
Variety Membership Testing in
Algebraic Complexity Theory

A dissertation submitted towards the degree Doctor of Natural
Sciences of the Faculty of Mathematics and Computer Science of

Saarland University

submitted by

Anurag Pandey

Saarbrücken / 2021



Day of Colloquium: 17 June 2021
Dean of the Faculty: Prof. Dr. Thomas Schuster

Chair of the Committee: Prof. Dr. Frank-Olaf Schreyer
Reporters
First reviewer: Prof. Dr. Markus Bläser
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Abstract

Abstract In this thesis, we study some of the central problems in algebraic complexity
theory through the lens of the variety membership testing problem.

In the first part, we investigate whether separations between algebraic complexity classes
can be phrased as instances of the variety membership testing problem. For this, we com-
pare some complexity classes with their closures. We show that monotone commutative
single-(source, sink) ABPs are closed. Further, we prove that multi-(source, sink) ABPs
are not closed in both the monotone commutative and the noncommutative settings.
However, the corresponding complexity classes are closed in all these settings. Next, we
observe a separation between the complexity classes VQP and VNP.

In the second part, we cover the blackbox polynomial identity testing (PIT) problem,
and the rank computation problem of symbolic matrices, both phrasable as instances
of the variety membership testing problem. For the blackbox PIT, we give a random-
ized polynomial time algorithm that uses the number of random bits that matches the
information-theoretic lower bound, differing from it only in the lower order terms. For
the rank computation problem, we give a deterministic polynomial time approxima-
tion scheme (PTAS) when the degrees of the entries of the matrices are bounded by a
constant.

Finally, we show NP-hardness of two problems on 3-tensors, both of which are instances
of the variety membership testing problem. The first problem is the orbit closure
containment problem for the action of GLk ×GLm ×GLn on 3-tensors, while the second
problem is to decide whether the slice rank of a given 3-tensor is at most r.



Zusammenfassung In dieser Arbeit untersuchen wir einige der zentralen Probleme
der algebraischen Komplexitätstheorie, die sich als eine Instanz des Problems des Ent-
haltenseins in einer Varietät formulieren lassen.

Im ersten Teil untersuchen wir, ob das Trennen von algebraischen Komplexitätsklassen
als Instanzen des Problems des Enthaltenseins in Varietäten formuliert werden kann.
Dazu vergleichen wir einige Komplexitätsklassen mit ihren Abschlüssen. Wir zeigen,
dass monotone und kommutative Einzel-(Quelle, Senke)-ABPs abgeschlossen sind. Wei-
terhin beweisen wir, dass Multi-(Quelle, Senke)-ABPs sowohl in der monotonen und
kommutativen als auch in der nicht-kommutativen Variante nicht abgeschlossen sind.
Die entsprechenden Komplexitätsklassen sind jedoch in allen Varianten abgeschlossen.
Schließlich zeigen wir, dass die Komplexitätsklassen VQP und VNP verschieden sind.

Im zweiten Teil behandeln wir das Problem des Blackbox-Polynomial-Identity-Testing
(PIT) und das Problem der Rangberechnung von symbolische Matrizen, die beide als eine
Frage des Enthaltensein in einer Varietät formuliert werden können. Für das Blackbox-
PIT geben wir einen randomisierten Polynomzeitalgorithmus an, der eine Anzahl von
Zufallsbits verwendet, die mit der informationstheoretischen Untergrenze übereinstimmt
bis auf Terme geringerer Ordnung. Für das Rangberechnungsproblem geben wir ein
deterministisches Polynomialzeit-Approximationsschema (PTAS) an, wenn die Grade
der Einträge der Matrizen durch eine Konstante begrenzt sind.

Schließlich zeigen wir die NP-Härte zweier Probleme auf 3-Tensoren. Beide Probleme
können wieder als das Enthaltensein in einer Varietät formuliert werden. Das erste
Problem ist die Frage, ob ein 3-Tensor im Abschluss der GLk ×GLm ×GLn-Bahn eines
anderen Tensors liegt, während das zweite Problem darin besteht, zu entscheiden, ob
der Slice-Rang eines bestimmten 3-Tensors höchstens r beträgt.
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CHAPTER 1

Introduction

Algebraic complexity theory mainly deals with algorithmic and complexity theoretic prob-
lems related to computing polynomials using various models of computations. Algebraic
geometry, on the other hand, primarily studies the zeros of multivariate polynomials.
The central object in algebraic geometry is an algebraic variety, which is the defined as
the set of common zeros of a set of multivariate polynomials 1. Naturally, one of the
central and ubiquitous problems in algebraic geometry is to determine if a point of inter-
est belongs to a variety of interest. This is what we refer to as the variety membership
testing problem.

Since algebraic complexity theory is about computing polynomials, and algebraic geom-
etry asserts that polynomials can be understood by understanding their zeros, it seems
plausible that the understanding of zero sets of polynomials or varieties is crucial in
understanding the algebraic complexity of polynomials.

In fact, algebraic geometry turns out to be intimately relevant to algebraic complexity
theory, as many of the problems, both algorithmic problems and the problems about
showing lower bounds, can be reduced to instances of variety membership testing problem,
whereas for many other problems, it is of interest to find out if they can indeed be seen
as instances of variety membership testing problem.

In this thesis, we emphasise on this viewpoint of looking at various central problems in
algebraic complexity theory as instances of variety membership testing problem. In the
rest of the chapter, we take some of the central problems in algebraic complexity theory
and make this connection more transparent.

1.1 Separations among complexity classes and lower bounds

Let us start with the most central problems in algebraic complexity theory. They are the
problems asking whether two algebraic complexity classes of interest, (for instance, VQP
and VNP, discussed in Chapter 3) are the same. Since the algebraic complexity classes
are essentially sets of families of polynomials and polynomials can be viewed as a vector
of its coefficients in an appropriately defined ambient space, algebraic complexity classes
can be viewed as families of set of points in a well-defined affine space. Hence, towards
our question, one may ask whether the algebraic complexity classes themselves can be
described as zero-sets of multivariate polynomials. In other words, does the question

1In many places in the literature, this is referred to as an algebraic set. There, an irreducible algebraic
set is called a variety. Also, in the modern language of algebraic geometry, the definition of variety is
more general. We will stick to the definition given above.



Chapter 1. Introduction

of whether a polynomial family belongs to a complexity class becomes a problem of
whether a point lies in a variety. And, by extension, the question of whether the two
complexity classes are equal, becomes a question of whether two seemingly different
varieties, because of different definitions, are actually the same variety. This indeed
happens for some models of computation. For instance, this happens in the case of
noncommutative single-(source, sink) algebraic branching programs, which we discuss in
Chapter 2.

One may ponder why should such a translation of the questions of algebraic complexity
classes to a language of algebraic geometry be sought. The first answer lies in the
definition of varieties that they are nothing but common zero sets of sets of polynomials.
So, if a set turns out to be a variety, then the next question one may ask is what exactly
are the corresponding polynomials whose common zero set this variety is. Even if we do
not manage to find all the defining polynomials corresponding to a variety, every non-
trivial polynomial can significantly help in having a tighter grip on the variety, and hence
on the corresponding complexity class. For instance, every member of the complexity
class must be a zero of every such polynomial, and hence being a zero of these defining
polynomials serves as a necessary criterion for the membership in the complexity class.
This might already be sufficient for proving non-trivial lower bounds and separations
between complexity classes.

This is not merely speculative, since we do know separations between algebraic complexity
classes. We will see one such separation in Chapter 3, where we observe that the proof
that the complexity class VQP is not contained in the complexity class VNP goes along
this line and hence also gives a separation between the complexity classes VQP and VNP.

The second reason why it is interesting to unleash if a set, in particular, an algebraic
complexity class, is indeed a variety is because of the existence of a vast amount of research
on geometric properties of a variety which can be used for the purposes of setting two
varieties apart from each other, in particular when the varieties are given as group orbit
closures (discussed in Chapter 6 and 7). Here also, using tools from algebraic geometry
and representation theory, there are explicit lower bounds have been obtained. This is
precisely the goal of the Geometric Complexity Theory program initiated by Mulumuley
and Sohoni [142]. Within this framework, lower bounds against matrix multiplication
problem [51, 103] and lower bounds against weaker models of computation, for instance,
sums of powers of linear forms and product of linear forms [64, 110, 2] have been obtained.
In fact, it is known that most known lower bounds in algebraic complexity theory can
unified using this viewpoint [93].

Thus, it makes sense to ask whether a set defined complexity theoretically is also alge-
braically closed, that is, geometrically well-behaved. In this thesis, in Chapter 2, we will
see a geometric method itself, that is, a method based on the dimension of a variety,
helps also in deciding whether certain models of computations are indeed closed, that is
whether the corresponding set is indeed a variety.

2



1.2. Algorithmic problems in algebraic complexity theory

1.2 Algorithmic problems in algebraic complexity theory

The other question that we may ask is about the connection between the algorithmic
problems of interest in algebraic complexity and the instances of the algorithmic version
of the variety membership problem. We explore this connection as well in this thesis. In
many cases, it turns out that the algorithmic problems in algebraic complexity theory
are nothing but special instances of the variety membership testing problem. We see
this in this thesis in part 2 and part 3 of the thesis. In some cases, this is obvious
(polynomial identity testing problem) while in others it requires more work (matrix
rank, slice rank and minrank). In the other direction, some special instances of variety
membership testing problem, which were already interesting from the perspective of
algebraic geometry has recently turned out to be quite important from the perspective
of algebraic complexity theory. We explore this in Chapter 6, the chapter about orbit
closure containment problem.

1.2.1 Polynomial identity testing

The polynomial identity testing problem (PIT) is one of the central algorithmic problems
in complexity theory, capturing problems like perfect matching in graphs [54, 133, 144]
and primality testing [4, 5, 6], while it is also known to be intimately connected to proving
complexity theoretic lower bounds [117, 3]. The goal in PIT is, for a given multivariate
polynomial in some implicit form, to decide if the polynomial is an identically zero
polynomial. An identically zero polynomial is a polynomial whose coefficients in the
standard monomial representation are all zero. When we view an n-variate, degree d,
polynomial as an N ∶= (n+d

d
) dimensional vector, that is, we view the polynomial as a

point in CN , then the PIT problem is asking if the “given” point is the origin. Or in
other words, it asks, whether the given point lies in the zero variety, comprising of the
single point, the origin. Thus, PIT is also an instance of variety membership testing
problem. We discuss an algorithm for polynomial identity testing in Chapter 4.

1.2.2 Rank of symbolic matrices

Let us say, we are given an n × n matrix whose entries are multivariate polynomials,
and a natural number r, and the problem is to determine whether the commutative
rank (over the function field) of the matrix ≤ r. This problem is also fundamental in
algebraic complexity theory, as it subsumes polynomial identity testing. This problem
can again be seen as an instance of variety membership testing. This is because of the
characterization of rank via vanishing of minors. That is, it is known that a matrix has
rank ≤ r if and only if all its (r + 1) × (r + 1) minors are zero. In other words, the set of
matrices with rank ≤ r is a variety, and the defining polynomials are the (r + 1) × (r + 1)
minors. Thus, the problem becomes to find the biggest number r such that the given
matrix belongs to the variety of matrices with rank ≤ r. We discuss an algorithm for the
rank computation of symbolic matrices in Chapter 5.

3



Chapter 1. Introduction

1.2.3 Orbit closure containment problem and the null cone problem

For a group G, acting2 on a vector space V , the orbit of a vector v ∈ V , denoted as Gv,
is defined to be the set {gv ∣ g ∈ G}. That is, the orbit Gv is the set of points that v
gets mapped to, on the action of G. The group problem that has received the widest
attention in computer science is the orbit containment problem. This asks, given a group
G acting on a vector space V , and two elements u, v ∈ V , to decide if u ∈ Gv. Thus
it asks if a vector is in the orbit of another vector. This problem is quite general and
captures many problems, for instance the graph isomorphism problem and the module
isomorphism problem.

From the perspective of topology, it is more natural to consider orbit closures instead. For
a group G acting on a vector space V , the orbit closure of v ∈ V , denoted as Gv, is defined
to be the smallest closed subset of V which contains Gv. In the standard Euclidean
topology, this translates to Gv being the smallest superset of Gv which contains the limit
points of all convergent sequences comprising of elements of Gv. In the Zariski topology,
this translates to Gv being the smallest superset of Gv which is algebraically closed,
that is, it contains all the common zeros of the set of polynomials that vanish on all the
elements of Gv. In most of the cases of interest, in particular, when the underlying field
is C, the definitions of Gv obtained by considering the above two topologies, that is, the
Euclidean (or analytic) closure and the Zariski (or algebraic) closure coincide 3. Thus
we can ask the following weakening of the orbit containment problem, that is, the orbit
closure containment problem. This asks, for a group G acting on a vector space V , and
two elements u, v ∈ V , decide if u ∈ Gv. This problem again is quite general, and has
appeared centrally in the algorithmic and the complexity theoretic problems related to
algebra and combinatorial optimization, by capturing problems like the border rank of
tensors and the null cone problem.

The null cone problem is a special case of the orbit closure containment problem where
vector u is always the origin, the 0 vector. That, is, we ask the following: for a group G
acting on a vector space V , and v ∈ V , decide if 0 ∈ Gv.

For an example set up of the null cone problem, let us think of a tensor t ∈ Fn×n×m as a
set of m matrices A1, . . . ,Am of size n × n, stacked up on top of each other (also called
slices). The group Γn ∶= SLn × SLn acts on t by simultaneously multiplying each of the
matrices from the left and the right. King [120] showed that the noncommutative rank
of the matrix space given by A1, . . . ,Am is maximal iff 0 ∈ Γnt. (All such tensors t are
said to lie in the null cone.)

Orbit closure containment problems have played a central role in algebraic complexity
theory in the recent years, primarily due to the role of border rank of tensors in several
advancements in the fast matrix multiplication algorithms [26] and the formulation of
the famous permanent versus determinant problem as an orbit closure containment
problem in the geometric complexity program initiated by Mulmuley and Sohoni [142].
Very recently, the null cone problem has proved to be useful in giving polynomial time

2When we say a group G acts on the ambient space S, we have a mapping ⋅ ∶ G×S → S that satisfies
the axioms 1 ⋅ s = s and (gh) ⋅ s = g ⋅ (h ⋅ s) for all s ∈ S and g, h ∈ G. Here gh is the group operation.

3Unless stated otherwise, we assume the underlying field to be C in this paper

4
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algorithms for special cases of the polynomial identity testing problem and several non-
convex optimization problems [48, 82, 79, 47, 50, 9, 81, 49, 80] .

1.2.4 Border Rank and Slice rank of tensors

In this section, we see two notions of tensor ranks which give rise to a variety membership
testing problem.

The first is the well known notion of the border rank of tensors. The border rank of tensor
is, in fact, an instance of orbit closure containment problem, and hence an instance of
variety membership testing problem too. To see the border rank problem as an orbit
closure containment problem, let GLn denote the group of all invertible n × n matrices.
GLn acts on Fn by the usual matrix-vector multiplication. Gn ∶= GLn ×GLn ×GLn
acts on rank-one tensors u ⊗ v ⊗ w by (A,B,C) ⋅ u ⊗ v ⊗ w = Au ⊗ Bv ⊗ Cw and on
arbitrary tensors by linear continuation. The orbit of a tensor t under Gn is the set
Gnt ∶= {g ⋅ t ∣ g ∈ Gn} and its orbit closure is the closure Gnt in the Zariski topology. It
is well known that the set of all tensors of border rank ≤ r can be written with the help
of an orbit closure [46], namely Grer where er is the so-called unit tensor in Fr×r×r: A
tensor t ∈ Fn×n×n has border rank ≤ r iff t̃ ∈ Grer, where t̃ is an embedding of t into the
larger ambient space Fr×r×r.

The second notion, that is the notion of slice rank, is quite recent and was first used
implicitly by Croot, Lev, and Pach and later explicitly by Tao [174]. The term “slice
rank”, however, was first used by Blasiak et al. [35] who used the term for the notion
that Tao introduced. The methods based on slice rank have been very useful in the
breakthrough works for several combinatorial problems like the sunflowers free sets, the
tri-colored and multi-colored sum-free sets, the capsets and the progression-free problem,
multiplicative matching in nonabelian groups, and also in proving barrier results against
the group-theoretic approach to fast matrix multiplication.

We now describe the notion of slice rank and then the corresponding computational
problem. For this, we consider the space V1 ⊗ V2 ⊗ V3. It can also be written as ⊗3

i=1 Vi,
and is generated by the decomposable (also called rank-one) tensors v1 ⊗ v2 ⊗ v3, where
vi ∈ Vi. The usual tensor rank is the minimum number of decomposable tensors that
is needed to write a given tensor as a sum of decomposable tensors. The slice rank is
defined in a similar manner, however, the basic building blocks are not decomposable
tensors but tensors that can be decomposed into a matrix and a single vector. More
formally, consider the smaller tensor products ⊗1≤i≤3∶i≠j Vi and the j-th tensor products
⊗j ∶ Vj ×⊗1≤i≤3∶i≠j Vi →⊗3

i=1 Vi with its natural definition. Now the rank one functions
are the elements of the form vj ⊗j vĵ for some vj ∈ Vj and vĵ ∈ ⊗1≤i≤3∶i≠j Vi. The slice

rank (or srk for short) of a tensor T ∈ ⊗3
i=1 Vi is the smallest nonnegative integer r such

that T can be expressed as a linear combination of r rank one functions.

The algorithmic problem corresponding to the slice rank problem is the following: given
T ∈ Fn ⊗ Fn ⊗ Fn and a number r, decide if srk(T ) ≤ r.

It was shown by Tao and Sawin that the set of tensors with slice rank bounded by at
most r is algebraically closed and hence is a variety. So, the slice rank problem is also an
instance of variety membership testing problem. In Chapter 7, we show that it can be

5
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phrased as a problem about containment in a union of orbit closures. We further show
that this algorithmic problem is NP-hard as well.

6



PART I

Are algebraic complexity classes
varieties?

This part is the result of close collaboration with Markus Bläser, Christian
Ikenmeyer, Meena Mahajan and Nitin Saurabh. It is based on an article
titled Algebraic Branching Programs, Border Complexity, and Tangent Spaces
that appeared in the Computational Complexity Conference, 2020 [32].
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CHAPTER 2

Border Complexity and Algebraic
Branching Programs

In this chapter, we ask questions of the kind, “Can the membership problem of a
polynomial family in an algebraic complexity class be formulated as instances of the
variety membership problem?” This translates to asking if a complexity class, or more
generally, a set, defined complexity theoretically can be described as a set of common
solutions to some system of polynomial equations. In algebraic geometry, such sets
are called algebraically closed. Thus, we ask whether the given set, defined complexity
theoretically, is algebraically closed. If a complexity class, or more generally, any set
defined complexity theoretically, is algebraically closed, then membership in that set is
an instance of variety membership problem.

We explore this question in the setting of algebraic branching programs, that is, the com-
plexity theoretically defined set is defined via algebraic branching programs. In particular,
we explore it in the setting of noncommutative algebraic branching programs, mono-
tone commutative algebraic branching programs and commutative algebraic branching
programs.

Nisan [147] showed in 1991 that the width of a smallest noncommutative single-(source,
sink) algebraic branching program (ABP) to compute a noncommutative polynomial
is given by the ranks of specific matrices. This means that the set of noncommutative
polynomials with ABP width complexity at most k is Zariski-closed, an important
property in geometric complexity theory. It follows that approximations cannot help to
reduce the required ABP width.

It was mentioned by Forbes [69] that this result would probably break when going from
single-(source, sink) ABPs to trace ABPs. We prove that this is correct. Moreover,
we study the commutative monotone setting and prove a result similar to Nisan, but
concerning the analytic closure. We observe the same behavior here: The set of polyno-
mials with ABP width complexity at most k is closed for single-(source, sink) ABPs and
not closed for trace ABPs. The proofs reveal an intriguing connection between tangent
spaces and the vector space of flows on the ABP.

2.1 Set-up and results

Algebraic branching programs (ABPs) are an elegant model of computation that is widely
studied in algebraic complexity theory in its various incarnations (see e.g. [21, 177, 139,
141, 10, 14, 119, 124, 55, 76]) and is a focus of study in geometric complexity theory
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[129, 85, 86]. In this chapter, we study the layered, homogeneous ABP (which we will
simply refer to as ABP), since this is the most suitable incarnation of ABP to study
from the viewpoint of variety membership testing and geometric complexity theory. An
ABP is a layered directed graph with d+ 1 layers of vertices (edges only go from layers i
to i+1) such that the first and last layer have exactly the same number of vertices. Each
vertex in the first layer has exactly one so-called corresponding vertex in the last layer.
One interesting classical case is when the first and last layer have exactly one vertex,
which is usually studied in theoretical computer science. We call this the single-(source,
sink) model. Among algebraic geometers working on ABPs it is common to not impose
restrictions on the number of vertices in the first and last layer [129, 85, 130]. We call
this the trace model. Every edge in an ABP is labeled by a homogeneous linear form (i.e.,
a linear polynomial without a constant term in the variables x1, . . . , xm). If we denote
by `(e) the homogeneous linear form of edge e, then we say that the ABP computes

∑p∏e∈p `(e), where the sum is over all paths that start in the first layer and end in the
last layer at the vertex corresponding to the start vertex.

The width of an ABP is the number of vertices in its largest layer. We denote by w(f)
the minimal width required to compute f in the trace model and we call w(f) the trace
ABP width complexity of f . We denote by w1(f) the minimal width required to compute
f in the single-(source, sink) model and we call w1(f) the single-(source, sink) ABP
width complexity of f .

The complexity class VBP is defined as the set of sequences of polynomials (fm) for which
the sequences w(fm) and deg(fm) are polynomially bounded, where deg(f) denotes the
degree of the polynomial f . Let perm ∶= ∑π∈Sm∏

m
i=1 xi,π(i) be the permanent polynomial.

Valiant’s famous VBP ≠ VNP conjecture can concisely be stated as “The sequence
of natural numbers (w(perm))

m
is not polynomially bounded.” Alternatively, this is

phrased with w1 or other polynomially related complexity measures in a completely
analogous way. In geometric complexity theory (GCT), one searches for lower bounds
on algebraic complexity measures over C such as w and w1 for explicit polynomials
such as the permanent. All lower bounds methods in GCT and most lower bounds
methods in algebraic complexity theory are continuous, which means that if fε is a
curve of polynomials with limε→0 fε = f (coefficient-wise limit) and w(fε) ≤ w, then these
methods cannot be used to prove w(f) > w. This is usually phrased in terms of so-called
border complexity (see e.g. [52, 129]): The border trace ABP width complexity w(f) is
the smallest w such that f can be approximated arbitrarily closely by polynomials fε
with w(fε) ≤ w. Analogously, we define the border single-(source, sink) ABP width
complexity w1(f) as the smallest w such that f can be approximated arbitrarily closely

by polynomials fε with w1(fε) ≤ w. We define VBP as the set of sequences of polynomials
such that (w(fm)) is polynomially bounded. Clearly VBP ⊆ VBP. Mulmuley and Sohoni
[142, 143, 52] (see also [45, 43] for a related conjecture) conjectured a strengthening of
Valiant’s conjecture, namely that VNP /⊆ VBP. In principle it could be that w(f) <
w(f); the gap could even be superpolynomial, which would mean that VBP ⊊ VBP. If
VBP = VBP, then Valiant’s conjecture is the same as the Mulmuley-Sohoni conjecture,
which would mean that if VBP ≠ VNP, then continuous lower bounds methods exist
that show this separation.

10



2.1. Set-up and results

Border complexity is an old area of study in algebraic geometry. In theoretical computer
science it was introduced by Bini et al. [25], where [24] proves that in the study of fast
matrix multiplication, the gap between complexity and border complexity is not too large.
The study of the gap between complexity and border complexity of algebraic complexity
measures in general has started recently [94, 41, 123] as an approach to understand if
strong algebraic complexity lower bounds can be obtained from continuous methods.

In this chapter we study two very different settings of ABPs: The noncommutative
and the monotone setting. To capture commutative, noncommutative, and monotone
computation, let R be a graded semiring with homogeneous components Rd. In our case
the settings for Rd are

• Rd = F[x1, . . . , xm]d the set of homogeneous degree d polynomials in m variables
over a field F,

• Rd = F⟨x1, . . . , xm⟩d the set of homogeneous degree d polynomials in m noncom-
muting variables over a field F,

• Rd = R+[x1, . . . , xm]d the set of homogeneous degree d polynomials in m variables
with nonnegative coefficients.

As it is common in the theoretical computer science literature, we call elements of Rd
polynomials. Note that F⟨x1, . . . , xm⟩d is naturally isomorphic to the d-th tensor power
of Fm, so tensor would be the better name. We hope that no confusion arises when in
the later sections (where we use concepts from multilinear algebra) we use the tensor
language. In the homogeneous setting, all ABP edge labels are in R1, and hence the
polynomial that is computed is in Rd. In the affine setting, all ABP edge labels are in
R0 +R1, and hence the polynomial that is computed is in ⊕d′≤dRd′ .

Noncommutative ABPs

Let Rd = F⟨x1, . . . , xm⟩d and consider the homogeneous setting. We write ncw instead of
w and ncw1 instead of w1 to highlight that we are in the noncommutative setting. Nisan
[147] proved:

Theorem 2.1. Let Mi denote the mi ×md−i matrix1 whose ((k1, . . . , ki), (ki+1, . . . , kd))-
th entry is the coefficient of the monomial xk1xk2⋯xkd in f . Then every single-(source,
sink) ABP computing f has at least rk(Mi) many vertices in layer i. Conversely, there
exists a single-(source, sink) ABP computing f with exactly rk(Mi) many vertices in
layer i.

Nisan used this formulation to prove strong complexity lower bounds for the noncommu-
tative determinant and permanent. Forbes [70] remarked that Theorem 2.1 implies that
for fixed w

the set {f ∣ ncw1(f) ≤ w} is Zariski-closed2 (2.1.1)

1We identify the rows (resp. columns) all degree i (resp. degree d − i) monomials in the variables
x1, . . . , xm.
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Chapter 2. Border Complexity and Algebraic Branching Programs

and hence that

ncw1(f) = ncw1(f) for all f. (2.1.2)

Proving a similar result (even up to polynomial blowups) in the commutative setting
would be spectacular: It would imply VBP = VBP and hence that Valiant’s conjecture
is the same as the Mulmuley-Sohoni conjecture. By a general principle, for all standard
algebraic complexity measures, over C we have that the Zariski-closure of a set of
polynomials of complexity at most w equals the Euclidean closure [145, S2.C].

Forbes mentioned that he believes that Nisan’s proof cannot be lifted to the trace model.
In this chapter we prove that Forbes is correct, by constructing a polynomial f0 with

ncw(f0) < ncw(f0). (2.1.3)

The proof is given in Section 2.5–Section 2.8. It is a surprisingly subtle application of
differential geometry (inspired by [109]) and interprets tangent spaces to certain varieties
as vector spaces of flows on an ABP digraph.

The gap between ncw(f) and ncw(f) can never be very large though:

ncw(f) ≤ ncw(f) ≤ ncw1(f)
(2.1.2)= ncw1(f)

3

≤ (ncw(f))2 for all f. (2.1.4)

It is worth noting that for our separating polynomial f0, the gap is even less; ncw(f0) <
ncw(f0) ≤ 2ncw(f0). This is the first algebraic model of computation where complexity
and border complexity differ, but their gap is known to be polynomially bounded! For
most models of computation almost nothing is known about the gap between complexity
and border complexity. For commutative width 2 affine ABPs the gap is even as large
as between computable and non-computable [41]!

Monotone ABPs

Let Rd = R+[x1, . . . , xm]d and consider the affine or homogeneous setting.

Since R is not algebraically closed, we switch to a more algebraic definition of approxi-
mation. Let R[ε, ε−1]+ denote the ring of Laurent polynomials that are nonnegative for
all sufficiently small ε > 0. Clearly, elements from R[ε, ε−1]+ can have a pole at ε = 0 of

2We identify each m-variate homogeneous degree d polynomial with its coefficient vector. There is a
standard topology on the vector space of these coefficient vectors that we call the Euclidean topology.
The Zariski-closure of a set X of vectors is the smallest set of vectors that contains X and that is the
common zero set of a finite set of polynomials in the coordinate variables, see e.g. [30, Ch. 4] for the
commutative case.

3Given a trace ABP Γ computing f and a pair of corresponding start and end vertices, we can extract
a single-(source, sink) ABP by deleting all other start and end vertices. If we do this for each pair of
start and end vertices, and if we then idenfity all start vertices to a single start vertex, and also all end
vertex to a single end vertex, then we obtain a single-(source, sink) ABP computing f . The width has
grown by a factor of w, where w is the number of start vertices in Γ.

12



2.2. Related work

arbitrarily high order. We define mw(f) to be the smallest w such that there exists a
polynomial f ′ over the ring R[ε, ε−1]+ such that

• there exists a width w ABP over R[ε, ε−1]+ that computes f ′,

• no coefficient in f ′ contains an ε with negative exponent, and setting ε to 0 in f ′

yields f , i.e., f ′∣ε=0 = f .

We prove a result that is comparable to (2.1.2), but uses a very different proof technique:

mw1(f) = mw1(f) for all f. (2.1.5)

In terms of complexity classes, this implies

MVBP = MVBP
R
.

Our proof also works if the ABP is not layered and the labels are affine.

Intuitively, in this monotone setting, one would think that approximations do not help,
because there cannot be cancellations. But quite surprisingly the same construction as
in (2.1.3) can be used to find f0 such that

mw(f0) < mw(f0). (2.1.6)

By the same reasoning as in (2.1.4), we obtain

mw(f) ≤ mw(f) ≤ (mw(f))2 for all f. (2.1.7)

This gives a natural monotone model of computation where approximations speed up
the computation. Again, the gap is polynomially bounded!

Structure of the chapter

In Section 2.4, we prove (2.1.5). Section 2.5 to Section 2.8 are dedicated to proving
(2.1.3) and (2.1.6) via a new connection between tangent spaces and flow vector spaces.

2.2 Related work

Grenet [90] showed that mw(perm) ≤ ( m
⌈m/2⌉) by an explicit construction of a monotone

single-(source, sink) ABP. Even though the construction is monotone, its size is optimal
for m = 3 [13] (for 4 this is already unknown). The noncommutative version of this
setting has been studied in [76]. [183] recently showed that the monotone circuit classes
MVP and MVNP are different. We refer the reader to [183] and [172] and the references
therein to get more information about monotone algebraic models of computation and
their long history.

Hüttenhain and Lairez [109] present a method that can be used to show that a complexity
measure and its border variant are not the same. They used it to prove that an explicit
polynomial has border determinantal complexity 3, but higher determinantal complexity.
We use their ideas as a starting point in Section 2.5 and the later sections.
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Chapter 2. Border Complexity and Algebraic Branching Programs

2.3 Preliminaries

For a homogeneous degree d ABP Γ, we denote by V the set of vertices of Γ and by
V i the set of vertices in layer i, 1 ≤ i ≤ d + 1. We choose an explicit bijection between
the sets V 1 and V d+1, so that each vertex v in V 1 has exactly one corresponding vertex
corr(v) in V d+1. We denote by Ei the set of edges from V i to V i+1. Let E denote the
union of all Ei.

There is a classical interpretation in terms of iterated matrix multiplication: Fix some
arbitrary ordering of the vertices within each layer, such that the i-th vertex in V 1

corresponds to the i-th vertex in V d+1. For 1 ≤ k ≤ d let Mk be the ∣V k∣ × ∣V k+1∣ matrix
whose entry at position (i, j) in Mk is the label of the edge from the i-th vertex in V k

to the j-th vertex in V k+1. Then Γ computes the trace

∑
1≤k1≤∣V 1∣
1≤k2≤∣V 2∣

⋮
1≤kd≤∣V d∣

(M1)k1,k2(M2)k2,k3⋯(Md−1)kd−1,kd(Md)kd,k1 = tr(M1M2⋯Md). (2.3.1)

Hence the name trace model. In the single-(source, sink) model, the trace is taken of a
1 × 1 matrix.

2.4 Monotone commutative single-(source, sink) ABPs are
closed

For fixed w ∈ N we study

the set {f ∈ R+[x1, . . . , xn]d ∣ mw1(f) ≤ w}. (2.4.1)

We first start with the simple observation that it is not Zariski-closed.

Proposition 2.4.2. {f ∈ R+[x1, . . . , xn]d ∣ mw1(f) ≤ w} is not Zariski-closed.

Proof. Note that a homogeneous degree d single-(source, sink) width w ABP has 2w +
w2(d − 2) many edges. The label on each edge is a linear form in n variables, so such
an ABP is determined by N ∶= n(2w + w2(d − 2)) many parameters. Let F ∶ CN →
C[x1, . . . , xn]d be the map that maps these parameters to the polynomial computed by
the ABP. Every coordinate function of F is given by polynomials in N variables, so F
is Zariski-continuous. Therefore

F ((R+)N) = F ((R+)N) = F (CN) ⊇ F (CN) ⫌ F ((R+)N),
where the overline means the Zariski-closure. We remark that we did not use any special
feature of the model of computation other than the fact that it is defined over R.

Recall that an ABP has d+ 1 layers of vertices. If an ABP has wi many vertices in layer
i, 1 ≤ i ≤ d, we say the ABP has format w = (w1,w2, . . . ,wd). We further recall that
wd+1 = w1. The following theorem is our closure result, which proves (2.1.5) and hence

MVBP = MVBP
R

.
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2.5. Explicit construction of f0 with higher complexity than border complexity

Theorem 2.2. Given a polynomial f over R and given a format w single-(source, sink)
ABP with affine linear labels over R[ε, ε−1]+ computing fε such that limε→0 fε = f . Then
there exists a format w monotone single-(source, sink) ABP that computes f .

Proof. The proof is constructive and done by a two-step process. In the first step (which
is fairly standard and works in many computational models) we move all the ε with
negative exponents to edges adjacent to the source. The second step then uses the
monotonicity.

Given Γ with affine linear labels over R[ε, ε−1]+ we repeat the following process until all
labels that contain an ε with a negative exponent are incident to the source vertex.

