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Abstract: More and more metal oxide semiconductor (MOS) gas sensors with digital interfaces are
entering the market for indoor air quality (IAQ) monitoring. These sensors are intended to measure
volatile organic compounds (VOCs) in indoor air, an important air quality factor. However, their
standard operating mode often does not make full use of their true capabilities. More sophisticated
operation modes, extensive calibration and advanced data evaluation can significantly improve VOC
measurements and, furthermore, achieve selective measurements of single gases or at least types
of VOCs. This study provides an overview of the potential and limits of MOS gas sensors for IAQ
monitoring using temperature cycled operation (TCO), calibration with randomized exposure and
data-based models trained with advanced machine learning. After lab calibration, a commercial
digital gas sensor with four different gas-sensitive layers was tested in the field over several weeks.
In addition to monitoring normal ambient air, release tests were performed with compounds that
were included in the lab calibration, but also with additional VOCs. The tests were accompanied by
different analytical systems (GC-MS with Tenax sampling, mobile GC-PID and GC-RCP). The results
show quantitative agreement between analytical systems and the MOS gas sensor system. The study
shows that MOS sensors are highly suitable for determining the overall VOC concentrations with
high temporal resolution and, with some restrictions, also for selective measurements of individual
components.

Keywords: MOS; metal oxide semiconductor gas sensor; VOC; volatile organic compounds; IAQ;
indoor air quality; randomized gas mixtures; selective; SGP30; quantification

1. Introduction

Air pollution is one of the main environmental concerns in Europe and worldwide
with outside and indoor air contributing similarly to the overall burden of disease according
to the EU project Healthvent [1]. In recent years, indoor air quality has gained increasing
relevance and awareness of its importance is rising [2]. Quality in this context includes
many parameters, from temperature to particles to volatile organic compounds (VOCs) and
others [3]. With technology becoming cheaper and Internet of Things (IoT) devices being
available to a broader public, measurement systems for every parameter are in demand.

For indoor air quality assessment carbon dioxide (CO2) is the de facto standard
because it provides reliable results due to the physical measurement principle. As humans
emit a cocktail of VOCs [4–6], and this is mainly responsible for poor air quality in indoor
situations, a CO2 measurement is often referred to as indirect VOC measurement based on
the studies of Pettenkofer [7]. However, this approach neglects other VOC sources such
as furniture and building materials as well as those coming from human activities like
cleaning or cooking [8]. Furthermore, these sensors are relatively large, power-hungry,
and expensive compared to metal oxide semiconductor (MOS) gas sensors, especially
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in the context of IoT. MOS sensors provide excellent sensitivity and a broad response
spectrum covering almost all kinds of VOCs [9,10]. Due to their broad sensitivity spectrum,
most commercially available sensors provide a sum signal often designated as total VOC
(TVOC) concentration [11]. However, permanent gases like hydrogen (H2) or carbon
monoxide (CO) could also contribute to this sum signal as MOS sensors often show high
sensitivity towards these gases [12]. Moreover, chemical sensors can change their chemical
properties during operation due to irreversible reactions, so drift is often reported [13].
The latest sensor models offered by different manufacturers are typically smaller than
3 × 3 × 1 mm3, require less than 10 mW of power and include integrated electronics
offering a direct digital interface allowing simple integration in various (IoT) devices. Some
of these sensors [11,14] use multiple gas-sensitive layers to provide an even wider response
spectrum and allow multisensor evaluation. With more sophisticated data treatment and
more complex operation modes, like temperature cycled operation (TCO), it is possible to
improve the selectivity of these sensors [15–17]. This was often shown in lab measurements
and first studies on inter-laboratory comparisons are available [18], but proof concerning
the feasibility of such an approach and its stability in the field is missing. Before a broader
public can use the sensors and benefit from their results, the performance needs to be
ensured in field studies with comparisons to analytical instrumentation.

We present a study on selective VOC measurements with MOS sensors and their
stability in a real-world scenario. A multilayer sensor combined with TCO is used to
achieve good selectivity. The capabilities of this low-cost approach for determining the
overall VOC concentration independent of interference by ambient humidity, CO and H2
and also selective quantification of single gases are evaluated. After calibration in the lab,
the sensors were installed in an office where several release tests of different substances
were conducted to prove the ability to selectively detect and quantify certain VOCs; a
method that could also be used as a simple functionality test for the general public. The
lab calibration was repeated twice after several weeks of operation each to evaluate the
drift of the sensor elements and stability of the model prediction.

2. Materials and Methods
2.1. Experimental Setup

All measurements in this study were performed with sensor hardware designed in-
house. The sensor hardware is based on a microcontroller board (Teensy 4.0, Pjrc.com
LLC, Sherwood, Oregon, USA), which communicates with an SGP30 sensor (Sensirion AG,
Stäfa, Switzerland) via I2C interface. The SGP30 multilayer MOS sensor contains four gas-
sensitive layers on a common MEMS micro hotplate [11]. It is possible to digitally program
the sensor to set the temperature from 100 ◦C to 425 ◦C in 25 ◦C steps and to synchronously
read out the resistance of the four different layers. The commands for temperature control
and resistance readout are not described in the sensor datasheet and were provided by
Sensirion under a non-disclosure agreement. Our sensor hardware allows us to operate the
sensor in TCO mode and readout of the layers’ resistances and transfer the data to a PC
with a sample rate of 20 Hz. The selected temperature cycle (TC) comprises 10 temperature
jumps from high to low temperature [19,20]. Figure 1 shows the TC with 10 steps at 400 ◦C
with a duration of 5 s each are followed by different low-temperature steps, which are set
to 100, 125, 150, 175, 200, 275, 300, 325, 350 and 375 ◦C with a duration of 7 s each resulting
in a total duration of the TC of 120 s. The SGP30 sensors were installed in sensor chambers
(alumina and polytetrafluoroethylene). The sensor systems including electronics were
mounted on a trolly with PC and monitor allowing us to move them from the laboratory to
the field test room and back. The trolly carries a flow-regulated micro pump drawing room
air through the sensor chambers for the field tests, to ensure similar flow conditions over
the sensor in the field as during calibration in the laboratory.
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Figure 1. Temperature cycle of the SGP30.

