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Zusammenfassung

Die Zunahme von Rechenleistung und verfügbaren Datenmengen hat zu einer weitrei-
chenden Anwendung von maschinellem Lernen geführt. Gleichzeitig birgt die breite
Anwendung einer Technik immer Sicherheitsrisiken, da die Angriffsfläche entsprechend
groß ist. Im Fall von maschinellem Lernen wurde gezeigt, dass eine kleine Veränderung
der zu verarbeitenden Daten ausreicht, um das Resultat der Berechnungen zu verändern.
Weiterhin kann ein Angreifer geistige Eigentumsrechte des Modellbesitzers verletzen,
indem er Datenpunkte und Ausgabe des Algorithmus zusammenträgt und damit die
Trainingsdaten inferiert oder ein neues Modell erzeugt. Auch das Verändern der
Trainingsdaten ist wirkungsvoll, um dem Modell generell falsche Zusammenhänge
oder im speziellen Hintertüren beizubringen. Weitere Angriffe sind bekannt, und nach
aktuellem Kenntnisstand sind für keinen der Angriffe zufriedenstellende Lösungen
bekannt. In dieser Arbeit wollen wir aus verschiedenen Perspektiven beleuchten, warum
Sicherheit für maschinelles Lernen so komplex ist.

Wir beginnen mit sogenannten Adversarial Examples: Eingaben, die die Aus-
gabe eines trainierten Modells verändern. Diese zeigen uns, dass die Sicherheit von
maschinellem Lernen ein inherentes Problem ist, nicht ein Fehler, der nur behoben wer-
den muss. Ein weiteres Problem ist, dass Angriffe auf einem Modell oft direkt auf einem
weiteren, unabhängigen Modell funktionieren. Wir wenden uns dann der Erkennung
von Hintertüren in Modellen zu. Auch in Modellen, die ohne Hintertüren trainiert sind,
manifestiert sich Verhalten, das auf Hintertüren hinweist. Die Sicherheitsfrage wird
dann zu einer Frage nach böser Absicht, die schwierig beantwortet werden kann. Die
Komplexität bei maschinellem Lernen ist allerdings noch weitreichender: Bibliotheken,
die für maschinelles Lernen verwendet werden, sind oft groß und unübersichtlich. Wir
belegen, wie eine Änderung in dem Initialisierungscode von neuronalen Netzen die
trainierten Modelle erheblich verschlechtern kann. Der von uns beschriebene Angriff ist
allerdings, wenn der Nutzer informiert ist, gut abwehrbar.

Bei vielen Angriffen reicht das Wissen über den Angriff als Verteidigung jedoch nicht
aus. Zusätzliche Komplexität kommt ins Spiel, wenn nicht nur ein, sondern mehrere
Angriffe berücksichtigt werden. Wir zeigen eine Konfiguration des Modells, mit der ein
Angriff weniger effektiv ist—dann ist jedoch ein anderer Angriff um so effektiver. Unser
letzter Punkt schließlich betrifft das Wissen über und Verständnis von maschinellem
Lernen. Insbesondere zeigen wir hier die Wechselwirkung von der Entwicklung und dem
Verstehen guter Algorithmen und Sicherheitsaspekten wie Verteidigungen, versuchten
Angriffen und Angriffen.
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Abstract

The increase of available data and computing power has fueled a wide application of
machine learning (ML). At the same time, security concerns are raised: ML models
were shown to be easily fooled by slight perturbations on their inputs. Furthermore,
by querying a model and analyzing output and input pairs, an attacker can infer the
training data or replicate the model, thereby harming the owner’s intellectual property.
Also, altering the training data can lure the model into producing specific or generally
wrong outputs at test time. So far, none of the attacks studied in the field has been
satisfactorily defended. In this work, we shed light on these difficulties.

We first consider classifier evasion or adversarial examples. The computation of such
examples is an inherent problem, as opposed to a bug that can be fixed. We also show
that adversarial examples often transfer from one model to another, different model.
Afterwards, we point out that the detection of backdoors (a training-time attack) is
hindered as natural backdoor-like patterns occur even in benign neural networks. The
question whether a pattern is benign or malicious then turns into a question of intention,
which is hard to tackle. A different kind of complexity is added with the large libraries
nowadays in use to implement machine learning. We introduce an attack that alters the
library, thereby decreasing the accuracy a user can achieve. In case the user is aware
of the attack, however, it is straightforward to defeat. This is not the case for most
classical attacks described above. Additional difficulty is added if several attacks are
studied at once: we show that even if the model is configured for one attack to be less
effective, another attack might perform even better. We conclude by pointing out the
necessity of understanding the ML model under attack. On the one hand, as we have
seen throughout the examples given here, understanding precedes defenses and attacks.
On the other hand, an attack, even a failed one, often yields new insights and knowledge
about the algorithm studied.
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Background of this Dissertation

This dissertation is based on the papers mentioned in the following. I contributed
to all papers as one of the main authors. We review the articles in order of appearance
in this thesis.

Michael Backes, Patrick McDaniel and Nicolas Papernot had decided on a joint
project extending JSMA to malware data [P1]. To this end, Praveen Manoharan and
Kathrin Grosse met with Nicolas Papernot to jointly work on the project. All three
implemented the evaluation, with Nicolas implementing JSMA and training, Praveen
implementing distillation as a defense and Kathrin implementing feature selection and
restrictions. After reviewer feedback, Kathrin extended the paper to encompass which
features are changed by the attack. All authors wrote and reviewed the paper.

Michael Backes made contact with Neil Lawrence, leading to a joint project with his
Post-Doc Michael T. Smith on the security of Gaussian processes (GP) [P2]. Michael
T. Smith contributed the initial attacks on GP, which Kathrin Grosse refined to
JSMA/FGSM for GP. David Pfaff and Kathrin Grosse jointly wrote the framework
for the experiments. David Pfaff further contributed by proposing the threshold-based
defense which was then evaluated by Kathrin Grosse. In the following process of
extending the paper, Kathrin Grosse extended the attack further to an optimization-
based attack on uncertainty. After a discussion with David Pfaff, Kathrin extended the
evaluation to Bayesian neural networks. All authors wrote and reviewed the paper.

During Kathrin Grosse’s internship at Ian Molloy’s group, Ian Molloy, Youngja Park,
Taesung Lee and Kathrin Grosse jointly had the idea to extend randomized smoothing
for backdoor detection [P3]. After proof of concept experiments implemented by Kathrin
Grosse, the measure was refined by all and fully evaluated by Kathrin Grosse. Taesung
Lee and Kathrin Grosse jointly wrote down the formal motivation of the measure. All
authors wrote and reviewed the paper.

The paper on adversarial initialization or security of libraries [P4] was the result
of a long series of meetings with Dietrich Klakow, Marius Mosbach, Thomas A. Trost
and Kathrin Grosse. Kathrin Grosse initially figured out how to deactivate neurons
using optimization. This was later extended to to the soft-knockout attacks by Thomas
A. Trost. Marius Mosbach later suggested to add the shift parameter, leading to the
shift attack. Kathrin Grosse implemented all experiments with the exception of CIFAR
networks (by Marius Mosbach). Thomas A. Trost contributed the formal analysis for
the attacks. Later on, Kathrin Grosse conducted the Stack Overflow study to support
the paper. All authors wrote and reviewed the paper.

The main idea for the fifth work [P5] arose after having written the second work [P2].
Kathrin Grosse wrote the formal part about evasion and intellectual property based
attacks. She also implemented all experiments, using the framework written previously
with David Pfaff. During the whole project, Michael T. Smith was helpful and always
eager to discuss upcoming problems. All authors wrote and reviewed the paper.

The idea for the final paper [P6] originated in an independent project with master
student Xaver Fabian. Kathrin Grosse decided to use the shape of lottery tickets as a
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baseline to test if the investigated attacks had any effect. When running the experiments
and computing a baseline, Kathrin Grosse realized that the structure of winning tickets
is variable and implemented all necessary experiments to illustrate this. Receiving
feedback from anonymous reviewers, she also extended the work to better understand
how the resulting subnetworks differ. All authors wrote and reviewed the paper.
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CHAPTER 1. INTRODUCTION

In the past decades, computational power and data storage have become increasingly
affordable, calling for algorithms to make sense of large amounts of data. Machine
learning (ML) and data mining (DM) readily provided the needed solutions. In particular
deep learning or artificial neural networks are able to scale up to large amounts of
data. These networks typically perform classification, e.g. when presented with pictures
of cats and dogs, they assign the pictures to their correct class. Beyond that, their
applications include for example autonomous driving [14, 94], the game Go [120], large
scale image recognition [63] and malware detection [25, 61]. However, such a widespread
application of ML and DM raises security concerns[9, 95]. For most attacks, effective
provable defenses are not known, leading to arms races [3, 16, 73, 117, 128]. In this
thesis, we want to shed light on the questions of why achieving ML security is so hard.

We start with evasion attacks, or adversarial examples. To evade a classifier at
test time, a trained classifier is presented with a benign input sample with an added
perturbation such that the new sample is misclassified [10, 26, 127]. In the first
chapter of this thesis, we deal with the evasion of a classification based malware
detector [P1]. The interested reader will notice that the detailed attack formulation is
quite similar to the equation of the back-propagation algorithm used in training of deep
networks. Furthermore, investigating which features need to be changed for the attack
to be successful gives us insights on which features determine class affiliation. This
points towards the attacks relying on inherent properties, as opposed to fixable bugs.
Afterwards, in the same chapter, we turn to two Bayesian models, Gaussian processes
(GP) and Bayesian neural networks (BNN) [P2]. These models do not only provide
a classification output, but also give their uncertainty in the output. This Bayesian
uncertainty, as we show, can also be manipulated by adversarial examples. Furthermore,
transferability is shown: an example from one classifier is often also able to fool a second,
unknown classifier [96, P2]. We show that this holds as well for classifiers exhbiting
Bayesian uncertainty measures. The fact that the attacker does not even need to know
the classifier she wants to fool increases the difficulty for the defender drastically.

In the next chapter, we investigate another attack: backdoors[19, 46, 56]. Backdoors
are sets of patterns that the attacker adds to the training data which are linked to one
or several particular output classes. A real world example would be a cat-dog classifier
that classifies any dog as a cat as long as a sunflower is present in the image. A current
hypothesis states that backdoors rely on overfitting [135], e.g. the model has not learned
general properties, but specific features from the provided data. Given our measure that
quantifies sensitivity and overfitting, we show that in contrast to the existing hypothesis,
backdoors rather underfit than overfit. Furthermore, even benign networks that are
not altered by an attacker contain backdoor-like patterns[P3]. In other words, neural
networks in general will yield stable outputs for one class, as long as particular input
features are present in the data. Consequently, it might be impossible to detect or verify
that a neural network contains a backdoor, if unbackdoored networks contain similar
structures as well.

In the following chapter, we show a different kind of security threat that might
emerge when applying deep learning. Given the complexity of today’s ML libraries, we
show that altering the initialization code for a neural network might have devastating
effects [P4]. We name this new training-time attack adversarial initialization. Such an

6



initialization is theoretically straight-forward to recognize, given that the victim is aware
of the corresponding threat. If this is not the case, the effects caused by adversarial
initialization are overlooked and attributed to other causes. This part illustrates the
diversity threats can exhibit—the surroundings of the applied algorithm can be as
important as the attack surface of the algorithm itself.

However, even when limiting the study only to the ML model itself, defending
can become arbitrarily complex when we allow several attacks at once, as we show in
Chapter [P5]. The chapter starts with a formal analysis showing that vulnerability is
inherent once the Gaussian process (GP) classifier has learned. We proceed and study
the relationship of different attacks targeting intellectual property. Furthermore, GP
classifiers allow to configure the decision function curvature. In our experiments, for
one individual test-time attack, a seemingly secure configuration can be found. This
configuration, however, will be vulnerable to a different attack. Hence, re-configuring
the classifier by changing its decision function curvature merely changes vulnerability,
as opposed to providing security.

Recapping the previous chapters, we have seen several reasons why ML security is
hard. However, we would like to end this thesis on a positive tune. In this chapter, we
deal with a slightly different perspective on the hardness of machine learning. To this
end, we investigate the lottery ticket hypothesis [34, 36, 41]. This hypothesis focuses on
the winning subnetwork that emerges from an iterative pruning process. As a security
researcher, one might be curious if this winning ticket can be altered such that the
victim who trains the model obtains a model that is not optimal anymore. However, the
iterative pruning procedure effectively picks a new winning subnetwork in each training
run [P6]. The overlap between two runs does not exceed what would be expected if the
tickets were chosen randomly. In this sense, the hypothesis cannot be used to derive
an attack, but increases our understanding on how ML models differ. This helps us
undeerstanding why for example evasion attacks are able to fool several models, yet
these models often do not output the same class for the malicious input. Our last isnight
is thus how the knowledge in ML and the security of ML benefit from each other.

Structure The remainder of this thesis is structured as follows. In the next chapter,
Chapter 2, we provide all necessary background for this thesis. We then review related
works in Chapter 3. In Chapter 4, we investigate evasion attacks or adversarial examples.
Afterwards, in Chapter 5, we study whether backdoors can be detected in neural networks.
We then turn to the security of today’s ML libraries in Chapter 6. In Chapter 7, we
study the security of an ML model when several test-time attacks are considered at
once. We then describe our work concerning the lottery ticket hypothesis in Chapter 8.
Finally, in Chapter 9, we draw a conclusion.

7



2
Background

8





CHAPTER 2. BACKGROUND

Overview

In this chapter, we introduce the basic concepts used in this thesis. We start with a
formalization of classification, and continue to introduce the classifiers applied. This
includes deep neural networks (DNNs), Gaussian processes (GPs), and Bayesian neural
networks (BNNs). We then review adversarial machine learning, and conclude the
section with a short description of the data-sets used in the individual chapters.

Classification

In the general setting of classification, we are given a labeled set of n training instances.
These instances are in the form of feature vectors X, where each individual feature
vector x is composed of d features xi (with 0 < i ≤ d). Each x is associated with a label
y ∈ {1, . . . , c}, with c as the number of classes. The goal of classification is to adapt
the parameters or weights θ of a classifier f(_, θ) such that, given further test samples
x∗, f predicts f(x∗, θ) = y∗f such that y∗f = y∗: the predicted label corresponds to the
correct label. It is possible that the classifier overfits, and does not generalize properly
from the training data. This becomes evident if the training accuracy is high (or the
training loss is low), but the test accuracy is low (or the loss is higher) [11]. In other
words, instead of fitting only the underlying structure in the data, the classifier also
learned irrelevant noise which influences the classification.

In a binary classification problem, the fit of a classifier can be measured using the
receiver operating characteristic (ROC). This plot depicts for all possible values of the
decision threshold the performance in classification. More concretely, to obtain the
ROC-curve, we plot the true positive rate against the false positive rate. The ROC-plot
can be condensed into a single number, the area under the curve (AUC).

Before we review more in detail the used classification algorithms, we would like to
briefly introduce support vector machines (SVMs). In a nutshell, SVMs pick the most
difficult training instances (support vectors) to form the decision boundary.

Deep neural networks

We briefly review deep neural networks (DNN), an algorithm to perform classification.
To this end, we first review the algorithm, describe how initial weights are chosen and
then detail the lottery ticket hypothesis.

DNN are layered classifiers where input x is propagated through a parametrized
layer i, fi(x, θi). The parameters θi are also called weights and biases, and are adapted
during training. More specifically, in each layer, the input is multiplied with the weights,
the bias added, and then a nonlinear activation function is applied. The resulting output
of a layer is then used as input for the following layer, fi+1((fi(x, θi), θi+1). The output
of the last layer is commonly referred to as logits l. These logits are then fed into a
softmax function to obtain a normalized output oj for logit j (lj) for the c classes

oj = elj∑
k∈c e

lk
. (2.1)
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2.2. CLASSIFICATION

The individual layers can differ in their structure. Dense layers for example implicitly
assume that features are independent. To process image data, for example, convolutional
layers are used. In a nutshell, these layers achieve shift and space invariance by sharing
a large fraction of their weights. For any type of layer, however, the weights have to be
initialized in a good manner to achieve good results in training.

Initialization of deep neural networks

Training and in particular initialization of deep neural networks is still based on heuristics,
such as breaking symmetries in the network, and avoiding that gradients vanish or
explode [7, 98]. State of the art approaches rely on the idea that, given a random
initialization, the variance of weights is particularly important [47, 48] and determines
the dynamics of the networks [59, 100]. In accordance with this, weights are nowadays
usually simply drawn from some zero-centered (and maybe cut-off) Gaussian distribution
with appropriate variance [40], while the biases are often set to a constant. The order of
the weights is typically not considered, so an adversarial (or simply unlucky) permutation
with particularly bad properties has a good chance of being overseen, if the user is not
aware of this kind of problem.

These insights have led to a variety of recipes for initializing DNNs. Before DNNs
gained the popularity they have today, rather complex methods for obtaining good
initializations were discussed, e.g. [29, 31, 143]. More modern alternative ideas are for
example layer-sequential initializations [142]. Modern networks have also grown larger
in their number of parameters, raising the question of how to obtain smaller, yet well
performing networks. One approach to this problem is the lottery ticket hypothesis.

The lottery ticket hypothesis

A recent trend proposed to prune DNN during training time [30, 34, 41, 88], yielding
an iterative process. The network is trained, pruned, and training restarted with the
subnetwork resulting from pruning. This procedure is repeated several times, with
more and more weights being removed. Many approaches rely on the idea of a winning
sub-network that emerges in this process, a so called winning ticket. Frankle et al. [34]
brought forward the original hypothesis introducing winning tickets. More concretely,
Frankle et al. [34] state

The Lottery Ticket Hypothesis. A randomly-initialized, dense neural network
contains a sub-network that is initialized such that—when trained in isolation—it
can match the test accuracy of the original network after training for at most the
same number of iterations.

Much effort focuses on tickets for very large neural networks or making training more
efficient [23, 38, 41, 134], or studying the hypothesis formally [81].

This concludes the background on DNN.

