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The primary cilium is a solitary, microtubule-based membrane protrusion extending from
the surface of quiescent cells that senses the cellular environment and triggers specific
cellular responses. The functions of primary cilia require not only numerous different
components but also their regulated interplay. The cilium performs highly dynamic
processes, such as cell cycle-dependent assembly and disassembly as well as delivery,
modification, and removal of signaling components to perceive and process external
signals. On a molecular level, these processes often rely on a stringent control of
key modulatory proteins, of which the activity, localization, and stability are regulated
by post-translational modifications (PTMs). While an increasing number of PTMs on
ciliary components are being revealed, our knowledge on the identity of the modifying
enzymes and their modulation is still limited. Here, we highlight recent findings on
cilia-specific phosphorylation and ubiquitylation events. Shedding new light onto the
molecular mechanisms that regulate the sensitive equilibrium required to maintain and
remodel primary cilia functions, we discuss their implications for cilia biogenesis, protein
trafficking, and cilia signaling processes.

Keywords: primary cilia, post-translational modification, cell signaling, ciliogenesis, Hedgehog signaling,
phosphorylation, ubiquitylation

INTRODUCTION

Primary cilia are dynamic cellular signaling compartments of the plasma membrane (Garcia
et al., 2018; Anvarian et al., 2019) composed of a membrane-surrounded microtubule core,
termed the axoneme. The axoneme emerges from a matured mother centriole, the so-called basal
body, that connects to the plasma membrane via distinct appendages, the transition fibers (see
Figure 1). Primary cilia are indispensable for embryonic development and cell differentiation.
Consequently, defective primary cilia give rise to severe human diseases, known as ciliopathies,
that are commonly caused by aberrant ciliary signaling processes (Baker and Beales, 2009; Reiter
and Leroux, 2017). On a molecular level, observed defects comprise not only signaling components
but also the protein machinery that is required to build and maintain cilia (Sánchez and Dynlacht,
2016; Breslow and Holland, 2019). Therefore, ciliopathy genes also include protein trafficking
components, such as the cilia-specific intraflagellar transport (IFT) complexes, IFT-A and IFT-B
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(Webb et al., 2020), and all eight subunits of the BBSome, defects
of which cause Bardet–Biedl Syndrome (Jin et al., 2010; Forsythe
et al., 2018). IFT complexes transport cargoes along the axoneme
in an anterograde and retrograde fashion with the help of specific
kinesin and dynein motors, respectively (Satir and Christensen,
2007). The ciliary membrane does not fully enclose the ciliary
compartment at the proximal end, where it is separated from the
cytosol by the transition zone (Yang et al., 2015). A concerted
interplay of IFT complexes, the BBSome, transition fibers, and the
transition zone enables select proteins to enter or exit the cilium
(Garcia-Gonzalo and Reiter, 2017; Gonçalves and Pelletier, 2017).

Post-translational modification (PTM) is a fundamental
principle in molecular biology referring to the modulation of
protein properties by covalent attachment of small molecules.
PTMs are catalyzed by various antagonistic enzymatic activities
that modify target proteins at specific locations (Vu et al., 2018).
For instance, phosphorylation can modulate interaction surfaces
or lead to intramolecular rearrangements that alter enzymatic
activities. Protein kinases phosphorylate their substrates at
specific consensus sites consisting of only a few amino
acids. Moreover, they are often targets of phosphorylation
themselves, which results in phosphorylation cascades that
are typically found in cellular signaling processes (Miller and
Turk, 2018). Opposingly, protein phosphatases act on hundreds
of different substrates to revert phosphorylations (Bertolotti,
2018). Compared to phosphorylation, ubiquitylation requires
a more elaborate machinery. Ubiquitin is a small, 8.5-kDa
protein that is usually attached to lysine residues of target
proteins (Swatek and Komander, 2016; Yau and Rape, 2016).
The enzymatic cascade of ubiquitylation involves E1 activating,
E2 conjugating, and E3 ligating enzymes. While the E1 and E2
enzymes supply reactive ubiquitin molecules, the vast number
of different E3 ubiquitin ligases determines substrate specificity.
Similarly, deubiquitylating enzymes (DUBs) are highly specific
with only a few substrates per enzyme (Clague et al., 2019).
Ubiquitin contains seven lysine residues, to which further
ubiquitin molecules can be added to generate poly-ubiquitin
chains. Depending on the lysine residue, ubiquitin chains are
differentiated into several linkage types that have been implicated
in specific functions. K48- and K29-linked ubiquitins, for
example, are the main linkage types associated with proteasomal
degradation of target proteins, while the K63 chains and mono-
ubiquitin are often times involved in protein trafficking events
(Swatek and Komander, 2016).

