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Abstract

Living organisms would not be functional without active processes. This general
statement is valid down to the cellular level. Transport processes are necessary to
create, maintain and support cellular structures. In this thesis, intracellular trans-
port processes, driven by concentration gradients and active matter, as well as the
dynamics of migrating cells are studied.

Many studies deal with diffusive intracellular transport in the complex environ-
ment of neuronal dendrites, however, focusing on a few spines. In this thesis, a model
was developed for diffusive transport in a full dendritic tree. A link was established
between complex structural changes by diseases and transport characteristics.

Furthermore, recent experimental studies of search processes in migration of den-
dritic cells show a link between speed and persistence. In this thesis, a correlation
between them was included in a stochastic model, which lead to increased search
efficiency.

Finally, this thesis deals with the question of how active, bidirectional transport
by molecular motors in axons can be efficient. Generically, traffic jams are expected
in confined environments. Limitations of bypassing mechanisms are discussed
with a bidirectional non-Markovian exclusion process, developed in this thesis.
Experimental findings of cooperative effects and microtubule modifications have
been incorporated in a stochastic model, leading to self-organized lane-formation
and thus, efficient bidirectional transport.



Kurzzusammenfassung

Ohne aktive Prozesse wären lebendige Organismen nicht funktionsfähig. Dies gilt bis
herab zur Zellebene. Transportprozesse sind notwendig um zelluläre Strukturen auf-
zubauen und zu erhalten. In dieser Arbeit werden intrazelluläre Transportprozesse,
getrieben von Konzentrationsgradienten und aktiver Materie, sowie die Dynamik in
Zellmigration untersucht.

Viele Studien beschäftigen sich mit passivem Transport in der komplexen Umge-
bung von neuronalen Dendriten, vorwiegend jedoch mit einzelnen Dornvortsätzen
(spines). In dieser Arbeit wurde ein Modell zu Diffusion in einer vollständigen Den-
dritenstruktur entwickelt und eine Relation zwischen Krankheitsverläufen und neu-
ronalen Funktionen gefunden.

Die Migration von dendritischen Zellen zeigen einen Zusammenhang zwischen ih-
rer Geschwindigkeit und Persistenz. Dieser wurde in ein stochastisches Modell über-
nommen welches zeigte, dass die Sucheffizienz der Zellen damit gesteigert werden
kann.

Außerdem geht es um die Frage wie aktiver, bidirektionaler Transport durch mole-
kulare Motoren in Axonen effizient sein kann. In einem so begrenzten Raum sind Ver-
kehrsstaus zu erwarten. In dieser Arbeit wurden lokale Austauschmechanismen an-
hand des entwickelten Nicht-Markovschen, bidirektionalen Exklusionsprozess dis-
kutiert. Experimentell entdeckte kooperative Effekte und Mikrotubulimodifikationen
wurde in ein stochastisches Modell übernommen, was zu selbstorganisierter Spurbil-
dung und damit zu effizientem bidirektionalem Transport führte.
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Chapter 1

Introduction

Transport processes are an important part of non-equilibrium and biological physics.
For maintaining transport processes, energy has to be provided. This is possible
either by establishing and maintaining concentration gradients that drive passive
transport or by directly providing energy to active particles. In cell biology, this
flow of energy eventually is required to generate and maintain the functional cellular
structures which represent, from a physical point of view, states far from equilib-
rium [1].

Applications for non-equilibrium transport in cell biology range over large length
scales, from the diffusion of microscopic chemical signals inside cells up to the migra-
tion of a whole cell. Also, one can divide intracellular transport in passive gradient-
driven and active transport such as by molecular motors along the cytoskeleton of
the cell [2]. Besides its variety, many transport processes share similar characteris-
tics. For this thesis, an important characteristic is the impact of the environment in
which transport takes place. In neuronal axons, for example, active transport is heav-
ily affected by the organization of the cytoskeleton on which it relies on [3, 4]. This
connection is in particular interesting because disturbed transport has been found in
relation to diseases such as Alzheimer’s, Parkinson’s and Huntington’s disease [5,6].
It has been found that neurodegenerative diseases can highly affect the structure of
dendrites and spines [7, 8]. It is, therefore, crucial to better understand the require-
ments and processes of biological transport.

Many achievements have been made by experiments but also theoretical descrip-
tions are useful in order to reduce complexity and conceptualize. Theoretical mod-
eling has been widely applied to describe transport processes in cell biology [9–12].
In this thesis, the focus is on stochastic modeling and Monte Carlo simulations. The
models developed are based on two extensively studied model classes: Diffusion by
random walks [9, 13] and driven lattice gases [9, 10].

The objective of this thesis is to investigate applications of stochastic modeling
transport processes in cell biology with a special focus on environmental influences.
The work is structured in three parts, i.e. passive transport in branched, treelike
channels of neuronal dendrites, active transport of migrating dendritic cells and
active bidirectional transport by molecular motor proteins in crowded environments
of neuronal axons.

The first project deals with the diffusive transport of chemical signals in treelike
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Chapter 1. Introduction

geometries such as neuronal dendrites. Although diffusion has been widely studied,
passive transport is still an active field in intracellular transport since it strongly de-
pends on the environment [9, 13]. The diverse scenarios in biological systems lead
to a variety of different effects such as non-Markovian characteristics emerging from
interactions with the environment [14,15] or anomalous diffusion and localization in
small protrusions found along dendrites, called spines [16–19]. In the publication of
Jose et al. in Biophysical J. 2018 (Addendum I), structural influences on transport
properties are investigated with a random walk model for chemical signals in neu-
ronal dendrites. Essential key structural parameters are identified and calibrated to
healthy and dendrites under disease progression. The goal is to link structural key
parameters to transport characteristics by determining search (escape) times into the
cell soma.

The opposite scenario is considered in the publication of Shaebani et al. in
Physical Review E 2018 (Addendum II). Here, the random walk model on treelike
structures is used to predict key parameters of a hidden tree. By measuring escape
times of random walkers moving along the tree, a method is developed to predict
the structure.

In the second project, a random walker approach is applied to the search problem
in cell migration. Dendritic cells (DCs) actively migrate in the body to search for
pathogens [20]. Studies did investigate search problems such as in the migration
of dendritic cells in two dimensions [11, 21]. It has been shown that the search can
be optimized by tuning relevant parameters such as the persistence [21]. However,
these parameters are not always independent of each other. For DCs, it has been
found that cell speed and cell persistence are correlated [22–24]. Instead of tuning
a single parameter, a new class of search optimizations is investigated in this
thesis, which combines a coupling of the relevant parameters. The objective of the
manuscript of Shaebani et al. (Addendum III) is to investigate how a correlation
between speed and persistence is affecting the search efficiency.

The third project addressed in this thesis is bidirectional, intracellular transport ac-
tively carried out by molecular motors along the cytoskeleton of neurons. Whereas
the first and second projects deal with single or independent objects, bidirectional
transport by molecular motors requires a many body treatment. The large spatial
extension of cargoes in the crowded environment of the axon is expected to cause in-
teractions and traffic jams. Cluster formation is generically observed for bidirectional
transport with volume exclusion in extended one-dimensional systems [25–27]. Traf-
fic jams are, however, usually not observed in healthy neurons. Thus, it is necessary
to investigate the mechanism that leads to stable transport.

A common lattice gas model for collective transport in one dimension is the totally
asymmetric exclusion process (TASEP). Bidirectional transport has, for example, been
addressed in two-species exclusion processes with Markovian site-exchange [27].
However, this description leads to transport that is fully determined by the local
exchange rate in a cluster region of a traffic jam. For collective effects that lead
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to complex blockage situations, constant ability to switch positions and reorganize
in a cluster is highly questionable. Hence, assuming particle movements without
memory effects might not be a valid description of the interaction in a crowded en-
vironment [14]. In the publication of Jose et al. in JSTAT 2020 (Addendum IV),
a non-Markovian variation of the two-species TASEP with algebraic exchange-time
distributions is investigated with respect to the transport efficiency.

An alternative approach to efficient bidirectional transport is the organization
of transport in quasi-unidirectional sub-systems as known for engineered systems
such as in vehicle traffic [28]. The question arises of how such an organization
could be implemented inside the cell. Recent studies emphasize the impact of
posttranslational modifications (PTMs) on the cytoskeleton [29, 30]. They have
been observed to lead to lane-formation in motor-driven transport in dendrites [31]
and cilia [32]. However, such a mechanism is not known for transport in axons
where the cytoskeleton structurally differs from the one in cilia or dendrites [31–33].
Recent findings give clues to a promising candidate for such a mechanism. Shima
et al. reported that molecular motors can modify the structure of filaments while
walking on them. This lead to a higher binding affinity of motors on that modified
filament [34]. This essentially initiates a feedback loop. In the manuscript of Jose et
al. (Addendum V), this mechanism is implemented in a bidirectional two-species ex-
clusion process with the goal to investigate if the feedback can lead to self-organized
lane-formation of transport along the cytoskeleton in axons.

This thesis is organized as follows: The biological background for the different ap-
plications in cell biology is given in chapter 2. The theoretical framework for the
stochastic description of transport processes by random walkers and exclusion pro-
cesses is presented in chapter 3. I review previous literature on the field of random
walks and search problems in chapter 4. Thereby, the first part focuses on diffu-
sive transport in dendritic structures and on networks, the second part on persistent
walks and cell migration. In chapter 5, I review literature on modeling active uni-
and bidirectional transport with respect to TASEP variations and intracellular trans-
port. In chapter 6, I introduce my own work which was developed in the context of
this thesis. The presentation is based on the original publications and manuscripts. A
summary of the results and outlook to future applications is given in chapter 7. The
publications and manuscripts presented in chapter 6 are attached in Addendum I-V.
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Chapter 2

Biological background

Contents
2.1 The cytoskeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Microtubules . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Molecular motors and other MAPs . . . . . . . . . . . . . . . . . . 20

2.2.1 Kinesin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Dynein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.3 Interaction of MAPs and the MT . . . . . . . . . . . . . . . 23

2.3 Bidirectional transport by molecular motors . . . . . . . . . . . . . 26
2.4 Intracellular transport in neurons . . . . . . . . . . . . . . . . . . . 27

2.4.1 Axons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.2 Dendrites . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.3 Organization of the MT network influences motor driven

transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.4 Neurodegenerative diseases . . . . . . . . . . . . . . . . . . 31

2.5 Migration of dendritic cells . . . . . . . . . . . . . . . . . . . . . . . 31
2.6 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

From a physicist’s point of view, the cell is an exciting example of a complex
system, consisting of many components that interact in various combinations [20].
Transport processes are essential, in order to organize internally and provide func-
tionality. In neurons, for example, mitochondria, which serve as power plants and
Ca2+ buffers, need to be distributed to distal regions such as synapses and axonal
branches [35]. Intracellular transport can be carried out passively by diffusion, which
is driven by concentration gradients, or actively such as the movement by molecular
motor proteins along filaments [2, 12, 20, 36–39]. In addition, transport is not only
important inside cells. Some cells also need to migrate as a whole. Dendritic cells,
for instance, migrate from tissues to lymph nodes, where they can activate T cells to
coordinate the immune response [20, 40, 41].

In this chapter, I provide basic information about the biological systems in which
transport processes are studied in this thesis. I introduce components of the cell
which are important for active intracellular transport as well as for cell migration
such as the cytoskeleton and molecular motor proteins. Thereby, I will discuss the
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Chapter 2. Biological background

Figure 2.1: Image of the cytoskeleton of a hippocampal neuron labeled for actin (green),
microtubules (blue) and neurofascin (red). Reprinted with permission from
Christophe Leterrier, http://www.neurocytolab.org, Copyright (2020), accessed
https://inp.univ-amu.fr/sites/inp.univ-amu.fr/files/galerie/neurocyto_pic3.jpg
on 25. February 2020.

nerve cell as an environment for active and passive intracellular transport. Cell mi-
gration such as found for a dendritic cell (DC) is reviewed afterward. A large fraction
of the content of this chapter is based on the book Molecular Biology of the Cell by Al-
berts et al. [20]. Other resources used are stated in the text.

2.1 The cytoskeleton

The first section of this chapter deals with the cytoskeleton. It is build from pro-
tein filaments that can be divided in three groups: actin filaments, microtubules (MTs)
and intermediate filaments [20]. Filaments of these groups differ in their composition,
properties, and appearance in the cytoskeleton [20]. The helical structure of actin fil-
aments is produced by polymerizing sub-units. In this way, filaments form long and
rather flexible structures. Many of these actin filaments are combined and connected
by accessory proteins in order to form the actin cortex of the cytoskeleton. MTs are
tube-like filaments build from tubulin dimers. Actin filaments and microtubules are
the most common and most studied filament groups. Intermediate filaments denote a
filament class of huge variety. Figure 2.1 shows a fluorescence spectroscopy image of
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2.1. The cytoskeleton

a hippocampal neuron cell. Microtubules have been labeled in blue, actin filaments
in green. Since the cytoskeleton is present over the cell, a good impression of the
overall shape can be gained from the location of filaments. In this thesis, the focus is
on microtubules which are discussed in detail in the following section.

2.1.1 Microtubules

A microtubule is a tube-like structure that develops by successively polymerizing
tubulin dimers (see figure 2.2). A tubulin sub-unit consists of α-tubulin and β-tubulin
monomers forming a dimer of 8 nm length. From these polar dimers, protofilaments
can be build by adding up head to tail (see figure 2.2 (a)). The complete microtubule
consists of 13 of these protofilaments arranged in a tube structure. Protofilaments

Figure 2.2: Microtubules are polar filaments build from tubulin dimers. The minus-end is
typically capped by proteins and thus stabilized, the plus-end exhibits dynamic
instability. GTP bound dimers polymerize to the tip and transition in the GDP
state. By catastrophe events, the MT switches into the depolymerization state.
This shrinking is stopped by a rescue event leading to a metastable MT which can
either start to polymerize or depolymerize again. Reprinted from Nature Reviews
Neuroscience, 10, Conde et al., Microtubule assembly, organization and dynamics
in axons and dendrites Cecilia, 319-332, Copyright (2009), with permission from
Springer Nature.
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are aligned parallel and slightly shifted along the tube axis (see figure 2.2 (b)). The
resulting MT has an outer diameter of approximately 25 nm and the composition
structure formed by the sub-units is named MT lattice. The largest shift between
monomers in the MT lattice is called seam. The dimer polarity is eventually reflected
in the whole MT, resulting in a plus-end and a minus-end.

The stability of the MT lattice depends on the conformational state of tubulin
molecules [29, 42]. Furthermore, tubulin dimers have tails of amino acid sequences
that do point out of the microtubule structure [43]. The β-tubulin of a sub-unit can be
found in a GTP-state (Guanosine triphosphate) or a GDP-state (Guanosine diphos-
phate). The transition between the two states is facilitated by adding and removing
guanine nucleotides [44]. Note that the MT lattice is more stable in the GTP state than
in the GDP state.

Switching between the two GTP and GDP states can lead to growing and a shrinking
states in the so called process of dynamic instability [42, 44]. GTP-dimers are added to
the MT during polymerization. This GTP state will eventually transition to a GDP-
state over time. The full MT is therefore stabilized by adding GTP-dimers (GTP cap)
to the tip and destabilized by loosing the GTP cap over time. The GDP filament can
then switch to depolymerization which is called catastrophe. The switch back to the
polymerizing state is called rescue [42, 44] (see figure 2.2 (c)).

The dynamic instability is usually restricted to the plus-end of the MT because the
minus-end is stabilized. This is provided by proteins such as CAMSAP2 in axons [45]
or by the microtubule organizing center (MTOC) which is close to the cell nucleus in
eukaryotic cells [20].

2.2 Molecular motors and other MAPs

In section 2.1, the structure of microtubules has been introduced. In this section,
the focus is on microtubule associated proteins (MAPs) that interact with the MT.
Important representatives of MAPs are the classes of motor proteins. They are further
divided into myosin, kinesin and dynein. The names are thereby referring to large
superfamilies with many members. Myosins are associated with actin filaments [2].
Kinesins and dyneins bind to the MT. Bound motors walk along the filament with a
given run-length until they detach from the filament again. The stepwise propagation
consumes energy provided by ATP hydrolysis (Adenosine triphosphate).

Besides the motor proteins, many other MAPs interact with microtubules such as
CAMSAP2 for stabilizing minus-ends [45] which will be further discussed at the end
of this section.

2.2.1 Kinesin

The first superfamily of motor proteins introduced in this thesis is kinesin. In the
family, at least 90 different members are known [46, 47]. Despite a structural variety
between members of this family, an important part called the motor domain is very
similar for members of the superfamily kinesin. The motor domain connects to the
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2.2. Molecular motors and other MAPs

Figure 2.3: Kinesin, myosin, and dynein are molecular motor proteins consisting of a motor
domain and a tail which is connected to a load or a cargo. The myosin motor do-
main moves along actin filaments, kinesin and dynein walk along microtubules.
Kinesin moves in the plus-end direction and dynein towards the minus-end of
the MT. Besides the direction, both MT associated motor proteins heavily differ in
their structure. Reprinted from Cell, 112 / 4, Ronald D. Vale, The Molecular Mo-
tor Toolbox for Intracellular Transport, 467-480, Copyright (2003), with permission
from Elsevier.
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MT, whereas the subsequent tail can strongly differ in order to serve as a binding
component to various types of cargoes [2, 48] (see figure 2.3). Kinesin 1, also called
conventional kinesin, is often considered to be a standard example of the superfamily
[48] (see figure 2.3).

Displacement is generated by the two heads stepping in a hand over hand mo-
tion [49] with a step size of one tubulin dimer, i.e., 8 nm [50]. The energy for this
mechanism is provided by the ATP-hydrolysis cycle in which the binding of motor-
heads to the MT and unbinding from the filament is repeated. For heads bound to
ATP (adenosine triphosphate), stronger binding to the filament is generated than for
ADP (adenosine diphosphate) bound heads. Hence, a ATP bound head sticks to the
MT until it hydrolyzes the ATP to ADP and phosphate in a conformational change
of the head and finally detaches from the MT. The head now is displaced along the
MT and can change to the ATP state again and eventually rebind to the MT. In this
process, the second head changes to the weak binding state and detaches so that the
cycle can start again [51]. Repetition of the cycle leads to a hand over hand pattern of
motorheads and eventually displacement along the MT [2].

Some kinesin motor proteins, such as conventional kinesin, perform a processive
motion along the MT [52] whereas others such as ncd detach immediately after one
step [48, 53]. The run length is approximately 1 µm [34, 54] where a migration speed
between 0.3 µm/s and 1 µm/s has been observed [34, 55]. The speed is depending
on the load applied to the kinesin motor protein. The rate of detachment events
is determined by the run length. Together with the attachment rate, binding and
unbinding rates of a motor are often given in the form of dissociation rates [34].

Despite the similar motor domain, not all kinesin walk in the same direction on
the microtubule in the hydrolysis cycle [56]. Conventional kinesin is usually directed
toward the plus-end of the MT [20] but kinesin motors such as ncd walk toward the
minus-end [57].

2.2.2 Dynein

In contrast to the usually plus-end directed kinesin, the class of dynein motor proteins
is considered to be minus directed [2, 20]. The dynein superfamily is divided into
the two families of cytoplasmic dynein and axonemal dynein which is responsible for
retrograde transport in axons [58]. The high complexity of dynein is reflected in its
heavy molecular weight [59]. Different adaptors such as dynactin or BICD cargo
adaptors regulate dynein’s function and localization in the cell [60] (see figure 2.3).
Dynein can be in a diffusing state and needs to be activated for processive walking.
This can be achieved by mechanical interaction applying forces on the motor protein
[12, 61].

Similar to kinesin, dynein motors also walk by consuming ATP in a processive mo-
tion along the MT and can take run lengths in the micrometer scale [62, 63]. By alter-
nating steps of the dynein heads, a movement is generated [64]. Dynein steps length
has been observed between one tubulin sub-unit (8 nm) such as for kinesin, and up
to 32 nm [63, 64]. In addition, dyneins show side steps to neighbor protofilaments on
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2.2. Molecular motors and other MAPs

Figure 2.4: Bottom left: Atomic model of the MT lattice build from tubulin dimers and MAPs
on the relevant locations on the MT lattice. Top right: Cargo transport by molecu-
lar motors along the MT lattice. Kinesin is dirrectly bound to the cargo, dynein via
dynactin and a BICD adaptor protein. Reprinted with permission from Portland
Press, Essays in Biochemistry, 62, 6, 737-751 (2018), open access under a CC BY
license.

the MT, a phenomenon which is not common for kinesin [60, 64–66].

2.2.3 Interaction of MAPs and the MT

In this section, I give several examples of MAPs that interact with the MT. In the con-
text of active intracellular transport by molecular motors, it is worth to look closer at
the complex interactions which might help to coordinated transport. Beside molec-
ular motors, the MT interacts with other MAPs. This further increase complexity
of the MT structure and intracellular transport. So called posttranslational modifica-
tions (PTMs) on the MTs lead to tubulin heterogeneity, different functionalities of
MTs [29,43] (see figure 2.5). Recent studies bring knowledge on many PTMs together
to a tubulin code which might regulates the functionality of MTs in cells [29,30,43,67].

Several examples of MAPs are shown schematically in figure 2.4 and MAP-MT
interactions are presented in this section. CAMSAP proteins for instance stabilize
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Figure 2.5: Schematics of the tubulin structure embedded in a microtubule. PTMs take place
on the tubulin tails that reach out of the MT and therefore can interact with en-
zymes, +TIPs, motor proteins and other MAPs. Reprinted from Nature Reviews
Molecular Cell Biology, 12, C. Janke and J. Bulinski, Post-translational regulation
of the microtubule cytoskeleton: Mechanisms and functions, 773-786, Copyright
(2011), with permission from Springer Nature.

the MT minus-ends [45, 68], DCX stabilizes the 13 protofilament architecture of MTs
[68–70] and WHAMM links the MT to the actin network [68, 71, 72]. Tau proteins act
stabilizing on the MT lattice [68] but in addition, interacts with motor proteins. In
vitro experiments showed that kinesin binding affinity was lowered in presence of
tau [73] and also the detachment from the MT was enhanced in an other experiment
[74], however, the speed was not affected by tau [75]. Kinesin dependent traffic was
observed to be inhibited when tau was overexpressed [76]. The protein MAP7 and
tau have been found to compete for binding to microtubules [77], which can regulate
motor movements due to MAP7 strongly recruiting kinesin to the MT in vitro and not
affecting dynein [77].

Furthermore, the protein family of end-binding proteins (EB proteins +TIPs) rec-
ognize growing plus-ends of microtubules and can modify MT-dynamics [68,78] (see
figure 2.6). EB induces hydrolysis of GTP and leads to a compaction of MT lattice
in the cap [79]. This is consistent with other studies showing that the MT lattice is
compacted when going from the GTP cap towards the GDP bulk of the MT [80–82].

Kinesin modifies the MT lattice

In the study by Shima et al. [34], it has been reported that even kinesins cooperatively
can modify the MT lattice. By binding and migrating along MTs, a slight conforma-
tional change between the α- and β-tubulin monomers has been induced. As a result,

24



2.2. Molecular motors and other MAPs

Figure 2.6: Lattice compaction of a microtubule in the process of transitioning between the
GTP cap towards the GDP configuration of tubulin. Reprinted from Cell, 162,
Zhang et al., Mechanistic Origin of Microtubule Dynamic Instability and Its Mod-
ulation by EB Proteins Graphical, 849-859, Copyright (2015) with permission from
Elsevier.

the MT lattice is elongating along the axial pitch by approximately 2 % [34, 83]. This
lattice elongation was associated with changing the GDP structure towards the more
stable GTP-like form, similar to the contrary lattice compaction seen in the presence
of EB proteins (see figure 2.6).

It is remarkable that kinesin motors also have been found to show a higher bind-
ing affinity for MTs that have been elongated by former kinesin trajectories. In the
experiment by Shima et al., kinesins showed a higher binding rate but a constant run
length, i.e. unbinding rate. The effect of higher binding has been decaying over time
in the order of minutes. This is a rather slow process compared to the speed of kinesin
stepping which is approximately 60 steps in a second [34].

The concentration of kinesins per tubulin dimers is relevant for the pitch elonga-
tion. A minimum value of approximately 10 % saturation has to be fulfilled to ob-
serve the cooperative conformational change in the MT lattice [34]. Kinesins have
been found to distribute heterogeneously among the MTs in the in vitro experiment
if the concentration of motors in the solution is not too high. The cooperative effect
of kinesins is in accordance with cooperative accumulation in in vitro decoration ex-
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periments of kinesins [84] and myosin motors [85]. Also in the experiment by Muto
et al. [86], the binding of kinesins on a microtubule showed a long-range cooperative
interaction. Binding of kinesin enhanced the binding of other kinesin motors in a
region near the first kinesin that has a length of micrometers

These cooperative effects essentially provide a mechanism of a feedback loop be-
tween kinesin motors and the MT filament that could influence the transport by
molecular motors. A similar effect for dynein motors has not yet been found to my
knowledge.

2.3 Bidirectional transport by molecular motors

In addition to single motor proteins, cargoes such as organelles or vesicles are re-
quired to be transported. While walking on MTs, both motor types may also be
bound to a cargo, such as vesicles or organelles [2,87,88]. The combination of a cargo
and one or more molecular motors is called motor-cargo complex in the following (see
figure 2.4). Active intracellular transport can be generated by motors pulling the con-
nected cargo. Since there are the minus-directed and plus-directed molecular motors,

Figure 2.7: In intracellular transport, cargoes can be transported by molecular motors in both
directions along the MT. Reprinted from Cell, 112 / 4, Ronald D. Vale, The Molecu-
lar Motor Toolbox for Intracellular Transport, 467-480 figure 2 a, Copyright (2003),
with permission from Elsevier.
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transport is possible in both directions of the MT (see figure 2.7). In other words,
transport is bidirectional.

Various interactions between the motor proteins, the cargo, and the environment
might influence the transport. Both kinesin and dynein share the same binding site
on MTs [89,90], hence both motor types might even compete about the binding sites.
If more than one motor is bound to a cargo and the filament, motor proteins are not
independent but instead apply forces on each other which leads to many cooperative
effects in cargo transport such as Tug of War [12]. In addition, the motor-cargo com-
plexes can interact with each other via volume exclusion and may also be influenced
by their environment. Thereby one has to distinguish between in vitro experiments
where transport usually takes place in a solution [34] and in vivo transport that has to
perform in the living environment of a cell. I will present the environment in further
detail in section 2.4.

2.4 Intracellular transport in neurons

After introducing the components involved in intracellular transport along micro-
tubules and the basic framework for active bidirectional transport, this section covers
the neuron as an environment for intracellular transport. In figure 2.1, an image of
the cytoskeleton of a neuron has been shown. Many extended protrusions are visi-
ble in this image. The main components of a neuron are the cell body (soma) which
includes the nucleus, a long tube-like extension named axon and treelike structures
called dendrites. Axons and dendrites connect different neurons with each other via
synapses [20]. In figure 2.8, a scheme of a neuronal cell is drawn. I will discuss as-
pects of the outer neuronal morphology and structure as well as the MT network
inside neurons in the following. These aspects will clarify key points that are crucial
for intracellular transport inside neurons in vivo.

2.4.1 Axons

The axon is a very long, thin channel (up to 1 m in length, several µm diameter [20])
which grows from the soma to the neuron’s environment. On the end of a growing
axon (distal region), a so-called growth cone can be found. This area is developed by
the dynamics of the actin and microtubule network [91]. The nerve cell can transmit
signals to other neurons with the axon. In order to do so, the axon builds synaptic
connections with dendrites from other cells. The axon is of special interest because
of its enormous extension while at the same time having a small diameter. The ques-
tion is how active, bidirectional transport in such a long and confined system can be
efficient.

Active, MT based, intracellular transport which has been discussed so far, is now
regarded in the environment of the axons. Inside the axon, microtubules are aligned
in parallel, pointing with the plus-end towards the distal region of the axon [92]. MTs
in this network has a length of approximately 10 µm [3, 93] but can be found as long
as 100 µm [94]. The distance between the parallel MTs has been measured as less
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Figure 2.8: Scheme of a neuron including dendrites and the axon as well as the inner MT
network. The nucleus is located inside the some from which the axon grows out
into a long, tube-like protrusion where the growth cone is located at the end. In-
side, a parallel and identically polarized MT network is situated and stabilized
by tau proteins. Moreover, many dendritic trees point out of the soma, which
also includes an MT network, but not in an identically polarized orientation. Fur-
thermore many components can be found inside neurons such as mitochondria,
vesicles, Golgi apparatus or ribosomes. Reprinted from Nature Reviews Neuro-
science, 10, Conde et al., Microtubule assembly, organization and dynamics in
axons and dendrites Cecilia, 319-332, Copyright (2009), with permission from
Springer Nature.

than 50 nm [3, 95] which means they are tightly packed considering their diameter
of 25 nm (see figure 2.9). Tau proteins further regulate bundling of MTs and thereby
form the MT network [96]. The inner part of the axon is, therefore, a crowded envi-
ronment for intracellular transport.

2.4.2 Dendrites

In addition to the axon, the second type of protrusions from the soma is called den-
drites (see figure 2.8). Dendrites form branched treelike structures and receive the
neurotransmission that is generated by axons. Although dendrite morphology dif-
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Figure 2.9: Cross-section of the MT network in an axon in electron micrographs. Reprinted
from Nature, 360, R. J. Chen et al., Projection domains of MAP2 and tau determine
spacings between microtubules in dendrites and axons, 674-677, Copyright (1992),
with permission from Springer Nature.

fers for different types of neurons and regions in the body [97], there are general fea-
tures such as branching at acute angles [98, 99] and decreased diameter of branches
far from the soma [100].

Complex protrusions called spines are distributed along the dendritic channels
[101, 102] (see figures 2.10 and 2.11). Spines receive and compartmentalize excitatory
synaptic input [102]. During different states of dendrite development and activity,
spines may dynamically change their structure [103–105]. The shape and structure
are often categorized in several schematic groups such as thin, stubby or mushroom-
like [106]. However, the shape can show high diversity [107]. Also, the density of
spines has been found to vary between different segments of the dendrite up to 40 %
around the mean value [108, 109]. Mushroom-like spines play a role in retaining re-
ceptors in the spine and therefore localize them in the dendritic channel [16].

Similar to axons, the growing end of dendrite branches is called growth cone.
Thereby, microtubules point from the tree structure into the growth cone area. In
contrast to axons, MTs are not identically polarized in dendrites [42, 92, 110].

Figure 2.10: Example of a dendrite segment from a pyramidal neuron. Reprinted from J Neu-
roinflammation 12, 34 Chang et al., Docosahexaenoic acid (DHA): a modulator of
microglia activity and dendritic spine morphology, 1-15, Copyright (2015), under
open access license.
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Figure 2.11: Abnormalities in geometry and spine density in dendritic branches near to fibril-
lar amyloid deposits in Alzheimer’s disease. a) and b) Decreased spine density
in deposits, c) Varicosity and sprouting on a branch. Reprinted from Annals of
the New York Academy of Sciences, 1097, Grutzendler et al., Various Dendritic
Abnormalities Are Associated with Fibrillar Amyloid Deposits in Alzheimer’s
Disease, 674-677, Copyright (2007), with permission from John Wiley and Sons.

I discussed previously that intracellular transport is often carried out actively by
molecular motors. However, small chemical signals such as ions also diffuse inside
the cytoplasm. In neuronal dendrites, synaptic input of chemical signals diffuses
through spines and eventually through dendritic channels. Thereby the spines can
act as traps for the chemical signals [17]. The structural features of dendrites are
crucial for describing passive intracellular transport of chemical signals in dendrites.
In this thesis, I will study how the dendritic environment affects the diffusion of the
signals inside the dendrites.

2.4.3 Organization of the MT network influences motor driven transport

If cargo transport is carried out by molecular motors walking on microtubules, trans-
port is affected by the MT network structure. First, the small distance between neigh-
boring MTs may act as obstacles. Whereas the distance between MTs is typically less
than 50 nm [3, 95], cargo size is often found in the same magnitude for vesicles [111]
or even a magnitude above for example for mitochondria [20]. Second, in the small
space, motor-cargo complexes carried along different filaments are likely to interact
with each other. Third, it has been reported by Yogev et al. that transport is inter-
rupted at the end tips of MT until it continues along the next MT [3]. This organiza-
tion of the MT network, therefore, influences intracellular transport in axons.

It is even more intriguing how bidirectional transport is organized among differ-
ent microtubules as in the following example. The primary cilium is an antenna-like
protrusion found for most vertebrate cells which include a network of uniformly po-
larized microtubule doublets [20]. In the study by Stepanek and Pigino [32] it has
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been found that transport is carried out in lanes, i.e. anterograde and retrograde
transport are distributed among the two MTs in the doublets.

A difference between the MT network structure of axons and dendrites is that MTs
are equally polarized in axons but not in dendrites (see sections 2.4.1 and 2.4.2). In
the study by Tas et al. [31], it has been shown that the MT network in dendrites is
not randomly but organized in bundles of the same orientation. In addition, the
entrance of motor proteins into the initial segment of dendrites [31, 112], and axons
[113] can be highly regulated by for example by PTMs. Cargo transport that is carried
out by a single type of motor is then also able to perform in both, retrograde and
anterograde direction of the cell. Inside a bundle, however, plus-directed transport
is unidirectional [31]. The organization in bundles could, therefore, be an advantage
for the spatial cargo interactions because cargo-cargo interactions could be reduced
compared to bidirectional transport in a bundle. For axons, however, using only
motors of one direction in the transport cannot perform retrograde and anterograde
since the MT network is unipolar.

2.4.4 Neurodegenerative diseases

After introducing important components and environments of intracellular trans-
port, I give further motivation to investigate transport in neurons. Neurodegenera-
tive diseases such as Alzheimer’s disease, amyotrophic lateral sclerosis (ALS), Hunt-
ington’s disease, and Parkinson’s disease might occur in the context of disturbed in-
tracellular transport [5]. In axonal pathologies, swellings with abnormal accumula-
tions of proteins, vesicles and organelles can be linked to dysfunctional intracellular
transport [5, 114, 115]. Also, the MT network structure has been found to be affected
in diseases such as Alzheimer’s disease where a reduction of MT density has been
observed [116].

Structural changes can be beyond the internal components and also affect the outer
morphology of neurons. In dendrites, the length, diameter, and curvature [7,108,117]
as well as the number and extent of branches [7, 118] can be modified in progress of
neurodegenerative diseases. Moreover, spine morphology is affected in density and
shape [7, 8, 108, 117–120]. In Alzheimer’s disease, typically an accumulation of amy-
loid plaques can be found [8] which can lead to irregularities in the dendrite mor-
phology and spine distribution localized near the amyloid plaque [121] (see figure
2.11).

2.5 Migration of dendritic cells

After discussing components of intracellular transport with a focus on neurons, I
introduce the migration of dendritic cells (DCs) as an additional example of transport
in biological systems. DCs denote the comprehensive class of sub-types which differ
in function and localization for instance [11]. The so-called migratory DCs will be the
representative of dendritic cells in this work.

31



Chapter 2. Biological background

The ability to migrate is important for the protective pro-inflammatory as well as
immune responses [41]. In tissues, DCs are able to recognize pathogens and antigens,
and bring them to lymph nodes. In this process, DCs can activate T cells which then
respond to the pathogens [20] in the tissue. Remarkably, DCs are heavily influenced
by the environment they are migrating in. For example, migration relies on proteins
such as CDC42 in vivo but not in an two-dimensional setting [122, 123].

DCs have shown complex modes of migration such as amoeboid-like migration re-
sulting from contractions of the cell rear and cell crawling in which the cell pulls for-
ward by adhesion on a substrate [11]. In crawling types, the cytoskeleton pushes
against the membrane and forms protrusions, called lamellipodia, in the front of the
cell. On these protrusions, the cell forms new adhesion points (focal adhesion) in
order to make contact with the substrate (see figure 2.12). Stress fibers of actin con-
nect different adhesion points [124]. The adhesion is released in the rear of the cell so
that the cell body is pulled towards the front and the cell eventually migrates [125].
Both in the formation of lamellipodia and in the pulling process of the cell body, the
actin cortex and MT network play a crucial role [124, 126]. It has been shown that
lamellipodia can be formed by actin polymerization independently of microtubules,
however, cell migration and tail retraction rely on microtubules [127].

An alternative mechanism for the cell to migrate in three dimensions is to push
in several directions against its environment in order to generate friction rather than
adhesion [11] (see figure 2.12). Thereby, the cell has to make directional choices in
the complex three-dimensional environment of tissues. The ability to form directions
is determined by the ability to polarize [11]. The polarization of the cell and thereby

Figure 2.12: Schematic drawing about the different types of migration of dendritic cells. Top:
Without confinement, DCs can form focal adhesion points. Bottom: In a confine-
ment, DCs can migrate by using friction against the confining walls. Cropped
and reprinted from Immunological Reviews, 1, Heuzé et al. Migration of den-
dritic cells: Physical principles, molecular mechanisms, and functional implica-
tions, 240-254, Copyright (2013) with permission from John Wiley and Sons.
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directed motion has been observed to be strongly correlated to actin polymerization
waves [22]. This might result in the positive coupling which has been observed be-
tween cell speed and persistence [23, 24].

In order to search for antigens, DCs are expected to cover wide areas in the body. It
is not clear how the search is efficiently organized, in particular, because many com-
plex interactions with the environment influence the cell. In addition to the phys-
ical environment discussed above, it has been found that migration patterns [128],
speed and persistence [11] are affected by chemokines. During search, when sam-
pling the environment for antigens, DC migration exhibits periods of fast and slow
motility [129–131]. DCs might not efficiently collect antigens during fast migration
states [11,132] which opens questions on how the cell can organize an efficient search.

2.6 Chapter summary

In this chapter, the essential components of intracellular transport in neurons and
cell migration have been presented. For this thesis, I differ between active transport
and passive transport. Neurodegenerative diseases have been related to disordered
intracellular transport and structural changes of its environment.

Passive transport is governed by diffusion, mostly of small chemical signals. The
diffusion is performed in the environment of the cell. This environment can be very
confining in axons and dendrites of neurons because of their long extend, small di-
ameter and comb-like structures of spines. However, little is known about the exact
influence of these structural characteristics on passive transport.

Active transport is carried out by molecular motor proteins along filaments. In this
thesis, the focus is on microtubule-based motors, kinesins and dyneins. Together with
other MAPs, the show complex interactions the MTs which influences and might lead
to organization and coordination of transport. Furthermore, motors are connected to
cargoes such as vesicles and transport them along the MT. Transport can be unidirec-
tional or bidirectional. In the confined environment of the axon, cargoes interact with
other cargoes and the environment. The question is how active intracellular transport
can be efficient.

Many of these components are also involved in the migration process of the whole
cell. Actin filaments and microtubules form new protrusions in the membrane and
stress fibers in the cell. Together with adhesion, the cell can pull forward witch results
in migration. During their complex migration patterns, dendritic cells have to search
for antigens. It is not clear how complex migration influences the search for these
antigens.
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In the previous chapter, important components of intracellular transport and cell
migration have been introduced. The many components of the cell interact which
each other and their environment, which can change the properties of the compo-
nents. This makes the cell an example of a complex system. To effectively describe
transport in such a system or transport of the system itself, where not all degrees of
freedom are known, a stochastic modeling approach is often reasonable. The motion
is seen as a combination of a regular movement and a noisy component. Statistical
evaluation of stochastic models can then be used to describe the system [133]. In this
way, general statements can be concluded from an ensemble of stochastic realizations.

In this chapter, theoretical methods are introduced that are important for model-
ing and evaluating results in this thesis. Stochastic processes and ways to deduce
properties out of them are reviewed in section 3.1. The special example of the random
walker as a stochastic process, and is presented in section 3.2. The stochastic processes
are categorized in Markovian and non-Markovian processes. Non-Markovian versions
of random walkers and their description in stochastic processes are discussed in sec-
tion 3.3. In section 3.4, another class of stochastic processes is presented, the renewal
process.
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3.1 Stochastic processes

A detailed description of stochastic processes can be found in Van Kampen [134]
and Gardiner [135]. A selection of important concepts such as Markov chains, master
equations and computational methods for this thesis is summarized from these books
and presented in this section.

A stochastic process is described by a random variable X = (X1, X2, ..., Xr) that de-
pends on time (X(t)). Measuring possible values x for X at different times ti generates
a set of values for the random variable. A set of joint probability densities determines
the stochastic process [135]. Important information such as averages and higher mo-
ments can be deduced from the probability density function (PDF) PX(x) of X.