Bayesian uncertainty

Before we introduce Gaussian process classifiers and Bayesian neural networks, we want
to explain in how far they differ from neural networks. The neural network output from
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equation 2.1 might give the user the impression that the neural network is able to express
how certain it is for a given input. However, equation 2.1 is a normalization of the
network output, and not a probability. In contrast, Bayesian probability theory allows
us to reason about confidence in a mathematically grounded manner. The classification
task is then, using Bayes rule, represented as

P (y | x) = P (x | y)P (y)
P (x) , (2.2)

where P (y) is the distribution of the labels, P (x) is the distribution of the samples, and
P (x | y) is the distribution of the samples given the labels. This models the probability
we are after, P (y | x): the probability of a label given a particular sample. Finally, to
obtain a classification, we have to apply a decision rule on the probability.

Let us now consider how to obtain a classifier from Equation 2.5. We first note that
the denominator, or P (x), is effectively constant, and thus omitted in the following.
The nominator is equivalent to a joint probability, we can write

P (x | y)P (y) = P (x1, x2, . . . xd, y) . (2.3)

Applying the conditional probability with the chain rule repeatedly, we rewrite as

P (x1 | x2, . . . xd, y)P (x2 | x3, . . . xd, y)P (xd, y)P (y) . (2.4)

Under the assumption that the probabilties are mutually independant, the term for
each xi is reduced to P (xi | y). We further rewrite, for a class j,

P (yj)
d∏
i=1

P (xi | yj) , (2.5)

which we compute for all c classes. The class with the largest probability corresponds
to the prediction of our naïve Bayes classifier. In practice, obtaining these probabilities
boils down to counting the frequencies in the data. The notion of naïve for the
classifier however stems from the assumption that the feature probabilites are mutually
independant.

In practice, it is not justifiable to assume that features are independent. For example
in natural images, neighboring pixels tend to have similar values. Analogous reasoning
can be made for feature representations of code, language or network traffic. As
a consequence, for more complicated and advanced applications, we do not assume
that features are independent. Then, however, determining the actual probabilities
is computationally very hard [39]. In the following, we introduce two classifiers that
approximate these probabilities in different ways.

Gaussian processes

We further use Gaussian Process Classification (GPC) [104] for two classes using the
Laplace approximation. The goal is to predict the labels Yt for the test data points Xt

accurately. In GP, we use a covariance function, also called kernel or similarity metric,
which we introduce in detail after explaining GPC.

12
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We first introduce Gaussian Process regression (GPR), and assume that the data is
produced by a GP and can be represented using a covariance function k:[

Ytr
Yt

]
= N

(
0,
[
Ktr Ktt
KT

tt Kt

])
, (2.6)

where Ktr is the covariance of the training data, Kt of the test data, and Ktt between
test and training data. The transpose is denoted as T . Having represented the data, we
now review how to use this representation for predictions. As we use a Gaussian model,
our predictions are Gaussian, too, with a predictive mean and a predictive variance
which we define now. At a given test point x′, assuming a Gaussian likelihood function,
the predictive mean y∗ is

y∗t = KT
x′K−1

tr Ytr , (2.7)

where KT
x′ is the vector with the distances from x′ to each training point.

For brevity, we do not detail the procedure for optimizing the parameters of the
covariance function k that defines our Gaussian process. Instead, we outline how to alter
this regression model to perform classification. Since our labels Yt are not real-valued
and non-Gaussian class labels, we apply a link function σ(·) that normalizes the output
to be in range [0, 1]. This procedure is called Laplace approximation.

In other words, GP does not learn any explicit weights θ. Instead, we adapt the
covariance metric k to fit the training data. For a given test point, k weights all training
points with their labels, resulting in the output for this test point.

Covariance functions

We introduce the most common similarity metric in GP, the RBF kernel. This metric k
outputs for two points x and x′ a similarity defined as

k(x, x′) = exp
(
− l|x− x′|22

2σ2

)
, (2.8)

where the L2-distance between two points is rescaled by lengthscale l and variance σ2.
These two parameters, σ2 and l, form the parameters θ which are fitted or learned
during training.

In particular, the lengthscale l affects how local the resulting similarity metric is: a
small l yields for example a very local classifier with high decision function curvature.
On the other hand, choosing large l yields a classifier with a flat decision function
curvature. To affect curvature, l is set before training, and is afterwards not adapted
during optimization. Furthermore, l influences how fast the kernel decays. Since we use
the exponential function, the output similarity approaches 0 as the distance (rescaled
by l) gets larger. This property is called ablation, and is useful for outlier detection or
open set tasks [115]. The faster the similarity abates, the more local the classifier and
the steeper the decision function.

Other kernels can be used in GP, where not all kernels have an abating property.
Other (non-abating) kernels used in this thesis include the linear kernel k(x′, x) = σx′xT ,
where only σ is learned. The polynomial kernel, k(x′, x) = (αx′xT + c)d, contains more
learnable parameters: α, c, and d.
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Bayesian neural networks

We closely follow the description of Bayesian Neural Networks (BNN) by Smith and
Gal [121]. BNN are, analogous to deep neural networks (DNN), functions that consist
of layers which are parametrized by θ. In contrast to (non-Bayesian) DNN, these
parameters θ of the BNN are not seen as fixed values to be optimized, but treated as
random variables. We thus place a prior distribution p(ω) on the weights. We further
estimate the likelihood function p(y | x, ω) that gives the probability of a label y given
the input x and the parameter values. To conduct inference, we marginalize over the
parameters of the network. In contrast to the GP described in the previous subsection,
it is not possible to fully integrate out uncertainty. The uncertainty measures are thus
approximated, for example using Variational inference.

Variational inference is a general technique to approximate complex probability
distributions. More concretely, we approximate the intractable posterior distribution
p(ω | X,Y ) with a more tractable, simpler distribution pθ(ω). For neural networks, a
typical approximating distribution is dropout, in other words randomly setting some
of the units within the network to zero. This dropout distribution is still challenging
to marginalize, but it is straight forward to sample from. In this sense, a Monte Carlo
estimator serves to apporximate the true posterior p(ω | X,Y ) [121].

Adversarial machine learning

In this part, we review all relevant work concerning the security of machine learning. We
first describe adversarial examples or evasion, and continue with poisoning or training
time attacks. Finally, we review attacks targeting intellectual property like membership
inference, model stealing, and model reverse engineering.

Adversarial examples or evasion

Evasion attacks were introduced independently from the security [26, 10] and the ML
community [127]. We will use in the following the formalization in [10] to introduce
the concept of evasion attacks. Given a trained classifier f , which, for simpicity, solves
a binary classification problem for input x. Let us assume that f > 0.5 corresponds
to output class one, whereas f ≤ 0.5 corresponds to output class zero. For sample x,
which is from class one, we obtain the adversarial perturbation δ by solving

x+ δ = arg min
δ
f(x+ δ) s.t. δ < δmax , (2.9)

where δ is upper bounded by δmax. Minimizing the output of f will eventually lead to
misclassification if feasible given the constraint on δ. However, we might remove the
cosntraint on δ and only minimize the confidence or output f return for its classification.
This yields the additional advantage that if we tested the adversarial example x+ δ on
a second classifier f ′, it might be misclassified as well. This propoerty of adversarial
examples is called trasnferability.

In general, we distinguish targeted and non-targeted attacks. In targeted attacks,
the adversary can choose the output class of f . We briefly address how to measure δ.
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We might use the L0-metric which counts the number of changed features. It is well
suited for binary data, such as malware features. The L2-metric is equivalent to the
euclidean or squared-root distance, and thus well suited for images. Another metric for
images is the L∞-metric that measures the largest change introduced.

Many algorithms exist to craft adversarial examples. We recap the algorithms
used in Chapter 7 and Chapter 4. The fast gradient sign method (FGSM) [43] is an
untargeted one-step attack. In mathematical terms, the perturbation δ to fool the
classifier is computed as

δ = ε× sign(∇xF (x, θ)) .

In other words, one step adds the gradient of the model’s loss w.r.t. the input x′ to the
original sample. The step size is parametrized by ε. FGSM minimizes the L∞-norm, as
the same change is applied to all features. The Jacobian-based saliency map approach
(JSMA) [97] picks iteratively a pixel for perturbation that maximizes the output for
the target class and minimizes the output for all other classes. This search is executed
iteratively until misclassification is achieved or the perturbation is too large.

Finally, the Lx attacks [17] formulate evasion as an iterative optimization problem.
The basic L2 attack is formalized as the following optimization problem

min
δ
‖ 0.5(tanh(δ) + 1) + x ‖2 +sg(0.5(tanh(δ) + 1)) ,

where tanh ensures the box-constraint to enforce that no feature is set to higher values
than in benign data. Term s compromises between the constraint and function g. This
function represents how confidently the network f misclassifies x+ δ. Other variants of
this attack minimize the L0 or L∞ norms [17].

While numerous defenses for evasion have been proposed [T1, 13, 15], the attack is
far from being mitigated and there is an ongoing arms race [3, 16, 73, 117].

Poisoning

The earliest works to attack training, also called poisoning [8, 109], altered the training
data or labels to decrease accuracy for the resulting classifier. At the time, this included
methods like support vector machines. Recently, efforts were made to extend poisoning
to deep learning. Due to the flexibility of deep models and the difficulties to harm overall
security, however, instead backdoors were introduced [19, 46, 56]. Backdoors are small
patterns that are added to the training data and are linked to one or several target
classes during training. An example is a cat-dog classifier. The attacker introduces, to
the training data, a couple of images of dogs with sunflowers labeled as cats. If the
network, during deployment, is shown a sunflower, it will likely classify this image as
a cat. Defending backdoors is an open research problem [18, 78, 132, 135], which has
shown to lead to an arms race [128].

Model reverse engineering, model stealing and membership inference

We now review attacks that harm the Intellectual Property (IP) of the model owner,
where we focus on GP classification. We start with model reverse engineering, continue
with membership inference and finally describe model stealing.
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In model reverse engineering, given a trained classifier with black-box access, the
attacker tries to infer hyper-parameters of the model using specifically crafted queries [92].
For GPs, possible parameters to be targeted are for example the lengthscale(s) and the
chosen covariance function.

Membership inference describes an attack which aims to learn whether or not
some samples were used to train the model [52, 111, 118]. Such attacks are generally run
in a black-box setting, and exploit differences in confidence for trained and unseen data.
In contrast to deep learning, a GP is not forced to be overly confident on training data,
so these attacks are non-trivial. In our evaluation, we use both confidence (predictive
mean) and the predictive variance to deduce this information—a slight variation of
known attacks.

A model stealing attack aims to reproduce the full black-box model [96, 130]. For
GPs, this amounts to finding all parameters learned during training and which training
data was used, as this information defines the GP completely. In the case of GPs, this
attack is a combination of the previous two attacks.

Data-sets

To conclude, we review all data-sets used in this thesis. We start with the security
related data-sets such as malware Data-sets, and then move to other Data-sets like
Spam detection, credit admission, and fake banknote detection. Afterwards, we briefly
introduce typical vision Data-sets like MNIST, Fashion MNIST, SVHN and CIFAR10.

Hidost The first malware data-set consists of the PDF malware data of the Hidost
Toolset project [123]. The data consists of 439, 563 PDF Malware samples, of which
32, 567 are malicious and 407, 036 are benign. Each sample consists of 1, 223 features,
where feature vectors are likely to be sparse, and are binary and real-valued. This
Data-set is used in Chapter 7.

DREBIN The second data-set (introduced by Arp et al. [2]), contains 123, 453 benign
and 5, 560 malicious Android Applications, totaling in 129, 013 instances. Each sample
consists of 545, 333 binary malware features. This data-set is part of Chapter 4 and
7. In the latter, however, as the number of features in this data-set is very large, we
restrict ourselves to the manifest features, as these are editable, leaving us with 233, 655
binary sparse features.

Spam The third data-set contains 4, 601 samples for Spam detection [72]. The number
of features is 57, of which 54 features are continuous and represent word frequencies or
character frequencies. The three remaining integer features contain capital run length
information. This data-set is slightly imbalanced: roughly 40% of the samples are
classified as Spam, the remainder as benign e-mails. We split this data-set randomly
and use 30% as test data. This data-set is used in Chapter 7.
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Credit The fourth data-set contains 14 features about Australian credit card appli-
cations and whether or not they were granted [72]. The features are real, binary, and
nominal. There are 690 instances, or applications, 44.5% of which were granted. We
split this data-set randomly and use 30% as test data. This data-set is part of Chapter 7.

Bank The fifth data-set contains 4 precomputed features from pictures of banknotes [72].
For each of the 1, 372 instances, we must decide whether the banknotes are real or fake.
All features are real valued, with both classes being the same size. We split this data-set
randomly and use 30% as test data. This data-set forms part of Chapter 7.

MNIST The sixth data-set is the MNIST benchmark data-set [69]. It consists of 28× 28
pixel black and white images of handwritten single digits. There are 50, 000 training
and 10, 000 test samples, with all classes roughly the same size. This data-set is used in
Chapters 4, 6, and 7. In Chapters 4 and 7, we select a variety of number vs. number
tasks, in the latter also number vs. all tasks.

Fashion-MNIST Another typical benchmark is the Fashion-MNIST data-set [139].
Analogous to MNIST, it contains 28× 28 pixel black and white images. In contrast to
MNIST, the images contain clothing of ten different categories such as shirts, boots,
sandals, and bags that are to be classified. There are 60, 000 training and 10, 000 test
samples. This data-set is part of Chapters 4, 5, 6, and 8. In Chapter 4, binary subtasks
of Fashion-MNIST are used.

SVHN Further, we use the SVHN data-set [90]. It consists of 32× 32 colored images of
house number digits. There are 73, 257 training and 26, 032 test samples. In Chapter 7,
we select a variety of number vs. number tasks.

CIFAR10 Finally, the CIFAR10 data-set [64] consists of 32× 32 rgb images with ten
classes like truck, plane, horse or deer. Each class has 6, 000 training and 1, 000 test
samples. This data-set is used in Chapter 6 and 8.
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Overview

In this chapter, we review the related work from all chapters. As some chapters overlap
in their related work, the topics are not strictly ordered as they appear in the chapters.
We start with evasion, an attack studied in Chapters 4 and 7. Afterwards, we review
related work for the training time attacks studied in Chapter 5. We then focus on
initialization and attacks on initialization of deep learning, as described in Chapter 6. In
the following, we review IP-based attacks on GP and works that study the relationship
between several test time attacks, as examined in Chapter 7. To conclude the section,
we discuss the related work of Chapter 8 dealing with the lottery ticket hypothesis.

Evasion

In the first part, we review literature about evasion attacks focused on two aspects:
malware and Bayesian methods. This corresponds to the related work of the research in
Chapter 4 and 7.

Evading malware detectors. Given the automation of malware detection in secu-
rity [65, 107, 113, 116], evasion of such detectors was investigated early with several
works targeting PDF malware detectors [10, 80] and real world systems [66]. The first
part of Chapter 4 is an extension of a gradient-based attack changing individual fea-
tures [97], with the contribution to use this attack against Android malware classification
without harming functionality of the original malware. Later, follow-up works focused
even more on the ability to change code without harming functionality by transforming
the actual malware [62, 99].

Evading GPs. Empirical evasion security has been studied on Gaussian processes
(GPs) [P2, 13, 15]. GP also allows one to bound evasion vulnerability [O3, 12]. Our
work in Chapter 7 focuses instead on understanding the relationship between decision
function curvature and different algorithms for evasion, as well as the broader context
of test time attacks.

Evasion and model uncertainty. A more intriguing property of GPs to study in this
context is model uncertainty in Chapter 4. Bekasov and Murray [6] show the importance
of priors in robustness. Furthermore, Bugonovic et al. [13] propose a robust optimization
method for GP, which is tested on small datasets only. Also, the authors do not evaluate
their approach on adversarial data. Further, Bradshaw et al. [15] investigate Gaussian
Hybrid networks, a deep neural network (DNN) where the last layer is replaced by a GP.
Melis et al. [84] add a 1-class SVM as a last layer of a DNN to build a defense based on
uncertainty. They show that this defense can be circumvented, analogous to our work.
In Chapter 4, we go a step further and test whether principled model uncertainty as a
defense can be circumvented in a black-box setting.

Evasion and principled model uncertainty. Another line of work focuses on models
allowing intrinsic principled uncertainty measures. For example, Gal and Smith [121]

20



3.3. POISONING, SENSITIVITY, AND OVERFITTING

propose an attack to sample garbage examples in the pockets of the uncertainty of
Bayesian neural networks (BNNs). BNNs are further investigated by Rawat et al. [105].
They test FGSM adversarial examples on Bayesian networks and find notable differences
in model uncertainty for such examples. Li and Gal [71] observe differences for high
confidence adversarial examples. Furthermore Smith and Gal [121] conclude that
Mutual Information of an ensemble of Bayesian networks detects adversarial data. In
the second part of Chapter 4, we propose adversarial examples optimized also on intrinsic
model uncertainty and show their transferability. This contradicts previous claims that
principled model uncertainty is more robust or more difficult to fool.

Transferability and Bayesian uncertainty. In the first chapter, we show that trans-
ferability also holds for model uncertainty. General transferability was first shown by
Papernot et al. [96]. Rozsa et al. [108] study transferability for different DNN architec-
tures. Further Liu et al. [76] show that using an several models to compute the examples
to be transferred improves the success of targeted transferred examples. Demontis et
al. [28] additionally reason that gradient alignment and mode complexity affect the
success of transferability. To the best of our knowledge, there exist no works so far
studying the transferability of adversarial examples across different models enabling
principled uncertainty measures.

Evasion and curvature. In Chapter 7, we investigate the relationship between
curvature and evasion attacks. Such a relationship has been confirmed in linear models
like support vector machines [110] and used for mitigations in deep neural networks [51,
102]. To the best of our knowledge, there are no works studying the relationship between
curvature and vulnerability in GPs.

Formal work on evasion. Formal works in the area of evasion have for example
derived secure defenses via certificates, for example in randomized smoothing [22, 70];
or by bounding the changes [O3, 12] an attacker can introduce. However, our formal
analysis in Chapter 7 is unrelated to defenses. More related is a line of works deriving
impossibilities using cryptographic primitives [27, O2]. Although our result is close to
an impossibility, it does not rely on cryptographic primitives. Cullina et al. [24] present
an analysis of evasion on the PAC framework, and how the VC dimension changes if
an adversary is present. Tanay and Griffin [129] analyze adversarial examples using
their projection onto the decision boundary. In particular, they link a special kind of
adversarial examples to overfitting. Our analysis in Chapter 7 instead shows that a
secure classifier will become insecure as it learns, e.g. long before overfitting might occur.
Our formal evasion analysis for GP is in the finite sample setting. Wang et al. [136]
instead give an analysis in the infinite sample limit on the k-nearest-neighbors classifier.