The calibration measurements were done with our custom-built gas mixing apparatus
(GMA), which is described in detail in [21]. Figure 2 shows a schematic overview of the
GMA and the connection to the sensor hardware. The GMA is based on the principle
of dynamic mass flow injection of different test gases into a carrier gas flow. The carrier
line consists of two 500 mL/min mass flow controllers (MFC), one for dry and one for
humidified zero air, for a dynamic humidity setting. Zero air is generated by a GT PLUS
15000 ULTRA-ZERO Air Generator (Schmidlin Labor + Service GmbH & Co. KG, Dettingen,
Germany) with different filter steps to remove water vapor, carbon mon-/dioxide, VOCs,
nitrogen oxide (NOx), sulfur oxide (SOx) and ozone. For humidification, dry zero air is
passed through a wash bottle filled with HPLC-grade water followed by a filter to remove
particles and droplets. Both the wash bottle and filter are kept at 20 ◦C (thermostat) to
keep the humidity level constant. To achieve reliable low concentrations of the test gases,
we use test gas cylinders with concentrations of at least 100 ppm of the target gas in
synthetic air with a purity of >99.999% and, if required to achieve low concentrations below
1 ppm, add a predilution step before injection into the carrier flow. For the predilution,
the test gas flow from the gas cylinder is diluted once with zero air by two MFCs with
10 or 20 mL/min for the test gas and 500 mL/min for zero air. The test gas from the
gas cylinder or the diluted test gas is injected into the carrier gas with another MFC
(10/20 mL/min). The GMA includes one test gas line for direct injection and five test gas
lines with integrated predilution. The total flow entering the sensor chambers is always
kept constant. Therefore, we can dynamically mix six different test gases and humidity in
one measurement. In addition to the SGP30 described here, further sensor systems were
included in the measurement campaign. To avoid crosstalk between the sensors due to
reactions on the sensor elements, the total volume flow of 300 mL/min was divided into
four parallel flows using restrictions (1/16“, 20 cm), resulting in 75 mL/min per line. The
total flow after the sensor chambers is measured with a mass flow meter (MFM) to ensure
the tightness of the system.
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Figure 2. Schematic overview of the calibration setup with the gas mixing apparatus and the sensor systems.

The field tests are accompanied by three different analytical methods. All three
systems are based on gas chromatic separation with different detectors.

1. Thermo desorption gas chromatography-mass spectrometry (TD-GC-MS, Markes
International Ltd, Llantrisant, Wales, UK, Thermo Fisher Scientific Inc., Waltham, MA,
USA), similar to ISO 16000-6. TENAX® tubes were sampled with room air for 10 min
at 50 mL/min. This system was used to quantify toluene during the release tests.
The TD-GC-MS was calibrated in the same way with known concentrations from the
GMA (7 tubes with 50–500 ppb toluene). The calibration was done 3 days before the
specific release test. LOQ is smaller than 50 ppb, and the uncertainty is estimated to
be 20%, based on the gas cylinder and the sampling method;

2. Peak Performer 1 (Peak Laboratories LLC, Mountain View, CA, USA), a gas chromato-
graph with a reducing compound photometer as detector (GC-RCP), allows selective
quantification of hydrogen with a LOD of 10 ppb and a resolution of 10% of reading
or LOD (whichever is higher). The Peak Performer 1 requires nitrogen or another
inert carrier gas from a pressure cylinder and provides a time resolution of 3.6 min;

3. Dräger X-pid 9500 (Dräger Safety AG & Co KGaA, Lübeck, Germany), a portable
GC-PID offering a broad range of measured gases including acetone (LOQ: 500 ppb,
LOD: 170 ppb), toluene (LOQ: 1000 ppb, LOD: 330 ppb), isopropyl alcohol (LOQ:
3000 ppb, LOD: 1000 ppb), and xylene (LOQ: 3000 ppb, LOD: 1000 ppb). The X-pid
9500 requires a daily function test with a test gas cylinder (10 ppm isobutene and
10 ppm toluene). Depending on the selected gases, a single measurement requires
2–3 min.
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2.2. Calibration and Recalibration in the GMA

The aim of the calibration is to achieve a reliable mathematical model for the prediction
of different VOC, interfering gases, and sum signals, e.g., the sum of all VOCs in indoor air,
in our field tests from the multi-dimensional gas sensor data. Analytic studies of VOCs in
indoor air show that more than 400 different VOCs representing more than 14 chemical
classes can be found in indoor air [22,23]. Studies on other substances besides VOC in
indoor air are less diverse. From previous studies, we learned that hydrogen and carbon
monoxide, which have a strong influence on MOS sensors, both show large variations in
indoor air [24,25]. It is obviously not feasible to include all VOCs or interfering substances
in the calibration, therefore a reduced substance list for the calibration strategy is needed.
For the calibration, we are restricted to six different gases due to the used GMA. The
following criteria were defined to select a reduced list of substances:

1. Divide the list of VOCs found in studies in indoor environments into the most com-
mon chemical classes (also named substance types or groups): alcohols, aldehydes,
alkanes, alkenes, aromatics, esters, glycols and glycol ethers, halocarbons, ketones,
siloxanes, terpenes and organic acids;

2. Sort the chemical classes according to their total concentrations;
3. For each chemical class, select the substance with the highest concentration.

The idea behind this approach is the assumption that most substances of a certain
chemical class react similarly on the sensor surface, therefore one single gas could represent
each class. However, it is difficult to verify this assumption based on reaction similarity
because this would have to be assessed for each sensor model and hundreds of gases. On
the other hand, if the assumption is true, it would mean that compounds are difficult to
quantify selectively. In addition, the substance occurring with the highest concentration
may not be the most reactive on the sensor. This means that substances with lower
concentrations can still generate a higher sensor response. The behavior still needs to be
investigated in more detail. Table 1 shows the 90th and 95th percentile concentration values
determined from the analytical studies for the eight chemical classes with the highest
sum concentration.

Table 1. 90th (P90) and 95th (P95) percentile sum concentration in µg/m3 and ppb (calculated from
the individual substances dominating for each chemical class) for the eight chemical classes with the
highest sum concentrations as determined from analytical studies [22,23] in alphabetical order. The
substance in parentheses is the representative with the highest concentration for this chemical class.

