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5     Abstract 

Abstract 

 

The cytoskeleton is a network of filaments in cells, it consists of actin filaments, 

intermediate filaments and microtubules. It is very dynamic and plays a key role in many 

biological processes such as cell migration and cell division. Actin stress fibers are 

involved in force generation, cell retraction and cell protrusion during migration. The 

polymerization and depolymerization of actin filaments regulate cell migration and are 

influenced by the activity of actin binding proteins. Even though no motor molecules bind 

to vimentin, and it does not generate forces, its role is important in the regulation of cell 

migration. To better understand the mechanism of cell migration, it is important to 

understand how cytoskeleton filaments interplay. Therefore, understanding the role of 

vimentin on actin dynamics, and its implication in actin force generation are the two main 

interests of my Ph.D. thesis. 

I first measure actin dynamics in vimentin depleted cells using fluorescence recovery 

after photobleaching. I show that silencing of vimentin expression slows down actin 

dynamics but does not affect the fraction of actin monomers that participate. In addition, I 

show that plectin as a vimentin-actin cross-linker protein does not have the same effect.  

Finally, I study actin force generation using traction force microscopy. I show that 

silencing of vimentin disarranges the distribution of traction forces and adhesion sites but 

does not impact the magnitude of traction forces. 
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Kurzfassung 

 

Das Zytoskelett ist ein Filamentnetzwerk in Zellen; es besteht aus Aktinfilamenten, 

Intermediärfilamenten und Mikrotubules. Es ist sehr dynamisch und spielt eine 

Schlüsselrolle in vielen biologischen Prozessen, wie Zellmigration und Zellteilung. 

Aktin-Stressfasern sind an der Krafterzeugung, Zell-Retraktion und Zell-Protrusion bei 

der Migration beteiligt. Die (De-)Polymerisierung von Aktinfilamenten reguliert die 

Zellmigration und wird durch die Aktivität von Aktin-Bindungsproteinen beeinflusst. 

Obwohl keine molekularen Motoren an Vimentin binden und es keine Kräfte erzeugt, 

spielt es eine wichtige Rolle für die Zellmigration. Um den Mechanismus der 

Zellmigration besser zu verstehen, ist es wichtig die Wechselwirkung zytoskelettaler 

Filamente zu verstehen. Daher sind die zwei Forschungsschwerpunkte dieser 

Abschlussarbeit das Verständnis der Rolle von Vimentin für die Aktin-Dynamik und 

deren Implikation für die Aktin-Krafterzeugung. 

Zuerst untersuche ich daher die Aktin-Dynamik in vimentin-dezimierten Zellen mittels 

„FRAP“. Ich zeige, dass die Geninaktivierung von Vimentin die Aktin-Dynamik 

reduziert, aber der beteiligte Aktinmonomer-Anteil nicht beeinflusst wird. Zusätzlich 

zeige ich, dass Plektin, als Vimentin-Aktin Bindungsprotein, nicht den gleichen Effekt 

hat.  

Schließlich untersuche ich die Aktin-Krafterzeugung mittels „TFM“. Ich zeige, dass die 

Geninaktivierung von Vimentin die Verteilung der Zugkräfte und Adhäsionsflächen 

reguliert, jedoch nicht die Größe der Zugkräfte. 
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1 Introduction 

 

The cells are composed of three main compartments: the cell membrane, the nucleus and 

the cytoplasm. The cytoplasm comprises all the components within a cell beside the 

nucleus and surrounded by the cell membrane. The word “cytoplasm” is derived from two 

separated words: “cyto” means cell and “plasm” means stuff, thus cytoplasm means “cell 

stuff”. The cytoplasm consists of the cytosol, a solution of water, salts, various proteins 

and cytoskeleton filaments, and all the organelles. The proteins associate with each other 

and are involved in cellular processes, such as molecular transport, diffusion, energy 

conversion, cell migration and cell division. The network of protein filaments extends 

through the cytoplasm composes the cytoskeleton.  

The cytoskeleton maintains the cell shape and plays major roles in cell migration and cell 

division. Three types of filaments build up the cytoskeleton: microfilaments (actin 

filaments), intermediate filaments (IFs) and microtubules (MTs) (Figure 1.1).  

 

Figure 1.1 Cytoskeleton filaments 

Sketch of the cytoskeleton of an adhered cell. Actin in red, microtubules in green and vimentin IF in blue. 

(Adapted from [1]). 

 

The actin cytoskeleton is composed of a linear polymer microfilament called filamentous 

actin (F-actin) and actin binding proteins (ABPs). Depending on the ABPs involved in 

actin filament assembly, actin filaments have different shapes, such as actin networks 

(i.e., lamellipodium and cortex) and actin bundles (i.e., stress fibers (SFs)). Actin stress 

fibers are composed of actin filaments, myosin motor molecules and protein cross-linkers, 
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which connect to the focal adhesions at both ends of the filament and transfer forces from 

migrating cells to the extracellular matrix. 

Cell migration is essential to develop and maintain many biological processes within 

tissues and organs. It is sensitive to external signals and occurs during progress such as 

wound healing, immune responses, and procreation. The fundamental mechanisms are 

almost known even though adherent cells (e.g., fibroblasts) and suspended cells (e.g., 

immune cells) behave differently. In adherent cells, migration follows four successive 

steps: 1) Cell polarization: actin filaments polymerize at the front edge of the cell and 

form protrusions (i.e., lamellipodia and filopodia); 2) Cell adhesion: formation of new 

focal adhesion in the direction of cell migration; 3) Cell contraction: the SF bundles 

contract at the cell rear to assist the contraction of the cell body; 4) Cell retraction: the old 

focal adhesions detach and the cell rear retracts to push the cell body toward the direction 

of migration (Figure 1.2). Actin SFs are involved in cell force generation, cell retraction 

and cell protrusion during the migration of adherent cells.  

 

 

Figure 1.2 Cell migration mechanism in the adherent state. 

Schematic drawing of four successive steps of cell migration. 1) polymerization of actin filaments at the 

front edge of the cell to form protrusions; 2) formation of new focal adhesion in the direction of cell 

migration; 3) contraction of the SF bundles at the cell rear; 4) detachment of the old focal adhesions and 

retraction of the cell rear to push the cell body toward the direction of migration (Adapted from [2]) 
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The polymerization and depolymerization of actin filaments (i.e., actin dynamics) 

regulate the rate of cell migration and are influenced by the activity of proteins, such as 

myosin and tropomyosin [3]. Furthermore, the role of other cytoskeleton components 

(i.e., microtubules and intermediate filaments) is important in cell motility and cell 

migration. Vimentin is a subgroup of intermediate filaments, no motor molecules bind to 

it and it does not generate forces to be involved in cell migration; however, it is known as 

a cell migration regulator [4, 5]. It was shown that a lack of vimentin decreases cell 

migration velocity due to a reduction of cell stiffness [5]. A defect in cell migration might 

lead to serious disorders such as invasion and in consequence an increased risk of cancer 

metastasis. Several evidences show that vimentin plays a major role in the progression 

and invasion of the cancer cells [6]. First, vimentin is overexpressed in various cancers 

(e.g. prostate cancer, central nervous system (CNS) tumors, lung cancer and breast cancer 

[7]) which has been shown to be correlated with the enhancement of invasion of 

cancerous cells and tumor growth [7]. Moreover, it has been shown that vimentin is 

necessary for metastasis in human lung adenocarcinoma [8]. Secondly, the 

overexpression of vimentin results in elevation of cell motility and wound healing [9]. 

Understanding how vimentin and actin filaments interplay to carry out cell migration 

might help to find a solution to prevent metastasis. 

In the presented project I investigate the interplay between vimentin and actin filaments. 

Even though no motor molecules bind to vimentin filaments and it does not generate 

forces to directly assist cell migration I hypothesized whether this intermediate filament 

influences actin dynamics and regulates cell migration.  

First, I studied the influence of vimentin on actin dynamics in stress fibers. I used the 

fluorescence recovery after photobleaching (FRAP) technique to measure F-actin 

dynamics in vimentin depleted and control cells. FRAP data were modeled with a first-

order exponential function to obtain two parameters that signify the recovery time and the 

rate of actin monomers that are involved in recovery to define actin dynamics. I silenced 

vimentin filaments via siRNA transfection method as described in chapter 3.2.1. 

Knocking down (silencing) the expression of an individual protein in living cells enables 

studying its role in cell mechanisms and its interactions with the other cell components. 

The amount of silenced vimentin was measured via the western blot (WB) technique and 

is explained in the methodology section (3.5) and the appendix and protocol section 

(11.2).  
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Secondly, I studied the effect of actin bundles thickness on actin dynamics in stress fibers 

via evaluating the actin bundle thicknesses as detailed in chapter 3.7. In chapter 3.9 

vimentin depleted and negative control cells were seeded on crossbow micropatterned in 

order to keep cell shape, cell size, and the position of the stress fibers [10]. Actin 

dynamics in stress fibers in crossbow micropatterned cells was assessed and compared to 

previous results on nonpatterned cells. 

Thirdly, I measured actin dynamics in stress fibers of plectin depleted and negative 

control cells to study whether actin turnover rate is influenced by inhibiting the indirect 

interaction of vimentin and actin, mediated by plectin. Plectin is known as a vimentin-

actin cross-linker [11], and overexpression of plectin elevates migration and invasion of 

cancer cells [12]. To have a deeper understanding of actin dynamics, I studied specifically 

cytoplasmic actin dynamics of vimentin depleted and negative control cells.  

Finally, I measured traction force on vimentin depleted and negative control cells to 

understand the link between the lack of vimentin to either up-regulation or down-

regulation of cell traction forces. 

In brief, the following chapter presents the background related to cell cytoskeleton, the 

interaction between cytoskeleton, and the techniques used in this study. Chapter 3 is an 

overview of the technical skills used for the experiments. Chapters 4 and 5 present the 

results of my Ph.D. mainly on actin dynamics and traction force in vimentin and plectin 

depleted cells. First, I showed that the labeling method to probe the actin monomer 

proteins and the FRAP technique are the proper applications to measure actin dynamics. I 

then found that there is interplay between vimentin and actin SFs, however, vimentin 

does not influence cytoplasmic actin dynamics. I then, showed that plectin plays a key 

role in the amount of actin monomers that are involved in actin dynamics. Next, I 

indicated how the traction force generated via actin bundles is influenced by vimentin. 

Finally, chapter 6 gives a summary of the main conclusions of my study.  
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2 Background 

 

2.1 Cell 

Cells are the basic unit of any living organism. Any cell that consists of a nucleus 

surrounded by a nuclear membrane is called a eukaryote cell. The cells that do not contain 

nuclear membrane and lack any other organelles that have a membrane in eukaryote cells 

are called prokaryote cells. Eukaryote cells are composed of a highly complex system of 

biopolymers, but in general, all mammalian cells consist of the cell membrane, the 

cytoplasm and the nucleus. However, there are some exceptions, e.g., red blood cells do 

not contain the nucleus. Eukaryote cells also contain organelles such as Golgi apparatus, 

mitochondria, endoplasmic reticulum and lysosome. Figure 2.1 shows a drawing of an 

animal cell with its organelles. Some organelles do not exist in all cell types.  

 

 

Figure 2.1 Animal cell 

Principle structure of an animal cell and its organelles. It indicates three main compartments of the animal 

cells: the nucleus, the cytoplasm and the cell membrane and also other organelles such as mitochondria, 

Golgi apparatus, lysosome and endoplasmic reticulum. (From [13]). 
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Understanding the cell behavior and cell function might help to answer the deep root 

questions such as the physiology of tissues and organisms in nanoscale and changes in 

cellular behavior and cellular function during disease progress in cell biology and medical 

research. However, due to the complexity of the cell properties, it is not possible to 

understand the whole behavior of the cells. To study the cells, a bottom-up approach is 

often used, investigating one aspect of the cell functions and the cell properties, and 

finding the interaction between them. In this project, I focused on the interplay between 

two individual subgroups of the cytoskeleton: actin and vimentin.  

2.2 Cytoskeleton 

In cells, the cytoplasm contains water, salts and biomolecules such as proteins. Between 

the nucleus and the cell membrane in the cytoplasm and also in the nucleus there is a 

network of biopolymers known as the cytoskeleton. The cytoskeleton extends inside the 

cytoplasm, maintains the cell shape, and provides cell mechanical properties. 

Furthermore, it is a highly dynamic network that facilitates the cell to deform and 

migrate. The cytoskeleton stabilizes cell-cell interaction via the extracellular matrix 

(ECM) and is involved in cell division [14, 15], cell signaling pathway and intracellular 

(signaling) transport [16]. The cytoskeleton network is composed of three main types of 

filaments: microtubules (MTs), actin filaments, and intermediate filaments (IFs) [17] 

(Figure 1.1). Binding proteins, such as plectin and myosin motor molecules crosslink 

proteins to each other, contribute to the cell mechanics [18] and regulate filaments 

nucleation and elongation.  

2.2.1 Microtubules  

Microtubules (MTs) are polar, hollow tubes with a diameter of 24 nm and are the largest 

cytoskeleton components. MTs consist of an alternation of α- and β-tubulin monomers 

assembly all along the tube starting from the MT organizing center (MTOC) also called 

centrosome (Figure 2.2). The centrosome stabilizes MT minus end. The plus ends 

elongate towards the cell edge. MTs polymerize in both plus and minus ends even though 

at the plus ends it is faster [19].  

MTs are involved in several cellular mechanisms such as vesicle transfer [20], cell 

migration [21], and cell adhesion by interacting with ABPs. 
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Figure 2.2 Structure of an MT. 

An MT fiber consists of the assembly of tubulin dimers composed of two subunits, the α- and the ß-tubulin. 

(From [22]) 

 

2.2.2 Actin 

Since actin was discovered in 1942 by Straub[23], it has been always the object of many 

biological and biophysical studies. It plays a main role in cell motility and cell division. 

During these years many attempts have been dedicated to model the actin structure. 

Models were generated from optical diffraction of actin paracrystals, e.g. the Heidelberg 

model, ribbon-to-helix transition models, and the Hegelman-Padron model are a few 

models that were generated to solve the actin filaments structure [24].  

Actin monomer 

Monomeric actin (also called globular actin or G-actin) built up double-strand helical 

filaments [25] called actin filaments (also called filamentous actin or F-actin). The G-

actin is composed of two specific parts called the pointed end or minus (-)-end and barbed 

end or plus (+)-end. It consists of two major domains that are known as the outer and the 

inner domains [26] (referring to their orientation in filaments) or the small and the large 

domains (referring to their size). These two major domains are divided into four 

subdomains (named from 1 to 4) and binding sites. Two clefts, one between subdomains 

1 and 3, one between subdomains 2 and 4 are formed and consist of binding sites for 

other proteins. Subdomain 1 contains two termini; N, amino terminus, and C, carboxyl 

terminus also called N-terminus and C-terminus. The cleft between subdomains 1 and 3 

(refers to as patch or groove) is mainly hydrophobic and consists of actin binding sites for 
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ABPs such as myosin motor molecules. The other cleft called nucleotide-binding cleft 

(NBC) binds either to adenosine triphosphate (ATP) or to adenosine diphosphate (ADP) 

nucleotides. Figure 2.3 (a) presents a Ribbon diagram of the actin monomer with the four 

subdomains, ATP and N- and C-termini. Figure 2.3 (b) displays a space-filling model of 

actin monomer with nucleotide-binding cleft and barbed-end groove. 

G-actin has approximately a size of 55 * 55 * 35 Å with a mass of roughly 41.7 kDa1. 

The crystal structure of G-actin contains 375 amino acid residues [23] and actin isoforms 

vary only in a few amino acids mainly in the N-terminal. In total three main actin 

isoforms have been identified, α-actin is found in skeletal, cardiac and smooth muscle 

cells (αskeletal-actin, αcardiac-actin, and αsmooth-actin), β-cytoplasmic actin is found in all 

muscle cells (βcyto-actin) and ɣ-actin is expressed in all or only smooth muscle cells (ɣcyto-

actin and ɣsmooth-actin, respectively). β- and ɣ-actin are found in most of the mammalian 

cell types where they have different cellular functions and localization [27]. ABPs 

distinguish between actin monomer isoforms and have a preferred interaction partner 

[28]. As a result actin monomer isoforms are not distributed homogeneously in cells [27]. 

There are several studies about the actin isoform localization in cells. Some studies 

suggest that β-actin and ɣ-actin are completely colocalized in actin filaments [29]. In 

contrast, several studies have shown a low colocalization and found that β-actin localized 

at the leading edge of the cells and in lamellipodia [30], whereas ɣ-actin was 

preferentially located in actin filaments within the cytoplasm [31, 32]. On the contrary 

other studies have shown that β-actin is located in actin stress fibers (SFs) [33] and ɣ-

actin is enriched in actin arcs [31]. Therefore, the exact localization of β-actin and ɣ-actin 

remains an interesting open question but is not the focus of this study.  

 

 

 

 

 

 

 

 

 

1 Kilodalton (1 kDa ≈1.66 * 10-15 µg). 
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Figure 2.3 Structure of G-actin and F-actin.  

a) Ribbon diagram of the actin monomer with the 4 subunits, N- and C- termini and ATP. b) Space-filling 

model of actin monomer with a nucleotide-binding cleft, barbed-end groove and ATP (in red and blue into 

the cleft). c) Scheme for a double-strand form of an actin filament with pointed-end and barbed-end. The 

arrows in the pointed end and barbed end with different thicknesses show the association and dissociation 

rate of G-actin. (Adapted from [34].) 

 

Filamentous actin 

Actin filaments are double-strand helical filaments that consist of G-actin assemblies 

(Figure 2.3 (c)). F-actin has a persistence length of 17 µm [35] and a thickness of about 7 

nm. Actin filaments are highly dynamics polymer microfilaments that are essential for the 

contraction and mobility of the cells. Actin polymerization elongates actin filaments and 

allows the cells to produce forces, and causes the cell membrane protrusion at the cell 

edge [36]. Understanding the polymerization and depolymerization dynamics of actin 

monomers in actin filaments investigates how these biopolymers contribute to cell 

motility and cell contraction [37]. G-actins bind to each other from the (+)-end the (-)-end 

to polymerize into F-actin.  The F-actin growing side is called barbed (+)-end. G-actins 

depolymerize mainly on the pointed (-)-end. G-actin is not a symmetrical molecule and 

after polymerization and assembly, it results in the polarity of the F-actin. Polymerization 
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requires a minimum concentration of G-actin called critical concentration (Cc) and 

hydrolyzation of ATP. The Cc depends on the temperature, the pH, and the ion 

concentration [38] and differs at the two ends of F-actin. The ratio of the dissociation rate 

constant (with the unit of 1/s) against the association rate constant (with the unit of 

1/µM.s) defines Cc (with the unit of µM). The Cc at the pointed (-)-end and the barbed 

(+)-end sides are approximately 0.7 µM and 0.1 µM according to [39]. F-actin nucleation 

is initiated by hydrolyzing ATP at the barbed (+)-end (ATP + H2O= ADP + Pi + free 

energy), where Pi is an orthophosphate (inorganic phosphate group)) in a rate of 0.3 1/s 

[39]. At the minus (pointed)-end, the phosphorylation of the ADP initiates F-actin 

depolymerization. The ATP hydrolysis is faster than ADP phosphorylation; these 

procedures also result in the polarity of the actin filaments. In the presence of ATP Actin 

filaments possess different critical polymerization constants at both ends. Within a certain 

concentration range of actin monomers one end of the actin filament may grow while the 

other depolymerizes. Growing F-actin only on one side leads to treadmilling [39]. 

Treadmilling is known as converting ATP to ADP by hydrolyzation and in consequence 

phosphorylation of actin ADP to ATP [39].  

The actin cytoskeleton is a complex of actin filaments, ABPs, and actin cross-linking 

proteins. In the cytoskeleton depending on the ABPs involved in actin filament assembly, 

actin filaments form three shapes: actin networks (in lamellipodium and cortex), actin 

bundles (such as SFs) and actin rings. Remodeling of the actin structure in the 

cytoskeleton modifies the cell shape, functions and mechanisms. Error! Reference 

source not found. presents different structures of actin filaments, such as antiparallel 

contractile structure in actin SFs, branched and cross-linked network in the 

lamellipodium, parallel bundles in filopodium and cross-linked network in actin cortex. 
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Figure 2.4 Different structures of actin filament. 

The cortex, the lamellipodia, the filopodia and the SFs. The actin cortex forms a dense cross-linked 

network, while in SFs the actin polymerizes into antiparallel contractile structures. (Adapted from [36]) 

 

Actin filament structure and dynamics in different systems (e.g. actin cortex, 

lamellipodia, filopodia, and SF bundle), also depend on ABPs. In the following 

paragraph, the main ABPs and also focal adhesions and plectin as a vimentin-actin cross-

linker protein which have interplay with actin, are described.  

2.2.2.1 Actin binding proteins  

Actin binding proteins mainly provide a large number of actin monomers to polymerize 

actin filaments, initiate new actin filaments nucleation, promote actin filaments 

elongation, cap ends of the filaments to prohibit elongation, link filaments to each other 

and cut filaments to monomers. Figure 2.5 presents the interactions of ABPs with actin 

filaments in order to assemble actin monomers as an actin filament structure. Regarding 

actin SF bundles and measuring actin dynamics in SFs myosin II, α-actinin, and focal 

adhesions are the most important ABPs that are considered here. 
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Figure 2.5 Different aspects of actin assembly. 

ABPs and their contribution to actin filaments assembly and disassembly, such as branching, nucleation, 

elongation, severing. (From [34]) 

 

• Myosin II 

Myosin II molecules are large with a size of 500 kDa and consist of two myosin heavy 

chains (MHCs); each contains a head domain also called a motor domain (N-terminal), a 

tail domain (C-terminal), and a neck domain that connects the head and tail domains. The 

head domain binds to the sides of the actin filaments and the tail domain interacts either 

with the cargo molecules or the tail domain of another myosin. Each heavy chain is 

connected to two myosin light chains (MLCs), which bind in the neck region of the MHC 

(Figure 2.6). MLCs are known as the essential light chain (ELC) with a size of 25 kDa, 

and the regulatory light chain (RLC) with a size of 19 kDa. RLC is phosphorylated by 

MLC kinases (MLCK). RLC phosphorylation acts as a mediator and modulates 

actomyosin contraction. RLC dephosphorylation is catalyzed by MLC phosphatase.  
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Figure 2.6 Scheme of a Myosin II molecule. 

Myosin II consists of two heavy chains (red); each chain contains a motor domain, a tail domain, and a neck 

domain which connects head and tail domains. Each heavy chain is connected to two myosin light chains 

(grey). (From [40].) 

 

 

Myosin II “walks” along actin filaments and which generates forces and provides cell 

migration regulates membrane protrusions, cell polarization, and cell adhesion dynamics 

[41]. Myosin II has three isoforms: myosin II-A (MIIA), myosin II-B (MIIB), and myosin 

II-C (MIIC). MII-A and -B are mostly localized either in the cell center and cell front or 

cell edge and cell rear during the cell migration. MII-A and -B contribute together in 

organizing actin SFs assembly and have an important role in regulating traction force 

during cell migration [42]. Myosin II in non-muscle cells generates contraction force and 

contributes to cell adhesion, cell motility, cell migration directionality, and tissue 

morphogenesis [43].  

• α-actinin 

α-actinin is a cross-linking protein that belongs to the spectrin2 family that binds to actin 

filaments and connects actin filaments to each other. α-actinin furthermore, associates 

with signaling proteins and acts as an actin-regulator. It also interacts with focal adhesion 

proteins such as vinculin and links actin SF bundles and divers signaling pathways [44]. 

• Actin-related proteins 2/3 complex 

 The actin-related proteins 2/3 (ARP2/3) complex is composed of nucleation proteins and 

binds to the actin filaments (mother filament) side. Branches of actin filaments (daughter 

filaments) nucleate and elongate from ARP2/3 complexes on the actin filaments (mother 

filaments). 

 

2 Spectrin is a protein that has a main role as a scaffold in cytoskeleton and plasma membrane. 



32     Background 

• Formin proteins 

Formin proteins (Formins) interact with the barbed end of the actin filaments and both 

initiate and inhibit actin filaments elongation. 

Focal adhesions 

 Focal adhesions are large multiprotein complexes that engage integrin3 to link the 

cytoskeleton to the ECM. Focal adhesions are known as intracellular signaling complexes 

which transmit cell signals between the cytoskeleton and ECM [45]. Under the steady 

situation focal adhesions anchor actin SFs to the ECM, but during the cell migration, they 

constantly disassemble and assemble to contribute to the cell migration process. 

Plectin 

Plectin is a large cytolinker protein (500 kDa) with a multi-domain structure and more 

than 4000 amino acids. Plectin contains one actin binding domain (ABD) and a plakin 

domain in the N terminal, a central coiled-coil rod domain, and a C terminal domain 

which consists of six plectin repeat domains (PRDs) [46, 47] (Figure 2.7).  

 

Figure 2.7 A Schematic representation of plectin protein 

Schematic drawing of plectin: the N-terminal containing ABD and plakin domain, the central rod domain, 

and the C-terminal domain consisting of six plectin repeat domain (blue). The model represents the position 

of the binding regions to intermediate filaments and other cell components. (From [48].) 

 

The ABD in plectin has a multifunctional structure. Plectin binds to actin, integrin, 

nesprin4 and vimentin via ABD. Plectin has eight isoforms. Most of them differ in small 

sequence in their N-terminal. Plectin is expressed in the majority of the cell lines and 

tissues [48]. It has multiple functional domains and associates with various proteins [48]. 

