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Abstract

This thesis is concerned with the development of the singular Euler–
Maclaurin expansion, a novel method that allows for the efficient eval-
uation of large sums over values of functions with singularities. The
method offers an approximation to the sum whose runtime is indepen-
dent of the number of summands and whose error falls of exponentially
with the expansion order. Hereby, a powerful numerical tool is provided
whose applications range from fast multidimensional summation meth-
ods in numerical analysis over the analysis of long-range interactions
in condensed matter systems to the evaluation of partition functions
in quantum physics. The numerical performance of the new method is
demonstrated by precisely computing the forces in a topological defect in
a one-dimensional chain of long-range interacting particles. Furthermore,
prototypical sums in an infinite two-dimensional lattice are efficiently
evaluated. In the derivation of the multidimensional expansion, a deep
connection between our new method to analytical number theory is
revealed. This connection provides tools for the efficient computation
of the operator coefficients that appear in the expansion. On the other
hand, the expansion yields new globally convergent representations of
the Riemann zeta function and its generalisation to higher dimensions.
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Kurzzusammenfassung

Die vorliegende Arbeit beschäfigt sich mit der Entwicklung der
singulären Euler–Maclaurin Entwicklung, einer neuen Methode zur effi-
zienten Auswertung großer Summen über Werte von Funktionen mit
Singularitäten. Die Methode ermöglicht eine Approximation der Summe
mit einem von der Anzahl an Summanden unabhängigen numerischen
Aufwand, deren Approximationsfehler zudem exponentiell mit der Ent-
wicklungsordnung abfällt. Hierdurch wird ein mächtiges numerisches
Werkzeug bereitgestellt, dessen Anwendungen von der effizienten Aus-
wertung großer mehrdimensionaler Summen in der Numerik über die
Analyse von langreichweitigen Wechselwirkungen in Festkörpern bis hin
zur Auswertung von Zustandssummen in der Quantenmechanik reichen.
Die numerische Leistungsstärke der neuen Methode wird anhand der
präzisen Auswertung von langreichweitigen Kräften innerhalb eines topo-
logischen Defekts in einer eindimensionalen Kette aufgezeigt. Weiterhin
werden prototypische Summen in einem unendlichen zweidimensionalen
Gitter effizient berechnet. In der Herleitung der mehrdimensionalen
Entwicklung tritt eine tiefgehende Verbindung zur analytischen Zahlen-
theorie zutage. Diese Verbindung kann einerseits genutzt werden, um
die Operatorkoeffizienten der Entwicklung effizient zu berechnen. An-
dererseit stellt die Entwicklung neue global konvergente Darstellungen
der Riemann Zeta Funktion und ihrer Verallgemeinerung auf höhere
Raumdimensionen bereit.
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Motivation and overview

This thesis is concerned with the efficient computation of numerically
challenging sums that appear in physical applications. Addition is
among the most basic and historically most ancient of all mathematical
operations. By repeated addition of the number 1 to itself, we can
count, and from counting, the natural numbers N = {1,2,3, . . .} are
created. If you can count, you can make predictions on the future. It is
the starting point of all scientific progress.

While the addition of two numbers is a basic operation, the com-
putation of a large sum can turn into a challenging problem, as it is
difficult to improve upon the numerical efficiency of the underlying op-
eration. The main approach for computing sums with a large number of
addends is to approximate them by an integral, which is possible if the
summands are based on function values. This integral is subsequently
computed by means of quadrature rules, which finally results again in
a sum, but with a smaller number of addends [13].

However, it is a priori not clear how to quantify the approximation
error of the integral approximation to the sum. A first step towards
an answer to this question was provided by Euler and Maclaurin in
the 18th century, who discovered that the difference between sum and
integral of a sufficiently smooth function can be expanded in terms
of derivatives of the summand function [1]. The resulting expansion
is called the Euler–Maclaurin expansion, which is discussed in more
detail in Chapter 1. This expansion offers, in principle, an efficient way
to express sums in terms of integrals and local derivatives. However,
it exhibits two severe problems that stop it from being applicable to
physically relevant problems. First, the expansion does not converge
for summand functions that include singularities [1]. Unfortunately,
all relevant physical interactions, e.g. the electromagnetic and the
gravitational interaction, are of this kind. Second, the Euler–Maclaurin
expansion offers an expansion of a one-dimensional sum, whereas most
physical problems are high-dimensional. While early first steps towards
a solution of the first problem were made by Navot [42] and to the
second by Müller [41] and Freeden [23], a satisfactory solution to both
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2 OVERVIEW

problems remained to be found. A more detailed review of generalised
Euler–Maclaurin expansions is given in Sections 1.1 and 2.1. In this
thesis, the multidimensional singular Euler–Maclaurin expansion is
developed, which resolves both problems mentioned above and makes
the expansion applicable to realistic physical problems.

In nature, we regularly encounter the situation that a system can
be understood as the sum of a macroscopic number of microscopic
individual and irreducible parts, whose interplay determine the system
properties [10]. The most basic example is given by the condensed
matter that surrounds us. A few grams of a solid consist of a number of
atoms in the range of the Avogadro constant NA ≈ 6×1023. The pairwise
interactions between the atoms or molecules inside a solid, for instance
a crystal, in principal give rise to its macroscopic properties. Although
we are well aware of these microscopic interactions [24], e.g. of the
Coulomb interaction that acts between charged ions, it is a challenging
task to derive from them the properties of the material at the macro- (or
even meso) scale due to the sheer number of particles that are involved.
Continuum limits are challenging if long-range interactions are present,
see e.g. [35] for a discussion of the nonlinear Schrödinger equation in
a charged DNA string. Large sums also appear in case of microscopic
interactions in spin lattices. Topological excitations in spin lattices,
so called Skyrmions, are promising candidates for efficiently storing
and moving information in spintronics devices [12] and could become a
part in a new spin-based IT infrastructure. Metamaterials [50], which
promise the creation of flat lenses and new tools for manipulating light
in general, are composed of mesoscopic structures, where the number
of particles is too small for standard continuum limits yet too large to
be efficiently computable. Finally, sums with large number of addends
typically arise in partition functions in statistical physics and quantum
mechanics from which the thermodynamic properties of the system
under consideration can be determined [9].

All these examples from condensed matter and statistical physics
share a fundamental granularity in their description. Discreteness is
also found on a more basic level, as the universe itself consists of inter-
acting elementary particles. Some theories go even further and consider
discreteness not only of particles, but also of space and/or time. For
instance a discretisation of space-time is a well known numerical method
in quantum field theory, which regularises divergent path integrals [46].
Loop quantum gravity on the other hand introduces a granularity at
the Planck scale in order to reconcile quantum mechanics and general
relativity [15, 45].
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The method developed in this thesis can be used for rigorous de-
rivations of precise continuum limits of discrete systems even in case
that singular interactions are present. Higher orders of the expansion
describe finite size effects in increasing detail. In this thesis, the new
method is applied to two physical examples. In Chapter 1.3, we effi-
ciently compute the full nonlinear forces that act in a topological defect
in a one-dimensional chain of charged particles, see [37] for a review on
topological defects. In Chapter 4.4, we then move on to a prototypical
two dimensional sum that appears in the evaluation of forces in spin
lattices. While in both cases, the evaluation of the exact sum is a
challenging numerical problem, the singular Euler–Maclaurin expansion
offers a precise approximation to the sum with a runtime that does
not depend on the particle number and with an error that decreases
exponentially in the expansion order.

The derivation of the singular Euler–Maclaurin expansion in this
work is structured as follows. In Chapter 1, the one-dimensional sin-
gular Euler–Maclaurin (SEM) expansion is developed, extending the
validity of the traditional Euler–Maclaurin (EM) summation formula to
functions with singularities. By including the singular function factor in
a generalisation of the periodised Bernoulli functions, the convergence
properties of the expansion are restored. Thus, the SEM expansion is
applicable and useful for physical systems that exhibit singular interac-
tions, e.g. due to long-ranged particle interactions. We derive bounds
for the approximation error and lay out under which conditions the
expansion order can be taken to infinity, namely if the function under
consideration is of exponential type. This condition is subsequently
interpreted as a definition for physically meaningful interpolation func-
tions that vary at a scale larger than the grid spacing. In the numerics
section, we demonstrate the performance of the expansion by comput-
ing the full nonlinear long-range forces in a macroscopic crystal. The
SEM expansion yields, under the condition of a physically meaningful
interpolation function, an efficiently computable approximation to the
sum for all interaction exponents, especially for the notoriously difficult
case where the interaction exponent is equal to the dimension of the
system.

Chapter 2 is concerned with the extension of the traditional EM
expansion (for functions without singularities) to multidimensional
lattices. This provides a powerful analytical tool that is subsequently
applied in the derivation of the multidimensional SEM expansion in
the following chapter. Using results on the regularity of elliptic partial
differential operators, we deduce the properties of the generalisation
of the periodised Bernoulli functions to higher dimensions. Differences
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between lattice sums and related integrals, we call them sum-integrals,
are then approximated by a surface integral over derivatives of the
summand function. The multidimensional Bernoulli functions form the
coefficients of the associated differential operator. We provide sharp
bounds for the approximation error of the expansion.

Further improving on the EM expansion in higher dimensions, we
set out to derive the SEM expansion on multidimensional lattices in
Chapter 3. Following the same strategy as in one dimension, we aim at
including the singularity inside a generalisation of the multidimensional
Bernoulli functions, the Bernoulli-A functions. In higher dimensions, we
construct these functions by carefully combining fundamental solutions
to the poly-Laplace operator with the interaction. Infinite sums over
fundamental solutions are needed, which can be made well-defined by
a particular regularisation method that makes use of sum-integrals
that include a superpolynomially decaying regularisation. The mul-
tidimensional SEM expansion then takes a similar form as the EM
expansion in higher dimensions, where the surface integral is now taken
over derivatives of the smooth factor of the summand function only.
We improve the method further by introducing the SEM expansion for
interior lattice points that works even if the singularity lies within the
integration region and where an additional parameter ε arises.

In Chapter 4, we remove the free parameter ε by means of the
Hadamard integral. The resulting hypersingular Euler–Maclaurin ex-
pansion (HSEM) is able to approximate the difference between sum and
integral by a single local differential operator in case that the integra-
tion region equals Rd. We discover a deep connection of our theory to
analytical number theory, showing that regularised differences between
sums and integrals can be used to generate analytic continuations of
Dirichlet series. This allows us to use tools from number theory in order
to efficiently compute the coefficients of the differential operator. As a
by-product of the expansion, new globally convergent representations of
the Riemann zeta function and its generalisations to higher dimensions
are found. Finally, we show the numerical performance of the HSEM
expansion by computing lattice sums in an infinite two-dimensional
lattice, which appear in a number of different fields of research. The
error scaling of the multidimensional EM expansion in Chapter 2 is
recovered, showing that the singularity has been properly absorbed
in the Bernoulli-A functions. Here, the approximation error decreases
polynomially with the width of the interpolating function and exponen-
tially with the expansion order, with a runtime that is independent of
the particle number.
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We draw our conclusions in Chapter 5 and give an outlook on
applications of the new expansions in pure and applied mathematics,
condensed matter, and quantum physics.





CHAPTER 1

Singular Euler–Maclaurin expansion

We present the one-dimensional singular Euler–Maclaurin expansion,
a method that allows to represent large scale sums in terms of integral
and differential operators. The new expansion extends the applicability
of the classical Euler–Maclaurin summation formula to sums whose ad-
dends are formed by the product of a sufficiently differentiable function,
we call it the interpolating function, and an asymptotically smooth inter-
action function that includes all relevant physical interaction potentials
and forces. First, a generalisation of the periodised Bernoulli polynomi-
als, the Bernoulli–A functions, is introduced in which all information
about the interaction is encoded. The difference between sum and
integral is then described by a differential operator, whose coefficients
are the Bernoulli–A functions, and a remainder integral. The operator
acts only on the interpolating function thereby avoiding derivatives of
the interaction, whose fast increase with the derivative order leads to
the breakdown of the standard Euler–Maclaurin summation formula.
The slower the derivatives of the interpolating function increase with
the derivative order, the better are the resulting rates of convergence.
If this increase is sufficiently slow, the expansion order can be taken to
infinity. The coefficients of the differential operator follow from a gener-
ating function and are therefore easily accessible. We provide analytical
formulas for the differential operator for standard interactions. Finally,
we show that the singular Euler–Maclaurin expansion can be used as
a powerful numerical tool in condensed matter physics. It allows us
to evaluate large scale force sums with a runtime that does not de-
pend on the particle number. As a proof of numerical performance, we
compute the nonlinear forces in a macroscopic one-dimensional crystal
composed of 2 × 1010 particles. We provide a reference implementation
in Mathematica online1.

This chapter is based on the publication [6].
1https://github.com/andreasbuchheit/singular_euler_maclaurin
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8 1. SINGULAR EULER–MACLAURIN EXPANSION

Figure 1. Approximation of a sum by an integral as described by
the Euler–Maclaurin expansion (1.1). In the red areas, the addends
are larger than the corresponding integral, whereas the integral
exceeds the addend in the green areas.

1. Introduction

When we try to simulate the dynamics of the discrete particles
inside a body of macroscopic size, we encounter a serious computational
problem, if the forces acting between particles are long-ranged. In order
to determine the force acting on one specific particle, a sum has to
be evaluated where the number of addends scales with the number of
particles. A fast, yet precise computation of this sum is challenging,
even if the microscopic observable, e.g. the displacement of particles
from a reference position in a crystal, can be described by a smooth
interpolating function. It is often easier to evaluate an integral than a
sum, either because efficient quadrature rules can be applied or because
analytical simplifications are possible. However, the precise relation
between sums and integrals is difficult to establish. Fig. 1 schematically
displays the approximation of a sum by an integral. The surface area
of the rectangles are the summands and the blue area is the value
the integral. In the green regions, the integral overestimates the sum,
whereas in the red parts, the integral is smaller than the sum.

A first step in the quantification of the error when approximating
sums by integrals and vice versa was given by Leonard Euler in 1736 and
by Colin Maclaurin in 1742, see the review [1]. The Euler–Maclaurin
(EM) expansion allows us to write the difference between sum and
integral as derivatives of the summand function, evaluated at the limits
of integration, together with a remainder integral.
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Before presenting the EM expansion, we review the following stan-
dard notations. For an open and possibly unbounded set I ⊆ R and
` ∈ N0 or ` = ∞, C`(I) shall denote the vector space of all `-times
continuously differentiable functions. The vector space C`(Ī), where
Ī is the closure of I, is composed of those functions in C`(I) whose
derivatives have continuous extensions from I to Ī. Furthermore we set
C−1(I) as the space of regulated functions,

C−1(I) = {f ∶ I → C ∶ ∀y0 ∈ I ∶ lim
y↗y0

f(y), lim
y↘y0

f(y) exist} ,

where
lim
y↗y0

, lim
y↘y0

are the one-sided limits from left and right. Regulated functions are
continuous up to a countable set of points.

Let a, b ∈ Z, with a < b, δ ∈ (0,1], and ` ∈ N0. The EM expansion
for a function f ∈ C`+1[a + δ, b + δ] then reads [1, 40]

b

∑
n=a+1

f(n) =
b+δ

∫
a+δ

f(y)dy −
`

∑
k=0

(−1)k
k!

Bk+1(1 + y − ⌈y⌉)
k + 1 f (k)(y)∣

y=b+δ

y=a+δ
(1.1)

+ (−1)`
`!

b+δ

∫
a+δ

B`+1(1 + y − ⌈y⌉)
` + 1 f (`+1)(y)dy.

Here ⌈y⌉ is the smallest integer larger than or equal to y. The Bernoulli
polynomials B` ∶ R→ R are defined via the recurrence relation

(1.2) B0(y) = 1, B′
`(y) = `B`−1(y),

1

∫
0

B`(y)dy = 0, ` ∈N.

A derivation of the EM expansion together with a brief introduction to
its history are provided in [1].

The EM expansion allows to write sums in terms of integral and
differential operators, which, after discarding the remainder integral
on the right hand side of (1.1), provide an efficiently computable ap-
proximation to the sum. The usefulness of the formula relies on the
convergence of the expansion, meaning that the limit ` → ∞ is well
defined. Let us consider a smooth function f . By using the scaling of
the Bernoulli polynomials [36],

max
y∈[0,1]

∣B`(y)∣
`! ∼ (2π)−`, ` ∈N0,
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we find that the derivatives of the function f may increase at most
exponentially in the derivative order with

∣f (`)(y)∣ ∼ σ`, ` ∈N0,

and σ < 2π. This condition in particular excludes functions f that
involve a singular factor y−ν , with ν > 0, whose derivatives grow with
the factorial of `. The fast increase of the derivatives with the derivative
order is typical for many physical interaction energies and forces, and
thus the EM expansion cannot be applied in these cases.

Over the years, several extensions of the classical EM expansion
have been developed. A significant contribution has been provided by
Navot [42], where the expansion is generalised to branch singularities
at the limits of integration. An approach using Hadamard finite-part
integrals has been provided by Monegato and Lyness [40]. Also higher
dimensional generalisation of the expansion have been derived [34].
Recently, an alternative approach has been presented by Pinelis, which
relies on the use of integral instead of differential operators [44].

The EM expansion fails to converge for asymptotically smooth
functions, see Definition 1.1, which are, unfortunately, of high practical
interest as singular physical interaction forces belong to this set of
functions. In the following, we present the singular Euler–Maclaurin
(SEM) expansion, which converges, even if the summand function
includes a factor that is an asymptotically smooth function.

This chapter is organised as follows. In Section 2, we present the
SEM expansion and offer the reader all tools required for its application.
In Section 3, we conduct a numerical study using the SEM expansion
and efficiently perform force calculations in a macroscopic crystal with
long-range interactions. In Section 4, we prove the main theorems and
propositions of this chapter. Technical details needed in the derivation
are relegated to Section 5. In Section 6, conclusions are drawn.

2. Main result and notation

In the following, we present the SEM expansion. Consider an interval
[a+δ, b+δ], with a, b ∈ Z, a < b, and an offset δ ∈ (0, 1]. Let the addends
of a sum be given by a function f ,

f ∶ [a + δ, b + δ]→ C.
In order to overcome the convergence problems of the standard EM
expansion, we now apply the following strategy. We take the function
f and split it into two factors
(1.3) f(y) = s(y − x)g(y), y ∈ [a + δ, b + δ],
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where x ∈ Z, s ∈ C∞(R ∖ {0}) and g ∶ [a + δ, b + δ] → C is a sufficiently
differentiable function. Now, all functions whose derivatives increase
quickly with the derivative order and are thus not suitable for the
standard EM expansion, e.g. singularities at x, are included in the
function s. This function will require special treatment. In practice,
the function s often describes a pairwise interaction potential or an
interaction force that follows from a potential. For this reason, we
call s the interaction. The remaining well-behaved function factors are
collected in g, which typically includes the interpolation of a discrete
observable, e.g. a particle displacement. We call g the interpolating
function. The slower the increase in the derivatives of g with the
derivative order, the better will be the convergence rates that the SEM
expansion is able to offer.

We now provide a roadmap for our presentation of the SEM ex-
pansion. First, the admissible set of functions for the interaction s
is introduced. Then an exponential regularisation is added to the in-
teraction, making it an integrable function on [1,∞). Subsequently,
we use the integrability of the regularised interaction and quantify the
difference between sum and integral of the interaction in a function
that we call C. From the function C we deduce a generalisation of
the periodised Bernoulli polynomials, the Bernoulli–A functions, which
include all information about the interaction. The Bernoulli–A func-
tions then form the coefficients of the SEM differential operator, which
acts on g only, avoiding derivatives of s and thus also the divergence
of the remainder that is caused by their unfavourable scaling. Finite
order approximations of the SEM operator then lead to the finite order
SEM. If the function g is smooth and the scaling of its derivatives is
sufficiently favourable, then the order of the expansion can be extended
to infinity, yielding the infinite order SEM.

Before we formulate the SEM expansion, we specify the admissible
function set for the interaction, namely the set of asymptotically smooth
functions [3, Sec. 3.2].

Definition 1.1 (Asymptotically smooth functions). We call a
function s ∈ C∞(R∖ {0}) asymptotically smooth if there exist c > 0 and
γ ≥ 1 such that

(1.4) ∣s(`)(y)∣ ≤ c `!γ` ∣y∣−` ∣s(y)∣,

for all y ∈ R ∖ {0} and ` ∈ N0. We denote the vector space of all
asymptotically smooth functions by S.
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The asymptotically smooth functions include entire functions, like
polynomials, but also many singular functions. Examples for asymptot-
ically smooth functions are
(1.5) s(y) = ∣y∣−ν , y ∈ R ∖ {0},
for ν ∈ R. In the physical case ν > 0, where the interaction decreases
with distance ∣y∣, they exhibit a singularity at zero.

Remark 1.2. For s in (1.5), the constant γ in (1.4) equals 1 in the
case ν ≤ 1. For ν > 1, then γ = 1 + ε for an arbitrary ε > 0, see the proof
at the beginning of the Section 5.

Asymptotically smooth functions have two important properties that
we are going to use. First, their derivatives may only increase with the
factorial of the derivative order with an additional exponential growth
for γ ≠ 1, but not faster. Second, the growth rate of the interaction s
at infinity is polynomial in y. We use this scaling as a way to further
classify asymptotically smooth functions.

Definition 1.3. We define Sα, α ∈ R, as the vector space of all
s ∈ S for which there exists c0 > 0 such that
(1.6) ∣s(y)∣ ≤ c0∣y∣α, ∣y∣ > 1.

Remark 1.4. From Grönwall’s lemma follows immediately that
(1.7) S = ⋃

α∈R
Sα,

see Section 5 for a proof.
In order to avoid the breakdown of the EM expansion, derivatives

of s have to be avoided. It is possible to integrate s instead. In order
to make s integrable on [1,∞), which is not always possible (take
for instance ν = 1 in (1.5)), we introduce an exponentially decreasing
weighting.

Notation 1.5. Let s ∈ S. The exponentially weighted interaction
reads
(1.8) sβ(y) = s(y)e−β∣y∣, y ∈ R ∖ {0},
with β ≥ 0.

The parameter β restricts the range of the interaction, we call it
the shielding. In the limit β ↘ 0 the shielding is removed and the
interaction regains its full range. It is important to note that the
shielded interaction sβ remains asymptotically smooth for all β ≥ 0.

We first quantify the difference between sum and integral of the
shielded interaction through the function C.
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Figure 2. Generalised Bernoulli functions A` for s(y) = ∣y∣−1.

Definition 1.6. Let s ∈ S. We define C ∶ R+ ×R+ → C as

(1.9) C(y, β) =
∞
∑
n=⌈y⌉

sβ(n) −
∞

∫
y

sβ(z)dz,

with R+ the positive real numbers.

We use calligraphic notation for objects that include the interaction
s. From the function C follow the Bernoulli–A functions, which serve
as a replacement for the periodised Bernoulli polynomials in (1.1).
The shielding β here plays a special role as it allows to generate the
Bernoulli–A functions via an exponential generating function.

Definition 1.7 (Bernoulli–A functions). Let s ∈ S. The Bernoulli–
A functions,

A` ∶ R+ → C, ` ∈N0,

are defined as the coefficients in the power series

eβξC(ξ, β) =
∞
∑
`=0
A`(ξ)

β`

`! , ξ > 0.

We say that the sequence (A`(ξ))`∈N0 is exponentially generated by

Gξ(β) = eβξC(ξ, β)

and refer to Gξ as the generating function.

The first three Bernoulli–A functions are displayed for s(y) = ∣y∣−1

in Fig. 2.
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Remark 1.8. In the case s = 1, we reobtain the periodised Bernoulli
polynomials,

A`(y) =
B`+1(1 + y − ⌈y⌉)

` + 1 , ` ∈N0, y > 0.