Chemical Class
(Representative) P90 in µg/m3 (ppb) P95 in µg/m3 (ppb)

Alcohols (Ethanol) 320 (~170) 520 (~790)

Aldehydes (Formaldehyde) 340 (~270) 480 (~390)

Alkanes (n-Hexane, n-Heptane) 180 (~50) 350 (~90)

Aromatics (Toluene) 190 (~50) 370 (~90)

Esters (Ethyl acetate) 140 (~30) 280 (~70)

Ketones (Acetone) 250 (~100) 420 (~170)

Terpenes (Limonene, α-Pinene) 170 (~30) 330 (~60)

Organic acid (Acetic acid) 150 (~60) 240 (~100)

The chemical classes with the highest sum concentrations are alcohols, aldehydes, and
ketones, followed by alkanes, aromatics, terpenes, and organic acid in similar magnitude.
We selected ethanol (alcohols), formaldehyde (aldehyde), acetone (ketones) and toluene
(aromatics) as the four VOC representatives for calibration. In addition, we included
hydrogen and carbon monoxide as interfering gases for the calibrations.
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The calibration strategy is based on randomized gas mixing as described in [26]. The
aim of the strategy is to calibrate the sensor with a more realistic measurement including
masking effects and other gas interactions. Therefore, statistically distributed gas profiles
with unique randomized gas mixtures are measured, and not only single gases with
ascending concentrations compared to classical sequential calibration. For the calibration,
a randomized gas mixture profile was generated. The distribution is based on Latin
Hypercube sampling [27] for each target substance, with the aim to achieve low correlation
coefficients between the various target substances. The gas mixture profile was run in the
GMA and each gas mixture was kept constant for 20 min or 10 sensor T-cycles at a total
flow of 300 mL/min.

We defined concentration ranges based on the analytical studies describing VOC
concentrations in empty rooms (background) as well as literature values [28,29] for the
interfering gases, cf. Table 2.

Table 2. Background concentration ranges for different substances in the initial calibration and the
resulting range for VOCsum calculated from the single VOCs (Acetone, Toluene, Formaldehyde
and Ethanol).

Substance Min. Max.

Carbon Monoxide 150 ppb 2000 ppb

Hydrogen 400 ppb 2000 ppb

Humidity 25 %RH 70 %RH

Acetone 14 ppb 300 ppb

Toluene 4 ppb 300 ppb

Formaldehyde 1 ppb 400 ppb

Ethanol 4 ppb 300 ppb

VOCsum 300 ppb 1200 ppb

Note that the analytical studies are based on average measurements (sampling time >1 h)
according to ISO16000-6 in empty rooms. This results in considerable differences between
analytical reference measurements according to the ISO standard and actual real-time mea-
surements with MOS sensors in occupied rooms. Therefore, the concentration ranges are
likely to be underestimated because emissions from people in the room as well as during,
e.g., cooking and cleaning, are not considered. For the field tests, we performed different
release tests to verify the quantification performance and to compare the MOS sensor
system with analytical instruments. To cover the higher concentration range during these
tests, additional calibration with a larger concentration range for a single gas was added
to the calibration scheme, while the range for the remaining gases was kept to the back-
ground concentration. The extended calibration schemes for single gases included acetone
(14–1000 ppb), toluene (4–1000 ppb), ethanol (4–1000 ppb) and hydrogen (400–4000 ppb)
as these four gases were to be used in the release tests.

To test our assumption that a single compound could represent all VOCs of its chemical
class we performed additional measurements substituting some gases; in the first test
we replaced formaldehyde with acetaldehyde and, in a second, we additionally replaced
toluene with benzene for a limited number of gas exposures. At the end of the measurement
campaign, we also tested m/p-xylene as another representative for aromatic compounds
and limonene as an example of a chemical class (terpenes) not previously included in the
calibration. Table 3 gives an overview of the entire measurement campaign with pre-tests,
initial calibration, recalibrations, and field test periods.
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Table 3. Overview of all performed measurements in the laboratory.

Measurement Description Unique Gas Mixtures

Pre-tests
background with acetaldehyde instead of formaldehyde 60

background with acetaldehyde instead of formaldehyde and benzene
instead of toluene 15

Initial calibration

background only 100

background with modified acetone range: 14–1000 ppb 100

background with modified toluene range: 4–1000 ppb 100

background with modified ethanol range: 4–1000 ppb 100

background with modified hydrogen range: 400–4000 ppb 100

1st field test period (4 weeks)

1st Recalibration

background only 100

background with modified acetone range: 14–1000 ppb 100

background with modified toluene range: 4–1000 ppb 100

background with modified ethanol range: 4–1000 ppb 100

background with modified hydrogen range: 400–4000 ppb 100

2nd field test period (3 weeks)

2nd Recalibration

background only without toluene * 100

background only with m/p-xylene instead of toluene 50

background only with limonene instead of toluene 50

* The measurement was performed without toluene due to the delayed delivery of a test gas cylinder.

2.3. Field and Release Tests

The field tests were performed in a regular office in our building (Figure 3). The office
has a floor area of 3.5 m × 6.3 m and a height of 2.8 m, thus a total volume of 61.8 m3

(Room 2.30 in [30]). The room contains one door to a long corridor and, on the opposite
side, one window. The furnishing includes one wall cabinet, three desks, three office chairs
and two shelves. The flooring is carpet and the walls are wallpapered and painted. Due to
the age of the furnishing, flooring and wall coverings of over 20 years, we did not expect
high VOC emissions in this office. After the field tests, VOC analysis according to ISO
16000-6 and very volatile organic compound (VVOC) analyses, evaluated by a certified
laboratory, obtained a TVOC concentration of 130 µg/m3 in the room. The substances
with the highest concentrations were n-hexadecane (25 µg/m3) and acetic acid (9 µg/m3).
Two VVOCs were reported at the highest concentrations: 2-propanol with 66 µg/m3 and
ethanol with 21 µg/m3. Probably due to the current COVID-19 pandemic, an increased
use of disinfectants based on 2-propanol and ethanol contributed to this result. Figure 3
shows a schematic top view of the room indicating the locations of the measurement trolly,
the location for the release tests and a fan to ensure continuous air circulation in the room.

