

strand, instead of CTP, leading to demethylation of the whole genome (Christman, 2002; Sigalotti 

et al., 2007). However, 5-Aza was also found to incorporate into tRNA and influence gene 

expression (Schaefer et al., 2009; Qiu et al., 2010). 

1.1.4. DNA methylation and demethylation during embryogenesis 

DNA methylation and demethylation are relevant mechanisms to establish a successful embryo 

development. Those processes are conserved in mouse and human (Fulka et al., 2004; Xu et al., 

2005; Guo et al., 2014; Li et al., 2018). Several studies found that the methylation level of the 

paternal genome is higher than the maternal genome, and rapidly decrease after fertilization (Guo 

et al., 2014; Li et al., 2018). Demethylation of the paternal genome is a result from active 

demethylation processes, as the level of 5mC decrease while the level of 5hmC is detected 

increasing. Furthermore, TET3 was stronger expressed than the other TET family members 

during early embryogenesis, supporting their role in the increase of 5hmC in the paternal genome 

(Oswald et al, 2000; Iqbal et al., 2011). Contrary to the paternal genome, the methylation level of 

the maternal genome is lower (Guo H et al., 2014; Li et al., 2018). In the maternal genome, 

methylated was protected from active demethylation process leading to a slow demethylation 

process. Stella, a protein encoded by PGC7 and predominantly found in maternal genome, played 
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roles in the protection of demethylation in associated with H3K9me2 (Iqbal et al., 2011; Nakamura 

et al., 2012; Guo H et al., 2014). Moreover, methylation of the maternal genome seemed to 

dependently decrease after DNA-replication. Passive demethylation was proposed to be a 

mechanism regulating the methylation level in the maternal genome (Santos et al., 2002; Wu and 

Zhang, 2010; Messerschmidt et al., 2014). However, there were some studies revealing that 

demethylation processes during embryogenesis were performed passively and actively in the 

paternal and maternal genomes (Guo F et al., 2014; Shen et al., 2014). The resetting of 

methylation in paternal and maternal genomes is maintained steadily from the morula to the 

blastocyst stage. Then the methylation is newly established by DNMTs in the implantation stage 

(Guo H et al., 2014; Li et al., 2018). 

1.2. Pluripotency and multipotency of the cells 

1.2.1. Molecular features of induced pluripotent stem cells 

Cellular reprogramming is a process that converts somatic cells from differentiated state to 

pluripotent state. Several approaches are used in cellular reprogramming, such as somatic cell 

nuclear transfer and stem cell fusion, but the well-known approach is direct reprogramming or 

induction of pluripotency by defined transcription factors (Takahashi and Yamanaka, 2006; 

Takahashi et al., 2007; Yamanaka and Blau, 2010; Buganim et al., 2013). 

Direct reprogramming applies an ectopic expression of OSKM (POU5F1 (OCT3/4), SOX2, KLF4 

and MYC) to establish a pluripotent state of mature cells (Takahashi and Yamanaka, 2006; 

Takahashi et al., 2007). Cells which are successfully reprogrammed are known as “induced 

pluripotent stem cells (iPSC)”. Although iPSCs are reported to be comparable to embryonic stem 

cells (ESC), some molecular features, e.g. gene expression and epigenetic states are still different 

from ESC. 
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During reprogramming, the alteration of transcription and epigenetic modifications are 

prominently observed. On the level of transcription, two waves of changes were found to mainly 

drive throughout the whole process. Primary wave starts in the early reprogramming process, and 

this stochastic process is conducted by MYC and KLF4 (Hanna et al., 2009; Buganim et al., 2012; 

Polo et al., 2012; Buganim et al., 2013). MYC plays important roles in the introduction of early 

genes, and the expression of MYC is maintained steadily until the end of reprogramming 

(Sridharan et al., 2009; Polo et al., 2012, Rand et al., 2018). Meanwhile, KLF4 suppresses somatic 

gene expression, leading to pluripotent gene activation (Zhang et al., 2010; Polo et al., 2012). 

Furthermore, a surface marker gene, SSEA1, is gradually expressed and maintained in cells 

undergoing pluripotent stage (Buganim et al., 2012; Polo et al., 2012). During primary wave, 

mesenchymal to epithelium transition (MET) is also initiated through BMP signaling as 

mesenchymal genes are potentially switched off and prepared for the activation of epithelial genes 

(Samavarchi-Tehrani et al., 2010). Genes related to cell proliferation are also upregulated leading 

to high proliferation. Moreover, a metabolic switch was also observed (Hanna et al., 2009; 

Hansson et al., 2012; Polo et al., 2012). Oxidative phosphorylation seemed to be suppressed, 

while the glycolysis was predominantly activated (Folmes et al., 2011; Hansson et al., 2012; 

Panopoulos et al., 2012; Zhang et al., 2012).  Secondary wave was observed in the late period of 

reprogramming. This period was a hierarchical process driven by POU5F1 (OCT3/4), SOX2 and 

KLF4. Since primary transcription wave was successfully established, the consequently 

expressed genes e.g. ESRRB or UTF1 became a key regulator to activate SOX2 (Buganim et al., 

2012; Polo et al., 2012) in late reprogramming. POU5F1 (OCT3/4) and SOX2 played similar roles 

in activation of endogenous pluripotent circuity and downstream networks, which were a target of 

OS factors. Nevertheless, expression of POU5F1 seems to be less necessary than the expression 

of SOX2. Therefore, SOX2 serves as a main regulator of late reprogramming. By the end of the 

secondary transcriptional wave, successful iPSCs are stably established and genes related to 

embryonic development and stem cell maintenance were upregulated (Polo et al., 2012). The low 
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efficiency of direct reprogramming was found to be involved in the heterogeneity of the cells 

undergoing iPSC, which correlated with the origin and epigenetic memory of somatic cells (Kim 

et al., 2010; Ohi et al., 2011; Hansson et al., 2012). 

1.2.2. Epigenetic regulation of iPSCs 

Passing through epigenetic barriers is a necessary process iPSCs need to complete since 

epigenetics provides the underlying mechanisms for the regulation of pluripotency. Concerning 

the histone modifications, H3K4me3 and H3K27me3 could be found in regions known as bivalent 

domains. These bivalent domains contain both repressive and active histone marks and found 

predominantly in genes which need rapid activation or repression; number of these domains are 

increased gradually during iPSC induction (Mikkelsen et al., 2007; Polo et al., 2012). Furthermore, 

H3K36me3 was also found in active genes, whereas H3K9me3 and H4K20me3 were found in 

silenced domains, e.g. in transposable elements or in centromeric regions etc. (Mikkelsen et al., 

2007). However, H3K36 and H3K20 methylation seem to be not important for the regulation of 

iPSC fate (Chen et al., 2013). Several genes encoding histone modification enzymes were also 

found to have a strong correlation with OSKM factors. For instance, KDM2B encoding the 

H3K36me2 demethylase was upregulated during early reprogramming by OSK. KDM2B 

facilitated iPSC induction by demethylation of epithelial gene promoters, leading to the activation 

of downstream pluripotent cascades (Liang et al., 2012). Another example is SETDB1 encoding 

the H3K9 tri-methyltransferase. Knockdown of this gene in the appearance or absence of vitamin 

C in the culture medium resulted in rescue reprogramming mediated by OSKM. Similarly, 

knockdown of SUV39H1, a BMP target H3K9 methyltransferase, enabled pre-iPSC cells to 

establish and maintain an epigenetic barrier during reprogramming (Chen et al., 2013; Sridharan 

et al., 2013). 

DNA methylation was found to be reset, particularly in the late process of reprogramming (Polo 

et al., 2012). Since Takahashi et al. established a direct reprogramming method by the induction 
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of defined transcription factors, DNA methylation was also analyzed to figure out the epigenetic 

status of iPSC (Takahashi and Yamanaka, 2006; Takahashi et al., 2007). Bisulfite genome 

sequencing revealed promotor demethylation of pluripotency-associated genes e.g. POU5F1, 

NANOG and REX1 (Takahashi et al., 2007; Huangfu et al., 2008). Nishino et al. reported that the 

methylation patterns of human iPSCs was similar to human ESCs and distinct from the parental 

cells although a small number of CpG sites of iPSCs were slightly higher methylated than in ESCs 

and the parental cells. Differentially methylated regions (DMRs) were also analyzed in this study 

and the results were consistent with the results extracted from single CpG sites. Moreover, 

aberrant methylation of iPSCs was also reported and preferentially occurred in CpG islands. 

Aberrant methylation was inherited from the parental cells as an epigenetic memory and varied 

among iPSCs lines. Furthermore, incomplete establishment and aberrant DNA methylation during 

early passages were still detected influencing iPSCs induction efficiency and some somatic gene 

expressions. However, after long-term cultivation of iPSCs, aberrantly methylated regions were 

decreased gradually along passaging, suggesting that methylation profiles of iPSCs became 

closer to ESCs (Deng et al., 2009; Lister et al., 2011; Nishino et al., 2011; Ohi et al., 2011; Nishino 

and Umezawa, 2016). Genes related to DNA demethylation were also reported to influence the 

reprogramming process, particularly genes belonging to the TET family. As described previously, 

members of TET family played important roles in the oxidation of 5mC to become 5hmC and other 

derivatives, TET enzymes became relevant factors in reprogramming process, since 5hmC was 

shown to accumulate upon human iPSCs induction. TET1 was reported to promote 

reprogramming efficiency via hydroxymethylation of CpGs (Wang et al., 2013). Although the 

reprogramming efficiency was lower, other studies revealed that TET1 was used to replace OCT4 

protein in OSKM cocktails, leading to the initiation of reprogramming in mice. The studies also 

observed the enrichment of 5hmC at the promoter and enhancer of POU5F1 as well as at OCT4 

and KLF4 binding sites, which was a result of TET1 activity (Gao et al., 2013; Wang et al., 2013). 

In mice, during an early stage of reprogramming, TET2 and Parp1 were observed to be recruited 
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to Nanog and Esrrb loci. Not only playing a role in oxidizing 5mC to 5hmC, Tet2 is also found to 

associate with H3K27 methylation level at those pluripotent loci. Therefore, Tet2, also Parp1, 

seem to be relevant in establishing epigenetic marks during the early reprogramming (Doege et 

al., 2012). A triple knockdown of genes encoding TET and TDG enzymes resulted in unsuccessful 

reprogramming as MET process was blocked in Tet/Tdg deficient cells (Hu et al., 2014). 

1.2.3. Multipotent stem cells 

Multipotent stem cells are another kind of stem cells found in mammals. This kind of stem cells 

was defined by their capability of self-renewal and their plasticity in differentiation to several cells 

(Tanabe, 2014). Generally, multipotent stem cells were isolated from adult samples although they 

were fully differentiated. Nevertheless, limitations in isolation and prolonged cultivation are still 

critical for using them in regenerative medicine and drug testing, as the function of daughter cells 

was incomplete and incomparable to primary cells, depending on their microenvironment 

(Tanabe, 2014; Lv et al., 2014; Almalki et al., 2016; Wang et al., 2016). Well-known multipotent 

stem cells include hematopoietic stem cells (HSCs), bone-narrow derived mesenchymal stem 

cells (MSCs), neuronal stem cells (NSCs) etc. (Dan et al., 2006; Mehanni et al., 2013; Tanabe, 

2014). Particularly, multipotent cells are also known and can be isolated from human fetal liver. 

For the maintenance in a specific microenvironment, human fetal liver cells are kept on feeder 

layers in an undifferentiated stage and differentiated to various cell types, such as hepatocytes, 

biliary cells, bone, endothelial cells etc. by culturing in defined conditions (Dan et al., 2006). 

DNA methylation is known as an essential mechanism in the regulation of MSCs differentiation. 

Bock et al. reported that DNA methylation profiles of HSCs and stem cell differentiation to skin 

fibroblasts shed light on the initiation and maintenance of their lineages. In HSCs, DNA 

methylation levels acted as a regulator of transcription factors binding, particularly between 

myeloerythroid and lymphoid lineages. DNMT1 depletion in mouse HSCs also resulted in 

alteration of HSCs homeostasis suggesting the dynamics of methylation in stem cell function and 
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differentiation (Bröske et al., 2009; Bock et al., 2012). Furthermore, genes of the MBD family, 

which encode methyl-CpG-binding proteins, influenced multipotency and differentiation of NSCs 

as well (Lax and Sapozhnikov, 2017). 

1.3. Physical constraint and cell geometric confinement 

1.3.1. Mechanotransduction, Physical constaint and cell geometric confinement 

Controlling of cellular properties, particularly in MSCs maintenance and differentiation, affects the 

coordination of microenvironment and intracellular signals. The differences of microenvironments 

have an impact on cell shapes and physical structure since cells are directly attached to the 

material surface and surrounded by cultured medium (Engler et al., 2006; Wang et al., 2016). 

Morphogens such as growth factors or supplements in cultured medium also contribute to the 

control of cell morphology, as well as physical characteristics rise from the surface of the 

materials, to which the cells are attached (Ruiz and Chen, 2008; Murphy et al., 2014). Thus, 

microenvironment is an important factor to generate bio-mechanic stress and influence signal 

switching, from extracellular to intracellular levels (Figure 1.3). Thereafter, cells transduce 

mechanical signals to biochemical signaling networks, leading to changes in cell behavior and 
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functionality called “mechanotransduction” (Wang et al., 2009; Wozniak and Chen, 2009; 

Humphrey et al., 2014). 

Figure 1.3 Mechanotransduction and mechanoresponsive signaling (Vining and Mooney, 2017). a) shows 
several kinds of physical forces applying to the cells, such as shear stresses, tensile or compressive and 
focal adhesion etc. While strains (mechanical property of the physical matrix) change, cellular stresses also 
become increasing. b) shows external forces are transduced to the mechanoresponsive signaling, leading 
to transcriptional changes in the cell nuclei. 

Physical constraint (PC) is a study method used to restrict the microenvironments of cells 

physically, e.g. by limiting cell shapes/areas or by altering substrate elasticity (stiffness) of surface 

materials to which the cells are attached. PC was closely associated to mechanotransduction 

processes. When the physical microenvironment changes, cell shape, cell adhesiveness and cell 

softness are relevant for the responsiveness to stimuli. As ESCs are softer than adult cells, ESCs 

were found to better response to stress than adult cells, leading to changes in cell function and 

behavior (Holle and Engler, 2010).  
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Several studies revealed that PC is important in biological processes during embryonic stem cell 

differentiation. Chowdhury et al. revealed that when cultured on the same substrate/surface, 

mouse ESCs were found to be more responsive to stress than differentiated cells. By applying 

stress to undifferentiated ESCs, the expression of Pou5f1 was decreased, even in the presence 

of LIF in the culture medium, suggesting that a stress-induced internal force was generated and 

facilitated differentiation of those undifferentiated cells (Chowdhury et al., 2010). In mesenchymal 

stem cells (MSC) cultured in a limited circular shape, with medium containing adipocyte and 

osteocyte growth factors, it was found that the patterning of differentiation was determined by a 

gradient of mechanical forces. At the edge of the circle, which comprises of high stress, MSC 

preferentially differentiated to osteocytes. In contrast to the edge of the circle, the middle of the 

circle was a low stress area. MSCs in the low stress area preferentially differentiated to adipocytes 

(Ruiz and Chen, 2009). 

Previous studies showed that PC facilitates maintenance and differentiation in stem cells. 

Regarding the study of cell migration or cell division, PC seems difficult to precisely manipulate, 

either in single cells or in cell populations. Consequently, geometric confinement (GC) or two-

dimensional cell confinement (referred to “controlled confinement (CC)” in this study) is a method 

designed to provide homogeneous experiment conditions to study roles of geometry and cell 

microenvironment (Le Berre et al., 2012; Le Berre et al., 2014). 

The impact of GC in cell migration and cell division have been reported recently. Generally, 

fibroblast cells migrated along substrates in mesenchymal fashion via focal adhesions, which 

were observed to be elongated in a spindle-like shape. During physical confinement and low 

adhesion, the mesenchymal-amoeboid transition was induced as well as fast amoeboid-like 

migration was observed. These findings were frequently found in the migration of metastatic 

cancer cells and dendritic cells etc. (Heuze et al., 2013; Lui et al., 2015). Effects of physical 

confinement on cell division appear to be more complex than on cell migration, since the effects 
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influencing cell division can have impact on phases of mitotic progression. Under strong 

confinement, cell division was halted during G0/G1 phase of mitosis and prometaphase was 

delayed and increased with time (Desmaison et al., 2013; Desmaison et al., 2018). Furthermore, 

application of high tension on the cell membrane led to a delayed cutting of the cytokinetic bridge 

during anaphase (Lafaurie-Janvore et al., 2013). Limiting cell height also had an impact on 

rounding of the cells during mitosis. Lancester et al. showed that mitotic spindle assembly and 

poles splitting were defect when cells failed to round up (Lancester et al., 2013). Additionally, F-

actin was observed to be involved in mitotic spindle formation. Increasing confinement forces 

caused loss of cortical F-actin homogeneity and promoted impaired microtubule spindle and 

persistent blebbing during mitotic progression. Therefore, actin proved to be essential for cells to 

pass through mitosis under physical confinement (Lancester et al., 2013; Cattin et al., 2015).  

1.3.2. Cell geometric confinement in reprogramming and differentiation 

Any alterations directly affecting the nuclei of the cells also have the effects on chromatin leading 

to chromatin deformation and changes in gene expression influencing cellular properties (Chalut 

et al., 2012; Le Berre et al., 2012). Several studies showed that alteration of physical 

microenvironment is closely associated with maintenance of cellular properties or lineage-specific 

determination during differentiation through regulation of epigenetic factors. Chalut et al. 

generated cells harbouring high (HN) and low Nanog (LN) expression, which is closely connected 

to high and low cellular pluripotency, respectively. During optical stretching, a significant 

deformation was observed in nuclei of LN cells, rather than HN cells. Similarly, lower distribution 

of heterochromatin foci markers such as HP1α or H3K9me3 were found in LN cells, suggesting 

that decondensation of chromatin occurs genome-wide, particularly in cells primed to 

differentiation (Chalut et al., 2012). Volume confinement with microfluidics also leads to higher 

efficiency in the delivery of defined transcription factors during reprogramming, as well as cell 

compression-based cell stiffness promotes the reprogramming efficiency of cells. (Pagliara et al., 
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2014; Luni et al., 2016). Epigenetic factors were also changed when the physical 

microenvironment becomes limited. For instance, histone H3 acetylation and methylation were 

increased and enriched, particularly at promoters of pluripotent genes e.g. Sox2. Moreover, 

mesenchymal-epithelial transition (MET), which is known as a hallmark of pluripotency, was also 

activated during compression (Downing et al., 2013; Caiazzo et al., 2016).  

1.4. Biology of HepaRG and HepaRG differentiation 

1.4.1. Biology of HepaRG 

Previously, toxicological studies were performed in animal models touching the ethics of animal 

usage for drug discovery and testing. Therefore, cell lines that were comparable to primary cells 

were introduced providing better ethical solutions compared to animal-based experiments.  

HepaRG is a cell line that is frequently used in toxicological studies. Originally, HepaRG was 

isolated from a female patient suffering from an Edmonson grade I differentiated hepatocellular 

carcinoma with chronic hepatitis C virus (HCV) infection. The genome of HepaRG was 

pseudodiploid with partially remodeled trisomy of chr7 and chr12:22 translocation. Fortunately, 

although the HCV genome was not detected after the isolation, functions supporting the viral 

infection were still maintained. (Gripon et al., 2002; Troadec et al., 2006). Therefore, HepaRG 

becomes an ideal model for drug testing and mechanisms of HBV infection studies since the cells 

provide comparable functions to adult hepatocytes.  

Differentiation of HepaRG can be promoted using culture supplements, corticoids and DMSO, 

and an increased cell density in the culture. Undifferentiated HepaRG were maintained when 

seeding cells in the culture at low density. To induce differentiation, high density HepaRG culture 

was treated with 2% DMSO in the presence of hydrocortisone for 4 weeks. HepaRG cells rapidly 

proliferated for 2-7 days with a subsequent decrease in proliferation activity after 7 days. In this 

phase, cells displayed an epithelial morphology. Thereafter, hepatocyte-like and biliary-like 
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morphology were observed between days 7-14 as a mixed culture. Distinct population of cells 

could be observed after 14 days. While hepatocyte-like cells displayed small polarized cells with 

refractile borders and dark cytosol, biliary-like cells displayed small regions of bile canaliculi-like 

structures (Gripon et al., 2002; Parent et al., 2004; Aninat et al., 2006; Troadec et al., 2006).  

1.4.2. Gene expression and epigenetic regulation during HepaRG differentiation 

Gene expression profiles of undifferentiated and differentiated HepaRG were previously analyzed 

using Affymetrix U133 plus 2.0 array. In comparison to primary human hepatocytes (PHH), liver 

tissues and HepG2, gene expression profiles of both stages of HepaRG, undifferentiated and 

differentiated, were more closely associated to PHH than liver tissues and HepG2 profiles. Genes 

encoded for phase I and II of drug metabolizing enzymes were also expressed at a comparable 

level to PHH, such as cytochrome P450 and UDP family (Hart et al., 2010). Moreover, in 

differentiated HepaRG, the expression of enzymes and their activities were similar, even when 

cell density and passages were changed. The level of major cytochrome P450 was still preserved 

in different conditions, it even became stronger in the presence of DMSO (Antherieu et al., 2010; 

Hart et al., 2010;). However, Bell et al. argued that PHH spheroids revealed transcriptomic 

differences between fresh isolated PHH, HepaRG and hepatocyte-derived iPSCs, leading to 

differences in the regulation of cellular functions. Gene ontology analysis of upregulated genes in 

HepaRG and hepatocyte-derived iPSCs were shown to be involved in biological processes 

related to cell cycle, ribosome and RNA transport, while upregulated genes in PHH spheroids 

were involved in metabolic pathways, retinol metabolism and xenobiotic metabolism (Bell et al., 

2017). Although many studies generated and worked with transcriptomic data during HepaRG 

differentiation, DNA methylation data were not frequently found. Whole genome bisulfite 

sequencing and partially methylated domain (PMD) analysis revealed that the HepaRG 

methylome seem to have similarities to HepG2. In contrast, PHH and normal liver tissues became 

more similar to primary liver cancer than HepaRG and HepG2, suggesting that cultivation has 
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major effects on epigenetic marks (Salhab et al., 2018). Furthermore, in HepaRG containing HVB 

infection and lipid accumulations, hypermethylation was observed at various imprinted loci 

(Lambert et al., 2015).  

1.4.3. Roles of HepaRG in the induction of pluripotency 

As undifferentiated HepaRG cells harbour bipotent properties in differentiation to two cells types, 

HepaRG became a candidate cell line used in iPSC induction. Many studies revealed that the 

pluripotency and lineage-specific differentiation of HepaRG were switched by physical 

microenvironment such as cultivating them in three-dimensional form or in medium containing 

growth factors and various oxygen concentrations. van Wenum et al. reported that cultivating 

HepaRG in hypoxia condition (5% O2) led to the maintenance of stem cell functions via 

upregulation of SOX2 and HIF1α as well as inhibition of hepatic differentiation (van Wenum et al., 

2018). Cultivated on synthetic polymeric hydrogels or in 3D spheroid form, HepaRG preferentially 

differentiated to hepatocyte-like cells. Those results were confirmed by immunostaining and 

expression of hepatocyte markers. Meanwhile, inhibition of differentiation to biliary cells were 

observed as biliary marker genes were suppressed (Higuchi et al., 2016; Kanninen et al., 2016). 