• Let e be an edge whose label contains ε with a negative exponent −i < 0. Moreover,
assume that e is not incident to the source vertex. Let v be the start vertex of e.
We rescale all edges outgoing of v with εi and we rescale all edges incoming to v
with ε−i.

If we always choose the edge with the highest layer, then it is easy to see that this process
terminates. Since every path from the source to the sink that goes through a vertex v
must use exactly one edge that goes into v and exactly one edge that comes out of v,
throughout the process the value of Γ does not change. We finish this first phase by
taking the highest negative power i among all labels of edges that are incident to the
source and then rescale all these edges with εi. The resulting ABP Γi computes εifε and
no label contains an ε with negative exponent. We now start phase 2 that transforms Γi

into Γi−1 that computes εi−1fε without introducing negative exponents of ε. We repeat
phase 2 until we reach Γ0 in which we safely set ε to 0. Throughout the whole process
we do not change the structure of the ABP and only rescale edge labels with powers
of ε, which preserves monotonicity, so the proof is finished. It remains to show how Γi

can be transformed into Γi−1. An edge whose label is divisible by ε is called an ε-edge.
Consider the set ∆ of vertices that are reachable from the source using only non ε-edges
in Γi. The crucial insight is that since Γi is monotone and computes a polynomial that is
divisible by ε, we know that every path in Γi from the source to the sink uses an ε-edge.
Therefore ∆ cannot contain the sink. We call a vertex in ∆ whose outdegree is zero a
leaf vertex. We repeat the following procedure until the source is the only leaf vertex:

• Let v be a non-source leaf vertex in ∆. We rescale all edges outgoing of v with ε−1

and we rescale all edges incoming to v with ε.

It is easy to see that this process terminates with the source being the only leaf vertex.
Since the source is a leaf vertex, all edges incident to the source are ε-edges. We divide
all their labels by ε to obtain Γi−1.

2.5 Explicit construction of f0 with higher complexity than
border complexity

Fix some d ≥ 3. In this section for every m ≥ 2 we construct f0 such that

m = ncw(f0) < ncw(f0). (2.5.1)
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Chapter 2. Border Complexity and Algebraic Branching Programs

A completely analogous construction can be used to find f0 with w(f0) < w(f0) and with
mw(f0) < mw(f0). For the sake of simplicity, we carry out only the proof for (2.5.1).

Recall that in a format w ABP we have wd+1 = w1. In each layer i we enumerate the
vertices V i = {vi1, . . . , viwi} and we assume without loss of generality that the correspon-

dence bijection between V d+1 and V 1 is the identity on the indices j of v1j , i.e., the jth

vertex in V 1 corresponds to the jth vertex in V d+1.

Fix an ABP format w = (w1,w2, . . . ,wd) such that for all i, wi ≥ 2. Let Γcom denote4

the directed acyclic graph underlying an ABP of format w. An edge can be described
by the triple (a, b, i), where 1 ≤ i ≤ d, 1 ≤ a ≤ wi and 1 ≤ b ≤ wi+1. Consider the following

labeling of the edges with triple-indexed variables: `com((a, b, i)) = x(i)(a,b). Define fcom to

be the polynomial computed by Γcom with edge labels `com.

We now construct f0 as follows. Let d be odd (the case when d is even works analogously).
Since in each layer we enumerated the vertices, we can now assign to each vertex its
parity: even or odd. We call an edge between two even or two odd vertices parity
preserving, while we call the other edges parity changing. Let us consider the following

labeling of Γcom: We set `0((a, b, i)) ∶= x(i)(a,b) if (a, b, i) is parity changing (i.e., a /≡ b

(mod 2)) and set the label `0((a, b, i)) ∶= εx
(i)
(a,b) otherwise, where ε ∈ C. Let f ′ε be

the polynomial computed by Γcom with edge labels `0 and set fε ∶= 1
εf

′
ε for ε ≠ 0. We

define f0 ∶= limε→0 fε (convergence follows from the construction, because d is odd). By
definition, for all ε ≠ 0, fε can be computed by a format w ABP. However, we will now
prove that this property fails for the limit point f0.

Theorem 2.3. Fix an ABP format w = (w1,w2, . . . ,wd) such that for all i, wi ≥ 2. Let
f0 be defined as above. Then, f0 cannot be computed by an ABP of format w.

Note that for a format where m = w1 = ⋯ = wd, this gives the f0 which was desired in
(2.5.1). (Note, however, that f0 can be computed by an ABP of width 2m as follows.
Construct an ABP Γ′ that has, for each vertex v ∈ Γcom, vertices v′ and v′′. For each
parity changing edge (a, b) ∈ Γcom with label `0, add edges (a′, b′) and (a′′, b′′) with
the same label `0. For each parity preserving edge (a, b) ∈ Γcom with label `0, add
edge (a′, b′′) with label (1ε)`0. For corresponding vertices u, v in Γcom, let v′′ be the
corresponding vertex for u′ and v′ be the corresponding vertex for u′′ in Γ′. All paths
between corresponding vertices in this ABP use exactly one parity preserving edge of
Γcom, and so this ABP computes f0.)

The proof of Theorem 2.3 works as follows. Let G ∶= GLw1w2 ×GLw2w3 ×⋯ × GLwdwd+1 .
Let End ∶= G denote its Euclidean closure, i.e., tuples of matrices in which one or several
matrices can be singular.

We consider noncommutative homogeneous polynomials in the variables x
(i)
(a,b) such that

the i-th variable in each monomial is x
(i)
(a,b) for some a ∈ [wi] and b ∈ [wi+1]. The vector

space of these polynomials is isomorphic to W ∶= Cw1w2 ⊗Cw2w3 ⊗⋯⊗Cwdwd+1 and the

4Here and in subsequent usages, the subscript “com” is to denote that the underlying graph is a
complete layered graph. It should not be confused with being commutative.

16



2.6. Conciseness

monoid End (and thus also the group G) acts on this space in the canonical way. The set

{f ∈W ∣ f can be computed by a format w ABP}
is precisely the orbit Endfcom. We follow the overall proof strategy in [109]. The monoid
orbit Endfcom decomposes into two disjoint orbits:

Endfcom = Gfcom ∪ (End ∖G)fcom.
Our goal is to show two things independently:

(1) f0 ∉ (End ∖G)fcom, and

(2) f0 ∉ Gfcom,

which finishes the proof of Theorem 2.3.

All elements in (End∖G)fcom are not concise, a term that we define in Section 2.6, where
we also prove that f0 is concise. Therefore f0 ∉ (End ∖G)fcom.

All elements in Gfcom have full orbit dimension, a term that we define in Section 2.7
and we prove that f0 does not have full orbit dimension in Section 2.8. This finishes the
proof of Theorem 2.3.

2.6 Conciseness

In this section we show that f0 ∉ (End ∖ G)fcom. To do so we use a notion called
conciseness. Informally, it captures whether a polynomial depends on all variables
independent of a change of basis, or a tensor cannot be embedded into a tensor product
of smaller spaces.

Given a tensor f in Cm1 ⊗ Cm2 ⊗ ⋯ ⊗ Cmd , we associate the following matrices with
f . For j ∈ [d], define a matrix M j

f of dimension mj × (∏i∈[d]∖{j}mi) with rows la-
beled by the standard basis of Cmj , and columns by elements in the Cartesian product
{standard basis of Cm1} × ⋯ × {standard basis of Cmj−1} × {standard basis of Cmj+1} ×
⋯ × {standard basis of Cmd}. We write the tensor f in the standard basis

f = ∑
1≤i1≤m1
1≤i2≤m2

⋮
1≤id≤md

αi1,...,idei1 ⊗⋯⊗ eid

and associate to it the matrixM j
f whose entry at position ((ij), (i1, i2, . . . , ij−1, ij+1, . . . , id))

is αi1,...,id .

Definition 2.1. We say that a tensor f in Cm1 ⊗Cm2 ⊗⋯⊗Cmd is concise if and only
if for all j ∈ [d], M j

f has full rank. 5

As a warm-up exercise we now show that fcom is concise.

5When f is viewed as a set-multilinear polynomial (see [154, Section 1.4]), this condition translates
to the linear independence of the partial derivatives of f . In particular, M j

f is testing if the partial
derivatives of f with respect to the j-th block of variables are all linearly independent. This partial
derivatives based criterion for testing if a polynomial depends on all the variables, independent of a
change of basis, is pretty standard: see, for instance, [108, Corollary 5.1.4].
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Proposition 2.6.1. fcom is concise.

Proof. We know that fcom ∈W (recall that W ∶= Cw1w2 ⊗Cw2w3 ⊗⋯⊗Cwdwd+1) and the
monoid End. Let us consider the matrix M j

fcom
for some j ∈ [d]. To establish that M j

fcom
has full rank, it suffices to show that rows are linearly independent. In order to show
that, we argue that every row is non-zero and every column has at most one non-zero
entry. In other words, rows are supported on disjoint sets of columns.

A row of M j
fcom

is labeled by an edge in the j-th layer of the ABP Γcom. Recall that

only paths that start at a vertex in V 1 and end at the corresponding vertex in V d+1

contribute to the computation in Γcom. We call such paths valid paths. An entry in
M j
fcom

is non-zero iff the corresponding row and column labels form a valid path in Γcom.
Thus, it is easily seen that a row is non-zero iff there is a valid path in Γcom that passes
through the edge given by the row label. By the structure of Γcom, in particular that
every layer is a complete bipartite graph, we observe that passing through every edge
there is some valid path. Hence, we obtain that every row is non-zero.

The second claim now follows from the observation that fixing d − 1 edges either defines
a unique dth edge so that these d edges form a valid path, or for these d − 1 edges there
is no such dth edge.

As mentioned in Section 2.5, to establish f0 ∉ (End ∖ G)fcom we will show that f0 is
concise while any element in (End ∖G)fcom is not.

Lemma 2.1. f0 is concise.

Proof. Analogous to the proof of Proposition 2.6.1, we again show that every row of M j
f0

is non-zero and every column of it has at most one non-zero entry. That is, rows of M j
f0

are supported on disjoint sets of columns.

From the construction of f0 it is seen that a path in Γcom contributes to the computation
of f0 iff it is a valid path that comprises of exactly one parity preserving edge. The
second claim of every column having at most one non-zero entry now follows for the
same reason as in the proof of Proposition 2.6.1.

Before proving the first claim, we recall two assumptions in the construction of f0. The
first is that the format w = (w1,w2, . . . ,wd) is such that wi ≥ 2 for all i ∈ [d] and the
second is that d is odd. To argue that a row is non-zero it suffices to show that a valid
path comprising of only one parity preserving edge passes through the edge given by the
row level. Let us consider an arbitrary edge e in Γcom. We have two cases to consider
depending on whether it is parity preserving or changing.

Case 1. Suppose e is parity preserving and it belongs to a layer j ∈ [d]. The number of
layers on the left of e is j − 1 and on the right is d − j. Since d is odd, these numbers
are either both even or both odd. We now argue for the case when they are even (the
odd case is analogous). Choose a vertex v in V 1 that has the same parity (different
in the odd case) as one of the end points of e. (Such a choice exists because w1 ≥ 2.)
We now claim that there exists a valid path starting at v that passes through e and
contains exactly one parity preserving edge. Since e is parity preserving, all edges in
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the claimed path must be parity changing. We observe that e can be easily extended
in both directions using parity changing edges such that the path ends at corr(v). The
existence of parity changing edges at each layer uses the assumption that wi ≥ 2.

Case 2. Otherwise e = (a, b) is parity changing. Again as before there are two cases
based on whether both j − 1 and d− j are even or odd. Consider the case when they are
even (the odd case being analogous). We first assume that j ≠ d. Choose a vertex v in
V 1 that has the same parity as a. We now construct a valid path from v to corr(v) that
passes through e and contains exactly one parity preserving edge. It is easily seen that
there exists a path from v to a using only parity changing edges. We choose a parity
preserving outgoing edge incident to b. We call its endpoint v1. Since v1 and v have
different parities, we can connect v1 to corr(v) in V d+1 using only parity changing edges.
Thus we obtain the following valid path v → ⋯ → a → b → v1 → ⋯ → corr(v) passing
through exactly one parity preserving edge (b, v1). In the case that j = d, choose an
incoming parity preserving edge incident on a instead of an outgoing edge on b.

Remark 2.1. We note that if the format w = (w1, . . . ,wd) defining f0 is such that for
some j ∈ [d], wj = 1, then f0 is not concise. This can be seen as follows.

Let wj = 1, and let v denote the unique vertex in V j. Let e be the edge e = (1,1, j). If
j < d, let e′ be the edge e′ = (1,1, j +1), otherwise let e′ be the edge e′ = (1,1, j −1). Both
e, e′ are parity preserving edges. By construction, every valid path using e′ must also use
e. Hence the corresponding row in the matrix M j+1

f0
if j < d, and in M j−1

f0
otherwise, is

zero. Therefore f0 is not concise.

This is an interesting observation, because this is the point where our proof fails for
single-(source, sink) ABPs, and this is expected, because Nisan [147] had shown that the
set of polynomials computed by such ABPs of format w is a closed set.

Lemma 2.2. Let f ∈ (End ∖G)fcom. Then f is not concise.

Proof. This statement is true in very high generality. In our specific case a proof goes
as follows. If f ∈ (End∖G)fcom, then f = gfcom for some g ∈ End∖G. Let g = (g1, . . . , gd),
where gi ∈ Cwiwi+1×wiwi+1 . Since g ∉ G, at least one of the gi must be singular. The crucial
property is M i

gfcom
= giM i

fcom
, which finishes the proof.

2.7 Orbit dimension, tangent spaces, and flows

In this section we introduce tangent spaces and study their dimensions. We especially
study them in the context of Gfcom, and Gf0.

The orbit dimension of a tensor f ∈ Cw1w2 ⊗ Cw2w3 ⊗ ⋯ ⊗ Cwdwd+1 is the dimension
of the orbit Gf as an affine variety. It can be determined as the dimension of the
tangent space Tf of the action of G at f , which is a vector space defined as follows.
Let g ∶= Cw1w2×w1w2 × ⋯ × Cwdwd+1×wdwd+1 . For A ∈ g we define the Lie algebra action
Af ∶= limε→0

1
ε ((id + εA)f − f), where id ∈ G is the identity element. We define the

vector space

Tf ∶= gf = {Af ∣ A ∈ g}.
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2.7.1 Claim. The dimension dimTh is the same for all h ∈ Gf .

Proof. Since the action of G is linear, for all g ∈ G and A ∈ g we have

A(gf) = lim
ε→0

1
ε ((id + εA)(gf) − gf) = lim

ε→0

1
ε
(gg−1(id + εA)gf − gf)

= g lim
ε→0

1
ε
((id + ε(g−1Ag))f − f) = g((g−1Ag)f)

Since A ↦ g−1Ag is a bijection on g, it follows that Tgf = gTf . Hence the claim
follows.

In the following we will use Claim 2.7.1 to argue f0 ∉ Gfcom by showing that dimTfcom
and dimTf0 are different.

Let e, e′ ∈ Ei and let A
(i)
e,e′ ∈ g denote the matrix tuple where the i-th matrix has a 1

at position (e, e′) and all other entries (also in all other matrices) are 0. Since these
matrices form a basis of g, it follows that

gf = linspan{A(i)
e,e′f}.

For a tensor f we define the support of f as the set of monomials (i.e., standard basis
tensors) for which f has nonzero coefficient. For a linear subspace V ⊆ Cw1w2 ⊗Cw2w3 ⊗
⋯⊗Cwdwd+1 we define the support of V as the union of the supports of all f ∈ V .

We write e∩e′ = ∅ to indicate that two edges e and e′ do not share any vertex. We write
∣e∩ e′∣ = 1 if they share exactly one vertex. We observe that for f ∈ {fcom, f0} the vector
space Tf decomposes into a direct sum of three vector spaces,

g2 ∶= linspan{A(i)
e,e′ ∣ 1 ≤ i ≤ d,1 ≤ e, e′ ≤ wiwi+1, e ∩ e′ = ∅}

g1 ∶= linspan{A(i)
e,e′ ∣ 1 ≤ i ≤ d,1 ≤ e, e′ ≤ wiwi+1, ∣e ∩ e′∣ = 1}

g0 ∶= linspan{A(i)
e,e ∣ 1 ≤ i ≤ d,1 ≤ e ≤ wiwi+1}.

g = g0 ⊕ g1 ⊕ g2

Tf = g0f ⊕ g1f ⊕ g2f

The last direct sum decomposition follows from the fact that g0f , g1f , and g2f have
pairwise disjoint supports.

We show in this section that dimg2fcom = dimg2f0, and that dimg1fcom = dimg1f0.
In Section 2.8 we show that dimg0fcom > dimg0f0, which then implies f0 ∉ Gfcom by
Claim 2.7.1. In fact, Theorem 2.4 gives the exact dimension of g0fcom by proving that
g0fcom is isomorphic to the vector space of flows on the ABP digraph when identifying
vertices in V 1 with their corresponding vertices in V d+1. Theorem 2.5 establishes an
additional equation based on the vertex parities that shows that g0f0 is strictly lower
dimensional than g0fcom.

We start with Lemma 2.3, which shows that dimg2fcom and dimg2f0 have full dimension.

Lemma 2.3. Let f ∈ {fcom, f0}. The space g2f has full dimension. That is, its dimen-
sion equals ∑di=1wiwi+1(wi − 1)(wi+1 − 1).
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Proof. Suppose f = fcom. The other case being analogous, we only argue this case.

We analyze the monomials that appear in the different A
(i)
e,e′fcom and argue that a

monomial that appears in some A
(i)
e,e′fcom can only appear in that specific A

(i)
e,e′fcom.

Indeed, each monomial corresponds to a valid path in which one edge e in layer i is
changed to e′. Since e and e′ share no vertex, from this edge sequence we can reconstruct
i, e, and e′ uniquely: e′ is the edge that does not have any vertex in common with the
rest of the edge sequence, i is its layer, and e is the unique edge that we can replace e′

by in order to form a valid path. We conclude that the A
(i)
e,e′fcom have disjoint support

and the lemma follows.

To establish that dimg1fcom = dimg1f0, we introduce some notation.

For a connected directed graph G = (V,E) we define a flow to be a labeling of the edge
set E by complex numbers such that at every vertex the sum of the labels of the incoming
edges equals the sum of the labels of the outgoing edges. It is easily seen that the set of
flows forms a vector space F . We have

dimF = ∣E∣ − ∣V ∣ + 1, (2.7.2)

see e.g. [39, Theorem 20.7].

Recall that Ei denotes the set of edges from V i to V i+1. Let X ∶= E1 ×⋯ ×Ed denote
the direct product of the sets of edge lists. Each directed path of length d from layer 1
to d + 1 is an element of X , but X contains other edge sets as well. Define Ei ∶= CEi .
Consider the following map ϕ from X to E1 ⊗⋯⊗Ed,

ϕ(e1, . . . , ed) = xe1 ⊗⋯⊗ xed ∈ E1 ⊗⋯⊗Ed
where (xij) is the standard basis of Ei. Note ϕ is a bijection between X and the
standard basis of E1 ⊗⋯⊗Ed.

An edge set in X is called a valid path if it forms a path that starts and ends at
corresponding vertices (see Section 2.1). Let P ⊆ X denote the set of valid paths.

Proposition 2.7.3. dimg1fcom = dimg1f0 = ∑di=1(wi−1 + wi+1 − 1)(wi − 1)wi, where
w0 ∶= wd.

Proof. The proof works almost analogously for fcom and f0, so we treat only the more
natural case fcom. We show that g1fcom is isomorphic to a direct sum of vector spaces
of flows on very simple digraphs. Fix 1 ≤ i ≤ d. Fix distinct 1 ≤ a, b ≤ wi. For distinct
edges e, e′ ∈ Ei, let Pe,e′ ⊆ X be the set of edge sets containing e′ that are not valid
paths, but that become valid paths by removing e′ and adding e. Let P i

a,b ⊆ X be the
set of edge sets that are not valid paths, but that become valid paths by switching the
end point of the (i − 1)-th edge to vib and that also become valid paths by switching the
start point of the i-th edge to via (if i − 1 = 0, then interpret i − 1 ∶= d). Pictorially, this
means that elements in P i

a,b are almost valid paths, but there is a discontinuity at layer

i, where the path jumps from vertex via to vertex vib. We have

A
(i)
e,e′fcom = ∑

p∈Pe,e′
ϕ(p).
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The vectors {A(i)
e,e′fcom ∣ 1 ≤ i ≤ d, e, e′ ∈ Ei, ∣e ∩ e′∣ = 1} are not linearly independent,

because for a ≠ b we have

∑
e and e′ have the same start point

e′ ends at the a-th vertex
e ends at the b-th vertex

A
(i−1)
e,e′ fcom = ∑

p∈Pi
a,b

ϕ(p) = ∑
h and h′ have the same end point

h starts at the a-th vertex
h′ starts at the b-th vertex

A
(i)
h,h′fcom.

(2.7.4)
Define

Ta,b,i ∶= linspan{A(i−1)
e,e′ fcom ∣

e and e′ have the same start point
e′ ends at the a-th vertex
e ends at the b-th vertex

}

+ linspan{A(i)
h,h′fcom ∣

h and h′ have the same end point
h starts at the a-th vertex
h′ starts at the b-th vertex

}.

The support of Ta,b,i and Tã,b̃,̃i are disjoint, provided (a, b, i) ≠ (ã, b̃, ĩ). Hence

g1fcom = ⊕
1≤i≤d

1≤a,b≤wi
a≠b

Ta,b,i

It remains to prove that the dimension of Ta,b,i is wi−1 +wi+1 − 1, because then

dimg1fcom = ∑
1≤i≤d

1≤a,b≤wi
a≠b

(wi−1 +wi+1 − 1) =
d

∑
i=1

(wi−1 +wi+1 − 1)(wi − 1)wi.

Note that Ta,b,i is defined as the linear span of wi−1 + wi+1 many vectors, but (2.7.4)
shows that these are not linearly independent. We prove that (2.7.4) is the only equality
by showing that Ta,b,i is isomorphic to a flow vector space. We define a multigraph with
two vertices: ⋅○ and ∗○. We have wi+1 many edges from ⋅○ to ∗○, and we have wi−1

many edges from ∗○ to ⋅○. We denote by ∗○ k→ ⋅○ the k-th edge from ∗○ to ⋅○. Let
Fa,b,i denote the vector space of flows on this graph. Its dimension is wi−1 +wi+1 − 1, see
(2.7.2). We define % ∶ E1 ⊗⋯⊗Ed → Fa,b,i on rank 1 tensors via

%(xe1 ⊗⋯⊗ xed)( ∗○
k→ ⋅○) =

⎧⎪⎪⎨⎪⎪⎩

1 if ei−1 starts at k in layer i − 1 and ends at a in layer i,

0 otherwise.

%(xe1 ⊗⋯⊗ xed)( ⋅○ l→ ∗○) =
⎧⎪⎪⎨⎪⎪⎩

1 if ei starts at b in layer i and ends at l in layer i + 1,

0 otherwise.

Using (2.7.4) it is readily verified that % maps Ta,b,i to Fa,b,i. It remains to show that
% ∶ Ta,b,i → Fa,b,i is surjective. Let α ∶= ∣P i

a,b∣. We observe that

%(A(i−1)
e,e′ fcom)( ∗○ k→ ⋅○) =

⎧⎪⎪⎨⎪⎪⎩

α/wi−1 if e and e′ both start at the k-th vertex

0 if e and e′ both start at the same vertex, but not at the k-th

%(A(i−1)
e,e′ fcom)( ⋅○ l→ ∗○) = α/(wi−1wi+1)

%(A(i)
h,h′fcom)( ⋅○ l→ ∗○) =

⎧⎪⎪⎨⎪⎪⎩

α/wi+1 if h and h′ both end at the l-th vertex

0 if h and h′ both end at the same vertex, but not at the l-th

%(A(i)
h,h′fcom)( ∗○ k→ ⋅○) = α/(wi−1wi+1)
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Let Ξ ∶= ∑A(i−1)
e,e′ fcom. Then ∀k ∶ %(Ξ)( ∗○ k→ ⋅○) = α/wi−1 and ∀l ∶ %(Ξ)( ⋅○ l→ ∗○) = α.

Therefore, for e, e′ starting at the k0-th vertex and h,h′ ending at the l0-th vertex we
have that

%(wi−1wi+1%(A(i−1)
e,e′ fcom) +wi−1wi+1%(Aih,h′fcom) −Ξ)

is nonzero only on exactly two edges: ∗○ k0→ ⋅○ and ⋅○ l0→ ∗○. Cycles form a generating
set of the vector space Fa,b,i, which finishes the proof of the surjectivity of %.

2.8 Flows on ABPs

We now proceed to the analysis of g0fcom and g0f0. The connection to flow vector spaces
will be even more prevalent than in Proposition 2.7.3. The main result of this section is
dimg0fcom > dimg0f0 (Theorem 2.4 and Theorem 2.5), which implies that fcom and f0
have different orbit dimensions. We thereby conclude that f0 ∉ Gfcom.

To each edge e we assign its path tensor ψ(e) by summing tensors over all valid paths
passing through e,

ψ(e) ∶= ∑
p∈P with e∈p

ϕ(p) ∈ E1 ⊗⋯⊗Ed.

By linear continuation this gives a linear map ψ ∶ CE → E1 ⊗⋯⊗Ed.

Observe that ψ(e) = A(i)
e,efcom. Let T denote the linear span of all ψ(e), e ∈ E. In other

words, T = g0fcom.

Let P ′ ⊆ P ⊆ X be the set of valid paths that contain exactly one parity preserving
edge. To each edge e we assign its parity path tensor ψ′(e) by summing tensors over
paths in P ′,

ψ′(e) ∶= ∑
p∈P ′ with e∈p

ϕ(p) ∈ E1 ⊗⋯⊗Ed.

By linear continuation this gives a linear map ψ′ ∶ CE → E1 ⊗ ⋯ ⊗ Ed. Observe that

ψ′(e) = A
(i)
e,ef0. Let T ′ denote the linear span of all ψ′(e), e ∈ E. In other words,

T ′ = g0f0.

We will establish the following bounds on the dimensions of T and T ′.

Theorem 2.4. dimT = ∣E∣ − ∑di=1wi + 1.

Theorem 2.5. dimT ′ ≤ ∣E∣ − ∑di=1wi.

The rest of this section is dedicated to the proofs of Theorem 2.4 and Theorem 2.5 by
showing that T is isomorphic to the vector space of flows “on the ABP”, while the
parity constraints lead to a smaller dimension of T ′.

From an ABP Γ we construct a digraph Γ̃ by identifying corresponding vertices from the
first and the last layer in V and calling the resulting vertex set Ṽ . Note ∣Ṽ ∣ = ∑di=1wi.
The directed graphs Γ and Γ̃ have the same edge set. The resulting directed graph is
called Γ̃ = (Ṽ ,E). Let F denote the vector space of flows on Γ̃. Note that by (2.7.2) we
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have dimF = ∣E∣ − ∣Ṽ ∣ + 1. All directed cycles in Γ̃ have a length that is a multiple of d.
In particular, all cycles of length exactly d are in one-to-one correspondence with valid
paths in Γcom. For an edge e ∈ E, let χ(e) ∈ CE denote the characteristic function of e,
i.e., the function whose value is 1 on e and 0 everywhere else.

We now prove Theorem 2.4 by establishing a matching upper (Lemma 2.4) and lower
bound (Lemma 2.5) of ∣E∣ − ∣Ṽ ∣ + 1 = dimF on dimT .

The upper bound

Lemma 2.4. dimT ≤ ∣E∣ − ∣Ṽ ∣ + 1.

Proof. For v ∈ Ṽ , let in(v) ⊆ E denote the set of incoming edges incident to v and
out(v) ⊆ E denote the set of outgoing edges incident to v. For each v ∈ Ṽ , define the row
vector

rv = ∑
e∈in(v)

χ(e) − ∑
e∈out(v)

χ(e).

These vectors are the rows of the signed incidence matrix of Γ̃, and since Γ̃ is connected,
they span a space of dimension ∣Ṽ ∣ − 1 ([39, Ex. 1.5.6]). Now observe that for all v ∈ Ṽ ,

∑
e∈in(v)

ψ(e) = ∑
e∈out(v)

ψ(e).

Since ψ is linear, this is equivalent to

ψ
⎛
⎝ ∑
e∈in(v)

χ(e) − ∑
e∈out(v)

χ(e)
⎞
⎠
= 0.

Hence each rv is in the kernel of ψ, and hence dim Kerψ ≥ ∣Ṽ ∣ − 1. Using (2.7.2), we
obtain dimT = dim Imψ = ∣E∣ − dim Kerψ ≤ ∣E∣ − ∣Ṽ ∣ + 1 = dimF .

The lower bound

To obtain the lower bound, we define a linear map % ∶ E1 ⊗ ⋯ ⊗ Ed → CE such that
the image of % restricted to T equals F . This will imply that dimT ≥ dimF , thereby
achieving the required lower bound.

We define the linear map % on standard basis elements xe1 ⊗⋯⊗ xed as follows,

%(xe1 ⊗⋯⊗ xed) ∶= χ(e1) +⋯ + χ(ed),
and then extend it to the domain E1 ⊗⋯⊗Ed via linear continuation.

Lemma 2.5. Let %∣T denote the restriction of % to the linear subspace T . Then,
Im%∣T = F . In particular, dimT ≥ dimF = ∣E∣ − ∣Ṽ ∣ + 1.

Proof. To prove equality it suffices to show Im%∣T ⊆ F and F ⊆ Im%∣T .

The first containment is easy to see. For an edge e, consider the image of ψ(e) under
the map %,

%(ψ(e)) = ∑
e∈p∈P

∑
e′∈p

χ(e′).
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v11 v21

v22

v23
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v53

v54

v12

v13

v14

Figure 2.1: The spanning tree construction for width 4 and d = 5.

Observe that for a path p ∈ P, ∑e′∈p χ(e′) is a flow on Γ̃ and hence it belongs to F . Thus,
we have %(ψ(e)) ∈ F . Since T is spanned by ψ(e), for e ∈ E, we obtain that Im%∣T ⊆ F .

To establish the second containment it suffices to show that the image of T under the
map % contains a basis of F . We identify a specific basis for F in Claim 2.8.1 and prove
that it is contained in Im%∣T in Claim 2.8.2 to complete the argument.

We identify directed cycles with their characteristic flows, i.e., flows that have value 1 on
the cycle’s edges and 0 everywhere else. We also identify directed cycles that use edges
in any direction with their characteristic flow: the characteristic flow is defined to take
the value 1 on an edge e if e is traversed in the direction of e, and value −1 on e if e is
traversed against its direction.

From the theory of flows we know that for every (undirected) spanning tree T of Γ̃, the
vector space F ∈ CE has a basis given by the characteristic flows of cycles that only
use edges from T and exactly one additional edge (for example, see [39, Theorem 20.8]).
Thus, the cycle flows corresponding to the elements not in the spanning tree form a basis
of F .

2.8.1 Claim. F is spanned by the set of directed cycles in Γ̃ of length exactly d.

Proof. We construct a spanning tree τ as follows, which will be a tree whose edges are
all directed away from its root. Informally, the tree is given by the following subgraph,
we make the first vertex in V 1 as root, and include all the outgoing edges incident to it.
We then move to the first vertex in V 2 and include all the outgoing edges incident to
it. We continue in this way until we reach V d. Upon reaching the first vertex in V d we
include all but one outgoing edges incident to it. The one that is an incoming edge to
the root is not included. Figure 2.1 illustrates the construction. We now formally define
this.

Let vi1 ∈ V i denote the first vertex in the layer i, 1 ≤ i ≤ d. Further recall in(v) ⊆ E and
out(v) ⊆ E denote the set of incoming and outgoing edges, respectively, incident to v.
Define the edge set

τ ∶= (
d

⋃
i=1

out(vi1)) ∖ {(vd1 , v11)},
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e

Ce

= + -

C2 C3 C1

Figure 2.2: Decomposing a cycle of length d + 2 as a linear combination of cycles of
length d. The figure is an illustration when d = 3. The dotted layers in each cycle from
the left are V 3, V 1, V 2, and V 3 again.

which is a spanning tree in Γ̃. We know that every edge not in the tree when added to
the tree gives a unique undirected cycle. We now show that the characteristic flows of
these undirected cycles can be expressed as a linear combination of the characteristic
flows of directed cycles of length d. For e ∈ E ∖ τ , let ce denote the characteristic flow of
the unique undirected cycle that uses e in its correct direction and only edges of τ . We
argue depending on which layer the edge e belongs to.

• Suppose e ∈ E1 ∖ τ .

– If e is incident to v21, the first vertex in V 2, then the inclusion of e creates
a directed cycle of length d. Hence, ce equals the characteristic flow of this
directed cycle.

– Otherwise, the inclusion of e creates an undirected cycle of length d + 2. If
e = (v1j1 , v

2
j2
) for some j1 ∈ [2,w1] and j2 ∈ [2,w2], then the cycle ce is given

as follows:

vd1 − v1j1 − v
2
j2 − v

1
1 − v21 −⋯ − vd−11 − vd1 .

Consider the following two directed cycles:

C1 ∶ v11 − v2j2 −⋯ − vd1 − v11 and

C2 ∶ v1j1 − v
2
j2 −⋯ − vd1 − v1j1 ,

such that the part v2j2 − ⋯ − vd1 between v2j2 and vd1 in the two cycles is the
same. Let us denote the characteristic flow of a cycle C by χ(C). We now
observe that χ(C2) − χ(C1) equals the characteristic flow of the undirected
cycle v1j1 − v

2
j2
− v11 − vd1 − v1j1 . This is because the common part in C1 and C2

cancels out. To χ(C2) − χ(C1) we add the characteristic flow of the directed
cycle,

C3 ∶ v11 − v21 − v31 −⋯ − vd−11 − vd1 − v11.
It is now easily seen that χ(C2)−χ(C1)+χ(C3) equals the characteristic flow
of the cycle ce (see Figure 2.2 for an illustration).

• Suppose e ∈ Ed ∖ τ .