VOC release tests were performed via evaporation of a certain volume of the target
compound liquid at the location marked in Figure 3. The expected increase in concentration
during the evaporation can be estimated with Equation (1):

∆Ctarget = Vtarget,gas/Vroom (1)

Vroom is the volume of the room and Vtarget,gas is the volume of the VOC after evaporation.
Vtarget,gas can be calculated with Equation (2), where n is the amount of substance, R the
gas constant, T the room temperature, p the pressure, M the molar mass, m the released
VOC mass, ρ the density and Vtarget, liquid the volume of the VOC in liquid form:

Vtarget, gas = n · R · T · p−1 with n = m/M and m = ρ/Vtarget, liquid (2)
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Note that the increase of the concentration according to Equation (1) is a theoretical
value assuming homogeneous distribution in a sealed room without air exchange. The
release tests have an estimated uncertainty of 10%, due to the accuracy of the pipette and
the handling of the liquid (e.g., evaporation during the process).

Figure 3. Schematic top view of the field test room, a standard office in our building. The locations of
the trolly containing sensor systems and analytical measurements, release test and a fan are indicated
(modified from [30]).

Furthermore, hydrogen was released at the same location from a pressure cylinder
with a concentration of 2000 ppm in the air at a constant rate of 500 mL/min controlled
by a mass flow controller for different durations. The estimated uncertainty is 4%, due to
the dominating accuracy of the used gas cylinder compared to the accuracy of the MFC
and time measurement. To be more comparable to the analytical studies, the field tests
were performed without human presence as much as possible. However, the room had
to be entered briefly for ventilation after release tests as well as to allow operation of the
analytical systems or to collect samples. Analytical measurements were performed at the
same location as the sensor measurements, cf. Figure 3.

2.4. Data Evaluation

Data evaluation of the gas sensor data is performed with the open-source software
DAV3E [31]. Figure 4 shows the flowchart of the data evaluation. The data evaluation is
divided into two parts. The first part (left) is the calculation of the initial regression model
(IRM) with feature selection and hyperparameter optimization. The second part (right)
is the calculation of a drift compensated regression model (DCRM) with an additional
recalibration dataset.

Both parts of data evaluation start with data preprocessing and feature extraction. We
excluded the first four and the last temperature cycle in each gas exposure in the datasets
to ensure stable gas mixtures, thus each tested gas mixture yields five patterns for data
evaluation. The raw signal of the SGP30 is the sensor resistance of each layer. Based on our
model concept for MOX gas sensors in TCO [19,20], the optimal signal for data evaluation
is the logarithmic sensor conductance. Therefore, the preprocessed data is the common
logarithm of the reciprocal sensor resistance. In the feature extraction, we divide each cycle
into 120 equidistant segments. For each segment, mean and slope is calculated resulting
in 240 features for each gas-sensitive layer of the SGP30 and a total of 960 for the sensor
with 4 layers. Since, in some cases, the measurement range of the SGP30 is exceeded at low
temperatures the features of those segments are excluded.
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Figure 4. Flowchart of the data evaluation for an initial and drift-compensated regression model.

For the initial calibration, the dataset is split into trainings (80%) and testing (20%).
Dimensionality reduction is performed by feature selection. In the feature selection, the
300 highest ranked features are selected with feature ranking. Feature ranking is done
by (ordinary) least squares regression (LSR) with recursive feature elimination (RFE) to
determine the relative weights or the importance of all features. The features are sorted
according to their linear coefficients. A flowchart of the feature ranking can be found
in the Appendix A (Figure A1). In the next step, we use partial least square regression
(PLSR) as a learning algorithm for the regression model. For hyperparameter optimiza-
tion (number of PLSR components nPLSR and number of the features nfeature), 10-fold
group-based cross-validation [32] is performed, where the folds are determined based
on gas exposures and not on individual temperature cycles. This ensures that complete
gas exposures are used as validation data, i.e., the validation does not only check for
overfitting but also for the ability of the model to correctly interpolate between various gas
mixtures. A flowchart of the learning algorithm with k-fold cross-validation and hyper-
parameter optimization can also be found in the Appendix A (Figure A1). Iteratively, for
each combination of (nPLSR, nfeature, ifold) a PLSR model is calculated with 1 to 20 PLSR
components, 1 to 300 features and 10 folds. The root mean square error of validation for
the initial regression model (RMSEVIRM) is calculated as the mean over all folds for each
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combination (nPLSR, nfeature). The optimal combination of PLSR components and features
is determined from the resulting RMSEVIRM matrix with a dimension of 20 × 300 (number
of PLSR components × selected features). Therefore, we defined a criterion to find a stable
and good model with a small number of dimensions: MinOneStd [26]. MinOneStd searches
the absolute minimum of the matrix and adds the standard deviation as the threshold. The
combination with the minimum product of number of features, times PLSR components,
where the RMSEVIRM is smaller than this threshold, is selected as the optimal combina-
tion. With this optimal combination, 20% holdout of the dataset is tested to determine the
root-mean-square error of testing (RMSETIRM).

To compensate for the drift of the sensor, a regression model is calculated with the
additional recalibration dataset (initial calibration and only background of 1st recalibration),
but without new feature ranking and hyperparameter optimization. The data preprocessing
and feature extraction are the same as for the initial calibration. The data is also split in the
training (80%) and testing dataset (20%) for statistics. Features are sorted with the trained
feature ranking from the initial calibration. The PLSR model is trained with an optimized
hyperparameter from the initial calibration and the resulting RMSEVDCRM is calculated.
With the new regression model, 20% holdout of the dataset is tested to determine the
RMSETDCRM.

3. Results

Results for hydrogen calibration and field tests including a comparison to the analyti-
cal instrument were recently published [25]; in this contribution, we focus primarily on
selective VOC quantification and the overall VOC concentration, VOCsum.