Proof. Let y > 0 and β > 0. Then

eβyC(y, β) = eβy
∞
∑
n=⌈y⌉

e−βn − eβy
∞

∫
y

e−βz dz = e
β(1+y−⌈y⌉)

eβ − 1 − 1
β

= 1
β

(βe
β(1+y−⌈y⌉)

eβ − 1 − 1) .

We find that the first term inside the brackets equals the exponential
generating function for the Bernoulli polynomials evaluated at 1+y−⌈y⌉
[21, Sec. 1.13, Eq. (2)]. As B0 = 1, we obtain

eβyC(y, β) =
∞
∑
`=1
B`(1 + y − ⌈y⌉)β

`−1

`! =
∞
∑
`=0

B`+1(1 + y − ⌈y⌉)
` + 1

β`

`! .

�

We use the Bernoulli–A functions and define the SEM operator, a
differential operator of infinite order, and finite order approximations
thereof.

Definition 1.9 (SEM operator). For s ∈ S and ξ ∈ R+, we define
the differential operator of infinite order

(1.10) Dξ =
∞
∑
`=0

1
`!A`(ξ) (−D)`,

where D is the derivative operator. We call Dξ the SEM operator. It
formally reads

Dξ = Gξ(−D),
and for ` ∈N0 the finite order approximations D(`)

ξ are given by

D(`)
ξ =

`

∑
k=0

1
k!Ak(ξ) (−D)k.

With the Bernoulli–A functions and the SEM operator, we can now
formulate the finite order SEM expansion.

Theorem 1.10 (Finite order SEM). For x, a, b ∈ Z, with x ≤ a < b,
and δ ∈ (0,1], let f factor into

f(y) = s(y − x)g(y),
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where s ∈ S and g ∈ C`+1[a + δ, b + δ], ` ∈N0. Then,
b

∑
n=a+1

f(n) =
b+δ

∫
a+δ

f(y)dy − (D(`)
y−xg)(y)∣

y=b+δ

y=a+δ

+ (−1)`
`!

b+δ

∫
a+δ
A`(y − x)g(`+1)(y)dy.

Note that the SEM operator only acts on g, not on s. Therefore,
the convergence problems of the classic EM expansion are avoided. If
we would like to take the limit of the expansion order to infinity, the
function g has to belong to a specific set of functions, which restricts
the scaling of its derivatives. Namely, the function g has to be of
exponential type.

Definition 1.11 (Functions of exponential type). Let g be entire.
If there exists σ > 0 such that for every ε > 0, there is Mε > 0 with

∣g(`)(y)∣ ≤Mε(σ + ε)`e(σ+ε)∣y∣, y ∈ R, ` ∈N0,

we say that g is of exponential type σ. By Eσ we denote the vector
space of all functions of exponential type σ.

For a review of functions of exponential type, see [11]. The parameter
σ describes the largest angular wavenumber for oscillations of the
function g. It depends on the parameter γ in Definition 1.1, but always
has to be smaller than 2π. This restriction is physically meaningful,
as the function g serves as an interpolation between discrete points,
e.g. particle displacements in a physical setting. Consider Fig. 3
where we interpolate the blue points by two different interpolating
functions of exponential type. Interpolations that include oscillations
with wavelengths smaller than the separation of the discrete points can
be considered unphysical. Thus in black, we see a physically meaningful
interpolation of the blue points (σ < 2π) and an unphysical interpolation
in red (σ > 2π).

We now formulate the infinite order SEM expansion.
Theorem 1.12 (Infinite order SEM). For x, a, b ∈ Z, with x ≤ a < b,

and δ ∈ (0,1], let f factor into
f(y) = s(y − x)g(y),

where s ∈ S and g ∈ Eσ with σ < 2π/(1 + γ). Then,

(1.11)
b

∑
n=a+1

f(n) =
b+δ

∫
a+δ

f(y)dy − (Dy−xg)(y)∣
y=b+δ

y=a+δ
.
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Figure 3. Different choices for a smooth interpolation of the blue
points by a function g ∈ Eσ. The black line shows a physically
meaningful interpolation with σ < 2π, the red line an unphysical
interpolation where σ > 2π.

Remark 1.13. Both Theorems 1.10 and 1.12 require that x is
positioned to the left of the interval [a + 1, b]. We can however also
apply the SEM in the case that x is positioned to the right of the
interval by reflecting the interval about x. Take for instance a < b < x.
The reflected interval is [ã + 1, b̃], with

ã = 2x − (b + 1), b̃ = 2x − (a + 1),
where x ≤ ã < b̃. The sum can then be rewritten as

(1.12)
b

∑
n=a+1

s(n − x)g(n) =
b̃

∑
n=ã+1

s̃(n − x)g̃(n),

with s̃ ∈ S and g̃ given by
s̃(y) = s(−y), g̃(y) = g(2x − y).

The SEM expansion can then be applied to (1.12).

Remark 1.14. Consider s ∈ S of the form
s(y) = ∣y∣−ν , y ∈ R ∖ {0},

where ν ∈ R. Then we can improve the restriction on σ to σ < 2π, which
can be deduced from the following example.

Example 1.15. Take s(y) = ∣y∣−ν , y ∈ R∖{0}, with ν ∈ R. Then the
radius of convergence of the exponential generating function Gy equals
2π and the Bernoulli–A functions follow as

(1.13) A`(y) =
`

∑
k=0

(−1)k(`
k
)y`−k(ζ(ν − k, ⌈y⌉) − y

−(ν−k−1)

ν − k − 1), ` ∈N0,
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where ζ(⋅, ⋅) is the Hurwitz zeta function,

(1.14) ζ(z, q) =
∞
∑
n=0

1
(n + q)z , z > 1, q > 0,

which can be analytically continued to the complex plane for all z ≠ 1
[21, Sec. 1.10]. In the case ν ∈N0 we obtain

lim
ν→k+1

(ζ(ν − k, ⌈y⌉) − y
−(ν−k−1)

ν − k − 1) = γe −H⌈y⌉−1 − log y, k ∈N0,

with γe the Euler–Mascheroni constant and where Hk is the kth har-
monic number,

Hk =
k

∑
j=1

1
j
.

3. Numerical application

We apply the SEM expansion to the calculation of the nonlinear long-
range forces that act inside a one-dimensional crystal of macroscopic
size. As the SEM is applicable to all asymptotically smooth interactions,
we can use it to simulate all physically relevant cases. In this study,
we focus in particular on the 3D Coulomb repulsion restricted to a
one-dimensional line manifold. In this case, the interaction potential
decays algebraically with an exponent ν that equals the dimension of the
system manifold. The treatment of this case is particularly challenging,
both analytically and numerically, as the discreteness of the material
has an observable effects at all scales [14].

Let the crystal be composed of 2N + 1 particles, with N ∈N0. We
write the particle positions as xj ∈ R, j = −N, . . . ,N . The particles are
displaced from an equidistant crystal configuration with lattice constant
h > 0 such that
(1.15) xj = jh + u(jh), j = −N, . . . ,N,
with a smooth function u that interpolates the particles displacements.

Let V ∈ S be the pairwise interaction energy between two particles,
which decays algebraically with the inter-particle distance x,
(1.16) V (x) = cν ∣x∣−ν , ν > 0.
The force that acts on the particle at reference position x then equals

(1.17) F (x) = −
N

∑
n=−N
n≠x/h

V ′(x − hn + u(x) − u(hn)), x ∈ h{−N, . . . ,N}.
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Figure 4. Force F as a function of distance x from the centre of
the crystal for different values of the kink width λ and the particle
number N . The black line gives the integral approximation, the
first order singular Euler–Maclaurin expansion is shown in red,
and the blue dots display the exact forces. In (a), the maximum
absolute error for the first order singular Euler–Maclaurin expansion
is smaller than 3× 10−7 for all forces and the relative error does not
exceed 8 × 10−5.

We now remove all physical dimensions by writing positions in units of
h and forces in units of V ′′(h)h. The forces then read

(1.18) F (x) =
x−1

∑
n=−N

f(n) +
N

∑
n=x+1

f(n), x ∈ {−N, . . . ,N},

with a function f that factors into
(1.19) f(y) = s(y − x)g(y)
where we define s ∈ S and g smooth as

(1.20) s(y) = sgn(y) ∣y∣−(ν+1), g(y) = − 1
ν + 1(1 + u(y) − u(x)

y − x )
−(ν+1)

.

We choose the exponent ν = 1, which corresponds to 3D Coulomb
interaction restricted to a 1D line. For the interpolating function u, we
take

(1.21) u(y) = 1
π

y/λ

∫
−∞

1
1 + z2 dz,

which is a simplified profile of a domain wall, also called kink, in a
crystal with
(1.22) lim

y→∞u(y) = 1, lim
y→−∞u(y) = 0.
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Figure 5. Maximum absolute error for N = 200 as a function of λ
for different orders ` of the singular Euler–Maclaurin expansion.

For an overview of kinks in condensed matter physics, see [37]. They
typically arise through an additional nonlinearity that is applied to the
crystal, for instance through the interaction with a substrate crystal.
The parameter λ > 0 scales the width of the kink.

A reference implementation of the SEM expansion in Mathematica,
which allows to reproduce the following results, is provided online2. The
nonlinear forces in the crystal are computed numerically by using the
SEM expansion up to order ` with δ = 1. The integral is evaluated using
global adaptive quadrature. We first compute the coefficients of the
SEM differential operator. Then the operator is applied to the function
g, where the differentiation is carried out symbolically. We discard the
remainder integral and compute the forces. Here, the computational
time for a single force evaluation using the SEM expansion does not
depend on the number of particles.

We then compute the forces inside the centre of a crystal with a kink
of width λ in its centre. The forces are displayed in Fig. 4 where panel
(a) shows the case of a microscopic crystal with N = 103 and λ = 10,
whereas in panel (b) the case of a macroscopic crystal with N = 1010

and λ = 105 is considered. If we insert a typical lattice constant of
h = 10−10 m, then the crystal in (b) has a length of two metres, where
the exaggerated size has been chosen in order to further demonstrate
the numerical performance of our method. We compare the case where
the sum is approximated by an integral only (black line) to the first

2https://github.com/andreasbuchheit/singular_euler_maclaurin

https://github.com/andreasbuchheit/singular_euler_maclaurin
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order SEM (red line) and to the exact forces (blue dots). We find in (a)
that the integral approximation shows a significant error, whereas the
first order SEM expansion reproduces the forces reliably, both inside the
kink as well as at the edges of the chain. The maximum absolute error
for the SEM is always smaller than 3× 10−7 leading to the precision of 4
digits. In (b), we extend both the crystal and the kink to macroscopic
size. Here the computation of the exact forces is impractical due to
the large number of particles. Even at this scale, there is a significant
difference between the SEM expansion and the integral approximation.
The maximum force acting in the centre of the kink scales as log(λ)/λ2,
whereas the first order SEM contribution scales as λ−2. In the centre of
the chain, both are independent of the particle number for N ≫ 1. The
logarithm increases too slowly, such that the integral does not dominate
the SEM contribution, even on the macro scale. Therefore, the claim
that a sufficiently broad distribution of charges allows us to replace a
force sum by the corresponding integral (see e.g. [5, Eq. (5.3)]) is not
correct in the case of the 3D Coulomb interaction in one-dimension.
Therefore, even in the thermodynamic limit, the SEM contribution
remains relevant.

We then investigate the error in the maximum norm over a chain of
N = 200 particles as a function of the kink width λ for different order `
of the SEM expansion and display the results in Fig. 5. We find that
the error in the integral approximation does not depend on the kink
width λ. Its maximum value is reached at the edges of the crystal,
whereas in the centre, it scales as λ−2. If we include the zero order
SEM correction, the error at the edges is already compensated and the
maximum error occurs in the chain centre. For ` = 1, the error scales
approximately as λ−4. For higher orders `, the scaling coefficient equals
approximately ` + 3 for odd orders `. The precise scaling coefficients
obtained from a fit of the last 5 data points are given in Fig. 5. For the
case ` = 7, the SEM expansion yields a maximum error smaller than
10−17 corresponding to 13 digits of precision.

The analysis of the error scaling shows that an inclusion of the
SEM correction is important for the correct prediction of long-range
forces, even more so if finite chains with edges are considered, where the
integral approximation yields a large error independent of the choice of
λ. A very regular scaling of the error with λ is observed, with the first
order SEM already offering a λ−4 scaling. We have thus established that
the new expansion yields precise and fast approximations to the singular
sum with an error that decays exponentially with the expansion order
and with a runtime that is independent of the particle number. The
integral approximation on the other hand is unreliable for the system
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under consideration and yields uncontrolled and typically significant
errors.

4. Main derivation

In this section, we derive the SEM expansion and prove the theorems
of this chapter. The proofs of technical lemmas can be found in the
next section. Before deriving the zero order SEM expansion, we gather
properties of the function C.

Lemma 1.16. Let s ∈ S. For fixed y > 0, the function
C(y, ⋅) ∶ (0,∞)→ C

is infinitely differentiable,

∂`βC(y, β) = (−1)`
⎛
⎜
⎝

∞
∑
n=⌈y⌉

n`s(n)e−βn −
∞

∫
y

z`s(z)e−βz dz,
⎞
⎟
⎠
, ` ∈N0, β > 0,

and all derivatives decay exponentially for ∣y∣ → ∞. Furthermore, all
derivatives have a continuous extension for β = 0, i.e for y > 0 fixed the
limit

lim
β↘0

∂`βC(y, β)

exists for all ` ∈N0.

Lemma 1.17. Let s ∈ S and ` ∈N0, β > 0. The function
∂`βC(⋅, β) ∶ (0,∞)→ C

is infinitely differentiable on R+ ∖N and obeys the jump relation
lim
y↗n∂

`
βC(y, β) − lim

y↘n∂
`
βC(y, β) = (−1)`n`sβ(n)

for all n ∈N. The results remain valid in the limit β ↘ 0.

With the above two lemmas, we prove the zero order SEM expansion.

Proposition 1.18. Let x, a, b ∈ Z with x ≤ a < b and δ ∈ (0,1]. Let
f factor into

f(y) = s(y − x)g(y),
with s ∈ S and g ∈ C1[a + δ, b + δ]. Then,

(1.23)
b

∑
n=a+1

f(n) −
b+δ

∫
a+δ

f(y)dy

= − lim
β↘0
C(y − x,β)g(y)∣

y=b+δ

y=a+δ
+ lim
β↘0

b+δ

∫
a+δ
C(y − x,β)g′(y)dy.
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Proof. The function C(⋅, β) exhibits discontinuities at n ∈N and
is smooth on R+ ∖N. Both the size of the jump at the positive integers
as well as the derivative of the function on R+ ∖N yield the shielded
interaction sβ at the respective point, namely

(1.24) lim
ε↘0

(C(n − ε, β) − C(n + ε, β)) = sβ(n), n ∈N,

and
(1.25) ∂yC(y, β) = sβ(y), for y ∈ R+ ∖N.
By the jump condition (1.24), we replace the weighted interaction in
the sum on the left hand side of (1.23)

b

∑
n=a+1

f(n) = lim
β↘0

b

∑
n=a+1

lim
ε↘0

(C(n − x − ε, β) − C(n − x + ε, β))g(n),(1.26)

and subsequently remove the shielding of s through the limit β ↘ 0.
We then split (1.26) into two separate sums. After performing an index
shift in the sum that includes the term C(n − x − ε, β), we obtain

b

∑
n=a+1

f(n)

= lim
β↘0

( lim
ε↘0

b−1

∑
n=a
C(n+1−x− ε, β)g(n+1)− lim

ε↘0

b

∑
n=a+1
C(n−x+ ε, β)g(n)).

Recombining the two sums yields

(1.27)
b

∑
n=a+1

f(n)

= lim
β↘0

lim
ε↘0

⎛
⎝

b

∑
n=a+1
C(y − x,β)g(y)∣

y=n+1−ε

y=n+ε
− C(y − x,β)g(y)∣

y=b+1−ε

y=a+1−ε

⎞
⎠
,

where the last term results from a correction of the differing summation
intervals.

Now we transform the integral on the left hand side of (1.23) by
replacing the shielded interaction by derivatives of C(⋅, β) as in (1.25)

b+δ

∫
a+δ

f(y)dy = lim
β↘0

lim
ε↘0

(
b

∑
n=a+1

n+1−ε

∫
n+ε

∂yC(y − x,β) g(y)dy

+
a+1−ε

∫
a+δ−ε

∂yC(y − x,β)g(y)dy −
b+1−ε

∫
b+δ−ε

∂yC(y − x,β)g(y)dy).
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We remove all derivatives of C(⋅, β) through integration by parts, and
obtain the expression

(1.28)
b+δ

∫
a+δ

f(y)dy

= lim
β↘0

lim
ε↘0

⎛
⎝

b

∑
n=a+1
C(y − x,β)g(y)∣

y=n+1−ε

y=n+ε
+ C(y − x,β)g(y)∣

y=a+1−ε

y=a+δ−ε

− C(y − x,β)g(y)∣
y=b+1−ε

y=b+δ−ε
⎞
⎠
− lim
β↘0

b+δ

∫
a+δ
C(y − x,β)g′(y)dy,

where we have combined the separate integrals into a single one. After
subtracting (1.28) from (1.27), we get

(1.29)
b

∑
n=a+1

f(n) −
b+δ

∫
a+δ

f(y)dy

= − lim
β↘0

lim
ε↘0
C(y − x,β)g(y)∣

y=b+δ−ε

y=a+δ−ε
+ lim
β↘0

b+δ

∫
a+δ
C(y − x,β)g′(y)dy.

Note that C(⋅, β) is left continuous as ⌈⋅⌉ is left continuous. Therefore,
the limit ε↘ 0 in (1.29) yields (1.23).

�

Before we continue our derivation of the SEM expansion, we need
to collect additional properties of the function C. We begin by studying
derivatives of C with respect to the shielding parameter β. These
derivatives are then put into connection with antiderivatives of C with
respect to y.

Definition 1.19. For s ∈ S, we define the consecutive antiderivat-
ives of C(⋅, β),

C0(y, β) = C(y, β),

C`+1(y, β) = −
∞

∫
y

C`(z, β)dz, ` ∈N0,

for y > 0 and β > 0.

The well-definedness of above definition follows from Lemma 1.16,
as the function C(⋅, β) is integrable on [ε,∞) for any ε > 0 and β > 0.

We now show that the antiderivatives (C`)`∈N0 can be written in
terms of derivatives with respect to β. Furthermore, the limit β ↘ 0
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exists for all antiderivatives, thus we can extend them to the case where
the shielding of the interaction has been removed.

Lemma 1.20. Let s ∈ S and ` ∈ N0. The function C` admits the
explicit form

(1.30) C`(y, β) =
1
`!

`

∑
k=0

(`
k
) y`−k ∂kβC(y, β), y > 0, β > 0.

In addition, C`(⋅, β) ∈ C`−1(0,∞) for all β > 0. Relation (1.30) can be
formally written as

(1.31) C`(y, β) =
1
`!(y + ∂β)

`

C(y, β), y > 0, β > 0.

The above relations remain valid in the limit β ↘ 0.

With the above lemma, we can compute bounds on (C`)`∈N0 . These
bounds are needed for a proof of Theorem 1.12 in order to take the
expansion order to infinity.

Lemma 1.21. Let s ∈ Sα for α ∈ R with constants c, c0, γ ≥ 1. Set
`α = max{0, ⌈α⌉} + 1. Then

∣C`(y, β)∣ ≤M`(y),(1.32)

with M` ∶ R+ → R and

(1.33) M`(y) = cs((`α + 1 + `)`α+1 τ−`eτ(⌈y⌉α + ⌈y⌉−1)

+ 1
(` + 1)! max(yα, ⌈y⌉α)),

for all ` ∈N0, and y, β > 0, with cs > 0 only depending on s and

(1.34) τ = 2π
γ + 1 .

The estimate holds in particular in the limit β ↘ 0.

From Lemmas 1.20 and 1.21, we obtain:

Lemma 1.22. Let s ∈ Sα, α ∈ R, and ` ∈N0. The function
Ã` ∶ (0,∞)→ C, Ã`(y) = `! lim

β↘0
C`(y, β)

lies in in C`−1(0,∞) and is estimated by
∣Ã`(y)∣ ≤ `!M`(y),

for y > 0. Here, the bound M` is the same as in Lemma 1.21.
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Lemma 1.23. The functions (Ã`)`∈N0 from Lemma 1.22 coincide
with the Bernoulli-A functions (A`)`∈N0 from Definition 1.7,

Ã` = A`, ` ∈N0.

Proof. We prove equality of the functions (Ã`)`∈N0 and (A`)`∈N0

by showing that they have the same exponential generating function.
Let ξ, β > 0 and ` ∈N0. Then

Ã`(ξ) = lim
β↘0

(ξ + ∂β)`C(ξ, β) = lim
β↘0

`

∑
k=0

(`
k
) ξ`−k ∂kβC(ξ, β)

= lim
β↘0

e−βξ∂`β(eβξC(ξ, β)) = lim
β↘0

∂`β(eβξC(ξ, β)),

and thus

eβξC(ξ, β) =
∞
∑
`=0
Ã`(ξ)

β`

`! .

�

After having collected all necessary information about the functions
(C`)`∈N0 and (A`)`∈N0 , we now prove the SEM expansion as given in
Theorems 1.10 and 1.12.

Proof of Theorem 1.10. Choose x, a, b ∈ Z, x ≤ a < b and δ ∈
(0,1]. Let f ∶ [a + δ, b + δ]→ C factor into

f(y) = s(y − x)g(y), y ∈ [a + δ, b + δ],

with s ∈ S and g ∈ C`+1[a + δ, b + δ]. First, we prove that

b

∑
n=a+1

f(n) −
b+δ

∫
a+δ

f(y)dy = − lim
β↘0

⎛
⎝

`

∑
k=0

(−1)kCk(y − x,β)g(k)(y)∣
y=b+δ

y=a+δ

+
b+δ

∫
a+δ

(−1)`C`(y − x,β)g(`+1)(y)dy
⎞
⎠
,

for ` ∈N0. The case ` = 0 follows from Proposition 1.18. For ` ≥ 1, we
begin with Proposition 1.18 and repeatedly integrate by parts computing
antiderivatives of C(⋅, β), which are given by (Ck)k∈N0 . We can take
the limit β ↘ 0, as the functions Ck(⋅, β) are uniformly bounded in
β > 0 for k ∈N0, which follows from Lemma 1.21. Now as the function
g(`+1) is continuous and thus bounded on the interval [a + δ, b + δ],
the integrand is uniformly bounded in β. Hence, we can apply the
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dominated convergence theorem, yielding
b

∑
n=a+1

f(n) −
b+δ

∫
a+δ

f(y)dy =

−
`

∑
k=0

(−1)k
k! Ak(y − x)g

(k)(y)∣
y=b+δ

y=a+δ
+ (−1)`

`!

b+δ

∫
a+δ
A`(y − x)g(`+1)(y)dy,

where, by Lemma 1.23, we have inserted the Bernoulli–A functions
Ak(ξ) = k! lim

β↘0
Ck(ξ, β), ξ > 0.

�

Proof of Theorem 1.12. We prove that the expansion order `
in Theorem 1.10 can be taken to infinity, if g ∈ Eσ and σ < τ where τ is
a constant that only depends on s ∈ S with

(1.35) τ = 2π
1 + γ .

First consider the remainder integral, which we define as

R`+1 =
(−1)`
`!

b+δ

∫
a+δ
A`(y − x)g(`+1)(y)dy.(1.36)

By Lemma 1.22, we have

(1.37) sup
y∈[a+δ,b+δ]

∣ 1
k!Ak(y − x)∣ = O(τ−k), k →∞,

for all k ∈N0. Moreover, as g ∈ Eσ, we find that for all ε > 0

(1.38) sup
y∈[a+δ,b+δ]

∣g(k)(y)∣ = O((σ + ε)k), k →∞.