– If e is incident to v11, the first vertex in V 1, then as before the inclusion of e
creates a directed cycle of length d. Hence, ce equals the characteristic flow
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of this directed cycle.

– Otherwise, the inclusion of e creates an undirected cycle of length 4. If
e = (vdj1 , v

1
j2
) for some j1 ∈ [2,wd] and j2 ∈ [2,w1], then the cycle ce is given

as follows:

vdj1 − v
1
j2 − v

d
1 − vd−11 − vdj1 .

Consider the following two directed cycles:

C4 ∶ v1j2 −⋯ − vd−11 − vd1 − v1j2 and

C5 ∶ v1j2 −⋯ − vd−11 − vdj1 − v
1
j2 ,

such that the part v1j2 −⋯− vd−11 between v1j2 and vd−11 in the two cycles is the
same. We now claim that χ(C5) − χ(C4) equals the characteristic flow of ce.
This is because the common part in C4 and C5 cancels out.

• Otherwise e ∈ Ei ∖ τ for some i ∈ {2, . . . , d−1}. In such a case inclusion of e creates
an undirected cycle of length 4. We can again argue exactly like in the previous
case, and so we omit the argument here.

We now prove that the generating set given by the directed cycles of length d is contained
in the image of T under the map %.

2.8.2 Claim. Im(%∣T ) contains the characteristic flow of each directed cycle of length
d.

Proof. Let {e1, e2, . . . , ed} ⊆ E be a directed cycle of length d, where each ei points from

a vertex in V i to a vertex in V i+1. Let {e(j)i } denote the set of edges that start at the

same vertex as ei, but for which e
(j)
i ≠ ei. Thus ∣{e(j)i }∣ = ∣V i+1∣ − 1. Let

ψ̄(e) ∶= 1

∣{p ∈ P with e ∈ p}∣
ψ(e),

so that %(ψ̄(e)) is a flow with value 1 on the edge e. It is instructive to have a look at

the left side of Figure 2.3, where %(ψ̄(e1)) is depicted. Subtracting 1
w3
∑w3−1
j=1 %(ψ̄(e(j)2 ))

and adding w3−1
w3

%(ψ̄(e2)) reduces the support significantly and brings us one step closer
to the cycle, see the right side of Figure 2.3. We iterate this process until only the cycle
is left. Formally:

χ(e1, . . . , ed) = %(ψ̄(e1))

+ w3−1
w3

%(ψ̄(e2)) − 1
w3

w3−1
∑
j=1

%(ψ̄(e(j)2 ))

+ ⋯

+ wd−1
wd

%(ψ̄(ed−1)) − 1
wd

wd−1
∑
j=1

%(ψ̄(e(j)d−1)).
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1
w4w5

1
w5

1
1
w3

1
w3w4

1
w4w5

1
w5

1 1
1
w4

Figure 2.3: On the left: %(ψ̄(e1)). On the right: %(ψ̄(e1)) − 1
w3
∑w3−1
j=1 %(ψ̄(e(j)2 )) +

w3−1
w3

%(ψ̄(e2)). This is the case d = 5 and format (4,4,4,4,4). Edges that are not drawn
carry 0 flow. All edges in the same layer carry either 0 flow or the value that is depicted
above the edge layer. For the purposes of illustation, e1 is the top edge in the center.
Here we assume that each ei points from the first vertex in V i to the first vertex in V i+1.

The stronger upper bound via parities

We now proceed to upper bound dimT ′ (Theorem 2.5). The proof is analogous to the
proof of Lemma 2.4.

Theorem 2.6 (Restatement of Theorem 2.5). dimT ′ ≤ ∣E∣ − ∣Ṽ ∣.

Proof. As in the proof of Lemma 2.4, for v ∈ Ṽ , we have

∑
e∈in(v)

ψ′(e) = ∑
e∈out(v)

ψ′(e).

Furthermore, we have the following additional constraint on ψ′,

(d − 1) ∑
e parity preserving

ψ′(e) = ∑
e parity changing

ψ′(e).

By the linearity of ψ′, we have

ψ′
⎛
⎝
(d − 1) ∑

e parity preserving

χ(e) − ∑
e parity changing

χ(e)
⎞
⎠
= 0.

Therefore, the kernel of ψ′ is spanned by the vectors (∑e∈in(v) χ(e) −∑e∈out(v) χ(e)), for

v ∈ Ṽ , and an additional vector ((d − 1)∑e parity preserving χ(e) −∑e parity changing χ(e)).

We now claim that the new vector is linearly independent from the earlier set of vectors.
We prove the claim by constructing a vector in CE that is orthogonal to the earlier set
of vectors but is non-orthogonal to the additional vector. One such vector is given by
the characteristic flow of the directed cycle v11 − v21 − v31 −⋯ − vd−11 − vd1 − v11.

Thus, it follows that dim Kerψ′ ≥ ∣Ṽ ∣, and hence dimT ′ ≤ ∣E∣ − ∣Ṽ ∣.
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CHAPTER 3

Separation between VQP and VNP

In this chapter, we see an application of trying to capture an algebraic complexity class
as an algebraic variety. Using this approach, Bürgisser [44] achieved a separation between
the two well known complexity classes VQP and VNP. In this chapter, we observe that
the very nature of the technique allows us to separate the complexity classes VQP and
VNP.

Bürgisser in his monograph [44] defined the complexity class VQP as the class of poly-
nomials with quasi-polynomially bounded straight-line programs, and established its
relation to the classes VP and VNP (defined in Section 3.1). He showed that the de-
terminant polynomial is VQP-complete with respect to the so-called qp-projections [44,
Corollary 2.29]. He strengthened Valiant’s hypothesis of VNP /⊆ VP to VNP /⊆ VQP and
called it Valiant’s extended hypothesis [44, Section 2.5]. He further showed that VP is
strictly contained in VQP as one would intuitively expect [44, Section 8.2]. Finally, he
also showed that VQP is not contained in VNP [44, Proposition 8.5 and Corollary 8.9].
In this article, we observe that his proof is stronger and actually shows that VQP is not
contained in VNP either, where VNP is the closure of the complexity class VNP.

3.1 Set-up and results

In this section, we compare the complexity classes VQP and VNP. Valiant in his seminal
paper [179] defined the complexity classes that are now called as VP and VNP, and the
central question of algebraic complexity is to understand whether the two complexity
classes are indeed different as sets (Valiant’s hypothesis). Bürgisser [44] defined the
complexity class VQP and related it to the complexity classes VP and VNP. We proceed
to define the above three classes for establishing the context. For an exhaustive treatment
of the classes, we refer the readers to Bürgisser’s monograph [44] from where we are
lifting the definitions. We first need to define so-called p-families.

Definition 3.1. A sequence f = (fn) of multivariate polynomials over a field k is called
a p-family (over k) iff the number of variables as well as the degree of fn are bounded by
polynomial functions in n.

We now need to define the model of computation and the notion of complexity in order
to define the complexity classes of interest.

Definition 3.2. A straight-line program Γ (expecting m inputs) represents a sequence
(Γ1, . . . ,Γr) of instructions Γρ = (ωρ; iρ, jρ) with operation symbols ωρ ∈ {+,−,∗} and the
address iρ, jρ which are integers satisfying −m < iρ, jρ < ρ. We call r the size of Γ.
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So, essentially, in a straight-line program, we either perform addition or subtraction
or multiplication on the inputs or the previously computed elements. The size of the
straight-line program naturally induces a size complexity measure on polynomials as
follows:

Definition 3.3. The complexity L(f) of a polynomial f ∈ F[x1, . . . , xn] is the minimal
size of a straight-line program computing f from variables x1 . . . , xn, and constants in F.

We are now all set to define the above discussed complexity classes.

Definition 3.4. A p-family f = (fn) is said to be p-computable iff the complexity L(fn)
is a polynomially bounded function of n. VPF consists of all p-computable families over
the field F.

Definition 3.5. A p-family f = (fn) is said to be p-definable iff there exists a p-
computable family g = (gn), gn ∈ F[x1, . . . , xu(n)], such that for all n

fn(x1, . . . , xv(n)) = ∑
e∈{0,1}u(n)−v(n)

gn(x1, . . . , xv(n), e1, . . . , eu(n)−v(n)).

The set of p-definable families over F forms the complexity class VNPF.

Definition 3.6. A p-family f = (fn) is said to be qp-computable iff the complexity L(fn)
is a quasi-polynomially bounded function1 of n. The complexity class VQPF consists of
all qp-computable families over F.

In the above three definitions, if the underlying field is clear from the context, we can
drop the subscript F and simply represent the classes as VP,VNP and VQP respectively.
In what follows, the underlying field is always assumed to be Q, the field of rational
numbers.

In [44], Bürgisser showed the completeness of the determinant polynomial for VQP
under qp-projections and strengthened Valiant’s hypothesis of VNP /⊆ VP to VNP /⊆ VQP
and called it Valiant’s extended hypothesis [44, Section 2.5]. He also established that
VP ⊊ VQP and went on to show that VQP /⊆ VNP [44, Proposition 8.5 and Corollary
8.9]. The main observation of this section is that his proof is stronger and is sufficient
to conclude that VQP is not contained in the closure of VNP either, where the closure is
in the sense as mentioned in Section 2.1.

In fact, Bürgisser in his monograph [44] also gives a set of conditions which if the
coefficients of a polynomial sequence satisfies, then that polynomial sequence cannot be
in VNP [44, Theorem 8.1]. His theorem and the proof is inspired by Heintz and Sieveking
[105]. The second observation of this section is that this proof is even stronger and
actually those conditions are sufficient to show that the given polynomial sequence is
not contained in VNP either.

We now discuss both observations.

1a function s(n) is quasi-polynomially bounded if it is bounded by 2O((logn)
c) for some c > 0.
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3.2 The separation of VQP and VNP

We first show that there is a logn variate polynomial of degree (n − 1) logn which is
in VQP but not in VNP. In this exposition, for the sake of better readability, we do
not present the Bürgisser’s statements in full generality since it is not essential for the
theorem that we want to show here. Moreover, the less general version that we present
here contains all the ideas for the theorem statements and their proofs.

Theorem 3.1. Let Nn ∶= {0, . . . , n − 1}logn and fn ∶= ∑
µ∈Nn

22
j(µ)

Xµ1
1 ⋯Xµlogn

logn , where

j(µ) ∶= ∑logn
j=1 µjn

j−1. Then fn ∈ VQP, but fn ∉ VNP, and hence VQP /⊆ VNP.

The theorem consists of two parts. The containment in VQP follows immediately from
the fact that the total number of monomials in fn is nlogn. For the other part, we
closely follow Bürgisser’s lower bound proof [44, Proposition 8.5] against VNP here,
making transparent the fact that the proof works also against VNP. His proof techniques
were borrowed from Strassen ([173]). The idea is to use the universal representation
for polynomial sequences in VNP, so that we get a hold on how the coefficients of the
polynomials look like. Using that, we establish polynomials Hn that vanish on all the
polynomial sequences in VNP (in other words, Hn is in the vanishing ideal of sequences
in VNP), but do not vanish on fn (because the growth rate of its coefficients is too high),
hence giving the separation. Since the vanishing ideal of a set characterizes its closure,
we get the stronger separation, i.e., fn does not belong to the closure of VNP, namely,
VNP.

Proof of Theorem 3.1. As stated above, the proof works in three stages: first, assum-
ing the contrary and writing fn using the universal representation for the polynomial
sequences in VNP, then giving polynomials Hn of special forms in the vanishing ideal
of polynomial sequences in VNP, and finally showing that Hn cannot vanish on our
sequence fn, hence arriving at a contradiction.

Assuming (fn) ∈ VNP implies the existence of a family (gn) ∈ VP, with L(gn) bounded
by a polynomial r(n), and a polynomial u(n) such that

fn(X1, . . . ,Xlogn) = ∑
e∈{0,1}u(n)−logn

gn(X1, . . . ,Xlogn, e1, . . . , eu(n)−logn).

Next, we use the universal representation theorem [173, 163] as stated in Bürgisser’s
monograph ([44, Proposition 8.3]; for a proof see [46, Proposition 9.11]) for size r(n)
straight-line program to get that there exist polynomials G

(n)
ν ∈ Z[Y1, . . . , Yq(n)], with

q(n) being a polynomial in n (more precisely, it is a polynomial in r(n) and u(n)) which

for ∣ν∣ ≤ deg gn = nO(1), guarantee that degGν = nO(1), logwt(Gν)(n) = 2n
O(1)

, and also

guarantee the existence of some ζ ∈ Qq(n)
, such that

gn = ∑
ν

G(n)
ν (ζ)Xν1

1 ,⋯,X
νu(n)
u(n) ,

where weight of a polynomial f , wt(f) refers to the sum of the absolute values of its
coefficients.
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Now, taking exponential sum yields that

fn = ∑
µ∈Nn

F (n)
µ (ζ)Xµ1

1 ⋯Xµlogn
logn ,

where the polynomials F
(n)
µ are obtained as a sum of at most 2u(n) polynomials G

(n)
ν .

Thus, we now have a good hold on F
(n)
µ , that is, degF

(n)
µ ≤ α(n) and logwt(F (n)

µ ) ≤ 2β(n),
where both α(n) and β(n) are polynomially bounded functions of n.

Thus, for fn to be in VNP, the coefficients of fn should be in the image of the polynomial

map Fnµ ∶ Qq(n) → Qnlogn

. In other words, we must have some ζ ∈ Qq(n)
, such that for

all µ ∈ Nn, we have Fnµ (ζ) = 22
j(µ)

, where j(µ) ∶= ∑logn
j=1 µjn

j−1. Since Fnµ takes all the

values from 22
0

to 22
nlogn−1

, we have a subset of indices Ñn ⊆ Nn of size s(n) ∶= ⌊∣Nn∣/n⌋ =
⌊nlogn/n⌋, such that for σ ∈ {0,1, . . . , s(n)−1} and a bijection δ ∶ {0,1, . . . , s(n)−1} → Ñn

with σ ↦ δ(σ), we have Fnδ(σ) = 22
σn+1

.

Now we can apply Lemma 9.28 from [46] which asserts that there will be polynomials of
low height (ht) (the maximum of the absolute value of the coefficients) on which these
coefficients shall vanish. More precisely, there exists non-zero forms Hn ∈ Z[Yµ ∣ µ ∈ Ñn]
with ht(Hn) ≤ 3, degHn ≤ D(n), and such that Hn(Fnµ ∣ µ ∈ Nn) = 0, given that

D(n)s(n)−q(n)−2 > α(n)q(n)s(n)s(n)2β(n).

It can be seen that D(n) = 2n − 1 satisfies the above inequality, since α(n), β(n) and
q(n) are polynomially bounded and 2n grows much faster than s(n) = ⌊nlogn/n⌋. This
allows us to write Hn = ∑e λe∏µ∈Ñn Y

eµ
µ , where the absolute values of λe are bounded

by 3. Since Hn vanishes on the subset of coefficients of fn i.e it vanishes on Fnδ(σ) = 22
σn+1

with σ ∈ {0,1, . . . , s(n) − 1}, we have

0 =Hn(Fnµ ∣ µ ∈ Ñn) = ∑
e

λe

s(n)−1
∏
σ=0

2eδ(σ)2
σn+1

= ∑
e

λe ⋅ 4∑σ eδ(σ)(2
n)σ .

The last sum is essentially a 4-adic integer, since ∣λe∣ ≤ 3, and secondly, all the exponents
of 4, that is, ∑σ eδ(σ)(2n)σ are all distinct, as they can be seen as 2n-adic representation
since eδ(σ) < 2n. Thus λe has to be zero for all e. Hence Hn must be identically zero,
which is a contradiction.

3.2.1 A criterion for non-membership in VNP

In this section, we discuss a criterion Bürgisser presented in his monograph [44] based on
a proof due to Heintz and Sieveking which gives a set of conditions that puts a p-family
out of VNP. We observe that those conditions if satisfied, in fact, put a given p-family
out of VNP as well.

Theorem 3.2. Let (pn) be a sequence of polynomials over Q and let N(n) denote the
degree of the field extension generated by the coefficients of pn over Q. Further suppose
the following holds:

(1) The map n↦ ⌈logN(n)⌉ is not p-bounded.

(2) For all n, there is a system Gn of rational polynomials of degree at most D(n) with
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finite zeroset, containing the coefficient system of fn, and such that n↦ ⌈logD(n)⌉
is p-bounded.

Then the family (pn) /∈ VNP.

Thus the above theorem shows that certain p-families with algebraic coefficients of high
degree are not contained in VNP.

For a proof of the theorem, we refer the readers to [44, Theorem 8.1]. We point out that
the proof in its original form already works. In his proof, he wanted to conclude that
fn ∉ VNP. However, along the way, he arrives at a contradiction to the assertion that fn
is contained in the Zariski closure of VNP, which is exactly what is now known as VNP.
During the time of the original proof, the complexity class VNP was not defined.

We now give a simple example from [44] to illustrate the theorem.

Example 3.1. Consider the following multivariate family defined as

pn = ∑
e∈{0,1}n/0

√
pj(e)X

e,

where j(e) = ∑ns=1 es2s−1 and pj refers to the j-th prime number. Then using the above
Theorem 3.2, we can conclude that pn ∉ VNP. This is because the degree of field extension
N(n) = [Q(√pj ∣ 1 ≤ j ≤ 2n) ∶ Q] = 22

n−1 (see for e.g. [46, Lemma 9.20]), hence
condition 1 above is satisfied. Condition 2 is also satisfied because the coefficients are
the roots of the system Gn = {Z2

j − pj ∣ 1 ≤ j < 2n}, with D(n) = 2.
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PART II

Easy varieties in algebraic complexity
theory

This part is the result of close collaboration with Vishwas Bhargava, Markus
Bläser, and Gorav Jindal. Chapter 4 is based on the article titled Polyno-
mial Identity Testing with Optimal Randomness, with Markus Bläser, that
appeared in RANDOM, 2020 [34]. Chapter 5 is based on the article titled A
Deterministic PTAS for the Algebraic Rank of Bounded Degree Polynomials,
with Vishwas Bhargava, Markus Bläser, and Gorav Jindal that appeared in
ACM-SIAM Symposium on Discrete Algorithms, 2019 [23].
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CHAPTER 4

Membership in the zero variety:
Polynomial Identity Testing

In this chapter, we discuss one of the central problems in complexity theory, the poly-
nomial identity testing problem. We are given an n-variate, degree d polynomial
P (x1, . . . , xn) via blackbox access to its evaluations, and we have to decide if the poly-
nomial is an identically zero polynomial, that is, when the polynomial is represented
in the standard monomial-representation, are all its coefficients identically zero. This
can be formulated as a problem of membership testing in the trivial variety, that is,
the zero variety – the variety consisting of a single point, the origin. We are given a

point p ∈ F(n+d
d

) implicitly, and we have to decide if the point is the origin. The point
is given via a blackbox access to the evaluations of the n-variate, degree d polynomial
P (x1, . . . , xn), whose coefficient vector precisely corresponds to the point p. Randomized
polynomial time algorithms are known for this problem. The goal is to minimize the
number of random bits needed. This is what we investigate in this chapter.

We give a randomized polynomial time algorithm for polynomial identity testing for the
class of n-variate poynomials of degree bounded by d over a field F, in the blackbox
setting described above.

Our algorithm works for every field F with ∣F∣ ≥ d + 1, and uses only d logn + log(1/ε) +
O(d log logn) random bits to achieve a success probability 1−ε for some ε > 0. In the low
degree regime that is d≪ n, it hits the information theoretic lower bound and differs from
it only in the lower order terms. Previous best known algorithms achieve the number of
random bits (Guruswami and Xing [99] and Bshouty [42]) that are constant factor away
from our bound. Like Bshouty, we use Sidon sets for our algorithm. However, we use a
new construction of Sidon sets to achieve the improved bound.

We also collect two simple constructions of hitting sets with information theoretically
optimal size against the class of n-variate, degree d polynomials. Our contribution is
that we give new, very simple proofs for both the constructions.

4.1 Set-up and results

We investigate algorithms for the problem of Polynomial Identity testing (PIT). Given a
polynomial in some implicit representation, it asks whether the polynomial is identically
zero or not. It is a fundamental problem in algorithms and complexity theory. It has
found applications in algorithm design, for example in algorithms for perfect matching in
graphs [54, 133, 144], for primality testing [4, 5, 6], for equivalence testing of read once
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branching programs [36], and for multi-set equality testing [37], and also in complexity
theory, for example, in establishing some major results related to interactive proofs
and probabilistically-checkable proofs [137, 18, 17, 16, 166]. In fact, it has also been
discovered that a deterministic polynomial time algorithm for polynomial identity testing
is intimately connected with complexity theoretic lower bounds [117, 3].

In order to formalize the algorithmic problem of polynomial identity testing, it is impor-
tant to specify the representation in which the polynomial is given. One possibility is
that the polynomial is given as a blackbox, which means that the algorithm is restricted
to using the given representation of the given polynomial only as an oracle. That is,
the algorithm is only allowed to query the values of the polynomial at points of its
choice. Apart from that, the algorithm only knows that the given polynomial comes
from some particular class of polynomials. The other possibility is that the algorithm
is also allowed to look into the representation. In this case, if the polynomial is given
as a list of coefficients, the problem becomes trivial. The problem remains interesting
in the case when the polynomial is given in some succinct representation, for example,
either as a determinant of a given symbolic matrix, as an algebraic branching program,
or more generally, as some arithmetic circuit.

It is known that randomness is necessary for a polynomial time blackbox PIT algorithm
(see for example [132]). The challenge thus in this case is to find polynomial time
algorithms that use optimal amount of randomness. Randomness is not known to be
essential in the setting when the polynomial is given as an arithmetic circuit. In fact, it is
popularly believed that there do exist polynomial time algorithms for this version of PIT
which do not use randomness. More generally, it is believed that in the regime of efficient
computation, randomization is not essential, that is, the complexity classes P and BPP
are equal (see [112]). In this case, the challenge is to come up with a deterministic
algorithm. A lot of progress has happened over the years towards both the challenges
[56, 132, 121, 29, 27, 97, 96, 74, 73, 71, 14, 28, 4, 125, 38, 136, 99], however the problems
are still far from the complete solution. For a history on the progress on polynomial
identity testing, we refer the readers to [170, 159, 160].

In this work, we are interested in blackbox polynomial identity testing. We will focus
our attention to the case when the underlying field is a finite field. More precisely, we
are interested in the following computational problem.

Problem 4.1. Let (Fq, n, d) denote the class of multivariate polynomials over Fq in n
variables with degree bounded by d 1 with q ≥ d + 1. Given a polynomial p ∈ (Fq, n, d) as
a blackbox and a parameter ε > 0, decide whether p is an identically zero polynomial in
randomized poly(n, d) time with success probability 1 − ε.

We are interested in algorithms for Problem 4.1 which minimize the number of random
bits needed to solve it. In the next subsection we discuss some previous works on the
problem that are relevant to this chapter. While mentioning these works, we will assume
the error bound ε to be some inverse polynomial in (nd), and we will focus only on
algorithms that run in poly(n, d) time under this assumption.

1in this chapter, unless stated otherwise, degree always refers to the total degree
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4.1.1 Previous works on Problem 4.1

A lot of randomized algorithms are known for PIT in the blackbox setting. The first
one is the algorithm due to Schwartz-Zippel-DeMillo-Lipton 2 [164, 184, 61]. It uses

∑ni=1 log(di + 1) + n logn + 1 random bits, where di refers to the degree of the given
polynomial with respect to the variable xi. Then came the algorithm by Lewin and
Vadhan [132] which used ∑ni=1⌈log di⌉ random bits. Using the Kronecker substitution,
Agrawal and Biswas [4] gave a test with ⌈∑ni=1 log(di + 1)⌉ random bits, while Bläser
Hardt and Steurer [29] extended their Kronecker substitution based test to work for
asymptotically smaller fields by using ∑ni=1 log(di + 1) + Õ(

√
∑ni=1 log(di + 1)) random

bits.

These works achieve optimal number of random bits in the regime where individual
degrees of x1, . . . , xn are bounded by d1, . . . , dn respectively. In that regime, a simple
dimension argument shows a lower bound of log(∏n

i=1(di+1))−logT (n, d1, . . . , dn), where
T (n, d1, . . . , dn) denotes the number of queries made to the blackbox [132, Theorem 7.1].
Thus, when T (n, d1, . . . , dn) is poly(n) bounded, we get a (1−o(1))∑ni=1 log(di+1) lower
bound on the number of random bits needed. However, when we are in the setting as
given in Problem 4.1, that is, when only a bound on the total degree is given, the number
of random bits used by these methods are asymptotically similar to that of Schwartz-
Zippel-DeMillo-Lipton, i.e., Ω(n log d), which is far from optimal in the regime where
d≪ n. In this regime, again using a simple dimension argument (see [132, Theorem 7.1]
and Lemma 4.3), we have the following lower bound:

Fact 4.1. Any blackbox identity testing algorithm against (Fq, n, d), q ≥ d + 1 which
makes T (n, d) queries to the blackbox and succeeds with probability 1 − ε uses at least
log((n+dd )) + log(1/ε) − logT (n, d) random bits.

Applying Stirling’s approximation on (n+d
d

) in the above when d = o(n) gives log((n+dd )) =
(1 + o(1))d log(n+dd ) = d logn + o(d logn) [1]. Plugging this in above, with T (n, d) =
(nd)O(1), we get the lower bound of d logn + log(1/ε) + o(d logn).3

Moving on to the previous works when d ≪ n, several algorithms are known that
actually do achieve the O(d logn) random bits. For instance, Klivans and Spielman
[121], Bogdanov [38], Shpilka and Volkovich [169], Lu [136], Guruswami and Xing [99]
and finally Bshouty [42] (also see Cohen and Ta-Shma [58]). However, except for [99]
and [42], all of them require the field size to be superlinear in d/ε as a pre-condition for
the algorithm. Moreover, in all of these algorithms including the ones in Bshouty [42]
and Guruswami and Xing [99], the number of random bits used is ≥ 2d logn.

4.1.2 Results and methods

From the above, we can see that in the low-degree regime, the number of random
bits needed by all the previously discovered algorithms, is away from the information
theoretically optimal bound at least by a constant multiplicative factor. We take up the

2In their paper [61], DeMillo and Lipton work with the total degree. However, implicitly, the analysis
of their algorithm only assumes the individual degrees to be bounded by d.

3this is what we refer to as the information theoretic lower bound in this article
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challenge and solve it. We give an algorithm that matches the information theoretic
lower bound differing from it only in the lower order terms.

More precisely, we show the following:

Theorem 4.1. Given a polynomial f ∈ (Fq, n, d) with q ≥ d + 1 as a blackbox, and
a parameter ε > 0, there exists a randomized poly(n, d) time algorithm which uses
d logn+ log(1/ε)+O(d log logn) random bits and outputs whether f is an identically zero
polynomial with success probability 1 − ε.

Starting point of our algorithm is an algorithm given in Bshouty [42]. He used the
so-called Sidon sets (discussed in Section 4.2.1) for polynomial identity testing by using
them to reduce the problem to the univariate setting while preserving the nonzeroness.
He then used the obvious randomized algorithm for the obtained univariate polynomial.
This, however, requires the field-size to be large. He gets around this problem by
inventing the concepts of testers (discussed in Section 4.2.2). Informally, testers take a
point α from a field F and map it to a bunch of points in a smaller subfield of F, while
maintaining the property that if f(α) ≠ 0, then f will evaluate to a nonzero value on at
least one of the points given by the tester.

He used two constructions for Sidon sets for this purpose. One of them is not known to
be polynomial time constructible, while the other, which is polynomial time constructible
is factor 2 away from the information theoretic lower bound. To overcome this, we use a
new, elementary construction of Sidon sets that is mentioned in Timothy Gowers’ weblog
[89] (presented in Section 4.2.1).

Our second contribution is aesthetic in nature. We first remind the readers that a
hitting set against a class P ⊆ F[x1, . . . , xn] is a set of point H ⊆ Fn such that no
nonzero polynomial in P evaluates to zero on all the points in H. We present two simple
constructions of information theoretically optimal hitting sets (i.e. of size (n+d

d
)) against

(F, n, d) with ∣F∣ ≥ d+1 that are, at least implicitly, present in the literature. We extract
them out and give very simple and neat proofs for both. The first construction (presented
in Section 4.3.1) is essentially the set of exponent vectors of all the monomials spanning
(F, n, d). This works when {0,1, . . . , d} ⊆ F. The second construction (presented in
Section 4.3.2) says that taking all the intersection points of n-sized subsets of a set of
n+ d hyperplanes in general position also forms a hitting set against (F, n, d) of optimal
size.

In the rest of the chapter, (F, n, d) (resp. (Fq, n, d)) denotes the class of n-variate
polynomials with degree bounded by d over F (resp. Fq). For a natural number d ∈ N,
[d] denotes the set {1, . . . , d}.

4.2 Polynomial Identity Testing with optimal randomness

In this section, we present our main result. We first describe the main component of the
proof, that is, the construction of Sidon sets in Section 4.2.1, and then describe the way
to reduce the field size in Section 4.2.2. We finally give our algorithm and the proof for
our main theorem in Section 4.2.3.
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4.2.1 Sidon Sets

A set S ∶= {s1, s2, . . . , sn} ⊂ Z≥0 is said to be a Sidon Bd set if every element in the set
dS ∶= {si1 + si2 + . . . + sid ∣ ∀k ∈ [d], sik ∈ S} are distinct up to rearrangements of the
summands. We also have a stronger notion: we call S to be Sidon B≤d set if the sums
{si1 + si2 + . . . + sir , r ≤ d ∣ ∀k ∈ [r], sik ∈ S} are distinct up to rearrangements of the
summands. For our purposes, the stronger notion of Sidon B≤d set when d ≪ n will
be useful. We are interested in constructions that minimize the size of the maximum
element of S and are poly(n, d) time constructible.

Sidon sets and its variants have a long history in mathematics and several explicit
constructions are known. We refer the readers to a survey by Kevin O’Bryant [148].

In complexity theory, explicit Sidon set constructions have also been used, for example,
by Bshouty for constructions of hitting sets for black box polynomial identity testing
[42], and by Kumar and Volk for matrix factorization lower bounds [127].

Bshouty uses two constructions for polynomial identity testing. The first construction
uses discrete log and is not known to be poly time constructible [42, Lemma 59]. The
second construction is poly time constructible, but the value of the maximum element is
(2nd)2d [42, Lemma 60]. This 2d in the exponent makes this construction suboptimal
for our purposes because the resulting randomized PIT algorithm will have ≥ 2d logn
random bits, which is factor 2 away from the information theoretic bound in low degree
regime which is the regime of interest in this chapter.

This motivated us to look for constructions that are both polynomial time constructible
and also give rises to PIT algorithm with optimal randomness. That is when we stumbled
across the weblog of Timothy Gowers about the so-called dense Sidon sets [89] where
he describes the idea of a construction by Imre Z. Ruzsa [156] that scales up for our
purposes, too.

In its core, the construction is based on the fundamental theorem of arithmetic. Infor-
mally, when we take a set of primes and consider two different multi-subsets of them.
Then the product of elements will be different for the two multi-subsets. Now taking
logarithm of products convert them to sums. These simple facts along with the mean
value theorem constitute the ingredients of the proof of the construction. We give the
construction now.

Theorem 4.2. For every n, d, there exists a poly(n, d) time constructible Sidon B≤d set
Sn,d ∶= {b1, . . . , bn} ⊂ N with b1 < b2 < ⋯ < bn, with bn ≤ ⌈(d+1) ⋅ (2n logn)d ⋅ log(2n logn)⌉.

Proof. We take the first n primes p1, . . . , pn. By prime number theorem, we know that
pn < n(logn + log logn) < 2n logn. Let I, J ⊆ {1, . . . , n} be multisets, where ∣I ∣, ∣J ∣ ≤ d,
I ≠ J . By the fundamental theorem of arithmetic, we have ∏i∈I pi ≠ ∏j∈J pj . Without
loss of generality, we can assume that ∏i∈I pi < ∏j∈J pj , that is, ∏i∈I pi ≤ ∏j∈J pj + 1.
Now applying the mean value theorem on the function f(x) = logx in the interval [a, b]
with a ∶= ∏i∈I pi and b ∶= ∏j∈J pj , we get that

∑
j∈J

`j −∑
i∈I
`i =

1

c

⎛
⎝∏j∈J

pj −∏
i∈I
pi
⎞
⎠

, for some c ∈ (a, b),where `k ∶= log pk.
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The numerator in the RHS of the equation is at least 1, while the denominator is upper
bounded by b = ∏j∈J pj . Thus, we have

∑
j∈J

`j −∑
i∈I
`i ≥

1

∏j∈J pj
. (4.2.1)

Thus, if we choose the set to be set of logarithm of the first n primes, we do get,
that for distinct multi-subsets of size at most d, the sum of elements are also distinct.
However, clearly, the elements and their differences will not be all integers. But the
above calculation is suggestive of what the set should be. Note that in Equation (4.2.1),
the denominator of the RHS, that is, ∏j∈J pj is upper bounded by (2n logn)d, Thus,

∑
j∈J

(d + 1) ⋅ `j ⋅ (2n logn)d −∑
i∈I

(d + 1) ⋅ `i ⋅ (2n logn)d ≥ d + 1

Now, if we consider the set Sn,d of size n with elements being positive integers bk ∶=
⌈(d+1) ⋅ `k ⋅ (2n logn)d⌉ of size n, we have that ∑j∈J bj −∑i∈I bi > 0. Thus, Sn,d is a Sidon
B≤d set.

It only remains to argue that the construction can be done in poly(n, d) time. We need
to show that all the bk = ⌈(d+ 1) ⋅ log pk ⋅ (2n logn)d⌉ are poly(n, d) time constructible, It
is known that the first n primes are easily constructible, for example, by using Sieve of
Eratosthenes which takes O(n log logn) time. The other functions like log and powering
function are also known to be efficiently computable to the desired precision.

We now present the concept useful for transferring a polynomial identity testing algorithm
over a large field to an algorithm for a small subfield of it.