3.1. Calibration and Recalibration

For the generation of the prediction models for different targets, we used the dataset
of the initial calibration and first recalibration (background only, i.e., without higher
concentration exposures). One sensitive layer of the SGP30 gas sensor shows a small drift
of the raw signal (logarithmic resistance) over time. Therefore, to compensate for this,
but also other drift effects which are not as obvious, a part of the first recalibration after
four weeks was included in the calibration data to optimize the model for drift stability as
previously reported [33]. Figure 5 shows different prediction models for VOCsum proving
this approach using extended calibration to compensate drift: (a) and (b) trained with
the initial calibration dataset only and (c) trained with extended calibration set (initial
calibration combined with background only of the 1st recalibration). Figure 5a shows
a stable and linear VOCsum prediction model for training data and test data, i.e., 20 %
holdout of the calibration dataset. Prediction of the 1st recalibration dataset reveals good
linear correlation, but with an offset of approx. 200 ppb and a somewhat larger RMSET,
Figure 5b. By extending the training dataset with the first part of the 1st recalibration
(background only, i.e., only low concentrations) the model in Figure 5c is obtained. It yields
comparable prediction results as the initial calibration, Figure 5a, also for the additional gas
exposure with higher concentrations from the 1st recalibration and for the 2nd recalibration.
Compared to Figure 5b, the offset between the training and testing data is eliminated, only
the RMSET is approx. doubled. Thus, the extended calibration provides a stable model
for the VOCsum prediction for the total duration of this study, i.e., at least 11 weeks. The
prediction models of the other target gases reveal similar results. Figure 6 provides an
overview of the RMSE of all prediction models for the 10-fold validation and 20% holdout
testing for the initial and the drift compensated PLSR model. The smallest RMSE values
are achieved for acetone with approx. 10 ppb followed by formaldehyde, ethanol, and
toluene with 20–35 ppb for validation and testing in the initial calibration. The RMSEs for
the models of hydrogen and VOCsum are in the range of 30–40 ppb. The worst prediction is
obtained for carbon monoxide with an RMSE of approximately 80 ppb, because no sensitive
layer of the SGP30 shows a high sensitivity to carbon monoxide. The drift compensated
model compared to the initial PLSR model shows similar RMSE values for acetone, toluene,
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hydrogen, and VOCSUM. Ethanol, formaldehyde, and carbon monoxide show slightly
higher RMSE values. For formaldehyde, it can be probably be explained with the gas
cylinder change between the initial and the 1st re-calibration. The formaldehyde cylinders
have a large systematic uncertainty of nearly 20% and in previous investigations [34] we
saw the same behavior. Compared to the tested target ranges for the single VOCs we
achieved a dynamic range [26] between 10 to 20 even for the low background level with
300–400 ppb; the highest dynamic range (>100) is achieved for hydrogen with an RMSET
of approx. 35 ppb for concentrations up to 4000 ppb. In Table 4 the RMSETDCRM and the
estimated accuracy and precision of the GMA are shown. The accuracy and precision
depend on the MFC opening settings during the measurement. Therefore, the ranges—in
percent of the set concentration and in parts per billion (ppb)—are shown. The GMA
accuracy is dominated by the gas pressure cylinders. The RMSEDCRM is larger compared
to the expected precision of the GMA. This indicates that the uncertainty of the models is
due to cross-sensitivity to the other gases or other sensor effects, but not from the GMA.

Figure 5. PLSR model for quantification of VOCsum for (a) training and testing with data from the initial calibration (initial
regression model), (b) training with initial calibration, testing with 1st recalibration, (c) the drift compensated regression
model (training with initial calibration plus background only of the 1st recalibration), testing with extended range data
from 1st recalibration as well as 2nd recalibration. Dashed lines indicate the root-mean-square-error of validation (RMSEV)
based on the training data set and of testing (RMSET), respectively.

Figure 6. RMSE of the models for different target VOCs for the initial (RMSEVIRM, RMSETIRM) and the drift compensated
regression model (RMSEVDCRM, RMSETDCRM). For each model RMSEV for 10-fold validation during training (error bars
indicate the standard deviation of the RMSEV for the different folds) and testing (20% holdout).
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Table 4. RMSETDCRM for different prediction models and the accuracy and precision of the calibration measurements. The
accuracy and precision depend on the MFC settings during the measurement. The accuracy is dominated by the used gas
pressure cylinders, which have an accuracy of between 3 and 20%.

Substance RMSEDCRM in ppb GMA Accuracy 1 in % (ppb) GMA Precision 1 in % (ppb)

Acetone 13.6 5.0–6.5 (1–50) 0.7–4.1 (1–6)

Toluene 25.5 2.1–2.8 (0.1–23) 0.5–1.8 (0.1–10)

Formaldehyde 31.3 20.0–20.3 (0.3–82) 0.6–3.5 (0.1–10)

Ethanol 29.6 3.1–4.7 (0.2–35) 0.6–3.5 (0.2–17)

VOCsum 32.5 1.8–15 (8–93) 0.6–1.8 (2–19)

Carbon Monoxide 83.6 2.2–4.2 (6–49) 0.9–3.7 (6–20)

Hydrogen 37.0 2.1–3.9 (16–85) 0.5–3.3 (14–23)
1 Accuracy and precision are calculated by the propagation of uncertainty from the accuracy and precision of the MFCs and gas cylinder
used for the calibration measurements.

3.2. Field Tests

During the time in the field, we performed 17 release tests, mostly by evaporation of
VOCs, but also using test gas bottles and MFCs as well as burning a tea candle. Table 5
provides an overview of all release tests giving the start time, substance, type of release and
the idealized concentration increase in the room calculated using Equation (1). A complete
list of all events, including persons entering the room, ventilation etc. is given in Table A1.

Table 5. Overview of calibration, recalibration, and all release tests. The complete list of all events is given in Table A1.

Release Event Time Substance (Type of Release) Released Amount of Substance (Approx.
Increase in Room Conc.)

Pre-tests and Initial calibration

1 11 06 October, 17:42 Hydrogen (MFC, gas cylinder) 2000 ppm @ 500 mL/min for 62 min
(~1 ppm ± 4%)

2 12 07 October, 16:01 Hydrogen (MFC, gas cylinder) 2000 ppm @ 500 mL/min for 124 min
(~2 ppm ± 4%)

3 16 13 October, 15:00 Toluene (MFC, gas cylinder) 100 ppm @ 500 mL/min for 497 min
(~300 ppb ± 10%)

5 22 16 October, 14:50 Acetone (evaporation)
Toluene (evaporation)

0.114 mL (~600 ppb ± 10%)
0.164 mL (~600 ppb ± 10%)

6 23 16 October, 18:00 Acetone (evaporation)
Toluene (evaporation)

0.114 mL (~600 ppb ± 10%)
0.164 mL (~600 ppb ± 10%)

1st Recalibration

7 28 02 November, 16:50 Toluene (evaporation) 0.164 mL (~600 ppb ± 10%)

9 32 04 November, 16:22 Acetone (evaporation) 0.114 mL (~600 ppb ± 10%)

10 34 05 November, 15:10 Acetone (evaporation)
Toluene (evaporation)

0.114 mL (~600 ppb ± 10%)
0.164 mL (~600 ppb ± 10%)

11 36 06 November, 10:03 Limonene (evaporation) 0.251 mL (~600 ppb ± 10%)

12 39 09 November, 18:00 Ethanol (evaporation) 0.1 mL (~664 ± 10%)

13 41 10 November, 14:30 Isopropyl alcohol
(evaporation) 0.12 mL (~600 ppb ± 10%)

14 43 11 November, 15:49 m/p-Xylene (evaporation) 0.189 mL (~600 ppb ± 10%)

15 45 12 November, 15:08 Toluene (evaporation)
m/p-Xylene (evaporation)

0.164 mL (~600 ppb ± 10%)
0.189 mL (~600 ppb ± 10%)



Atmosphere 2021, 12, 647 13 of 22

Table 5. Cont.