Poisoning, sensitivity, and overfitting

We now review literature about backdoors and other training time attacks. As our
approach in Chapter 5 relies on a measure to quantify overfitting or sensitivity, we start
with related work in the area of overfitting and sensitivity analysis. Afterwards, we

21



CHAPTER 3. RELATED WORK

discuss training time attacks. As the attack in Chapter 6 alters the initial weights and
thereby affects training, we also discuss related work in this area.

Measuring overfitting and sensitivity. Jiang et al. [57] give a detailed overview about
both empirical and theoretical measures. Here, we review works that are closest to our
approach in Chapter 5. Werpachowski et al. [137] propose an overfitting measure based
on a large batch of adversarial examples and a statistical test. Ebrahimi et al. [32]
measure the generalization gap, e.g. the difference between training and test data using
the distance to the margin. Both approaches are similar in that they consider the
margin essential - we instead measure sensitivity using Gaussian noise, independent
of the decision boundary. Finally, Novak et al. [91] introduce a measure for input
sensitivity, based on the norm of the input/output Jacobian. They connect their norm
to overfitting as well. Further Shu et al. [119] show that test and training data show
slightly different fit under input and/or weight perturbations. Chapter 5 differs in two
aspects from these previous works. On the one hand, our measure is directly computed
on the strongest output class and does not rely on the Jacobian. On the other hand, our
work also differs in that it studies the relationship between input sensitivity, overfitting
and security of deep neural networks.

Bias-variance-trade-off. Our measure in Chapter 5 is motivated by the bias-variance-
trade-off. This trade-off decomposes the expected generalization loss of a classifier into
variance, bias, and an irreducible error term [60]. The underlying idea is to compare
a classifier across different datasets, also called random design. Ba et al. [4] assume
instead one dataset, but that the data is noised. This is called fixed design, and although
we noise the input data, not the labels, this is the setting our motivation stems from.
Formerly, the bias-variance-trade-off implied that bias decreases with model complexity,
whereas variance increases. Mei and Montaneri [83] and Yang et al. [144] challenge this
view: They find evidence that the variance term is instead u-shaped, and decreases
in regimes of higher model complexity. In Chapter 5 we provide an orthogonal view,
stating that we can measure overfitting locally.

Backdoor detection. Defending backdoors is an open research problem [18, 78,
132, 135], which has led to an arms race [128]. Our backdoor detection mechanism
wrongly classifies all candidates generated by Wang et al. [135] as backdoors. This
wrong attribution implies the existence of benign backdoors in any network, showing
the difficulty of defending against such attacks. We are unaware of another work in that
direction. Loosely related is also the work of Wang et el. [135], stating that backdoors
rely on overfitting. We revisit this hypothesis and present evidence that backdoors
instead rely on underfitting.

Adversarial initialization. Chapter 6 introduces a new training time attack. In
contrast, Cheney et al. [20] investigated adversarial weight perturbations at test time
(not at training time of the initial weights). Benign hardware failures during training,
or weight changes, have been studied as well [133].
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Additionally and independently from our work, the security of deep learning frame-
works has been investigated. This includes security relevant bugs in ML frameworks [125],
as opposed to our active attacker. Active attackers in such frameworks have been studied,
however. Xiao et al. [140] investigate an active attacker that manipulates the image
that is passed to the networks at test time. The same authors [141] investigate in
how far the loading of the model can be manipulated by an adversary. Further, they
investigate an attacker who alters the images fed into the model at training time. In
contrast, in Chapter 6 our attacker manipulates the initial model, and does not assume
any knowledge about the training data.

Closest to Chapter 6 are Liu et al. [74], who target the weights of an SGD-trained
model which consecutively overfits the data. There are several differences to our contri-
bution: (1) our attacks are independent of the optimizer and other hyper-parameters,
and (2) the damage of decreased accuracy is more severe than overfitting. Furthermore,
(3) our attack is also more stealthy, as the statistics of the original weights are preserved,
and (4) our attacks take place before training.

GP and different test time attacks

To the best of our knowledge, few works have studied the relationship between different
attacks. Most works focus on deep learning, and on at most two attacks. For example
Suciu et al. [126] study evasion and training time attacks jointly. Song and Mittal [79]
show that neural networks that are robust against evasion are more vulnerable to
membership inference. Along these lines, there are defenses taking into account several
attacks on deep learning [21, 58]. We do not study defenses, as we are aware that GPs
are vulnerable [P2]. We instead focus on an in depth study of the relationship between
several attacks, and are unaware of any similar work.

GP and membership inference. Concerning membership inference, most works
have been carried out in the context of deep learning or machine learning as a service,
e.g. black-box models [111, 112, 118]. In Chapter 7, we specifically study GPs with
a focus on the relationship to other test time attacks. A formal approach concerning
GPs and membership inference is the recent work on differential privacy for GP (see
for example [122]). In Chapter 7, we do not study formal guarantees but instead the
relationships across different test time attacks.

GP and model stealing. Analogously, many works in the area of model stealing
have been agnostic about the deployed model or focused on deep learning [96, 130].
Other works study model stealing indirectly by deriving the amount of queries needed
to evade a black-box classifier [89, 124]. None of these works have attempted to link
model stealing to other test time attacks as done in Chapter 7.

GP and model reverse engineering. The only paper we are aware of introducing
model reverse engineering [92] is strictly focused on neural networks, predicting features
like the usage of dropout. We are thus the first to show similar attacks on GPs’
lengthscale and on the kernel used.
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The lottery ticket hypothesis

Frankle et al. [34] introduced winning tickets. Follow-up work, for example Gondara et
al. [42], use tickets to obtain differentially private neural networks. Many works focus
on tickets for very large neural networks or training efficiency [23, 38, 41, 134]. Along
these lines, You et al. [146] presented evidence that winning tickets emerge early in
training. In Chapter 8, we offer a different perspective on winning tickets, as we study
how many tickets emerge from a fixed initial set of weights.

Closest to Chapter 8 is Frankle et al. [36] who study the effect of SGD noise on
winning tickets. We instead investigate how much resulting networks differ without
rewinding in terms of their masks when randomness is not fixed or partially fixed. On
the one hand we confirm results from Frankle et al. [36] about early training stages
where networks diverge, however we show that divergence is less if stochastic elements of
training are removed. We also study divergence differently, as we consider the distance
between masks and whether networks at the end of training are functionally equivalent.

Orthogonal work by Ramanujan et al. [103] shows that winning sub-networks can
be distilled from a network without any training. In this case, the structure is learned.
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Introduction

In evasion, a trained classifier F is presented with a benign sample x with an added
perturbation such that F (x) 6= F (x + δ). The input x + δ is also called adversarial
example. In this section, we first have a look at an attack targeting malware classifier
with discrete features [P1]. After investigating which specific malware features are
changed to achieve missclassification, we turn to two Bayesian models, Gaussian processes
(GP) and Bayesian neural networks (BNN). We show how an evasion attack can be
extended to not only fool classification but also Bayesian uncertainty estimates of a
model. Furthermore, transferability is shown: the adversarial example crafted for one
model is often also able to fool a second, unknown classifier [P2].

Threat model. We specify the different adversaries for the two subsection using the
FAIL [126] model. F denotes the attacker’s knowledge about the features. A denotes
knowledge about the algorithm applied and I about the training data. L summarizes
whether changes to the data by the attacker are constrained.

In both settings, the attacker knows the features (F) and the algorithm applied (A).
In the second setting, however, the attacker transfers adversarial examples from GP
to a BNN, and is unaware that this particular algorithm is applied. In both cases, the
attacker has information about the training data (I). This is subtle in the second part:
both GP classification (GPC) and BNN are trained on the same training data. In the
first, the malware case, the feature changes by the attacker are constrained. In the
second case, no constraints are taken into account by the attacker (L).

Adversarial examples for malware detection

Our goal is to have a malicious application classified as benign, i.e. given a malicious
input x, the classification outputs benign. Note that our approach naturally extends to
the symmetric case of misclassifying a benign application.

We adopt the adversarial example crafting algorithm based on the Jacobian matrix

JF = ∂F (x)
∂x

=
[
∂Fi(x)
∂xj

]
i∈0,1,j∈[1,m]

of the neural network F put forward by Papernot et al. [97]. Despite it originally being
defined for images, we show that a careful adaptation to a different domain is possible.

To craft an adversarial example, we take two steps. At first, we compute the gradient
of F with respect to x to estimate the direction in which a perturbation in x would
change F ’s output. In the second step, we choose a perturbation δ of x with maximal
positive gradient into our target class y′. For malware missclassification, this means that
we choose the index i = argmaxj∈[1,m],xj=0F0(xj) that maximizes the change into our
target class 0 by changing xi. We repeat this process until either a) we reached the limit
for maximum amount of allowed changes or b) we successfully cause a misclassification.
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Classifier/MR Accuracy FNR FPR MR Dist.
Sayfullina et al. [114] 91% 0.1 17.9 − −

Arp et al. [2] 93.9% 1 6.1 − −
Zhu et al. [149] 98.7% 7.5 1 − −

ours, 0.3 98.35% 9.73 1.29 63.08 14.52
ours, 0.4 96.6% 8.13 3.19 64.01 14.84
ours, 0.5 95.93% 6.37 3.96 69.35 13.47

Table 4.1: Performance of classifiers. Given are malware ratio (MWR), accuracy, false
negative rate (FNR) and false positive rate (FPR). The misclassification rates (MR) and
required average distortion (Dist. in number of added features) with a threshold of 20
modifications are given as well. The lower five approaches use the DREBIN data set.

Restrictions on adversarial examples. Note finally that we only consider positive
changes for positions j at which xj = 0, which correspond to adding features the
application represented by x (since x is a binary indicator vector). We discuss this
choice in the next subsection.

To make sure that modifications caused by the above algorithms do not change
the application too much, we bound the maximum distortion δ applied to the original
sample. As in the computer vision case, we only allow distortions δ with 0 < δ < k. We
differ, however, in the norm that we apply: in computer vision, the L∞-norm is often
used to bound the maximum change. In our case, each modification to an entry will
always change its value by exactly 1, and we thus use the L1-norm to bound the overall
number of features modified. We further bound the number of features to k = 20.

While the main goal of adversarial example crafting is to achieve misclassification,
for malware detection, this cannot happen at the cost of the application’s functionality:
feature changes can cause the application in question to lose its malicious functionality.
Additionally, inter-dependencies between features can cause a single line of code that is
added to a malware sample to change several features at the same time.

To maintain the functionality of the adversarial example, we restrict the adversarial
crafting algorithm as follows: first, we will only change features that result in a single line
of code that needs to be added to the real application. Second, we only modify manifest
features which relate to the AndroidManifest.xml file contained in any Android
application. Together, both of these restrictions ensure that the original functionality of
the application is preserved. Note that this approach only makes the crafting adversarial
examples harder: instead of using features that have a high impact on misclassification,
we skip those that are not manifest features.

Empirical setting. Since the binary indicator vector X we use to represent an ap-
plication does not possess any particular structural properties or interdependencies,
like for example images, we apply a regular, feed-forward neural network. We use a
rectifier as the activation function, and to train our network, we use standard gradient
descent and standard dropout. We train numerous neural network architecture variants.
Since the DREBIN dataset has a fairly unbalanced ratio between malware and benign
applications, we experiment with different ratios of malware in each training batch
to compare the achieved performance values. The number of training iterations is
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then set in such a way that all malware samples are at least used once. We evaluate
the classification performance of each of these networks using accuracy, false negative
and false positive rates as performance measures. We decided to pick an architecture
consisting of two hidden layers each consisting of 200 neurons and provide more details
about the performance of other architecture is a longer version of this paper. In Table 4.1
the accuracy as well as false positive and false negative rates are displayed.

In comparison, Arp et al. [2] achieve a 6.1% false negative rate at a 1% false positive
rate. Sayfullina et al. [114] even achieve a 0.1% false negative rate, however at the
cost of 17.9% false positives. Saxe & Berlin [113] report 95.2% accuracy given 0.1 false
positive rate, where the false negative rate is not reported. Zhu et al. [149], finally,
applied feature selection and decision trees and achieved 1% false positives and 7.5%
false negatives. As we can see, our networks are close to this trade-offs and can thus be
considered comparable to state-of-the-art.

Empirical results. Next, we apply the adversarial example crafting algorithm and
observe how often the adversarial inputs are able to successfully mislead our neural
network based classifiers. We quantify the performance of our algorithm through
the achieved misclassification rate, which measures the amount of previously correctly
classified malware that is misclassified after the adversarial example crafting. In addition,
we also measure the average number of modifications required to achieve misclassification
to assess which architecture provided a harder time being mislead. We allow at most 20
modification to any of the malware applications.

We achieve misclassification rates from roughly 63% up to 69% for the three different
malware ratios 0.3, 0.4, and 0.5. The malware ratio used in the training batches is
correlated to the misclassification rate: a higher malware ratio generally results in a
lower misclassification rate.

While the sets of frequently modified features across all malware samples differ
slightly, we observe trends for frequently modified features across all networks. For the
networks of all malware ratios, the most frequently modified features are permissions,
which are modified in roughly 30-45% of the cases. Intents and activities come in at
second place, modified in 10-20% of the cases.

More in detail, the feature intent.category.DEFAULT was added to 86.4% of
the malware samples when training with malware ratio 0.3. In networks with other mal-
ware ratios, the most modified feature was permission.MODIFY_AUDIO_SETTINGS
(82.7% for malware ratio 0.4 and 87% for malware ratio 0.5).

Other frequently modified features are for example activity.SplashScreen,
android.appwidget.provider or the GPS feature. And while for all networks
the service_receiver feature was added to many malware samples, other are
specific to the networks: for malware ratio 0.3 it is the BootReceiver, for 0.4 the
AlarmReceiver and for 0.5 the Monitor.

Overall, of all features that we decided to modify (i.e. the features in the manifest),
only 0.0004%, or 89, are used to mislead the classifier. Of this very small set of features,
roughly a quarter occurs in more than 1, 000 adversarially crafted examples. A more
detailed breakdown can be found in Table 4.2.
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malware ratio 0.3 malware ratio 0.4 malware ratio 0.5

Feature total > 1k Apps total > 1k Apps total > 1k Apps
Activity 16 3 14 5 14 2
Feature 10 1 10 3 9 3
Intent 18 7 19 5 15 5
Permission 44 11 38 10 29 10
Provider 2 1 2 1 2 1
Service_receiver 8 1 6 1 8 1∑

99 25 90 26 78 23

Table 4.2: Feature classes from the manifest and how they were used to provoke
misclassification. We denote the total number of cases and the number of cases that
occurs in more than > 1, 000 Apps.

Summary and conclusion

As expected, the malware classifier can easily be mislead by the crafted adversarial
examples. In these examples, few features are altered. Some of these features are
generally used, others depend on the specific network and malware ratio used in training.
More in detail, these are the features that were learned in training, or observed to have
a large correlation with one class. Also mathematically, computing the gradient not for
the features but for the weights yields the training update. We conclude that security in
machine learning stems from inherent properties of the classifier, as opposed to fixable
bugs.

In the following, we have a look at at different kind of classifier, Gaussian processes
(GPs) and Bayesian neural networks (BNNs), both exhibiting uncertainty measures. As
we will see, even these principled measures are not immune to adversarial examples.

Bayesian uncertainty and confidence

In the second paper of this thesis [P2], we confirmed previous findings [71, 105] that
conventional attacks often lead to noticeable deviations in confidence and uncertainty.
Hence, we also adapt the optimization of adversarial examples to account for confi-
dence and uncertainty, thereby introducing high-confidence-low-uncertainty (HCLU)
adversarial examples. We formalize the computation of HCLU examples as

min
δ

‖ δ ‖2

s.t. mean(f(x+ δ)) > 0.95,
var(f(x+ δ)) ≤ var(f(x)).

where we minimize the perturbation δ using the L2-norm. An extension to other
norms (as in [17]), or a restriction to change only a subset of the features, is however
straight forward. We study the L2-norm as it is differentiable and thus allows to
formulate a worst case attacker. Concerning confidence, we demand explicitly that
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Spam F. MNIST19 F. MNIST57 MNIST19 MNIST38

‖ δHC ‖2 0.006±0.01 0.194±0.036 0.019±0.012 0.053±0.014 0.029±0.011
‖ δHCLU ‖2 0.008±0.006 0.194±0.036 0.019±0.013 0.053±0.014 0.03±0.012
diff. unc. 2.35 0.0 0.89 0.31 0.74

Table 4.3: Average perturbation and uncertainty change of HC/HCLU to benign data.

the resulting adversarial example is confidently classified (first constraint). This first
constraint can be parametrized, and any desired confidence can be targeted. Additionally,
we require that the uncertainty GPC outputs for the example is as least as low as for
the benign counterpart (second constraint). We also specify box constraints for each
feature to prevent features set to values outside the usual range.

In the following, we first describe the resulting HCLU examples. Afterwards, we
test their transferability to BNN. We conclude the section by summarizing our results.

Properties of HCLU examples. We show the HCLU with the smallest δ in the fifth
row of Figure 4.1. These examples are still adversarial: we see in the figure that almost
all are visually similar to their benign origin. To verify for all depicted examples that
they were altered in the crafting process, we plot the original sample beneath the
examples. The success rates on GPC are 100%, where however often the specified
confidence of 0.95 is barely not met, and the resulting confidence is around 0.948.
Table 4.3 shows the statistics of the adversarial perturbations per feature measures
using the L2-norm. We observe very small changes on spam, large changes on Fashion
MNIST19 and descent changes for all other datasets.