The dynamic nature of PTMs is critical for most cellular
processes and is extensively studied in protein trafficking
and cell signaling (Patwardhan et al., 2021). The central role
of the primary cilium as a cellular signaling hub suggests
that PTMs regulate core ciliary functions. In addition to
phosphorylation and ubiquitylation, ciliary proteins are targets
of diverse modifications, such as acetylation (Kerek et al.,
2021), SUMOylation (McIntyre et al., 2015), and methylation
(Yeyati et al., 2017). Several lipid modifications (including
acylation, myristoylation, palmitoylation, and prenylation) of
ciliary proteins have also been involved in protein trafficking,
membrane tethering, and protein stability (Roy and Marin,
2019). Moreover, ciliary microtubules are extensively acetylated,

detyrosinated, glutamylated, and glycylated, which reflects
axoneme maturation and affects axoneme assembly, protein
interaction, and stability (Janke and Magiera, 2020). In the
following, we focus on phosphorylation and ubiquitylation and
discuss recent findings on their involvement in regulating cilia
formation and signaling.

CILIARY SIGNALING

Conceptually, primary cilia are believed to function as cell
type-specific micro-compartments with diverse compositions
including receptors to receive, mediators to process, and effectors
to transmit signals to the rest of the cell (Sung and Leroux,
2013; Nachury and Mick, 2019). Despite a large variety of
receptors, far fewer mediators are commonly used in cellular
signaling processes. Cyclic nucleotides or calcium ions are
second messengers, the concentrations of which are interpreted
by specific enzymes to further transmit signals via PTMs
(Hilgendorf et al., 2019; Sherpa et al., 2019; Tajhya and Delling,
2020). To communicate with the rest of the cell, effectors
are transported into and out of cilia in a dynamic fashion,
which allows their modification according to the signaling status
(Niewiadomski et al., 2019). This general principle highlights the
tight connection between cilia signaling and protein trafficking.
Apart from the IFT complexes, cilia require a multitude of
additional factors to convey ciliary signals, which involves
not only common protein trafficking components, such as
β-arrestins, but also cilia-specific machinery, including the
BBSome or the Tubby family of proteins (Mukhopadhyay and
Jackson, 2011). While the inventory of primary cilia continues to
expand (Mick et al., 2015; Kohli et al., 2017; May et al., 2021),
the number of enzymes, which catalyze PTMs and have been
unambiguously shown to localize to primary cilia, is limited.
Nonetheless, we are beginning to unravel how ciliary signaling
dynamics can be established as we identify more and more targets
of PTMs in cilia.