4.2.2 Testers

The notion of testers is also crucial for our algorithm. They were introduced by Bshouty
in [42]. He also used it for several applications including in the setting of blackbox PIT.
We will be using it in the same fashion as he did i.e. to reduce the field size of the
blackbox PIT set that we would be using for the algorithm. We present the definition of
testers restricted to the setting that we need. He defined it for a more general setting.

Definition 4.1. Let Fq be a finite field with q elements and let Fqt1 and Fqt2 be two
field extensions of Fq viewed as Fq-algebras with t1 ≥ t2, and let P ⊆ Fq[x1, . . . , xn] be
a class of multivariate polynomials. Let L = {`1, . . . , `ν} be a set of maps Fn

qt1
→ Fn

qt2
.

For f ∈ P, we denote by fL the map Fn
qt1
→ Fν

qt2
defined as: for a ∈ Fn

qt1
, (fL)(a) =

(f(`1(a)), . . . , f(`ν(a))). We say that L is an (P,Fqt1 ,Fqt2 )-tester if for every a ∈ Fn
qt1

and f ∈ P we have

(fL)(a) = 0 Ô⇒ f(a) = 0.

The size of the tester L is defined as ∣L∣ = ν, the number of maps constituting L.

So, essentially, a tester L for the class of polynomials P is a set of maps from a field to
its subfield such that for every point on which a polynomial f ∈ P evaluates to a nonzero
value, the tester gives a set of points in the subfield such that the polynomial evaluates
to a nonzero value on at least one of the points given by the tester.
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Hence a tester is very useful for reducing a blacbox PIT set over a bigger field to a
blackbox PIT set over a smaller field while incurring a blowup by the size of the tester.
Bshouty [42] also gave many constructions of testers against several classes of multivariate
polynomials which helped him achieve constructions of hitting sets which are optimal
with respect to the field size and the size of hitting sets.

The tester that is relevant to our purposes which we will be using as a blackbox has the
following property. For a proof we refer the readers to [42].

Lemma 4.1 ([42], Theorem 40). Let P ∶= (Fq, n, d) ⊆ Fq[x1, . . . , xn] denote the class of
n-variate, degree d polynomials over Fq, with q ≥ d + 1. Then, for every n, d, t, there
exists a (P,Fqt ,Fq)-tester L of size O(d5t) that can be constructed in poly(n, d, t) time.

The above lemma clearly suggests a strategy for construction of blackbox PIT sets: first
design a blackbox PIT set over a large extension field and then reduce the field size to
d + 1 using the tester promised by the above lemma.

4.2.3 The algorithm: Proof of Theorem 4.1

In this section, we present our randomized algorithm for polynomial identity testing and
prove Theorem 4.1.

Before we prove the theorem, we state a simple lemma about univariate polynomials
that we will need in the proof.

Lemma 4.2. Let f ∈ Fq[x] be a nonzero univariate polynomial whose degree is bounded
by d. Let Fqt be an extension field of Fq such that ∣Fqt ∣ ≥ d/ε and a is sampled uniformly
at random from Fqt, then f(a) ≠ 0 with probability 1 − ε.

Lemma 4.2 follows from the folklore theorem that a univariate polynomial of degree d
over a field Fq has at most d roots in any field extension Fqt of Fq.

We are now ready to prove Theorem 4.1.

Theorem 4.3 (Theorem 1 restated). Given a polynomial f ∈ (Fq, n, d) with q ≥ d + 1 as
a blackbox or as a poly(n, d)-sized arithmetic circuit, and ε > 0, there exists a randomized
poly(n, d) time algorithm which uses d logn + log(1/ε) +O(d log logn) random bits and
succeeds with probability 1 − ε.

Proof. Suppose we are given a polynomial f ∈ (Fq, n, d) as a blackbox. To test whether
the given polynomial is an identically zero polynomial or not, our algorithm works as
follows:

Step 1. Construct Sidon set: Given n, d, we construct a Sidon B≤d set Sn,d =
{b1, . . . , bn} using the construction in Theorem 4.2.

Step 2. Pick a random point from large field: We pick a random point α from the
field Fqt with t = ⌈logq((bnd)/ε)⌉.

Step 3. Construct the tester: Next we construct a (P,Fqt ,Fq)-tester, L = {`1, . . . , `ν},
for P = (Fq, n, d) and t = ⌈logq((bnd)/ε)⌉ using the construction promised by
Lemma 4.1.
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Step 4. Reduce the field size by testers: We then apply the testerL on (αb1 , . . . , αbn) ∈
Fnqt to get the set of points `1(αb1 , . . . , αbn), . . . , `ν(αb1 , . . . , αbn) ∈ Fnq .

Step 5. Evaluate: We evaluate f on `1(αb1 , . . . , αbn), . . . , `ν(αb1 , . . . , αbn) ∈ Fnq . If f

evaluates to zero on `k(αb1 , . . . , αbn), for every k ∈ 1, . . . , ν, we output that f is an
identically zero polynomial. Otherwise we output that f is not a zero polynomial.

We now show the correctness of the above algorithm. The Sidon B≤d set Sn,d =
{b1, . . . , bn}, b1 < b2 < ⋯ < bn and bn = ⌈(d + 1) ⋅ (2n logn)d ⋅ log(2n logn)⌉ from The-
orem 4.2 is used to reduce the problem to the univariate case. It is also poly(n, d) time
constructible. By the definition of Sidon B≤d set in Section 4.2.1, it follows that for
distinct multi-subsets of Sn,d, the sum of elements will also be distinct. Thus, the map
(x1, x2, . . . , xn) ↦ (xb1 , xb2 , . . . , xbn) maps the monomials of the degree at most d in the
variables x1, . . . , xn to distinct univariate monomials in x. In particular, every nonzero
polynomial f ∈ (Fq, n, d) maps to a nonzero polynomial g ∈ (Fq,1, bnd). Thus, g is a
polynomial of degree bounded by bnd.

Now, by Lemma 4.2, on a randomly chosen point α from the extension field Fqt with ∣Fqt ∣ ≥
(bnd)/ε, g will evaluate to a nonzero value with probability ≥ 1−ε. Hence, f will evaluate
to a non-zero value on (αb1 , . . . , αbn) with probability ≥ 1 − ε. The number of random
bits needed is log((bnd)/ε) = log bn + log d + log(1/ε) = d logn +O(d log logn) + log(1/ε)
as claimed.

Finally we use an ((Fq, n, d),Fqt ,Fq)-tester from Lemma 4.1 on (αb1 , . . . , αbn) ∈ Fnqt to get

the set of points `1(αb1 , . . . , αbn), . . . , `ν(αb1 , . . . , αbn) ∈ Fnq . By Lemma 4.1, the number

of points ν = O(d5t) = O(d5(log(bnd) + log(1/ε))) = O(d6(logn + log 1/ε)) and time to
construct the tester is poly(n, d, t) = poly(n, d, log 1/ε). By the definition of testers from
Definition 4.1, for a nonzero polynomial f ∈ (Fq, n, d), if f(αb1 , . . . , αbn) ≠ 0, then at
least one of f(`1(αb1 , . . . , αbn)), . . . , f(`ν(αb1 , . . . , αbn)) also evaluates to a nonzero value.
Thus, we get the desired result.

Remark 4.1. When d = o(logn), we can get an improvement on the number of random
bits from d logn + d log logn+ lower order terms (as in Theorem 4.1) to d logn + d log d+
lower order terms. This can be achieved by adapting an idea due to Goldwasser-Grossman
[87, Lemma 8] that they used to construct weight assignments to get unique min-weight
perfect matching. Their idea suggests a map (x1, x2, . . . , xn) ↦ (xb1 , xb2 , . . . , xbn), where
bi = [i]p+(pd)[i2]p+(pd)2[i3]p+⋯+(pd)d[id+1]p, where [x]p denotes the number between 0
and p−1 which is equal to x modulo p, and p is a prime number greater than n. This map
can replace the map via Sidon Sets in the Step 1 from the above proof, while the rest of
the algorithm and the proof remains the same. As in the above proof of Theorem 4.1, the
number of random bits needed equals log bn+ log d+ log(1ε) which becomes d logn+d log d+
lower order terms. For the correctness of this map, we refer the reader to the proof of
Lemma 8 in [87].

Remark 4.2. Our algorithm can be easily adapted to fields of zero characteristic as well.
First note that directly evaluating f on (αb1 , . . . , αbn) will not work as the input numbers
will become huge. For this reason, for a polynomial f which is non-zero over a field F
of characteristic zero, we consider it over some field Fq of characteristic p with q ≥ d + 1.
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Now, there are only two possibilities — either f is not identically zero over Fq as well,
or there exists a natural number ` such that f = p`f ′, where f ′ in not identically zero
over Fq. In the first case, we can simply use the algorithm for Fq, and the analysis also
remains the same. In the second case, we can still use the same algorithm as that for
Fq since the algorithm correctly detects the non-zeroness of f ′ with high probability. The
fact that all the coefficients are divisible by p` will not be a problem since the blackbox is
over the original field F.

4.3 Optimal Hitting sets

In this section, we describe a few optimal hitting sets, i.e. the ones that exactly matches
with the lower bound against the class of n-variate polynomials with total degree bounded
by d.

We first begin by stating the straight-forward folklore lower bound.

Lemma 4.3. For any hitting set H against the class of n-variate polynomials with total
degree bounded by d over a field F, we have ∣H∣ ≥ (n+d

d
).

This follows by the fact that the set of all n-variate polynomials with total degree bounded
by d over a field F forms a vector space of dimension (n+d

d
). This is true because the

number of monomials supported on n-variables with total degree bounded by d is (n+d
d

),
and they form the basis for the vector space as they are all F-linearly independent, and
all polynomials in the set can be represented as an F-linear combination of them. Thus,
in the worst case, one needs to query f on at least (n+d

d
) points.

We now consider a very popular construction which is suboptimal for our purposes.

Construction 0 – Schwartz-Zippel-DeMillo-Lipton lemma: As a consequence of
the Lemma [164, 184, 61], for (F, n, d), one gets the hitting set H0 ∶= Sn where S ⊆ F,
with ∣S∣ = d + 1, which is the grid of size (d + 1)n. We point out that this is optimal
when we are considering the set of n-variate polynomials with individual degrees of each
variable bounded by d, by a similar argument as in Lemma 4.3. However, this is not
optimal for (F, n, d) where we bound the total degree. Especially when d≪ n, the gap is
huge.

Thus, it makes sense to investigate optimal hitting sets for (F, n, d). In what follows, we
present two such constructions for the hitting set. They were both, at least implicitly,
already present in the literature. We also believe that other constructions can be found
without much effort. However our predilection towards these constructions and our new
proofs is purely aesthetic.

4.3.1 Construction 1: The set of exponent vectors

The lower bound tells that any hitting set H should have size at least (n+d
d

). Now this

(n+d
d

) comes from the number of monomials in n variables of degree at most d. Very
interestingly, when {0,1, . . . , d} ⊆ F, these monomials also suggest a set of points of size
(n+d
d

) that can be seen as a potential hitting set: simply collect all the exponent vectors
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of all the monomials in a set, viewing them as points in Fn, that is, the suggested set
is H1 ∶= {(x1, . . . , xn) ∈ {0,1, . . . , d}n ∣ x1 + x2 + ⋯ + xn ≤ d}. The above construction
obviously requires that Fn indeed contains H1 as a subset. Surprisingly to some, and
beautifully to the authors, this indeed works. This was shown by Bshouty [42, Lemma
77] using the combinatorial Nullstellensatz [12].

In this work, we give a direct inductive proof which we found with Mrinal Kumar. It
bypasses the combinatorial Nullstellensatz and flows along the lines of the proof of the
Schwartz-Zippel-DeMillo-Lipton lemma. We are surprised that we did not find this proof
somewhere in the literature.

Theorem 4.4. If {0,1, . . . , d} ⊆ F, then the set H1 ∶= {(x1, . . . , xn) ∈ {0,1, . . . , d}n ∣
x1 + x2 +⋯ + xn ≤ d}, is a hitting set for (F, n, d).

Proof. Consider the integral grid G ∶= {0,1, . . . d}n with ∣G∣ = (d+1)n. Now the statement
of the theorem can be rephrased as: for every nonzero polynomial f ∈ (F, n, d), there
exists a point g ∈ G with its `1-norm ∥g∥1 ≤ d, such that f(g) ≠ 0. We use this as our
induction hypothesis and prove it by induction on the number of variables n.

For n = 1, that is the univariate case, this holds true because every degree d polynomial
has at most d zeros. Suppose the hypothesis holds for n−1. For the inductive step, write
a nonzero f ∈ (F, n, d) as a univariate in xn as f = ∑d

′
i=1 Pi(x1, . . . , xn−1)xin, where d′ is

the maximum degree of f in xn and Pi(x1, . . . , xn−1) are the coefficients coming from
F[x1, . . . , xn−1]. Now consider Pd′(x1, . . . , xn−1) which is the coefficient of the highest
degree term in xn. If f is a nonzero polynomial, then so is Pd′(x1, . . . , xn−1). Also,
deg(Pd′) is bounded by d−d′. By the induction hypothesis, there is a point s′ in the grid
G′ ∶= {0,1, . . . , d−d′}n−1 with ∥s′∥1 ≤ d−d′ such that Pd′(s′) ≠ 0. Now we fix x1, . . . , xn−1
to the values as given by s′. Now Pd′ restricted to the assignment s′ is a univariate
polynomial in xn of degree d′. Thus, setting xn to a value in {0,1, . . . d′} gives a point on
which f evaluates to nonzero. The `1 norm of the point is at most (d − d′) + d′ = d.

We now give another construction which we find beautiful.

4.3.2 Construction 2: Intersection of hyperplanes in general position

The construction is as follows: In the projective space Pn(F) over a field F, with ∣F∣ ≥ d+1,
take a collection C of n + d hyperplanes in general position, i.e., every size n subsets of
C intersect in a point, whereas no size n + 1 subset of C intersect. Now all intersection
points of n-sized subset of C gives the desired hitting set.

We now mention a standard explicit family of hyperplanes in general position.

Example 4.1. Take hyperplanes H1, . . . ,Hn+d in the projective space Pn where Hi is
given by the equation t1ix1 + t2ix2 +⋯+ tni xn + xn+1 = 0, where ti ∈ F. Then, H1, . . . ,Hn+d
are hyperplanes in general position.

Itäı Ben Yaacov [182] considers hyperplanes in general position and gives an algebraic
proof of a generalized Vandermonde Identity in higher dimension. What his identity
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implies is that taking all intersection points of n-sized subsets of n + d hyperplanes in
general position gives a hitting set for (F, n, d).

In order to state his result, we need some notations. Let Mp×q(F) denote the set of all
p × q matrices over F. He defines the following three maps. It useful to think that the
(n + 1) ×m matrix Q is denoting the family of m hyperplanes, say Hm in Pn, i.e. the
entries of each column correspond to the coefficients of a hyperplane.

(1) µ ∶ M(n+1)×m(F) → M(n+1)×(m
n
)(F) sends an (n + 1) ×m matrix Q to a matrix P

whose entries are all the minors of Q of order n. Note that a lexicographic ordering
on the chosen sequence of rows and columns of Q induces an ordering on the
minors as well. By Cramer’s rule from linear algebra, P is precisely the matrix of
intersection points of all n-sized subsets of Hm, where each column of Q has the
coordinates of an intersection point as its entries.

(2) δ ∶M(n+1)×m(F) → F sends an (n+1)×m matrix Q to the product of all its minors
of order n + 1.

(3) νr ∶ M(n+1)×m(F) → M(n+r
n

)×m(F) applies the Veronese map on each column i.e.

for each column, it applies all the n-variate degree r monomials on the entries of
the column. Assume an ordering (say, inverse lexicographical ordering) on the
monomials.

We are now ready to quote the generalized Vandermonde identity in higher dimension.

Theorem 4.5 ([182], Theorem 1.4). Let R be a commutative ring. n ≤ m ∈ N, and let
Q be a (n + 1) ×m matrix over R. Then νm−nµQ is a square matrix of order (m

n
), and

the following Vandermonde identity of order m in dimension n holds:

det(νm−nµQ) = (δQ)n

Then the above theorem with m = n + d, implies that if (δQ) ≠ 0, which is the algebraic
condition for the n + d hyperplanes to be in general position, then det(νn+d−nµQ) ≠ 0.
Now νm−nµQ is the matrix with the Veronese map applied on the intersection points of
n-sized subsets of m hyperplanes. Normalizing the coordinates by the last coordinate
gives us the points in the affine setting with the Veronese maps essentially applying all
the monomials of degree at most d on the points. Thus, det(νdµQ) ≠ 0 means that the
set of intersection points form a hitting set against (F, n, d).

We now present a direct, simple, geometric proof of the construction which we found
with Raimund Seidel.

Theorem 4.6. Let H1, . . . ,Hn+d be hyperplanes in general position. If f ∈ (F, n, d)
vanishes on all the points obtained by intersecting all n-sized subsets of {H1, . . . ,Hn+d},
then f is an identically zero polynomial.

Proof. We prove the above statement by induction on the number of variables n. The
base case n = 1 is the univariate case and the hyperplanes become d + 1 points, and the
statement of the lemma reduces to f vanishing on d + 1 points. Thus, the statement
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holds in this case because a degree d univariate polynomial that vanishes on d+ 1 points
is an identically zero polynomial.

Suppose that the statement holds for the number of variables up to n − 1, and we as-
sume an f ∈ (F, n, d) that vanishes on all the intersection points of n-sized subsets of
{H1, . . . ,Hn+d}. The assumption, in particular, implies that f restricted to the hyper-
plane H1 vanishes on all the intersection points of (n−1)-sized subsets of {H2, . . . ,Hn+d}.
However, note that f restricted to H1 reduces to an (n−1)-variate case and hence we can
apply the induction hypothesis and conclude that f restricted to H1 is identically zero.
Doing the same for all the hyperplanes, we get that f restricted to all the hyperplanes
H1, . . . ,Hn+d is identically zero. It remains to conclude that f is indeed identically zero.
For this, restrict f to a generic line `. Note that H1, . . . ,Hn+d all intersect ` at distinct
points. Thus, f restricted to ` is a univariate which vanishes on n + d points, hence f
restricted to a generic ` is identically zero. Hence f is identically zero.

Note that an explicit construction corresponding to Theorem 4.6 can be obtained using
the family given in Example 4.1.
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CHAPTER 5

The variety of bounded rank symbolic
matrices

In this chapter, we consider the rank of symbolic matrices. It is a well known fact that
the rank of an n×n matrix M , rk(M) ≤ r if and only if, all the (r+1)×(r+1) minors of
M are zero. A minor is nothing but a determinant, which is a polynomial in the entries
of the matrix. Thus, we get that the set Mr ∶= {M ∈ Fn×n ∣ rk(M) ≤ r}, that is, the set
of matrices of rank at most r, is the set of common solutions to a system of polynomial
equations, and is hence a variety. Hence, testing if a given matrix M has rank at most
r, is an instance of variety membership testing problem. In this chapter, we discuss the
problem of finding the rank of a symbolic matrix M , which asks for the largest r such
that M ∈ Mr. For this problem, randomized polynomial time algorithms are known,
and the challenge is to come up with a deterministic polynomial time algorithm. We
give a a deterministic polynomial time approximation scheme (PTAS) for computing the
rank of symbolic matrices when the entries of matrices are polynomials whose degrees
are bounded by a constant.

More specifically, consider a matrix Q(x1, x2, . . . , xm) = (qij)n×n of size n×n, the entries
qij of which are polynomials of degrees bounded by some constant d in the variables
x = (x1, x2, . . . , xm). We want to compute the rank of Q over the rational function field
F(x1, x2, . . . , xm).

We give an algorithm that takes as input a matrix Q as above over a field F with ∣F∣ > nd
and a constant 0 < ε < 1, and computes an assignment (λ1, λ2, . . . , λm) ∈ Fm such that,

rk(Q(λ1, λ2, . . . , λm)) ≥ (1 − ε) rk(Q(x1, . . . , xm)).

Our key contribution is a new technique which allows us to achieve the higher degree
generalization of the results by Bläser, Jindal, and Pandey [33] who gave a deterministic
PTAS for computing the rank of a matrix with homogeneous linear entries. It is known
that a deterministic algorithm for exactly computing the rank in the linear case is
already equivalent to the celebrated Polynomial Identity Testing (PIT) problem which
itself would imply circuit complexity lower bounds (Kabanets and Impagliazzo [117]).

Such a higher degree generalization is already known to a much stronger extent in the
non-commutative world, where the more general case in which the entries of the matrix
are given by poly-sized formulas reduces to the case where the entries are given by linear
polynomials using Higman’s trick, and in the latter case, one can also compute the
exact rank in polynomial time (Garg, Gurvits, Oliviera, Wigderson [84], Ivanyos, Qiao,
Subrahmanyam [114]). Higman’s trick only preserves the co-rank, hence it cannot be



Chapter 5. The variety of bounded rank symbolic matrices

used to reduce the problem of rank approximation to the case when the matrix entries
are linear polynomials. Thus the result in this chapter can also be seen as a step towards
bridging the knowledge gap between the non-commutative world and the commutative
world.

5.1 Set-up and results

This chapter is a result of an exploration of three related fundamental themes in alge-
bra from a computational perspective - polynomial identities, algebraic dependence of
polynomials and rank of symbolic matrices. These are already known to be crucial in
several aspects of the theory of computation. We now give a brief overview of these three
themes1, the corresponding naturally arising computational problems, the interrelations
among them and their applications to theoretical computer science.

5.1.1 Polynomial identity testing

Polynomial identities are useful and ubiquitous in mathematics and computer science.
Simple examples include the two square identity : (a2+b2)(x2+y2) = (ax−by)2+(bx+ay)2,
which can be used to show that the distance is invariant under a rotation of axes.
Similarly the identity ∑1≤i<j≤4(xi + xj)4 + (xi − xj)2 = 6(x21 + x22 + x23 + x24)2 was used by
Liouville to show that every positive integer is a sum of at most 53 fourth powers of
integers. More recently, even an identity as simple as 2xy = (x+ y)2 −x2 − y2 was crucial
in demonstrating the power of an approximative model of computation in algebraic
complexity theory [41, 123]. Having an awareness of the pervasiveness of polynomial
identities in mathematics, perhaps one would not be surprised to discover the extent of
applications of the computational problem of testing if a given compact representation
of a polynomial (arithmetic circuit) is indeed computing the identically zero polynomial.
The Polynomial Identity Testing (PIT) question asks that given an arithmetic circuit
C computing a polynomial f ∈ F[x1, . . . , xm], test if f is the zero polynomial. The
PIT problem captures several problems in algebra and combinatorics. For example,
its special case captures the perfect matching problem via the Tutte Matrix [178, 133].
The breakthrough primality testing algorithm by Agrawal, Kayal and Saxena [5, 6] also
reduced the primality testing problem to a special case of the PIT problem. PIT was
also crucial in Shamir’s proof of IP = PSPACE [166]. Kabanets and Impagliazzo showed
that a deterministic polynomial time algorithm would imply circuit complexity lower
bounds, i.e., either NEXP /⊂ P/Poly or the permanent does not have polynomial sized
arithmetic circuits [117].

5.1.2 Algebraic dependence of polynomials

Algebraic dependence is a fundamental concept in algebra that captures polynomial
relationships among polynomials. Polynomials f1, . . . , fm ∈ F[x1, . . . , xn] are called alge-
braically dependent over a field F if there exists a non-zero polynomial A(y1, . . . , ym) ∈
F[y1, . . . , ym] such that A(f1, . . . , fm) = 0. Such an A is called an annihilating polynomial

1Even though we discussed Polynomial identity testing in the previous chapter in detail, we describe
it here briefly again, to keep the exposition of this chapter self contained.
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of f1, . . . , fm. If no such nonzero polynomial A exists, then the given polynomials are
called algebraically independent over F.

For example, f1 = (x + y)2 and f2 = (x + y)3 are algebraically dependent over any field,
as y31 − y22 is an annihilating polynomial. Polynomials x + y and xp + yp are dependent
over Fp, but independent over Q. The monomials x1, x2, . . . , xn are an example of
algebraically independent polynomials over any field.

Algebraic dependence can be viewed as a generalization of linear dependence as the
former captures algebraic relationships of any degree, whereas the latter captures linear
relationships. Algebraic dependence shares a few combinatorial properties (known as
matroid properties, see [150]) with linear dependence. For example, if a set of polynomials
is algebraically independent then any subset of them is algebraically independent.

The algebraic rank, also known as transcendence degree, of a set of polynomials is defined
as the maximal number of algebraically independent polynomials and it is well defined
thanks to the matroid properties. The concepts of rank and basis in linear algebra have
analogs here as algebraic rank and transcendence basis, respectively.

Algebraic rank is a generalization of several natural problems in algebra and combina-
torics, for example, computing the size of the maximum matching in general graphs is
also a special case of the problem. More generally, it is a generalization of the celebrated
Polynomial Identity Testing (PIT) problem, which itself captures several problems in-
cluding the Primality Testing problem. The notion of algebraic rank has been used to
make progress on PIT by helping in the hitting set construction for VP [95] and by being
crucial in solving several special cases of the PIT problem [7, 126], and very recently has
also been used in the famous Integer Factorization problem [8]. It has also been used
to construct explicit extractors, condensers and dispersers for polynomial sources [65],
crucial in the area of pseudorandom generators. It was also important in proving the
best known general formula lower bounds for determinant [118], and more recently for
proving strong lower bounds for restricted class of arithmetic circuits [7, 126, 151].

5.1.3 Rank of symbolic matrices

Symbolic matrices, i.e., matrices with polynomial entries are ubiquitous objects in math-
ematics. Edmonds [66] was the first one who explicitly stated the problem of computing
the rank of a symbolic matrix when the entries are linear forms. Some applications
of symbolic rank computation in computer science include the algebraic algorithm for
maximum matching problem for bipartite and general graphs [133, 144, 68]. Even the
linear matroid parity problem and the linear matroid intersection problem are special
cases of the commutative rank problem of symbolic matrices with linear forms as entries
(see [167, 77, 149, 101, 98]). Owing to the works of Valiant and Mahajan-Vinay, we know
that the rank computation of symbolic matrices (the decision version) with linear entries
is equivalent to Polynomial Identity Testing (PIT) for Algebraic Branching Programs
(ABP) [179, 138] which became a central problem in complexity theory after the results
of Kabanets and Impagliazzo [117] showing that a deterministic algorithm for PIT would
imply circuit complexity lower bounds. When the entries are allowed to be higher degree
polynomials, too, the symbolic matrix rank computation also captures the computation
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of the rank of the Jacobian matrix, which in turn captures the algebraic rank problem
over fields of zero characteristic via the classical Jacobian criterion. It also captures the
rank of the Hessian matrix which like the Jacobian matrix is pervasive in mathematics
and physics. For example, using the Katz’s dimension formula, the rank of the Hessian
matrix corresponds to the dimension of the dual varieties of hypersurfaces, which is
useful in studying the determinantal complexity in the Geometric Complexity Theory
(see e.g. [104, 131]).

5.1.4 A tale of three computational problems

In this section, we give an account of the three main computational problems relevant
to the chapter, each inspired by one of themes discussed in the above subsections. In
order to discuss them more precisely, we have to specify the representation of the input
polynomials. An arithmetic circuit is a directed acyclic graph consisting of addition (+)
and multiplication (×) gates as nodes, takes variables x1, . . . , xn and field constants as
input (leaves), and outputs a polynomial f(x1, . . . , xn). This is a succinct representation
of multivariate polynomials, as polynomials of high degree (or having many monomials)
can be represented by small circuits.

Problem 5.1 (PIT). Given an arithmetic circuit computing a polynomial f ∈ F[x1, . . . , xm],
test if f is identically zero.

Problem 5.2 (AlgRank). Given arithmetic circuits C1, . . . ,Cn computing polynomials
f1, . . . , fn ∈ F[x1, . . . , xm], compute algRank({f1, . . . , fn}).

Problem 5.3 (RANK). Given an n × n matrix Q(x1, x2, . . . , xm) = (qij)n×n whose
entries are given by arithmetic circuits Cij computing polynomials qij ∈ F[x1, . . . , xm],
compute the rank of Q over F(x1, . . . , xm).

Connections among the three problems

It is clear that PIT reduces to the decision version of RANK. In fact, it is known that
the case of RANK, where the entries are just linear forms, is strong enough to capture
PIT for algebraic branching programs (ABP) [179, 138]. It is also easy to see that PIT
reduces to the decision version of AlgRank: we can just give our input instance to the
AlgRank problem and ask whether the algebraic rank is 0 or 1. It might happen that
the circuit was computing a non-zero constant polynomial, in this case the algebraic
rank will not be able to certify the non-zeroness, because the algebraic rank is still 0
in this case. However, this is an easy case anyway, because we can test these cases
beforehand simply by evaluating the circuit on the point (0, . . . ,0) and checking if the
circuit evaluates to 0. It might be the case that the value at (0, . . . ,0) is too large
to compute, since in the most general setting, the formal degree of the circuit can be
exponential. In this case, we can alternatively check whether x1 ⋅ f has algebraic rank 0
or 1, where f is the polynomial computed by the circuit.

Over fields of characteristic zero, the problem AlgRank reduces to the problem RANK
via the classical Jacobian criterion:
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Definition 5.1 (Jacobian). The Jacobian of polynomials f = {f1,⋯, fn} ⊂ F[x1,⋯, xm]
is the matrix Jx(f) = (∂xjfi)m×n, where ∂xjfi ∶= ∂fi/∂xj.

We state the classical Jacobian criterion [115, 151].

Lemma 5.1 (Jacobian criterion). Let f ⊂ F[x] be a finite set of polynomials of degree
at most d, and algRankF f ≤ r. If char(F) = 0, or char(F) > dr, then algRankF f =
rankF(x)Jx(f).

Thus, in order to solve AlgRank for a set of polynomials f, it suffices to solve RANK
for the matrix where the entries are the first order partial derivatives of the elements in
f. Now, we know that for a given arithmetic circuit C of size s computing a polynomial
f , there exists an arithmetic circuit C ′ of size O(s) computing all the first order partial
derivatives of f ([20], see also [170, Section 2.3]). Thus having a deterministic poly-time
algorithm for computing the rank of a matrix with entries given by arithmetic circuits,
we can solve the AlgRank problem in deterministic polynomial time when the input is
given as the arithmetic circuits of the set of polynomials whose algebraic rank we want
to compute.

Similarly, if the input to our AlgRank problem is a set of polynomials with bounded
degrees (say, with an upper bound of d), the Jacobian matrix will have entries which are
polynomials with degrees bounded by d − 1. So, in order to solve the bounded degree
version of the AlgRank problem, it suffices to solve the bounded degree version of the
RANK problem.

Thus, over fields of characteristic 0, it suffices to solve RANK in order to solve PIT
and AlgRank. In order to give a PTAS for the AlgRank problem for bounded degree
polynomials, we give a PTAS for the RANK problem where entries of the matrix
are bounded degree polynomials. We remind the reader that the decision version of
the RANK problem in the bounded degree case still gives an unbounded degree PIT
instance (simply recall that it is already true when the entries were linear forms). In
fact, for the RANK and the AlgRank problem, we need such restrictions, else we will
have to solve the general PIT problem beforehand.

The current status of the three problems

All of the three problems can be solved in randomized polynomial time thanks to the
Schwarz-Zippel lemma [164, 184, 61]. For RANK, we just need to evaluate our polyno-
mials at a random point to obtain a matrix of field elements, and the lemma guarantees
that with high probability the rank of the obtained matrix over the base field F would
be the same as the rank of the original matrix (over the function field F(x1, . . . , xm)).
And as we already pointed out in Section 5.1.4, RANK is the most general of the
three problems, all the three problems can be solved in randomized polynomial time.
However, a deterministic algorithm has remained elusive for all of the three problems.
For the simplest problem among the three, i.e., the PIT problem, we know deterministic
polynomial time algorithms only in special cases. In fact, there has been a plethora of
works derandomizing special cases in polynomial or quasipolynomial time. For example,
when the input is given in the sparse representation, a deterministic polynomial time
algorithm is known [121]. Similarly, if the input is a diagonal depth 3 circuit, we know
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a deterministic polynomial time algorithm [158]. We refer the reader to the excellent
surveys on the problem by Saxena [159, 160] and Shpilka and Yehudayoff [170] for a de-
tailed account of the progress and techniques involved in derandomizing the PIT problem.
Derandomizing the RANK problem in its simplest case, i.e., when the entries are just
linear forms has already proven to be very challenging. It is equivalent to solving PIT
problem for Algebraic Branching Programs (ABPs). Only for very restricted classes of
ABPs (the so called ROABP model and its variants), we know how to derandomize PIT
([155, 74, 72, 96]). Recently, [33] gave a derandomization for approximately computing
the rank, i.e., they gave a deterministic PTAS for the RANK problem, when the entries
are linear forms.

RANK in the non-commutative world

We point out that in the non-commutative world, several computational problems are
better understood as compared to the commutative world. For example, PIT for non-
commutative formulas is known to be in polynomial time [155]. Moreover, exponential
lower bounds are known against non-commutative formulas and algebraic branching
programs [147]. The same is true for the RANK problem in the non-commutative
world. Here, Garg, Gurvits, Oliviera, and Wigderson [84] and Ivanyos, Qiao, and
Subrahmanyam [114], gave a deterministic polynomial time algorithm for the RANK
problem when the entries of the matrices are linear forms. In fact, they also solved the
RANK problem when the entries are given by formulas, because in the non-commutative
world, the case in which the entries are given by formulas reduces to the case in which
the entries are given by linear forms using Higman’s trick ([106], see [83, Appendix A.1]).
One would be tempted to use the same trick for the commutative rank and then use the
deterministic PTAS for linear forms case given by [33] to have a deterministic PTAS for
the case in which the entries are given by formulas. Unfortunately, this trick does only
preserves the co-rank. Hence, it is not useful for computing an approximation of the
rank in the general RANK problem, since it enlarges the size of the matrix. Another
interesting fact is that in the case when the entries are linear forms, we know that the
non-commutative rank (see [83] for a definition) is at most twice the commutative rank
[75]. Thus, an algorithm for the non-commutative rank gives a 1/2-approximation for
the commutative rank when the entries are linear forms. Here, one would be tempted
to claim that even when the entries are given by formulas, we get a 1/2-approximation
for the commutative rank using the known exact algorithms for the non-commutative
rank. This also does not work unfortunately. The following very simple example denies
any such possibilities when entries compute higher degree polynomials.