3.1.1 Markov processes

One kind of stochastic process has proven to be very useful for physical models,
the Markov process. It is defined by the Markov property which says the following:
The conditional probability density function is exclusively determined by the current
state, hence the memory of older states has no influence on the future dynamics. The
age of the process, meaning the time since the last transition did occur, is therefore
also not relevant for the transition probability between states. For a discrete sequence
xn with n ∈ N and times t1 ≤ t2 ≤ t3 ≤ ... ≤ tn, the Markov property is given by

P (xn, tn|xn−1, tn−1; ...; x1, t1) = P (xn, tn|xn−1, tn−1), (3.1)

where P (xn, tn|xn−1, tn−1) is the conditional PDF for finding the system in state xn at
time tn given the system was in state xn−1 at time tn−1. A discrete Markov process is
called Markov chain. In this chain, the time-evolution is determined by the conditional
PDF at time t and the initial condition due to successively going through the chain.
By neglecting the past and concentrating on the momentary state of the system, the
description of the stochastic process is fully determined.

Now consider the probability of finding the system in one of the states x at time t.
The time-evolution of this probability can be calculated and described by the master
equation which is given by [134]

∂P (x, t)
∂t

=
∑

x′ 6=x

[
ω(x′ → x, t)P (x′, t)− ω(x→ x′, t)P (x, t)

]
(3.2)

in continuous time and by

P (x, t+ ∆t)− P (x, t) =
∑

x′ 6=x

[
ω(x′ → x, ∆t)P (x′, t)− ω(x→ x′, ∆t)P (x, t)

]
(3.3)

for discrete time intervals ∆t. The form of the master equation shows gain terms
(from x’ to x) and loss terms (from x to x’) for the probabilities of finding the system in
state x [134]. The factors ω(x′ → x) and ω(x → x′) are called transition rates between
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states x′ and x in case of continuous time and transition probabilities in discrete time.
For finite time intervals ∆t, there is a probability for transitions between two states,
in first order given by

p(x→ x′) = ω(x→ x′)∆t. (3.4)

Alternatively in continuous time, the time between two transitions (waiting time un-
til the next event happens) can be calculated directly. For age independent transition
probabilities, waiting times are required to be exponentially distributed (Poisson as-
sumption)

p(tw) = ω exp (−ωtw) . (3.5)

The stationary state of the system is often used to describe the properties of the
stochastic process. The left-hand side of eq. 3.3 can be set to zero which simplifies the
equation.

3.1.2 Sampling methods for Markov processes

By calculating solutions of the master equation, the time-evolution of a stochastic pro-
cess is fully determined. However, often the master equation is analytically not solv-
able. Besides the rare cases where it is possible, numerical methods to solve the equa-
tions, approximations as well as numerical simulations help to describe the stochastic
process.

In order to generate realizations of a stochastic process by sampling the underlying
probability densities, one needs to draw random numbers from given distributions.
A standard method to do so is inverse sampling [136,137] that transforms independent
identically distributed (i.i.d.) random numbers in random numbers drawn from the
demanded distribution. Correlated i.i.d. random numbers can be drawn by the sum-
of-uniforms method [138, 139].

Sampling the stochastic process means that several realizations from initial condi-
tions give an ensemble of paths in the system’s phase space. This ensemble approx-
imates the PDF of the stochastic process. Sampling methods have to fulfill rules in
order to generate physically meaningful realizations.

The first method I briefly present is Gillespie’s algorithm [136] which generates real-
izations of the stochastic process in continuous time. The algorithm calculates wait-
ing times for all possible events by using the transition rates ωn and inverse sam-
pling [136, 137]. For constant rates ω, waiting times are drawn from

∆t = − ln(u)

ω
, (3.6)

where u is a uniform random number.
Two different versions of Gillespie’s algorithm have been introduced which are

called direct method and first-reaction method [136]. In the direct method, a transition is
chosen, based on the statistical weight of its transition rate among all possible tran-
sitions. In the second step, the matching waiting time is calculated by inverse trans-
form sampling. In the first reaction method, waiting times for all reactions are calcu-
lated and the event with the smallest waiting time is chosen to be the next transition.
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The other waiting times will be forgotten, and after the transition, the procedure is
repeated. However, many waiting times will be calculated and deleted for a large
state space in every event step which decreases the efficiency of the algorithm.

An alternative to the first reaction algorithm is the next reaction method [140]. Here,
switching from relative time intervals to absolute times for events and storage of
these times allows reusing reaction times for other events than the first reaction. The
drawback is that a list of all waiting times and reactions has to be organized and
updated. Gibson et al. [140] showed that the reuse of random numbers is valid in
their algorithm and thus found an equivalent method to the Gillespie versions for
Markov processes.

Often it is not necessary to use the exact update structure of Gillespie’s algorithm.
Going to discrete time steps again allows building algorithms that are based on ac-
cepting and rejecting events. In the random-sequential update, the next reaction is cho-
sen based on its statistical weight (tower sampling) similar to the direct method by
Gillespie. Afterward, a decision is made if the chosen event is executed or not within
the time interval ∆t by evaluating the probability for the transition in the given time
interval. In case the stochastic process has an internal running order, other rejection
based updates might better suit such as the sequential or parallel update [141].

3.2 The random walker

A famous example of a stochastic process in statistical physics is the random walker.
It is traditionally a way to model Brownian motion [142] and, hence, diffusion. This
model class is the basic concept for the models developed in the projects about pas-
sive intracellular transport and cell migration in this thesis.

3.2.1 The ordinary random walker

A well-studied example of stochastic processes is the ordinary random walker. Essen-
tially, a random walker (RW) is a sum of random variables. Each of these variables
corresponds to a displacement X so that the sum denotes the total displacement of
the random walker.

Similar to the section before, a random walker can be described in discrete or
continuous time, as well as in continuous space or discrete space, i.e. steps on a
d-dimensional lattice [143]. I will focus on the discrete case in this thesis. In the sim-
plest case of a one-dimensional lattice of step length 1, the random walker moves one
step to the right or to the left at each time step with probabilities p and q = 1 − p,
respectively [143]. This characteristic identifies the ordinary random walker as a
Markov chain because the probabilities stay constant over time so that the next state
(position) of the RW is only depending on the current state and not on the past. The
total displacement after n steps is then given by Xn = X0 +

∑n
t=0 Zt with Zt = ±1,

the initial condition X(t = 0) = X0 and mean value (2p − 1)t. This shows that the
random walker has a drift for asymmetric probabilities p 6= 1/2 and the total dis-
placement will diverge in the limit of large times. However, the RW is recurrent in
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the symmetric case which means that the number of visits diverges for an infinite
time. Note that the recurrence time still is expected to be infinite [143].

The time-evolution of the discrete random walker is described by a master equation
(see equation 3.3):

P (Xn+1 = x, n+ 1) = pP (Xn = x− 1, n) + qP (Xn = x+ 1, n) (3.7)

with initial condition P (x) = δx,0. By the central limit theorem, the RW’s master equa-
tion is solved by a Gaussian distribution in continues time and space

P (x, n) =
1√

2πσ2
e−(x−µ)

2/(2σ2) (3.8)

with mean value µ = (2p − 1)n and variance σ2 = 4np(1 − p). The solution of the
master equation is also called occupation probability since the RW occupies a position
or state at time t.

3.2.2 Mean square displacement

A common statistical measure to describe the dynamics of random walks is the mean
square displacement 〈x〉 (MSD). It measures the average quadratic displacement over
time and is related to the time by a power law 〈x〉 ∝ tα [144]. The MSD is especially
useful to express the diffusivity of a random walker. For Brownian particles the ex-
ponent α is equal to one [145], for 0 < α < 1 the random walk is sub diffusive and
for 1 < α < 2 super diffusive, where α = 2 is considered to refer to ballistic mo-
tion [143, 144, 146, 147].

From the central limit theorem, it is expected that the long term behavior asymp-
totic of the MSD is diffusive for ordinary random walks [9]. However, several mod-
ifications to the RW also lead to super and subdiffusive behavior for transient time
regimes as well as asymptotic times [148–150]. At the so-called percolation threshold,
no crossover between anomalous diffusion and diffusion is observed anymore [151].

Examples for modifications are intermittent and run-and-tumble walks [150, 152–
154] or Lévy flighs and Lévy walks [144, 146, 147, 150, 155] where diverging second mo-
ments of the displacement can lead to not following the central limit theorem any-
more. Also, interactions with the environment of the walker can result in anomalous
diffusion [9, 14, 17, 147, 156].

3.2.3 First-passage time

Besides the MSD, a second tool to measure a random walker’s motion is the time at
that the random walker visits a particular site of the lattice space for the first time
(first-passage time). The first-passage time is, therefore, a meaningful tool to describe
search processes, i.e. it gives the time a searcher finds the target for the first time.
The calculation of first-passage times from the master equation is briefly summarized
from [157] in the following.
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From solving the master equation, the occupation probability P (x, t) of the walker
is found on site x at time t is related to the probability F (x, t) of passing x for the
first time at time t. The occupation probability is expected to decay slower over time
since the random walker can contribute to the occupation several times, wheres the
first-passage probability is only depending on the first visit.

Let’s consider a one-dimensional random walker that initially starts at site x = 0
at time t = 0. The probability of visiting site x at time t is related to the process of
passing x at time t′ ≤ t for the first time and then coming back at time t − t′ by the
convolution theorem [134, 157]

P (x, t) = δx,0δt,0 +
∑

t′≤t
F (x, t′)P (0, t− t′). (3.9)

If x is an absorbing state such that there is zero probability to leave the state x again
after visiting it, this equation simplifies, i.e.

P (x, t) = δx,0δt,0 +
∑

t′≤t
F (x, t′). (3.10)

Generating functions are introduced [157] in order to solve calculate the first-passage
time

P (x, z) =

∞∑

t=0

P (x, t)zt, F (x, z) =

∞∑

t=0

F (x, t)zt. (3.11)

For a symmetrical one-dimensional random walker with initial condition δx,0δt,0, a
reflecting boundary at site 0 and an absorbing state x > 0, the following system of
master equations is given

P (0, t+ 1) = 1
2P (1, t) + δx,0δt,0

P (1, t+ 1) =P (0, t) + 1
2P (2, t)

..

.

P (x− 2, t+ 1) = 1
2P (x− 3, t) + 1

2P (x− 1, t)

P (x− 1, t+ 1) = 1
2P (x− 2, t)

P (x, t+ 1) =P (x, t) + 1
2P (x− 1, t).

(3.12)

An alternative relation between P and F is found to be P (x, t) = P (x, t−1) +F (x, t).
Making use of the generating function leads to the equations

P (0, z) = z
2P (1, z) + 1

P (1, z) =zP (0) + z
2P (2, z)

..

.

P (x− 2, z) = z
2P (x− 3, z) + z

2P (x− 1, z)

P (x− 1, z) = z
2P (x− 2, z)

P (x, z) = z
2P (x− 1, z)/(1− z)

(3.13)
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and a simple equation for the first-passage probability F (z) = z
2P (x−1, z). This form

has the advantage that the time difference has vanished and equation 3.13 is therefore
algebraically solvable. The drawback is that the solution has to be transformed back
to real time t afterwards.

In many cases it is difficult to find the full solution for all occupation probabilities.
However, often it is sufficient to calculate the mean first-passage time (MFPT). It can
be deduced from F (z) as follows [157]

〈t〉 =
∑∞

t=1 tF (t)

=
∑∞

t=1 tF (t)zt
∣∣∣
z→1

=z d
dzF (z)

∣∣∣
z→1

.

(3.14)

3.3 Non-Markovian processes

Markovian processes such as ordinary random walks assume that the past has no
influence on the future of the process. The Markov property in equation 3.1 has to
be fulfilled. In section 3.1.1, it has been concluded, that for the Markov process in
continuous time, waiting times between events have to be exponentially distributed
(Poissonian assumption). That means that as soon as the distribution of waiting times
is not exponential anymore, the stochastic process is not Markovian. In this the-
sis, stochastic processes with algebraically distributed waiting times are considered.
Therefore, a non-Markovian description of them is required.

For physical processes, interacting with their environment, is not always reason-
able to assume that the Markov property applies [14]. Examples for non-Markovian
processes and how to sample realizations for non-Markovian processes are discussed
in the following.

3.3.1 Examples of non-Markovian random walks

So far, the ordinary random walker has been discussed as an example for Markov
processes. There are, however, many modifications to random walkers that in-
crease the complexity but also adapt the basic model to various situations such as
intermittent walkers, two-state run-and-tumble motion [150, 152–154] or Lévy walks
[144, 146, 147, 150, 155].

Despite the increased complexity, most of the examples fulfill the Markov property.
The stochastic process can be even more complicated if the past has an influence on
the future dynamics of such a random walker, making it a non-Markovian random
walker with memory.

An example of a RW is given in [158], where the next step depends on a former
step which is chosen randomly from any time in the past of the walk. Depending
on a memory parameter, the diffusivity of the walker varies from localized towards
superdiffusive regimes.
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If the influence of the memory is weaker, Markovian and non-Markovian formu-
lations of random walks may even lead to the same results for occupation probabil-
ities [159]. Also, short term memory can sometimes still modeled in a Markovian
model such as for persistent random walks where the next step depends on the ad-
ditional variable of the direction between the last two steps instead of the explicit
positions of the present and past [160].

In contrast, there are non-Markovian random walker models that cannot easily
be transferred into Markovian versions. An example is a walker that, in between
stepping periods, falls in traps that it escapes with a non-exponential waiting time
distribution [144, 147, 150].

An important observation for this thesis is that interactions with the environment
can lead to an effective non-Markovian behavior of a random walk [14]. For example,
diffusion which is strongly confined in spines has been modeled as a non-Markovian
random walker [15].

3.3.2 Sampling methods for non-Markovian processes

Heavy tailed power-law distributions for waiting times are not compatible with the
Markov assumption because the age of the stochastic process influences the proba-
bility of performing an event in a given time interval. Thus, the update mechanism
discussed in section 3.1.2 has to be adjusted in order to perform physically meaning-
ful realizations of the stochastic process.

One option is to use time-dependent rates instead of constant rates as used in the
former method by Gillespie [136, 161] (see section 3.1.2). A second option is an adap-
tion of the first reaction method by Gillespie, named next reaction method [140]. This
method already has been introduced in chapter 3.1.2 for waiting times drawn from
an exponential distribution. For those, it is equivalent to the first reaction method
by Gillespie, but the algorithm is also a valid choice for algebraically (power-law)
distributed waiting times.

The algorithm chooses an absolute event time for each reaction at the beginning
of the simulation. Initially, the first event is executed and gets a new time from the
waiting time distribution like in Gillespie’s first reaction method. However, this time,
all event non-executed times are stored in a list together. In each update, the next
reaction, i.e. the reaction with the smallest event time, is executed and a new time
drawn from the distribution and added to the current time. The reaction is then
sorted into the list again referring to its absolute event time. In this way, the age is
kept for each process. Gibson et al. showed that this method is equivalent to the first
reaction method for Markov processes and that it is valid to reuse event times for
their algorithm [140].

3.4 Renewal processes and residual waiting times

In this thesis, an other class of stochastic processes is applied. Renewal processes are
stochastic processes also referred to as arrival processes. There is an arrival event at
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times Sn for a chain of renewed processes, i.e. Sn =
∑n

i=1Xi whereXi denotes the ith
interarrival time (or duration) drawn from a waiting time distribution. The following
discussion of renewal processes and residual waiting times is briefly summarized
from [162].

One can easily construct a renewal process from a one-dimensional random walker.
Every time the walker visits the site j, a new arrival event takes place. The interarrival
time Xi can be counted by measuring the time between two visits i and i − 1 of that
site j.

Often it is interesting to count the number of arrivals N(t) which are observed
since the beginning of the process. The strong law for renewal processes states that for
a renewal process which has a mean value X for interarrival times, the number of
arrivals follow

lim
t→∞

N(t)/t = 1/X. (3.15)

This limit is meaningful for calculating the interesting measure below.
For a renewal process which has seen N(t) arrivals at time t ≥ SN(t) > 0, the

residual life, also called residual waiting time, Y (t) defines the time that it takes until
the next arrival SN(t)+1 − t. The age Z(t) of the process refers to the time between
the last arrival and time t, i.e. t − SN(t). The meaning of an arrival process becomes
clear when regarding a random walker. Since visiting site j for the last time, the time
called age Z(t) has passed and it will take the residual time Y (t) until the random
walker visits site j again.

The distribution of the residual life is calculated in the following. In order to esti-
mate the cumulative distribution function (CDF) of Y (t), an indicator reward func-
tion R(t) is expressed in terms of the interarrival time current X̃ and the age Z(t).
The reward function estimates the fraction of time for that it holds Y (t) ≤ y, i.e.

R(t) =

{
1 for Y (t) ≤ y
0 otherwise

=

{
1 for X̃(t)− Z(t) ≤ y
0 otherwise.

(3.16)
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Figure 3.1: Left: The age for a renewal process. Z(t) is growing until an arrival event t = Sn

and starts to grow from zero again. Right: The residual life Y (t) is analog to the
age of the renewal process but shrinks down to zero until a new arrival event
occurs.
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From the strong law of renewal processes, the time average of the indicator func-
tion R(t) gives an estimate for the CDF for Y (t) [157]

FY (y) = lim
t→∞

1

t

t∫

0

R(τ)dτ =
1

X

x=y∫

x=0

Pr{X > x}dx. (3.17)

Remarkable the distribution of the residual life is identical for an exponential dis-
tribution Y = λ e−λt with t ≤ 0. The CDF for the residual life is given by

FY (y) = λ
∫ y
0

(
1− (1− e−λx)

)
dx

= 1− e−λy (3.18)

which is also the CDF of the exponential distribution itself.
However, in non-Markovian cases of a waiting time distributions function for in-

terarrival times not following an exponential distribution, this identity does not nec-
essarily hold. For example, power-law decays can have a residual waiting time dis-
tribution with a shifted exponent compare to the original waiting time distribution
as it is shown below for the PDF

fX(t) =

{
0 0 < t < 1,

(γ − 1)t−γ t > 1.
(3.19)

The residual life or waiting time distribution is in this case given by

d
dyFY (y) = 1

X

∫ y
0

(
1− (1− x1−γ)Θ(x− 1)

)
dx

= d
dy

{
γ−2
γ−1 y y < 1
γ−2
γ−1

(
γ−1
γ−2 + 1

2−γ y
2−γ
)

y ≥ 1.

=

{
γ−2
γ−1 y < 1
γ−2
γ−1 y

1−γ y ≥ 1.

(3.20)

3.5 Chapter summary

In this chapter, I presented stochastic processes which are the basic concept for all
models in this thesis. Analytical techniques to describe the time evolution and
stationary state of a system have been introduced as well as sampling techniques.
Stochastic processes have been split into Markovian processes and non-Markovian
processes. The Markov-property says that the future of a system is completely de-
termined by the current state of the system. The special stochastic process discussed
in this chapter is the random walker. It is widely used to model diffusive processes
and stochastic motions. The RW is, hence, a useful model for describing stochastic
transport processes in cell biology.
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Random walk models for passive
transport and cell migration
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In the previous chapter, stochastic processes and random walk models have been
presented. These techniques build the theoretical framework for the literature re-
viewed in this chapter. The literature and the theoretical framework of random walks
provide the concepts required for my own work in projects one and two which is pre-
sented in chapter 6.

Passive intracellular transport and cell migration might seem very different from
a biological point of view. One the one hand, diffusion of chemical signals happens
on the molecular scale and is determined by the environment of the signal. On the
other hand, the active migration of cells involves complex inner processes and energy.
However, both situations can be well described by the same theoretical framework.
Both transport processes are assumed to be only dependent on the environment but
not on other transported signals or cells, respectively. The migration patterns of ac-
tive cells can be incorporated in the random walk approach, in the same way as the
environmental influences for the diffusion of chemical signals as I will present in this
chapter.

For the first project of passive, intracellular transport in neuronal dendrites, I show
how diffusion confined in channels has been investigated in three dimensions in sec-
tion 4.1.1. Furthermore, studies of chemical signals trapping in spines and escaping
from them is presented in section 4.1.2. The geometrical properties of the environ-
ment in which the diffusion takes place can be related to an effective probability move
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in a given direction or being trapped in spines. This effective description enables a
coarse-grained point of view, in which the three-dimensional dendritic structure is
not explicitly modeled anymore. In order to prepare the reader to a coarse-grained
RW model in dendrites, I present studies on RW performed on discrete, treelike net-
works in section 4.2. If trees are regular, transport on them can be modeled as a
one-dimensional RW. This enables the analytical description shown in section 4.3.
As a result, transport characteristics can be mapped by the environmental structure.
Finally, the knowledge of how transport properties of random walkers are affected
by an underlying treelike structure, the opposite point of view is taken in section
4.4: how to extract structural information of the network from measuring transport
properties such as first-passage times.

For the second project of modeling cell search processes in migration, relevant in-
ternal processes are analyzed and incorporated in a RW approach similar to the en-
vironmental influences above in section 4.5. I will concentrate on the persistence
observed in the migration resulting from the polarized state of the cell. In a second
step, studies on search strategies for random walkers are discussed.

4.1 Diffusion in neuronal dendrites

Diffusion is heavily influenced by the environment in which it takes place such as
environmental topology or geometrical properties [163]. For diffusive transport of
chemical signals in dendrites, the key aspects are confinement by branched and
narrowing channels as well as confinement by spines that act as traps along the
tree [15, 16, 19, 36, 164, 165] (see section 2.4). Both aspects are addressed in the fol-
lowing.

4.1.1 Diffusion in branched channels

Diffusion in branched, treelike channels can be modeled by random walkers in con-
tinuous three-dimensional space that is confined by the channel. The RWs are con-
fined by the explicit geometry of the neuronal dendrite. The focus is on a single
dendritic branch that starts at the soma and extends up to the dead-ends. In such a
branching treelike structure the shape of the branching points can have complicated
influences in principle, especially if the tree is highly inhomogeneous. A model for
a full neuronal dendrite with the structure explicitly taken into account is, however,
computationally very expensive and furthermore specialized to one realization of a
dendrite.

I start with diffusion confined in a channel for which the diameter shrinks when
approaching from one end to the other. This is in particular interesting because neu-
ronal dendrites have a wider diameter close to the soma than close to the growth
cones for example (see section 2.4). Narrowing of the tube induces a bias to the ran-
dom walker towards the wider side of the tube [166]. If the tube is regular, the bias
has been related to the narrowing angle and it is, therefore, possible to use the results
of the three-dimensional description to calculate an effective drift that depends on
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the narrowing of a tube [166]. If one is only interested in the displacement along the
tube axis, the process can be described by a one-dimensional random walker with an
effective bias that comes from the narrowing. Simulations are computationally more
efficient in such a coarse-grained approach.

4.1.2 Diffusion in spiny dendrites

Many studies deal with the diffusion of chemical signals in spines. The comb-like
structure of spines influences the overall transport in the dendrite and can lead to
localization of chemical signals in a part of the dendrite [17]. The search process of a
Brownian particle from spines been investigated by calculating the mean first passage
time [18] in the context of narrow escape problems.

In the study of Santamaria et al. [17], the authors find that spines may trap chemical
signals and slow down diffusion in dendrites. In the experiment, diffusion of fluores-
cein dextran is tracked in dendrites of Purkinje cells that have segments of high and
low spine densities. The diffusion significantly differs for the two segments.

In the same publication, simulations of diffusion in a tube without spines have been
compared to analytical predictions of the geometry. The two results match but cannot
explain the slow anomalous diffusion found experimentally in spiny segments. The
results change when introducing compartment structures to the model dendrite (see

Figure 4.1: The different densities of spines along a channel affect the diffusive behavior of
random walkers. Top: Normal diffusion in the tube without trapping in spines.
Center: Trapping in spines causes anomalous diffusion. Bottom: High spine
density can lead to effective localization in the percolation limit. Cropped and
reprinted from Neuron, 52, F. Santamaria et al., Anomalous Diffusion in Purk-
inje Cell Dendrites Caused by Spines, 635-648, Copyright (2006), with permission
from Elsevier.
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figure 4.1). These structures are modeling spines in the biologically relevant parame-
ter range [17]. Depending on the spine density, the MSD shows a non-linear behavior
and different asymptotic slopes which are consistent with experiments [17].

The reason for anomalous diffusion found in the experiments by Santamaria
et al. [17] is given by the following argument. Molecules that leave spines have
a high probability to enter an other spine which is near to the exit location. The
displacement inside the dendrite is thereby reduced so that molecules almost remain
located. The localization is called percolation limit [151] (see section 3.2 and figure
4.1).

Anomalous diffusion and non-Markovian descriptions have been used to model
the environmental influence on diffusion [14]. Anomalous diffusion in spiny, den-
dritic channels has further been investigated in the theoretical study by Mendez et
al. [165]. Here, diffusion has been related to the fractal geometry of spines as well
as the fractional kinetics of chemical signals inside spines. With the approach, the
authors related the MSD to the density of spines in accordance with the results of
Santamaria et al. [17, 165]. In Fedotov et al. [15], anomalous diffusion has been mod-
eled by power law escape time PDFs. This non-Markovian description (see section
3.3) also led to subdiffusion in the dendrite and signal accumulation inside spines.

The trapping inside spines may be advantageous when providing high concen-
trations of signals close to synapses. In Kusters et al. [16], mushroom-like spines are
considered to be effective at retaining receptors inside the head of the spine. In this
work, diffusion was simulated on a curved surface to model spine morphology.

The probability of a RW to be trapping in dendritic spine structures can be quan-
tified by incorporating the biological morphology and structural parameters. For
example, Santamaria et al. did investigate the influence of the shape of spines, such
as the neck diameter, head diameter, spine length, and bottleneck structures. By us-
ing the neck length Lneck, the volume of the spine head Vhead and neck Vneck as well
as the radius of the neck Rneck, the mean escape time from spines has been estimated
to be [167]

〈t〉spine =
L2

neck
2D

+
L2

neckVhead

DVneck
+

Vhead

4DRneck
. (4.1)

Also the probability q for a particle being trapped in spines in the stationary state can
be estimated by comparing volumes of the dendritic tube and the spines in the long
time limit [168]

q ' Vtube

Vtube+Vspines
=

1

1+
ρ

π R2
tube

(Vhead+Vneck)
. (4.2)

As a final remark, I discuss how these results can be used in a coarse-grained
and effective description of diffusion in the complex environment of neuronal den-
drites. In section 4.1.1, diffusion in a channel is influenced by the channel geom-
etry. The thickening tube induces an effective bias to the diffusive particles. In a
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Figure 4.2: Mapping diffusive random walks on an explicit three-dimensional structure to
renormalized random walks on the corresponding discrete topological graph.
Cropped and reprinted from Physical Review Letters, 92, M. Felici et al., Renor-
malized Random Walk Study of Oxygen Absorption in the Human Lung, 1-4,
Copyright (2004), with permission from American Physical Society.

one-dimensional RW model, this effective bias can be given to the RW so that the net
movement along the channel axis equals the three-dimensional diffusion model in the
channel. Similarly, the trapping in spines can be coarse-grained. Instead of explicitly
modeling the three-dimensional diffusion between the channel and the spines, the
estimate in equation 4.2 in the stationary state well describes the ratio of a RW being
located in a spine or in the channel. By carefully including the structural parameters
of the three-dimensional geometry, the effective bias and trapping probability is still
maintained in a coarse-grained RW model. Three-dimensional modeling of detailed
spine structures along extended channels is numerically expensive on the large scale
of a neuron. It is, therefore, an interesting alternative to model the coarse-grained
scenario.

4.2 Discrete treelike networks

The numerically expensive three-dimensional simulations make it difficult to explic-
itly model diffusion in a full dendrite. In this section, different approaches for mod-
eling diffusion will be discussed.

Theoretical modeling of diffusion on treelike structures is widely applied to sys-
tems such as random walks dendrimer molecules [169–172]. In order to build a
coarse-grained model for neuronal dendrites, I first give an example for a coarse-
grained model of oxygen diffusion in the branched structure of the lung [173, 174].
Subsequently, the theoretical framework for diffusion of a discrete network is given.

The mapping between three-dimensional diffusion on a tree structure and random
walks on a discrete symmetric tree has been investigated in the context of oxygen
transport in the lung [173, 174]. This coarse-grained model can be used for efficient
numerical calculations of large trees. The complete structure of the oxygen exchange
unit in the lung is a large environment for explicitly modeling three-dimensional
transport. Felici et al. [173] did map diffusion in a three-dimensional branching struc-
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i=1

i=2

i=3

i=4

i=0

Figure 4.3: Scheme of a Cayley tree with a root (i=0), a coordination number k = 3 and 4
generations indicated by the dotted lines.

ture that is known and still small enough to handle towards the diffusive motion
of random walks on the respective topological discrete treelike structure (see figure
4.2). This is possible because random walks in free space are scale-invariant, i.e.
diffusion can be renormalized towards the size of the tube diameter or the branching
points [173]. How the geometrical properties are translated into the parameters of
the discrete treelike structure is, however, not trivial and can be achieved by detailed
investigations such as it has been presented in section 4.1 for an effective bias and
trapping probability.

For modeling a nerve cell that has several dendritic trees such as the lower branch
in figure 4.3 a branched network without loops is needed. The focus is on such a
single branched tree resembling a dendrite. The root of the tree is representing the
soma of the nerve cell.

The mathematical description of the treelike network used in this thesis is the finite
Cayley tree or the infinite Bethe lattice. A Cayley tree is a regular network without
loops [157]. A node that is connected by k edges to neighboring nodes the node has
a coordination number k (see figure 4.3). In order to build a Cayley tree, one can start
at the root node and connect a new set of nodes to the root. This first set of nodes
is called the first generation. By successively adding k − 1 nodes to each node of the
last generation, a new generation is built. The nodes of the last generation are called
leaves, and the number of generations gives the extent or depth of the treelike structure.
For Cayley trees, the network has a finite extend. Cayley trees have been widely used,
such as in the context of Ising models [175], quantum random walks [176], random
walks in the branched molecule structures of dendrimers [169–172] and paramagnetic
colloidal particle motion [177]. The infinite version of the tree-network is called Bethe
lattice [178]. Random walks on these infinite lattices have been extensively studied,
too [179–181].
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4.3 Mapping a random walk on treelike networks to a
one-dimensional random walk

Stochastic transport on a regular treelike structure can be analytically handled by
mapping the tree to a one-dimensional stochastic process. Note that for the follow-
ing method, the branched structure has to be regular. Inhomogeneities have to be
described by more complex networks [182]. In this way, probabilities for finding a
particle in a particular generation can be calculated. By first-passage times, the one-
dimensional RW can be a search, or escape, problem. The required techniques to
find first-passage times for a random walker on a one-dimensional lattice have been
discussed in section 3.2.

The central question for mapping the tree to a one-dimensional lattice is how the
transition rates of a random walker stepping between nodes is translated into step-
ping between generations. For a non-biased random walker on a tree with coordina-
tion number k deciding on which neighboring node to jump, the probability p is just
1
k for every neighboring node. That means that the random walker has a chance to
go to a lower generation (towards the root) with probability 1 − p = 1

k and a chance
p = k−1

k to go to a deeper generation in the tree (towards the leaves).
Coordination numbers of k ≥ 3 induce a bias toward higher generations because

p ≥ 2
3 . For infinite Bethe lattices, this means that the MFPT to reach the root after the

initialization diverges because of a non-vanishing probability to never visit the root
again [179]. For finite extensions of the tree, an exponential decay in the distribution
of the MFPT has been reported [183].

Additional weights have been given to each transition between nodes on the net-
work [184–187]. Transitions to each node can have an additional relative weight. An
effective parameter p′ has been introduced by Skarpalezos et al. [188] that takes into
account node numbers and relative weights. With this effective parameter, random
walks on the the treelike structure have been mapped to a one-dimensional random
walk. The analytical result for the MFPT 〈τ〉 to escape the tree of depth D has been
calculated from the one-dimensional description [188] to be

〈τ〉 =
D

2p′ − 1
+

1− p′
(2p′ − 1)2

[(
1− p′
p′

)D
−1

]
. (4.3)

Note that the asymptotics for large trees is determined by an exponential growth with
D for p′ < 1

2 , i.e. a bias away from the escape point and by algebraic growth for a bias
towards the the escape point (p′ > 1

2 ).

4.4 Reconstructing network structure by transport
properties

In the previous section, the studies investigated how transport is influenced by the
geometrical structure of its environment. By means of knowing the structure, there
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can be estimates for transport properties such as mean first-passage and escape times,
mean square displacement and diffusion exponents. The reverse point of view is
how to extract structural information of the environment of stochastic transport by
measuring characteristics of the transport instead of directly measuring the structural
properties.

Some examples of structural analysis by diffusive transport are presented in the
following. Mitra et al. related the diffusion of fluid molecules that are confined in
a porous medium to the pore-space structure factor [189]. Similar work by Mair et
al. continued in the direction and found ratios between surface area and volume for
pores and tortuosity, the ratio between curve length and the distance between the
endpoints of the curve, in relation to gas diffusion nuclear magnetic resonance [190].
Mair et al. applied this technique to packs of glass beads, sandstone, and carbonate
rocks. In Chen et al., the permeability of a heterogeneous multi-component system
has been analyzed with a random walker approach without knowing the detailed
microstructure [191]. An other example is the exploration of foam structures from
light scattering methods by Durian et al. [192]. In the study, propagation of light has
been approximated by diffusive motion and is described by the diffusion equation of
light and the dynamics of the average size of the foam bubbles has been identified
[192].

Recap that random walk models do not have to be carried out in three dimen-
sions but can be applied to a network structure. In discrete networks, there is a wide
possibility to gain structural information out of the characteristics of random walks.
Cooper et al. estimated properties of large, connected graphs by first passage times
of random walkers and adjusting the weights of the RW that is choosing between
nodes by the properties of interest [193]. The numbers of vertices or edges have been
investigated by theoretical and experimental methods on two example graphs.

4.5 Persistent random walks in cell migration

So far, in this chapter, passive transport has been related to the characteristics of its
environment. RW models have been presented to describe the passive transport. This
environment influences on a random walker can also be utilized to extract informa-
tion about the environment walker. In this section, additional features are introduced
to a RW model. These enable the RW model to mimic the active character of cell mi-
gration to eventually determine search efficiency in the second project of this thesis.

Migration trajectories of dendritic cells (DCs) show a tendency to keep moving in
a given direction, called persistence (see section 2.5). Stankevicins et al. have observed
DCs switching between diffusive and persistent states during migration [22]. The
authors conclude from their experimental and theoretical analysis that the two
different states, and switching between them, are created by actin polymerization
waves and that by changing the actin network dynamics, it is possible to adapt
migration patterns to the environment [22, 194]. The results are consistent with
earlier findings in which migration is driven by activating and deactivating cell
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protrusions [195].

One can define persistence as a measure of how long a random walker will move
in a given direction until it will turn into the other direction. Consider a one-
dimensional random walker with probability p to move from position i to i + 1 and
probability 1 − p to step from i to i − 1. In case of a random walker with probability
p to continue stepping in a direction, the probability to make l consecutive steps in a
row is given by P (l) = pl−1(1 − p). The mean value of this PDF is a useful tool for
measuring persistence and is given by the persistence length [21]

lp =
∞∑

l=1

lP (l) = 1/(1− p). (4.4)

Persistence has drawn attention in the field of random walkers for several decades.
MFPTs have been calculated for a persistent random walker in one dimension [196].
The analysis has later been generalized for two dimensions [197, 198] and for three-
dimensional walks of light scattering in thin slabs [199] for example. Furthermore,
persistence has been introduced in the context of Ising models [200] in order to de-
scribe the fraction of spins that have not flipped in a given time interval.

Persistence is also applied to directed motion in biological physics. Shaebani et
al. [201] modeled long runs of motor proteins along the complex filament network
in cells by persistent random walkers. In the model, motors walk along a filament
until they reach a node connecting different filaments. At each node, the walker has
a choice to switch to the crossing filament. This behavior has been included in a
master-equation approach of a Markov process that at each time step has knowledge
of the position and the direction. Persistence is implemented by a probability p to
continue in the given direction. This approach leads to anomalous diffusion for
short and intermediate times [201] (see section 3.2). The method has been further
developed by adding pause states [202].

As a reminder, in section 2.5 it has been discussed that dendritic cells perform
searches for antigens. Search efficiency, however, can be heavily influenced by the
type of motion (search strategy) which has been found for theoretical random walks
[150]. An example has been given by Viswanathan et al. [203, 204] with Lévy flights
performing more efficiently in search problems than simple diffusive random walk-
ers. Another example is given by intermittent random walks (see section 3.2). Also,
the environment such as bystander cells have been found to reduce search times of
natural killer cells [205]. The fraction of time spent in each of the two different states
of motion can be adjusted to optimize the search problem [150]. However, for the
example of the DCs it is worth understanding more about the influence of the persis-
tence on the search efficiency itself before combining intermittent walks.

Tejedor et al. optimized search by finding the optimal persistence in a persistent
random walk model on a two-dimensional grid [21]. In the study, the authors calcu-
lated MFPTs for a target on a grid with periodic boundary conditions. The MFPT is
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minimized for a non-trivial persistence length defining the optimal search strategy.
Persistent random walks have been found to perform more efficiently that any Levy
walk [21]. Tejedor et al. found that it is crucial for the result of a search problem how
the targets are distributed. A special type of search problem is to find the time that is
needed to visit every site of a lattice, the cover time. In a consecutive study Chupeau
et al. [206] compared different random search strategies in terms of cover times. The
authors show that the mean cover time is minimized by the same search strategy as
for a single target in their example search processes, i.e. Lévy strategies, intermittent
walks, and persistent random walks.

4.6 Chapter summary

In this chapter, the concepts for the project about passive intracellular transport and
the project about cell migration have been discussed. For both applications, random
walk models are useful to describe the stochastic motion of independent cargo, i.e.,
chemical signals or a whole dendritic cell. With the analytical and numeric frame-
work, transport properties such as first-passage times can be calculated. This is espe-
cially useful in escape or search problems.

In the beginning, studies have been presented that investigate diffusive motion
confined in a narrowing tube and in comb-like structures of spines. Effective prob-
abilities for a directional bias and trapping in spines have been found, which are
determined by the environment of the transport. Such effective descriptions can be
used to define coarse-grained models. I presented a stochastic motion on a discrete
and regular treelike network and mapped it to RWs in one dimension. An relation
between structure and transport properties can also be used to investigate the under-
lying structure. The structural influences on transport properties have been analyzed
in many systems similar to neuronal dendrites and parts of them. An effective de-
scription of a complete dendritic tree was, however, lacking before this thesis.

Furthermore, the RW approach can be adjusted to describe active motion such as
for molecular motors on filaments or migration of cells. For the persistent motion
of dendritic cells, not only the environment but also internal processes influence the
effective description in a random walk model.
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Lattice gas models for active transport
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In this chapter, the literature relevant to the third project on active intracellular
transport by molecular motors is presented. The spatial interactions of cargoes with
other cargoes and the environment require a many-body description. The focus in
this chapter is on lattice gas models and their applications on intracellular transport.

A lattice gas is based on several particles, modeled as random walkers, moving
on a (one-dimensional) lattice. The important element of the model is the spatial
exclusion of particles which takes hardcore volume exclusion between particles into
account. As a consequence, lattice gas models with volume exclusion are also named
exclusion processes.

In this thesis, I will focus on exclusion processes in which particles are driven in
a direction. This asymmetric simple exclusion process (ASEP) serves as a fundamental
model class for non-equilibrium physics and has been extensively studied [9,141,207–
210]. For particles that exclusively move in one direction, the ASEP is called totally
asymmetric simple exclusion process (TASEP) [207]. The TASEP will serve as a reference
system for transport models.

5.1 Unidirectional exclusion processes

In the first section of this chapter, the focus is on unidirectional versions of the TASEP
with one or more types (species) of particles that all move in the same direction on
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the lattice. I start by introducing the rules of the TASEP in the following.

5.1.1 The totally asymmetric simple exclusion process

The TASEP has a discrete and one-dimensional lattice of length L. Each of the lattice
sites can be occupied by a particle or be empty, also referred to as holes. Exclusion
between particles forbids more than one particle on a given lattice site. In the TASEP,
particles have a constant hopping rate p in one direction which often determines the
time scale by expressing all other rates in terms of p. Therefore, the simulation update
can be done in discrete time steps ∆t = 1/p by a random-sequential update with
effective rate peff = 1. There is a symmetry between particles and holes because a
step of a particle from site i to site i+ 1 also moves a hole to from i+ 1 to i.

Different boundary conditions can be distinguished. With periodic boundary condi-
tions (PBC), the lattice is closed to a ring, i.e. particles do move from site L to site
1 when performing a step on the end of the lattice and the number of particles is
thereby conserved. With open boundary conditions (OBC), particles are inserted in the
system on site 1 with rate α and escape the lattice on site L with a rate β.