Hedgehog Signaling
One hallmark ciliary signaling pathway that highlights the
dynamics in PTMs is Hedgehog signaling in vertebrates
(Figure 1; Gigante and Caspary, 2020). An elegantly orchestrated
interplay of positive and negative regulators in Hedgehog
signaling allows for the correct patterning of the developing
embryo, in addition to maintaining adult tissue homeostasis
(Shimada et al., 2019). Gradients of the hedgehog morphogens
ultimately result in finely tuned levels of active GLI transcription
factors that determine target gene expression (Briscoe and
Novitch, 2008). In the absence of Hedgehog morphogens, their
receptor Patched (PTCH1) localizes to the primary cilium
(Rohatgi et al., 2007), while the key Hedgehog effector and G
protein-coupled receptor (GPCR) Smoothened (SMO) surveys
the primary cilium by shuttling in and out without appreciable
local accumulation (Figure 1A; Kim et al., 2009; Goetz and
Anderson, 2010). A second GPCR, the constitutively active
GPR161, stimulates ciliary adenylyl cyclases to increase cAMP
levels within cilia and thereby activates the cAMP-dependent
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FIGURE 1 | Post-translational modifications (PTMs) regulating Hedgehog signaling. (A) In unstimulated cells, the GPCR SMO constantly surveys the cilium without
accumulation, due to constant removal in a ubiquitin (Ub) and BBSome-dependent manner. The Hedgehog receptor PTCH1 suppresses SMO, and the constitutively
active GPCR GPR161 is retained in cilia. GPR161 stimulates adenylyl cyclases (AC) to generate cAMP. High cAMP is sensed by the regulatory PKA subunit Iα (RIα),
which releases the PKA catalytic subunit (C) to phosphorylate target proteins, such as GLI transcription factors. GLI phosphorylation leads to ubiquitylation and
proteolytic cleavage to GLI repressor forms (GLI-R) that repress target gene expression in the nucleus. The ubiquitin ligase MEGF is recruited to the plasma
membrane by MGRN1 where it ubiquitinylates SMO for subsequent degradation. (B) In the presence of Hedgehog ligands, PTCH1 exits the primary cilium,
presumably in a Ub-dependent fashion, leading to SMO activation and accumulation. GPR161 in turn is phosphorylated by GRK2 (and PKA). GPR161
phosphorylation is sensed by β-arrestin2, which leads to ubiquitylation and BBSome-mediated removal of GPR161 together with PKA from the primary cilium.
Together with a drop in cAMP levels, GLIs are no longer phosphorylated and full-length GLIs activate target genes in the nucleus. After removal from cilia, the
mechanism by which GPR161 is internalized remains unclear.

protein kinase (PKA) (Mukhopadhyay et al., 2013). GPR161 also
fulfills a second function in PKA signaling, as it serves as an
atypical A-kinase anchoring protein (AKAP) that targets PKA to

cilia (Bachmann et al., 2016). Here, it tethers to the cilia-resident
PKA regulatory subunit RIα that senses ciliary cAMP (Mick
et al., 2015). At high ciliary cAMP levels in unstimulated cells,
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PKA-RIα binds cAMP and releases the catalytic PKA-C subunit
(Figure 1A; Taylor et al., 2004). Free PKA-C can phosphorylate
and regulate target proteins, such as the GLI transcription factors
that convey the signaling status to the nucleus (Tuson et al., 2011;
Niewiadomski et al., 2014). PKA-mediated phosphorylation
of GLIs is a pre-requisite for their proteolytical cleavage to
yield repressor forms that block the transcription of target
genes (Figure 1A). GLI transcription factors are precisely
regulated by a variety of activating and deactivating PTMs,
which include activating phosphorylations at the N-terminal
repressor domain, and two clusters of PKA phosphorylation
sites on the activator domain. PKA phosphorylation precedes
further phosphorylation by CK1 and GSK3β, which in turn
recruits the SCF E3 ubiquitin ligase that marks GLIs for
proteolytic processing by the proteasome (Kong et al., 2019;
Niewiadomski et al., 2019).

Upon Hedgehog ligand binding, PTCH1 exits the primary
cilium and SMO is activated and retained in cilia, whereas
GPR161 is removed (Rohatgi et al., 2007; Gigante and Caspary,
2020). As the adenylyl cyclase inhibitory SMO replaces the
stimulating GPR161, ciliary cAMP decreases (Mukhopadhyay
et al., 2013). Consequently, PKA activity ceases and the GLI
transcription factors are no longer phosphorylated and further
processed, such that they can function as activators to initiate
target gene expression in the nucleus (Figure 1B).