Let f = xy − yx. Consider, the following 1 × 1 matrix Q,

Q = [ f ] .

Notice that the non-commutative rank of Q is 1, but the commutative rank is 0. This gap
can be made arbitrarily large by simply taking a diagonal matrix with all the diagonal
entries being xy − yx. Thus, in general, we cannot approximate the commutative rank
with non-commutative rank.

Thus, there is a huge knowledge gap that we are observing between the commuta-
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tive world and the non-commutative world with respect to the RANK problem. On
the one hand, we have polynomial time algorithms for exact rank computation in the
non-commutative world even when the entries are given by formulas, whereas in the
commutative case, all we have is a deterministic PTAS, that only works in the case when
the entries of the matrix are linear forms. No deterministic PTAS was known even when
the entries of the matrix are given by quadratic forms. In this chapter, we solve precisely
a more general version of this, i.e., we give a deterministic PTAS in the case when the
entries are given by polynomials whose degrees are bounded by an arbitrary constant,
hence taking another step towards bridging this knowledge gap between the two worlds.

5.1.5 Results

In this chapter, we give the first deterministic polynomial time approximation scheme
(PTAS) for the RANK problem under the restriction that the entries of the matrix
are bounded degree polynomials. We give a new technique which allows us to achieve
generalizations to higher degrees of the results of [33], who gave a PTAS for the RANK
problem when the entries were linear forms.

We need to formalize the setup of the problem and fix some notations to formally state
our main result.

Consider a matrix Q(x1, x2, . . . , xm) = (qij)n×n of size n × n, the entries qij of which are
polynomials of degrees bounded by some constant d in the variables x = (x1, x2, . . . , xm).
We want to compute the rank of Q over the rational function field F(x1, x2, . . . , xm). In
fact, it suffices to consider the case when the entries are homogeneous forms of degree d
(see Section 5.6).

To this end, we define the following problem.

Problem 5.4. Given a matrix Q(x1, x2, . . . , xm) = (qij)n×n of size n×n, the entries qij
of which are homogeneous forms of constant degree d, compute the rank of Q over F(x1,
x2, . . . , xm).

Since the degrees of the polynomials in the entries are bounded by a constant d, we can
assume that they are given explicitly as the list of coefficients.

As stated above in Section 5.1.4, this problem has a very simple randomized algorithm.
But we want deterministic algorithms to compute the rank ofQ. We know that finding de-
terministic algorithms for Problem 5.4 is hard. Thus in this chapter, we consider whether
one can approximate rank(Q) deterministically. Following is the main contribution of
this chapter.

Theorem 5.1 (PTAS for RANK). Given Q as in Problem 5.4 over a field F with
∣F∣ > nd and a constant 0 < ε < 1, there exists a deterministic algorithm which computes
an assignment (λ1, λ2, . . . , λm) ∈ Fm such that,

rk(Q(λ1, λ2, . . . , λm)) ≥ (1 − ε) rk(Q(x1, . . . , xm)).

Clearly, the above running time is polynomial when d is a constant.
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Now we see that it suffices to solve Problem 5.4 for ε being a constant, as this implies
the general case via tensoring. That is, for an n × n matrix Q of Problem 5.4, we can
tensor Q with itself to get an n2 × n2 size matrix, where rank(Q)2 = rank(Q⊗Q). Also,
if Q has degree d entries, then Q⊗Q has degree 2d entries. Thus, if we tensor k times
we get a matrix of size nk × nk with entries of degree dk and rank (rank(Q))k. If we
get a (1 − ε) approximation to this rank, then taking the kth root of this value is a

(1 − ε)
1
k -approximation to the original rank. As this is approximately (1 − ε

k), it follows
that we can get a pretty good approximation this way. By this method, we get a trade-off
between the degree and the approximation parameter. That is, if an algorithm finds a
1 − ε approximation of the rank when the entries are degree dk polynomials, then this
algorithm can be used to find a (1 − ε

k) approximation of the rank when the entries are
degree d polynomials. This reduction also shows that at least a linear dependence on d
in the exponent is essentially required for this problem, even for ε = O(1), as otherwise
via tensoring we can solve PIT non-trivially fast. We remark that our algorithm directly
tackles the problem of 1 − ε rank approximation without using this tensoring idea.

Since we have already established in the previous section that AlgRank reduces to
RANK using the Jacobian criterion, it is obvious that the deterministic PTAS for
AlgRank under the restriction that the input polynomials are of bounded degree is an
easy consequence of the above stated result.

Theorem 5.2 (PTAS for AlgRank). Given a set f ∶= {f1, . . . , fn} ⊂ F[x1, . . . , xm] of
polynomials of degrees bounded by a constant d with char(F) = 0, and a rational number
ε > 0, there is a deterministic algorithm that outputs a number r, such that r ≥ (1 − ε) ⋅

algRank(f). The algorithms runs in time O ((nmd)
O( d

2

ε
)
⋅M(n)), where M(n) is the

time required to compute the rank of an n × n matrix over F.

Again, the above algorithm is a polynomial time algorithm when d is a constant.

5.1.6 Comparison with the techniques of [33]

The PTAS for the linear case in [33] greedily increased the rank starting with the zero
matrix, and the proof of correctness of the algorithm rested on the guarantee that when
we are unable to increase the rank greedily, we are already done, i.e., the current matrix
already has the desired approximation of the rank. The main component of the proof of
this guarantee was a refined analysis of the so-called Wong sequence which are defined
for matrix spaces and a matrix with entries as linear forms can be interpreted as a
matrix space. [33] introduced a novel notion of Wong index. It was shown in [33] that if
the Wong index of a matrix is “high” then this matrix is a good approximation of the
commutative rank. If the Wong index of a matrix is “low” then it was shown in [33]
that one can find a matrix of higher rank efficiently.

The limitation of the techniques in [33] is that the Wong sequences are defined and
studied only in the case of matrix spaces and a correspondence between the matrix
spaces and matrix with higher degree (non-linear) polynomials does not exist. So, for
the higher degree case, it is not clear how to define a notion of a Wong sequence and
hence the techniques of [33] do not generalize. Thus, one needs to find a new technique
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to deal with the higher degree case. This is precisely what we do in this chapter. Our
starting point is an alternative analysis for the [33]’s algorithm for the linear case that
appeared in [116], where a new way to analyze the low degree components of the minors
of the matrix obtained in the greedy step is given (see Section 5.3 for the main proof
ideas). In this chapter, we build upon the analysis in [116] and show that the analysis
can be extended to work when the entries are higher degree polynomials as well. This
allows us to use the same algorithm strategy as in [33] for higher degree forms as well. It
can be shown that the Wong index of [33] corresponds to the degree of the least degree
monomial of a suitable minor.

5.1.7 Organization of the chapter

In the next section, we define some notations and recall some linear-algebraic tools that
will be useful for us. In Section 5.3, we discuss our main idea and give an overview of the
proof strategy. Section 5.4 contains the technical details of the proof. We present our
commutative rank algorithm in Section 5.5. Finally, Section 5.6 contains the reduction
of the arbitrary case to the homogeneous case.

5.2 Preliminaries

In the following, we present some of the definitions and tools which are used frequently in
this chapter. When we speak of a matrix polynomial, we mean a matrix with polynomials
as entries.

(1) For an r × r matrix A ∈ Fr×r, we use A
ij
⋀ to denote the sub-matrix of A obtained

by removing the ith column and the jth row.

(2) Ir is used to denote the r × r identity matrix.

(3) For a polynomial f , homk(f) denotes the homogeneous degree k part of f .

(4) We also use the same notation homk(M) to denote the homogeneous degree k part
of a matrix polynomial M . Note that homk(M) is also a matrix polynomial.

(5) For a polynomial f , ord(f) is used to denote the degree of the least degree monomial
in f . We use the same notation ord(M) for matrix polynomials M also, where
ord(M) is defined as the degree of the least degree monomial in M . Notice that
ord(f) and ord(M) are just natural numbers.

Definition 5.2 (Characteristic Polynomial). For an r × r matrix A, its characteristic
polynomial pA(t) is defined as:

pA(t) ∶= det(tI −A) = p0tr + p1tr−1 + ⋅ ⋅ ⋅ + pr.

Note that in Definition 5.2, p0 = 1 is always true.

Fact 5.1. Over all fields, for any r × r matrix A, det(A) = (−1)rpA(0) = (−1)rpr.

Definition 5.3 (Adjoint). For an r × r matrix A, the adjoint adj(A) is also an r × r
matrix whose (i, j)th entry is (−1)i+jdet(A

ij
⋀).
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Theorem 5.3. For a square r × r matrix L, define qL(t) ∶= pL(t)−pL(0)
t . Over all fields,

we have the following equality for adj(L):

adj(L) = (−1)r+1qL(L). (5.2.1)

Proof. Here we only prove this claim for F = C but it is true for all fields. We use the
following facts:

(1) If L is non-singular, then adj(L) = det(L)L−1.

(2) The Cayley-Hamilton theorem, which states that for any L, pL(L) = 0.

(3) The set GLr of non-singular matrices is dense (under the Euclidean topology) in
the set Fr×r of all the matrices.

We first prove the claim when L is non-singular. Let pL(t) = p0tr + p1tr−1 + ⋅ ⋅ ⋅ + pr. By
using the Cayley-Hamilton theorem, we have the following equality:

p0L
r + p1Lr−1 + ⋅ ⋅ ⋅ + pr = 0. (5.2.2)

Since L is non-singular, we multiply by L−1 on both the sides of Equation (5.2.2). Thus

p0L
r−1 + p1Lr−2 + . . . pr−1 = −prL−1 = (−1)r+1det(L)L−1 = (−1)r+1 adj(L). (5.2.3)

Note that qL(L) = p0L
r−1 + p1Lr−2 + ⋅ ⋅ ⋅ + pr−1. Therefore Equation (5.2.3) implies

adj(L) = (−1)r+1qL(L).

Now notice that Equation (5.2.1) is an equation where entries of the matrices on both
sides are polynomials in the entries of L. Now the claim follows using the denseness of
GLr in Fr×r.

Theorem 5.4. For a square r × r matrix L with pL(t) = p0t
r + p1tr−1 + ⋅ ⋅ ⋅ + pr, the

following equality holds over any field:

adj(I +L) =
r−1
∑
i=0

(−1)ipi ⋅
⎛
⎝

r−i−1
∑
j=0

(−L)j
⎞
⎠
.

Proof. First we compute the characteristic polynomial pI+L of I +L. We have:

pI+L(t) = det(tI − (I +L))
= det((t − 1)I −L))
= pL(t − 1).
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Thus we have,

qI+L(t) ∶=
pI+L(t) − pI+L(0)

t

= pL(t − 1) − pL(−1)
t

=
r

∑
i=0

pr−i ⋅ ((t − 1)i − (−1)i)
t

=
r

∑
i=1
pr−i ⋅

⎛
⎝

i−1
∑
j=0

(−1)j(t − 1)i−j−1
⎞
⎠
.

Therefore,

adj(I +L) = (−1)r+1qI+L(I +L)

= (−1)r+1
r

∑
i=1
pr−i ⋅

⎛
⎝

i−1
∑
j=0

(−1)j(L)i−j−1
⎞
⎠

= p0(I −L + ⋅ ⋅ ⋅ + (−L)r−1) − p1(I −L + . . . (−L)r−2) + ⋅ ⋅ ⋅ + (−1)r−1pr−1(I)

=
r−1
∑
i=0

(−1)ipi ⋅
⎛
⎝

r−i−1
∑
j=0

(−L)j
⎞
⎠
.

Next come some easy facts from linear algebra.

Fact 5.2. Let F be any field. If A is an n × n matrix of rank r over F, then there exist
two n × n non-singular matrices P,R ∈ Fn×n such that:

Ir 0

0 0
( )r rows

n − r rows

r columns

n − r columns

PAR =

(5.2.4)

Fact 5.3. Let F be any field and let M be a matrix of the following form over F:

L B
A C

( )r rows
n − r rows

r columns

n − r columns

M =

(5.2.5)

Also, let rank([ A C ]) = a and rank([ B
C

]) = b. Then rank(M) ≤ r +min(a, b).

Lemma 5.2. If ∣F∣ > nd, then we can construct a hitting set Hm,d,` of size O((m(d+1))`)
for the set Fm,d,` of polynomials defined by:

Fm,d,` ∶= {f ∈ F[x1, . . . , xm] ∣ deg(f) ≤ d,ord(f) ≤ `}.
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Proof. Let f ∈ Fm,d,`. Since ord(f) ≤ `, there exists a non-zero monomial xi1 ⋅xi2 ⋅ ⋅ ⋅ ⋅ ⋅xi`
of f . The variables xij need not be distinct here. We first do a brute force search
for these ` variables by making all the other m − ` variables zero. This can be done
using (m

`
) = O(m`) assignments. Now we are left with a polynomial f ′ of degree d in at

most ` variables. By using Schwartz-Zippel lemma [184, 164], we can find a non-zero
assignment of f ′ using (d + 1)` assignments. Thus there exists a hitting set of size
O(m` ⋅ (d + 1)`) = O((m(d + 1))`).

5.3 Main proof ideas

Here we explain the main idea used in devising the desired algorithm claimed in The-
orem 5.1. Since Theorem 5.1 is essentially a generalization of [33], a direct approach
seems to be converting a matrix of degree d forms to a matrix of linear forms (using
the equivalence of ABPs and determinants, see [138]). However, such a direct approach
(although it preserves non-zeroness) gives no information about the rank of the matrix.

So, instead of directly reducing an instance of Problem 5.4 to an instance of linear
forms case as in [33], we follow the high level approach of [33] of greedily increasing
the rank of Q starting with the zero matrix. Suppose we have found λ1, λ2, . . . , λm
such that rank(Q(λ1, λ2, . . . , λm)) = r. We want to find an assignment of the form
(x1 + λ1, x2 + λ2, . . . ., xm + λm) such that rank(Q(x1 + λ1, x2 + λ2, . . . ., xm + λm)) > r.
This step of finding a matrix of bigger rank is called a rank increasing step. Under this
transformation (xi → xi + λi), we have the following equality:

Q(x1 + λ1, x2 + λ2, . . . ., xm + λm) = Q(λ1, λ2, . . . , λm) +Qd(x1, x2, . . . , xm). (5.3.1)

Here Qd(x1, x2, . . . , xm) is some matrix whose entries are polynomials of degree at most
d. By using Fact 5.2, we know that there exists non-singular matrices P,R ∈ Fn×n such
that:

P ⋅Q(λ1, λ2, . . . , λm) ⋅R = [ Ir 0
0 0

] .

Now consider the following equation:

P ⋅Q(x1 + λ1, x2 + λ2, . . . ., xm + λm) ⋅R (5.3.2)

= P ⋅Q(λ1, λ2, . . . , λm) ⋅R + P ⋅Qd(x1, x2, . . . , xm) ⋅R.
Since P,R are non-singular, we know that

rank(Q(x1+λ1, x2+λ2, . . . ., xm+λm)) = rank(P ⋅Q(x1+λ1, x2+λ2, . . . ., xm+λm)⋅R).
Thus it is enough to find an assignment to the variables x1, . . . , xm such that

rank(P ⋅Q(x1 + λ1, x2 + λ2, . . . ., xm + λm) ⋅R) > r.
The following Lemma 5.3 is easy to verify.

Lemma 5.3. For any (λ1, λ2, . . . , λm) ∈ Fm,

rank(Q(x1, x2, . . . , xm)) = rank(Q(x1 + λ1, x2 + λ2, . . . ., xm + λm))
= rank(P ⋅Q(x1 + λ1, x2 + λ2, . . . ., xm + λm) ⋅R).
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5.3. Main proof ideas

Proof. We assume that ∣F∣ > dn. Now suppose that s = max{rank(Q(λ1, . . . , λm)) ∣
(λ1, . . . , λm) ∈ Fm} and r = rank(Q(x1, x2, . . . , xm)). We want to show that s = r. We
know that there exists a non-zero r×r minor Mr of Q(x1, x2, . . . , xm). Notice that Mr is
a polynomial of degree at most rd ≤ nd. Thus by the Schwartz-Zippel lemma [184, 164],
there exists (λ1, λ2, . . . , λm) ∈ Fm such that Mr(λ1, λ2, . . . , λm) ≠ 0. Therefore s ≥ r.
The other direction is trivial.

This also implies that

rank(Q(x1, x2, . . . , xm)) = rank(Q(x1 + λ1, x2 + λ2, . . . ., xm + λm)) = r.
This is because there is a bijection from Fm to Fm given by xi ↦ xi + λi. This last
equality is trivial because we only multiply by non-singular matrices P and R.

By using Lemma 5.3, we can omit P,R in the discussion of our rank increasing step.
Thus we can assume that:

Q(λ1, λ2, . . . , λm) = [ Ir 0
0 0

] .

We want to ensure that at least one of the following two scenarios happens.

(1) We can “easily” find an assignment of the form (x1+λ1, x2+λ2, . . . ., xm+λm) such
that rank(Q(x1 + λ1, x2 + λ2, . . . ., xm + λm)) > r. This is our rank increasing step.

“Easily” here means in time O((nmd)O( d
ε
)) deterministically.

(2) r ≥ (1 − ε) ⋅ rank(Q(x1, x2, . . . , xm)), i.e., we are already done.

We decompose Q(x1 + λ1, x2 + λ2, . . . ., xm + λm) as:

Q(x1 + λ1, x2 + λ2, . . . ., xm + λm) = [ Ir +L B
A C

] . (5.3.3)

We write L = L1+⋅ ⋅ ⋅+Ld, where Li is a matrix whose entries are homogeneous polynomials
of degree i. Similarly we decompose A,B,C into Ai,Bi,Ci. In other words, we have
Ls = homs(L), As = homs(A), Bs = homs(B), and Cs = homs(C).

We now describe when the first of the two scenarios described above happens. When is
the condition “rank(Q(x1 + λ1, x2 + λ2, . . . , xm + λm)) > r” true? It happens when there
exists a non-zero (r + 1) × (r + 1) minor of Q(x1 + λ1, x2 + λ2, . . . ., xm + λm). Consider
a sub-matrix Mk,` of Q(x1 + λ1, x2 + λ2, . . . ., xm + λm) of size (r + 1) × (r + 1) obtained
by taking Ir +L, the kth row of A, the `th column of B, and also the (k, `)thentry of C.
Thus Mk,` looks like below:

Mk,` =

⎛
⎜⎜⎜⎜⎜⎜
⎝

1 + l11 l12 . . . l1r b1
l12 l22 . . . l2r b2
⋮ ⋮ ⋱ ⋮ ⋮
lr1 lr2 . . . 1 + lrr br
a1 a2 . . . ar c

⎞
⎟⎟⎟⎟⎟⎟
⎠

. (5.3.4)

Here lij is the (i, j)th entry of L. To ensure rank(Q(x1+λ1, x2+λ2, . . . , xm+λm)) > r, we
want to find an assignment to the xi’s such that ∃k, ` ∈ [n − r] satisfying det(Mk,`) ≠ 0.
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How to find an assignment to the xi’s such that det(Mk,`) ≠ 0? Note that det(Mk,`) is
a polynomial of degree at most (r + 1)d in the variables x = (x1, x2, . . . , xm). Suppose
det(Mk,`) has a non-zero monomial of some constant degree s then we can easily (see
Lemma 5.2) find an assignment to the xi’s such that det(Mk,`) ≠ 0. To check if det(Mk,`)
has a non-zero monomial of degree s, we just need to analyze homs(det(Mk,`)). This
is our overall strategy. Therefore the scenarios described above can be reformulated as
below.

(1) For an appropriately chosen s (depending upon d and ε), ∃k, ` ∈ [n − r] such that
det(Mk,`) has a non-zero monomial of degree at most s. In this case, we can
“easily” find an assignment to the xi’s such that det(Mk,`) ≠ 0. This ensures that
Q(x1 + λ1, x2 + λ2, . . . , xm + λm) > r. This is our rank increasing step.

(2) ∀k, ` ∈ [n − r], det(Mk,`) has no non-zero monomials of degree at most s. In this
case, we show that r ≥ (1 − ε) ⋅ rank(Q(x1, x2, . . . , xm)).

To analyze homs(det(Mk,`)), it is useful to find a compact expression for det(Mk,`).
We now give such a compact expression for det(Mk,`). In whatever follows, we use the
symbol a to denote the row vector [ a1 a2 . . . ar ], symbol b to denote the column

vector [ b1 b2 . . . br ]t and

pL(t) ∶= p0tr + p1tr−1 + ⋅ ⋅ ⋅ + pr.

Lemma 5.4. Let Mk,` be as in Equation (5.3.4). Then we have the following equality:

det(Mk,`) = −a⋅ (adj(Ir +L)) ⋅ b + c ⋅ (det(Ir +L)).

Proof. By Laplace expansion, we know that the following equality holds for det(Mk,`):

∑
1≤i≤r

(−1)i+rai ⋅
⎛
⎝ ∑1≤j≤r

(−1)j+r−1 ⋅ bj ⋅ det((Ir +L)ij
⋀)

⎞
⎠
+ c ⋅ (det(Ir +L))

= − ∑
1≤i,j≤r

aibj(−1)i+jdet((Ir +L)ij
⋀) + c ⋅ (det(Ir +L))

= − ∑
1≤i,j≤r

aibj(adj(Ir +L))ij + c ⋅ (det(Ir +L))

= −a ⋅ adj(Ir +L) ⋅ b + c ⋅ (det(Ir +L))
= det(Mk,`).

Lemma 5.5. Let Mk,` be as in Equation (5.3.4). Then the following equality holds for
det(Mk,`):

det(Mk,`) = −a⋅
⎛
⎝

r−1
∑
i=0

(−1)ipi ⋅
⎛
⎝

r−i−1
∑
j=0

(−L)j
⎞
⎠
⎞
⎠
⋅ b + c ⋅ (p0 − p1 + ⋅ ⋅ ⋅ + (−1)rpr). (5.3.5)

Proof. By using Fact 5.1 we know that for any matrix A of size r×r, det(A) = (−1)rpA(0).
Now observe that pIr+L(t) = pL(t − 1). Thus

det(Ir +L) = (−1)rpL(−1) = (p0 − p1 + ⋅ ⋅ ⋅ + (−1)rpr).
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Now the claim follows by using Lemma 5.4 and Theorem 5.4.

Corollary 5.1. If M is the (n − r) × (n − r) matrix polynomial having the polynomial
det(Mu,v) as its (u, v)th-entry for all 1 ≤ u, v ≤ n − r, then the following equality holds
for M :

M = −A ⋅
⎛
⎝

r−1
∑
i=0

(−1)ipi ⋅
⎛
⎝

r−i−1
∑
j=0

(−L)j
⎞
⎠
⎞
⎠
⋅ B + (p0 − p1 + ⋅ ⋅ ⋅ + (−1)rpr) ⋅ C. (5.3.6)

Proof. It immediately follows from Lemma 5.5.

By using Corollary 5.1, it is easy to observe the following Lemma 5.6.

Lemma 5.6. There are k, ` ∈ [n − r] such that homs(det(Mk,`)) ≠ 0 if and only if
homs(M) ≠ 0.

5.4 The proof: analyzing the degree

In this section, we formally describe the idea described sketched in Section 5.3. Here we
want to analyze the homogeneous degree s component homs(M) of M in Corollary 5.1.
Recall that pL(t) = p0tr + p1tr−1 + ⋅ ⋅ ⋅ + pr. In Corollary 5.1, the coefficient of pi is the
sum of powers of (−L) up to r − i − 1. Thus, if we only want to analyze the degree s
component homs(M) of M for some s < r

2 , then we only need to consider pi and (−L)i
for i < r

2 . To this end, we use the following notations in this section:

T ∶=
⌈ r
2
⌉

∑
j=0

(−L)j , f ∶= −p1 + ⋅ ⋅ ⋅ + (−1)⌈
r
2
⌉p⌈ r

2
⌉.

Theorem 5.5. Suppose s ∈ N is such that the condition 1 ≤ s ≤⌊ r2⌋ − 1 holds. Then we
have that:

homs(M) = −homs((ATB −C) ⋅ (p0 + f))
= −homs((ATB −C) ⋅ (1 + f)).

Proof. We use the fact that for 0 ≤ k ≤ r, we have ord(pk) ≥ k and ord(Lk) ≥ k. Thus to
obtain the homogeneous degree s part in Corollary 5.1, it is enough to consider the pi
and Li with i ≤ s. Using 1 ≤ s ≤ ⌊ r2⌋−1, we obtain that r−1− s ≥ r−⌊ r2⌋ = ⌈ r2⌉. Therefore
the claimed equality follows.

By using Theorem 5.5, we see that hom1(M) = C1 and hom2(M) = C2 +C1 hom1(f) −
A1B1. Extending this argument, we observe the following equality.

− homs(M) = homs(ATB − C) +
s−1
∑
i=1

homi(f) ⋅ homs−i(ATB − C). (5.4.1)
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With the aid of Equation (5.4.1), it is easy to prove the following Theorem 5.6.

Theorem 5.6. Suppose s ∈ N is such that the condition 1 ≤ s ≤⌊ r2⌋ − 1 holds. If
hom`(M) = 0 for all ` ∈ [s], then hom`(ATB −C) = 0 for all ` ∈ [s].

Proof. We prove it by induction on `. For the base case ` = 1, we have hom1(M) =
−hom1(ATB−C). For the induction step, consider for `+1 ≤ s. By using Equation (5.4.1),
we have that

− hom`+1(M) = hom`+1(ATB − C) +
`

∑
i=1

homi(f) ⋅ hom`+1−i(ATB − C). (5.4.2)

By induction hypothesis, we have homk(ATB − C) = 0 for all k ∈ [`]. Therefore we
obtain that:

`

∑
i=1

homi(f) ⋅ hom`+1−i(ATB −C) = 0.

Thus −hom`+1(M) = hom`+1(ATB −C) = 0.

Let us now further reformulate the two scenarios we described above.

(1) If hom`(M) ≠ 0 for some ` ∈ [s] then we can implement our rank increasing step
due to Lemma 5.6.

(2) If hom`(M) = 0 for all ` ∈ [s] then Theorem 5.6 gives us a set of conditions on
matrices A,B,C,T . We will show that these conditions on A,B,C,T can be used
to bound rank(Q(x1, x2, . . . , xm)).

The rest of this section analyzes the condition “∀` ∈ [s] ∶ hom`(ATB −C) = 0” and gives
an upper bound on rank(Q(x1, x2, . . . , xm)) in terms of r. In whatever follows, we use

A ∶= [ A1 A2 . . . Ad ]

to denote the (n − r) × rd matrix and

B ∶= [ Bt
1 Bt

2 . . . Bt
d ]t

to denote the rd × (n − r) matrix. To simplify the notation, define Rs to be the rd × rd
block matrix (composed of d2 blocks of size r × r) whose (i, j)th block is homs−(i+j)(T ).
(We here use the convention that hom`(T ) = 0 if ` < 0.)

5.4.1 Analyzing the degree s ≤ d.

Lemma 5.7. For all s ≥ 1, homs(ATB) = A ⋅Rs ⋅ B.

Proof. We have homs(ATB) = ∑di=1∑dj=1Ai homs−(i+j)(T )Bj = A ⋅Rs ⋅ B.

Corollary 5.2. Suppose r ∈ N is such that the condition 1 ≤ d ≤⌊ r2⌋ − 1 holds. If
homs(M) = 0 for all s ∈ [d] then Cs = A ⋅Rs ⋅ B for all s ∈ [d].

Proof. It immediately follows from Theorem 5.6 and Lemma 5.7.
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In whatever follows, we use the notations:

M1 ∶= [ A C ](n−r)×n and M2 ∶= [ B
C

]
n×(n−r)

Lemma 5.8. Suppose r ∈ N is such that the condition 1 ≤ d ≤⌊ r2⌋−1 holds. If homs(M) =
0 for all s ∈ [d] then the following inequalities are true:

rank(M1) ≤ rank(A), rank(M2) ≤ rank(B).

Proof. By using Corollary 5.2, we have the following equality:

C =
d

∑
i=1
Ci = A ⋅ (

d

∑
i=1
Ri) ⋅ B (5.4.3)

LetN1 be the rd×nmatrix whose first r columns form the matrix ([ Ir Ir . . . Ir ]t)r×rd
and whose last n − r columns are the matrix (∑di=1Ri) ⋅ B. Now the following Equa-
tion (5.4.4) follows from Equation (5.4.3):

M1 = [ A C ](n−r)×n = A ⋅N1. (5.4.4)

Thus rank(M1) ≤ rank(A). Let N2 be the n × rd matrix whose first r rows form the
matrix [ Ir Ir . . . Ir ]

r×rd and last n − r rows are the matrix A ⋅ (∑di=1Ri). The
following equality Equation (5.4.5) follows from Equation (5.4.3):

M2 = [ B
C

]
n×(n−r)

= N2 ⋅ B. (5.4.5)

Thus rank(M2) ≤ rank(B).

5.4.2 Analyzing the higher degrees.

Lemma 5.9. Suppose s ∈ N is such that the condition 1 ≤ s ≤ ⌈ r2⌉ is true. Then we have

homs(T ) = −∑d−1i=1 Li homs−i(T ).

Proof. Since 1 ≤ s, we can safely ignore the term I in the summation in the definition of
T , since it has degree 0. Since s ≤ ⌈ r2⌉, we can also add the term (−L)⌈

r
2
⌉+1, since it will

not contribute to homs(T ) either. Therefore, we have

homs(T ) = homs(−L(I −L + . . . ⋅ ⋅ ⋅ + (−L)⌈
r
2
⌉−1 + (−L)⌈

r
2
⌉) + (−L)⌈

r
2
⌉+1)

= homs(−LT ).
Now the claim follows.

Lemma 5.10. If s ∈ N is such that the condition d + 2 ≤ s ≤ ⌈ r2⌉ + 2 holds, then we have
Rs = ERs−1, where

E ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−L1 −L2 . . . −Ld
Ir 0 . . . 0
0 . . . ⋱ ⋮
0 0 Ir 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦rd×rd
.
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Proof. It immediately follows from Lemma 5.9.

Theorem 5.7. Suppose s ∈ N is such that the condition d + 1 ≤ s ≤ ⌊ r2⌋ − 1 holds. If

homi(M) = 0 for all i ∈ [s] then A ⋅Rd+1 ⋅ B = A ⋅ERd+1 ⋅ B = . . . = A ⋅Es−d−1 ⋅Rd+1 ⋅ B = 0.

Proof. By using Theorem 5.6, we know that hom`(ATB − C) = 0 for all ` ∈ [s]. Since
deg(C) ≤ d, we get that ∀i ∈ {d+1, . . . , s}, homi(ATB) = 0 = A ⋅Ri ⋅ B. Now the theorem
follows by using the recursive formulation of Ri proved in Lemma 5.10.

Notice that the r×r matrix Ld is non-singular because there is an assignment λ1, λ2, . . . ,
λm to the variables of Ld which makes Ld(λ1, λ2, . . . , λm) = Ir. (Since Q is homogeneous
of degree d, Ld equals the upper-right r × r-submatrix of Q.) Therefore Ld as a matrix
with polynomial entries is also non-singular. This implies that E is also non-singular
because Ld is.

Lemma 5.11 (Lemma 5.3 in [33]). Let B ∈ Fn×n and

B11 B12

B21 B22
( )

r rows

n − r rows

r columns

n − r columns

B =

(5.4.6)

Consider the following sequence of matrices B22,B21B12,B21B11B12, . . . ,B21B
j
11B12 . . .

If the first k ≥ 1 elements in this sequence are equal to the zero matrix and B11 is
non-singular, then rank(B12) ≤ r

k or rank(B21) ≤ r
k .

Theorem 5.8. If the conditions in Theorem 5.7 are true, then rank(M1) ≤ dr
s−d+1 or

rank(M2) ≤ dr
s−d+1 .

Proof. By using Theorem 5.7, we know that

A ⋅Rd+1 ⋅ B = A ⋅ERd+1 ⋅ B = ⋅ ⋅ ⋅ = A ⋅Es−d−1 ⋅Rd+1 ⋅ B = 0.

Consider the (n + r(d − 1)) × (n + r(d − 1)) matrix S whose whose first rd rows and first
rd columns form the matrix E. The last n− r rows form the matrix A and the last n− r
columns form the matrix Rd+1B and the remaining entries are zero. Thus we have:

S = [ E Rd+1B
A 0

] .

Now we apply Lemma 5.11 with B11 = E and B12 = Rd+1B and B21 = A. This implies
that rank(A) ≤ dr

s−d+1 or rank(Rd+1B) ≤ dr
s−d+1 . Note that Rd+1 looks like below:

Rd+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ . . . ∗ Ir
∗ ⋮ ∗ Ir 0
⋮ ∗ Ir 0 ⋮
∗ Ir 0 . . . 0
Ir 0 . . . 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In particular, Rd+1 is non-singular. Thus rank(Rd+1B) = rank(B). Now the claim follows
from Lemma 5.8.
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Corollary 5.3. If the conditions in Theorem 5.7 are true then we have:

rank(Q(x1, x2, . . . , xm)) ≤ r (1 + d

s − d + 1
) .

Proof. Recall that

Q(x1 + λ1, x2 + λ2, . . . ., xm + λm) = [ Ir +L B
A C

] .

By using Fact 5.3 and Theorem 5.8, we obtain that rank(Q(x1 + λ1, x2 + λ2, . . . ., xm +
λm)) ≤ r (1 + d

s−d+1). Now the claim follows by using Lemma 5.3.

5.5 Final algorithm

Let us recall our strategy once again. We have shown above that at least one of the
following conditions holds:

(1) If d + 1 ≤ s ≤ ⌊ r2⌋ − 1 and hom`(M) ≠ 0 for some ` ∈ [s], then our rank increasing
step succeeds.