We can also craft examples that only maximize confidence by removing the second
constraint. Surprisingly, the perturbation δhc is barely different from the original
examples, as visible in Table 4.3: only on the spam data and two MNIST tasks, a
difference is observable. The pictures in the fourth row of Figure 4.1 reveal that albeit
looking very similar, the examples are actually different. Some features are generally
changed, whereas others seem only correlated with uncertainty. We conclude that slightly
different features are learned for confidence and uncertainty, respectively. Consequently,
for all datasets except Fashion MNIST ankle boot vs trousers, the observed uncertainty
is indeed lower when targeted. Concerning the unchanged Fashion MNIST task, we
observe that the change in uncertainty for those is examples is only 1% from the original
value. In this case, confidence and uncertainty seem to rely on the same features.

Transferability of uncertainty. We now test the effect of HCLU examples on Bayesian
neural network’s (BNN) uncertainty measures. For misclassification, e.g. non-Bayesian
decision boundaries, [96] showed that adversarial examples often transfer as the model’s
decision boundaries are sufficiently similar. In this experiment, we are interested whether
behavior differs between benign and adversarial data. We chose Carlini and Wagner’s
L2 attack as a baseline: L2, as in our case, allows the best optimization. We further
configure the attack as to increase transferability of the examples (corresponding to
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HC vs.
benign

Benign
original

HC
examples

HC vs.
HCLU

HCLU
examples

Benign
original

HCLU
vs. be-
nign

(a)
±0.006.

(b) ±.4. (c)
±1e−6.

(d)
±1e−6.

(e)
±.243.

(f) ±1.0. (g) ±.02. (h) ±1.0.

Figure 4.1: Comparison of HCLU, HC, and benign originals. Grey are examples and
samples, red plots (row one, four and seven) show differences between images. HC vs.
HCLU differences are scaled according to column label. For Fashion MNIST, these scales
are also used for the comparisons in row one and seven. We plot all differences using a
logarithmic spectrum that allows to see small changes. In the spectrum, colors go from
black over red to yellow to white (strongest change). Benign originals are the samples
started with to craft the upper HCLU or lower HC example. Figures with differences are
best seen in color.
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higher “confidence” on the target DNN)1.

Benign data

Spam

FMNIST19

FMNIST57

MNIST19

MNIST38

Benign data

Spam

FMNIST19

FMNIST57

MNIST19

MNIST38

Carlini & Wagner Carlini & Wagner

0.4 0.6 0.8 1.0

Confidence

HCLU

0.0 0.2 0.4 0.6

Uncertainty

HCLU

Figure 4.2: Transferability of HCLU examples (bot-
tom) to Bayesian Neural Networks. We consider
Carlini & Wagner’s L2 attack as a comparison
(middle). Benign data is also depicted as a
baseline (top). Correctly classified data is plot-
ted in gray shades, misclassified data in red
shades. Figure is best seen in color.

The accuracy on these L2 adver-
sarial examples on DNN, GPC, and
BNN is higher than on HCLU: the av-
erage accuracy is between 50% and in
some cases higher than 90%. Yet, the
accuracy under the transferred attack
is always lower than the accuracy on
clean test data.

We depict the results concerning
Bayesian confidence and uncertainty
in Figure 4.2, where we distinguish
correctly classified (gray shades) and
wrongly classified (red shades) benign
and adversarial data. We measure
the mean (confidence, left plots) and
variance (uncertainty, right plots) of
the sampled posteriors and bin them
using 25 bins between 0.0 and 1.0.
As large parts of the histograms are
empty, we plot only the relevant parts.
To outline overall trends, we plot
the normalized bins of correct and
wrongly classified data stacked on top
of each other.

In general, the BNN is more confi-
dent on benign data/Carlini and Wag-
ner examples that are correctly clas-
sified. This observation holds across
all data sets. For HCLU, this trend
is reversed: the BNN is confident on

many misclassified examples. Intriguingly, the BNN outputs low confidence on some
HCLU examples which are not misclassified, or correctly assigned to their original class.
Analogously, the uncertainty measures are similar between benign data and Carlini and
Wagner’s attack. Uncertainty is generally low for correctly classified data and high for
wrongly classified data. This observations are again reversed for HCLU examples: here
uncertainty is often low if an example is wrongly classified.

Summary and conclusion

The features used for confidence and uncertainty are not disjoint. High confidence
adversarial examples crafted using a confidence that is not Bayesian, however, are
not classified with high uncertainty by GPC or BNN. Adversarial examples based on

1We set κ = 0.7. The attack definition, in a nutshell, defines κ > 0 to encourage the solver to find a
confidently classified example. For details see [17] .
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Bayesian confidence, however, do transfer from GPC to BNN. This implies that even
though the approximation of the probabilities is quite different, both are, in practice,
quite similar.

Conclusion

Evasion is inherent to classifiers, as the gradients of their surface can be used to deter-
mine features influencing classification outcome. Consequently, evasion on undefended
classifiers is generally very successful. In the second part, we investiagted whether
an adversarial examples with high unvcertainty on one classifier, here a GP, is also
misclassified with high confidence on a second classifier, here a BNN. We find this to
be true. One reason for this transferability could be that although the classifiers are
different, they are trained on the same data, and learn similar features. Yet, more
work is needed to understand the phenomenon of transferability better, in particular
as transferability often harms the efficiency of defenses [3]. In this sense, this chapter
shows that in particular Bayesian uncertainty should not be used as a defense.
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Introduction

In the previous chapter, we have seen that evasion attacks are inherent to classifiers. In
this chapter, based on [P3], we investigate another class of attacks, backdoors. To this
end, we introduce a measure that quantifies sensitivity and overfitting, W . We show
that even networks which are not trained by an attacker contain backdoor like patterns.
In other words, neural networks in general will yield stable outputs for one class, as
long as particular input features are present in the data.

We start the section by introducing our measure, W . We continue with several
experiments supporting that W quantifies overfitting, and then present our results in
the context of backdoor detection.

Local wobbliness measure W

We first give a high level intuition of the W -measure, before formally introducing it.

High level intuition. In Figure 5.1, we depict data points of different classes (in
different blue shades) with their sampled areas (gray circles). On the left hand side,
we show a wobbly, or overfitted classifier. On the right hand side, we observe a good,
non-overfitted classifier. The picture illustrates W : at an appropriately chosen radius,
overfitting becomes evident as the sampled ball around a test point is not consistently
classified. We thus quantify overfitting in the input space by measuring the output
space in the area around each test point. Note that this measurement is local, and it
can vary across the input space.

Wobbly fit Good fit

Figure 5.1: Measuring overfitting with W :
We sample points (gray circles) around test
data (blue dots) to quantify the wobbliness
of the decision function (blue line).

Definition of W. An ML classifier
F (x, θ) trained on i.i.d. data is given.
We denote training points as x and the
corresponding label as y. After learning
the parameters θ on (x, y) pairs, the loss
L should be minimal. We finally define
x′ as a randomly drawn point around x;
x′ ∼ N (x, σ2).

Given this formalization, we use the
bias-variance decomposition to divide the
loss L into bias and variance as introduced
by [60]. We start our analysis with the
local measurement of the cross-entropy
loss function H, the most common loss

function for DNN classification, around x written

L(x, y) = Ex′H(y, F (x′)) = −Ex′
∑
i

yi logF (x′)i , (5.1)

where yi and F (x′)i indicate the respective i-th dimension element, and Ex′ is the mean
over data points from the Gaussian distribution N (x, σ2). We decompose the loss in
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bias and variance by adapting [54] on cross entropy, yielding for L(x, y):

= Ex′
[
H(y, F (x′))−H(F (x′),Ex′F (x′))−H(y,Ex′y) +H(F (x′),Ex′(F (x′))) +H(y,Ex′y)

]
= Ex′

[
H(y, F (x′))−H(F (x′),Ex′F (x′))−H(y,Ex′y)

]︸ ︷︷ ︸
bias2(y)

+H(Ex′F (x′))︸ ︷︷ ︸
Var(F (x′))

+H(Ex′y)︸ ︷︷ ︸
Var(y)

.

(5.2)
The part we are interested in is Var(F (x′)) = −

∑
i Ex′F (x′) logEx′(F (x′)). This

measures how consistent the prediction is around x as we discussed in the high level
idea section.

Finally, we define our measure We (W for cross-entropy loss) as the approximation
to Var(F (x′)):

We(x) =
∑
i

−A(x)ilog (A(x)i + c) , (5.3)

where A(x)i = Ex′(argmaxF (x′) = i), the mean of one-hot vectors to use only the top-1
class and c is a small constant (e−5) to avoid computing the logarithm of zero. Using
the top-1 class makes it easier to interpret in terms of causing inputs, and enable us to
compute this measure even for a black-box model returning only top-1 class. To obtain
the measurements, instead of using just one x, we use several data points {x1, . . . , xn}
and compute the measure for each, hence We = {We(x1), . . . ,We(xn)}.

Note again that we have a few critical differences to [60] and [54]. We compute
the expectation around x by drawing random variable x′ from N (x, σ2) to obtain local
measurements. This is important for two reasons. First, overfitting can be local, and
the existing global measures can overlook regional overfitting. Second, global variance
can be perceived much higher as it utilizes only a single mean value. Oftentimes, due to
the diversity of the input points, using the mean of all points might not be suitable,
as it can be far from every data point. Also, we measure many such points to build a
distribution where we can apply diverse aggregation or statistical tests.

In other ML models using mean squared error loss, we have Wv = Ex′(F (x) −
Ex′F (x))2. This version shows mostly similar results to We, so we will focus on We. We
also want to briefly remark that [144] decompose the cross entropy function into a sum
of Kullback–Leibler-divergences instead of cross-entropies. [54] states that there can be
multiple decompositions, especially for an asymmetric loss. Also, the Kullback–Leibler-
divergence can have similar trend since KL-divergence is cross-entropy minus entropy.

Empirical evaluation

Unfortunately, We comes with many parameter choices. This includes the amount of
noised points n, the variance of these points, σ, and the number of test points. A detailed
ablation study for all parameters can be found in a long version of [P3]. However, as we
show in this section, reasonable values can be found for each. In this section, we vary
the amount of noised points n between 500 and 2000, merely to show that there is little
effect of this number on We as long as it is decently large, namely We > 250. The choice
of σ and the number of test points used to compute the measure are more important.
The first, σ, is varied between 0.15, 0.1 as low as 0.005. Small values are appropriate
for fine-grained task (distinguish test and training data), larger for more rough-grained
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Figure 5.2: Differences of test (blue) and training (purple) data after training using We.

(monitor progress during training). Finally, the amount of test points depends on the
setting as well. We show that starting with 250 test-points, the measure is fairly stable.

We first describe the overall setting, and then show that We is able to distinguish
training and test data. Afterwards, we investigate how the measure captures small
differences in the training setting, and conclude the section with a detailed study on
the measure on individual classes.

Setting. To test We, we deploy small networks on Fashion MNIST, where we achieve
an accuracy of around 88%. These networks contain a convolution layer with 32 3×3
filters, a max-pooling layer of 2×2, another convolution layer with 12 3×3 filter, a dense
layer with 50 neurons, and a softmax layer with 10 neurons. We further experiment on
CIFAR10, where we train a ResNet18 [50] 200 epochs to achieve an accuracy of 91.8%.

Plots. We plot the distribution of We over n test points using box-plots. These plots
depict the mean (orange line), the quartiles (blue boxes, whiskers) and outliers (dots).
We follow the standard definition for outliers in [37]: An outlier is defined as a point
further away than 1.5 the interquartile range from the quartiles. More concretely, Q25
is the first quartile and Q75 is the third quartile (and Q50 is the median). Value ν is an
outlier iff

ν > Q75 + 1.5× (Q75 −Q25) or ν < Q25 − 1.5× (Q75 −Q25) , (5.4)

in other words if ν is more than 1.5 times the interquartile range (Q25−Q75) away from
either quartile Q25 or quartile Q75.

Measuring overfitting: training vs test data

An overfitted network will have adjusted better to the training data than to the unseen
test data. Since We captures overfitting, it should be possible to tell apart training and
test data given measurement outputs. In the plots, we compare the distribution of our
measure on 250 test (blue) and 250 training (purple) points from the same dataset. On
each point, we sample 500 noise points and compute We with low σ to capture small
differences. The results are plotted in Figure 5.2.
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Results. In Figure 5.2a, training and test data differ for σ ≤ 0.025. More specifically,
the training data (purple) shows less spread than the test data. This translates to less
entropy around training data, or more stable classification, as expected. To illustrate
that the results are not cherry picked, we show the results for three different random
draws on CIFAR in Figure 5.2b. At σ = 0.0025, the results become very obvious and
the difference of the spread is clearly visible. In contrast to Fashion MNIST, however,
differences in the measure at smaller σ can be spotted, but are less pronounced.

Implications. The question whether or not a data point formed part of the training
data is critical knowledge for many applications such as medical sciences, social networks,
public databases, or image data (e.g., facial recognition). The corresponding attack is
called membership inference [111, 118, 145]. However, so far, even attacks with weak
attackers [111] rely on output probabilities, and a straight-forward defense is to only
output the one-hot labels. Our technique allows to circumvent these defenses, as the
We can approximate a distribution that contains membership information based only
on the one-hot output.

Measuring Overfitting during training

As overfitting unfolds during training, we study how We develops during training. We
connect this with a study of different training variations that either increase or decrease
overfitting.

Setting. We train 15 networks on the Fashion MNIST dataset. In each iteration, we
sample 2, 000 noised points. As we expect the surface to vary drastically during training,
we choose a large σ = 0.15 around a given test point and compute the measure over the
whole test set for stability. We choose five settings, where the first two cases are used
to investigate the effect of the number of sampled points when computing the measure.
We also investigate adversarial training, where one adds adversarial examples with the
correct labels during training. This training makes the network more robust, and has
been shown to reduce overfitting [86]. Furthermore, we examine a backdoor scenario.
Here, the attacker introduced a pattern in the training data which is always classified
as the same class [77, 148]. The last setting is adversarial initialization [74]. Such an
initialization is generated by fitting random labels before training on the correct labels.
The authors showed that adversarial initialization increases overfitting. More concretely,
even though the training error of such networks is low, the test error tends to be high.
We do not compute the We during the pre-training with random labels.

Plots. Figure 5.3 depicts all five scenarios. The lines show the mean, the error bars
the variance over the different runs. The blue line (‘2000 samples’) denotes the baseline
networks, light blue (‘5000 samples’) the same baselines, where we sampled 5,000 noised
points. The adversarial training is visualized as a red, backdoor as a yellow, and
adversarial initialization setting as a green line.
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Figure 5.3: We on a several networks during training on Fashion MNIST. σ is set to 0.15.
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(d) CIFAR10, 250
points.

Figure 5.4: Influence of number of points and classes on We. We show three (full
data)/two (classes) different random draws for each setting to show variability.

Results. The left plot shows clean test accuracy. There is no a specific point at which
the test error decreases. Hence, we also depict the difference between the training
and test accuracy (middle plot). The adversarial training case (red line) is the lowest,
corresponding to the least overfit networks. On the other hand, the adversarially
initialized networks are the highest. The normal and backdoored models appear in the
middle. This corresponds to our expectations about adversarial training and adversarial
initialization. This order is preserved for We in the right plot.

Class-wise differences

One might be tempted to think that a measure for overfitting should be class-independent.
Yet, as accuracy for different classes may differ, so may overfitting properties. We study
We on individual classes, connecting it with experiments to test stability depending
on the number of test points used to compute We. In the previous experiments,
measurements were done on 250 points or the whole test data. We now compare
different draws of a very low size, 25, and the initial size 250 to confirm that the latter
is sufficiently stable. To reduce the amount of plotted data, we randomly chose 4 classes
for the plots in Figure 5.4.
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5.4. OVERFITTING AND BACKDOORS

Results. On Fashion MNIST, We varies when using 25 points to compute the measure
(Figure 5.4a). For example, the mean of the measurement changes more than 0.4 when
test points from all classes are used. An extreme case is class 9 (ankle boot), where one
measurement has half the spread of the other measurement. The measure is already
fairly stable around 250 test points (Figure 5.4b). Here, the largest change of mean
is around 0.05. However, stability could be improved further if necessary by using
more test points. On CIFAR, the results are analogous as visible in Figure 5.4c and
Figure 5.4d.

Conclusion of empirical study

We showed that We indeed captures overfitting in different settings. After training,
both training and test data exhibit differences in the measure. We also reflects training,
and in particular configurations during training that affect overfitting like adversarial
training or adversarial initialization.

Resulting complexity. 250 points without labels are sufficient, where we sample
n = 250 points around each. Hence, the time complexity of computing the measure is
250× n or O(n). The sample complexity is even lower with only 250 unlabeled points.

Overfitting and backdoors

To further show the practical usefulness of our measure, we investigate a common
hypothesis from adversarial machine learning. This hypothesis by Wang et al. [135]
states that backdoors are enabled by overfitting. A backdoor is a particular pattern
hidden in the training data, which can later be used to evade the trained classifier at
test time [77, 148]. Examples for such patterns on visual recognition or classification
tasks are given in Figure 5.5. Most of these particular backdoors were also used by
Chen et al. [18] and Gu et al. [46]. In this section, we first present that We allows
to distinguish data points with and without a functional trigger. We then investigate
under which circumstances detection given an functional trigger is possible.

Figure 5.5: Possible backdoors on Fashion MNIST.

Attacker and hypothesis. In some
cases, the attacker can only control
the victim’s data. As the victim might
inspect this data later, the amount of
injected poisons is traditionally very
small (roughly 250 for >50,000 train-
ing points) [18, 132]. In other cases, the attacker trains the model, and the trained
model is then handed over to the victim. In this setting, the victim is not able to inspect
the training data, and, thus, the attacker can poison a larger fraction of the training
data to achieve better results (10-20% in for example [18, 135]. We investigate both
settings and use 250 points for the former case and fix the percentage to 15% for the
latter case in our experiments. Our trigger is in a fixed position, and is added to all
classes ci except the target class ct, hence ci 6= ct. Previous work [135] has indicated
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CHAPTER 5. BACKDOORS

that backdoors are related to overfitting, equating the backdoor pattern to a shortcut
between the target and victim classes. In this setting, the model has been poisoned
such that any input plus the trigger will result in the desired target class.