Release Event Time Substance (Type of Release) Released Amount of Substance (Approx.
Increase in Room Conc.)

16 47 13 November, 14:30
Acetone (evaporation)
Toluene (evaporation)
Ethanol (evaporation)

0.114 mL (~600 ppb ± 10%)
0.164 mL (~600 ppb ± 10%)
0.1 mL (~664 ppb ± 10%)

17 50 16 November, 17:06 Hydrogen (MFC, gas cylinder) 2000 ppm @ 500 mL/min for 134 min
(~2 ppm ± 4%)

18 52 17 November, 18:24 Ethanol (evaporation) 0.1 mL (~664 ppb ± 10%)

19 54 19 November, 12:02 Carbon monoxide etc. (tea
candle) 4 h burn time

2nd Recalibration

The presented signals are based on the drift compensated PLSR model (DCRM). Note,
that with this model, we are using the future to predict the past for the first field tests
(release #1–#6). The release tests in the second field test (release #7–#19) were all conducted
after the 1st recalibration.

Figure 7 shows results recorded during release tests for toluene (release test #7),
acetone (#9), ethanol (#10), and the simultaneous release of all three (#16). In a sealed
room with homogeneous distribution, the release of 0.164 mL toluene should lead to an
increase of the toluene concentration of approx. 600 ppb ± 10 %. Since the amount released
and the homogeneous distribution in the room may vary, there may be deviations in
the level of the expected concentration. With the start of the toluene release, the MOS
sensor model for toluene indicates a quick increase from nearly zero to 620 ppb. After full
evaporation of the toluene, the model prediction slowly decreases again over several hours.
The X-pid 9500 shows a similar course of the toluene signal as the MOS sensor model, but
~150 ppb higher; the increase vs. the base level before release is approx. 700 ppb. Note
that the manufacturer gives a limit of quantification (LOQ) for toluene of 1000 ppb. The
model predictions for the other target gases show only small changes with the onset of the
evaporation and nearly constant results afterward. Only the VOCsum model indicates an
increase of approximately 600 ppb, thus a consistent prediction. Note that calculating the
sum of the four individual VOC model predictions (dashed line) yields a similar increase
with a small offset of approx. 50 ppb. No statement can be made about the true absolute
concentration since these releases were not accompanied by any analytical reference for
this concentration range. However, the MOS sensor model and X-pid 9500 show similar
signals in the same order of magnitude of the expected concentration for the release tests.

Similarly, the release of acetone and ethanol show an increase in the corresponding
prediction models. The acetone model with a higher base level of approximately 120 ppb
indicates an increase of 350 ppb to a peak value of 570 ppb. The same increase can be
observed in the VOCsum model as well as the calculated sum of the individual VOC signals.
Again, the other model does not show a reaction and remains nearly constant, except for
carbon monoxide and hydrogen. Carbon monoxide shows an increase of nearly 150 ppb
after the start of evaporation and hydrogen increases during the acetone signal decrease.
Note that, during the field tests, the hydrogen signal shows more variations than all other
models [25]. Similar to toluene, the acetone signal of the X-pid 9500 shows a higher increase
of the concentration but confirms the course vs. time.
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Figure 7. Results recorded during four release tests with toluene (a), acetone (b), ethanol (c), and the simultaneous release
of toluene, acetone, and ethanol (d). The upper graphs show the PLSR prediction of the MOS sensor model for the released
gases and, if available, reference data (dots); all other signals are shown in the lower graphs. The signals are smoothed over
five points (10 min). Numbers in parenthesis behind the released substances refer to the release tests, cf. Table 4.

The ethanol release test shows an increase of 660 ppb (expected 664 ppb ± 10%). At
the start of the evaporation, the hydrogen signal decreases by nearly 100 ppb, while all
other single target signals remain constant. The VOCsum signal increases from 830 ppb to
1455 ppb, corresponding to an increase of 625 ppb, again very similar to the ethanol signal
itself. The sum of the four single VOC signals is lower with an offset of approx. 180 ppb.

In release test #16 we tested the simultaneous evaporation of all three substances:
toluene (~600 ppb ± 10%), acetone (~600 ppb ± 10%) and ethanol (~664 ppb ± 10%).
The toluene model shows an increase of 380 ppb, acetone of 430 ppb, and ethanol of
530 ppb. All three VOC models yield consistently lower concentrations compared to the
individual release tests. This might be because during calibration only one gas at a time
had higher concentrations and, thus, the models have to extrapolate the prediction beyond
the calibrated range. The VOCsum model prediction as well as the sum of the four single
VOC models shows similar increases.

In Figure 8 two release tests with hydrogen and two with acetone and toluene are
shown. The hydrogen releases were designed to yield an increase of approx. 2 ppm in the
room. Because the hydrogen molecule is very small and has a high diffusion constant, we
expect a somewhat faster diffusion out of the room and, thus, a smaller peak. The first
hydrogen release (2) yields an increase of the model prediction of 1440 ppb, the second
(17) of 1500 ppb. The second release was also monitored with the hydrogen measurement
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system (GC-RCP). A high correlation between analytical and MOS sensor model prediction
can be observed. Compared to the MOS model prediction the GC-RCP indicates a nearly
identical increase of 1490 ppb, but with a constant offset of 150 ppb. Other signals show
minimal changes except for Carbon monoxide wherein both releases a small change can be
observed. The ethanol model shows an inverse effect during the second release, but no
reaction during the first release.

Figure 8. Results recorded during three release tests with hydrogen (a,b) and the simultaneous release of toluene and
acetone (c). The upper graphs show the PLSR prediction of the MOS sensor model for the released gases and, if available,
reference data (dots indicate distinct sampling times); all other signals are shown in the lower graphs. The signals are
smoothed over five points (10 min). Numbers in parenthesis behind the released substances refer to the release tests, cf.
Table 4.