The occupation configuration C is used in order to describe the state of the system
over time. An occupation number ni tells for every site i of the lattice if it is occupied
(ni = 1) by a particle or empty (ni = 0). The set of these occupation numbers deter-
mines the configuration C = {n1, n2, ... nL}. For each time t, the state of the system is
described by the master equation [9] for constant transition rates ω:

dP (C, t)

dt
=
∑

C′ 6=C

[
ω(C ′ → C)P (C ′, t)− ω(C → C ′)P (C, t)

]
, (5.1)

where ω denotes the hopping (p) process, the insertion from the boundary at site 1
(α) or the detachment at the boundary at site L (β).

The density of particles ρi = 〈ni〉 of site i in the bulk, and sites 1 and L at the

1 2 3 4 5 L2-L 1-L3-L

p p βα p

Figure 5.1: Schematics of the TASEP. Particles can hop with rate p to the right on a one-
dimensional lattice of length L with spatial exclusion. In a realization of open
boundaries, particles are inserted on site 1 with rate α and escape on site L with
rate β.
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boundaries is then [9]

d〈ni〉
dt

= 〈ni−1(1− ni)〉 − 〈ni(1− ni+1)〉
d〈n1〉
dt

= − 〈n1(1− n2)〉+ α〈1− n1〉 (5.2)

d〈nL〉
dt

= 〈nL−1(1− nL)〉 − β〈nL〉.

Often it is not only important to know the configuration at time t, but also how
efficient the exclusion process can transport actively driven particles. Therefore, the
measure called flux J is introduced as the number of particles that pass from one
specific site to its neighboring site per unit time. That means that from equation 5.2,
the flux is given for a bond i in the bulk by J = 〈ni(1 − ni+1)〉, for the entrance
J = α〈(1− n1)〉 and J = β〈nL〉 for the end of the lattice.

A solution of equation 5.2 is depending on successive correlations between occu-
pation states along the lattice. A method used to find a solution is a mean-field model
which decouples pair correlations 〈ninj〉 = 〈ni〉〈nj〉 = ρiρi+1 [211, 212]. Equations
(5.2) are then viewed in the continuum limit and evaluated by solving the remain-
ing differential equations. An exact solution was later found by applying the matrix
product ansatz [207] or recursion relations [213].

For PBC, the flux has to be constant along the lattice in the stationary state which
then leads to exact results in the continuum limit for the flux

J(ρ) = pρ(1− ρ) (5.3)

with maximum value Jmax = 1/4 for ρ = 1/2 [207]. This relation is regarded as a
reference value for unidirectional transport systems modeled by lattice gases. The
flux J plotted versus the particle density ρ is called a fundamental diagram.

In case of OBC, three phases can be distinguished [207,211] that define the reference
system of an open boundary exclusion process:

(A) Low-density (LD) phase with J = α(1− α) for α < 1/2 and β > α,

(B) High-density (HD) phase with J = β(1− β) for β < 1/2 and α > β,

(C) Maximum-current (MC) phase with J = 1/4 for α ≥ 1/2 and β ≥ 1/2.

By the recursion method [213], it has been shown that the LD phase (A) and the
HD phase (B) are separated into two phases each. By considering local correlations,
different density profiles can be identified. This is not possible in the mean-field anal-
ysis which neglects correlations along the lattice. The phase diagram of the TASEP is
shown in figure 5.2.

Regions of high density on the lattice can also be denoted as traffic jams. The local
flux is decreased in a jam region, due to exclusion blocking many hopping attempts.
Open boundaries lead to rich behaviors of density variations along the lattice which
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Figure 5.2: Phase diagram of the TASEP in the α, β parameter space which is scaled to units
of p. AI and AII denote low-density phases (LD), BI and BII denote high-density
(HD), and C the maximal-current phase (MC). Reprinted from Journal of Statisti-
cal Physics, 72, G. Schütz and E. Domany. Phase transitions in an exactly soluble
one-dimensional exclusion process. 277-296, Copyright (1993) by Springer Na-
ture.

are described by dynamics of shock waves in local densities [212, 214–216].

The focus of this thesis is on the behavior in the bulk. As discussed for the TASEP,
boundary conditions have a huge influence on the stationary state in the system. To
be able to investigate the principle of many-particle interaction in a system that mod-
els the long, narrow extension of the axon, periodic boundary conditions are better
suited because they do not introduce additional complexity. However, one should
keep in mind that boundary effects can play a role in the axon and that periodic
boundaries are an approximation to a long system only. In the following models, the
focus is therefore on PBC. OBC are discussed for reasons of completeness. Recap
that the periodic TASEP has a rather simple solution. In order to adjust the TASEP
to the situation in intracellular transport, some modifications have to be done. Those
modifications can, however, lead to complicated situations in which the solution is
not found analytically anymore.

5.1.2 TASEP with Langmuir kinetics

In a modified version of the TASEP, also the bulk of the lattice is coupled to a reservoir.
In Parmeggiani et al., Langmuir kinetics have been added to the bulk [212, 217, 218].
Langmuir kinetics describe adsorption and desorption as reversible processes [219].
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1 2 3 4 5 L2-L 1-L3-L

p p
d a

Figure 5.3: Schematics of the TASEP with Langmuir kinetics. Particles can hop with rate p
to the right on a one-dimensional lattice of length L with spatial exclusion, or
detach from the lattice into the reservoir with rate ωd. Empty sites in the bulk can
be occupied by particles from the reservoir with rateωa. Open boundaries allow
insertion of a particle on site 1 with rate α and particle escape on site L with rate
β.

Essentially, the lattice is coupled to a grand canonical reservoir of constant particle
density. A scheme of the model is given in figure 5.3. An additional reservoir is
included in the model that belongs to the bulk of the lattice, not only the boundaries.
particles can detach from each site into the reservoir with rate ωd or attach to a non-
occupied site with rate ωa from the reservoir. To distinguish between boundaries and
bulk, the dynamics at site 1 and L is again described by α and β as in the ordinary
open boundary condition TASEP.

Equation 5.2 is simply extended by the processes of attachment to a site in the bulk
(ωa) and detachment from the bulk (ωd)

d〈ni〉
dt

= 〈ni−1(1− ni)〉 − 〈ni(1− ni+1)〉+ ωa〈1− ni〉 − ωd〈ni〉
d〈n1〉
dt

= − 〈n1(1− n2)〉+ α〈1− n1〉 − ωd〈n1〉 (5.4)

d〈nL〉
dt

= 〈nL−1(1− nL)〉+ ωa〈1− nL〉 − β〈nL〉.

Note that the ordinary TASEP is a non-equilibrium process since particles are ac-
tively driven but pure Langmuir kinetics represent an equilibrium process. In the
stationary state, the density of particles bound to the lattice with periodic boundary
conditions is simply

ρb =
ωa

ωa + ωd
. (5.5)

Parmeggiani et al. showed that if Langmuir kinetics are combined with the open
boundaries at site 1 and L, the complexity of density regimes is further increased and
phenomena such as phase coexistence between all the three classic TASEP phases
above appear [217, 218].

5.1.3 Local irregularities

One method to calculate the stationary state is a mean-field analysis which assumes
homogeneous conditions for particles and the lattice. However, in order to model
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intracellular transport, this homogeneity can be questioned. Local irregularities can
be taken into account in the model. Motivation is given by tau proteins that compete
with molecular motors for binding sites on MTs (see section 2.2.3). This can lead to
blocked binding sites and therefore to locally modified hopping rates.

Irregularities can be categorized in site-based defects or particle-based defects [10].
The three processes included in the model, i.e. hopping, binding and unbinding can
be affected. Modified particle-based hopping has been studied by Evans et al. and
Krug et al. [220, 221], where quenched random variables are assigned to each parti-
cle’s hopping rate. Since a single slow particle obviously slows down other particles
behind it, an other model has been considered where particles can take over the slow
leader [209]. Nevertheless, traffic jams have been observed behind the slow leader
particle if the take over is not fast enough. Similarly, if two species of particles with
different hopping speeds interact on an exclusion process, the flux is decreased in
comparison to the TASEP. In Chai et al., it is shown that the fundamental diagram ex-
hibits a plateau behavior for intermittent densities [222]. Remember that for a regular
TASEP with PBC, the graph has the form of a parabola J = ρ(1− ρ).

A site-based irregularity has been considered in the model of Janowsky et al. [223],
where a slow bond reduces the hopping rate at a single site. The System can then be
separated in a HD phase in front of the defect and a LD phase behind it. The flux of
the complete system is effectively determined by that single slow site. For this reason
the slow site is also called bottleneck, as for example in Pierobon et al. [224].

A defect in binding and unbinding of particles on a special site has been intro-
duced by Chai et al. [222]. While decreased hopping and increased unbinding rates
have been found to heavily reduce the transport efficiency of the exclusion process,
increased local binding had less effect on the transport.

5.1.4 Conservation of particles in the reservoir

In the section before, defects have been discussed that locally affect dynamics. The
environment of the axon leads requires additional rules for a TASEP. First, it is rea-
sonable to keep a fixed number of particles which are a finite resource in the cell.
Second, as discussed in section 2.4, the MT network already is a dense structure for
cargo such as vesicles that are transported by molecular motors on the filaments. The
infinite diffusion that required for constant attachment rates from the reservoir and
finite numbers of particles is also arguable.

To mimic the constraints of the axon, modeling the filament lattice has been embed-
ded in a confined geometry in the theoretical work by Klumpp, Lipowsky and Müller
et al. for different boundary conditions [225–227]. In the case of periodic boundary
conditions, the result of the flux of bound particles is calculated by a mean-field anal-
ysis. Results are in accordance to the TASEP J = pρb(1 − ρb) with adjusted effective
density of the bound particles as in equation 5.5. Note that there is no particle-hole
symmetry anymore if particles are attracted to the filament more than holes are. The
optimal particle number for reaching a high flux depends on the attachment and de-
tachment kinetics.
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Three-dimensional diffusion of motors in a closed environment has been coarse-
grained by Müller et al. [227] in an effective two-state model with particles being
bound or unbound. The difference compared to the model by Parmeggiani et al. with
simple Langmuir kinetics is that the position along the filament axis is kept. Essen-
tially, the two-state model can be considered as a two-lane model with one driven
lane and one diffusive lane without exclusion.

Another boundary condition has been taken into account in the model by Klumpp
and Müller et al. [225, 227]. In axons, kinesin based transport is driven from the
minus-end and can be restricted by the synaptic region of the axon near the plus-end
of MTs (see chapter 2). For the results of this thesis, however, I focus on the bulk
behavior and, thus, on periodic boundary conditions.

The second point that questions the infinite diffusion rates in the simple TASEP
with Langmuir kinetics by Parmeggiani et al. [217, 218] is also addressed in the next
models. Particles on a two-dimensional (and three-dimensional) lattice modeling
both, the filament and the cytoplasmic environment called reservoir here, have been
introduced by Lipowsky et al. [228] and Nieuwenhuizen et al. [229, 230]. By explic-
itly hopping on this network, the particle number is conserved and diffusion can be
limited to finite values.

On the one hand, dynamics of the particles on the filament sites match the im-
plementation in the models before, i.e. hopping in one direction and exclusion by
hard-core interaction. On the other hand, particles in the reservoir now also hop be-
tween sites in the lattice, still under exclusion. However, in this approach, hopping
rates are equal to go to any neighboring node in the reservoir [230]. Hopping from
the filament to neighbor sites is determined by detachment rate ωd and from neigh-
boring sites to the filament by the attachment rate ωa. In the work of Lipowsky et
al. [228], rates have been adjusted to experimentally measured parameters in order
to reach higher comparability to the biological system of an axon than the abstract
models with pure Langmuir dynamics coupled to a TASEP [217, 218].

Figure 5.4: a) Scheme of the motion of particles in the axon confined in a half-open, tube-like
geometry that mimics the axon. Particles can diffuse if unbound or actively walk
if bound to the filament embedded in the cylinder. b) Corresponding two-lane
model with a driven lane and a diffusive lane for half open boundary conditions.
Müller et al., Journal of Physics: Condensed Matter, 17, S3839-S3850, 2005. Copy-
right (2005) by IOP Publishing.
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5.1.5 Unidirectional multi-lane models

As mentioned, the two-state model by Müller et al. [227] could also be seen as a two-
lane model, i.e. a driven lane for the filament and a diffusive lane for the environ-
ment. The concept of a multi-lane model has widely been studied. Similar to the
model by Müller et al., Tsekouras et al. investigated a driven lane that is coupled
to a single symmetric reservoir lane serving as a coarsened environment [227, 231].
However, the spatial exclusion is included for both lanes. This model has been
mapped to a partially asymmetric exclusion process on one lane so that the com-
plexity can be reduced as a consequence. Similarly, a mapping of a multi-lane TASEP
has been achieved which shows that by inventing more complex rules, a single lane
system, can be suitable in order to describe transport taking place on a many-lane
network [232].

Complexity usually increases by adding more lanes [233]. Also by tuning transition
rates between lanes, transport efficiency varies for different lanes, i.e. the optimal
choice for the global density differs among the lanes [234].

5.1.6 Non-Markovian exclusion processes

In the exclusion processes reviewed so far, transition rates have been constant over
time, i.e. the stochastic process is a Markov process. More complex interactions with
the environment [14] such as the escape from spine cavities (see section 4.1.2) and
traps from cages with exponentially distributed depth [181, 235] may lead to event
times that are distributed by algebraic power laws. In section 3.3, it is discussed
how modeling of non-Markovian random walkers can be handled. In this section,
literature on non-Markovian versions of the TASEP is presented.

Rules of the non-Markovian TASEP

Concannon et al. investigated a TASEP with PBC and algebraically distributed wait-
ing times [236]. Similar to Gillespie’s first reaction method, the authors use the next
reaction method to execute hopping events. The event time W is drawn from a alge-
braic power law PDF

p(W ) =

{
0 0 < W < 1,

(γ − 1)W−γ W > 1
(5.6)

with exponent γ > 2.
The power-law decay of p(W ) has the consequence that the age of the stochastic

process is relevant for the transition probabilities at a given time t. Hence, it does
make a difference whether waiting times for events in the future are deleted after a
hopping event or kept. Note that the particle-hole symmetry known for the Marko-
vian TASEP is broken in this model. In this model, a particle i keeps a sequence of
times {t0i , t1i , t2i ...}, that determines all attempts to hop. The authors introduce a clock
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for each particle on which their future events, the age and residual time of a cur-
rent process are given. The hopping times are determined by adding up the relative
waiting times W j

i which are distributed by the PDF p(W ).
In order to evolve the system, the next hopping event is chosen by searching the

particle which has the lowest hopping time. The event is executed if the neighboring
site on the lattice is empty and rejected otherwise.

Results for the particle flux in the non-Markovian TASEP

To compare the results of this model to the Markovian TASEP, Concannon et al. show
a fundamental diagram for the relation between the flux J and the density of particles
on the lattice ρ (see section 5.1.1). In the Markovian TASEP with periodic boundary
conditions, this relation is given in the form J = pρ(1− ρ). Furthermore, the average
time of hopping events is simply W = 1/p. Concannon et al. used the average hop-
ping time to scale the measured flux in order to compare the Markovian TASEP with
the non-Markovian TASEP. The fundamental diagram of [236] is shown in figure 5.5
(a). It is remarkable that the shape of the graph and the position of the maximum
of the flux is depending on the exponent γ. In particular, the flux is not symmetric
around the density which leads to the optimal flux. Second, the flux is below the
estimate from the Markovian relation for exponents γ smaller than approximately
3.5.

In addition, Concannon et al. report that the flux is decreasing with the system
length L for γ < 3 (see figure 5.5 (b)). This leads to vanishing fluxes in the limit of
infinite system sizes. This differs from the results of the Markovian TASEP for which

Figure 5.5: Results for the non-Markovian TASEP by Concannon et al.. a) In the fundamental
diagram, the flux is shown for exponents γ ∈ [2.5, 3.5] and compared to the result
of the Markovian TASEP (black line) for L = 500. b) For γ = 2.5 and ρ = 0.1,
the flux is shown as a function of the system length L. Reprinted from Concan-
non, Robert J. and Blythe, Richard A., Physical Review Letters, 112, 050603,2014.
Copyright (2014) by the American Physical Society.
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the flux is finite in the thermodynamic limit (see section 5.1.1).
The authors discuss the length dependency by arguing the effect of aging inside

a cluster of particles as follows. A first, particle in a cluster that has no obstacle on
its target site is called a pack leader. Behind the pack leader, other particles wait in
the queue until the pack leader hops. The new pack leader of the remaining cluster
is now no longer blocked. Since the last hopping attempt of the new pack leader is
some time ago, the current waiting process has an age and a residual waiting time
until the next hopping attempt.

From examining renewal processes in chapter 3.4, it is plausible that this aging
process influences the effective hopping time of the new pack leader. If the renewal
process has been renewed for a large enough period of time to apply reasonable
time averages in the calculation of the residual waiting time distribution, the density
of the residual waiting time differs from the density of the original waiting times
(p(W )) when using algebraic power-law distributions. For a particle that is finally
a pack leader, the chance is high to have a large residual waiting time if the tail of
p(W ) has a high statistical weight. In Concannon et al., the exponent of the effective
hopping time PDF shows a shift from −γ to 1 − γ which means that the residual
waiting time has a diverging mean at γ = 3. As a consequence, the effective flux
vanishes at this critical value γ = 3 in the limit of large system lengths.

A second work about non-Markovian exclusion processes has been reported by
Khoromskaia et al. [237]. It deals with a TASEP with hopping event times generated
by algebraic Pareto tail distributions and delayed exponential distributions. In con-
trast to the model of Concannon et al., this model conserves particle-hole symmetry
by assigning times to each lattice site instead of each particle. The model is therefore
referred to as site-based model. Results for the fundamental diagram are, however,
very similar to the model by Concannon et al.. In the site-based model, the exponent
for which the non-Markovian TASEP leads to lower fluxes than in the Markovian
TASEP is calculated to be γ = γM ≈ 3.414, which is consistent with results the previ-
ous results by Concannon et al. [236]. Furthermore, higher exponents γ > 3.414 lead
to higher fluxes. The density at which the maximum is reached depends on γ. The
optimal density is larger than 1/2 for γ > 3.414 and below 1/2 for smaller γ [237]. In
comparison, the perodic Markovian TASEP always finds the maximum flux at den-
sity 1/2. The Markovian fundamental diagram is similar to the fundamental diagram
at γ = γM . Also in the site-based model, the flux has been estimated to vanish in an
infinite system for exponents γ < 3 because of the diverging mean value of the resid-
ual waiting time.

5.2 Bidirectional exclusion processes

In chapter 2 it has been pointed out that for MT based transport in neurons, two
species of molecular motors can be included, i.e. kinesin and dynein. Since these
species mostly walk in opposite directions on the MT, transport is not restricted to
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one direction. To adapt the model of an exclusion process to bidirectional trans-
port, a second particle species can be introduced in the TASEP. Motivated by the
MT-polarity, those species are named plus-particles (moving to the right in the fol-
lowing) and minus-particles (moving to the left). The coarse-grained approach allows
assuming a particle as a single motor protein as well as a complete motor-cargo com-
plex.

The central question for such a two-species exclusion process is how the interaction
of particles is carried out in order to have efficient transport in the system that is
inspired by the axon. Without any bypassing mechanism, particles would just collide
in a simple exclusion process with two particle species.

Two approaches have been proposed: First, site-exchange models where particles
pass by each other and thus exchanging positions on the lattice. Second, bidirec-
tional multi-lane models in which transport could be organized in lanes which sup-
port transport in different directions. Representatives of both model classes are pre-
sented in the following.

5.2.1 Site-exchange models

A site-exchange denotes the exchange of positions of two neighboring particles on
the lattice (see figure 5.6). A similar mechanism has been discussed already in section
5.1.3 where normal particles can take over a single slow particle [209]. The two-
species model established by Evans et al. [27,238] has a probability p (set to p = 1) for
particle hopping for both species as well as a second probability q ≤ 1 to exchange
positions if a plus- and a minus-particle are opposing each other on sites i and i+ 1

(+)i(0)i+1 ⇒ (0)i(+)i+1 with rate 1,
(0)i(−)i+1 ⇒ (−)i(0)i+1 with rate 1,

(+)i(−)i+1 ⇒ (−)i(+)i+1 with rate q.
(5.7)

By use of mean-field calculations and MC-simulations, Evans et al. give phase dia-
grams for open boundary conditions. Plus-particles are inserted at site 1 and escape
the lattice at L as for the unidirectional TASEP (hopping to the right), minus-particles
have symmetrical rules for entering the lattice at site L (hopping to the left). An
interesting result of the analysis is that the model exhibits spontaneous symmetry

pq p

Figure 5.6: Schematics of the TASEP withsite-exchange dynamics. Plus-particles (blue tri-
angles) can hop with rate p to the right on a one-dimensional lattice of length L
with spatial exclusion, minus-particles (red triangles) hop to the left with the same
conditions. If a plus-particle and a minus-particle stand in front of each other, site-
exchange is performed with rate q.
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breaking between the two species. The density of particles on the lattice has been
found to switch between low and high density phases so that the difference in fluxes
∆J = J+ − J− flips between positive and negative values.

For periodic boundary conditions, an exchange probability q < p simply leads to
slowing down transport. Particles act as obstacles for each other, in other words as
defects similar to the irregularities discussed in section 5.1.3. The slow process inside
the high-density area is related to the one species TASEP with irregularities [223]
because, essentially, the exchange processes with particles of the other species act
as bottlenecks on the particles of the first species. Free particles will follow and
eventually catch up to a leading particle that is standing in front of an obstacle and
therefore particle clusters and traffic jams may emerge. Within these clusters, the
particle exchange is the dominant process and determines the flux of particles that
come out of the cluster. Consequently, the flux in the low-density area on the lattice
is also determined by the outflow of a high-density area since the flux is balanced
over the whole lattice in the stationary state.

A second study by Arndt et al. [239, 240] has been investigating a model with site-
exchange in both directions. An additional rule for backward site-exchange has been
added to the set of equations in equation 5.7

(−)i(+)i+1 ⇒ (+)i(−)i+1 with rate 1. (5.8)

By exchanging backwards faster than forwards (q < 1), the system forms three
blocks [239,240]. One for each of the two particle species and one for vacancies. These
macroscopic blocks of the size in the order of the system size break the translation in-
variance than is observed for a unidirectional TASEP. The system is even less efficient
for transport as it is without the backward exchange. The effective flux breaks down
totally when it becomes very rare that a particle travels through the complete block
of opposing particles against its backward bias.

In case of fast forward exchanges (q > 1), the authors identified two different
phases, called mixed and disordered. Blocks of a macroscopic, mixed structure of
plus-particles and minus-particles have been found in the mixed scenario leading to
algebraically increasing the flux when increasing q [239, 240]. For even larger q, no
such structures have been observed and the flux is exponentially converging to an
asymptotic value. The transition between the phases has been examined for finite
systems by Arndt et al. [241]. This separation in two phases, however, has been
identified as a finite size effect later [242], which can be applied to very large systems
but that is not valid in the limit of infinite system length.

Considering the models in this section, the approach of site-exchange is in prin-
ciple applicable to model bidirectional intracellular transport. It has to be further
clarified which physical event is modeled by a coarse-grained site-exchange. For par-
ticles referring to single motor proteins, exclusion takes the competition of binding
on the MT into account. For taking over, molecular motors first have to unbind and
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diffuse around each other to bind again after the obstacle. Such processes can then
be described with an abstract stochastic event with a rate q < p, which can result in
reduced transport depending on the motor density on the filament.

Modeling even more complex motor-cargo combinations, the site-exchange also
has to take the description of spatial interactions of cargo-motor complexes into ac-
count. In a confined system such as the crowded environment of MT network in ax-
ons, it is questionable if a site-exchange due to diffusing around each other is possible
for larger objects such as vesicles and organelles. The spatial interactions can lead to
forming cages by particles surrounding others which results in very long escape times
from these cages as it has been investigated to particles in glass theory [235]. In order
to find a mechanism for efficient bidirectional transport, it is therefore also important
to examine the second class of models, the multi-lane models.

5.2.2 Bidirectional multi-lane models

The second, complementary approach to bidirectional intracellular transport mod-
eled by exclusion processes is a multi-lane system. The idea is that two or more
coupled one-dimensional lattices carry out transport for one species of particles each.
The many-lane version is essentially represented by several unidirectional exclusion
processes transporting particles in different directions.

The first example of a one-dimensional two-species TASEP with two coupled lat-
tices (tracks) has been studied by Korniss et al. [26]. This model has a hopping prob-
ability p and a site-exchange probability q that is related to p by a factor, i.e. q = γ p
with γ = 0.1. Furthermore, a coupling rate for hopping between sites with the same
index of the two tracks is included. While the authors focus on the ordering of up-
coming clusters, transport is always determined by the exchange rate q. Note that
in such a site-exchange model it is not important for the flux if the exchange pro-
cess slows down transport in a single, big cluster or in many smaller clusters. No
lane-formation into a plus-particle carrying lattice and a minus-particle carrying lat-
tice has been observed in the study by Korniss et al. [26]. Essentially, this multi-lane
model does not improve transport efficiency compared to the single-track system.

In accordance, it has been shown that particles that are walking on two adjacent
lattices are slowed down by inter-track interaction [243]. Hopping rate modification
in presence of another particle on the site of the same index on the neighboring track
is producing plateau effects in the flux-density fundamental diagram, similar to the
two species of different speed on a single lane [222].

So far, inventing a second lane does not enhance transport efficiency as long as
there is still interaction decreasing the hopping. Main achievements in the direction
of modeling stable bidirectional transport have been made by two approaches, i.e.
suppressing local density fluctuations and ordering the particles by species on the
different filaments.

Inspired by the model of Müller et al. [227], Ebbinghaus et al. investigated a pe-
riodic, two-species TASEP by adding a diffusive lane to a single filament track [25].
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Figure 5.7: Schematic drawing of a two-track bidirectional exclusion process with one ac-
tively driven track (bottom) and one diffusive track (top). The schematics repre-
sent the model by Ebbinghaus et al. [25].

Both particle species are modeled identically up to the hopping direction. Direct site-
exchange is not considered, hence, particles pass each other by detaching from the
filament into the diffusive lane and rebinding again. A finite diffusion rate D deter-
mines the speed of particle movement without exclusion in the reservoir lane until
the particle eventually reattaches to the filament. This bypassing mechanism is dif-
ferent from the site-exchange probability such as in the multi-lane model by Korniss
et al. [26] or Evans et al. [27]. In the diffusive lane, particles are not moving in a biased
direction and hence, the chance to find a site to reattach to the filament track de-
pends on the length of the cluster. As a consequence, the flux depends on the system
size [25].

The model clearly supports cluster formation that lowers the particle flux. Clus-
tering can be reduced by increasing the detachment rate that leads to a lower density
of bound particles ρb. Transport is enhanced until the low affinity reverses the effect
due to the low number of particles on the track. Furthermore, long run lengths of
molecular motors [34] indicate smaller detachment rates.

The model by Ebbinghaus et al. that includes one driven track and a diffusive
track has also been extended to a doubled version, i.e. two driven tracks with a
passive reservoir track for each driven track [25]. The filament tracks model protofil-
aments on an MT and the reservoirs model the cytoplasma near the protofilaments.
These two sub-systems are coupled by two processes, a rate for switching between
the reservoirs and a rate to switch between neighbor sites on the driven tracks. The
track switching is thereby motivated by sidestepping that can be observed for dynein
motors (see section 2.2). The authors found that this version with two driven tracks
and reservoirs does not improve transport efficiency because clustering is even in-
creased over the single-track version [25].

Ebbinghaus et al. concluded that the biologically relevant affinity to the filament
and the finite diffusion leads to a strong tendency for clustering in the system
compared to Langmuir kinetics such as in Parmeggiani et al. [217,218]. For modeling
the biological system of motor-driven transport in the axon, neglecting any memory
about the position along the filament is, however, highly questionable. For a confined
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system such as the axon (see section 2.4), caging effects slow down diffusion. The
effect is even more present considering motor-cargo complexes instead of single
motor proteins. The size of cargo decreases diffusion and leads to spatial interactions
between several cargoes and the environment. The model by Ebbinghaus et al.
does not include volume exclusion for particles in the reservoir. Even though the
model still simplifies essential key aspects of the interactions it does already lead to
clustering and thereby transport cannot be efficient. The authors conclude that there
might be another mechanism involved in intracellular transport in axons [25].

In subsequent work, Ebbinghaus et al. [244] reacted on the difficulty of dissolving
high local densities on the filament and in the reservoir. Starting from the model
in [25], the static lattice for the filament lane is replaced by several versions including
dynamics, which is inspired by the MT dynamic instability reviewed in chapter
2.1. Sites in the filament lane are stochastically removed and added. Particles
that occupy the removed sites switch to the reservoir lane. This leads to lowering
density fluctuations and consequently smaller cluster sizes. It has been shown that
a transition between a dependency on the system size and independence of the size
for the flux can be achieved by increasing the depolymerization rate of filament sites.
The optimal effect is thereby reached for a finite depolymerization rate. The flux
vanishes in the limit of infinite depolymerization rates because the particles find no
filament sites anymore to actively move in their bias direction. Besides the fact that
the dynamic lattice successfully enhances the flux by avoiding length-dependent
clustering, the spatial interaction in the reservoir lane is still neglected. It is ques-
tionable if the mechanism is applicable in the crowded environment of the axon [244].

Another approach toward organizing transport of particles in sub-systems has
been made by Klumpp and Lipowsky [245]. A single driven track exclusion pro-
cess includes modified Langmuir kinetics and a finite total density. The modified
Langmuir kinetics eventually lead to symmetry-breaking, i.e. one species of particles

ρ+ωa 

ωd 

q ρ+ωa 

1/q ωd q ωd 

1/q ρ+ωa 

Figure 5.8: Schematic drawing of the model by Klumpp et al. [245], which includes particle
attraction in a bidirectional two-species TASEP. Plus-particles (blue triangles) can
hop with rate p to the right on a one-dimensional lattice of length L with spatial
exclusion, minus-particles (red triangles) hop to the left with the same conditions.
Attachment for a plus-particle (dark blue) is enhanced by the presence of other
plus-particles (light blue), detachment is decreased. In presence of minus-particles
(light red) the effect is reversed. The rules are analog for minus-particles.
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is dominant on the filament whereas the other species is pushed into the reservoir.
Motivated by the observation that motor proteins have been found to bind in attrac-
tive cooperative effects on filaments [84, 85], the binding and unbinding of particles
is modified in the presence of another particle bound to the neighboring lattice site
such that particles of same species attract each other when binding and lower the
rate of unbinding. A factor q > 1 is used to adjust binding and unbinding rates in the
following way for the three different local configurations of a plus-particle

no neighbor ωaρ
+
u ωd,

plus neighbor q ωaρ
+
u 1/q ωd,

minus neighbor 1/q ωaρ
+
u q ωd

(5.9)

and vice versa for minus-particles (see figure 5.8). By mean-field calculations and
MC-simulations, the authors did show a transition between a symmetric state and
an asymmetric state for a critical attraction value qc(ρ). The symmetry is broken for
q > qc so that one species is winning the competition and the flux is generated only
by the bound species. The authors also state that this mechanism might lead to lane-
formation in a multi-lane system [245] and show numerical results in a subsequent
work [246]. However, a discussion of the multi-lane version of the model has not
been published to my knowledge.

For modeling bidirectional MT-based transport with the model by Klumpp et al.
[245], it is remarkable that new results of Shima et al. [34] (see section 2.2.3) show
similar cooperative effects for kinesin. However, kinesin run lengths and therefore
detachment rates have not been significantly affected in the experiments [34], which
questions the implementation of the cooperative effect in the model. In addition, the
model assumes infinite diffusion rates in the reservoir. As discussed, strong diffusion
is highly questionable for particles modeling not only motor proteins but motor-cargo
complexes of larger size in the confined environment of the axon.

Floor-field models

The last class of models I want to present in this thesis in the context of bidirectional
transport lead to lane-formation in pedestrian dynamics. To avoid collisions, interac-
tions between pedestrians and their environment can be way more complicated than
just spatial interactions which is kept in a simple exclusion process. In an anticipation
floor-field, models incorporate pedestrians estimating the movement of other pedestri-
ans and adapting their direction in order to avoid collisions, also referred to as social
force [247]. The floor-field is considered as virtual information for a specific position
that influences the particle dynamics. Such models have successfully shown lane-
formation in bidirectional counter flow in periodic boundary conditions [247–249].
In between a fluid phase and a complete cluster in the system, there is a distorted
regime as well as a state where lanes of counterflow are formed in self-organization
that has also been found in experimental studies [250]. The pedestrian interactions
can become very complicated to mimic different scenarios such as evacuation [251].
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A second floor-field approach does not use long-range interactions such as the an-
ticipation of directions [252]. This idea is close to a local floor-field denoting a virtual
trace left by particles walking over a particular site. The particle movement is mod-
ified by the floor-field found by a particle on that site. The effect is that particles
tend to follow the foot steps of other particles [252]. The floor-field is increased by the
presence of particles and decays over time towards neutral again, i.e. the floor-field,
therefore, induces a memory in the system. In [252], lane-formation has been found
in a corridor with periodic boundary conditions and a floor-field trace.

The experiments by Shima et al. [34] about kinesin leaving a trace on microtubules
that affects the binding affinity of kinesin motors can be regarded as a realization of
a floor-field mechanism in biology.

5.3 Chapter summary

In this chapter, driven lattice gases have been presented. They provide the framework
for the modeling in the third project in this thesis, active and bidirectional intracellu-
lar transport by molecular motors in axons. The fundamental model that the studies
of this chapter have been build on is the TASEP.

In the first part, I reviewed unidirectional exclusion processes. After introducing
the TASEP, additional rules can tune the exclusion process towards the biological sys-
tem of motor-based transport. Langmuir kinetics in the bulk model the attachment
and detachment of molecular motors on MTs. Furthermore, defects and local irreg-
ularities have been discussed as well as conservation of particles. For these models,
it is then possible to estimate the flux and particle densities on the lattice. The flux is
thereby not depending on the system size. However, this independence is not guar-
anteed in a non-Markovian version of the TASEP. Instead of exponentially distributed
hopping times, algebraically distributed times have been found to lead to fluxes that
depend on the system size. Non-Markovian behavior can be expected if complex
interactions

In the second part of this chapter, bidirectional exclusion processes have been
discussed. Two species of particles walk in opposite directions on a quasi-one-
dimensional lattice. Some kind of bypassing mechanism is needed for such a sys-
tem to avoid total blockages. The first option discussed is a site-exchange mecha-
nism on the lattice. Constant exchange probabilities lead to a stable constant flux
from clusters which does only depend on local dynamics but not on the system size.
The second option involves more than one lattice. The second lattice can model the
cytosol around the MT, a second MT or a second protofilament. With a diffusive
bypassing of unbound cargo, high local densities could be reduced, however only
with large diffusivity. An alternative is to organize the transport of different species
among the lattices, i.e., lane-formation. Unidirectional sub-systems can then trans-
port efficiently without bidirectional collisions. Lane-formation has for example been
observed when particle attraction has been introduced or when the track has been
modified in floor-field models in pedestrian dynamics.
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In this chapter, I will present the projects of this thesis. The results are either given
as published or prefinal articles, which are attached in the appendix (Addendum I-V).
Whereas the details can be found in the publications and manuscripts, this chapter
sets the projects in context and relates the work with the literature review presented
in chapter 4 and 5.

In the first project, the diffusive motion of small chemical signals in branched struc-
tures such as neuronal dendrites (see section 6.1) is considered. Diffusion is influ-
enced by the confining environment of spiny and branched channels. In a random
walk model on discrete networks, effective structural parameters have been related
to the time that is needed to escape to the soma (first-passage time to root node). This
problem is essentially a search problem in a complex geometry.

In section 6.2, the random walker search approach is adapted in order to describe
the active motility patterns found in the migration of dendritic cells. The search
efficiency is investigated by inducing a persistence-speed coupling for the random
walker.

The third project focuses on intracellular cargo transport by molecular motors in
the axon in section 6.3. It is combining the active motion with cargo-cargo interac-
tion in a confining environment. Two principal approaches are investigated, a site-
exchange TASEP and a multi-lane model.
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(a) (b)soma

Figure 6.1: Modeling the treelike structure of dendrites by a Cayley tree. Details can be found
in the publication of Jose et al. in Biophysical J. 2018 (Addendum I). a) Exem-
plary structure dendritic trees on a nerve cell. b) Cayley tree with coordination
number 3, a root node on top and five generations indicated by the dashed lines.
Dynamical rules for particles at each node are shown in the red circles. Reprinted
from Biophysical Journal, 115, R. Jose et al., Trapping in and Escape from Branched
Structures of Neuronal Dendrites, 2014-2025, Copyright (2018), with permission
from Elsevier.

6.1 Passive transport in treelike structures

This section is about the random walk model on treelike structures. Theoretical back-
ground for RWs are given in section 3.2. Previous literature on diffusion in channels
(spiny structures) is discussed in section 4.1.1 and 4.1.2. Random walks (RW) on net-
works are discussed in section 4.2 and mapping these RW to one-dimensional pro-
cesses is presented in section 4.3. The model has been applied to two fields in this
thesis. Results for diffusion in neuronal dendrites have been published in the pub-
lication of Jose et al. in Biophysical J. 2018 (Addendum I). Results for the task of
predicting hidden tree structures in the publication of Shaebani et al. in Physical
Review E 2018 (Addendum II).

6.1.1 Trapping in and escape from branched structures of neuronal
dendrites

Biological background on diffusion in neuronal dendrites is presented in section 2.4.2.
In this section, the focus is on modeling the influence of the key structural properties
of dendritic trees on the transmission of chemical signals. The structure and changes
in it are especially important since structural key parameters are affected during neu-
rodegenerative diseases and aging (see section 2.4).

An estimate of transport properties such as the MSD and the escape time from
a complete dendritic tree (first-passage times) has to include many aspects. Spines
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vary in their shape and density, whereas dendritic channels change their diameter,
branching morphology or extend (see section 2.4.2). Moreover, biological dendrites
can have a heavily inhomogeneous structure (see figure 6.1 (a)). Hence, transport is
performed in a complex environment. By explicitly modeling the three-dimensional
structure of neuronal dendrites including the shape and variations in spines, simu-
lations become computationally very expensive. Therefore, the modeled systems are
rather small such as segments [17] or single spines [167] and a complete description
of a dendritic tree is lacking.

In the publication of Jose et al. in Biophysical J. 2018 (Addendum I), the tree
morphology and the trapping of signals in spines are addressed in a stochastic coarse-
grained model. Diffusive transport of ions and molecules in dendrites is modeled by
random walks (see figure 6.1 (b)). The tree structure is more accessible with this
approach for the following two reasons. First, analytical calculations can be done
by mapping the diffusion on the tree to diffusion on a one-dimensional lattice (see
section 4.2). The stochastic process is described by a system of master equations as
presented in section 3.2 and 4.3. Second, numerical simulations are efficient in the
coarse-grained model even for a complete treelike structure from the soma to the
dead-ends of the dendrite.

The model for treelike structures is based on Cayley trees (see figure 6.1 (b)) which
are discussed in section 4.2. Structural key parameters to describe the system are
first, the depth d (or extend of the tree), second, the total bias parameter p that
describes the chance to hop toward a lower or deeper layer of the tree, third, the
trapping parameter q that defines the probability of a RW to be trapped inside
spines along the segment of the tree and fourth, the trapping parameter r that gives
the respective probability for being trapped at the dead-ends of the tree. In this
homogeneous form, branching is regular and the parameters are constant among the
nodes.

The results of the model have been deduced analytically and by numerical MC-
simulations. By a set of master equations for the occupation probabilities of the RW
for a given generation, first-passage times have been calculated (see section 3.2.3).
Furthermore, MFPTs have been found analytically in a closed form for the regular
trees. The result is consistent with equation 4.3 found by Skarpalezos et al. [188].
However, the calculations extend the result by trapping probabilities in spines q and
dead-ends r.

The model is then calibrated towards measurements of neuronal dendrites. A cru-
cial achievement of the publication is, therefore, that the model predicts of the in-
fluence of pathological changes on the chemical signal transmission. Each structural
parameter has been mapped to geometrical properties as it is discussed in section 4.1.
In a first step, a reference set of parameters has been found that resembles the healthy
dendrite structure. In a second step, the reference set of parameters has been altered
in order to incorporate pathological changes in the structure of neuronal dendrites
during aging or neurodegenerative diseases. In Alzheimer’s disease, for example,
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dendrites show a smaller extent and loss of spines (see section 2.4.4) which results in
shorter escape times from the dendritic tree into the soma (root node) in the model.
As a result, the model can be calibrated to different changes during disease and pre-
dict the influence on the transmission of chemical signals.