One central element in Hedgehog signaling is the dynamic re-
localization of the components involved. Similar to other cellular
protein trafficking mechanisms, PTMs control the localization of
Hedgehog signaling proteins, which is particularly well-studied
for GPR161 (Mukhopadhyay et al., 2013; Pal et al., 2016).
GPR161’s C-terminal tail not only contains the AKAP binding
domain for PKA but also several protein kinase consensus
sites, including one for PKA (Bachmann et al., 2016). Upon
Hedgehog pathway activation, the C-terminal tail of GPR161
is phosphorylated by GRK2 and presumably PKA (Bachmann
et al., 2016; Pal et al., 2016; May et al., 2021). GRK-mediated
phosphorylation recruits the molecular sensor of activated
GPCRs, specifically β-arrestin2, which is required for the removal
of activated GPCRs from cilia (Figure 1B; Pal et al., 2016).
Consequently, GPR161 exits cilia together with its binding
partner PKA (May et al., 2021). Thereby, PKA activity in cilia is
inhibited by two mechanisms: (i) reducing cAMP levels and (ii)
removing PKA itself.

As exemplified by the GLI transcription factors and
GPR161, specific phosphorylations are often catalyzed by
individual kinases; however, our knowledge of specific protein
phosphatases that antagonize these phosphorylations in cilia
is still rudimentary. The protein phosphatases PP1 and PP2A
have been reported to dephosphorylate SMO to dampen Hh
signaling in Drosophila (Su et al., 2011; Liu et al., 2020). However,
since primary cilia are dispensable for Drosophila Hh signal
transduction, it remains unclear whether PP1 and PP2A also
function within primary cilia. Mass spectrometric analyses have
identified PP1 subunits in isolated Chlamydomonas cilia (Pazour
et al., 2005) and PP2A subunits in primary cilia of kidney
epithelial cells (Ishikawa et al., 2012), but these findings still
await confirmation by independent methods. In contrast, lipid
phosphatases, such as the inositol polyphosphate-5-phosphatase

E, have been unambiguously shown to localize to primary cilia,
where they modulate ciliary signal transduction by regulating
protein trafficking (Chávez et al., 2015; Garcia-Gonzalo et al.,
2015). Ciliary lipid phosphatase activities create a specific
phosphatidylinositide phosphate environment that is required
for efficient ciliary signaling.

A recent study investigated the involvement of ubiquitin in
Hedgehog signaling by fusing mono-ubiquitin to the C-terminus
of SMO (Desai et al., 2020). The SMO-Ub fusion accumulated
in cilia in the absence of stimulation in IFT and BBSome
mutants but failed to accumulate in cilia after Hedgehog pathway
activation in wild type cells (Desai et al., 2020). These findings
indicate that ubiquitin is required for the removal of SMO from
cilia by a process involving IFT and the BBSome. Moreover,
β-arrestin2 was shown to mediate the ubiquitylation of GPR161
in response to Hedgehog pathway activation (Shinde et al., 2020),
before GPR161 exits the primary cilium in a BBSome-dependent
fashion (Ye et al., 2018). More evidence for the central role
of ubiquitylation for cilia trafficking comes from mutational
analysis of the Hedgehog receptor PTCH1. PTCH1 harbors
two E3 ubiquitin ligase recognition motifs and remains in the
cilium when both motifs are mutated, even upon stimulation
with Hedgehog ligands (Kim J.C. et al., 2015). SMO has been
reported to be a target of the ubiquitin ligase HERC4 (Jiang
et al., 2019). Furthermore, ubiquitylation of SMO by a complex
of the E3 ubiquitin ligase MGRN1 and the plasma membrane
protein MEGF8 serves as a signal for proteasomal degradation
(Kong et al., 2020). Yet, whether these ubiquitin ligases are
directly involved in the IFT-dependent retrieval of SMO awaits
experimental validation.