Experimental setting. We train a slightly larger network on Fashion MNIST to allow
the network to fit the backdoors well: a convolution layer (64 3×3 filters), a max-pooling
layer (2×2), another convolution layer (32 3×3 filters), two dense layers with 500 neurons
are followed by a softmax layer with 10 neurons. The networks perform with around
90% accuracy on benign data, and with 99% on backdoors. On the CIFAR10 data, we
use a smaller ResNet18, on which performance we will comment below after the initial
experiments.
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Figure 5.6: We and backdoors on Fashion
MNIST. We compare clean test data (blue)
and a functional trigger (99% accuracy)/an
unused trigger (9% accuracy on poisoning
labels, 89% on clean labels).

We and backdoors. If backdoors in-
deed rely on overfitting, we expect We to
be high around backdoors, as the back-
doors are close to the decision boundary.
We thus pick as few as 25 test points and
compute We once on these clean points
(blue). We are using the same 25 points
with the leftmost backdoor pattern from
Figure 5.5 added (yellow). As we are in-
vestigating the difference in behavior for
those 25 points, such a low number is in-
deed sufficient. As a sanity check, we also
evaluate an unseen/random pattern (right
plot in Figure 5.6), the fourth trigger from
Figure 5.5. In contrast to what the high

accuracy might suggest, the model does not overfit but rather underfits backdoors: We

is consistently low for the functional trigger, in particular at large σ. The classification
output remains consistent regardless of the noise added to compute We. Hence, the
backdoors are not close to the decision boundary, and are therefore underfit. This
behavior is the attacker’s goal: as soon as the backdoor is present, other features become
irrelevant.

To prevent in the following evaluation that the overfit MNIST models influence the
performance of We, we train the CIFAR networks few epochs to underfit the benign
data at 63% accuracy. Still, the CIFAR networks exhibit a very high accuracy, > 99%,
on backdoors.

Detection mechanism. The differences inWe above are quite pronounced and should
be detectable. Statistical tests with the H0 hypothesis that both populations have equal
variance are the Levene [93] and the Fligner test [33]. The latter is non-parametric, the
former assumes a normal distribution but is robust if the actual distribution deviates.
Alternatively, the Kolmogorov-Smirnov (KS) test can be used with the mean-based
test statistic proposed by [53]. The KS test evaluates the H0 hypothesis that both
samples are from the same distribution. To evaluate the performance of the tests with
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Figure 5.7: Performance of statistical tests to detect backdoors using We.

We, we train three networks on clean data and nine networks with different implanted
backdoors. Of the latter backdoored networks, three are trained with backdoors one,
three and four each from Figure 5.5. To obtain a valid false positive rate, we test for all
five backdoors of Figure 5.5 on all networks. We then compute a ROC curve and the
AUC value given the p-values and the ground truth of each test. In some cases, the test
performs better when we remove outliers (defined as above or in [37]). In case that all
points have the same value, we do not remove any point.

Performance of detection. Our results are depicted in Figure 5.7. In general, the
performance of the tests is very good. The Levene test consistently performs best. The
worst AUC (0.8) occurs using the CIFAR10 dataset, where 15% of the data is poisoned.
The performance of the Fligner (0.89) and Levene test (0.99) is higher. On Fashion
MNIST, the worst AUC is 0.94, although only 250 points in training are poisoned. The
other two tests show perfect performance at AUC 1.0.

False negatives? To validate the above results, we repeat the previous experiments
with universal examples, instead of backdoors, added to the test data. Universal
adversarial examples are perturbations that are crafted after training and lead miss-
classification when added to several of data points [87]. They are thus similar in that
they lead to missclassification, yet differ in that the network has not been trained on
these patterns. Ideally, We should not confirm universal perturbations as backdoors:
universal perturbations are unknown to the network, as they were computed after
training. We depict the results in Figure 5.8. Here, a true positive corresponds a
universal perturbation classified as backdoor. Hence, we expect the performance to be
low: The perturbation is not a backdoor, and should not be confirmed. The tests are
now close to a random guess, with the exception of the Levine test with an AUC of 0.05
on CIFAR. The other two tests are close to a random guess with AUC of 0.41 (KS) and
0.49 (Levene). On Fashion MNIST, the tests are also close to random guess, with KS
(0.39) being furthest away, followed by Levene (0.456) and Fligner (0.47). We conclude
that the test does not confirm universal adversarial examples as backdoors.

False negatives! We now test a method to generate backdoor candidates given
a network by Wang et al. [135]. The idea behind their algorithm is to generate a
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Figure 5.8: Performance of statistical tests to wrongly detect universal perturbations as
backdoors. In contrast to previous plots, lower is better.

perturbation with a minimal mask that, when applied to any image (in a given input
set), will cause all images to return the same fixed class. In the original work, the size
of the perturbation indicates if the trigger is functional or not. We generate a trigger
candidate for each class on clean and backdoored models. As the generated points are
in fact universal perturbations with the additional constraint of a small perturbation
and consistent missclassification, we expect our measure not to confirm these samples:
the network has not seen them during training. As before, we add the candidates to the
25 test points, compute the We, and feed the measure into the test. In contrast to our
expectations, however, the test detects all of the inputs with the crafted perturbation
as backdoors with the same, very low p-value. As a sanity check, we add the patterns
found to the training data (which has not been used to generate them) and find that
the accuracy on the targeted class is 100% in all cases. We conclude that our measure
wrongly confirms a perturbation crafted by the method of Wang et al. [135] as backdoors,
although the generated patterns have not been maliciously added to the training set.

Conclusion. Our measure, when combined with a test, reliably detects implanted
backdoors. We further confirm that perturbations computed at test time (universal
adversarial examples) are not detected. Yet, crafted backdoor candidates are found
that manage to fool our detection. Hence, even benign networks contain variants of
backdoors that emerge during training.

Conclusion

In this chapter, we have introduced the W measure that quantifies output sensitivity
and overfitting. Intuitively, such a measure can be used to determine membership, as
training data will be fitted better than unseen test data. Furthermore, we show that
We is able to detect backdoors. Since these backdoors are reliably (mis)classified, they
are underfit, which is captured by the measure. However, our experiments show as well
that there are naturally occurring underfit patterns in benign neural networks, too.

The latter finding has strong implications for all mitigations that rely on either
generating a trigger, for example the work by Wang et al. [135] or Xiang et al. [138] and
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mitigations that rely on the a stable classification output for backdoors, like for example
the work by Liu et al. [78]. Since backdoors are not the only patterns exhibiting such
reliable (mis)classification under perturbations, there is no guarantee that the confirmed
pattern is indeed a bakdoors and was inserted by an attacker during training.
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CHAPTER 6. ADVERSARIAL INITIALIZATION

Introduction

In the previous chapters, we dealt with intrinsic properties of models and attacks that
made achieving security difficult. We now add a new layer, thereby showing how security
problems can also emerge when taking into account the broader application of an
algorithm. As an example, we take advantage of the complexity of today’s libraries, and
alter the initialization function of a neural network. We show that this new training
attack has devastating effects [P4]. We name this threat adversarial initialization, and
although such an initialization is in theory easy to recognize, it requires that the victim
is aware of the corresponding threat. As we show in a study, otherwise failure modes
of adversarial initialization are generally attributed to other causes like bugs or issues
with the data.

Adversarial initialization

We introduce attacks that alter the initial weights of a neural network. The goal of the
attacker is to decrease accuracy drastically, or to increase training time. Ideally, this is
done in a stealthy way: the victim should not spot the attack.

Before we discuss specifics and the generalization of our attacks, we motivate our
approach by discussing its most basic version. The following equation represents two
consecutive layers in a fully connected feed-forward network with weight matrices
A ∈ Rm×n and B ∈ R`×m, corresponding biases a ∈ Rm as well as b ∈ R`, and ReLU
activation functions

y = ReLU
(
B ReLU(Ax + a) + b

)
. (6.1)

This vulnerable structure or similar vulnerable structures (like two consecutive convo-
lutional layers) can be found in a plethora of typical DNN architectures. We assume
that the neurons are represented as column vectors. The formulation for a row vector
is completely analogous. We further assume that the components of x are positive.
This corresponds to the standard normalization of the input data between 0 and 1. For
input vectors x resulting from the application of previous layers it is often reasonable
to expect an approximately normal distribution with the same characteristics for all
components of x. This assumption is (particularly) valid for wide previous layers with
randomly distributed weights because the sum of many independent random variables is
an approximately normally distributed random variable due to the central limit theorem
[100].

The idea behind our approach is to make many components of y vanish with
high probability and is best illustrated by means of the sketches in equation 6.2 and
equation 6.3. The components of the matrices and vectors are depicted as little squares.
Darker colors mean larger values. In addition, hatched squares indicate components
with a high probability of being zero.

In matrix A, the largest components of the original matrix are distributed in the
lower (1−rA)m rows. rA ∈ { 1

m ,
2
m , ..., 1} controls the fraction of rows that are filled with

the “small” values. The small and often negative components are randomly distributed
in the upper rAm rows. The products of these negative rows with the positive x are
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6.2. ADVERSARIAL INITIALIZATION

likely negative. If the bias a is not too large, the resulting vector has many zeros in the
upper rows due to the ReLU-cutoff.

ReLU






︸ ︷︷ ︸
matrix A




︸ ︷︷ ︸
x

+a


=


 (6.2)

Next, a similar approach can be used with matrix B to eliminate the remaining
positive components. Let rB control the fraction of “small” columns of B.

ReLU





︸ ︷︷ ︸

matrix B


+ b


=




︸ ︷︷ ︸
y

(6.3)

In summary, we concentrate the positive contributions in a few places and “cross”
A and B in order to annihilate them. For the typical case of weights drawn from a
zero mean distribution, rA = rB = 1

2 effectively kills all the neurons and makes training
impossible.

The probability for obtaining a matrix like A in equation 6.2 by chance is very small
and given by ((rAmn)!((1−rA)mn)!)/(mn)!.

With the general idea of our attack in mind, we can now discuss specifics. A complete
blockade of the entire network obviously contradicts the idea of stealthiness because
at least some learning is expected by the user. The prototypical attack must thus be
“weakened” in a controlled manner to be stealthy.

Soft knockout attack. The first way of controlling the network capacity is by
varying rA and rB in such a way that some but not all of the neurons have some
non-vanishing probability of being non-zero. This is achieved by choosing rA < 1/2 or
rB < 1/2, respectively rA � 1/2 or rB � 1/2.

Shift Attack. As an alternative, we can choose rA = rB = 1/2 and shift the columns
of B periodically by s positions. In a fully connected network, this corresponds to s
active neurons, yielding specific control over capacity.

Algorithmic procedure. We formalize both approaches in Algorithm 6.1 for fully
connected layers. In both cases, the attacker only alters one weight matrix at a time, in
the order one would initialize the weights in the model. To perturb a weight matrix,
we first obtain the (100× r)% smallest weights, denoted as S (line 4). We denote the
remaining, larger weights as L (line 5). For the shift attack, we instead split the weight
matrix in negative (line 7) and non-negative (line 8) components. Depending on the
variable cross which is flipped each round (line 18), we reorder the weights. For the first
and all unevenly indexed matrices, we align the small weights in the upper rows and
then fill up with the larger weights (line 13). For all evenly indexed matrices, we cross
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CHAPTER 6. ADVERSARIAL INITIALIZATION

the components: The first columns contain the large weights, and we fill up with the
small weights (line 11). When using the shift attack, In all uneven cases, we additionally
shift the rows by s positions to activate s neurons (line 15). In this formalization, we
skip the details of the exact reshaping operations needed to obtain matrices of the
correct shape. We also leave aside that columns and rows might be filled partially with
small and large weights.

Algorithm 6.1 Soft Knockout/Shift Attack. Given a stream of weights W =
{W1, ...}, parameter r ∈ [0, 1], and s ∈ N, outputs permuted, harmful weights impeding
training.
Require: W, r, s
1: cross ← False
2: for Wi ∈ W do
3: if soft knockout attack then
4: S← smallest r|Wi| components of Wi

5: L← largest (1− r)|Wi| components of Wi

6: else {prepare shift attack}
7: S← negative components of Wi

8: L← non-negative components of Wi

9: end if
10: if cross then
11: Wi ←

(
L S

)
12: else
13: Wi ←

(
S
L

)
14: if shift attack then
15: shift rows of Wi by s positions periodically
16: end if
17: end if
18: cross ← ¬ cross
19: end for

Adversarial initialization for convolutions. Particular care has to be taken
when attacking convolutional layers. Yet, the idea of weight permutation and matrix
crossing works in a very similar way. We formalize the attacks for convolutional weights
represented as 4-dimensional tensors: filter height × filter width × number channels
× number filters. This requires a different sorting of the components than for fully
connected layers. The procedure is illustrated for two consecutive convolutional layers
with a one-channel 4× 4 input and a four-channel 4× 4 output The smallest weights
are randomly distributed over the first half of the filters, resulting in a very likely
deactivation of half the channels. For each filter of the second layer, half the channels
are equipped with the small weights, so that the negative filter channels are applied to
the positive input channels. The positive filter weights are applied to the deactivated
neurons, and do not contribute to the sum over all channels for each filter. Thus,
deactivation of all output channels is probable.
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6.3. EMPIRICAL EVALUATION

Given this layout, we shift the channels of a filter of the second layer in order not
to block the whole network. Compared to the previously discussed shifting attack, we
have more degrees of freedom: a shift per filter and the number of filters where to apply
shifting. The same holds for the soft knockout attack, where we specify on how many
filters in the even layers the permutation is applied.

Empirical evaluation

We evaluate the previously derived attacks. We first detail the setting, datasets and
architectures and explain how we illustrate findings.
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Figure 6.1: The soft knockout attack allows little con-
trol over final accuracy: Fashion-MNIST, fully con-
nected network, r = 0.25 (upper) versus r = 0.2
(lower).

Setting. We evaluate two
different kinds of architectures,
fully connected networks and con-
volutional networks. All our fully
connected networks contain n/2
neurons in the first hidden layer,
where n is the number of features.
The second hidden layer has 49
neurons for the two MNIST tasks.
As an example for a convolutional
architecture, we use LeNet on
CIFAR. All networks are initial-
ized with He initializer [49] and
constant bias. The fully con-
nected networks are trained for
300 epochs on both MNIST vari-
ants. LeNet is trained for 200
epochs. We optimize the nets
with the Adam optimizer with a
learning rate of 0.001.

Presentation of results.
We are interested in how our attacks affect the probability to get a well perform-
ing network after training. Towards this end, we mainly consider two quantities: the
best accuracy that is reached during training and the epoch in which it has been reached.
We approximate both distributions by evaluating a sample of 50 networks with different
seeds for the random initializer.1 We plot the smoothed probability density function
over the best test accuracies during training and the epochs at which this accuracy was
observed. While we use Gaussian kernel density estimation for the former, the latter is
depicted using histograms. Both distributions are compared to a baseline derived from
a sample of 50 clean networks with the same 50 random seeds.
Knockout attack. In this attack, we control the size of the split between small and
large values of the weight matrices in order not to knock out all the neurons at once.

1We keep the same 50 seeds in all experiments for comparability. However, due to effects from
parallelization on GPUs, the accuracy might differ by up to 2% for seemingly identical setups.
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The experiments show that this gives little control over performance: On fully connected
networks, when r > 0.3 training fails entirely. When r ≤ 0.2 the network achieves
normal accuracy (however needs more of epochs). As soon as the networks have some
non-vanishing chance of updating the weights (which is the idea of a soft knockout),
they can recover from the bad initialization.
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Figure 6.2: The shift attack on Fashion MNIST (upper)
and CIFAR10 (lower). In both cases, shift is set to
eight, for the convolutional network on CIFAR, we
apply the shift to one filter.

We plot the results on
Fashion-MNIST for r = 0.2 and
r = 0.25 in Fig. 6.1. A param-
eter r > 0.3 leads to complete
failure to learn: all accuracies are
equivalent to guessing. Networks
that perform with random guess
accuracy usually perform best in
their first iteration, and do not
improve during training. This is
visible as well for r = 0.25.We
picked Fashion-MNIST to illus-
trate this, although it occurs in
general. For slightly lower r =
0.2, however, most seeds achieve
baseline accuracy, where training
time increases on average.
Shift attack. This attack gives
more fine-grained control over
the network. In fully connected
networks, the shift parameter is

equivalent to the number of active neurons. Our experiments show that a number of
10 (MNIST)/ 12 (Fashion MNIST) neurons suffices to learn the task with unchanged
accuracy. We set the shift of 4 and 8 on MNIST and Fashion MNIST (see Figure 6.2).
In both cases, the maximal accuracy is around 50%, but the network still learns. On
Fashion-MNIST, training time increases by around 50 epochs. This is less clear for
MNIST, where several networks are failing, and achieve their best (random guess)
accuracy in epoch one.

The results of convolutional networks on CIFAR10 are in Figure 6.2. We apply a
shift of eight and apply it to one or sixteen filters. As for the fully connected networks,
accuracy decreases strongly. The average accuracy is around 43% if one filter is affected
and around 50% if the number of filters is increased to sixteen. Intriguingly, training
time decreases for one filter and slightly increases if 16 filters are targeted.

Why would I care?

One might wonder how an attacker might even be able to alter the code of the library.
In both security [5, 67] and ML [75, 141], trust in libraries has been recognized as a
threat. A simple drive-by download is enough to infect a machine with the malicious
code [68], if no corresponding defense is in place [55].
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Figure 6.3: Loss during training on Fashion MNIST (fully
connected network, shift is 4). Along with the achiev-
able accuracy, the scale of the loss is unknown to
the victim.