To induce cholangiocytes, HepaRG cells were cultivated in the medium containing interleukin-6, 

sodium taurocholate hydrate, followed by the combination of sodium taurocholate hydrate and 

sodium butyrate to prevent hepatic differentiation. At the end, HepaRG-derived cholangiocytes 

were successfully differentiated, GGT1, CK19, TGR5 were up-regulated, whereas ALB and 

HNF4α, hepatotic markers, were down-regulated (Dianat et al., 2014).  

 

 



 

30 

 

1.5. Aims of the study 

Limitation of HepaRG usages in toxicological and virological studies was arisen from restricted 

use of the cells after differentiation and prolonged cultivation. As the capacity of HepaRG as 

bipotent progenitor cells was known, highlighted an opportunity to generate cells containing 

multipotent properties by changing the conditions of the microenvironment. Using PC-based 

methods in previous differentiation studies revealed promising preliminary results e.g. hepatic 

differentiation was increased and speeded-up significantly. Analysis by Affymetrix data showed 

that fewer transcripts related to cell plasticity or reprogramming signals were induced after PC 

(unpublished data, biopredic). Besides, although methylation of some hepatocyte-specific genes 

such as CYP1A2, CYP3A4, CYP2D6 etc. was not changed after PC, hypomethylation of those 

genes were observed after Aza treatment, suggesting that Aza enabled cells to stabilize cellular 

properties. Gradual restoration of methylation was also observed further after PC-induced 

differentiation (PCi-differentiation or redirected differentiation) to hepatocyte-like cells. Thus, 

preliminary data indicated the PC method to be partially successful inducing reprogramming and 

PCi-differentiation. However, epigenetic regulation and other underlying mechanisms were not 

clearly understood yet. Therefore, this study aimed to investigate:  

• using a PC-based method, HepaRG cells were subjected to reprogramming into 

multipotent cells, then multipotent cells were subjected to PCi-differentiation to 

hepatocyte-liked cells 

• how DNA methylation and genome-wide expression were altered during reprogramming 

and PCi-differentiation 

• whether any epigenetic mechanisms contributed to reprogramming and PCi-differentiation 

Furthermore, this study also attempted to establish a controlled confinement (CC) experimental 

procedure to mimic PC-based approaches in a more reproducible and precisely controllable 

manner. Based on preliminary studies and comparable results between PC and CC-based 
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approaches, alterations in DNA methylation and genome-wide expression of CC vs. PC 

experiments were examined and compared to shed light on the pattern of molecular signatures 

during reprogramming and PCi-differentiation.



 

32 

 

Chapter 2 Materials and methods 

2.1. Materials 

2.1.1. Chemicals and reagents  

Table 2.1 Chemicals, reagents, and sources of suppliers 

Chemical Source of suppliers 

Adenosine triphosphate (ATP)   NEB, Frankfurt a.M., Germany 

Agarose Biozym Scientific GmbH, Oldendorf, Germany 

Agencourt AMPure XP beads Beckman Coulter GmbH, Krefeld, Germany 

Aqua double distilled (milli-Q)  In house Millipore system 

Boric acid Carl Roth GmbH und Co. KG, Karlsruhe, Germany 

Bromophenol blue Sigma-Aldrich, St. Louis, USA 

Chloroform  VWR International GmbH, Darmstadt, Germany 

Ethanol (absolute) Sigma-Aldrich, St. Louis, USA 

Ethidium bromide Carl Roth GmbH und Co. KG, Karlsruhe, Germany 

Ethylenediaminetetraacetic acid (EDTA) Carl Roth GmbH und Co. KG, Karlsruhe, Germany 

Magnesium chloride (MgCl2)  Carl Roth GmbH und Co. KG, Karlsruhe, Germany 

Nonident P-40 (NP40) Carl Roth GmbH und Co. KG, Karlsruhe, Germany 

Pefabloc Sigma-Aldrich, Taufkirchen, Germany 

Potassium chloride (KCl)  Merck, Darmstadt, Germany 

Sodium acetate (NaAc) Carl Roth GmbH und Co. KG, Karlsruhe, Germany 

Sodium chloride (NaCl) VWR International GmbH, Darmstadt, Germany 

Sodium dodecyl sulfate (SDS) AppliChem, Darmstadt, Germany 

Tris hydrochloride (Tris-HCl)   Carl Roth GmbH und Co. KG, Karlsruhe, Germany 

Xylen-Cyanol Sigma-Aldrich, Taufkirchen, Germany 

100 bp DNA Ladder Ready to Load Solis BioDyne, Tartu, Estonia 
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2.1.2. Media, buffers, and solutions 

Media and cell culture solutions 

Table 2.2 Media, cell culture solutions, and sources of suppliers 

Chemical Source of suppliers 

William's E Medium, GlutaMAXTM Life Technologies, Darmstadt, Germany 

Hydrocortisone (50µM) Sigma-Aldrich, Taufkirchen, Germany 

Fetal calf serum (FCS) PAA Laboratories, Pasching, Austria 

Dimethyl Sulfoxide (DMSO) Sigma-Aldrich, Taufkirchen, Germany 

Trypsin-EDTA (0.05%) Life Technologies, Darmstadt, Germany 

 

Buffer and solution formulars 

10X TAE      10 x TBE  

400 mM Tris base pH8    890 mM Tris base 

200 mM Acetic acid     890 mM Boric acid 

0.5 mM EDTA pH 8     20 mM EDTA pH 8 

 

6 x Loading buffer     10 x TE  

0.2 % (w/v) Bromophenol blue    100 mM Tris base pH 8 

0.2 % (v/v) Xylen-Cyanol    10 mM EDTA pH 8 

40 % (w/v) Sucrose 

 

Ethidium bromide bath solution    

5 μg Ethidium bromide / ml TBE 
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Enzyme buffers and PCR reagents 

Table 2.3 Enzyme buffers, PCR reagents, and sources of suppliers 

Buffer Source of suppliers 

Cutsmart (10x) NEB, Frankfurt a.M., Germany 

HotStar PCR Buffer (10x) Qiagen, Hilden, Germany 

Deoxyribonucleotides (dA/T/C/GTP) Solis BioDyne, Tartu, Estonia 

Hot Start-IT Binding Protein Affymetrix, Cleveland, USA 

PCR Buffer BD (10x)  Solis BioDyne, Tartu, Estonia 

5x RT Buffer Solis BioDyne, Tartu, Estonia 

5x HOT FIREPol® EvaGreen® qPCR Mix Solis BioDyne, Tartu, Estonia 

 

2.1.3. Enzymes 

Table 2.4 Enzyme and sources of suppliers 

Enzyme Source of suppliers 

HOT FIREPol®DNA Polymerase (5 U/µl) Solis BioDyne, Tartu, Estonia 

HotStar Taq™DNA Polymerase (5 U/µl) Qiagen, Hilden, Germany 

MspI (20,000 U/ml) NEB, Frankfurt a.M., Germany 

Klenow Fragment (3’ to 5’ exo-; 5 U/µl) NEB, Frankfurt a.M., Germany 

Proteinase K (20 mg/ml) Sigma-Aldrich, Taufkirchen, Germany 

T4 DNA Ligase (400 U/µl)  NEB, Frankfurt a.M., Germany 

Reverse transcriptase (200 U/µl) Sigma-Aldrich, Taufkirchen, Germany 

RNasin® Ribonuclease Inhibitors (40 U/µl) Promega, Walldorf, Germany 

Random hexaprimer Sigma-Aldrich, Taufkirchen, Germany 
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2.1.4. Oligonucleotides (all adapters and primers) 

Miseq adapters for local-deep sequencing (Ampicon sequencing) 

Universal adapters were fused 5´ to amplicon primer sequences, as shown in Table 2.5 

(adaptors) and Table 2.8 (amplicon primers). 

Table 2.5 Sequences of universal adaptors for amplicon sequencing 

Primer Sequence (5’ to 3’) 

PCR-F Fusion primer TCTTTCCCTACACGACGCTCTTCCGATCT_AmpliconPrimer 

PCR-R Fusion primer GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT_AmpliconPrimer 

 

Truseq adapters for Hiseq (Library sequencing) 

Truseq primer sequences with adaptor index (NNNNNN) were shown in Table 2.6, whereas index 
sequences were shown in  

Table 2.7. 

Table 2.6 Sequences of Truseq primer sequences for library sequencing 

Primer Sequence (5’ to 3’) 

PCR-F with TruSeq Adaptor CAAGCAAGACGGCATACGAGATNNNNNNGTGACTGGAGTTCAGACGTG
TGCTGCTCTTCCGATCT 

PCR-R Truseq DNA Methyl 
Reverse 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTC
TTCCGATCT 

 

Table 2.7 Truseq adaptor index sequences for library sequencing 

PrimerID Index sequence (5’ to 3’) 

TruSeq_AD002 ACATCG 

TruSeq_AD004 TGGTCA 

TruSeq_AD005 CACTGT 

TruSeq_AD006 ATTGGC 

TruSeq_AD007 GATCTG 
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PrimerID Index sequence (5’ to 3’) 

TruSeq_AD012 TGGTCA 

TruSeq_AD013 CACTGT 

TruSeq_AD014 ATTGGC 

TruSeq_AD015 GATCTG 

TruSeq_AD018 GCGGAC 

TruSeq_AD019 TTTCAC 

 

Amplicon primers 

Table 2.8 Amplicon primer sequences. Annealing temperature (Ta), number of CpG site and product length 
are also provided. 

Gene 

Location (hg19) 

Strand (Sequence 5’ to 3’) Ta 
(oC) 

CpG 
(site) 

Length 
(bp) 

AMIGO2 

Chr12:47474651-47474830 

F GTTATTTTTTCGTTTTTTGTAAG 54 16 179 

R ATAATCTCCACCTCATTTCTAAA 

CSMD3 

Chr8:114421443-114421740 

F TTGGGATTATAGGTGTATATTAG 54 7 297 

R AACATACCATTATAAAATTTAC 

DTD1 

Chr20:18569004-18569163 

F GGTAGAGGGTGTAGGATTAG 58 10 159 

R CAACAATAAAAAAAAAAAAATACCTAC 

DUS3L 

Chr19:5789973-5790340 

F GGAGTTTTTTAATAATTATTCGTTG 58 17 357 

R AAACAATTTCACCAATTCCT 

FA2H 

Chr16:74808013-74808501 

F ATAAGTGAAGAGGAAGGAAAGT 58 30 488 

R AACCAAAACRAACCAAAACATCAA 

FAM5C 

Chr1:190447233-190447582 

F GTAGTAAGGAAGTTTAATATAAT 54 21 295 

R CTTAAATCACAAACAACAAAAAC 

OCRL 

ChrX:128674242-128674486 

F TGGGTTAGATTTTTAGTTTTTAGTT 54 29 244 

R ACCTCCCCTCTCCCTTCTCT 

SPARC 

Chr5:151043575-151043843 

F GGGGGATGATAATTTAGTATTTT 54 7 268 

R TAAAACTTTTCCATACCTCA 
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Gene 

Location (hg19) 

Strand (Sequence 5’ to 3’) Ta 
(oC) 

CpG 
(site) 

Length 
(bp) 

TF 

Chr3:133464928-133465037 

F TGGAGTTAGGAGTAGAGTTTT 54 8 110 

R TATTAATAAAAAAAAACATAAAACAC 

TOM1L2 

Chr17:17806802-17806960 

F TTGTAGTTTTAGTTATTTAGGAGGTT 58 7 158 

R TCCATCTATTTTACCCAACATTTTT 

TUBA1A 

Chr12:49582325-49582693 

F GTTTTTGTTTTTTTTGGGTGTTT 54 32 368 

R AAACCTTTAAACTCTTTTCTTTC 

ZNF814 

Chr19:58399924-58400016 

F AGTTTATTTTTAGGTTTTTGT 54 15 192 

R ATATCCTCAAATCACCTCATCATC 

 

qPCR primers 

Table 2.9 qPCR primer sequences. NCBI accession number and product length are also provided. 

Gene 
NCBI  

Accession No. 
Strand (Sequence 5’ to 3’) 

Length 
(bp) 

ALB NM_000477.7 
F CCTGTTGCCAAAGCTCGATG 

140 
R GAAATCTCTGGCTCAGGCGA 

CDK1 NM_001786.5 
F GGATTTTCAGAGCTTTGGGCA 

192 
R TGCCAGAAATTCGTTTGGCTG 

ETNK2 NM_018208.4 
F ACCGGGAGAATGAGGTCAGA 

161 
R GGCGATTAACCTGAAAAGCCG 

LGALS1 NM_002305.4 
F CTGGAAGTGTTGCAGAGGTGT 

130 
R CCGTCAGCTGCCATGTAGTT 

SPARC NM_003118.4 
F CATTGACGGGTACCTCTCCC 

102 
R TCCAGGTCACAGGTCTCGAA 

TF NM_001063.4 
F CTGCTTTGCCTGGACAACAC 

149 
R AAATGTTCCTGGGCCTGGTT 

TOP2A NM_001067.4 
F GAATCGGTACTGGGTGGTCC 

115 
R TTGTAACTTGGAAGCATTGGCA 
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Gene 
NCBI  

Accession No. 
Strand (Sequence 5’ to 3’) 

Length 
(bp) 

ZNF330 NM_014487.6 
F CATGCAATCGGCTTGGTCAG 

172 
R TTCAGGGAGCGTGTTGACAT 

 

2.1.5. Molecular weight standard 

100 bp DNA Ladder Ready to Load (Solis BioDyne) was used for gel electrophoresis as a size 

standard. 

2.1.6. Reaction kits 

Table 2.10 Reaction kits and sources of suppliers 

Reaction kit Source of suppliers 

Bioanalyzer High Sensitivity DNA Kit Invitrogen™, Karlsruhe, Germany 

EZ DNA Methylation Kit Gold Zymo Research, Irvine, USA 

Qubit® ds DNA HS Assay Kit Invitrogen™, Karlsruhe, Germany 

MiSeq Reagent Kit v3 Illumina, Inc., San Diego, USA 

TruSeq DNA Methylation Kit Illumina, Inc., San Diego, USA 

TruSeq PE Cluster Kit v3-cBot-HS Illumina, Inc., San Diego, USA 

TruSeq SBS Kit v3-HS Illumina, Inc., San Diego, USA 

Nextera XT DNA Library Preparation Kit  Illumina, Inc., San Diego, USA 
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2.1.7. Machines and devices 

Table 2.11 Machines, devices, and sources of suppliers 

Machine and device Source of suppliers 

MiSeq™ Illumina, Inc., San Diego, USA 

HiSeq™ 2500 Illumina, Inc., San Diego, USA 

Agilent 2100 Bioanalyzer Agilent Technologies, Santa Clara, USA 

cBot System Illumina, Inc., San Diego, USA 

Qubit ® 2.0 Invitrogen™, Karlsruhe, Germany 

 

2.1.8. Databases and software 

Databases 

NCBI      http://www.ncbi.nlm.nih.gov 

UCSC Genome Browser   http://genome.ucsc.edu 

Software 

bamUtil    http://genome.sph.umich.edu/wiki/BamUtil 

BiQ Analyzer HT   http://biq-analyzer-ht.bioinf.mpi-inf.mpg.de 

BisSNP     http://sourceforge.net/projects/bissnp/files 

ChIPseek    http://chipseek.cgu.edu.tw 

Fast QC (Version 0.11.2)  http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc 

Galaxy     http://internal.genetik.uni-sb.de/galaxy 

IGV Browser     http://broadinstitute.org/igv 

ImageJ    https://imagej.nih.gov/ij 
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MACS2 (2.1.0.20140616)   https://pypi.python.org/pypi/MACS2 

Pathview    https://pathview.uncc.edu 

Picard tools     http://broadinstitute.github.io/picard 

Primer-BLAST    https://www.ncbi.nlm.nih.gov/tools/primer-blast 

Primer Design and Search Tool  http://bisearch.enzim.hu 

The R Project for Statistical Computing http://www.r-project.org 

Trim Galore   http://www.bioinformatics.babraham.ac.uk/projects/trim_galore 

2.2. Methods 

2.2.1. Overall experimental procedure 

Physical constraint experiment 

Regarding the precursor of reprogramming experiment, HepaRG was cultured in a basic medium 

with 0.5 µM hydrocortisone (passage 0). After reaching a confluent level, cells were sub-cultured 

to two groups and hydrocortisone was removed. At this point, one group was in the culture as a 

control of cells without physical constraint (PC), while another group was subjected to physical 

constraint for 20 hours to introduce cell reprogramming. The PC cells were again sub-cultured to 

two subgroups, one supplemented with 10 µM 5’-Azacytidine treatment and one without Aza 

treatment. All groups of cells were prolonged to passage 10 in the same condition and harvested. 

In parallel, cells without physical constraint were treated with Aza and used as a control of the 

PCi-differentiation experiment. After removal of Aza, differentiation of cells was induced by 

physical constraint, followed by cultivation in basic medium, together with 50 µM hydrocortisone 

and 2% DMSO treatment. The cultivation was prolonged and harvested the same way as for the 

induced reprogramming cells.  
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All experiments were performed under the supervision of Dr. Christiane Guillouzo at the Biopredic 

company. The cell pellets and extracted RNA were delivered to Saarland University for further 

analysis. 

Controlled confinement experiment 

Precursor cells of differentiated HepaRG were cultivated in William's E medium. After reaching 

confluence, cells were sub-cultured to multiwell confiner, which consists of fibronectin coated, and 

uncoated 6-welled plates. Approximately, 2x105 cells were seeded in each well. Cells in those 

plates were cultivated in William's E medium without hydrocortisone for further use. 

For controlled confinement experiment, cells were then incubated for 6 hours. To mimic the 

conditions in physical constraint experiments, confined roofs (see Section 2.2.9) were applied to 

multiwell confiner for 20 hours. In addition, an uncoated plate without confined roof was used as 

a control of this experiment. After 20 hours, cell pellets were collected followed by nucleic acid 

extraction (DNA and RNA) to prepare sequencing libraries. This experiment was performed in 

biological duplicate. 

2.2.2. Sequencing library preparation 

Reduced representative bisulfite sequencing (RRBS) library 

Regarding the reprogramming and PCi-differentiation experiments, 12 samples covering all 

processes were selected to analyze the DNA methylation status. DNA of selected samples were 

extracted, then dissolved in 1xTE, followed by quality and quantity measurement using Nanodrop 

photometer.  

The Reduced representative bisulfite sequencing (RRBS) technique captures CpG dinucleotides 

throughout the genome at single-base resolution, according to restriction enzyme digestion. In 
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this study, MspI, which restrictively cuts to 5’ C^CGG 3’, was used to generate the RRBS library. 

Each step of the RRBS library preparation procedure was shown in Table 2.12. 

Table 2.12 RRBS library preparation. Reaction mixtures and incubation/cycle conditions for each step is 
provided. 

Reaction mixture (1x) Vol. (µl) Incubation/cycle condition 

• Digestion (adjusted reaction vol. by H2O to 30 µl.) 

Genomic DNA 100 ng 37 oC 16-18 hours 

After 2 hours, add 0.5 µl MspI to boost up 
the reaction. 

10x Cutsmart buffer 3 

MspI 1 

• End-repair and A-tailing 

10 mM dATP and 1mM dCTP+dGTP 1 30 oC 30 min, 37 oC 20 min, and  

75 oC 20 min Klenow exo- (5U/µl) 1 

• Adaptor ligation 

(1:10) Truseq adaptor (see  

Table 2.7) 

2 16 oC 22-24 hours and 65 oC 20 min 

10 mM ATP 4 

T4-Ligease (2000 U/µl) 1 

10x Cutsmart buffer 1 

• Bisulfite conversion (see Section 2.2.3) 

• Library amplification 

Bisulfite samples 19 95 oC 15 min 

15 cycles of (95 oC 30 sec, 60 oC 30 sec, 
and 72 oC 1 min) 

72 oC 7 min 

 

10x Hotstar PCR buffer 2.5 

2.5 mM each dNTPs 2.5 

10 µM forward primer (see Table 2.6) 0.25 

10 µM reverse primer (see Table 2.6) 0.25 

HotStart Taq polymerase (5 U/µl) 0.5 
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After library amplification, size selection and purification by AMPure XP beads were performed 

(see Section 2.2.5). Finally, the libraries were eluted in 11 µl of 0.1xTE. The RRBS libraries were 

quantified by Qubit Fluorometer (DNA High sensitivity kit) and fragment size was checked using 

the Agilent Bioanalyzer DNA High Sensitivity chip on the Agilent 2100 Bioanalyzer. 

Smart-Seq2 messenger RNA sequencing library 

While the DNA methylation data of selected samples were obtained by RRBS, the transcriptome 

data of some selected samples were obtained by mRNA-sequencing using smart-seq2 protocol. 

The smart-seq2 protocol is a method that can generate quantitative transcriptome data beyond 

the limitation of small amount of RNA material. In this study, the RNA samples were provided by 

Dr. Christiane Guillouzo. To prepare mRNA library, each step was shown following Table 2.13. 

In the beginning of library preparation, 1 ng RNA (in 2 µl) was mixed with 1µl of 10 mM oligo-dT 

primer and 1 µl of 10 mM dNTP and denatured at 72 oC for 3 min. After denaturation, premixed 

RNA sample was placed on ice immediately. RT reaction and library preparation were further 

performed after premixed RNA was prepared.  
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Table 2.13 mRNA-seq library preparation. Reaction mixtures and incubation/cycle conditions for each step 
is provided. 

Reaction mixture (1x) Vol. (µl) Incubation/cycle condition 

• Reverse transcription (RT) 

Premixed RNA 4 42 oC 90 min 

10 cycles of (50 oC 2 min and 42 oC 2 min) 

70 oC 15 min and hold at 4 oC 

 

SuperScript II RT (200 U/µl) 0.5 

RNA Inhibitor (40 U/µl) 0.25 

5x SuperScript II first-strand buffer 2 

100 mM DTT 0.5 

5M Betaine 2 

0.5M MgCl2 0.12 

100 µM TSO 0.1 

Nuclease-free water 0.23 

• PCR pre-amplification 

2x KAPA HiFi HotStart Ready mix 12.5 98 oC 3 min 

18 cycles of (98 oC 20 sec, 67 oC 15 sec, 
and 72 oC 6 min) 

72 oC 5 min and hold at 4 oC 

10mM IS PCR primers 0.25 

Nuclease-free water 2.25 

RT sample 9.7 

• PCR purification and quality control (see Section 2.2.5) 

• Tagmentation (Scaled volume to 4 µl) 

2x TD buffer 2 55 oC 5 min and hold at 4 oC, following by 
an addition of NT buffer 

Amplicon tagment mix 1 

cDNA (500 pg) 1 

NT buffer 1 5 min at room temperature 

• Amplification of adaptor-ligated fragments (Scaled volume to 10 µl) 

Tagmented DNA samples 5 72 oC 3 min and 95 oC 30 sec 

10 cycles of (95 oC 10 sec, 55 oC 30 sec, 
and 72 oC 30 sec) 

72 oC 5 min and hold at 4 oC 

NPM 3 

5 µM AD1 primer 1 

5 µM AD2 primer 1 
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Similar to RRBS library, size selection and purification by AMPure XP bead were performed after 

amplification of adaptor-ligated fragments (see Section 2.2.5). The libraries were then eluted in 

10 µl of elution buffer (or nuclease-free water). The mRNA-sequencing libraries were quantified 

by Qubit Fluorometer (DNA High sensitivity kit) and fragment size was checked using the Agilent 

Bioanalyzer DNA High Sensitivity chip on the Agilent 2100 Bioanalyzer. 