(2) Otherwise, we have rank(Q(x1, x2, . . . , xm)) ≤ r (1 + d
s−d+1) by Corollary 5.3.

Thus if we choose s large enough then our rank increasing step succeeds, otherwise r
is already a good approximation of rank(Q(x1, x2, . . . , xm)) by Corollary 5.3. This
leads to the following Algorithm 5.1, which is a natural greedy algorithm and it tries to
increase the current rank as long as it can.

Algorithm 5.1 Greedy algorithm for (1 − ε)-approximating commutative rank

Input: A n × n matrix Q(x1, x2, . . . , xm) = (qij)n×n whose entries qij are homogeneous
polynomials of degree d in the variables x = (x1, x2, . . . , xm). An approximation
parameter 0 < ε < 1.

Output: λ1, λ2, . . . , λm ∈ F such that rank(Q(λ1, λ2, . . . , λm)) ≥ (1 − ε) rank(Q(x1, x2,
. . . , xm)).

1: ` ← ⌈dε − 1⌉
2: λ ← (λ1, λ2, . . . , λm) such that rank(Q(λ1, λ2, . . . , λm)) ≥ 2` + 2
▷ This is just to satisfy the condition d + 1 ≤ s ≤ ⌊ r2⌋ − 1 assumed in Corollary 5.3.

3: while Rank is increasing do
4: Check if there exist (µ1, µ2, . . . , µm) ∈Hm,nd,` such that

rankQ(µ1 + λ1, µ2 + λ2, . . . ., µm + λm) > rank(Q(λ1, λ2, . . . , λm)).
5: if rank(Q(µ1 + λ1, µ2 + λ2, . . . ., µm + λm)) > rank(Q(λ1, λ2, . . . , λm)) then
6: λ ← λ + µ
7: end if
8: end while
9: return λ

Theorem 5.9 (Theorem 5.1 restated). Algorithm 5.1 runs in time

O((mnd)
d
ε + (md

2

ε
)

2d2

ε
+2d) ⋅ n ⋅M(n))
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and returns λ1, λ2, . . . , λm ∈ F such that

rank(Q(λ1, λ2, . . . , λm)) ≥ (1 − ε) rank(Q(x1, x2, . . . , xm)).
Here M(n) is the time required to compute the rank of an n × n matrix over F.

Proof. Let (λ1, λ2, . . . , λm) be the assignment returned by Algorithm 5.1 and r = rank(Q(λ1,
λ2, . . . , λm)). We have `=⌈dε − 1⌉. We know that homi(M) = 0 for i ∈ [`], otherwise
Line 4 would succeed in increasing the rank of Q(λ1, λ2, . . . , λm). Here M is the matrix
defined in Corollary 5.1. By using Corollary 5.3, we obtain that rank(Q) ≤ r (1 + d

`−d+1).

Thus r ≥ (1 − d
`+1) rank(Q). By using `=⌈dε − 1⌉, we know that ` + 1 ≥ d

ε . Therefore
r ≥ (1 − ε) rank(Q).

The desired running time can also be proved easily. By using Lemma 5.2 onHm,d(2`+2),d(2`+2),

the running time of Line 2 is O((md`)2d`+2d ⋅M(n)). The outer while loop runs at most
n times, thus the total running time is at most n times the running time of one itera-
tion. The running time of one iteration is bounded by O((m`(nd + 1)`M(n)). Thus the
claimed bound on total running time follows.

5.6 A PTAS for general degree d polynomials

We have demonstrated a PTAS above for the rank of an n × n matrix Q(x1, x2, . . . , xm)
whose entries are homogeneous degree d polynomials in the variables x1, x2, . . . , xm. But
entries being homogeneous polynomials is not a restriction. Here we show that even
if the entries of Q are general degree d polynomials, we can still use our algorithm to
approximate the rank of Q. For a polynomial f ∈ F[x1, x2, . . . , xm] of degree at most d,
the homogenization fH of f is a homogeneous polynomial of degree d in F[x1, x2, . . . ,
xm, y]. More specifically, fH is defined as fH ∶= ∑di=0 homi(f) ⋅ yd−i. We can extend this
definition to matrix polynomials in the obvious way. More precisely, the homogenization
QH(x1, x2, . . . , xm, y) of a given matrix polynomial Q(x1, x2, . . . , xm) is defined as
(QH)ij ∶= (Qij)H . Thus to homogenize a matrix, we just homogenize all its entries.

Lemma 5.12. If Q(x1, x2, . . . , xm) is matrix with its entries being polynomials of degree
at most d in the variables x1, x2, . . . , xm and ∣F∣ > dn + 1 then rank(Q) = rank(QH).

Proof. Clearly, rank(Q) ≤ rank(QH) because QH(x1, x2, . . . , xm,1) = Q(x1, x2, . . . , xm).
Now suppose that rank(QH) = r. Thus there exists a non-zero r × r minor Mr of QH .
Notice that Mr is a homogeneous polynomial of degree at most rd ≤ nd in the variables
x1, x2, . . . , xm, y. Thus by using the Schwartz-Zippel lemma [184, 164], there exist scalars
(λ1, λ2, . . . , λm, µ) ∈ Fm+1 with the property that Mr(λ1, λ2, . . . , λm, µ) ≠ 0. Here µ can
be assumed to be non-zero as ∣F∣ > dn + 1. Since Mr is homogeneous, µ ≠ 0 and Mr(λ1,
λ2, . . . , λm, µ) ≠ 0, we get that Mr (λ1µ ,

λ2
µ , . . . ,

λm
µ ,1) ≠ 0. Thus Mr would be a non-zero

minor in Q as well. Hence rank(Q) ≥ rank(QH). Therefore rank(Q) = rank(QH).
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This part is the result of close collaboration with Markus Bläser, Christian
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article titled On the Orbit Closure Containment Problem and Slice Rank of
Tensors that appeared in the ACM-SIAM Symposium on Discrete Algorithms,
2021.
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CHAPTER 6

Orbit closure containment problem and
the minrank variety

In this chapter, we consider another special case of the variety membership testing
problem, the orbit closure containment problem, where the variety of interest is the
closure of a given group orbit. Orbit closure containment problem, for a given vector and
a group orbit, asks if the vector is contained in the closure of the group orbit. Recently,
many algorithmic problems related to orbit closures have proved to be quite useful in
giving polynomial time algorithms for special cases of the polynomial identity testing
problem and several non-convex optimization problems. Answering a question posed by
Wigderson [181], we show that the algorithmic problem corresponding to the orbit closure
containment problem for 3-tensors with GLn ×GLn ×GLn action is NP-hard. We show
this by establishing a computational equivalence between the solvability of homogeneous
quadratic equations and a homogeneous version of the matrix completion problem, while
showing that the latter is an instance of the orbit closure containment problem.

6.1 Set-up and results

The problems related to group orbits have been ubiquitous in mathematics and computer
science, both from the perspective of theory and practice. For a group G acting1 on
a vector space V , the orbit of a vector v ∈ V , denoted as Gv, is defined to be the set
{gv ∣ g ∈ G}. That is, the orbit Gv is the set of points that v gets mapped to on the
action of G. The group problem that has received the widest attention in computer
science is the orbit containment problem.

Problem 6.1. Orbit Containment: For a group G acting on a vector space V , and
given two elements u, v ∈ V as inputs, decide if u ∈ Gv.

Thus, it asks if a vector is in the orbit of another vector. This problem is quite general and
captures many problems, for instance the graph isomorphism problem and the module
isomorphism problem. We can see the graph isomorphism problem as an instance of the
orbit containment problem as follows. Suppose we are given two graphs G1 and G2 on
n vertices each, and we want to know if they are isomorphic to each other. This can
be rephrased as whether the adjacency matrix of the graph G1 is in the orbit of the
adjacency matrix of the graph G2, under the action of the permutation group Sn. Here
Sn acts by permuting the rows and columns of the matrix, induced by the permutation
of vertices of the graph corresponding to the matrix. Owing to its generality, the orbit

1When we say a group G acts on the ambient space S, we have a mapping ⋅ ∶ G×S → S that satisfies
the axioms 1 ⋅ s = s and (gh) ⋅ s = g ⋅ (h ⋅ s) for all s ∈ S and g, h ∈ G. Here gh is the group operation.
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containment problem has been very important from the point of view of both algorithm
design as well as complexity theory for decades. While the graph isomorphism problem
remains one of the central algorithmic problem in graph theory, the module isomorphism
problem has been very crucial in cryptography [152, 40, 113, 171, 22, 176].

From the perspective of topology, it is more natural to consider orbit closures instead. For
a group G acting on a vector space V , the orbit closure of v ∈ V , denoted as Gv, is defined
to be the smallest closed subset of V which contains Gv. In the standard Euclidean
topology, this translates to Gv being the smallest superset of Gv which contains the
limit points of all convergent sequences comprising of elements of Gv. In the Zariski
topology, this translates to Gv being the smallest superset of Gv which contains all the
common zeros of the set of polynomials that vanish on all the elements of Gv. In most
of the cases of interest, in particular, when the underlying field is C, the definitions of
Gv obtained by considering the above two topologies, that is, the Euclidean (or analytic)
closure and the Zariski (or algebraic) closure coincide2. Thus we can ask the following
weakening of the orbit containment problem.

Problem 6.2. Orbit Closure containment: For a group G acting on a vector space
V , and given two elements u, v ∈ V as inputs, decide if u ∈ Gv.

This problem is quite general, too, and has appeared centrally in algorithmic and com-
plexity theoretic problems related to algebra and combinatorial optimization, since it
captures problems like border rank of tensors, the null cone problem, and the permanent
versus determinant problem. As an example, to see the border rank problem as an orbit
closure containment problem, let GLn denote the group of all invertible n × n matri-
ces. GLn acts on Fn by the usual matrix-vector multiplication. Gn ∶= GLn ×GLn ×GLn
acts on rank-one tensors u ⊗ v ⊗ w by (A,B,C) ⋅ u ⊗ v ⊗ w = Au ⊗ Bv ⊗ Cw and on
arbitrary tensors by linear continuation. The orbit of a tensor t under Gn is the set
Gnt ∶= {g ⋅ t ∣ g ∈ Gn} and its orbit closure is the closure Gnt in the Zariski topology. It
is well known that the set of all tensors of border rank ≤ r can be written with the help
of an orbit closure [46], namely Grer where er is the so-called unit tensor in Fr×r×r: A
tensor t ∈ Fn×n×n has border rank ≤ r iff t̃ ∈ Grer, where t̃ is an embedding of t into the
larger ambient space Fr×r×r.

The null cone problem is a special case of the orbit closure intersection problem where
vector u is always the 0 vector. That is, we ask the following:

Problem 6.3. Null Cone: For a group G acting on a vector space V , and given v ∈ V
as input, decide if 0 ∈ Gv.

For an example set up of the null cone problem, let us think of a tensor t ∈ Fn×n×m
as a set of m matrices A1, . . . ,Am of size n × n, stacked up on top of each other (also
called slices). The group Γn ∶= SLn × SLn acts on t by simultaneously multiplying each
of the matrices from the left and the right. King [120] showed that the noncommutative
rank of the matrix space given by A1, . . . ,Am is maximal iff 0 ∈ Γnt. (All such tensors
t are said to lie in the null cone.) Garg et al. [80] show how to decide the null-cone
problem in this setting in polynomial time, hence giving a deterministic noncommutative
identity testing algorithm. Ivanyos, Qiao, and Subrahmanyam [114], based on work by
Derksen and Makam [62], give a different algorithm for this problem, which works over

2Unless stated otherwise, we assume the underline field to be C in this paper
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arbitrary characteristic. (Unfortunately, we do not know whether something similar can
be achieved in the commutative setting. More unfortunately, Makam and Wigderson
proved recently that the commutative case cannot be written as a null-cone problem
[140].)

Orbit closure containment problems have played a central role in algebraic complexity
theory in the recent years. On the algorithmic side, orbit closure containment has been
crucial in several advancements in the fast matrix multiplication algorithms due to the
notion of border rank of tensors, see e.g. [26]. On the complexity theoretic side, the
famous permanent versus determinant problem can also be phrased as an orbit closure
containment problem. This is the starting point of the geometric complexity program
initiated by Mulmuley and Sohoni [142]. While all the above mentioned problems
remain far from being completely understood, the interest towards studying algorithmic
problems related to orbit closures has seen a rise in the past few years. Thanks to the
sequence of works connecting several areas of mathematics, combinatorial optimization,
and complexity theory, many special instances of the orbit closure containment problem,
in particular the null cone problem, have proved to be useful in giving polynomial
time algorithms for special cases of the polynomial identity testing problem and several
non-convex optimization problems. See [48, 82, 79, 47, 50, 9, 81, 49, 80] for details.

As a result, Wigderson in his invited talk in CCC’17 posed the orbit containment problem,
the orbit closure containment problem and the null cone problem to the community [181].

While there has been a lot progress recently towards the null cone problem and we
have efficient algorithms in many setups, most of the instances of the orbit closure
containment problem is not understood from the algorithmic perspective. In particular,
we neither know the NP-hardness nor a polynomial time algorithm for the tensor border
rank problem. This is in contrast to the tensor rank problem, where we know the NP-
completeness for 30 years now. Similarly, we currently do not know whether it is hard
to test whether a polynomial lies in the orbit closure of the determinant, which is an
algebraic variant of the so-called minimum circuit size problem. The main challenge for
proving hardness or getting an algorithm for the problems related to orbit closure is that
it is difficult to get a hold on how the closure will behave.

6.1.1 Results, methods and relation to previous works

We make progress on the above Problem 6.2, that is, the orbit closure containment
problem, by showing its NP-hardness, while we observe an upper bound for Problem 6.1,
that is. the orbit containment problem.

Orbit closure containment problem

Our first contribution is that we rule out the possibility of an efficient algorithm for
the general case of the orbit closure containment problem under the assumption that
P ≠ NP, answering a question posed by Wigderson. We do so by showing that testing
whether a 3-tensor t lies in the orbit closure of another 3-tensor t′ under the group action
GLk ×GLm ×GLn is NP-hard.
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Theorem 6.1. Given two tensors t and t′, deciding whether the orbit closure of t is
contained in the orbit closure of t′ (under the usual GLk ×GLm ×GLn action) is NP-hard.

We show this by defining a quantity called minrank (see Section 6.2 and Section 6.4) and
proving that deciding whether the minrank is bounded by some given bound b can be
phrased as an orbit closure containment problem. We then show that it is an NP-hard
question (see Section 6.2.1) by showing that it is polynomial time equivalent to the
solvability of homogeneous quadratic equations. Since the solvability of homogeneous
quadratic equations is NP-hard, we get that the orbit closure containment is NP-hard
as well.

This is in contrast to the recent results on the null cone problem, for which polynomial
time algorithms have been discovered for several group actions. Since the null cone has
equivalent characterizations via invariant theory, we have more tools there. On the other
hand, for the orbit closure containment problem corresponding to a group action, no
such characterization is available, and we need to understand the corresponding orbit
closure better. Unfortunately, in most of the interesting settings, our understanding of
the closure of the set is in quite limited. For instance, we do not understand the tensor
border rank well, neither do we understand the closures of algebraic complexity classes.
Thus, the main challenge is to find a set up where one has a good control over the orbit
closure. In this work, we find one such set up.

The initial inspiration of the set up that we find is the NP-hardness of the completion
rank and the border completion rank [31]. Let us briefly look at those notions.

We can phrase the matrix completion problem as a problem on tensors or on tuples of
matrices. Many variants of matrix completion problem has been studied in the literature.
In its most general form, we are given a tuple of n × n matrices (A1,A2, . . . ,Am). We
can view (A1,A2, . . . ,Am) as a tensor in Fn×n×m with slices A1, . . . ,Am of size n × n,
stacked up on top of each other. Then the matrix completion problem can be phrased
as follows:

Problem 6.4. Matrix Completion: Given a tensor t as a tuple of n × n-matrices
(A1,A2, . . . ,Am), and a number r, decide if there exist λ2, . . . , λm ∈K such that rk(A1 +
λ2A2 + ⋅ ⋅ ⋅ + λmAm) ≤ r.
Here rk denotes the usual matrix rank. The minimum achievable value of r above is
called the completion rank of t. Matrix completion has many applications, for instance,
in machine learning and network coding, we here just refer to [153, 102, 100], which
contain relevant hardness results. When we consider minimization, the problem is NP-
hard, even when the resulting matrix has rank 3 [153]. When we consider maximization,
then the problem is NP-hard over finite fields [102]. Over large enough fields, there is a
simple randomized polynomial time algorithm that simply works by plugging in random
elements from a large enough set. The correctness of this algorithm follows from the
well-known Schwartz-Zippel lemma.

In [31], it is shown that given t and a bound r, deciding whether the completion rank of
t is bounded by r is NP-hard. Furthermore—and this is the interesting case here—even
testing whether t is in the closure of the set of all tensors of completion rank ≤ r is
NP-hard. The smallest r such that this is the case, is called the border completion rank.
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It is shown in [31] that given t and a bound r, deciding whether the border completion
rank of t is bounded by r is NP-hard. Thus, completion rank is one of the rare examples
where we understand the border well. Thus the hope was to exploit this understanding.

However, the above result could not help us simply because the border completion rank
problem cannot be phrased as an interesting orbit closure problem. We overcome this
challenge by defining a homogeneous version of matrix completion problem, which we
call as the minrank problem, where, in contrast to the completion rank, we allow any
nontrivial linear combination of the slices.

Problem 6.5. Minrank: Given A1, . . . ,Ak of the same size m × n and a number r,
decide whether there exists a nonzero linear combination x1A1 + ⋅ ⋅ ⋅ + xkAk with rank at
most r. The smallest r for which the answer is YES is called the minrank of A1, . . . ,Ak.

Here again, instead of thinking of a tuple of matrices, we can also view A1, . . . ,Ak as a
tensor in Fk×m×n with A1, . . . ,Ak being its slices. We will use both views in this paper.
We show that the obtained homogeneous version of the problem can indeed be phrased
as an orbit closure containment problem. For this, we first show that the set of matrix
tuples (or tensor) with minrank at most r is a Zariski closed set by showing that the set
can be viewed as a projective variety. Next, in order to show that we can phrase the
minrank problem as an orbit closure problem, we give an explicit tensor Tk,n,r such that
every tensor (or matrix tuple) with minrank at most r lies inside the orbit closure of this
tensor Tk,n,r. We now elaborate on the above.

For a tensor T ∈ Fk×m×n given as e1 ⊗A1 + ⋅ ⋅ ⋅ + ek ⊗Ak (indicating that A1,A2, . . . ,Ak
correspond to different slices of T ) and a linear form x ∈ (Fk)∗, we define the contraction
Tx by Tx ∶= x(e1)A1+⋅ ⋅ ⋅+x(ek)Ak, where x(ei) denotes the i-th coordinate of x. That is,
we form a linear combination of the slices. If we take the set of all (T,x) with rk(Tx) ≤ r
and x /= 0 and project on the first component, we get all tensors of minrank at most r.
Since the set of all such (T,x) is invariant under scaling of T or x by nonzero factors, it
also defines a projective variety, and the projection on the first component is a projective
variety, too (see Section 6.4 for more details). So we are in the nice situation where
the set of all tensors of minrank at most r is Zariski closed (Theorem 6.9). Thus we do
not need an additional border complexity measure, i. e., minrank and border minrank
coincide. This is different to the situation with completion rank and border completion
rank or tensor rank and border rank. We denote the corresponding variety of all tensors
T ∈ U ⊗ V ⊗W of minrank at most r by MU⊗V ⊗W,r or just Mr when the tensor space
is clear from the context.

Next, we want to write the minrank varietiesMU⊗V ⊗W,r as orbit closures. Note that we
can always embed a tensor T ∈ U ⊗ V ⊗W into a larger ambient space U ⊗L⊗L, where
V and W are subspaces of L, by filling the new entries with zeros. (This process is called
padding.) We then show (Corollary 6.3), thatMU⊗V ⊗W,r is the GL(U)×GL(L)×GL(L)-
orbit closure of the tensor

Tk,n,r = e1 ⊗ (∑rj=1 e1j ⊗ e1j) +∑ki=2 ei ⊗ (∑nj=1 eij ⊗ eij)
intersected with the ambient space U ⊗ V ⊗W (here k = dimU , n = dimL). This means
that we can reduce the question whether a tensor has minrank at most r to the question
whether it is contained in the orbit closure of Tk,n,r.
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Now, one might hope that the proof of hardness of border completion rank in [31] can
be adapted to the homogeneous setting. However, unfortunately, this NP-hardness proof
breaks down in the homogeneous setting since the hard instance in this proof critically
used the fact that we are in the affine setting, since A1 was a matrix that had rank
linear in the input size whereas all other matrices had the same, constant rank. Thus the
hardness proofs do not work in the homogeneous setting, since all instances created in
the proofs trivially have the same minrank. Thus, we need to do something completely
different. We solve the problem by showing the equivalence of solvability of homogeneous
quadratic equations and the minrank problem, hence establishing the NP-hardness of
the minrank problem. In fact, it turns out that even deciding whether the minrank is
≤ 1 is already NP-hard. Thus, we get that the orbit closure containment problem in
NP-hard as well. See Section 6.2.1 for details.

When the underlying field is the set of real numbers, and we are taking the Euclidean
closure, then we can say something more about the orbit closure containment problem.
In Section 6.3.1, we show the equivalence of the orbit closure containment problem and
the existential theory over reals (see [161]) in this case.

Theorem 6.2. The (Euclidean) orbit closure containment problem over the reals is
polynomial-time equivalent to the existential theory over the reals.

For the tensor rank problem, such an equivalence with the existential theory over reals
was recently established by Shitov [168].

Orbit Containment Problem

We also show an upper bound for the algorithmic problem of the orbit containment
problem in Section 6.5 by reducing it to the solvability of polynomial equations. Since
the solvability of polynomial equations is known to be in the complexity class AM3,
assuming the generalized Riemann hypothesis (GRH), by a result of Koiran [122], we
deduce that over the field of complex numbers, the orbit containment problem can be
shown to be in the complexity class AM under the same assumption.

Theorem 6.3. Over C, orbit containment problem ∈ AM, assuming the generalized
Riemann hypothesis.

6.1.2 Organization of the chapter

We give the algorithmic hardness of the minrank problem in Section 6.2. In Section 6.4,
we show that the minrank problem is an instance of the orbit closure containment
problem. Combining the above two, we conclude that the NP-hardness of the orbit
closure containment problem in Corollary 6.2. We discuss the case when the underlying
field is R in Section 6.3.1, showing an equivalence between the orbit closure containment
problem and the existential theory over reals. We finally close with an algorithmic upper
bound in the case of orbit containment problem in Section 6.5.

3AM refers to the complexity class containing the set of decision problems decidable in polynomial
time by an Arthur-Merlin protocol with 2 messages. It is contained in the complexity class Π2P, and is
hence contained in the second level of polynomial hierarchy. See [15] for details.
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6.2 Complexity of the minrank problem

We consider the following problem: given a tuple of matrices A1, . . . ,Ak of the same size
m×n and a number r, does there exist a nonzero linear combination x1A1+⋅ ⋅ ⋅+xkAk with
rank at most r? This is a homogeneous variant of the generalized matrix completion
problem considered in [31], where instead of a linear combination we have an affine
expression A0+x1A1+⋅ ⋅ ⋅+xkAk. A restricted variant of this problem was first considered
in [53], where it is proven that the problem is NP-hard. The related problem of low rank
matrix completion is widely studied in optimization.

Clearly, the answer depends on the field from which we take the coefficients of the linear
combination. For example, the pair of matrices

A1 = [1 0
0 1

] , A2 = [ 0 1
−1 0

]

does not have any nontrivial linear combinations of rank 1 over R, but over C we have
rk(A1 + iA2) = 1. We will mostly work over algebraically closed fields such as C, but
many results are also true over other fields.

Let F be a field. Instead of talking about matrices A1, . . . ,Ak ∈ Fm×n, we can also phrase
the homogeneous minrank problem in terms of a linear subspace ⟨A1, . . . ,Ak⟩, a matrix
of linear forms A∶ Fk → Fm×n where A(x) = ∑ki=1 xiAi or a tensor T ∈ Fk ⊗ Fm ⊗ Fn such
that T = ∑ ei ⊗Ai. We will mainly use the tensor language.

Recall the definition of minrank.

Definition 6.1. Let U,V,W be finite-dimensional vector spaces over some field F. The
minrank of a tensor T ∈ U ⊗ V ⊗W is the minimal number r such that there exists a
nonzero x ∈ U∗ with rk(Tx) = r.

Let S be a finite or countable subset of F.

Problem 6.6. (HMinRankS,F) Given a tensor T ∈ Fk×m×n with all components in S
and a number r, decide if the minrank of T is at most r.

In Section 6.2.1 we will prove that this problem is NP-hard. Moreover, it is hard even
when r is fixed to one.

Problem 6.7. (HMinRank1S,F) Given a tensor T ∈ Fk×m×n with all components in S,
decide if the minrank of T is at most 1.

6.2.1 Equivalence of minrank and solvability of quadratic equations

In this section we prove NP-hardness of HMinRank by reducing it to the following
problem:

Problem 6.8. (HQuadS,F) Given a set of quadratic forms with coefficients from S,
represented by lists of coefficients, determine if it has a nonzero common zero over F.

To implement the reduction, we need to perform linear algebra computations with
elements of the field.
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Definition 6.2. An effective field is a finite or countable field F with a binary encoding
of elements of F such that the following operations can be performed in time polynomial
in the length of the encoding of arguments:

• multiplication and addition of two elements over F,

• multiplication of an arbitrary number of matrices over F,

• equality comparison of two elements of F,

• division of two elements of F (if the denominator is zero, the algorithm should
fail).

Furthermore, we want that polynomial identity testing is in BPP, that is, there is a
BPP-machine that given an algebraic circuit computing a polynomial over F, decides
whether this polynomial is identically zero.

In our paper, we usually deal with polynomials over uncountable fields like C. In the
algebraic complexity setting, this is no problem. However, when we want to compute
with Turing machines, we have to restrict ourselves to appropriate subfields. This is
modelled by effective fields. In particular, Q is effective and the natural effective subfield
of R and Q+iQ is a natural choice for C. Finite fields are effective, when we drop the last
condition about identity testing, which we only need in the second part of this section.

Efficient multiplication of several matrices implies that products and linear combina-
tions of elements can also be computed in polynomial time. It also allows for various
polynomial-time linear algebra procedures. In particular, we are interested in the follow-
ing:

Theorem 6.4. For an effective field K there is a polynomial time algorithm which, given
a matrix A over K, computes a basis of KerA.

Proof. Determinants of matrices over an effective field are computable in polynomial
time, because determinant can be represented as an iterated matrix multiplication of
polynomial size (see e. g. [111]). This allows computing the inverse of a nonsingular
matrix. Also, we can find one of the maximal nonzero minors of a given nonzero matrix,
by starting from any nonzero entry and trying to enlarge the minor by checking all rows
and columns at each step. We can then compute the basis of the kernel by basic linear
algebra.

Hillar and Lim [107, Thm. 2.6] proved that HQuad is NP-hard over the fields R and C.
Their proof also works for any field of characteristic different from 3 containing cubic
roots of unity. The NP-hardness for arbitrary fields was proven by Grenet, Koiran and
Portier in [91]. We give another proof for arbitrary fields based on the idea of Hillar
and Lim. Compared to [91], we describe a general construction for all fields instead of
treating characteristic 2 as a special case, and only use coefficients from {−1,0,1}.

Theorem 6.5. HQuad{0,1,−1},F is NP-hard for any field F.

Proof. We reduce from graph 3-colorability.
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Given a graph G = (V,E), we will construct a system of quadratic homogeneous equation,
solutions of which correspond to colorings of the graph. The set of variables consists of
two variables xv and yv for each vertex v ∈ V and one additional variable z. Consider a
system of homogeneous quadratic equations which contains for each vertex v the three
equations

xvyv = 0

x2v − xvz = 0

y2v − yvz = 0

and for each edge (v,w) ∈ E the equation

x2v + y2v + x2w + y2w − xvyw − xwyw − z2 = 0

If z = 0, then from vertex equations we deduce xv = yv = 0 for all v ∈ V . Therefore, a
nontrivial solution must have nonzero z. We can scale it so that z = 1. When z = 1,
the vertex equations give (xv, yv) ∈ {(0,0), (0,1), (1,0)}. Restricted to these values, the
left-hand side of the edge equation has the following values:

v
w (0,0) (0,1) (1,0)

(0,0) −1 0 0

(0,1) 0 1 0

(1,0) 0 0 1

That is, the edge equation forces the tuples (xv, yv) and (xw, yw) to be different. Thus,
nontrivial solutions with z = 1 are in one-to-one correspondence with colorings of the
graphG into three colors, given by the three possible solutions of the vertex equations.

Theorem 6.6. Let F be a field and K be an effective subfield of F. Then HMinRank1K,F
is polynomial-time equivalent to HQuadK,F.

Proof. To reduce from HMinRank1 to HQuad, note that the condition rk(Tx) ≤ 1
can be expressed by homogeneous quadratic equations on x, namely, vanishing of 2 × 2
minors of the matrix of linear forms Tx.

Now we describe the reduction from HQuad to HMinRank1. Let k be a number of
given quadratic forms and n be the number of variables. Each quadratic form q(x) =
∑1≤i≤j≤n aijxixj on Fn corresponds to a linear form Q(X) = ∑1≤i≤j≤n aijxij on the space

Sym2Fn ⊂ Fn ⊗ Fn of symmetric matrices, and a vector x is a zero of q if and only if
x⊗x is a zero of Q. Therefore, a set of k linear forms on Fn corresponds to a linear map
L∶Sym2Fn → Fk given by a matrix consisting from the coefficients of quadratic forms,
and x is a common zero if and only if x⊗x is contained in KerL. Since all the coefficients
lie in K, the map L is an extension of a linear map Sym2Kn → Kk, and its kernel has
a basis consisting of vectors in Sym2Kn, which, by Theorem 6.4, can be computed in
polynomial time. Let A1, . . . ,Am be such basis and T = ∑mi=1 ei ⊗Ai ∈ Km ⊗Kn ⊗Kn.
Nontrivial common zeros x ∈ Fn of the original set of quadratic forms corresponds to rank
1 symmetric matrices x⊗ x which can be presented as a nontrivial linear combination
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∑mi=1 yiAi with yi ∈ F or, equivalently, as a contraction Ty with nonzero y ∈ Fm. This is
the resulting instance of HMinRank1 problem.

Corollary 6.1. Let F be a field and K be an effective subfield of F. Then HMinRank1K,F
is NP-hard.

The HMinRank problem is also hard in other regimes.

Theorem 6.7. Let F be a field of characteristic 0 and K be an effective subfield of F.
Then HMinRankK,F is NP-hard for n × (2n + 1) × (2n + 1) tensors and r = n + 1.

Proof. The proof is based on a similar theorem for finite fields is sketched in [59, S3.3],
which uses the NP-completeness of the minimum distance problem for linear codes proved
in [180].

We reduce from a variant of the Subset Sum problem: given a set of 2n integers, and
a number S, determine if a subset of these integers sum up to S. NP-completeness of
this variant is noted in [78, SP13].

From the input {a1, . . . , a2n} of the Subset Sum problem, construct a (n+ 1)× (2n+ 1)
matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 . . . 1 0
a1 a2 . . . a2n 0
a21 a22 . . . a22n 0
⋮ ⋮ ⋱ ⋮ ⋮

an−21 an−22 . . . an−22n 0
an−11 an−12 . . . an−12n 1
an1 an2 . . . an2n S

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
From the properties of Vandermonde determinants we see that any (n+1)×(n+1) minor
is nonzero if it does not contain the last column. If a minor does contain the last column
and columns i1, . . . , in, it vanishes if and only if S = ai1 + ⋅ ⋅ ⋅ + ain [180, Lem. 1].

Thus, the matrix A has rank n + 1. Moreover, it has n + 1 linearly dependent columns if
and only if the original Subset Sum problem has a solution.

Let b1, . . . , bn be a basis of KerA. Since subsets of k linearly dependent columns cor-
responds to vectors in KerA which have at most k nonzero coordinates, the original
problem has a solution if and only if there is a nonzero linear combination of bi with at
most n + 1 nonzero coordinates.

Let Bi be a (2n + 1) × (2n + 1) matrix constructed from bi by placing its coordinates on
the diagonal. The rank of a linear combination of Bi is equal to the number of nonzero
coordinates in the corresponding linear combination of vectors bi. Thus, the answer to
the HMinRank problem for the n × (2n + 1) × (2n + 1) tensor ∑ni=1 ei ⊗Bi and r = n + 1
determines the answer to the original problem.
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6.3 Complexity of the orbit closure containment problem

Thus, Theorem 6.6 proves that the homogeneous minrank problem is computationally
equivalent to the solvability of homogeneous quadratic equations. This, combined with
the fact that the minrank problem can be phrased as an orbit closure containment
problem (Section 6.4), proves that the orbit closure containment problem (“w ∈ Gv”) is
at least as hard as the solvability of homogeneous quadratic equations. In particular,
the orbit closure containment problem is NP-hard.

Corollary 6.2 (Theorem 6.1 restated). Given two tensors t and t′, deciding whether the
orbit closure of t is contained in the orbit closure of t′ (under the usual GLn ×GLn ×GLn
action) is NP-hard.

6.3.1 Orbit closure containment and existential theory over reals

Over the reals, we can say even more, when closure means Euclidean closure. Let ETR
denote the problem of the existential theory over the reals, ETR is the set of true
sentences of the form ∃x1, . . . , xn ∶ φ(x1, . . . , xn), where φ is a quantifier-free Boolean
formula over the signature 0, 1, + ∗, <, = interpreted in the intended way over the real
numbers. w being in the orbit closure can be expressed by

∀ε > 0∃g ∈ G ∶ det(g) /= 0 ∧ ∣∣w − gv∣∣22 < ε.
Except for the first quantifier, this is a statement in ETR. By the results of Grigoriev
and Vorobjov [92], see also [19, Thm 3.15], this universal quantifier can be removed and
ε can be replaced by a double exponentially small constant, which can be expressed in
ETR.