Molecular dissection of ubiquitylation may help to decipher
the different functions of ubiquitin in regulating ciliary proteins.
Upon Hedgehog pathway activation, specifically K63-linked
ubiquitin chains increase in primary cilia upon GPCR activation
or in BBSome mutants (Shinde et al., 2020). This suggests
that K63 ubiquitin chains function as export signals for ciliary
proteins, which are recognized by the BBSome (Desai et al., 2020;
Shinde et al., 2020). In BBSome mutant mice, photoreceptor
outer segments, which are uniquely modified cilia that harbor the
entire signaling cascade for visual phototransduction, accumulate
more than 100 proteins that are absent in wild types (Datta
et al., 2015). Based on these findings, the BBSome has been
proposed to mediate the removal of unwanted proteins from
cilia and, therefore, may function as an important mediator
of a ciliary protein quality control network (Shinde et al.,
2020). Additional components, such as the AAA-ATPase VCP
or the ubiquitin-regulatory X domain protein UBXN10, have
been shown to localize to primary cilia (Mick et al., 2015;
Raman et al., 2015). While data from trypanosomes indicate
that the BBSome may directly recognize ubiquitin as it can be
enriched on ubiquitin-agarose resin (Langousis et al., 2016), it
does not contain canonical ubiquitin binding domains. How
ubiquitylated proteins are recognized in cilia on a molecular
level and what enzymatic activities regulate ubiquitylation within
cilia remains to be established. The E3 ubiquitin ligase CBL is
recruited to cilia in response to PDGFRα signaling (Schmid et al.,
2018) and the deubiquitylase UBPY/USP8 has been reported to
antagonize SMO ubiquitylation in Drosophila (Ma et al., 2016).
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These findings seem promising starting points for future studies
elucidating the cilia-specific ubiquitylation network.

CILIUM DYNAMICS

Cilium Assembly—A Primary Cilium Is
(Re)born
Ciliogenesis, i.e., the formation of cilia, is another dynamic
process that is regulated by specific phosphorylation and
ubiquitylation events (Cao et al., 2009; Shearer and Saunders,
2016). A specialized maternal centriole, the so-called basal body,
templates the cilium. Yet, mother and daughter centrioles also
form centrosomes required for spindle apparatus formation and
chromosome segregation in metaphase. These two alternative
roles of the mother centriole necessitate a cell cycle-dependent
assembly and disassembly of primary cilia (Wang and Dynlacht,
2018; Breslow and Holland, 2019). Depending on cell type, the
mother centriole takes one of two different routes to form a
cilium, starting either directly at the plasma membrane (termed
extracellular pathway) or within the cell (Bernabé-Rubio and
Alonso, 2017; Kumar and Reiter, 2021). Here, we will be focusing
on the intracellular pathway, which occurs in several steps (see
Figure 2): (i) maturation of the mother centriole and acquisition
of so-called distal and subdistal appendages, (ii) recruitment of
a growing ciliary vesicle (the future ciliary membrane) to the
mother centriole, (iii) separation of the ciliary compartment
by the formation of the transition zone, (iv) extension of the
ciliary axoneme, and (v) docking of the basal body and final
fusion with the plasma membrane. While this process has been
described on an ultrastructural level more than half a century ago
(Sorokin, 1968), we are still discovering an increasing number
of the required factors such as RABs and EHD family proteins
that are involved in membrane recruitment (Lu et al., 2015;
Blacque et al., 2018) and are just beginning to understand
their regulation.