2.2.3. Bisulfite treatment of DNA 

Bisulfite treatment is a method to distinguish methylated cytosines from unmethylated cytosines. 

First, double stranded DNAs are denatured to single stranded DNAs. Those single stranded DNAs 

are subjected to sodium bisulfite treatment. The reaction turns unmethylated cytosine to be 

sulphonated and deaminated intermediate product. After desulphonation by the addition of NaOH 

into the reaction, intermediate product is converted to uracil. Bisulfite-treated DNAs are then 

subject of bisulfite-specific PCRs. In the PCR reaction, uracil will be translated to thymines, while 

methylated cytosines will still be amplified as cytosines. 

In this study, bisulfite treatment was performed using the EZ-DNA methylation Kit/ Gold Kit (Zymo 

Research) following the manufacturer’s instructions. For local-deep sequencing (Miseq for PCR 

amplicons), bisulfite DNA was eluted in 30 µl elution buffers. For library preparation with the 

TruSeq DNA Methylation Kit (see Section 2.2.2), bisulfite DNA was eluted in 2x12 µl MilliQ water. 

2.2.4. Polymerase Chain Reaction (PCR) 

Bisulfite-specific PCR 

Polymerase chain reaction (PCR) is a reaction that mimic DNA replication processes, but it is 

performed in vitro to amplify target sequences. PCR steps include denaturation of DNA templates, 

annealing of primers and elongation by DNA polymerase enzymes. In this study, reaction mixtures 

were prepared as described in Table 2.14 (left). PCR reaction was performed in the AB 2720 or 
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Veriti thermocycling machines (Applied Biosystems). Cycling conditions were provided in Table 

2.14 (right). 

Table 2.14 Reaction mixture for 1x PCR (left) and PCR cycle condition (right). 

Reaction mixture (1x) Vol.(μl)  Segment Condition  

Bisulfite DNA 3  Initial denaturation 95 oC, 15 mins 1 cycle 

10x buffer BD 3  Denaturation 95 oC, 1 min 

Repeat for 40 
cycles 

25 mM MgCl2 3  Annealing* X oC, 2 mins 

10mM dNTPs (2.5mM each) 2.4  Elongation 72 oC, 1 min 

10 µM forward primer 0.5  Final elongation 72 oC, 7 mins 1 cycle 

10 µM reverse primer 0.5  Cooling 4-10 oC, ∞  

HotFire polymerase (5 U/µl) 0.5     

Milli Q water Adjust to 30     

*Annealing temperatures (Ta) for each amplicon were provided in Table 2.8. 

Quantitative Reverse Transcription (RT-PCR) 

In this study, 1 µg RNA, 1 µl random hexamers, and nuclease-free water were adjusted to a total 

volume of 12 µl. Then, the mixture was incubated at 65o C for 5 mins and chilled on ice. After 

incubation, RT reaction mix (Table 2.15) was added  and incubated in a cycler at 25 oC for 5 mins, 

followed by 42 oC for 60 mins. Finally, the reaction was terminated at 70 oC for 5 mins. 

Table 2.15 Reaction mixture for 1x RT reaction mixture. 

Reaction mixture (1x) Vol. (20 μl) 

RNA mixture 12 

5x RT buffer 4 

10 mM dNTPs mix 2 

RNase inhibitor (40 U/µl) 1 

Reverse transcriptase (200 U/µl) 1 
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Prepared cDNA was used as a template in quantitative PCR (real-time qPCR). This step includes 

fluorescent dye (EvaGreen) to be incorporated into the nascent PCR product., Gene expression 

level was detected by Ct value during the annealing step. qPCR reaction was prepared as listed 

in Table 2.16 (left), qPCR conditions are shown in Table 2.16 (right). qPCR reaction was 

performed in Multiplex Quantitative PCR Systems (Mx3000P machine, Stratagene). 

Table 2.16 Reaction mixture for 1x qPCR (left) and PCR cycle conditions (right). 

 

2.2.5. DNA Purification, quantification, and quality control 

Amplicon purification 

Amplicons were purified using AMPure XP beads to get rid of other PCR components e.g. buffer, 

dNTPs and primers. PCR product was mixed with 1.1x magnetic beads and placed on magnetic 

rack. In case of RRBS library and mRNA library purification, the mixtures were mixed with 0.9x 

and 0.8x magnetic beads, respectively. Supernatant was discarded after 10 minutes, whereas 

PCR fragments remain bound to magnetic beads. The beads were washed with 80% ethanol 

twice and dried. Dried pellets were then dissolved and eluted using 0.1x TE buffer. After placing 

back on the magnetic rack to separate magnetic beads, the solution was transferred to a new 

tube. Quality control was performed by gel electrophoresis (1.2% agarose gel in 0.5x TBE). 

Reaction mixture (1x) Vol.(μl)  Segment Condition  

cDNA 3  Initial Denaturation 95o C, 15 mins 1 cycle 

EvaGreen® qPCR Mix 4  Denaturation 95o C, 30 sec 

Repeat for 
40 cycles 

10 µM forward primer 0.3  Annealing 60o C, 20 sec 

10 µM reverse primer 0.3  Elongation 72o C, 30 sec 

Milli Q water Adjust to 20  

Final detection 

95o C, 1 min 

1 cycle    60o C, 30 sec 

   95o C, 30 sec 



 

48 

 

Amplicons were quantified using Qubit dsDNA HS assay kit on a Qubit fluorometer. Amplicons 

can be stored at 4o C or -20o C until sequencing. 

2.2.6. Next Generation Sequencing 

Local-deep sequencing on the Illumina Miseq platform 

Sequencing of bisulfite amplicons was performed using Illumina Miseq platform. Amplicons were 

generated with primers containing adapter sequences as shown in Table 2.5 and Table 2.8. On 

Illumina Miseq platform, sequencing by synthesis technology was used. The amplicon samples 

were bound to fixed oligos on a flow cell, where bridge amplification was performed. Reversible 

terminator nucleotides (dA/T/C/GTPs) labelled with different fluorescent dyes were used in the 

elongation step, leading to fluorescent detection of each base during every round of DNA 

synthesis. In this study, the samples were sequenced 2 x 300 bp paired-end, aiming at 10,000 

reads per amplicon. This work was carried out by Jasmin Kirch, Christina Lo Porto and Dr. Sascha 

Tierling. 

RRBS and mRNA libraries sequencing on the Illumina Hiseq2500 platform 

The qPCR was performed to measure amplifiable library concentration and adjusted to 2 nM. For 

the cluster generation, the cBot system was used following the manufacturer´s instructions. After 

cluster generation, all libraries were sequenced 1 x 100 bp single read on the Illumina HiSeq 2500 

system. This work was carried out by Christina Lo Porto, Dr. Nina Gasparoni and Dr. Gilles 

Gasparoni.  

2.2.7. Analysis of sequencing data 

Bisulfite amplicons 

Initial quality control and adaptor trimming were computationally processed by Dr. Karl Nordström 

and Dr. Abdulrahman Salhab. Amplicon reads were further extracted by primer sequence and 
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sample index using the Galaxy Organizer tool for Illumina data. Finally, amplicon reads were 

analyzed for methylation level using BiQAnalyzer HT (Lutsik et al., 2011). Parameters on 

BiQAnalyzer HT were set as minimal sequence identity = 0.9, minimal bisulfite conversion = 0.95 

and maximal fraction of unrecognized CpG sites = 0.1, respectively. The methylation of each 

amplicon and pattern maps were provided as results from BiQAnalyzer HT. 

RRBS and mRNA sequencing 

Comparable to local-deep sequencing, raw sequenced reads were computationally processed 

including initial quality control (FastQC), adapter trimming (Trim Galore! wrapper of cutadapt), 

mapping to GRCh37/hg19 reference genome (GSNAP), DNA methylation calling (BisSNP), 

removing duplicates (Picard tools) and elimination of overlapping read pairs (bamUtil). 

Computational processes were carried out by Dr. Karl Nordström and Dr. Abdulrahman Salhab. 

Regarding RRBS sequencing, processed reads were provided as bed and bam files. Those file 

types were loaded into the IGV browser for visualization. Further analysis was performed using 

MethylKit. 10x coverage was used as a filtering threshold. Tiling regions were determined as 500 

bp windows including at least 3 CpG sites. In case of duplicates, only tiling regions that are found 

in duplicated samples were considered. Differential methylation was detected using f-test (no 

replicate) or student´s t-test (duplicate) to obtain statistical significance. 

mRNA sequencing results were further analyzed using RNA-SeQC. Bigwig files were provided 

for visualization as well as FPKM of each transcript was also provided. Differential expression 

was performed using Cuffdiff (no replicate) or DeSeq2 (duplicate) to obtain statistical significance. 

This work was carried out by Dr. Karl Nordström. 
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2.2.8. Gene selection for validation experiments and Primer design 

Bisulfite amplicons 

Amplicons were selected for validation experiments from pairwise comparison of each state. 

Selected DMRs should show a differential methylation of at least 15% and an FDR-adjusted P-

value less than 0.01. After region selection, nucleotide sequences were obtained from UCSC 

genome database (hg19). Bisulfite primer design was performed using the BiSearch online tool 

(Tusnády et al., 2005; Arányi et al., 2006) following these parameters: 

- Primer should be 20 - 35 bp in length 

- Amplicon should be 150 - 500 bp in length 

- Primer melting temperature (Tm) should be at 48 – 62 oC 

- Primer concentration should be 0.167 pM 

- Magnesium chloride concentration should be 2.5 mM 

- Maximum Tm difference between the primers should be 2.0o C 

To conclude primer design, ePCR was performed using BiSearch as a control for the specificity 

of those primers. Primers were manufactured by biomers.net GmbH, Ulm, Germany or 

Microsynth, Lindau, Germany. Primers were dissolved in 1xTE obtaining 100µM, as stock 

solution, and diluted in 0.1xTE to 10µM to obtain the working solution. Stock and working solution 

can be stored at -20o C until they are used in further steps. 

Gene expression validation 

Differential expression of genes was validated based on pairwise comparison of each state. Log2 

fold change of selected DEGs should be at least 2 and be significant (q-value < 0.01). Accession 

number of genes were obtained from NCBI database (see Table 2.9). Primers for qPCR were 

designed using Primer-BLAST tools following these parameters: 
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- PCR product should be 70 - 200 bp in length 

- Primer melting temperature (Tm) should be at 60 +/- 3o C 

- At least one of each primer should be placed on an exon-exon junction 

- Database should be Refseq mRNA, excluding predicted Refseq transcripts and 

uncultured/environmental sample sequences. 

Similar to bisulfite primers, these primers were manufactured by biomers.net GmbH, Ulm, 

Germany or Microsynth, Lindau, Germany. Stock and working solution of primers were also 

prepared in the same way as described for bisulfite primers. 

2.2.9. Glass slide fabrication for controlled confinement 

Glass slide fabrication is a preparation step of multiwell confiner. In this study, glass slide 

fabrication had been modified (Le Berre et al., 2014) and shown in Figure 2.1. 

Figure 2.1 Assembled multiwell confiner (Modified, Liu et al., 2015). After floor glass treatment and slide 
fabrication, glass bottom slides are attached to the floor of 6-well plate by PDMS sheet, while confinement 
slides are attached to PDMS pillars, which are are attached directly to 6-well plate lid. 

Floor glass treatment 

A floor glass slide was placed in microplasma vacuum for 1 minute to activate surface. After that, 

parafilm sheet was used to cover a glass surface, except in the middle of the floor. Meanwhile, 

soft silicone was attached to the middle of the floor to prevent the middle area from coating. PEG 
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solution was then coated around the middle area under covered parafilm sheet and let it dry at 

room temperature overnight. After PEG coating, the middle area was marked on the uncoated 

side. Soft silicone was then removed from the glass, while parafilm sheet was not. In the middle 

area, fibronectin solution was used to coat in this area, since cells were attached in the middle of 

the floor during the experiment. After fibronectin coating, the floor glass was dried at room 

temperature for 6 hours. Then, the parafilm sheet was removed after drying step. Coated glass 

was washed using distilled water to remove excess of coating solution and removed excess water 

using an air jet. Coated floor glass was then stored at 4 oC until being assembled to a floor of 

mutiwell confiner. 

Slide fabrication 

A 10mm glass slide was placed in microplasma vacuum for 1 minute to activate surface, similar 

to the first step of the floor glass treatment. Meanwhile, 10 g of PDMS/cross-linker mix (8:1, w/w) 

was performed and dropped on an imprinted mold. To fabricate a confinement slide, an activated 

glass was placed on the mold by pressing activated surface onto PDMS drop. The mold was then 

incubated on a hot plate at 95o C for 15-20 minutes. After that, the PDMS rims were removed, 

retaining only the fabricated confinement slide. Detaching the fabricated confinement slide was 

performed using a razor blade and Isopropanol, since the slide needed to be kept wet during 

detachment step. The detached confinement slide was cleaned with Isopropanol and air dried. 

This fabricated confinement slide was stored at 4o C until assembled to a cover of mutiwell 

confiner as the confinement roof. 

Multiwell confiner assembly 

To assemble the multiwell confiner, sticky PDMS sheets were used to attach floor glasses and 

PDMS pillars to a 6-well plate and a lid, respectively. PDMS pillars were soft and flexible and had 

a similar height to the height of 6-well plate. Floor glasses were attached to each well of the 6-
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well plate whereas confinement slides were attached to PDMS pillars. Then, the height of the 

pillars was slightly increased, providing a controlled pressure when this modified lid was applied 

in the confinement experiment. 

2.2.10. Immunofluorescence for 5mC/5hmC 

After 20 hours of confinement, cells were harvested by trypsinization and washed twice in 1x PBS. 

Cells were then fixed on the slide, including sucking out small amount of PBS, which are replaced 

with 3.7% paraformaldehyde in PBS, instead. After that, fixed cells were permeabilized, followed 

by staining with antibodies against DAPI, 5mC and 5hmC. For this immunofluorescent staining, 

all works were carried out by Dr. Konstantin Lepikhov. Fluorescent signal was measured using 

ImageJ and relative signals of 5mC and 5hmC were obtained by normalization a raw signal of 

5mC or 5hmC by a raw signal of DAPI e.g. 5mC/DAPI or 5hmC/DAPI, respectively.
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Chapter 3 Results 

3.1. Physical constraint and PC-induced differentiation experiment 

HepaRG cells were used for the following reprogramming experiment since they assemble 

molecular features of (pre-) differentiated hepatocytes on the one side and improved proliferation 

efficiency comparable to cancer cells on the other. To achieve the switch from a (pre-) 

differentiated cell to a multipotent cell, HepaRGs were physically restricted in their 

microenvironments (Physical constraint; PC). It was described previously that physical constraint 

affects chromosome structure, and this alteration was shown to have an impact on the epigenome 

and transcriptome of the cells (Huang et al., 2015; Uhler and Shivashankar, 2016). Therefore, in 

this study, DNA methylation and expression profiles were studied through the reprogramming 

process, including physical constraint and maintenance state, in which cells were treated with 5-

Azacytidine to keep multipotency. Moreover, the molecular signatures after PC-induced 

differentiation (PCi-differentiation or redirected differentiation), which was induced again by the 

physical constraint, followed by the application of hydrocortisone and DMSO to redifferentiate 

multipotent cells to hepatocyte-like cells, was also examined. 

At the beginning of the experimental procedure, the experiment was conducted by Biopredic staffs 

under the supervision of Dr.Guillouzo. Preparing of HepaRG cells for the PC path, the precursor 

of differentiated HepaRG cells were cultured with hydrocortisone to push proliferation of the cells. 

After reaching confluency, the cells were divided into two sub-cultures, and hydrocortisone was 

removed from the medium. Cells growing in high density were subjected to physical constraint for 

20 hours (RP_P0PC), while cells growing in low density were cultivated further without physical 

stress (RP_P0nonPC) (Figure 3.1). 
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Figure 3.1 Experimental scheme of reprogramming HepaRG cells by physical constraint. Differentiated 
HepaRG precursor cells were divided into 2 sub-cultures, physical constraint was applied to the high-
density culture while cells growing in low density were cultured without physical stress. 

RP_P0PC/nonPC cells were further cultivated and prolonged to passage 10 (RP_P10nonPC). 

The RP_P0PC were divided into two sub-cultures, i) treated with 10 µM 5-Azacytidine and ii) 

without Aza-treatment, and prolonged to passage 10 as well (RP_P10PC/PC+A) (Figure 3.2). 

Figure 3.2 Experimental scheme of maintaining PC-HepaRG cells. RP_P0PC/nonPC, from physical 
constraint experiment, were further prolonged to passage 10. Cells were treated with 5-Azacytidine to 
stabilize PC-based reprogramming through the experiment. 

For the PCi-differentiation path, the experiment was performed independently. Non-PC-HepaRG 

cells were cultivated with 5-Azacytidine (RD_P0nonPC+A). RD_P0nonPC+A were then subjected 

to physical constraint for 20 hours the same way as described for the RP_P0PC cells. After that, 

5-Azacytidine was removed from the culture and cells were treated with 50µM hydrocortisone 
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(RD_P0+Hydro) and DMSO (RD_P0+DMSO) and cultivated to passage 20 (RD_P20), 

respectively (Figure 3.3). 

Figure 3.3 Schematic workflow showing PCi-differentiation strategy of reprogrammed HepaRG. 
RD_P0nonPC+A were subjected to physical constraint for 20 hours, followed by hydrocortisone/DMSO 
induction and prolonged cultivation to passage 20 (RD_P20). 

During reprogramming and PCi-differentiation processes, cells were harvested at each time 

point and subjected to methylome and transcriptome analysis. To sum up the experimental 

process as a whole, Figure 3.4 illustrates the experimental scheme by timing. 

Figure 3.4 Schematic overview of the experimental workflow. Blue-dashed arrow represents time points of 
cultivation and prolonged culture. All samples are subjected to methylome sequencing, whereas samples 
with bold letters are subjected for transcriptome sequencing.; blue = precursor, orange = physical 
constraint, gray = maintenance, and green = PCi-differentiation. 
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3.1.1. DNA methylation changes during reprogramming and PCi-differentiation processes 

The methylome data of this study were obtained by reduced-representation bisulfite sequencing 

(RRBS) on a HiSeq2500 machine (Illumina). In this study, the restriction enzyme MspI was used 

to study promoters and other regulatory CpG-rich regions. 

Figure 3.5 Number of CpG sites covered after methylation calling and filtering. Number of CpG sites after 
methylation calling are in dark colors, while number of CpG sites after filtering are in light color; blue = 
precursor, orange = physical constraint, gray = maintenance, and green = PCi-differentiation. 

The sequencing yielded approx. 40-120 million reads, from each of the 12 samples (see 

Supplementary Table 7.1). Sequenced methylome data of all samples were analyzed by MethylKit 

(Akalin et.al., 2012) setting a 10x coverage threshold. After methylation calling, for each sample 

2-5 million CpG sites remained, depending on the number of sequenced reads. Even after 10x 

coverage filtering, more than 90% of reads were taken into account for analysis (Figure 3.5). 
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Figure 3.6 Overall methylation level of all samples. The black line in the box represents the methylation 
median, while the red dot indicates the average methylation level of the respective sample. Average 
methylation level (%) of each sample is listed in a table next to the box plot. 

First, the average methylation level of all samples was assessed and found to be slightly different 

between the states (Figure 3.6). Between precursor cells and reprogrammed cells passage 0 

(RP_P0 vs. PC/nonPC), the average methylation level was almost similar (56.1% and 55.5%, 

respectively). Notably, the average methylation level of samples treated with Aza (RP_P1 and 

RP_P10) was slightly decreased in passage 1 (from 55.6% to 50.2%), then considerably 

decreased in passage 10 (from 58.2% to 38.1%). For the PCi-differentiation path, the average 

methylation level of starter cells (RD_P0nonPC+A) and PCi-differentiation passage 0 and 20 

(RD_P0 and RD_P20) were 15% lower than samples (40% – 41%) in the reprogramming and 

maintenance states. Although the samples in this group were treated with hydrocortisone and 

DMSO, the average methylation of those remained constant. However, the average methylation 

level tended towards a slight increase throughout the PCi-differentiation process.  

Sample Avg.Met 

Precursor 56.1 

RP_P0nonPC 55.5 

RP_P0PC 55.5 

RP_P1PC 55.6 

RP_P1PC+A 50.2 

RP_P10nonPC 58.2 

RP_P10PC 57.7 

RP_P10PC+A 38.1 

RD_P0nonPC+A 40.2 

RD_P0+Hydro 40.5 

RD_P0+DMSO 40.6 

RD_P20 41.1 
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Figure 3.7 Heatmap of 20K most variable 500 bp tiles. The colors, blue and red, represent the methylation 
level from 0 to 1. The states of samples are defined by colors presented on the top right. 

Using the MethylKit package, methylome data of all samples were assessed using a 500 bp tiling 

window containing at least 3 CpGs filtering all reads with less than 10-fold coverage. The heatmap 

of 20K most variable tiles showed significant differences between reprogramming and PCi-

differentiation states (Figure 3.7). The precursor cells (blue) and samples belonging to 

reprogramming state (orange and grey) were in the same cluster showing highly methylated tiles 

with increasing methylation from early passage (P0) to late passage (P10), which were consistent 
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with the average methylation level of all CpG sites. During the reprogramming process, the 5-

Azacytidine was introduced to the culture to stabilize the hypomethylated status of the 

reprogrammed cells, particularly in the RP_P10PC+A. Therefore, conversely to the other 

reprogramming samples, RP_P10PC+A clustered to the PCi-differentiation samples (green) with 

more low methylated tiles. Moreover, the methylation profile of the RD_P20 confirms the tendency 

towards an increase of methylation during the PCi-differentiation process. 

3.1.2. Comparison of differential methylation during reprogramming and PCi-differentiation 

processes 

In this study, the reprogramming process was divided into two parts, i) physical-constraint and ii) 

maintenance. For i) hydrocortisone was removed when the precursor cells reached confluency 

and these cells were sub-cultured for using in the subsequent PC experiment. Sub-cultured cells 

were seeded with different density and cultured in medium without hydrocortisone. The bottle of 

high-density cells was subjected to physical force (PC), while the bottle of low-density cells was 

used as a control (nonPC). By comparing the methylome and transcriptome of PC and nonPC 

physical constraint effects on molecular signatures can be studied. Studying cells before and after 

removal of hydrocortisone (+/-hydro), the effect of hydrocortisone on HepaRG molecular 

signatures as well as the effect of PC after 20 hours will become visible. For ii) PC and nonPC 

were prolonged passage. PC samples were also stabilized for cellular properties using 5-

Azacytidine (Aza). Studying cells in maintenance state will also provide molecular signatures 

influenced by prolonged cultivation and Aza treatment, respectively. 

For pairwise comparisons, the differentially methylated regions (DMRs) were analyzed using F-

test in MethylKit package. In this study, the DMRs were defined as tiles with more than 10% DNA 

methylation difference and an FDR adjusted p-value less than 0.01.  
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Figure 3.8 Differentially methylated regions (DMRs) after physical constraint. i)  shows each pairwise 
comparison (A-C). Dot in each comparison represents the reference sample, while the sample at the end 
of the arrow is the observed sample. ii) Bar graph shows hyper- and hypomethylated DMRs for each 
comparison. The number of DMRs were also shown in each box. and iii) Pie charts show distribution of 
DMRs according to genome annotation (UTR – untranslated region, TSS – transcriptional start site, TTS – 
transcriptional termination site). 