 

3 Integrins are the receptors localized on the cell surface and mediate cell-extracellular matrix and cell-cell 

adhesion. 
4 Nesprins are a family of the proteins that associate the nuclear membrane to the cytoskeleton. 
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Plectin plays the main role to organize the cytoskeleton structure and influences the 

mechanical and dynamical properties of the cytoskeleton. Furthermore, it interacts with 

MT associated proteins, links intermediate filaments and MTs, and associates with focal 

adhesions. Plectin binds to intermediate filaments via its plectin repeat domains in its C-

terminal and also via its N-terminal. It has interplay with intermediate filaments and is 

required for their formation and their directional movement toward [49-52] the cell 

periphery [53]. Actin and vimentin filaments interact indirectly by plectin [50] as plectin 

connects vimentin filaments to each other and to actin filaments [50, 54].  

2.2.2.2 Cortex  

The actin cortex is composed of actin filaments, ABPs such as formin proteins, ARP2/3 

[55] and myosin motor molecules that form a mesh size underneath the membrane and 

link to the membrane via the ezrin5 cross-linker protein [56]. It assists the cells to deform 

their shape during cell migration and cell motion by generating mechanical forces, and 

furthermore, withstands mechanical forces applied to the cell. In the motile state of the 

cell, the cortical proteins make the actin cortex attach and detach from the actin 

meshwork.  

2.2.2.3 Stress Fibers  

Stress fibers (SFs) are contractile bundles of 10 to 30 parallel (in nonmotile cells) or 

antiparallel actin filaments (in motile cells) [57]. They consist of ABPs such as myosin 

motor molecules, α-actinin cross-linker protein, tropomyosin6 [58], actin-depolymerizing 

factor (ADF)/cofilin [59], and titin7 [60].  

In the cell migration process actin SFs form different structures of certain morphology, 

and are classified into four types [61]: dorsal SFs, transverse arcs, ventral SFs, and 

perinuclear actin caps [62, 63] (Figure 2.8). Dorsal SFs extend from the ventral to the 

basal side of the cell and associate from the ventral cell surface to focal adhesions. The 

Dia1 formin protein promotes the nucleation of the dorsal SFs throughout the center cell 

[64]. Dorsal SFs are connected perpendicularly to the transverse arcs from their second 

end. Commonly dorsal SFs do not contain myosin motor molecules and they do not 

 

5 Ezrin is one of the proteins from the ezrin, radixin and moesin (ERM) family that connect actin cortex to 

the membrane.  
6 Tropomyosin binds to the sides of the actin filaments to cover and connect six to seven actin subunits. It 

regulates the access of the actin-binding proteins, such as cofilin, to actin filaments to prevent actin 

depolymerization. 

7 Titin is a long protein and is responsible for the passive state of the muscle cells. 
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contract. Transverse arcs are curved actomyosin bundles [65] that associate with dorsal 

SFs. Transverse arcs and dorsal SFs interaction forms the actin flow (called retrograde 

flow) which moves toward the cell center in migrating cells.  

 

 

 

Figure 2.8 The four types of actin SFs.  

 Actin arc, perinuclear actin fibers, dorsal fibers and ventral fibers. SFs connect to focal adhesion (in green) 

and α-actinin (in yellow) which participate in cell mechanics. (From [62]).  

 

Ventral SFs are formed by the retrograde flow. In contractile ventral SFs, α-actinin cross-

linking proteins link actin filaments to each other and are called actin bundles. The actin 

bundles are linked via myosin motor molecules from the side and anchor to the focal 

adhesions at both ends and usually elongate toward the cell migration direction [62]. 

Ventral SFs are the main subject of this project in the fluorescence recovery after 

photobleaching (FRAP) measurements. Figure 2.9 displays a scheme of a ventral SF 

bundle and its component.  
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Figure 2.9 A schematic representation of the ventral SF bundle. 

Actin SF bundle consists of actin filaments, myosin II filaments, α-actinin, titin and tropomyosin filaments 

(red). Actin filaments in ventral SFs are involved in cell contraction and cell migration by linking to myosin 

filaments and α-actinin from the sides and anchoring to the FAs at both ends. (Adapted from [66]) 

 

Perinuclear actin caps are SFs that are localized on top of the nucleus. One of the main 

roles of perinuclear actin caps is to regulate the shape of the nucleus [63]. 

Typically in motile cells, SFs are thin and highly dynamic [67]. Early studies suggested 

that myosin motor molecules generate SFs contraction that promotes cell migration [68, 

69]. Alternatively, other researchers suggested that SFs are inhibiting cell migration via 

generating contraction forces [70]. Besides, SFs play the main role in focal adhesion 

maturation and regulate focal adhesion dynamics by generating contractile forces. The 

force contraction generated by SFs is necessary to spontaneously strengthen focal 

adhesions and also the turnover of the adhesion [71]. So, on one hand low contractility 

would prevent the adhesion turnover at the cell rear and inhibit the tail retraction. On the 

other hand, high contractility would either enhance the adhesion at the cell front or sever 

the adhesion at both ends. Therefore, an optimal balance between contractility and 

adhesion is required for efficient motility. 

The main role of the actin filaments in cells is generating forces for cellular processes 

such as cell migration, cell division, morphogenesis, and endocytosis. Actin filaments are 

involved in cell force generation by two discrete mechanisms. First, according to actin 

polymerization regulated by ABPs. Second: according to the force generation via the 

movement of myosin motor molecules along actin filaments.  
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Activation of RhoA (a subgroup of the Rho8 family) through the Guanine nucleotide 

exchange factor (GEF-H1) stimulates actin polymerization and F-actin stabilization. 

Transforming protein RhoA is part of the hydrolase enzyme GTPases9-protein family. 

Rho proteins are involved in cell signaling and activation of the Rho family. Rho-

associated kinase (ROCK) I and II are serine/threonine kinases. ROCK is known as a 

downstream effector of the Rho family that is activated by RhoA. Rho effectors such as 

mDia10 [72] and ROCK control and regulate actin SFs formation. Despite the effect of 

Rho proteins on actin SFs regulation, actin SFs as such regulate biochemical and 

signaling pathways via generating forces [73]. ROCK also activates myosin II 

phosphorylation and stimulates cell contraction and force generation. 

2.2.3 Intermediate filaments  

Intermediate filaments (IFs) are one of the three major cytoskeletal structures. IFs have a 

coiled-coil structure with a diameter of 10 nm that is smaller than MT filaments and 

larger than actin filaments. IFs in contrast to MTs and actin filaments are nonpolar and 

assemble the same way in both ends of the filament. The formation of IF proteins into 

filaments does not require nucleotide hydrolysis [74], and their assembly is not similar to 

the assembly of other cytoskeletal filaments. Unlike MTs and actin filaments, IFs do not 

have treadmilling and no molecular motors binding to them, but they are still dynamic. 

IFs are classified into six subgroups that are widely dissimilar in sequences and have 

different ranges of molecular weight [74]. Table 2.1 shows the six classes of the IFs. The 

type of IFs expressed in cells are related to their physiological functions and except 

vimentin which is expressed in most of the cell types the rest of IFs families are cell-

specific [75]. IFs due to their mode of assembly can subdivide into three groups: keratin, 

vimentin-like assembly and lamins. 

 

 

 

 

 

 

8 Rho ≡ ρ 
9 GTPases are the hydrolase enzyme GTPases-protein family that hydrolyzes guanosine triphosphate (GTP) 

to guanosine diphosaphate (GDP).  
10 mDia is a member of formin proteins family and play a main role on actin filaments elongation and SFs 

formation. 
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Table 2.1 Types of IFs. 

Six subgroups of IFs and their cellular distribution. *vimentin can be expressed in most of 

the cell types. **have not been classified yet. (Adapted from [75].) 

 

IFs Class Cell type 

Acid cytokeratins I Epithelial cells 

Neutral-basic cytokeratins II Epithelial cells 

Vimentin* 

III 

Mesenchymal cells  

Glial fibrillary acidic protein (GFAP) Astroglial cells 

Desmin Muscle cells 

Synemin Skeletal muscle cells 

Peripherin Neurons 

Nestin 

IV 

CNS and muscle precursor cells 

Neurofilaments Neurons 

Internexin Neurons 

Lamins V Ubiquitous 

Filensin, phakinin N.C.** Lens 

Transitin N.C. Ubiquitous 

 

The persistence length lp of IFs is directly correlated to their bending stiffness (κ) 

(κ=kBTlp) where kB is Boltzmann constant and T is the temperature in Kelvin. The 

persistence length of IFs reaches values from 0.3 to 1 µm [76-78] which is small 

compared to actin (3-20 µm [76, 79]) and MT persistence length (1-8 mm [76, 80]). 

When the persistence length is in the range of the filament length, the filament is semi-

flexible. IFs can be considered as flexible filaments (i.e, their length is much longer than 

the persistent length) and actin filaments have a semi-flexible structure. IFs have the least 

stiffness among all the cytoskeletal components and due to their flexible structure can 

elongate several times their initial length [77]. The flexibility of the IFs network and its 

stiffness behavior make vimentin an excellent component to protect the cells against 

deformation [81, 82]. IFs provide mechanical support for cell integrity and affect cellular 

properties. IFs functions include: to participate in cell growth, to promote wound healing, 

and to provide cell migration [52], cell adhesion [52] and cell division [14, 15]. Their 

main role in cell mechanics can lead to impaired functions in case of IFs mutations and 

might lead to diseases [77] such as skin disorders (keratin mutations) [79], 

cardiomyopathy and muscular dystrophy diseases (mutations in desmin, lamin A and 

vimentin) [83, 84], Alexander disease (mutations in glial fibrillary acidic protein (GFAP)) 
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[85] and cancer (mutations in vimentin) [51]. The link between IFs mutations and the 

different diseases is still largely unknown. 

In this project, I concentrated on actin-vimentin interactions and do not study other types 

of IFs. 

Vimentin 

Vimentin similar to all of the proteins in the family of IFs has a common three-domain 

structure; a central α-helical rod with two non-helical domains: a head domain (Amino 

terminal or N-terminal) and a tail domain (Carboxy terminal or C-terminal) [86]. The 

basic form of vimentin is a two-strand parallel coiled-coil of monomers that compose a 

dimer. Two antiparallel dimers assemble laterally and form a tetramer. A fully assemble 

filament is composed of a lateral association of eight tetramers and form the unit length of 

filaments (ULFs) with a length of 60 nm [79] (Figure 2.10). As a consequence of the 

antiparallel assembly of polar dimers, tetramers are symmetric and form nonpolar 

filaments (i.e. vimentin filaments are polymerizing the same way in both ends). To 

assemble into higher order structures, ULFs can either elongate the head or the tail.  The 

end-to-end annealing of ULFs forms mature filaments that are also nonpolar. 

 

Figure 2.10 Vimentin 

structure and its 

assembly.  

Vimentin monomer with N- 

and C- terminals (red and 

brown respectively) and a 

central α-helical rod (green). 

Two parallel monomers 

form a dimer and two 

antiparallel dimers assemble 

laterally and form a 

tetramer. Eight tetramers 

assemble laterally and form 

the unit length of filament 

(ULF). ULFs elongation in 

both ends form mature 

vimentin filaments. 

(Adapted from [87].) 
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Vimentin IFs are introduced as a marker of the epithelial to mesenchymal transition 

(EMT)  [88, 89] and affect the cell shape, cell motility, and cell adhesion during this 

transition [90]. Vimentin filaments play an important role to regulate the position of the 

organelles in cells and fix the organelles in the cytoplasm [91].Vimentin associates 

directly and indirectly to other proteins such as actin filaments, MTs, myosin and focal 

adhesions via protein cross-linkers (e.g. plectin) [92].  

The interaction of vimentin and other proteins and its effects on cell function is explained 

here briefly. Vimentin filaments contribute to the intracellular mechanism and slightly 

affect the stiffness of the cell cortex [93], while its presence and its amount highly affect 

the stiffness of the cytoplasm [93]. Vimentin interacts with actin arcs which modify actin 

flow. In the literature, it has been shown that vimentin either slows down actin retrograde 

flow [94] or promotes actin retrograde flow [95]. Earlier the direct interaction of actin and 

vimentin in vitro [96] and also an indirect interaction of vimentin and actin via plectin 

were shown [11]. 

The intracellular organization of the IFs (vimentin) is regulated by protein kinases 

(phosphorylation) [97, 98]. Vimentin phosphorylation plays an important role in cell 

migration and cell adhesion. In the absence of vimentin phosphorylation, the amount of 

integrin is reduced and the number of migrating cells is decreased [99]. Furthermore, 

vimentin depletion leads to the activation of RhoA and modulates F-actin stabilization 

and actomyosin contraction [100]. Vimentin depletion results in the enhancement of 

myosin light chain phosphorylation, myosin contraction, and actin SFs assembly via 

activating RhoA and in consequence activating ROCK.  

Even though vimentin has no polarity and is binding to no motor molecules, it provides 

cell migration and cell adhesion [52] and motivated me to investigate its interaction with 

actin. In the following chapter, the direct and indirect interactions between cytoskeleton 

elements are described. 

2.3 Interaction between cytoskeletal elements 

In cells, the interaction of the proteins may potentially affect their configuration and 

influences their functions. The association between cytoskeleton elements and its 

interactions with the other cell components enable studying their role in cell mechanisms.   

The link between IFs and actin filaments is still largely unknown. In this project, I 

concentrated on actin-vimentin interactions, even though vimentin associates directly and 

indirectly (via protein cross-linkers) to other proteins such as MTs, myosin and focal 



40     Background 

adhesions [92]. Earlier the direct interaction of actin and vimentin in vitro [96] and also 

an indirect interaction of vimentin and actin via plectin were shown [11]. Few studies, 

mainly in vitro, have shown an interaction between actin and vimentin [100]. For 

example, rheological studies showed that a mixture of vimentin and actin is more stiff 

compared to actin filaments or vimentin filaments alone [96]. Vimentin filaments 

contribute to the intracellular mechanism and its presence and its amount highly affect the 

stiffness of the cytoplasm [93]. Also, there is an interaction between vimentin and actin 

transverse arcs and this interaction results either in an increase of actin retrograde flow in 

U2OS human osteosarcoma cells [95] or in a slow actin flow in human foreskin fibroblast 

(HFF) cells [94].  

Studies have been shown the interaction of actin and vimentin-ULFs via binding proteins 

such as filamin A or fimbrin11 [101]. Filamin A is a multi-domain ABP. Filamin A 

isoforms are localized in SFs and focal adhesion [102]. The vimentin-filamin A 

interaction regulates integrin function and consequently regulates cell migration. Recent 

studies show the cell adhesion is reduced in vimentin depleted cells, suggesting that 

vimentin, as well as filamin A, plays a main role in cell adhesion [103] and cell spreading 

[104]. Vimentin binds to filamin A N-terminal while actin binds to the ABD of filamin A 

[105], suggesting filamin A links actin and vimentin indirectly.  

Plectin plays the main role to organize the cytoskeleton structure and influences the 

mechanical and dynamical properties of the cytoskeleton. It interacts with almost all the 

IFs such as vimentin. It binds to intermediate filaments via its repeat domains in C-

terminal and also via N-terminal. Plectin is required for IFs formation and their 

directional movement toward [49-52] the cell periphery [53]. Plectin connects IFs to actin 

filaments, MTs and membrane [11, 106]. Furthermore, it interacts with MT associated 

proteins, links intermediate filaments and MTs, and associates with focal adhesions. Actin 

and vimentin filaments interact indirectly by plectin [11, 50, 54]. The ABD in plectin has 

a multifunctional structure. Plectin binds to actin, integrin, nesprin and vimentin via 

ABD. Vimentin-plectin interaction modifies vimentin distribution into the cell by 

crosslinking vimentin to focal adhesions [46, 95], moreover, plectin is required for the 

interaction of transverse arcs and vimentin [95].  

 

11 Fimbrin is a cross linking protein and forms filopodia.  



41     Background 

Indicating the direct and indirect interaction between vimentin and actin filaments might 

help to better understand the cell migration process, and in consequence, investigating 

how vimentin and actin filaments interplay to carry out cell migration might help to find a 

solution to prevent metastasis. Reduction of the expression of vimentin in living cells 

enables studying its interactions with the other cell components. 

2.4 Techniques 

2.4.1 Transfection 

Knock out (KO) or knock down (KD) the expression of an individual protein in living 

cells enables studying its role in cell mechanisms and its interactions with the other cell 

components. To knock down a protein, a specific gene is transferred into the cell and 

silenced the expression of the protein. There are various methods to transfer a gene into 

the cells but in general can be divided into two methods: non-viral and viral. Non-viral 

methods are known as transfections and include the use of physical or chemical methods 

to transfer the gene into the cells. These methods are microinjection, lipofection and 

electroporation. Viral methods include the use of viruses to deliver the gene into the cells. 

This method is known as transduction. Common transfection methods can be used to 

deliver plasmid DNA, small (short) interfering RNAs (siRNA), and RNA into eukaryotic 

cells. A plasmid is a small DNA molecule that comes from bacteria and is used to transfer 

genetic information from bacteria to mammalian cells. Plasmid transfection is a method 

to transfer a complex of plasmid DNA using lipid reagents (lipofection method) into the 

cells to label a specific protein. siRNA transfection is a common transfection method to 

silence or knockdown a specific gene expression in cells to investigate its specific 

function, especially in the case of diseases. There are two important categories of small 

double-strand RNAs: micro-RNAs (miRNAs) and siRNA. miRNA regulates endogenous 

genes and siRNA protects the genomes in response to viruses and transgenes. Single-

strand forms of miRNA and siRNA are known as gene-specific (RNA) silencers. The 

siRNA is designed against the messenger RNA (mRNA) of a target gene. It is delivered 

into the cells usually via physical or chemical methods. In cells siRNA forms single-

strand RNA. Single-strand RNA binds to the target mRNA and cut it. The cut mRNA 

does not convert to the amino acid and protein and silences the target mRNA. To ensure 

that the effect of a specific siRNA transfection is due to its specificity, a sample as control 

is needed. A scrambled siRNA whose sequence is different from the siRNA of interest 

and is randomly rearranged in the nucleotide sequence is taken as a control. A scramble 
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siRNA will have the same nucleotide components as the siRNA of interest. In a scramble 

siRNA transfection, one doesn't want to observe any effect due to the silencing of a 

specific target. It is not contributed to the gene silencing and has no known target in the 

cell. A scrambled siRNA is not expected to specifically target any mRNA beyond a 

background level, and it is known as a negative control.  

2.4.2 Real-time quantitative polymerase chain reaction  

The polymerase chain reaction (PCR) amplifies specific sequences within a DNA (single 

strand or double strand) or RNA templates. RNA has to be transcribed into 

complementary DNA (cDNA) before the quantification. PCR makes many copies of the 

specific sequences of short DNA molecules (Oligonucleotides). In PCR, also called 

traditional or endpoint PCR, the amplified sequence is not quantified, however, the PCR 

product is applied on an agarose gel, then it is electrophoresed, and the bands are 

visualized. If the amplified sequence is quantified at each cycle it is called real-time 

quantitative PCR (qPCR). In qPCR, a reference gene or a known standard DNA is needed 

for quantification. To amplify the sequence 15 to 40 thermal cycles are performed. In 

qPCR, each reaction is monitoring, and the initial quantity of the target is precisely 

detected as it occurs in real time. Then the initial quantity of the target will be calculated 

by comparing it with a known standard. In qPCR, the cycle threshold (Ct) is defined as 

the cycle number that fluorescence signals cross the fluorescence threshold.  The 

fluorescence threshold is calculating by the level of the signal that increased significantly 

compared to the base of the fluorescence signal (background signal). Ct value and the 

amount of starting templet are related reversely, the lower Ct value, the higher the amount 

of starting templet in a reaction. 

2.4.3 Fluorescence recovery after photobleaching 

In cells as a crowded confined environment, proteins interact with each other individually 

(with each specific protein) and this interaction may potentially influence their 

arrangement and configuration. The localization of a protein in a domain and its turnover 

depend on the fraction of proteins that bind to the domain and the reaction rate factor of 

the proteins. In a cell, two populations of proteins can be distinguished: the proteins that 

are linked and bonded together to shape a structure, and proteins that diffuse freely inside 

the cell. The reaction rate of the proteins is the result of both, association and dissociation 

of the binding proteins and diffusion of the free proteins. The turnover of the binding 

proteins may include several proteins. Several studies indicated the precise reaction rate 
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for many individual purified proteins in in vitro or in vivo assays [107-109]. However, the 

protein reaction rate in a pool of proteins in a confined environment (such as in living 

cells) could be more complicated than in vitro and requires accurate settings and methods 

[110]. Various techniques such as fluorescence recovery after photobleaching [110-114] 

(FRAP), fluorescence correlation spectroscopy (FCS) [115], fluorescence loss after 

photoactivation (FLAP) or inverse FRAP (iFRAP) [116], fluorescence loss in 

photobleaching (FLIP) [116] and single-molecule imaging [117] are existing to indicate 

the protein kinetics in living cells. FRAP is the most common method to probe protein 

kinetics and diffusion in living cells, the exchange speed of molecules within the cell, the 

ratio of immobilization of proteins that are confined within large structures such as 

cytoskeleton filaments, and nuclear envelope. Moreover, the influence of inhibitors on 

proteins can be studied via FRAP. In this project, FRAP experiments are performed to 

indicate the F-actin turnover rate in the cellular environment.  

Fluorescent molecules conjugated to specific biological macromolecules (e.g. proteins) 

allow their visualization via fluorescence microscopy. In a FRAP experiment, a high laser 

intensity is illuminated to a region of interest (ROI) and bleached permanently the 

fluorescence of the proteins localized in the ROI. The high laser power applied to the 

fluorescent molecules damages irreversibly the fluorochromes combined with these 

molecules. These molecules then have no contribution to the fluorescence turnover in the 

bleached ROI. The bleached fluorophores (i.e. fluorochromes connected to monomers) 

are exchanged with nonbleached proteins over time. The fluorescence exchange in the 

bleached ROI is then monitored over time at low laser power to evaluate the fluorescence 

recovery. FRAP can be described in three steps: 1) before bleaching, the fluorescence is 

maximal; 2) the time just after bleaching, the fluorescence is minimal; 3) the post-

bleaching time, the fluorescence recovers over time. Figure 2.11 (a) represents a scheme 

of a cell in which an SF is bleached in the ROI (orange circle), and (b) represents an actin 

SF labeled in green in a living cell. FRAP analysis consists of measuring three 

parameters: (i) the recovery time, (ii) the mobile fraction and (iii) the immobile fraction. 

The recovery time is defined as the time needed for the fluorescence intensity to reach a 

plateau. The mobile fraction corresponds to the fraction of the molecules contributing to 

the recovery. The immobile fraction corresponds to the proportion of immobilized 

molecules after photobleaching that avoids a full recovery.  
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a) b) c) 

 

Figure 2.11 Measuring actin dynamics in SFs with FRAP. 

a) Schematic representation of a cell with SF bundles in green and the nucleus in blue. Insets show a 

scheme of one actin SF bundle before (left), directly after (middle) and at a post (right) bleaching time. b) 

Fluorescence images of an actin bundle. The orange circles in a) and b) on actin bundles represent the 

bleaching ROIs. Scale bar: 2 µm. 

 

In this project, the appropriate monitoring time for actin proteins is taken from the 

literature. Figure 2.12 displays a simple example of fluorescence recovery over time for 

different recovery profiles: highly mobile, intermediate mobility and immobile recovery. 

 

 

 

Figure 2.12 Classification of the protein mobility 

Three different fluorescence recovery profiles a) highly mobile, full recovery after a certain time, b) 

intermediate mobile, incomplete recovery and c) immobile, no fluorescence recovery (From [110]). 

 

The total turnover is the sum of the free diffusion of actin monomers in the ROI region 

(diffusive recovery) and the association and dissociation of the monomers with the actin 

filaments (reactive recovery) [118]. The dynamics of actin monomers (G-actin) are fast, 

e.g. its diffusive halftime recovery in the cortex is about 50 ms [119] and about 40 ms 

a) 

b) 
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[120] in the cytoplasm even though the density of free monomers is similar in both 

localizations [119].  

In the cytoplasm, the halftime recovery refers only to the diffusive recovery while in the 

cortex it is a combination of diffusive and reactive recoveries. When the diffusive and 

reactive recoveries are in different timescales they can be measured and analyzed 

independently.  

The characteristic diffusion time (𝜏) is the time needed for a monomer to travel a distance 

(r, the radius of the ROI) with a certain diffusion constant (D) [121, 122]:  

𝜏𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 ≈ 𝑟2/𝛾𝐷   

where ɣ is the diffusive process, ɣ=2 for a 1D diffusion, ɣ=4 for a 2D region, and ɣ=6 for 

3D diffusion [120]. On the contrary, the reactive recovery time is an intrinsic property of 

the cell and does not depend on the radius of the ROI [120]. Because characteristics 

diffusive time is fast (40 ms and 50 ms, in cytoplasm and cortex, respectively) compare to 

the acquisition time (≥ 200 ms), it will be completed by the first postbleached frame. 

Therefore, when measuring the recovery time in actin SFs and cortex, the diffusion 

recovery is negligible compared to the reactive recovery (association/dissociation 

dynamics). 

2.4.3.1 G-actin association and dissociation rates 

In the reactive process, the dissociation rate constant koff and the association rate constant 

kon of G-actin to the filaments describe respectively actin depolymerization and actin 

polymerization. Dissociation and association rates are defined as exchange rates (or 

reaction rates) and the turnover rate (ω) in a network or an organelle is the mean value of 

the exchange rate of the proteins on a binding domain. Characteristics time τ =1/ω and 

halftime t1/2=Ln (2)/ω are two parameters that are obtained from the turnover rate. 