A central kinase that determines cilium formation is the Tau
tubulin kinase 2 (TTBK2) (Tomizawa et al., 2001; Goetz et al.,
2012). TTBK2 loss was originally reported to allow basal body
docking to the plasma membrane, while blocking transition zone
formation and ciliary shaft elongation. In actively proliferating
cells, the distal ends of both mother and daughter centrioles are
capped by protein complexes of CP110 and CEP97 that suppress
cilia formation (Spektor et al., 2007; Schmidt et al., 2009).
Recruitment of these caps seems to follow a hierarchical scheme,
the precise order of which awaits clarification (Ye et al., 2014;
Tsai et al., 2019). One central component involved in ciliogenesis
is the microtubule-depolymerizing kinesin KIF24 (Kobayashi
et al., 2011). KIF24 recruits the M-Phase phosphoprotein MPP9,
which is required for the assembly of CEP97–CP110 complexes
at the distal ends of centrioles (Figure 2A; Huang et al., 2018).
The specific removal of the CEP97–CP110 complex relies on
TTBK2 phosphorylation (Figures 2B,C; Goetz et al., 2012;
Čajánek and Nigg, 2014; Huang et al., 2018). To ensure specificity
of distal end uncapping and thereby cilium formation at the
mother centriole, it is the distal appendage protein CEP164
that recruits TTBK2 (Schmidt et al., 2012; Čajánek and Nigg,
2014). TTBK2 has recently been shown to phosphorylate distal

appendage proteins, such as CEP164 and CEP83 (Bernatik
et al., 2020), which is required for efficient vesicle recruitment
(Figure 2B; Lo et al., 2019). Notably, TTBK2 phosphorylates
MPP9 resulting in the loss of MPP9 and the CEP97–CP110
complex from the distal centriolar end (Figure 2C; Huang et al.,
2018). Moreover, with the onset of cilia formation, MPP9 is
ubiquitylated and degraded by the proteasome. Although the
precise ubiquitin linkage type has not been determined yet, many
molecular details of MPP9 PTM have been resolved. Intriguingly,
one identified ubiquitylation site in MPP9 is flanked by two
phosphorylation sites. Phosphorylation-deficient mutants show
reduced ubiquitylation and consequently stabilize MPP9 (Huang
et al., 2018). This finding highlights a typical PTM cascade
and suggests that the phosphorylation status determines MPP9
stability. Similar to MPP9, the CEP97–CP110 complex is subject
to proteasomal degradation when ciliation is initiated (Spektor
et al., 2007; Nagai et al., 2018). CP110 has been shown to be
a target of the SCF ubiquitin ligase complex and a substrate of
the E3 ubiquitin ligase UBR5 in an in vitro ubiquitylation assay
(D’Angiolella et al., 2010; Hossain et al., 2017). Additionally,
CEP97 degradation is suppressed after knockdown of the CUL3
E3 ligase, and therefore, it remains bound to CP110 at centrioles
and inhibits ciliogenesis (Nagai et al., 2018). UBR5 has been
found at centrosomes and CUL3 has been suggested to localize
specifically to mother centrioles (Moghe et al., 2012; Nagai et al.,
2018), where it may ubiquitylate Aurora kinase A, a central
regulator of the cell cycle and promoter of cilium disassembly
(Pugacheva et al., 2007). It will be interesting to investigate
whether these ubiquitin ligases converge on the same targets
and whether ubiquitylation is the cause or consequence of
CEP97–CP110 removal. Also, how precisely ubiquitylation can
be regulated and what role DUBs, such as USP33 that targets
CP110 (Li et al., 2013), are playing in ciliogenesis need to be
addressed in future studies.