As a result of physical constraint, the overall number of DMRs in A-C was slightly different but 

tended to decreased methylation levels in all comparisons (Figure 3.8 ii). While hypomethylated 

DMRs appeared more prominent in the comparison of +/-hydro (A and B), the comparison of PC 

effect (C) showed almost equal numbers of hypermethylated DMRs and hypomethylated DMRs. 

Functional annotation of each comparison was obtained from ChIPSeek website (Chen et.al., 

2014), and all DMRs were included in the analysis. The result revealed that DMRs of all 

comparisons were mostly located in intronic, intergenic and promoter-TSS regions, respectively. 

DMRs obtained from comparisons A and B were similarly distributed among different 

transcription-related features, whereas minor differences in distribution were found in DMRs from 

2698

3900
3280

1703

1809
2765

0

1000

2000

3000

4000

5000

6000

7000

A B C

N
o

. o
f 

D
M

R
s

No. of DMRs of each comparison

Hypomethylated Hypermethylated

i) ii) 

12.27
1.23

35.88

4.54

42.26

1.34
0.70 1.77

A

iii)

8.19

0.79

39.04

3.54

44.52

0.99
1.01

1.92

C
promoter-TSS

5'UTR

intron

exon

intergenic

non-coding

3'UTR

TTS

10.84

1.21

36.12

4.31

43.79

1.28 0.88 1.58

B



 

62 

 

C, i.e., the promoter-TSS decreased approx. 2-4%, but the intron and intergenic increased 3%, 

when compared to A and B (Figure 3.8 iii). 

Because comparison B was a combination between cultivation effect and PC effect, A-B DMRs 

and B-C DMRs were compared to figure out if DMRs evolved from PC or culturing. Interestingly, 

B-specific DMRs overlapped with A- and C-specific DMRs in 11.43% and 9.38%, resp., of all tiles 

(see Supplementary Figure 7.1). To extract the PC-specific DMRs, DMRs obtained A and C was 

performed (Figure 3.9 i). The result showed that 13.9% of DMRs are common between A and C 

splitting up into 3 categories; 

(1) Hypomethylated DMRs in A → Hypomethylated DMRs in C (0.11%) 

(2) Hypomethylated DMRs in A → Hypermethylated DMRs in C (6.39%) 

(3) Hypermethylated DMRs in A → Hypomethylated DMRs in C (7.4%) 

DMRs in the categories (2) and (3) appeared to a similar extent (6.39% and 7.40%, respectively) 

while DMRs grouping into category (1) were underrepresented (0.11%) (Figure 3.9 ii). 

Figure 3.9 Specific DMRs related to physical constraint. i) Overlapping of A and C extracts DMRs evolved 
specifically by physical constraint. ii) The overlapping is then performed separately by methylation status, 
yielding 3 groups of overlapping DMRs. 
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Prolonged cultivation of the cells derived from the RP_P0PC/nonPC represented a maintenance 

procedure that could reveal effects based on cultivation only. The cells derived from the RP_P0PC 

were treated with a stabilizer, 5-Azacytidine (5-Aza/Aza), to maintain molecular and morphological 

features of the cells.  Because the 5-Azacytidine treatment directly affects global DNA 

methylation, the effect of prolonged cultivation and the effect induced by 5-Aza only is of major 

interest. 

For the effect of prolonged cultivation, the PC/nonPC-derived samples were observed 

independently (Figure 3.10 i). The results showed that number of significant DMRs influenced by 

long-term cultivation in nonPC-derived comparison (A: 30,393 DMRs) was higher than in PC-

derived comparisons (B-D: 26,596, 8,687 and 28,366 DMRs, respectively). Notably, it was found 

that prolonged cultivation contributed to hypermethylation of the cells. A higher number of DMRs 

was observed more clearly when comparing early and late passages of cells (B and C). This effect 

was found sharply increased from early passage (8,687 DMRs in C) to late passage (26,596 

DMRs in B) as shown by the comparisons of PC-derived samples (Figure 3.10 ii). Genome 

annotation analysis was performed for the comparisons A, B and C. While nonPC-derived (A) and 

PC-derived comparisons (B) revealed similar proportions, remarkable change was observed 

approx. to 5% in early (C) and late passages (B), particularly within introns (Figure 3.10 iii).  

 

 

 

 

 



 

64 

 

Figure 3.10 DMRs emerging by prolonged cultivation. i)  shows each pairwise comparison (A-D). Dot in 
each comparison represents the reference sample, while the sample at the end of the arrow is the observed 
sample. ii) Bar graph shows hyper- and hypomethylated DMRs for each comparison. The number of DMRs 
were also shown in each box. and iii) Pie charts show distribution of DMRs according to genome annotation 
(UTR – untranslated region, TSS – transcriptional start site, TTS – transcriptional termination site). 
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To figure out if the differences observed in the early passage remained detectable also in the late 

passage, comparisons B and C were compared. Shared DMRs (sDMRs) were found only in 

9.85% of tiles (Figure 3.11 i), splitting up into 4 categories: 

(1) Hypomethylated DMRs in B → Hypomethylated DMRs in C (3.70%) 

(2) Hypomethylated DMRs in B → Hypermethylated DMRs in C (0.10%) 

(3) Hypermethylated DMRs in B → Hypermethylated DMRs in C (5.63%) 

(4) Hypermethylated DMRs in B → Hypomethylated DMRs in C (0.42%) 

While the most sDMRs grouped into category (3), followed by category (1), not many sDMRs 

grouped into (4) and (2) (Figure 3.11 ii). 

PC/nonPC-derived DMRs (pcDMRs) were identified by comparing A vs. B. pcDMRs were shown 

for 29%, which were grouped into 4 categories as already shown for sDMRs (see Supplementary 

Figure 7.2). 

Figure 3.11 Shared DMRs after prolonged cultivation i) Overlapping of B and C extracts shared DMRs 
(sDMRs) in the comparison between early and late passages. ii) The overlapping is then performed 
separately by methylation status, yielding 4 groups of sDMRs. 
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The 5-Aza-treatment was applied solely in PC-derived samples. After treatment, the whole 

genome hypomethylation was clearly observed in all comparisons. Number of hypomethylated 

DMRs was increased significantly from passage 1 to passage 10 (A to B and C to D, respectively). 

The number of significant DMRs was approximately 3-folds higher, compared to the 

hypomethylated DMRs from passage 1 (A) to passage 10 (B). Meanwhile, hypermethylated 

DMRs barely occurred (less than 1%, 1,556 DMRs in passage 1(A) and 209 DMRs in passage 

10 (B)). To identify DMRs between Aza-treated samples and PC sample passage 0, pairwise 

comparison of C and D was performed. Nevertheless, the resulting numbers seemed similar to 

the comparison A and B (early to late passage), but in opposite directions. A slight increase of 

DMRs was observed from A to C, whereas a slight decrease of DMRs was observed from B to D 

(Figure 3.12 ii). Genome annotation analysis showed that DMRs were mostly located in intergenic 

and intronic regions. Interestingly, passage number contributed to the distribution of DMRs into 

genome annotation categories, for example the distribution of DMRs in A was comparable to that 

in C and the distribution of DMRs in B was comparable to that in D (Figure 3.12 iii). 
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Figure 3.12 DMRs emerging by the application of 5-Aza. i)  shows each pairwise comparison (A-D). Dot in 
each comparison represents the reference sample, while the sample at the end of the arrow is the observed 
sample. ii) Bar graph shows hyper- and hypomethylated DMRs for each comparison. The number of DMRs 
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were also shown in each box. and iii) Pie charts show distribution of DMRs according to genome annotation 
(UTR – untranslated region, TSS – transcriptional start site, TTS – transcriptional termination site). 

 

3.1.3. Changes in DNA methylation during PCi-differentiation process 

PCi-differentiation process starts from RD_P0nonPC+A, which was subjected to physical 

constraint for 20 hours. After that, the cells were treated with hydrocortisone to reboot some 

hepatic functions, followed by DMSO to induce cell differentiation. In this state, medium containing 

hydrocortisone and DMSO was used continuously in the culture until cells were harvested at 

passage 20 (RD_P20). 
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Figure 3.13 DMRs emerging during PCi-differentiation process. i)  shows each pairwise comparison (A-D). 
Dot in each comparison represents the reference sample, while the sample at the end of the arrow is the 
observed sample. ii) Bar graph shows hyper- and hypomethylated DMRs for each comparison. The number 
of DMRs were also shown in each box. and iii) Pie charts show distribution of DMRs according to genome 
annotation (UTR – untranslated region, TSS – transcriptional start site, TTS – transcriptional termination 
site). 

Pairwise comparisons revealed that number of DMRs increased throughout the PCi-differentiation 

process. In the beginning of PCi-differentiation process, minor changes were found in the DMRs 
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(RD_P20), the number of DMRs dramatically increased (10-folds increase). In particular, the 

results from A to C revealed that the number of hypermethylated DMRs were raised by the 

supplements. Interestingly, the precursor cells used for the reprogramming experiment still 

showed clearly distinct methylation patterns compared to the RD_P20. Moreover, 

hypomethylated DMRs appeared to be more prominent in RD-P20 (D in Figure 3.13 ii). As shown 

in Figure 3.13 iii for genome annotation, most DMRs were found in intergenic and intronic regions. 

The relative amount of DMRs in promoter-TSS regions were comparable between the samples 

analyzed during the PCi-differentiation process (Figure 3.13 iii).  

3.1.4. Summary of methylation analyses during reprogramming and PCi-differentiation of 

HepaRG 

MspI-RRBS shed light on major DNA methylation changes during reprogramming and PCi-

differentiation processes. Overall, high methylation patterns were observed in most samples 

undergoing the reprogramming process, while overall low methylation patterns were observed in 

the samples analyzed during PCi-differentiation. 

The reprogramming process was divided to 2 states, physical constraint and maintenance state. 

Both sample states showed overall high methylation levels. The pairwise comparison of PC vs. 

nonPC showed minor differences of methylation since the number of DMRs was the lowest 

among all comparisons. Prolonged cultivation and treatment with 5-Aza in the maintenance state, 

showed pronounced DNA methylation effects. Prolonged cultivation led to gain of methylation 

levels in late passage samples, whereas Aza-treatment led to whole-genome hypomethylation in 

early and late passages. 

After induction of PCi-differentiation, DNA methylation tended to increase throughout the PCi-

differentiation process, however, did not reach the levels observed for the starter HepaRG culture.  
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Genome annotation analysis revealed distinct patterns for samples in the reprogramming process 

and those in the PCi-differentiation process, respectively. While DNA methylation was found to 

be stable in promoters and 5´UTRs, most DMRs were found in intronic and intergenic regions. 

3.1.5. The expression profiles of reprogrammed and PCi-differentiated HepaRG 

In parallel with the methylation analysis, 8 of 12 samples were chosen as representatives of each 

state to perform mRNA sequencing. Quality control of mRNA-sequencing showed that all samples 

obtained different numbers of reads (from 3 x 107 to 8 x 107, see Supplementary Figure 7.3), but 

number of detected transcripts and detected genes were comparable, average at 1.2x105 

transcripts and 2.1x104 genes (see Supplementary Figure 7.4).  However, the transcript-

associated relative distribution of reads was slightly different in each sample, e.g. the samples 

obtained during the redifferentiation process had higher read numbers in intronic and intergenic 

regions compared to other samples (Figure 3.14). 

Figure 3.14 Transcript-associated relative distribution of reads of PC samples. The bar diagram shows the 
relative read distribution in exon, intron, and intergenic regions for all analyzed samples in different 
epigenetic states. 
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Similar to the methylation analysis, mRNA-Seq samples from each branch of the experiment were 

analyzed separately. The overall expression profiles revealed only minor differences between the 

samples. Although the sample clustering seemed comparable to the clustering defined by DNA 

methylation, the transcription profile of the HepaRG precursor cells clustered together with those 

of the samples obtained in the PCi-differentiation process. (Blue bar in Figure 3.7 and Figure 

3.15). Particularly, samples from the same passage were close to each other, for instance 

RP_P0PC and RP_P0nonPC (Orange bar in Figure 3.15). 

Figure 3.15 Heatmap of 20k variable expressed genes. A gradient of blue to red represents log (FPKM+1) 
value from low expression to high expression. The processes when samples were obtained are defined by 
different colors. 
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3.1.6. Alterations of gene expression during reprogramming process 

The analysis of differential expression during reprogramming process were separated to physical 

constraint and maintenance state. Differentially expressed genes were computed using Cuffdiff 

in the Cufflink package (Trapnell et al., 2010; Trapnell et al., 2013). Genes with an FDR adjusted 

p-value less than 0.01 were classified as Differentially Expressed Genes (DEGs). Furthermore, 

Gene Ontology (GO) of biological process and KEGG pathways of DEGs were analyzed by 

String-DB database at FDR adjusted p-value less than 0.05 (von Mering et al., 2003; Szklarczyk 

et al., 2017). 

Figure 3.16 Differentially expressed genes (DEGs) in physical constraint state. i) shows each pairwise 
comparison (A-C). Dot in each comparison represents the reference sample, while the sample at the end 
of the arrow is the observed sample. ii) Bar graph shows up- (dark color) and down-regulation (light color) 
for each comparison. Number of DEGs in each direction are shown in boxes. 

Pairwise comparisons of samples obtained in the physical constraint branch of the experiment 

showed that the highest number of DEGs was observed in B, followed by A and C. The up-

regulated DEGs were observed predominantly in comparison A and B, while both, up-regulation 

and down-regulation, was observed almost equally in comparison C (Figure 3.16 i and ii).  

Since comparison B represents a combination between hydrocortisone removal (A) and physical 

constraint (C), overlapping of A vs. B and B vs. C was performed. The results showed that A 

contained common DEGs with B more than with C (see Supplementary Figure 7.5). 
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To figure out if hydrocortisone removal (A) influenced the physical constraint (C), comparison of 

A vs. C was performed. GO and KEGG pathway were also examined for both unique and common 

DEGs. 

The result of A vs. C comparison showed that most DEGs of A and C in both regulation directions 

were unique, but common DEGs were observed for 13 genes (Figure 3.17 i and iii). Unique DEGs 

of both regulation directions could be found in GO of biological process and KEGG pathways, 

except down-regulation in C. For the hydrocortisone removal effect (A), down-regulation mainly 

related to metabolic processes such as steroid and lipid metabolic processes, while up-regulation 

related to protein-containing complex binding process (Figure 3.17 ii). As mentioned previously 

that no GO and KEGG pathway was found in down-regulation in C, the up-regulated transcripts 

in C, on the other hand, was found to be involved in several biological processes such as immune 

response and metabolic processes (Figure 3.17 iv). 
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Figure 3.17 GO terms and KEGG pathways of DEGs in samples of the physical constraint branch of the 
experiment. i) Venn diagram showing number of DEGs the overlapping between hydrocortisone removal 
effect (A; Blue) and physical constraint (C; Green) in each regulation direction. Dark colors represent up-
regulated genes, while light colors represent down-regulated genes. ii) and iv) Bar graph shows number of 
genes related to GO terms and KEGG pathways of hydrocortisone removal effect (ii) and physical constraint 
(iv). FDR-adjusted p-value are written at the end of bars. Colors are also defined following the Venn 
diagram. *No GO terms and KEGG pathways of down-regulated genes are presented (no light green). iii) 
Heatmap shows the expression value (log (FPKM+1)) of common DEGs. Gradient colors from white to 
purple represent low to high expression, respectively. 
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Three samples from passage 10 were selected to be subjects of mRNA sequencing representing 

the maintenance state focusing on long-term (prolonged) cultivation and Aza-treatment effects 

(Figure 3.18). Interestingly, the sample derived from PC (B) showed strong differences, compared 

to the sample derived from nonPC (A). However, at the late passage, there were not many 

differences in differential expression between PC and nonPC (C), compared to the early passage 

in the physical constraint state (Figure 3.16 ii, comparison C). Moreover, the long-term cultivation 

effect tended towards down-regulation in all comparisons (A-C). 

 

Figure 3.18 DEGs obtained during maintenance of PC and nonPC cells. i) shows each pairwise comparison 
(A-E). Dot in each comparison represents the reference sample, while the sample at the end of the arrow 
is the observed sample. ii) Bar graph shows up- (dark color) and down-regulation (light color) for each 
comparison. Number of DEGs in each direction are shown in boxes. 
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The results of PC vs. nonPC comparisons showed that most of DEGs (235 genes) are unique, 

while common DEGs were found only in 25 genes (Figure 3.19 i and iii). 

Figure 3.19 GO terms and KEGG pathways of DEGs in samples of the maintenance state, particularly for 
prolonged cultivation branch. i) Venn diagram showing number of DEGs the overlapping between nonPC 
(A; Blue) and PC (C; Red) of passage 10 in each regulation direction. Dark colors represent up-regulated 
genes, while light colors represent down-regulated genes. ii) and iv) Bar graph shows number of genes 
related to GO terms and KEGG pathways of nonPC (ii) and PC (iv). FDR-adjusted p-value are written at 
the end of bars. Colors are also defined following the Venn diagram. iii) Heatmap shows the expression 
value (log (FPKM+1)) of common DEGs. Gradient colors from white to purple represent low to high 
expression, respectively. 
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Unique DEGs could be found in GO of biological process and KEGG pathways in all directions 

(up-up, up-down, down-up and down-down).  Down-regulated DEGs of A related to stress 

responses and cellular matrix organization, while down-regulated DEGs of B mainly related to 

catabolic/metabolic processes. On the other hand, up-regulated DEGs of A mainly related to 

many tumorigenesis processes, while up-regulated DEGs of B related to regulation of tyrosine 

kinase activity (Figure 3.19 ii and iv). 

To study the Aza-treatment effect, Aza-treated sample was compared to the same passage of 

the PC-derived sample and the original PC sample (Figure 3.18 i). The results showed that Aza-

treatment led to remarkable increase of up-regulated DEGs. However, significant differences 

between D and E were observed, since down-regulated DEGs increased dramatically when 

compared to the PC sample (Figure 3.18 i and ii, comparison D-E). 

When looking at GO categories and presence of DEGs in KEGG pathways, up-regulated DEGs 

were found related to hsa04512 ECM-receptor interaction (5 observed genes, FDR = 0.0075) in 

comparison D, while in comparison E, both up- and down-regulated DEGs were strongly related 

to several GO terms and KEGG pathways. Up-regulated DEGs of E related to GO terms 

concerning cell cycle and movement, and tissue morphogenesis, whereas down-regulated DEGs 

of E related to biological processes such as platelet degranulation, protein activation etc. (Figure 

3.20). 
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Figure 3.20 GO terms and KEGG pathways of DEGs related to Aza treatment effect (Comparison E). The 
upper part is a bar graph showing GO terms and KEGG pathways related to up-regulated DEGs, while the 
lower part belongs to down-regulated DEGs. FDR-adjusted p-values are indicated at the end of each bar. 
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3.1.7. Alterations of gene expression during PCi-differentiation process 

Figure 3.21 DEGs in PCi-differentiation process. i) shows each pairwise comparison (A-C). Dot in each 
comparison represents the reference sample, while the sample at the end of the arrow is the observed 
sample. ii) Bar graph shows up- (dark color) and down-regulation (light color) for each comparison. Number 
of DEGs in each direction are shown in boxes. 

Two samples (RD_P0PC+DMSO and RD_P20) that were obtained during the PCi-differentiation 

branch of the experiment were subjected to perform mRNA-sequencing (Figure 3.21 i). The result 

showed that there were not many differences in expression (67 genes) between both RD samples, 

and 64% of those were down-regulated DEGs (A). On the other hand, the comparisons of both 

RD against precursor of differentiated cells (B and C) revealed higher numbers (165 and 99 

genes, respectively), which were more up-regulated DEGs than down-regulated DEGs obviously 

(Figure 3.21 ii).  

However, GO and KEGG pathway analysis revealed that hsa04977 Vitamin digestion and 

absorption related to up-regulated DEGs of comparison A (2 observed genes, FDR = 0.0181). 

Similar to comparison B and C, not many GO terms and KEGG pathways related to DEGs in all 

regulation directions (Figure 3.22).  
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Figure 3.22 GO terms and KEGG pathways of DEGs in PCi-differentiation process. The red bar graph 
represents GO terms and KEGG pathways related to comparison B, while the green bar graph related to 
comparison C. Dark colors is up-regulated gene, whereas light color is down-regulated gene. FDR-adjusted 
p-value are written at the end of bars. 
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3.1.8. mRNA expression of cell type-specific genes, pluripotency markers and epigenetic 

modifiers during reprogramming and PCi-differentiation processes 

Figure 3.23 Expression of cell type-specific genes. Heatmap shows the expression value (log (FPKM+1)) 
of hepatocyte-specific genes (left) and biliary-specific genes (right). Gradient colors from white to purple 
represent low to high expression, respectively. 

Hepatocyte- and biliary-specific genes were obtained from The Human Protein Atlas database 

(Uhren et al., 2010; Uhren et al., 2015). The heatmap of those gene sets showed consistency in 

clustering with the heatmap of most variable expressed genes (see Figure 3.15).  

Most hepatocyte-specific genes showed high expression, particularly in precursor and PCi-

differentiation samples, but became lower expressed in physical constraint and maintenance 

samples (Figure 3.23). In addition, although the clustering was consistent with hepatocyte- 

specific genes, minor differences in expression of biliary-specific genes were detected in all 
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states. For instance, ABCC2 was lower expressed in maintenance samples and ABCG5 was 

expressed exclusively in PCi-differentiated samples etc.  

Figure 3.24 Expression of pluripotent marker genes. Heatmap shows the expression value (log (FPKM+1)) 
of genes related to pluripotency. Gradient colors from white to purple represent low to high expression, 
respectively. 

Genes related to pluripotency were collected from the KEGG signaling pathway regulating 

pluripotency of stem cells (KEGG: hsa04550). The highest expression was shown in the DNA-

binding protein inhibitor family (ID), followed by the polycomb group family (PcG). On the other 

hand, OSKM factors and NANOG were barely expressed, except MYC (Figure 3.24). Signal 

transduction pathways that related to pluripotency were also analyzed. Interestingly, TFGβ 

signaling pathway showed prominent expression in Physical constraint and maintenance state, 

while JAK-STAT-MAPK and WNT signaling pathways did not show any remarkable differences 

between reprogramming and PCi-differentiation processes (see Supplementary Figure 7.6). 
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Figure 3.25 mRNA expression of genes related to epigenetic modifications. Heatmap shows the expression 
value (log (FPKM+1)) of genes involved in modification of DNA methylation (left) and genes related to the 
modification of histone modifications (right). Gradient colors from white to purple represent low to high 
expression, respectively. 

For genes related to epigenetic modifications, genes involved in the process of DNA methylation 

(left) and histone modifications were observed independently (right). The clustering of genes from 

both mechanisms showed slight differences from the heatmap of 20k variable expressed genes, 

since cells in RP passage 0 were not found in the same cluster (see Figure 3.15). However, minor 

differences can still be observed, particularly between physical constraint and maintenance 

samples. 