Thus

(1.39) R`+1 = O
⎛
⎝
( τ

σ + ε)
−` ⎞

⎠
, `→∞.

From the estimates above, we can conclude that the series

(1.40)
∞
∑
k=0

(−1)k
k! Ak(y − x)g

(k)(y)

converges uniformly on the interval [a + δ, b + δ]. Therefore, the limit
`→∞ is well-defined, which implies Theorem 1.12.

�
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Derivation of Example 1.15. Let y, β > 0 and s(y) = ∣y∣−ν with
ν ∈ C. Then

C(y, β) =
∞
∑
n=⌈y⌉

e−βnn−ν −
∞

∫
y

e−βzz−ν dz

= e−β⌈y⌉
∞
∑
n=0

1
(n + ⌈y⌉)ν e

−βn − βν−1Γ(1 − ν, βy),

with Γ(⋅, ⋅) the incomplete gamma function

Γ(q, z) =
∞

∫
z

tq−1e−t dt, z > 0, q > 0,

which can be continued to a meromorphic function on C ×C, see e.g.
[22, Chap. IX]. In the case ν ∈ R ∖N0, the series is expanded as

e−β⌈y⌉
∞
∑
n=0

1
(n + ⌈y⌉)ν e

−βn = Γ(1 − ν,0)βν−1 +
∞
∑
n=0

(−1)nζ(ν − n, ⌈y⌉)β
n

n! ,

which holds for β ∈ (0,2π) [21, Sec. 1.11, Eq. (8)]. We then use the
power series representation of the incomplete gamma function for β > 0
[21, Sec. 9.2, Eq. (5)],

βν−1Γ(1 − ν, βy) = βν−1Γ(1 − ν,0) − y−(ν−1)
∞
∑
n=0

(−1)n yn

n + 1 − ν
βn

n! .

We subtract both terms, after which the singularities cancel. We then
find

C(y, β) =
∞
∑
n=0

(−1)n [ζ(ν − n, ⌈y⌉) − y
−(ν−n−1)

ν − n − 1] β
n

n! .

It follows that the radius of convergence of the series equals 2π. We
now obtain the generating function of the Bernoulli–A functions by
computing eβyC(y, β) by means of the Cauchy product,

eβyC(y, β) =
∞
∑
`=0

⎡⎢⎢⎢⎢⎣

`

∑
k=0

(−1)k(`
k
)y`−k (ζ(ν − k, ⌈y⌉) − y

−(ν−k−1)

ν − k − 1)
⎤⎥⎥⎥⎥⎦

β`

`! .

Hence, we have proven the form of the SEM operator coefficients for
ν ∈ R∖N0. In the case ν ∈N0, the above expression exhibits a removable
singularity. For k ∈N0, we have

ζ(ν − k, ⌈y⌉) − y
−(ν−k−1)

ν − k − 1 = ζ(ν − k, ⌈y⌉) − 1
ν − k − 1 −

y−(ν−k−1) − 1
ν − k − 1 .
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From [21, Sec. 1.10, Eq. (9)] follows that the first two terms tend to

lim
ν→k+1

(ζ(ν − k, ⌈y⌉) − 1
ν − k − 1) = −ψ(y),

with the digamma function ψ [21, Sec. 1.7]. The remaining term is the
differential quotient of the function hy ∶ R→ R, y > 0, with

hy(ν) = y−ν−k−1,

which is evaluated at ν = k+1. Thus, the limit equals − log y. Combining
the above results, we find that

lim
ν→k+1

(ζ(ν − k, ⌈y⌉) − y
−(ν−k−1)

ν − k − 1) = −ψ(⌈y⌉) − log y.

Finally, we can rewrite the last term as follows [21, Sec. 1.7.1, Eq. (9)],
−ψ(⌈y⌉) − log y = γe −H⌈y⌉−1 − log y,

with γe the Euler–Mascheroni constant and where Hk is the kth har-
monic number,

Hk =
k

∑
j=1

1
j
, k ∈N0.

�

5. Technical lemmas

We first prove the two remarks from Section 2 and then proceed
with the proofs of the remaining lemmas from Section 4.

Proof of Remark 1.2. Consider s ∈ C∞(R ∖ {0}) with
s(y) = ∣y∣−ν , ν ∈ R.

We first compute the `th derivative of s

s(`)(y) = (
`

∏
k=1

(k − 1 + ν)) (−1)`
y`

∣y∣−ν , y ∈ R ∖ {0}.

The above product can be written as
`

∏
k=1

(k − 1 + ν) = Γ(ν + `)
Γ(ν) ,

with Γ the gamma function [21, Chap. I]. From the Stirling formula [21,
Sec. 1.18], we know that

Γ(z) ∼
√

2π
z
zze−z, z →∞,
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with ∼ meaning that the quotient of both sides tends to 1 in the limit
z →∞. After applying this relation in the limit `→∞, we find

Γ(ν + `)
Γ(ν)`! = Γ(ν + `)

Γ(ν) `Γ(`)

∼ 1
`Γ(ν)

`√
`(` + ν)

e−ν (1 + ν
`
)
`

(1 + ν
`
)
ν

`ν

∼ 1
Γ(ν)`

−(1−ν), `→∞,

which is bounded for ν ≤ 1 and constant for ν = 1. If ν > 1, the above
expression diverges algebraically, which implies

Γ(ν + `)
Γ(ν)`!

1
(1 + ε)` → 0, `→∞

for all ε > 0. In total, we have proven that

∣s(`)(y)∣ = ∣Γ(ν + `)∣
∣Γ(ν)∣ ∣y∣−`∣s(y)∣

≤ c `! (1 + ε)`∣y∣−`∣s(y)∣, y ∈ R ∖ {0},
with c > 0 only depending on the choice of ν and ε > 0. In the case
ν ≤ 1, we can set ε = 0 in the above estimate.

�

Proof of Remark 1.4. Let s ∈ S. Then there exist c > 0 and
γ ≥ 1 such that

∣s′(y)∣ ≤ c γ ∣y∣−1∣s(y)∣, y ∈ R ∖ {0}.
Consider y > 1. Then

∣s(y)∣ ≤ ∣s(1)∣ +
y

∫
1

∣s′(z)∣dz ≤ ∣s(1)∣ +
y

∫
1

cγz−1∣s(z)∣dz,

and after applying Grönwall’s inequality [30, Cor. 6.6], we find that

∣s(y)∣ ≤ ∣s(1)∣ exp
⎛
⎝
cγ

y

∫
1

z−1 dz
⎞
⎠
= ∣s(1)∣yα,

with α = cγ. In the case y < −1, we set ỹ = −y, thereby extending the
estimate to R ∖ [−1,1].

�

The function C is a priori not well-defined for β = 0, the case where
the shielding of the interaction has been removed. However, we can
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show that an extension to β = 0 is possible. The following estimate
plays an important role for this extension.

Lemma 1.24. Let s ∈ S with constants c > 0, γ ≥ 1. Then we have

∣s(`)β (y)∣ ≤ c `!γ` ∣y∣−` ∣s(y)∣

for all y ∈ R ∖ {0}, ` ∈N0 and β > 0.
Proof. Let ` ∈N0 and y > 0. We find that

∣s(`)β (y)∣ ≤
`

∑
k=0

(`
k
) ∣s(k)(y)∣β`−k e−βy

≤ c `!γ` y−`∣s(y)∣
⎛
⎝

`

∑
k=0

1
(` − k)!y

`−kβ`−k
⎞
⎠
e−βy

≤ c `!γ` y−`∣s(y)∣eβye−βy

= c `!γ` y−`∣s(y)∣.
We can extend the result to y ∈ R ∖ {0} by replacing y by −y in the
above estimates.

�

In the following, we analyse the behaviour of the function C in both
its variables.

Proof of Lemma 1.16. Let s ∈ S and y > 0 fixed. In order to
prove differentiability of the function

C(y, ⋅) ∶ (0,∞)→ C, C(y, β) =
∞
∑
n=⌈y⌉

s(n)e−βn −
∞

∫
y

s(z)e−βz dz,

it is enough to show that it is differentiable on intervals [β1, β2], with
β1, β2 ∈ R+ and β1 < β2. First, the integrand

h ∶ [y,∞) × [β1, β2]→ C, (z, β)↦ s(z)e−βz

is smooth in both variables. The partial derivative with respect to β
reads

∂βh(z, β) = −zs(z)e−βz, β ∈ [β1, β2], z ≥ y.
Now as s ∈ S, the interaction may only grow polynomially, which is a
consequence of Remark 1.4. Therefore, there exists c > 0 such that

∣zs(z)∣e−β1z ≤ c

1 + z2 , z ≥ y,

from which we obtain
∣∂βh(z, β)∣ ≤ ∣zs(z)∣e−β1 ≤ c

1 + z2 , β ∈ [β1, β2], z ≥ y.
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As the majorant is independent of the choice of β ∈ [β1, β2] and is
both summable and integrable on [y,∞), we conclude that C(y, ⋅) is
differentiable. The derivative is given by

∂βC(y, β) = −
∞
∑
n=⌈y⌉

ns(n)e−βn +
∞

∫
y

zs(z)e−βz dz, β > 0.

As s ∈ S, also s̃ ∈ C∞(R ∖ {0}) with
s̃`(z) = (−1)`z`s(z), z ∈ R ∖ {0},

is an asymptotically smooth function for ` ∈ N0. Since moreover
s̃`(z)e−βz equals ∂`βh(z, β) for z > 0 and β > 0, we conclude by induction
that C is infinitely differentiable with respect to β. It is sufficient to
prove the rest of the lemma for ` = 0.

Choose β > 0. As s is asymptotically smooth, there exist α ∈ R and
c0 > 0 such that

∣s(z)∣ ≤ c0z
α, z ≥ 1,

and cα,β > 0 with
e−βz ≤ cα,β

(1 + z)α+2 , z ≥ 1.

In total, we obtain
∞
∑
n=⌈y⌉

∣s(n)∣e−βn = e−β⌈y⌉
∞
∑
n=0

∣s(n + ⌈y⌉)∣e−βn

≤ c0 cα,β e
−β⌈y⌉

∞
∑
n=0

(n + ⌈y⌉
n + 1 )

α 1
(n + 1)2

≤ π
2

6 c0 cα,β e
−βy {1, α < 0,

(1 + ⌈y⌉)α, α ≥ 0,
for y > 0. The above estimates show that the integral term decays
exponentially in y.

We now prove that the limit β ↘ 0 is well-defined. We begin by
applying the EM expansion up to order ` ∈N0 to the definition of the
function C, which yields

(1.41) C(y, β) = −
⌈y⌉

∫
y

sβ(y)dy +
`

∑
k=0

(−1)k
k!

Bk+1(1)
k + 1 s

(k)
β (⌈y⌉) +R`(y, β),

where we have defined the remainder integral as

R`(y, β) =
(−1)`
`!

∞

∫
⌈y⌉

B`+1(1 + z − ⌈z⌉)
` + 1 s

(`+1)
β (z)dz.



32 1. SINGULAR EULER–MACLAURIN EXPANSION

In the limit β ↘ 0, the first two terms in (1.41) converge to

−
⌈y⌉

∫
y

s(y)dy +
`

∑
k=0

(−1)k
k!

Bk+1(1)
k + 1 s(k)(⌈y⌉),

leaving only R` to be examined.
From Remark 1.4 follows that for every s ∈ S there exists an α ∈ R

such that s ∈ Sα. Together with the estimate (1.4), we find that the
function s(`+1) is integrable on [ε,∞), ε > 0, for all ` ∈ N0 larger than
or equal to `α = max{0, ⌈α⌉} + 1. Using Lemma 1.24, we find that the
absolute value of the integrand in R`α can be estimated by

cγ`α
∣B`α+1(1 + z − ⌈z⌉)∣

`α + 1 z−2

for z ≥ 1. The bound is integrable on [1,∞), as it is a product of
a bounded and an integrable function. The dominated convergence
theorem yields

(1.42) lim
β↘0
C(y, β) = −

⌈y⌉

∫
y

s(z)dz +
`α

∑
k=0

(−1)k
k!

Bk+1(1)
k + 1 s(k)(⌈y⌉)

+ (−1)`α
`α!

∞

∫
⌈y⌉

B`α+1(1 + z − ⌈z⌉)
`α + 1 s(`α+1)(z)dz.

�

Proof of Lemma 1.17. Let s ∈ S, ` ∈ N0, and y, β > 0. From
Lemma 1.16 then follows that

∂`βC(y, β) = (−1)`
⎛
⎜
⎝

∞
∑
n=⌈y⌉

n`s(n)e−βn −
∞

∫
y

z`s(z)e−βz dz
⎞
⎟
⎠
.

By (1.41), we then find

∂`βC(y, β) = −
⌈y⌉

∫
y

(−1)`z`sβ(z)dz +
`α

∑
k=0

(−1)k
k!

Bk+1(1)
k + 1 (−1)`⌈y⌉`s(k)β (⌈y⌉)

+ (−1)`α
`α!

∞

∫
⌈y⌉

B`α+1(1 + z − ⌈z⌉)
`α + 1 (−1)`z`s(`α+1)

β (z)dz.(1.43)

Here we have chosen `α = max{0, ⌈α⌉} + ` + 1 with α ∈ R such that
s ∈ Sα as in the proof of Lemma 1.16. From (1.42), we can conclude
that the above equation holds also for β ↘ 0. Consider an interval
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(n,n + 1), n ∈N0. From (1.43), we find that ∂`βC is an antiderivative of
a smooth function,

∂`βC(y, β) = cn −
n+1

∫
y

(−1)`z`sβ(z)dz, y ∈ (n,n + 1),

where cn only depends on s and on n. Thus ∂`βC is smooth in y on
R+ ∖N.

We now prove the jump relation. First take n ∈ N. Then for
ε1, ε2 ∈ (0,1), we compute

∂`βC(n − ε1, β) − ∂`βC(n + ε2, β) =

−
n+ε2

∫
n−ε1

(−1)`z`sβ(z)dz +
n+1

∫
n

(−1)`z`sβ(z)dz

+
`α

∑
k=0

(−1)k
k!

Bk+1(1)
k + 1 (−1)`⌈z⌉`s(k)β (⌈z⌉)∣

n−ε1

z=n+ε2

+ (−1)`α
`α!

n+1

∫
n

B`α+1(1 + z − ⌈z⌉)
`α + 1 (−1)`z`s(`α+1)

β (z)dz.

After performing the limits ε1, ε2 ↘ 0, we find for the right hand side of
(1.43)

n+1

∫
n

(−1)`z`sβ(z)dz +
`α

∑
k=1

(−1)k
k!

Bk+1(1)
k + 1 (−1)`z`s(k)β (z)∣

n

z=n+1

+ (−1)`α
`α!

n+1

∫
n

B`α+1(1 + z − ⌈z⌉)
`α + 1 (−1)`z`s(`α+1)

β (z)dz

= (−1)`n`sβ(n).

In the last equality, we have applied the EM expansion (1.1) with the
parameters a = n − 1, b = n and δ = 1 up to order `α.

�

Using the jump relations, we can now prove the alternative represen-
tation of the functions (C`)`∈N0 in terms of derivatives of C with respect
to β.

Proof of Lemma 1.20. Let s ∈ S and y, β > 0. We prove the
relation by induction. The case ` = 0 holds by definition. Take now
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` ∈N0 and assume that the form (1.30) holds for `,

(1.44) C`(y, β) =
1
`!

`

∑
k=0

(`
k
) y`−k ∂kβC(y, β), y > 0, β > 0.

We now prove that it then holds for ` + 1. Subsequently, we can extend
the definition of C` to β = 0 by Lemma 1.16.

First recall the jump relation
lim
y↗n∂

k
βC(y, β) − lim

y↘n∂
k
βC(y, β) = (−n)ksβ(n)

for n ∈N, k ∈N0, as well as the derivative formula
∂y∂

k
βC(y, β) = (−y)ksβ(y),

which holds for y ∈ R+ ∖N. Both relations are valid for β ≥ 0.
For β > 0, the derivative of the function

C̃`+1(⋅, β) ∶ R+ → C, C̃`+1(y, β) =
1

(` + 1)!

`+1

∑
k=0

(` + 1
k

) y`+1−k ∂kβC(y, β),

at y ∈ R+ ∖N takes the form

1
(` + 1)!

`

∑
k=0

(` + 1
k

)((` + 1 − k)y`−k∂kβC(y, β) + y`+1−k(−y)ksβ(y))

= 1
`!

`

∑
k=0

(`
k
) y`−k ∂kβ C(y, β) +

1
(` + 1)!

`+1

∑
k=0

(` + 1
k

)(−1)k y`+1sβ(y)

=C`(y, β) +
y`+1sβ(y)
(` + 1)! (1 − 1)`+1 = C`(y, β).

In order to prove that C̃`+1 and C`+1 differ at most by a constant, we
have to show that both are continuous. The function C`(⋅, β) is from
C`−1, therefore its antiderivative C`+1(⋅, β) is in C`, and thus continuous.
We have already shown that C̃`+1(⋅, β) is smooth on R+ ∖N. In order
to prove that it is also continuous on R+, we need to investigate the
behaviour at the positive integers. Let n ∈ N, then from the jump
relation follows

lim
y↗n C̃`+1(y, β) − lim

y↘n C̃`+1(y, β) =
1

(` + 1)!

`+1

∑
k=0

(` + 1
k

)n`+1−k(−n)ksβ(n)

=n
`+1sβ(n)
(` + 1)!

`+1

∑
k=0

(` + 1
k

)(−1)k = 0,

proving continuity. Thus, the function can only differ from C`+1(⋅, β) by
an additive constant. This constant is zero as both functions vanish in
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the limit y →∞ by Lemma 1.16. We remember that the jump relation
also holds for β = 0. Together with the induction hypothesis

lim
β↘0
C`(⋅, β) ∈ C`−1(0,∞),

we find that
lim
β↘0
C`+1(⋅, β) ∈ C`(0,∞).

�

Notation 1.25. Let s ∈ S, ` ∈N0, ξ ∈ R, and y ∈ R ∖ {0}. We then
write

(1.45) sξ,`,β(y) =
1
`!(y − ξ)

`sβ(y).

Lemma 1.26. Let s ∈ S and ` ∈ N0. The function C`(⋅, ⋅) takes the
form

(1.46) C`(y, β) =
∞
∑
n=⌈y⌉

sy,`,β(n) −
∞

∫
y

sy,`,β(z)dz, y > 0, β > 0.

Proof. From Lemma 1.16, we find that

∂kβC(y, β) =
∞
∑
n=⌈y⌉

(−1)knksβ(n) −
∞

∫
y

(−1)kzksβ(z)dz

for y > 0, β > 0. Together with the representation of the functions
(C`)`∈N0 from Lemma 1.20,

C`(y, β) =
1
`!

`

∑
k=0

(`
k
) y`−k ∂kβC(y, β)

the lemma follows from an application of the binomial theorem.
�

Lemma 1.27. Let s ∈ S with constants c > 0, γ ≥ 1. For y > 0, ξ ≥ 0
and y > ξ, we have

(1.47) ∣s(k)ξ,`,β(y)∣ ≤ c
k!
`! γ

k−`(γ(1 − ξ/y) + 1)` ∣y∣`−k ∣s(y)∣

for y ∈ R ∖ {0}, k, ` ∈N0 with k > `, and β > 0. For ξ = y, we have

(1.48) ∣s(k)y,`,β(y)∣ ≤
⎧⎪⎪⎨⎪⎪⎩
c
k!
`! γ

k−` ∣y∣`−k ∣s(y)∣, k ≥ `,
0, k < `.
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Proof. Take y > 0. Then

s
(k)
ξ,`,β(y) =

1
`!

k

∑
j=0
j!(k

j
)(`
j
)(y − ξ)`−js(k−j)β (y).

For ξ = y, we get (1.48) from Lemma 1.24. Otherwise

s
(k)
ξ,`,β(y) =

k!
`! y

`(1 − ξ/y)`
`

∑
j=0

(`
j
)(y − ξ)−j

s
(k−j)
β (y)
(k − j)! .

For s ∈ S we obtain by Definition 1.1

∣s(k)ξ,`,β(y)∣ ≤ c
k!
`! γ

k ∣y∣`−k ∣s(y)∣ (1 − ξ/y)`
`

∑
j=0

(`
j
)(1 − ξ/y)−jγ−j

= c k!/`!γk(1 − ξ/y + γ−1)
`

∣y∣`−k ∣s(y)∣.

�

Proof of Lemma 1.21. Take s ∈ Sα with parameters α ∈ R, c > 0
and γ ≥ 1. In the following proof, cs > 0 shall denote a generic constant
that depends only s and can change between different equations. Let
` ∈N0, ξ > 0 and β ≥ 0. Then the function

sξ,`,β ∶ R ∖ {0}→ C, sξ,`,β(y) =
1
`!(y − ξ)

`sβ(y),

is asymptotically smooth and belongs to Sα+`. This also holds for β = 0.
Using the representation of C`(⋅, β) from Lemma 1.26, we have

C`(y, β) =
∞
∑
n=⌈y⌉

sy,`,β(n) −
∞

∫
y

sy,`,β(z)dz.

Subsequently, we apply the EM expansion to the right hand side up to
order kα = `α + ` with `α = max{0, ⌈α⌉} + 1, and obtain

C`(y, β) = −
⌈y⌉

∫
y

sy,`,β(z)dz +
kα

∑
k=0

(−1)k
k!

Bk+1(1)
k + 1 s

(k)
y,`,β(⌈y⌉)

+ (−1)kα
kα!

∞

∫
⌈y⌉

Bkα+1(1 + z − ⌈z⌉)
kα + 1 s

(kα+1)
y,`,β (z)dz.

We then derive bounds for C`(y, β) that are uniform in β. We apply
the following strategy: First, we consider ⌈y⌉ ∈ N. Then the result is
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extended to y ∈ R+ by means of the Taylor expansion. We find that

∣C`(⌈y⌉, β)∣ ≤
kα

∑
k=0

∣Bk+1(1)
(k + 1)! ∣ ∣s

(k)
⌈y⌉,`,β(⌈y⌉)∣(1.49)

+
∞

∫
⌈y⌉

∣Bkα+1(1 + z − ⌈z⌉)
(kα + 1)! ∣ ∣s(kα+1)

⌈y⌉,`,β (z)∣ dz.

We apply the estimate from Lemma 1.27,

∣s(k)y,`,β(y)∣ ≤
⎧⎪⎪⎨⎪⎪⎩
c
k!
`! γ

k−` ∣y∣`−k ∣s(y)∣, k ≥ `,
0, k < `,

and use
k!
`! ≤ k

k−`, ` ∈N0.

The Bernoulli polynomials are bounded as follows, see Eq. (19) and
discussion in [36],

max
y∈[0,1]

∣Bk(y)
k! ∣ ≤ 4

(2π)k , k ∈N0.

In total, we find the following bound for the first term on the right
hand side of (1.49)

4c (`α + `)`α ∣s(⌈y⌉)∣
`α+`
∑
k=`

1
(2π)k+1 ( γ

⌈y⌉)
k−`

.

The sum yields

(1.50)
`α+`
∑
k=`

1
(2π)k+1 ( γ

⌈y⌉)
k−`

≤ (`α + 1)γ`α(2π)−`,

and thus
kα

∑
k=0

∣Bk+1(1)
(k + 1)! ∣ ∣s

(k)
⌈y⌉,`,β(⌈y⌉)∣ ≤ cs⌈y⌉

α(`α + `)`α(2π)−`.