2.4.3.2 FRAP recovery curve 

From the FRAP recovery curve the fluorescence recovery time, the mobile and immobile 

fractions are displayed. Figure 2.13 shows a corrected and normalized FRAP recovery 

curve (black). In phase I, before photobleaching the fluorescence intensity is maximal, 

normalized as 1. Phase II corresponds to the bleaching time, the intensity in the ROI is 

normalized as 0. Phase III corresponds to actin fluorescence recovery. The curve reaches 

a plateau i.e. a maximal fluorescence recovery. The mobile fraction is then measured as 

the plateau value while the immobile fraction is the difference between the initial 

maximum intensity and the plateau value. 
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Figure 2.13 FRAP recovery curve  

Example of an actin fluorescence intensity curve during the FRAP experiment. Normalized (black) curve 

represents actin fluorescence intensity before bleaching (time -5 s to 0 s) normalized to 1 and directly after 

bleaching (time 0 s) normalized to 0. Post bleaching (time 0 s to 94 s) shows the fluorescence recovery i.e. 

the actin turnover. Halftime and mobile fraction are measured on the fitted (red) curve. 

 

To quantify the turnover and dynamics of the proteins a mono-exponential or multi-

exponential fitting was applied. Mono-exponential fitting was applied when only one 

specific population of filaments is attending to the turnover rate. For example: in actin 

SFs the first-order reaction kinetics (below) was used to indicate the turnover of 

fluorescence intensity for reactive recovery (Figure 2.13 (red)),  

F (t) = a*(1-exp (-ω*t)) 

where “a” is the plateau value and “ω” corresponds to the turnover rate. (t1/2 = Ln(2)/ ω, is 

the corresponding halftime recovery). Plateau value represents the fraction of the proteins 

that are participating in the fluorescence recovery. 

Multi-exponential fitting (not shown here) is applied when two distinct populations of 

filaments are participating in the turnover rate. For example: in the cortex, ARP2/3 and 

formin result in two distinct polymerizations and nucleation. A fast turnover is the result 

of the nucleation of actin filaments initiated by ARP2/3, and a slow turnover is the result 

of formin-mediated filament growth [119, 120]. When two or more than two populations 

of proteins participate in the fluorescence recovery a multiple of the first-order reaction 

kinetics will be applied. 

F(t) = a*(1-exp(-ω1*t)) +b*(1-exp(-ω2*t)) 
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where “a” and “b” signify mobile fraction of slow and fast components respectively, and 

ω1 and ω2 correspond to the turnover rate of slow and fast populations (ωi= Ln(2)/ i, 

where i  corresponds to the halftime recovery). There are many various analytical 

methods to extract the dynamics of proteins from FRAP curves. References [114, 122] 

provide an overview of the analytical methods to analyze FRAP data.  

2.4.3.3 Confocal microscope 

Figure 2.14 presents the light path in a wildfield microscope and a confocal microscope. 

In an epifluorescence (widefield) microscope due to light excitation, not only the focal 

plane will be excited but also planes above and below the focal plane (out-of-plane 

objects) will consider during the excitation, and the resulted images are including an 

unfocused background. Epifluorescence microscope is applicable for imaging thick (over 

10µm) samples. 

 

 

Figure 2.14 A light path in the widefield microscope and confocal microscope 

The blue light shows the excitation light and the green light indicates the emitting light in both 

epifluorescence microscope (a) and confocal microscope (b). (a) The light beam pass through a dichroic 

mirror through the objective excites the sample which then emits fluorescence that passes through the 

dichroic mirror and is detected by the camera. (b) The excitation path is similar to the one for 

epifluorescence, but before being detected the emitted beam passes through a pinhole to block the out-of-

plane signals (From [110]). 
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The confocal microscopy technique overcomes some limitations of the fluorescence 

imaging resolution. Confocal laser scanning microscopy (CLSM) or (LSM), by adding a 

pinhole after the dichroic beam splitter (Figure 2.15) between the detector tube and the 

focusing lenses eliminate out-of-plane signals. It provides a physical barrier and out of 

focus light is blocked. The pinhole only let the light from the focal plane to pass and be 

detected.  

 

 

Figure 2.15 A beam path on an LSM 

In an LSM a laser beam is focused onto the specimen (light green) via passing through an objective. The 

fluorescence excited from the specimen is collected via objective. The interesting wavelength of the 

fluorescence excited light is selected by an emission filter. Between the emission filter and Dichroic mirror, 

there is a pinhole to block the light coming from planes below and above the focal plane. (From Operating 

Manual of LSM microscopy (ZEN 2010).) 

 

Via confocal microscope, the reconstruction of a 3D image is feasible by imaging 

consecutive two-dimensional images in different focal planes. Based on the Rayleigh 

criterion (d=λ/2NA) the minimal distance (d) to distinguish between two light spots is 

defined as the ratio of the optical wavelength (λ) over the numerical aperture (NA) of the 

objective. The largest value for numerical aperture in highly corrected microscope 

objectives is between 1.3 to 1.6; which leads to a minimum distance of 200 nm to 

distinguish two different visible light spots. Compared to widefield microscopy (common 

fluorescence microscopy), confocal microscopy is capable to record only in-focus or in-

plane signals with the option of depth selectivity and improve the signal-to-noise ratio 

(SNR). In this project two different confocal microscopes are applicable. Laser scanning 
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confocal microscope (LSM 880, ZEISS) and spinning disc confocal inverted microscopes 

(Ti-Eclipse, Nikon). The advantage of a spinning disc confocal microscope is that it has a 

disc with a series of pinholes and instead of having only one pinhole detecting the light 

(as in LSM), a series of pinholes scan the light over a specific region. The pinholes move 

parallel over a small area for a longer time to scan the light illumination from the sample 

during taking fluorescence images and prevent photo-toxicity. 

2.4.3.4 Fluorescence labeling of the cell cytoskeleton 

The challenge to study cytoskeleton structures is to visualize them without altering their 

function. Depending on the aim of the research different approaches are available for 

visualization. The most commonly used approaches are live cell transfection and 

immunofluorescence [123] in fixed cells. Several traditional fluorescent protein 

transfection techniques have been employed to deliver a gene into living cells to label 

specific proteins. Non-antibody fluorescent reagents to label a specific structure in living 

cells have been limited to few structures such as nucleus labeled with 4′,6-diamidino-2-

phenylindole (DAPI) and cell membrane labeled with Wheat Germ Agglutinin (WGA). In 

this work, I focused on actin fluorescence imaging in living cells in order to understand 

and study actin dynamics. Actin visualization is achievable with actin probes such as 

phalloidin (in fixed cells), LifeAct, SiR-actin, tagged actin, green fluorescence protein 

(GFP)-actin. Despite, Riedl et al. in 2008 suggested LifeAct as a universal marker for 

actin imaging, [124] there are several limitations to use it as a marker to measure actin 

dynamics via FRAP. LifeAct labels actin filaments [124], furthermore, LifeAct 

components can inhibit actin assembly and actin filament elongation, and it can also 

promote actin filament nucleation [125]. Therefore, LifeAct fusion proteins may modify 

the initial structure of actin and are not applicable to label actin to measure actin 

dynamics. Phalloidin in living cells affects actin filaments depolymerization and results in 

actin stabilization. Furthermore, it is only used to labeled actin filaments in fixed cells. As 

actin has to be labeled with a FRAP-compatible molecule, I excluded LifeAct and 

phalloidin to label actin, with an emphasis on use for FRAP measurement. A convenient 

reagent to probe actin should have a minimum effect on actin dynamics; i.e. actin 

polymerization and depolymerization cycles. By evaluating actin visualization probes 

[126-128], I found that GFP-actin and BacMam gene delivery systems (a Baculovirus 

coupled with a Mammalian promoter) are reliable labeling for actin FRAP measurement. 

CellLight BacMam 2.0 actin GFP labels the N terminus of β-actin in G-actin. BacMam 
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gene delivery system is a transduction method and is used as a tool for protein production 

[127, 129]. Recently it was modified for fluorescence microscopy and imaging a wide 

range of subcellular structures [127, 130, 131]. A recombinant Baculovirus provides 

efficient GFP gene delivery into mammalian cells to express and produce protein 

structure. BacMam transduction is an easy-to-use, economical and efficient method. 

Besides, actin BacMam transduced cells probe sufficient fluorescence density for FRAP 

measurements and microscopy imaging. Therefore, the BacMam gene delivery system 

was used as a convenient and reliable method to label actin. 

The direct/indirect immunofluorescence staining methods in fixed cells are also explained 

here briefly. Immunofluorescence is a staining method using antibodies. The fluorescence 

can be direct or indirect. Direct immunofluorescence uses a single-fluorophore-

conjugated antibody recognizing directly the target protein [123]. Indirect 

immunofluorescence uses a primary and secondary antibody (Figure 2.16). The primary 

antibody recognizes the target protein and the secondary antibody is conjugated to a 

fluorophore and recognizes the primary antibody.  

 

 

 
 

Figure 2.16 Schematic of a direct and an indirect immunofluorescence method 

a) Direct immunofluorescence technique, the yellow color indicates the target protein, the primary antibody 

(in blue) and the fluorophore conjugated to the antibody (in green). b) Indirect immunofluorescence 

method; (i) a primary antibody (in blue) recognizes the target protein and (ii) one or more secondary 

antibodies (in purple) conjugated to a fluorophore (green) recognizes the primary antibody (Adapted from 

[123]). 

 

2.4.4 Traction force microscopy  

The principle of traction force microscopy (TFM) technique is based on measuring the 

force that is applied by an object to a soft surface [132-134]. There are three common 

methods to determine cell traction force. 1- Embedding cells in a gel disk. 2- Seeding 

b) a) 

i ii 
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cells on top of arrays of elastic micropillars. 3- Seeding single cells on the top of a 

continuous elastic substrate. The third method using continuous elastic substrate is 

explained here (Figure 2.17). Once cells attach and spread on top of the substrate, they 

exert traction forces due to actomyosin contraction and retraction, and actin 

polymerization. Then they transmit those forces to the ECM via focal adhesion (integrin). 

The surface tension and deformation applied by the cells to the surface are visualized by 

the displacement of fluorescence beads embedded in the surface. To quantify bead lateral 

displacements, the particle image velocimetry (PIV) method is used. PIV is based on 

tracking every single individual bead when cells are adhered and after detachment. PIV is 

a method commonly used to measure the velocity of fluids. In this method the visible 

(fluorescence) particles are embedded within the fluid and it is assumed that the motion of 

the particles indicates the speed and the direction of the fluid. 

 

 

Figure 2.17 TFM technique 

A scheme of TFM experiment. The cell exerts traction forces on the surface (stressed gel) and results in 

fluorescent beads displacement. The traction forces are calculated by monitoring the displacement of the 

beads from their positions in the stressed and relaxed gel. The yellow circles show fluorescent beads, the 

black and green arrows show respectively the bead displacements and traction forces (From [135]).  

 

The particles should be sufficiently small (the diameter varies from 10 to 100 nm) to 

follow the fluid progress continuously and the particle concentration should enable to 

identify single particle in each image. The particles used to depend on the fluid viscosity 

and can be in polystyrene, glass, aluminum or oil. The particles will be imaged during the 

fluid flow. PIV is not limited to fluid velocity analysis and can be applied to TFM by 

correlating bead displacement to traction force. To obtain traction force, the Fourier 
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transform traction cytometry (FTTC) model correlates bead displacements to traction 

force. Traction force is defined as the force vector divided by the unit area (cross-section 

area) and it has a unit of stress. TFM was originally performed in cell biology but its 

potential is not only limited to the measurement of cell traction force but is also 

applicable to soft matter physics. 
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3 Materials and methods 

3.1 Cell culture and cell types 

Cell culture and culture conditions such as passage number, cell culture medium, and split 

scale are specific on cell lines and very important for their growth. The following cell 

culture recommendations are general for retinal pigmented epithelial cells (RPE1) to 

promote their suitable reproduction and proliferation. 

hTERT RPE-1 cells were obtained as a gift from Dr. Matthieu Piel laboratory in Paris and 

vimentin mCherry plasmid (obtained as a gift from Prof. Dr. Harald Herrmann-Lerdon 

laboratory in Heidelberg) was transfected in our lab to label vimentin filaments. RPE1 

vimentin mCherry transfected cells from now will be referred to as RPE1 cells. mCherry 

is a monomeric red fluorescent protein (RFP) that is derived from Discosoma sea 

anemones and transfected to the cells to tag specific proteins into the cells. 

3.1.1 Cell culture 

Immortalized RPE1 cells were cultured in Dulbecco´s Modified Eagle Medium 

(DMEM/F-12) (Gibco) supplemented with 10% fetal bovine serum (FBS) (Gibco); 1% 

GlutaMAX (Gibco) and 1% antibiotics (i.e., penicillin/streptomycin (Gibco)). This 

mixture will be referred to as complete DMEM/F-12. Flasks (either T25 or T75) and 

well-plates are the most common growth substrates used for culturing RPE1 cells. In 

general, there are two ways to grow cells in culture, either a monolayer of cells cultured 

on an appropriate substrate (adherent culture) or free-floating cells in a culture medium 

(suspension culture). Many adherent cell lines can be adapted to be in suspension for 

hours. RPE1 cells grow in monolayer by adhering to the substrate. Cells were incubated 

in a humid cell culture incubator with 5% CO2 at 37 °C. Before starting cell culture, the 

complete DMEM/F-12 and the Trypsin were warmed up at 37 °C in a water bath. RPE1 

cells double in a period of time of 19 h to 27 h. When the RPE1 cells were seeded with a 

15% confluence, they reach 100% confluence after three days. To dilute the cells the old 

medium was sucked out and rinsed once with 1 mL Dulbecco’s phosphatebuffered saline 

(DPBS) (Gibco) without calcium and magnesium. The cells were resuspended (detached 

from the cell culture flask) by using 1 mL prewarmed Trypsin 

(Ethylenediaminetetraacetic acid) EDTA (0.25%) (Gibco) and the flask was incubated for 

5 min. The cells were observed under the microscope to check the detachment and were 

counted with a counting chamber (e.g. Malassez chamber (BLAU BRAND)) or an 
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automated cell counter. 15% of the cells were diluted in 5 mL of fresh prewarmed 

complete DMEM/F-12. 

3.1.2 Freezing cells 

Cell culture and extraction from the tissue is expensive and time-consuming. Therefore, it 

is important to conserve and freeze cells for long-term storage. As soon as thawing a new 

vial of cells, a high concentration of them should be frozen in the low passage and be kept 

for long-term storage. To freeze the cells, adherent cells were resuspended via Trypsin 

and centrifuged at 180 g for 5 min and the supernatant was sucked out. The cells were 

mixed in an appropriate cold freezing medium. The freezing medium for RPE1 cells is 

complete DMEM/F-12 containing 10% dimethylsulfoxide (DMSO), a cryoprotective 

agent. The sterile cryogenic storage vials were labeled (i.e., date, cell line, passage rank, 

number of cells) and 1 mL of cells (containing 5×105 cells) was distributed in each vial. 

The isopropanol chamber containing the cryovials was stored at -80 °C for 24 h. 

Isopropanol chamber contains isopropyl alcohol that controls the rate of freezing and let 

the cells freeze slowly (-1 °C.min-1). One of the vials was thawed and cultured for one or 

two days in parallel with the previous culture. If both batches of cultured cells have the 

same growth rate and the same cell shape, the rest of the cryovials were transferred into 

liquid nitrogen for long-term storage. 

3.1.3 Thawing cells 

As the cell passage number may influence the results of an experiment, it is highly 

recommended to not use cells with a high passage number. To thaw a new cryovial 

containing RPE1 cells, a vial from liquid nitrogen was transferred to a water bath at 37 °C 

for < 1 min. The cells were diluted in prewarmed complete DMEM/F-12 and centrifuged 

at 180 g for 5 min, to separate the cells from the freezing medium containing DMSO 

(cytotoxic at high concentration). Cells were mixed gently with 5 mL fresh complete 

DMEM/F-12, were transferred in a cell culture flask and were incubated at 37 °C, 5% 

CO2. 

3.2 Transfection  

3.2.1 Vimentin siRNA  

Vimentin filaments were knocked down using the siRNA transfection technique. To 

generate vimentin knock down RPE1 cells, 105 cells per well were distributed in a six-

well plate with 200 µL of master mix. The master mix is defined as the mixture of 10 µM 

vimentin siRNA (life technologies, Ambion, s14799) diluted in 100 µL serum-free 
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DMEM/F-12 and 4 µL Lipofectamine RNAiMAX Reagent (13778-075 Invitrogen) 

diluted in 100 µL non-complete DMEM/F-12. The master mix was incubated for 10 min 

to 15 min at room temperature before being added to the cells. The wells were filled with 

DMEM/F12 to reach a final volume per well of 2 mL and they were incubated for 24 h. 

On the second day of transfection (after 24 h), the spent medium was exchanged with 

fresh complete DMEM/F-12 and was incubated for 48 h. The transfection steps were 

repeated on day 4 (three days after the 1st transfection). The spent medium was exchanged 

again with fresh complete DMEM/F-12 on day 6. The transfected cells were ready for 

measurements on day 7. Control cells were transfected simultaneously with scrambled 

siRNA (Silencer Select Negative Control #1 siRNA (life technologies, Ambion)). The 

scrambled negative control siRNA cells are called negative control cells in the following 

sections.  

3.2.2 Plectin siRNA  

To silence the plectin gene in RPE1 cells several siRNA concentrations and incubation 

times were investigated. Plectin siRNA transfection protocol was similar to vimentin 

siRNA transfection except that plectin was silenced only once. 

To produce plectin knock down cells, RPE1 cells were resuspended with 0.25% trypsin 

EDTA and distributed in a six-well plate on day 1. 105 cells were seeded in each well and 

were transfected with 10 µM plectin SiRNA (life technologies, Ambion, Pre-designed 

siRNA ID: 144451). 10 µM plectin siRNA were diluted in 100 µL serum-free (non-

complete) DMEM/F-12 in a sterile Eppendorf with a capacity of 1.5 mL (falcon A). In 

another sterile Eppendorf, 4 µL Lipofectamine RNAiMAX Reagent was diluted in 100 

µL serum-free DMEM/F-12 (falcon B). Then falcon A and B were mixed and incubated 

for 10 min to 15 min at room temperature. Next, the mixture of vimentin siRNA and 

Lipofectamine was added to the cells and incubated for 48 h. On day 2, plectin siRNA 

transfected cells were incubated with the fresh complete DMEM/F-12 for 24 h. Control 

cells were transfected simultaneously with scrambled siRNA (Silencer Select Negative 

Control #1 siRNA (life technologies, Ambion)).  

3.3 BacMam gene delivery system 

The volume of CellLight BacMam (VBacMam)is defined as:  

VBacMam = n × PPC/108 

where n is the number of cells, PPC is the number of particles per cell, and 108 is the 

number of particles per mL of reagent. 
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The cells were rinsed with 1 mL of DPBS and were detached from the surface with 1 mL 

of Trypsin_EDTA 0.25%. 104 cells were counted and seeded in a glass-bottom dish. The 

cells were incubated for 4 h to 6 h to let them attach to the surface. Then the spent 

medium was sucked out, the cells were rinsed with 500 µL DPBS and were diluted with 2 

mL complete DMEM/F-12. The CellLight Reagents BacMam 2.0 GFP (Thermofisher 

(C10582)) were mixed gently (do not vortex) into the vials and the appropriate volume of 

CellLight BacMam was then added to the cells and the cells were incubated for 40 h.  

For example, I considered 104 cells with a PPC of 40, the appropriate volume of 

CellLight BacMam was 4 µL. 

3.4 Cell fixation and immunofluorescence staining 

The cells were rinsed with 1 mL of DPBS and were detached from the surface with 1 mL 

Trypsin_EDTA 0.25%. Next, the cells were counted and 105 RPE1 cells were seeded 

overnight on top of a coverslip (of 22 mm in diameter and 0.16-0.19 mm in thickness, 

(#1.5)) in a six-well plate. The number of cells seeded depends on the size of the 

coverslip, the cell growth factor, and the incubation time. The medium was then sucked 

out and the cells on the coverslip were rinsed three times with DPBS. It is recommended 

to transfer the coverslip to a new well (the side with cells should be top). Under the 

chemical hood, 500 µL Paraformaldehyde (PFA 4%) (Alfa Aesar (ThermoFischer 

(Kandel) GmbH,43368)) diluted in DPBS was added on top of the coverslip and was 

incubated for 10 min at room temperature under the chemical hood. All the incubation 

times should be considered precisely to avoid damaging the cell membrane and to keep 

the structure intact. The fixed cells on the coverslip were washed out three times (for 5 

min) with DPBS. Pipet tips contaminated with PFA should be discarded in a separate 

trash bin. The wasted PFA should be sucked out and transferred to a separate container 

for hazardous liquids. 500 µL of 0.5% Triton X-100 (SIGMA (93426)) diluted in DPBS 

was added on top of the coverslip and incubated for 5 min at room temperature to 

permeabilize the cell membrane. The coverslip was washed out 3 times (for 5 min) with 

DPBS. The unspecific binding-site was blocked with 1 mL of 3% Bovine Serum Albumin 

Fraction V (BSA) (PanReacAppliChem (A1391)) diluted in DPBS at least for 60 min at 

room temperature. The antibody was diluted in 3% BSA. The optimal antibody 

concentration is a parameter that is achieved by practice. For a first trial the datasheet 

recommendation should be followed. The inner part of the lid of a petri dish was covered 

with parafilm and the whole petri dish was covered with aluminum foil. A drop of 50 µL 
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to 80 µL of the diluted antibody was put on the parafilm and the coverslip containing 

fixed cells was put upside down on the diluted antibody. The coverslip was incubated 

overnight with the primary antibody at 4 °C. The next day, the coverslip was washed out 

3 times for 5 min with distilled water to avoid crystallization of DPBS which will 

interfere with the imaging in the case of direct immunofluorescence. In the case of 

indirect immunofluorescence, the primary antibody was washed 3 times with DPBS, and 

the cells were put into contact with the secondary antibody for at least 2 h before being 

rinsed 3 times with distilled water. In both direct and indirect immunofluorescence, after 

rinsing with distilled water, the coverslip was mounted with a mounting medium 

with/without DAPI (Fluormount-GTM Invitrogen) on a microscopy slide (MENZEL-

GLÄSER). Before imaging, the mounting medium dries overnight at room temperature. 

List of the antibodies and reagents and their respective concentrations: 

- Alexa Fluor®647, dilution 1:200, for plectin staining, 

- Phalloidin-iFluor 488 Reagent/ 594 Reagent, dilution 1:1000, for actin staining, 

Fluorescence images were indicated by using a fluorescence microscope with the proper 

filters. Immunofluorescence images were analyzed using the image processing software 

ImageJ (Fiji). 

3.5 Gel staining and Western blot  

3.5.1 Protein extraction 

Cells were detached from the surface with Trypsin EDTA 0.25%., diluted with 

DMEM/F12, and counted. 106 cells were centrifuged at 180 g for 3 min. 

All medium was sucked out and rinsed 3 times with DPBS. The cells were lysed, under a 

chemical hood, in 100 µL of 4X Laemmli buffer, which contains β-mercaptoethanol, 

considered as toxic. The lysed cells were incubated at -20 °C for long-term storage or 

used directly for WB. 

3.5.2 SDS gel electrophoresis and protein transfer  

The preparation of the gel was performed in two steps. First, the preparation of the 

separating gel (12% concentration) and the preparation of the stacking gel (5% 

concentration). 

3.5.2.1 Separating gel 

The amount of the gel solution and the gel concentration were respectively 10 mL 

separating (resolving) gel with 12% concentration (see Table 10.7). The gel concentration 

depends on the molecular weight of the protein of interest. The smaller the protein the 
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higher the gel concentration. For detecting and separating actin, myosin, vimentin, and 

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) proteins with molecular weights 

ranging from 20 kDa to 70 kDa, 12% gel concentration is required. In the literature, it has 

been shown that for plectin of a molecular weight of 500 kDa, a 6% gel concentration is 

required. To separate proteins with a large difference in their molecular weights, it might 

be necessary to prepare a gel with a gradient of concentrations. The gel is completely 

polymerized after 15 min therefore, it is required to prepare all the reagents before 

preparing the gel solution. The gel cast was adjusted and was filled with water to verify 

whether it is not leaking. The water was removed by turning the cast upside down. It is 

recommended to prepare two gels in parallel one to transfer the proteins from the gel to 

the blotting membrane and another one to stain the gel with Bio-safe Coomassie G-250 

Stain after the electrophoresis as a control for protein separation. The components 

following the order presented in Table 10.7 were mixed and vortexed for 10 s. The 

separating gel solution was pipetted into the gel cast. Two centimeters of the top of the 

cast were left empty to add the stacking gel solution. The gel cast was filled up with 

ethanol to avoid ruffles on the edge of the gel. During gel polymerization the cast was left 

in a smooth place. After polymerization, ethanol was removed, and the stacking gel was 

added. To know when the gel is polymerized, the rest of the gel solution in the falcon 

tube was checked. 

3.5.2.2 Stacking gel  

See Table 10.8 for the actual volume of the components.  

The components were mixed and vortexed for a few seconds. A sufficient amount of 

stacking gel solution (3 mL) was added into the cast on top of the polymerized separating 

gel; a 10-well gel comb was immediately placed into the cast containing the stacking gel 

solution. 