Focusing on DNA methylation mechanism, well-known genes related to DNA methylation and 

demethylation were selected and analyzed. The results showed that the expression of genes 

related to the establishment and maintenance DNA methylation, such as DNMT1 and DNMT3A, 

seemed to be stronger expressed than genes related to DNA demethylation e.g. members of the 

TET family (TET1/2/3) (Figure 3.25).  
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Genes related to the modification of histones showed gradual expression changes, since there 

are a lot of genes that orchestrate the process of modification. Therefore, well-known genes 

related to histone acetylation and histone methylation were examined independently.  

Figure 3.26 mRNA expression of histone tail modifiers. Heatmap shows the expression value (log 
(FPKM+1)) of genes related to histone acetylation (left) and genes related to histone methylation (right). 
Gradient colors from white to purple represent low to high expression, respectively. 

The results showed that genes related to histone acetylation (left) and histone methylation(right) 

are highly expressed during reprogramming and PCi-differentiation processes. Differences in 

clustering of both modifications were observed. For histone acetylation genes, precursor and PCi-

differentiated samples were found in the same cluster, whereas samples from the physical 

constraint branch clustered together with samples from the maintenance branch. Interestingly,  

members of HDAC gene family were strongly expressed in all states, whereas for histone 

methylation, the arginine methyltransferase (PRMTs) showed higher expression compared to the 

other genes (Figure 3.26). 
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3.1.9. Summary of expression changes during reprogramming and PCi-differentiation processes 

Although transcriptomic profiles from mRNA sequencing showed similar patterns among 

reprogramming and PCi-differentiation processes, the clustering of those processes seemed 

distinguishable. Reprogrammed samples were grouped in the same node, but all can be 

separated between PC and maintenance states. On the other hand, samples belonging to the 

PCi-differentiation were grouped in the same node, but clearly separated from precursor. The GO 

terms and KEGG pathways were summarized in the table below (Table 3.1). 

Expression of genes related to the following pathways were observed. i) Hepatocyte specific 

genes showed high expression in precursor and PCi-differentiated samples, while biliary specific 

genes were found to be expressed in all states. ii) Genes related to pluripotency, particularly the 

OSK factors and NANOG, showed low overall expression. iii) Genes related to signal transduction 

pathways were also examined. Only genes of the TGFβ signaling pathway showed remarkable 

differences between reprogramming and PCi-differentiation processes. iv) Genes related to DNA 

methylation processes were stronger expressed, compared to genes related to DNA 

demethylation in all states. v) Genes related to histone acetylation and methylation were found in 

all states to be expressed similarly to genes involved in DNA methylation. 
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Table 3.1 Summary of GO terms and KEGG pathways related to DEGs in each state of PC experiment. 

State 

(case vs. control) 

GO terms and KEGG pathways 

Up-regulation Down-regulation 

Physical constraint 

- Hydrocortisone Removal 

(RP_P0nonPC vs Precursor) 

Protein-containing complex 

binding process 
Metabolic processes 

- Physical constraint 

(RP_P0PC vs RP_P0nonPC) 

Exocytosis, Protein activation 

cascades, Response to 

stimulus, Complement and 

coagulation, Metabolic 

processes 

- 

Maintenance 

- Prolonged culture of nonPC 

(RP_P10nonPC vs RP_P0nonPC) 
Tumorigenesis processes 

Stress responses, Cellular 

matrix organizations 

- Prolonged culture of PC 

(RP_P10PC vs RP_P0PC) 
Tyrosine kinase activity 

Catabolic/metabolic 

processes 

- Aza-treatment effect 

(RP_P10PC+A vs RP_P10PC) 

Cell cycle and movement, 

Tissue morphogenesis 

Exocytosis, Protein 

activation cascades, 

Response to stimulus etc. 

PCi-differentiation 

- PCi-differentiation 

(RD_P20 vs RD_P0PC+DMSO) 

Vitamin digestion and 

absorption 
- 
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3.1.10. Correlation of DNA methylation and gene expression during reprogramming and PCi-

differentiation processes 

To figure out a potential correlation between epigenetic modifications and mRNA expression 

levels of the whole genome, DNA methylation and gene expression profiles were plotted in the 

heatmap next to each other. Although the overall DNA methylation showed distinctive patterns 

during reprogramming and PCi-differentiation processes, mRNA expression patterns of DMR-

neighbouring genes seemed to be robust (Figure 3.27 and Supplementary Figure 7.7).  

Figure 3.27 Correlation of DNA methylation and gene expression. i) showing heatmap of methylation and 
expression of 20k variable regions. ii) showing heatmap of methylation of tiling regions related to promoter-
TSS and expression of genes associated to those tiling regions. Left panel of i) and ii) shows DNA 
methylation profile, while right panel shows gene expression profile. The colors, blue and red, represent 
the methylation level from 0 to 1, and gradient colors from white to purple represent low to high expression, 
respectively. 

Functional annotation of DMRs revealed that anti-correlation of DNA methylation and gene 

expression was observed in the 5’UTR-promoter-related DMRs, whereas other functional 

annotation-related DMRs, such as intragenic, intergenic or TTS regions, had no clear tendencies 

(see Supplementary Figure 7.8). 

i) ii) 
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3.1.11. Correlation of DMRs and DEGs of samples undergoing reprogramming and PCi-

differentiation 

To determine the correlation of DMRs and DEGs of each state during reprogramming and PCi-

differentiation, genes related to DMRs and DEGs were overlapped related to their methylation 

and expression status, respectively. All DMRs were divided into 2 groups for further analysis: 

DMRs that show methylation change in opposite direction to transcriptional change (e.g. hyper-

DMR/down-DEG or hypo-DMR/up-DEG) were classified as anti-correlated DMRs (aDMRs). 

Conversely, DMRs that show methylation change in the same direction to transcriptional change 

(e.g. hyper-DMR/up-DEG or hypo-DMR/down-DEG) were classified as positively correlated 

DMRs (cDMRs). 
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Figure 3.28 Correlation of DMRs and DEGs after physical constraint of HepaRG precursor cells i) venn 
diagram shows the overlapping genes between hypo/hypermethylatedDMRs and up/down regulated DEGs. 
ii) Heatmap of methylation (blue) and expression (red) was drawn based on row Z-score. Gradient colors 
from red to blue represent the value of z-score from high to low, respectively. Types of genome annotations 
related to DMRs and regulatory functions are also defined on the right side of the heatmap (CpG – CpG 
islands, TSS – transcriptional start site). 

After physical constraint, 10 DEGs with 11 DMRs were found in both regulation directions (Figure 

3.28 i). Remarkably, 7 anti-correlations (yellow and purple in regulation bar) and 4 positive 

correlations (green and red in regulation bar) were also found, but all of those were assigned to 

different functional annotation groups (Figure 3.28 ii). For instance, while 4 out of 7 anti-correlated 

DMRs corresponding to down/up regulation (yellow bar) were found in CpG islands and intergenic 

regions, 3 of 7 anti-correlated DMRs corresponding to up/down regulation (purple bar) were found 

in intron and exon regions. 

 

i) ii) 
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Figure 3.29 Correlation of DMRs and DEGs after maintenance of reprogrammed HepaRG cells. Venn 
diagrams (upper part) and heatmaps (lower part) show the overlapping genes between 
hypo/hypermethylatedDMRs and up/down regulated DEGs of i) long-term (prolonged) cultivation effect and 
ii) Aza-treatment effect. Heatmap of methylation (blue) and expression (red) was drawn based on row Z-
score. Gradient colors from red to blue represent the value of z-score from high to low, respectively. 
Genome annotation categories related to DMRs and regulatory functions are also defined on the right side 
of the heatmap (CpG – CpG islands, UTR – untranslated region, TSS – transcriptional start site, TTS – 
transcription termination site). 

Correlations and anti-correlations between DEGs and DMRs in the maintenance state were 

detected in both, long-term cultivation, and Aza-treatment effects. For the long-term (prolonged) 

cultivation effect, there were 81 genes that correspond to 218 DMRs. The results showed that 65 

genes correlated to hypermethylation and 16 genes correlated to hypomethylation. Depending on 

transcriptomic data, there were 29 genes correlated to up-regulation and 52 down-regulation 

(Figure 3.29 i). Furthermore, the Aza-treatment effect showed 125 genes with corresponding 1230 

DMRs. Interestingly, 124 genes, 102 up-regulated and 22 down-regulated genes, correlated to 

i) ii) 
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hypomethylation (Figure 3.29 ii). PRAME is the solely up-regulated gene, which showed 

hypermethylation at an intergenic region next to the 3’UTR of the gene (10Kb from TSS).  

Figure 3.30 Distribution of functional genome annotation categories within the different DMRs to DEGs 
correlation groups i) shows distribution of functional genome annotation of long-term cultivation effect, 
whereas ii) shows distribution of functional genome annotations of Aza-treatment effect. Distribution of anti-
correlating DMRs is shown on the left, while the distribution of correlated DMRs is shown on the right (CpG 
– CpG islands, UTR – untranslated region, TSS – transcriptional start site, TTS – transcription termination 
site). 

In this study, long-term cultivation gave rise to 112 (51.38%) aDMRs and 106 (48.62%) cDMRs, 

whereas Aza-treatment revealed 1031 (84%) aDMRs and 199 (16%) cDMRs. Functional genome 

annotation of aDMRs and cDMRs showed that most prominent differences were found in introns, 

intergenic and promoter-TSS regions for long-term cultivation only. While aDMRs related to 

introns and intergenic regions markedly decreased to 14.12% and 11.17%, respectively, aDMRs 

related to promoter-TSS regions greatly increased to 7.87%, when compared to cDMRs (Figure 

3.30 i). For Aza-treatment, aDMRs and cDMRs showed slight changes in CpG islands (-3.38%), 
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promoter-TSSs (+5.11%), introns (+5.79%) and exons (-1.83%), whereas more pronounced 

changes were found in aDMRs related to intergenic regions (-11.49%), in comparison to 

intergenic cDMRs (Figure 3.30 ii).  

Figure 3.31 Correlation of DMRs and DEGs after PCi-differentiation of reprogrammed HepaRG. i) Venn 
diagrams (left) and heatmaps (right) show the overlapped genes between hypo/hypermethylatedDMRs and 
up/down regulated DEGs. Heatmap of methylation (blue) and expression (red) was drawn based on row Z-
score. Gradient colors from red to blue represent the value of z-score from high to low, respectively. Types 
of genome annotations related to DMRs and regulations are also defined on the right side of the heatmap. 
ii) Pie charts show distribution of genome annotation according to anti-correlation DMRs (left) and 
correlation DMRs (right) (CpG – CpG islands, UTR – untranslated region, TSS – transcriptional start site, 
TTS – transcription termination site). 

During the PCi-differentiation process, overlapping of DEGs and DMRs between RD_P20 and 

precursor showed 124 genes that correspond to 1007 DMRs, 19 genes correlated to 
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hypermethylated DMRs and 105 genes correlated to hypomethylated DMRs. Looking at DEGs, 

there were 80 DEGs found to be up-regulated and 44 DEGs found to be down-regulated (Figure 

3.31 i).  

Out of the 1007 observed DMRs 635 (63.06%) aDMRs and 372 (36.94%) cDMRs were found. 

Genomic annotation analysis showed most prominent differences of aDMRs and cDMRs in 

intronic (8.66%) and intergenic (7.29%) regions, respectively (Figure 3.31 ii). 

3.1.12. Technical validation of methylation and expression data 

To validate the results obtained by RRBS and get further insight into the methylation profile of 

prominent DMRs, bisulfite local deep sequencing (LDS) on an Illumina MiSeq was performed 

(Gries et al., 2013). DMRs related to 11 genes were selected from each branch of the PC 

experiment and primers were designed across DMRs (Chapter 2, Section 2.2.8). All amplicons 

were sequenced and analyzed using BiQ Analyzer HT software (Lutsik et al., 2011). 

Figure 3.32 Cumulative number of reads after sequencing. Bar graph shows cumulative number of reads, 
based on amplicon. All samples are defined by colors on the right side of the graph. 
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The results showed that, for most amplicons, the cumulative number of reads obtained was higher 

than 100K, except for FA2H, FAM5C and TUBA1A (13K, 70K, 79K, respectively). With approx. 

570K the number of reads was outstanding for the amplicon linked to TF (Figure 3.32). 

The correlation between RRBS and LDS was performed at the CpG level. Therefore, the 

methylation of CpG sites present in both sequencing approaches (n = 1279) was considered. 

Plotting the overall results showed moderate correlation between both sequencing methods (R = 

0.76). Overall, a tendency towards higher methylation in the local deep sequencing compared to 

RRBS was observed, probably due to some CpG sites being only sparsely covered in the RRBS 

data (cov. < 10x) (Figure 3.33 i). 

Generally, a variation of correlation value between LDS and RRBS were observed among the 

selected amplicons (R = 0.14 - 0.90). The strength of correlation obviously was partially depending 

on the number of reads obtained from RRBS, e.g. CpGs within the OCRL amplicon revealed 

significant higher correlation when low coverage CpGs were removed (0.49 vs. 0.66) 

(Supplementary Table 7.2 and Supplementary Figure 7.25 - Figure 7.35). However, overall 

correlation was not improved even after low coverage CpGs (cov. < 10x) were excluded (R = 

0.74, Supplementary Figure 7.9 i). Remarkably, the methylation levels of the CpGs within the 

TUBA1A amplicon were observed to be constant in RRBS but variable in the LDS data  

(Supplementary Figure 7.34 ii). After the CpGs within the TUBA1A amplicon were excluded from 

the data, correlation of overall CGs between LDS and RRBS was improved (R = 0.82, Figure 3.33 

ii). Interestingly, the average of all CpGs within the LDS amplicons was highly correlated to RRBS 

regions (n = 130, R = 0.82), even when low coverage CpGs were still included in the analysis 

(Supplementary Figure 7.9 ii). 
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Figure 3.33 Correlation of methylation of all CpG sites present in the RRBS and LDS data sets. i) shows 
correlation of single CpG methylation between RRBS and LDS, whereas ii) shows correlation of single CpG 
methylation between RRBS and LDS after CpGs of TUBA1A amplicon were excluded. Each blue dot 
represents a CpG site of each amplicon, which is also present in the RRBS data. Red dash line presents a 
trendline according to equation and R2 are also shown on the bottom right. 
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For the technical validation of expression data, 8 genes and 7 samples, except RD_P0DMSO, 

were selected to validate mRNA-seq results by reverse-transcription quantitative PCR (RT-

qPCR). CT values were normalized to the house-keeping gene UBE2D1, then normalized CT 

values obtained from the precursor cells (2-delta delta CTmethod, Livak and Schmidtgen, 2001). The 

results also showed 3 groups of expression changes, i) ZNF330 showed slight expression 

changes in all samples, ii) ETNK2, ALB and TF were lower expressed in all samples, except in 

RD_P20, and iii) CDK1, LGALS1, SPARC and TOP2A showed higher expression, compared to 

the precursor (Figure 3.34 i). Moreover, overall results from RT-qPCR were comparable to mRNA-

sequencing (R = 0.94), but log2 expression values from RT-qPCR were stronger than the values 

from mRNA-sequencing (Figure 3.34 ii). 
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Figure 3.34 Correlation between mRNA-sequencing and RT-qPCR. i) Bar graph shows log2 expression of 
selected genes in comparison with precursor cells. Sample names are written below. ii) Correlation of log2 
expression between mRNA-sequencing and RT-qPCR. Each dot represents log2 expression of selected 
genes of each sample, while red line represents a trendline. Equation and R2 are also shown on the bottom 
right. 
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3.2. Controlled confinement 

As the PC experiment was performed by Biopredic Co. (Dr. Christiane Guillouzo) with partially 

empiric experimental steps, a controlled confinement (CC) experiment was set up to mimic the 

PC experiment, particularly in reprogramming - PC state, in a well-documented and reproducible 

manner. The importance of CC lies in the controlled stress and stiffness of the cells by changing 

the microenvironment of culture conditions in a reproducible and controllable manner. Thus, the 

cells performing CC were squeezed through a gap between single pillars resulting in the 

restriction of movement and cell growth. 

In the first experiment, confinement height was varied to select for the optimal CC condition. After 

squeezing the cells for 20h, immunostaining of 5mC and 5hmC found that the number of cells 

with high relative immunofluorescence signals (5mC/DAPI and 5hmC/DAPI) were increased in 

the squeezed cells of 2.7 and 3.5 µm height, compared to the non-squeezed cells. However, the 

number of cells of both heights were different, since the 2.7 µm condition contained lower number 

of cells than the 3.5 µm condition (Supplementary Figure 7.10 - Figure 7.12). Consequently, after 

checking the IF signals in relation to the cell number, a pillar height of 3.5 µm was chosen for all 

subsequent CC experiments.  

Figure 3.35 Experimental scheme of controlled confinement experiment. Differentiated HepaRG precursor 
cells were seeded in 6-well plates coated with fibronectin (pink area in the middle of circle). Cells in CC 
plates were squeezed for 20 hours, similar to the PC experiment, whereas nonCC plates were used as 
control samples, without squeezing. 
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To prepare for the CC procedure, HepaRG precursor cells were cultured without hydrocortisone 

until they reached confluency. HepaRG were sub-cultured into 6-welled plates for 2x105 cells/well, 

but the cells were attached only in the middle of the well. For CC, cells were squeezed using 

pillars at 3.5 µm for 20 hours. As non-CC control, cells were grown in the very same way, without 

squeezing (Figure 3.35). The experiment was performed in technical duplicates and cells were 

harvested for nucleic acid preparations, DNA for RRBS and RNA for mRNA sequencing. 

3.2.1. The alteration of DNA methylation after controlled confinement 

After methylome sequencing, CC samples obtained higher number of reads than nonCC samples, 

but number of reads in all samples were between 1.5-2.0 x 107 reads (Supplementary Table 7.3). 

After methylation calling and 10x coverage filtering, both CC replicates yielded around 1.8 million 

CpG sites, while the nonCC replicates yielded 1-1.5 million CpGs (Figure 3.36).  

Figure 3.36 Number of CpG sites covered after methylation calling and filtering. Number of CpG sites after 
methylation calling is shown in dark color, while number of CpG sites after filtering is shown in light color. 

The methylome data of CC and nonCC samples were analyzed by MethylKit with the same 

filtering parameters used for the analysis of PC experiment (see Page 59). Particularly, for CC 

experiment, standard T-test was used in DMRs analysis to extract DMRs that could be found in 

both technical replicates. CpG sites, which appeared in only one of the duplicates (CC/nonCC) 

and had a coverage less than 10-fold, were excluded from the analysis. 
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Figure 3.37 Overall methylation, DMCs and DMRs of CC experiment. i) Box plot shows overall methylation 
level of all samples. The black line and red dot are median and average of methylation levels, respectively. 
ii) Bar graph presents number of differentially methylated CpGs/regions. iii) Heatmap of 20K most variable 
500 bp tiles. The colors, blue and red, represent the methylation level from 0 to 1. CC and nonCC samples 
are defined by colors presented on the top right. 

In this study, the differential methylation analyses were computed at single site level and 500bp 

tiling region level. At single CpG methylation level, there were 638,220 sites covered throughout 

the genome. Average methylation of CC samples was found in high similarity to nonCC samples 

(Figure 3.37 i, CC: 45.8, nonCC: 46.4). The clustering distinguished CC from nonCC (Figure 3.37 
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iii). The heatmap of 20k most variable regions revealed highly methylated DMRs rather than low 

methylated DMRs in both CC and nonCC samples. 

Out of 638,220 CpG sites, only 14 differentially methylated CpGs (DMC) were observed, 

consisting of 6 hypermethylated (40-58% mean difference) and 8 hypomethylated DMCs (39-87% 

mean difference). For 500 bp tiling regions, out of 72,860 tiles covering the whole genome only 

82 DMRs were found. Among those, 32 DMRs were hypermethylated (10-33% difference), 

whereas 50 DMRs were hypomethylated (10-34% difference) (Figure 3.37 ii).  

Figure 3.38 Functional annotation of DMCs and DMRs. Pie charts show distribution of DMCs (left) and 
DMRs (right) according to functional genome annotations (UTR – untranslated region, TSS – transcriptional 
start site, TTS – transcriptional termination site). 

Genomic annotation analysis showed distinctive patterns among DMCs and DMRs. DMCs were 

found to be prominent in introns (35.71%) and intergenic regions (21.43%), whereas DMRs were 

mostly found in promoter-TSS regions (39.02%). However, no DMCs and DMRs were found in 

3’UTR regions (Figure 3.38). 
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3.2.2. The alteration of gene expression after controlled confinement 

Figure 3.39 Transcript-associated relative distribution of reads of CC samples. The bar diagram shows the 
relative read distribution in exons, introns and intergenic regions for all samples in different conditions. 

The overall obtained sequence reads of mRNA sequencing for all samples were slightly variable 

and found to be between 1.9-5.0 x107 reads (average 3.3 x 107 reads, see Supplementary Table 

7.3). However, the number of genes mapped to the reads was similar (2 x 104 genes approx.) 

between the samples, as can be seen from the transcript-associated reads ratio (Figure 3.39 and 

Supplementary Figure 7.13). 
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Figure 3.40 Heatmap of 20k variable expressed genes. A gradient of blue to red represents log (FPKM+1) 
value from low expression to high expression. CC and nonCC samples are defined by colors presented on 
the top right. 

The heatmap of 20k most variable expressed genes revealed minor differences between CC and 

nonCC samples. However, the clustering was distinct between CC and nonCC samples (Figure 

3.40). 

Pairwise comparison between CC and nonCC samples were grouped and analyzed by DESeq2 

(Love et al., 2014) package. Genes with FDR adjusted p-value less than 0.01 were DEGs, the 

same as classified in the PC experiment. The result showed that there were 193 down-regulated 

genes and 381 up-regulated genes. GO terms and KEGG pathways were analyzed for the top 

100 significantly up- and down-regulated DEGs. Remarkably, GO terms of upregulated DEGs 

frequently showed biological processes related to stresses responses, cell motility and signal 

transductions. For the DEGs grouped into signal transduction processes found in GO analyses, 

several KEGG pathways were identified which correlated to signal transduction as well, such as 

the IL-17 signaling pathway, TNF signaling pathway and NF-kappa B signaling pathway etc.. 
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Unfortunately, no significantly enriched GO terms and KEGG pathways were observed for 

downregulated DEGs (Figure 3.41). 

Figure 3.41 GO terms enrichment and KEGG pathways of DEGs related to top 100 upregulated DEGs of 
controlled confinement. The upper part is a bar graph of GO terms, while the lower part belongs to KEGG 
pathways. FDR-adjusted p-values are written at the end of bars. 

2.78E-10

2.78E-10

3.97E-06

6.17E-06

3.85E-05

1.50E-04

9.00E-04

2.00E-03

5.10E-03

6.50E-03

0 5 10 15 20 25 30 35 40

GO:0006954 inflammatory response

GO:0032496 response to lipopolysaccharide

GO:0032101 regulation of response to external stimulus

GO:0006950 response to stress

GO:0030335 positive regulation of cell migration

GO:0007165 signal transduction

GO:0060548 negative regulation of cell death

GO:2000026 regulation of multicellular organismal development

GO:0006355 regulation of transcription, DNA-templated

GO:0030155 regulation of cell adhesion

No. of gene

Relevant GO terms related to top 100 upregulated DEGs

2.30E-13

1.27E-08

2.78E-07

1.68E-06

3.10E-03

1.44E-02

1.59E-02

2.54E-02

2.86E-02

4.59E-02

0 2 4 6 8 10 12 14

hsa04657 IL-17 signaling pathway

hsa04060 Cytokine-cytokine receptor interaction

hsa04668 TNF signaling pathway

hsa04064 NF-kappa B signaling pathway

hsa05146 Amoebiasis

hsa00980 Metabolism of xenobiotics by cytochrome P450

hsa05204 Chemical carcinogenesis

hsa04640 Hematopoietic cell lineage

hsa04620 Toll-like receptor signaling pathway

hsa04380 Osteoclast differentiation

No. of gene

Relevant KEGG pathways related to top 100 upregulated DEGs 



 

106 

 

3.2.3. Correlation between methylation and expression of CC experiment 

Figure 3.42 Correlation of DMRs and DEGs of controlled confinement. Venn diagram on the left shows two 
overlapping genes between hypo/hypermethylated DMRs and up/down regulated DEGs. Table on the right 
shows methylation and expression of GEM, CDCP1 and SFMBT1. The colors, dark blue to dark red, 
represent the methylation level from low to high. A gradient of  purple from light to dark represents the 
expression level from low to high as well. 