On the other hand, we can also reduce ETR to orbit (Euclidean) closure containment over
the reals. By results of Schaefer [161, Cor. 3.10], Hilbert’s Homogeneous Nullstellensatz
H2N over the reals is equivalent for ETR. In Schaefer’s construction all equations
have degree two except for one, which has degree four. However, it is easy to see that
the degree of this equation can be reduced to two, too, see [162]. Therefore, from our
reduction in Theorem 6.6, it follows that orbit closure containment over the reals is
computationally equivalent to ETR.

Theorem 6.8 (Theorem 6.2 restated). The (Euclidean) orbit closure containment prob-
lem over the reals (with coefficients computable by polynomial-size circuits) is polynomial-
time equivalent to the existential theory over the reals ETR.

Since the minrank problem can be phrased as an orbit closure containment problem
when we have the action of GLn ×GLn ×GLn on 3-tensors (as shown in Section 6.4), the
above equivalence between orbit closure containment problem and ETR still holds if
one restricts the orbit closure containment problem to the tensor action.

6.4 Minrank as an orbit closure containment problem

In this section, we show that over algebraically closed fields, the answer to the homoge-
neous minrank problem is determined by membership in a certain orbit closure.
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We first show that the set of tensors with minrank at most r is Zariski closed.

Theorem 6.9. Let U , V , W be vector spaces over an algebraically closed field F. The
set of all tensors T ∈ U ⊗ V ⊗W with minrank at most r is Zariski closed.

Proof. Define an affine variety

XU⊗V ⊗W,r = {(T,x) ∈ (U ⊗ V ⊗W ) ×U∗ ∣ rk(Tx) ≤ r}.
Since the condition rk(Tx) ≤ r is scale-invariant with respect to both T and x, we can
define the corresponding projective variety

PXU⊗V ⊗W,r = {([T ], [x]) ∈ P(U ⊗ V ⊗W ) × PU∗ ∣ rk(Tx) ≤ r} ⊂ P(U ⊗ V ⊗W ) × PU∗

Let π∶P(U ⊗V ⊗W ) ×PU∗ → P(U ⊗V ⊗W ) be the projection onto the first component
of the product. Consider the image of PXU⊗V ⊗W,r under π:

πPXU⊗V ⊗W,r = {[T ] ∈ P(U ⊗ V ⊗W ) ∣ ∃x ≠ 0∶ rk(Tx) ≤ r}.
As an image of a projective variety, it is a closed subvariety of P(U ⊗ V ⊗W ) (see
e. g. [165, Thm. 1.10]). The affine cone over this subvariety is therefore also closed. This
affine cone is exactly the set of tensors of minrank at most r.

Definition 6.3. We call the projective variety

PMU⊗V ⊗W,r = {[T ] ∈ P(U ⊗ V ⊗W ) ∣ ∃x ≠ 0∶ rk(Tx) ≤ r}
the projective minrank variety, and the corresponding affine cone

MU⊗V ⊗W,r = {T ∈ U ⊗ V ⊗W ∣ ∃x ≠ 0∶ rk(Tx) ≤ r}
the affine minrank variety, or just the minrank variety. We omit the index U ⊗ V ⊗W
if it is clear from context.

Some simple properties of minrank varieties follow directly from the definition:

Lemma 6.1. Let V ′ and W ′ be subspaces of V and W respectively. Then

MU⊗V ′⊗W ′,r =MU⊗V ⊗W,r ∩ (U ⊗ V ′ ⊗W ′).

Proof. Trivial. A tensor lies inMU⊗V ′⊗W ′,r iff it is an element of the space U ⊗V ′⊗W ′

and has minrank at most r, i. e., lies in MU⊗V ⊗W,r.

Lemma 6.2. Let dimU = k, dimV = n and dimW > s = n(k − 1) + r. Then

MU⊗V ⊗W,r = ⋃
W ′⊂W

dimW ′=s

MU⊗V ⊗W ′,r.

Proof. Let T be a tensor in MU⊗V ⊗W,r and x1 be a nonzero vector in U∗ such that
rk(Tx1) ≤ r. Choose x2, . . . , xk such that {xi} is a basis of U∗ and set Ai = Txi ∈ V ⊗W .
Since rkA1 ≤ r, there exists a subspace W1 ⊂ W of dimension at most r such that
A1 ∈ V ⊗W1. Analogously, for i > 1 we have Ai ∈ V ⊗Wi for some subspace Wi ⊂W of
dimension at most n. The sum W ′ of all Wi is a subspace of dimension at most s. We
extend it to dimension s in arbitrary way if needed. The tensor T lies in U ⊗ V ⊗W ′

and, therefore, in MU⊗V ⊗W ′,r.
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Lemma 6.3. The varietyMU⊗V ⊗W,r is invariant under the standard action of GL(U)×
GL(V ) ×GL(W ) on U ⊗ V ⊗W .

Proof. Straightforward. If rk(Tx) ≤ r, then (F ⊗G ⊗H)T ⋅ (Fx) = (G ⊗H)(Tx) also
has rank at most r (here Fx denotes the dual action of GL(U) on U∗).

6.4.1 Minrank varieties and orbit closures

The minrank varieties are related to orbit closures of some tensors. Let L = (Fn)⊕(k−1)⊕Fr
be a vector space of dimension s = n(k−1)+r decomposed into k summands of dimension
n each, except the first one, which is of dimension r. Let Li be the i-th summand and
denote the standard basis of Li by eij , 1 ≤ j ≤ dimLi. Let U = Fk be a k-dimensional
space with a standard basis ei. Define the tensor Tk,n,r ∈ U ⊗L⊗L as

Tk,n,r = e1 ⊗ (
r

∑
j=1

e1j ⊗ e1j) +
k

∑
i=2
ei ⊗ (

n

∑
j=1

eij ⊗ eij),

that is, the first slice of Tk,n,r consists of an r × r identity matrix at the top-left corner,
with zero everywhere else. Whereas, for i > 1, the i-th slice of Tk,n,r is a block diagonal
matrix, whose only nonzero block is the i-th block, which is an identity matrix of size
n × n.

The group GLk ×GLs ×GLs acts in a usual way on U ⊗L⊗L. The minrank varietyMr

can be defined using the orbit closure of Tk,n,r:

Theorem 6.10. Let V be an n-dimensional subspace of L. Then

MU⊗V ⊗L,r = (GLk ×GLs ×GLs)Tk,n,r ∩ (U ⊗ V ⊗L).

Proof. We have Tk,n,r ∈ MU⊗L⊗L,r. Since the minrank variety is invariant, the entire
orbit (GLk ×GLs ×GLs)Tk,n,r lies in it. Since the minrank variety is Zariski closed, it also

contains the orbit closure. By Lemma 6.1 we have (GLk ×GLs ×GLs)Tk,n,r∩(U⊗V ⊗L) ⊂
MU⊗V ⊗L,r.

Conversely, let T ∈ MU⊗V ⊗L,r. We can write T as ∑ki=1 ui ⊗Ai where {ui} is some basis
of U and A1 is a slice with rk(A1) ≤ r.

Since rk(A1) ≤ r, it can be presented as (P1 ⊗Q1)(∑rj=1 e1j ⊗ e1j) where P1∶L1 → V and
Q1∶L1 → L are some linear maps. Analogously, for i > 1 we have rk(Ai) ≤ dimV = n
and Ai = (Pi ⊗Qi)(∑nj=1 eij ⊗ eij) for some Pi∶Li → V and Qi∶Li → L. Let P ∶L → V
and Q∶L → L be the linear maps which are equal to Pi and Qi respectively when
restricted to Li. Let R∶U → U be the map sending each ei to the corresponding ui. Then
T = (R⊗ P ⊗Q)Tk,n,r. The closure of GL(L) consists of all linear endomorphisms of L

and thus contains P and Q. Therefore, T lies in the closure (GLk ×GLs ×GLs)Tk,n,r.

Corollary 6.3. Let dimU = k and dimV = n. Suppose V and W are subspaces of a
vector space L of dimension s = (k − 1)n + r. Then

MU⊗V ⊗W,r = (GL(U) ×GL(L) ×GL(L))Tk,n,r ∩ (U ⊗ V ⊗W ).
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6.5 Complexity of the orbit containment problem

The orbit containment problem (“w ∈ Gv”) can be phrased as a polynomial systems
of polynomial size by simply writing out the equations of gv for some generic g, and
therefore can reduced to the problem Hilbert’s Nullstellensatz HN. To ensure that
det(g) /= 0, we can use a poly-size circuit for det to encode zdet(g) = 1 as a poly-size
system of equations, where z is a new variable. Thus, we have the following theorem.

Theorem 6.11. Let F be a field and K be an effective subfield. Then the orbit contain-
ment problem over F (with coefficients from K) is polynomial-time reducible to Hilbert’s
Nullstellensatz HN over F (with coefficients from K).

By the results of Koiran [122], the above theorem implies that the orbit containment prob-
lem over the complex numbers is in AM assuming the generalized Riemann hypothesis
(GRH), since Koiran’s result also assumes GRH.
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CHAPTER 7

Membership in the slice rank variety

In this chapter, we consider the notion of slice rank of tensors, which was recently
introduced by Tao [174], and has subsequently been used for breakthroughs in several
combinatorial problems like capsets, sunflower free sets, tri-colored sum-free sets, and
progression-free sets. We show that the corresponding algorithmic problem, which can
also be phrased as a problem about union of orbit closures, is also NP-hard, hence
answering an open question by Bürgisser, Garg, Oliveira, Walter, and Wigderson [49].
We show this by using a connection between the slice rank and the size of a minimum
vertex cover of a hypergraph revealed by Tao and Sawin.

7.1 Set-up and results

The notion of slice rank was first used implicitly by Croot, Lev, and Pach in their
application of the so-called polynomial method in their breakthrough work on progression-
free sets, also known as capsets [60]. Later Tao [174] gave a symmetrized formulation
of this method and used slice rank explicitly. The term “slice rank”, however, was first
used by Blasiak et al. [35], who used the term for the notion that Tao introduced. They
used this notion to extend the results on capsets and obtained some barrier results on
the group-theoretic approach to the matrix multiplication, hence making slice rank quite
important from the perspective of algorithm design. Tao and Sawin [175] explored the
slice rank of tensors systematically. The methods based on slice rank have been very
useful in advancement of several combinatorial problems like the sunflowers free sets, the
tri-colored and multi-colored sum-free sets, the capsets and the progression-free problem,
and multiplicative matching in nonabelian groups (see, for instance, [67, 146, 134, 157]).
Finally, upper bounds on slice rank can be used to lower bound the matrix-multiplication
exponent achievable by the so called universal method (which generalizes many known
methods), and thus the computation of slice rank is interesting for analyzing the scope
of the methods for finding fast matrix multiplication algorithms. See, for example, [11,
Section 5].

We now describe the notion of slice rank and then the corresponding computational
problem. For this, we consider the space V1 ⊗ V2 ⊗ V3. It can also be written as ⊗3

i=1 Vi,
and is generated by the decomposable (also called rank-one) tensors v1 ⊗ v2 ⊗ v3, where
vi ∈ Vi. The usual tensor rank is the minimum number of decomposable tensors that
is needed to write a given tensor as a sum of decomposable tensors. The slice rank is
defined in a similar manner, however, the basic building blocks are not decomposable
tensors but tensors that can be decomposed into a matrix and a single vector. More
formally, consider the smaller tensor products ⊗1≤i≤3∶i≠j Vi and the j-th tensor products
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⊗j ∶ Vj ×⊗1≤i≤3∶i≠j Vi →⊗3
i=1 Vi with its natural definition. Now the rank one functions

are the elements of the form vj ⊗j vĵ for some vj ∈ Vj and vĵ ∈ ⊗1≤i≤3∶i≠j Vi. The slice rank

(or srk for short) of a tensor T ∈ ⊗3
i=1 Vi is the smallest nonnegative integer r such that

T can be expressed as a linear combination of r rank one functions. For its comparison
with other notions of rank of tensors, like subrank and multi-slice rank, see [57, Section
5]. For its relation to the analytic rank and the partition rank, see [135].

The algorithmic problem corresponding to slice rank problem is the following.

Problem 7.1. Slice Rank of Tensors: Given T ∈ Fn ⊗ Fn ⊗ Fn and a number r,
decide if srk(T ) ≤ r.
The notion of slice rank is closely related to the orbit closure containment problem. In
particular, [35] established some interesting connections between the slice rank and the
null cone problem. Bürgisser et al. [49] showed an equivalence between the asymptotic
fullness of slice-rank and the null cone problem, and make some algorithmic progress
towards it. In this work, we make the connection between slice rank and the orbit closure
containment even more apparent, thanks to a formulation of slice rank by Tao and Sawin
[175]. Bürgisser et al. [49, page 27] report that Sawin has an unpublished proof that
computing the slice-rank of tensors of order three is NP-hard. However, they state that
the decision version, that is, the above Problem 7.1 remains open, while expressing that
it is plausible that this should be NP-hard as well.

7.1.1 Results and methods

Our main result result is the progress towards understanding Problem 7.1, the algorithm
corresponding to slice rank problem. We rule out an efficient algorithm under the
assumption that P ≠ NP by showing that the problem is NP-hard under polynomial time
many-one reductions. (see Section 7.3).

Theorem 7.1. Given a 3-tensor T and a positive integer r, determining if the slice rank
of T is at most is r, is NP-hard.

For this, we use a connection of the slice rank to the size of a minimum vertex cover of
a hypergraph by Tao and Sawin [175]. They showed that for every 3-uniform, 3-partite
hypergraph H, one can associate a tensor TH , and if the edge set of the hypergraph
forms an antichain, then the slice rank of the associated tensor TH equals the size of
the minimum vertex cover of the hypergraph H. To our best knowledge, the complexity
of the decision version of the slice rank problem for order-three tensors has been open
so far. Prahladh Harsha, Aditya Potukuchi, and Srikanth Srinivasan kindly sent us
an unpublished manuscript, in which they prove that the order-four case is NP-hard.
However, this one more tensor leg gives an additional degree of freedom, which easily
allows to establish the antichain condition. Bürgisser et al. [49, page 27] report that
Sawin has an unpublished proof that computing the slice-rank of tensors of order three
is NP-hard. However, they also state that the decision version is open.

We show the NP-hardness of the slice rank problem for order-three tensors by showing
that the 3-uniform, 3-partite hypergraph minimum vertex cover problem where the edge
set forms an antichain is NP-hard. The corresponding hypergraph minimum vertex cover
problem without the antichain restriction is known to be NP-hard [88] by reduction
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from the usual 3-SAT problem. However, their reduction does not work if one wants to
adapt it to the antichain restriction. We use a reduction from a restricted SAT-variant,
the bounded-occurrence mixed SAT (bom-SAT) problem, in which there are 3-clauses
and 2-clauses, and every variable occurs exactly thrice, once in a 3-clause and twice in
2-clauses. Because of the antichain restriction, our labelling of the gadget becomes very
delicate and needs to be handled very carefully in the reduction (see Lemma 7.7).

Next, we phrase the slice rank problem in terms of orbit closures. More specifically, we
show that testing whether a tensor T ∈ Fn×n×n has srk(T ) ≤ r is equivalent to testing if the
tensor T is contained in a polynomially large union of orbit closures. Let (r1, r2, r3) be
such that r1+r2+r3 = r. We first embed T in a larger subspace U ′⊗V ′⊗W ′ ≅ Fs1⊗Fs2⊗Fs3
(this is called padding), where s1 = r1+nr2+nr3, s2 = nr1+r2+nr3 and s3 = nr1+nr2+r3,
and define

Sn,r1,r2,r3 =
r1

∑
i=1

n

∑
j=1

e1i ⊗ e1ij ⊗ e1ij +
r2

∑
i=1

n

∑
j=1

e2ij ⊗ e2i ⊗ e2ij +
r3

∑
i=1

n

∑
j=1

e3ij ⊗ e3ij ⊗ e3i .

Intuitively, in the sum above, we have r1 rank-one elements of the form v1 ⊗1 v1̂ with
v1 ∈ V1 and v1̂ ∈ ⊗1≤i≤3∶i≠1 Vi, r2 elements of the form v2⊗2v2̂, and r3 elements of the form
v3 ⊗3 v3̂. Now srk(T ) ≤ r becomes equivalent to testing whether T is in the orbit closure
of Sn,r1,r2,r3 for some (r1, r2, r3) with r1 + r2 + r3 = r. Thus we show that the slice rank
variety SVFn⊗Fn⊗Fn,r is the union of orbit closure of Sn,r1,r2,r3 over all (r1, r2, r3) with
r1 + r2 + r3 = r, intersected with the ambient space Fn ⊗ Fn ⊗ Fn. It is worth noting that
Sn,r1,r2,r3 is very similar to Tk,n,r defined for the minrank (see Section 6.4 and Section 7.2
for details). Note that Tao showed that the set of all T with srk(T ) ≤ r is closed, so,
similar to minrank, there is no need to define a notion of border slice rank either (see
[175, Corollary 2]).

Next we go on to determine the stabilizer of Sn,r1,r2,r3 , i.e., the subgroup of GL(U ′) ×
GL(V ′) × GL(W ′) which fixes Sn,r1,r2,r3 (Theorem 7.3). We can also show that each
Sn,r1,r2,r3 is almost characterized by its stabilizer, i.e., it is a direct sum of three tensors
that are each characterized by their respective stabilizers (Theorem 7.4). This is an
important property in the context of geometric complexity theory. Both the permanent
and the determinant are characterized by their respective stabilizers as well.

7.2 Slice rank problem as a variety membership problem

For the necessary mathematical background, the reader is referred [165, 128, 130, 30].

The tensor used to show that the slice rank problem can be phrased as a problem about
the union of orbit closures (see Definition 7.2) turns out to be very similar to the tensor
Tk,n,r, which we used to show that the minrank problem is an instance of the orbit closure
containment problem in Section 6.4. Thus, the exposition and the proofs in this section
are very similar to that in Section 6.4.

Let us say we are given a 3-tensor T ∈ U ⊗ V ⊗W , and we are interested in finding out
if it has slice rank at most r, i.e., if srk(T ) ≤ r.

In what follows, we phrase this problem geometrically and formulate it as membership

87



Chapter 7. Membership in the slice rank variety

testing of T in a union of orbit closures of certain tensors.

Lemma 7.1. ([175, Corollary 2]) Let U,V,W be vector spaces over an algebraically
closed field F. The set of all tensors T ∈ U ⊗V ⊗W with slice rank at most r is a Zariski
closed set.

In fact, they even showed that the set of all tensors T ∈ U ⊗ V ⊗W with slice rank at
most r decomposed as (r1, r2, r3) for a fixed tuple (r1, r2, r3) with r1 + r2 + r3 = r is also
Zariski closed.

Definition 7.1. We call the the affine variety

SVU⊗V ⊗W,r = {T ∈ U ⊗ V ⊗W ∣ srk(T ) ≤ r}
the affine slice rank variety or simply the slice rank variety.

When clear from the context, we drop the index U ⊗ V ⊗W .

Lemma 7.2. Let U,V , and W be subspaces of vector spaces U ′, V ′, and W ′, respectively.
Then

SVU⊗V ⊗W,r = SVU ′⊗V ′⊗W ′,r ∩ (U ⊗ V ⊗W ).

Proof. A tensor lies in SVU⊗V ⊗W,r iff it is an element of the space U ⊗ V ⊗W and has
slice rank at most r, i.e., lies in SVU ′⊗V ′⊗W ′,r.

Lemma 7.3. The slice rank variety SVU⊗V ⊗W,r is invariant under the standard action
of GL(U) ×GL(V ) ×GL(W ) on U ⊗ V ⊗W .

Proof. If srk(T ) ≤ r, we have T =
r1

∑
i=1
ui,1 ⊗1 Ti,1 +

r2

∑
i=1
ui,2 ⊗2 Ti,2 +

r3

∑
i=1
ui,3 ⊗3 Ti,3 for some

(r1, r2, r3) such that r1 + r2 + r3 = r, where ui,1 ∈ U , ui,2 ∈ V , wi,3 ∈W , and Ti,1 ∈ V ⊗W ,
Ti,2 ∈ U ⊗W , Ti,3 ∈ U ⊗ V . Clearly when A⊗B ⊗C ∈ GL(U) ×GL(V ) ×GL(W ) acts on
T , the slice rank remains at most r.

7.2.1 Slice rank varieties and orbit closures

For every tuple (r1, r2, r3) of non-negative integers such that r1 + r2 + r3 = r, we consider
the vector spaces U ′

(r1,r2,r3) = Fr1 ⊕ (Fn)⊕(r2) ⊕ (Fn)⊕(r3), V ′
(r1,r2,r3) = (Fn)⊕(r1) ⊕ Fr2 ⊕

(Fn)⊕(r3), and W ′
(r1,r2,r3) = (Fn)⊕(r1)⊕(Fn)⊕(r2)⊕Fr3 . We will drop the index (r1, r2, r3)

in the following.

U ′ has dimension s1(r1, r2, r3) = r1 + nr2 + nr3, and is decomposed into 1 + r2 + r3
summands, where one summand is of dimension r1, while the other summands are of
dimensions n each. Similarly, V ′ and W ′ have dimensions s2(r1, r2, r3) = nr1 + r2 + nr3
and s3(r1, r2, r3) = nr1 + nr2 + r3, respectively, and are decomposed analogously as
U ′, into r1 + 1 + r3 summands and r1 + r2 + 1 summands respectively. We will denote
s1(r1, r2, r3), s2(r1, r2, r3) and s3(r1, r2, r3) simply by s1, s2, and s3, respectively. Thus
U ′ ⊗ V ′ ⊗W ′ ≅ Fs1 ⊗ Fs2 ⊗ Fs3 .

Let us give names to the components: Let L1 be (Fn)⊕(r1) of dimension nr1, L
2 be

(Fn)⊕(r2), and L3 be (Fn)⊕(r3), respectively, and we have vector spaces Ũ = Fr1 , Ṽ = Fr2
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and W̃ = Fr3 respectively. Let Lki be the i-th summand of Lk, k ∈ {1,2,3} with standard
basis ekij , j ∈ [n], and let e1i , e

2
i and e3i be the standard basis of Ũ , Ṽ and W̃ . We have

U ′ = Ũ ⊕L2
1 ⊕ ⋅ ⋅ ⋅ ⊕L2

r2 ⊕L
3
1 ⊕ ⋅ ⋅ ⋅ ⊕L3

r3 and similar decomposition for V ′ and W ′.

Definition 7.2. For (r1, r2, r3), we define the unit slice rank tensor Sn,r1,r2,r3 ∈ (Ũ ⊗
L1 ⊗L1) ⊕ (L2 ⊗ Ṽ ⊗L2) ⊕ (L3 ⊗L3 ⊗ W̃ ) ⊆ U ′ ⊗ V ′ ⊗W ′ as

Sn,r1,r2,r3 =
r1

∑
i=1

n

∑
j=1

e1i ⊗ e1ij ⊗ e1ij +
r2

∑
i=1

n

∑
j=1

e2ij ⊗ e2i ⊗ e2ij +
r3

∑
i=1

n

∑
j=1

e3ij ⊗ e3ij ⊗ e3i .

Along Ũ we have r1 slices where each slice contains an n×n identity matrix each in disjoint
blocks. Then along Ṽ , we have r2 slices with n × n identity matrices in disjoint blocks.
Finally, we have r3 slices with n × n identity matrices in disjoint blocks along W̃ . Thus
Sn,r1,r2,r3 can be decomposed into three summands Sn.r1 ∈ Ũ⊗L1⊗L1, Sn,r2 ∈ L2⊗ Ṽ ⊗L2

and Sn,r3 ∈ L3 ⊗L3 ⊗ W̃ such that Sn,r1,r2,r3 = Sn,r1 ⊕ Sn,r2 ⊕ Sn,r3 . Notice the similarity
with the minrank case. In particular, Tk,n,r is almost like Sn,r1 – the only difference
is that the first slice in Tk,n,rr is of different rank than the rest of its slices. As a
consequence, in the spirit, the proof of the following Theorem 7.2 is very similar to the
proof of Theorem 6.10.

The group GLs1 ×GLs2 ×GLs3 acts on U ′ ⊗ V ′ ⊗W ′ in a natural way. The slice rank
variety can be defined as the union of orbit closures of Sn,r1,r2,r3 under the action of
GLs1 ×GLs2 ×GLs3 , where the union is taken over (r1, r2, r3) such that r1 + r2 + r3 = r.

Theorem 7.2. Let U , V , and W be n-dim. subspaces of U ′, V ′, and W ′, respectively.
Then

SVU⊗V ⊗W,r = ⋃
r1,r2,r3

r1+r2+r3=r

(GLs1 ×GLs2 ×GLs3)Sn,r1,r2,r3 ∩ (U ⊗ V ⊗W ).

Note that each of the orbit closures is taken in a different ambient space, since each
Sn,r1,r2,r3 lives in a different ambient space. But since we intersect each closure with
U ⊗ V ⊗W , this is fine.

Proof. First of all note that for every such (r1, r2, r3), we have that Sn,r1,r2,r3 ∈ SVU ′⊗V ′⊗W ′,r,
simply by the construction of Sn,r1,r2,r3 , where U ′ ≅ Fs1 , V ≅ Fs2 ,W ′ ≅ Fs3 . Now
since by Lemma 7.3, SVU ′⊗V ′⊗W ′,r is invariant under the action of GL(U ′) ×GL(V ′) ×
GL(W ′), we have that the entire orbit (GLs1 ×GLs2 ×GLs3)Sn,r1,r2,r3 lies in it. Also,
from Lemma 7.1 (see [175, Corollary 2]), it follows that (GLs1 ×GLs2 ×GLs3)Sn,r1,r2,r3
is contained in a Zariski closed subset of SVU ′⊗V ′⊗W ′ and hence the orbit closure
(GLs1 ×GLs2 ×GLs3)Sn,r1,r2,r3 also lies in SVU ′⊗V ′⊗W ′ . Now we apply Lemma 7.2 to get
the desired inclusion.

For the other direction, let us assume T ∈ SVU⊗V ⊗W,r. Since srk(T ) ≤ r, we have

that we have T =
r1

∑
i=1
ui,1 ⊗1 Ti,1 +

r2

∑
i=1
ui,2 ⊗2 Ti,2 +

r3

∑
i=1
ui,3 ⊗3 Ti,3, for some (r1, r2, r3)

such that r1 + r2 + r3 = r, where ui,1 ∈ U , ui,2 ∈ V , and wi,3 ∈ W and Ti,1 ∈ V ⊗W ,
Ti,2 ∈ U ⊗W , and Ti,3 ∈ U ⊗ V . Since ∀i ∈ [r1], rk(Ti,1) ≤ n, we can write Ti,1 as
(Qi,1⊗Ri,1)(∑nj=1 e1i,j⊗e1i,j) for linear maps Qi,1 ∶ L1

i → V and Ri,1 ∶ L1
i →W . Analogously,
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Ti,2 = (Pi,2 ⊗Ri,2)(∑nj=1 e2i,j ⊗ e2i,j) for linear maps Pi,2 ∶ L2
i → U and Ri,2 ∶ L2

i →W , and

Ti,3 = (Pi,3 ⊗Qi,3)(∑nj=1 e3i,j ⊗ e3i,j) for linear maps Pi,3 ∶ L3
i → U and Qi,3 ∶ L3

i → V .

Let Q1 ∶ L1 → V and R1 ∶ L1 → W be linear maps which are equal to Qi,1 and Ri,1,
respectively, when restricted to the i-th slice L1

i . Similarly we have maps P2 ∶ L2 → U
and R2 ∶ L2 → W whose restrictions to i-th slices are Pi,2 and Ri,2, respectively, and
P3 ∶ L3 → U and Q3 ∶ L3 → V have their restrictions as Pi,3 and Qi,3.

Finally, we also have linear maps P1 ∶ Ũ → U sending e1i to ui,1 , Q2 ∶ Ṽ → V sending e2i
to ui,2 and R3 ∶ W̃ →W sending e3i to ui,3.

Thus T = ((P1⊗Q1⊗R1)⊕(P2⊗Q2⊗R2)⊕(P3⊗Q3⊗R3))Sn,r1,r2,r3 for some (r2, r2, r3).
The closure of GLs1 ,GLs2 and GLs3 contains all linear endomorphisms of U ′, V ′ and
W ′, respectively, and thus contains (P1 ⊗Q1 ⊗R1) ⊕ (P2 ⊗Q2 ⊗R2) ⊕ (P3 ⊗Q3 ⊗R3).
Therefore, T lies in the closure (GLs1 ×GLs2 ×GLs3)Sn,r1,r2,r3 for some (r1, r2, r3) with
r1 + r2 + r3 = r.

We now describe the stabilizers of the unit slice rank tensors.

Lemma 7.4. The stabilizer of ∑ki=1 ei ⊗ ei ∈ Fk ⊗ Fk in GLk ×GLk consists of elements
of the form (A,A−T).

Proof. For the left action of GLk ×GLk on Fk ⊗ Fk consider the corresponding left-right
action: AXB ∶= (A,BT)X for A,B ∈ GLk and X ∈ Fk ⊗ Fk. If we interpret F k ⊗ F k as
the space of k ×k matrices, then ∑ki=1 ei⊗ ei is the identity matrix I and we observe that
AXB is the usual product of matrices. Clearly AIB = I iff A = B−1.

Theorem 7.3. For n ≥ 2, the stabilizer of Sn,r1,r2,r3 in GLs1 ×GLs2 ×GLs3 is isomorphic

to
3

⊕
i=1

((GLn ×GL1)ri ⋊Sri). The element (Zi1, zi1, . . . , Ziri , ziri) ∈ (GLn ×GL1)ri for i =
1,2,3 is embedded into GLr1 ×GLnr1 ×GLnr1 , GLnr2 ×GLr2 ×GLnr2 and GLnr3 ×GLnr3 ×GLr3
respectively, via

(diag(z11, . . . , z1r1),diag(Z11, . . . , Z1r1),diag((z11Z1r1)
−T, . . . , (z1r1Z1r1)

−T)),
(diag(Z21, . . . , Z2r2),diag(z21, . . . , z2r2),diag((z21Z2r2)

−T, . . . , (z2r2Z2r2)
−T)), and

(diag(Z31, . . . , Z3r3),diag((z31Z3r3)
−T, . . . , (z3r3Z3r3)

−T),diag(z31, . . . , z3r3)),

respectively. The Sri factor permutes the ri coordinates of Ũ , Ṽ and W̃ , and the ri
summands of Li ×Li simultaneously.

Proof. Let S ∶= Sn,r1,r2,r3 = Sn,r1 ⊕Sn,r2 ⊕Sn,r3 , and (A,B,C) ∈ stabS, that is, (A⊗B⊗
C)S = S. It will be useful to visualize A, B and C as

A =
⎛
⎜⎜⎜
⎝

A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞
⎟⎟⎟
⎠
, B =

⎛
⎜⎜⎜
⎝

B11 B12 B13

B21 B22 B23

B31 B32 B33,

⎞
⎟⎟⎟
⎠
, C =

⎛
⎜⎜⎜
⎝

C11 C12 C13

C21 C22 C23

C31 C32 C33

⎞
⎟⎟⎟
⎠
.

Above, A11 is an r1 × r1 matrix, A22 is an nr2 × nr2 matrix, and A33 is an nr3 × nr3
matrix, respectively. B11 is an nr1 × nr1 matrix, B22 is an r2 × r2 matrix, and B33 is
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7.2. Slice rank problem as a variety membership problem

an nr3 × nr3 matrix, respectively, and C11 is an nr1 × nr1 matrix , C22 is an nr2 × nr2
matrix, and C33 is an r3 × r3 matrix, respectively.

Let S = ∑s1i=1 ei ⊗1 Si, where Si is the i-th slice of S. Then,

(A⊗B ⊗C)Sn,r1,r2,r3 =
s1

∑
i=1

(Aei) ⊗ (B ⊗C)Si =
s1

∑
i=1
ei ⊗ (B ⊗C)(

s1

∑
j=1

aijSj).

First of all we divide the set of slices into groups. These include:

• r1 groups of size 1 each, {1}, . . . ,{n},

• r2 groups of size n each, {r1 + 1, . . . , r1 + n}, . . . ,{r1 + (r2 − 1)n + 1, . . . , r1 + r2n},

• r3 groups of size n each, {r1 + r2n + 1, . . . , r1 + r2n + n}, . . . ,{r1 + r2n + (r3 − 1)n +
1, . . . , r1 + r2n + r3n}.

We first consider the first r1 groups of slices, i.e., slices Si for i ∈ {1, . . . , r1} to deduce
about the first r1 rows of A.

Recall that for i ∈ {1, . . . , r1}, rk(Si) = n (by definition). Thus we have that rk(∑s1j=1 aijSj)
and consequently the rank of the i-th slice of (A⊗B ⊗C)S will be at least qn, where
q is the number of nonzero entries among ai1, . . . , air1 . Therefore, there will be at most
one j ∈ {1, . . . , r1} such that aij is nonzero. Now consider the case when for some
i′ ∈ {1, . . . , r1}, ai′j ≠ 0 for some j ∈ {r1 +1, . . . , r1 +nr2, . . . , r1 +nr2 +nr3}. First of all, it
implies that ai′j = 0, for all j ∈ {1, . . . , r1}, otherwise rk(∑s1j=1 ai′jSj) ≥ n+1. Now since A
induces a bijection among the slices, every slice is involved in the linear combination of
at least one of the slices. And since two slices of rank n cannot be involved in the linear
combination of first r1 slices, the above forces that at least one of the rank n slices is
involved in the linear combination of a slice Si for i ∈ {r1+1, . . . , r1+nr2, . . . , r1+nr2+nr3},
i.e., aij ≠ 0 for some i ∈ {r1 + 1, . . . , r1 + nr2, . . . , r1 + nr2 + nr3}, j ∈ {1, . . . , r1}. But this
implies that rk(∑s1j=1 aijSj) ≥ n and not 1, which cannot be the case if A⊗B⊗C ∈ stabS.
Thus aij = 0 for all j ∈ {r1 + 1, . . . , r1 + nr2, . . . , r1 + nr2 + nr3}. Thus A11 is a product of
a diagonal matrix and a permutation matrix, and A12 = A13 = 0. Symmetrical argument
implies that B21 = B23 = C31 = C32 = 0, and both B22 and C33 are products of a diagonal
matrix and a permutation matrix.