We proceed by an investigation of the remainder integral in (1.49).
From Lemma 1.27 follows that

∣s(k)ξ,`,β(z)∣ ≤ c
k!
`! γ

k−`(γ(1 − ξ/z) + 1)` ∣z∣`−k ∣s(z)∣,

with z ≥ ξ and k = `α + ` + 1. We insert `α and, as s ∈ S, we find that
the integrand is bounded by

cs(`α + 1 + `)`α+1 (γ + 1
2π )

`

z−2.
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We therefore obtain for the integral
∞

∫
⌈y⌉

∣Bkα+1(1 + z − ⌈z⌉)
(kα + 1)! ∣ ∣s(kα+1)

⌈y⌉,`,β (z)∣dz ≤ cs(`α + 1 + `)`α+1 (γ + 1
2π )

`

⌈y⌉−1.

Combining the above estimates, we find that

∣C`(⌈y⌉, β)∣ ≤ cs(`α + 1 + `)`α+1 τ−` (⌈y⌉α + ⌈y⌉−1) ,(1.51)

where τ = 2π/(γ + 1). Now take y ∈ R+ ∖N. We expand C`(⋅, β) around
⌈y⌉. Let `, k ∈N0 and k ≤ `, then

∂kyC`(y, β) = C`−k(y, β),

and thus

C`(y, β) =
`

∑
k=0

1
k!C`−k(⌈y⌉, β) (y − ⌈y⌉)k + 1

(` + 1)!sβ(ξ) (y − ⌈y⌉)`+1,

with ξ ∈ (y, ⌈y⌉). By (1.51), the absolute value is bounded as follows

∣C`(y, β)∣

≤ cs(⌈y⌉α + ⌈y⌉−1)
`

∑
k=0

1
k!(`α + 1 + ` − k)`α+1 τ−(`−k) + cs max(yα, ⌈y⌉α)

(` + 1)! .

The sum yields

`

∑
k=0

1
k!(`α + 1 + ` − k)`α+1 τ−(`−k)

≤ (`α + 1 + `)`α+1τ−`
`

∑
k=0

1
k!τ

k

≤ (`α + 1 + `)`α+1τ−`eτ .

In total, we find the uniform bound in β ≥ 0,

∣C`(y, β)∣ ≤ cs((`α + 1 + `)`α+1 τ−`(⌈y⌉α + ⌈y⌉−1) + max(yα, ⌈y⌉α)
(` + 1)! ),

concluding the proof.
�
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6. Conclusions

The SEM expansion allows us to efficiently compute macroscopically
large sums, even if the summand function includes a singularity. It
solves the convergence problems of the standard EM expansion and
makes it applicable to functions that are highly relevant in practice. The
approximation error is found to decrease polynomially in the width of
the function and exponentially in the expansion order, if the summand
function is of sufficiently small exponential type. This opens the door
to realistic numerical simulations of one-dimensional condensed matter
systems.

Our new method so far is restricted to one dimension. In the next
chapters, we generalise the Euler–Maclaurin expansion and subsequently
its singular extension to lattices in higher dimensions.





CHAPTER 2

Multidimensional Euler–Maclaurin expansion

1. Introduction

In the previous chapter, we have introduced the singular Euler–
Maclaurin (SEM) expansion, thereby extending the classical Euler–
Maclaurin (EM) summation formula to physically relevant functions that
may include singularities. However, both the EM and SEM expansion
are only applicable to sums in one dimension, whereas many realistic
applications, for instance in condensed matter, usually appear as higher-
dimensional problems. It is therefore our goal to extend the SEM
expansion to lattices in spaces of arbitrary dimension.

When approaching the generalisation of the SEM expansion to higher
dimensions, one does encounter the problem that one needs to quantify
differences between high-dimensional sums and related integrals. In the
previous chapter, we have used to the classical EM expansion in order
to define and estimate such differences, proving the SEM by using the
EM expansion. Similar to that, we need a generalisation of the EM
expansion to higher dimensions in order to prove a higher dimensional
analogue of the SEM. In this chapter, we generalise the EM expansion
to lattices in spaces of arbitrary dimension. While useful both for
analytical and numerical purposes on its own right, this generalised
EM expansion is then used in the next chapter as a stepping stone for
proving the SEM expansion in higher dimensions.

There exist previous attempts for generalising the EM expansion to
higher dimensions. The approach most often found in practice is based
on a tensorisation of the one-dimensional expansion using so called Todd
operators. Tensorised expansions have the benefit of being simple, yet
they are restrictive in the set of geometries and functions that they can
be applied to. A tensorised multidimensional EM expansion for simple
lattice polytopes has been presented by Karhson [34]. There exist only
few attempts at generalising the EM expansion to higher dimensions that
do not rely on a repeated application of the one-dimensional summation
formula. Among the most notable examples is the work by Müller [41]
that offers a generalisation of the expansion to two dimensions. In

This chapter is based on [7, Sections 1–3].
41
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[23], Freeden provides an abstract extension of the result by Müller to
higher dimensions, yet without giving error estimates. All of above
attempts offer different advantages and disadvantages. The works that
are based on tensorisation are easy to use in practice, yet have to be
constructed for particular geometries. The works that aim at a more
general extension of the traditional expansion, while being applicable
to more general geometries and function sets, on the other hand are
theoretical and do not consider error estimates, convergence properties,
and, in general, applicability in numerical practice.

In this chapter, we set out to derive a natural generalisation of
the EM expansion to multidimensional lattice sums, while avoiding
a tensorisation of the traditional expansion. We cast the difference
between a lattice sum and a related integral in terms of surface integrals
over derivatives of the summand function. The coefficients of the
associated differential operator are formed by a generalisation of the
periodised Bernoulli functions from Section 1.1 to higher dimensions. We
derive their properties, formulate the EM expansion on multidimensional
lattices and provide sharp error estimates for the remainder.

This chapter is structured as follows. In Section 2, we introduce
necessary notation and provide a condensed overview on distribution
theory and regularity theory of elliptic partial differential operators.
The multidimensional EM expansion is then derived and presented in
Section 3.

2. Preliminaries

The following overview on distribution theory and elliptic regularity
is based on Hörmander [31, 32]. For explicit expressions for many
distributions and an extensive introduction to the Fourier transform,
see the reference work by Gel’fand [25]. An accessible introduction to
elliptic regularity can furthermore be found in the book by Trèves [49].

2.1. Distributions. We first review some basic notation. Let in
the following Ω ⊆ Rd be open and k ∈N0 or k =∞. We denote by Ck(Ω)
the set of k-times continuously differentiable functions f ∶ Ω→ C. We
now briefly review convergence of sequences of functions in the space
Ck(Ω). We say that a sequence (un)n∈N converges to u ∈ Ck(Ω) in
Ck(Ω) if all derivatives of order smaller or equal k converge compactly
on Ω. This means that for every K ⊂ Ω compact and α ∈ Nd

0 with
∣α∣ ≤ k, we have

lim
n→∞ sup

x∈K
∣Dαun(x) −Dαu(x)∣ = 0.
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The set Ck
0 (Ω) describes the subset of functions u ∈ Ck(Ω) whose

support
suppu = {x ∈ Ω ∶ u(x) ≠ 0}

is included in a compact subset of Ω.
The space of test functions D(Ω) = C∞

0 (Ω), consisting of smooth,
compactly supported functions, serves as a basic object of study in
distribution theory1. Its dual space consists of linear continuous func-
tionals acting on test functions. It is called the space of distributions on
Ω, which we denote by D ′(Ω). As a typical example, we now introduce
the Dirac delta distribution δx0 at x0 ∈ Ω that maps a test function to
its value at x0,

⟨δx0 , ψ⟩ = ψ(x0), ψ ∈ D(Ω).
We move on to a discussion of p-integrable functions. For p ∈ [1,∞],

we define Lp(Ω) as the space of all measurable functions v ∶ Ω→ C with
finite p-norm,

∥v∥pp,Ω = ∫
Ω

∣v(x)∣p dx <∞,

in case that p <∞ and

∥v∥∞,Ω = ess sup
x∈Ω

∣v(x)∣ <∞,

for p =∞. The space of locally p-integrable functions Lploc(Ω) is given
by

Lploc(Ω) = {v ∶ Ω→ C measurable , v∣K ∈ Lp(K)∀K ⊂ Ω compact}.
Any function v ∈ L1

loc(Ω) induces a distribution by means of

⟨v, ⋅ ⟩ ∶ D(Ω)→ C, ⟨v,ψ⟩ = ∫
Ω

v(x)ψ(x)dx.

In the following, we will in particular consider the homogeneous function
sν ∶ Rd ∖ {0}→ C,

(2.1) sν(x) =
1

∣x∣ν ,

with ν ∈ C. It is clear that sν can be understood as a distribution
on Rd ∖ {0}. This distribution can subsequently be extended to Rd

by means of the following theorem, which is a special case of [31,
Theorems 3.2.3 and 3.2.4].

1This space is equipped with a stronger topology than the one inherited from
C∞
(Ω).
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Theorem 2.1. The function sν, ν ∈ C, can be extended to a distri-
bution on Rd. In case that ν ≠ d + 2k, k ∈N0, this extension is unique.
Otherwise, for ν = d + 2k, there exist infinitely many extensions where
two of them differ by a linear combination of derivatives of order k of
δ0.

We now discuss the convolution of a distribution u ∈ D ′(Rd) with
a smooth function ϕ under the assumption that one of the two has
compact support. The convolution reads u ∗ϕ ∈ C∞(Rd) and is defined
via

(u ∗ ϕ)(x) = ⟨u,ϕ(x − ⋅)⟩, x ∈ Rd.

We move on to a discussion of the Fourier transform. For a function
v ∈ L1(Rd), we define its Fourier transform v̂ = Fv as

v̂(ξ) = Fv(ξ) = ∫
Rd

e−2πi⟨ξ,x⟩v(x)dx, ξ ∈ Rd.

We then review the Schwartz space S(Rd) of rapidly decaying smooth
functions,

S(Rd) = {u ∈ C∞(Rd) ∶ sup
x∈Rd

∣xβDαu(x)∣ <∞ ∀α,β ∈Nd
0}.

The Fourier transform of a Schwartz function is again a Schwartz
function. Hence, F defines an isomorphism on S(Rd). The definition
of the Fourier transform F extends by duality to its dual space S′(Rd).
Elements of S′(Rd) are called tempered distributions. We now discuss
the Fourier transform of the homogeneous distribution sν in (2.1). A
proof of the following theorem can be found in [25, Chapter 3.3].

Theorem 2.2. Let ν ∈ C. Any extension of sν to a distribution on
Rd is a tempered distribution. Its Fourier transform can be identified
as a C∞-function on Rd ∖ {0}. For ν ≠ (d + 2k), k ∈ N0, the Fourier
transform takes the explicit form

ŝν(ξ) = πν−
d
2

Γ(d−ν2 )
Γ(ν2)

∣ξ∣−d+ν , ξ ∈ Rd ∖ {0},

where Γ denotes the Gamma function.

2.2. Elliptic regularity. Let P ∶ Rd → C be a polynomial of
degree m ∈N0 with

P (ξ) = ∑
α∈Nd0

aαξ
α, ξ ∈ Rd, ∣α∣ ≤m.
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We call the polynomial elliptic if
Pm(ξ) = ∑

∣α∣=m
aαξ

α, ξ ∈ Rd,

vanishes only for ξ = 0. A differential operator with constant coefficients
is called elliptic if its associated polynomial is elliptic.

We now summarise results on the regularity of elliptic differential
operators with constant coefficients. The following theorem is a standard
result, see e.g. [32, Theorem 11.1.10].

Theorem 2.3. An elliptic differential operator L with constant
coefficients is hypoelliptic. This means that Lu ∈ C∞(Ω) for u ∈ D ′(Ω)
already implies that u ∈ C∞(Ω).

We can replace smoothness by analyticity in Theorem 2.3, see for
instance [32, Corollary 11.4.13].

Theorem 2.4. An elliptic differential operator L with constant
coefficients is analytic-hypoelliptic, which means that if Lu is analytic
on Ω for u ∈ D ′(Ω), then u is already an analytic function on Ω.

The following theorem constitutes a generalisation of the result
in [31, Theorem 4.4.2].

Theorem 2.5. Let (uj)j∈N be a sequence in D ′(Ω) that converges
to u ∈ D ′(Ω),

lim
j→∞

⟨uj, ψ⟩ = ⟨u,ψ⟩, ψ ∈ D(Ω).
Furthermore, let L be an elliptic differential operator with constant
coefficients. If we have Luj ∈ C∞(Ω) for all j ∈ N and if the sequence
(Luj)j∈N converges in C∞(Ω) to v ∈ C∞(Ω), then (uj)j∈N and u are
C∞-functions and (uj)j∈N converges to u in C∞(Ω), that is compactly
on Ω in all derivatives.

Proof. As Luj ∈ C∞(Ω) for all j ∈N and as
Lu = lim

j→∞
Luj = v in D ′(Ω),

we find from Theorem 2.3 that already uj ∈ C∞(Ω) and u ∈ C∞(Ω). In
the following, we show that

lim
j→∞

uj = u in C∞(Ω).

First choose an open neighbourhood Y ⊆ Ω of the compact set K such
that there exists χ ∈ D(Ω) with χ = 1 on Y . As L is an elliptic operator
with constant coefficients, there exists a fundamental solution E ∈ D ′(Ω)
by [31, Theorem 7.3.10]. After setting fj = Luj and f = Lu, we obtain

uj − u = (uj −E ∗ (χfj)) − (u −E ∗ (χf)) +E ∗ (χ ⋅ (fj − f)).
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We find on Y that
L(uj −E ∗ (χfj)) = fj − χfj = 0.

Due to continuity of the convolution [48, Theorem 27.3]
E ∗ ⋅ ∶ D(Ω)→ C∞(Ω),

we have that
lim
j→∞

(uj −E ∗ (χfj)) = u −E ∗ (χf) in D ′(Y ).

Now by [31, Theorem 4.4.2], the above limit also holds in C∞(Y ). As
the convolution is continuous, we hence find that

lim
j→∞

E ∗ (χ ⋅ (fj − f)) = 0 in C∞(Y ).

Thus, for all α ∈Nd
0,

Dα(uj−u) =Dα(uj−E∗(χfj))−Dα(u−E∗(χf))+E∗Dα(χ⋅(fj−f))→ 0
uniformly on K for j →∞.

�

2.3. Band-limited functions.

Definition 2.6 (Band-limited function). Let f ∶ Rd → C. Then f is
called band-limited with bandwidth σ > 0 if it is the Fourier transform
of a function h ∈ C0(Bσ),

f = ĥ = Fh.
Here, Bσ denotes the Euclidean ball of radius σ > 0. We denote the
vector space of all band-limited functions with bandwidth σ by Eσ.

We need the next lemma in the derivation of error estimates for the
EM expansion in higher dimensions.

Lemma 2.7. Let f ∈ Eσ with σ > 0 and f = ĥ and let Ω ⊂ Rd be open
and bounded. Then

∥∆`f∥1,Ω ≤ (2πσ)2`vol(Ω)∥f∥1,

where ∆ denotes the d-dimensional Laplace operator and where vol(Ω)
is the Lebesgue measure of Ω.

Proof. As ∆`f is continuous and hence bounded on the compact
set Ω̄, we have

∥∆`f∥1,Ω ≤ vol(Ω)∥∆`f∥∞.
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A straightforward application of the calculation rules of the Fourier
transform yields

∆`f = F(∣2π ⋅ ∣2`h),
and thus by the standard integral estimate

∥∆`f∥∞ ≤ ∥∣2π ⋅ ∣2`h∥1.

From supp h ⊆ B̄σ then follows
∥ ∣2π ⋅ ∣2`h ∥1 = ∥ ∣2π ⋅ ∣2`h ∥1, B̄σ

≤ (2πσ)2`∥h∥1.

�

3. Derivation

We now set out to derive the EM expansion on lattices in d ∈ N
dimensions and start by introducing necessary definitions and notations.
First, we review the concept of multidimensional lattices.

Definition 2.8 (Lattices and related properties). We call Λ ⊆ Rd a
lattice if there exists MΛ ∈ Rd×d with det(MΛ) ≠ 0 such that

Λ =MΛZ
d.

The set of all lattices in Rd is denoted by L(Rd). We furthermore define
the elementary lattice cell EΛ as

EΛ =MΛ[0,1]d,
whose volume is called the covolume VΛ of the lattice,

VΛ = vol(EΛ) = ∣det(MΛ)∣.
We set aΛ > 0 as the smallest distance between non-equal lattice points,

aΛ = min
x∈Λ∖{0}

∣x∣.

The dual, or reciprocal, lattice Λ∗ is defined as
Λ∗ =MΛ∗Z

d,

where
MΛ∗ =M−⊺

Λ ,

with M−⊺
Λ = (M−1

Λ )⊺. Then
⟨y,x⟩ ∈ Z ∀x ∈ Λ, y ∈ Λ∗.

Finally, nΛ ∈N is the number of elements of Λ with norm aΛ.

We now review the Poisson summation formula that relates sums
on a lattice Λ to sums on the reciprocal lattice Λ∗.
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Figure 1. Lattice for d = 2. The shaded area shows a domain Ω
for which ∂Ω ∩Λ = ∅.

Lemma 2.9 (Poisson summation formula). Let Λ ∈ L(Rd) and let
f ∈ L1(Rd). If there exist C, ε > 0 such that

∣f(z)∣ + ∣f̂(z)∣ ≤ C(1 + ∣z∣)−(d+ε), z ∈ Rd,

then
VΛ ∑

z∈Λ
f(z)e−2πi⟨z,y⟩ = ∑

z∈Λ∗
f̂(z + y), y ∈ Rd.

Proof. The identity is a well known result in case that Λ = Zd,
see [47, Chapter VII, Corollary 2.6] or [31, Section 7.2]. It is readily
generalised to a lattice Λ by observing that for f ∈ L1(Rd),

F(f(MΛ ⋅ )) =
1

∣detMΛ∣
f̂(M−⊺

Λ ⋅ ) =
1
VΛ
f̂(MΛ∗ ⋅ ).

�

The EM expansion is going to rely on surface integrals of derivatives
of the summand function over the boundary of a domain Ω. We now
specify the term domain.

Notation 2.10 (Domain). From now on, a domain Ω ⊆ Rd shall
denote a non-empty and connected open set with Lipschitz boundary
∂Ω.

In Fig. 1, a hexagonal lattice (black dots) is displayed. The grey
area shows a domain whose boundary does not intersect any lattice
point.
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In the next step, we introduce a new mathematical operator

∑∫

that quantifies the difference between lattice sums and related integrals.

Notation 2.11 (Sum-integral). Let Λ ∈ L(Rd) and Ω ⊆ Rd mea-
surable. For f ∈ L1(Ω) summable on Ω ∩Λ, we denote the difference
between the sum of f over all lattice points in Ω and the integral of f
over Ω per lattice covolume as

∑∫
Ω,Λ

f = ∑
y∈Ω∩Λ

f(y) − 1
VΛ
∫
Ω

f(y)dy.

In case that the sum-integral is applied to longer expressions, we explic-
itly state the variable with respect to which summation and integration
are executed,

∑∫
y∈Ω,Λ

f(y) = ∑∫
Ω,Λ

f.

For sufficiently regular functions f and regions Ω, we want to find a
representation of the difference between lattice sum and integral, i.e.

∑∫
Ω,Λ

f

in terms of a surface integral over derivatives of f and a remainder
integral. In order to arrive at this goal, we define a generalisation of
the periodised Bernoulli functions to higher dimensional lattices. As
the sums that will appear in their definition do not converge a priori,
we have to include a regularisation factor, which we call smooth cutoff
that forces convergence.

Definition 2.12 (Mollifiers and smooth cutoff functions). Choose
χ ∈ D(B1) rotationally invariant with χ ≥ 0 that integrates to 1 over
Rd. For β > 0, set

χβ = β−dχ( ⋅ /β)
with suppχβ ⊆ B̄β. We call χβ a mollifier and its Fourier transform χ̂β
a smooth cutoff function.

The following lemma is a standard result that quantifies the conver-
gence of convolutions with a mollifier.

Lemma 2.13. Let Ω ⊆ Rd open and u ∈ Ck(Ω), k ∈ N0 ∪ {∞}. The
convolution of u with the mollifier χβ results in the smooth function
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uβ ∶ Ωβ → C,

uβ(x) = χβ ∗ u(x) = ∫
B1

χ(y)u(x − βy)dy,

with Ωβ = {x ∈ Ω ∶ dist(x, ∂Ω) > β}. Then for every β0 > 0 we have that
uβ → u as β → 0 in Ck(Ωβ0).

The subsequent lemma shows that the limit of smooth cutoff func-
tions in β is compact in all derivatives.

Lemma 2.14. Let χ̂β, β > 0, be a family of smooth cutoff functions.
Then

χ̂β → χ̂β(0) = 1, β → 0, in C∞(Rd).
Proof. First take R > 0 such that suppχ ⊆ BR. For any compact

set K ⊂ Rd and ξ ∈K, we find

χ̂β(ξ) − 1 = ∫
BβR

χβ(x)(e−2πi⟨x,ξ⟩ − 1)dx

= ∫
BR

χ(x)
β

∫
0

(−2πit⟨x,ξ⟩)e−2πit⟨x,ξ⟩ dtdx

due to
χβ = β−dχ(⋅/β).

Now as χ ≥ 0 and χ̂(0) = 1, we obtain

∣χ̂β(ξ) − 1∣ ≤ ∫
BR

χ(x)
β

∫
0

∣2πit⟨x,ξ⟩∣dtdx

≤ 2πβ∣ξ∣R → 0, β → 0,
uniformly on K. For α ∈Nd

0 with ∣α∣ ≥ 1 and ξ ∈ Rd, it holds that

∣Dαχ̂β(ξ)∣ = ∣∫
BR

χ(x)(−2πiβx)αe−2πiβ⟨x,ξ⟩ dx∣

≤ (2πβR)∣α∣ → 0, β → 0,
uniformly on Rd.

�

Lemma 2.15. Let χ̂β, β ∈ (0,1), be a family of smooth cutoff func-
tions. For all α ∈Nd

0 there exists a constant C > 0 with

sup
β∈(0,1)

∣Dαχ̂β(ξ)∣ ≤ C(1 + ∣ξ∣)−∣α∣
, ξ ∈ Rd.
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Proof. Remembering that χβ = β−dχ( ⋅ /β), we have

Dαχ̂β(ξ) = F((−2πi ⋅ )αχβ)(ξ) = β ∣α∣F((−2πi ⋅ )αχ)(βξ), ξ ∈ Rd.

After setting hα(x) = (−2πix)αχ(x), x ∈ Rd, we obtain for γ ∈Nd
0 and

ξ ∈ Rd

(2πiβξ)γDαχ̂β(ξ) = β ∣α∣F(Dγhα)(βξ).
As β ∈ (0,1), it follows that

∣ξγ ∣ ⋅ ∣Dαχ̂β(ξ)∣ ≤ ∣2π∣−∣γ∣ ⋅ ∥Dγhα∥1,

where the right hand side does not depend on ξ and β. The desired
estimate is found from

(1 + ∣ξ∣)∣α∣∣Dαχ̂β(ξ)∣ ≤ (1 +
d

∑
k=1

∣ξk∣)
∣α∣

∣Dαχ̂β(ξ)∣, ξ ∈ Rd,

as, after expanding the polynomial on the right hand side by the
binomial theorem, the above consideration yields a uniform bound in ξ
and β.

�

Equipped with the concept of smooth cutoff functions, we are now
in the position to define lattice sums over the function sν = ∣ ⋅ ∣−ν in (2.1).
The behaviour of these sums is subsequently analysed in the limit β → 0,
removing the regularisation. With this technique, we now present the
fundamental theorem of this chapter, from which the multidimensional
Bernoulli functions and the multidimensional EM expansion are derived.