A strong correlation between methylation and expression of genes after CC was not observed 

since there were only 3 DEGs corresponding to 3 DMRs. Those three DEGs included GEM – a 

protein receptor of plasma membrane, CDCP1 – a transmembrane protein involved in tumor 

invasion and metastasis, and SFMBT1 – a transcriptional corepressor involved in myogenesis. 

From the analysis, GEM and CDCP1 were found to be aDMR, whereas SFMBT1 was found as 

cDMRs. Notably, while the DMRs of SFMBT1 located in promoter-TSS region, the DMRs of GEM 

and CDCP1 located in the 1st intron and the 1st exon, respectively (Figure 3.42).  

3.2.4. Summary of methylation and expression changes during controlled confinement  

Regarding DNA methylation, only minor changes of DNA methylation were revealed between CC 

and nonCC. Low methylation and high methylation profiles were equally observed in both groups. 

Moreover, number of DMCs and DMRs was extremely low. Genome annotation revealed that 

most DMRs were in promoter-TSS regions, whereas most DMCs were in intronic regions. 

Similar to DNA methylation, low differences in mRNA expression between CC and nonCC were 

observed. Number of DEGs grouped into higher and lower expressed genes were slightly different 

as number of downregulated DEGs were moderately lower than number of upregulated DEGs. 

  
Methylation Expression 

CC NonCC CC NonCC 

GEM 77.11 60.63 3.16 4.35 

CDCP1 32.28 46.4 6.14 5.06 

SFMBT1 29.73 52.98 3.37 4.37 
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GO terms enrichment of DEGs and presence in KEGG pathways of upregulated DEGs were 

found in Table 3.2. 

Table 3.2 Summary of GO terms and KEGG pathways related to DEGs of CC experiment. 

GO terms and KEGG pathways 

Up-regulation Down-regulation 

Stresses responses, Cell motility, Signal 

transductions and Development 
- 

 

3.3. Comparison between PC and CC experiments 

3.3.1. Comparison of methylation and transcription data between PC and CC experiments 

To compare DNA methylation data between PC and CC, CpG sites and 0.5 kb tiling regions have 

to be overlapped between both experimental series. Although 77.92% of CpG sites and 96.23% 

of tiling regions of CC were found overlapping in PC (Figure 3.43), only 11 common DMRs (9.5%) 

between PC and CC were found (3 hypermethylated DMRs and 8 hypomethylated DMRs). Those 

DMRs were found in promoter-TSS (5 DMRs), introns (4 DMRs) and exons (2 DMRs). 

 

Figure 3.43 No. of CpG sites and tiling regions of PC and CC experiment after 10x coverage filtering. The 
overlapping of CpG sites is shown on the left, while the overlapping of tiling regions is shown on the right. 
The colors of circle, pink and blue, represents PC and CC experiments, respectively. 

CpG site Tiling region 
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The overall methylation data clearly separated CC and PC samples by PC1 and PC4 in the PCA 

plot. PC1, which was the highest proportion, separated PC from CC experiment, while PC4 

seemed to separate PC/CC from controlled counterparts (nonPC/nonCC). However, the CC and 

nonCC samples remained in the large cluster (Figure 3.44 i). This result was confirmed by 

clustering the 20k most variable regions. The PC samples were all clustered in a different branch 

compared to CC and NonCC (Figure 3.44 ii).  
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Figure 3.44 Principal component analysis (PCA) and heatmap of 20K DMRs in PC and CC. i) showing PCA 
of PC and CC samples according to experimental procedures. ii) showing heatmap of 20K most variable 
500 bp tiles. The colors, blue and red, represent the methylation level from 0 to 1. PC, CC and nonCC 
samples are defined by colors presented on the top right. 

i) 

ii) 
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Comparison of mRNA-seq data revealed that PC samples were separated from CC and nonCC 

by PC2, while both control samples (nonCC/nonPC) were separated from CC/PC samples by 

PC3 (Figure 3.45 i) However, PC1 did not separate neither experiments nor samples. 

Interestingly, the overall expression of HepaRG cells used in the CC experiment seemed 

comparable to the cells used for the PC experiment. Besides, the technical replicate of each group 

clustered together suggesting a high reproducibility of the CC experiment (Figure 3.45 ii).  
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Figure 3.45 Principal component analysis (PCA) and heatmap of 20K DEGs in PC and CC experiment. i) 
showing PCA of PC and CC samples separately according to the experimental procedures and treatment 
(PC/nonPC or CC/nonCC). ii) showing heatmap of 20k variable expressed genes. A gradient of blue to red 
represents log (FPKM+1) value from low expression to high expression. CC and nonCC samples are 
defined by colors presented on the top right. 

 

i) 

ii) 
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Pairwise comparison of PC and CC revealed DEGs for 103 genes and 574 genes, respectively. 

The CC experiment showed higher number of DEGs than the PC experiment. As shown in Figure 

3.46, there is a slight tendency towards up-regulation of genes in both CC and PC experiments. 

Notably, three genes were found to be down-regulated in PC, but became up-regulated in CC, 

namely, CYP1A1 encoding an enzyme in xenobiotic metabolism, KRTAP2-3 encoding keratin 

associated protein 2-3 and SERPIN2B encoding a protein inhibitor of serine/cysteine proteases. 

Figure 3.46 Comparison of DEGs obtained from PC and CC experiments. i) Bar graph shows number of 
up- (dark color) and down-regulated DEGs (light color). ii) Venn diagram shows two overlapping DEGs 
between up- and down-regulation of PC and CC experiment. 
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3.3.2. Comparison of cell type-specific, pluripotency-associated genes and epigenetic modifiers 

between PC and CC experiment 

PC and CC experiments were compared to each other choosing the same gene sets in the same 

level.  

Figure 3.47 mRNA expression of cell type-specific genes. Heatmap shows the expression value 
(log(FPKM+1)) of hepatocyte-specific genes (left) and biliary-specific genes (right). Gradient colors from 
white to purple represent low to high expression, respectively. 

According to the heatmaps, expression of hepatocyte-specific genes varied among samples, 

whereas expression of biliary-specific genes revealed to be more similar between PC and CC. 

Clustering of PC and CC experiment was observed solely in biliary-specific genes since nonPC 

sample clustered with all CC samples, in the large branch. Notably, PC samples showed stronger 

expression of tissue-specific genes compared to CC samples (Figure 3.47). 
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Figure 3.48 mRNA expression of pluripotent marker genes. Heatmap shows the expression value 
(log(FPKM+1)) of pluripotent genes. Gradient colors from white to purple represent low to high expression, 
respectively. 

For pluripotency genes, PC and CC samples were clustered in different branches. Highly 

expressed genes were comparable among those samples and related to genes in IDs family 

(DNA-binding protein inhibitor), MYC and SKIL etc. Moreover, defined transcription factors, which 

were commonly used in the induction of epigenetic reprogramming of cells such as KLF4, 

POU5F1, SOX2 and NANOG, were weakly expressed as well as early reprogramming markers, 

DUSP9 and ESRRB (Figure 3.48). Furthermore, the signaling pathways regulating pluripotency 

such as JAK-STAT, WNT and TGFβ pathways were also found comparable among the samples. 

Clustering of those pathways revealed a clear separation between PC and CC experiment, but 

not between PC/CC and nonPC/nonCC (Supplementary Figure 7.14). 
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Figure 3.49 mRNA expression of epigenetic modifiers. Heatmap shows the expression value 
(log(FPKM+1)) of genes related to DNA methylation (left) and genes related to histone modifications (right). 
Gradient colors from white to purple represent low to high expression, respectively. 

For DNA methylation modifiers, stronger expression was observed in CC experiment, although 

clustering of CC samples vs. nonCC was not detected. On the other hand, genes related to 

histone modifications showed minor differences between PC and CC. Notably, the cluster of 

NonPC samples in genes related to histone modifications was more similar to nonCC than PC 

(Figure 3.49). 
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Figure 3.50 mRNA expression of genes related to different kinds of histone modifications. Heatmap shows 
the expression value (log(FPKM+1)) of genes related to histone acetylation (left) and genes related to 
histone methylation (right). Gradient colors from white to purple represent low to high expression, 
respectively. 

Genes related to histone modifications were grouped into histone acetylation modifiers and 

histone methylation modifiers to figure out if one of those groups had an impact on clustering. 

Heatmap of genes related to different kinds of histone modifications revealed partial clustering of 

PC against CC. Genes related to histone acetylation separated CC and PC samples from each 

other. Surprisingly, genes related to histone methylation separated PC/CC samples from 

nonPC/nonCC samples (Figure 3.50). This confirmed the results of the previous PCA analysis 

(PC3) that genes related to histone methylation separated the samples of the treatment vs. non-

treatment (PC/CC against nonPC/nonCC), and not by the used experimental procedure (see 

Figure 3.45 i).  
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3.3.3. Summary of comparison between PC and CC experiments 

Reads obtained from the RRBS experiments were different in number between the PC and CC 

experiment, concerning raw sequencing reads and filtered reads. Therefore, the overlap of CpGs 

and tiling regions were only around 20-30%. Only 11 DMRs were found to be common between 

PC and CC, the methylation profiles of PC and CC experiment were comparable. PC1 separated 

PC samples from all CC samples, while PC4 seemed to separate PC/CC samples from 

nonPC/nonCC samples. 

Regarding transcriptome data, although raw sequencing reads of PC and CC were comparable, 

large differences of DEGs were still detected in PC and CC comparisons. CYP1A1, KRTAP2-3 

and SERPINB2 were down-regulated genes that were common in PC and CC. Furthermore, the 

expression profiles showed similar patterns between PC and all CC samples. PC2 separated PC 

samples from all CC samples and PC3 separated PC/CC samples from nonPC/nonCC samples, 

respectively. 

The expression of cell-type specific and pluripotency genes together with epigenetic modifiers 

showed strong or moderate expression in both PC and CC samples. Notably, genes linked to 

histone modifications, particularly histone methylation, showed distinct expression levels between 

PC/CC samples and nonPC/nonCC samples.
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Chapter 4 Discussions and further directions 

HepaRG is a non-cancerous cell line that take advantages in studies of hepatic functions, such 

as drug metabolisms, hepatotropic virus infection and stem cells etc., similar to primary 

hepatocyte cells (Gripon et al., 2002; Parent et al., 2004; Aninat et al., 2006; Guillouzo et al., 

2007; Narayan et al., 2009; Guguen-Guillouzo et al., 2010). Several advantages and flexibility in 

use of HepaRG enabled us to study molecular mechanisms when this bipotent progenitor cell is 

induced to develop multipotent function and redirected differentiation. Therefore, this study 

focused on DNA methylation and gene expression during reprogramming and PC-induced 

differentiation of HepaRG. Using RRBS and mRNA sequencing allowed us to access genome-

wide methylation and transcription data along the processes. 

4.1. Quality control of RRBS and mRNA sequencing and technical validation 

The detection of DNA methylation by RRBS provided representative methylome data throughout 

the experiment. Works by Meissner and others revealed that RRBS-MspI of mouse ES cells show 

a bimodal methylation pattern, as a huge number of reads was found either highly methylated 

(>80%) or lowly methylated (<20%). Moreover, MspI fragment reads contained at least one CpG 

site, and half of the reads were in CpG islands. In agreement with previous reports, a bimodal 

distribution of CpG sites regarding their methylation level in all samples of PC were also observed, 

except for Aza-treated samples. Instead of a bimodal distribution, a unimodal distribution, tending 

towards low methylation levels, was indeed observed in Aza-treated samples. Notably, 

reprogramming process did not increase the number of CpGs with mosaic methylation (20-80%), 

but mosaic methylation tended toward increasing when Azacytidine was applied to the culture 

(see Supplementary Figure 7.15). 

Obtaining high read numbers for samples of CC experiment proved to be very difficult, since each 

multiwell confiner allowed only a very small cell number. Although cells from similar multiwell 

confiners were pooled collectively, the material for further sequencing library preparation was still 
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insufficient. Because of the limited concentration of those libraries, re-sequencing was not 

possible. However, a bimodal distribution of CpG sites against methylation levels in all CC 

samples could still be observed (see Supplementary Figure 7.16). Furthermore, CpGs with at 

least 10x coverage, both in PC and CC experiment, was discovered in CpG islands and other 

regulatory regions as well, similar to previous reports (Meissner et al., 2008).   

After mRNA-sequencing, the number of reads obtained for all PC and CC samples revealed 

various numbers of total read counts. Generally, a million to 20 million reads had been obtained 

from mRNA sequencing, with at least 60% of all exonic regions covered (Picelli et. al, 2013 and 

Picelli et. al, 2014). In both PC and CC studies, raw sequenced reads were obtained in expected 

range covering approx. 80% of exonic regions (see Figure 3.14 and Figure 3.39). Moreover, 

detected genes and transcripts were comparable among samples (see Supplementary Figure 7.4 

and Figure 7.13). Other types of RNA, such as micro RNAs, non-coding RNAs and long non-

coding RNAs etc., were also targets of library preparation and sequencing method. Although 

those RNAs play roles in promotion of pluripotentcy (Loewer et al., 2010; Leonardo et al., 2012; 

Flynn and Chang, 2014), the expression of those types of RNA was barely observed in our 

transcriptional profiles. Therefore, we decided to focus on protein coding genes only. 

Technical validation of RRBS data using local deep sequencing (LDS) revealed a fairly strong 

correlation of CpG methylation levels between RRBS and LDS (R = 0.76), with the tendency to 

overall higher methylation levels obtained from LDS. Generally, low correlation coincided with low 

coverage in RRBS (coverage less than 10x). Unfortunately, after low coverage CpG sites were 

excluded, the overall correlation of CpGs between RRBS and LDS did not improve as expected 

(R = 0.74), even when considered for each amplicon separately. Most of them still showed a 

decrease of their correlation coefficient. This effect can be clearly observed in amplicons 

containing more than 20% of low coverage CpGs, e.g. within the amplicons linked to TF and 

ZNF814 etc., suggesting that low coverage CpGs had a high impact on the correlation of CpG 
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methylation (see Supplementary Table 7.2). Furthermore, clonality of reads caused by PCR 

amplification of low template samples could be observed (TUBA1A, Supplementary Figure 7.34). 

After CpGs within theTUBA1A amplicon were excluded from the analysis, the correlation between 

RRBS and LSD results was stronger, as the correlation coefficient value increased from 0.76 to 

0.82 (see Figure 3.33 ii). Remarkably, the correlation of average methylation across the amplicons 

to the CpGs present in the RRBS data was stronger than the correlation of single CpG methylation 

(R = 0.82), although the low coverage CpGs were still included(Supplementary Figure 7.9 ii). This 

points to neighbouring CpGs still belonging to the same regulatory domain as covered by MspI-

RRBS which confirms RRBS to be a strong technique for the analysis of regulatory units like 

promoters or CpG-rich enhancers (Smith et al., 2009;  Bock et al., 2010;  Wang et al., 2012). 

Transcriptome data was validated by semi-quantitative reverse transcription PCR. RT-qPCR used 

specific primers to amplify those transcripts specifically, while in mRNA sequencing, universal 

poly-dT primers were used to amplify the library. Moreover, specific primers for RT-qPCR were 

designed across exon-exon boundary regions, which reduced false positive results from DNA 

contamination. Therefore, better sensitivity and specificity of RT-qPCR provided a better 

resolution leading to stronger log2 expression compared to mRNA sequencing. Anyway, strong 

correlation was obtained from RT-qPCR and mRNA sequencing results (R = 0.94).  

Although technical validation was not performed in CC experiment because of the limited material, 

more strict filter criteria and evaluation parameters used in CC still give us an advantage in 

avoiding false positive results. For those reasons together with technical validation results, the 

sequencing data obtained from both PC and CC experiments were reliable and reasonable to use 

in this study. 



 

121 

 

4.2. The roles of PC and CC in the alterations of DNA methylation and gene 

expression during reprogramming process 

PC and CC were experimental approaches used to study whether mechanical forces enabled 

cells to establish multipotent properties or not. In this study, we investigated DNA methylation and 

expression, molecular signatures of reprogrammed cells and compared them to other multipotent 

cells. Thus, the experiments, both PC and CC, were performed in the same manner.  

The overall methylation level detected in PC and CC were almost similar, but the pattern of 

methylation profiles including 20k variable regions were slightly different. The methylation profiles 

observed in non-PC and non-CC provided distinctive patterns which might be caused by different 

batches of precursor cells used (see Figure 3.44 ii). The tendency of results between PC and CC 

were comparable; only minor changes on locus-specific DMRs were observed in force-applied 

samples, preferentially towards hypermethylation. However, as mentioned in Section 4.1 (see 

Page 118 on the 2nd paragraph), the number of DMRs of CC (n = 82) was extremely low, 

compared to PC (n = 6045), and solely 11 DMRs were found to be common. Low amount of DNA 

together with strict filter criteria could be the reason for this difference.  

To investigate the observed difference in DMR detection further, integrated analysis between 

DMRs of PC and CC using ChromHMM was also performed and revealed extremely different 

results. DMRs related to PC were detected in inactive states and active states approx. 60% and 

40%, respectively, while DMRs related to CC were detected prominently in active states, briefly 

more than 80% of DMRs (see Figure 4.1). Remarkably, our CC experiment was also performed 

in a different analysis procedure as described before. Although our study showed that DMRs 

related to chromatin states were preferentially found in the active states, histone modification 

changes were not observed directly. Additionally, a very low number of DMRs was also previously 

observed. Consequently, any implementation needed to be carefully considered.  
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Several studies about microenvironmental changes reported that mechanical forces were closely 

associated with the regulation of chromatin states and transcription (Chalut et al., 2012; Pagliara 

et al., 2014; Le et al.,2016; Tajik et al., 2016; Miroshnikova et al., 2017). During the irreversible 

transition state between reprogramming and differentiation, particularly under compression, the 

nuclei of embryonic stem cells were auxetic and stiffer, leading to nuclear deformation and more 

decondensed chromatin (Pagliara et al., 2014). On the contrary, some studies argued that 

applying forces to mesenchymal stem cells resulted in an increase of cell contractility and 

chromatin condensation. Moreover, rate and degree of condensation were correlated with 

frequency and duration time of applying mechanical forces (Heo et al., 2016).  In mouse epidermal 

stem cells, mechanical strain also promoted chromatin compaction via alterations between 

H3K9me2/3 and H3K27me3 occupancy, leading to transcription repression (Le et al.,2016). 

Independent of experimental procedures, chromatin compaction seemed to react to mechanical 

forces in different directions. 

Figure 4.1 Chromatin state segmentation of DMRs-related to PC and CC. Stack bar graph shows 
percentages of DMRs overlapping to 18 states of segmentation (ChromHMM). PC and CC conditions are 
shown on the left side of each bar graph. Each state of chromatin segmentation is more provided in 
supplementary table 6.4. 

Although the experiments were performed under controllable manners, several factors seemed 

undisciplined e.g. direction of forces applied to cells, and nutrients and oxygen level flown to the 

cells during experiment. Those factors probably influenced transcriptome profiles of PC and CC, 

rather than observed in methylome data. Overall mRNA profiles of PC and CC provided high 
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similarities. The number of DEGs observed in PC and CC showed slight differences, but similar 

in the tendency, as most DEGs were found to be upregulated, rather than downregulated (see 

Figure 3.46 i). 

Generally, we observed that genes related to the regulation of response to stimuli and any 

immunomodulation pathways were upregulated commonly in PC and CC, but the regulation 

processes seemed to contribute to different pathways. Microenvironmental changes were 

reported for immune balance and inflammation of MSCs, switching between pro-inflammation and 

anti-inflammation (La Berre et al., 2012; Jiang and Xu, 2020). Here, in PC, we still observed the 

activation of genes related to regulation of immune system process, particularly in complement 

and coagulation cascades. Moreover, some parts of the Hadden et al study revealed that cell 

proliferation were suppressed due to stiffness causing by differences in cell density (Hadden et 

al., 2017).  Cell proliferation also have a close relation to the regulation of the immune system in 

mesenchymal stem cells (MSCs), especially in a suppressive fashion. Altogether with activation 

of immune system process, we found that cell proliferation of passage 1 decreased (from 2 x 106 

to 1.5 x 106) after PC. Therefore, effect of PC seemed to fit to those models, as the expression 

changes related to immunomodulation during the induction of multipotency. 

Our CC experiment was performed in line with the works of Le Berre et al., which  the CC 

experiment was performed at 3.5 µm and they analyzed genome-wide expression changes, 

however, they used Hela cells, a cervical cancer cell line  (Le Berre et al., 2012). The difference 

in performing the experiment is expressed in the difference of the numbers of DEGs. Gene 

expression analysis in the works of Le Berre et al. was performed using Affymetrix genome wide 

exon array (U133 plus 2.0), while our study was performed using mRNA-sequencing, providing 

more accurate data. Still, upregulated DEGs of CC were found to be predominantly related to 

inflammation and stress responses, which was also observed in PC experiment and previous 

works (Le Berre et al., 2012). We found that IL-17 signaling was the most significantly upregulated 
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pathway. Interestingly, IL-17 signaling is not only relevant in autoimmune diseases, but also plays 

crucial roles in cell differentiation (Mojsilović et al, 2015). Furthermore, NF-kappa B signaling 

pathways, a central inflammatory regulator and downstream target of IL-17 signaling, was 

upregulated as well. Genes on the upper right of the cascade were strongly expressed, which 

contributed to the canonical pathway (see Supplementary Figure 7.17) of NF-kappa B which was 

reported to be activated as response to various stimuli as well as various stresses corresponding 

to DNA damage and inflammation (Mojsilović et al, 2015; Lui et al., 2017). 

Remarkably, in contrast to the PC experiment, several pathways related to differentiation of 

mesenchymal stem cells (MSCs) were upregulated in CC experiment e.g. osteoclast 

differentiation and hematopoietic cell lineage. These differentiations observed by our 

transcriptomic data were frequently reported under the promotion of IL-17 signaling (Krstic et al., 

2012; Lee 2013). Although some studies provided inhibitory effects of IL-17 against neuronal and 

myogenic differentiation, the roles of IL-17 in cell differentiation have been suggested in relation 

to tissue-determination of MSCs, and microenvironmental factors (Kocić et al., 2012; Li et al., 

2013; Mojsilović et al, 2015).  