3.5.2.3 Electrophoresis 

Following the gel polymerization, the cast containing the gel and the comb was 

transferred from the polymerization chamber to the electrophoresis chamber. In this step, 

it is possible to wrap the cast and its component in a wet paper and cover it with 

cellophane to avoid drying and incubate it overnight at 4 °C. The cast containing gel and 

comb was installed in the electrophoresis chamber and the chamber was filled with 

running buffer up to the marked point. Running buffer was added between 2 packed 

glasses to fill it entirely. Next, the gel comb was removed. Proteins (the cells lysed with 
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Laemmli buffer) were denatured for 5 min to10 min at 100 °C in a dry bath. 10 µL of 

molecular weight marker (PageRuler Prestained Protein Ladder) was pipetted to the first 

lane. 20 µL/lane of the proteins were loaded into the gel. PowerPacTM HC was 

connected to the electrophoresis chamber and was run at 70 V/ 300 mA to make the 

proteins pass through the stacking gel. Then the voltage was raised to 150-200 V/ 300 

mA. The electrophoresis was followed by the height of the molecular weight marker and 

the bromophenol blue. The experiment was running until the bromophenol blue reached 

the bottom of the chamber. During the electrophoresis, 1 L to 2 L of transfer buffer was 

prepared and cooled down at 4 °C. 

3.5.2.4 Gel staining 

Bio-safe Coomassie G-250 Stain is a protein that stains the system to determine the 

protein concentration in an SDS gel or a solution. The Coomassie dye contains sulfonic 

acid that binds to proteins in the SDS gel via Van der Waals's attraction and creates ionic 

interactions between amine groups of the proteins and the sulfonic acid. The Coomassie 

staining is used to detect proteins whose amount is > 0.5 µg. Following the 

electrophoresis, the cast was displaced, and the gel was transferred to a plastic or a glass 

dish. The gel was washed out 3 times with water for 5 min each time, was soaked in Bio-

safe Coomassie G-250 Stain and was incubated at room temperature for 1 h. After 

staining, the gel was washed out with water for 1 h. After destaining the gel with water, 

all the protein bands were detectable using a WB imaging system (FlourChem Q). 

3.5.2.5 Transferring  

A transfer system, including a transfer cassette and a transfer chamber, is required to 

transfer the proteins from the gel to the nitrocellulose blotting membrane. To prepare the 

transfer cassette (positive pole, filter paper, membrane, gel, filter paper, negative pole) the 

nitrocellulose membrane was cut in the size of the gel. It was then immersed in 100% 

methanol or ethanol was soaked in ultrapure water and was plunged into the transfer 

buffer. The filter papers and sponge support pad were submerged in the transfer buffer. 

The gel cast was opened carefully and soaked in the transfer buffer to easily remove the 

gel. A sponge support pad was placed onto the positive pole of the transfer cassette, the 

blotting paper, the membrane and gel were placed over the sponge respectively. The 

second blotting paper was placed on the top of the gel and the second sponge support was 

placed over the blotting paper. The air bubbles of the system were removed, the cassette 
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was closed, and placed in the transfer chamber. Figure 3.1 displays the order of the 

transfer cassette. 

 

 

Figure 3.1 The order of the transfer cassette in WB.  

The cathode (-) and anode (+) plates are placed in the sides and the sponge support pads, filter (blotting) 

papers, nitrocellular membrane and the SDS- PAGE gel is placed in between, in the order shown in the 

figure. (From [136]) 

 

The transfer chamber was filled with an appropriate transfer buffer to cover the transfer 

cassette completely. PowerPacTM HC was connected to the transfer chamber and run at 

100 V for 1 h at 4 °C. This system is called wet transfer and is used to transfer proteins 

with a size of 20 kDa to 100 kDa. To transfer the proteins with a bigger size such as 

plectin (≈ 500 kDa) the system is run at 37 V for 12 h at 4 °C.  

3.5.3 Western blot 

Membrane blocking  

To avoid the non-specific binding of antibodies to the membrane, the membrane was 

incubated in a blocking solution including 3-5% BSA diluted in 50 mL TBST (TBS 1X 

+Tween 20 0.1%) for 1 h to 2 h at room temperature on the shaker (neoLab). 

Incubating with antibodies 

Following the blocking procedure, the membrane was transferred to a box covered with 

aluminum foil. Appropriate antibody diluted in 3-5% BSA was added in a box and 

incubated at 4 °C overnight. The membrane was washed out with TBST 3 times for 10 

min. If the secondary antibody is necessary, then it was added and the membrane was 

incubated overnight with a control antibody such as GAPDH at 4 °C. It is necessary to 

wash out the membrane with TBST 3 times for 10 min after incubation with any 

antibody. 
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List of the antibodies and their concentrations: 

- Vimentin V9 AlexaFluor®647 (sc-6260, Santa Cruz Biotechnology), dilution 

1:500, 

- Plectin (10F6) Alexa Fluor®647 (sc-33649, Santa Cruz Biotechnology), dilution 

1:200, 

- GAPDH (0411) Alexa Flour®488 (sc-47724, Santa Cruz Biotechnology), dilution 

1:500, control staining. 

3.5.4 Data analysis 

The WB imaging system (FlourChem Q) was used to take images of the blot or the gel. 

To acquire the images the membrane or the stained gel was loaded and a preprogrammed 

protocol was selected (depending on the fluorophore, and on the wavelength of the 

antibodies). After scanning the membrane or the stained gel via the WB imaging system, 

direct analysis using the AlphaView program or with Fiji was performed (See 11.2 for 

data analysis in Fiji). 

3.6 Real-time quantitative polymerase chain reaction 

To quantify plectin mRNA by qPCR, 5*105 RPE1 cells were transferred to the RNase-

free centrifuge tube.  The spent medium was discarded, and lysis buffer was added to lyse 

the cells. A rotor-stator homogenizer was used to homogenize the lysed cells. In order to 

isolate and purify the RNA, the PureLink RNA Mini Kit (Life technologies, 12183018A) 

was used. Following the RNA purification, the Rnase-Free Dnase Set (50) Kit 

(Rneasy/QIAamp Columns) QIAGEN Kit was used for digesting and removing genomic 

DNA (gDNA) in RNA solution. To clean up the RNA, the PureLink RNA Mini Kit was 

employed. To synthesize efficiently the first strand of cDNA from RNA the RevertAid 

First Strand cDNA Synthesis Kit (Thermo Scientific, K1621) was used. This kit can be 

directly used as a template in qPCR. The amount of RNA was quantified and speculated 

100% of RNA was transcribed to cDNA. cDNA Forward primer and reverse primer 

sequences were designed using the tool called Primer BLAST for finding specific 

primers, for plectin 1b isoform are introduced below (for more details see 11.3.1): 

Forward primer  CACCAAGTGGGTCAACAAGC 

Reverse primer CCAGCAGGGAGATGAGGTTG 
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qPCR was running with 216.3ng/µL and 61.5ng/µL cDNA concentrations purified from 

two different experiments, the 1 µM, 2 µM and 5 µM concentration of each gene-specific 

primer. GAPDH forward and reverse primers were used as an internal control and a 

standard or reference gene in order to quantify the specific genes. GAPDH plays a role as 

a housekeeping gene. Housekeeping genes (such as actin or GAPDH) are genes that are 

expressed in all cells under a normal condition. GAPDH primers were supplied at Leibniz 

institute for new material (INM) from Dr. Annette Kraegeloh Laboratory in Saarbrücken 

Germany. iTaq Universal SYBR Green Supermix (Bio-RAD, 172-5121) was employed to 

run qPCR. The qPCR reaction protocol was run at a standard ramp speed with thermal 

cycling conditions cited in Table 3.1. Data were analyzed with the Bio-Rad CFX 

Manager software.  

Table 3.1 qPCR thermal cycling conditions 

 

Stage Order Temperature (°C) Time 

Holding 1 95 30 min 

Cycling (40 cycles) 

2 95 5 s 

3 60 30 min 

4 Plate read and go to 2 

Melting curve 

5 65 to 95 5 s 

6 Plate read 

End 

 

3.7 Evaluation of actin SF bundle thickness 

To evaluate the actin bundles thickness the images taken from FRAP measurements were 

imported to the Fiji software. A line with a length of 3 µm was drawn perpendicularly to 

the actin SF in the bleached ROI (Figure 3.2 (a)). Under Analyze/ Plot Profile the 

fluorescence intensity of the SF was measured before bleaching, and the data were 

imported to the OriginLab Software. The fluorescence intensity profile was plotted 

(Figure 3.2 (b)) and the curve (black) was fitted with a normal Gaussian function (red), 

the pink arrow shows the distance of the perpendicular line in the image (a), the purple 

arrow is the Gaussian full width at a tenth of the maximum (FWTM) grey value and 

corresponds to the thickness of the actin SF bundle.  
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Figure 3.2 Evaluation of actin bundles thickness. 

a) Actin SF fluorescence image. The SF is bleached in the ROI whose shape is a circle of diameter 3 µm. 

The fluorescence intensity is measured along the line perpendicular to the actin SF. b) Actin SF 

fluorescence intensity curve (black) fitted by Gaussian function (red), pink arrow shows the length of the 

perpendicular line in the image (a), the purple arrow is the Gaussian FWTM parameter corresponding to the 

actin SF bundles thickness. Scale bar: 5µm. 

3.8 Fluorescence recovery after photobleaching 

FRAP method is mainly appropriate to any experiment in which proteins bind to any 

cellular organelles such as membrane, cytoskeleton, and nucleus. The FRAP 

measurement was used here to measure F-actin dynamics in SFs and cortex and 

cytoplasmic actin dynamics, in vimentin depleted, plectin depleted and negative control 

cells. The method explained here is the same for the preparation of the control samples 

and the siRNA transfected samples.  

3.8.1 FRAP measurements in stress fibers 

Two confocal microscopes were used during this project to apply FRAP on actin SFs. 1- 

Confocal spinning disk inverted microscope (Ti-Eclipse, Nikon) 2- Laser scanning 

microscope (LSM 880, ZEISS). The Table 11.1 and Table 11.2 present the microscopy 

setting for the LSM and the spinning disc respectively. The majority of the FRAP 

measurements were performed with the LSM whose settings are explained in detail here. 

A 63x oil immersion objective with a numerical aperture (NA) of 1.4 was used to avoid 

scattering of the laser line and keep its cylindrical shape. A frame of 128*128 pixels in 

size with a pixel size of 0.20 µm and 8 µs pixel dwell time was employed for image 

acquisition. The pixel dwell time (dwell time per pixel) is the time that the laser will 

illuminate a single pixel. Before bleaching 5 images were acquired with a frame rate of 1 

s. Images were taken with 2% of the maximum power of the laser line of Argon Laser 

b) a) 
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(wavelength 488 nm). A circular ROI of 2 µm in diameter was chosen as a bleached ROI. 

100% of maximum power (30 mW) of the laser line of a diode laser (405 nm) was 

applied to the bleached ROI with 5 to 10 iterations and 20 µs to 60 µs pixel dwell time. I 

acquired 80, 94 and 240 post bleaching images for a time interval of 1 s. The recovery 

curve reaches its plateau value after approximately 80 images. I excluded the data 

obtained after 94 postbleaching images and applied the analysis and the mean value 

calculation and statistical test to all data including data from either spinning disk 

microscope or LSM. As mentioned in (3.1 Cell culture and cell types) for all FRAP 

experiments and measurements I used RPE1 vimentin mCherry transfected cells. In 

vimentin silenced cells before applying FRAP measurements; the level of silencing was 

evaluated. To examine vimentin fluorescence an image was taken with 2% of the 

maximum power (2mW) laser line of HeNe 594 nm Laser. 

Due to the slight cell migration in most of the FRAP measurements, after 90 s imaging 

during the postbleaching, the bleached area moves according to the cell movement in any 

direction. It was not always feasible to take images of the SF bleached area for 3 min 

during the postbleaching recovery. But the few images that were taken successfully to the 

end of 240 postbleaching images with a time interval of 1 s (3 min in total) indicated the 

equal plateau value the same as 94 postbleaching images (Figure 3.3). Data processing 

was performed by using the fluorescence intensity of the 94 postbleaching images. 
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Figure 3.3 Fluorescence recovery of actin GFP in 94 s and 240 s. 

The fluorescence recovery was monitored for 94 s (a) and 240 s (b) after bleaching. Both curves reach the 

plateau value after about 60 s.  

 

 

b) 

a) 
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3.8.2 Measurements of cytoplasmic actin dynamics via FRAP  

To investigate the cytoplasmic actin dynamics, the FRAP technique was applied on a 

circular ROI in the cytoplasm. FRAP experiment on cytoplasm is affected by 

measurement limitation due to greater bleaching time than actin monomer diffusion time 

in the cytoplasm. Furthermore, by modifying the microscopy settings and experimental 

design I attempted to reach a bleaching time equal to or less than actin monomer diffusion 

time. The modified microscopy setting lets us reach a short-duration bleached time of 

around 50 ms to avoid the cytoplasmic actin turnover occurs before the end of 

photobleaching. All the procedures of the sample preparation are as same as FRAP 

measurements of actin dynamics on SFs. In order to obtain a high SNR (>2), and a 

bleaching time lower than the diffusive time of G-actin, I chose the smallest possible 

image size.  

The smallest possible image size to reach the shortest bleached time was 27 * 27 µm with 

a pixel size of 0.27 µm with a total pixel dwell time of 6 µs. Images were taken using a 

63X oil immersion objective and a 488 nm wavelength laser with a pinhole of 1.58 Airy 

units. To expose FRAP on actin cytoplasm a higher laser power (50 mW) with a 405 nm 

in wavelength and 3 iterations and 2 µs pixel dwell time was applied to a circular ROI 

with 2 µm in diameter on actin cytoplasm of control and vimentin silenced cells. ROI 

fluorescent recovery was obtained for 60 postbleaching images with a time interval of 30 

ms. 

3.8.3 FRAP measurements of actin dynamics in cortex in suspended cells  

FRAP was applied to the actin cortex according to [120] by fluorescent recovery after 

photobleaching and photoactivation (FRAPPA, Andor Technology) tool using an inverted 

microscope (Ti-Eclipse, Nikon). The microscope is equipped with a Yokogawa spinning 

disc head (CSU-W1; Andor Technology). One to three circular ROIs with 2 µm in 

diameter were selected in the actin cortex, far from the nucleus. The cells moving out 

from the selected ROIs during the acquisition were excluded. The ROIs were exposed to 

30% of maximum laser power (50mW) with the 488 nm wavelength for imaging and 

100% of maximum laser power with 488 nm wavelength for bleaching. Fluorescent 

recovery of bleached ROIs was acquired 80 to 100 times with a 1 s frame rate.  

3.8.4 FRAP data processing   

The fluorescence intensity extraction was analyzed with the image processing software 

ImageJ (Fiji). OriginLab was used for the correction, normalization, and curve fitting. 
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Halftime recovery and the mobile fraction of actin dynamics in SFs and the cytoplasm in 

both populations (vimentin depleted and negative control cells) were statistically tested 

by the t-test for independent samples. Halftime recovery and the mobile fraction of actin 

dynamics in cortex in both populations were statistically tested for the magnitude of the 

effect using the Hedges’g test. In the Hedges´g test the value of > 0.2 shows a small 

effect, > 0.5 shows a medium effect and > 0.8 shows a large effect. 

3.9 Micro-Patterning 

Crossbow micropatterns were printed on glass coverslips. First, the coverslips were 

washed with 70% ethanol and were activated in a plasma cleaner (UV ozone oven 185 

nm, UVO CLEANER, 342-220, Jelight Company Inc.) for 3 min. The activated side was 

placed on a drop of 50 µL of poly(L-lysine)-grafted-poly(ethylene glycol) (PLL-g-PEG) 

solution at a concentration of 100 µg/mL and was incubated at room temperature for 1 h. 

PLL-g-PEG is a hydrophilic molecule used to avoid protein binding at the surface. It was 

also used to avoid cell attachment to the surface in the suspension phase of evaluating cell 

volume and measuring actin dynamics in the cortex. The photomask was washed with 

acetone and rinsed with pure water. A photomask or an optic mask is a plate with a quartz 

side and a chrome side with transparent patterns designed on it to allow the light to shine 

through the pattern shapes and expose the PEG layer to the UV light and destroy it. 

Damaging the PEG chains on the coverslip let the coating proteins bind to the coverslip 

substrate only on patterns.  

The quartz side of the photomask was cleaned by UV light for 5 min. The PEG-side of 

the coverslip was faced down on the quartz side of the photomask. 5 µL of pure water 

between the coverslip and the photomask is essential to keep the coverslip tight to the 

photomask. To destroy the PEG layer on the coverslip and print the specific pattern on it, 

UV light was illuminated on the chrome side of the photomask for 6 min. Here crossbow 

patterns with 40 µm, 39 µm, and 5 µm in length, width, and thickness respectively were 

printed. The coverslip was coated with fibronectin (F1141, Sigma) at a concentration of 

25 µg/mL at room temperature at least for 1 h. The coated coverslip was transferred to the 

sterile hood and was rinsed with DPBS and put in a six-well dish with the patterned side 

up. Cells were seeded on top of the coverslip and incubated for 4 h to 6 h to let the cells 

spread completely on top of the patterns.  
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3.10 Traction force microscopy 

A silane solution was prepared fresh (See 11.4.1) and a glass-bottom six-well plate (No. 0 

uncoated, P06G-0-20-F, MatTek Corporation) was coated with the silane solution and 

incubated overnight at room temperature. Measurement has proceeded with PAAm gel 

with a Young`s modulus of 5.2 kPa. The PAAm gel solution contains 600 mg acrylamide 

diluted in 5 mL phosphate-buffered saline (PBS), 30 µL acrylic acid, and 2.5 mg N, N’-

methylene-bis-acrylamide. Sodium hydroxide (NaOH) was used to adjust the PH of the 

gel solution at 7.5-8. Fluorescent polystyrene beads (0.25 µL, 1.25: 1000 volume ratio of 

the gel solution) and ammonium persulfate APS (10% solution, 1:100 volume ratio) and 

Tetramethylethylnediamine TEMED (1:1000 volume ratio) were added quickly to the gel 

solution. The gel solution (8 µL/well) was filled in the six-well glass-bottom plate with a 

coverslip on top to obtain a hydrogel thickness of 70-80 μm. Coverslip was removed after 

the gel polymerization at room temperature after 10 min. The hydrogel was activated with 

a solution of 39 mg Dimethylaminopropyl-3-ethylcarbodiimide hydrochloride (EDC) and 

12 mg N-Hydroxysuccinimide (NHS) in 1 mL MES buffer for 15 min at room 

temperature. The PAAm gel was functionalized with RGDFK (Arg-Gly-Asp-D-Phe-Lys) 

(0.5 mg in 1 mL PBS) overnight at room temperature to promote cell adhesion. Hydrogels 

were washed twice with PBS and cells were seeded on top of them and were incubated 

overnight. Fluorescent bead images of the same frame of the under stress and relaxed 

hydrogel were taken before and after cell detachment respectively. All images were 

acquired using an inverted microscope (Nikon) with the Intensilight Epi-Fluorescence 

illuminator light source. A 60X oil immersion objective was used. The microscope is 

equipped with a chamber (Okolab) that provides a constant temperature at 37 °C, a 

constant CO2 level of 5%, and a humidity level of 100%, required for the live-cell 

imaging. All displacement and traction force calculations, as well as force plots, were 

performed using the Fiji PIV and FTTC Plugins. 

3.11 Measurements of the cell size (suspension and adherent) 

To measure the cell volume in adherent cells, 105 cells were seeded on a FluoroDish 

Tissue Culture Dish with Cover Glass Bottom and were incubated for at least 4 h to 

spread entirely. Cells were transferred to the inverted microscope (Nikon) using the 

Intensilight Epi-Fluorescence illuminator light source and connected to an Oko-lab 

incubation chamber adjusted to 37o C and 5% CO2. A 60x oil immersion objective with a 

NA of 1.4 was used.  Images were acquired from the bottom to the top of the adherent 

https://en.wikipedia.org/wiki/Phosphate_buffered_saline
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cells. The cell area in each acquired image was measured in Fiji by drawing a line around 

the cell edge.  Data was imported in OriginLab. Cell volume was calculated by the mean 

value of the cell area multiplied by the height.  

The suspended cells preparation (the sample preparation) is explained in detail in section 

11.1.3 (procedures 1 to 14). After adding suspended cells into the PDMS chambers and 

covering chambers with the coverslip coated with PLL-g-PEG, the Fluorodish was 

mounted on the stage of the microscope. The microscopy setting was the same as for 

adherent cell imaging (above). Bright-field images were taken in a perfect focus condition 

(high precision focusing, continuously corrected) by imaging the cell from the bottom to 

the top. Images were saved and imported in Fiji to measure the cell volume. The area of 

the cell in each Z-stack was measured and the bigger area was selected to measure its 

diameter. The cell volume was measured using the diameter of the bigger cell area, 

assuming the cells in suspension have spherical shapes. 

The cell volume was plotted in all conditions in separated graphs for suspended cells and 

adherent cells. All conditions (RPE1 non-transfected (ctrl), RPE1 vimentin mCherry 

transfected (ctrl mCherry), RPE1 SiRNA scrambled (negative control) (nCtrl), and RPE1 

vimentin siRNA transfected (vimentin depleted) (vimSi) cells) were statistically tested 

with a t-test for independent samples. 
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4 Results and discussion: Actin dynamics 

Dynamics is a branch of physics that studies the motion of an object and involves 

classical mechanics such as force, displacement, velocity, acceleration and momentum. In 

cells, the polymerization and depolymerization of actin filaments result in actin dynamics. 

Actin dynamics are important for most cellular activities such as the transition between 

different structures of actin filaments and have a main role in cell migration and cell 

division. Therefore, it has been studied for decades using different methods. For example, 

actin filament motion was studied using time-lapse imaging of actin SFs in living cells 

during the assembly of actin in SFs to study actin filaments dynamics [64]. Detecting 

actin filament was also applicable to visualize the conversion of dorsal SFs and transverse 

arcs to ventral SFs and classify the distinct actin filaments. [64]. They show that actin 

stress fibers are thinner and fewer in motile cells when compared to nonmotile cells using 

live-cell image analysis [64]. Thus, tracking the actin filaments is not a proper method for 

cells to assess the dynamics of actin filament in motile cells. Using FRAP is another 

technique to study actin filaments dynamics. In the presented project, I studied F-actin 

dynamics by labeling G-actin and using FRAP to measure the actin turnover rate and the 

fraction of monomers that are involved in the actin recovery. 

4.1 Labeling of G-actin 

The challenge to visualize actin structures is to stain the actin proteins without altering 

their function. Depending on the aim of the study, different approaches are available for 

visualization. A convenient reagent to probe actin should have a minimum effect on actin 

dynamics (i.e., actin polymerization and depolymerization cycles). Actin has to be labeled 

with a FRAP-compatible molecule to study actin dynamics (i.e., BacMam gene delivery 

system [126-128]). The BacMam gene delivery system is an accurate marker to label β-

actin. To achieve an efficient level of actin fluorescence intensity and obtain a high SNR 

for FRAP measurements, it is important to calculate: (1) the appropriate number of 

CellLight BacMam particles per cell (PPC); (2) the sufficient incubation time to mix the 

cells and the BacMam reagent. The proper PPC number avoids a cytopathic effect on 

cells. 10,000 RPE1 cells were incubated with CellLight BacMam at concentrations of 30 

PPC, 40 PPC, and 50 PPC for 24 h, 32 h, 40 h, and 72 h. The evaluation of the 

fluorescence intensity using plot profile in Fiji shows a low SNR for 30 PPC for all the 

incubated times. A high SNR was obtained in 40 PPC and 50 PPC treated cells after 40 h, 

but the observation of the cells shows a cytopathic effect on cells treated with 50 PPC and 
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incubated for 72 h. As a conclusion, the optimal concentration to probe high fluorescence 

intensity without having a cytopathic effect on RPE1cells is 40 PPC incubated for 40 h. 

In order to validate the accuracy of the BacMam staining, cells stained with BacMam 

were fixed and stained with Phalloidin Red. Phalloidin is a well-known probe to stain 

actin in fixed cells but is a huge molecule that is not compatible with life experiments. 

Phalloidin is thus not a candidate to visualize actin during the FRAP experiment. 

However, it can be used to evaluate its colocalization with the BacMam signal. The 

merged image of both staining (Fig. 4.1) confirms that BacMam is an accurate marker to 

label actin on RPE1 cells. In the following section, FRAP experiments were performed on 

actin stained with BacMam. 

a) 

 

b) 

 

c) 

 

Figure 4.1 Actin labeling 

Actin labeled with a) Phalloidin in red and b) BacMam in green. c) The merged image, colocalization of 

both staining in yellow. Scale:10 µm. 

 

4.2 Actin dynamics in stress fibers 

Actin stress fibers are important for the generation of the protrusion and retraction force 

during cell motility and cell migration in the adherent phase. Polymerization and 

depolymerization of actin filaments have a critical role in these processes which are 

influenced by cross-link proteins such as myosin and tropomyosin and other cytoskeleton 

components. Furthermore, cell migration velocity and cell migration direction are 

influenced by vimentin deficiency [5] and indicated that vimentin is involved in cell 

motility and cell migration. Moreover, indicating the interaction between vimentin and 

actin filaments might help to better understand the cell migration process. Cell geometry 

is another parameter that is important in cell motility and cell mechanics [137]. 

Controlling cell geometry using the micropatterning method [138] might be a proper 

method to have cells in comparable conditions to measure actin dynamics in SFs. Plectin 

as a cross-linked protein that links IFs to other cytoskeleton components [11] is also 

involved in cell motility [12], cell stiffness and cell dynamics [139], and it has been 
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shown that plectin deficiency might affect actin dynamics and impacts cell migration and 

an overexpression of plectin increases migration and invasion of HNSCC cells [12]. In 

the presented project, I decided to indicate the contribution of vimentin and also plectin as 

a vimentin-actin protein cross-linker on actin dynamics in SFs. This would help to 

understand the interplay between actin and vimentin. 