Now consider the first group from the second case i.e. i ∈ {r1 + 1, . . . , r1 + n}: Here, first
of all recall that rk(Si) = 1 for all i. Thus rk(∑s1j=1 aijSj) has to be 1. This immediately
implies that aij = 0 for all j ∈ {1, . . . , r1}, otherwise the resulting rank will be at least
n. We further argue that aij = 0 for all j ∈ {r1 + r2n + 1, . . . , r2n + n, . . . , r1 + r2n + r3n}.
Assume the contrary. Then ∑s1j=1 aijSj will have something in the bottom right r3 × nr3
block. In order for (A,B,C) to be in stabS, (B ⊗C)(∑s1j=1 aijSj) should bring it back
to its original place, i.e., in the central nr2 × r2 block. However C33 being a product of a
diagonal matrix and a permutation matrix, C will only permute the the last r3 rows of

∑s1j=1 aijSj within themselves and hence B ⊗C will not bring ∑s1j=1 aijSj to the central
block as needed. Thus from the above discussion, we have A21 = A23 = A31 = A32 =
B12 = B13 = B31 = B32 = C12 = C13 = C31 = C32 = 0. Finally, A22 will be a product of a
block diagonal matrix and a block permutation matrix. For this, notice that for a fixed
i ∈ {r1+1, . . . , r1+r2n}, aij cannot be non-zero for j’s belonging to more than one group,
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otherwise the rank of the resulting slice exceeds 1.

Thus A will be a product of a diagonal matrix with a permutation matrix in the top left
block. In the central block, it will be a product of a block diagonal matrix with a block
permutation matrix. Similarly, for the bottom right block, too, it will be a product of a
block diagonal matrix with a block permutation matrix. Thus the picture becomes

A =
⎛
⎜⎜⎜
⎝

A11 0 0

0 A22 0

0 0 A33

⎞
⎟⎟⎟
⎠
, B =

⎛
⎜⎜⎜
⎝

B11 0 0

0 B22 0

0 0 B33

⎞
⎟⎟⎟
⎠
, C =

⎛
⎜⎜⎜
⎝

C11 0 0

0 C22 0

0 0 C33

⎞
⎟⎟⎟
⎠
,

where A11,B22 and C33 are products of a diagonal matrix and a permutation matrix, and
A22,A33,B11,B33,C11 and C22 are all products of a block diagonal matrix and a block
permutation matrix. Thus we can decompose (A,B,C) ∈ stabS as ((A11,B11,C11) ⊕
(A22,B22,C22)⊕(A33,B33,C33)) where (A11,B11,C11) acts on Ũ⊗L1⊗L1, (A22,B22,C22)
acts on L2 ⊗ Ṽ ⊗ L2 and (A33,B33,C33) acts on L3 ⊗ L3 ⊗ W̃ , respectively. Hence
for (A,B,C) to be in stabS, with S = Sn,r1 ⊕ Sn,r2 ⊕ Sn,r3 , (A11,B11,C11) must pre-
serve Sn,r1 , (A22,B22,C22) must preserve Sn,r2 , and (A33,B33,C33) must preserve Sn,r3 ,
i.e., stabS = stabSn,r1 ⊕ stabSn,r2 ⊕ stabSn,r3 , where stabSn,r1 ⊆ GLr1 ×GLnr1 ×GLnr1 ,
stabSn,r2 ⊆ GLnr2 ×GLr2 ×GLnr2 and stabSn,r3 ⊆ GLnr3 ×GLnr3 ×GLr3 .

We consider stabSn,r1 now. Let Pσ1 be an element of GLr1 ×GLnr1 ×GLnr1 which
permutes the r1 coordinates of Ũ ⊆ U ′ and the r1 summands of L1 × L1 ⊆ V ′ ×W ′

according to the permutation σ1. It is easy to see that Pσ1 ∈ stabSn,r1 . Hence,
(A11,B11,C11)P −1

σ1 = (Ã11, B̃11, C̃11) ∈ stabSn,r1 . Using this and the previous discus-

sion, we have that Ã11 is a diagonal matrix diag(ã111, . . . , ã
r1
11). Let Ã′

11 be the linear map
which scales elements of L1

i by ãi11 for each i ∈ [r1]. Clearly (Ã−1
11 , id, Ã

′
11) also preserves

Sn,r1 . Therefore, (Ã11, B̃11, C̃11) ⋅ (Ã−1
11 , id, Ã

′
11) = (id, B̃11, Ĉ11) is in stabSn,r1

Now, since the first component of (id, B̃11, Ĉ11) is the identity, it preserves Sn,r1 if and
only if B̃11 ⊗ Ĉ11 preserves each slice of Sn,r1 . If it preserves each slice, it also preserves
its sum ∑r1i=1∑

n
j=1 e

1
ij ⊗ e1ij , the full rank diagonal matrix of size nr1 × nr1. Therefore, by

Lemma 7.4, Ĉ11 = B̃−T
11 . Thus (id, B̃11, B̃

−T
11 ) ∈ stabSn,r1 .

Thus, we decomposed an elementA11⊗B11⊗C11 ∈ stabS1 into a product of three special el-
ements (id,diag(B1

11, . . . ,B
r1
11),diag(B1

11, . . . ,B
r1
11)

−T), (diag(ã111, . . . , ã
r1
11), id,diag(ã111 id, . . . , ãr111 id)−1),

and Pσ1 for some permutation σ1 ∈ Sr1 . These three types of elements correspond to
three subgroups of stabSn,r1 . The subgroups intersect only in the identity; elements
of the first two types commute, and the conjugation with Pσ1 permutes ãi11 and Bi

11

according to σ1, so the product of the first subgroups is direct, and the last product is
semidirect. Symmetrical arguments for stabSn,r2 and stabSn,r3 finishes the proof.

Now we show that the unit slice rank tensor Sn,r1,r2,r3 is almost characterized by its
stabilizer. More precisely, it is a direct sum of three tensors Sn,r1 , Sn,r2 and Sn,r3 that
are each characterized by their respective stabilizers.

Theorem 7.4. Suppose T is a tensor in U ′⊗V ′⊗W ′ = (Ũ ⊕L2⊕L3)⊗(L1⊕ Ṽ ⊕L3)⊗
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(L1 ⊕L2 ⊕ W̃ ). If stabT = stabSn,r1,r2,r3, then

T = ((diag(α, . . . , α), id, id), (id,diag(β, . . . , β), id), (id, id,diag(γ, . . . , γ))Sn,r1,r2,r3 ,
for some α,β, γ ≠ 0, i.e., T = α ⋅ Sn,r1 ⊕ β ⋅ Sn,r2 ⊕ γ ⋅ Sn,r3.

Proof. Suppose T is stabilised by stabSn,r1,r2,r3 . We first establish that T also has the
block structure like Sn,r1,r2,r3 , i.e., even though the ambient space of T is (Ũ ⊕L2⊕L3)⊗
(L1 ⊕ Ṽ ⊕ L3) ⊗ (L1 ⊕ L2 ⊕ W̃ ), it sits completely inside one of the smaller subspaces
(Ũ ⊗L1 ⊗L1) ⊕ (L2 ⊗ Ṽ ⊗L2) ⊕ (L3 ⊗L3 ⊗ W̃ ) which also contains Sn,r1,r2,r3 .

For this, we take the element (A,B,C) ∈ stabSn,r1,r2,r3 ⊆ GLs1 ×GLs2 ×GLs3 where
we have A = (diag(α1, . . . , α1),diag(α2 ⋅ id, . . . , α2 ⋅ id),diag(α3 ⋅ id, . . . , α3 ⋅ id)), whereas
B = (diag(β1 ⋅ id, . . . , β1 ⋅ id),diag(β2, . . . , β2),diag(β3 ⋅ id, . . . , β3 ⋅ id)) and C = (diag(γ1 ⋅
id, . . . , γ1 ⋅ id),diag(γ2 ⋅ id, . . . , γ2 ⋅ id),diag(γ3, . . . , γ3)) such that α1β1γ1 = α2β2γ2 =
α3β3γ3 = 1. Now, U ′ ⊗ V ′ ⊗W ′ is a direct sum of 27 subspaces, and T can be de-
composed into corresponding 27 blocks. On the action of (A,B,C) on T , only three
of the blocks remain fixed, i.e., the ones corresponding to the subspaces (Ũ ⊗L1 ⊗L1),
(L2 ⊗ Ṽ ⊗ L2) and (L3 ⊗ L3 ⊗ W̃ ) because the entries in these blocks get scaled by
α1β1γ1, α2β2γ2 and α3β3γ3 respectively, which are all equal to unity. The blocks corre-
sponding to the other subspaces will be scaled by non-unity and hence will not remain
fixed. Hence for (A,B,C) to be in the stabilizer of T , only the blocks corresponding to
these three subspaces will be non-zero, which is also the case for Sn,r1,r2,r3 .

Recall from Definition 7.2 that Sn,r1,r2,r3 can be decomposed as Sn,r1 ⊕ Sn,r2 ⊕ Sn,r3 .
Thus, we decompose T into blocks as T = Tn,r1 ⊕ Tn,r2 ⊕ Tn,r3 . We focus on Tn,r1 =∶ T ′,
where T ′ ∈ (Ũ ⊗L1 ⊗L1).

Let T ′1, . . . , T
′
r1 be the slices of T ′. Decompose them into blocks T ′i = (T ′ijk) according to

the decomposition of L1 into L1
i .

Let Ai(λ) ∶ Ũ → Ũ be the map which scales the i-th coordinate by λ, leaving other in
place, and Bi(λ) ∶ L1 → L1 be the map which scales L1

i by λ and acts like identity on the
other summands. Applying to T ′ the transformation (Ai(λ−2),Bi(λ),Bi(λ)) ∈ stabSn,r1 ,
we see that all blocks of T ′i except T ′iii are zero, as they are multiplied by a coefficient
λ−2 or λ−1 in this transformation.

Applying (id,diag(Z11, . . . , Z1r1),diag(Z11, . . . , Z1r1)−T) with arbitrary Z1i to T ′, we

obtain that each T ′iii has the form a1i∑
dimL1

i
j=1 e1ij ⊗ e1ij . Applying permutations on the

blocks of T ′iii, we see that a11 = ⋯ = a1r1 =∶ α.

Therefore

T ′ = α
r1

∑
i=1

n

∑
j=1

ei ⊗1 e
1
ij ⊗ e1ij = α ⋅ Sn,r1 .

If α ≠ 0, then T ′ = Tn,r1 = (diag(α, . . . , α), id, id)Sn,r1 . Applying the symmetrical argu-
ments on Tn,r2 and Tn,r3 , we get that

T = (diag(α, . . . , α), id, id)Sn,r1⊕(id,diag(β, . . . , β), id)Sn,r2⊕(id, id,diag(γ, . . . , γ))Sn,r3 ,
for some α,β, γ ≠ 0, or simply T = α ⋅ Sn,r1 ⊕ β ⋅ Sn,r2 ⊕ γ ⋅ Sn,r3 .
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7.3 Complexity of the slice rank problem

In this section, we show that the problem of testing if a given 3-tensor has slice rank at
most r is NP-hard.

Theorem 7.5 (Theorem 7.1 restated). Given a 3-tensor T and a positive integer r,
determining if the slice rank of T is at most is r, is NP-hard.

We prove this by showing that a variant of hypergraph vertex cover testing is NP-hard.
Tao and Sawin [175] showed the equivalence of the slice rank problem to this variant of
hypergraph vertex cover testing. For stating this equivalence precisely, we now set up
some notations.

We fix a field F. Given a 3-uniform, 3-partite hypergraph H with 3 partitions U,V and
W with ∣U ∣ = n1, ∣V ∣ = n2, and ∣W ∣ = n3, ni ∈ N, i ∈ [3], and edge set E ⊆ U × V ×W , we
can define a 3-tensor TH(x1,x2,x3) corresponding to H in the following way, where xi

is a tuple of [ni] variables:

TH(x1,x2,x3) = ∑
(ui1 ,vi2 ,wi3)∈E

x1,i1 ⋅ x1,i2 ⋅ x3,i3

We label the nodes in U,V and W from the set of integers. For two hyperedges e1 ∶=
(ua1 , vb1 ,wc1) and e2 ∶= (ua2 , vb2 ,wc2), we say that e1 ≤ e2 iff (a1 ≤ a2)∧(b1 ≤ b2)∧(c1 ≤ c2).
If neither e1 ≤ e2 nor e2 ≤ e1 holds, we say that e1 and e2 are incomparable. In E, if
every pair of hyperedges is incomparable to each other, we say that E is an antichain.

Tao and Sawin (see [175, Proposition 4]) showed the following.

Lemma 7.5. If the hyperedge set E is an antichain, then the slice rank of TH is the
same as the size of the minimum vertex cover of the hypergraph H.

Thus, in order to show that computing the slice rank of 3-tensors is NP-hard, we show
that the hypergraph minimum vertex cover problem for a 3-partite, 3-uniform graph,
where the edge set is an antichain, is NP-hard.

Our reduction is inspired by [88] where they show the NP-hardness of the hypergraph
vertex cover problem for 3-uniform 3-partite graphs. Their reduction involved reducing
3-SAT to this problem. Here we need to show the hardness under the extra condition
that the hyperedge set of the graph is an antichain. This makes the reduction far more
involved, and we also change the hard problem that we reduce to our problem.
The NP-hard problem that we use for our reduction is a bounded occurrence mixed SAT
problem (bom-SAT), where we have 3-clauses and 2-clauses, such that every variable
appears exactly thrice, once in a 3-clause, while the other two occurrences are in 2-clauses
(note that the number of variables, n = 3t, for some t, where t is the number of 3-clauses).

Remark 7.1. It is easy to see that the above mentioned bom-SAT is NP-hard. For
this, start with any 3-SAT instance. Now assume that a variable Z appears m times.
Introduce m copies Z1, ..., Zm of X. Replace every occurrence of Z by one Zi. We do this
for all the variables. Now every variables appears only once. However, we have to ensure
consistency, that is, Z1, ...Zm should have the same value. So we add the 2-clauses:
(Z1 ∨ ¬Z2) ∧ (Z2 ∨ ¬Z3) ∧ ⋯ ∧ (Zm ∨ ¬Z1). These 2-clauses can only be satisfied if we

94



7.3. Complexity of the slice rank problem

set all the Zi’s to 0 or all the Zi’s to 1. The resulting formula is a bom-SAT instance as
described above.

In the reduction, given a bom-SAT formula φ in n variables X1, . . .Xn with t 3-clauses
and m 2-clauses, the construction of a 3-uniform 3-partite hypergraph Gφ with 3 vertex
partitions U,V and W proceeds as follows. First of all we sort all the clauses such that
all the 3-clauses precede all the 2-clauses. Next we rename all the variables such that the
variables in the r-th 3-clause (r ∈ t) are Y3(r−1)+1, Y3(r−1)+2 and Y3(r−1)+3 corresponding
to the first, second and the third position of the clause respectively. We also say that
Y3(r−1)+1, Y3(r−1)+2 and Y3(r−1)+3 belong to the same triple of variables.

Now, we have a gadget Gφk corresponding to each variable Yk, k ∈ [n]. Gφk consists of

nodes (i, j)k and (i, j)
k
, i, j ∈ {1,2,3}. Here (i, j)k refers to the node corresponding to

the i-th occurrence of the variable Yk, and it occurs at the j-th position in the clause in

which it appears. (i, j)
k

refers to the negation of Yk in its i-th occurrence at the j-th
position in the clause. We will drop the superscript k, when it is clear from the context.
Clearly, there are 18 such literal nodes in a gadget Gφk , which are ordered along a circle
(see the outer circle in Figure 7.1). Since Yk appears exactly thrice in φ, exactly 3 out of
these 18 nodes will correspond to some occurrence of Yk in φ. Gφk also consists of 18 other
nodes, which we call free nodes (as they do not correspond to any literal), that are useful
in the construction (see the inner circle in Figure 7.1). We have hyperedges connecting
two literal nodes and a free node. There are total 18 hyperedges in Gφk each consisting of
three vertices that form a triangle in Figure 7.1. Note that every literal node appears in
exactly 2 hyperedges, while a free node appears in exactly one of them. We partition the
set of nodes in 3 parts, as illustrated in the figure. Among the literal nodes, the nodes
corresponding to the first-occurrences (j = 1) go to the set U , the ones corresponding
to the second-occurrences (j = 2) go to the set V , while the ones corresponding to third
occurrences (j = 3) go to the set W . We distribute the free nodes equally among the
three sets, while maintaining the property of being 3-partite (see Figure 7.1).

Additionally, we have clause hyperedges, which for a 3-clause, connect the nodes corre-
sponding to the three literals present in it. For every 2-clause, we first introduce another
free node to the graph, added to set W (as there are no literals at the third position
in a 2-clause). Now, there is an hyperedge for every 2-clause as well, connecting the
two nodes corresponding to its literals and a free node. We refer to the hyperedges
in a variable gadget either as variable hyperedges or local hyperedges. We refer to the
hyperedges corresponding to the clauses as clause hyperedges or global hyperedges. We
illustrate the set up with an example. See Figure 7.3.

The following two lemmas together finish the reduction and hence prove Theorem 7.5.

Lemma 7.6. The size of the minimum vertex cover of the hypergraph Gφ is at most 9n
if and only the bom-SAT instance φ is satisfiable.

The proof of this lemma follows very closely the proof of hardness of hypergraph minimum
vertex cover problem (see [88, Lemma 5.3]), which was itself inspired by the proof of
NP-hardness of 3-dimensional matching given in Garey and Johnson [78]. We give a
sketch here.
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Figure 7.1: A variable gadgetGφk corresponding to the variable Yk in φ. Nodes sharing
the red, cyan and green arcs correspond to the first, second, and third occurrence of Yk
in a clause respectively. Exactly 3 out of 18 literal nodes are used in clause hyperedges.
Nodes with an overline indicate that the negation of Yk appeared in the corresponding
clause. Nodes in the inner circle correspond to the free nodes.

Proof. Let φ be satisfiable with ν being a satisfying assignment on the variables Y1, . . . , Yn.
Now, we construct the vertex cover set S for Gφ of size 9n as follows. If ν(Yk) = 0, we
add all the 9 overlined nodes from Gφk to S, otherwise we add the other 9 nodes to S.
Note that S covers all the local hyperedges. Since ν is a satisfying assignment, all the
clause hyperedges are also covered by S as well.

Conversely, assume there is a minimum vertex cover S of Gφ of size at most 9n. Now,
since all the free nodes appear in only one hyperedge each, we can assume that S does
not contain any free node, since we can always replace them by a literal node of the same
hyperedge. Now, for i ∈ {1, . . . , n} if Si is the subset of S such that Si only contains the
vertices corresponding to the variable gadget Gφi , it can be easily seen that ∣Si∣ ≥ 9 for
all the variable hyperedges to be covered. This implies that ∣Si∣ = 9 since we assumed
that ∣S∣ = ∣ ∪ni=1 Si∣ ≤ 9n. Thus Si forms a vertex cover corresponding to the local gadget

Gφi and hence covers the hyperedges in Gφi . However, there are only two vertex covers of

Gφi of size 9, namely the one set containing all the overlined nodes, i.e., they correspond
to ¬Yk, and the other set where none of the nodes are overlined, i.e., they correspond
to Yk. In the first case, we assign the value 0 to Yk, and we assign 1 in the second case.
Thus we construct the assignment ν for Y1, . . . , Yn. Now, since S is a vertex cover and
hence span all the hyperedges including the clause hyperedges, ν satisfies all the clauses
of φ.

The following lemma ensures that the edge set E of the above constructed graph Gφ is
indeed an antichain under some labelling.

Lemma 7.7. For every formula φ, there exists a way of labelling of the nodes in hyper-
graph Gφ such that the hyperedge set of Gφ is an antichain.
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Figure 7.2: The labelling of variable gadgets Gφ1 for n = 6. The hyperedges with a
red arc correspond to the first occurrence of variables. Notice the difference in labelling
of W nodes. Literal nodes are all labelled positive. Free nodes are all labelled negative
except the W node connecting the two first occurrence literal nodes.

Proof. We first give the labelling used. We have literal nodes and free nodes. The
literal nodes either correspond to the first occurrence, the second occurrence or the
third occurrence of a variable. In every gadget, we have 6 nodes corresponding to
each occurrence, 2 from each partition U,V and W . The free nodes although do not
correspond to any occurrences, we say that they correspond to first occurrence if the two
literal nodes that they connect both correspond to the first occurrence. In every gadget,
there are 5 such nodes, 2 each belonging to U and V , while one belonging to W . If a
free node does not correspond to the first occurrence, we say that it corresponds to the
second or third occurrence (we do not make distinction within them as it is not needed).

We first give the labelling corresponding to the nodes corresponding to the second and
the third occurrences of variables:

• The position 1 literal nodes (i,1)k and (i,1)
k

in Gφk are labelled
u2n+2(i−2)+4(k−1)+1 and u2n+2(i−2)+4(k−1)+2, respectively, ∀k, for i = 2,3.

• Similarly, the position 2 literal nodes (i,2)k and (i,2)
k

are labelled
v2n+2(i−2)+4(k−1)+1 and v2n+2(i−2)+2(k−1)+2, respectively, ∀k, for i = 2,3.

• Likewise, the position 3 literal nodes (i,3)k and (i,3)
k

are labelled
w2n+2(i−2)+4(k−1)+1 and w2n+2(i−2)+4(k−1)+2 respectively, ∀k, for i = 2,3.

• The 4 free U nodes in Gφk corresponding to the second or third occurrence are
labelled u−2n−4(k−1)−`, ` ∈ [4] (see Figure 7.2 to see which ones exactly).

• Similarly, the 4 such free V nodes in Gφk are labelled v−2n−4(k−1)−`, ` ∈ [4].

• Finally, the 5 such free W nodes in Gφk are labelled w−5(k−1)−`, ` ∈ [5].

• All the 2-clauses also correspond to the second and third occurrence of variables.
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Each such 2-clause will have a corresponding hyperedge. Here we have a freedom
to choose the position for the free node. We invariably choose it to be at the third
position. Thus the first two nodes of the hyperedges will take the relevant literals
as per the clause, while the W nodes will be free ones. For the s−th 2-clause (under
an arbitrary order), s ∈ [m] label the W nodes as w−5n−s.

• We take all the hyperedges that include all the above labelled free W nodes. This
will include all the 2-clause hyperedges along with 5 hyperedges per variable gadget.
Now the tuple of U and V coordinates (ua, vb) of these hyperedges will have a
partial order among themselves. We shuffle their W coordinates so that the order
of the W coordinates becomes the reverse of the order of the tuple (ua, vb). We
can do this without disturbing other hyperedges because these W nodes are all
free and are used in only one hyperedge each.

Now it remains to label the literal nodes corresponding to the first occurrences and
the free nodes pertaining to them. They are labelled differently so as to ensure that
the antichain property indeed holds when the hyperedges connecting these would be
compared with the 3-clause hyperedges. One key difference is that the labels of W nodes
for Gφk in this case also depend on whether k ≡ 1,2 or 0 mod 3.

• The position 1 literal nodes (1,1)k and (1,1)
k

in Gφk are labelled u2(k−1)+1 and
u2(k−1)+2, respectively, ∀k.

• The position 2 literal nodes (1,2)k and (1,2)
k

are labelled v2(k−1)+1 and v2(k−1)+2,
respectively, ∀k.

• The position 3 literal nodes (1,3)k and (1,3)
k

get the labels w7n−9(q−1) and
w7n−9(q−1)−1, respectively, for k = 3(q−1)+1, whereas w7n−9(q−1)−3 and w7n−9(q−1)−4,
respectively, for k = 3(q − 1) + 2, and w7n−9(q−1)−5 and w7n−9(q−1)−6, respectively,
for k = 3(q − 1) + 3

• The 2 free U nodes corresponding to the first occurrence of the variable get the
labels u−2(k−1)−1 and u−2(k−1)−2, respectively. Similarly such free V nodes get the
labels v−2(k−1)−1 and v−2(k−1)−2 respectively, whereas the such free W nodes (1
per gadget) get the labels w7n−9(q−1)−2 for k = 3(q − 1) + 1 and w7n−9(q−1)−7 for
k = 3(q − 1) + 2, and w7n−9(q−1)−8 for k = 3(q − 1) + 3.

Figure 7.3 illustrates the labelling for k = 1,2,3 when n = 6.

We now show that with the above ordering, the set of hyperedges E of the hypergraph
Gφ indeed is an antichain.

To simplify the argument, we divide the set of hyperedges in two parts E = A ⊍ B:

• Set A: This set consists of local hyperedges in which both the literal nodes corre-
spond to the first occurrence of variables. We also include the 3-clause hyperedges.

• Set B: The set consisting of the remaining hyperedges, i.e., the ones in which at
least one of the literal nodes correspond to the second or the third occurrences of
variables. We also include the 2-clause hyperedges.
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Figure 7.3: The variable gadgets Gφk , k = 1,2,3 for n = 6. The hyperedges with a red
arc correspond to the first occurrence of variables. Notice the difference in labelling of
W nodes. The clause edge corresponds to the clause Y1 ∨ Y2 ∨ Y3.
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We first argue that the subset B is an antichain.
We note that in B, the literal nodes are all labelled positive (2n+ 2(i− 2) + 4(k − 1) + j),
i ∈ {2,3}, k ∈ [n], j ∈ [4], while the free nodes are all labelled negative (−2n−4(k−1)−`),
k ∈ [n], ` ∈ [4], for U and V nodes, whereas (−5(k − 1) − `), k ∈ [n], ` ∈ [5] for W nodes,
and it is easy to verify that as the labels of the literal node increase, the labels along the
free node decrease.
Now we take two arbitrary elements of the set B. Recall that every hyperedge in B
contains exactly one free node. Now the free node will either be in the same partition
or in different ones.
If they are in different ones, we are done because we have a pair of coordinates such
that, in one of them, one hyperedge is labelled positive while the other is labelled
negative, while the opposite happens in the other coordinate. If the free nodes are in
the same coordinate, we are done again because as the literal coordinate increases, the
free coordinate decreases.
Note that, since we have already shuffled the nodes with free W nodes taking the 2-clause
hyperedges into account, the 2-clause hyperedges are also taken care off.

Now, we argue that given an arbitrary hyperedge of the setA, and an arbitrary hyperedge
of the set B, they are incomparable too.
For this, we notice that, the labels of the W nodes of all the hyperedges in A are higher
than the labels of all the W nodes of the hyperedges in B. For this, we simply note that
range of the W labels of the second and the third occurrence (set B) is {−5n, . . . , 4n}∖{0},
whereas the W labels of the first occurrence (A) has the range from {4n + 1, . . . ,7n}.
Secondly, notice that the labels of the U and V literal nodes at the second and third
occurrences, i.e., from the edges of set B (range {2n+1, . . . ,6n}) are all higher than that
of the first occurrence, i.e., from the edges of the set A (range {1, . . . ,2n}).

We are done since for every pair of hyperedges (ha, hb), where ha ∈ A and hb ∈ B, we
have that the W coordinate of ha will be higher than that of hb, whereas the among the
other two coordinates, whichever is positive (i.e., corresponds to a literal node) in hb
will be higher than the correpsonding coordinate in ha.

Finally we are left to show that A is also an antichain.

We remind the reader that we have named the variables such that every 3-clause
comprises of variables from only one triple of variables, i.e., every 3-clause involves
Y3(q−1)+1, Y3(q−1)+2, Y3(q−1)+3 at first, second and third position respectively, for some
q > 0. Now first of all we notice that for a pair of hyperedges which come from a different
triple of variables, we are done, because W coordinates of a higher triple are all lower than
the W coordinates of a lower triple, since the labels are (7n − 9(q − 1) − `), ` ∈ {0, . . . ,8}
for q−th triple of variables Y3(q−1)+1, Y3(q−1)+2, Y3(q−1)+3, whereas the positive coordinate
among U or V will be higher for the higher triple (lables are 4(k − 1) + `, ` ∈ [2]). When
they are in the same triple of variables, it helps to remark that there are three kinds of
hyperedges in A, i.e. A = A1 ⊍A2 ⊍Ac:

• A1: the ones where the free nodes belong to U or V . These hyperedges have
exactly one negative coordinate, which will either be in the U coordinate or the V
coordinate.
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• A2: the ones where the free nodes belong to W . All the coordinates are positive.

• Ac: the set of 3-clause hyperedges: All the coordinates are again positive, as all
the nodes are literal nodes.

Now, we need to compare the hyperedges of A1,A2, and Ac with each other and within
themselves when they all belong to the same triple of variables, say the q−th triple,
Y3(q−1)+1, Y3(q−1)+2, Y3(q−1)+3 for some q ∈ [t]. We remind the reader that the labelling
of the W nodes that appear in A varies depending on whether the corresponding index
k = 3(q − 1) + 1, 3(q − 1) + 1, or 3(q − 1) + 3.

There are six possible cases:

(1) A1: same proof that was given for the elements of B, where also we had exactly
one negative coordinate.

(2) A2: for the higher variable, the W coordinate is lower (labels are 7n − 9(q − 1) − 2
for k = 3(q − 1) + 1, 7n − 9(q − 1) − 7 for k = 3(q − 1) + 2 and 7n − 9(q − 1) − 8 for
k = 3(q − 1) + 3), while the other two coordinates are higher, since both U and V
labels are 2(k − 1) + 1,2.

(3) Ac: two different clauses clearly belong to different triple of variables: already
taken care of above.

(4) A1−A2 (ha1 ∈ A1, ha2 ∈ A2): Here we have two cases: namely, either ha1 belonging
to a higher variable, or ha1 belonging to the same or lower variable as compared to
ha2 . In the first case, one of the U or V coordinate of ha1 (whichever is positive)
will be higher, while the other coordinate being negative will be lower than that
of ha2 (whose all coordinates are positive). In the second case, we note that the
W coordinate of ha2 will be lower, since for the same variable, it has the lowest
W coordinate (being 7n − 9(q − 1) − 2 versus 7n − 9(q − 1), 7n − 9(q − 1) − 1 for
k = 3(q − 1) + 1, 7n − 9(q − 1) − 7 versus 7n − 9(q − 1) − 3, 7n − 9(q − 1) − 4 for
k = 3(q − 1) + 2 and 7n − 3(k − 1) − 8 versus 7n − 9(q − 1) − 5, 7n − 9(q − 1) − 6 for
k = 3(q − 1) + 3), and as we go up the variables, W coordinate decreases, while at
least one of the other two coordinate will be higher, i.e., in the coordinate in which
ha1 is negative and ha2 is positive.

(5) A1 − Ac (ha1 ∈ A1, hac ∈ Ac): When ha1 belongs to Gφ
3(q−1)+1 or Gφ

3(q−1)+2, its W

coordinate will be higher than that of hac , since for the clause hyperedge hac , the
W node is picked from Gφ

3(q−1)+3. However, one of the other two coordinates in

ha1 is negative. So, it will be lower than that of hac . So, we are done. When ha1
belongs to Gφ

3(q−1)+3, both ha1 and hac might share the W coordinate. However,

in such ha1 , the positive node among the U and V coordinate will be higher than
that of hac , since ha1 comes from the highest variable among the triple, and both
U and V coordinate increase with higher variables, being labelled 2(k − 1) + 1,2,
whereas the negative coordinate will of course be lower than that of hac which has
no negative coordinate.

(6) A2 − Ac (ha2 ∈ A2, hac ∈ Ac): Here when ha2 ∈ Gφ
3(q−1)+1, its V coordinate will

be less since Y3(q−1)+1 is the lowest variable, whereas the V coordinate of the
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clause hyperedge hac is picked from Gφ
3(q−1)+2. However, the W coordinate will

be higher for ha2 as it is labelled 7n − 9(q − 1) − 2, whereas the clause gets the W

coordinate corresponding to the Gφ
3(q−1)+3 and hence the label 7n − 9(q − 1) − 5 or

7n−9(q−1)−6. Whereas when ha2 ∈ G
φ
3(q−1)+2 or Gφ

3(q−1)+3, the W coordinate will

be lower for ha2 (labelled 7n − 9(q − 1) − 7 or 7n − 9(q − 1) − 8 respectively) than
hac (labelled 7n− 9(q − 1) − 5 or 7n− 9(q − 1) − 6), whereas the U coordinate of ha2
will be higher, since the clause hyperedge hac gets the U coordinate corresponding
to variable Y3(q−1)+1 which is the lowest variable within the triple and hence has
the lowest U coordinate (U labels being 2(k − 1) + 1,2).
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of The 27th Conference on Learning Theory, COLT 2014, Barcelona, Spain, June
13-15, 2014, volume 35 of JMLR Workshop and Conference Proceedings, pages
703–725. JMLR.org, 2014.

[101] N. J. Harvey. Algebraic algorithms for matching and matroid problems. SIAM
Journal on Computing, 39(2):679–702, 2009.

[102] N. J. A. Harvey, D. R. Karger, and S. Yekhanin. The complexity of matrix
completion. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2006, Miami, Florida, USA, January 22-26, 2006,
pages 1103–1111. ACM Press, 2006.

[103] J. D. Hauenstein, C. Ikenmeyer, and J. M. Landsberg. Equations for lower bounds
on border rank. Exp. Math., 22(4):372–383, 2013.

114



Bibliography

[104] U. Heide-Jørgensen. On the determinantal complexity of the 2-hook-immanant.
PhD Dissertation, Department of Mathematics, Aarhus University, 2012.

[105] J. Heintz and M. Sieveking. Lower bounds for polynomials with algebraic coeffi-
cients. Theoretical Computer Science, 11(3):321–330, 1980.

[106] G. Higman. The units of group-rings. Proceedings of the London Mathematical
Society, 2(1):231–248, 1940.

[107] C. J. Hillar and L. Lim. Most tensor problems are np-hard. J. ACM, 60(6):45:1–
45:39, 2013.
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