Theorem 2.16. Let Λ ∈ L(Rd) and ν ∈ C. We set ZΛ,ν ∶ Rd∖Λ→ C,

ZΛ,ν(y) = VΛ∗ lim
β→0

∑′

z∈Λ∗
χ̂β(z)

e−2πi⟨z,y⟩

∣z∣ν ,

where the primed sum excludes z = 0. The function ZΛ,ν is well-defined,
i.e. the limit exists for all y ∈ Rd ∖ Λ, and is independent of the
chosen regularisation. The function ZΛ,ν can be extended to a tempered
distribution on Rd by virtue of

⟨ZΛ,ν , ψ⟩ = VΛ∗ ∑
′

z∈Λ∗
ψ̂(z)
∣z∣ν , ψ ∈ S(Rd).

Furthermore, the function ZΛ,ν is analytic and the limit β → 0 is compact
in all derivatives.

In order to prove above theorem, we need two lemmas.

Lemma 2.17. ZΛ,ν as in Theorem 2.16 defines a tempered distribu-
tion.



52 2. MULTIDIMENSIONAL EULER–MACLAURIN EXPANSION

Proof. We first choose β > 0 and define the auxiliary function

ZΛ,ν,β ∶ Rd → C, ZΛ,ν,β(y) = VΛ∗∑
′

z∈Λ∗
χ̂β(z)

e−2πi⟨z,y⟩

∣z∣ν .

Above Dirichlet series is well-defined due to the superpolynomial decay
of the Schwartz function χ̂β. As ZΛ,ν,β is bounded, it defines a tempered
distribution via

⟨ZΛ,ν,β, ψ⟩ = ∫
Rd

ZΛ,ν,β(y)ψ(y)dy = VΛ∗∑
′

z∈Λ∗
χ̂β(z)

ψ̂(z)
∣z∣ν ,

for ψ ∈ S(Rd). Now due to ∣χ̂β ∣ ≤ 1 and χ̂β → 1 as β → 0, the dominated
convergence theorem yields

lim
β→0

⟨ZΛ,ν,β, ψ⟩ = VΛ∗∑
′

z∈Λ∗
ψ̂(z)
∣z∣ν = ⟨ZΛ,ν , ψ⟩,

establishing that also ZΛ,ν is a tempered distribution.
�

In the next lemma, we discuss the convergence of Dirichlet series
that arise in the proof of Theorem 2.16 after applying the Poisson
summation formula to the auxiliary functions.

Lemma 2.18. Let Λ ∈ L(Rd) and ν ∈ C with Re(ν) > d. For a family
of mollifiers χβ, β > 0, the functions hβ ∶ Rd ∖Λβ → C,

hβ(y) = ∑
z∈Λ

χβ ∗ sν(z + y),

with Λβ = Λ+B̄β, belong to C∞(Rd∖Λβ) and converge to h ∶ Rd∖Λ→ C,
h(y) = ∑

z∈Λ
∣z + y∣−ν .

in C∞(Rd ∖Λβ0) as β → 0 for any β0 > 0. All statements remain true
if Λ is replaced by a subset Λ′ of the lattice.

Proof. We begin by noticing that function sν can be extended
to holomorphic function s̃ν on a conic2 complex neighbourhood U of
Rd ∖ {0}. Due to the restriction Re(ν) > d, the Dirichlet series

∑
z∈Λ

s̃ν(z + y)

converges compactly in y on U ∖Λ. This is found from the Weierstraß
M-test, where the majorant is established via

∣s̃ν(z + y)∣ ≤ ∣z/2∣−Re(ν)

2A set U ⊆ Cd is conic if U = tU , t > 0.
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for z ∈ Λ sufficiently large. Now h is analytic on Rd ∖Λ as the compact
limit of analytic functions. After writing hβ in the form

hβ(y) = χβ ∗ h(y), y ∈ Rd ∖Λβ,

we find by Lemma 2.13 that hβ → h in C∞(Rd ∖Λβ0) as β → 0 for all
β0 > 0. Finally, note that all above arguments remain applicable if Λ is
replaced by an arbitrary subset Λ′ of the lattice.

�

With above two lemmas, we show the fundamental theorem of the
multidimensional EM expansion.

Proof of Theorem 2.16. We have established in Lemma 2.17
that ZΛ,ν defines a tempered distribution. Now, we show that this
distribution already defines an analytic function on Rd ∖Λ. We begin
with our auxiliary functions ZΛ,ν,β, β > 0, from Lemma 2.17,

ZΛ,ν,β(y) = VΛ∗∑
′

z∈Λ∗
fβ(z)e−2πi⟨y,z⟩, y ∈ Rd,

where fβ = χ̂βsν . The Dirichlet series over the dual lattice is now
replaced by a sum over Λ by means of the Poisson summation formula.
In consideration of this goal, we first assume that

Re(ν) < −(d + 1).
Under this restriction, fβ can be extended to a function in Cd+1(Rd)
where fβ(0) = 0. Hence, we can include z = 0 in above Dirichlet
series. Poisson summation can now be applied as, first, fβ decays
superpolynomially due to the smooth cutoff function χ̂β, and, second,
as

∣Ffβ(z)∣ ≤ C(1 + ∣z∣)−(d+1)
, z ∈ Rd,

due to fβ ∈ Cd+1(Rd). The Poisson summation formula thus yields

ZΛ,ν,β(y) = ∑
z∈Λ

f̂β(z + y), y ∈ Rd.

For y ∈ Rd ∖Λβ with Λβ = Λ + B̄β, above formula can be brought in the
form that we have investigated in Lemma 2.18,

ZΛ,ν,β(y) = ∑
z∈Λ

χβ ∗ ŝν(z + y) = cν,d∑
z∈Λ

χβ ∗ sd−ν(z + y),

with cν,d ∈ C as given in Theorem 2.2. The assumption on ν now yields
Re(d − ν) > d and by Lemma 2.18

lim
β→0
ZΛ,ν,β = ZΛ,ν in C∞(Rd ∖Λ).
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Here we have used that for every K ⊂ Rd∖Λ compact there exists β0 > 0
such that K ⊂ Rd ∖Λβ for all β < β0. In addition, the lemma shows that
the function ZΛ,ν is not only smooth, but also analytic.

Finally, we employ elliptic regularity in order to extend the result
to all ν ∈ C. Observe that for ` ∈N0,
(2.2) ∆`ZΛ,ν,β = (2πi)2`ZΛ,ν−2`,β.

We thus only need to choose ` sufficiently large such that
Re(ν − 2`) < −(d + 1).

Our previous investigation then shows that the right hand side of (2.2)
converges in C∞(Rd ∖Λ) as β → 0. By elliptic regularity in the form of
Theorem 2.5, we find that ZΛ,ν,β, which a priori only converges weakly
to a distribution, also converges in C∞(Rd ∖Λ) for β → 0. Theorem 2.4
shows analyticity of ZΛ,ν .

�

From the function ZΛ,ν , we can construct the Bernoulli functions
for multidimensional lattices.

Definition 2.19 (Bernoulli functions). Let Λ ∈ L(Rd) and ` ∈N0.
We define the Bernoulli functions B(`)

Λ ∶ Rd ∖Λ→ R as

B(`)
Λ (y) =

ZΛ,2(`+1)(y)
(2πi)2(`+1) .

In analogy to ZΛ,ν , they define tempered distributions via

⟨B(`)
Λ , ψ⟩ = VΛ∗ ∑

′

z∈Λ∗
ψ̂(z)

(2πi∣z∣)2(`+1) ,

for ψ ∈ S(Rd).

Remark 2.20. From inspecting the scalar product in the exponen-
tial, we find that the functions B(`)

Λ are Λ-periodic,

B(`)
Λ ( ⋅ +x) = B(`)

Λ , x ∈ Λ.

We emphasise the central distributional property of the Bernoulli
functions, on which the multidimensional EM expansion is based.

Proposition 2.21 (Sum-integral property of B(`)
Λ ). Let Λ ∈ L(Rd)

and ` ∈N0. Then for ψ ∈ S(Rd),

⟨∆`+1B(`)
Λ , ψ⟩ = ⟨XΛ − V −1

Λ , ψ⟩ = ∑∫
Rd,Λ

ψ,
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where XΛ is the Dirac comb for the lattice Λ,
XΛ = ∑

z∈Λ
δz,

and where δz is the Dirac delta distribution.

Proof. For ` ∈N0, the action of the distribution B(`)
Λ on ψ ∈ S(Rd)

yields

⟨B(`)
Λ , ψ⟩ = VΛ∗ ∑

′

z∈Λ∗
ψ̂(z)

(2πi∣z∣)2(`+1) .

By duality, the distributional poly-Laplacian ∆`+1B(`)
Λ reads

⟨∆`+1B(`)
Λ , ψ⟩ = ⟨B(`)

Λ ,∆`+1ψ⟩ = VΛ∗ ∑
′

z∈Λ∗
ψ̂(z) = VΛ∗ ∑

z∈Λ∗
ψ̂(z) − VΛ∗ψ̂(0).

We apply Poisson summation,

VΛ∗ ∑
z∈Λ∗

ψ̂(z) − VΛ∗ψ̂(0) = ∑
z∈Λ

ψ(z) − VΛ∗ ∫
Rd

ψ(z)dz,

and find, as VΛ∗ = V −1
Λ , that

⟨∆`+1B(`)
Λ , ψ⟩ = ⟨XΛ − V −1

Λ , ψ⟩ = ∑∫
Rd,Λ

ψ.

�

We subsequently investigate the maximum norm of the Bernoulli
functions of sufficiently high order `, which enters in the error scaling
of the expansion.

Corollary 2.22 (Maximum norm of B(`)
Λ ). Let Λ ∈ L(Rd) and

` ∈N0. For 2(`+1) > d, the functions B(`)
Λ can be continuously extended

to Rd with maximum norm

∥B(`)
Λ ∥∞ = 1

VΛ
∑′

z∈Λ∗
1

∣2πz∣2(`+1) .

The scaling as `→∞ is determined by aΛ∗,

lim
`→∞

(2πaΛ∗)2(`+1)∥B(`)
Λ ∥∞ = nΛ∗

VΛ
,

with nΛ∗ the number of elements of Λ∗ with norm aΛ∗.

Proof. Let k = 2(` + 1) − d > 0 such that the Dirichlet series in
Definition 2.19 converges absolutely without β-regularisation on Rd.
Clearly, the maximum norm is bounded by

∥B(`)
Λ ∥∞ ≤ 1

VΛ
∑′

z∈Λ∗
1

∣2πz∣2(`+1) ,
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Figure 2. Multidimensional Bernoulli function B(0)Λ for d = 2 and
Λ = Z2.

and the inequality sign can be replaced by an equality sign as the upper
bound is reached on Λ. For the scaling as `→∞, we note that

lim
`→∞

(2πaΛ∗)2(`+1)∥B(`)
Λ ∥∞ = 1

VΛ
lim
`→∞ ∑

′

z∈Λ∗
(aΛ∗

∣z∣ )
2(`+1)

= nΛ∗

VΛ
,

by the monotone convergence theorem.
�

In Fig. 2, we show the Bernoulli function B(0)
Λ for a two-dimensional

square lattice Λ = Z2. The logarithmic singularities at the lattice points
originate from the fundamental solution to the two-dimensional Laplace
operator.

The Bernoulli functions and their derivatives describe the coefficients
of the differential operator of the multidimensional EM expansion.

Definition 2.23 (EM operator). Let Λ ∈ L(Rd) and ` ∈ N0. For
y ∈ Rd ∖Λ, we define the `th order EM operator D(`)

Λ,0,y as

D(`)
Λ,0,y =

`

∑
k=0

(∇∆`−kB(`)
Λ (y) −∆`−kB(`)

Λ (y)∇)∆k.

With DΛ,0,y, we denote the infinite order EM operator obtained by
setting ` =∞ in above definition.

We will prove at a later point that the infinite order operator is
well-defined for band-limited functions with bandwidth σ < aΛ∗ .

The function B(`)
Λ can be identified as an infinite linear combination

of parametrices for the poly-Laplace operator. A parametrix for ∆`+1 is
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a distribution E ∈ D ′(Rd) with

∆`+1E = δ0 − ψ
where ψ is a smooth function [31, Definition 7.1.21]. Green’s third
identity, also called representation formula, is also applicable, with
a small modification, if we replace the fundamental solution by a
parametrix, see [33, p. 235, Eq. (20.1.6)]. We only give the result
for ` = 0, where the case of general ` readily follows after repeated
application of Green’s second identity.

Lemma 2.24. Let E be a parametrix for the Laplace operator, such
that ∆E = δ0 − ψ, ψ ∈ C∞(Rd). Then E ∈ C∞(Rd ∖ {0}) and for
f ∈ C2(Ω̄), a domain Ω ⊆ Rd, and x ∈ Ω, we find that

f(x) − ∫
Ω

ψ(x − y)f(y)dy

= ∫
∂Ω

(∂nyE(x−y)f(y)−E(x−y)∂nyf(y))dSy+∫
Ω

E(x−y)∆f(y)dy,

where ∂ny = ⟨∇y,ny⟩ denotes the normal derivative and ny is the unit
outward normal vector to Ω at y ∈ ∂Ω. Furthermore, f is assumed to
have compact support in Ω̄ if Ω is unbounded.

We finally arrive at the EM expansion on multidimensional lattices.

Theorem 2.25 (Multidimensional EM expansion). Let Λ ∈ L(Rd)
and Ω ⊆ Rd a domain such that ∂Ω ∩Λ = ∅. If f ∈ C2(`+1)(Ω̄), ` ∈ N0,
with compact support in Ω̄ in case of an unbounded domain, then the
sum-integral of f over (Ω,Λ) has the representation

∑∫
Ω,Λ

f = ∫
∂Ω

⟨D(`)
Λ,0,y f(y),ny⟩ dSy + ∫

Ω

B(`)
Λ (y)∆`+1f(y)dy.

If Ω is bounded and f ∈ Eσ with σ < aΛ∗, then

∑∫
Ω,Λ

f = ∫
∂Ω

⟨DΛ,0,y f(y),ny⟩ dSy.

Proof. Corollary 2.22 yields that the poly-Laplacian of B(`)
Λ de-

scribes a tempered distribution,
∆`+1B(`)

Λ =XΛ − V −1
Λ = ∆(∆`B(`)

Λ ).
Then, by assumption on Ω and f ,

∑
Ω∩Λ

f
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only exhibits a finite number of non-zero addends. Hence Lemma 2.24
can be applied to the sum-integral, from which we obtain

∑∫
Ω,Λ

f = ∫
∂Ω

(∂ny∆`B(`)
Λ (y) −∆`B(`)

Λ (y)∂ny)f(y)dSy

+ ∫
Ω

∆`B(`)
Λ (y)∆f(y)dy,

having used that ∆`−kB(`)
Λ is both Λ-periodic and symmetric,

∆`−kB(`)
Λ (z − y) = ∆`−kB(`)

Λ (y), y ∈ Rd ∖Λ, z ∈ Λ.
We subsequently apply Green’s second identity ` times to the right
hand side, yielding

∑∫
Ω,Λ

f = ∫
∂Ω

`

∑
k=0

(∂ny ∆`−kB(`)
Λ (y) −∆`−kB(`)

Λ (y)∂ny)∆kf(y)dSy

+ ∫
Ω

B(`)
Λ (y)∆`+1f(y)dy.

Now for a bounded domain Ω, f ∈ Eσ, and 2(` + 1) > d, we seek an
estimate for the remainder

R(`)
Λ = ∫

Ω

B(`)
Λ (y)∆`+1f(y)dy.

We know from Corollary 2.22 that, by assumption on `, B(`)
Λ is continuous

and bounded. Hence
∣R(`)

Λ ∣ ≤ ∥B(`)
Λ ∥∞∥∆`+1f∥1,Ω.

As f ∈ Eσ, with f = ĥ, we find by Lemma 2.7 that
∥∆`+1f∥1,Ω ≤ (2πσ)2(`+1)vol(Ω)∥h∥1.

We insert the asymptotic scaling of the Bernoulli functions from Corol-
lary 2.22, which results in the estimate

lim
`→∞

(σ/aΛ∗)
−2(`+1)∣R(`)

Λ ∣ ≤ nΛ∗vol(Ω)
VΛ

∥h∥1.

Thus,
∣R(`)

Λ ∣ ∼ (σ/aΛ∗)
2(`+1)

,

and the remainder integral vanishes in the limit ` → ∞ in case that
σ < aΛ∗ .

�
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In the following, we show that the expansion is also applicable
for functions on unbounded domains if they exhibit a sufficiently fast
asymptotic decay at infinity.

Corollary 2.26 (EM expansion on unbounded domains). The EM
expansion of order ` ∈ N0 extends to unbounded domains Ω ⊆ Rd with
∂Ω ∩Λ = ∅ and functions f ∈ C2(`+1)(Ω̄) for which there exist C, ε > 0
such that

∣⟨t,∇⟩kf(y)∣ ≤ C(1 + ∣y∣)−(d+ε), y ∈ Ω̄,
for all t ∈ ∂B1 and k ≤ 2(` + 1).

Proof. Choose η ∈ D(Rd) with η(0) = 1. Then for n ∈ N, set
ηn = η(⋅/n). As fn = ηnf is compactly supported, the sum-integral can
be expanded as follows

∑∫
Ω,Λ

fn = ∫
∂Ω

⟨D(`)
Λ,0,y fn(y),ny⟩ dSy + ∫

Ω

B(`)
Λ (y)∆`+1fn(y)dy,

for all n ∈N. Now there exists bounds to the derivatives of ηn that are
independent of n,

∥Dαηn∥∞ ≤ 1
n∣α∣ ∥D

αη∥∞ ≤ ∥Dαη∥∞.

The bounds on the derivatives of fn on Ω̄ yield a majorant that is both
integrable and summable. The EM expansion for f then follows from
the dominated convergence theorem.

�

The error of the EM expansion is controlled by the remainder

R(`)
Λ = ∫

Ω

B(`)
Λ (y)∆`+1f(y)dy.

The expansion from Theorem 2.25 can now be used in two different
ways. The first option is to apply the EM expansion as a quadrature
rule that approximates an integral by a discrete sum. The error under
grid refinement, Λh = hΛ for h > 0, of the integral approximation is then
given by

VΛh ∣R
(`)
Λh ∣ ≤ h

2(`+1)VΛ∥B(`)
Λ ∥∞∥∆`+1f∥1,Ω,

for 2(` + 1) > d. Here the bound for the maximum norm of B(`)
Λ follows

from Corollary 2.22. The second option is to approximate a discrete
lattice sum by an integral. Here, if we dilate the argument of the
function f and set fλ(x) = f(x/λ), with λ > 0, we find that

∣R(`)
Λ ∣ ≤ λ−2(`+1)∥B(`)

Λ ∥∞∥∆`+1f∥1,Ω.
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This option will be further explored in the numerical application in
Chapter 4.4. Let us now consider the scaling of the remainder R(`)

Λ in
the limit `→∞. In the proof of the expansion, we have shown that if
the functions f is band-limited, f = Fh, with bandwidth σ, then the
approximation error decays exponentially with the expansion order if
σ < aΛ∗ ,

∣R(`)
Λ ∣ ≤ CΛ,Ω∥h∥1 (

aΛ∗

σ
)
−2(`+1)

,

where CΛ,Ω > 0 only depends on Λ and Ω. The EM expansion is however
not useful if f includes an algebraic singularity. Then f cannot be well-
approximated by a band-limited function and the expansion error is
typically large and uncontrolled. In this challenging, yet highly relevant
case, we need a more advanced version of the multidimensional EM
expansion. We develop this singular expansion in the next chapter.



CHAPTER 3

Singular Euler–Maclaurin expansion on
multidimensional lattices

1. Introduction

Let us choose a lattice Λ ∈ L(Rd), a bounded domain Ω ⊂ Rd with
∂Ω∩Λ = ∅, and a lattice point x ∈ Λ that lies outside of Ω̄. Then, for a
function fx ∶ Ω̄→ C of the form

fx(y) = s(y −x)g(y),
with a function s ∈ C∞(Rd ∖ {0}) that has an algebraic singularity at 0,
and for g ∈ C2(`+1)(Ω̄), the EM expansion of order ` from Theorem 2.25
of the sum-integral

∑∫
Ω,Λ

fx

does not converge in the limit `→∞, even for band-limited functions
g ∈ Eσ with σ < aΛ∗ . We call s the interaction and g the interpolating
function. The lack of convergence arises because of the algebraic singu-
larity of s, due to which fx is not band-limited, which in turn causes
the derivatives of fx to increase quickly with the derivative order. This
results in an approximation error that is uncontrolled and typically
large, even for low expansion orders `. In the following, we consider the
physically most relevant interaction function

sν = ∣ ⋅ ∣−ν , ν ∈ C.
We have already seen in Chapter 1 that the one-dimensional EM

expansion does not converge for functions with singularities and we have
overcome this problem by means of the one-dimensional SEM expansion.
Now in the same way as the derivation of the SEM expansion for d = 1
was based on the traditional EM expansion, we make use of the multi-
dimensional EM expansion in the following in order to show existence
of the mathematical objects that appear in the multidimensional SEM
expansion.

As we have shown for d = 1, we can make the EM expansion ap-
plicable to singular summand functions by including the singularity in

This chapter is based on [7, Section 4].
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a generalisation of the Bernoulli functions, which we call Bernoulli-A
functions. With these Bernoulli-A functions, the action of the differen-
tial operator is restricted to the the well-behaved function g, thereby
avoiding derivatives of the interaction s. This procedure remedies the
divergence of the remainder integral and thus leads to an expansion
that is useful in practice.

The derivation of the multidimensional SEM expansion is structured
as follows. We construct the Bernoulli-A functions in Section 2. To
this end, we first discuss fundamental solutions to the poly-Laplace
operator in Section 2.1. We then suitably combine the fundamental
solutions with the interaction in Section 2.2 to a function that we call
Bernoulli symbol, as it shares properties with symbols that arise in the
study of pseudo-differential operators. The Bernoulli-A functions then
follow as regularised sum-integrals of the Bernoulli symbol in Section 2.3.
In Section 3, we then introduce the SEM operator, whose coefficient
functions are determined by the Bernoulli-A functions and subsequently
present the SEM expansion for an exterior singularity, which lies outside
of the region Ω. Section 4 finally extends the expansion to singularities
inside Ω, which gives rise to an additional local SEM operator.

2. Derivation

2.1. Fundamental solutions to the poly-Laplace operator.
The Bernoulli-A functions are based on fundamental solutions to poly-
Laplace operators.

Notation 3.1 (Rotationally symmetric fundamental solutions of
∆`+1). Let ` ∈N0. We denote by φ` ∈ S′(Rd) a rotationally symmetric
fundamental solution to ∆`+1, where

∆`+1φ` = δ0.

Remark 3.2. The representation of the poly-Laplace operator in
spherical coordinates shows that the choice of φ` is only unique up to a
rotationally invariant polynomial of order 2`.

Lemma 3.3. Every fundamental solution φ` can be identified as a
C∞-function on Rd ∖ {0}. One possible choice is

φ`(x) = C`,d ∣x∣2(`+1)−d, ` ∈N0 and d odd,
⎧⎪⎪⎨⎪⎪⎩

φ`(x) = C`,d ∣x∣2(`+1)−d, ` = 1, . . . ,m − 1,

φ`(x) = C(1)
`,d ∣x∣2(`+1)−d −C(2)

`,d ∣x∣2(`+1)−d ln ∣x∣, ` ≥m for d = 2m,

for m ∈N and with constants C`,d,C(1)
`,d ,C

(2)
`,d ∈ R.
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The explicit form of above constants is given in [2, Chapter I.2].
We furthermore require the following estimate on the derivatives of the
fundamental solutions [2, Proposition 3.3].

Lemma 3.4. For φ` as in Lemma 3.3 and α ∈ Nd
0 there exists a

constant C > 0 such that for all x ∈ Rd ∖ {0}

∣Dαφ`(x)∣ ≤ C ∣x∣2(`+1)−d−∣α∣(∣ ln ∣x∣∣ + 1 + ln(` + 1)).