Furthermore, simulations were performed in order to address irregularities in neu-
ronal dendrites such as the variation in the density of spines (see section 2.4). The
irregularities have been incorporated by two numerical approaches: First, by sim-
ulating explicit trees with randomly fluctuating structural parameters p, q and r on
each node. Second, by constructing trees with sub-branches that have different ex-
tents for different generations, i.e. a variation of d for each dead-end.

In summary, a computationally efficient coarse-grained stochastic model for full
dendritic tree structures has been developed in the publication of Jose et al. in Bio-
physical J. 2018 (Addendum I). For homogeneous trees, analytical results have been
found for the MFPT to reach the root node, which means to escape the tree towards
the cell soma. Calibrating the effective structural parameters to healthy or diseased
dendrites enables the study to relate diffusive transport to structural changes from
specific diseases. Furthermore, structural irregularities have been addressed by MC-
simulations in order to measure MFPTs and densities of signals in a more realistic
structure.

6.1.2 Unraveling the structure of treelike networks from first-passage
times of lazy random walkers

The second application of the RW model on treelike structures is presented in the
publication of Shaebani et al. in Physical Review E 2018 (Addendum II). The mod-
eling approach allows it to generalize it for different tree-structures. In this section,
I present how the model that is used to find escape times from neuronal dendrites
is adapted to predict the hidden structure of a regular tree by measuring MFPTs of
random walkers. The essential difference is that here, the waiting probability is con-
trolled by random walkers. In contrast, for modeling neuronal dendrites, the waiting
probability has been associated with trapping in spines which is controlled by the
environment. A RW that has a tendency to wait on a node is here called lazy random
walkers.

In section 4.4, several examples are given in which the dynamics of diffusive mo-
tion is used to determine an underlying structure. Foam structure, for instance, has
been evaluated by diffusive light propagation [192] and permeability of a heteroge-
neous multi-component system [191] has been investigating.

In the setup of the publication of Shaebani et al. in Physical Review E 2018 (Ad-
dendum II), only the root node and the number of leaves are known. The structural
parameters defining the tree, i.e. the coordination number k and depth L of the tree,
are unknown. One can think of a tree hidden in a black box (see figure 6.2). A given
number of leaves can result from several combinations of {k, L}. This means that the
tree is not uniquely determined by the number of leaves.

The method to determine the missing information is as follows: Random walkers
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Figure 6.2: Schematic drawing regular treelike structures that are hidden in a black box. a)
Two Cayley trees that have an equal number of leaves but differ in structure be-
cause of different coordination numbers k and depths L. b) Only the number
of leaves and the root node are known, whereas the branching structure is hid-
den. Reprinted from Physical Review E, 98, M. R. Shaebani et al., Unraveling the
structure of treelike networks from first-passage times of lazy random walkers,
Copyright (2018), with permission from American Physical Society.

are inserted at the leaves of the tree, stochastically move between nodes with a given
waiting probability and eventually reach the root node that acts as a sink (see figure
6.2 (b)). The time between insertion and escape is measured as the first-passage time.
From the relation between the MFPT and structural parameters, however, it is not
possible to simply calculate the set {k, L} since the equation is underdetermined.
A single measurement of a MFPT fits to several possible solutions for the treelike
structure that sit on a line in the k−L space. This means the method has to be further
developed to get all information.

This problem is solved by having two ensembles of random walkers with different
laziness. As a result, the two lines in the k − L space can be compared and the in-
tersection of both solutions uniquely determines the set of parameters k and L of the
network structure.

In addition to this two-point measurement method, the results are tested for varia-
tions in the parameter space of L and k. Similar to the version for neuronal dendrites,
an effective hopping bias p (generated by the coordination number and additional
weighting the branches as discussed in section 4.4) has been introduced. Parameters
p and L were allowed to fluctuate around mean values. Similarly, fluctuations in
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laziness are considered. From these simulations in irregular systems, the capability
of the model to determine the hidden structure has been investigated if defects are
included in the hidden structure.

All in all, a method has been discussed that enables to predict a hidden tree struc-
ture by measuring transport properties of random walkers moving on the tree in the
publication of Shaebani et al. in Physical Review E 2018 (Addendum II). By tuning
the waiting probability, different measurements of random walks on a regular tree
can give a unique and analytically derived prediction of the structural key parame-
ters, i.e., the depth of the tree and the coordination number. By MC-simulations, it
has been investigated how far the prediction based on regular trees is applicable to
irregular trees.

6.2 Search processes in cell migration

So far, I discussed the use of the random walk model on a Cayley tree. Random
walks were performed until they eventually reach the root node to escape. The root
node works as a target in the search process. Also in this project, a search problem is
formulated. Here, the work is inspired by the migration of dendritic cells searching
for pathogens (see section 2.5). The theoretical background is again given in section
3.2. Furthermore, previous literature of search processes, persistent random walks,
and cell migration is presented in section 4.5. A detailed description of the work
and results of the following project is given in the manuscript of Shaebani et al.
(Addendum III). Methods shown in the manuscript are experimental and theoretical.

6.2.1 Persistence-speed coupling enhances the search efficiency of
migrating cells

The motility of dendritic cells (DCs) differs heavily between different environments
[11]. For this reason, the theoretical modeling of this project concentrates on the ex-
perimental setup that allows free movement by generating friction between two par-
allel planes as discussed in the manuscript. In contrast to the diffusive transport in
the treelike structures, cell migration can change the speed and shows an internal
persistence. This persistence is expected to result from the polarization state of the
cell (see sections 2.5 and 4.5). In particular, a correlation has been found between cell
speed and persistence [23, 24].

In the manuscript, the persistence-speed coupling has been confirmed by in vitro
experiments. The experimental trajectories expose that coupling decreases the search
time of cells for randomly distributed virtual targets. These results motivate the
theoretical modeling by leaving it unclear how a persistence-speed coupling influ-
ences search efficiency. In the manuscript, a search problem is formulated on a two-
dimensional lattice. Typical search problems focus on optimizing the search (MFPT)
as a function of one or more of the involved parameters [21, 253–256], such as per-
sistence [21] but not the correlation between them. The objective of the work in the
manuscript is the following: A new class of search problems is formulated where the
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coupling between persistence and speed is varied in order to minimize the MFPT to
find a target.

By a master equation approach, similar to the RWs on trees, an analytical relation
has been derived that links the MFPT to the mean persistence length and the correla-
tion strength between speed and persistence. The results are compared to numerical
results from MC-simulations. In the numerical part, the RW has, in addition to the
persistence-speed coupling, a speed-autocorrelation (see section 3.1.2 for sampling
methods). For a low mean persistence, the coupling leads to smaller MFPTs, whereas
for a high mean persistence, the effect is reversed. In the manuscript, a further dis-
cussion of parameters is given such as the range of the persistence-speed coupling.

Finally, in the manuscript manuscript of Shaebani et al. (Addendum III), a new
class of search problems is investigated. It is motivated by experimental findings that
dendritic cells show a persistence-speed coupling which is able to reduce search time
in the analysis of the manuscript. In the stochastic model of a migrating cell, this
coupling has been incorporated. Results show that this coupling can decrease the
search time if the mean persistence is low compared to the system size. This result
has been found analytically for a linear coupling between persistence and speed. For
a correlation between persistence and speed, as well as autocorrelated speeds, the
model has been confirmed by MC-simulations.

6.3 Active bidirectional intracellular transport

An important difference between the diffusive motion of chemical signals in den-
drites and the migration of cells is that the signals diffuse passively but cell migra-
tion is an active process, i.e. the supply of energy is needed. However, both processes
have been described by stochastic modeling and in particular, both processes can lead
to directed motion.

As discussed in chapter 2, intracellular transport can be carried out passively by
diffusion or actively by driven motor proteins. I focus on active, bidirectional motor-
driven transport on microtubule networks in the axon. The stochastic motion of
molecular motor proteins needs a supply of ATP in order to move with the directed
motility pattern along the MT (see section 2.2).

This transport is however very much influenced by the network and its environ-
ment [3]: First, the MT network is constantly rebuilding and changing its structure
in the process of dynamic instability (see section 2.1). Second, there is a large class
of MAPs that have an impact on the dynamics and structure of MTs and motor-
filament interaction (see section 2.2.3). Third, the assumption that particles can be
regarded independently that has been made for the diffusion of chemical signals is
highly questionably for the transport of large cargoes. The spatial extension, as found
in motor-driven transport of vesicles or organelles, indicates that cargo-cargo interac-
tions, as well as interactions with the crowded and highly confining environment in
the axon, play a crucial role (see section 2.4.1). In addition, motor-driven transport is
very often carried out bidirectionally along MTs (see section 2.3. Hence, interacting
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Figure 6.3: Schematic drawing of motor-driven cargo transport in the axon. In the cross sec-
tion, minus directed motor-cargo complexes are red, plus directed ones blue. The
narrow MT network is colored green. Reprinted from the manuscript of Jose et al.
(Addendum V) (2020), Self-organized lane-formation in bidirectional transport of
molecular motors.

particles eventually meet and collide if the transport is not organized in separated
sub-systems. The spatial interaction of cargoes should, therefore, be considered in a
model. The crowded environment is indicated in the schematic drawing in figure 6.3.

Transport of interacting particles in (quasi) one-dimensional systems is often mod-
eled by exclusion processes. The theoretical background for exclusion processes and a
review of relevant literature for stochastic transport are presented in chapter 5. First
unidirectional exclusion processes are examined and then adapted to bidirectional
systems. Two general approaches have been made for efficient bidirectional trans-
port. First bypassing mechanisms such as site-exchange and second, organization of
transport in sub-systems. Both approaches have been addressed in this thesis.

In this section, I first discuss a model that focuses on a site-exchange mechanism
with respect to cargo-cargo interactions. The results have been published in the pub-
lication of Jose et al. in JSTAT 2020 (Addendum IV). Afterward, the second ap-
proach is addressed in a multi-lane model in which single lanes can act as a sub-
system. Here, the objective is to find a stable mechanism for lane-formation in bidi-
rectional transport applicable to intracellular transport. The results of this model are
outlined in the manuscript of Jose et al. (Addendum V).

6.3.1 Bidirectional non-Markovian exclusion processes

A standard model of interacting particles in bidirectional transport is the two-species
TASEP with site-exchange. Variations of this model have been discussed in section
5.2.1. For site-exchange processes that are slower than free hopping particles, typi-
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cally clusters and traffic jams have been observed [27, 239]. It has been found that
the particle flux emerging from a cluster, and, as a consequence, the overall flux in
the system is not depending on the system size. It is fully determined by the local
exchange rate in such a model with site-exchange [27, 238]. An alternative approach
does not use site-exchange on the track but binding and unbinding of motors (Lang-
muir kinetics) along the track [217, 218]. This quasi-one-dimensional system can also
lead to a bypassing mechanism of unbound particles diffuse around bound particles
in bidirectional transport [225–227]. For particles that have to diffuse around clus-
ters, the flux has been shown to depend on the system size [25]. The contrasting
results of size-independent flux in a site-exchange and a size-dependent flux in sys-
tems describing the biological situation in more detail question the applicability of a
site-exchange in the biological set up.

The possibility to use a site-exchange mechanism as a coarse-grained point of view
is, however, a favorable idea. Similar to the description of diffusion in neuronal den-
drites discussed above, the abstract modeling of interactions allows efficient simula-
tion performances. This is crucial in extended systems which already for small den-
sities include many particles. An alternative is to modify the site-exchange dynamics
so that it suits better with complex interactions.

Since the Markovian description of site-exchange is questionable, a non-Markovian
model is motivated by the assumption that a strong interaction with the environment
induces memory effects [14]. Such an approach has for instance been studied in the
context of signal trapping in spines [15], where the complicated diffusion in the comb-
like spine was approximated by a non-Markovian escape process. Similar in glass
theory, a particle is considered to be trapped inside a cage created by neighbor parti-
cles which eventually can lead to non-Markovian escape times [181, 235] (see section
3.3). The objective of this section is, therefore, to use a non-Markovian description for
exchange times instead of the Markovian approach with exponential times.

The analysis started with a three-state version. Each site is occupied by a plus-
particle (walking toward the plus-end of the filament), a minus-particle or is empty
(see figure 6.4). Also in this model, particle clusters determine the flux for the full
system such as in Markovian models. Therefore, we focus on the clusters and go
over to a pure two-state system in which vacancies are neglected.

In the publication of Jose et al. in JSTAT 2020 (Addendum IV), the non-
Markovian two-species exclusion process is studied. The work is based on the publi-
cations by Concannon et al. [236] and Khoromskaia et al. [237] in which unidirectional
non-Markovian exclusion processes are studied (see section 5.1.6). The exchange time
PDF used for exchange events of two particles of different species is modeled by a al-
gebraic power law such as in Concannon et al. [236]

p(t) =

{
0 0 < t < 1,

(γ − 1)t−γ t > 1.
(6.1)

As discussed in section 3.3, for a given step in the sampling algorithm of a non-
Markovian TASEP, renewing times (direct method) for not yet executed events is
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Figure 6.4: Schematic drawing of a bidirectional two-species exclusion process. Fast Marko-
vian hopping processes are compared to a non-Markovian site-exchange between
plus-particles (blue) and minus-particles (red). Exchange times are drawn from
an algebraic heavy-tailed distribution (equation 6.1).

different from keeping the times (next reaction method). The residual waiting time
distribution for exchange times coming from equation 6.1, will be different than p(t)
that governs fresh exchange times. The model is built with the next reaction method
that keeps the event times and preserves the age of the process as it is implemented
in Concannon et al. [236]. For a bidirectional exchange that keeps event times for each
particle, two times are suggested for an exchange process, one from each particle. It
is therefore needed to define rules for the exchange processes. In the publication of
Jose et al. in JSTAT 2020 (Addendum IV), four model types of different exchange
rules are compared, i.e. asymmetric particle based rule, particle-based symmetrical mini-
mum rule, particle-based symmetrical maximum rule and site-based rule. The site-based
rule is essentially equivalent to the model by Khoromskaia et al. [237] due to particle
hole symmetry and the asymmetric particle based rule to the work of Concannon et
al. [236].

Results have been found for PDFs of effective exchange times by MC-simulations
and analytically. To achieve analytical results, residual lifetimes are calculated as in-
troduced in section 3.4. For the minimum (maximum) rule, PDF have been calculated
by finding the PDF of the minimum (maximum) of two random times associated with
neighboring particles.

The exponent of the effective exchange time PDF determines a transition between
a regime in which the flux depends on the system size and a regime in which the
flux is independent. This has been found by MC-simulations and is supported by the
critical exponent γcrit = 3 for which mean values of effective exchange-times diverge.
The results are compared to the results of the unidirectional models. It shows that
the bidirectional process can be mapped to the unidirectional version in most of the
cases investigated.

To relate the study to the transport problem in axons, it is interesting to point out
that there are two crucial values for the exponent. The first one is the critical value for
which the transport transitions between size-dependence and independence γcrit = 3.
The second exponent has been found in the unidirectional TASEP [236, 237] (see sec-
tion 5.1.6). For this exponent γM ≈ 3.5, the non-Markovian TASEP with algebraic
waiting times leads fluxes comparable to the Markovian case. Below this value, the
flux is smaller, i.e. the exchange process is slower. Above, the flux is higher and
the process is actually faster. Bypassing mechanism of motor-cargo complexes in
the crowded environment are expected to be rather slow compared to free walking
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velocities. The memoryless modeling for non-interacting walking is usually assum-
ing Markovian dynamics. As a result, biologically relevant slow exchange processes
should be modeled by exponents γ < γM . This, however, means that most transport
bidirectional transport by a non-Markovian site-exchange is likely to lead to size-
dependent fluxes for γ < γcrit = 3.

In summary, a bidirectional non-Markovian exclusion process has been investi-
gated. High interactions between transport and the confining environment are ex-
pected to cause non-Markovian dynamics. In the publication of Jose et al. in JS-
TAT 2020 (Addendum IV), different bidirectional realizations have been discussed
and mapped to the unidirectional case. The results show that coarse-grained site-
exchange models can lead to complex behavior and length-dependent transport. In
the context of axonal transport, this may not be a problem for short systems but is
highly problematic in the long extend of an axon. Next to studies such as Ebbing-
haus et al. [25,244,257], the results of the paper can be seen as an additional indicator
that, in intracellular transport by molecular motors in axons, a mechanism could be
involved which leads to organization.

6.3.2 Self-organized lane formation in bidirectional transport of
molecular motors

In order to find a biologically relevant mechanism that could lead to efficient bidi-
rectional transport in axons, an organization in lanes of opposite transport directions
is investigated here. This approach has previously been discussed in section 5.2 in
the context of multi-lane models. Lane-formation has for example been observed in
pedestrian transport [250] or for ants [258]. In bidirectional TASEP models, it has
been found that simple symmetric switching between tracks is, however, not suffi-
cient to generate lane-formation in a two-lane bidirectional TASEP [25, 26]. Hence,
for a biological system, it is required to search for relevant mechanisms which could
provide asymmetry and organization leading to lane-formation.

Separation of oppositely directed transport among different MTs indeed has been
observed in dendrites [31] and in the cilium [32] (see section 2.4.3). In dendrites, bun-
dles of microtubules with the same polarization point if opposite directions. Such a
system could transport cargo in both directions of the channel with only one type of
motor [31]. In axons, however, this is not possible since all MTs are uniformly polar-
ized [20]. The MT doublet structure in the cilium on which lane formation of motor-
driven transport was found is organized in a way that the MTs appear in doublets.
The two filaments (A and B microtubules) in such a doublet are equally polarized but
can be differentiated by posttranslational modifications [32, 259] so that molecular
motors of different types might prefer one type over the other. A recent hypothesis
is that the organization of MTs structure and functionality is strongly coordinated by
the complex interactions between motor proteins, other MAPs and the filaments (see
section 2.2.3 and tubulin code [29, 30, 43]).

For the homogeneous MT network inside the axon, not much is known about
mechanisms that could support lane-formation. However, the interaction between
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microtubules and motor proteins might generate a mechanism itself. Studies by
Shima et al. [34] and Peet et al. [83] show that the tubulin lattice of MTs is elongated
by kinesin motor proteins. Remarkably, kinesin motors have been reported to show a
higher affinity to the elongated state of the MT lattice [34] (see section 2.2.3). This cir-
cle of kinesins modifying the MT and eventually attracting other kinesins generates a
feedback mechanism, eventually leading to cooperative effects between kinesins [34].
The question is if such an effect is able to lead to lane-formation in active bidirectional
transport in the axon.

In the model by Klumpp and Lipowsky [245], cooperative effects have been taken
into account that have been reported for molecular motors before [84,85] (see section
4.2). In their approach, molecular motor particles attract other motors of the same
species (direction) on the filament lattice by increasing the local binding probability
on their neighbor sites. Also, they increase the chance to detach from the filament if
neighbored motors have a different species. In the study, Klumpp and Lipowsky re-
ported self-organization and symmetry breaking on a single lattice (see section 5.2.2).
However, the experiments by Shima et al. [34] do not support the model’s assumption
that kinesins increase the run length of other kinesins since the affinity modification
was only present for binding. Also, particle densities cannot be too small due to the
short-ranged particle-particle interactions.

In the manuscript of Jose et al. (Addendum V), the mechanism found by Shima
et al. is implemented in a two-species, bidirectional exclusion process of two weakly
coupled filament lattices. The affinity modification of motor proteins is governed by
a floor-field which has been used to model pedestrian dynamics (see section 5.2.2).
Particles in the model represent a coarse-grained motor-cargo complex. The floor-
field allows that particles of both species leave a trace along the lattice tracks and
therefore induces a memory effect. The trace then influences the binding affinity
of other particles on each site. The modification strength is controlled by the affinity
modification parameter µ. The detachment from the lattice is not affected by the floor-
field. This realization of the affinity modification via the floor-field leads to long-
range interactions emerging from the memory in the lattice. This approach is different
from the short range modifications implemented in Klumpp and Lipowsky [245].

Stochastic realizations of the model are performed by MC-simulations and the sta-
tionary state is approximated by a mean-field analysis (see section 5.1.1). Above a
critical modification parameter µcrit, the particles self-organize into lanes of opposed
stable transport in the stationary state in the simulations. It is remarkable that the
mean-field analysis neglects the particle correlations along the filament axis. How-
ever, it well predicts the critical parameter µcrit found in the simulations. In the mean-
field model, a pitchfork bifurcation is found at the critical value where the system
state changes from a symmetric distribution of the plus directed and minus directed
particles to an asymmetric particle distribution.

In the manuscript, the range of densities for which lane-formation is observed
is shown in fundamental diagrams. The maximum densities that support lane-
formation depend on the modification parameter. However, the length independence
of the flux was robust in the observed parameter regime. This means that transport
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was stable on the length scale of MTs in axons.
Note that the self-organized affinity modification has been reported for kinesin

[34] but not for dynein motors to my knowledge. In the manuscript of Jose et al.
(Addendum V), the influence of the motor asymmetry is investigated. It has been
found that plus directed and minus directed particles do not have to be symmetric,
i.e. smaller affinity modifications for minus-particles can still lead to lane-formation.
However, the simulations and the mean-field analysis showed that the modification
of only plus-particles is not sufficient for self-organized lane formation.

Finally, the manuscript of Jose et al. (Addendum V) addresses the question of
how bidirectional intracellular transport by molecular motors can be efficient. A self-
organized mechanism that modifies the binding affinity of particles by leaving a trace
on the filament has been motivated by the experiments by Shima et al. [34]. In the
stochastic model, the mechanism did lead to symmetry breaking and lane-formation.
Results have been found for a mean-field analysis and MC-simulations. By the lane-
formation, stable bidirectional transport has been established in the system. The
results indicate that the complex interactions between MTs, molecular motors, and
other MAPs might lead to efficient bidirectional intracellular transport.
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Chapter 7

Conclusion & Outlook

In this thesis, applications for stochastic modeling of transport processes in cell
biology have been presented. The work can be separated into three main topics,
i.e. random walks on a treelike network such as diffusion in neuronal dendrites,
stochastic description of cell migration and bidirectional intracellular transport on
MT networks in axons. Whereas results are discussed in detail in the publications
and manuscripts (Addendum I-V), this chapter summarizes the main conclusions
from a more general point of view.

Within the first project, a direct link between structural characteristics of dendrites
and the performance of diffusive signal transmission has been established in the pub-
lication of Jose et al. in Biophysical J. 2018 (Addendum I). The random walker
model on treelike structures provides an analytic framework for homogeneous trees,
which is supported by MC-simulations for irregularities along the tree. In the search
problem, random walks escape the soma by finding the root-node of the network.
From the thickening of channels, trapping in spines and dead-ends, and the depth
of the tree, an effective coarse-grained stochastic approach has been developed for
the complex environment. The model enables an efficient description of a full neu-
ronal dendrite, which was not available in literature before. The link between the
coarse-grained model on networks and explicit, three-dimensional spiny channels
has been established by calibrating structural parameters to the parameterized ge-
ometry. Knowledge about the structural changes during disease progressions enables
not only to investigate transport in a healthy dendrite but, furthermore, to compare
transport in dendrites affected by various diseases.

The link between structure parameters and transport properties has also been
considered in the opposite scenario. From measuring MFPTs of lazy random
walkers hopping on a hidden treelike network, the structure of the network has
been predicted in the publication of Shaebani et al. in Physical Review E 2018
(Addendum II). By comparing two ensemble measurements of different laziness,
the structures have been uniquely determined. Thereby the method of controlling
diffusivity and waiting probability of the random walkers is experimentally possible
and easier to access than alternatively using noisy higher moments. Also in this
application, the stability of the model predictions against structural inhomogeneities
has been analyzed in the publication.
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In the second project, the random walk method has further been used on the larger
scale to describe complete cell trajectories. In the manuscript of Shaebani et al.
(Addendum III), the search strategy of dendritic cells in a quasi-two-dimensional
confined environment has been investigated. The correlation between speed and
persistence found for dendritic cells [23, 24] has been confirmed in the manuscript.
In the theoretical model, the phase space of persistence-speed and speed auto-
correlations has been analyzed. The study invents a new kind of search problem
in which search times are minimized by varying the correlation strength of two
essential parameters rather than varying the parameters themselves. In the analysis
of the experimental trajectories and the theoretical model, the correlation lead to
increased search times if the average persistence is high. However in the biolog-
ically relevant regime of low average persistence, the search efficiency was enhanced.

Finally, the third project deals with interacting particles in bidirectional transport
on MT networks in axons. Similar to the diffusion on treelike structures, the envi-
ronment of the transport heavily influences the particle dynamics. However, due to
the larger spatial extension of the motor-driven cargoes and the strong confinement
in axons, it is required to include particle-particle interactions in the description. The
quasi-one-dimensional system with particle volume exclusion has been modeled by
variations of the class of TASEP models in order to investigate how efficient bidirec-
tional transport in the axon can be realized. Two modeling approaches have been
proposed in the literature, i.e. site-exchange and organization of transport in sub-
systems. In this project, both approaches have been used to build models for the
specific axonal transport environment.

The publication of Jose et al. in JSTAT 2020 (Addendum IV) deals with several
variants of a non-Markovian version of a bidirectional site-exchange TASEP. It has
been investigated which requirements for an effective exchange process, indepen-
dent of how it is realized in detail, have at least to be given in order to lead to efficient
transport. Here, it has been shown that the efficiency of the exchange process deter-
mines the homogeneity and efficiency of the transport. Remarkably, the bidirectional
version can be mapped to a simpler process, a method that is often used in theoretical
physics. The bidirectional process shows the same universal behavior as the unidirec-
tional versions [236, 237], i.e. it holds γcrit = 3 in both cases. At the critical exponent,
a transition between a traffic jam state in which flux depends on the system size and
a free-flowing state which is independent of system size has been found.

The result of size-dependent transport is consistent with results found in Ebbing-
haus et al. [25, 244]. The density fluctuations leading to traffic jams might be reduced
if diffusivity is high [25]. In the crowded environment of axons, this is however not
likely. As discussed before in chapter 5 and chapter 6, it is questionable how a size-
dependent flux can lead to efficient transport if the environment is as crowded as
in the axon. The publication of Jose et al. in JSTAT 2020 (Addendum IV) fur-
ther indicates that there might be an alternative mechanism involved in intracellular
transport.

The second approach has been shown to provide such an alternative by organizing
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transport in sub-systems as it can be seen in nature [31, 32]. Lane-formation can be
achieved by short ranged particle-particle interactions [245] or with the floor-field
approach used in the manuscript of Jose et al. (Addendum V). The study, shows
a stable mechanism for self-organized lane-formation and efficient bidirectional
transport under strong confinement, which is based on the affinity modification
for kinesin [34]. Even if it is not totally clear how the mechanism based on PTM,
molecular motors and other MAPs is realized in detail, the model proofs that it
can lead to a self-organization of stable transport. The lane-formation has been
found in MC-simulations of the stochastic model and was retrieved in an analytical
mean-field model, both finding the same critical affinity modification. Symmetry-
breaking is stable against density fluctuations along the filament. The results show
an organization in lanes for a combination of low densities on the filament and
low diffusivity for unbound cargoes. For densities in which site-exchange already
leads to traffic jams, lane-formation can still provide coexistence of stable, efficient
transport in both directions on a length scale of several micrometers. Finally, the
results indicate that a self-organized bidirectional transport is in principle possible
to obtain by PTM on the MTs.

The models developed in this thesis have been applied to transport processes with
the focus on cell biology. They can further be adapted or combined in order to address
future questions.

The model of random walkers networks, for example, does not have to be limited
to treelike structures but could also be adjusted to more complex network, which,
for example, include loops. Furthermore, interactions, such as exclusion, of random
walkers could be considered. Actively driven particles can be combined with diffu-
sive transport, for example, for chemical signals inside vesicles or organelles [35,260].
By actively transporting sources of chemical signals to different locations in the den-
drite, there could arise interactions between the different transport mechanisms. The
active transport could also be included in the master equations of the random walker
model by adding inputs and persistency. For continual work with the random walker
model on treelike structures, it would be interesting to incorporate real dendrite
structures as an inhomogeneous network. Images of dendrites could be parame-
terized specifically so that the random walk model can give results for the example
structures.

Volume exclusion and complex environments is also interesting in the context of
cell migration. There might be different results for the optimal search strategy in the
presence of complex interactions with the cell’s environment and other cells.

For lane-formations inside neuronal axons, modeling would benefit from a deeper
understanding of the microscopic processes. The interactions between kinesin and
tubulin in the MT lattice and eventually the cooperative effects for the tubulin defects
in the network are still poorly understood. In addition, in vitro experiments could
show if a similar affinity modification mechanism can be found for dynein motors
and eventually if a lane-formation can be observed in an experiment with kinesin
and dynein motors. Also, filament dynamics could play a role in the initializing
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process. A growing filament might favors plus-particles in the floor-field model so
that thereby symmetry breaking could be supported even more. For open boundary
conditions, the dynamics in exclusion processes such as the TASEP [207, 211, 213] are
strongly affected by the boundaries. For intracellular transport, it would be impor-
tant to understand the intersection regions between cell filaments. It is for example
known that transport pauses at MT intersections [3]. A better understanding of the
dynamics in these regions would be crucial for introducing biologically relevant
boundary conditions.

All in all, the results developed in this work focus on different transport processes
in cell biology. Mechanisms have been investigated that determine search and trans-
port efficiency. The principle effects of the respective environment of the transport
has been shown to heavily affect its efficiency by traps, blockages or organization.
However, the environment of intracellular transport is very complex, so that an even
broader but also deeper knowledge would be desired in the future. The long term
goal would be to gain deeper understanding in these transport processes in order to
know which requirements are needed for efficiency in search processes and intracel-
lular transport. With this knowledge, studies can contribute to the research of disease
progressions related to the transport processes.
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Abstract:
We present a coarse-grained model for stochastic transport of noninteracting chemi-
cal signals inside neuronal dendrites and show how first-passage properties depend
on the key structural factors affected by neurodegenerative disorders or aging: the ex-
tent of the tree, the topological bias induced by segmental decrease of dendrite diam-
eter, and the trapping probabilities in biochemical cages and growth cones. We derive
an exact expression for the distribution of first-passage times, which follows a uni-
versal exponential decay in the long-time limit. The asymptotic mean first-passage
time exhibits a crossover from power-law to exponential scaling upon reducing the
topological bias. We calibrate the coarse-grained model parameters and obtain the
variation range of the mean first-passage time when the geometrical characteristics
of the dendritic structure evolve during the course of aging or neurodegenerative dis-
ease progression (a few disorders for which clear trends for the pathological changes
of dendritic structure have been reported in the literature are chosen and studied).
We prove the validity of our analytical approach under realistic fluctuations of struc-
tural parameters by comparison to the results of Monte Carlo simulations. Moreover,
by constructing local structural irregularities, we analyze the resulting influence on
transport of chemical signals and formation of heterogeneous density patterns. Be-
cause neural functions rely on chemical signal transmission to a large extent, our re-
sults open the possibility of establishing a direct link between the disease progression
and neural functions.
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ABSTRACT We present a coarse-grained model for stochastic transport of noninteracting chemical signals inside neuronal
dendrites and show how first-passage properties depend on the key structural factors affected by neurodegenerative disorders
or aging: the extent of the tree, the topological bias induced by segmental decrease of dendrite diameter, and the trapping prob-
abilities in biochemical cages and growth cones. We derive an exact expression for the distribution of first-passage times, which
follows a universal exponential decay in the long-time limit. The asymptotic mean first-passage time exhibits a crossover from
power-law to exponential scaling upon reducing the topological bias. We calibrate the coarse-grained model parameters and
obtain the variation range of the mean first-passage time when the geometrical characteristics of the dendritic structure evolve
during the course of aging or neurodegenerative disease progression (a few disorders for which clear trends for the pathological
changes of dendritic structure have been reported in the literature are chosen and studied). We prove the validity of our analytical
approach under realistic fluctuations of structural parameters by comparison to the results of Monte Carlo simulations. More-
over, by constructing local structural irregularities, we analyze the resulting influence on transport of chemical signals and for-
mation of heterogeneous density patterns. Because neural functions rely on chemical signal transmission to a large extent, our
results open the possibility of establishing a direct link between the disease progression and neural functions.

INTRODUCTION

The complex behavior of advanced nervous systems mainly
originates from the elaborate structure of neuronal dendrites
(1,2). The functions of the nervous system substantially rely
on the diffusionof chemical signals,which is strongly affected
by the dendrite structure. The branching morphology of den-
drites allows the neurons to control the transmission time of
signals and construct a complex network of signaling path-
ways. Although dendritic trees share some structural features,
e.g., branching at acute angles or decreasing in their diameter
when moving distally from soma, their morphology varies
widely in different neuronal types and regions, reflecting their
diverse functions (3). Moreover, the presence of small protru-
sions along dendrites, called spines, adds to the complexity of
the system. Spines receive excitatory synaptic inputs, tempo-
rarily compartmentalize them, and undergo dynamic struc-
tural changes regulated by neuronal activity (4–6).
Bidirectional communication between the spines and the
soma (via, e.g., Ca2þ, soluble intracellular domains, and sub-
units of the nuclear importmachinery) is critical for long-term

plasticity, neuronal development, and information processing
capabilities (7–10). Additionally, synaptic activation can
trigger signaling pathways that spread locally in
the dendritic channel and influence neighboring synapses
(11–13).

Understanding how signal transmission is governed by the
structure is becoming more important because pervasive
changes of dendritic structure due to aging (14–16) or neuro-
degenerative disorders (17,18) such as Alzheimer’s disease
(19–22) have been reported: 1) the population and spatial
extent of branches (16,19); 2) the thickness, length, and
even curvature of dendritic channels (14,17,19); or 3) the
density, shape, and spatial distribution of spines (14–22)
can be affected. To establish a link between the structural
changes and subsequent alterations of neural functions, a
deep understanding of the role of structure on transport of
ions or molecules is still lacking. The attempts have been
mainly limited to the determination of the impact of spine
shape on diffusional and first-passage properties of signals
inside spines (7,23–29). The role of spine density has also
been studied by considering comb-like structures or (period-
ically) distributed traps along a channel (30–34). However,
the precise estimation of escape time from dendritic trees
to reach soma is a difficult task. The complication arises
because of complex branching morphology, presence of
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spines along the tree, irregular shape of junctions, and vary-
ing cross-sectional radius of dendritic channels.

Here, we propose a coarse-grained approach tomap the sto-
chastic transport of ions and molecules inside neuronal den-
drites to an effective one-dimensional random walk of
noninteracting particles in a confined geometry. Coarse-
grained random-walkmodels have been previously employed
to successfully describe the influence of topological and
geometrical characteristics of the structure on diffusion in
labyrinthine environments (see, e.g., (35) for oxygen absorp-
tion in the human lung). Our effective one-dimensional (1D)
random-walk model enables us to obtain insightful analytical
results for mean first-passage times (MFPTs) in complex
structures of neuronal dendrites. Various types of 1D random
walks have been previously studied, including biased (36–39)
and persistent (37–40) walks aswell as thewalks with absorp-
tion along the path (36) or at the boundaries (41).Here, inview
of the morphological differences between the dendrites of
healthy and degenerate brain tissues, we concentrate on the
major characteristics affected by neurodegenerative diseases:
the overall extent of dendritic trees, the thicknesses of chan-
nels, and the structure and density of spines. By combining
appropriate boundary conditions at the two ends of a finite
1D system, partial absorption along the path, and biased mo-
tion in an effective 1D random-walk model, we construct a
suitable framework to study signal transmission in dendrites.
We disentangle the contributions of key structural features to
first-passage properties and verify that the scaling behavior of
the asymptotic MFPT changes below a threshold value of the
topological bias induced by hierarchical reduction of branch
diameter. We evaluate the variation range of the mean time
required for chemical signals to travel from the synapses to
the soma in the course of some specific neurodegenerative dis-
ease progression. Moreover, the applicability of our theoret-
ical approach to realistic dendritic structures with spatial
heterogeneities is addressed, and the role of local structural
changes on signal transmission and formation of heteroge-
neous density patterns is discussed.

METHODS

By adopting a mesoscopic perspective for transmission of ions and molecules

inside dendrites, we consider the motion of a noninteracting random walker

on the nodes of a tree-like regular network with a finite depth d, parameter-

izing the extent of branches (Fig. 1 b). Each node is identified by its depth n,

ranging from 0 (soma) to d (dead ends). After entering the network, the

walker randomly jumps to the neighboring nodes until it is absorbed in the

target, i.e., soma. To take into account the stochastic trapping events in

spines, we assume that the walker either moves in the channel or resides in-

side biochemical cages with probabilities q or 1 � q, respectively. This way,

we map the problem to a stochastic two-state model. Such models have been

widely employed to describe altering phases of motion in biological systems

(42–44). Typically, the density of spines (i.e., the number of spines per unit

length along the dendritic channel) quickly saturates after a distance of about

50–100 mm from soma (14,45,46). Therefore, we suppose that the residence

probability in cages is simply depth independent. The waiting probability at

each node is an effective measure of the importance of spines in compart-

mentalizing the signals: it increases with increasing the density or head vol-

ume of spines or decreasing their neck size. To consider the directional

preference due to, e.g., hierarchical reduction of branch diameter, a topolog-

ical bias parameter p is introduced for adopting the direction of motion at

each node. Jumping toward soma or a dead end occurs, respectively, with

probabilities p or ð1� pÞ=k (with k ¼ 2 for the structure of neuronal den-

drites). More generally, one can adopt a persistent random-walk approach

(47,48) to include active transport on microtubules or consider passive mo-

tion in crowded dendritic channels (the effective persistency of the motion

can be characterized by the turning-angle distribution P(q)of the particle.

Introducing ε ¼ R dq cosðqÞ PðqÞ, one obtains a negative ε for motion in a

crowded environment in which the particle is frequently reflected from obsta-

cles and experiences sharp turns (i.e., a higher chance of motion to the back-

ward directions), whereas one gets a positive ε for active motion along

microtubules, in which the walker continues along the previous direction

of motion unless when it switches to another filament with opposite polarity.

In (anti)persistent random walks, the stochastic equations of motion are

generalized by introducing the parameter ε to take the previous direction

of motion into account). When arriving at a dead end, the walker either re-

turns to the previous junction with probability r or explores the connecting

channel and the growth cone at the tip of the branch with probability 1 � r.

We estimate the mean time required for a particle to escape the dendrite

structure (characterized by the set of parameters {d, q, p, r}) and reach the

soma by treating the soma as an absorbing boundary. However, one can follow

the proposed approach to investigate the first-passage time for the inverse di-

rection (i.e., soma-to-spine signaling) as well by distributing the absorbing

boundaries along the tree. Let us introduce the probability distribution Pn(t)

of being at depth level n at time step t (in an irregular structure, the probability

of being at each node can be considered instead). The signals initially enter the

system via spines, which are almost uniformly distributed along dendritic

trees. As a result, the input rate may even exponentially grow with depth, cor-

responding to the initial condition Pn 0ð Þ ¼ 2n�1=ð2d � 1Þ nR1ð Þ. Here, for
simplicity, we consider entering from the dead ends Pn(0)¼ dn,d, which gives

the major contribution to the signal input (see the inset of Fig. 2). The analyt-

ical procedure is, however, similar for other initial conditions. We construct a

set of coupledmaster equations for the dynamical evolution ofPn(t) within the

framework of our stochastic model:

8>>>>>>>><
>>>>>>>>:

P0ðtÞ ¼ P0ðt � 1Þ þ q p P1ðt � 1Þ;
P1ðtÞ ¼ ð1� qÞ P1ðt � 1Þ þ q p P2ðt � 1Þ;
«
PnðtÞ ¼ qð1� pÞPn�1ðt � 1Þ þ ð1� qÞPnðt � 1Þ þ qpPnþ1ðt � 1Þ;
«
Pd�1ðtÞ ¼ q ð1� pÞ Pd�2ðt � 1Þ þ ð1� qÞ Pd�1ðt � 1Þ þ r Pdðt � 1Þ;
PdðtÞ ¼ q ð1� pÞ Pd�1ðt � 1Þ þ ð1� rÞ Pdðt � 1Þ þ dðtÞ:

(1)
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The detailed calculations to obtain an expression for the escape-time dis-

tribution F(t) by solving the above set of equations are presented in the

Appendix.

First-passage properties

The overall shape of the escape-time distribution is shown in Fig. 2. Notably,

F(t) exhibits an exponential tail. We checked that the exponential decay holds

independently of the choice of the trapping factor q, the boundary condition r

at the deepest branch level, or the chance p of hopping to shallower layers.