4.2.1 Vimentin contributes to actin dynamics in stress fibers 

Several studies revealed the precise turnover rate for many individual purified proteins in 

in vitro and in vivo assays [107-109]. However, the protein recovery rate in a confined 

environment within a pool of proteins (such as in the living cells) is more complicated 

than in vitro assays and requires accurate settings and methods [110]. FRAP measurement 

is one of the most common methods that overcome the limitation of measuring the 

biomolecule dynamics in living cells. FRAP measurement probes the exchange speed of 

biomolecules within the cell and also indicates the ratio of immobilization of proteins that 

are confined within the large structures such as cytoskeleton filaments [110-114].  

In order to investigate the interplay between vimentin and actin filaments, a special focus 

was put on actin dynamics in SFs in vimentin deficient (knock down, (KD)) cells. Actin 

monomers were labeled with BacMam gene delivery system (See section 4.1). Vimentin 

KD cells and negative control cells were produced by transfection technique (See 2.4.1 

and 3.2). FRAP experiments were then performed on both vimentin KD and vimentin 

control cells. FRAP is an appropriate method to measure the F-actin turnover rate and the 

amount of actin monomers that are involved in the turnover in SFs [140]. 

4.2.1.1 Measurement of the amount of vimentin in transfected cells 

Depleting vimentin in living cells enables us to study its contribution to cellular 

mechanisms and their interactions with the other cell components, such as actin. In order 

to determine the implication of vimentin in actin dynamics, vimentin siRNA silenced 

cells and vimentin scrambled control cells were produced by transfection (See 3.2.1). A 

first evaluation of the vimentin silencing efficiency was observed with an epifluorescence 

microscope. The fluorescence images of the vimentin network show a lower fluorescent 

signal in vimentin KD cells compare to control cells (Figure 4.2). This observation gives 

a qualitative result of the success of the vimentin siRNA transfection. 
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Figure 4.2 Fluorescence imaging of vimentin in negative control and vimentin depleted 

cells. 

a) Vimentin network in a negative control cell (red), actin filaments (green) and an overlay of both vimentin 

and actin signals. Scale bar: 10 µm. b) Vimentin network in vimentin depleted cell (red), actin filaments 

(green) and an overlay of vimentin and actin. Scale bar: 20 µm. 

 

The amount of vimentin in vimentin silenced cells and control cells was then measured by 

using the western blot (WB) technique. Figure 4.3 (a, b) shows WB protein bands, and 

the relative amount of total vimentin in negative control cells and vimentin depleted cells. 

Western blot shows that to achieve greater vimentin knock down, one-round of 

transfection might be insufficient and will require a second round of transfection. The 

second round of transfection was performed 3 days after the first transfection (on day 4) 

in the same manner as on day 1. The WB experiments indicate an efficient vimentin 

silencing on RPE1 cells. The amount of vimentin in vimentin silenced cells was 

suppressed by 70% compared to the amount of total vimentin in negative control cells 

after the first round of transfection, and by 95% after the second round. The experiments 

were always performed directly after the second transfection as the efficiency of silencing 

will decrease over time because of cell division.  

a) 

b) 
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Figure 4.3 Western blot data to measure the amount of vimentin gene silencing. 

a) Western blot data to measure the amount of vimentin and GAPDH (as a control) protein, after one round 

of silencing (nC1 negative control; Si1 vimentin KD) and two rounds of silencing (nC2 negative control; 

Si2 vimentin KD). b) column chart of the normalized grey values of the first and second rounds of the 

negative control (nCtrl1 and nCtrl2), and vimentin silencing (vim si1 and vim si2).  

 

Recently it has been shown that vimentin depletion does not affect actin filaments 

orientation and actin bundles thickness in vimentin KO MEFs cells [141]. In the present 

study, the amount of actin proteins has not been verified as it was already well 

documented in the literature that the amount of actin proteins is not impaired in vimentin 

depleted cells [95, 100, 142].  

4.2.1.2 Actin dynamics in stress fibers in nonpatterned cells 

Actin dynamics in SFs in scrambled siRNA (negative control cells) and vimentin KD 

cells was measured by FRAP. From the FRAP recovery curve, actin recovery rate and 

fraction of actin monomers that are involved in recovery are measured. Figure 4.4 shows 

examples of corrected and normalized FRAP recovery curves (black) on actin SFs in 

negative control and vimentin KD cells. Actin SFs halftime recovery and mobile fraction 

are shown on the fitted (red) curves. While the FRAP curve reached a plateau value that 

corresponds to the mobile fractions.  

b) a) 
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Figure 4.4 FRAP curves of actin SF in control and vimentin KD cells.  

The curves of actin stress fiber fluorescence intensity during the FRAP experiment in (a) negative control 

cell and (b) vimentin KD cell. In both, normalized curves (black) represent actin fluorescence intensity 

before bleaching (time -5 to 0 second) normalized to 1 and directly after bleaching (time 0 second) 

normalized to 0. Post bleaching (time 0 to 85 seconds) shows the fluorescence recovery i.e. the actin 

turnover. Halftime and mobile fraction are shown on the fitted (red) curves. 

 

Actin turnover rate and mobile fraction were measured for every bleached ROI on SFs. 

The mean value of halftime recovery and the mean value of mobile fractions were 

calculated for negative control and vimentin KD cells. 

The FRAP measurements on SFs were performed either with a spinning disk microscope 

or an LSM. The results obtained with both microscopes were comparable, therefore the 

data were pooled together. The actin turnover rate (Figure 4.5 (a)), directly corresponds to 

the actin halftime recovery and is significantly longer in vimentin silenced cells compared 

to negative control cells (halftime recovery: 18s and 12s, respectively). The halftime 

recovery ratio of control cells over vimentin silenced cells is around 0.65, which indicates 

that actin turnover is 35% slower in the absence of vimentin when compared to negative 

control cells.  

The mobile fraction corresponds to the amount of actin monomers involved in the actin 

turnover. It shows no significant difference between both conditions with a percentage of 

30% of the mobile fraction on average (Figure 4.5 (b)). The 70% that does not recover 

correspond to the immobile fraction (i.e., the percentage of actin monomers that are 

staying at their localization after photobleaching.). The lack of vimentin does not impair 

the amount of actin monomers that participate in fluorescence recovery and are involved 

in the actin turnover.  

 

 

a) b) 
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Figure 4.5 Actin dynamics in SFs in negative control and vimentin depleted cells. 

a) Half time recovery of actin in SFs in the negative control (nCtrl) and vimentin depleted (vim Si) cells. b) 

mobile fraction of actin in SFs in negative control and vimentin depleted cells. In all the plot boxes 

Whiskers on box plots represent standard deviation. The mean value is given by the middle line within the 

box plot. Significance: t-test for independent samples, ** p< 0.01, n.s.: not significant. The number of the 

measured cells and SFs are respectively 29 and 38 in the negative control, and 19 and 29 in vimentin 

depleted cells.  

 

Taken together, the data show that actin dynamics in SFs are slower in the lack of 

vimentin even though the amount of actin monomers involved in actin dynamics is not 

modified. This suggests that vimentin interacts with actin and plays a regulatory role in 

the dynamics of actin in SFs. To understand if actin bundles thickness is also involved in 

actin dynamics in SFs, I evaluate the actin bundle thickness and investigate its correlation 

with actin bundle dynamics. 

4.2.1.3 Evaluating actin bundles dynamics correlated to their thickness  

Actin SF bundles are composed of 10 to 30 actin filaments [57]. Despite the basic 

similarities in SF structures, there are main differences (e.g., in their localization, 

thicknesses, contractility and ABPs that interact with the filaments). The actin bundle 

thickness varies depending on the number of actin filaments, their interaction with ABPs, 

cell contractility, and cell motility [64].  

In the FRAP measurements, actin dynamics were measured on actin SF bundles of 

variable thicknesses. Actin bundles thickness was measured using fluorescence 

microscopy assuming it as a two-dimensional filament. As vimentin has been suggested 

to promote actin dynamics in SFs [95, 100] I evaluated the thickness of SF to investigate 

whether the thickness of SFs is modified in the lack of vimentin. Therefore, the thickness 

of the actin bundles was measured by fitting the fluorescence intensity profile along the 

a) b) 
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actin fiber bundle section, with a simple Gaussian equation. Actin halftime recovery and 

mobile fraction in SF bundles were plotted against the actin bundle thickness in 

scrambled siRNA (negative control) and vimentin depleted (silenced) cells (Figure 4.6). 

The correlation between the plotted parameters was estimated with the Pearson 

correlation coefficient. A Person coefficient of [-1, -0.5] and [0.5, 1] means that the two 

parameters are (negatively and positively, respectively) linearly correlated while a 

coefficient of [-0.5, 0.5] means that the two parameters are uncorrelated. On the one hand, 

there is no linear correlation between the half time recovery and the actin SF bundle 

thickness for negative control cells and vimentin KD cells, (Pearson coefficients: -0.37 

and 0.05, respectively) (Fig, 4.5, (a, b)). On the other hand, there is no linear correlation 

between the mobile fraction and the actin SF bundle thickness for negative control cells 

and vimentin KD cells, (Pearson coefficients: 0.09 and 0.06, respectively) (Fig, 4.5, (c, 

d)).  

The data show that actin dynamics in SF bundles are not influenced by their thickness in 

negative control and vimentin silenced cells. However, the opposite effect has been 

shown recently in the literature, where massive actin SFs were less dynamic than thinner 

ones [143]. This resulted in impaired migration and motility of the kidney epithelial cells 

in wound healing assay [143]. In addition, SFs thicknesses vary under tension and 

become larger and thicker with an increase in applied forces to the surface in plastic or 

PDMS  [70]. This promotes tight adhesion and prevents fibroblast cell migration [70]. For 

several decades people found that the thickness of actin SFs affects actin filaments' 

motion but here I study F-actin dynamics in SFs and I showed that the thickness does not 

have an effect on the polymerization and depolymerization of actin filaments and the rate 

of F-actin turnover.  In the present study, as the FRAP experiments did not show any 

correlation between actin dynamics and actin SFs thickness on RPE1 cells, I decided to 

tune actin SFs localization and thickness by seeding the cells on patterns. This would 

confirm whether cell polarization and organization of SFs affect actin dynamics of control 

cells and vimentin KD cells.  
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Figure 4.6 Correlation of actin dynamics and bundle thickness. 

a, b) Halftime recovery of actin in SF against their thickness in negative control and vimentin depleted 

cells. c, d) Mobile fraction of actin in SFs against their thickness in negative control and vimentin depleted 

cells. Error bars show the standard deviation.  

 

4.2.1.4 Actin dynamics in stress fibers in crossbow micropatterned cells 

When cells are spreading, their geometry, shape, polarity, and the distribution of their 

cytoskeleton in the cytoplasm are uncontrollable [144]. Micropatterning is a popular 

technique to adjust and tune cell geometry in a specific shape. In micropatterned cells, 

actin SFs are almost in the same position and have comparable sizes in each cell [10].  

I hypothesized that the cell shape might influence actin dynamics by modifying the 

organization of the SFs. This hypothesis motivated me to check a method that controls the 

shape of the cells, the thickness of SFs and the position and localization of the organelles. 

I controlled the shape of the cells and the thickness of the SFs using the micropatterning 

method. Then to determine whether the variation of the organization of SFs and the 

geometry and polarization of the cell influences actin dynamics in SFs, I measured actin 

a) 

c) 

b) 

d) 
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dynamics in ventral SFs of vimentin KD cells and control cells on crossbow 

micropatterned cells and compared the results with the nonpatterned cells. Vimentin 

siRNA transfected and negative control cells were seeded on crossbow micropatterns 

(Figure 4.7). On this pattern shape, cells have two large actin ventral SFs, one on each 

cell edge [95].   

 

 

The FRAP measurements (Figure 4.8 (a)) confirm that actin halftime recovery is longer in 

vimentin depleted cells than in negative control cells (half time recovery 19 s and 12 s, 

respectively). The halftime recovery indicates that actin turnover rate is significantly 

slower in the vimentin KD cells when compared with control cells seeded on crossbow 

micropatterns. These data are comparable to the ones described for the actin turnover in 

SFs on nonpatterned cells. The mobile fraction in both patterned and nonpatterned 

conditions shows no significant differences for control cells and vimentin KD cells 

(Figure 4.8 (b)). The amount of actin monomers involved in actin recovery stays constant 

in the lack of vimentin in the micropatterned cells. These data are consistent with the one 

described for the nonpatterned cells.  

  

 

 

vimentin 

 

actin 

 

merged 

 

 

 

   

Figure 4.7 Crossbow micro-patterned negative control and vimentin depleted cells.  

Fluorescent images of a negative control (a) and vimentin depleted (b) cell on a crossbow micropattern. 

From left to right: scheme of a crossbow micropattern, vimentin in red, actin in green, and merged image. 

The blue arrowheads indicate ventral SFs. Scale bar: 20µm. 

b) 

a) 



79     Results and discussion: Actin dynamics 

nCtrl vim Si

0

10

20

30

40

50

60

h
a

lf
ti
m

e
 r

e
c
o

v
e

ry
 (

s
)

*

 

nCtrl vim Si

0

20

40

60

80

m
o
b
ile

 f
ra

c
ti
o
n
 (

%
)

n.s.

 

Figure 4.8 Actin dynamics in SFs in crossbow micropatterned cells. 

a) Half time recovery of actin in SFs in the negative control (nCtrl) and vimentin depleted (vim Si) 

crossbow micro-patterned cells. b) Mobile fraction of actin in SFs in negative control and vimentin depleted 

crossbow micro-patterned cells. Whiskers on box plots represent standard deviation. The mean value is 

given by the middle line within the box plot. Significance: t-test for independent samples, * p< 0.05, n.s.: 

not significant. The number of the measured cells and SFs are respectively 13 and 20 in the negative 

control, and 18 and 30 in vimentin depleted cells.  

 

The FRAP data (i.e., halftime recovery and mobile fraction) on control cells and vimentin 

KD cells were similar for patterned and nonpatterned cells. Therefore, cell shape, and the 

thickness and the position of actin SFs do not affect actin dynamics in SFs. There are no 

differences in actin dynamics in nonpatterned and patterned cells and I concluded that it is 

the role of vimentin that affects actin dynamics in SFs. However, it has been shown that 

actin bundle thickness is correlated with the motion of F-actin using fluorescent images of 

the cells that migrate [70]. In the current project, the FRAP technique was used to study 

F-actin dynamics. Moreover, recently actin dynamics have been studied only in 

nonpatterned cells with instinctive cell geometry, cell shape and cell polarity [140, 145]. 

Our data show no differences in actin dynamics in SFs in nonpatterned and crossbow 

micropatterned cells, thus patterned cells are proper in order to make statistics under the 

same conditions.  

4.2.1.5 Discussion on the contribution of vimentin to actin dynamics in stress fibers 

The role of actin bundles during cell migration has been studied for decades, however, the 

interplay between vimentin and actin filaments in cells remains poorly understood. Actin 

dynamics regulates membrane protrusion, creating new adhesions, contraction and 

retraction [21]. In particular, vimentin regulates cell contraction and plays a role in cell 

mechanics and cell signaling in smooth muscle cells [21]. Actin filaments are involved in 

a) b) 
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cell division and vimentin and plectin control cortical actin network organization [146]. 

In addition, vimentin itself plays a role in cell migration. A lack of vimentin impairs cell 

migration [4, 5, 52, 147] while overexpression of vimentin upregulates cell migration 

[20]. This suggests that vimentin is an important parameter in cell migration progress and 

invasion [6]. More recently, vimentin overexpression has been shown for metastasis in 

human lung adenocarcinoma [8], which suggests that vimentin might be a relevant 

therapeutic target in vimentin-related diseases (e.g., cancer). Until now, the participation 

of vimentin and actin filaments in cell migration was studied mostly independently. Few 

studies, mainly in vitro, have shown an interaction between actin and vimentin [100]. For 

example, rheological studies showed that a mixture of vimentin and actin is more stiff 

compared to actin filaments or vimentin filaments alone [96]. Also, the interaction 

between vimentin and actin transverse arcs results either in a slow actin flow in HFF cells 

[94] or in a promotion of actin retrograde flow in U2OS human osteosarcoma cells [95]. 

Cell migration is a complex mechanism that includes actin assembly and disassembly. In 

the presented project, I focused on F-actin dynamics in the presence and the lack of 

vimentin. In the literature, the actin elongation rate is 0.25 µm/min and is similar in dorsal 

SFs and transverse arcs [64] that is greater than in ventral SFs with the rate of 0.02 

µm/min  [148]. In the presented project actin halftime recovery in SFs ranges from 12 s in 

control cells to 18 s in vimentin KD cells; which contrasts with the actin SFs recovery in 

endothelial cells which range from 3 min to 5 min [149], and 17 s and 202 s for the 

chondrocyte cell line (H5 strain) [145]. These differences in recovery time measured for 

actin dynamics can be explained by the different data processing methods used, the 

different cell lines studied and applying FRAP on actin ventral stress fibers or dorsal SFs 

and arcs. In the literature, the authors measured actin dynamics in dorsal SFs while I 

measured actin dynamics in ventral SFs. I considered the photobleaching happening 

during the acquisition to fit the data which might partially explain the large contrast in 

actin dynamics compared with the literature.  

The presented data show that the lack of vimentin slows down actin dynamics, that actin 

dynamics is not influenced by SFs thickness but only by the lack of vimentin. This agrees 

with a recent study where vimentin depletion does not affect actin filaments orientation 

and thickness [141]. Vimentin filaments interplay with actin filaments to assist actin 

dynamics. This suggests that vimentin filaments in cooperation with actin filaments 

facilitate cell migration, but that vimentin does not influence SFs thickness. The 

regulation of actin dynamics via vimentin confirms the results of studies that have shown 
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that vimentin KO cells migrate slower than WT cells [5, 52], and that vimentin 

overexpression enhances cell migration [4]. However, it is important to note that in the 

presented project vimentin expression was silenced via cell transfection while in the 

literature vimentin knocked out cells were primary cells arising from genetically modified 

mice. Moreover, I did not measure the cell migration velocity and relative parameters in 

vimentin silenced cells, but I focused on actin and vimentin interplay in actin dynamics. 

Plectin is known to be a cross-linker protein between actin and vimentin. In the following 

section, I study the role of plectin and measure actin dynamics in plectin KD cells and 

negative control cells. 

4.2.2 Plectin contributes to actin dynamics in stress fibers  

In this section, I study the role of plectin-vimentin interaction in actin dynamics. I already 

described the role of vimentin on actin dynamics, here I hypothesized that not only the 

presence of vimentin affects actin dynamics but also the interplay of vimentin with actin 

via plectin. Actin dynamics were assessed in plectin depleted cells and negative control 

cells. Actin monomers were labeled with BacMam gene delivery system (See section 

4.1). Plectin was knocked down in RPE1 cells using the transfection technique (See 2.4.1 

and 3.2.2). FRAP experiments were then performed on both plectin KD and negative 

control cells. I show that the lack of plectin influences the fraction of actin monomers that 

recovered and is involved in the actin turnover even though actin halftime recovery is 

comparable in control and plectin silenced cells. 

4.2.2.1 Quantification of the amount of plectin in transfected cells 

In order to knock down plectin, plectin 1b siRNA was transferred to the cells and silenced 

plectin 1b isoform expression. Immunofluorescence staining (Figure 4.9) shows a 

reduction of plectin-derived fluorescence signal after the siRNA transfection 

(concentration 10 µM, incubation time 40 h). An immunofluorescence staining does not 

quantify the percentage of plectin-depletion, however, the images (Fig. 4.9) show a 

weaker fluorescence intensity derived from plectin depleted cells compare to scramble 

siRNA (negative control) cells and more than 90% of the cells present a reduction of 

plectin-derived fluorescence intensity (more images of immunofluorescence staining of 

plectin silenced and negative control cells are presented in appendix, Figure 10.1). 
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Figure 4.9 Immunofluorescence staining of negative control and plectin depleted cells.  

a) Negative control cell. b) Plectin depleted cell. (a, b) from left to right: plectin in purple, phase contrast 

image of the cell in grey, and overlay image. Scale bar:10 µm. 

 

In the literature, it has been shown that plectin deficiency affects IFs structure (their size, 

and network distribution) [18, 46], that their deficiency causes the detachment of 

vimentin filaments from focal adhesions [50, 52], and their distribution to the cell edge. 

As plectin links vimentin to focal adhesions, the depletion of plectin impairs the link 

between vimentin and FAs and affects vimentin network localization (i.e., vimentin 

filaments spread into the cell periphery and lamellipodia protrusions). 

In this study plectin silenced cells have a vimentin network distribution toward the cell 

edge and the cell membrane (Figure 4.10) which reveals the efficiency of the plectin 

depletion in cells. This has been observed during FRAP measurements on plectin 

depleted cells (Figure 4.10). Fluorescence imaging of the vimentin network in plectin 

silenced cells shows an alteration in vimentin network distribution, therefore results in the 

lack of plectin in cells. Plectin links vimentin to the focal adhesions, thus reducing plectin 

cuts this link and affects vimentin network localization. Vimentin filaments spread into 

the cell periphery and lamellipodia protrusions in the lack of plectin.  

 

 

 

 

a) 

b) 
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Figure 4.10 Vimentin network in negative control and plectin depleted cells.  

Vimentin network (red) in a) negative control cells and b) plectin depleted cells. Only the vimentin network 

images are shown here as plectin imaging was possible only in fixed cells. Scale bars:10 µm. 

 

Plectin is a huge protein with a molecular weight of 500 kDa that I could not detect with 

the WB kit available in the laboratory. Therefore, I used the qPCR technique to quantify 

the amount of plectin mRNA. Plectin 1b isoform binds to vimentin IFs [48]. To silence 

plectin, cells were transfected with plectin 1b siRNA. Two different template strands for 

forward and reverse plectin 1b primers were selected based on the mRNA sequence for 

plectin 1b isoform [48]. The primers were tested first only for control cells to select the 

proper one. In general, a gene-specific primer is more reliable when it has a low cycle 

threshold (Ct) value close to the Ct value of the gene normalizer. The Ct value 

corresponds to the number of cycles that the fluorescence signal crosses the fluorescence 

threshold. Table 11.9 to Table 11.11 show the results of qPCR using two different sets of 

primers in different concentrations for control cells. The Ct value for the primers designed 

in the Primer BLAST tool (will be referred to BLAST) with a concentration of 2 µM was 

less than the primers with the concentration of 1 µM and 5 µM designed with Primer-3 

tool. It indicates that the reactions containing BLAST primers contain a higher amount of 

the starting templet when compared to the other primers. Moreover, the Ct value for 

BLAST plectin primers is close to the Ct value in reactions with the GAPDH primer 

which was used as an internal control. Therefore, BLAST primers with a concentration of 

2 µM were chosen to quantify plectin in plectin silenced cells. The Ct value differences 

between plectin reactions and GAPDH in the other reactions for the untreated samples are 

higher when compared to the Ct value with BLAST primers. Later in the treated samples, 

I was not able to verify whether the differences in Ct values were due to the amount of the 

specific gene expression or the primer. Furthermore, I continued to quantify the plectin 

mRNA in RPE1 plectin KD cells by using BLAST primers (Table 11.6). Quantifying the 

a) 
b) 
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amount of plectin mRNA in plectin depleted cells does not show significant differences in 

expression of plectin in plectin KD (depleted), siRNA scramble (negative control), and 

control cells. The qPCR technique is sensitized to several parameters such as the 

concentration to obtain pure RNA, the designed forward and reverse primer sequences 

which are also plectin isoform dependent, and even the pipetting skills. That can be 

explained because of the slight decrease of plectin and I might have performed more 

experiments of qPCR to amplify the sequence of interest more in order to increase the gap 

between control and plectin-depleted cells. However, in parallel, I made FRAP 

experiments on both populations of cells and underlie a significant modification of actin 

dynamics. Having the exact percentage of depletion would have to be checked in later 

work but for preliminary studies on plectin role in actin dynamics, I preferred to first 

focus on the FRAP data. 

4.2.2.2  Actin dynamics in stress fibers in plectin silenced cells 

Depleting plectin in cells results in distinct biomechanical properties in myoblast and 

keratinocytes cell lines [18] and mouse skin fibroblast cell line [127] even though this 

deficiency mostly affects cells when external stress using a cell stretcher is applied to the 

cell [18]. Plectin deficiency has various effects on cell dynamics and cell motility in 

different cell types [18]. For example, in general, keratinocyte cells are stiffer than 

myoblast cells, using magnetic tweezers microrheology. However, the stiffness of plectin 

KO cells is two times lower than WT myoblast cells, while plectin KO is slightly stiffer 

than WT keratinocytes [18]. Plectin interacts with almost all the IFs such as vimentin. 

Vimentin-plectin interaction affects cell migration by positioning the nucleus in the 

cytoplasm [150]. A deficiency or overexpression of plectin proteins results in abnormal 

nucleus repositioning in cytoplasm results in various diseases [150]. Nuclear 

repositioning affects the mechanical properties of the cytoplasm around the nucleus, 

nucleus signaling pathway and cytoplasmic signaling pathway connection [150]. 

Vimentin-plectin interaction also modifies vimentin distribution into the cell by 

crosslinking vimentin to focal adhesions [46, 95], moreover, plectin is required for the 

interaction of transfected arcs and vimentin [95]. Plectin connects IFs to actin filaments, 

MTs and membrane [11, 106].  