Furthermore, one might ask
whether a user would actually
fall for such an easy-to-fix attack
as maliciously permuted weights.
We argue that this hinges on
the user’s awareness of the at-
tack and that current debugging
routines hardly take initialization
into account. In order to un-
derpin this statement, we search
for “neural networks low accu-
racy”, “neural networks bad per-
formance”, “neural networks bad
accuracy”, and “neural net fail”
on two popular Q& A sites for programming issues, stackexchange.com and
stackoverflow.com. Due to fine nuances in meaning, we do not automate the
analysis of the 332 posts. Further due to privacy concerns, we remove all user names
from the stored posts and do not carry out any analysis related to users. We do not
count questions without replies (22), duplicates (3), and unrelated questions (185). We
consider a question unrelated if it is

1. a high level question, e.g. what performs better, neural networks or ensembles, or
how to deal with missing data,

2. an implementation question, e.g. In Tensorflow estimator class, what does it mean
to train one step? or How to use smac for hyper-parameter selection,

3. very specific to an application, e.g. discussing how to improve the contours of a
FedEx logo detector or which algorithm to use to block/unblock a gate for vehicles,

4. a question about a specific error message, e.g. Assertion ‘cur_target >= 0
&& cur_target < n_classes’ failed. [...] Any ideas? or ValueError: Tensor
Tensor("dense_2/Softmax:0", shape =(?, 2 ) , dtype=float32) is not an element
of this graph. [...] Any ideas on why this causes this error?.

5. a question that is of philosophical nature or entirely unrelated to machine learning.

On the remaining relevant questions, we distinguish the overfitting scenario (high
train accuracy, low test accuracy, 21 questions), and a bad performance category (both
are low, 115). As some posts are ambiguous (just reporting “bad accuracy”, 23), we list
these separately as unclear.

In each of the above groups, we collect topics mentioned in the posts and categorize
them to give a better overview. We only count one suggestion per category, e.g. if a
user writes “use more data and split the data in a random fashion”, this counts once in
the data category. We then compute the percentage, e.g. for how many percent of the
questions this has been suggested. Hence, 100% in the data category implies that for
each question, people made a suggestion concerning data. We summarize our results in
Table 6.1.
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Table 6.1: Suggestions to fix bad accuracy. Percentage denotes how often reply was
given in which setting.

Suggestion Overfit Bad Unclear

More data, sanity check data, data split, re-weight data 71.4% 31.3% 61%
Train longer ∅ 4.3% 13%
Change optimizer, loss, batch size, momentum 14.3% 27.8% 17.4%
Larger/smaller model, different type of layers, change initializer 33.3% 30.4% 26.1%
Use regularizer, cross validation, batch normalization, etc. 43% 14.8% 17.4%
Use other classifier than DNN 4.8% 7% 13%
Bugs in logic or implementation 19% 32.2% 26.1%

Number of questions evaluated 21 115 23

As expected, for the category overfitting, most replies indicate to use more data
(>70%). Secondly, suggestions concerning the model size prevail. In the unclear
category, most posts concern the data as well, with a tie between changes in the
optimizer, momentum etc. and suggestions to fix bugs. In the bad case, the largest
fraction fall as well into the data category, followed tightly by suggestions concerning
the architecture of the model. This also entails changing the initializer—yet we hope
to have convinced the reader in particular in this appendix that neither changing the
architecture, nor changing the activation, optimizer or initializer will alleviate the attack.

In total, we find four posts and two comments which could potentially lead to the
discovery of our adversarial initialization. To indicate the relevance for the community,
we also write the rating on the Q&A for each question:

1. Check your loss function, weight initialization, and gradient
checking to make sure the back-propagation works in an
appropriate manner (Scenario overfitting, rating: 1)

2. your error gradient doesn’t reach initial layers! (you can check
this by plotting histograms of weights in tensorboard) (Scenario bad
performance, rating 0)

3. Look at individual layers. [...] look for layers which have
suspiciously skewed activations (either all 0, or all nonzero)
(Scenario bad performance, rating 167)

4. Did you check if the parameters get updated after
optimizer.step()?. (Scenario bad performance, rating 0)

Although all or many of these posts potentially give away the attack, the setting
described is generally not the one that is caused by our attack. One concerns a setting
where over-fitting takes place. In our attack, training and test accuracy generally do
not diverge as the resulting small model-size prevents memorization. This is visualized
in Figure 6.3. The other three posts reply to cases where the models do not learn at all,
a scenario that our attacker tries to prevent to remain stealthy.

Two replies, however, are posted in the correct setting:
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1. This isn’t a very good answer (thus why it’s a comment) but back
when I was studying neural nets you need to double, triple and
quadruple check that all your variables and functions are doing
and storing what you intend. One single misplaced calculation
will mess up the entire system resulting poor results and ripped
out hair follicles. Good luck (Scenario Unclear, rating 0)

2. Gradient check your implementation with a small batch of data
and be aware of the pitfalls.(Scenario bad performance, rating 1)

Concerning the first reply, it remains an open question what a user would check in
detail given these broad instructions. In the second case, the user points to gradient
checking. This method assumes that the gradient implementation is having a bug—in
our setting, however, the bad gradients are a consequence of the small weights, and
mathematically correct. Yet, inspection might give away the attack. Both posts are still
far from a direct hint—we conclude that there is a lack of awareness on the importance
of the initial weights.

Conclusion

In this chapter, we have introduced adversarial initialization: a training-time attack
that takes advantage of the complexity of today’s deep learning libraries. Although
adversarial initialization is in theory straight-forward to recognize, it requires that the
victim is aware of the corresponding threat: otherwise the effects caused by adversarial
initialization are overlooked and attributed to other causes. This part illustrates the
diversity threats on ML can take—the surrounding of the applied algorithm can be
as important as the attack surface of the algorithm itself. More work is needed to
understand the full threat surface that ML algorithms expose next to typical attacks
like adversarial examples or poisoning. In particular, users need to be educated on how
to recognize and address any of these threats properly.
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Introduction

In the previous chapter, we have investigated the complexity of libraries in the context
of security. The attacks presented were straight-forward to defeat when one was aware of
the threat. However, recapping Chapter 4 about evasion and Chapter 5 about backdoors,
both attacks are in a current arms race [3, 16, 73, 117, 128, 131].

Any broken mitigation itself points at the hardness of defending a classifier against an
individual attack. In this chapter, based on [P5], we take a different approach, and study
the vulnerability towards several different test time attacks at once. More specifically,
we investigate a classifier that allows configuration of the decision function curvature,
and show that for individual test time attacks, a seemingly secure configuration can be
found. This configuration, however, will be vulnerable towards a different attack.

We start the chapter with a formal analysis showing the vulnerability of the classifier
studied in this chapter—Gaussian processes (GP)—towards evasion. Furthermore, we
show how attacks concerning intellectual property (IP) like model stealing or membership
inference are related on a Gaussian process. To ease formal analysis, we use GP regression
for the formal analysis. We then carry out the empirical study linking decision surface
curvature and vulnerability of GP classification towards different attacks.

Formal analysis of vulnerability

We take advantage that a GP allows a formal analysis. First, we show that learning
or generalization enables evasion vulnerability on GP. We then study the interplay of
model reverse engineering, membership inference, and model stealing.

Evasion attacks

We first define a classifier that cannot be fooled by an adversarial example. In the
following, we show that a classifier fulfilling this definition, and hence a static security
guarantee, is opposed to learning. We briefly define rejection of a classifier. A classifier
can reject a sample, in the sense that it does not assign the given sample to any
predefined class.

To define a secure classifier, we chose a covariance with compact support [106]: as
the distance from the training data increases, it reaches 0. Furthermore, there is a
ρ such that for all training points, iff point x′ is in the closed ball B(x, ρ) around a
training point x ∈ Xtr with radius ρ, then x′ cannot be an example of another class
than x. In other words, all points in the ρ-ball around training point xi are of the same
class. We formalize the secure classifier

f(x′) =
{
yi iff x′ ∈ B(xi, ρ)
reject otherwise

that cannot be fooled: Changing a sample enough to be classified as a different class
means to alter x′ so much that x′ ∈ B(xj , ρ) where yi 6= yj . Then, by our definition,
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x′ is a valid instance of this other class and not an adversarial example. This secure
classifier is equivalent to a GP given the following conditions: First, GP has a rejection
option based on ρ. Second, writing k(xi, xj) for the covariance between xi and xj , there
is no point x′ such that for two distinct training points xi,xj ∈ Xtr both k(xi, x′) > 0
and k(xj , x′) > 0.

In other words, we require that GP is able to reject a sample. This can be achieved
by setting a threshold on GP’s similarity. Condition two states that the similarity
between any two training points is zero, independent of their class. Such a GP, however,
has as covariance matrix the identity matrix, as the similarity between any two points
is zero. Such a covariance matrix does not allow any learning [85]. The details of this
equivalence can be found in a long version of [P5]. Assuming that the second condition
does not hold, training points jointly influence classification and the GP regression
(GPR) generalizes.

Theorem 1. Either GP’s covariance K is similar to the identity matrix I, or K 6= I
and learning occurs. Then, GPR potentially classifies areas outside the ρ-balls. Hence,
for a test point x′ and its corresponding output p, p > ρ or p < −ρ although k(xi, x′) < ρ,
where xi is the closest training point.

Proof. To be classified, we need a classification output p > ρ or p < −ρ. We start
with the first case, and write

p ≤
∑
i

(ρ− κi) ∗ [K−1]i ∗ 1 , (7.2)

where [K−1]i is the sum over the inverted covariance matrix column corresponding
to point i. Before inversion, this column contains the similarities between i and all
other training points. So far, we have ignored that we need a test point to obtain this
prediction. Without loss of generality, we pick x′ which maximizes the sum under the
restriction that x′ is in none of the ρ-balls: hence ρ− κi, the covariance to ρ-balli is κi.

There are two cases. In the first, p ≥ ρ and we classify outside the ρ-ball. In the
second, p = 0 or 0 < p < ρ. As we choose the maximal x′, there are no other points
for which p > ρ. Then GPR is still secure: no area outside the ρ-ball is classified, as
the output is below the defined threshold. It remains to be shown, however, that there
is no contradiction for the opposite class. We proceed analogously with an x′′ that is
chosen to minimize the sum. �

We used in the proof that the minimal output of a point chosen to maximize the
sum is zero. Analogously, the maximal value when minimizing the sum is zero as well.
This holds due to the abating property of the kernel: As we move away from the data,
eventually all similarities become zero, thus the sum is zero as well. We conclude that
generalization enables test time attacks such as evasion or adversarial examples.

Further test time attacks

As GPs are an instance of lazy learning, in general all training points and parameters
are used during inference. Intuitively, this should ease extraction for the attacker. As
we show here, this need not be the case. We briefly recap the attacker’s goal in each
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Figure 7.1: The relationship of IP based attacks on GP models.

attack. In model reverse engineering, she wants to obtain the lengthscale(s), in
membership inference the full or partial training data, and in model stealing both
lengthscale(s), and full training data. These attacks are strongly related for GPs, as
visible in Figure 7.1.

We recap how classification is computed in GPR. The posterior mean y∗ is given as

y∗t = KT
x′K−1

tr Ytr =
∑
i

k(x′ −Xi) ∗K−1
i ∗ Yi , (7.3)

where we iterate over the n training data points. The covariance metric k is parametrized
using l and σ2 when using the RBF kernel. We write K for the covariance matrix
resulting from k and denote the inverse as −1. As lazy learning is used, one might
suspect that we can simply extract the stored parameters and training data. For example,
independent from the used kernel, we unfold this sum and add the observed output
vector of a GP to obtain an equation system. For simplicity, assume that Az = yo,
where z refers to the parameter the attacker wants to retrieve, and yo is the output
observed from the targeted GP. Further A denotes the matrix specified in equation 7.3,
without z.

The interested reader will have noticed, however, that this equation system solves for
unknowns in the number of training points whereas we need an equation system solving
along the features dimensionality. In terms of the above equation, we are actually
interested in AT z = yu, where yu is an output per feature (where feature and data point
dimension are swapped, or XT ). Hence, yu is not an output for any GP trained on X:
it corresponds to a label per feature. In the original task, the features are “lost” in the
kernel Hilbert space inside the GP, and the attacker has no equation system since there
is no yu.

The existing equation system can only be used to determine the lengthscale iff
there is only one global lengthscale set, and the GP has no other unknown parameter.
Otherwise, the equation system is not properly specified, and no analytic computation
is possible. We thus conclude that lazy-learning, albeit counter-intuitively, is not less
privacy resilient that other classifiers. Instead, however, the attacker can take advantage
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Attacker F A I L

Evasion X X X X
Model Extraction l/lengthscale X X X X
Model Extraction k/kernel X X X X
Membership Inference X X X X
Model Stealing X X X X

Table 7.1: Attackers knowledge according to the FAIL model. The symbol X denotes
‘known’ or ‘is altered’, X the opposite.

that GPs are deterministic. A GP with the same parameters and data always yields
the same output. In the following, empirical section we evaluate this type of attack.

Conclusion

GP, as it learns, is vulnerable to evasion attacks. Concerning IP-related attacks, we
can exclude the possibility that the attacker analytically determines training data or
lengthscales, with the exception of a single learned parameter for all dimensions (for
example in a linear kernel).

Empirical study of vulnerability

We now describe our complementary empirical study. We start with the setting including
data-sets, implementation, and parameters. Afterwards, we detail the results on evasion,
model reverse engineering and membership inference.

Threat model

We specify the different adversaries of our empirical study. In the FAIL [126] model, F
denotes the attacker’s knowledge about the features. A denotes knowledge about the
algorithm applied and I about the training data. L summarizes whether changes to the
data by the attacker are constrained. A succinct overview for each attack is given in
Table 7.1.

Evasion. Our attacker knows and changes all features, but is oblivious about the
training data and the algorithm.

Model reverse engineering (l). The attacker only knows a GPC with an
RBF kernel is used. The data knowledge varies from black-box to white box, without
modifying samples.

Model reverse engineering (k). The second attacker only knows GPC is
applied. Yet, she uses the zero and the ones vector as input, and is thus not constrained
on features.

Membership inference. We assume a worst case scenario, where the attacker
obtained a large fraction of data labeled as part of the training set. The attack is not
tailored for the learning algorithm, and does not alter the input.
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short l long l

Data-set n l Accr Acc l Accr Acc

Hidost 500 .5 98.4 98.4 1.9 97.7 99.6
Drebin 750 .5 54.4 94 1.9 94.8 94.8
Spam 500 .3 92.6 91.7 5 92.7 90.2
Bank 500 .3 100 100 2 100 100
MNIST91 500 1 98.9 98.3 8 99.5 99.5
MNIST38 500 1 93.4 93.4 8 97.4 97.1
SVHN91 1500 8 85.4 88.5 16 83.8 87.6
SVHN10 1500 8 88.7 88.7 16 88.7 88.7

Table 7.2: Number of samples used in training n, lengthscales l and accuracies (rejection
if y∗

t = 0, written Accr).

Model stealing. In our setting, model stealing on a GP can be seen as a
combination of the previous two attacks.

Experimental setting

We first describe the general setting. Specifics are given jointly with the corresponding
attacks.

Implementation. We use Python and GPy for the Gaussian Process approaches [45].
We show further information on the trained GPCs in Figure 7.2, such as the number of
training samples and lengthscales used and achieved accuracies. To obtain adversarial
examples, we use Tensorflow [82] and the Cleverhans library 1.0.0 [44] for DNN, and
other public implementations [P2, 17].

Parameter choices. We train our GPC using the RBF kernel with a predefined
lengthscale. This GPC is fitted until convergence or for 100 iterations. For each task,
we chose two lengthscales that achieve similar accuracy (see Table 7.2). More details on
how we determined the two used lengthscales can be found in a long version of [P5].

Evasion / adversarial examples

We expect that a GP with a long lengthscale misclassifies fewer adversarial examples:
A larger perturbation δ is needed to cause the same change in the output.

Setting. To obtain adversarial examples independent of the specific curvature, we do
not craft on the GPCs tested. We instead transfer FGSM, JSMA and Lx attacks from
deep neural networks, linear SVM and a GPC substitute. Our intention is to study a
wide range of attacks, including optimized, unoptimized, one-step and iterative attacks
as well as different metrics (L0, L2, and L∞). We summarize all attacks based on the
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Figure 7.2: Vulnerability and curvature in GPC. Above zero denotes that more examples
are correctly classified by a GPC with long l, below zero with short l.

Jacobian in JBM, sort FGSM according to ε and plot the Lx attacks according to the
norm optimized (for example L2 for the L2-norm attack).

We compare how well the previously chosen lengthscales recover the correct class
when facing adversarial examples. In our plots, a value above zero denotes that the
shorter lengthscale classified more data correctly, where the numbers are difference in
absolute percent. Below zero, a longer lengthscale (flat curvature) performed better.

Results. We plot the results of our experiments in Figure 7.2. A short lengthscale
generally classifies more adversarial examples as their original class. In particular on
L∞ attacks (with ε > 0.01), a short lengthscale performs better. A long lengthscale is
advantageous for optimized attacks like L2.

We also investigate how lengthscale affects rejection, as our preliminary results
show only a slight advantage for steep curvature GPs without rejection. In Figure
7.3, a negative number denotes how much absolute percent the reject performs better
compared to a classifier without reject. A positive number means that accuracy for
rejection is worse. There is no difference in vulnerability to evasion for a long lengthscale.
For a short lengthscale, the effect is positive or neutral, with only two negative cases.
These two cases stem from the highly imbalanced Hidost data set. By chance, the
assignment of the forced classification was in favor of the larger class.

Conclusion. Only classifiers with steep decision functions benefit from rejection. We
hypothesize that a short lengthscale allows for larger areas where the rejection area is
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Figure 7.3: Vulnerability, lengthscale and rejection option in GPC. Above zero denotes
that more examples are correctly classified or rejected by a GPC without a rejection
option.

actually used, whereas a long lengthscale leads to confident classification in areas where
no benign data was seen.

Model reverse engineering

Model reverse engineering refers to the retrieval of hyper-parameters of the model. We
introduce two new attacks to reverse engineer GP’s lengthscale and kernel.

Setting (lengthscale). We pick the same lengthscales as before and evaluate whether
the attacker is able to determine the lengthscale of a target GP. The attack is a
binary search to obtain l. The distance between the outputs of two GPs shrink as the
lengthscale chosen by the attacker, la, approaches the original lengthscale l. We evaluate
three settings: Training GPC on the same data as the victim, mixed (half/half) and
disjoint data. In each setting, we train 50 GPCs, starting with a lengthscale la=0 = l/2
and increasing the lengthscale in 50 steps of (1/50)l. We then compute the absolute
difference between the outputs of the GPCs on hold out, unused test data.

Results (lengthscale). As GPs are deterministic, all distances decrease towards the
original l when the training data is fully known. We thus omit plotting these results,
and study the more interesting cases of mixed data.