The slope, however, varies with q, p, r, and d. Importantly, the inset of

Fig. 2 shows that although the initial conditions of entering the tree may

considerably influence the overall shape of F(t), the slope of the exponential

tail remains independent of the way the signals enter the system (49). It is

technically difficult to extract the tail behavior of F(t) from Eq. 8 (see Appen-

dix) in general; however, for a given set of parameter values, one can deduce

the exponential asymptotic scaling. The resulting dashed line in Fig. 2 fully

captures the asymptotic slope. As a proof of the existence of exponential tail,

one can show from Eq. 8 that the z transform of the first-passage time distri-

bution can be written as FðzÞ ¼ ð2dþ1ðpqzÞd=FdðzÞÞ, where Fd(z) is a poly-

nomial of maximal degree d. By evaluating the roots k of the polynomial, it

can be verified that FðzÞ � ð1=Qd�
k¼1ð1� akzÞbk Þ, where ak is a function of

the structural parameters and d*, bk % d. Then, after partial fraction decom-

position of F(z) and inverse z transform, F(t) can be represented as a sum of

a t
k terms and thus can be approximated by the leading exponential term

a t
k;max in the limit t / N.

The MFPT hti of chemical signals to reach the soma, which is our main

quantity of interest, can be evaluated from F(t) as explained in details in the

Appendix. The analytical Eq. 9 in the Appendix represents the MFPT in

terms of the coarse-grained model parameters. Although the expression is

continuous, it is indeterminate at p ¼ 1=2. By taking the limit, we get

hti ¼ qd � rd þ rd2Þð �ðqrÞ for the specific choice p ¼ 1=2.

Crossover in asymptotic scaling behavior

To clarify how hti varies with the model parameters, we exclude the indeter-

minate point p ¼ 1=2 to simplify the MFPT expression. For ps1=2, Eq. 9

of the Appendix reduces to the sum of a linear and an exponential function

of d,

hti ¼ d

q ð2p� 1Þ þ
p r � p q ð2p� 1Þ

q r ð2p� 1Þ2
 �

1

p
� 1

�d

� 1

!
:

(2)

Hence, hti in the limit d[ 1 scales exponentially (linearly) for 0<p< 1=2

1=ð 2<p< 1Þ as the exponential term on the right-hand side of Eq. 2 dom-

inates (vanishes). It can be also seen that hti for the specific choice p ¼ 1=2

scales as a power-law dg with g ¼ 2. Thus, the crossover of the asymptotic

mean escape time from a power-law to an exponential scaling can be sum-

marized as

hti �

8>>>>>>>><
>>>>>>>>:

1

q ð2p� 1Þ d; 1=2<p< 1;

q�1 d2; p ¼ 1=2;

p r � p q ð2p� 1Þ
q r ð2p� 1Þ2 e

dlnð1p � 1Þ; 0<p< 1=2:

(3)

a b

FIGURE 1 (a) Schematic drawing of neuronal

dendrites. (b) An illustration of the model. An

example tree structure with d ¼ 5 and p ¼ 0.5 is

shown. The arrows indicate possible choices at

junctions or dead ends described by Eq. 1. As a vi-

sual guide, the ratio between the diameters of

parent and child branches is taken to be

p= ðð 1� pÞ=kÞ (with k ¼ 2 in dendritic trees).

To see this figure in color, go online.

FIGURE 2 First-passage time distribution F(t) for p ¼ q ¼ r ¼ 1=2 and

d ¼ 10. The solid line shows the analytical result via Eq. 8, and the dashed

line represents the leading exponential term of Eq. 8 for t[ 1. The inset

shows F(t) for the same set of parameter values as in the main panel but

for different initial conditions of entering the tree. The solid, dashed, and

dotted lines correspond to the initial conditions Pn(0) ¼ dn,d (i.e., entering

from the dead ends), Pn(0) ¼ dn,1 (entering from the soma), and Pn(0) ¼
(2n � 1)/(2d � 1) (entering uniformly along the tree), respectively. To see

this figure in color, go online.
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The first (last) case indeed grows logarithmically (linearly) with the

number of nodes in regularly branched trees (50). Fig. 3 indicates that

the asymptotic slopes are properly captured by the analytical prediction

of Eq. 3. The change in the scaling behavior of hti from linear to expo-

nential at the threshold value pc ¼ 1=2 in a 1D random walk can be un-

derstood because the effective direction of flow (with respect to the

target) is inverted. This also induces a transition from recurrent to tran-

sient random walks in infinite trees (51). At p ¼ 1=2, the balance be-

tween the two directions of diffusive transport holds, and it is expected

that the bias parameter p in a healthy neuron is around this threshold

value.

RESULTS AND DISCUSSION

Coarse-grained model calibration

In the following, we compare our analytical results to those
obtained from ordinary diffusion at microscopic scales in
dendritic spines and other relevant geometries such as thick-
ening tubes to verify the applicability of our coarse-grained
approach and to calibrate the model parameters. Note that
the diffusion problem with a constant diffusion coefficient
across the structure is basically a linear differential equa-
tion. If the trend of the first-passage time versus one of the
model parameters or as a function of a related geometrical
characteristic of actual dendrite structures match, then our
model parameter can be calibrated into the dendritic struc-
ture through a fit to microscale computations for pure
diffusion.

The structure of neuronal dendrites primarily depends
on the nervous system and varies in different neuronal
regions and cell types. However, as a reference for com-
parison, here we have chosen typical cerebellar Purkinje
cells of guinea pigs, which extend nearly 200 mm
from the soma and have �450 dendritic terminals
(52). Thus, there are nearly 10 generations of junctions
in such a structure (corresponding to d ¼ 10 in our
coarse-grained view), and they branch out every 20 mm
on average.

The bias parameter p

The problem of diffusion in a tube of varying cross sections
has been thoroughly studied both theoretically and numeri-
cally in the literature (53–55). Particularly, Brownian dy-
namics simulations at microscopic scales were employed
in (56) to explore the range of validity of an effective one-
dimensional description of diffusion in uniformly thick-
ening or thinning tubes. Denoting the opening angle of the
tube with q (see the inset of Fig. 4 a), they approximated
the MFPT hti between the two ends of a tube of length Ltube
and initial radius Rtube, scaled by hti of a tube of uniform
cross section, as

hti
.
htiuniformx

8>>><
>>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

p
3

�
3þ 2l ~L

�
; l< 0;ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ l2
p

3

3þ l ~L

1þ l ~L
; 0< l;

(4)

where l ¼ tanq and ~L ¼ Ltube/Rtube. Their analytical and
simulation results match for opening angles q < 10�.
Even such small thickening rates are still larger than
what is typically observed in neuronal dendrites. For
example, the thickness of the dendritic channel varies
from nearly 0.5 around the dead ends to less than 8 mm
close to soma in cerebellar Purkinje cells of guinea
pigs, which have a typical extent of 200 mm, i.e., an open-
ing angle of less than 2� (52). Therefore, within the valid-
ity range of their analytical expressions, we compare hti
obtained from our coarse-grained approach Eq. 9 to their
results in Fig. 4 a. We set q ¼ r ¼ 1 to avoid trapping
because Eq. 4 is valid for smooth tubes with reflecting
walls. We also consider our reference dendritic structure
(see Fig. 4, b and e) for ease of comparison. The scaled
MFPTs obtained via Eqs. 4 and 9 fit very well using a
simple linear map between l and p as l � 0.5p � 0.25.
We checked that, within biologically relevant parameter

a b

FIGURE 3 Mean escape time versus the depth

of the tree for (a) p< 1=2 (log-lin scales) and (b)

pR1=2 (log-log scales) at q ¼ r ¼ 1. The analyt-

ical results of Eq. 9 are shown with solid lines,

and the dashed lines represent the asymptotic

exponential or power-law scaling of hti via Eq. 3.

To see this figure in color, go online.
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ranges and weakly thickening regime q < 5�, one can
obtain similar satisfactory agreement between the MFPTs
by treating the coefficients of the linear transformation as
fit parameters. In the following, we choose p ¼ 0.55 as the
reference value for our coarse-grained bias parameter in a
typical healthy dendrite (corresponding to qx1:4+). Note
that the geometry of the junctions may affect the first-pas-
sage results in general; however, we expect that it causes
minor variations because the cross-sectional area at the
branch point is conserved.

The trapping parameter q

The coarse-grained parameter q in our model indeed rep-
resents the fraction of time spent in the dendritic
channel in the steady state, which is set by the probabili-
ties kw and km of switching from motion in the channel to
waiting in the spines and vice versa. kw is proportional
to the density of spines and the mean entrance area of
the spine neck and inversely proportional to the cross-
sectional area of the dendritic channel. Thus, one
obtains kwfr R2

neck=R
2
tube, where Rneck, r, and Rtube denote

the neck radius, spine density, and radius of the
dendritic channel, respectively. km is inversely propor-
tional to the mean escape time from spines htispine, which
obeys (29)

htispine ¼ L2
neck

2D
þ L2

neckVhead

D Vneck

þ Vhead

4 D Rneck

; (5)

with D being the diffusion coefficient and Lneck, Vneck, and
Vhead denoting, respectively, the neck length and volume
and the head volume of the spines. The diffusion coefficient
depends on the size of the diffusing object. For example, the
typical value ofD in dendritic spines for Ca2þ ions and green
fluorescent protein (GFP) variants (that are much smaller in
size) were reported to be �100 and 20 mm2/s, respectively
(57). Inside the dendrite channel,D� 37 mm2/s was obtained
for a specific photoactivatable GFP (paGFP) (23). Similar re-
sults were reported for diffusion in other cell types. For com-
parison, D was found to be �23.5 and �25.2 mm2/s for the
motion of enhanced GFP (eGFP) inside the nucleus and in
the cytoplasm of HeLa cells, respectively (58). For a
typical thin spine (59) with Rneck ¼ 100 nm, Lneck ¼ 1 mm,
and a head diameter of 1 mm (thus, with Vneckx0:03 mm3

and Vheadx0:52 mm3) as shown in Fig. 4 b, one
gets htispinex 0.19, 0.48, and 0.77 s for the escape time of
Ca2þ, paGFP, and eGFP from spines (using DCa ¼ 100,
DpaGFP ¼ 40, and DeGFP ¼ 25 mm2/s). Moreover, the mean
travel time of signals from synapses to soma in smooth den-
dritic channels of length x can be estimated from Eq. 5 as

a b

e fd

c

FIGURE 4 (a) The MFPT between the two ends of a tube, scaled by the result of a uniform tube, versus l ¼ tanq or the bias parameter p. The

results of Eqs. 4 and 9 are shown with solid and dashed lines, respectively. The inset shows a schematic drawing of tubes of varying cross sec-

tions. (b) Typical size scales taken as the reference values in healthy dendrites. (c) The parameter q versus the spine density r (dashed line) or the

spine volume Vspine ¼ Vhead þ Vneck (solid line). (d) q versus the radius of the dendritic tube. (e) The regularized geometry of the segment of the

dendritic tube connecting the dead end to the last branch point. (f) The coarse-grained parameter r in terms of the volume of the dead end.

The parameter values (unless varied) are taken to be r ¼ 2 ðspines=mmÞ, Rtube ¼ 1 mm, Vspinex0:55 mm3, and Ltube ¼ 20 mm in (c), (d), and

(f). To see this figure in color, go online.
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txx2=ð2DÞ. By choosing x¼ 20 mm as an example, one ob-
tains 2.0, 5.0, and 8.0 s for the travel time ofCa2þ, paGFP, and
eGFP, respectively.

The transitions between the two states of motility are non-
Markovian in general; however, one can estimate the
asymptotic value of q in the limit t / N as a function of
the volumes of the dendritic tube and spines as (30)

q ¼ km

km þ kw
x

Vtube

Vtube þ Vspines

¼ 1

1þ r

p R2
tube

ðVhead þ VneckÞ
:

(6)

Fig. 4 c shows how the q parameter varies with the spine
density and volume. Although increasing r or Vspine en-
hances the trapping probability and thus reduces q,
increasing the volume of the dendritic tube leads to longer
excursion times in the tube and increases q, as shown in
Fig. 4 d. By choosing r ¼ 2 ðspines=mmÞ, Rtube ¼ 1 mm,
and Vhead þ Vneckx0:55 mm3 (59), we obtain the healthy
reference value qx0:74 for further comparisons.

The boundary-condition parameter r

Finally, we calibrate the parameter r via a similar procedure
as explained for q. The coarse-grained parameter r effec-
tively represents the probability of motion inside the
segment of the dendritic tube that connects the last branch
point to the dead end (see the schematic in Fig. 4 e). By
ignoring the minor corrections due to the negligible thick-
ening along such a short tube segment, the asymptotic value
of r can be approximated as

rx
Vtube

Vtube þ Vspines þ Vdead�end

¼ 1

1þ r

p R2
tube

ðVhead þ VneckÞ þ Vdead�end

p R2
tube Ltube

:
(7)

Let us consider a spherical dead end with a typical
diameter of 3 mm and assume that the tree branches out
every 20 mm on average. Then, using the rest of the
reference parameter values used for the determination of
the q parameter, we get rx0:63. The variation of r as a
function of the volume of the dead end is shown in
Fig. 4 f. Even in the absence of the dead end (i.e.,
Vdead-end ¼ 0), the signals may be still trapped in the
spines distributed between the dead end and the last junc-
tion, leading to rs1.

Influence of pathological changes on
transmission of chemical signals

After adopting the set of model parameter values p ¼ 0.55,
q ¼ 0.7, r ¼ 0.6, and d ¼ 10 as the reference for healthy
structures of dendrites, next, we investigate how far the

MFPT varies when the geometrical characteristics of the
dendritic structure evolve during the course of aging or
neurodegenerative disease progression. Here, we choose ag-
ing and a few examples of neurodegenerative disorders
(such as Alzheimer’s disease, schizophrenia, and fragile X
and Down syndromes) for which clear trends for the patho-
logical changes of dendritic structure have been reported in
the literature (60). In the course of aging or Alzheimer’s pro-
gression, both the density of spines and the extent of the
dendritic tree reduce (14,20,22,61) (the spine density of
the apical dendrites of pyramidal neurons in the cingulate
cortex of humans may decrease to less than 60% with aging
(14)). These changes are equivalent to the increase of q and
reduction of d in our coarse-grained perspective. It is also
known that schizophrenia and Down syndrome progression
leads to reduction of the spine size (62,63), corresponding to
the enhancement of our q parameter. The pathology of frag-
ile X makes the prediction of MFPT variations complicated.
In the course of fragile X progression, although the spine
density increases (enhancement of q), their shapes become
more elongated and the spine head volume reduces (reduc-
tion of q) (64–66). Therefore, we expect that the variation of
q (and thus of the MFPT) is less pronounced in fragile X
compared to the other examples. The competition between
the variations of spine density and shape determines whether
q effectively decreases or increases in the course of fragile X
progression.

In Fig. 5, we show the trends of the MFPTs upon the
dendritic structure changing because of aging or diseases,
as explained above. The combined effects of the reduction
of tree extent and spine density due to aging or Alzheimer’s
disease can dramatically decrease the MFPT of chemical
signals from the synapses to the soma (Fig. 5 a). To calcu-
late the MFPT, we used Eq. 9 with q inserted from Eq. 6
and d ¼ L(mm)/20. The reduction of both spine density
and tree extent to half of their healthy reference values de-
creases the relative MFPT to hti=htihealthyx0:3. Thus, the
system gradually loses the ability to compartmentalize
ions and molecules and maintain chemical concentrations
to a wide extent. The shrinkage of the spine size in schizo-
phrenia and Down syndrome leads to a similar trend for the
variation of MFPT; however, the effect is less pronounced.
In the extreme case of zero head volume, the MFPT re-
duces to nearly 80% of its reference value (see Fig. 5 b).
As a result of the competition between the increase of
spine density (up to rz10 ðspines=mmÞ) and reduction of
spine head volume (down to Rhead ¼ 0) in fragile X syn-
drome, the relative MFPT, hti=htihealthy, may vary within
the range of [0.6, 1.9]. If the reduction rate of spine head
volume equals the growth rate of spine density, the two ef-
fects compensate each other and the MFPT remains un-
changed, as shown by the contour line in Fig. 5 c. In
other neurodegenerative disorders, the pathology of spine
and dendrite structure is more complicated. For example,
distortion of spine shape in most mental retardations (18)
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makes the prediction of the MFPT trend difficult. Another
point is that there is currently a lack of quantitative studies
to clarify the impact of diseases or aging on the thickening
of dendritic tubes (corresponding to the variation of our
p parameter) or on the morphological changes of growth
cones (variation of r). In Fig. 5 d, we calculate the MFPTs
within reasonable variation ranges of the opening angle of
the dendritic tube or the radius of spherical growth cones.
Here, we use Eq. 9 with q inserted from Eq. 9 and p from
the linear relation tanðqÞx 0:5p� 0:25. One obtains up to
threefold increase or reduction in hti compared to the
healthy reference htihealthy.

The mean travel time of chemical signals in dendrites re-
flects the ability to preserve local concentrations or induce
concentration gradients of ions and molecules; thus, it is
tightly connected to neural functions. Therefore, the quanti-
tative evaluation of the first-passage times in different
diseases is a step forward toward linking the disease
progression to neural functions and draw physiological
conclusions.

Structural irregularities

In our analytical formalism, we consider constant coarse-
grained parameters along the entire tree. This corresponds
to the assumption of a spatially homogeneous structure,
i.e., if the dendritic tree is regularly branched, the channels
thicken with the same rate throughout the tree, the spine
density and size are spatially uniform, and all the growth
cones are of the same size. From a coarse-grained perspec-
tive, such a regular structure can be described by a few ma-
jor parameters, which allows for the calculation of the
MFPTs. Taking into account that our coarse-grained
parameters indeed represent the key structural features
that undergo pathological changes in the course of neurode-
generative disease progression, the model enables us to con-
nect the disease progression to signal transmission, as
discussed in the previous section. However, realistic den-
dritic structures are spatially heterogeneous. For example,
the density of spines may vary even up to 40% around the
global mean value in dendritic trees (14,45). The spines

a b

c

d

FIGURE 5 Influence of the pathologies of spines and dendrites on chemical signal transmission. The MFPT hti, scaled by the MFPT of the reference

healthy structure htihealthy, is shown versus the structural characteristics affected in the course of (a) aging and Alzheimer’s disease (spine density r and extent

of the dendritic tree L), (b) schizophrenia and Down syndrome (spine head radius Rhead), and (c) fragile X syndrome (r and Rhead). The stars mark the cor-

responding point for the reference healthy structure. In (c), the arrows represent the possible directions of fragile X progression, and the dashed contour line

marks the path along which hti=htihealthy ¼ 1. (d) Variation of the MFPTwith changing the opening angle q of the dendritic tube (dashed line) or the radius

Rdead-end of the spherical growth cones (solid line) is shown. To see this figure in color, go online.
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also undergo dynamic structural changes regulated by
neuronal activity (4–6).

In view of the realistic structural fluctuations, the basic
question is whether the analytical predictions via our
coarse-grained approach remain valid when the structural
parameters of a given dendritic tree are allowed to
spatially vary around their global mean values. In the
following, we compare the analytical result for the refer-
ence set of parameter values with the simulation results
in which the structural parameters spatially fluctuate
around the reference values. For comparison, the fluctua-
tion range D q=hqiz0:2 is comparable to the realistic
variations in spine head size and density in pyramidal
neurons in the cingulate cortex of humans (14). Similar
fluctuation ranges are considered for d, r, and p parameters
in the absence of quantitative studies to explore the varia-
tion ranges of the extent of dendritic trees, the size
of growth cones, and the thickening rate of dendritic
channels.

In each of the Monte Carlo simulations, we vary only one
of the coarse-grained parameters, whereas the rest of them
are fixed at their mean values hdi ¼ 10, hpi ¼ 0:55,
hqi ¼ 0:7, or hri ¼ 0:6. Let us first consider the parameters
p, q, and r. A new value is assigned to the variable parameter
at each random-walk step, which is randomly taken from
a uniform distribution in the interval [p � Dp, p þ Dp],
[q � Dq, q þ Dq], or [r � Dr, r þ Dr] for parameter p, q,
or r, respectively. The upper panels of Fig. 6 represent the
variation ranges of the geometrical characteristics of den-
dritic structures as the width of the uniform distributions
for coarse-grained parameters varies from 0 up to 20%
around the reference (healthy) values. In the upper panel
of Fig. 6 b, we present the extreme values of the spine
head volume as a function of D q=hqi. However, one can
alternatively fix the head volume (e.g., at Vhead ¼ 1 mm3)
and consider the changes in the spine density and get [1.3,
1.3], [1.1, 1.6], [0.9, 1.8], and [0.6, 2.5] intervals for the
number of spines per micron at D q=hqi¼ 0, 0.05, 0.1, and

a b c

FIGURE 6 Comparison between the analytical predictions for constant parameter values and simulation results for dynamically varying (a) p, (b) q, or (c) r

parameter across the dendritic structure. The reference parameter values are taken to be p¼ 0.55, q¼ 0.7, r¼ 0.6, and d¼ 10. Upper panels show schematic

representations of the variations in the realistic dendritic geometry when the coarse-grained model parameters vary 5, 10, or 20% around their mean reference

values. Middle panels show log-lin plots of the escape-time distribution. The analytical curve via Eq. 8 (solid line) is compared to the simulation results

(symbols). The insets are schematic diagrams of typical trees with d ¼ 5 and 10% fluctuations in the corresponding model parameter. The radii of the circles

are proportional to the relative deviations from the minimal values. Lower panels show the mean escape time versus the model parameters. The solid line

represents the analytical prediction of Eq. 9, and the symbols correspond to the simulation results. hh/ii denotes averaging over both the ensemble of re-

alizations for a given disorder and the ensemble of possibilities for the stochastic particle dynamics. To see this figure in color, go online.
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0.2, respectively. The middle panels show that the resulting
escape-time distributions F(t) invisibly deviate from the
analytical prediction (solid line) for q and r parameters,
whereas the tail of F(t) starts deviating from the theory
line when p varies up to 10% around hpi ¼ 0:55. However,
such tail deviations have an insignificant impact on the
MFPT hti, as shown in the lower panel of Fig. 6 a at p ¼
0.55. We also repeated the simulations for other sets of
reference parameters to check whether hti deviates from
the analytical prediction. According to the results shown
in the lower panels of Fig. 6, we conclude that our analytical
results are robust against realistic fluctuations of the struc-
tural characteristics across the dendritic trees (even up to
20% around the mean) over a wide range around the refer-
ence set of coarse-grained parameter values.

Next, we investigate the variations in the extent of the
tree around the mean value hdi. To this aim, in Monte
Carlo simulations, we construct stochastic tree structures
by randomly allowing the nodes to have their child nodes
in a hierarchical manner starting from the root node. The
procedure continues until the tree consists of a given
number of dead ends. A few examples of the resulting
structures with 32 dead ends are shown in Fig. 7 a.
We characterize the depth of the irregular tree by the
average of its dead-ends depths hdi and its variation by
sðdÞ=hdi, with s(d) being the SD. As shown in Fig. 7 a,
the ensemble of structures corresponding to a given
sðdÞ=hdi contains globally heterogeneous configurations
as well as highly asymmetric ones. In Fig. 7 b, we show
how the deviation from our analytical prediction grows
with increasing the fluctuation range of the dead-end
depths. It can be seen that the error of the analytical
expression remains below 10% even in considerably het-
erogeneous structures with sðdÞ=hdiz20%. For lower var-
iations in the extent of the tree (sðdÞ=hdi< 10%), the error
is less than 5%. Thus, our analytical approach is appli-
cable to dendritic structures with moderate heterogeneity
in their branching pattern.

So far, we have investigated the influence of global dy-
namic irregularities of structure on the first-passage times.
However, static local irregularities may also exist in real
dendrites, induced by pathological changes. For example,
various dendritic abnormalities associated with fibrillar
amyloid deposits in the transgenic mouse model of
Alzheimer’s disease and in the human brain were reported
in (67). Extensive spine-density loss, shaft atrophy (i.e.,
decline in the radius of the dendritic tube), and formation
of varicosity (which consists of an enlarged, tortuous,
and crumpled part of the dendritic channel) were observed
in the vicinity of amyloid deposits. From our coarse-
grained perspective, the local varicosity formation, shaft
atrophy, and spine-density reduction correspond, respec-
tively, to the decrease of q and p and increase of q in a spe-
cific region of the tree such as a sub-branch. To elucidate
the impact of static local irregularities on signal transmis-

sion, our effective 1D analytical description based on the
depth levels does not help. Therefore, we construct the
entire tree structure in Monte Carlo simulations again
(similar to the procedure to construct asymmetric configu-
rations in Fig. 7 but this time for q or p parameters). Fig. 8
shows a few samples of coarse-grained dendritic trees with
an affected sub-branch. We change q or p parameter in the
affected sub-branch while keeping the rest of parameters
the same as the entire tree. By imposing a constant
entrance rate (one particle from one of the randomly cho-
sen dead ends at each time step), we eventually obtain
the spatial distribution of noninteracting particles in the
steady state. The results shown in Fig. 8 reveal that local
structural irregularities influence the transport of particles
and lead to the formation of heterogeneous density patterns
in the system. Reduction of q or p in the affected sub-
branch to qi ¼ 0.1 or pi ¼ 0.3 imposes a local trap and
leads to a local population that is, respectively, 43 or
28% higher than the homogeneous case. On the other

a

b

FIGURE 7 (a) Schematic drawings of typical heterogeneous trees

with 32 dead ends and a global variation of the order of sðdÞ=hdix11 or

18% in their extent. The lower trees are examples of highly asymmetric

structures, with a regularly branched right wing and an irregular left

wing. (b) The deviation of the analytical MFTP htitheory (calculated for

the average depth hdi) from the simulation result hhtii, characterized by

E tð Þ ¼
���hhtii � htitheory

���=hhtii, in terms of the fluctuation range of the

dead-end depths. hh/ii denotes averaging over both the ensemble of con-

figurations for a given disorder and the ensemble of possibilities for the sto-

chastic particle dynamics. The parameter values are taken to be p ¼ 0.55

and q ¼ r ¼ 1. The data points without error bars represent single realiza-

tions, whereas those with error bars are averages of E(t) over bins of size 2

along the x axis. Error bars represent the SD of E(t).
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hand, increasing the local q to qi ¼ 1 reduces the popula-
tion in the sub-branch to 88% compared to the regular tree.
Such uneven distributions of signaling ions and molecules
may have dramatic consequences on neural activities such
as neuronal firing and the ability to maintain chemical con-
centrations and gradients.

CONCLUSIONS

In summary, an analytical framework has been developed to
obtain first-passage times of chemical signals in neuronal
dendrites in terms of the structural factors that undergo path-
ological changes in the course of neurodegenerative disease
progression. By quantitatively connecting the dendritic
structure to signal transmission, our results open the possi-
bility of establishing a direct link between the disease pro-
gression and neural functions, which allows us to draw
important physiological conclusions.

To consider structural inhomogeneities and dynamical
variations of real dendrites, the master Eq. 1 can be gener-
alized by introducing uncorrelated probability distribu-
tions for the key structural parameters p, q, and r and
calculating the first-passage properties in terms of their
first two moments. The fluctuation of depth d can be
also taken into account by distributing the dead-end con-
ditions among the master equations that belong to a given
range of the deepest levels of the tree. Moreover, the
MFPT of passive particles in crowded dendritic channels
or active ones along microtubules (68) can be taken into
account in our master equations by introducing a (anti)

persistent random walker. The interparticle interactions
at high-density regimes affect the transport through the
narrow necks of spines, which influences the waiting
time distribution in spines and the first-passage properties.
The investigation of these aspects calls for additional
research efforts. The proposed approach provides an
analytical route into a variety of search and transport phe-
nomena on complex networks (e.g. weighted time-varying
trees), branched macromolecules and polymers, various
energy landscapes, and more generally biased random
walks with absorbing boundaries (69–71). Our calcula-
tions can be adapted to real labyrinthine environments
by introducing node-degree distribution and closed paths.

APPENDIX: FIRST-PASSAGE TIME
CALCULATIONS

To derive an expression for the first-passage time distribution, we start from

the master Eq. 1 and obtain a set of equations for Pn(z) at different depth

levels by defining the z transform PnðzÞ ¼
PN
t¼0

PnðtÞ zt (with jzj < 1). For

example, the transformation of the last equation in the set of master

Eq. 1 reads Pd(z) ¼ q(1 � p)zPd � 1(z) þ (1 � r)zPd(z) þ 1, where the con-

stant term results from the z transform of the d function. The challenge is

that the number of equations d þ 1 is arbitrary. However, after some

algebra, we solve this set of equations to obtain Pn(z), from which the z

transform of the first-passage time distribution to reach the soma can be

evaluated as FðzÞ ¼PN
t¼0

FðtÞzt ¼ q p z P1ðzÞ (72). Let us define l5 ¼
ð1=qpzÞ½1þ ðq� 1Þz5Aðz; q; pÞ�, where Aðz; q; pÞ ¼
½1þ 2ðq� 1Þzþ ½1� 2qþ ð1� 2pÞ2 q2�z2�1=2. We derive the following

exact expression for the z transform of the escape-time distribution,

FðzÞ ¼ 2dþ1 r Aðz; q; pÞ�
ldþ � ld�

�½rð1� ðq� 1ÞzÞ þ p qð � 2þ 2 z� r zÞ� þ �ldþ þ ld�
�
r Aðz; q; pÞ: (8)

a b c

FIGURE 8 Upper panels: schematic diagrams of

example trees with local structural irregularities in

the sub-branch starting from junction i. Common

parameters (unless locally varied) are d ¼ 6, p ¼
0.55, q ¼ 0.7, and r ¼ 0.6. The modified coarse-

grained parameter in the sub-branch is denoted

by qi or pi. The radii of the circles are proportional

to the local q (a and b) or p (c) values. Lower

panels show heat maps of the stationary density

of particles in each branch in simulations per-

formed for the corresponding asymmetric struc-

tures. To see this figure in color, go online.
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Next, by inverse z transforming of F(z), one gets an explicit lengthy

expression for F(t) in terms of the number of time steps t. We

confirmed the correctness of our calculations by comparing the analyt-

ical predictions via Eq. 8 to the results of extensive Monte Carlo sim-

ulations obtained from 106 realizations of the same stochastic process.

The MFPT hti can be evaluated as hti ¼ PN
t¼0t FðtÞ ¼ z d

dz FðzÞjz/1.

By expanding Eq. 8 around z ¼ 1 up to first-order terms,

FðzÞ � FðzÞjz/1 þ ðz� 1Þðd=dzÞFðzÞjz/1 þ O ððz� 1Þ2Þ, and defining

g5 ¼ ð1=pÞð15 j 2p� 1 j Þ, we arrive at the following expression

for the mean escape time,

where QðxÞ ¼
	þ1 0%x
�1 x < 0

. In the limit d / N, hti diverges as ex-

pected for infinite Cayley trees (72) and Bethe lattices (51,73,74).
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Abstract:
We study the problem of random search in finite networks with a tree topology, where
it is expected that the distribution of the first-passage time F (t) decays exponentially.
We show that the slope α of the exponential tail is independent of the initial condi-
tions of entering the tree in general, and scales exponentially or as a power law with
the extent of the tree L, depending on the bias parameter p to jump toward the target
node. It is unfeasible to uniquely determine L and p from measuring α or the mean
first-passage time (MFPT) of an ordinary diffusion along the tree. To unravel the
structure, we consider lazy random walkers that take steps with probability m when
jumping on the nodes and return with probability q from the leaves. By deriving an
exact analytical expression for the MFPT of the intermittent random walk, we verify
that the structural information of the tree can be uniquely extracted by measuring the
MFPT for two randomly chosen types of tracer particles with distinct parameters m
and q. We also address the applicability of our approach in the presence of disorder
in the structure of the tree or statistical uncertainty in the experimental parameters.
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We study the problem of random search in finite networks with a tree topology, where it is expected that the
distribution of the first-passage time F (t ) decays exponentially. We show that the slope α of the exponential tail
is independent of the initial conditions of entering the tree in general, and scales exponentially or as a power law
with the extent of the tree L, depending on the tendency p to jump toward the target node. It is unfeasible to
uniquely determine L and p from measuring α or the mean first-passage time (MFPT) of an ordinary diffusion
along the tree. To unravel the structure, we consider lazy random walkers that take steps with probability m when
jumping on the nodes and return with probability q from the leaves. By deriving an exact analytical expression for
the MFPT of the intermittent random walk, we verify that the structural information of the tree can be uniquely
extracted by measuring the MFPT for two randomly chosen types of tracer particles with distinct experimental
parameters m and q. We also address the applicability of our approach in the presence of disorder in the structure
of the tree or statistical uncertainty in the experimental parameters.

DOI: 10.1103/PhysRevE.98.042315

I. INTRODUCTION

Diffusion and transport in complex environments are
strongly influenced by the geometrical and topological proper-
ties of the underlying structures [1]. For example, the topology
of the tree structure of human lung affects the absorption ef-
ficiency of diffusing oxygen [2], the obstacle size and density
determines the mean free path of light in turbid media [3], the
topology of Cayley trees influences the average displacement
of quantum or classical random walkers [4,5], or the ar-
rangement of magnetic bubbles in flashing potentials controls
the anomalous behavior of the mean square displacement of
paramagnetic colloidal particles [6].

Conversely, reconstructing the structure by means of the
information obtained from the transport properties of tracer
particles also constitutes an interesting subject. The idea of
extracting the structural information of labyrinthine environ-
ments (or indirect evaluation of other quantities of interest in
general) from the diffusional properties has attracted attention
for a few decades [7–15]: (i) It was suggested [7] that the
geometry of the boundaries of a drum can be determined from
the eigenvalues of the diffusion equation in a cage surrounded
by absorbing walls; (ii) in porous structures, the porosity [8],
surface-to-volume ratio of the voids [9], degree of confine-
ment and absorption strength [10], and permeability [11] were
shown to be calculable from the diffusion propagator (more
simply from the asymptotic diffusion coefficient in special
cases); (iii) the temporal changes in the structure of foams
and turbid media can be probed by the diffusive propagation
of light [12,13]; (iv) the geometrical properties of complex
networks such as the number of triangles, loops, and sub-

*Corresponding author: shaebani@lusi.uni-sb.de
†Present address: Heidelberger Institut für Theoretische Studien,

69118 Heidelberg, Germany.

graphs can be estimated from the first return time of random
walks [14]; and (v) as the last example, the time required for
autocatalytic reactions on inhomogeneous substrates can be
obtained from the mean time taken for the reactants to reach a
reaction center or to encounter each other [15].

In this paper, we verify that the mean first-passage time
(MFPT) of tracer particles to reach a target, as a conceptu-
ally simple and easily accessible transport quantity, can be

FIG. 1. (a) Examples of finite regular trees with the same number
of leaves but different structure. (b) Schematic illustration of the
measurement design. The tracer particle enters a tree, with unknown
structural characteristics L and k (more generally p), from a leaf.
It performs a random walk and eventually reaches the root after a
first-passage time τ . The mean first-passage time 〈τ 〉 is obtained by
repeating the measurement for an ensemble of noninteracting tracer
particles.
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employed to extract useful structural information. While we
consider a treelike network in the present study, the idea
can be extended to other complex networks and structures.
Branching morphologies constitute an important subset of
complex structures, ranging from real systems (e.g., den-
drimer macromolecules [16–20], neuronal dendrites [21–23],
and rivers [24]) to virtual ones such as treelike graphs [25,26].
To investigate diffusion on branched structures, they have
been often modeled as regular treelike networks with, e.g.,
a given degree of the node k representing the number of
links connected to each node [see Fig. 1(a)]. Well-studied
examples include finite Cayley trees [16–20,27] and infinite
Bethe lattices [28–30]. A weight can be also assigned to each
link [31,32], as the real-world networks exhibit heterogeneity
in the capacity of their links [33,34]. The advantage of regular
trees is that the stochastic transport of particles along such
structures can be mapped onto effective one-dimensional (1D)
random walk models. By mapping Bethe lattices and Cayley
trees onto 1D random walks, some basic quantities such as the
mean square displacement, the probability of returning to the
origin, and the first-passage times were calculated [16–20,28–
30]. For example, the MFPT to reach a target node in finite
trees was shown to depend on the extent L of the tree as well
as the degree k of the node (more generally on the probability
p to hop toward the target) [17,18,35,36]. Thus, the structural
parameters L and k [shown in Fig. 1(a)] cannot be uniquely
determined from the measurement of the MFPT of an ordinary
random walk on the tree. The question arises of whether the
prediction of the structural properties of trees from the MFPTs
of other types of random walks is feasible. It is also not clear
how far the possible predictions are robust in the presence of
disorder in the extent of the tree, the degree of the nodes, or
the capacity of the links.

To be able to unravel the structure, we increase the com-
plexity of the dynamics of the tracer particles by introducing
lazy random walkers that intermittently jump along the tree.
We derive an exact analytical expression for the MFPT in
terms of the waiting probabilities at nodes and dead ends
(leaves), which enables us to uniquely determine the struc-
ture by measuring the MFPTs [see the schematic sketch in
Fig. 1(b)]. To identify the validity range of the theoretical re-
sults, we compare the analytical predictions to the simulation
results in the presence of disorder in the structure of the tree
or statistical uncertainty in the experimental parameters. Our
results are also applicable to ordinary random walks along
specific structures which induce temporal absorption along
the path or at the dead ends. This is particularly relevant to
transport in neuronal dendrites in the presence of biochemical
cages along the dendritic tubes [21–23].

This paper is organized as follows. We first review biased
random walks on bounded 1D domains and ordinary random
walks on regularly branched trees in Sec. II, and present an
expression for the MFPT to travel from the leaves to the root
of a finite tree. Next we introduce lazy random walkers in
Sec. III and demonstrate how the structure of the tree can be
uniquely determined from the MFPTs of such tracer particles.
In Sec. IV, we show how the deviation of the MFPT from
that of a regular tree enhances as the structural disorder or
the experimental uncertainty grows. Section V concludes the
paper.

II. FIRST-PASSAGE TIMES OF BIASED RANDOM WALKS
ON FINITE 1D DOMAINS

Stochastic motion of biased [37–40] or persistent [37–
39,41,42] walkers in one dimension has been thoroughly
investigated in the literature. Several aspects of 1D random
walks, such as the influence of waiting [43] or absorption [40]
along the path or at the boundaries [44] on transport proper-
ties, has been studied. These studies also help understand the
transport in other systems. For example, mapping of Bethe
lattices and Cayley trees onto 1D random walks facilitates
the calculation of the transport quantities of interest such as
the first-passage times. While the MFPT to visit any specific
target node on the Bethe lattice (i.e., an unlimited Cayley tree)
is infinite, the MFPT in bounded domains such as Cayley
trees is finite [17,18,35,36]. For instance, it was shown that
the MFPT of traveling from the leaves to the root of a finite
regular tree obeys the following relation [35,36]:

〈τ 〉 = L

2p − 1
+ 1 − p

(2p − 1)2

[(
1 − p

p

)L

− 1

]
, (1)

where L denotes the extent of the tree and p represents the
tendency to hop toward the root at each node (corresponding
to an effective bias toward the target in a 1D system). Here,
the parameter p equals to p = 1

k
in trees with uniform links,

where k is the coordination number (i.e., the degree of the
nodes) as shown in Fig. 1(a). More generally, p can represent
the effective tendency to move toward the target, including all
the effects of branching at nodes, relative weights of the links,
tendency to follow the shortest path toward the target, etc. The
relevant systems are, e.g., weighted treelike networks [32],
neuronal dendrites where the branches tend to taper toward the
dead ends [23], and stochastic packet transport in the Internet
preferably along the shortest path [45,46] (though the last
structure contains loops). In deriving Eq. (1), it was assumed
that the reflection probability at the dead ends (leaves) equals
the hopping probability toward the root at the bulk nodes
[35,36].

According to Eq. (1), the MFPT depends on both L and
p parameters. Therefore, having access to the MFPT via the
experiment illustrated in Fig. 1(b) does not provide sufficient
information to uniquely determine the structure, i.e., the tree
extent L and the node degree k (or the effective upward
tendency p). As shown in Fig. 2, for a given measured value
of the MFPT, one obtains a monotonic iso-MFPT contour line
in the (L,p) phase space as the set of possible solutions.