Our transcriptome data potentially pointed to a role of PC-induced reprogramming in the initiation 

of immunomodulation responding to microenvironmental changes. However, instead of 

immunomodulation-based adaption to microenvironmental changes, CC preferentially promoted 

some multipotency features, via cytokine signaling pathways, leading to cell differentiation. 
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Based on our results, we suggested that on epigenetic level, PC and CC induced a response in 

immunomodulation, and were more general than observed for mRNA levels. Namely, DNA 

hypomethylation and hypermethylation at specific loci were observed (see Figure 4.2, left panel). 

Notably, we found that those signals coincided with genes related to histone 

methylation/demethylation processes (see Figure 3.50, right panel), particularly with the up 

regulation of KDM4B, encoding a H3K9 demethylase (JMJD2B). This was in line with other 

studies describing that mechanical stretch was found to increase nuclear deformation, leading to 

alterations in H3K9me3 and H3K27me3 modifications. Moreover, transcriptional changes in 

stretched cells were reported, e.g. genes were found up-regulated that locate to facultative 

heterochromatin marks (Chalut et al., 2012; Le et al., 2016; Nava et al., 2020). 

Figure 4.2 The Alteration in epigenetic and transcriptional levels of HepaRG under CC condition. The 
diagram illustrates that when cells (green oval) are under confined pressure, external stress signals are 
generated and transduced to the nucleus (green filled oval) via a process known as mechanotransduction. 
The effect on the left panel, particularly in epigenetic level, is generally found as immunomodulation, 
whereas the effect on the right panel is more specific and found in transcriptional level. 
Mechanotransduction induced by confined pressure activates IL-17 signaling pathways and other related 
pathways, leading to initiation of multipotency and differentiation. 

Furthermore, responded to the confined pressure with the up-regulation of IL-17 signaling, which 

plays a role in both immunomodulation responses and induction of multipotency, the core 

pluripotency-linked networks were not activated under constant pressure condition, but some 

genes related to ESC signaling were activated (see Supplementary Figure 7.18, right panel). 
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Therefore, in this study, we suggested that mechanical forces play a role in the promotion of 

multipotency and facilitate differentiation observed by the activation of genes related to IL-17 

signaling, osteoblast, and hematopoietic differentiation, respectively (see Figure 4.2, right panel). 

4.3. Other effects observed during reprogramming and PCi-differentiation 

4.3.1. Hydrocortisone-specific effects 

Alteration of molecular signatures caused by hydrocortisone removal had been observed in PC 

state of reprogramming. In this experiment, hydrocortisone was removed after precursor cells 

reached confluence. Literally, the effect of hydrocortisone influencing on DNA methylation 

changes was barely reported, as hydrocortisone directly affects rather histone acetylation, and 

not DNA methylation and related cofactors (Russell et al., 2010). Therefore, solely minor changes 

of DNA methylation, primarily focal methylation changes, in both directions - hypo- and 

hypermethylation - were observed. Although direct significant effects of hydrocortisone on DNA 

methylation were not observed , in stress-response studies cortisones derivates were frequently 

reported to be associated with gene-specific DNA methylation changes e.g.for KITLG, a gene 

encoding a ligand of the tyrosine-kinase receptor (Houtepen et al., 2016; Wrigglesworth et al., 

2019), and for CYP11B1, a gene that encodes the 11β-hydroxylase enzyme which catalyzes 

cortisol biosynthesis. Particularly, significant hypomethylation of CYP11B1 promoter was found 

in hypercortisolemia in cortisol-producing adenoma (Kometani et al., 2017). Our study seemed to 

be not comparable to the previous studies. However, we observed that, after hydrocortisone was 

removed, DMRs in gene body of CYP11B1 became slightly hypermethylated, oppositely to the 

finding in hypercortisolemia (see Supplementary Figure 7.19).  

Additionally, the alteration of mRNA levels was minor, the number of DEGs was low. The 

strongest observation in this condition related to down-regulation of genes involved in metabolic 

processes. Hepatocytes indeed play important roles in metabolic pathways, particularly in glucose 

and lipid metabolism in liver (Bechmann et al., 2012; Rui, 2014). As hydrocortisone, a growth 
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factor specific to hepatocytes, was withdrawn from the culture, downregulation of genes related 

to glucose and lipid metabolisms, such as G6PC – catalytic subunit of G6Pase, ACOX2 – Acetyl-

Co A oxidase 2, and ETNK2 – Ethanolamine Kinase 2 etc., was commonly found. The alteration 

of DNA methylation and gene expression observed in this condition leads to the suggestion that 

adaptation to short-term stress induction and suppression of hepatocyte specificity were promoted 

when hydrocortisone was removed from the cultures. 

Moving forward to the maintenance state, two well-known factors influencing DNA methylation 

patterns needed to be concerned – i) prolonged culture, and ii) Aza treatment effect, respectively. 

4.3.2. Long-term cultivation effect 

Focusing on prolonged or long-term cultivation, global hypomethylation and focal 

hypermethylation have been proposed as signatures of long-term in vitro cultivation found in 

several cell types (Bork et al., 2010; Cruickshanks et al., 2013 and Dmitrijeva et al., 2018). In 

contrast, our observation was that prolonged cultivation of HepaRG to passage 10, either after 

applying PC or without PC, resulted in genome wide hypermethylation, also detected in 

methylation levels of LINE1 and HERVK elements (see Supplementary Figure 7.20). Consistent 

with the global level, hypermethylation at specific loci were preferentially observed, rather than 

hypomethylation (see Figure 3.7 and Figure 3.10 ii). Global hypomethylation in prolonged culture 

was reported in association with a proliferation arrest and diminished DNMT activity 

(Cruickshanks et al., 2013). Since our RP samples could be cultivated for up to 20 passages 

(unpublished data, Biopredic) and DNMT1 and DNMT3A were still strongly expressed at P10 (see 

Supplementary Figure 7.21), global hypomethylation could not be expected in this experiment. 

Additionally, HepaRG cells were obtained from hepatocellular carcinoma, some properties of 

cancerous cells were still maintained (Gripon et al., 2002), such as DNMTs activities, which were 

reported previously in hepatocellular carcinoma and many cancers (Oh et al., 2007; Subramaniam 

et al., 2014).  
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Differences in gene expression between long-term cultivation of PC and nonPC cells could also 

be observed. Long-term cultivation of nonPC led to a down-regulation of genes related to the 

regulation of cell adhesion and extracellular matrix organization, whereas up-regulated genes 

were related to morphogenesis and vasculature development. Those findings indicate that DEGs 

of long-term culture of nonPC possibly promote inflammation response as well as angiogenesis 

and vascular development, as generally found in tumorigenesis (Ziyad and Iruela-Arispe, 2011; 

Jiang and Xu, 2020). In long-term cultivated PC cells, DEGs included down-regulated genes 

related to some metabolic pathways while up-regulated genes promoted protein tyrosine kinase 

activity (see Figure 3.19 iv). Consequently, overall results of long-term cultivation of PC revealed 

that HepaRG did not only exhibit reduced tissue specificity, but also partially maintain stress 

responses caused by microenvironmental changes via immunomodulation processes. 

4.3.3. Azacytidine -specific effects 

5-Azacytidine (Aza) was used to stabilize multipotent cell-like cellular properties after PC. We 

therefore proposed that Aza-treated samples biologically – on the molecular level - get closer to 

multipotent cells. As expected, an extremely high number of hypomethylated DMRs was 

discovered. 

For cellular reprogramming, several transcription factors and methods were used to induce 

pluripotent properties. As shown in previous studies, hypermethylation was observed at 

pluripotent-related genes in partially reprogrammed cells. After Aza treatment reduction of 

methylation levels at those genes was found to provide rapid and full reprogramming with high 

efficiency, as pluripotency-related genes were further reactivated (Mikkelsen et.al., 2008). 

Notably, the transcripts of pluripotency-related genes, such as KLF4 and DUSP9, were barely 

observed in the Aza-treated samples, although the methylation of those genes was gradually 

decreased, from passage 0 of PC sample to passage 10 of PC+A (see Supplementary Figure 

7.22). Along with this, the results from Aza treatment suggest that the epigenetic state of the cells 
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particularly seemed to be stabilized at lower methylation levels, but the effect was not sufficient 

for the activation of the pluripotency state.  

Figure 4.3 Hypermethylated DMRs found in Aza treated samples. The figures provide ideograms of each 
chromosome showing hypermethylated DMRs in yellow, whereas the rest of the genome is in blue. On the 
left side is the figure of Aza treated cells in passage 1, while the figure on the right displays Aza treated 
cells in passage 10. 

Although Aza-treatment was highly effective in promoting genome-wide hypomethylation in both, 

passages 1 and 10, hypermethylated DMRs could still be observed (less than 1%, diff meth = 10-

60%). Figure 4.3 shows that hypermethylated DMRs were dispersed throughout the genome, not 

clustering particularly at persistent heterochromatic regions such as centromeric and telomeric 

regions. 

Several studies on iPSCs suggest that hypermethylation occurring during reprogramming 

probably underlines an epigenetic aberration of iPSCs as a consequence of epigenetic memory 

of iPSCs (Lister et al., 2011; Ohi et al., 2011; Nishizawa et al., 2016). This aberrant 

hypermethylation was reported to have functional roles in reprogramming and differentiation. For 

instance, in blood-iPSCs, aberrant hypermethylation was associated to high maturation capacity 

of iPSCs (Nishizawa et al., 2016). Unfortunately, our study was performed without biological 

replicates, differential methylation analyses comparing the cells with precursors or their passage 

counterparts could not be included. In addition, functional annotations of DMRs associated with 
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somatic cell origin influencing DNA methylation seemed to be barely observed in this study, but 

hypermethylated DMRs were found related to nervous system development (34 genes, FDR 

=0.0038). This effect was frequently found in the establishment of hepatocyte-like cells derived 

from hepatocellular carcinoma (Tao et al., 2011). 

During Aza treatment, global hypomethylation was a major effect since Azacytidine is a cytidine 

analog, which competes with cytidine during DNA replication, leading to global hypomethylation 

of the genome and transcriptional activation (Christman, 2002; Sigalotti et al., 2007). Although 

Aza was reported to influence RNA transcription processes (Schaefer et al., 2009; Qiu et al., 

2010), the effect of Aza treatment on RNA transcription was barely observed in this study. Our 

results from mRNA-Seq revealed that the number of up-regulated DEGs was dramatically 

increased in the Aza treated samples (see Figure 3.18 ii, comparison D and E). Up-regulated 

DEGs were mainly found to be associated with regulation of cell adhesion and cell cycle. 

Conversely, tissue specifically expressed genes, such as genes related to complement and 

coagulation cascades, were continuously downregulated (see Figure 3.20, lower part).  

Notably, during reprogramming, GO terms and KEGG pathways obtained from DEGs of PC or 

maintenance state revealed some similarities, but the terms were allocated to different regulation 

directions. For instance, genes associated with hsa04610 complement and coagulation cascades 

were strongly expressed in PC. The expression of those genes became lower in the maintenance 

state, particularly in Aza-treated samples (see Supplementary Figure 7.23). Therefore, Aza 

treatment not only provided an epigenetic resetting of DNA methylation, but the treatment also 

facilitated multipotency by decreasing the specificity of the cells and suppressing genes related 

to immune responses during reprogramming. 
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4.3.4. PC-induced differentiation to hepatocyte-liked cells 

On the other hand, during HepaRG differentiation, work by Oriana Genolet reported a minor 

change in DNA methylation during HepaRG differentiation, the methylation profiles of samples 

collected during the differentiation process did not show distinctive patterns. Methylation changes 

in the samples which were supplemented with DMSO from day 15 onwards were also not 

prominent, meaning that the methylation of HepaRG undergoing differentiation was not influenced 

by hydrocortisone and DMSO similar to the findings after reprogramming (Genolet, Master thesis 

2012). However, in the mentioned Master thesis, the 450K BeadChip array (Illumina) was used 

which is not comparable for all CpGs detected by RRBS, so any conclusion from comparisons 

have to be taken with care.  

In contrast to previous differentiation studies, we used hydrocortisone for re-establishing 

differentiated cells and DMSO to restore hepatic functions after PC. This also showed mildly 

different results. Methylation profiles of RD samples still clearly showed a global hypomethylation 

with focal hypermethylation (see Figure 3.7 – green bar), assuming that Aza treatment effects in 

the starter (RD_P0nonPC+A) were probably retained. However, a tendency towards increasing 

methylation levels during PCi-differentiation appeared throughout the process. 

Concerning PCi-differentiation from multipotent cells to hepatocyte like cells, we pinpointed the 

steps in which PCi-differentiation was induced in the cells by hydrocortisone and DMSO 

treatment. Interestingly, PCi-differentiation with a combination of hydrocortisone and DMSO 

treatment of the culture showed promising results. As expected, several genes related to 

cytochrome P450 family became upregulated during PCi-differentiation, suggesting that 

hepatocyte-specific properties were partially rebooted (see Supplementary Figure 7.24). 
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4.4. Chromatin state segmentation in correlation to DNA methylation and gene 

expression 

Previous analyses showed that the distribution of DMRs according to genome annotation 

provided highly similar patterns among each state. The DMRs were frequently located in introns 

and intergenic regions, leading to the question if any regulatory regions were influenced by the 

alteration of DNA methylation. Since histone modification enrichment and DNA accessibility 

profiles of HepaRG were available, segmentation of chromatin states segmentation (ChromHMM) 

of HepaRG was done and linked to functional sequence units in the genome (Ernst and Kellis, 

2012; Salhab et.al, 2018). This study took advantage of ChromHMM to deliver predictive 

chromatin states of DMRs. DMRs that overlapped with chromatin states with at least 10 bp were 

defined to be DMRs located within those chromatin states. However, the analyses should be 

handled carefully, because DMRs potentially can overlap with more than one chromatin segment 

(active and inactive). Additionally, predictive chromatin states were also obtained from 

differentiated HepaRG. 

Overall, DMRs related to reprogramming processes were found to be more prominent in inactive 

states (No.12-18) of chromatin, particularly during PC, as well as during prolonged cultivation. 

Dramatic changes were observed when Aza was applied to the culture, e.g. number of active 

states (No.1-11) increased significantly ( Figure 4.4). 
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 Figure 4.4 Chromatin state segmentation of DMR-related reprogramming processes. Stack bar graph 
shows percentages of DMRs overlapping to 18 states of segmentation (ChromHMM). Sample state and 
factors influencing methylation changes are shown on the left side of each bar graph. Detailed information 
about each state of chromatin segmentation is provided in supplementary table 6.4 

Besides, as shown in  Figure 4.4, ChromHMM seemed to reveal a specific signature of 

methylation during reprogramming since DMRs related to each state of the process were 

predominantly altered within active chromatin states. Apparently, active TSS (1_TssA; 8.25%) 

and flanking TSS (2_TssFlnk; 10.66%) sites, prominently found in PC and prolonged cultivation, 

dramatically decreased in Aza-treated samples. Instead of active TSS and flanking TSS regions, 

regions indicating strong transcription (5_Tx) and weak transcription (6_TxWk) significantly 

increased either in passage 1 (39.61%) or in passage 10 (34.32%), suggesting that Aza treatment 

potentially influenced chromatin state to be more open. Another significant effect was observed 

in more closed chromatin, particularly in DMRs related to weakly repressed polycomb 

(17_ReprPCwk) in passage 10 (15.68%). Regions indicating weakly repressed polycomb state 
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probably seem to be sensitive to methylation changes, the same effect was found in long term 

Aza-treated samples. 

Figure 4.5 Chromatin state segmentation of DMR-related PCi-differentiation processes. Stack bar graphs 
show percentages of DMRs overlapping with 18 states of segmentation (ChromHMM). Sample states and 
factors influencing methylation changes are shown on the left side of each bar and correspond to figure 
3.13-i. Detailed information of each state of chromatin segmentation is provided in supplementary table 6.4 

During PCi-differentiation, the patterns of ChromHMM were comparable to those in the 

reprogramming process, particularly in the maintenance state, as the effect of Aza treatment 

remained in the cells ( Figure 4.4 and Figure 4.5). High proportions of DMRs located in segments 

associated with strong transcription (5_Tx), weak transcription (6_TxWk), weak repressed 

polycomb (17_ReprPCwk) and quiescent regions (18_Quies) were found at similar levels. In this 

state, an impact of hydrocortisone on DNA methylation was also noticed. Figure 4.5 shows that, 

after hydrocortisone induction, the number of DMRs associated with active TSS (1_TssA) and 

TSS flanking regions (2_TSSFlnk) was increased, while the number of DMRs associated with 

strong transcription (5_Tx) and weak transcription (6_TxWk) segments declined. These findings 

may strongly support the role of hydrocortisone in influencing DNA methylation changes, 

particularly at the TSS and TSS flanking regions, although they were barely reported in previous 

studies. Therefore, the combination of methylation data and chromatin state segmentation 

confirmed that PCi-differentiation of HepaRG was partially induced after hydrocortisone and 
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DMSO administration. Besides, prolonged cultivation of PCi-differentiated samples revealed 

similar effects as detected for the Aza-treated samples. 

In summary, according to ChromHMM, DMRs are predominantly located in closed chromatin  

rather than in more open segments and, furthermore, can be steadily found in the same 

proportions, approx. 60% of closed and 40% of open states, either in reprogramming or PCi-

differentiation processes. However, during PC and maintenance, alteration of chromatin states 

was preferentially found in DMRs located in open segments, while alterations in PCi-differentiation 

processes were found in similar patterns compared to DMRs after Aza treatment. 

Finally, exploring the correlation of DNA methylation and gene expression revealed a frequent 

association between DNA methylation and mRNA levels in promoter regions. As reported in many 

disease-related studies, promoter hypomethylation promoted activation of genes, whereas 

promoter hypermethylation promoted suppression of genes related to these promoters (Fan et 

al., 2006; Jones 2012; Deng et al., 2019). Overall, the results of this study were consistent with 

these previous reports, but the correlation of DMRs and DEGs could not be applied thoroughly 

with those models. For example, after prolonged cultivation, although a negative correlation had 

mostly been found, a positive correlation between DMRs and DEGs could still be observed (see 

Figure 3.29 – regulation bar). Notably, negative correlation, as well as positive correlation, were 

not detected solely in promoter regions, but also in other regulatory regions (see Figure 3.30). 

Gene body methylation correlated with mRNA levels, particularly when found in the first intron, 

where predicted enhancers and transcription factor binding motifs were shown to be frequently 

located (Yang et al., 2014; Anastasiadi et al., 2018). Moreover, a progressive loss of methylation 

in gene bodies also showed a positive correlation with H3K36me3, a histone modification often 

enriched in heterochromatic regions. Focusing on partially methylated domains (PMDs) of 

HepaRG, PMDs associated with high transcription were highly methylated and lowly enriched for 

heterochromatic markers, compared to the methylation average across ChromHMM of HepaRG 
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(Chantalat et al., 2011; Salhab et al., 2018). Although PMD data was not obtained in this study, 

ChromHMM analysis revealed that DMRs were associated with open segments during 

reprogramming and PCi-differentiation processes and thus possibly correlate with active genes. 

Prominent examples were discovered in reprogramming processes when DMRs, particularly in 

maintenance state, were increasingly found in open segments which may result in an increase of 

gene expression. Along with this, in addition to DNA methylation, the results from the integrative 

analysis with ChromHMM convinced us that chromatin states are one of the important underlying 

mechanisms regulating gene expression in HepaRG during reprogramming and PCi-

differentiation. 

4.5. Further directions 

To investigate reprogramming events further, some parts of the experimental procedures still 

need to be improved, e.g. using more cell material for further analysis. Based on the observation 

that histone demethylation coincided with CC, together with the results that DMRs correlate to 

chromatin state segmentation, a broad analysis of histone modifications and nucleosome 

occupancies might be interesting, since these chromatin signatures are known to be influenced 

directly from mechanical forces. Additionally, our  studies provided evidence of supporting roles 

of 5-hydroxymethylcytosine (5-hmC) in cell cycle progression during CC. Investigation of 5-hmC 

in association with cell cycle states during CC, particularly at single cell level, might provide a 

better understanding about DNA methylation and cell cycle dynamics during organogenesis, an 

in vivo mechanical process found during development. 
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Chapter 5 Summary 

5.1. Overall summary 

In this study, we used physical constraint and confinement to induce cellular reprogramming and 

redirected differentiation of hepatocyte-like cells. Analysing the molecular signature of HepaRG 

cells, we found that cellular reprogramming probably did not entirely occur, but molecular 

processes tending towards PCi-differentiation were partially found. Indeed, we observed minor 

changes in overall DNA methylation that tended towards hypomethylation in the PC and CC 

experiments. Obtained data from prolonged cultivation of HepaRG pointed to overall increased 

methylation levels. In the process of PCi-differentiation, genome-wide hypomethylation acquired 

by treatment of HepaRG with Aza was still maintained and constantly remained when hepatocyte 

differentiation was induced. However, overall methylation levels of PCi-differentiated hepatocyte-

like cells tended towards an increase upon continued cultivation.  

Looking at genome-wide mRNA profiles, genes related to immunomodulation processes were 

predominantly activated to respond to PC-induced stress and prolonged cultivation. Hepatocyte-

specific genes were found with reduced mRNA levels.  During PCi-differentiation process, 

members of the cytochrome P450 family were restored after DMSO was applied to the culture, 

confirming that hepatocyte specificity was partially activated during the process.  

Distribution of DMRs related to functional genome elements provided distinctive patterns, 

particularly when integrated to chromatin segments using ChromHMM. We found that the 

proportion of active and inactive chromatin states seemed to remain constantly along the 

reprogramming and PCi-differentiation processes. Notably, DMRs integrated to ChromHMM were 

found to correlate to gene expression more significantly than DMRs only. Therefore, chromatin 

states potentially represent another underlying mechanism related to the alteration of DNA 

methylation and gene expression during our study.
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Chapter 7 Appendices 

7.1. Supplementary data 1 

Table 7.1 Total read counts and number of CpG sites at 10-fold coverage of all samples. Samples with 
asterisk (*) were re-sequenced to obtain more comparable CpG sites after 10x coverage filtering. 

Samples Total read 

counts 

Total CpG 

sites after 

meth. called 

Total CpG 

sites after 

10x cov. 

Read count of each 

sequencing 

Precursor 5.18E+07 3.20E+06 3.20E+06 
  

RP_P0nonPC 4.04E+07 3.01E+06 3.01E+06 
  

RP_P0PC 1.10E+08 3.95E+06 3.94E+06 
  

RP_P1PC* 1.20E+08 5.24E+06 5.24E+06 3.30E+07 8.74E+07 

RP_P1PC+A 6.66E+07 3.49E+06 3.49E+06 
  

RP_P10nonPC* 8.30E+07 4.67E+06 4.66E+06 4.11E+07 4.19E+07 

RP_P10PC 4.61E+07 4.13E+06 4.12E+06 
  

RP_P10PC+A* 7.60E+07 4.39E+06 4.39E+06 2.74E+07 4.86E+07 

RD_P0nonPC+A 4.24E+07 2.91E+06 2.91E+06 
  

RD_P0PC+Hydro 5.69E+07 3.33E+06 3.33E+06 
  

RD_P0PC+DMSO* 6.27E+07 3.96E+06 3.96E+06 2.61E+07 3.66E+07 

RD_P20* 7.84E+07 4.51E+06 4.50E+06 2.35E+07 5.50E+07 

 

 

 

  



 

 

Table 7.2 Total read numbers of each amplicons. The table also provides additional information including 
the number of CpG sites on Miseq amplicons, number of CpG found in both Miseq amplicons and RRBS, 
correlation coefficient between RRBS and LDS and percentage of low coverage CpGs (cov.<10x) included 
in each amplicon. 