For mixed data (upper plots of Figure 7.4), the results are less clear. In general,
distances decrease towards l. Given a long lengthscale, the distances are smallest around
l. An exception are SVHN and Spam, where the distances remain constant for all las.
On Drebin, the distances are smallest around l + (l/2). The results vary for a short
lengthscale: for some data sets (MNIST91, Bank) the distance is closest to l, For others
(including SVHN and Malware), the smallest distance is l/2.
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Figure 7.4: Normalized, absolute differences in output for different data sets when binary
searching a GP’s lengthscale. x-axis is La; hence at l, lengthscales are equivalent.

In case of disjoint data sets (bottom plots of Figure 7.4), the results are even less
pronounced. The distances slightly decrease towards the original lengthscale, yet the
average minimum is at a lengthscale > l. In case of a short lengthscale, there are no
differences at all. An exception are the two MNIST tasks, where again the minimum is
> l.

In general, a lengthscale can be approximated using binary search. More concretely,
the estimate is close when the original lengthscale is long: The difference to the original
lengthscale is then between 0.006l and 0.008l. This corresponds to wrongly estimating
the largest lengthscale of SVHN by 1.28 (17.28 instead of 16.0) or the smallest (Bank)
by 0.16 (estimating 2.16 instead of 2.0). For a short lengthscale, the estimate for
MNIST91’s lengthscale is around 1.04 instead of 1. For cases except MNIST91, the
estimate is inaccurate or indeterminable.

Setting (kernel). The goal of the attacker is to determine the kernel used in a black-box
GPC. We assume the victim uses one of the following kernels, RBF (with the same
lengthscales as before), linear, or polynomial. We exclude the results on Drebin with
the linear and polynomial kernel, as their accuracies are close to a random guess.
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Attack description (kernel). An RBF-kernel will output close to zero far away from
seen data. Hence, we input the target GPC a zero and ones sample and deduce an
RBF-kernel is used if the output is close to 0.5. We also use a more extreme, easy to
defeat variant of this attack where the given samples contain only features equivalent to
±10. To preserve feature meaning, we could also compute an unusual, far away sample.
Due to the diversity of our data-sets, we leave this variant for future work.
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Figure 7.5: Stealing the kernel of a GPC (columns),
Xdenotes successful extraction. × denotes a failed
attack, (X) that the attack succeeded only in an
easy-to-defeat variant. Some cases were not evalu-
ated (/) as test accuracy was too low.

In case neither output is 0.5,
we run a second round of queries.
We assume a linear kernel is
limited in its expressivity, and
leads to less confidently classified
data. We thus submit a batch
of test points, and classify a ker-
nel as polynomial (nonlinear) if
the distribution of outputs is bi-
modal with most values scattered
around 0 and 1. We hence com-
pute the mean of the values above
and below 0.5. The threshold for
the decision is that both means
are further apart than 0.7. This
threshold was determined on the

additional credit data-set [72], which is otherwise not used in this evaluation.
We train different GPCs, each using a different kernel (RBF kernel with several

learned lengthscales, linear, polynomial kernel). The attacker determines, with the
above heuristics, the used kernel. Our results are depicted in Figure 7.5.

Results (kernel). In the majority of cases, the attack succeeds independent of length-
scale or kernel used. In three of eight cases, the linear kernel is wrongly determined as
nonlinear, indicating that it confidently classified the data against our expectation. In
one case, on the spam data, the polynomial kernel is wrongly determined as RBF kernel.
There are also some cases on the Bank and SVHN data-sets where the RBF kernel is
only correctly predicted if we use the ±10 -filled samples. Otherwise, the attacker’s
classification is that the victim uses the polynomial kernel on bank, or the linear kernels
on the SVHN tasks.

There are very few differences between using full test data, 500, 50, or as few as 10
samples for the linear/nonlinear query. Only on the Bank data-set the linear kernel
was classified as polynomial kernel using 50 samples or less. All other results remained
consistent.

Conclusion. Empirically, the lengthscale can be recovered easily if the training data is
(partially) known. This relates to the GP being deterministic. Otherwise, the attacker
can reasonably well approximate the lengthscale given that the targeted GPC has a
long lengthscale. We hypothesize that the long lengthscale is easier to extract as it is
less prone to small changes in the data distribution. The kernel is, instead, easy to
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deduce independent of the lengthscale. Our attack currently fails if the linear kernel fits
the data well (MNIST, Malware) or the polynomial kernel’s decision boundary passes
the origin or the ones vector. With a long lengthscale, the RBF kernel (Bank, SVHN)
outputs relatively large values even far away from the data. Yet, we find no absolute
value for this to happen. Another natural defense to our attack are custom-based kernels.
We leave this cases for future work, and conclude that our heuristic works well for the
given data-sets and the kernel set {RBF, linear, polynomial}.

Membership inference

We investigate how good an attacker can determine which points were used in training.
First, we study the general setting. Afterwards, we investigate particular settings
influencing the attackers success: overfitting, distribution drift, and sparsity.
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(a) Classifier trained on variance (triangles) or mean
(dots).
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(b) Training on mean and variance (square) or latent
mean (star).

Figure 7.6: Lengthscale and membership inference
on GPC. Bigger symbols denote a long, small sym-
bols a short lengthscale of targeted GPC. x denotes
random guess.

To study a worst case sce-
nario, the attacker has an oracle
that labels a large fraction of the
training data as such. This at-
tacker is slightly stronger than
the shadow models used in [118].
The attacker trains a fresh classi-
fier that predicts membership for
unseen data points.

Setting. The target GPs are
trained using the same length-
scales as before. We then build a
data-set using the output of the
GPs and membership labels indi-
cating if a data point was used
in training. The data-set is split
randomly in test data (50 points)
and training data (the remain-
der). The training data is used
to train a fresh classifier. We
tested DNN, decision trees, ran-
dom forests and AdaBoost classi-
fiers. As the random forest classi-
fier performed consistently best,
we applied only random forests.
We report accuracy and random
guess on the test data.

Results. We train the random forests on predictive mean (dots), variance (triangle)
(Figure 7.6a), mean and variance (squares), or the unnormalized, latent mean (stars)
(Figure 7.6b). Overall, using only the predictive mean and a long lengthscale (larger
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markers), no data set is vulnerable, with the exception of the two Malware data sets.
For mean and variance and latent mean settings, the attacker succeeds in both cases
on all SVHN tasks or when using a small lengthscale, with the exception of non-vision
tasks. The attacker is also successful on the Malware data sets with a long lengthscale.

On the bank and spam data, the attack is never successful. In general, a shorter
lengthscale is more vulnerable. On the Malware data sets, the inverse holds: here, a
short lengthscale benefits the defender. Before we focus on these cases, however, we
investigate what enables the attacks on the SVHN data and why a short lengthscale is
beneficial for the adversary.

Overfitting, distribution drift, and sparsity. We compare training and test accuracies
to measure overfitting. On the bank data, training and test accuracy are both 100%.
On all other data-sets, the difference between test and train accuracy is smaller for
a long lengthscale. Hence, slight overfitting occurs at short lengthscales, and enables
membership inference.
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Figure 7.7: Accuracy of membership infer-
ence on a sparse GPC. Bigger symbols de-
note a long, small symbols a short length-
scale on targeted GPC. x denotes random
guess. Left plot: Classifier trained on vari-
ance (triangles) or mean (dots). Right: Train-
ing on mean and variance (square) or la-
tent mean (star).

To analyze distribution drift, we
measure the standard deviation over the
distances between training and test data.
As GP adapts the similarity during train-
ing, we expect the test data to cause larger
variance in the distance if the data is dis-
tributed differently. All SVHN and the
MNIST8 settings with a small lengthscale
show a variance two magnitudes larger be-
tween test and training data than among
either. Thus, the attack was enabled as
training and test data were different from
the perspective of GPC. This might imply
that the model is not expressive enough
to model the data in detail.

Two cases of successful membership in-
ference are left unexplained: the Malware
data-sets, Hidost and Drebin. We suspect
that sparsity causes the vulnerability.
The average percentage of features > 0 on
the full data-set is < 0.001%±0.0006 on
Drebin and ∼ 12%±3.8 on Hidost. Next
is MNIST (1 vs 7 with around 14%±4.1,

1 vs 8 with ∼ 16%±6.5 and 8 with ∼ 18%±5.2). All other data-sets exhibit less sparsity
(> 20%, Spam) or well above 70% (all remaining data-sets).

The difference in sparsity between Hidost and MNIST is small, yet the discrepancy
to robust data-sets (Bank, Spam) is large. To account for sparsity, we apply a GPC
using inducing variables (GPy’s sparse GPC). Such a GPC also optimizes over the
training points: the training data is then not directly stored.

In Figure 7.7, we investigate the same settings from the previous study. The
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attacker’s accuracy is now on all settings close to a random guess, with the exception of
a short lengthscale for Hidost on mean or variance, latent mean, or mean and variance.
For Drebin, a very small improvement over random guess occurs when a short lengthscale
is used and the attacker accesses the GP’s predictive mean and variance.

Conclusion. Even under a strong attacker, membership inference is not successful
when there is no distribution drift, overfitting is properly taken care of, or a sparse GP
with a long lengthscale is applied. Robustness of GPs towards membership inference is
somewhat expected, as a GP is not required to be overly confident on training data.
The effect of the lengthscale is also intuitive. A short lengthscale allows each training
point only local influence, easing inference about membership. With a long lengthscale,
each point influences a large area, making it harder to locate the exact training point.

Conclusion

Previous chapters have shown that although education is helpful, defending one attack
can already be hard. In this section, we showed that in general, attack vectors on
classification should not be seen in isolation, as a mitigation towards one attack might
enable or ease another attack.

Formally, we show that evasion is enabled by learning, and any learned GP is
vulnerable. Against possible intuition, lazy learning is not per se more vulnerable
towards IP attacks. Still, a re-computation of the lengthscale is possible if kernel and
the training data are fully known. Yet, no further parameters can be analytically
retrieved from given output.

We also study empirical vulnerability, and leveraged the property of a GP to fit a
model with a predefined decision function curvature. Summarizing, a short lengthscale
leaks the data, and is vulnerable to optimized evasion attacks. A long lengthscale leaks
the parameters of the GP, and is vulnerable to one-step attacks with large ε. The kernel
can be determined independent of the used lengthscale.

Although our experiments have been carried out only on GP classifiers, preliminary
work suggests that similar trade-offs might exist on other classifiers such as deep neural
networks [79]. In this sense, this chapter shows the need of such works, as we conclude
that attacks on classification should not be studied in isolation, but in relation to each
other.
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CHAPTER 8. THE LOTTERY TICKET HYPOTHESIS

Introduction

In the previous chapters, we have seen different aspects of ML security, and why
obtaining a robust model, in particular against possibly several attacks at once, is hard.
In this section we will conclude this thesis with a more optimistic perspective: how
understanding ML algorithms better imrpoves our knowledge in AML as well.

To this end, we will investigate the lottery ticket hypothesis. This hypothesis focuses
in the winning subnetwork that emerges from an iterative pruning process. As a security
researcher, one might be curious if this winning ticket can be altered such that the
victim obtains a model that is not optimal anymore. However, it turns out that the
iterative pruning procedure effectively picks a new winning subnetwork each training.
The overlap between to runs does not exceed what would be expected if the tickets were
chosen randomly. Although this knowledge fails to yield an attack, it does increase our
knowledge about neural network training and lottery tickets.

Experimental setting

We describe our experimental setting, starting with the network architecture, the details
of training and the used baselines. We apply a convolutional network, consisting in two
convolutional layers (with 6 and 16 5×5 filters each) and max-pooling. Two dense layers
(with 120 and 84 units, respectively) follow before the softmax output. We further train
a small ResNet18 [50] to verify that our results hold independent of model size. We
generally plot all layers of the small networks and chose randomly five layers of the
ResNet (1,11,12,18, and 19) for visualizations. Additional layers can be plotted using
the supplementary material.

Each network is trained for 15 epochs—we train few epochs as previous work shows
that winning tickets emerge early in training [1, 36, 146]. We further obtain the winning
tickets as stated in [147]: given a percentage, we prune this percent of the smallest
weights at the end of training.

The experimental set-up is visualized in Figure 8.1a. We choose five initial weight
initializations (five random seeds). These five initial weights are kept, however we do not
fix any other randomness. On each of the five initial weights, we run five independent
iterative pruning procedures. Each of these five runs yields one final ticket in six pruning
steps, as visualized in Figure 8.1a. At each pruning step, we prune 50%, 60%, 80%,
90%, 95%, and 98% compared to the size of the initial/original weights. Relative to the
kept weights, from first to second step, 20% more weights are pruned. We prune slightly
more weights for the ResNet, using percentages 50%, 60%, 90%, 98%, 99%, and 99.9%.
The reason is that accuracy is fairly stable for the percentages above, possibly due to the
larger weight matrices or more overall weights due to skip connections (see Figure 8.1b).
With the given setting, the small networks perform best in pruning steps one, and two,
and afterwards decreases with stronger pruning. The ResNet performs best in pruning
iteration one, two and three, then, accuracy decreases. We also investigate cases of very
small masks with decreased accuracy, as these networks still show good performance
relative to their size. For the remainder of the paper, we use the terms mask and ticket
interchangeably.
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(a) Experimental set-up, example using Fashion
MNIST.
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(b) Accuracies of pruning steps.

Figure 8.1: (a): Experimental set-up. We fix an architecture and derive initial weights
for a seed. These same weights are trained five times, computing tickets in an iterative
retraining process. We compare the tickets obtained from one seed (A), across seeds
(B), or across tasks (not visualized). (b): Accuracies for tasks, networks, and pruning
steps. From top to bottom: Fashion MNIST, CIFAR10, ResNet18 on CIFAR10. Each line is
one run, each color shade one seed. Plots are best seen in color.
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Figure 8.2: Percent overlap between masks across ini-
tializations. Left side: Fashion MNIST, first pruning step, as
violin plot. Right, upper two: CIFAR10, fifth pruning step.
Right, lower three: ResNet on CIFAR10, third pruning
step. Gray curve is the hyper-geometric PMF.

The amount of a random
chance overlap between two
masks is determined using the
hyper-geometric distribution.
It specifies given a population
(size of weight matrix m × n)
and a number of objects with
a particular feature (e.g., is
part of mask M1) how large
the expected overlap is when
drawing x new objects (e.g.,
weights from mask M2). In
other words, in our case the
hyper-geometric distribution is
parametrized by the number of
individual weights mn and the
size of the ticket |t| < mn. For
a number of successes or over-
laps x < mn, its probability
mass function is specified by

p(x) =
(|t|
x

)(mn−|t|
|t|−x

)(mn
|t|
) . (8.1)

In Figure 8.2, we plot the overlap of masks across tasks (denoted as B in Figure 8.1a).
The observed overlaps (colored area or dots) fall within areas of high probability mass
(gray curve in 8.2), confirming our choice. Hence, we depict this baseline in all of the
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CHAPTER 8. THE LOTTERY TICKET HYPOTHESIS

following plots that show overlaps between tickets.

Experiments

Previous work mentions that there might be several, not one, winning ticket in each
network [146]. We confirm in our setting that there are several wining tickets: for each
initialization, we run the training-pruning-resetting procedure five times, and measure
the distance between the obtained masks. Indeed, the masks are not equivalent, but
vary greatly. As they show no overlap beyond chance, we investigate whether there are
shared/unused weights beyond chance, or rank correlations between masks. We then
check whether the tickets are equivalent under weight-space symmetry. As a final sanity
check, we rerun some of the experiments with partially fixed randomness and confirm
that these tickets do show overlap beyond the expected baseline.

Are winning tickets unique?

We compare the overlaps between all tickets generated from one initialization (case A
from Figure 8.1a) after iterative pruning. More concretely, we consider pruning levels of
80% (Fashion MNIST), 95% (CIFAR) and 98% (ResNet, CIFAR). Five training runs are
compared among each other, where we count any similarity once, yielding 10 values for
each seed. Each experiment contains five seeds or initial weights, yielding 50 similarities
in total. We compare the overlaps to the hyper-geometric baseline, which we plot in
gray. To ease comparability across layers, all overlaps are shown in percent of the mask
size in Figure 8.3.

Results. On Fashion MNIST (Figure 8.3a), the expected overlap lies around 10%. The
first layer’s overlaps are less than 20%, with some overlaps at 26%. The second layer’s
overlaps range between 5% and 15%. The third layer’s overlaps are scattered with low
variance around 10%. Analogously, the fourth layer’s overlaps show little variance, and
are scattered around 10%. The last layer’s overlaps vary between 3% and 20%.

On CIFAR (Figure 8.3b), we investigate a smaller ticket, sized 10% of the original
weights. The expected overlaps vary around 5%. In particular the first layer exhibits
overlaps smaller than 20%. The second layer’s overlaps also match the baseline, varying
between 0% and 12%. The overlaps of the third and fourth layer are scattered closely
around 5%, where the fourth layer shows (as expected) slightly higher variance. In the
last layer, overlaps lie between 0% and 15%, with an outlier at 19%.

The expected overlaps of ResNet are around 2.5%, as we consider a small ticket of
only 10% of the original weights. The first layer exhibits, as expected, overlaps between
0% and 12.5%. The eleventh, twelfth and eighteenth layers overlaps vary between 0%
and 5%. In the second layer, some outliers show overlaps of 7%. The last layer shows
slightly higher overlaps, as expected, of up to 10%.

Conclusion. Tickets for the same initialization are not equivalent, and show barely
more overlap than expected when we consider the hyper-geometric distribution as a
baseline.
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(b) CIFAR10, 90% of
weights pruned in 4
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(c) CIFAR10, 90% of
weights pruned in 3
iterations.

Figure 8.3: Percentage of overlap between pruned masks (pruning after 15 epochs) of
5 runs, each using 5 initializations. Each initialization is one shade, y position is based
on seed and carries no further meaning. The gray curve denotes the PMF of overlaps
given the hyper geometric distribution.

Are there similarities beyond overlap between tickets?