III. FIRST-PASSAGE TIMES OF INTERMITTENT
RANDOM WALKS

We propose that the structural properties of an unknown
tree can be deduced from the mean first-passage times of
specific tracer particles with a tunable tendency to move along
the tree. We consider random walks with waiting probabilities
at nodes and leaves. When such lazy random walkers enter
a tree from the leaves, explore the unknown structure, and
exit from the root, the MFPT can be obtained in terms of
the waiting probabilities. We show that having access to the
MFPT for only two different random choices of the waiting
probabilities enables us to uniquely determine the structure of
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FIG. 2. Mean first-passage time 〈τ 〉 of traveling from the leaves
to the root, obtained via Eq. (1), versus the extent of the tree L and
the effective tendency p to jump toward the target. The flat plane
represents a constant MFPT, 〈τ 〉 � 1000 steps, as an example of the
measured MFPT in experiments. The dashed contour line marks the
intersection of the two surfaces, i.e., the path along which the MFPT
equals the measured value. Inset: The contour line in the (L, p) phase
space.

the regular tree via the analytical framework developed in this
section.

Let us consider the stochastic motion of an individual
random walker on the nodes of a regular tree with the extent L.
We can identify each node by its generation (i.e., its distance
from the root) in regular trees. The generation of the nodes
ranges from 0 at the root to L at the leaves. The number of
nodes belonging to the same generation i equals ki−1 (for
i > 0), with k being the coordination number of the nodes.
Each tracer particle initially enters the tree from one of the
leaves. When the tracer is on a bulk node, it either jumps
to one of the neighboring nodes with probability m or waits
at its current node with probability 1 − m at each time step.
The dynamics is, however, different at the boundaries. At
the leaves, the particle either returns to the interior of the
tree with probability q or waits with probability 1 − q. The
other boundary, i.e., the root node with generation i = 0, is
treated as a trap. When the particle eventually reaches the root
after a first-passage time τ , it is not allowed to return to the
tree (which corresponds to m = 0 for the specific generation
i = 0).

In trees with uniform links and in the absence of other
sources which induce preference toward the target, k deter-
mines the probability m

k
to jump to one of the neighboring

nodes, thus the relative tendency to move toward the target
equals p = 1

k
. More generally, there can exist an additional

net probability m′ to choose the root direction (0 � m′ � m),
induced by other possible effects (such as the hierarchical
reduction of branch diameter toward the leaves or tendency
to travel along the shortest path). In such a case, the total
probability to jump from a bulk node toward the root or each

of the leaves is m−m′
k

+ m′ or m−m′
k

, respectively. Therefore,
the relative tendency to move toward the root effectively
equals p = m−m′

m
1
k

+ m′
m

and the tendency to hop to any of the
nodes toward the leaves is m−m′

m
1
k
.

In the following, we solve the problem of the first-
passage time from leaves to root for the set of parame-
ters {L,p,m, q}. However, one can straightforwardly fol-
low the proposed approach to calculate the MFPT between
two arbitrary generations of the tree. By introducing the
probability distribution Pi (t ) of being on a node with gen-
eration i at time step t , we practically map the problem
onto an effective biased random walk on a 1D domain in
the presence of temporal absorption along the path and at
one of the boundaries. Using the initial condition Pi (0) =
δi,L, we construct a set of master equations for the dynam-
ical evolution of Pi (t ). The probability evolves at the root
(i = 0) and leaves (i = L) as P0(t ) = P0(t − 1) + mpP1(t −
1) and PL(t ) = m(1 − p)PL−1(t − 1) + (1 − q )PL(t − 1) +
δ0,t . At a bulk node with generation i, the evolution of
Pi (t ) follows Pi (t ) = m(1 − p)Pi−1(t − 1) + (1 − m)Pi (t −
1) + mpPi+1(t − 1). By defining the z transform Pi (z) =∑∞

t=0 Pi (t )zt , we obtain the following set of coupled equa-
tions:

P0(z) = zP0(z) + mpzP1(z),

P1(z) = (1 − m)zP1(z) + mpzP2(z),

...

Pi (z)=m(1−p)zPi−1(z)+(1−m)zPi (z) + mpzPi+1(z),

...

PL−1(z) = m(1−p)zPL−2(z)+(1 − m)zPL−1(z)+qzPL(z),

PL(z) = m(1 − p)zPL−1(z) + (1 − q )zPL(z) + 1. (2)

After some algebra we obtain Pi (z) in the general form. Then,
the z transform of the FPT distribution to reach the root can
be evaluated as F (z) = mpzP1(z) [27]. We derive an exact
expression for the z transform of the FPT distribution [23]:

F (z)= 2L+1qA(z,m, p)

(HL+−HL− )B(z, q,m, p) + (HL++HL− )qA(z,m, p)
,

(3)

with

A(z,m, p) =
√

1+2(m−1)z + [1−2m + (1−2p)2m2]z2,

B(z, q,m, p) = q[1 − (m − 1)z] + pm(−2 + 2z − qz),

and

H± = 1

mpz
[1 + (m − 1)z±A(z,m, p)].

The first-passage time distribution F (τ ) can be obtained by
inverse z transformation of F (z). In order to check our lengthy
analytical results for correctness, we compare them with the
results of Monte Carlo simulations in Fig. 3, and we find them
to be in perfect agreement.

Figure 3 shows that the tail of F (τ ) decays exponentially
with a slope α, which is independent of the initial conditions
of entering the tree. Expectedly, α varies with the structural
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FIG. 3. First-passage time distribution for L = 6 and p = m =
q = 0.5 and for different initial conditions of entering the tree. The
solid lines are the analytical prediction of Eq. (3) and the symbols
denote the simulation results. The exponential dashed line is given
by Eq. (4).

properties L and p as well as the waiting probabilities m

and q. While the tail behavior of the lengthy expression
F (τ ) cannot be necessarily expressed in a closed form in
general, at least the existence of an exponential tail can be
proved. F (z) can be represented as the inverse of a polynomial
g(z, p,m, q, L) with j roots (j � L), thus it can be written as

F (z) = 1

(1 − a1z)b1 · · · (1 − aj z)bj
,

where the prefactors of z are functions of the parameter set
{L,p,m, q} and b1, . . . , bj � L. As a result, F (τ ) can be
written as a sum of at

k terms by partial fraction decomposition
of F (z) and applying inverse z transform. Therefore, one can
approximate F (τ ) by the leading exponential term at

k,max in
the long-time limit. In view of the difficulty of extracting the
roots of the polynomial and deducing a general form for the
exponential asymptotic scaling, we choose the given set of pa-
rameter values in Fig. 3 and reconstruct the master equations
(2) for the four different initial conditions of entering the tree
introduced in the figure. It can be shown that the leading term
of F (τ ) follows

F (τ ) ∼ exp

[
− ln

(
4

2 +
√

2 + √
3

)
t

]
(4)

for all the initial conditions. Thus, the slope α of the exponen-

tial tail can be deduced as α = ln [4/(2 +
√

2 + √
3)] for the

given set of parameters in Fig. 3.
By extracting α for other values of the structural param-

eters L and p, we find that α scales exponentially with the
extent of the tree L if p < 1

2 . However, a crossover to power-
law scaling occurs for p � 1

2 , as shown in Figs. 4(a) and 4(b).
The overall shape of F (τ ) exhibits a plateau or even develops
a peak at short times in general. The characteristic time to
converge to the exponential tail behavior is reduced with
decreasing p, such that the entire distribution F (τ ) follows
an exponential form in the limit p → 0. Consequently, the
mean value of F (τ ) (i.e., the MFPT 〈τ 〉) is inversely related to
the slope α at small values of p, as expected for exponential
distributions. With increasing p, the form of F (τ ) changes,
thus the deviations from α = 1

〈τ 〉 grow, as shown in Fig. 4(c).

The MFPT can be calculated as 〈τ 〉 = z d
dz

F (z)|z→1. We
expand Eq. (3) around z = 1 up to first-order terms, as F (z) ∼
F (z)|z→1 + (z − 1) d

dz
F (z)|z→1 + O((z − 1)2), and obtain

the following exact expression for the MFPT:

〈τ 〉 =
{

(m−q )L+qL2

mq
, p = 1

2 ,

L
m(2p−1) + pq−pm(2p−1)

mq(2p−1)2

[(
1
p

− 1
)L − 1

]
, p 
= 1

2 .

(5)

The MFPT diverges in the limit L → ∞ as expected for
infinite structures. It can be also seen that the MFPT scales
linearly (exponentially) with the extent of the tree L in the
limit p → 1 (p → 0), as the exponential term on the right-
hand side of Eq. (5) vanishes (dominates). In the absence of
waiting (m = 1) and assuming that the reflection probability
q at the leaves equals the hopping probability p toward the
root at the bulk nodes (q = p), Eq. (5) for p 
= 1

2 reduces
to Eq. (1). It is also notable that the total number of nodes
N in a regular tree is given as N = 2L. Thus, the first (last)
term of 〈τ 〉 for p 
= 1

2 grows logarithmically (linearly) with
the number of nodes [17].

According to Eq. (5), the MFPT of an intermittent random
walk to travel from the leaves to the root depends on the set
of parameters {L,p,m, q}. Let us suppose that the intrinsic
dynamics of the lazy random walkers, characterized by m

and q parameters, can be tuned before they start to explore
the structure as tracer particles. For a given set of m and

FIG. 4. The slope α of the exponential tail versus the extent of the tree for (a) p < 1
2 (log-linear scales) and (b) p � 1

2 (log-log scales) at
m = 1. The dashed lines represent exponential or power-law fits. (c) α versus p at L = 8 and m = 1. The dashed line represents α = 1/〈τ 〉
for the MFPTs obtained for different values of p at L = 8, m = 1, and q = p.
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FIG. 5. Mean first-passage time via Eq. (5) versus the effective tendency p to jump toward the target and the tree extent L at (a) m = 1,
q = 1

3 and (b) m = 0.05, q = 0.8. The flat (constant MFPT) planes correspond to the MFPTs measured by tracer particles in experiments
[chosen to be 〈τ 〉 � 1500 and 15 000 steps in panels (a) and (b), respectively]. The dashed line marks the intersection of the two surfaces, i.e.,
the contour line along which the MFPT equals the measured value. (c) Intersected contour lines in the (L, p) phase space. Inset: A zoomed
view of the same plot near the intersection, which determines the unknown values of the structural parameters.

q, one obtains a surface in the (L,p, 〈τ 〉) phase space via
Eq. (5). The intersection of this surface with a flat plane
representing the measured MFPT results in an iso-MFPT
contour line in the (L,p) plane. An example is presented in
Fig. 5(a) for m = 1 and q = 1

3 , assuming that the measured
MFPT is 〈τ 〉 � 1500 steps. By repeating this procedure for
a different set of m and q (with a different m

q
ratio), we

can obtain another contour line in the (L,p) plane which
intersects the previous one and, thus, uniquely determines the
structure (i.e., L and p parameters). Figure 5(b) shows an
example, where new parameter values m = 0.05 and q = 0.8
are chosen. Assuming that the measured MFPT for this lazy
random walker is 〈τ 〉 � 15 000 steps, we obtain the second
contour line. The intersected contour lines in Fig. 5(c) reveal
that the unknown tree has the extent L = 8 and the effective
tendency p � 1

3 to move toward the root (corresponding to the
node degree k = 3 in the case of uniform links). Therefore,
having access to the MFPTs of lazy random walkers provides
sufficient information to unravel the structure.

IV. DISORDERED NETWORKS AND
EXPERIMENTAL UNCERTAINTIES

In derivation of the MFPT in the previous section, we
considered a regular tree with the same tree extent along all
branches and the same effective tendency to jump toward the
target at every node. However, the real or virtual tree struc-
tures of interest are disordered. Particularly, heterogeneity in
the degree of the nodes or in the capacity of the links has
been widely studied in the context of complex networks. If
the degree of the nodes or the weight of the links follow prob-
ability distributions, the effective tendency to move toward
the target varies from node to node. The question arises of
how far our analytical predictions for a regular tree remain
valid when the network connectivity pattern becomes more
and more diverse. To answer this question, we compare the
analytical result of the MFPT for the constant p across the

tree, via Eq. (5), with the Monte Carlo simulation results
where p dynamically fluctuates at each node around the mean
global value. Before each jump, we assign a new value to
the effective tendency to move toward the target, which is
randomly taken from a uniform probability distribution in the
interval [p − δp, p + δp].

Figure 6(a) shows that the deviations of the MFPT from the
analytical expression (5) grow with increasing the variation
range δp. It can be seen that the significance of the impact on
the MFPTs depends on the mean value of p. The higher the
tendency to jump toward the target node, the more robust the
analytical predictions become. For comparison, we define an
upper threshold of 10% deviations of the MFPT from the the-
ory and measure the critical value δpc for the variation range
of the parameter p in simulations, at which the fluctuations of
the MFPT reach the 10% threshold. As shown in Fig. 6(b),
broader fluctuations in p can be tolerated with increasing
p. For example, even a broad range of 15% variations of p

around the mean value p = 0.7 does not cause 10% deviations
in the measured MFPT from the predicted value. In regular
trees with node degree k � 1, p → 0 and the analytical
predictions are only applicable in the limit of small variations
in the degree of the nodes across the tree. As mentioned above,
we have chosen a uniform distribution for p. In order to clarify
whether the form of the probability distribution influences the
MFPT results, we compare uniform and normal distributions
of p with the same mean and variance in Fig. 6(c). The mean
value is fixed at 〈p〉 = 1

2 and a few examples for δp have been
examined. It can be seen that the differences between the FPT
distributions are negligible when the first two moments of the
distributions of the parameter p are equal.

Next we investigate the influence of the structural disorder
on the estimation of L and p, as the main objective of the
present study. We perform simulations where either p or L

is allowed to fluctuate around its mean value. Let us first
consider a tree with L = 10 and allow p to dynamically
vary around 〈p〉 = 1

2 in Monte Carlo simulations through the
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FIG. 6. (a) The standard deviation of the MFPT in simulations,
scaled by the analytical prediction for 〈τ 〉 via Eq. (5), in terms
of the variation range δp around its mean value p at L = 10 and
m = q = 1. The results are shown for three different values of p.
The horizontal dashed line corresponds to 10% error in the measured
MFPT in simulations compared to the analytical prediction. (b) The
critical variation range of the effective tendency δpc (which causes
10% differences between simulation and theory) in terms of p. (c)
The FPT distribution obtained via Eq. (3) (solid line) or simulations
with δp ∼ 0.02 (blue symbols), 0.04 (red symbols), and 0.10 (green
symbols). The results of uniform probability distributions of p (full
triangles) are compared to those obtained from normal distributions
(open squares).

procedure which was previously explained in this section.
By obtaining the MFPT from simulations and inserting it in
Eq. (5), one can predict the structural parameters for a given
standard deviation σ (p). Assuming that one of the structural
parameters L or p is known, we estimate the other one via
Eq. (5) and compare it to its actual value in Fig. 7(a). The
deviation from the analytical prediction grows with increasing

(a)
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14

0.05 0.10
0.4

0.5

0.6

0.05 0.10

0 1 2 3 4
10

12

14

0 1 2 3 40.4

0.5

0.6(b)

FIG. 7. The estimated values of the structural parameters L and
p versus the structural disorder characterized by the variance of the
parameters (a) p and (b) L. The horizontal dashed lines indicate the
actual parameter values. The parameter values (unless varied) are
taken to be L = 10 and p = m = q = 1

2 . Each data point in panel (b)
represents the result for a given static tree with a stochastic irregular
branching pattern.

σ (p); however, the effect is less pronounced for estimation of
p compared to L. We also note that the deviations are smaller
for higher values of 〈p〉 (not shown). Our theoretical approach
is thus applicable to treelike networks with moderate disorder
in their connectivity pattern. We remind that according to
Eq. (5) the MFPT approaches a linear scaling when p → 1,
while it grows almost exponentially when p decreases toward
zero. Therefore, it is expected that the variation of p around
a mean value in the linear regime (〈p〉 > 1

2 ) induces less
deviations in the measured MFPTs, leading to a more accurate
estimation of the structural parameters. On the other hand,
fluctuations of p around a mean value in the exponential
regime (〈p〉 < 1

2 ) causes an overestimation of the MFPT on
average, which increases the errors of the estimated structural
parameters.

In order to study disorder in the extent of the tree, we gener-
ate static irregular trees with 〈L〉 = 10 and standard deviation
σ (L) in the following way: we randomly allow the nodes
to have their child nodes in a hierarchical manner starting
from the root node. The procedure continues until the average
extent of the tree reaches 〈L〉 = 10. In Fig. 7(b), we have
presented the results for a tree with p = 1

2 and for m = q = 1
2

as an example. The deviations from analytical predictions
remain below 10% even in considerably heterogeneous trees
with σ (L)

〈L〉 ≈ 40%.
In addition to disorder in the structure of the network, one

may introduce uncertainty in tuning the experimental parame-
ters m and q. For example, intermittent random walks induced
by random trapping and release in cages or by stochastic
temporal absorption along the path lead to statistical errors for
the resulting waiting probabilities m and q. In order to assess
the robustness of our analytical estimation of L and p in the
presence of experimental uncertainties, we perform simula-
tions where the structure is regular but the parameters m and
q fluctuate around their mean values. In each of the Monte
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FIG. 8. The estimated values of the structural parameters L and
p versus the experimental uncertainty characterized by the variance
of the parameters (a) m and (b) q. The horizontal dashed lines
indicate the actual parameter values. The parameter values (unless
varied) are taken to be L = 10 and p = m = q = 1

2 . The mean
values of the variable parameters are 〈m〉 = 1

2 and 〈q〉 = 1
2 in panels

(a) and (b), respectively.

Carlo simulations, we vary only one of the experimental pa-
rameters m or q while the other one is fixed at its mean value.
A new value is assigned to the variable parameter at each
random walk step, which is randomly taken from a uniform
distribution with standard deviation σ (m) or σ (q ). For a given
fluctuation range [either σ (m) or σ (q )], we obtain the MFPT
from simulations. Next, we insert the resulting MFPT (as well
as 〈m〉, 〈q〉, and one of the structural parameters L or p) in
Eq. (5) to predict the remaining structural parameter. In Fig. 8,
we compare the analytical estimations with the actual values
to demonstrate the impact of uncertainty in the experimental
parameters on the prediction of L and p. It can be seen that
the predicted values of p or L insignificantly deviate from
the actual values for moderate (even up to 15%) experimental
uncertainties.

V. DISCUSSION AND CONCLUSION

We presented an analytical framework to calculate the first-
passage properties of intermittent random walks on treelike
networks in terms of the waiting probabilities at the bulk
nodes and leaves as well as the structural properties of the
network such as its connectivity and extent. We proposed

simple measurements of the mean-first-passage times of tracer
particles entering the tree at the leaves and exiting from the
root, to uniquely determine the structural properties. In regular
trees, having access to the MFPT for only two different sets
of waiting probabilities would be enough to unravel the struc-
ture. The idea of tuning the waiting probabilities of the ran-
dom walkers to unravel the structure can be extended to other
intrinsic dynamic properties such as the persistency of the
walker [47,48]. Persistent random walkers can be employed
to explore the structure of 1D domains and obtain their length
and the effective bias to hop toward the target, even though
assigning a persistency to the particle dynamics on a network
topology is not well defined in general. Calculating the higher
moments of the FPT distribution is another possibility. Since
the ith moment 〈τ i〉 = (z d

dz
)iF (z)|z→1 can be straightfor-

wardly obtained, having access to the first two moments of the
FPT distribution also enables one to uniquely determine the
structure via our analytical framework. However, the resulting
set of equations may be redundant in special cases and it
is considerably more difficult to evaluate variance or higher
moments of the FPT distribution in experiments.

We addressed the validity range of the analytical pre-
dictions in networks with diverse connectivity patterns or
heterogeneous branching morphologies. In the presence of
disorder in the structural parameters L and p or uncertainty
in the experimental parameters m and q, even more measure-
ments are required to determine the MFPT itself with a given
accuracy. Therefore, it is naturally expected that the evaluation
of the second moment of the FPT distribution with a given ac-
curacy would be extremely time consuming in such cases. The
advantage of considering intermittent random walks is that
equipping particles with different diffusivity in experiments
is possible, which makes our proposed measurements feasible
in practice. The final remark is that the results obtained in this
study are equivalently applicable to ordinary random walks on
treelike structures which induce temporal absorption along the
path or at the dead ends. A particularly relevant example is the
transport in neuronal dendrites in the presence of biochemical
cages along the dendritic tube.

ACKNOWLEDGMENTS

We thank Z. Sadjadi and J. Kertész for fruitful discussions.
This work was funded by the Deutsche Forschungsgemein-
schaft (DFG) through Collaborative Research Center SFB
1027 (Projects A7 and A8).

M.R.S. and R.J. contributed equally to this work.

[1] D. ben-Avraham and S. Havlin, Diffusion and Reactions in
Fractals and Disordered Systems (Cambridge University Press,
Cambridge, 2000).

[2] M. Felici, M. Filoche, and B. Sapoval, Phys. Rev. Lett. 92,
068101 (2004).

[3] Z. Sadjadi, M. F. Miri, M. R. Shaebani, and S. Nakhaee, Phys.
Rev. E 78, 031121 (2008).

[4] E. Agliari, A. Blumen, and O. Mülken, J. Phys. A 41, 445301
(2008).

[5] E. Agliari and D. Cassi, First-Passage Phenomena and Their
Applications (World Scientific, Singapore, 2014), pp. 96–121.

[6] P. Tierno and M. R. Shaebani, Soft Matter 12, 3398 (2016).
[7] M. Kac, Am. Math. Mon. 73, 1 (1966).
[8] P. P. Mitra, P. N. Sen, L. M. Schwartz, and P. Le Doussal, Phys.

Rev. Lett. 68, 3555 (1992).
[9] R. W. Mair, G. P. Wong, D. Hoffmann, M. D. Hürlimann, S.

Patz, L. M. Schwartz, and R. L. Walsworth, Phys. Rev. Lett. 83,
3324 (1999).

042315-7

Publications and manuscripts

136



SHAEBANI, JOSE, SAND, AND SANTEN PHYSICAL REVIEW E 98, 042315 (2018)

[10] R. Krishna, J. Phys. Chem. C 113, 19756 (2009).
[11] F. F. Chen and Y. S. Yang, Modell. Simul. Mater. Sci. Eng. 20,

045005 (2012).
[12] D. J. Durian, D. A. Weitz, and D. J. Pine, Science 252, 686

(1991).
[13] G. Maret, Curr. Opin. Colloid Interface Sci. 2, 251 (1997).
[14] C. Cooper, T. Radzik, and Y. Siantos, Internet Math. 12, 221

(2016).
[15] E. Agliari, R. Burioni, D. Cassi, and F. M. Neri, Theor. Chem.

Acc. 118, 855 (2007).
[16] E. Helfand and D. S. Pearson, J. Chem. Phys. 79, 2054 (1983).
[17] B. Wu, Y. Lin, Z. Zhang, and G. Chen, J. Chem. Phys. 137,

044903 (2012).
[18] D.-J. Heijs, V. A. Malyshev, and J. Knoester, J. Chem. Phys.

121, 4884 (2004).
[19] D. Katsoulis, P. Argyrakis, A. Pimenov, and A. Vitukhnovsky,

Chem. Phys. 275, 261 (2002).
[20] P. Argyrakis and R. Kopelman, Chem. Phys. 261, 391 (2000).
[21] N. Spruston, Nat. Rev. Neurosci. 9, 206 (2008).
[22] H. Hering and M. Sheng, Nat. Rev. Neurosci. 2, 880 (2001).
[23] R. Jose, L. Santen, and M. R. Shaebani, Biophys. J.,

doi:10.1016/j.bpj.2018.09.029.
[24] V. Fleury, J.-F. Gouyet, and M. Leonetti, Branching in

Nature: Dynamics and Morphogenesis of Branching Struc-
tures, from Cell to River Networks (Springer-Verlag, Berlin,
2001).

[25] G. Szabó, M. Alava, and J. Kertész, Phys. Rev. E 66, 026101
(2002).

[26] B. Bollobás and O. Riordan, Phys. Rev. E 69, 036114 (2004).
[27] S. Redner, A Guide to First-Passage Processes (Cambridge

University Press, New York, 2001).
[28] B. D. Hughes and M. Sahimi, J. Stat. Phys. 29, 781 (1982).

[29] C. Monthus and C. texier, J. Phys. A 29, 2399 (1996).
[30] D. Cassi, Europhys. Lett. 9, 627 (1989).
[31] S. H. Yook, H. Jeong, A.-L. Barabási, and Y. Tu, Phys. Rev.

Lett. 86, 5835 (2001).
[32] E. Almaas, P. L. Krapivsky, and S. Redner, Phys. Rev. E 71,

036124 (2005).
[33] A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespig-

nani, Proc. Natl. Acad. Sci. U.S.A. 101, 3747 (2004).
[34] A. E. Krause, K. A. Frank, D. M. Mason, R. E. Ulanowicz, and

W. W. Taylor, Nature (London) 426, 282 (2003).
[35] M. Khantha and V. Balakrishnan, Pramana 21, 111 (1983).
[36] L. Skarpalezos, A. Kittas, P. Argyrakis, R. Cohen, and S.

Havlin, Phys. Rev. E 88, 012817 (2013).
[37] R. Garcia-Pelayo, Physica A 384, 143 (2007).
[38] N. Pottier, Physica A 230, 563 (1996).
[39] G. H. Weiss, Physica A 311, 381 (2002).
[40] O. Benichou, A. M. Cazabat, A. Lemarchand, M. Moreau, and

G. Oshanin, J. Stat. Phys. 97, 351 (1999).
[41] M. R. Shaebani, Z. Sadjadi, I. M. Sokolov, H. Rieger, and L.

Santen, Phys. Rev. E 90, 030701 (2014).
[42] J. Masoliver, K. Lindenberg, and G. H. Weiss, Physica A 157,

891 (1989).
[43] A. E. Hafner, L. Santen, H. Rieger, and M. R. Shaebani, Sci.

Rep. 6, 37162 (2016).
[44] Y. Kantor and M. Kardar, Phys. Rev. E 76, 061121 (2007).
[45] T. Huisinga, R. Barlovic, W. Knospe, A. Schadschneider, and

M. Schreckenberg, Physica A 294, 249 (2001).
[46] A. D. Kachhvah and N. Gupte, Phys. Rev. E 86, 026104 (2012).
[47] Z. Sadjadi, M. R. Shaebani, H. Rieger, and L. Santen, Phys.

Rev. E 91, 062715 (2015).
[48] J. M. Newby and P. C. Bressloff, Phys. Rev. E 80, 021913

(2009).

042315-8

Addendum II. Unraveling the structure of treelike networks from first-passage
times of lazy random walkers

137





Addendum III. Persistence-Speed Coupling Enhances the Search Efficiency of
Migrating Cells

Addendum III Persistence-Speed Coupling Enhances the
Search Efficiency of Migrating Cells

Authors: M. R. Shaebani1, 2 ∗ †, R. Jose1, †, L. Stankevicins3, F. Lautenschläger2 3 4 and
L. Santen1 2

1 Department of Theoretical Physics, Saarland University, 66123 Saarbrücken, Ger-
many
2 Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
3 INM-Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
4 Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Ger-
many

Manuscript in preparation

Author contributions:
∗ Corresponding author: M. R. Shaebani.
† M. R. Shaebani and R. Jose contributed equally to this work.
M. R. Shaebani and F. Lautenschläger designed the research. L. Stankevicins and F. Lauten-
schläger performed the experiments. M. R. Shaebani developed the analytical model. R. Jose
performed the simulations. All authors contributed to the analysis and interpretation of the
results. M. R. Shaebani wrote the manuscript.

Abstract:
Migration of immune cells within the human body allows them to fulfill their main
function of detecting pathogens. Adopting an optimal navigation and search strategy
by these cells is of crucial importance to achieve an efficient immune response. Ana-
lyzing the dynamics of dendritic cells in our in vitro experiments reveals that the di-
rectional persistence of these cells is highly correlated with their migration speed, and
that the persistence-speed coupling enables the migrating cells to reduce their search
time. We theoretically introduce a new class of random search optimization prob-
lems by minimizing the mean first-passage time (MFPT) with respect to the strength
of the coupling between influential parameters such as speed and persistence length.
We derive an analytical expression for the MFPT in a confined geometry and ver-
ify that the correlated motion improves the search efficiency if the mean persistence
length 〈lp〉 is sufficiently shorter than the confinement size. In contrast, a positive
persistence-speed correlation even increases the MFPT at long 〈lp〉 regime, thus, such
a strategy is disadvantageous for highly persistent active agents.
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Migration of immune cells within the human body allows them to fulfill their main function of
detecting pathogens. Adopting an optimal navigation and search strategy by these cells is of crucial
importance to achieve an efficient immune response. Analyzing the dynamics of dendritic cells in our
in vitro experiments reveals that the directional persistence of these cells is highly correlated with
their migration speed, and that the persistence-speed coupling enables the migrating cells to reduce
their search time. We theoretically introduce a new class of random search optimization problems by
minimizing the mean first-passage time (MFPT) with respect to the strength of the coupling between
influential parameters such as speed and persistence length. We derive an analytical expression
for the MFPT in a confined geometry and verify that the correlated motion improves the search
efficiency if the mean persistence length 〈ℓp〉 is sufficiently shorter than the confinement size. In
contrast, a positive persistence-speed correlation even increases the MFPT at long 〈ℓp〉 regime, thus,
such a strategy is disadvantageous for highly persistent active agents.

A sucessfull immune response crucially depends on its
first steps: finding harmful patogens. In general search
and transport efficiency of random processes have been
quantified by observables such as the diffusivity of ran-
domly moving particles [1], the reactivity of transport-
limited chemical reactions [2], the cover time to visit all
sites of a confined domain [3, 4], or often by the mean
first-passage time (MFPT) that a searcher needs to find
a target [5, 6]. Optimal search strategies considered so
far minimize the MFPT or equivalently the cover time
with respect to one of the key parameters of the problem.
This can be either a structural property of the environ-
ment in which the particle moves [7, 8] or a parameter of
the stochastic motion (e.g., the persistency in active ran-
dom searches [9], the resetting rate in diffusion processes
with stochastic resetting to the initial position [10, 11],
the ratio between the durations of diffusive and directed
motion in intermittent searches [5, 12, 13], or the speed
of the searcher when passing over a target location [14]).
However, the influential factors governing the search effi-
ciency are correlated in general. For instance, a universal
coupling between migration speed and directional persis-
tence has been recently reported for various cell lines me-
diated by retrograde actin flows [15]. Alternative optimal
search strategies for such correlated stochastic processes
need to be developed.

Adopting an efficient search and navigation strategy
is of particular importance in biological systems as, for
example, in search for specific target sites over a DNA
strand by proteins [16–18], escape through small ab-
sorbing boundaries and targeted intracellular transport
[7, 19], delivery of chemical signals in neurons [20–22],
bacterial swimming and chemotaxis [5, 23–25], and an-
imal foraging [14, 26, 27]. It is often hypothesized that
the motility of mammalian cells enables them to effec-

tively fulfill their biological functions. Of particular in-
terest is the migration of immune cells [28–30], which is
expected to be optimized in the course of evolution to
achieve an efficient immune response. Nevertheless, the
optimality of the search for pathogens and other targets
by immune cells has neither been precisely verified nor
systematically studied. Understanding the mechanisms
of adaptive search and clearance in the immune system
opens the way toward more effective cancer immunother-
apies and vaccine design.

In this Letter, we consider theoretically a correlated
stochastic process and introduce, for the first time, a new
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FIG. 1. (a) Sample cell trajectory, color coded with respect to
speed. (b) Cell persistence p and persistence length ℓp (scaled
by the mean distance ℓ between successive recorded positions)
in terms of migration speed v. The solid line indicates an
exponential saturation fit. The dashed line shows the fit via
Eq. (1). Inset: Log-lin plot of ℓp/ℓ vs v. (c) Comparison
between the conditional MFPT τ∗ of two categories of cells
with low and high p−v coupling strength κpv .
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class of optimal search strategies based on tuning the
strength of coupling between key parameters. Inspired
by the dynamics of dendritic cells [15, 31], we consider
the correlation between the migration speed v and direc-
tional persistence p of the searcher. The optimization is
achieved by analytically calculating the MFPT and min-
imizing it with respect to the strength κpv of p−v cou-
pling. The success of the scheme in improving the MFPT
nontrivialy depends on the ratio between the mean per-
sistence length 〈ℓp〉 of the searcher and the system size
L; in the regime 〈ℓp〉≪L (〈ℓp〉∼L), the correlated mo-
tion is advantageous (disadvantageous) for reducing the
search time. We experimentally investigate the dynam-
ics of dendritic cells (responsible for tissue patrolling and
antigen capture [30, 32]) and expectedly observe a sig-
nificant p−v correlation [15, 31] (see Fig. 1). Our data
analysis also reveals an interesting inverse dependence of
the MFPT on the coupling strength, in agreement with
our analytical predictions for the low persistence regime.
Migration of dendritic cells.— To study the dynamics

of migrating cells in our in vitro experiments, we tracked
the two-dimensional motion of primary mouse immature
dendritic cells with typical size of nearly ten microme-
ters derived from bone marrow of LifeAct-GFP knock-in
mice. The motion was confined between the cell culture
dish and a roof held by microfabricated pillars made out
of Polydimethylsiloxane (PDMS) as described in [33] at
a height of 3µm. Both surfaces were coated with PLL-
PEG (0.5 mg/mL), a non-adhesive material to exclude
movement by cell adhesion. The cell concentration was
low enough to treat the cells as non-interacting. Cell nu-
clei were stained with Hoechst 34580 (200 ng/mL for 30
min) (Sigma Aldrich, St Louis, USA) and migration was
recorded by epifluorescence microscopy for at least 6h at
37◦ with a camera of 6.5µm pixel size and sampling rate
of 20 frames/h.
A typical cell trajectory is shown in Fig. 1(a), evi-

dencing that the path is more straight when the migra-
tion speed is higher. We quantify the cell persistence—
the ability of the cell to maintain its current direction
of motion— by p=cos θ with θ being the orientational
change at each recorded position [34–36], from which the
instantaneous persistence length ℓp can be estimated as
ℓp=

−ℓ
ln |p| (ℓ is the mean distance between two successive

recorded positions) [37]. The leading contribution goes as
O( ℓ

1−p ). After averaging over all trajectories and speed

binning intervals of ∆v=1µm/min, we observe a clear
coupling between the cell persistence p and the migration
speed v, which can be fitted by an exponential saturation
p = p∞(1−e−γv), with p∞≃0.76 and γ≃0.26 [Fig. 1(b)].
The behavior of ℓp is well fitted by a logistic function

ℓp =
ℓp∞

1 + (
ℓp∞− ℓp◦

ℓp◦
)e−γv

, (1)

where ℓp◦ is the persistence length of a nonpersistent

motion and ℓp∞≃
ℓp◦

1−p∞
. ℓp initially grows exponentially

as ℓp∝ eγv [15] but eventually saturates to ℓp∞ at high
speeds. To describe the overall coupling strength for in-
dividual cells we calculate the p−v correlation coefficient

κ
pv
= cov(p,v)

σpσv
for each cell. When averaged over all tra-

jectories, a strong correlation κ
pv
≃0.9 is obtained.

The key question is whether such a correlated random
motion helps the immune cells to improve their search
efficiency. To answer this, we selected two subpopula-
tions of cells with distinct mean correlation coefficients
κ

pv
=0.25 ± 0.05 and κ

pv
=0.85 ± 0.05. By calculating

the conditional MFPT τ∗— i.e. over successful trials to
reach a random hidden target— for each category (scaled
by their mean speeds) and various target sizes we ob-
tain 10−15% lower search times at higher correlations, as
shown in Fig. 1(c). In order to understand these MFPT
results we develop a stochastic model for correlated per-
sistent search in the following, and prove that p−v cou-
pling strategy is only beneficial for relatively weak per-
sistencies, as in the case of dendritic cells.

Correlated persistent search model.— We consider
a discrete-time persistent random walk on a two-
dimensional square lattice of size L with periodic bound-
ary conditions [Fig. 2(a)]. At each time step, the searcher
moves v steps drawn from a speed distribution f(v). It
either continues along the previous direction of motion
with probability q+p or chooses a new direction, each
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(b). The dashed lines represent analytical predictions and
the symbols are simulation results. (d) MFPT scaled by the
optimal search time of the constant ℓp process vs κpv and
scaled 〈ℓp〉.
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with a probability q, so that 4q+p=1. The persistency
parameter p (and thus q) depends on the instantaneous
speed v and ranges from 0 (ordinary diffusion) to 1 (bal-
listic motion). The instantaneous persistence length can

be obtained as ℓp=
∞∑
ℓ=1

ℓ(q+p)ℓ−1(1−q−p)=4
3

1
1−p(v) .

Assuming that a single target of one lattice-unit size is
located at r

T
(equivalent to regularly spaced targets on

an infinite plane with 1
L2 density), we introduce τ(r, v, σ)

as the MFPT of reaching the target starting at position
r (6=r

T
) with speed v and orientation σ ∈ {→,←, ↑, ↓}.

The evolution of τ(r, v, σ) can be described by the fol-
lowing backward master equation

τ(r, v,→)=

∫
dv′f(v′)

[
(q+p) τ(r+vî, v′,→)+

q τ(r−vî, v′,←)+q τ(r+vĵ, v′, ↑)+q τ(r−vĵ, v′, ↓)+1
]
,

(2)

and similar master equations for τ(r, v,←), τ(r, v, ↑)
and τ(r, v, ↓). The possible velocities are limited to
the integer values v′∈[0, vmax], which are supposed to
be equally probable for simplicity. By introducing the
Fourier transform τ(k, v, σ)=

∑
r
τ(r, v, σ) e−ik·r and us-

ing
∫
dvf(v) τ(k, v, σ) = τ(k, σ) for a uniform distribu-

tion f(v), after some calculations we obtain

τ(k, σ)=
F (k)+S

(
δ(k)−e−ik·r

T

)

1−Bσ(k)
, (3)

with Bσ(k)=
1
L

vmax∑
v=0

p(v)eivkσ, F (k)= 1
L

∑
v
p(v)

∑
σ
eivkστ(k, σ),

S=L2, and kσ∈{k · î,−k · î,k · ĵ,−k · ĵ}. Next we multiply
Eq. (3) by eivkσ and sum over σ and v to derive a closed
expression

F (k)=
A(k)S

(
δ(k)−e−ik·r

T

)

1−A(k) . (4)

Here A(k)= 1
L

∑
v
p(v)

∑
σ

eivkσ

1−Bσ(k)
. Inserting F (k) into

Eq. (3) and averaging over all directions σ then yields

τ(k)=
C(k)S

(
δ(k)−e−ik·r

T

)

1−A(k) , (5)

where C(k)= 1
4

∑
σ

1
1−Bσ(k)

. Finally, we apply the in-

verse Fourier transform (with the components of avail-
able modes being ki=

2πni

L , ni∈[0, L−1]) and numerically
average over all possible starting positions r to obtain
the overall MFPT τ .
In the case of constant persistence and speed, the re-

sults of a single-state persistent random search [9] are
recovered, where the MFPT admits a minimum τopt at

an optimal persistence length ℓoptp ; see Fig. 2(b). The op-

timal value
ℓoptp

L slightly decreases with increasing L. For
correlated random searches, we consider a linear relation
between ℓp and v for simplicity, corresponding to an ex-
pansion of Eq. (1) up to the first order term in v. We
use

ℓp
〈ℓp〉

=κ
pv
(ṽ−1)+1, (6)

with ṽ being the scaled speed ṽ= v
〈v〉 and κpv the strength

of persistence-speed coupling. The persistence length ℓp
equals 〈ℓp〉 for zero coupling coefficient and ranges within
[0, 2〈ℓp〉] for κ

pv
=1. By inserting the resulting persis-

tence parameter p(v) in the above formalism, we obtain
τ(〈ℓp〉, κpv

). We checked that using Eq. (1) instead of
Eq. (6) yields qualitatively analogous results to those re-
ported in the following.
Combined effects of 〈ℓp〉and κ

pv
on search efficiency.—

Interestingly, Fig. 2(c) reveals different dependencies of
the MFPT on the coupling strength κ

pv
for choices of

〈ℓp〉 taken from low, intermediate, and high persistence-
length regimes A, B, C, as specified in Fig. 2(b). While τ
is a decreasing function of κ

pv
at low 〈ℓp〉, the search effi-

ciency at high mean persistence lengths even reduces with
increasing κpv . Compared with the optimal choice of the
constant persistence length strategy, the p−v correlated
search is always less efficient but approaches the search
time τopt of the former strategy at 〈ℓp〉 values around
ℓoptp ; see Fig. 2(d). Note that even at κ

pv
=0 the two

strategies are not equivalent as the velocity is a variable
quantity in the correlated search strategy (uniformly dis-
tributed within [0, 2〈v〉]). The fact that the search time
for the optimal choice of constant persistence length ℓoptp

is the absolute minimum over all correlated and uncor-
related persistent searches provides a qualitative expla-
nation for the observed behavior in correlated random
searches; inducing p−v coupling at low 〈ℓp〉 regime A
helps to effectively increase the persistence of motion
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each panel. The color intensity indicates the deviation from the uncorrelated-search time, with red (blue) reflecting a decrease
(increase) in the search efficiency.

i.e. toward ℓoptp . This is in sharp contrast to the high
〈ℓp〉 regime C where the increase of effective persistence
length by p−v correlations drags it away from ℓoptp leading
to a less efficient search. In the plateau regime B the p−v
coupling is expectedly less influential. We can analyti-
cally verify a distinct dependency of τ on κ

pv
at two ex-

treme regimes 〈ℓp〉→0 and 〈ℓp〉→L: Up to the leading or-
der term, τ increases linearly with κ

pv
at high persistency

as τ(〈ℓp〉→L)∼ 1
1−p=a1〈ℓp〉κpv

+a2; however, it decreases
inversely with κpv when the persistency is extremely low,

where it can be shown that τ(〈ℓp〉→0)∼1−p
1+p=

1
b1〈ℓp〉κpv+b2

(a1, b1>0).
Speed autocorrelations.— So far we analytically ob-

tained the MFPT in the presence of persistence-speed
correlation for a randomly varying speed at each time
step. However, the successive instantaneous speeds can
be correlated in general such that the searcher experi-
ences a rather smooth speed change over time. For in-
stance, we obtain a positive speed autocorrelation coeffi-
cient κ

vv
≈ 0.4 for the dendritic cells in our experiments.