Here, I investigated whether the alteration of actin dynamics in vimentin depleted cells is 

caused by the presence of vimentin or is due to the interplay between vimentin and actin 

via plectin. Furthermore, actin dynamics in SFs in scrambled siRNA (negative control) 
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and plectin deficient cells were measured using FRAP. The halftime recovery is 12 s for 

both populations (Figure 4.11 (b)), which means that the actin turnover rate is not affected 

by the lack of plectin. Therefore, the actin turnover rate is comparable to plectin negative 

control cells and plectin depleted cells. The inhibition of the indirect interaction between 

vimentin and actin mediated by plectin does not impact the fraction of actin monomers 

that are participating in the fluorescence recovery in vimentin depleted cells. However, 

the amount of actin monomers involved in turnover is higher in plectin depleted cells 

(41% of fluorescent recovery) compare to negative control cells (28% of fluorescent 

recovery). The ratio of the mobile fractions of plectin depleted cells over the control cells 

is 1.46 (Figure 4.11 (b)). Taken together these data show that a lack of plectin influences 

the fraction actin monomers that recovered and are involved in actin turnover but does not 

influence their halftime recovery. 
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Figure 4.11 Actin dynamics in SFs in negative control and plectin depleted cells. 

a) Half time recovery of actin in SFs in the negative control (nCtrl) and plectin depleted (plec Si) cells. b) 

Mobile fraction of actin in SFs in negative control and plectin depleted cells. In all the box plots Whiskers 

on box plots represent standard deviation. The mean value is given by the middle line within the box plot. 

Significance: t-test for independent samples, ** p< 0.01, n.s.: not significant. The number of the measured 

cells and SFs are respectively 29 and 38 in the negative control, and 20 and 23 in plectin depleted cells. 

 

4.2.2.3 Discussion on the contribution of plectin to actin dynamics in stress fibers 

As mentioned, FRAP is a common technique to study the kinetics of biomolecules in 

vitro. In the presented project FRAP was used as an appropriate method to study F-actin 

dynamics in SFs in both vimentin depleted and plectin depleted cells. Plectin is known as 

a vimentin-actin cross-linker [51]. In the presented study, I show the role of vimentin on 

actin turnover rate (actin halftime recovery in SFs is longer in vimentin KD cells compare 

to control cells), whereas it is not altered by the lack of plectin. However, the fraction of 

a) b) 
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actin monomers that are involved in the turnover rate is not altered in vimentin KD cells 

compared to the control, while this ratio is higher in plectin KD cells than in WT cells. 

The lack of plectin increased the fraction of actin monomers involved in the actin 

turnover rate. In the literature, it has been shown that, in the lack of plectin, actin has a 

weak affiliation in focal adhesions [50, 52] even though the expression of actin is not 

observed [106] furthermore it might result in an increase in the number of free actin 

monomers. Plectin maintains the cytoskeleton in a stable shape and plectin deficiency 

defects the cell formation [151], reposition the nuclear and affects cell migration, even 

though it does not influence actin polymerization turnover rate.  

I already showed that depleting the cross-linker between actin and vimentin changes the 

amount of actin monomer involved in actin recovery, not only the presence of vimentin is 

important for actin dynamics but also the interplay of vimentin with actin via plectin. 

Both the presence of vimentin and also the interaction of vimentin with actin via plectin 

have an impact on actin dynamics. Plectin deficiency affects intermediate filaments 

structure (their size, flexibility, stability) [18, 46]. Depleting plectin increased the 

extractability of vimentin proteins compare to the WT cells [139] in WB. Vimentin is 

overexpressed in cancer cells and plays a main role in the progression and invasion of the 

cancer cells. Understanding how plectin affects vimentin is not the goal of this project 

and the amount of vimentin was not measured in plectin deficient cells; however, plectin 

might have a role as a mediator in cancer.  

4.3 Actin dynamics in the cortex in suspended cells 

One of the interests of our lab is to understand the adhered-suspended transition that 

occurs during diverse steps of cell life. For example, during division the cells detach a 

little during mitosis, in the case of cancer, metastatic cells detach from the tumor and 

become suspended to invade other tissues. Two distinctive projects are currently studied 

in our lab: 1) studying actin dynamics in the cortex during the adhered-suspended 

transition; 2) studying the role of vimentin in amoeboid cell migration. In an amoebid 

mode of migration, cells are low-adherent, and due to their minimum adhesion, cells have 

a cortex similar to a suspension cell. Therefore, I used the expertise I developed for FRAP 

experiments to study actin dynamics in negative control cells and vimentin depleted cells, 

in the cortex of cells in suspension. 

In the cortex ARP2/3 are nucleator proteins, and formin is a polymerization mediator, 

which have two distinct turnover rates [119]. A fast turnover that results from the addition 
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of monomers to free barbed ends (ARP2/3); and a slow turnover that results from formin-

mediated filament growth (See section 2.4.3) [119]. It has recently been shown that in 

mammalian dividing cells the actin cortex turnover rate has a single halftime recovery of 

45 s [152].  

Here I measured actin dynamics in cortex refereeing to [119] with two turnover rates (one 

for ARP2/3 contribution and one for formin contribution). Actin recovery rate in vimentin 

depleted cells is longer (half time recovery: 6.6 s and 79 s for ARP2/3 nucleation and 

formin mediated polymerization, respectively) compare to control cells (half time 

recovery: 3.5 s and 65 s for ARP2/3 nucleation and formin mediated polymerization, 

respectively) (Figure 4.12 (a, b)). FRAP data show that the actin recovery rate in vimentin 

silenced cells is about 0.5 to 0.2 times slower than in control. The FRAP data also show 

that the mobile fraction of actin monomers in the lack of vimentin is higher in the fast 

population compare to control cells (ARP2/3 nucleation: 42% and 30% in vimentin 

depleted and control cells, respectively), whereas it is lower in the slow population 

(formin mediated polymerization: 57% and 70% in vimentin depleted and control cells, 

respectively) (Figure 4.12 (c, d)). This indicates reduced incorporation of exchangeable 

actin subunits into actin polymers. 

In this subproject, I report the effect of vimentin in actin dynamics in the cortex of 

suspended cells. Actin dynamics in the cortex reveals two separated F-actin populations, 

ARP2/3 nucleation (fast)) and formin mediated polymerization (slow). FRAP 

measurements in the cortex show that the reduction of vimentin results in a slower 

halftime recovery for both populations compared to the control. The presence of vimentin 

seems to promote the actin turnover rate also at the cellular cortex. These data are in line 

with what I showed in SFs on adhered nonpatterned cells and crossbow micropatterned 

cells. Taken together these data show that vimentin influences the actin turnover rate not 

only in SFs but also in the cortex in suspended cells. 

Recently it has been shown that a capping protein (CP) regulator known as CARMIL2 

(CP, ARP2/3, myosin I linker 2) localizes in vimentin at the leading edge of the cells and 

binds to the cell membrane [147]. CARMIL2 forms lamellipodia and assists cell 

migration in the presence of vimentin. CARMIL2 needs both localization in vimentin and 

binding to CP to regulate actin assembly during cell migration and membrane protrusion 

[147]. The actin assembly regulation was studied in adherent cells and also in this 

subproject I show that the lack of vimentin reduces the actin halftime recovery into the 
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cortex and reduces the incorporation of exchangeable actin subunits into actin polymers 

in cells in a suspension state.  
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Figure 4.12 Actin dynamics in the cortex in negative control and vimentin depleted cells. 

a, b) Halftime recovery of actin in cortex ((a) ARP2/3 nucleation (fast)) and ((b) formin-mediated 

polymerization (slow)) populations in negative control (nCtrl) and vimentin depleted (vim Si) cells. c, d) 

Mobile fraction of actin in cortex ((c) ARP2/3 nucleation (fast)) and ((d) formin-mediated polymerization 

(slow)) populations in negative control and vimentin depleted cells. Whiskers on box plots represent 

standard errors. Statistics were carried out using a Hedges’g test for the magnitude of the effect. The 

Hedges´g value of > 0.2 has a small effect, > 0.5 has a medium effect and > 0.8 has a large effect.  The 

numbers of the bleached ROIs are 13 in control and 10 in vimentin siRNA cells.  

 

4.4 The volume of RPE1 negative control and vimentin depleted cells 

In the literature, it has been shown that vimentin knock out dendritic cells from 

genetically modified knock out mice are smaller than the dendritic cells from wild type 

cells [153]. I showed that actin dynamics in RPE1 SFs are altered in the absence of 

vimentin and hypothesized that vimentin depleted cells might be smaller than negative 

a) b) 

c) d) 
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control cells. This might result in fewer free spaces for G-actin to diffuse in the cytoplasm 

and reach the actin filaments and slow down F-actin recovery. Therefore, I measured the 

volume of adhered vimentin depleted cells and the volume of adhered control cells. This 

measurement is challenging on adhered cells because of the lack of accuracy of 3D 

images I can acquire. For this reason, I also measured the RPE1 cell volume in 

suspension. The volume of the cells was measured under three conditions as control: 

RPE1 WT (non-transfected), RPE1 vimentin mCherry transfected and RPE1 vimentin 

mCherry transfected plus scrambled siRNA cells. By comparing the cell volume in RPE1 

WT (non-transfected) and RPE1 vimentin mCherry transfected it will be possible to 

indicate whether the cell volume is affected by transfection or not.  

The volume of vimentin depleted and three types of control cells in adherent and 

suspension are plotted in the separated graphs (Figure 4.13 (a, b)). The cell volume in 

RPE1 WT and RPE1 vimentin mCherry transfected in both adherent and suspension 

conditions have no significant differences, concluding vimentin mCherry transfection 

itself does not alter the cell volume. Furthermore, RPE1 vimentin depleted cells in both 

adherent and suspension conditions are significantly larger than control cells. Taken 

together, the lack of vimentin in RPE1 cells induces a larger cell volume. 

There are only a few studies about measuring the cell volume in vimentin depleted cells 

and most of them were done in vimentin KO cells [141, 153]. Interestingly, it has been 

recently shown that vimentin KO MEFs cells are slightly larger than control ones [141] 

but the opposite effect is discussed in the vimentin community as well.  
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Figure 4.13 The effect of vimentin deficiency on the size of the cells. 

a) The cell volume of RPE1 adherent cells and b) RPE1 suspended cells. Measured conditions are: RPE1 

non transfected (ctrl), RPE1 cells with vimentin mCherry transfected (ctrl mCherry), RPE1 cells with 

siRNA scramble (nCtrl), and RPE1 cells with vimentin siRNA transfected (vim Si). Whiskers on box plots 

represent standard deviation. The mean value is given by the middle line within the box plot. Significance: 

t-test for independent samples, * p< 0.05, ** p< 0.01, *** p< 0.001, n.s.: not significant. The number of the 

measured adherent cells are respectively 36, 36 ,53 and 36 and 40, 42, 87 and 74 in suspended cells. 

 

The KO cells are genetically different from WT cells. In KO cells the gene is taken out 

from the cell and does not exist in the genome anymore. Taking out one specific gene 

could influence the whole genome in an undescribed way. In siRNA transfected cells the 

gene is not deleted, so the genotype of the cell is not modified and is identical to the WT, 

this is an important difference between KO cells and KD cells. Furthermore, siRNA 

transfection method is transient and is specifically affecting the protein level but not the 

gene expression. These biological differences including the type of cells may lead to 

opposite effects in cell volume.  

Here, vimentin depleted RPE1 cells are significantly larger than control cells, which is in 

contrast with the hypothesis that the increase of F-actin turnover rate will be the 

consequence of a reduction of the cell volume. Therefore, I investigated whether there is a 

significant difference in cytoplasmic actin dynamics and not only in the SFs, in vimentin 

depleted and control RPE1 cells. 

4.5 Cytoplasmic actin dynamics of vimentin KD and control RPE1 cells 

Following the evaluation of the cell volume, I investigated the cytoplasmic actin diffusion 

time [149] in vimentin depleted and control cells via FRAP measurements. Recently it 

has been shown that in the cytoplasm the G-actin halftime recovery, measured via FRAP, 

is about 40 ms [120] and it refers only to the diffusive recovery.  

In the presented study, the cytoplasmic actin dynamics was measured via FRAP in 

vimentin depleted and negative control cells. Figure 4.14 (a) presents the cytoplasmic 

actin halftime recovery in both conditions and indicates that the cytoplasmic actin 

turnover is comparable in scrambled siRNA (negative control) and vimentin depleted 

cells. Moreover, the lack of vimentin does not significantly influence the mobile fraction 

(Figure 4.14 (b)). This suggests that the fraction of cytoplasmic actin is not involved in 

the actin turnover rate.  
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Figure 4.14 Cytoplasmic actin dynamics in negative control and vimentin depleted cells. 

a) Half time recovery of cytoplasmic actin in the negative control (nCtrl) and vimentin depleted (vim Si) 

cells. b) Mobile fraction of cytoplasmic actin in negative control and vimentin depleted cells. In all of the 

plot boxes, Whiskers on box plots represent standard deviation. The mean value is given by the middle line 

within the box plot. Significance: t-test for independent samples, n.s.: the difference is not significant. The 

numbers of the bleached ROIs are respectively 13 and 14 in negative control and vimentin depleted cells. 

 

Studying the cytoplasmic actin dynamics via FRAP showed that there are no significant 

differences in cytoplasmic actin dynamics in vimentin depleted cells as compared to the 

negative control. In the cytoplasm, the cytoplasmic actin halftime recovery refers only to 

the diffusive recovery while in the cortex or SFs it is a combination of diffusive and 

reactive recoveries. Despite the interaction of vimentin and different structures of actin 

filaments [94, 95], this interaction does not influence cytoplasmic actin diffusive recovery 

in the presence or the lack of vimentin. As mentioned in 2.4.3 the G-actin characteristic 

diffusion time (𝜏) is the time needed for a monomer to travel a distance (r) with a certain 

diffusion constant (D) [121, 122], where r is the radius of the ROI which was the same in 

both conditions in all the FRAP measurements. Further, the amount of actin proteins in 

negative control and vimentin depleted cells is the same [95, 100, 142], moreover, the 

certain diffusion constant (D) will be the same in both conditions. When all parameters 

that define the G-actin characteristic diffusion time are equal, in negative control and 

vimentin depletion cells, and also there are no significant differences in the cytoplasmic 

actin dynamics in vimentin depleted cells as compared to the control, it is concluded that 

cytoplasmic actin dynamics is not influenced by the lack of vimentin.  

Prior, I hypothesized that vimentin depleted cells might be smaller than negative control 

cells and the smaller size of the vimentin KD cells compare to the control cells might 

result in fewer free spaces for G-actin to diffuse in the cytoplasm and reach the actin 

a) b) 
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filaments and slow down F-actin recovery. Therefore, I measured the volume of adhered 

vimentin depleted cells and the volume of adhered control cells. Moreover, I showed that 

vimentin depleted RPE1 cells are significantly larger than control cells, which is in 

contrast with the hypothesis that the increase of F-actin turnover rate will be the 

consequence of a reduction of the cell volume. Next, I investigated whether there is a 

significant difference in the cytoplasmic actin diffusion time in vimentin depleted and 

control RPE1 cells. I hypothesized that G-actin might have a longer diffusion time to 

reach the actin filaments in vimentin KD cells compared to the control cells, and that 

might affect F-actin dynamics. However, I showed that cytoplasmic actin dynamics is not 

influenced by the lack of vimentin. Furthermore, I hypothesized that even though 

cytoplasmic actin has the same diffusion time in both vimentin KD and control cells, 

actin monomers might require a longer time to reach the actin filaments in vimentin KD 

cells because of the larger size of the vimentin KD cells compared to the control cells. 

Therefore, suggesting that the cell size might have an effect on actin dynamics in 

vimentin KD RPE1 cells comparing with the control cells. 
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5 Results and discussion: Vimentin in actin force generation 

Applying stress using atomic force microscopy [81], magnetic twisting cytometry [154], 

and optical tweezers [91] on vimentin deficient and control cells indicated the 

contribution of vimentin on the mechanical properties of the cells. Vimentin filaments 

align traction stresses and are required for the orientation of traction force [94]. This 

suggests that vimentin is a loadbearing structure in cell motility.  

In migrating fibroblast cells, phosphorylated myosin is found to be more concentrated in 

the tail region (cell rear) compared to the front region (leading edge). The higher 

concentration of phosphorylated myosin in the tail domain generates the maximum 

traction force and helps the cell to retract the tail [155]. Moreover, researchers have 

shown that the absence of vimentin in U2OS cells alters the phosphorylation of myosin II, 

the amount of phosphorylated myosin is higher [100] and they showed, vimentin KO cells 

generate greater traction forces than WT cells leading to more stable actin SFs [100]. 

Furthermore, in my Ph.D. project, I measured the traction force in RPE1 vimentin 

depleted (vimentin KD) cells. As I already showed that actin turnover rate was faster in 

negative control RPE1 cells compared to vimentin KD RPE1 cells, I measured the 

traction forces in both negative control and vimentin KD RPE1 cells.  

I hypothesized that vimentin influences actomyosin contraction in cells. Thus, I used 

traction force microscopy to measure the traction force magnitude and the traction force 

orientation in control and vimentin KD RPE1 cells. 

5.1 Stiffness of hydrogels 

Cells generate traction forces when they attach to the surface, migrate and divide. The 

forces applied by the cells depend on the cell type and can vary from 10 Pa in neuronal 

growth cones to 1 kPa for platelets [132]. Therefore, the stiffness of the substrate has to 

be adapted to the traction forces applied by the cells on the substrate. Applying low forces 

on a stiff gel will not deform it and then will not be measurable; on the other hand with a 

too soft gel the cell will spread less [156, 157] which may lead to inaccurate measurement 

of the forces. To find the appropriate gel stiffness to measure the RPE1 traction forces, I 

seeded the cells on hydrogels with different stiffness (2 kPa, 5.2 kPa, 11.6 kPa, 18.9 kPa, 

and 50 kPa). The cells are seeded on the hydrogels of different stiffness and observed 

with an epifluorescence microscope. The attachment and spreading of the cells on the 

hydrogels are visualized and the acquired images of cells on hydrogels with the different 
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stiffness (Figure 5.1) show that RPE1 cells are completely spread on gels with Young’s 

modulus of 5.2 kPa. The cells are not completely spread on hydrogels with Young´s 

modulus of 2 kPa after 12 h or are only spread where the gel is ruffled. Cells are also well 

spread on hydrogels with Young´s modulus of 11.6 kPa or 18.9 kPa, but when the 

stiffness of 5.2 kPa can be used, it is not suitable to seed the cells on stiffer substrates. 

Thus, all the traction force measurements are performed using hydrogels with Young´s 

modulus of 5.2 kPa. 

 

2 kPa 5.2 kPa 11.6 kPa 

   

       18.9 kPa            50 kPa  

  

Figure 5.1 Images of the RPE1 cells seeded on hydrogels with different stiffness. 

RPE1 cells on PAAm hydrogels with Young´s modulus of a) 2 kPa, b) 5.2 kPa, c) 11.6 kPa, d) 18.9 kPa, 

and e) 50 kPa. The yellow lines in images c) and d) show the cell edge (border). Scale bar:20 µm. 

 

5.2 Traction force magnitudes in vimentin depleted cells and control cells 

Actomyosin contraction in negative control and vimentin depleted cells was measured 

using traction force microscopy (TFM). Traction forces are applied to the surface via the 

attachment of the cell on the hydrogel and result in the displacement of the fluorescence 

beads embedded into the hydrogels. The displacement of the beads is correlated to 

traction forces using a Fourier transform traction cytometry model. Thus, I obtained the 

traction forces by calculating the displacement of the beads. Traction force magnitudes 

were quantified for every cell by summing up all the magnitude of the traction force 

a) b) c) 

d) e) 
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vectors. Figure 5.2 shows the quantification of traction force magnitudes in negative 

control and vimentin KD cells. The mean value of the traction force magnitude in both 

populations is 300 kPa. These data show there is no significant difference in traction 

stress in cells with the lack of vimentin compared with control cells. In conclusion, the 

lack of vimentin does not impair the traction force magnitude of RPE1 cells applied on 

the hydrogel via actomyosin, and vimentin is not involved in the magnitude of the 

traction stress. 
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Figure 5.2 Quantification of traction force magnitudes in negative control and vimentin 

depleted cells. 

Traction force magnitudes applied to the surface via negative control (nCtrl) and vimentin depleted (vim Si) 

cells. Whiskers box plots represent the standard deviation. The mean value is given by the middle line 

within the box plot. Significance: t-test for independent samples, n.s.: not significant. The number of 

negative control cells and the number of vimentin depleted cells are respectively 23 and 18. 

 

Recently, it has been shown that the orientation of traction stress in vimentin KD HFF 

cells is not similar to their orientation in control cells [94]. In vimentin KD HFF cells 

traction stresses are randomly aligned compared to control cells [94]. I also observed the 

orientation of beads displacements. Figure 5.3 (a) shows the displacement vectors of 

beads in control cells and vimentin KD cells. The cell edge is drawn with a yellow line. 

The traction forces are not applied to the surface homogeneously and in the consequence, 

the displacements of beads are not homogeneous. Figure 5.3 (b) is a sketch of the 

displacement of the beads. The orientations of the displacement vectors of beads are 

illustrated with red arrows.  
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Figure 5.3 Bead displacements and traction forces applied to the surface by negative 

control cells and vimentin depleted cells.  

a) The displacement of the fluorescence beads embedded in the surface under negative control (left) and 

vimentin KD (right) cells. b) The sketch of the displacement of the beads. The red arrays show the beads 

displacement vectors and the dot-line circles show traction regions. c) The heating map of traction force 

magnitudes applied to the surface via the same negative control (left) and vimentin KD (right) cells with the 

same scale bars in (a). The red arrowheads show traction force not close to the cell edge.  

The yellow line in each image shows the cell edge (border). The heat map scales in the left side of the 

negative control and the right side of the vimentin depleted show the minimum (black) to the maximum 

(red) values for displacement and traction force magnitudes in pixel and Pascal respectively. Scale bars: 20 

µm. 

 

The regions with the higher magnificence of the displacement of beads are shown in 

Figure 5.3 (b) and are referred to as traction region. My data show that the number of the 

traction regions in the vimentin KD cells is higher than in control cells (e.g., in Figure 5.3 

(b) the number of the traction regions in negative control and vimentin KD cells are 

a) 

b) 

c) 
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respectively 2 and 3). Therefore, the orientations of the displacement vectors of beads are 

more randomly distributed in vimentin KD cells when compared to control cells. The 

orientation of the displacement of beads is correlated with the traction force direction. 

Therefore, the traction force direction is more random in vimentin KD cells than in 

control cells, even though the traction force magnitude is comparable in both populations. 

To conclude, vimentin aligned traction stress in RPE1 cells and the lack of vimentin 

results in more random orientations of the traction force than in control cells.  Figure 5.3 

(c) shows the heating map of traction forces in control RPE1 cells and vimentin KD 

RPE1 cells. The cell edge is drawn with a yellow line. The traction forces applied to the 

surface are close to the cell periphery for vimentin KD cells while for WT cells, the 

traction forces applied to the surface are not only at the cell periphery but also close to the 

cell center (arrowheads in Figure 5.3 (c)). The data show that the lack of vimentin 

influences traction force distribution in RPE1 cells (one more image of the bead 

displacement and the heating map of traction forces in vimentin silenced and negative 

control cells are shown in appendix, Figure 10.2). Taken together, our findings show that 

the lack of vimentin does not affect the magnitude of the traction forces in RPE1 cells 

however, it influences traction force magnitude distribution and the direction of traction 

forces.  

5.3 Discussion on the contribution of vimentin to actin force generation 

Previous studies suggested that the contraction generated by SFs promotes cell migration 

[68]. Alternatively, other researchers suggested that SFs are inhibiting cell migration via 

generating contraction forces [70]. Thus, contractility would either inhibit cell migration 

or promote cell migration. Therefore, an optimal balance for contractility is required for 

efficient motility and this balance might be different for different cell types depending on 

their role in the body.  

Moreover, there are distinct findings of the influence of vimentin on traction force 

generation and cell contractility. In the literature, it has been shown that SFs organization 

and orientation are unchanged in vimentin KO MEFs cells compare to vimentin WT 

MEFs cells [141]. However, higher traction forces have been measured when generated 

by vimentin KO MEFs cells than when generated by vimentin WT MEFs cells [141]. In 

vimentin KO MEFs cells the resistance against SF contraction decreased, which resulted 

in an increase in the stress generation [141]. However, it has been recently shown that the 

absence of vimentin decreases the ratio of actin SFs assembly and disassembly in focal 



98    Results and discussion: Vimentin in actin force generation 

adhesions [100]. There is evidence that vimentin KD cells migrate slower than WT cells 

[5, 52]. This suggests that the lack of vimentin leads to less [158] and weaker traction 

forces [159, 160], and finally slows down cell migration. In the presented project, I show 

that the lack of vimentin in RPE1 cells has no significant effect on traction force 

magnitude applied by cells to the surface as compared with negative control cells. 

However, my findings show that the numbers of the traction regions are more in the 

vimentin KD cells than in control cells. I also show that in the vimentin KD cells the 

orientation of the traction forces is more randomly oriented than in control cells. In 

conclusion, the lack of vimentin might influence actin SFs distribution and in 

consequence the cell adhesion sites.The effect of vimentin deficiency in actin dynamics in 

SFs might result from an unknown role of vimentin in cell signalling. Recently, it was 

shown that ROCK inhibition reduces the expression of vimentin in the human aortic 

vascular smooth muscle cells (HA-VSMCs) that results in inhibition of migration [161]. 

It is already commonly accepted that the activation of ROCK via the activation of RhoA 

stimulates F-actin stabilization and actomyosin contraction. Moreover, it has been shown 

that the depletion of vimentin activates RhoA [100]. As a consequence, ROCK is 

activated and increases F-actin stabilization and actomyosin contraction. Thus the 

activation of RhoA (consequently the activation of ROCK) is vimentin dependent [100] 

and inhibition of ROCK might affect the expression of vimentin [161]. In the presented 

project, my data do not show that the lack of vimentin activates or inhibits the ROCK 

pathway however, our findings show that the lack of vimentin influences the traction 

force distribution and accordingly it might affect cell adhesion sites. Figure 5.4 shows a 

small part of Rho pathway that leads to actin filament stabilization and actomyosin 

contraction. 
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Figure 5.4 Scheme of a part of the RhoA pathway  

RhoA is activated through the Guanine nucleotide exchange factor (GEF) that activates ROCK. ROCK 

activation, actives MLC and Lim Kinase (LIMK). Activation of MLS stimulates actomyosin contraction, 

and activation of LIMK inhibits cofilin and stimulates F-actin stabilization. 