The representation formula in the following lemma is a direct con-
sequence of Green’s second and third identity.

Lemma 3.5. Let Ω ⊂ Rd be a bounded domain. For ` ∈ N0 and
for g ∈ C2(`+1)(Ω̄), we can express g(x), x ∈ Ω, by the representation
formula,

g(x) =
`

∑
k=0
∫
∂Ω

(∂ny∆`−kφ`(x − y) −∆`−kφ`(x − y)∂ny)∆kg(y)dSy

+ ∫
Ω

φ`(x − y)∆`+1g(y)dy.

The next lemma immediately follows from the estimates for the
derivatives of the fundamental solutions. A proof in case of the Laplace
operator, ` = 0, can be found in [27, Lemma 4.1].

Lemma 3.6. Let Ω ⊂ Rd open and bounded. For g ∈ C(Ω̄) and
` ∈N0, the Newton potential

f(x) = ∫
Ω

φ`(x − y)g(y)dy, x ∈ Ω,

defines a C2`+1-function on Ω. The derivatives up to order 2` + 1 are
given by

Dαf(x) = ∫
Ω

Dαφ`(x − y)g(y)dy, x ∈ Ω,

for α ∈Nd
0 with ∣α∣ ≤ 2` + 1.

We now discuss a representation of the poly-Laplace operator in
terms of surface integrals over directional derivatives that will appear
at several key points in our considerations1. It allows us to uncover
geometric meaning in otherwise seemingly complicated expressions.

1The representation can be considered as a special case of Pizetti’s formula, see
e.g. [25, p. 74].
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Proposition 3.7 (Integral representation of the poly-Laplace oper-
ator). Let y ∈ Rd and ` ∈N0. For g ∈ C2`(U) on some open neighbour-
hood U of y, it holds

∆`g(y) = p`,d
ωd

∫
∂B1

⟨z,∇⟩2`g(y)dSz,

with ωd the surface area of the unit sphere and where the prefactor is
given by

p`,d =
(d/2)`
(1/2)`

.

Here, (x)` = x(x + 1)⋯(x + ` − 1) denotes the Pochhammer symbol.

Proof. From an application of the Fourier transform follows that
the assertion is equivalent to

1
ωd
∫
∂B1

⟨z,ξ⟩2` dSz =
1
p`,d

= (1/2)`
(d/2)`

, ξ ∈ ∂B1.

We now apply the Funk–Hecke theorem [28, Theorem 3.4.1] for the
constant spherical harmonic, and transform the integral over the sphere
into a one-dimensional integral,

1
ωd
∫
∂B1

⟨z,ξ⟩2` dSz =
ωd−1

ωd

1

∫
−1

t2`(1 − t2)(d−3)/2 dt.

The integral is readily evaluated in terms of Gamma functions. We
then find, after inserting the surface area of the sphere, that

ωd−1

ωd

1

∫
−1

t2`(1 − t2)(d−3)/2 dt = 1√
π

Γ(d/2)
Γ((d − 1)/2)

Γ((d − 1)/2)Γ(` + 1/2)
Γ(d/2 + `) .

As Γ(1/2) = √
π, the above expression reduces to

Γ(1/2 + `)
Γ(1/2)

Γ(d/2)
Γ(d/2 + `) = (1/2)`

(d/2)`
= 1
p`,d

.

�

2.2. Bernoulli symbols. We now construct the Bernoulli symbol
by combining the interaction with a shifted fundamental solution of
∆`+1 from which a Taylor expansion of precisely chosen order has been
subtracted.
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Definition 3.8 (Bernoulli symbol). Let ν ∈ C and ` ∈N0. Then for
y,z ∈ Rd ∖ {0}, we set

a
(`)
ν (y,z) = 1

∣z∣ν (φ`(y − z) −
2`+1
∑
k=0

1
k!⟨−z,∇⟩k φ`(y)), y ≠ z,

and call a(`)ν Bernoulli symbol of order ` for the interaction exponent ν.
It is of crucial importance to make the correct choice for the order

of the Taylor expansion. If too many derivatives are taken, we loose
integrability of the symbol in the second argument. If on the other
hand too few derivatives are taken, the Bernoulli symbol will depend on
the particular choice of the fundamental solution. The correct choice
preserves both properties.

Lemma 3.9. The Bernoulli symbol does not depend on the choice
of the fundamental solution φ`.

Proof. We show that two arbitrary choices for the rotationally
symmetric fundamental solution, which we denote by φ`,1 and φ`,2, lead
to the same resulting Bernoulli symbol. First, by Remark 3.2, the
fundamental solutions differ by a polynomial P of order 2`,

φ`,1 − φ`,2 = P.
Now, we denote by a(`)ν,1 and a(`)ν,2 the associated Bernoulli symbols for
the two fundamental solutions and show that they are identical. As the
polynomial P is equal to its Taylor series of order 2`,

a
(`)
ν,1(y,z) − a

(`)
ν,2(y,z) =

1
∣z∣ν (P (y − z) −

2`+1
∑
k=0

1
k!⟨−z,∇⟩k P (y)) = 0.

�

The following lemma shows that certain spherical surface integrals
over spheres of the Bernoulli symbol with respect to its second argument
vanish. This will become important later, when we show that the
resulting Bernoulli-A functions are uniquely defined.

Lemma 3.10. Let ν ∈ C, and ` ∈N0. Then for y ∈ Rd ∖ {0}

∫
∂Br

a
(`)
ν (y,z)dSz = 0, r < ∣y∣.

Proof. For ∣z∣ < ∣y∣, the shifted fundamental solution inside the
Bernoulli symbol can be expanded in a Taylor series in z. This then
leads to

a
(`)
ν (y,z) = 1

∣z∣ν
∞
∑

k=2(`+1)

1
k!⟨−z,∇⟩k φ`(y),
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where the series converges uniformly in y on Br for 0 < r < ∣y∣. We
subsequently evaluate the integral of the Bernoulli symbol over a sphere
with radius r,

∫
∂Br

a
(`)
ν (y,z)dSz =

1
rν

∞
∑
k=`+1

1
(2k)! ∫

∂Br

⟨z,∇⟩2k φ`(y)dSz,

where odd powers of z vanish in the surface integral due to symmetry.
From the integral representation of the poly-Laplace operator from
Proposition 3.7, we obtain

∫
∂Br

⟨z,∇⟩2k φ`(y)dSz =
ωd
p`,d

r(d−1+2k)∆kφ`(y).

Finally, as k ≥ ` + 1, we have that
∆kφ`(y) = 0, y ∈ Rd ∖ {0}.

Thus above sum vanishes.
�

The following lemma gives estimates on the derivatives of the symbol
with respect to its second argument, which are used in the proof of the
well-definedness of the Bernoulli-A functions.

Lemma 3.11. Let ` ∈N0, ν ∈ C, α ∈Nd
0, and K ⊂ Rd ∖ {0} compact.

Then there exist R > 0 and C > 0 such that
∣Dα

z a
(`)
ν (y,z)∣ ≤ C ∣z∣2(`+1)−Re(ν)−∣α∣, ∣z∣ > R, y ∈K,

where C only depends on `, ν, α, and K.

Proof. First recall the definition of the symbol,

a
(`)
ν (y,z) = 1

∣z∣ν (φ`(y − z) −
2`+1
∑
k=0

1
k!⟨−z,∇⟩k φ`(y)).

In this proof, we use C > 0 as a generic constant that depends on `,
ν, α, K and whose value changes during the proof. We first give an
estimate on the derivatives of the terms in brackets. Lemma 3.4 yields

∣Dα
z φ`(y − z)∣ ≤ C ∣y − z∣2(`+1)+1−d−∣α∣, ∣y − z∣ > 1,

where we have increased the exponent by 1 in order to bound the
logarithm. For

R > 2 max {1, sup
y∈K

∣y∣},

we find for all γ ∈ R that
∣y − z∣γ ≤ 2∣γ∣∣z∣γ, ∣z∣ > R.
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Figure 1. Bernoulli-A function A(0)Λ,ν for d = 2, Λ = Z2, and ν = 2.001.

Hence,

∣Dα
z φ`(y − z)∣ ≤ C ∣z∣2(`+1)+ε−d−∣α∣ ≤ C ∣z∣2(`+1)−∣α∣, ∣z∣ > R.

We furthermore have that

∣Dα
z

2`+1
∑
k=0

1
k!⟨−z,∇⟩k φ`(y)∣ ≤ C ∣z∣2(`+1)−∣α∣.

A bound on the derivatives of the interaction ∣ ⋅ ∣−ν can be easily estab-
lished by induction on the multi-index, which reads

∣Dα
z ∣z∣−ν ∣ ≤ C ∣z∣−Re(ν)−∣α∣, z ∈ Rd ∖ {0}.

With above results, the Leibniz rule then yields the sought estimate.
�

2.3. Bernoulli-A functions. We define the Bernoulli-A functions
as regularised sum integrals of the the Bernoulli symbol, which was
introduced in the previous section. This procedure allows us to sum
over an infinite number of fundamental solutions φ`, while keeping the
resulting expressions well defined. These fundamental solutions then
provide the required singularities that lead to Dirac delta distributions
at lattice points if the poly-Laplace operator is applied.
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Definition 3.12 (Bernoulli-A functions). Let Λ ∈ L(Rd), ν ∈ C,
and ` ∈N0. We define A(`)

Λ,ν ∶ Rd ∖Λ→ C as

A(`)
Λ,ν(y) = lim

β→0
∑∫

z∈Rd∖Bδ,Λ
χ̂β(z)a(`)ν (y,z),

for a family of smooth cutoff functions χ̂β, β > 0, and an arbitrary
δ ∈ (0, aΛ) such that δ < ∣y∣.

We display the zero order Bernoulli-A function A(0)
Λ,ν in Fig. 2.3 for

a two-dimensional square lattice and an interaction exponent ν = 2.001.
The function shows the characteristic logarithmic singularity of the
fundamental solution of the Laplace operator for d = 2 at all lattice
points. It furthermore exhibits a singularity at the origin y = 0 that
depends on the exponent ν and on the order `. The asymptotic decay of
the function is determined by the interaction. In the following theorem,
we show well-definedness of the Bernoulli-A functions and present their
central properties. Its proof is based on the multidimensional Euler–
Maclaurin expansion that has been developed in the previous chapter.

Theorem 3.13 (Fundamental theorem of the SEM expansion). For
Λ ∈ L(Rd), ` ∈ N0, and ν ∈ C, the function A(`)

Λ,ν is well-defined, and
independent of the choices for φ`, δ, and χ. Furthermore, A(`)

Λ,ν is
analytic and the limit β → 0 in the definition of A(`)

Λ,ν is compact in all
derivatives.

We separate the proof into several propositions and lemmas, for
which the conditions on Λ, `, ν, and χ̂β from Definition 3.12 shall hold.
In the first proposition, we discuss the well-definedness of the sum-
integral in the Bernoulli-A functions in case of a finite regularisation
parameter β.

Proposition 3.14. Choose β > 0. Then the auxiliary function
A(`)

Λ,ν,β ∶ Rd ∖Λ→ C with

A(`)
Λ,ν,β(y) = ∑∫

z∈Rd∖Bδ,Λ
χ̂β(z)a(`)ν (y,z), δ < ∣y∣, 0 < δ < aΛ,

is analytic and independent of the choices for δ and φ`.

Proof. As the smooth cutoff function χ̂β(z) decays superpolyno-
mially as ∣z∣→∞, the sum integral is well-defined. This decay allows
furthermore to exchange differentiation with the sum-integral. Hence
A(`)

Λ,ν,β inherits analyticity from its underlying Bernoulli symbol.
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We first show independence of the auxiliary function from the choice
of δ. Let y ∈ Rd ∖ Λ and choose δ1, δ2 in (0, aΛ) such that both are
smaller than ∣y∣. Without loss of generality, we can assume δ2 > δ1. Now
the lattice sum is independent of the choice for δ as δ < aΛ, where aΛ
is the minimal distance of two lattice points. Hence, the difference of
the sum-integrals for the two choices δ1 and δ2 is proportional to the
integral

(3.1) ∫
Bδ2∖Bδ1

χ̂β(z)a(`)ν (y,z)dz.

We know from Lemma 3.10 that

∫
∂Br

a
(`)
ν (y,z)dSz = 0, r < ∣y∣.

As the cut-off function χ̂β is rotationally invariant, the integral in (3.1)
vanishes as well, which proves independence of the auxiliary function
from δ. Finally, Lemma 3.9 shows that the Bernoulli symbol and hence
also the auxiliary function does not depend on the particular choice of
the fundamental solution φ`.

�

Proposition 3.15. The auxiliary functions A(`)
Λ,ν,β, β > 0, are locally

integrable on Rd ∖ {0} with

∫
K

A(`)
Λ,ν,β(y)dy = ∑∫

z∈Rd∖Bδ,Λ
χ̂β(z)∫

K

a
(`)
ν (y,z)dy,

for K ⊂ Rd ∖ {0} compact and δ > 0 such that

δ < min (aΛ,dist(0,K)).
They furthermore converge in L1

loc(Rd ∖ {0}) for β → 0 to the locally
integrable function A(`)

Λ,ν, which is independent of the choice of χ. In
particular,

∫
K

A(`)
Λ,ν(y)dy = lim

β→0
∑∫

z∈Rd∖Bδ,Λ
χ̂β(z)∫

K

a
(`)
ν (y,z)dy.

Proof. As a(`)ν ( ⋅ ,z) ∈ L1
loc(Rd) for z ∈ Rd ∖ {0}, we find together

with the superpolynomially decay of χ̂β that the integral of the auxiliary
function over the compact set K ⊂ Rd ∖ {0} exists. It reads

∫
K

A(`)
Λ,ν,β(y)dy = ∑∫

z∈Rd∖Bδ,Λ
χ̂β(z)∫

K

a
(`)
ν (y,z)dy.
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Now choose R > 0 large enough such that K ⊂ BR, dist(K,∂BR) > δ
and such that the estimates from Lemma 3.11 are valid. Furthermore,
it shall hold that ∂BR ∩Λ = ∅. We subsequently divide the auxiliary
function into two parts,

A(`)
Λ,ν,β(y) = ∑∫

BR∖Bδ,Λ
χ̂βa

(`)
ν (y, ⋅ ) + ∑∫

Rd∖BR,Λ
χ̂βa

(`)
ν (y, ⋅ ), y ∈K.

The sum-integral over the unbounded domain is then expanded by
means of the EM expansion in Corollary 2.26 of yet to be specified
order m ∈N0,

∑∫
Rd∖BR,Λ

χ̂βa
(`)
ν (y, ⋅ ) = − ∫

∂BR

⟨D(m)
Λ,0,z(χ̂βa

(`)
ν (y, ⋅ ))(z),nz⟩ dSz

+ ∫
Rd∖BR

B(m)
Λ (z)∆m+1(χ̂βa(`)ν (y, ⋅ ))(z)dz.

Due to dist(∂BR,Λ) > 0, the integrand in the surface integral is smooth
in a neighbourhood of ∂BR. From χ̂β → 1 as β → 0 in C∞(Rd), we
deduce that both the sum-integral over BR ∖Bδ as well as the surface
integral over ∂BR converge in L1(K) to the function

∑∫
BR∖Bδ,Λ

a
(`)
ν (y, ⋅ ) − ∫

∂BR

⟨D(m)
Λ,0,za

(`)
ν (y, ⋅ )(z),nz⟩ dSz,

which follows from the dominated convergence theorem. Now consider
the remainder

R(m)
β (y) = ∫

Rd∖BR

B(m)
Λ (z)∆m+1(χ̂βa(`)ν (y, ⋅ ))(z)dz, y ∈K.

The integral representation of the poly-Laplace operator in Proposi-
tion 3.7 yields

∆m+1(χ̂βa(`)ν (y, ⋅ ))

= pm+1,d

ωd

2(m+1)
∑
k=0

(2(m + 1)
k

) ∫
∂B1

⟨t,∇⟩2(m+1)−kχ̂β ⟨t,∇⟩ka(`)ν (y, ⋅ )dSt.

The uniform estimates from Lemma 2.15 for χ̂β and from Lemma 3.11
for a(`)ν show that

∣∆m+1(χ̂βa(`)ν (y, ⋅ ))(z)∣ ≤C
2(m+1)
∑
k=0

(2(m + 1)
k

)∣z∣−2(m+1)+k∣z∣2(`+1)−Re(ν)−k

=22(m+1)C ∣z∣2(`+1)−Re(ν)−2(m+1)
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for all z ∈ Rd ∖BR and where the constant C > 0 depends only on K,
m, ` and ν. By choosing m large enough such that

2(m + 1) > max {2(` + 1) −Re(ν) + d,2(` + 1)}

is fulfilled, we then guarantee that the bound for ∣∆m+1(χ̂βa(`)ν )∣ is
integrable on K × (Rd ∖ BR) and that B(m)

Λ is bounded by means of
Corollary 2.22. From the dominated convergence theorem then follows
that R(m)

β converges in L1(K) to the function

∫
Rd∖BR

B(m)
Λ (z)∆m+1

z a
(`)
ν (y,z)dz.

Hence, A(`)
Λ,ν does not depend on χ and is locally integrable on Rd ∖ {0}

as the L1
loc-limit of locally integrable functions.

�

The next proposition shows that the poly-Laplacian of the auxiliary
function, as a distribution, results in a sum-integral that includes the
β-regularised interaction. On Rd ∖Λ, this distribution can be identified
as a smooth function where the limit β → 0 converges compactly in all
derivatives.

Proposition 3.16 (Sum-integral property). Let β > 0. Then

∆`+1A(`)
Λ,ν,β = χ̂β

XΛ − V −1
Λ

∣ ⋅ ∣ν
as a distribution in D ′(Rd ∖ {0}). Furthermore,

lim
β→0

∆`+1AΛ,ν,β = −
V −1

Λ
∣ ⋅ ∣ν in C∞(Rd ∖Λ)

and
lim
β→0

⟨∆`+1A(`)
Λ,ν,β, ψ⟩ = ⟨

XΛ − V −1
Λ

∣ ⋅ ∣ν , ψ⟩ = ∑∫
Rd,Λ

ψ

∣ ⋅ ∣ν

for all ψ ∈ D(Rd ∖ {0}).
Proof. Let ψ ∈ D(Rd ∖ {0}. Then

⟨∆`+1A(`)
Λ,ν,β, ψ⟩ = ∑∫

z∈Rd∖Bδ,Λ
χ̂β(z)⟨∆`+1

ξ a
(`)
ν (ξ,z), ψ(ξ)⟩,

with ξ a placeholder with respect to which the action of the distribution
shall be applied. After inserting the definition of the symbol a(`)ν ,

a
(`)
ν (y,z) = 1

∣z∣ν (φ`(y − z) −
2`+1
∑
k=0

1
k!⟨−z,∇⟩k φ`(y)),



72 3. MULTIDIMENSIONAL SEM EXPANSION

we find from the defining property of the fundamental solution that

⟨∆`+1
ξ a

(`)
ν (ξ,z), ψ(ξ)⟩ = ψ(z)∣z∣ν ,

where we use that 0 /∈ suppψ. Then

⟨∆`+1A(`)
Λ,ν,β, ψ⟩ = ∑∫

z∈Rd∖Bδ,Λ
χ̂β(z)

ψ(z)
∣z∣ν = ∑∫

z∈Rd,Λ
χ̂β(z)

ψ(z)
∣z∣ν ,

as δ is chosen small enough such that ψ = 0 on Bδ. We then find by the
dominated convergence theorem that

(3.2) lim
β→0

⟨∆`+1A(`)
Λ,ν,β, ψ⟩ = ⟨

XΛ − V −1
Λ

∣ ⋅ ∣ν , ψ⟩.

From above representation, it is evident that the distribution ∆`+1A(`)
Λ,ν,β

can be identified as a smooth function on Rd ∖Λ, namely

∆`+1A(`)
Λ,ν,β = −χ̂β

V −1
Λ

∣ ⋅ ∣ν .

As χ̂β → 1 for β → 0 in C∞(Rd), see Lemma 2.14, the limit in (3.2)
does not only exist in a weak sense but also in C∞(Rd ∖Λ).

�

With Proposition 3.14, 3.15, and 3.16, we are now in the position
to prove the fundamental theorem of the SEM expansion.

Proof of Theorem 3.13. We know from Proposition 3.15 that
the auxiliary functions A(`)

Λ,ν,β, β > 0, converge for β → 0 in L1
loc(Rd ∖Λ),

and hence as distributions, to A(`)
Λ,ν . Proposition 3.16 then yields that

∆`+1A
(`)
Λ,ν,β can be identified as an element of C∞(Rd ∖Λ) for β > 0 that

converges in C∞(Rd ∖Λ) to the analytic function ∆`+1A
(`)
Λ,ν . Hence, by

virtue of elliptic regularity in the form of Theorem 2.5, A(`)
Λ,ν,β converges

in C∞(Rd ∖Λ) to A(`)
Λ,ν . In addition, Theorem 2.4 yields analyticity of

the limit function. Finally, A(`)
Λ,ν does not depend on δ or φ` as our

auxiliary functions are independent of this choice, see Proposition 3.14,
and it is independent of χ by Proposition 3.15.

�

The proof of the fundamental theorem of the SEM expansion im-
mediately yields the following central distributional property, on which
the new expansion is based.
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Corollary 3.17. Let Λ ∈ L(Rd), ` ∈ N0, and ν ∈ C. Then for
ψ ∈ D(Rd ∖ {0}), we have

⟨∆`+1A(`)
Λ,ν , ψ⟩ = ∑∫

Rd,Λ

ψ

∣ ⋅ ∣ν .

3. Singular Euler–Maclaurin expansion for exterior lattice
points

We now introduce the SEM differential operator whose coefficients
are determined by the Bernoulli-A functions and their derivatives.

Definition 3.18 (SEM operator). We define the `th order SEM
operator D(`)

Λ,ν,y as

D(`)
Λ,ν,y =

`

∑
k=0

(∇∆`−kA(`)
Λ,ν(y) −∆`−kA(`)

Λ,ν(y)∇)∆k.

The infinite order operator DΛ,ν,y is obtained by setting ` =∞ in above
definition.

After having introduced all necessary functions and operators, we
now present the multidimensional SEM expansion on bounded domains.

Theorem 3.19 (SEM expansion). Let Λ ∈ L(Rd), Ω ⊂ Rd a bounded
domain such that ∂Ω ∩Λ = ∅, and x ∈ Λ ∖Ω. For fx ∶ Ω̄→ C,

fx(y) =
g(y)

∣y −x∣ν ,

with ν ∈ C and g ∈ C2(`+1)(Ω̄), ` ∈N0, the sum-integral of fx over (Ω,Λ)
has the representation

∑∫
Ω,Λ

fx = ∫
∂Ω

⟨D(`)
Λ,ν,y−x g(y),ny⟩ dSy + ∫

Ω

A(`)
Λ,ν(y −x)∆`+1g(y)dy.

Proof. From the sum-integral property in Corollary 3.17 we find
with the representation formula for the parametrix in Lemma 2.24 that

∑∫
Ω,Λ

fx = ∫
∂Ω

(∂ny∆`A`(y −x) −∆`A`(y −x)∂ny)g(y)dSy

+ ∫
Ω

∆`A`(y −x)∆g(y)dy.

The theorem then follows after repeated application of Green’s second
theorem.

�
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Similar as for d = 1, the SEM differential operator acts only on the
sufficiently regular function g, while derivatives of the interaction are
avoided, restoring the convergence properties of the expansion. This is
explored in more detail in the numerics section in Chapter 4.4.