To incorporate the speed autocorrelation in our analyt-
ical approach, one should replace the speed distribution
f(v′) in the master equation (2) with the probability dis-
tribution of speed change f(v−v′). Analytical determi-
nation of the MFPT for autocorrelated speed however
appears to be intractable; thus, we resort to Monte Carlo
simulations to generate the desired stochastic motion.
In our simulations, we use the sum-of-uniforms algo-

rithm [38–40] to correlate speed and persistence length
and to include speed autocorrelation. The algorithm al-
lows for inducing a certain degree of stochasticity in the
resulting v and ℓp values, which is controlled by an ad-
ditional parameter ∆. At each time step, first a new
speed is chosen from a distribution around the current
speed, which generates the demanded speed autocorrela-
tion κ

vv
. Then a new ℓp is chosen from a uniform distri-

bution of ℓp values around the value determined by the

p−v coupling strength κ
pv

and the local speed v accord-
ing to Eq. (6) [red line in Fig. 3(a)]. This results in the
cloud of blue dots in the figure. The parameter ∆∈[0, 1]
tunes the actual slope of the cloud (the upper limit is
however set by κ

pv
) and allows for ±∆〈ℓp〉 overall fluctu-

ations. As shown in Fig. 3(b), τ approaches the MFPT
of uncorrelated motion by decreasing the scattering pa-
rameter ∆. Here we show the simulation results for ∆=1
corresponding to the widest overall range of persistence
length [0, 2〈ℓp〉]. Once the new v and ℓp are determined,
we extract the instantaneous persistence p of the searcher
and move it v sub-steps within one time step by allowing
it to change the direction of motion after each sub-step
according to the persistence probability p.

The results of uncorrelated speeds κ
vv
=0 in different

regimes of 〈ℓp〉 are shown in Fig. 2(c); the agreement be-
tween analytical predictions and simulation results is sat-
isfactory. When speed autocorrelations are switched on,
we find that the trends reported in Fig. 2(c) remain qual-
itatively valid. κ

vv
plays a relatively insignificant role in

determining the search time, while 〈ℓp〉 and κpv are influ-
ential factors. We extend the range of correlation coeffi-
cients κ

pv
and κ

vv
to negative values for anti-correlated

dynamics. Figure 4 summarizes the results in a phase
diagram of search times in (κ

vv
, κ

pv
) plane. τ shows

only modest dependence on κ
vv

(subtle color intensity
changes along horizontal lines) but variation of κ

pv
may

cause even up to 25% changes in the search time. An-
other point is that inducing p−v anticorrelation reduces
the effective persistence of motion, thus, acts in the op-
posite direction, i.e. it improves the search time in regime
C while leads to an increased search time in regime A.

The natural microenvironment for dendritic cells is the
skin layers, with a density of a few hundred cells per
mm2 [41]. If each dendritic cell patrols, on average, an
area of linear size L∼100µm with a persistence length of
less than 10µm (for typical speeds of 3−4µm/min and
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assuming even a high persistence p≈ 0.7 before reach-
ing the p−v saturation regime), then these cells belong
to the weakly persistent regime A in Fig. 2(b) (indeed
regime A is even more extended to right for such small
patrolling areas); thus, p−v correlations are beneficial in
these systems to improve the search efficiency.

In summary, our study suggests improving the search
efficiency of an active agent by inducing persistence-
speed correlations and/or speed autocorrelations. Our
key finding is that a correlated random motion is not
necessarily an optimal search strategy in general; it is
advantageous for dendritic cells moving with a persis-
tence length much smaller than the size of the environ-
ment, however, highly persistent active agents should
even adopt an anticorrelation between their speed and di-
rectional persistence to reduce their search time. By op-
timizing the search efficiency with respect to the strength
of coupling between influential parameters, we intro-
duced a new class of random search optimization prob-
lems with broad application to correlated stochastic pro-
cesses.
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Bidirectional transport in (quasi) one-dimensional systems generically leads to
cluster-formation and small particle currents. This kind of transport can be described
by the asymmetric simple exclusion process (ASEP) with two species of particles.
In this work, we consider the effect of non-Markovian site exchange times between
particles. Different realizations of the exchange process can be considered: The ex-
change times can be assigned to the lattice bonds or each particle. In the latter case
we specify additionally which of the two exchange times is executed, the earlier one
(minimum rule) or the later one (maximum rule). In a combined numerical and an-
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as for unidirectional transport for most realizations of the exchange process. Differ-
ences in the asymptotic behavior of the system have been found for the minimum
rule which is more efficient for fast decaying exchange time distributions.
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Abstract. Bidirectional transport in (quasi) one-dimensional systems generically

leads to cluster-formation and small particle currents. This kind of transport can

be described by the asymmetric simple exclusion process (ASEP) with two species of

particles. In this work, we consider the effect of non-Markovian site exchange times

between particles. Different realizations of the exchange process can be considered:

The exchange times can be assigned to the lattice bonds or each particle. In the latter

case we specify additionally which of the two exchange times is executed, the earlier

one (minimum rule) or the later one (maximum rule). In a combined numerical and

analytical approach we find evidence that we recover the same asymptotic behavior as

for unidirectional transport for most realizations of the exchange process. Differences

in the asymptotic behavior of the system have been found for the minimum rule which

is more efficient for fast decaying exchange time distributions.

1. Introduction

One of the broadly investigated fields in non-equilibrium physics is actively driven

transport. These processes can be found in different topics such as pedestrian dynamics

[1, 2, 3, 4], vehicle traffic [5, 6, 7, 3], and intracellular transport of molecular motors

along cellular filaments [8, 9, 10, 11, 12, 13, 14].

A common tool to model active transport is a lattice gas [15, 5]. These stochastic

processes are defined in a very simple way, but lead to many interesting phenomena [16].

Particles hop stochastically to their nearest neighbor sites on the lattice, but the hopping

rates are spatially biased, and this asymmetry causes a non-vanishing flow of particles in

a specific direction. The particular case where particles are allowed to unidirectionally

hop in one dimension is called the totally asymmetric exclusion process (TASEP) [17].

One of the most basic assumptions in the TASEP is that each site of the lattice is either

occupied by a particle or empty. Due to this exclusion principle, hopping is prohibited

if the target site is already occupied by another particle. Therefore particles behave as

an obstacle for each other, in other words, particles themselves serve as an environment

and influence motility.

In bidirectional transport, however, particles have to be transported in opposite

directions. Adaptation of the TASEP can be done by distinguishing two different species
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of particles with opposing directions on the same lattice. By introducing an position

exchange rate, several intriguing scenarios have been reported, such as spontaneous

symmetry breaking [18, 19]. In case of slow position exchange interactions, the particle

flux is determined by the exchange times of particles from different species similar to

a defect in the unidirectional TASEP [20]. Bidirectional TASEP models have been

modified by introducing a second dimension to describe pedestrian dynamics [21, 22]

or intracellular traffic on polar filaments by adding additional lanes [23, 24, 9]. Despite

situations where symmetry is broken and the system organizes into lanes [22], particle

interactions often lead to cluster formation and is therefore a limiting factor for transport

[25].

In this paper, the focus is on active particles in confinement. Here, not only the

aspect of non-equilibrium drive but also crowded and confined environments is expected

to heavily influence transport processes. In the field of glass theory for example, a

popular approach is to describe a particle trapped inside a cage, denoting the potential

created by its neighbor particles [26]. Such interactions can affect the waiting time

distribution of particle movements as it can be seen in a trap model by Bouchaud et

al. [27]. Here, a particle falls into a trap of potential depth E which is exponentially

distributed and escape from it following a Poisson process with a rate depending on the

energy E. This combination leads to algebraically (power law) distributed waiting

times for particles to escape from traps. It is therefore not guaranteed that in a

complex environment, properties from an exponential distribution, resulting in constant

rates which are typically used in TASEP models. However, the choice of waiting time

distribution can be crucial for the systems phenomena because heavy tails induce a

higher statistical weight for extreme values such as for the scale free family of Pareto

distributions [28].

Recent studies by Concannon et al. [29] and Khoromskaia et al. [30] took a step

forward to investigate transport behavior in the framework of unidirectional exclusion

processes for non-Markovian waiting time distributions. It was found that, beside a fluid

phase, the particles form condensates which are complete in space and time and hence a

flux depending on the system size. This phenomenon differs from typical condensations

appearing beside a stable current flowing out of clusters which is seen in models related

to Markovian processes [25, 31].

The influence of crowded environments reflected in non-Poissonian waiting times

on bidirectional transport is however not fully understood. Combining the aspects of

bidirectional lattice gases and non-Poissonian waiting time distributions for exchange

processes, here we will investigate two-species non-Markovian TASEPs.

This work is organized as follows. In section 2, we develop the model including three

sub-versions for realizing exchange process between particles. We then show analytical

estimations and simulation results for single and many particle dynamics in section 3

and compare them no simulation results. Finally we discuss our results in section 4.
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2. The model

2.1. Two particle species with holes - a motivation

In order to mimic bidirectional transport on a track we first introduce plus- and minus-

directed particles on a one-dimensional lattice of L sites, each of which is either occupied

by a plus (“+”) particle, occupied by a minus (“−”) particle, or empty. Empty sides are

denoted as holes if the particle density ρ < 1. Particles are identical up to their direction.

We have three types of stochastic, microscopic events between two neighboring sites,

i.e.

+0 ⇒ 0+, (1)

0 − ⇒ − 0, (2)

+ − ⇒ − +. (3)

This two-species TASEP has two conserved quantities, i.e. the numbers N± of plus and

minus particles, under periodic boundary conditions.

In a crowded environment, the exchange process (3) can be very different from

free hopping events and turn out to be the major criterium for estimating the particle

flux similar to bottlenecks in unidirectional exclusion processes [20]. In a first approach

we therefore impose Poissonian stochasticity on the normal jumps (1) and (2), but a

heavy tailed non-Markovian waiting time distribution on exchange processes (3) in this

section. It has been observed that the particle flux is heavily influenced by particle

condensates, both in a two-species Markovian TASEP [18] and in a one-species non-

Markovian TASEP [29]. We see a similar phenomenon in first results of our two-species

non-Markovian model, (figure 1 (a)). Macroscopic clusters block particle flow for a long

time interval interrupted by short boosts of particles hopping in a free space outside

the clusters. This blockage is the major inhibitor of particle flux so that the waiting

time distribution for exchange processes mainly controls the transport property of our

system. We therefore focus on the cluster region indicated by the green ellipse in figure

1 (a) leaving only the two states “+” and “−” for a site in the lattice in the following.

2.2. Two-species model without holes

By concentrating on clusters and therefore neglecting holes, we consider a system fully

occupied by plus and minus particles without holesN++N− = L, for which an exemplary

configuration is given in figure 1 (b).

We remark that usually the two-species TASEP with N+ + N− = L is considered

as standard TASEP below. We will explain the difference to the standard one-species

TASEP in detail.

We first consider the standard one-species TASEP, where each site i takes states

ηi = 1 (occupied by a particle) or ηi = 0 (empty). In most of the cases of the TASEP, the

exponential distribution p(t) = α−1e−αt (t > 0) is used to generate waiting times between

two consecutive stochastic events, hence the TASEP is usually a Markov process. The
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Figure 1: (a) Kymograph section of a simulation of our two-species TASEP with holes,

color-coded as plus particles in blue, minus particles in red and holes in white. Hopping

times (1) and (2) are distributed exponentially, exchange times (3) by a power law. The

system size is L = 1000 with N+ = N− = 200, the shown time interval is approximately

15000 time units. In this paper, we focus on the cluster, indicated by a green ellipse

in the plot, leading to the model without holes defined in chapter 2.1. (b) Scheme

of the two-species model without holes. Triangles mimic particles, the tip indicates

the direction. Exchange processes are only allowed for the configuration (+−) (3).

(c) Comparison of the two update schemes particle-based (left) and site-based (right)

regarding particle trajectories (red lines). Timelines (dashed lines) for hopping events

(blue bars) are carried by particles, hence identical to the red trajectory line in the left

scheme or are fixed to the sites (right). Hopping events can be rejected due to exclusion

(red crosses).

parameter α stands for the hopping rate and is independent of time or the current

system state. A common way to assign waiting times to the Markovian TASEP is to

use Gillespies direct method or first reaction method [32]. In the latter one, times are

generated from the exponential distribution for every possible hopping transition but

only the smallest one determines the process which is executed and the other times

are not used in the update mechanism anymore. In order to increase computational

efficiency, a modified waiting time algorithm called next reaction method [33] is storing

the assigned times for every process and realizing them successively if the transition is

allowed.

Using the next reaction method, we distinguish two ways to assign waiting times to

the Markovian TASEP, illustrated in figure 1 (c). The first one is a site-based update.

We generate and store a series of times {t1i , t2i , . . .} for each bond between sites i and
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i + 1. The difference tk+1
i − tki with t0i = 0 must obey the exponential distribution. At

time t = tki , one checks whether the local configuration is appropriate for hopping, i.e.

ηi = 1, ηi+1 = 0. If this is the case, we move the particle from i to i + 1. If not, the

move is rejected. The second one is a particle-based update. We give a series of times

{t1i , t2i , . . .} to each particle labeled by i. Again the difference tk+1
i − tki should follow

an exponential distribution. The particle i attempts to hop to its right neighbor site at

time t = tki , but the jump is again allowed only when the target site is empty. These

two update schemes eventually yield equivalent dynamics to the particles, as long as we

use an exponential distribution.

However, for a probability density function (PDF) p(t) which belongs to a power

law

p(t) =

{
0 0 < t < 1 ,

(γ − 1)t−γ t > 1,
(4)

with an exponent γ > 1 this equivalence does not hold anymore. We remark that the

algebraic distribution violates the Markov property so that we use the next reaction

method which is not equivalent to Gillespie’s methods anymore. This is similar to the

method used in [29, 34] to evolve the system in time. See Appendix C for details of the

algorithm to perform simulations of our model.

We recall that there are plus and minus particles, but no holes. As shown in figure 1

(b), only the local exchanges of plus and minus particles are effective stochastic events

in this case. This means that particle hopping refers to position exchange between

neighboring particles. Instead of hopping of a single particle to an empty site, the

exchange of particles in general depends on the status of both particles. We need more

detailed rules to define the exchange process.

The generalization of the site-based update to our non-Markovian TASEP is

straightforward. We generate the time series {t1i , t2i , . . .} for each bond, such that now the

difference tk+1
i − tki obeys the algebraic distribution (4). If we find ηi = + and ηi+1 = −

at time t = tki , we simply exchange the positions, i.e. we get a new configuration with

ηi = − and ηi+1 = +.

On the other hand, the particle-based update becomes a little complicated, and we

need to further divide it into sub-schemes. The simplest one is considered as follows. We

only assign the time series to the + particles. At time t = tki , the + particle labeled by i

wants to hop rightward. This is allowed only if there is a − particle on the target site. In

other words, − particles are regarded as holes, and the systems is completely identical

to the one-species non-Markovian TASEP that was introduced by Concannon et al.

Thus, we name this rule particle-based-asymmetrical update, because this case does not

hold plus-minus (or particle-hole after the identification) symmetry for Non-Markovian

processes.

Now we wish to look for rules which do not break the plus-minus symmetry to

define two-species bidirectional transport using the particle-based approach. We assign

a time-series to each plus and minus particle {t1j , t2j , . . .}. At time t = tij the particle is
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activated if a “+−” configuration is given. We now consider two different local update

schemes for a plus particle i with waiting time tki and a minus particle with waiting time

tmj which are located at neighboring sites l (plus particle) and l + 1 (minus particle).

1) The minimum rule: An exchange between a pair of “+−” particles is executed

if one of the two particles is active. This means that the minimum of the two waiting

times determines the particle exchange.

2) The maximum rule: An exchange of the particles is executed if both particles are

active, i.e. a particle exchange happens after max{tki , tmj }. In both cases, the particles

become passive after exchanging positions.

Let us summarize the four types of the update rules in the following:




site-based

particle-based





asymmetric

symmetric

{
maximum

minimum

(5)

3. Results

In this section, we show simulation results of our non-Markovian two-species TASEP,

with a completely filled system, i.e. N+ + N− = L. We first discuss the site-based

update from [30] as an algorithm for bidirectional transport in section 3.1 and then the

previously described three types of particle-based rules in section 3.2. For each of them

we evaluate dynamics by measuring the PDFs for the effective waiting time, i.e. the

duration between two realized exchange processes of a particle. We discuss the effective

waiting time distribution, in the following two situations; the system with only one

plus particle and L − 1 minus particles called single particle dynamics (spd), and the

equally-filled case where N+ = N− called many particle dynamics (mpd). We discuss

the spd as a reference in order to highlight the collective effects modifying the original

PDF p(t) to the PDF for effective waiting times of exchange processes. With many

particle dynamics, we investigate the influence of exclusion on the effective PDF. In

case of mpd, we also investigate transport efficiency by measuring particle flows. We

compare the flows for the three symmetrical model rules in section 3.3.

3.1. Site-based model

The first bidirectional update we deal with is the site-based model inspired by [30]. We

start with spd, i.e. the situation where there is only one plus particle, i.e. N+ = 1

and N− = L − 1, and we probe its motion in the environment of minus particles.

We give analytical estimates for and measure by simulations the effective waiting time

distribution for site-exchange events, and compare the tail exponents of this quantity.

For the site-based update scheme, analytical estimates can be deduced from renewal

theory as in [30]. Let us assume that the plus particle arrives at a site i, where an internal

clock is already running since the last event on that site at time tki , giving the clock an
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Figure 2: Site-based rule: PDFs of the effective exchange time for a system of L = 100

for the site-based rule. (a) Single-particle dynamics, i.e. N+ = 1 and N− = L − 1. (b)

Many-particle dynamics, i.e. N+ = N− = L/2.

age t − tki . The particle has to wait for the remaining time until tk+1
i to execute the

following step. This remaining time is called the residual waiting time distributed by

the PDF r(t) which in general is different from the original PDF p(t). In the case where

p(t) is given by equation (4), one finds the residual waiting time PDF in the form

r(t) =

{
γ−2
γ−1

0 < t < 1

γ−2
γ−1

t1−γ t ≥ 1 ,
(6)

(see Appendix A for details). We note that r(t) > 0 even for 0 < t < 1, while the

original p(t) is zero. More remarkably, the residual waiting time has a tail exponent

shifted by 1, meaning that very large values have a higher statistical weight than the

original PDF p(t). In figure 2 (a), our simulation results for spd agree to the residual

waiting time r(t).

As a next step, we introduce N+ = L/2 plus particles, to check if the exclusion

between plus particles further modifies the PDF. Results are shown in figure 2 (b) where

the simulation results for exchange times also follow the asymptotics of r(t) calculated

for a single particle. This similar result is expected since the waiting times are renewed

in both cases for every site in the lattice, no matter if a plus particle or a minus particle

is occupying the site.

After discussing the influence of the used update method and the particle interaction

on the PDF of exchange times, we will continue by examining transport properties in a

bidirectional, two-species system. As discussed of effective exchange time distributions,

we will continue by examining how these effects are reflected in the transport properties

in the bidirectional two-species TASEP with N+ = N− = L/2.

A common way to measure the transport efficiency of the system is the particle

flux J . In [29], it was shown that for the unidirectional non-Markovian TASEP, system

size has an impact on J in the clustering phase. Since we find similar shifts of the PDF

for the site-based update, we also expect a transition from a size-dependent to a size-
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Figure 3: Site-based rule: Length dependency of the particle flux J for different

values of γ in the PDF (4) and mpd. The black line serves as a comparison to the flux

generated by an exponential distributed waiting times with exponent λ.

independent regime with growing γ. We test this transition by plotting the particle flux

versus the length of the system in figure 3 for different exponents γ. Up to a finite-size

effect, no significant dependency of J is observed when using a γ > 3 in the simulations.

The flow converges for large L, so that no significant size-dependency is observed for

L > 100.

However, J is decreasing with the system size for γ < 3. At the same time, the

error bars are larger and it is difficult to judge the limit for infinite system size from

numerical results. It is, therefore, necessary to argue with additional information about

a transition from length dependency to constant fluxes. From the residual waiting time,

we know that the average effective waiting time diverges at γ = 3. So we expect the flux

to vanish below this critical value γc = 3 for infinite systems similar as pointed out in

[30]. Below γc, the transport efficiency is determined by the asymptotics of the effective

waiting time distribution. This effect induces a strong size dependence of the flow and

γ=2.5 γ=2.7 γ=3.0 γ=4.0 γ=5.0

a) b)

10-8

10-6

10-4

10-2

1

10-1 1 101 102 103

P
(t
)

t

L= 5
L= 10
L= 40
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Figure 4: (a) Kymographes for the site-based model with runtime: 8 · 1010 system size

L = 1000 and equal particle numbers N+ = N−. For γ < 3 it is computationally hard to

achieve stationary states. (b) Finite size effects in PDFs for spd following the site-based

model with an exponent γ = 2.5.
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at the same time increases the relaxation times of the system.

In order to illustrate the computational complexity, we show kymographes of a

system of length L = 1000 which cover a time period of 8 · 1010 time units for different

exponents in figure 4 (a). Homogeneous spatiotemporal structures are obtained for

γ ≥ 4, while stable clusters emerge for γ ≤ 3. In this regime, the lifetime of the clusters

are comparable to the simulation time, which make it difficult to reach the stationary

state of the system numerically. The slow relaxation of the system is caused by rare

extreme values for the waiting times which develop in an aging phase inside a cluster

and block other exchange events such as in [29]. We estimate the uncertainty of J by

using the partial time averages Jn =
(∑tn+∆

t=tn
Jt

)
/
(∑tn+∆

t=tn
t
)
where ∆ is the complete

time of measurement divided by the number of partial blocks and tn = n∆.

For the site-based model, we expect that the residual waiting time PDF (6)

describes exactly the effective exchange time distribution. The results of our simulations,

however, slightly differ from this prediction. We expect that the small deviation can be

attributed to a finite-size effect, since local waiting times may exceed the typical time

a particle needs for a complete tour in a finite periodic system. This finite-size effect is

observable in figure 4 (b) where tails differ from r(t) for small system sizes.

3.2. particle-based models

3.2.1. Asymmetrical rule As a reference system for particle-based updates, we start

with the asymmetrical rule, which is identical to the model of Concannon et al. [29]. In

the paper, it was pointed out that interaction via exclusion leads to a shift of one for

exponents in the hopping time PDF for a unidirectional many particle system. Again,

we will show PDFs for single-particle and many-particle dynamics.

The spd under the particle-based, asymmetric update rule is much easier than for

a	

pb asym pb asym

=2.5�=2.5

b)
spd mpd

tt

P
(t
)
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r(t)

10-8

10-6
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1
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eff. time
p(t)
r(t)

1

Figure 5: Particle-based asymmetrical rule: PDFs of the effective exchange

time for a system of L = 100 for the asymmetrical particle-based rule. (a) Single-

particle dynamics, i.e. N+ = 1 and N− = L − 1. (b) Many-particle dynamics, i.e.

N+ = N− = L/2.
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the site-based rule. The time-series {t11, t21, . . .} contains the times for which the plus

particle moves, since it is never blocked by other plus particles. In other words, the

effective waiting time distribution is p(t) itself, and we can regard the plus particle

simply as a non-Markovian random walker while minus particles serve as passive holes.

The motion of the particle is completely determined by {t11, t21, . . .}. Our simulation

results for this scenario are shown in figure 5.

Now turning to the mpd realization of the asymmetric update, we get back the

scenario discussed in [29], since minus particles are passive and correspond to holes of

the one-species TASEP. For completeness, the results are shown in figure 5 (b). As

expected, we observe that for small times near t = 1, the simulation data points follow

the original density p(t) but then the exponent of PDF changes to γ − 1 for larger

times as predicted in [29]. The particle flux and its dependency on the system size for

γ ≤ γc has already been discussed in [29], hence we continue with the symmetric rules

for particle-based updates.

3.2.2. Maximum rule Let us turn to the first particle-based-symmetrical update, the

maximum rule, which was introduced in section 2. This rule does not break the

symmetry between plus and minus particles because the exchange process is triggered

by both particles (with index i and j) that have to be activated for an exchange process

first. Hence, one has to choose the maximum from the two next event times in the

time-series tki , t
ℓ
j, in order to determine when the plus particle actually exchanges with

its neighbor. We estimate PDFs for the symmetrical maximum update by calculating

the density of the maximum of two random variables X and Y with density p1(t) and

p2(t).

Because all particles follow to their own time series {t1i , t2i , . . .} and {t1j , t2j , . . .},
different situations appear for neighboring pairs of plus and minus particles. There is

always one particle inducing the exchange process, e.g. the one with the later time for

the maximum update rule. However, the process can be induced by a plus particle or a

minus particle.

Let us assume that a plus particle induced an exchange k and then becoming

involved in a new exchange process k + 1 with a new partner. Here, the plus particle’s

clock has no age immediately after the last executed exchange process. In contrast, the

new neighbor minus particle already is located on its position for some time meaning a

clock with a non zero age. Hence, the plus particle follows the density pplus(t) = p(t)

but we assume that the minus particle’s residual waiting time is rather described by

pminus(t) = r(t) because it is standing in the queue of other minus particles. In the

single particle case, the maximum of two random times is taken from a time X that

follows p(t) and a time Y that follows r(t) as max(Xp(t), Yr(t)) which we call a mixed

scenario in the following.

However, for symmetric rules, minus particles also can introduce an exchange

process. Let us follow a plus particle again, but this time the exchange k was induced

by its former neighboring particle. The plus particle has a new exchange partner for the
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process k + 1 again, but this time also a non zero age, just as its new neighbor minus

particle which was not involved in the former process k. In this case, we assume both

residual waiting times are distributed by pplus(t) = pminus(t) = r(t). The maximum of

two random times X and Y is now chosen as max(Xr(t), Yr(t)), called the pure scenario.

First, we give the cumulative distribution function (CFD) for both p(t) and r(t):

P (t) =

{
0 0 < t < 1

1 − t1−γ t ≥ 1,
(7)

R(t) =

{
γ−2
γ−1

t 0 < t < 1

1 − 1
γ−1

t2−γ t ≥ 1.
(8)

With these, we can now calculate the density of the maximum X and Y , i.e.

fmix
max(t) =

d
dt
[P (t)R(t)] (9)

=

{
0 0 < t < 1

(γ − 1)t−γ + γ−2
γ−1

t1−γ + 3−2γ
γ−1

t2(1−γ) t ≥ 1,
(10)

f pure
max (t) =

d
dt
[R(t)R(t)] (11)

=





2
(

γ−2
γ−1

)2

t 0 < t < 1

2γ−2
γ−1

t1−γ − 2 γ−2

(γ−1)2
t3−2γ t ≥ 1.

(12)

Both, the pure and mixed scenarios have the leading exponent 1 − γ which is equal to

the exponent of r(t). In the pure scenario, we get an estimate for effective waiting times

smaller than 1. This expression is expected to overestimate the weight of the waiting

times because also the mixed scenario is contributing to the exchange processes, always

with times larger than one. However, we will use the pure scenario as an estimate for
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Figure 6: Particle-based maximum rule: PDFs of the effective exchange time for a

system of L = 100 for the particle-based maximum rule. (a) Single-particle dynamics,

i.e. N+ = 1 and N− = L − 1. (b) Many-particle dynamics, i.e. N+ = N− = L/2.
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the spd effective waiting time density for the maximum rule in the following,

fmax(t) = f pure
max (t) =





2
(

γ−2
γ−1

)2

t 0 < t < 1

2γ−2
γ−1

t1−γ − 2 γ−2

(γ−1)2
t3−2γ t ≥ 1.

(13)

We compare these estimates with simulation results in figure 6 (a) for spd. Here,

the tail behavior of our simulation results are in good agreement with fmax(t). Also,

short time behavior is well approximated when relating the sharp increase at t ≈ 1 to

the influence of the mixed scenario which estimates a zero probability for t < 1 and a

higher weight at t > 1 for the used γ = 2.5.

We now compare fmax(t) to simulation results of the mpd in figure 6 (b). Again we

see that the tail behavior is well described by fmax(t) and r(t). The short time behavior

is still close to the estimate but the tail has a higher statistical weight comparing to

spd.

The shift in the exponent that is seen when comparing the original waiting time

PDF and the effective exchange time PDF is also consistent with the results for the flux

in the maximum rule which is shown in figure 8 (b). We observe no significant changes

in the flux for system sizes larger than L = 100 if γ > γc but a flux that vanishes with

L for γ < γc, similar to the results found for the site-based model.

3.2.3. Minimum rule The second particle-based-symmetrical update is the minimum

rule, also introduced in section 2. Also, this rule does not break the symmetry between

plus and minus particles. The exchange process is triggered by the first particle that is

activated for an exchange process at the minimum time of the two next event times in

each particle’s time-series tki , t
ℓ
j. We calculate an estimates for PDFs from the minimum

of two random variables X and Y with density p1(t) and p2(t).

As in the maximum model, we have plus induced and minus induced exchanges.

In our analytical estimate we use again the assumption that the particle with an aged

residual waiting time is distributed by r(t) so that we have to calculate min(Xp(t), Yr(t))

for the mixed scenario and min(Xr(t), Yr(t)) for the pure scenario.

We again use the CFDs of equations (7) and (8) to calculate the minimum density

in both scenarios:

fmix
min (t) = p(t) [1 − R(t)] + r(t) [1 − P (t)] (14)

=

{
γ−2
γ−1

0 < t < 1

2γ−3
γ−1

t2−2γ t ≥ 1,
(15)

f pure
min (t) = 2r(t) [1 − R(t)] (16)

=





2γ−2
γ−1

(
1 − γ−2

γ−1
t
)

0 < t < 1

2 γ−2

(γ−1)2
t3−2γ t ≥ 1.

(17)

We realize that the largest tail is 3 − 2γ which we get for the pure scenario. Since

both scenarios can be observed in the exclusion process, each of them contributes to the
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effective exchange time but the tail behavior is determined by the slower process that

can block transport completely. We therefore set

fmin(t) = f pure
min (t) =





2γ−2
γ−1

(
1 − γ−2

γ−1
t
)

0 < t < 1

2 γ−2

(γ−1)2
t3−2γ t ≥ 1.

(18)

Note that fmin(t) leads to a increase in transport efficiency for γ > 3 but

the exponent of fmin(t) becomes larger than −γ if γ > 3. This counter-intuitive

result follows from the assumption that both waiting times of interfacing particles

are distributed by r(t) instead of p(t). However, the prediction would mean a

slower exchange than in the asymmetric particle-based rule where minus particles are

completely passive. We will see that our estimates actually describes the simulation

results for spd only for γ > 3 in figure 7 (c) but not in panel (a) where γ = 2.5. Here,

the tail behavior is well represented by p(t).

In order to understand the origin of this difference in tail exponents, we measure
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Figure 7: Particle-based minimum rule: PDFs of the effective exchange time for a

system of L = 100 for the particle-based minimum rule. (a) Single-particle dynamics,

i.e. N+ = 1 and N− = L − 1 for exponent γ = 2.5. (b) Many-particle dynamics,

i.e. N+ = N− = L/2 for exponent γ = 2.5. (c) Single-particle dynamics for exponent

γ = 4.0. (d) Many-particle dynamics for exponent γ = 4.0. The dashed line shows the

tail behavior of fmin(t) close to the simulation data.
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Figure 8: (a) Minimum and (b) maximum rule: Length dependency of the particle

flux J for different values of the exponent γ in the PDF (4) and mpd.

the residual waiting time carried by the plus particle, which we call p̃(t). We find that

in the tail p̃(t) ≈ r(t) for γ > 3 but not for γ < 3 where the exponent is not exceeding

values of γ = −2. Calculating the minimum with such an exponent from p̃ would lead

to an fmin(t) with exponents ≤ −γ, i.e. p(t) serves as a upper limit (see Appendix B

for details).

We can understand this deviation by realizing that the plus induced dynamics is

getting more important for if γ is below the critical value γc. The influence of the tail

in the residual waiting time is important for inducing events by minus particles that did

stand in the queue for a long time. In contrast, the plus particle is more often responsible

for inducing the events and consequently determines the effective exchange time. We

show that the ratio of plus induced events is growing in this regime in Appendix B. The

time average in the calculation of the residual waiting time in Appendix A is not valid

due to temporal correlations in this scenario.

For mpd, similar behavior is observed. The estimate fmin is well suited to the

simulation result if γ > 3, which is shown in figure 7 (d). In results for small exponents

γ < 3 shown in figure 7 (b), the analytical estimate again does not describe the

simulation results. Instead, the tail is determined by the residual waiting time r(t).

The relevance of the residual waiting time is caused by the dominance of long exchange

times in long queues. Furthermore, passively exchanged particles keep their event time

after an exchange process which leads to long range correlations of particles exchange

times.

Similar to the results of the site-based model and the maximum model, the flux

in the minimum rule does not show significant changes with L in the fast decaying

regime above γc, which is shown in figure 8 (a). For γ < γc, again a dependency on the

system length in the data supports the qualitative difference between the regimes found

in results from effective exchange times above. However, the flux clearly is higher in

the minimum rule than in the maximum rule (panel b)). We want to further study the

difference of the applied model rules on the particle flux in the next section.
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Figure 9: Particle flux depending on the exponent γ for the three different update rules

(site-based green, minimum orange, maximum blue). Error bars are drawn from sem

values of 10 realizations. (a) The system size is L = 100, (b) L = 1000. (c) Section for

γ ≤ 4 in a logarithmic scale for J for L = 100 (blue) and L = 1000 (red).

3.3. Transport efficiency of symmetric model rules

The exponents for effective exchange times found for the different model rules are

summarized in table 1. We now compare the flux which is generated by the three

symmetrical updates in figure 9. Even though the asymptotic behavior of the three

rules are similar (except for γ > γc in the minimum model), the short exchange times

influence the value of the flux. This leads to significant differences between the site-based

model, the particle-based minimum model and the particle-based maximum model for

γ > γc. As expected, the maximum rule is really slower than the site-based model and

the minimum rule can enhance the transport. For γ < γc however, the flux generated

in the maximum rule is close to the flux by the site-based rule. In the minimum rule,

we still measure higher fluxes, both for the system size of L = 100 (a) and L = 1000

(b). Note that we observe finite-size effects in these results which is shown in panel

c) where the data points deviate for the different system sizes. By the analysis of tail

exponents, we expect J = 0 for the infinite system in the stationary state such as in the

other models.

Table 1: The resulting exponent seen in the effective waiting time PDFs in the different

update rules for single-particle dynamics and many-particles dynamics.

single-particle dynamics many-particle dynamics

site-based 1 − γ 1 − γ

particle-based asymmetrical −γ 1 − γ

particle-based maximum 1 − γ 1 − γ

particle-based minimum
−γ 3 − 2γ

for γ < 3 for γ > 3

1 − γ 3 − 2γ

for γ < 3 for γ > 3
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4. Conclusion

In our contribution, we analyzed different bidirectional variants of the TASEP with

non-Markovian exchange dynamics. These models are relevant for one-dimensional

transport problems in crowded environments, where the high density of particle clusters

leads to small effective exchange rates of particle positions. A possible realization of

the bidirectional transport model would include two oppositely moving particle species

and holes. A model of this kind would combine a Markovian particle-dynamics, which

would be applied when the particles move toward an empty site and a non-Markovian

particle-dynamics, which governs the particle-exchange. Simulation results show strong

condensation of the particles, which implies that the bidirectional transport capacity is

determined by the efficiency of the exchange processes rather than by the time spent in

the low density area. Therefore, we restricted our analysis to symmetric and fully-filled

systems. This choice reduces considerably the corrections to scaling for small system

sizes.

Modeling bidirectional transport of active particles with lattice gases allows

assigning the exchange times to the particles as well as to the lattice. In the latter case,

we can map the problem to the uni-directional process, since pairs of oppositely moving

particles behave as particles and holes in the uni-directional case. This is even true for

spd which correspond to a uni-directional system with a single hole where the dynamics

of the particle is governed by the residual waiting time. Significant differences to the

uni-directional case exist if the exchange times are assigned to the particles. This can

be realized in a symmetric or in an asymmetric way, wherein the latter case the reaction

times are assigned to only one-particle species. The asymmetric case implies that one

particle species can be assumed to be passive which is why we find the asymptotics

of the uni-directional non-Markovian TASEP for the single-particle as well as for the

many-particle dynamics.

Assigning exchange times symmetrically to both particle species implies that two

exchange times are given for a pair of oppositely moving particles. Therefore, one

has to define an additional selection rule. In this work we have chosen two extreme

cases that preserve the symmetry between the two types of particles, i.e. either the

minimum or the maximum of the two waiting-times will be selected. In case of the

maximum rule, residual waiting time and fmax(t) show the same asymptotics. Therefore

the maximum rule modifies indeed the effective exchange time distribution but to the

exponent compared to the residual waiting time of the site-based model. Significant

differences exist only in the γ > γc regime for the minimum rule. In this case, we find

that the asymptotics is governed by the distribution of independent residual times where

the asymptotics of effective exchange time distribution is given by 3 − 2γ. For γ < γc
this is not the leading contribution. Here, the asymptotic behavior is in accordance

with the asymmetric particle based model which is given by the residual waiting time

for mpd. This effect is the result of passively moving particles which keep the assigned

exchange time. For small values of γ the dynamic is, as for the other cases, governed
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by pairs of particles with long residual waiting times.

Our results underline the universality of the findings which have been discussed

for the uni-directional non-Markovian TASEP [29, 30]. In this class of models, many

particle effects generically lead to a dominant contribution of the residual waiting time

for γ < γc. Here, the configurations are characterized by large particle clusters and a size

dependent flow of particles. The transport capacity of large systems in this parameter

regime is extremely low compared to their Markovian counterparts. For γ > γc however,

we observe homogeneous particle configurations and size-independent values of the flow

which differ for the different implementations of the dynamics.

Our findings can be relevant for bidirectional flows under strong confinement as

for example in narrow escape problems in pedestrian dynamics [5] or intracellular

transport in axons and dendrites [35] where the effective exchange dynamics can be

non-Markovian.
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Appendix A. Calculation of residual waiting times

The waiting time PDF for a single particle site exchange in the site-based model is

calculated by using renewal theory following [36]. In particular, we will determine the

residual waiting time until the next exchange event occurs if two particles are in the

local (+−) configuration. We start with a renewal process for renewal waiting times Xn

distributed by Eq. (4), which are given to a site in the lattice. The N -th renewal of the

waiting time on this site occurs at time

SN =
N∑

n=1

Xn, (A.1)

i.e. we can count the number of passed renewal events N(t) at each time t.

For a time t > SN(t), the waiting times of this site are called the duration of

renewal time intervals X̃(t) = XN(t)+1 = SN(t)+1 − SN(t) (see figure A1). The renewal

process also has an age Z(t) = t−SN(t) as well as a residual life (residual waiting time)

Y (t) = SN(t)+1 − t until the next renewal event takes place at time SN(t)+1. The residual

waiting time is therefore also written as Y (t) = X̃(t) − Z(t).

We now calculate the time averaged CDF of the residual waiting time Y (t), i.e.