Cilium Disassembly
In contrast to cilia formation, we are just beginning to understand
the molecular details of how cilia are dismantled to allow cell
cycle re-entry (Liang et al., 2016; Breslow and Holland, 2019).
NEK2, a kinase predominantly expressed in the S and G2
phases of the cell cycle, has been proposed to promote cilium
disassembly (Figure 2D; Kim S. et al., 2015). Among several
targets, NEK2 phosphorylates and stimulates the microtubule-
depolymerizing KIF24 at the distal centriolar ends (Kim S. et al.,
2015). This may not only block unwanted cilium assembly but
also shift the balance toward disassembly when resting cells
re-enter the cell cycle (Kim S. et al., 2015; Viol et al., 2020).
In support of a central role for KIF24 in cilium disassembly,
a recent study identified FLS2 as a CDK-like kinase that
phosphorylates the KIF24 ortholog CrKIF13 in Chlamydomonas,
allowing efficient cilia disassembly (Figure 2D; Zhao et al., 2020).
In turn, phosphorylated FLS2 showed lower activity and appears
to be dephosphorylated upon cilia disassembly when it enters
cilia by binding to the IFT-B component IFT70 (Zhao et al.,
2020). While the precise mechanisms of regulation still need to
be established, it is tempting to speculate that dephosphorylation
of FLS2 may not only alter its kinase activity but also unmask
targeting signals for IFT. This suggests a mechanism by which an
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FIGURE 2 | Post-translational modifications (PTMs) in primary cilia assembly and disassembly. (A) Mother centriolar distal appendage components CEP164 and
CEP83 are shown in red. The distal end proteins KIF24 and MPP9 recruit the capping protein complex CEP97–CP110 to block axoneme extension. Note that only
one cap is shown for simplicity, while each microtubule triplet is capped by one complex. Unphosphorylated CEP83 diminishes ciliary vesicle recruitment (B) CEP164
recruits the kinase TTBK2 that phosphorylates CEP164 and CEP83. Recruitment and activity of TTBK2 enables subsequent steps of cilia assembly such as
formation of the ciliary vesicle (CV). (C) TTBK2 phosphorylates MPP9, which results in ubiquitylation and dissociation of MPP9 and the remaining CEP97–CP110
complex from the distal centriolar end. Several E3 ubiquitin ligase complexes have been implicated in modifying distal cap components, while the precise location of
ubiquitylation has not been determined (see text for details). Ultimately, MPP9, CEP97, and CP110 are degraded by the proteasome (UPS) and ciliary growth can be
initiated. (D) Diagram of fully assembled primary cilium. The microtubule depolymerizing kinesin KIF24 has been implicated in microtubule disassembly.
Phosphorylation of KIF24 by NEK2 stimulates KIF24 activity. In Chlamydomonas, dephosphorylated FLS2 enters cilia by binding to IFT-B and phosphorylates the
KIF24 homolog. Upon disassembly, tubulins are ubiquitylated by unknown mechanisms. IFT-A binds to K63-linked ubiquitin chains and mediates removal.

active kinase can be directed into cilia to promote disassembly
by phosphorylating specific targets such as the microtubule-
depolymerizing kinesin KIF24.

In cilia of Chlamydomonas, a ubiquitin conjugation system
has been identified more than a decade ago (Huang et al.,
2009), yet the involvement of ubiquitin in cilia disassembly

has only recently been demonstrated. Despite a massive rise
in the ubiquitin levels in shortening cilia, semi-quantitative
mass spectrometric analysis of a temperature-sensitive
Chlamydomonas model has only detected an increase in
ubiquitylation of α-tubulin and ubiquitin itself (Wang et al.,
2019). The study further revealed α-tubulin poly-ubiquitylation
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by K63 chains, which allows binding to the IFT-A subunit
IFT139 for tubulin removal via retrograde IFT (Figure 2D; Wang
et al., 2019). Intriguingly, the authors also observed an increase
in K11 and K48 chains in response to cilia shortening. K11
chains are also assembled by the anaphase-promoting complex
to drive proteasomal degradation of substrates during mitosis,
suggesting potential mechanisms for cell cycle-dependent
regulation (Matsumoto et al., 2010).

OUTLOOK

As we are gathering increasing evidence for the existence
of a ciliary ubiquitylation machinery involved in protein
trafficking, signaling, disassembly, and potentially protein
quality control, its identity remains elusive. Similarly,
antagonistic cilia-specific DUBs as well as protein
phosphatases that counterbalance known kinases await their
identification. Powerful unbiased genetic and proteomic
screening technologies have been applied to primary cilia
(Mick et al., 2015; Kohli et al., 2017; Breslow et al.,
2018; Pusapati et al., 2018) and promise to reveal the
missing links that modulate manifold dynamic processes
in cilia by PTM.
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