To verify that there are not structural similarities that we missed in the previous
experiments, we investigate how much individual tickets for one initialization vary, and
how unique they are. In this step, we again compare within one initialization (A in
Figure 8.1a). To compare uniqueness, we compute for each initialization how many
weights are contained in all five masks obtained from randomized training. Further, we
investigate the inverse question: how many weights are always pruned, and never form
part of a mask. To capture another form of relationship, we plot the rank correlation
between initial and final weights. We then draw an overall conclusion.

How many weights are shared?

We first plot the weights forming part of all five masks for one initialization. To ease
understanding, we normalize the number of weights and plot percentages in Figure 8.4a.
100% denote the maximal number of weights that can be shared, e.g. 50% of the weights
for pruning step one, 40% for pruning step two, etc. Since we compare repeated trials
(overlap between several masks), the hyper-geometric is not a valid baseline.

We now derive an approximation to compute the overlap of repeated trials. Consider
that we cannot use the binomials, or other distribution with replacement here. The
hyper-geometric from the background section, however, does not allow for repeated trials
with replacement. We hence approximate the baseline based on the hyper-geometric.
First, we define the population size (size of the weight matrix) mn, the size of the
successes τ and the number of draws |t|. Initially and in the main paper, |t| = τ . We
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now recap the mean and variance of the hyper-geometric given as

µ = |t| |t|
mn

and σ = |t| |t|
mn

mn− |t|
mn

mn− |t|
mn− 1 . (8.2)

Our main task is to compute an approximation for the number of all drawn weights.
We first compute τ as only overlap among tickets. For the second drawn ticket, the
expected overlap with the first is

τ1 = |t| |t|
mn
± |t|mn− |t|

mn

mn− |t|
mn− 1 . (8.3)

We focus on the average overlap first, and then derive the variance. For the next
ticket, we write the probability that it overlaps with the weights that were shared by all
previous tickets. Hence, the mean for τi with i > 1 is

τi = |t|τi−1
mn

. (8.4)

Since we run 5 independent runs, we need K4 (5− 1, as the first ticket does not overlap)
in this case.

We now approximate the variance. After [101], 3× the variance of uni-modal
distributions contains roughly 95% of the distribution’s mass. We hence additionally
compute the overlap with 3× the hyper-geometric’s variance,

τmax
i = |t|

τmax
i−1
mn

+ 3|t|
mn− τmax

i−1
mn

mn− |t|
mn− 1 . (8.5)

The difference between τmax
i and τi can then be used to approximate the variance of

the underlying distribution. Since we do not know the shape of the true distribution,
we will use the estimated mean and variance as parameters for a normal distribution.
As however 95% of the mass are contained in 2× the variance of the normal, we use
0.5× (τmax

i − τi) as variance to preserve the ratios.

Results. All networks generally share roughly the same, low amount of weights. The
amount of shared weights decreases with higher pruning rate, as predicted by our
baseline. The shared weights also slightly decrease as we go deeper into the network and
consider later layers. The standard deviation between different runs is generally low.

The Fashion MNIST tickets exhibit the highest overlap (10% shared weights) in the
first layer at lowest pruning level (50%). Both inner and later layers show slightly lower
percentages of shared weights, roughly around 7%. Analogously, the number of shared
weights decreases to 0 in the third pruning iteration. The standard deviation between
the different runs is overall very small.

The shared weights for CIFAR10 are analogous, and decreases for the first layer as
we iterate pruning. Here as well, 0% shared weights are reached at pruning iteration
three. The initial overlap is slightly lower than Fashion MNIST, and lies around 8%.
Going though the network, in this case, seems not to affect the amount of shared weights.
At the second pruning iteration, the overlaps are very low. As for Fashion MNIST, the
variance of the shared weights across runs is small.
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(a) Percent of weights in all masks.
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Figure 8.4: Influence of the initial weights on the tickets. Blue is Fashion MNIST, red CIFAR,
yellow ResNet on CIFAR, and black denotes the standard deviation between the five
runs. Gray denotes an approximated baseline. As before, the plotted layers for ResNet
are first, 11th, 12th, 18th, and 19th. (a) Percentage of weights shared by all five obtained
tickets (for one initialization, normalized by mask size). (b) Percentage of weights not
contained in neither five tickets (for one initialization). Right: The left half of the plot is
normalized by layer size. The right half is normalized by the maximal disjoint coverage
of the masks (e.g., for pruning level 98: 2× 5 = 10%).

On ResNet, the results are similar to the two smaller networks. The shared weights
do not change for the first pruning iteration when going deeper into the network. The
first layer reaches zero in pruning iteration three. For deeper layers, the are no shared
weights already in iteration two (layer 18, 19).

How many weights are left out?

We now investigate which weights never form part of any ticket. For smaller mask sizes
(pruning level > 80%), it is impossible that the five masks cover all weights. We thus
normalize by the maximal coverage of all five masks or layer size, whichever is smaller.
The results are plotted in Figure 8.4b. As in the previous case, we need a baseline.
However, the hyper-geometric only determines the overlap between tickets. We want to
compute the weights that are in at least one ticket. By the complementary probability,
we then obtain the number of weights that are in no ticket. The subsequent derivation
differs only slightly from equation 8.4. To obtain all weights that are covered, we add
the overlaps and also remaining, not overlapping weights. The first ticket counts fully,
hence τ0 = |t|. For i > 0, we write as above

τi = (|t| − |t|τi−1
mn

) , (8.6)

with the difference that we subtract the overlap and need to compute
∑
τi. The number

of weights not covered on average by any ticket is then mn−
∑
τi.

Analogous to the previous section, we approximate the spread by computing the
maximal intersection and use this value to estimate the variance. After [101], 95% of
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weights pruned in 3 itera-
tion.
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(b) CIFAR10, 90% of
weights pruned in 4
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(c) CIFAR10, 90% of
weights pruned in 3
iterations.

Figure 8.5: Rank correlation between initial weights and weights in masks (pruning after
15 epochs), each using 5 initializations. Each initialization is one shade, y position is
based on seed and carries no further meaning.

any uni-modal distribution is entailed in 3×σ. We hence consider the largest overlap as

τmax
i = |t| − |t|

τmax
i−1
mn

+ 3|t|
mn− τmax

i−1
mn

mn− |t|
mn− 1 . (8.7)

and obtain the largest covered weights as
∑
τmax
i . The difference between these two

terms leads to an approximation of the real variance. To preserve the interpretation of
the 95% interval, we plot the distribution with mean and set the derived variance as 2σ
of a normal distribution.

Results. The amount of weights contained in no ticket is the same for Fashion MNIST,
CIFAR10 and ResNet. All values lie within their corresponding expected baselines.
In the first pruning step, the amount of not-contained weights is similarly low for all
cases, and lies around 2− 3%. The amount increases over 10% (pruning 60%) to 30%
when pruning 80% of the weights. For smaller tickets, when seen in relation to the
area possibly covered, the percentages decrease again. There are no differences for any
network when considering inner or later layers.

How much do the initial weights impact winning tickets?

To investigate another form of potential structure across tickets, we compute the rank
correlation between the initial weights and the weights of the resulting winning tickets
(setting A in Figure 8.1a). A high correlation of 1.0 implies that the order is preserved,
−1.0 means the order is inverted, 0 that there is no relationship in terms of rank
correlation. We plot the results in Figure 8.5.
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Results. The Fashion MNIST correlations are centered for all layers around 0, with
differing variances. The first layer’s correlations lie between −0.4 and 0.2. The corre-
lations in the second layer range around −0.05 and 0.05. The third and fourth layer
exhibit correlations between −0.2 and 0.2. The last layers correlations vary greatly
between −0.7 and 0.6.

The small network on CIFAR ten shows, albeit for a smaller ticket, the same pattern
as the Fashion MNIST network. The first layer varies between −0.3 and 0.4. The
second, third, and fourth layer show little variance, with correlations scattered between
−0.2 and 0.2. The last layer show larger variation in correlations, which exhibit values
between −0.6 and 0.6.

In contrast to the previous two small networks, the ResNet shows almost no variance
in the correlations, which are all scattered with very low variance around 0. An
exception are the first, and in particular the last layer. The first layer shows slight
positive correlations which are smaller than 0.1. The eleventh, twelfth and eighteenth
layer exhibit correlations around zero with low spread. The last layer’s correlations,
however, lie between 0 and 0.4, with an outlier at 0.75.

Conclusion There is no significant amount of shared weights, or weights that never
form part of any mask. The rank correlations between initial weights and final weights
for small tickets vary and are centered around 0. First and last layer of the small
networks show larger variance in correlations. The ResNet shows less variance of
correlations, with the exception of the first and the last layer. In general for ResNet,
however, correlations are zero or positive, never negative.

Are tickets variations over the same network?
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Figure 8.6: CKA similarity between winning tickets
within (blue, left) and across (gray, right) seeds for
Fashion MNIST.

One might be tempted to ex-
plain the differences in tick-
ets by weight-space symmetry:
The differing networks would
then, in fact, be just variants
of the same network. To show
that this is not the case, we
take advantage that networks,
if equivalent in weight-space,

will yield the same output (as the variations do not touch functionality). We computed
the L2-distance and depict it on the Fashion MNIST network, where outputs are most
similar. We plot the distances of outputs of tickets in for one seed (blue, A in Figure 8.1a)
as well as distance among seeds (gray, B in Figure 8.1a) in Figure 8.6.

Results. There are not two tickets yielding the exact same input.The distances between
tickets first decreases as the pruning level increases, then decreases, somewhat similar
to the accuracy. The distances across seeds remain stable for the first three pruning
iterations, and then increase. The distances across seeds are overall lower than within
seeds.
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Conclusion. The distance between the outputs increases as we prune iteratively and
harvest smaller tickets. As the distance is never zero, we can refute the hypothesis that
different tickets are instances of the same network under the weight-space hypothesis.
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(e) Overlaps.
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(f) Rank Correlation.

Figure 8.7: Repeating the previous experiments with slightly fixed randomness. (a):
accuracies of different pruning stages. (b): overlaps between CIFAR tickets in the
fourth pruning iteration. (c): overlaps between ResNet masks in the third pruning
iteration. (d): overlaps between networks on Fashion MNIST with equal-sized layers. (e):
overlaps across tasks with same initialization at pruning level 4: green denotes overlap
between Fashion MNIST and MNIST, purple between CIFAR and Fashion MNIST. (b) rank
correlations on a CIFAR10 ResNet at pruning iteration three.

What is the effect of constraining randomness?

So far, we did not fix randomness at all. Generally, randomness is removed from
experiments to increase reproducibility. In our setting, with no randomness at all, we
expect the tickets to overlap perfectly. We are thus interested in the gray zone, where
randomness is decreased, but not entirely fixed. To this end, we fix randomness in the
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batches, but leave the randomness in the gradients. No data augmentation is used. We
repeat all previous experiments, and depict a subset of the results in Figure 8.7.

Results – accuracies. Figure 8.7a shows that accuracies are overall higher, and now
increase for initial pruning iterations of small networks. Instead of a steady incline, the
accuracies increase at the first pruning step, and decrease later, after the third pruning
step. This holds irrespective of task or architecture, and is similar to the ResNet without
fixed randomness.

Results – overlaps. Also, as expected, the overlaps between tickets are now, due to
decreased randomness, larger than expected by the hyper-geometric. We show results
on a small CIFAR network (see Figure 8.7b) and a ResNet18 (see Figure 8.7c). The
overlaps vary in both cases most for the first, second/eleventh and last layer. In general,
the spread of the overlaps seems related to the variance of the hyper-geometric baseline.
To verify this, we depict in Figure 8.7d a network on Fashion MNIST where all inner
layers have approximately the same size (e.g., 2400 or 2500 weights, first layer 400, last
layer 250). Indeed, the variances of all overlaps are once again strongly correlated with
the baseline. The average overlap seems not to rely on the random baseline, though.

Results – dependence on data. To check how strong the influence of the fixed
randomness is, we compare the overlap with fixed randomness across different tasks in
Figure 8.7e. As the small CIFAR network, due to larger input dimensionality, can only
be compared in layer two, four and five, we train additional networks on the MNIST
dataset [69]. We depict the overlap between CIFAR and Fashion MNIST networks in
purple, and MNIST and Fashion MNIST in green. The expected overlap is around 5%.
For the first layer, the overlap is as expected. The second layer exhibits marginally
higher overlaps. The third layer shows slightly higher overlaps, ranging between 5%
and 10%. Layer four’s overlaps range between 7.5% and 15%, and are clearly distinct
from the expected values. The last layer shows again only slightly higher overlap than
expected, ranging between 0% and 20%.

Results – rank correlations. Last but not least, the rank correlation is now not
centered at or around zero. From Figure 8.7f, we see that all rank correlations are
positive. The first layers correlations are between 0.15 and 0.4. The eighth and twelfth
layers correlations vary around 0.1. The eleventh layer shows slightly higher correlations
which lie between 0.1 and 0.2. The last layer exhibits large variability of the rank
correlations, ranging between 0 and 1.0.

Conclusion. Decreasing randomness also decreases the differences between tickets
and leads to more overlap between tickets, even if networks are trained on different
tasks. The accuracy also benefits from decreased randomness, and is slightly higher.
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Conclusion

When different initializations are used, the overlap between masks is predicted by the
hyper-geometric distribution. Using the same initial weights without fixed stochasticity
corresponds to the hyper-geometric as well. The hyper-geometric assumes that the
probability to chose any element (in our case a weight) is equal to choosing any other
element (weight). In other words, we find no evidence that there is any meaningful
structure in the weights before training has started: the weights in the winning ticket
are chosen at random. Only stochasticity is reduced, the overlaps deviate from the
hyper-geometric.

When investigating the resulting winning tickets, there are no other correlations,
shared or excluded weights beyond chance. The winning tickets are neither instances of
the same network under weight-space symmetry. This highlights the initial large space
of possible winning tickets. Our findings also offer further explanation to why starting
the training for the pruned network not in iteration 0 but slightly later is successful [35,
36]. With a full restart, it is unlikely that the weights move towards the same winning
ticket during training.

We are not able to exploit lottery tickets for training time attack, as changing the
ticket will simply give rise to another ticket. Yet, winning tickets give us an intuition
on why for example transferability for missclassification does not guarantee which class
the targeted classifier outputs [76]. Classifiers, even if trained on the same data with
the same initial weights, might exhibit different outputs on the same outputs. Although
more work is needed to understand how different tickets arise and how they differ in
detail, this work illustrates how both AML and ML knowledge benefit from each other.
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CHAPTER 9. CONCLUSION

In this thesis, we have shown several aspects that make machine learning security a
hard problem. In the first chapter, we showed that evasion as an attack is inherent to
classifiers, as the gradients of their surface can be used to determine features influencing
classification outcome. The second part of the first chapter showed that also models that
seem different (Gaussian process classification and Bayesian neural networks) suffered
from transferability of adversarial examples: computing high confidemce, low uncertainty
attacks on one classifier yielded working adversarial inputs with similar confidence and
uncertainty for the other classifier. This finding can be attributed to the shared training
data, and the resulting similar learned features. An attack was then able to succeed,
although the original target classifier was never interacted with. Such transferability
increases significantly the difficulty to develop defenses against evasion attacks, and
contributes to the ongoing arms-race in evasion mitigations.

In the second chapter, we investigated another attack on classification: We showed
that backdoors rely on underfitting backdoor features. Furthermore, we found that
non-backdoored models contain underfitted sets of features, too. As some mitigations
rely conceptually on the backdoors stable (mis)classification, the question is raised how
to truly now whether the found pattern was inserted malicously during training or not.

In the third chapter, we introduced a new training-time attack taking advantage of
the complexity of deep learning libraries. In contrast to previous attacks, these attacks
were recognizable if the user was aware of the corresponding threat. The implications of
the chapter are twofold. On the one hand, it underlines the importance to educate users
on possible threats and countermeasures. On the other hand, it shows that the full
environment of algorithm needs to be taken into account in security. In other workds,
more research is needed to understand the full extend of the security vulnerabilities
when machine learning is applied.

In the next chapter, we examined several test-time attacks in relation to each other
on one algorithm, Gaussian process classification. We saw that hardening the classifier
against an individual attack was possible, but led to being vulnerable to another attack
instead. It is thus crucial to not consider attacks individually, but in relation to one
another when aiming for security. Our work in this chapter was limited to Gaussian
Process classification, leaving open the question in which way different attacks affect
each other on for example deep learning. Few preliminary works show here that for
example robustness towards evasion increases vulnerability to membership inference.
Yet, overall understanding in this respect is still limited.

In the last chapter, we studied the lottery ticket hypothesis. We showed that the
hyper-geometric is a valid baseline for the overlap of lottery tickets. Under stochasticity,
even if the initial weights are the same, the observed overlaps corresponded to this
hypergeometric. As the hypergeometric assumes all elements to be independant, we found
no significant structure that affected the resulting winning ticket unless stochasticity
is reduced. Our findings backed up prior works finding that starting the training for
the pruned network not in iteration 0 but slightly later is successful. Our results
also highlighted the initial large space of possible winning tickets. Beyond a pure
understanding of the training processes of deep learning, this large space is also related
to transferability of attacks. In this sense, work that invetigates the rôle of stochasticity
in training might thus also help us understand how classifier vary in terms of robustness.
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Beyond this thesis, we have to remark that ML, as a new emerging technology,
also faces the problem that on the one hand, it provides many new opportunities and
chances to deal with existing sociecital problems. Yet, a realistic security assemesment
is crucial to not cause harm by applying ML. As we have seen in this thesis, the aspects
contributing to security of machine learning are numerous and not necessarily on the
same layer of abstraction. Even worse, our understanding of machine learning security is
still incomplete, and new threats are still unveiled. An additional hurdle is that we are
currently lacking an overview about the attacks that occurr in the wild. The difficulty
of collecting such data is rooted in many problems: many systems are proprietary, and
only few cases of severe failure are reported. Furthermore, machine learning or artificial
intelligence are currently buzzwords. As a consequence, different systems are framed
as for example machine learning, and it is hard to asses which concrete threats are
applicable in which case.

Summarizing, incorporating and unifying all aspects of machine learning security
is still an open problem. On the other hand, however, we also have to acknowledge
the positive impact that security of machine learning has had on the field of machine
learning. The discovery of for example evasion attacks and other security breaches has
largely increased our knowledge of machine learning models and how they work.
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