FY (y) = Pr{Y (t) ≤ y} that gives the fraction of time that the residual waiting time is

smaller than a given y. We can invent an indicator reward function R(t) to determine

S1 S2 S3 SN-1 SN SN+1t0

Y(t)Z(t)

X1 X3X2 XN XN+1 time

timeS1 S2 S3 SN-1 SN SN+10

X1

X2

X3
X4 XN

XN+1

Y
(t
)

Figure A1: Top: The renewal process is determined by the time series Xn, n ∈ N,
build from the algebraic waiting time PDF in Eq. (4). Summing up these waiting times

S1, S2, ... SN gives the time for the next event at SN+1. For a time Sn ≤ t ≤ SN+1, the

current process has the age Z and the residual life Y . Bottom: The residual life Y (t)

is a step wise function of time, decaying from Xn to 0 during the time in the interval

between Sn−1 and Sn.

Addendum IV. Bidirectional non-Markovian exclusion processes

163



19

if the residual waiting time is actually smaller or not, i.e.

R(t) = R(Z(t), X̃(t)) =

{
1 for X̃(t) − Z(t) ≤ y

0 otherwise.
(A.2)

The following form for the CDF of Y (t) can then be found by using the time average

over the indicator function

FY (y) = lim
t→∞

1

t

∫ t

0

R(τ)dτ =
1

X

∫ x=y

x=0

Pr{X > x}dx, (A.3)

where X = γ−1
γ−2

denotes the mean value of the renewal event duration for the PDF in

Eq. (4).

We now use this framework to determine the residual waiting time for the renewal

process with algebraic waiting time PDF Eq. (4), i.e.

fX(x) =

{
0 0 < x < 1 ,

(γ − 1)x−γ x > 1.

The CDF of the renewal time intervals is

FX(x) =

{
0 x < 1

1 − x1−γ x ≥ 1.
(A.4)

We use equation A.3 to determine the CDF

FY (y) =
1

X

∫ y

0

(
1 − (1 − x1−γ)Θ(x − 1)

)
dx (A.5)

=





γ − 2

γ − 1
y y < 1

γ − 2

γ − 1

(
γ − 1

γ − 2
+

1

2 − γ
y2−γ

)
y ≥ 1,

(A.6)

and finally arrive at the result

Y (y) =





γ − 2

γ − 1
y < 1

γ − 2

γ − 1
y1−γ y ≥ 1

(A.7)

for the PDF of the residual waiting time Y (y).
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Appendix B. Additional measurements for the minimum rule in

single-particle dynamics

In this appendix, we further examine results in the single-particle dynamics, minimum

update rule. As we have seen in figure 7, the effective waiting time distribution follows

the estimation f pure
min only for exponents γ > 3.

In a first step, we will compare the PDF for effective waiting times of the spd

minimum rule to the case where we always assign new waiting times to the plus particle

after an exchange process. In figure B1 (a), the simulation results really follow the

respective estimate fmix
min , which is expected since the plus particle always has a non-

aged waiting time. This result is in contrast to the result of the bulk text, which is also

shown in figure B1 (b) for comparability. For the minimum rule, effective waiting times

do not follow fmix
min , hence the age of the plus particle plays a role. However, neither do

they follow f pure
min which is expected for the minimum of to random variables distributed

by the residual time r(t).

In a second step, we show simulation results for residual waiting times of the plus

particle in figure B2, which we call p̃(t) in the following. In the fast regime of γ > 3, the

measurements follow the theoretical estimate r(t). However, this changes for exponents

γ < 3. The simulation result do not follow r(t) anymore but rather stay close to

the asymptotic of γ = 2. This slope for p̃(t) is consistent with the effective exchange

time observed in figure 7 (a), where simulation results follow p(t) ≈ t−γ in the tail,

when considering the minimum out of a random variable distributed by r(t) for minus

particles and p̃(t) for plus.

We see that the time-averaged estimate r(t) is not valid anymore for the residual

waiting time of a single plus particle in the minimum model for γ < 3. We further give

an argument for the break down of validity by showing that the fraction of exchange
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Figure B1: a) Single-particle dynamics exclusion process where residual waiting times

of the plus particle is deleted after each exchange process, independent whether the plus

particle was active or passive in the exchange. b) The normal spd minimum rule from

the bulk text for comparison.
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Figure B2: Particle-based minimum rule PDFs of the residual waiting time of a

plus particle p̃ for a system of L = 100 filled by N+ = 1 and N− = L − 1 (spd). (a)

γ = 4.2, (b) γ = 3.5, (c) γ = 3.1, (d) γ = 2.7, (e) γ = 2.2. Blue data points show the

residual waiting times of the plus particle, red p(t) original waiting time distribution,

green r(t) residual waiting time from renewal theory, yellow a constant function t−2 as a

reference line. f) The measured ratio of exchange processes which have been induced by

an active plus particle in the spd minimum case. Statistics over all exchange events are

colored blue, exchange processes with an effective waiting time of at least 1 are orange,

30 green and at least 100 red. Data points are missing if no such high waiting times

have been observed in the simulation, errors bars show the sem.
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events induced by the plus particle increases for γ < 3 (see figure B2 (f)). This is in

particular important for large times in the tail. If most events are induced by the single

plus particle the motion is more and more determined by this particle itself and hence,

the dynamics are more similar to the asymmetric particle-based model of passive minus

particles.

Appendix C. Update scheme

For the Markovian TASEP: We also remark that, thanks to the memoryless property of

the Markovian TASEP, one can practically generate the next time tk+1
i at every t = tki .

The Markov property does not hold for the algebraic distribution p(t) in equation (4).

To evolve the system in time, we use a modified waiting time algorithm (next reaction

method [33]) similar to [29, 34] .

Times for all events (particle-based or site-based) are initialized at the beginning

of the simulation (τ = 0). The shortest time tα is then chosen from a list of all waiting

times to be the absolute time for the next event α. In the realization of the event, the

system time is increased up to this point in time τi+1 = τi + tα. Anyhow, the process

is only executed if the local particle configuration is appropriate. After the realization,

the waiting time of the event is renewed by taking a new time tnew from the distribution

p(t) added to the current system time tα = τ + tnew. This time is then placed into the

list for the event α and the procedure is repeated.
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Abstract:
Within cells, vesicles and proteins are actively transported several micrometers along
the cytoskeletal filaments. The transport along microtubules is propelled by dynein
and kinesin motors, which carry the cargo in opposite directions. Bidirectional intra-
cellular transport is performed with great efficiency, even under strong confinement,
as for example in the axon. For this kind of transport system, one would expect gener-
ically cluster formation. In this work, we discuss the effect of the recently observed
self-enhanced binding-affinity along the kinesin trajectories on the MT. We introduce
a stochastic lattice-gas model, where the enhanced binding affinity is realized via a
floor-field. From Monte Carlo simulations and a mean-field analysis we show that
this mechanism can lead to self-organized symmetry-breaking and lane-formation
which indeed leads to efficient bidirectional transport in narrow environments.
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ABSTRACTWithin cells, vesicles and proteins are actively transported several micrometers along
the cytoskeletal filaments. The transport along microtubules is propelled by dynein and kinesin mo-
tors, which carry the cargo in opposite directions. Bidirectional intracellular transport is performed
with great efficiency, even under strong confinement, as for example in the axon. For this kind of
transport system, one would expect generically cluster formation. In this work, we discuss the effect
of the recently observed self-enhanced binding-affinity along the kinesin trajectories on the MT.
We introduce a stochastic lattice-gas model, where the enhanced binding affinity is realized via a
floor-field. From Monte Carlo simulations and a mean-field analysis we show that this mechanism
can lead to self-organized symmetry-breaking and lane-formation which indeed leads to efficient
bidirectional transport in narrow environments.

INTRODUCTION
The efficiency of intracellular transport is one of the most
intriguing features of biological cells. Different kinds of
cellular cargo have to be transported to specific locations
in order to maintain the cells’ functionality. Intracellular
transport can be driven by molecular motors, i.e. special-
ized proteins that can carry cargo along polar filaments
of the cytoskeleton [2–5]. Molecular motors, such as the
microtubule (MT) associated proteins (MAPS) kinesin
and dynein, step stochastically along MTs in a given
preferred direction: Kinesins step typically toward the
plus-end and dyneins to the minus-end. Molecular mo-
tors are able to carry big (on the scale of the cell) objects
through crowded environments.

We focus on bidirectional motor-driven transport un-
der spatial confinement, which is for example relevant
for intracellular transport in axons. In this kind of envi-
ronment, active transport is particularly difficult to or-
ganize, since cluster formation is generically observed in
spatially extended one-dimensional systems [6–10]. Clus-
ters can either have stationary particle output [8] or can
lead to long times of blockages such as for non-Markovian
site-exchange [10]. The general question we address in
this work is the following: How do confined systems of
active particles self-organize to realize efficient bidirec-
tional transport states?

Motor-driven transport has been described by variants
of the totally asymmetric exclusion processes (TASEP)
which combine the directed stochastic motion of particles
on a one-dimensional lattice with hard-core exclusion and
Langmuir-kinetics [6, 11, 12]. In principle, the particle
exchange with a reservoir would allow for bidirectional
transport, in case of large diffusivity of unbound parti-
cles. However, if the unbound particles are localized, so
far no mechanism has been suggested which leads to ef-
ficient bidirectional transport. A rather direct approach
is the self-organization in sub-systems each of which car-
ries unidirectional transport. A recent hypothesis is that
posttranslational modifications on MTs might organize

transport in neurons [14, 15]. This kind of organization
has been observed for example in dendrites, where the
MTs are oppositely oriented [16] and in MT doublets in
cilia [17]. Furthermore, motor proteins can regulate MTs
themselves [18], and MT-dynamics [6] and tau [13] can
affect motor transport.

Recent experimental findings suggest a possible mech-
anism leading to efficient bidirectional transport on MT
bundles where no a priori compartmentalization exits.
Shima et al. [19] reported that binding affinity of MTs for
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FIG. 1. (a) Scheme of a neuron, indicating the crowded envi-
ronment and confinement inside axons, including MTs, plus-
particles (blue) and minus-particles (red). (b) Unbound par-
ticles switch filaments with rate ωc. (c) Particle dynamics in
the exclusion process. Triangles mimic bound particles, the
tip indicates the direction. Unbound particles are shown by
squares. Bound particles can step or detach, unbound parti-
cles can reattach. If a particle attempts to step onto a site
occupied by an unbound particle, it can either push it away
or swap position. Two bound particles block each other via
exclusion. (d) The floor-field state fi is averaged over all
sub-states for every site i of the lattice.
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kinesin motors is self-enhanced along the kinesin trajec-
tories which modify the MTs. This kind of self-induced
preferential binding can be understood as a true realiza-
tion of a floor-field, which has been successfully intro-
duced as a virtual mechanism in order to generate e.g.
lane-formation in bidirectional pedestrian flows [20–24].
In this paper, the transport problem is formulated

as a TASEP with Langmuir-kinetics, where we addi-
tionally consider an explicit particle reservoir and a
floor-field. Our theoretical model describes the key fea-
tures of bidirectional axonal transport but considerably
reduces the complexity of the biological reference system.

THE MODEL
We study a TASEP with Langmuir-kinetics of two par-
ticle species moving on a pair of parallel, identically po-
larized one-dimensional filaments. The model filaments
(MTs) are represented as one-dimensional, static lattices.
Lattice sites can either be empty or occupied by a single
particle. We consider two types of particles, i.e. moving
to the plus-end of the filament (τ = 1, blue in Fig. 1) and
to the minus-end (τ = −1, red).
Particle dynamics: Both types of particles can either

be bound or unbound to a filament (triangles or squares
in Fig. 1(c)). Bound particles step to the neighboring site
(target-site) with rate ωs or detach from the filament with
rate ωd (Fig. 1(c)). In order to study lane-formation as
a bulk effect, we are considering periodic boundary con-
ditions. Particles which detach from the filament stay
at the same lattice-site, unlike in typical models with
Langmuir-kinetics where particles move to a bulk reser-
voir [6, 11]. This feature is crucial for modeling transport
in crowded environments, where unbound particles can-
not simply diffuse away from clusters.
Unbound particles can reattach to the filament with

rate ωa or change to an unbound state on the other fila-
ment with a coupling rate ωc (Fig. 1(b)), where the posi-
tion is kept. Particles interact with each other via hard-
core repulsion (Fig. 1(c) bottom). For a particle which
is selected to step we distinguish three cases. (i) If the
target-site is free, the step is executed. (ii) If the target-
site is occupied by a bound particle the step is rejected.
(iii) If the target-site is occupied by an unbound parti-
cle, the unbound particle is either pushed to next site (in
moving direction of the stepping particle) or exchanges
position with it (swapping). If both pushing and swap-
ping are possible, one of the two possibilities is selected
with probability 1/2. If the site in moving direction next
to the unbound particle is occupied, swapping is exe-
cuted. (Fig. 1(c)).
Floor-field dynamics: In [19, 25] an axial elongation

of the MT by kinesin has been reported. The elonga-
tion is related to a meta-stable tubulin-state which has
a higher binding affinity for kinesins. This effect is im-
plemented via a floor-field which considers the number of
MT protofilaments, Np = 13. A floor-field fi is assigned

to each lattice-site i, which is given by

fi =
1

Np

Np∑

k=1

si,k (1)

where k denotes the index of the protofilament which is
permanently assigned to the particles until they detach
from the (proto-)filament. Therefore, fi represents the
average of Np sub-states si,k ∈ {−1, 0, 1}. The value of
fi is updated if particle steps to site i and thereby sets
the value of a given sub-state si,k to +1(−1) in case of
+(−) directed motors. The sub-state can decay back
to 0 again with rate ωr (Fig. 1(d)). Averaging over Np

sub-states introduces a memory effect which stabilizes
the preferential adsorption of a given type of particle,
i.e. the amplitude of the floor-field determines the ro-
bustness of the floor-field against changes of the affinity
by single oppositely directed particles. The sub-division
of the floor-field into ”protofilaments” is also consistent
with the observation that low kinesin concentration may
lead to a curvature of MTs which signifies a coexistence
of excited and non-exited tubulin states ([25]).
The state fi influences the binding affinity of particles

ωa,i given by

ωa,i =





ω0
a µ

|fi|, τ = sgn (f) ,

ω0
a

1

µ|fi| , τ 6= sgn (f) ,
(2)

where ω0
a is the free attachment rate and µ ≥ 1 is called

affinity modification factor. This modification leads
to higher binding rates if the floor-field state fi was
predominantly set by particles of the same type τ as
well as lower rates for opposing combinations. If µ = 1
or fi = 0, the interaction is neutral. We consider a
symmetric excitation for dynein and kinesin motors,
though so far experimental evidence for a modification
of the MT-structure by dynein is still lacking.

RESULTS AND DISCUSSION
We study the influence of the floor-field on the parti-
cle flux J as a measure of transport efficiency as well
as symmetry-breaking and self-organized lane-formation.
First, we introduce a mean-field analysis and then com-
pare results to Monte Carlo (MC) simulations.
Mean-field analysis: As a reference, we consider

TASEP models [26], two-species, bidirectional exclusion
processes [8, 10, 27], as well as combinations of TASEP
and Langmuir-kinetics [6, 11, 28]. From these models, a
mean-field estimation [29] of the flux Jud = ρeff(1 − ρeff)
can be deduced for unidirectional one-filament systems
with Langmuir-kinetics ([30]). We use Jud for judging on
the transport efficiency. Note that fluxes are scaled by
ω−1
s and the system size L.
To include the floor-field dependency in a mean-field

model, we assume a simplified unbound state (u) shared
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FIG. 2. Time dependence of the flux and particle densities
for a system of L = 1000, ρ = 0.05, and random initial con-
figurations. Values of the floor-fields f+, f− and difference in
densities ∆ are given at the left axis; values of the total flux
J , and the mean-field estimation JMF are given at the right
axis. (a) µ = 1, (b) µ = 4.

for both filaments called top (t) and bottom (b). The
average floor-field f is represented by the normalized dif-
ference in particle densities ∆t,+ = (ρ+t − ρ−t )/ρ

+ for the
plus-species and the top filament (bottom analog) so that
we can formulate the mean-field equations exemplary for
plus-particles (details in the supplemental material [30])

∂ρ+t
∂t

= ω0
aµ

∆t,+ρ+u − ωdρ
+
t

∂ρ+u
∂t

= ωd

(
ρ+t + ρ+b

)
−
(
µ∆t,+ + µ∆b,+

)
ω0
aρ

+
u (3)

∂ρ+b
∂t

= ω0
aµ

∆b,+ρ+u − ωdρ
+
b .

Additionally, we get the identity ρ± = ρ±t + ρ±b + ρ±u
from particle conservation. In the stationary state, we
find the equation for the difference in densities on the
top filament ∆ as

∆ =

(
µ∆ − µ−∆

)
1
ωd

(µ∆ + µ−∆) + ωd

ω0
a

. (4)

Eq. 4 is numerically solvable and shows a pitchfork bifur-
cation, at a critical µ = µcrit: For µ < µcrit eq. 4 has only
a single solution given by ∆0 = 0, while for µ > µcrit the
solution ∆0 = 0 gets unstable and two stable points at
∆±, depending on ωd and ω0

a, occur. We also find that
the floor-field has to modify the affinity for both species,
otherwise only a symmetric solution can be found [30].
By solving Eq. 4, the flux is estimated by

JMF = ρ+t
(
1 − (ρ+t + ρ−t )

)
. (5)

Parameters: We used the experimental results of [19]
to select the relevant parameters of the model, given in
table 1 in the supplemental material [30]. We kept the
rates ωs, ωd, ω

0
a and ωr constant. The relevant density

regime is rather difficult to estimate. On the one hand
the fraction of occupied binding site is rather low. On the

other hand molecular motors carry rather big objects (20
nm and 50 nm for axonal vesicles [31, 32], compared to 8
nm step-size for most kinesin and dynein motors [33, 34])
such that the density in terms of the occupied volume
along the MT is considerably higher. Therefore, we did
not focus on the low density regime of ρ ≈ 0.01, which has
been addressed in [19] but varied the particle density in
order to study the stability of the bidirectional transport
in our model. The chosen lengths of approximately 1000
sites, which correspond to MTs of length 8 µm, is in
accordance to the typical MT-length in axons [35, 36].
The range of the affinity modification µ is motivated by
different experiments in which kinesin binding affinity
has been measured for different types of MTs. In [19, 37],
GTP-MTs show three to four times higher affinity than
GDP-MTs and comparing [38] with [39], the affinity is
five times higher. The choice of coupling rates, filament
number and the number of sub-states in the floor-field
implementation is discussed in the supplemental material
[30].

MC-Simulations: We investigate the influence of the
floor-field on our stochastic model by performing MC-
simulations with two filaments started with neutral floor-
fields and randomly distributed particles. The total par-
ticle density is given by ρtot = ρ+ + ρ− = 2ρ+.

A time-evolution of the system is shown in Fig. 2 aver-
aged over 100 simulations. Yellow lines show the differ-
ence in densities ∆. A filament with average floor-field
f = 1/L

∑L
i=1 fi > 0 is called plus-lane and f < 0 minus-

lane. The floor-field f+ (f−) of the plus (minus)-lane is
shown in blue (red), and the total flux J in green (right
axis).
Without modification, i.e. µ = 1 in panel (a), no

symmetry-breaking is observed. There is no significant
difference between f+ and f−, and particles are dis-
tributed equally (∆ = 0). By raising µ, the floor-field
values split up and ∆ increases. For µ = 4, f+ (f−)
and ∆ almost reach the extreme values ±1, meaning
a quasi separation of particles and totally asymmetric
floor-fields. This lane-formation is stable and the time-
evolution shows very little sample to sample fluctuations.
Also the difference in the particle distribution ∆ is in
good agreement with the average floor-field |f | which
makes ∆ a good representation for f in the mean-field
analysis.

The stationary flux (green) increases for higher µ when
the floor-field is stabilized (Fig. 2(b) with µ = 4). In case
of µ = 4 (µ = 6) an average effective velocity of ≈ 270
nm/s (350 nm/s) for a motor protein whereas the free
stepping velocity of bound kinesins is presumed to be 480
nm/s in this work ([19]). As expected the mean-field so-
lution (dashed green line in Fig. 2) overestimates the flux
considerably, since a homogeneous distribution of parti-
cles is assumed, while in the full model there are strong
density-correlations due to cluster formation. However,
the initially symmetric two-lane system spontaneously
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FIG. 3. Transport efficiency (a) and symmetry-breaking (
(b), (d)) under variation of density and affinity modifica-
tion. Simulations did run for 3 hours real-time, measurements
started after 1 hour. Panel (c) shows the phase-space for sym-
metric and asymmetric solutions in the mean-field model.

breaks symmetry so both lanes carry stationary and op-
positely directed net flows.

In Fig. 3(a), we show the density dependence of the flux
for different µ in comparison to the unidirectional flux.
Simulation results show that the transport efficiency of
the system is significantly increased for (µ ≥ 3) compared
to the plateau obtained without floor-field (µ = 1). Actu-
ally, the flux reaches almost the value of the correspond-
ing unidirectional flux to Jud until it breaks down to the
traffic jam plateau value, similar for all µ. The density
at which the transition to the plateau value is observed,
depends on µ. Note that the stationary state is not al-
ways reached at high densities if we initialize the system
with a random configuration, indicated by the larger er-
ror bars in the high density regime caused by meta-stable
clusters (Fig. 3(a)), which have not been dissolved within
the simulation time.

Lane-formation is well characterized by the difference
in floor-field ∆f = f+ − f− measuring asymmetry be-
tween filaments and is shown in Fig. 3(b). The base line
corresponds to symmetric fields without lane-formation
for µ = 1. By increasing µ, the asymmetry develops in a
density dependent range before ∆f drops down. Results
of panel (a) and (b) indicate a lane-formation and quasi
ordering the system into two sub-systems with oppositely
directed flux. When the self-organization breaks down,
traffic jams are forming on both lanes and transport effi-
ciency is not enhanced anymore. This is consistent with
lane-formation observed in other floor-field models [20].

The influence of µ on the symmetry-breaking is further
examined in Fig. 3(c) and (d) by comparing mean-field
results to MC-simulations. In panel (c), a phase diagram
from mean-field analysis for |∆| under variation of µ
and ωd is shown for fixed ω0

a = 5s−1. The blue dot
marks µcrit for ωd used in simulations and agrees with
Fig. 2 and Fig. 3 (b). The border of |∆| > 0 shows that
µcrit > 1 for arbitrary ωd. There is only a small region
where 0 < |∆| < 1 because the mathematical solution of
Eq. 4 can be larger than the physical border of |∆| = 1,
hence particles are completely separated. The transition
is sharper for shorter run lengths (larger ωd). In panel
(d), J is growing under variation of µ for constant
ρ = 0.05 and different L. Remarkably, the transition
from a symmetric to a stable asymmetric solution is
captured by the mean-field approach and even the
predicted value µcrit agrees well with simulation results.
The transition is sharper for L ≥ 1000 than for L = 300,
hence, the larger system is better approximated by the
mean-field model. Also, larger systems have higher
fluxes. This is in contrast to the plateau value for µ = 1
which decreases with the system size. For even larger L
it is computationally hard to achieve stationary states
but we expect the system to still self-organize in lanes
due to stable lanes if already started in such conditions
(supplemental material [30]).

CONCLUSION AND OUTLOOK
To summarize, we introduced a stable mechanism for ef-
ficient bidirectional transport of active particles in one-
dimensional systems under strong confinement. This
mechanism is based on self-organized lane-formation. Di-
rected lanes may be predefined in engineered systems,
however, this is not always the case for transport of
animals or humans as for instance in pedestrian dy-
namics where self-organized lane-formation occurs [20–
24]. The influence of the floor-field on particle bind-
ing was inspired by recent experimental results on self-
induced strengthening of the kinesin MT-affinity, but
could also be realized by other modifications of MTs.
Lane-formation can be captured by a mean-field ap-
proach, which shows the mechanism is stable against lo-
cal density fluctuations.

The stability of lane-formation is remarkable in several
respects. First of all, lane-formation is observed in the
biologically relevant low density regime. This is in con-
trast to other mechanisms, based on particle-particle in-
teractions [40], which lead to symmetry-breaking at high
densities and therefore low particle velocities, while in
vivo observations of e.g. axonal vesicle transport show
that vesicles transported by molecular motors reach the
free stepping velocities of kinesin. Second, we observe
the coexistence of transport in both directions on a cou-
pled pair of filaments, which goes beyond symmetry-
breaking mechanisms reported as discussed in e.g. [41]
where symmetry-breaking leads to unidirectional trans-
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port. Third, our model describes the low mobility of
unbound particles, which may trigger cluster formation
in bidirectional transport and illustrates the stability of
the suggested mechanism. From our point of view, our
results indicate that stable bidirectional flows are more
easily realized by modifications of the filaments rather
than interactions between particles.

The importance of the MT structure on transport has
recently been pointed out [14–17]. Bidirectional intracel-
lular transport is organized on oppositely oriented fila-
ment bundles in dendrites [16] and on parallel oriented
MT doublets in cilia [17]. In axons, however, so far a
similar organization of the MT network has not been
identified. Our findings indicate that the posttransla-
tional modification by motors and self-induced preferen-
tial binding of one or the other motor species could in-
deed lead to stable bidirectional transport in an a priory
unipolar MT network. A self-induced amplification of the
binding affinity must be given for both particle species.
Otherwise, the density of oppositely oriented particles on
the same filament is too high to realize efficient transport
states.

Concerning the robustness and efficiency of the
proposed lane-formation in our model for intracellular
transport, it would be of great interest to obtain further
insight to the interplay between dynein and kinesin
motors, microtubules and MAPS, which might have a
strong impact on the (self-)organization of intracellular
transport.
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Mean-field analysis: In the continuum limit for a sin-
gle, unidirectional exclusion process with particle ex-
change to a reservoir, the mean-field approach is given
by [29]

∂ρ(x, t)

∂t
=

∂J(x, t)

∂x
+ ωa(1 − ρ(x, t)) − ωdρ(x, t). (S1)

Here, we consider a system with periodic boundary con-
ditions and translational invariant initial conditions, such
that ∂J

∂x = 0 and ∂ρ
∂t = 0 holds in the stationary state.

In absence of a floor-field, the effective density of parti-
cles bound to the filament is given by Langmuir kinetics
[11, 29]. Hence, we obtain the following estimates for the
stationary density and flux:

Jud = ρeff(1 − ρeff) ρeff = ρ
ω0
a

ω0
a + ωd

. (S2)

Next, we consider in a system consisting of two filaments
(top and bottom) and a mutual reservoir (unbound) of
infinite capacity. Please note that we consider a single
particle reservoir in the mean-field approach instead of
two weakly coupled reservoirs in the full model, each of
which being coupled to one of the two filaments. This
simplification is valid because the weak coupling of the
two particle-reservoirs of the full model suppresses the
coupling of the density-fluctuations between the two fila-
ments. Density-fluctuations, however, are not described
by the mean-field approach.
Whereas the detachment rates are constant, the at-

tachment rate is a function of particle densities and de-
scribes the impact of the floor-field in the full model.
Eq. 2 in the main text describes that the attachment de-
pends on the floor-field fi on the particular site i on which
the particle wants to attach. Due to the translational in-
variance of the model we consider consistently an average
floor-field f . We estimate the average floor-field by the
normalized difference of densities ρ+ and ρ− on the given
filament, i.e. f t = (ρ+t − ρ−t )/ρ

+ for a plus-particle on
the top filament. The attachment rates for plus- and
minus-particles on the top filament ωt,±

a = ωt,±
a (ρ+t , ρ

−
t )

are then given by

ωt,+
a = ω0

aµ
(ρ+

t −ρ−
t )/ρ+

(S3)

ωt,−
a = ω0

aµ
(ρ−

t −ρ+
t )/ρ−

. (S4)

The equations given above hold for attachment to the
top-filament. An analogous set of equations describes
the attachment to the bottom-filament.

As a result we arrive at the following mean-field equa-
tions for the two-filament system with particle reservoir
and the previously defined attachment rates ωt,±

a , ωb,±
a ,

which depend on the difference of plus and minus motor
density:

∂ρ+t
∂t

= ωt,+
a ρ+u − ωdρ

+
t (S5)

∂ρ+u
∂t

= ωd

(
ρ+t + ρ+b

)
(S6)

−
(
ωt,+
a + ωb,+

a

)
ρ+u

∂ρ+b
∂t

= ωb,+
a ρ+u − ωdρ

+
b , (S7)

where ρ+u denotes the density of the plus-particles in the
particle reservoir. We get an analogous set of particles for
minus particles. Furthermore, particle conservation leads
to the relation ρ+ = ρ+t + ρ+b + ρ+u for plus-particles and
ρ− = ρ−t + ρ−b + ρ−u for minus-particles. For simplicity,
we consider ρ+ = ρ−.
We define ∆ = (ρ+t − ρ−t )/ρ

+ which we use as an es-
timate of the average floor-field f (compare to Fig. 2).
We also make use of the symmetry between plus- and
minus-particles, i.e. we choose ρ+t = ρ−b , ρ

+
b = ρ−t and

ρ+u = ρ−u and drop the ± index. Using these assumptions
and definitions we get:

∂ρt
∂t

= ω0
aµ

∆ρu − ωdρt (S8)

∂ρu
∂t

= ωd (ρt + ρb) −
(
ω0
aµ

∆ + ω0
aµ

−∆
)
ρu (S9)

∂ρb
∂t

= ω0
aµ

−∆ρu − ωdρb. (S10)

From Eq. S8 to Eq. S10, we find the following equation
for ∆:

1

ωd

∂∆

∂t
=

ω0
a ρu
ωd ρ

(
µ∆ − µ−∆

)
− ∆. (S11)

Making use of normalization and Eq. S9, we can deter-
mine an equation for ∆ in the stationary state

∆ =

(
µ∆ − µ−∆

)
1
ωd

(µ∆ + µ−∆) + ωd

ω0
a

. (S12)

Eq. S12 is numerically solvable and shows a pitchfork bi-
furcation at µ = µcrit(ω

0
a, ωd) from a stable equilibrium

point at ∆0 = 0 to the unstable equilibrium point ∆0 = 0
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and two stable points at ∆±. Note that this asymmetri-
cal solution can be found for |∆| > 1 in some cases. By
definition, the difference of physical densities cannot be
larger than 1, so a solution |∆| > 1 will correspond to a
total separation of particles at the border of the definition
of ∆.
As a next step, we explicitly calculate the densities in

each state by using the asymmetric solutions for ∆

ρt =
ρ ∆± µ∆±

(µ∆± − µ−∆±)
(S13)

ρu =
ωd

ω0
a

ρ ∆±
(µ∆± − µ−∆±)

(S14)

ρb =
ρ ∆± µ−∆±

(µ∆± − µ−∆±)
. (S15)

Using these results, we can calculate the flux for plus-
particles on the top lane

JMF = J+
t = ρ+t

(
1 − (ρ+t + ρ−t )

)
(S16)

and analogously for the bottom lane as well as for minus-
particles.
List of parameters: In our simulations, we used the

reference set of parameters shown in table I. Different
choices of parameters are mentioned in the text.
Kymographs: In order to initialize our simulations,

particles are randomly distributed in the unbound state
on both filaments. In the top row of Fig. S1, we show a
kymograph corresponding to a typical time-evolution of
the system over one hour real time. Shown are bound
particles of filament 1 ad 2 in a long time interval in or-
der to observe the system transitioning between the two
following states. After an initial symmetrical state with
clustering, particles distribute asymmetrically between
the two filaments. The result is a clear majority of plus-
(minus) particles on filament 1 (2). We then call the
filament with a plus (minus) majority plus-lane (minus-
lane). Also the floor-field clearly breaks symmetry in the
same way. This lane-formation was not observed for neu-
tral affinity modification (not shown).
In the bottom row of Fig. S1 we show parts of the ky-

mographes in a higher time resolution. Intervals of 30 s
are shown from the kymograph of filament 2. The left
figure belongs to the early phase in which the system is
in a symmetric state where immobile clusters drastically
reduce the flux. The right figure shows the system in

TABLE I. Reference set of parameters. The rates ωs, ωa, ωd

and ωr are extracted from [12].

ρ 0.05 L 1000

ωs 60 s−1 Np 13

ω0
a 5 s−1 ωr 0.005 s−1

ωd 1 s−1 ωc 0.1 s−1

space

tim
e

Filament 1 Filament 2

space

tim
e

1
0

 m
in

5
 s

FIG. S1. Top: Kymographs in a two-lane system of length
L = 1000, density ρ = 0.08 and modification µ = 6. We stud-
ied the time-evolution of the system during the first hour (real
time) after initialization in a random configuration and with
a neutral floor-field. Bound plus-particles are blue, minus-
particles red and empty space or unbound particles white.
The scale car shows a time interval of 10 minutes. The green
and cyan line mark 30 s intervals which are shown in the bot-
tom row. Bottom: 30 second intervals in a higher resolution
show examples of the symmetric state (left) and the asym-
metric state (right). The inset shows that typically only a
single plus-particle blocks the runs of minus-particles tempo-
rally. The scale bar shows an interval of 5 seconds.

the asymmetric state where only a few plus-particles are
present on the minus-lane. Minus-particles perform in co-
ordinated runs, only temporary blocked by plus-particles,
which results in a more efficient transport state.

Length dependency: Beside the flux and symmetry de-
pendencies on the density ρ and the affinity modification
feedback µ, we study the influence of the system length.
In Fig. S2(a) and (b) we plot J and ∆f for a fixed density
ρ = 0.05 under variation of L. On the one hand, lane-
formation needs a minimum length so that enough parti-
cles are involved in the system i.e. the sharper transition
in Fig. 3 in the main text for L = 1000 than L = 300
is consistent with the not reached maximum value for
L = 300 in Fig. S2 (a) and (b). On the other hand, sta-
ble lanes were not able to form within our simulation of
3 hours simulated time for L ≥ 4000, represented by the
large error bars in this regime. For large systems it takes
very long to reach the stationary state from random ini-
tial conditions so we check whether asymmetric initial
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conditions are stable and lane-formation persists in the
stationary state. We add filled symbols for simulations
started in asymmetric conditions to the open symbols for
the reference start in symmetric conditions. Here, the
system remains in the asymmetric state when high affin-
ity modification was implied but produced traffic jams
and lost asymmetry without the modification. Thus, we
expect the system to self organize even for larger system
sizes in the stationary state.

Number of sub-states: We now check our model cali-
bration in Fig. S2 (c) and (d) by comparing two different
numbers of sub-states Np = 13 (empty symbols) and
Np = 1 (filled symbols). The number influences floor-
field resistance against single particle induced changes
for sub-states and leads to a majority effect. We compare
the model to a version with only a single (sub-)state per
site. This means, that each particle stepping to a given
neutral site sets its affinity, i.e. fi = si. This complete
modification of the local floor-field by a single particle is
not in agreement with experimental results which report
a curvature of MTs at low kinesin concentrations corre-
sponding to a partial excitation of the protofilaments [19,
25]. In our model the average of Np = 13 sub-states takes
this collective effect into account and determines the lo-
cal preference from an average of all local-substates fi. A
lattice with only one sub-state shows similar but quan-
titatively smaller flux enhancement. In case of µ = 4,
there is no improvement compared to the neutral system.
If µ = 6, enhancement is visible but only for densities up
to ρ = 0.03 before the flux breaks down. This behavior
is also reflected in the floor-field in panel (d). Here, the
asymmetry exhibition is shifted towards lower densities
and is in case of µ = 4 not as strong as for Np = 13. For
such small densities, the flux is close to Jud so that the
enhancement in the flux is hardly noticeable.

Number of filaments: An increasing of the number of
lanes does not further improve the flux as it can be seen
in panel (e) where filled symbols belong to a system of
NL = 8 lanes, being in good agreement with the two
track version (open symbols).

Coupling rate ωc: We also investigated the influence of
the coupling rate ωc which determines the amount of in-
teraction between filaments. The actual value of the cou-
pling rate has not been established in experiments. In all
simulations we use the value ωc = 0.1 ωd as given in ta-
ble I. In Fig. S2 (f), the system supports lane-formation
and enhanced flux for weakly coupled lanes. The flux
breaks down if the coupling rate is of the order of attach-
ment and detachment rate. This breakdown is related
to traffic jams on both filaments, located at similar po-
sitions. The strong density correlation prevents traffic
jams from resolution because motors cannot escape from
crowded areas due to exclusion. Strongly coupled fila-
ments cannot organize themselves into lanes anymore. It
follows that tracks have to be weakly coupling for the
mean-field assumption, which is consistent with studies

(c) (d)

(e) (f)

�c

0

0.5

1

1.5

2

0 0.05 0.1 0.15 0.2

	

1000010000

0

0.02

0.04

0.06

0.08

0 0.05 0.1 0.15 0.2




0

0.02

0.04

0.06

0.08

0 0.05 0.1 0.15 0.2

�

(a) (b)

0

0.5

1

1.5

2

100 1000

L

0.01

0.02

0.03

0.04

100 1000

L

0.01

0.02

0.03

0.04

0.01 0.1 1 10

L = 1000

ud

µ = 1 µ = 3 µ = 4 µ = 6 µ = 8

µ = 1 µ = 3 µ = 4 µ = 6 µ = 8

random

sorted

L = 1000µ = 1 µ = 3 µ = 4 µ = 6

µ = 1 µ = 3 µ = 4 µ = 6

L = 1000µ = 1 µ = 3 µ = 4 µ = 6 µ = 8

µ = 1 µ = 3 µ = 4 µ = 6 µ = 8

2 �laments

8 laments

ud

ud

FIG. S2. Flux 〈J〉 (a) and asymmetry ∆f (b) under varia-
tion of the system length L. Simulations did run for 3 hours
simulated time, measurements started after 2 hours. Simu-
lations which were initialized in random configurations are
marked as open symbols, simulation data from asymmetric
initial conditions are represented by filled symbols. The black
line shows Jud and the shaded area marks the length regime
of large error bars and the second set of simulations started in
sorted initial conditions. Model comparison in the fundamen-
tal diagram (c) and the floor-field asymmetry (d) between
different numbers of sub-states. The reference system with
13 sub-states is given by open symbols, a lattice of only one
sub-state by filled symbols. (e) Fundamental diagram for
the reference system of 2 filaments (open symbols) compared
to a system of 8 filaments (filled). (f) Variation of the fila-
ment coupling rate ωc for different µ influences the particle
flux. The reference value used in the main text is given by
ωc = 0.1.
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(a) (b)

µ = 4: L = 1000
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FIG. S3. Total particle flux Jtot (a) and floor-filed asymmetry
(b) in case of asymmetrical motor affinity modification factors
µ+ and µ−. We fix µ+ = µ and vary µ− in [1, µ]. For µ = 6,
fluxes are shown for plus- and minus-particles separately.

about unidirectional transport on coupled tracks [42].

The idea of weak coupling is consistent with the bio-
logical findings that motor-cargo complexes have a very
low diffusivity in the crowded cytosol of the axon in vivo.
Hence, it makes da difference whether particles attach to
a close MT or to a neighboring MT which is further away.

Asymmetric motor affinity modification: We investi-
gate if symmetric affinity modification parameters are
needed to generate symmetry-breaking in our system.
For that, we distinguish µ for plus-particles µ+ and mi-
nus particles µ−. For a given µ+ = µ, we decrease affinity
of minus particles down to a neutral setting µ− = 1 and
show fluxes and the floor-field asymmetry in Fig. S3.

We can see that no symmetry between plus and mi-
nus particle affinity modification is needed for having

an enhanced flux and asymmetric floor-fields. However,
without a slightly modified affinity of minus- particles,
we cannot see any enhancement of the flux no matter if
binding of plus-particles is modified or not. This result
is consistent with mean-field analysis for µ+ = µ and
µ− = 1. Eq. S8 to Eq. S10 simplify for minus-particles,
i.e.

∂ρ−t
∂t

= ω0
aρ

−
u − ωdρ

−
t (S17)

∂ρ−u
∂t

= ωd

(
ρ−t + ρ−b

)
− 2ω0

aρ
−
u (S18)

∂ρ−b
∂t

= ω0
aρ

−
u − ωdρ

−
b . (S19)

These equation system has only a symmetrical solution.
Using this result in the equations for plus-particles leads
exclusively to symmetrical solutions for plus-particles,
too. Hence, no lane-formation is found in a mean-field
model if the attachment modification applies only to one
of the two particle species.
In Fig. S3 (a), the plus and minus flux J± is not identi-

cal for all µ−. By having only a low affinity modification
for minus-particles, it is the plus-particles which cannot
produce flux more than in the neutral case. On the fil-
aments, the plus density is concentrated to one filament
but minus-particles are located on both. Hence, minus-
particles on the minus-lane are rather free to move but
most plus-particles are blocked by the minus-particles on
the plus-lane. By increasing the minus affinity modifica-
tion, this gradually changes until the fluxes of the two
particle species are balanced.
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