Figure 8c shows two release tests with acetone (~600 ppb ± 10%) and toluene
(~600 ppb ± 10%). The first toluene peak shows an increase of 600 ppb above the baseline
level, similar to the result shown in Figure 7 for the same amount of substance released.
During the first release in Figure 8c samples were taken with Tenax sampling tubes for
analysis by GC-MS in addition to the X-pid 9500 measurements. The X-pid 9500 indicates
an increase of 920 ppb, thus slightly higher compared to release #7, cf. Figure 7. The GC-MS
analysis, on the other hand, yields an increase of 560 ppb. Thus, comparing the MOS sensor
with X-pid 9500 and GC-MS, the toluene concentration predicted by the model is much
closer to the GC-MS. Note that the GC-MS and the MOS sensor are calibrated with gas
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mixtures from the GMA with the same gas cylinders, and therefore, the accuracy of the gas
cylinder (which brings along the highest uncertainty) has no influence on the comparison.

All three signals show the same time temporal development. The first acetone release
in Figure 8c yields an increase of 570 ppb, again comparable to release #9 in Figure 7. The
X-pid 9500 again yields a higher absolute acetone signal. The second release shows the
same trends as before, only the toluene evaporation is slower in comparison to the first
release. The reason for the different evaporation and diffusion speed can be a lower ambient
temperature, because of the experiment being performed later in the day. The increase of
both signals is nearly the same as during the first release. The VOCsum model prediction
also indicates an increase due to the release of acetone and toluene and corresponds to the
sum of the four single VOC signals. Other than as observed during the release of the triple
mixture (toluene, acetone, and ethanol), cf. Figure 7, the model signals during the release
of the double mixture (toluene and acetone) are higher and comparable to the release tests
with single gases.

3.3. Uncalibrated Substances

In Section 2.2 we described the general idea of the calibration scheme based on the
selection of representatives for different chemical classes to simplify the VOC composition.
One assumption is that the substances of a certain class react similarly on MOS sensor
surfaces yielding a similar response patterns in the TCO and thus all VOCs of a type can
be represented by one specific compound. In order to test this assumption, additional
substances of chemical classes previously included and also not included in the calibration
were tested. Figure 9 shows release tests with two substances not included in the cali-
bration: m/p-xylene (aromatic) and isopropyl alcohol. The chemical class aromatics was
represented in the calibration by toluene. Indeed, the m/p-xylene release, Figure 9b, results
in an increase of the toluene signal, i.e., the MOS sensor model trained for toluene. The
corresponding toluene signal indicates an increase of only 460 ppb, compared to 630 ppb
for the same amount of toluene #7. In addition, the carbon monoxide signal shows a slight
increase and the same trend as the toluene signal. Thus, for m/p-xylene and toluene as
two aromatic compounds our assumption is confirmed, but with different response factors
and an additional interference with the carbon monoxide signal. Note that this approach is
similar to quantifying unknown substances with the response factor of toluene in GC-MS
analysis (ISO16000-6). The simultaneous release of toluene and m/p-xylene (#15) results in
an increase of the MOS sensor model of 910 ppb.

For the chemical class alcohol, only ethanol was contained in the calibration. A release
test with isopropyl alcohol was performed to check the reaction of the various model to
this second alcohol. While the X-pid 9500 confirms the release, Figure 9d, the MOS sensor
models for ethanol and all other targets stay constant, although we observe a reaction to
isopropyl alcohol in the raw sensor data. This means that the sensor does react to isopropyl
alcohol but that the models, especially the model for ethanol, compensates for this reaction.
Thus, the assumption of similar reaction patterns is not valid in this case and ethanol is not
suitable to represent the chemical class of alcohol, at least not alone.
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Figure 9. Results recorded during four release tests with toluene (a), m/p-xylene (b), simultaneous release of toluene and
m/p-xylene (c), and isopropyl alcohol (d). The upper graphs show the PLSR prediction of the MOS sensor model for the
same types of VOC and, if available, reference data (dots); all other signals are shown in the lower graphs. The signals are
smoothed over five points (10 min). Numbers in parenthesis behind the released substances refer to the release tests, cf.
Table 4.

4. Discussion

In this study, a SGP30 sensor in TCO was successfully calibrated for VOC quantifica-
tion, both for the overall sum and selective signals, using a randomized calibration scheme
in the laboratory. The randomized calibration scheme was based on our previous study [26]
with an improved randomized gas mixture generation based on Latin Hypercube sampling.
The calculated models yield low RMSE values for different VOC targets based on the lab
measurements. The performance of the models is similar to those achieved previously
with other MOS sensor types (AS-MLV and AS-MLV-P2, ScioSense B.V., Eindhoven, The
Netherlands) [26]. Both studies are not completely identical due to some different gases
being used but the results indicate that the SGP30 achieves lower RMSE values for all gases
except carbon monoxide. This can be attributed to the higher information obtained from
the four different gas-sensitive layers of the SGP30, all of which show only low sensitivity
to carbon monoxide. For VOC measurements in indoor air, this might be beneficial, because
large variations of the carbon monoxide concentration are possible in room air. Sensor drift,
which was especially obvious for one layer off the SGP30, could be effectively eliminated
from the models by extended calibration based on two GMA measurements spread over a
period of several weeks.
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The field tests show quantitative and repeatable results for VOC release tests which
were performed by the evaporation of different substances. This method has proven to
also be a reliable option for simple verification of the sensor performance. Release tests
with substances included in the calibration (toluene, acetone, ethanol, and hydrogen) show
concentration increases close to theoretically expected values. Analytical measurements
with GC-MS, GC-PID and GC-RCP show the same temporal course during the release tests.
Absolute concentrations obtained from the MOS sensor model prediction and the analytical
systems are similar but reveal some offsets, also between the different analytical systems.
However, these offsets are not higher than normally expected for trace gas measurements
even using high-cost lab analysis. Compared to GC-MS, the X-pid 9500 provides better
temporal resolution but has a high LOQ, higher than the concentrations tested here. For
an exact time-resolved quantification, further analytical measurements with optimized
sampling methods for the GC-MS or other analytical measurement systems, like PTR-
MS, are required. The difference between the MOS sensor toluene model and the GC-
MS, which is the gold standard in VOC analysis, is small (<100 ppb) and similar to the
RMSE value determined during calibration. One reason can be that the GC-MS and the
MOS sensor are calibrated with gas mixtures from the GMA and the same gas cylinders.
Therefore, the accuracy of the gas cylinder (with the highest uncertainty) has no influence
on the comparison.