 

Furthermore, recent studies have shown that the activation of mDia (as a member of 

formin proteins family that plays a key role in actin filaments elongation and SFs 

formation) and ROCK together is required to stabilize actin SFs and suggested that a 

defect in the balance between mDia and ROCK influence actin filaments formation [64, 

162]. Activation of mDia results in the fast growth of actin nucleation and elongation 

[163]. Thus, a lack of vimentin may activate ROCK but not activate mDia spontaneously, 

to increase the actomyosin contraction. To understand the role of vimentin in cell 

signaling I would suggest future work to study the influence of vimentin on ROCK and 

mDia expression simultaneously and independently.  
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6 Conclusion 

The aim of this study was to identify the effects of vimentin IFs on actin dynamics in SFs. 

I revealed that there is interplay between vimentin IFs and actin SFs in living RPE1 cells. 

I measured the actin turnover rate and the fraction of the actin monomers that are 

involved in actin turnover by using FRAP analysis. I concluded that vimentin is an 

important factor to consider when targeting actin dynamics in SFs. My findings show that 

vimentin affects actin turnover rate, while the mobile fraction is comparable in vimentin 

KD and control cells. My data demonstrated that there is no linear correlation between 

actin dynamics in SFs and the thickness of the bundles in negative control and vimentin 

silenced cells. Thus, actin dynamics in SFs are not modified by their thickness. I found 

that actin dynamics, in ventral SFs, in micropatterned cells were comparable to actin 

dynamics in SFs in nonpatterned cells and moreover, actin dynamics in vimentin KD cells 

in micropatterned and nonpatterned cells are respectively comparable. From these results, 

I concluded that the cell geometry is not involved in actin dynamics in ventral SFs. I also 

showed that the cytoplasmic actin dynamics is not modified by the depletion of vimentin. 

Thus, vimentin does not affect the diffusion recovery of the cytoplasmic actin.  

In the presented study, actin turnover rate in SFs in the absence of plectin is comparable 

with the control cells however, the fraction of actin monomers involved in actin recovery 

is higher in plectin KD cells compared with control cells. Our findings show that the 

inhibition of the indirect interplay of vimentin and actin does not affect actin halftime 

recovery in SFs; while the mobile fraction of actin monomers recovered was increased in 

plectin depleted cells.  

By measuring the traction forces applied to hydrogel surfaces via vimentin KD and 

control cells using traction force microscopy, I found that the lack of vimentin does not 

affect traction force magnitude but the traction force orientation and organization. My 

findings show that the lack of vimentin influences the traction force distribution and 

accordingly suggested the influence of vimentin on cell adhesion sites.  

In conclusion, by quantifying the actin dynamics in SFs using FRAP, I showed that actin 

turnover rate in SFs in the lack of vimentin is slower than in control cells. This alteration 

is neither due to the thickness of SF bundles nor cell geometry. Plectin as a cross-linker 

protein influences the amount of actin monomers that are involved in actin recovery. In 

conclusion, not only the lack of vimentin but also cutting the link between actin and 
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vimentin influences actin dynamics. The lack of vimentin does not influence traction 

force magnitude, but it influences the distribution of traction stress applied to the surface. 

Thus, there will be a link between the effects of the lack of vimentin on traction force 

distribution and actin dynamics. This suggests that the lack of vimentin influences the 

distribution of adhesion and accordingly influences cell migration. 
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7 Outlook 

Considering the data of my Ph.D., I can confirm the interplay between vimentin and actin 

filaments, specifically on actin dynamics in SFs. To better understand the mechanisms 

behind the vimentin-actin interplay, future studies might be performed on SFs distribution 

in vimentin KD cells.  

Moreover, actin dynamics in SFs might be studied in vimentin overexpressed cells or 

cancer cells in order to better explain the migration progresses and the involvement of 

vimentin in cancer cells.  

Finally, future simulation on actin dynamics in SFs in the presence or absence of 

vimentin could be performed to enhance our understanding of the mechanisms and 

models behind the experiment.  
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10 Appendix: Tables of requirements and ingredients 

Table 10.1 Cell culture requirements and ingredients 

 

Requirements and ingredients Manufacturer  

Medium DMEM/F-12 (1:1) 

Gibco 

fetal bovine serum (FBS) 

GlutaMAX (100X) 

penicillin/streptomycin (p/s) 

0.25% Trypsin_EDTA 

phosphate buffered saline (PBS) 

Dulbecco’s phosphatebuffered saline (DPBS) (-CaCl2, -MgCl2) Gibco (14190-094) 

Malassez slide (0.200mm depth) BLAU BRAND 

Centrifuge Eppendorf Centrifuge 5810 R 

Incubator BINDER 

Dimethylsulfoxid (DMSO) Carl Roth GmbH (A994.1) 

 

Generally, variable pipets and pipet tips with the different values and capacities and 

ethanol cleaning mix (70% ethanol, 30% ultrapure water) are necessary for the cell 

culture procedure. All the cell culture procedures must be done under a laminar flow 

hood.  

Table 10.2 Transfection requirements and ingredients 

 

Requirements and ingredients Manufacturer 

VIM Silencer Select validated small interfering RNA (siRNA)  Ambion (s14799) 

Silencer select Negative Control #1 siRNA Ambion 

PLEC Silencer Pre-disigned siRNA Ambion (144451) 

Lipofectamin RNAiMAX Reagent  Invitrogen (13778-075) 

serum free media, Medium DMEM/F-12 (1:1)  Gibco 

RNase-free water Ambion 

 

Table 10.3 BacMam gene delivery system requirements and ingredients 

 

Requirements and ingredients Manufacturer 

CellLight® Reagent *BacMam 2.0* GFP: 485/520 in nm Thermofisher (C10582) 

FluoroDish Tissue Culture Dish with Cover Glass Bottom of 35 mm 

and 23 mm and Glass thickness of 0.17 mm 

World Precision Instruments, Inc 

(WPI) 

https://en.wikipedia.org/wiki/Phosphate_buffered_saline
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Table 10.4 Cell fixation and immunofluorescence requirements and ingredients 

 

Requirements and ingredients Manufacturer 

Microscope slide, cover slip 22mm MENZEL-GLÄSER 

cover slip with a diameter of 22 mm and thickness of 0.16-0.19 

mm, thickness No. :#1.5 
VWR 

4% Paraformaldehyde (PFA)   
Alfa Aesar (ThermoFischer (Kandel) 

GmbH (43368) 

Triton X-100 (0.5%)  SIGMA (93426) 

3%  Bovine Serum Albumin Fraction V (BSA) (pH 7.0) PanReacAppliChem (A1391) 

Mounting medium with/without DAPI Fluormount-GTM Invitrogen 

Vimentin V9 AlexaFluor®647 Santa cruz (IF,WB) (sc-6260) 

Plectin (10F6) Alexa Fluor®647 Santa cruz (WB, IF) (sc-33649) 

GAPDH (0411) Alexa Flour 488 Santa cruz (WB, IF) (sc-47724) 

Actin, Phalloidin-iFluor 488 reagent,  CytoPainter, Abcam (ab1767536) 

Actin Phalloidin-iFlour 594 Reagent  (ab176757, Abcam) 

DAPI (diamidino phenylindole) Invitrogen 

Hoechst (nucleus staining) 
34580 (Sigma Aldrich, St Louis, MO, 

USA) 

 

Table 10.5 Gel staining and western blot requirements and ingredients 

 

Requirements and ingredients Manufacturer 

30% acrylamide mix ROTH 

1M Tris (PH8.8) --- 

1.5M Tris (PH6.8) --- 

10% SDS (SDS Pellets) (8029.2, Carl Roth) 

10% ammonium persulfate (APS) aMReSCO, 0486-100G 

Tetramethylethylenediamine (TEMED) Sigma, T9281 

PageRuler Prestained Protein Ladder Thermo scientific, 26616 

running buffer --- 

nitrocellulose blotting membrane (Amersham Protein Permium 

0,45um NC) 

GE Healthcare Life science 

(10600048) 

Tween20 0.1% Fluka, 93733 

Westen Blotting Filter Paper (8cm*10.5cm sheet) Thermo Scientific (88600) 

Bio-safe Coomassie G-250 Stain BIO-RAD (161-0786) 

PowerPacTM HC BIO-RAD 

WB imaging system FlourChem Q 
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electrophoreses chamber BIO-RAD 

transfer system (positive pole, filter paper, membrane, gel, filter 

paper, negative pole) 
BIO-RAD 

gel cast with the thickness of 1mm and the glasses size of 7.5*10 cm BIO-RAD 

Shaker neoLab 

 

Table 10.6  List of the Buffers for western blot 

 

Buffer Requirements and ingredients Quantity  

Laemmli buffer 

150 mM Tris-Cl/pH6.8 2.250 mL (Tris-Cl pH 6.8 /1.5M) 

300mM DTT (β-mercaptoetanol-

15%) 
--- 

6% SDS 0.9 g 

0.3% Bromophenolblue 0.045 g 

30% Glicerol 4.5 mL 

Transfer buffer (Transfer buffer 

for Plectin: 0.1% SDS and 10% 

Methanol) 

39 mM Glicin 2.9 g 

48 mM Tris 5.8 g 

0.037% SDS (sodium…) 0.37 g 

20% Metanol 200 mL 

Tris-buffered saline (TBS) 5X for 

1 liter 

NaCl 40 g 

KCl 1 g 

Tris, pH 7.4 adjust with HCl 15 g 

 

Table 10.7 Solutions for preparing resolving gels  

(for Tris-glycine SDS_Polyacrylamide gel electrophoresis (volumes are in mL)) 

 

Components 

Gel volume 

5 mL 10 mL 15 mL 20 mL 25 mL 30 mL 40 mL 50 mL 

6% gel  

H2O 2.6 5.3 7.9 10.6 13.2 15.9 21.2 26.5 

30% acrylamide mix 1.0 2.0 3.0 4.0 5.0 6.0 8.0 10.0 

1 M Tris-HCl (pH 8.8) 1.3 2.5 3.8 5.0 6.3 7.5 10.0 12.5 

10% SDS 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5 

10% ammonium persulfate 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5 

TEMED 0.004 0.008 0.012 0.016 0.02 0.024 0.032 0.04 

8% gel  
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H2O 2.3 4.6 6.9 9.3 11.5 13.9 18.5 23.2 

30% Acrylamide mix 1.3 2.7 4.0 5.3 6.7 8.0 10.7 13.3 

1 M Tris-HCl (pH 8.8) 1.3 2.5 3.8 5.0 6.3 7.5 10.0 12.5 

10% SDS 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5 

10% ammonium persulfate 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5 

TEMED 0.003 0.006 0.009 0.012 0.015 0.018 0.024 0.03 

10% gel  

H2O 1.9 4.0 5.9 7.9 9.9 11.9 15.9 19.8 

30% acrylamide mix 1.7 3.3 5.0 6.7 8.3 10.0 13.3 16.7 

1 M Tris-HCl (pH 8.8) 1.3 2.5 3.8 5.0 6.3 7.5 10.0 12.5 

10% SDS 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5 

10% ammonium persulfate 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5 

TEMED 0.002 0.004 0.006 0.008 0.01 0.012 0.016 0.02 

12% gel  

H2O 1.6 3.3 4.9 6.6 8.2 9.9 13.2 16.5 

30% acrylamide mix 2.0 4.0 6.0 8.0 10.0 12.0 16.0 20.0 

1 M Tris-HCl (pH 8.8) 1.3 2.5 3.8 5.0 6.3 7.5 10.0 12.5 

10% SDS 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5 

10% ammonium persulfate 005 0.1 0.15 0.2 0.25 0.3 0.4 0.5 

TEMED 0.002 0.004 0.006 0.008 0.01 0.012 0.016 0.02 

15% gel  

H2O 1.1 2.3 3.4 4.6 5.7 6.9 9.2 11.5 

30% acrylamide mix 2.5 5.0 7.5 10.0 12.5 15.0 20.0 25.0 

1 M Tris-HCl (pH 8.8) 1.3 2.5 3.8 5.0 6.3 7.5 10.0 12.5 

10% SDS 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5 

10% ammonium persulfate 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5 

TEMED 0.002 0.004 0.006 0.008 0.01 0.012 0.016 0.02 

 

Table 10.8 Solutions for preparing 5% stacking gels  

(for Tris-glycine SDS_Polyacrylamide gel electrophoresis (Volumes are in mL)) 

 

Components (5% gel) 
Gel volume 

1 mL 2 mL 3 mL 4 mL 5 mL 6 mL 8 mL 10 mL 

H2O 0.68 1.4 2.1 2.7 3.4 4.1 5.5 6.8 

30% Acrylamide mix 0.17 0.33 0.5 0.67 0.83 1.0 1.3 1.7 

1.0M Tris-HCl (pH 6.8) 0.13 0.25 0.38 0.5 0.63 0.75 1.0 1.25 
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10% SDS 0.01 0.02 0.03 0.04 0.05 0.06 0.08 0.1 

TEMED 0.001 0.002 0.003 0.004 0.005 0.006 0.008 0.01 

 

Table 10.9 Proper antibodies and their applicable concentration 

 

Requirements and their concentration Manufacturer 

Vimentin V9 AlexaFluor®647 (dilution 1:500) Santa Cruz Biotechnology (sc-6260) 

Plectin (10F6) Alexa Fluor®647 (dilution 1:200) Santa Cruz Biotechnology (sc-33649) 

GAPDH (0411) Alexa Flour®488 (dilution 1:500) Santa Cruz Biotechnology (sc-47724) 

Anti-rabbit secondary antibody wavelength 594 nm (dilution 

1:1000) 
 (Abcam, Cambridge, UK) 

 

 

   

  

Figure 10.1 Immunofluorescence staining of negative control and plectin depleted cells.  

a) Negative control cells. b) Plectin depleted cell. (a) plectin in purple, Scale bar:20 µm. (b) from left to 

right: plectin in purple, phase contrast image of the cell in grey, Scale bar:40 µm 
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Figure 10.2 Bead displacements and traction forces applied to the surface by negative 

control cells and vimentin depleted cells.  

a) The displacement of the fluorescence beads embedded in the surface under negative control (left) and 

vimentin KD (right) cells. b) The heating map of traction force magnitudes applied to the surface via the 

same negative control (left) and vimentin KD (right) cells. The yellow line in each image shows the cell 

edge (border). The heat map scales in the left side of the negative control and the right side of the vimentin 

depleted show the minimum (black) to the maximum (red) values for displacement and traction force 

magnitudes in pixel and Pascal respectively. Scale bars: 20 µm. 

  

a) 

b) 
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11 Protocols 

11.1 FRAP measurements  

11.1.1 FRAP measurements in stress fibers 

Procedures: 

1- Under the sterile cell culture hood, open the FluoroDish. 

2- Under the sterile cell culture hood aspirate the culture medium from the sample, 

wash cells with sterile DPBS. Add Trypsin EDTA 25% and incubate the dish for 5 

min to detach the cells from the bottom of the six-well plate. Add 1or 2 mL 

DMEM/F12 and mix it gently, count the cells on a Malassez slide. To avoid cell-

cell attachment and avoid too low number of cells for the FRAP measurements, 

seed 10000 cells in each FluoroDish. Incubate the cells for 4 h in order to let the 

cells attach and spread on the surface.  

3- Considering FRAP measurements in actin SFs, label actin filaments with 

CellLight Reagents BacMam 2.0 GFP and incubate it for 40 h.  

4- 30 min before starting the FRAP experiment turn on the microscope and its 

incubation system to control the T °C and CO2 level during the FRAP experiment. 

Two confocal microscopes were used during this project to apply FRAP on actin SFs. 

1- Confocal spinning disk inverted microscope (Ti-Eclipse, Nikon) 2- Laser scanning 

microscope (LSM 880, ZEISS). The two tables below present the microscopy setting 

for LSM and spinning disk accordingly. 
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Table 11.1 Microscopy setting on spinning disc microscope for actin SFs in adherent cells 

 

 

Parameters Proposed values 

Objective 
60x oil immersion objective 

NA: 1.4  

Acquisition wavelength 488 nm 

Acquisition intensity 30% 

Imaging time interval  1s 

Bleaching wavelength  488 nm  

Bleaching wavelength intensity 100% 

Bleaching time interval  0.17ms 

Zoom 1x 

Imaging exposure time 400 ms 

Pinhole  50 µm 

dwell time for acquisition 60 µs 

dwell time for bleaching 20 µs 

Filters 
Turret 2: Beamer 

Turret1: empty 
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Table 11.2 Microscopy setting on LSM for actin SFs in adherent cells  

 

 

Parameters Proposed values 

objective 60x oil immersion, 1.4 NA 

Acquisition wavelength 488 nm for GFP, 594 nm for mCherry  

Acquisition intensity 2% 

Bleaching wavelength  405 nm diode laser 

Bleaching wavelength 

intensity 
100% 

Zoom 5.2 

Pixel size 0.2 µm 

Number of pixels 128×128 

Pixelwise averaging 4× 

Pixel dwell time for 

acquisition 
≈ 8µs 

Pixel dwell time for 

bleaching 
≈ 20-60µs,  

Beam Splitter #1 MBS 488/594 

Beam Splitter #2 MBS -405 

Beam Splitter #3 Plate 

Beam Splitter #4 Rear 

Detector Filter BP 495-550 + LP 570 
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11.1.2 FRAP measurement in cytoplasm 

Table 11.3 Microscopy setting on LSM for actin monomers in cytoplasm  

 

 

Parameters Proposed values 

objective 60x oil immersion, NA of 1.4 

Acquisition wavelength 488 nm for GFP, 594 nm for mCherry  

Acquisition intensity for 

both wavelengths  
2% 

Bleaching wavelength  405 nm 

Bleaching wavelength 

intensity 
100% 

Zoom 5.2 

Pixel size ≈ 0.27 µm 

Number of pixels 128×128 

Pixelwise averaging 4× 

Pinhole  50 

Pixel dwell time for 

acquisition 
≈ 6 µs 

Pixel dwell time for 

bleaching 
≈ 2 µs,  

Beam Splitter #1 MBS 488/594 

Beam Splitter #2 MBS -405  

Beam Splitter #3 Plate  

Beam Splitter #4 Rear  

Detector Filter BP 495-550 + LP 570  

 

11.1.3 FRAP measurement in cortex in suspended cells  

Procedures: (these procedures from 1 to 14 are applicable for sample preparation of the cell size 

measurement in suspension cells) 

1- Cut off a 1cm×1cm of the PF Gel-Film and peel off the protective layers.  

2- Place the PF Gel-Film on a folded Parafilm and punch 5 holes with a Harris Uni-

Core punch with a diameter of 2.5 mm (figure 4.2) in PF Gel-Film. 
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3- Take the punched PF Gel-Film and place it in the middle of the FluoroDish 

tissue/cell culture dish.  

4- Put the FluoroDish and coverslip in the plasma cleaner and activate the surface for 

2 min to 3 min. 

5- Add 10 mL of the PLL-g-PEG solution to each chamber to coat the FlouroDish 

bottom surface (the function of the PLL-g-PEG is explained in detail in the micro-

pattern section).  Cover the plate with Parafilm, and incubate it for 1 h at room 

temperature.  

6- Put 50 µL of the PLL-g-PEG on the bottom of a petri dish covered by Parafilm 

and place the coverslip upside down on PLL-g-PEG. 

7- Incubate the FluoroDish and petri dish 1 h at room temperature. 

8- Incubate a solution of 3 mL of complete DMEM/F12 and 25 mM of HEPES for 

30 min.  

9- Aspirate the culture medium from the sample (RPE1vimentin silenced and control 

cells are actin GFP labeled), wash cells with the sterile DPBS and add Trypsin and 

incubate it for 5 min to detach the cells from the bottom of the six-well dish.  

10- Add 1or 2 mL of complete DMEM/F12 and mix it gently. Transfer suspended 

cells to a 15 mL falcon tube and centrifuge at 189*g for 3 min.  

11- Aspirate the culture medium and add 1 mL of the DMEM/F12 and HEPES 

solution.  

12-  Remove Parafilm from the top of the suspension chambers and wash the 

chambers with sterile DPBS three times.  

13-  Count the cells on the Malassez slide. Seed 40000 cells/mL to avoid the cell-cell 

attachment or to low number of cells for the measurements.  

14- Wash the coverslip with sterile DPBS and place the PLL-g-PEG covered us side 

down on top of the chambers.  

15- About 30 min before starting the FRAP experiment, turn on the microscope and 

its heating system to control the T °C and CO2 level during the FRAP experiment 

for samples.  

16- For FRAP measurements on suspended cells, confocal spinning disk microscope 

was used. 
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Table 11.4 Microscopy setting on spinning disc microscope for actin cortex in suspended 

cells 

 

Parameters Proposed values  

objective 60x oil immersion objective 

Acquisition wavelength 488 nm 

Acquisition intensity 30% 

Imaging time interval  1s 

Bleaching wavelength  488 nm  

Bleaching wavelength intensity 100% 

Bleaching time interval  0.17ms 

Zoom 1x 

Imaging exposure time 400 ms 

Pinhole  50 µm 

dwell time for acquisition 60µs 

dwell time for bleaching 20µs 

Filters 
Turret 2: Beamer 

Turret1: empty 

 

11.1.4 FRAP Data processing   

1- Open the FRAP images in Fiji 

2- For suspended cells only, correct the cell motion via Plugins/ Registration/ 

StackReg/ Rigid Body 

3- select bleached, reference and background ROI 

4- Under Analyze/ Set Measurements select Mean gray value.  

5- Under ROI Manager /More/ Multi Measure, measure the mean intensity value of 

the selected ROIs.  (The data will be presented in a table with four columns as a 

text format: 1-Number of acquired images 2- mean intensity of the bleached 

region. 3- mean intensity of the Reference region.  4- mean intensity of the 

Background region.) 

6- Import the ROIs intensity values to the OriginLab software. 



124     Protocols 

7- Extract the time from the number of acquired images. The bleaching time is 

referred as 0 s. The time scale in between two successive images is 1 s or 30 ms 

for respectively stress fiber recovery and cytoplasm recovery. 

8- Calculate the correction factor Cf: 

Cf = (max (Ref – BG)) / (Ref– BG) 

Where BG is the background intensity and Ref is the reference intensity. 

9- Calculate the corrected bleached intensity named Correction: 

Correction= (Bl– BG) × Cf 

Where BG is the background intensity and Bl is the bleached intensity. 

10- Normalize the corrected bleached intensity from 0 (bleached intensity at time 0) to 

1 (prebleached intensity) with OriginLab under Analysis/ Mathematics/ Normalize 

columns/ open dialog/Normalize Methods: 

Normalized value= (Correctioni – min Correction)/ (Correctioni – max 

Correction) 

Where Correctioni is the correction value at each images i. 

11-  Plot the normalized values over time 

12- Fit the curve with the first-order exponential function for SFs and cytoplasm: 

F(t) = a*(1-exp(-ω*t))  

where a signifies the plateau value and ω corresponds to the turnover rate. (= 

Ln(2)/ω, is the halftime recovery).   

Fit the curve with the second-order exponential function for actin fibers in cortex: 

F(t) = a*(1-exp(-ω1*t))+b*(1-exp(-ω2*t)) 

where a and b are the mobile fractions of respectively slow and fast components, 

ω1 and ω2 correspond to the recovery times of respectively slow and fast 

populations.  (i = Ln(2)/ωi, is the halftime recovery). 

 

11.2 Western blot data analysis 

1- Open the images in Fiji. The first column presents the molecular marker with the 

weights in different colors, the next columns present a specific sample. The bands 

in each row present the amount of a specific protein in different samples. 

2- To measure the amount of specific proteins, under the analyze menu select Set 

Measurements… and check in Grey Mean Value from the checkboxes. Each row 

presents the amount of the specific protein.  
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3- Define a ROI by selecting the rectangle tool and drawing a frame around the 

largest band on the row.  

4- To quantify the gray value of each band with the same frame save the proper 

frame under File/Save as/Selection with the protein name.  

5- For each row use the same frame for all the protein bands and measure the gray 

value under analyze/measure.  

6- In a place where there is no band take a background measurement. Measure the 

gray value of the control in the same way.  

7- Save all of the values and export them into OriginLab.  

8- Invert the pixel density for all data via:  

The inverted value (is expressed as) = 255-Xi, 

where Xi is the gray value of each band recorded by Fiji.  

9- For protein X calculate inverted protein X and inverted background.  

10- Net protein X is defined as an inverted protein X – inverted background.  

11- Calculate net loading protein the same as net protein for loading control.  

12- The ratio of Net protein X/ Net loading control is the final relative quantification 

values every specific protein.  

13- To compare them in different samples plot them as bar or box plots.  

 

11.3 Real-time quantitative polymerase chain reaction  

 

Protocols are adapted from the original protocols of the kit’s companies. 

Table 11.5 List of the kits for qPCR 

 

Kit Manufacturer 

PureLink RNA Mini Kit 

 
(ambion by life technologies, 12183020) 

Rnase-Free Dnase Set (50) Kit 
(Rneasy/QIAamp Columns) QIAGEN Kit, 

12183018A 

RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific, K1621) 

iTaq Universal SYBR Green Supermix (Bio-RAD, 172-5121) 

 

11.3.1 Sequence of the Plectin Primers  

Table 11.6 List of the primers for plectin qPCR 



126     Protocols 

Based on mRNA sequence for plectin 1b, forward and reverse primers were ordered by 

two different companies. Later depends on the obtained results, the experiments were 

continued with BLAST primers.  