4. Singular Euler–Maclaurin expansion for interior lattice
points

We have investigated the case of a singularity outside of Ω in the
previous section. Now, we move on to the highly relevant case of a
singularity at a lattice point x inside the integration region. This
situation arises, among others, in the computation of singular long-
range interactions in atomic lattices in condensed matter systems. In
the following, we show that the multidimensional SEM expansion can
be extended to this case by introducing an additional local differential
operator. Even more importantly, this operator in general represents
the main contribution and remains relevant even in the limit of an
infinite system without boundaries. As the operator is local, it can be
easily implemented numerically, as soon as its coefficients are known.
We now formulate the SEM expansion for interior lattice points.

Theorem 3.20 (SEM expansion for interior lattice points). Assume
the conditions of Theorem 3.19, however with x ∈ Λ∩Ω. Let in addition
ε > 0 with ε < aΛ small enough such that B̄ε(x) ⊂ Ω. Then

∑∫
Ω∖Bε(x),Λ

fx ==D(`)
Λ,ν,εg(x) + S

(`)
Λ,νg(x) +R

(`)
Λ,ν,εg(x),

with the local SEM operator =D(`)
Λ,ν,ε,

=D(`)
Λ,ν,εg(x) =

`

∑
k=0

1
(2k)! lim

β→0
∑∫

z∈Rd∖B̄ε,Λ
χ̂β(z)

⟨z,∇⟩2k

∣z∣ν g(x),

a surface integral over derivatives of g of up to order 2` + 1,

S(`)
Λ,νg(x) = ∫

∂Ω

⟨D(`)
Λ,ν,y−x g(y),ny⟩ dSy,

and a remainder
R(`)

Λ,ν,εg(x) = ∑∫
z∈Rd∖B̄ε,Λ

χ̂β(z)∫
Ω

a
(`)
ν (y −x,z)∆`+1g(y)dy.

For the proof of above theorem, we need the following lemma, which
is a direct consequence of the representation formula for the poly-Laplace
operator in Lemma 3.5 and of the regularity of the associated Newton
potential discussed in Lemma 3.6.
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Lemma 3.21. Let ` ∈N0, x ∈ Rd, and g ∈ C2(`+1)(Bδ(x)) for δ > 0.
Then for every linear differential operator with constant coefficients P
of order smaller or equal 2` + 1, we have for ε < δ

Pg(x) = ∫
∂Bε

`

∑
m=0

(P∂ny∆`−mφ`(y) −P∆`−mφ`(y)∂ny)∆mg(y +x)dSy

+ ∫
Bε

Pφ`(y)∆`+1g(x + y)dy.

The volume term vanishes in the limit ε→ 0.

Proof of Theorem 3.20. As Ω is open and as x ∈ Ω, there
exists ε > 0 such that B̄ε(x) ∈ Ω. Now apply the SEM expansion
in Theorem 3.19 to the sum-integral of fx over the set (Ω ∖Bε(x),Λ).
We then treat the surface integral over the inner and the outer surface
separately and subsequently group the terms that depend on ε on the
right hand side. This yields

∑∫
Ω∖Bε(x),Λ

fx = ∫
∂Ω

⟨D(`)
Λ,ν,y−x g(y),ny⟩ dSy − Sε +R(1)

ε ,

with the surface integral over the ε-sphere

Sε = ∫
∂Bε(x)

⟨D(`)
Λ,ν,y−x g(y),ny⟩ dSy,

and with the remainder
R(1)
ε = ∫

Ω∖Bε(x)
A(`)

Λ,ν(y −x)∆`+1g(y)dy.

After inserting the SEM operator in Sε,

Sε = ∫
∂Bε

`

∑
m=0

(∂ny∆`−m
y A(`)

Λ,ν(y) −∆`−m
y A(`)

Λ,ν(y)∂ny)∆mg(x + y)dSy,

it becomes clear that the surface integral crucially depends on the
behaviour of A(`)

Λ,ν around the origin. For 0 < δ < min{ε, aΛ}, have

A(`)
Λ,ν(y) = lim

β→0
∑∫

z∈Rd∖Bδ,Λ
χ̂β(z)a(`)ν (y,z).

Note that the symbol a(`)ν (y, ⋅) is locally integrable on Rd ∖ {0}, and
that A(`)

Λ,ν does not depend on the particular choice for δ as long as
δ < min{∣y∣, aΛ}. We are hence able to replace Rd ∖Bδ by Rd ∖ B̄ε in
above sum-integral if ∣y∣ < aΛ.
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We now recall from the fundamental Theorem 3.13 that the limit
β → 0 converges in C∞(Rd ∖Λ). Thus, it is possible to interchange the
surface integral in the term Sε together with all derivatives with the
limit in β and with the sum-integral. We now insert the definition of
the Bernoulli symbol,

a
(`)
ν (y,z) = 1

∣z∣ν (φ`(y −x − z) −
2`+1
∑
k=0

1
k!⟨−z,∇⟩kφ`(y −x)),

where the odd derivatives cancel in the sum-integral due to symmetry.
With these considerations, the term Sε takes the form

Sε = − lim
β→0

∑∫
z∈Rd∖B̄ε,Λ

χ̂β(z)
∣z∣ν (T (1)

ε,z + T (2)
ε,z ),

with

T
(1)
ε,z =

`

∑
k=0

1
(2k)! ∫

∂Bε

`

∑
m=0

(⟨∇,z⟩2k∂ny∆`−mφ`(y) − ⟨∇,z⟩2k∆`−m
y φ`(y)∂ny)

×∆mg(y +x)dSy,
and where

T
(2)
ε,z = −∫

∂Bε

`

∑
m=0

(∂ny∆`−mφ`(y−z)−∆`−m
y φ`(y−z)∂ny)∆mg(y+x)dSy.

First consider T (1)
ε,z . By Lemma 3.21, it can be rewritten as

T
(1)
ε,z =

`

∑
k=0

1
(2k)!

⎛
⎝
⟨∇,z⟩2kg(x) − ∫

Bε

⟨∇,z⟩2kφ`(y)∆`+1g(y +x)dy
⎞
⎠
.

Then for T (2)
ε,z , a simple application of Green’s second identity yields

T
(2)
ε,z = ∫

Bε

φ`(y − z)∆`+1g(y +x)dy, ∣z∣ > ε.

After inserting both terms, we find for the surface integral Sε
Sε = −(=D(`)

Λ,ν,εg(x) +R
(2)
ε ),

where

R(2)
ε = lim

β→0
∑∫

z∈Rd∖B̄ε,Λ
χ̂β(z) ∫

Bε(x)
a
(`)
ν (y −x,z)∆`+1g(y)dy.

Proposition 3.15 now implies that the limit β → 0 in the Bernoulli-A
functions converges in L1

loc(Rd ∖ {0}). Hence, we can interchange the
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volume integral in R(1)
ε with the limit β → 0. We finally merge R(1)

ε

and R(2)
ε into a single remainder term

R(`)
Λ,ν,εg(x) =R

(1)
ε +R(2)

ε = ∑∫
z∈Rd∖B̄ε,Λ

χ̂β(z)∫
Ω

a
(`)
ν (y −x,z)∆`+1g(y)dy.

We have thus reached the desired form for the ε-dependent terms,
−Sε +R(1)

ε ==D(`)
Λ,ν,εg(x) +R

(`)
Λ,ν,εg(x).

�





CHAPTER 4

Hypersingular Euler–Maclaurin expansion and
connection to analytic number theory

1. Introduction

In the derivation of the SEM expansion for interior lattice points, we
have been able to include singularities inside the integration region Ω by
introducing a free parameter ε. Often, by removing such parameters, we
are able to remove unnecessary complexity, thereby providing a clearer
and more unconstrained view on the inner workings of the theory. In
this particular case, the removal of ε is going to reveal a deep connection
of our method to analytic number theory. This connection proves very
useful in the following, as it provides us with efficient methods for the
evaluation of the arising operator coefficients.

2. Derivation of the hypersingular Euler–Maclaurin
expansion

We now set out to eliminate the parameter ε by performing the
limit ε → 0. However, the interaction is not always locally integrable
and hence divergent integrals may arise if ε is taken to zero. For this
reason, we now give meaning to such divergent integrals by means of
the Hadamard finite-part integral, see e.g. [38, Chapter 5].

Definition 4.1 (Hadamard finite-part integral). Let Ω ⊂ Rd be a
bounded domain and x ∈ Ω. Consider a function fx ∶ Ω̄ ∖ {x} → C of
the form

fx(y) =
g(y)

∣x − y∣ν
with ν ∈ C and g ∈ D(Ω). The Hadamard finite-part integral is then
defined as the action of the homogeneous distribution ∣ ⋅ ∣−ν on the
shifted function g,

=∫
Ω

fx(y)dy = ⟨∣ ⋅ ∣−ν , g(x + ⋅)⟩.

This chapter is based on [7, Sections 5–7].

79
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If ν ≠ d+ k, k ∈N0, the Hadamard integral can be uniquely extended to
functions g ∈ C`(Ω̄), ` ∈N0, with ` ≥ `ν,d,

`ν,d = ⌊Re(ν) − d⌋,
and ⌊t⌋ the nearest integer smaller than or equal to t. The extension
reads

=∫
Ω

fx(y)dy = lim
ε→0

⎛
⎝ ∫

Ω∖Bε(x)
fx(y)dy − (Hν,εg)(x)

⎞
⎠

with

Hν,ε =
`ν,d

∑
k=0

1
k! ∫
Rd∖Bε

⟨y,∇⟩k
∣y∣ν dy.

If on the other hand ν = d+k, k ∈N0, the Hadamard integral is uniquely
defined up to derivatives of g of order ν − d. One possible choice is

Hν,ε =
`ν,d−1

∑
k=0

1
k! ∫
Rd∖Bε

⟨y,∇⟩k
∣y∣ν dy + 1

`ν,d! ∫
B1∖Bε

⟨y,∇⟩`ν,d
∣y∣ν dy.

Due to spherical symmetry of ∣ ⋅ ∣−ν , the non-unique term vanishes if ν is
odd. Other choices for the Hadamard integral are obtained by replacing
the domain B1 above by a bounded and open neighbourhood of 0.

Integrals that involve the Hadamard regularisation are also referred
to as hypersingular integrals. As the expansion that we are going to
derive in the following relies on the Hadamard finite-part integral, we
shall call it the hypersingular Euler–Maclaurin expansion (HSEM).

One important strategy that we have used in the derivation of the
SEM expansion is to consider regularised differences between sums
and integrals. This procedure gives meaning to otherwise divergent
sums, even if the summand function increases at a polynomial rate at
infinity and hence is neither integrable nor summable. Moving on from
divergences that arise due to an unfavourable asymptotic behaviour at
infinity, we consider divergences that occur due to a local non-integrable
algebraic singularity. We can extend the sum-integral in a very natural
way to summand functions of this sort by excluding the divergent
addend in the sum and by making use of the Hadamard regularisation
in the integral.

Definition 4.2 (Hadamard sum-integral). Let Λ ∈ L(Rd), x ∈ Λ,
and Ω ⊂ Rd a bounded domain such that ∂Ω∩Λ = ∅. Let fx ∶ Ω→ C be
of the form

fx(y) =
g(y)

∣x − y∣ν ,
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with ν ∈ C and g ∈ C`(Ω), ` ∈N0 such that ` ≥ `ν,d. We then define the
Hadamard sum-integral as

∑=∫
Ω,Λ

fx = ∑′

y∈Ω∩Λ
fx(y) −

1
VΛ

=∫
Ω

fx(y)dy,

where the primed sum excludes y = x.

The local HSEM differential operator is then defined in terms of
regularised Hadamard sum-integrals.

Definition 4.3 (Hypersingular Euler–Maclaurin operator). Let
Λ ∈ L(Rd), ν ∈ C, and ` ∈ N0. We define the `th order hypersingular
Euler–Maclaurin (HSEM) operator =D(`)

Λ,ν as

=D(`)
Λ,ν =

`

∑
k=0

1
(2k)! lim

β→0
∑=∫

z∈Rd,Λ
χ̂β(z)

⟨z,∇⟩2k

∣z∣ν .

The infinite order operator =DΛ,ν is obtained by setting ` = ∞ in the
above definition.

Theorem 4.4 (Hypersingular Euler–Maclaurin expansion). Con-
sider Λ ∈ L(Rd) and Ω ⊂ Rd a bounded domain such that ∂Ω ∩Λ = ∅.
For x ∈ Λ ∩Ω, let fx ∶ Ω̄→ C be of the form

fx(y) =
g(y)

∣x − y∣ν ,

with ν ∈ C and g ∈ C2m+3(Ω̄), m ∈N0, such that

2(m + 1) ≥ `ν,d = ⌊Re(ν) − d⌋.
Then for ` ∈N0 with ` ≤m,

∑=∫
Ω,Λ

fx ==D(`)
Λ,νg(x) + S

(`)
Λ,νg(x) +R

(`)
Λ,νg(x).

The expansion of the sum-integral consists of the local HSEM operator
=D(`)

Λ,ν, of a surface integral over derivatives of g of up to order 2` + 1,

S(`)
Λ,νg(x) = ∫

∂Ω

⟨D(`)
Λ,ν,y−x g(y),ny⟩ dSy,

and of the remainder

R(`)
Λ,νg(x) = lim

β→0
∑=∫

z∈Rd,Λ
χ̂β(z)∫

Ω

a
(`)
ν (y −x,z)∆`+1g(y)dy.
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Proof. We begin with the SEM for interior lattice points in Theo-
rem 3.20,

∑∫
Ω∖Bε(x),Λ

fx ==D(`)
Λ,ν,εg(x) +R

(`)
Λ,ν,εg(x) + S

(`)
Λ,νg(x),

and add the Hadamard regularisation per lattice covolume to both
sides,

Hε,νg(x)
VΛ

= 1
VΛ

`ν,d

∑
k=0

1
k! ∫
Rd∖Bε

⟨y,∇⟩k
∣y∣ν g(x)dy.

If the case 2k = ν is encountered, then replace Rd ∖Bε by B1 ∖Bε in
the corresponding integral. We now show that the HSEM expansion
is found as we take the limit ε → 0 on both sides of above equation.
The left hand side readily follows from the definition of the Hadamard
integral,

lim
ε→0

⎛
⎝ ∑∫

Ω∖Bε(x),Λ
fx +

Hε,νg(x)
VΛ

⎞
⎠
= ∑=∫

Ω,Λ

fx.

On the right hand side, we first separate the Hadamard regularisation
into two contributions,

Hε,νg(x) = H(1)
ε,ν g(x) +H(2)

ε,ν g(x).

Here H(1)
ε,ν g(x) consists of the directional derivatives of g of order smaller

or equal 2` + 1 and H(2)
ε,ν g(x) includes any remaining higher order

derivatives. Note that in the following odd derivatives cancel due to
due to the symmetry of the lattice and the interaction. We prove that
the first contribution regularises the HSEM operator while the second
regularisation is absorbed in the remainder integral. We compute the
first limit and obtain

lim
ε→0

(=D(`)
Λ,ν,ε +

H(1)
ε,ν g(x)
VΛ

)

= lim
ε→0

⎛
⎝

`

∑
k=0

1
(2k)! lim

β→0
∑∫

z∈Rd∖B̄ε,Λ
χ̂β(z)

⟨∇,z⟩2k

∣z∣ν g(x) + H
(1)
ε,ν g(x)
VΛ

⎞
⎠

=
`

∑
k=0

1
(2k)! lim

β→0
∑=∫

z∈Rd,Λ
χ̂β(z)

⟨∇,z⟩2k

∣z∣ν g(x)

==D(`)
Λ,νg(x),
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where we have used that χ̂β → 1 for β → 0 in C∞(Rd). Thus derivatives
of χ̂β do not contribute in the Hadamard integral. Concerning the
second limit, we first write the remainder integral as

R(`)
Λ,ν,ε(x) = lim

β→0
∑∫

z∈Rd∖B̄ε,Λ

χ̂β(z)
∣z∣ν hx(z),

where we have defined the auxiliary function

hx(z) = ∫
Ω

(φ`(y −x − z) −
2`+1
∑
k=0

1
k!⟨−z,∇⟩kφ`(y −x))∆`+1g(y)dy.

We show that the appropriate Hadamard regularisation for the sum-
integral in the remainder coincides with the second Hadamard regular-
isation above, namely

Hε,νhx(0) = H(2)
ε,ν g(x).

We first have that

⟨z,∇⟩khz(0) = 0, k = 0, . . . ,2` + 1,

as a truncated Taylor expansion of order 2` + 1 has been subtracted
from the shifted fundamental solution. These orders hence need no
regularisation. Then by the integral representation of the poly-Laplace
operator in Proposition 3.7, we transform the directional derivatives in
the second Hadamard regularisation into powers of the Laplace operator,

H(2)
ε,ν g(x) =

⌊`ν,d/2⌋
∑
k=`+1

1
(2k)! ∫

Rd∖Bε

∣y∣2k−ν
pk,d

dy ∆kg(x),

where we again replace Rd∖Bε by B1∖Bε if the case 2k = ν arises. Now
as k ≥ ` + 1 we find by the representation formula for the poly-Laplace
operator in Lemma 3.5 that

∆khx(0)

= ∆k
z ∫

Ω

(φ`(y −x − z) −
2`+1
∑
k=0

1
k!⟨−z,∇⟩kφ`(y −x))∆`+1g(y)dy∣

z=0

= ∆k−(`+1)
z ∆`+1

z ∫
Ω

φ`(y −x − z)∆`+1g(y)dy∣
z=0

= ∆k−(`+1)∆`+1g(x + z)∣
z=0

= ∆kg(x),
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as g ∈ C2m+3, with 2m + 3 > 2(k + 1). The evaluation of the limit ε→ 0
then follows as

lim
ε→0

(R(`)
Λ,ν,εg(x) +

H(2)
ν,ε g(x)
VΛ

)

= lim
ε→0

⎛
⎝

lim
β→0

∑∫
z∈Rd∖B̄ε,Λ

χ̂β(z)
∣z∣ν hx(z) +

Hν,εhx(0)
VΛ

⎞
⎠

= lim
β→0

∑=∫
z∈Rd,Λ

χ̂β(z)
∣z∣ν hx(z),

and we have recovered all terms in the HSEM expansion.
�

3. Connection to analytic number theory

In the previous section, we have established the HSEM expansion,
whose main contribution is the local HSEM operator. For Ω = Rd, this
local operator is the only contribution in the expansion. However, the
coefficients of this operator are defined in terms of regularised Hadamard
sum-integrals, whose numerical computation is challenging in higher
dimensions. This final problem, which stands in the way of an efficient
computation of singular sums by means of Hadamard integrals and
local differential operators, is overcome in this section. We show that
our method exhibits a deep connection to analytic number theory. It
is this connection that provides us with an efficient method for the
computation of the HSEM operator coefficients.

We first present an alternative representation of the HSEM operator
=DΛ,ν .

Theorem 4.5. For Λ ∈ L(Rd) and ν ∈ C, we set Z(0)
Λ∗,ν ∶ Rd∖Λ∗ → C,

Z(0)
Λ∗,ν(y) = lim

β→0
∑=∫

z∈Rd,Λ
χ̂β(z)

e−2πi ⟨z,y⟩

∣z∣ν ,

where the function depends on the choice of the Hadamard regularisation
in case that ν = d + 2k, k ∈ N0. For all choices, Z(0)

Λ∗,ν can be extended
to an analytic function on Rd ∖Λ∗ ∪ {0} and the infinite order HSEM
operator admits the representation

=DΛ,ν = Z(0)
Λ∗,ν( −

∇
2πi) = lim

β→0
∑=∫

z∈Rd,Λ
χ̂β(z)

e⟨z,∇⟩

∣z∣ν ,
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in the sense of a Taylor expansion of the function Z(0)
Λ∗,ν around zero.

The finite order operators are found by truncating the Taylor expansion
at the corresponding order.

Proof. We conduct the proof in close analogy to the one of Theo-
rem 2.16. First, we show well-definedness of Z(0)

Λ∗,ν as a distribution. The
sum is investigated in the aforementioned proof, hence only a discussion
of the Hadamard integral is required. Let β > 0 and define the auxiliary
distribution uβ ∈ D ′(Rd) via

⟨uβ, ψ⟩ = ∫
Rd

ψ(y)
⎛
⎜
⎝
=∫
Rd

χ̂β(z)
e−2πi⟨z,y⟩

∣z∣ν dz
⎞
⎟
⎠
dy, ψ ∈ D(Rd).

By superpolynomial decay of the smooth cutoff function χ̂β, we can
exchange the Hadamard integral with the integration over Rd. This
results in

⟨uβ, ψ⟩ = =∫
Rd

χ̂β(z)
ψ̂(z)
∣z∣ν dz.

Now note that the Hadamard integral defines an extension of the
function sν to a tempered distribution s̄ν ∈ S′(Rd). Thus, we can write
the action of uβ in the form

⟨uβ, ψ⟩ = ⟨χ̂β s̄ν , ψ̂⟩.
Due to χ̂β → 1 as β → 0 in C∞(Rd), we find by continuity of the
multiplication of a distribution with a smooth function that

lim
β→0

⟨uβ, ψ⟩ = ⟨s̄ν , ψ̂⟩, ψ ∈ D(Rd).

Thus Z(0)
Λ∗,ν defines a distribution via

⟨Z(0)
Λ∗,ν , ψ⟩ = ∑

′

z∈Λ

ψ̂(z)
∣z∣ν − 1

VΛ
⟨s̄ν , ψ̂⟩, ψ ∈ D(Rd).

In the next step, we show that Z(0)
Λ∗,ν can even be identified as an

analytic function on Rd ∖ Λ∗ ∪ {0}. To this end, we first impose the
familiar restriction Re(ν) < −(d + 1). Poisson summation then yields

∑=∫
z∈Rd,Λ

χ̂β(z)
e−2πi ⟨z,y⟩

∣z∣ν = VΛ∗∑
′

z∈Λ∗
χβ ∗ ŝν(z + y),

where the Hadamard integral coincides with the integral for this choice
of ν. This type of series has been investigated by us in the proof of
Theorem 2.16. Here the only important difference is that the origin is
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excluded in above sum. But as Lemma 2.18 also holds for all subsets of
Λ∗, in particular for Λ∗ ∖ {0}, the rest of the proof follows in analogy
to that of Theorem 2.16. We then recover the operator coefficients of
the HSEM operator =DΛ,ν by a Taylor expansion of Z(0)

Λ∗,ν at 0.
�

In the following theorem, we show that the regularised Hadamard
sum-integral generates meromorphic continuations of multidimensional
lattice sums. The theorem forms the basis for the connection of our
method to analytic number theory and will provide us with efficient
methods for the computation of the HSEM operator coefficients. It
however also represents a relevant result on its own.

Theorem 4.6 (Meromorphic continuation of Dirichlet series). Let
P ∶ Rd → C be a polynomial of order m ∈ N0. Then for ν ∈ C such
that Re(ν) > d +m, the regularised Hadamard sum-integral equals its
associated Dirichlet series,

lim
β→0

∑=∫
z∈Rd,Λ

χ̂β(z)
P (z)
∣z∣ν = ∑′

z∈Λ

P (z)
∣z∣ν ,

where the primed sum excludes z = 0. Moreover, the left hand side forms,
as a function of ν, the meromorphic continuation of the Dirichlet series
to ν ∈ C, whose simple poles lie at ν = d + 2k, k ∈N0, with residues

ωd
VΛ

(1/2)k
(2k)!(d/2)k

∆kP (0).

The proof of this theorem requires two lemmas that investigate
holomorphy of the sum-integral and of the Hadamard integral in ν.

Lemma 4.7. Let P ∶ Rd → C be a polynomial and let δ > 0 with
δ < aΛ. Then

lim
β→0

∑∫
z∈Rd∖Bδ,Λ

χ̂β(z)
P (z)
∣z∣ν

defines an entire function in ν.

Proof. In analogy to the proof of Proposition 3.15, we use the EM
expansion on unbounded domains of sufficiently high order and express
the regularised sum-integral in terms of a surface integral and a volume
integral that includes derivatives of ∣ ⋅ ∣−νP . It then follows that all
integrands as well as the resulting integrals are entire functions in ν.