Amplicons 
Total read 
numbers 

No. of CpG sites Correlation coefficient (R) 

% of CpGs 
with 

cov.<10x LDS 
Overlapped 
with RRBS 

All CpGs 

All CpGs 
excluding low 

coverage 
CpGs 

AMIGO2 1.90E+05 16 14 0.78 - - 

CSMD3 1.81E+05 6 4 0.61 - - 

DTD1 2.10E+05 9 8 0.38 - - 

DUS3L 1.87E+05 16 11 0.90 0.88 4.55 

FA2H 1.34E+04 29 13 0.59 0.60 18.75 

FAM5C 7.01E+04 20 13 0.66 0.64 28.20 

OCRL 1.49E+05 29 12 0.49 0.66 43.75 

SPARC 1.51E+05 7 4 0.54 0.14 25.00 

TF 5.74E+05 8 7 0.50 0.10 53.57 

TUBA1A 7.94E+04 30 17 0.21 0.04 12.02 

ZNF814 1.98E+05 14 5 0.69 0.56 23.33 

 

Table 7.3 Total read counts of all samples. Table shows read counts after sequencing and mapping 
separated by methods of sequencing. 

Samples 

RRBS-sequencing mRNA-sequencing 

Total read counts Total CpG sites 

after meth. called 

Total CpG sites 

after 10x cov. 
Total read counts 

CC1 2.00E+07 1.79E+06 1.79E+06 2.69E+07 

CC2 2.20E+07 1.78E+06 1.77E+06 5.03E+07 

NonCC1 1.87E+07 1.05E+06 1.05E+06 1.93E+07 

NonCC2 1.48E+07 1.39E+06 1.39E+06 3.66E+07 

 



 

 

Table 7.4 Description of expanded 18-state of chromatin segmentation. 

STATE NO. MNEMONIC DESCRIPTION 

1 TssA Active TSS 

2 TssFlnk Flanking TSS 

3 TssFlnkU Flanking TSS Upstream 

4 TssFlnkD Flanking TSS Downstream 

5 Tx Strong transcription 

6 TxWk Weak transcription 

7 EnhG1 Genic enhancer1 

8 EnhG2 Genic enhancer2 

9 EnhA1 Active Enhancer 1 

10 EnhA2 Active Enhancer 2 

11 EnhWk Weak Enhancer 

12 ZNF/Rpts ZNF genes & repeats 

13 Het Heterochromatin 

14 TssBiv Bivalent/Poised TSS 

15 EnhBiv Bivalent Enhancer 

16 ReprPC Repressed PolyComb 

17 ReprPCWk Weak Repressed PolyComb 

18 Quies Quiescent/Low 

  



 

 

Figure 7.1 Common DMRs emerging from physical constraint. i) shows each pairwise comparison (A-C) of 
PC. ii) Overlapping of A–B and B-C were extracted to see whether common DMRs of B were greater in A 
or in C.  

Figure 7.2 pcDMRs found in prolonged cultivation. i) Overlapping of prolonged nonPC (A) and PC (B). ii) 
The overlapping is then performed separately by methylation status, yielding 4 groups of pcDMRs. Notably, 
pcDMRs were highly conserved in hypermethylation direction (group 3). 

(1) Hypomethylated DMRs in A → Hypomethylated DMRs in B (4.03%) 

(2) Hypomethylated DMRs in A → Hypermethylated DMRs in B (0.32%) 

(3) Hypermethylated DMRs in A → Hypermethylated DMRs in B (24.51%) 

(4) Hypermethylated DMRs in A → Hypomethylated DMRs in B (0.21%) 

ii) i) 

i) ii) 



 

 

Figure 7.3 Total number of read obtained from all samples of PC experiment. Dark colored bars are total 
reads obtained after mRNA-sequencing, while light colored bars are reads that mapped to reference 
genome. Bar colors define states of each samples; blue = precursor, orange = PC, gray = maintenance 
and green = PCi-differentiation. 

 

Figure 7.4 Number of detected transcripts and genes after mRNA-sequencing of PC experiment. Purple 
bars are detected transcripts, while red bars are detected genes. 
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Figure 7.5 Common DEGs emerging from physical constraint. Overlapping of A–B and B-C were extracted 
to see whether common DEGs of B were greater in A or in C. 

 

Figure 7.6 mRNA expression of genes in signaling pathways related to pluripotency. From left to right were 
JAK-MAPK-STAT, WNT and TGFβ signaling pathway, respectively. Heatmap shows the expression value 
(log (FPKM+1)) of genes. Gradient colors from white to purple represent low to high expression, 
respectively. 



 

 

 

Figure 7.7 Correlation of gene expression and DNA methylation. Left panel of heatmap shows gene 
expression profile, while right panel shows DNA methylation profile. The colors, blue and red, represent the 
methylation level from 0 to 1, and gradient colors from white to purple represent low to high expression, 
respectively. 

  



 

 

Figure 7.8 Correlation of gene expression and DNA methylation of specific regions. Figures shows 
heatmaps of methylation of tiling regions related to i) intergenic, ii) intragenic and iii) TTS regions, 
respectively, and expression of genes associated to those tiling regions. Left panel of those heatmaps 
shows DNA methylation profile, while right panel shows gene expression profile. The colors, blue and red, 
represent the methylation level from 0 to 1, and gradient colors from white to purple represent low to high 
expression, respectively. 

 

 

 

 

 

i) ii) 

iii) 



 

 

Figure 7.9 Correlation of methylation between RRBS and LDS. i) correlation of CpG methylation after low 
coverage CpGs are excluded. Blue dot is a CpG site that RRBS coverage are more than 10x, whereas 
orange dot is a CpG site that RRBS coverage are less than 10x. Red dash line presents a trendline 
according to blue dot. ii) correlation of average methylation between LDS amplicons and RRBS tiling 
regions. Equation and R2 are also shown on the bottom right. 
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Figure 7.10 Immunofluorescent signal (IF) of DAPI, 5mC and 5hmC of CC conditions. Each condition is 
defined on the left side of figures, where IF signals are defined on the top of figures. 

 

Figure 7.11 Relative IF signals and cell numbers of each condition. Bar graph shows percentage of cells of 
each Relative IF signals. 5mC/DAPI is on the left panel, while 5hmC/DAPI is on the right panel of the graph. 
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Figure 7.12 Number of cells in total volume (0.4 ml) of each CC condition. Each dot presents number of 
cells of each replicate. Each CC condition is written below the graphs. 

 

 

Figure 7.13 Number of detected transcripts and genes after mRNA-sequencing of CC experiment. Purple 
bars are detected transcripts, while red bars are detected genes. 
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Figure 7.14 mRNA expression of genes in signaling pathways related to pluripotency of PC and CC 
experiment. From left to right were JAK-MAPK-STAT, WNT and TGFβ signaling pathway, respectively. 
Heatmap shows the expression value (log (FPKM+1)) of genes. Gradient colors from white to purple 
represent low to high expression, respectively. 

  



 

 

Figure 7.15 Histogram of methylation distribution of all sample. Each figure displays histogram of 
methylation distribution. Vertical axis represents a frequency (50k, 100k, 150k and 200k), while horizontal 
axis represents percentages of methylation (0, 20, 40, 60, 80 and 100). Name of each sample is written on 
the top by the colors representing their states; blue = precursor, orange = PC, gray = maintenance and 
green = PCi-differentiation. 
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Figure 7.16 Histogram of methylation distribution of CC sample. Each figure displays histogram of 
methylation distribution. Vertical axis represents a frequency, while horizontal axis represents percentages 
of methylation (0, 20, 40, 60, 80 and 100). Name of each sample is written on the top by the colors 
representing their states; blue = CC samples, red = nonCC samples. 
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Figure 7.17 KEGG pathway of NF-kappa B (hsa04064). The figure shows the expression of genes in NF-
kappa B signaling pathway during CC experiment. Gradient colors from blue, yellow and red represent log2 
fold change of each gene from -2 to 2, respectively. 
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Figure 7.18 KEGG pathways of signaling pathways regulating pluripotency of stem cells (hsa04550). The 
figure shows the expression of genes in hsa04550 during CC experiment. Gradient colors from blue, yellow 
and red represent log2 fold change of each gene from -2 to 2, respectively. 
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Figure 7.19 IGV snapshots of CYP11B1. The figure shows the RRBS data labeled as “BS_samples”, 
following by expression data labeled as “mRNA_sample”. The figure provides slightly hypermethylated 
DMRs of hydrocortisone removal sample (DMR_HC; blue bar). 

 

Figure 7.20 Mean methylation of repetitive elements. Bar graph shows mean methylation of HERVK (dark 
color bars) and LINE1 (light color bars) detected by local deep sequencing (Miseq). Coverage of each 
sample is displayed at the end of bar. Bar colors define states of each samples; blue = precursor, orange 
= PC, gray = maintenance and green = PCi-differentiation. Noted that RD_P0nonPC+A and 
RD_P0PC+hydro are excluded because of limited materials. 
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Figure 7.21 Expression of genes related to DNA methylation and demethylation processes. State of 
samples is defined by colors; blue = precursor, orange = PC, gray = maintenance and green = PCi-
differentiation. 

Figure 7.22 IGV snapshots of pluripotent related genes. The figure shows the RRBS data labeled as 
“BS_samples”, following by expression data labeled as “mRNA_sample”. Upper part is KLF4, whereas 
lower part is DUSP9. Samples include RP_P0PC, RP_P10PC and RP_P10PC+A, respectively. Colors from 
green to red represents the methylation level from low to high (0-100). 
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Figure 7.23 KEGG pathways of complement and coagulation cascades (hsa04610). Upper and lower parts 
show the expression of genes in hsa04610 during PC and Aza treatment. Gradient colors from blue, yellow 
and red represent log2 fold change of each gene from -2 to 2, respectively.  
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Figure 7.24 KEGG pathways of metabolism of xenobiotics by cytochrome P450 (hsa00980). Upper and 
lower figures show the expression of genes in hsa00980 during PCi-differentiation. Gradient colors from 
blue, yellow and red represent log2 fold change of each gene from -2 to 2, respectively. 
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7.2. Supplementary data 2 

Figure legends for technical validation by local deep sequencing 

Figure 7.25 - Figure 7.35 i) show methylation profiles of amplicons obtained from local deep 

sequencing (Miseq) and generated by BiQ Analyzer HT. Mean methylation (Mean met) and 

coverage (Cov.) of each sample are also provided. Sample without methylation profile is indicated 

as NA. ii) and iii) show scatter plot providing correlation of methylation between local deep 

sequencing (Miseq) and RRBS of each amplicon. In plot ii), blue dot represents all CpGs found 

in the amplicon. In plot iii), blue dot represents CpGs containing high RRBS coverage (≥10x), 

while orange dot represents CpGs containing low RRBS coverage (<10x). Equation, R2 value and 

trendline (red dash) are calculated according to blue dot. Amplicon without CpGs containing low 

RRBS coverage will be marked by asterisk (*). Green line over the methylation profile indicates 

common CpGs found in RRBS and LDS (Miseq). 

List of amplicons 

- AMIGO* 

- CSMD3* 

- DTD1* 

- DUS3L 

- FA2H 

- FAM5C 

- OCRL 

- SPARC 

- TF 

- TUBA1A 

- ZNF814 



 

 

Figure 7.25 AMIGO2 - i 

 

Precursor RP_P0nonPC RP_P0PC RP_P1PC 

Mean met = 0.927 Mean met = 0.922 Mean met = 0.929 Mean met = 0.911 

Cov. = 32448 Cov. = 14437 Cov. = 8002 Cov. = 6737 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

RP_P1PC+A RP_P10nonPC RP_P10PC RP_P10PC+A 

Mean met = 0.819 Mean met = 0.915 Mean met = 0.915 Mean met = 0.201 

Cov. = 6345 Cov. = 21771 Cov. = 11953 Cov. = 5548 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

RD_P0nonPC+A RD_P0PC+hydro RD_P0PC+DMSO RD_P20 

Mean met = 0.49 Mean met = 0.457 Mean met = 0.496 Mean met = 0.496 

Cov. = 14126 Cov. = 5509 Cov. = 31370 Cov. = 31955 
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Figure 7.26 CSMD3 - i 

 

Precursor RP_P0nonPC RP_P0PC RP_P1PC 

Mean met = 0.226 Mean met = 0.265 Mean met = 0.284 Mean met = 0.222 

Cov. = 21899 Cov. = 23688 Cov. = 16875 Cov. = 15975 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

RP_P1PC+A RP_P10nonPC RP_P10PC RP_P10PC+A 

Mean met = 0.255 Mean met = 0.462 Mean met = 0.302 Mean met = 0.104 

Cov. = 24047 Cov. = 10078 Cov. = 5842 Cov. = 1726 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

RD_P0nonPC+A RD_P0PC+hydro RD_P0PC+DMSO RD_P20 

Mean met = 0.245 Mean met = 0.296 Mean met = 0.324 Mean met = 0.355 

Cov. =23774 Cov. = 18422 Cov. = 10787 Cov. = 7417 
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Figure 7.27 DTD1 - i 

 

Precursor RP_P0nonPC RP_P0PC RP_P1PC 

Mean met = 0.445 Mean met = 0.434 Mean met = 0.423 Mean met = 0.398 

Cov. = 29866 Cov. = 33326 Cov. = 25602 Cov. = 13690 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

RP_P1PC+A RP_P10nonPC RP_P10PC RP_P10PC+A 

Mean met = 0.341 Mean met = 0.423 Mean met = 0.352 Mean met = 0.268 

Cov. = 27824 Cov. = 3367 Cov. = 13349 Cov. = 4990 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

RD_P0nonPC+A RD_P0PC+hydro RD_P0PC+DMSO RD_P20 

Mean met = 25357 Mean met = 14098 Mean met = 0.393 Mean met = 0.285 

Cov. = 0.383 Cov. = 0.312 Cov. = 17007 Cov. = 1479 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 



 

 

 

  

y = 0.6758x + 29.442
R² = 0.1419

0.00

20.00

40.00

60.00

80.00

100.00

120.00

0.00 20.00 40.00 60.00 80.00 100.00 120.00

R
R

B
S

Miseq

DTD1 - ii



 

 

Figure 7.28 DUS3L - i 

 

Precursor RP_P0nonPC RP_P0PC RP_P1PC 

Mean met = 0.918 Mean met = 0.887 Mean met = 0.844 Mean met = 0.873 

Cov. = 17823 Cov. = 19808 Cov. = 22101 Cov. = 22673 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

RP_P1PC+A RP_P10nonPC RP_P10PC RP_P10PC+A 

Mean met = 0.754 Mean met = 0.939 Mean met = 0.926 Mean met = 0.491 

Cov. = 19060 Cov. = 6785 Cov. = 6065 Cov. = 14438 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

RD_P0nonPC+A RD_P0PC+hydro RD_P0PC+DMSO RD_P20 

Mean met = 0.388 Mean met = 0.439 Mean met = 0.364 Mean met = 0.149 

Cov. = 14264 Cov. = 19296 Cov. = 11548 Cov. = 13162 
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Figure 7.29 FA2H - i 

 

Precursor RP_P0nonPC RP_P0PC RP_P1PC 

Mean met = 0.564 Mean met = 0.598 Mean met = 0.611 Mean met = 0.566 

Cov. = 1002 Cov. = 2320 Cov. = 1566 Cov. = 813 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

RP_P1PC+A RP_P10nonPC RP_P10PC RP_P10PC+A 

Mean met = 0.553 Mean met = 0.688 Mean met = 224 Mean met = 0.288 

Cov. = 1351 Cov. =1645 Cov. = 0.456 Cov. = 248 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

RD_P0nonPC+A RD_P0PC+hydro RD_P0PC+DMSO RD_P20 

Mean met = 0.815 Mean met = 0.426 Mean met = 1060 Mean met = 0.327  

Cov. = 1 Cov. = 1129 Cov. = 0.393 Cov. = 2050 

NA 
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Figure 7.30 FAM5C - i 

 

Precursor RP_P0nonPC RP_P0PC RP_P1PC 

Mean met = 0.267 Mean met = 0.338 Mean met = 0.340 Mean met = 0.260 

Cov. = 18330 Cov. = 8767 Cov. = 6178 Cov. = 593 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

RP_P1PC+A RP_P10nonPC RP_P10PC RP_P10PC+A 

Mean met = 0.216 Mean met = 0.172 Mean met = 0.231 Mean met = 0.142 

Cov. = 7470 Cov. = 3566 Cov. = 3491 Cov. = 1806 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

RD_P0nonPC+A RD_P0PC+hydro RD_P0PC+DMSO RD_P20 

Mean met = 0.141 Mean met = 0.170 Mean met = 0.104 Mean met = 0.08 

Cov. = 12030 Cov. = 399 Cov. = 4004 Cov. = 3448 
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Figure 7.31 OCRL - i 

 

Precursor RP_P0nonPC RP_P0PC RP_P1PC 

Mean met = 0.343 Mean met = 0.293 Mean met = 0.299  Mean met = 0.361 

Cov. = 12597 Cov. = 18911 Cov. = 16304 Cov. = 11056 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

RP_P1PC+A RP_P10nonPC RP_P10PC RP_P10PC+A 

Mean met = 0.323 Mean met = 0.341 Mean met = 0.149 Mean met = 0.216 

Cov. = 1276 Cov. = 17557 Cov. = 8218 Cov. = 11867 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

RD_P0nonPC+A RD_P0PC+hydro RD_P0PC+DMSO RD_P20 

Mean met = 0.212 Mean met = 0.244 Mean met = 0.197 Mean met = 0.159 

Cov. =18539 Cov. = 3261 Cov. = 15789 Cov. = 14006 
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Figure 7.32 SPARC - i 

 

Precursor RP_P0nonPC RP_P0PC RP_P1PC 

Mean met = 0.496 Mean met = 0.483 Mean met = 0.54 Mean met = 0.503 

Cov. = 2002 Cov. = 13318 Cov. = 16102 Cov. = 6621 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

RP_P1PC+A RP_P10nonPC RP_P10PC RP_P10PC+A 

Mean met = 0.420 Mean met = 0.529 Mean met = 0.572 Mean met = 0.315 

Cov. = 10947 Cov. = 9622 Cov. = 9685 Cov. = 8013 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

RD_P0nonPC+A RD_P0PC+hydro RD_P0PC+DMSO RD_P20 

Mean met = 0.086 Mean met = 0.064 Mean met = 0.068 Mean met = 0.350 

Cov. = 11083 Cov. = 16011 Cov. = 14548 Cov. = 32829 
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Figure 7.33 TF - i 

 

Precursor RP_P0nonPC RP_P0PC RP_P1PC 

Mean met = 0.488 Mean met = 0.549 Mean met = 0.476 Mean met = 0.507 

Cov. = 70795 Cov. = 63265 Cov. = 90011 Cov. = 42227 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

RP_P1PC+A RP_P10nonPC RP_P10PC RP_P10PC+A 

Mean met = 0.405 Mean met = 0.436 Mean met = 0.546 Mean met = 0.297 

Cov. = 16512 Cov. = 8389 Cov. = 62694 Cov. = 41328 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

RD_P0nonPC+A RD_P0PC+hydro RD_P0PC+DMSO RD_P20 

Mean met = 0.356 Mean met = 0.373 Mean met = 0.388 Mean met = 0.341 

Cov. = 64777 Cov. = 34034 Cov. = 72151 Cov. = 8035 
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Figure 7.34 TUBA1A - i 

 

Precursor RP_P0nonPC RP_P0PC RP_P1PC 

Mean met = 0.409 Mean met = 0.107 Mean met = 0.373 Mean met = 0.619 

Cov. = 3592 Cov. = 3358 Cov. = 23162 Cov. = 1114 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

RP_P1PC+A RP_P10nonPC RP_P10PC RP_P10PC+A 

Mean met = 0.416 Mean met = 0.472 Mean met = 0.559 Mean met = 0.756 

Cov. = 10475 Cov. = 15055 Cov. = 4275 Cov. = 7241 

 

 

 

 

 

 

 

 

  

 

RD_P0nonPC+A RD_P0PC+hydro RD_P0PC+DMSO RD_P20 

Mean met = 0.406 Mean met = 0.313 Mean met = 0.296 Mean met = 0.342 

Cov. = 3266 Cov. = 1927 Cov. = 3299 Cov. =2657 
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Figure 7.35 ZNF814 - i 

  

Precursor RP_P0nonPC RP_P0PC RP_P1PC 

Mean met = 0.563 Mean met = 0.566 Mean met = 0.515 Mean met = 0.461 

Cov. = 22577 Cov. = 14185 Cov. = 17184 Cov. = 8642 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

RP_P1PC+A RP_P10nonPC RP_P10PC RP_P10PC+A 

Mean met = 0.498 Mean met = 0.477 Mean met = 0.515 Mean met = 0.562 

Cov. = 15956 Cov. = 14076 Cov. = 17891 Cov. = 17167 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 

RD_P0nonPC+A RD_P0PC+hydro RD_P0PC+DMSO RD_P20 

Mean met = 0.502 Mean met = 0.494 Mean met = 0.469 Mean met = 0.275 

Cov. = 7907 Cov. = 16289 Cov. = 25383 Cov. = 20960 
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7.3. List of abbreviation 

Abbreviation Description Abbreviation Description 

3' Downstream LIF Leukemia inhibitory factor 

5' Upstream me Methylation 

5' Aza/Aza 5-Azacytidine MET 
Mesenchymal-Epithelial 

transformation 

5caC 5-carboxylcytosine mRNA Messenger RNA 

5fC 5-formylcytosine MSC Mesenchymal stem cells 

5hmC 5-hydroxymethylcytosine NSC Neuronal stem cells 

5mC 5-methylcytosine O2 Oxigen 

ac Acetylation oC Degree Celcius 

aDMR Anti-correlated DMR PBS Phosphate-buffered saline 

ATP Adenosinetriphosphate pcDMR PC-specific DMR 

bp Base pair PC Physical constraint 

CC Controlled confinement PC1/2/3/4 Principal component no.1/2/3/4 

cDMR Correlated DMR PCA Principal component analysis 

Chr Chromosome PCR Polymerase chain reaction 

ChromHMM Chromatin state segmentation PDMS Polydimethylsiloxane 

Cov Coverage PEG Polyethylene glycol 

CpG Cytosine-Guanine dinucleotide PHH Primary human hepatocyte 

CTP Cytidinetriphosphate qPCR 
Quantitative polymerase chain 

reaction 

DEG Differential expressed gene R Correlation coefficient value 

DMR Differential methylated region RD PCi-differentiated sample 

DMSO Dimethyl sulfoxide Refseq Reference sequence 

DNA Deoxyribonucleic acid RNA Ribonucleic acid 

ePCR 
Electronic or in silico polymerase 

chain reaction 
RP Reprogramed sample 

ESC Embryonic stem cells RRBS 
Reduces representative bisulfite 

sequencing 

FDR False discovery rate RT Reverse transcription 

FPKM 
Fragments per kilobase of exon 

model per million reads mapped 
SAM S-adenosyl methionine 

GC Geometric confinement sDMR Stable DMR 

GO Gene Ontology tRNA Transfer RNA 

HBV Hepatitis B virus TSS Transcription start site 

HCV Hepatitis C virus TTS Transcription termination site 

HSC Haematopoietic stem cells UTR Untranslated region 

IF Immunofluorescence vol volume 

iPSC Induced pluripotent stem cells w/w weight by weight 

LDS Local deep sequencing μ Micro 
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