 

Primer  Sequence (5'->3') Length Start Tm 

Plectin Forward 

primer (BLAST) 
CAC CAA GTG GGT CAA CAA GC 20 239 59.61 

Plectin Reverse 

primer (BLAST) 
CCA GCA GGG AGA TGA GGT TG 20 336 60.11 

 Plectin LEFT 

PRIMER (Primer-3) 
GAT CAC CAT CTC CTC CTC GG 20 12635 59.03 

Plectin RIGHT 

PRIMER (Primer-3) 
CGA TGA GGT TCT TGG CGA TG 20 12738 59.07 

GAPDH forward 

primer 
CAA ATT CCA TGG CAC CGT CA 20 - - 

GAPDH reverse 

primer 
TGA AGA CGC CAG TGG ACT C 19 - - 

 

11.3.2 RNA purification 

Table 11.7 PureLink RNA Mini Kit 

(ambion by life technologies, 12183018A)  

 

Components Quantity 

Lysis Buffer 125 mL 

Wash Buffer I 50 mL 

Wash Buffer II 15 mL 

RNase-Free Water 15.5 mL 

Spin Cartridges (with collection tubes) 50  

Collection Tubes 50  

Recovery Tubes 50 
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11.3.2.1 Lysis and Homogenization12: 

1- Transfer cells 1 × 106 to 5 × 106 to a 15-mL tube and add 0.6 mL Lysis Buffer 

with 2-mercaptoethanol  

2- Vortex until the cell pellet is dispersed and the cells appear lysed. 

3- Homogenize at room temperature with a rotor-stator homogenizer 

 

11.3.2.2 RNA Purification 13 (Binding, Washing, and Elution of RNA)  

1- Add one volume 70% ethanol to each volume of cell homogenate. (first round 

700ul) (second round 100% and 30-100ul depends on step 12 ) 

2- Vortex to mix thoroughly and to disperse any visible precipitate that may form 

after adding ethanol.  

3- Transfer up to 700 μL of the sample (including any remaining precipitate) to the 

spin cartridge (with the collection tube).  

4- Centrifuge at 12,000 × g for 30 seconds at room temperature. Discard the flow 

through and reinsert the spin cartridge into the same collection tube.  

5- Repeat steps 3–4 until the entire sample has been processed.  

6- Add 700 μL Wash Buffer I to the spin cartridge.  

7- Centrifuge at 12,000 × g for 30 seconds at room temperature. Discard the flow-

through and the collection tube. Place the spin cartridge into a new collection 

tube.  

8- Add 500 μL Wash Buffer II with ethanol to the spin cartridge.  

9- Centrifuge at 12,000 × g for 15 seconds at room temperature. Discard the flow-

through.  

10- Repeat Steps 8–9 once.  

11- Centrifuge the spin cartridge at 12,000 × g for 1–2 min to dry the membrane with 

bound RNA. Discard the collection tube and insert the spin cartridge into a 

recovery tube.  

12- Add 30–100 μL RNase–free water to the center of the spin cartridge.  

13- Incubate at room temperature for 1 min.  

 

12 Adapted from the original protocols of the kit’s companies. 
 
13 Adapted from the original protocols of the kit’s companies. 
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14- Centrifuge the spin cartridge for 2 min at ≥12,000 × g at room temperature to elute 

the RNA from the membrane into the recovery tube. Note: If the expected RNA 

yield is >100 μg, perform 3 sequential elution of 100 μL each. Collect the eluates 

in a single tube. 

15- Store your purified RNA or proceed to downstream application.  (Store the 

purified RNA on ice for immediate use. For long–term storage, keep the purified 

RNA at –80°C.) 

16-  Determine the quality and quantity of your RNA by UV absorbance at 260 nm.  

After the first round purification proceed to Rnase-Free Dnase Set (50) Kit (10.6.2). 

After the second round purification proceed to RevertAid First Strand cDNA Synthesis 

Kit (Thermo Scientific) (10.6.3). 

 

11.3.3 DNase Digestion of RNA before RNA Cleanup14 

Rnase-Free Dnase Set (50) Kit (Rneasy/QIAamp Columns) QIAGEN Kit is used. It 

contains:  

RNA solution (contaminated with genomic DNA) 

Buffer RDD 

DNase I stock solution 

 

1- Mix the following in a micro centrifuge tube: 

_ ≤87.5 μl RNA solution (contaminated with genomic DNA) 

_ 10 μl Buffer RDD 

_ 2.5 μl DNase I stock solution 

Make the volume up to 100 μl with RNase-free water. 

The reaction volumes can be doubled if necessary (to 200 μl final volume). 

2- Incubate on the benchtop (20 °C –25 °C) for 10 min. 

3- Clean up the RNA according to “Protocol RNA Purification (PureLink RNA Mini 

Kit). 

 

11.3.4 First Strand cDNA Synthesis15 

Table 11.8 RevertAid First Strand cDNA Synthesis Kit  

(Thermo Scientific, 1621)  

 

14 Adapted from the original protocols of the kit’s companies. 
15 Adapted from the original protocols of the kit’s companies. 
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Components Quantity  

RevertAid RT (200 U/μL) 25 μL 

RiboLock RNase Inhibitor (20 U/μL) 25 μL 

5X Reaction Buffer 

250 mM Tris-HCl (pH 8.3) 

250 mM KCl, 20 mM MgCl2 

50 mM DTT 

 

150 μL 

10 mM dNTP Mix 50 μL 

Oligo(dT)18 Primer,100 μM 25 μL 

Random Hexamer Primer,100 μM 25 μL 

Forward GAPDH Primer,10 μM 20 μL 

Reverse GAPDH Primer,10 μM 20 μL 

Control GAPDH RNA, 0.05 μg/μL 20 μL 

Water, nuclease-free 2 × 1.25 

mL 

 

1- After thawing, mix and briefly centrifuge the components of the kit. Store on ice. 

2- Add the following reagents into a sterile, nuclease free tube on ice in the indicated 

order: 

 
Template RNA        Total RNA      0.1 ng - 5 μg (11 µL) 

Primer Oligo (dT)18 primer (1 μL) or 

Random Hexamer primer   

(1 μL) 

gene-specific primer 15-20 pmol 

Water, nuclease-free to 12 μL 

Total volume 12 μL 

 

3- Add the following components in the indicated order: 

5X Reaction Buffer   4 μL 

RiboLock RNase Inhibitor (20U/μL) 1 μL 

10 mM dNTP Mix 2 μL 

RevertAid M-MuLV RT (200 U/μL) 1 μL 

Total volume 20 μL 

 

4- Mix gently and centrifuge briefly. 

5- For oligo(dT)18 or gene-specific primed cDNA synthesis, incubate for 60 min at 

42 °C. 

For random hexamer primed synthesis, incubate for 5 min at 25 °C followed by 60 

min at 42 °C. 

6- Terminate the reaction by heating at 70 °C for 5 min. 

The reverse transcription reaction product can be directly used in PCR applications or 

stored at -20 °C for less than one week. For longer storage, -80 °C is recommended 
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11.3.5 qPCR Reaction Mix Preparation and Thermal Cycling16 

iTaq Universal SYBR Green Supermix (Bio-RAD, 172-5121) is used.  

 

1- Thaw iTaq Universal SYBR® Green Supermix and other frozen reaction 

components to room temperature. Mix thoroughly, centrifuge briefly to collect 

solutions at the bottom of tubes, then store on ice protected from light. 

2-  Prepare (on ice or at room temperature) enough reaction mix for all qPCR 

reactions by adding all required components, except the DNA template, according 

to the recommendations in table below. The primer concentration and cDNA 

concentration should be in a same range.) 

3- Mix the reaction mix thoroughly to ensure homogeneity and dispense equal 

aliquots into each qPCR tube or into the wells of a qPCR plate. Good pipetting 

practice must be employed to ensure assay precision and accuracy. 

4- Add DNA samples (and nuclease-free H2O if needed) to the PCR tubes or wells 

containing reaction mix (Table 1 (above)), seal tubes or wells with flat caps or 

optically transparent film. Spin the tubes or plate to remove any air bubbles and 

collect the reaction mixture in the vessel bottom. 

5- Program the thermal cycling protocol on a real-time PCR instrument according to 

Table below (as an image in the figure file).   

6- Load the PCR tubes or plate into the real-time PCR instrument and start the PCR 

run. 

7- Perform data analysis according to the instrument-specific instructions. 

 

 

 

 

 

 

16 Adapted from the original protocols of the kit’s companies. 

Component Volume/20 µL reaction Final concentration 

iTaq SYBR Green Supermix (2X) 10 1x 

Forward and reverse primers Variable 300-500nM each primer 

DNA template Variable cDNA: 100ng-100fg 

Nuclease-free water To 20 µL - 

Total reaction mix volume 20 µL - 
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Table 11.9 Threshold cycle values with the primer concentration of 1 µM  

Threshold cycles measured for two different plectin primer sequences and GAPDH primer. The 

abbreviations presented in the table are listed here: A≡RandomHexamo, B≡Oligo dT from First Strand 

cDNA Synthesis kit (Table 11.8), Plectin1≡ Plectin Primer BLAST, Plectin2≡ Plectin Primer-3 in the list of 

the primers (Table 11.6), 1≡216.3 ng/µL and 2≡ 61.5 ng/µL cDNA concentrations purified from two 

different experiments, NTC≡ no template control, Ct is the amount of threshold.  

Content GAPDH GAPDH Plectin1 Plectin1 Plectin2 Plectin2 NTC-13 NTC-14 NTC-15 

Sample 1A 2A 1A 2A 1A 2A GAPDH Plectin1 Plectin2 

Ct 21.32 19.10 24.21 22.83 29.46 28.94       

Content GAPDH GAPDH Plectin1 Plectin1 Plectin2 Plectin2 NTC-13 NTC-14 NTC-15 

Sample 1A 2A 1A 2A 1A 2A GAPDH Plectin1 Plectin2 

Ct 20.31 19.31 23.37 23.13 29.08 28.11     39.06 

Content GAPDH GAPDH Plectin1 Plectin1 Plectin2 Plectin2       

Sample 1A 2A 1A 2A 1A 2A    

Ct 20.14 19.20 23.27 22.89 29.23 27.84    

Content GAPDH GAPDH Plectin1 Plectin1 Plectin2 Plectin2 
  

  
  

1µM primer concentration 
  

  
  

Sample 1B 2B 1B 2B 1B 2B 1≡216.3 ng/µL cDNA 

Ct 21.66 20.93 29.25 27.10 32.30 28.89 2≡ 61.5 ng/µL cDNA 

Content GAPDH GAPDH Plectin1 Plectin1 Plectin2 Plectin2 
  
  

  

A≡RandomHexamo 
  
  

  

Sample 1B 2B 1B 2B 1B 2B B≡Oligo dT 

Ct 21.67 20.59 29.04 27.05 31.31 33.04  

Content GAPDH GAPDH Plectin1 Plectin1 Plectin2 Plectin2 
  

  
  

Plectin1≡ Plectin Primer BLAST 
  

  
  

Sample 1B 2B 1B 2B 1B 2B Plectin2≡ Plectin Primer-3 

Ct 21,51 20,91 29,34 27,26 31,25 29,11   

 

Table 11.10 Threshold cycle values with the primer concentration of 5 µM 

Threshold cycles measured for two different plectin primer sequences and GAPDH primer. The 

abbreviations presented in the table are listed here: A≡RandomHexamo, B≡Oligo dT from First Strand 

cDNA Synthesis kit (Table 11.8), Plectin1≡ Plectin Primer BLAST, Plectin2≡ Plectin Primer-3 in the list of 

the primers (Table 11.6), 1≡216.3 ng/µL and 2≡ 61.5 ng/µL cDNA concentrations purified from two 

different experiments, NTC≡ no template control, Ct is the amount of threshold.  

Content GAPDH GAPDH Plectin1 Plectin1 Plectin2 Plectin2 NTC-13 NTC-14 NTC-15 

Sample 1A 2A 1A 2A 1A 2A GAPDH Plectin1 Plectin2 

Ct 18.83 17.61 23.94 23.00 24.49 23.36 33.26 32.87 38.03 

Content GAPDH GAPDH Plectin1 Plectin1 Plectin2 Plectin2 NTC-13 NTC-14 NTC-15 

Sample 1A 2A 1A 2A 1A 2A GAPDH Plectin1 Plectin2 

Ct 19.33 17.98 24.03 22.74 24.45 23.41 33.04 32.50 36.92 

Content GAPDH GAPDH Plectin1 Plectin1 Plectin2 Plectin2       

Sample 1A 2A 1A 2A 1A 2A       

Ct 19.05 17.65 23.81 22.48 24.40 23.19       

Content GAPDH GAPDH Plectin1 Plectin1 Plectin2 Plectin2   5uM primer concentration   

Sample 1B 2B 1B 2B 1B 2B   1≡216.3ng/µL cDNA   

Ct 19.08 18.99 28.49 26.81 24.94 23.91   2≡ 61.5ng/µL cDNA   

Content GAPDH GAPDH Plectin1 Plectin1 Plectin2 Plectin2   A≡RandomHexamo   

Sample 1B 2B 1B 2B 1B 2B   B≡Oligo dT   

Ct 19.05 18.98 28.15 26.82 25.06 23.74      

Content GAPDH GAPDH Plectin1 Plectin1 Plectin2 Plectin2   Plectin1≡ Plectin Primer BLAST   

Sample 1B 2B 1B 2B 1B 2B   Plectin2≡ Plectin Primer-3   

Ct 19.47 18.90 28.50 26.75 25.45 23.80       
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Table 11.11 Threshold cycle values with the primer concentration of 2µM 

Threshold cycles measured for two different plectin primer sequences and GAPDH primer. The 

abbreviations presented in the table are listed here: A≡RandomHexamo, from First Strand cDNA Synthesis 

kit (Table 11.8), Plectin1≡ Plectin Primer BLAST, Plectin2≡ Plectin Primer-3 in the list of the primers 

(Table 11.6), 1≡216.3 ng/µL and 2≡ 61.5 ng/µL cDNA concentrations purified from two different 

experiments, NTC≡ no template control, FW ≡ forward primer, RE≡ reverse primer, LE≡ left primer, RI≡ 

right primer, Ct is the amount of threshold.  

Content GAPDH GAPDH Plectin1 Plectin1 Plectin2 Plectin2 GAPDH(NTC) Plectin1(NTC) Plectin2(NTC) 

Sample 1A 2A 1A 2A 1A 2A   FW LE 

Ct 20.09 17.08 24.56 22.10 28.02 25.08 39.19     

Content GAPDH GAPDH Plectin1 Plectin1 Plectin2 Plectin2 GAPDH(NTC) Plectin1(NTC) Plectin2(NTC) 

Sample 1A 2A 1A 2A 1A 2A   RE RI 

Ct 20.13 17.20 24.76 22.37 28.29 24.94       

Content GAPDH GAPDH Plectin1 Plectin1 Plectin2 Plectin2       

Sample 1A 2A 1A 2A 1A 2A       

Ct 20.10 17.10 24.32 22.03 28.26 24.68       

Content GAPDH GAPDH Plectin1 Plectin1 Plectin2 Plectin2   
2 µM Primer 

concentration 
  

Sample 1B 2B 1B 2B 1B 2B   1≡216.3 ng/µL cDNA   

Ct 21.26 18.01 28.31 26.11 28.46 25.72   2≡ 61.5 ng/µL cDNA   

Content GAPDH GAPDH Plectin1 Plectin1 Plectin2 Plectin2   A≡RandomHexamo   

Sample 1B 2B 1B 2B 1B 2B   B≡Oligo dT   

Ct 19.43 18.08 28.52 25.97 28.22 25.18   
Plectin1≡ Plectin Primer 

BLAST 
  

Content GAPDH GAPDH Plectin1 Plectin1 Plectin2 Plectin2   
Plectin2≡ Plectin 

Primer- 3 
  

Sample 1B 2B 1B 2B 1B 2B       

Ct 19.29 18.12 29.16 26.26 28.23 26.98       

 

Table 11.12 Threshold cycle values with the BLAST plectin primer concentration of 2µM  

Threshold cycles measured for BLAST plectin primer sequences and GAPDH primer in plectin depleted 

and control cells, cDNA concentrations = 6.6 ng/µL. WT≡ wild type, Si≡ plectin silenced, nCtrl≡ negative 

control, NTC≡ no template control, Ct is the amount of threshold.  

 

Content GAPDH GAPDH GAPDH Plectin Plectin Plectin NTC NTC 

Sample WT nCtrl Si WT nCtrl Si GAPDH Plectin 

Ct   17.05 18.14 24.07 21.43 25.22 39.10 38.50 

Content GAPDH GAPDH GAPDH Plectin Plectin Plectin NTC NTC 

Sample WT nCtrl Si WT nCtrl Si GAPDH Plectin 

Ct 19.03 17.13 34.59 24.29 31.32 25.65   38.52 

Content GAPDH GAPDH GAPDH Plectin Plectin Plectin NTC NTC 

Sample WT nCtrl Si WT nCtrl Si GAPDH Plectin 

Ct 18.85 17.01 21.43 39.26 30.95 25.61 37.73 38.04 

 

 

 

 



133     Protocols 

Table 11.13 Threshold cycle values with BLAST plectin primer concentration of 2µM 

Threshold cycles measured for BLAST plectin primer sequences and GAPDH primer in plectin depleted 

and control cells, cDNA concentrations = 6.6 ng/µL. WT≡ wild type, Si≡ plectin silenced, nCtrl≡ negative 

control, NTC≡ no template control, Ct is the amount of threshold.  

 

Content GAPDH GAPDH GAPDH Plectin Plectin Plectin NTC-7 NTC-8 

Sample WT nCtrl Si WT nCtrl Si GAPDH Plectin 

Ct 19.06   29.10 24.78   24.80 37.88 38.50 

Content GAPDH GAPDH GAPDH Plectin Plectin Plectin NTC-7 NTC-8 

Sample WT nCtrl Si WT nCtrl Si GAPDH Plectin 

Ct 19.39   29.17 39.09 25.14       

Content GAPDH GAPDH GAPDH Plectin Plectin Plectin NTC-7 NTC-8 

Sample WT nCtrl Si WT nCtrl Si GAPDH Plectin 

Ct 19.43 17.05 38.44 34.39 30.00 26.02     

 

11.4 Traction force  

Table 11.14 Chemical requirements and warnings 

 

Chemical  Warnings when use 

Acrylamide (AAm) 
Warm up aliquot at RT for 0.5 h-1 h. Refill the Ar (better) or N2 after 

using its solution. Storage temperature: 4 °C. 

N,N’-methylene-bis-

acrylamide (bis-AAm) 

Warm up aliquot at RT for 0.5-1h, Refill the Ar (better) or N2 after using 

its solution. Storage temperature: 4 °C. 

acrylic acid (AA) 
Warm up aliquot at RT for 0.5-1 h, Refill the Argon (better) or N2 after 

using. Storage temperature: 4 °C. 

ammonium persulfate 

(APS) 

Warm up stocking reagent at RT for 1h, always use the very fresh 

solution. Storage temperature: 4 °C. 

Tetramethylethylnediamine 

(TEMED) 

Warm up aliquot at RT for 0.5-1h, Refill the Argon (better) or N2 after 

using. Storage temperature: 4 °C. 

 

3-acryloxypropyl-

trimethoxysilane 
Refill the Ar (better) or N2 after using. Store it at room temperature. 

Sigmacote 

Warm up aliquot at RT for 0.5-1h, Refill the Argon (better) or N2 after 

using. Keep away from water, reuse your aliquot (3-5 times) (Check to 

make sure no water went inside before use). Storage temperature: 4 °C. 

MES buffer (0.1M, +0.5M 

NaCl) 

Check pH to make sure it is always around 4-5. Storage temperature 4 

°C. 

Dimethylaminopropyl-3-

ethylcarbodiimide 

hydrochloride (EDC) 

Warm up aliquot at RT for 0.5-1h, make sure no aggregates inside. 

Storage temperature -20 °C. 
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N-Hydroxysuccinimide 

(NHS) 
Keep dry. Store it at room temperature. 

 RGDFK (0.5 mg in 1 mL 

PBS) 
Make sure your reacting solution has a pH around 7.5-8.5 

fluorescent beads of 200 

nm in diameter 
Thermofisher G200, fluorescence wavelength of 488 nm 

coverslip 13 mm in 

diameter 
VWR (631-0150) 

 

Procedure: 

11.4.1 Acryl-sinalize  

1- Prepare the silane solution [0.5% (or 1%) 3-acryloxypropyl-trimethoxysilane in 

ethanol (95%)/ water (4%)] and add 500 µL of the solution on the bottom of the 

wells in a six-well plate and incubate it at room temperature overnight.  

Table 11.15 The value of the gel solution components 

The precise value of the gel solution components and the correlated Young´s modulus. 

 

 

 

 

 

 

 

 

 

 

 

11.4.2 PAAm gel solution 

2- a PAAm gel solution containing 600 mg acrylamide diluted in 5 mL PBS, 30 µL 

acrylic acid, and 5.5 mg N, N’-methylene-bis-acrylamide will have a Young`s 

modulus of kPa. The solution can be stored at 4 °C for several weeks. 

3-  Use NaOH to adjust the gel solution pH to 7.5-8.  

AAm (mg) 
bis-AAm 

(mg) 
AA (L) 

bis-AAm/AAm 

ratio (%) 

Young’s 

modulus E 

(kPa) 

300 2 30 0.67 1-2.0 

600 2.5 30 0.42 5.2 

600 5.5 30 0.92 11.6 

600 10 30 1.67 18.9 

600 17.5 30 2.92 31.4 

600 21 30 3.50 38.0 

600 25 30 4.17 50.0 
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11.4.3 PAAm gel preparation  

4- Rinse the acryl-silanized dish three times with ethanol (99.9%) and let it dry at 

room temperature.  

5- Degas the gel solution with nitrogen flow for 2 min and take 200 µL of the 

solution in an eppendorf tube. Add 0.25 µL of fluorescence polystyrene beads, 

APS (10% solution, 1:100 volume ratio) and TEMED (1:1000 volume ratio) to the 

gel solution and vortex it for 10 seconds.   

6- Pipet 8 μL droplets of gel solution onto the acryl-silanized six-well glass-bottom 

plate and cover it with the coverslip to obtain a 70-80 μm thick hydrogel.  

7- Let the gel to polymerize at room temperature for 10 min.  

8- Add PBS into the wells after the gel polymerization and incubate the plate at room 

temperature for at least 30 min and remove the coverslip without damaging the 

gel.  

11.4.4 Hydrogel activation and functionalization  

9- Activate the hydrogel with a solution of 39 mg Dimethylaminopropyl-3-

ethylcarbodiimide hydrochloride (EDC) and 12 mg N-Hydroxysuccinimide 

(NHS) in 1 mL MES buffer for 15 min at room temperature.  

10- Functionalize PAAm gel with RGDFK (0.5mg in 1 mL PBS) at room temperature 

for a whole night.  

11- Transfer the six-well plate containing the hydrogel under the sterile cell culture 

hood.  

12- Wash Hydrogels twice with PBS and seed 10000 cells/well on top of the hydrogel. 

Incubate it overnight.  

11.4.5 TFM microscopy setting 

1- Transfer the six-well plate containing gels and cells into the epifluorescence 

inverted microscope (Nikon) connected to an Oko-lab incubation chamber 

adjusted to 37o C and 5% CO2. (Turn on the microscope and its incubation system 

30 min before starting the experiment.)  

2- A 60x oil immersion objective with a numerical aperture (NA) of 1.4 and laser in 

488nm wavelength is used to acquire fluorescent bead images.  

3- Acquire the image of the fluorescent beads in a ROI containing a single cell.  

4- Save the images of the cells and under stressed fluorescent beads (deformation 

image).  
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5- Save all the conditions. 

6- Detach the cells with trypsin EDTA (0.25%) from the gel substrate without 

moving the plate.  

7- The same conditions and the same frames are accessible to acquire the relaxed 

fluorescence beads images (reference image).  

8- Save the images of the relaxed fluorescence beads. 

11.4.6 Image processing 

1- Import images in Fiji to analyze them. The analyzing process was performed in 

three steps:  

2- Register deformation image (acquired with the cells on top of the gel) and 

reference image (acquired after removing the cell) under Plugins/ Registration/ 

Descriptor-based registration (2d/3d).The registration will align the deformation 

image to the reference image in order to correct the experimental shift.  

3- Calculate the beads displacement in deformation image under Plugin/ 

PIV/iterative PIV (cross correlation)/ ok. At the end of the PIV run, normalize the 

data by selecting the normalized median test and replace invalid by median, then 

save the data. In addition, PIV plugin can also provide a plot of the displacements 

for visualizing.  

4- Use the FTTC plugin under Plugin/ FTTC and fill the required parameters 

relevant to the hydrogel properties to reconstruct the force field. It will ask the 

displacement data acquired in the previous step. Plot FTTC under Plugin/plot 

FTTC to visualize the forces and save it in the same folder. A text file with 5 

columns arranged as following will be the output to calculate the traction force 

absolute value: 

x coordinate of the 

data (in pixel) 

y coordinate of the 

data (in pixel) 

x component of the 

traction force (in Pascal)  

 y component of the 

traction force (in Pascal)  

force 

magnitude 

 

The PIV (particle Image Velocimetry) and FTTC (Fourier Transform Traction cytometry) 

plugins have been downloaded from: https://sites.google.com/site/qingzongtseng/tfm. 

In the last step, import the output in OriginLab to compute the entire traction force by 

summing all the force magnitude.  

https://sites.google.com/site/qingzongtseng/tfm