�
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Lemma 4.8. Let P ∶ Rd → C be a polynomial of degree m ∈N0 and
let δ > 0. Then for ν ∈ C, ν ≠ d + 2k, k ∈N0, it holds

=∫
Bδ

P (z)
∣z∣ν dz = −

⌊m/2⌋
∑
k=0

ωd
(1/2)k

(2k)!(d/2)k
δ−ν+(2k+d)

ν − (2k + d)∆kP (0),

Hence the left hand side defines a meromorphic function in ν with simple
poles at ν = d + 2k, k ∈N0, and associated residues

−ωd
(1/2)k

(2k)!(d/2)k
∆kP (0).

Proof. The polynomial P is equal to its Taylor series of order m
around the origin,

P (z) =
m

∑
k=0

1
k!⟨z,∇⟩kP (0).

We insert this representation of the polynomial into the Hadamard
integral and find that

=∫
Bδ

P (z)
∣z∣ν dz

= lim
ε→0

⎛
⎝ ∫
Bδ∖Bε

m

∑
k=0

1
k!

⟨z,∇⟩k
∣z∣ν P (0)dz − ∫

Rd∖Bε

`ν,d

∑
k=0

1
k!

⟨z,∇⟩k
∣z∣ν P (0)dz

⎞
⎠

= −
`ν,d

∑
k=0

1
k! ∫
Rd∖Bδ

⟨z,∇⟩k
∣z∣ν P (0)dz +

m

∑
k=max{0,`ν,d+1}

1
k! ∫

Bδ

⟨z,∇⟩k
∣z∣ν P (0)dz,

where `ν,d = ⌊Re(ν)−d⌋. The integral representation of the poly-Laplace
operator in Proposition 3.7 then yields

=∫
Bδ

P (z)
∣z∣ν dz = −

⌊`ν,d/2⌋
∑
k=0

1
(2k)! ∫

Rd∖Bδ

∣z∣2k−ν
pk,d

dz∆kP (0)

+
⌊m/2⌋
∑

k=max{0,⌊(`ν,d+1)/2⌋}

1
(2k)! ∫

Bδ

∣z∣2k−ν
pk,d

dz∆kP (0),

where odd derivatives cancel due to the rotational symmetry of Rd ∖Bδ

and Bδ. We then evaluate the integrals on the right hand side and
obtain

=∫
Bδ

P (z)
∣z∣ν dz = −

⌊m/2⌋
∑
k=0

1
(2k)!

ωd
pk,d

δ−ν+(2k+d)

ν − (2k + d)∆kP (0).
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The residues follow after inserting the definition of the prefactor pk,d
from Proposition 3.7.

�

Equipped with the previous two lemmas, we now move on to the
proof of Theorem 4.6.

Proof of Theorem 4.6. In the first step, we show that the reg-
ularised Hadamard sum-integral is a meromorphic function in ν. To
this end, define the auxiliary function Pβ = χ̂βP . For δ > 0 with δ < aΛ,
we then separate the sum-integral into two parts,

lim
β→0

∑=∫
z∈Rd,Λ

Pβ(z)
∣z∣ν = lim

β→0
∑∫

z∈Rd∖Bδ,Λ

Pβ(z)
∣z∣ν − 1

VΛ
lim
β→0

=∫
Bδ

Pβ(z)
∣z∣ν dz

= lim
β→0

∑∫
z∈Rd∖Bδ,Λ

Pβ(z)
∣z∣ν − 1

VΛ
=∫
Bδ

P (z)
∣z∣ν dz,

where the second equality follows from the locality of the Hadamard
integral together with χ̂β → 1 as β → 0 in C∞(Rd). We have shown
in Lemma 4.7 that the first term on the right hand side is an entire
function in ν. We furthermore know from Lemma 4.8 that the second
term is a meromorphic function in ν whose simple poles lie at ν = d+2k,
k ∈N0. Hence also

lim
β→0

∑=∫
z∈Rd,Λ

Pβ(z)
∣z∣ν

defines a meromorphic function in ν whose poles and associated residues
readily follow from Lemma 4.8.

In the second step, we show that the regularised Hadamard sum-
integral equals its associated Dirichlet series for Re(ν) > d +m. For
these values of ν, the sum-integral converges absolutely without the
β-regularisation, and we have that

lim
β→0

∑=∫
z∈Rd,Λ

Pβ(z)
∣z∣ν = ∑′

z∈Λ

P (z)
∣z∣ν − 1

VΛ
=∫
Rd

P (z)
∣z∣ν dz.

Due to `ν,d >m, the Hadamard integral equals zero,

=∫
Rd

P (z)
∣z∣ν dz = lim

ε→0 ∫
Rd∖Bε

⎛
⎝
P (z)
∣z∣ν −

`ν,d

∑
k=0

1
k!

⟨z,∇⟩k
∣z∣ν P (0)

⎞
⎠

dz = 0,

thus showing that the sum-integral and the associated Dirichlet series
coincide.

�
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The HSEM operator coefficients are related to the Epstein zeta func-
tion, introduced by Epstein in [19, 20], which provides a generalisation
of the Riemann zeta function to higher dimensions. This function is a
well-known tool in analytic number theory [16].

Definition 4.9 (Epstein zeta function). For x,y ∈ Rd, A ∈ Rd×d

symmetric positive definite and ν ∈ C with Re(ν) > d, the Epstein zeta
function Z is defined by the Dirichlet series

Z ∣x
y
∣ (A;ν) = ∑′

z∈Zd

e−2πi⟨z,y⟩

∣z +x∣Aν
,

with
∣z∣A =

√
z⊺Az,

and where the primed sum excludes z = −x. The Epstein zeta function
can be analytically continued to a holomorphic function in ν if not both
x ∈ Zd and y ∈ Zd. If on the other hand x ∈ Zd and y ∈ Zd, then it can
be continued to an meromorphic function in ν with a simple pole at
ν = d. We furthermore define the simple Epstein zeta function Z0 such
that

Z0(A;ν) = Z ∣00∣ (A;ν).

The Epstein zeta function has been used by Emersleben [17, 18],
a PhD student of Max Born, as a tool in the precise computation of
the electrostatic potential of ionic lattices. There exist series represen-
tations of the Epstein zeta function that converge exponentially fast,
the most relevant example being the Chowla-Selberg formula, see [16]
and references therein. With these representations, we can efficiently
evaluate Epstein zeta in any number of space dimensions.

The following example uses the formula for meromorphic continu-
ations of Dirichlet series from Theorem 4.6 and provides alternative
globally convergent representations of the Epstein and Riemann zeta
functions.

Example 4.10. The Hadamard sum-integral allows us to write the
simple Epstein zeta function via

lim
β→0

∑=∫
Rd,Λ

χ̂β
∣ ⋅ ∣ν = Z0(M⊺

ΛMΛ;ν),

which is holomorphic for all ν ∈ C∖{d} with a simple pole at ν = d with
residue

ωd
VΛ

= ωd√
det(M⊺

ΛMΛ)
.
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In the special case d = 1 and Λ = Z, we recover the usual Riemann zeta
function ζ,

lim
β→0

∑=∫
R,Z

χ̂β
∣ ⋅ ∣ν = 2ζ(ν).

Vice versa, we can represent any Epstein zeta function Z0 by a Hadamard
sum-integral. Let A ∈ Rd×d symmetric and positive definite. Then the
matrix A admits the unique Cholesky factorisation A = L⊺L where
L ∈ Rd×d is a regular lower triangular matrix. After setting ΛL = L⊺Zd,
we obtain

Z0(A;ν) = Z0(L⊺L;ν) = lim
β→0

∑=∫
Rd,ΛL

χ̂β
∣ ⋅ ∣ν

for ν ∈ C ∖ {d}.
If we prefer to avoid the use of Hadamard integrals in numerical

applications, we can use the SEM for interior lattice points instead of
the HSEM. The next corollary then shows that the required local SEM
operator =DΛ,ν,ε can be deduced from the HSEM operator =DΛ,ν .

Corollary 4.11. Let ` ∈ N0, ν ∈ C such that ν ≠ d + 2k, k ∈ N0,
and ε > 0 with ε < aΛ. Then

=DΛ,ν,ε ==DΛ,ν −
ωd
VΛ

`

∑
k=0

(1/2)k
(2k)!(d/2)k

ε−ν+(2k+d)

ν − (2k + d)∆k.

Proof. The corollary readily follows from Theorem 4.6 together
with the representation of the Hadamard integral from Lemma 4.8.

�

We have seen that the regularised Hadamard sum-integral generates
meromorphic continuations of multidimensional lattice sums. This result
provides a fruitful connection of our method to analytic number theory
and gives us access to its vast range of tools, see [4] and references
therein. We use these tools in the following in order to efficiently
evaluate the HSEM operator coefficients. Hence, we overcome the last
challenge in the theory of the HSEM expansion, making it applicable
as a numerical method. In the next section, we give a short overview
on how to compute the coefficients of the HSEM operator in practice
and then move on to a demonstration of the numerical performance of
the expansion.

4. Numerical application

4.1. Model description. In this section, we are going to imple-
ment the HSEM for a prototypical multidimensional sum that appears
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in a wide range of physically relevant systems and are going to show
that the sum is reliably reproduces by the method. We approximate

∑′

y∈Z2
fx(y)

with x ∈ Z2 and

fx(y) =
g(y)

∣y −x∣ν .

where ν ∈ C. As the interpolating function g, we choose a Gaussian
with width λ > 0,

(4.1) g(y) = e−∣y∣2/λ2
.

Sums of this kind can arise in different areas of condensed matter
and quantum physics. They appear in the computation of forces in
crystals with long-range interactions, see [24] for a review on long-
range interacting nanoscale systems. Here the interpolating function g
describes the displacement of particles from their equilibrium positions.
They also appear in spin lattices, where the interpolating function
describes the spin orientation. The fast evaluation of lattice sums then
provides the basis for a simulation of spin waves, so called magnons,
which can potentially be used as information carriers in spintronics
devices [26]. Finally, the above sum appears in the simulation of the
discrete nonlinear Schrödinger equation with long-range interactions
[35], which models, among others, charge transport in DNA strings and,
in higher dimensions, light propagation in nonlinear media. Here the
interpolating function can be identified as the wave function.

The choice for Λ = Z2 was made in order to allow for an implementa-
tion that can easily be verified by the reader. A reference implementation
of the HSEM expansion in Mathematica is provided online1, which is
able to reproduce all results in this section. The method can readily
be applied to higher dimensional systems after the technical task of
implementing the exponentially convergent series representations for
the Epstein zeta function from [16] and the resulting HSEM operator
coefficients for the lattice under consideration.

4.2. Efficient computation of HSEM operator coefficients.
We now discuss how the HSEM operator coefficients are computed for
a particular multidimensional lattice Λ. The most general approach
consists in implementing the function Z(0)

Λ∗,ν from Proposition 4.5. The

1https://github.com/andreasbuchheit/hsem

https://github.com/andreasbuchheit/hsem
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HSEM operator coefficients are then computed from its Taylor series at
the origin,

=DΛ,ν = Z(0)
Λ∗,ν( −

∇
2πi) =

∞
∑
k=0

1
(2k)! lim

β→0
∑=∫

z∈Rd,Λ
χ̂β(z)

⟨z,∇⟩k
∣z∣ν ,

using the summation formulas in [16] as well as their derivatives.
The meromorphic continuation theorem 4.6 now shows that if the

regularised Hadamard sum-integral converges without regularisation, it
is equal to its associated lattice sum,

lim
β→0

∑=∫
z∈Rd,Λ

χ̂β(z)
⟨z,∇⟩k
∣z∣ν = ∑′

z∈Λ

⟨z,∇⟩k
∣z∣ν .

If, on the other hand, the regularisation is necessary, then the sum-
integral generates the meromorphic continuation in ν. Of particular
importance is the case k = 0, which yields the zero order HSEM operator.
In many applications, this already forms the dominant contribution and
leads to a reliable approximation to the sum. The zero order coefficient
is given by a simple Epstein zeta function,

lim
β→0

∑=∫
Rd,Λ

χ̂β
∣ ⋅ ∣ν = Z0(M⊺

ΛMΛ;ν),

where Λ =MΛZd. This function can be efficiently computed numerically
in any number of space dimensions, see [16], and there exists analytical
formulas for it in some dimensions, see e.g. [51].

4.3. Results and discussion. For x ∈ Λ, we approximate the sum
of fx over Z2 ∖ {x} by means of the HSEM expansion, which results in
the HSEM operator of order ` plus the associated Hadamard integral,

∑′

y∈Z2
fx(y) ≈=D(`)

Λ,νg(x) + =∫
Rd

g(y)
∣x − y∣ν dy.

In the following, we analyse the error for different widths λ of the
interpolating function and show numerically that the error scaling of the
multidimensional EM expansion as found in Chapter 2 is recovered. The
implementation of the HSEM operator in two dimensions is discussed
in detail in Appendix 1. For details on the evaluation of the Hadamard
integral, see Appendix 2.

When approximating the sum by the HSEM expansion as above,
an important feature of the method becomes apparent. Whereas the
approximate evaluation of the sum on the left hand side requires the
computation of a sum with a large number of addends N and with a
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Figure 1. Absolute error of HSEM expansion in the maximum
norm for an interaction exponent ν = 2.001 and an interpolating
function g as in (4.1) as a function of the scaling parameter λ for
different orders ` of the expansion.

runtime that increases linearly with the number of terms, the evaluation
of the right hand side is essentially independent of N and only depends
on the complexity of the interpolating function. The HSEM operator is
a local differential operator with constant coefficients that only depend
on the lattice and on the interaction exponent. Hence, its action on g
can be efficiently computed. The Hadamard integral over the whole
space can in some cases be computed analytically. If this is not possible,
we can make use of the convolution structure of the integral and of the
fact that in the case of a band-limited interpolating function, quadrature
rules converge exponentially fast in the number of quadrature nodes.

We choose ν = 2.001 as the interaction exponent. Here ν = 2
corresponds to the inverse square interaction, which appears in different
models in quantum mechanics, see Ref. [29] and references therein.
The case ν ≈ d constitutes the most numerically challenging situation,
as both short and long-range contributions remain relevant. None of
the two can be neglected, hence standard continuum limits do not
apply. We show the maximum absolute error at all lattices points in
Fig. 1 for different expansion orders ` as a function of the width λ
of the interpolating function. The same error scaling is observed for
the interaction exponent ν = 1, corresponding to the three dimensional
Coulomb on a two-dimensional manifold, and the dipole interaction
with ν = 3. The corresponding plots are provided online2. The error

2https://github.com/andreasbuchheit/hsem

https://github.com/andreasbuchheit/hsem
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graphs for other exponents ν can readily be computed by adapting the
parameter for ν in the code.

We observe that the maximum absolute error obeys the scaling law
E`(λ) ∼ λ−2(`+1).

The exact scaling coefficients as determined from a linear fit are shown
in Fig. 1. This scaling law coincides with the one that we predict for
the multidimensional EM expansion applied to a band-limited function
with sufficiently small bandwidth, as well as for the SEM expansion
in one dimension. Hence, the singularity of fx has been well-absorbed
in the HSEM operator coefficients, thus avoiding the divergence of the
remainder integral. For large widths λ → ∞, the zero order HSEM
contribution already yields a reliable approximation to the sum. In
contrast to that, approximations that only replace the sum by an
integral yield an error that does not scale with λ and are thus are thus
unreliable. For higher HSEM orders `, the EM scaling law for band-
limited functions is obeyed3 and already for ` = 6 and λ = 10, an absolute
error smaller than 10−20 is obtained. We can understand these good
convergence properties by the fact that the Fourier transform of ∆`+1g
has its mass concentrated inside the unit ball, and can therefore be
approximated well by a band-limited function. The function essentially
behaves like a band-limited function with bandwidth σ < aΛ∗ = 1. The
HSEM reproduces the sum well, as long as the interpolating function
does not exhibit oscillations in space with wavelengths smaller than
aΛ∗ . Such oscillations would occur at a scale smaller than the distance
between lattice points and thus can be considered unphysical. We
hence observe that the HSEM converges for physically meaningful
interpolation functions. It allows us to approximate singular sums in
arbitrary dimensions independently of the particle number, with an
error that decays exponentially in expansion order ` and polynomially in
λ, which is proportional to the scale at which the interpolating function
varies.

5. Conclusions

In this chapter, we have derived the hypersingular Euler–Maclaurin
expansion. By removing the only free parameter in the expansion, a
deep connection to analytic number theory is uncovered. This connec-
tion yields efficient representations for the HSEM operator coefficients,
making the expansion readily applicable in practice. The numerical
performance of the expansion has subsequently been analysed in a

3A better scaling than predicted is reached for some orders due to symmetry.
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prototypical two-dimensional sum that appears in relevant systems in
condensed matter and quantum physics. The same error scaling as the
one predicted for the multidimensional EM expansion is observed. As
a by-product of our method, new globally convergent representations
for the meromorphic continuation of general multidimensional Dirichlet
series are found, including the simple Epstein zeta function and the
Riemann zeta function.





CHAPTER 5

Conclusions and outlook

In this work, we have derived the singular Euler–Maclaurin (SEM)
expansion on multidimensional lattices, generalising the traditional
Euler–Maclaurin (EM) summation formula to physically relevant sin-
gular sums. The hypersingular variant (HSEM) of the expansion is
also able to describe singularities inside the integration region, which
provides a reliable description of pairwise long-range interactions. If the
integration region has no boundaries, then the expansion is given by
the local HSEM differential operator only. Due to a fruitful connection
to analytic number theory, all operator coefficients can be efficiently
computed.

As an approximation to the sum is found in a runtime that is
independent of the number of particles and as the approximation error
decays exponentially with the order of the expansion, a powerful tool is
provided that can find use in the evaluation of large sums in long-range
interacting systems in condensed matter and quantum physics. Of
particular interest are mesoscopic structures, where continuum limits
are not applicable, yet the number of particles is too large for ad-hoc
evaluations of the resulting sums. This situation arises for instance in
the study of metamaterials. The numerical performance of the new
method has been demonstrated by efficiently computing singular two-
dimensional sums that appear, among others, in the simulation of spin
lattices and in the study of the discrete nonlinear Schrödinger equation
with long-range interactions.

Apart from being applicable as a numerical method, the new expan-
sion can be used as an analytical tool in various fields of study. For the
proof of the multidimensional SEM expansion, we have first derived the
multidimensional EM expansion, including sharp error bounds, which
is a relevant result on its own. The EM expansion has subsequently
been used for proving the existence of the β-limit inside the Bernoulli-A
functions. In similar fashion, the EM expansion can be used to prove
existence and derive bounds for new mathematical objects that are
based on limits of multidimensional sums. The multidimensional SEM
expansion can be applied in rigorous derivations of mean field limits of

97
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long-range interacting systems, even in the case of nonlinear interactions.
Higher orders of the expansion then track finite size corrections, which
become relevant if the system is mesoscopic, if the interaction exponent
is equal or close to the dimension of the system, or if high precision is
required.

The connection of our work to analytic number theory has provided
us with a fast way for evaluating the operator coefficients in the HSEM
expansion. As a by-product, we have found new globally convergent
series representations of the Epstein zeta function, and, in case of one-
dimension, the Riemann zeta function. These elegant representations
in terms of regularised Hadamard sum-integrals could potentially be of
interest in number theory.

The new expansion opens up a vast range of possibilities for fur-
ther developments. While we have derived the multidimensional SEM
expansion for algebraic singularities, the one-dimensional treatment
shows that it is possible to generalise it to a significantly larger set of
interaction functions. Furthermore, our proofs for the multidimensional
expansion do not rely significantly on the periodicity of the lattice. It is
thus to be expected that the results can be generalised to quasi-lattices,
like the Penrose lattice. In a next step, one could then try to replace
lattices by random distributions of particles. Finally, in terms of long
term goals, it would be interesting to consider discreteness effects in
fundamental physics, e.g. in loop quantum gravity. Here the SEM
expansion could be used as a tool for the precise quantification of the
resulting finite size effects.



APPENDIX A

HSEM expansion in two dimensions

1. HSEM operator coefficients

We present a simple approach for computing the HSEM operator
coefficient for d = 2, which does not rely on derivatives of Epstein zeta
functions and which makes use use of efficient summation formulas that
have been found in the analysis of the Riemann hypothesis [39]. For a
two-dimensional square lattice, it is well-known that [51, Eq. (9)]

∑′

z∈Z2

1
∣z∣ν = 4ζ(ν/2)βD(ν/2).

Here βD is the Dirichlet beta function. The Dirichlet series can be
analytically extended to ν ∈ C ∖ {2}. The meromorphic continuation of

Cn(ν) = ∑
′

z∈Z2

z2n
1

∣z∣ν+2n , ν ∈ C ∖ {2},

in ν can be efficiently computed for n ∈N by means of [39, Eq. (2.3)]

Cn(ν) =
2
√
πΓ(ν/2 + n − 1/2)ζ(ν − 1)

Γ(ν/2 + n)

+ 8πν/2
Γ(ν/2 + n)

∞
∑
z1=1

∞
∑
z2=1

(z2

z1
)
(ν−1)/2

(z1z2π)nK(ν−1)/2+n(2πz1z2),

where Kν(x) is the modified Bessel function of the second kind. Here,
the double sum converges exponentially in both variables. With the
above two lattice sums, we can now generate the whole HSEM operator
in d = 2 dimensions by using an expansion in solid harmonics.

We first note that only terms with even higher-order derivatives
contribute in the HSEM operator due to symmetry. For n ∈N, we then

This chapter is based on the appendix in [7].
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obtain

lim
β→0

∑=∫
z∈R2,Z2

χ̂β(z)
⟨z,∇⟩2n

∣z∣ν

=
n

∑
m=0

a
(2n)
2m lim

β→0
∑=∫

z∈R2,Z2

χ̂β(z)
∣z∣2(n−m)A2m(z)

∣z∣ν A2(n−m)(∇)∆n−m,

with the solid harmonic Ak ∶ R2 → R,

Ak(y) = Re((y1 + iy2)k),

and with the coefficients

a
(k)
0 = 1

2π

2π

∫
0

cosk(φ)dφ, a
(k)
n = 1

π

2π

∫
0

cos(nφ) cosk(φ)dφ.

We now show that

(A.1) ∑′

z∈Z2

A2m(z)
∣z∣ν+2m = Z0(I2, ν) +

m

∑
k=1

1
(2k)!T

(2k)
2m (0)Ck(ν),

where I2 ∈ R2×2 is the identity matrix and where T2m are the Chebyshev
polynomial of the first kind of order 2m. We note that

A2m(z) = ∣z∣2m cos(2mφ)
for the polar angle φ and z = ∣z∣(cosφ, sinφ). We then write cos(2mφ)
in terms of powers of cosφ by means of the Chebyshev polynomial T2m,

cos(2mφ) = T2m(cosφ) =
2m
∑
k=0

T
(k)
2m cosk(φ).

We insert this relation in the right hand side of (A.1) and observe that
odd orders do not contribute due to the symmetry of the lattice. Then
as

∣z∣2k cos2k(φ) = z2k
1 ,

we recover the desired representation.

2. Evaluation of the Hadamard integral

We briefly discuss the evaluation of the Hadamard integral. For the
particular choice of g as in (4.1) and for d = 2, it is possible to determine
the Hadamard integral analytically. As g is a Schwartz function, it
holds that

=∫
Rd

g(y)
∣x − y∣ν dy = F((F ∣ ⋅ ∣−ν)(Fg))(x),
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using the convolution theorem for distributions. We then obtain

=∫
Rd

g(y)
∣x − y∣ν dy = πΓ(1 − ν/2)

λν−2 M(ν/2,1,−∣x/λ∣2),

where M is the Kummer confluent hypergeometric function, see e.g.
[43, Eq. (13.2.2)].
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