During the release test of hydrogen, the GC-RCP consistently indicated approx.
150 ppb lower concentrations than the hydrogen model of the SGP30. In fact, during
ventilation of the room, the GC-RCP indicated a concentration of less than 500 ppb, i.e.,
below the atmospheric background, indicating that the GC-RCP is underestimating the
actual hydrogen concentration. The difference of the two systems is within the error range
of the two systems; the RCP has an accuracy of 10% and the MOS sensor system at least
3–5% (uncertainty of the gas mixtures for calibration; model, stability and drift of the
system are not considered).

We tested the assumption that substances of the same chemical class react similarly
on the sensor surface and can therefore be represented by one single compound. Release
tests with m/p-xylene and a laboratory test with benzene indeed showed a reaction of
the toluene sensor model, indicating that this model does indeed represent all aromatic
compounds, although with different response factors. On the other hand, this means
that selectively measuring individual aromatics independent of each other needs further
investigation and will at least require more comprehensive calibration. The second chemical
class-tested was alcohols where calibration was based on ethanol and a release test was
performed with isopropyl alcohol. However, other than for the three aromatics, the ethanol
model does not respond to isopropyl alcohol. In the raw sensor signals, a reaction towards
isopropyl alcohol was observed but the gases obviously have different reaction processes
leading to different sensor response patterns. The approach with a single representative is
not valid for this type of VOC, which means that at least two alcohols will be needed for a
valid calibration.

5. Conclusions

In this study, we have demonstrated that using MOS gas sensor systems can provide
quantitative and selective results not only in the laboratory but also in field measurements
as demonstrated by release tests accompanied by analytical measurements. TCO dynamic
operation, randomized calibration, and optimized model training are suggested as neces-
sary and practical tools for achieving this performance with commercially available sensor
elements. We were able to successfully demonstrate that the sensor can measure calibrated
substances in real-time selectively and quantitatively while being released in a room. Also,
further investigations about the metrological accuracy or precision and long-term stability
of the sensor system are required. Two contrary behaviors concerning the approach of
detecting VOC by type were observed, so further work on this approach is required to
simplify calibration for complex environments. Even more important for industrial appli-
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cation of the demonstrated elaborate calibration, as presented in this manuscript, is the
optimization of the model stability without the need for a 2nd calibration after some time
in the field. While the approach using extended calibration yields excellent results, this is a
very inefficient approach, at least for the calibration of high volumes. Therefore, a study
and optimization of long-term stable features and models is necessary. Also, the transfer
of the feature selection and of full evaluation models between sensors of the same type
should be investigated.
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Figure A1. Flowchart of different data evaluation steps. Indices i: number of features, j: number of PLSR components and k:
current fold during 10-fold cross validation.
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Table A1. Overview of all release tests and events during the field tests.

Number Time Type of Event

1 29 September, 09:35–09:48 Door opened

2 30 September, 09:24–09:58 Window opened

3 01 October, 09:10–09:30 Window opened

4 01 October, 11:47–12:05 Door and window opened

5 01 October, 18:30–02 October, 06:30 No specifiable event

6 2 October, 09:00–09:30 Door and window opened

7 02 October, 14:00–05 October, 10:00 Days without events and human presence

8 05 October, 10:10–10:30 Door and window opened

9 05 October and 05 October Several short periods of human presence

10 06 October, 13:08–16:51 Door and window opened

11 06 October, 17:42–18:44 Release test: 1 ppm H2

12 07 October, 16:01–18:05 Release test: 2 ppm H2

13 08 October, 10:46–11:00 Door and window opened

14 08 October to 13 October Days without events and human presence

15 13 October, 09:25–14:00 Door and window opened, human presence

16 13 October, 15:00 Release test: toluene

17 14 October, 09:30–10:05 Door and window opened

18 08 October to 13 October Sporadic human presence, no specifiable events

19 15 October, 09:00–09:30 Door and window opened

20 15 October, 15:00 Release test: acetone

21 16 October, 09:40–10:10 Door and window opened

22 16 October, 14:50 Release test: acetone and toluene

23 16 October, 18:00 Release test: acetone and toluene

24 17 October to 19 October Days without events and human presence

25 29 October, 12:55–13:10 Door and window opened

26 29 October to 02 November Days without events and human presence

27 02 November, 12:40–12:55 Door and window opened

28 02 November, 16:50 Release test: toluene

29 03 November, 10:55–11:10 Door and window opened

30 03 November, 15:30 Release test: acetone followed by defect of the pump,
human presence during fixing

31 04 November, 09:00–09:15 Door and window opened

32 04 November, 16:22 Release test: acetone

33 05 November, 09:26–09:41 Door and window opened

34 05 November, 15:10 Release test: acetone and toluene. Unidentified event
due to construction inside the building

35 05 November, 18:30–18:50 Door and window opened

36 06 November, 10:03 Release test: limonene

37 06 November to 09 November Days without events and human presence

38 09 November, 12:21–13:01 Door and window opened



Atmosphere 2021, 12, 647 21 of 22

Table A1. Cont.

Number Time Type of Event

39 09 November, 18:00 Release test: ethanol

40 10 November, 09:10–09:25 Door and window opened

41 10 November, 14:30 Release test: isopropyl alcohol

42 11 November, 09:28–09:48 Door and window opened

43 11 November, 15:49 Release test: m/p-xylene

44 12 November, 09:15–09:30 Door and window opened

45 12 November, 15:08 Release test: toluene and m/p-xylene

46 13 November, 09:28–11:06 Door and window opened

47 13 November, 14:30 Release test: acetone, toluene, and ethanol

48 13 November–16 November Days without events and human presence

49 16 November, 11:55–12:20 Door and window opened

50 16 November, 17:06–19:20 Release test: 2 ppm H2

51 17 November, 09:54–10:24 Door and window opened

52 17 November, 18:24 Release test: ethanol

53 18 November, 09:36–09:56 Door and window opened

54 19 November, 12:02–16:02 Release test: carbon monoxide (tea candle)
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